1989_Unitrode_Semiconductor_Databook_and_Application_Notes 1989 Unitrode Semiconductor Databook And Application Notes
User Manual: 1989_Unitrode_Semiconductor_Databook_and_Application_Notes
Open the PDF directly: View PDF
.
Page Count: 766
| Download | |
| Open PDF In Browser | View PDF |
SEMICONDUCTOR
PRODUCTS
PART NUMBER INDEX
RECTIFIERS
RECTIFIER BRIDGES & MODULES
POWER ZENERS AND TRANSIENT VOLTAGE SUPPRESSORS
SWITCHING & GENERAL PURPOSE DIODES
PIN DIODES
POWER HYBRIDS
POWER TRANSISTORS & DARLINGTONS
SCRs & THYRISTORS
SENSISTORS®
SURFACE MOUNT DEVICES
APPLICATION NOTES
SALES OFFICES
© Copyright 1989 Unitrode Corporation, Watertown, MA.Allrights reserved.
..
..
-.-.
.-.
-.-.
l1li
IDI
Unitrode Corporation makes no representation that
the use or interconnection of the circuits described
herein will not infringe on existing or future patent
rights, nor do the descriptions contained herein
imply the granting of licenses to make, use or sell
equipment constructed in accordance therewith.
© 1989, by Unitrode Corporation. All rights reserved.
This book, or any part or parts thereof, must not be
reproduced in any form without permission of the
copyright owner.
NOTE: The information presented 'in this section is
believed to be accurate and reliable. However, no
responsibility is assumed by Unitrode Corporation
for its use.
Doorbell- and MagnumI.') are
registered trademarks of Unitrode Corporation
BISYNTM, UNIBONDTM and HV PIUS™ are
trademarks of Unitrode Corporation
MULTIWATTilI is a registered trademark of SGS Corporation
Sensistorl!l is a registered trademark of Texas Instruments
ii
PRINTED IN U.S.A.
UNITRODE CORPORATION
MISSION STATEMENT
Our Mission is to be a recognized leader in providing innovative solutions to the high
performance needs of users of electronic components and subsystems.
We will excel at understanding and satisfying, in a timely manner, the high value-added
needs of our customers. We will deliver quality products of superior performance that
are fit for their intended use. They will be supplied on time and at a fair price. By
matching our capabilities and customers' needs, we will best achieve our profit-growth
objective.
We recognize that loyal, productive employees are our most important resource. Therefore, we will provide a safe, clean working environment and foster open communications,
mutual respect and trust at all levels. We will encourage participation of all employees
and recognize and reward their efforts in meeting our goals and our customers' expectations. We will provide equal opportunity in employment and promote employee
development and advancement.
Successful innovation and the willingness to take risks are key to achieving individual
and company growth.
Our relationships with customers, suppliers, stockholders, community and government
will be characterized by mutual understanding and trust. We are committed to
conducting our business in an ethical and responsible manner.
iii
PRINTED IN U.S.A.
ABOUT THE DATABOOK ...
This Data book contains complete data and applications information about Unitrode's broad line of
discrete semiconductors for industrial and military
applications. It includes the new ultra-fast HV
Plus™ rectifier and the unique new electrically and
mechanically superior UNIBOND™ diode.
.
For more information about these products or any·
other Unitrode components, please call or write.
iv
TABLE OF CONTENTS
Page
Section
1
PART NUMBER INDEX .............................................. 1-3
2
RECTIFIERS
Product Selection Guides
Schottky Rectifiers .............................................. 2-3
HV Plus Rectifiers .............................................. 2-5
Ultra-Fast Recovery Rectifiers ...................................... 2-6
Super-Fast Recovery ............................................ 2-8
Fast Recovery ................................................. 2-9
Bi-Synchronous Rectifier .......................................... 2-9
Standard Recovery ............................................. 2-10
Datasheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11
3
RECTIFIER BRIDGES & MODULES
Product Selection Guides
Rectifier Bridges ............................................... 3-3
Rectifier Modules ............................................... 3-6
Datasheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12
4
POWER ZENERS AND TRANSIENT VOLTAGE SUPPRESSORS
Product Selection Guides
Transient Voltage Supressors ...................................... 4-3
Transient Voltage Supressors, Bidirectional .................. ~ .......... 4-4
Power Zeners ................................................. 4-5
Datasheets ..................................................... 4-7
5
SWllCHING & GENERAL PURPOSE DIODES
Product Selection Guides
UNIBONDTh1 Diodes ............................................. 5-3
Switching & General Purpose Diodes ................................. 5-3
ProElectron Switching Diodes ...................................... 5-4
Datasheets ............. ' ........................................ 5-5
6
PINDIODES
Product Selection Guides ........................................... 6-3
Mechanical Specifications ......................................... 6-6
Datasheets .................................................... 6-10
7
POWER HYBRIDS
Product Selection Guides ........................................... 7-3
Oatasheets ...................... ,............................... 7-4
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
v
PRINTED IN U.S.A.
Section
Ppge
8
POWER TRANSISTORS & DARLINGTONS
Product Selection Guides
NPN Bipolar Power Switching Transistors .............................. 8-3
Power Darlingtons ............................ : ................. 8-6
Datasheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... : ...... 8-7
9
SCRs & THYRISTORS
Thyristors ..... " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......... 9-3
Ultra-Fast Switching ............................................. 9-4
Radiation Hardened SCRs ........................................ 9-4
PUTs ...................................................... , .9-4
Datasheets ..................................................... 9-5
10
SENSISTORS@
Product Selection Guides ............................. , . . . . . . . . .... 10-3
Datasheets ............................................ : .. . .... lOA
11
SURFACE MOUNT DEVICES
Introduction .................................................... 11-3
Product Selection Guides ...........•......... , ...... , .. ; ........... 11-5
12
APPLICATION NOTES
Table of Contents .................................. : .............. 12-3
Application Notes ............... : ............................... 12-4
l3
SALES OFFICES .................................................. 13-3
.,.
UNITRODE • SEMICONDUCTOIl PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
vi
PRINTED IN U SA
PART NUMBER INDEX
Part Number Index . .............................................. 1-3
UNITROOE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
1-1
PRINTED IN U S.A
..
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
1·2
PRINTED IN USA.
PART NUMBER INDEX
PAGE
5-7
1N251, J
1N456
1N456A
1N457, J
1N457A
1N458, J
1N458A
1N459, J
1N459A
1N483
1N483A
1N483B, J, JTX
1N483C
1N485
1N485B, J, JTX
5-9
1N643, J
5-11
5-11
5-11
5-11
1N645J, JTX
1N645-lJ, JTX, JTXV
1N647, J, JTX
1N647-1, J, JTX, JTXV
5-9
5-9
5-13
5-15
5-16
1N662, J
1N663, J
1N914, J, JTX
1N914-1, A, B
1N916,B
1N3064J, JTX
1N3070, J, JTX
5-17
1N3595,J,JTX,JTXV
5-18
1N3600, J, JTX, JTXV
2-11
2-11
2-11
2-11
1N3611,
1N3612,
1N3613,
1N3614,
4-27
1N4096-1N4098
5-13
5-13
5-20
5-18
5-18
5-20
5-21
5-22
5-20
1N4148, J, JTX,JTXV
1N4148-lJ, JTX, JTXV
1N4149
1N4150,J,JTX,JTXV
1N4150-lJ, JTX, JTXV
1N4151
1N4152
1N4153, J, JTX, JTXV
1N4153-lJ, JTX, JTXV
1N4154
2-13
2-13
2-13
2-13
2-13
1N4245,J,JTX,JTXV
1N4246,J,JTX,JTXV
1N4247, J, JTX, JTXV·
1N4248, J, JTX, JTXV
1N4249,J,JTX,JTXV
5-5
5-6
*
5-6
*
5-6
.
*
5-6
*
,~
5-7
*
*
.
*
*
DESCRIPTION
PART NUMBER
J,
J,
J,
J,
JTX
JTX
JTX
JTX
PAGE
GENERAL PURPOSE
DIODE
75mA; 40V; 00-7
90mA; 25V
75mA; 60V
55mA; 125V; 00-7
40mA; 175V
55mA; 150V; 00-7
100mA; 150V
40mA; 200V; 00-7
100mA; 200V
100mA; 70V
100mA; 70V
200mA; 80V; 00-7
100mA; 70V
100mA; 180V
200mA; 200V; 00-7
SWITCHING DIODE
40mA; 200V; 00-7
RECTIFIER
400mA; 270V
400mA; 270V
400mA; 480V
400mA; 480V
SWITCHING DIODE
40mA; 100V; 00-7
60mA; 100V; 00-7
75mA; 100V
75mA; 100V
75mA; 100V
75mA; 75V; 00-7
150mA; 200V; 00-7
GENERAL PURPOSE
DIODE
150mA; 150V; 00-7
SWITCHING DIODE
200mA; 75V; 00-7
RECTIFIER
l.OA; 200V
l.OA; 400V
1.0A; 600V
1.0A; 800V
ZENER
3.0W; 5%
SWITCHING DIODE
200mA; 100V; 00-35
150mA; 100V; 00-35
200mA; 75V; 00-35
200mA; 75V; 00-35
200mA; 75V; 00-35
200mA; 75V; 00-35
200m A; 40V; 00-35
150mA; 75V; 00-35
150mA; 75V; 00-35
200mA; 35V; 00-35
RECTIFIER
l.OA; 200V
l.OA; 400V
l.OA; 600V
l.OA; 800V
l.OA; lOOOV
PART NUMBER
5-21
5-21
5-20
5-20
5-20
5-20
5-24
5-24
5-25
5-24
5-15
5-15
1N4305
1N4444
1N4446
1N4447
1N4448
1N4449
1N4450
1N4451
1N4452
1N4453
1N4454, J, JTX, JTXV
1N4454-1, J, JTX, JTXV
4-7
1N4461-1N4496, J,
JTX, JTXV
5-26
5-13
5-15
5-22
5-25
5-25
5-28
1N4500, J, JTX
1N4531,J,JTX,JTXV
1N4532,J,JTX,JTXV
1N4534, J,JTX, JTXV
1N4607
1N4608
1N4727
4-27
1N4883-1N4884
5-16
1N4938, J, JTX
2-15
2-15
2-15
1N4942,J,JTX,JTXV
1N4944, J, JTX,JTXV
1N4946,J,JTX,JTXV
4-9
4-27
4-31
1N4954-1N4996, J,
JTX, JTXV
1N5063-1N5117
1N5118-1N5134
2-17
2-17
2-17
2-17
2-19
2-19
2-19
2-19
2-19
2-19
1N5186, J, JTX
1N5187, J, JTX
1N5188, J, JTX
1N5190, J, JTX
1N5415,J,JTX,JTXV
1N5416,J,JTX,JTXV
1N5417,J,JTX,JTXV
1N5418,J,JTX,JTXV
1N5419,J,JTX,JTXV
1N5420, J, JTX, JTXV
2-21
2-21
2-21
2-21
1N5550,
1N5551,
1N5552,
1N5553,
3-43
3-43
3-43
1N5597, J
1N5600, J
1N5603, J
4-11
4-11
4-11
4-11
1N561O, J, JTX, JTXV
1N5611, J, JTX, JTXV
1N5612,J,JTX,JTXV
1N5613, J, JTX, JTXV
J,
J,
J,
J,
JTX,
JTX,
JTX,
JTX.
JTXV
JTXV
JTXV
JTXV
DESCRIPTION
SWITCHING DIODE
200mA; 75V; 00-35
200mA; 70V; 00-35
200mA; 75V; 00-35
200mA; 75V; 00-35
200mA; 75V; 00-35
200mA; 75V; 00-35
200m A; 40V; 00-35
200mA; 40V; 00-35
400mA; 40V; 00-35
200m A; 30V; 00-35
200m A; 75V; 00-35
200mA; 75V; 00-35
ZENER
l.5W; 5%
SWITCHING DIODE
300mA; 80V; 00-35
125mA; lOOV; 00-34
125mA; 75V; 00-34
150mA; 75V; 00-34
400mA; 85V; 00-35
500mA; 85V; 00-35
75mA; 30V; 00-35
ZENER
3.0W; 5%
SWITCHING DIODE
150mA; 200V; 00-35
RECTIFIER
l.OA; 200V
l.OA; 400V
l.OA; 600V
ZENER
5.0W; 5%
3.0W; 5%
5.0W; 5%
RECTIFIER
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 600V
3.0A; 50V
3.0A; 100V
3.0A; 200V
3.0A; 400V
3.0A; 500V
3.0A; 600V
RECTIFIER
5.0A; 200V
5.0A; 400V
5.0A; 600V
5.0A; 800V
RECTIFIER MODULE
10kV
5.0kV
5.0kV
TRANSIENT VOLTAGE
SUPPRESSOR
33V
43.7V
54V
191V
, Contact Unit rode
t For complete datasheet information contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
1-3
PRINTED IN U S.A
-
PART NUMBER INDEX
PAGE
PART NUMBER
2-23
2-2S
2-23
2-2S
2-23
2-2S
2-23
2-23
1NS614, J, JTX, JTXV
iNS615, J, JTX, JTXV
1NS616,J,JTX,JTXV
1NS617,J,JTX,JTXV
1NS618,J,JTX,JTXV
1NS619,J,JTX,JTXV
1N5620, J,JTX, JTXV
1NS622,J,JTX,JTXV
6-10
1NS767
2-27
2-31
2-27
2-27
2-31
2-27
2-27
2-31
2-27
2-31
2-27
2-27
2-31
2-27
2-27
2-31
2-27
2-34
2-27
2-27
2-34
2-27
2-27
2-34
1NS802
1NS802, J, JTX, JTXV
1NS803
1NS804
1NS804,J,JTX,JTXV
1NS80S
1NS806
1NS806,J,JTX,JTXV
1N5807
1N5807,J,JTX,JTXV
1N5808
1NS809
1N5809,J,JTX,JTXV
1N5810
1N58ll
1NS8ll, J, JTX, JTXV
1NS812
1NS812,J,JTX,JTXV
1NS813
1NS814
1NS814,J,JTX,JTXV
1NS81S
1NS816
1NS816,J,JTX,JTXV
6-10
1NS9S7
4-9
4-9
1NS968,J,JTX,JTXV
1NS969,J,JTX,JTXV
2-36
2-36
1N6097
1N6098
4-13
1N6102A-1N612SA
2-38
2-38
2-38
1N6304,J,JTX,JTXV
1N6305, J, JTX, JTXV
1N6306, J, JTX, JTXV
2-41
2-43
1N6391, J, JTX, JTXV
1N6392, J, JTX, JTXV
4-16
4-16
4-16
4-16
4-16
4-16
4-16
4-16
1N6461, J, JTX, JTXV
1N6462, J, JTX, JTXV
1N6463, J, JTX, JTXV
1N6464, J, JTX, JTXV
1N646S, J, JTX, JTXV
1N6466, J, JTX, JTXV
1N6467, J, JTX, JTXV
1N6468,J,JTX,JTXV
DESCRIPTION
PAGE
RECTIFIER
l.OA; 200V
l.OA; 200V
l.OA; 400V
l.OA; 400V
l.OA; 600V
l.OA; 600V
l.OA; 800V
l.OA; 1000V
PIN DIODE
General Purpose, PIN
RECTIFIER
2.SA; SOV
2.SA; SOV
2.SA; 75V
2.SA; 100V
2.SA; 100V
2.SA; 12SV
2.SA; lS0V
2.SA; lS0V
6.0A; SOV
6.0A; SOV
6.0A; 7SV
6.0A; 100V
6.0A; 100V
6.0A; 125V
6.0A; lS0V
6.0A; lS0V
20.0A; 50V; 00-4
20.0A; SOY; 00-4
20.0A; 7SV; 00-4
20.0A; 100V; DO-4
20.0A; 100V; 00-4
20.0A; 125V; 00-4
20.0A; lS0V; 00-4
20.0A; lS0V; 00-4
PIN DIODE
Low Distortion, AGC Diode
ZENER
5.0W; S%
S.OW; S%
SCHOITKY RECTIFIER
SOA; 30V; 00-5
SOA; 4OV; 00-5
BIDIRECTIONAL TVS
4000W
RECTIFIER
70A; SOY; 00-5
70A; 100V; OO-S
70A; 150V; OO-S
SCHOITKY RECTIFIER
2SA; 45V; 00-4
60A;4SV; OO-S
TRANSIENT VOLTAGE
SUPPRESSOR
S.OV
6.0V
12.0V
lS.0V
24.0V
30.SV
40.3V
S1.6V
PART NUMBER
2-45
1N6492, JTX, JTXV
2-47
2-47
2-47
2-47
2-47
2-47
2-S3
2-S3
2-S3
2-53
2-S3
2-S3
1N6620
1N6621
1N6622
1N6623
1N6624
1N6625
1N6626
1N6627
1N6628
1N6629
1N6630
1N6631
5-29
5-29
5-29
1N6638, U, JTX, JTXV
1N6642,U,JTX,JTXV
1N6643,U,JTX,JTXV
9-S
9-S
9-5
9-S
9-S
2N1870A,J
2N1871A,J
2N1872A, J
2N1873A
2N1874A,J
*
2N21S0
2N2151, J, JTX
9-9
9-9
2N2323
2N2323, SJ,
SJTX, SJTXV
2N2323A, SJ,
SJTX, SJTXV
2N2324, SJ
SJTX, SJTXV
2N2324A, SJ
SJTX, SJTXV
2N232S
2N232SA
2N2326, SJ
SJTX, SJTXV
2N2326A, SJ,
SJTX,SJTXV
2N2327
2N2327A
2N2328, SJ,
SJTX, SJTXV
'2N2328A, SJ,
SJTX,SJTXV
2N2329, SJ
SJTX, SJTXV
8-7
9-9
9-9
9-9
9-9
9-9
9-9
9-9
9-9
9-9
9-9
9-9
9-9
8-11
2N2880, J, JTX, JTXV
9-12
9-12
9-12
9-12
9-12
9-12
2N3027,
2N3028,
2N3029,
2N3030,
2N3031,
2N3032,
J, JTX
J, JTX
J, JTX
J,JTX
J, JTX
J, JTX
DESCRIPTION
SCHOITKY RECTIFIER
4A, 45V, TO-39
- HV PLUS RECTIFIER
2.0A; 200V; 30nS
2.0A; 400V; 30nS
2.0A; 600V; 30nS
l.5A; 800V; 50nS
l.SA; 900V; SOnS
l.SA; 1000V; 60nS
4.0A; 200V; 30nS
4.0A; 400V; 30nS
4.0A; 600V; 30nS
3.0A; 800V; SOnS
3.0A; 900V; SOnS
2.SA; 1000V; 60nS
SWITCHING DIODES
300mA; lS0V
300m A; 100V
300m A; 75V
SCR
l.25A@100°C !JOV; TO-9
l.2SA@100°C60V; TO-9
l.2SA@100°C 100V; TO-9
l.25A@100°C lS0V; TO-9
l.2SA@100°C 200V; TO-9
POWER TRANSISTOR
NPN; 2.0A; 80V; TO-S9
NPN; 2.0A; 80V; TO-S9
SCR
l.6A@8SoC 50V; TO-39
l.6A@8SoC 50V; TO-39
l.6A@85°C SOY; TO-39
l.6A@8SoC 100V; TO-39
l.6A@8SoC 100V; TO-39
l.6A@8SoC 150V; TO-39
l.6A@85°C 150V; TO-39
l.6A@8SoC 200V; TO-39
l.6A@8SoC 200V; TO-39
l.6A@85°C 250V; TO-39
l.6A@85°C 250V; TO-39
l.6A@85°C 300V; TO-39
1.6A@8SoC 300V; TO-39
1.6A@8soC400V; TO-39
POWER TRANSISTOR
NPN; SA; 80V; TO-S9
SCR
SOOmA@lOO°C 30V; TO-18
SOOmA@100°C60V;TO-18
SOOmA@lOO°C 100V; TO-18
500mA@100°C30V; TO-18
SOOmA@100°C60V; TO-18
SOOmA@lOO°C lO~Y; TO-18
* Contact Unitrode
t For complete datasheet information contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
1-4
PRINTED IN U S.A
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE
FULL WAVE BRIDGE
POWER TRANSISTOR
8·15
8·15
8·15
8·15
8·11
8·19
8·19
8·19
8·19
8·23
8·27
8·27
8·27
8·27
8·32
8·32
8·32
8·32
2N3418,J,JTX,JTXV
2N3419, J, JTX, JTXV
2N3420, J,JTX, JTXV
2N3421,J,JTX,JTXV
2N3749,J,JTX,JTXV
2N3996, J, JTX, JTXV
2N3997, J, JTX, JTXV
2N3998,J,JTX,JTXV
2N3999,J,JTX,JTXV
2N4150,J,JTX,JTXV
2N5660, J,JTX, JTXV
2N5661, J, JTX, JTXV
2N5662,J,JTX,JTXV
2N5663,J,JTX,JTXV
2N5664, J, JTX, JTXV
2N5665, J, JTX, JTXV
2N5666,J,JTX,JTXV
2N5667, J, JTX, JTXV
9·18
9·18
9·18
9·18
9·18
2N5724
2N5725
2N5726
2N5727
2N5728
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
NPN;
3.0A; 60V; TO·5
3.0A; 80V; TO·5
3.0A; 60V; TO·5
3.0A; 80V; TO·5
5.0A; 80V; TO·111
5.0A; 80V; TO·111
5.0A; 80V; TO·1ll
5.0A; 80V; TO·59
5.0A; 80V; TO·59
1O.OA; 70V; TO·5
3A; 200V; TO·66
3A; 300V; TO·66
3A; 200V; TO·5
3A; 300V; TO·5
5A; 200V; TO·66
5A; 300V; TO·66
5A; 200V; TO·5
5A; 300V; TO·5
SCR
l.6A@85°C 60V; TO·39
l.6A@85°C 100V; TO·39
l.6A@85°C 200V; TO·39
l.6A@85°C300V; TO·39
l.6A@85°C 400V; TO·39
2N6119
2N6120
2N6137
8·37
8·37
8·37
8·37
2N6350, J, JTX, JTXV
2N6351, J, JTX, JTXV
2N6352,J,JTX,JTXV
2N6353, J, JTX, JTXV
3·12
3·12
3·12
3·14
3·14
3·14
3·16
3·16
3·16
3·16
3·16
3·16
3·18
3·18
3·18
3·18
3·18
3·18
3·18
3·18
3·16
3·16
3·16
3·16
3·16
3·16
3·18
3·18
3·18
3·18
3·18
469·1, J, JTX
469·2, J, JTX
469·3, J, JTX
483·1, JTX
483·2, JTX
483·3, JTX
673·1
673·2
673·3
673·4
673·5
673·6
673·7
673·7.5
400mW@25°C 40V; TO·18
400mW@25°C40V; TO·18
300mW@25°C40V; TO·18
POWER DARLINGTON
NPN;
NPN;
NPN;
NPN;
673~
673·8.5
673·9
673·10
673·11
673·12
676·1
676·2
676·3
676·4
676·5
676·6
676·12
676-18
676·24
676·30
676·36
676·42
676·48
676·50
678·1
678·2
678·3
678·4
678·5
678·6
679·1
679·2
679·3
679·4
679·5
679·6
680·1
680·2
680·3
680·4
680·5
680·6
3·27
3·27
3·27
3·27
3·27
3·27
681·1
681·2
681·3
681·4
681·5
681·6
3·21
3·21
3·21
3·21
3·21
3·21
3·24
3·24
3·24
3·24
3·24
3·24
3·24
3·24
3·24
3·24
3·24
3·24
682·1
682·2
682·3
682·4
682·5
682·6
683·1
683·2
683·3
683·4
683·5
683·6
684·1
684·2
684·3
684·4
684·5
684·6
3·29
3·29
3·29
3·29
3·29
3·29
688·10
688·12
688·15
688·18
688·20
688·25
3·27
3·27
3·27
3·27
3·27
3·27
689·1
689·2
689·3
689·4
689·5
689·6
1 ph; .15A; 4200V
1 ph; .135A; 4800V
1 ph; .125A; 5000V
3 ph; 25A; lOOV
3 ph; 25A; 200V
3 ph; 25A; 300V
3 ph; 25A; 400V
3 ph; 25A; 500V
3 ph; 25A; 600V
1 ph; 25A; 100V
1 ph; 25A; 200V
1 ph; 25A; 300V
1 ph; 25A; 400V
1 ph; 25A; 500V
1 ph; 25A; 600V
1 ph; lOA; 100V
1 ph; lOA; 200V
1 ph; lOA; 300V
1 ph; lOA; 400V
1 ph; lOA; 500V
1 ph; lOA; 600V
DOUBLER OR
15A; 100V
15A;200V
15A;300V
15A;400V
15A;500V
15A;600V
FULL WAVE BRIDGE
10.0A; 80V; TO·33
1O.OA; 150V; TO·33
1O.OA; 80V; TO·66
1O.OA; 150V; TO·66
FULL WAVE BRIDGE
1 ph;
1 ph;
1 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
3·18
3·18
3·18
3·21
3·21
3·21
3·21
3·21
3·21
3·24
3·24
3·24
3·24
3·24
3·24
3·24
3·24
3·24
3·24
3·24
3·24
CENTER·TAP
PUT
9·22
9·22
9·26
DESCRIPTION
PART NUMBER
lOA; 200V
lOA; 400V
lOA; 600V
25.0A; 200V
25.0A; 400V
25.0A; 600V
l.5A; 100V
l.5A; 200V
l.5A; 300V
l.5A; 400V
1.5A; 500V
1.5A; 600V
0.6A; 1200V
0.5A; 1800V
O.4A; 2400V
0.3A; 3000V
0.2A; 3600V
.18A; 4200V
.16A; 4800V
.16A; 5000V
l.OA; 100V
l.OA; 200V
l.OA; 300V
l.OA; 400V
l.OA; 500V
l.OA; 600V
O.4A; 1200V
.35A; 1800V
.325A; 2400V
.25A; 3000V
.175A; 3600V
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
3 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
1 ph;
20A;lOOV
20A; 200V
20A; 300V
20A; 400V
20A; 500V
20A; 600V
20A; lOOV
20A; 200V
20A; 300V
20A; 400V
20A; 500V
20A; 600V
lOA; 100V
lOA; 200V
lOA; 300V
lOA; 400V
lOA; 500V
lOA; 600V
RECTIFIER MODULE
10kV
12kV
15kV
18kV
20kV
25kV
DOUBLER OR
CENTER·TAP
15A;100V
15A;200V
15A;300V
15A;400V
15A; 500V
15A;600V
• Contact Unitrode
t For complete datasheet information contact Unitrode
legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
1·5
PRINTED IN U.S.A.
III
PART NUMBER INDEX
PAGE
3-21
3-21
3-21
3-21
3-21
3-21
3-21
3-21
3-21
3-21
3-21
3-21
3-31
3-31
3-31
3-31
3-31
3-31
3-31
3-31
3-31
3-31
3-31
3-31
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-33
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-35
3-38
3-38
3-38
3-38
3-38
3-38
3-38
3-38
>:<
t
PART NUMBER
695-1
695-2
695-3
695-4
695-5
695-6
696-1
696-2
696-3
696-4
696-5
696-6
697-1
697-2
697-3
697-4
697-5
697-6
698-1
698-2
698-3
698-4
698-5
698-6
700-1
700-2
700-3
700-4
700-5
. 700-6
701-1
701-2
701-3
701-4
701-5
701-6
800-1
800-2
800-3
800-4
801-1
801-2
801-3
801-4
802-1
802-2
802-3
802-4
803-1
803-2
803-3
803-4
3-41
3-41
3-41
3-41
804-1
804-2
804-3
804-4
9-30
9-30
9-30
9-30
9-30
9-30
AAlOO
AAlOl
AA102
AA103
AA104
AA107
DESCRIPTION
PAGE
FULL WAVE BRIDGE
3 ph; 15A; 100V
3 ph; 15A; 200V
3 ph; 15A; 300V
3 ph; 15A; 400V
3 ph; 15A; 500V
3 ph; 15A; 600V
3 ph; 15A; 100V
3 ph; 15A; 200V
3 ph; 15A; 300V
3 ph; 15A; 400V
3 ph; 15A; 500V
3 ph; 15A; 600V
1 ph; 2.5A; 100V
1 ph; 2.5A; 200V
1 ph; 2.5A; 300V
1 ph; 2.5A; 400V
1 ph; 2.5A; 500V
1 ph; 2.5A; 600V
1 ph; 2.25A; 100V
1 ph; 2.25A; 200V
1 ph; 2.25A; 300V
1 ph; 2.25A; 400V
1 ph; 2.25A; 500V
1 ph; 2.25A; 600V
3 ph; 2.5A; 100V
3 ph; 2.5A; 200V
3 ph; 2.5A; 300V
3 ph; 2.5A; 400V
3 ph; 2.5A; 500V
3 ph; 2.5A; 600V
3 ph; 2.25A; 100V
3 ph; 2.25A; 200V
3 ph; 2.25A; 300V
3 ph; 2.25A; 400V
3 ph; 2.25A; 500V
3 ph; 2.25A; 600V
3 ph; 40A; 50V
3 ph; 40A; 100V
3 ph; 40A; 125V
3 ph; 40A; 150V
3 ph; 20A; 50V
3 ph; 20A; 100V
3 ph; 20A; 125V
3 ph; 20A; 150V
1 ph; 35A; 50V
1 ph; 35A; 100V
1 ph; 35A; 125V
1 ph; 35A; 150V
1 ph; 20A; 50V
1 ph; 20A; 100V
1 ph; 20A; 125V
1 ph; 20A; 150V
DOUBLER OR
CENTER-TAP
20A; 50V
20A; 100V
20A; 125V
20A; 150V
SCR
0.5A@100°C 60V; TO-IS
0.5A@100°C 100V; TO-IS
0.5A@100oe200V; TO-18
0.5A@100oe300V; TO-18
0.5A@100°C400V; TO-IS
0.5A@100°C60V; TO-IS
9-30
9-30
9-30
9-30
9-30
9-30
9-30
9-30
9-30
9-33
9-33
9-33
9-33
9-33
9-33
9-33
9-33
9-33
9-33
9-33
9-33
9-33
9-33
9-33
*
*
*
*
.,*
.,
*
*
*
*
"
*
*
*
"
*
*
5-32
5-32
5-32
5-32
*
5-32
5-32
5-33
~,
~,
~,
*
*
*
*
*
*
*
*
:1<
5-33
5-33
5-33
PART NUMBER
AAl08
AA109
AAUO
AAUI
AAU4
AAU5
AAU6
AAU7
AAU8
ADlOO
ADlOl
AD102
AD103
ADI04
ADI07
ADI08
AD109
ADIlO
ADIll
ADIl4
ADIl5
ADIl6
ADIl7
ADIl8
BA127D
BA129
BA130
BA155
BA166
BA167W
BA180
BA181
BA209
BA219
BA220
BA221
BA317
BAVlO
BAV18
BAV19
BAV20
BAV21
BAW24
BAW25
BAW26
BAW27
BAW62
BAW75
BAW76
BAX12
BAX13
BAX16
BAX17
BAX81
BAX84
BAX92
BAYlS
BAYl9
BAY20
BAY21
BAY31
BAY36
BAY41
BAY42
BAY43
DESCRIPTION
SCR
0.5A@100oe 100V; TO-18
0.5A@100oe 200V; TO-18
0.5A@100oe 300V; TO-18
0.5A@100oe 400V; TO-18
0.5A@100oe 60V; TO-18
0.5A@100°C 100V; TO-18
0.5A@100°C 200V; TO-18
0.5A@100°C 300V; TO-18
0.5A@100°C400V; TO-18
1.6A@85°C 60V; TO-39
1.6A@85°C lO~Y; TO-39
1.6A@85°C 200V; TO-39
1.6A@85°C 300V; TO-39
1.6A@85°C400V; TO-39
1.6A@85°C 60V; TO-39
1.6A@85°C 100V; TO-39
1.6A@85°e 200V; TO-39
1.6A@85°e 300V; TO-39
1.6A@85°e 400V; TO-39
1.6A@85°e 60V; TO-39
1.6A@85°e 100V; TO-39
1.6A@85°e 200V; TO-39
1.6A@85°e 300V; TO-39
1.6A@85°C 400V; TO-39
DIODE
200mA; 100V; DO-35
225mA; 200V; DO-35
75mA; 35V; DO-35
100mA; 150V; DO-35
50mA; 20V; DO-35
50mA; 25V; DO-35
50mA; lOY; DO-35
50mA; 20V; DO-35
225mA; 100V; DO-35
100mA; 100V; DO-35
200mA; lOY; DO-35
200mA; 30V; DO-35
100mA; 30V; DO-35
300mA; 60V; DO-35
250mA; 60V; DO-35
250mA; 120V; DO-35
250mA; 180V; DO-35
250m A; 250V; DO-35
600mA; 50V; DO-35
600mA; 50V; DO-35
600mA; 75V; DO-35
600mA; 75V; DO-35
100mA; 75V; DO-35
300m A; 35V; DO-35
300m A; 75V; DO-35
400mA; 90V; DO-35
75mA; 50V; DO-35
200mA; 150V; DO-35
200mA; 200V; DO-35
350mA; 90V; DO-35
75mA; 50V; DO-35
75mA; 50V; DO-35
250mA; 60V; DO-35
250mA; 120V; DO-35
250mA; 180V; DO-35
250mA; 350V; DO-35
15V; DO-35
100m A; 30V; DO-35
225m A; 40V; DO-35
225mA; 60V; DO-35
225mA; SOV; DO-35
Contact Unitrode
For complete data sheet information contact Unit rode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
1-6
PRINTED IN u.s A
PART NUMBER INDEX
PAGE
•
•
*
··
·
·
··
··
··
···
··
5-33
*
*
2-87
2-87
2-87
2-92
2-92
2-92
•
•
·
BAY44
BAY45
BAY46
BAY60
BAY71
BAY72
BAY73
BAY80
BY401
BY402
BY403
BY404
BYS60-45
BYS75-20
BYS75-30
BYS75-45
BYV19-35
BYV19-40
BYV19-45
BYV23-351'
BYV23-451'
BYV27-50 (UESll01)
BYV27-100(UESll02)
BYV27-150(UES1103)
BYV28-50
BYV28-100
BYV28-150
BYV33-35
BYV33-40
BYV33-45
2-97
2-97
2-97
2-97
2-74
2-74
2-74
2-74
2-74
2-74
2-80
2-80
2-80
2-97
2-97
2-97
2-97
BYW29-50
BYW29-100
BYW29-150
BYW29-200
BYW31-50
BYW31-100
BYW31-150
BYW77-50
BYW77-100
BYW77-150
BYW78-50
BYW78-100
BYW78-150
BYW80-50
BYW80-100
BYW80-150
BYW80-200
BYW8l-50
BYW81-100
BYW81-150
BYW81-200
4-18
EPS5 Series
9-36
9-36
9-36
9-40
9-40
GA100
GAlOI
GAI02
GA200-GA200A
GA201-GA201A
···
·
DESCRIPTION
PART NUMBER
DIODE
250mA; 50V; 00-35
250m A; 150V; 00-35
250mA; 300V; 00-35
115mA; 25V; 00-35
75mA; 70V; 00-35
225m A; 125V; 00-35
225mA; 125V; 00-35
250mA; 150V; 00-35
DIODE
500mA; 50V; 00-7
500mA; 100V; 00-7
500mA; 200V; 00-7
500mA; 400V; 00-7
SCHOITKY RECTIFIER
60A; 45V; 00-5
75A; 20V; 00-5
75A; 30V; 00-5
75A; 45V; 00-5
12A; 35V; TO-220AC
12A; 4OV; TO-220AC
12A; 45V; TO-220AC
75A; 35V; 00-5
75A; 45V; 00-5
RECTIFIER
2.5A; 50V
2.5A; 100V
2.5A; 150V
3.5A; 50V
3.5A; 100V
3.5A; 150V
SCHOITKY RECTIFIER
16A; 35V; TO-220AB
16A; 4OV; TO-220AB
16A; 45V; TO-220AB
RECTIFIER
7.0A; 50V; TO-220AC
7.0A; 100V; TO-220AC
7.0A; 150V; TO-220AC
7.0A; 200V; TO-220AC
25A; 50V; 00-4
25A; 100V; 00-4
25A; 150V; 00-4
30A; 50V; 00-4
30A; 100V; 00-4
30A; 150V; 00-4
50A; 50V; 00-.5
50A; 100V; 00-5'
50A; 150V; 00-5
7.0A; 50V; TO-220AC
7.0A; 100V; TO-220AC
7.0A; 150V; TO-220AC
7.0A; 200V; TO-220AC
25A; 50V; 00-4
25A; 100V; 00-4
25A; 150V; 00-4
25A; 150V; 00-4
BI-DIRECTIONAL TVS
lOOOW
SCR
400mA@100·C 30V; TO-18
4OOmA@l00·C60V; TO-18
4OOmA@100·C80V;TO-18
6OV;TO-18
lOOV;TO-18
PAGE
PART NUMBER
9-43
9-43
9-40
9-40
9-43
9-43
9-46
9-46
9-46
9-46
9-46
9-46
9-46
9-49
9-49
9-49
9-49
9-49
9-49
GA300-GA300A
GA301-GA301A
GB200-GB200A
GB201-GB201A
GB300-GB300A
GB301-GB301A
10100
10101
10102
10103
10104
10105
10106
10200
10201
10202
10203
10300
10301
7-4
7-4
7-4
7-4
7-4
7-4
7-8
7-8
7-8
7-8
7-8
7-8
7-12
7-12
7-12
7-12
7-12
7-12
7-16
7-16
7-16
7-16
7-16
7-16
PIC600
PIC601
PIC602
PIC610
PIC611
PIC612
PIC625
PIC626
PIC627
PIC635
PIC636
PIC637
PIC645
PIC646
PIC647
PIC655
PIC656
PIC657
PIC660
PIC661
PIC662
PIC670
PIC671
PIC672
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-29
7-29
7-29
7-29
7-29
7-29..
PIC7501
PIC7502
PIC7503
PIC7504
PIC7505
PIC7506
PIC7507
PIC7508
PIC7509
PIC7510
PIC7511
PIC7512
PIC7513
PIC7514
PIC7515
PIC7516
PIC7517
PIC7518
DESCRIPTION
SCR
60V; TO-18
100V; TO-18
60V; TO-59
100V;TO-59
60V;TO-59
100V; TO-59
0_5A@100·C30V;TO-18
0.5A@100·C 6OV; TO-18
0.5A@100·C 100V; TO-18
0.5A@100·C 150V; TO-18
0.5A@100·C 200V; TO-18
0.5A@100·C 300V; TO-18
0.5A@100·C400V; TO-18
1.6A@70·C50V;TO-39
1.6A@70·C 100V; TO-39
1.6A@70·C 150V; TO-39
1.6A@70·C200V;TO-39
1.6A@70·C300V;TO-39
1.6A@70·C400V; TO-39
POWER HYBRID
5.0A; 60V (Pas.); TO-66
5.0A; 80V (Pas.); TO-66
5.0A; 100V (Pas.); TO-66
5.0A; 60V (Neg.); TO-66
5.0A; 80V (Neg.); TO-66
5.0A; 100V (Neg.); TO-66
15.0A; 60V (Pas.); TO-66
15.0A; 80V (Pas.); TO-66
15.0A; 100V (Pas.); TO-66
15.0A; 60V (Neg.); TO-66
15.0A; 80V (Neg.); TO-66
15.0A; l00V (Neg.); TO-66
15.0A; 60V (Pas.); TO-3
15.0A; 80V (Pas.); TO-3
15.0A; 100V (Pas.); TO-3
15.0A; 60V (Neg.); TO-3
15.0A; 80V (Neg.); TO-3
15.0A; 100V (Neg.); TO-3
10.0A; 60V (Pas.); TO-66
1O.OA; 80V (Pas.); TO-66
10.0A; 100V (Pas.); TO-66
1O.OA; 60V (Neg.); TO-66
1O.0A; 80V (Neg.); TO-66
10.0A; 100V (Neg.); TO-66
SCREENED POWER
HYBRIDS
5.0A; 60V (Pas.); TO-66
5.0A; 80V (Pas.); TO-66
5.0A; 100V (Pas.); TO-66
5.0A; 60V (Neg.); TO-66
5.0A; 80V (Neg.); TO-66
5.0A; 100V (Neg.); TO-66
15.0A; 60V (Pas.); TO-66
15_0A; 80V (Pas.); TO-66
15.0A; 100V (Pas.); TO-66
15.0A; 60V (Neg,); TO-66
15.0A; 80V (Neg.); TO-66
15.0A; 100V (Neg.); TO-66
15.0A; 60V (Pas.); TO-3
15.0A; 80V (Pas.); TO-3
15.0A; 100V (Pas.); TO-3
15.0A; 60V (Neg.); TO-3
15.0A; 80V (Neg.); TO-3
15.0A; 100V(Neg.); TO-3,
• Contact Unitrode
t For complete datasheet information contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
1-7
PRINTED IN U.S.A.
..
PART NUMBER INDEX
PAGE
PART NUMBER
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-29
7-29
7-29
7-29
7-29
7-29
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20
PIC7519
PIC7S20
PIC7521
PIC7522
PIC7S23
PIC7524
PIC7S25
PIC7S26
PIC7S27
PIC7528
PIC7529
PIC7530
PIC7531
PIC7532
PIC7533
PIC7534
PIC7535
PIC7536
PIC7555
PIC7556
PIC7557
PIC7558
PIC7559
PIC7560
PIC7561
PIC7562
PIC7563
PIC7564
PIC7565
PIC7566
10-4
10-4
RTH22ES
RTH42ES
2-59
2-61
2-61
5DS1
50241
SD241HR2
3-46
3-46
3-46
3-46
5PA2S, J
5PB2S, J
5PC2S, J
5P02S, J
10-4
TG 1/8
10-4
TM 114 MI L-T-2364SA
10-4
TM 118 MIL-T-2364SA
4-20
4-20
4-20
TVS30S-TVS360
TVS41O-TVS430
TVSSOS-TVSS2S
9-51
9-S1
U13T1
U13T2
S-41
S-41
S-41
S-41
U2TlOl
U2Tl05
U2T20l
U2T20S
DESCRIPTION
PAGE
SCREENED POWER
HYBRIDS
S.OA; 60V (Pas.); TO-66
S.OA; 80V (Pas.); TO-66
S.OA; 100V (Pas.); TO-66
5.0A; 60V (Neg.); TO-66
S.OA; 80V (Neg.); TO-66
S.OA; 100V (Neg.); TO-66
15.0A; 60V (Pas.); TO-66
15.0A; 80V (Pas.); TO-66
lS.0A; 100V (Pas.); TO-66
15.0A; 60V (Neg.); TO-66
15.0A; 80V (Neg.): TO-66
15.0A: 100V (Neg.): TO-66
15.0A; 60V (Pos.); TO-3
15.0A; 80V (Pas.); TO-3
lS.0A; 100V (Pas.); TO-3
15.0A; 60V (Neg.); TO-3
15.0A; 80V (Neg.); TO-3
l5.0A; 100V (Neg.); TO-3
1O.OA; 60V (Pas.); TO-66
1O.OA; 80V (Pas.); TO-66
1O.OA; 100V (Pas.); TO-66
lO_OA; 60V (Neg.); TO-66
1O.OA; 80V (Neg.); TO-66
1O.OA; 100V (Neg.); TO-66
1O.OA; 60V (Pas.); TO-66
1O.0A: 80V (Pas.); TO-66
1O.OA; 100V (Pas.); TO-66
1O.OA; 60V (Neg.); TO-66
100A: 80V (Neg.); TO-66
1O.OA; 100V (Neg.). TO-66
SENSISTOR
Hermetic 1/8 W, Post. Temp.
Coefficient Thermistor
SCHOTIKY RECTIFIER
60A; 4SV; 00-5
60A; 4SV; TO-3
60A; 45V; TO-3
FULL WAVE BRIDGE
1 ph; 2SA; 100V
1 ph; 2SA; 200V
1 ph; 2SA: 400V
1 ph; 2SA: 600V
SENSISTOR@
Hermetic lI8W, Pas. Temp.
Coefficient Thermistor
Plastic 114W, Pas. Temp.
Coefficient Thermistor
Plastic 1ISW, Pas. Temp.
Coefficient Thermistor
TRANSIENT VOLTAGE
SUPPRESSOR
lS0W
lS0W
SOOW
PUT
400mW@2SoC40V: TO-IS
400mW@25°C40V; TO-IS
POWER DARLINGTON
NPN; 1O.OA: SOV; TO-33
NPN; 10_0A; lS0V; TO-33
NPN; 1O.OA; 80V; TO-66
NPN; 1O.OA; lS0V; TO-66
PART NUMBER
8-43
8-43
8-43
8-43
8-4S
8-4S
8-4S
U2T301
U2T30S
U2T401
U2T405
U2TAS06
U2TA508
U2TASlO
2-63
2-68
UBS421
UBS430
8-47
UBT430
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
3-48
UDA5
UDA7.5
UDAIO
UDAl5
UDB2.5
UDBS
UDB7.5
UDCS
UDC7.S
UDC10
UDC1S
UDD2.5
UDD5
UDD7.5
UDE2.5
UDE5
UDF2.S
UDF5
4-24
4-24
4-24
4-24
4-24
4-24
UDZl07-UDZ760
UDZ807-UDZ860
UDZ5707-UDZ5760
UDZS807-UDZ5860
UDZS707-UDZ8760
UDZSS07-UDZS860
2-74
2-74
2-74
2-77
2-77
2-77
2-77
2-77
2-77
2-S0
2-80
2-S0
2-S2
2-S2
2-S2
2-S2
2-S2
2-S2
2-SS
2-S5
2-SS
2-87
2-87
UES70l
UES702
UES703
UE5704
UES704HR2
UES70S
UES70SHR2
UES706
UES706HR2
UESSOl
UESS02
UESS03
UESS04
UESS04HR2
UES805
UESS05HR2
UESS06
UESS06HR2
UESlOOl
UESlO02
UESlO03
UESllOl
UESll02
DESCRIPTION
POWER DARLINGTON
NPN; 5.0A; 60V; TO-33
NPN; S.OA; lS0V; TO-33
NPN; S.OA; 60V; TO-66
NPN; 5.0A; lS0V; TO-66
NPN; 3.0A; 60V; TO-92
NPN; 3.0A; 80V; TO-92
NPN; 3.0A; 100V; TO-92
SYNCHRONOUS
RECTIFIER
NPN; 20A; 50V; TO-220
NPN; 40A; 50V; TO-3
LOW VOLTAGE
TRANSISTOR
NPN; 40A; 50V; TO-3
RECTIFIER MODULE
5_0kV
7.5kV
lOkV
15kV
2.5kV
5.0kV
7.5kV
5.0kV
7.5kV
lOkV
lSkV
2.5kV
S.OkV
7.SkV
2.SkV
5.0kV
2.5kV
5.0kV
ZENER
Bidirectional 3W; 5%
Bidirectional 3W; 10%
Bidirectional 5W; 5%
Bidirectional 5W; 10%
Bidirectional 1W; 5%
Bidirectional 1W; 10%
RECTIFIER
25.0A; 50V; 00-4
250A; 100V; 00-4
25.0A; lS0V; 00-4
20.0A; 200V; 00-4
20.0A; 200V; 00-4
20.0A; 300V; 00-4
20.0A: 300V: 00-4
20.0A; 400V; 00-4
20.0A; 400V; 00-4
70_aA; 50Y; 00-5
lO.OA; lO~Y; 00-5
70.0A: lS0V; 00-5
SO.OA; 200V; OO-S
SO.OA; 200V; 00-5
SO.OA; 300V; 00-5
SO.OA; 300V; 00-5
50.0A: 400V: 00-5
SO.OA; 400V; DO-S
lA: SOV
lA: lOOV
1A; lSOV
2.SA; SOV
2.5A: lOOV
Contact Unit rode
t For complete data sheet information contact UnitrodE!
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
1-8
PRINTED I"J U S.h
PART NUMBER INDEX'
PAGE
PART NUMBER
2·87
2·89
2·89
2·89
2·92
2·92
2·92
2-94
2-94
2-94
2-97
2-97
2-97
2-97
2·100
2·100
2·100
2·100
2·103
2·103
2·103
2·103
2·106
2·106
2·106
2-106
2·106
2·106
2·109
2·109
2·109
2·109
2·109
2·109
2·112
2·114
2·112
2·114
2·112
2·114
2·116
2·118
2·116
2·118
2·116
2·118
UES1103
UES1104
UES1105
UESll06
UES1301
UES1302
UES1303
UES1304
UE5-1305
UES1306
UESl401
UES1402
UESl403
UES1404
UES1501
UES1502
UES1503
UES1504
UES2401
UES2402
UES2403
UES2404
UES2601
UES2601HR2
UES2602
UES2602HR2
UES2603
UES2603HR2
UES2604
UES2604HR2
UES2605
UES2605HR2
UES2606
UES2606HR2
UES3005C
UES3005S
UES3010C
UES3010S
UES3015C
UES3015S
UES4505C
UES4505S
UES4510C
UES4510S
UES4515C
UES4515S
3·51
3·51
3-51
3·51
3·51
3-51
3·54
3·54
3·54
3-54
3-54
3·54
3-54
3·54
UfB2.5
UFB5
UFB7.5
UFS5
UFS7.5
UFSlO
UGB5
UGB7.5
UGB10
UGD5
UGD7.5
UGD10
UGE2.5
UGE5
DESCR1PTION
PAGE
RECTIFIER
2.5A; 150V
2.0A; 200V
2.0A; 300V
2.0A; 400V
6.0A; 50V
6.0A; 100V
6.0A; 150V
5.0A; 200V
5.0A; 300V
5.0A; 400V
8.0A; 50V; TO·220AC
ROA; 100V; TO·220AC
8.0A; 150V; TO·220AC
8.0A; 200V; TO·220AC
16A; 50V; TO·220AC
16A; 100V;TO·220AC
16A; 150V; TO·220AC
16A;200V;TO·220AC
16A; 50V; TO·220AB
16A; 100V; TO·220AB
16A; 150V;TO·220AB
16A; 200V; TO·220AB
30A; 50V; TO·3
30A; 50V; TO·3
30A; 100V; TO·3
30A; 100V; TO·3
30A; 150V; TO·3
30A; 150V; TO·3
30A; 200V; TO·3
30A; 2OOV; TO·3
30A; 3OOV; TO·3
30A; 3OOV; TO·3
30A; 4OOV; TO·3
30A; 4OOV; TO·3
30A; 50V; TO·3P; Center·Tap
30A; 50V; TO·3P
30A; 1OOV; TO·3P; Center·Tap
30A; 1OOV; TO·3P
30A; 150V; TO·3P; Center·Tap
30A; 150V; TO·3P
45A; 50V; TO·3P; Center·Tap
45A; 50V; TO·3P
45A; 100V; TO·3P; Center-Tap
45A; 100V; TO·3P
45A; 150V; TO·3P; Center·Tap
45A; 150V; TO·3P
RECTIFIER MODULE
2.5kV
5.0kV
7.5kV
5.0kV
7.5kV
10kV
5.0kV
7.5kV
lOkV
5.0kV
7.5kV
10kV
2.5kV
5.0kV
PART NUMBER:
3·54
3·54
3·54
3·54
UGE7.5
UGF2.5
UGF5
UGF7.5
2·120
2·120
2·120
2·120
2·120
2-120
2·125
2·125
2·125
2,125
2-125
2·125
UHVP202
UHVP204
UHVP206
UHVP208
UHVP209
UHVP210
UHVP402
UHVP404
UHVP406
UHVP408
UHVP409
UHVP410
6·13
6·16
6·13
6·20
6·20
6·20
6;24
6·24
6·24
6·16
6·28
6·31
6·31
6·31
6·35
6·37
6·47
UM4O()() series
UM4300 series
UM4900 series
UM6000 series
UM6200 series
UM6600 series
UM7000 series
UM7100 series
UM7200 series
UM7300 series
UM9301
UM9401
UM9402
UM9415
UM9441
UM9601·UM9608
UM9701
8-51
8·51
8-51
8-51
UPTB520
UPTB530.
UPTB540
UPTB550
2·130
2·130
2·130
2·130
2·130
2·130
2·130
2·130
2·130
2·130
UR105
URllO
UR1l5
·UR120
UR125
UR205
UR210
UR215
UR220
UR225
3-57
3-57
3·57
3-57
3-57
3-57
3-57
3-57
3-57
3·57
3·57
3·57
US12
US15
US1S
US20
US25
US30
US35
US40
US45A
US50A
US60A
US70A
DESCRIPTION
RECTIFIER MODULE
7.5kV
2.5kV
5.0kV
7.5kV
HV PLUS RECTIFIERS
2.0A; 200V; 30nS
2.0A; 400V; 30nS
2.0A; 600V; 30nS
1. 5A; 800V; 50n 5
1.5A; 900V; 50nS
1.5A; 1000V; 65nS
4.0A; 200V; 30nS
4.0A; 400V; 30nS
4.0A; 600V; 30nS
3.0A; 800V; 50nS
3.0A; 900V; 50nS
2.5A; 1OO0V'; 65nS
PIN DIODE
0.5Q; 3.0pF; 25W; 1OO·1200V
1.5Q; 2.2pF; 18W; 100·loo0V
0.5Q; 3.0pF; 37W;' 100·6OOV
1.7Q; 0.5pF; 6W; 1oo·loo0V
O.4Q; LlpF; 6W; 1OO·400V
2.5Q; 0.4pF; 4W; 100·1000V
1.0Q; 0.9pF; lOW; 100·1600V
0.6Q; 1.2pF; lOW; 1OO·800V
0.25Q; 2.2pF; lOW; 100·400V
3.5Q; 0.7pF; 7.5W; 1oo·loo0V
CATV Attenuator Diodes
2·Way Radio Switch Diodes
2·Way Radio Switch Diodes
2-Way Radio Switch Diodes
Radiation Detector
Microstrip PIN
Low Rs Antenna Switch .
POWER TRANSISTOR
NPN; O.lA; 200V; TO·92
NPN; O.lA; 300V; TO·92
NPN; O.lA; 400V;TO·92
NPN; O.lA; 500V; TO·92
RECTIFIER
2.0A; 50V
LOA; 100V
LOA; 150V
LOA; 200V
. l.OA; 250V
2.0A; 50V
2.0A; 100V
2.0A; 150V
2.0A; 200V
2.0A; 250V
RECTIFIER MODULE
l.2kV
1.5kV
1.SkV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
7.0kV
• Contact Unitrode
t For complete datasheet information contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
1-9
PRINTED IN U S.A.
-
PART NUMBER INDEX
PAGE
. PART NUMBER
DESCRIPTION
PAGE
. PART NUMBER
RECTIFIER MODULE
3-57
3-57
3-57
3-57
3-57
3-57
3-51
3-51
3-51
3-51
US80A
US100A
US120A
US150A
US180A
US200A
USB2.5
USB5
USB7.5
USB10
8.0kV
10kV
12kV
15kV
18kV
20kV
2.5kV
5.0kV
7.5kV
10kV
SCHOTTKY RECTIFIER
2-132
2-132
2-132
2'132
2-135
'2-135
2~135
2-135
2-137
2-137
2-137
2-137
2-139
2-141
2-139
2-141
2-139
2-141
2-139
'2-141
2~143
2-145
2-143
2-145
2-143
2-145
2-143
2-145
2-147
2;147
2-147
2-147
2-149
2-149
2-149
2-149
2-151
2-153
2-151
·2-153
.2-151
2'153
2-155
2-157
2-155
2'157
2-155 .
2-157
..
2-159
2-159
US0245C
US0245CHR2
US0245CR
US0245CRHR2
US0335C
USD335CHR2
US0345C
US0345CHR2
US0520
US0535
US0545
US05SO
US0635
US0635C
US0640
US0640C
US0645
US0645C
.oS0650
US0650C
US0735
'US0735C
US0740
US0740C
US0745
US0745C
US0750 .
US0750C
US0835
USb840
US0845
US0850
US0935
US0940
US0945
US0950
US03030C
US03030S
USD3040C
US03040S
.oSD3045C
US03045S
USD4530C
US04530S
USD4540C
USD4540S
U5D4545C
U5D4545S
USD6035
USD6045
• USD7520
USD7525
DESCRIPTION
RECTIFIER MODULE
3-57
3-57
3-57
3-57
3-57
3-57
3-57
3-57
3-57
3-57
3-57
3-57
3-57
3-57
3-57
3-57
3-51
3-51
3-51
3-51
4A; 45V; TO·39; Center-Tap
4A; 45V; TO<39;.Center-Tap
4A; 45V; TO-39; Center-Tap
4A; 45V; TO-39; Center-Tap
30A; 35V; TO-3
30A; 35V; TO-3
3OA; 45V; TO-3
30A; 45V; TO-3
75A; 20V; 00-5
75A; 35V; 00-5
2-161
75A; 45V; 00-5
2-161
75A; 50V; 00-5
2-161
6A; 35V; TO-220AC
2-161
12A; 35V; TO-220AB
2-161
6A; 4OV; TO-220AC
2-161
12A; 40V; TO-220AB
6A; 45V; TO-220AC
2-161
2-161
12A; 45V; TO-220AB
2-161
6A; 50V; TO-220AC
2,161
12A; 50V; TO-22AB
.8A; 35V; TO-220AC
2-161
16A; 35V; TO-220AB
2-161
8A; 4OV; TO-220AC
2-161
16A;40V; TO-220AB
2 161
8A; 45V; TO-220AC
2-161
16A; 45V; TO·220AB
2-161
2-161
8A; 50V; TO-220AC
2-161
16A; 50V; TO-220AB
2-161
'12A; 35V; TO'220AC
.2-161'
12A; 4OV; TO-220AC
12A; 45V; TO-220AC
2-161
2-161
12A; 50V; TO-220AC
2-161
16A; 35V; TO-220AC
16A; 4OV; TO-220AC
2·161
16A; 45V; TO-220AC
2-161
16A; SOV; TO-220AC
2-161
2-161
30A; 30V; TO-3P;Center-Tap
2-164
'30A; 30V; TO-3P
2-164
30A; 40V; TO-3P; Center-Tap
2-164
30A; 40V; TO-3P
30A; 45V; TO-3P; Center-Tap
2·164
30A; 45V; TO-3P
2-"164
45A; 30V; TO-3P; Center-Tap
2-164
45A; 30V; TO.3P
2-164
2-164
45A; 4OV; TO-3P; Center'Tap
45A;40V; TO-3P
.2-164
2-164 •.
45A; 45V; TO-3P; Center'Tap
.. 45A; 45V; TO-3P
c2-164
60A; 35V.; DO-5
2·164
60A; 45V; DO·5
2'1'64
. 2-164
75A; 20V; DO-5
75A; 25V; DO-5 .
2-164
2-167
2-167
0
USR12
USR15
USR20
USR25
USR30
USR35
USR40A
USR45A
'USR50A
USR60A
USR70A
USR80A
USRlOOA
USR120A
USR150A
USRl80A
USS5
USS7.5
USS10
USS15
l.2kV
l.5kV
2.0kV
2.5kV
3.0kV
3.5kV
4.0kV
4.5kV
5.0kV
6.0kV
7.0kV
8.0kV
lOkV
12kV
15kV
18kV
5.0kV
7.5kV
10kV
15kV
RECTIFIER
UT234
UT235
UT236
UT237
UT238
UT242
UT244
UT245
UT247
UT249
UT251
UT252
UT254
UT255
UT257
UT2.58
UT261
UT262
UT264
UT265
UT267
UT268
UT347
UT361
UT362
UT363
U1364
UT2005
UT2010
UT2020
UT2040
UT2060
UT3005
UT3010
UT3020
UT3040
UT3060
UT4005
UT4010
UT4020
UT4040
.UT4060
UT5105
UT5105HR2
l.OA; 200V
1,OA;400V
l.OA; 100V
l.OA; 500V
1.0A; 600V
l.25A; 200V
l.25A; 400V
l.25A; 500V
l.25A; 600V
l.25A; 100V
l.5A; 100V
l.5A; 200V
1.5A; 400V
l.5A; 500V
1.5A; 600V
l.5A; 800V
2.0A; 100V
2.0A; 200V·
2.0A; 400V
2.0A; 500V
2.0A; 600V
2.0A; 800V
l.OA; l000V
l.OA; 800V
l.2A; 800V
l.2A; 1000V
l.5A; 1000V
2.0A; 50V
2.0A; l00V
2.0A; 200V
2.0A; 400V
2:0A; 600V
3.0A; 50V
,3.0A; 100V
3.0A;200V
. 3.0A; 400V
3,OA';600V
4.0A; 50V
4:0A;I00V
4.0A;.200V
4.0A; 400V
·4.0A;600V
. 7.5A; 50V
7.5A; 50V
, Contact Unit rode
··t For.complete datasheet information contact Unitrode
legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE·· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA O~I72
'TEL. (617) 926·0404 • FAX (617) 924·1235
1-10
·PRINTED IN USA
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE
PART NUMBER
RECTIFIER
RECTIFIER
2-167
2-167
2-167
2-167
2-167
2-167
'2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-167
2-170
2-170
2-170
2-170
2-170
2-170
2-170
2-170
2-170
2-170
2-170
2-17'0
2-170
'2-170
2-170
2-170
2-170
2'170
2-170
N70
.•
2-173
2-173
'2-173
2-173
2-173
2-173
2-173
2-173
UT5110
UT5110HR2
UT5120
UT5120HR2
UT5140
UT5140HR2
UT5160
UT5160HR2
UT6105
UT6105HR2
UT6110
UT6110HR2
UT6120
UT6120HR2
UT6140
UT6140HR2
UT6160
UT6160HR2
UT8105
UT8105HR2
UT8110
UT8110HR2
UT8120
UT8120HR2
UT8140
UT8140HR2
UT8160
UT8160HR2
UTROI
UTR02
UTRlO
UTRll
UTR12
UTR20
UTR21
UTR22
UTR30
UTR31
UTR32
UTR40
UTR41
UTR42
UTR50
UTR51
UTR52
UTR60
UTR61
UTR62
UTR70
UTR71
UTR2305
UTR2310
UTR2320
UTR2340
' UTR2350
UTR2360
UTR3305
UTR3310
7.5A; 100V
7.5A; 100V
7.5A; 200V
7.5A; 200V
7.5A; 400V
7.5A; 400V
7.5A; 600V
7,5A; 600V
9,OA;50V
9.0A; 50V
9.0A; 100V
9.0A; 100V
9.0A; 200V
9.0A; 200V
9.0A;400V
9.0A;400V
9.0A;600V
9.0A;600V
12.0A; 50V
12.0A; 50V
12.0A; 100V
12.0A; 100V
12.0A; 200V
12.0A; 200V
12.0A; 400V
12.0A; 400V
12,OA; 600V
12.0A; 600V
l.OA; 50V
2.0A; 50V
,0.5A; 100V
l.OA; 100V
2.0A; 100V
0.5A; 200V
l.OA; 200V
2.0A; 200V
0.5A; 300V
l.OA; 300V
2.0A; 300V
0.5A; 400V
l.OA; 400V
2.0A; 400V
0.5A; 500V
l.OA; 500V
2,OA; 500V
0,5A; 600V
l.OA; 600V
2.0A;600V
0.5A; 700V
:l.OA; 700V
2.0A; 50V
2.0A; 100V
2.0A;QOOV
.2.0A; 400V
2.0A; 500V
2.0A; 600V
3.0A; 50V
3.0A; 100V
DESCRIPTION
2-173
2-173
2-173
2-173
2-173
2-173
2-173
2-173
2-173
2-173
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-176
2-179
2-179
·2-179
2-179
2-179
.2-179
2-179
2-179
2-179
2-179
2-182
2-182
2·182
2-182
2:182
2-182
2-182
2-182
UTR3320
UTR3340
UTR3350
UTR3360
UTR4305
UTR4310
UTR4320
UTR4340
UTR4350
UTR4360
UTR4405
UTR4405HR2
UTR4410
UTR441OHR2
UTR4420
UTR4420HR2
UTR4440
UTR4440HR2
UTR5405
UTR5405HR2
UTR5410
UTR541OHR2
UTR5420
UTR5420HR2
UTR5440
UTR5440HR2
UTR6405
UTR6405HR2
UTR6410
UTR641OHR2
UTR6420
UTR6420HR2
UTR6440
UTR6440HR2
UTX105
UTX110
UTX1l5
UTX120
UTX125
UTX205
UTX210
UTX215
UTX220
UTX225
UTX3105
UTX3110
UTX3115
UTX3120
UTX4105
UTX4110
UTX4115
UTX4120
3.0A; 200V
3.0A; 400V
3.0A; 500V
3.0A; 600V
4.0A; 50V
4.0A; 100V
4,OA; 200V
4.0A; 400V
4.0A; 500V
4.0A; 600V
6.0A; 50V
6.0A; 50V
6.0A; 100V
6.0A; 100V
6.0A; 200V
6,OA; 200V
6,OA; 400V
6.0A; 400V
7,5A; 50V
7.5A; 50V
7,5; 100V
7.5A; 100V
7.5A; 200V
7.5A; 200V
7.5A; 400V
7.5A; 400V
9.0A; 50V
9.0A; 50V
9.0A; 100V
9.0A; 100V
9.0A; 200V
9.0A; 200V
9.0A;400V
9.0A; 400V
1.0A; 50V
l.OA; l00V
l.OA; 150V
l.OA; 200V
l.OA; 250V
2.0A; 50V
2.0A; 100V
2.0A; 150V
2.0A; 200V
2,OA; 250V
3.0A; 50V
3.0A; 100V
3.0A; 150V
3.0A; 200V
4.0A; 50V
4.0A; lOOV
4.0A; 150V
4,OA; 200V
ZENER
4-27
4-27
4-27
-4-27
UZll0-UZ1l9
UZ11OHR2-UZ119HR2
UZ120-UZ140
. UZ140HR2-UZ706HR2
,3W;5%
3W; 5%
3W;5%
3W;5%
• Contact Unitrode
t For complete datasheet information contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
1-11
PRINTED IN U.S.A
PART NUMBER INDEX
PAGE
DESCRIPTION
PART NUMBER
PAGE'
PART NUMBER
DESCRIPTION
ZENER
4-27
4-27
4-27
4-27
4-27
4-27
4-29
4-29
4-29
4-29
4-31
4-31
4-31
4-31
4-31
4-31,
4-31
4-334-33
4-33
4-33
4-33
4-33
4-33
4-33
4-33
4-33
4-33
4-33
4-36
4-36
4-36
4-36
UZ210HR2-UZ219HR2
UZ220HR2-UZ24OHR2
UZ706HR2-UZ760HR2
UZ.770HR2:UZ790HR2
UZ806HR2'UZ860HR2
UZ870HR2-UZ890HR2
UZ4110-UZ412O
UZ421O-UZ422O
UZ4706-UZ4791
UZ4806-UZ4891
UZ5110-U25119
UZ5120-UZ514O
UZ521O-UZ524O
UZ5706-UZ5760
UZ5770-UZ5790_
UZ5806-UZ5860
UZ5870-UZ5890
UZ7110HR2
UZ7110lHR2
UZ72lOHR2
UZ72lOlHR2
UZ7706HR2-UZ7750HR2
UZ7706lHR2-UZ7750lHR2
UZ7756HR2-UZ7790HR2
UZ7756lHR2-UZ.7790LHR2
UZ7806HR2-UZ7850HR2
UZ7806lHR2-UZ7850LHR2
UZ7856HR2-UZ7890HR2
UZ7856lHR2-UZ7890lHR2
UZ811O-UZ8120
UZ821O-UZ8220
UZ8706-UZ8790
UZ8806-UZ8890
3W; 10%
3W; 10%
3W;5%
3W;5%
3W; 10%
3W; 10%
5W;5%
5W; 10%
5W;5%
5W; 10%
5W;5%
5W;5%
5W; 10%
5W;5%
5W; 5%
5W; 10%
5W;10%
lOW;,5%
6W;'5%
lOW; 10%
6W; 10%
lOW; 5%
6W;5% lOW; 5%
6W;5%,
lOW; 10%
6W; 10% lOW; 10%
6W; 10%
1W; 5%
1W; 10%
1W;5%
1W; 10%
• Contact Unit rode
t For complete datasheet information contact Unitrode
Legend: J-JAN JTX-JANTX JTXV-JANTXV
UNITROOE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
1-12
PRINTED IN U.S~A.
"
RECTIFIERS
Product Selection Guides
Schottky Rectifiers .............................................. 2-3
HV Plus Rectifiers '" ........................................... 2-5
Ultra-Fast Recovery Rectifiers ...................................... 2-6
Super-Fast Recovery ............................................ 2-8
Fast Recovery ................................................. 2-9
Bi-Synchronous Rectifier . ......................................... 2-9
Standard Recovery . ........................................... . 2-10
Datasheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................ 2-11
. UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
2-1
PRINTED IN U.S.A.
..
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
2-2
PRINTED IN U.S.A. :
SCHOTTKY RECTIFIERS
PRODUCT SELECTION GUIDE
WW,I9.
1O-22OAC
10-220.8
1N64924
USD245C
.45@2A
80A
USD735C
.60@16A
200A
USD935
.53@ 16A
250A
USD740C
.60@16A
200A
USD940
.53@ 16A
250A
USD745C
.60@ 16A
200A
USD945
.53@ 16A
250A
USD750C
.60@ 16A
200A
USD950
.53@ 16A
250A
NarES: 1. Center·tap 6A per leg.
2. Center-tap 8A per leg.
3. Center·tap 15A per leg.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
DO·4
~~
..
~
6>
.
TO.39
o
0
TO·3P
2 ....
TO·3P
3
w,
USD635
.48@6A
150A
USD735
.48@8A
200A
USD635C
.60@ 12A
150A
USD835
.51 @ 12A
200A
USD640
.48@6A
150A
USD740
.48@8A
200A
USD640C
.60@ 12A
150A
USD840
.45 @ 12A
200A
USD645
.48@6A
150A
USD745
.48@8A
200A
USD645C
.60@ 12A
150A
USD845
.45@ 12A
200A
USD335C'
.6@20A
400A
1N6391'
.68@50A
600A
USD3040S
.70@30A
450A
USD3040C
.71 @30A
400A
USD3045S
.70@30A
450A
USD3045C
.71 @30A
400A
USD345C'
SD241'
.6@20A
400A
4. Available as JAN, JANTX, JANTXV.
5. Available with High·Reliability (HR2) Screening.
2-3
PRINTED IN U.S.A.
..
SCHOTTKY RECTIFIERS
PRODUCT SELECTION GUIDE
~OO-5
USD4530S
)O@45A
450A
USD4530C
.70@45A
450A
fO~ro-3P fl10-3P
n~Lead lIT3Lead
IN609l
.86 @ 15lA
800A
USD535
.6@ 60A
1000A
USD4540C
.70@45A
450A
USD4540C
.70@45A
450A
USD4545S
.70@45A
450A
USD4545C
.70@45A
450A
IN6098
.86 @ 15lA
800A
1N6392'
SD51'
.6@60A
SOOA
USD545
.6 @60A
IOOOA
USD550
.6 @ 60A
lOOOA
NOTES: 1. VRRM @ 25°C is 45V, VRRM @ 150ac is 35V.
2. Available as JAN, JANTX, JANTXV.
3. Center·tap 23A per leg.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-4
PRINTED IN U.S.A
PRODUCT SELECTION GUIDE
RECTIFIERS
ID
II
I.
HV PLUS RECTIFIERS
"'"-",--c--"~",.....,.,,..,..,=
IN6621
UHVP204
1.6V @ 2A
30 nSec
IN6627
UHVP404
1.5V@4A
30 nSec
IN6622
UHVP206
1.6V@2A
30 nSec
IN6628
UHVP406
1.5V@4A
30 nSec
IN6623
UHVP208
1.8V@ 1.5A
50 nSec
IN6629
UHVP408
1.7V@3A
50 nSec
IN6624
UHVP209
l.8V@l.5A
50 nSec
IN6630
UHVP409
1.7V@3A
50 nSec
IN6625
UHVP210
1.95V@l.5A
65 nSec
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
IN6631
UHVP410
l.95V@2.5A
65nSec
2-5
PRINTED IN U.S.A.
PRODUCT SELECTION. GUIDE
RECTIFIERS
i
l' .
i
TO.220AB
ULTRA·FAST RECOVERY. (trr - 25 to SOns)
25n5
25n5
30n5
IN5S03
.S95@ lA
25n5
IN5S08
.850 @ 6A
30n5
IN5S04*
UESll02
.895 @ 2A
25n5
IN5S09*
UES1302
.850@ 6A
30n5
IN5805
.S95@ lA
25n5
IN5S10
.S50@6A
30n5
IN5S06*
UESll03
.895 @2A
25n5
IN5S11*
UES1303
.S50@6A
30n5
UESl104
1.15@ lA
50n5
UES1304
1.15@3A
50n5
UESll05
U5@lA
50n5
UES1305
1.15 @3A
50n5
UESll06
1.15 @ lA50n5
UES1306
1.15@3A
50n5
UES1501
UES1401
UES2401
.S95@SA .S95 @ 16A .S95@SA
35n5
35n5
35n5
UES1502
UES2402
UES1402
.895 @SA .895 @ 16A .S95@SA
35n5
35n5
35n5
UES1403
.S95@SA
35n5
UES2403
.895@SA
35n5
UES1404
.S95@SA
35n5
UES2404
.S95@SA
35n5
• Available as JAN, JANTX, JANTXV.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
2-6
PRINTED IN U.S.A.
RECTIFIERS
PRODUCT SELECTION GUIDE
ULTRA-FAST RECOVERY (trr - 25 to SOns)
UES3005C UES2601' UES4505S UES4505C
.93 @ 30A .825 @ 15A .95 @ 45A .95 @ 45A
35ns
35ns
50ns
50ns
35ns
50ns
UES3010C UES2602' UES4510S
.93 @ 30A .825 @ 15A .95 @ 45A
35ns
35ns
35ns
UES4510C
.95 @ 45A
50ns
IN6305*
UES802
.84@70A
50ns
UES3015C
.93@30A
35ns
UES4515C
.95 @ 45A
50ns
IN6306*
UESB03
.84@ 70A
50ns
UES4515S
.95 @ 45A
50ns
UES804
1.15 @ 50A
50ns
UES805
1.15 @ 50A
50ns
UES806
1.15 @ 50A
50ns
• Available as JAN, JANTX, JANTXV.
1. Available with High-Reliability (HR2) Screening.
See individual datasheets.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-7
PRINTED IN U.S.A.
..
PRODUCT SELECTION GUIDE
RECTIFIERS
I.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
UTX110
1.00@.5A
75ns
UTX210
1.0V@ 1A
75ns
UTX3110
1.0V@ 2A
lOOns
UTX4110
1.OV@3A
lOOns
UTX115
1.00@.5A
75ns
UTX215
1.0V@ 1A
75ns
UTX3115
1.OV@2A
lOOns
UTX4115
1.0V@3A
lOOns
UTX120
1.00@ 1A
75ns
UTX220
1.0V@ 1A
75ns
UTX3120
LOV@2A
lOOns
UTX4120
LOV@3A
lOOns
UTX125
LOO@.5A
75ns
UTX225
LOV@lA
75ns
2-8
B
PRODUCT SELECTION GUIDE
RECTIFIERS
I.
FAST RECOVERY (tr -
~
~TO-3
B
150 to 500n5)
l.lV @ .5A
250ns
l.lV@ lA
250ns
l.lV @3A
250ns
1.5V@9A
150ns
l.lV @4A
250ns
UTRll
UTR12
UTR33 10
INS416*
IN5186**
UTR4310
l.lV@ .5A
250ns
l.lV@ lA
250ns
l.lV @ 3A
250ns
1.5V@9A
150ns
l.lV @4A
250ns
UTR21
IN4942*
IN5615*
UTR22
UTR3320
IN5417*
IN5187**
UTR4320
l.lV@.5A
250ns
l.3V@ lA
150ns
l.lV @ lA
250ns
l.lV @3A
250ns
1.5V@ 9A
150ns
l.lV@4A
250ns
UTR31
300ns
UTR41
IN4944 *
IN5617*
UTR42
UTR3340
IN5418*
INS188**
UTR4340
l.lV@ .5A
350ns
l.3V@ lA
150ns
l.1V@ lA
350ns
l.lV@3A
300ns
1.5V@9A
150ns
l.lV @4A
400ns
UTR52
l.1V@ lA
400ns
UTR3350
l.lV @3A
350ns
IN5419*
1.5V @ 9A
250ns
UTR4350
l.lV@4A
400ns
UTR62
UTR3360
l.lV@ lA
400ns
l.lV @3A
400ns
IN5420*
IN5190**
1.5V@9A
400ns
l.lV @4A
UTR51
l.lV@ .5A
400ns
l.lV@ .5A
400ns
UTR4410
UTR541O '
UTR641O '
l.1V @ 6A
300ns
UTR4420
UTR5420 '
UTR6420 '
l.1V @ 6A
400ns
UTR32
l.lV@ lA
300ns
l.lV@ .5A
UTR61
UTR440S '
UTR5405 '
UTR6405 '
l.lV @ 6A
300ns
IN4946*
IN5619*
1.3V@ lA
250ns
UTR4440 '
UTR5440 '
UTR6440 '
l.1V @ 6A
500ns
UTR4360
400ns
• Available as JAN, JANTX, JANTXV .
•• Available as JAN, JANTX.
1. Available with High Reliability (HR2) Screening.
See individual data sheets.
BI;SYNCHRONOUS RECTIFIER
Continuous
Forward Current
20A
40A
Package Style
TO-220AB
TO-3
Forward
Blocking
Voltage, VCES
50V
I
UBS421
50V
I
UBS430
80
50
RCEIONI
14mO Typical
7mO Typical
VCEISATI
.95V Typical
1.2V Typical
hFE
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
2-9
PRINTED IN U.S.A.
..
RECTIFIERS
PRODUCT SELECTION GUIDE
~
lJ
~
A
STANDARD RECOVERY
UT235
IN4246'
IN5616'
UT3020
UT4020
IN5550'
UT5120'
UT6120'
UT8120'
UT3040
UT4040
IN5551*
UT5140'
UT6140'
UT8140'
UT3060
UT4060
IN5552'
UT5160'
UT6160'
UT8160'
IN3612"
UT238
IN4247*
IN5618*
UT267
IN3613"
UT361
IN4248'
IN5620'
UT268
IN3614"
UT347
IN4249'
IN5622*
UT364
IN5553*
• Available as JAN, JANTX, JANTXV.
,. Available as JAN, JANTX.
t Radiation Tolerant
1. Available with High Reliability (HR) Screening.
See individual datasheets
.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-10
PRINTED IN U.S.A.
RECTIFIERS
JAN &JANTX IN3611-1N3614
Military Approved, 1 Amp,
General Purpose
lEI
FEATURES
• Qualified to MIL-S-19500/228
• Continuous Rating: lA
• Surge Rating: 30A
• PIV: to 800V
DESCRIPTION
This series of MIL approved JAN and
JANTX general purpose lamp rectifiers are
useful in many high rei applications.
ABSOLUTE MAXIMUM RATINGS
Peak Reverse Voltage Min.
Reverse Working Voltage
240V
480V
720V
920V
200V
400V
600V
800V
Type
JAN
JAN
JAN
JAN
& JANTX IN3611
& JANTX IN3612
& JANTX IN3613
& JANTX IN3614
Maximum Average D.C. Output Current
l.OA
@ TA = lOO·C
O.3A
@ TA
150·C
Non-Repetitive Sinusoidal
Surge Current (8.3ms) .
.. 30A
Operating Temperature Range
.... -WC to +175·C
Storage Temperature Range
........... -65·C to +200·C
........ See Lead Temperature Derating Curve
Thermal Resistance .
=
MECHANICAL SPECIFICATIONS
r
BAND INDICATES
CATHODE END"1
.155 TYP.
3.9mm
\1
~
h-------!
1I I
MIN~50
---JOO
-17.8mm
JAN & JANTX1N3611-1N3614
MAL
6.35mm-
J c::::::J
r., t
+ L
BODY A
.085 MAX.
2.l6mm
L-
.030 ±.OO1
O.77mm ±,03
.015~~~P'
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONDUCTOR
~ PRODUCTS
2-11
_'UNITRODE
JAN & JANTX 1N3611-1N3614
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Type
JAN
JAN
JAN
JAN
Peak
Reverse
D.C. Voltage
Minimum
Reverse
Breakdown
Voltage
@ 100pA
200V
400V
600V
BOOV
240V
4BOV
720V
920V
& JANTX 1/113611
& JANTX 1N3612
& JANTX 1N3613
& JANTX 1N3614
Maximum D.C.
Reverse
~ 3
3.5
~~~
o
L=~
'"u:
;:::2
o
1"--,
'"
Q:
.."'"
"''"" """"" ~
.............
Q:
~
I
1
2.5
t--.
.2
2
~
'"
:II
@
~-I
1.5' ~
d
" ~~
IIIIII
"z
i
4
"'l
Q:
300p.A
'""
Q:
;;)
en
80
....'"
en
I
I
I I
TUrret I" centers-
60
o
'"u:
o
"1111
I---I--+-t++tffil!:=:,.;::;~~.j;~::-lt..:-I Tur;~:~~~~ C~i~!:~~r-:
_.
40
20
o
f.
10
100
CYCLES AT 60 Hz HALF SINE WAVE
.5
1,000
l'\
25
50
75
100
125
150
TL - LEAD TEMPERATURE ('C)
175
Typical Forward Current
vs Forward Voltage
Typical Reverse Current vs PIV
10
.001
.002
;;
v
Z
'"
....
Z .2
DQ
Q:
Q:
;;)
l.J ~/s.CJ
S~~!f.r1-1-'
.1
;;)
0.05
I
I
/
.002
.001
.2
II
.4
V, -
c-
'"en
II
./
-+25'C
...... r-
.5
Q:
----
~25'C
50
100
150
1.2
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
""'-
+ 75'C
10
20
II
.6
.8
1
VOLTAGE (VI
.05
.1
.2
'">
'"0:
/
II
.01
.005
u
ilil I
..!".02
.,/
50'C
.005
.01
.5 .02
....
/
~ .5
'"~
150'C
Allowable Forward Surge vs Number of Cycles
I
;;)
I
1p.A
@1.0A
100
L = ¥a"
o
at D.C. Voltage
25'C
l.1V(pk)
O.6V
Maximum Current
vs Lead Temperature
~
....
z
Current
Peak
Forward Voltage
Min.
Max.
I
100
50
% OF PIV
1.4
2-12
PRINTED IN U.S.A.
1N4245-1 N4249
JAN, JANTX &JANTXV
RECTIFIERS
Military Approved, 1 Amp,
General Purpose
FEATURES
• Qualified to MIL-S-l9500/286_
• Surge Rating: 25A
• PIV: to lOOOV
• Controlled Avalanche
• No Plastic, Epoxy, Silicone, Oxides, Gases or Solder are used
DESCRIPTION
This series of general purpose power
rectifiers are available as JAN, JANTX or
JANTXV for many power supply applicatons.
ABSOLUTE MAXIMUM RATINGS
Maximum Reverse Voltage
Type
200V
400V
600V
BOOV
loaav
JAN, JANTX, JANTXV IN4245
JAN, JANTX, JANTXV IN4246
JAN, JANTX, JANTXV IN4247
JAN, JANTX, JANTXV lN4248
JAN, JANTX, JANTXV lN4249
Maximum Average D.C. Output Current
lOO'C ....................................................................................... 1.0A
@ TA
@ TA = 150'C ................................................................................... O.333A
Non-Repetitive Sinusoidal
Surge Current ....................................................................................... 25A
Operating Temperature Range ........................................................................ -65'C to +175'C
Storage Temperature Range ............................................................................ -65'C to +175'C
Thermal Resistance ...................................................See Lead Temperature Derating Curve
=
MECHANICAL SPECIFICATIONS
c::::=::J {
.155TYP.
3.9mm
.1
L
~~ ..l.=
1-17.8mm
J, JTX, JTlW lN4245-1N4249
r
BAND INDICATES
CATHODE END
6.35mm~
~
c:::::::J
r:-, t
+ L
BODYA
.085 MAX.
2.16mm
.030±.OOl
O.77mm ±.03
'- .O[~~~p.
THESE OEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nL:::::Jn
SEMICONDUCTOR
PRODUCTS
1/79
2-13
_UNITRDDE
JAN, JANTX, JANTXV 1N4245-1N4249
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Minimum
PIV
J, JTX, JTXv 1N4245
J, JTX, JTXV 1N4246
J, JTX, JTXV 1N4247
J, JTX, JTXV 1N4248
J, JTX, JTXV 1N4249
*Measured in circuit IF
400V
600V
800V
1000V
IR
Forward
Voltage
@ 100~A
Voltage
Max.
Min.
240V
480V
200V
= V2A,
Breakdown
1.3V(pk)
0.6V
@3.0A(pk)
nov
960V
1150V
1.0pA
.001
.002
.005
.01
~- .02
....
Z
5.5
!oJ f:J
'":::J
u
~ll'J
$ ~ f:J tt-r---
.1
./-1-
U.05
il/ /
I
.."..02
II
.01
.005
I
.2
.4
V, -
10-"
....
"i=Z
.
c:
'"c:
"
:l
80
60
III
0
"'i;:
40
'"0.
..."'0
20
."'-.
3
:l
./
U
~2S'C
o
"'i;:i= 2
'"
'"~'"
--r+7S'C
5.01'5
II
150
100
=~ ..
3.5
~("
L=~
~r--...
I""'" '"""" ~
.'"
1.2
25
~
~
50
75
100
125
150
T, - LEAD TEMPERATURE ('C)
.5
175
Q
10 \I
+
Turret 1/2" centers
Printed Circ,uit
_
-=-
25Vdc
(APPROX.)
III
NOTE 3
t---
~ ~~
<:i
~
0
ALL SERIES
I I
1111
I I
JTurret
1" centers
~:;
"-
...".l
Reverse-Recovery Circuit
50
III
~~
1.5
~
50
1.4
r-....
:II
"~ ~
I
% OF PIV
.6
.8
1
VOLTAGE (V)
~"
'"rel
2.5
~
~ 1
~25;C
50
100
Allowable Forward Surge vs Number of Cycles
100
150pA
"'l
Z
::!c:
u
10
20
II
II
.001
----
.5
/
/
.002
'"
'">'"
'"'"
III
-I- i- I
L
5
50'C
.05
.1
.2
'"'"
....
"'~
Time*
Maximum Current
vs Lead Temperature
Typical Reverse Current vs PIV
10
:l
Reverse
Recovery
= t.OA, IREe = 1A:A
Typical Forward Current
vs Forward Voltage
Z .2
Maximum
Maximum
Reverse
Current
2S'C
ISO'C
Reverse
Type
OSCILLOSCOPE
NOTEI
NOTES:
#10
100
CYCLES AT 60 Hz HALF SINE WAVE
UNITRODE - SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 - FAX (617) 924-1235
1.000
2-14
1. OsciHoscope: Rise time ~ 305; input impedance = SOU.
2. Pulse Generator: Rise time ~ 8ns; source impedance 1011.
3. Current viewing resistor, non-inductive, coaxial recommended.
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV IN4942
JAN, JANTX, & JANTXV 1N4944
JAN, JANTX, & JANTXV 1N4946
RECTIFIERS
Military Approved, 1 Amp,
Fast Recovery
FEATURES
OESCRIPTION
•
•
•
•
These fast recovery rectifiers are suitable
for use as power devices for many appli·
cations. Devices are available as
JAN, JANTX or JANTXV.
Qualified to MIL·S·19500/359
Surge Rating: 15A
PIV: to 600V
Controlled Avalanche
ABSOLUTE MAXIMUM RATINGS
Maximum Reverse Voltage
Type
200V
400V
600V
JAN, JANTX, & JANTXV IN4942
JAN, JANTX, & JANTXV IN4944
JAN, JANTX, & JANTXV IN4946
Maximum Average D.C. Output Current
@ TA = 55'C ...
... l.OA
@ TA
lOO'C
....................... O.7SA
Non·Repetitive Sinusoidal
Surge Current (8.3ms) ....... .
.......................................... lSA
Operating Temperature Range ........ .
....... -65'C to +175'C
Storage Temperature Range ..'....... .
....................................................... -65'C to +17S'C
Thermal Resistance ....................... .
..... See Lead Temperature· Derating Curve
=
MECHANICAL SPECIFICATIONS
BAND INDICATES
CATHODE END
c::::::J[
~II
r
.155TYP.
3.9mm
L _ :::::> s::::=:::J
~MM,J.:::_
17.8mm
JAN, JANTX, & JANTXV lN4942, lN4944, lN4946
6.35mm
BODY A
r:, t.
.085 MAX.
2.l6mm
+
L
I--
.030±.001
O.77mm ±.03
.055TYP.
1.4mm
1.625 MIN.
41.3mm
THESE OEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONDUCTOR
~ PRODUCTS
1/79
2·15
_UNITRDDE·
lEI
JAN, JANTX, & JANTXV IN4942, IN4944, IN4946
ELECTRICAL SPECIFICATIONS (at25'C unless noted)
Minimum
Reverse
Type
J, JTX, JTXV IN4942
J, JTX, JTXV IN4944
J, JTX, JTXV IN4946
Peak
Inverse
Vollage
Breakdown
200V
400V
600V
220V
440V
660V
Voltage
@
1.0pA
@IAdc
200pA
::J
U
C
w
ii:
~
OJ
a:
OJ
C>
«
.
L=~
0
L~ ~
.............
............ 1"--...
Q:
OJ
~
~
I
50
75
VV/V
.2
=<
'"
.1
::J
u .05
c:-f
0
11
...
~
............
~"
............
.5
100
125
150
'"0
JJJ.
II
.01
II
.002
.5
en
.2
.4
V, -
./
.
+25'C
Q:
>
W
-r
0:
+75'C
1/
10
20
150
.6
.8
1
VOLTAGE IVI
1.2
~'{:
II
50
100
I
100
50
% OF PIV
1.4
Characteristic Waveform.
Reverse-Recovery Circuit
10 u
+O.SA
+
_
-=-
u
w
II
.001
--
.05
.1
.2
Q:
0:
:J
/
.005
SO'C
w
/ II I
I
LEAD TEMPERATURE ('C)
501l
I
1-
.005
.01
.02
w
rr-
I/,{'
CJ
CJ
~&;:.f?
~.02
175
;;0
...Z
/V/
.5
"' "'a:a:
~
T, -
5:
I-
Z
@
.!?
25
;;
/1/
.......
45pf
35pf
25pf
.001
.002
w
L = '18"
150ns
150ns
250ns
Typical Reverse Current vs PIV
10
...z
Q:
Q:
CaP!lcitance
@V,=12V
f = IMHz
Recovery
Typical Forward Current
vs Forward Voltage
1.S AMP SERIES
Time*
Reverse
Current
150'C
25'C
1.3Vdc
0.6V
Maximum
Reverse
I
5O~A
Maximum Current
vs Lead Temperature
g
Maximum
Forward
Vollage
Min.
Max.
25Vdc
(APPROX.)
-1
r-
t"
'\
OA
1\1
NOTE3
;'
-0.2SA
II
-1.1lA
NOTES:
1. Oscilloscope: Rise time -::; 3n5; input impedance:::::: 50U.
-
/
\/
H SJ~"TIME
BASE
FOR 50 TO 100 nslem
2. Pulse Generator: Rise time ~ 8nsi source impedance IOU.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
2-16
PRINTED IN U.S.A.
IN5186·1N5190
JAN &JANTX
RECTIFIERS
Military Approved, 3 Amp,
Fast Recovery
IIJI
FEATURES
• Continuous Rating: 3A
• Qualified to MIL·S·19500/424
• PIV: to 600V
• Recovery Time: l50ns
• Miniature Size
• Controlled Avalanche
DESCRIPTION
These miniature fast recovery rectifiers
permit operation at full power at frequen·
cies as high as 100kHz sine wave.
They are qualified to military specification
and available as JAN, JANTX
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
100V
200V
Type
JAN & JANTX lN5l86
JAN & JANTX lN5l87
400V
JAN & JANTX lN5188
600V
JAN & JANTX lN5190
Maximum Average D.C. Output Current
@ TA = 25°C ............................. .
3.0A
...... O.7A
@ TA = 150°C
Non·Repetitive Sinusoidal
........... BOA
Surge Current (8.3ms)
Operating Temperature Range
................. .
. -wC to +175°C
Storage Temperature Range ......................................... .
.... -65°C to +200°C
.. ... ... ............ See Lead Temperature Derating Curve
Thermal Resistance
MECHANICAL SPECIFICATIONS
JAN & JANTX lN5186·1N5190
BAND INDICATES
CATHODE END
i
\1
r.
BODY B
.145 MAX.
3.68mm
~C===~~~~~~\~~~I~~~-~t~t
1
..
.975 MIN.
24.8mm
L
.300 MAX.
7.62mm
.040±.001
L02mm±.03
.115 TYP
2.9mm
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONDUCTOR
~ PRODUCTS
2·17
_UNITRODE
JAN, JANTX INS186-1NS190
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)
Maximum
Inverse
Minimum
Reverse
Breakdown
Voltage
Voltage @ 100"A
lOOV
200V
400V
600V
l20V
240V
480V
660V
Peak
Type
J, JTX
J, JTX
J, JTX
J,JTX
lNS186
1N5187
lNS188
1NS190
Voltage
Min.
J, JTX
J, JTX
J, JTX
J, JTX
lNS186
lNS187
lN5188
INS190
I
Max.
2S'C
100'C
21lA
lOOIlA
l.SV
O.9V
@9A(pk)
(8.3ms)
Capacitance
Capacitance
Time*
@V,=OV
f -lMHz
@V,=4V
f -lMHz
150n5
200ns
250n5
400n5
300pf
300pf
230pf
l80pf
200pf
170pf
120pf
90pf
Reverse
Recovery
Type
Reverse D.C.
CUrrent
@PIV
Peak
Forward
'F = O.SA to 'R = l.OA, 'REe = O.25A
*Recovery time measured from
Reverse-Recovery Circuit
Maximum Current vs. Lead Temperature
L = .125 ...
c
~
'"ii:_
r~~-C
i=5.
CJ ...
Ul Z
"'",
.........
r---....
L 1':750
Ul '"
"'"
"
+
" t-...."" t'i"...
...........
-..... I'\.
~
35
55
TL -
75
95
10 II
L = Lead Len~.!'.
frim B~dy
_
-=-
115
2SVdc
(APPROX.)
10
r--..: K'
ffiCJ
50 0
135
OSCILLOSCOPE
NOTE 1
NOTE3
~
155
175
NOTES:
1. Oscilloscope: Rise time ~ 3n5; input impedance::::: sou.
2. Pulse Generato'r: Rise time::::: 8ns; source impedance lOU.
3. Current viewing resistor, non-inductive, coaxial recommended.
LEAD TEMPERATURE ('C)
Typical Forward Current
vs Forward Voltage
Typical Reverse Current vs PIV
10
/V / /
_01
I
.3
.05
.1
_2
I
z
.5
:<
...
'"'"
:>
~ .5
...
z
Ul
.2
l&CJ
~ .1
K'
...
I
II
.2
I
~
1...--"""-t25'C
I
l-
'"
u
'"'">
I ....
10
20
1..---'" +7S'C
I-
Ul
a::
I
II
_r..:----50·C
!oJ
·en
II
.01
.005
.001
...g '"~~
III!
I
_".02
.002
CJ C,J CJ
c
"I- -I- "i- I
:>
u.05
~
.02
/
II
.4
.6.8
V, -
VOLTAGE (VI
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERTOWN. MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
50
100
/
200
[:4125'c
500
1.000
1.2
ISO
1.4
100
50
% OF PIV
2-18
PRINTED IN U.S.A.
RECTIFIERS
Military Approved, Fast Recovery, 3 Amp
FEATURES
• Qualified to MIL-S-l9S00/411
• PIV: to 600V
• Controlled AValanche
IN5415-1N5420
JAN, JANTX & JANTXV
DESCRIPTION
This series of devices as designed to meet
the need for high speed, power rectifiers
in military high-rei power supplies.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
Type
JAN, JANTX, JANTXV lNS4lS
JAN, JANTX, JANTXV lNS4l6
JAN, JANTX, JANTXV lNS417
JAN, JANTX, JANTXV lN54lB
JAN, JANTX, JANTXV lN54l9
JAN, JANTX, JANTXV lNS420
SOV
lOOV
200V
400V
SOOV
600V
Maximum Average D.C. Output Current
@ TA = SS·C ...................................................................................... 3.0A
@ TA = lOO·C ..................................................................................... 2.0A
Non-Repetitive Sinusoidal
Surge Curre!)t (B.3ms) ......................................................................... BOA
Operating Temperature Range ...........................................
.. ................. -6S·C to +l7S·C
Storage Temperature Range .................................
.. ....... -6S·C to +200·C
.. ........ 20·C/W
Thermal Resistance 9 JL @ L = 34".. ......................
See Lead Temperature
Derating Curve
MECHANICAL SPECIFICATIONS
BAND INDICATES
CATHODE END
r
i
.175 TYP.
\1
4.
c::::::J C
II
4.4mm
---.;
L
,~.,~=24.8mm
J, JTX, JTl(V lN5415-1N5420
762mm -
::> c::=:J
*'
+
BODY B
.145 MAX.
3.68mm
t
L
.040±.OOl
l.02mm±.03
-.~.~~~
Dimensions in inches.
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONDUCTOR
~ PRODUCTS
2-19
_UNITRODE
JAN, JANTX, JANTXV IN5415 -lN5420
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Minimum
Reverse
Type
Forward
Reverse
Voltage
@ SO~A
Voltage
Current
PIV
50V
100V
200V
400V
500V
600V
J, JTX, JTXV IN5415
J, JTX, JTXV lN54l6
J, JTX, JTXV lN5417
J, JTX, JTXV IN5418
J, JTX, JTXV IN5419
J, JTX, JTXV IN5420
'Measured In circuit IF =0.5 A, I.
== lA,
Maximum
Breakdown
Min.
I
Max.
2S'C
;;;
.3
I-
z
"'0:0:
::>
0
I
-
nov
220V
440V
550V
660V
1.0,aA
@9Adc
tp == 3001'5
Typical Forward Current
vs. Forward Voltage
20K
10K
5K
y
~
vt"1
f-'
Z 500
"'~ 200
aI
100
50
+100'C
.2
o
10
~
8
~
a.
.~~
'" ::>
0:
..
~ 0
;:c
35
........
--
L ';'750
55
T, -
.......
..........
~
r-.... r--.....
SOil
'"
~ ~'"
75
X
."-'. ,"'-
95
115
135
~
155
.8
1.2
VOLTAGE (V)
-
Tj
TL
R8JL
I.,..." < I 1
~J- ~'V<"s
~
~.7SO-_
I I I
I IL
~ 2
from BOdY-
'-
.6
p(ma~)
"'-
:;;
( = Le~d Le~gth
.125 "-
~
16
~ 12
0: "'
",0:
.6
v, -
1.4
1.6
Maximum Power
vs. Lead Temperature
§:
~ 14
=
if?
/
~
.4
50
Maximum Current VS. Lead Temperature
,OJ
./ II
-I-t'
100
(j
W
f-fh
+150'C
I-
_
llJ
/!/
II
*
"f..'"
5
~ 18
.
/J
20
10
-I
52
01"' Z
v.~
2K
;; 20
"'iLI-
",
;: lK
+25'"
L
20,aA
150
150
150
150
250
400
IREC =0.2SA.
bJc
7
Time*
1.5V(pk)
0.6V
% PIV
c
100'C
55V
Typical Reverse Current vs. PIV
.0001
.0002
.OOOS
.001
.002
.005
.01
.02
.05
.1
.2
.5
1
2
5
10
20
50
100
200
500
1000
150
Maximum
Reverse
Recovery
0
0
25
T, -
~<'\\
\''?f,
r-
1\
r--..
.J.r-c
r-- "- \
t--.'-
.500
Ii1Io}
50
75
100 125 150
LEAO TEMPERATURE ('C)
175
Reverse-Recovery Circuit
10 u
+
175
_
-=-
LEAO TEMPERATURE ('C)
25Vdc
(APPROX.)
III
NOTEJ
OSCILLOSCOPE
NOTE1
=
NOTES:
1. Oscilloscope: Rise time.:;:;: 3nsi input impedance = SOU.
2. Pulse Gene;rator: Rise time ~ 8ns; source impedance IOU.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERTOWN, MA 02172
TEL. (617) 926-0404, FAX (617) 924-1235
2-20
PRINTED IN U.S.A.
1N5550-1 N5553
RECTIFIERS
JAN, JANTX & JANTXV
Military Approved, 5 Amp,
General Purpose
III
FEATURES
• Qualified to MIL-S-19500/420A
• Continuous Rating: 5A
• PI V: to BOOV
• TX Parts 100% Screened
• Miniature Size
• Controlled Avalanche
DESCRIPTION
This series of military approved rectifiers
is useful in many military applications.
The 100% screening requirements in the
"TX" version combined with the unique
Unitrode construction assures the highest
degree of reliability.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
200V
Type
JAN:JANTX & JANTXV IN5550
JAN, JANTX & JANTXV IN5551
400V
JAN, JANTX & JANTXV IN5552
JAN, JANTX & JANTXV IN5553
600V
BOOV
Maximum Average D.C. Output Current
@ TA
@ TL
= 55'C """"", .. """""',',"""" .. """',", .. ""'"""_",""",,""""""'"
3.0A
= 55'C ,............................... ,.. "" .. " ..............................."" .. " ....,," 5.0A
Non-Repetitive Sinusoidal
Surge Current (B.3ms) ............ " .... " ................ " .. " ............ " ........... " ... 100A
Operating Temperature Range ........................ "" ........................................., -65'C to +175'C.
Storage Temperature Range ............................................" ............................. , -65'C to +200'C
Thermal Resistance .. " .........................." .................. See Lead Temperature Derating Curve
MECHANICAL SPECIFICATIONS
r
BAND INDICATES
CATHODE END ~
II
-
4,4mm
i.
f
I.
~"M'~=_
r--c-24,Bmm
BODY'B
.175 TYP.
~
c::=J C
J, JTX, JTXV 1N5550-1·N5553
7,62mm-
J c:::=::::J
,145 MAX,
3,68mm
t
L
t
_
,040 ±.00l
1.02mm±,03
,1l5TYP.
2.9mm
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
L=.J
2-21
SEMICONDUCTOR
PRODUCTS
_UNITRDDE
JAN, JANTX, JANTXV IN5550-1N5553
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Maximum
Leakage
Current
@PIV
Minimum
Voltage
Reverse
Breakdown
Voltage @ 50pA
J, JTX, JTXV IN5550
200V
240V
J, JTX, JTXV IN5551
400V
460V
Peak
Inverse
Type
J, JTX, JTXV IN5552
600V
660V
J, JTX, JTXV IN5553
800V
880V
*Measured in a test circuit IF :::=O.5A, IR
=
Peak Forward
Voltage
Max.
Min.
I
O.6V
1.2V
@
= 9A(pk)
IF
I
u:
;::
5
0
W I0: Z
W
W 0:
0:
"'"
I
L = .125.\.
L =~
0: U
W
"
>
L' =
L
l
I
Lengt~
""
55
Tl -
75
95
115
135
~!
16
14
::;; i=
12
10
cr. -
~i
6
~~
_ en
I
,=.~
18
I
~
-..........: ~
35
.:;
I-
.2
z
w
0:
0:
,
-L
- ---------
10
20
--
-" 50
100
200
SOO
25
I
150
75
100
125
150
175
LEAD TEMPERATURE ('C)
Typical Forward Current vs.
Forward Voltage
10,000
5,000
1,000
/'
25'C
;<'500
.§.
Izw
V
0:
0:
::J
75'C
50
0
C
0:
20
«
;:
..I
V
200
100
11
10
0:
0
125'C
-'
1
so
100
f-t-'I----H-+-~-+--m
0
t"
0.25
Ve -
Characteristic Wave Form
-1
0.5
0.75
1.0
1.25
1.5
FORWARD VOLTAGE (V)
Reverse-Recovery Circuit
~-
50
n
10 II
1"\
OA
+
_
-O.25A
-=-
/
\ 1/
25Vdc
(APPROX.)
I Q
NOTE3
1\
-LOA
50
Tl -
% OF PIV
+O.5A
I
2,000
.5
1000
= .500
2~-=t=1~~~
175
..--
:::J
'"I
= .375
4
~
155
L
I
~ E
50'C
U
w
en
0:
w
>
w
r~~" "O~: •
x en
LEAD TEMPERATURE ('C)
.01
.02
.05
.1
2.0ps
-- L= '~50_~§-_=:j
Typical Reverse Current vs. PIV
:<
75pA
Maximum Power Dissipation
vs, Lead Temperature
20
"-- r--.." "-. 1'--
I
'"
I
Lead
~frlm Body
"
= .750_ I'-....
I
l.OpA
l.OA, 'REC:::= O.2SA
'"
I'--.Ly
f-L
I
:::J
100'C
(8.3ms)
1.3V
Maximum Current vs, Lead Temperature
c
w
25°C
Maximum
Reverse
Recovery
Time*
H-'cm
SET TIME BASE
FOR
NOTES:
1. Oscilloscope; Rise time / 3ns; input impedance = 50$1.
2. Pulse Generator: Rise time ~~- 8ns; source impedance lOU.
3. Current viewing resistor, non-inductive, coaxial recommended.
SOOns/em
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEAS,'NT STREET. WA-' ERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924-1235
2-22
PRINTED IN U.S.A
RECTIFIERS
IN5614, IN5616, IN5618,
IN5620, IN5622
JAN, JANTX & JANTXV
Standard Recovery, 1 Amp
Military Approved
FEATURES
• Qualified to MIL-S-l9500/427
• PIV: to lOOOV
• Controlled Avalanche
DESCRIPTION
This series of medium power general
purpose rectifiers can be used in the
most demanding military supplies.
Rugged mechanical integrity and tight
electrical parameters make them
particularly useful.
ABSOWTE MAXIMUM RATINGS
Peak Inverse Voltage
Type
200V
400V
600V
BOOV
tOOOV
JAN, JANTX & JANTXV IN5614
JAN, JANTX & JANTXV lN56l6
JAN, JANTX & JANTXV lN56lB
JAN, JANTX & JANTXV lN5620
JAN, JANTX & JANTXV lN5622
Maximum Average D.C. Output Current
................... 1.0A
@ TA = 55°C
........ O.75A
@ TA =100°C ............... .
Non-Repetitive Sinusoidal
. ..............
............ 30A
Surge Current (8.3ms)
to +175°C
Operating Temperature Range
.... ................
. ..... _65°C to +200°C
Storage Temperature Range ...... .
............. 38°C/W
Thermal Resistance 9 Jl @ L = %"
See Lead Temperature
Derating Curve
.................. .. ........... -wc
MECHANICAL SPECIFICATIONS
J, JTX; JTXV IN5614, IN5616, IN5618, IN5620, IN5622
r
=",,1::
BAND INDICATES
CATHODE END .. ~
.l55TYP.
3.9mm
)i.
c::=::J
178mm
]I
r-:, y
.085 MAX.
2.16mm
I
6.35mm -
BODY A
+
L
'-
.030±.001
O.77mm ±.03
.015~~~P'
THESE OEVICES ALSO AVAILABLE IN·SURFACE'MOUNT PACKAGE. SEE SECTION 11.
n
L.:::Jn
1/79
2-23
SEMICONDUCTOR
PRODUCTS
_UNDTRODE
JAN, JANTX, JANTXV lN56l4, lN56l6, lN56l8, lN5620, lN5622
ELECTRICAL SPECIFICATIONS 50
u
I
c:--
20
10
S
~
"'!Ii"
1/
/
2
.~~
:>
.2
.5
1
u
~.
(,
.2.4.6.811.21.4
v,
+lOO°C
2
5
-VOLTAGECV)
f
~
10
20
50
100
200
500
1000
150
II I
II
25°C
ffi
a:
a:
y_~,CJ"CJ
,,~:cW
I- 1-1··~
50°C
..J.-1""
+150"C
I
I
50
100
~o
PIV
Maximum Current
vs Lead Temperature
Maximum Power Dissipation
VS. Lead Temperature
ElO r-r-r-r-r-r-r-r-~r-r-~
~
..
~
z
I--l-l-l-l-l-l-t
9
~
in
~
c
::!a:
4
...ii:
~ 2
~~~~~~~~l-j-j-~
3
~
~~ Lt!frEt!t~~W
...
II:
~
1
100
T, -
125
150
L=
~
I
175
LEAD TEMPERATURE COC)
~..
~
c
a:
~
~
3
:>
u
6 I--~~l-l-l-l-l-r-r-~~
L=~
L~ "-
I'--~
1
"0 ~
i'---- ............
.2
............
25
50
T, -
l"I..
~
.5
o
75
100
125
150
175
LEAD TEMPERATURE COC)
UNITRODE 0 SEMICONDUCTOR PRODUCTS
sao PLEASANT STREET
0
WATERTOWN, MA 02112
TEL. (517) 92S.()4()4 0 FAX (517) 924·1235
2-24
PRINTED IN U.S.A.
RECTIFIERS
Military Approved, Fast Recovery, 1 Amp
FEATURES
• Qualified to MIL-S-19500/429
• PIV: to 600V
• Controlled Avalanche
IN5615,lN5617,lN5619
JAN, JANTX &JANTXV
DESCRIPTION
This series of military approved rectifiers is
useful in many military applications where
fast recovery and medium power are
required. The 100% screening requirements
in the "TX" version combined with the
unique Unitrode construction assures the
highest degree of reliability.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
Type
200V
400V
600V
JAN, JANTX, JANTXV IN5615
JAN, JANTX, JANTXV 1N5617
JAN, JANTX, JANTXV 1N5619
Maximum Average D.C. Output Current
@ TA = 55'C
...................... .
................ 1.0A
@ TA =100'C .................... .
.................... 0.75A
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
... ... ........... ....... 25A
Operating Temperature Range ....
....................................... -65'C to +175'C
Storage Temperature Range
..... -65'C to +200·C
Thermal Resistance 8 Jl ..... .
. 38'C/W
See Lead Temperature
Derating Curve
MECHANICAL SPECIFICATIONS
BAND INDICATES
CATHODE END
~
r
.155TYP.
3.9mm
J, JTX, JTXV 1N5615, 1N5617, 1N5619
r
BODY A
.085 MAX.
2.16mm
[====~~~===t~~~~~~~~~!~~
11
L
::J c:::::::J
~.~t
c::::=1 z:
l~
1_ .700 MIN.
r--17.8mm
.250 MAX~
6.35mm-
+
L
.030±.OOl
O.77mm ±.03
055 TYP.
'-- . 1.4mm .
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONOUCTOR
~ PROOUCTS
2-25
_UNITRDDE
JAN, JANTX, JANTXV 1N5615, 1N5617, 1N5619
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Minimum
Maximum
Maximum
Breakdown
Forward
Reverse
Voltage
@SO/LA
Voltage
Current
Reverse
Recovery
Time*
Reverse
PIV
Type
J, JTX, JTXV 1N5615
. 200V
220V
J, JTX, JTXV 1N5617
400V
440V
J, JTX, JTXV 1N5619
iioov
660V
*Measured"in Circuit IF = lkA, IR = lA, I REC
=
Max.
Min.
1.6V(pk)
@3.0Adc
tp=300l's
O.BV
2S'C
lOO'C
O.5I'A
251'A
~
:>
Q
L=~
~
II:
............ 1---..
II:
~
I
.2
so
75
T, -
~
iii
!!? 6
Q
II:
~
4
It
3
::;;
:>
::;;
;;:
100
125
I.k
SO
.5
ISO
Ip(ma,,=
~..
~.. ".37S.........
/
~
100
200
500
1000
o
+1So'C
ISO
100
50
'% PIV
175
Typical Forward Voltage
¥s. Forward Current
10K
5K
T,-T~_
2K
~ IK
S500
I ~)JL 1 L 1= lead Length
'1- from Body
I
50
T, -
75
I
,-L _ .500"
125
II
:> 50
V
OJ
--
I 20
-- 10
V
~~~~
/{' ~~~ f?1
/J
:f-
ISO
.2
175
!ill
1/ '/7
~
~ 100
",L=I,7S()"
100
~
;;; 200
-.l J"-I-..: ~ .......
~l(O~ "...::3 :::::~:::-.
.. 0
::;;
25
·t~lL
LEAD TEMPERATURE ('C)
I I
I I
9
I
+25'C ~
2
Maximum Power
vs. Lead Temperature
~JO
50'C
IA
5
10
20
~
..........
25
i5
'"
I
r----.. ~ ~ t\.
1
25pf
!5
.. L~ ~ -0
'"
"'"
250ns
1
w'
I'".
"
;;:
'"
45pf
35pf
Typical Reverse Current VS. PIV
z
L =
150ns
150ns
.0001
.0002
.0005
.001
.002
.005
.01
.02
!z_.05
w c:::::=J
~,,~~~17.8mm
6.35mm
BODY A
r: +
.085 MAX.
2.16mm
L
..
.030±.OOI
O.77mm ±,03
'-- .055 TYP.
1.4mm
1.625 MIN.
41.3mm
Typical Weight - 0.22 grams
1N5807-1 N5811
BODY B
BAND INDICATES
CATHODE END
r:
.145 MAX.
3.68mm
~c===~t=~~~~\~~~1~~~~j
L
.040±.001
1.02mm±.03
.115 TYP.
2.9mm
1+-------=25~04~~"-·------;~
TYpical Weilbl - 0.75 Brams
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONOUCTOR
~ PROOUCTS
2-27
_UNITRODE
ID
1N58.o2-1N58.o6 1N58.o7-1N5811 1N5812-1N5816
MECHANICAL SPECIFICATIONS
lN5812-1N5816
L :!::.015
1 437
DO-4
~ '800=l r~Ol°l
405
Max
Max
430
,"~~.;;fI1 . .::~
078
Part Identification: Type number printed on metal case.
Polarity: Cathode to stud end
Max. Weilht: 7.0 Grams
Installation Precautions: Maximum unlubricated stud torque:
10 inch pounds
Thermal Resistance: 3.0·C/W
Dimensions in inches.
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Leakage
Current
Maximum
Forward
Type
PIV
1N58.o2
1N58.o3
1N5804
1N58.o5
1N58.o6
1N58.o7
1N58.o8
lN5809
1N581.o
1N5811
1N5812
1N5813
1N5814
1N5815
1N5816
5.oV
75V
100V
125V
15.oV
50V
75V
1.o.oV
125V.
150V
50V
75V
100V
125V
150V
@PIV
25'C
100'C
Voltage
Drop·
·Pulse width
=;
~
0
j;:
r--...
15n5
1.5V
15pf
.875@4A
51'A
150I'A
3.on5, l..o-l..o-.o.1A
15n5
1.5V
45pf
.9.o.o@ 1.oA
1.oI'A
750I'A
35n5, l..o-l..o-O.1A
15n5
1.5V
2.o.opf
Output Current vs. Case Temp.
Lead Lenct;h
from Body
""
4
"-
'-.,
""
50
75
15
II
100
'";::j;:
...u
ri
\
~ 0
125 150 175
"«...a:
>
TL -
LEAD TEMPERATURE ('C)
~
a:
a:
:;)
u
I
o
150
CASE TEMPERATURE ('C)
2-28
from Body
"\
""
...o
;::
...a:
...
l = ...." "
"'i-.
l=~H
~
\
12
L= lud L!nllh
10
l= "'":'\
j;:
«
125
"\
10
U
\
100
~ lAMP SERIES
~
...
5
o
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
20 AMP SERIES
1\\
10
Si ...a:
'\
""'"
0
@
3 _'"
""'" ""-\~\
25
... ...a:a:
0
::E
'"., 0
12
1\
...
:;)
~
~
~
z
'U
I
Output Current vs. Lead Temp.
20
I
r- l =.0.
"I
-
@-10V
25n5, .o.5A-.o.5A-O..o5A
6
l_ ... " ' "
I--
@lAlr=8ns
50pA
~
i'...
...
;::
...ua:
...
"«...a:
>
@ 1A Recover to 1V
I RfC
11'A
I
L
a:
:;)
u
'R'
Typical Forward
Recovery
Typical Junction
Vollage
Capacitance
250ms
2.5 AMP SERIES
...a:
If'
Typical Forward
Recovery Time
.875@lA
Output Current vs. Lead Temp.
...~
z
Maximum Reverse
Recovery Time
."
i'-..
8
'"
"I
'"
"\
@
~'"
"
"'-
a:
>
\
....
~
~
\
2
'\.1\
....... N.
.2
'\
o
25
50
75
~
::E
:u
100
0
125 150 175
175
TL - LEAD TEMPERATURE
(OC)
PRINTED IN U.S.A.
IN5802·1N5806
Typical Forward Current
vs. Forward Voltage
10
Typical Forward Current
vs. F.orward Voltage
1//VI
.5
,2
w
'"'"
u
:>
.05
I
I
:£
"
II
01
~
'"'":>
I
.5
"I
I
.005
.002
r-f- -Ib -L~~/t
.
I
II
.02
01
2
"I
~-r
34 ') 6 78.91011121]
V f - VOLTAGE (V)
1
2
I
:;:
~I
2 .3
.4
') 6
7 8 9 10 11 12 13
V, -VOLTAGE (V)
01
I
'2
3
J
4
')
6
Vf
Typical Reverse Current
vs. Voltage
001
1'/
m
Typical Reverse Current
vs. Voltage
OJ
2.HMP SERIES
Vi'
02
6 AMP SERIES
--
05
01
2Q AMP SERIES
",.",
~
z
w
'"'"
",
1
~
<.l
I
.:
-rr""""
10
""'
100
~
,...r-
T_ t-25 C
2
r-
10
.: 20
20
'rn
100
130)20110100 90 80 70 60 so 40 30 20 10
VOLTAGE IN % OF PIV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEl. (617) 926·0404. FAX (617) 924·1235
1000
0
I(
100
1.--1-"
200
T1
'Tyr
+125 C
1000
so
130\2011010090 80 70 60
4030 20 100
VOLTAGE IN % OF PIV
2·29
l.--- V
T _ +75 C
200
..... "", ......
,.....",,~
'I
T=+75 C
_,I1Jc
f-
f-
'":>'"
f-"'"
iA-""'c
T _25'C
~
/'d5'C
:>
f- ...... --
7 8 9 10 11 12 13 14 1 J
VOLTAGE (Vj
02
,....1--' rlJ"h
I.--
-
Typical Reverse Current
vs. Voltage
01
1
II
/
'/
II
I
~
i-- I
:;:
I
II
02
1/
it
r-r ~
5
I
I /
001
I
17ill
~
f:I
II / II /
r-f- ~c 0,"
~
'"'"
:>
.~
,. ,.
f!
II
:£
/
05
/ /
10
II
/ /
r-r-
-'" .2
II
/[/
20
/
2
~
~ i~r
r-r- {! ~ !2, ~
,. I
~:;::~
20 AMP SERIES
;;;:?
'/1/1/
10
11/,/
.02
~~
10
III II!
!Z:
6 AMP SERIES
50
IN5812·1N5816
Typical Forward Current
vs. Forward Voltage
100
IOC
V-~
2.5 AMP SERIES
IN5807·1N5811
I"
100
l.---- V
75
25
VOLTAGE IN % OF PIV
PRINTED IN USA
IN5802·1N5806
Reverse,Recovery Time Circuit
IN5807·1N5811
IN5812-lN5816
CharacteristiocWaveform
-
I-
t"
tREe
1\
I
I
I
I.
'-'
SET TIME BASE
FOR 5 NS/CM
NOTES.
1. Oscilloscope: Rise lime ~ 3 "5; input impedance = SO !!.
2. Pulse Generator: Rise time ~ 8 ns; source-impedance 10 !!.
Multiple Sur.. Current Vs. Dur.tion
Forward Pulse Current vs. Duration
10.000
100
5,000
..,eo
z
5:
0:
"...
"- r--....
!iO:iO
~ 1.000
:::
"f'-.
.....,
500
0:
".
U
.. 40
~
100
~
50
......
~
o
.. 10
T MOUNT
@L....h= .."
~ tPrlR1ed CircUit
I I
10
50
10l's
u»"s
PULSE DURATION
.5
l.us
Jps
fIl"
-.'
IN5804.1N51!06
BACKSIDE CATHODE
CHIP
METALLIZATION
THIOlNESS
TOP .... AL
.0075
:00;;;
BACK
AU
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
IOms
I
2
5
10 20
50
100 200
500
ll)()O
CYCLES AT 60 Hz SINE WAVE
IN5809.1N5811
•
~~,
~
BACl
'\.
...........
ffi
:;iE~
1
L
VI
~ 12
= =
=
=
IF
I. O.5A
I.EC O.OSA
di/dt 65A1IL5 min.
lN5807
IN5809
IN5811
~
_
L _ Jla"
1\
= =
=
di/dt = lOOA/ps min.
IF
I.
l.OA
I. EC O.1A
25n5
r-...
'~
25
.875V Max.
@lA{pk)
.97SV Max.
@2.5A{pk)
30ns
~e Le~"h_
l=¥4"
o
150pA
L = ••
from Body
L_1fe"
::>
u
5ILA
1N5S02·5806
10
lOO'C
.8V Max.
@4A(pk)
Output CUrrent YS. Lead Temperature
\
2S'C
.875V Max.
@4A{pk)
.925V Max.
@6A{pk)
lN580)·5811
'\
Maximum
Reverse
Recovery Time
@PIV
Output CUrrent \IS. Lead Temperatura
12
...5
Maximum
Reverse Current
Forward Voltage
@ 2S'C
@ lOO'C
3 .•
2.4
1.2
175
*Maximum lead temperature in °C {TLl at point "L" from
body. (For maximum operating junction temperature of
175°C with equal two-lead conditions.)
" "'-\
"""
~\
o
25
175
Tl -LEAD TEMPERATURE ("C)
so
125
ISO
75
100
Tl - LEAD TEMPERATURE (·C)
Reverse-Recovery Circuit
~
175
Characteristic Waveform
....,
t"
~
fREe
!
T
!
I,
SET TIME BASE
FOR 5 NS/CM
NOTES:
1. Oscilloscope: Rise time '(; 3nsi input impedance = son.
2. Pulse Generator: Rise time ~ 8nsi source impedance IOS2.
3. Current viewing resistor, non-inductive, coaxial recommended.
lN5809.1N5811
lN5S04.1N5806
Jm=h1,
1bJ"
CHIP
>THICKNESS
0045
.0055
METALLIZATION
TOP .•.. AL
BACK ••. AU
PRINTED IN U.S.A.
JAN & JANTX IN5802-1N5806
Typical Forward Current vs. Forward Voltage
Typical Reverse Current VS. Voltage
JAN & JANTX 1N5807-5811
JAN & JANTX lN5807·5811
100
.01
50
.02
// / V
I / / L
10
~
...
z
/
/
2
/
UJ
0:
0:
l/l~1t
/ I
:J
'I
.2
.1
.01
II
II il
.1 .2
.3
'I
.6
100
T
.9
10
1
1.1 1.2 1.3
120
!z
.2
~
.1
'I
.05
,i: i:
"i-
V / II
.02
I
/
.01
I
.005
/ II
.002
.001
.1
I/'
V
--
T
...z
$J
Ii?
I
UJ
/V
0:
0:
a.5
I
1/
I
50
.2 .3 .4 .5 .6 .7 .8 .9 1 1.1 1.2 1.3
V,-VOLTAGE (V)
100
2-33
= +25'C
I-V I--
-
L
_f-'"
/
1
-"
T
= +7S'C
T
= +12S'C
~-I-
/1-'
10
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
~SoJc
_.05
..3 .1
II
I
,- V
.
I
I
a
.01
II II
I/lrAj¥-
:J
_/
100 90 80 70 60 50 40 30 20 10
VOLTAGE IN % OF PIV
.001
1/II '/ /
I / 1/
UJ
= +12S'C
-
Typical Reverse Current vs, Voltage
JAN & JANTX 1N5802-5806
...-:: 'i r/
/
~
1000
.7 .8
v/
-
-
,-
Typical Forward Current vs. Forward Voltage
JAN & JANTX 1N5802·5806
.5
= +7S'C
/
V,-VOLTAGE (V)
~
T
10
200
.5
= + 2S'C
-" 20
I
.4
1
2
T
I-~-~
0:
0:
II
/
~
!zUJ
/
I-- I-
:J
I
/ II /
.05
.02
/$J
& JC Ii?
i: i: -I- I
/
I
II
~
.5
TlTT
.1
.2
/
!I
Vf
V
y V
V
-'/ ~
/ ~
20
JAN & JANTX IN5807-1N5811
(
I
120
-
l.-
I--'" V
-
/'
100 90 80 70 60 50 40 30 20 10
VOLTAGE IN % OF PIV
a
PRINTED IN U.S.A.
IN5812,lN5814,lN5816
JAN, JANTX & JANTXV
RECTIFIERS
Military Approved
High Efficiency, 20 Amp
FEATURES
• Qualified to MIL-S-19S00/478
• Exceptional Efficiency
• Mechanically Rugged
• Low Thermal Resistance
• JAN, JANTX and JANTXV Available
DESCRIPTION
This series is suited for use as a power
. rectifier in switching regulator and high
frequency inverter/converter and other
appropriate equipment circuits where low
voltage drop and fast recovery times are
important.
CHIP
METALlIZATlON
THICKNESS TOP ••.. AL
~~
BACII ... AU
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
Type
SOV
l00V
lS0V
JAN, JANTX, JANTXV lNS812
JAN, JANTX, JANTXV, lNS814
JAN, JANTX, JANTXV lNS816
Maximum Average D.C. Output Current
@ Tc=100'C
@ T.=SS'C
Non-Repetitive Sinusoidal
Surge Current @ 8.3mSec
Thermal Resistance, Junction to Case ..
Operating Junction Temperature .
Storage Ambient Temperature
20A
... SA
........ 400A
.. ........................................... l.S'C/W
....... -WC to +17S'C
... -6S'C to +200'C
MECHANICAL SPECIFICATIONS
J, JTX, JTXV lN5812, lN5814, lN5816
~D
----.
~C....
I
~ .~
\....8
A-+--:--<1
-
"0.32
UNF·2A
t
_.. -.,.
I
G
H-/-- _.1.
mm
ins.
A
B
c
0
E
F
G
H
00-4
.078 MAX.
.437 , .015
1.98 MAX.
11.10 ,0.38
.405 MAX.
.800 MAX.
10.29 MAX.
20.32 MAX.
10.92,0.25
6.35 MAX.
10.77 MAX.
1.68 MIN. OIA.
.430, .010
.250 MAX.
.424 MAX.
.066 MIN. orA.
Nol•• :
1. Polarity is cathode-ta-stud.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 15 inch pounds.
4. Angular orientation of terminal is undefined.
n
L!::::::Jn
2-34
SEMICON. OUCTOR
PROOUCTS
_UNITRDDE
JAN, JANTX, JANTXV IN5812, IN5814, IN5816
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Minimum
Reverse
Breakdown
Voltage @ 100pA
Peak
Inverse
Voltage
Type
J, JTX, JTXV IN5812
50V
60V
J, JTX, JTXV IN5814
IOOV
nov
J, JTX, JTXV IN5816
150V
160V
Maximum Reverse
Recovery Time @
IF, JR, ht.Ee
-1.OA
35nsec 1.0A
2.2V
\
::>
u 10
::;
::>
::;
::;
!§
2
::;
1
u
5
::>
II
~" 02
1\
\
~O.l
0.05
~
i-
1-
II
J
0.01
0.1 .2 .3 .4 .5
~
~
.1
a
.2
~
.5
0:
OJ
J
-T' :::T
0:
I--'
-~ 10
20
7
I
IF;
High Zo
I
Ul
rl>,
(coaxial)
I
I
GE~~~~iOR
for'Ri
Low Zo' Fast t,
OSCILLOSCOPE
I+
2-35
t"
...1..If
I
NOTES:
1. Oscilloscope: Rise time ~ 3 ns; input impedance = 50 U.
2. Pulse Generator: Rise time::';; 8 nSi source impedance 1011.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
I I I
90 80 70 60 50 40 30 20 10 0
REVERSE VOLTAGE (% OF PIV)
Characteristic Waveform
D.U.T.
N."
+12S'C
+150'C
V, -
.6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5
YF-VOLTAGE (V)
/
no 100
130 120
~
I
=
=
II
I
Reverse-Recovery Time Test Circuit
con:~~~~yc~:ent
k
TJ
-T J
Ii
50
-- -- /
--
+100'C
!
>
OJ
I~
II
II
1/
0.02
175
~ .05
:CJ~
...
T J _+2S'C
.01
.02
I-
I
f--f-- ~()
c
u
g
....
150:
1== 150'
f=12:C
75'C
0:
~
./
\~~'C
0:
25'C
V ./ /
=>
~1O.0
Jo-:--55'C
1'>'C;
ffi
0:
e
~
J,
1
.1
.....
1.0
<:Ie.
'1:4,
:\)~
0.1
.1
.2
.3
.4
.5
.6
.7
.8
.9
1.0
10
20
30
40
50
VA-REVERSE VOLTAGE (V)
V,-FORWARD VOLTAGE (V)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
o
-'><;
2-37
PRINTED IN U.s.A.
RECTIFIERS
IN6304-1N6306
JAN, JANTX, JANTXV
High Efficiency, 70A
FEATURES
•
•
•
•
•
•
•
•
DESCRIPTION
High Continuous Current Rating
Very Low Forward Voltage
Very Fast Switching Speeds
High Surge Capability
Low Thermal Resistance
Mechanically Rugged
Both Polarities Available
Qualified to MIL-S-19500/550
. The IN6304 Series is specifically designed
for operation in power switching circuits
operating at frequencies of at least
.20KHz. The very low forward voltage and
very fast recovery time make them particularly suited for switching type power
supplies.
M~TAHll"'TlO"l
TOP
AL
BACK •. AU
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, IN6304 . . . . .. . . . . ... . . . .• .. . . . . .. . . . ... . . . . . . . .. . . . . .. . .. 50V
Peak Inverse Voltage, IN6305 . . . . . ... . .. . . . . . . . ... . .. .. . . . . .. . . .. . . . ... . ... . .. lOOV
Peak Inverse Voltage, IN6306 ......... .... .. .. .. .. .. . .. . .. .. .. .... .... .. ...... 150V
Maximum Average D.C. Output Current at Tc = lOO°C ............................ 70A
Non-Repetitive Sinusodal Surge Current 8.3ms .................................. 800A
Thermal Resistance, Junction to Case ....................................... 0.8°C/W
Operating and Storage Temperature Range ........................... -65°C to +175'C
Operating and Storage Temperature Range (JEDEC types) ........... -55°C to +175°C
POWER CYCLING
SWITCHING CHARACTERISnCS
These devices possess the unique ability to pass many thousands
of cycles of a stress test designed to evaluate the integrity of the
bonding systems used in the construction of power rectifiers.
In this stress test, the case of the device is not heat sunk. Full rated
'forward current is supplied to force a case temperature increase at
least 75°C, at which time, the current is removed and the case
allowed to cool. The cycle is repeated a minimum of 5,000 times to
simulate equipment being turned on and off. Extended powercycling
tests demonstrate a product capability in excess of 25,000 cycles.
The switching times of these ultra-fast rectifiers increase relatively
little, with temperature or at different currents. Even in severe
applications, such as catch diodes for switching regulators and
output rectifiers for high frequency square wave ~verters, these
devices switch many times faster than the fastest associated
transistors. Thus, the stresses on and powers dissipated in the
switching transistors are substantially less than when using other
rectifiers.
MECHANICAL SPECIFICATIONS
IN6304-1N6306
DO-203AB
(00-5)
E
1j428
UNF 2A
K
L
6670lA MAX
1 000 MI\X
450 MAX
26 940lA MAX
2540 MAX
II 43 M A X - -
-M 438- 015
1113.!038--~r-.E7B MAX _-=-~~_MAX
_----=
Notes:
1. Standard polarity is cathcx:le-to-stud.
For reverse polarity (anode-to-stud) add suffix "R", ie. lN6304R.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 20 inch pounds (20 kg, em).
4. Angular orientation of terminal is undefined.
nn
L.L:::::JJ
4/82
2-38
SEMICONDUCTOR
PRODUCTS
,_UNITRODE
JAN. JANTX. JANTXV lN6304·1N6306
ELECTRICAL SPECIFICATIONS
Type
Maximum
Forward Voltage
VF
VR
lN6304
lN6305
lN6306
50V
lOOV
l50V
Te = l50°C
Te = 25°C
Te = l50°C
.975V
@
70A
tp = 300pS
.840V
@
70A
t p = 300pS
25pA
30mA
.840V
@
70A
tp = 300ps
25pA
30mA
1.18V
@
l50A
tp = 300ps
Maximum
Reverse
Recovery
Time
t"
IR
Te = 25°C
.975V
@
70A
tp = 300ps
50V
lOOV
l50V
J. JTX. JTXV lN6304
J. JTX, JTXV lN6305
J. JTX. JTXV lN6306
Maximum
Reverse Current
50ns
lA·lA·O.lA
50ns'"
60ns'21
'" I, = O.5A. I. = IA. I. EC = O.25A. di/" = 85A1lls (min.).
I'M =70A. di/", = 130A/lls.
121
Type
VR
J. JTX. JTXV lN6304
J. JTX. JTXV lN6305
J. JTX. JTXV lN6306
50V
100V
l50V
Maximum
Forward
Voltage
Maximum
Forward Recovery
Time
IFM
;=
l5ns
lA, t, = 8ns
IFM
~
70
UJ
'"'"
u
...::J
50
;;J
...::J
0-
r--....
~
30
$
220r-~~-r----~k------r~~~
If Duty Cycle
I-
~ 180 I-------I--"o,~=+--....,.---I-----___l
~
::J
u
I-
::J
a.
I-
::J
o
~
0
I
_0
10
100
Te -
@-lOV
600pF
2.2V
= lA. t, = 8ns
Peak Output Current vs.
Case Temperature
Output Current vs.
Case Temperature
...z
Maximum
Junction
Capacitance
~ 100
a.
I
1
""
125
150
175
CASE TEMPERATURE (OC)
60~~~~~--~~~~~~~--1
20
10, Average of Rectjfied-""'-r-~:"""'d-'''''t:i~''tti
Half Sine
~0~0~--~12~0----~14~0----~16~0--~~
T, - CASE TEMPERATURE COC)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-39
PRINTED IN U.S.A.
JAN, JANTX, JANTXV IN6304·1N6306
Forward Current
vs. Forward Voltage
Typical Reverse Current
VS. Reverse Voltage
.001
.002
100 r---+---~--~----~~~~~---;
~
50
z:
.005
.01
I---+--;--+-+-+-I--if--+---\
.02
<"
oS
'"
0:
0:
13o
20
1---+--;--/0
~ 10
0:
:>
u
.5
1
"'II:c::
0:
e
....z
.05
.1
.2
I----+---~_I
I
-"
-- --
TJ =2S'C
r- -/r- p-
TJ
.L
10
20
0.2
0.6
0.4
v, -
0.8
1.0
1.2
50
1.4
-
I-:: r-
-
+100'C
~~'C
)
i-"'" 1:=1""='tlsh'c
lJ.J.
LLl
II
I I
130 120 110 100 90 80 70 60 50 40 30 20 10 0
VOLTAGE IN % OF PIV
FORWARD VOLTAGE (V)
Maximum Forward Surge
VS. Number of Cycles
$
....z
I'"
600
0
~
I
I
t'-...
400
I
-~
200
e"'
.
'"
.
I
'"c::c::
:>
Thennal Impedance
vs. Pulse Width
~
800
!\...JL
u
I
z
0
I
Do
'"
;:;!
oJ
~
::;
~ICYCTE
I
.02
N-
10
20
50
100
CYCLES OF 60 Hz SINEWAVE
i-"
V .....
i-"
.1
.05
VV
V
~ .01
N
2
/'
.2
II:
"'....X
r-- t---
1-1-
.5
.01.02 .05.1 .2 .5 1 2 5 10 20 50100200
tp - PULSE WIDTH (mS)
1000
200
Reverse·Recovery Circuit
Characteristic Waveform
..L
-
t ..
r-
I,
IREe
I
\
r
I
I,
SET TIME BASE
FOR 5 NS/CM
NOTES:
1. Oscilloscope: Rise time ~ 3ns; input impedance = 5On.
2. Pulse Generator: Rise times 8ns; source impedance = 10n.
3. Current viewing resistor, non·inductive, coaxial recommended.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
2·40
PRINTED IN U.S.A.
POWER SCHOTTKY RECTIFIERS
50A Pk, 45V
lN6391
JAN, JANTX, JANTXV
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
The IN6391 has a Schottky barrier
junction and is ideally suited for output
rectifiers and catch diodes in low voltage
power supplies. Rugged design absorbs
stress that can damage glass-to-metal seal
during installation and use.
Very Low Forward Voltage
Low Recovered Charge
Rugged Package Design (DD-4)
High Efficiency for Low Voltage Supplies
45V Blocking @ Rated Tjmax
54V Repetitive Surge Voltage
Qualified to MIL-S-19500/553
ABSOLUTE MAXIMUM RATINGS
Working Peak Reverse Voltage, VRW" ..•.•...••.•.••.•...•..........•........•.•.. 45V
DC Blocking Voltage, VR .............••....•.........•............•........•...• 45V
Peak Repetitive Surge Voltage, VRs" @ IR" .....•.................••.....••..•.... 54V
Average Rectified Forward Current, 10 @ Te = 125·C •...•.....••.....•.•......•... 25A
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20kHz, 50% Duty Cycle),
IFRM @ Te = 125·C .•..•........••••••...••...•....................••.....•.• 50A
Non-Repetitive Peak Surge Current (8.3ms), IFSM .• _•......•••...•...••.•••.•..•. 600A
Peak Reverse Transient Current, IRM ..•..•.•..••..•.•..............•...••.....•.•• 2A
Operating and Storage Temperature Range .•....•.....•.....•.....• -55·C to + 175·C
Thermal Resistance, Junction to Case, R8Je ...............•...•.•.••.••.••.• 2.0·C/W
MECHANICAL SPECIFICATIONS
JAN, JANTX, JANTXV IN6391
INCHES
A .078 MAX.
B .437' .015
C .405 MAX.
o .800 MAX.
E .430 •.010
F .250 MAX.
G .424 MAX.
H .066 MIN. OIA.
NOTES:
1. Cathode is stud.
2. All metal surfaces tin plated.
00-4
MILLIMETERS
1.98 MAX.
11.10' 0.38
10.29 MAX.
20.32 MAX.
10.92' 0.25
6.35 MAX.
10.77 MAX.
1.68 MIN. OIA.
3. Maximum unlubricated stud torque: 10 inch pounds.
4. Angular orientation of terminal is undefined.
nn
SEMICONDUCTOR
~ PRODUCTS
4/83
2-41
_UNITRDDE
..
JAN, JANTX, JANTXV 1N6391
ELECTRICAL CHARACTERISTICS (TCASE
=25°C)
Characteristic
Conditions
Symbol
Limit
Units
Maximum Instantaneous
Reverse Current
iR
15
40
400
mA
mA
mA
Te =25°C, VR=VRW..
Te = 125°C
Te = 175°C
Pulse Width =400ps
Duty Cycle = 1%
Maximum Instantaneous
Forward Voltage
VF
0.44
0.68
V
V
iF =5A, Te =25°C
iF = 50A, Te =25°C
Pulse Width =300ps
Duty Cycle = 1%
Capacitance
C,
2000
pF
VR = 5.0V
Typical Reverse Current
vs Reverse Voltage
Typical Forward Current
vs Forward Voltage
.c .- t~·~.c
'\1~
/. ~~
g
.
I-
10
9
~c
<
,§.
..
I-
I
I'
o
::l
U
I
.!!
I
/ ~II I
0.2
10
~
II/ ~
V
/
::l
U
0.1
100
.-~1
100
~
1000
0.1
0.4
v, -
0.8
0.6
.01
1.0
0
20
VOLTAGE (V)
40
60
80
100
120
%OFV.
V"MAlI) Rating vs Case Temperature
50
45
\
40
35
~
.
I
30
~
25
>
20
1\
\
\
\
\
15
10
-50
-25
25
50
75
100 125
150
175
CASE: TEMPERATURE ('C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN; MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235 .
2-42
PRINTED IN U.S.A.
POWER SCHOTTKY RECTIFIERS
120A Pk
IN6392
JAN, JANTX, JANTXV
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
•
The lNG392 Schottky barrier power rectifier is ideally suited for output rectifiers
and catch diodes in low voltage power
supplies. The Unitrode high conductivity
deSign, using a heavy copper top post and
4 point crimp, ensures cool thermal
operation and low dynamic impedance.
Rugged design absorbs stress that can
damage glass-to-metal seal during
installation and use.
Very Low Forward Voltage (O.G at GOA, l25°C)
Low Recovered Charge
Rugged Package Design (00·5)
High Efficiency for Low Voltage Supplies
Low Thermal Resistance (1.0°C/W)
High Surge Current (800A)
Low Reverse Current (GOmA at rated VA at l25°C)
Qualified to MIL-S-l9500/554
ABSOLUTE MAXIMUM RATINGS
Working Peak Reverse Voltage, VAWM ........... _................................. 45V
DC Blocking Voltage, VA ........................................................ 45V
Peak Repetitive Surge Voltage, VASM @ lAM ....................................... 54V
Peak Repetitive Forward Current
(Rated VA, Square Wave, 20kHz, 50% Duty Cycle), IFAM ....... 120A (at Te ll5°C)
Average Rectified Forward Current, IFIAVI ......................... GOA (at Tc = ll5°C)
Non-Repetitive Peak Surge Current (8.3ms), IF8M .............................. l,OOOA
Peak Reverse Transient Current, lAM .......... : ................................... 2A
Operating and Storage Temperature Range ......................... -55°C to + l75°C
Thermal Resistance, Junction to Case, ROJe ................................. 1.0°C/W
=
,
2
-1010
.,.
(~)
ISCHonKVDIE
2~~6Y~~PrisgN(ro~~~RrACEJ
3
~~~HB10l~~~~i~ bC;1'6~~~ SURFACE)
MECHANICAL SPECIFICATIONS
JAN, JANTX, JANTXV IN6392
A
B
C
0
E
F
G
H
J
K
L
M
N
INCHES
.225' .005
.060 MIN.
.156' .020
.156 MIN. FLAT
.667 DlA. MAX.
.090 MAX.
.677' .010
.375 MAX.
. 140 MIN. DIA.
1.000 MAX.
.450 MAX.
.438 •. 015
•078 MAX.
00·5
MILLIMETERS
5.72' 0.13
1.52 MIN.
3.96' 0.51
3.96 MIN. FLAT
16.94 DIA. MAX .
2.29 MAX.
17.20.0.25
9.53 MAX.
3.56 MIN. DlA .
25.40 MAX.
11.43 MAX .
11.13' 0.38
1.98 MAX .
NOTES:
1. Cathode is stud.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 30 inch pounds (35 kg. cm).
4. Angular orientation of terminal is undefined.
nn
SEMICONDUCTOR
~ PRODUCTS
4/83
2-43
_UNITRODE
JAN, JANTX, JANTXV IN6392
ELECTRICAL CHARACTERISTICS (TCASE
= 25°C)
Symbol
Limit
Units
Maximum Instantaneous
Reverse Current
Characteristic
iR
20
60
600
mA
mA
mA
Conditions·
Maximum Instantaneous
Forward Voltage
v-
0.47
0.68
0.82
V
V
V
iF = lOA, Te = 25°C
iF = 60A, Te = 25°C
iF = l20A, Te = 125°C
Pulse Width = 3OOl1s
Duty Cycle = 1%
Maximum Capacitance
C,
3000
pF
VR = 5.0V
VR = VRWM
Te = 125°C
Te=175°C
Pulse Width = 400jls
Duty Cycle = 1%
Typical Forward Current
vs Forward Voltage
Typical Reverse Current
vs Reverse Voltage
1000
~~
100
;:;.....-
-
175°C
g
>15
'"'"
I - '"""""I
:;( 100
.s
//
10
=0
F
«
t-75°C
~12:C
"51
25°C
/ A
I
3:
'"fi'
150°C
§
'"'"
" 10.0
150°C
125°C
"''"ffi
75°C
t:;
.1
1
I
.1
o
.1
./
-I-"
=0
-55°C
I
1.0
,../
~,o~">oC
.2
.3
.4
.5
.6
0.1
.s
.7
.9
1.0
L
o
10
V,-FORWARD VOLTAGE (V)
20
30
40
50
60
70
SO
90
100
V,-REVERSE VOLTAGE (% of V"".)
Maximum Current
vs Case Temperature
VR(MAX) Rating vs Case Temperature
50
150
45
40
120
25
t:>-
~~
"'~
>'"
\.
\1\.
80
~~
150
20
10
'\.
I\.
175
-50 -25
T, - CASE TEMPERATURE (0e)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404· FAX (617) 924·1235
\
15
"\
125
25
::
"\
100
30
I
I\.
40
~
'"':;0
>
13:
.'"
.1f:2
0
1
35
I\.
25
50
75
100
125
150
175
CASE TEMPERATURE (0C)
2-44
PRINTED 1N U.S.A.
HERMETIC SCHOTTKY
RECTIFIERS
IN6492, JTX, JTXV
41m1p, 45 Volts
DESCRIPTION
The IN6492 hermetic Schottky rectifier is
ideally suited for output rectifiers and catch
diodes in high efficiency, low voltage, high
reliability switching power supplies.
FEATt1RE&• Qualified to MIL-S-19500/567
• Extremely Low VF and IR
• High Surge Capability
• Low Recovered Charge
• Rugged Hermetic Package, No Pressure
Contacts - -
ABSOLUTE MAXIMUM RATINGS
Peak Repetitive Reverse Voltage, VRRM ...................................... 45V
Working Peak Reverse Voltage, VRWM ....................................... 45V
DC Blocking Voltage, VR ................................................. 45V
Non-Repetitive Peak Reverse Voltage, VRSM .................................. 54V
Average Forward Current (50% Duty Cycle), IF(AV), TA = 25"C .................... 1.2A
Average Forward Current (50% Duty Cycle), IF(AV) .............................. 4A
TCASE = lOO"C
VRWM = 45V
Non-Repetitive Peak Surge Current, IFSM .................................... BOA
8.3ms, Half Sine Wave
Operating and Storage Junction Temperature Range ................ -65"C to +175"C
Thermal Resistance, Junction to Ambient, R8J.A........................... 175"CIW
Thermal Resistance, Junction to Case, R8J•c ............................... 12"C/w
MECHANICAL SPECIFICATIONS
:f,.
.
"'m"',
If'fT'inliI
TO-205AF (TO-39)
BonOMVI[W
~'~08110D151
CAI'HODE
'MODE
D'"
iOliOZOI
All Dimensions in Millimeters and Inches
nn
SEMICONDUCTOR
~ PRODUCTS
3/89
2-45
_UNITRDDE
IN6492, JTX, JTXV
ELECTRICAL CHARACTERISTICS (at TA = 250C unless noted)
CHARACTERISTICS
SYMBOL
LIMIT
UNITS
Maximum Reverse
Leakage Current
IRMI
IRM2
IRM3
2.0
20
200
20
2.0
mA
mA
mA
mA
A
Maximum Forward
Voltage
VFMl
VFM2
VFM3
VFM4
0.92
0.68
0.56
0.63
0.48
V
V
V
V
V
IFM
IFM
IFM
IFM
IFM
CT
450
pf
VR = 5V
IRM4
Capacitance
Surge Current
CONDITIONS
VRM = 45V 1
VRM = 45V, TA = 125°C
VRM = 45V, TA = 175°C
VRM = 45V, TA = -55OC
VRSM = 54V
=
=
=
=
=
8A (pk) 1,2
4A(pk)
2A(pk)
2A (pk), TA = -55°C
lA (pk)
IFSM = 80A (pk)
VRM = 45V (pk)
10 = 0.75A
10 surges of 8.3mSec at 1 minute intervals
ISURGE
1 Pulse width = 400~Sec, duty cycle = 1%
2 Measured with anode and cathode lead length of 0.2" from case
Output Current vs R.J.A
T........ = 25°C, 50% Duty Cycle
Typical Junction Capacitance
vs Reverse Voltage
1000 - - - -
G:' 800
S
5:
I
~
~
W
0:
0:
::J
w
()
z
~
4~
()
~
CE
()
35V
!~ t-....
Cl.
~
o
50
75
400
Z
0
~
25
600
U
5z
~
100
~ 200
125
150
\
'"
10
175
Typical Forward Current
vs Forward Voltage
125"C
()
a
0:
~
0:
~I I
II
::J
lA
.8A
.6A
\
~
.IA
o
I
I
50
175·C
-r
zr-
5:
::J
()
0:
0:
ImA
w
0:
W
()
>
w 100.A
::J
0:
Cl.
r-
./
I
::J
0
I
-
125·C
(J)
::J
~
lOrnA
W
0:
0:
zw
II I
u.. .4A
I
2:- .2A
40
Typical Reverse Current
vs' Reverse Voltage
7
r-
0
30
100mA
r-
25°C
20
Output Current vs Ambient Temperature
50% Duty Cycle Application (\'(O'll and VOOM)
.,
-
t--
VR - REVERSE VOLTAGE - (V)
R8J.II -.:: THERMAL RESISTANCE - (OCIW)
lOA
8A
6A
r- 4A
z
w
0:
0: 2A
-
.EO IO.A
""25·C=
2.
1=
<'!.
2:-
10
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
20
30
40
50
VR - REVERSE VOLTAGE - (V)
VF - FORWARD VOLTAGE - (V)
25
50
75
100
125
150
175
TA - AMBIENT TEMPERATURE - (OCl
UNITRODE • SEMICONDUCTOR PRODUC,S
580 PLEASANT STREET·WATE/lTOWN. MA 02172
TEL. (617) 926·0404· FAX (617).924·1235
PRINTED IN USA
RECTIFIERS
1N6620-1 N6625
HIGH RELIABILITY, f..IVf~TM SERIES
2.0 AMPS
FEATURES
DESCRIPTION
This state-of-the-art high efficiency rectifier is ideally suited for applications requiring high
blocking voltage. It has the ability to switch significant current with minimal switching
transients and losses. leakage current at high junction temperatures has been minimized
achieving exceptionally low reverse losses. An ultra stable process ensures high reliability
and long life. This device is designed for a wide variety of applications including high
frequency switching power supplies.
• Ultra Fast Recovery Time
• Controlled Avalanche
o High Temperature Operation with
low Loss
.. Minimal Recovery Transients
• Low Capacitance
• low Turn-On Voltage
o Non-Cavity Metallurgically Bonded
Package
ABSOWTE MAXIMUM RATINGS
REVERSE
VOLTAGE
AVERAGE
DC OUTPUT
CURRENT
T L =55°C, L=3/S"
AVERAGE
DC OUTPUT
CURRENT
TA=25°C
IN6620
200V
2.0A
l.2A
20A
IN6621
400V
2.0A
l.2A
20A
IN6622
600V
2.0A
l.2A
20A
IN6623
BOOV
1.5A
l.OA
20A
IN6624
900V
1.5A
l.OA
20A
IN6625
lOOOV
1.5A
l.OA
15A
TYPE
NUMBER
PEAK
FWD_SURGE
CURRENT
t p =S.3ms
Operating and Storage Temperature Range -65°C +175"C.
Thermal Resistance, 8JL • See Le~d Temperature Derating Curve. (Figures 13, '14)
MECHANICAL SPECIFICATIONS
BAND INDICATES
CATHODE END
~
r
·155TYP.
3.9mm
IN6620-1N6625
i.
BODY A
.085 MAX.
2.16mm
~C===~C=~~~~\~~I~~~~t
L
.030±.OOl
0.77mm ±.03
.055TYP.
l.4mm
Available in surface mount package; consult factory for information.
nn
SEMICONDUCTOR
~ PRODUCTS
2-47
_UNBTRDDE
IN6620-1N6625
ELECTRICAL SPECIFICATIONS (AT 25"C UNLESS NOTED)
REVERSE
BREAKDOWN
TYPE
VOLTAGE
NUMBER
@50"A
220V
IN6620
FORWARD
VOLTAGE
FORWARD
VOLTAGE
REVERSE
RECOVERY'
REVERSE REVERSE
JUNCTION
IRM(rec)
VFRM
LEAKAGE LEAKAGE
TIME
CAPACITANCE 2A-I00Al"s IF=IA
@-10V
VR=50V t,=10ns
TA=25"C TA=I50"C 0.5A-l.0A-.25A*
1.6V@2A
1.4V@1.2A
0.5"A
200"A
30n5
8pt
4A
6V
IN6621
440V
1.6V@2A
1.4V@1.2A
0.5"A
200"A
30ns
8pt
4A
6V
1N6622
660V
1.6V@2A
1.4V@1.2A
O.5"A
200"A
30ns
8pt
4A
6V
1N6623
880V
1.8V@1.5A
1.55V@1.0A
0.5"A
200"A
50ns
8pt
6A
15V
1N6624
99QV
1.8V@1.5A
1.55V@I.0A
0.5"A
200"A
50ns
8pt
6A
15V
1N6625
1l00V
1.95V@1.5A
1.75V@1.0A
1.0"A
3oo"A
50ns
8pt
6A
20V
..
• See FIgure 20 for -charactenstlc waveform.
OPTIONAL HIGH RELIABILITY SCREENING
The following tests are perfonned on 100% of the devices, per table" of MIL-S-195oo
SCREEN
MIL-STD-750
METHOD
-
.
CONDITIONS
1. High Temperature Life (Stabilization Bake)
1032
24 Hours @ TA = 175"C
2. Thermal Shock (Temperature Cycling)
1051
C, 20 Cycles @ TA = (-65 to +175"C).
3. Hermetic Seal
a. Gross
1071
4. High Temperature Reverse Bias
1038
5. Interim Electrical Parameters
6. Power Burn-In
7. Final Electrical and Delta Parameters
1038
GO/NOGO
E - Dye Penetrant
A, 48 Hours @ TA = 150"C, VR = 80%
VF and IR @ 25"C
B, 96 Hours @ TA = 25"C
10 = Maximum TA Rated, VR @ Rated
l!.IR ±1oo% or 250NA (whichever is greater)
l!.VF ± 2%, using approved JTX ceiling method
When ordering screening, specify T2 as suffix (i.e., 6620T2).
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
2-48
PRINTED IN U.S.A.
IN6620-1N6625
Typical Forward Current vs Forward Voltage
20
21MP
€
1.5 AMP SERIES
10
\<
~~
~
=>
u
"
"
~
fr
125°C
.5
->
r-., (j II. V~
III A1AI III
I
.2
.2
.6
A
~
.8
10
€
J#"
...
~
=>
~. VJ
150°,,-...
0
Typical Forward Current vs Forward Voltage
20
~ERlks
u
1500(:
0
'"~
~-55°C
.5
fr
i"-25°C
.2
1.0 1.2 lA 1.6 LB 2D 2.2 2.4
.2
.6
.4
VF
.8
'"I
-"
1.0 1.2 1.4 1.6 18 2.0 2.2 2.4
lmA
1.5 AMP SERIES
500,.A
--
100,.A
G;
'-25°C
Typical Reverse Current
vs Applied Reverse Voltage
2AMP 5ERIES
200~A
w
~
w
i-- _55°C
Figure 2
Typical Reverse Current
vs Applied Reverse Voltage
...z
w
'"'"
=>
u
.,.. ~
FORWARD VOLTAGE - (V)
-
Figure 1
lmA
Ij
50C
V, - FORWARD VOLTAGE - IV)
500~A
'"~ ~/ '/I~'
'i r--. ~ /)
/ / /1/
I
~~
50,.A
200f.lA
lSOoC
2O,.A
---"'T'"
10,.A
12~
5eA
2eA
1,.A
500nA
50f.lA
IDOnA
--
,......
'}..SoC
SOnA
IOnA
o
25
;--
IO,.A
5eA
w
ill
2eA
~
leA
I
5QOnA
./
SOnA
75
100
o
125
-
r-
20nA
lOnA
50
125°C
./
200nA
IDOnA
I-""'"
20nA
lSO":£-
20}iA
-"
200nA
- - - --
lOO"A
...
ili
'"'"=>
u
25
...-~"oC V
50
PERCENT OF VA RATING
Figure 3
Figure 4
125
100
75
PERCENT OF VA RATING
Typical Peak Forward Recovery Voltage vs diFJdt
(iF lAo di/dt measured from 10% to 90% of iF)
Typical Peak Forward Recovery Voltage vs diF Idt
(iF lAo di/dt measured from 10% to 90% of iF)
10
20
=
=
2 AMP SERIES
18
0
'"~~
14
~~
?:ifi:
"-w
12
u.w
V
-
"-0
~>
,., "
16
1
0
1.5 AMP SERIES
.....-
10
8
~e;
Ihl
,0:
r-
.J
.....
"
~
10
20
50
100
200
10
diF/dt - RATE OF RISE OF FORWARD CURRENT - (AlI-IS)
Figure 5
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
20
50
100
200
diF/dt - RATE OF RISE OF FORWARD CURRENT - (AljAS)
Figure 6
2·49
PRINTED IN U.S.A.
IN6620-1N6625
Reverse Recovery Current vs difdt
10
Reverse Recovery Current vs difdt
10
2 AMP SERIES
....
.~/
;;
V
./
".
Itv.~
~""
100
*
....
-
V
V
300
200
"
400
Reverse Recovery Time vs Junction Temperature
(iF = 2A. difdt = 200AfflS. VR = 5OV)
100
1.5 AMP SERIES
2AMPSERIES
90
'iii
80
S
I
~
;:: 70
::;
~
ffi
>
50
~
I
30
~ 20
~
.§
90
80
ril
;::
~
60
40
400
FigureS
S
!Jj
300
NOTE: See Figures 11 and 12.
Reverse Recovery Time vsJunction Temperature
(iF = 2A. difdt = 2OOAfflS. VR = SOY)
§
200
100·
di/dt-RATE OF FALL FORWARD CURRENT-(AljJSl
100
~
1.0"1--'
\,.~i""
~ \ .\~ [...-1-
~
Figure 7
I
" .!
11111/
NOTE: See Figures 11 and 12.
4.0 , - - - - , - - - . - - - , - - - - , - - - . - - - - - ,
1.5 AMP SERIES
L • LEAD LENGTH
FROM BODY
3.0
f----t--+--t---t--+--j
C)
Cl
if2
w
1.0
~~
f----+--+----""""\.;;::-----''''''.3o"O+---l
I
l
0~25~-~50~-~75~-~100~--IJ25~-~-~
T, - LEAD TEMPERATURE - (0G)
TL - LEAD TEMPERATURE - (0C)
Figure 14
Figure 13
Average Forward Current vs Ambient Temperature
(50% Duty Cycle, Square Wave)
Average Forward Current vs Ambient Temperature
(SO% Duty Cycle, Square Wave)
2.0
2.0
2AMPSERIES
1.5 AMP SERIES
R.j-A ·75OC/w
I
....
....
iii0:
..........
0:
C)
Cl
0:
f2
1.0
'"~
ffi
~
I
iii
0:
1.5
:::>
~
R.j-A .75OC/W
€
€
0.5
C)
'"
X
o
25
1.5
0:
:::>
50
75
Cl
0:
"-
~
f2
125
150
[-... ......
~
'" ""
100
1.0
ffi
~
I
0.5
~
"
o
25
175
T, - AMBIENT TEMPERATURE - (OC)
50
.........
'""'" ""
75
100
125
Figure 15
Figure 16
"
150
T, - AMBIENT TEMPERATURE - (OC)
175
Reverse Pulse Power vs Pulse Duration
Forward Pulse Current vs Pulse Duration
10k~~~II~~lllllll~~~~~~~'1
c
"ALL
Square Pulse Current vs
Duration for Non-Repetitive Pulse
(8.3 ms sine wave equivalent
to3msSQuarewavei
~1.ooo~""""IIII~lnllllllllll
!Z
:l!
~
~~;;
r=
~ lOO'IIIN~:::ttI,::t
IIII
~
10 '----''--'--'-.l..Wl.'--'----'--'-l.ll.W'----.l.I...J.I..u..u
1.1!.l-..l-L.J...l..U.Ll.l...--'---'--'-'-"""
1m,
lOOns
IOms
101-'5
1001-15
IO~~~~~-J~~~-~-W~~-LJJ~WL~-L~llW
1m,
lOOns
PULSE DURATION
PULSE DURATION
Figure 17
Figure 18
UNITROOE • SEMICONDUCTOR PROOUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
2-51
IOms
PRINTED IN U.5A
IN6620-1N6625
~
Transient Thermal Response
Characteristic Waveform
(O.5·1.0/0.25A)
100
1--
--I
-+
IREC = .25A
.....
, ,""'"
\
+
-t
1.1
10115
100,...5
1m,
IOms
-lOOms
15
10,
100,
PULSE DURATION
Figure 20
Figure 19
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924·1235
2·52
PRINTED IN U.SA
IN6626-1N6631
RECTIFIERS
HIGH RELIABILITY, UVfftu'TM SERIES
4.0 AMPS
FEATURES
• Ultra Fast Recovery Time
• Controlled Avalanche
• High Temperature Operation with
Low Loss
• Minimal Recovery Transients
• Low Capacitance
• Low Turn-On Voltage
• Non-Cavity Metallurgically Bonded
Package
DESCRIPTION
This state-of-the-art high efficiency rectifier is ideally suited for applications requiring high
blocking voltage_ It has the ability to switch significant current with minimal switching
transients and losses_ Leakage current at high junction temperatures has been minimized
achieving exceptionally low reverse losses. An ultra stable process ensures high reliability
and long life. This device is designed for a wide variety of applications including high
frequency switching power supplies.
ABSOLUTE MAXIMUM RATINGS
REVERSE
VOLTAGE
AVERAGE
DC OUTPUT
CURRENT
TL=75'C, L=3/8"
AVERAGE
DC OUTPUT
CURRENT
TA=25'C
PEAK
FWD. SURGE
CURRENT
t p =8_3ms
IN6626
200V
4.0A
2.0A
75A
IN6627
400V
4.0A
2.0A
75A
IN662B
600V
4.0A
2.0A
75A
IN6629
BOOV
3.0A
1.4A
75A
IN6630
900V
3.0A
1.4A
75A
IN6631
lOOOV
2.5A
1.4A
60A
TYPE
NUMBER
Operating and Storage Temperature Range -65'C +175'C
Thermal Resistance, BJL . See Lead Temperature Derating Curve. (Figures 13, 14)
MECHANICAL SPECIFICATIONS
BAND INDICATES
CATHODE END
r
.175TYP.
4.4mm
IN6626-1N6631
r-:
BODYB
.145 MAX.
3.68mm
c==J====~~=l~~~\~~I~~~~~+
L
.040±.OOl
1.02mm±.03
.115 TYP.
2.9mm
~--------~~~4~~~'----------~
Available in surface mount package; consult factory for information.
nn
SEMICONDUCTOR
~ PRODUCTS
2-53
_UNITRDDE
IN6626- IN6631
ELECTRICAL SPECIFICATIONS (AT 25·C UNLESS NOTED)
REVERSE
BREAKDOWN
TYPE
VOLTAGE
NUMBER
@50"A
REVERSE
REVERSE REVERSE
RECOVERY
JUNCTION
IRM(rec)
VFRM
LEAKAGE LEAKAGE
TIME
CAPACITANCE 2A-100AlI'5 IF=1A
@-10V
TA=25·C TA=150·C 0.5A-1.0A-.25A·
VR=50V t,=10n5
c
FORWARD
VOLTAGE
FORWARD
VOLTAGE
IN6626
220V
1.5V@4.0A
1.35V@2.0A
2.0"A
500"A
30ns
30pl
5A
4V
IN6627
440V
1.5V@4.0A
1.35V@2.0A
2.0,..A
500,..A
30ns
30pl
5A
4V
IN6628
660V
1.5V@4.0A
1.35V@2.0A
2.01'A
5OOl'A
30ns
30pl
5A
4V
IN6629
880V
1.7V@3.0A
1.4V@1.4A
2.01'A
500I'A
50ns
30pl
6A
8V
1N6630
990V
1.7V@3.0A
1.4V@1.4A
2.01'A
5OOl'A
50ns
30pl
6A
8V
1N6631
llOOV
1.95V@2.5A 1.60V@1.4A
4.0"A
l000"A
60ns
30pl
6A
10V
• See Figure 20 for characteristic waveform.
OPTIONAL HIGH RELIABILITY SCREENING
The lollowing tests are performed on 100% of the devices, per table II 01 MIL-S-19500
SCREEN
MIL-STD-750
METHOD
CONDITIONS
1. High Temperature Life (Stabilization Bake)
1032
24 Hours @ TA = 1750C
2. Thermal Shock (Temperature Cycling)
1051
C, 20 Cycles
3. Hermetic Seal
a. Gross
1071
4. High Temperature Reverse Bias
1038
5. Interim Electrical Parameters
6. Power Burn-In
7. Final Electrical and Delta Parameters
1038
GOINO GO
@
TA = (-65 to +175OC)
E - Dye Penetrant
A, 48 Hours @ TA = 150OC, VR = 80%
VF and IR @ 250C
B, 96 Hours @ TA = 250C
10 = Maximum TA Rated, VR @ Rated
ll.IR ±100% or 250NA (whichever' is greater)
ll.VF ± 2%, using approved JTX ceiling method
When ordering screening, specily T2 as suffix (i.e., 6620T2).
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERWWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-54
PRINTED IN U.S.A.
IN6626-1N6631
Typical Forward Current vs Forward Voltage
20
~~
4AMPSERIES
10
€
Typical Forward Current YS Forward Voltage
20
#. ~
I-
€
~
'"u=>
'"
~
150"C,--'"
0
f2
~/ If) "-
.5
~
'"=>
1
.2
.2
~
A
B
J II f..
u
-55"C
~
~
25"C
f2
'/. /I
I I
125 "C
I
-"
lA II' ' -
~ /: V
15~"C -.... ~ /, /
I-
IJ ,/,
Z
.5
ID 1.21.41.6 IE 2D
.2
~22.4
.2
.4
.6
~
20"A
=>
u
1O"A
'"
~
~
--
'"I
~
I"A
500nA
170' C _
I-
lOOoC
50nA
20nA
IOnA
o
-
~
'"~~
I~
500nA
200nA
IOnA
25
50
100
75
o
125
25
¢.12&oC
--
~
50
/'
100
75
PERCENT OF VR RATING
PERCENT OF VR RATING
Figure 3
Figure 4
125
Typical Peak Forward Recovery Voltage vs diF Idt
(iF = lA, di Idt measured from 10% 10 90% of iF)
10
2.5 AND
3 AMP SERIES
2.5
D.W
1.5
Iw
1.0
~8
2"A
~
3.0
2.0
}Q:
~
20nA
3.5
~g
Si~
5.A
SOnA
4AMP SERIES
"''''
~~
w
lDOnA
4.0
~w
10"A
'"I
=
01
=>
u
iQ
Typical Peak Forward Recovery Voltage vs diF/dt
(iF lA, di/dt measured from 10% 1090% oli F)
0
20"A
w
k--""
50"A
ffi
a:
'"
12;,:s.. ~
200nA
-- --
lOO",A
~
-<
lOOnA
- --- ---
200"A
---- ---...-- -
2"A
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
2.5 AND
3AMPSERIES
500"A
5"A
.8
Typical Reverse Current
vs Applied Reverse Voltage
4 AMP SERIES
50"A
I-
ImA
500",A
lOO"A
-
Figure 2
Typical Reverse Current
YS Applied Reverse Voltage
!z
-55"C
-·25"C
V, - FORWARD VOLTAGE -IV)
Figure 1
200"A
,rJ
'I 1/
Ii /
I
-"
~
125°C
V, - FORWARD VOLTAGE - IV)
ImA
A~ ~
2.5 AND
3 AMP SERIES
10
~
-
'/
I--"
0.5
10
20
50
100
200~
10
di,/d! - RATE OF RISE OF FORWARD CURRENT - (N.S)
Figure 5
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
20
50
100
200
di,/d! - RATE OF RISE OF FORWARD CURRENT -IN.s)
Figure 6
2-55
PRINTED IN U.S.A.
..
IN6626-1N6631
Reverse Recovery Current vs di/dt
Reverse Recovery Current vs di/dt
20
20
18
4AMPSERIES
18
16
I
lQ
Wf-
~g
16
14
0:1
14
Ww
0:0:
12
~~
12
<"
10
llJ5:
>z
~O:
1513
~Ci:
f-W
~.!z
~~
·10
2ff.==
~
8
Ie;
'u
I.::::i~
0:
>2u
I,
~~~
~w
~~
·jfrl
~ ..... ~I-""
I"'~ ~t--I-
Ie;
-~~
0:
200
100
300
100
400
dildt - RATE OF FALL OF FORWARD CURRENT - (AI.SI
W
0:
~
0:
~
0:
..§
..j
S
70
60
.... ....
.... '
~ ~ ....
. 30
~-
.20
....
10
~-
'"
70
~
60
;::
i\:
-- --~ f-
80
ffl
0:
~
~
0:
~~
I
.l'
300
400
3 AMP SERIES
., 90
80
·40
I I
200
100
4AMP SERIES
90
50
I
Reverse Recovery Time vs Junction Temperature
(iF =2A. di/dt =200A/pS. VR =5OV)
Reverse'Recovery Time vsJunction Temperature
(iF =2A. di/dt =200AlpS. VR =50V)
8
I-
FigureS
100
i\:
w
I,I. 'A
I- 1-1-IT
NOfE: See Figures 11 and 12.
Figure 7
I
1-1-
dildt - RATE OF FALL OF FORWARD CURRENT - (AI.s1
NOTE: See Figures 11 and 12.
,.;::ffl
~~
~I-""
t..I~
101IIII111"
.,s
I~!;:;~
I--"
I--"
"-i\:
-~;:;:
i.-""'" ~I-""
.... 1-1III'::~ ..... 1-""""
.$oW
~o:
I
I
3 AMP SERIES
40
~-
30
I
~
.l'
..§
..j
20
10
---
--r
50
-~
-
t"
_I-
--
l
_r!tb
~
r- -~
o
20 30 40 50 60 70 80 90 100 110 120 130 140 150
20 30 40 50 60 70 80 90 100 110 120 130 140 150
Tj - JUNCTION TEMPERATURE - (OCI
Tj - JUNCTION TEMPERATURE - (OCI
NOTE: See Figures 11 and 12.
NOTE: See Figures 11 and 12.
Figure 10
Figure 9
Rectifier Current During Reverse Recovery
_trrllRM Measurement Circuit. Simplified
Rview
DEVICE
UNDER
TEST
NOfE: The gate of the MOSFET
is double pulsed. the first pulse
ramps up the inductor current. A
short interpulse. period forward
biases the device under test to
the desired
The second pulse
'F'
reverse biases the device under
tesf creating the desired dildt so
that the reverse recovery param·
eters can be measured. The
pulse pair is repeated at a low
duty factor and does not result in
device heating.
Figure 11
Figure 12
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926.()404. FAX (617) 924-1235
2-56
PRINTED IN U.SA
IN6626-1N6631
Average Forward Current v5 Lead Temperature
(50% Duty Cycle, Square Wave)
Average Forward Current vs Lead Temperature
(50% Duty Cycle, Square Wave)
3 AMP SERIES
4 AMP SERIES
L = LEAD LENGTH
FROM BODY
~---+--~~r---~---
L = LEAD LENGTH
FROM BODY
OL-__~__-L__~____L-__~__3
25
50
75
100
125
150
175
Average Forward Current vs Ambient Temperature
(50% Duty Cycle, Square Wave)
4.0
3AMPSERIES
Ra i·A =60'CIW
z>~
3.0
2.0
-.......
~
~
I
Cl
-.......
'-.....
1.0
'"~
'"w~
~
W
o
25
50
3.0
'"'-'=>
e
75
100
125
2.0
-....... r--......
~
ffi
~
"~
150
LO
I
...........
W
175
25
50
125
~
150
175
Reverse Pulse Power vs Pulse Duration
10k
Square Pulse Current vs
Duration for Nan·Repetltive Pulse
(8.3 mssine waveequivalenl
to 3 ms square wave)
~t""
il!J
J"~
J~
ALLSERI~
Square Pulse ClJrrent vs
Duration tor
Non-Repetitive Pulse
(8.3 ms sme wave equIValent
to 3 ms square waveJ
Ik
r-......
ii'
r-....;
w
iQ
t--..
100
~
~
J"~
U
~
=>
100
Figure 16
Forward Pulse Current vs Pulse Duration
'"=>
75
TA - AMBIENT TEMPERATURE - (lie)
10,000
~
~
o
Figure 15
I 1.000
............
e
T, - AMBIENT TEMPERATURE - (OC)
is:
Ra i·A =60OCIW
is:
Cl
~
175
Average Forward Current vs Ambient Temperature
(50% Duty Cycle, Square Wave)
I
'"~
150
Figure 14
4AMPSERIES
'"'"u=>
125
Figure 13
4.0
w
100
TL - LEAD TEMPERATURE - (Cle)
is:
z>-
75
50
T, - LEAD TEMPERATURE - (OCi
~
0..
100
'"I
c'C
11111
111111
10
lOOns
1m.
IO~~~~~~~~~--~~~~~~~~~~~~
1m.
lOOns
lOms
PULSE DURATION
PULSE DURATION
Figure 17
Figure 18
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924·1235
2-57
lOms
PRINTED IN U.S.A.
IN6626-1N6631
~
Transient Thermal Response
100
50
I
ill
Z
~
20
10
Characteristic Waveform
(O.S-1.O/O.2SA) .
~.--
_t
0:
':rffi"
IREC = .25A
.....
.5
>-
ffi
'"~
in
\
\
0.1
z
I
,.J' 0.01
.05
.02
lOfoiS
1ms
lOOms
Is
,
t
-t
1/
100s
PULSE DURATION
Figure 19
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
Figure 20
2-58
PRINTED IN U.S.A.
SD51
POWER SCHOTTKY RECTIFIERS
120 Amp Pk, 45V
DESCRIPTION
FEATURES
•
•
•
•
•
The SD51 has a Schottky barrier
junction and is ideally suited for output rectifiers and catch diodes in low
voltage power supplies_ The Unitrode
high conductivity design, using a heavy
copper top post and a 4 point crimp,
ensures cool terminal operation and
low dynamic impedance. Rugged
design absorbs stress that can damage
glass-to-metal seal during installation
and use.
Very Low Forward Voltage
Low Recovered Charge
Rugged Package Design (00-5)
High Efficiency for Low Voltage Supplies
Available with Flexible Top Lead
ABSOLUTE MAXIMUM RATINGS (TCASE
=25'C)
Peak Repetitive Reverse Voltage, VRRM ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 45V'
Working Peak Reverse Voltage, VRWM •••••••••.••.••.•••••.••••.••.••••••.•••••..•••.••••.•••••• 35V'
Peak Repetitive Forward
Current (Rated VR, Square Wave, 20 KHz,
50 percent Duty Cycle), IFRM •...••.••••••••.••..•••.•.•.•.••••••••••••••••••••••••.•••••••. 120A
Non-repetitive Peak
Surge Current (S.3 mS), IFsM ••••••...••.•••••••••••••••••••.•••••••.••.•••.••••••••••••••. SOOA
Peak Reverse Transient Current, IRM •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2A
Storage Temperature Range, Tot. . ........................................... -55'C to +165'C
Junction Op~rating Tempe~ture Range, Tj ................................ -55'C to +150'C
Thermal Resistance, JunctlOn-to-Case, RSJC ............. , .............••.......•.•.... 1.0'C/W
*See curve of VRRM Rating vs Case Temperature
MECHANICAL SPECIFICATIONS
SD51
ins.
A
•e
D
E
,
mm
.225:!: .005
5.72'" 0.13
.060 MIN .
1.52 MIN •
. IS6:!; .020
3.96'" 0.51
.156 MIN. FLAT
3.96 MIN. FLAT
.667 CIA. MAX.
16.94 CIA. MAX •
•090 MAle.
2.29 MAX •
17.20+ 0.25
G
.677 ... 010
H
.375 MAX.
J
K
1.000 MAX.
25.40 MAX •
L
. 450 MAX.
11.43 MAX •
M
.438:!: .015
11.13'" 0.38
N
.078 MAX.
•140 MIN. DIA.
. DO-5
9.53 MAX .
3.56 MIN. CIA.
1.98 MAX.
Notes:
1. Cathode is stUd.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 30 inch pounds (35 kg. em).
4. Angular orientation of terminal is undefined.
nn
SEMICONDUCTOR
~ PRODUCTS
4/82
2-59
_UNITRODE
8051
ELECTRICAL CHARACTERISTICS (T CASE = 25'C)
Symbol
Characteristic
Maximum Instantaneous
Reverse Current
iR
Maximum Instantaneous
Forward Voltage
v.
Flexible Top Lead Option
v.
Maximum Capacitance
Ct
Maximum Voltage
Rate of Change
dvldt
Units
Conditions
mA
mA
Te = 25°C, VR = 35V
Te = 125°C
Pulse Width = 400pS
Duty Cycle = 1 percent
0.60
V
0.65
V
i. =60A
Te = 125'C
'Pulse Width = 300pS
Duty Cycle = 1 percent
Limit
50
200
4000
700
VOOM Rating vs
Case Temperature
pF
VR = S.OV
VII'S
vR = 35V
Typical Reverse Current
vs Reverse Voltage
Typical Forward Current
vs Forward Voltage
1000
45
40
....... ........
r-.... r-....
~
::J
U
1
CJ
._-
20
<"
10
5
//
ro
~12,'C
'"
11:
UIO.O
'"'"'"
'"~
it
125
150
CASE TEMPERATURE (Oe)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
./
-" 1.0
"c,
'/:14
,<;
"\)~
0.1
7S
/
1';<:;
'"
.1
25
.,./ /'
::J
~:--55'C
I
/
12">'c
~
25'C
J.
o
15~ ~
100
f-
~ 150'
f- 75'C
«
10
-so
;;--
~
f-
ro
30
_
...-! ~
100
.1
.2
.3
.4
.5
.6
.7
VF-FORWARD VOLTAGE (V)
2-60
.8
.9
1.0
I
o
10
20
30
40
VR-REVERSE VOLTAGE (V)
PRINTED IN U.S.A.
50
DUAL POWER SCHOTTKY RECTIFIERS
S0241
S0241HR2
30 Amp Pk per diode, 45V
FEATURES
DESCRIPTION
•
•
•
•
•
The SD241 has two Schottky barrier
junctions arranged in a common cath·
ode configuration and is ideally suited
for output rectifiers and catch diodes
in low voltage supplies.
Very Low Forward Voltage
Low Recovered Charge
Rugged Packaged Design (TO·3)
High Efficiency for Low Voltage Supplies
Dual Schottky Rectifiers in a Single Package
ABSOLUTE MAXIMUM RATINGS (TeASE = 25°C) Per Diode
Peak Repetitive Reverse Voltage, VRRM •••••••••••••••••••••••••••••••••••••••••••••• 45V'
Working Peak Reverse Voltage, VRWM ••••••••••••••••••••••••••••••••••••••••••••••• 35V
Average Rectified Forward Current, 10 •••••••••.••..••••••.••..••••••••..•...••••..• 30A
Non·repetitive Peak
Surge current (8.3 mS), IF8M ••••••••••••••••••••••••••••••••••••••••••••••••••• 400A
Peak Reverse Transient Current, IRM •••••••••••••••••••••••••••••••••••••••••••••••• 2A
Storage Temperature Range, T"•..................................... -55°C to +175°C
Junction Operating Temperature Range, TI .••.•••.........••••....•..• -55°C to +150°C
Package Thermal Resistance, Junction to Case, R9JC ........................... 1.4°C/W
* See curve of VRRM Rating vs Case Temperature.
MECHANICAL SPECIFICATIONS
NOTE:
~I
ANODE2 •
Leads may be soldered to within
of base provided temperature·
time exposure is less than 260'C
for 10 seconds.
'A'"
~i1E
e
A
B
M
ANODE 1
G
I
7'E.J:::I'
"NODE 2
e
J-~
0
K
C
0
E
F
...
H
1
I..
• ANODE 1
SD241
SD241HR2
TO·204AA (TO·3)
CASE (CATHODEI
F
1
r
L
G
H
J
K
L
M
ins.
.875 MAX.
135 MAX.
.250-.450
.312 MIN.
.038-.043 DIA.
. 188 MAX. RAO.
1.177-1.197
.655-.675
.205-.225
.420-.440
.525 MAX. RAO.
.151-.1610IA.
mm.
22.23 MAX .
3.43 MAX.
6.35-11.43
7.92 MIN .
0.97-1.09 DIA .
4.78 MAX. RAO .
29.90-30.40
16.64-17.15
5.21-5.72
10.67-11.18
13.34 MAX. RAO .
3.84-4.09 OIA .
Notes: All metal surraces tin plated.
nn
L'::::::::J
4/82
2-61
SEMICONDUCTOR
PRODUCTS
_UNITRODE
ELECTRICAL CHARACTERISTICS (TeAsE
Characteristic
Maximum Instantaneous
Reverse Current
Maximum Instantaneous
Forward Voltage
= 25°C) Per Diode
SD241
SD241HR2
Symbol
,
iR
Limit
Units
Conditions
25
100
mA
mA
Tc =25°C. VR =35V
Tc = 125°C
Pulse Width == 400pS
Duty Cycle == 1 percent
V
iF == lOA
Pulse Width == 300"S
Duty Cycle == 1 percent
Tc
125"C
.47
VF
=
iF == 20A
Pulse Width
Duty Cycle
Tc == 125"C
V
.60
== 300pS
= 1 percent
Maximum Capacitance
C,
2000
pF
VR == 5.0V
Maximum Voltage Rate of Change
dv/dt
1000
viI'S
vR == 35V
VOOM Rating vs
Case Temperature
Typical Forward Current
YS Forward Voltage
Typical Reverse Current
vs Reverse
100
'"'"
00
«
'"
:;:
10
'1/
t=,"",q. ~'!I
...,
",,/'
100
~
;''(,11
20
U
0
40
11.19 /
:J
...... .........
45
so
~
....
zw
~
-55"C
;;:
~>
.5
50 f--"\>
~
~
20
....
:::J
~
20
0
75°C125°C
I
-~
10
1
25°C
.2
/
0:
o5
.2 .3 .4 .5 .6 .7 .8 .9 1.01.11.21.31.4
V,- FORWARD VOLTAGE (V)
·50
25
75
125
vV'
" V 1/
~ II
:; II
1 ~ rt'fo
~()
V V~ •
10
o .1
V
...,<:S
/
5
V"
*
,,');
V
w
5
->
1/
U
V>
...'"
VDI~age
300
200
10 15 20 25 30 35 40 45
V,-REVERSE VOLTAGE (V)
150
TEMPERATURE (OC)
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
The following tests are performed on 100% of the devices specified SD241HR2.
SCREEN
MIL-STD-7S0
METHOD
CONDITIONS
1. High Temperature
1032
24 Hours @ TA
2. Temperature Cycle
1051
F. 20 Cycles. -55 to +150°C. No dwell required
@ 25°C. t ;. 10 min. @ extremes
3. Hermetic Seal
a. Fine Leak
b. Gross Lea k
1071
6. High Temperature Reverse Blocking
7.
Final Electrical'Parameters
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· fAX (617) 924·1235
150°C
H. Helium
C. Liquid
4. Thermal Impedance
5. Interim Electrical Parameters
~
Sage Test
GO/NOGO
Similar to
Method 1040
GO/NOGO
2-62
VF and IR @ 25°C
1/, Sine Reverse. t ~ 48 Hours. Tc
~ rating. F ~ 50-60 Hz. 10 ~ OA
~
125°C. VRW M
VF + IR @ 250C
PDA ~ 10% (Final Electricals)
PRINTED IN U.S.A.
UBS421
BISVN SYNCHRONOUS RECTIFIER
For Low-Voltage « 5.0V) Loads
FEATURES
DESCRIPTION
• Very Low On Resistance, Typically
14mO
The BISYN is a bipolar junction transistor specifically designed to perform the rectifying
function in the secondary of a switching power supply. Unlike a conventional bipolar,
the BISYN has a much higher emitter·base breakdown voltage (typically 50V) which is
needed for full-wave rectifier circuits. Base drive losses are kept at a minimum by the
relatively high current gain of the BISYN.
• High Reverse Blocking Vecs = 40V
• Can be PWM Controlled to Provide
Regulated Voltage to Load
• Low Temperature Coefficient of On
Resistance
The BISYN's most significant specification feature is its very low forward voltage, 0.3V
@ 20A compared with 0.6V for a typical Schottky.
• Fast Switching Times Permit Ease of
Operation at High Frequency
With a 3V 'Ioad the power loss associated with the Schottky contributes to a 20% reduction in efficiency, while with a synchronous rectifier this loss is reduced to 10% or less.
• High Gain Reduces Base Losses
• Load Regulation is Programmable
ABSOLUTE MAXIMUM RATINGS
Continuous Forward Current, IF .................................................. 20A
Peak Forward Emitter Current', leRM .................... , ... , .................... 60A
Inductive Forward Current Clamped, IFLM ........................................ 35A**
Continuous Base Current', 18 ..................................................... 6A
Peak Base Current, laRM ........................................................ 30A
Forward Blocking Voltage, Vces ............................. '" .................. 50V
Reverse Blocking Voltage, Vecs .................................................. 40V
Thermal Resistance, R6JC ................................................. 1.75°C/W
Power Dissipation, POiss ................................................ 70W @ 25°C
Derating Factor ........................................................... 0.57WrC
Operating Temperature Range, TJ ................................... -55°C to +150°C
Noles: *lmS pulse.
·*See Figure 1.
MECHANICAL SPECIFICATIONS
UBS421
TO-220AB
nn
SEMICONDUCTOR
~ PROOUCTS
8/86
2-63
_UNITRDDE
UBS421
ELECTRICAL CHARACTERISTICS (at 25°C unless noted)
TEST
SYMBOL
On Resistance
MIN.
RCECONI
Current Gain
tiFE
Base Saturation
Voltage
80
TYP.
MAX.
UNITS
14
20
17
24
mel
mel
CONDITIONS
Ie = 15A. 18 = 0.6A.
Ie = 15A. 18 0.6A. T
=
= 125°C
=0.5V
100
Ie = lOA. VeE
V8ECsati
0.95
1.1
V
Ie = 15A. 181 = 0.6A.
182 =0.6A
t,
95
150
nS
Ie = 15A. 181 = 1.5A.
Vee lOV. 182 1.5k
nS
Ie = 15A. IS1 ;" 1.5A •
Vee lOV. 182 1.5A
100
nS
Ie = 15A. Is 1.5A.
Vee lOV. IS2 1.5A
/lA
mA
VeE = 50V
VeE 50V. T
VEe
VeE
Rise Time
=
. Storage Time
Is
Fall Time
50
tf
Forward Leakage
Current
250'
200
=
leEs
Reverse Leakage
Current
lEes
200
1
/lA
mA
Collector Ca pacita nce
Coso
1000
pF
Collector· Emitter Voltage vs Collector Current
at Various Forced Gains
=
= 125°C
=40V
=40V. T =125°C
VeE = lOV. f = 1MHz
I
I-
S'
5
iii
500
I
J
to
/A
w
'"
0'='
200
>
0:
W
II-
~
100
I-
~
50
0
'"
~Te=25"C
"i
TJ
l1
II I
125"C
~
TJ = 25'C
0.5
TJ - -55'C
0.2
0.1
.d ~
I I
~
IBlo'PTI = 18 for
= 1.1 x VCElsaU
(VeE.satJ @ lellB - 10)
VeE
t
r3r
/'
u
~
~
>
0:
w
~
P-"'"50
0:
0
~
1--- .....
~
=>
~
=
Optimum Base Drive Current
vs Collector Current
g
1000
=
=
=
100
1
650
=
o 005
~ . 1
~
leila = 10
10
20
50
Ie COLLECTOR CURRENT - (A)
CURVE # 2
20
10
1
10
20
50
Ie COLLECTOR CURRENT - (A)
CURVE # 1
DESIGNING FOR MINIMUM POWER DISSIPATION
. particular load current is virtually the same throughout the oper·
ating temperature range.
Although used as a rectifier the BISYN is a three terminal device.
Therefore. the power dissipation due to the On Resistance and
also the dissipation due to the base current must be taken into
consideration. You will notice on Curve 1 that the change in On
Voltage (VCE) at a particular collector current is small even with
large changes in base current. Asa result. achieving the 10westOri
Voltage for a particular load current does not result in the lowest
overall power loss.
To calculate the power dissipation first estimate the operating
temperature of the BISYN. Then using the appropriate tempera·
ture curve determine the On Voltage at a circuit gain of 10 foryour
load. Multiply this voltage by 1.1 and then by the load current to
determine On Resistance power dissipation. Base current power
dissipation is calculated by finding the base drive current on
Curve 2 and then going to the applicable temperature curve for
Base Emitter Voltage vs Base Current. Curve 3. Multiplying the
Base Emitter Voltage by Base Current will give you the power
dissipation due to base current
It has been determined that operating at a base current that
achieves an On Voltage that is 110% of the On Voltage at a circuit
gain of ten gives a result that is very close to optimum power
dissipation. Curve 2 gives you the appropriate base current to
achieve 110% of this On Voltage. This same curve shows that the
appropriate base drive for optimum power dissipation at any
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERTOWN. MA 02172
TEL (617) 926·0404 ,·FAX (617) 924·1235
2-64
PRINTED IN U.S.A.
UBS421
Base Emitter Vollage vs Base Current
al Various Colleclor Currenls
1100
l~l
5
./'
I
'"
a
~
./'
;" SA
900
>
,/
ffi
i=
'/V
:;;
800
'"W
"''"~
>
1--1-
700
'"c
lOA
.'"
~
'"'"z
:;:
2A
Ie = lA
.......... 1-'"
Te = 25"C
=
lelle = 10
Resistive
I't,
200
t, RISE TIME
~
100
:;:-r-.
Istt
t.
0-
~
0.1
Vee 10V
Te 25"C
FALL TIME
STORAGE TIME
U
r-.--I-
600
0.01
""'-
500
i.
....... 1-'"
III
1000
II
S- 1000
'"'"
Swilching Speed (I,. Is. If)
vs Colleclor Currenl
"
50
10
0.5
18 BASE CURRENT -
(A)
20
10
Ie COLLECTOR CURRENT - (A)
CURVE # 3
CURVE # 4
Gain vs Colleclor Currenl @ VeE = O.5V
Siorage Time vs Base Turn·Off Currenl
1000
10
500
~
Te = 25"C
\.
Is'\
0-
ijj
~
::>
u
~
~
it
'"""'"
"'~
0-
Te = 125"C
200
Te = 2rC
100
Te - -55"C
0-
ijj
~
0.5
::>
u
-
~
,
lBl = 1.5A
Ie = 15A
Resistive Load
0.2
20
II
0.1
10
........
50
20
50
10
100
200
ts STORAGE TIME -
I
500
20
50
CURVE # 6
CURVE # 5
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PlEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
10
Ie COLLECTOR CURRENT - (A)
(nS)
2·65
PRINTED IN U.S.A.
UBS421
Collector-Emitter Voltage vs Base Current
at Various Collector Currents
Collector-Emitter Resistance
vs Junction Temperature
1000
1.7
;;-
/
0:
'"
1.5
lI-
~:o
U;J ~
S
t; E
1.3
~.s
01
u'"
uu
RCE
~~
w'"
1.1
&
0.9
«
V
o0:::=~
/
=14mO
@!!!
~~
/
V
500
I
w
<:l
:;
0
,
200 \
>
V
r;;
II-
100
"'
50
~
Ie = 15A. Ie = 0.6A
0
I-
\
r-I-
r\
,"
~
0
~
-25
25
125
75
Te
=25°C
I
lill= If
0.01
175
2A
20
10
0.7
-75
1111
lOA
5A
u
V
/'
20A
15A
0.1
1
2
10 20
TJ JUNCTION TEMPERATURE - ("C)
Ie BASE CURRENT - (A)
CURVE # 7
CURVE # 8
Forward Bias Safe Operating Area (SOA)
Reverse Bias Safe Operating Area
100
lOOpS
50
lmS
20
'I..
40~~--+--+--+--+--+--+--+--+~
~
DC
'\
1\
10
IS2 =
I-
§
2A
VeE COFFI
0:
=>
\
0
b
j
= 4V
20~-+--+--+--+--+--+--+--+--+~
\
U
0:
Te = 25°C
\
10~-+
0
__+--+__+--+__+--+__
+--+~
u
E
0.5
OL--L~~~-L~~i-~
o
0.2
10
20
30
__L-~-J
40
50
VeE COLLECTOR·EMITTERVOLTAGE - (V)
CURVE # 10
0.1
0.5
10
20
VeE COLLECTOR·EMITTER VOLTAGE - (V)
CURVE # 9
5n~AA~
~~5~
VARY PULSE WIDTH
51 = Vee lOV
52 = VCLAMP SUPPLY 30V
il1 = S051 SCHOTTKY
D:z = S051 SCHOTTKY
C1 = .1pF
L, "" lOpH
Figure 1. - Test Circuit for I LPK -
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
2-66
PRINTED IN U.S.A
UBS421
Common-Emitter Collector Characteristics
Junction Capacitance vs Reverse Bias Voltage
~
2000
a
-
W
U
~
~$
til
WI-
~
~z
~W
C3
z
o
0",
u'"
0"
-u
20
15
g
Te = 25'C
CEBO
-
r-
10
15
20
'"og
25
8
VeE COLLECTOR·EMITTER
~;:;
VOLTAGE -
-
:--..... .......
200
~
"
100
I
10
(V)
20
Veo OR VEO REVERSE VOLTAGE - (V)
~~
L..-"L...L_.L..-'_...J 15
~
~
10
1---JJJ"'-t-+-jf--l1O
500
tiz
VEe EMITTER·COLLECTOR
VOLTAGE - (V)
25
-
1000
~ ~
CURVE# 12
-"
2':
CURVE # 11
Transient Thermal Resistance (normalized) vs Time
..;
./"
W
U
~
0.2
iii
;i
'"
./
0.1
/SingleP ulse
ZSJcm
=r(t)R9JC
RSJC =
1.75°C/W
::;
ffi
:I:
I-
0.05
~
/"
in
z
«
'"
I-
~
?
0.02
0.01
0.01
0.1
10
PULSE TIME -
20
50
100
200
500
(mS)
CURVE # 13
UNITRODE , SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-67
PRINTED IN U.S.A.
BISYN™ SYNCHRONOUS RECTIFIER
UBS430
For Low-Voltage «5.0V) Loads
FEATURES
• Very Low On Resistance Typically 7 milliohms
DESCRIPTION
The BISYN is a bipolar junction transistor that is specifically designed to perform the
rectifying function in the secondary of a switching power supply. Unlike a conventional
bipolar, the BISYN has a much higher emitter·base breakdown voltage (typically 50V)
which is needed for full·wave rectifier circuits. Base drive losses are kept at a minimum
by the relatively high current gain of the BISYN.
- High Reverse Blocking Voltage VECS = 40V
-Can be PWM Controlled to Provide
Regu lated Voltage to Load
The BISYN's most significant specification feature is its very low VF, 0.3V at 30A,
compared with 0.6V for a Schottky and only O.lV at lOA. Its most significant functional
feature is its programmability.
• Low Temperature Coefficient of On
Resistance
• Fast Switching Times Make Operation
at High Frequency Easy
The very low VF of this product reduces the rectifier power loss in a power supply
secondary, improving its efficiency. This becomes particularly significant as load
voltages drop below 5V. For example, with a 3V load the power loss associated with the
Schottky contributes to a 20% reduction in efficiency, while with a synchronous rectifier
this loss is reduced to 10% or less.
• High Gain Reduces Base Losses
The programmability feature gives the designer a new way to provide regulation to a
load. Its main advantage is the reduced power component count as compared with a
buck regulator and the resulting improvement in efficiency.
ABSOLUTE MAXIMUM RATINGS
Continuous Forward Current ........................... IF ........................ 40A
Peak Forward Emitter Current' .. ; ...................... IERM .................... 150A
Inductive Forward Current Clamped .................... IFLM ..................... SOA"
Continuous Base Current" ............................. Ia ......................... SA
Peak Base Current' ................................... laRM ..................... 50A
Forward Blocking Voltage .............................. VCES ..................... 50V
Reverse Blocking Voltage' .............................. VECS ..................... 40V
Thermal Resistance ................................... Re .................. 1.0°C/W
Power Dissipation ................................... '.' ................. 150W @ 25°C
Derating Factor ..............................•............................. 1.0Wrc;
Operating Temperature Range ...................................... -65°C to +175°C
Notes: 'lmsec pulse.
**See Figure 1.
MECHANICAL SPECIFICATIONS
UBS430
TO·204AE (TO·3 modified, 60 mil. pin)
22.2210.8751
"7:Ci '~l':'T
PLANE
::~:g:ft:
OIA. --11TWO PLACES
;~:::lg:::~:
TWO PLACES
26.67
I.OSO} MAX.
U:IS:l~BD'A.
TWO PLACES
"""''''
M:MI8:!~t
t MEASURED AT SEATING PLANE
Dimensions in Millimeters and !Inches)
nn
SEMICONOUCTOR
~ PROOUCTS
1IS5
2·68
_UNITRDDE
UBS430
ELECTRICAL CHARACTERISTICS (at 25°C unless noted)
TEST
On Resistance
Current Gain
Base Saturation Voltage
SYMBOL
MIN.
hFE
50
CONDITIONS
TYP.
MAX.
7
10
mO
Ic = 30A, Ie = 1.2A
10
13
mO
Ic = 30A, Ie = 1.2A, T = 125°C
RCEIONI
UNIT
Ic = 20A, VCE = 0.5V
100
VeEIsall
1.2
1.5
V
Ic = 30A, Ie = 1.2A
Rise Time
t,
85
120
nS
Ic = 20A, Ie = 2A, Vcc = lOV
Storage Ti me
t.
300
500
nS
Ic = 20A, Ie = 2A, Vee = lOV
Fall Time
tf
75
120
nS
Ic = 20A, Ie = 2A, Vcc = lOV
100
JlA
VCE = 50V
Forward Leakage Current
ICES
Reverse Leakage Current
IECS
Collector Capacitance
Coeo
1000
1
mA
VCE = 50V, T = 125°C
200
JlA
VEC = 40V
1
mA
VCE = 40V, T = 125°C
pf
VEC = lOV, f = lMHz
1500
A RECOMMENDED DRIVE CIRCUIT
D,
Vo
BISYN RECTIFIER IN A TWO
TRANSISTOR FORWARD CONVERTER.
THE OPERATION OF THE CIRCUIT IS AS FOLLOWS:
forward biased collector to base junction of BiSYN Q4. This junction acts as a voltage source (=O.7V) as long as BISYN Q4 is
conducting during the storage time. The turn-on of BISYN Q3 is
held off due to lack of base drive because winding N3 is shorted,
through diode D3 and the collector-base junction of BISYN Q4.
Meanwhile, the current through the shorted turns (the rate of rise
of which is limited by leakage inductance) is utilized to rapidly
commutate BISYN Q4 off. Diode D3 is then reverse biased and
BISYN Q3 turns on through winding Nl.
During the on·time of transistors Ql and Q2 , BISYN Q3 is biased
on and delivers output load current through filter inductor L. The
polarity of voltage developed across winding N2 is such that
BISYN Q4 remains in a blocking state. Diode D3 is also biased off.
When transistors Ql and Q2 turn-off; some of the energy stored in
the magnetizing and leakage inductance enhances the recovery
process of BISYN Q3- The recovery time (300-400nS) of BISYN Q3
extends the reset time of the core. However, in a typical design,
half of the switching period is allocated for core reset time. Thus,
the storage time has no significant effect on operation. The BISYN
Q4 starts conducting filter inductor current as soon as the voltage
across the secondary collapses. BISYN Q4 receives base drive
energy from the filter inductor L, through winding N2. The diode
Da still remains reverse biased.
The effect ofthe turn-off circuit, consisting of windi ng N3 and D3 is
toeliminate high peak currents inthe secondary. You will also find
that with this circuit there are practically no switching losses.
Application Note U-103 contains additional design information
and circuits for the BISYN.
When transistors Ql and Q2 turn-on again, the voltage across
winding N3 is clamped to approximately zero by diode D3 and the
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924-1235
2-69
PRINTED IN U.S.A.
EI
UBS430
Collector-Emitter Voltage vs Collector Current
,
at Various Forced Gains
DESIGNING FOR MINIMUM POWER DISSIPATION
Although used as a rectifier the BISYN is a three terminal device.
Therefore. the power dissipation due to the On Resistance and
also the dissipation due to the base current must be taken into
consideration. You will notice on curves 1 and 2 that the change in
On Voltage (VCE) at a particular collector current is small even
with large changes in base current. As a result. achieving the
lowest On Voltage for a particular load current does not result in
the lowest overall power loss.
1000
S'
5
500
I
'"
<.!l
0
200
~
>
'"'"
II-
It has been determined that operating at a base current that
achieves an On Voltage that is 110% ofthe On Voltage at a circuit
gain of ten gives a result that is very close to optimum power
dissipation. Curve 3 gives you the appropriate base current to
achieve 110% ofthis On Voltage. This same curve shows that the
appropriate base drive for optimum power dissipation at any
particular load current is virtually the same throughout the oper·
ati ng temperature range.
~
0
r-50 ;==25
~
~ Tc = 25°C
50
.......
~ .....-: V
<5
u
~
leila:::: 100
100
c<
IU
A~
/
«
S
20
~
10
To calculate the power dissipation first estimate the operating
temperature of the BISYN. Then using the appropriate temperature curve determine the On Voltage at a circuit gain of 10foryour
load. Multiply this voltage by 1.1 and then by the load current to
determine On Resistance power dissipation. Base current power
dissipation is calculated by finding the base drive current on
curve 3 and then going to the applicable temperature curve for
Base Emitter Voltage vs Base Current (curves 4 and 5). Multiplying the Base Emitter Voltage by Base Current will give you the
power dissipation due to base current.
1
10
20
50
Ie COLLECTOR CURRENT - (A)
CURVE # 1
Collector-Emitter Voltage vs Collector Current
at Various Forced Gains
Optimum Base Drive Current
vs Collector Current
1000
S'
5
500
1';1
'"
~
200
>
'"
~
le/IB=~ ~
100
~
0
50
~
0
:;;
'"'"
~Te=125OC
:::>
u
65°C
//L
TJ-25°c
~
0.5
'"
TJ =
>
ir
~~oc
0
'"
«
....:~~
::;
.,.2L
u
w
,~
-50
c<
IU
....
TJ -
I-
~~
<.!l
0
~~
~
I
20
~
a
.§
0.2
0,1
I~
~
lB(oPTl :::: 18 for
VeE:::: 1.1
X
VCE(SATI
(VCE(SATI @ lells
=10)
10
1
10
20
50
0,05
Ie COLLECTOR CURRENT - (A)
1
CURVE # 2
10
20
50
100
Ie COLLECTOR CURRENT - (A)
CURVE # 3
5n'~~~~
v~:nv_
VARY PULSE WIDTH
1.3n
51 = Vee lOY
S2
= VClAMP
SUPPLY 30V
0, = 5051 SCHOTTKY
02 = 5051 SCHOTTKY
C, = .1JlF
II -lOpH
FIGURE 1. TEST CIRCUIT FOR ILPK.
UNITROOE • SEMICONDllCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA02172
TEL. (617) 926-0404· FAX (617) 924-1235
2-70
PRINTED IN U.S.A
UBS430
Base Emitter Voltage vs Base Current at
Various Collector Currents
Base Emitter Voltage vs Base Current at
Various Collector Currents
~
1600
1000
1500
950
>
.s
1400
~
>
f5
t:
w
1200
1_
.J
20:O
15A
900
:;
'"
/,lI.
Te = 2f'C,
1100
>
'r'"
Ie = 2A
700
~
700
"'mw
600
>
550
I IIII
600
0.01
f
'/
1~1--'
~ 650
:t :mrp-
/J
/
1~.....
w
lOA~ I:=f--
Ml 800
>
750
....
"'7
A
ffi
....
/
20j
800
0
~V
40A
/
3,OA
OJ
~ 1000
.;,
~
900
I 850
~ 1300
OJ
o
II
II
....... 1--'
n ........-1/
-'cf.=}t)
-i-
Te = 125°C
I
500
0.5 0.1
5
0.5
10
0.01
10
0.1
I. = BASE CURRENT - (A)
I. BASE CURRENT - (A)
CURVE # 4
CURVE # 5
Current Rise Time vs Collector Current
Current Rise Time vs Collector Current
1000
500r---~-+-+-rt+rH~--~-+-+-rt+TH
500
w 200
= ts + h
10
20
'I'-
"
1
Ie COLLECTOR CURRENT - (A)
10
-
20
30
Ie COLLECTOR CURRENT - (A)
CURVE#8
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA02172
TEL. (617) 926-0404 • FAX (617) 924-1235
100
70
30
I
I
Vee =
I
Te = 125°C
le/lB = 10
~
......
200
OJ
.
'"
'"
w
::;
;::
t'
g
400
300
'----
~
= IOV
=25°C
lellB = 10
Resistive Load
;::
~
30
Ie COLLECTOR CURRENT - (A)
CURVE # 6
-'
20
10
1
Ie COLLECTOR CURRENT - (A)
CURVE # 9
2-71
PRINTED IN U.S.A.
UBS430
Gain vs Collector Current @ VeE = O.SV at
Various Temperatures
Collector-Emitter Resistance vs
Junction Temperature
!
1000
500
1.7
/
1.5
e
~
Te = 125'C
1.3
~
,25'C,
z
...'"'"
100 _ ' 6 5 ' C
RCE :: 7mO
15
'"'"
::J
V
200
1.1
Min. Gain @ 20A'
0.9
20
,..
w
cit
10
1
10
20
'W
50
-75
Te
500
I
'"
:;
30A
w
200
0
>
\
100
~
..."'0
~
0
u
g
75
125
175
eC)
Collector-Emitter Voltage vs Base Current
1000
40A
...
25
TJ JUNCTION TEMPERATURE -
Collector· Emitter Voltage vs Base Current
...ffi
Ie:: 30A, Is == 3A
CURVE # 11
1000
«
V
-25
CURVE # 10
.5
~
0.7
d!
Ie COLLECTOR CURRENT - (A)
. . . .V
V
1/
50
U
:;-
25"C
@
"t--
15A
IDA
:;-
25'C
Htl
.5
'~"
«
m
1lIT
0
...ffi
...
20A
~
..."'
~
0
10
0.001
2A
I"
IDA
50
w
;!;
5A
......
2A
0
Ie
I. . . .
I~L
20
1A
1A
I
10
0.01
5
0.1
10
0.001
0.1
0.01
Is BASE CURRENT - (A)
Is BASE CURRENT -
CURVE # 12
CURVE # 13
Collector-Emitter Voltage vs Base Current
at Various Collector Currents
~
1000
z
;:;
U
w
;;:
'"~
§? 200
Te:: -65"C
1\
~ 17-;-
500
Cabo Collector-Base
Capacitance
200
1
«
u
f'rffi
6
i=
u
z
~
lOA
5
10
(Al
Junction Capacitance
2000
~ 1000
~ 500
25
15A
100
u
l-
30A
200
>
50
"I........
,
I
w
2~A
5A
20
Te - 125'C
500
100
1
1
Te:: 25"C
g~~~c~t~~~:r-Base -
J J
JJ
10
20
Ves OR VES REVERSE VOLTAGE - (V)
r-
CURVE # 15
Ie = 5A
w
.g
20
10
0.001
0.01
0.1
10
Is BASE CURRENT - (A)
CURVE # 14
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
2-72
PRINTED IN U.S A.
UBS430
Forward Bias Safe Operating Area (SOA)
Reverse Bias Safe Operating Area
200
O.lmS
"
100
ImS
50
>-
20
'"'"
u
'"u~
10
10
DC
:;:)
Te
j
=25°C
40~-+--~~r-~--r--r--t--t--~~
a
u
.E
0.5
0.2
0.1
0.5
10
20
50
VeE COLLECTOR·EMITTER VOLTAGE - (V)
CURVE # 16
VeE COLLECTOR·EMITTER VOLTAGE - (V)
CURVE # 17
Common-Emitter Collector Characteristics
60
BVCEV
BV:~:v~~~~~~;:~==F==t--~~1~0--t.15~;20~~2~5~~--~80
VeE COLLECTOR-EMITTER VOLTAGE - (V)
CURVE # 18
Transient Thermal Resistance vs Time
8
1
~
0.5
:l«
a
z
L
"'u
~
0.2
fij
'"~
L
O. 1
ZSJc(t) = r(t) 9JC
ROJC = l.O"C/W
~ Single Pulse
"ffi
~
>-
0.0 5
10
./
in
z
~
>-
0.0 2
u
'"
~ 0.0 1
0.01
?
0.1
10
PULSE TIME - (mS)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
20
50
100
200
500
CURVE # 19
BISYN™ is a trademark of Unitrode Corporation.
2-73
PRINTED IN U.S.A.
UES701 BYW31-50 BYW77-50
UES702 BYW31-100 BYW77-100
UES703 BYW31-150 BYW77-150
RECTIFIERS
High Efficiency, 25A
FEATURES
•
•
•
•
•
•
DESCRIPTION
Designed to meet the efficiency"demand
of switching type power supplies, these
devices are useful in many switching
applications.
The low thermal resistance and forward
voltage drop o(this series allows the
user to replace 00·5 size devices in
. many applications.
Low Forward Voltage
Very Fast Switching
Low Thermal Resistance
High Surge Capability
Mechanically Rugged
Both Polarities Available
ABSOLUTE MAXIMUM RATINGS
UES701
UES702
UES703
Peak Inverse Voltage, VR..•.........................•..... 50V ••...•. 100V .•.... l50V ..
Repetitive Peak Inverse Voltag, VRRM ...............•.....•.. 50V ........ lOOV ....... l50V ..
Non·Repetitive Peak Inverse Voltage, VRSM ...........•...... 50V .••..•.. 100V ...•... l50V ..
Maximum Average D.C. Output Current 10 @ Te .................... 25A @ lOO°C ........ ..
RMS Forward Current, I. 'RMSI .......................................... 40A ............. .
Non·Repetitive Sinusoidal Surge Current (8.3mS), IFSM .•...••.......... .400A ........•. ~ •..
Thermal Resistance, Junction to Case, R'Je ..... " ..•................. 1.5°C/W ........... .
Storage Temperature Range, TSTG ................................. -55°C to +l75°C ....... .
Maximum Operating Junction Temperature, TJ M~ .••••••••••••••••••••• + l75°C ...•........
ABSOLUTE MAXIMUM RATINGS
BYW31·50 BYW31·100 BYW31·150
BYW77·50 BYW77·100 BYW77·150
Peak Inverse Voltage, VR........................ ; ......... 50V ......... lOOV ....... l50V ......... 50V ....... 100V ....... l50V ...
Repetitive Peak Inverse Voltage, VRRM ...................... 50V ........ .lOOV ....... l50V ......... 50V ....... lOOV ...... l50V .. .
Non·Repetitive Peak Inverse Voltage, VRSM ................. 50V ........ .lOOV ....... l50V ......... 50V ....... 100V ...... 150V .. .
Maximum Average D.C. Output Current, 10 @ T e = 100°C ........... 25A @ 100°C ......................... 30A @ lOrC .......... .
RMS Forward Current, I. 'RMSI .......................................... 40A ................................. 50A .............. .
Non·Repetitive Sinusoidal Surge Current (8.3mS), IFSM ................. 320A ................................ 500A .............. .
Thermal Resistance, Junction to Case, R9Je ..... , ..................... 1.5°C/W·.............................. 1.5°C/W ............ .
Storage Temperature Range, TSTG ................................ -55°C to +l50°C ...................... -55°C to +l50°C ........ .
Maximum Operating Junction Temperature, TJ MAX .....................+l50°C ............................... +l50°C ............ .
ELECTRICAL SPECIFICATIONS
Type
Maximum
Reverse
Voltage
VR
Maximum
Forward
Voltage
VF
Te= 25°C
UES70l
UES702
UES703
BYW31-50
BYW31-100
BYW31-150
50V
100V
150V
50V
lOOV
150V
0.95V
Te = l25°C
50V
100V
l50V
Te = 25°C
Te = l25°C
29$A
4mA
IF = 25A
IF = 25A
Rated VR
Rated VR
Te = 25°C
Te=IOO°C
Te = 25°C
Te = 100°C
1.3V
0.85V
@
@
@
IF = 100A
Te = 25°C
0.825V
@
1.1 V
@
IF = 63A
20/lA
@
@
IF = 20A
Rated VR
Te = lOO°C
Te = 25°C
Te= 100°C
I.
0.75V! lOA
O.85V i 20A
1.2V
100A
i
25/lA
@
Rated VR
35ns'"
2.5mA
@
Rated VR
v.
BYW77-50
BYW77-100
BYW77-l50
Maximum
Reverse Recovery
Time
tRR
Maximum
Reverse
Current
IR
50ns'2I
2.5mA
@
50ns'2I
Rated VR
(1) Measured In cercult IF = O.5A, I. = lA, I""c = O.25A
(2) Measured in circuit I, = lA to VR > 30V dl,/ dt = 20Alps
nn
SEMICONDUCTOR
~ PRODUCTS
4/82
2-74
_UNITRODE
UES701 BYW31·50 BYW77·50
UES702 BYW31·lQO BYW77·lQO
UES703 BYW31·150 BYW77·150
MECHANICAL SPECIFICATIONS
00-4
UES701 SERIES
BVW31 SERfES
BVW77 SERIES
ins.
.078 MAX.
.437, .015
.405 MAX.
D .800 MAX.
.430, .010
F .250 MAX.
G .424 MAX.
A
8
1.98 MAX.
1l.l0 ,0.38
10.29 MAX.
20.32 MAX .
10.92,0.25
6.35 MAX.
10.77 MAX.
1.68 MIN. DIA .
.066 MIN. OIA.
Notes:
1. Cathode is stud.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 10 inch pounds,
4. Angular Orientation of terminal is undefined.
Maximum Forward Surge
vs. Number of Cycles
400
5300
I-
Z
UJ
tr
tr
a
200
"" ""
UJ
U
'"
i3UJ
/
a.
...
~
""
"::;:tr
V
l-
I
.02
~ .01
.01.02 .05.1.2
N
tp -
N
~
10
20
50
100
CYCLES OF 60 Hz SINEWAVE
TJ
50
5
) v~
V /
30
I-
Z
UJ
20
tr
0:
:>
u 10
0
/
tr
~
tr
I
3
-~
L , II
1/, /
1
.4
,-/k'"
5 10 20 50100 200
PULSE WIDTH (mS)
1000
Reverse·Recovery Circuit
10 n
soo
;"
.1,
T = +7S·C
J
TJ
= +12S·C
+
_
-=-
/ III
25Vdc
IAPPROX.)
In
NOTE 3
/j
/ 1/
...0
I
= +150·:'-
.5 1 2
200
Forward Current
vs. Forward Voltage
80
[-f- r-
/
.05
UJ
-
--
V
.1
J:
'I'--..
.....
V"""
.2
::;:
J\A
~ICYC~E
100
.5
z
I,
-~
Thermal Impedance
vs. Pulse Width
OSCILLOSCOPE
NOTE!
=
- - = TYPICAL V,
----= MAXIMUM V,
NOTES:
1. OSCilloscope: Rise time ~ 3nsj input impedance = 500.
2. Pulse Generator: Rise time ~ 8nsj source impedance 100.
3. Current viewing reSistor, non~inductive, coaxial recommended.
/
.6
.8
1.0
Y, - FORWARD VOLTAGE (V)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
2-75
PRINTED IN U.S.A.
UES701 BYW31·50
BYW77·50
UES702 BYW31·100 BYW77·100
UES703 BYW31·150 BYW77·150
Typical Reverse Current
vs. Reverse Voltage
.001
.002
;;
.5
I I I
...crz
.05
.1
:J
.2
cr
...u
cr
...
...
I
-"
.5
1
V
50
..........
i~
.~
J
I-
zw
20
"I'-.
cr
cr
:J
u 15
I-
:J
j
~
+100"C
r- r ::::rI
:.-- T =+125"C
=
It
II
0-
I-
:> 10
f-- /
0
/
I
_0
5
I--
J
10
20
25
.J-+T -+25"C
.005
.01
.02
I-
Output Current vs.
·Case Temperature
::::r:-= +IS0"C
100
Tc -
150
175
CASE TEMPERATURE ("C)
UES701 SERIES'
BYW31 SERIES
I
130 120 110 100 90 80 70 60 50 40 30 20 10 0
v."- REVERSE VOLTAGE
125
"'" ~~
(% OF PIV)
Output Current vs
Case Temperature
~
25
\
~ 20
I-
~
a:
::>
u
\
15
\
I-
::>
0-
I-
::>
0
10
.1
100
125
150
\
\
175
T,-CASE TEMPERATURE("C)
BYW77 SERIES
UNITRODE " SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET" WATERTOWN, MA 02172
TEL. (617) 926·0404 " FAX (617) 924·1235
2~76
PRINTED IN U.S.A.
UES704
UES705
UES706
UES704HR2 _ _
UES705HR2 . . .
UES706HR2
RECTIFIERS
High Efficiency, 20A
FEATURES
• Very Low Forward Voltage (1.15V)
• Very Fast Recovery Times (50nSec)
• Low Thermal Resistance
• High Surge Capabi lity
• Mechanically Rugged
• Both Polarities Available
CHIP
Ttl'g3~£SS
DESCRIPTION
,: The UES704 series is specifically
designed for operation in power switching
: circuits operating at frequencies of at
least 20 KHz.
The low thermal resistance and forward
voltage drop of this series allows the
user to replace 00-5 size devices in
many applications.
METALLIZATION
~fC.:~
OIO~
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES704, UES704HR2 ................................ 200V
Peak Inverse Voltage, UES705, UES705HR2 ................................ 300V
Peak Inverse Voltage, UES706, UES706HR2 ................................. 400V
Average D.C. Output Current, 10 @ Te = lOO·C .............................. 20A
Surge Current. 8.3mS .................................................. 300A
Thermal Resistance, Junction to Case ................................... 1.5·CIW
Operating and Storage Temperature Range ...................... - 55·C to + 150·C
POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75'C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applic":ltions, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.
MECHANICAL SPECIFICATIONS
UES704
UES704HR2
UES705
UES705HR2
UES706
UES706HR2
00-4
ins.
A
B .437
C .405
o .800
E .430
F .250
G
H
1.98 MAX.
.078 MAX.
±
.015
11.10 ±0.38
10.29 MAX.
20.32 MAX.
lD.92 ± 0.25
6.35 MAX.
10.77 MAX.
MAX.
MAX.
± .0lD
MAX.
.424 MAX.
.066 MIN. DIA.
1.68 MIN. DIA.
Notes.
1. Standard polarity is cathode-to-stud.
For reverse Polarity (anode·to-stud) add suffix IIR", ie. UES704R.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 15 inch pounds.
n
L..::::Jn
4. Angular orientation of terminal is undefined.
4/79 (Rev. 1)
2-77
SEMICONDUCTOR
PRODUCTS
_UNITRDDE
UES704
UES704HR2
UES705
UES705HR2
UES706
UES706HR2
ELECTRICAL SPECIFICATIONS
Maximum
Type
l.25V
@ lOA
t. 300,,8
lO0V
300V
400V
UES704/704HR2
UES705/705HR2
UES706/706HR2.
=
* Measured in circuit IF = a.SA, I,. = lA, II\EC = O.2SA
Maximum
Maximum
Reverse Current
forward Voltage
Te =2S"C
Te = 12S"C
PIV
1.15V
@20A
t. 300,,8
=
Reverse
Recovery
Te =2S"C
Te =12S"C
Time*
5O"A
10mA
50nS
;
Output Current: vs.
Case Temperature
Peak OU!feut Current vs.
Case em perature
100
~
z
30
...
g
..,a:
II:
:>
20
...
r-
lE
...........
u
...:>
...:>
Q.
0
10
I
a:
a:
"'"
_0
0
80
:>
"" ""
...":>
...:>
60
Q.
0
'"~
'"
1
40
20
100
110
120
130 140 150
Te - CASE TEMPERATURE ("C)
70
Typical Reverse Current
vs. Reverse Voltage
Typical Forward Current
vs. Forward Voltage
100
~ 20
... 10
:t
"L
/
II:
V
1
~ .5
a:
~ .2
__ .1
.05
.02
.01
.::...
II
5
a2
~
v
~~ j
z
~
lOOK
~ ~V
50
/ I
zUJ
a:
a:
::J
u
1/
II
1- cJ /
1~H
'I'
"f-"f-
-
125'C
V
""ido'C
I
U)
/
I
-~
2:;-
-
10
ro-
II
I!/
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.31.41.5
V, - FORWARO VOLTAGE IV)
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT. STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
1.....
!f
IK :/
a: 100
>
UJ
a:
II (--' 1/ f- //
II
V f/.
UJ
~'v-11'
1111
--jlo,c
10K
UJ
"CJ"CJ
r- II
150
130
\10
90
Tc - CASE TEMPERATURE ("C)
o
10 20 30 40 50 60 70 80 90 100110 120130140150
V. -
2-78
/
~
REVERSE VOLTAGE (% OF PIV)
PRINTED iN U.S.A.
UES705
UES705HR2
UES704
UES704HR2
Maximum Forward Surge
vs. Number of Cycles
Thermal Impedance
vs. Pulse Width
w
300
~
I-
iii
a:
a:
200
"'"
~
./
"'" "
-.f\J'L
~ICYCLE
1
~
'" ~
w
....
I
100
1/
V
.02
~
co
'-..... r-50
20
.1
.05
l:
I
10
N -
/
::;
...J
--
V
w
0..
<>
I
_./'
.5
a
:>
_0:: 100
.
.
u
z
UES706
UES706HR2
N
.01
.01.02 .05.1 .2
.5 1 2
t, -
5 10 20 50 lOa 200
1000
PULSE WIDTH (mS)
200
CYCLES OF 60 Hz SINEWAVE
Reverse-Recovery Circuit
500
100
+
-=_
25Vdc
(APPROX.)
10
NOTE 3
OSCILLOSCOPE
NOTE 1
=
NOTES:
1. Oscilloscope: Rise time ~ 3nsj input impedance = 500.
2. Pulse Generator: Rise time ~ SnSj source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
The following tests are performed on 100% of the devices specified UES704HR2, 5HR2, 6HR2.
SCREEN
High Temperature
MIL-STD-750
METHOD
CONDITIONS
1032
24 Hours @ TA = 150°C
2. Temperature Cycle
1051
F, 20 Cycles, -55 to +150oc. No dwell required
@ 25OC, t ~ 10 min ..@ extremes
3. Hermetic Seal
a. Fine Leak
b. Gnoss Leak
1071
1.
H, Helium
C, Liquid
4. Thermal Impedance
5. Interim Electrical Parameters
6. High Temperature Reverse Blocking
7. Final Electrical Parameters
UNITRODE - SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
Sage Test
GOINOGO
Similar to
Method 1040
GOINOGO
2-79
VF and IR @ 25°C
V, Sine Reverse, t = 48 Hours, Tc
= rating, F = 50-60 Hz, 10 = OA
= 125°C, VRW M
VF + IR @ 25°C
PDA = 10% (Final Electricals)
PRINTED IN U.S.A.
..
RECTIFIERS
UES801
UES802
UES803
High Efficiency, 50A and 70A
FEATURES
• High Continuous Current Rating
• Very Low Forward Voltage
• Very Fast Switching Speeds
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged 00-5 Package
BYW78-50
BYW78-100
BYW78-150
DESCRIPTION
This Series is specifically designed
for operation in power switching circuits
operating at frequencies of at least
20KHz. The very low forward voltage and
very fast recovery time make them particularly suited for switching type power
supplies.
ABSOLUTE MAXIMUM RATINGS
UES801
UES802
UES803 BVW78·50 BVW78·100 BYW78·150
Peak Inverse Voltage, VR.................................. 50V ....... lOOV ....... l50V ....... 50V ...... lOOV ...... 150V ... .
Repetitive Peak Inverse Voltage, VRRM ...................... 50V ....... lOOV ....... l50V ....... 50V ...... lOOV ...... l50V ... .
Non-Repetitive Peak Inverse Voltage, VRSM ................. 50V ....... lOOV ....... l50V ....... 50V _..... lOOV ...... l50V ... .
Maximum Average D.C. Output Current, 1o @ Tc= 100°C. .. . . . . ... . . ... 70A.:............................. 50A' .............. .
Non-Repetitive Sinusoidal Surge Current (B.3mS), IFSM ................. BOOA ............................. l500A ............. .
Thermal Resistance, Junction to Case, R"c ............................................. O.BoC/W ............................. .
Storage Temperature Range, TSTG ..................................... .- ............ ~55°C to +1i5°C .......................... .
Maximum Operating Junction Temperature, TJ MAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175°C .............................. .
ELECTRICAL SPECIFICATIONS
Maximum
Reverse
Voltage
VR
Type
Maximum
ForWard
Voltage
VF
Tc = 25°C
-
UESBOl
UESB02
UESB03
50V
lOOV
150V
BYW7B-50
BVW78-100
BYW7B·150
50V
lOOV
150V
Maximum
Reverse Recovery
Time
tRR
Maximum
Reverse
Current
IR
Tc = 25·C
Tc = l50°C
Tc = 150°C
O.975V
O.B4V
@
@
2~t
30mA
IF = 70A
IF = 70A
Rated VR
,Rated VR
Tc = 25°C
Tc= 100·C
Tc = 25·C
Tc = lOO·C
l.1V
50pA
O.B5V
@
@
IF = 160A
5mA
@
@
Rated VR
IF = 50A
50nsu1
@
60nsl2J
Rated VR
-
,
(1) Measured In CorCUIt I, - O.5A, IR ; lA, I REC ; O.25A
(2) Measured in circuit I,; lA, VR ; 30V, dl,/,,; 50A/ps
MECHANICAL SPECIFICATIONS
UES800 SERIES
BYW78 SERIES
00·5
ins.
~
A.
225
B
060 MIN.
C
.156
~
.005
020
o
156 MIN. FLAT
E
6670lA MAX
5.72
~
0.13
1.52 MIN
3.96 ~ 051
3.96 MIN. FLAT
090MA-'~-
677
!
.010 -
V.·28
UNF·2A
No'...
1.
2.
3.
4.
Standard polarity is cathode-to-stud.
All metal surfaces tin' plated;'
Maximum unlubricated stud torque: 20 inch pounds (20 kg. em).
Angular orientation of terminal is undefined.
nn
SEMICONDUCTOR
~ PRODUCTS
4/B2
_UNITRODE
UES801
UES802
UES803
Output Current vs.
Case Temperature
BYW78·50
BYW78·100
BYW78·150
Peak Output Current vs.
Case Temperature
Forward Current
vs. Forward Voltage
200 r---r---"""'--'--""'--"""7""71IT"--'
5:
70
tZ
UJ
a: 50
a:
:J
r-.....
~
":Jt0..
t:J
30
~
I--+--+-+----j,~y~'-II-_j
50
~-+_-~--r_f.f_f-t-I-I-~
~
~
~
_0
10
e~
220 1--"...,...-t---~----j-;-""DuC:tyC-C"'Y"'cl-::ie
I lBOI----t~~~~-,,-+---_j
r
~
o
fi1
I
g
B
a 201--+--+-~
0
100
Tc -
100
10 1--+--+---1
'"~
I
1
60~~~~~-~~~~~~~~~
'\
20
125
ISO
175
CASE TEMPERATURE C'C)
0.2
D.•
VF
-
0.6
0.8
10.
Average 01
Rectified.L:.I--:::........t~~"""~
Hal'Sine
~0~0~-~1720~--C-,.~0--~,760~~~~·
1.0
FORWARD VOLTAGE (V)
Tc - CASE TEMPERATURE (Ge)
Maximum Forward Surge
VS. Number of Cycles
Typical Reverse Current
vs. Reverse Voltage
.001
.002
800
5:
tZ
"'a:a:
:J
"I
600
'"I""
""-
400
-~
200
}
.005
<"
oS
t-
~
zUJ
~
fV'L
.05
.1
a:
a:
"I
_K
.2
)
.5
2
~ICYCIE
-./- _TJ=~IOO'C
-p--
~I~'C
~
~+15b'c
I I I
10
20
2
N-
10
20
50
100
CYCLES OF 60 Hz SINEWAVE
-
I-.01
.02 - I - - t- TJ = 2S'C
:J
............ t-=-
I--
I--
200
50
If
/I
V
J
130120 llO 100 90 80 70 60 50 40 30 20 10 0
VOLTAGE IN % OF PIV
Reverse·Recovery Circuit
Thermal Impedance
VS. Pulse Width
~
z
..--
.5
V',..,
g
~
25Vdc
(APPROX.)
10
OSCILLOSCOPE
NOTE I
NOTEl
/
:I:
l-
.02
~ .01
N
_
/V
'"
::;;
a: .OS
I
-=-
/V'
.1
"'
+
./
.2
::;;
.J
Ion
son
NOTES:
.01.02 .OS.I .2
.5 1 2 5 10 20 50 100 200
tp - PULSE WIDTH (mS)
1. Oscilloscope: Rise time
1000
~
3nsj input impedance
= son.
2. Pulse Generater: Rise time::;;;: ansj source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERTOWN. MA 02172
TEL. (617) 926·0404 ' FAX (617) 924·1235
2·81
PRINTED IN U.S.A.
UES804
UES805
UES806
UES804HR2
UES805HR2
UES806HR2
RECTIFIERS
HighEfficiency, 50A
fEATURES
• Very Low Forward Voltage (1.l5V)
• Very Fast Recovery Times (50nSec)
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged '
• Both Polarities Available
DESCRIPTION
The UES804 is specifically designed
for operation in power switching circuits.
operating at frequencies of at least
20 KHz.
CHIP
MET"LlIIATiQN
lHlCKNESS
TOP". Al
0095
BACK ... "'U
0105
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UESB04,UES804HR2 ,.............
. , .. , .200V
'Peak Inverse Voltage. UES805, UES805HR2 ",.".,' .. , , . , .. , . .
. ...... 300V
Peak Inverse Voltage, UES806, UES806HR2 , .. , . , , .. , , . , . , , , . , .
.., ...... ,400V
Maximum Average D,C, Output Current @ Tc = 100°C ...................... , .. 50A
Surge Current, 8,3mS ........... , .. , .. , , .. , . , , . , , .. , , . , .' ... ,., ....... 600A
Thermal Resistance, Junction to Case ................ , , .. , .. , . , , , . , , . , .. , .8°C/W
Operating and Storage Temperature Range .... . . . . . . . . . . . .
. . - 55'C to + 150'C
POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers,
In this stress· test, the case of the device is not heat sunk,
Full rated forward current is supplied ,to force a case temperature increase at least 75'C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off, Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles,
SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers. for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors, Thus, the stresse's on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers,
MECHANICAL SPECIFICATIONS
>.
-F c
B~
UES80S
UES80SHR2
in~.
t-"i r
o
~·.r~~;
'M
UESati4
UES804HR2
K ~
J
~
A
B
C
D
E
.225!: .005
1.52 MIN .
.IS6!: .020
3.96'" 0.51
.156 MIN. FLAT
3.96 MIN. FLAT
. 667 DlA. MAX.
16.94 OIA. MAX .
,
.090 MAX.
,677:: .010
H
.375 MAX.
J
. 140 MIN. DlA.
1.000 MAX.
l
.450 MAX.
N
.438:!: .015
.078 MAX.
•
DO·S
mm
5.72!: 0,13
.060 MIN.
G
K
UES806
UES806HR2
2.29 MAX.
17.20:!: 0.25
9.53 MAX.
3.56 MIN, OIA .
25.40 MAX.
11.43 MAX •
11.13:!: 0.38
1.98 MAX.
Nates:
1. standard polarity is cathode·to·stud.
For reverse polarity (anode~to-stud) add suffix IIR", ie. UES804R.
2. All metal surfaces tin plated.
.
3. Maximum unhlbricated stud torque. 30 inchp.unds.
4. Angular orjentation C?f termi!lal is ~ridefineci. .
-
nL::::::Jn
SEMICONDUCTOR
PRODUCTS
4}79.(Rev. 1)
2-82
_UNITRDDE
UES804
UE5804HR2
UES805
UESB05HR2
UES806
UESB06HR2
ELECTRICAL SPECIFICATIONS
Type
PIV
200V
300V
400V
UES804/804HR2
UES805/805HR2
UE5806/806HR2
Maximum
Maximum
Maximum
Forward Voltage
Reverse Curent
T c =2S'C
Tc = 12S'C
Tc _ 2Sc C
Tc _12S'C
1.2SV
@ IF=SOA
t. =3001'5
1.1SV
@I F=50A
tp =3001'S
7O,IA
30mA
Reverse
Recovery
Time*
SOnS
* Measured in circuit IF = a.SA, IR, = lA, IIEe = O.2SA
Output Current vs.
Case Temperature
Peak Output Current VS.
Case Temperature
200 r-----~--~-r-----r--~-.----_,
60
~ 50
!z
40
UJ
c:
c:
r-...
ISO p,,--t-----'\iI-----t--;
~I'-.
30
~
:> 20
o
10
110
120
~~~+_~.__r--~-+----~----~
'"'
>-
~ 100 r---~~--~~~~_+~---i----_;
:::l
o
130
140
SOr-----f---~~~~~~~_i~--_;
-~ 60
\
o
100
140
0:
0:
:::l
"1'\ '\
!;
~
~
'f'"
:>
<.l
$160r---~i_-----r~--_+--_;~----_;
>-
~~
__rl_~--_r--~~~~~1_--~
I
1
40
r-----~~~~--~-f~~~~--_;
150
70
90
110
T, - CASE l£MPERATURE ('C)
Typical Reverse Current
VS. Reverse Voltage
Typical Forward Current
VS. Forward Voltage
1K
100 K
500
_ 200
50
:>
'"'"
u
20
o
10
'"~
'"...
!
l-::: P' VV'
V. V V ./
~ VV
.1
II
'"
'"
!::::::
K
-+- r-
L
lOO'C
r-
U)
UJ
~
c:
I
"I
1
10a
2S' C
-
,..... L
a
1/
1
a
.1 .2 .3 .4 .S .6 .7 .S .9 1.0 1.11.2 1.31.4 1.51.6
V, - FORWARD VOLTAGE (V)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
If
V,
IL
<.l
--"''In-V
"'{
11 1 Ii A
//1/
C
12S'C
z
II
T
Kil'"
10
UJ
--f-/" ~,'"'f .eN
- -~Q
:;:"i- "i--I
••
o
I"'":
-I-- t-
10 20 30 40
V. -
2-83
50 60 70 80 90 100 110 120130140
REVERSE VOLTAGE (% OF PIV)
PRINTED IN U.S.A.
UESB04
UES804HR2
Maximum Forward Surge
VS. Number of Cycles
600
g
500
zOJ
400
~
z
i5
I
"
-~ 200
~
~
...
..-1--
.5
............
./'
.2
.
.J
"'-
-f\J'L
~ICICLE
.1
VV
:;;
a:: .05
OJ
~
J:
l-
I
....... I---
.02
V
~ .01
N
V .
~,v
:;;
""-
UES806
UES806HR2
Thermal Impedance
vs. Pulse Width
:",
a:
a:
:>
u 300
UES805
UES805HR2
.01.02 .05.1 .2
100
tp -
.5 1.2 5 10 20 50100 200
PULSE WIDTH (mS)
1000
o
1
N-
10
20
50
100
CYCLES OF. 60 Hz SINEWAVE
200
Reverse·Recovery Circuit
Ion
SOP.
+
_
-=-
25Vdc
(APPRO:W;.)
In
NOTE 3
OSCILLOSCOPE
NOTEl
=
NOTES:
1. Oscilloscope: Rise time :s;;; 3n5; input impedance
= SOD.
2. Pulse Generator: Rise time :s;;; 8nsj source impedance 100 .
. 3. Current viewing resistor, non-inductive, coaxial recommended.
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
The following tests are performed on 100% of the devices specified UES804HR2, 5HR2, 6HR2.
SCREEN
High Temperature
MIL·STD·750
METHOD
CONDITIONS
1032
24 Hours @ TA = 150°C
2. Temperature Cycle
1051
F, 20 Cycles, -55 to +150°C. No dwell required
@ 25°C, t ~ 10 min. @ extremes
3. Hermetic Seal
a. Fine Leak
b. Gross Leak
1071
l.
H, Helium
C, Liquid
4. Thermal Impedance
5. Interim Electrical. Parameters
6. High Temperature Reverse Blocking
7. Final Electrical Parameters
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
Sage Test
GO/NOGO
Similar to
Method 1040
GO/NOGO
2·84
VFand IA @ 25°C
1/; Sine Reverse, t = 48 Hours, Tc = 125°C, VRW M
= rating, F = 50·60 Hz; 10 = OA
VF + IA @25°C
PDA = 10% (Final Electricals)
PRINTED IN U.S.A.
RECTI,FIER'S
UES1001-UES1003
High Efficiency, 1A
FEATURES
• Very Fast Recovery Times
• Very Low Forward Voltage
• Small Size
• Convenient Package
DESCRIPTION
An axial leaded power rectifier useful
in many switching applications.
Particularly suited where very fast
recovery and low forward voltage are
required.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES1001 .............................................................. 50V
Peak Inverse Voltage, UES1002 ............................................................. 100V
Peak Inverse Voltage, UES1003 ............................................................. 150V .
Maximum Average D.C. Output Current at TL = 75°C, L=3/8" ....•.........•.............. _ ....... 1A
Non-Repetitive Surge Current at8.3mS ....................... _............................... 30A
Thermal Resistance at L = 3/8" ........................................................... 75 °CIW
.Operating and Storage Temperature Range ......................................... -55°C + 175°C
ELECTRICAL SPECIFICATIONS
Type
PIV
UES1001
UES1002
UES1003
50V
100V
150V
TJ =2S·C
TJ =100·C
@ TJ =2S·C
@ TJ =100·C
Maximum
Reverse
Recovery
Time'
.975V
@
1A
.895V
@
1A
2"A
5O"A
25nS
Maximum
Reverse Current (IR)
@PIV
Maximum
Forward Voltage (VF)
@
'Measured In circuit IF = .5A, IR = 1.0A, IREC = .25A
MECHANICAL SPECIFICATIONS
BAND INDICATES
CATHODE END
~
'V
r
·155TYP.
3.9mm
l-
UES1001·UES1003
r:-
BODVA
.085 MAX.
2.16mm
II l.
J ~
~==~~~==~~~~~~~~~~'~t
c::=::J....
~OO MIN.
1-
17.8mm
.250 MAX~
6.35mm-
+
L.030t.OO1
O.77mm t.03
-
055 TYP.
. 1.4mm .
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONOUCTOR
~ PROOUCTS
1/80
2·85
_UNITRDDE
UES1001-UES1003
Typical Forward Current
vs. Forward Voltage
Output Current
vs. lead Temperature
1
1,,-
~~
r-"IJ I -
"'-.
~
L=1!a"
"
'"
"'-.
""""-I--.
L=:V4"
.1
0:
75
'"
125
.005
150
.1
I-
15
fT = 25°C
0:
0:
'"
u
J
.5
I
/
II . /I-.' ...~
.01
I
/
.002
~
I-
Il~~~;1,"fl~
II
v
;{ .05
.3
00
J...'>
_- .02
"'-. '\.
100
f--f--
I
r--....: .\
50
Tl -
.2
15
0:
B.05
"'"
..........
L _ 3k"
25
/
V/ /
I/;,"
.01
1/:1
.5
5
I-
T,
~
J,iJJ
--
Ld~ 1,-
"'"
Typical Reverse Current
vs. Voltage
.001
10
10
.1 .2 j
175
LEAD TEMPERATURE tOe)
-
1
I--"
+75°c
TJ
1---1-"
+125°c
'"
100
.4.5 .6 .7 .8 .91.01.11.21.3
Vf
=
~;-
50
I
,001
T
120
100
80
60
40
20
VOLTAGE IN % OF PIV
VOLTAGE (V)
pe.ak Output Current vs.
lead Temperature
Forward Pulse Current
vs. Duration
4.0 f-".....+--I--I-~.....:-1I-:-:::-:-1I--I-I
10,000
~
~ 3.2
l--+-+-"'d----I--+-*-+--+-!
g
'"=>
'"
"t:;
0l-
Dura~i~~afr;r ~~~~R~-:::~ii~~spuise
5,000
I-
~ 1,000
'"
SOO
'"
'"
..
'"
100
0:
0:
2.4 ,"",:-+---'l"-<:'--+---I~-+--~:--+-!
..........
o
~
'";:S1.61-=",""""",+-''''''~-I~...+-'~+-\:-t-l
0-
I
10
.8
-- - -r--_
so
.],u.s
.5
so
lO}lS
looP.5
PULSE DURATION
5
.IOms
1m,
T, - LEAD TEMPERATURE (OC)
Multiple Surge Current
vs. Duration
100
u
<.J
I-
I-
30
::>
:J
0-
Q.
I-
0-
::>
:J
o
I
Reverse
Recovery
=100'C
200pA
Output Current vs.
Lead Temperature
2.5
Maximum
Maximum
Reverse Current
0
'"i'J
.5 1--+-+---_j~O+\_+---_j
20
0-
_0
I
J
50
TL -
10
75
100
125 150
LEAD TEMPERATURE ('C)
1. - LEAD TEMPERATURE ('C)
Typical Reverse Current
vs. Reverse Voltage
Typical Forward Current
vs. Forward Voltage
10K
10
5:
~
::::::: ~ ~
//
v,. / /
I-
Z
"'0:
a:
~
~ I /
:J
U
o
.IL
II
~
.001
UJ
:J.
I
r--.;i.;i .{:'
II
I..~
k
1/
II II
~.,
.lr'C
UJ
III
...a:
~tol/
.Jt-"
{?~;,
1/
~ 100
u
II
@ .1
~
a:
K
~
iiia:
i?
I
0
V
1000C
I
~.,/
--
1. 0
2rC,
Ij I V
.0 . 1
.1 .2 .. 3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.31.41.5
V, - FORWARD VOLTAGE IV)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA02172
TEL. (617) 926-0404 •.FAX (617) 924-1235
2-90
m
W
M
rn
, v. '- REVERSE VOLTAGE (% OF PIV)
~
~
~.~
_
PRINTED IN U.S.A.
UESl104
UESl105
UESl106
ID
Output Current vs.
Ambient Temperature.
Multiple Surge Current
vs. Duration
100
"'"
...z~ .8
'"'"
:>
'"
u
.6
...
...
:>
.4
I
.2
:>
Q.
l'-.
'"
~
0:
o
25
50
75
'"
~
60
"-
'"
c:J
0:
'\
0
_0
c:J 80
z
'\
~
...
1\
'"
i"o
~
o
ffl 20
\
100
40
125
TL MOUNT
@Length =~..
i'-- R:::jPrinted Circuit
\
1
1
2
5
10 20
50
100 200
l'
SOO
1000
CYCLES AT 60 Hz SINE WAVE
150
TA -AMBIENT TEMPERATURE ('C)
Reverse·Recovery Circuit
10
50!!
-=_
~!
25Vdc
(APPROX,)
It!
NOTEJ
OSCILLOSCOPE
NOTE!
=
NOTES:
1. Oscilloscope: Rise time ~ lnsj input impedance = 50n.
2. Pulse Generator: Rise time :s;; 8nsi source impedance 100.
3. Current viewing resistor, nonainductive, coaxial recommended •
• OPTIONAL HIGH RELIABILITY (HR2) SCREENING (See lN6620·1N6625)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL, (617)926·0404. FAX (617) 924·1235
2·91
PRINTED IN U.S.A.
RECTIFIERS
UES1301 BYV28-50
UES1302 BYV28-100
UES1303 BYV28-150
High Efficiency, 3.5A
FEATURES
DESCRIPTION
• Very Fast Recovery Times
e Very Low Forward Voltage
• Small Size
• Convenient Package
An axial leaded power rectifier useful
in many switching applications.
Particularly suited where very fast
recovery and low forward voltage are
required.
ABSOLUTE MAXIMUM RATINGS
UES1301
UES1302
UES1303 BVV28-50 BVV28-100 BVV28-150
Peak Inverse Voltage, VR .........••.......................... 50V ..•.•.. lOOV .•.... 150V ...... 50V ....•.. lOOV ...... 150V ..
Maximum Average D.C. Output at TL = 75°C, L = %" 10 ................•.. 6.0A ...............•....•.....•.. 3.5A ..•......•....
Non-Repetitive Surge Current at 8.3ms, 1'8M ..•..••....•....•..••.......• 125A ............................. 80A ...•........•.
Thermal Resistance at L %", R.Jc .............•....................•... 20°C/W ...•........•.............. 25°C/W ..•..........
Junction Operating Temperature, Ti .............•....................... 175°C .....................•..... .165.o.C ...•....•..•..
Operating and Storage Temperature Range ........; .....................•.•........•. -55°C to +175°C ................•.........
=
ELECTRICAL SPECIFICATIONS
Maximum
Reverse
Voltage
VR
Type
UES1301
UES1302
UES1303
50V
lOOV
150V
BYV28-50
. BYV28-100
BYV28-150
50V
lOOV
150V
Maximum
Forward Voltage
@
TJ = 25°C
TJ = lOO°C
.925V
:850V
@
@
. 6A
6A
TJ = 25°C
"Measured in circuil iF
Maximum
Reverse Current
@ Rated VR
LlOV
-.
TJ = 165°C
.75V
@
@
5A
3A
.-
TJ = 25°C
TJ = lOO°C
5pA
150pA
TJ = 25°C
TJ = lOO°C
IpA
150pA
1_9~V
Maximum
Reverse
Recovery
Time"
30ns
30ns
5A
I
=O.5A, i. =l.OA, i. =.25A
EO
MECHANICAL SPECIFICATIONS
r
BAND iNDiCATES
CATHODE END
~
.lZ~~:
~
c:=J C
II
Mi~l~oo MA'S-
,----,975
,_. --248mm
7.62mm-
UES1300 SERIES
BVV28 SERIES
BODV B
i., t
_145 MAX.
3.68mm
c:::=J
4
L
'--
:040 ±.OOl
L02mm±.03
.~-~~;;;-
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONDUCTOR
~ PRODUCTS
4/82
2-92
_UNITRODE
UES1301 BYV28·50
UES1302 BYV28·100
UES1303 BYV28·150
Output Current
vs. Lead Temperature
12
\.
10
g
!Z...
~
-1r.I'-
"- 1\
"
L=:I8'''''''
6
"'"
L_W'
I
25
20
"-
:1
I
I-
'"
r-....
\
r~~p:c
.5
"I
\
,..,..
'"
.05
~
.02
"
.01
175
8
t-rlt
.1
U
~
I
It
20
I
...' /
100
II
I
200
/ I
1000
1
120
100
~~
=+125°C
I Li
l-
I'
i
6S C
80
60
40
20
VOLTAGE IN % OF PIV
.1 .2 .3 .4 .5 .6 .7 .8 .91.01.11.21.3
VF -
f-I-
-25°C
T' =1 +1
J
l-
J,
1
TJ
l-
I-
VOLTAGE (V)
Reverse-Recovery Circuit
so ~!
10 !!
+
_
25Vdc
-=-
~
.
2
a:
a:
iT
t-
::J
!
1/:;: ,...'~1.'~
...
:::
.2
.'\.1\
~
1// 1/
Z
w
a:
a:
::J
g
::J
1
I-
I-
"
.1
.2
~
Peak Output Current vs.
Lead Temperature
a:
a:
T J _-SO·C
;;-:;..-
~
10
_
75
100
125
150
LEAD TEMPERATURE C·C)
50
TL -
...:;::::-:
\
~
::J
U
T,
J...-fL L
.02
50
~-
L-V.':\
.01
100
i--
'\.
Typical Reverse Current
vs. Voltage
Typical Forward Current
vs. Forward Voltage
(APPROX.)
11!
12
OSCILLOSCOPE
NOTEl
NOTE 3
I-
::J
I-
::J
0
"~
NOTES:
1
1. Oscilloscope: Rise time<3nS; input Impedance = 5OQ.
2. Pulse Generator: Rise time" BnS; source Impedance 102.
3. Current viewing reSistor, non-inductive, coaxial recommended.
4
50
70
90
110
130
150
170
T, - LEAD TEMPERATURE (OC)
Multiple Surge Current
vs. Duration
100
"
z
~
80
~
a: 60
""'a:~ 40
...o
If.
Forward Pulse Current vSo Duration
10,000
I"-
5,000
""-
g.
'" ....
1
"""""'- ;-.
!z 1,000
~
20
ll!0:
Tl MOUNT
@ Length
I'--
=:va"
r--
500
::J
U
...
R=:±--
~
:>
..
.1
1
Square Pulse Current vs. '.:
Duration for Non-Repetitive Pulse
-........
.............. .......
100
r--
50
...
'
printed CIrCU(
10
I
2
5
10 20
50
100 200
CYCLES AT 60 Hz SINE WAVE
UNITRODE ° SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET ° WATERTOWN, MA 02172
TEl. (617) 926·0404 ° FAX (617) 924·1235
500
1000
.5
.1#,5
2-93
11&5
50
10#'s
1001&5
PULSE DURATION
5
1m.
5
10ms
PRINTED IN U.S.A.
III
RECTIFIERS
UES1304
UES1305
UES1306
High Efficiency, 5A
FEATURES
• Very Low Forward Voltage (1.15V)
• Very Fast Recovery Times (50nSec)
• Small Size
• High Surge
DESCRIPTION
The UES1304 series is specifically
designed for operation in power switching
. circuits operating at frequencies of at
least 20 KHz.
THI~~~ESS Mf6~lllZAT1EN
008
BilCK
AU
1iB9
ABSOWTE MAXIMUM RATINGS
Peak Inverse Voltage, UES1304 .
..... 200V
Peak Inverse Voltage, UES1305 .
.300V
' .. 400V
Peak Inverse Voltage, UES1306
Maximum Average DC Output Current, 10
@ TA = 25°C (Free Air) .................. .
.. ..... 3A
@~=~~L=~ ................. .
.. .. 5A
Surge Current, 8.3mSec ................... .
........ 70A
Thermal Resistance @ L = o/a" ..
. .20°CfW
Operating and Storage Temperature Range ....
. ... -55OC to +150OC
MECHANICAL SPECIFICATIONS
r
BAND INDICATES
CATHODE END
~
UES1304
.175TYP.
II
~975 MIN1~0 MA~
1-----24.8mm
7.62mni
~
UES1306
BODY B
+. t
.145 MAX.
. 4.4mm
c:=::J
UES1305
3.68mm
=
+
L
l-
.040±.001
l.02mm±.03
.115TYP.
2.9mm
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONDUCTOR
~ PRODUCTS
4/79 (Rev. 1)
2-94
_UNITRODE
UES1304
UES1305
UES1306
ELECTRICAL SPECIFICATIONS
Maximum
Forward Voltage
PIV
Type
UES1304
UES1305
UES1306
200V
300V
400V
* Measured in circuit IF =
Maximum
Maximum
Reverse
Recovery
Reverse Current
TJ =2S·C
TJ = 100·C
@ PIV, TJ = 2S·C
TJ =100·C
Time*
1,25V
@3A
tp = 3OOl'S
1.15V
@3A
tp = 3OOl'S
2Ol'A
5OOl'A
SOnS
a.SA, IR = lA, IREC = O.2SA
Output Current
vs, Lead Temperature
Peak Output Current YS,
Lead Temperature
20
r-..
~
'\
~~
~ 16
>-
15
'"::J'"
u
I
L;:::
~tt
1\
iC
>-
::J
a
\
o
25
12
>-
'"~
,
\
50
75
100
125
150
Tl - LEAD TEMPERATURE C·C)
T, - LEAD TEMPERATURE C·C)
Typical Reverse Current
vs. Reverse Voltage
Typical Forward Current
vs. Forward Voltage
10 K
10 0
1/
1/
~
...
10
...~
z
Z
"'0::
0::
::>
u
o
O. 1
0::
...
o
I
_~
10 o
~?n
... '" .()
,/1 !(?
"'ffi
iii0::
10
I
~
-"
1. 0
'I
en
..... r§ '£Jv
.0 1
j....
I
100·C
I
II
1
I-f-I-
.00 1
0.0 0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2
O. 1
V, - FORWARD VOLTAGE IV)
UNITRODE. SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
2·95
25"1
I
20
V, -
TEL (617) 926·0404 • FAX (617) 924·1235
.I
125"C
~
::>
u
tl/
0::
~
"'a:0::
1
....
K
40
60
80
100
120
140
160
180
REVERSE VOLTAGE (% OF PIV)
PRINTED IN u.s.A.
..
UES1304
Output Current vs
Ambient Temperature
~
~
2.5
....
z
~
~
2
'"
::>
~ 1.5
Q,
....
::>
_0
'\
......
""-
""'- r---.
r-
~
I\.
o
25
T. MOUNT
@lentth=~"
Iii=::=
I-
Pflnted Circuit
J L
1\
.5
UES1306
Multiple Surge Currentvs. Duration
100
\
::>
o
I
'""
UES1305
I
5
2
\
10 20
50
100
200·~
500 1000
CYCLES AT 60 Hz SINE WAVE
50
75
100
125 150
TA - AMBIENT TEMPERATURE ('C)
Reverse·Recovery Circuit
SOil
10 II
+
_
-=-
25Vdc
(APPROX.)·
III
NOTEl
OSCILLOSCOPE
NOTE 1
=
NOTES:
1. Oscilloscope: Rise time :s;;; 3"s; input impedance son.
2. Pulse Generator: Rise time ~ 8ns; source impedance-lOO.
=
3. CUrrent viewing resistor, non·inductive, coaxial recommended.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926.Q404 • FAX (617) 924·1235
2·96
PRINTED IN U.S.A.
UES1401
UES1402
UES1403
UES1404
RECTIFIERS
High Efficiency, 7 A and 8A
BYW29-50
BYW29-100
BYW29-150
BYW29-200
BYW80-50
BYW80-100
BYW80-150
BYW80-200
FEATURES
DESCRIPTION
•
•
•
•
•
The UES1400/BYW29/BYW80 Series, in a plastic package similar to the TO·220, is
specifically designed for operation in power switching circuits to frequencies in excess
of 100KHz. The very low forward voltage and very fast recovery time make them
particularly suited for switching type power supplies.
Very Low Forward Voltage
Very Fast Recovery Times
Economical, Convenient Plastic Package
Low Thermal Resistance
Mechanically Rugged
ABSOLUTE MAXIMUM RATINGS
UES1401 UES1402 UES1403 UES1404
Peak Inverse Voltage, VR....•.......•....•................•..•..•....•..................... 50V ..... 100V ..... 150V .... 200V
Repetitive Peak Inverse Voltage, VRWM ..................................................... 50V ..... 100V ..... 150V .... 200V
Non·Repetitive Peak Inverse Voltage, VRSM ................................................. 50V ..... 100V ..... 150V .... 200V
Maximum Average D.C. Output Current,lo
@ Te = 125°C, (Note 1) .............................................................. 8.0A .................... .
@T.= 25°C ......................................................................... 3.0A .•.........•.........
@T. = 25°C, (Note 2) ..........................................................' ...... 8.0A •....................
Non·Repetitive Sinusoidal Surge Current at 8.3 ms, l,sM ................................................ 80A •.....................
Thermal Resistance, Junction to Case, RDJe ........................................................ 2.5°C/W .................. .
Thermal Resistance, Junction to Ambient, RDJ....................................................... 60°C/W .................. .
Storage Temperature Range, TSTG ............................................................. -55°C to + 150°C .............. .
Maximum Operating Junction Temperature, Tim..................................................... +150°C .................. .
Note 1. Above 100°C use the tab for electrical connection.
Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive data refer to
the Output Current vs. Temperature Curves on this datasheet.
BYW29·50 BYW29·100 BYW29·150 BYW29·200 BYW80·50 BYW80·100 BYW80·150 BYW80·200
Peak Inverse Voltage, VR ..................... 50V ..... 100V ..... 150V
200V
50V
100V
150V .... 200V
Repetitive Peak Inverse Voltage, VRWM ...... ... 50V ..... 100V ..... 150V ... 200V ..... 50V .... 100V ... 150V .... 200V
Non·Repetitive Peak Inverse Voltage, VRSM •... 50V •..•. 100V ..... 150V ... 200V .•... 50V .... 100V ... 150V .... 200V
Maximum Average D.C. Output Current
@ Te = 125°C, (Note 1) ................. 7.0A ..................................... 7.0A .................... .
Non·Repetitive Sinusoidal Surge Current at 8.3ms, • .. .. .. .. .. .. .. ... 80A .......................... 100A .................... .
Thermal Resistance, Junction to Case, RDJe ......................................... 2.5°C/W ................................ ..
Thermal Resistance, Junction to Ambient, RDJ. ...................................... 60°C/W ................................ ..
Operating and Storage Temperature Range .................................... -55°C to +150°C ............................. ..
Maximum Operating Junction Temperature, Tim..................................... +150°C ................................. ..
Note 1. Above 100°C use the tab for electrical connection.
MECHANICAL SPECIFICATIONS
UES1401 SERIES
BVW29 SERIES
BVW80 SERIES
SEAT1NG
PLANE
rS-1
~rFS c
e--;
A
I
IL.J.LL
IIL1 21T
~TA'A
I
f-A
_ IJ
-I
j
~-
,~-l
MILLIMETERS
DIM
MIN
MAX
A
B
C
14.23
9.66
15.87
10.66
356
4.82
0.51
3.531
2.29
1.14
3.733
2.79
0.38
0.64
12.70
1.14
4.83
2.54
2.04
1.14
5.85
14.27
177
5.33
D
I
2
•
A":-H
I IT
j'F
E:
i
JI
r- I PIN 1. Cathode
.
G
o
N
......
2. Anode
Tab is connected
. to Cathode.
F
G
H
J
K
L
N
Q
R
S
T
INCHES
MIN
MAX
0.560
0380
0.140
0.020
0.139
0.090
635
304
2.92
1.39
6.85
TO-220AC
0.015
0.500
0.045
0.190
0.100
0.080
0.045
0.230
0625
0.420
0.190
0.045
0.147
0.110
0.250
0.025
0.562
0.070
0.210
0120
0.115
0.055
0.270
nn
SEMICONDUCTOR
~ PRODUCTS
12/83
2-97
_UNITRDDE
..
UES1401
UES1402
UES1403
UES1404
BYW29·50
BYW29·100
BYW29·150
BYW29·200
BYW80·50
BYW80·100
BYW80·150
BYW80·200
ELECTRICAL SPECIFICATIONS
Type
TJ = 25·C
TJ = lOO·C
Trr
TR = 8nS
O.8V@4A
O.895V@8A
5pA
150pA
150pA
150llA
500pA
35nS'
1.4\1
-
L300V
@
20A
0.850V
@
5A
-
600pA
35nS2
L4V
-
L25V
@
22A
0.850V
@
7A
lOpA
ImA
35nS2
-
i5nc 3
TJ = 25·C
TJ = lOO·C
UES1401
UES1402
UES1403
UES1404
50V
100V
150V
200V
0.9V@4A
O.975V@8A
tp =300pS
BYW29·50
BYW29·100
BYW29·150
BYW29·200
50V
lOOV
150V
200V
BYW80·50
BYW80·100
BYW80·150
BYW80·200
50V
lOOV
150V
200V
Maximum
Reverse Current, IR
@ratedVR
Typical
Forward
Recovery
Voltage
@lA
Typical
Forward
Recovery
Charge
QRR@25·
Maximum
Forward Voltage, VF
Maximum
Reverse
Voltage
VR
Maximum
Reverse
Recovery
Time
NOTES: L Measured in circuit IF = O.5A, IR = l.OA, IREC = O.25A
2. Measured in circuit IF =lA to VR '" 30V, diF/dt =50A/pS
3. Measured in circuit IF
=2A, VR s: 30V, diF/dt =-20AlpS
Output Current
vs Temperature
Peak Output Current vs
Case Temperature
10f---+-+
g
...
~
~
g
...z
18~~~r-~~~~~--~-;~r--;
:>
u
...~
....
a:
a:
14~----t-~~~~~~.-~~~~
:>
J
o
o
~ 10~----~---1--~~--~~~~~
I
~
I
oL-_~
50
75
100
125
TEMPERATURE ('C)
100
150
5,000
1,000
I'-- ,
..g500
I.
I
........
100
:::
50
w
"r--.
60
"
:>
40
f.
20
...'"
0
o
10
.5
.1p$
"
0:
~
£
80
~
0:
..........
0:
~
"z
Peak Half Sine Current vs.
~ Duration for Non-Repetitive Pulse
Z
I
50
!,as
lOllS
100,,5
130
__
140
~
150
Multiple Surge Current vs. Duration
100
I
W
~_~~_~
120
T, - CASE TEMPERATURE ('e)
Forward Pulse Current vs. Duration
10,000
__
110
Ims
IOmS
2
" "-
..............
---
5 10 20
50 100 200
CYCLES AT 60 Hz SINE WAVE
500 1000
PULSE DURATION
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924·1235
2·98
PRINTED IN U.S.A.
BYW29·50
BYW29·100
BYW29·150
BYW29·200
UES1401
UES1402
UES1403
UES1404
Typical Forward Current
vs Forward Voltage
Typical Reverse Current
vs Voltage
.01
100 .---r-r---r---r---r--.-,-.---.--.-r-"
50~-+~~4-+-~~~~~~"~
20
10
H--t--t-t-+-+----!-IIPAy~"..~q~_H
f-+-t-l-+-+--hfi~~[/f-.¥--V'+-+---+--l
l& III
~
I-
-f-
"'
II:
II:
.5
::J
u
f-+-I--H-+--1
II ....' ~ II
I
f-
I-
-~~ l:fl¥
-II
iJ,-rr
.1
.2
I'll
!oJ
IA
.02
lA
Z
. BYW80·50
BYW80·lQO
BYW80·150
BYW80-200
200
.02
.01 L..l.Ic.J.L.L...IJL.l.I...IL-'--L..L-L..L.J-l
.1 .2 .3 .4 .5 .6 .7 .8 .9 I.OI.ll.21.3
1000
~
120
T( 1~12j'CI
100
eo 60 40 20
VOLTAGE IN % OF PIV
V, -VOLTAGE (V)
Thermal Impedance
vs Pulse Width
~
~
2.5
r--~
1.0
~
.25
I........ "
In
OSCILLOSCOPE
NOTE I
=NOTES,
1 OSCilloscope: Rise time S. 3n5; Input Impedance = 500
2 Pulse Generator' Rise time S 8ns; source Impedance 100.
3. Current viewing resistor. non·induclrve. coaxial recommended
/
.01.02 .05.1 .2
(A~~~~~)
NOTE 3
V~
.1
.OS
+
::::
.5
j
Reverse-Recovery Circuit
ton
50n
.5 I 2
tp -
5 10 20 50100200
1000
PULSE WIDTH (ms)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235'
2-99
PRINTED IN U.S.A.
REC-TIFIERS
UES1501
UES1502
UES1503
UES1504
High Efficiency, 16A
FEATURES
•
•
•
•
•
DESCRIPTION
Very Low. Forward Voltage
Very Fast Recovery Times
Economical, Convenient TO-220 Package
Low Thermal Resistance
Mechanically Rugged
The UES1500 Series, in the economical,
convenient TO-220 package, is specifically
designed for operation in power switching
'circuits to frequencies in excess of
100kHz. The very low forward voltage and
very fast recovery time make them
particularly suited for switching type
power supplies.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES1501 ................................................. 50V
Peak Inverse Voltage, UES1502 ................................................ 1OOV
Peak Inverse Voltage, UES1503 ................................................ 150V
Peak Inverse Voltage, UES1504 ................................................ 200V
Maximum Average D.C. Output Current
@Tc 100°C ........................... 16A
@To = 25°C ........................... 3.3A
@To 25°C (Note 1) ................. 1O.OA
Non-Repetitive Sinusoidal Surge Current, 8.3ms .................................. 300A
Thermal Resistance, Junction to Case, 9J-C •••••••••••••••••••••••••••••••••• 1.5°C/W
Thermal Resistance, Junction to Ambient, 9J- o ............................... 60°C/W
Operating and Storage Temperature ................................ -55°C to + 150°C
Note: 1. Using Wakefield Type 295 heatsink with convection cooling. For more definitive data refer
=
=
to the Output Current vs Temperature Curve on this data sheet.
MECHANICAL SPECIFICATIONS
UES1501-UES1504
INCHES
MIN
MAlI
0
B
C
0
F
Dr
H
G
,~
H
J
SECTA·A
K
JI8~:\.~
dI
D
No--
L PIN I. Cathode
G PIN 2. Anode
Tab is connected
to Cathode.
l
N
Q
R
S
T
0.560
0.380
0.140
0.020
0.139
0.090
0.015
0.500
0.045
0.190
0.100
0.080
0.045
0.230
TO-220AC
MILLIMETERS
MIN
MAX
0.625 14.23 15.87
0.420 9.66 10.66
0.190 3.56
4.82
0.045 0.51
1.14
0.147 3.531 3.733
0.110 2.29
2.79
0.250
6.35
0.025 0.38
0.64
0.562 12.70 14.27
0.070 1.14
l.n
0.210 4.83
5.33
0.120 2.54
3.04
0.115 2.04
2.92
1.39 .
0.055 1.14
0.270 5.85
6.85
nn
SEMICONOUCTOR
~ PROOUCTS
3/83
2-100
_UNITRODE
UES1501
UES1502 UES1503
UES1504
ELECTRICAL SPECIFICATIONS
Maximum
Maximum
Reverse Current
Forward Voltage
Type
@PIV
PIV
=25"C
TJ
UESl50l
UESl502
UESl503
UESl504
50V
lOOV
150V
200V
TJ
= lOO"C
.975V @ 16A
.B95V@ l6A
l.lOV @ 32A
l.OV @ 32A
TJ
=25"C
TJ
10ilA
=lOO"C
'"'"::J
'-'
""'u:
12
20
i'5
g
...z
10
I
10
=
V
IlL
II
/UI
II
+lOQOC
+25°C
I--
-50·C
"'"
"'"
0.5
.3
.4
.5
Typical Reverse Current vs Voltage
5000
2000
1000
~
...z
"'::J'"
'"u
500
l.~
\'2.,,·c..........
/f
5,000
}
/
~
ir
10
-
.!:
_I-'"'"
0.5
0.2
0.1
i"--- I"'"
/"
'2.t7
I--
40
60
80
1.0 1.1 1.2
Current vs Duration
for Non-Repetitive
Pulse
b
...........
500
1"---1"
100
50
I'
20
.9
Square Pulse
g 1,000
§
'"
'"'-'::J
'"
.8
1'f".-
"""';"1-'""
w
ill1:;
.7
VOLTAGE (V)
Forward Pulse Current vs Duration
10,000
11'
t---;;6.c
/'
200
100
50
-
1/
.6
v, -
TEMPERATURE ("C)
I
I
UI
4
1
I 1
IhrIII I
I
0
~~ /
~~
+150·C
+125·C
"'::J'"
'"'-'
''"&l"
"'to
""'"
"'~
2.0V
vv
16
...
35n5
ID
Typical Forward Current vs
Forward Voltage
50
14
Typical
Forward
Recovery
Voltage
@lA
tr::: 8n5
BOOIlA
Output Current vs Temperature
g
Maximum
Reverse
Recovery
Time*
100
10
120
.1ps
.5
Ips
lOps
50
100".
Ims
lOms
% OF PIV
PULSE DURATION
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-101
PRINTED IN
U.S.~.
UES1501
Multiple Surge Current VI Duration
100
80
"
\
~
'\
z
~
60
OJ
"::>'"
.
UI
UES1502
UES1503
UES1504
Thermal Impedance vs Pulse. Width
2.5
~
u
~
....
OJ
u
z«
"",
8
""~
~
V
0.5
~
'"ffi
0.25
:I:
>I
20
J
VV
i" f-'"
I- 1-1-
V
«
i'r--t-
40
0
1.0
1/
0.1
1/
II
1 2
10 20
50
100 200
.05
.01.02.05.1 .2
500 1000
.5 1 2
5 10 20 50 100200· 1000
'p - PULSE WIDTH (ms)
CYCLES AT 60 Hz SINE WAVE
Reverse-Recovery Circuit
100
500
+
25Vdc
:::=:: (APPROX.)
lCl
NOTE 3
OSCILLOSCOPE
NOTE 1
NOTES:
1. Oscilloscope: Rise time S 3n5; input impedance = 500.
2. Pulse Generator: Rise time S 8ns; source impedance 100.
3. Current viewing resistor. non-inductive, coaxial recommended.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617)" 924·1235
2-102
PRINTED IN U.S.A.
RECTIFIERS
UES240 1-UES2404
High Efficiency, 16A Center-Tap
FEATURES
DESCRIPTION
• Very Low Forward Voltage
• Very Fast Recovery Times
• Economical, Convenient TO-220AB
Package
• Low Thermal Resistance
• Mechanically Rugged
• PIV up to 200V
The UES2401 Series in the' economical,
convenient TO-220AB package, is
specifically designed for operation in
power switching circuits to frequencies in
excess of 100kHz. The series combines
two high efficiency devices into one
package, simplifying installation, reducing
heatsink requirements and the need to
purchase matched components.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES2401 .................................................. 50V
Peak Inverse Voltage, UES2402 ................................................. lOOV
Peak Inverse Voltage, UES2403 _. _. __ ............................ _. .. . . . . .. . . . .. 150V
Peak Inverse Voltage, UES2404 _.... ; ........ _..... _... _...... __ ................ 200V
Maximum Average D.C. Output Current
@ Te = 125°C (Note 1) .................... 16A
@ TA =25°C ............................... 3A
@ TA =25°C (Note 2) ..................... IDA
Non-Repetitive Sinusoidal Surge Current, 8.3ms ... _.................... _.. _. __ .. _. 80A
Thermal Resistance, Junction to Case, 8J-e . _.............. _.......... ...... 1.75°C/W
Thermal Resistance, Junction to Ambient, 8J-A ............................... _ 60°C/W
Operating and Storage Temperature Range ............... __ .......... -55°C to +150°C
Note 1. Above 8A use the tab for electrical connection.
Note 2. Using Wakefield Type 295 heatsink with convection cooling. For more definitive
data refer to the Output Current vs. Temperature Curves on this datasheet.
MECHANICAL SPECIFICATIONS
UES240 1-2404
SEATING
TO-220AB
PLANE
INCHES
MIN
MAl
•
~
Pin 1
1
Pin 2
&
Tab
A.
0.560
B
0.380
C
0.140
0.020
0
14
Pin 3
0.139
F
G . 0.090
H
-
J
0.015
K
S
0.500
0.045
0.190
0.100
0.080
0.045
T
0.230
l
N
Q
R
MIlliMETERS
~MIN
MAX
0.625 14.23 15.87
9.66 10.66
3.56
4.82
0.045
0.51
1.14
0.147
3.531 3.733
0.110
2.29
2.79
0.250
6.35
Q.025 0.38
0.64
0.562 12.70 14.27
0.070 1.14
1.77
0.210 4.83
5,33
0.120
2.54
3.04
0.115
2.04
2.92
0.055 1.14
1.39
0.270 5.85
6.85
0.420
0.190
n nPRODUCTS
SEMICONOUCTOR
L-==:J
11182
2-103
_UNITRDDE
..
UES2401 UES2402 UES2403 UES2404
ELECTRICAL SPECIFICATIONS
Maximum
Forward Voltage
@
Type
PIV
UES2401
UES2402
UES2403
UES2404
50V
lOOV
150V
200V
Maximum
Reverse Current
@PIV
TJ = 25·C
TJ = lOO·C
TJ = 25·C
TJ = lOO·C
O.9V@ 4A
0.975@BA
tp = 300ps
0.BV@4A
0.B95@ BA
5pA
150pA
150pA
150pA
500pA
Maximum
Reverse
Recovery
Time"
Typical
Forward
Recovery
Voltage
@lA
t, = Bns
35ns
l.4V
"Measured in circuit IF = O.5A, I. = l.OA, I. Ee = O.25A
Output Current
vs Temperature
Peak Output Current vs
Case Temperature
18
16
g
...z
'"a:a:
'"uI
14
12
10
-~
110
50
25
75
100
120
130
140
150
T, - CASE TEMPERATURE C'C)
TEMPERATURE ('C)
Typical Forward Current
vs Forward Voltage
Typical Reverse Current
vs Voltage
.01
100
1.6~ :;;;,:V
20
~I/
10
g
...z
'"a:a:
'"I
u
-~
.5
.2
.1
.05
.02
.01
~ II
TJ
r/
.1
1
I-
-,~ ~<
1/
,,"
"f.
/1
II
+=-r.T
r-
0:
0:
V
"
~
CJ
-1/ /-. '
II
'"
,CJ
If?
l-
Z
~
-r~
~I
- I - y..
= -so·e
r
.2
A
2
A
.02
50
10
_" 20
fi?P
-
l'lr~c
I
1/
I' l~lOr~
100
1-'
200
I
11il
1000
~
120
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.21.3
n
r-~
~
i i+112
T
100
80
60
40
20
VOLTAGE IN % OF PIV
V,-VOLTAGE(V)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-104
PRINTED IN U.S.A.
UES2401 UES2402 UES2403 UES2404
IEII
Forward Pulse Current vs Duration
10,000
5,000
1,000
5
r---- t"---
1
r---.....
500
---
w
w
100
50
'"::>-'
a.
"z
>=
'"
w
"::>
'"u.0
I"--
r--
I"
80
0:
z:
'"
I
1
Peak Half Sine cu~re~t VS • . 1
~ Duration for Non-Repetitive Pulse
j
I-
~
u
Multiple Surge Current vs Duration
100
~
60
0:
'"
40
~
'f'--
r-
""---I-
20
;i2
10
50
lOps
I
100,115
lms
10
2
lOms
20
50
100 200
500 1000
CYCLES AT 60 Hz SINE WAVE
PULSE DURATION
Thermal Impedance
vs Pulse Width
L..;
......
j.-'j.-'
Reverse-Recovery Circuit
500:
100
J...t-I-
+
===
j..-V
25Vdc
(APPROX.)
10
V
NOTE 3
OSCILLOSCOPE
NOTE 1
LL V
N~
.02
.01.02 .05.1 .2
tp
.5 1 2
-
5 10 20 50100200
NOTES:
1. Oscilloscope: Rise lime::; 3ns; input impedance::: 500.
2. Pulse Generator: Rise time :5 Bns; source impedance 100 .
3. Current viewing resistor, non· inductive, coaxial recommended.
1000
PULSE WI DTH (ms)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
2-105
PRINTED IN U.S.A.
RECTIFIERS
UES2601
UES2602
UES2603
UES2601HR2
UES2602HR2
UES2603HR2
High Efficiency, 30A Center-Tap
FEATURES
• Very low Forward Voltage
• Very Fast Switching Speed
• Convenient Package
• High Surge
• low Thermal Resistance
• Mechanically Rugged
• Both Polarities Available
DESCRIPTION
This series combines two high efficiency
devices into one package, simplifying
installation, reducing heat sink requirements and the need to purchase
matched components.
ABSOLUTE MAXIMUM RATINGS
.50V
Peak Inverse Voltage, UES260l, UES2601HR2
Peak Inverse Voltage, UES2602, UES2602HR2
.lOOV
Peak Inverse Voltage, UES2603, UES2603HR2
............ .
. ... l50V
. .. 30A
Maximum Average D.C. Output Current at Tc = lOO°C ...... .
Non·Repetitive Sinusoidal Surge Current 8.3 ms ..................... .
. .400A
Thermal Resistance, Junction to case
.........
. . lOCIW
Operating and Storage Temperature Range
.. - 55°C to + l75°C
POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75°C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simUlate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applications, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers disSipated in the switching transistors are substantially
less than when using other rectifiers.
MECHANICAL ~PECIFICATIONS
•
POSITIVE OUTPUT
~I
I
I'-
• •
14
C 0
•
UES2601
UES2602
UES2603
UES2601HR2 UES2602HR2 UES2603HR2
FwrM
CASE
~iJE
I ~I
NEGATiVE OUTPUT
ins.
mm.
.B75 MAX.
.135 MAX.
.250 .450
.312 MIN.
.038-.043 DIA.
.188 MAX. RAD.
1.177-1.197
.655-.675
.205 .225
.420 .440
.525 MAX. RAD.
.151-.161 DIA.
22.23 MAX .
3.43 MAX.
6.35 11.43
7.92 MIN .
0.97 1.09 DIA .
4.78 MAX. RAD .
29.90 30.40
16.64 17.15
5.21-5.72
10.67-11.18
13.34 MAX. RAD.
3.84 4.09 DIA .
CASE
'"00"
I~J'
I 7 i'
G
ANODE 2
.-
J-
~
;0---<
K
A
B
C
D
E
F
G
H
L
J
K
L
M
TO·204AA (TO·3)
Noto:
Standard polarity is positive output.
For reverse polarity (negative output) add suffix "R", ie. UES2601R.
nn
L=.J
2-106
SEMICONDUCTOR
PRODUCTS
_UNITRODE
UES2601
UE52601HR2
UES2602
UES2602HR2
UES2603
UE52603HR2
ELECTRICAL SPECIFICATIONS
Type
PIV
UES2601/2601HR2
UE52602/2602HR2
UES2603/2603HR2
50V
lOOV
l50V
Maximum
Forward Voltage
Maximum
Reverse Current
@
@
Maximum
Reverse
Recovery
Tc = 25°C
Te = 12S'C
Tr.=2S'C
Te= 12S'C
Time·
.930V
@
15A
t, = 3oo}l5
.825V
@
l5A
t,=3oo1<5
20}lA
4mA
35nS
* Measured in circuit IF = O.SA, IR = lA, 'lEe = O.2SA
Output Current vs.
Case Temperature
Peak Output Current vs.
Case Temperature
,----,-,.,--,--.-...,.-.,---""TT-----,
50
30 t--
~~
5:
....z
UJ
0:
0:
:>
20
(J
....
:>
Q.
....
:>
0
10
g
40 ~--~~----~~~~--~_+~--_1
....
~
~
G 30~----+-----~~--~~r-~-1---i
....
i[
....
::J
~ 20 ~----/-
~
I
.2
~
1
10 ~----+_----1------r----_+~~_1
175
125
150
CASE TEMPERATURE ('C)
100
Tc -
100
120
140
160
180
T, - CASE TEMPERATURE ('C)
Forward CUrrent
vs. Forward Voltage
50
5:
....z
UJ
0:
0:
20
/
10
c
0:
~
/
...'"0
-<
.5
.2
/
'I
,/
,,
t1
/
lZ
V, -
.01
§.
.02
!;:
UJ
.05
~
/
a
~
0:
UJ
~
- TYPICAL V,
---- = MAXIMUM v~
J ~+2S'C
.1
.2
.5
1
/--
2
20
.6
.8
1.0
FORWARD VOLTAGE (V)
A-+
T
50
1.2
-r F=i-I-!
V
I 5
-'" 10
'j
.4
:<
./
J
.005
/-T J = +7S'C
I-TJ = +12S'C
~
/
(J
\- V/ "' "'
1/
/
:>
/
.001
.002
~
TJ = +IS0'C
3D
Typical Reverse Current
VS. Reverse Voltage
F::: -TJ =
II
II
+100'C
r-TJ = +12S'C'
--- ,..-V
1
I-- V
+IS0'C
I
130 120 110 100 90 80 70 60 50 40 30 20 10 0
V, - REVERSE VOLTAGE (% OF PIV)
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-107
PRINTED IN U.S.A:
..
UES2601
UES2601HR2
Maximum Forward Surge
VS. Number of Cycles
400
~
z
...
300
UJ
c:
c:
~ 200
100
1.0
w
.5
E
""
u
w
Q.
::;
'"
/
.2
V
/
~
.02
'-....
10
..--- -
V
fV'L
~ICYClE
N -
,..-/
.1
~
UES2603
UES2603HR2
Thermal Impedance
vs. Pulse Width
z
«
o
~
I
J
~
UES2602
UES2602HR2
20
50
100
.01
,01.02 .05.1 .2 .5 1 2
5 10 20 50 100 200
tp - PULSE WIDTH (mSI
1000
200
CYCLES OF 60 Hz SINEWAVE
Reverse-Recovery Circuit
Ion
500
+
_
-=-
25Vdc
(APPROX.I
In
NOTE 3
OSCILLOSCOPE
NOTE!
NOTES:
1. Oscilloscope: Rise time::;;;; 3ns; input impedance = SOO.
2. Pulse Generator: Rise time:::;;;; 8ns; source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
The following tests are performed on 100% of the devices specified UES2601 HR2. 2HR2. 3HR2.
SCREEN
MIL-STD-7S0
METHOD
CONDITIONS
= 150·C
1. High Temperature
1032
24 Hours @ TA
2. Thermal Shock (Temperature Cycling)
1051
F, 20 Cycles, -55 to +150·C. No dwell required
@ 25OC, t ., 10 min. at extremes.
3.
Hermetic Seal
a. Fine
b. Gross
1071
4. Thermal Impedance
5.
Interim Electrical Parameters
6.
High Temperature Reverse Bias (HTRB)
7.
Final Electrical Parameters
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924-1235
H, Helium
C, Liquid
Sage Test
GO/NOGO
1038
GO/NOGO
2-108
VFand IR @25·C
A, 48 Hours, Te
= 125·C, VR = 80% of rating
VF and IR @ 25·C
PRINTED IN U.S.A.
UES2604
UES2605
UES2606
UES2604HR2
UES2605HR2
UES2606HR2
RECTIFIERS
High Efficiency, 30A Center-Tap
FEATURES
• Very Low Forward Voltage (1.15V)
• Very Fast Recovery Times (50nSec)
It Low Profile Package
• High Surge Capability
• Low Thermal Resistance
• Mechanically Rugged
• Both Polarities Available
DESCRIPTION
The UES2604 series is· specifically
designed for operation in power switching
circuits operating at frequencies of at
least 20 KHz.
This series combines two high efficiency
devices into one package, simplifying
installation, reducing heat sink requirements and the need to purchase
matched components.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, UES2604, UES2604HR2 .............................. 200V
Peak Inverse Voltage, UES2605, UES2605HR2 .............................. 300V
Peak Inverse Voltage, UES2606, UES2606HR2 .............................. 400V
Maximum Average D.C. Output Current @ Tc = lOO·C ......................... 30A
Surge Current, 8.3mS .................................................. 300A
Thermal Resistance, Junction to Case .................................... 1·C/w
Operating and Storage Temperature Range ...................... - 55·C to + 150·C
POWER CYCLING
These devices possess the unique ability to pass many
thousands of cycles of a stress test designed to evaluate the
integrity of the bonding systems used in the construction of
power rectifiers.
In this stress test, the case of the device is not heat sunk.
Full rated forward current is supplied to force a case temperature increase at least 75°C, at which time, the current is
removed and the case allowed to cool. The cycle is repeated a
minimum of 5,000 times to simulate equipment being turned
on and off. Extended power cycling tests demonstrate a product
capability in excess of 25,000 cycles.
SWITCHING CHARACTERISTICS
The switching times of these ultra-fast rectifiers increase
relatively little, with temperature or at different currents. Even
in severe applicat~ns, such as catch diodes for switching
regulators and output rectifiers for high frequency square
wave inverters, these devices switch many times faster than
the fastest associated transistors. Thus, the stresses on and
powers dissipated in the switching transistors are substantially
less than when using other rectifiers.
MECHANICAL SPECIFICATIONS
•
POSITIVE OUTPUT
~I
I
14
• •
14
CASE
UES2604
UES2605
UES2606
UES2604HR2 UES2605HR2 UES2606HR2
CASE
~f1bE
e
I ~I •
NEGATIVE OUTPUT
D.
F~M
G
I
I
~.J:'
A
B
ANODE 1
ANODE 2
o-
H
I
i"
e
J-~
-K
L
C
0
E
F
G
H
J
K
L
M
ins.
mm.
.875 MAX.
.135 MAX .
.250-.450
.312 MIN.
.038-.043 DIA.
.188 MAX. RAO.
1.117-1.197
.655-.675
22.23 MAX .
3.43 MAX.
6.35-11.43
7.92 MIN.
0.97-1.09 DIA.
4.78 MAX. RAD.
29.90 30.40
16.64-17.15
5.21-5.72
10.67-11.18
13.34 MAX. RAO .
3.84-4.09 DIA .
.205 .225
.420 .440
.525 MAX. RAD.
.151-.161 DIA.
TO·204AA (TO·3)
Nole:
Standard polarity is positive output.
For reverse polarity (negative output) add suffix uR", ie. UES2604R.
n nPRODUCTS
SEMICONDUCTOR
l.=.J
4/79 (Rev. 1)
2-109
_UNITRDDE
UES2604
UES2605
UES2606
UES2604HR2 UES2605HR2 UES2606HR2
ELECTRICAL SPECIFICATIONS, PER LEG
Maximum
PIV
UES2604/2604HR2
UES2605/2605HR2
UES2606/2606HR2
200V
300V
400V
* Measured in circuit
IF::
.5A,
IR
Te =2S'C
Te = 12S'C
Te =2S'C
T e =12S'C
Time-
l.2SV
@ lSA
tp =3001'5
1.l5V
@lSA
tp
3001'5
SOI'A
lOrnA
50nS
=
=lA, i REC = .25A
Peak Output Current vs.
Case Temperature
Output Current vs.
Case Temperature
5:
30
.............
"""
....z
W
Q:
Q:
=>
Maximum
Reverse
Recovery
Maximum
Reverse Current
Forward Voltage
Type
20
u
....
=>
0..
....
=> 10
0
I
_0
100
'" ""
110
Te -
120
'\.
130
1\
140
ISO
CASE TEMPERATURE ('C)
T, - GASE TEMPERATURE C'G)
Typical Reverse Current
vs. Reverse Voltage
Forward Current
vs.· Forward Voltage
lOOK
100
SO
~ :;:;: ~ /'
/r/ /
5:
20
.... 10
z
W
Q:
Q:
G2
o
Q:
~ .5
Q:
-r-.tJ
~ .2 -
_~
.1
.05
.02
.01
$
-",! '"
/ V
/ / / /
/ /
/
/
.tJ .tJ ~'if
~
'f. 'f.
II II
~ 10K
~
tfJj_
i'
....
z
"'
Q:
Q:
=>
"'en
"'~
Q:
!t/
/
-
If
1/
II
rV y Y
II / II II
25'G
10
--
r-
JlL'
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.11.2 1.3 1.41.5
o
V, - FORWARD VOLTAGE (V)
10
m
~
V, -
2-110
V
100
I
-~
125'C
"/
I
"100'G
0:
"'j "'j
",..-
""l""~
If
U
II '"-. 1/
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
IK
-
w
~
w m
./
L
.......
M
~
lOOllOlml~lWlSO
REVERSE VOLTAGE (% OF PIV)
PRINTED IN U.S.A.
UES2604
UES2605
UES2606
UES2604HR2 UES2605HR2 UES2606HR2
Maximum Forward Surge
vs. Number of Cycles
300
I""
g
...
"'0:0:
z
200
:J
u
I
-~
100
Thermal Impedance
vs. Pulse Width
"" " ""
I-!\J\..
i T
1C
UJ
U
v-- 1-1-
.5
/'
Z
'"
a
UJ
~
LE
"::;
f'-.
-
..J
"
~
//
.2
.05
UJ
I
l-
I
/
.1
V
/
.02
."
o
Q5' .01
10
1
N-
20
50
100
'"
200
.01.02 .05.1 .2
CYCLES OF 60 Hz SINEWAVE
tp -
.5 1 2
5 10 20 50100200
1000
PULSE WIDTH (mS)
Reverse-Recovery Circuit
Ion
son
+
_
-=-
25Vdc
(APPROX.)
10
NOTE 3
OSCILLOSCOPE
NOTE 1
=
NOTES:
1. Oscilloscope: Rise time ~ 3nsj input impedance = 50n.
2. Pulse Generator: Rise time ~ 8nsi source impedance 100.
3. Current viewing resistor, non·inductive, coaxial recommended.
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
The following tests are performed on 100% of the devices specified UES2604HR2. SHR2. 6HR2.
SCREEN
MIL-STD-7S0
METHOD
CONDITIONS
1.
High Temperature
1032
24 Hours @ TA = 150·C
2.
Temperature Cycle
1051
F. 20 Cycles. -55 to +150·C. No dwell required
@ 25oc, t ;. 10 min. @ extremes
3.
Hermetic Seal
a. Fine Leak
b. Gross Lea k
1071
4.
Thermal Impedance
5.
Interim Electrical Parameters
6.
High Temperature Reverse Blocking
7.
Final Electrical Parameters
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
H. Helium
C, Liquid
Sage Test
GO/NOGO
Similar to
Method 1040
GO/NOGO
2-111
VF and IR @ 25·C
'Iz Sine Reverse, t = 48 Hours. Tc = 125·C. VRW M
= rating. F = 50-60 Hz, 10 = OA
VF + I R @25°C
PDA = 10% (Final Electricals)
PRINTED IN U.S.A.
RECTIFIERS
UES3005C
UES3010C
UES3015C
High Efficiency, 30A Centertap, 50-150V
FEATURES
• Economical Convenient
TO-3P Package
• Insulated Mounting Hole
• Can Be Clip Mounted
• Mechanically Rugged
• Low Thermal Resistance
• Ultra-Fast Recovery Time
• Extremely Low VF
DESCRIPTION
The UES3005C Series, in the economical, convenient TO-3P package, is specifically
designed for operation in power switching circuits to frequencies in excess of 100kHz.
The very low forward voltage and very fast recovery time make them particularly suited
for switching type power supplies.
ABSOLUTE MAXIMUM RATINGS, either leg unless noted
UES3005C
UES3010C
UES3015C
Peak Inverse Voltage .................................... VR, VRWM, VRRM ........... 50V ............. lOOV ............ 150V ..
Maximum Average D.C. Output Current
@ Tc = 125°C, full wave operation (see curves) ......•....... IFIAV) ................................... 30A .................... .
Non-Repetitive Sinusoidal Surge Current, 8.3mS ................ IFSM . .. .. .. .. .. .. .. .. .. .. .... .. .... ... 300A .................. ..
Thermal Resistance Junction to Case ........................... R/IJ-c .................. ,'............. '. 1.5°C/W .................. .
Thermal Resistance Junction to Case
both legs together, full wave ................................ RiIJ-c ................................. 0.9°C/W ................. ..
Thermal Resistance Junction to Ambient
either leg, or both legs together ............................. R/IJ-A ................................. 40°C/W ................. ..
Operating and Storage Temperature Range ........... "....... Top, TSTG .......................... -55°C to + 150°C .............. .
ELECTRICAL SPECIFICATIONS
Type
PIV
UES3005C
UES3010C
UES3015C
50V
100V
150V
• Measured in circuit IF
Maximum
Reverse Current (IR)
@PIV
Maximum
Forward Voltage (VF)
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
1.0@ 15A
1.1 @ 30A
0.9@15A
1.0@30A
15IJA
5mA
Maximum
Reverse
Recovery
Time"
Typical
Forward
Recovery
Voltage
@ lA
TR = 14ns
35ns
2.0V
=O.50A, IRM =l.OA, IREe = O.25A.
MECHANICAL SPECIFICATIONS
TO-3P
I~I
~~!
FiF~97NOM.
,.....
~
f==
t-
•
PI~ Ilpl~'3'
PIN 2
&
3
TAB
DIM.
A
B
C
D
E
F
G
H
J
K
~~~
-M
-N-
:J
L
M
N
INCHES
MIN. MAX.
.620
.640
.825
.845
.060
.080
.780
.800
.087
.102
.019
.029
.150
.170
.212
.222
.140
.144
.042
.052
.074
.084
.113
.123
.430 Nom.
nn
SEMICONDUCTOR
~ PRODUCTS
10/86
2-112
_UNITRODE
UES3005C
Average Output Current
vs Case Temperature
40
t--
I--
Full
Leg
See
Leg
UES3010C
UES3015C
Peak Output Current vs Case Temperature
(Either leg)
Wave Operation with Each
at 30% Minimum Duty Factor.
Peak Current Curve for EJther
Operating Individually.
r\
\
\
1\
\
25
100
125
50
75
Te, CASE TEMPERATURE _ (OC)
100
150
110
Typical Forward Current vs Forward Voltage
/
+150°C10
~
= 1=
=>
140
150
100
S
a:
130
Typical Reverse Current vs Voltage
100
r-
120
Te. CASE TEMPERATURE - (OC)
~~
:<
g
/ /
10
r-
15
lE
=+125°C
<.)
II
li1
:/,
'~"
~
i"'-
I
+150 c C
+125°C
+lOQoC
=>
<.)
~-55°C_
+25°C::::
~
...
I
'"ffi"'
~
E
.,;
0.1
.5
0.01
1/
I
/ :I
/
0.1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 l.l 1.2
VF,
10
20 30 40
VOLTAGE - (V)
50 60 70 80 90 100 110 120
% OFVR - (V)
Reverse-Recovery Circuit
Ion
500
-
+25°C
Thermal Impedance vs Pulse Width
(Each leg)
2.0
€
e
+
_
-=-
2SVdc
(APPROX.)
10
NOTE 3
-I-
1.0
...... ~
0.5
'/
"'z
1-" ......
<.)
'"~
OSCILLOSCOPE
NOTE 1
0
0.2
~
0.1
/~
;;'
::E
-=
NOTES:
a:
I
~
=
1. Oscilloscope: Rise time ~ 3ns; input impedance
SOO.
2. Pulse Generator: Rise time ~ 8nsi source impedance 100.
3, Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE - SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET - WATERTOWN, MA 02172
TEL. (617) 926.0404 - FAX (617) 924·1235
.05
"'r-
/
1I
.02
.01
.01.02 .05.1 .2
tp
2-113
.5 I
-
2
5 10 20 50100200 1000
PULSE WIDTH (mS)
PRINTED IN U.S.A.
RECTIFIERS
UES3005S
UES3010S
UES3015S
High Efficiency, 30A, 50-150V
FEATURES
DESCRIPTION
• Economical Convenient
TO-3P Package
• Insulated Mounting Hole
• Can Be Clip Mounted
• Mechanically Rugged
• Low Thermal Resistance
• Ultra-Fast Recovery Time
The UES3005S Series, in the economical, convenient TO-3P package, is specifically
designed for operation in power switching circuits to frequencies in excess of 100kHz.
The very low forward voltage and very fast recovery time make them particularly suited
for switching type power supplies.
ABSOLUTE MAXIMUM RATINGS
UES300SS
UES3010S
UES301SS
Peak Inverse Voltage ..................................... VR, VRWM, VRRM ................... 50V ......... 100V ......... 150V ..
Maximum Average D.C. Output Current @ Tc = 115°C ..•....... IFIAV) ...................................... 30A ................ .
Non·Repetitive Sinusoidal Surge Current, 8.3mS ................ IFsM ..................................... 400A ................ .
Thermal Resistance Junction to Case ........................... RBJ-c ................................... . 1.2°C/W .............. .
Thermal Resistance Junction to Ambient ....................... RBJ-A .......•..........•........... ; ..... 40°C/W . .............. .
Operating and Storage Temperature Range ................... Top, TSTG .............................. -55°C to + 150°C .......... .
ElECTRICAL SPECIFICATIONS
PIV
Type
50V .
100V
150V
UES3005S
UES3010S
UES3015S
Maximum
Reverse Current (IR)
@PIV
Maximum
Forward Voltage (VF)
TJ = 25°C
TJ = 125°C
1.1 @ 30A
1.3@60A
_ l.O@30A
1.25@60A
TJ = 25°C
15!1A
Maximum
Reverse
Recovery
Time·
Typical
Forward
Recovery
Voltage
@ 1A
TR = 14ns
35ns
2.0V
TJ = 125°C·
5mA
* Measured in circuit IF = O.50A. lAM = l.OA, IAEe = O.25A.
MECHANICAL SPECIFICATIONS
TO-3P
1:1
fLH
~'
LJ'l
I
FiF~97NOM.
,.....
~
1=
. PIN 1
CATHOOE 1
PIN2
ANODE
B
C
D
E
F
2
i--N-
DIM.
A
G
H
I
:1
J
K
L
N
INCHES
MIN. MAX.
.620
.640
.825
.845
.080
.060
.780
.800
.087
.102
.019
.029
.150
.170
.222
.212
.140
.144
.042
.052
.OB4
.074
.430 Nom.
1. Mounting surface common to cathode
nL.:::LJn
10/86
2-114
SEMICONDUCTOR
PRODUCTS
_uNiTRODE
UES3005S
Average Output Current
vs Case Temperature
UES3010S
UES3015S
Peak Output Current vs Case Temperature
40
,
1\
1\
\
j
1\
\
25
50
75
100
125
100
150
110
Te. CASE TEMPERATURE - ('G)
Typical Forward Current vs Forward Voltage
150
10
V
~150'C -
10
~
=>
1= f=
tv ~
:<
V II
I
+125°C
0-
II
'"s:
0:
it
/",
=>
u
-5S'C_
5'"c::;
I
+2S'C::::1==
.!E
I
~
0.1
0.01
I
+25°C
I II
I-
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
10
20 30 40
VF. VOLTAGE - (V)
Thermal Impedance vs Pulse Width
Ion
2.0
~
t
+
25Vdc
(APPROX.)
10
NOTE]
OSCILLOSCOPE
NOTE 1
0.5
0.2
~
O. 1
V
.. V
.05
:I:
0-
~
=
"""I--"
V .....
~
/
V
.02
.0 1
1. Oscilloscope: Rise time::;;; 3nsj input impedance
50C.
2. Pulse Generator: Rise time::;;;: 8nsi source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERTOWN. MA 02172
TEL. (617) 926·0404 ' FAX (617) 924·1235
10-11.0
u
'"
~
ffi'"
=
NOTES:
50 60 70 80 90 100 110 120
% OF VR - (V)
Reverse-Recovery Circuit
soo
l+lOlo'c
0:
.,,;
)1/
!
~
II I-
1/
[i1
0.1
+150°C
-5
+125°C
u
...=...
140
100
g
_
130
Typical Reverse Current vs Voltage
100
0-
120
Tc. CASE TEMPERATURE - ('C)
.01.02 .05.1 .2
.5'1 2
5 10 20 50100200 1000
Ip - PULSE WIOTH (mS)
2-115
PRINTED IN U.S.A.
UES4505C
UES4510C
UES4515C
RECTIFIERS
High Efficiency, 45A Centertap, 50 - 150V
FEATURES
• Low Forward Voltage
DESCRIPTION
The UES4505C Series, in the economical, convenient TO-3P package, is specifical!y
designed for operation in power switching circuits to frequencies in excess of 100kHz.
The very low forward voltage and very fast recovery time make them particularly suited
for switching type power supplies.
• Fast Recovery Times
• Economical Convenient
TO-3P Package
• Low Thermal Resistance
• Mechanically Rugged
• PIV up to 150V
ABSOLUTE MAXIMUM RATINGS, either leg unless noted
UES4505C
UES4510C
UES4515C
Peak Inverse Voltage ................................. _.. VR, VRWM, VRRM ......... _. 50V ............. 100V ... _... _..... 150V ..
Maximum Average D.C. Output Current
@ Tc = 125°C, full wave operation (see curves) . _.. _.. _.. _" -'FIAV) ... _............................... 45A .................... .
Non-Repetitive Sinusoidal Surge Current, 8.3mS ................ IFSM .................................. 450A ................... .
Thermal Resistance Junction to Case .......................... ReJ-c ............................... 0.8°C/W .................. .
Thermal Resistance Junction to Case
both legs together, full wave ............................... R6J-c ..........•.................... 0.6°C/W .................. .
Thermal Resistance Junction to Ambient
either leg, or both legs together ............................ ReJ-A ................................ 40°C/W .................. .
Operating and Storage Temperature Range .................. Top, TSTG ........................... -55°C to +150°C .............. .
ELECTRICAL SPECIFICATIONS
Type
PIV
UES4505C
UES4510C
UES4515C
50V
100V
150V
·Maximum
Forward Voltage (VF)
TJ
I
= 25°C
1.1 @45A
1.0@22.5A
TJ
Maximum
Reverse Current (IR)
@PIV
= 125°C
1.0@45A
.88@22.5A
TJ
= 25°C
TJ
20/lA
Maximum
Reverse
Recovery
Time'
= 125°C
Typical
Forward
Recovery
Voltage
@ 1A
tr = 14ns
50ns
lOmA
2.0V
• Measured in circuit IF = O.50A, 'IRM " l.OA, IREC = O.25A.
MECHANICAL SPECIFICATIONS
I~I
rc~ ~
B
y1
FiF2
---:-::
.- -
TO-3P
7NOM
•
.
PI~ 1Ipl~'3'
PIN2
&
TAB
3
OIM.
A
B
C
D
E
F
G
H
J
~~~.
-M
I---N-
:J
K
L
M
N
INCHES
MIN.
MAX.
.620
.640
.845
.825
.060
.080
.780
.800
.087
.102
.Oi9
.029
.150
.170
.212
.222
.140
.144
.042
.052
.074
.084
.113
.123
.430 Nom.
nn
SEMICONOUCTOR
~ PROOUCTS
10/86
2-116
_UNITRDDE
UES4505C UES4510C UES4515C
Average Output Current
vs Case Temperature
Peak Output Current vs Case Temperature
(Either Leg)
60
r-
g
....
r:i
'--
Full Wave Operation with Each
Leg at 30% Minimum Duty Factor.
See Peak Current Curve for Either
Leg Operating Individually.
45
\
a:
a:
::J
u
\
....
~::J
30
0
w
\
15'"
'"~
1
15
,;;
0
25
0
50
75
100
125
150
llO
100
Tc. GASE TEMPERATURE _ ('G)
120
130
140
150
Tc. GASE TEMPERATURE - ('G)
Forward Current
vs Forward Voltage
Typical Reverse Current vs Voltage
200
100
100
g
....
r:ia:
a:
::J
u
0
a:
""a:
e"
l
10
;;;:
50
+150°C
S
I
....
+125°C
~
20
U
w
10
0.1
~
~
.!!o
-"
+ 100°C
..
::J
0.01
+25°C
1
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
10
20 30 40
V, - FORWARD VOLT AGE (V)
Thermal Impedance vs Pulse Width
(Each Leg)
Reverse-Recovery Circuit
§:
Ion
SOD
50 60 70 80 90 100 110 120
% OF VA - (V)
E
}j
z
+
-=_
is
25Vdc
~
(APPROX.)
III
NOTE 3
~
OSCILLOSCOPE
NOTE 1
.05
I
.02
~ .01
N
NOTES:
1. Oscilloscope: Rise time ~ 3ns; input impedance = SOU.
2. Pulse Generator: Rise time ~ 8ns; source impedance 100.
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEAS.I\NT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
.1
""
~
:t:
l-
=
2-1l7
i-""I--"'"
/'
.2
..J
'"
f-"I--f-
.5
,,/'
i-'X
V
.0\.02 .05.1 .2 .5 1 2 5 10 20 SO 100 200
tp - PULSE WIDTH ImS)
1000
PRINTED IN U.S.A.
..
UES4505S
UES4510S
UES4515S
RECTIFIERS
High Efficiency, 45A, 50-150V
FEATURES
DESCRIPTION
• Economical Convenient
TO-3P Package
The UES4505S Series, in the economical, convenient TO-3P package, is specifically
designed for operation in power switching circuits to frequencies in excess of 100kHz.
The very low forward voltage and very fast recovery time make them particularly suited
for switching type power supplies.
• Insulated Mounting Hole
• Can Be Clip Mounted
• Mechanically Rugged
• Low Thermal Resistance
• Ultra-Fast Recovery Time
ABSOLUTE MAXIMUM RATINGS
UES4505S
UES4510S
UES4515S
Peak Inverse Voltage ..................................... VA, VAWM, VAAM ............ 50V ............. 100V ............ 150V ..
_Maximum Average D.C. Output Current @ Tc = 110°C ....... , . , • IFIAV) ................................... 45A ..... : .............. .
Non-Repetitive Sinusoidal Surge Current, 8.3mS ................ IFSM .................................... 450A ................... .
Thermal Resistance Junction to Case ........................... RBJ-c ................................ 0.8°C/W ................. .
Thermal Resistance Junction to Ambient ....................... RoJ-A ................................ .40°C/W ................ ..
Operating and Storage Temperature Range ................... Top, TSTG .......................... -55°.C to +150°C ., ....•.......
ELECTRICAL SPECIFICATIONS
Type
PIV
UES4505S
UES4510S
UES4515S
50V
100V
150V
Maximum
F9rward Volatge (VF)
Maximum
Reverse Current (IA)
@PIV
Maximum
Reverse
Recovery
Time'
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
1.1 @45A
L3@90A
LO@45A
1.20@90A
20/JA
10mA
• Measured in circuit IF = 0.50A, IRM = l.OA, IREC
50ns
Typical
Forward
Recovery
Voltage
@ lA
TA=14ns
2.0V
= O.25A.
MECHANICAL SPECIFICATIONS
TO-3P
FiF~97NOM.
c----
rF=
PIN 1
CATHODE 1
PIN 2
ANODE
DIM.
A
B
C
D
E
F
G
J
H
J
K
L
N
INCHES
MIN. MAX.
.620
.640
.825
.845
.060
.080
.780
.800
.087
.102
.019
.029
_150
.170
.212
.222
.140
.144
.042
.052
.074
.084
.430 Nom.
1. Mounting surface common to cathode
n.L:::::!Jn
10/86
2-118
SEMICONDUCTOR
PRODUCTS
_UNITRODE
UES4505S
Average Output Current
vs Case Temperature
UES4510S
UES4515S
Peak Output Current vs Case Temperature
60
g
r-
~=>
45
:\
<.)
r-
15:
r=>
\
30
0
'"iii'"'"
:i'
1\
\
15
1
1\
o
50
25
75
100
125
150
100
120
110
Te, CASE TEMPERATURE _ (OC)
130
140
150
Te, CASE TEMPERATURE - ('e)
Forward Current
vs Forward Voltage
Typical Reverse Current vs Voltage
100
200r---~--'----.---r---r---'---'
100r---t---~---r---r~~~~~~
10
;;:
E
.s
50r---1---_+--~--~~~~f__+--~
,150'e
'l2.5·C
r-
~
20r---1---_+--~~~~~Y_--_+--~
g:
J'e
:J
...
.<.)
'"
1Or---t---+
0.1
'"
iii
~
!E
001
_.. 2
f----il----It+-++---f--+--+--i
.. _1.1-__-'----''-''-__--'-''----'-__--'-__---''----'
0.2
0.4
0.6
0.8
1.0
1.2
1.4
v, -
10
50 60 70 80 90 100 110 120
Thermal Impedance vs Pulse Width
109
~
~
(APPROX.)
NOTE 3
/'
.2
~
·25Vdc
In
-I--
.5
z
<5
+
_
"
0/0 OF VA - (V)
Reverse-Recovery Circuit
son
20 30 40
FORWARD VOLTAGE (V)
.1
oJ
/
~
uJ
I
.02
g
N
NOTES:
.01
.01.02 ,05.1 .2
,5 1 2
5 10 20 50 100 200
1000
t. - PULSE WIDTH (mS)
1. Oscilloscope: Rise time ~3ns; input impedance = 500.
2. Pulse Generator: Rise time ~ 8ns; source impedance 100.
3. Current viewing resistor, non-inductive. coaxial recomm.ended.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
/
J:
l-
=
f-""
,/
_. "
a: .05
OSCILLOSCOPE
NOTE 1
V'V'
2-119
PRINTED IN U.S.A.
..
RECTIFIERS
UHVP202-UHVP210
HIGH RELIABILITY, J.lVf~TM SERIES
2.0 AMPS
FEATURES
• Ultra Fast Recovery Time
• Controlled Avalanche
• High Temperature Operation with
Low Loss
• Minimal Recovery Transients
• Low capacitance
• Low Turn·On Voltage
• Non·Cavity Metallurgically Bonded
Package
DESCRIPTION
This state·of·the·art high efficiency rectifier is ideally suited for applications requiring
high blocking voltage. It has the ability to switch significant current with minimal switching
transients and losses. Leakage current at high junction temperatures has been minimized
achieving exceptionally low reverse losses. An ultra stable process ensures high reliability
and long life. This device is designed for a wide variety of applications including high
frequency switching power supplies.
ABSOWTE MAXIMUM RATINGS
REVERSE
VOLTAGE
AVERAGE
DC OUTPUT
CURRENT
TL =SsoC, L=3/S"
AVERAGE
DC OUTPUT
CURRENT
TA=2SoC
PEAK
FWD. SURGE
CURRENT
t p =S.3ms
UHVP202
200V
2.0A
l.2A
20A
UHVP204
400V
2.0A
1.2A
20A
UHVP206
600V
2.0A
1.2A
20A
UHVP208
800V
1.5A
l.OA
20A
UHVP209 '
900V
1.5A
1.0A
20A
UHVP2l0
lOOOV
1.5A
1.0A
l5A
TYPE
NUMBER
Operating and Storage Temperature Range -SsoC to +lS0°C.
Thermal Resistance, 8JL • See Lead Temperature Derating Curve.
MECHANICAL SPECIFICATIONS
BAND INDICATES
CATHODE END
c:::2
r
.l 55TY P.
3.9mm
II
~OOMIN~50MAl!,..
I "17.8mm
6.35mm-
UHVP202·UHVP210
r:-, t
+ L
BODY A
.085 MAX.
2.16mm
.030±.OOl,
O.77mm ±.03
_,O~~=
Available in surface mount package; consult factory for information.
nn
SEMICONDUCTOR
~ PRODUCTS
2·120
_UNITRDDE
UHVP202-UHVP21O
ELECTRICAL SPECIFICATIONS (AT 2SoC UNLESS NOTED)
REVERSE
BREAKDOWN
VOLTAGE
@SOIJA
TYPE
NUMBER
FORWARD
VOLTAGE
FORWARD
VOLTAGE
REVERSE
LEAKAGE
TA=2SoC
ID
REVERSE
RECOVERY
TIME
O.SA·l.0A·.2SA*
REVERSE
LEAKAGE
TA=12SoC
UHVP202
220V
l.6V@2A
l.4V@l.2A
l.OIJA
100IJA
30ns
UHVP204
440V
1.6V@2A
l.4V@1.2A
l.OIJA
100IJA
30ns
UHVP206
660V
1.6V@2A
l.4V@1.2A
l.OIJA
lOOIJA
30ns
UHVP208
880V
1.8V@1.5A
1.55V@1.0A
l.OIJA
lOOIJA
. 50ns
UHVP209
990V
1.8V@1.5A
1.55V@l.OA
l.OIJA
lOOIJA
50ns
UHVP210
noov
1.95V@1.5A
l.75V@1.0A
2.01JA
150IJA
65ns
". See Figure 20 for characteristic waveform.
Typical Forward Current vs Forward Voltage
20
2
g
1.5 AMP SERIES
10
~
...I
g
fP'
IE
=>
u
\50o~-"
a
125"C
.5
1/ / ....
II /11
I
.2
.2
~~
~
'"'"u:::>
a
'"~
12'"
M ~ /1
"'-. ~
10
...I
~~
~
'"~
'"
12
Typical Forward Current vs Forward Voltage
20
AMP ~ERlks
~_55°C
150"C-
.5
I
'-~5OC
.6
.8
~
IV
'/ 11"
.4
-....
',5OC
2
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
.4
.6
.8
Typical Reverse Current
vs Applied Reverse Voltage
2AMPSERIES
200,.1\
lOOllA
50,..A
-
lOJ.lA
5,.1\
l!i
ffi>
2,A
~
1,.4
I
500nA
~
12~
200nA
lOOnA
50nA
20nA
IOnA
o
-
--
50D!-,A
lOOI-lA
50,.1\
IE
'"'":::>
u
20,.1\
lO,..A
'"
if'
5,A
~
~
2,A
I
500nA
1,.4
.!!
200nA
IDOnA
_______~,,~
I
50nA
20nA
lOnA
25
50
/)
il
1.0
1"--25OC
1
1.2 lA
1.6 18 2.0 2.2 2.4
75
100
125
- ----- -
-
15!l:S- ~
125<>C
-25
PERCENT OF VA RATING
.,.".,.,
7,.~oC
.,.".,.,
.,..;-r
1
I
50
75
100
125
PERCENT OF VA RATING
Figure 3
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
1.5 AMP SERIES
200I-lA
,.. / '
$
~ 'J [I '- t- -55OC'
Typical Reverse Current
vs Applied Reverse Voltage
IrnA
500l-lA
20/>/A
'-... ~ ~ 'i
Figure 2
Figure 1
...
~
'"'":::>
u
~
VF - FORWARD VOLTAGE - {V)
V, - FORWARD VOLTAGE - (VI
1rnA
I""
Figure 4
2-121
PRINTED IN U.S.A.
UHVP202-UHVP21O
Reverse Recovery Current vs dildt
10
Reverse Recovery Current vs di/dt
10
2 AMP SERIES
...
\~<=,';)y
i-'" I~~
~
i.;"
...
."Yr
VI/'
IJII~
[tl-':i-'"
100
200
300
"
400
=
70
~
15
=
50
ffi
40
w
~
a:
I
30
~ 20
..E
.3
=
=
100
1.5 AMP SERIES
'"S'"w
--
~
t"
f- f-
.....
90
80
'"
70
§
60
;=
il:
60
hl
a:
400
Reverse Recovery Time vs Junction Temperature
(iF
2A, di/dt 200A/~s, VA
SOV)
=
2 AMP SERIES
;=
300
Figure 6
Reverse Recovery Time vs Junction Temperature
(iF 2A, di/dt 200A/~s, V.
50V)
=
200
NOTE: See Figures 9 and 10.
100
:;
~
100
Figure 5
90
:-1-1-'
di/dt-RATE OF FAll FORWARD CURRENT-(A'IAS)
NOTE: See Figures 9 and 10.
80
....r--
\,.~~r--
r&:
dl/dt - RATE OF FALL OF FORWARD CURRENT - (A/j./S)
I
~
""
i-'" \ .\~
V
V i-'" I/~
1--
IJ~
g
" .!
V
\.::~
VI/i-'"
I/'I/ 1' .... 1--'
1.5 AMP SERIES
Ii!
iJl
ffi
~
..
~ ~ f-
50
~f- f-"
40
t.
30
I
I-- ~ ~
tb
~ 20
..E
.3
10
10
-
tb
20 30 40 50 60 70 80 90 100
20 30 40 50 60 70 BO 90 100 110 120 130 140 150
no
120 130 140 150
Tj - JUNCTION TEMPERATURE - IOC)
Tj - JUNCTION TEMPERATURE - IOC)
NOTE: See Figures 9 and 10.
NOTE: See Figures 9 and 10.
Figure 7
FigureS
Rectifier Current During Reverse Recovery
t""RM Measurement Circuit, Simplified
Rview
DEVICE
UNDER
TEST
NOTE: The gate of the MOSFET
is double pulsed. The first pulse
ramps up the inductor current. A
short interpulse period forward
biases the device under test to
the desired 'F. The second pulse
reverse biases the device under
test creating the desired dildt so
that the reverse recovery parameters can be measured. The
pulse pair is repeated at a low
duty lactor and does not result in
device heating.
Figure 9
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
Figure 10
2-122
PRINTED IN U.S.A.
UHVP202-UHVP21O
Typical Peak Forward Recovery Voltage vs diF/dt
(iF lA, di/dt measured from 10% to 90% of iF)
Typical Peak Forward Recovery Voltage vs diF/dt
(iF lA, di/dt measured from 10% to 90% of iF)
=
=
10
20
2AMPSERIES
18
0
'"~~
16
I
0
14
~w
",",
12
"-0
10
L5~
V-
1.5 AMP SERIES
~>
-'"
~~
V
c-w
I,.;
~i3
V
V
Ifrl
,'"
~
>
I10
20
50
100
diF/dt - RATE OF RISE OF FORWARD CURRENT -
200
10
(AI~S)
Average Forward Current vs Ambient Temperature
(50% Duty Cycle, Square Wave)
Average Forward Current vs Ambient Temperature
(50% Duty Cycle, Square Wave)
2.0
Raj-A ",,75°C/W
1.5 AMP SERIES
....I
....I
illco
1.5
:::l
U
U
Cl
0
co
1.0
~
..........
~
w
"'«ffi
"
1.5
co
:::l
I
ROj.A ",,75°CIW
$
$
Ii'
200
Figure 12
'2 AMP SERIES
'"'"
'"~
100
Figure 11
2.0
ill
50
20
diF/dt - RATE OF RISE OF FORWARD CURRENT - (NjAS)
0.5
Ii'
ffi
""-
'"
a
50
75
.............
~
~
~
25
1.0
w
100
"~
I
~
125
25
175
150
~
0.5
50
~
~
100
75
""
125
TA - AMBIENT TEMPERATURE -
TA - AMBIENT TEMPERATURE - (0C)
Figure 14
Figure 13
150
175
(OC)
Average Forward Current vs Lead Temperature
(50% Duty Cycle, Square Wave)
Average Forward Current vs Lead Temperature
(50% Duty Cycle, Square Wave)
3r---~---r---r---'----r---.
1.5 AMP SERIES
L : LEAD LENGTH
FROM BODY
O~
25
__-L____
50
~
75
__-L____L -__
100
125
~
__
150
~
175
50
T, - LEAD TEMPERATURE - (OCi
75
100
125
150
175
T, - LEAD TEMPERATURE - (OCi
Figure 16
Figure 15
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
L : LEAD LENGTH
FROM BODY
2-123
PRINTED IN U.S.A.
l1li
UHVP202-UHVP21O
Forward Pulse Current vs Pulse Duration
Reverse Pulse Power vs Pulse Duration
10'OOOm_~~
Square PulseCurrenl vs
Duralion for Non·Repetrtrve Pulse
(8.3 ms sine wave equivalent
to3mssquarewave)
10L-~~~W-~-LLll~
lOOns
~
__
~~~~-L~LU~-J-L~~
lCX)j.lS
PULSE DURATION
PULSE DURATION
Figure 17
Figure 18
Transient Thermal Response
1m,
lOms
Characteristic Waveform
(O.S-l.O/O.2SA)
100
I
--I
I~
trr
IREC =.25A
,
V'"
\
\
10".5
1m,
lOms
lOOms
_t
-t
1.1
1,
PULSE DURATION
Figure 19
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
Figure 20
2-124
PRINTED IN U.S.A.
RECTIFIERS
UHVP402-UHVP41O
HIGH RELIABILITY, "Vf~TM SERIES
4.0 AMPS
FEATURES
o Ultra Fast Recovery Time
DESCRIPTION
This state·of·the·art high efficiency rectifier is ideally suited for applications requiring high
blocking voltage. It has the ability to switch significant current with minimal switching tran·
sients and losses. Leakage current at high junction temperatures has been minimized
achieving exceptionally low reverse losses. An ultra stable process ensures high reliability
and long life. This device is designed for a wide variety of applications including high
frequency switching power supplies.
o Controlled Avalanche
o High Temperature Operation with
Low Loss
o Minimal Recovery Transients
o Low Capacitance
• Low Turn·On Voltage
o Non·Cavity Metallurgically Bonded
Package
ABSOLUTE MAXIMUM RATINGS
PEAK
FWD. SURGE
CURRENT
t p =8.3ms
TYPE
NUMBER
REVERSE
VOLTAGE
AVERAGE
DC OUTPUT
CURRENT
TL=55'C, L=3/8"
UHVP402
200V
4.0A
2.0A
75A
UHVP404
400V
4.0A
2.0A
75A
AVERAGE
DC OUTPUT
CURRENT
TA=25'C
UHVP406
600V
4.0A
2.0A
75A
UHVP408
800V
3.0A
1.4A
75A
UHVP409
900V
3.0A
1.4A
75A
UHVP410
lOOOV
2.5A
1.4A
60A
Operating and Storage Temperature Range -55'C to +150'C.
Thermal Resistance, B,lL- See Lead Temperature Derating Curve.
MECHANICAL SPECIFICATIONS
r
BAND INDICATES
CATHODE END
----:975
Available
In
4.4mm
MI~~OO
-----24.8mm
UHVP402·UHVP410
.175TYP.
MAl<,...
7.62mm--
BODYB
+.• t
.145 MAX.
3.68mm
· L
.040±.OOl
1.02mm±.03
'- .li.~;:;:
surface mount package; consult factory for information.
nL::::::Jn
2·125
SEMICONDUCTOR
FJRODUCTS
_UN.TRODE
UHVP402-41O
ELECTRICAL SPECIFICATIONS (AT 25°C UNLESS NOTED)
REVERSE
BREAKDOWN
VOLTAGE
@50"A
FORWARD
VOLTAGE
FORWARD
VOLTAGE
REVERSE
LEAKAGE
TA=25°C
UHVP402
220V
1.5V@4.0A
1.35V@2.0A
UHVP404
440V
1.5V@4.0A
1.35V@2.0A
UHVP406
660V
1.5V@4.0A
UHVP408
880V
UHVP409
990V
UHVP410
1l00V
1.95V@2.5A
TYPE
NUMBER
>}I
REVERSE
LEAKAGE
TA=125°C
REVERSE
RECOVERY
TIME
O.5A-1.0A-.25A·
4.01'A
25Ol'A
30ns
4.01'A
250"A
30ns
1.35V@2.0A
4.0"A
250"A
30ns
1.7V@3.0A
1.4V@1.4A
4.0jlA
250"A
50ns
1.7V@3.0A
1.4V@1.4A
4.0"A
250"A
50ns
1.6V@1.4A
5.01'A
500,..A
65ns
See Figure 20 for charactenstlc waveform.
Typical Forward Current vs Forward Voltage
20
~
10
#. ~
1# Z
I
I-
~
"u
"'"
~
fZ
kh If i'~/ IIJ '"
'f. III
rI
150OC,___
~
125jC
.2
.2
.4
.6
VF
.8
~ /. V
...,., ~ V, /
I
iE
'"
"u'"
"'"
~
-55OC
fZ
Isboc
I IIl-4
-II Jr1
'I /
1250C
.5
I
.2
.2
.4
.6
.8
iE
'"'"u
"w
500I-lA
200,.,A
200,.A
H>OIlA
lOO,.A
-'"""
lOllA
5.A
ill>
2.A
il!
I~
I
SOOnA
-"
IrnA
4AMP SERIES
20folA
~
.....
200nA
lOOnA
50nA
20nA
lOnA
o
--'"""
25
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Typical Reverse Current
vs Applied Reverse Voltage
500IAA
50,.,A
I--
Figure 2
Typical Reverse Current
vs Applied Reverse Voltage
I-
-
V, - FORWARD VOLTAGE - (V)
Figure 1
IrnA
-55OC
1'-25OC
II I
1.0 1.2 1.4 1.6 L8 2.0 2.2 2.4
FORINARD VOLTAGE - (V)
-
A~ ~
2.5 AND
3 AMP SERIES
10
I-
250C
.5
I
Typical Forward Current vs Forward Voltage
20
~~
4AMP SERIES
1~
-
-----
50,.A
ffi
'""'"
r--
~~os,...
r- ~'~~~~ERIES
~
20fAA
125's..
1Ol-iA
~
()
~
~
.........
'"I
5,.A
2,.A
I~
~~:s..
500nA
-" 200nA
...
lOOnA
50nA
..... .....-
i-"""
20nA
lOnA
50
75
100
o
125
Figure 3
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
25
50
75
100
125
PERCENT OF VR RATING
PERCENT OF V, RATING
Figure 4
2-126
PRINTED IN U.S.A.
UHVP402-UHVP41O
Reverse Recovery Current vs difdt
Reverse Recovery Current vs difdt
20
20
lB
4 AMP SERIES
18
16
wg
1Q I
w ....
>z
Ww
mg
0:1
14
~C:
«::>
10
'du
!::i\;
~
,e;
"""I-'" f-""I-""
.... w
j~~
I&:~
c:
1oIIII~
...............
16
~Oj
0:0:
t:fT.-p
~o:
«"
!'!u
Q.i\;
~w
~~
12
~
10
I&:~ ~I-'"
.~~
~I--: ~f-I-
300
200
Figure
g
2.5 AND
3 AMP SERIES
~
0:
60
..§
j
....
~
50
40
30
~
I
..5'
20
10
~
;::
.... ....
;:: 70
0:
90
80
"'w
ljj
6
100
:;
8
400
Reverse Recovery Time vs Junction Temperature
IF = 2A, di/dt = 200A/~s, VR = 50V
4 AMP SERIES
il!
300
NOTE: See Figures 9 a~d 10.
100
iI:
w
I
200
100
Reverse Recovery Time vs Junction Temperature
(iF = 2A, difdt = 200Af"., VR = 50V)
BO
I-
difdt - RATE OF FALL OF FORWARD CURRENT - (AIl'S)
Figure 5
I
r-r
J
400
NOTE: See Figures 9 and 10.
g
\,I. IA
f- .....
i.II~
di/dt - RATE OF FALL OF FORWARD CURRENT - (Alj.lS)
90
\,~~f-'
..... \~~
~ ~
k~ 1-"' ..... I-
I::;e;
... ~t;;:
Io!!!~ 1::::;-"100
~~~
14
wI-
~~
12
C:c:
I
I
2.5 AND
3AMPSERIES
....
~f-
--
'"i\;
~
~ ~I-""
-,.... -
0:
ljj
0:
~I
l,!..- f-
~
..5'
..§
j
70
60
>- ~
50
40
~f-' l- f-'
30
-
rrt
~
I-
...... ~
-
tb
20
~
...... I-
,....
~
l- f-'
10
o
20 30 40 50 60 70 80 90 100 110 120 130 140 150
20 30 40 50 60 70 80 90 100 110 120 130 140 150
Tj - JUNCTION TEMPERATURE -IOC)
Tj - JUNCTION TEMPERATURE -IOC)
NOTE: See Figures 9 and 10.
NOTE: See Figures 9 and 10.
Figure 7
Figure 8
Rectifier Current During Reverse Recovery
t,,II RM Measurement Circuit, Simplified
+v
DEVICE
UNDER
TEST
NOfE: The gate of the MOSFET •
is double pulsed. The first pulse
ramps up the inductor current. A
short interpulse period forward
biases the device under test to
the desired IF' The second pulse
reverse biases the device under
test creating the desired di/dt so
that the reverse recovery parameters can be measured. The
pulse pair is repeated at a low
duty factor and does not result in
device heating.
Figure 9
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404· FAX (617) 924-1235
Figure 10
2-127
PRINTED IN U.S.A.
..
UHVP402-UHVP410
Typical Peak For:y.rard Recovery Voltage vs diF/dt
(iF = lA, di Idt measured from 10% to 90% of iF)
Typical Peak Forward Recovery Voltage vs diF Idt
(iF = lA, di/dl measured from 10% to 90% of iF)
10
4.0
4AMPSERIES
c
2.5 AND
3AMPSERIES
·3.5
II:
~~.
3.0
01
"-w
~§1.
~il;
2.0
I~
1.0
Q.w
~t;
l--[)
1.5
,II:
-
..
2.5
~~
-~
~
ff
>
0.5
10
50
20
100
10
200
Figure 11
4.0
4.0
4AMPSERIES
Re j;A ·60'CIW
3AMPSERIES
Re j-A =60°C/W
g
I
I
!zw
3.0
0:
0:
0:
3.0
:::>
:::>
u
u
c0:
0
~ 2.0 .......
lr
w
~
~
I
~
200
Average Forward 'Current vs 'Ambient Temperature
(50% Duty Cycle, Square Wave)
g
ffi
100
Figure 12
Average Forward Current vs Ambient Temperature
.
(50% Duty Cycle, Square Wave)
II:
50
20
di,ldt - RATE OF RISE OF FORWARD CURRENT - (N"s)
di,ldt - RATE OF RISE OF FORWARD CURRENT - (N"s)
0:
~
1.0
"...,.
~
lr
" ""-
o
25
50
2.0
.............
w
75
100
~~
I
1.0
...........
~
~
'"
125
150
"-
a
25
175
T, - AMBIENTTEMPERATURE - (OC)
Figu~ 13
K
50
75
100
~
150
125
TA - AMBIENT TEMPERATURE -
175
(OC)
Figure 14
Average Forward Current vs Lead Temperature
(50% Duty Cycle, Square Wave)
Average Forward Current vs Lead Temperature
(50% Duty Cycle, Square Wave)
4AMPSERIES
3 AMP SERIES
___4--__-l___ L- ~~~~ ~"tmH
OL-__-L____L-__-L____L-__
OL---~----~--~----~--~--~
25
50
75
100
125
150
175
25
T, - LEAD TEMPERATURE - ('C)
75
100
~
125
__
150
~
175
T, - LEAD TEMPERATURE - ('C)
Figure 16
Figure 15
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
50
2-128
PRINTED IN U.S.A.
UHVP402-UHVP41O
Forward Pulse Current vs Pulse Duration
Reverse Pulse Power vs Pulse Duration
1O.0D0._~~
SquarePulseCurrentvs
Duration for Non Repetitive Pul~
(B.3mSSlnewaveequwalent
toJmssquJrewave)
__~-U~~-L~~~~-L~WU
1m,
lOms
lOfoIS
100",5
IOL-J-~~lli-~-LLUilll
lOOns
~
...
__~-U~~~~~WL~~~~
lOJ.js
lOO}-ls
IOms
1m'
IO~~~~~~-L~~
lOOns
PULSE DURATION
PULSE DURATION
Figure 17
Figure 18
Characteristic Waveform
Transient Thermal Response
(O.5·1.0/0.25A)
100
--I
1"-
trr
_t
tREC =.25A
t
~
,
1\
J
1.1
IOOIAS
1m,
lOms
lOOms
I,
100,
-+
IRR=l.OA
PULSE DURATION
Figure 19
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
-t
Figure 20
2-129.
PRINTED IN U.S.A.
..
RECTIFIERS
URI05-UR125
UR205-UR225
Radiation Tolerant, 1 Amp-2 Amp
FEATURES
DESCRIPTION
•
•
•
•
•
These .devices are particularly suited to
applications where radiation is present.
These units have unique ability to withstand high levels of neutron, gamma and
electron radiation.
Radiation Tolerant: to 10'. NVT
Continuous Rating: to 2A
Controlled Avalanche
Surge Rating:t025A
Miniature Package
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
50V
100V
l50V
200V
250V
1 Amp
2 Amp
Series
URl05
URllO
UR1l5
UR120
UR125
Series
UR205
UR2l0
UR2l5
UR220
UR225
1 AMP
SERIES
2 AMP
SERIES
Maximum Average D.C. Output Current
@TA =25·C ....
. lA .... .
...2A
........ 1A
.............. "'''' 0.5A .... ..
@ TA=lOO·C .
Non-Repetitive Sinusoidal
.... 25A
. 20A...
Surge Current (8.3ms) .
Operating Temperature Range.
.. .......... ..
.. ......... -195·C to +175·C
Storage Temperature Range.
.. ..... -195·C to +200·C
Thermal Resistance.
. See Lead Temperature Derating Curve
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Type
Maximum
Leakage
Current
@PIV
Maximum
Forward
Voltage
PIV
Drop
UR205
UR210
UR215
UR220
UR225
UR105
URllO
UR115
UR120
UR125
2S'C
SOV
100V
150V
200V
250V
1.0V@ 1A
50V
100V
150V
200V
250V
1.0V@0.5A
31'A
31'A
Maximum
Radiation
Tolerance
lOO'C
5Ol'A
10'. NVT
10'·
10'5
10"
10"
5Ol'A
10'·
10"
10'5
10"
10'4
MECHANICAL SPECIFICATIONS
UR105-UR125 UR205-UR225
BAND INDICATES
CATHODE END
=
r.155TYP.
~
3.9mm
::t1
~;OOM'N~50M~
17.8mm
BODY A
r-=-
=
6.35mm
I
.085 MAX.
2.16mm
t
L.030±.OOl
O.77mm ±.O3
.055TYP.
1.4mm
1.625 MIN.
41.3mm
Part Identification: White band indicates "UR." Part num·
ber printed on body.
Polarity: Denoted by white band.
Weight: 0.26 grams, typical.
nn
SEMICONDUCTOR
L.::::J' PRODUCTS
2-130
_UNITRODE
URI05·UR205 URllO·UR21O UR115·UR215 UR120·UR220 UR125·UR225
Forward Pulse Current vs Pulse Duration
10,000
g
....
z
1,000
Reverse Pulse Power vs Pulse Duration
100,000
ALL SERIES
Square Pulse Current vs
Duration for Non-Repetitive Pulse
Square Pulse Current vs
~+++mm:=t:j:mjjjjouration for Non-Repetitive Pulse
(8.3 ms sine wave equivalent
r--.
~
to 3 ms square wave)
'"crcr
'"0;:
.
..'"'"
:>
u
'":>....'"
.
(8.3 ms sine wave equivalent
to 3 ms square wave)
10,000
cr
1,000
....
100
:>
100
10
.lps
l~s
lOJ,lS
lOO.lls
PULSE DURATION (SECONDS)
Ims
10
lOOns
IOms
Ips
z
....
z
u
I.!;..= "..:'\,.
'"u:
;::
~
:>
o
u
'"
'"'"
"
cr
'">
u
i'-..
cr
jill
"""
~
~
Turret 1/2" centers
'Printed Circuit
t---
~ f::~
13
UJ
"#
10
100
1,000
CYCLES AT 60 Hz HALF SINE WAVE
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2·131
PRINTED IN U.S.A.
HERMETIC SCHOTTKY RECTIFIERS
6 Amp, 45 Volts
USD245C
USD245CHR2
USD245CR
USD245CRHR2
FEATURES
DESCRIPTION
• MIL-S-19500 Type Screening
Available
The USD245C series hermetic Schottky rectifier is ideally suited for output rectifiers and
PWM protection in high efficiency, low voltage, high reliability switching power supplies.
The series combines Schottky rectifiers in one convenient package; thus simplifying
installation and reducing component parts count.
• Extremely Low VF and IR
• High Surge Capability
• Low Recovered Charge
• Rugged Hermetic Package,
No Pressure Contacts
• Dual Rectifier in One Package
• Available in Reverse Polarity (CR)
ABSOLUTE MAXIMUM RATINGS (Either leg, unless noted.)
Peak Repetitive Reverse Voltage, VRRM ..........................•.• _....... _..... 45V
Working Peak Reverse Voltage, VRWM .............................•..... _........ 45V
DC Blocking Voltage, VR ..•.....................••....•.................•........ 45V
Non-Repetitive Peak Reverse Voltage, VRSM ...•...•.......•........ _....••.•.....• 54V
Average Forward Current (50% Duty Cycle), IFIAV), Full Wave Configuration .......... 6A
Either Leg Alone ......•••.....•.. 4A
TCASE = lOODC
VRWM = 45V
Average Forward Current (50% Duty Cycle), IFIAVI (Note 1), Either Leg Alone ..•..... 2A
R8C-A = 68°C/W, TA= 25°C
VRWM = 45V
Non-Repetitive Peak Surge Current, IFsM ..............•...... _................... 80A
8.3ms, Half Sine Wave
Operating and Storage Junction Temperature Range, Top, TSTA ....... -65°C to + 175°C
Thermal Resistance, Junction to Ambient, RSJ-A .•••.....................•..• 175°C/W
Thermal Resistance, Junction to Case, R8J-c ...•... ; .•.....•.•.....•.......... 15°C/W
Note: 1. Using Wakefield Type 205 heatsink with conveclion cooling.
For more definitive data refer to the Output vs Temperature curves on this data sheet.
MECHANICAL SPECIFICATIONS
USD245C SERIES
J:ih
rm
~C.CHR
6
COMMON (CATHODE)
G
cr-kl---r--t>I- CR. CRHR
W~tJ
H
3 PLCS
5~A
~·~8
*
COMMON
C
. ' , 6C;M~ON
A
B
BOTTOM VIEW
TO-205AF (TO-39)
C
0
E
F
G
H
J
K
MILLIMETERS
0.72-0.86
0.88
5.08
9.14.0IA.
8.25 CIA.
4.30-4.57
18.03 REF.
0.41-0.53 CIA.
12.70-14.22
0.36-0.45
(ANODE)
INCHES
0.028-0.034
0.D35
0.20
0.36 alA.
0.3250IA.
0.169-0.180
0.71 REF.
0.016-0.021 CIA.
0.50-0.56
0.014-0.018
All Dimensions in Inches and Millimeters
n
n
L:::::J
9/86
2-132
SEMICONDUCTOR
PRODUCTS
_UNITRODE
USD245C USD245CHR2 USD245CR USD245CRHR2
ELECTRICAL CHARACTERISTICS PER LEG (Ti = 25°C)
CHARACTERISTICS
SYMBOL
LIMIT
UNITS
Maximum
Instantaneous
Reverse Current
iR
2
mA
Maximum
Instantaneous
Reverse Current
iR
20
mA
Maximum
Instantaneous
Forward Voltage
(Note 1)
VF
0.48
0.56
0.68
__ V
0.45
Capacitance
CT
450
pF
Voltage Rate
of Change
dvldt
1000
VII's
CONDITIONS
VR
=45V
VR
=45V
Pulse Width =400ps
Duty Cycle = 1%
Pulse Width =400ps
Duty Cycle = 1%
Te = 125°C
= 1A
=2A
=4A
iF =2A
Ti = 125°C
VR =5V
VR =45V
iF
iF
iF
=400ps
Duty Cycle = 1%
Pulse Width
Note: 1: Measured with anode and cathode lead length of 0.2" from case.
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
The following tests are performed on 100% of the devices specified USD245CHR2 and USD245CRHR2.
SCREEN
l. High Temperature
MIL-STD-750
METHOD
CONDITIONS
= 150°C
1032
24 Hours @ TA
2. Temperature Cycle
1051
F, 20 Cycles, -55 to +150OC. No dwell required
@ 25°C, t ;;. 10 min. @ extremes
.
3. Hermetic Seal
a. Fine Leak
b. Gross Leak
1071
H, Helium
C, Liquid
4. Thermal Impedance
5. Interim Electrical Parameters
6. High Temperature Reverse Blocking
7. Final Electrical Parameters
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA02172
TEL. (617) 926-Q404 • FAX (617) 924-1235
Sage Test
GO/NOGO
VF and IR @ 25°C
Similar to
Method 1040
'12 Sine Reverse, t
GO/NOGO
2-133
= 48 Hours, Te = 125°C, VRWM
= rating, F = 50-60 Hz, 10 = OA
VF + IR@25°C
PDA = 10% (Final Electricals)
PRINTED IN U.S.A.
USD245C USD245CHR2 USD245CR
Output Current vs R.J_A
T.mblent = 25°C. 50% Duty Cycle
USD245CRHR2
Typical Junction Capacitance
vs Reverse Voltage
1000
~
800
.e
~
I-
~
600
4~
""'"
i[
l-
35V
400
!~ t-....
I-
"
o
-.......;::
25
50
:::::::-.
100
75
\
'"
200
125
150
Full-Wave Output Current
vs Case Temperature
\
\
\
I-
i5
'\,
'"
"
i[
0:
::>
,,
,
i\
\,
VRWM=45 -
l-
I-
"oI
\
,
\
130
115
50
Output Current vs Ambient Temperature
50% Duty Cycle Application (I"e..) and VOOM)
,,
VRWM ~ 10 • -,.
100
40
30
VR - REVERSE VOLTAGE - (V)
7
'\\
85
20
10
175
- R'J-A - THERMAL RESISTANCE - ('C/W)
1\
--
145
\.
160
25
175
50
75
100
125
150
175
TA - AMBIENT TEMPERATURE - ('C)
Te - CASE TEMPERATURE - ('C)
Typical Reverse Current
vs Reverse Voltage·
Typical Forward Current
vs Forward Voltage
100rnA
175'C
Pulse Width = 4001'5.
-t
Duty Cycle = 1%.
lOrnA
Measured with Anode and
Cathode Lead Length of
0.2" from Case.
I-
i5
~
""
D
'"
IDA
SA
6A
4A
~
2A
-"
IA
.SA
.6A
AA
~ lOOIlA
I
25'C
o .1
v, -
I
V
"25'C- 1=
10pA
I-""'
I I
.2A
.IA
'"
g
)'1'
VI
-
125'C
~
'"
almA
~
125'C
-0:
e
I-
IpA
II
10
20
30
40
50
VR - REVERSE VOLTAGE - (V)
.2 .3 .4 .5 .6 .7 .8 .9 1.0
FORWARD VOLTAGE - (V)
NOTE: All curves, except FUll-Wave Output Current, apply to either leg.
UNITROOE • SEMICONOUCTOR PRODUCTS
5S0 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
2-134
PRINTED IN U.S.A.
DUAL POWER SCHOTTKY RECTIFIERS
60A Pk, 45V
USD335C
USD345C
USD335CHR2
USD345CHR2
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
The U5D320C series has two Schottky
barriers arranged in a common cathode
configuration and is ideally suited for a
full wave output rectifier in low voltage
switching power supplies.
Very Low Forward Voltage
Low Recovered Charge
Rugged Package Design (TO-3)
High Efficiency for Low Voltage Supplies
45V Blocking @ Rated T,max
50V Repetitive Surge Voltage
Dual Schottky Rectifier in a Single Package
ABSOLUTE MAXIMUM RATINGS (Total for USD300C Series)
= lOO°C
Average Rectified Forward Current, 10 @ Tc
USD335C
USD345C
USD335CHR2
USD345CHR2
....... _................. _.... _....... _.. 30A ............. _.......... .
ABSOLUTE MAXIMUM RATINGS (Per Diode)
Working Peak Reverse Voltage VRWM ' ................................................ _..... 35V ............ .45V .... .
DC Blocking Voltage, VR ................................................................. 35V ............ .45V .... .
Peak Repetitive Surge Voltage, VRSM @ IRM .........•..................................... 42V ............ :54V ..... .
Average Rectified Forward Current, 10 ........................................ 30A in full wave configuration* ......... .
Non-repetitive Peak
Surge current (8.3 mS), I FSM ........................................................ 500A ..................... .
Peak Reverse Transient Current, I RM ..................................................... 2A ...................... .
Storage Temperature Range, Tst 9 ••••••.•••••••••••••••••••••••••••••••••••••••••• -55°C to +200°C................ .
Peak Operating Junction Temperature, T, max' ............................................ 175°C .................... .
Thermal Resistance, Junction to Case,R oJc ............................................. 1.4°C/W ................... .
• Each Anode Pin Limited to l8A Average.
Package Capability 30A Average.
ELECTRICAL CHARACTERISTICS (TeASE = 25°C)
Symbol
Limit
Units
Maximum Instantaneous
Reverse Current
iR
10
50
mA
mA
Te = 25°C, VR = VRWM
Te = 125°C
Pulse Width =400115
Duty Cycle =1 percent
Maximum Instantaneous
Forward Voltage
VF
0.57
0.66
0.60
V
V
V
iF = lOA, Tc =25°C
iF = 20A, Te =25°C
iF =20A, Te = 125°C
Pulse Width =300115
Duty Cycle =1 percent
Characteristic
Ct
2000
pF
VR =5.0V
dvldt
1000
vl 115
VR =VRWM
Capacitance
Voltage Rate of Change
Conditions
MECHANICAL SPECIFICATIONS
NOTE.
ANODE 2 •
Leads may be soldered to within
1/,," of base provided
•1
temperature~
time exposure is les5 than 260 a C
for 10 seconds.
~EtE J7
I
ins.
e
~.l..-
i'
J-
0
USD300C SERIES
USD300CHR2 SERIES
.ANODE I
~
"'K
ANODE 1
ANODE 2
A
B
C
D
E
F
L
G
H
J
K
L
M
.875 MAX.
.135 MAX.
.250-.450
.312 MIN.
.038-.043
.IBB
DIA.
MAX. RAD.
1.177-1.197
.655-.675
.205-.225
.420-.440
'.525 MAX. RAD.
.151-.161 DIA.
mm•
22.23 MAX.
3.43 MAX.
6.35-11.43
7.92 MIN.
0.97-1.09 DIA.
4.7B
MAX. RAD.
29.90-30.40
16.64-17.15
5.21-5.72
10.67-11.18
13.34 MAX. RAD.
3.84 4.09 DIA.
nlJ:::::Jn
SEMICONDUCTOR
PRODUCTS
Notes: All metal surfaces tin plated.
4/82
TO·204AA (TO-3)
CASE (CATHODE)
F~.M
G
14
I
2-135
__ UNITRDDE
USD335C
USD345C
USD335CHR2 USD345CHR2
Typical Reverse Curreni
vs. Reverse Voltage
Typical Forward Current
vs Forward Voltage
10°mM~
1000
-;;;;0
~
......
) 5°C
I
"
.01
V,- FORWARD VOLTAGE (V)
o
A
/ ' -f
75°C
-"
0.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01:11.21.31.4
k
-~r ....-V
100
V
/
~v
'J;
20
..
40
60
80
100 120
% OfVR
V.~., Rating vs. Case Temperature
50
45
Ur03451C
35
. USD335C
~
i
,:
20
USD320C
1\
-50
25
50
75
100
125 150 175
Case Temperature C'C)
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
The following tests are performed on 100% of the devices specified USD335CHR2, 345CHR2.
'SCREEN
MIL-STD-750
METHOD
CONDITIONS
l. High Temperature
1032
24 Hours @ TA = 150?C
2.
Temperature Cycle
105i
F, 20 Cycles, -55 to +150·C. No dwell required
@ 25'C, t ~ 10 min. @ extremes
3.
Hermetic Seal
a. Fine Leak
b. Gross Leak
1071
H, Helium
C, Liquid
4. Thermal Impedance
5.
Interim Electrical Parameters
Sage Test
GOINOGO
6.
High Temperature Reverse Blocking
Similar to'
Method 1040
7.
Final Electrical Parameters
:nOINOGO
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET' WATERTOWN, MA 02172
TEl. (617) 926·0404., FAX (617) 924·)235
2-136
VF and IR @ 25.·C
V, Sine Reverse,t = 48 Hours, Tc = 125°C, VRWM
= rating, F = 50·60 Hz, 10 = OA
V F + IR @25OC
PDA = 10% (Final Electricals)
PRINTED IN U.S.A.
USD520
USD535
USD545
USD550
POWER SCHOTTKY RECTIFIERS
150 Amp Pk, Up to 50V
FEATURES
o Very Low Forward Voltage (0.6V at 60A, 125°C)
• Low Recovered Cha rge
• Rugged Package Design (00·5)
• High Efficiency for Low Voltage Supplies
• Low Thermal Resistance (0.8°C/W)
• High Surge Current (IOOOA)
• Low Reverse Current «50mA at rated VR at 125°C)
• Available with Flexible Top Lead
DESCRIPTION
This series of Schottky barrier power
rectifiers is ideally suited for output
rectifiers and catch diodes in low
voltage power supplies. The Unitrode
high conductivity design, using a heavy
copper top post and 4 point crimp,
ensures cool thermal operation and low
dynamic impedance. Rugged design
absorbs stress that can damage glass-tometal seal during installation and use.
ABSOLUTE MAXIMUM RATINGS
USD520
USD550
USD545
USD535
Working Peak Reverse Voltage, VRWM .................. 20V ........... 35V ........... 45V ........... 50V
DC Blocking Voltage, VR .............................. 20V ........... 35V ........... 45V ........... 50V
Peak Repetitive Surge Voltage, VRSM @ IRM ............. 24V ........... 42V ........... 54V ........... 60V
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20KHz,
50 percent Duty Cycle), I'RM ................................................... 150A (at Te 115°C)
Average Rectified Forward Current, IFIAVI ............................................. 75A (at Te = 115·C)
Non-repetitive Peak Surge Current (8.3mS), I'SM ................................................. 1000A
Peak Reverse Transient Current, IRM ................................................................. 2A
Storage Temperature Range, T st......................................................... -55· to +200·C
Operating Junction Temperature, TI ............................................................. +175·C
Thermal Resistance Junction-to-Case, R9 JC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.8·C/W
=
ELECTRICAL CHARACTERISTICS (TeASE
= 25·C)
Symbol
Characteristic
Limit
USD550
20
(50)
20
(75)
=
=
Maximum Instantaneous
Reverse Current
iR
Maximum Instantaneous
Forward Voltage
VF
0.50
0.68
0.60
Flexible Top Lead Option
VF
(0.63)
V
Maximum Capacitance
C.
4000
pF
dv/dt
1000
VipS
Maximum Voltage
Rate of Change
Conditions
Units
USD520-545
VR VRWM
(Te 125·C)
Pulse Width 300ps,
Duty Cycle
I percent
mA
=
=
iF = lOA, Te =25·C
iF =60A, Te =25·C
iF =60A, Te = 125·C
iF =60A, (Te = 125·C)
VR =5.0V
VR =rated
V
V
V
MECHANICAL SPECIFICATIONS
USD520
USD535
USD545
USD550
0
m"~
A
ins.
.225'" .005
B
.060 MIN.
1.52 MIN .
.156;t .020
3.96:!: 0.51
.156 MIN. FLAT
3.96MIN. FLAT
.667 OIA. MAX.
16.94 OIA. MAX .
2.29 MAX .
17.20:!: 0.25
9.53 MAX .
E
.090 MAX.
.677:!: .010
.375 MAX.
1'4·28
UNF·2A
. 140MIN.DIA.
K 1.000 MAX.
L
.450 MAX.
"
N
.438:!: .015
.078 MAX.
Note.:
1.
2.
3.
4.
5.72;t 0.13
3.56 MIN. OIA .
25.40 MAX.
11.43 MAX.
11.13'" 0.38
1.98 MAX.
nn
Cathode is stUd.
All metal surfaces tin plated.
MaximUm unlubricated stud torque: 30 inch pounds (35 kg. em).
Angular orientation of terminal is undefined.
SEMICONDUCTOR
~ PRODUCTS
2-137
4/82
00-5
_UNITRODE
USD520 USD535
Typical Forward Current
vs Forward Voltage
100
g
~
~
JO
::>
u
17 ·c ~
150·C
F
/1
~12:C
fi?
75'C
'"~
•
USD550
Typical Reverse Current
vs Reverse Voltage
1000
=--~
-
I-- 2 100
§.
~
i
25°C
I.
USD545
1SO"C
..,..
I-- '--- 1-125"C
r--
=>
(,) 10.0
F:--55'C
-
1-175"C
w
~
12
.I,
7~·c
j
/
1
1.0
.1
"b"'Z~·C
0.1
.1
.2
.3
.4
.5
.6
.7
.8
.9
l.0
o
10
20
VF-FORWARD VOLTAGE (V)
30
40
50
60
70
80
90
100
VR-REYERSE VOLTAGE (% of VRWM)
V.,M..! Rating y.
Ca.e Temperature
Maximum Current
vs Case Temperature
60
ISO
'"~~-t: ...
....
'" ..
I"
\
o-z
'"'""- '"
.. :J
"'u
"'0
..
,
-: ~
40
USr45
40
\
\
\
125
35
1\
\
f:;:: 20 KHz
100
so
45
\
r- SQUARE WAVE
"-",
VR _0
\.
80 I--V R = RATED
50% DUTY
usr
50
'\.
120
:€
~
1\
150
I
USD535
30
I
25
,;
175
20
U50520
T c - CASE TEMPERATURE (Oe)
\
15
10
-50
-25
25
50
75
100
125
150
175
CASE TiMPERATURE (Ge)
MECHANICAL SPECIFICATIONS
USD520F
USD535F
USD545F
USD550F
FLEXIBLE TOP LEAD (OPTIONAL)
Add an "P' Suffix to Part Number.
Standard JEDEC
00·5 Package
@
I iTMl N~{
M
-, 11 p
~CaDle
'8"'''bI./5~~1
7 95/36
"I
Sleevlng
Covers
l-Qj
S
INCHES
.718 MAX.
S
450 ± .250
.525 MAX.
.675:t .035
205 t .005
075:t OlD
T
1125 MAX
P
Q
R
II
.Shrlnkable
N
DO-5 with Flexible Lead
MILLIMETERS
1824 MAX.
114.3 ± 6.35
13.23 MAX.
17.15:t 0.89
5.21:t 0.13
1.91 t 0.25
28.58 MAX.
l.",
-To 125°C (Ambient)
Note:
Consult Factory for Non-standard lead lengths.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 .FAX-(617) 924-1235
2-138
PRINTED IN U.S.A.
USD635
USD640
USD645
USD650 . .
POWER SCHOTTKY RECTIFIERS
12A Pk, up to 50V
FEATURES
• Very Low Forward Voltage
• Reverse Transient Capability
• Economical Convenient Plastic Package
• Mechanically Rugged
• 50V Working Voltage @ Rated T,'m..'
DESCRIPTION
The USD600 series of Schottky power
rectifiers is ideally suited for output
rectifiers and catch diodes in high
frequency low voltage power supplies.
ABSOLUTE MAXIMUM RATINGS
USD635
USD640
USD645
USD650
Working Peak Reverse Voltage, V.WM ....................................................... 35V .............. 4OV............... 45V .............. 50V .. .
DC Blocking Voltage, V........................................................................ 35V .............. 4OV............... 45V .............. 50V .. .
Peak Repetitive Surge Voltage, V.SM @ I.M ................................................ 42V .............. 48V............... 54V .............. 60V .. .
Average Rectified Forward Current @ Te = U5°C, IF (AV) ............................................................. 6A ................................ .
Peak Repetitive Forward Current (Rated V.,
Square Wave, 20 KHz, 50% Duty Cycle, @ Te = U5°C), IF• M ................................................... 12A .............................. ..
Non·repetitive Peak Surge Current (8.3ms), IFSM ..................................................................... 150A ............................... .
Peak Reverse Transient Current, I.M ...................................................................................... lA ............................... ..
Dperating Junction Temperature, T, .................................................................................... 150°C ............................ ..
Storage Temperature Range, Ts ....... : ........................................................................... -55°C to +150°C ....................... .
Thermal Resistance, Junction to Case, RSJe ......................................................................... 3.0°ClW ............................ ..
ELECTRICAL CHARACTERISTICS (TeASE =25°C)
SYMBOL
LIMIT
UNITS
Maximum Instantaneous
Reverse Current
CHARACTERISTIC
i.
5
mA
V. V.WM
Pulse Width 400ps
Duty Cycle 1 percent
Maximum Instantaneous
Reverse Current
i.
50
mA
V. V.WM
Pulse Width 400ps
Duty Cycle 1 percent
Te 125°C
0.55
0.65
V
0.48
0.60
V
Maximum Instantaneous
Forward Voltage
Capacitance
Voltage Rate of Change
VF
C.
1000
pF
dvldt
1000
Vips
CONDITIONS
=
=
=
=
=
=6A
=12A
iF =6A J
iF =12A
V. =5V
V. =V.w~
=
=
iF
iF
=125°C
Te
MECHANICAL SPECIFICATIONS
USD600 SERIES
SEATING
PLANE
MILLIMETERS
DIM
MIN
A
1423
9.66
3.56
0.51
3.531
2.29
B
C
D
F
G
H
J
K
L
N
10.66
INCHES
MAX
MIN
0.560 0.625
0.380 0.420
482
0.140
1.14
0.020
0.139
0.090
3733
2.79
6.35
0.38
12.70
1.14
4.83
Q
2.54
2.04
T
5.85
•s
MAX
15.87
1.14
0.64
14.27
1.77
533
3.04
2.92
1.39
6.85
TO-220AC
0.015
0.500
0.045
0.190
0.100
a aBO
0.045
0230
0.190
0.045
0147
0.110
0.250
0.025
0.562
0.070
0.210
0.120
0.115
0.055
0.270
nn
SEMICONDUCTOR
~ PRODUCTS
4/82
2-139
_UNITRODE
USD635 USD640 USD645 USD650
Reverse Current
vs. Voltage
Forward Current
vs. Forward Voltage
100
100
MAXIMUM VF VS IF VS T-
TYPICAL VF VS IF vs T - "-
g
~'
>- 10
i5
0:
125°C
:;(
g
I/' /
L.?
'I-~oC
0:
0:
::J
U
U
I
0
0:
«
w
-
150:
::J
E
I-
10
W /
-50 -25
25
50
75
100
125
150
175
TEMPERATURE (OC)
"\
125
150
2-140
PRINTED IN U.S.A
DUAL POWER SCHOTTKY RECTIFIERS
12A Av, up to 50V
FEATURES
• Very Low Forward Voltage
• Reverse Transient Capability
• Economical Convenient Plastic Package
• Mechanically Rugged
• 50V Working Voltage @ Rated Tllm."
USD635C
USD640C
USD645C
USD650C
DESCRIPTION
The USD600C series of power Schottky rectifiers, in the industry standard TO-220
package, is specifically designed for operation in power switching circuits to
frequencies in excess of 100 KHz. The series combines Schottky rectifiers in one
convenient package; thus, simplifying installation, reducing heatsink requirements
and component parts count.
ABSOLUTE MAXIMUM RATINGS (Per Diode Unless Otherwise Noted)
USD635C
USD640C
USD645C
USD650C
Working Peak Reverse Voltage, VRWM ...................................................... 35V .............. 40V .............. 45V ............ 50V ... .
DC Blocking Voltage, VR ._ .................................................................... 35V .............. 40V .............. 45V ............ 50V ... .
Peak Repetitive Surge Voltage, VRSM @ IRM ........................ -..... · ... · ............. 42V ............. .48V .............. 54V ............. 60V ... .
Average Rectified Forward Current @ Te = lI5°C, 10 • .........................................•.................. 12A .............................. .
Non-repetitive Peak Surge Current (8.3ms), IFSM .................................................................... 150A ............................... .
Peak Reverse Transient Current, IRM .................................................................................... 1A ............................... .
Operating Junction Temperature, Ti ........... ...................................................................... 150°C ............................. .
Storage Temperature Range, TSt, .............................................................................. -55°C to +150·C ...................... .
Thermal Resistance, Junction to Case, R.Je ...... .......... .......... ..... ....... ........... ....... ....... ....... 3.0°C/W ., .......................... .
·Full Wave Center-Tap;
10 I~"'j
20 KHz Square Wave
ELECTRICAL CHARACTERISTICS (T CASE = 25°C) (Per Diode) ,
SYMBOL
LIMIT
UNITS
Maximum Instantaneous
Reverse Current
CHARACTERISTIC
iR
5
mA
VR = VRWM
Pulse Width = 400ps
Duty Cycle = 1 percent
Maximum Instantaneous
Reverse Current
iR
50
mA
VR= VRWM
Pulse Width = 400ps
Duty Cycle = 1 percent
Te = 125°C
0.55
0.65
V
iF = 6A
iF = 12A
0.48
0.60
V
iF = 6A
iF = 12A
VR = 5V
Maximum Instantaneous
Forward Voltage
VF
Ct
1000
pF
dvldt
1000
Vips
Capacitance
Voltage Rate of Change
CONDITIONS
l
Te = 125°C
VR = VRWM
MECHANICAL SPECIFICATIONS
USD600C SERIES
SEATING
PLANE
DIM
••
C
D
."
Pin 1
!
Pin 2
&
Tab
14.
Pi.n3
F
G
H
J
MILLIMETER.
MIN. M••
....
14.23
15.17
10.66
3."
<.&2
,0.51
3.531
1.1t
3.7]]
2.29
....
2.79
US
0.54
.....
..,..,
.....
.....
.....
0.140
0.139
0.015
K
12.70
....3
14.27
1.77
5.33
Q
'.54
3.D<
a.IMS
0.110
0.100
R
'.D<
'.R
0.0..,
S
T
US
1.1'
1. ..
U.
.....
INCHIS
.MIN
MAX
L
N
1.14
TO-220AB
0.615
Uta
0.045
0.147
.....
.....
.........
O.UO
UIO
0.120
0.115
.... ......,.
Q.2l0
nn
SEMICONDUCTOR
~ PRODUCTS
4/82
2-141
_UNITRODE
USD635C USD640C USD645C USD650C
Forward Current
Reverse Current
vs. Voltage
vs. Forward Voltage
100
.100
MAXIMUM Vr vs IF VS TTYPICAL Vr vs IF vs T-
.' ~ /
5
I-
i
125'C
...I-
10' /
10
JJoc
IU
'1.",0(,
::>
'-'
a
cr
;[
cr
it
l!:IlI- Vfifi/
1.0
~
.2
I
.6
1.0
.8
with VRWM
:::
::>
i2
I-
FREE AIR
(T A reference)
A
Vp,::
0
- :::t:::
~ ~ ............
VAWM
25
::
'"
RATED
50
75
100
TEMPERATURE (0C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL (617) 926·0404· FAX (617) 924·1235
VAWM
~\
\\1\
Tc=--T. = - - - -
\
\\
u
I-
I
V,
,\
1\
~
.E
120
\ \
\
I-
0
100
~.V' I?RWM
RATED
(T c reference)
lO
::>
80
V. Rating vs. Temperature
100%
INFINITE HEATSINK
5
60
40
VOLTAGE (V)
14
12
VR VS T-
%ofVrt(V)
Average Output Current
vs. Temperature
/
VS
TYPICAll R liS VR VS T =
20
.4
v, -
;'
.01
.001
11
"
7:';:'-
MAXIMUM hi
...!£
-"
0.1
",0(,
~.;(,
P
\~
50
25
25
50
75
100
125
150
175
TEMPERATURE (oG)
~
125
150
2·142
PRINTED IN U.S.A.
POWER SCHOTTKY RECT~F~ERS
USD735
USD740
USD745
USD750
16A Pk, up to 50V
DESCRIPTION
The USD700 series of Schottky power
rectifiers is ideally suited for output
rectifiers and catch diodes in high
frequency low voltage power supplies.
FEATURES
o Very Low Forward Voltage
• Reverse Transient Capability
• Economical Convenient Plastic Package
o Mechanically Rugged
• 50V Working Voltage @ Rated Tilma"
ABSOLUTE MAXIMUM RATINGS
USD735
USD740
USD745
USD750
Working Peak Reverse Voltage, VRWM ...................................................... 35V .............. 40V .............. 45V
........ 50V .. .
DC Blocking Voltage, VR ...................................................................... 35V .............. 40V .............. 45V .............. 50V .. .
Peak Repetitive Surge Voltage, VRSM @ IRM ............................................... 42V .............. 48V .............. 54V .............. 60V .. .
Average Rectified Forward Current @ Te = 115°C, IF (AV) •.•.•.••..••••..•••.•••..•• •••• ••...•. .•••.••
.8A ............................... .
Peak Repetitive Forward Current (Rated VR,
.
Square Wave, 20 KHz, 50% Duty Cycle, @ Te = 115°C), IFRM .................................................. I6A .............................. .
Non-repetitive Peak Surge Current (8.3ms), IFSM ..................................................................... 200A .............................. .
Peak Reverse Transient Current, IRM ............................................................. :...................... lA ............................... .
Operating Junction Temperature, TJ ••••••••.•••.••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 150°C ............................ .
Storage Temperature Range, Tst•.........•......•................................••.........•.............•..... -55°C to + 150°C ...................... .
Thermal Resistance, Junction to Case, R8Je ........................................................................ 2.8°C/W ............................ .
ELECTRICAL CHARACTERISTICS (T CASE = 25°C)
SYMBOL
LIMIT
UNITS
Maximum Instantaneous
Reverse Current
CHARACTERISTIC
iR
5
mA
VR = VRWM
Pulse Width =400ps
Duty Cycle = 1 percent
. Maximum Instantaneous
Reverse Current
iR
50
mA
VR=VRWM
Pulse Width =400ps
Duty Cycle = 1 percent
Te = 125°C
0.55
0.65
V
0.48
0.60
V
Maximum Instantaneous
Forward Voltage
VF
Capacitance
Voltage Rate of Change
Ct
1000
pF
dv/dt
1000
V/JlS
CONDITIONS
=8A
= I6A
iF =8A }
iF = I6A
VR =5V
VR=VRWM
iF
iF
Te
= 125°C
MECHANICAL SPECIFICATIONS
USD700 SERIES
SEATING
TO-220AC
PLANE
re-I
~r:..c
l'
A
'
I"""L-i.
J~- 1~r
-
1-"
i-'
MILLIMETERS
~I
-
,~
MIN
MAX
MIN
MAX
A
B
C
1423
9.66
3.56
0.51
15.87
10.66
0.560
0380
0.625
0420
482
0.140
0.020
0.190
G
H
K
JI- II-< PIN 1. Cathode
.to
J~
o
Tab
3.531
2.29
H
I IT
;~I
~~ ~;:~:eled
to Cathode.
INCHES
DIM
1,- ,~
s;""
....j
I
L
N
0.38
1270
1.14
4.83
Q
25'
R
S
2.04
1.14
5.85
1.14
3.733
2.79
6.35
0.64
14.27
1.77
5.33
3.04
2.92
1.39
6.85
0.139
0.090
0.015
0.500
0045
0.190
0.100
0080
0.045
0.230
0.045
0.147
0.110
0.250
0.025
0.562
0.070
0.210
0.120
0115
0.055
0270
-
[bJJ
4/82
2-143
SEMICONDUCTOR
PRODUCTS
UNITRODE
USD735 USD740 USD745 USD750
Forward Current
vs. Forward Voltage
Reverse Current .
vs. Voltage
100
100
125'CC==-~
MAXIMUM VF VS IF VS T =
TYPICAL VF vs IF vs T
=
L,,7; ' l
,v.
g
f-
15
'~
lO
'"'"
"'"
10
4'
I"V
.5
f15
""""'""1
~~~'l25'C
l..?
'"'"u
?c,.C
:>
:>
(J
;'7
'"ffi
t7r 't(,j
., W
~
~ 1.0
~
.1
MAXIMUM IR vs VR VS T-
.!' .01
-"
I
0.1
o
c,'C
'l',;;.
~'v
~ p"
'"
TYPICAL 1ft VS VA vs T -
I! I
".2 I: I.4 I
J I J I
.001
20
.6
.8
40
100
80
60
120
%ofV,(V)
1.0
v, - VOLTAGE (V)
Average Forward Current
VS. Temperature
10
V. Rating vs. Temperature
r_--.---,----r--~----r___,
V__
100%
IV'
\
V,
VRWM
\
\
Tc=--T.=----
\
\\,\
\~
25
50
75
100
125
-50 -25
150
TEMPERATURE ('C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.Q404 • FAX (617) 924·1235
0
25
50
75
100
125
150 175
TEMPERATURE C'C)
2·144
PRINTED IN U.S.A.
DUAL POWER SCHOTTKY RECTIFIERS
16A Av, up to 50V
USD735C
USD740C
USD745C
USD750C
DESCRIPTION
The USD700C series of power Schottky rectifiers, in the industry standard TO·220
package, is specifically designed for operation in power switching circuits to
frequencies in excess of 100 KHz. The series combines Schottky rectifiers in one
convenient package; thus, simplifying installation, reducing heatsink requirements
and component parts count.
FEATURES
• Very Low Forward Voltage
• Reverse Transient Capability
• Economical Convenient Plastic Package
• Mechanically Rugged
• 50V Working Voltage @ Rated Tj1m. .1
ABSOLUTE MAXIMUM RATINGS (Per Diode Unless Otherwise Noted)
USD735C
USD740C
USD745C
USD750C
Working Peak Reverse Voltage, VRWM ...••.••.••..•..•..•..•...•......••••.• 35V ........... 4OV ........... 45V ........... 50V .. .
DC Blocking Voltage, VR .................... __ .............................. 35V ........... 40V ....... __ .. 45V ........... 50V ...
Peak Repetitive Surge Voltage, VRSM @ IRM ................................ ,42V ........... 48V ........... 54V ........... 6OV .. .
Average Rectified Forward Current@ Tc U5°C, 10 ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16A ......................... ..
Non-repetitive Peak Surge Current (B.3ms), IFsM ................................................. 200A ......................... ..
Peak Reverse Transient Current, IRM .............................................................. lA __ ......................... .
Operating Junction Temperature, Tj ............................................................ 150°C ......................... .
Storage Temperature Range, T5Ig .......................................................... -55°C to +150°C .................... .
Thermal Resistance, Junction to Case, RSJC ..•.......•....•...•......•.••.••...••...•...•.•.•.. 2.BoC/W . ....................... .
=
'Full Wave Center·Tap; 10 IAV! 20KHz Square Wave
ELECTRICAL CHARACTERISTICS (TeASE = 25°C) (Per Diode)
SYMBOL
LIMIT
UNITS
Maximum Instantaneous
Reverse Current
CHARACTERISTIC
iR
5
mA
VR VRWM
Pulse Width 400ps
Duty Cycle 1 percent
Maximum Instantaneous
Reverse Current
iR
50
mA
VR VRWM
Pulse Width 400ps
Duty Cycle 1 percent
Te 125°C
0.55
0.65
V
O,4B
0.60
V
Maximum Instantaneous
Forward Voltage
VF
C,
1000
pF
dvldt
1000
Vips
Capacitance
Voltage Rate of Change
CONDITIONS
=
=
=
=
=
=BA
=I6A
iF =BA l
iF = I6A
V = 5V
V =VRWM
=
=
iF
iF
= 125°C
Te
R
R
MECHANICAL SPECIFICATIONS
. TO·220AB
MILL'MEllal
DIM
MIN
MAl
A
14.23
c
....
15.87
3.56
10.66
':.112
•
•
~
Pin 1
1
Pin 2
It.
Pin 3
0
F
G
.0.51
l.SJl
2.29
H
1.14
.
3.733
2.19
"
0.61:
INC EO
MAl
MI'
0.""
0.380
0.625
0.'"
0.140
0.110
0 ....
0.139
0.045
.....
0.\41
0.110
0....
0.025
&
K
14.21
DOl!!
0.5..
Tab
I
1.14
1.77
0.045
0.010
N
'.83
s.n
0,190
0.100
0.2!0
S
2."
2."
1.14
l.04
2.U
T
5.&5
6.85
J
.
Q
0.38
12.10
I."
...00
"62
0.120
0.045
0.115
0.055
0.230
D.210
nn
SEMICONDUCTOR
~ PRODUCTS
4/B2
2-145
_UNITRODE
USD735C USD740C USD745C USD750C
Reverse Current
vs. Voltage
Forward Current
vs. Forward Voltage
100
100
-
MAXIMUM VF VS If vs T=
TYPICAL V, vs IF vs T =
...~
ffi
'"'"=>
u
'"~
'"~
' /V
;;:
/.' 7V
10
...5
I.&:
ffi
'"'"=>
u
CJ
.
\Z5' C
~.c
10
~
1!fI
1.0
'/.".c
w
V>
ffi
c:;
~r *7
.1
'"I
-" .01
,
.2
v, -
.
20
.6
.4
fR VS VA vs T =TYPICAll R VS VA vs T= - - -
MAXIMUM
,-
.001
1:1 I
0.1
'/.'j.v
~!)v
I§! ~<;
40
VOLTAGE (V)
Average Output Current
vs. Temperature
V. Rating vs. Temperature
100%
~v,
14
ffi
~
=>
with VRW'" == RATED
(T c reference)
~VAWM V,
v.....
,,
16
...~
120
% 01 V, (V)
1.0
.8
100
80
60
\
::+--\-\----1
\
~\
12
\
10
...=>
...=>
u
..
\\~\
Tc=--T.= - - - -
0
I
I\~
-"
O'---'---'---'--~--'--~
o
25
50
75
100
TEMPERATURE ('C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924·1235
125
-50 -25
150
25
50
75
100
125
ISO
175
TEMPERATURE C'C)
2-146
PRINTED IN U.S.A.
POWER SCHOTTKY RECTIFIERS
USD835
USD840
USD845
USD850
24A Pk, up to 50V
DESCRIPTION
The USD800 series of Schottky barrier
power rectifiers is ideally suited for
output rectifiers and catch diodes in
low voltage power supplies.
FEATURES
• Very Low Forward Voltage (O.45V max @ 12A)
• Reverse Transient Capability
• Economical Convenient Plastic Package
• Mechanically Rugged
• 50V Blocking Voltage @ Rated Tim..
ABSOLUTE MAXIMUM RATINGS
USD835
USD840
USD845
USD850
Working Peak Reverse Voltage, VRWM .•.••...••..••••....•••..•••.•••.••••••.. 35V ..•..•••••• 4OV •••••..••.• 45V •••••....... 50V
nc Blocking Voltage, VR •..•••••••••.•.••.••••..•..•...•••.•.•••.•••••••.•... 35V •.••.•••••• 40V .••••..••.. 45V ..•••.•..•. 50V
Pp.ak Repetitive Surge Voltage, VRSM @ IRM •..••.•. " .•..•.••..•••••••••••.•... 42V •••..••••.. 48V .•••...••.. 54V ..•.•... '" 60V
Average Rectified Forward Current @ Tc = 115°C, 10 ••••••••••••••••••••••••••.••••••••.••••••••••••• 12A •.••.••..•.•...•...•.•.
Peak Repetitive Forward Current (Rated VR,
.
Square Wave, 20KHz, 50% Duty Cycle, @ Tc = 115°C), IFRM . . . . . •• . . . ••• . •• . •. • . . . ••• •. •••• . .• . . •• 24A •...•..•..•••••••••••••
Non·repetitive Peak Surge Current (8.3mS), IFSM •...•.•.••.•...•.••••...••.•.•.•.•.•••.............. 200A ...•..••.•.•••.•••.•••
Peak Reverse Transient Current, IRM .••...•••.•.•..•••••....•..••..•••..•••••••..••.........••••..•. lA •.••.•••••••••••..•...
Operating Junction Temperature, TI .••••••••••••••••.•..•.••••••••••.•.•.••••••••••••••••.•.•.•.•.• 150"C ....•.•..•.•••..•.•.•.
Storage 1 emperature Range, Tst, •.•.•••••••••••••••••••••••••••.••••••••••••••.••••••••.•.•• -55°C to +150°C •..••••..••••••..
Thermal Resistance, Junction to Case, R.JC ••••••••••••••••••••••••••••••••••••••••••••••••••••••• 2.4°C/W .................... .
ELECTRICAL CHARACTERISTICS (T CASE =25°C)
CHARACTERISTIC
CONDITIONS
SYMBOL
LIMIT
UNITS
Maximum Instantaneous
Reverse Current
iR
20
mA
VR= VRWM
Pulse Width = 400pS
Duty Cycle = 1 percent
Typical Instantaneous
Reverse Current
iR
50
mA
VR= VRWM
Pulse Width = 400pS
Duty Cycle = 1 percent
Tc = 125°C
0.59
V
iF = 12A
0.51
V
iF =12A
Tc = 125°C
VR= 5V
Maximum Instantaneous
Forward Voltage
VF
Capacitance
Voltage Rate of Change
C.
2000
pF
dv/dt
1000
VipS
VR= VRWM
MECHANICAL SPECIFICATIONS
USD800 SERIES
SU,TING
PLANE
.
rB-1
~[f
,- -
,",-.Ll.
I
',--'
..
~-
0--,
-.l
~.
MILLIMETERS
;~I
A·A
d.to
MIN
MAX
A
B
C
14.23
9.66
3.56
0.51
3.531
2.29
15.87
10.66
4.82
1.14
3.733
2.79
6.35
064
14.27
1.77
5.33
F
G
H
J
H
J~ II-< PIN 1. Cathode
o
DIM
D
...l
Ih
~
S~CT
I
.,
~"Q
...
2. Anode
Tab is connected
to Cathode.
0.38
12.70
1.14
N
4.83
Q
R
S
2.54
2.04
1.14
5.85
3.04
2.92
1.39
6.85
TO-220AC
INCHES
MIN
MAX
0.560 0.625
0.380 0.420
0.140 0.190
0.020 0,045
0.139 0.147
0.090 0.110
0.250
0.015
0.025
0.500 0.562
0.045 0070
0.190
0.100
0.210
0.120
O.OBO
0.115
0.045
0.230
0.055
0.270
nn
SEMICONDUCTOR
~ PRODUCTS
4/82
2-147
_UNITRODE
EI
USD835 USD840 USD845 USD850
Ty'pical Reverse Current
Typical Forward Current
vs. Forward Voltage
Voltage
VS.
100
100
T; - 125°C
50
)~I~OO/
.YY
10
.....-::: V
v:; ~
T; = 75.:sr-1
Tj= 25°C
I
1=
=.~CJ/ I
= =!SE!;
=
-
o. 1
V
O. 1
p
0.0 1
.~ ¥~
~ ....., ~I
"
/ III
0.0 0.1
0.2
0.3
o
0.4
0.5
0.6 0.7 O.B
0.9
10 20 30 40 50 60 70 80 90 100110 120 130
% 01 V, (V)
1.0
V, - VOLTAGE (V)
Output Current
Temperature
V, Rating
VS.
14
12
VS.
Temperature
100%
~r~n~:w~~t~~t~d/
'jj reference) V't O
--- ....c:: ~
\
\
\
............
50
75
100
TEMPERATURE (OC)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235 .
~~RWM V,
VRWM
\
,\
~\
=----
l\~
-50 -25
25
50
75
100
125
150
175
TEMPERATURE (OC)
~
125
\\~\'
Tc=--TA
~/Rated
'K
25
\
\
(Tc reference)
Free Air
~.V'
150
2-148
PRINTED IN U.S.A.
USD935
USD940
USD945
USD950
POWER SCHOTTKY RECTIFIERS
32A Pk, up to 50V
DESCRIPTION
The USD900 series of Schottky barrier
power rectifiers is ideally suited for
output rectifiers and catch diodes in
low voltage power supplies.
FEATURES
• Very Low Forward Voltage (0.5V max @ 16A)
• Reverse Transient Capability
• Economical Convenient Plastic Package
• Mechanically Rugged
• 50V Blocking Voltage @ Rated Tim..
ABSOLUTE MAXIMUM RATINGS
USD935
USD940
USD945
USD950
Working Peak Reverse Voltage, VRWM •.••.•••••.•.••.••..•••..••....••..•..•. 35V •....•••... 40V •••.••.••.. 45V ..••.•••••• 50V ••
DC Blocking Voltage, VR ••.•••.•.•.••..•••..•.•••••.••..••....•...•.•.••.... 35V ......•.••. 4OV •.••...•..• 45V .••..••.••. 50V .•
Peak Repetitive Surge Voltage, VRSM @ IRM •.••.••••.•••••..••..•.••.•..•.... 42V .....•....• 48V ..•....•..• 54V •••.••..••. 60V ..
Average Rectified Forward Current @ Te = 115·C, 10 ••••••••••••••••.••••••.••••••••••••••••••••.• 16A .•.••.••..•...••..••....
Peak Repetitive Forward Current (Rated VR,
.
Square Wave, 20KHz, 50% Duty Cycle, @ Te = 115·C), IFRM .•..•.••..••....••....•.••.•.••••••... 32A ••..•••..••..•...••...••
Non·repetitive Peak Surge Current (8.3mS), IFsM .......••..•••..•.•.••.•.•..••....•...•....••••..• 250A •••••.....•••.•••...•.•.
Peak Reverse Transient Current, IRM •...••••••..••.••......••..•..•..••.••.•.••.••...••....•••...• 2A ..••••...•.•.........•••.
Operating Junction Temperature, TI . .... ... . . . . . . . . . .. .. . ... . . . . . . . . .. . . . . . ... . . . . .... . . . . ... ... 150·C ..••..•..•.•..•...•....
Storage Temperature Range, Tst••••••••••••••••••••••••••••••••••••••.•••••••••••••••••••• -55·C to +150·C .•..••...•.••...•.
Thermal Resistance, Junction to Case, R Je .••..••••••.•.•..••..•.••.••.•........••..•...•.•...•• 2·C/W .....•..••...••.•••..••
ELECTRICAL CHARACTERISTICS (T CASE = 25·C)
SYMBOL
LIMIT
UNITS
Maximum Instantaneous
Reverse Current
CHARACTERISTIC
iR
20
mA
VR= VRWM
Pulse Width = 400pS
Duty Cycle = 1 percent
Typical Instantaneous
Reverse Current
iR
50
mA
VR= VRWM
Pulse Width = 400pS
Duty Cycle = 1 percent
Te = 125·C
0.6
V
iF = 16A
0.53
V
iF =16A
Te = 125·C
VR= 5V
Maximum Instantaneous
Forward Voltage·
Capacitance
Voltage Rate of Change
VF
Ct
2000
pF
dv/dt
1000
V/p.s
CONDITIONS
VR= VRWM
MECHANICAL SPECIFICATIONS
USD900 SERIES
SUTING
TO-220AC
PLANE
MILLIMETERS
INCHES
DIM
MIN
MAX
MIN
MAX
A
14.23
9.66
3.56
0.51
3.531
2.29
15.87
10.66
4.82
1.14
3.733
2.79
6.35
0.560
0.380
0.140
0.020
0.139
0.090
0.625
0.420
0.190
0.045
0.147
0.38
12.70
1.14
4.83
2.54
2.04
Ll4
5.85
0.64
0.015
0.500
B
C
0
F
G
H
J
K
L
N
Q
R
S
T
14.27
1.775.33
3.04
2.92
1.39
6.85
0.045
0.190
0.100
0.080
0.045
0.230
0.110
0.250
0.025
0.562
0.070
0.210
0.120
0.115
0.055
0.270
nn
l:::J
4/82
2-149
SEMICONOUCTOR
PRODUCTS
_UNITRODE
USD935 USD940 USD945 USD950
Typical Reverse Current
vs. Voltage
Typical Forward Current
vs. Forward Voltage
100
100
T,
50
lh V
=125°C
..... J=
10
;j ~
Tj = 75°C
1
Tj
I
l1J
",,-.
l\ro°C
I-"'"
=25°C
,/
o. 1
=.0 /11
~ =-ffJH u
=
-;; ?;;.,cv
=
-
0.0 1
1/
'''t
~,,,"
....
':"',
1 //
0.1
0.0 0.1
0.2
0.3
o
0.4 0.5 0.6 0.7
V, - VOLTAGE (V)
0.8
0.9
10 20 30 40 50 60 70 80 90 100110 120 130
% of VR (V)
1.0
Output Current
vs. Temperature
V. Rating vs. Temperature
v__
100%
~
'":::J
12
:
"'>
1Q
0 50%
~~
~
...'"o
:::J
0
0-
I
,
\\\
,\ \
~1
10
U
0-
.
Tc=--T.=----
~
~
'~
..15
.2
0
0
25
50
75
TEMPERATURE
100
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404. FAX (617) 924-1235
125
-50 -25
150
25
50
75
TEMPERATURE
(OC)
2-150
VRWM
\, \\
..,~
">!'
14
5:
0-
V,
\V,
"z
16
100
125
150
175
(OC)
PRINTED IN U.S.A.
USD3030C
USD3040C
USD3045C
POWER SCHOTTKY RECTIFIERS
30A Av, Up to 45V
FEATURES
DESCRIPTION
• Economical Convenient
TO-3P Package
• Insulated Mounting Hole
• Can Be Clip Mounted
• Mechanically Rugged
• Low Thermal Resistance
• Extremely Low VF
The USD3030C Series, in the economical, convenient TO-3P package, is specifically
designed for operation in power switching circuits to frequencies in excess of 100kHz_
The very low forward voltage and low recovered charge translates to extremely high
efficiency making them particularly suited for low voltage switching type power supplies.
ABSOLUTE MAXIMUM RATINGS, either leg unless noted
USD3030C
USD3040C
USD3045C
Working Peak Inverse Voltage .............................. VRWM, VRRM ............. 30V ............. 40V ............. 45V ' "
D.C. Blocking Voltage.. .. .. .. .. .. .. . .. . .. .. .. .. .. .. .. .. .. .. .... VR .................. 30V ............. 40V ............. 45V .. .
Peak Repetitive Surge Voltage .............................. VRSM @ IRM ............. 36V ............. 48V ............. 54V .. .
Maximum Average D.C. Output Current
@ Tc 125°C, full wave operation (see curves) .............. IFIAVI ................................... 30A .................... .
Non-Repetitive Sinusoidal Surge Current, 8.3mS ...............• IFsM ...................................400A ................... .
Peak Reverse Transient Current ................................ IRM ................................... 2A .................... .
Thermal Resistance Junction to Case .......................... R/IJ-c ................................ 1.4°C/W .................. .
Thermal Resistance Junction to Case
both legs together, full wave ............................... R.J-c ............................... O.85°C/W ................. .
Thermal Resistance Junction to Ambient
'
either leg, or both legs together ............................. ReJ-A ................................. 40°C/W .................. .
Operating and Storage Temperature Range .................. Top, TSTG .......................... -55°C to +150°C ............. .
=
ELECTRICAL SPECIFICATIONS
Type
VRWM
USD3030C
USD3040C
USD3045C
30V
40V
45V
Maximum
Reverse Current (lR)
@VRWM
Maximum
Forward Voltage (VF)
TJ
= 25°C
TJ
.61 @ 15A
.75@30A
= 125°C
.55@ 15A
.71 @30A
TJ
=25°C
TJ
20mA
= 125°C
50mA
Maximum
Capacitance
CT
at VA = 5.0V
Voltage
Rate of
Change
(dv/dt)
2000pF
1000V/J.ls
MECHANICAL SPECIFICATIONS
IAi
~MI
TO-3P
FiF297 NOM.
.......
:=:
===
DIM.
f-
'PI~llpIL'
PIN2
&
TAB
3
A
B
C
D
E
F
G
H
J
~~~
-M
-N-
:J
K
L
M
N
INCHES
MIN. MAX.
.620
.640
.845
.825
.080
.060
.780
.800
.087
.102
.029
.Di9
.150
.170
.212
.222
.140
.144
.042
.052
.084
.074
.113
.123
.430 Nom.
nn
SEMICONDUCTOR
~ PRODUCTS
10/86
2-151
_UNITRODE
..
USD3030C
Average Output Current
vs Case Temperature
USD3040C
USD3045C
Peak Output· Current vs Case Temperature
(Either Leg)
40
ff-
g
r-
Full
Leg
See
Leg
Wave Operation with Each
at 30% Minimum Duty Factor.
Peak Current Curve for Either
Operating Individually.
30
~
\
'"'"::J
,
r-
~
\
U
r-
~ 20
r-
::J
30
U
r-
~
::J
r-
0
«
'""'
::J
1\
ffi
>
«
0
\
10
~
1
25
50
75
125
100
20
'"~
10
100
150
110
Typical Forward Current vs Forward Voltage
140
100
I-- I-j
,~
+125'C-
IO
150
+150"C
+125"C
f- I- +150'C
r-
130
Typical Reverse Current vs Voltage
100
g
120
Te. CASE TEMPERATURE - ('C)
Te. CASE TEMPERATURE - ('C)
r/
.A 'J r.4
~
:<
~
10
I'"""'
+100'C
-5
I
-55'C
r-
~
'"'"
'"3:«'"
e'"
::J
U
rl
I
J II
I
'"'"
+25 D C
::J
1--+25'C
U
"''"
ffi
I
L'
0.1
~
.,;
.!E
i.--"
0.01
0.1
I
I
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
10
20 30 40
VF. VOLTAGE - (V)
50 60 70 80 90 100 110 120
%OFVR-(V)
Thermal Impedance vs Pulse Width
(Each Leg)
2.0
3'
~
I-
'1.0
",,,,,,,
0.5
V
"'uz
«
'":;;:~
10-'1-'"
0.2
",'"
0.1
;;!
"ffi
.05
:J:
r-
~
/
I
.02
.01
.01.02 .05.1.2
tp
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404. FAX (617) 924·1235
.5 1 2
-
5 10 20 50100200
1000
PULSE WIDTH (mS)
2-152
PRINTED IN U.S
USD3030S
USD3040S
USD3045S
POWER SCHOTTKY RECTIFIERS
60A Pk, Up to 45V
FEATURES
DESCRIPTION
• Economical Convenient
TO-3P Package
• Insulated Mounting Hole
• Can Be Clip Mounted
• Mechanically Rugged
• Low Thermal Resistance
• Extremely Low VF
The USD3030S Series, in the economical, convenient ID-3P package, is specifically
designed for operation in power switching circuits to frequencies in excess of 100kHz.
The very low forward voltage and low recovered charge translates to extremely high
efficiency making them particularly suited for low voltage switching type power supplies.
ABSOLUTE MAXIMUM RATINGS
USD3030S
USD3040S
USD30455
Working Peak Reverse Voltage. _...... _........................ VRWM ............ _.......... 30V ........... 40V ........... 45V .. .
D.C. Blocking Voltage . _..•........•........... _................ VR .............. _......... 30V ........... 40V ........... 45V .. .
Peak Repetitive Surge Voltage .. _.............. _........ _... VRSM @ IRM. _.................. 36V ........... 48V ... _....... 54V _..
Maximum Average D.C. Output Current @ Te = 115°C .......... IFIAVI .. _.... _... ___ .................. _..... 30A ................. .
Non-Repetitive Sinusoidal Surge Current, 8.3mS ................ IFsM ..................................... 450A ........ _...... _.
Peak Reverse Transient Current _... _.. __ . _..................... IRM ................................ _...... 2A ................ _.
Thermal Resistance Junction to Case .. _.. _..... _.............. R9J-c ___ ........ _........................ 1.5°C/W.. _........ _.. _.
Thermal Resistance Junction to Ambient ........... _.......... R9J-A ................. _........ _. __ ...... 40°C/W . .............. .
Operating and Storage Temperature Range. _.. _..... _........ Top, TSTG .. , ...... _....... _............ -55°C to + 150°C....... _. _..
ELECTRICAL SPECIFICATIONS
Type
VRWM
USD3030S
USD3040S
USD3045S
30V
40V
45V
Maximum
Reverse Current (lR)
@VRWM
Maximum
Forward Voltage (VF)
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
Maximum
Capacitance
CT
at VR = 5.0V
.75@30A
.93@60A
.70@30A
.85@60A
20mA
50mA
2000pF
Voltage
Rate of
Change
(dv/dt)
1000V/jJs
MECHANICAL SPECIFICATIONS
ID-3P
rsM ~
,AI
11F~97NOM.
..--
:::
="
PIN 1
CATHODE 1
PIN2
ANODE
DIM.
'A
B
C
D
E
F
G
H
-N-
J
J
K
L
N
INCHES
MIN. MAX.
.620
.640
.845
.825
.060
.080
.780
.800
.102
.087
.019
.029
.170
.150
.222
.212
.140
.144
.042
.052
.084
.074
.430 Nom.
1. Mounting surface common to cathode
10/86
2-153
-
[~
SEMICONDUCTOR
PRODUCTS
UNITRDDE
USD3030S USD3040S USD3045S
Average Output Current
vs Case Temperature
Peak Output Current vs Case Temperature
100
40
g
,..
z
....
0:
30
,..
\
150:
0:
::>
c..>
0:
,..
,..::>::>
0-
::>
,..c..>
\
20
,..::>~
\
0
....
:<
40
o
'"«ffi
'"
«
~
10
VAWM :: Rated
1
\
~
.;;
30
VRWM :::
lOY Max. -
-
\
OL-___ L_ _ _ _
25
50
75
125
100
ISO
140
130
100
f- -- --
,
+150 a C
~
+125°C-
;(
5
-55°C
+15Q~C
-
10
//
+125°C
+lOOoe
,..I
~
L
~
0:
::>
u
'-
h
Ii!«
'I
"fZ
0:
+25°C
::>
c..>
+25°C
iii'"
I
"
0,1
~
0:
.of
.!!
0.1
~
ISO
Typical Reverse Current vs Voltage
Typical Forward Current vs Forward Voltage
10
L-___ L_ _ _ _
____
Te, CASE TEMPERAT.URE - (OC)
100
g
~
120
110
100
Te. CASE TEMPERATURE _ (Oe)
,..
-
.....
0.01
1/
0,0 0,1 0.2 0.3 0.4 0.5 0,6 0,7 0,8 0,9 1.0 l.l 1.2
10
20 30 40
VF. VOLTAGE - (V)
50 60 70 80 90 100 110 120
% OF VR - (V)
Thermal Impedance vs Pulse Width
2.0
~
e
....c..>
0.5
z
«
0,2
~
~
0,1
0
-"
«
,'"
1.0
'ffi"
,05
~
.02
~ ....
..... 1---
,;'
/
/
/
~
,01
,01.02 ,05,1 ,2
,5 1 2
5 10 20 50100200 1000
Ip - PULSE WIDTH (mS)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
2-154
PRINTED IN U.S.A.
USD4530C
USD4540C
USD4545C
POWER SCHOTTKY RECTIFIERS
45A Av, Up to 45V
FEATURES
DESCRIPTION
• Economical Convenient
TO-3P Package
• Insulated Mounting Hole
• Can Be Clip Mounted
• Mechanically Rugged
• Low Thermal Resistance
• Extremely Low VF
The USD4530C Series, in the economical, convenient TO-3P package, is specifically
designed for operation in power switching circuits to fre·quencies in excess of 100kHz.
The very low forward voltage and low recovered charge translates to extremely high
efficiency making them particularly suited for low voltage switching type power supplies.
ABSOLUTE MAXIMUM RATINGS, either leg unless noted
USD4530C
USD4540C
USD454SC
Working Peak Inverse Voltage ............•..................VRWM, VRRM .......•..... 30V ....•......... 40V ........•.... 45V .. .
D.C. Blocking Voltage ........................................... VR .................. 30V .............. 40V ............. 45V .. .
Peak Repetitive Surge Voltage .............................. VRSM @ IRM ............. 36V .............. 48V ............. 54V .. .
Maximum Average D.C. Output Current
@ Tc = 125°C, full wave operation (see curves) .......•...... IFIAVI .....••...•........•.............. 45A .................... .
Non·Repetitive Sinusoidal Surge Current, 8.3mS ...............• IFsM .................................. .450A .................... .
Peak Reverse Transient Current ..........................•.....• IRM ................................... 2A ..................... .
Thermal Resistance Junction to Case ........................... RoJ-c ................................ l.O°C/W .................. .
Thermal Resistance Junction to Case;
both legs together, full wave .......................•........ RoJ-c ............................... . O.7"C/W .................. .
Thermal Resistance Junction to Ambient
either leg, or both legs together .........•.........•.......•. RoJ-A ................................ 40°C/W .................. .
Operating and Storage Temperature Range ................... Top, TsTG· .......................... -55°C to +150°C .............. .
ELECTRICAL SPECIFICATIONS
Type
VRWM
USD4530C
USD4540C
USD4545C
30V
40V
45V
Maximum
Reverse Current (IR)
@VRWM
Maximum
Forward Voltage (VF)
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
Maximum
Capacitance
CT
at VR = 5.0V
.63@23A
.73@45A
.60@23A
.70@45A
20mA
75mA
4000pF
Voltage
Rate of
Change
(dv/dt)
1000V//ls
MECHANICAL SPECIFICATIONS
TO-3P
I~I
fL~
B
J
[
FiF~97NOM.
.......
~
I=-
DIM.
•
PI~ Ilpl~'3'
PIN2
&
3
TAB
A
B
C
D
E
F
G
H
J
K
~j~
-M
I---N-
:J
L
M
N
INCHES
MIN. MAX.
.620
.640
.825
.845
.060
.080
.780
.800
.087
.102
.019
.029
.150
.170
.212
.222
.140
.144
.042
.052
.074
.084
.113
.123
.430 Nom.
nn
SEMICONDUCTOR
~ PRODUCTS
10/86
2-155
_UNITRDDE
USD4530C
Average Output Current
vs Case Temperature
60
g
50
-
Full
Leg
See
Leg
USD4540C
USD4545C
Peak Output Current vs Case Temperature
(Either leg)
Wave Operation with Each
at 30% Minimum Duty Factor.
Peak Current Curve for Either
Operating Individually.
....
z
'"
0:
0:
40
\
\
:::l
U
....
:::l
"....
:::l
3D
a
'"'-'
«
20
>
«
~
10
ffi
J;;
\
\
o
o
25
50
75
100
125
100
150
110
120
130
140
150
Te. CASE TEMPERATURE - ("C)
Te. CASE TEMPERATURE _ (OC)
Typical Forward Current vs Forward Voltage
Typical Reverse Current vs Voltage
1000
1000
,.nO~
+-150°C
g
....
b... ~
100 ~ ~ +125°C
....
~
<:
5
I
....z
150:
0:
~
0:
e
'(f
10
0:
0:
55°C_ I -
/
"
/11
:::l
U
+25°C
~12~OC
-
10
'"
0:
:::l
U
100
>IOO°C.
..A
'"'"ffi
+25°C
G;
0:
.!f
IE
"""
0.1
I
I
I
I
/, II I
0.01
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
10
20 30 40
VF. VOLTAGE - (V)
Thermal Impedance vs Pulse Width
(Each leg)
~
E
"'u
.5
"'"-
.2
z
«
c
~
..J
.1
0::
.05
«
::;;
..."'
l:
I
50 60 70 80 90 100 110120
%OFVR- (V)
.02
-l/'
V
V ......
vV'
/'
V
g .01
N
.01.02 .05.1 .2
.5 1 2
5 10 20 50 100 200
1000
t. - PULSE WIDTH (mS)
UNITRODE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
2·156
PRINTED IN U.S.A.
USD4530S
USD4540S
USD4545S
POWER SCHOTTKY RECTIFIERS
gOA Pk, Up to 45V
FEATURES
DESCRIPTION
• Economical Convenient
TO·3P Package
• Insulated Mounting Hole
• Can Be Clip Mounted
• Mechanically Rugged
• Low Thermal Resistance
• Extremely Low VF
The USD4530S Series, in the economical, convenient TO·3P package, is specifically
designed for operation in power switching circuits to frequencies in excess of 100kHz.
The very low forward voltage and low recovered charge translates to extremely high
efficiency making them particularly suited for low voltage switching type power supplies.
ABSOLUTE MAXIMUM RATINGS
USD4540S
USD4530S.
USD4545S
Working Peak Reverse Voltage ................................ VRWM ....................... . 30V .......... . 40V .......... 45V .. .
D.C. Blocking Voltage .......................................... VR ......................... 30V ........... 40V .......... 45V .. .
Peak Repetitive Surge Voltage .............................. VRSM @ IRM ..................... 36V .......... . 48V .......... 54V .. .
Maximum Average D.C. Output Current @ Tc 115°C ......... IFIAV) ...................................... .45A ................. .
Non·Repetitive Sinusoidal Surge Current, 8.3mS ................ IFsM....................................... 450A ............... ..
Peak Reverse Transient Current ................................ IRM ........................................ 2A ................. ..
Thermal Resistance Junction to Case .......................... ReJ-c .....................................8°C/W ............... .
Thermal Resistance Junction to Ambient ..................... ReJ-A .................................... 40°C/W ............... .
Operating and Storage Temperature Range .................. Top, TSTG ...•.......................... -55°C to +150°C .......... ..
=
ELECTRICAL SPECIFICATIONS
Type
VRWM
USD4530S
USD4540S
USD4545S
30V
40V
45V
Maximum
Reverse Current (lR)
@VRWM
Maximum
Forward Voltage (VF)
TJ
=25°C
TJ
.73@45A
l.OO@90A
=125°C
.70@45A
.95@90A
TJ
=25°C
TJ
20mA
= 125°C
75mA
Maximum
Capacitance
Cr
at VA = 5.0V
Voltage
Rate of
. Change
(dv/dt)
4000pF
lOOOV/ps
MECHANICAL SPECIFICATIONS
TO-3P
I~I
fLbt ~
~,:
~I"
K
Fil=i97 NOM.
.......
~ r-~~OOEI
f=
PIN2
ANODE
2
DIM.
A
B
C
D
E
F
I
=-N-
j
G
H
J
K
L
N
INCHES
MIN. MAX.
.620
.640
.845
.825
.060
.080
.780
.800
.102
.087
.019
.029
.150
.170
.212
.222
.140
.144
.042
.052
.074
.084
.430 Nom.
1. Mounting surface common to cathode
nn
SEMICONOUCTOR
~ PROOUCTS
10/86
2-157
_UNITRDDE
l1li
USD4530S
Average Output Current
vs Case Temperature
USD4540S
USD4545S
Peak Output Current vs Case Temperature
60
g 50
I
I-
~
0:
0:
\
40
:J
<.)
I-
!\
:J
"- 3D
I-
.'"
W
..g
ffi
,
\
:J
0
20
1\
>
.
.,.
,
1\
10
25
50
75
100
125
150
Te. CASE TEMPERATURE _ (OC)
Te. CASE TEMPERATURE _ (OC)
Typical Forward Current vs Forward Voltage.
Typical Reverse Current vs Voltage
1000
1000
100
g
I-
+1500~"
100
~
F
~
~ JIIIII'
.5
F+125°C
I-
~
0:
0:
:J
<.)
0:
0:
~
Jf
55°C
'le:
'"
;l:
'f II V
«
10
10
0:
0:
l - t-
1+l5pOC
-
:?
:J
<.)
12~
100°C
''~
W
'"
i'-+25°C
0:
W
~
0:
.!i
I
!
/J
",.
0.1
I
II LI
II
0.01
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 l.l 1.2
10
20 30 40 50 60 70 80 90 100 110 120
VF. VOLTAGE - (V)
%OFVR-(V)
§:
·Thermal Impedance vs Pulse Width
e: -
--
i
~
z
<3
I
.5
~
~2
~
.1
~
.05
.
w
V
ii
.02
~.o 1
N
.01.02 .05.1 .2
tp -
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET • WAT~RTOWN. MA 02172
1-1-
!-'V
/
l:
I
./
I
/V
l-
TEL (617) 926·0404 • FAX (617) 924·1235
~
.5 1 2 5 10 20 50 100 200
PULSE WI DTH (mS)
2-158
1000
PRINTED IN U.S.A.
USD7520
USD7525
POWER SCHOTTKY RECTIFIERS
150 Amp Pk, Up to 25V
FEATURES
• Extremely Low Forward Voltage (O.425V
at GOA, 125°C)
DESCRIPTION
This series of Schottky barrier power
rectifiers is specifically designed to be
used as output rectifiers and catch diodes
for 3V power supplies. The Unitrode high
conductivity design, using a heavy copper
top post and 4 point crimp, ensures cool
thermal operation and low dynamic
impedance. Rugged design absorbs stress
that can damage glass-to-metal seal
during installation and use.
• High Efficiency for Low Voltage Supplies
(3V types)
• Low Recovered Charge
• Rugged Package Design.(DO-5)
.. Low Thermal Resistance (O.7°C/W)
• High Surge Current (1000A)
• Low Reverse Current (150mA at Rated
VR at 125°C)
ABSOLUTE MAXIMUM RATINGS
USD7520
USD7525
Working Peak Reverse Voltage, VRWM ...................... 20V ................... 25V
DC Blocking Voltage, VR ................................... 20V ................... 25V
Peak Repetitive Surge Voltage, VRSM @ IRM ................. 24V ................. .. 30V
Peak Repetitive Forward Current
(Rated VR, Square Wave, 20kHz,
50% Duty Cycle), IFRM (Tc = 130°C) ............................. 150A ......... ..
Average Rectified Forward Current, IFIAVI (Tc 130°C) ................ 75A ........... .
Non-Repetitive Peak Surge Current (8.3mS), IFSM ........•...........1000A ......•....
Peak Reverse Transient Current, IRM ................................. 2A ............ .
Storage Temperature Range, Tstg .............................. -55°C to +200°C..... .
Operating Junction Temperature, TJ .............................. '.' +175°C ......... .
Thermal Resistance Junction-to-Case, ROJC .•...................... : 0.7°C/W ........ .
=
ELECTRICAL CHARACTERISTICS (TCASE
=25°C unless noted.)
SYMBOL
CHARACTERISTICS
LIMIT
CONDITIONS
UNITS
20V
25V
20
(100)
20
(150)
VR = VRWM
Maximum Instantaneous
Reverse Current
iR
Maximum Instananeous
Forward Voltage
VF
Maximum Capacitance
Maximum Voltage
Rate of Change
mA
(Tc = 125°C)
Pulse Width = 300/1S
Duty Cycle = 1 percent
0.425
0.450
0.550
V
V
V
iF = 60A, Tc = 125°C
iF = 75A, Tc = 125°C
iF = 150A, Tc = 125°C
Ct
5000
pF
VR = 5.0V
dv/dt
1000
V//1S
VR = rated
MECHANICAL SPECIFICATIONS
USD7520
USD7525
00·5
ills.
0
"'"~
'4,28
UNF·2A
~
A
225
B
060 MIN
1.52 MIN
156:,: .020
3.96:!:: 0.51
156 MIN. FLAT
667 DIA. MAX
3.96 MIN. FLAT
E
f
G
.005
.090 MAJ{.
.677 :': .010
. 375 MAX
.140 MIN, DIA.
K l.OODMAX.
.450 MAX.
l
M .438 = .015
.07B MAX.
N
5.72::!: 0.13
16.94 DIA. MAX.
2.29 MAX
17.20:0.25
9.53 MAX .
356 MIN. OIA
25.40MA)(.
11,43 MAX
11 13
~
a 38
1.98 MAX
Noles:
nn
1. Cathode is stud.
2. All metal surfaces tin plated.
3. Maximum unlubricated stud torque: 30 inch pounds (35 kg. cm).
4. Angular orientation of terminal is undefined.
9/86
SEMICONDUCTOR
~ PRODUCTS
2-159
_UNITRODE
USD7520
USD7525
Peak Output Current
vs Case Temperature
Maximum Current
vs Case Temperature
UJ~
>«
250r----r~--.-~-.---r,_--_.
150
----
120
\ \
E;=-·
>-z
\
..
~
UJUJ
~~
\ \
80
"'u
;::iCl
"--
>-
i'5
i'5
20
fi
10
g§
::>
u
u
«
r--
;0
en
0
w
u:
""
IIII
i"&
-..;::
VI
~t;:
t'
60
~~
50
>-13
U·
40
o~
ZO
W
-J:
N
30
!:?o
... 0
20
...0
W@
o
~ulse
IK
2 3 4 6 810K
lOOK
1M
FREQUENCY (H,) -HALF WAVE RESISTIVE LOAD NO FILTER
Reverse Pulse Power vs Pulse Duration
Duration
100,000
~A.LL
~
1,000
........
for ~~I~e_curr~!!.,;ptr.:
1(8.3t:~ ~~eSquar~ ,,~~!~~'e
Jill!
~ 10,000
I
a:
W
a:
a:
u
W
en
W
~
~
::>
...J
'" "
10
1,000
10
100
CYCLES AT 60 Hz HALF SINE WAVE
Forward Pulse Current vs
....
70
... <
10,000
Z
80
0"
20
*
90
e:>
::>w
r----:::::: -:::'J..
D.
-ALL SERIES
.... ...J
::>0
Turret 1/2" centers
Printed Circuit
U
W
...0
-....
tLlsERIES
~Jr~~~ I" c~nte~s
40
en
Efficiency vs Frequency at Rated Current (Sine Wave)
lOa
1,000
W
III
lao
...J
::>
::>
D.
D.
.Ips
lIts
lOps
lOOjJ.s
1ms
lOms
PULSE DURATION (SECONDS)
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
2-162
100
lOOns
IpS
lOps
lOOps
1ms
PULSE DURATION (SECONDS)
IOms
PRINTED IN U.S.A.
UT236-UT347 UT249-UT363 UT2S1-UT364 UT261-UT268
Maximum Current
vs lead Temperature
1 AMP SERIES
L
~
....z
0:
0:
"::;:
0
= v, ..
"'-l
2.5
!:l
2
®
L=W' "'"
~
r--.
25
50
T, -
'" ~
1.5
75
100
u
0
~
w
u:
;::
u
w
~
W
OJ
.............
"'"
0:
1
W
~
>
~
...........
.2
~~
.5
~
125
150
175
LEAD TEMPERATURE I'C)
25
50
T, -
Typical Forward Current
vs Forward Voltage
o
75
100
125
150
175
LEAD TEMPERATURE I'C)
Typical Forward Current
vs Forward Voltage
10
10
r/v;
2 AMP SERIES
"'" ."'"'-"~
~
'"I
.5
~
"'-
~J/4"
0:
n
.............
;-..........
:J
-'II"'
2 AMP SERIES
= Vs"
"t
~= 'I'"'
w
L
..
Maximum Current
vs lead Temperature
1 AMP SERIES
VVr;
V
....z
w
k"k:: 1:2
I1IIII
~ .5
.2
~ .5
~o oCJ CJ U
~8io5?_
~ ,1
:;; +-
:J
U.05
I
....Z
r-
II
.01
.005
II
.002
II
.001
.2
II
:;;JI
:J
u .05
I
_".02
1/
I1I1
.01
.005
// I
il
.002
II
1/
.001
.4
.6
V, -
VOLTAGE (V)
.8
1
1.2
.2
1.4
VV
I/'''~'
uu
~~~~
~ .1
I
1///
."..02
1/1/
.2
w
VI/V
r-
I1IIII
IL
.4
.6.8
V, -
VOLTAGE (V)
1.2
1.4
Typical leakage Current vs. PIV
ALL SERIES
.001
.002
;(
.3
....z
u
VI
.5
w
50'C
.02
.05
.1
.2
OJ
0:
0:
:J
--
.005
.01
--~'C
i
I
r--
0:
W
>
W
./
0:
---+75'C
I
10
20
I
=-t;5'C
',-
50
100
150
100
50
% OF PIV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
2-163
PRINTED IN U.S.A.
UT2005-UT2060
UT3005-UT3060
UT4005-UT4060
RECTIFIERS
Standard Recovery, 2 Amp to 4 Amp
FEATURES
DESCRIPTION
•
•
•
•
•
High average power and surge capability
make these series of devices attractive
in many high-rei applications.
Continuous Rating:to 4A
Controlled Avalanche
Surge Rating:tolOOA
PIV: to 600 V
Miniature Package
All Unitrode rectifiers have a sleeve of
pure hard glass fused to the silicon junction. Since the silicon sees only this glass,
electrical characteristics are permanently
stable. This voidless, monolithic package
is totally unaffected by the most severe
moisture or temperature testing.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
2 Amp
Series
3Amp
Series
4Amp
Series
50V
100V
200V
400V
600V
UT2005
UT2010
UT2020
UT2040
UT2060
UT3005
UT3010
UT3020
UT3040
UT3060
UT4005
UT4010
UT4020
UT4040
UT4060
Maximum Average D.C. Output Current
@ TA = 25'C .
@ TA = IOO'C .
Non-Repetitive Sinusoidal
Surge Current (B.3ms) ..
Operating Temperature Range
Storage Temperature Range .
Thermal Resistance .
2AMP
3AMP
4 AMP
SERIES
SERIES
SERIES
. 2.0A... .. .. .... ......... .... ........ 3.0A... .
. I.OA... .
.............. 1.5A
............. 60A
....... 4.0A
............... 2.0A
.................... IOOA
.. BOA.
.... -195'C to +175'C ...
........... -195'C to +200'C ..
.......... See lead temperature derating curve ...
MECHANICAL SPECIFICATIONS
UT2005-UT2060 UT3005-UT3060 UT4005-UT4060
r
BAND INDICATES
CATHODE END
.175 TYP.
r:
4.4mm
=::l]
1
~~~~8~~·
,~J
=
.145 MAX
36Bmm
t
====rrL
·~2~~·
BODY B
.040,001
1.02mm+.03
.115 TVP
2.9mm
Part Identification: Orange band indicates "UT." Part
number printed on body_
Polarity: Denoted by orange band.
Weight: 0.75 grams, typical.
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONDUCTOR
~ PRODUCTS
2-164
_UNITRODE
UT2005-UT2060
UT300S-UT3060
UT400S-UT4060
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)
SOV
lOOV
200V
400V
600V
lV@3A
S}LA
lOO}LA
UT300S
UT3010
UT3020
UT3040
UT3060
SOV
lOOV
200V
400V
600V
lV@2A
S}LA
lOO}LA
UT200S
UT2010
UT2020
UT2040
UT2060
SOV
lOOV
200V
400V
600V
lV@lA
S}LA
lOO}LA
=~"
z
~
:;! 3
""o ~=f"
Maximum Current
Y5 Lead Temperature
3.5
2 AMP SERIES
2.5~
0:
0:
~
>= 2
:Ii
""
~4
t--..
~ 1
.2
50
75
1.5
""""1'-"'"
"-
T, -
:;!5
~L
®
'"
.:
--<
l;lJ
100
1
"
Uj
0
150
0:
~
4
"
""{
L-~'~
t'-4
J"-.,.
3
'\.
""'" ~
~
>
I
z
L _ "'" "-
"'"ffi2
.
~~
~
125
>=
1
1'\
175
SO
T[ -
75
100
6
'"
0:
0:
"''" ""0
®
5
--<
4
.:'"
>=
" "'"
t:
0
'\
125
150
0:
"'"'"
\.L - Yo"
\l
I'\.
'"I
h.
"i-...!:.!"'4"
~
....
z
=
YS
Square Pulse Current VS~
Duration for Non-Repetitive Pulse
VI
"z;::
.
a:
(8.3 msec sine wave equivalent
to 3 ms square w~ve)
80
"'
"a:
1.000
:::J
b" hl
l"\.~
175
'1
50
100
125
150
175
LEAD TEMPERATURE (OC)
60
ALL SERIES
11111
~
'" ~t:::
0
"'u:
"'0.
f'--..
100
75
1""- f'.
VI
a:
:::J
u
"'
~LJ.
J"'-.,
Allowable Forward Surge ys Number of Cycles
Pulse Duration
"'
a:
.J
~
LEAO TEMPERATURE (Oe)
100
LL SERIES
1'\
"'-
-
TL -
Forward Pulse Current
'\
~
i"'" I"--. -"'" 1'\\
2
25
10.000
• AMP SERIES
R~~)I,\
0:
'">
""L'\.\~
25
"0
:Ii
'Ii
-......, ""-I\.
.2
LEAD TEMPERATURE (Ge)
i
.
'"
""04
"''"
2
'"I
25
L ;::;. l,iI"
0:
Maximum CUrrent
YS Lead Temperatur.
3 AMP SERIES
~
....
z
L-~ ,""-
'".:
I
_6
L
0:
"'"
"'"'"
100'C
PIV
UT400S
UT4010
UT4020
UT4040
UT4060
Maximum CUrrent
~
2S'C
Type
YS Lead Temperatur.
.
Maximum Leakage
Current @ PIV
Maximum Forward
Voltage Drop
U
:::J
VI
0.
"-
40
I I
~Jr~~~ I" celnte~s
TUrret Ill" centers
Printed Circuit
I:::::::::::
~ -'::'1.
20
0
#
\0
.1p.s
b.s
lOp,s'
100#5
Ims
lOms
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-123S
10
100
1.000
CYCLES AT 60 Hz HALF SINE WAVE
PULSE DURATION (SECONDS]
2-165
PRINTED IN U.S.A.
UT2005-UT2060
Typical Forward Current
vs Forward Voltage
10
10
1// 'II
'"~
::>
;';'~II
.01
II
.005
.001
I
.2
I
/
.4
V, -
.2
'"::>'"'"
.5
--
--
II
/ I
I
"' .02
....
'"'"
I
10
20
50
100
200
500
1,000
II
.6
.8
1
VOLTAGE (V)
1.2
ISO
1.4
./
:sooC
.05 .
.1
Z
{J
~8w,5:
I
.002
;(
.:,
fr
~
ALL SERIES
.01
.02
II I 'III
.5
I
I II
Typical Reverse Current vs PIV
·4 AMP SERIES
/ /11
$
....
il
I
.2.4.6.811.21.4
. V, - VOLTAGE (V)
Typical Forward Current
vs Forward Voltage
10
/
II
.002
1.2
{J {J
II
.005
.6
.8
1
VOLTAGE (V)
~
;.~ :;:8 It"11/5?
~.05
I
I
I
.2
~ .. 1
.1
/ I
II I
I
/1/ 1I
.5
w
{J
i- i- i- I
_~.02
.002
$
....
Z
ilt
.1
'/
3 AMP SERIES
/
$
....Z
UT4005-UT4060
Typical Forward Current
vs Forward Voltage
VVv:
Z AMP SERIES
Un005-Un060
./
25°C
/'
75°C
/'
125°C
100
50
% OF PIV
Reverse.Pulse Power vs Pulse Duration
100,000
~
'"'0~"
"w
en
10,000
1;000 .
..J
::>
"-
100
10
lOOns
bs
lOllS
lOOps
Ims
IOms
PULSE DURATION (SECONDS)
UNITRDDE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL; (617) 926·0404· FAX (617) 924·1235
2-166
PRINTED IN U.S.A.
RECTIFIERS
UT5105-UT5160
UT6105-UT6160
UT8105-UT8160
UT5105HR2-UT5160HR2
UT6105HR2-UT6160HR2
UT8105HR2-UT8160HR2
Standard Recovery, 7.5 Amp to 12 Amp
FEATURES
• Rating: 12A
• Controlled Avalanche
• Miniature Package
• Surge Rating: 200A
DESCRIPTION
These series of high current rectifiers
offers opportunity for size and weight
reduction in high power supplies.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
12 Amp
Series
9 Amp
Series
7.5 Amp
Series
50V
lOOV
200V
400V
600V
UT8105/8105HR2
UT8110/811OHR2
UT8120/8120HR2
UT8140/Bl40HR2
UTB160/B160HR2
UT6105/6105HR2
UT6110/6110HR2
UT6120/6120HR2
UT6140/6140HR2
UT6160/6160HR2
UT5105/5105HR2
UT5110/5110HR2
UT5120/5120HR2
UT5140/5140HR2
UT5160/5160HR2
Maximum Average D.C. Output Current
@ Tc = 100'C .....
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
Operating and Storage Temperature Range ........................... .
Thermal Resistance, Junction to Case .
Current Derating ............................................... .
12AMP
9AMP
SERIES
SERIES
12.0A... .....
9.0A.......... .
7.5 AMP
SERIES
..... 7.5A
... 200A.....
.. ........ 175A.......... .
150A
.. .........-65'C to +175'C
.. ...... 7.5'C/Watt .. .
... See current vs. case temperature curve
MECHANICAL SPECIFICATIONS
UT5105-UT5160
UT5105HR2-UT5160HR2
UT6105-UT6160
UT6105HR2-UT6160HR2
.187" MAX.
.005 MAX.
Radius
.112 MAX. \
.045" TYP •
(O.llmm)
(4.75mm~
r
.460" MAX.
-',
(ll.6Bm";·j---j
~
tOShOU~d"
~
--'--
T/
BODY C - Stild:Mount
.187" HEX.
(4.7~~m)
l@)
1//
-=-=;-_-~;:rA.
=r-h;
;
-..
.230" (S.84rnml
#4-40
I
I
.UT8105-UT8160
UT8105HR2-UT8160HR2
.
x .250" (6.34mml LONG THREAD
.120" TYP.
(3.0Smm)
Part Identification: Numerals and polarity letter indicate UTR type number, e.g., UTR 44.05 .
. Polarity: Cathode to Stud is standard. Reverse" polarity denoted by "R" suffix.
Finish: Metal parts gold plated per MIL-G-45204, Type II.
Weight: 1.5 grams, typical.
Also available with insulated stud. Reference Design Note 17.
Installation
Maximum unlubricated stud torque: 28 inch-ounces.
Mounting hardware supplied.
Do not use a screwdriver in the turret slot for installation purposes, or damage may result.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-167
PRINTED IN U.S.A.
.'.111
UT6105-UT6160
UT6105HR2-UT6160HR2
UT5105-UT5160
UT5105HR2-UT5160HR2
UT8105-UTB160
UT8105HR2-UT8160HR2
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Peak Inverse
Voltage
Type
UT8105/8105HR2
UT8110/8110HR2
UT8120/B120HR2
UT8140/8140HR2
UT8160/Bl60HR2
50V
100V
200V
400V
600V
50V
lOOV
200V
400V
GOOV
50V
IOOV
200V
400V
600V
UT6105/6105HR2
UT6110/6110HR2
UT6120/6120HR2
UT6140/6140HR2
UT6160/6160HR2
UTSlOS/SlOSHR2
UTSllO/5110HR2
UT5120/5120HR2
UT5140/5140HR2
UT5160/5160HR2
Max. Reverse
Current at PIV
Maximum Forward
Voltage
25'C
l00'C
1V@8A
1OI'A
300i
"
0
100
0:
so
1,000
500
200
100
~
so
~
20
10 L--.JL..JLJ-L.LJ_L
a
.6 .8
1 1.2
VF Volts
0:
20 I-++-+-++-+I-+-.-j--I
10 L--.JL..JL-LL..L..L-L-...L-I
o .2 .4 .6 ,8 1 1.2
Vf Volts
Typical ForwardVoltage vs Forward Current
Typical P:I,V. vs Reverse Current
r--
10,000 C'::':co:::o::--,-,rnrr-,---,
:<
.§
....
zUJ
5,000
2,000
1,000
t--t--t-+tJ'-I1If-c---+--I
t--t--tl'--fr-f-lf-c---+--I
0:
0:
500
"o
200 t--t-.r~~t-+-+--I
=>
:<
.:;
....Z
r'T-=:::r---t---T1'Hf-+-t
0:
~
0:
~
UJ
0:
0:
=>
"
100
50
20
10
I-++-+-+f--H--I---j--I
o
.2
.4
.6 .8
1
Vf Volts
1.2
c
.5
1
+f5'C
5
10
~'C
UJ
Ul
0:
UJ
100
UJ
0:
1000
:>
L--.JL..JL-LL.LJ~L-_.L.-I
.05
.1
so
SOO
.J--
U
ISO
1~5'C
100
50
% of P.I.V.
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
The following tests are performed on 100% of the devices specified UT5105HR2 through UT8160HR2.
SCREEN
MIL-STI).750
METHOD
CONDITIONS
1. High Temperature
1032
24 Hours@ 17SOC
2. Temperature Cycling
10S1
C, 20 Cycles, -65 to +17S"C. No dwell required.
@ 25"C, t ;;. 10 min. @ extremes.
3. Hermetic Seal
a. Gross Leak
1071
E,ZYGLO
4. High Temperature Reverse Bias (HTRB)
5. Interim Electrical Parameters
6. Power Burn-in
7. Final Electrical Parameters
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 9Z6.Q404 • FAX (617) 924·1235
1038
GO/NO GO
1039
GO/NO GO
N68
A, TA = 150OC, VR = 80% of rating, 48 hours
VF and IR @ 250C
B, TA = 2S"C, 96 Hours, 10 adjusted 150"C,
<;;lj <;; 1750C
VF + IR @ 2SOC
PDA = 10% (Final Electricals)
PRINTED IN U.S.A.
UT5105-UT5160
UT5105HR2-UT5160HR2
Current Rating vs Case Temperature
100
I
i L
T
1\
I I
I
I
~-
.S
~
50
.~i
++-+
~
-r--
:
u
~
~
o
~H
-
100
200
Temperature
lK
~
I
.
lEI
~
I
i\
-
UT8105-UT8160
UT8105HR2-UT8160HR2
Forward Pulse Current vs_ Pulse Duration
I
o
UT6105-UT6160
UT6105HR2-UT6160HR2
100
11111111
ImS
~C
lOmS
Pulse DUration (Seconds)
Reverse Pulse Power vs. Pulse Duration
lOOK
~
10K
~
~
lK
0
n.
~
:;
n.
100
10
1.S
.It./S
lOpS
100,l.lS
ImS
Pulse DUration (Seconds)
IOmS
MECHANICAL SPECIFICATIONS
Style W
Gold Plated
Nickel Ribbon
Beryllia
Full thread to within
(2
Insulating
Disc
Places)
I.-
012" TYP. ...j
125' TVP
.13~~:A~ ~~:Ulder~1 r- 1i:O===d===3h~1
I 3l8mm
3SlmmtoRADfS
6iNo"m~~;~~~" T
Copper. Gold Plated
.005" MAX. RAO.
L~
~I
1_
~
-
I
385 MAX ~
9 78mm
.13mm
f
~:~O:~MAX G \
1IIIIHIIIIItI-t-+-lIH-
10
~
l~
'\
250" HEX
'y 635mm
750' MIN
19.05mm
Dimensions in inches.
Style V
.062" DIA.
1.57mm
6·32, .240"'.010"
6.10mm±.25mm
Copper, Gold Plated
.005" MAX. RAD .
.13mm
Dimensions in inches.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
2-169
PRINTED IN U.S.A.
RECTIFIERS
UTRIO·UTR60
UTROl·UTR61
UTR02·UTR62
Fast Recovery, 0.5 Amp to 2 Amp
FEATURES
DESCRIPTION
•
•
•
•
•
•
These miniature fast recovery rectifiers
permit operation at full frequencies as
high as 40kHz square wave. They have
the unique Unitrode Fused in Glass con·
struction.
Continuous Rating: to 2A
Controlled Avalanche
Surge Rating: to 25A
Fast Recovery 40kHz Operation
PIV: to 600V
Miniature Package
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
SOV
IOOV
200V
300V
400V
SOOV
600V
v. Amp
1 Amp
Series
Series
Series
UTRlO
UTR20
UTR30
UTR40
UTR50
UTR60
UTROI
UTRll
UTR21
UTR31
UTR41
UTRSI
UTR61
UTR02
UTR12
UTR22
UTR32
UTR42
UTR52
UTR62
V. AMP
SERIES
Maximum Average D.C. Output Current
@ TA
@ TA
=
O.SA ...
..... O.2SA
2S'C
100'C ....
=
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
Operating Temperature Range
Storage Temperature Range
Thermal Resistance ..... .
2 Amp
1 AMP
SERIES
........... l.OA.. .
............ O.5A
2 AMP
SERIES
....... 2.0A
... 1.0A
.......................... 15A...
.......... 20A.
................. 25A
............... ............... ........ ......................... -195·C to +17S'C
............ .
..... -195·C to +200'C
... See lead temperature derating curves ...... .
MECHANICAL SPECIFICATIONS
r
BAND INDICATES
CATHODE END
.155TVe
i
===QI
MIN~50 M~"",
1--';00
17.8mm
UTR10·UTR60
3.9mm
UTR01·UTR61
UTR02·UTR62
BODYA
r-:- t
.085 MAX
2.l6mm
=
6.35mm
+
L.o30±.cxn
O.77mm ±.O3
.055TVP.
1.4mm
1.625 MIN.
41.3mm
Part Identification: Green band indicates "UTR." Part
number printed on body.
Polarity: Denoted by Green band.
Weight: 0.26 grams, typical.
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nL::::Jn
2-170
SEMICONDUCTOR
PRODUCTS
_UNITRDDE
UTRlO-UTR60
UTROl-UTR6l
UTR02-UTR62
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)
Maximum
Junction
Capacitance
Maximum
Maximum
Forward
Type
PIV
UTR02
UTRl2
UTR22
UTR32
UTR42
UTR52
UTR62
UTROI
UTRll
UTR21
UTR31
UTR41
UTR51
UTR61
UTRlO
UTR20
UTR30
UTR40
UTR50
UTR60
50V
100V
200V
300V
400V
500V
600V
50V
100V
200V
300V
400V
500V
600V
100V
200V
300V
400V
500V
600V
Voltage
Drop
leakage
Maximum
Current
Reverse
Recovery
@PIV
l.lV@ lOOOmA
31'A
100l'A
1.IV@SOOmA
31'A
lOO!,A
l.lV@ 200mA
3!'A
100!,A
III
@2S'C
Time*
lOO'C
2S"C
OV
10V
150pf
lOOpf
80pf
70pf
60pf
50pf
40pf
150pf
100pf
80pf
70pf
60pf
50pf
40pf
100pf
80pf
70pf
60pf
50pf
40pf
250n5
250n5
250n5
300ns
350n5
400n5
400n5
250ns
250ns
250ns
300n5
350n5
400ns
400n5
250ns
250n5
300n5
350ns
400n5
400n5
60pf
40pf
32pf
28pf
24pf
20pf
16pf
60pf
40pf
32pf
28pf
24pf
20pf
l6pf
40pf
32pf
28pf
24pf
20pf
16pf
*Recovery time is measured from lO.OmA to lO.OmA recovery to S.OmA
Maximum Current
vs Lead Temperature
Maximum Current
vs Lead Temperature
Maximum Current
vs Lead Temperature
1.5
l
~
....
z
=
~
"'II:II:
U
~
C
"';;:
;:
u
.~",,,
"'II:
"'
«
II:
............
"'
~
-
..!;.='"..~
:J
"'
2 AMP SERIES
lfB"
I
"" """~
~
-
............
-
...........
25
50
Tl -
-
75
100
..
3
:E
0
'"'"
2.5 ~
2
®
-"~
1.5
Ul
~ ~~
I~
125
3.5
150
0
1 AMP SERIES
$
5II:
0:
:J 2
u
L
==
liS"
~
;;:
;:
~
"'
~~
u
0:
"' 1
"g
>
"
_0
o
25
175
50
T, -
LEAD "TEMPERATURE (Oe)
2.5 0
-
2
~
1.5 -
®
"'---"~
75
100
-
I
-
.5
~
~
125
LEAD TEMPERATURE (Oe)
Reverse-Recovery Circuit
I
.5
"'«>
.75
I
t.5.-~
I
Si
'
I
t----f'~~"'-t-_1
.25
0
-"
175
25
50
Te -
75
100
125
150
175
LEAD TEMPERATURE ( C)
100
"
Z
~.
80
"~
60
0:
UJ
en
o
UJ
D.U.T.
:;;
. T1 ~
I
Allowable Forward Surge vs Number of Cycles
..--------0
10V 0 - - - - - - - - - ,
_
D.C. +
990U
.1•2S c-"
r----f"~~--+_:+_i ~
"'
"'~
1.75
-=r
I,
:
u
II
0
~'
"';:;;:
II:
;;I
~
ISO
0:
II:
_ct
tAl AMP SERIES
I
r-+--l----t-------,----,--j- 1.5
":;; "':J
u
'"'" c
-
l=""""-
~---
,
~
....
z
....
,---------,-----,----,---------,- 2.5
100
u:
40
'"~
20
~
o
f----1I-H-HH-tH~~~;:-I__1
-...::::
~
I"
I iJr~~~ I"
celnte~s ~
TUrret 1/2" centers-
Printed Circuit-
I--
1ft
+
10
100
HALF CYCLES OF 60 Hz SINE WAVE
20V
' - - - - - - - - - 0 D.C.o----------l
UNITRDDE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404. FAX (617) 924-1235
2-171
1.000
PRINTED IN U.S.A.
UTRIO-UTR60
Typical Forward Current
vs Forward Voltage
10
2 AMP SERIES
0.5 AMP SERIES
1 AMP SERIES
/~ ~
~ -Z
I-
z
W
~/
8-;p(,~
.2
o
0
(,)
....
Z .2
~ .1
......... f'\t""
i-i-/
'"I
0.05
I{
.01
/ II
/ / /
.002
I I
.001
.2
.4
V, -
II
.002
I
1.2
.2
1.4
.4
V, -
:1
.1
II II
.05
J%~
.02
-"'"
.01
/
.005
II
I
.001
.6
.8
I
VOLTAGE (VI
'"i
II
.005
1/ IV
.2
0
I
I
.01
I /
.005
Z
w
II:
II:
II /
II
-",".02
~
....
r-
:;: ;: J /-
'0.05
"I
/ il J
-",".02
If.tCJ
"~/l CJ
~ 8;'~
w
{J
I<'
~ .1
IV
1/ /
L-
V
~ .5
/V ~/
.5
/L
'j
j
~ .5
UTR02-UTR62
Typical Forward Current
vs Forward Voltage
Typical Forward Current
vs Forward Voltage
10
UTROI-UTR61
I
II
.002
.6
.8
I
VOLTAGE (VI
1.2
1.4
:1
I
PI}'
Iii
I()
+ /
I
II
I
.001
.2
.4
V, -
.6
.8
I
1.2
I.'
VOLTAGE (VI
Typical Reverse Current vs PIV
ALL SERIES
.01
.02
~O"C
Efficiency vs Frequency at Rated Current (Sine Wave)
.05
.1
~
I-
.2
w
.5
z
II:
II:
lOa
VI
"-C
"'0
'"
VI
II:
./
10
20
a:
7S"C
50
200
V
500
1.000
lao
ISO
12S"C
50
60
e:~
50
40
N
-J:
~o
V
"
70
>-0
o·
ZC
W
lOa
ALL SERIES
80
i=>
"'w
0'"
::;f5
w
w
>
w
90
~!::j
0
r-
... 0
... 0
w@;
30
20
10
a
2 3 4 6 SIOK
lOOK
1M
FREQUENCY (Hz) - HALF WAVE RESISTIVE LOAD NO FILTER
IK
% OF PIV
Forward Pulse Current vs Pulse Duration
~
z
I-
Reverse Pulse Power vs Pulse Duration
100,000
10.000
ALL SERIES
ALL SERIES
Square Pulse Current vs
Duration for Non-Repetitive Pu Is.
(8.3 ms sine wave equivalent
to 3 ms square wave)
........
1.000
~
W
.
~
II:
II:
0
0
VI
.'"
-"
(8.3 ms sine wave equivalent
to 3 ms square wave)
10,000
0:
W
'"
w
Square Pulse Current vs
Duration for Non-Repetitive Pulse
1.000
w
VI
'".
100
-"
10
100
10
.1p.s
tllS
lO,us
lOO,us
PULSE DURATION (SECONDS)
UNITRODE " SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET" WATERTOWN, MA 02172
TEL. (617) 926·0404 " FAX (617) 924·1235
1ms
lOms
2-172
lOOns
l.us
lO,lS
lOOlls
Ims
PULSE DURATION (SECONDS)
lOms
PRINTED IN U.S.A.
RECTIFIERS
UTR2305- UTR2360
UTR3305- UTR3360
UTR4305- UTR4360
Fast Recovery, 2Amp to 4Amp
FEATURES
• Continuous Rating: to 4A
• Controlled Avalanche
• Surge Rating: to lOOA
• PIV: to 600V
• Miniature Package
DESCRIPTION
Small size and high surge capability
make this series of power switching
rectifiers desirable for power supplies
where size, weight and reliability are
important.
ABSOLUTE MAXIMUM RATINGS
2Amp
3 Amp
4 Amp
Peak Inverse Voltage
Series
Series
Series
50V
lOOV
200V
400V
500V
600V
UTR2305
UTR2310
UTR2320
UTR2340
UTR2350
UTR2360
UTR3305
UTR3310
UTR3320
UTR3340
UTR3350
UTR3360
UTR430S
UTR4310
UTR4320
UTR4340
UTR4350
UTR4360
2 AMP
3 AMP
4AMP
SERIES
Maximum Average D.C. Output Current
SERIES
SERIES
.... 4.0A
@TA =25'C .
. ........ 2.0A.
.. ....... 3.0A. ........ .
.. .... 2.0A
@ TA = lOO'C
...................... 1.0A ....
1.5A. ..... ..
Non-Repetitive Sinusoidal
Surge Current (S.3m.s) ...
.................................. 60A...
. . . SOA..... .................. ....... ......... .. lOOA
Operating Temperature Range
..........................................-19S'C to +175'C ........ ..
Storage Temperature Range
................................................................................................-19S'C to +200'C ... .
Thermal Resistance .
.. ............ See lead temperature derating curve .................... .
MECHANICAL SPECIFICATIONS
UTR4305-UTR4360
BAND INDICATES
CATHODE END
=
~
UTR3305-UTR3360
=
r.
UTR2305-UTR2360
BODYB
145 MAX
3.68mm
t
.115 TYP
2.9mm
Part Identification: Green band indicates "UTR." Part
number printed on body,
Polarity: Denoted by Green band.
Weight: 0.75 grams, typical.
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONOUCTOR
~ PROOUCTS
2-173
_UNITRODE
UTR2305-UTR2360 UTR3305-UTR3360 UTR4305-UTR4360
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Maximum
Leakage
Maximum
Forward
lype
UTR4305
UTR43lO
UTR4320
UTR4340
UTR43SO
UTR4360
UTR3305
UTR3310
UTR3320
UTR3340
UTR3350
UTR3360
UTR2305
UTR2310
UTR2320
UTR2340
UTR23SO
UTR2360
SOV
100V
200V
400V
500V
600V
50V
lOOV
200V
400V
500V
600V
50V
lOOV
200V
400V
500V
600V
Reverse
Recovery
@PIV
Voltage
Drop
PIV
Maximum
Junction
Capacitance
@ 2S'C
Maximum
Current
25'C
100'C
l.lV @4A
5pA
100pA
l.lV@3A
5pA
100pA
1.lV@2A
5pA
100pA
Time*
OV
-IOV
250ns
250ris
2SOns
400ns
400ns
400ns
250ns
250ns
250ns
300ns
350ns
400ns
250ns
250n5
2SOns
300ns
350ns
400ns
600pf
400pf
320pf
240pf
200pf
160pf
600pf
400pf
320pf
240pf
200pf
160pf
600pf
400pf
320pf
240pf
200pf
160pf
240pf
160pf
128pf
96pf
SOpf
64pf
240pf
160pf
12Spf
96pf
80pf
64pf
240pf
160pf
12Spf
96pf
SOpf
64pf
*Recovery time is measured from lA to lA recovering to O.SA.
Maximum Current
. vs Lead Temperature
Maximum Current
vs Lead Temperature
'\.L _ Vo"
'\J
;{
I'\.
;:6
0:
~5
o
~="...
~
u
w
iL4
~
w
0:
w3
'""
::!
.~~~"'" """
..
I'----
0:
~2
..,0
\
'\.
4 :;;
'"
:0
@
\
3 _""
""
I"----..
\
'\..
0
04
iL
;:
75
100
125
ISO
~
z
>-
4
'\..
"
............
~
2
'\.
"'-\
~
""'- .:--..\
".l
0
3
50
T, -
75
100
125
150
3.5
""l
~=r''''\..
2.5
0
W
iL
;: 2
u
UJ
0:
L=1>
-...........,
w
~2
'\.\
f'-...
'"
2
5
L:=; Va"
0:
\
L=1~,
3 AMP SERIES
_6
...$z
1\
z
w
4 AMP SERIES
Maximum Current
vs Lead Temperature
100
II)
..J
:J
:J
0..
Il..
100
10
10
.1.u:5
l.us
lOps
100,u5
Ims
lOms
PULSE DURATION (SECONDS)
UNITRODE " SEMICONDUCTOR PRODUCTS
580 PLEASANT STR~ET " WATERTOWN, MA 02172
TEL (617) 926-0404" FAX (617) 924-1235
lOOns
l.us
10,ls
lOOps
Ims
lOms
PULSE DURATION (SECONDSI
2-174
PRINTED IN U.SA
UTR2305-UTR2360 UTR3305-UTR3360 UTR4305-UTR4360
Typical Forward Current
vs Forward Voltage
Typical Forward Current
vs Forward Voltage
10
10
10
~
L
4 AMP SERIES
2 AMP SERIES
'/ '/
/
VI II
~ .5
zUJ
~J I
.2
jJ~
.....
.Is. . A~/f
rv '"
-f- -f- -f- I
~ .1
:::l
u .05
.:.02
I I
I I II
.01
.005
/ il
.002
II
.001
.2
_".02
.005
.4
V, -
.6
.S
1
VOLTAGE (V)
1.2
.2
1.4
I
:<
.3
....
z
W
.005
.6.S
VOLTAGE (V)
1.4
.2
.4
V, -
.6
.S
1
VOLTAGE (V)
1.2
1.4
Reverse Recovery Circuit
5V
D.C.
0-----------------,
+
SCOPE
.2
6SIl
.5
-----
-
U
a:
1.2
'/
_~-50'C
W
en
a:
II
.001
.05
.1
:::l
>
UJ
I
.002
_
a:
a:
UJ
I)
j
II
.01
Typical Reverse Current vs PIV
.01
.02
Il/
..,..02
I
.4
V, -
~, '/.... -ftv 11'I 1
U .05
II
II
.001
.1
:::l
I
I II
.002
I I
"'
~
I
.01
II
1/:(.)
,(.) ~t
~g~o
Z .2
cO () 0
II /
I
/
.5
....
'/- '/- -f- I
U.05
I
5:
V
S ~~~/k
~ .1
:::l
II / / II
I
I&()
.2
W
I
/
~ .5
....
z
/;/ 11/
1/ / I111
/
II
/V:;
3 AMP SERIES
//V
/ /
....
Typical Forward Current
vs Forward Voltage
10
20
-
50
100
200
./
25'C
....-----'\,N\r--------l'::>1--------<~.I'v"".....----.....HI' .
D.U.T.
w
./
75'C
~--------------+_o~~.o_--------------~
/
/125'C
SOD
1.000
150
50
100
% OF PIV
Efficiency vs Frequency at Rated Current (Sine Wave)
-............
100
en
90
:::lo
SO
~>
:::lW
0"
~ffi
~~
>-ti
U'
ZC
"
Z
'"
70
~a:
I'
"~
en
~o
20
w@
10
60
C
W
i:i:
40
111111
80
W
50
30
.... 0
.... 0
-..........
60
WN
-l:
ALL SERIES·
Allowable Forward Surge vs Number of Cycles
100
40
f---f-+-t+ttHf~~~:::::-f-1
rYr'ii
TUrret 1" centers -
~
=i-I-
Turret W' centers ""~t-:
Printed Circuit- / /,
--
j
U
UJ
'"U)
....
20
o
lK
2 3 4 6 S10K
lOOK
1M
FREQUENCY (Hz' -HALF WAVE RESISTIVE LOAD NO FILTER
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
2-175
100
10
CYCLES AT 60 Hz HALF SINE WAVE
1,000
PRINTED IN U.S.A.
UTR4405-UTR4440
UTR5405-UTR5440
UTR6405-UTR6440
UTR4405HR2 .. UTR4440H R2
UTR5405HR2-UTR5440HR2
UTR6405HR2-UTR6440HR2
RECTIFIERS
Fast Recovery, 6 Amp to 9 Amp
DESCRIPTION
The same basic construction as all
Unitrode diodes, but using a miniature
stud mounting and larger junction area,
provides a 9 Amp continuous and 150
Amp surge rating in a package only one
fifth the weight and one quarter the
volume of conventional types.
FEATURES
• Continuous Rating: to 9A
• Controlled Avalanche
.• Surge Rating: to 150A
• .fast Recovery, 40kHz Operation
• PIV'to 400V
• Miniature Package
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
6 Amp
Series
7.S Amp
Series
9Amp
Series
50V
lOOV
200V
400V
UTR4405/4405HR2
UTR441O/44lOHR2
UTR4420/4420HR2
UTR4440/¥40HR2
UTR5405/5405HR2
UTR5410/5410HR2
UTR5420/5420HR2
UTR5440/5440HR2
UTR6405/6405HR2
UTR64lO/64lOHR2
UTR6420/6420HR2
UTR6440/6440HR2
6 Amp
7.S Amp
9.0 Amp
Series
Series
Series'
Maximum Average D.C. Output Current @ Tc ~ lOO°C ......... 6.0A ................. 7.5A ................. 9.0A ............. .
Non-Repetitive Sinusoidal Surge Current (8.3ms) .............. 120A ................. 135A ................. 150A ........... ..
Operating Temperature Range ................................................. -195°C to +175°C .............................. .
Storage Temperature Range ................................................... -195°C to +200°C .............................. .
Thermal Resistance ................................................................ 7.5°C/W ................................... .
MECHANICAL SPECIFICATIONS
UTR440S-UTR4440
UTR540S-UTR5440
UTR640S-UTR6440
UTR440SHR2-UTR4440HR2 UTRS40SHR2-UTRS440HR2. UTR640SHR2-UTR6440HR2
.005 MAX.
Rad;u,
#4·40
x
.045" TVP .
(4.7Smml
(O.l1mm)
~~
MAX.
.187" HEX.
(4.75mmJ
/ ----==r./,\
.112 MAX.
to Shoulder
-~
.187" MAX.
BODY C - Stud Mount
.460"
1(1l·68mm)
)...
1/
~
:~~g.: l::~:~~: LONG THREAD '~;~~~~i
Part Identification: Numerals and polarity letter indicate UTR type number, e.g., UTR 4405.
Polarity: Cathode to Stud is standard. Reverse polarity denoted by "R" suffix.
Finish: Metal parts gold plated per MIL-G-45204, Type II.
Weight: 1.5 grams, typical.
Also available with insulated stud. Reference Design Note 17.
Installation
Maximum unlubricated stud torque: 28 inch·ounces.
Mounting hardware supplied.
Do not use a screwdriver in the turret slot for installation purposes, or damage may result.
n
n
CJ
2-176
SEMICONDUCTOR
PRODUCTS
_UNITRODE
UTR4405·UTR4440
UTR4405HR2·UTR4440HR2
UTR5405·UTR5440
UTR5405HR2·UTR5440HR2
UTR6405·UTR6440
UTR6405HR2·UTR6440HR2
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
Maximum
Maximum
Reverse
Curren! @ PIV
Forward
Voltage
Type
PIV
UTR6405/6405HR2
UTR6410/641OHR2
UTR6420/6420HR2
UTR6440/6440HR2
UTR5405/5405HR2
UTR541O/541OHR2
UTR5420/5420HR2
UTR5440/5440HR2
UTR4405/4405HR2
UTR441O/441OHR2
UTR4420/4420HR2
UTR4440/4440HR2
50V
100V
200V
400"
SOV
lOOV
200V
400V
50V
100V
200V
400V
*Recovery time is measured from lA to lA, recovering
Typical Forward Voltage
vs Forward Current
9 AMP SERIES
10,000
.s
5,000
z
2.000
I-
w
c:
c:
:J
u
I
~
1,000
0V
II; 'II
~
jl/ 'f
+l00'C
- +175'~~
.
'/
500
I I
+2S'C
-SO'C
100'C
l.lV@6.0A
lOIlA
300llA
l.lV@ 5.0A
10pA
300pA
l.lV@4.0A
10llA
300l'A
too O.SA.
Typical Forward Voltage
vs Forward Current
/11
III
100
.2
.s
5,000
I-
zw
2,000
c:
c:
u
1,000
:J
500
200
.6
.8
1 1.2 1.4
20
:<
I
o
.2
VOLTAGE (V)
.4
I, -
1/ '/ /
)j
U
100
I
~ r-- -
//
50
-"
I
20
10
I
.6
.8
V/l/
I '/
200
:J
o
.2
I
I
.4
.6
'J
.8
1 1.2 1.4
1,- VOLTAGE (V)
1 1.2 1.4
VOLTAGE (V)
Typical Reverse Current vs PIV
.02
.05
.1
.2
.5
~
l-
z
:J
'"
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
V
. 50'C
2
5
10
20
U
w
c:
w
>
w
c:
ALL SERIES
I
w
c:
c:
t
S' C
v
so
7S'C
100
200
500
1.000
2.000
y
12S'C
150
The following tests are performed on 100% of the devices specified
UTR4405HR2 through UTR6440HR2.
SCREEN
+175'C~
C
r-- .-t 100• C - (j C/12/
50' C
I.
500
w
c:
c:
:;~§o
-j.....,/C>tu
III
1,000
IZ
I.Vo ' /
I
2,000
.s
/,
- r-
6 AMP SERIES
5,000
IVI ~
II
100
300n5
300n5
400n5
500n5
300n5
300n5
400n5
500n5
300n5
300n5
400n5
500n5
10,000
/, ff,
50
.4
I, -
:<
-"
Ll
o
10.000
Maximum Reverse
Recovery Time"
Typical Forward Voltage V5 Forward Current
// W
.7.5 AMP SERIES
I
/
200
50
30
25'C
30,000
20,000
30,000
20,000
:<
Drop
MIL·STD·750
METHOD
100
so
% OF PIV
CONDITIONS
1. High Temperature
1032
24 Hours @ 175"C
2. Temperature Cycling
1051
C, 20 Cycles, -65 to +175"C. No dwell required
@ 25°C, t ~ min. extremes
3. Hermetic Seal
a. Gross Leak
1071
E, ZYGLO
4. High Temperature Reverse Bias (HTRB)
5. Interim Electrical Parameters
6. Power Burn·in
7. Final Electrical Parameters
UNITRODE ,SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERTOWN, MA 02172
TEL. (617) 926·0404 ' FAX (617) 924·1235
1038
GO/NO GO
1038
GO/NO GO
2·177
A, TA = 150ac. VR = 80% of rating, 48 hours
VF + IR @ 25"C
S. TA
= 25°C, 96 Hours, 10 adjusted 150ac.
"lj"
175"C
VF + IR @ 25"C
PDA = 10% (Final Electricals)
PRINTED IN U.S.A.
UTR4405-UTR4440
UTR4405HR2-UTR4440HR2
UTR5405-UTR5440
UTR5405HR2-UTR5440HR2
Current Rating vs Case Temperature
Forward Pulse Current vs Pulse Duration
10,000
100
I'\.
ALL SERIES
Square Pulse CUrrent vs
Duration for Non-Repetitive Pulse
"-
~
z
W
'z"
~8.3
:
ALL SERIES
I-
~
UTR6405-UTR6440
UTR6405HR2-UTR6440HR2
msec sine wave equivalent
to 3 ms square wave)
1,000
0:
0:
50
"'"
0:
=>
~
<)
w
en
100
--'
=>
Q.
\
40
60
100
80
120
140
TEMPERATURE ( C)
i",.
10
180
160
.IILs
200
100
en
Square Pulse CUrrent vs
Duration for Non-Repetitive Pu Ise
10,000
11111
0:
~
0
"w
en
IIIII~
1111
1,000
~ffi
60
~~
50
>-0
<).
40
WN
30
III
ZO
--'
=>
"-
-l:
~o
100
I"'
70
0'"
W
ALL SERIES
80
:>w
to 3 ms square wave)
r-....
lOms
90
i=~
=>0
~>
(S.3 msec sine wave equivalent
ALL SERIES
lOJls
100#5
Ims
PULSE DURATION (SECONDS)
Efficiency vs Frequency at Rated Current (Sine Wave)
Reverse Pulse Power vs Pulse Duration
100,000
!
1ps
20
"-0
,,-0
w@l
ID
10
lOOns
l~s
lOO~s
laps
Ims
2346810K
lOOK
1M
FREQUENCY (H,) -HALF WAVE RESISTIVE LOAD NO FILTER
lK
lOms
PULSE DURATION (SECONDS)
Reverse Recovery Circuit
,------"'"_-0 ~.~.o-+------..,
UZ840
...
O.U.T.
SCOPE
II!
5!!
' - - - - - - - +...
~~. 0 - - - - - - - - - '
MECHANICAL SPECIFICATIONS
~
012" TYP
ShaUlderl
30mm
.Q6O
of
Copper. Gold Plated
.005" MAX. "RAD.
.13m'll
10-
I
125" TYP
318mm
~
.l.
r
1
21 TYtr~
533mil
3.~l~M:'RP:Us
~J.f~m~~~;~IJ:~
SlyloW
Gold Plated
Nickel Ribbon
{2 Placesl
Seryllia
Insul.ting
Full thread to within
Disc
~
·~AX.-~\
101~
385 MAX -oj
~
978mm
750' MIN
1905mm
\-
250" HEK.
635mm
Dimensions in inches.
StyloV
Beryllia Insulatinl Disc:
.012"
·. . . . . ."1[
Full thread to within
3.Jl~M~~fJfus
1
6.321t.240"t.OlO"
6.10mmt25mm
Copper,QoIdPliilted
.TYP.
.30mm
I""
!11.---n:="C'f'i
T~~t1I11::i~p~~
.005" MAX. RAIl.
. 13mm
Dimensions in inches•.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02V2
TEL. (617) 926-0404 • FAX (617) 924-1235
2-178
PRINTED IN U.S.A.
RECTIFIERS
UTX l05·UTX125
UTX205·UTX225
Super-Fast Recovery, 1 Amp and 2 Amp
l1li
FEATURES
DESCRIPTION
•
•
•
•
•
These miniature super-fast recovery rectifiers permit operation at full power at
frequencies as high as 100kHz square
wave. They may be used as half wave
rectifiers or as legs of a bridge.
Continuous Rating: to 2A
Controlled Avalanche
Surge: to 2SA
Recovery Time less than 7Sns
Miniature Package
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
1 Amp
Series
SOV
100V
lS0V
200V
2S0V
UTXI0S
UTXll0
UTXllS
UTX120
UTX12S
2 Amp
Series
UTX20S
UTX210
UTX21S
UTX220
UTX22S
1 AMP
2AMP
Maximum Average D.C. Output Current
SERIES
SERIES
@ TA == 2SoC
................. 1.0A ....
2.0A
@ TA == 100°C.
....................... O.SA.
...... 1.(}A
Non-Repetitive Sinusoidal
Surge Current (8.3ms)
............ 20A .. ..
.. 2SA
Operating Temperature Range
.............................. -19SoC to +175°C .. .
.... -195°C to +200°C .. .
Storage Temperature Range
Thermal Resistance
.............................. See Lead Temperature Derating Curve .. .
MECHANICAL SPECIFICATIONS
UTX105·UTX125
BAND INDICATES
CATHODE END
~
==:=(JI
HOO
r·
MIN~50M~40
17.Bmm
3.9mrn
155TYe
=
63Smm
r-=f
UTX205·UTX225
BODY A
.085 MAX.
2.l6mm
t
L.030±.OOl
O.77rnm t.O)
.055TYP.
1.4mm
1.625 MIN.
41.3mm
Part Identification: Green band indicates "UTX." Part
number printed on body,
Polarity: Denoted by green band.
Weight: 0.26 grams, typical.
2-179
~UNITRODE
UTX105-UTX125
UTX205-UTX225
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Voltage
Forward Drop
25'C
Leakage Current
@PIV
100'C
1.0V@lAdc
3p.A
50p.A
75ns
1.0V @ 0.5 Adc
3p.A
50p.A
75ns
Maximum
Type
PIV
UTX 205
UTX210
UTX 215
UTX 220
UTX 225
UTX 105
UTX 110
UTX 115
UTX 120
UTX 125
50V
lOOV
150V
200V
250V
50V
100V
150V
200V
250V
Max. Reverse
Recovery
Time*
*Recovery time IS measured from lO.OmA to lO.OmA recovery to 5.DrnA.
Maximum Current
vs Lead Temperature
Maximum Current
vs Lead Temperature
1 AMP SERIES
5:
L
5:
...z
...z
'"'"
'"U
:::l
0
L = Vs"
C
"'-l
'"'"
'"S!
'"'"~
0>= '" ~
u
I
...............
50
T, -
@
'"
1.
...............
~
.!:....: ~4"
U
'"'"
"'"
.
.'"
OIl
(1
0:
~
~
~
ii:
t:
.5
>
"o
.!:..='Is.~
0
II
...........
.2
25
u
1.5~-f
L='IiI" "
1
~
In
'"
~
'"
ii:
~
'"'"
'":::l
2.5 "
2 AMP SERIES
= Vo"
.............
1
3
"-
I
~
.2
75
100
125
150
175
LEAD TEMPERATURE I'C)
~-f
'" .""~
t'-.....
~
'"
@
2
II
........
...........
~ ~-
.5
"'\ o
25
50
75
100
125
150
175
T, - LEAD TEMPERATURE I'e)
Efficiency vs Frequency· at Rated Current (Sine Wave)
Reverse Recovery Circuit
100
lKIl
~
'"
...
90
I-- ALL SERIES
... ...J
+
:lo
80
:l'"
70
~ffi
60
1=>
9OO!)
0"
20V D.C.
~~
+
Scope
1011
>-u
U·
ZC
40
",N
30
~o
,.0
,.0
20
-I
"'@
I
I
i
10
lK
=
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEl. (617) 926·0404 • FAX (617) 924-1235
50
2
3 4
6 B 10K
lOOK
1M
FREQUENCY (H,) --HALF WAVE RESISTIVE LOAD NO FILTER
2-180
PRINTED IN U.S.A.
UTXI05-UT~125
Typical Forward CUrrent
vs Forward Voltage
Typical Leakage Current YS. PIV
ALL SERIES
.001
.002
Z
:>
'"0:
'">
'/
~
I
c
I-
Z .2
w
-tz;·c
~
.5
VI
~ .1
i
:>
U.os
1
.01
I
10
20
.005
1
~C
50
100
150
100
-r-
U.os
.2
% OF PIV
.01
.8
.001
.6
V, -
VOLTAGE (V)
1
1.2
(8.3ms
to 3 ms square wave)
........
~
lK
I
I
I
II
I
II
.4
.6
V, -
VOLTAGE (V)
.8
1
1.2
I.4
Square Pulse Current vs
Duration for Non~Repetitive Pu Ise
(8.3 ms sine wave equivalent
to 3 mS'square wave)
10K
0:
W
U
.~
w
Ul
0:
0:
VI
...J
a
Reverse Pulse Power vs Pulse Duration
ALL SERIES
:>
.
~
lOOK
ALL SERIES
l-
.2
1.4
Forward Pulse Current vs Pulse Duration
10K
:!:
II
.002
.4
0
:1
.005
I
I
II
I
..,..02 "
I I
II
50
et)
:>
I I
/ II
I
.002
.001
kCJ ~ CJ CJ-r?; $ If-r-
I-
Z .2
w
~ .1
I 1/ I I
II
1/1/ I
~ .5
r{CJ-~
1---+--t---i1!;fo
..,..02
~7s'C
II
l
I
/'
W
0:
Z
w
~~
//V
I
.05
.1
.2
U
2 AMP SERIES
so·C
.3 .02
I-
'"0:0:
10
I ......
•005
.01
~
Typical Forward Current
vs Forward Voltage
10 , - - - - - - - - - , - - - , - - y - - - - ,
1 AMP SERIES
1
UTX205-UTX225
IK
w
..
100
...J
:>
:>
10
100
1111111
10
l.us
100~s
lO.us
IOms
Ims
lOOns
IpS
PULSE DURATION (SECONDS)
lOJls
lOOps
Ims
IOms
PULSE DURATION (SECONDS)
Allowable Forward Surge vs Number of Cycles'
lOa
I III
'z"
~
0:
80
'"
:>
60
1--1-+-++++tlfi;;::::,.."'5~::-1H Turret
c
en
I
I
centers Printed Circuit
~~
...;:
w
.....
I
Turret I" centers-
VI
u:
~
I 1 1
I I ""
W
0:
ALL SERIES
lJ2"
I
I---
40
20
C
10
100
1.000
HALF'CYCLES OF 60 Hz SINE WAVE
UNITRODE • SEMICON'DUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924,·1235
2-181
PRINTED IN U.S.A.
..RECTIFIERS
UTX3105-UTX3120
UTX 4105-UTX 4120
Super-Fast Recovery, 3 Amp and 4 Amp
DESCRIPTION
These miniature super-fast recovery rectifiers permit operation at full power at
frequencies as high as' 100kHz square
wave. They have the'same unique
Unitrode construction as the familiar
.2:amp UTX series. but are scaled ·up in
size to provide higher continuous and
'surge current'capability.
FEATURES
• Continuous Rating: to 4A
• Controlled Avalanche
• Surge: to BOA
• Recovery Time less than lOOns
• Miniature Package
ABSOLUTE MAXIMUM RATINGS
3Amp
4 Amp
Peak Inverse Voltage
-Series
Series
50V
l00V
IS0V
200V
UTX 3105
UTX 3110
UTX311S
UTX 3120
UTX 4105
UTX 4110
UTX411S
UTX4120
3AMP
4 AMP
Maximum Average D.C. Output Current
SERIES
SERIES
@ TA = 25'C .......................................... 3.0A ................................ 4.0A
@ TA = l00'C .......................................... I.SA................................. 2.0A
Non-Repetitive Sinusoidal
Surge Current (S.3ms) ................................ 60A ................................. BOA
Operating Temperature Range .........................................................,.....19S·C to +17S·C........ .
.. ........ -19S·C to +200·C ........ ..
Storage Temperature Range.
Thermal Resistance ...........................................,........ See Lead Temperature Derating Curve
MECHANICAL SPECIFICATIONS
BAND INDICATES
CATHODE END"'1
\{,
.
c:=:J11
r
.175 TYP.
4.4mm
r:
•L
) c::=::J
7.62mm-
BODY B
.145 MAX.
3.68mm
•
I
-~" ,~=~
~24.8mm
. UTX 3105-UTX3120 UTX 4105-UTX ~120
j
.040±.OOl
1.02mm±.03
-.:~.~~~
~---------~~~~~~:.----------~
UTX Prefix is identified by a Green Cathode Band
nn
SEMICONO.UCTOR
~ PROOUCTS
2-182
- _'UNITRODE
UTX 310S-UTX 3120
UTX 41OS-UTX 4120
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
.
Type
UTX 410S
UTX 4110
UTX4115
UTX 4120
UTX 310S
UTX 3110
UTX 311S
UTX 3120
PIV
Maximum
Maximum leakage
Forward
Current @ PIV
Maximum
Reverse
Recovery
Time**
Voltage Drop"
25'e
1V@3Adc
SI,A
7SpA
lOOns
1V@2Adc
SpA
75pA
lOOns
SOV
100V
lS0V
200V
SOV
100V
lS0V
200V
100'e
Forward voltage IS measured at least 1 second after application of current.
**Recovery time is measured from lA to lA recovering to O.SA.
Maximum Current
vs Lead Temperature
Maximum Current
vs Lead Temperature
I\.L =-- lil"
4 AMP SERIES
3 AMP SERIES
~
'\
~
I'\.
I-
Z
UJ
!3
u
I-
5
oUJ
"'-
u
~=W'
UJ
c:
UJ
~
""c:
UJ
>
:0
."
3
1""- '\.
UJ
;::
u 3
UJ
c:
UJ
II
~
""c:
>
"I
~
~
"J
~
L
==
3'4~
"- I"-
1"..
I'---..
"""
~
'\.
""
"'-.,
I
25
~
1'\
'\
"- J\l"'-.\
"'"
1\\
i'..\\
25
3..." "-
UJ
n
~'\ 1\
I
lIS"
'i
;;:
"'"
@
"-i
\
""- ~\
4
0
0
=
L
U
:;;
1\
"I
-
4
'\.
1--
;;:
;::
UJ
c:
c:
f'\
=.
,""" i"-,
Z
'\.
I~ ~ 3,,"
c:
L
~
50
75
100 125
150
175
T, - LEAD TEMPERATURE ('e)
50
75
100
125
150
175
T, - LEAD TEMPERATURE (OC)
Efficiency vs Frequency at Rated Current (Sine Wave)
Reverse Recovery Circuit
100
5V
D.C.
+
SCOPE
VI
90
:00
80
i=~
go>
:OUJ
0"
68~l
~g
4~!
70
50
>-0
~o
40
UJN
30
"0
,,-0
,,-0
20
-I
w@
+
ALL SERIES
60
.• >
~«
-
10
1M
lOOK
2 3 4 6 810K
FREQUENCY (H,) -HALF WAVE RESISTIVE LOAD NO FILTER
lK
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
2-183
PRINTED IN U.S.A.
UTX 3105-UTX 3120
Typical Leakage Current vs PIV
ALL SERIES
.01
.02
;;C
.5
I-
z
"'a:a:
I---'
10
20
50
100
200
-
500
1,000
L
V7S'C
.hSJ
Z .2
"'~
(f')
.1
:J
II
I
I
-'" .02
j..../
.01
.005
I
100
% OF PIV
I
1/
"'~
0
.4
V, -
.6
.8
1
VOLTAGE (V)
1.2
Forward Pulse Current vs Pulse Duration
ALL SERIES
(8.3 ms sine wave equivalent
to 3 ms square wave)
~
1,000
10,000
0:
"'
~
VI
"'
"'
co:
co:
:::l
U
"'~
II
II
.2
II
.4
V, -
II
I
~
.6.8
VOLTAGE (V)
1.2
1.4
Reverse Pulse Power vs Pulse Duration
100,000
?
1.4
t'\,r It')
II I
.01
.005
.001
f;J u u
'I /
I
.002
glIb
....,
-/- -!- -I- I
_..... 02
II
10,000
~
"'of
:::l
I
.2
.1
U.05
I
II
.001
50
Z .2
U
:1/!!J/:iiI
I
.002
150
0oU 0()
~
II
12S'C
~u
I/~
I-
-/- -/- -I-
lld
J I
~ .5
J.
I-
u .05
f-
.L./
LlL' Lf
J ,/
~ .5
:::l
3 AMP SERIES
L 1
_ _ 25'C
.5
1
10
//1
1/
.2
Typical Forward Current
vs Forward Voltage
V
4 AMP SERIES
I
.05
.1
VI
"'>
"'a:
10
SO'C
u
"'a:
Typical Forward Current
vs Forward Voltage
Y
UTX 4105-UTX 4120
r- ALL
~~
~
1,000
SERIES
Square Pulse Power vs
Duration for Non-Repetitive Pu Ise
It
(S.3 ms sine wave equivalent
to 3 ms, square wave)
...J
100
:::l
:::l
Q.
Q.
10
100
10
l~IS
lOps
IDOl-'s
Ims
PULSE DURATION (SECONDS)
lOms
lOOns
IpS
lOps
lOOps
Ims
PULSE DURATION (SECONDS)
lOms
Allowable Forward Surge vs Number of Cycles
100
"
IIIIII
Z
~
co:
80
""'g;
60
VI
o
"'u::
40
"'~
20
ALL SERIES
I I
f--+-+-+++t+H~~--":::~~--=-t--f--J Tur~~:n;~~
C;i~~:~
1-1- ____
U
Q.
o
10
100
CYCLES AT 60 Hz HALF SINE WAVE
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
2-184
1,000
PRINTED IN U.S.A.
·
RECTIFIER BRIDGES & MODULES
Product Selection Guides
Rectifier Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
Rectifier Modules ............................................... 3-6
Datasheets .................................................... 3-12
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924·1235
3-1
PRINTED IN U.S.A.
..
UNITRODE • SEMICONDUCTOR PRODUCTS.
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
3-2
PRINTED .IN U.S.A.
RECTIFIER BRIDGES
PRODUCT SELECTION GUIDE
Single Phase Full-Wave Bridges
/'?
/ft> HJ, HK, HL, HM,
STANDARD RECOVERY
HN,HO,HP
673-2
GorS
697-2
GA
~s ~
"
680-2
679-2
469-1"
SPB25'
680-3
679-3
NA
MD
673-3
697-3
673-4
697-4
Gor S
Gor S
GA
GA
NA
680-4
NA
NB
NB
679-4
NB
469-2"
SPC25'
MD
MC
697-5
680-5
679-5
673-6
697-6
680-6
679-6
469-3**
SPD25*
MD
MC
GorS
GA
GA
NA
NA
G,GA,GH
MC
673-5
G DrS
..
,
NB
NB
673-7
GH
673-75
HJ
673-8
HK
673-85
HL
673-9
HM
673-10
HN
673-11
HO
673-12
HO
*Available as JAN
"Available as JAN, JANTX
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
3-3
PRINTED IN U.S.A.
PRODUCT SELECTION GUIDE
RECTIFIER BRIDGES
Single Phase Full-Wave Bridges
~
~NA'NB
FAST RECOVERY
676-1
GorS
698-1
GA
684-1
NA
~
~MA' MB, MC, MD
683-1
802-2
NB
MA
803-3
802-3
803-4
802-4
MB
MB
676-2
698-2
684-2
683-2
676-3
698-3
684-3
683-3
676-4
698-4
684-4
683-4
676-5
698-5
684-5
683-5
676-6
698-6
684-6
683-6
Gor S
GorS
GorS
GorS
Gor S
GA
GA
GA
GA
GA
NA
NA
NA
NA
NA
MA
MA
NB
NB
NB
NB
NB
676-12
HJ
676-18
HK
676-24
HL
676-30
HM
3-4
PRINTED IN U.S.A.
PRODUCT SELECTION GUIDE
RECTIFIER BRIDGES
Three Phase Full-Wave Bridge
~:
~ND
.'
STANDARD RECOVERY
700-1
F
695-1
NC
695-2
NC
678-2
NC
678-4
695-5
678-5
695-6
678-6
NC
701-1
NC
695-4
NC
"
Q
678-1
678-3
NC
~
NC
FAST RECOVERY
695-3
NC
'
~
F
F
483-1'
ME
701-2
NC'
NC
483-2'
ME
NC
NC
483-3'
ME
696-1
NC
682-1
NC
696-2
NC
682-2
F
701-3
F
696-3
682-3
701-4
696-4
F
NC
682-4
701-5'
F
696-5
682-5
701-6
F
696-6
682-6
NC
NC
NC
801-3
ME
800-3 '
ME
801-4
ME
800-4
ME
NC
NC
NC
NC'
NC
"'Available as JANTX
DOUBLERS & CENTER-TAP RECTIFIERS
STANDARD RECOVERY
NO
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
3-5
PRINTED IN U.S.A.
RECTIfiER. MODULES
PRODUCT SELECTION GUIDE
STANDARD RECOVERV
USl2
SA
USl5
SA
USl8
SA
US20
SA
US25
S8
USB2.5UDB2.5
DH
DD
. UDE2.5
'DD
UGE2.5
DG
US30
S8
US35
SC
US40
SC
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
3-6
PRINTED IN U.S.A
PRODUCT SELECTION GUIDE
-RECTIFIER MODULES
US60A
KXS60
SO
SM
US70A
SO
USS7.5
DH
USB7.5
DH
USB10
DH
USSlO
DH
688-10
BE
UDA7.5
DO
UDB7.5
DO
UGB7.5
UGE7.5
DG
DG
US80A
SE
US120A
SE
UDAlO
DO
1N5597*
DE
UGBlO
DG
688-12
BE
o,Available as JAN
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
3-7
PRINTED IN U.S.A.
PRODUCT SELECTION GUIDE
RECTIFIER MODULES
US180A
688·18
BE
SF
US200A
688·20
BE
SF
688·25
BE
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
3-8
.PRINTED IN U.S.A:.
PRODUCT SELECTION GUIDE
RECTIFIER MODULES
..
~N
USR12
SA
USR15
SA
USR18
SA
USR20
S8
USR25
UFB2.5
UDD2.5
S8
OH
DO
UDF2.5
DO
UGF2.5
OG
USR30
SC
USR35
SC
USR40A
SO
USR45A
SO
500ns
250nst
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
500ns
250ns'
3-9
500ns
250ns'
500ns
250ns'
150nst
500ns
PRINTED IN U.S.A.
PRODUCT SELECTION GUIDE
RECTIFIER MODULES
DH
FAST RECOVERY
USR60A
SD
USR70A
SE
UFB7.5.
UDC7.5
DH
DD
UGD7.5
DG
UFS7.5
UDD7.5
UGF7.5
DH
DD
DG
USR80A
SE
UFS10
UDClO
UGD10
DH
DD
DG
688·10R
BE
688·12R
BE
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.Q404 • FAX (617) 924·1235
3-10
PRINTED IN U.S.A.
RECTIFIER MODULES
PRODUCT SELECTION GUIDE
£~
c:::
BE
..
dS
4 /
Q
P ~PB'PC
7.F-SG
DO
USR180A
SF
SP
688-18R
BE
688-20R
BE
688-25R
BE
500ns
500ns
150ns
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
(Consult factory for applicable part numbers)
SCREEN
MIL-STD-750
METHOD
CONDITIONS
PERFORM ON DISCRETE DIODES PRIOR TO ENCAPSULATION
1- High Temperature Storage
1032
24 Hours @ TA + 175°C
2. Temperature Cycling
1051
C, 10 Cycles, -65 to +175°C. No dwell required
@ 25oc, t ;. 10 min. @ extremes.
3. Hermetic Seal
a_ Gross
1071
E, ZYGLO
4. High Temperature Reverse Bias (HTRB)
1038
5.
Interim Electrical Parameters
A, 48 Hours, TA = 125°C, VR = 80% of rating
GO/NOGO
VF + ' R @ 25oc, PDA = 10% (Final Electricals)
1051
F, 10 Cycles, -55 to +150°C. No dwell required
@ 25oc, t ;. 10 min. @ extremes.
BRIDGE MODULE SCREENING
1. Temperature Cycling
2. Final Electrical Parameters
GO/NOGO
VF + IR @25OC
3. External Visual
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA02172
TEL (617) 926-0404 • FAX (617) 924-1235'"
.
3-11
PRINTED IN U.S.A.
JAN & JANTX 469-1
JAN & JANTX 469-2
JAN & JANTX 469-3
RECTIFIER ASSEMBLIES
Single Phase Bridges, 10 Amp,
Military Approved
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This series of military high-current
single-phase bridge offer the utmost in
reliability as required in military system
designs. The TX series is assembled
with diodes which have been subjected
to 100% screening tests.
Qualified to MIL-S-19500/469
Current Rating: to lOA
PIV: from 200 to 600V
Surge Ratings of lOOA
Only Fused-in-Glass Diodes Used
Controlled Avalanche Characteristics
Aluminum Heat Sink Case, Electrically Insulated
Dimensions
INCHES
Ltr
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage.
................................
Maximum Average D.C. Output Current
@Tc = +55'C ... :
@Tc=+100'C ..
Non-Repetitive Sinusoidal Surge (8.3ms)
@Tc =+55'C .....
Operating and Storage Temperature Range, Tc
Thermal Resistance Junction to Ambient ..
Junction to Case ....
................ 200 to 600V
............................ lOA
......................... 6A
C,
C,
C,
<10,
90,
...................... lOOA
¢o,
. -65'C to +150'C
..25'C/W
.... 5'C/W
H,
H,
L,
L,
MAX.
MIN.
.367
.375
.450
.225
.149
.101
.076
.570
.370
9.32
.350
.175
.139
.091
.066
.OBB
.020
.735
W
MILLIMETERS
MIN.
.09B
.030
.750
B.B9
4.45
3.53
2.31
1.6B
2.24
.51
IB.67
MAX.
9.53
11.43
5.72
3.7B
2.57
1.93
14.4B
9.40
2.49
.76
19.05
MECHANICAL SPECIFICATIONS
JAN & JANTX 469-1, JAN & JANTX 469-2, JAN & JANTX 469-3
1-8&=::'=_r.@j~l~~+$.\L~+
-r focft
~~~-j~
C,
Ca~2
METAL AREA
SHAPE OPTIONAL
TERMINAL POLARITY
1 :;:: AC
-! r- cfJD2
~DIA ~
I
~~~
4=
See 'table above
+
I
I
,
TERMINAL DETAILS
1$)01
:1:
SEE NOTE 4
MD
---r H1
r
I
b
H2
005
Typical Weight _ 0.35 ounces
10 grams
NOTES:
1. Metric equivalents (to the nearest .01 mm) are given for general information only and are based upon 1 inch = 25.4 mm.
2. Terminals shall be tinned.
.
3. Polarity shall be marked on the bridge body adjacent to terminals. Terminal numbers are for reference and do not have to be marked on
the bridge; however, terminal (1) shall be indicated by a mechanical index such as a line, flattened corner, etc., visible from the top (terminal surface) of the device.
4. Point at which Tc is read shall be in metal part of a case as shown on drawing.
nn
L.::::::J
3-12
SEMICONOUCTOR
PRODUCTS
.... UNITRDDE
JAN & JANTX 469-1
JAN & JANTX 469-2
JAN & JANTX 469-3
Electrical Specification (at 25'C unless noted)
Type
JAN & JANTX 469-1
JAN & JANTX 469-2
JAN & JANTX 469-3
PIV
Per
Leg
Minimum
Reverse
Breakdown
Voltage
Per leg
@ SO ,A
Volts
Volts
200
400
600
240
460
660
..
Maximum
Leakage
Current
Maximum
Maximum
Forward
Voltage Drop
Reverse
Recovery
Per Leg*
Timet
Tr - 2S'C
To _100'C
~S
~A
K-
2
2
125
l.35V @ 15.7A(pk)
Per Leg @ PIV
""Maximum forward voltage drop is measured at a pulse width of B.3ms.
tMeasured in a reverse-recovery circuit switching from a.SA forward to 1.0A reverse current recovering to O.25A.
Typical Forward Voltage Per leg
vs_ Forward Current
20
Typical leakage Current vs. PIV
.01
v.v v.v
10
I1II
~
.05
II/
~
I-
I-
Z
'"'"::>
u
C
'"~
'""-
0
I
-"
zOJ
I1I1
OJ
.5
1/1(-1'
.1
.05
II
.01
I
.005
II
.002 0
.2
.4
1/
.6
.2
'"
'"-'
J....--"' +2SOC
lL
50
100
f-i
1.4
Inspection lots
Formed after Final
Assembly Operation
100
75
% OF PIV
Lots Proposed
for JAN
Types
(Non-TX)
Inspection Tests
to verify LTPD
Group A
Group 8
Group C
Review of
Groups A, B,
and C Data
for accept
Preparation
for
Delivery
JAN
or reject
1
Reverse-R ecovery Circuit
SO"
High temperature storage
Thermal shock
Acceleration
Hermetic seal tests
10"
~
1
--!;-
1-
100 Percent Power Conditioning
I. Measurement of specified parameters
2. Burn-in
3. Measurement of specified parameters
to determine delta and other rejects
4. Scope display evaluation
S. Lot rejection criteria based on rejects
from burn-in test
1
Inspection Lots
Formed after Final
Assembly Operation
175
2S
SO
100 Percent Process Conditioning
1.
2.
3.
4.
150
l
125
FORWARD VOLTAG~
Process
(Discrete
diodes
processi ng)
100
lL
lK
Production
50
CASE TEMPERATURE I'C)
J.-.---+125 'C
SOD
1.2
o
-+
UJ
1
\
a
____ +7S'C
200
.8
-'"
l',.
1
10
u
w
w
.005
.01
zw
+ 25'C
:>
u
..'"'"
;;
.:;
0:
0:
673 SERIES
.001
,002
.1
w
z
/
II
~' 01
Typical Leakage Current VS. PIV
.05
/1/
Z
vs. PIV
676 SERIES
50
150
100
% OF PIV
50
% OF PIV
Reverse Recovery Circuit
Current Derating Curve
IKIl
--
100
+
9901l
.'"
0:
50
+
lOll
...
CONVECTION
COOLED
Q
3-17
o
r--
...
"
Scope
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926.
:l: 1.25
I
'" 1.00
V
a
0-
H" y
~
V
,./"'
/"
~ 80
-
0:
0:
:>
...u
:>
...5
o
60
40
"
400
500
~
~
1\
......:>
:>
\
o
1\
1\
~
.
I
o
;/1
'\
\.
40
'" 20
20 40 60 80 100 120 140 160 180
~
60
C
AMBIENT (AIR) TEMPERATURE ('C)
VELOCITY OF AIR (LFMl
80
0:
20
l:i a
600
...
'" ""
0:
P
Output Current vs
Ambient (Oil) Temperature
::J
§100
C
"B~DY J ,thrOU,gh
100 200 300
v-
...~
Output Current vs
Ambient (Air) Temperature
20 40 60 80 100 120 140 160 180
AMBIENT (OIL) TEMPERATURE ('C)
Application example: The rectifier is to be used in a cabinet at 60'C with ambient
air moving at 400 LFM. The rating is reduced (Fig. 2) by a factor of 0.81 due to the
elevated temperature, but is enhanced by 2.X (Fig. 1) due to the air flow. Hence
the DC output current is 0.81 x 2, or 1.6 times the 25'C air rating.
Reverse-Recovery Circuit
lK1!
+
20V.D.C.
990n
D.U.T.
lOP.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404· FAX (617) 924·1235
3-19
PRINTED IN U.S.A.
..
673, 676 SERI ES
Typical Forward Voltage vs
Forward Current
Typical Forward Voltage vs
Forward Current
10
10
673 SERIES
S
;: '/1
VI 'I
5
I-
.2
::>
I
0::
u
~
"~
~
....
.0
~ V'
5:
/ VIII
Ii U
Z
~
676 SERIES
I-
z
.0
.00 5
.002
.00 I
"a:~
.02
I L
....
I II /
+17S'C
.01
-,'C
+Iorct
.002
I
.001
.2
.4
.6
.8
1.0 1.2
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIRCATIONS
II I
I
.005
] II
/ 1/
.05
0
I I
+lorCL
.1
c
a:
LlL +25'C
Iii/
::>
u
:~+175'C/ if / /
.0
.2
'"a:a:
I
/
..It ~L
IVI 1/
II iLl
.5
/
11
I II
I~ +2S'C
II
-50~C
I
I
.2
.4
.6
.8
1.0
1.2
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIRCATIONS
1.4
1.4
Typical Leakage Current vs. Voltage
.01
I-
.02
-150'~
.05
.1
<'
..:;
.2
I-
.5
1-1- I-
+~S'~-t-
Z
"'a:a:
::>
t--:: ~Ct-
u
"'
"'"
""'
Cl
j..1
10
20
J...t"
..J
50
I--l-r- +12S'C
lao
200
500
II
II
120 liD 100 90 80 70 60 50 40 30 20 10 0
% OF P.I.V.
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET' WATERTOWN, MA 02172
TEL. (617) 926.()4Q4, FAX (617) 924-1235
3·20
PRINTED IN U.S.A.
678,682,695
696 SERIES
RECTIFIER ASSEMBLIES
Three Phase Bridges, 15-25 Amp,
Standard and Fast Recovery Magnum ®
FEATURES
.• Current Rating: to 25A
• PIVs: from 100 to 600V
• Only Fused-in-Glass Diodes Used
• Recovery Times: to 500ns
• Controlled Avalanche Characteristics
• Surge Ratings: to 150A
• Aluminum Heat Sink Case, Electrically Insulated
DESCRIPTION
This series of three phase MAGNUM®
bridges offer the ultimate in high current
power supply applications. The fast
recovery series allows operation at full
power at high frequencies (up to 40KHz
squarewave), often used in choppers,
inverters and converters in aircraft,
missiles, etc., equipment.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
....................................................... 100 to 600V
Maximum Average D.C. Output' Current .............
... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
.... See Electrical Specifications
Operating and Storage Temperature Range. Tc .................................... -65'C to +150'C
Thermal Resistance Junction to Ambient, All Series ............................................... 20'C/W
Junction to Case, 678, 682 Series ....... .......................
.. ..... 1.5'C/W
Junction to Case, 695, 696 Series ............................................ 3.0'C/W
MECHANICAL SPECIFICATIONS
678, 682, 695, 696 SERIES
-E~
cst+ll= ==~114IJ
B
C
0
TB '~/-~-~ir--..,.TINNJD
G
~G~
(2 PLACES)
.L
A
JJ
AC
AC
I:
Typical Weight -
AC+
E
c-r
i.{I_J.
L __
I ..l
J
A
cu.
F
H
J
K
L
Inl.
mm.
.820 MAX.
.09 DIA. TYP.
.164-.174DIA.
.365-.385
1.870-1.880
.740-.760
.370-.390
.040 TYP.
.486-.506
.115-.135
2.240-2.260
20.83 MAX.
2.29 DIA. TYP.
4.17-4.42 DIA.
9.27-9.78
47.50-47.75
18.80-19.30
9.40-9.91
1.02 TYp...·
12.34-12.85
2.92-3.43
56.90-57.40
NC
30 grams
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
nn
SEMICONDUCTOR
~ PRODUCTS
MagnUm® is a registered trademark of Unitrode Corporation
3-21
_UNITRDDE
..
678,682,695,696 SERIES
Maximum Ratings
Electrical Specifications (at 25·C unless noted)
Maximum
Maximum
Maximum
Forward
PIV
Per
Leg
Type
Voltage Drop
Per Leg
A
Volts
678-1
678-2
678-3
678-4
678-5
678-6
695-1
695-2
695-3
695-4
695-5
695-6
682-1
682-2
682-3
682-4
682-5
682-6
696-1
696-2
696-3
696-4
696-5
696·6
Standard
Recovery
Standard
Recovery
Fast
Recovery
Fast
Recovery
Leakage
Maximum
Current
Reverse
Recovery
Per Leg@ PIV
100·C
25·C
TA
/LA
100
200
300
400
500
600
100
200
300
400
500
600
100
200
300
400
500
600
100
200
300
400
500
600
Time*
ns
/LA
Average
D.C. Output
Non-Repetitive
Sinusoidal
Current
Tc - 55°C
Tc - 100·C
Surge (8.3ms)
TA - 100'C
Amps
Amps
Amps
1.2V@10A
10
200
-
25
18.5
150
1.2V@2A
5
150
-
15
9
80
1.2V@6A
10
200
500
20
14
150
1.2V@2A
5
150
500
15
9
60
*Measured in a reverse recovery circuit switching from 1.0A forward to 1.0A reverse current recovering to O.SA.
Typical Forward Voltage Per Leg
YS. Forward Current
30
+175'~1.
I-
Z
I 100.b
"'
0:
0:
'/L II
~
"'
0:
0:
0:
.5
0:
0
u.
.2
j
.1
/ II
.05
I
.02
.2
.5
~ .2
~
.1
u.
I
.05
II
J
.4
.6
.8
1
1.2
FORWARD VOLTAGE (V)
1.4
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
J
.01
o
.2
.4
II'
~~ :A"
:0 !J
-1-1-1-/
(J
(J
0
VI
u. .01
I
I
I
.002
II
.001
.2
0
II
.005
II
.6.8
/11
"' .2
B .1
o
J
J
I
.5
'"~ .02
/ 1/ I
.02
~
z
I-
/
II I III
~ .05
/I
LI 'I
~
i""'i""'V
//
0:
0:
1/ 1/ I
:::>
u
/ 1/ /
:II / I
0
'/ /
IZ
+2S'C
il/ It r---Jo·c
:::>
u
'"
~2SC
~ f.--soc
I. '/
695,696 SERIES
+17S'C+IOO;C-
!JVI
~
10
@/
682 SERIES
~ r;
10
;:
10
1'/1
678 SERIES
20
Typical Forward Voltage Per Leg
YS. Forward Current
Typical Forward Voltage Per Leg
YS. Forward Current
.4
.6
.8
1.2 1.4
FORWARD VOLTAGE (V)
1.2
1.4
FORWARO VOLTAGE (V)
3-22
PRINTED IN U.S.A.
678,682,695,696 SERIES
Typical Leakage Current VS. PIV
Typical Leakage Current VS. PIV
1
I
1
1
~
...
'----r-
-f.--"
j2S"C
SO'C
.05
...z~
--7
---
a
~
~ --
- - f--
I---+---.I+--t"~,-
~
~~
t---=t--
.5
...-
.01 _ 695,696 SERIES
,02
--~O'C
.05 _678682 SERIES
.1 ---
1____
j
,I
1/
,2
w
~2S'C
.5
0:
0:
I
J
:J
10
50
''""
«
«
w
---r-
-- ---
f--
1/
w
1./
100
500
U
1---+-+++--+--'--,
I --h~F=,-=j;:--::-'-:::'r........-; wc
r------
---r-...+----
e-
10
20
..J
'17S'C
I
SO
V
- f.--" I
100
200
I---+-l+++--+f------=b-"""'I"',2"S""C::-1
1K I---~~-r~~~-I--~~I-~
+12S'C
500
1
1K
125
100
so
75
I
25
125
% OF PIV
100
75
% OF PIV
so
25
Reverse Recovery Circuit
S{!
40
D,U.T,
lOV D,C,
1n
Current Derating Curve
Current Derating Curve
100
100
'l"'l
"'.' ,
'z"
~
'z"
696 SERIES
50
>=
«
~
0:
...
0:
o
o
tt
_. --
50
100
150
CASE TEMPERATURE ("C)
Fast Recovery Series
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404· FAX (617) 924-1235
3-23
678 SERIES
'1-:-1.
1'.'
~
I
~
i
o
175
"
695 SERIES
SO
...
r~
.I
L 1
'l'o,
ss·c
682 SERIES
SS'C
1
o
"
150
SO
100
CASE TEMPERATURE ('C)
Standard Recovery Series
175
PRINTED IN U.S.A.
679,680,683,684 SERIES
RECTIFIER ASSEMBLIES
Single, Phase Bridges, 10-25 Amp,
Standard and Fast Recovery Magnum™
DESCRIPTION
This series of single phase MAGNUMTM
bridge offers the designer the ultimate in
high current power supply applications.
The fast recove'ry series allows operation
at full power at high frequencies, up to
40kHz square wave, which is often used
. in chopper, inverters and converters in
aircraft, missiles, etc., equipment.
FEATURES
• Current Ratings: to 25A
• Recovery Time: to 500ns
• PIVs: from 100 to 600V
• Surge Ratings: to 150A
• Only Fused-in-Glass Diodes Used
• Controlled Avalanche Characteristics
• Aluminum Heat Sink Case, Electrically Insulated
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
................. 100 to 600V
Maximum Average D.C. Output Current .. __
......... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
See Electrical Specifications
Operating and Storage Temperature Range, Te ............................ -65'C to +150'C
Thermal Resistance Junction to Ambient, 679, 683 Series .
... 20'C/W
Junction to Ambient, 680, 684 Series ..... ..................... .. ... 25'C/W
Junction to Case, 679, 683 Series
.... 2.0'C/W
Junction to Case, 680, 684 Series
'" 4.0'C/W
MECHANICAL SPECIFICATIONS
680, 684 SERIES
r-E--j
F
--.l
~
Typical Weight -
mm.
inl.
""",,,T!jf,
~~
B
NA
A
B
C
0
E
F
00'
G
.250 MAX.
.57 MAX.
.040 TYP.
.750 MAX.
.750 MAX.
•1400IA.
.09 DIA. TYP.
6.10 MAX.
14.45 MAX .
1.02 TYP.
19.05 MAX .
19.05 MAX .
3.56DIA .
2.29 DIA. TYP .
Typic,' Weight
10 grams
0.35 oun'ces
10 grams
~F-
679, 683 SERIES
.
E.., ,-G
!
r±
iCU_'~
II_
Tlb
= .L
TlNNtO
~K
-r-~
U'
:'1
Typical Weight -
A
I
0.7 Dunces
rL
-../fI-M
+-L
A
B
C
0
E
F
G
H
J
K
L
M
Ins.
mm.
.328 MAX.
.750 MAX.
.040 TYP.
1.125 MAX.
.562
1.125 MAX.
.193
.562
.500
.09 OIA. TYP.
.062
.062
8.33 MAX.
19.05 MAX .
1.02 TYP.
28.58 MAX.
14.27
28.58 MAX.
4.90
14.27
12.70
2.29 DIA. TYP.
1.57
1.57
NB
20 grams
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
n
n
L:::::J
3-24
SEMICONDUCTOR
PRODUCTS
_UNITRODE
679,680,683,684 SERIES
Electrical Specifications (at 25°C unless noted)
Maximum Ratings
Maximum
PIV
Per
Leg
Type
Standard
Recovery
Volts
100
200
300
400
500
600
100
200
300
400
500
600
100
200
300
400
500
600
100
200
300
400
500
600
679-1
679-2
679-3
679-4
679-5
679-6
680-1
680-2
680-3
6804
680-5
680-6
683-1
683-2
683-3
6834
683-5
683-6
684-1
684-2
684-3
684-4
684-5
684-6
Standard
Recovery
Fast
Recovery
Fast
Recovery
Leakage
Current
Maximum
Forward
Voltage Drop
Per Leg
Per Leg @ PIV
T, _ 25°C T, _ l00'C
Maximum
Average
D.C. Output
Non-Repetitive
Sinusoidal
Current
Surge (S.3ms)
Maximum
Reverse
Recovery
Time*
Tc-SS'C
Tc - 100'C
Til. _ 100°C
Amps
Amps
pA
pA
ns
Amps
1.2V@10A
10
200
-
25
18.5
150
1.2V@2A
2
50
-
10
6
50
1.2V@6A
10
200
500
20
14
150
1.2V@2A
5
100
500
10
6
50
*Measured in a reverse recovery circuit switching from 1.OA forward to 1.0A reverse current recovering to O.SA.
Typical Forward Voltage Per Leg
vs. Forward Current
30
20
679
SERIES
SERIES
+17S'~i
I
I
100'C
IW
c:
c:
IL /
~
Iz
_+2S'C
1// it --Jo'c
:J
U
.5
.2
.05
.02
.2
.4
.6.S
t---t-""'f-ft-+-+-j---t-...,
t---t--fl--+---H'-/r-t----t-...,
.05 f--t-f--+l'--t-+1--+-+----1
.02 f--tf-+-+-l---iH--+-+----1
1.4
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERTOWN. MA 02172
TEL. (617) 926·0404 ' FAX (617) 924·1235
.01
~/SJ
:;fj!.r
.1
/1/
«
~ .02
o
.1
V
.It
~ 0
CJ CJ
~ .05
~
1.2
.2
w
i3
...
FORWARD VOLTAGE (V)
c:
c:
~ .5 t---t--+-,~~/r{---t----t-...,
~
1
I
.5
1/
r/
II
/
~
z
:J
~ .2
/I
I II II I
.1
f--+--+--HY'l-l-/J,f--+-~
U
III /!!
0
1
c:
/ II /
0
/[/
/
'II 1/
Z
...
680, 684
0V
:i:
c:
10
/V,Ij
10
::«c:
Typical Forward Voltage Per Leg
vs. Forward Current
Typical Forward Voltage Per Leg
vs. Forward Current
LL.
.01
II
II
.005
I
/
.002
.001
I
I
II
.2
.4
.6.8
1.2 1.4
FORWARD VOLTAGE (V)
'---'---'I.L..L.J-L....L._.L..--"---.J
.2
.4
.6
.S
1
1.2
1.4
FORWARD VOLTAGE (V)
3-25
PRINTED IN U.S.A.
lEI
679,680,683,684 SERIES
Typical Leakage Current vs. PIV
.05
.1
~
I
-
...
zUJ
0:
0:
...z
:>
.
.
".
OJ
---+WC
I
I
.J
SOD
1K
I.--125
100
75
OJ
.J
__
10
20
+125°C
...v-
50
100
200
I
500
1K
50
~
I
./'
+75°C
u
"
.-'
50°C
~ .05
.5
0:
0:
I
I
680 SERIES
.005
.01
~ .02
./
_____ +25°C
.2
OJ
I
LL
" so
" 100
~
.001
.002
50°C
.05
V
UJ
Typical Leakage Current vs. PIV
./
~
.:! .1
I--""" +25°C
10
684 SERIES
.01
.02
I
.5
.:!
:>
u
Typical Leakage Current vs. PIV
.J;;c
679,683 SERIES
u
...
OJ
V
% OF PIV
+25°C
I'
J
.,,-
----+WC
I
1
10
20
50
100
I
100
75
SO
% OF PIV
-
OJ
.J
_~+125°C
125
.-
"
"
j
25
.1
.2
.5
~
--t;5°C
1
125
25
100
75
50
25
% OF PIV
Reverse Recovery Circuit
51l
10V D.C.
CUrrent Derating Curve
Current Derating Curve
100
55°C
~
l'~
680 SERIES
50
"j:
o
.
Jo ...'
,
:..
~
u
~ .1
~ /~/
U
/ II I
z
W
Typical Leakage Current vs. PIV
1
I
.5
V
...
Z
SO'C_
-+2S'C
.w
I
0:
0:
I
:>
u
10
"""
50
1
1/
w
----+75'C
"""w 100
/ II
I
1
...J
500
I----
lK
I
I
.02
I
.01
.2
.4
125
I
100
75
Y
+12S'C
50
25
% OF PIV
.6
.8
1.0
1.2
FORWARD VOLTAGE IV)
Reverse-Recovery Circuit
Current Derating Curve
100
55'C
+
....
"z
~
0:
10V D.V.
50
if.
"
o
a
50
100
150
CASE TEMPERATURE ("C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
i
1
175
3-28
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
688 SERIES
High Voltage Stacks,
Standard and Fast Recovery
FEATURES
• PIV: from lOkV to 25kV
• Surge Ratings of 20A
• Recovery Time Available: to 500ns
• Current Rati ngs: to O.6A
• Bonded Plate for Maximum Heat Transfer
• Controlled Avalanche Characteristics
• Only Fused-in-Glass Diodes Used
DESCRIPTION
This series of high power stacks has a
unique packaging design that provides
characteristics not obtainable in conventional molded epoxy packages. This series,
therefore, is ideally suited for high-voltage,
high-power applications.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ......... .
.......................
.. .................... 10kV to 25kV
Maximum Average D.C. Output Current ...... .
...... See Electrical Specifications
Non-repetitive Sinusoidal Surge (B.3ms)
........ 20A
Operating and Storage Temperature Range, Tc
... -65'C to +150'C
Thermal Resistance Junction to Ambient
......... 25·C/W
Junction to Case ......... .
............... 1O"C/W
MECHANICAL SPECIFICATIONS
688 SERIES
1····- -
L
I
,.:.,
~B
BE
I
f_. __.-,',!
","
I
I
f~!9+
TAPPED 10-32 THREAD
f~.-~
-L-~I
~E~
A
B
C
D
E
ins.
mm.
1.140 MAX.
2.985-3.015
2.110-2.140
.740-.770
.720-.750
28.96 MAX.
75.82-76.58
53.59-54.36
18.80-19.56
1829-19.05
Add suffix R to denote Fast
Recovery version. For example,
for recovery time, trr = 500ns;
order 6SS-10R.
Typical Weight -
2.S ounces
70 grams
MARKING
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
nn
SEMICONDUCTOR
~ PRODUCTS
3-29
_UNITRODE
-
688 SERIES
Electrical Specifications (at 25'C unless noted)
Maximum
Forward
Type
688-10
688-12
688-15
688-18
688-20
688-25
Re.covery~
Current
@PIV
TA _lOO'C
Tc _lOO'C
p.A
p.A
Amps
17V@OAA
20V@OAA
25V@0.4A
30V@0.4A
34V@0.4A
42V@0.4A
10
12
15
18
20
25
Average
D.C. Output
TA -25'C
kV
Standard
And Fast
Maximum
Leakage
Current
Voltage
Drop
PIV
Maximum Ratings
Maximum
2
0.60
0.50
0.40
0.35
0.30
0.20
100
*Add suffix R to denote Fast Recovery version.
Typical Forward Voltage Per Leg
VS. Forward Current
.Typical Leakage Current VS. PIV
10
I
~O"C
.01
.02
V'/
~
z
V//
I- .. 5
~
.2
G
.1
~
c::
o
0:
~ 8~lii_
0:
U
II
.005
/
.002
II
.2
.4
""
"'"
I
+7S'C
50
100
V
200
II
.6
Y
10
20
W
..J
I
IL
.001
5
w
1/1/1/
u. .01
+2S"C
:J
:;: :;: "fo /
.02
V
.5
1
w
IP' , J,-
~ .05
.2
'z..."
IVI
w
.05
.1
;t
I-""+12S'C
.1
500
1K
.8
1
1.2
125
1.4
100
75
50
25
% OF PIV
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
Current Derating Curve
100
\
z"
\
;::
"
a:
...
50
\
\
I
6
I
a
50
100
150
200
CASE TEMPERATURE ('C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404· FAX (617) 924·1235
3-30
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
697,698 SERIES
Single Phase Bridges, 7.5 Amp, Standard
and Fast Recovery
FEATURES
• Miniature High Current Assemblies
• Continuous Ratings: to 7.5A
• Surge Ratings: to 80A
• PIV's: from 100V to 600V
• Recovery Times: to 500ns
• Only Fused·in-Glass Diodes Used
• Controlled Avalanche Characteristics
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage.
Maximum Average D.C_ Output Current.
Non-Repetitive Sinusoidal Surge (8.3ms)
Operating and Storage Temperature Range.
Thermal Resistance Junction to Ambient ..
Junction to Case
OESCRIPTION
These miniature molded high-current
single-phase bridges are designed for universal application in power supplies. One
basic bridge fills current requirements up
to 7.5A, with PIV's from 100 to 600 volts and
recovery times of standard, and 500ns max.
...................... 100 to 600V
............ See Electrical Specifications
........... See Electrical Specifications
.. -65"C to +150"C
.32"C/W
. ...... lO"C/W
MECHANICAL SPECIFICATIONS
697, 698 SERIES
A
B
C
D
E
F
TYpical Weight -
ins.
0.50'.01
.032 DIA.
1.0 MIN.
.250 MAX.
. 150 TYP.
0.50'.01
GA
mm.
12.70'.25
0.81 DIA.
25.4 MIN.
6.35 MAX .
3.81 TYP.
12.70'.25
0.14 ounces
4.0 grams
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
nn
SEMICONOuCTOR
~ PROOUCTS
3-31
_UNITRODE
697,698 SERIES
Electrical Specifications (at 25'Cunless notedl
Maximum Ratings
Maximum
Maximum
Forward
Voltage Drop
PIV
Per
Leg
Type
Per Leg
Volts
Standard
Recovery
697-1
697-2
697-3
697-4
697-5
697-6
698-1
698-2
698-3
698-4
698-5
698-6
Fast·
Recovery
100
200
300
400
Leakage
1.0V@2A
5
200
1.lV@2A
5
200
Average
Maximum
Current
Per Leg @ PIV
TA - 2S'C . TA - 100'C
pA
pA
Non-Repetitive
Sinusoidal
Surge
[8.3ms)
D.C. Output
Current
Tc_SS'C
TA - 2S'C
Amps
Amps
Reverse
Recovery
Timet
ns
Amps
2.5
7.5
80
2.25
7.0
70
SOO
600
100
200
300
400
500
600
500
tMeasured in a reverse recovery .circuit switching from lA forward to lA reverse current recovering to .SA.
Typical Forward Voltage Per Leg
VS. Forward Current
Typical Forward Voltage Per Leg
vs. Forward Current
10
10
V. V
697 SERIES
V/ VV'
698 SERIES
II /1
$:
!z
"'~
.2,
"u
.1
Ill) ()
"''"
"'"u
U U
~ ~1~/fR
Q
;: ;: i- I
:: .05
;:
I
II
.005
I
I
.002
II
.001
.2
.2
.1
~.05
I II
.002
II
.4
.6
.8
1
1.2
FORWARD VOLTAGE [V)
1.4
OJ
"
'"««
'"
OJ
...J
I
II
.0
V
___ +7S'C
10
1
20
I
50
100
200
-
V
___ +12S'C
I
500
1.000
I
.001
1./
--+2S'C
.5
'"'"
u
OJ
I
II
.005
I
....Z
II /
II. .01
I
.:'!
II
/;'JfAif~
~§:O5?
?:; 1-- I
I
~.02
I
.01
I I
.5
Q
I
~.02
II.
$:
....z
I
./
SO'C
.05
.1
::(
.2
VI IIV
1
ALL SERIES
.01
.02
/1/ i//
II I If
.5
Typical Leakage Current VS. PIV
1
100
150
.2.4.6.811.21.4
FORWARD VOLTAGE (VI
50
0/0 OF PIV
Reverse Recovery Circuit
Current Derating Curve
511
+
100
-
,
, , 5S'C
,
,
" ,
411
'"
z
10V D.C.
D.U.T.
~
5V D.C.
'"oR
FREE AIR
50
I
I
1
I
, ,
" ,,
,CASE TEMP.
"
111
I
o
l
o
so
100
ISO
200
TEMPERATURE ('C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, .MA 02172
TEl. (617) 926-0404 • FAX (617) 924·1235
3-32
PRINTED IN U.SA
RECTIFIER ASSEMBLIES
700, 701 SERIES
Three Phase Bridges, 2.5 Amp, Standard
and Fast Recovery
FEATURES
• Miniature Package
• Recovery Time: to 500ns
• Surge Ratings: to 25A
• PIV: from 100 to 600V
• Controlled Avalanche Characteristics
• Only Fused-in-Glass Diodes Used
DESCRIPTION
These miniature transfer-molded highvoltage three-phase power bridges are
designed for universal application in power
supplies. One basic bridge fills current
requirements up to 2.5A. with PIV's from
100 to 600 volts and recovery times of
standard and 500ns.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ........................... _...............................
.. ........................... 100 to 600V
Maximum Average D.C. Output Current ............................... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms) .......................... See Electrical Specifications
.......................... -65'C to +150'C
Operating and Storage Temperature Range
Thermal Resistance Junction-to-Ambient ................ _.... ...........................
... 25'C/W
MECHANICAL SPECIFICATIONS
A..r
B~1
~
~~~
Typical Weight -
I
He
I:e 1e .ell
700. 701 SERIES
J
-it+-- Tinned Copper
H
1
G...j ~
in •.
A
B
e
0
E
F
G
H
J
.310
.621
.512
.460
.255
1.030
.220
.875
.028
REF.
MAX.
MAX.
MAX.
CIA.
F
mm.
7.87
15.77
13.0 REF.
11.68 MAX .
6.48
26.16 MAX.
5.59 MAX .
2223
0.71 CIA .
0.12 ounces
3.5 grams
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
nn
SEMICONDUCTOR
~ PRODUCTS
3-33
_UNITRODE
..
.
700 701 SERIES
Electrical Specifications (at 25'C unless noted)
Maximum Ratings
Maximum
PIV
Per
Leg
Type
Leakage
Current
Per Leg@ PIV
Maximum
Forward
Voltage Drop
Per Leg
TA - 100'C
Maximum
Reverse
Recovery
Timet
I,A
I·A
ns
1.0V@0.5A
2
100
l.lV@0.5A
2
100
TA - 2S'C
Volts
Standard
Recovery
Fast
Recovery
fMeasured
In
100
200
300
400
500
600
100
200
300
400
500
600
700-1
700-2
700-3
700-4
700-5
700-6
701-1
701-2
701-3
701-4
701-5
701-6
701 SERIES
v v::
g
.2
.1
~
.05
...c
.02
g
!z
"'
0:
0:
0:
0:
I;::--t:..-
.5
c
25
2.25
20
L
1~"j87...!;lb
0::
II
.005
II
.002
;:;:. "/-
II
/ I
.001
.2
~
.2
~
.1
";:: .05
II
o
"'" .02
I
.01
.005
I
I
II
.002
I
.001
.4
.6
.B
1
1.2
FORWARD VOLTAGE (V)
1.4
;;:
VVV
.:!
IJ'/
Z
.2
...
I
./"
.5
1
0::
0:
+25'C
I
U
"'CJ
"'"
"'"
I
II
50'C
.2
:J
II /
II
,./
.05
.1
"'
-
~I.?) " "
8~~
f,i7" ;:"f.
/
'0:
II
,/
r-
II
IL
.5
0:
~
1/
.01
Vv
I
ALL SERlE!,
.01
.02.
'5
u
2.5
Typical Leakage Current vs. PIV
10
700 !lE!lIES
:J
Amps
Amps
500
Typical Forward Voltage Per Leg
VS. Forward Current
10
...
"'
TA - SS'C
Non-Repetitive
Sinusoidal
Surge
(8.3ms)
a reverse recovery circuit switching from lOrnA forward to lomA reverse current recovenng to SmA.
Typical Forward Voltage Per Leg
vs. Forward Current
z
Average
D.C. Output
Current
I
/'
10
20
..J
t
50
100
L
200
V
500
1,000
I
.4
.6
.B
1
1.2
FORWARD VOLTAGE (V)
100
150
1.4
75 ' C
+125'C
'1-
50
Q'o.OF PIV
Reverse Recovery Circuit
Current Derating Curve
1KIl
100
+
20V D.C.
r----
9901l
"
"
,
I
I
CONVECTION
COOLED
,
D.U.T.
r--
r-
-,
"
lOll
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
o
3-34
o
so
100
ISO
AMBIENT TEMPERATURE ('C)
200
PRINTED IN U.S.A.
800,801 SERIES
RECTIFIER ASSEMBLIES
Three Phase Bridges, 20-40 Amp,
High Efficiency, ESP
FEATURES
• Current Ratings: to 40A
• Recovery Time: SOns
• Surge Ratings: to 250A
• PIVs: from 50 to 150V
• Only Fused·in·Glass Diodes Used
• Exceptionally High Efficiency
• Aluminum Heat Sink Case, Electrically Insulated
DESCRIPTION
This series of three phase bridges
offers the highest efficiency possible
for applications where nothing else
will do. The series allows operation at full
power at high frequencies.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltages.
....... ...... ....... .......... ...............................
. 50 to 150V
Maximum Average D.C. Output Current.
.. See Electrical Specifications
Non·Repetitive Sinusoidal Surge (S.3ms)
.. See Electrical Specifications
Operating and Storage Temperature Range, Tc
......... -65'C to +150'C
Thermal Resistance Junction to Ambient, All Series.
.................... 20'C/W
Junction to Case, SOO Series .... ............................ ....
......... l.5° C/W
Junction to Case, SOl Series ................ ........
. . 3.0'C/W
MECHANICAL SPECIFICATIONS
800, 801 SERIES
A
B
C
0
E
F
G
H
J
Ins.
mm.
.740-.760
2.240-2.260
.365-.385
.164-.174 DlA.
.370-.390
.486-.506
.115-.135
1.870-1.880
.820 MAX.
18.80-19.30
56.90-57.40
9.27-9.78
4.17-4.42 DIA.
9.40-9.91
12.34-12.85
2.92-3.43
47.50-47.75
20.83 MAX .
ME
Typical Weight -1.0 ounce
30 grams
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
nn
SEMICONDUCTOR
~ PRODUCTS
3·35
_UNITRODE
..
800.801 SERIES
Maximum Ratings
Electrical Specifications (at 25·C unless noted)
PIV
Per
Leg
Volts
Type
ESP
800-1
800-2
800-3
800-4
801-1
801-2
801-3
801-4
Recovery
ESP
Recovery
50
100
125
150
50
100
125
150
Maximum
Forward
Voltage Drop
Per Leg
Maximum
Reverse
Leakage CUrrent
Per Leg@ PIV
T, _100·C
TA - 25°C
pA
pA
Maximum
Average
D.C. Output
Current
Tc _100 lt e
Tc - 55·C
Amps
Amps
Maximum
Reverse
Recovery
Time""
ns
Non-Repetitive
Sinusoidal
Surge (8.3ms)
TA _lOO"C
Amps
.95V@10A
20
1000
50
40
25
250
.95V@6A
10
300
50
20
16
125
*Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to O.SA.
Forward Surge Current vs. Duration
Forward Surge Current vs. Duration
u
II
u
~ 320
~ 160
;:: 280
I-
f5
240
~
,J
~ 200
:>
u 160
5120
a.
I-
80
a
40
:>
.01
.02
140
Z
.05
.1
~ 120
00 SERIES
II
I'
...........
I
, - ~01 SERIES
!5 100
u
r-..
I-
-
.2
.5
OURATION (SEC.)
I-.l
80
~ 60
5
a
40
20
"
o
10
20
.01
.02
.05
.1.2
.5
1
10
20
DURATION (SEC.)
Current Derating Curve
0' 40
........ V-- e- 800
5 35
I-
z
30
"'
'"'"
u
25
:> 20
I-
:> 15
0..
I- 10
:>
SERIES
i"'-
801 SERIES
"""'"\
" "'-
-- I-
i
,
!
i'- ,
......... t--,
I
I
a
55
100
CASE TEMPERATURE (·C)
UNITRODE - SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
3-36
I
!
,
~
150
PRINTED IN U.S.A.
800,801 SERIES
Typical Forward Voltage Per Leg
VS. Forward Current
Typical Forward Voltage Per Leg
VS. Forward Current
100
100
....-:r;:: ~p--
1100 SERIES
50
//~
10
10
5:
5:
Z
W
0:
0:
:::>
u
/;!"
...,.
&
"f.
~ .05
0:
.2
"""t
"- .1
II
.5
.3
II I
.5 - -
(J
0:
(
:;: .2 - 0:
0:
0
"- .1
.02
.01
I
.5
c- h" "
fli-!$'1-1-8It~"
fO
5(
J""
I
.05
I
I
.1
0
I
II
.01
0:
0:
-I- OJ -/"
I
/
:::>
u
CJ
I
.~
0
L
/ II
:1
1.1
.1 .2 .3 .4 .5 .6 .7 .8.9
.7
1.1
.9
1.3
lEI
/1/ III
IZ
W
/!I II I
c-c- It" I
in
'i'/li?
II
I-
~
V::~ ~V
,/1/V
20
20
o
BOI SERIES
50
1.3
FORWARD VOLTAGE (V)
1.5
FORWARO VOLTAGE (V)
Typical Leakage Current VS. PIV
Typical Leakage Current VS. PIV
.01
.02
801 SERIES
1it
.01
.02
l
V
.1
c
T _ +2~C
1
1-1-:-
f--
<:
/'
.2
.5
I-
I-
Z
Z
J:25
W
W
0:
0:
:::>
u
0:
T = +125"C
"
0:
-
10
20
T _ -75
W
100
75
50
% OF PIV
0
:'--
..J
--
100
200
IK
125
/'
w
'"
200
L
:::>
u
20
~ 100
0
0:
0:
f..-"
T - +75"C
w 10
5?
::i'"
A=-5J
.1
I
.2
I
8 OSERI 5
T=.12~
25
lK
125
Reverse-Recovery Circuit
75
50
% OF PIV
100
----
25
Characteristic Waveform
.L
~
~
t"
\
'
\
REe
1
1
1
I,
.L
SET TIME BASE
FOR 5 NS/CM
NOTES:
1. Oscilloscope: Rise time -:::; 3n5; input impedance = Sm!.
2. Pulse Generator: Rise time C 8"s; source impedance lO!?
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITRODE" SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET" WATERTOWN, MA 02172
TEL (617) 926-0404" FAX (617) 924-1235
3-37
PRINTED IN U.S.A.
802,803 SERIES
RECTIFIER ASSEMBLIES
Single Phase Bridges, 20-35 Amp,
High Efficiency ESP Series
OESCRIPTION
This series of single phase bridges
offer the highest efficiency possible
for applications where nothing else
will do. The series allow operation at
full power at very high frequency.
FEATURES
• Current. Ratings: to 35A
• Recovery Time: SOns
• Surge Ratings: to 250A
• PIVs: from 50 to 150V
• Only Fused-in-Glass Diodes Used
• Exceptional High Efficiency
• Aluminum Heat Sink Case, Electrically Insulated
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .
...... 50 to 150V
Maximum Average D.C. Output Current ....
.. See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms)
..... See Electrical Specifications
Operating and Storage Temperature Range, Tc
....... -65'C to +150'C
Thermal Resistance Junction to Ambient, 802 Series
.. 20'C/W
803 Series ._
... 25'C/W
Junction to Case, 802 Series .
... 2.0'C/W
803 Series ................ ..
.. 4.0'C/W
MECHANICAL SPECIFICATIONS
803 SERIES
r
•
Lt-I
0
E
A
0
I
~
B
C
D
E
ins.
.735-.755
.570 MAX.
.250 MAX.
.735-.755
.139'.149 DIA.
MA
~
mm.
18.67-19.18
14.48 MAX .
5.74-6.25
18.67-19.18
3.30-3.81
Bill
C
Typical Weight -
0,35 ounces
10 grams
802 SERIES
AiliB
tr
K
Ins.
A
+
B
+-~H1~9~~L
L~
J.....j.......I~~'
,
L
I
I-G
C
D
E
F
G
H
J
K
.056-.066
.052-.072
1.115-1.135
.552-.572
.552-.572
.180 .200 DlA.
.490-.510
.750 MAX.
.302 .322
1.115 1.135
MB
mm.
1.42-1.68
1.32-1.83
28.32-28.83
14.02-14.53
14.02-14.53
4.57-5.08 DlA.
12.45-12.95
19.05 MAX .
7.67-8.18
28.32-28.83
Typical Weight - 0.70 ounces
20 grams
nn
SEMICONDUCTOR
~ PRODUCTS
3-38
_UNITRODE
802,803 SERIES
Electrical Specifications (at 25°C unless noted)
Type
ESP
Recovery
802-1
802-2
802-3
802-4
803-1
803-2
803-3
803-4
ESP
Recovery
Maximum
Forward
Voltage Drop
Per Leg
PIV
Per
Leg
Volts
50
100
125
150
50
100
125
150
Maximum Ratings
Maximum
Reverse
Leakage Current
Per Leg@ PIV
T, _ 25°C
T, _ 100°C
Maximum
Average
Maximum
Reverse
Recovery
Time*
Te _ 55°C
Non-Repetitive
Sinusoidal
D.C. Output
Surge (8.3ms)
Current
~A
ns
Amps
Te - 100°C
Amps
T, _ lOD°C
~A
.95V@10A
20
1000
50
35
22.5
250
.95V@6A
10
300
50
20
16
125
Amps
*Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to O.SA.
Typical Forward Voltage Per Leg
YS. Forward Current
Typical Forward Voltage Per Leg
VS. Forward Current
100
S02 SERIES
50
100
S03 SERIES
50
I-;:: ~~
VI',!
20
10
5:
...
z
~
~otJ tJ
- - ...,J:!o{5
~
1
-..;...
~ .05
~0:
"f."
"- .1
if
.5
II
.01
.1
0:
0:
.5
c
(J
°
0:
0:
I
0
"-
I
I
.3
.5
r-r-
.2 1-1.1
I
.05
'"
;:
I
.7
.9
1.1
1.3
u
I
II
"
1/
.1
oJ;,
...J:! & p
F,"'
/"f. "f.I!JJ:if
1/ I
,02
.01
II
J.. . tJ
::;)
u
~d
1/ I
.2
o
...,
/
/ /
/ /
z
UJ
I
(J
~
r/ / /
...5:
II / IlL
2
0:
....:;::::: v:v
20
10
.5
.3
.9
.7
1.3
1.1
FORWARD VOLTAGE (V)
1.5
FORWARD VOLTAGE (VI
Typical Leakage Current
.01
.02
1
...
S02 SERIES
.1
.2
/"
VS.
PIV
Typical Leakage Current YS. PIV
.01
.02
I
/~t-J
z
"'0:0:
,....V
.1
I
J=+25t~
"':<'"
'~"
T _ +2S"C f--
1
...
~
1itolc
I
.2
f-
~
I--
z
UJ
'"
0:
::;)
U
W
S03 SERIES
V
::;)
T - +75°C
U
"' 10
10
20
~ 20
:<
T_+75'~ I-""
"'" 100
...J
100
200
T = +125':;"'1K
125
100
75
50
V
-
T _ +12S o C
200
1K
125
100
75
50
25
% OF PIV
25
% OF PIV
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617).924·1235
3-39
PRINTED IN U.S.A.
-
802,803 SERIES
Current Derating Curve
'0 40
"C
:3.
...z
W
0::
0::
35
30
,
S02 SERIES
25
,
::l
u 20
...
...
::l 15
"-
10 - -
"
.....
~
S03'SERIES
15
III
I"--
r---- r-...
I I
55
'"
.......
ISO
100
CASE, TEMPERATURE (·C)
Forward Surge Current vs. Duration
forwardSlirge Current vs. Duration
U
u
5... 160
140
Z
~ 120
!5100
u SO
~ 320
;:: 2S0
~ 240
r-.....
~ 200 ~
::l
...
~ 60
/
~ 40
o
u 160
~ 120
"-
I LS03
20
I-
III
o
.01
SERIES
.02
.05
.1
.2
.5
~
so
o
40
I"-
......
1
10
20
l-
'-S02 SERIES
I
o
.01
.02
.05
.1
.2
'"''
.5
10
20
DURATION (SEC.)
DURATION (SEC.)
Reverse-Recovery Circuit
,Characteristic Waveform
~
t"
~
11
I REe
!
r
i
I•
.J,
SET TIME BASE
FOR 5 NS/CM
NOTES:
1. Oscilloscope: Rise time ~ 3nsj input impedance =:= SOU.
2. Pulse Generator: Rise time ~ 8nsi source impedance Ion.
3. Current viewing resistor, non-inductive, coaxial recommend~d.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924-1235
3-40
PRINTED IN U.S.A.
804 SERIES
RECTIFIER ASSEMBLIES
Doublers and Center Tap, 20 Amp,
High Efficiency, ESP
FEATURES
• Current Rating: to 20A
• Aluminum Heat Sink Case, Electrically Insulated
• Recovery Time: Sans
• Surge Ratings of 250A
• PIVs: from 50 to 150V
• Only Fused-in-Glass Diodes Used
• Exceptional High Efficiency
DESCRIPTION
This series of doublers and center tap
rectifiers offer the ultimate in high
efficiency application. The rectifiers are
particularly suited to switching regulator
supplies where very fast recovery time
and low forward drop are of prime
importance.
ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage ..
Maximum Average D.C. Output Current
@ Tc = +55·C
@ Tc = +100·C .................. .
Non-Repetitive Sinusoidal Surge (8.3ms)
@ TA
+100·C ....... .
Operating and Storage Temperature Range. Tc
Thermal Resistance Junction to Ambient .
Junction to Case ....
....... 50 to 150V
.......... 20A
.... 14A
=
.....................
....... 250A
.... -65·C to +150·C
..20·C/W
......... 6.0·C/W
Electrical Specifications (at 25·C unless noted)
Maximum
Type
ESP
Recovery
804-1
804-2
804-3
8044
leakage
Maximum
Forward
PIV
Per
Leg
Volts
50
100
125
150
Current (pAl
Per Leg@ PIV
T, _ lOO'C
TA _ 25°C
Voltage Drop
Per Leg
.95V@lOA
Maximum
Reverse
Recovery
Time*
pA
pA
ns
10
SOD
50
*Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to O.5A.
MECHANICAL SPECIFICATIONS
804 SERIES
MF
AC
:~~~ CIA.
(2 PLACES)
"D"
.
"P"
.
~
"N"
.
I'I1II
.1
I
.1
+
tAC
..312
302
-L& 11
I
!j
11----.. . .
4n .6:AX.
1,;' ,
AC
.115
AC
loll
~I
AC
Typical Weight -0.35 ounces
Dimensions in inches.
MARKING
Alternating Current Input
Cathode - Positive Output
Anode - Negative
Part number is printed on the body.
I
10 grams
t Add
suffix P, N, or 0 for terminal
configuration P, N, or D.
For example, for center tap
configuration, P, order B04-'P
nn
SEMICONOUCTOR
~ PRODUCTS
5/80
3-41
_UNITRODE
..
804 SERIES
Forward Surge Current vs. Duration
! I
U
: I
5 160
140
z
120
0:.
g; 100
u
I-
I-
z
I
:---,..,
I
I,
80
r-o..
,i
~ 40
I
20
i
/
1
L 804 SERlE 51
I
o
.01
.02
.1
.05
I
III
.2
.5
'"
u 20
I
,
I
:-t-
I
.'
,
0:
I-
!
30
c: 25
i
i
40
35
UJ
I
~ 60
o
u
":0-
I
IUJ
Current Derating Curve
I
I
'"
Q.
,
0
5
'"
I
10
10
r-
i
15
I-
:
804 SERIES
rr- t-.
........
r--
I I
I I
20
55
DURATION (SEC.)
100
150
CASE TEMPERATURE FC)
Reverse-Recovery Circuit
Characteristic Waveform
t ..
~
---
1\
I,'
'REe
1\
!
1
r
I,
,/
SET TIME BASE
FOR 5 NS/CM
NOTES:
1. Oscilloscope: Rise time:::;; 3nsj input impedance = son.
2. Pulse Generator: Rise time ~ 8nsi source impedance 10Q.
3. Current viewing resistor, non-inductive, coaxial recommended.
Typical Forward Voltage Per Leg
vs. Forward Current
100
Typical Leakage Current vs. PIV
.01
.02
v.~~
50
I
//r:;
20
.1
10
V
~
II II /
I-
Z
UJ
0:
0:
-c-- Il<'>
'"
U
~ .05
~0:
.2
u.
.1
o
1
i
I
.5
I
II
.01
.1
.3
II
I
I
I
/"
I-
J=+25·L
UJ.
0:
0:
f~
.<'>
i- Iil-/P
1-/7
A=-5Jc
Z
I
<.>
/'
.2
'"
U
UJ
"
'"
100
C
0:
~
I
50
I /
~
0:
20
~
10
1
.01
.02
II II
/ /
...
/
UNITRODE ' SEMICONDUCTOR PRODUCTS
S80 PLEASANT STREET, WATERTOWN, MA 02172
TEL. (617) 926-
2
"'0:0:
8 ;;., 55
I
/
/
l L
/ /I I
o
I I
I
.25
.5
.75
1
1.25
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
JAN1~S600
1.5
/
50'C
JAN1N5603
./
____ +25'C
I
--
100
II / / II
1 0
'II I
~ ?OO
IV!
I""' ""' ~~f~
100
/ VI
II II I
~ lK
/ VI
Z
V/; V
2K
/J '/1
VI I
oS
... 500
C
JAN1N5600
5K
SK
2K
Energy
Absorption
~A
Typical Forward Voltage
VS. Forward Current
10K
Maximum
Reverse
Transient
Capacitance
@ V, = 100V
Min.
Max.
i1i
..J
10
20
50
100
200
500
IK
1.5
125
3-44
100
75
50
% OF PIV
./'
+75'C
V
125'C
25
PRINTED IN U.S.A.
JAN IN5597 JAN IN5600 JAN IN5603
Typical Leakage Current VS. PIV
--
Current Derating Curve
100
.001
.002
JAN1NSS97
\
L
.005
.01
.02
"zj::
50'C
1
'"
zUJ
.05
.1
:> .2
'"'"
0
'"
"''"
o
I
o
L
2
\
:\
\
!j:;"s·c
.5
\
50
'"'#
I-
"'"
'"
\
SO
100
150
CASE TEMPERATURE ('C) .
200
!---+7S'C
...J
10
20
SO
100
J
I
~S'C
J
V1
125
100
75
SO
%OF PIV
Oiscrete diode inspection lot.
25
..
+
100% Burn·ln of discrete diodes
'I. Measurement of specified parameters
100% process conditioning of dis- ..
crete diodes
2. Reverse bias burn-in
1. High-temperature storage
2. Thermal Shock (temperature eycling)
3. Reverse-recovery time
I
3. Measurement of specified parameters to
determine delta
~
4. Lot rejection criteria
Preparation for delivery
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
based on
rejects
from burn-in test
of groups A,
8, and C data for lot
accept or reject.
Review
3-45
H
Assembly and encapsulation of
discrete diodes into ,bridge assembly
I
1
Inspection test to verify LTPD
Group A
Group B
Group C
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
JAN
JAN
JAN
JAN
Single Phase Bridges, 25 Amp,
Military Approved
FEATURES
• Qua Ii tied to MIL-S-19500 /446
• Current Rating: to 25A
• PIV: from 100 to 600V
• Surge Ratings ot 150A
• Only Fused-in-Glass Diodes Used
• Controlled Avalanche Characteristics
• Aluminum Heat Sink Case. Electrically Insulated
SPA25
SPB25
SPC25
SPD25
DESCRIPTION
This series of military high-current
single-phase bridges offer the utmost in
reliability as required in military system
designs. This series is assembled with
diodes which have been subjected to
100% screening tests.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage .......................... .
Maximum Average D.C. Output Current
@ Te = 55'C .
@ Te = 100'C .
Non-Repetitive Sinusoidal Surge (B.3ms)
@ Te = 55'C ...
Operating and Storage Temperature Range. Tc ..
Thermal Resistance Junction to Ambient.
Junction to Case .
Dimensions
.......... 100 to 600V
Ltr
INCHES
MIN.
............. 25A
..... 15A
150A
............... -65'C to +150'C
.... 20'C/W
....... 2.S'C/W
C,
C,
C,
C.
~;D,
QD2
~'>DJ
~~D~
('IDs
H,
H,
H,
H.
L,
12
L,
L.
Ls
W
,552
,624
,312
,495
.IB9
.057
.10B
,141
.225
,669
.300
.040
.042
.370
.307
.089
.132
.026
1.104
MAX.
MILLIMETERS
MIN,
MAX.
,572
.760
,3BO
.512
.195
.067
.1IB
,151
.235
1.060
.500
,060
.062
.560
.365
.099
,142
.036
1,144
14.02
15.B5
7.92
12,57
4.BO
1.45
2.74
3.58
5.72
17.53
7.62
1.02
1.07
9.40
7.80
2.26
3,35
.66
28.04
14.53
19.30
9.65
13.00
4.95
1.70
3.00
3.84
5.97
26.92
12.70
1.52
1.57
14.22
9.27
2.49
3.61
,91
29,06
-'_';'MECHANICAL SPECIFICATIONS
SPA25 SPB25 SPC25 SPD25
' C
[~
- - wC1
1
METAL
fMI
I
I
H
I
..J
H
~
J
,"
SEE NOTE 2
VIEW B-B
SEE
'DETAIL
'I'
i 'I'! iii i I : ~
I
,.L..-
*----.L
"D.t,;:
SEE l o r
NOTE 1
H2r~Jloos]
LSEE NOTE 3 B
L.:... s~ NOTE~ ---1
SEE/t::::±i:::i:±::>
NOTE 5
NOTES:
1. Terminals shall be hot tin dipped or silver plated.
-2. Polarity shall be:.marked on terminal side of device.
3. Point at which Tc is read (must be in metal part of case).
4. Locating pin shall be adjacent to positive terminal.
5. Insulating sleeve shall be alumina (AL 2 0 3). or equivalent.
nn
SEMICONDUCTOR
~ PRODUCTS
_UNITRODE
JAN SPA25 JAN SPB25
JAN SPC25
JAN SPD25
Electrical Specifications (at 25°C· unless noted)
Volts
JAN
JAN
JAN
JAN
Maximum Leakage
Current
Reverse·
Recovery
Timet
Maximum
I
Minimum
100
200
400
600
SPA25
SPB25
SPC25
SPD25
Maximum
Peak
Forward
Voltage
Drop*
PIV
Per
Leg
Type
0.9V
Per Leg @ PIV
Tc = 25°C
pA
pS
l.4V
Tc =IOO'C
pA
2
2
150
@39A(pk)
*Peak forward voltage drop is measured at a pulse width of B.3ms.
tMeasured in a reverse recovery circuit switching from O.SA forward to 1.0A reverse current recovery to a.SA.
Typica I Forward Voltage. Per Leg
vs. Forward Current
Typical Leakage Current vs. PIV
50
20
i
10
Ir
Ir
W
Ir
Ir
~
50
'\
Ir
;J'.
1,\
'\
w
""
a
""w
Ir
";:
0
./
...---- +25'C
:>
u
:>
u
"-
.'\,.
"z
.2
.5
w
'\.
50'C
.1
z
z
Ir
.01
.02
.05
I-
:!:
I-
Current Derating Curve
100
,/
...J
.5
.2
/'
___ +75'C
10
20
50
100
200
500
.1
o
o
50
100
150
175
CASE TEMPERATURE (OC)
./
_+125°C
IK
125
100
75
50
25
% OF PIV
.05
.2
.4
.6
.8
1
1.2 1.4
FORWARD VOLTAGE (V)
100 Percent process conditioning
100 Percent burn-jn of discrete
diodes
of discrete diodes
1. High·temperature storage
1. Measurement of specified
parameters
2. Thermal shock (temperature
cycling)
2. Reverse bias
3. Reverse-recovery time
sou
4. lot rejection criteria
based on rejects from
burn-in test
Inspection tests
to verify l TPD
Group·A
Group B·
Group C
10 "
+
_
-=-
b~Hn-in
3. Measurement of specified
parameters to determine
delta
Reverse·Recovery Circuit
Assembly,and.
encapsulation of
discrete diodes
into bridge
assembly
Review of groups
A, S, and C data
for lot accept or
reject
2SVdc
(APPROX.)
1U
NOTEJ
OSCILLOSCOPE
NOTEI
NOTES:
=
1. Oscilloscope: Rise time ~ 3ns; input impedance
son.
2. Pulse Generator: Rise time:::: 8ns; source impedance lOP..
3. Current viewing resistor, non-inductive, coaxial recommended.
UNITROOE .• SEMICONDUCTOR PROOUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (&17) 92&·0404· FAX (&17) 924·!235
3·47
PRINTED IN U.S.A.
UDA,UDB,UDC,UDD,
UDE, UDF SERIES
RECTIFIER ASSEMBLIES
.High Voltage Doorbell® Modules,
Standard and Fast Recovery
FEATURES
DESCRIPTION
•
•
•
•
•
•
•
This series of high-voltage, high-current
stacks that incorporate a uniqUe modular
design makes it ideally suited for high
power applications such as in radar systems as charger, hold-off and Clipper
diodes.
PIV: from 2.SkVto lSkV
Stackable to 600kV
Current Ratings: to 7.7A
Controlled Avalanche Characteristics
Only Fused-in-Glass Diodes Used
Recovery Time: to SOOns
Modular Package For Easy Stacking
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage
UDA, UDC Series .............................................." ................ SkV to lSkV
UDB, UDD Series ............................................................ 2.S kV to 7.SkV
UDE, UDF Series .............................................................. 2.S kV to· SkV
Maximum Average D.C. Output Current ............................... See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms) ........... :.............. See Electrical Specifications
Operating and Storage Temperature Range. Tc ...................................... -6SoC to +lSOoC
MECHANICAL SPECIFICATIONS
UDA, UDB, UDC, UDD, UDE,UDF SERIES
'6~~.8~A~m;:P
-r---1
T
.
.78" MAX
19.81mm
L
=
==
1.9" DIA MAX
DD
.
--1
48.26mm
1/4· 28 x 1/4
6.S3mm
1. Polarity - Cathode connected to base.
2. Part Number - On base of unit.
TYpical Weilbt- 2.1 ounces
60srams
EXTENDER PLATE 0
5" DIA' .312"
!1-1-----127mm.7.92mm------i
T=
.093" •.OOS"
2.36mm • O.13mm
T.
'
257" •.005" DIA
6.S3mm • O.13mm
.047" RAD
1.19mm
Typical Waight - 2.75 ounces
78 grams
nL:::::::Jn
SEMICONDUCTOR
PRODUCTS
Doorbell@ is a registered trademark of Unitrode Corporation
3-48
_UNITRDDE
UDA. UDB. UDC. UDD. UDE. UDF SERIES
Electrical Specifications (at 25'C unless noted)
Maximum Ratings
Maximum Average D.C. Output
Current
Maximum
Forward
Type
Standard
Recovery
Fast
Recovery
Leakage
Current
Voltage
Drop
PIV
kV
2.5
2.5
5
5
5
7.5
7.5
10
15
2.5
2.5
5
5
5
7.5
7.5
10
15
UDE·2.5
UDB·2.5
UDE·5
UDB·5
UDA·5
UDB·7.5
UDA 7.5
UDA·10
UDA·15
UDF·2.5
UDD·2.5
UDF·5
UDD·5
UDC·5
UDD·7.5
UDC·7.5
UDC·lO
UDC·15
Maximum Maximum
Recovery
@PIV
10
5
10
5
2
5
2
2
2
10
5
10
5
2
5
2
2
2
= 75°C
Tc
with Extender
Air
Plate**
ns
Amps
Amps
1.65
1.33
1.25
1.00
0.67
4.50
2.25
3.30
1.50
1.20
1.00
0.90
0.75
0.50
7.00
3.75
5.00
2.50
2.00
1.65
1.55
1.25
0.80
5.00
2.80
4.00
1.85
1.50
1.25
1.10
0.90
0.60
-
SOO'
350t
Surge
Air
*6.00
3.00
*2.00
4.50
Non-Repetitive
Sinusoidal
-60'C
Time
~A
5V@3.00A
4V@1.50A
10V@2.20A
8V@1.00A
8V@0.82A
12V@0.70A
12V@0.60A
16V@0.50A
25V@0.33A
6V@2.20A
6V@ 1.20A
llV@1.60A
llV@0.75A
10V@0.70A
17V@0.50A
15V@0.50A
20V@0.37A
30V@0.25A
Tc
Reverse
(8.3ms)
Tc = 100'C
= 50"C
Oil
Amps
Tc
Maximum
Reverse
Transient
Energy
Absorption
Amps
JOU
200
100
200
100
30
100
30
30
30
150
80
150
80
25
80
25
25
25
7.70
4.25
5.50
2.75
2.20
2.00
1.75
1.40
0.90
5.30
3.30
4.40
2.00
1.70
1.50
1.25
1.00
0.70
es
8
4
14
8
1.5
12
2.5
3
5
8
4
14
8
1.5
12
2.5
3
5
*Measured in a reverse recovery circuit switching from l.OA forward to 1.0A reverse current recovering to O.SA.
tMeasured in a reverse recovery circuit switching from O.SA forward to 1.0A reverse current recovering to O.25A.
**These ratings are based on using "extender plates" that provide additional surface area to radiate heat. Because of possible corona effects
caused by scratches on these plates, extreme care is necessary in their handling and they are not recommended where the working voltage
exceeds 7.SKV/module. They should be carefully polished prior to installation.
tThese ratings are based on T c
= lOQOC.
Forward Pulse Current VS. Pulse Duration
10K
g
Forward Pulse Current vs. Pulse Duration
~~III~mfo:~~{[.~~;~;~;;l
;_10K~~~~~~~:::~sq!u~a~r:e~p:u:ls:e:c:u:r::r~en~I~V~S~~
Square Pulse Current vs
Duration for Non-Repetitive Pulse
(8.3
::.:-
ms:~~~v~:~~
~
I,·~ lKf!f~lJ!f~Ii!i!lIl!iilijsq~u~arieiw~a~ve~)
K
100
L-LLLWWL--L.Llllilll_LLJ..LCWL-L.LliJJlll_LLlllill
.!.uS
1.5
10.5
100.5
lms
(8.3 ms sine wave equivalent
to 3 ms square wave)
r~ ~~II~'II!II~g~I~II~
~~II~~II~I~
to 3 ms
10
Duration for Non-Repetitive Pulse
~
10ms
.1.uS
PULSE DURATION (SECONDS)
:t
z
~ 200
'"
:J 100
u
" 50
~'"
'"
~
20
10
1 0
"a: 50 I--~
'"
~
.s>- 500
Z
~ 200
IV I I
u
20
10
'"
0
~
I
/ /
I--
::l 100
u
~14~f;
; ; $/i9
II'!
/~
I I II
I /
:; lK
'1/ /
:l 100
/
I I
I
I II
II / I II
I I
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924-1235
//
'~"
'"
I
I
~
20
10
/ II / I
1.5
1
o
/
I I
.25
.5
.75
1.25
MULTIPlE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
3·49
1
1.5
'/
-l/iI!~o
f! iiJ Sf.u
I
" 50
0
/.
/
2K
/1 II
~ 200
!- 500
100.5
Typical Forward Voltage
Typical Forward Voltage
VS. Forward Current
YS. Forward Current
2K
10.5
PULSE DURATION (SECONDS)
Typical Forward Voltage
10K
5K
1.5
o
I
I I
I I
I I I
/ / I
I I
1.25
.25
.5
.75
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
1.5
PRINTED IN U.S.A.
UDA, UDB, UDC, UDD, UDE, UDF SERIES
Typical Leakage C.urrent vs. PIV
.001
.002
;01
.02
.005
_ .01
~
"::'0:i
0:
::J
u
""''"
""''"
...J
Typical Leakage Current
UDA, UDC SERIES
5O'C
~...
.02
.05
.1
.2
z
F'C
::J
,/
""''"
""''"
.5
1----+75'C
5
10
20
50'C
I
---;;:;;5'C
Irl"
100
50
~
-'
---+25'C
.5
t-
::'0:i
'500
lK
100
125
% OF PIV
75
...
'"
~
+75'C
-
50
I
Y
.05
.1
.2
"««
I
V
+125°C
./
+25'C
I
I
I
10
20
,/
I.----"
50
100
'200
IK
+75'C
~5'C
I
500
125
25
50
50'C
I
.5
0:
::J
U
1/
-
10
20
100
200
I
50
100
150
Typical Leakage Current vS. PIV
UDE, UDF SERIES
.01
.02
I
U .
...J
PIV
"./
.05
.1
.2
"'0:0:
VS.
UDB, UDD SERIES
100
75
25
50
% OF PIV
% OF PIV
Multiple Surge Rating VS. Duration
"
z
;::
~ 100
"'~
r---..
I
!
80
::J
I
U)
c· 60
"'
"'g;
~
...o
"if.
!
I
40
II
20
o
I
!
III
[
1
I
I
1 I
10
100
CYCLES AT 60 Hz. HALF SINE WAVE
1,000
Output Current Ratio
Velocity of Air Flow
Current Derating Curve
VS.
~ 1.75
~
0:
I
I
I
100
...
r---"~--~~-+~--+-~
1.50
/
"'13 1.25
U)
u
/'
f!? .1.00
"' .75
5
i .50
...J
0.
V
";::z
'"#-
,/
,,
50
0:
~
0
a
I
"
,,
ISO
50
lao
AMBIENT TEMPERATURE ('C)
200
.25
100 200 300 400' 500 bOO
V - VELOCITY OF AIR (LFM)
Current Derating Curve
Current Derating CUl1(e
lao
100
"
";::z
'"0:
".;::z
~O
'""if.
0
150
50
100
CASE TEMPERATURE ('C)
Air Cooled
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (517) 925·0404 • FAX (517) 924·1235
,
0
200
3-50
"
,,
50
0:
#-
0
"
0
,,
50
100
150
CASE TEMPERATURE ('C)
Oil Immersed
200
PRINTED.IN U,S.A.
UFB, UFS, USB, USS SERIES
RECTIFIER ASSEMBLIES
High Voltage Stacks,
Standard and Fast Recovery
FEATURES
.. Controlled Avalanche Characteristics
• Only Fused-in-Glass Diodes Used
o High Forward and Reverse Surge Capability
• Transfer Molded for Voidless Construction
.. Modular for Easy Stacking
• PIV: from 2.5 kV to 15kV
• Recovery Times: to 500ns
• Continuous Ratings: to 2.3A
DESCRIPTION
These assemblies uniquely combine a
versatile stackable design with all the
requirements for reliable high voltage
operation. All modules are suitable for
bridge or series operations .
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage, USS Series
.. 5.0 kV to 15kV
.. 2.5 kV to 10kV
Peak Inverse Voltage, USB Series.
Peak Inverse Voltage, UFS Series. ........................... .
... 5.0 kV to 10 kV
Peak Inverse Voltage, UFB Series.
......... ............. .
.. 2.5 kV to 7.5 kV
Maximum Average D.C. Output Current
.... See Electrical Specifications
.................. See Electrical Specifications
Non-Repetitive Sinusoidal' Surge (8.3ms)
..... --65°C to +l50°C
Operating and Storage Temperature Range
MECHANICAL SPECIFICATIONS
UFB, UFS, USB, USS SERIES
Ai!
j,C
.. _
--tl-~·\
10·32
.
THRD.-'
UNF.2A
~
~
B
-'
10·32
THRO.
UNF-2B
TYpical Weight: USS & UFS Series -
0
E
A
B
C
D
E
ins.
.230-.235
.980-1.10
.020-.040
.320-.330
.97-1.00
DH
mm.
5.84-5.97
24.89-27.94
0.51-1.02
8.13-8.38
24.64-25.40
1.0 ounce
28 grams
USB & UFB Series -1.1 ounce
31 grams
MARKING
Type number marked on unit.
Polarity -
Cathode connected to stud.
nn
L.::::J
3-51
SEMICONOUCTOR
PRODUCTS
_UNITRODE
UFB, UFS, USB, USS SERIES
Electrical Specifications (at 2S·C unless noted)
Maximum Ratings
Maximum
Leakage
Current
Maximum
Forward
Type
Standard
Recovery
PIV
kV
5.0
7.5
10
15
2.5
5.0
7.5
10
5.0
7.5
10
2.5
5.0
7.5
USS5
USS7.5
USS10
USS 15
USB 2.5
USB5
USB 7.5
USB 10
UFS5
UFS 7.5
UFS10
UFB2.5
UFB5
UFB 7.5
Standard
Recovery
Fast
Recovery
Fast
Recovery
@PIV
#A
Voltage Drop
9V@0.6A
13V@0.5A
17V@0.3A
25V@0.2A
5V@1.1A
9V@0.7A
13V@0.5A
17V@O.4A
12V@0.5A
18V@0.4A
23V@0.3A
6V@0.9A
12V@0.6A
18V@0.4A
Maximum
Reverse
Transient
Maximum
Reverse
Recovery
Time
Absor~.ion
ns
joules
5
-
10
-
5
500*
350t
10
500*
350t
Energy
1.5
2.5
3.0
5.0
3.0
6.0
9.0
12
1.5
2.5
3.0
3.0
6.0
9.0
Average
D.C. Output
Current
TI+, _
TA - 2S'C
AIR
Amps
0.60
0.45
0.35
0.25
1.1
0.68
0.53
0.43
0.50
0.38
0.30
0.90
0.58
0.45
saGe
Non-Repetitive
Sinusoidal
OIL
Amps
1.1
0.91
0.71
0.51
2.3
1.5
1.2
1.0
0.90
0.75
0.58
2.0
1.3
1.0
Surge
(8.3ms)
Amps
25
80
20
70
""Measured in a reverse recovery circuit switching from lA forward to lA reverse current recovering to O.SA.
tMeasured in a reverse recovery circuit switching from .SA foward current to 1A reverse current, recovery to .25A.
Output Current Ratio
vs. Velocity of Air Flow
_
" 2.50
~ 100
~ 2.25
z
z
~
~ 2.00
~ 1.75
" 1.00
0
60
V
200
300
400
500
u.
;f.
600
~
0
::>
'" Il
0
20 40 60
60
IQ.
I-
::> 40
'\
FIG.2
80
::>
i'-..
20
0
V-
'"
40
0:
FIG. 1
100
....
Z
'"0:0:
c
'"....<
Output Current
vs. Ambient (Oil) Temperature
...I
£100
0
V
o
80
....::>
....::>Q.
/
Q.
'"0:0:
::>
V
u.
o
I
'"i'-.
....
0:
;:: 1.50
...I
::>
::;: 1.25
Output Current
vs. Ambient (Air) Temperature
0
c
'"....<
0
;f.
r\
\
FIG. 3
u.
80 100 120 140 160 180
'\
\
20
0:
20 40 60 80 100 120 140 160 180
TEMPERATURE ('C)
TEMPERATURE ('C)
VELOCITY OF AIR (LFM)
'"
Application example: The rectifier is to be used in a cabinet at 60·C with ambient
air moving at 400 LFM. The rating is reduced (Fig. 2) by a factor of 0.81 due to the
elevated temperature, but it is enhanced by 2 X (Fig. 1) due to the air flow. Hence
the DC output current is 0.81 x 2, or 1.6 times the 25·C air rating.
Forward Pulse Current
10K
5K
g
2K
1K
VS.
I
f F:::::
h.
~ 500
'"0: 200
~ 100
o 50
10
.Ips
lOllS
lOOps
",In
0:
U.
~
'-....
60
I
0:...1
.......
::><
f:::::
oJ:
..::::::~
1ms
I 0u.
40
<
20
_t:.~
'"
~SB&
IOms
o
I--
I
1
10
20
CYCLES OF
3-52
UFB
1"---l
USS & UF~
Q.
DURATION
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
80
I-Z
Z-
I I r-::::::::: ~ :-.;:
I
20
5:
-'"
I
1::0-...
~~
100
I
I i
I I ' I
I':::::h USB I
1"":::,.
f::: I::::- UFB ~
Multiple Surge Current VS. Duration
Duration
SQUARE PULSE I
I
--
50 100 200
60Hz SINEWAVE
500 1000
PRINTED IN U.S.A.
UFB, UFS, USB, USS SERIES
Typical Forward Voltage
VS. Forward Current
Typical Forward Voltage
VS. Forward Current
USB SERIES
.5
"'~
.2
(J
.1
Q:
.05
:>
c
~
I
I
II
~ .02
+175'~1
.01
'L
~
+jOOjC
.002
o
.5
"'~
.2
~
.1
I
IL/II
I
II
.os
1+
75'C ~
II
.01
.005
i °iY
.002
A 1/
.001
.2
III
UFS SERIES
.002
.4
...
"'
~
:>
(J
c
II
~I'
'"~
'"
~
.02
.01
.005
+1 S'C
II
II II
1/
~
IJ
t °iV II
1
.002
rf
A II
.001
.2
.4
.6
I-
25'C
...
"''"
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
1.4
r--sh'~-t---
"",I:::: 1-"'"
+2i'l-t-
0.2
....l
0.5
~-r--,
'"
"'
(J
£.-..... 1-
75'C
~
1-"'"
100
1.~
1.0
:J
20
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
.8
USS AND UFS SERIES
.3 0.1
....'"
"'
CI
..J
1.4
.6
.01
Z
10
1.2
1/
.4
.05
..J
1.0
5O'c
II
:t
+25'C
1/
Lh---
.005
.1
50
25'C
.02
"' .5
~ 1
:i 2
+~'c
.2
J-.
Typical Leakage Current VS. PIV
1-1---±.5d,c
~ .2
1/
.8
V
"1L
II
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
.002
z
J
I
II
o
USB AN" UFB SERIES
.3
~
Ittj
.002
1.4
Vi J
+{OO~C
.001
CI
J
.02
.01
(J
.05
+175'C
.005
"
....05
1/,1 III/
.1
fi'"
:t .02
IJII
.2
~
.01
1/lI'rl
1/1/
.5
'" .05
I/IL J
I
III1I1
.1
c
I
.005
Z
_.2
IIII 1/1/
Typical Leakage Current VS. PIV
.001
10
g
"'~
:J
.6
.8
1.0 1.2
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
.2
.4
.6
.8
1.0 1.2 1.4
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
Typical Forward Voltage
VS. Forward Current
.5
z
1+2s'c
II
l
II
,.
$
...
(J
~ .02
56,d
I
IL
'/
/
1
'"~
I
1/
5
!i:
:J
+25'C
1/
.005
.001
I
1/"1/I
1/
~
ViLV
2
IN 1/1/
/ I
UFB SERIES
USS SERIES
'-
2
g
!i:
10
10
10
..
Typical Forward Voltage
VS. Forward Current
~121'C
IC
125
I I
100
75
50
%OFPIV
3-53
25
bd:::
10
20
50
100
200
..... r- "'"+125'C
II
1I
II,
125
100
75
50
25
o
% OFPIV
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
UG8, UGD, UGE, UGF SERIES
High Voltage Doorbell® Modules
Standard and Fast Recovery
FEATURES
• Current Ratings: to lOA
• PIV: 2.5 kV to 10kV
• Re<;overy Times: to 500ns
• Only Fused-in-Glass Diodes Used
• Controlled Avalanche Characteristics
• Stackable to 6001<.V
• Modular Package for Easy Stacking
DESCRIPTION
This series of high-voltage, high-current
stacks that incorporate a unique modular
design makes it particularly well-suited for
high power applications such as in radar
systems as charge, hold-off and clipper
diodes.
ABSOLUTE MAXIMUM RATINGS
Peak I nverse Voltage
UGB, UGD Series .
.. ................ 5 kV to 10 kV
UGS, UGF Series ............... ..........
. ......... 2.5kV to 7.5kV
. Maximum Average D.C. Output Current. .
.. ............... See Electrical Specifications
Non-repetitive 'Sinusoidal Surge (8.3ms)
... See Electrical Specifications
Operating and Storage Temperature Range, Tc .......................... -65'C to +150'C
MECHANICAL SPECIFICATIONS
UGB, UGD, UGE, UGF SERIES
3.487" DIA MAX
87.Smm
.316" MAX .997" DIA
8.03t
m
\ 2s;m
~tid'
'JIB" _
I
I
24mm
T/
(
'\
~.030" DI~
MAX
25.5mm
DG
1
25.42mm
1.02 0" MAX
1
Polarity - Cathode connected to base.
Part NUmber - On base of unit.
Typical Weight -
7.0 ounces
200 grams
EXTENDER PLATE G
~I-I-----------
T
(
.125....010
3.18mm ± O.25mm
8" DIA
203.20mm
:, ! ;,
.062" RAD
1.57mm
.380" DIA •.005
9.65mm ± O.13mm
Typical Weight -
r
9.25 ounces
265 grams
n .nSEMICONDUCTOR
L::::J
PRODUCTS
Doorbel,'® is a registered trademark of Unitrode Corporation
3-54
_UNITRODE
UGB, UGO, UGE, UGF SERIES
Electrical Specifications (at 25'C unless noted)
Maximum Ratings
Maximum Average D.C. Output
Current
Type
Maximum
Forward
Voltage
Drop
PIV
Maximum
Leakage
CUrrent
@PIV
kV
Standard
Recovery
UGE-2.5
UGE-5
UGB-5
UGE-7.5
UGB-7.5
UGB-lO
UGF-2.5
UGF-5
UGO-5
UGF-7.5
UGO-7.5
UGO-lO
Fast
Recovery
.A
5V@3.30A
lOV@2.50A
9V@2.20A
13V@I.60A
13V@1.50A
17V@1.10A
6V@2.50A
llV@1.80A
llV@1.60A
17V@1.20A
17V@l.10A
22V@0.S5A
2.5
5
5
7.5
7.5
10
2.5
5
5
7.5
7.5
10
10
15
5
10
5
5
10
10
5
10
5
5
Maximum
Reverse
Recovery
Time
ns
Tc
Amps
Air
with Extender
Plate**
Amps
6.60
5.00
4.40
3.30
3.00
2.30
5.00
3.75
3.30
2.50
2.25
1.75
8.25
6.25
5.50
4.10
3.75
2.85
6.25
4.70
4.10
3.10
2.80
2.20
Tc
-
500'
350t
= 60·C
=75'C
Air
= 50'C
Non-repetitive
Sinusoidal
Surge
(8.3ms)
Maximum
Reverse
Transient
Oil
Tc _100'C
Energy
Absorption
Amps
Amps
joules
10.00
7.50
6.60
5.00
5.00
3.50
8.00
6.00
4.S0
4.00
3.50
2.50
200
200
100
200
100
100
150
150
80
150
SO
80
8
14
7
20
10
14
8
14
7
20
10
14
Tc
"'Measured in a reverse recovery circuit switching from t.OA forward to t.OA reverse current recovering to a.SA.
fMeasured in a reverse recovery circuit switching from O.5A forward to t.OA reverse current recovering to O.2SA.
**These ratings are based on using "extender plates" that provide additional surface area to radiate heat. Because of possible corona effects
caused by scratches on these plates, extreme care is necessary in their handling and they are not recommended where the working voltage
exceeds 7.SKV/module. They should be carefully polished prior to installation.
Output Current Ratio
vs. Velocity of Air Flow
Current Derating Curve
~ 1.75
~
0:
100
1.50
w
l\"' 1.25
u
~ 1.00
./
~
~
.50
.~'~--+--~~-~~---r~
f-
V
"z
~
-r---~---f~-r--t-~---r--~
50
~~---+---+--"~,-,~---+---+--~
"
/
w
oJ
. . .75
V
r--
...
/
50
100
150
AMBIENT TEMPERATURE ('C)
I
200
'" .25
100
200
300
400
500
600
V ~ VELOCITY OF AIR (LFM)
100
Current Derating· Curve
r---,--.,.---,..--,-...,--,-"'---'
Current Derating Curve
100
\
"z
~
"
'.
z
;:
«
50
50
0:
"
....
\
50
100
150
CASE TEMPERATURE ('C)
Air Cooled
UNITRODE " SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERTOWN, MA 02172
TEL. (617) 926·0404, FAX (617) 924·1235
·0
200
3-55
0
50
100
150
CASE TEMPERATURE ('C)
Oil Immersed
200
PRINTED IN U.S.A
-
UGB, UGD, UGE, UGF SERIES
Typical'Forward Voltage
VS. Forward Current
10K
E
...z
~ 200
a:
:J 100
u
a:
~
~ 20
a:
Q
...,
I
10
a:
u
c
~
-
a:
o...
o
I
"
It)
C)
...z
'"a:a:
0
'"
«
«
I
"...
'"
,
I I
II I
I I
.25
.5
.75
I
1.25
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIACATIONS
I
1.5
o
""
.;..- +2S'C
.5
I
J
-
.25
.5
.75
I
1.25
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
10
20
so
100
200
500
lK
I :I
1.5
./
so·C
.05
.1
.2
U
Cl
/
UGB, UGD SERIES
:J:
I
/
10
/ / / I
I
I
<"
.3
--JJ~u
.u
t:fi:"'1
I
I /
50
«
~ 20
/
/
11
I
:J 100
~1lli
q: :;: .f! /1~
-
c 50
~ 200
.01
.02
/1 II
IK
. - 500
VII /
I VI I
!z
~
<"
Typical Leakage Current vs. PIV
'/
I /1,
2K
I II
1/ /1
IK
500
UGE, UGF SERIES//
SK
//; 1
2K
.§.
10K
UGB, UGD SERIES
SK
<"
Typical Forward Voltage
VS. Forward.Current
\./
+7S'C
J
.v
-
+12S'C
I
125
100
25
75
so
0/0 OF PIV
Multiple Surge Ratinll' VS. Duration
Typical Leakage Current VS. PIV
Cl
z
UGE, UGF SERIES
.01
.02
Y so·C
.05
.1
.2
1
...
z
i=
I
III
./
C
60
'"~
'"g;
40
'"a:a:
+2S'C
u
I
...o
/
1f1
:J
'"«Cl
"...
'"
I
10
« 20
~
50
100
200
...... 1"--1--
80
:J
I
I
.5
~ 100
'"~
......
I
20
o
1
10
100
CYCLES AT 60 Hz. HALF SINE WAVE
+7S'C
1.000
I
-:Kzs·c
500
IK
125
100
75
so
0/0 OF PIV
25
Forward Pulse. Current VS. PulsllJDuration ~
Forward Pulse Current vs. Pulse Duration
~~~~
-g,IOK • •
...
~IK
•
...:J 100
III
•
Q.
__~iUWL~~~~~illl~
. 1,5
10.5
lOOpS
ImS
10mS
PULSE DURATION (SECONDS)
10 ~~~WL~Llllllli_ _LLiUWL~LU~~~illl~
.1.uS
10mS
I.S
10.S
100.5
ImS
PULSE DURATION (SECONDS)
10~~LW~~~UW
.lp5
UNITRODE • SEMICONDUcTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA-02172
TEL. (617) 926.Q404 • FAX (617) 924·1235
3-56
PRINTED IN U.S.A.
RECTIFIER ASSEMBLIES
US12-US200A
USR12-USR180A
High Voltage Stacks, .125 Amp to 1 Amp,
Standard and Fast Recovery
FEATURES
• Controlled Avalanche Characteristics
• Recovery Times: to SOOns
• Transfer Molded for Voidless Encapsulation
• High Forward and Reverse Surge Capability
• PIV: from 1200 to 20, OOOV
• Only Fused-in-Glass Diodes Used
DESCRIPTION
This series of High Voltage, Medium
Current Stacks are assembled from
hermetically sealed, controlled avalanche
individual diodes. Therefore, they offer
the ultimate in reliability for such applications as clipper diodes, back swing
diodes and hold-off diodes in pulse
modulators.
ABSOLUTE MAXIMUM RATINGS
Peak Inverse Voltage ............. .
............................................... 1200 to 20,000V
Maximum Average D.C. Output Current.
.. .................. See Electrical Specifications
Non-Repetitive Sinusoidal Surge (8.3ms) .... ........................ ............................................. 20A
Operating and Storage Temperature Range ..
.. ....................... -6S'C to +lS0'C
Output Current Ratio vs
Velocity of Air Flow
2.50 r---r--.-----.---.-r--,
~100
:!
";: 2.25 1--t--+--t--t--b-9
Z
0:
0:
0:
z
.
..
I-
w 80
!!: 2.00
:::l
~ 1.75 I--+-+-A-",*,'f--+--!
w
...J
!!: 1.50 I--+-+-bo'''--!
:::l
!:i
i
1.25 1-74''--+--!--t-=-+--!
I
~ 60
0..
5
o
o
v-
400
500
VELOCITY OF AIR (LFMI
600
'"
I-
Z
"
w 80
0:
a:
I'\..
:::l
'-' 60
~
I-
:::l
0..
I-
:J
\
~
1fI.
Output Current vs
Ambient (Oil) Temperature
:J
£ 100
~
0
0
w 20
l!;
100 200 300
40
Output Current vs
Ambient (Air) Temperature
\
0
20 40 60 80 100 120 140 160 180
AMB(ENT (AIR) TEMPERATURE ('C)
'" '"
40
1\
w 20
!;(
I
0:
...0
1fI.
I\.
20 40 60 80 100 120 140 160 180
AMBIENT (OIL) TEMPERATURE ('C)
nn
SEMICONDUCTOR
~ PRODUCTS
3-57
_UNITRODE
..
US12-US200A USR12-USR180A
Maximum Ratings
Electrical Specifications (at 2SoC unless noted)
Type
PIV
Maximum leakage
Current at PIV
T, _ 2S"C T, _100"C
Maximum Forward
Voltage Drop
V
I'A
I'A
1200
1500
1800
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000
10000
12000
15000
18000
20000
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
2.0V@ 400mA
3.0V@ 400mA
3.0V@400mA
4.0V@ 400mA
5.0V@400mA
6.0V@400mA
7.0V@200mA
7.0V@200mA
8.0V@200mA
9.0V@200mA
1O.OV @ 200mA
l2.0V @ 200mA
14.0V @ 100mA
17.0V @ 100mA
21.0V@ 100mA
26.0V @ 100mA
31.0V·@ 100mA
34.0V @ 100mA
1200
1500
2000
2500
3000
3500
4000
4500
5000
6000
7000
8000
10000
12000
15000
18000
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
150
150
150
150
150
150
150
150
150
150
150
150
i50
150
150
150
3.3V@400mA
4.0V@400mA
5.5V@400mA
6.6V@400mA
7.7V@400mA
8.8V@200mA
9.9V@200mA
11.0V @ 100mA
l3.0V @ 100mA
15.4V @ 100mA
17.6V @ 100mA
20.0V @ 100mA
.24.0V @ 100mA
31.0V@100mA
33.0V @ 100mA
35.0V @ 100mA
Maximum Reverse
Recovery
Timet
Body
Size
Max. Avg. D.C.
Out out Current
TA -2S"C
TA - SO"C
(Air)
(Oil)
rnA
mA
SA
SA
SA
SA
S8
S8
SC
SC
SO
SO
SO
SO
SE
SE
SE
SF
SF
SF
1000
800
700
600
600
500·
400
350
330
330
300
300
250
250
200
200
180
180
2500
2000
1750
1500
1500
1250
1000
850
750
750
620
620
500
500
400
400
360
360
SA
SA
S8
S8
SC
SC
SO
SO
SO
SO
SE
SE
SE
SF
SF
SF
750
600
500
400
400
350
300
250
250
220
220
200
200
150
150
125
1850
1500
1250
1000
1000
850
750
625
625
500
500
400
ns
Standard Recovery
US 12
US 15
US 18
US 20
US 25
US 30
US35
US 40
US45A
US 50A
US60A
US 70A
US 80A
US lOOA
US 120A
US 150A
US 180A
US 200A
I
------
--
Fast Recovery
USR 12
USR 15
USR 20
USR 25
USR30
USR 35
USR 40A
USR 45A
USR 50A
USR 60A
USR 70A
USR 80A
USR 100A
USR 120A
USR 150A
USR 180A
t Measured
In
..
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
400
300
300
250
a reverse recovery CircuIt sWitching from lOrnA forward to lOrnA ,reverse current recovering to SmA.
Reverse Recovery Circuit
1KIl
+
20V O.C.
99011
D.U.T.
lOP.
UNITRODE - SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
3-58
PRINTED IN U.S.A.
US12·US200A USR12-USR180A
..
Typical Forward Current
vs.Forward Voltage
Typical Forward Current
vs. Forward Voltage
10
Typical Leakage Current VS. Voltage
-
.01
10
.02
-:::10"~
.05
/, 'II
g
1/ /
.5
OJ
0:
0:
a
.2
~ .0 5
3:
~ .. 0 2 _ +17S"C /
i /
.0 1
.005
.002
+T7
.2
711
.4
.2
~
0:
1.0
rt1
+ 10 c
.002
I US SERIES
.8
/
.005
'1
1.2
.001
1.4
I
+17S"C
I
o
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
I
:£
I-
zOJ
0:
0:
:>
CJ
200
100
50
-....;:; ~
O.lJ's
I.s
1Ol-iS
---td"C
i
I
J..-Y
+12S"C
(
I
J
US AND USR SERIES
120 110 100 90 80 70 60 50 40 30 20 10 0
1.4
%OF P.i.V.
0:
-
~ 100
80
OJ
60
8
40
~
~
~
"Ul
... 20
o
~
Ims
+~S"~-
~
lOms
10
DURATION
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
500
,--
--
Multiple Forward Surge Rating
z
-....;;:: :-...
lOOps
200
(!J
u:
~
100
I USR SERIES
US
I
20
50
~
I r -50~C
<>
~
10
..J
'"~
r---USR/
20
10
"
1/
.2
.4
.6
.8
10 1.2
MULTIPLE OF MAXIMUM FORWARD
VOLTAGE SPECIFICATIONS
r- DUR~~,~'!-N;:~6~~R'i~~~,WJEV~uLSE
2000
1000
~
500
-...;;::
«
«
OJ
+2S"C
Forward Pulse Current vs Duration
10000
5000
-
:>
OJ
(!J
/ //I
.01
1---
.5
CJ
I
/
.2
0:
0:
II 1//
...<> .02
+2S"C
-SO"C
.6
// 'II
.05
0:
;;
.:;:.
IzOJ
IV/ I
.1
<>
I I
JJ
.00 1
~
CJ
II 1
I. i
.5
;:)
I
/
I-
zOJ
1// / /
.1
<>
...
:£
I 1/
~
.1
/// V
----
100
1,000
CYCLES AT 60Hz HALF SINE WAVE
3-59
PRINTED IN U.S.A..
US12-US200A USR12-USR180A
MECHANICAL SPECIFICATIONS
r~
t--1
B
A
===CB===
c
@
-0\1+-
c:::::J
~A
c
BODY SB
B
I
()
@
~A~
A
c=:Il
D
,I
'"
i
BODY SA
}
L
B
-H-
C
BODY SC
D
D
-i l
1,~
B
~-8-
====lr----LI===J.
T
L-.J"""
E
,~
c
BODY SD
IA~I
~=IC=}=I==1
c
D
l,~
-£1-
E
i~~
BODY SE
D
l,G
-illE
l~
58
SA
Ins.
A
B
C
D
E
F
.75 MIN.
.50 MAX.
.028 QIA.
.187 MAX.
mm.
19.05
12.70
.71
4.75
Ins.
BODY SF
I
SC
mm.
Ins.
Ins.
mm.
31.75 MIN. 1.25 MIN.
31.75 MIN. 1.25 MIN.
MIN. 1.25 MIN.
31.75 MIN.
MAX. 0.85 MAX.
21.59 MAX. 1.125 MAX. 28.58 MAX.
.875 MAX. 22.23 MAX.
.032 DIA .
DIA.
.032 DIA.
.81 DIA.
.81 DIA.
.81 DlA .
.032 DIA.
.187 MAX.
4.75 MAX .
.187 MAX.
4.75 MAX .
.250 MAX .
6.35 MAX.
MAX.
.375 MAX.
9.53 MAX.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
3-60
SF
SE
SO
mm.
ins.
mm.
inl.
mm.
31.75 MIN.
1.25 MIN .
31.75 MIN. 1.25 MIN.
1.375 MAX• 34.93 MAX. 1.75 MAX.
44.45 MAX.
.032 DIA .
.81 DIA .
.032 DlA .
.81 DIA.
.250 MAX.
6.35 MAX .
.400 MAX. 10.16 MAX.
.375 MAX.
9.53 MAX .
.400 MAX. 10.16 MAX .
.078
.078
1.98
1.98
PRINTED IN U.S.A.
POWER ZENERS AND TRANSIENT VOLTAGE SUPPRESSORS
Product Selection Guides
Transient Voltage Supressors ...................................... 4-3
Transient Voltage Supressors, Bidirectional ............................. 4-4
Power Zeners ................................................. 4-5
.Datasheets ..................................................... 4-7
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
4-1
PRINTED IN U.S.A
..
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 021n_
TEL. (61~26-0404 • FAX (617) 924"1235
'
4-2
PRINTED fN U.S.A:
PRODUCT SELECTION GUIDE
POWER ZENERS AND TRANSIENT
VOLTAGE SUPPRESSORS
Transient Voltage Suppressors
TVS305
TVS310
TVS312
TVS315
TVS318
TVS324
TVS328
TVS348
TVS360
TVS410
TVS420
TVS430
5.0
10.0
12.0
15.0
18.0
24.0
28.0
48.0
60.0
100.0
200.0
300.0
5.0
11.1
13.8
16.7
20.4
28.4
30.7
54
67
111
234
342
17
8.9
7.1
5.9
4.9
3.6
3.2
5.0
10.0
12.0
15.0
18.0
24.0
28.0
6.0
11.1
13.8
16.7
20.4
28.4
30.7
53.7
30.3
23.8
19.8
16.3
11.9
10.7
5.0
6.0
12.0
15.0
24.0
30.5
40.3
51.6
5.6@ 25mA
6.5@20mA
13.6 @5mA
16.4 @ 5mA
27.0 @2mA
33.0 @ 1mA
43.7 @ 1mA
54.0 @ 1mA
33.0
43.7
54.0
191.0
1.7
1.4
.91
.42
.28
56
46
22
19
12
11
8
6
32.0
24.0
19.0
5.7
8.7
16.8
21.0
25
31
42
46
82
105
160
360
520
I.
B
9.3
16.5
21.0
25.2
30.5
42.0
46.5
9
11
22.6
26.5
41.4
47.5
63.5
78.5
47.5
63.5
79.5
265.0
Transient Voltage Suppressors
Glass Axial, Bidirectional
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
4-3
PRINTED IN U.S.A.
POWERZENERS AND TRANSIENT
VOLTAGE SUPPRESSORS
PRODUCT SELECTION GUIDE
Transient Voltage Suppressors
Glass Axial, Bidirectional
B
Bi-directional Zeners
AA
UDZ5815
UDZ5818
UDZ5820
UDZ5824
UDZ5827
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
4-4
PRINTED IN U.s.A.
PRODUCT SELECTION GUIDE
POWER ZENERS AND TRANSIENT
VOLTAGE SUPPRESSORS
I.
POWER ZENERS
lN4461 *
lN4462*
lN4463*
lN4464*
lN4465*
lN5063
lN5064
lN5065
lN5066
lN5067
lN4466*
lN4467'
lN4468'
lN4469'
lN5068
lN4883
lN5069
lN5070
lN5071
UZ4715
lN4959*
lN4960*
lN4961*
lN5118
lN4962*
lN4470*
lN4471 *
lN4472*
lN4473'
lN4474*
lN5072
lN5073
IN4884
lN5074
lN5075
UZ4716
UZ4718
UZ4720
UZ4722
UZ4724
lN4963*
lN4964*
lN4965'
lN4966'
lN4967'
lN4475*
lN4476*
lN4477*
lN4478*
lN4479*
lN5076
lN5077
lN5078
lN5079
lN5080
UZ4727
UZ4730
UZ4733
UZ4736
UZ4739
lN4968*
lN4969*
lN4970*
lN4971*
lN4972*
lN4480'
lN4481*
lN4482*
lN4483'
lN5081
lN5082
lN5083
lN5084
lN5085
UZ706'
UZ707'
UZ708'
UZ709'
UZ7lO'
UZ740
UZ4743
UZ745'
UZ4747
UZ750'
UZ4751
UZ4756
-
CL
UZ7706'
UZ7707'
UZ7708'
UZ7709'
UZ7710'
UZ4706
UZ4707
UZ4708
UZ4709
UZ4710
UZ4712
UZ4713
UZ756'
UZ760'
B
lN5119
lN4973*
lN5120
lN4974*
lN5121
lN4975*
lN4976*
lN5122
UZ7711
UZ7712'
UZ7713'
UZ7714'
UZ7715'
UZ7736L
UZ7740L'
UZ7740
UZ7745L'
UZ7745'
UZ7750L'
UZ7750'
UZ7,.756L'
UZ7760L'
UZ7756'
UZ7760'
• Available as JAN, JANTX & JANTXV
1. Available with High Reliability (HR2) Screening. See individual data sheet.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
4-5
PRINTED IN U.S.A.
PRODUCT SELECTION GUIDE
POWER ZENERS AND TRANSIENT
VOLTAGE SUPPRESSORS
CL
POWER ZENERS
IN4486*
UZ4775
IN4487*
UZ4782
UZ790 1
IN4488*
IN4489*
IN4490*
IN4491*
IN4492*
IN4095
IN4097
IN5096
IN5097
IN5098
IN5099
IN4098
IN5100
IN5101
IN5102
IN4493*
IN4494*
IN4495*
IN4496*
. IN5103
IN5104
IN5105
IN5106
IN5107
IN5108
IN5109
IN5110
IN5111
IN5112
IN5113
IN5114
IN5115
IN5116
IN5117
UZl10 1
UZll1 1
UZ1l2 1
UZ113 1
UZ114 1
UZ115 1
UZl161
UZ1171
UZl18 1
UZ119 1
UZ120 1
UZl22 1
UZl24 1
UZl26 1
UZ4791
UZ4110
UZ411 1
UZ4112
UZ4113
IN4981*
IN4982*
IN4983*
iN4984*
IN4985*
UZ4115
UZ4116
IN4986*
1 N4987 *
IN5127*
IN4988*
UZ4118
UZ4120
UZ7790L1
UZ7790 1
UZ7110L1
UZ7110 1
IN5128
IN4989*
IN4990'
IN4991*
IN5129
IN4992* .
IN5130
IN4993*
IN5131
IN4994*
UZ128 1
UZl30 1
UZl32 1
UZl34 1
UZl361
UZ1381
IN5132
IN4995*
IN5133
IN4996
IN5134
* Available as JAN, JANTX & JANTXV
L Available with High Reliability (HR2) Screening. See individual datasheet.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.Q404 • FAX (617) 924-1235
4-6
PRINTED IN U.S.A.
POWER ZENERS
1N4461·1 N4496
JAN, JANTX & JANTXV
1.5 Watt/Military
FEATURES
• 5 Times Greater Surge Rating than
JAN lN3016 Series
• Low Reverse Current: to 50nA
• 1f4 Size of Conventional 1 Watt Zeners
ABSOLUTE MAXIMUM RATINGS
Zener Voltage, Vz
Continuous Current ......................... .
Surge Current (8.3ms)
Surge Power
Power ...
Storage and Operating Temperature.
DESCRIPTION
. .
Fused·in·glass, metallurgically bonded
1.5 watt zeners, qualified to MIL.S.19500/406. . . .
.. 6.8 to 200V
.. ... See Table
.. .. ............
See Table
.. ...............
.. .......... See Graph
..... See Lead Temperature Derating Curve
.. .......... -65'C to +175'C
MECHANICAL SPECIFICATIONS
JAN, JANTX & JANTXV lN4461·1N4496
r
BAND INDICATES
CATHODE END
BODY A
.i55TYP.
3.9mm
.085 MAX.
2.16mm
~C=~~==~~~~'~~I~~~~t
L
.030±.OOI
O.77m';' ±.03
.055 TYP.
1.4mm
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
Max. Surge Power
vs. Surge Duration
Power Dissipation
vs. Lead Temperature Derating Curve
z
2.5
1--+--+--+------>0---+--+_---1
!
5K
De
2K
0:
;;:
IK
'"
"- SOD
UJ
;::
iii
Ci
IKr----r----,----,
10K
!
o
Typical Zener.lmpedance
vs. Zener Current
f----
r---S~U-~RE PUILSE-
UJ
0
1.5
1--+--1----4,'
De
UJ
~
X
;;;
"
'":oJDe
200
'"x
IDa
":>
o
i'"---..
_.
ClUJ
I
~
..
20
25
50
75
100
125
ISO
LEAD TEMPERATURE ('C)
175
20V
6.8V
;;;
..........
50
36V-.t--"'-.,-""",j,-----1
100
ll.
I
ffi
zUJ
~
lOps
lOO.us
Ims
SURGE DURATION
10
I----+-------""'f"'o..."""':-----I
N
......
L--L_~_L--L_~_L-~
o
UJ
U
z
~
100V
75V
§
lOms
1.lL----L----l~0------"w
ZENER CURRENT (rnA)
nn
SEMICONDUCTOR
~ PRODUCTS
1/79
4·7
_UNITRODE
JAN, JANTX & JANTXV 1N4461-1N4496
Electrical Specifications at 25°C
Type
::!::5%
Tolerance
1N4461
IN4462
1N4463
1N4464
1N4465
1N4466
1N4467
1N4468
1N4469
IN4470
IN4471
IN4472
1N4473
1N4474
1N4475
1N4476
1N4477
1N4478
1N4479
1N4480
1N4481
1N4482
1N4483
1N4484
1N4485
IN4486
IN4487
IN4488
IN4489
1N4490
1N4491
1N4492
1N4493
1N4494
1N4495
1N4496
Max. Zener Impedance §
Maximum Ratings
Maximum Reverse
Leakage Current
Nominal
Zener
Voltage t
Test
Current
@
@
Vz@ln
I"
I"
I"
Volts
mA
Ohms
Ohms
mA
Volts
~A
200
400
400
500
500
550
550
550
600
600
650
650
650
700
700
750
800
850
900
950
1000
1100
1300
1500
1700
2000
2500
3000
3100.
4000
4500
5000 .
6000
6500
7000
8000
1.0
.5
.5
.5
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.25
.30
.35
.40
.45
.50
.55
.60
.65
.75
.80
.83
.95
1.0
5.0
1.0
.50
.30
.30
.30
.20
.10
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
.05
4.08
4.50
4.92
5.46
8.0
8.8
9.6
10.4
12.0
12.8
14.4
16.0
17.6
19.2
21.6
24.0
26.4
28.8
31.2
34.4
37.6
40.8
44.8
49.6
54.4
60.0
65.6
72.8
.25
.25
.25
.25
SO.O
6.8
7.5
8.2
9.1
10
11
12
13
15
16
18
20
22
24
27
30
33
36
39
43
47
51
56
62
68
75
82
91
100
110
120
130
150
160
180·
200
37
34
31
28
25
23
21
19
17
15.5
14
12.5
11.5
10.5
9.5
8.5
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.7
3.3
3.0
2.8
2.5
2.0
2.0
1.9
1.7
1.6
1.4
1.2
Z,
2.5
2.5
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
11.0
12.0
14
16
18
20
25
27
30
40
50
60
70
80
100
130
160
200
250
300
400
500
700
1000
1300
1500
Voltage "'*
Regulation
oBV Max
Z"
I"
1.1
1.3
1.4
1.5
1.7
1.8
1.9
2.1
2.3
2.5
2.7
3.0
3.3
3.6
4.0
4.4
5.0
.25
.25
.25
.25
.25
.25
5.5 .
6.0
7.0
8.0
10.0
12.0
.25
.25
'R@VR
.25
.25
.25
.25
Maximum
Maximum
Cont.
c~~~~~t
V,
Current
I'M
Volts
mA
Amps
210
191
174
157
143
130
119
110
95
90
79
11
65
60
53
48
43
40
37
33
30
28
26
23
21
19
17
16
14
13
12
11
9.5
8.9
7.9
7.2
5.0
4.5
88.0
96.0
104
120
128
144
160
Is
U
3.0
2.6
2.4
2.2
1.8
1.6
1.4
1.2
1.1
.90
.80
.75
.66
.60
.54
.48
.45
.42
.39
.35
.32
.29
.26
.23
.20
.19
.18
.16
.14
.12
.10
.08
t All
Zener Yoltages are measured with an automated test set using a 35 millisecond test time. longer or shorter test times will have a corres. "
ponding effect on the measured value due to heating effects.
§.Zener impedance is derived from the 60 cycle AC Voltage created when AC current with RMS value of 10% of DC Zener test current is superimposed on the test current.
*'" ~BV
is obtained by measuring the voltage change when the test current .is changed from 10% to 50% of Iz max under. DC conditions. During this
measurement the leads are heat sunk .375 inch from the body and maintained at 25°C.
.
.
*
Ratings shown are for peak sinusoidal surge current of 8.3 ms duration, non-repetitive. The 8.3 rns square pulse rating is 71% of the value
shown. Rating exceeds JEDEC Registered Specification.
UNITRODE • SEMICONDUCTOR PRODUCTS
5.80 PLEASANT STREET· WATERTOWN, MA 02172
TEL (611) 926-0404 • FAX (617) 924-1235
4-8
PRINTED IN U.S.A.
POWERZENERS
IN4954-IN4996
IN 5968-1N 5969
JAN, JANTX & JANTXV
5 Watt, Military
FEATURES
• 2 Times Greater Surge Rating than Conventional
10 Watt Zeners .
• Small Physical Size
DESCRIPTION
Fused-in-glass, metallurgically-bonded
5 watt zeners, qualified to MIL- S -19500/356 .
rm=nr.,
ABSOLUT£ MAXIMUM RATINGS
Zener Voltage, Vz .............................................................................................................. 5.6 to 390V
Continuous Current ............................_............................................................................... See Table
Surge Current (8.3ms) .................................................................................................... See Table
Surge Power........
.. ............................................. See Graph
.........................
.. .... See Lead Temperature Derating Curve
Power..
Storage and Operating Temperature.
.. ................ -65'C to +17S'C
~
BACKSIDE ANODE
METALLIZATION
TOP ..
AL
~;=r= 8ACX ... AU
CHIP
THI~ESS
:=l:
MECHANICAL SPECIFICATIONS
r.
BAND INDICATES
CATHODE END
J; JTX, JTXV IN4954-1N4996
J, JTX, JTXV IN5968-1N5969
175 TYP.
o
4.4mm
BODY B
.145 MAX.
3.68mm
c=:=Jc===~t===~~~\~~~I~~~~t
L
.040±.OOl
1.02mm±.03
.115 TYP.
2.9mm
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
Max. Surge Power
vs. Surge Duration
Power Dissipation
vs. Lead Temperature Derating Curve
B
lOOK
f\
)~\.,~-> 1\0>
.f--" N<>~
~"
\
"
~
o
l :;::: Lead Length
from Body
I
o
25
~
~
Typical Zener Impedance
vs:Zener Current
~
SOK
;; 20K
~
10K
0..
5K
o
\
,\
'''''
UJ
t'....
SQUARE PULSE
" I""
~ 2K
~
~
50
75
100 125 150
LEAD TEMPERATURE ('CI
i'..
~ lK
~ 500
175
:ii 200
'"
f'"
.....
10 0
lOOns
Ip.s
10"s
1001L5
Ims
SURGE DURATION
,
IOms
nn
SEMICONDUCTOR
~ PRODUCTS
1/79
4-9
_UNITRDDE
III
. lN4954-lN4996,lN5968·lN5969, JAN, JANTX & JANTXV
Electrical. Specifications at 25'C
Maximum Zener Impedance §
Type
±5%
Tolerance
Nominal
Zener
Voltaget
Vz @ IZT
Z,.tt
Test
CUrren
Izr
Volts
mA
5.6
6.2
6.8
7.S
8.2
9.1
10.0
220
220
17S
17S
150
150
125
11
125
100
100
75
75
Zz@l n
~1inA
Maximum Reverse
Leakage Current
Voltage
Regulation
6BV §§
Ohms
Volts
1.0
1.0
.1.0
1.5
1.5
2.0
2.0
2.5
2.5
3.0
3.5
3.5
400
1000
1000
SOO
600
400
125
0.4
0.5
0.7
0.7
0.7
0.7
0.8
O.S
0.8
0.8
1.0
50
50
50
4.0
..4.5
5.0
5.0
6.0
160
165
170
175
ISO
30
33
36
39
43
47
51
56
62
68
40
40
30
30
.30
8
10
11
14
20
25
25
20
20
20
25
27
35
42
50
1N4979*
1N4980*
1N4981*
1N4982*
1N4983*
75
82
91
100
110
20
15
15
12
12
55
80
90
110
125
1N4984*
1N4985*
1N4986*
1N4987*
1N4988*
1N4989*
1N4990*
1N4991*
1N4992*
1N4993*
1N4994* .
1N4995*
1N4996
120
130
150
160
180
200
220
240
270
300
10
10
S
8
5
5
5
5
5
4
330
360
390
4
3
3
1175
·1400
lS00
lN5968*
1N5969*
. 1N4954*
1N49SS*
1N4956*
1N4957*
1N4958*
lN4959*
1N4960*
1N4961*
. 1N4962*
1N4963*·
1N4964* .
1N4965*
1N4966*
1N4967*
1N496S*
1N4969*
1N4970*
1N4971*
.lNII972*
1N4973*
IN4974*
IN4975*
1N4976*
1N4977*
1N4978*
12
13
15
16
18
20
22
24
27
Ohms
I"
65
liS
}:.
V_
I_
I_tt
~A
5000
1000
150
100
50
25
25
Volts
5000
1000
300
200
100
50
25
Maximum
Maximum Ratings
Maximum
Temperature Continuous
Coelf.
Current
Tc:.@l zr
I'M
*
%I"C
mA
Maximum
Surge
Current*
I,
"mps
4.28
4.74
5.2
5.7
6.2
6.9
7.6
.04
.04
.05
.06
.06
.06
.07
865
765
700
20
20
40
580
520
475
24
22
20
430
395
. 365
315
294
19
18
16
12
10
630
32
1.1
10
10
lO
5
5
15
10
10
5
5
8.4
9.1
9.9
11.4
12.2
.07
.07
.08
.08
.08
1.2
1.5
1.S
2.0
2.0
5
2
2
2
2
5
2
2
2
2
13.7
15.2
16.7
18.2
20.6
.085
.085
.OS5
.090
.090
264
237
216
198
176
9.0
8.0
7.0
6.5
6.0
190
200
220
230
240
2.5
2.S
3.0
3.0
.. 3.3
2
2
2
2
2.
2
2
2
2
2
22.S
25.1
27.4
29.7
32.7
.090
.095
.095
.095
.095
158
144
132
122
110
5.5
5.0
4.5
4.0
3.5
3.5
4.0
4.4
·5.0
5.5
2
2
2
2
2
2
2
2
2
2
35.S
38.8
42.6
47.1
51.7
100
92
3.2
3.0
2.8
2.5
2.2
2
2
2
2
2
2
2
2
2
56.0
62.2
69.2
76.0
83.6
.095
.095
.095
.100
.100
.100
.100
.100
.100
.100
170
190
330
350
450
'250
270
320
400
SOO
620
720
760
800
1000
1150
1250
1500
1650
1750
10
11
13
14
16
2
2
2
2
2
2
2
2
2
2
91.2
98.8
114.0
121.6
136.8
.100
.105
.105
.105
.110
39.5
36.6
31.6
29.4
26.4
500
550
650
SOO
950
1850
2000
2050 .
2100
2150
18
19
22
25
2S
2
2
2
2
2
152
167
182
206
228
.110
.115
.115
.120
.120
23.6
21.6
19.5
17.5
15.6
2200
2300
2500
32
35
40
2
2
2
2
2
2
2
2
2
2
2
251
274
297
.120
.120
.120
14.4
13.0
12.0
130
140
145
150
155
6.0
6.6
7.5
8.0
9.0
2
84
76
70
63.0
58.0
52.5
47.5
43.0
2.0
1.8
1.6
1.4
1.2
1.00
0.80
0.75
0.70
0.60
O.SO
O.SO
0.40
0.35
0.30
0.25
0.22
0.20
... Available as JAN. JANTX & JANTXV.
t All zener voltages~ are fTleasured with an automated test set ~sing a 35 msec test time. Longer or shorter test times will have a correspond·
ing effect on the measured value due to heating effects.
.
"
§ Zener impedance is derived from the 6O-cycle voltage created-when AC current with RMS.value of 10% of DC zener test current is supert_ imposed on the test current.
\f·!t§.1BV is obtained·by measuring the voltage change when the test current is changed from 10% to 50% of Iz max under DC conditions. During titis measurement. the leads are heat sunk .375 inch from the body and maintained at 25°C.
Maximum current based on 5 Watt Rating. See lead temperature derating curves for proper mounting methods.
* Figures shown are for ~ak sinusoidal surge current of 8.3 msec ·duration, non·repetltive. The 8.3 ms square pulse rating Is 71% of the value
shown.
t t These specifications apply only to JAN and JANTX
*
UNITRODE " SEMICONDUCTOR PRODUCTS
58(}PLEASANT STREET" WAT~RTOWN. MA 02172
TEL. (617) 926·0404 " FAX (617) 924·1235
4·10
PRINTED IN U.S.A
JAN, JANTX, JANTXV IN5610-1N5613
POWER ZENERS.
Transient Suppressor Diodes
FEATURES
• 1S00 Watts for 1ms Pulse Power Capability
• Small Physical Size
• Designed to be Used in Mil-Std-704A Applications
DESCRIPTION
Zener diodes with high surge capability
qualified to MIL-S-19S00/434.
•
ABSOLUTE MAXIMUM RATINGS (at 25'C except where otherwise noted)
lN5610
Zener Voltage .
Forward Surge Current.
Zener Surge Current, at 2S"C .
Surge Current, at 1SO"C .
200A ...
...... ............ 32.0A ..
.... S.5A ...
Surge Power .
lN5&11
lN5&12
See Electrical Specifications ....... .
................ 200A.
........ 200A ....... .
.............. 24.0A ......... . ................ 19.0A .. .
.. ...... .... 4.SA...
.. ........... 3.2A ..
See Graph
..................... .
lN5&13
........ 200A
. ...... S.7A
..... l.OA
-6S"C to +17S"C ... .
Storage and Operating Temperature
JAN, JANTX, JANTXV 1N5610·1N5613
Double C BODY
Polarity: Cathode indicated by band.
Weight: 1.5 gram (approximate).
Mounting PositiolT: Any. Leads: Tinned Copper.·
Marking: Type number marked on unit.
nn
SEMICONDUCTOR
~ PRODUCTS
4/82
4-11
_
UN.ITRDD.E.
JAN. JANTX. JANTXV IN5610-1N5613
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
Max,
Reverse
Type
Min. Zener
Voltage §
1N561O*
1N56U*
1N5612*
1N5613*
Vz@ IrnA
Volts
33.0
43.7
54.0
191.0
Voltaget
Vz @ Is
Volts
47.5
63.5
78.5
265.0
Max.
Forward
leakage
Max. Zener
I,@V,
Volts
30.5
40.3
49.0
175.0
.A
5.0
5.0
5.0
5.0
Amps
32.0
24.0
19.0
5.7
Typical
Voltage*
@ 100 Amps
Volts
4.8
4.8
4.8
4.8.
Current
Temperature
Coefficient
%/·C
.093
.094
.096
.100
Notes: • Available as JAN, JANTX and JANTXV.
§ Duration 01 applied current .. 3OOms, duty cycle .. 2%.
t Utilizing a pulse which decays exponentially to 50%01 the peak value-in 1ms. See graph entitled "Pulse Waveform".
:I: Peak Sinusoidal surge current of 8.3ms duration, non-repetitive.
APPLICATIONS
Voltage transients can be suppressed with series elements. shunt elements, or a
combination of both. These elements may be passive or active. For low and
medium power applications, a series resistor and zener clamp offer several
attractive features:
1. Simplicity of design
2. High reliability
3. Fast response time
The 1N5610 series of surge suppressors will suppress the fOllowing transients
defined by MIL-S-704A without the use of any series limiting resistance beyond
that provided by the source:
i. AII600V transients (category #1 on chart below)
2. All BOV transients except those generated by the main voltage regulator
(category #2 on chart below)
3. The overvoltage transients generated by the main voltage regulator (category
#3 on chart below) will also be suppressed by the 1N5610 series if:
a. A 20 ohm series limiting resistor is used, or
b. No series resistance is used but the zener is protected within 500 I'S by
using, for example, an SCR crowbar
The above statements ar~sed on the source impedances and dv / dt characteristics as given in ARlNc"Specification #413. This report entitled "Guidance for
Aircraft Electrical Power Utilization and Transient Protection" serves to further
define MIL-STD-704A for large aircraft electrical systems.
Category
Source of
Transient
Maximum
Amplitude
DUration
Min. Source
Impedance
Peak Power Rating vs. Pulse WidthlOOK
wibth is definedl as that _
50K I- 'Pulse
point at which pulse power
decays to 50% of peak
20K
10K
5K
!
a::
"';:
0
.........
.............
~
2K
1K
500
0.
'"""
"'
0.
........:..-
200
100
.01
10
.1
TIME (ms)
Pulse Waveform
~
dv/dt
""--I'-- 2
TIME (ms)
1.
Inductive
Switching
600 V
,;;; 10l's
50 ohms
2.
BUS
Switching
80 V
,;;; lOms
15 ohms
3.
Main Voltage
Regulator
80 V
~
0.2 ohms
10ms
Peak Power Ratingvs. Ambient Temperature
These Surge Suppressors are useful in a variety of other applications where semiconductor devices must function reliably in an environment subject to extremely
high but short term surges.
* ARINC stands
for Aeronautical Radio, Inc. (Annapolis, Maryland 21401)
2000
50V/ms
1500
!
a:: 1000
"'
;:
0
0.
500
a
-25
UNITRODE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924·1235
4-12
11 Millisec~nd PUIS~
~
~
~
25
75
125
AMBIENT TEMPERATURE ('C)
175
PRINTED IN U.S.A.
TRANSIENT VOLTAGE
SUPPRESSOR
IN6102A Series
Bidirectional, 4000 Watts Peak, Military
FEATURES
• Bidirectional
• 4000W for 8 x 20 microsec pulse
• SOOW for 1 millisec pulse
• Clamping time in pico seconds
DESCRIPTION
These bidirectional, high speed, voltage suppression devices are ideally suited for applications where fast response is essential. The use of passivated die metallurgically bonded on both sides asssures long term reliability. This series is especially useful in protecting microprocessor, MOS, CMOS, TTL, Schottky TTL, ECl, 12 l and linear integrated circuits from spurious transient disturbances.
• Void less hermetically sealed glass
package
• Metallurgically bonded construction
• Designed to meet Mll-S-19S00/S16A
ABSOLUTE MAXIMUM RATINGS AT 2S0C
Stand-Off Voltage ......... S to 48V (See Characteristics Table)
Peak Pulse Power
(8 x 20 microsec pulse) .............. 4000W (See Figure 1)
Peak Pulse Power (1 millisec pulse) ....... SOOW (See Figure 2)
Peak Pulse Current. .
. ... See Characteristics Table
Breakdown Voltage ................ See Characteristics Table
Power Continuous
(TL = 7SoC, L = 'I,") .
. ......... 3W
Storage and Operating Temperature ........ -SsoC to +17SoC
MECHANICAL SPECIFICATIONS
r
l
.l75TYP.
4.4mm
IN6102A Series
r:
B BODY
.145 MAX.
3.68mm
·L
c=:=JC===~~C===~I~~}~\~~~1~~~~'t
1_
1
,975 MIN.
r--24.8mm
.300 MA~
7.62mm-
.040±.OOl
1.02mm±.03
'--- .~.~~~
~----------~~~~~~~.~--------~
These devices also available in surface mount package. See Section 11
n nSEMICONDUCTOR
L.::::J
PRODUCTS
6/87
4-13
_UNITRDDE
•
1N6102A Series
ELECTRICAL CHARACTERISTICS AT 25°C
Stand-Off
Voltage
VR
Type
Breakdown Voltage
BV
(V)
min.
(V)
nom.
(V)
max.
(V)
Test
Current
IBR
Working
Peak
Voltage
VRWM
Maximum
Leakage
Current
IR @V R
Maximum
Clamping
Voltage
Vee Max.
@ Ip'
Maximum
Peak
Current
Ip
Maximum
Temp_
Coef. of
BV
(mA)
(V)
(jlA)
(V)
(A)
(%'0C)
1N6102A
5
6.46
6.8
7.14
175
5.2
100
10.5
47.6
.050
1N6107A
8
10.45
11.0
11.55
125
8.4
1
15.6
32.0
.070
1N6111A
12
15.20
16.0
16.80
75
12.2
1
22.3
22.4
.080
1N6113A
15
19.0
20.0
21.0
65
12.2
1
27.7
18.0
.085
1N6115A
17
22.8
24.0
25.2
50
18.2
1
33.3
15.0
.090
1N6118A
24
31.4
33.0
34.6
40
25.1
1
45.7
10.9
.095
1N6120A
28
37.1
39.0
40.9
30
29.7
1
53.6
9.3
.095
1N6122A
33
44.7
47.0
49.3
25
35.8
1
64.6
7.7
.095
1N6125A
48
64.6
68.0
71.4
20
51.7
1
97.1
5.1
.100
'See Figure 2.
Figure 1. Current Impulse Waveform
100%
A
:E-
,\
'0
!O
I
f-
i'ii
'"=>
0:
tp:
50%
'"=>~
"-
I
a
]
= 8#-/5.)
'0
!O
i'iiQ:
w m
=>
()
'"
,~
'"
~
=>
"-
~ -........
~
I
~
-
w m
~
I-M ~
o
B
'"
~
l()
75
!O
I
Q:
'"~
50
Figure 4. Peak Pulse Power v·s. Pulse Duration
'"~
"-
~
=>
0..
1\
25
'"
'"I
«
0..
'"
~
'\
"I
~
a
25
50
(Pulse time duration is defined
a,s that point where the pulse
current decays to 50% of Ip.)
I
=>
a
~ r-..
Q:
"-
"-
a
EXPONENTIAL PULSE
'"~
'"'"«
~
~
'"~
'0
~
t - TIME - (ms)
~~
z
~
50
?
Figure 3. Derating Curve
"
100
Q:
t - TIME - ",s)
100
Pulse time duration (tp) "" point
where Ip decays to 50% of Ip.
I
f-
.?
0%
~urati~n ~efine~
Itime
is
as that pOint where the plIlse
current decays to 50% of Ip.
(Rise time to 100% of Ip
\
()
~Ulse
Figure 2. Pulse Waveform
75
WO
TEMPERATURE UNITRODE • SEMICONDUCTOR PRODUCTS ,
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404 - FAX (617) 924·1235
125
.1
.If..!s
~
150
1ms
tp
-
IOms
PULSE TIME
175
(Oe)
4-14
PRINTED IN U.S.A.
IN6102A Series
Figure 5.
Maximum Power vs. lead Temperature
Figure 6. Steady-State Derating Curve
for Free-Air Mounting
20
IS
2.5
16
l'?
s:~
S
s:
\
z
~
ill
0
~
~
1.5
0-
\
~
\
12
t-....
:;
r-~~o
=>
x
""
=>
:;
x
%
\
4
0
0
~~"
~o 1"-
1\
""~i'
~SO f:::::- ;-.......
100
150
200
Figure 7.
Typical Capacitance vs. Stand-Off Voltage
\
~
"-
"'"
r- r- f:::: :3:: ;;;::: ~
25
50
\
• O.SQ6
o
RaJA
AMBIENT TEMPERATURE (TA) IN 'C
"'>s
:;
TJ· TA
P(MAX)
0.5
"":;
'\
0
:;
""w
in
.
10
R9JA
1.0
:;
1\..-
0
0-
IN6102A SE RIES
= 75° CN/
,:.
Cl
'"
i;!
•
'"w
- -
w
?;
0
TJ· TL
P(MAX) •
\
14
2.0
?;
75
10,000
\
"-
.....
175
125
MAXIMUM LEAD TEMPERATURE IN 'C (TLI AT POINT
.. ~' FROM BODY (FOR MAXIMUM OPERATING
JUNCTION TEMPERATURE WITH EQUAL
TWO·LEAD CONDITIONS).
measured at zero bias
w
c.;
~ 1,000
(}
,
11:
(J
'\.
L
R6JL
measured at VR
(MM)
'CN/
0.125
( 3.17)
17.5
0.250
( 6.35)
26.5
10
0.375
( 9.53)
33.5
VR - STAND·OFF VOLTAGE -.(V)
0.500
(12.70)
42.0
0.750
(19.05)
55.0.
INCHES
0.000
8.3
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404· FAX (617) 924·1235
100
4-15
IIIII
"\
1\
100
PRINTED IN U.S.A.
TRANSIENT
VOLTAGE SUPPRESSORS
IN6461-1N6468
JAN, JANTX & JANTXV
500W, Military
FEATURES
DESCRIPTION
• 500W Power Capability for 1ms pulse
• Glass Encapsulated Device
• Clamping Time in Picoseconds
Transient voltage suppressor 'of non cavity
design and qualified to MIL·S·19500/551.
Metallurgically bonded for high reliabilty.
ABSOLUTE MAXIMUM RATINGS @ 2SoC
Stand·off Voltage, VR .......................... , ............•........... 5.0V to 51.6V
Peak Pulse Power (lms)*, PPR .........................................•....... 500W
Forward Surge Current @ tp = 8.33ms, IFsM ••••••••••••••••••••••••••••••••••• 80A(pk)
Peak Pulse Current; .............................. , ......................... see table
Breakdown Voltage ................................. ; ....................... see table
Power, Continuous (Derate @ 16.7mW/oC above T. = 25°C), PR .................. 2.5W
Storage Temperature ............................................... -55°C to +200°C
Operating Temperature ............................................. -55°C to +175°C
·See Figure 2 for Peak Pulse Power vs. Pulse Duration.
MECHANICAL SPECIFICATIONS
r
BAND INDICATES
CATHODE END
~
J. JTX & JTXV IN6461·1N6468
'IJ~~~
~
JI
c::=:J
-----:975
I
J c:::::=J
MI~~O
~24.8mm
MAX-'o.
7.62mm-
f":',
BODYB
.145 MAX.
3.68mm
t
•L
.040 ±.OO1
1.02mm±.03
'-- .115 TYP.
2.9mm
~--------~\~~~~~'----------~
THESE DEVICES ALSO AVAILABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONDUCTOR
~ PRODUCTS
4/82
4-16
.... UNITRDDE
JAN, JANTX & JANTXV IN6461-1N6468
ELECTRICAL SPECIFICATIONS @ 25°C
Max.
Max.
Clamping
Clamping
Voltage
@Ipp
Voltage
Max.
(tp Ims) Temperature
(Vc MAK.l
@Ipp
Inverse
Coefficient
ex: VIDRI
for tp 1ms
Voltage
Max. Peak Pulse Current
I_Min.
Test Current
Max.
Leakage
Stand-off Breakdown
IBR@
Voltage
Voltage
tp 300ms
Current
Duty Cycle::; 2% IR@VR
VR
@ IBR
=
Part No.
1N6461
=
=
=
tp = Ims
tr lOps
(Fig. 3)
tp 20ps
tr 8ps
(Fig. 4)
=
=
-V
C Max.
V
V
rnA
pA
A(pk)
A(pk)
V
V
%I"C
5.0
5.6
25
3000
56
315
9.0
-3.5
0.040
0.040
IN6462
6.0
6.5
20
2500
46
258
11.0
-3.2
1N6463
12.0
13.6
5
500
22
125
22.6
-3.8
0.050
1N6464
15.0
16.4
5
500
19
107
26.5
-3.8
0.060'
1N6465
24.0
27.0
2
50
12
69
41.4
-3.6
0.084
IN6466
30.5
33.0
1
3
11
63
47.5
-3.6
0.093
IN6467
40.3
43.7
1
2
8
45
63.5
-3.5
0.094
IN6468
51.6
54.0
1
2
6
35
78.5
-3.4
0.096
100
50
j
I-
Peak Pulse Power vs.
Pulse Duration
2.
Derating Curve
1.
125%
100%
'\
z(!)
~~
a~
",00
0:0
~
\
'ON
.~
e,0
",I-
"'z
;0'"
50%
0 00
a.ffi
",a.
~z
:::l-
a..
25%
'"a.
;:i
0%
o
50
~
Peak Pulse V5 Pulse
Time Characteristics)
'-
75%
30
""
ffi
---25°C (See Figure 4 for
10
'"~
ii:
~
'"
!Q
a.
\
100
\
"- I'....
"I'"
0.5
0: 0.3
0.1
200
250
lQOns
Ips
TEMPERATURE ('C)
3.
100%
PUI!e limelduratidn is deiined
as that pOint where the pulse
current decays to·50%.Df Ip .
(Rise time to 100 percent of Ip =lO,..s)
(Rise time to 100 percent of Ip =8ps)
\~
~
§
f-----'\r-----1f-----f------1
'"~
ii:
.1
~
"
IOms
Ims
Pulse time duration is defined
as that point where the pulse
current decays to 50% of I,.
'5
O%L-_ _
lOOps
Current Impulse. Waveform -,,.
4.
Current Impulse Waveform
~
~ 50%
lOps
PULSE TIME (Ip)
100% . - - - - - r - - - - - , - - - - - , , - - - - - ,
:::l
00
"-
1~
\J,e
150
"-
_ _ __ L_ _ _
o
~
__
~
0%
4
10
W
m
~
~
I'--- I'--
~
w
ro
~
t-TIME(ps)
t-TIME(ms)
UNITRODE·· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924'1235
o
~
l_
4-17
PRINTED IN U.S.A.
: TRA;NSIENTVOLTAGE
.'S~
+
L.030±.OOl
O.77mm .t.03
055 TYP
'-- . 1.4mm .
These devices also available in surface mount package. See Section 11
nn
SEMICONDUCTOR
~ PRODUCTS
6/87
4-18
..... UNITRODE
EPS~ Series
ELECTRICAL CHARACTERISTICS AT 25°C
Minimum
Breakdown
Voltage
• BV(min) @ ImA
Stand-Off
Voltage
VR
Type
(V)
(V)
Maximum
Leakage
Current
IR @ VR
Maximum
Peak
Current·
Ip
Maximum
Clamping
Voltage·
Vc @ lOA
Maximum
Temp.
Coef. of
BV
~A)
(A)
(V)
(%/°C)
EPS5
5
6.0
50
89.4
9.5
.030
EPS8
8
9.0
2
62.1
13.7
.040
EPS12
12
13.8
1
40.3
21.6
.050
EPS15
15
16.7
1
33.9
26.0
.055
EPS17
17
19.0
1
30.8
29.2
.060
EPS24
24
28.4
1
22.0
43.2
.070
EPS28
28
31.0
1
19.2
47.8
.075
EPS33
33
36.8
1
16.4
56.7
'.080
EPS48
48
54.0
1
11.2
84.3
.090
. . See Figure 1.
Figure 1. Current Impulse Waveform
100%
tp :
~ulse \ime ~ur.ti~n is ~efine~
as that point where the pulse
current decays to 50~a of I p •
~
(Rise time to 100% of Ip
"0
~
1\
l-
rE0:
0:
'"w
50%
U
~
'"
a.
I
,:;:.
0%
a
w
,
Figure 2. Peak Pulse Power vs. Pulse -Duration
w
~
= 8~s.)
-............
~
~
~
'"a.
'"a.w«
i'-
~
_1
~-
"'- .......... r-...
-............
~
_01
lOjJs
~
~
~
("s)
~
0:
w-
Figure 4.
Typical Capacitance vs. Stand-Off Voltage
1000
"'"
"0
r-.....
~
measured at zero bias
'"
'"a.w«
t\..
~
50
1'-."t\..
"
15a.
w
~
a.
IOms
1ms
100$015
tp - PULSE TIME
I-w m M
['-...
--15
~~
I
~
Figure 3. Derating Curve
8
z
~
0:
I'---..
15
a.
w
t - TIME -
lOa
~
ffi
E~PONENTIAL P~LSE
(Pulse'time duration is defined
as that point where the pulse
current decays to 50% of I p .)
25
r-..
measured at VR,
I
1\
~
a
a
25
50
75
WO
125
150
175
II
W
1
TEMPERATURE - (0C)
W
VR
• UNITRODE • SEMICONDUCTOR PRODUCTS
58(}PLEASANT STREET - WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924·1235
4-19
-
WO
STAND·OFF VOLTAGE - (V)
PRINTED IN U.S.A.
TVS305· TVS430
TVS505~ TVS528
TRANSIENT
VOLTAGE SUPPRESSORS
FEATURES
• Up to SOOW for ImS Pulse Power
Capability
• Clamping Time-in Picoseconds
• Direct Applicability for all popular
Microprocessors and IC families
• Metallurgically bonded assembly systemto assure long term reliability
• Miniature glass-encased hermetically
sealed package
DESCRIPTION
Unitrode's TVS series of transient
voltage suppressors feature oxide
passivated zener type chips with full·
faced metallurgical bonds on both sides to
achieve high surge capability and negligible electrical degradation under repeated
_surge conditions. The series is especially
useful in protecting microprocessor, MOS,
CMOS, TTL, Schottky r.TL, ECl, I'L arid
linear integrated circuits-from spurioustransient disturbances.
ABSOLUTE MAXIMUM RATINGS @ 25°CTVS305·T1/S430
TVS505-TVS528
Stand-off Voltage, VA ....... .-.................... ~ ..•......................•............. 5 to 300V ................................. 5.0V to 28.0V
Peak Pulse Power (1 mS)' ...................................................................... 150W ............................................ 500W
Forward Surge Current (8.3mS half sinewave) .............................................. 15A .............................................. 50A
Peak Pulse Current ......................................................................... See Table ....................................... See TableBreakdown Voltage .......................................................................... See Table ........................................ See Table
Power, Continuous ...... : ............ ;c ........ :· .................................................... 3W ........... ; ... , .. ; ............................ 5W
Storage and OperatingTemperature ............. ; ..... ;-........................ -65 to + 175°C ............................... -65to+175°C
*See Figures 3 and 4 for Pecik Pulse Power vs Pulse Duration.
MECHANICAL SPECIFICATIONS
TVS305 Series
r
BAND INDICATES
CATHODE END
.l55TYP.·
3_9mm
BODYA
r:
- t
.085 MAX.
2.l6mm
t
+
-
_~30±.OO1
O.77mm ±.03
_o{~:rrt
THESE DEVICES ALSO AVAilABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
MECHANICAL SPECIFICATIONS
BAND INDICATES
CATHODE END
~.
TVS505 Series
-r
175 TYp.
·4.4mm·
\.----.:
c:::::J
-II'
I
MI~OO M~
- .975
24.8mm
BODYB
7.62mm-
) c::::=::J
r-:-, i-
_145 MAX.
3.68mm
+
L
.040±_OO1
l.02mm±.03
.
,--.~.~~:
THESE DEVICES ALSO AVAilABLE IN SURFACE MOUNT PACKAGE. SEE SECTION 11.
nn
SEMICONDUCTOR
~ PRODUCTS
2180
4·20
_UNITRODE
TVS 305-TVS 430
TVS 505-TVS 528
ELECTRICAL SPECIFICATIONS @ 25'C
TVS
Pa,l No.
TVS305
TVS310
TVS312
TVS315
TVS318
TVS324
TVS328
TVS348
TVS360
TVS410
TVS420
TVS430
TVS505
TVS510
TVS512
TVS515
TVS518
TVS524
TVS528
Stand
-Off
Voltage
V.
Min.
Max.
Max.
Breakdown
Voltage
BV,minl @ ImA
leakage
Current
I.@V.
Peak
Pulse Current*
Ipp
V
V
pA
A
5.0
10.0
12
15
18
24
28
4B
60
100
200
300
5.0
10.0
12.0
15.0
18.0
24.0
28.0
6.0
11.1
13.B
16.7
20.4
28.4
30.7
54
67
111
234
342
6.0
11.1
13.8
16.7
20.4
28.4
30.7
50
2
1
1
1
1
1
1
1
1
1
1
300
5
5
5
5
5
5
17
8.9
7.1
5.9
4.9
3.6
3.2
1.7
1.4
.91
.42
.28
53.7
30.3
23.8
19.8
16.3
11.9
10.7
Max.
Clamping
Voltage*
Vc @
SA
lOA
Max.
Clamping
Max.
Clamping
Voltage*
Vc @ I"
Voltage·
Vc@lA
V
V
B.7
16.8
21.0
25
31
42
46
82
105
160
360
520
9.3
16.5
21.0
25.2
30.5
42.0
46.5
V
-
7.4
13.2
16.5
19.7
23.8
32.4
35.9
-
-
-
7.9
14.4
18.5
22.2
-
-
-
-
-
26.0
37.0
41.0
-
6For ImS pulse: see Figure 1.
Pulse Waveform
1.
G
\
z
i=
'"
j"
"0
~
....
Z
0:
~
~
0..
I 50
r"\
\
0:
~lOO
u
~.
:::>
4J
75
PULSE TIME DURATION (I,) = POINT
WHERE I, DECAYS TO 50% OF I"
4J
:::>
Derating Curve
2.
100
o0.
"'"
50
"'
Ul
-'
:>
0.
~
x
i;i
-----
0.
I
t---
0."
I-TIME (ms)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
25
4-21
o
o
50
\
'\
1\
100
150
TEMPERATURE ('C)
200
PRINTED IN U.S.A.
..
TVS305-TVS430
TVS505-TVS528
3.
10
~
EXPONENTIAL
PULSE
~
'"
0
Q.
w
V>
~
ii'
~
EXPONENTIAL
PULSE
~
"~
><
Peak Pulse Power vs_ Pulse Duration
100
'" ~
~
4_
Peak Pulse·Powervs. Pulse Duration
0.1
,.ffi
~
Q.
w
V>
~
ii'
"
.01
IO"S
10
0
. 100"S
><
;;;
Q.
'"
ImS
"'" '"
I
.::
.1
lOmS
.J.,.S
100"S
PUlSET1ME(t.. )
5.
"'" '"~
ImS
10mS
PULSETIMEIt.l
6. Clamping Voltage vs. Pulse Current
Capacitance VS. Stand·Off Voltage
10,000
100
SEE FIGURE I FOR WAVEFORM
~
(J
~
U 1000
~
"'
''"~"
MEASURED
@-ZERD BIAS-
'"
z
.
MEASURED @ V,
C3
I
;::::MEASURED @- ZERO
~
I 1...1
IN-
100
""
---
30
20
:::
0
'"0:
'"
z
10
505
.:;;
....J
TVS
505
'\.'\
(J
I
"\. r\.
M~~ukJJ@~ I~l ~~
·10
UNITRODE • SEMICONOUCTOR PROOUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
528
525
518
515
512 f-o1--510
>
BI~S
V, --' STAND·OFF VOLTAGE -
50
40
u
>
1
100
10
1
(V)
I, -
4-22
20
50
100
PULSE CURRENT (Al
PRINTED IN U.S.A.
TVS305-TVS430
TVS505-TVS528
CHOOSING AND SPECIFYING THE PROPER TVS
The following terms are generally used in specifying Transient Voltage Suppressors (TVS):
1.
Stand-off Voltage (VR) is the highest reverse voltage at which the TVS will be non-conducting.
2.
Minimum Breakdown Voltage (BV min) is the reverse voltage at which the TVS conducts
1 milli-amp. This is the point where the TVS begins to limit the transient.
3.
Maximum Clamping Voltage (Vc max) is the maximum voltage the TVS will allow during a
transient "spike."
Figure 7 graphically shows all three terms.
lmA--------
+ ----~.ct===~::...-Uv
+
Figtlre 7
The three most important factors in choosing the appropriate TVS for an application in their order
of importance are:
1.
Pulse power (Pp) - Choose the TVS series that will handle the Transient Pulse Power.
Transient Pulse Power is equal to the clamping voltage (Vel times the peak pulse current
(ipp). The pulse duration vs. pulse power graph on the TVS data sheet can then be used to
determine the maximum allowable pulse duration. (Figure 3 or 4).
2.
Standoff voltage (VR) - From the TVS series selected, choose the device with the stand-off
voltage equal to or greater than the normal circuit operating Voltage.
3.
Maximum Clamping Voltage (V eMAx ) - Determine the clamping voltage of the device chosen for the
transient given and be sure it is below the voltage that might damage any components.
For further information see Unitrode Application Note U-79, "Guidelines for Using Transient Voltage
Suppressors.' ,
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET - WATERTOWN, MA 02172
TEl. (617) 926-0404 • FAX (617) 924·1235
4-23
PRINTED IN U.S.A.
..
AC POWER ZENERS
UDZ807 SERIES
UDZ5807 SERIES
UDZ8807 SERIES
UDZ807HR2 SERIES
UDZ5807HR2 SERIES
1,3 and 5 Watt Types
DESCRIPTION
These devices consist of two fused·in-glass
zeners brazed cathode to cathode to provide
•
zener action in both directions.
FEATURES
• Zener Characteristics in Both Directions
• 7.5 to GOV
• High Surge Ratings
• Small Physical Size
ABSOLUTE MAXIMUM RATINGS
Zener Voltage ..... .
Continuous Current
Surge Current (8.3ms) ...
Surge Power .......................... .
Power ....
Storage and Operating Temperature.
............................................................. 7.5 to GOV
............... See Tables
. ....................... See Tables
........... .see Graph
....... See Data Sheets for Related Series
(UZ8807. UZ807: and UZ5807)
....--65·C to +175·C
MECHANICAL SPECIFICATIONS
UDZB07 SERIES UDZ5807 SERIES UDZ8B07 SERIES
UDZB07HR2 SERIES UDZ5807HR2 SERIES
1 & 3 WATT 5WATT
~
--~-------c------~
MARKING: liD," followed by last 3 to 4
digits and part number.
EKBmple: 7.5 volt ±10%.
1 watt type would be
marked: "D8807",
Dimensions
3 Watt UDZ807/U0Z807HR2 Series
1 Witt UDZB807 Sari..
mm
ins.
A
B
D
.450
.085
.275
.028
.700
MAX.
MAX.
TXP.
± .001
MIN.
11.43
2.16
6.99
.71
17.78
MAX.
MAX.
A
TYP.
B
'C
± .03
0
MIN.
E
.450
.085
275
.028
.700
5 Watt UOZ5807/UOZ5807HR2
mm
illi.
MAX.
MAX.
11.43
2.16
6.99
.71
17.78
TYP.
•• 001
MIN .
Inl.
MAX.
MAX.
A
B
TYP.
C
D
E
± .03
MIN.
mm
.500 MAX.
.145 MAX.
.325 TYP.
12.70 MAX.
3.68 MAX .
826 TYP .
.040' .001
.975 MIN:
1.02' .03
24.77 MIN .
nn
SEMICONOUCTOR
~ PRODUCTS
4-24
_UNITRODE
UDZ807 SERIES UDZ5807 SERIES UDZ8807 SERIES
UDZ807HR2 SERIES UDZ5807HR2 SERIES
Electrical Specifications at 25'C
Max. Zener Imped §
Zz
Nominal
Type
±lO%
Tolerance *
Zener
Voltaget
Vz@ IZT
Voits
Test
izr
@
izr
mA
Ohms
Current
Maximum Ratings**
Maximum
Leakage @ Reverse Voltage.
±lO%
:!:5%
Current
pA
Voits
Maximum
Cont.
Maximum
Surge
i ....
CurrenU
is
Current
Voits
mA
4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.7
25.9
28.8
32.4
43.2
5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.2
45.6
125
115
105
95
85
63
52
47
40
35
31
28
26
24
22
15
5
4.5
3.9
3.37
2.25
1.65
1.12,
1.12
0.825
0.825
0.825
0.675
0.562
0.562
0.450
0.337
4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.7
25.9
28.8
32.4
43.2
5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.7
45.6
400
360
330
300
250
200
170
150
125
110
100
90
85
75
65
50
10
8
7
5
4
3
2
2
1.5
1.5
1.5
1.2
1
1
0.8
0.6
Amps
1 WATT ZENERS - Specifications apply for both directions.
UDZ8807
UDZ8808
UDZ8809
UDZ8810
UDZ8812
UDZ8815
UDZ8818
UDZ8820
UDZ8824
UDZ8827
UDZ8830
UDZ8833
UDZ8836
UDZ8840
UDZ8845
UDZ8860
7.5
8.2
9.1
10
12
15
18
20
24
27
30
33
36
40
45
60
34
31
28
25
23
17
14
12.5
10.5
9.5
8.5
7.5
7.0
6.5
6
4
6
7
8
8.5
9
14
20
23
25
35
40
45
50
62
75
125
50
30
10
3
1
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
..
3 WATT ZENERS - Specifications apply for both directions.
UDZ807HR2
UDZ808HR2
UDZ809HR2
UDZ810HR2
UDZ812HR2
UDZ815HR2
UDZ818HR2
UDZ820HR2
UDZ824HR2
UDZ827HR2
UDZ830HR2
UDZ833HR2
UDZ836HR2
UDZ840HR2
UDZ845HR2
UDZ860HR2
7.5
8.2
9.1
10
12
15
18
20
24
27
30
33
36
40
45
60
75
75
75
75
65
50
40
40
30
25
25
20
20
20
15
10
500
300
200
100
10
10
5
5
5
1
1
1
1
1
1
1
3
4
4
5
5
6
8
9
10
12
15
21
21
27
37
70
*For ±5% voltage tolerance change the 3rd number from the right from 8 to 7 i.e. UDZ8807 to UDZ8707, etc.
tAli zener voltages are measured with an automated test set using a 35ms test time. Longer or shorter test times will have a corresponding
effect on the measured value due to heating effects.
§Zener impedance is derived trom the 50-cycle voltage created when AC current with RMS value of 10% of DC zener test current is superim~
posed on the test current.
**D.C. Ratings are based on the lead temperature conditions shown in the data sheets covering the UDZ8807, UDZ807, and UDZ5807
series devices. Other conditions will affect the power ratings of all the families except the 1 watt zener family. However, the surge values
given apply for any mounting conditions including printed circuit board mounting.
:t:Figures shown are for peak sinusoidal surge current of 8.3ms duration using 60 cycle AC. The 8.3ms square pulse rating is 71% of the value
shown.
Typical Reverse Surge Power
vs. Surge Duration
lOOK
50
20
~ 10K
0:
50
;:
20
UJ
o
a. 1K
~
:5
r-...
SQUARE PULSE f - -
..........
..........
r-..."-..
.......... ..........
..........
50
20
r-...
..........
5
~'ll"1' oc-r-...-..........]w~~
........./ v,;.'ll"l" s
S
II~
~s
a. 100
50
20
10
lOOns
lJl-s
10Jl-s
100Jl-s
Ims
PULSE DURATiON (S)
""
10ms
For Sinusoidal Pulse, Peak Value
is 1.4 Times Value Shown
UNiTRODE • SEMiCONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
4-25
PRINTED IN U.S.A.
UDZ807 SERIES UDZ5807 SERIES UDZ8807 SERIES
UDZ807HR2 SERIES UDZ5807HR2SERIES
Maximum Ratings··
Electrical Specifications at 25'C
Type
Nominal
Zener
Voltaget
Max. Zener I mped §
Test
Current
Maximum
Zz
Leakage @ Reverse Voltage
±10%
Current
@
Vz @ lIT
lIT
lIT
Tolerance *
Volts
mA
Ohms
5 WATT ZENERS UDZ5807HR2
UDZ5808HR2 _
UDZ5809HR2
UDZ581OHR2
UDZ5812HR2
UDZ5815HR2
UDZ5818HR2
UDZ5820HR2
UDZ5824HR2
UDZ5827HR2 .
UDZ5830HR2
UDZ5833HR2
UDZ5836HR2
UDZ5840HR2
UDZ5845HR2
UDZ5860HR2
Specifications apply for both directions.
7.5
175
1.8
8.2
150
1.8
150
9.1
2.5
10
125
2.5
12
100
2.5
15
75
3.5
18
65
4
20
65
4.5
24
50
5
27
50
6
30
40
8
33
40
10
36
30
11
40
30
14
45
30
20
60
20
40
::!:10%
pA
500
400
200
100
50
15
10
10
10
10
10
5
5
5
5
5
Maximum
Cont.
±5%
Current
Inc
Maximum
Surge
Current t
Is
Volls
Volts
mA
Amps
4.9
5.4
5.9
6.6
8.6
10.8
12.9
14.4
17.3
19.4
21.6
23.7
25.9
28.8
32.4
43.2
5.2
5.7
6.2
6.9
9.1
11.4
13.7
15.2
18.2
20.6
22.8
25.1
27.4
30.4
34.2
45.6
620
570
510.
470
385
300
255
220
180
155
140
130
120
105
95
75
40
32
24
22
18
12
9
8
6.5
6
5.5
5
4.5
4
3.5
2.5
*For ±50/0 voltage tolerance change the 3rd number from the right from 8 to 7 i.e. UDZ8807 to UDZ8707, etc.
tAli zener voltages are measured with an automated test set using a 35ms test time. longer ·or shorter test times will have a corresponding
effect on the measured value due to heating effects.
§Zener impedance is derived from the 6~cycle voltage created when _AC current with RMS value of 10% of DC zener ~test current is superimposed on the test current.
**D.C. Ratings are based on the lead temperature conditions shown in the data sheets covering the UDZ8807, UDZ807, and UDZ5807
series devices. Other conditions will affect the power ratings of all the families except the 1 watt zener family. Howeverj the surge values
given apply for any mounting conditions including printed circuit board mounting.
tFigures shown are for peak sinusoidal surge current" of 8.3ms duration using 60 cycle AC. The 8.3ms square pulse rating is 710/0 of the value
shown.
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
The following tests are performed on 100% olthe devices specified UDZ5807HR2 through UDZ5890HR2.
SCREEN
MIL-STD-750
METHOD
CONDITIONS
1.
High Temperature Storage
1032
TA = 175OC, 24 Hours
2.
Temperature Cycling
1051
C;20 Cycles, -65 to +175OC:No dwell required
@ 25°C, t ~ 10 min. at extremes_
3.
Hermetic Seal @ Gross Leak
1071
4.
Interim Electrical Parameters
GOtNOGO
5.
Power Burn-in
6. Final Electrical Parameters
UNITRODE , SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET.· WATERTOWN, MA 02172 ..
TEL. (617) 926·0404. FAX (617.) 924-1235
1038
GOtNOGO
4-26
E,ZYGLO
Vz + IR @ 25°C
B, 96 Hours, TA = 25OC, Iz adjusted so that 150°C
175OC. This test performed in each direction
.. 1] ..
Vz + I R @ 25°C
PDA = 20% (Final Electricals)
PRINTED IN U.S.A.
POWER ZENERS
UZ706 SERIES
UZ806 SERIES
UZ706HR2 SERIES
UZ806HR2 SERIES
3 Watt
FEATURES
• 10 Times Greater Surge Rating than Conventional
1 Watt Types
• Small Physical Size
ABSOLUTE MAXIMUM RATINGS
Zener Voltage, VZ ..
Continuous Current
Surge Current (8.3ms)
Surge Power
Power ....
Storage and Operating Temperature
DESCRIPTION
Fused-in-glass metallurgically bonded
3 watt zener diodes.
-
.... 6.8 to 400V
........ See Table
See Table
............ ......... See Graph
See Lead Temperature Derating Curve
-WC to +175"C
MECHANICAL SPECIFICATIONS
r
BAND INDICATES
CATHODE END
c::=:::1
~
UZ706HR2 SERIES UZ706 SERIES
UZ806HR2 SERIES. UZ806 SERIES
.155 TYP.
t.
3.9mm
BODY A
.085 MAX.2.l6mm
.1
l
c:=::::J
C==~~nc==~~~~~~~~~'t
1
----'.700 MIN.
~
+
.250 MAlh.
--17.8mm
6.35mm~
L.030±.001
O.77mm ±.03
055 TY~
~. 1.4mm·
UZ Prefix is identified by a Blue or Red Cathode Band
Power Dissipation
vs. Lead Temperature Derating Curve
Surge Power
vs. Surge Duration
10K , - - , - - - , - - - - r - - - - , , - - ,
Typical Zener Impedance
VS. Zener Current
r-=----,---,~--,---,
10K
5K
~ 2K
1-------''''---+
.1
25
50
75
lao
125
150
175
lOms
L - _ - J____- L_ _-L~~
.1
LEAD TEMPERATURE ('CI
1
10
lOa
ZENER CURRENT (rnA)
OPTIONAL HIGH RELIABILITY (HR2) SCREENING
The following tests are performed on 100% of the devices specified UZ706 through UZ140HR2.
SCREEN
MIL-STD-750
METHOD
High Temperature
1032
2. Temperature Cycling
1051
1.
3.
Hermetic Seal @ Gross Leak
1071
4.
Interim Electrical Parameters
GO/NOGO
5.
Power Burn-in
6.
Final Electrical Parameters
1038
GO/NOGO
4-27
CONDITIONS
.. 24 Hours @ TA = 175°C
C, 20 Cycles, -65 to +175°C. No dwell required
@ 25"C ;. 10 min. at extremes
E,ZYGLO
Vz + IR @25'C
B, 96 Hours, TA = 25"C, Iz adjusted so that
150"C "lj .. 175"C
Vz + IR @25°C
PDA = 10% (Final Electricals)
IA
UZ706 SERIES
UZ806 SERIES
UZ706HR2 SERIES
UZ806HR2'SERIES
Electrical Specifications at 25'C
.
Nominal
Zener
Voltage t
Type
Vz@lzr
±5'1'
Tolerance
.UZ7061706HR2
UZ707J707HR2
UZ708/708HR2
UZ709/709HR2
UZ71017l0HR2
UZ712J712HR2
UZ71317l3HR2
UZ71417l4HR2
UZ71517l5HR2
UZ71617l6HR2
UZ71817l8HR2
UZ7201720HR2
UZ722/722HR2
UZ724/724HR2
UZ727/727HR2.
UZ730/730HR2
UZ733/733HR2
UZ7361736HR2
UZ740/740HR2
UZ745/745HR2
UZ7501750HR2
UZ756/756HR2
UZ7601760HR2
UZ770/770HR2
UZ7751775HR2
UZ780/780HR2.
UZ790/790HR2
UZllO/llOHR2
UZlll/lllHR2
UZ1l2/112HR2
UZ1l3/113HR2
UZ1l4/114HR2
UZ1l5/115HR2
UZ1l6/116HR2
UZ1l7/117HR2
UZ118/118HR2
UZ119/119HR2
UZ120/120HR2
UZ122/122HR2
UZ124/124HR2
UZ126/126HR2
UZ1281128HR2
UZ130/130HR2
UZ132/132HR2
UZ134/134HR2
UZ136/136HR2
UZ138/138HR2
UZ140/140HR2
Jedec··
Registration
1N5063
1N5064
1N5065
1N5066
1N5067
1N4883
1N5069
1N5070
1N5071
1N5072
1N5073
1N4884
1N5074
1N5075
IN5076
IN5077
1N5078
1N5079
1N5081
1N50B3
1N50B5
1N50B7
1N50BB
1N5091
1N5092
1N5093
1N4096
1N4097
1N5096
1N5097
~
IN4098
IN5100
1N5101
1N5102
1N5103
1N5104
IN5105
IN5106
IN5107
1N5109
IN5110
IN5111
IN5113
IN5114
IN5115
IN5117
Volts
6.8
7.5
8.2
9.1
10.0
12
13
14
15
16
18
20
22
24
27
30
33
36
40
45
50
56
60
70
75
80
90
100
110
120
130
140
150
160
170
180
190
200
220
240
260
280
300
320
340
360
380
400
Max. Zener
Impedance§
Test
Current
IZI
Zz@l zr
mA
Ohms
75
75
75
75
75
65
2
2
3
3
4
5
6
6
6
7
8
9
10
10
12
15
21
21
27
37
50
70
70
90
100
115
150
175
250
325
375
550
650
700
750
850
900
950
1100
1300
1500
1700
1900
2100
2400
2700
3000
3500
50
50
50
50
40
40
30
30
25
25
20
20
20
15
15
10
10
10
10
10
8.0
5.0
5.0
5.0
5.0
5.0
5.0
4.0
4.0
4.0
4.0
4.0
3.0
3.0
3.0
3.0
3.0
2.0
2.0
2.0
2.0
2.0
Maximum Ratings
Maximum Reverse
leakage Current
Typ.
Maximum
Temp.
Continuous
Coefficient
Current.
Tc @IZT
IZM
Maximum
Surge
Currentt
I,@V,
±5%
V,
±10%
V.
.A
Volts
Volls
%/"C
mA
Amps
5.2
5.7
6.2
6.9
7.6
9.1
9.9
10.6
11.4
12.2
13.7
15.2
16.7
18.2
20.6
22.8
25.1
27.4
30.4
34.2
38.0
42.6
45.7
53.3
56.0
60.8
68.5
76.0
83.6
91.2
98.8
106
114
122
129
4.9
5.4
5.9
6.6
7.2
8.6
9.3
10.1
10.8
11.5
12.9
14.4
15.8
17.3
19.4
21.6
23.7
25.9
28.8
32.4
36.0
40.3
43.2
50.5
54.0
57.7
"64.8
72.0
79.2
86.4
93.6
101
108
.04
.04
.05
.05
.06
.07
.07
.07
.07.
.07
.08
.08
.08
.08
.09
.090
.090
.090
.095
.095
.095
.095
.095
..095
.095
.095
.095
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.100
.105
.105
.105
.105
.105
.110
.110
.110
.110
440
400
360
330
300
250
10~0
500
300
.. 200
100
40
10
10
10
10
5
5
5
5
5
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
.1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
137
144
152
167
182
198
213
228
243
258
274
289
304
115
122
129
137
144
158
173
187
202
216
230'
245
259
274
288
I,
8.0
7.0
6.0
5.0
4.0
4.0
4.0
3.0
3.0
2.0
2.0
2.0
1.5
1.5
1.5
1.2
1.0
1.0
0.8
0.8
0.7
0.6
0.6
0.5
0.4
0.4
0.4
0.3
0.2
0.20
0.20
0.20
0.15
0.15
0.10
0.10
0.10
0.09
0.09
0.08
0.08
0.07
0.07
0.06
0.06
0.06
0.06
230
210
200
185
170
150
135
125
110
100
90
85
75
65
60
55
50
45
40
35
30
30
25
25
20
20
20
20
18
18
15
15
15
12
12
10
10
9.
9
8
8
7
... Specify 20% voltage tolerance by changing first numeral of type number trom 7 to 9. (UZ709 becomes UZ909) or from 1 to 3 (UZlll be·
comes UZ311).
Specify 10% voltage tolerance by changing first numeral of type number from 7 to 8. {UZ709 becomes UZ809} or from 1 to 2 (UZll1 becomes
UZ211).
** Jedec registration applies to. ±5% tolerance ~eners only.
.
.
t All zener voltages are measured with an automated test set using a 35 ms test time. Longer or shorter test times Will' have a corresponding
effect on the measured value due to heating"effects.
§ Zener impedance is derived from the 60-cycle AC voltage created when AC current with RMS value of 10% of DC zener test current
super.
imposed on the test current.
Maximum current based on 3 watt rating. See ~ead temperature derating curves for proper mounting methods.
1 Figures shown are for a peak sinusoidal surge ·current of 8.3ms dUration using 60 cycle AC.
The 8.3ms square pulse rating is 71% of
the value shown.
is
*
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.Q404 • FAX'(617) 924·1235
4-28
PRINTED IN U.S.A.
UZ4706 SERIES
UZ4806 SER IES
POWER ZENERS
5 Watt, Industrial
DESCRIPTION
Fused-in-glass 5 watt zeners with the same
electrical specs as the INS342-1NS388
series.
FEATURES
• 2 Times Greater Surge
Rating than Plastic Types
• Sma II Physical Size
• Impervious to Moisture
ABSOLUTE MAXIMUM RATINGS
Zener Voltage, Vz ....
Continuous Current .......... ..
Surge Current (8.3ms) .
Surge Power .............. .
Power ............. ..
Storage and Operating Temperature .....
..
. 6.8 to 200V
.. ... See Table
.. ... See Table
.... See Graph
.... Sep I ead Temperature Derating Curve
....................... -6S"C to +17S"C
MECHANICAL SPECIFICATIONS
UZ47D6 SERIES
BAND INDICATES
CATHODE END
r
~
.l75TYP.
..
r.
4.4mm
UZ4806 SERIES
BODY B
.l45 MAX.
3.6Bmm
~c===~t===~~~~~\~~~I~~~~t
1
L
+
--,~~5B~~~~2~'::":"
_
.040 •.001
l02mm±.03
.115 TY?
2.9mm
UZ Prefix is identified by a Blue or Red Cathode Band
Power Dissipation
vs. Lead Temperature Derating Curve
~
10K
1\
'\ ~\~
J \<
z
a
~
iii
'"Ci
....
r- ~<"J'
K·.·.
0:
.•..
"'-
UJ
;:
a
a.
x
'"
VS.
I
L :::: Lead Length
:;;;
o
from Body
a
25
5K
~ 2K
..
'"
lK
UJ
;: 500
\
a
~ 200
"'- ,,\
\
I
~
'" "
'"
'"
lK
I
SOD
SQUARE PULSE
::J
~~
50
75
100 125 150
LEAD TEMPERATURE ("C)
"-
c:: 100
'" ,
Typical Zener Impedance
vs. Zener Current
Surge Power
Surge Duration
50
§
10
lOOns
100
50
'aa."
10
UJ
Z
'" "'"
UJ
;§
"-
5
0:
UJ
z
"'N
20
175
u
1
.5
v
...;t--"'!"""'---l--l-----l___j
SDK
z
X
::;;
Typical Zener Impedance
vs. Zener Current
Ir---+----"''d-----r----+------i
~
::;;
100
f-''f':'::<2'''''-l:,=!""",-''''--l::--l----j---j
SOr-~~~~~~~~
lOr-+---~~~~~~~~___j
5 r-+----+--l"""-2'-<"'......"::O""'-
0:
UJ
r---+---+----+---'>..,d-------1
r---+----,--
100 L -__--'-__- - '____
____"___
lOOns l,u.s
lOps IOOp.s
Ims IOms
~
SURGE DURATION (S)
~
N
1r-+----+~----+-~~~
.5r-+----+--l----+--l-~~~~~
~
5
10
500 '!A
ZENER CURRENT (rnA)
n nPRODUCTS
SEMICONDUCTOR
L.:::J
4-31
_UNITRODE
..
UZ5706 SERIES
Electrical Specifications at 25'C
Type
*
±S%
Tolerance
±10%
Tolerance
UZ5706
UZ5707
UZ5708
UZ5709
UZ5710
UZ5712
UZ5713
. UZ5714
UZ5715
UZ5716
UZ5718
UZ5720
UZ5722
UZ5724
UZ5727
UZ5730
UZ5733
UZ5736
UZ5740
UZ5745
UZ5750
UZ5755
UZ5760
UZ5770
UZ5775
UZ5780
UZ5790
UZ5110
UZ5111
UZ5112
UZ5113
UZ5114
UZ5115
UZ5116
UZ5117
UZ5118
UZ5119
UZ5120
UZ5122
UZ5r24
UZ5126
UZ5128
UZ5130
UZ5132
UZ5134
UZ5136
UZ5138
UZ5140
UZ5806
UZ5807
UZ5808
UZ5809
UZ5810
UZ5812
UZ5813
UZ5814
UZ5815
UZ5816
UZ5818
UZ5820
UZ5822
UZ5824
UZ5827
UZ5830
UZ5833
UZ5836
UZ5840
UZ5845
UZ5850
UZ5856
UZ5860
UZ5870
UZ5875
UZ5880
UZ5890
UZ5210
UZ5211
UZ5212
UZ5213
UZ5214
UZ5215
UZ5216
UZ5217
UZ5218
UZ5219
UZ5220
UZ5222
UZ5224
UZ5226
UZ5228
UZ5230
UZ5232
UZ5234
UZ5236
UZ5238
UZ5240
Max. Zener
Impedance§
Test
Current
I"
Zz@ Izr
Volts
mA
Ohms
pA
6.8
7.5
8.2
9.1
10.0
12
13
14
15
16
18
20
22
24
27
30
33
36
40
45
50
56
60
70
75
80
90
100
110
120
130
140
150
160
170
180
190
200
175
175
150
150
125
100
100
100
75
75
65
65
50
50
50
40
40
30
30
30
25
20
20
20
15
15
15
10
10
10
10
8
8
8
8
5
5
5
5
5
5
4
4
4
4
3
3
3
1.0
1.5
1.5
2.0
2.0
2.5
3.0
3.0
3.5
3.5
4.0
4.5
5.0
5.0
6.0
8
10
500
400
200
100
75
50
25
20
15
10
10
10
10
10
10
10
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
220
240
260
280
300
320
340
360
380
400
,
II
14
20
25
35
40
50
55
80
90
100
125
170
190
230
330
350
380
450
470
500
550
650
750
850
950
1100
1200
1400
1500
1800
Maximum Ratings
Maximum Reverse
Leakage Current·
Nominal
Zener
Voltage t
Vz @ IZT
I,
UZ5806 SERIES
Typ.
±5%
± 10%
V,
Coeff.
Tc@ Izr
Continuous
Current
I",
Maximum
Surge
Current
Is
Volts
Volts
%/'C
mA
Amos
.05
.06
.06
.06
.07
.07
.08
.08
.08
.08
.085
.085
.085
.090
.090
.09
.09
.095
.095
.095
.095
.095
.100
.100
.100
.100
.100
.100
.100
.100
.105
.105
.105
.105
.105
.llO
.110
.llO
.115
.115
.120
.120
.120
.120
.120
.120
.120
.120
675
620
570
510
470
385
350
320
300
275
255
220
195
180
155
140
130
120
105
95
85
80
75
65
60
55
50
45
40
38
35
33
31
30
27
25
24
22
20
18
17
16
15
14
13
12
12
V,
~
5
5
5
5
5
5
5
5
5
5
5
5
5
5.2
5.7
6.2
6.9
7.6
9.1
9.9
10.6
ll.4
12.2
13.7
15.2
16.7
18.2
20.6
22.8
25.1
27.4
30.4
34.2
38.0
42.6
45.7
53.3
56.0
60.8
68.5
76.0
83.6
91.2
98.8
106.0
114.0
122.0
129.0
137
144
152
167
182
198
213
228
243
258
274
289
304
4.9
5.4
5.9
6.6
7.2
8.6
9.3
10.1
10.8
ll.5
12.9
14.4
15.8
17.3
19.4
21.6
23.7
25.9
28.8
32.4
36.0
40.3
43.2
50.5
54.0
57.7
64.8
72.0
79.2
86.4
93.6
101.0
108.0
m:g
129
137
144
158
173
187
202
216
230
245
259
274
288
Temp.
Maximum
*
*
40
32
24
22
20
18
16
14
12
10
9.0
8.0
7.0
6.5
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.8
2.5
2.3
2.0
1.8
1.6
1.4
1.2
1.0
0.80
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.24
0.23
0.22
0.21
0.20
11
Temperature Range: Operatmg and Storage -65 C to +175 C.
• Specify 20% tolerance by changing the second numeral of type number from 8 to 9 (UZ58D9 becomes UZS909) or from 2 to 3 (UZS211 becomes
UZ5311).
t All zener voltages are measured with an automated test set using a 35 millisecond test time. Longer or shorter test times will have a
corresponding effect on the measured value due to heating effects.
§ Zener impedance is derived from the 6o-cycle AC voltage created when AC current with RMS value of 10% of DC zener test current is
superimposed on the test current.
Maximum current based on 5 watt rating. See lead temperature derating curves for proper !11ounting methods.
Figures shown are for a peak sinusoidal surge current of 8.3ms duration USing 60 cycle AC. The 8.3ms square pulse rating is 71% of the
value shown.
*
*'
Several of the above types now have JEDEC IN type numbers. The following cross-reference table lists the appropriate IN
numbers; specifications are same as above.
JEDEC #
UNITRODE TYPE
JEDEC #
UNITRODE TYPE
JEDEC #
1N5118
IN5119
IN5120
IN5121
1N5122
IN5123
UZ5714
UZ5740
UZ5745
UZ5750
UZ5760
UZ5770
IN5124
1N5125
IN5126
IN5127
1N5128
1N5129
UZ5780
UZ5790
UZ5114
UZ5117
UZ5119
UZ5126
1N5130
IN5131
1N5132
IN5133
1N5134
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
4·32
UNITRODE TYPE
UZ5128
UZ5132
UZ5134
UZ5138
UZ5140
PRINTED IN U.S.A.
POWER ZENERS
UZ7706L and UZ7806L SERIES
UZ7706 and UZ7806 SERIES
6 Watt, Military, 10 Watt Military
DESCRIPTION
Fused-in-glass, metallurgically bonded
6 watt leaded zeners and 10 watt
stud-type zeners.
FEATURES
• High Surge Rating
• Small Physical Size
• Leaded and Stud Packages Available
ABSOLUTE MAXIMUM RATINGS
Zener Voltage, VZ ............................................................................................................. 6.8 to 100V
Continuous Current ............................................................................................................. See Table
Surge Current (8.3ms) ......................................................................................................... See Table
Surge Power ...................................................................................................................... See Graph
Power ........................................ UZ7706L & UZ7806L See Lead Temperature Derating Curve
UZ7706 & UZ7806 @lOO'C Case ....................
... lOW
Storage and Operating Temperature .............................................................-6S·C to +17S'C
MECHANICAL SPECIFICATIONS
uzn06L and UZ7806L SERIES'
-r--- -- ...::'~~:"~P. [)
--.1
L.230·' TYP,;j .040" ± .001
S.84mm ~_+_~r:nm_:t".1?3_
(] .1:~~~~X.
2J.25mm
i
_-4.105'TYP.
I
.925" MIN.
1 2•7mm
.400" MAX.
I
r---'
---~
uz Prefix
-1--
I
__ ~
I
~
lo.2mm
2.35" MIN.
59.6mm - - -
Is identified by a Blue or Red Cathode
Ba~d
UZ7706 and UZ7806 SERIES
.187" MAX.
.045" TVP•
(4.75mm)
(O.l1mm)
.005 MAX.
. R.d;",
.112 MAX.
~
.460" MAX.
#4-40
x
j
r(11.6Bm~)
to Shoulder
. -; /
BODY CLead Mount
"_
_.
BODY C - Stud Mount
.187'" HEX•
(4.75mm)
>-1/
~
'-==T~~
:~~~. :::~~~: LONG THREAD .~~~~~~)
POLARITY: Cathode to Stud is standard. Reverse polarity denoted by uRn suffix.
FINISH: Metal parts gold plated per MIL·G·
45204, Type II.
WEIGHT: 1.5 grams (max.)
INSTALLATION PRECAUTIONS: Maximum un·
lubricated stud torque: 28 inch-ounces. Do
not use a screwdriver in the turret slot for
installation ~urposes. or damage may result.
Also available with insulated stud. Reference Design Note·17.
nn
SEMICONDUCTOR
~ PRODUCTS
4-33
_UNITRDDE
-
UZ7706L and UZ7806L SERIES
UZ7706 and UZ7806 SERIES
MECHANICAL SPECIFICATIONS
Style W
Gold Plated
Beryllia
Insulating
Full thread to within
.060 of shoulder-oj
3.51mm
j... .125" TYP.
.012" TYP. ..j
I
.138"
I I
.30mm
3.18mm
~.21"~~
G
5.33mm
-lIIIiIlIIIIIIHH-IHI-
- --"-
-
ADO" MAX.
+
\
lO.16mm
MAX'~====,I--*-- '\~ .250"
HEX.
6.35mm
.385
9.78mm
.750" MIN.
19.05mm
Dimensions in inches.
Style V
Beryllia Insulating Disc
.012"
TYP.
Full thread to within
.30mm
3.Jr~~~'li.fti~us
.062" DIA•
1.57mm
!'-
•060 of ShOUlderl [
-+111-1'---
-:;;'~;==lGt~!Q-!i
1
6·32 x .240"'.010"
6.10mm:t.25mm
T
Copper, Gold Plated
.005"
MAX. RAD .
.13mm
Dimensions in inches.
lOOK
~
50K
z
0
.
~
~20K
6
...3:
~...
I
""'-
;; 10K
in
II)
5
...3:
0:
.x
II)
5K
2K
a
<.)
""
..
25
50
15. 100
125
150
175
[EAD TEMPERATURE (OC)
UNITRODE • SEMICONDUCTOR PRODUCTS
. 580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
lOOns
lp.s
10
5
Q
W
~
I'-...
500
100
0
...
z
200
::;
§
<[
j
<[
100
50
I
SQUARE PULSIi
~
:;1 IK
0
Typical Zener Impedance
vs. 'Zener Current
Surge Power
vs, Surge Il!Iration
Power Dissipation
vs. Lead Temperature Derating Curve
10,"5
lOO~s
~
"
Z
"
Ims
SURGE DURATION (S)
4-34
0:
W
W
N
10ms
ZENER CURRENT (rnA)
PRINTED IN U.S.A.
UZ7706L and UZ7806L SERIES
UZ7706 and UZ7806 SERIES
Electrica' Specifications at 25'C
*
Type
±5%
Nominal
Zener
Test
Max. Zener
Impedance §
Voltage t
VZ@IZT
Current
I"
Zz@lzr
Maximum Ratings'
Maximum Reverse
Leakage Current
IR@VR
Typ.
Maximum
Continuous
V,
V.
Temp.
Coelf.
Tc@ IZT
%/oC
rnA
±5%
:±: 10%
±100/0
Current*
Maximum
Surge
Current:l:
I,
I",
Tolerance
Tolerance
Volts
rnA
Ohms
.A
Volts
Volts
UZ7706
UZ7707
UZ7708
UZ7709
UZ7710
UZ7806
UZ7807
UZ7808
UZ7809
UZ7810
6.8
7.5
8.2
9.1
10.0
350
325
300
275
250
0.6
0.7
0.8
1.0
1.0
1000
800
200
150
100
5.2
5.7
6.2
6.9
7.6
4.9
5.4
5.9
6.6
7.2
.04
.04
.05
.05
.06
1350
1250
1150
1020
950
50
41
31
29
26
UZ7712
UZ7713
UZ7714
UZ7715
UZ7716
UZ7812
UZ7813
UZ7814
UZ7815
UZ7816
12
13
14
15
16
200
200
175
150
150
1.3
1.5
1.5
2.0
2.5
75
40
30
20
9.1
9.9
10.6
11.4
12.2
8.6
9.3
10.1
10.8
11.5
.07
.07
.07
.07
.07
770
700
640
600
550
23
21
20
17
15
UZ7718
UZ7720
UZ7722
UZ7724
UZ7727
UZ7818
UZ7820
UZ7822
UZ7824
UZ7827
18
20
22
24
27
130
120
100
100
90
3.5
4.0
4.5
5.0
6.0
20
20
20
20
20
13.7
15.2
16.7
18.2
20.6
12.9
14.4
15.8
17.3
19.4
.08
.08
.08
.08
.09
500
440
390
360
310
12
11
10
9
UZ7730
UZ7733
UZ7736
UZ7740
UZ7745
UZ7830
UZ7833
UZ7836
UZ7840
UZ7845
30
33
36
40
45
80
70
60
60
50
8
10
12
15
20
20
10
10
10
10
22.8
25.1
27.4
30.4
34.2
21.6
23.7
25.9
28.8
32.4
.090
.090
.090
.095
.095
280
260
240
210
180
8.5
7.5
7.0
6.4
5.5
UZ7750
UZ7756
UZ7760
UZ7770
UZ7775
UZ7850
UZ7856
UZ7860
UZ7870
UZ7875
50
56
60
70
75
50
40
40
35
30
22
30
35
40
45
10
10
10
10
10
38.0
42.6
45.6
53.2
56.0
36.0
40.3
43.2
50.4
54.0
.095
.095
.095
.095
.095
170
160
150
130
120
4.6
4.1
3.7
3.3
3.1
UZ7780
UZ7790
UZ71l0
UZ7880
UZ7890
UZ72lO
80
90
100
30
25
20
60
75
90
10
10
10
GO.8
68.4
76.0
57.6
64.8
72.0
.095
.095
.100
110
100
90
2.9
2.6
2.3
50
Amps
13
For optional high reliability screening, see UZ706·UZl40HR data sheet.
Power Rating: Stud Mounted: 10 Watts at 100°C Case derate linerally to zero at 175°C Case.
Lead Mounted: See lead temperature derating curve.
Temperature Range: Operating and storage -65°C to 175°C.
* Specify 20% tolerance by changing the second numeral of type number from 8 to 9 (UZ7809 becomes UZ7909) or from 2 to 3 (UZ7210. becomes UZ73lD). Specify leaded
t
version by adding an L suffix (UZ7809 becomes UZ7809L).
All zener voltages are measured with an automated test set using a 35 msec test time. Longer or shorter test times wUl have a corresponding effect on the measured value due
to heating effects.
§ Zener impedance is derived from the GO-cycle voltage created when AC current with RMS value of 10% of DC zener test current is superimposed on the test current.
* Ratings Based on 100Ge Case temperature; for leaded devices multiply by 0.6.
t
Figures shown are for a peak sinusoidal surge current of 8.3ms duration, non-repetitive. The 8.3ms square pulse rating is 71 % of the value shown.
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
4-35
PRINTED IN U.S.A.
..
UZ8706 SERIES
. UZ8806 SERIES
POWER ZENERS
1 Watt, Industrial
DESCRIPTION
One watt zener diodes, hermetically
sealed in glass.
FEATURES
.• High Surge Ratings
• A Quarter the Size of Conventionall Watt Zeners
• Impervious to Moisture
ABSOLUTE MAXIMUM RATINGS
Zener Voltage, Vz .............................................................................................................. 6.8 to 200V
Continuous Current .........................................
.....................;................................... See Table
Surge Current (8.3ms) .....
.................... ..................... .......... ................................. See Table
Surge Power
....................................
.........................................................See Graph
Power ......................................................................
... See Lead Temperature Derating Curve
Storage and Operating Temperature
......................... -6SoC to +17S"C
MECHANICAL SPECIFICATIONS
UZ8706 SERIES UZBB06 SERIES
r
.15STYP.
3.9mm
BODY A
.085 MAX.
2.l6mm
f":"
. ==~:lI=~~~\~~I~~~={1
.055TYP.
l.4mm
UZ Prefix is identified by a Blue or Red Cathode Band
1.5 ,---,..,---,--,..,-----,---r-,----,
IK,-----,--------,.-----,
10K
5K
~ 2K
ffi
lK
~
500
0..
W
200
~
hi
U
"- f"..
z
i3
50
20
50
75
100
125
ISO
LEAD TEMPERATURE ('C)
175
10
lOOns
1#5
100
"'~
0..
~
'"
V>
100V
75V
§:
SQUARE PULSE
~ 100
25
Typical Zener Impedance
vs. Zener Current
Surge Power
vs. Surge Duration
Power Dissipation
vs. Lead Temperature Derating Curve
~
""" "-
t--..
lOOps
Ims
10#5
10
~---r--~~~~~~
w
SURGE DURATION (5)
N
""
IOms
1 L-_ _ _L -_ _ _
.1
nn
L-_.--~L
10
100
ZENER CURRENT (rnA)
SEMICONDUCTOR
~ PRODUCTS
4-36
_UNITRODE
UZ8706 SERIES UZ8806 SERIES
Maximum Ratings
Electrical Specifications at 25°C
Type
±5%
:±: 10%
Tolerance
Tolerance
UZ8706
UZ8707
UZ 8708
UZ 8709
UZ8710
UZ8712
UZ8713
UZ8714
UZ8715
UZ8716
UZ8718
UZ8720
UZ8722
UZ8724
UZ 8727
UZ8730
UZ8733
UZ 8736
UZ 8740
UZ 8745
UZ 8750
UZ8756
UZ8760
UZ 8770
UZ 8775
UZ8780
UZ8790
UZ8110
UZ8111
UZ 8112
UZ 8113
UZ 8114
UZ 8115
UZ8116
UZ8117
UZ8118
UZ8119
UZ8120
UZ8806
UZ8807
UZ8808
UZ8809
UZ8810
UZ8812
UZ8813
UZ8814
UZ8815
UZ 8816
UZ8818
UZ8820
UZ8820
UZ8824
UZ8827
UZ8830
UZ 8833
UZ8836
UZ8840
UZ 8845
UZ 8850
UZ8856
UZ 8860
UZ8870
UZ8875
UZ 8880
UZ8890
UZ8210
UZ8211
UZ8212
UZ8213
UZ8214
UZ8215
UZ 8216
UZ8217
UZ8218
UZ8219
UZ8220
Nominal
Zener
Voltage t
Test
Current
Vz @ IZT
III
Volts
6.8
7.5
8.2
9.1
10
12
13
14
15
16
18
20
22
24
27
30
33
36
40
45
50
56
60
70
75
80
90
100
110
120
130
140
150
160
170
180
190
200
mA
37
34
31
28
25
23
21
19
17
15.5
14.0
12.5
11.5
10.5
9.5
8.5
7.5
7.0
6.5
6.0
5.0
4.5
4.0
3.7
3.3
3.0
2.8
2.5
2.3
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
Max. Zener
Impedance§
Zz@ IZT
Ohms
3.5
4.0
4.5
5.0
7.0
9.0
10
12
14
16
20
22
23
25
35
40
45
50
62
75
85
110
125
150
175
200
250
350
450
550
700
850
1000
1100
1200
1300
1400
1500
Maximum Reverse
Leakage Current
±S%
±lO%
V,
V,
I,@V,
"A
50
30
10
3.0
2.0
1.0
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
0.5
Volts
5.2
5.7
6.2
6.9
7.6
9.1
9.9
10.6
11.4
12.1
13.7
15.2
16.7
18.2
20.5
22.8
25.1
27.3
30.4
34.2
38.0
42.5
45.6
53.2
57.0
60.8
68.4
76.0
83.6
91.2
98.8
106
114
121
129
137
144
152
Volts
4.9
5.4
5.9
6.6
7.2
8.6
9.3
10.1
10.8
11.5
12.9
14.4
15.8
17.3
19.4
21.6
23.7
25.9
28.8
32.4
36.0
40.3
43.2
50.4
54.0
57.6
64.8
72.0
79.2
86.4
93.6
100
108
115
122
129
137
144
Typ.
Temp.
Coefficient
Continuou~
T.C.@lll
Maximum
Current
*
Maximum
Surge
Current:t:
I",
Is
%/oC
mA
Amps
0.04
0.04
0.05
0.05
0.06
0.07
0.07
0.07
0.07
0.07
0.08
0.08
0.08
0.08
0.09
0.09
0.09
0.09
0.095
0.095
0.095
il.095
0.095
0.095
0.095
0.095
0.095
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
140
125
115
105
95
85
80
74
63
60
52
47
43
40
35
31
28
26
24
22
20
17
15
14
12
11
10
9.5
8.5
8.0
7.2
6.8
6.3
5.9
5.6
5.2
5.0
4.7
5.00
4.50
3.90
3.37
2.77
2.25
2.25
2.25
1.65.
1.65
1.12
1.12
1.12
0.825
0.825
0.825
0.675
0.562
0.562
0.450
0.450
0.390
0.337
0.337
0.277
0.225
0.225
0.225
0.165
0.112
0.112
0.112
0.112
0.082
0.082
0.056
0.056
0.056
t All zener voltages are measured With an automated test set usmg a 35 mllhsecond test time. Longer or shorter test times will have a corresponding effect on the measured value due to heating effects.
§Zener impedance is derived from the 60-cycle AC voltage created when AC current with RMS value of 10% of DC zener test current is superimposed on the test current.
*Ratings are based on free air. T .... is 2S;C. For use at 1.5 watts see derating curve.
:tFigures shown are for a peak sinusoidal surge current of 8.3 ms duration using 60 cycle AC. The 8.3 ms square pulse rating is 71% of the
value shown.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924-1235
4-37
PRINTED IN U.S.A.
--
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
4-38
PRINTED IN U.S.A.
SWITCHING & GENERAL PURPOSE DIODES
Product Selection Guides
UNIBOND™ Diodes ............................................. 5-3
Switching & General Purpose Diodes ................................. 5-3
ProElectron Switching Diodes ...................................... 5-4
Datasheets .......................................... '........... 5-5
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEl. (617) 926·0404. FAX (617) 924·1235
5-1
PRINTED IN U.S.A.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
5-2
PRINTED IN U.S.A.
SWITCHING,
GENERAL PURPOSE DIODES
PRODUCT SELECTION GUIDE
UNIBOND SWITCHING DIODES
100V
75V
200
200
..
1.2V@100mA
1.0V@200mA
t Available as JANTX, JANTXV.
SWITCHING
40
40
40
40
40
70
75
75
75
75
75
75
75
75
75
75
75
75
75
80
85
85
100
100
100
100
200
200
75
150
200
200
200
200
75
125
ISO
ISO
150
150
ISO
ISO
150
ISO
200
200
200
300
400
500
40
40
75
125
100
ISO
@30mA
1.0@5mA
.49-.52 @ O.lmA
.42·.54 @O.lmA
.4·.5@0.lmA
.42·.54 @ O.lmA
.44-.55 @ O.lmA
1.0@10mA
1.0@ lOrnA
.74-.88 @ 20mA
1.0@50mA
.49·.55 @ O.lmA
.5·.575 @ .25mA
1.0@20mA .
1.0@20mA
1.0@IOOmA
1.0@30mA
.54-.62 @ 1mA
1.0@IOmA
1.0@ lOrnA
.64-.72 @ lOrnA
1.1 @4OOmA
1.1 @ 500mA
1.0@ lOmA
1.0@ 100mA
1.0@ lOrnA
1.0@lOmA
1.0@ loomA
lOrnA
2
150
2
4
10
50
7
4
4
4
2
2
2
4
4
4
4
4
4
2
6
10
10
500
500
5
5
50
50
2
4
6
30
2
2
2
2
2
2
2
4
2
4
2
2.5
2
2
4
4
4
3
·3
4
4
5
5
GENERAL PURPOSE
30
70
80
150
150
200
200
200
270
480
.. Available as JAN.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
90
75
200
55
150
40
40
200
400
400
1.0@40mA
1.0@20mA
1.0@lOOmA
1.0@7mA
.83-1.0 @ 200mA
1.0@3mA
1.0@ 10mA
1.0 @ lOOmA
1.0 @400mA
1.0@400mA
•• Available a. JAN, JANTX.
5·3
3/ls
300
2.5
3
20
20
• •• Available a. JAN, JANTX, JANTXV.
PRINTED IN U.S.A.
SWITCHING, GENERAL PURPOSE
AND STABISTOR DIODES
PRODUCT SELECTION GUIDE
PROELECTRON SWITCHING DIODES
115
300
225
600
600
225
600
600
300
225
400
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
1.0@30mA
1.0@30mA
1.0 @ 200mA
1.0@50mA
0.8 @ SOmA
1.0 @ 200mA
1.0@50mA
1.0 @ 200mA
1.0 @ 100mA
1.0 @ 200mA
1.25 @ 400mA
5-4
PRINTED IN U.S.A.
COMPUTER DIODE
IN251
JAN IN251
General Purpose
FEATURES
• Metallurgical Bond
• Qualified to Mll-S·19500/188
• Planar Passivated Chip
• 00-7 Package
ABSOLUTE MAXIMUM RATINGS. AT 25°C
Peak Reverse Voltage ........................................................... 40V
Reverse Working Voltage ........................................................ 30V
Average Rectified Current ................................................... 75mAdc
Surge Current. 1m. @ 125°C Free Air Temperature ............................. 125mA
Surge Current (JAN). 1s. 25"C .............................................. 200mA
Continuous Power Dissipation ................................................ 150mW
Operating Temperature Range ...................................... -55"C to +175"C
Storage Temperature Range ........................................ -55"C to +175"C
DESCRIPTION
This device is particularly suited to
applications where medium speed
switching is required. Moisture free
stability is ensured through hermetic
sealing.
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Type
1N251
JAN
1N251
Reverse
Current
Reverse
Current
20llA
O.lIlA
@
@
V. = 20V
V. = lOV
100llA
.lilA
@
@
V. = 30Vdc
V. = 10V
Reverse
Current
@ 125°C
Forward
Voltage
Reverse Recovery
Time
150ns
lOIlA
@
1V
@
@
'F = 5mA. V. = 10V
RL = 1Kn. CL = 10pf.
I.Ec = O.5mA
lOV
TA = 125°C
IF = 5mA
lOIlA
1V
@
lOV
T. = 100°C
@
IF = lOmA
30ns
IF =lOmA. I. =10mA
RL = lOOn. C = 4pf
MECHANICAL SPECIFICATIONS
JAN IN251
DO-7
IN251
A
...L
0
=911
P9=!=
TI- B-j-C-,
INCHES
.075- .130
.195-.300
C 1.0-1.5
.019-.021
0
A
B
MILLIMETERS
1.90-3.30
4.95- 7.62
25.4-38.1
.48-.53
nn
L..::::::J
5-5
SEMICONDUCTOR
PRODUCTS
_UNITRDDE
DIODE·.
IN456
IN457; JAN IN457
IN458;JAN IN458
IN459;JAN IN459
Low Current
DESCRIPTION
General purpose low current diode with
high reliability characteristics
FEATURES
• Metallurgical Bond'
• Qualified to MIL-S-19500/193
• Planar PaSSivated Chip ,
• 00-7 Package
ABSOLUTE M.AXIMUM RATINGS, AT 2SoC.
JAN
JAN
JAN
1N457
1N458
1N458
1N4S8
"25V",,, ..... SOV .•••...•• 125V ••••.•••• n'5V
Reverse Working Voltage- .•.............................. ,',.,"""
Peak Reverse Voltage ................................................... 30V .•........ 70V .•.•...•. 150V ......... 200V
Average Output Current ..•............................•...............90mA ........ 75mA ....••.. 55mA ........ 40mA
Surge Current, 8.3mS ................................................ 700mA ....... 225mA ' ....... 165mA ; ...... 120mA
Operating Temperature Range .. ; ................................................... ...,65·C to + 150·C ............... .
Storage Temperature Range ........................................................ - 65·C to + 200·C ............... .
ELECTRICAL SPECIFICATIONS -
-
T - +175'C
_J-
/
z
~-65'C
;/
1/
II
Ul
a:
a:
'"
~
/
II II
10
/
a:
'":;:
gu.
2
I
1.0
.1
.1
10boc
.02
t-
z
.05
uJ
cr
cr
0.1
.2
"
u
I
uJ
Vl
cr
10
~
20
I
}
1---
......
V
,/
50
100
140 130120110 100 90 BO 70 60 50 40 30 20 10 0
V, - REVERSE VOLTAGE (V)
(0.0 OF PIV)
I
----I....
...- f-"'
l - f--
cr
.2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5
V, - FORWARD VOLTAGE (V)
Production
Process
1. Raw Material
2. Factory
Processing
-
.5
175'C
-"
I
./
,/
106'c
>
w
II
/
I
I
1.0
w
/ / I
V I
I
II I
.,
.3
I~ f+ f--125'C
Inspection Lot
Formed at
Final.
Assembly
Operation
*100 Percent Process
Conditioning
1. High-Temp Storage
2. Temp Cycling
3. Hermetic Seal Tests
-
*100 Percent Burn-In
1. Measurement of
Inspection Tests
to
Verify LTPD
Group A
Group B
Specified Parameters
2. Burn-In
3. Measurement of
Specified Parameters
to Determine Delta
---
*Order of the tests in the blocks sha II be performed as shown.
Order of procedure diagrams for TX types on Iy.
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
5-8
PRINTED IN U.S.A.
COMPUTER DIODE
IN643; JAN IN643
IN662; JAN IN662
IN663; JAN IN663
Switching
FEATURES
DESCRIPTION
• Metallurgical Bond
• Qualified to MIL-S-195001256
• Planar Passivated Chip
.00-7 Package
This device is particularly suited to
applications where medium speed
switching is required_ Moisture free
stability is ensured through hermetic
sealing_
ABSOLUTE MAXIMUM RATINGS. AT 25°C
IN643
IN662
JAN IN643
JAN IN662
IN663
JAN IN663
Peak Reverse Voltage __ ....... _..... _..... _. _........... _... _. _... 200V ......... _. lOOV ...... _..... _lOOV .. _......... lOOV ..
Reverse Working Voltage. _. __ ....... _..... _.......... _.. _.. __ .. ... 175V ............ BOV . _........ _.. BOV ..... _...... BOV ..
Average Rectified Current. .. _....... _..... _........ _.. _. _... _.... 40mAdc ......... 40mAdc ........ _ 60mAdc ........ _. 100mA .
Surge Current. B.3ms . _....... _..... _..... _........ _.. _. _... _.... _... _. _.. _..... _.. 500mA '" _..•. _.......... _................ .
Operating Temperature Range .......•...... '" .•........... __ ................. -65°C to + 150°C ................................ .
Storage Temperature Range ...... _............................................ -65°C to + 175°C ................................ .
MECHANICAL SPECIFICATIONS
J IN643. IN662. IN663
A
J...
00-7
IN643
IN662
IN663
D
=911
~=*
Tr-s-r--c--l
A
B
C
D
INCHES
.077 - .130
.195 - .300
1.0 1.5
.019 - .021
MILLIMETERS
1.96 - 3.30
4.95 - 7.62
25.4 - 38.1
.48 - .53
nn
t..=J
5-9
SEMICONDUCTOR
PRODUCTS
_UNITRODE
IN643, IN662, IN663
JAN IN643, IN662, IN663
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Type
Maximum
Reverse
Current
@25°C
Maximum
Reverse
Current
@25°C
Maximum
Peak Reverse
Current
@25°C
Maximum
Reverse
Current
@ 100°C
lN643
25nAdc
@
VR = lOVdc
IpAdc
@
VR = 100Vdc
lOOpA pK
@
VR = 200V PK
l5pAdc
@
VR = 100Vdc
IN662
25nAdc
@
VR = 10Vdc
5pAdc
@
VR = 50Vdc
lOOpA pK
@
VR = 100VPK
100pAdc
@
VR = 50Vdc
IN663
25nAdc
@
VR = lOVdc
5pAdc
@
VR = 75Vdc
lOOpApK
@
VR = lOOV PK
50pAdc
@
VR = 75Vdc
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
~-
~-
Capacitance
Maximum
Reverse
Recovery
Time
3pF
@
VR = l75V
300ns
@
IF = 5mA
IR = 17.5mA
IREC = 0.2nA
lN662
1.0Vdc
@
IF = lOmAdc
3pF
@
VR = 80V
500ns
@
IF = 5mA
IR = l7.5mA
IREc = O.4nA
3pF
lN662
1.0Vdc
@
IF = lOOmAdc
Type
lN643
Maximum
Forward
Voltage
@25°C
1.0Vdc
@
IF = lOmAdc
500ns
@
IF = 5mA
IR=17.5mA
IREc = O.4nA
@
VR = 80V
Average Rectified Current vs.
Ambient Temperature
80
JeJJJ1L
'~ ~:'ra1 Ll jJ 1
:;( 60
E-
o-
15
'"'"=>
"c
«
'"
;.
'"
12
.1
)N662
40
'I"-
, 'f',
, \,
,
20
't"-
o
o
m
w
~
w
~
I"-~
m
~~
~
~
T,-AMBIENT TEMPERATURE C'C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
5·10
PRINTED IN U.S.A.
RECTIFIERS
IN645, IN647; JAN, JANTX IN645, IN647
JAN, JANTX & JANTXV IN645-1, IN647-1
High Voltage, Low Current
FEATURES
• Metallurgical Bond
• Qualified to MIL-S-19500/240
• Planar Passivated Chip
• 00-35 or 00-7 Package
DESCRIPTION
These devices are useful in general
purpose low current applications in high
reliability and military equipment.
IN645
IN647
JAN IN645
JAN IN647
JAN IN645·1
JAN IN647·1
Reverse Breakdown Voltage .......................... 270V ................ 480V .. .
Peak Working Voltage ............................... 225V ................ 400V .. .
Average Output Current, 25·C· ............................. .400mA ............ .
150·C ............................... 150mA ............ .
Surge Current, 8.3ms, 150·C ................................ : .. 5A .............. .
Operating Temperature Range ........................... -65·C to + 175·C ....... .
Storage Temperature Range ............................. -65·C to +200·C ....... .
'Derate 2.0mAdcrC between 25'C and 150'C.
ABSOLUTE MAXIMUM RATINGS, AT 25·C
MECHANICAL SPECIFICATIONS
J, JTX IN645, IN647
J, JTX, & JTXV IN645·1, IN647·1
A
-L
IN645
IN647
IN647·1
00·35
IN645·1
0
=~II
! I--
00·7
B
p=d
-+C -.j
J. JTX lN645. lN647
J. JTX. & JTXV lN645.1. lN647·1
A
B
C
0
INCHES
.055· .130
.140-.300
1.0 MIN.·1.5 MAX.
.018· .023
MILLIMETERS
1.40· 3.30
3.56· 7.62
25.4 MIN.-38.1 MAX.
.46-.58
nn
L.::::J
5-11
SEMICONDUCTOR
PRODUCTS
_UNITRODE
IN645, IN647; J, JTX IN645, IN647
J, JTX & JTXV IN645-1, IN647-I
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Average
Reverse.
Current
@ I50·C
Peak
Reverse·
Current
@25·C
Type
Reverse
Current
@25·C
Reverse
Current
@ I50·C
IN645
JAN IN645
0.0251lA
@225Vdc
151lAdc
@225Vdc
lOOIlA (pk)
@270V (pk)
lOOIlAdc
@ 225V (pk)
JAN IN645-1
0.0501lA
@225Vdc
251lAdc
@225Vdc
50 (pk)
@270V(pk)
100ilAdc
@225V(pk)
IN647
JAN IN647
0.0251lA
@400Vdc
151lAdc
@400V
100ilA (pk)
@480V(pk)
100ilAdc
@400V(pk)
JAN IN647-1
0.05OIlA
@400Vdc
251lAdc
@400V
50 (pk)
@ 480V (pk)
lOOIlAdc
@400V(pk)
~
.s
100
I
-
_
c:
~
IL
:<
.:;
25"C
I-
Z
uJ
100"C
c:
c:
~
u
V II /
10
I
II
CI
~
~
~
I
' - f- -wc
/
/
I
1.0
II /
/
I
1/
"'c:
I
I
I
II)
"'>
"'c:
II
~
I
L 1
I
I
I I
0.01
.02
.05
0.1
.2
I
f
.s
1.0
2
I
I
--
, , ,
I-- ..-
r--
,I,
./
100"C
./
,.-
l- I-)
175"C
-r-
10
I--
,/
I20 l-
v, -
V,- FORWARD VOLTAGE (V)
---l..
I
TJ = 25"C
50
100
140 130120 110 100 90 80 70 60 50 40 30 20 10 0
J
1
.1 .2 .3~.7 .8 .9 1.0 1.1 1.2 1.31.4 1.5
Production
Process
1. Raw Material
2. Factory
Processing
20pF
VA = 4 Vdc
f = IMHz
V". =50mV
LOVdc
@ IF = 400mAdc
8.3ms
.005
/; I I
II / 1- ':f -
gc:
u
./
TJ =+175"C
0.001 I
.002
"/I"
/.
Capacitance
Reverse Voltage vs. Reverse Current
Forward Voltage vs_ Forward Current
1000
Forward
Voltage
@25°C
Inspection Lot
Formed at
Final
Assembly
Operation
REVERSE VOLTAGE (V)
(% OF PIV)
*100 Percent Process
Conditioning
1. High-Temp Storage
2. Temp Cycling
3. Hermetic Seal Tests
*100 Percent Burn-In
1. Measurement of
Specified Parameters
2. Burn-In
3. Measurement of
Specified Parameters
to Determine Delta
Inspection Tests
to
Verify LTPD
Group A
Group B
-
-
*Order of the tests in the blocks shall be performed as shown.
Order of procedure diagrams.for TX types only.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
5-12
PRINTED IN U.S.A. '
COMPUTER DIODE
IN914; JAN, JANTX IN914
IN4148; JAN, JANTX, JANTXV IN4148
JAN, JANTX, JANTXV IN4148-1
IN4531; JAN, JANTX, JANTXV IN4531
General Purpose
Switching
FEATURES
• Metallurgical Bond
• Qualified to MIL-S-19500/116
• Planar Passivated Chip
• DO-34 or DO-35 Package
• Non-JAN Available
DESCRIPTION
This series is very popular for general
purpose switching applications in
electronic equipment.
ABSOLUTE MAXIMUM RATINGS, AT 25Q C
Reverse Breakdown Voltage ................................................. lOOV
Peak Working Voltage ................................................. _...... 75V
Average Output Current, lN9l4 ......... _..... _.............. _........... 75mAdc
lN4l48 ............................. _....... _. 200mAdc
IN4148·1 ...... _.............................. 200mAdc
IN4531 ... .-................................... 125mAdc
Surge Current, 8_3ms
_............................ _................. __ .. 500mA
Operating Temperature Range ................................... -65°C to +175°C
Storage Temperature Range ..................................... -65°C to +200·C
MECHANICAL SPECIFICATIONS
J, JTX IN914
J, JTX, JTXV IN4148
J, JTX, JTXV IN4148-1
J, JTX, JTXV IN4531
00-35
IN914
IN4148
00-34
IN4531
A
...L
D
==111
p=*
Tr- B-+ C--.J
J, JTX & JTXV IN4531
A
B
C
D
INCHES
.050- .065
.080-.120
1.0 MIN.-1.5 MAX.
.018-.022
MILLIMETERS
1.27-1.65
2.03-3.05
25.4 MIN.-38.1 MAX.
.46-.56
J, JTX IN914
A
B
C
D
INCHES
.058- .107
.140-.300
1.0 MIN.-1.5 MAX.
.018-.022
MILLIMETERS
1.42-2.72
3.56- 7.62
25.4 MIN.-38.1 MAX.
.46-.56
J, JTX, JTXV IN4148 and IN4148·1
A
B
C
o
INCHES
.056-.075
.140-.180
1.0 MIN.-1.5 MAX.
.018-.022
MILLIMETERS
1.42-1.91
3.56-4.57
25.4 MIN.-38.10 MAX.
.46-.56
nn
SEMICONDUCTOR
~ PRODUCTS
5-13
_UNITRODE.
IN914; J, JTX IN914
J, JTX, JTXV IN4148-1N4148-1
IN4531; J, JTX, JTXV IN4531
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Peak
Reverse
Current
Reverse
Reverse
Reverse
Reverse
Current
@2S'C
Current
@lS0'C
Current
@lSO'C
100l'Adc
@2S'C
Current .
@2S'C
25nAdc
0.5pAdc
100l'A (pk)
50,.Adc
@
@
@
@
@
VR =20Vdc
VR =75Vdc
VR= 100V (pk)
VR=20Vdc
VR = 75Vdc
Forward
Voltage
Foward
Recovery
Voltage
Forward
Reverse
Recovery
Recovery
Time
Time
Capacitance
5ns
VR=OV,f=lMHz
V'ig = 50mV (pk-pk)
4.0 pF@
1.OVdc
5.0V(pk)
@
@
@
IF = 10mAdc
IF = 50mAdc
IF = 50mAdc
20ns
@
IF= IR=lOmA
RL = 100 ohms
Reverse Voltage vs_ Reverse Current
Forward Voltage vs_ Forward Current
0.001
.002
.005
1000
5
TJ
:;:
2
= 17S'C- 7
V
oS 100
V
~
"~
v.: ~ V
VV I
V il If l- f -
"'0:0:
/
10
0:
~
II
0:
~
I 1.0
II
.1
II
J
II
II
om
V
;; .02
.3
II
vIIz .05
"'0:0: 0.1
.2
u
V
1/
_5
"'UJ0: 1.0
t--r,ff+-H--t-+-t-1--i1-t-100'~j..L I>
"' 2
-6S'C
2S"C
"
100'C
II I
II
"'0:
I
II
-~
_1 .2 .3 .4 .5 .6 .7 .8 _9 1.0 1.1 1.2 1.3 1.4 1.5
V, -
2.8 pF@
VR= 1_5V, f = 1 MHz
V'ig = 50mV (pk-pk)
FORWARO VOLTAGE (V)
I
10
20
5
50
100 /
I I
140 130120110 100 90 80 70 60 50 40 30 20 10 0
v, - REVERSE VOLTAGE (V)
r'yP'"
(% OF PIV)
Production
Process
1. Raw Material
2. Factory
processing
----l.~..
Inspection Lot
Formed at
Final
Assembly
Operation
*100 Percent Process
Conditioning
1. High-Temp Storage
2. Temp Cycling
3. Hermetic Seal Tests
-
*100 Percent Burn-In
1. Measurement of
Specified Parameters
2. Burn-In
3. Measurement of
Specified Parameters
to Determine Delta
Inspection Tests
to
VerifyLTPD
Group A
GroupB
*Order of the tests in the blocks shall be performed as shown.
Order.of procedure diagrams for TX types only.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, Mil 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
5-14
PRINTED IN U.S.A.
JAN & JANTX IN3064
IN4454; JAN, JANTX & JANTXV IN4454
JAN, JANTX & JANTXV IN4454-1
IN4532; JAN, JANTX & JANTXV IN4532
COMPUTER DIODE
General Purpose
Switching
ABSOLUTE MAXIMUM RATINGS, AT 2SoC
FEATURES
Reverse Breakdown Voltage ........................................... 75V
Peak Working Voltage ................................................. 50V
Average Output Current, IN3064 .................................... 75mA
1N4454.-1. ................................ 200mA
IN4532 ................................... 125mA
Surge Current, Isec
IN3064 ..................................... 0.5A
IN4454,-1. .................................... lA
IN4532 ..................................... 0.5A
Operating Temperature Range ............................ -65°C to +175°C
Storage Temperature Range .............................. -65°C to +200°C
o Metallurgical Bond
• Qualified to MIL-S-19500/144
• Planar Passivated Chip
.00·7,00·34 or 00-35 Package
DESCRIPTION
Available in 00-7, DO-34 or 00-35
packages. Unitrode offers high
temperature metallurgical bond, making
these devices useful in high reliability
applications.
ELECTRICAL SPECIFICATIONS (at 2S0C unless noted)
Reverse
Current
@25°C
Reverse
Current
@ 150°C
Reverse
Breakdown
Voltage
@-65°C
O.lpAdc
@
VR =50V
100pAdc
@
VR = 50V
75Vdc
@
IR =5pAdc
Type
IN3064
IN4454
IN4454-1
IN4532
Reverse
Recovery
Time
Capacitance
4ns
@
IF = IR = 10mAdc
RL = lOOn
c:53pF
2pF
@
VR = OVdc
f = IMHz
Vsig =50mV
(pk to pk)
Forward
Recovery
Voltage
Forward
Voltage
Forward
Recovery
Time
1.0Vdc
@
IF = 10mAdc
5.0V (pk)
30ns
@
IF = 100mAdc
t,:5 0.4ns
IF = 100mAdc
t,:5 OAns
00-34
IN4S32
DO-3S
IN44S4
MECHANICAL SPECIFICATIONS
J & JTX IN3064
J, JTX & JTXV IN44S4 & IN4454-1
J, JTX & JTXV IN4S32
J. JrJ( & JTXV IN4532
A
..L
D
=911
....1-- 8
p~:
---+-- c
~
iNCHES
A
.050- .065
B .OBO-.120
C 1.0 MiN.-1.5 MAX.
D .0IB- .022
J. JTX & JTXV IN4454.·1
J & JTX IN3064
A
8
C
D
INCHES
.07B- .107
.195-.300
1.0 MiN. -1.5 MAX.
.0IB-.022
MILliMETERS
1.9B-2.72
4.96-7.62
24.0 MiN.-3B.I MAX.
.46-.56
-
MILLIMETERS
1.27-1.65
2.03-3.05
24.0 MiN.-3B.I MAX.
.46-.56
A
8
C
D
INCHES
.056- .075
.140-.1BO
1.0 MiN.-1.5 MAX.
.0IB-.022
MiLLIMETERS
1.42-1.91
3.55-4.57
24.0 MiN.-3B.I MAX .
.46-.56
nn
L:::::J
5-15
SEMICONDUCTOR
PRODUCTS
_UNITRDDE
-
COMPUTER DIODE
IN3070; JAN, JANTX IN3070
IN4938; JAN, JANTX IN4938
Switching
ABSOLUTE MAXIMUM RATINGS, AT 25°C
Reverse Breakdown Voltage .•.....' ............................................. 200V
Steady-State Forward Current at (or below) 25°C Free Air Temperature .........• l50mA
Peak Surge Current, lsec ..................................................... 500mA
Peak Surge Current, lpsec ....................................................... 2A
Continuous Power Dissipation at (or below) 25°C Free Air Temperature ........ 250mW
Operating Temperature Range ...................................... -65°C to +l75°C
Storage Temperature Range ........................................ -65°C to +200°C
FEATURES
• Double-plug Construction
• Qualified to MIL-S-l9500/169
• Available in 00-7 9r 00-35 package
DESCRIPTION
Double-plug construction affords integral
positive contact by means of a thermal
compression bond. Moisture free stability
is ensured through hermetic sealing. The
cceffic!ent~ of therm3! exp::mz:on of the
glass case and the dumet plugs are
closely matched. Hot solder dipped leads
are standard.
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Maximum Reverse Current
@25°C
@ l50°C
Type
IN3070
IN4938
O.lpAdc
@
175Vdc
lOOpAdc
@.
175Vdc
Maximum Forward
Voltage
Maximum
Capacitance
Maximum Reverse
Recovery Time
IVdc
@
IF = lOOmAdc
5pF
@
VA = 0, f = IMHz
50ns
@
IF ='30mA
IA = 30mA
IAEC = ImA
MECHANICAL SPECIFICATIONS
J, JTX, JTXV IN3070
J, JTX, JTXV IN4938
00·35
IN4938
00·7
IN3070
A
.-L
=~II
i.,
0
B
P9l
---.J-. c
J.JTX lN3070
J, JTX lN493S
A
B
C
D
INCHES
.056- .074
.140-.160
1.0 MIN
.DI9-.021
MILLIMETERS
1.42-1.88
3.56-4.57
25.4 MIN.
.48-.53
-~,
A
B
C
D
INCHES
.078-.107
.195-.300
1.0 MIN.-1.5 MAX.
.018- .022
MILLIMETERS
1.98-2.72
4.95-7.62
25.4 MIN.-3B.I MAX
.46-.56
I
nn
SEMICONDUCTOR
~ PRODUCTS
5-16
_UNITRODE
COM PUlER 010 DE,
IN3595; JAN, JANTX & JANTXV IN3595
150 rnA, Switching
ABSOLUTE MAXIMUM RATINGS, AT 25°C
Peak Reverse Voltage' , , .. , , . , .. , . , . , , . , , , , , , , , .. , .. , , . , ... , , .. , , ... , ... , .. 12SV
Reverse Breakdown Voltage ,.,""',.'.' .... ,."."." ..... ,." .. , ... ,.". 1S0V
Average Output Current ' ... "., ... ,"",.,' ...... , .. ,.,",.,.',.' .. ', .1S0mAdc
Surge Current, 1S." .... " .. "." .... , ... ,.,',." .. ,",." .. , .. ,.,"'" ,SOOmA
1I'S", '. , ... , ..... , .. ,.,.,"'.' ......... , .. ,' .. ,."" ... , .. , ,4A
Operating Temperature Range",.", ..... , ..... , ... ,"', .... ,. -6SoC to +17SoC
Storage Temperature Range .. ', .. , ..... , ........... ' ....... , .. - 6S'C to + 200'C
FEATURES
• Metallurgical Bond
• Qualified to MIL·S·19S00/241
• Planar Passivated Chip
• 00-7 Package
DESCRIPTION
A very uselul device lor medium current
switching applications.
eLECTRICAL SPECIFICATIONS (at 25°C unless noted)
Limits
VF,
IF = 200mAdc
Min
0.83Vdc
Max
1.00Vdc
Limits
IR,
VR = 12SVdc
VF,
IF = 100mAdc
VF,
IF = SmAdc
VF,
IF = 1mAdc
VF,
IF = SOmAdc
VF,
IF = 10mAdc
0.79Vdc
0.74Vdc
0.6SVdc
0.60Vdc
0.52Vdc
0.92Vdc
0.88Vdc
0.80Vdc
0.7SVdc
0.68Vdc
IR,
VR = 30Vdc
IR,
VR = 12SVdc
IR,
VR = 12SVdc
t"
iF = 10mAdc
TA = 12S'C
TA = 12S'C
TA = 1S0'C
C
VR = OVdc
1= 1MHz
VR = 3SVdc
Min
-
-
-
-
-
-
Max
1,OnAdc
0.3~dc
0,5~dc
3,0~dc
8.0pF
3.01'S
MECHANICAL SPECIFICATIONS
JAN, JANTX, JANTXV 1N3595
00·7
IN3595
A
...L
0
=911
p=*
TI- B-+-C~
INCHES
A
.092- .130
B
.130- .300
C 1.0-1.5
D .018-.022
MILLIMETERS
2.34-3.30
3.30-7.62
25.40-38.10
.46-.56
nn
SEMICONDUCTOR
~ PRODUCTS
5-17
_UNITRODE
-
IN3600;JAN, JANTX & JANTXV IN3600
IN4150; JAN, JANTX & JANTXV IN4150
JAN, JANTX &JANTXV IN4150-1
COMPUTER DIODE
200mA
Low Power, Switching
FEATURES
DESCRIPTION
•
•
•
•
•
This series of switching diodes is useful in
many computer switching applications, for
both military and commercial systems.
Metallurgical Bond
Qualified to MIL-S-19500/231
Planar Passivated Chip
DO-7 or DO-35 Package
Non-JAN Available
ABSOLUTE MAXIMUM RATINGS, AT 25'C
Reverse Breakdown Voltage .................................................................................................... 7SV
Peak Working Voltage .............................................................................................................. SOV
Average Output Current .................................................................................................... 200mA
Surge Current (lsec) ................................................................................................................ O.SA
(lpsec) ... ..... ...... ...... ..... ....... ... ........ ............ ....... ...... ......... ........ ....... .......... ...... 4.OA
Operating Temperature Range .................................................................. -65'C to +17S'C
Storage Temperature Range (1 N4150) .................................................. -65'C to +200'C
(lN3600) ..:............................................... -65'C to +17S'C
MECHANICAL SPECIFICATIONS
J, JTX & JTXV 1N3600
J, JTX & JTXV lN4150, lN4150-1
A
...1..
A
J...
D
=7r!!B-t~+
A
B
C
D
INCHES
.078-.107
.195-.300
1.0 MIN.-I.5 MAX.
.018-.022
00-35
IN4150
00-7
IN3600
MILLIMETERS
1.98-2.72
4.96-7.62
25.4 MIN.-38.1 MAX.
.46-.56
=911
D
p=+
Tf-- B-+-C~
A
B
C
D
INCHES
.056- .075
.140-.180
1.0 MIN.-I.5 MAX.
.018-.022
MILLIMETERS
1.42-1.91
3.56-4.57
25.4 MIN.-38.1 MAX.
.46-.56
nL.:::::Jn
SEMICONDUCTOR
PRODUCTS
5-18
_UNITRODE
IN3600, IN4150; JAN, JANTX & JANTXV IN3600, IN4150, IN4150-1
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)
Characteristics
Forward Voltage
Forward Voltage
Forward Voltage
Forward Voltage
Forward Voltage
Reverse
Breakdown
Voltage
Conditions
VF1
IF=l mAde
VF2
IF=10 mAde
VFl
IF=50mAde
(pulse)
VF4
IF= 100 mAde
(pulse)
VF5
IF=200mAde
(pulse)
BV
IR = 5_0 /lAde
Minimum
Maximum
0_540 Vde
0.620 Vde
0_660 Vde
0.740 Vdc
0_760 Vde
0.860 Vde
0_820 Vdc
0.920 Vde
0.870 Vdc
1.00 Vde
Characteristics
Reverse Current
Reverse Current
Junction Capacitance
Conditions
IR
VR=50Vdc
IR
VR=50Vde
TA = 150'C
C
VR=O
F= 1 MHz
V". = 50 mv (p-p)
Maximum
0.1 "Ade
100/lAde
2.5 pf
Reverse
Recovery Ti me
Forward
Recovery Time
Recovery Time
IF=IR=
IF=IR=
10 to 200 mAde; 200 to 400 mAde;
RL =100 ohms
RL = 100 ohms
IF = 200 mAde;
tp = 100 nsee;
t, = 0.4 nsee
6 nsee
4 nsee
10 nsee
Reverse Voltage VS. Reverse CUrrent
.002
.005
0.01
~
~
~
~
"w
'"ffi
r r
r~,LJsoc'
.02
V
.05
O. 1
.2
.5
--
V
II
100°j;;
1.0
0:
I
10
20
r-
f..!r
f-r-
-l75'c- iT
J.~
0
100
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.01.11.2 1.31.41.5
v, - FORWARD VOLTAGE (V)
I....
J...--- r-
--
d--2sob ,..-
~
r:;
1+
t"
trr2
0.001
Lots proposed
for
non·TX
types
-
Reverse
trrl
Typical Forward-Current vs Voltage
Inspection lots
formed atfinal
assembly operation
(sealing)
75Vde
140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
VR -
REVERSE VOLTAGE tV)
(% OF PIV)
Inspection tests to.
Review of
verify LTPD
Groups A and B
I~
Group A
data for
Group B
accept or reject
I....
Non·TX
Preparation
for
Delivery
t
Lots proposed
for
"TX"types
1.
100 Percent process conditioning*
1. High·temp storage
2. Thermal shock
(glass strain)
3. Acceleration
4. Hermetic seal tests
2.
3.
4.
5.
6.
100 Percent burn·in*
(reverse and forward .blas tests)
Measurement of specified parameters
Reverse bias
Measurement of specified parameter
to determi[1e delta
Forward bias
Measurement of specified parameters
to determine delta
Lot rejection criteria based on
rejects from the Reverse and
Forward bias tests.
Order of procedure diagram for non·TX and "TX" types.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
5-19
Inspection
tests to verify
LTPD
Group A
GroupB
Review of
Group Aand B
data for
lot accept
or reject
TX
Preparation
for
Delivery
PRINTED IN U.S.A.
•
IN4149, IN4151, IN4154
IN4446, IN4447, IN4448
IN4449
COMPUTER DIODE
Switching
FEATURES
• Metallurgical Bond
• Planar Passivated
• 00·35
DESCRIPTION
This series offers Metallurgical Bonding
and Is very popular for general purpose
switching applications.
ABSOLUTE MAXIMUM RATINGS, AT 2S"C
1N4149
1N~151
1~J4154
~N';44a
I I........ '
.rt&l&t&to
I ..........."
Peak Reverse Voltage ............... 75V ........ 75V ........ 35V ........ 75V ........ 75V ........ 75V ........ 75V ....... .
Average Rectified Current ............................................... 200mAdc .................................. .
Surge Current, 8.3 mS ....................................................500mA ................................... .
Operating Temperature Range ...................................... -65'Cto +150·C ............................... .
Storage Temperature Range ........................................ - 65'C to + 200'C ............................... .
ELECTRICAL SPECIFICATIONS·lat 2S'C unless noted)
Forward Voltage
Type
Peak
Inverse
Voltage
@10mA
@20mA
@30mA
@SOmA
@ 100mA
lN4149
75
1.0
75
-
-
-
lN4151
-
-
~N4154
35
lN4446
75
lN4447
75
lN4448
75
lN4449
75
1.0
1.0
-
1.0
1.0
1.0
-
-
Reverse
Current
VRnA
Reverse
Raverse
Junction Recovery
Current
@ 150"C Capacitance Time
@ OV
VRfCA
tRR
20
25
20
50
4pF
4nS
50
50
50
50
4pF
2nS
2nS
25 100
4pF
20
25
20
50
4pF
4nS
20
25
20
50
4pF
4nS
1.0
20
25
20
50
4pF
4nS
-
20
25
20
50
2pF
4nS
25 100
MECHANICAL SPECIFICATIONS
00·35
nn
L.::::::!J
5·20
SEMICONDUCTOR
PRODUCTS
_UNITRODE
IN4152,lN4305,lN4444
COMPUTER DIODESwitching
ABSOLUTE MAXIMUM RATINGS, AT 2S·C
FEATURES
• Metallurgical Bond
• Planar Passivated
• 00·35 Package
lN41S2
lN430S
lN4444
Peak Reverse Voltage ....................................................... 40V ............ 75V ............ 70V ......
Reverse Working Voltage ................................................. 30V ............ 50V ............ 50V ..... .
Average Rectified Current ................................................................. 200mAdc ...................... .
Surge Current, B.3 mS .......................................................................... 500mA ........................ .
Operating Temperature Range ................................................. -65·C to +150·C .............. .
Storage Temperature Range ..................................................... - 65·C to + 200·C ...............
DESCRIPTION
This series offers Metallurgical Bonding
and Is very popular for general purpose
switching applications.
ELECTRICAL SPECIFICATIONS (at 2S·C unless noted)
Type
Peak
Inverse
Vollage
(V)
Forward
Vollage
@O.lmA
Forward
Vollage
@O.25mA
Forward
Vollage·
@ 1.OmA
Forward
Vollage
@2.0mA
Forward
Vollage
@lOmA
min
max
min
max
min
max
min
max
min
Forward
Vollage
@20mA
Forward
Vollage
@ 100mA
max
min
max
min
max
-
lN4152
40
0.49
0.55
0.53
0.59
0.59
0.67
0.62
0.70
0.70
0.81
0.74
O.BB
-
lN4305
75
-
-
0.505
0.575
0.55
0.65
0.61
0.71
0.70
0.B5
-
-
lN4444
70
0.44
0.55
-
0.56
0.68
-
-
0.69
0.B2.
-
-
Reverse
Currenl
-
Reverse
Current
@ 150·C
VR
"A
Junction
Capacitance
@
OV
Reverse
Recovery
Time
2nS
Type
VR
(nA)
lN4152
30
50
30
50
2pF
lN4305
50
100
50
100
2pF
2nS
2pF
7nS
lN4444
50
50
50
50
0.85
1.0
I"
MECHANICAL SPECIFICATIONS
00·35
nn
SEMICONDUCTOR
~ PRODUCTS
5·21
_UNITRODE
COMPUTER DIODE
IN4153, JAN, JANTX & JANTXV IN4153
IN4534, JAN, JANTX & JANTXV IN4534
150mA
Switching Diode
FEATURES
DESCRIPTION
•
•
•
•
This device is particularly suited to
applications where tightly -controlled
forward characteristics and fast recovery
time are important.
Metallurgical Bond
Qualified to MIL-S-19500/337
Planar Passivated Chip
DO-34 or DO-35 Package
ABSOLUTE MAXIMUM RATINGS, AT 25·C
Reverse Breakdown Voltage ___________________________________________________ 75V
Peak Working Voltage __________________________________________________ ........ 50V
Average Output Current" ................................................... 150mA
Surge Current, 1ps
.................................... , ................... 2.0A
Operating Temperature Range ........... ; ........................ -65'C to +200'C
Storage Temperature Range ................... , .................. ,.65·C to +200·C
'Derate O.86mAdc1"C for TA above 25'C.
MECHANICAL SPECIFICATIONS
J, JTX & JTXV lN4153
J, JTX & JTXV lN4534
A
B
c
0
J. JTX & JTXV IN4534
INCHES
MILLIMETERS
.050-.075
1.27-1.91
.080-.120
2.03-3.05
1.0-1.5
25.4-38.1
.018-.022
.46-.56
A
B
C
0
00-34
00-35
lN4153
lN4534
J JTX & JTXV IN4153
MILLIMETERS
1.42-1.91
3.56-4.57
25.4 MIN.-38.1 MAX.
.46-.56
INCHES
.056-.075
.140-.180
1.0 MIN.-1.5 MAX.
.018-.022
nn
SEMICONDUCTOR
~ PRODUCTS
5-22
_UNITRODE
IN4153, JAN, JANTX & JANTXV IN4153
IN4534, JAN, JANTX & JANTXV IN4453
ELECTRICAL SPECIFICATIONS (at 25'C unless nuted)
Limit
VFI
IF = 100pAde
Vn
IF = 250 pAde
VF•
IF= 1 mAde
V",
IF=2 mAde
VFS
IF=lOmAde
VF•
IF=20mAde
Min
Max
O.490Vde
O.S50Vde
O.530Vde
O.590Vde
0.590Vde
O.670Vde
0.620Vde
O.700Vde
O.700Vde
O.810Vde
O.740Vde
O.880Vde
Limit
IR
VR = 50V
IR2
VR= 50V
T.= 150°C
Min
Max
-
-
-
0.051lAde
50llAdc
2.0pF
C
VR= 0
f = IMHz
TJ
.§ 100
= 175'e-V
t-
Z
uJ
0:
0:
/
V
~0:
I
1.0
I
.1
0:
0:
100'C
:J
t.>
uJ
III
0:
uJ
II / /
0.1
.2
.5
1.0
>
uJ
0:
I
'1
-- -
2sle
./
f--'
J
I
100'e
V r-
_r-
~
I
~
I
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
1.1
1.2
1.3
1.4 1.5
v, -
FORWARD VOLTAGE (VI
Production
Process
1. Raw Material
2. Factory
Processing
.....
~5'el
-" 10
I
V
20
f- l 50
V
I
100 II
140 130 120 110 100 90 80 70 60 50 40 30 20 10 a
/ I
V, -
V
t-
zuJ
25'C
j
II
/
1 .05
II
/
-
ITJ I
.005
0.01
.02
~ /'"
II
-"
75V
Reverse Voltage vs. Reverse Current
1'-- --65"C
II
10
0:
ou.
~
V/
::>
~
v~
-
0.001
.002
1000
2
Reverse
Breakdown
Voltage
IR = 5.0pAde
4ns
Forward Voltage vs. Forward Current
;(
t"
IF = IR = 10mAde
RL = 100 ohms
---I~.
Inspection Lot
Formed at
Final
Assembly
Operation
REVERSE VOLTAGE (V)
(% OF PIV)
*100 Percent Process
Conditioning
1. High-Temp Storage
2. Temp Cycling
3. Hermetic Seal Tests
-
*100 Percent Burn-In
1. Measurement of
Inspection Tests
to
Verify LTPD
Group A
Group B
Specified Parameters
2. Burn-In
3. Measurement of
Specified Parameters
to Determine Delta
---
*Order of the tests in the blocks shall be performed as shown.
Order of procedure diagrams for TX types only.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
5-23
PRINTED IN U.S.A.
IN4450, IN4451, IN44q3
COMPUTER DIODE
Switching
FEATURES
• Metallurgical Bond
• Planar Passivated
• 00-35 Package
ABSOLUTE MAXIMUM RATINGS, AT 25'C
1N44S0
1N44S1
1N44S3
Peak Reverse Voltage ...................................................... 40V ............ 40V ............ 30V ..... .
Reverse Working Voltage ................................................ 30V .:.......... 30V ............ 20V ..... .
Average Rectified Current ................................................................ 200mAdc ...................... .
Surge Current, 8.3 mS ......................................................................... SOOmA ........................ .
Operating Temperature Range ................................................ -65'C to +150'C .............. .
Storage Temperature Range .................................................... -65'C to +200'C .............. .
DESCRIPTION
This series offers Metallurgical Bonding
and Is very popular for general purpose
switching applications.
Ei.ECTRiCAi. SPECiFiCAliONS (at 2S"C unless noted)
Type
Peak
Inverse
Voltage
(V)
Forward
Voltage
@O.01mA
Forward
Voltage
@O.1mA
min
max
min
Forward
Voltage
@ 1.0mA
Forward
Voltage
@10mA
max
min
max
Forward
Voltage
@ 100mA
min
max
min
max
1N4450
40
-
0.54
0.52
0.64
0.64
0.76
0.80
0.96
40
-
0.42
1N4451
0.40
0.50
0.51
0.61
0.62
0.72
0.75
0.875
1N4453
30
0.43
0.55
0.51
0.63
0.60
0.71
0.69
0.80
0.80
0.92
Reverse
Current
@ 150"C
VR
Reverse
Current
/1"
Juncllon
Capacllance
@
OV
Reverse
Recovery
Time
4pF
4nS
Type
VR
(nA)
1N4450
30
50
30
1N4451
30
50
30
50
6pF
10nS
1N4453
20
50
20
50
30pF
-
50
ForWard
Voltage
@200mA
Forward
Voltage
@300mA
min
max
min
-
1.0
-
-
-
-
1.0
.
_.
max
-
I"
MECHANICAL SPECIFICATIONS
00·35
nn
SEMICONDUCTOR
~ PRODUCTS
5·24
_UNITRODE
IN4452, IN4607, IN4608
COMPUTER DIODE
High Conductance
DESCRIPTION
This series offers Metallurgical Bonding
and is specifically designed for high
conductance switching applications
such as core memories.
FEATURES
• Metallurgical Bond
• Planar Passivated
• High Conductance
• DO-35 Package
ABSOLUTE MAXIMUM RATINGS, AT 2S"C
lN4452
lN4607
lN4608
Peak Reverse Voltage ......................................................... 40V
85V
85V
Reverse Working Voltage ...................................................... 30V
50V
50V
Average Rectified Current ............................................................. 400mAdc ................. 500mAdc ..
Surge Current. 8.3 mS .................................................................... 1A ............................. ..
Operating Temperature Range ............................................................. -65"C to +150°C ............... ..
Storage Temperature Range ................................................................ -65°C to +200°C ............... ..
ELECTRICAL SPECIFICATIONS (at2S"C unless noted)
Type
Peak
Inverse
Voltage
Forward
Voltage
@O.lmA
min max
Forward
Voltage
@l.OmA·
min max
1N4452
1N4607
1N460B
40V
85V
B5V
0.4210.54
0.39 0.50
0.39 0.49
0.51 10.62 0.60 10.71 0. 71 o.B3
0.50 0.60 0.61 0.72 0.74 0.B7
1.0
0:95
0.50 0.60 0.61 0.71 0.74 0.85 0.81 0.93 0.B4 0.96
Type
Forward
Voltage
@ 600mA
min max
Forward
Voltage
@ lOOOmA
min max
1N4452
1N4607
1N460B
• In @ I, = I,
Forward
Voltage
@lOmA
min max
Forward
Voltage
@lOOmA
min max
30 150
50
100
50
100
Reverse
Current
@ lOO°C
Reverse
Current
@l50°C
VR
VR
/lA
50
50 1 25
25
Forward
Voltage
@350mA
min max
0~11
l
Reverse
Current
VR
nA
Forward
Voltage
@250mA
min max
/lA
-1-
Forward
Voltage
@400mA
min max
Junction
Capacitance
@
OV
Reverse
Recovery
Time
trr
4pF
4pF
50nS
10nS
IOnS
=10
Forward
Voltage
@500mA
min max
=I~
=lOrnA, I..e =lrnA
MECHANICAL SPECIFICATIONS
00-35
n nPRODUCTS
SEMICONDUCTOR
L::::J
5-25
_UNITRODE
--
COMPUTER DIODE
IN4500, JAN & JANTX IN4500
500mA
Switching Diode
FEATURES
• Metallurgical Bond
• Qualified to MIL~S-19500/403
• Planar Passivated Chip
• 00-35 Package
DESCRIPTION
This device is a fast switching. high conductance diode for military, space, high rei
and other systems.
ABSOLUTE MAXIMUM RATINGS, AT 25'C
Reverse Breakdown Voltage ........................................................................................... 80Vdc
Peak Working Voltage .........................................:................................................................ 75Vpk
Average Output Current ............................................................................................ 300mAdc
.Surge Current, lsec· ................................................................................................................ O.5A
ll'sec ................. :............................................................................................. 4.0A
Operating Temperature Range .....
.. ............................ :................. -65'C to +175'C
Storage Temperature Range ...................................................................... -65'C to +200'C
MECHANICAL SPECIFICATIONS
J & JTX 1N4500
00-35
IN4500
A
-.l.
=~II
0
p=4=
Tf---B --+-c~
A
B
C
o
INCHES
.060-.107
.140-.300
1.0 MIN.-1.5 MAX.
.018-.022
MILLIMETERS
1.52-2.72
3.55-7.62
25.4 MIN.-38.1 MAX.
,46-.56
nn
SEMICONDUCTOR
~ PRODUCTS
5-26
_UNITRODE
IN4500. JAN & JANTX IN4500
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
c
Limits
VF1
IF = 250pAdc
VF2
IF = 1.0mAdc
VF1
F=10mAdc
VF4
IF=20mAdc
VF,l/
IF = 300mAdc
mVdc
470
560
mVdc
520
600
mVdc
640
720
mVdc
670
770
Vdc
Minimum
Maximum
Bv
I.
V.=75Vdc
I. = 51'Adc
nAdc
Minimum
Maximum
pAdc
nsec
100
/;
;;:
§.
...z
100
C
0.001
.002
~£
'- --GS'C
/ / /- irf II
/
~
2S'C
100'C
c:
UJ
c:
1.0
-"
10
-l--
-:--
2sb
V V
I
Lots proposed
for
non-TX
types
./
--
,,- V/
J
I
I--- I-- I--
V
100<;.;::
-
.L ' - -
r ,t::V-
v, -
....
__ f--""
5
50
I
100 I
140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
FORWARD VOLTAGE (V)
Inspection lots
formed atfinal
assembly operation
(sealing)
0.1
.2
I
~ -cis'c'
20
I
.5 .G .7
v, -
c:
c:
0: .5
"'>0: .2.1
"' .05
.5
.02
...
-
--
500
200
I
l1ljoC
lOO
50
~
!Z
20
,.".
10
5
0:
"'0: 2
::J
1
(,)
.5
II>
0:
>
"' .2
"'0: .05.1
.5
.02
.01
.005
.002
.001
100°C
lOD°C
"'
'lso C
.01
_6So C
.005
.002
.001
10 20 30 40
50
60 70 80
90
100 110 120 130 140
L
_6So C
10
20
30 40
50
60 70
80 90 100 110 120 130 140
PERCENT OF REVERSE WORKING VOLTAGE (%)
PERCENT OF REVERSE WORKING VOLTAGE (%)
UNITROOE. SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404. FAX (617) 924-1235
'l1j0C
5-31
PRINTED IN U.S.A.
..
COMPUTER :DIODE
BAW24-BAW27
BAW75-BAW76
Switching
DESCRIPTION
This series offers lVietaliurgical Bonding
and is very popular for general purpose
switching applications:
FEATURES
• Metallurgical Bond
• Planar Passivated
• 00-35
ABSOLUTE MAXIMUM R~TINGS, AT 25"C
BAW24
BAW25
BAW26
BAW27
BAW75
BAW76
Peak Reverse Voltage ............. , .......... '... 50V ........... 50V ........... 75V .........•. 75V ........... 35V ........... 75V
Average Rectified Curre"t .................... 600lTlA ....... 600mA ....... bOUmA ....... 600mA.; ..... 300rnA ....... 300mA
Peak Forward Current ......... : .............. 400mA ....... 400mA ....... 400mA ....... 400mA ..... ;. 500mA ....... 500mA
Operating Temperature Range ................................................. -65"C to +150"C.; ............................ .
Storage Temperature Range ........... , .................................... ; ... -65"C to +200"C; .............................. .
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
Forward Voltage
(Max V)
Peak
Inverse
Voltage
Type
(V)
@30mA
BAW24
50
-
@50mA '
1.0
BAW25
50
-
BAW26
75
BAW27
75
-
BAW75'
35
'1.0
BAW76
75,
-
Reverse
Current
Junction
.Capacitance
@OV
Reverse
Recovery
Time
tRR
@ 100mA
@200mA
(V.,
(IlA)
(pF)
(nS)
-
40
0.1
4
6
0.8
-
-
40
0.1 .
4
6
-
1.0
-
60
0.1 .
4
6
-
1.0·'
40.
0.1
4
6
-
35
5.0
4
4
75
5.0
2
4
--
1.0
.
..
,~
MECHANICAL SPECIFICATIONS
00-35
nn
SEMICONDUCTOR
.~ PRODUCTS
5-32
_UNITRDDE
BAY41-BAY43
BAY60
BAX12
COMPUTER DIODE
Switching
FEATURES
DESCRIPTION
• Metallurgical Bond
• Planar Passivated
• DO·35
This series offers Metallurgical Bonding
and is very popular for general purpose
switching applications .
ABSOLUTE MAXIMUM RATINGS, AT 25°C
BAV41
BAV42
BAV43
BAV60
BAX12
Peak Reverse Voltage •...........................• 40V ............. 60V ............. 80V ............. 25V ............. 90V
Average Rectified Current ........................ 225mA .......... 225mA .......... 225mA .......... 115mA .......... 400mA
Peak Forward Current. ........................... 600mA .......... 600mA .......... 600mA .......... 225mA .......... 800mA
Operating Temperature Range ................................. -65°C to + 150°C ............................................... .
Storage Temperature Range ............................•...... -65°C to +200°C .............•..................................
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
Type
Peak
Inverse
Voltage
Maximum
Forward Voltage
Reverse
Current
Reverse
Recovery
TimeTrr
Condition
10/10/1
@ 10mA
@30mA
@50mA
V
V
V
V
V
V
VR
IlA
pF
ns
-
-
-
1.0
-
40
5
5
8.5
-
-
-
1.0
-
60
5
5
15
-
-
-
1.0
-
80
5
5
15
V
@ 100mA @200mA @400mA
Junction
Capacitance
@OV
BAY42
60
BAY43
80
-
BAY60
25
-
1.0
-
-
-
-
25
.1
4
4
BAX12*
90
.75
-
.84
.90
1.0
1.25
90
100
20
15
BAY41
40
*Maximum reverse energy 5mW/second.
MECHANICAL SPECIFICATIONS
00·35
I
nn
SEMICONOUCTOR
~ PROOUCTS
Q-33
_UNITRODE
..
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
5·34
PRINTED IN U.S.A.
PIN DIODES
Product Selection Guides ..................................... , ..... 6-3
Mechanical Specifications . ....................................... . 6-6
Datasheets .................................................... 6-10
UNITRODE • SEMICONDUCTOR PROOUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
6-1
PRINTED IN U.S.A.
..
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
6-2
PRINTED IN U.S.A.
PIN DIODES
PRODUCT SELECTION GU I DE
For applications information, see PIN Diode Designers' Handbook and Catalog (PD-5OOC)
SWITCHING PIN DIODES
0.5
0.5
10
10
1.7
300
0.4
2.5
350
300
1.0
200
0.6
0.25
150
70
6
4
5.0
5.0
25
25
35
0.6
15
15
15
1.0
1.0
2.5
2.0
1.5
HIGH POWER AITENUATOR & MODULATOR PIN DIODES
LOW CAPACITANCE SWITCH AND AITENUATOR PIN DIODES
LOW DISTORTION AITENUATOR PIN DIODES
TWO WAY ,RADIO ANTENNA SWITCHES
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
6-3
PRINTED IN U.S.A.
-
PRODUCT SELECTION GUIDE
PIN DIODES
For applications information, see PIN Diode Designers' Handbook and Catalog (PD-500C)
LDW RESISTANCE ANTENNA SWITCHING PIN DIODES
MICROSTRIP PACKAGED PIN DIODES
RADIATION DETECTOR
PACKAGE STYLES
L -_ _ _ _ _(}~_ _ _ _~
====
1II 241
---.l
.
~
11%1 HE..
=\=9=5l=!\
X=.
.292.274
MAX·,264
17.42116.961
MAX. 16.711
13.021 .119
12.821 .111
cu RIBBON
t
.190
.IBO
14.B31
14.571
CATHODE
(2 PLACES)
:m
(.035) MAX. TO
FIRST FULL THO.
CATHODE
X
:gg~ TH~
g:~~l x ::~~:
4·40NC·2
4·40NC·2
STYLE E
RIBBON LEADS
I~11;~1-1
MIN.
~
'L...X'-------"~~---=+-i
:T
,090 x .017 THK
.OBO
.015
YELLOW
:~:~;: x ::~:
CATHODE MARK
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
6·6
PRINTED IN U.S.A.
UM6000 UM6200 UM6600
MECHANICAL SPECIFICATIONS
.094
.104
(2.39)
STYLE A
STYLE B
(2.64)
TO GLASS
cO..
MAX.
1.751
.975
5.08
124.81 +1.2001
MAX.
t
.975
124.81
MIN.
1
=~=
11DIA.~781
MIN'l~! 1
LJdI i
008 1.201
.070 11.;81
DIA.
r
~I .j'N I,
.040
--,--
11.021
.070
MAX.
OIA.
MAX .
YELLOW CATHODE BAND
,019,,021
1.482,,5301
..
BLACK
\
CATHODE OO·T
.0315
.0295
STYLE C
CARTRIDGE
.225
i;07521
.064
i~~~1
STYLE E
I--- 15.2111 .095
.083
f.-- 12.411
11.521 ----
-1"
.06411.~:1··· .-~'I Jr
.06011.521-OlAf
.12513.181
.115 (2.92)
CIA.
~
..- .
.200
I~~~.I
L'.
(2.121
I
t ~1~I t- ~~N81l
.975
RIBBON LEADS
~
.975
r7c=::J
1
I
LJC
r
I .0701
(1.631.064
11.521.060
11271
:231
(1:02) X(:,81 THK
. OIA.
:g~g
12.131.084
:gg~
11.7 81 1
~!~'.
YELLOW
CATHODE MARK
16-~!.'-074
CATHODE
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN MA 02172
TEl. (617) 926-0404. FAX (617) 924-1235
6-7
PRINTED IN U.S.A.
UM4900
MECHANICAL SPECIFICATIONS (continued)
UM 4900 Series
Dimensions -
English/Metric
STYLE A
STYLE B
.094
.088
12.39}
12.24}
r
TYP
.014 1.36} MIN .
. 125 13.18} TOGLASS~I>-I
OIA.
MAX.
~
-=:.:.rt,
BLACK
u...-"'4Tunn~
II
I
f = U -·iioT-l 12.321 OIA.
12.271
.0915
.0895
STYlE C
STUD
STYLE D
INSULATED STUD
.159
.154
r-
:~:g~: ~ 11.24}
i~:'i5}
OIA
r
.035
1.89} MAX. TO
I
MIN. T Y P . !
13.18}xll.5~T
4'==F==',.125 DIA. x .060
BeO CERAMIC
1
.:
,r'--T~,
1500} 197
FIRST FULL THO. \ r............-
.600
115.2}
I
.053
......--i"i'93!14:50l :177
.:==::1==::~:;:::::::::;:rL..J. llT15}+
.076
.069 14.75}.187
CU RIBBON '2 PLACES)
:30~~lx :~i~:
4.40 NC.214tOl.177
.128
.121
j
222
:~g~. 15.641
15.18·I MAX .
14.981
I
1
-.035--,
1.891 MAX. TO 14.831 .190
FIRST FULL
1457} 180
.J .
THO
THK
.008
.005
4·40 NC·2
STYLE E
RIBBON LEADS
.975
~
I--- 124.81 -1..
I
MIN.
lJ.
.200
.975
15.081..1.-- 124.81
MAX.
:=TO
13.291 X 1.431 THK
12.031 1.381
.090
.017
.080
.015
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
J
MIN. - - ,
[=:J
OIA.
YELLOW
MAX.
CATHODE
MARK
6-8
PRINTED IN U.S.A.
UM7000 UM7100 UM7200 UM7300
MECHANICAL SPECIFICATIONS (continued)
UM7000 UM7100 UM7200 SERIES
UM7300 SERIES
Dimensions -
English/Metric
STYLE A
STYLE B
.125
.140
L(3'18Ij
(3.581
TVP.
.020 1.51 MIN.!
TOGL~r-
~
TFo2
.090 (2.291
CIA.
MAX.
g:~I~
~
.975 j.25O
(24.81
(6.351
Mli'..1..!. MAX.
t1
.975
124.81
MIN.
~c::::=::J
~
-r-.055
.029 1.741
.027 1.711
.0465
BLACK.
.0445 CATHODE DOT
CIA.
11.401 ]
OIA.
MAX.
YELLOW
T090
i2.291
L
CATHODE BAND
CIA.
MAX.
STYLEC
STUD
STYLE D
INSULATED STUD
.100
.187
(4.751 HEX.
I:r:;;;lr-
lOlA.
if:1
~(15.21.600 ~
r-MIN. TVP.
[1.991
~
I
I
\
,--
I
(3.181 x (1.521 THK
(6.kol
.125 OIA x .060
.260
.241 (6.1~AX .
T
*='*== ",<==::;/>;==;"'=:"800 CERAMIC
(6.101 .240
.035
....-"=='--T......
(5.461 .215
1.891 MAX. TO
(2.441 .096
FIRST FULL TH·O·l '-',--_,...--' (2.291.090
----1_
~
t-
.231 (5.871
I
(6.351.250
CU RIBBON (2 PLACES)
(5:911.235
(0.131 .005 THK
(0.151.006
.
440NC._2_ _ ~
4-40NC'2
./
CATHODE
STYLE E
RIBBON LEADS
I
~
.975
124.81
MIN.
1.
250
16.351
MAX.
~
.975
(24.81
MIN.
~~
1
-rD~CJ
~090
.070 x (.28) THK.OIA.
.060
(.23)
MAX.
(1.78) X .011
(1.52)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA02172
TEL. (617) 926·0404· FAX (617) 924·1235
YELLOW
CATHODE MARK
.009
6-9
PRINTED IN U.S.A.
1 N5767 (5082 - 3080)SERI ES
1N5957 SERIES
PIN DIODE
Features
• Useful attenuation from 1 jAA. to 100 mA bias.
• Capacitance below 0.4 pF.
• Low distortion in switches and attenuators.
• Rugged Unitrode construction.
Description
The 1N5767 and 1N5957 PIN diodes are switch and attenuator applications.
based upon iow capaciiance PiN chips
The' N5957 is primarily used as an attenudesigned with long minority carrier lifetime, . ator PIN diode and is particularly suitable
and thick intrinsic width. Thus operation as wherever ';current controlled, wide dynamic
low as 1 MHz is possible with low distortion. range resistance elements are required. The
Additionally, the low diode capacitance
1N5957- has also been characterized for the
allows useful operation well into the micro- 75Q attenuator, commonly employed in CATV
wave frequency range.
systems.
The 1N5767 (5082-3080) is a general purpose low power PIN diode designed for both
MAXIMUM RATINGS
Reverse Voltage
(V R) - Volts
(IR = 10 IAA)
Average Power Dissipation: (25 'C)
Free Air (P,J
100V
. 400 mW (Derate linearly to 175 'C)
Operating and Storage Temperature Range
nn
SEMICONDUCTOR
~ PRODUCTS
6-10
_'UNITRDDE
1N5767 (5082-3080) 1N5957
Electrical Specifications (25 DC)
Test
Symbol
1N5767
(5082·
3080)
1N5957
Total Capacitance (Max)
Series Resistance
Cr
Rs
Series Resistance
Rs
Series Resistance
Rs
Carrier Lifetime (Min)
T
0.4 pF
1000Q(min)
2000Q(tyP)
SQ(max)
4Q(typ)
2.5Q(max)
1.5Q(typ)
1.0 JAS
IR
10,..A
Reverse Current (Max)
Current for Rs
75Q
(typ)
Return Loss (typ)
=
-
30dB
0.4 pF
1500Q(min) .
3000Q(typ)
SQ(max)
6Q(typ)
3.5Q(max)
2.0Q(typ)
1.5(min)
2(typ)
10,..A
O.S mA1.2 rnA
30 dB
-
-40dB
-50dB
-60dB
-65 dB
175
Second Order Distortion
(typ)
Third Order Distortion (typ)
0.7 rnA
RESISTANCE
VS FORWARD CURRENT
(TYPICAL)
~
I"
Conditions
50V,1 MHz
10 ,.,A, 100 MHz
20 rnA 100 MHz
100 rnA, 100 MHz
k
=
10 rnA
V R = Ratin~
Rs = 75Q
Diode terminates
75Q line
Bridged tee attenuator
atten.
10 dB
50 dBmV
Pin
f; = 10 MHz,
f2 = 13 MHz
=
=
FORWARD VOLTAGE
VS FORWARD CURRENT
(TYPICAL)
,
I
100
lN5767
,'
L1L .3:
Li1i I,£~
i"
,
I'
'-
10.0
i
;(
:!
'I
oS
I-
1'571
I(~
1
0.001
llill
0.01
a:
a:
ac
i
a:
~
a:
I
0.10
1.0
Diode Current {mAl;>
10.0
-t-
j
Z 1.0
w
,
1~~9!7
J
0.10
,
i
~
100 .0
I
0.01
.L
0.00 1
a
UNITRODE • SEMICONDUCTOR PRODUCTS
550 PLEASANT STREET·. WATERTOWN, MA 02172
TEL. (617) 926:0404 • FAX (617) 924·1235
6-11
I
.2
.4
.6
.8
1.0
FORWARD VOLTAGE (VOLTS)
PRINTED IN U.S.A.
..
1N5767 (5082-3080) 1N5957
'lUTAL CAPACITANCE VI
REVERSE VOLTAGE
.8
~
.7
1l
!
·u.,
.6
""'
1 MHz
B
.5
"iii
~
.4
10~r-
.3
100 MHz
I
(5
5.M!":,z
i'
I
.2
5
iO
50
ZU
100
200
500
1000
V.- Reverse Voltage (V)
.PARALLEL RESISTANCE VS REVERSE VOlTAGE.
100
........ P'"~IJ~~
:!!.
CD
\J
"os
"iii
~
£100'MHz
-"",,,,,.
C:
50
...
"
II.
I--"
........
0:
]!
~
os
1.0G~z
:.3.0GHz
~-
20
I
Ii:
10
2
5
10
20
50
100
200
500 1000
V. - Reverse Voltage (V)
MECHANICAL SPECIFICATIONS
L_..._.
51 ~~=f~
(1.93)
(24.7)
I
1
I
.975
.021 (.530)
.014 (.356)
DIA .
MIN.
(24.7)
Dimensions: Inches (MllIlmeters)
UNITROOE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
6-12
~RJNTED
IN U.S.A.
UM4000 SERIES
UM4900 SERIES
PIN DIODE
Features
.. Power dissipation to 37.5W
• Voltage ratings to 1000V
• Series resistance rated at O.5Q
• Carrier lifetime greater than 5",s
Description
The UM4000 and UM4900 series feature
high power PIN diodes with long carrier lifetimes and thick I-regions. They are especially
suitable for use in low distortion switches
and attenuators, in the HF through S band
frequencies. While both series are electrically equivalent, the UM4900 series have
higher power ratings due to a shorter thermal
path between chip and package. High charge
storage and long carrier lifetime enable high
RF levels to be controlled with relatively low
bias current. Similarly, peak RF voltages can
be handled well in excess of applied reverse
bias voltage.
Both series have been fully qualified in
high power UHF phase shifters and megawatt peak-power duplexers, accumulating
thousands of hours of proven performance.
Both types have been used in the design of
antenna selectors and couplers, where inductive and capacitive elements are switched in
and out of filter or cavity networks.
MAXIMUM RATINGS
Average Power Dissipation and Thermal Resistance Ratings
Package
Condition
UM4000
25°C Pi n Temperature
A
B&E (Axial Leads) Y2 in. (12.7mm) Total Length
to 25°C Contact
B&E (Axial Leads) Free Air
C (Studded)
25°C Stud Temperature
D (Insulated Stud) 25°C Stud Temperature
Po
25W
6°C/W
12W 12.5°C/W
2.5W
25W
18.75W
Peak Power Dissipation Rating
All Packages
1 "'s Pulse (Single)
at 25°C Ambient
IOperating and Storage Temperature Range:
UM4900
fJ
6°C/W
8°C/W
Po
37.5W
fJ
4°C/W
12W 12.5°C/W
2.5W
37.5W
25W
4°C/W
6°C/W
100 KW
- 65°C to + 175°C
n. n
L:::::J
6·13
SEMICONOUCTOR
PRODUCTS
_UNITRODE
III
UM4000 UM4900
Voltage Ratings (25 GC)
Reverse Voltage
(VR) - Volts
(IR = 10/A Amps)
Types
100
200
400
600
1000
UM4901
UM4902
UM4001
UM4002
-
UM4906
UM4006
UM4010
-
Electrical Specifications (25 GC)
Test
UM4000
UM4900
Symbol
Total Capacitance (Max)
Series Resistance (Max)
Parallel Resistance (Min)
Carrier Lifetime (Min)
Reverse Current (Max)
I-Region Width (Min)
Conditions
3 pF
O.SQ
10 KQ
5/AS
10JAA
150/Am
CT
Rs
Rp
T
IR
W
100V, 1MHz
100mA,100MHz
100V, 100MHz
IF
10mA
VR
Rating
=
=
-
TYPICAL FORWARD RESISTANCE
vs
FORWARD CURRENT
(F = 100 MHz)
TYPICAL PARALLEL RESISTANCE CHARACTERISTIC
1000
/ ' MnZ
.i1 sao
t5
z
200
;: 100
§
C/)
w
~ lDD~II~IIII~lltl~11
iii
50
'"
20
;j
Ii;
/'
/
/'
/
:;;!
w
10
'"~
a::
o 10.0
---= ~
I
a::
~
1'D Mn•••n••
a::
.
o
0., .
.
.
.
.
-
f..--
","
2
10
Vo -
r--
..--100 MHz
~
'j
~/
~
20
MHz
V
/
./
----/
..J
(ij
7fo
/'
...___1 GHz
/'
50
......--~oo MHz
---
.100
3 GHz
200
500
1000
REVERSE VOLTAGE (V)
.
.01 L-J...LllWIL--'-I..l.JJ,1IIL..1...ll1J.LW..--L.l.I.JJJJW--LLLWIL...L.L.LLUJlI
lOrnA
lOOmA
lA
llJ.A
10J.lA
100pA
lmA
IF - FORWARD CURRENT
UNITRDDE • SEMICONDUCTOR PRDDUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
6·14
PRINTED IN U.S.A.
UM4000 UM4900
POWER RATING
STUD MOUNTED DIODES
POWER RATING
AXIAL LEADED DIODE
40r---r---~--'----r---r--~--~
..
°0~~2~5--~ro~~7~5--~1~OO~~1~2~5--~~~
STUD TEMPERATURE lOCI
T L • LEAD TEMPERATURE (oC)
DC CHARACTERISTICS
FORWARD VOLTAGE
VS
FORWARD CURRENT (TYPICAL)
TYPICAL CAPACITANCE CHARACTERISTIC
1A
12
ii:'
....eu
10
~
U
8
z
«a..
«
u
...I
i~MHZ
I
~
4
-....::
cS
1100 MHz 2
5
2
10
v, -
"i 1
10.
5.0
.......
2.0
...u~
z
0
...;:!il
::;;
...a:
...
..."'
...
..
J:
I-
::;)
lOrnA
"
;:
a:
~
I
1
.!!-
~~
20
50
100
200
500
1000
1mA
I
100JJA
REVERSE VOLTAGE (V)
THERMAL IMPEDANCE
~
I
::>
t:; ~ ~
~
0
l-
'""
J~
6
I
l00mA
10jJA O
0.2
I 0.4
0.6
0.8
1.0
V F - FORWARD VOLTAGE IV)
UM4000
ORDERING INSTRUCTIONS
I:::;:F-" ~
1.0
.5
UM4900:=
Part numbers of Unltrode PIN Diodes consist of the
letters UM followed by four digits and one or two letters.
The first two digits Indicate the diode series, the next
two digits specify the minimum breakdown voltage In
hundreds of volts. The remaining letters denote the
package-style. Reverse polarity (anode large end cap) is
available for the C style and denoted by adding second
letter R•
•2
V
.1
.05
.02
.01
.005
I
I .002
_" .001
I I
10-6
10-5
10-4
10-3
10-2
PULSE WIDTH (SEC)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
I I
I
I I
I I
10-1
6-15
PRINTED IN U.S.A.
PIN DIODE
UM4300 SERIES
UM7300 SERIES
For Attenuator Applications
Features
• Extremely low distortion performance
• Useful frequency range extends below 500 KHz
• Power dissipation to 20W (UM4300)
• Capacitance as low as 0.7 pF (UM7300)
• Voltage ratings to 1000V
Description
The UM4300 and UM7300 series combine a
diode chip of extremely thick intrinsic region
with a low thermal resistance construction,
This results in diodes uniquely applicable to
very low distortion linear attenuators and
specialized switching functions. The UM4300
series, with large cross-sectional chip area
offers the highest power capability, of the
two series. The UM7300 series offers lower
capacitance.
Both diode series are intended for use in
linear attenuators operating from HF to
beyond 1 GHz. Low distortion at low frequencies is a result of transit time frequencies
below 5 MHz.
Operated as RF switches, either diode
series can be operated at low dc reverse bias
voltages, to hold off much higher RF voltage
levels.
MAXIMUM RATINGS
Average Power Dissipation and Thermal Resistance Ratings
Package
A
B&E (Axial Leads)
B&E (Axial Leads)
C (Studded)
D (Insulated Stud)
Condition
UM4300
(J
Po
25°C Pi n Temperature
1f2 in. (12.7mm) Total Lead
Length to 25° C Contact
Free Air
25°C Stud
25°C Stud
Peak Power Dissipation Rating
All packages
1/As Pulse (Single)
at 25·C Ambient
Operating and Storage Temperature Range:
20W
7.5°C/W
10W
2.5W
20W
15W
15°C/W
UM7300
(J
Po
7.5W
4W 37.5°C/W
1.5W
7.5W
20°C/W
25°C/W
6W
7.5°C/W
10°C/W
100 KW
500 KW
- 65 DC to
20°C/W
+ 175 DC
nn
SEMICONDUCTOR
~ PRODUCTS
6·16
_UNITRDDE
UM4300 UM7300
Voltage Ratings (25°C)
Reverse Voltage
(VR) - Volts
(lR = 10~)
Types
100V
200V
600V
1000V
UM4301
UM4302
UM4306
UM4310
UM7301
UM7302
UM7306
UM7310
Electrical Specifications (25°C)
Test
Symbol
UM4300
UM7300
Total Capacitance (Max)
Series Resistance (Max)
Series Resistance (Min)
Carrier Lifetime (Min)
Leakage Current (Max)
I-Region Width (Min)
CT
Rs
Rs
2.2 pF
1.5Q
1000Q
T
61lS
IR
W
10,..A
250tJm
0.7 pF
3.0Q
3000Q
4.0tJS
10,..A
250tJm
Conditions
100V, 100MHz
100mA, 100MHz
10 ,..A, 100MHz
IF =10mA
V R = Rating
-
TYPICAL DC CHARACTERISTIC
FORWARD VOLTAGE
VS FORWARD CURRENT
TYPICAL FORWARD RESISTANCE
VS FORWARD CURRENT (F =' 100 MHz)
IA
I
10K
~
II
lOOmA
If
j
f0-
~1000
u
.
:;;
Z
in
~ 100
r-
~
~
~
l-
..~ ~
C
II:
t;
:::>
u
0:
• UM7300
C
3:
~ ·U~~~~O
111111
WI
~ 10.0
on
II:
1
lOrnA
Q
I"
o
..L LL
W
0:
0:
r-- fo"UM
0:
...
Q
IUIlI.
1111111
.Wl
1111111
1.0
IWIll
'HJ.l1I
I
~
UM73
.... .L
JI
ImA
.L
r-...
11
100ilA
IIllL
11111111
01
I1'A
10l'A
l00l'A
lmA
lOrnA
I 11111 I
l00mA
I I
lA
IF - FORWARO CURRENT
I If
10ilA
a
0.2
Q.4
0.6
0.8
1.0
1.2
1.4
VF - FORWARD VOLTAGE
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL (617) 926·0404. FAX (617) 924·1235
6·17
PRINTED IN U.S.A.
UM4300 UM7300
PARALLEL RESISTANCE VS REVERSE VOLTAGE
UM4300
UM7300
lOOK
SOl(
§
s:
~
20K
en
a:
51<
'"--'
:I
2K
..
500
UJ
~:.L
()
z lOOK
;:!
--'
UJ
UJ
.'"
IL
UJ
--'
--'
I--
10K
~
en
100MH;;m
0.5GHz
1.0GHz
3:0GHz
10K
~
I-'
IK
I
~
a:
l
'"
200
ILII
Lit
lilll
11111
IK
10
11111
1000
100
100
11111
10,000
5
2
10
50
100
1000
200
II!! -REVERSE \/OlTAGE M
RtVtH~t vOLTAGE ivl
VR -
20
TOTAL CAPACITANCE VS REVERSE VOLTAGE
UM4300
6.0
" l'j'l!l
.L;:
.e
w
UM7300
6
.
~
5MH z
u
1O!~~
--'
~
~
2.0
...I
u
11 'i!
;;:
l
~
UJ
~
u
~ 4.0
>--
I,
4
~
"\
<5
f\
f"'. r""~
~
3
!
NJ
5~Jz
--'
~
...
I
1 MHz
2
I
10 MHz
,
I
I
I
4
i
()
~
':>lOOMH z
0
I >l°OlIi
I~
i"'i!Io
II
10
2
o
II
r-- .....t'20
50
100
200
SOIl
1000
VR - REVERSE \/OlTAGE M
2
5
10
50
20
100
200
500
1000
VR - REVERSE BIAS VOLTAGE (V)
POWER RATING AXIAL LEADED DIODE
UM4300
16r----,--,.--r-
UM7300
~
Z
12
0
..
;::
..:
10
in
'"is
'"S-w
.
..
O
X
..:
:;
I
0
50
75
100
125
TL - LEAD TEMPERATURE 1°C)
TL - LEAD TEMPERATURE 1°C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
6-18
PRINTED IN U.S.A.
UM4300 UM7300
UM43OO1UM7300
POWER RATING
STUD MOUNTED DIODES
NORMALIZED Rs VS TEMPERATURE
20
1.3
law
~
~
z
o
"
15W
15
ili
ca:
ca
"
"- "I"
I'"
," I"
""' I"
'"
-..........
u;
'iii
.
.
;;:-
~
:;;
.......
6W
o
'C
0
UM7300D
i5
~
...............
........... I""'-...
.!::!
iD
E
'" .,
~
25
50
75
100
125
150
/
V
V
V
/
V
.7
-60 -40 -20
~
o
/
.9
.8
~
o
1.0
0
z
~'\.
..............; to-..
/
'C
UM730QC
~
5
1.1
QI
a:
'\
lC
""
c:
I'\.
10
w
/""
1.2
()
"' \UM4300C
I'..
~UM4300~
i=
~
..
0
+20 +40 +60 +80 +100 +120
Temperature (Oe)
175
STUD TEMPERATURE (oC)
PULSE THERMAL IMPEDANCE VS PULSE WIDTH
~
ORDERING INSTRUCTIONS
100. 1-+1-Hf!!1I-++HIf1ll-l-++
e..
Part numbers of Unitrode PIN Diodes consist of the
letters UM toll owed by four digits and one or two letters.
The first two digits indicate the diode series, the next
two digits specify the minimum breakdown voltage in
hundreds of volts. The remaining leUers denote the
package style. Reverse polarity (anode on stud end) is
available in C or 0 Styles and denoted by adding second
letterR.
1.10'
I
~
~
.
~
For. Example:
.1.
'1 Series 73001
I
fStyleCl
Reverse polarity available in C style. Part number
designated by adding R.
.01 . . . . . .
10-'
UMJJt3i0l!GJ
~
10-'
PULSE WIDTH (sec)
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
6-19
PRINTED IN U.S.A.
UM6000 SERIES '.
UM6200 SERIES
UM6600 SERIES
PIN DIODE
Features
• Capacitance specified as low as 0.4 pF (UM6600)
• Resistance specified as low as 0.4Q (UM6200)
• Voltag,e ratings to 1000V
• Power dissipation to 6W
Description
These series of PIN diodes are designed cessfully in switGhes in which low::insertion
for applications requiring small package size loss at low bias current is required. '
The "A" style package for this series is the
and moderate average power handling capability. The low capacitance of the UM6000 smallest Unitrode PIN diode package. It has
beeii USed successiuiiy in many microwave
and U~.1S500 allow-vs them to be used as series
switching elements to 1 GHz. The low resis- applications using coaxial, microstrip, and
tance of the UM6200 is useful in applications stripline techniques at frequencies beyond
where forward bias current must be mini- X-Band. The "B" and "E" style, leaded packages offer the highest available power dissimized.
pation for a package this small. They have
Because of its thick I-region width and
long lifetime the UM6000 and UM6600 have been used extensively as series switch elements in microstrip circuits. The "C" style
been used in distortion sensitive and high
peak power applications, including receiver package duplicates the physical outline
protectors, TACAN, and IFF equipment. Their available in conventional ceramic-metal
low capacitance allows them to be useful as packages but incorporates the many reliabilattenuator diodes at frequencies greater ity advantages of the Unitrode construction.
than 1 GHz. The UM6200 has been used suc--
MAXIMUM RATINGS
Average Power Dissipation and Thermal Resistance Ratings
Package
UM6000
UM6600
Condition
PD
A&C
25°C Pin Temperature
B&E (Axial Leads) 1/2 in. (12.7mm) Total Lead Length
to 25°C Contact
B&E (Axial Leads) Free Air
UM6200
(J
6W
25°C/W
2.5W
0.5W
60°C/W
PD
(J
4W 37.5°C/W
2.0W·
O.5W
75°C/W
-
Peak Power Dissipation Rating
All Packages
1 j.tS Pulse (Single)
at 25°C Ambient
Operating and Storage Temperature Range:
UM6000 '- 25 KW
UM6200 - 10 KW
- 65°C to
+ 175°C
n
L::::Jn
6-20
UM6600 - 13 KW
SEMICD.NDUCTD. R
PRODUCTS
.
_UNITRDDE
UM6000 UM6200 UM6600
Voltage Ratings (25 ac)
Reverse Voltage
(V R) - Volts
(lR = 10 IJA)
100V
200V
400V
600V
1000V
Types
UM6001
UM6002
UM6006
UM6010
UM6201
UM6202
UM6204
UM6601
UM6602
-
-
UM6606
UM6610
Electrical Specifications (25 ac)
Test
Total Capacitance (Max)
Series Resistance (Max)
Parallel Resistance (Min)
Carrier Lifetime (Min)
Reverse Current (Max)
I-Region Width (Min)
Symbol
CT
Rs
Rp
T
IR
W
UM6600
0.4 pF
2.5Q
300 KQ
1.0 !-IS
10 !-IA
150 !-1m
TYPICAL SERIES RESISTANCE
VS
FORWARD CURRENT
(F = 100MHz)
UM6000
0.5 pF
1.7Q
300 KQ
1.0 !-IS
10 !-IA
150 !-1m
UM6200
1.1 pF
O.4Q
350KQ
0.6 !-IS
10 !-IA
40 !-1m
Conditions
100V,1MHz
100mA,100MHz
100V, 100M Hz
IF
10 mA
VR
Rating
=
=
-
DC CHARACTERISTICS
FORWARD VOLTAGE VS CURRENT
lA
/
IL J
100 mA
...z
UJ
0:'
0:
I II
L
:::J
in
u
":z:
«
CI
0:
Q
10mP
, =UM6200
UM6000
UM6600
~
;;:
'"'"
0:
~
I
J
.!'lmA
I
J)
100l'A
FORWARD CURRENT
1
10l'A
o
0.2
0.4
0.6
O.B
1.0
1.2
V F - FORWARD VOLTAGE (VI
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.{)4Q4· fAX (617) 924·1235
6-21
PRINTED IN U.S.A.
..
UM6000 UM6200 UM6600
TYPICAL Rp VS VOLTAGE & FREQUENCY
UM6000/UM6600
UM6200
1000
100
100MHz
~\\
~
z
I-'
W
L>
100
z
I
a:
I-"
...... 1-'
...J
w
...J
...J
~
~
5QOMHz
illa:
0..
I
$
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
10- 5
10- 4
10- 3
10-2
PULSE WIDTH (SEC)
6-23
PRINTED IN U.S.A.
UM7000 SERIES
UM7100 SERIES
UM7200 SERIES
PIN DIODE
Features
• Voltage ratings to 1000V (UM7000)
• Wide variElty of package styles
• Rated average power dissipation to 10W
• Cost effective in volume applications
Description
The UM7000 and UM7100 series offer moderately high power handling in combination
with reasonably low levels of both series
resistance and capacitance. The UM7200
series offers the lowest series resistance,
but the highest capacitance of the group.
The differences in specified performance, for
each of the series, results from different
I.. region thicknesses. The three series have
broad applicability in many RF and microwave switch and attenuator circuits. Additionally, the UM7100 in leaded versions, is
usually the most cost-effective diode choice
in high volume usage.
MAXIMUM RATINGS
Average Power Dissipation and Thermal Resistance Ratings
Package
Condition
A
25°C Pin Temperature
B&E (Axial Leads) V2 in. (12.7mm) Total Lead
Length to 25° C Contact
B&E (Axial Leads) Free Air
C (Studded)
25°C Stud Temperature
o (Insulated Stud) 25°C Stud Temperature
PD
10W
5.5W
fJ
15°CfW
27.5°CfW
1.5W
10W
7.5W
15°CfW
20°CfW
-
Peak Power Dissipation Rating
All Packages
UM7000 - 60 KW
UM7100 - 35 KW
UM7200 - 20 KW
1 IlS Pulse (Single)
at 25°C Ambient
Operating and Storage Temperature Range:
- 65°C to
+ 175°C
nn
SEM. ICONDUCTO. R
~ PRODUCTS
6-24
_UNITRDDE
UM7000 UM7100 UM7200
Voltage Ratings (25°C)
Reverse Voltage
(VA) - Volts
(lA
10 JAA)
Types
=
100V
200V
400V
600V
800V
1000V
UM7001
UM7002
UM7201
UM7202
UM7204
UM7101
UM7102
UM7104
-
-
-
UM7006
-
UM7108
-
UM7010
-
Electrical Specifications (25°C)
Test
Symbol
UM7000
UM7100
UM7200
CT
Rs
Rp
0.9 pF
1.0Q
200KQ
2.5 IJS
10 I-lA
150 lAm
1.2 pF
0.6Q
150 KQ
2.0 lAS
10 I-lA
BOlAm
2.2 pF
0.25Q
70KQ
1.5 IJS
10 I-lA
40 lAm
Total Capacitance (Max)
Series Resistance (Max)
Parallel Resistance (Min)
Carrier Lifetime (Min)
Reverse Current (Max)
I-Region Width (Min)
T
IR
W
Conditions
100V,1MHz
100mA,100MHz
100V, 100M Hz
IF
10 mA
VFj
Rating
==
-
TYPICAL DC CHARACTERISTIC
FORWARD VOLTAGE
VS FORWARD CURRENT
UM70001UM71001UM7200
TYPICAL FORWARD RESISTANCE
VS FORWARD CURRENT
(F = 100 MHz)
lA
UM7100=
10.000
g
UM7200""-;
r&.1
II
l00mA
~UM7000
10::0
LU
u
Z
<
I;;
iii
z
0
:l
<
;:
0
10mA
U
a:
a:
<
;:
a:
10
0
IL
~
I
en
a:
1/
w
a:
a:
a:
a:
11
l-
1Id:o
LU
I
1.0
I
lmA
_IL
I
0.1
lj4A
1~
lOO1'A
lmA
lDmA
l00mA
I
lA
l00j4A
IF - FO_A·RiO CURRENT
10l1A
a
I
0.2
0.4
0.6
0.8
1.0
1.2
V F - FORWARD VOLTAGE IV)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
6-25
PRINTED IN U.S.A.
UM7000 UM7100 UM7200
TYPICAL Rp CHARACTERISTIC
TYPICAL
UM 7000 SERIES
UM 7000 SERIES
IMr------.,------,-------,
§
3
LL
!l:-
UJ
U
~ lOOK
1----++----+------1
Iii
(ij
0.5 GHz
UJ
It:
~-:::;j..--l.0 GHz
-'
UJ
~
10K
=:!!$;::;:::::;O'=F=-----+---~
It:
rr.
I~
1 - _ - - + - - - 1 - 3 . 0 GHz
It:
w
u
z
IV
10V
100V
REVERSE VOLTAGE
2
""
~
""
e""
!::
u
U
f'
SMH,
-'
..........
10M
0-
1
~
u
lKLI______~______~________'
0
---
l00MH,
II
I
I 11111
§
LL
!l:-
UJ
U
lOOK· I-----+:JI'C---==-+- 0.5 GHz
w
u
1.0 GHz
""e:;
~
u
""-'
(ij
-'
UJ
~
rr.
Ie
It:
10K
I "I" I
100
III" I
1000
z
2
~I
~, ~~
[\
lO"'/tz
I--
i'-:\
....
0-
UJ
-'
-'
I
UM 7100 SERIES
3
It:
I
V.-REVERSE VOlTAGE (V)
UM7100 SERIES
en
t--
10
1000V
1M
~
Cr CHARACTERISTIC
+-=---+-----1-------1
~~
~IOOMH,
""e
00-
L
u
1 . - _ - - + - - - - 1 - 3 . 0 GHz
1K '--------"--______'--______'
1000V
100V
10V
IV
10
UM 7200 SERIES
10V
100V
REVERSE VOLTAGE
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
1000
UM 7200 SERIES
.1 K '--______. l -______--'-______--.J
IV
100
V.-REVERSE VOLTAGE (V)
REVERSE VOLTAGE
__-L_L~~~_ __L~~~U
1000
100
10
V. - REVERSE VOLTAGE (V)
O'--~~-LUU~
1000V
.1
6-26
PRINTED IN U.S.A.
UM7000 UM7100 UM7200
POWER RATING STUD MOUNTED DIODES
12
~
POWER RATING - AXIAL LEADED DIODES
~---r----~---'-----r----r----r--~
I.r---~----'-----r---~----'-----r----'
lOW
IO~---c~--~---r----~---r--~r---~
z
~
o
~
8
C
II:
W
6
7.5W
z
+-----f~---t;:..~__t--~+_--_+--__;
o
~iii
~
!!l
1
L = 3/8" (4.52Smml
B~--4-~~~~~----~~~-+--__;
c
~X
II:
""
~
~
x
I
«
:0
"-c
I
c
"-
o
25
50
75
100
125
175
STUD TEMPERATURE (oCI
o
25
75
50
100
125
150
175
PULSE THERMAL IMPEDANCE VS PULSE WIDTH
1~.'-------'---'---"-----'---'-----'
e~
~
z
= lS·C/W MAX.
10.t---- -r-----j------j------::::t;;;;;:!~~--i
i!§
LI.I
II..
~ 1nr---~r_--~7S~-1----_+----_+----_;
...J
<
:0
a:
LI.I
~ 0.1 t---?''"V'"-Z:
LI.I
Ih
...J
:::l
II..
om.~L-~L-
__
~
____
~
____
~
____
~
10-'
10-2
I"IJI..S£ IIIIDTH (SEC)
~
____
~
10- 1
ORDERING INSTRUCTIONS
Part numbers of Unltrode PIN Diodes consist of the
letters UM followed by lour digits and one or two letters.
The IIrsttwo .dlglts Indicate the diode series, the next
two digits specify the minimum breakdown voltage In
hundreds 01 volts. The remaining letters denote the
package style. Reverse polarity (anode on stud end) Is
available In C or D Styles and denoted byeddlng second
letter R.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
6-27
PRINTED IN U.S.A.
-
PIN DIODE
UM9301
COMMERCIAL ATTENUATOR DIODE
Features
• Specified low distortion
• Low rectification properties at low reverse bias
o Resistance specified at 3 current points
• High reliability fused-in-glass construction
Description
The UM9301 PIN Diode utilizes a special
overall chip geometry with an extremely
thick intrinsic "I" region, to offer unique
capabilities in both RF switch and attenuator
applications. Volume production also makes
the diode an economical choice suitable for
many commercial low power equipments.
The UM9301 has been designed for use in
bridged TEE attenuator circuits· commonly
utilized for gain and slope control in CATV
amplifiers. Low distortion and high dynamic
range are characteristic of the diodes'
outstanding performance.
The UM9301 is also appropriate for switch
applications, when little or no bias voltage is
available. Frequent applications occur in
portable 12 volt-powered communications
equipments, operating at frequencies as low
as 2 MHz.
MAXIMUM RATINGS
Reverse Voltage
(VR) - Volts
(lR = 10 IAA)
75V
Average Power Dissipation @ (P.J
Leads 112 in. (12.7mm) Total to 25°C Contact
1.0W (Derate linearly to 175°C)
Operating and Storage Temperature Range
nn
SEMICONOUCTOR
~ PRODUCTS
6-28
_UNITRODE
UM9301
Electrical Specifications (25 ·C)
Test
Diode Resistance
Current for Rs
Capacitance
Min
Typ
Max
Units
3.0
150
3000
1.7
80
5000
Q
Q
Q
0.5
1.1
2.0
mA
Rs
= 75Q
Cr
IR
0.8
Return Loss
Second Order Distortion
55
50
70
Third Order Distortion
75
Cross Modulation
Distortion
Reverse Current
-dB
-dB
65
-dB
= 100 mA, f = 100 MHz
= 1 mA, f = 100 MHz
= 0.01 mA, f = 100 MHz
f = 100 MHz
V = OV, f = 100 MHz
I
I
I
Frequency Range: 10 - 300MHz
Rs = 75Q @ 100 MHz
Diode Terminates 75Q line
= 10 MHz, f2 = 13 MHz
= 50 dBmV See Test Circuit
= 67 MHz, F2 = 77 MHz
= 50 dBmV, See Test Circuit
F1 = 10 MHz, F2 = 13 MHz
P = 50 dBmV, See Test Circuit
f1
P
F1
P
95
-dB
Triple Beat; 205 + 67 - 77 MHz
P = 50 dBmV, See Test Circuit
75
-dB
12 Channel Test
P =50 dBmV, See Test Circuit
Dix Hills Test Set
10
IR
4.0
Carrier Lifetime T
pF
dB
25
Conditions
/AA
V
JAS
I
= 75V
= 10 mA
DIODE RESISTANCE
VS DIODE CURRENT
(TYPICAL)
FORWARD CURRENT VS
FORWARD VOLTAGE
(TYPICAL)
1000
lOOK
III
10K
I II
100
(i)
E
.c
;;(
; 1000
c
'"
u
.5-
o
~
o
c
::J
Ui
·iii
£
"0
.LJM9301.
100
10
....
~~
;;;
~
~~
;f
;:
Q)
0
"0
u.
o
o
/
10
.1
.01
·.1
10
100
Diode Current (rnA)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
.5
.6
.7
.6
.9 1.0 1.1
Forward Voltage (Volts)
6-29
PRINTED IN U.S.A.
UM9301
TEST CIRCUIT FOR DISTORTION
MEASUREMENTS
NORMALIZED RS VS TEMPERATURE
1.3
1.2
CD
."
0
;;;
.;;; 1.1
a:
"
"
"C
0
Ci
1.0
"C
"
OJ
.~
.9
V
E
(;
z
/
/'
V
V
V
/
V
/"
D.U.T.
6600 pF
From
75P.
Input
O~~----------~~------~-----O
:: [ I I I I I I I I I
-60 -40 -20
Diode
Current
Supply
Note: Diode Current adjusted
for 10dS Attenuation
0 +20 +40 +60 +80 +100 +120
Temperature (DC)
TYPICAL BRIDGED TEE ATTENUATOR PERFORMANCE
DIODE CURRENT
VS ATTENUATION UM9301
DISTORTION
ATTENUATION
30
100
IIIII 1111
lJlillill
40
;( 10
.a6~
§.
Q;
(\\,s
s'(\>J
C
50
0"
~
:;
~
u:
"0
a;
70
'"
'""
80
3
"C
0
Ci
&'Sr,;
980'1.
0
'Q.
'"
I-
"0-9
.1
third order
distortion
60
0
OJ
second order
distortion
=
Input Power
+ 60 dBmV
Input Frequencies
10 MHz
& 13 MHz
90
III111111111111111
100
.01
a
o
=
2
2 4 6 810 12141618202224
4 6 8 10 12 14 16 1S 20
Attenuation (dB)
Attenuation (dB)
MECHANICAL SPECIFICATIONS
t
.975"
24.8mm
MIN.
=J
.250"
6.35mm
MAX.
r
-:=~~~~~~
_
. C::::==I
q:[J:D
.~90"
2.29mm
975"
24 . smm
MIN.
-l
\=
029"
.
I~ .027"
.74mm
DIA
.68min
.
tCATHODE
BAND
MAX.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926'()404· FAX (617) 924·1235
6-30
PRINTED IN U.S.A.
UM9401
UM9402
UM9415
PIN DIODE
COMMERCIAL TWO·WAY RADIO
ANTENNA SWITCH DIODES
Features
• Specified low distortion
• Unitrode ruggedness and reliability
• Low bias current requirements
• Priced for high quantity applications
Description:
Unitrode offers a series of PIN diodes specifically designed and characterized for solid
state antenna switches in commercial twoway radios. Antenna switches using the
UM9401 and UM9415 series PIN diodes provide high isolation, low loss and low distortion characteristics formerly possible only
with electromechanical relay type switches.
The UM9401 and UM9402 diodes can
handle above 100W of transmitter power,
while the UM9415 will handle over 1000W.
The extensive characterization of these PIN
diodes in antenna switch applications has
resulted in guaranteed low distortion specifications under transmit and receive
conditions. These diodes also feature low
forward bias resistance and high zero bias
impedance which are required for low loss,
high isolation and wide b.andwidth antenna
switch performance.
MAXIMUM RATINGS
UM9401
Reverse Voltage
(VR) - Volts
(IR = 10 JIA)
UM9415
50V
50V
-
lOW
50V
Average Power Dissipation (PAl
Lead Length - '/2 in. (12.7mm) Total
to 25°C Contacts
25'C (Package Flange) Temperature
Free Air
5.5W
1.5W
2.5W
- 65'C to
ELL.OWCATHOOE
UM940-li12 .
BAND
~
.090 12.29) Dia.
ma~
L I I J.
r'027('7~)
.055 D'i. max
L 0....
II .401
I
----.r
rD
_~_
0
.975
+ 175'C
:~: ~.~ :
UM9401
~
-
lOW
Operating and Storage Temperature Range
.029 1.74)
UM9402
W
.250Mn.
(24.81
(6.35)
MIn.
g::,r".,-"i-L-_--tY-_-_""'
J
m..
~
~.14,...Ih
.130
13.611
(l.JO)
UM9415
L
--I"
~'
--I I
.0121.301
.010(.251
I JOD, .. max
041 (104)
~,;'19"
F-
J
r-
,
.975
(248)
MIn.
i~5:,~ ~~:A~~'~Dv
D,a.
max.
~
-
JO
•
-
Ic:::::::J
I~J+--J
9/~
M1R
(248)
300
975
Max
Mill
062)
(:24 B)
n
n
L::::::J
6-31
SEMICONDUCTOR
PRODUCTS
_UNITRODE
..
UM9401 UM9402 UM9415
Electrical Specifications (at 25 ·C)
UM9401/UM9402
Test
Symbol
Min Typ Max Min Typ Max Units
Series Resistance
Rs
0.75 1.0
Diode Capacitance
CT
1.1
Parallel Resistance
Rp
5K 10K
T
1.0 2.0
Carrier Lifetime
Transmit Harmonic Distortion
UM9415
0.75 1.0
1.5
f = 100MHz typical
1- 50mA
f = 100 MHz
V - OV
f = 100 MHz
V.= OV
I - 10 mA
Q
pF
4
1K
Conditions
2K
Q
5
IlS
~,~
80
80
-dB PIN = 50W
f = 50 M Hz, I = 50 mAo
R2AB
60
60
-dB PIN = 10 mW, OV Bias
6.
........
IA = ;)U IVln", IB = ;) I MMZ
A
Receive Third Order Distortion
Reverse Lea~age Current
Forward Voltage
A
Ii:""
11.
~
10
1.0
10
1.0
IR
VF
V = 50V
IF = 50 mA
V
TYPiCAL DC CHARACTERISTIC
TYPICAL FORWARD RESISTANCE
VS
FORWARD CURRENT
(F = 100 MHz)
I
!OOrnA
"
lOrnA
;:;; 100
u
z
~
ilia::
i'!
.. . . . . . . .
F=
UM9415
UM9401/UM9402
"
10.0
~
~
II
HIOJlA
I
",'"
0.1
L....J....LLW&-'-.L.LL~:-'-'u.w~:'-'-~~L...U_o-L........._
10pA
100J,lA
1rnA
lOrnA
lOOmA
lO,.,A
1A
o
I.
0.2
0.4
0.6
0.8
1.0
V F - FORWARD VOLTAGE (VI
IF - FORWARD CURRENT
TYPICAL Rp CHARACTERISTICS
1000
TYPICAL CAPACITANCE CHARACTERISTIC
10
•
f---
VR
~ /1
-
2
g
w
"z
OV
--.L
~
iiia:
UM9415
• 1.
VR=SOV
...
......
«
a:
VR;' SOV UM9401IUM9402
10MHz
..
I
l00MHz
l000MHz
'NIl
"-
0
~
1
UM9401/UM9402
VR- SOV
.....
........
w
~=OV
,.....
/
100
..tUM941
VR =
sov
UM9401f941i~.
~VR=OV
'"
FREQUENCY
1
UM~1J ~~OV
10MHz
l00MHz
lGHz
FREQUENCY
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
6·32
PRINTED IN U.S.A.
UM9401 UM9402 UM9415
POWER RATING
UM940119402
POWER RATING
UM9415
16r---r---r---.---r---'---'-~
14'---~--.----r---.---'---''--'
~
~
L=%"
12 ....-
~
........---+----l-------+-T,~ T,
z
Q 12~--+---+---+-~+---+-~+-~
~
ill
o
'iiic.
·iii
C
a:
rn
o
10~;;;';'~++
w
s:
f?
~
x
~
c..
~
6F===~~+-~~r74---+---+-~
I
~
,,.0
4
~;;;;;;~~:P-"";~~~~
I
o '--__-'----__...L__--'-__---L__---1____
o
~
~
~
100
1~
1~
OoL-~~~~~~--~--~--~~
L-~
125
1~
TL - Lead Temperature (Oe)
150
175
T L - HEAT SINK TEMPERATURE (OCI
MAXIMUM TRANSMlnER POWER'
UM9415
I - I-Zo
~
~100
J
or- I--
I I;",~ J
l
f",
Iii
::::l
E
~
r!.: ~ IIt4 .......
lT~
r-
100
SOO
-
t-Z""Oo
a
r-I--. I, '" 6(11)"1
~
,
= co
I
I
I
"
~
'-
IF - 100 rnA
IF 50 rnA
1"-
"' I"
b..
0
.~
--
....... s
~
.........
'"'"'\
I'--- t'-- '\
IF
~
I
.....
10
2.
so
7'
100
12.
20 rnA
IF = 10mA
00
'.0
75
50
7':1
100
175
150
TL - Lead Temperature (Oe)
TL - Lead Temperature (Oe)
UNITRODE. SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
I
~ t-IF=200mA
j-.:...
I
.....
....
,
Z. = 50. L = '12" (12.7 mm).
I-
"I
l
t-.
.:e
E
rn
r::
cu
j!::
E
= 5Og.o= .... l = Yz"
UM9401/UM9402
,
6-33
PRINTED IN U.S.A.
UM9401 UM9402 UM9415
Maximum Transmitter Power
The maximum CW transmitter power,
PT(max), a PIN diode antenna switch can handle depends on the diode resistance, Rs,
power dissipation, Po, antenna SWR, 0, and
nominal impedance, Zoo The expression
relating these parameters is as follows:
PT(max) -_ Po
x
Ro
Zo
(0;0
1)
2
[Watts]
Characteristic curves are shown in the
data section which give both the maximum
and typical diode resistance, Rs as a
function of forward current. The maximum
power dissipation rating of the PIN diode
depends both on the length of the diode
leads and the temperature of the contacts to
which the leads are connected. A graph
defining the maximum power dissipation at
various combinations of overall lead length
(L) and lead temperature (T J is given in the
data section. From these curves and the
above equation, the power handling
capability of the PIN diode may be computed
for a specific application.
Curves are also presented which show the
maximum transmitter power that an antenna
DC SUPPLY
switch using UM9401s and UM9415s can
safely handle for various forward currents
and lead temperatures. These curves are
based on a typical ~esign condition of a V2
in. total. overall lead length, 50Q line
impedance and a totally mismatched
antenna (0 = co). For the case of a perfectly
matched antenna, the maximum transmitter
power can be increased by a factor of 4.
DeSign Information
A circuit configuration for a two-way radio
antenna switch using PIN diodes consists of
a diode placed in series with the transmitter
and a shunt diode placed a quarter wavelength from the antenna in the direction of
the receiver as shown. For low frequency
operation, the quarter wave line may be
simulated by lumped elements. Typical performance of antenna switches using PIN
diodes forward biased at 100 mA is less than
0.2 dB insertion loss and 30 dB isolation
during transmit; at zero bias the receive
insertion loss is less than 0.3 dB. This performance is achievable across a ± 20% bandwidth at center frequencies ranging from 10
to 500 MHz.
ANTENNA
RFC
DCB
TRANSMITTER
02
DC SUPPLY
RECEIVER
ANTENNA
L "" Zo/2'11"fo
C = 1/2~foZo
RFC
RECEIVER
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
6·34
PRINTED IN U.S.A.
PIN RADIATION DETECTORS
Features
• High Photocurrent Sensitivity
• High Reliability Construction
• Fast Rise Time
• Wide Dynamic Range
• Hardness to Neutron Bombardment
• Low Operating Voltage
Description
Silicon PIN devices are effective detectors
of nuclear and electromagnetic radiation.
This includes gamma' radiation, electrons,
and X-rays. The detectors can be used
across the temperature range of - 55°C to
+ 175°C instead of being' restricted to use at·
low temperatures.
The absorbed radiation produces electronhole pairs in the space charge region. These
charges are swept out by the applied field
and result in a current flow proportional to
the rate of absorbed radiation.
The Unitrode UM9441 series utilizes high
resistivity material and is designed to have a
uniform area mesa structure to' define the
active volume. The current 'sensitivity of
UM9441
these devices is. proportional only to the
I-region volume and is independent of temperature so long as applied voltage exceeds
the saturation voltage. This structure also
minimizes the effects of permanent damage
caused by neutrons and other high energy
radiation. Experiments on devices of the
UM9441 design show no degradation in
gamma sensitivity resulting from a total
dose of 1014 neutrons/cm 2 of 1 MeV
equivalent.
III
Package
The UM9441 is an axially leaded device
constructed by metallurgically bonding the
PIN chip in between two molybdenum refractory pins that are typically 0.125 inches in
diameter and 0.050, inches long. Hyper-pure
glass is then fused over this bond to form a
voidless seal. Leads are then brazed to ends
of molybdenum pins. This results in a highreliability package using materials so well
thermally matched that the UM9441 can
withstand temperature shock or cycling from
-196°C to + 300°C.
ABSOLUTE MAXIMUM RATINGS
Reverse Voltage ....... 100V
Photocurrent .......... 3Adc, 3A 2 s pulsed
Storage Temperature ... - 55°C to + 200°C
Operating Temperature. - 55°C to + 175°C
MECHANICAL SPECIFICATIONS"
UM9441
'\ YELLOW CATHODE BAND
02910.741DIA
\ 2 0 0 DIA. MAX
\ '~1.5081
~'"'....,
"
i
I
975
1150 I
975
:
I---MIN.~MAX+--MIN--.----l
12481
13.811
12481
Dimensions in inches (millimeters)
n nPRODUCTS
SEMICONDUCTOR
L:::::J
6·35
_UNITRDDE.
•
UM9441
Electrical Specifications (at 25°C)
Test
Photocurrent
Min
Typ
4.0
6.0
Max.
pF
Test Conditions
VA = 50V
. rads (Si)
10· sec.
2.5 MeV Flash X·Ray
Ion Physics Corp.
FX-25
F = 1 MHz, V =50V
~
VA = 50V
/AS
If = 10mA
mA
Capacitance
Reverse Current
10
1.0
Minority Carrier Lifetime
Units
2.0
TYPICAL VOLTAGE SENSITIVITY
TYPICAL PHOTOCURRENT SENSITIVITY
1000
::::: Radiation Source
As Noted
~ PIN Reverse Vollage
~
50V
rrrTTTTT"TTrrTTTrn""TTrn"T1
9.0
1-H-I+l-H+++H-H-+H+++t11-H
8.0
1+++l-t-H-t+++t++t-H-ttt-HrH
I+++l-H-I++++t+++-HH++-HrH
7.0
'+'
6.0
~
1
10.0
40
C
E
C
:;
:;
3.0
-&.
2.0
v~
~
~
~
~
&.
~
V
10.0
-H::J.,I.I~+HI++++-1+t1
:;( 5.0
":?-v
100.0
FX-25
LlNAC
HIt~+-H-tl"H"
IH-t+t-Hi-t+tt-H
AJLU D~se
Aale _ 10' _rad_s_(S_'1
II IIII II IIII II I II
Radiation Source -
sec
as noted
V
/
1.0
10'
10
10'
10'
1()8
Absorbed Dose Rate rads (Si)
sec
o
25
50
75·
100
PIN Reverse Voltage (V)
RELIABILITY
The UM9441 is consistent with Unitrode's
reputation as a manufacturer of high reliability semiconductors. Unitrode is equipped to
perform JAN type testing, base-lining and
documental conformance to a wide range of
reliability testing. This commitment to
reliability has enabled Unitrode to be a
qualified supplier of semiconductor devices
to many high-reliability programs such as:
APOLLO
MINUTEMAN
DRAGON
SPRINT
HAWK
TRIDENT
MARINER
VIKING
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
6-36
PRINTED IN U.S.A.
UM9601-UM9608
PIN DIODE
For Microstrip 900MHz Antenna Switches
and Microwave Applications
Features
• Low Inductance Shunt Mount Package
• Characterized for Microstrip
• Unitrode Ruggedness and Reliability
• High Power Handling Capability
• Low Bias Current Requirement
• Excellent Distortion Properties
" Cost Effective in High Quantity Applications
Description
The UM9601-UM9608 series of PIN diodes was
developed for shunt mount applications in
microstrip circuits. Good switch performance is
demonstrated at frequencies from UHF to 4GHz
and higher. This performance is achieved using
discrete low inductance Unitrode PIN diodes
assembled with special hardware to permit good
electrical and mechanical compatibility with
microstrip transmission lines.
Design information is presented for preparation of microstrip circuit boards to accommodate
these PIN diodes. A detailed design fora900MHz
quarter-wave antenna switch is given. This
switch which employs a low cost UM9401 axial
leaded PIN diode in conjunction with a UM9601,
performs with 30dB receiver isolation over a
100MHz bandwidth and with transmitter
insertion loss of less than O.4dB. This switch can
safely handle transmitter power levels up to 100
watts at infinite antenna SWR.
The Unitrode UM9601 series PIN diodes are
constructed using a fused-in-glass process
which results in a highly reliable, hermetic
package. The process utilizes symmetrical, full
faced metallurgical bonds to both surfaces of the
silicon chip. This construction greatly minimizes
the normal parasitic inductance and capacitance
found in conventional glass or ceramic packaged
diodes which employ straps, springs or whiskers.
The use of discrete UM9601-UM9608 diodes
greatly minimizes handling problems commonly
associated with passivated PIN diode chips while
maintaining good microwave performance. In
addition the power handling capibility of the
UM9601-UM9608 series is considerably higher
than PIN diode chips can provide.
Environmentally, the UM9601-UM9608 series
PIN diodes can withstand thermal cycling from
-195°C to +300°C and exceed all military
environmental specification for shock, vibration,
acceleration, and moisture resistance.
Typical Microwave Performance
UM9601-UM9604
SPST
Insertion Loss
Frequency
o Bias
UNl9605-UM9608
SPST
Isolation
100mA
SPNT*
Isolation
100mA
SPST
Insertion Loss
o Bias
SPST
Isolation
100mA
SPNT*
Isolation
100mA
GHz
dB
dB
dB
dB
dB
dB
0.5
1.0
1.5
2.0
3.0
4.0
0.20
0.25
0.35
0.50
1.00
1.50
30
26
22
18
15
13
36
32
28
24
21
19
0.20
0.20
0.20
0.25
0.25
0.40
25
22
20
17
15
14
31
28
26
22
21
20.
-
* Performance based on SPST Measurements
nn
In 0.02S" (.63Smm) Microstrip Test Circuit.
Not.: All dimensions in inches and (millimeters).
SEMICONDUCTOR
~ PRODUCTS
6-37
_UNITRODE
UM9601-UM9608
Reverse Voltage
Ratings @ 10pA
Maximum Ratings
UM9601 - UM9604
UM9605 - UM9608
Po
8
Po
8
Flange at 25° C
7.5W
20°CIW
4W
37.5°C/W
Free Air
1.5W
-
0.5W
-
Peak Power
1pS Single Pulse
at 25°C Ambient
25KW
100V
400V
UM9601
UM9603
UM9605
UM9607
UM9602
UM9604
UM9606
UM960S
10KW
Operating and
Storage Temperature
Electrical Specifications (at 25° C)
UM9601-UM9604
UM9605-UM9608
Symbol
Min
Typ
Max
Min
Typ
Max
Units
Series
Resistance
Rs
-
0.4
0.6
-
1.5
1.7
n
1= 100mA
f = 100MHz
Parallel
Resistance
Rp
-
-
150K
-
-
n
V = 100V
f = 100MHz
Total
Capacitance
CT
-
-
1.2
-
-
0.5
pF
V = 100V
f = 1MHz
2.0
-
-
1.0
-
-
pS
IF = 10mA
IF = 100mA
Test
100K
Carrier
Lifetime
T
Forward
Voltage
VF
-
·0.S5
-
-
0.95
-
V
W
SO
-
-
150
-
-
pm
I~Region
Width
Condition
Selection Guide
The following chart serves as a general
guide for indicating the most likely diode from
the series for a given application.
Applications
Recommended Types
1. High isolation switches to 2GHzat low dc drive
2. Quarter-wave antenna switches to 100 watts.
3. Priced for high volume commercial applications.
UM9601 (Affixes to microstrip
ground plane.)
UM9603 (Affixes to microstrip
backing plate.)
High voltage rating version of UM9601 and UM9603
respectively for peak power handling to 3KW.
UM9602, UM9604
1. Low insertion loss switches to 4GHz.
2. Low distortion antenuator applications.
UM9605 (Affixes to microstrip
ground plane.)
UM9607 (Affixes to microstrip
backing plate.)
High voltage version of UM9605 and UM9607
for peak power handling to 10KW.
UM9606, UM960S
UNITRODE • SEMICDNDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
6·38
PRINTED IN U.S.A.
UM9601-UM9608
Typical Series Resistance
vs Forward Current (F = 100MHz)
Pulse Thermal Impedance
~
w
~
100
..~
a
~ 10.
UM9605 • UM9608 . -
;I
:;
r::
1.a
~
~
w
~
~ 0.1 O·
.0
1~ .,
10
10
~
--
UM9601-UM9604
10
.,
10
.,
.,
10'
10
1.0
PULSE WIDTH (Sec)
Typical R. vs Voltage and Frequency
UM9601 - UM9604
Typical R. vs Voltage and Frequency
UM960S - UM960a
Power Rating
1~r---------r---------.---------'
10oor---------r---------.-.,-------,
2
l00MHz
a
a~
~
8
.
~
m 100
~
.!!
=
r::
~
1!
If
4
.............
10
2
rl
"'"
=
r::
~
UM96i5 • UMj;;;-
a
25
50
75
100
500MHz
.~
r-. ...........
3GHz
,oo~--------+_~~----+_------~
c
UM9601 - UM9604
"""
6
""............
125
1GHz
1!
If
3GHz
10r---------~==--_=~~~----~
~
150
175
HEAT SINK TEMPERATURE
1
1
10
VR
-
100
1000
10
Reverse Voltage (V)
Typical Forward Bias
Intermodulation Distortion
vs Nominal Carrier Frequency
at 20dBm per Channel
110
iii 100
E
ffi
a:
r::
«
u
;;:
9w
70
r::
50
./
E
ffi
./
V
./' V
a:
.-/
«
u
i5
80
;;:
9w
Second Order
40
70
'"z
a
60
a
r::
50
in
i5
40
i=
I-
oo
90
r::
i=
a
.~
~~
110
iii 100
/'
Third Order
80
60
Typical Third Order ( 2ab )
Intermodulation Distortion R ....
VB Forward Bias Current
at 20dBm per Channel
/'
90
'"az
1~
100
VII - Reverse Voltage (V)
~
b~
{!>~
~.,/
/
~.
~<:
~~....
k~"'''
IF= lOrnA
10
20
50
100
10
NOMINAL CARRIER FREQUENCY (MHz)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
20
50
100
FORWARD CURRENT (mAl
6·39
PRINTED IN U.S.A.
UM9601-UM9608
Mechanical Specifications
UM9601
UM9602
r:l~: g:f~11.047"
dn
-l
rf~r(2.29mm)
OIA.
MAX.
JJ
.0465" (1.18mm)
·0445"dl~~3mm)
UM9603
(1.19mmi REF.
.
-
~OIA'
----l ~1~mml
,
t=
.084"
I
-
t=t:
.077" (REF.)
(1.95mm)
.084" (2.13mm)
.155"
J
""" \
80
Fa-l.4MHz
Fb=7.6MHz
0
eo
1\
,.
\
\
iii
'"
~
90
~
80
"o
\
~
70
ill
,
~
z
o
\
0
I~=
lOrnA
30
~
50
~
5
40
I
Th~dordr
v=
a::
w
en
Typical Isolation ys Frequency
0.025" (0.635mm) Alumina Microstrip SPST Switch
Diode Current = 100mA
601 'iM9604
.6
~
.4
./
.2
/
25~--~~~----~------+-----~
/
V
~9605 • UM9608
20
iD
~
o
o
z
0
>=
«
FREQUENCY (GHz)
15
--'
0
~
10
Isolation ys Frequency and Diode Current
0.025" (0.635mm) Alumina Microstrip SPST Switch
28
26
24
22
20
z
18
«
16 ---:;JI'
~
Q
>--'
0
~
14 / '
12
C'
~_ _ _ ____'
o
-
in
OL-____- J_ _ _ _ _ _- L_ _ _ _ _ _
UM9601.GM9604-
./" ~605
.J.---
FREQUENCY (GHz)
llGHZ
• GM9608
./
UM9601 • GM9604
~
UM9605· UM9608
l3GHZ
10
6
10
20
50
100
200
DIODE CURRENT (mA)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREEl • WATERTOWN, MA 02172
TEl. (617) 926-0404 • FAX (617) 924-1235
6-42
PRINTED IN U.S.A
UM9601-UM9608
Installation in Microslrip
The cup type flange on the UM9601,
UM9602, UM9605 and UM9606 is designed to
be affixed to the ground plane surface of a
microstrip board as shown. The UM9603,
UM9604, UM9607 and UM960B were designed
to be affixed to a backi ng plate as shown. It was
experimentally determined that at frequencies
greater than 2GHz the anode of the diode
should be approximately 0.010" (.254mm)
above the top surface of the microstrip for
lowest insertion loss.
UM9601/UM9602
UM9605/UM9606
I
For solder adhesion the microstrip may be
heated to solder melting temperature (up to
300 0 C) with no damage to the diode.
Conductive epoxy may also be employed. The
thermal resistance of solder mounted
UM9601-UM9604 in their test boards was less
than 200 C/W; for the UM9605-UM960B thermal
resistance was less than 30 0 C/W.
UM9603/UM9604
UM9607/UM9608
Mlcroslrlp Mount
r-- .200" Typ
Microstrlp Mount
.010" (nom)
I
(5.08mm) - - ,
Design Example - 900lVlHz Antenna Switch
An example of a practical circuit design
using a UM9601 diode is a quarter-wave
antenna switch covering the frequency of BOO900MHz. The circuit design for this switch is
shown and was constructed using 0.025"
(0.645mm) alumina microstrip.
This antenna switch uses a series mounted
diode and a shunt mounted diode. The
UM9601 was selected for the shunt mounted
device (SPST performance at 1GHz: 0.2d8
insertion loss and 25d8 isolation) and because
it is the lowest cost diode in the UM9601UM960B series. A UM9401axiai lead diode
was chosen for the series mounted device.
The performance of this switch is displayed
in the graphs and in the following table. It
should be noted that the:loss values are actual
measured numbers including losses due to the
capacitors, bias networks, connectors as well
as the board. In a typical radio application
where the antenna switch circuit board is
integrated in the same microstrip board that
contains transmitter and receiver elements the
connector loss is eliminated. This will result in
lower overall insertion loss values than
indicated here.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924·1235
The CW power handling capacity is
determined by the allowable power dissipation
of the series mounted UM9401. Using a ,::ap in
the line of 0.190" (4.B2mm) and lead soldered
attached spacing of 0.250" (0.635mm) the
power rati ng of the U M9401 is 6 watts at a 25 0 C
ambient. This was determined by performing a
thermal resistance measurement on the circuit
mounted UM9401. The relationship that
derives the maximum transmitter power, PT, is:
PT = POlss . Zo (
RS
where
0'
+ 1)
2
20'
0'
= maximum antenna SWR
Using resistance values for the UM9401 and
UM9601 the maximum transmitter power curve
is given and shows that this circuit is able to
handle 100 watts of transmitter power at
100mA forward biased and totally mismatched
antenna at an ambient temperature of 60 0 C.
For a perfectly matched antenna the power
handling increases to 400 watts under the
same bias and ambient temperature
conditions.
6·43
PRINTED IN U.S.A.
UM9601-UM9608
Distortion is an important consideration in
the selection of a PIN diode antenna switch
design. The UM9401 and UM9601 PIN diodes
are designed for low distortion applications.
The level of distortion produced by this 900MHz
antenna switch when operated in the transmit
state (forward bias of 100mA) is expected to be
at least 90dB below the carrier for a 50 watt
transmitter level. In the receiver state (zero
bias) the.intermodulation distortion caused by
two in-band signals at OdBm are estimated to
be at least 100dB below this level.
Maximum Transmitter Power
vs Forward Current for UM9601/UM9401
900MHz Mlcrostrip Antenna Switch
I I I ~~~ 50~ I I I I
5000pF
I
I
I, = 200mA
;g
'"
~
II:
w
;:
lr
POWER SUPPLY
100
I,
~
.......
~
~20m
z
«
II:
--..!!..- 10mA
....
ANT
30pF
A/4@850MHz
ZO = 800
SOmA
w
(J)
!
0'' '1-
~ml"
II:
ITI,
A/4@850MHz
Zo = 500
'\.
'\.
...........
30pF
TX....--.--t
::J
~ 10.0
x
«
:::;;
----- ""'" ""-..
.•
I----eRx
,Ir UM9601
\
:::;;
30pF
-----
f
Circuit Diagram
ct
1.0
25
50
75
100
125
150
175
AMBIENT TEMPERATURE ("C)
Antenna Switch Performance
Frequency Range
I. Transmit State
(I = 100mA, TA
800-900MHz
II. Receive State
(Zero Bias)
= 60°C)
A. Maximum Transmitter Power - 100 watts
(antenna SWR = 00)
B. Maximum Transmitter Power - 400 watts
(antenna SWR = 1)
C. Transmitter Insertion Loss - 0.4dB
D. Receiver Isolation - 31dB
E. Harmonic Distortion - -90dB
(PT = 100 watts)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
6·44
A. Receiver Insertion Loss - 0.6-0.7dB
B. Intermodulation Distortion - -100dB
Pin = OdBm
PRINTED IN U.S.A.
UM9601-UM9608
Receiver Isolation vs Frequency
and Diode Current
Antenna Switch Insertion Loss
35
1.0
100mA
SOmA
20mA ""-
:::...:
O.B
30
iii"
lOrnA
E
en
~ 0.6
iii"
...J
E
0
0
z
~
w
en
z
;::
«...J
0.4
TRANSMITTER
INSERTION LOSS
(I, = 100mA)
~
0
!!1
25
20
0.2
o
750
BOO
B50
900
950
1000
FREOUENCY (MHz)
750
800
850
900
950
1000
FREQUENCY (MHz)
Photograph of BOO-900MHz antenna switch test module using
UM9401 and UM9601 PIN Diodes. In typical transceiver
applications, the antenna switch circuit board is integrated.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404· FAX (617) 924·1235
6-45
PRINTED IN U.S.A.
UM9601-UM9608
J3
.37S"
(9.S2mm)
--'1
104-
RX
.+
~---.
r
r
.llB~
. , . __t
D2
.093" DIA .
(2.36mm)
... +-
......,
.OOS"
C3
1.22S"
(31.11mm)
11
.020" (.51mm)
C4
-----7
.02S"
(.63Smm)
2.00"
(SO.8mm)
.400':
, (10',16mm)
.020"
(.S1mm)
.020" (.51mm)
.
J4
J1
TX
Substrate Drawing
C1
D1
C2
ANT
Assembly Drawing
Parts List
5000pF Feed through Filter
Erie 1270-016
30pF Chip Capacitor
Vitramon VJ0805A300KF
01
PIN Diode
Unitrode UM9401
02
PIN Diode
Unitrode UM9601
F1
C1-C4
J1-J3
SMA Connector
Cablewave 971-028
Substrate
Vectronics Microwave
79':9081-0401
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
6-46
PRINTED IN U.S.A.
UM9701
PIN DIODE
Low Resistance, Low Distortion,
RF Switching Diode
Features
o Low Forward Resistance
• High Reverse Resistance
o Specified Low Distortion
o High Voltage Capability
o Good Power Handling
o Unitrode Ruggedness and
Reliability
Description
The UM9701 PIN diode was designed for low resistance at low forward
bias current and low reverse bias capacitance. This unique Unitrode
design results in both forward and reverse bias.
These PIN diodes are characterized for low current drain RF and
•
microwave switch applications particularly for digital filter switch _ _
designs. The construction and geometry of these devices provide good . , .
voltage and power handling capability.
These devices are constructed using a metallurgical full face bond to
both surfaces of the silicon chip. A glass enclosure houses this bond in a
reliable and hermetic package. The axial leads are attached to the refractory pins and do not touch the glass enclosure.
Environmentally these, and all Unitrode PIN diodes, can withstand
thermal cycling from -195° C to +300° C and exceed all military environmental specifications for shock, vibration, acceleration, and moisture
resistance.
Mallimum Ratings
Reverse Voltage
100V
Average Power Dissipation
Free Air at 25°C
500mW
(Derate linearly to 175°C)
Average Power Dissipation
%" (12.7 mm) T"Ota1 Lead Length
to 25°C Contacts
2.5W
(Derate linearly to 175°C)
Operating and Storage Temperature
-65° C to +175° C
Electrical Specifications
Test
Symbol
UM9701
Series Resistance (MAX)
Rs
0.80
f = 100MHz, I = 10mA
Total Capacitance (MAX)
CT
1.8pF
f = 1MHz, V = 50V
Parallel Resistance (MIN)
Rp
100kO
T
1.5ps
1= 10mA
Carrier Lifetime (MIN)
Condition
f = 100MHz, V = 50V
Reverse Current (MAX)
IR
10pA
V = 100V
Forward Voltage (MAX)
VF
0.8V
1= 10mA
Forward Bias Third Order
1M Distortion (MAX)
R
Reverse Bias Third Order
1M Distortion (MAX)
R 2ab
a
2ab
-a
-90dB
1= 10mA
Pa = Pb = +20dBm
fa = 43MHz, fb = 44MHz
-90dB
V=50V
Pa = Pb = +20dBm
fa = 43MHz, fb = 44MHz
nn
6-47
L.::::::J
SEMICCNCUCTCR
PRCCUCTS
Bili7D
UNITRODE
UM9701
Typical Series Resistance vs
Forward Current (F 100MHz)
Typical DC Characteristic
ili~111111 I I I I
I'
m 1.0
a:
-
...J
W
i=
a:
0
t-
Ul
Ci
:s
a:
w
a:a:
90
U
'"
80
g
70
w
'"0z
i=
a:
50
0
t¥
.4~
~-f
I(.,~
~~
f.3
~' 100kHz) results in smaller inductor-capacitor filter
and improved power supply response time
• High operating efficiency: Typical 2A circuit performanceRise and Fall time <75ns
Efficiency >85%
• No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.)
• Electrically isolated, 4-Pin, TO-66 hermetic case (500V, 1f'A, all leads common)
DESCRIPTION
The Unitrode ESP Switching Regulator is a unique hybrid
transistor circuit, specifically designed, constructed and specified for use in high current switching regulator applications.
The designer is thus relieved of one of the most time consuming, tedious and critical aspects of switching regulator
design: choosing the appropriate switching transistors and
commutating diode, and empirically determining the optimum
drive and bias conditions.
drawbacks to switching regulators: noise generation and slow
re$pcn$C time; there ::;, :n fuct, no dlode reverSe iecovery
spike (see note 4.).
The PIC600 series switching regulators are designed and characterized to be driven with standard integrated circuit voltage
regulators. They are completely characterized over their entire
operating range of -55'C to +125'C. The devices are enclosed
in a special4-pin TO·66 package, hermetically sealed for high
reliability. The hybrid circuit construction utilizes thick film
resistors on a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the
active elements in the hybrid are fully passivated.
Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and internal
power losses and a major decrease in overall cost. Using the
Unitrode PIC600 series, the designer can achieve further
improvements in size, weight, efficiency, and costs. At the
same time, because of the PIC600 series design and packaging,
the designer is aided in overcoming two of the most significant
SCHEMATIC
PIC600
PIC601
PIC602
pos.
INPUT
Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific
circuit applications.
PIC610
PIC611
NEG. 4
PIC612
INPUT 0-.....---... r-<_ _
pas.
NEG.
-o OUTPUT
~--~~ OUTPUT
2
COMMON
COMMON
MECHANICAL SPECIFICATIONS
PIC600 PIC601 PIC602 PIC610 PIC611 PIC612
NOTES:
1. Case is electrically isolated.
2. Loads may be soldered to within
1/16" of base provided temperaturetime exposure is less than 260°C
for 10 seconds.
B
'''II- C
~
Ir .
A·
--
J[]K
Ins.
4-Pin T0-66
mm
A
.&lOMAX.
15.75 MAX.
B
.050-.075
1.27-1.91
C
.028-.034
0.11-0.86
D
.958-.962
24.33-24.43
E
.190-.210
4.83-5.33
F
.190-.210
4.83-5.33
G
.350 MAX. RAO. 8.89 MAX. RAD.
H
.570-.590
1448·14.99
J
.142_.1520IA
3.61-3.B60IA.
K
.360 MIN.
9.14 MIN .
L
.250-.340
6.35-8.64
OUTPUT(I)
nn
SEMICONDUCTOR
~ PRODUCTS
8/78
7-4
_UNITRDDE
PIC600 PIC601 PIC602 PIC6l0 PIC611 PIC6l2
ABSOLUTE MAXIMUM RATINGS
PIC600
PIC601
PIC602
PIC610
PIC611
PIC612
Input Voltage, V•• , ............................................................ 60V .................... SOV.................. 100V................ -60V................ -SOV .............. -lOOV
Output Voltage, V,., ........................................................ 60V .................... SOV.................. 100V................ -60V................ -SOV .............. -lOOV
Drive-Input Reverse Voltage, V3 ••...........••.•...•.•.•......•.•.• 5V ...................... 5V...................... 5V.................. -5V.................. -5V.................. -5V
Output Current, I, ............................................................... 5A ...................... 5A...................... 5A .................. -5A .................. -5A .................. -SA
Drive Current, 13 .......................................................... -0.2A ................ -0.2A ............... -0.2A .................... 0.2A ................... 0.2A.................... 0.2A
Thermal Resistance
Junction to Case, 9 J• c
Power Switch .
Commutating Diode
........ 4.0·C/W .
60.0·C/W ..
. .. -SS·C to +12S·C ..
..... +150·C.
Case to Ambient, 9 C ' A ...
Operating Temperature Range, Tc .
Maximum Junction Temperature, Tj
Storage Temperature Range
... -6S·C to +lSO·C.
III
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
PICGOO, 601, 602
Test
Current Delay Time
Symbol
tdi
Current Rise Time
tri
Voltage Rise Time
Voltage Storage Time
Voltage Fall Time
t"
t"
Current Fall Time
Efficiency (Notes 2. & 4.)
On·State Voltage (Note 3.)
t"
tfi
~
V" 'tonl
On·State Voltage (Note 3.)
V4_1Ion}
Diode Forward Voltage (Note 3.)
Diode Forward Voltage (Note 3.)
V2_'(onl
V2_I(Onl
'.. ,
Off-State Current
Off·State Current
I •. ,
Diode Reverse Current
',.,
Diode Reverse Current
',-,
Min.
-
Typ.
Max.
20
SO
40
-
30
-
75
50
700
-
-
SO
-
70
7S
ISO
-
85
1.0
-
2.5
-
1.0
1.0
1.S
-
0.1
10
-
10
-
1.0
-
SOO
-
.8
1.5
3.5
PIC610, 6U, 612
Min.
-
-
Typ.
Max,
Units
20
50
40
ns
7S
50
ns
ns
700
-
ns
SO
7S
ns
See Figure 2.
70
8S
ISO
ns
See notes 1., 2., 4.
-
%
30
-
-1.0 -1.5
-2.S -3.5
-.8 -1.0
-1.0 -1.5
-0.1 -10
-
-10
10
-
-
-
-1.0 -10
500
-
Conditions
= 2SV(-2SV)
= SV(-5V)
loci = 2AC-2A)
I, = -20mA(20mA) NOTE 5
-
V
V
V
V
pA
pA
pA
pA
Vic
Vocl
= 2A(-2A), I, =-.02A(.02A) NOTE 5
= 5A(-5A), I, =:' -.02A(.02A) NOTE 5
I, = 2AC-2A)
I, = SAC-SA)
V. = Rated input voltage
V. = Rated input voltage, T = 100·C
V, = Rated output voltage
V, = Rated output voltage, T = 100·C
I.
I.
A
A
NOTES:
1. In switching an inductive load, the current will lead the voltage on turn on and lag the voltage on turn·off (see Figure 2.). Therefore, Voltage Delay
Time (tov) '" tdi + tn and Current Storage Time (tsi) '" Isv + tlv.
2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of Figure I., in
which the efficiency is measured, is representative of typical operating conditions for the PIC600 switching regulators.
3. Pulse test: Duration = 300ps, Duty CycleS 2%.
4. As can be seen from the switching waveforms shown in Figure 2., no reverse of forward recovery spike is generated by the commutating diode during
switching! This reduces self-generated noise. since no current spike is fed through the switching regulator. It also improves efficiency and reliabilty,
since the power switch only carries current during turn-on.
5. To insure safe operation 13 should be 2: 120mAI during TON. Operation at 13 < 120mAI can permanently damage device.
POWER DISSIPATION CONSIDERATIONS
The tolal power losses in the switching regulator is the sum olthe switching losses, and the powerswitchanddiode D.C. losses. Once total power dissipation has
been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case or ambient temperature for any
operating condition.
The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by 1120KHz.
The D.C. losses curve presents data fora duty cycle of .2. To find D.C. losses at any other duty cycle, multiply by 0/.2 forthe power switch and by(1·D)/.8 forthe
diode.
At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invalid and a detailed transient
thermal analysis must be performed. Please see Design Note 6 (DN·6) for further information.'
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
7·5
PRINTED IN U.S.A.
PIC600 PIC601 PIC602 PIC610 PIC611 PIC612
Power Dissipation
Efficiency
100 r-,-,-,-rT-------.f~_~2~0"-kuH~z,'V'c-o,~-~2~0~V
40
~
z
;::
«
0..
iii
VI
90
80
30
"'0~
20
"«"'a:
IS
0..
"'>
«
1"'-
I
0
0..
o
·50
!
!
!
-25
0
25
T, -
I
50
70f-++++-:t-----t---t--t-"'j
~
60
f-++++t-----t----t--t--j
~
"
"
75
100
125
50
~
"'
f-++++f-----f---+--+--I
40
f-++++-:t-----t---t--t--j
>::'"
30
As measured in circuit shown in
Figure 1.
=
10
,
o
150
I]
20m A
Tc:;:: 25°C
I
_5
I
I
I
!
I, -
10
Duty Cycle
/'
MAXIMUM ~
~
3
U
ci
~
~V
.2
1
I
,;:::; :;:::::P l ..Power
Switch Duty Cycle =
- -e- Diode Duty Cycle = 0.8
.1
- -e-
.OS
- -e-
.02
.01
.S
~
"'
0
-
T, = 2S'C
Ta obtain diode losses at any
other duty cycle, multiply by
(1-0)/.8 where 0 =-_ Power SwitchID[,Y Cycle.
I
I
J
IM~xiMG~/
...J
.2
U
ci
.1
...-
"'
.1
.02
.01
.6 .7 .8.9 1
I, - OUTPUT CURRENT (A)
.S
Maximum Safe Operating Area
Von = 25V, I) :::: 20m A
f = 20kHz
--+--+.....,,4--J
SO
Power
...~
Swjtch-::;"...."'---=".r~
f-:::o....-F+-:bI--""'::....---+--+--+--:J
.02 To determine switching losses at -+....."q_-j
:r
any other frequency, multiply by
~ .01 f/20kHz where f is the frequenc;'YL-j_-:;I"'--j
...u
...:::>
3
.6 .7 .8.9 1
2
3
I, - OUTPUT CURRENT (A)
PIC 600, 601, 602·610, 611, 612
t5
0:
.05
/TYPICAL
1-----
.OS
MAXIMUMVI
VI
~
//
//
I I II
.S
VI
VI
T, = 2S'C
.2 I-r-H-I-+------j,.L.-y"--l--I
VI
20mA
Cycle.
Switching Losses
.5
:::
To obtain the Power Switch
losses at any other duty cycle,
multiply by 0/.2 where 0 := Duty
VI
0.2
= .2, I J
Tc::: 25°C
~ TYPICAL
.5
VI
VI
OUTPUT CURRENT (A)
Power Switch D.C. Losses
Diode D.C. Losses
"'
!
.6 .7.8.9 1
CASE TEMPERATURE ('C)
10
VI
+-:-+-:-t
V ,n = 25V
V out = V ,n X (Duty Cycle)
20
,
I
= SOkHz, V"', = SV ____ ............
~
z
\
Maximum allowable average
power dissipation each, for the
power switch and for the diode.
Maximum allowable case
temperature ::--: 125°C
10
-...::...
f
'\
2S
Ci
a:
~tttS~~~;;f~I:2:0=kH;Z~'i
I.v~,:T~5:Vj
~
35
0
20
/iOOJ,tS 10% duty cycle
lOpS 10% duty cycle
10
0:
:::>
~
~ .005 ::;:~~i~!:~
"'
losses are to be
1
.002
f-+-:+::J,.1"'1----=7"''-+
DC
Tc = 100°C
"
.........
.................. i"\.
0.5
,
0.2
.001 '--'--'-..LL-''''-_ _ _- '_ _- ' - _ - ' - _ - '
. S .6 .7.8:9 1
I, - OUTPUT CURRENT (A)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924-1235
-
o
,/
O. 1
3 4 5
10
20
304050
PIC 600. 610
PIC 601, 611
PIC 602, 612
100
V•• ,(ON) ON·STATE VOLTAGE
7·6
PRINTED IN U.S.A.
PIC600 PIC601 PIC602 PIC610 PIC611 PIC612
,..L-I'IrYYVL_ _ _
IDRIVE
=
----I-
-20mA
Pulse Width = lOttS
Rep. Rale = 20kHz
I - - -..........~---
Figure 2. PIC600, PIC601, PIC6D2 Switching Waveforms
Figure 1. PIC600, 601,602 Switching Speed Circuit
Nole: PIC610, PIC611, PIC612 Test Circuit and waveforms are identical but of opposite polarity (V,.=-25V, V••,=-SV, I.RI .. = +20mA).
On·State Characteristics
Diode Forward Characteristics
g
g
I-
I-
UJ
'"'"
Z
OJ
u
o
u
'"
:r'"
'"'"
:>
/
I
I/
Z
~s ~e~sJrJd in circuit 5h~wn in
500 I- Figure 1.
400 f- Vi.
25V
SV
300 I- Voul
I]
20mA
200 f- Tj
25'C
1000
-
I--
500
400
-
I-I--
300
- r--
=
=
=
=
~e~sJreld in circuit Sh~wn in
1s
Figure 1.
V" = 25V
I
-
Vo • 1 = SV
I] = 20m A
T; = 25°C
E 200
UJ
::;;
;::
UJ
::;; 100
;::
I
50
40
30
I"
......
I"
-----
tp;
20
V
:j
V
100
...
:-
100kHz) results in smaller inductor·capacitor filter
and improved power supply response time
• High operating efficiency: Typical 7A circuit performanceRise and Fall time <300 ns
Efficiency >85%
• No reverse recoverY spike generated by commutating diode (See note 4. and Fig. 2.)
• Electrically isolated, 4·Pin, T066 hermetic case (500V, l"A, all leads common)
DESCRIPTION
;iJe Uniirode ESP Switching Regulator is a unique hybrid
transistor circuit, specifically designed, constructed and
specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time
consuming, tedious and critical aspects of switching regulator
design: choosing the appropriate switching transistors and
commutating diode, and empirically determining the optimum
drive and bias conditions.
significant rfr:lwb~cks to switching !"egu!atQ!"s: noise generation
and slow response time; there is, in fact, no diode reverse
recovery spike (See note 4.).
The PIC600 series switching regulators are designed and
characterized to be driven wih standard integrated circuit
voltage regulators. They are completely characterized over
their entire operating range of -55"C to +125"C. The devices
are enclosed in a special4-pin T066 package, hermetically
sealed for high reliability. The hybrid circuit construction
utilizes thick film resistors on a berYllia substrate for maximum
thermal conductivity and resultant low thermal impedance. All
of the active elements in the hybrid are fully passivated.
Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and
internal power losses and a major decrease in overall cost.
Using the Unitrode PIC600 series the designer can achieve
further improvements in size, weight, efficiency, and costs. At
the same time, because of the PIC600 series design and
packaging, the designer is aided in overcoming two of the most
SCHEMATIC
PIC625
PIC626
PIC627
POS.
INPUT
Application NotesU-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific
circuit applications.
,---~~-O
NEG. 4
INPUT
POS.
OUTPUT
PIC635
PIC636
PIC637
0--.------.. r-'r-..--o
2
COMMON
DRIVE
NEG.
OUTPUT
COMMON
MECHANICAL SPECIFICATIONS
PIC625 PIC626 PIC627 PIC635 PIC636 PIC637
NOTES:
4-Pin TO-66
1. Case is electrically isolated.
2. loads may be soldered to within
1116" of base provided temperature·
time exposure is less than 260°C
for 10 seconds.
-t
B
II-
Ir
c
mm
.620 MAX
15.75 MAX.
050-.075
1.27-191
C
.028-03'
0.71-086
0
958-.962
2433-24.43
E
190-.210
F
./..
IDK
ins.
A
e
190- 210
G
.350 MAX. RAO
H
570-590
4.83-5.33
6.89 MAX RAO
J
142-.152 DIA
3S1-3S6DIA
l
250-.340
635-8.54
OUTPUT(l)
nn
SEMICONDUCTOR
~ PRODUCTS
8/78
7-8
_UNITRODE
PIC625 PIC626 PIC627 PIC635 PIC636 PIC637
ABSOLUTE MAXIMUM RATINGS
PIC625
PIC626
PIC627
PIC635
PIC636
PIC637
Input Voltage, V4., .................
........... 60V ................... SOV.................. 100V ................ -60V ................ -SOV.............. -100V
............ 60V .................... SOV.................. lOOV................ -60V ................ -SOV .............. -100V
Output Voltage, V,., ....................................
............... 5V...................... 5V...................... 5V.................. -5V.................. -5V .................. -SA
Drive·lnput Reverse Voltage, V'.4 ........
Output Current, I, ........................................................... 15A .................... 15A.................... 15A ................ -15A ................ -15A ................ -15A
Drive Current, I, ......................................................... -0.4A ................ -OAA. ............... -OAA. ................... 0.4A ................... 0.4A .................... 0.4A
Thermal Resistance
Junction to Case, e J.e
..... 4.0'C/W.
Power Switch .
....... 4.0'C/W..
Commutating Diode
.60.0'C/W...
Case to Ambient, ee'A"
... -55'C to +125'C.
Operating Temperature Range, Te .
.+150'C ...
Maximum Junction Temperature, Tj
... -65'C to +150'C.
Storage Temperature Range .
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Current Delay Time
Current Rise Time
Voltage Rise Time
Voltage Storage Time
Voltage Fall Time
Current Fall Time
Efficiency (Notes 2 and 4)
On·State Voltage (Note 3)
On·State Voltage (Note 3)
Diode FWd. Voltage (Note 3)
Diode Fwd. Voltage (Note 3)
Off·State Current
Off·State Current
Diode Reverse Current
Diode Reverse Current
Symbol
tdi
tri
t"
t"
t f,
tf,
v
V.... '{o'l
V,., {o'l
V2_ I {on)
V,., {o,l
I,.,
I,.,
I,.,
I,.,
PIC6tS/626/627
Min. Typ. Max.
-
35
65
40
900
70
175
S5
1.0
2.5
.85
.95
0.1
10
1.0
500
PIC63S/636/637
Min. Typ.
Max~
60
150
60
-
-
-
175
300
-
-
-
-
-
1.5
3.5
1.25
1.75
10
-
10
-
-
-
-
-
35
60
65
175
40
60
900
100
300
300
175
85
-1.0 -1.5
-2.5 -3.5
-.85 -1.25
-.95 -1.75
-0.1 -10
-10
-1.0 -10
500
-
-
-
Units
ns
ns
ns
ns
ns
ns
Conditions
= 25V(-25V)
= 5V(-5V)
= 7AC-7Al
= -30mA(30mA) NOTE 5
Vi,
Vo"
1o"
I,
See
See
%
V
V
V
V
"A
"A
I'A
"A
I,
I,
I,
I,
V.
V,
V,
V,
Figure 2
notes 1, 2, 4
= 7AC-7Al, I, = -.03A(.03A) NOTE 5
= 15AC-15AJ, I, = -.03A(.03A) NOTE 5
= 7AC-7Al
=15AC-15AJ
= Rated input voltage
= Rated input voltage, TA=100'C
= Rated output voltage
= Rated output voltage, TA =100'C
NOTES:
1. In switching an inductive load. the current will lead the voltage on turn·on and lag the voltage on turn·off (see Figure 2). Therefore; Voltage Delay Time
(tov) '" Ici, + t" and Current Storage Time (Is,) '" Isv + tfv.
2. The efficiency is a measure of internal power losses and is equal to Output Power divided by {nput Power. The switching speed circuit of Figure 1, in
which the efficiency is measured, is representative of typical operating conditions for the PIC600 series switching regulators.
3. Pulse test: Duration = 300,,", Duty Cycle'; 2%.
4. As can be seen from the switching waveforms shown in Figure 2, no reverse of forward recovery spike is generated by the commutating diode during
switching! This reduces self'generated noise, since no current spike is fed through the switching regulator. It also improves efficiency and reliability,
since the power switch only carries current during turn-on.
5. To insure safe operation 13 should be 2: 130mAI during TON. Operation at 13
< 130mAI can permanently damage device.
POWER DISSIPATION CONSIOERATIONS
The total power losses in the switching regulator is the sum of the switching losses, and the power switch and diode D.C. losses. Once total power dissipation has
been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case or ambient temperature for any
operating condition.
The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by fl20KHz.
The D.C. losses curve presents data for a duty cycle of .2. To find D.C. losses at any other duty cycle, multiply by 0/.2 for the powerswitchand by(1·D)/.8 for the
diode.
At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invalid and a detailed transient
thermal analysis must be performed. Please see Design Note 6 (DN·6) for further information.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
7·9
PRINTED IN U.S.A.
•
PIC625 PIC626 PIC627 PIC635 PIC636 PIC637
Power Dissipation
Efficiency
100~_~
J.-f
40
~
z
0
;:
'""-
20KHz, V."
35
90
80
30
'\
iii
'" 25
C
0:
W
;:
'" '"
20
0
"-
w IS
''""
>
'"I
0:
W
o
-50 -25
~
60 1-+~-HH-+--1I-I--H-+--+--I
'"u
SOI--~~~~~-r-~-t~-~I----1
t:;
40I--+--1I-I--H-+-I-I--H-+---+--I
~
30
As measured in the circuit shown --1-----1
in Figure 1.
20
V," =25V
VDut = Vi" X Duty Cycle
I, = 30mA
T, 25·C
;;:
r\.
'\
10
=
OL-~~~~~~~~~-'-
ISO
25
50
75
100 125
Tc - CASE TEMPERATURE (OC)
Power Switch Duty Cycle
Diode Duty Cycle
0.8
50
T,
10
Switch Duty Cycle.
I
(1-0)/.8 where 0 = Power
~
'"w
'"'"0
Q
~
'"w
'"'"
9
1/
..J
U
20
V I----i--"
1.0
0.2, ')
10
L
MAXIMUM
2
TYPICAL
V ~V'
u
:::>
Diode
MAXIMUM
%
1)11 M
.02
•01
2
Tr~ICAL -
f
...... .....
DC
Tc = l00·C
t-- ,
~
I-
I-- -
[/,3001'5 10% duty cycle
101'5 10% duty cycle
10
I-
.10
.05
g
~0:
o
1
j
0.5
....... l'
PIC 625. 635
PIC 626, 636
PIC 627, 637
0.2
iode
45678910
I, - OUTPUT CURRENT (A)
V
O. 1
3
20
4 5
V.-l(ON}
10
20
30 4050
100
ON-STATE VOLTAGE
To determine switching losses at any other
frequency. multiply by f/20KHz where f is the
frequency at which the losses are to be
determined-,
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924-1235
7-10
PRINTED IN U.S.A.
PIC625 PIC626 PIC627 PIC635 PIC636 PIC637
I~
-
...
- V,_ •
= '2SV -------''V\/V--'-,
V.
.J'<'VYVL~
________ 1
v, ,
.10.
POWER SWITCH
V",t
!
= sv
Ir'~I~l·
-30mA
Pulse Width.= lOllS
Rep. Rate = 20kHz
1---_ _4---------'
---------
r·· .. ;·")···......····..···....·······..····..···..······ ",
f
I
!
On-State Characteristics
16
TYPICAL /
12
:>
10
'"
~
z
>-
/v
14
0
/
~
VI
V
Z
0
1/
I
-"
= -25V, Vout = -5V,
IDRIVE
= +30mA.)
•
'"
18
16
0:
0:
14
0
12
/
:>
I/MAXIMUM
/ /
'"
0:
«
~
/
10
I
/
/ V
II /
...
'"'"
0
T; = 2S'C
1,=30mA- f--
'"I
0
I&V
.S
V,_,(on) -
1.5
2.S
DIODE FORWARD VOLTAGE (V)
Turn-on Time
FaUTime
1000
As measured in the circuit shown
in Figure 1.
V"
SOO
400
300
V out
Ii
T;
T; = 2S'C
I
-"
V'_,(on)- ON-STATE VOLTAGE (V)
1000
MAXIMUM
TYPICAL
0:
I.
/1
2
As measured in the circuit shown
in Figure 1.
2SV
Vi"
500
400
5V
30mA
V~t
I,
T;
300
25'C
.
W 200
E.
'":0;::
\
20
18
0:
0:
\
Diode Forward Characteristics
20
'"
COMMUTATING DIODE
Figure 2. PIC625, 626, 627 Switching Waveforms
Figure 1. PIC625, 626, 627 Switching Speed Circuit
Note: PIC635, PIC636, PIC637 Circuit and waveforms are identical but of opposite polarity (V in
~
z>-
!
T.,.,=lOI-lS
- Te•• ,:::::: 40ps
Note: No Diode Reverse or Forward Recovery Spike (See note 4.)
25V
5V
30mA
25'C
200
E.
.I
'";::
100
:0 100
I
,
tn
t"
--
~
I
SO
40
50
40
30
30
20
20
10
10
2
34
S678910
I, - OUTPUT CURRENT (A)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
20
2
I, -
7-11
45678910
OUTPUT CURRENT (A)
20
PRINTED IN U.S.A.
PIC645·
PIC646
PIC647
PIC655
PIC656
PIC657
POWER INTEGRATED CIRCUIT
Switching .Regulator 15 Amp Positive and Negative
Power Output Stages
.
FEATURES
• Designed and characterized for switching regulator applications
• Cost saving design reduces size, improves efficiency, reduces noise and RFI (See note 4.)
• High operating frequency (to >lOOkHz) results in smaller inductor-capacitor filter
and improved power supply response time'
• High operating efficiency: Typical 7A circuit performanceRise and Fall time <300 ns
Efficiency >S5%
• No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.)
DESCRIPTION
The Unitrooe ESP Switching Regulator is a unique hybrid
transistor circuit, specifically designed, constructed and
specified for use in high current switching regulator applications. The designer is thus relieved of one of the most time
consuming; tedious and critical aspects of switching regulator
design: choosing the appropriate switching transistors and
commutating diode, and empirically determining the optimum
drive and bias conditions.
!;ignific~nt drawbarks to.switching regu!ato!"s: noise generation
and slow response time; there is, in fact, no diode reverse
recovery spike (See note 4.).
The PIC600 series switching regulators are designed and
characterized to be driven with standard integrated circuit
voltage regulators. They are completely characterized over
their entire operating range of -55·C·to +125·C. The devices
are enclosed in a special 3 pin TO-3 package, hermetically
sealed for high reliability. The hybrid circuit construction
utilizes thick film resistors on a beryllia substrate for maximum
thermal conductivity and resultant low thermal impedance. All
of the active elements in the hybrid are fully passivated.
Switching regulators, when compared to conventional regulators, result in significant reductions in size, weight, and
internal power losses and a major decrease in overall cost.
Using the Unitrode PIC600 series the designer can achieve
further improvements in size, weight, efficiency, and costs. At
the same time, because of the PIC600 series design and
packllging, the designer is aided in overcoming two of the most
SCHEMATIC
PIC645
. PIC646
PIC647
pas.
Application Notes U.GS and U-76 provide a detailed description of the hybrid circuit and design guidance for specific
circuit applications.
pas.
NEG. 4
0--...---"
OUTPUT
INPUT
PIC655
PIC656
PIC657
INPUT
2
. COMMON
NEG.
;-<,...-..---0
DRIVE
OUTPUT
COMMON
MECHANICAL SPECIFICATIONS
PIC645 PIC646 PIC647 PIC655 PIC656 PIC657
IC~
B-1
A
2
[~
4
B
1
C
D
E
3
G
H
J
NOTE:
loads may be soldered to within
1116" of base provj~ed temperaturetime exposure is less than 260°C
for 10 seconds.
M
N
ins.
mm
.875 MAX.
.135
.250 .450
.312 MIN.
.205-.225
.420-.440
.145-.165
.395-.405
.151-.161 DIA.
.188 MAX. RAD.
.525 MAX. RAD.
.708-.728
1.177-1.197
.038-.043 DIA.
22.23 MAX.
3.43
6.35-11.43
7.92 MIN.
5.21 5.72
lQ.67-11.18
3.68-4.19
10.03-lQ,29
3.84-4.09 DIA.·
4.78 MAX. RAD .
13.34 MAX. RAD .
17.98 18.49
29.90-30.40
.97-1.09 DIA.
3 Pin TO-3
nn
SEMICONDUCTOR
~ PRODUCTS
8/78
7-12
_UNITRDDE
PIC645 PIC646 PIC647 PIC655 PIC656 PIC657
ABSOLUTE MAXIMUM RATINGS
PIC645
PIC646
PIC647
Ple655
PIC656
PIC657
Input Voltage, V•., ............................................................ 60V .................... BOV.................. 100V................ -60V................ -BOV.............. -IOOV
Output Voltage, V,., ........................................................ 60V .................... BOV.................. 100V................ -60V................ -BOV .............. -IOOV
Drive-Input Reverse Voltage, V] .................................... 5V ...................... 5V...................... 5V.................. -5V.................. -5V.................. -5V
Continuous Output Current, I, .................................... l5A .................... l5A.................... l5A ................ -15A................ -15A ................ -15A
Peak Output Current ....................................................... 20A .................... 20A .................... 20A................ -20A................ -20A ................ -20A
Drive Current, I] ............................................................ -0.4A ................ -0.4A ............... -0.4A.................... 0.4A ................... 0.4A.................... 0.4A
Thermal Resistance
Junction to Case, 0J.e
Power Switch .
2'C/W
2'C/W.
30.0'C/W ...
-55'C to +125'C
... +150'C.
-WC to +150'C .
Commutating Diode
Case to Ambient, 8 e ' A
Operating Temperature Range, Te .
Maximum Junction Temperature, Tj
Storage Temperature Range
•
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Current Delay Time
Current Rise Time
Voltage Rise Time
Voltage Storage Time
Voltage Fall Time
Current Fall Time
Efficiency (Notes 2 and 4)
On·State Voltage (Note 3)
On·State Voltage (Note 3)
Diode Fwd. Voltage (Note 3)
D!ode Fwd. Voltage (Note 3)
Off·State Current
Off·State Current
Diode Reverse Current
Diode Reverse Current
Symbol
td;
tri
t"
t"
t r,
tn
PIC645/646/647
Min. Typ. Max.
-
65
60
150
40
60
-
900
-
-
70
175
175
300
B5
-
1.0
1.5
3.5
v
-
V,. 110"1
-
V,. I10"1
V2_ I(on)
V,. I10"1
I,.,
14-1
I,.,
1,-,
35
-
2.5
-
.95
0.1
10
-
.B5
1.25
1.75
10
-
1.0
10
500
-
PI C655/656/657
Min. Typ.
Max.
-
35
60
65
40
175
60
Units
yO"' =: 5V(-5V)
10"' =: 7A(-7AJ
I] =: -30mA(30mA) NOTE 5
See Figure 2
900
-
ns
ns
100
175
300
300
ns
ns
B5
-
%
-1.0
-2.5
-1.5
-3.5·
-.B5 -1.25
-.95 -1.75
-0.1 -10
V
V
V
V
-10
-1.0
-10
/LA
/LA
/LA
500
-
/LA
-
Conditillns
ns
ns
Vi" =: 25V( -25V)
See mites 1, 2, 4
I, =: 7A(-7AJ, I, =: -.03A(.03A) NOTE 5
I, =: 15A(-15AJ, I] =: -.03A(.03A) NOTE 5
I, =: 7A(-7A)
I, =: 15A(-15AJ
V, =: Rated input voltage
V, =: Rated input voltage, TA =: 100'C
VI =: Rated output voltage
VI =: Rated output voltage, TA =: 100'C
NOTES:
1. In switching an inductive load, the current will iead the voltage on turn·on and lag the voltage on turn·off (see Figure 2). Therefore, Voltage Delay Time
(tov)
+ tri and Current Storage Time (isO '"Isy + tfy.
.
.
"'lei,
2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of Figure 1, in
which the efficiency is measured, is representative of typical operating conditions for the PIC600 series switching regulators.
3. Pulse test: Duration = 3001'5, Duty Cycle $ 2%.
4. As can be seen from the switching waveforms shown in Figure 2, no reverse of forward recovery spike is generated by the commutating diode during
switching! This reduces self·generated noise, since no current spike is fed through the switching regulator. It also improves efficiency and reliability,
since the power switch only carries current during turn-on.
5. To insure safe operation 13 should be 2: 130mAI during TON. Operation at 13
< 130mAI can
permanently damage device.
POWER DISSIPATION CONSIDERATIONS
The total power losses in the switching regulator is the sum of the switching losses, and the powerswitch and diode D.C. losses.. Once total power dissipation has
been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case or ambient temperature for any
operating condition.
The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by f120KHz.
The D.C. losses curve presents data for a duty cycle of .2. To find D.C. losses at any other duty cycle, multiply by 0/.2 forthe power switch and by(1·0)/.8 forthe
d~~
.
At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invalid and a detailed transient
thermal analysis must be performed. Please see Design Note 6 (ON·6) for further information.
UNITROOE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
7-13
PRINTED IN U.S.A.
PIC645 PIC646 PIC647 PIC655 PIC656 PIC657
Efficiency
Power Dissipation
100
80
~
z
.-1
90
70
80
0
;::
60.
in
0
50
iI:
II)
0:
UJ
'\
40
:;:
f
~
1,\
30
UJ
'"
«
0:
>
«
I
10
0.0
UJ
C3
i>:
50
40
r::-
30
I\.
'\
As measured in the circuit shown ---t---j
in Figure 1.
V;"
2SV
VOu! :;::: V,,, X Duty Cycle
I, = 30mA
T,
2s'C
=
20
10
=
4
CASE TEMPERATURE ('C)
I -
Diode D.C. Losses
100
50
Power Switch Duty Cycle
Diode Duty Cycle
0.8
2S'C
T,
10
~
other duty cycle, multiply by
(1-0)/.8 where D =: Power
Switch Duty Cycle.
I
-MAXIMUM
II)
II)
0
V
c.i
0
1.0
20
0/.2, where 0 is the duty cycle.
To obtain power switch losses at
TYPICAL-
~
r--:-=
10
UJ
II)
II)
./
MAXIMUM
0
..J
...-:: :..-- I--'"
c.i
V
0
.5
.5
•2
.2
.10
I, -
30mA
0.2, I)
II)
,/
..J
50
Duty Cycle
2S'C
T,
any other duty cycle, multiply b y - - -
II)
UJ
20
15
:)b/B910
OUTPUT CURRENT (A)
Power Switch D.C. Losses
100
0.2
To obtain diode losses at any
20
5V
60
-50
Tc -
20KHz,VO " '
= sV~
70
"UJ
'\
Maximum allowable average
power dissipation each, for the
power switch and for the diode.
Maximum allowable case
temperature = 125°C
20
UJ
1
sOKHz,Vo _'
Z
'"
0
0.
>
u
=
- -
.....
.1
20
5 6 7 8 9 10
OUTPUT CURRENT (A)
TYPICAL
-:::::V
5678910
I, -
20
OUTPUT CURRENT (A)
Maximum Safe Operating Area
PIC 645. 646. 647-655. 656, 657
Switching Losses
10
50
/"
~
II)
MAXIMUM -
Power Switch
~
1.0
......./
20
UJ
II)
II)
g
'"
:;:
Z
u
I-
§:
II)
~
.5
TYPICAL
.2
V
i-"""
:::J
r----...
-
U
l-
----
/
......
fg~~ IA~d~~tyC~~~e
ii'
DC
Tc = 100G e
I:::J
............
o
r-- -
MAXIMUM
1
Diode
11%
...H1 J-14 Tr~'CAL
.02
.01
2
I, V,I'I = 25V, I)
1
20KHz
Tc =2S'C
=
Power Switch
.10
.05
10
0:
0:
=
30mA.
5678910
OUTPUT CURRENT (A)
~
0.5
PIC 645 655
PIC 646, 656
PIC 647, 657
0.2
-
piOde
0.1
3
20
4 5
V.-,(ON)
10
20
304050
100
ON·STATE VOLTAGE
To determine switching losses at any other
frequency. multiply by 1120KHz where f is the
frequency at which the losses are to be
determined.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
7-14
PRINTED IN U.S.A.
PIC645 PIC646 PIC647 PIC655 PIC656 PIC657
v
=
'--.,----, - - - +
12SV --UVI/\rL-----L,
+
IDRIYl == -30mA
Pulse Width.= lO,us
Rep. Rate = 20kHz
RL =
.71SP.
;
Ton=10.us
'-J
-To'l::: 40P.5
Note: No Oiode Reverse or Forward Recovery Spike (See note 4.)
'.
t---->-----'----
(....;.)1................................................ ".
f
+2SV --, r - l r - l ~
_ OvU
;
POWER SWITCH
Voul
= SV
'
!
LJ
Figure 1. PIC645, 646, 647 Switching Speed Circuit
COMMUTATING DIODE
\
\
Figure 2. PIC645, 646, 647 Switching Waveforms
Note: PIC655, PIC656, PIC657 Circuit and waveforms are identical but of opposite polarity (V in = -2SV, VolIl = -SV, JDRlVE = +30mA.)
On·State Characteristics
20
18
:!
16
I-
14
Z
"'0:0:
:!
!
./
TYPICAL
12
::>
"
"'«
10
I-
I/)
II
Z
0
V
...z
V
18
16
0:
0:
14
"
12
«
;:
10
/
::>
I/MAXIMUM
0
0:
/ /
TYPICAL
1
0
1
V
I
j
-"
~V
III
.5
V'.'(on) -
V,.,{on) -
ON·STATE VOLTAGE (V)
1.5
Fall Time
1000
As measured in the circuit shown
in Figure 1.
Y,n
25V
Vo .!
SV
']
30mA
Ti
25'C
500
400
300
As measured in the circuit shown
in Figure 1.
25V
Vi"
5V
V~,
30mA
I,
Ti - 2S"C
SOD
400
300
200
.,
~
oS
;::
200
"';:::::;;
100
t"
t"
50
40
,
t f;
oS
I
2.5
DIODE FORWARD VOLTAGE (V)
Turn·on Time
1000
T, ::: 25°C
V_ I
C
I.
VMAXIMUM
J
0:
......0
0
T j = 25°C
1,=30mA- I---
III
I
-'
I-
1/ /
!
l-
...::;;
•
Diode Forward Characteristics
20
::::?'" r-I-
.t1..
100
I
50
40
30
30
20
20
10
10
2
I, -
6 7 8 9 10
OUTPUT CURRENT (A)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
20
2
I, -
7-15
5678910
OUTPUT CURRENT (AI
20
PRINTED IN U.S.A.
POWERINTEGRATEO- CIRCUIT
Switching Regulator 10 ·Amp Positive and Negative
Power Output Stages
PIC660
PIC661
PIC662
PIC670
PIC671
PIC672
FEATURES
• Designed and characterized for switching regulator applications
• Cost saving design reduces size, improves efficiency, reduces noise and RFI (See note 4.)
• High operating frequency (to >lOOkHz) results in smaller inductor-capacitor filter
and improved power supply response time
• High operating efficiency: Typical5A circuit performanceRise and Fall time <300ns
Efficiency >85%
• No reverse recovery spike generated by commutating diode (See note 4. and Fig. 2.)
• Electrically isolated, 4-Pin, TO-66 hermetic case (500V, 11'A, ali leads common)
DESCRIPTION
The Unitrode Switching Regulator is a unique hybrid
transistor circuit, specifically designed, constructed and
specified for use in high current switching regulator appli.
cations.The designer is thus relieved of one of the most time
consuming, tedious and critical aspects of switching regulator
· design: choosing the appropriate switching transistors and
commutating diode, and empirically determining the optimum
· drive and bias conditions.
significant drawbacks to switching regulators: noise generation
and slow response time; there is, in fact, no diode ·reverse
recovery spike (See note 4.).
The PIC600 series switching regulators are designed and
characterized to be driven with standard integrated circuit
voltage regulators. They are completely characterized over
their entire operating range of -55'C to +l25'C. The devices
are enclosed in a special 4-Pin TO-66 package, hermetically
sealed for high reliability. The hybrid circuit construction
utilizes thick film resistors on a beryllia substrate for maximum
thermal conductivity and resultant low thermal impedance. All
of the active elements in the hybrid are fully passivated.
Switching regulators; when compared to conventional regulators, result in significant reductions in size, weight, and
internal power losses and a major decrease in overall cost.
· Using the Unitrode PIC600 series the designer can achieve
further improvements in size, weight, efficiency, and costs. At
the same time, because of the PIC600 series design and
. packaging, the designer is aided in overcoming two of the most
SCHEMATIC
PIC660
PIC661.
PIC662
pos.
Application Notes U-68 and U-76 provide a detailed description of the hybrid circuit and design guidance for specific
circuit applications_
pos.
NEG. 4
INPUT 0-.....------..
, -____~~ OUTPUT
INPUT
PIC670
PIC671
PIC672
NEG.
,-<1"-.....-0 OUTPUT
2
COMMON
DRIVE
COMMON
MECHANICAL SPECIFICATIONS
NOTES:
PIC660 PIC661 PIC662 PIC670 PIC671 PIC672
1. Case is electrically isolated.
2. Loads may be soldered to within
1116" of base provided temperaturetime exposure is less than 260"C
for 10 seconds.
Ins.
A
.620 MAX
mm
157!) MAX
B
050-.075
127-191
C
028-034
071-086
0
958-962
24.33-24.43
E
F
.190-.210
190-210
4-P.in TO·66
4.83-533
483-5.33
G
.350 MAX. RAO
889 MAX RAO
H
510-!!J90
1448·1499
J
t42-.1S2DIA
K
360 MIN
9.14 MIN
L
250-340
635-8.64
361-386 DIA
nL:::'Jn
SEMICONDUCTOR
PRODUCTS
4/82
7-16
_UNITRDDE
PIC660
PIC661
PIC662
PIC670
PIC671
PIC672
ABSOLUTE MAXIMUM RATINGS
PIC671
PIC672
PIC660
PIC661
PIC662
PIC670
-BOV ........ -lOOV
Input Voltage, V.-2 ........................... 60V ......... BOV ......... 100V ......... -60V
-BOV .........-lOOV
Output Voltage, V'-2 .......................... 60V ......... BOV ......... 100V ......... -60V
-5V ......... -5V
Drive-Input Reverse Voltage, V3-4 .............. 5V ......... 5V ......... 5V ......... -5V
-lOA ......... -lOA
Output Current, I, ............................ lOA ......... lOA......... lOA ......... -lOA
O.4A ......... 0.4A
Drive Current, I, ............................ -0.4A ........ -0.4A ......... -0.4A.. .. .. ... O.4A
Thermal Resistance
Junction to Case, 8J-c
Power Switch ............................................................. 4.0'C/W .................................... .
Commutating Diode ............................................•..•...... 4.0'C/W ..........................•....... '"
Case to Ambient, 8C- A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60.0'C/W .. .................................. .
Operating Temperature Range, Tc ............................................ -55'C to +125'C................................ .
Maximum Junction Temperature, TI .............................•...........••.....+150'C .....•..................•............
Storage Temperature Range ....••......................................•...•. -65'C to +150'C ............................... .
III
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Current Delay Time
Symbol
tdl
PIC660/6611662
Min. Typ. Max.
-
35
60
Current Rise Time
tri
-
65
150
Voltage Rise Time
t"
-
40
60
Voltage Storage Time
tsv
900
Voltage Fall Time
tfv
Current Fall Time
tli
-
~
-
Efficiency (Notes 2 and 4)
PIC670/671/672
Min.
-
Typ.
Max,
Units
35
60
ns
VI" = 25V(-25V)
V O ", = 5V(-5V)
Conditions
65
175
ns
40
60
ns
10"' = 5A(-5A)
-
-
900
-
ns
I, = -30mA(30mA) NOTE 5
70
175
-
100
300
ns
See Figure 2
175
300
175
300
ns
See notes 1, 2, 4
85
-
-
1.0
2.5
.85
1.25
85
-
%
1.5
-
-1.0
-1.5
V
I. = 5A(-5A), 13 = -.03A(.03A) NOTE 5
3.5
-
-2.5
-3.5
V
I. = 10A(-lOA), 13 = -.03A(.03A) NOTE 5
-.85
-1.25
V
I, =5A(-5A)
-.95
-1.75
V
-0.1
-10
p.A
V. = Rated input voltage
On-State Voltage (Note 3)
V4-I[ool
On-State Voltage (Note 3)
V.... 1[0"1
-
Diode FWd. Voltage (Note 3)
V2_ I (on)
-
Diode Fwd. Voltage (Note 3)
V'_I[o"1
-
.95
1.75
0.1
10
Off-State Current
I.-I
Off-State Current
I.-I
-
1,-,
-
10
Diode Reverse Current
1.0
10
Diode Reverse Current
11-2
-
500
-
-
-
I, = lOA(-lOA)
-10
-
p.A
V. = Rated input voltage, TA = 100'C
-1.0
-10
p.A
V, = Rated output voltage
p.A
V, = Rated output voltage, T A = 100'C
500
-
NOTES:
1. In switching an inductive load, the current will lead the voltage on turn-on and lag the voltage on turn-off (see Figure 2). Therefore, Voltage Delay Time
(tov) '" Idl + t,; and Current Storage Time (tsl) '" Isv + tfv.
2. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. 1 he switching speed circuit of Figure 1, in
which the efficiency is measured, is representative of typical operating conditions for the PIC600 series switching regulators.
3. Pulse test: Duration = 300p.s, Duty Cycle :5 2%.
4. As can be seen from the switching waveforms shown in Figure 2, no reverse of forward recovery spike is generated by the commutating diode during
switching! This reduces self·generated noise, since no current spike is fed through the switching regulator. It also improves efficiency and reliability,
since the power switch only carries current during turn-on.
5. To insure safe operation 13 should be ~ 130mAI during TON. Operation at 13 < 130mAI can permanently damage device.
POWER DISSIPATION CONSIDERATIONS
The total pow,;r losses in the switching regulator is the sum of the switching losses, and the power switch and diode D.C. losses. Once total power dissipation has
been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case or ambient temperature for any
operating condition.
The switching losses curve presents data for a frequency of 20KHz. To find losses at any other frequency, multiply by 1120KHz.
The D.C. losses curve presents data for a duty cycle of .2. To find D.C. losses at any other duty cycle, multiply by 0/.2 forthe power switch and by (1·0)/.8 forthe
diode.
At frequencies much below 10KHz the above method for determining the allowable case or ambient temperature becomes invalid and a detailed transient
thermal analysis must be performed. Please see Design Note 6 (DN·6) for further information.
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
7-17
PRINTED IN U.S.A.
PIC660
PIC661
Power Dissipation
~
100
35
90
f
~
25
>
«
I
70
60
UJ
20
(j
iL
1\'\
0
«
'"
12
0
-
'"
'""-0
r-----
"'00
«
;:
10
TYPICAL /
IOJ
Z
I
I
,/
0
-"
I
MAXIMUM TJ = 25°C
b=30mA -
10
I
TYPICAL
I
/
-
v_~y
/1
o
.5
V•. ,(on) -
V'_,(on)- ON-STATE VOLTAGE (V)
Ti
400
300
= 25'C
200
-;;;-
TI
200
=
=
=25'C ,
t
.s
"';::::E
100
-
/
,j
_r-
JIf.
100
I
t"
t"
50
40
=25°C
As measured in the circuit shown
in Figure 1.
V,. 15V
V~. 5V
10 30mA
soo
.s
I
/
Fall Time
1000
As measured in the circuit shown
in Figure I.
V,. = 15V
V~. = 5V
10 = 30mA
500
400
300
MAXIMUM
TI
1.5
2.5
DIODE FORWARD VOLTAGE (V)
Turn·on Time
1000
/
I
J
C
I.
0
"';::::E
\
20
18
;;;
\
=-15V, V•• =-5V, 10RlVE =+30mA_)
On·State Characteristics
20
"''"
'":::>
u
"'!;:
COMMUTATING DIODE
Figure 2. PIC660, 661, 662 Switching Waveforms
Figure 1. PIC660, 661, 662 Switching Speed Circuit
~
z
'
!
\
Note: PIC670, PIC671, PIC672 Circuit and waveforms are identical but of opposite polarity (V,.
I-
PIC672
30
50
40
30
20
20
10
10
2
6 7 8 9 10
I, - OUTPUT CURRENT (A)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
20
2
I, -
7-19
45678910
OUTPUT CURRENT (AI
20
PRINTED IN U.S.A.
PIC 7501-PIC 7512
PIC 7519-PIC 7530
PIC 7555-PIC 7566
Semiconductor Devices, Silicon
Hybrid Switching Regulators
High Reliability Types
PIC 600/6011602
PIC 610/611/612
PIC 625/626/627
PIC 635/636/637
PIC 660/661/6S2
PIC 670/671/672
Test Level T1
Test Level T2
PIC 7501/7502/7503
PIC 7504/7505/7506
PIC 75071750817509
PIC 7510/751117512
PIC 75551755617557
PIC 7558/7559/7560
PIC 7519/7520/7521
PIC 7522/7523/7524
PIC 7525/752617527
PIC 752817529/7530
PIC 75611756217563
PIC 7564/7565/7566
Contents
1.0
2.0
3.0
4.0
Scope
Applications Documents
Requirements
Quality Assurance Provisions
n nSEMICONOUCTOR
eJ
PRODUCTS
7-20
_UNITRDDE
PIC 7501-PIC 7512
PIC 7519-PIC 7530
PIC 7555-PIC 7566
1.0 SCOPE
This specification defines the detail requirements for High
Reliability Hybrid Switching Regulators. Very extensive 100%
testing for parameter stability has been included in the Quality
Assurance Provisions.
1.1a Absolute Maximum Ratings
Input Voltage, V4-2
Output Voltage, V1.2
Drive-Input Reverse Voltage, V3-4
Output Current, 11
Drive Current, 13
Thermal Resistance
Junction to Case; J.C
Power Switch
Commutating Diode
Case to Ambient, C-A
Operating Temperature Range, Tc
Maximum Junction Temperature, 1j
Storage Temperature Range
e
e
T1
T1
T1
T1
T1
T1
PIC7501
PIC7502
PIC7503
PIC7504
PIC7505
PIC7506
T2
T2
T2
T2
T2
T2
PIC7519
(PIC600)
PIC7520
(PIC601)
PIC7521
(PIC602)
PIC7522
(PIC610)
PIC7523
(PIC611)
PIC7524
(PIC612)
60V
60V
5V
5A
-0.2A
80V
80V
5V
5A
-0.2A
100V
100V
5V
5A
-0.2A
-60V
-60V
-5V
-5A
0.2A
-80V
-80V
-5V
-5A
0.2A
-100V
-100V
-5V
-SA
0.2A
..
..
..
4.0·C/W
4.0·C/W
60.0·C/W
II
..
-55·C to + 125·C
+150·C
-65·C to +150·C
...
...
..
""
II
II
II
1.1b Absolute Maximum Ratings
Input Voltage, V4-2
Output Voltage, V1.2
Drive·lnput Reverse Voltage, V 3-4
Output Current, 11
Drive Current, 13
Thermal Resistance
Junction to Case, J.c
Power Switch
Commutating Diode
Case to Ambient, C-A
Operating Temperature Range, Tc
Maximum Junction Temperature, 1j
Storage Temperature Range
e
e
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
T1
T1
T1
T1
T1
T1
PIC7507
PIC7508
PIC7509
PIC7510
PIC7511
PIC7512
T2
T2
T2
T2
T2
T2
PIC7525
(PIC625)
PIC7526
(PIC626)
PIC7527
(PIC627)
PIC7528
(PIC635)
PIC7529
(PIC636)
PIC7530
(PIC637)
60V
60V
5V
1SA
-0.4A
80V
80V
5V
15A
-OAA
100V
100V
5V
15A
-O.4A
-60V
-60V
-5V
-15A
O.4A
-80V
-80V
-5V
-1SA
OAA
-100V
-100V
-5V
-15A
0.4A
....
..
4.0·C/W
4.0·C/W
60.0·CIW
-55·C to + 125·C
+150·C
-65·C to + 150·C
""
..""
7-21
II
II
II
...
II
II
PRINTED IN U.S.A.
•
PIC 7501-PIC 7512
PIC 7519-PIC 7530
PIC 7555-PIC 7566
1.1c Absolute Maximum Ratings
Positive
Output
Input Voltage, V4•1
Output Voltage, V,.2
Drive-Input Reverse Voltage, V3.1
Peak Output Current, I'Pk
Drive Current, 13
Thermal Resistance
Junction to Cas", RJ.e
Power Switch
Commutating Diode
Case to Ambient, fJ C-A
Operating Temperature Range, Tc
Maximum Junction Temperature, lj
Storage Temperature Range
Negative
Output
TI
TI
TI
T2
T2
T2
PIC7555
PIC7556
PIC7557
PIC7558
PIC7559
PIC7560
T2
T2
T2
T2
T2
T2
PIC7561
(PIC660)
PIC7562
(PIC661)
PIC7563
(PIC662)
PIC7564
(PIC670)
PIC7565
(PIC671)
PIC7566
(PIC672)
60V
60V
5V
lOA
-O.4A
BOV
BOV
5V
lOA
-O.4A
100V
100V
5V
lOA
-O.4A
-60V
-60V
-5V
-lOA
O.4A
-BOV
-SOY
-5V
-lOA
O.4A
-100V
-10OV
-5V
-lOA
O.4A
....
..
...
•..
•
4.0°C/W
4.0°C/W
60.0°C/W
-55°C to + 125°C
+150°C
-65°C to +150°C
•.
•
1.1 d Electrical Specifications (at 25°C unless noted)
PIC7501-3
PIC7519-21
Test
Symbol
Min.
PIC7504-6
PIC7522-24
Max.
-
20
40
-
20
40
ns
-
50
75
50
75
ns
30
50
900
-
-
-
900
1
Current Delay Time
tdi
2
Current Rise Time
trj
3
Voltage Rise Time
trv
4
Voltage Storage Time
tsv
5
Voltage Fall Time
tfv
50
75
6
Current Fall Time
tfi
-
70
150
7
Efficiency (Notes 2 and 4)
~
-
85
-
8
On·State Voltage (Note 3)
V4"(On)
-
1.0
1.5
9
On·State Voltage (Note 3)
V4•1 (on)
-
2.5
3.5
-
0.8
1.0
1.0
1.5
10
Diode Fwd. Voltage (Nole 3)
V2•1 (on)
11
Diode FWd. Voltage (Note 3)
V2•1 (on)
12
Off·State Current
14-1
13
Off·State Current
14-1
14
Diode Reverse Current
15
Diode Reverse Current
1 •2
'
1 •2
'
Min.
Typ.
-
-
-
0.1
-
0.01
-
1.0
0.5
10
1.0
10
1.0
-
Typ.
30
Max.
Conditions
Units
Vin = 25V ( - 25V)
Vout = 5V(-5V)
= 2A(-2A)
= - 20mA (20mA) (Note 5)
50
ns
lout
-
ns
13
50
75
ns
See Figure 1
70
ISO
ns
See Notes I, 2, 4
85
-
%
-1.0
-1.5
V
-2.5
-3.5
V
-0.8
-1.0
V
-1.0
-1.5
-0.1
-0.1
-
-1.0
-
-05
-10
-1.0
-10
-1.0
V
~A
rnA
~A
rnA
= 2A(-2A), 13 = - 0.02A (0,02A)
= 5A(-5A), 13 = - 0,02A (0,02A)
12 = 2A(-2A)
12 = SA (-SA)
V4 = Rated input voltage
V4 = Rated input voltage. TA = 100·C
V, = Rated output vollage
V, = Rated output voltage. TA = 100·C
14
14
Notes:
I. In switching an inductive load, the current will lead the voltage on turn·
on and lag the voltage on turn-off (see Figure 1). Therefore, Voltage
Delay Time (tDV) '" tdi + tri and Current Storage Time (tsi) '" tsv + ltv·
2. The efficiency is a measure of internal power losses and is equal to
Output Power divided by Input Power. The switching speed circuit of
Figure I, in which the efficiency is measured, is representative of
typical operating conditions for the PIC600 series switching regulators.
5. To insure safe operation, absolute value of 13 should be a minimum
of 20mA during t(on)' Operation with 13 below 20mA can permanently
damage the device.
6. To insure safe operation, absolute value of 13 should be a minimum
of 30mA during ~on). Operation with 13 below 30mA can permanently
damage the device.
3. Pulse test: Duration = <; 400~s. Duty Cycle <;2%.
4. As can be seen from the switching waveforms shown in Figure I, no
reverse or forward recovery spike is generated by the com mutating
diode during switching! This reduces self·generated noise, since no
current spike is fed through the switching regulator, It also improves
efficiency and reliability, since the power switch only carries current
during turn-on.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
7·22
PRINTED IN U.S.A.
PIC 7501-PIC 7512
Test
Symbol
Min.
Typ.
Max.
Min.
Typ.
Max.
Units
tdi
-
35
60
35
60
ns
65
150
65
175
ns
40
60
-
40
60
ns
'out
-
ns
'3
2
CUrrent Rise Time
tr;
3
Vollage Rise Time
Irv
4
Vollage Storage Time
Isv
5
Voltage Fait Time
I,v
6
Current Fall Time
Ifi
7
Efficiency (Noles 2 and 4)
8
On·Slale Voltage (Nole 3)
V4•1(on)
9
On·Slale Voltage (Nole 3)
V4-1 (on)
~
11
Diode FWd. Vollage (Nole 3) V2•1 (on)
Diode Fwd. Voltage (Nole 3) V2•1 (on)
10
12
Off·Slale Currenl
13
Off·Slate Current
14
Diode Reverse Current
15
Diode Reverse Current
' 4 •1
'4•1
' 1•2
' 1•2
1200
-
70
175
175
300
85
-
1.0
1.5
2.5
3.5
0.85
1.25
0.95
1.75
0.1
-
10
0.01
1.0
-
1.0
-
10
0.5
1.0
PIC7555-7
PIC7561-3
Test
See NOles 1, 2, 4
85
-
%
-1.0
-1.5
V
-2.5
-3.5
V
-0.85
-1.25
V
-0.95
-1.75
V
-0.1
~A
-10
-1.0
-0.1
-1.0
mA
~A
-10
-0.5
-1.0
rnA
= 7A (-7A), '3 = -0.03A (0.03A)
= 15A ( -15A), '3 = - 0.03A (0.03A)
'2 = 7A(-7A)
'2 = 15A(-15A)
V4 = Raled inpul vollage
V4 = Raled inpul voltage, TA = 100'C
VI = Raled OUlpul vollage
VI = Raled oulpul vollage, TA = 100'C
'4
'4
PIC7558·60
PIC7564·6
Min.
Typ.
Max.
Units
60
35
60
ns
65
150
65
175
ns
40
60
-
40
60
ns
1200
-
-
1200
-
ns
100
300
ns
See Figure 1
175
300
ns
See Noles 1, 2, 4
-
0"
See NOles 2 and 4
-1.0
-1.5
V
'4 = SA (-5A), '3
Noles 3, 5
-3.5
V
'4 = 10A(-10A),13
NOles 3,5
= SA (-SA)
= 10A(-10A)
V4 = Raled inpul vollage
V4 = Raled inpul voltage, TA = 100'C
VI = Raled oulpul vollage
VI = Raled OUlpUI vollage, TA = 100'C
Isv
-
5 Vollage Fall Time
Ifv
6 Current Fall Time
Ifi
1.0
1.5
-
-
2.5
3.5
-
-2.5
-
0.85
1.25
-1.25
V
1.75
-0.95
-1.75
V
10
-
-0.85
0.95
1
-
10
-
8 On·Slale Vollage
V4•1(on)
-
9 On·Slate Voltage
V4•1 (on)
~
10 Diode FWd. Voltage
V2•1 (on)
11
V2•1 (on)
14 Diode Reverse Current
See Figure 1
ns
Max.
4 Voltage Storage Time
15 Diode Reverse CUrrent
ns
35
tri
13 Off·Stale Currenl
300
300
Typ.
trv
12 Olt-Slale Current
100
175
Min.
3 Vollage Rise Time
Diode FWd. Voltage
= 7A(-7A)
= - 30mA (30mA) (Nole 6)
Idi
2 Current Rise Time
7 Efficiency
1200
Conditions
Vin = 25V (-25V)
VOUI = 5V (-5V)
Symbol
-
1 Current Delay Time
PIC 7555-PIC 7566
PIC7510·12
PIC7528·30
PIC7507·9
PIC7525·27
1 Current Delay Time
PIC 7519-PIC 7530
'4•1
' 4•1
' 1•2
' 1•2
70
175
175
300
85
-
0.1
.01
1.0
0.5
1.0
85
-0.1
-.01
-10
~A
-1
rnA
-1.0
-10
~A
-0.5
-1.0
rnA
Conditions
= 25V (-25V)
VOUI = 5V (-5V)
'out = SA (-SA)
'3 = 30mA ( - 30mA)(Nole 6)
Yin
=-
30mA (30mA),
=-
30mA (30mA),
'2
'2
V4-1
t
POWER SWITCH
Vin = +25V -~VV'\r'--!-o
Toff:::. 40",S
!"·········;~l·············
Pulse Width:::: lOps
Rep. Rale ~ 20kHz
Note: See Table I for R, L
and C values.
i
..
1/[
............·. ·......·. ·.... '\
COM MUTATING DIODE
\
..
Note: No Diode Reverse or Forward Recovery Spike
(See note 4.).
Positive Output Switching Speed Circuit
Positive Output Switcliing Waveforms
Note: Negative test circuit and waveforms are identical but of opposite polarity (Vin ~ - 25V, Vout = - 5V).
Figure 1.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
7·23
PRINTED IN U.S.A.
PIC 7501-PIC 7512
PIC 7519-PIC 7530
PIC 7555-PIC 7566
Tablel.
Component Values for SWitching Speed Circuit
13 required
20mA
1.2 kohms ± 5% tolerance
30mA
820 ohms ±5% tolerance
L
14 current
C
2.5 ohms ± 1% 10 watt
300,..H
. 50,..F 100V electrolytic
5A
1 ohm ±1%50watt
150,..H
150,..F 100V electrolytic
7A
0.714 ohms ±1%35watt
150,..H
150,..F 100V electrolytic
2A
MECHANiCAL Sri:CiFiCATiuN5
Notes: 1. Case is electrically isolated.
2. Loads may be soldered to
within ';';: of base provided
temperature-lime exposure is
less than 260·C for 10 seconds.
4-PinlO-66
A
.620
~=:..
1!1.7$
M~:'
--
~~5 ~_~_~ __ .~_
~~---~~
~~-:962
24.33·24.43
~*---~~~
G
.350 MAX, RAO 889 MAX. RAD.
~ ~~D.A.
3.61-3.86D1A.
~~~-~----
SCHEMATIC
pos. 04 """1~t-I.
INPUT
1 pos.
r---",,-OOUTPUT
NEG. 4
O---,r---,.
INPUT
1 NEG.
rr-r--OOUTPUT
2
COMMON
PIC7501-3, PIC7519-21
PIC7507-9, PIC7525-27
PIC7555-57, PIC7561-65
PIC7504-6, PlC7522-24
PIC751D-12, PlC7528-3D
PIC7558-60, PIC7564--66
. Figure 2. Physical Dimensions and Biasing Diagrams
2.0 APPLICABLE DOCUMENTS
The following documents of the issue in effect on the date of
invitations for bids, form a part of this specification to the extent
specified herein.
MIL-S-19500 - General SpecifICations for Semiconductor
Devices
MIL-S-19491 - Preparation for Delivery of Semiconductor
Devices
7-24
PIC 7501-PIC 7512
PIC 7519-PIC 7530
PIC 7555-PIC 7566
'3.0 REQUIREMENTS
3.1 Design and Construction
The Hybrid devices supplied under this specification shall
have a design and construction such that they will meet all of
the requirements specified herein. The dimensions and
physical characteristics shall be as specified in Figure 2.
3.2 Performance Characteristics
The performance characteristics of the Hybrid device supplied
under this specification shall be as specified in Group A inspection defined in Table III.
4.1.4.2 Inspection Sublot - An "inspection sublot" shall consist of a collection of devices of a single type which have been
manufactured under the same conditions and with the same
materials.
4.1.4.3 Shipment Lot - A "shipment lot" shall consist of
devices taken from an accepted inspection lot for the purpose
_of shipment on a specific contract or order.
4.1.4.4 Group A Inspection - Group A inspection shall consist of the examinations and tests specified in Table I, and
shall be performed on a sublot basis.
3.3 Quality Assurance
The Quality Assurance Provisions shall be as defined in
paragraph 4.0.
4.1.4.5 Controlled Inventory - The controlled inventory shall
consist of lots which have successfully passed the acceptance
inspection and are being held in storage prior to actual shipment. A controlled inventory shall have adequate safeguards
to insure that no defective or untested devices can be included in it. It shall be accessible only to those individuals who are
formally identified as authorized personnel.
3.4 Test Methods
Test methods shall be as specified herein.
3.5 Marking
The markings on the devices supplied shall be permanent
and legible and shall include the Manufacturer's name or
trademark, a Manufacturing Date Code in accordance with
MIL-S-19500 and the specific device type number.
4.2 Acceptance Inspection
The acceptance inspection requirements shall be as defined
by the applicable test level. The procedures of MIL-S-19500
shall apply to Group A inspection. Inspection lots which have
been inspected and accepted shall be kept in a controlled
inventory. Shipment lots shall be formed using devices taken
from accepted inspection lots.
3.6 Preparation for Delivery
The Hybrid devices supplied under this specification shall be
prepared for delivery in accordance with level C of MILS-19491 unless otherwise directed in the specific contract or
purchase order.
4.2.1 Test Level T2 Requirements - Test level T2 shall consist of the following requirements,
4.2.1.1 The supplier shall perform the Parameter Stability
Testing defined in paragraph 4.3 on each device to be supplied. Prior to starting the Blocking Stability test defined in
paragraph 4.3.6, each device shall be serialized for individual
identity. Variables test data for the controlled electrical parameters shall be recorded before and after stressing. The same
procedure shall apply for the Power Stress stability test
defined in paragraph 4,3.8.
3.7 Ordering Data
Procurement documents should specify the following:
a. Specific item type number
b. Number and date of this specification
c. Quality Assurance Test level required
d. Any special packaging if required
4.0 QUALITY ASSURANCE PROVISIONS
4.1 General Provisions
o,
4.1.1 Inspection Responsibility - The supplier is responsible for the performance of all inspection requirements and
acceptability of results as specified herein for the Test Level
identified in the contract or purchase order.
4.2.1.3 With each shipment lot, the supplier shall provide a
Certificate of Compliance to test level T2 of this specification.
4.2.2 Test Level T1 Requirements - Test level T1 shall consist of the following requirements.
4.1.2 Controlled Manufacture - The devices supplied under
this specification shall be manufactured under controlled
conditions usingiormally defined quality assurance methods
and systems.
4.1.3 Manufacturing liaceabllity - Each device supplied
under this specification. shall be traceable to a specific process group, to permit tracing of its full manufacturing history,
Process group records shall indicate the exact date that each
manufacturing operation was performed and identify materials
and process procedures which were used. The manufacturer
shall keep these records on file for at least five years.
4.1.4 Definitions
4.1.4.1 Inspection Lot- An "inspection lot" is a collection of
devices from which a sample is withdrawn and inspected to
determine compliance with the acceptibility criterion. It shall
consist of one or more "inspection sublots" of the device
types defined in this specification. The maximum inspection
lot size shall be 5000 units,
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
4.2.1.2 The supplier shall perform the Group A inspections in
accordance with the defined LTPD requirements on each inspection sublot. Electrical parameter testing as specified shall
be performed by variables with test data recorded.
4.2.2.1. The supplier shall perform the Parameter Stability
Testing defined in paragraph 4.3 on each device to be supplied. Electrical parameter testing as specified shall be performed by attributes.
4.2.2.2 The supplier sh!lll perform the Group A inspections in
accordance with the defined LTPD requirements on each inspection sublot. Electrical parameter testing as specified shall
be performed by attributes with test data recorded.
4.2.2.3. With each shipment lot, the supplier shall provide a
. Certification of Compliance to test level T1 of this
specification.
4.3 Parameter Stability Tests
Each hybrid device to be supplied under this specification
shall receive the following tests in addition to other standard
testing performed by the manufacturer.
7-25
PRINTED IN U.S.A.
•
PIC 7501-PIC 7512
4.3.1 Temperature Storage - Each Hybrid device shall be
subjected, in a non-operating state, to a temperature of 150°C
for a minimum period of 48 hours.
PIC 7519-PIC 7530
PIC 7555-PIC 7566
4.3.6 High Temperature Reverse Bias - Each Hybrid device
will be high temperature reversed biased in the circuit shown
in Figure 3. The conditions of this test are as follOWS:
TA = +125°C
Time = 16 hours ~g hours
Circuit and voltages as shown in Figure 3.
4.3.2 Temperature Cycling - Each Hybrid device shall be
temperature cycled from -55°C to 150°C for a minimum of 10
cycles. Each cycle shall consist of at least·15 minutes at each
temperature extreme with a maximum transition time of 5
minutes between each temperature extreme..
+VOLTAGE = BO%OF
DEVICE RATING (NOMINAL)
4.3.3 Hermetic Seal Test - Fine Leak ~ Each Hybrid
device shall be tested for a case leakage rate of 1 x 10- 8
cc/sec or smaller using a helium mass spectrometer or
equivalent method. Devices with a case leakage rate greater
than specified shall be removed from the lot.
4.3.4 Hermetic Seal Test - Gross Leak - Each Hybrid
device shall be tested for gross leaks using flUorocarbon gross
leak test or equivalent method. Devices with any indication of
case leakage shall be removed from the lot.
L. ____
±_
Figure 3.
High Temperature Reverse Bias Circuit
'--+"'~-'VVv-o
4.3.5 Reverse Bias Clamp Inductive Test -
_~;
-VOLTAGE = BO%OF
DEViCE RATiNG iNOMiNALj
V4-2 = Rated Input Voltage
f ::: 25kHz, EOU! = 5V
Tc = 25°C, see Figure 4
lout - See Table II
t = 1 sec max
4.3.7 The following measurements will be made before and
after the high temperature reverse bias test. The unit
measurements shall be recorded or the devices will be celled
in order to compare and guarantee the delta (./l.) requirements
depending on the test level to which the lot is, being prepared.
Part Type
Test
1.1.0
Maximum
Readings
Initial
& Final
PIC7501/7502/7503/7519/7520/7521
8
1.5V
±0.3V
V4-1 (on)
PIC750717508/7509/7525/7526/7527
8
1.5V
±0.3V
V4-1 (on)
PIC7555/7556/755717561 1756217563
8
1.5V
±0.3V
V4-1 (on)
PIC7504/7505/7506/7522/7523/7524
8
-1.5V
±0.3V
PIC750717508/7509/7528/7529/7530
8
-1.5V
±0.3V
V4-1 (on)
V4.1 (on)
PIC7558/7559/7560/7564/7565/7655
8
-1.5V
±0.3V
V4.1 (on)
PIC7501/7502/7503/7519/7520/7521
10
1.0V
±0.25V
V2.1 (on)
PIC750717508/7509/7525/7526/7527
10
1.25V
±0.3V
V2.1 (on)
PIC7555/7556/755717561/7562/7563 -
10
1.25V
±0.3V
V2.1 (on)
PIC7504/7505/7506/7522/7523/7524
10
±0.25V
V2•1 (on)
PIC750717508/7509/7528/7529/7530
10
-1.0V
-1.25V
±0.3V
V2.1 (on)
PIC7558/7559/7560/7564/7565/7655
10
-1.25V
±0.3V
V2.1 (on)
Delta
Change
Symbol
PIC7501/7502/7503/7519/7520/7521
12
10~
±1.00r ±100%-
PIC750717508/7509/7525/7526/7527
12
10~
±1.00r ±100%-
PIC7555/7556/755717561 17562/7563
12
10~
±1.00r ±100%-
PIC7504/7505/7506/7522/7523/7524
12
-10~
± 1.0 or ± 100%-
PIC750717508/7509/7528/7529/7530
12
-10~
± 1.0 or ± 100%-
PIC7558/7559/7560/7564/7565/7655
12
-10~
i1.0 or ± 100%-
PIC7501/750217503/7519/7520/7521
14
10~
±2.00r ±100%-
PIC750717508/7509/7525/7526/7527
14
10~
±2.00r ±100%-
PIC7555/7556/755717561 17562/7563
14
10~
±2.00r.±100%-
PIC7504/7505/7506/7522/7523/7524
14
-10~
±2.00r±100%-
PIC750717508/7509/7528/7529/7530
14
~10~
±2.00r ±100%-
PIC7558/7559/7560/7564/7565/7655
14
-10~
±2.0 or ± 100%-.
14.1
14.1
14.1
14-1
14.1
14.1
12.1
12.1
12.1
12.1
12.1
12.1
.. Whichever is greater.
UNITRODE • SEMICONDUCTOR PRODUCTS
550 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
7-26
PRINTED IN U.S.A
PIC 7501-PIC 7512
PIC 7519-PIC 7530
PIC 7555-PIC 7566
4.3.8 Power Stress - Each Hybrid device shall be burned-in
using the circuit shown in Figure 5. The conditions are as
follows:
4
V4-2o------'i
Rated Voltage
TA = +25°C
Time = 40 hours minimum
Circuit and conditions as shown in Figure 5.
Nole1
I
4.3.S The readings before and after burn-in shall be as
specified in paragraph 4.3.7 above.
I
.'u-lf
v4
--ll-Ton==10~s
Note 1: Adjust Toft to obtain specified lout.
Note 2: Negative output test circuits and waveforms are
identical but of opposite polarity.
Note 3: See Table II for component values.
Figure 4.
Reverse Bias Clamp Inductive Test Circuit
Table II.
Component Values for Clamped Inductive Test
(Refer to Figure 4)
Device Type
R3L
LIC
RL
lOUT
PIC 7501,7504
PIC 751S, 7522
3K
300/100
2.5
2
PIC 7502, 7505
PIC 7520, 7523
4K
3001100
2.5
2
PIC 7503, 7506
PIC 7521, 7524
5K
3001100
2.5
2
PIC 7507, 7525
PIC 7510, 7528
PIC 7555, 7561
PIC 7558, 7564
2K
1501100
1
5
PIC 7508, 7526
PIC 7511, 7529
PIC 7556, 7562
PIC 7559, 7565
2.7K
1501100
1
5
PIC 750S, 7527
PIC 7512, 7530
PIC 7557, 7563
PIC 7560, 7566
3.3K
1501100
1
5
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924-1235
7-27
PRINTED IN U.S.A.
PIC 7501-PIC 7512
PIC 7519-PIC 7530
PIC 7555-PIC 7566
Table III. Group A Inspection
Examination or Test
Symbol
Subgroup 1
Visual and Mechanical
-
Subgroup 2 25°C Tests
On-State Voltage
On-State Voltage
Diode Forward Voltage
Diode Forward Voltage
Off-State Current
Diode Reverse Current
V4 •10n
V4 •10n
V2.10n
V2•10n
14 .1
11.2
Subgroup 3
Cff~Smtc
Adjust Ein
to obtain
Eoot = 5V
22
(10)
0
45
(5)
0
45
(5)
C
45
(5)
0
10
11
12
14
14-1
1
2
tdl
t,l
trY
tlv
t'i
3
5
6
ARNOLD
A930·157·2
N = 16TURNS
WIRE = 18AWG
output
----------,
1
Posftive
I
I
I
1
-------~
I+-
-=tflfl
13
15
I
L- _ _
5-1~SEC
8
9
11.2
Subgroup 4 25·CTests
Current Delay Time
Current Rise Time
Voltage Rise Time
Voltage Fall Time
Current Fall Time
OV-tt-
-
TA =+100·CTests
Current
Off-State Current
+Ein - I
Electrical Sample Max.
Spec Test
Size
Ace.
Number (LTPD) No.
2.511
15 WATTS
62011
-=-
Duly Cycle = 25%
AdjustEln
to obtain
Eout
Negative Output
ARNOLD
A930·157·2
N = 16 TURNS
WIRE = 18 AWG
--------1
I
1
1
I
I
= -5V
_I
Figure 5.
UNITRODE - SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
Burn-in Circuits
7·28
PRINTED IN U.S.A.
PIC 7513-PIC 7518
PIC 7531-PIC 7536
Semiconductor Devices, Silicon
Hybrid Switching Regulators
High Reliability Types
III
PIC 645/646/647
PIC 655/656/657
Test Level T1
Test Level T2
PIC 7513/7514/7515
PIC 751617517/7518
PIC 7531/753217533
PIC 7534/7535/7536
Contents
1.0
2.0
3.0
4.0
Scope
Applications Documents
Requirements
Quality Assurance Provisions
nn
SEMICONDUCTOR
~ PRODUCTS
7·29
_UNITRDDE
PIC 7513-PIC 7518
PIC 7531-PIC 7536
1.0 SCOPE
This specification defines the detail requirements for High
Reliability Hybrid Switching regulators. Very extensive 1000/0
testing for parameter stability has been included in the Quality
Assurance Provisions.
1.1a Absolute Maximum Ratings
Input Voltage, V4•2
Output Voltage, V1•2
Drive-Input Reverse Voltage, V3-4
Coniinuous Output Current, 11
Peak Output Current
Drive Current, 13
Thermal Resistance
Junction to Case, BJ.C
Power Switch
Commutating Diode
Case to Ambient, Be-A
Operating Temperature Range, Tc
Maximum Junction Temperature, lj
Storage Temperature Range
Tl
PIC7513
Tl
PIC7514
Tl
PIC7515
Tl
PIC7516
Tl
PIC7517
Tl
PIC7518
T2
PIC7531
(PIC645)
T2
PIC7532
(PIC646)
T2
PIC7533
(PIC647)
T2
PIC7534
(PIC655)
T2
PIC7535
(PIC656)
T2
PIC7536
(PIC657)
60V
60V
5V
15A
20A
-0.4A
80V
80V
5V
15A
20A
-0.4A
.
....
....
-80V
-8OV
-5V
-15A
-20A
O.4A
~
~
.
~
-55°C to +125°C
+150°C
-65°C to +150°C
~
PtC7516/17/1S
PIC7534/35/36
Min.
Typ.
Max.
Min.
Typ.
Max.
Units
tdi
-
35
60
35
60
ns
"in = 25V (-25V)
Conditions
65
175
ns
Vout = 5V (-5V)
40
60
ns
lout=7A(-7A)
13 - - 30mA (30mA) (Note 5)
2 Current Rise Time
trj
-
65
150
3 Voltage Rise Time
trv
-
40
60
-
4 Voltage Storage Time
tsv
-
1200
-
1200
-
ns
5 Voltage Fall Time
tfv
-
-
100
300
ns
See Figure 1
6 Current Fall Time
tli
175
300
ns
See Notes I, 2, 4
7 Efficiency (Notes 2 and 4)
~
8 On·State Voltage (Note 3)
V4•I (on)
9 On·State Voltage (Note 3)
V4•1 (on)
10 Diode Fwd". Voltage (Note 3) V2•1 (on)
II Diode Fwd. Voltage (Note 3) V2•1 (on)
-
12 Off·State Current
14-1
13 Off·State Current
14-1
-
14 Diode Reverse Current
11•2
-
15 Diode Reverse Current
11•2
-
-5V
-15A
-20A
0.4A
~
Symbol
1 Current Delay Time
-100V
-100V
2°C/W
2°C/W
30.0°C/W
PIC7513/14/15
PIC7531132/33
Test
-60V
-60V
-5V
-15A
-20A
O.4A
100V
100V
5V
15A
20A
-0.4A
1.0
1.5
2.5
3.5
-
0.85
1.25
1.75
70
175
175
300
85
-
0.95
0.1
10
1.0
500
10
1000
10
1000
85
-
%
-1.0
-1.5
V
-2.5
-3.5
V
14 = 15A(-15A), 13 = - 0.03A (0.03A)
-
-0.85
-1.25
V
12 = 7A(-7A)
-
-0.95
-0.1
-10
-1.0
-500
-1.75
14 = 7A (- 7A), 13 = - 0.03A (0.03A)
V
12 = 15A(-15A)
-10
~A
V4 = Rated input voltage
1000
~A
V4 = Rated input voltage, TA = 100·C
-10
~A
VI = Rated output voltage
-1000
~A
VI = Rated output voltage, TA = 100·C
Nates:
1. In switching an inductive load, the current will lead the voltage on
turn·on and lag the voltage on turn·off (see Figure I). Therefore,
Voltage Delay Time (tDV) '" tdi + tri and Current Storage Time (lsi)
"'tsv + tfv'
2. The efficiency is a measure of internal power losses and is equal to
Output Power divided by Input Power. The switching speed circuit
of Figure 1, in which the efficiency is measured, is representative of
typical operating conditions for the PIC600 series switching
regulators.
4. As can be seen from the switching waveforms shown in Figure 1, no
reverse or forward recovery spike is generated by the com mutating
diode during switching! This reduces self·generated noise, since no
current spike is fed through the switching regulator. It also improves
efficiency and reliability, since the power switch only carries current
during turn-on.
5. To insure safe operation, the absolute value of 13 should be a
minimum of 30 mA during t(on)' Operation with 13 below 30 mA can
permanenlly damage the device.
3. Pulse test: Duration = .. 400 ~sec.
UNtTRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926·0404. FAX (617) 924·1235
7·30
PRINTED IN U.S.A.
PIC 7513-PIC 7518
PIC 7531-PIC 7536
Power Dissipation Considerations
The total power losses in the switching regulator is the sum of the switching losses, and the power switch and diode D.C. losses.
Once total power dissipation has been determined, the Power Dissipation curve, or thermal resistance data may be used to determine the allowable case or ambient temperature for any operating condition.
The switching losses curve presents data for a frequency of 20 kHz. To find losses at any other frequency, multiply by f/20 kHz.
The D.C. losses curves present data for a duty cycle of 0.2. To find D.C. losses at any other duty cycle, multiply by 0/0.2 for the
power switch and by (1-0)10.8 for the diode.
At frequencies much below 10 kHz the above method for determining the allowable case or ambient temperature becomes invalid
and a detailed transient thermal analysis must be performed. Unitrode will supply transient thermal impedance information on
request.
----+
Vin = +25V -"","".'V'v'-~
Rl = Voul
.715\1 = 5V
ICRIVE = - 30mA
. Pulse Widlh 10~s
=
Rep. Rale = 20kHz
Positive Output Switching Speed Circuit
,f POWER SWITCH
V..
Il[
·1
Ton =:: 1010'S
!··········;~l···-··········-·····--····-·-·--·······--_.
j
COMMUTATING DIODE
Note: No Diode Reverse or Forward Recovery Spike (See note 4.)1
Positive Output Switching Waveforms
Note: Negative output circuit and waveforms are identical but of opposite polarity
(Vin = -25V, Vout = -5V,IDRIVE = +30mA).
Figure 1.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
7-31
PRINTED IN U S.A
PIC 7513-PIC 7518
PIC 7531-PIC 7536
2.0 APPLICABLE DOCUMENTS
The following documents of the issue in effect on the date of
invitations for bids, form a part of this specification to the ex·
tent specified herein.
3.4 Test Methods
Test methods shall be as specified herein.
MIL·S·19500 - General Specification for
Semiconductor Devices
MIL·S-19491 - Preparation for Delivery of
Semiconductor Devices
3.5 Marking
The markings on the devices supplied shall be permanent
and legible and shall include the Manufacturer's name or
trademark, a Manufacturing Date Code in accordance with
MIL-S-19500 and the specific device type number.
3.0 REQUIREMENTS
3.6 Preparation for Delivery
3.1 DeSign and Construction
The Hybrid devices supplied under this specification shall be
prepared for delivery in accordance with level C of MIL-S·19491
unless otherwise directed in the specific contract or purchase
order.
.
The Hybrid devices supplied under this speCification shall
have a design and construction such that they will meet all of
the requirements specified herein. The dimensions and phys·
ical characteristics shall be as specified in Figure 2.
3.7 Ordering Data
3.2 Performance Characteristics
The performance characteristics of the Hybrid device supplied
underthis specification shall be as specified in Group A inspection
defined in Table I.
3.3 Quality Assurance
PiOCUiem6iit documeiit should SPecify' the following:
a. Specific item type number
b. Number and date of this specification
c. Quality Assurance Test level required
d. Any special packaging if required
The Quality Assurance Provisions shall be defined in
paragraph 4.0.
MECHANICAL SPECIFICATIONS
3 Pin TO-3
1Ch9
A
4
B-1
[~
1
3
C
B
0
F
G
Note: Loads may be soldered to
of base provided
within
temperature·time exposure is
less than 260°C for 10 seconds.
V,.'
ins.
.875 MAX.
.135
.250-.450
.312 MIN.
.205 .225
.420-.440
.145-.165
.395-.405
.151-.1610IA.
.188 MAX. RAO.
.525 MAX. RAO.
.708-.728
1.177 1.197
.038-.0430IA.
M
N
22.23 MAX .
3.43
6.35-11.43
7.92 MIN .
5.21-5.72
10.67 11.18
3.68-4.19
10.03-10.29
3.84-4.09 OIA .
4.78 MAX. RAO .
13.34 MAX. RAO.
17.98 18.49
29.90-30.40
.97 1.09 OIA .
~
SCHEMATIC
POS. 04---'r-M
INPUT
1 pos.
r-----cOUTPUT
NEG. 04_r-_ _,"",
INPUT
1 NEG.
r-<-t-""OUTPUT
2
COMMON
2
COMMON
PIC7513/14/15
PIC7531 132/33
PtC7516/17/18
PIC7534/35/36
Figure 2. Physical Dimensions and Biasing Diagrams
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
7·32
PRINTED IN U.S.A.
PIC 7513-PIC 7518
4.0 QUALITY ASSURANCE PROVISIONS
PIC 7531-PIC 7536
4.2.1 Test Level T2 Requirements - Test level T2 shall consist of the following requirements.
4.1 General Provisions
4.1.1 Inspection Responsibility - The supplier is responsible
for the performance of all inspection requirements and accept·
ability of results as specified herein for the Test Level identified
in the contract or purchase order.
4.1.2 Controlled Manufacture - The devices supplied under
this specification shall be manufactured under controlled
conditions using formally defined quality assurance methods
and systems.
4.1.3 Manufacturing Traceability '- Each device supplied
under this specification shall be traceable to a specific.process
group, to permit tracing of its-full manufacturing history. Process
group records shall indicate the exact date that each manufacturing operation was performed and identify materials and
process procedures which were used. The manufacturer shall
keep these records on file for at least five years.
4.2.1.1 The supplier shall perform the Parameter Stability Testing defined in paragraph 4.3 on each device to be supplied.
Prior to starting the Blocking Stability test defined in paragraph
4.3.6, each device shall be serialized for individual identity.
Variables test data for the controlled electrical parameters shall
be recorded before and after stressing. The same procedure
shall apply for the Power 'Stress stability test defined in
paragraph 4.3.8...
4.2.1.2 The supplier shall perform the Group A inspections in
accordance with the defined LTPD requirements on each inspection sublot. Electrical parameter testing as specified shall be
performed by variables with test data recorded.
4.2.1.3 With each shipment lot, the supplier shall provide a
Certificate of Compliance to test level T2 of this specification.
4.2.2 Test Level T1 Requirements - Test level T1 shall consist of the following requirements.
4.1.4 Definitions
4.1.4.1 Inspection Lot - An "inspection lot" is a collection of
devices from which a sample is withdrawn and inspected to
determine compliance with the acceptability criterion. It shall
consist of one or more "inspection sublols" of the device types
defined in this specification. The maximum inspection lot size
shall be 5000 units.
4.1.4.2 Inspection Sublot - An "inspection sublot" shall consist of a.collection of devices of a Single type which have been
manufactured under the same conditions and with the same
materials.
4.2.2.2 The supplier shall perform the Group A inspections in
accordance with the defined LTPD requirements on each inspection sublot. Electrical parameter testing as specified shall
be performed by attributes with test data recorded.
4.2.2.3 The supplier shall provide a Certificate of Compliance
to test level T1 of this specification with each shipment lot.
4.1.4.3 Shipment Lot - A "shipment lot" shall consist of
devices taken from an accepted inspection lot for the purpose
of shipment on a specific contract or order.
4.3 Parameter Stability Tests
Each Hybrid device is to be supplied under this specification
and shall receive the following tests in addition to other standard testing performed by the manufacturer.
4.1.4.4 Group A Inspection - Group A inspection shall consist
of the examinations and tests specified in Table I, and shall be
performed on a sublot basis.
4.1.4.5 Controlled Inventory - The controlled inventory shall
consist of lots which have successfully passed the acceptance
inspection and are being held in storage prior to actual shipment. A controlled inventory shall have adequate safeguards to
insure that no defective or untested devices can be included in
it. It shall be accessible only to those individuals who are formally identified as authorized personnel.
4.2 Acceptance Inspection
The acceptance inspection requirements shall be as defined by
the applicable test level. The procedures of MIL-8-19500 shall
apply to Group A inspection. Inspection lots which have been
inspected and accepted shall be kept In a controlled inventory.
Shipment lots shall be formed using devices taken from
accepted inspection lots.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
4.2.2.1 The supplier shall perform,the Parameter Stability
Testing defined in paragraph 4.3 on each device to be supplied.
Electrical parameter testing as specified shall be performed by
attributes.
7-33
4.3.1 Temperature Storage - Each Hybrid device shall be
subjected, in a non-operating state, to a temperature of 150a C
for a minimum period of 48 hours.
4.3.2 Temperature Cycling - Each Hybrid device shall be
temperature cycled from -55 a C to 150aC for a minimum of 10
cycles. Each cycle shall consist of at least 15 minutes at each
temperature extreme with a maximum transition time of 5
minutes between each temperature extreme.
4.3.3 Hermetic Seal Test - Fine Leak - Each Hybrid device
shall be tested for a case leakage rate of 1 x 10" cc/sec or
smaller using a helium mass spectrometer or equivalent
method. Devices with a case leakage rate greater than
specified shall be removed from the lot.
4.3.4 Hermetic Seal Test - Gross Leak - Each Hybrid
device shall be tested for gross leaks using fluorocarbon gross
leak test or equivalent method: Devices with any indication of
case leakage shall be removed from the lot.
.
PRINTED IN U.S.A.
PIC 7513-PIC 7518
PIC 7531-PIC 7536
4.3.5 Reverse Bias Clamp Inductive Test V4-2 = Rated Input Voltage
V...
14 = 5A., f = 25 kHz, Eout = 5V
o-_ _ _4::.j
'-'
~
0:
::J
!i:UI
B
-
:;;
I
;;; +1.0 1---I----.1I---I---+--I-----tt
J
VIE (sat)
Cl
+2.0.--,---,--,-----r-':-T---,
~
;. +1.5 f--+---1f---f--+- 1;" = 10
= 25'C
I
~
I-
z
"'Uii:
/
.5
8"'
~ -0.5
::J
VCE (sat)
.1
..i!l"'~
------
.05
+.5 1---1----.11---'"
IL
/
.2
.5
COLLECTOR CURRENT (A)
Saturation Voltage
Temperature Coefficients
i"=10
2
.2
Ie -
Saturation Voltages
10
.1
1---I----.1I---t---+----.i'------1
-1.0 1---1----.11---1-1.5 1---+--1f---:;;;I-""=~:;:,
l-
I
~
.02
.01
.05
.1
.2
Ie -
.5
1
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
-2.5 L - _ . . l - _ - L_ _- ' - _ - ' - _ - ' -_ _- '
.05
.2
.5
.1
Ie -
COLLECTOR CURRENT (A)
TEL. (617) 926-0404 • FAX (617) 924·1235
-2.0 I--::=~......,'F_-_t--f---t_--i
8·9
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
JAN & JANTX 2N2151
Switching Speed
Characteristics
Switching Speed
Characteristics
10
1.0
I 20V.'
Vcc=
--------
.S
1,,=-1 12
Ie -
=10
ISO'
""'uc
0
.,
0
ill
Ii!
u
Ii!
u
.1
"'
;:
:§
"'
;:
.05
:E
i--.5
-.......
...........
Fall time
.2
l.---
t><
~
lS0'C
2S'C
.02
time
2S'C
ill
~
:E
Storage
"uc
.2
~
V
.1
3
COLLECTOR CURRENT (A)
Ie -
.S
Ie -
Thermal Response
.s
.2
...
z
"'~ ~
~~
I- LIJ
0 ..
~~
....
.2
.05 _.02
O.S
f.-
.1
.1
....-
~ I?'
'?
I- .,/"
....-
,/
V ::;::::
Vee = 40VDC
~
....- .....-::
,/
~ ~V
::i..J
.02
:E:E
, . / Single Pulse·
.01
~ ffi
zx
Switching Speed Circuit
....
fa
~
-- ~
~
Duty cycle
1
3
COLLECTOR CURRENT (A)
24V
R1 = - - 111 +1 82
0J..qtl::::::: rill· HJ-C
,-I"
=500
.002
.001
.01 .02 .OS ".1
R .! SV
Pulse width = 2~s
Duty cycle = ~2%
Source Impedance
9 J..c = 3.3'C/W
I ....OOS
V.. =-4VDC
.2
.S
1" 2
5
10 20
50 100 200 SOD 1000
TIME (milliseconds)
UNITROOE • SEMICONDUCTOR PROOUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
8·10
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N2880
JAN, JANTX, & JANTXV 2N3749
POWER TRANSISTORS
5 Amp, 80V, Planar, NPN
FEATURES
OESCRIPTION
•
•
•
•
Unitrode power transistors provide a unique
combination of low saturation voltage, high
gain and fast switching. They are ideally
suited for power supply, pulse amplifier and
similar high efficiency power switching
applications.
Meets MIL-S-19S00/31S
Collector-Base Voltage: llOV
Fast Switching: t,. t f
300nSec max
Low Saturation Voltage: O.2SV max @ lA
=
..
ABSOLUTE MAXIMUM RATINGS
Collector-Base Voltage, VCBO
....... 1lOV
... SOV
Collector-Emitter Voltage, VCEO
... 8V
Emitter-Base Voltage, VEBO
..................... SA
D.C. Collector Current, Ic ..... .......... .
Power Dissipation
...... 2W
25"C Ambient
lOO"C Case
................... .
.............................. 30W
Operating and Storage Temperature Range
... ......... -6S"C to +200"C
MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N2880
TO-59
FIG 1
' :
EMITTER
•
.•
MILLIMETERS
INCHES
.400-,455
H f7.1-'=--7.'::,--+-=lO=,.1",6-.;-1",1.",,56'--4
.090 .150
2.28 3.81
.320-.468
.570 .763
.318-.380
.055:t
G
H
Note: Collector c:..onnected to case
:81g
.424-.437
.185-.215
1.40 ± :~~1
10.77-11.10
4.70-5.46
JAN, JANTX, & JANTXV 2N3749
TO-111
BASE
INCHES
A .. 400 B .090 C .320 o .570 E .065 F .313 G .070 H .423 J
.135 -
.455
.250
.46B
.763
.090
.318
.090
.438
.215
MILLIMETERS
10.16 - 11.55
2.2B - 6.35
B.l3-II.BB
14.48 - 19.38
1.65 - 2.28
7.95 - B.07
1.77 - 2.2B
10.74 - 11.l2
3.43 - 5.46
nn
SEMICONDUCTOR
~ PRODUCTS
8-11
_UNITRDDE
JAN. JANTX. & JANTXV 2N2880
JAN. JANTX. & JANTXV 2N3749
ELECTRICAL SPECIFICATIONS (at 2S·C unless noted)
TEST
SYMBOL
MIN.
. MAX.
-
-
2071
See Mechanical Data
A-2
A-2
A-2
A-2
A-2
3001
3011
3026
3041
3041
TEST CONDITIONS
Collector-Base Voltage
Collector-Emitter Voltage (1.)
-Emitter-Base Voltage
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
BVCBO
BVCEO
BVEBO
ICEO
ICEX
110
80
B
-
-
100
10
Vde
Vde
Vde
"Ade
"Ade
Collector-Base Cutoff Current
Emitter-Base Cutoff Current
ICBO
lEBO
-
0.4
0.4
f.
Z
0
;:
"":::J
""
0:
III)
2
I
1.0
.2
V
./
~",a\'
1.5
I!!
1.0
iii
i3
u:...
/
T,"=10_
.;v
.5
-
8'"
V
'":::J
-.lc.~
.05
Ie
>"
!
j.....-
--
VIE (sal)
.5
.1
~
/
0:
-.5
i
-1
'"
i==" J).'VcE
1!l-1.5 I - I-
,!. -2.0
.02
/
t>~
___
.-I-- SoC
_550C to '1.
V
It---
I ~ov'y
'l....oC
V,!
_S...oC t~ V
t>-.I .. L..---'
/:>'1.. _
C \0'1:
>r'l.<1
Do
V V
,........
~:7
\0'1:
~~r-r
u
'"0...
u
w
..J
..J
0
u
I
_u
",1
D.C.
.S
.2
Te = 100'C
k
g
"'
z
~
u
:>
.1
0
~
I
2N,3418,20 - 2N3419,21
I
.01
.5
\
u
1"-
'"""
\
\
~
.05
.02
2
~
~'"'\ '\1\
(II..
a"\9
\
~
.~
~~C=l00'CIe
\
5
PUlsl Width 1mS Duty eY~le = 50%
.2
'"
.1
.05
..J
= f::!
.02
__
111
q,
"-),
-
12 -
10
"""
"
~
'I'::::::
" '4"
~
-
..
.01
o
2
5
1020
506080
VeE-COLLECTOR TO EMITTER VOLTAGE
Ie - COLLECTOR CURRENT (AI
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
D.C. Current Gain Vs. Collector Current
180
10
VeE =2V
---
160
TJ
3:
...
z
w
'"'"
...'"0
~
200"C
z
;;:
2.0
"...z
120
'"'"
100
1.0
:>
u
:>
u
w
u
U
ci
W
..J
..J
140
0.5
0
u
2N34~8,20 - 2N3419,21-
I
_u
0.2
I
-
s::.~
40
o
1
-- -- f.--
.05
51020
506080
VeE - COLLECTOR TO EMITTER VOLTAGE (V)
'2N3418, 19
1\
2N3420,21
~O'C\
2S'C
.........
V
60
I~
-
- -
.....
80
20
0.1
V
,,\
~s:-
-
f- -
"- ~
-SS:C~
I-
-'1-
.5
.2
.1
--
2S'C
2
Ie - COLLECTOR CURRENT (AI
Saturation Voltage
Temperature Coefficients
Saturation Voltage
10
~
TJ = 2S'C
;. 1.5
Ie
1'='10
~
~ 1.0 f--j--+--+-+-+
w
VIE (sat)
~
w
.5
..J
.2
""...
0
.01
.005 .01
o
u
~ -.5~-4--+--+-1--4f---4_-VL
~
/"
.1
. 02
......
w
L
>
.05
!::! +.5 f--j--'-
-----
~
,02
.05
.1
.2
."'
Ci
IX -.1.--.....=c,
,.../
-1.5 f---f_-L
l-
I
~
1-""'f'=J--+-f---+--+--""-....
.01
.5
.02
.05
.1
.5
Ie - COLLECTOR CURRENT (AI
Ie - COLLECTOR CURRENT (A)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL (617) 926·0404 • FAX (617) 924·12.5
-.2
8-17
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N3418-2N3421
Switching Speed
Characteristics
Switching Speed
Characteristics
10
Vee = 20V
Vee ]20V
.5
1
Ie -
1"=11"=10
~
."
c:
k::-----+
.2
8
t rise 150'C '--c::;;!..£.-t--"I
~:
e
~
§
g
.1
'"
.05
:;;
fii1)
Storaee ti
.5
;::
• JSo,c_
Fall time t f 150
""-
0
'1
.02
.2
Fall time t f 25
.01
2
Ie -
.5
1
Ie - COLLECTOR CURRENT (A)
COLLECTOR CURRENT (A)
----
Switching Speed Circuit
Thermal Response
01
.5
d.5
0.2
IZ
'"cn~
.2
C2(5
1-",
.1
Zz
Co..
"':;;
!::!-
........
««
:;;:;;
~
116V
- lV
,/
r---lo--4~1Vv\'~--~--~
J
.01
9 J_C !tl
II~=-
j-20.3Vde
~ /
o.~
~ingle Pulse
.02 ....... 1/"
.05
0:0:
0",
zJ:
-o;.!-
-I--
-:::::;- :::;?
;?
0
I
.1
.5
I---
r~~_ k
.005
flJ . e
= r lfl
= 6.7'C/W
il I
.002
L
Pulse width
2,us
Duty cycle::: ----; 2%
Source Impedance
-- 50~!
• BJ-C
I
-6.4Vde
.001
.01 .02 .05.1
.2
.5
1
2
5 10 20
50 100 200 SOO 1000
TIME (milliseconds)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (517) 925·0404· FAX (517) 924·1235
8-18
PRINTED IN U.S.A.
POWER TRANSISTORS
JAN,
JAN,
JAN,
JAN,
5 Amp, BOV, Planar NPN
JANTX,
JANTX,
JANTX,
JANTX,
& JANTXV 2N3996
& JANTXV 2N3997
& JANTXV 2N3998
& JANTXV 2N3999
DESCRIPTION
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency'power
switching applications.
FEATURES
,; Meets MIL-S-19S00/374'
• Collector-Base Voltage:iUp to 100V
• D_C. Collector Current: SA
• Fast Switching
o Beta Guaranteed at 3 Current Levels
ABSOLUTE MAXIMUM RATINGS
Collector-Base Voltage, VCBO .
.. .................................................................................. 100V
Collector-Emitter Voltage, VCER
.................................................................................... SOV
Emitter-Base Voltage, VEBO .......
.. ........................................................................................... SV
D.C. Collector Current, I" .......... .........................................................
.. ...................... 5A
Peak Collector Current, Ic...............................................
..................................................... lOA
Power Dissipation
25·C Ambient ..................
.............................
.. ............... 2W
lOO·C Case ........
.. .................................................................. 30W
· Operating and Storage Temperature Range ...................................................-6S·C to 200·C
MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N3996, 2N3997
INCHES
A
B
C
D
E
F
G
H
J
'.400
.090
.320
.570
.065
.313
.070
.423
.135
-
.455
.250
.468
.763
.090
.318
.090
.438
.215
MILLIMETERS
10.16
2.28
8.13
14.48
1.65
7.95
1.77
10.74
3.43
-
11.55
6.35
11.88
19.38
2.28
8.07
2.28
11.12
5.46
JAN, JANTX, & JANTXV 2N3998, 2N3999
INCHES
.400-.455
.090-.150
.320-.468
.570 .763
.318 .380
.055 ±
Note: Collector connected to case
:8tg
.424-.437
.185-.215
TO-111
TO-59
~
MILLIMETERS
10.16-11.56
2.2B 3.81
8.13-11.88
14.48 19.38
8.07 9.65
1.40 ± j~1
10.77-11.10
4.70-5.46
nn
L::::::J
8-19
SEMICONDUCTOR
PRODUCTS
_UNITRDDE
JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N399S,2N3999
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)t
2N3996*
2N399S"
2N3997*
2N3999"
Test
Symbol
Min.
Max.
Min.
Max.
Units
D.C. Current Gain
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain, -SSOC (Note 1)
Collector Saturation Voltage (Note 1)
Collector Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Coliector·Emitter Breakdown Voltage
(Note 1)
Emitter·Base Cutoff Current
Emitter·Base Cutoff Current
Collector Cutoff Current
Collector Cutoff Cu rrent
Collector Cutoff Current, lS00C
Collector Capacitance
A.C. Current Gain (High Frequency)
hFE
hFE
hFE
hFE
VCE(sat)
VeE (sat)
VeE (sat)
VBE(sat)
BVeEo
30
40
lS
10
-
60
SO
20
20
-
-
Switching Speeds
Turn-on Time
Turn-off Time
Isolation Resistance (2N3996, 7 only)
lEBO
lEBO
ICES
leEo
ICES
Cob
hFE
ton
toll
Rlso
-
120
-
-
240
-
-
-
0.2S
2
1.2
1.6
80
-
80
-
V
V
V
V
V
-
-
-
0.2
10
S
10
SO
lS0
0.2
10
S
10
SO
lS0
4
-
4
-
I'A
I'A
I'A
",A
,..A
pi
-
0.3
1.S
-
-
10'
0.6
-
-
-
1()9
0.6
-
-
0.2S
2
1.2
1.6
-
Test Conditions
Ic
Ic
Ic
Ic
Ic
Ie
Ie
Ic
Ie
= SOmA, VCE = 2V
= lA, VCE = 2V
= SA, VCE = SV
= lA, VCE = 2V
= lA, Ie = 100mA
= SA, Ie = SOOmA
= lA, Ie = 100m A
= SA, IB = SOOmA
= SOmA, IB = 0
-
VBE = SV, Ie = 0
VBE = 8V, Ie = 0
VCE = 90V, RBE = 0
VeE = 60V. 18 = 0
VCE = 90, RBE = 0
VCB = 10V, IE = 0, I
Ic = lA, VeE = SV, I
0.3
2
,..5
,..5
Ic = lA
Ib1 = 100mA, Ib2
-
Q
= 1MHz
= 10MHz
= -l00mA
Notes: * Also applicable to JAN and JANTX versions.
1. Pulse width = 300"S; duty cycle .. 2%
t All values in this table are JEDEC registered.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
8·20
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3998, 2N3999
Unclamped Reverse Bias
Second Breakdown
Forward Bias
Safe Operating Area
10
~
g
~
u
I
C"-
~U~/;~Ie=
~
::>
'"u
'"~
.5
\l \
\
~ Tc=lDO°C
"'"50% - N
D.C.
>-
10
t,-0.5m,
/
.......
,
~
~
.~
Duty Cycle = 10% -
\
~"
X"
.2
2
g
"- ~
u
.2
:::>
.1
>u
.1
0
'"
",
qsv
",I'-- r---...
I'--
.05
I'-
.02
.01
.01
10
V~
80 100
50
20
I"'---
"- '91-
...J
.02
~,I0.0
.,~ ~
~
-" .05
o
Ie -
- COLLECTOR TO EMITTER VOLTAGE (V)
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
COLLECTOR CURRENT (A),
D.C. Current Gain
2N3996-2N3998
20
500
I
I
VeE = SV
10
200
~
.....-
z
>-
Z
OJ
a:
a:
TJ
~
"z">- 100
200"C
:::>
u
UJ
a:
a:
a:
~
:::>
u
u
o
I
I
.r:~
...J
...J
50
0
u
_0
Ie
= 10
I
\~/'
['\
OJ
= l00'C
Te
lB. = -112
\ 1,\
.5
z
«
I
20
V
...........
TJ= 150'C
1 ..J.
"-
"..- ";."J ~25'CI
...........
.....- ~~-55!C
--... ..............
-
..........
~
~~
~
.5
10
5
.2
1
2
VeE -
10
20
50
.01
80
.02
.05
.1
.2
.5
1
2
5
10
Ie-COLLECTOR CURRENT (A)
COLLECTOR TO EMITTER VOLTAGE
D.C. Current Gain
2N3997-2N3999
Saturation Voltage
soo
z
""z
>-
10
200
100
/" V
UJ
a:
a:
:::>
u
U
ci
I
~
/'
so
/
I
Lc
lJ
1-1
I
TJ=25'C
TJ =25"C
VcE =5V
UJ
"
~
V V""JTJ =
I"--- r---....
20
~
.c
g
z
o
~
1"-'
~
:::>
~
10
.01
.05
Ie -
.1
.2
.5
1
2
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA02172
TEL. (617) 926.Q4()4 • FAX (617) 924·1235
1/
.5
.2
VeE (sat)
1
.05
-- --
.01
.01
10
COLLECTOR CURRENT (A)
.02
/'
,/'
/
V
.05.1
Ie -
8-21
.JV
VIE (sat)
1.0
.02
.02
/
1'=10
2
r--.
~55'Cr--. '" :\
'" '\
V-
I
Ie
.2
.5
1
2
10
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N3996, 2N3997, 2N3993, 2N3999
Saturation Voltage
Temperature Coefficients
Switching Speed
Characteristics
2
?
;;
~
~
~=10
I,
1.5
1.0
: ~ ,-'e
/!_55'C\0/
OJ
"'"
'tI
s:zD~y
~o ~
t>',.
-1
n.
::; -1.S
I
~
7
/
55'C to 25'C
b,'Ic.-
OJ
Vee=20V
r-- 11I=lu=lo
Ie
.5
,/"
....... V
......
~~
f.:;:: ~ , /
~ ~V
/
0J_CIII ='11,-
Single Pulse
ZJ:
b--::-:
OJ-C,
BJ-C = 3.3'C/W
.002
.1
2
Ie -
.001
.01 .02 .05 .1
10
5
COLLECTOR CURRENT (A)
.2
.5
1
2
5
10 20
SO 100 200 5001000
TIME (milliseconds)
Switching Speed Circuit
+20_3Vde
20n
j
16V
n~__--'1'1\f\r-_"'_-I
L
-IVJ
Pulse width
2,us
Duty cycle = ':"'~ 2%
Source Impedance
:- Sm!
-6.4Vde
NOTES.
=
1. Ie 1=::: lA, lSI = -182
IOOmA
2. The values of COllector current and base
current are nominal. The actual values will
vary slightly with transistor parameters.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL (617) 926-0404· FAX (617) 924-1235
8-22
PRINTED IN U.S.A.
POWER TRANSISTORS
JAN, JANTX & JANTXV 2N4150
10 Amp, 70V, Planar NPN
FEATURES
• Meets MIL-S-19S00/394
• Collector-Base Voltage: up to lOOV
• Peak Collector Current: lOA
• Fast Switching
• Low Saturation Voltage
DESCRIPTION
Unitrode power transistors provide a
unique combination of low saturation
voltage, high gain and fast switching. They
are ideally suited for power supply pulse
amplifier and similar high efficiency power
switching applications.
BACKSID[COLlECTOR
IHI~~~SS
M~tl~~~:r
00"
•
ABSOLUTE MAXIMUM RATINGS
Collector-Base Voltage, VeBo ............................ .....................
.. .................................. IOOV
Collector-Emitter Voltage, VCEO .............................••.........................••......................•........•.•...... 70V
Emitter-Base Voltage, VEBO ............................................................................................................ 7V
Peak Collector Current, Ie .......................................................................................................... lOA
Power Dissipation
2S·C Ambient ...................................................................................... l.SW
lOO·C Case .............................................................................................. SW
Operating and Storage Temperature Range .................................................... -6S·C to 200·C
MECHANICAL SPECIFICATIONS
JAN, JANTX & JANTXV 2N4150
01
~~I
I
TiI- ._.1r-__. ..
. .
fo-c-r:
E
ili
-+- _. _ . . .
0
BASE
.010-.030
A
F
INCHES
.335-.370
.305-.335
.240-.260
1.5 MIN.
.017 ±
G
H
:gg~
MILLIMETERS
8.51-9.40
7.75-8.51
6.09-6.60
38.10 MIN.
.254-.762
.432 ±
:g~~
.200
5.08
.100
2.54
.78Jt.076
.736-1.14
2.54
.031:1:.003
.029-.045
.100
TO·5
nn
SEMICONDUCTOR
~ PRODUCTS
8-23
_UNITRDDE
JAN', JAN-TX & JANTXV 2N4l50
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
Min.
Max.
MIL-STD-7SO
/394
Sub
Units group Method
Visual and Mechanical
A-I
2071
Test conditions
See Mechanical Data
25'C
-
Vdc
A-2
3001
Ic = 10uAdc; Cond_ D
Vdc
A-2
3011
Ic = OJAdc; Cond_ D
Vdc
A-2
3026
IE"" 10uAdc; Cond_ D
10
.. Adc
A-2
3041
VCE = 60Vdc; Condo D
-
10
IIAdc
A-2
3041
VCE = 100Vdc, VEB = 0.5Vdc; Condo A
pAdc
A-2
3036
Vc , = 80Vdc; Condo D
lEBO
-
0.1
OJ
pAdc
A-2
3061
V" = 5Vdc; Condo D
120
A-3
Ic = 5Adc, VCE = 5Vdc
-
-
3076
A-3
3076
Ic = lOAdc, VCE = 5Vdc
A-3
3076
Ic = 1Adc, VCE = 5Vdc
Vdc
A-4
3071
Ic = 5Adc, I, = O.SA~.c
2.5
Vdc
A-4
3071
Ic = lOAdc, I, =c= 1Adc
Collector-Base Breakdown Voltage
BVc,o
100
Collector-Emitter Breakdown Voltage (Note 1)
BVCEO
70
Emitter-Base Breakdown Voltage
BVE,o
7
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Collector-Base Cutoff Current
Emitter-Base Cutoff Current
D.C_ Current Gain (Note 1)
'CEO
ICEX
'c,o
-
hFE
40
D.C. Current Gain (Note 1)
hFE
10
D.C. Current Ga i n (Note 1)
hFE
50
Collector Saturation Voltage (Note 1)
VCE (sat)
0.6
Collector Saturation Voltage (Note 1)
VCE (sat)
Base Saturation Voltage (Note 1)
V'E (sat)
-
1.S
Vdc
A-4
3066
Ie = 5Adc, I, = O.SAdc; Condo A
Base Saturation Voltage (Note 1)
V" (sat)
-
2.5
Vdc
A-4
3066
Ic = lOAdc, I, = 1Adc; Condo A
Ic = SOmAdc, VCE = 5Vdc; f'= 1KHz
A.C. Current Gain
hr.
40
160
-
A-4
3206
Gain-Bandwidth Product
fT
IS
75
MHz
A-4
3306
Ic = 0.2Adc, VCE = lOVdc, f =10 MHz
Output Capacitance
C~b
-
350
pf
A-4
3236
Vc,·= 10Vdc, IE = O,f = 1MHz
°J_C
-
20
oc/w
C-1
31S1
Delay Time
td
-
50
ns
A-4
-
Rise Time
t,
-
500
ns
A-4
-
Storage Time
t,
-
1.5
ps
A-4
Fall Time
tr
-
SOO
ns
A-4
-
Adc
B-6
300S
VeE = 1Vdc, t=: QOSec,
mAdc B-6
300S
VCE = 70Vdc, t = 60Sec,
mj
B-7
-
Ic = SAdc, L = 1mh
Thermal Resistance
Switching
Speeds
100'C
~
Vce = 20V
Ic =5A
I" = I", '" = O.5A
Forward-Biased Second Breakdown
lsi,
S
Forward-Biased Second Breakdown
's/,
70
Unclamped Reverse Biased Second Breakdown
Esl,
12.S
-
Clamped Reverse Biased Second Breakdown
Esl,
SOO
-
mj
B-8
-
Ie = SAdc, L = 40mh, V,"mp = 70V
'CEX
-
100
/lAdc
A-S
3041
VCE = 80Vdc, Ii" ~ 0.5Vdc, Condo A
hFE
20
-
-
A-5
3076
Ic = 5Adc, VCE = SVdc
150'C
Collector-Emitter Cutoff Current
-55'C
: D.C. Current Gain (Note 1)
Note:
1. Pulse width = 300..5; duty cycle S2%.
UNITRODE • SEMICONDUCTOR PRODUCTS·
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
8-24
PRINTED IN U.S.A.
JAN. JANTX & JANTXV 2N4150
Unclamped Reverse Bias
Second Breakdown
Forward Bias
Safe Operating Area
10
S
:$
2
I-
~
Z
.~
DCI
W
0:
0:
:l
0:
0
I-
u
w .2
..I
..I
0
~
\\ \
.!!
~~
C
~
.1
u
I'in
lOOtl-Sec, 10% Duty Cycle /
~.OS
\
1\
I
~ Duty Cycle
~'"
~ / ~'" ~
Ims~c. 10% D~ty Cycl~
~
.S
U
10
~"- ~ /~opSec.
gw
'.1
['\..
'"
z
z
I
r+--
I'\.
;: .2
u
:l
C .1
i""-
......... ~ase ope'n
\
.5
.05
1'1'\.
'" v,!=10.5t
i'k
"- V,,~-.!4V l"I'--- r-....
r-..
..I
.02
f-
.02
T, = 10D'C
I
.01
1
.01
2
VeE -
S
10
20
50 70
o
2
COLLECTOR TO EMITTER VOLTAGE (VI
3
Ie -
4
8
•
10
D.C. Current Gain
20.---'---~r---r---.---~r-'-'
500
L=st
10r---~-----+----1_--4_----_r~~
:$
z
200
100
:l
;;:
~
z
W
0:2r---~-----+----1_--4_----_r~~
~.
:l
50
8
I
~ s~--+----_+----I_--+----_+_t__i
0:
0:
u
0:
0:
u
rj
ci
..I
I
9
COLLECTOR CURRENT (AI
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
.!!
-
I
\
u
ITe ~ 10J.C I
= -liz = 'CliO
20
IJ/ f.~J=2l.:s- I--
-.~
-......
~~!~c-
1\
r--
.Sr---~-----+--~I_--4_----_r~~
10
.2 L...-_L...-_--'-_--'-_--'-_ _-'-....L....J
1
1020
SO 70
5
.01
:02
.OS
Ie -
VeE-COLLECTOR TO EMITTER VOLTAGE (V)
10
10
2
2
_
P
1.5
.s
,Ji=2Slc
18=
'C/ID
~
10
~5'C 10 lSO lC,,/ V
III
I-
-
VIEISATI
~
w .S
CJ
.2
>
.1
~
.05
.02
.01
.01
lell,
:>
2
~
.2.5
Saturation Voltage
Temperature Coefficients
Saturation Voltages
0
.1
COLLECTOR CURRENT (AI
V
W
........
(3
.S
LL
V
-6Ve~
0
/
et:: -.5
:l
.~
w
l-
I
l::!.V 1E
-2
.0S.1
Ie -
.2
.S
1
2
5
-2.S
.01
10
UNITRODE ' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET, WATERTOWN. MA 02172
TEL. (617) 926·0404 ' FAX (617) 924·1235
.02
--
8·25
/
/'
fS~ r---
V
.05.1
Ie -
COLLECTOR CURRENT (AI
~
"'C to 150'C
-1
~-1.5
>
...t
!-5S'C to 25'C
U
W
k V
15!J'C
.01
Iz·
....
Ie",
"' t--- ~~e,t.
lSO"C
-::::
--::±::: -
g
~ .05
I
'C
RiS~ Time, t,
~
I= .I
=
Vee 20V
I-- I" -I"
121l
.01 Vst:PUlse
.005
-sv
.002
.001
.01 .02 .05 .1 .2
.5
1
2
5
10 20
50 100 200 5001000
TIME (milliseconds)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
8-26
PRINTED IN U.S.A.
POWER TRANSISTORS
JAN,
JAN,
JAN,
JAN,
2 Amp, 300V, Planar NPN
JANTX,
JANTX,
JANTX,
JANTX,
&
&
&
&
JANTXV 2N5660
JANTXV 2N5661
JANTXV 2N5662
JANTXV 2N5663
FEATURES
DESCRIPTION
•
•
•
..
•
Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rating adds
to system reliability.
Meets MIL-S-19500/4S4
Collector-Base Voltage: up to 400V
D.C. Collector Current: SA
Peak Collector Current: lOA
Fast Switching
CtllP
THICKNESS
0041
-0047
MEt"LlIZATION
TOP .......L
a"'CK •.. AU
JAN, JANTX,
JAN, JANTX,
& JANTXV
2N5661
& JANTXV
2N5660
ABSOLUTE MAXIMUM RATINGS
JAN, JANTX,
& JANTXV
2N5662
JAN, JANTX,
& JANTXV
2N5663
.... 400V
300V
....... 6V
............ 2S0V............
... 400V ................................ 2S0V ...... .
Collector-Base Voltage, VCBO ........
... 200V ................................ 300V ................................ 200V ....... .
Collector-Emitter Voltage, VCEQ
....... 6V ................................... 6V............
.. .. 6V .. .
Emitter-Base Voltage, VEBO .... ..
.. ........ 2A
...... 2A .............................. 2A ................................... 2A ........ ..
D.C. Collector Current, Ic ............................................. .
... SA........
... SA.......
............. SA ........................ . .. .... SA
Peak Collector Current, Ic ..
.. .................................... ..
Power DisSipation
.......... 2.0W.....
...... 1.2W......
1.2W
2S'C Ambient ........................
... 2.0W ........ .
... 20W................................ lSW.......
.. ........... l5W
lOO'C Case ................................................. 20W........... ..
.. .... -6S·C to 200'C .................................................. ..
Operating and Storage Temperature Range ........................................................ ..
MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661
TO-66
H
[fif
B~~
BASE
EMITTER
A
B
K
C
0
E
F
G
H
J
K
D
L
M
MILLIMETERS
INCHES
.620 MAX.
15.75 MAX .
.050 - .075
1.27 - 1.90
6.35 - 8.63
.250 - .340
.360 MIN.
9.14 MIN .
.711 - .863
.028 - .034 OIA.
24.33 24.43
.958 - .962
14.47 - 14.98
.570 - .590
3.68 MAX. RAO .
.145 MAX. RAO.
. 142 - .152 OIA. 3.60 - 3.86 OIA .
8.89 MAX. RAD .
.350 MAX. RAO.
4.82 - 5.33
.190 - .210
.093 - .107
2.36 - 2.72
JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663
A
B
BASE
0
INCHES
.335-.370
.305-.335
.240-.260
1.5 MIN.
.010 .030
.017:1: :gg~
.200
H
J
.100
.03l:t.OO3
.029 .045
.100
TO-5
MILLIMETERS
a.S1 9.40
7.75-8.51
6.09-6.60
38.10 MIN.
.254-.762
.432 :I:
:8~~
5.08
2.54
.787:1:.076
.736-1.14
2.54
nn
CJ
8-27
SEMICONDUCTOR
PRODUCTS
_UNITRODE
JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV 2N5663
ELECTRICAL SPECIFICATIONS (at 2S'C .unless noted)
2N5660, 2N5662
/454
Symbol
Test
Min.
Max.
Units
Visual and mechanical
25'C
M/L-STD-7SO
Sub
group Method
A-1
2071
Test conditions
See Mechanical Data
Collector-Emitter Breakdown Voltage (Note 1)
BVe..
,
250
A-2
3011
Ie = 10mAdc; R.. = 100!); Condo B
BVCEO~
200
-
Vdc
Collector-Emitter Breakdown Voltage (Note 1)
Vdc
A-2
3011
Ie = 10mAdc; Condo D
Emitter-Base Breakdown Voltage
BVuo*
-
Vdc
A-2
3026
I. = 10pAdc; Condo D
Collector-Emitter Cutoff Current
ICEs
,
6
-
0.2
pAde
A-2
3041
Ve• = 200Vdc; Condo C
Collector-Base Cutoff Current
IclO
0.1
pAdc
A-2
3036
Ve• = 200Vdc; Condo D
Iceo
-
1.0
mAdc
A-2
3036
Ve• = 25OVdc; Condo D
D.C. Current Gain (Note 1)
hFE*
40
-
-
A-3
3076
Ie = 5OmAdc, Ve• = 2Vdc
D.C. Current Gain (Note 1)
hl:':*
40
120
A-3
3076
Ie = O.5Adc, Vo, = 5Vdc
D.C. Current Gain (Note 1)
hFE*
15
A-3
3076
Ie = lAde, Ve• = 5Vdc
D.C. Current Gain (Note 1)
h"
5
-
-
A-3
3076
Ie = 2Adc, Ve• = 5Vdc
Collector Saturation Voltage (Note 1)
Ve.(sat)'
-
0.4
Vdc
A-3
3071
Ie = 1Adc, I. = O.lAdc
Collector Saturation Voltage (Note 1)
Ve.(sat)
-
0.8
Vdc
A-3
3071
Ie = 2Adc, I. = 0.4Adc
-
1.2
Vdc
A-3
3066
Ie = 1Adc, I. = O.lAdc; Condo A
1.5 Vdc
A-3
3066
Ie = 2Adc, I. = 0.4Adc; Condo A
Collector-Base Cutoff Current
Base Saturation Voltage (Note 1)
V..(sat)'
Base Saturation Voltage (Note 1)
V"(sat)
Gain-Bandwidth Product
fr'
20
70
MHz
A-4
3306
Ie = O.lAdc, Ve• = 5Vdc, f = lOMHz
Output Capacitance
C••
-
45
pf
A-4
3236
Ve• = 10Vdc, I. = 0, f = 1MHz
Thermal Resistance
oJ-C
C-1
3151
-
5.0
'C/W
6.7
'C/W
2N5660
2N5662
Switching Speeds
Turn-on time
tM'
Turn-off time
tou
,
-
0.25 ps
A-4
-
0.85
"s
A-4
-
-
Adc
B-6
3051
Ve•
=' 10Vdc, t = 1Sec
Adc
B-6
3051
Ve•
= 4OVdc, t =
mAdc
B-6
3051
Ve• = 200Vdc, t = 1Sec
Adc
B-7
3051
Ve• = 7.5 Vdc, t = 1Sec
Adc
B-7
.3051
Ve• = 25Vdc, t = 1Sec
le= 0.5Adc
100'C
Forward Biased Second Breakdown
2N5660
Is/.
2
lsi.
0.5
1st.
36
1Sec
1st.
2
Is/.
0.6
-
1st.
27
-
mAdc
B-7
3051
Ve•
Unclamped Reverse Biased Second Breakdown
Es/.
0.2
-
mj
B-8
3053
Ie
Clamped Reverse Biased SeeondBreakdown
Es/.
80
-
mj
B-9
3053
= 200Vdc, t = 1Sec
= 2Ade, L =0.1 mh
Ie = 2Adc, L .= 40mh, Vol •." =
ICEs
-
100
pAde
A-5
3041
Ve• = 200Vde, Condo C
h"
15
-
-
A-6
3076
Ie = 0.5Ade, Ve• = 5Vdc
2N5662
15O'C
COllctor-Emitter Cutoff Current
,
200V
-we
D.C. Current Gain (Note 1)
Notes:
1. Pulse width = 300"s; duty cycle 52% .
• Those parameters marked with a • are JEDEC registered and devices meeting these specifications are available as commercial 2N devices.
UN/TRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
8-28
PRINTED IN U.S.A.
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
JAN, JANTX, & JANTXV 2N5660
JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662
JAN, JANTX, & JANTXV 2N5663
2N5661, 2N5663
Test
Symbol
Min.
Max.
Units
Visual and mechanical
/454
Sub
MIL-STD-750
group ~ethod
Test conditions
A-I
2071
Vdc
A-2
3011
Ie
Vdc
A-2
3011
Ie
See Mechanical Data
25'C
Collector-Emitter Breakdown Voltage (Note 1)
BVCER*
400
Collector-Emitter Breakdown Voltage (Note 1)
BVeEo*
300
Emitter-Base Breakdown Voltage
BV"o *
Collector-Emitter Cutoff Current
ICEs
COllector-Base Cutoff Current
ieeo
COllector-Base Cutoff Current
Icla
-
D.C. Current Gain (Note 1)
6
-
Vdc
A-2
3026
IE
0.2
/lAdc
A-2
3041
VeE
0.1
/lAdc
A-2
3036
Ve,
1.0
mAdc
A-2
3036
Ve•
hFE*
25
-
-
A-3
3076
D.C. Current Gain (Note 1)
hFE*
25
75
A-3
3076
D.C_ Current Gain (Note 1)
hFt
15
A-3
3076
D_C. Current Gain (Note 1)
h"
5
-
-
A-3
3076
Collector Saturation Voltage (Note 1)
VeE(sat)*
0.4
Vdc
A-3
3071
Collector Saturation Voltage (Note 1)
VeE(sat)
0.8
Vdc
A-3
3071
Base Saturation Voltage (Note 1)
V,,(sat)*
1.2
Vdc
A-3
3066
Base Saturation Voltage (Note 1)
VIE(sat)
-
I.S
Vdc
A-3
3066
Gain-Bandwith Product
f*
T
20
70
MHz
A-4
3306
Output Capacitance
C,b
-
45
pf
A-4
3236
Thermal Resistance
9 J -<
C-l
3151
2N5661
-
5.0
2N5663
-
6.7
Switching Speeds
=
=
=
10mAdc; R"
=
100f!; Cond_ B
10mAdc; Cond_ 0
l()pAdc; Cond_ 0
= 300Vdc; Condo C
= 300Vdc; Condo 0
= 400Vdc; Condo 0
Ie = 50mAdc, VeE = 2Vdc
Ie = 0.5Adc, VeE = SVdc
Ie = lAdc, VeE = SVdc
Ie = 2Adc, VeE = SVdc
Ie = lAdc, I, = O.lAdc
Ie = 2Adc, I, = 0.4Adc
Ie = lAdc, I. = O.IAdc; Cond_ A
Ie = 2Adc, I. = 0.4Adc; Condo A
Ie = 0.2Adc, VeE = 10Vdc, f = lOMHz
Ve• = 10Vdc, IE = 0, f = IMHz
'C/W
'C/W
Turn-on time
ton*
-
0.2S
/lS
A-4
toll *
-
1.2
ps
A-4
-
Ie
Turn-off time
=
O.SAdc
100'C
Forward Biased Second Breakdown
IS/B
19
-
mAdc
B-6
30S1
15/8
2
-
Adc
B-7
30S1
ISIB
0.6
-
Adc
B-7
30S1
IS/B
14
mAdc
B-7
3051
Unclamped Reverse Biased Second Breakdown
Est.
0.2
-
mj
B-8
30S3
Clamped Reverse Biased Second Breakdown
Es"
80
-
mj
B-9
30S3
= lOVdc, t = ISec
= 40Vdc, t = ISec
VeE = 300Vdc, t = ISec
VeE = 7.5 Vdc, t = ISec
VeE = 25Vdc, t = ISec
VeE = 300Vdc, t = ISec
Ie = 2Adc, L = 0.1 mh
Ie = 2Adc, L = 40mh, V",,,, =
ICES
-
A-5
3041
Vee = 300Vdc, Condo C
A-6
3076
Ie
2N5661
2N5663
IS/B
2
-
Adc
B-6
3051
VeE
ISIB
0.5
-
Adc
B-6
3051
VeE
300V
150'C
Collector-Emitter Cutoff Current
100 pAdc
-65'C
D.C. Current Gain (Note 1)
h"
10
-
-
=
O.5Adc, VeE
=
5Vdc
Notes:
1. Pulse width = 300pS; duty cycle ,;2%.
• Those parameters marked with a • are JEDEC registered and devices meeting these specifications are available as commercial 2N devices.
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
8-29
PRINTED IN U.S.A.
III
JAN, JANTX, & JANTXV 2N5660 JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662 JAN, JANTX, & JANTXV2N5663
Forward Bias
Safe Operating Area
Forward Bias
Safe Operating Area
2N5660, 2N5661
2N5662,2N5663
10
10
Tc = lOOoe
To = 100°C
g
,-"-
2
" ,\
rv p\\
"c:
~
::J
1"-
g
aIE
'"
~
.5
g
.1 _
D.C.
.2
"
Duty Cycle =10% -
~
to =100,.;
~
lp=
Ims
Duty Cycle =10%-
/
.05
.5
,
10% -
.2
0
1\
"- ~
"- "- l"I" ~
~u';yl:le =
P\V \'r-..
t,=
D.C.
c:
::>
1\
\
1 11
I
g
....
ili
c:
"I
.1
.E
,05
r-
lOOpS
_
Duty Cycle =10%
I
~
1,\
I I
r-..
'\
\
i\
::
--'-_--'-------'----'-_-'--12_N...L~6_60-,1-,-12_N5_66---,1I
LI
I
10 20
50 100 200 300
Va; - COLLECTOR TO EMITIER VOLTAGE M
10 20
50 100 200 300
VeE - COLLECTOR TO EMITIER VOLTAGE (V)
Unclamped Reverse Bias
Second Breakdown
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
10
.
.~
c
10
T. =2S'C
0
2
~
"-
.5
;: .2
o
.1
"~
'"
0:
~'--0.5V
~
~
"'-------v" _
.05
.02
.01
o
.5
1
5'"
2N5661,63
oJ
_u
.02
.01
1
2
10
Vc' -
20
50
D.C. Current Gain
2N5661, 2N5663
1000
Vc ,=5V
Vc,=5V
500
500
Z200
200
I -r-- 150'C
" 100
l<
50
;;:
f"'..,
2S'C
0:
OJ
~
1
SS'C
20
'" 100 rI-
Z
"' ~
::: 50
0:
OJ
~
\~
ci
I
100 200300
COLLECTOR·EMITTER VOLTAGE (V)
D.C. Current Gain
2N5660, 2N5662
1000
:::
....
"1·05
Ic-COLLECTOR CURRENT (A)
z
;;:
-
.1
2
1.5
2rS660'162- ~
0:
§ .2
-4V
oJ
1
0:
~ .5
--
:!:
2
I-
Z
~
5
I
5
"i', ~
~
g
o
z'"
T= 100'C
'.1 =-112=
Ic/lO
I·
\,
10
20
ci
I
:l!
.c
-
.........
150'C
I-
I- -
"-
2~'C
-SS'C
10
l'\
"~
~
5
\
2
2
1
.01 .02
.05
Ic -
.1
.2
.5
1
2
.01
10
COLLECTOR CURRENT (A)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
.02
.05
Ic -
8-30
.1
.2.5
2
5
10
COLLECTOR CURRENT (A)
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N5660
JAN, JANTX, & JANTXV 2N5661
JAN, JANTX, & JANTXV 2N5662
JAN, JANTX, & JANTXV 2N5663
Saturation Voltage
Temperature Coefficients
Saturation Voltages
_ +2
~J =2slc
>+1.5
oS
2
VIEI I.=I C/5
I--
-
[!? +1
zOJ
J
~
I
/
/
ii:
/
VeE' '. = 'CliO
I
-
.05
.01
f,--
/'
~~
dVeE
u.
8'"
r-
:>
-1
::;; -1.5
'"
l,..-/ , /
I
~IE'I'7Ie"l
r-
-2
~
11 VIE
I--"
-2.5
.01
10
.05 .1
.2.5
2
Ie - COLLECTOR CURRENT (A)
.02
Vee _100V
'.=
.5
'CliO
.
"<=...
...~
g
0
'"::;:i=
.2
.1
.05
t::::: -...
Rise Time, tr
~ ...........
,..;-
- :::r-
..........
Oelay Time, t;--=
~
7
10
/
-;;;
/
"...<=
~
.2
0
/25'C
~--Tim~
2
'"
::;:
i=
25'C
rwc
.5
150'C
-- ==
------
I-storage
oS
i"--
r--.-...
K
-:.-
Fall Time, I,
.2
lSO'C
.02
10
Switching Speed
Characteristics
Switching Speed
Characteristics
1.0
1/ /
V
~ -:::-SS'C 10 2S'C
l-
.2
.5
1
2
.05 .1
Ie - COLLECTOR CURRENT (A)
.02
2S'C 10 150'C/
Q,
V
V
Sr C 1012S'C
~ -.5
~
V
2S'C to IS0'C
+.5
(j
OJ
.2
.1
le/ i.';;10
!;'
.01
2S'C
L
>
-------
.1
.2
.5
1
.Ie-COLLECTOR CURRENT (A)
.2
2
.5
Ie - COLLECTOR CURRENT (A)
Thermal Response
Switching Speed Circuits
.5
Tektronix
S41AOI'
Equivalent
IZ
'"
iii'"
zu
"" z
"'''''
o ~
.2
.1
1-0
~~
~~
::;:::;;
Tektronix
541Aar
Equivalent
.05
.02
g"''''~ .01
IIi2 .005
- -~
--
Duly Cycle
0.5
.!
~ i-"
~
~
~
.01/ '/
--::
....-::: f?~
/.
7
1t'
VV
--=i;;;iiii'''''''
~I"'"
= r(I)-~:T
9 J •c = 5.0°C/ w
f~r 2N1S66f' 2rS66f
8 J •e (l)
.L
- 6.7 C/w
for 2NS662, 2N5663
flJ _e
Single Pulse
.002
-.v
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
.001
.01 .02 .05 .1
8-31
.2
.5 1 2
5 10 20
TIME (milliseconds)
50 100 200 500 1000
PRINTED IN U.S.A.
lEI
POWER TRANSISTORS
JAN,
JAN,
JAN,
JAN,
5 Amp, 300V, Planar NPN
JANTX,
JANTX,
JANTX,
JANTX,
FEATURES
• Meets Mll-S-I9500/4SS
• Collector-Base Voltage: up to 400V
• D.C. Collector Current: 5A
• Peak Collector Current:IOA .
• Fast Switching
DESCRIPTION
Unitrode high voltage transistors provide
a unique combination of low saturation
voltage, fast switching, and excellent gain.
They are ideally suited for off-line power
supply designs and other applications
where the increased voltage rating adds
to system reliability.
BACKSIDECOLtECTOR
TH~~~ESS
M~f"'.'~.'.',~gN
""'"
gg!~
u
JAN, JANTX,
ABSOLUTE MAXIMUM RATINGS
& JANTXV 2N5664
& JANTXV 2N5665
& JANTXV 2N5666
& JANTXV 2N5667
JAN" JANTX,
& JANTXV
JAN, JANTX,
JAN, JANTX,
& JANTXV
& JANTXV
& JANTXV
2N5664
2N5665
2N5666
2N5667
Collector-Base Voltage, VeBo ..........................
2SOV
....... 4~OV.......
.............. 250V.......
. ........ 400V
Collector-Emitter Voltage, VeEO ...................................................... 200V ................................ 300V .................... ,........... 200V................................ 300V
Emitter-Base Voltage, VEBO .................................................................. 6V .................................... 6V......,............................. 6V.................................... 6V
D.C. Collector Current, Ie .................................................................... 5A.................................... SA .................................... 5A ................................... 5A
Peak Collector Current, Ie ......,: ...,.................................................... lOA.................................. IOA. ................................. lOA ................................. lOA
Power Dissipation
.
25'C Ambient ............................................ 2.5W ................................ 2.5W................................ I.2W................................ I.2W
lOO'C Case .............. . .............................. 30W ................................. 30IN................................. lSW................ .-.: ............. 15W
Operating and Storage Temperature Range ............................................................:.......................-65·C to 200'C ............. :..................................... .
MECHANICAL SPECIFICATIONS
JAN, JANTX, & JANTXV 2N5664 . JAN, JANTX, & JANTXV 2N5665
TO-66
H
BASE
EMITTER
A
B
C
0
E
F
G
H
J
K
L
M
JAN, JANTX, & JANTXV 2N5666
·c
T
0
[
r=t=~rE
."
B
--
- . -.
'.
F
JAN, JANTX, & JANTXV 2N5667
l'
j--!---T~-'-- -:- - -
INCHE5
MILLIMETERS
.620 MAX.
15.75 MAX .
1.27 - 1.90
.050 - .075
.250 - .340
6.35 - 8.63
.360 MIN.
9.14 MIN .
.711 - .863
.028 .034DIA .
24.33 - 24.43
.958 - .962
14.47 - 14.98
.570 - .590
.145 MAX. RAD.
3.68 MAX. RAD.
.142 - .152 DIA. 3.60 - 3.86 DIA .
8.89 MAX. RAD.
.350 MAX. RAD.
4.82 - 5.33
.190 - .210
2.36 - 2.72
.093 - .107
INCHES
.335-.370
.305-.335
.240-.260
0
E
F
G
1.5 MIN.
TO-5
MILLIMETERS
8.51-9.40
7.75-8.51
6.09-6.60
38.10 MIN.
.010-.030
.254-.762
.0"17 ± :gg~
.432:1:
.200
.100
:g~~
.
5.08
.D3H.OD3
.029 .045
.100
2.54
.787:1:.076
.736-1.14
2.54
n
n
L.::2J
8-32
SEMICONDUCTOR
PRODUCTS
.... UNITRDDE
ELECTRICAL SPECIFICATIONS (at 25-C unless noted)
2N5664 2N5666
JAN, JANTX, & JANTXV 2NS664
JAN, JANTX, & JANTXV 2N5666
JAN, JANTX, & JANTXV 2NS66S
JAN, JANTX,& JANTXV 2NS667
1455
Test
Symbol
Min.
Max.
Units
Visual and mechanical
MIL-STD-750
Sub
group Method
A-I
Test conditions
2071
See Mechanical Data
25'C
Collector-Emitter Breakdown Voltage (Note 1)
BV CER *
2S0
-
Vdc
A-2
3011
Ie = 10mAdc; R" = 100 !!, Condo B
Collector-Emitter Breakdown Voltage (Note 1)
BVCEO *
200
-
Vdc
A-2
3011
Ie = lOmAdc; Condo D
Emitter-Base Breakdown Voltage
BV EBO *
6.0
-
Vdc
A-2
3026
I, = 10pAdc; Condo D
Collector-Emitter Cutoff Current
I cts
-
0.2
pAdc
A-2
3041
VeE = 200Vdc; Condo C
Collector-Base Cutoff Current
IC80
-
0.1
pAdc
A·2
3036
Ve• = 200Vdc; Condo D
Collector-Base Cutoff Current
Icso
-
1.0
mAdc A-2
3036
Ve• = 2S0Vdc; Condo D
h *
40
-
-
A-3
3076
Ie = O.SAdc. VeE = 2Vdc
h *
40
120
-
A-3
3076
Ie = 1Adc, VeE = SVdc
IS
-
-
A-3
3076
Ie = 3Adc, V0< = SVdc
5
-
-
A-3
3076
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
"
"
h *
"
Ie
= SAdc, Vo< =
Collector Satur~tion Voltage (Note 1)
VeE (sat)*
-
0.4
Vdc
A-3
3071
Ie
= 3Adc,
Collector Saturation Voltage (Note 1)
Vco (sat)
-
1.0
Vdc
A-3
3071
Ie = SAdc,
V" (sat)*
-
1.2
Vdc
A-3
3066
Ie = 3Adc, I. = 0.3Adc; Condo A
V" (satl'
1*
r
-
1.S
Vdc
A-3
3066
Ie
20
70
MHz
A-4
3306
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Base Saturation Voltage (Note 1)
Base Saturation Voltage (Note 1)
Gain-Bandwith Product
h"
Output Capacitance
C,o
Thermal Resistance
II
pi
J-e
-
2NS664
2NS666
Switching Speeds
120
-
Turn-on Time
t on *
Turn-off Time
tOil *
3.3
A-4
3236
C-1
3151
=- SAdc,
SVdc
= 0.3Adc
I. = 1Adc
I.
I. = 1Adc; Condo A
= O.SAdc, VeE = SVdc, 1= 10MHz
Ve• = 10Vqc, I, = 0, 1= 1MHz
Ie
°C/W
-
6.7
-
0.2S
ps
A-4
1.5
ps
A-4
-
°C/W
Ie
= 1Adc
100'C
Forward Biased Second Breakdown
2NS664
2NS666
=
S
-
Adc
B-6
3051
Vco = 6Vdc, t
Is/.
O.7S
Adc
B-6
30S1
VeE = 40Vdc, t = lsec
Is/.
43
Is/.
5
-
I
I
'/0
s/.
.
0.4
Unclamped Reverse Biased Second Breakdown E
0.81
-
Clamped Reverse Biased Second Breakdown
E
500
-
I
-
100
IS
-
I
'/0
s/.
s/.
27
lsec
mAdc B-6
30S1
VeE = 200Vdc, t = lsec
Adc
B-7
30S1
Vco = 3Vdc, t = lsec
Adc
B-7
30S1
VeE = 37.SVdc, t
mAdc B-7
3051
VeE = 200Vdc, t = 1sec
=
lsec
mj
B-8
30S3
Ie
=5Adc, L = .065mh
mj
B-9
30S3
Ie
= SAdc, L =
pAdc
A-S
3041
VeE
-
A-6
3076
Ie
4~h, V".mp
=
200V
lS0'C
Collector-Emitter Cutoff Current
eEl
= 200Vdc, Condo C
-6S'C
D.C. Current Gain (Note 1)
h
"
-= 1Adc, Vco =
SVdc
Noles:
1. Pulse width = 300pS; duty cycle $2% .
• Those parameters marked with a • are JEDEC registered and devices meeting these specifications are available as commercial 2N devices.
UNITROOE • SEMICONOUCTOR PROOUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·12::15
8-33
PRINTED IN U.S.A.
•
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N5665 2N5667
Test
Symbol
Min.
JAN, JANTX, & JANTXV 2N5664
JAN, JANTX, & JANTXV 2N5666
JAN, JANTX, & JANTXV 2N5665
JAN, JANTX, & JANTXV 2N5667
Max.
Units
Visual and mechanical
1455
Sub
group Method
A-I
25'C
··
·
Collector-Emitter Breakdown Voltage (Note 1)
BV CER
400
Collector-Emitter Breakdown Voltage (Note 1)
BV eEO
300
Emitter-Base Breakdown Voltage
BV"o
M I L-STO-750
Test conditions
2071
See Mechanical Data
-
Vdc
A-2
3011
Ie
Vdc
A-2
3011
Ie
= 10mAdc; R" = 10011, Cond_
= 10mAdc; Cond_ D
= 10pAdc; Cond_ D
Vdc
A-2
3026
I,
Collector-Emitter Cutoff Current
ICES
-
0.2
.pAdc
A-2
3041
VeE =. 300Vdc; Condo C
Collector-Base Cutoff Current
leBo
-
0.1
pAdc
A-2
3036
Ve• = 300Vdc; Condo D
COllector-Base Cutoff Current
leBo
-
1.0
mAdc A-2
3036
Ve• = 400Vdc; Condo D
D.C. Current Gain (Note 1)
hFE*
25
-
3076
Ie
hft
25
75
A-3
3076
Ie
n.C. Cllrr,=,nt
h
15
-
1\.-3
3076
Ie = 3Adc, Vc< = lOVdc
5
-
-
A-3
D.C. Current Gain (Note 1)
A-3
3076
Ie
-
0.4
Vdc
A-3
3071
Ie
G~in
(Note 1)
•
"FE
6
D.C. Current Gain (Note 1)
h"
Collector Saturation Voltage (Note 1)
VeE (sat)'
Collector Saturation Voltage (Note 1)
VeE (sat)
-
1.0
Vdc
A-3
3071
Base Saturation Voltage (Note 1)
V" (sat)'
-
1.2
Vdc
A-3
3066
Base Saturation Voltage (Note 1)
V" (sat)
f*
T
-
1.5
Vdc
A-3
3066
Gain-Bandwith Product
20
70
MHz
A-4
3306
Output Capacitance
C'b
-
120
Thermal Resistance
-
2N5665
2N5667
Switching Speeds
pf
°J_C
3.3
A-4
3236
C-l
3151
= 0.5Adc, VeE = 2Vdc
= lAdc, VeE = 5Vdc
= 5Adc, VeE = 5Vdc'
= 3Adc, I, = 0.6Adc
Ie = 5Adc, I, = lAdc
Ie = 3Adc, I. = 0.6Adc; Condo A
Ie = 5Adc, I. = lAdc; Condo A
Ie = O.5Adc, VeE = 5Vdc, f = lOMHz
Ve• = lOVdc, IE = 0, f = IMHz
'C/W
-
6.7
Turn-on time
t~·
-
0.25
P.s
A'4
-
Turn-off time
tOil
-
2.0
ps
A-4
-
.
B
'C/W
Ie
=
1Adc
lWC
Forward Biased Second Breakdown
2N5665
'5/.
5
-
Adc
B-6
3051
VeE
IS/I
0.75
-
Adc
B-6
3051
Ve,
=
6Vdc, t
== Isec
=40Vdc, t = 1 sec
VeE = 300Vdc, t = Isec
VeE = 3Vdc, t = 1sec
VeE = 37.5Vdc, t = Isec
VeE = 300Vdc, t = Isec
I SIB
21
-
mAdc
B~6
3051
IS/B
5
-
Adc
B-7
3051
I SIB
0.4
-
Adc
B-7
3051
IS/B
14
-
mAdc B-7
3051
Unclamped Reverse Biased Second Breakdown ESt.
0.81
mj
B-8
3053
Ic = 5Adc, L = .065mh
Clamped Reverse Biased Second Breakdown
ESt.
500
-
mj
B-9
3053
Ie
ICES
-
100
pAdc
A-5
3041
VCE = 300Vdc, Condo C
-
A-6
3076
Ie
2N5667
= 5Adc, L = 40mh, V" ... = 300V
150'C
Collector-Emitter' Cutoff Current
-65'C
D.C. Current Gain (Note 1)
h"
10
-
= lAdc, Veo = 5Vdc
Notes:
1. Pulse width = 300pS; duty cycle :s2%.
• Those parameters marked with a • are JEDEC registered and devices meeting these specifications are available as commercial 2N devices.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
8-34
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N5664 JAN, JANTX, & JANTXV 2N5666
JAN, JANTX, & JANTXV 2N5665 JAN, JANTX, & JANTXV 2N5667
Forward Bias
Safe Operating Area
Forward Bias
Safe Operating Area
2N5666, 2N5667
2N5664, 2N5665
10
~
"r\.
$
....
~
D.C.
:::>
.5
'-'
Tc = lOooe
'\
I\..
'\.
f-/
.2
t = lOOps
r- Duty Cycle = 10% - f-/
.1
'"0
~
::i
tp= Ims
Duty Cycle
_
=10%
p
0
'-'
10
~
V
i'"
lI'\
K
a
r\
.5
~2
8
.1
Duty Cycle
~
t,= 100",
_
Duty Cycle = 10%
.02
2N5666
.01
10
20
50
1
100 200 300
10
10
IB1=-ln=lc/lo
~
~
~"
.5
~
u
z
~
.2
c
.1
I
.05
~
I
~
i'-..
~
'"~
"'"
~
r----
8
;
1
te -
2
.2
.1
.02
.01
5
1
3
VeE -
COLLECTOR CURRENT (Al
10
1000
1000
VeE =5V
50
:J
U
rJ
ci
I
z
;;:
~
~ I--5p
l-
I
veE::::::; 5V
'" 100 I--
i'-
zW
~
10
0:
0:
:J
"rJ
~
ci
I
'\
.02
.05
Ie -
.1
200
I-
r"-..
20
1
.01
100 200 300
500
500
100
50
2N5665, 2N5667
2N5664, 2N5666
«
20
COLLECTOR VOLTAGE (Vl
D.C. Current Gain
D.C. Current Gain
~ 200
-f-
JN5665,'67
I
1-o
-
2N5664,66
.5
_0.05
~=-4V
.02
.01
5
~
I
........ ~VBE=-2V
..J
~
2N5667
100 200 300
TA - 25'C
.,
zw
50
Reverse Bias
Safe Operating Area
Clamped Inductive Switching
I
.!!!
CJ
f-
20
V" - COLLECTOR TO EMITTER VOLTAGE (V)
Unclamped Reverse Bias
Second Breakdown
10
..
1\
\
Vcr - COLLECTOR TO EMITTER VOLTAGE (V)
~
P\ II \l\
1\
f----.I \
_
=10%
2N5665
.01
:J
lI" ~
I
2N5664
w
1"-
-" .05
.02
~
~
I\..
tp= Ims
r-
Tc =IODoe
'\~
D.C.
'"
\
I
-" .05
"r\.
$
I~
~
.2
.5
1
2
:::~
V ~cS-V
10
.02
.05
Ie -
8-35
t----t-..,
2JC
20
1
.01
10
COLLECTOR CURRENT (Al
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
50
150'C
.1
"" ~'\
.2
.5
10
COLLECTOR CURRENT (Al
PRINTED IN U.S.A.
JAN, JANTX, & JANTXV 2N5664 JAN, JANTX, & JANTXV 2N5666
JAN, JANTX, & JANTXV 2N5665 JAN, JANTX, & JANTXV 2N5667
Saturation Voltal(e
Temperature Coefficients
Saturation' Voltages
_ +2
T~ = 2SJC
P
Ic/l.~
10
:[+1.5
~
OJ
VIE,
~"
'.=
I--
'CIS
.5
~ +1
li
I-'i
1
OJ
"OJ
.2
VeE, I.
.1
= 'CliO
V '
k-~
.02
e-
OJ
!t
0:
sSiC to 2S'C
-1
'""- -1.5
,2S'C,to
i:j
....
,
VeE,I.-lclS
.05 .1
.2
.5
Ie - COLLECTOR CURRENT (A)
~ f.--'
a:: -.5
:>
V
..Os·b==l-==-ET I
.01
:lVCE
o(J
II
0
>
/J..
25'C to lS0'C /
(; +.5
;;:
~
lSo'~
lL
L
V
V
V
~t02S'C
-2 I--~VIE
'-
I::C"I
.02
.05
'" -2.5
.01
10
.1
.2
.5
Ie - COLLECTOR CURRENT (A)
Switching Speed
. Characteristics
10
Switching Speed
Characteristics
10
Vee = 100V
'n=-II,=l c/IO
.5 r-r-~-+t----+---+----t---~~
..,"'
8 .2
"
1·1
~iE:f::S:t:==:::::f=-I--I--I--1
'"
:;;
>= .05
f-+-+-H-F"~
--1-1-
"'-g8
r-+-t-H+--::c:-:-±:---!-~.Lf--~",.c.'-i
150'C
2
Storage Time, t:"-
" -1-1g1
g
'":;; .5
OJ
__±---+----t--~----i
25'C
>=
.02
f-t-H-+t----t---+-----t-
1SO'C
~
t-
N."1
.2
.
t
Tri' I'
2S'C
.............
r---...
---r-- ~VK
--
V
f.--'
/
V
.1
.5
Ie -.COLLECTOR CURRENT (A)
2
Ie - COLLECTOR CURRENT (A)
Switching Speed Circuits
Thermal Response
DutyC ele
+lOOV
'I' = -In =30mA
....
z
Tektronix
54IA or
Equivalent
*
z'"
:~
......
SS
~~
-4V
II,
+100V
= -112 = SOmA
....
.05
Tektronix
54IA or
Equivalent
cH>-'VIN-*-'WIf'-
<.)
I-
<.)
---'
---'
1\
I
ImSec,10% \
.1
I
.05
VeE -
1\ \
\
20
50 80
12
V"" -
150
~
" """
',,"'"
""
Reverse Bias
Safe 0 perati ng Area
Clamped Inductive Switching
.5
"-
<.)
Z
'::>"
I-
.2
0
.1
T A = 25'C
'-.."-
"-
:::::: -4V,
R " , = I K _ I-----
I I I
.02
I-
~JC~,..?-
o
.1
I
.05
Ie -
~
--JOo.? r:::::
.I
<.)
I
1/'
_u
Ole.::::::.......... D~
JOf?
I
.01
5
.5
0:
o
:--,
'~:..~
I
4
u
20
D.C. Current Gain
50,000
z
10
COLLECTOR TO EMITTER VOLTAGE (V)
2N6350, 2N6352
.
5,000
I,v /
,,~
.. ~
flv
V
/
V
/
V
.~ r;c
/
V
/ /
~
.... '"
IV
V
----- "-
-
~
z
;;:
'"Z
I-
"
UJ
1
~t,)
v
-----
~
"0
.... ~I
---
---
jo'>'C
~""
V V/
v/
VeE
=
1-
5V
R"1 = 100
20
V
.01
2N6351,
2N6353
2N6350,
2N6352
.02
D.C. Current Gain
20,000
lOon
$
bl~ ~o
........
~
Rm
J I
1--.,
,'iJ
--
,"
@ V BIE
.05
1
Te = 100'C-
IC/IOO-
Valid for VOlE
from a to -5V
Limit per
!':
=
lSI :;:::-1 82
"-
\
g
lEI
10 20
5080 150
COLLECTOR TO EMITTER VOLTAGE (V)
10
1\\
\\
<.)
4-- 2N6353
\
COLLECTOR TO EMITTER VOLTAGE (V)
Unclamped Reverse Bias
Second Breakdown
UJ
-
.01
10
g
100"5ee
10%
1%
.02
.01
~
1\ ~
2N6352 ....
.02
.!!
~
_u
1\1<-- 2N6351
2N6350 -->
1%
100"5ee
\
\
.2
0
Te = lOO'C
\ ~+-lOJ.LSeC
<.)
1\
lOOpSec, 10%
10
l\
'----Duty Cyre
"'-[\\
.5
+2
I-
zW
U +1
~
iL
\
\.
'" _
V" !--
~
I\,
'.;%!:
,5
,2
-
...<
2N635
,1
~
I
"w
0
~
U
/
./
«
0:
le/50a
-INc.
-='k"
2~'C to 150'C
-2
W
l-
I
-
I
,5
IC - COLLECTOR CURRENT (A)
.5
Ie -
ly
0
2l
eu
.2
g
i'-
'"
::;:
;::
---
----
,....
~ Delay
I
0,5
.
~
I-"':":'
~\.e
-'I.S'C
lSO'C.......
;::
-
1"9::::::-
--::- I
./
~
.2
COLLECTOR CURRENT (A)
2
COLLECTOR CURRENT (A)
Ic -
Thermal Response
2N&351 & 3 Switching Speed Circuit
- --0.5
Duty Cycle
.5
I-
Z
W
iiiw
ZU
SCOPE
(sEE
NOTE
V
.
Storage Time, t,
I-
,5
2N6350 & 52 Swltchina Speed Circuit
~
.,/
::;:
Time, td
Vce = 30V
=-I.z = IC/25D
--
2S'C
u
,5
IC -
III
g.5
w
,\\«\e.,;:::::;-
,1 r-2S'C
~alll Tilm~, If
"8"
/V,~I
~
i-t-
lSO'C
'. = IC/lSO
RI2E = loon
0
"uc
10
Switching Speed
Characteristics
V~C '= 13riV
r-
'-
2
COLLECTOR CURRENT (A)
.2
Switching Speed
Characteristics
,as
I
I
.1
10
,/
b",,:::::: ~'Ct02S'C
6V"
-4
>
~ .5
~
"'-
.2
I
_u
.1
I I
I'\.
Maximum Safe Operating.Area
U2T201 & 205
~
I'\.
"-
.02
.01
1
10
~ r-rul~el width ~ 1 ms
"
"
10%
Pu I~~ Wldth = 1 ms
Duty Cycle = 25%
"ulse Width=1 ms
!z
'"a:a:
~
a:
"
.'
"
"
'" '" ""
~
~
~
1'\ '~
g
I. Duty Cycle -
1'\
Te = l00'C
1'\"
TA =25'C
l Duty Cycle = 2.5%
'"I'"
.05
Ic LOA, VCE 10V, f lOMHz, R", 100
Vcc - 30V,
Ic =5A,
U2T101, 201: Is (on) = Is (off) = SmA,
U2T10S, 20S: Is (on) = Is (off) = 10mA,
RB2E = 100
'"
D.C.-
...J
8
...
"
300 IJ. s'I dutY c yce-..;:2%.
I
~~
g
....
z
'"
...J
I'-.
U2T101, 201: VCE = 80V
U2T10S, 20S: VCE - 1SOV
Rs" - 2.2K, R", _100, T _lSO'C
U2T101, 201: VCE = 80V
U2T10S, 205: VCE - lS0V
"In I
n z.
".1 IVI nt.,
.lV, IE -- v, I
Yesl
ns
ns
Maximum Safe Operating Area
U2T101 & 105
10
Rs" = 2.2K, R", = 100
D.C.-
\
.5
Pulse Width = Ims
Duty Cycle = 25%
.2
8
.1
I
.05
Pulse Width
...J
I---U2T101
\\
\
\
\
= 1ms
Duty Cycle = 10%
io--U2T205
_u
r-. Jo--U2T105
~
j\; I--U2T201
.02
r'\
.01
2
VeE -
1
2
5 10
20
50 80100150
VeE - COLLECTOR - EMIITER VOLTAGE (VI
5 10
20
50 80100150
COLLECTOR- EM lITER VOLTAGE (VI
D.C. Current Gain VS. Collector Current
U2T101, U2Tl05, U2nOl, U2T205
10,000
z
«
Cl 1000
....z
'"0:0:
::>
(J
U
ci
I
.rt
100
10
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
L -_ _ _ _ _~_________L______~
.01
8-42
.1
1.0
Ie - COLLECTOR CURRENT (AI
10
U2T301
U2T305
POWER DARLINGTONS
U2T401
U2T405
5 Amp, 150V, Planar NPN
FEATURES
• High Current Gain: 1000 min. @ Ic = 2A
• Low Saturation Voltage: as low as 1.SV max. @ Ic = 2A
• High Voltage: up to 150V min. VCER
• Monolithic Design Incorporating Multiple-Emitter Techniques
• Triple-Diffused Planar Construction
DESCRIPTION
Unitrode NPN Darlingtons consist of a two
transistor circuit on a single monolithic
planar chip.
. ABSOLUTE' MAXIMUM RATINGS
TO-33
U2T3Dl
~~:~t~~~~:i~~~t:;!~ge .....................................................
3 PI N TO-SS
U2T4Dl
U2T4D5
U2T3D5
........ 60V............. lS0V ................................................................ 6OV.............. lS0V
VEB , ........................................................................... 6V.................. 6V.................................................................. 6V .................. 6V
VEBI ........................................................................ 12V................ 12V.... ,........................................................... 12V................ 12V
D.C. Collector Current ................................................................................ 2A ................. 2A ................................................................. 2A.................. 2A
Peak Collector Current .............................................................................. SA ................. SA ................................................................. SA ................. SA
Base 1 Current .......................................................................................... O.SA .............. O.SA .............................................................. O.SA .............. O.SA
Power Dissipation
.
2S·C Ambient ................................
.............. .1W.... ....... 1W ..................................................................2W................. 2W
100·C Case ............................................................ 4W ............... 4W............................................................... 16W............... 16W
Therma I Resistance
.. .............. 6·C/W...... .
Junction to Case ..................................................... 2S·C/W................................ ...................
Operating and Storage Temperature Range ..................................... -6S·C to 200·C ...................................................................-6S·C to 200·C
MECHANICAL SPECIFICATIONS
U2T305
U2T301
. ..
,...
.305-3.35
.335-.]70
.240-.260
775-851
8.51-9.40
610-660
OI71::~f
BA"SE2
E
TO-33
.432
1.5 MIN.
~ :8~A
38.10 MIN
DISMAl!
.Olll OOl
0.46 MAX
0,79108
200
'02
100
.029-.045
100
2.54
074-1.14
2.54
COLLECTOR CONNECTED TO CASE
U2T401
3 Pin TO-66
,
c
A
1H
1f1
.
U2T405
•
C
250-.340
6.35-8.64
.620 MAlI .
lS75MAX .
.050- 075
.028-.034
127-1.91
0.71-0.86
.360 MIN.
K
.9S8-.962
190-.210
190-.210
.350 MAX. RAD
570-.590
L
M
.145 MAX. RAO.
F
G
.142-.1~
--
9.l4MIN.
24.33-24.43
4.83-5.33
4.83-5.33
8.89 MAX. RAD.
14.48-14.99
3.61-3.86
3.68 MAX. RAO.
COLLECTOR CONNECTED TO CASE
nn
L.:::2J
8-43
SEMICONDUCTOR
PRODUCTS
_UNITRDDE
-:w
...
U2T301 U2T305 U2T401 U2T405
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
U2T301 & U2T401
Min.
Max.
,Symbol
Test
D.C. Current Gain
(Note 1)
D.C. Current Gain
(Note 1)
Collector Saturation Voltage
(Note 1)
Collector-Emitter
Breakdown Voltage
(Note 1)
U2T30S & U2T40S
Min.
Max.
hFE
1000
-
VCE (sat)
-
1.5
-
2.5
BVCER
60
-
150
-
1000
hFE
-
-
Ic = lA, VCE = 2V, RB2E = 1K
1000
-
Ic = 2A, VCE = 5V, RB2E = 100
V
1<; = 2A, RB2E ::;: 100, IBI = 4mA
V
Ic = 25mA, RBIE = 2.2K; RB2E = 100
1
Collector Cutoff
Current
ICER
-
1.0
-
1.0
p.A
Collector Cutoff
Current
ICER
-
1.0
1.0
mA
Cobo
-
-
Collector Capacitance
A.C. Current Gain
Delay Time
Switching
Rise Time
Speeds
Storage Time
Fall Time
Note: 1. Pulse width
Test Conditions
Units
1000
60
5
100 Typ.
200 Typ.
800 Typ.
300 Typ.
hre
td
tr
ts
tr
60
5
100 Typ.
300 Typ.
800 Typ.
300 Typ.
-
RBIE = 2.2K, RB2E = 100
U2T301, 401: VCE = 60V
U2T305, 405: VCE = 150V'
RBIE - 2.2K, RB2E _ 100, T _ 150'C
U2T301, 401: VCE =60V
U2T305, 405: VCE = l50V
VCBI = 10V, IE - 0, f = lMHz
Ic = 0.5A, VCE = 10V, f = 10MHz, R", _100
pf
ns
ns
ns
ns
Vcc = 3OV, Ic = 2A, IB (on) = IB (off) = 4mA
RB2E = 100
= 300 p.s; duty cycle ';2%.
Maximum Safe Operating Area
Maximum Safe Operating Area
UmOl &305
5
$
~
1
~
.5
'"
.2
:>
u
t;'"
o
'"
8
..J
..J
I
_u
.1
.05
'" '"
'" ''""I""
I""
f"- f"-
l~
/
r'\.
e-Dt~ I", r\~
Pulse Width = Ims
Duty Cycle - 25%
.02
.01
.005
1
U2T401 &405
.1 J.
TA - 2S'C
Pulse Width = Ims
Duty Cycle = 2.5%
.
g
Pulse Width = Ims
Duty Cycle = 10%
z
'"'"
:>
'"
u
r--,
1'\
I"" 1'\
~
.5
'"
Duty Cycle
I
.2
~
f'
Pulse Width
=
"""
Ims
= 25%
I I
=
Te
~
\
l\
Pulse Width
Ims
Duty Cycle = 10%
.1
I'
.05
D.C.-
I
U2T301
loo'C
W,
k\
..J
..J
8
=
~I'
_u .02
(o--U2T305
I+-
t-U2T401
.01
f'
i<-U2T40S
.005
5
10 20
50 100 150
VeE - COLLECTOR - EM ITTER VOLTAGE (V)
1
10 20
50 100 150
2
VeE-COLLECTOR-EMITTER VOLTAGE (V)
O.C. Current Gain vs. Collector Cumnt
10,000
U2T301, U2T305, U2T401,.U2T405
r-----,-----,------,
T = 12S'C
z
~
~
'"'"
1000
I----+I-r----'-F-"--\:---j
'"
:>
u
U
ci 100 ~$"':.....--t-----t------j
I
.l
10 L.._ _ _ _' -_ _ _ _' -_ _ _- - '
.01
1.0
.1
10
Ie-COLLECTOR CURRENT (A)·
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924·1235
8-44
PRINTED IN U.S.A.
POWER DARLINGTONS
U2TA506
U2TA508
U2TA510
3 Amp, lOOV, Planar NPN, Plastic
FEATURES
• High Current Gain: 500 min. @ Ie = 3A
• Low Saturation Voltage: as low as 1.5V max. @ Ie = 3A
• Economic Plastic Molded Construction
DESCRIPTION
Unitrode NPN Darlingtons consist of a
two transistor circuit on a single monolithic planar chip. including integral bias
resistance and protective diode. It is
ideally suited for pulse power applications in power supplies. printers. solid
state relays and displays.
ABSOLUTE MAXIMUM RATINGS
U2TA50G
Collector-Base Voltage. Vc.o
Collector-Emitter Voltage. VCEQ
Emitter-Base Voltage. V"o
D.C. Collector Current. Ic .
Peak Collector Current. Ie .
Base Current. I•.
Power Dissipation
25'C Case
25'C Ambient
Thermal Resistance. 8J _ C .
Thermal Resistance. 8 J _ A
Storage Temperature Range .
Maximum Junction Temperature
U2TA50B
80V ..
...... 60V ...
IOOV
80V ...
5V
. ...75A
SA ....
.6A ..
U2TA51C
. . . 120V
.... IOOV
.. 2.2W.
... 87ImW·...
.... 62.5'C/W ..
.... 155'C/W .
....... ...... .... -55 to +150'C .
+175'C.
U2TA506 U2TA508
U2TA510
TO-92
o
T
A
...L
~
~B~-
=r
lT7~J
Ilco=
E
=
C
~
Bo--mH
EO-O
-I ~~G
J
ft.B
C
0
E
F
G
H
J
INCHES
135 MIN.
170 .210
500 MIN.
.016 .019
.175 .205
.125 - .165
.080 - .105
.095 - .105
.045 - .055
MILLIMETERS
3.42 MIN
4.31 - 5.33
12.70 MIN.
.406 - .482
4.44 - 5.21
3.17 4.19
2.03 - 2.66
2.41 2.66
1.14 - 1.40
nn
SEMICONDUCTOR
~ PRODUCTS
3/78
8-45
_UNITRODE
-
U2TA506 U2TA508 U2TA510
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
D.C. Current Gain (Note 1)
Collector Saturation Voltage (Note 1)
Collector-Emitter Breakdown Voltage
(Note 1)
U2TA506
U2TA508
U2TA:S10
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Emitter-Base Cutoff Current
Output Capacitance
A.C. Current Gain
Rise Time
Storage Time
Fall Time
hfE
hfE
hFE
VCE (sat)
BVcEO
Min.
Max.
Units
-
Vdc
1000
500
300 Typ.
1.5
-
Test Conditions
Ic = lA, VCE = SVdc
Ic = 3A. VCE = 5Vdc
Ic = 5A, VCE = 5Vdc
Ic = 3A, IB = 30mA
Ic _10mAdc
Vdc
-
60
80
100
-
ICER
ICER
lEBO
Cob
hr.
t,
50
50
-
4.0 Typ.
600 Typ.
1500 Typ.
SOOTyp.
t,
tf
VCE = rating, R = loon
VCE = rating, R = lOOn, TA = 125'C
VEB = 5Vdc
VCB = 10Vdc, IE = 0, f = 1MHz
Ic = 1Adc, VCE = 5Vdc, f = 10MHz
Ic- 2A
,.Adc
mAdc
pAdc
pf
10
1
ns
ns
ns
Vcc=- rating. '6 I"on'I
=
~D
I'oiiI
=4mA
Note 1: Pulse width = 300/ls; duty cycle S 2%.
Note 2: For thermal considerations for operating U2TA506. U2TA508 and U2TA510, refer to Application Note U·17.
Maximum Safe Operating Area
U2TA506, 508 & 510
~
I-
zOJ
a:
a:
:>
u
a:
"- ~ 11. J1
"- ~"- "'-V
"~ I'\.. "-"'"X
TA :25·C.
Pulse Width = Ims·
uly Cyele = 2.5%
D
·1
.5
. 2 D.C •
0
tiOJ
.1
0
.05
..J
..J
U
I
_u
D.C. Current Gain vs. Collector Current
10K r-----.---,.-::=:--1,.-----,
Y.
OilY cYi le
I
=1 25
z
'"
a:
a:
u
'1
:>
13
d 100
I
f-U2TAS06
\-------1,------+----,
I-U2TA508
'Pulse Width = Ims
.01
IK
I-
~.
Pulse Width = Ims
Duly Cycle = 10% I
.02
.005
''""
"
z
;;:
"
I--f-U2TA510
10L-_ _ _
2
5 10 20
50 100 150
Veo - COLLECTOR TO EM liTER VOLTAGE (V)
.01
~L-
.1
___
~
____
·IA
~
lOA
Ie - COLLECTOR CURRENT (A)
Saturation Voltage
vs Base Current
2.00
\
\
1.75
1\2
51.50
0::
~
·c
1\
"-
~1.25
I
j
~ 1.00
125'~
.75
0.1 0.2
0.5
1.0
_
,e=3A
25'C
'"
......
:::::..,
F===
le= A
-.....,a5·C
........
2
.5
10
20
50 100 200
I. - BASE CURRENT (rnA)
UNITRODE • SEMICONDUCTOR PRODUCTS
. 5ao PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
8-46
PRINTED IN U.S.A.
LOW VOLTAGE NPN TRANSISTOR
UBT430
40Amp, 50V, Planar NPN
Low Saturation Voltage (.3V @ 30A);
High Efficiency
DESCRIPTION
FEATURES
The UBT430 is a planar NPN bipolar transistor that has been designed to optimize
performance for low voltage circuits. It features a very low saturation voltage of only
.30V max at 30A, and .1OV at lOA. Because of its excellent switching speed (rise and
fall times typically under lOOns and storage times under 500ns) it offers excellent
performance even in high frequency switching circuits.
• Very Low On Resistance Typically 7 milliohms
• Reverse Blocking Voltage VECS =20V
• Low Temperature Coefficient of On
Resistance
This is the ideal transistor to use for emitter switching in off·line switching power
supplies. The low drop of this device also makes it the best choice for a battery back·up
circuit. Considerable improvement in efficiency can be achieved by using the UBT430
transistor in boost regulators operating off a 5V line and low voltage buck regulators.
• Fast Switching Times Make Operation
at High Frequency 'Easy
• High Gain Reduces Base Losses
Design Note DN-20 provides additional information on the application of the UBT430
transistor.
ABSOLUTE MAXIMUM RATINGS
Continuous Collector Current .......................... Ic ........................ 40A
Peak Emitter Current. ................................. 1M ...................... 150A
Inductive Collector Current Clamped ................... ILM ...................... SOA
Continuous Base Current. ............................. Ia ......................... SA
Peak Base Current .................................... laM ...................... 50A
Coliector·Emitter Voltage .............................. VCES ..................... 50V
Emitter·Base Voltage .................................. VEao ..................... 20V
Thermal Resistance ................................... RB .................... lOC/W
Power Dissipation ..................................................... 150W @ 25°C
Derating Factor ............................................................... lWI"C
Operating Temperature Range ...................................... -65°C to +175°C
MECHANICAL SPECIFICATIONS
UBT430
TO-204AE (TO-3 modified, 60 mil. pin)
22.2Z!U15.1
3.42
MAX OIA.
"'n!H~~1
IOI3J:X}=::f{SEATING
TTT
PLANE
::::lg::JIOIA ~I-- :~::::g.::g:
TWO PLACES
TWO PLACES
26.67
(l.QSD) MAX,
H::g·':'!O'A.
.
.11
TWO PLACES
COLLECfOR
lA:HIU;t
t MEASURED AT SEATING PLANE
Dimensions in Millimeters and {lnchesl
nn
SEMICONOUCTOR
~ PRODUCTS
8-47
_UNITRODE
..
UBT430
ELECTRICAL CHARACTERISTICS (at 25°C unless noted)
TEST
Collector Saturation Voltage
VeElsatl
On·Resistance
ReEION)
Current Gain
50
HFE
Base Saturation Voltage
VBEIs.tI
Coliector·Emitter
Sustaining Voltage
VCEOlsus)
Resistive
Switching
Speed
Inductive
Switching
Speed
MIN.
SYMBOL
TYP.
MAX.
0.07
0.1
0.21
0.3
0.30
0.4
7
10
Ie = lOA, IB = .5A
V
V
=30A, Ie = 1.2A
Ie = lOOmA
V
1.5
20
85
120
ns
Ie = 20A, IB1 = IB2 = 2A, Vee = lOV
300
500
ns
Ie = 20A, IB1 = le2 = 2A, Vee = 10V
Fall Time
tf
75
120
ns
Ie
Voltage
Storage Time
tsv
400
600
ns
tii
S5
120
F~!!
Time
100
:E
!e = 20.4., !;:;i = I;:;, =
.8,A"
Vee = lOV, L = lO;.:H
=50V
100
/lA
VeE
1
mA
VeE = 50V, T = 125°C
lEBO
200
/lA
VEe = 20V
1
mA
VEe
=20V, T = 125°C
Collector· Emitter Voltage vs Collector Current
at Various Forced Gains
1000
S
,S 500
I
J
le/l. = 100
-
~
'"Cl
A~
~ Te=25'C
0
....
~
<5
u
50 =25
~
20
"i;;""
>
'"
~
~
10
~
~
Gain vs Collector Current @ VeE
Various Temperatures
~IO
~
~
~
0
...... 5
u
10
20
Ie COLLECTOR CURRENT - (A)
I
-50
=25
50
20
10
50
~
~Te=125'C
le/l. = !2!l- ,.....~
100
ci:
0
....
/ .;..-'
~
~ '7
~ 200
0
r - 50
'"ci:
=20A, IB1 = IB2 =2A, Vee = lOV
Ie =20A, IB1 = le2 = .8A, Vee = lOV; L = lO/lH
ICES
S
,S 500
I
'"~
Ie
t,
Collector· Emitter Voltage vs Collector Current
at Various Forced Gains
1000
§;
=30A, IB = 1.2A
Ie = 20A, VeE = .5V
ts
Emitter·Base Cutoff Current
200
Ie
mel
Rise Time
Current
~
=30A, IB = 1.2A
Ie = 30A, IB = 1.2A, T = 125°C
Storage Time
Coliector·Emitter Cutoff Current
'"Cl«
Ie
100
1.2
17
CONDITIONS
I:JNIT
10
20
50
Ie COLLECTOR CURRENT - (A)
I
=O.5V at
Collector· Emitter Resistance vs
Junction Temperature
1000
/
500
~
'z"'
:;;:
Cl
....
Z
'"'":::J
'"
Te = 125'C
V
200
25'C
i
~
100 ~-65'C
~
RCE
I
50
=7mQ @ 25 C
Min. Gain @ 20A ~
U
V
20
....
10
I
10
20
50
Ie COLLECTOR CURRENT - (A)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
C1
V
/
Ie = 30A. I. = 3A
V
.., , /
-25
25
75
125
TJ JUNCTION TEMPERATURE - ('C)
8·48
175
PRINTED IN U.SA
UBT430
Inductive Switching Time vs Collector Current
Inductive Switching Time vs Collector Current
1000
1000
I
\
\
I"
:[
500
"
--
Ie
I"
8
·it
=
500
r--...
\
'"
=
Ie/I. 25
Te 25'C
'i;;-.
Ie/I. = 25
Te = 100'C
c
'"z
:;:
1\
U
l-
........
I"
.............. Ie
ii:
'">
"-...1,;
OJ
i=
u
:::l
'"
200
~
100
10
20
10
1
1
30
10
Inductive Switching Time vs
Base Drive Current
Ie - IDA
Te = 25°C
'""-
'"
200
VV
ii:
'">
Ifl/'
100
Ic Collector
'"~
50
VeE
10%
I-20
10
50
20
100
----
10%
I"
90%
1\
Current"
OJ
ti:::l
VeE Collector
Voltage
,..."
~ 1-""'""",
90%
r-
z
:;:
U
l-
- Ie Base
Current
V
l>"
OJ
OJ
'"
l""-
I"
500
30
Clamped Inductive Switching Waveforms
and Definitions
Inductive Turn Off
1000
~
20
Ie COLLECTOR CURRENT - CA)
Ie COLLECTOR CURRENT - CA)
I \
I V
il
II
k- lO%
I.
Ie
1111-Ie
I--
•
RATIO - Ie/I.
~
Junction Capacitance
__
I-t- ; - -
2000
I
~ 1000
Te = 25'C
z
«
I-
U
Cabo Collector-Base
500
r- Capacitance
I
is 200
tiz 100
I
11:
«
u
~
I
g:~~c~t~~~:r.Base-
I
I
II
10
20
Ve. OR VEe REVERSE VOLTAGE - CV)
5n_ ... ~
VB2 (adj, as req.)
~·~~I-
NOTES: 1. All resistors are in ohms.
2. All capacitors are in microfarads.
3. 01 - 04 are IN914 diodes.
4. D:i is IN6391 or equivalent.
5. L is selected as required (5 to 15 microhenries).
VARY PULSE WIDTH
51 = Vee IOV
52 = VCLAMP SUPPLY 30V
0, = 5051 SCHOTTKY
02 = 5051 SCHOTTKY
C, = .11JF
6. Adjust RB2 and/or VB2 for desired 182.
7. Circuit; OUT and adjacent circuit is critical due to
fast switching time Ringing voltage produced by
Ldi/dt effects ma~ be reduced by proper layout of
PC board.
L, -IOpH
FIGURE #1 TEST CIRCUIT FOR ILPK
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
FIGURE #2 INDUCTIVE SWITCHING CIRCUIT
WITH CLAMPED COLLECTOR
8-49
PRINTED IN U.S.A.
..
UBT430
Collector· Emitter Voltage
Collector· Emitter Voltage vs Base Current
1000
S'
.s
Te
500
I
30A
200
f-
~
f-
~
"-
\
100
~
20
ffi
f-
20A
f-
10
0.001
0.01
I........
lOA
r:i:
g
~
50
~
2A
0.1
5
IAI
10
0.001
10
0.01
"'"
~ ~
ffi
f-
'"
0.2
inw
Zu
C2 ~
/
Te
.l140A
30A
2011
I--"
15A
IDA ;
800
Ie
700
=2A
5A
f-
~~
p-,
~"
""'"ffi
~
O. 1
Z6JC(t) . r(t)R6JC
./
Single Pulse
R6JC
= 1.O"C/W
f-
u'"
//
=2rci
1100
~ 1000
'"W
~ 900
:!
0.5
::::i
~
10
Transient Thermal Resistance vs Time
§
~ 1200
5
0.1
Ie BASE CURRENT - (A)
1500
1300
I~I-
I""'-
20
IA
1600
1400
~A
......
8
i;
Base Emitter Voltage vs Base Current at
Various Collector Currents
~
15A
100
Ie BASE CURRENT - (A)
~
30A
:ii
w
2A
I""'-
200
>
IDA
"-
,
1\
w
Ys
50
u
w
-tt
5A
0
:f;
Base Current
Te = 125'C
500
I
15A
r:i:
0
S'
.s
0
>
ffi
f-
=25'C
4':1
'"co
~
0
VI
1000
J:
f-
0.05
0.02
0.0 1
0.01
....
0.1
5
10
20
50 1100 200
500
PULSE TIME - (mS)
t:t:m:::;;.-
I III
600
0.01
0.5
0.1
5
0.5
10
Ie = BASE CURRENT - (A)
ReverIe Blal Safe Operating Area
Forward Bias Safe Operating Area (SOA)
..'
200
100
O.lmS
g
'":::>
i'o..
80~~-+--r-~-+--r-~-+--t-~
lmS
50
DC
20
1--+-+-+~a:E~~~ =4V +-t--t-+-i
10
'"
'"
u
40r--r-i--~-+~t-~-i--~-+~
~
8
.E
Te = 25'C
20r--r-i--~-+--t-~-i~~-+~
0.5
0.2
0.1
0.5
10
20
VeE COLLECTOR·EMITTER VOLTAGE -
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404· FAX (617) 924·1235
50
VeE COLLECTOR·EMITTER VOLTAGE - (V)
(V)
8·50
PRINTED IN U.S.A.
POWER TRANSISTORS
UPTB520
UPTB530
UPTB540
UPTB550
0.1 Amp, 500V, Planar NPN, Plastic
FEATURES'
DESCRIPTION
•
•
•
•
Unitrode high voltage power transistors
provide a unique combination of low
saturation voltage, high gain and fast
switching. They are ideally suited for
pulse power applications in power
supplies, thermal printers, solid state
relays and pulse amplifiers .
Designed for High Speed Switching Applications
Collector-Emitter Voltage: up to 500V
Peak Collector Current: to .2A
Economical Plastic Molded Construction
..
ABSOLUTE MAXIMUM RATINGS
UPTB520
UPTB530
UPTB540
UPTB550
....... 250V ....... .
Collector-Base Voltage, VCBO ..
3S0V.
... .... 4S0V... ............... ........ 550V
Collector-Emitter Voltage, VCEO
..... 200V .... .
... 300V..
.. .... 400V.... ............. ......... SOOV
Emitter-Base Voltage, VEBO ..................... .
..........
........ ~V .. .
... 5V ........................... SV.............................. 5V
D.C. Collector Current, Ic
.. .lA.. .
........lA..
.........lA .... :....................... .lA
Peak Collector Current, Ic
.. ......... .
......2A
.... 2A
........2A .............................2A
Base Current, IB
................lA ...
...........•lA
...........lA....
'" .lA
Power Dissipation
25'C Case
......................
................... 2.4W ....................................................
2S'C Ambient ..................................................................................................................... 7S0mW ..................................................
Thermal Resistance, 6 J _ C ...................................................................................................................................... 62.S'C/W ............................................... .
Thermal Resistance, 6 J _ A ..................................................................................................................................... 200'C/W ...............................................
Storage Temperature Range .......................................................................................................................... -SS'C to +lSO'C ........................................
Maximum Junction Temperature ........................................................................................................................ +l7S'C ................................................
MECHANICAL SPECIFICATIONS
UPTB520 UPTB530 UPTB540 UPTB550
"rO-92
D
n=*'r,~
LEO-'
~,+ ,~ If;-'
A
...L
=
=
E
80---
H
A
B
C
D
E
F
G
H
J
INCHES
. 135 MIN.
.170 - .210
.500 MIN.
.016 - .019
.175 - .205
.125 - .165
.OBO - .105
.095 - .105
.045 - .055
MILLlMmRS
3.42 MIN .
4.31 - 5.33
12.70 MIN .
.406 - .4B2
4.44 - 5.21
3.17 - 4.19
2.03 - 2.66
2.41 - 2.66
1.14 - 1.40
..
nn
L.:::::J
3/78
8-51
SEMICONDUCTOR
PRODUCTS
_UNITRDDE·
UPTBS20 UPTBS30 UPTBS40 UPTBSSO
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
Min.
D.C;.Current Gain (Note II
D.C. Current Gain (Note 11
Collector Saturation Voltage (Note 1)
hFE
hFE
VCE (sat)
VcE(satl
VOE (sat)
20
Base Saturation Voltage (Note 1)
Collector-Base Breakdown Voltage
(Note 1)
UPTB520·
UPTB530·
UPTB540
UPTB550
Collector-Emitter Breakdown Voltage
(Note 1)
UPTB520
UPTB530
UPTB540
UPTBS50
Collector-Emitter Cutoff Current
Collector-Emitter Cutoff Current
Emitter-Base Cutoff Current
Output Capacitance
Gain-Bandwidth Product
Rise Time
Delay Time
Storage Time
Fall Time
Max.
-
5
-
1.2
l.0
250
350
4S0
5S0
-
i.s
BVc::oO
=
=
=
=
=
=
=
=
=
=
-
Vdc
Vdc
Vdc
Vdc
Ic 2SmA, VCE
SVdc
Ic 100mA, VCE 5Vdc
Ic SOmA, 10
10mA
Ic 20mA, 10
2mA
Ic
SOmA, 10 10mA
Ic _10pAdc
Vdc
Ic _lmAdc
-
-
BVCEO
ICES
ICES
IEOO
Cob
fT
t,
td
ts
tf
Test Conditions
Units
-
-
200
300
400
500
-
-
10
1
SO
50
-
pAdc
mAdc
pAdc
pf
MHz
ns
ns
ns
ns
-
IS
100 Typ.
50 Typ.
200 Typ.
1000 Typ.
VCE
VCE
VEO
= rated BVCEO' VOE =0
=rated BVCEO' T =125'C, VOE =0
=5Vdc
Vc~ = 10Vdc, IE = 0, f =1MHz
Ic _lAdc, VCE _ SVdc, f _10MHz
Ic = 100mA
NoIe: 1. Pulse width = 300ps; duty cycle :5 2%.
Note: 2. For thermal considerations for operating UPTB520, UPTB530, UPTB540 and UPTB550, refer to Application Note U-77.
D.C. Current Gain
VS.
Collector Current
Switching Speeds
500
10
,~~I
z~Or------+-=~~~~--_+----~
........",
k '-"fio'-C>
;;:
CJ
I-
zUJ
0:
0:
~
<>
Vee = lOOV
1,.11, =10
,1,,;-~;ro
100 f - - - - - j - -
~'<'"
~
t,::25~
"- "-
u
ci
1_
,:
~V
50 r------+--~--~~--_+~~~
20
~--+-+-+--+-~-t-\M
10
r------+--_+--~~--_+----~~
5 '--____-'-__--L_ _- - - ' ' - -_ _--L_ _ _ _
.001
.005
.01
.02
.05
.1
~~
r-.. ~
.2
.1
'--~
Ie -
i'~
.5
.001
.2
D,C. COLLECTOR CURRENT (A)
..002
.005
.01
.02
COLLECTOR CURRENT (A)
.05
.1
Switching Speed Circuit
+200V
UNITRODE ° SEMICONDUCTOR PRODUCTS .
580 PLEP,SANT STREET ° WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
8-52
PRINTED IN U.S.A.
SCRs & THYRISTORS
Product Selection Guides
Thyristors .................................................... 9-3
Ultra-Fast Switching ............................................. 9-4
Radiation Hardened SCRs ........................................ 9-4
PUTs ........................................................ 9-4
Datasheets ..................................................... 9-5
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
9-1
PRINTED IN U.S.A.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
9-2
PRINTED IN U.S.A.
PRODUCT SELECTION GU I DE
THYRISTORS (SCRs & PUTs)
TO·iS
TO·9
TO·39
"Available as JAN and JANTX types.
""Available as JAN type .
• "" Available as JAN. JANTX, JANTXV types.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
9·3
PRINTED IN U.S.A.
THYRISTORS (SCRs & PUTs)
PRODUCT SELECTION GUIDE
ULTRAFAST SWITCHING
ill
TO·1S
RADIATION HARDENED SCRs
I·······
...
.' .;.OI1;$tate
"'C~'rient:
. " ."
TO·1S
PUTs - PROGRAMMABLE
UNIJUNCTION TRANSISTORS
.. Available as JAN and JANTX types.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
9·4
PRINTED IN U.S.A.
SCRs
2N1870A-2N1874A, J
1.25 Amp, Planar
FEATURES
• Available as Either "JAN" or
Standard Types
• Operating D.C. Current Range:
5 to l250mA
• Pulse Currents: to 30A
• Voltage Ratings: to 200V
• Maximum Trigger Current: O.2mA
• Maximum Trigger Voltage: O.8V
• All Leads Isolated from Case
• Maximum e J _ c : 20'C/W
DESCRIPTION
These are premium PNPN controlled switches intended for use in applications
requiring a high degree of reliability assurance. The JAN types are specified under
MIL-S-l9500/l98, and are included in MIL-STD-70l as recommended types for
military usage.
This series is useful in a wide variety of applications including: safety, arming
and detonating circuits; timing and programming circuits; protective and warning
circuits; driving relays; driving indicator lamps, encoding and decoding circuits;
replacing relays, thyratrons, and magamps; servo motor control; pulse generation;
plus many others.
ABSOLUTE MAXIMUM RATINGS
2N187DA
JAN2N1870A
2N1871A
JAN2N1871A
2N1872A
JAN2N1872A
2N1873A
MECHANICAL SPECIFICATIONS
2N1870A-2N1874A
rc1F l
B1
CATHODE
E 0
-.---
~
.
A
--- _.
- --
\.F
---- --
GATE
ins.
275-335
290-.370
200-260
15MIN
010-030
011 t
ANODE
200
100
100
88f
TO-9
6.99-775
7.37-940
5.08-660
3810MIN
25-.76
.432 t .g~~
508
2.54
2"
n
n
L.=J
9-5
~
2N1874A
JAN2N1874A"
Repetitive Peak Off-State Voltage, VDRM .... ,................. 30V........
.......... 60V ......................... lODV. ..
............ l50V......................... 200V
Repetitive Peak Reverse Voltage, VRRM .
..... 30V........................... 60V..
........ lOOV.
............... l50V.......................... 200V
D.C. On-State Current, 'r
........... 250mA ....................................................................
lOO'C Ambient .......
......................... .
. ...... 1.25A .....................................................................
lOO'C Case ..............
......................... .
.... up to 30A ..................................................................
Repetitive Peak On-State Current, 'rRM ..............................................
Peak One Cycle Surge (Non-Rep.) On-State Current, ' rsM ........................................... . .......... .15A.......................................................................
Peak Gate Current, IGM
..................................
............ 250mA .....................................................................
Average Gate Current, IG(AVI ................................................................
. .............................. 25mA ........................................................,............ ..
Reverse Gate Voltage, VGR ...........
..........................................
..............5V.........................................................................
Thermal Resistance, Junction to Case, ReJ _ C ................................................. .
............. 20·C/W...................................................................
Operating and Storage Temperature Range .................................
..-65'C to +l50'C ............................................................
SEMICONDUCTOR
PRODUCTS
_UNITRODE
2N1870A·2N1874A
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)t
Test
Symbol
Subgroup 1 (Visual and Mechanical)
Subgroup 2 (2SoC Tests)
Off·State Current
Reverse Current
Gate Trigger Voltage
Gate Trigger Current
On·State Voltage
Off·State Voltage - Critical of Rise
Reverse Gate Current
Holding Current
Subgroup 3 (12SoC Tests)
High Temp. Off·State Current
High Temp. Reverse Current
High Temp. Gate Non·Trigger Voltage
High Temp. Holding Current
Subgroup 4 (-6SoC Tests)
Low Temp. Gate Trigger Vc!tzge
Low Temp. Gate Trigger Current
Low Temp. Holding Current
IDRM
IRRM
VGT
IGT
VTM
dvc/ dt
IGR
Min.
Typical
Max.
Units
Test Conditions
0.4
O.S
O.S
O.SS
10
10
0.8
200
2.S
p.A
p.A
V
p.A
RGK = 1K, VDRM = + Rating
RGK
1K, VRRM
Rating
RGS = 100 ohms, VD= 5V
RGs> 10K ohms, VD= SV
ITM = 2A (pulse test)
Specified test circuit
VGRM = SV, anode open
IG = - 150p.A, VD= SV
30
1.8
V
V/p.s
p.A
rnA
100
0.5
10
S.O
15
15
100
0.3
IH
p.A
p.A
100
V
0.2
0.2
rnA
v
1.0
500
p.A
rnA
15
=
=-
RGK = 1K, VDRM = + Rating
RGK = 1K, VRRM = - Rating
RGS
100 ohms, VD SV
IG = - lS0p.A, VD= SV
=
o
_
'\GK -
=
,nn ........ _ ...
.l.VU VIIIII';),
\I
'D
_
1:\1
-~,
RGK > 10K ohms, VD= SV
IG = -lS0p.A, VAA = 5V
tAli values in this table are JEDEC registered.
Note: Voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a resistor, 1 K
or smaller, or other adequate gate bias is used.
Triggering and Bias Stabilization
1.
Gate Trigger Voltage
2.
Gate Trigger Current
800
~ 600
~!.2f----f---+--f--+-+--+--f---+
I-
'"~
Z
W
~ 400
:::J
U
0:
~ 200
~
0:
IW
I-
'"'"I
w
~
o
V//>' ALL UNITS FIRE
max.
/// /)';
V/// // //~
/ / / '/.:: /#/Y/ '/.:: ~ /L
min.
'«
>
NO UNITS FIRE
>"
~
0:
W
IGT
'"
~
0:
IW
I-
'"'"I
IGT
_,,-200
-4DO
-65
.2 f----+--+
~6L5----2~5-~-2~5--5~O-~7-5-1~O-0-12~5-~150
-25
TJ
-
25
50
75
100
125
150
TJ
JUNCTION TEMPERATURE (OC)
UNITRODE. SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
9·6
-
JUNCTION TEMPERATURE (OC)
PRINTED IN U.S.A.
2N1870A-2N1874A
Holding Current
1. Max. Holding Current (Current Bias)
2. Max. Holding Current (Resistor Bias)
50
50
:<
:<
.s...
...a:z
20
~--I-
10
IG = -1.5mA
~;;:-I-r--
a:
:J
.s...
15a:
~
"CZ
~
x
~
a
"
2
.5 r -__-1__-+__~--t_-_+--IG-=r_--.0,5-m-A~
"I
_r.
r----1---+--~--r__+--_+--~__I
"
~
.1 r---'-1---+--1---r--+---+--1-~
150
50
:<
.s
20
10
!;:
...
10
g;
5
":!:c
2
u
r--
-'
a:
a:
u
:J
I-F:--=:A
:r
I
..: .2
.1
.05
-65
.15
IG =-.05mA
-
-
o
:r
Z
i
I
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
_J:
...............
i
.2
.1
9-7
1\
- f-l-
---
-3r-
.05
-65
150
= lOOP.
30h
=lK,
.5
Z
r-......
-25
25
50
75 100 125
TJ - JUNCTION TEMPERATURE ('C)
-
-'
I
.5
.5
RG,
"zC
-r- i'=".
1.5
o
i
-25
25
50
75
100 125
TJ - JUNCTION TEMPERATURE ('C)
4_ Min. Holding Current (Resistor Bias)
20
Z
~
~:~~ r--t--... r--. :-.........
.1
15
i
r--_
.2
.05
-65
50
Z
--
:--- r--
« .5
:;:
3. Min. Holding CurrenHCurrent Bias)
a:
~
~ r---....
i',.
o-'
.2
~100n
:r
.05 '--__--'__-'-__-'-__'------'___ L _ _- ' - - - '
25
50
75 100 125 150
-25
-65
TJ - JUNCTION TEMPERATURE ('C)
!...
-
--=:::::::::
U
:;:
I
_,
~
:J
-'
0
:r
10
a:
I"p:::::~r-t;
U
-
20 I-
RG, _10K
r--
----r--r--
-- -
I--
t-
r--l - I-l""- t---..,
r----..
-25
0
25
50
75 100 125
TJ - JUNCTION TEMPERATURE ('C)
150
PRINTED IN U.S.A.
..
2N1870A-2N1874A
Current Ratings - Thermal Design
On·State Current vs. Voltage
1.
50
tACJ ,/;
l,~/'
II $
...
z
10
10
~
'z"
I~'
OJ
~
0
a·
...
l
...
'"
20
--- ",,-
0
,
:or
.03
I
Pof
.1
/I
I
.05 I
.05
I
.1.2
'
OJ
TYPICAL
CHARACTERISTICS
lu
..
t--
2
OJ
>
i=
Ei0.
':e'
riit
~"I...
,...-., ,-'
I
.1
0.
I
~fp1 ~r
.: .2
5
""'"
1'1
,,
.5
OJ
I
I
I
.5· 1
10
V,-ON VOLTAGE (V)
I
I
20
50
I
~ ~
_" .05
.001
OJ
a: 2D
a:
u 10
...
-
OJ
~
z0
iii""
>
i=
i=
OJ
0.
.01""-
.03".1
-r-
0.
OJ
--
100
.5
r--
............
~
I
:t-- r-...
.1
25
TA
m.. -
"-\
r-- \1
::>
OJ
C!l
a:
10
'"""
OJ
0.
.5
"'"'" \
" \\
1.4
.05
.8
~
.6 .
OJ
DC
g
1~
zOJ .4
~
...
a:
'a:
::>
u
3~
...
OJ
6~
.3
...
6~
VI
Z
0
0
.2
ci
ci
:t
.4
J
.2
>
'"I
I
J
0
90
100
Te ... -
110
120
130
140
MAX. CASE TEMPERATURE ('C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
10 2
103
9-8
"'-
----........ ~
~\
~~ ~
"- ~\
~~
.1
o
150
o
'".""- ",,-1""
"'"
!;:
~
7 \\
. PA-POWER DISSIPATION (W)
.625
.5
.375
.25
.125
~--~~-t-~-+--t---+-~
a
-:-~
10- 3 10- 2 10-' 1
10
SURGE DURATION (s)
.5
1~
•
= 100'C
Te
10-' 10"
.5
I---t..o..,___+--+---+--+---l
a:
a:
...
6. Average Current vs, Ambient Temperature
,.---.---.----,---~---,-----,
1.2
~
111
"RA~~
BLJCKIN~ VOL~AGE
(wi
DC
g
,,
.1
5. Average Current vs, Case Temperature
POWER DISSIPATION
-2
1.5
1
BE~ORE ~URG~ =0
LINk:
MAY'%.,
NOT BE SUSTAINED FOR 0.1 SECONDS - (\
AFTER SURGE
.2
50
75
100
125
150
MAX. AMBIENT TEMPERATURE ('C)
PA 2.5
I,
,,
DAS~
I
1
,
_.
SOLID LINE:
BLOCKING VOLTAGE
MAY BE APPLIED
IMMEDIATELY AFTER SURGE
2
150
Surge Current vs. Time
'" "
20
VI
~s
j-----
DUTY CYCLE
.2
~\
a:
a:
::>
u
'-....., ~\
OJ
a:
...
110
120
130
140
MAX. CASE TEMPERATURE ('C)
m .. -
,,
50
~
zOJ
U
_.....1_ _-'--__..l._ _L---_--'--_--"J!
4.
.003- --....." ~
::>
.""'\
L.
3. Peak Current vs. Ambient Temperature
~ 50
...z
r-----..
\
90
POWER DISSIPATION (W)
.5
.375
.25
.125
~ ~'
.2
Te
PA .625
~ "'.\
--------
.3~
DUTY CYCLE"":l
.5
a:
~
-.......
.003
OJ
a:
a:
::>
u
z
...~
...a:z
POWER DISSIPATION (W)
2
1.5
1
.5
50
a:
/II
1. 1
OJ
Peak Current vs. Case Temperature
PA 2.5
)
20
g
2.
.~
o
25
so
100
125
75
ISO
TA ... - MAX. AMBIENT TEMPERATURE ('C)
PRINTED IN U.S.A.
SCRs
2N2323-2N2329, J, JTX, JTXV
2N2323A-2N2328A, J, JTX, JTXV
2N2323S-2N2329S, J, JTX, JTXV
2N2323AS-2N2328AS, J, JTX, JTXV
1.6 Amp, Planar
FEATURES
• Available as JAN, JANTX, & JANTXV
Types
• JAN Types Available in Ta-5
• 1.6A D.C. Current
• Peak Currents: to 30A
• Voltage Ratings: to 400V
• 20pA Max. Trigger Current (UA" types)
• O.6V Max. Trigger Voltage (UA" types)
CHIP
METALLIZATION
oon
8ACK ..• AU
THICKNESS
-0086
OESCRIPTION
These are premium thyristor switches intended for use in high performance
industrial, military and space applications requiring a high degree of reliability
assurance. This series is useful in a- wide variety of applications including timing
and programming circuits, protective and warning circuits, driving relays,
driving indicator lamps, encoding and decoding circuits, replacing relays,
thyratrons, and magamps, servo motor control, pulse generation, plus many others.
The high surge current rating USA -1 cycle) makes this series particularly
useful for squib firing.
The following JAN, JANTX and JANTXV types are specified under Mil-S-195001276A
and are included in Mil-STD-70l as recommended types for military usage:
2N2326
JAN2N2326S
JANTI2N2326S
JANTXY2N2326S
2N2326A
2N2327
JAN2N2326AS
JANTX2N2326AS
2N2327A
JANTXV2N2326AS
..... 200V ..
..... 2S0V ..
2N2323
2N2324
JAN2N2323S
JAN2N2324S
JAlm2N2323S
JANTI2N2324S
JANTXY2N2323S
JANTlY2N2324S
2N2323A
2N2324A
2N2325
JAN2N2323AS
JAN2N2324AS
JANTI2N2323AS
JANTX2N2324AS 2N2325A
JANTlY2N2323AS. JANTlY2N2324AS
... SOV ................ lOOV
... 1SOV
TOP .... AL
ABSOLUTE MAXIMUM RATINGS
Repetitive Peak Off-State Voltage, VORM
Repetitive Peak Reverse
Voltage, VRRM ............................... .
......... SOV
Non-Repetitive Peak Reverse
Voltage, VRSM « 5ms).
....................................... 75V
D.C. On-State Current, IT
80'C Ambient
8S'C Case
. One Cycle Surge (Non-Rep.) On-State Current, ITsM .
Repetitive Peak On-State Current, ITM .
Gate Power Dissipation, PGM ...
Gate Power Dissipation, PGMIAVI
Peak Gate Current, IGM
.................................. .
Reverse Gate Voltage ...............................
Reverse Gate Current, IGR
Storage Temperature Range
Operating Temperature Range
........... lOOV ........... JSOV
2N2328
JAM2N2328S
JANTX2N2328S
JANTlY2N2328S
2N2328A
2N2329
JAN2N2328AS
JAN2N2329S
JANTI2N2329S
JANTI2N2328AS
JANTlY2N2328AS JANTlY2N2329s
........ .400V
.300V
........ 200V .......... 2S0V ............300V .
...... 400V
....... lSOV ............ 22SV .......... 300V .......... 3S0V ..........400V ................ SOOV
....... 300mA
..... J.6A ..
....... JSA.. .
......................... 30A .. .
. ........ O.lW .... .
.................. O.OlW ... .
... 100mA ................................... .
...................... .
........ 6V...
...... 3mA ..................... .
....................... -6S'C to +lSO'C .. .
...... -6S'C to +12S'C
MECHANICAL SPECIFICATIONS
2N2323-2N2329, J. JTX, JTXV
2N2323S-2N2328S. J, JTX, JTXV
·2N2323A-2N2328A, J, JTX' JTXV 2N2323AS-2N2328AS, J, JTX, JTXV
[ c1fo" l
BIIEg
·
Z
A."":~/
E
-
--
-
~,,,,;
.
--- --
• INCHES
A .315-.335
GATE
G
-
---
ANODE
AJ
F
B .350-.370
.240-260
0 .010-.030
E .5 MIN
F .016-.019
G .190-.210
H .085-.105
J .028-.034
K .029-.045
L .100
C
TO-20SAD (TO-39)
MILLIMETERS
8.00-8.51
8.89-9.39
6.35-6.60
0.25-0.76
12.70 MIN
.406-.483
4.83-5.33
2.16-2.67
.711-.864
.737-1.14
2.54
n. n
'SEMICONOUCTOR
~ PRODUCTS
9-9
_"UNITRDDE
•
2N2323-2N2329, J, JTX, JTXV
2N2323S-2N2328S, J, JTX, JTXV
2N2323A-2N2328A, J, JTX, JTXV 2N2323AS-2N2328AS, J, JTX, JTXV
ELECTRICAL SPECIFICATIONS
Symbol
Test
Visual and Mechanical
25'C
Off-State Current
Reverse Current
Gate Trigger Current
"A" Types
non-"A" Types
Gate Trigger Voltage
"A" Types
non-"A" Types
On-State Voltage
Holding Current
Reverse Gate Current
Delay Time
Rise Time
Circuit Commutated Turn-Off Time
125'C
Off-State Current
Reverse Current
Gate Trigger Voltage
Holding Current
"An Types
non-"A" Types
Off-State Voltage - Critical Rate of Rise
"A" Types
non-"A" Types
-WC
Off-State Current
Reverse Current
Gate Trigger Current
"A" Types
non-"A" Types
Gate Trigger Voltage
"An Types
non-"A" Types
Holding Current
Min:
Typical
Max.
Test Conditions
Units
MIL-STD-750, Method 2071
IORM
IRRM
IGT
VGT
VTM
IH
IGR
td
tr
tq
IORM
IRRM
VGT
IH
-
-
10
10
/LA
/LA
VORM
VRRM
2
20
200
/LA
/LA
Vo
Vo
0.60
O.SO
2.2
2.0
V
V
V
mA
/LA
/LS
/LS
/LS
Vo == 6V, RGK == 2K, RL == lOOn
Vo == 6V, RGK == 1K, RL == lOOn
ITM == 4A (pulse test)
Vo == 6V, RGK == 1K (2K for "A" Types)
VGR == 6V
IG == 10mA, IT == lA, Vo == 30V
IG == 10mA, IT == lA, Vo == 30V
IT == lA, IR' == lA, RGK == 1K
!LA
VORM == Rating, RGK
VRRM == Rating, RGK
Vo == Rated VO' RGK
-
-
50
0.35
0.35
0.52
0.55
2.0
0.3
1
0.6
0.4
20
-
----
0.1
1
1
0.3
O.1t
0.15t
-
dvldt
200"
-
100
100
-
0.7"
' 1.S"
IORM
IRRM
IGT
VGT
IH
== Rating, RGK == 1K (2K for "A" Types)
== Rating, RGK == 1K (2K for "A" Types)
0.1
0.1
/LA
V
== fiV, RL == lOOn
== 6V, RL == lOOn
== 1K (2K for "A" Types)
== 1K (2K for "A" Types)
== 1K (2K for "An Types)
rnA
mA
Vo
Vo
== 6V, RGK == 2K
== 6V, RGK == 1K
V//Ls
V//Ls
Vo
Vn
== Rating, RGK == 2K
== Rating, RGK == 1K
== Rating, RGK == 1K (2K for "A" Types)
== Rating, .RGK == 1K (2K for "A" Types)
-
.05
.05
5.0'
5.0"
/LA
/LA
VORM
VRRM
50
100
75
350
/LA
/LA
Va
Vo
-
0.7
-
0.75
O.S"
0.9t
1.0
3.0t
V
V
V
mA
Vo == 6V, RGK == 2K, RL == lOOn
Vo == 6V, RGK == 2K, RL == lOOn
Vo == 6V, RGK == 1K, RL == loon
Vo'== 6V, RGK == 1K (2K'for "A" Types)
-
-
== 6V, RL == lOOn
== 6V, RL == lOOn
'I
• JAN and JANTX Types only.
t Industrial Types only.
JAN and JANTX Acceptance Tests
Group C ,Tests '
100% Screening TX-Types
Gr(lup B Tests
High Temperature Storage
Temperature Cycling
Constant Acceleration
Fine & Gross Hermetic Seal
Electrical Test
Burn-in
Electrical Test
Subgroup 1- Reverse Gate Curre'nt
Surge Current
Non-Repetitive Reverse Voltage
Subgroup 2 - Low Temp. Reverse Blocking Current
Low, Temp. Forward Blocking Current
Low Temp. Gate Trigger Voltage
Low Temp. Gate Trigger Current
Subgroup 3 - Temperature Cycling
Thermal Shock
Moisture Resistance
Solderability
Subgroup 1- Physical Dimensions
Subgroup 2 - Shock
Constant Acceleration
Vibration, Variable Frequency
Subgroup 3 - Barometric Pressure, Reduced
Subgroup 4 - Salt Atmosphere
Subgroup 5 - Terminal Strength
Subgroup 6-lntermittent Operating Life Test
Subgroup 4- Blocking Life Test
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924-1235'
9-10
PRINTED IN U.S.A.
2N2323-2N2329, J, JTX, JTXV
2N2323S-2N2328S, J, JTX, JTXV
2N2323A-2N2328A, J, JTX, JTXV 2N2323AS-2N2328AS, J, JTX, JTXV
Gate Trigger Current
Gate Trigger Voltage
~ 400
~
~
~ .B
~~--~~---+---+--~--~~
UJ
"«"'
~~~~~V/.m~>77.fn~fn77~~
200
~
'0
""0:....
UJ
a:
UJ
""0:....
a
UJ
....UJ
~
_6
.4
«
,200 r-----t---t---t---t---~--~~
"I
>jj' .2
-25
TJ -
0
25
50
75
100
125
JUNCTION TEMPERATURE (oC)
-25
TJ -
PD -
20
;;;
r------
~
~-4---~~.
zUJ
I
~
zUJ
....
i---t----t==-,......_
«
.1
-65
J
I
-25
TJ
-
a
25
50
75
100
125
JUNCTION TEMPERATURE (OC)
-.~
=
0
UJ
........
.4
o 75
125
.5
-- -T
.-
I
f
f--
KI ~t~ ~ --j
r--.... I'---......
!
I""
!
.""
I
r-- --
r--. ~"I,,\
r-- ~ ~ ~
--~ ~
BO
Te
85
m.. -
90
95 100 105 110 115 120 125
MAXIMUM CASE TEMPERATURE (OC)
Average Current vs. Ambient Temperature
PD -
1
I
I
con1duction
An~le
1BO'C
1.2
z
..J
J:
1.5
I""
UJ
Z
o
100.
D~C .
a: 1.6
a:
::J
::J
75
POWER DISSIPATION (W)
2
10
50
Average Current vs. Case Temperature
Holding Current
a:
a:
25
JUNCTION TEMPERATURE (DC)
Surge Current
POWER DISSIPATION (W)
24
~
....z
UJ
a:
a:
.B
::J
«
I
120'C
.4
"\
~
z
0
"'-.
"-...
..............
.2
J
r-TA=~
2
o
o
o
TA ... -
1
2
10
20
50
100
CYCLES AT 60Hz
MAXIMUM AMBIENT TEMPERATURE ('C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (SI7j 926·0404 • FAX (617) 924-1235
Te = 85'C
9-11
PRINTED IN U.S.A.
JAN & JANTX 2N3027-2N3032
SCRs
0.5 Amp, Planar
FEATURES
• JAN and JANTX Types Available
• Fully Characterized for "Worst Case" Design
• Passivated Planar Construction for Maximum
Reliabilityand Parameter Uniformity
• Low On-State Voltage and Fast Switching
at High Current Levels
• Typical Turn-On Time: 0.121's
• Typical Recovery Time: 0.71's
DESCRIPTION
The 2N3027 series of planar SCRs (controlled switches) are intended for use in
military and space applications requiring a high degree of reliability. They offer a
unique combination of extremely fast switching, precise triggering, high pulse
power, small size, intrinsic parameter stability, and high radiation tolerance.
The JAN and JANTX types are specified under MIL-S-19S00/419, and are included
in MIL-STD-701 as recommended types for military usage.
• rube CurrtmL:s: lu 3QA
ABSOLUTE MAXIMUM RATINGS
JAN & JANTX 2N3021
JAN & JANTX 2N3030
JAN & JANTX 2N3028
JAN & JANTX 2N3031
JAN & JANTX 2N3029
JAN & JANTX 2N3032
Repetitive Peak Off-State Voltage, VORM .
.................... 30V.............. .
.. ....... 60V ...................................... 100V
Repetitive Peak Reverse Voltage, VRRM ...
.... 60V...................................... 100V
........... 30V........................ .
D.C. On-State Current, IT
.. ........................................................SOOmA.......
.......................... ..
100'C Case '" .............. .
.............................. 250mA .............................................
7S'C Ambient
....................................................................................... 30A ...............................................
Repetitive Peak On-State Current, ITRM
Surge (Non-Rep.) On-State Current, I TSM
SOms ......................................................................................................................o......... SA .................................................
Bms ..............
........................... ...........................
.. .................... BA .................................................
.. ......................................................................2S0mA ............................................
Peak Gate Current, IGM ....
Average Gate Current, IG(Av) .......................................................................................................................... 2SmA..............................................
Reverse Gate Voltage ...........................................................................................................................................SV .................................................
Reverse Gate Current ........................................................................................,..............................................3mA ...............................................
Storage Temperature Range ...............................................................................................................-65'C to +200'C .................................. .
Operating Temperature Range
...............................................
.. .. -6S'C to +150'·C ...................................
Note: Blocking ·voltage ratings apply· over the operating temperature range, provided the gate is connected to the cathode through an
appropriate resistor, or adequate gate bias is used. (See section on bias stabilization.) .
MECHANICAL SPECIFICATIONS
JAN & JANTX 2N3027-2N3032
TO-18
GATE
A
C
D
INCHES
.178-.195 DIA.
.170-.210
.5 MIN.
.209-.230 DIA,
H
4.31-5.33
12.70 MIN.
5.31-5.84 DIA.
:g~~
017:t .002 OIA.
.432:t
.020 MAX.
.508 MAX .
.
F
MILLIMETERS
4.52-4.95 DIA.
.001 OIA.
. loot.OlD DIA.
' .04lt.OO5
.028-.048
2.54:1:.254 OIA.
1.04:1:.127
.711-1.22
nn
SEMICONDUCTOR
~ PRODUCTS
9-12
_UNITRODE
JAN & JANTX 2N3027 -2N3032
ELECTRICAL SPECIFICATIONS (at 25°C unless noted) 2N3027 - 2N3028 - 2N3029
Parameler
SUBGROUP 1
Visual and Mechanical
Symbol
Min_
Typical
Max_
Unils
-
-
-
-
-
IORM
tRRM
-
~A
~A
5
-5
.40
0.8
0.3
.002
.002
8
8
.55
1.2
0.7
0.1
0.1
VGA
lar
Var
VT
IH
Off-State Voltage - Critical Rate of Rise
dVc/dt
30
15
10
Gale Trigger-on Pulse Widlh
Delay Time
Rise Time
Circuil Commulaled Turn-off Time
Ipg(on)
Id
Ir
tg
SUBGROUP 2 (25°C Tesls)
Off-Slale Currenl
Reverse Currenl
Reverse Gale Vollage
Gale Trigger Currenl
Gale Trigger Vollage
On-Slale Vollage
Holding Currenl
-
200
.80
1.5
5.0
V
~A
V
V
rnA
Tesl Condilions
MIL-STO-750
Melhod 2071
RGK = 1K, VORM = Raling
RGK = 1K, VARM = Raling
IGA = O.1mA
RGS = 10K, VD = 5V
RGS = 1002, Vo = 5V
IT = 1A (pulse lesl)
RGK = 1K, Vo = 5V
SUBGROUP 3 (25°C Tests)
SUBGROUP 4 (1500 C Tesls)
High Temp. Off-Stale Current
High Temp. Reverse Current
High Temp. Gate Trigger Vollage
High Temp. Holding Currenl
SUBGROUP 5 (-65°CTesls)
Low Temp. Gale Trigger Voltage
Low Temp. Gate Trigger Currenl
Low Temp. Holding Currenl
-
-
-
0.2
2.0
~s
20
50
0.6
1.0
~A
~A
1.2
10
tRAM
-
Var
IH
.10
.05
2
20
.15
.20
Var
lar
IH
0.6
0
0.5
0.75
150
3.5
lOAM
-
60
30
25
.07
.08
.04
0.7
-
-
1.1
V/~s
~s
~s
~s
RGK = IK, Vo = 30V (2N3027)
RGK = IK, Vo ~ 60V (2N3028)
RGK = IK, Vo = looV (2N3029)
IG = lOrnA, IT = lA, VOM = 30V
IG = lOrnA, IT = lA, Vo = 30V
IG = lOrnA, IT = lA, Vo = 30V
IT = lA, IA = lA, RGK = IK
V
rnA
RGK
RGK
RGS
RGK
=
=
=
=
IK, VDRM
IK, VARM
1002, Vo
IK, Vo =
= Raling
= Raling
= 5V
5V
V
mA
mA
RGS = 1002, Vo = 5V
RGS .; 10K, VD = 5V
RGK = IK, VD = 5V
ELECTRICAL SPECIFICATIONS (at 25°C unless noted) 2N3030 - 2N3031 - 2N3032
Parameler
SUBGROUP 1
Visual and Mechanical
SUBGROUP 2 (25°C Tesls)
Off-Slate Currenl
Reverse Currenl
Reverse Gale Vollage
Gale Trigger Currenl
Gale Trigger Vollage
On-Slate Vollage
Holding Currenl
Symbol
IORM
Min.
Typical
Max.
Unils
-
-
-
-
-
.002
.002
8
0.1
0.1
~A
-
V
tRRM
-
VGA
lar
Var
VT
IH
5
-5
0.44
0.8
0.3
Off-Slale Vollage - Critit;ll Rale ~I Rise
dVc/dt
30
15
10
Gate Trigger-on Pulse Width
Delay Time
Rise Time
Circuil Commutaled Turn-off Time
tpg (on)
td
tr
Ig
1.2
1.0
20
0.6
1.5
4.0
~A
~A
V
V
rnA
Test Condilions
MIL·STD-750
Melhod 2071
RGK = IK, VOAM = Raling
RGK = IK, VAAM = Raling
IGA = O.1mA
RGS = 10K, VD = 5V
RGS = 1002, VD = 5V
IT = 1A (pulse lest)
RGK = IK, Vo = 5V
SUBGROUP 3 (25OC Tesls)
SUBGROUP 4 (150OC Tests)
High Temp. Off-Slate Current
High Temp. Reverse Currenl
High Temp. Gate Trigger Vollage
High Temp. Holding Current
SUBGROUP 5 (-65OC Tesls)
Low Temp. Gate Trigger Voltage
Low'remp. Gate Trigger Current
Low Temp. Holding Currenl
-
-
-
-
2.0
~s
20
50
0.4
2.0
~A
~A
V
rnA
RGK
RGK
RGS
RGK
0.95
0.5
8
V
mA
mA
RGS = 1002, Vo = 5V
RGS = 10K, VD = 5V
RGK = IK, VD = 5V
'RAM
-
Var
IH
.10
.05
2
20
.15
.30
Var
1m
IH
0.44
0
0.5
0.8
0.4
5.0
IORM
-
60
30
25
.05
0.1
.05
0.7
0.1
-
V/~s
~s
~s
~s
RGK = IK, VD = 30V (2N3030)
RGK = IK, Vo = 60V (2N3031)
RGK = 1K, Vo = 100V (2N3032)
IG =·IOmA, IT = lA, Vo = 30V
IG = 10mA, IT = lA, VD = 30V
IG = lOmA, IT = lA, VD = 30V
IT = lA, IA = lA, RGK = IK
=
=
=
=
1K, VDAM
IK, VAAM
1002, VD
IK, VD =
= Raling
= Raling
= 5V
5V
High Reliability Processing
The 2N3027-2N3032 series provides a complele range 01 high reliabilily processing lrom Ihe slandard devices Ihat undergo exlensive eleclrical lesling,
through JAN and JANTX levels. 100% processing, Group B, and Group C lesls lor JAN and JANTX devices is shOwn below. For furlher details, see
MIL-S-195OO/419(EL).
100% Screening TX-Types
Group B Tests
Group C Tests
High Temperature Storage
Subgroup 1 - Physical Dimensions
Subgroup 1- Shock
Temperalure Cycling
Subgroup 2 - Solderability
Vibration, Variable Frequency
Conslant Acceleralion
Temperature Cycling
Subgroup 2 - Salt Atmosphere
Thermal Shock
Subgroup 3 - Terminal Sirengih
Fine & Gross Hermetic Seal
Constanl Acceleration
Subgroup 4 - High Temp. Anode Vollage - Critical
Electrical Test
Burn-in
Moisture Resistance
rate or rise
Subgroup 5 - Storage Life Test
Subgroup 3 - Surge Current
Electrical Test
Subgroup 6 - Operating Life Test
Subgroup 4 - Blocking Life Test
Subgroup 5 - Storage Life Tesl
UNITRODE • SEMICONDUCTOR PRODUCTS
Subgroup
6
Operating
Life
Tesl
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
PRINTED IN U.S.A.
9-13
III
JAN & JANTX 2N3027-2N3032
TYPICAL CHARACTERISTICS
2N3027 - 2N3028 - 2N3029
Gate Trigger Current
Gate Trigger Voltage
1400
,---,--,--,--,---r----,--,----,
1.4 ,---,--,--,--,---,--,--,---,
;; 1200
k---I-+-+_-f__+-+-+--I
~ 1.2 t-----t--+-+--t-
.:0
w
l
0:
u
BOO
o
f+-A--I--+-+--
ffi
0:
""
~ 600 1n~7d-+-+_-f__+-+-+--I
S!
0:
~ 400
'i~
_tD
200 f7'T-.nI,-/-7'1-,~~;::-h--l:~+-+--I
.6
'i
.4 t-----t--+i;-""'"'-'-bf+H'+.f-Jf-h~+_I1
-25
TJ
-
0
25
so 75 100 125
JUNCTION TEMPERATURE ('C)
o
soo
150
TJ
200
"'-
on
..J
";:::
u
100
50
20
10
TJ
ii:
u
= 25'C
\
:;:
:J
:;:
4
"-
lK
I\
~
3K
I
I
~
~
'tI
t',_
I'-..
\
10K
I'....
.........
30K
RGK
5
"'''o.{ t - -
i
I
I
I
i
.2
5
20
50
100
200
Max. Holding Current (Resistor Bias)
;;
Z
w 10
~
- - ~~~
Z
:::.:::::
-::::::1--:.
I
,
....
.{1(+.:.0~1 -
I
kK
I
~
1
10
20
50
100
VD-APPLIED OFF·STATE VOLTAGE (V)
6
Min. Holding Current (Resistor Bias)
200
.5
..J
0
i
i
I
-'"
i
i
.1
-25
25
50
75 100 125
TJ - JUNCTION TEMPERATURE ('C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
10
2
. 1
J:
.2
.05
-65
20
U
"Ciz
X
:;!
I
:J
ll(r-....,:
~""
J:
_I
{K
0:
0:
Ii'.... ~ ...........
..J
o
:;!
I-
zw
I--...;;:
U
"Ci
X
.s
20
I0:
0:
I'I
300n
iJ = 125'C
50'
50
:J
150
DASH LINES SHOW .001 pfd CAPACITOR
ADDED BETWEEN GATE AND CATHODE
APPLIED OFF-STATE VOLTAGE (V)
;;
.s
125
BIASED AS SHOWN IN FIG. 1
.2
10
100
\f ~II0K- ~1(.:t~001
:;:
Z
.5
VD-
I'....
5
:J
I
'\
"\
10
.5 I--OASH LINES SHOW .001 pfd CAPACITORADDlED BElj'EEN IGATE fND CATHODfj
1
\
50
:;:
I--BIA~ED AS SHOWN IN FIG. 1
Z
1\
100
~ 20
<3
;:::
75
~.
\
>-
'f,
'f-.
so
Min. Critical dv/dt (125'C - R Bias)
200
~\ ~
300!)
25
JUNCTION TEMPERATURE ('C)
-
SOO
:\ *+
1\
-25
-65
Min. Critical dv/dt (25'C - R Bias)
>'tI
Ir'-;H-H'-I-TV+'M-h!-l-H+'f-Y-+t91-..-;::j
NO UNITS FIRE
I NO UNITS FII1E
-65
~
:0
+--1----+-+--1
>tE .2
0
-200
.8 f.h'+I-I-h4t-P1-~
~
w
~
P"7'-/-:I74'-d--+_-f__+-+-+--I
1
.5
.2
.1
--
b--
.05
-65
150
9-14
--
t-=== ::::::= t:=::: :-- -- fls, _"" 100 ' _ -:~t}
r--. -.....
r-....
~
. . . . . r-....
11(3g(j:::::::-
Ii?- . . . .
3~
s'I""lO~
........
25
50
75
100 125
-25
TJ - JUNCTION TEMPERATURE ('C)
150
. 'P.RtNTED IN U.S.A.
JAN & JANTX 2N3027-2N3032
TYPICAL CHARAcTERISTICS
2N3030 - 2N3031 - 2N3032
Gate Trigger Current
Gate Trigger Voltage
1.4 , . . - - - - , - - - , - , - - . - - - . - - - , - , - - ,
~
.5
0- 500
~
z
"'~
:J
ffi
"";;:
~
300 !,.L,1r----1--r-+-ALL UNilTS FIRE
"_~I
'"
.8 ~~---1---r-1--+-~--r-T----I
.~
"
.6 H'-T:H'-T:ffr.l't'J-.:::..
"'
~
.4
I
>~
.2
""'
0-
"'~
1.2 ~--+-1----I1--
""'~
400
100 ~~~~-r~1--~-+-~-~~
0 1Wc..£.4c..L.:JC-,~~~o9'",""*,,,:q~
-100~-~~+-1--~-+-~-r--1
NO UNITS FIRE
-25
25
50
75 100 125
T J - JUNCTION TEMPERATURE ('C)
ISO
-25
25
50
75
100 125
TJ - JUNCTION TEMPERATURE ('C)
3 Min. Critical dv/dt (2S'C - R Bias)
500
\\
200
1\
~ 100
">
--50
:;;
"> 20
. 'C
...J
5;::
10
;;:
5
o
::;;
:J
::;;
25'C
i\
\
lK
i'..
3K_
I
SHOW~
I
:;;
SO
10
......
u
::;;
5
::;;
i
I
.2
.2
Vo -
5
20
50
100
Vo -
APPLIED OFF-STATE VOLTAGE (V)
6
Max. Holding Current (Resistor Bias)
.s
- - 1---
20
10
5
~
--... -...
...J
J:
~
~r
~
::;;
"-
3K
I
RGK
I.
,,11( -I- .001
r--
101( I
= 10K-"-~OOl r--
50
100
10
20
APPLiED OFF-STATE VOLTAGE (V)
200
Min. Holding Current (Resistor Bias)
.5
...J
J:
iZ
IIGK~
I
Z
i
.1
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
C=-
o
-...~
25
50
75
100 125
JUNCTION TEMPERATURE ('C)
5
"Ci
_I
-25
TJ -
10
z
.2
.05
-65
20
0-
iii
!5'"u
t::: t::
~~O!!
z" 2 ~ t::::
--. t:::::
Ci
-...
'-r.........
-...
o
-~
::;;
I
~
0-
o
11K
50
50
iii
!5'"
"-
DASH LINES SHOW .0011'fd CAPACITOR
ADDED BETWEEN GATE AND CATHODE
1
200
~
..s
1\
= 125'C
BIASED AS SHOWN IN FIG. 1
.5
10
30ml
\
:J
z
.5 f-DASH LINES SHOW .OOll'fd CAPACITORADDED BETWEEN GATE AND CATHODE
1
\
\
TJ
P
I,
1\ '\
20
;::
;;:
',c;.
IN FIG. 1
I
100
u
"0
30K
'"
~
">
'C
;;t.
r--1~ ' -
10K
RGK
BIASED AS
I \
150
dvl dt (12S·C - R Bias)
1\
200
-\-
i'-..
Min. Critical
500
,,~
1"'-
2
z
i
=
TJ
4
I\~
,300!l
f----j--+--
.5
.2
c--::: ::::::::S: l:::::r-- c:--.:~00i!
r-r- r-r~::::::-- r-....
.1
.05
-65
150
9-15
----1
i$--'::--.
G
II
I "R"-
"'101(-'"
;--
~
~
-........
......
~
~
-25
25
50
75
100 125
TJ - JUNCTION TEMPERATURE ('C)
150
PRINTED IN U.S.A.
JAN & JANTX 2N3027-2N3032
CURRENTRATINGS.
C2
so
PA -
5
-% ~J
$
I-
10
I-
Z
OJ
0:
0:
:>
(J
!
i
I
I·
2
!;;
Z
0
pI.
OJ
Characteristics
~~
.05
.1
.2
Vr -
.5
Q.
.2
OJ
OJ
0:
"'11 '""'11 iII
I-~ ,...""
-
Q.
>
;:::
;:::
I
J
1-"
.5
1
2
5
10
ON-STATE VOLTAGE (V)
so
20
"""'\\
-:or-. r--..
0
~
.1
.05
10
'"
p
~
I---
.001.
;;'i
Typical-
.2
~
-:ooJ- r-....
z
.5
I
~
20
(J
~
'I!
"
«
OJ
0:
0:
OJ
I-
J
OJ
I-
~.
so
:>
If!
I
POWER DISSIPATION (W)
A
~
Z
,(J
20
5
Peak Current vs.Case Temperature·
FOrward on Current vs. Voltage
Cl
l l -l'--...
h-
~cle 1
I
100
Tc
I
I
no
120
.....,.
"'\\
~ \'
"'"r--.\'
~ \\
,
hl
.1
.05 I
90
"'\
~ r---...
130
140
ISO
MAX. CASE TEMPERATURE ('C)
mn -
C3 Peak Current vs. Ambient Temperature
TO-18 Ratings (see note) ,.,
PA -
5
.3
50
I-
Z
OJ
0:
0:
20
(J
10
:>
OJ
I-
~
5
0
2
'"z
'"
Q.
OJ
.5
OJ
.2
;:::
;:::
Q.
OJ
0:
I, .1
~ .05
o
25
TA
C5
m.. -
I-
'"
3"""-'"
~~
.3
~
"
~
r-~(j,CJ< ~ ,\
~
N
'\\
r\.\'
C6 Average Current vs. Ambient Temperature
TO·18 Ratings (see note)
~
PA -
~
POWER DISSIPATION' (W)
.4
5
,'\.
l;:
OJ
~'\
""'"
.2
0
ci
>
«
I
~
............
-.....;0.]
r--
.1
.3
.2
.1
90
100
Tc m..
69
'"
(J
OJ
~
-~
ci
~
I
~
"
.1 r---+---r--+---~~~---I
. OL-_-L_ _
a
25
so
~_~
120
130
140
150
MAX. CASE TEMPERATURE eC)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
.2
z
o
~
no
-
t==::+-""""",,,:->'c-+---I~--+---I
:>
-
o
.3
0:
0::
~
"~
«
I-
'"
.....,.
.o~-
POWER DISSIPATION (W)
A
OJ
I-
Z
r--r---
I-r.; ",'\
.4
OJ
0:
0:
(J
-
DC
Z
:>
·001
r--. -..:.00.]......... ~
Average Current vs. Case Temperature'
PA -
.5
Surge Current vs. Time
.1
100
125
ISO
75
MAX. AMBIENT TEMPERATURE ('C)
~
5
.2
----
«
OJ
>
C4
POWER DISSIPATION (W)
.4
T A .,< -
9-16
__
100
75
J-_~L-~
125
ISO
MAX. AMBIENT TEMPERATURE ('C)
PRINTED IN U.S.A.
JAN & JANTX 2N3027-2N3032
SWITCHING'SPEEDS
52 Maximum Delay Time td' Rise Time t,.
and Gate Trigger Pulse Width tp9 (on)
51 Maximum Delay Time td' Rise Time t,.
and Gate Trigger Pulse Width tp9 (on)
10
I
"-
I
TJ
"- ~
'iii'
.5
.5
:;;:
.2
w
I
I
i
i
j::
'"
I~
.~~
w
.2
j::
r::::::-MAX I
.1
I""
• P9
.01 .02
10
I
MAX. log (IG _ 0.5mA) _
.5
I
:;;:
.2 t--MAX. Id (I. "" 10mA)
.1
MAX. log (I.
.05
'"
.5.
:;
~
RG•
"t-
i='"'
'i'.-
----
~~
0
< 10K i. -
f..-- ~
~
L
v-:::
k-...-'
r--~
IA
:;
~
U
.5
~• .2
.1
-65
.01
.2
V
~
o
-
RGK:::: 10K
II{
:;;
:;;
III
/
. _0
10
w
I--
150
1A
:J
:J
10mA)
J
I
Z
a: 20
I
.1
50 f--I,
o
I
MAX. I,
.02
I
Maximum Circuit Commutated
Turn-off Time tq
100
""-
-
MAX. Id (IG - 0.5mA)
j::
MAX. Id (IG - lOmA)
25
50
75
100 125
-25
TJ - JUNCTION TEMPERATURE (·C)
54
T~ = 25°~_
1
0.5T)-
MAX.t,
.01
-65
20
r-,--
(IG - 10mA)
.02
.05 .1.2
.5
5 10
IG - PULSE GATE CURRENT (mAj
(I
G
I
53 Maximum Delay Time td' Rise Time t,.
and Gate Trigger Pulse Width tpg (on)
w
I
.05
I
=0.5~A) -
rI
MAX. I
!
:;;:
I
.02
'"
.5
MAX. Id (IG
!
.5
~
'1
.v
I,
.01
I
l:=-
MAX. I,
.05
i
1
""~.j-
.1
1~=11-
If =lA
""I\..
I
10
LJc-
.5
1
5
10
I, - ON-STATE CURRENT (A)
20
55
-25
0
25
50
75
100 125
TJ - JUNCTION TEMPERATURE ('C)
150
Maximum Circuit Commutated
Turn-off Time tq
100
50
I
20
r--
10
---
'""-
. -'0
1"J~r=---
,J,
. -
I.
ISO'C~
~_o
'/.50C
w
:;;
j::
"j-
•
~'/.5·C,"
.5
r--
:..--~ f..---
!----
-;:::'\F
1'J::=-
.2
Rr""rr-
.1
.1
.2
.5
10
20
I, - ON-STATE CURRENT (A)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
9-17
PRINTED IN U.S.A.
SCRs
1.6 Amp, Planar
FEATURES
DESCRIPTION
• Maximum Gate Trigger Current: 20pA
• Closely Controlled Gate Trigger Voltage:
.44 to .6V
• Operating Current Range: 2mAto 1.6A
• Voltage Ratings: to 400V
• Low On-State Voltage
• Specified for dv/dt and Switching Time
These devices are intended for general purpose usage in Military/aerospace or severe
industrial environments. Major design parameters are specified at the temperature
extremes, thus permitting worst case design on the basis of guaranteed values.
These devices undergo 100% preconditioning, which includes high temperature
storage and temperatu(e cycling followed by a fine leak test as a regular part of the
manufacturing procedure.
The high voltage types of the 2NS724 series;!re especially useful as pulse modulator
switches in low to medium power pulse modulator applications; Specific parameters
such as rise time, delay time, holding current, and recovery time can be selected
for optimum performance in a pulse modulator circuit.
ABSOLUTE MAXIMUM RATINGS
2N5724
2N5725
2N5726
2N5727
2N5728
Repetitive Peak Off-State Voltage, VDRM .•.. , ................. 60V ......................... 100V......
.. ...... 200V......
... 300V ......................... 400V
Repetitive Peak' Reverse Voltage, VRRM ...................... 6OV ......................... 100V.......................... 2OOV.......................... 300V .......................... 400V
'Non-Repetitive ·Peak Off-State Voltage, VDSM .................................................................................. SOOV.........................................................
D.C. On-State Current, IT
7S·C Ambient ................................................................................................4S0mA .................................................................... ..
8S·C Case .......................................................................................................1.6A..........................................................................
Repetitive Peak On-State Current, ITRM ................................................................................... up to 30A .....................................................................
Peak One Cycle Surge (Non-Rep.) On-State Current, ITSM .......................................................... ISA..........................................................................
Peak Gate Current, IGM ........................................................... :.......................................................... 250mA .................................... :: .................................
.. .... 25mA .......................................................................
Average Gate 'Current, IGIAVI ............................ ................................................
Reverse. Gate Current, IGR ... ........................................................................
. ................... 3mA ..........................................................................
Reverse Gate Voltage, VGR ......................................... ,................................................
.. ....... 6V................
.. ....................................
Operating and Storage Temperature Range .. ...................................... ..... -6S·C to +lSO·C ............................................................ ..
MECHANICAL SPECIFICATIONS
2N5124-2N5128
TO-205AD' (TO-39)
in,.
.305-.335
.335-.370
.240-.260
.010-.030
.5 MIN.
.017:1:
7.75-a.51
8.51-9.40
6.35-6.60
.25-.76
12.70 MIN .
:gg¥
.200
.100
.031:1:.003
029-,045
.100
.432:t:~~
5.08
2.54
.79i:.08
.74-1.14
2.54
nL.:::::Jn
9-18
SEMICONDUCTOR
F'RDDUCTS
._UNITRDDE
2N5724-2N572"8
ELECTRICAL SPECIFICATIONS
Test
SUBGROUP 1
Visual and Mechanical
SUBGROUP 2 (25'C TESTS)
Off-State Current
Reverse Current
Reverse Gate Voltage
Gate Trigger Current
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (25'C TESTS)
Off-State Voltage - Critical Rate of Rise
Gate Trigger - on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn-off Time
2NS724, 2NS725, 2NS726,
2NS727, 2N5728
SUBGROUP 4 (150'C TESTS)
High Temp. Off-State Current
High Temp. Reverse Current
High Temp. Gate Trigger Voltage
High Temp. Holding Current
SUBGROUP 5 (-6S'C TESTS)
Low Temp. Gate Trigger Voltage
Low Temp. Gate Trigger Current
Low Temp. Holding Current
Symbol
Min.
Typical
-
-
-
-
-
IORM
IRRM
VGR
IGT
VGT
VT
IH
-
0.1
0.1
5
.05
.05
8
-
2
0.44
0.5
2.3
0.8
20
0.6
2.S
2.0
JlA
JlA
V
JlA
V
V
rnA
RGK = lK, VORM = Rating
RGK = lK, VRRM = Rating
IGR =O.lmA
RGS = 10K, Vo = SV
RGS = lOOn, Vo = SV
IT = SA (pulse test)
RGK = lK, Vo = 5V
v/Jls
JlS
JlS
RGK = lK, Vo =
IG = lOrnA, IT =
IG = lOrnA, IT =
IG = lOrnA, IT =
0.3
100
dvldt
tpg (on)
td
t,
-
tq
-
-
150
0.1
0.1
0.3
-
Units
Max.
0.5
-
Test Conditions
30V
lA, Vo = 30V
lA, Vo = 30V
lA, Vo = 30V
-
~s
IS
30
30
50
JlS
JlS
IT. = lA, iR = lA, RGK = lK
200
200
-
JlA
JlA
V
rnA
RGK = lK, VORM = Rating
RGK = lK, VRRM = Rating_
RGS = lOOn, VD = SV
RGK = lK, Vo = 5V
0.9
125
3.0
V
JlA
rnA
RGS = lOOn, Vo = SV
RGS = 10K, Vo = SV
RGK = lK, Vo = 5V
IORM
IRRM
VGT
IH
0.10
0.10
SO
80
O.lS
0.15
VGT
IGT
IH
-
0.7
50
1.2
-
Note 1 See rating curves for full rating information.
Note 2 Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected to the cathode through a
resistor, lK or smaller, or other adequate gate bias is used.
Gate Trigger Current
Gate Trigger Voltage
800
1.4
1.2
;(
.3 600
ALL UNITS FIRE
ALL UNITS FIRE
I-
Z
UJ
UJ
0:
0:
::>
u
<.'l
~
400
~
0:
0:
UJ
<.'l
<.'l
a:
I-
1.0
UJ
.
UJ
I-
<.'l
I
.8
<.'l
200
S!
0:
I-
7lrrrrrr ""
.6
UJ
~
R U//,
Ji
I
~
-200
.4
.2
NO UNITS FIRE
-400
--65
-25
TJ
-
25
50
75
100
125
150
--65
JUNCTION TEMPERATURE ('C)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 - FAX (617) 924-1235
-25
TJ
9-19
-
25
50
75
100
125
150
JUNCTION TEMPERATURE ('C)
PRINTED IN U.S.A.
2N57;(4-2N5728
Max. Holding Current
Off-State Current
so
1000
100
~
!<
f----+---t---+---f-------,,.£-.j
20
....
10
.5
z
I-----=~........:~
0:
0:
10
::l
U
CI
0:
0:
U
"'
1.0
~
.1
lie
z
is
....
::l
0
J:
X
«
::;;
.5
I
I
~:ull
25
so
TJ
_4
X
I I
100
75
«
125
::;;
.1
.05
150
-25
-65
JUNCTION TEMPERATURE ("Cl
-
TJ
;t
20
20
....Z
10
'10
~
"'
::l
"'0:0:
R.. "" 10011
Z
r-r--. r--
J:
I
-'
i
i
/
.5
.2
.1
r-
,I
.-
RGK~
-25
TJ
-
25
so
75
"'-
Z
0
.5
100"
125
lSO
~
100
II
.1
~-.J-,. _.
.05
125
lSO
-
! '
I
TJ = 25"C
.
-- -
U
.05
0.1
0,2
0.5
Yr -
9-20
l-
MAX .
/
I I
I
/
I
.2
I
..:-
..........
..
,,
....
V>
JUNCTION TEMPERATURE ("Cl
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
i
"'«....
r---...
,05
-65
U
----:--
~ r-- r-...
/
I
::l
0
....
0
75
J./ J
....Z
0:
0:
U
CI
so
25
On-State Current
YS. Voltage
50
i
i
I
0
JUNCTION'TEMPERATURE'("Cl
-
Min. Holding Current
so
.5
R.. "" lOOu~--+-----t
"'
"'
~
;t
1.0
2.0
5.0
10
20
so
ON-STATE VOLTAGE (Vl
PRINTED IN U.SA
2N5724-2N5728
Avg. Current
vs. Ambient Temperature
Avg. Current
vs. Case Temperature
PD -
PD -
POWER DISSIPATION (W)
20
. 2.0
15
10
5
1.
.B
POWER DISSIPATION (W)
.8
.6
.4
.2
.7
DC
~ 1.6
"-
I-
z
W
'"'"
:>
u
w
1.2
I-
Ifl~
Z
3~~
;::en
0
.8
f-- 6¢
I
-
""........
ci
>
«
~
Iz
'",""
I-
I'---...... ~
ci
>
70
'"'"
:>
(J
.5
w
«
I-
"" "" '"
--,r--..
I
.4
.6
w
.............
~
en
.4
Z
0
«
I
"1'0-
:--- r-~~
--...:::
-
.3
.2
.1
~
90
100
110
120
130
140
80
T e ... - MAX. CASE TEMPERATURE ('e)
150
25
TA
50
75
100
125
MAX. AMBIENT TEMPERATURE ('C)
m .. -
150
Surge Current
~
50
I-
Z
W
'":>'"
20
w
10
u
r-- ~
I~
'"
~
z
o
a:
w
'"Z
o
1':.
w
'"'en"
I
~
Te
I""
=
.5
TA
::J
"i5
0..
I
J
= 85'C-
.........
75,6--
.2
.1
.05
10- 5
10-4
10-1
10- 2
10-1
10
102
10l
SURGE DURATION (5)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
9-21
PRINTED IN U.S.A.
•
2N6119-2N6120
PUTs
Planar, TO-18, Hermetic
FEATURES
• Hermetically Sealed TO-18 Metal Can
• Programmable Eta, RBB , Ip and Iv
• Maximum Peak Point Current: 150nA
• Minimum Valley Current to 1.5mA
• Nano-Amp Leakage
• .Passivated Planar Construction for Maximum
Reliability and Parameter Uniformity
DESCRIPTION
Functionally equivalent to standard unijunction transistors, Unitrode's Programmable
Unijunction Transistors offer the distinct advantage of versatile programming. External
resistors can be added to meet the designer's needs in programming Eta, RBB , Ip and Iv
functions. This series also features a hermetically sealed TO-18 package for optimum
reliability in all environmental conditions. Applications include pulse and timing
circuits, SCR trigger circuits, relaxation oscillators and sensing circuits. For additional
information see Unitrode Application Note U-66.
ABSOLUTE MAXIMUM RATINGS
Anode-to-Cathode Voltage, VAK
Gate-to-Cathode Forward Voltage, VGK
Gate-to-Anode Reverse Voltage, VGAR .
Gate-to-Cathode Reverse. Voltage, VGKR .
Peak Recurrent Forward Current
101's, 1% Duty Cycle.
1001's, 1% Duty Cycle .
Power Dissipation
25'C Ambient
Derating Factor
Storage Temperature
Operating Temperature Range.
........ ±40V
........... 40V
... 40V
-5V
.. 8A
5A
....... 400mW
...................
.. 3.2mW/'C
.......... -55'C to +125'C
............ -55'C to +125'C
MECHANICAL SPECIFICATIONS
2N6119-2N6121t·
INCHES
A
B
.178-.1950IA.
.170-.210
o
.209-.230 DIA.
.5 MIN.
GATE CONNECTED TO CASE
:gg~ g:~:
E
.017 ±
F
.020 MAX.
TO-18
MILLIMETERS
4.52-4.95 DIA.
4.31-5.33
12.70 MIN .
5.31-5.84 OIA.
.432 ± :g~!
.508 MAX.
.1-;7~-r;:~~~~,",:",:~;;;1~,-,D",IA,,-.-+_2~1:~;;;4.:;::::2"'1~~;.::.DI,,",A.'-i
.028-.048
.711-1.22
n
L=-.Jn
9-22
SEMICONDUCTOR
PRODUCTS
_UNITRDDE
2N6119-2N6120
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
2N6120
2N6119
Symbol
Fig.
Peak Current
Ip
1
Valley Current
Iv
1
Test
Offset Voltage
VT
1
Gate-to-Anode Leakage
IGAO
2
Gate-to-Cathode Leakage
Forward Voltage
Pulse Output Voltage
Pulse Output Rate of Rise
IGKS
VF
3
Vo
t,
5
5
4
Min.
Max.
Min.
Max.
Units
5
2
-
1.0
0.15
pA
pA
pA
p.A
rnA
V
V
nA
nA
nA
V
V
ns
-
70
-
1.5
0.2
0.2
-
-
50
0.6
1.6
10
100
100
1.0
-
25
1.0
0.2
0.2
-
-
-
9
-
9
-
80
-
-
25
0.6
0.6
10
100
100
1.0
80
RG = 10k, Vs =
RG = 1 Meg.
RG = 10k, Vs =
RG = 1 Meg.
RG = 200fl
RG = 10k, Vs =
RG = 1 Meg.
T = 25'C, Vs =
T -75'C
Vs = 40V
IF = 50rnA
lOV
10V
10V
40V
c) Characteristic Curve...,..-
b) Equivalent Test Circuit
a) Typical Circuit
Test Conditions
Figure 1
T
L
Figure 2
r
l
'
Figure 4
Figure 3
+20V
6V
.6V
==~
______. . .
Figure 5
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
9-23
PRINTED IN U.S.A.
2N6119-2N6120
Typical Peak Point Current
.. vs. Gate Source Voltage
~
~
....
..:! 10
....
zUJ
_ I_ 2N6i19
- - - - 2N6120
zUJ
0:
0:
10KQ
10
I----i--+__-l-_-.j
:J
U
....Z
.z
....
o
D..
U
10KQ
--~-_+---1
D..
1MIl,
.1
---2N6119
- - --2N6120
....
z
2000
::!'lOO0
2001l
0:
:J
U
>
UJ
10KIl
...J
~ 100
>
...J
«
u
10KIl
0:
>
.... 10
1MIl
I
1
RG=1MO
.:?
. --- --- ---
~
....z
-- ---- ----------- --- ---
0:
:J
U
~
...J
...J
:;
...J
20~_ I- t20~1l_
::!1000
100
J
l- I- t-
i
10KIl_
I l- 1-I- l10K\!,
t-
1~!l'1- I-lI'- ,
«
0:
RG=IMIl
>
.... 10
u
I
!
.:?
'r-- ,
Vs = 1°~1
·---2N6119
- - - - 2N6120
I-t-t-
-
--
t-
- -- '-
I--
T- t-
,
,
--
-80 -80 -40 -20 0 20 40 60 80 100 120 140 160
T, -AMBIENT TEMPERATURE (OC)
10
15
·20
Vs - GATE SOURCE VOLTAGE (V)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
-
Typical Valley Current
vs. Ambient Temperature
10,000
1
0
'\ .... ,
-80 -60 -40 -20 0 20 40 60 80 100 120 140 160
T, -AMBIENT TEMPERATURE (OC)
GATE SOURCE VOLTAGE (V)
Typical Valley Current
~
1
I'-- r---
!'--
VS. Gate Source Voltage
..:!
J
LI 1111"j,J II nI I
0:
10,000
~
,, f"- .... , .... ....
,
", ~ ......
...J
()
v, -
I
RG=
ili'"D..
1MQK - - -
'"
«
UJ
J.
V\ = ~OV
- - - 2N6119
- - - - 2N6120
10KIl,
I I"-- "I'-- ........
l~~g~
0:
0:
:J
0
D..
Typical Peak Point Current
VS. Ambient Temperature
9-24
PRINTED IN U.S.A.
2N6119-2N6120
Typical Pulse Output
ys. Circuit Supply Voltage
Typical Offset Voltage
ys. Ambient Temperature
1.4
1.3
I
v, = 10V
~
w 1.2
"'"....
0
..J
1.1
1.0
>
.9
......
0
.8
....w
Ul
"
.7
~
.6
..J
a:'"
u
.5
....>-
.4
I
.3
!
.2
,,;-
'\:
;\'
~
'!>
./0
I~~
'1'.0
1./~0J I'-.
.1
I
0
-80 -60 -40 -20
T, -
a
I'-.
20 40 60 80 100 120.140 160
AMBIENT TEMPERATURE ('C)
Typical On·State Current vs. Voltage
Gate·Anode Blocking Current
ys. Ambient Temperature
;;
.3
....z
W
0:
0:
5
....
:>
u
~
z
UI
0:
0:
.1 f--f---+---+-----,H----,I------I
;;;
w
~
III
W
o
!1!
II
:>
u
g
Z
.01 f--f---+-....".'-+......,'--t------I
o
'"
~
"I\1.001
.1f--+-+++-Hf1f1--H+Hfl+!--+-t+++l-IH
I
-"
L-_L-_~1,
___
R,
S10K
16K
V,
R
6V
VBB-V v
---<
Iv
C,
.2 J1f
27K
R
.6V
Figure 5
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926-0404· FAX (617) 924-1235
9-27
PRINTED IN U.S.A
2N6137
Peak Point Current VS. Ambient Temperature
Peak Point Current VS. Gate Source Resistance
10
v.
10
10V
V
SPEC.
MAX.
.........
'~PEC.
"-
MAX.
:;:
.3
I-
I-
Z
Z
'"
'"0:.
0:
0:
0:
:>
u
I-
z
--
~=10KIl
I-
z
"
0
Q.
:;:
I
......
:>
u
'"Q.
I
~~IKIl
"'" ~
:;:
.3
~
'"Q.
i:i
.1
............
.1
1
~
.""
~G
.01
100
lK
RG -
10K
lOOK
GATE SOURCE RESISTANCE (Il)
.01
-50
1M
-25
T. -
V
:;:
:;:
.3 100
I-
SPEC.
MAX.
u
I-
u
>.
'"
...J
...J
V
>
;;
10
1
.001
I>
.01
.1
IG-GATE CURRENT
---- ---
0:
0:
:>
,,-
>
...J
...J
1
.3 100
z·
",.
SPEC.
MIN.
Z
'"
150
1000
/
:>
---
100
50
75
25
AMBIENT TEMPERATURE ('C)
Vs
'"0:0:
IMII
Valley Current VS. Ambient Temperature
Valley Current VS. 'Gate Current
1000
"
10V
V
1
=(R!l (MA)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
10
1
-50
10
-
.............,
=
RG -10KIl
r-- r-- r-- I--- RG= IMIl
-25
T. -
9-28
--
10V
25
75
100
50
AMBIENT TEMPERATURE (OC)
125
PRINTED IN U.S.A..
2N6137
Offset Voltage ys.
Ambient Temperature
Typical Pulse Output Voltage ys.
Circuit Supply Voltage
3.0
'~t
100
~
2.5
C
w
""
S
80
0
I-
w
:::>
(!)
"-
""
I-
I-
:J
0
..J
0
>
1.5
w
en
u.
u.
SPEC. MAX.
@ RG =·lMP.
I-
0
I
:>
60
I~e< ~
UJ
en
..J
:J
"-
~
~
Ii'.
.5
27K
Note: R must be chosen so that the
current available at the firing point
exceeds Ip and steady state on current
is less than I.. at the desired level
of V, for the circuit to oscillate.
>
~ 2.0
101"
20
(!)
""0::<>
-
,0,q;-t
. . . /~...<:l;' '"
>-
~<'k;
°lro
~lM!l
..e'1>;-rP ~
40
..J
I
t:::::-J
SPEC. MAX.@ RG
20
~
0
>
= 10K!!
,,""/ :-(
c,/' "",,,,
~ LL V ~14~~6~;i'
/'
l-
a
a
~
20
V-
-50
-25
0
25
50
75
100
TA - AMBIENT TEMPERATURE (OC)
40
•
/
60
80
100
CIRCUIT SUPPLY VOLTAGE (V)
125
Typical Current vs. On-State Voltage
Gate-Anode Blocking Current ys.
Ambient Temperature
10
'T'~_
25°C
!I"
T
V
125°C
GAO
I-
I /
I-
Z
UJ
0:
0:
W
0:
a:
:J
<>
:::>
1
<>
tJ
0
UJ
/
..J
ID
i!:
V
w
0
0
III
z
I
~
.1
(!)
z
;;:
l-
0
/
Z
/'
$
Rating=
<
.3
/
z
""
.1
w
.01
/
/
I-
""I
(!)
-Maximum
/
0
-~
TYPp/
I
.01
f
.1
V, -
10
ON·STATE VOLTAGE (V)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
.001
-100
100
9-29
-50
50
100
TA - AMBIENT TEMPERATURE (OC)
ISO
PRINTED IN U.S.A.
AAI00-AAI04
AAI07-AAlll
AAl14-AAl18
SCRs
.5A, Planar
FEATURES
• Maximum Gate Trigger Current: 2, 20 or 200pA
e Tight Gate Trigger Voltage Range: .44 to .6V
• Voltage Ratings: to 400V
• Specified for dv/dt and Switching Time
DESCRIPTION
This data sheet describes Unitrode's AA Series O.5A SCRs designed for low-current
sensing applications. Units are available in a complete range of blocking voltages
from 60 to 400 volts.
The AAlOO series offers a maximum gate trigger current of 2.0 microamps making
it the most sensitive device of its type. The AA107 series has a maximum 1ST of
20pA while this parameter is specified at 200pA for the AA114 series.
ABSOLUTE MAXIMUM RATINGS
AA~
~M
~~
~~
~~
AA107
AAl14
AA10B
AA115
AA109
AA116
AA110
AAl17
AA111
AA118
Repetitive Peak Off-State Voltage, VeRM .................. 60V....
... 100V......................... 200V.........
300V......................... 400V
Repetitive Peak Reverse Voltage, VRRM .....
....... 60V .......................... 100V......................... 200V....
............ 300V ......................... 400V
Non-Repetitive Peak Reverse Voltage, VRSM ............ BOV ......................... l50V.....
.. 300V........................ 400V......................... 500V
Non-Repetitive Peak Off-State Voltage, VesM
....... 500V....
................................................
D.C. On-State Current, IT
................. 250mA...
...............................................
75"C Ambient
..............................................
....... 500mA.........
100"C Case ...... .
. up to 30A ................................................................
Repetitive Peak On-State Current, ITRM
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM .
.................. ...... 5A ..................................................................
............................
....................... .
........ 250mA
Peak Gate Current, ISM .......... .....................
................. .
.......... 25mA...
...............................................
Average Gate Current, I SIAV)
...................... .
. ......................................... 6V....
............................. .
Reverse Gate Voltage VSR ....
........... -65"C to +150"C.
.................................................
Operating and Storage Temperature Range .
MECHANICAL SPECIFICATIONS
AAl00-AA104 AA107-AA111 AAl14-AA118
TO-18
GATE
INCHES
A
B
.178-.195 DIA.
.. 170-.210
C
.5 MIN.
e
.209 .230 DIA.
E
.
.001DIA.
.020 MAX.
017:1: .002 DIA.
. 100:.010 DIA.
H
J
.041:1:..005
.028-.048
MILLIMETERS
4.52 4.95 OIA.
4.31 5.33
12.70 MIN .
5.31 5.84 OIA.
.432 t
:g~~
.508 MAX.
2.54:.254 DIA .
1.04:1:..127
.711-1.22
nn
SEMICONDUCTOR
~ PRODUCTS
9-30
_UNITRDDE
AAlOO-AAl04
AAl07-AA111
AA114-AA118
ELECTRICAL SPECIFICATIONS (at 2S'C unless noted)
Parameter
SUBGROUP 1
Visual & Mechanical
SUBGROUP 2 (2S'C TESTS)
Off-State Current
Reverse Current
Reverse Gate Current
Gate Trigger Current
AAlOO-104
AAl07-111
AA114-118
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (2S'C TESTS)
Off-State Voltage - Critical Rate of Rise
Gate Trigger - on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn-off Time
SUBGROUP 4 (12S'C TESTS)
Off-State Current
Reverse Current
Gate Trigger Voltage
Holding Current
Units
Symbol
Min.
Typical
-
-
-
-
-
-
-
.01
.01
0.1
0.1
0.1
0.2
p.A
p.A
p.A
RGK =
RGK =
VGR =
RGS =
-
0.2
2.0
20
0.52
1.1
0.5
2.0
20
200
0.60
1.5
2.0
p.A
p.A
p.A
V
V
rnA
lOR ...
IRR ...
IGR
IGT
VGT
Vr
I
0.44
0.3
dv/dt
(on)
td
t,
t pg
tq
lOR...
IRR ...
VGT
IH
50
Max.
-
100
0.5
0.6
0.4
20
-
0.15
0.2
ps
ps
ps
ps
RGK = 1K, Vo = 30V
IG = lOrnA, IT = lA, Vo = 30V
IG = lOrnA, IT = lA, Vo = 30V
IG = lOrnA, IT == lA, Vo = 30V
IT = lA, IR = lA, RGK = lK
pA
p.A
V
rnA
RGK = lK, VOR ... = Rating
RGK = lK, VRR ... = Rating
RGS = lOOn, Vo = SV
RGK =lK
-
50
20
100
-
1.5
lK, VOR ... = Rating
lK, VRR ... = Rating
2V
10K, Vo = SV
RGS = lOOn, Vo = SV
IT = 1.0 A (pulse)
RGK = lK
V/p.s
2.0
10
30
0.2
0.4
Test Conditions
Note: Blocking voltage ratings apply over the full operating" temperature range. provided the gale is connected to the cathode through are·
sistor, 1000 ohms or smaller, or other adequate bias is used.
Gate Trigger Current
AA 107 Series
Gate Trigger Current
AA100 Series
80
.,:<...
I
!
60
~
40
::J
'"
20
:''"5
0
U
800
~
I
~
I
I
'"~
~
le.o MAX.
'""
~200~nir.h~~r.b7n+n~~~~77H
ffi
.8
...
'"~
.6
""0:
~"
0
"
·1
1
~~OOr----r--r--r--+--+--+--+~
25
so
75
100
125
0
150
-6'
JUNCTION TEMPERATURE (ee)
UNITRODE • SEMICONDUCTOR PRODUCTS.
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.Q404 • FAX (617) 924-1235
..
>" .2
~L---~-L--L--L~--L--L~
0
1
0
0:
-
150
~ 1.2
"'"
u
-25
2.
50
100 12.
7S
JUNCTION TEMPERATURE (Oe)
I.'
!<
TJ
'
U
"z
RSK
~
:-- r-
.5
I
Z
~
-:1
g
ffi
-25
TJ
6~
~
~
o
.3
""-"'- ."'.
0-.'\
""- ",-"'"
I
j
.3
a:
U'
~
75
.3
.2
1
r.- ~
~~
6" ~"'-
~
"~":~
Z
~I
""
~
~~ ~
o
~~
~
.1
~~
"'~
90
100
T C ..a. -
110
120
130
140
I
125 150
POWER DISSIPATION (W)
"!
o
I
LJ
100
DC
.....2
,,~
.1
.....
I =:t--..,I
50
Ilq;-
:>
~
; ,
r
JUNCTION TEMPERATURE (OC)
-
PD-
:5,:.
r5
a:
.2
25
.4
.4
I'\.
~-
a:
a:
:>
~=?1
--+-
Avg. Current VS. Ambient Temperature
P~ER D~SSIPAT~ON (W)t
~ ~'\
.4
-
I
.05 I
-<;5
JUNCTION TEMPERATURE (OC)
5 PD -
r-
--r-_
AVI- Current VL Case Temperature
DC
'
lK
.2 RGI(:::;; 10K
_r.
~
IOOU
r
.1
.5
:::;;
9o
"'-
.05 LI_ _-'-----.JL---'-_'--.1._-'--..,"--.!
--65
-25
25
50
75 100 125 150
TJ -
AA114·AA118
"
o
lSO
o
25
TA .... -
MAX. CASE TEMPERATURE (Oe)
50
75
100
"
125
150
MAX. AMBIENT TEMPERATURE (Ge)
Surge Current
IT BEFORE SURGE:::;; 0
~
1
~
.5
~
: AFTER SURGE
.2 ~ DASH LINE:
~
.1·
~
~
~
I
J
.UNITRODE .. SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
,
~
~ :~~~~ING
TA :;;: lOO·C
Tc =100."C
. VOLTAGE MAY
I" BE APPLIED
BLOCKING VOLTAGE MAV
~~~O~~~~~~~~;~~g~
.05 1~-~
0.1 __+---1_-1
:0-. -:o~tO'---:-'-1-'-0--,:--"1--L'0--,LO'---"0'
SURGE DURATION (5)
9-32
.
PRINTED IN U.s.A.
ADIOO-ADI04
ADI07-ADlll
ADl14-ADl18
SCRs
1.6 Amp, Planar
FEATURES
• Maximum Gate Trigger Current: 2, 20 or 200pA
• Tight Gate Trigger, Voltage Range: .44 to .6V
• Voltage Ratings: to 400V
• Specified for dv/dt and Switching Time
DESCRIPTION
This data sheet describes Unitrode's AD Series 1.6A SCRs designed for mediumcurrent control and sensing applications. Units are available in a complete range
of blocking voltages from 60 to 400 volts.
The ADIOO series offers a maximum gate trigger current of 2.0 microamps making
it the most sensitive device of its type. The ADI07 series has a maximum IGT of
20pA while this parameter is specified at 200pA for the AD114 series.
ABSOLUTE MAXIMUM RATINGS
AD102
AD109
ADll&
AD10l
ADIOS
AD115
AD100
AD107
AD114
Repetitive Peak Off-State Voltage, VORM """""""""" 60V."".",
"
Repetitive Peak Reverse Voltage, VRRM
"""""""'" 60V"""",
"
Non-Repetitive Peak Reverse Voltage, VRSM
"" 80V.""
Non-Repetitive Peak Off-State Voltage, VOSM
D.C. On-State Current, IT
75"C Ambient "''''''''''
85"C Case ""
Repetitive Peak On-State Current, ITRM
""""""""""
Peak One Cycle Surge (Non-Rep.) On-State Current, ITSM "
Peak Gate Current, IGM '
Average .Gate Current, IGIAVj ,
Reverse Gate Voltage, VGR '"''
Operating and Storage Temperature Range
" """"""""""
AD103
ADll0
ADI17
200V"
,,,,,
200V""""",,,,,,,,,,,,,,,,
""
300V" " ,
""" ",,,,,,500V
100V."""
10ov.""",
150V,
AD104
ADll1
ADllS
300V".""".""".""",,, 400V
300V"""",,,,,,,,.,,,,,,,,, 400V •
400V""""""".""""." 500V .
"'"'' " """""'''''''' """ "
""".450mA",,:,
"'" "",,,1.6A.,,,,,,, """"""""""'"''''''''''''''''''''''''
""",up to 30A,
" ... ""15A""",,
" ,,,,,,,,,,,,,,,,250mA,,,,
""""",25mA""
"""",6V"""""
""""""'" '"'' ".-65"C to +150"C.",
MECHANICAL SPECIFICATIONS
AD100-AD104' A0107-ADll1
ADl14-AD118
TO-20SAD (TO·39)
CATHODE ,]=i~;M~'=Ii~~3
~
GATE
.30S-,335
7.75-8.51
.335-.370
.240-.260
.010-.030
8.51-9.40
6.35-6.60
.25-.76
.5 MIN.
017
ANODE
i .002
.001
200
100
03hOO3
029-045
100
12.70 MIN .
.432 t
:8~~
5.08
2.54
.79:t.08
.74-1.14
2.54
n nSEMICONDUCTOR
L::::J
PRODUCTS
9-33
_UNITRODE
•
ADlOO-ADI04 ADl07-AD111 ADll4-AD1l8
ELECTRICAL SPECIFICATIONS (at 25·C unless noted)
-,"
Parameter
SUBGROUP 1
Visual & Mechanical
SUBGROUP 2 (25·C TESTS) .
Off-State Current
Reverse Current
Reverse Gate Current
Gate Trigger Current
ADloo-l04
ADI07-111
ADll4-118
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (25·C TESTS)
On-State Voltage-Critical Rate of Rise
Gate Trigger-on Pulse Width
Symbol
Min.
Typical
Max.
Units
-
0.44
-
-
-
-
.01
.01
0.1
0.1
0.1
0.2
pA
pA
pA
0.2
'2.0
20
0.52
2.0
20
200
0.60
1.5
2.0
IORM
IRRM
ISR
1ST
VST
VT
IH
dv/dt
tpg.(on)
Deii:lyTime
td
Rise Time
Circuit Commutated Turn-off Time
SUBGROUP 4 (125·C TESTS)
. Off-State Current
Reverse Current
Gate Trigger Voltage
Holding Current
t,
tg
1.1
0.3
0.5
50
100
0.5
-
pA
pA
V
V
mA
. 50
ii.6
RSK = 1K, VORM = Rating
RSK = lK, VRRM = Rating
VSR =2V
Rss = 10K, Vo = 5V
p.A
Rss = lOOn, Vo = 5V
IT = 1.0 Amp (pulse)
RSK = lK
Vips
RSK = lK, Vo = 30V
Is = lOmA, IT = lA, Vo = 30V
is = iiimA, iT = iA, Vo 3iiV
Is = 10mA, IT lA, Vo 30V
IT = lA, IR = lA, RSK = lK
pS
2.0
0.4
20
Test Conditions
I'S
pS
pS
=
=
=
pA
10
100
RSK =lK, VORM = -Rating
IORM
pA
RSK = lK, VRRM = Rating
30
100
IRRM
0.15
0.2
V
VST
Rss = lOOn, Vo = 5V
0.2
0.4
1.5
mA
RSK = lK
IH
Note: Blocking voltage ratings apply over the full operating temperature range, provided the gate is connected· to the cathode through a resistor, 1000 ohms
or smaller,
-
or other adequate bias is used.
Gate Trigger Current
AD100 Series
eo
60
!...
~ 40
::l
~
'"
~
u
20
ffi
g
Gate Trigger Current
AD107 Series
eoo
j5600
'"'"
ffi 400
~LL JNIT! FIRE
rt!h..
~
'f' MIN.
I
~200
WIIJ,
~I
~
INO UNITS FIRE
~-40
~LL ,NIT! FIRE
g
,:., MAX.
..~-20
I
0
!
~
I., .AX.
I., MIN.
-200
-\1,-60
INO UNITSFIRE
--65
-25
TJ
-
0
25
50
75
100
125
ISO
--65
JUNCTION TEMPERATURE ("C)
_ 1.2
.."
~
~0
I'M~+-+---;----t-+--+-t--I
g
>
..
200
I
0
~
ffi
..
.
..""... .
.... ..
""I
-"
~ r--~-+-+--+-t--+-~~
>'ij .2
0
--65
-25
TJ -
UNITRODE • SEMICONDUCTOR PRODUCTS
sao PLEASANT STREET· WATERTOWN. MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
ISO
Gate Trigger Voltage
...~ eoo f---+-+--+--+-+---+-t--I
~
,
~
I.'
~~O ~-+-+-+--+-+--+-t--I
::l
I
!
-25
0
25
so 75 100 125
TJ - JUNCT~ON TEMPERATURE (OC)
Gate Trigger Current
AD114 Series
ffi 400
~
I
-400
-eo
''""
I
9-34
0
25
SO
75
100
125
ISO
JUNCTION TEMPERATURE (OC)
PRINTED IN U.S.A.
ADIOO-ADl04 ADI07-ADlll AD114-AD118
Max. Holding Current
50
:t
..:5
.§
20
10
I
1
i--i--;..
RGK"~
'
,
I
0:
0:
I
::>
I
U
"z
§
2
!E
I
I--
lK
---
~ .5
i
:t
.S
-
r--_
~
--
0:
::>
u
"z
§
I-- r--
~
_::"-"10/f
~• • 2
x
I
-----t--~--~~--~~~~-
.2
r-----""""--+---,---,---t--'f""""-i--d
Z
--- l"- I-- t-
:;
~
Min. Holding Current
I
i
I
_Yo
~ .l~::=+~~~~~--~-t~
.1
.05
-65
25
50
75 100 125
-25
T J - JUNCTION TEMPERATURE (Oe)
150
TJ
Ave. Current vo. Case Temperalure
Po -
Po -
..
.5
.7
....
DC
~
~
§
I.3.
u
"'
S
z
I
.4
"-
r-- r-70
80
Te .... -
(Oel
POWER DISSIPATION (WI
.8
.6
r---,---,-
f---+-T+
.4
r-r
.2
~-'--I
--t----~-~
,
:
~
::1
"'-
100
.----f----
~
110
I
"'
"-r-
Z
130
J.2 ~-i-t
.1
~
140
o
r---+-
L.-_ _- ' - - _ - ' - - _ . , .
150
25
50
75
100
125
ISO
TA .... - MAX. AMBIENT TEMPERATURE ('e)
..
Surge Current
~ 50
0:
~ 20
"'~ 10
~ 5
o
0:
N...........
I
~
1
.5
I
i
I
i
I
,
Te - 8S"C
>""'co
.
i
.1
I
J .05 10"",
I
i
~>'4=
i
!
0:
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STRF.ET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
",' I
i ~!
1
::>
"' .2
~
I
TT
i
""'l
I
2
~
~
j- -
L I_ - - ' - _ - - ' _ _ _
MAX. CASE TEMPERATURE ("e)
ei
---l
.3
o
~~
-...;:
120
u
~
-- --r--'"
.........
90
1
::>
""t"'---- ~
~
6.
t9 .8
o
~
"-
1.2
JUNCTION TEMPERATURE
Avg. Current vs. Ambient Temperature
POWER DISSIPATION (W)
1.5
~ 1.6
-
10
-.
10 -,
10 -,
10
-.
1
10
i
102
10l
SURGE DURATION (5)
9-35
PRINTED IN U.S.A.
GAIOO
GAIOI
GAI02
SCRs
Nuclear Radiation Resistant, Planar
FEATURES
DESCRIPTION
• Optimized for Radiation Resistance
• Fully Characterized for "Worst Case"
Design
• Post Radiation Design limits Specified
• Passivated Planar Construction for
Maximum Reliability and Parameter
Uniformity
• Pulse Currents: to 30A
• Max. Trigger Current 20mA after
3 X 10" NVT
• Max. Holding Current 30mA after
3 X 10 " NVT
The GA100 Series of Radiation Hard SCRs have been designed to provide
significantly greater radiation tolerance than conventional SCRs or Transistors with
the same current handling ability. This Series is capable of operation after exposure
to lOIS NVT.
The radiation resistant characteristics of the GA100 series devices make them
particularly desirable for use under radiation environments in squib firing circuits;
inverters and converters; pulse generators; relay drivers; and modulator discharge
switches.
ABSOLUTE MAXIMUM RATINGS
GA10l
GA100
GA102
.. .... 60V ............................ 80V
.. ............................ 30V .. .
Repetitive Peak Off-State Voltage, VDRM ....
D.C. On-State Current, IT
75'C Ambient ........
..................................................................
.. ...... 200mA .............................. ..
100'C Case ............................................................................................................................................400mA .............................. ..
Repetitive Peak On-State Current, ITRM ................................................
.. ... up to 30A ........................... ..
Surge (non-rep.) On-State Current, I TSM (Sq. Pulse-50ms) .........
.....................
........................ .. ............. 5A ....................................
Peak Gate Current, 16M ................................................................... ................................... ......................................
. ........ 250mA ............................... .
.
~~~:= ~:!: ~~I~:;:: ~:~Vl :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~~~~.:::::::::::::::::::::::::::::::::
Reverse Gate Current, IGR ............................................................................................................................................................. 3mA ...................................
Storage Temperature Range ....................... .......................... ...............................................................
........ -65'C to +200'C.................... ..
Operating Temperature Range ......................................................................................................................................-65'C to +150'C .................... .
MECHANICAL SPECIFICATIONS
GA100
GA10l
GAl 02
TO-18
GATE
ANODE
A
INCHES
.178-.1950IA.
e
.170-.210
C
.5 MIN.
.209-.230 DIA.
0
E
G
H
J
017
.
i
.002 OIA.
.0010IA.
.020 MAX.
.lOO:t.010 DIA.
.04l:t.OO5
.028-.048
MILUMmRS
4.52-4.95 OIA.
4.31-5.33
12.70 MIN.
5.31-5.84 OIA.
.432
i
:~~
.508 MAX.
2.54:t254 OIA.
1.04:1:,127
.711-1.22
nn
SEMICONDUCTOR
~ PRODUCTS
9-36
_UNITRDDE
GA100
GA101
GA102
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Min.
SUBGROUP 1
Visual and Mechanical
SUBGROUP 2 (2S'C Tests)
Off-State Current
Reverse ·Gate Current
Input Trigger Current (Note 2)
Gate Trigger Voltage
On-State Voltage
Holding Current
SUBGROUP 3 (2S'C Tests)
Off-State Voltage-Critical Rate of Rise
Gate Trigger-on Pulse Width
Delay Time
Rise Time
Circuit Commutated Turn-off Time
SUBGROUP 4 (125'C Tests)
High Temp Off-State Current
High Temp Gate Trigger Voltage
IDRM
IGR
1ST
VGT
VT
IH
dVcldt
tpg (on)
td
tr
tq
IDRM
VGT
Post 3 )t' 10 14
NVT Design
Preradiation
Limits
Symbol
Typ.
limits
Max.
Min.
Max,
Units
Test Conditions
-
-
-
-
-
-
MIL-STD-7S0
Method 2071
-
.OOS
.01
2.3
O.S
1.1
0.7
0.1
0.1
3.S
0.7
1.S
10
-
1.0
1.0
20
1.5
3.0
30
I'A
I'A
rnA
V
V
rnA
RGK
220n, VDRM
Rating
VGR
2V
RGK
220n, Vo
SV
RGK
220n, VD SV
iT
lA (pulse test)
RGK
220n
-
-
0.1
-
viI's
I'S
I'S
I'S
I'S
100
I'A
V
1.8
0.4
0.8
0.3
20
-
-
-
0.1
40
.02
.02
.05
1.5
10
.17
.OS
-
2.5
100
-
-
0.1
1.0
-
=
=
=
=
=
=
=
=
=
RGK = 220n, Vo = 30V
IG = 25mA, IT = lA, Vo = 30V
IG = 2SmA, IT = lA, Vo = 30V
IG = 25mA, IT = lA, VD = 30V
IT = lA, iR = lA, RGK = 220n
RGK = 22011, VDRM = Rating
RGK = 220n, Vo = 5V
Notes: 1. Off-State voltage ratings apply over the operating temperature range provided the gate is connected to the cathode through an
appropriate resistor, or other adequate bias is used.
2. Tolal Input Trigger Current, including current required by 2200 gate bias resistance.
DESIGN CONSIDERATIONS
1. Curve 1 shows the off-state current, IORM of the SCR as a function of temperature. IDRM is increased by radiation damage,
but is not a design consideration at the recommended gate bias levels.
In order to optimize for radiation tolerance, reverse blocking capability has not been retained as a design feature. Devices
with reverse blocking capability can be provided.
2. Minimum critical dvldt levels are defined in Curve 2. The dv/dt capability is improved after radiation because of reduced
triggering sensitivity. dv/dt is therefore a design consideration only prior to radiation.
3. Curves 3 and 4 show the limits of Gate Trigger Voltage and Total Input Trigger Current prior to radiation. Maximum design
limits after a total radiation dosage of 3 x 10" NVT is also shown. Curves 5 and 6 show the maximum limits of Gate
Trigger Voltage and Total Input Trigger Currents as a junction of neutron dosage. The minimum level of Trigger current
prior to radiation is established by the shunting effect of a 220 ohm resistor between gate and cathode. After radiation
the device is less sensitive and Total Trigger Current will increase to a level relatively independent of the bias resistance.
The 220 ohm resistor is recommended since it raises the minimum preradiation trigger current to a level that is closer to
the past radiation limit and minimizes the percentage change in this parameter.
4. Current ratings shown in Curves 10, 11, and 12 apply after the device has been subjected to 3 x 10 14 NVT. Current ratings
prior to radiation are greater than the values indicated.
5. Gamma radiation produces a reversible ionization (leakage) current within the device which is directly proportional to the
Gamma flux level. When the Gamma flux level is in the range of 10 to 100 Roentgens per microsecond for burst durations
greater than 1 microsecond, the device will self trigger ON. For the radiation bursts associated with nuclear explosions,
the Gamma flux level will invariably cause device triggering at radiation levels significantly below the levels that would
produce detectable permanent device damage due to cumulative neutron dosage. In applications where the burst effect
triggering cannot be tolerated, it is necessary to reset the device after the radiation burst. Special circuit approaches such
as additional SCRs to c.rowbar or otherwise cancel the output function may be used.
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926.()4Q4 • FAX (617) 924·1235
9-37
PRINTED IN U.S.A.
GAlOO
1.
SOD
1000 , - - - - , - - - - , - - - . , . - - - - - , - - - 7 " 1
RGK
!z
~
10~--~-~
0::
:>
"
OJ
:s~
~"
100
b
~
50
..J
1.0
0.1
=
Z
~
::i
''~""
0.5
10 10
Gate Trigger Voltage
=
Vo
'"
5V
OJ
f-..:...-+-+--j---j--j--j--j--I
0::
OJ
'"
...'"0:
...
a.
1.0
~=:-11-
:;
0.5
F~"..-t-:'~iIS:~~~*~l:"<'~~=±::::-I
...0
5V
SO
-65
OJ
'"«...
=
..J
RG,
3.0
= 220P.
200
Max. Gate Trigger Voltage
vs. Neutron Dosage
3.5
~.
Vo
JUNCTION TEMPERATURE ('C)
-
1016
:> 100
u
:>
-25
10 15
0::
0::
1.5 f---+-+:::::"~:"::'
TJ
RGK
E.
...
z
2.0 t--.-:--+-~I--I--+-+-+--+---I
I
>~
10 14
1000
OJ
!<
1013
NVT
Input Trigger Current
;t 500
= 220n--+--+--j
2.0 f - - - + - + - RG,
3.5
1012
1011
4.
,.---,--.---,---,--,--r--,----,
IJJ
'"
~
L
-V
+d5°C
JUNCTION TEMPERATlIRF (OC)
3.
V
::;;
.001 '--_ _L-_ _L-_ _L-_----''--_--'
125
25
50
75
150
100
~
--
10
L
::;;
j .Ol~-~~--_1---+----r--~
3.5
--------
l
25 C
20
:>
,;-",,/'1'
T, -
GA102
2200
-6h·c
"::;;
1--=-+--
I
I
=
r-- Vo = 30V
\.
'iii' 200
~ 100
GA10l
Minimum Critical DV/DT
vs. Neutron Dosage
2.
Off·State Current
1011
----
10 12
zOJ
...
100
0::
0::
50
VI
...-/'
"
''"0:"
...
.........-
:;
1013
NVT
0::
OJ
VI
.-/
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
20
10 - _ 6 5 ' C
...
:>
===1 25oC
a.
V
1014
1
X
+125'C
2
«
::;;
10 15
LL
:>
0.5
1010
10 16
9·38
1011
--
1012
//
/
./
/
V
1013
NVT
101"
10 15
10 16
PRINTED IN U.S.A.
GAlOO
Holding Current
1.
GAlOl
GAI02
8. Max. Holding Current vs. Neutron Dosage
500
<:
g
<:
200
I-
Z
g
100
\oJ
0:
0:
I-
Z
\oJ
0:
0:
::>
u
::>
u
50
'"z0
20
0
10
'"o
...J
o
«
::;;
z
:x:
X
...J
:x:
I
/.
.--/
-65"C
V
+125"C
./"
I
-'
//
.../ /
+25"C
-'
X
«
::;;
RGK = 220H
1.0
0.5
-25
TJ
-
so
25
75
100
125
150
1011
10 10
P, 50
~
\oJ
'"
!:i
«
0
20
I-
10
0:
0:
Z
\oJ
5.0
>
r----
I,
=
,/
5.0A
~ 2.0
I-
en
r---- -IF
~. 1.0
::>
u
LOA
10 16
.'"
POWER DISSIPATION (W)
0.4
0.2
0.3
0.1
50
20
10
\oJ
---- ~
\oJ
10 15
10 14
10. Peak Current vs. Ambient Temperature
9. Max. On·State Voltage vs. Neutron Dosage
~
lOll
NVT
10 12
JUNCTION TEMPERATURE ("C)
I-
~
"I
.- .,,/
0
z
2.0
""
1.0
«
\oJ
IF - O.IA
5.0
Il.
U.I
> 0.5
>=
>=
\oJ
0.2
Il.
O.i
\oJ
0:
.05
1010
0.1
I
1011
' 1012
lOll
1014
1015
J
1016
.05
T, ... -
12.
11. Peak' Current vs. Case Temperature
~
p. 0.5
so
0.4
0.3
0.2
50
0.1
Z
0:
0:
::>
u
~
20
10
\oJ
I-
zU.I
10
0:
0:
5.0
\oJ
2.0
::>
u
0
2.0
«
""\oJ
'::>en"
1.0
en
Il.
\oJ
>
>=
>=
\oJ
Il.
0:
'"\oJ
«
I
1
0.2
I
0.1
1
.05
1.0
0.5
Il.
0.5
0.2
I,
1SO
'"1"'"- "
BE~ORE ~URG~ = a
~.
,
SOLID LINE, RATED ' " '
BLOCKING VOLTAGE
MAY BE APPLIED AFTER
SURGE
r-,
-
r--.:'
DAS~ LINt Bl(jCKIN~ VOLTAGE
MAY NOT BE SUSTAINED
FOR1'1 SECONDS AFTER SURGE
0.1
\oJ
0:
125
100
Surge Current vs. Time
~ ",,
20
I-
5.0
~
Z
75
MAX. AMBIENT TEMPERATURE ("C)
POWER DISSIPATION (W)
I-
\oJ
so
25
0
NVT
Tc~ 100"C
T,=~
.05
10-"
90
100
Tc ... -
110
120
130
140
1SO
10-'
10"
10-2 10-'
1
10
10'
10'
SURGE DURATION (s)
MAX. CASE TEMPERATURE ("C)
UNITRODE • SEMICONDUCTOR PRODUCTS
5BO PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
9-39
PRINTED IN U.S.A.
SCRs
GA200.
GA200A
GA201
GA201A
Nanosecond- Switching, Planar
GB200
GB200A
GB201
GB201A
FEATURES
DESCRIPTION
•
•
•
•
•
The Unitrode Nanosecond Thyristor Switch combines the turn-on'speed of logic
level transistors with the high current switching capability inherent in SCRs. With
this device engineers can now design circuits capable of switching pulse currents of
1A in less than IOns or up to 30A in less than 20ns.
Rise Time: IOns
Delay Time: 10ns
Recovery Time: 0.5 I'S
Pulse Current: to 100A
Turn-on with 20ns, 10 rnA Gate Pulse
The GAlGB200 series is specifically designed for use as switching elements in high
speed, low-to-medium power radar pulse modulators. Other applications include .
switching elements for phased array radars, laser pulse drivers, harmonic wave-form
generators, line drivers and high current replacements for avalanche transistors.
For applications requiring higher voltage levels, Unitrode has developed several
"series string" circuits which allow the series connection of virtually an unlimited
number of devices for voltages as high as 2000V with no significant decrease in
speed. These circuits are described in Unitrode's,Design Note #14.
ABSOLUTE MI'.X!MUM RATI~~GS
UA2UU
GA200A
GA20l
GA20lA
GB200
GB200A
GB20l
GB20lA
Repetitive Peak Off·State Voltage, VDRM .. ................. 60V ................ lOOV ..
..lOOV
." ... " .. 60V.
Repetitive Peak On-State Current, ITAM
.... up to lOOA
. upto 100A
D.C. On-State Current, IT
70°C Ambient.
.200mA,.
70°C Case.
.. 400mA,
6A
Peak Gate Current, IGM
.. ................ 250mA
, . , , .... , . , , . , , ... , .. , ... , .. , , ...... , 250mA
Average Gate Current, IG(AV) .
. 25mA ..
.,.........................
50mA, .
Reverse Gate Current, lOR. . .
. .............. .
, ............... 3mA
............ ", ..... 3rnA ....
Reverse Gate Voltage; VGR ....
..5V
.. .. 5V .
. 300°C/W.
Thermal Resistance,' Re CA.
. .......... .
Storage Temperature Range .......................... .
, . -65°C to +200°C.
Operating Temperature Range
.. ..... , ......... : ...... , -65°C to +150°C
MECHANICAL SPECIFICATIONS
GA200
GA200A
GA201
GA201A
TO-18
GATE
A
8
D
INCHES
.178-.195 CIA.
MILLIMETERS
4.52-4.95 CIA .
.170-.210
4.31-5.33
.5 MIN.
.209-.230 DlA.
017 ± .002 CIA.
.
.0010IA.
.020 MAX .
H
.100:1:.010 OIA.
.04U.OO5
.028-.048
G8200
r-
G
G8200A
12.70 MIN .
5.31-5.84 DIA .
.432 ± :g~g
.508 MAX.
2.54:1:.2540IA.
l.04:t.127
.711-1.22
G8201
G8201 A
TO-59
->i
F_... '.',H ~~~IN~C~HE=S==~~Mgl~LL~IM~n~EERs~
CATHODE
~
G
"..OTE: Anode connected to case.
.400 ,455
.090-.150
10.16 11.56
2.28 3.81
.424-.437
.185 .215
4.70-5.46
nn
L..::::J
9-40
SEMICONDUCTOR
PRODUCTS
_UNITRODE
GA200 GA200A GA201 GA201A
GB200 GB200A GB201 GB201A
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Symbol
Test
Delay Time
td
Rise Time GA200, 200A, GB200, 200A
t,
Rise Time GA201, 20lA, GB201, 20lA
t,
Typ.
rAin,
Units
30
ns
ns
IG == 20mA, IT == lA
IG == 30mA, IT == lA
ns
ns
Vo == GOV, IT == lA (l)
Vo == GOV, IT == 30A (1)
ns
ns
Vo == lOOV, IT == 1A (1)
Vo == 100V, IT == 30A (1)
IG == lOmA, IT == 1A
-
20
10
-
-
15
25
-
-
25
10
20
-
Test Conditions
Max.
20
-
t p9 !on)
-
.02
.05
/,S
tq
-
0.8
2.0
1,5
tq
-
0.3
0.5
I'S
0.1
/'A
VoRM == Rating, RGK
10RM
-
.01
Off-State Current
20
100
I,A
VoRM == Rating, RGK == lK,
l50'C
Reverse Current
IRRM
-
1.0
10
mA
VRRM == 30V, RGK
Reverse Gate Current
IGR
-
.01
0.1
mA
VGRM == 5V
Gate Trigger Current
IGT
-
10
200
I,A
Vo == 5V, RGS
0.4
.6
0.75
V
Vo == 5V, RGS == lOOn, T == 25'C
0.10
0.2
-
V
T== +150'C
Gate Trigger on Pulse Width
Circuit Commutated Turn-off Time
GA200,.201, GB200, 201
GA200A, 20lA, GB200A, 201A
Gate Trigger Voltage
VGT
On-State Voltage
VT
Holding Current
IH
Off-State Voltage-Critical Rate of Rise
dv/dt
IT == lA, I"
== lA, RGK == lK
== lK
== lK (2)
== 10K
-
1.1
1.5
V
IT
== 2A
0.3
2.0
5.0
mA
Vo
== 5V, RGK == lK, T == 25'C
0.05
0.2
-
mA
T == +150'C
20
40
-
V/"s
Vo
== 30V, RGK == lK
Notes: 1. IG :::::: IOmA; Pulse Test, Duty Cycle <1%.
2. Pulse test intended to guarantee reverse anode voltage capability for pulse commutation. Device should not be operated in the
Reverse blocking mode on a continuous basis.
Switching Speed (Typical)
GAl G8200 Series
Peak Current vs. Pulse Width
GA200 Series
1000 r - - - - - , - - - - - - - . , - - - - - - - ,
$1000
I-
Z
UJ
c:
c:
::>
u
UJ
S
DUTY CYCLE =.005%
100
'"
Z
'"
;;j
a.
~
;::
OUT
~UTYCYCLE
.0001%
Y CYCLf: '" 0 ~
DR LESS
.1% _____
o
g~~~ g~gt~ _.~;;;:----.l
10
DUTY CYCLE _ 5%-'"
UJ
c:
1
~
___
~
.1
Ir -
_ _ _ __ L_ _ _ _
10
ANODE CURRENT (A)
,
~
tp -
NOTES: 1. V D = Rated VOR.M
10
PULSE WIDTH (ps)
100
NOTES: 1. DATA BASED ON ON-STATE
VOLTAGE GRAPH AT T; = 150'C.
BLOCKING VOLTAGE MAY BE
APPLIED IMMEDIATELY AFTER
TERMINATION OF CURRENT
PULSE.
2. TA
75'C
2. T.==25'C
3. IG == 20mA
4. td == 20n5 TYPICALLY FOR ALL
TYPES INDEPENDENT OF ANODE
CURRENT
UNITRODE • SEMICONDUCTOR PRODUCTS
5BO PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
DUTY CYCLE 110%-'
1
.1
100
-=
DUTY CYCLE - .5~.J
DUTY CYCLE = 1%
ti
a.
I
~
=
9-41
PRINTED IN U.S.A.
GA200 GA200A GA20l GA20lA
GB200 GB200A GB20l· GB201A
Peak Current vs. Pulse Width
GB200 Series
51000
!z...
a:
a:
:>
<>
...
!;:
...
100
.
III
z
o
n.
~
;::
~
...51000
IT
z...
a:
a:
:>
...<>
DUTY CYCLE= 1%
DUTY CYCLE .1% OR LESS
DUTY CYCLE
.5%
DUTYCYCL
DUTY CYCLE
DUTY CYCLE
'"jj
Peak Current VS. Pulse Width
GB200 Series
!;:
.... 100
"'oz
jj
10%-"1
n.
~
10 DUTY CYCLE - 20~::J
DUTY CYCLE = 50%
~
;::
.1%-"
--
~
DUTY CYCLE _ 5%-"
DUTY CYCLE.,. 10%.J"
1iJ
a:
J 1.iL---------L---------1Lo--------~100
tp -
.001%
OR LESS
DUTY CYCLE
g~~~ mt~ = is:.' J
10
~
I
I
0:
DUTY CYCLE
DUTY CYCLE
'"
5
DUTYCYCLE=.05%
!----:.t.
1'----------l.--------..I...--------'
,1
1
tp -
PULSE WIDTH (ps)
NOTES: 1. DATA BASED ON ON·STATE
VOLTAGE GRAPH AT T; = lSO'C.
BLOCKING VOLTAGE MAY BE
APPLIED IMMEDIATELY AFTER
·TERMINATION OF CURRENT
PULSE.
2. Tc =75'C
10
PULSE WIDTH (ps)
100
NOTES: 1. DATA BASED ON ON·STATE
VOLTAGE GRAPH AT T; = lSO'C.
BLOCKING VOLTAGE MAY BE
APPLIED IMMEDIATELY AFTER
TERMINATION OF CURRENT
PULSE.
2. TA = 75'C
On·State Current VS. Voltage
GA/GB200 Series
• Surge Rating Maximum
GA/GB200Series
...5
...a:z
100
a:
:>
<>
...5
...za:
......
0:
III
10
Z
0
a:
:>
'"jj
...n.>
;::
...;::n.
...a:
......<>
0:
'"z0
I
..:
100
10
Z
0
Z
I
.1
.1
VIM -
10
ON·STATE VOLTAGE (V)
J
100
tp -
10
PULSE WIDTH ("s)
100
NOTES: 1. BLOCKING VOLTAGE MAY NOT BE
APPLIED FOR .001 SEC: AFTER
TERMINATION OF SURGE PULSE
. AS JUNCTION TEMPERATURE
WILL EXCEED lSO'C.
2. T c =75'C
CHIP
THICKNESS
."orr
UNITRODE • SEMICONDUCTOR PRODUCTS
'580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926.Q404· FAX (617) 924·1235
METAlllZ/ILTION
mp .... AI.
SACK .•• AU
9-42
PRINTED IN U.SA
SCRs
GA300
GA300A
GA301
GA301A
Commercial Nanosecond Switching
Planar
FEATURES
• Rise Time: 10ns
• Delay Time: 10ns
• Recovery Time: O.Sps
• Pulse Current: to 100A
o Turn-on with 20ns, lOrnA gate pulse
G8300
G8300A
G8301
G8301A
DESCRIPTION
Unitrode's Nanosecond Thyristor Switch combines the turn-on speed of logic level
transistors with the high current switching capability inherent in SCRs_ With this
device, engineers can now design circuits capable of switching pulse currents of
lA in less than IOns or up to 30A in less than 20ns.
The GA300, GB300 Series is specifically designed for use as the switching element
in high speed laser diode pulse drivers. Other applications include electronic
crowbars, harmonic wave-form generators, line drivers and general purpose replacements for avalanche transistors. For applications requiring higher voltage levels,
Unitrode has developed several "series string" circuits which allow the series connection of an unlimited number of devices for voltages as high as 2000V with no
significant decrease in speed. These circuits are described in Unitrode's
Design Note #14.
ABSOLUTE MAXIMUM RATINGS
GA300
GA300A
Repetitive Peak Off-State Voltage, VORM
Repetitive Peak On-State Current, ITRM
Peak Gate Current, IGM .
Average Gate Current, IG(AVI .
Reverse Gate Current, IGR ..
Reverse Gate Voltage, VGR .
Storage Temperature Range
Operating Temperature Range
GA301
GA301A
G0301
G0301A
G0300
G0300A
. ....... 60V ...
lOOV ....
................. 60V......... ..
. ..... lOOV
.up to 100A .. .
. ...............up to lOOA ..
........ 2S0mA .. .
....... ........ ......
...... ........... 2S0mA ... .
.. ..2SmA ..
.. .. ....... ........................ SOmA ..
.. ... .3mA...................................
................ 3mA ...
.
.................... W........................
.. .......
W ..
........ -65'C to +lSO°C ..
...................... O°C to +12SoC.
MECHANICAL SPECIFICATIONS
GA3DD GA3DOA GA3Dl
GATE
. 5
_L
0
INCHES
.178-,195 DIA .
.170-.210
.5 MIN.
.209-.230 DIA.
017
.
±
.002 DIA.
.001 DIA.
.020 MAX.
.100t.010 DIA.
H
.O4l±.OO5
.028-.048
C
!
B"",:'
TO-18
MILLIMETERS
4.52-4.95 OIA.
4.31-5.33
12.70 MIN .
5.31-5.84 DIA .
.432 ±
:g~~
.508 MAX.
2.54t.254 DIA .
1.04:t.127
.711-1.22
GB3DD GB3DDA GB3Dl
rA --+ -I
-
GA3D1A
GB3D1A
TO-59
D -----1
----t>j
r-
I
i
F
G
--i
I
INCHES
CATHODE$'
.. __ T!.H
GATE
•
ANODE-
A
o
G
.400 .455
.090-.150
.320-.468
.570-.763
.318 .380
.424-.437
.185-.215
MILLIMETERS
10.16-11.56
2.28 3.81
8.13 11.88
14.48-19.38
8.07-9.65
10.77 11.10
4.70-5.46
NOTE: Anode connected to case.
n
n
L.:=J
SEMICONDUCTOR
PRODUCTS
1/79
9-43
_UNITRODE
GA300, GA300A, GA301 , GA301A
GB300, GB300A, GB301, GB301A
ELECTRICAL SPECIFICATIONS (at 25°C unless noted)
Symbol
Test
Delay Time
td
Rise Time (Note 1)
GA300, 300A, GB300, 300A
t,
Rise Time (Note 1)
GA30l, 30lA, GB301, 301A
Circuit Com mutated Turn-off Time
GA300, 301, GB300, 301'
Min.
Typical
Max.
-
20
10
15
25
10
20
30
-
t,
-
tq
Off-state Current
IORM
Reverse Current (Note 2)
'RRM
-
Gate Trigger Voltage
VGT
0.4
0.10
Galt:! Trigger Current
iGT
VT
dvldt
GA300A, 30lA, GB300A, 30lA
Gate Trigger·on Pulse Width
tpg (on)
On-state Voltage
Off-state Voltage - Critical Rate of Rise
Reverse Gate Current
Holding Current
15
IG'
-
'H
0.3
0.05
Units
Test Conditions
-
ns
0.8
2.0
pS
=
= 1A
=
= 1A
lA
=
= 30A
lA
=
= 30A
'T = lA, I, = lA, RGK = 1K
0.3
0.5
pS
'T - lA, I, - lA, RGK _ 1K
0.02
0.01
20
1.0
0.6
0.2
iO
0.05
0.1
100
10
0.75
1.1
1.5
30
0.01
2.0
0.4
0.1
5.0
pS
pA
pA
rnA
V
V
p.A·
V
Vlp.s
rnA
rnA
rnA
IG
20mA, IT
IG
30mA, IT
Vo - 60V, 'T Vo
60V, 'T
Vo - 10OV, 'T Vo
100V, 'T
ns
-
25
ns
20
ZUU
-
(Note 1)
(Note 1)
= lOrnA, 'T = 1A
- Rating, RGK _ 1K, T _ 25°C
= Rating, RGK = lK, T = 125°C
(Note 2)
= 30V, RGK = 1K
5V, RGS _ 100f!, T _ 25°C
= 5V, RGS = 100f!, T = 125°C
IG
VO'M
VO'M
VRRM
Vo Vo
Vo -
5V, RGS - 10K
'T - 2A
Vo - 30V, RGK - 1K
VGR - 5V
Vo - 5V, RGK _ lK, T _ 25°C
Vo
5V, RGK
lK, T 125°C
=
=
=
=
Notes: 1. IG
lOrnA; Pulse Test, Duty Cycle < 1%.
2. Pulse test intended to guarantee reverse .anode voltage capability for pulse commutation. Device should not be operated in the
verse blocking mode on a continuous basis.
Switching Speed vs. Current
GA/GB300 Series
1000
'"
.3
OJ
Peak Current vs. Pulse Width
GA300 Series
~1000
Notes: 1. Data based on On-State Voltage
~
graph at T; = 125°C:
OJ
.------,-------,--~~__,
Notes:
1. Vo
2. T,
=.Rated V
= 25°C
ORM
=,
B!ocking Voltage may be applied
0:
0:
3. IG
20mA
4. to = 20n5 typically for all types
independent of anode current.
immediately after current pulse
termination.
:J
(J
OJ
2. T,
:E 100 f - - - - - - - f - - - - - - - + - - - - - - - 1
t-
;::
~ 100
OJ
rn
Z
..J
«
'"OJ
.05~5
a.
.1%
OJ
> 10 .5%-'"
;::
<3
~
10 t:==~~--t-~~--~-r---------l
I
5a.
I
J
~~
......"
10%. .
1
.1
10
Tp -
9-44
= .0001% or less
5%-..
0:
1 '------'-------'--------'
.1
10
100
IT -ANODE CURRENT (A)
"Duty Cycle
1%-1"
OJ
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET • WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924·1235
= 75°C.
r--::::::-
.01 % ..-L.005%
o
;;:
ii:
re~
PULSE WIDTH
100
(~s)
PRINTED IN U.S.A.
GA300, GA300A, GA301, GA301A
GB300, GB300A, GB301, GB301A
Peak Current VS. Pulse Width
GB300 Series
Peak Current vs. Pulse Width
GB300 Series
:!)ooo
...z
$1000
...z
'"
Notes: 1. Based on On·State Voltage
graph at T j 125°C.
Blocking Voltage may be applied
=
'"0:0:
::J
U
immediately after CUlent pulse
lO/Vo-=;l
=
termination . .
'"!;: 100 .5%, 2. Tc = 75°C.
v-Duty Cycle = .1% or less
lii
z ~
~
o
"' 100
!;:
'"O'i
'O'"i
~
5%
10%-"
0.
'">
;:
10
=
...oo
Z
0.
::::
'">
;:
50%-"'"
1%
10
5%
;:
t;;
'"0:
10%
'"
'"
0.
0.
0:
I
I
1
J
1
.1
10
Tp -
100
50%
1
.1
l;;1000
Notes: 1. Blocking Voltage may not be
'"0:0:
::J
U
'"
!;:
t;
Z
o
10
::J
U
'"...
'O'"i
Z
"'>
;:
I
0.
100
Surge Rating
GA/GB300 Series
$
100
'"0:0:
10
PULSE WIOTH <.5)
Tp -
PULSE WIDTH <.5)
On-State Voltage VSo Current
GA/GB300 Series
...$z
-+____
Duty Cycle:::::: ,DOl % or less
o
i"!!O!o.
20%-
Notes: 1. Based on On·State Voltage
graph at T j 125°C.
Blocking Voltage may be applied
immediately after current pulse
termination.
2. TA
75°C. _ _ _
---j
0:
0:
::J
U
~
100
applied for O.ls after termination
of surge pulse as junction
temperature will ereed 125°C.
2. TA
75°C.
=
"J---
.
Non.Repetit~ve Peak curr~
0.
...oo
«
t;;
'"0:
0
.:
10
Z
o
z
I
.1
.1
10
V,M-ON-STATE VOLTAGE (V)
UNITRODE ° SEM)CONDUCTOR PRODUCTS
580 PLEASANT STREET ° WATERTOWN. MA 02172
TEL. (617) 926.()4(J4 ° FAX (617) 924·1235
].
100
1
.1
10
Tp -
9-45
100
PULSE WIDTH (.5)
PRINTED IN U.S.A.
10100·10106
SCRs
.5 Amp, Planar
FEATURES
• Voltage Ratings: to 400V
• Maximum Gate Trigger Current: 200l'A
• Hermetically Sealed TO-18 Metal Can
• Planar Passivated Construction
DESCRIPTION
This Data Sheet describes Unitrode's line of hermetically sealed industrial SCRs
designed for low-voltage, low-current sensing application. The 10100 Series is
packaged in a TO-18 metal case with Unitrode's unique oxide passivated
junctions, offering the highest degree of reliability and parameter stability for
any device in its price range.
Typical applications include lamp driving, relay driving, sensor, pulse-generating
and timing circuits.
ABSOLUTE MAXIMUM RATINGS
10100
10101
10102
ID103
ID1D4
10105
ID1D6
Repetitive Peak Off-State Voltage, VDRM ....
• 30V ..
GOV ............ 100V.... .
150V ............. 200V. ........ ... 300V.
400V
Repetitive Peak Reverse Voltage, VORM ' .................. 30V
..... GOV ............ 100V... .
150V............. 200V.
.. 300V. ........... 400V
On-State Current, IT
75·C Ambient .
....................................... .250mA ..
100·C Case
.... 0.5A
Repetitive Peak On-State Current, I TOM .'
...............•......
. ........ 6A .. .
Peak One Cycle Surge (Non-Rep.) On-State Current, I TSM .
. .... up to 30A
Peak Gate Current, IGM
.............. 2SOmA ..
Average Gate Current, IGjAVI
............... 25mA .............................. .
Reverse Gate Voltage, VGR .. .•....... ..... ............ ............
.. .... ... .... ............
....••6V .... .
Storage Temperature Range
............. . .......... ............................. . ................... -65·C to +150·C .. .
Operating Temperature Range.........................
...... -G5·C to +125·C ... .
MECHANICAL SPECIFICATIONS
ID100-ID106
r+ j
-'-[1='-'
=
c
B
A
~
G.1+=«
GATE
90'::':::5"
CATHODE
-
0
~~F
~~
E
TO-18
45'
== 5'
•
..... ....
'-J..' \
\Y-l . . ~'
:r't~J
90'::,::: 5'
_L
ANODE
A
INCHES
.178-.195 DIA.
MILLIMETERS
4.52-4.95 OIA.
B
C
.170-.210
D
5.31-5.84 DIA.
E
209-.230 DIA.
017 ± ,002 OIA.
.
F
.020 MAX.
G
H
J
.100±.OlO OIA .
.508 MAX.
2.54%.254 DIA.
.041:1:.005
.028-.048
1.04:1:.127
.711 1.22
.5 MIN.
4.31-5.33
12.70 MIN .
,00101A .
.432 t
:~~
nn
9-46
L.:::=:J
SEMICONDUCTOR
PRODUCTS
_
UNITRc:iDE
10100-1D106
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
Off-State Current
IDRM
Reversing Current
IRRM
Gate Trigger Current
IGT
Gate Trigger Voltage
VGT
Peak On-State Voltage
VTM
Holding Current
IH
Turn-on Time
to,
Circuit Commutated Turn-off Time
tq
Min.
Typical
Max.
. Units
5.0
10.0
10
15
5.0
50
100
50
100
200
500
0.8
1.0
1.7
5.0
10.0
pA
pA
pA
pA
p.A
p.A
V
V
V
V
mA
mA
-
ps
p's
p's
-
-
0.4
0.10
-
1.0
-
0.55
0.5
8.0
15.0
-
Test Conditions
VDRM - Rating, RGK _ 1K, T _ 125'C, 1D100-10104
VDRM == Rating, RGK == 1K, T == 125'C, 1D105-10106
VRRM - Rating, RGK - 1K, T - 125'C, 10100-10104
VRRM == Rating, RGK == 1K, T == 125'C, 1D105-10106
VD - 5V, RGS - 10K
VD == 5V, RGS == 10K, T == -40'C
VD == 5V, RGS == lOOn
VD == 5V, RGS == lOOn, T == -40'C
VD == 5V, RGS == lOOn, T == 125'C
ITM == 1 Amp Pulse
RGK _lK
RGK == 1K, T == -40'C
IG - lOmA, IT - lA, VD _ 30V
IT - IR - lA, RGK _ 1K, 10100-10104
IT == IR == lA, RGK == 1K, 10105-10106
Nate: Blocking voltage ratings apply:over. the full operating temperature range, provided the gate is connected to the cathode through a
resistor, 1000 ohms or smaller, or other adequate bias is used.
Gate Trigger Current vs. Junction Temp.
;;
.:;
...
Gate Trigger Voltage vs. Junction Temp.
1.4
3
~ 1.2
z
UJ
UJ
~
0:
0:
:>
U
0:
"0:"
0:
~~__
...
~
"...0:
afed~
UJ
!;:
."
~
~~6
UJ
:::::-::::.
UJ
5
..J
~
II.
..J
~
0::
-i
~
I
>
...
.
.8
..........
.6
~
Rated Vo
.4
>'iD
-65
-25
Tj -
r"......;
.2
0
25
50
75
100
125
ISO
'
0
-65
-25
JUNCTION TEMPERATURE ('C)
TJ
-
Holding Current vs. Junction Temp.
1000
;; 20
~
oS
0:
0:
5
~
2
:>
u
C
..J
1~_~01l
r- r-1~=lKn
o
:I:
;i
.5
0::
~
.2
u
I
_r.
.1
RGK
= lOKI!
I-.::.:.......J.
.05
-65
I"'-
---
---- --....
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
"'\
'f"..
.......
'\
Vo - Rated
......
I
b
"' " r-...
"I'-.
"'...." r--.....
-......
-25
25
SO
75
100 125
T, - JUNCTION TEMPERATURE ('C)
ISO
....... r--,
'\.
........
TEL (617) 926·0404 • FAX (617) 924·1235
25
SO
75 100 125
JUNCTION TEMPERATURE ('C)
dv/dt vs. Junction Temp.
50
10
Vo = 6V
~ r.:::;
I
_'iD-2
!zUJ
~ I=::::,...
1
-65
150
9-47
RGK -
VORt.!
r
1001l
l
--rRGI(
RGK
lKn
= 10KIl
"-.l
I
-25 0
25
50
75 100 125
TJ - JUNCTION TEMPERATURE ('C)
ISO
PRINTED IN U.S.A.
IDIOO-IDl06
Gate Pulse for Turn-On
vs. Pulse Gate Current
10
= lA, Vo =
1. IT
1\
:i!~
::l-
2. TA
Rat~d
Circuit Commutated
Turn-Off Time vs. Junction Temp.
VORI.4
= 25'C
'\,
l!z
~~
f'\ ........
l!o:
.~ ~
.5
(Jo:
~~.
1"--
i~~11111 flttlj
.01 '---'-_-"---'-_-'-_.L....-'-_.L....-"'_-'---'
.2
.5
1
2
5 10 20
.01 .02 .05 .1
is -
-25.
PULSE GATE CURRENT (mA)
TJ
Current VS. On State Voltage
10
g
TJ
a
OJ
~
~
I
.!"
I-
Z
.1
ISO
.50
:J
(J .20
UJ
I-
«
I-
Vl
.10
Z
0
UJ
I
'"
.05
«
0:
UJ
I
I
.05
125
0:
0:
1
.2
100
UJ
II
rl
.5
75
1
jI
Z
OJ
0:
0:
so
g
~ 25'C ~/:, l125'cl
I-
25
JUNCTION TEMPERATURE ('C)
Current vs. Power Oissipation
I
2
-
>
«
I
.02
I
.02
.01
0.1
0.2
VI -
0.5
I
.005
1.0
_2.0
5.0
10
20
.02
.05
.10
.20
.50
1.0
2.0
W - MAXIMUM ON-STATE
POWER DISSIPATION (W)
TYPICAL ON-STATE VOLTAGE (V)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
. TEl. (617) 926-0404 • FAX (617) 924-1235
L--...J':-_--:'::_--:'::_-:':-_ _::--:':-____:'
.01
9-48
PRINTED IN U.S.A.
SCRs
10200-10203
10300-10301
1.6 Amp, Planar
FEATURES
• Voltage Rating: to 200V
• Max. Gate Trigger Current: 200l'A
• Hermetically Sealed Metal Can
o Planar Passivated Construction
DESCRIPTION
This Data Sheet describes Unitrode's line of hermetically sealed industrial SCRs
designed for high-voltage, medium-current control applications. The Series is
packaged in a TO-39 metal case with Unitrode's unique oxide passivated junctions
to ensure reliability and parameter stability.
Typical applications include relay equipment, motor controls, process controllers
and pulse generators.
ABSOLUTE MAXIMUM RATINGS
10200
10202
10201
10203
10300
10301
Repetitive Peak Off-State Voltage, VORM .
. . . . 50V ............... lOOY. ... . ...... l50V ................ 200V..
300V..
..... 400V
Repetitive Peak Reverse Voltage, VRRM ...
........ 50V.......... lOOV...... . .... l50V. ...
.... 200V............... 300V ............... 400V
Non-Repetitive Peak Reverse Voltage, VRSM «5ms) ... 75V
. l50V.
225V........... 300V...... .... 400V ............... 500V
On-State Current, IT(RMSI
...... 1.6A ....
70'C Case
75'C Ambient ..
....................450mA ..
Peak One Cycle Surge (Non-Repetitive) On-State Current, I TSM
......... .15A ..
Repetitive Peak On-State Current, ITRM .
................. up to 30A ..
Rate of Rise of On-State Current, di/dt .
..... .100All's
I't (for times> 1.5 ms) .
. ................. O.83A's ..
Peak Gate Current, IGM
.............. 250mA .. .
..... .25mA ... .
Average Gate Current, IG(AV)
Reverse Gate Voltage, VGR
...................... 6V
... -65'C to +150'C.................... .
Storage Temperature Range "
Operating Temperature Range
...................................................... .
........... -40'C to +llO'C ..................... .
MECHANICAL SPECIFICATIONS
10200-10203
10300·10301
TO·205AO (TO·39)
ins.
305-335
.335-.370
.240-.260
.010-.030
5 MIN
017
i
7.75-8.51
8.51-9,40
6.35-6.60
25-.76
12.70MJN .
'88I
.200
100
.aJh.OOl
029-045
.100
.432t:~~
508
2.54
79t.08
.74-1.14
2.54
nn
SEMICONDUCTOR
~ PRODUCTS
9-49
_UNITRODE
III
10200-10203, 10300-10301
ELECTRICAL SPECIFICATIONS (at 25'C unless noted)
Test
Symbol
Min.
Typ.
Max.
Units
-
5
10
-
JlA
JlA
JlA
JlA
VGT
0.4
0.5
0.2
0.S2
0.7
10
100
10
100
200
SOO
0.8
1.0
VTM
-
Off-State Current
IORM
-Reverse Current
IRRM
Gate Trigger Current
IGT
On-State
Volta~e
Peak On - Voltage
Holding Current
Off-State VoltageCritical Rate of Rise
IH
dvldt
TUIII-.:m Time
ton
Circuit Commutated
Turn-off Time
tq
0.3
0.4
0.2
-
0.7
--
-
2.2
3.0
6.0
1.0
-
-
40
20
IlA
I'A
V
V
.v
V
mA
mA
mA
VIJls
Test Conditions
VORM = Rating, RGK = 1K, T = 2S'C
VORM = Rating, RGK = 1K, T = 1l0'C
VRRM = Rating, RGK = 1K, T = 2S'C
VRR ... = Rating, RGK = 1K, T = 1l0'C
Vo - SV, RGS _ 10K, T _ 2S'C
Vo = SV, RGS = 10K, T = -40'C
Vo = SV, RGS = lOOn, T = 2S'C
Vo = SV, RGS = 1000, T = -40'C
Vo == SV,.R GS = lOOn, T = 1l0'C
IT = 4 Amp Pulse, T = 2S'C
RGK = 1K, T = 2S'C
RGK = 1K, T·= -40'C
RGK = 1K, T = 1l0'C
VORM = Rated, RGK = 1K, T = 1l0'C
JlS
IG = 10mA, IT = I ,Vo.= 30V, T = "2S'C
JlS
IT = iR
=lA, RGK = 1K, T = 2S'C
Note: Blocking voltage ratings apply over the full operating temperatu re range, provided the gate is connected to the cathode through a resistor, 1000 ohms or smaller, or other adequate bias is used.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
9-50
PRINTED IN U.S.A.
U13T1-U13T2
PUTs
Planar, TO-18 Hermetic
FEATURES
• Voltage Ratings: to 100V
o Maximum Peak Current: ISOnA
• Valley Current: as low as 2SI'A
• Low Forward Voltage Drop
• Nano-Amp Leakage
• Hermetically Sealed TO-IS Metal Can
DESCRIPTION
The Unitrode hermetically sealed TO-IS metal can series of programmable unijunction
transistors feature blocking voltages to 100V, the highest available to designers. These
PUTs are functionally equivalent to standard unijunction transistors, with the added
advantages of programming versatility. External resistors can be added to program
~, RBB , Ip and I" depending upon your design requirements. All units are fully planar
passivated. This series features a hermetically sealed TO-IS package for optimum
reliability in all environmental conditions. Applications include pulse and timing
circuits, SCR trigger circuits, relaxation oscillators, and sensing circuits. For further
application information see Unitrode's Application Note U-66.
ABSOLUTE MAXIMUM RATINGS
..... 40V
.............. 40V
..... 40V
.. 40V
... SV
Anode-to-Cathode Forward Voltage, VAK
Anode-to-Cathode Reverse Voltage, VAKR
Gate-to-Cathode Forward Voltage, VGK .
Gate-to-Anode Reverse Voltage, VGAR •
Gate-to-Cathode Reverse Voltage, VGKR
Peak Recurrent Forward Current
10 I's 1% Duty Cycle .......
1001's I % Duty Cycle .
Power Dissipation
2S·C Ambient.
Derating Factor
Storage Temperature Range
Operating Temperature Range
. SA
.5A
.... 400mW
.... 3.2mW/·C
... -5S·C to +15O"C
............. -5S·C to +lSO·C
MECHANICAL SPECIFICATIONS
UI3Tl-UI3T2
INCHES
.178-.195 DIA.
MILLIMETERS
4.52-4.95 DIA .
.170-.210
4.31-5.33
.5 MIN.
D
.209-.230 OIA.
GATE CONNECTED TO CASE
12.70 MIN .
5.31-5.84 DIA.
017 ± .002 OIA.
.432 ± :g~~
F
G
.020 MAX.
.508 MAX.
. IOOt.OID OIA.
2.54:t.254 DlA .
H
J
.04U.OOS
1.04:1.127
.
.0010IA.
.028-.048
TO-18
.711-1.22
nn
SEMICONDUCTOR
~ PRODUCTS
. 9-51
_UNITRDDE
U13T1-U13T2
ELECTRICAL SPECIFICATIONS (at 25"C unless noted)
Ul3Tl
Symbol
Fig_
Peak Current
Ip
1
Valley Current
Iv
1
Test
U13T2
liIax_
Min.
Units
Min.
Max.
70
-
5
2
-
0_15
pA
pA
-
25
50
-
-25
pA
pA
1-0
Vr
1
0.2
0.2
0_6
1.6
0.2
0.2
0.6
0.6
V
V
Gate-to-Anode Leakage
IGAO
2
10
100
-
10
100
nA
nA
Gate-to-Cathode Leakage
I GKS
3
100
-
100
nA
Forward Voltage
VF
4
-
1.5
-
1.5
V
Pulse Output Voltage
YO' .
5
6
-
V
Pulse Output Rate of Rise
t,
5
80
nS
Offset Voltage
-
-
6
-
80
ItT Er
C
:L
Vs
R2
a) Typical Circuit
SOmA
IF -
VT =Vp-Vs
Vp
A G
Test Conditions
=10k, V, = 10V
=1 Meg_
RG =10k, V, =10V
RG =1 Meg_
RG =10k, V; = 10V
RG = 1 Meg.
T _ 25"C, V, _ rating
T = 75"C
V, = rating
RG
RG
Vs
V,
R,V
.::.Vs= R 1+R 2
V,
I.
b) Equivalent Test Circuit
I,
I,
c) Characteristic Curve
Figure 1
Figure 2
Figure 4
Figure 3
6V
.6V
==-"-______
_>
Figure 5
UNITRODE • SEr.lICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924,-1235
9-52
PRINTED IN U.S.A.
SENSISTORS®
. . 10-3
. .10-4
Product Selection Guides .
Oatasheets .......... .
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
10·1
PRINTED IN U.SA
III
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET·. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
10-2
PRINTED IN U.S.A.
PRODUCT SELECTION GUIDE
SENSISTORS®
Resistance. Range
(0)
Resistance Range
(R25°CJR125°C)
Tolerance
Package
TG1/8·J
TGl/8-K
TMl/8·J
TM1I8-K'
TMl!4'J
TM1I4'K·
10·10K
10·lOK
10·39K
10·39K
10·10K
10·10K
0.55±15%
0.55±15%
0.55±15%
0.55±15%
0.55±15%
0.55±15%
5%
10%
5%
10%
5%
10%
TG
TG
TM
TM
TM
TM
RTH22£S-J .
RTH22 ES~K
RTH42 £S'J
RTH42 ES,K·
10·10K
10·lOK
10·2.7K
10·2.7K
0.55±15%
0.55±15%
0.55±15%
0.55±15%
5%
10%
5%
10%
TM
TM
TG
TG
Type
.
Sensistors~ is a registered trademark of Unitrode Corporation.
TMl/8272K
TYPE NUMBER DESIGNATION
TM 1/8 272 K
==~---r~T ~ -rL-_ _ _- - - ,
1--;:::::1
STYLE
TM
TG
RTH22 ES
RTH42 ES
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
WATIAGE
1/8
RESISTANCE VALUE CODE
270 = 270
271 = 2700
272 = 2,7000
273 = 27,0000
10·3
TOLERANCE
J = 5%
K = 10%
PRINTED IN U.S.A.
SENSISTORS®
TGl/8
TMl/8
Positive - Temperature - Coefficient
Silicon Thermistors
RTH42
RTH22
TMl/4
FEATURES
• Qualified to MIL-T-23648A
• TGl/8 ~ Similar to RTH42
(MIL-T-23648A/19)
• TMl/8 - Similar to RTH22
(MIL-T-23648A19)
• Large Positive Temperature Coefficient
""'0.7%rC
• Wide Resistance Value Ranges Available
in 5% or 10% Tolerances
DESCRIPTION
The TGl/8 thermistor is encapsulated in
a glass, hermetically sealed package. The
TM1/8 and TM1/4-thermistors are encapsulated in a molded package. Both have
hot solder-dipped leads and are used in
temperature sensing and compensation
circuits. They meet or exceed all of the
requirements of MIL-T·23648A.
ABSOLUTE:MAXIMUM RATINGS
TMl/8
RTH22
TGl/8
RTH42
TM1I4
Power Dissipation at (or below)
25°C Free,Air Temperature (See Figure 1) ................... 300mW ....... 500mW'......... 500mW .... .
Power Dissipation at (or below)
100°C Free Air Temperature (See Figure 1) .......................... 125mW ................ 250mW .... .
Operating Free-Air Temperature Range ........................... -55°C to + 125°C ...... -55°C to + 125°C
Storage Temperature Range .... _..•............................. -65°C to +150°C ...... -65°C to +150°C
MECHANICAL SPECIFICATIONS
TM1I4
A
B
e
D
INCHES
MILLIMETERS
.020' .002
1.0 MIN.
.2B5 •. 015
.095' .01
.50B' .051
25.4 MIN.
7.239 •.381
2.413 •. 254
TM1I4
A
B
C
D
TG1I8
RTH42
TM1I8
RTH22
INCHES
MILLIMETERS
.025' .003
1.0 MIN.
.405 •. 015
.14 •. 015
.635' .076
25.4 MIN.
1O.2B7 •. 381
3.556' .381
TG
TM
n nSEMICONOUCTOR
L:::::J
PRODUCTS
4/82
10-4
"_UNITRODE
TGl/8
ELECTRICAL AND THERMAL CHARACTERISTICS
TGl/8
RTH42
TMl/8
RTH22
TMl/8
RTH42
TMl/4
RTH22
TMl/4
Zero Power Resistance Ratio (R25"C/RI25"C) ................................. 0.55 ± 15% ...... .
Thermal Time Constant - Typical .....•....................................... 35s .......... .
Thermal Time Constant - Maximum ............................ " ............ 60s .......... .
NOMINAL RESISTANCE AT VARIOUS TEMPERATURES
Standard Zero
Power Resis·
tance Value
(0) at 25°C
Free·Air
Temperature
Type No.
Resistance (0) of Sensistor" at Temperature other than 25°C
-55°
-15°C
DOC
50°C
75°
lOWC
125°C
10
TGl/8
RTH42
TMl/8
RTH22
TMI/4
6.15
7.9
8.63
11.6
13.5
15.45
17.5
12
TGl/8
RTH42
TMl/8
RTH22
TMl/4
7.38
9.48
10.356
13.92
16.2
18.54
21
15
TGl/8
RTH42
TMl/8
RTH22
TMl/4
9.225
11.85
12.945
17.4
20.25
23.175
26.25
31.5
18
TGl/8
RTH42
TMl/8
RTH22
TMl/4
11.07
14.22
15.534
20.88
24.3
27.81
22
TGl/8
RTH42
TMl/8
RTH22
TMl/4
13.53
17.38
18.986
25.52
29.7
33.99
38.5
27
TGl/8
RTH42
TMl/8
RTH22
TMl/4
16.605
21.33
23.301
3132
36.45
41.715
47.25
33
TGl/8
RTH42
TMl/8
RTH22
TMl/4
20.295
26.07
28.479
38.28
44.55
50.985
57.75
39
TGl/8
RTH42
TMl/8
RTH22
TMl/4
23.985
30.81
33.657
45.24
52.65
60.255
68.25
47
TGl/8
RTH42
TMl/8
RTH22
TMl/4
28.905
37.13
40.561
54.52
63.45
72.615
82.25
50
TGl/8
RTH42
TMl/8
RTH22
TMl/4
30.75
39.5
43.15
58
67.5
77.25
87.5
56
TGl/8
RTH42
TMl/8
RTH22
TMl/4
34.44
44.24
48.328
64.96
75.6
86.52
98
68
TGl/8
RTH42
TMl/8
RTH22
TMl/4
41.82
53.72
58.684
78.88
91.8
105.06
119
147.6
82
TGl/8
RTH42
TMl/8
RTH22
TMl/4
47.724
63.14
69.454
95.94
112.34
129.888
100
TGl/8
RTH42
TMl/8
RTH22
TMl/4
58.2
77
84.7
117
137
158.4
180
120
TGl/8
RTH42
TM1!8
RTH22
TMl/4
69.84
92.4
101.64
140.4
164.4
190.08
216
150
TGl/8
RTH42
TM1!8
RTH22
TM1!4
87.3
115.5
127.05
175.5
205.5
237.6
270
180
TGl/8
RTH42
TM1!8
RTH22
TMl/4
100.8
135.9
150.84
212.4
252
292.14
334.8
220
TGl/8
RTH42
TM1!8
RTH22
TMl/4
123.2
166.1
184.36
259.6
308
357.06
409.2
270
TGl/8
RTH42
TM1!8
RTH22
TM1!4
151.2
203.85
226.26
318.6
378
438.21
502.2
330
TGl/8
RTH42
TM1/8
RTH22
TMl/4
184.8
249.15
276.54
389.4
462
535.59
613.8
390
TGl/8
RTH42
TM1!8
RTH22
TMl/4
218.4
294.45
326.82
460.2
546
632.97
725.4
470
TGl/8
RTH42
TM1!8
RTH22
TM1!4
263.2
354.85
393.86
554.2
658
762.81
874.2
500
TG1/8
RTH42
TMl/8
RTH22
TM1!4
280
377.5
419
590
700
811.5
930
560
TGl/8
RTH42
TMl/8
RTH22
TM1!4
308
414.4
467.6
672
795.2
927.36
1,075.2
680
TGl/8
RTH42
TMl/8
RTH22
TMl/4
374
503.2
567.8
816
965.6
1,126.08
1,305.6
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926·0404. FAX (617) 924·1235
10-5
PRINTED IN U.S.A
TGl/8 TMl/8 TM1/4
RTH42 RTH22
NOMINAL RESISTANCE AT VARIOUS TEMPERATURES
Type No.
Standard Zero
Power Resis·
tance Value
(0) at 25·C
Free·Air
Temperature
Resistance (0) of Sensistor® at Temperature other than 25·C
-55·
-15·C
O·C
50·C
TMl/8
RTH22
TM1/4
451
606.8
684.7
984
RTH42
TM1/8
RTH22
TMl/4
550
740
RTH42
TMl/8
RTH22
TM1/4
660
888
1,002 ",
-
TM1/4
772.5
1,095
1,237.5
1,845
2,175
2,505
2,940
RTH22
TMl/4
825
1,110
1,252.5
1,800
2,130
2,484
2,880
1,314
1,485
2,214
2,610
3,006
3,528
1,606
1,815
2,706
3,190
3,674
4,312
5,292
TG1/8
RTH42
1,000
TG1/8
1,200
TGl/8
TG1/8
RTH42
-
-
-
TMl/8
1,800
TGl/8
RTH42
TM1/8
RTH22
TM1/4
927
2,200
TGl/8
RTH42
TMl/8
RTH22
TM1/4
1,133
820
1,500
835
75·
100·C
1,164.4 1,357.92
125·C
1,574.4
1,200
1,420
1,656
1,920
1,440
1,704
1,987.2
2,304
2,700
TG1/8
RTH42
TMl/8
RTH22
TM1/4
1,390.5
1,971
2,27.5
3,321
3,915
4,509
3,300
TGl/8
-
TMl/8
RTH22
TMl/4
1,699.5
2,409
2,722.5
4,059
4,785
5,511
6,468
3,900
TGl/8
TMl/8
RTH22
TMl/4
2,008.5
2,847
3,217.5
4,797
5,655
6,513
7,644
4,700
TGl/8'
TMl/8
RTH22
TMl/4
2,420.5
3,431
3,877.5
5,781
6,815
7,849
9,212
5,000
TGl/8
TMl/8
RTH22
TMl/4
2,575
3,650
4,125
6,150
7,250
8,350
9,800
5,600
TGl/8
TMl/8
RTH22
TMl/4
2,884
4,088
4,620
6,888
8,120
9,352
10,976
-
-
TMl/4
3,468
4,964
5,610
8,092
9,520
10,948
12,444
-
-
TMl/8
RTH22
TMl/4
3,502
4,964,
5,610
8,364
9,860
11,356
13,328
TGl/8
-
TMl/8
RTH22
TMl/4
4,182
5,986
6,765
9,758
11,480
13,202
15,006
-
-
TMl/8
TM1/8
RTH22
RTH22
TMl/4
TMl/4
4,223
5,100
5,986
7,300
6,765
8,:250
10,086
11,900
11,890
14,000
13,694
16,100
16,072
18,300
TMl/8
TMl/8
TMl/8
TMl/8
TMl/8
TM1I8
TMl/8
TM1I8
RTH22
TMl/4
-
-
5,150
6,180
7,215
8,658
10,582
)2,987
15,873
18,759
7,300
8,760
10,680
12,816
15,664
19,224
23,496
27,768
8,250
9,900
12,210
14,652
17,908
21,978
26,862
31,746
12,300
14,760
18,150
21,780
26,620
32,670
39,930
47,190
14;500
17,400
21,450
25,740
31,460
38,610
47,190
55,770
16,700
20,040
20,050
30,060
36,740
45,090
55,110
65,130
19,600
23,520
28,500
34,200
41,800
51,300
62,700
74,100
6,800
8,200
10,000
12,000
15,000
18,000
22,000
27,000
33,000
39,000
TGl/8
TGl/8"
-
-
-
DEVICE TOLERANCE
The actual resistance of the thermistor at T;oC may vary from the calculated value by
an amount not exceeding the tolerances tabulated below.
Temperature
±5%
(·C)
(J)
(K)
-55
±15%
±20%
-15
±9%
±14%
0
±7%
±12%
25
±5%
±1O%
50
±7%
±12%
±10%
75
±9%
±14%
100
±12%
±17%
125
±15%
±20%
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924-1235
10-6
PRINTED IN U.S.A.
TGl/8 TM1/8 TM1/4
1.
Dissipation Derating Curves
600,-----,----,-----.-----.-----,
~ 500 r---~--__,+------~------'-----_j
z
o
'"
~ 400
ill
Ci
~300 r---~~~+-~,,~~~_+----_j
fr
"i 200
x
«
"125-~::::+=::::~~::~::::~~~~
~
100 ~
o
~
____
o
~
25
____
~
____
50
_ L_ _ _ ___'__ _ _ _
75
100
~
125
T.-FREE AIR TEMPERATURE (0G)
TYPICAL CHARACTERISTICS WITH POWER APPLIED
To determine resistance value with power applied, obtain a multiplying factor from the applicable curve below. The free-air curve is
for the condition of heat removal by free-air convection only. The heat sink curve is for the maximum cooling rate condition of a
heat sink strap, with leads attached to an infinite heat sink. Actual conditions encountered will be between these two extremes. After
selecting an applicable multiplying factor from figure 2 or 3, multiply this by the 25°C zero power resistance. This product is then
corrected for the actual ambient temperature 'by use of the appropriate temperature column in the Nominal Resistance at Various
Temperatures table.
2.
Percent Resistance Change vs
Power Dissipation
TM1I8 I RTH22 I TM1I4
3.
1.2
1.2
'"0>-
'"0
u
L
;l;
'"z
~
5:::l
Percent Resistance Change vs
Power Dissipation
TM1I8 I RTH42! TM1I4
FREE·AIR
T.=25°/l
1.1
V
w
V
u
«
~
....... V
1.0
~
o
'"z
~
5:::l
./
/'
'/'
100
200
FREE·AIR
1.1
TA =2
"z
L
w
HEAT SINK
T, = 25°Ct
/ /'
~
;l;
./V
V
"z
>u
./
300
U
/
«
>-
.
V
~
-t-U-E-S2_1~-~-:-S-M-+-----t------t------t----,----t
Il'l--l0-0-v-+--.-'tr,,-r
I
trr
150V
25n5
UESlO03SM
trr
25ns
STANDARD RECOVERY RECTIFIERS
UESll02SM
SM5B04
25ns
UES1302SM
SM5B09
30ns
UESll03SM
SM5806
25ns
UES1303SM
SM5811
30n5
..
HV PLUS RECTIFIERS
400V
SM3612
SM4246
SM5616
SM5617
SM5551
SM541B
600V
SM3613
SM4247
SM561B
SM5619
SM5552
SM5419
BOOV
SM3614
SM424B
SM5620
SM5553
SM4249
Contact factory for Rectifiers, Zeners; TVSs, and PINs not displayed in this section.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
11·5
PRINTED IN U.S.A.
SURFACE MOUNT PACKAGES
PRODUCT SELECTION GUIDE
Power Zeners & Transient Voltage Suppressors
D.mA
POWER ZENERS
POWER ZENERS
SM4461
SM4462
SM4463
SM4464
SM5968
SM5969
SM4954
SM4955
SM4956
SM4957
10V
llV
12V
13V
14V
SM4465
SM4466
SM4467
SM4468
SM4958
SM4959
SM4960
SM4961
UZ710SM
15V
16V
18V
20V
22V
SM4469
SM4470
SM4471
SM4472
SM4473
24V
27V
30V
33V
36V
39V
40V
43V
45V
47V
50V
51V
56V
60V
62V
UZ706SM
UZ707SM
UZl08SM
UZ709SM
D
MELF B
SM4486
SM4979
82V
90V
SM44B7
C""..IJ!l"\nn
UZ712SM
UZ713SM
UZ714SM
91V
100V
'110V
120V
130V
SM4488
SM4489
SM4490
SM4491
SM4492
SM4981
SM4982
SM4983
SM4984
SM4985
SM4962
SM4963
SM4964
SM4965
SM4966
UZ715SM
UZ716SM
UZ718SM
UZ720SM
UZ722SM
140V
150V
160V
170V
180V
SM4493
SM4494
SM4986
SM4987
SM4495
SM4988
SM4474
SM4475
SM4476
SM4477
SM4478
SM4967
SM4968
SM4969
SM4970
SM4971
UZ724SM
UZ727SM
UZl30SM
UZl33SM
UZ736SM
190V
200V
220V
240V
260V
SM4496
SM4989
SM4990
SM4991
SM4479
SM4972
SM4480
SM4973
SM4481
SM4974
UZ745SM
UZ750SM
SM4482
SM4483
SM4975
SM4976
SM4484
SM4977
UZllOSM
UZ111SM
UZ112SM
UZ113SM
UZl14SM
UZ115SM
UZ116SM
UZ117SM
UZ118SM
UZ119SM,
UZ120SM
UZ122SM
UZ124SM
UZ126SM
SM4992
SM4993
UZ128SM
UZ130SM
UZ132SM
SM4994
340V
360V
380V
390V
400V
UZl56SM
UZl60SM
oJIVI"'T;1OV
UZ790SM
270V
280V
300V
320V
330V
UZ740SM
UZ770SM
UZ775SM
UZ780SM
SM4995
UZ134SM
UZ136SM
UZ138SM
SM4996
UZ140SM
TRANSIENT VOLTAGE SUPPRESSORS
5.0
6.0
12.0
15.0
24.0
30.5
40.3
51.6
5.6@ 25mA
6.5 @ 20mA
13.6@ 5mA
16.4 @ 5mA
27.0 @ 2mA
33.0@ 1mA
43.7 @ 1mA
54.0@ 1mA
9
11
22.6
26.5
41.4
47.5
63.5
78.5
500
Contact factory for Rectifiers. Zeners. TVSs. and PINs not displayed in this section.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
11-6
PRINTED IN U.S.A.
APPLICATION NOTES
. . 12-3
. .12-4
Table of Contents . .
Application Notes .
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
12-1
PRINTED IN U.S.A.
I!I
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
12-2
PRINTED IN U.S.A.
TABLE OF CONTENTS-Application Notes
POWER SUPPLY DESIGN
U-68A
Switching Regulator Design Guide ...................................................... 12-4
U-73A
The Importance of Rectifier Characteristics in Switching Power Supply Design .................... 12-26
U-76
Flyback and Boost Switching Regulator Design Guide ....................................... 12-37
U-77
Thermal Design Considerations for Operating Unitrode's 10-92 Transistors and
Darlingtons in Pulsed-Power Applications ................................................ 12-46
U-79
Guidelines for Using Transient Voltage Suppressors ......................................... 12-50
U-82
Hybrid Circuits for Low Voltage Switched-Mode Converters ................................... 12-59
U-83
Incorporate Active Inrush Current Limiting to Improve Reliability and Efficiency of
Power Supplies .................................................................... 12-68
U-85
Design Guide-Power Schottky Rectifiers in a Switching Regulator ............................. 12-72
U-103
Using Bipolar Synchronous Rectifiers Improves Power Supply Efficiency ......................... 12-88
U-105
How to Measure KT and Kv Without Measuring Torque or Angular Velocity ....................... 12-95
U-108
Schottky Rectifiers for Low Voltage Outputs .............................................. 12-97
DN-lA
Determining the Change in Zener Voltage When the Current is Changed ........................ 12-105
DN-3
Minimizing Storage Time When Using Unitrode Switching Regulator Power
Output Circuits (PIC600 Series) ....................................................... 12-106
DN-4
Avoiding Spurious Oscillation When Using Unitrode Switching Regulator Power
Output Circuits (PIC600 Series) ....................................................... 12-107
DN-6
Operating the Switching Regulator Output Circuit (PIC600 Series) at Low Frequencies .............. 12-108
DN-10
Squib-Firing Circuit Provides for Reliable Firing, from Low Level Inputs .......................... 12-112
DN-14
Nanosecond SCR Switch for Reliable High Current Pulse Generators and Modulators ............... 12-114
DN-15
Nanosecond SCR for Laser Diode Pulse Driver ............................................ 12-116
DN-20
New High Efficiency Circuit Designs Utilizing Low Saturation Drop Transistor ..................... 12-118
ST-Al
250 Watt Off-Line Forward Converter Design Review ....................................... 12-121
ST-A2
High Frequency Series Resonant Power Supply-Design Review ............................... 12-137
ST-D1
Proportional Base Drive of Bipolar Power Transistors in Switching Power Supplies ................. 12-152
Sr-I"l
Thermal Considerations for Semiconductor Device Reliability ................................. 12-159
ST-5
Selecting and Applying Rectifiers for Optimum Performance in Switching Power Supplies ............ 12-182
ST-12
Protecting Circuits from Transient Energy Sources .......................................... 12-190
ST-13
Limiting Inrush Current to a Switching Power Supply Improves Reliability, Efficiency ................ 12-200
TH-1
Mounting and Thermal Considerations (10-220 Package) ..................................... 12-204
TH-2
Thermal Design Considerations for Leaded Devices ......................................... 12-206
TVS200
Transient Voltage Suppressor Guide ..................................................... 12-208
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEl. (617) 926-0404 • FAX (617) 924·1235
12-3
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
SWITCHING REGULATOR DESIGN GUIDE
I. The Advantages of the Switching Regulator
Unlike conventional "dissipative" series or shunt
regulators, in which the power-regulating transistor
operates in a continuous-conduction mode, dissipating large amounts of power at high load currents especially when the input-output voltage difference is
large- the switching regulator has high efficiency
under all input and output conditions. Furthermore,
since the power-transistor "switch" is always either
cul Oil ur :;aluraied (excepi for a very brief transition
between those two states), the switching regulator
can achieve good regulation despite large changes in
input voltage, and maintains high efficiency over wide
ranges in load current.
industrial process control systems, instrumentation,
and communication.
Compared to the dissipative regulator, the switching
regulator does have some disadvantages which preclude its use in some applications. The primary power
source delivers current to the switching regulator in
pulses which, for efficiency reasons, have short rise
and fall times. In those applications where a significant series impedance appears between the supply
and the regulator, the rapid changes in current can
generate considerable noise. This problem can be
reduced by reducing the series impedance, increasing the switching time, or by filtering the input to the
regulator.
Because the switching regulator regulates by varying
the ON-OFF duty cycle of the power-transistor switch,
and the switching frequency can be made very much
higher than the line frequency, the filtering elements
used in the power supply can be made small, lightweight, low in cost, and very efficient- i.e., with almost
negligible power losses. It is possible to drive the
switching regulator with very poorly filtered DC (in
fact, in high-power applications, three-phase rectification without filtering of any kind is often used to
develop the input DC from the power line), thereby
eliminating large and expensive line-frequency filtering elements.
A second problem of the switching regulator, compared to the dissipative regulator, is its response time
to rapid changes in load current. The switching regulator will reach a new equilibrium only when the
average inductor current reaches its new steady-state
value. In order to make this time short, it is advantageous to use low inductor values, or else to use a
large difference between the input and output Voltage.
Improved circuits for controlling switching regulators
have been developed at Unitrode, thereby eliminating
some earlier design constraints and optimizing the
performance attainable with available hardware.
These new circuits permit taking full advantage of the
economy and efficiency of the Unitrode PIC600
Series Hybrid Power Switch.
Finally, it is possible to design switching regulators
with excellent load-transient properties, so that step
increases of load current cause relatively small instantaneous changes in output voltage, recovery from
which is essentially completed in a few hundred
microseconds.
The design approach used herein is believed to be
original, and to be clearly superior to earlier methods
of calculating the key parameters and designing the
power inductor ... yielding explicit, accurate results
in significantly less time than the approximate equations in common use.
The switching regulator has become increasingly
popular in new-equipment designs, not only in aerospace and defense applications, but in computers,
n
n
L.:::::J
12-4
SEMICONDUCTOR
PRODUCTS
_UNITRDDE
U-68A
APPLICATION NOTE
II. The Switching Regulator Described
and Characterized
The basic configuration of a switching regulator is
shown in Figure 1. It accepts a DC voltage input, Ein,
and regulates a DC ouput voltage, Eo, despite variations in Ein and load current. Although the static regulation, dynamic regulation, and ripple rejection of this
type of regulator cannot be as easily optimized as they
can in a continuous (so-called "dissipative") series
regulator, its efficiency, power density (Watts output
per cubic inch) and economy are all markedly superior
to the series regulator ... particularly for low-voltage,
high-current supplies. Unlike a series regulator, it
maintains high efficiency with high input voltages.
Switching regulators can thus be.employed with high
efficiency to derive low voltage outputs from a high
voltage unregulated supply.
load, circulating through "catch" diode D1. The input
of the LC filter is now at zero Volts, i1 decreases to
its original value and the cycle repeats.
The output voltage, Eo, will equal the time average of
the voltage at the input of the LC filter:
Eo =
where:
=
1/f
The control circuit senses and regulates Eo by controlling the duty cycle, ex = toofT. If Ein increases,
the control circuit will cause a corresponding reduction in the duty cycle, ex, so as to maintain a constant
Eo.
All of these advantages derive from the method of
regulating the output voltage: by varying the duty
cycle of a power-transistor switch, rather than varying
the voltage drop across a power transistor operating
in the linear mode. Because the switch (01 in Figure
1) is always in the saturated state when it is conducting, and is otherwise completely non-conducting (except for a brief commutation time between the ON and
OFF states), the power dissipated in the r.egulator is
much lower than it would be in a series regulator for
the same input and output conditions.
Eo =
ex Ein
lEI
Rs.1.L-
E in
The basic switching regulator circuit functions
as follows:
The control circuit causes transistor switch, 01, to
switch on and off at a predetermined frequency, f.
During the time that 01 is on, too. the input voltage,
Ein, is applied to the input of the LC filter, causing
current i1 to increase. When 01 is off, the energy
stored in the inductor, L, maintains current flow to the
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
T
Ein toofT
FROM SENSING
AND
CONTROL CIRCUITS
L
D1
ESR
Figure 1. Switching Regulator Basic Configuration
12·5
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
T.E2..
t••
Ein
Ein-Eo
Figure 2a
toff ::=
VL
-
Figu.re 2b
I,
T -
ton
-Eo
10+aiJ/2
i
-_~ ___ ~,-
~lo-ai./2 ~
ait
ao
Ein - Eo,
L
'.,
Eo, ..
L
LOTI
IV
it max - it min
ait/2
Figure2c
i.-Io
i2
Figure2d
aVe
Vc
Figure 2e
1
2
t.O
C
ail
BIC
ait
.
Vc
+ VESR
ESR
VESR
eo
Figure 21
eo
ae.
aVe OR aVm, whichever is greater.
NOTE: See Appendix A lor rigorous analysis and justification
Figure 2. Switching Regulator Waveforms
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-6
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
Figure 2 shows some of the important waveforms and
equations which define the operation of the switching
regulator power circuit. The following discussion is
based on several simplifying assumptions which are
explained and justified or corrected in Appendix A.
The most significant assumptions are to neglect the
saturation voltage of 01, the forward drop of D1, and
the series loss resistance, Rs, of the inductor, L.
peak to peak capacitive ripple component aVe =
aO/C = aid8fC. (The factor 8f for a triangular current waveform is comparable to 21ff for a sinusoidal
input current.)
Figure 2e shows the resistive component, VES., of the
ripple voltage which simply equals i2 x ESR, and is
in phase with i2.
Figure 2f, the total output ripple voltage, eo, is the sum
of the waveforms in Figures 2d and 2e. Note that since
Ve and v,s. are in quadrature, the greater of these two
components dominates, and for all practical purposes
the peak to peak output ripple voltage, ae o, is equal to
either aVe or aVES. whichever is greater.
Figure 2a shows the voltage across inductor, L, which
equals (Ein - Eo) during to.. and (-Eo) during toff .
Under equilibrium conditions, when output load current, 10, is constant, the average voltage across L
must, by definition, equal zero.
Figure 2b shows the current i1 through the inductor.
Under equilibrium output current conditions, the increase in current during too. ail, must equal the decrease in current during toff . The average value of i1
equals the output current, 10.
The magnitude of VESR in comparison with Ve shown in
these waveforms is not exaggerated. Indeed, when
designing a switching regulator to operate at frequencies greater than 20 kHz in order to achieve small size
and low cost in the Land C filter elements, the ESR of
the capacitor usually dominates completely. Even
when high quality capacitors (low ESR) are employed,
it is usually necessary to use a larger capacitance
value than would otherwise be required in order to
realize the ESR required to achieve the ripple objective of the design.
Figure 2c shows current i2 through the capacitor,
which is equal to (i1 - 10). The average value of
i2 = 0, and ai z = ail. Current i2 causes a ripple voltage to appear at the output. The output ripple voltage,
eo, has two components, a capacitive component, Ve,
and a resistive component, VESR, caused by the equivalent series resistance of the capacitor.
With conventional free running switching regulator . .
control circuits, capacitor ESR also causes very significant departure from the design frequency, which
can result in large ripple magnitude, inductor saturation, and switching transistor failure. In the circuits
developed at Unitrode and presented in the next
section, the frequency-variation effect caused by ESR
is effectively eliminated, leaving only the ripple consideration.
Figure 2d shows the capacitive component, Ve, of the
ripple voltage, which is the time integral of the capacitor current, i2. Note that Ve is the integral of a triangular
wave, and is not sinusoidal. Also note that Ve is in
"quadrature" with i2, in the sense ihat Ve min and Ve
max occur at times A and S, midway in the to.. and toff
intervals, when i, is zero. The total charge, aO flowing
into C is computed graphically by finding the area of
the triangular current waveform between time A and
time B (Area = Yz bh; aO = '12 X r/2 x aiz/2). The
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926-0404 • FAX (617) 924-1235
Detailed design consiGerations for switching regulator
power circuits are contained in Section IV.
12-7
PRINTED IN U.S.A.
U-68A
APPLICATION NOTE
III. Applications Circuits for Switching Regulators
The design and performance of conventional switching regulators are usually dominated by the ESR of the
output capacitor. However, in the group of circuits
described in this section, the following parametric relationships and circuit characteristics are easily and
economically attained:
• The switching frequency may be selected
and established at the optimum value for the
switching components, and will be independent of the value of the ESR of the output
capacitor.
• The value of toff is held relatively constant,
over wide ranges of load' current and input
voltage, and independent of the ESR of the
output capacitor. Constant toff results in constant ripple current and output ripple lioltage.
.• Settable overcurrent limiting is provided,
thereby protecting both the load and the
switching transistors under all conditions,
and preventing saturation of the power inductor during the startup transient period,
thereby minimizing startup overshoot.
• The overcurrent limiting circuit is significantly
lower in dissipation than conventional
current-limiHeedback arrangements.
• The drive current to the power output (switch)
stage is regulated to a pre-determined value,
for best efficiency and optimum switching
speed. Drive current is automatically increased at low temperatures and decreased
at high temperatures, thereby maintaining
optimum drive conditions for the power
switch.
3 typifies this family of regulators. ·It is shown implemented by the popularLM305 regulator IC, and a
Unitrode Series PIC600 Hybrid Power Switch, comprising a q'uasi-Darlington switching transistor,. a fast
recovery catch diode, and transistor bi.as resistors,
all matched for optimum efficiency and switching
speed (up io .100 kHz without derating). The configuration of Figure 3 is a positive output regulator, with
performance characteristics as follows:
20to 40V
Eo
5V ±
Lle o
10
Isc
1%
100 mV p-p (2% p-p rippie)
2to lOA
12A
Regulation versus Ein (20 to 40V) <25 mV
Transient Recovery Time for step change in load
current from 2A to lOA, or lOA to 2A < 150
jLsec.
= 50 kHz nominal
Efficiency> 70%
The circuit of Figure 3 operates in the fixed-olf-time
mode; hence, output ripple is independent of input
voltage over wide ranges. In this circuit, two feedback
signal paths are provided:
•
Note that, although the use of this circuit approach
permits essentially constant "10,," operation even with
capacitors having relatively high ESR, the output
ripple voltage is increased by high ESR. (If the ripple
developed across ESR is significantly larger than that
developed across C, then the ripple is essentially
proportional to ESR.)
Not all of the circuits that follow have all of the virtues
listed above, but the exceptions will be noted. Figure
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
Ein
12-8
DC Feedback. A fraction of the DC output
voltage, Eo, is fed back to the inverting in~ut
of the LM305 through voltage divider Rl, R2.
The DC voltage at the inverting input is compared to a reference voltage (approximately
1.BV) within the LM305, and the LM305 regulates Eo so that the voltage fed back to the
inverting input is essentially equal to the built
in reference voltage. The Rl , R2 divider ratio
therefore establishes the level of the DC output voltage, Eo. Resistor RS improves output
voltage regulation versus input voltage
changes by feeding a small compensating
voltage proportional to the input voltage into
the inverting input of the LM305.
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
• AC Feedback. Capacitor C1 feeds back an AC
voltage waveform to the inverting input of the
LM305. This voltage is proportional to the output ripple voltage plus the AC voltage developed across R" lle o + llvRI.
Current-limiting action is provided by transistor 01,
the collector of which is connected to the "gate" or
"inhibit" terminal of the LM305 (pin 7). When the load
current is normal, 01 is cut off and pin 7 floats; but
when the voltage drop across R, increases to a value
greater than the sum of V'E (01) and VRJ, 01 turns on,
cutting off the drive current from the LM305 and, ultimately, the power switch. This cutoff action is made to
"latch" by the fact that, with the drive cut off, VRl disappears. This keeps 01 on, until the current through
R, drops significantly - enough to make the voltage
drop across R, fall below the V'E of 01.
Capacitor C2 feeds back an AC voltage to the
non-inverting input of the LM305. This voltage
is proportional to the output ripple voltage plus
the AC voltage across R3, lleo + VRJ.
When the circuit values are properly established, the
same fraction of lle o is fed back to both inverting and
non-inverting inputs, thereby effectively cancelling.
The operation of the switching regulator is thus rendered independent of the output ripple voltage developed across the C or ESR of the output capacitor.
The current through R" following such an overload
cutoff action, falls linearly at the rate of Eo/L. When
01 is cut off, drive current is restored. The circuit will
then continue to switch on and off at a frequency comparable to normal operation, with the average current
limited at the design limit, and power dissipation held
to safe values.
Since the lleo components cancel each other, the
LM305 essentially compares llvRI at the inverting input
to llvRJ at the non-inverting input. Voltage llvRJ is a
rectangular waveform with a peak-to-peak amplitude
equal to I drive x R3, where I drive is the base drive
to the hybrid switching transistor provided by the
LM305, and llvRI is a triangular waveform with a peakto-peak amplitude equal io llil x R" where llil is
the ripple current through inductor L. When the drive
current is on, llvRJ is at its peak positive amplitude. As
i l increases, VRI increases proportionately. When the
positive amplitude of llvRI reaches llvRJ, this causes
the LM305 to switch off the drive current, llvRJ immediately drops to its peak negative amplitude, and h
starts to fall. When llvRI reaches a negative amplitude
equal to llvRJ, the LM305 switches the drive current
back on, and the process repeats. In this manner, the
LM305 controls the power switch so that llil is fixed.
Since toff = lli l x L/Eo, with· fixed values of Land
Eo, tOff is fixed and independent of changes in Ein
or capacitor Cor ESR values.
tE in
L
22p.H
R.
0.06
+-~--<> tEout
Co
R2
3.8K
R4, connected between pins 1 and 8 of the LM305,
establishes the desired level of base drive for the
PIC600 Series Hybrid Power Switch, and determines
the hysteresis voltage across R3.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.Q404 • FAX (617) 924-1235
0--.-,<>--..------...
240p.fd
0.02511
Figure 3. Positive Voltage Switching Regulator
12-9
PRINTED IN U.S.A.
U-68A
APPLICATION NOTE
Transient response of the switching regulator of
Figure 3 is shown in Figures 4, 5, and 6.
Output
Volts
:~I~l1
o
100
200
300
Time, psec
400
500
rectangular current pulse associated with the power
switch turning on and off from propagating into the
Ein supply line. The capacitance value required is a
function of the impedance characteristics of the Ein
supply and intervening wiring. Watch out for underdamped resonance with the inductance of the input
wiring, or transient induced ringing may occur. The
input capacitor must have short leads, and the ground
side should preferably be connected directly to the
ground side of the output filter capacitor.
A 10A negative voltage switching regulator, utilizing
an LM304 and PIC600 series, is shown in Figure 7.
A reference voltage is determined by resistor R1 and
R2. The error amplifier controls the output voltage at
twice the voltage across R2. Diorlp. n1 is Ilsed to ensure a potential difference of less than 2V at the unregulated input (pin 5) with respect to the reference
supply (pin 3). (If the unregulated supply terminal gets
more than .2V positive with respect to reference supply, the collector isolation junction of transistor 06 of
LM304 becomes forward biased and disrupts the
reference.)
Figure 4. Ein from 0 to 25V
~ It-""
Current limiting is achieved, in Figure 7, by means of
reducing the reference voltage to ground with the
help of transistor 01 and resistor RS, instead of turning off the base drive to the power output switch as
in Figure 3.
1
o
o
10"
....
200
300
400
~
Time, psec
Figure 5.10 from 4A to lOA
The functions of the rest of the components and the
operation of the switching regulator are the same as
described for Figure 3.
A positive switching regulator using a /LA723 is shown
in FigureS.
Output
Volts
The basic performance and circuit operation is the
same as Figure 3.
The circuit shown in Figure 9 is a high voltage positive
switching regulator. Because the LM305 (like almost
alilC regulators) cannot be operated at supply voltage
iri excess of 40V, this circuit uses a fraction of Ein as
a power supply for the IC circuit by means of zener
diode and current limiting resistor R9. The voltage
isolation between LM305 and power switch, and the
regulated base drive to the power switch are provided
by transistor 02.
ota----,rOO----~~---~~---40~0--~~
Time •. psec
Figure 6.10 from lOA to 4A
It is usually necessary to employ a noise filtering
capacitor across the input of any switching regulator.
This functions to prevent the steep waveform of the
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924·1235
12·10
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
The basic operation of the circuit and design approach is the same as that of a low voltage positive
switching regulator.
The circuit shown in Figure 10 is a negative high voltage switching regulator.
This circuit is similar to the low voltage negative
switching regulator with a minor modification_ Transistor Q2, resistor R1 0 and R11 are all used to provide
regulated base drive to the power output stage and
also to provide the voltage isolation between power
output stage and LM305. The resistor R9 is used to
limit current through zener diode under steady state
and startup conditions.
- Eino--..--:Q-..--...
E in
D1
0--.,-:;9-..------.
C1
R6
2.2
R,
0.06
Eoul
'-_+-_+--0 - Eoul
I
R8
-=
82011
Co
2401'-'
0.02511
R2
3.BK
Figure 7. Negative Voltage Switching Regulator
Figure 9. High Voltage Positive Switching Regulator
-------
+ Ein
E in
0-..--'<>-1--,.
R6
2.2K
R6
1.5K
R,
0.06
1 . - _..........-0 Eoul
'-'---1r--+-OioEout
0.011'1
R2
UK
co
R9
0.02511
,.
240,.1
Vr
1aV RB
L-+-~811\20~1l------'
2401'1
0.025U
Figure 10_ High Voltage Negative Switching Regulator
Figure 8. Positive Voltage Switching Regulator
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924-1235
1-=
Co
T-=
12-11
PRINTED IN U.S.A.
HI
U-68A
APPLICATION NOTE
IV. Designing the Power Circuit
In designing a switching regulator power supply, the
following parameters will normally be predefined.
Specific vaiuessiJown for each parameier wiii be used
as the basis for a design example:
Eo
5V Output Voltage
100 mV Output Ripple Voltage,
Peak to Peak
lomax
10A Output Current, Full Load
lomin
2A Output Current, Minimum Load
Ein max
40V Input Voltage, Maximum
Ein min
20V Input Voltage, Minimum
The first step in the design is to decide on the operating frequency of the switching regulator. No concrete
rules can be given forthis decision.
High frequency operation is distinctly advantageous
in that the cost, weight and volume of both Land C
filter elements are reduced. However, above the frequency where the capacitor ESR exceeds its capacitive reactance, no further reduction in capacitor size
or cost will occur. This frequency, in the range of 1-50
kHz, depends upon the "quality" of the capacitor in
terms of ESR. Above this frequency, the inductor will
continue to diminish in size and cost, although when
the inductor reaches a very small size, cost will
level off.
Operation above 20 kHz is desirable to eliminate the
possibility of audio noise.
The main factor limiting high frequency operation is
the drop in efficiency caused by switching losses in
the power switching transistor and "catch" diode. The
higher cost of these fast switching semiconductors required to operate efficiently at high frequencies must
be weighed against the reduced cost, size and weight
of the Land C components to arrive at the optimum
frequency for any specific application. It may be desirable to work the design through at several frequencies in order to make a decision.
Referring to the specification for the Unitrode PIC
625/635 Hybrid Power Switch, the DC losses (Transistor VeE"" Diode V,) under the conditions of this
application amount to 10W. The following tabulation
shows the switching losses and overall efficiency at
several frequencies.
Frequency
Power output
DC losses
Switching losses
Total power input
Realizable efficiency
20 kHz
50 kHz
50
10
61
82%
50
10
2.5
62.5
80%
100 kHz
50
10
5
65
77%
For our example, we will choose a frequency of
50 kHz, even though the efficiency is not significantly
reduced at 100 kHz. At 100 kHz most currently available tantalum and aluminum electrolytic capacitors
begin to exhibit series inductance.
Transistors and diodes which do not have the fast
switching capabilities of the PIC 625/635 will become efficiency limited at much lower frequencies.
Note that in this specific application, a dissipative
regulator design will incur power losses in the series
transistor of 350W, resulting in an efficiency of 12.5
percent!
The control circuits shown in the previous section
control the on-off switching periods by sensing and
controlling the ripple current, boil, through the inductor
L. This mode of operation results in a constant ripple
current and (assuming Eo and L are fixed) constant
off time, toff , independent of input voltage. The relationship between toff, f, Eo, and Ein is as follows (from
Figure 2a):
tOff =
(1 - Eo/Ein) / f
With toff and Eo fixed by the control circuit, f will
change when Ein changes, and f will be maximum
when Ein is maximum. In our specific example,
fmax
Ein max
Eo
In the specific application defined at the beginning of
this section, the power output (Eo x 10 max) is SOW.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 92&0404· FAX (617) 924-1235
1 kHz
50
10
0.05
60.05
83.3%
12-12
50 kHz
40V
5V
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
so that:
toff
=
3.
(1
-
5/40)
/
50,000
=
17.5/Lsec
Now, with toff fixed at 17.5 p,sec, if Ein changes to Ein
20V,
min
f.
=
moo
(1 - Eo/Ein)
toff
=
(1 - 5/20)
17.5 X 10--6
=
Losses in a practical inductor are higher
than in a capacitor with equal energy storage capacity (assuming low ESR). This
again argues for small L, large C.
One major objection to a low L/ C ratio is that it causes
large and sometimes intolerable overshoot in input
current and output voltage on startup, when the circuit
is first energized. Input current overshoot can saturate
the inductor and destroy the switching transistor. The
current limiting feature of the applications circuits
shown in Section III effectively controls the startup
transient, thereby protecting all components and minimizing voltage overshoot. With current limiting, this
problem is eliminated and no longer pertains to the
selection of Land C values.
43 kHz
The fact that the frequency changes slightly with Ein
is really not important, as stated earlier, because constant toff operation results in more constant output
ripple than constant frequency operation.
Having determined (or assumed) the maximum operating frequency and calculated toff' we next proceed to
find specific values for Land C. Land C together form
a low pass filter which reduces the rectangular waveform at the filter input to a DC output voltage, Eo, with
a small amount of ripple, Ileo, superimposed. To
achieve a specified Ileo requires a specific LC product, independent of load current. Theoretically, this
LC product can be achieved with any L/C ratio - small
L and large C, or large L and small C (or very large L
and no C at all, using instead the load resistance RL as
one element of an L/R filter). There are, however, several practical economic and performance considerations that apply to selecting specific Land C values.
Referring to Figure 2b and its associated equations,
the peak-to-peak ripple current through the inductor,
Ili I, is inversely proportional to the inductance, L. As L
is made smaller, Ili l increases. Maximum limits on Ilh
determine how small L is permitted to be, as follows:
1.
1.
Under the power and frequency ranges
commonly encountered in switching regu!ator circuits, it costs more to store energy
in an inductor than in a capacitor. Also, an
inductor will have considerably greater
weight and volume than a capacitor with
equal energy storage capacity. Small Land
large C, within the limits defined below, will
usually result in the lowest cost, weight and
size design.
The instantaneous current through L ranges
between a maximum of 10 + llid2 and a
'minimum of 10 - llid2. If llid2 is permitted
to become larger than 10, the minimum inductor current becomes a negative value. . '
This is impossible, since neither the switching transistor nor the "catch" diode will
conduct. Therefore, the switching regulator
goes into a discontinuous mode of operation which is perfectly safe, but the frequency changes considerably and regulation with output current changes becomes
relatively poor. The worst case consideration to insure that discontinuous operation
does not occur is to make llid2 equal to the
minimum load output current, 10 min, or
ilh = 2 10 min.
2.
Small L and large C results in low "surge
impedance" of the filter, hence better transient behavior with step changes in load
current.
It is not practical to apply this criterion if 10
min is very small «0.05 10 max) because
Ili l would then be very small, forcing an impractically large L value. In applications
It is favorable to push in the direction of small Land
large C for the following reasons:
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-13
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
where 10 min is very small, there are two
alternatives: (a) raise 10 min by preloading the supply, or (b) make ail = 2(0.05
10 max) = 0.1 10 max realizing that when
10 becomes less than 0.05 10 max, the discontinuous mode will occur.
2.
The maximum peak current is equal to the
full load current, 10 max + Aid2. As L is
decreased, the corresponding increase in
ai, will begin to cause a significant increase
in the maximum peak current. Since the inductor must be designed not to saturate at
the maximum peak current, this begins to
negate the cost, size and weight advantages
of making the L value smaller. Higher peak
currents will have an adverse effect on efficiency and transistor drive requirements,
and may require transistor and "catch" diodes with higher current ratings (and higher
cost). It is, therefore, recommended that
aid2 be no greater than 0.25 10 max, which
will limit the maximum peak current to 1.25
10 max, or ail max = 0.510 max.
The final step is to determine the requirements for
the capacitor C and ESR values which will result in the
desired output.ripple voltage, aeo. Since the two components of aeo : AVe and AVEsR, are in "quadrature",
we can consider each component separately, with a
worsi case error of iess ihan 20 percent when both
components are equal. This much error is highly unlikely, since the ESR component usually dominates
completely when operating at high frequencies.
From Figure 2d:
C
note that C varies inversely with f. In order to achieve
AVe less than the desired maximum Aeo, the minimUm
value for C must be determined at the lowest frequency, fm;o. calculated previously.
Cmin
8 x 43 x 103
114 ftF
In summary:
2..10 min, within the following
somewhat arbitrary limits:
Ailmin
0.110 max
ai,max
0.5 lomax
EOa~ltoff
5 x 17.~
X
10- 6
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
21.9ftH
3
Av ESR
10- 3
4
0.0250
=
Now that tolr and ai, have been determined, L can be
calculated as follows:
100 x 10
~
100
=
X
From Figure 2e:
ESR max
In our example, 10 min
2A, 10 max
10A. Calculating Ail = 2 10 min = 4A, which is acceptable
since Ai-J max = 0.5 x 10A = 5A, and ail min = 0.1
x 10A = 1A
L =
=
X
With high frequency operation, capacitor ESR usually
dominates, forcing the use of a C value much greater
than C min in order not to exceed ESR max.
Subsequent sections deal with designing the inductor
and selecting the capacitor and other components of
the switching regulator.
12-14
PRINTED IN U.S.A.
U-68A
APPLICATION NOTE
V. Design of the Power Inductor
This simplified nomographic method facilitates selecting the smallest core that will achieve the desired
characteristics of the power inductor. This procedure
is useful in selecting the proper core and determining
wire size, number of turns, copper losses, and temperature rise. It also permits investigating the effects
of change in assumed initial conditions and in "trimming" the design.
A detailed analysis of this inductor design procedure
is contained in Appendix B.
Tables 1 and 2 give core parameters for a variety of
commonly used ferrite pot cores and Mo-Permalloy
toroids. (Note: There is no significance to the selection of manufacturers, nor is any intended. Many manufacturers make roughly equivalent cores in these
sizes, with similar magnetic properties.)
Ferrite and Mo-Permalloy powder are excellent core
materials for the switching regulator inductor. Since
the rms AC current through the inductor is small
compared to the DC current, AC losses in the winding
and core losses will be negligible compared with DC
winding losses.
Selection of the proper core for a specific application
is a process concerned with two factors: (1) The core
must provide the desired inductance without saturating magnetically at the maximum peak overload current, i 1 max. In this respect each core has a specific
(Ll2)", energy storage capability. (2) The core must
have a window area for the winding which admits the
number of turns necessary to obtain the required inductance with a wire size which will result in acceptable DC losses in the winding at the full load output
current, 10. Each core has a specific (Ll2)d;" capability
that will result in a specific power loss or temperature
rise.
The significant core parameters are primarily core
size and the magnetic gap in series with the flux path.
Consider a very small (for the application) ferrite pot
core with no air gap. The effective .permeability, /Leo
will be very large because there is no gap. Relatively
few turns will be required to achieve the desired inductance, and the power loss at 10 will be small, but
the core cannot store the required energy L(il max)2
without saturating. If we introduce a gap into this core,
the energy storage capability increases (the extra
energy is actually stored in the gap, not in the ferrite
material). However, the gap causes the effective permeability to drop, which requires more turns of finer
wire to achieve the desired inductance. If the core is
UNITRODE • SEMICONDUCTOR PROOUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
too small, as the gap is increased to the point required
to achieve the necessary energy storage capability
without saturating, the DC resistance of the increased
number of turns of finer wire has increased to the
point where the power dissipation and temperature
rise is too great. This conflict is resolved by going to
a larger core with appropriate gap.
To facilitate core selection, Tables 1 and 2 contain
tabulated values of (Ll2)", energy storage capability
(saturation limited) and (Ll2bc capability (based on
power diSSipation resulting in 25°C temperature rise).
These values have been calculated for various size
cores with different gaps, by methods described in
Appendix B. Also given in the tables are the power
diSSipation corresponding to a 25°C rise for each core
size, and the effective window area for the winding,
Aw'. Tabulated AL values relate to different gaps. (AL is
the inductance index at a particular gap setting defined as the inductance in mH for 1000 turns.)
The optimum cores for switching regulator inductor
applications generally have quite large gaps, and
consequent relatively low AL values. This is fortuitous,
since the core properties are then dependent mostly . ~
on the gap itself, and variations in the magnetic ma~ ~
terials of the core are swamped out, resulting in
excellent stability and linearity. Note, however, that
in the ferrite pot core table, many of the lower AL
values are not supplied as stock items by the manufacturer, and the desired gap must be ground to size
on a special order basis.
MO-Permalloy powder cores are effectively "gapped"
by the manufacturer by means of varying the amount
of non-magnetic binder that holds the Mo-Permalloy
particles together within the core, and by the size and
shape of the MO-Permalloy particles. Thus, the "gap"
is actually distributed throughout the core material.
These cores are supplied with many different AL values
in each size.
One of the main advantages of ferrite pot cores and
ferrite E-I cores (not tabulated,.but worth considering)
is that the winding is easily formed on a bobbin which
is subsequently assembled within the two-piece core
assembly. Ferrite toroids are not recommended because of the practical difficulty of introducing a gap.
Mo-Permalloy toroids are not as convenient to wind,
but this is not a serious problem as most switching
regulator inductor designs require few turns of relatively heavy wire.
12-15
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
Example of Inductor Design
Power loss in inductor;
The example shown below will illustrate the method of
solution, as drawn on the nomograph of Figure 11.
Actual Pw
Given:
L
10
ilmax
Eo x 10
21.9 p.H
10A
14A (current limited)
SOW (output of regulator)
P2SC
Ll o 2
(Ll2hsc
X
0.S47 x
222~8
W
0.S24W
Actual power loss in the, inductor as a percentage of
the power output of the switching regulator is:
Copper losses not to exceed 1% of
output power, and temperature rise of
inductor not to exceed 2SoC.
Pw x 100%
Eo x 10
Step 1: Draw line
-HOC
~~~
"tI
"tI
0.2
~~g
-~m
C
n
5
~~~
0.01
~~~
j;1:
24
.~~
~:'g
Cil~£l
23
0.02
!:::i-fO
~m:
.....
-.J
0.1
0.01
Ll2
15
AL
(mJ)
14
1.0
2
0.005
13
50
2.0
12
11
I
(Amp)
10
5.0
.002
Aw'
100
L
(mH)
N
Figure 11. Inductor Design Nomograph
(em2)
WIRE
GAGE
C
•
en
CO
l>
&I
APPLICATION NOTE
U-68A
Table 1. Ferrite Pot Cores
Ferroxcube
Part No.
1107·Al00·387
1107-A160-387
1408-Al00-387
1408·A160-387
1811-A160-387
2213-A160-387
-387
26162616-A250-387
3019·387
3622-387
4229-387
·
··
·
Dimensions
(Inches)
(aD)
(HT)
0.445
0.445
0.559
0.559
0.716
0.858
1.024
1.024
1.201
1.418
1.697
0.264
0.264
0.334
0.334
0.428
0.538
0.640
0.640
0.754
0.880
1.16
Power
Dissipation
25c C rise
(waHs)
Window Area
O.6S A w
(cm')
Inductor
Index
Saturation
Limit
(mJ)
Dissipation
Limit
25"C rise
(mJ)
(P"cI
(Aw')
(Al )
«LI') •••)
((LI'!..cl
U.l00
0.100
0.158
0.158
0.259
0.358
0.547
0.547
0.754
1.04
1.60
0.034
0.034
0.063
0.063
0.122
0.193
0.263
0.263
0.382
0.486
0.910
100
160
100
160
160
160
160'
250
200'
200'
200'
0.200
0.144
0.490
0.324
1.02
2.12
5.06
3.24
8.57
18.4
31.8
0.077
0.124
0.180
0.288
0.719
1.32
2.29
3.58
4.90
7.21
17.9
Window Area
O.SAw
(cm')
Inductor
Index
Saturation
Limit
(mJ)
Dissipation
Limit
2S"C rise
(mJ)
• :ndica1e5 noi ~iut:k item. Gap must be ground to obtain desired AI.
Table 2. Mo-Permalloy Toroids
Arnold
Part No.
A·307032-2
A-051 027-2
A-189043-2
A-059043-2
A-894075·2
A-291061-2
A-298028-2
A·085035-2
A-087059-2
Dimensions
(Inches)
Power
Dissipation
25"C rise
(watts)
(00)
(HT)
(P"c)
(Aw,!
(Al )
((LI')...)
((LI')"c)
0.425
0.530
0.710
0.930
1.09
1.33
1.33
1.60
1.875
0.180
0.217
0.280
0.330
0.472
0.457
0.457
0.605
0.745
0.072
0.125
0.209
0.346
0.520
0.708
0.708
1.04
1.48
0.082
0.192
0.319
0.703
0.781
1.47
1.47
2.14
2.14
32
27
43
43
75
61
28
35
59
0.180
0.296
0.782
1.55
3.40
4.54
9.90
20.1
40.2
0.065
0.199
0.659
2.06
4.32
8.97
4.12
8.65
16.0
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
12-18
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
VI. Component Selection
1. Power Switching Components
Voltage ratings of the power switching transistor and
catch diode must be greater than the maximum input
voltage, Ein, including any transient voltages that may
appear at the input of the switching regulator. Low
transistor VCE,,' and diode VF at full load output current
are important considerations to maintain high efficiency (Ref efficiency calculations - Appendix A).
Fast switching diodes and transistors are required to
maintain good efficiency in high frequency switching
regulators. Transistor switching losses become significant when combined rise time plus fall time exceeds approximately 0.025 x T. Thus, for 50 kHz
operation, t, + t, should be approximately 0.5 !Lsec
or less. Transistor delay and storage times do not
affect efficiency, but cause delays in turn on and turn
off resulting in lowering the frequency of operation
and increasing ripple. Combined td + t, should be
less than 0.05 x T.
Unitrode manufactures a broad variety of fast switching
power transistors and Darlingtons, which are listed in
the Power Transistor & Darlington Product Selection
Guide. Their combinational high voltage, high current,
low saturation voltage and medium to fast switching
characteristics make them ideal for this application.
The diode reverse recovery time must be no more
than about half the current rise time through the transistor. If this requirement is not met, large amplitude
reverse recovery current spikes will be drawn from the
input power supply causing severe EMI problems.
Large transient currents through the transistor may
cause degradation or second breakdown. Referring to
Figure 1, Section II, during the time that the transistor
is off, the catch diode is conducting the output current,
10, and the transistor VCE equals Ein. When base drive
is applied to the transistor to turn it on, current through
the transistor rises from 0 to 10. During this current rise
time interval, t", the diode remains in forward conduction, but the diode current declines from 10 to 0, since
the inductor maintains the total current at a constant
value equal to 10. If the diode has recovered at the end
of the t" interval, the voltage across the transistor will
start to decrease and the diode will go into the reverse
direction. This period of time is the transistor voltage
rise time interval, t,,, which is terminated when the
transistor VCE reaches VCb., and the diode VR reaches
Ein. If the diode has not recovered at the end of the t,;
interval, it will remain a low impedance instead of proceeding smoothly into the reverse direction. Transistor
current will increase well above 10 until the diode
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
recovers, pulling the additional current through the
diode in the reverse direction.
This problem has probably caused more grief in
switching regulator applications than any other, and
almost completely dominates diode selection. Diode
switching losses will be completely negligible if the
diode is fast enough to minimize the recovery problem, i.e., two to three times faster than the transistor
turn-on rate.
Unitrode UES rectifiers, listed in the Rectifier Product
Selection Guide, are uniquely suited to this type of
application. With low forward drop and typical recovery
time of 20 nsec from forward currents as high as 50A,
they cause no discernible recovery spike when used in
conjunction with Unitrode's medium frequency switching transistors.
Unitrode PIC600 Hybrid Power Switches summarized
in the Switching Regulator Power Circuits Product Selection Guide combine in a single package the UES
rectifier and power switching transistor with its associated drive transistor and bias resistors. Power transistor, drive transistor and rectifier are matched to
optimize switching speeds and VeE sal' Available in NPN
and PNP versions, the PIC600 series can operate at 50
kHz with only 2.5 percent loss of efficiency compared
with operation at lower frequencies. Significant reduction of EMI can be achieved because of the reduction of
circuit wiring.
2. Output Filter Capacitor.
The most difficult component selection problem for
high frequency switching regulator applications is to
find and specify an output capacitor with suitably low
ESR. Most tantalum and aluminum electrolytic capacitor types do not have ESR specifications (probably
because ESR is not very good). In some cases, the
dissipation factor, OF, is given in the specification.
However, OF is usually specified at 60 Hz, which is
more indicative of effective parallel resistance, and is
virtually useless in determining ESR. When OF is
specified at 1 kHz or higher, it may be used to determine ESR:
ESR
OF (%) x 0.01 x Xc
OF (O;~f~ 0.01
=
=
The power circuit design example given in Section IV
requires an output capacitor with Cm;, of 114 !Lfd and
ESR m " of 0.025fl. The capacitor which comes closest
to meeting this requirement (after a limited search) is
solid tantalum, Mallory THF, 120 !Lfd @ 10V. This
capacitor has a max OF of 8% at 1 kHz, which defines
ESR m" = 0.1060. ESR is typically 0.05fl. Two of
12-19
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
these capacitors in parallel are required, based on
typical ESR, to achieve an ESR of 0.025,0; four in
parallel are required, based on ESR m" of the capacitor.
The aluminum electrolytic which comes closest (again
based on a limited search) is the Sprague 6720 series,
1000/Lfd @ 12V, which has an ESR m " of 0:065,0 @
50 kHz. Typical ESR is 0.025,0. In either case, a much
larger C value is required in order to achieve the desired ESR. This does have the advantage of reducing
transient voltage changes with sudden changes in
load current.
It is worth noting again that with the control circuits
shown in Section III (unlike conventional switching
regulator control circuits), the operating frequency
will remain relatively constant, regardless of ESR, although ihe output ripple voltage will vary directly with
ESR. In some cases, it may be economically advantageous to increase the value of L (and the size and
cost of the inductor) in order to reduce ripple
current, ~il = ~i2, and thereby increase the ESR,,,.
requirement.
In addition to considering the C and ESR values and
appropriate volta~e derating for the application, most
capacitors have maximum RMS ripple current or max
RMS ripple voltage ratings which should not be exceeded. Actual RMS ripple current and voltage in the
application can be calculated as follows:'
~eo
~eo
RMS
~iRMs
=
~il
p-p/3.0
p-p/3.5
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924·1235
In the design example of Section IV, ~eoRMS = 0.033V,
which is less than the 0.05V max ripple rating of the
10V Mallory THF capacitor, and ~iRMs = 1.14A, which
is less than the 2.47A max ripple current rating of the
1000 /Lfd, 12V Sprague 6720 capacitor.
Series induciance of the capacitor is usually not significant compared to ESR at frequencies below 100
kHz. However, inductance can become dominant if
good wiring practices are not followed. Specifically,
the ground side of the catch diode should be returned
directly and as close as possible tothe ground side of
the capacitor, and capacitor lead length including
circuit wiring on both sides of the capacitor should
be minimized.
~
(;nntro! Amplifier and Reference.
Control circuits for switching regulators can be designed around IC operational amplifiers and separate
voltage references, or around low power voltage regulator IC's which have built-in references. Voltage regulator IC's such as the LM304, LM305, and /LA723
have the added advantage that the output current they
provide to drive the power switching transistor can be
caused to diminish at higher temperatures, which
conforms to the transistor drive requirements vs. temperature and helps to maintain optimum switching
speeds over a range of temperatures. Amplifiers used
in the control circuit should be uncompensated in order to obtain fast switching speeds, otherwise the
delay times introduced will result in lower frequency
operation and larger ripple amplitudes, and may
cause circuit instability.
12-20
PRINTED IN U.S.A.
U-68A
APPLICATION NOTE
Appendix A
Analysis of Power Circuit
(Ein - Eo)
(Ein - Eo - V"t - 10Rx)
The design equations for the switching regulator
power circuit used throughout this design guide were
based on several simplifying assumptions, which will
now be dealt with.
The simplified equations neglected the effect of
"catch" diode forward drop, VF, transistor saturation
voltage, V"" and the IR drops in the inductor and current sensing resistor, 10 Rx. If a design is implemented
using the values of L, C, ESR, and .6.i derived from the
simplified equations, then ton, toff' f, and .6.eo will differ
from the design values because of the effect of the
simplifying assumptions as follows, from Figure 2b:
Simplified:
.6.it
(Ein - Eo)too
L
(1 )
.6.i,
(Ein - Eo - V"t - 10 Rx)too'
L
(2)
Eo toff
-L-
(3)
Exact:
toff'
toff
Exact
.6.i, ==
(Eo
+ VD + 10 RX)toff'
L
+ V + 10Rx
D
The only other assumption that could have possible
significance is that the transistor switching times
are negligible at the highest frequency of operation.
The validity of this assumption is normally assured.
by selecting appropriate devices (see Section VI).
This also applies to the speed of the control circuit.
If delay time through the control circuit in addition to
transistor turn-on and turn-off times is significant with
respect to the total period, T, the consequent delay in
turning the power circuit on and off will cause a proportional increase in .6.it and .6.e o, and a proportional
decrease in frequency.
(4)
Note that .6.it is fixed, because the control circuit controls this value directly. Instead of the original design
values of too and toff, actual values too' and toff' will be
observed. Since .6.i, is fixed, we can equate Equations
(1) to (2) and (3) to (4):
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
Eo
Eo
Although the actual toff' is less than the assumed toff,
too' is greater than the assumed ton. so that their net
effect on the operating frequency is reduced. In the
worst.case, when Eo is small (5V) and Ein is high
(50V) , the actual frequency will be 25 percent higher
than the original assumed frequency, resulting in a
very slight drop in efficiency. Output ripple component .6.ve will be smaller because of the higher frequency, and .6.VESR will not change because.6.h is fixed.
Component tolerances will. result in larger deviations
than those caused by the use of the simplified
equations .
Simplified:
.6.i,
and
12·21
PRINTED IN U.S.A.
Ell
U-68A
APPLICATION NOTE
Efficiency Calculations: The efficiency of a switching
regulator depends upon the factors given in the following equation:
Efficiency =
Pp~ut x
In
100%
Fo x!o
= Eo x 10 + Pr + Po + Pr + po + P l + P, + Pc + Pc
Note that the worst case for each factor does not
necessarily occur under the same conditions:
1.
DC Losses - Transistor. (Worst case when,Ein. is
lowest because ton is largest.)
x 10 x ~
T
Eo _
Ein
wheie:
2.
5.
where:
6.
10 X
toff
T
where:
toff
_
T
-
Pr =
t, =
X
Rs
Rs is equal to -effective series resistance of
inductor.
DC Losses - Current Sense-Resistor. (AC losses
negligible when ~il is small compared to 10.)
P, = 102
X
R,
7.
AC Losses - Capacitor. (Usually negligible.)
8.
Control Circuit Losses. (Base drive to switching
transistor is dominant, but usually negligible.)
1 _ Eo
Ein
Switching Losses.- Transistor. (Worst case when
Ein is high. td + t, do not contribute to power
losses.)
where:
DC Losses - Inductor. (AC losses are negligible
when ~il is small compared to 10.)
Pl = 102
DC Losses - Diode. (Worst case when Ein is
highest.)
Po = VF X
3.
4. Switching Losses - Diode.
This is a very complex calculation if diode recovery
time is not much smaller than the transistor rise time,
because the diode will short-circuit the power supply
prior to turn-off, affecting the transistor dissipation,
possibly causing second breakdown, and ·generating
intolerable EMI. By using a diode whose recovery time
is not more than half the transistor 'rise time, all these
problems become negligible.
t"
Pc
Ein x 10 t, ~ tf
+ t,;, tf = t" + tn
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.()4()4. FAX (617) 924·1235
where:
12-22
to.
=
-;;:- =
Ein
x Ib x ~
T
=
Eo X lb'
Eo
Ein
PRINTED IN U.S.A.
APPLICATION NOTE
U-68A
Appendix 8
Analysis of Power Inductor Design
This appendix describes the methods used to develop
the core tables given in Section V and the nomographic method for design of the power inductor. Core
parameters for any cores not listed in the tables can
be derived from the equations given.
The following equations provide the basis for this
design approach. Equation (1 a) defines the value of
inductance, L, in terms of basic core parameters and
the total number of turns, N, wound on the core:
N2 x 0.47T p,;'e x 10- 5
L
mH
Core Saturation Limits.
Any specific core has a maximum ampere-turn, NI,
capability limited by magnetic saturation of the core
material. (NI) .., is listed in some core catalogs, in
which case the maximum (Ll2)", capability of the core
can be calculated from Equation (2). (NI) .., is related
to the saturation flux density, B.... as follows:
(NI) .., =
10
B'~,Ae
ampere-turns
(3)
Substituting Equation (3) into (2),
(1a)
(Ll2) .., =
B..l
Ae~,X 10- 4
millijoules
(4)
effective permeability of core
where:·
lie
effective magnetic path length cm
Ae
effective magnetic cross section.,..
cm2
For most standard cores, the above calculation has
been simplified by listing the compound parameter
Al , called the "inductor index", as follows:
Values of (Ll2) .. , are given for each core represented
in Tables 1 and 2 of Section III. Equation (2) or (4) was
employed, using values for either B.., or NI which
would result in a reduction of Al (and L) of 20 percent
under maximum overload conditions, according to the
core manufacturer's data. The core selected for an
application must have an (Ll2) .., value greater than
L(il max)2 to insure that the core will not saturate . . : .
under maximum peak overload current conditions.
~
Power Dissipation and Temperature Rise Limits.
L =
where:
Al
N2A, X 10- 6
0.47T p,:e
x 10
mH
(1b)
mH for 1000 turns
e
Multiplying both sides of Equation (1 b) by 12 ,
Ll2 =
(NI)2 A, X 10- 6
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
millijoules
(2)
In switching regulator applications, the AC current
component is small compared to the DC current
through the power inductor. Power dissipation in the
inductor is almost entirely DC losses in the winding.
DC resistance of the winding, R" is calculated from
the following:
12-23
PRINTED IN U.S.A.
U-68A
APPLICATION NOTE
Substituting for N from Equation (1,b), and rearranging:
(5)
ohms
U2 =
where:
A, == effective area of wire - cm 2
p
resistivity of \A/ire -n.-cm
Core geometry provides a certain window area, A w ,
forthewinding, but only a fraction of this area can be
occupied by the actual conductor. The effective window area, Aw' is taken as 0.5 Aw for toroids, and 0.65
Aw for pot cores. This allows for wasted area of uniformly wound round wire with HF insulation, allows
for the fact that the central fourth of the window area of
a toroid cannot practically be filled, and allows for a
single section bobbin in the case of the pot core. The
number of turns, area of wire, and effective window
area of a fully wound core are related by:
A'
A, == ..Lcm2
N
(6)
Substituting Equation (6) into (5):
R'.
~N2
== PAw'
ohms
(7)
Multiplying both sides of Equation (7) by 12, the power
dissipation in the winding, PI' is:
Pl =
P, Al;:W'
"P"w
mean length of turn - em
9w
12 R,
12~N2
rAw'
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
Watts
'>(
10- 6
millijoules
(9)
Equation (9) shows that the U2 capability is directly
related tal and is limited by the maxin-lUll) permissibie
power dissipation. Using a value for PI that will result
in a 25°C rise in the temperature of, the inductor,
values of (U2l2sc are calculated for each core in
Tables 1 and 2 of Section III. For these calculations,
resistivity, P, is assumed to be 1.9 x 10-6 !l-cm, the
resistivity of copper wire at 65°C. The power dissipation that will result in a 25°C rise is calculated and
tabulated for each core as follows:
''T
1..).1
where:
AT =
A, =
==
~~~ PI
(10)
OQUA;
temperature rise
surface area of inductor- cm2
The factor 850 in .the above equation represents a
temperature rise of 850°C for 1W power dissipation
from 1 cm 2 surface area, empirically determined for
natural convection cooling. The surface area, A" used
in the calculation is taken as the top and sides of the
inductor, ignoring the mounted bottom surface. Substituting a temperature rise of 25°C:
(8)
P25C =
12-24
25 x A,
--aso-
Watts
(11 )
PRINTED IN U.S.A.
U-68A
APPLICATION NOTE
Appendix C
Analysis of Application Circuits
The design equations for the critical components and
operating parameters of Figure 3, Section III, are
given below, for the following design objectives:
Eo
Ileo
Ein
10
Current Limit
C2
+5V
100 mV p-p
20V min, 40V max
2A min, 10A max
14A max peak
where:
R4 =
2 x C2
the nominal switching frequency.
V threshold
I drive
O.3V
0.03A
=
10"
u
Current sampling resistor R, is determined by the desired short circuit current limit and the VBE of 01, As
described in Section III, under current overload conditions, current it ranges between two values, The
maximum instantaneous overload current is defined ~
by: i 1 X R, = VRE + VRI, The minimum instantaneous ~
overload current is defined by: i 1 X R, = VRE •
From the Unitrode data for the PIC625 Hybrid Power
Switch, the drive current (I drive) required for
10 = 1OA is 30 mA, The V" of 01 is taken as 0,6V,
Since ilh has been previously defined as 4A p-p, if
we assume a minimum value of 1OA for i 1 under overload conditions, then the maximum peak overload
value for il will be 14A, a'nd the average value of
i 1 = 10 under overload conditions is 12A,
First, we may calculate the values R1 and R2 of the
output divider, We will make the effective parallel resistance of R1 and R2 equal to 2.4K, so that the
impedance at the inverting input will be approximately
the same as the noninverting input of the LM305:
R1 R2
R1 + R2
f =
=
R4 is calculated from the threshold voltage of the
LM305 drive current limiting circuit and the required
base drive current.
50 kHz (nominal)
17,5 p'sec
22p.H
120 p.F min
0,025 Hmax
4A
From the manufacturer's design data for the LM305,
we know that: the internal reference voltage, V,ef, is
1,8V, nominal; the impedance of the inverting input is
very high; the threshold level of the drive-currentlimiting circuit is 0,30V; and the impedance of the noninverting input (Rin) is 2.4K, nominal.
R2
R1 +R2
C1
Rin x f
These equations are satisfied by C2 = 0,01 p.F and
C1 = 0,02 p.F. Making C1 and C2 too large will have
an adverse effect on transient recovery time of the
switching regulator,
Using the procedure described in Section IV, the following parameters were established:
L
C
ESR of capacitor
Ilil
~
R
I
=
VBE
il (min overload)
=
°1'06AV
=
0,060
Vref
1,8
Eo
5
Power dissipation in R, will be 6W under full load conditions, and 8,64W under overload conditions.
2.4K
R3 determines iliI' under overload conditions as well
as for normal operation of the switching regulator:
Rin =
The resulting values are R1 = 6,8K, R2 = 3,8K,
R2 may be trimmed for precise setting of Eo,
C1 and C2 function to provide negative and positive
AC feedback, and should be large enough to result in
small losses to the AC signals, Assuming that Rin =
(R1 x R2)/(R1 + R2), the value of C1 should be
twice the value of C2, so that the negative feedback
will be dominant over positive feedback at all frequencies, thereby ensuring circuit stability, The following
relationships satisfy these conditions:
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
R, x ilit
R3
R, x ilil
J:::-
=
0.06 x 4
0,030
= 80
The value of R5 is determined empirically to optimize
regulation versus changes in Ein. With R5 omitted, Eo
changes approximately 70 mV when Ein is changed
from 20V to 40V, With R5 = 1,2 MH, the change in
Eo is reduced to less than 25 mV,
12-25
PRINTED IN U.S.A.
APPLICATION NOTE
U-73A
THE IMPORTANCE OF RECTIFIER CHARACTERISTICS IN SWITCHING
POWER SUPPLY DESIGN
With the increasing interest in switching regulated
povJer supplies designeis rlave direcied much of their
effort to selecting transistors with low switching losses
and adequate power handling capability. While recognizing that they must use fast recovery rectifiers, less
attention has been given to "how fast" or "what type of
recovery characteristic" is desired. More detailed
knowledge of rectifier behavior allows determination of
the magnitude of increased losses and stress on the
transistor by the non-ideal diode. By choosing the best
available rectifier, transistor stress can be minimal,
the, t:1uy resuiiing in higher reliability. Other benefits are:
A. Improved power supply efficiency
B. Lower noise
C. Lower cost and/or
D. Smaller size and weight
The performance of fast recitifiers in the most popular
switching circuits is discussed below.
"Switcher" inputs use available. DC voltages,
rectifiers directly off the AC line. This DC "input"
converted by semiconductor switches operating
high frequency in circuits such as buck, flyback
boost regulators and in pUlse-width-modulated
square wave inverters.
or
is
at
or
or
where T is the period. t is determined by the control
circuit which senses output voltage and controls transistor base drive.
Figure 1a
In this regulator the inductor current is essentially constant as it flows alternately through the transistor or
"catch" diode. The sum of the transistor current and
diode current must always equal the current in the
inductor, which cannot change instantaneously.
At to the diode is conducting inductor current while the
transistor is blocking the input voltage.
io
Inverter output rectifiers and regulator "catch" diodes
are subject to unusual stresses due to the fast switching
rates and very low impedance seen by the diode during
the reverse transient (diode turn-off) and a momentary
high impedance during diode turn-on.
--0
(1) Vo =.!.V i
-
\
\
/
V
X
T
vo -0
~ -"/
"~o -I~L- t2-':.l: ='==T!...-l\J
___t5-=-~t______
6 - I-!.~L'
_
BUCK REGULATOR ANALYSIS
Ideal Diode - For better understanding consider the
buck regulator and resulting waveforms, using an ideal
The transistor "on" time, t controls the conversion such
that,
-
v
These new square wave switching supplies are limited
in efficiency and frequency by transistor stress and
switching losses, some of which is due to diode switching characteristics. Faster transistors and diodes are
helping to increase efficiency and/or frequency. At low
output voltages, and lower frequency the DC characteristics (VeE(Sa!1 and V F ) have the major influence on
efficiency. However, as frequency and/or input voltage
increase the switching characteristics become increasingly important.
diode and assuming linear current rise and fall in the
power transistor during switching. Similar considerations apply to other types of switching regulator
circuits.
--
Figure 1b
t, to t2 is the current rise time tri of the transistor. Since
inductor current is not changing, the diode current must
decrease. The forward biased diode maintains full
input voltage across the transistor.
At t2 the transistor is conducting all the inductor current
so the diode turns off and voltage across the transistor
T
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
12-26
PRINTED IN U.S.A.
U-73A
APPLICATION NOTE
starts to decrease toward
VCE
ISal)'
t2 to to is the voltage rise time, trv of the transistor.
I,
From t3 to I. the transistor is saturated and conducting
the inductor current iL •
At t. the transistor starts to turn off and VCE increases.
1,'
io =~.-----;{-~=::::=~A-:::::=~k---
t. to ts is the voltage fall time tfv of the transistor. During
this time the transistor must conduct the entire inductor
current because the diode is still reverse biased. At ts
the diode is forward biased and the transistor is blocking the full input Voltage. Diode current starts to increase and the transistor current decreases, the sum
equalling iL .
iT - 0 ---f---''k-l--71----f-+----+
vT--If-+-k-f----*"'-+---tVo - 0 -=f=¥iR'==::f--,t:==I====i=
ts to ts is the current fall time tf; of the transistor. Diode
current increases in a complementary manner. From ts
to t, the transistor is off and the diode is conducting all
the inductor current.
To simplify the illustration assume the inductor current
constant and equal to 10 , Transistor dissipation PT is the
sum of transient switching and DC losses. Neglecting
losses due to DC leakages, which are generally negligible:
(2) P
V;
10 (tr; + trv
r=2
+ tfv + tf;)
T
+
VCE
Po -o~~--~---A-~=======
(satllo (t.-ta)
T
Figure 1c
Practical diode - Now consider how the non-ideal
diode with reverse recovery, junction capacitance, forward recovery and DC loss affects the circuit of Figure
1a.
TRANSISTOR TURN-ON BEHAVIOR
The transistor "turn-on transient", when the diode is
switching from forward conduction to reverse blocking,
results in the following transistor and diode waveforms:
In Figure 1c the solid lines are the waveforms using a
practical diode in a buck regulator circuit. Comparing
them with the dotted lines of the ideal diode previously
considered we see three significant differences during
transient switching and one during DC conduction:
- 0 _-..2~~..gcj:.::~===I=_=- SWITCHING
TRANSISTOR
1. The peak collector current increases (above 10 ) during a period of high dissipation t2 to t2"
2. Rise times tr; and trv are increased. (t2' - t,) > (t2 - t,)
and (t3' - t2') > (t3 - t2)'
3. Maximum collector voltage peaks up above V; briefly
at ts.
4. The diode has DC loss (from ts to t,) and switching
loss (principally from t2' .to t3')'
IRMfRECI
From the Pr curve of Figure 1c it is obvious that transistor power dissipation increases above that of (3) due
to the "real" diode, - see the hatched regions.
The magnitude of these detrimental factors depends on
the choice of rectifier. Before considering losses more
fully let us examine the switching periods in greater
detail.
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
Po - o---===F:::""+=~-
CATCH
DIODE
_....._--
Figure 2
Dashed lines show what the current and power would
be if the diode were ideal to the extent of having no
reverse recovery time or junction capacitance. (Dotted
12-27
PRINTED IN U.S.A.
U-73A
APPLICATION NOTE
lines show the voltage for the ideal diode case.) The
reverse diode current caused by diode capacitance
and recovered charge is shown by the cross hatched
area of the io curve. The transistor must conduct this
reverse diode current as well as the inductor current.
The grey area represents additional transistor dissipation due solely to the diode recovered charge and
capacitance.
Faster switching transistors will not necessarily result in
reduced switching losses. Unless a diode with recovery time 2 or 3 times faster than the transistor current
rise time is used, a faster transistor will increase the
peak recovery current in the diode and thus increase
overall switching losses. Furthermore, a diode with a
"soft" recovery characteristic will cause more dissipation than an "abrupt" type wiiil ihe same peak recovery
current. The relationship of recovery characteristic to
switching rate is discussed in Appendix B. With many
switching transistors now available a 200 nS fastrecovery rectifier will have a peak recovery current
IRM(REC) greater than shown in the io waveform of Figure 2, where it is about Va of the forward current. This
rather modest additional collector current (of 33%
above that limited by an ideal diode) can cause increased transistor power dissipation of 100 to 150%
during the turn-on period. Other serious problems can
occur from high peak currents, such as noise transients
in the line, the transistor coming-out of saturation and
forward-biased second breakdown.
Rectifiers are now available with recovery characteristics to keep these problems minimal. Their use is required for a switching supply of maximum reliability and
efficiency.
TRANSISTOR TURN-OFF BEHAVIOR:
When the transistor turns off, the diode turn-on characteristic usually has little effect on power dissipation but
may cause voltage spiking, with resulting noise and the
iT
~/
/"-..
io
-0
,"....
/
-0
vy
/',
/
Vo/
Figure 3
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
possibility of exceeding the transistor voltage ratings.
Diode characteristics and conditions under which
these transients occur are discussed in Appendix C.
The voltage spike is due to the forward recovery
characteristic and, when present, will occur as shown
(dotted) in Figure 3. To correct it a snubber (series RC
across the diode) may be needed. However, the choice
of an optimum diode will minimize or eliminate this
need.
POWER LOSSES IN THE
SEMICONDUCTOR DEVICES
DC Losses in the buck regulator occur alternately
when the diode is forward conducting and when the
transistor is turned on. Referring to Figure 1 these intervals are t6 to t, and t3 to t. respectively. During either
Interval the dissipation is independent of input voltage,
V;, or output voltage, Vo , depending only on load current
and device voltage drop. Total circuit DC losses are a
function of VaNi because a) this ratio relates to "on"
time and b) transistor VCElsal) will probably not equal
diode VF• Neglecting switching intervals the dissipation
due to DC losses is:
(4) POC =
Vi-Vo
V F 10
~
Va
+ VCE (sal) 10 V;
Loss of efficiency due to DC losses is greatest when Vo
is low, with diode loss being more significant when Vi is
relatively high and transistor loss dominating when Vi is
close to Vo.
Transient (switching) losses in the regulator vary
considerably with voltage, being highest at "high line"
Vi (see Eq. 3). Furthermore, high voltage transistors and
rectifiers generally have longer switching times than
low voltage types. Speed and "recovery characteristic"
(see Appendix B), and consequently losses, can vary
greatly between different device types and manufacturing processes. A relationship for calculating approximate transient dissipation of practical devices during
the transistor turn-on interval is given in Appendix B.
The other component (turn-off interval) can be similarly
developed but it is not significantly affected by diode
selection. However, when transistors and/or drive
techniques are chosen for shorter fall times overall losses are reduced and the benefits of optimum diode
selection become more significant. Proper diode (and
transistor) selection is important in all switching
supplies, but the higher the voltage (and frequency) the
more significant will be the effect of selection on switching losses.
OTHER SWITCHING CIRCUITS
The pulse-width-modulated' inverter (PWM) supply
(Figure 4a) has much in common with the buck regulator. Output rectifiers also perform the catch diode
function. Current waveforms are shown in Figure 4b,
12-28
PRINTED IN U.S.A.
APPLICATION NOTE
U-73A
with overshoot due to diode reverse recovery and capacitance. Here again slow diodes cause additional
transistor stress, usually not reduced significantly by
transformer impedance. Leakage reactance will often
require the use of a snubber, to protect the transistor.
Transistor "on" time t and the turns-ratio control the
conversion such that
because they (0, and/or O2) are conducting the full
cycle regardless of V; to Vo ratio. Another difference is
that here the diode recovery is from half, rather than full,
load current.
The square wave inverter can be considered, in terms
of device operation, a special case of the PWM where 2t
approaches T. Regulation is achieved by varying Vi.
EMI, RFI, NOISEGiven any inductance in a circuit "loop" of wiring, a
rapid current change will generate a voltage transient,
V = L di/dt, and the energy in such a transient will vary
with the square of the current, E = V2 Ll2. The interference and voltage spiking will be easier to filter if the
energy is low and has predominantly high frequency
components.
(5)Vo =2t NNs V;
T
p
T,
We can establish a priority of factors for reducing EMI:
1. IRM(REc) should be as low as possible, - accomplish
by diode selection (see Appendix B and Fig. 7).
2. L (circuit loop) should be minimum, -accomplish by
layout and interconnect geometry. (See Fig. 5).
3. Use a "soft recovery" diode (See Appendix B). However, this is an item of possible trade-off since such a
device may have longer t rr , higher IRM(AEc) and, thus,
create much higher switching loss.
D,
Figure4a
\
An ultra-fast device with moderate recovery (vs. abrupt
or soft) will often be the best choice:
-iT1 - O
II
REDUCE EM! BY LOWERING CIRcurr WIRING INDUCTANCE:
-i T2 - O
-i01 - O
-i 02 - O
-
r----
"---
Low L needed in loop s~'own in grey. Avoid ground loop noise by returning input capacitor
directly to diode.
-
y
f-1
1
T
I,
I,
Figure 5b
I.
Flgure4b
From t, to t2 transistor T, and diode 0, conduct, with
diode current equal to inductor current iL.
At t2 the transistor turns off and the inductor "pulls" iL
equally through 0, and O2.
At t3 transistor T2 turns on, driving full iL through O2 and
causing 0, to be reversed biased. O2 current is increased by the recovery current of 0" and T2 current
also increases proportionally.
From t. to t, both transistors are again off and at t, the
events of t3 occur on the opposite device pair.
One difference between the inverter and the regulator
is that here the DC diode losses are more significant
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
SELECTING THE BEST SWITCHING RECTIFIER
Ratings and characteristics have different priorities and
significance when they are to be applied to these power
switching circuits. Selection should be based on the
following:
1_ Peak inverse voltage, PIV of "catch" diodes must at
least equal the highest input voltage, while PIV of
center-tap output rectifiers must be at least twice the
maximum output voltage in a square wave inverter and
much greater in the pulse width modulated inverter.
More significant perhaps are the transient voltages in
practical fast switching circuits partly due to wiring
inductance and rectifier's own recovery. Unless these
are intentionally clipped, damped, or "designed out" it
is advisable to use a safety factor of 2 or 3. PIV selected
12-29
PRINTED IN U.S.A.
I!I
· APPLICATION NOTE
U-73A
should apply over a range from lowest ambient to the
highest expected junction temperature.
Unitrode UES series is closest to the Schottky, especially at expected operating conditions.
2. Reverse recovery time tr, must be much lower than
the rise time of the transistor with which it will be used,
- preferably by at least 3 times when measured at
conditions similar to circuit operation. Selection is
complicated because rectifiers are normally specified
at conditions less severe than in power switching circuits. Furthermore, .correlation between test conditions
is not always the same (see Table I of Appendix B).
4. Maximum average rectified output current at
Following preliminary selection from available data the
devices should be compared in a circuit developing the
highest current, junction temperature and rate of current switching (- di/dt) expected.
The desired goa! is to minimize
pc~l~
recovery' current
IRM(REC) and switching loss. Note that these are the same
order of magnitude with Schottky rectifiers (due to high
capacitance, principally) as with the fastest PN
rectifiers. The figures below illustrate these points. Figure 6 shows the variation of peak current with switching
rate, using the Unitrode UES 801 in a special test circuit. Figure 7 shows the difference in IRM(REc) and t"
when representative fast recovery 00-5 devices are
measured in a JEOEC test circuit at different temperatures. In Figure 8 the incremental collector current (the
peak value in excess of 30 A) for a 30 A buck. regulator
using 50, 100, and 200 nS catch diodes is plotted as a
function of transistor rise time (and resulting di/dt). Figures ga, b, and c show the loss of efficiency due to
transistor turn-on dissipation as a function of operating
frequency, with 3 transistor rise times and 3 diode recovery times, in a regulator operated with 40 V in and 10
V out. Similar figures can be developed for other conditons using the model and assumptions in Appendix B.
maximum expected case or ambient temperature must
always be considered. Note however, that standard
curreni raiing is based on a half sine waveform. These
square wave applications at average current equal to
this rating will usually dissipate somewhat lower power,
and, thus, be used conservatively. However, regulators
with Vi :S 1.5 Vo should use a catch diode with a higher
rating than the average current it conducts at full load.
5. Peak voltage
VF(DYN) during forward recovery will
be of significance when using transistors with fast fall
times at close to the VCE rating. This is further discussed
in Appendix C. See Table II for tYflir.!l1 flp.rform;;mGEl of
representative devices. At lower values of di/dt the
peak voltages will be lower.
6. Surge current (8.3 mS) is not of great significance
because transistor saturation limits fault current. If the
power supply is designed to provide rapid charging of
a large output capacitor the "overload" requirement for
the charge time (perhaps 0.1 to 2 seconds or so) must
be considered.
IRMIREC) & t"
CONDITIONS IFill
~
·1.
\~--
--------------
"'1\\
1-...\\
~ ~"'1t-...
di
dt
UNITRODE UES 801 RECTIFIER.
---- ---- ----
-----
0-
la.
At. ,. .
- - - - - - - - ~~d~:/::- ------------ -
3. Forward voltage should be as low as possible to
optimize efficiency, especially for inverter output
rectifiers and regulators with high VJV o ratios. Loss of
efficiency due to VF is most significant at low output
voltages. Figure 10, which relates this loss to device
choice over the range of available forward voltages,
applies to output rectifiers of inverter supplies with
popular output voltages.
>
010
I,
= 10A, LINEAR SLOPE.
vs
Figure 6
IRMIREC) & t" of 005 FAST RECTIFIERS
CONDITIONS:
IFM
= aDA
(3DVJEDEC)
Schottky rectifiers have the lowest VF and are therefore
widely used as output rectifiers for 5 V supplies. Their
limitations in PIV, transient voltage capability and temperature must be considered when applying them in
other applications.
Selection should be based on conditions where losses
are most significant, - at rated supply output current
and anticipated junction temperature. The approximate
range of VF , at rated current and 25°C, as well as at
more typical operating conditions, is shown in Figure 11
for representative fast rectifier types. Note that the
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
Figure7a
12-30
PRINTED IN U.S.A.
APPLICATION NOTE
U-73A
125C
INCREMENTAL COLLECTOR CURRENT (AT TURN·ON)
d;)
vs t.. ( and di
~Ic
Conditions:
30A buck regulator.
--- -lineardVdt.
50
.-
',,=2~ I--
/'
/
- --
1,,=100_
....
40
30
--
20 .
- --
,,,-50n~==
....
......
.......
50
,~
t"
DEVICE'
TYPE
1
2
3
4
1
2
3
4
MAX.
t"
IRMtRECI
At Low .
2S'C
12S'C
2S'C
12S'C
Current
Cond'ns.
(A)
(A)
(nS)
(nS)
0.6
1.0
1.3
1.0
50
86
72
95
50
1.7
2.9
3.7
5.4
86
142
185
296
100
200
-
Unitrode UES 803
USD545
100nS rectifier.
200nS rectifier.
100
200
300
150
300
dUdl (AIl'S)
400
500
75
60
100
1,,(nS)
FigureS
IfI
Flgure7c
LOSS OF EFFICIENCY DUE TO TRANSISTOR TURN·ON LOSS*- BUCK REGULATOR
20
40
30
80
50
20
30
40
50
20
80
40
30
t.; = 300 ns'
111
....
10
80
-
........:;
~
150n$
.......
...
....- / ' ......
....-. ........
........
.......... ...
1"
....
i-' .....
1.0
0.5
::
100
I•. =60:"S
l-
.
,........ ....... .... V'
.......: ....
....-:::-... ,...
V~ ......
.
t--
~
V
.......
...
.....
..",.........
.......
V
....-........
.....
- - "" 100 nSdiode
--= 50 nS d;ode (UES 803)
- - - - - = IDEAL DIODE
20
30
40
50
FREQUENCY (kHZ)
20
80
40
50
FREQUENCY (KHZ)
20
I--'"
........
",~
- - - - = 200 nS diode
0.2
*
50
I
20
,
....... ....
....
.....
......
...
,,-
."""
...
.
40
50
FREQUENCY (KHZ)
..... ~'
100
Calculations of total switching losses (diode and transistor) per model in
AppendixB for a 30A buck regulalorwith V in
""
40VandV oUT
""
10V.
Figure 9
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.Q404 • FAX (617) 924·1235
12.31
PRINTED IN U.S.A.
APPLlC~TION NOTE
U-73A
1
1
1
I I I I I I
k-"
1
,.
20
15
;I'
~ f-'"
V
10
/
~
,.,.
".,.
V
V
V
0.4
1/ ~
V
LOSS OF EFFICIENCY
DUETOFORWARDVOLTAGE
OF INVERTER OUTPUT
RECTIFIERS.
- -
24V
--48V
..... ~
V"
.8
.6
- -
20V
~ i"""
'"'"
/
V V'"
I
10V
12V
k-"
/ /
./
,. ,.
I-'
/
I
5V ==Vo
1.0
1.2
1.4
1.8
1.6
V,(V)
Figure 10
VI available (approximate range) for low to medium VRM applications
VI in volts: .35
.45
.55
.65
.75
t
t
2010451
12
Max VI (spec'd @ rated
IF and TJ=25C:)
11
Typical VI @V2 Max {
current @ max TJ.
.95
150
1.15
1.35
1.75
I
13
150 14
4001
15
I
1.55
800 1
2010 451..,2=--_-..:.::::.J
150
'-:13""'-'1""'00:-C.1::50:-l1
800 1
KEY: ~
1 = Schottky. USD seri.es.
2 ;::: Unitrode UES 150 V series.
N == Device crass
3 == Other devices for low forward voltage.
XY=V RW
4 == Typical fast recovery (200 nS) devices.
(Max. at TJ noted above),
5 ;::: Fast devices to 800 V.
Figure 11
UNtTRODE' SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12·32
"PRINTED IN U.S.A.
APPLICATION NOTE
U-73A
Appendix A
"Off-Line" Supplies
BASIC CIRCUIT
FlgureA-1
: ¥r"'l
TYPE
FEATURES
a) Buck
Regulator
Vo < Vin ·
Output non-isolated.
Easy to filter output. Noisy input.
w
"0
b) Flyback
Regulator
a:
"
CI)
FigureA-2
0a:
w
"
:I:
....
0
a:
Q.
w
z
Vo opposite polarity
from Vin • (Unless
isolated).
Output can be isolated. Output can
be stepped up to HV.
Noisy input and output.
:;;
tt
c) Boost
Regulator
Vo > Vin •
Output non-isolated.
Hard to filter output. Quiet input.
d) PWM
(Variable
Duty Cycle)
Inverter.
Used with single
Vo, - also common
for lab supplies.
Provides isolation.
Does not
need separate catch
diode, - rectifiers
serve this function,
possibly with small
HV diodes in primary for
magnetizing current.
0
ci
w
IT:
;:
FigureA-3
"wa:
:!
0
a:
u.
fPlll~
FigureA-4
e) Square Wave
Inverter (50%
Duty)
(*) INV. = Bridge, centeHap.
Regulation provided
by previous input.
Regulates one of
(possible) multiple
outputs. Uses high
transistor count.
Provides isolation.
Does not
need separate catch
diode, - rectifiers
serve this function,
possibly with small
HV diodes in primary for
magnetizing current.
or half-bridge inverter.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-33
PRINTED IN U.S.A.
HI
U-73A
APPLICATION NOTE
Appendix B
Reverse Recovery Behavior and Dissipation
1. Waveforms and definition of terms:
TOTAL AREA OF. REVERSE CURRENT
= OR.REC,
This area shown
enlarged at
~-- right
slope
High dl,
= .=.s!L
dt
dt
JEDEC test - standard slope = 25AI fLS
Figure B-1
"ABRUPT"
"SOFT"
Figure B-2
Figure B-3
2. Discussion of Variables:
Any PN junction diode operating in the forward direction contains stored charge in the form of excess minority carriers. The amount of stored charge is proportional
to the forward current level.
The diode or rectifier in a switching regulator is
switched from forward conduction to reverse at a specific ramp rate (-dlldt) determined by the external
circuit, usually by the turn-on time of the associated
switching transistor. During the first portion of the reverse recovery period, ta, charge stored in the diode is
able to provide more current than the circuit demands,
so that the device appears to be a short circuit. Transition from ta to tb occurs when stored charge has been
depleted to the point where it can no longer supply the
increasing current demanded by the circuit. The device
becomes a high impedance and during tb the reverse
voltage is permitted to increase. Reverse current, no
longer circuit determined, dwindles as excess stored
charge depletes to zero. Stored charge is depleted by
the reverse current flow and also by recombination
within the device.
At (-dl/dt) rates which are slow relative to the rate of
recombination of the specific device relatively little
stored charge is swept out. Recovery time, trr is determined mainly by the recombination rate, independent
of (-dlldt). Peak reverse recovery current IRM(REC), and
total charge associated with reverse current, QR(REC)
are almost directly proportional to (-dl/dt) (Region I,
Figure B-4). The recovery characteristic with slow
(-dlldt) rates tends to be soft.
When the (-dlldt) rate is fast compared to recombination rate (transistor turn-on faster than diode recovery
time), trr decreases as - dl/dt increases, because more
of the available stored charge is swept out sooner,
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926.Jl404 • FAX (617) 924-1235
leaving little to be depleted by recombination. As
(-dlldt) increases, peak recovery current increases
and can become much greater than the original forward current level. However, QR(REC) levels off as (-dll
dt) increases because it can only approach but not
exceed the total stored charge which is a function of the
original forward current level (Region II, Figure 8-4).
Higher voltage devices have poorer recovery characteristics because they require thicker regions of higher
resistivity, resulting in greater volume of stored charge
and longer recombination rates.
RECOVERY CHARACTERISTICS
I,
.51,
.21,
dl/dt
Figure 8-4
With a given IF and dl/dt the QR(REC)' IRM(REC)' and trr all
increase with temperature. Recovery characteristic
changes as well (generally becoming more abrupt if
reverse current is not circuit limited, and softer if limited). Furthermore, QR(REC) increases and recovery
generally softens if higher circuit voltage is applied to a
given diode.
12-34
PRINTED IN U.S.A.
U-73A
APPLICATION NOTE
3. Comparison of devices at popular test conditions:
Table I, below, shows measured trr values (in nanoseconds) using ultra-fast and fast recovery 00-5 rectifiers.
-dl/dt
IF
(A)
I.
(A)
(AlILS)
T
('C)
0.5
1.0
1.0
1.0
1.0
1.0
step
step
step
25
25
125
30
30
-
30
30
-
-
(t"Measured to (All
(85V JEDEC circuit)
30
25
30
125
100
100
25
125
MANUFACTURER
UNITRODE
UES803
fR(RECI
B
C
D
0.25
0.10
0.10
38
45
60
50
75
90
42
50
122
-
-
63
135
120
300
0
0
75
100
120
150
85
140
105
210
150
300
0
0
45
65
72
114
66
106
92
160
MAX t" per manufacturer's stated condition
50
E
-
-
50to 100
200
Table I
4. Turn-on switching losses, assuming linear V and I
transitions:
( 83) PUa) =V·In (I C
With an ideal diode, switching losses are entirely in the
transistor as follows (from Eq. 2).
(84)
Vln
a
ri
(IRMIREc))
Ie
(85) P =V. (I + IRMIREc))(!!!
Ila)
In
e
2
T
Ic trl
(81) PUrl) =Vln . '2' -;;:
(82) PU,,)
t = t
+ IRMIREC))
~
2
T
trY
IRMIREc)).
Ie
I
(IRMIREc)) trl
(86) PUa) =Vln • RMIREC) I + ~ -;;:
="2 . Ic' -;;:
A practical diode with finite trr and IRMIREc) will cause
additional switching losses as follows:
If diode IRMIREc) is half of Ic (1.5:1 current overshoot in
transistor) total transistor switching losses during current turn-on (trl + tal will be 2.25 times greater than with
an ideal diode (Eq. 81).
During diode recovery time component tb, the diode
continues to conduct reverse current, but becomes a
high impedance, permitting the transistor voltage tranSition, trY, to take place. Diode reverse current during tb
causes increased switching losses in the transistor
and/or the diode. It is difficult to quantify these losses in
the diode and transistor separately, since transistor VCE
is decreasing and diode VR is increasing during all or
part of period tb. However, the total increase in losses in
both diode and transistor during tb is:
I,
IRMIREc) • !!!
(87) Plib) =V ..
In
2
T
(area 8 = IRMIREC) • t b)
2
FlgureB-S
Diode recovery time component ta effectively increases
transistor rise time, and delays the voltage transition, t rv .
During time t a, the diode conducts reverse current but
remains a low impedance. TransistorV CE remains equal
to Vln while collector current continues to rise above Ic
to Ic + IRMIREc), The entire amount of charge shown in
shaded area A results in increased switching loss in the
transistor only (increase in diode loss is negligible):
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
Nate: PUb) loss is in addition to the ideal diode case
transistor losses, Pllrv) (Eq. 82). With a very fast diode, tb
will be much shorter than trY, and most of the Pllb) loss
will occur in the transistor, although it will be negligible.
With a slow diode, where tb is much longer than trY' Plb )
loss will be significant and will occur mostly in the
diode.
Plla) is usually much greater than PUb)' Since all of Plla) is
dissipated in the transistor, it can be seen that most of
the increased switching losses caused by diode reverse recovery are borne by the switching transistor,
not by the rectifier.
12·35
PRINTED IN U.S.A.
IfI
APPLICATION NOTE
U-73A
AppendixC
Forward Recovery Behavior and Characterization
When used in some circuits, any diode may exhibit the
phenomenon known as forward recovery. Under these
conditions, the device has an impedance which, for a
short time after initial application of forward current, is
higher than its normal "on" value. The magnitude and
duration of this transient impedance will depend on
circuit conditions and device design, varying from no
effect in many circuits to a few microseconds in the
worst case. When present, the effect is generally less
with fast-recovery rectifiers, and much less with
"computer-type" switching diodes.
Circuiis with very iast current rise time, in the direction
of forward conduction, will allow this phenomenon to
appear. Generally, these will be low-inductance circuits which allow the current to rise from zero to rated
forward current in less than the reverse recovery time
for fast stud-mounted rectifiers, and in less than 0.1 x trr
for lead mounted fast devices.
When such a source has a high voltage, of at least 10
times VF, the forward recovery phenomenon exhibits an
initial higher-than-steady-state forward Voltage. The
rise time of current is not limited by the diode and the
peak voltage decays to the specified measurement
level in the "forvv'D.rd recovery' time" tfr . The peak voltage
VFIDYNI will be strongly influenced by the current rise
time di/dt, and current IF.
When a fast-rise source has an open circuit (compliance) voltage of less than several times the diode VF,
the forward recovery phenomenon may exhibit a delay
in the rise of forward current. In this case the peak diode
voltage is limited by the source, and the "turn-on" time
is the rise time to 90% of IF.
A comrHrison of the Unitrode IJES 803 'Nith a typicn!
200 nS rectifier is shown in Table II below.
005
Unllrode
UESB03
I"
(nS)
VF[OYN)
(v)
(v)
I"
(nS)
1.2
20
12
300
0.9
-
2.B
350
VFIOYNI
Tesl Condillon
IF t01AinBnS
IF to 1A in 125nS and
continuing to
50Awith
t, = 10ILS
200nS
Table II
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-36
PRINTED IN U.S.A.
U-76
APPLICATION NOTE
FlYBACK AND BOOST SWITCHING REGULATOR DESIGN GUIDE
Section One - Flyback Regulator'
I. Definition
A. Continuous. Mode
The flyback switching regulator described in this
application note accepts a DC voltage input and provides a regulated output voltage of opposite polarity.
This method of conversion, compared to a conventional DC to DC converter, provides advantages of
high efficiency, low cost, circuit simplicity, and a
rather wide, easily selectable choice of the regulated
output voltage, The switching transistor is not stressed
to second breakdown in either the forward or reverse
bias modes. Thus, it provides a reliable method of
converting the input voltage, The disadvantage of the
flyback switching regulator described here is that it
provides no isolation and requires a large output
filter capacitor. Primary usage of this type of regulator is in low current and/or high voltage applications,
(see Figure 1a)
In this mode of operation, a large inductor is required to insure that the inductor current never goes
to zero, Although the current through the inductor
flows continuously, the charging current to the filter
capacitor is in the form of discontinuous current
pulses, This large peak-to-peak current waveform
requires a much larger filter capacitor than the buck
regulator. Component cost is higher than with the
discontinuous mode of operation because of the
large inductance required, and transient response
is worse.
II. Design Approaches to
Flyback Regulator
B. Discontinuous Mode
(see Figure 1b, 1c)
In this mode, the regulator is designed such that at
maximum output load current and minimum input
voltage, the transistor starts conducting as soon as
the catch diode stops conducting. At a lower output
current or higher input voltage there is a dead time
when neither device conducts.
The principal difference between a flyback regulator
and a buck regulator (Ref. Unitrode Design Guide
U-68) is the manner in which energy is transferred
to the output capacitor, In a buck regulator, energy
is provided continuously, while in a flyback regulator,
energy is pumped in a discontinuous fashion. The
flyback regulator can be operated in two modes.
The output voltage can be regulated by varying the
duty cycle of the transistor switch.
'
Discontinuous Mode
Continuous Mode
Output current
Transistor
current iT
= 10 ma.
1
Output current ~ 10
mal
IT:~
I
~
iT
Diode current
(capacitor charging
current & load current)
h'D
~-_
-=
10
-
-
t--
0
I
'D:
N'
~
- - - {- --=-=J:.·~O
10
_
.,,-,-,-,
·_1
I
~I
Inductor current
-------Figure 1.
-~--c-~i-~o
Figure 1b
Figure 1,
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
Figure 1c
Current Waveforms
12-37
PRINTED IN U.S.A.
APPLICATION NOTE
U-76
III. The Flyback Switching
Regulator Described and
Characterized
The basic circuit configuration and generalized current waveforms are shown in Figure 2. When transistor Q, is turned on, the supply voltage, E'N, is applied
across power inductor L. The current through the
inductor rises linearly to a peak current level Ip:
E'N- L
X tr
Ip = - .....
Figure 2a.
Flyback Switching Regulaior
............... A.
This results in an energy transfer from the input
supply to the power inductor:
,
p
The power delivered to the load is equal to the peak
energy stored in the inductor times the number of
pump cycles per second:
po,! = Eo x 10 =
21
2
Lip x f
....... 0.
The voltage induced in the inductor is such that Eo
is opposite in polarity from E'N' The relationship between Eo and E'N is established by combining equations A and C, eliminating Ip' and L:
Eo _ tr
E'N - t;;-
............... E.
DC output current 10 is equal to the average current
through the diode:
The output voltage can be regulated by operating at
a fixed frequency and varying the transistor on time,
tT• However, because of the inherent "pumping" action of the flyback regulator, the output voltage
diminishes while the switching transistor is on, and
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
\-
.............. C.
L
I,
0
~i
Figure 2b.
I =Eoxto
--0
I
I
When the transistor turns off, a voltage is induced
across inductor L which forces the current to flow
through diode 0,. All of the energy stored in the
inductor is transferred to the output capacitor and
load RL , and the inductor current diminishes linearly
from Ip to zero according to the relationship:
1.-1
~ID~
1
T=
T
~I
Generalized Current Waveforms of a Flyback
Switching Regulator
increases when the transistor is off. This characteristic makes it difficult to control on a fixed frequency
basis.
The simplest approach to controlling the flyback
regulator in the discontinuous mode is to establish
a fixed peak current through the inductor, which
determines a fixed diode conduction time, tD' Frequency then varies directly with output current, and
transistor on-time varies inversely with input voltage.
This is the approach used in this application note,
resulting in a simple and economical control circuit.
IV. Worst Case Design
Conditions
Design equations based on the fixed peak current
mode of operation are shown in Figure 3. The worst
case condition exists when input voltage is low while
output current is at maximum. Under these worst
case conditions, frequency is maximum and t, is zero
because the pass transistor turns on as soon as
diode stops conducting.
12-38
PRINTED IN U.S.A.
U-76
APPLICATION NOTE
,
iT
------.---
-
-
-
-
--
+
I2
,
1
ESR
_.J
3
E'N
I
'l ~"
:.- tT
,
1
G'VEN:
0
r-
E'N
10 (max)
fmax.
Aeo
L
c
(min)
Eo
WORST CASE:
E'N = E'N (m',)
10 = 10 (max)
t,=O
0
T=,
:
1
I
10
Eo, eo
1
~E'N
-0
'.
i
-
id
.. I
-t--- to ~
t,---'
I
1
(p
I
1
I
I
T
to
o
1
ID
=
1
f m.. (Eo/E'N
(mI.,)
+ 1)
constant
L _ to X Eo _ tT X E'N
- -'-p- - --'p-
I
__ L __
O-~-+-
f
=~ =
_,_'0_
f m.,
T
0
(max)
V
L
o
(worst case
I
1
V
I
I
I Eo
1
I
I
I
I
ESR m..
'0 ~ 0 )
== Ato
C~Eo
p
I:
I
I
I
1
I
I
--t----
I
VES•
1
1
I
~---r--
0--..,"":""---1
,
--- -- -J--
eo
I
-1--
I
--~-E
---~---I-~
Figure 3.
UNITROOE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
Flyback Regulator
12-39
PRINTED IN U.S.A.
APPLICATION NOTE
U-76
V. Circuit Design and
Description
In designing a flyback switching regulator power
supply, the following parameters vvi!! normally be
predefined. Numerical values are given and computed for the example shown in Figure 4.
Eo
aeo
lomax
E'Nmin
E'Nmax
5Voutput
100 mV output ripple voltage peak to peak
2.5A
9V (minimum)
15V (maximum)
Since the output voltage is derived from pulses of
current, it is desirable to keep the operating frequency as high as possible in order to obtain small
size and lower cost of the filter inductor and capacitor. However, above 5-10 kHz, capacitor impedance
is usually dominated by its equivalent series resistance, ESR, rather than C value. Since the ESR
remains essentially constant regardless of operating
frequency, operation at higher frequencies does not
enable the size and cost of the capacitor to be
further reduced.
Also, at higher frequencies, transistor switching
losses become significant. Thus, a maximum operating frequency of 25 kHz is chosen for this design.
Rs
0.160
+ E'N o----_--1,....,.M~-o-..-__...
+ 12V
,,--"IIG-<>+-~o/VI"""""-""'_---o
C'N.500,.!
-- Eo"
sv
c,
Co
=1000,,1
.01,.1
L
= 16.S"H
.1,,1
E'N=+12V ±2S%
E",=-5V
10 = 2.SA
Load & line Regulation
Efficiency = 70%
l,ho!'lcircuil= 3.0A
C,
= .2%
INHIBIT
CONTROL INPUT
Figure 4.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
Flyback Regulator, +12V Input. -SV Output
12-40
PRINTED IN U.S.A.
APPLICATION NOTE
U-76
Referring to Figure 3, the design calculations are:
Ip
2 lomax (Eo/ErNmin
+ 1)
= 2
x
2.5 (519
+ 1)
7.8A (constant)
to
f m" (Eol ErNmin
+ 1)
25 X 10' (5/9
+ 1)
25.7 p's (constant)
L
tDXEo
25.7X10-·x5
- I7.8
p =
16.47 p.H
The TL497 control circuit operates in the current
limiting mode under normal operating condition.
Thus, the peak current value, Ip, is determined by the
current limiting resistor Rs. Capacitor C, is required
to prevent the TL497 from terminating the transistor
on-time prematurely. This causes an 8 p's delay,
once over-current is detected at the short circuit
sense input (pin 13 of TL497) before the transistor
switch turns off. The delay time is the time required
to charge capacitor C, to the predetermined voltage
level before drive current to the pass transistor is
removed. The current limit threshold voltage is about
1.2 volts.
Ip X to _ 7.8 X 25.7 X 10-·
2 .:leo
2 X 0.1
-
_ 1.2
- 7.8A
1002 p.F
ESR m.. =
e.~o
=
~:~
=0.1530
= 0.01280
The function of transistor 0" diode 0, and resistor
R, and R, is to provide short circuit protection. The
transistor 0, prevents turn-on of ihe pass transistor
as long as the catch diode continues to conduct.
Thus, it limits the maximum current and operating
frequency under short circuit conditions. 0, and R, ~
providing voltage isolation to transistor Or.
....
The operating frequency will change in proportion
to load current, 10:
f = fm.. X
10
_1
o max
The PIC625 hybrid power output stage incorporates
a fast PNP quasi-darlington switching transistor and
UES catch diode. The quasi-darlington switch requires 30 mA of drive current. This drive current is
provided with diode Dr and Resistor R. in conjunction with the Integrated circuit TL497. (Refer to
Figure 4)
C, is required for circuit stabilization; capaCitor Cr
provides AC coupling of ripple voltage to the control
circuit. CrN and Co are filter capacitors.
Unitrode Switching Regulator Design Guide U-68
covers the design of a buck regulator, and contains
a section on power inductor design which is applicable to the flyback and boost regulators.
IDRrVE = Vb. = 0.65
R.
R.
:. R. = 220
The output voltage is preset by divider network
Rr and R" according to the relationship:
Eo = [ 1
where VREF = 1.22V.
for R, = 1K, then:
+ =: ]VREF
Assuming a nominal value
Rr = 3200
Rr may be trimmed to obtain the precise output
voltage.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924-1235
12-41
PRINTED IN U.S.A.
APPLICATION NOTE
U-76
Section Two - Boost Switching Regulator
The boost switching regulator is described briefly
in this application note. It accepts a DC voltage input
and provides a regulated output voltage which must
be g'reater than input voltage.
conduction time is not fixed, but varies according
to the input voltage:
The basic circuit configuration of a boost regulator
is shown in Figure 5. When the transistor switch is
turned on, the supply voltage E'N is applied across
power inductor L. The diode is reverse biased by
voltage Eo. Energy is transferred from the input supply to the power inductor. When. the transistor is
turned off, the energy stored in the inductor L induces a voltage such that the diode conducts and
transfers the energy to the load and the output
capacitor. In addition to the energy stored in the
inductor, additional energy is transferred from the
input directly to the output during the diode conduction time.
Output voltage is regulated by controlling the duty
cycle:
This pumping action, similar to the flyback regulator,
also makes it desirable to operate the boost regulator in the discontinuous mode with a fixed peak
current through the inductor. However, unlike the
flyback regulator, in the boost regulator the diode
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
to=~
Eo- E'N
§..
E'N
=.!!.+ 1
to
Since the ripple voltage across the output capacitor
is directly proportional to diode conduction time, to,
capacitor requirements are determined by the maximumto:
to max =
Lip
Eo - E'N (max)
The Figure 6 is a complete schematic diagram of a
boost switching regulator. It accepts
12 V of DC
input voltage and provides regulated +24V of output
voltage.
+
The design procedure and circuit description is similar to the flyback switching regulator.
12-42
PRINTED IN U.S.A.
U-76
APPLICATION NOTE
+0-------------,
GIVEN:
EIN (max)
EIN (min)
Eo
10 (max)
f(max)
6,eo
WORST CASE:
LOAD
= EIN
= 10
EIN
10
(min)
(max)
t,=O
,
.. I
I
~
IT
~ 10 - - . I . - I, --.J
I
I
Ip
I
i
i
I
I
T
o
i
to
(min)
~ f
mo'
(E
0
IE 'N 1m',} )
L = tD 1m',} (Eo-E'N m',)
D
Ip
O-'---~
V
Cmin
L
max
6,eo
o
(worst case 10
,
V
= Ip; tD
~
0)
Eo
I
1
I
I
'
I
I
c~ __ ~~_Eo
- +~-- --:- =- --:-=:-:
:
, I
,
V ESR
1
,
I
--t----
1
1----1
O-+--~
Figure 5.
UN}TROOE • SEM}CONOUCTOR PROOUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926-0404· FAX (617) 924-1235
Boost Regulator
12-43
PRINTED IN U.S.A.
APPLICATION NOTE
U-76
~~-'---4
.--------~
11
~
-----,
jPIC63S
IL
_ _ _ _ _ _ .JI
E," = + 12V
Eo = + 24V
3
N=14
lo=2A
A930-1S8
r----------.,
I
TL 497
r-------~r_-J~~
LtJj
Error Amp I
18K
1N914
1K
+o---~~~--------~
E," =12V
100,,1
SOp!
Figure S.
UNITROOE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926-0404. FAX (617) 924-1235
Boost Switching Regulator
12-44
PRINTED IN U.S.A.
APPLICATION NOTE
U-76
Appendix A- Derivation of Design Equations
The basic circuit configuration of the flyback switching regulator is shown in Figure 3. Assuming a fixed
value of peak current, Ip, and output volts, Eo, the
following equations are evident:
...... 1.
E'N tT = Eo to = Ip X L
.. 1 a.
tT= to X Eo/E'N
T
= h + to + tx = 1If
=
=
Worst case T
Tmi" f
fm'" tx
Substituting Equation 1a:
= 0,
to =
1
fm.. (Eo/E'N min
E'N
= E'N
min.
across the output filter capac-
The worst case net charge into the capacitor is equal
to the area under the diode current waveform
.6.
_ Ip X to
Q max--2-
+ 1) ............ 2a.
.. 2b.
+ 1)
By inspection of Figure 3 output current waveforms:
=~X~=~XtoXf
2
T
2
............... 4a .
Substituting into Equation 4 and rearranging:
......... 4b.
The ripple voltage,
resistance, ESR.
Since in Equation 1, Eo, Ip and L are all constant
values for a given application, to is also a constant
value.
Io
~uc,
............................... .4.
......... 2.
....
Tmio = f: .. = to (Eo/E'N min
The ripple voltage,
itor:
VESR
"
.
VESR
across the capacitor series
= Ip X ESR
....... 5.
ESR ma)(=~
Mo
The frequency, f, will vary as a function of load current. Rearranging Equation 3:
+~
3
.....
=
Taking worst case conditions and substituting Equation 2b:
X to = 10 max/fm..
f = fm" X -10I
................... 6.
.................. 6a.
o max
I
o max -
:.
I.
"2
f
X
1
X m..
fm" (Eo/E'N max
Ip = 210 max (Eo/E'N max
+1) ...... 3a.
and
10 mio
f min = f max X -1-
+1) ........... 3b.
o max
Rearranging Equation 1 :
L=toXEo
Ip
....................................... 1b.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-45
PRINTED IN U.S.A.
,ID
U-77
APPLICATION NOTE
THERMAL DESIGN, CONSIDERATIONS FOR OPERATING UNITRODE'S TO-92
TRANSISTORS ANDDARLINGTONSIN PULSED-POWER APPLICATIONS
Introduction
Thermal Analysis
Unitrode'spower Darlingtons (U2TA506, U2TA508, U2TA510)
and power transistors (UPTA510, UPTA520, UPTA530 and'
UPTB520, UPTB530, UPTB540, UPTB550) in economical TO-92
plastic packages are ideally suited for use in pulsed power applications, such as lamp driving or printer driving where the inrush or
pulse drive current can be as high as several amperes. When
compared with transistors or Darlingtons in conventional power
A detailed transient thermal analysis is required to determine
the peak junction temperature and maximum allowable
power dissipation since the junctions of the transistor or Darlington are subjected to temperature excursions due to the
applied, periodic power pulses.
packagp.!=;, the Unitrode TO-92 devices offer ccct savings of 50~{'
A) Effective Pulsed Thermal Impedance
The effective pulsed thermal impedance (6.) of a device
subjected to a periodic train of power pulses can be
calculated as follows:
6.=(61•• )(0) + (1-0)(r(t+'r))-r(T) + r(t) ....... (1)
or more, take up significantly less board space, and lend themselves to tape and reeling and automatic insertion, They also offer
the advantage of a maximum operating junction temperature
(TJfmaxl of 175°C versus 150°C or 125°C) for other plastic packaged devices.
Thermal considerations are of prime concern when the TO-92
power transistors and Darlingtons are used in pulsed power
applications. This Design Guide provides a method for determining the junction temperature and maximum allowable peak
power dissipation for the U2TA506, U2TA606 and the UPTA51 0
and UPTB520 series when they are operated atfrequencies of
10kHz or less; where the switching losses ·are·negligible and
can be ignored. This method is valid for the vast majority of
pulse applications.
Applied Pulse
I
I
~
I
1:- t-'I
. Equivalent
Square Pulse
T
I
I
-I
L
Where: t
= pulse width
= period
o
= VT (Duty Cycle)
r(t+T) = transient thermal impedance
attimet+T
r(t)
= transient thermal impedance
attimet
6 1., = DC junction to ambient thermal
impedance
p. k
= The peak power of a square power pulse
with equivalent energy to that of the
actual power pulse.
T
Figure 1. Power Pulses
The DC junction to ambient thermal impedance (6 i-A} is
200°C/W maximum for the UPTA51 0 and UPTB520 series and
is 155°C/W maximum for the U2TA506 series.
The transient thermal impedance for the U2TA506, UPTA51 0 and
UPTB520 series can .be obtained from the curves presented in
Figure 2:
nn
SEMICONOUCTOR'
~ PROOUCTS
12-46
_UNITRDDE··
APPLICATION NOTE
U-77
~
i3
Allowable Peak Power Dissipation
I
~ 500
I
The allowable peak power dissipation can be derived from
the following equation:
H;.A~200'C/W for UPTA510, UPTB520 SERIES
~ 200 f-H;.,~ 15~'C/W for ~2TA506 S~RIES
~ 100
~-.
UPTBk20
E 50 r--()
Ppklmaxl
"0
UPT~51O,
.
20
10
5
2
1
,1.2
v.
./
.5
,..../
1
\
"\. V'
.
_.
...
--
1000
(4)
1.0
---10
100
Time (milliseconds)
.
Where TJ(max) is the maximum allowable junction temperature .
For the U2TA506; UPTA510 and UPTB520 series the maximum
junction temperature is 175°C.
.... - - - ' ...
(max)- TAmbient . . . . • • • . • • . • • . •
e.
SERIE~
-"'--_ ...
= Tj
10,000
.8
~
Figure 2. Junction to Ambient
Transient Thermal Impedance
C
i!! 6
5
()
(;
u
~
""6
B) Peak Junction Temperature
()
The peak junction temperature of a device subjected to a
periodic train of power pulses can be calculated using the
previously derived effective pulsed thermal impedance
as follows:
Ti (.e'k,=TAmb'ent + (P.k) (e.) , .. , ............ (2)
-"
.2
25
e.
In the case of a single shot pulse the term for
reduces to
= r(t)
and the equation used to calculate peak junction tempera·
ture becomes
Ti (.e.k, = TAmblent + (P.k) (r(t)) ............... (3)
e.
VeElSAT) . Saturation Voltage (V)
Figure 4. UPTAS10 Series. Maximum
Saturation Voltage vs, Collector Current
5
T;",175'C
.2
4
~
~
C
C
i!! 3
5
i!! .15
5
()
()
E
E
()
~
20mI'.
()
OJ
2
()
'5
()
-"
-"
""6
.1
10mI'.
5rnA
.05
IB~2mA
0
0
VeEl •ATI • Saturation Voltage (V)
Figure 3. U2TAS06 Series. Maximum Base to
Emitter Saturation Voltage vs. Collector Current
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
12·47
1.5
.5
2
VeEISATI • Saturalion Voltage (V)
25
Figure S: UPTBS20 Series Maximum Saturation
Voltage vs. Collector Cur.rent
PRINTED IN U.S.A.
APPLICATION NOTE
U-77
Peak Power
Design Examples
The peak power can be expressed as follows:
p.,=(VCE !SATI) (I •• ) + (VBE !SATI) (IB) ........... (S)
1. An incandescent lamp is controlled by a U2TAS06 Darlington operating from a 12V battery. When switched on
the lamp draws an inrush current of 3A which decays
exponentially to a steady-state value of 300mA. The time
constant of the inrush current is SO milliseconds and the
worst case ambient temperature is SS·C. The Darlington's
base drive is 30mA dc.
.
Where I pk is the peak collector current of a square pulse of
current equivalent to the applied current pulse, VCECSATl is
the transistor or Dar!ington saturation voltage at !pk, VSE,SAii
is the base-to-emitter saturation voltage and I B is the base
current. Figures 3, 4, and S are plots of VCECSATI for the
U2TA506, UPTAS10 and UPTBS20 series Darlingtons and
transistors. Figures 6 and 7 are plots of the VCECSATI. These
curves can be used in determining Ppk.
Problem:
Calculate the peak junction temperature due to the inrush
pulse and the steady-state junction temperature.
~
Solution:
The inrush current can be approximated by a square wave
of 3A peak and SO milliseconds duration. The equivalent
square pulse of current will have the same energy as the
exponential pulse if the VeE!SAT) of the Darlington is assumed to remain constant. Since the Vc ...,.n will ar.tually
drop as the inrush current exponentially decays, the result
obtained from using the square wave approximation will
be conservative.
0
Using equations (3) and (S)
5~---'----~----~-----r----~
~----~----~--~+-----+---~
4
:§:
E
:; 3
a
"
.Q!
0
•....... (3)
Where: TAmblent = SS·C
r (t)
= r(SOmSec) = 17.S·C/W (from Figure 2)
p..
= (VCE!SAT)) (I•• ) + (VBElsAn) (lB)' .. (S)
= (l.SV) (3A) + (2.1SV) (30mA)
(from Figures 3 and 6)
= 4.S6W
Therefore:
2
0
_u
TH."., = SS·C
VBElSATI - Base-Emicter SaCuraCion Voltage (V)
+ (4.S6W)(17.S·C/W)
= 13S·C
Since 13S·C is 400C less than the maximum operating
junction temperature forthe U2TAS06 (THm ", = 17S·C), the
Darlington is operating well within its rating.
The Steady-state junction temperature can be determined
as follows:
Figure 6. U2TA506 Series Maximum Base to Emitter
. Saturation Voltage vs. Collector Current
1.0 .-----r-----,----,---r-,-----,
Tilss, = (P!ss') (ei.A) + TAmblent
= ((.3A)(.73V) + (.03A)(1.60V)) (lSS·C/W)
= 96"C
+ SS·C
.8~--~----_4----~--+_-+----~
~
E
~
:J
2. A U2TAS08 is used to drive a solenoid load in an impact
printer. The collector current waveform is as shown below
along with the equivalent square pulse:
.6
0
a
"
.Q!
0
0
Applied Pulse
.4
~
-'"
O~~~~LL~
.6
.8
__~~__~_L_ _~~
1.0
1.2
1.4
j-4--------t- 2mS
1.6
VB"SATI - Base-Emitter Saturation Voltage (V)
r----l 1SA
Figure 7. UPTA510, UPTB520.Series. Maximum
Base-to Emitter Saturation Voltage vs.
Collector Current
UNIT RODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
~
12-48
.
4I
_ .
.~
I·
.
E,m"""' P",,,
L
PRINTED IN U.S.A.
APPLICATION NOTE
U-77
The Darlington is switching in a clamped mode so the
energy stored in the solenoid inductance during the ontime is dissipated in the clamp and not in the Darlington.
The maximum ambient temperature is BO·C and the base
drive current is 20mA.
3. A UPTAS30 is used to drive a high voltage DC motor in
a display application the current waveform as is shown
below:
Applied Pulse
Problem:
Find the worst case junction temperature and determine if
it is within the maximum rating of the U2TA50B.
Solution:
Use equation (1) to determine
e. = (e A) (D) + (1- D)(r(I+T»
e A= lSS·C/W (from Figure 2)
j•
e.
- r(T)
+ r(t) .......... (1)
Equivalent Pulse
j•
L
0= .1mSec = .OS
2mSec
r(t+T) = r(2.1mSec) = 4.2·C/W (from Figure 2)
r(T) = r(2mSec) = 4.1·C/W (from Figure 2)
r(t) = r(.lmSec) = 1.1·C/W(from Figure 2)
The base drive is 200 mA and the worst case ambient
temperature is 6S·C.
Therefore:
= (lSS·C/W) (.OS) + (.9S)(4.2"C/W) - 4.1·C/W
+l.l°C/W
= B.7soC/W
Using equation (S)
p•• = (VCE!SATI) (I •• ) + (VBE!SATI) (IB) .................. (S)
1•• = 1.SA
VCE!SATI + 2V (from Figure 3)
(The VCE!SATI value at 3A was chosen to give a conservative
answer. If Tj is found to be greater than 17S·C it may be
necessary to recompute using a closer approximation of
the actual VCE!SATI which varies as the current increases
from 0 to 3A.)
IB= 20mA
VBE!SATI = 2.1V (from Figure 6)
(Again the VBE!SATI value at 3A was chosen to give a
conservative result.)
e.
Problem:
Determine the junction temperature to insure it is within the
maximum rating of 17S·C for the UPTAS30.
Solution:
Using Equation (1)
e. = (2000C/W) (.1) + (.9) (S2°C/W) -
From equation (S) and Figures 4 and 7.
p•• = (2.3V (.6A) + (1.2V)(.2A) = 1.6W
(Again VCE!SATI and VB"SATI values at .BA rather than .6A
were used to insure a conservative answer).
Therefore, from equation (2)
Tj = 6SoC + (1.6W) (37.B·C/W) = 126·C
Therefore:
p•• = (2V) (l.SA) + (2.1V) (.02A) = 3.04W
Now Tj can be determined from equation (2)
Tj = Tambient + (P•• ) (e.) ........................... (2)
= BOOC + (3.04W) (B.7soC/W) = 107·C
This is well within the maximum rating of 175°C for the
U2TASOB.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
SOOC/W + 21°C/W
= 37.B·C/W
It becomes readily apparent from these examples that
Unitrode's TO-92 transistors and Darlingtons can be operated with significant safety margin in a wide variety of
pulsed-power applications.
12-49
PRINTED IN U.S.A.
U-79
APPLICATION NOTE
GUIDELINES FOR USING TRANSIENT VOLTAGE SUPPRESSORS
1.0 Introduction
During transient periods, system voltages and currents are often many times greater than their steadystate values_ These transients must be considered in
overall electronic systems design to insure required
circuit performance and reliability both during and
after the transient.
Transients may resultfro'm·a variety of causes. The
most common of these are: normal switching operations (power supply turn:on and turn-off cycles),
routine AC line fluctuations, or abrupt circuit disturbances (faults, load switching, voltage dips, magnetic
coupling by electro-mechanical devices, lightning
surges, etc.). Voltage transients are a major cause of
component failures in semiconductors. Random high
voltage transient spikes can permanently damage
these voltage sensitive devices and disrupt proper
system operation. Catastrophic power supply conditions should not necessarily be the designer's prime
concern, since lower level transients can cause
improper operation of a system even though no component failures are caused. Normal power supply onoff cycles have the potential of emitting spikes with
sufficient energy to destroy an entire semiconductor
device chain. Any surviving devices are also suspect.
Trouble shooting, isolating, and replacing damaged
devices is time consuming and costly; especially
when performed in the field.
operating life. Unitrode has performed full power
pulse life tests for 100,000 pulses with negligible
change in characteristics. These devices are suitable
for almost any equipment and environment.
2.0 Choosing the Correct
Tr-'"lr,\C"ion+ \/1"\1+'l"'0
I 10.1 Ivlvl I L
V VI
Lo.~v
Suppressor for
the Application
Certain critical terms must be defined before any
discussion of "how to" choose the correct TVS.
1. Stand-Off Voltage (VR) is the highest reverse
voltage at which the TVS will be nonconducting.
2. Min. Breakdown Voltage (BVm;n) is the reverse
voltage at which the TVS conducts 1 mA. This
is the point where the TVS becomes a low impedance path for the transient.
3. Max. Clamping Voltage (VCma~ is the maximum
voltage drop across the TVS while it is
subjected to the peak pulse current, usually
for1mS.
Figure 1 graphically shows all three terms.
Unitrode's TVS305 and TVS505 series of transient
voltage suppressors (TVS) offer the designer significant price/performance advantages over other protection methods. Their miniature size permits Simple
"close-in" installation in applications where circuit
boards are dispersed throughout one or more electronic racks. Dispersed usage aids system trouble
shooting and affords transient voltage protection
where internal system disturbances such as those
caused by inductive load switching could occur.
In spite of their small size, the TVS305 and TVS505
suppressor series can dissipate 500 watts and 150
watts (respectively) of peak pulse power for 1 millisecond. Response time to transients is just about instantaneous - about 1 x 10- 12 seconds. These
devices perform to their data sheet specifications
without significant degradation throughout their
+--------------~-----===~~~~v
Figure 1 -
TVS Characteristics
nn
SEM,ICDNDUCTDR
~ PRODUCTS
12-50
_UNITRDDE
APPLICATION NOTE
U-79
2. Stand-off voltage (VA) - From the TVS series
selected, choose the device with the stand-off
voltage equal to or greater than your normal
circuit operating voltage. This insures that the
TVS will draw a negligible amount of current
from the circuit during normal circuit operation. The electrical specifications for the
TVSSOS series are shown in Figure 3.
3. Maximum Clamping Voltage (Vemax) - Determine the clamping voltage of the device
chosen for the transient given and be sure it is
below the voltage that might damage any
components in the protected circuit. See
Figure 3.
2.1 Determining Pulse
Power Levels
Since a zener TVS has an almost constant clamping
voltage throughout a transient pulse, the transient
pulse power (PP) equals the peak pulse current (Ipp)
multiplied by the clamping voltage (Ve).
Pp
= Ve x
Ipp
100.---,---.----.---.----,
2.2 Choosing the Appropriate
Transient Voltage
Suppressor
3:
a:
UJ
3:
oa...
The three most important factors in choosing the
appropriate TVS for your application, in their order of
importance are:
UJ
CJ)
...J
::::>
a...
1. Pulse power (PP) - Choose the TVS series that
will handle the Transient Pulse Power. To determine Transient Pulse Power use tile simple
equation in section 2.1. If Ipp is not known or
measurable, it can be calculated - see Sections 3 and 4. The pulse duration vs. pulse
power graph on the Unitrode TVS30S1
TVSSOS data sheet can then be used to determine the TVS series that will handle the
transient. This graph for the TVSSOS series is
shown in Figure 2.
TVS
Part No.
TVSSOS
TVSS10
TVSS12
TVSS1S
TVSS18
TVSS24
TVSS28
Stand-off
Voltage
VA
V
S.O
10.0
12.0
1S.0
18.0
24.0
28.0
Min.
Breakdown
Voltage
BV(min) @ 1mA
V
6.0
11.1
13.8
16.7
20.4
28.4
30.7
Figure 3 -
UNITRODE • SEMICONDUCTOR PROOUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924·1235
Max.
Leakage
Current
IA@ VA
IJA
300
5
5
5
5
5
5
MAX. DUTY CYCLE = 0.1 %
~
~
«
UJ
a...
100nS
1/LS
10/LS
100/LS
1mS
10mS
PULSE TIME (10)
Figure 2 -
Max.
Clamping
Voltage
Ve@ 1A
V
7.4
13.2
16.5
19.7
23.8
32.4
3S.9
Peak Pulse Power vs. Pulse Duration
Max.
Clamping
Voltage
Ve@
SA
10A
V
7.9
14.4
18.5
22.2
26.0
37.0
41.0
Max.
Peak
Pulse Current
Ipp
A
53.7
30.3
23.8
19.8
16.3
11.9
10.7
Max.
Clamping
Voltage
Ve@ Ipp
V
9.3
16.S
21.0
2S.2
30.S
42.0
46.5
Electrical Specifications @ 2SoC
12-51
PRINTED IN U.S.A.
APPLICATION NOTE
U-79
If the actual pulse power and pulse width are different
from those listed on the data sheet, the clamping
voltage can be calculated. The actual calculation
method is beyond the scope of this note. Instead, we
offer a graphical approximation using Figure 4. The
approximation is based on the ratio of the actual and
rated pulse power.
The procedure is as follows:
a. Calculate Pp (actual)::::1.3BV m;n Ipp.
b. For Pp (rated) use value from TVS data sheet
curve (See Fig. 2 for example).
c. Calculate Pp (actual)/Pp (rated).
d. Use Fig. 4 to find corresponding value of C.R.
e. Calculate Vc
C.R. x BV mln.
=
1.5
1.41----t---+~--+-_=+""-=_l
------
1.3f-----t-_____
----::ol--"'=---l---+----l
C.R.
~
1.21--"7""F----i---i---f------1
1.1/
2.3 Installation Considerations
1.0o!:----,!:---..
L.---.~6- - -..L
H ---'loU
1. Locate the TVS as close to the device or circuit
to be protected as possible.
Pp(actual)
Pp(rated)
C.R. = Clamping Ratio = ~
2. Minimize the "common path" through the TVS
to minimize voltage spikes produced by fast
risetime transients in lead and wiring stray
inductance. See Figure 5,
Vam,,,
Figure 4 -
Graphical Approximation for the Clamping
Ratio
r--iNCORREcTMETHOD ---,
I
Undesired
Transient
I
1
I
I
1
1
I
i~
Input
Transient
Long /
Common
Palh
1
I
I
Vp
= LEi where
dt
1
1
L '" .02,..H/inch
L ___f~~~~n.£.a.!!: ___ .J
r-------------,
1
I
I
I
1
1
Minimized
Transie~
I
I
11-__
Short
Common __
Path~
v
I
I
1
I
1
t '
I
1
IL__ ...£ORRECT ~THO.£ __ -1I
Figure 5 -
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924·1235
Minimizing the Common Path
12·52
PRINTED IN U.S.A.
APPLICATION NOTE
U-79
3.0 Transient Levels
and Waveforms
3.1 Voltage, Current and
Power Levels
Since TVS tests and specs may be written in terms of
voltage, current or power levels, the relationships are
shown in Figure 6 for (a) field conditions and (b) test
conditions.
In addition to the magnitude of the voltage, current or
power, the waveform or pulse width should be
specified, as shown in Figure 7, for example.
a) FIELD
line impedance
(wires. etc.)
voltage
source
(lightning. etc.)
TVS
Rs
series test
resistor
b) TEST
test generator
Figure 6 -
circuit being
protected
TVS
instrument to
measure clamping
voltage (scope. etc.)
Equivalent Circuit for Field and Test Conditions
3.2 Typical Transient Levels
Martzloff and Hahn in their paper on transients on
120 volt power lines' produced this table showing the
surges recorded at a number of different locations
over a two year period. The table indicates two
primary causes of transients; load switching within
the house and lightning storms.
Table l '
Detailed Analysis of Recorded Surges
sev:~~~urQ
House
,
Typer
A-15
2
3
A·20
8-0 5
8-05
C
8·0 3
a,
C
a-a 25
8-0 25
4
5
6
7
8
9
'0
"
""
"
>5
16
Sireet pole
Hospital
Hospital
Dept store
Street OOle
tA
8·0 2
8·0 2
aD,
C
8·025
8015
8·0 5
C
a03
a05
700
750
600
400
640
400
B
:~~~;,'
10
~s
2 cycles
8·0 5
1 cycle
leyele
1200
10"s
1500
1 cycle
leyele
2500
1500
1700
350
800
800
400
5600
2700
1100
1400
5
A-20
5,.5
1 cycle
1 cycle
1 cycle
1~ ,,5
3 cycles
1'5"s
,1 cycles
9,,'0
I cycle
I cycle
4 cycles
D;~~~!~
''''I>,
10 ,.s
300
'r;~e~'
A
20,..s
leyele
1800
300
8·02
long OSCillation
. "oils>
F,eqC~~~~wge
500
300
300
8-0 5
20,.5
1 cycle
2 cycles
too few to show typical
B03
a,o
8·0 5
I
250
800
300
l,cYc,e
leyele
4 cycles
5ame as most spvere
I
I
8·025
2000 I,eyele
same as most severe
I
8·02
1400
1 cycle
loa lew 10 show IYPlcal
-
-
Cy~e>
8025
600
13
B 013
200
30,,5
8·03
1000
I cycle
C
900
5,$
1
too few to show typical
8·05
8·02
I
300·! I cycle
GOO
<1 cycles
Average
Surges
Remarks
per Hour
007
0"
005
02
fluorescent light
SWltch:ng
10lotal
00'
003
0'
02
04
0>5
006
4101al
1101al
005
0·1
0'
0'
Ilghtnlngslorm
011 burner
011 burner
waler pump
011 burner
house ne~llo 12
Ilghlnlng
rural area
surges
Ilghlnlng stroke nearby
lighlnlngslorm
4 total
05
007
IlghlnlngSlorm
damped OSCillation C-unldlrectlonal Number ShOWS frequency In megahertz
*Reprinted from Surge Voltages in Residential and Industrial Power Circuits by Francois D. Martzloff. Member, IEEE, and Gerald J. Hahn. Reprinted by
permission from IEEE Transactions on Power Apparatus and Systems, Vol. PAS-89, No.6, July/August 1970, pp. 1049-1056. Copyright 1970, by the
Institute of Electrical and Electronics Engineers, Inc. Printed in U.S.A
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924-1235
12-53
PRINTED IN U.S.A.
lSI
U-79
APPLICATION NOTE
3.3 Commonly Used Test
Waveforms
Ipp as specified on data sheet.
1. The 10 X 1000/LS Test Waveform used by
many TVS manufacturers, also by incoming inspection departments of users, represents
some commonly encountered transients. (See
Figure 7).
0----'-1--1
Figure 7 -
2. The IEEE Standard (ANSI C 37.90a - 1974) for
surge withstand capability. (See Figure 8).
2.5KV
Figure 9 shows a typical test set used to produce an
exponentially decaying current pulse of 1mS to 50%
down. (10 x 1000/LS). The 1mS waveform is used by
many manufacturers to test and characterize their
TVS devices for pulse power and clamping voltage.
Figure 8 -
f =
1 to 1.5 mHz
More Complex Standard Waveform
5.4Q
20W
Reset
--L
'r-J·
+
1-
L'
6/LS to 50% down.
+ 12V
Adjustable
350V P.S.
200mA
In
O~~5OQ
3.4 Surae
..., Testina
...,
2K
5.0W
Commonly Used Test Waveform
Sprague
11;t:2001
Unitrode
2N4201
,-------1.. . . . . - - - - - - - - - .
Unitrode
1 N5550
250~f
350 WVDC
Surge---j
Unitrode
1N5612
or1N5613
D.U.T.
:t-~
-*-------------
Figure 9 -
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
Suggested Set-up for Surge Testing
12-54
PRINTED IN U.S.A.
U-79
APPLICATION NOTE
After the contacts switch at t
4.0 Examples
=
0, e
di
ldt'
= -
and when using a TVS the change in coil current
Q!.
'dt
Vc Referring to Figure 10d,
l
Vee/RL
::e~~ Note that the higher
Veil
4.1 Relay and Solenoid
Applications
t, = di/dt
When the energy stored in the coil inductance of a
relay or solenoid is released it can damage contacts
or drive transistors. It can also produce EMI
interference. A TVS used as shown in Figure 10 will
provide reliable operation.
In order to select the proper TVS, determine:
10
=
the Ve of the TVS, the shorter the current
decay time.
1. Peak pulse power Pp
= Ip x
Vc , where Ip
2. Pulse time tp (@ 50% down point of iTvs)
Just before the switch opens, the initial inductor cur·
Vee
ren t I = RL'
This is the worst case (maximum) current and
assumes the switch was closed long enough for the
circuit to reach steady-state.
=,
0•
=
~.
2
3. These values of Pp and tp are used with graphs
of pulse power vs. pulse duration provided on
the TVS305 and TVS505 data sheet to select
proper device. See example in Figure 2.
°
m
For TVS:
1. VR> v"
2. V,< V,,, of 0,
ForTVS:
VR> Vo,
Figure 10b, DC Coil and Transistor..
Figure 10a, DC Coil and Contacts.
'.
AC
iTVS
0+-----'0
For TVS:
VR> VAcpeak
Figure 10c, AC Coil and Contacts.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
Figure 10d, Simplified Current Waveform
in theTVS.
12-55
PRINTED IN U.S.A.
U-79
APPLICATION NOTE
NOTE: In some cases, because of accessibility,
the TVS must be located across the coil; in
that case a diode should be used in series
with the TVS, connected back to back as
shown in Figure 11.
Sample Calculations:
For example, using the circuit of Figure 10a,
and sample values of:
Vee = 14V, L
1mH, and RL
2Q;
=
=
For Vc< =- 14V, the next higher VR is 15V. (Note that
Ve
22.2Vat 10A).
=
STEP 1:. 10
Diode
For diode: PIV ;. V"
= Ip x
t
=
,
'''' L
-_."
STEP 3:
Figure 11 -
Using TVS Across Coil
Vee
RL
Pp
TVS
STEP 2:
=
= --11Y...
= 7A
2Q
Ve
Vee/RL
\tIL
-
= 7.0A
X 22.2V
= 155W
= 22.2/1014/2 = 0.32mS
3
0.32mS
2
·--r-
- n_..1Rm<::
_... - - 1Rn,,<::
From Figure 2, Ppma, for tp = 160p.S is
1200W, which is well above the circuit
value of 155W.
4.2 Protecting Switching
Power Supplies
Transients can produce failu res because of
their own high energy level; and also they can cause
improper operation and component failure.
The designer needs to· protect against:
Figure 12 shows a simplified schematic of a typical
switching power supply.
1. Load transients
2. Line transients
3. Internally generated transients including
those produced by internal faults or
failures.
Referring to Figure 12, the TVS devices shown protect
the following circuit components:
1.
2.
3.
4.
the
the
the
the
rectifiers.
HV switching transistors.
output rectifiers.
control circuitry.
'"---+_-t-~11[tE5V
'::: ~~i~~~;~
l1QVAC
60 Hz
r
@
CIRCUITS
'---------4-tr-:==~=--,
Figure 12 -
UNITRODE • SEMICONDUCTOR PRODUCTS
.580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
Typical Switching Power Supply
12-56
PRINTED IN U.S.A.
APPLICATION NOTE
U-79
4.3 Protecting
Microprocessor
Based Systems
While most microprocessor and Ie semiconductor
manufacturers design some form of diode-resistive input clamping network on the chip itself, transient
voltage protection offered is very minimal - on the
order of a few watts of pulse power. Manufacturers
are also reluctant to make device performance and
reliability claims when power supply operation
extends beyond the maximum rated level of the individual device for even relatively short durations
such as those that may be encountered during on-off
transitions. Therefore, there is a need for some external protective device to suppress voltage transients,
as shown in Figure 13.
Address Bus
I
Clock
CPU
-
f-~
IfI
I r-
----,
-
ROM
r- en:J
r- ID r- e C
I--
ID
~
RAM
,---
en
:J
0
<.)
.'!l
III
,-0
--
'-
-_
'-
I/O
TVS
:~'~
~~
~~ ~ ~~ ~~
~
Figure 13 -
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924-1235
-'--
TVS
--
Protecting Microprocessors
12-57
PRINTED IN U.S.A.
U-79
APPLICATION NOTE
5.0 Alternative Protection
Devices
TVS products do not significantly degrade even after
100,000 transients.
Other protective devices such as MOVs, spark gaps,
and crowbars have one common disadvantage when
compared to zener TVS products; the response time is
from nanoseconds to as much as tens of microseconds as compared to 1 pS for an avalanche zener
diode. Even 50nS is long enough to allow a transient to
destroy the small junctions used in most integrated
circuits, logic, fast transistors, etc.
In many cases, the zener TVS and one of the alternative devices can complement each other. For
example, when used with an SeR crowbar, the zener
TVS will keep the voltage during a transient to an
acceptable level until the crowbar, which may take
10ILS to short the line, can protect the load circuits,
and in the case of a heavy transient protect the
smaller TVS as well.
In circuits where transient pulses are fairly common,
device degradation becomes a significant problem.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-58
PRINTED IN U.S.A.
U-S2
APPLICATION NOTE
HYBRID CIRCUITS FOR LOW VOLTAGE
SWITCHED-MODE CONVERTERS
printed onto the BeO substrate and then fired
in high temperature furnaces. For optimum performance, the tolerances of the thick film resistors
are maintained within 10% of their design values.
The semiconductor devices used in the circuit are
all silicon planar passivated devices and are gold
eutectic mounted. Aluminum ultrasonic wire
bonding is used for interconnections.
In the second stage the BeO substrate is soft
soldered to the header for good heat -transfer.
A copper slug is interfaced between the BeO substrate and nickel plated steel header. The copper
slug is used to relieve mechanical stress between
the BeO substrate and the header and to provide
heat spreading resulting in lower thermal resistance.
ABSTRACT
Hybrid circuits offer many advantages over the
conventional discrete approach in switched-mode
converters. This paper deals with the construction
of the hybrid circuit and its thermal considerations. It examines the efficiency of a buck regulator employing a saturated transistor versus the
optimized darlington configuration. Also considered are the effects of reverse recovery of the
rectifier and base spreading resistance of the transistor on the efficiency of a switching regulator.
Finally, applications of standard hybrid circuits
for switched-mode converters are discussed.
I. INTRODUCTION
Recently a rapid increase in the use of hybrid
circuits in switched-mode power converters is
evident due to their inherent advantages. Some of
these advantages are: dc and high frequency
electrical isolation, ease in heat sinking mUltiple
power components within the single hybrid package, reduced stray parasitics, and finally, lower
overall cost compared to the discrete approach.
The hybrid circuit approach requires careful consideration of thermal design for maximum reliability and proper selection of silicon chips for best
electrical performance. This paper provides an
overview of the construction of a typical power
hybrid switching regulator circuit and its thermal
design considerations. Also considered are the
effects of the reverse recovery time of the rectifier and the base spreading resistance rBB',of the
power switching transistor on the efficiency of the
switching regulator. Applications and advantages
are also discussed for types of hybrid circuits
which are designed for low voltage applications
and other types designed for "off-line" switched
mode converters.
111. THERMAL CONSIDERATIONS
The design of the power hybrid circuit requires
careful consideration to optimize important
thermal requirements; thermal cycling, resistance,
and partitioning. To obtain maximum thermal
resistance, overlapping heat flow should be avoided.
As shown in Figure 2, heat flow from silicon chips
#2 and #3 overlaps, thus reducing the thermal
capability. No overlapping heat flow occurs from
chip #1.
Thermal resistance of the package can be calculated by the formula:
t
RT = P""A
where t is the thickness of material through which
heat flows, P is the thermal resistivity of the material and A is the average area through which heat
flows.
In making a conservative calculation, it is assumed
that heat flux diverges at approximately a 45°
angle for all the materials except the copper slug
(62.5°) due to high conductivity.
The thermal resistance calculation of a hybrid
circuit is shown in Figure 2. The copper slug
between the BeO and header reduces the thermal
resistance of the package (by about .32°CIW) by
spreading the heat flow through a large area of
the steel header.
This calculation assumes that no voids are present
at the interfaces.
II. CONSTRUCTION
The power hybrid circuit PIC600 is the power 'Output stage of a buck type switching regulator as
shown in Figure 1. It consists of a high speed
darlington-connected transistor pair, a commutating diode and two thick film biasing resistors.
These components are housed in a 4 pin electrically isolated TO-66 package.
The manufacturing procedure for these devices is
divided into two stages. First, a BeO substrate
is chosen because of its excellent thermal
conductivity, - - 70% as good as copper. The
interconnection paths, pad areas for the wire
bonds and the thick film resistqrs are screen
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (S17) 926-0404 • FAX (S17) 924·1235
IV. COMPONENT AND CIRCUIT SELECTION
Achieving maximum efficiency in a buck-type
regulator requires proper selection of electrical
characteristics of the transistor switch and catch
diode. Optimum efficiency can be obtained with a
12·59
PRINTED IN U.S.A.
1m
APPLICATION NOTE
U·S2
Schottky rectifier because it has lower forward
drop than most PN junction devices. The Schottky
rectifier is a majority carrier device and has zero
reverse recovery time. However, the Schottky's
high junction capacitance (10 times greater than
PN junction devices) produces' the same effect as
the trr of PI')! junction devices. Junction capacitance does not change appreciably with temperature, so the effective reverse recovery time remains
the same with respect to temperature. Since
commercially available Schottky rectifiers have
only a 45V PIV rating, the absolute maximum
input voltage of the buck type regu lator is limited
to only 45V.
duration in the active region. This significantly
increases RFI and also increases the power dissipation in the transistor, and may cause second
breakdown.
For reliable circuit operation, trr should be much
less than the" current rise time of the tiansistoi.
This ensures minimum current overshoot in the
transistor and also minimizes the amount of time
the transistor spends in the active region during
turn-on, resu,lting in lower power dissipation and
increased efficiency. However, to obtain maximum
efficiency, all switching times, (including current
rise time) should be as fast as possible. The re.s:tifier
should be selected such that its trr is one third or
less of the current rise time of the transistor. In
swiichiny reguiaiur alJlJiic1000V) power supplies, it is desirable to have
abrupt reverse recovery time for optimum efficiency. In low voltage, high current power supplies
a soft reverse recovery rectifier is better suited
from the RFI viewpoint.
'
1.
Figure 3 shows the effect of a diode recovery time
on transistor power dissipation. The reverse recovery time of the catch diode requires the transistor to conduct higher peak current for a longer
Larger emitter periphery area with a triple
diffused or double diffused epitaxial construction to provide lowest effective collector series resistance to prevent forward
biasing of the collector-base junction.
2. The base spreading resistance, ree',of the
device should be lower than the external
biasing resistor. This will provide low storage
time and fast fall time.
3.0
'~,IRM IC
-1
2.6
V>
~
0
I.
...J
~
~
.t:o..
I:
0
r:.
5
+ E Ic::
0
.t:~
o..
2.2
--1
I:
~
L
~EO
c
D
~
.;;;
I-
Figure 3b.
tn
E.
1.B
't"rr
1.4
In
1
'
, Co
Figure 3a.
1.0
0
0.2
0.4
0.6
O.B
1.0
Diode trr
Transistor tri
Figure 3. Importance of Reverse Recovery Time of a Rectifier
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924·1235
12·60
PRINTED IN U.S.A.
U·S2
APPLICATION NOTE
Ql
Dl
Figure 1. Unitrode power hybrid circuit (PIC600)
Silicon
Chip #2
IDI
Silicon
Chip #3
D~~~==~~========'~~============~~"=======~~=F~="========<
.......
..... ,.'
F~~~=============~=========~=========~~=========~
,
'
/
/ I ,
/G/
'"
Al
...
,,,,,.._ _ _ A2 -7--+t
,,
,
/
"
//
/
I
",,'
,
DEFINITION:
Material
A
B
C
D
E
F
G
Temp. Coef.
10-6°C
P
Rest.
°C-inM/
t
Thickness
in mils
RT* of
PIC625
4.2
14
6
23
16
23
11
.303
.182
.152
.8
.104
.8
.884
5
3
20
4
10
3
65
.214
.0718
.249
.187
.04614
.0836
1.043
- Silicon
- Si Au Eut.
-BeD
- Solder
- Copper
- Solder
- Steel
Total
1.8954
Figure 2. Heat Flux Line in a Hybrid Circuit
UNITRODE. SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
12-61
PRINTED IN U.S.A.
U-82
APPLICATION NOTE
Emitter
Base
Base
N
P
fL
/,;",,-/
"
I
~
N
A
N+
Figure 4. Effect of rBB. on Switching Times
and Dynamic Saturation
The internal biasing resistors of these transistors
are sufficient for fast turn-off without requiring
any 182·
The resistor turn-on biasing method works satisfactory up to 10A for a low voltage device without
affecting the efficiency of the switching regulator.
Another advantage of the resistive turn-off circuit
is that it limits current crowding during turn-off
thus increasing the reliability of the circuit. Since
the driver transistor operates in a saturated mode,
the device should have a high gain-bandwidth
product to minimize overall storage time.
The table shown in Figure 5 compares the efficiency of a saturated transistor (2N4150) versus
the hybrid darlington as the switching element in
a 50 kHz buck regulator. In each case, the output
device has the same size silicon chip.
The hybrid circuit PIC600 consists of two transistors connected ina darlington configuration.
Efficiency
Power Losses
(Watts)
Tj = 25°C
Pass
Transistor
~ = 0.5
Ein
Eo
"Ei;; = 0.2
2N4150
(Saturated)
D.C. Losses ...............
Switching Losses ............
Drive Losses ..............
Diode Losses ..............
0.7
2.27
0.13
4.76
84.79%
81.66%
PIC625
(Darlington)
D.C. Losses ...............
Switchi ng Losses ...........
Drive Losses ..............
Diode Losses ..............
1.4
1.53
0.15
4.76
82.8%
81.69%
Conditions:
f= 50KHz
Eo= 5V
lo=7A
Same size output device for both cases.
Figure 5. Comparison Between Saturated and Darlington
'Pass Transistors in a Buck Type Switching Regulator
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-62
PRINTED IN U.S.A..
APPLICATION NOTE
U-S2
In the saturated transistor approach, the transistor
is driven with a forced Beta of 5 during turn-on
and turn-off. However, in the darlington configuration, no turn-off base drive is employed. Typical
measured switching times and saturation voltages
are used to calculate losses.
From the table in Figure 5, it is evident that the
hybrid darlington approach provides best results
in terms of efficiency when the ratio between the
output and input voltage is less than 0.25. In a
darlington configuration, if the output device is
kept out of saturation, then the rise, fall and storage times will be reduced compared with the
saturated transistor. Even at higher output/input
voltage ratios the loss in efficiency because of
higher VCE(SAT) is minimal compared to the
complexity and cost of a drive circuit required for
a saturated transistor.
V. APPLICATIONS
Different applications of power hybrid circuits are
discussed in this section.
Low Voltage Hybrid Circuits «100V)
Some applications of low voltage hybrid circuits
are: low and high current positive and negative
buck-type regulators, bidirectional motor driver
circuits, PWM push-pull and half bridge converters.
Each is discussed briefly as follows:
a. Buck Type Switching Regulator
The schematic of the low cost, free running
buck switching regulator is shown in Figure 7. When the output voltage is lower than
the reference voltage, transistor Q2 is off
and transistor Q1 is on and provides the base
drive to the power hybrid circL'it PIC600.
The current in inductor L1 increases linearly
and continues to charge the output capacitor
Co. When the output voltage exceeds the
zener voltage of diode D1 (plus some fixed
fraction of VBE of transistor Q2) transistor
Q2 turns on and removes base drive current
from transistor Q 1 and hybrid circu it
PIC600. Resistor R6 and capacitor C1 are
used to provide fast switching times. The
output voltage is trimmed with resistor R3. . . . .
The plot in Figure 6 shows dc power dissipation
of a PIC625 at various duty cycles and temperatures. The efficiency of the regulator depends
heavily upon output voltage. Switching losses of
the PIC625 under conditions shown in Figure 6
are:
25°C - 0.875W
-55°C - 0.525W
125°C - 1.476W
13
I
--=-
..
I
I
lEo; 25V
Efficiency:
I
11
~->
1--/
....
~
0
'"
Q)
o.~
~
L
70
I·
9
I
60
55°C DC Losses
o.
~U
Q)
•
80
IB1 ; 30mA - Independent of Load and Temperature
.- ...J
;;:0
0a..
'"
90
Eo ; 5V
10
c:"i:
.QO
.-~
I
~
12
100
8
25°C DC Losses
7
125°C DC Losses
50
5
0.6
0.4
i
W
40
Ein ;25V 10 ; 7A
f ; 25KHz
0.2
g
Q)
Conditions:
6
o
>
·0
0.8
30
20
1.0
Figure 6. Losses and Efficiency - PIC625
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-63
PRINTED IN U.S.A.
APPLICATION NOTE
U-82
L1
PIC600
r------.,
= 2mH
liK>4l
,
~
~-l
___ ...r_
1.5K
33K
'R2=lS0n
R3 = 330n
R4 = 220n
01, 02 = 2N2222
1/= SO.3%
Load Regulation = .2%
Line Regulation (25
55V} = 2%
Figure 7. Low Cost Buck Regulator
b .. High Frequency.Switching Regulator
Low voltage hybrid circuits can be operated
as high as 250 kHz due to their fast switching times. When these devices are used above
100 kHz, the storage time of the driver
transistor must be reduced. This can be done
by using a Baker clamp with resistor R1 and
diode D1 as shown in Figure 8.
The advantages of operating a buck regulator
at higher frequencies are:
Lower filter cost
Reduced size and weight
Improved transient response
Output ripple voltage less dependent
upon ESR of capacitor
Simpler EMI and RFI filtering
L = 100llH
PIC600
r-------
Ejn = 25V
o---.-----~--~~--~
---
Eo = 5V
r---~~~---J~nn~~~~~
I
I
I
I
I
I
L~_
Co
01
lN914
.
T~'
.002 F
55f!
4.7K
4.7K-
....
Inv o-!It-~:::_-------t_------
.....--'11""'......--+<>
N1
4.7K
UC3524A
°12N2222
4.7K
2.2K
Figure S. Operating a PWM Buck Regulator Above 100KHz
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
12-64
PRINTED IN U.S.A.
APPLICATION NOTE
c)
U-82
PWM Push-Pull Converter
The circuit schematic shown in Figure 11 is a
width modulated push-pull converter. It utilizes
the Unitrode PIC636 power hybrid circuit.
Flux symmetry5 in the transformer core is provided by introducing an air gap in only one leg of
the EE core configuration. The voltage developed
across resistor R1 and capacitor Cl is proportional
to the flux density in the center leg of the EE
core. This developed voltage is fed back into the
control circuit at the output of the error amplifier. The output pulsewidth is corrected by the
developed voltage across Cl and R1, providing
flux symmetry in the power transformer.
Extending Output Current Capability up to
20A
The output current capability of a buck
regulator can be extended by (1) paralleling
the output devices as shown in Figure 9 and
(2) the use of a high current device as shown
in Figure 10.
The advantages of paralleling output devices
are that it allows the device to operate with
a relatively simple drive circuit and provides
simplicity of heat sinking. On the other
hand, proper current sharing .during the ontime period and turn-off time is required.
The circuit shown in Figure 9 provides the
circuit technique to do just that. The only
drawback is that it requires a dead-band
period which must be greater than 0.1 L,
where L is the inductance value of the common mode choke L1.
Bidirectional Motor Drive Circuit
These power hybrid circuits can be employed to
drive inductive loads, such as DC motors, stepper
motors, and hammer drivers. Small inductors L1
and L2 limit cross-conduction. current during
switching times of the two hybrid circuits. The
excellent switching properties of the hybrid circuit allow the circuit to be operated with high
efficiency up to 100 kHz, improving transient
response of the circuit.
PIC625
r---------.,
I
76BT' BB/3E2A
N,=N2=' Turn
I
I
I
.--
L.. _ _ _ _ _ _ _ _
...1I
•
r--------.
PIC625
L-- _ _
'Drive
Figure 9. Current Sharing with a Common Mode Choke
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926.()404 • FAX (617) 924·1235
12-65
PRINTED IN U.S.A.
APPLICATION NOTE
U-82
PIC625
,-------I
I
I
I
I
IL ____ _
--"
820
VREFOi---[
: ~ CA.
~ Co o-I-''''''r---'
g
~;.
GND
~
1 - 1_ _ _ _ _ _ _- - '
Figure 10. Simplified Schematic of 20A Buck Type
High Efficiency Switching Regulator
Figure 12. Bidirectional Motor Drive Circuit
Ein = 25V
100pF
Ferroxcube
782E272
8200
N1
=
lOT
N2"'8T
4.7K
+--JONI._.-i--oNI
C80-+----'
UC3524A
I-......+-<>VR
EAo-+---...J
1--+-<> CT
EOo-+----,
t--JONI.--i--o RT
2.2K
.,
I
I
I
I
4
.-J
C3 '" ,OOSpF
CS=·lpF
Cs= .OOSpF
Figure 11. PWM Push-Pull Converter
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12·66
PRINTED IN U.S.A.
APPLICATION NOTE
U-82
VI. CONCLUSION
A wide variety of power hybrid circuits in standard
packages for switched-mode converter applications
have been developed by Unitrode. Power components were carefully selected for optimum
electrical performance. In many instances these
hybrid circuits not only provide superior electrical
performance but also reduce the overall cost of the
power supply by reducing production labor and
repair cost.
IfI
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-67
PRINTED IN U.S.A.
U-83
APPLICATION NOTE
INCORPORATE ACTIVE INRUSH CURRENT LIMITING
TO IMPROVE RELIABILITY AND EFFICIENCY
OF POWER SUPPLIES
Active inrush-current limiters-unlike fuses and circuit breakersprevent dangerous situations instead of only reacting to them.
Apply limiting techniques, and you need not employ extra-hefty
rectifiers just to ensure rectifier survival during turn on.
The input filter capacitor employed in many
power-supply designs creates a potential problemhigh inrush current. Fortunate!y, though, adding a
few extra components can prevent inrush current
and its associated circuit damage.
How does the input capacitor cause such problems? Intentionally chosen for high storage capacity and low equivalent series resistance (ESR), it
behaves like a nearly perfect short circuit when the
supply first turns on. The resulting short-duration
peak inrush current can reach levels much greater
than the tolerable single-cycle ratings of the
supply's semiconductor rectifiers (thus destroying
them) and still not contain sufficient total energy
to open protective fuses or circuit breakers. Additionally, the supply's rapidly rising voltage and
current levels could cause dv/dt- or di/dt-sensitive
devices in neighboring hardware to fail or malfunction.
I'-.....---'I---'
I
I
I
,
50V_
DC
Computer analysis proves useful
To appreciate the inrush-current prqblem, consider an estimate of its magnitude before examining possible control techni,ques. Figure 1 depicts
a model of the ac-input and rectifier/filter sections
for a typical power supply, Although shown in a
straight 6ff-the-power-mains configuration, the
model should be valid for any other design with
the same output-power capability.
An ECAP computer analysis performed for this
circuit assumed worst-case ·conditions: switch
closure at 16DV (peak voltage).'The results (Figure 3) of a typical design. The current pulse's
high level and short duration could generate severe,
localized hot spots in rectifier junctions or cause
false triggering of rate-sensitive devices elsewhere
in the circuit.
A ,standard approach to current limiting is depicted
in Figure 4a-a resistor. It's simple, reliable and
easy to design in, but efficient.it isn't. Atany current level, it dissipates power that would otherwise
be available to the load. The resistor does perform
a surge-current-limiting function, however.
Out put
Vol tage
50V(DiV
line
Volt age
150 V/Div
I
I
I. -,
~
,.\
Inr ush
Cur rent
aOA(DiV
'" K
2mS
-
V
./
V
\
200mV
+>50V
Figure 3. Measured inrush current appears close to that predicted in Figure 2. This large current inrush could cause
junction hot spots and generate troublesome EMI.
Alternatively, a thermistor-controlled current
limiter (Figure 4b) alleviates the resistor's efficiency problems to some extent, but it aggravates
the dropout-recovery problem. The same cold-tohot resistance variation that permits turn-on
current limiting and high efficiency at low operating currents fails in dropout-recovery situations:
The thermistor's long thermal time constant
prohibits fast recovery.
(al
117VAC
,Line
DC Output
__
-----~---_---O+
+
AC Line
A,
C1
Vo
(b)
f--_---{) +
DC Output
C2
NOTES
Rl: 3,5W
R2: 0.2, lOW
R3: 3k, 5W
R4: lk
R5: lk, 2W
REi: 2k
Figure 4. Two common methods of inrush limiting
employ either a resistor (a) or a thermistor (b). But
if the resistor is large enough to effectively control
surge currents, it also significantly reduces efficiency.
The thermistor, while more efficient, offers little
protection during dropout recovery because of its
long thermal time constant.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
+
A,
AC Line
Cl:
C2:
C3:
01:
02:
03:
1000llF 01: 400,V1OA
02: UPT312
10llF
21lF
UZ4715
lN4245
UT6aO·4
Figure 5. SCR soft starting bypasses the current-limiting resistor (R1) only when the peak-detected voltage
across a1 drops below the zener breakdown, i.e.,
when C1 becomes almost fully charged through R1.
12-69
PRINTED IN U.S.A.
ID
APPLICATION NOTE
U-83
SCR spells efficiency
In view of resistor and thermistor drawbacks,
active soft-start designs offer a best-of-both-worlds
solution-effective inrush limiting, fast recovery
and high operating efficiency_ This type of circuit,
shown in Figure 5, essentially incorporates a current-limitina resistor (R 11 and a bvoass switch
(Q,). At turn on, Q,is 'OFF, and th'e surge current (IS) develops a voltage across R,. This voltage
. is peak detected by 02 and stored in C2. When the
voltage exceeds O,'s zener breakdown-an event
that should occur almost instantaneously-Q 2
turns on, disabling Q,'s gate-triggering network
(R3C3)' As the power supply's filter capacitor C,
charges up, the inrush peaks diminish until the
detected ISR, voltage falls below 01's zener
hra:::.lrnn\Aln
'the'
_ • __ .... __ ...... n"",
-L, 'than
.... _ . . .1'llrnc::
. _ ••• - nff
_'0, ::IInri
_..........
- R"'r
.. .,J-..J..... ..nA1'
_ .._
work charges up and fires Q" bypassing R,.
This circuit recovers rapidly enough to limit inrush currents that could occur as a result of even
short line dropouts. When the ac input voltage
goes to zero, the voltage across Q, also goes to
zero, and Q, turns off. When the input voltage
reappears, Q2 keeps Q1's gate circuit OF F until
R, has allowed C, to become almost fully charged.
Figure 6 graphically depicts this design's inrushlimiting ability. Note how the ISR, voltage level
(upper trace) tracks the diminishing inrush-current
pulses (lower trace) for the first three cycles. At
the '7-msec point (slightly after the third current
pulse). the peak detected voltage has dropped
below the zener breakdown point, and Q, switches
on, bypassing R,. Then R2 limits inrush currents.
50V
.VC2
50V /Div
5mS
.... ... .... .... .. , .... ... .... ...
'"",
Inru sh
Cur rent
20A',DiV
....
\
.\. .. \
5V
.. ~ .. ~.
.Jl" .. 1\ '"1
50,:, V
5 msec/OIV
Figure 6. Inrush-current. pulses of decreasing magnitude
(bottom trace) lower the SCWs hold-off voltage (upper
trace), After 17 msec, the SCR fires.
After determining your design's maximum continuous dc output current (10) and inrush limit (IS).
you can select an appropriate SCR. (The major
SCR considerations are the peak repetitive blocking voltages and the maximum. average plus peak
current levels.) Typical SCRs exhibit a gate-turnon voltage (VGT) of about O.6V; typical powersupply circuits exhibit a di/dt of about 'A/Ilsectwo quantities required for calculating the values·
of the other critical components:
R, = .J2V AC/IS
R2 = PR2/102
Vz = ISR2
C3>(2V2 VACVZ)/( R3VGTR, (di/dt)).
TRIAC
117VAC
Line
+
c1
l000pF
NOTES
Dl: UZ4718
D2: UT680-4
D3: lN3612
Dl
01: 400V, lOA
02: UPTA510
°3: U2TA506
04: U13T1
Tl: SPRAGUE llZ2000
lN914
Figure 7. Phase controlling a triac limits inrush-current pulses' amplitude and duration, Cyc/e-by-cycle triggering handled by the PUT comparator - ensures instant recovery from line dropouts.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-70
PRINTED IN U.S.A.
U-83
APPLICATION NOTE
Switch out the limiting resistor
when the inrush is over
In the second equation, specify PR2 as the maxi
mum power your requirements allow across R2.
Another effective inrush-current limiter is the
phase-controlled triac design shown in Figure 7,
which operates by controlling the conduction time
of the current surges. Initially, the dc voltage (Va)
across C1 builds up slowly because of R 1 's currentlimiting action. This dc voltage helps establish a
reference (via R 11 and zener diode D 1) for the
programmable unijunction transistor (PUT) 04 and
charges the phase-control timing capacitor C2(via
R3). The PUT fires when its trigger point is
reached, turning the triac on. Thus, when Va is
initially low, C2 charges slowly, and the triac
triggers on late in the half cycle. As Va rises 01
turns on earlier in each c':,c!e until nearly 100%
conduction is achieved.
r5~V
500 mV
,
rr.
t
L ine
V altage
,
50 V/Div
1\
-
f
r'
3 f-(;vI(J
"
50V
Ii
II'
In
lA ..
;.."
~.
~
1.
Eq uivalent
Inr ush
Cu rrent
A/Div
AlO
D~
Ou tput
Va Itage
50 V/Div
~
\.
10 mSEC/DIV
Figure 8. Triac conduction follows the gradually increasing
dc output voltage, decreasing the would-be inrush current.
When the output voltage reaches design level, the triac is
bypassing the current limiter nearly 100% of the time.
The remaining circuit components (D3, 02, 03,
etc) discharge timing capacitor C2 on each half
cycle, thereby assuring cycle-by-cycle current
limiting and fast recovery from dropouts. Figure 8
depicts the relationship between the ac input
voltage, the dc output voltage and the varying
conduction angle of the triac.
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-71
PRINTED IN
u.s A
APPLICATION NOTE
U-85
DESIGN GUIDE - POWER SCHOTTKY RECTIFIERS
IN A SWITCHING REGULATOR
1.
Introduction
2.
Basic Structure
The basic construction of a Schottky rectifier is
shown in Figure 1. The starting material is a heavily
doped N+ silicon wafer on which an N-type epitaxial
layer is deposited. The resistivity of this lay~r
deteriTlines the reverse blocking voltage capability
of the rectifier. The Schottky barrier is formed by
depositing a metal layer on the N-type epitaxial
layer, and the junction formed between the metal
and the semiconductor is an abrupt junction.
Present technology is stimulating the development
of more efficient power supplies. The switching
regulated power supply is fast becoming the most
popular type especially in industrial and military
applications because it offers t-ligr.er efficiency than
a linear power supply.
Schottky rectifiers are widely used in switchedmode converters due to their inherently lower forward voltage characteristics compared with PN
junction devices. Losses in the power supply are
reduced considerably by the use of Schottky rectifiers, resulting in increased efficiency, improved reliability, and reduced size, weight and cost of the
switched-mode converter.
In a +5V T2L logic power supply, the efficiency of a
switched-mode converter is reduced 11 to 15% due
to rectifier losses. The trend is for information processing circuits to be operated at even lower voltages, making the forward characteristic of a
Schottky rectifier even more important.
Since the Schottky rectifier is a majority carrier
device, there is no reverse recovery charac.teristic
caused by minority carrier storage when the devices
switch from forward conduction to the blocking
state. However, due to the large junction capacitance, Schottky rectifiers will exhibit reverse recovery time like a fast PN junction rectifier.
The most commonly used barrier metals or alloys
are chromium, platinum, nickel platinum, molybdenum tungsten. A performance comparison of different barrier metals is summarized in Table 1. The
chromium barrier provides low forward voltage with
a very high leakage current. However, the tungsten
barrier provides low leakage current with high forward voltage. Since efficiency is a major consideration in switched-mode converters, the tlickel platinum barrier provides the best choice due to its low
forward drop with a minimum of leakage current.
3.
This application note describes, in brief, the theory
of Schottky rectifiers and compares Schottky rectifier characteristics using different barrier metals
and their effects on switching regulator efficiency.
The discussion also covers the parasitic elements in
the Schottky rectifier and considers the effects of
these elements in switched-mode converters.
Design rules are derived for optimum snubber networks to protect agai nst transient voltages and mi nimize RFI. Guidelines are provided for selecting the
proper Schottky rectifier for different types of
switched-mode converters.
Theory And Discussion of Parasitic
Elements in a Schottky Rectifier
The energy bands of a metal and semiconductor
separated by a vacuum are shown in Figure 2a. This
system is not in equilibrium. However, if an electrical connection is made between the semiconductor
and metal, charge is allowed to flow from the semiconductor to the metal. Equilibrium will be established and the Fermi levels will become aligned.
When intimate contact is made between the metal
and semiconductor, Figure 2b, the Fermi levels will
line up and there will be an accumulation of positive
charges at the surface of the semiconductor. A barrier will exist for electron flow from the metal to
semiconductor and the barrier height will be the
difference between the work function of the metal
and the semiconductor.
nn
SEMICONDUCTOR
.~ PRODUCTS
12-72
_UNITRODE
U-85
APPLICATION NOTE
Schottky Barner
Metal
Silicon
Heavily
Doped Area
Ohmic Contact
Figure 1 - Cross-Section of a Schottky Barrier Power Rectifier
IfI
Vacuum
l-t:.::-~:"
EFerml
~----
Econduction band
EYaJance band
~---- Evalance band
6 - 0
Figure 20
Figure 2b
Figure 2 - Energy Band Diagram of Metal Semiconductor Contact
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-73
PRINTED IN U.S.A.
APPLICATION NOTE
U-85
TABLE 1 - PERFORMANCE COMPARISON OF DIFFERENT BARRIERS
POWER LOST IN EACH RECTIFIER
SPECIFICATIONS
METAL BARRIER
Chromium
Platinum
Ni-Platinum
Tungsten
•
VF @20A
VF @ 100A
(V) 125"C"
(V) 125"C"
LEAKAGE CURRENT
(mA) 125"C"
LOSSES DUE TO
Li:AKAGi:(Wi'
VF LOSSES @ 100A
(Wi'
0.35
0.45
0.51
0.433
0.51
0.78
0.75
0.80
0.73
0.82
280
65
10
30
10
1.80
0.46
0.071
0.2145
0.071
33.20
34.07
35.23
32.70
36.79
Power dissipation calculations are based on 1250 C operating junction temperature and a high line input voltage for an
off-line PWM converter .
•• VF voltages are for 160 mil 2 die.
3.1 Forward Biased Junction
When the barrier or a junction is forward biased, the
energy level of the conduction band in the semiconductor is raised, which allows electrons to flow into
the metal as shown in Figure 3a. A small barrier does
remain, but the electron energy distribution is sufficient to overcome this remaining barrier. Increased
forward bias will overcome the barrier and current
flow will be limited only by the series resistance of
the device. Most of the forward drop at high current
occurs in the high resistivity epitaxial layer which
determines the reverse blocking voltage capability.
Schottky rectifier forward drop can be expressed by
the following equation:
VF
= ~+
q
KT In
q
(
IF
) + IF·p· d
A
A X RT2
(3.1)
+ Voltage drop in ohmic contact of package
Where: IF
A
KT
q
Forward current (A)
Barrier area (cm2)
0.026 at room temperature
Since holes cannot exist in the metal, none can be
injected into it. As a result, conduction is entirely
due to electrons. This eliminates the minority carrier
related reverse recovery time.
3.2 Reverse Biased Junction
When the device is reverse biased, the conduction
band in the semiconductor is lowered by the applied
reverse biased voltage as shown in Figure 3b. For
any conduction to occur, electrons must surmount
the potential barrier created at the metal-semiconductor junction. Some electrons in the metal g2!r
sufficient thermal energy from the lattice structure
to overcome the barrier while others are able to
tunnel through the barrier. This leakage current is
temperature dependent.
3.3 Junction CapaCitance
The barrier metal and uniformly doped N-type epitaxiallayer create an abrupt junction. This results in
at least 5 times higher junction capacitance when
compared with similar slightly graded ultra-fast PN
junction devices. The depletion capacitance of a
Schottky rectifier under reverse biased conditions
can be expressed by the equation:
_ IV
4>
Barrier height - ev
p
Resistivity of epitaxial layer (O-cm)
C - A·
d
Thickness of epitaxial layer (cm)
Where: ND
R
Richardson constant
T
Absolute temperature (0 K)
=
~T =
VR
The term [IF' P • (d/A)] in the above equation is
the forward drop in the high resistivity epitaxial
layer and it is a significant portion of the forward
drop at high current levels.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
R
12-74
=
(43' lO'6 )N D
+ 0.6 + (KT/q)
(3.2)
Carrier concentration of an epitaxial
layer
0.026 at room temperature
Applied reverse biased voltage
PRINTED IN U.S.A.
APPLICATION NOTE
U·85
As can be seen from the equation, the junction capacitance is inversely proportional to the square
root of the applied reverse voltage and is practically
independent of temperature at reverse voltages
greater than 1V. When the device switches from
forward biased condition to the reverse blocking
state, current is required to charge the depletion
capacitance. Thetime requiredto charge up capacitance
is determined by the circuit impedance. This charging
current has the same effect as the reverse recovery
current of a Unitrode fast recovery "UES" PN
junction rectifier!
In a switched-mode converter, the apparent reverse
recovery time is determined by the leakage inductance
of the transformer and the junction capacitance of the Schottky rectifier. Since capacitance
does not vary with temperature, the apparent recovery
time and current overshoot remain constant with
temperature. Ringing resonance of leakage inductance
and Schottky capacitance can cause voltage overshoot.
In a high frequency switched-mode converter where
the transformer is designed with very low leakage
inductance, careful consideration must be given in
selecting the Schottky rectifier because of dv/dt
limitations.
Direction of Electron
Flow
4.
,..
,-______
f
w
c
e
.g
I
iii
I
Fermi Level
Applied Forward Bias
r------------r----------Ev
Metal
Figure 3a - Rectifier - Forward Biased
Applications of a Schottky Rectifier in
Switched-Mode Converters
The simplified power output stage of a half-bridge
switched-mode converter is shown in Figure 4a.
When switching transistors 0, and O2 are in the "off"
condition, diodes D3 and D, conduct in the forward
direction to provide a current path for inductor L,.
Each diode carries half of the load current. When
transistor 0, turns on, current in diode D3 starts to
change from half the load current to full load current, while current in diode D, starts to change from
half the load current into the "off" condition. Current transition time in the rectifier will depend on the
current rise time of the transistor and the leakage
inductance of power transformer T2 • When current
in rectifier D3 increases to full load current, current
in rectifier D, decreases to zero.
Since a Schottky rectifier is a majority carrier
device, it should turn off instantaneously. However,
because of the larger junction capacitance of the
Schottky, rectifier compared with PN junction devices, transistor 0, supplies additional current to the
secondary winding to charge up this larger junction
capacitance. Note that the junction capacitance of the Schottky rectifier varies with reverse
bias voltage as shown in Figure 5. Also the capacitance is five times that of equivalent PN junction
devices.
Applied
Reverse
Bias
11
Depletion
Layer
As current'is increased, the voltage across the junction capacitance of the rectifiers builds up toward
the full reverse blocking state. The primary current
will be higher than the output load current divided
by the transformer turns ratio. During this period,
energy is stored in the leakage inductance due to
the excessive current on the primary side. As the
Figure 3b - Rectifier - Reverse Biased
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12·75
PRINTED IN U.S.A.
IfI
U-85
APPLICATION NOTE
~
..
N. transformer turns ratio
Senes resistance of primary windings
Series resistance of one half
secondary winding
Leakage inductance of transformer
Primary windings distributed capacitance
One half secon,dary winding capacitance
Output capacitance of switching
transistor
Juncllon capacitance Of rectifier
Figure 4a - Typical Hail-Bridge PWM Switching Converter
A
,
Saturation
Resistance of
"VCE
'C
0,
T
t
Figure 4b - Equivalent Circuit During Charging 01 a Junction
Capacitance 01 a Schottky
4L (
Figure 4c - Simplified Equivalent Circuli Referred Back to
Secondary Side
Junction
Capacitance
1600
40
Reverse Bias Voltage -
(V)
Figure 5 - Comparison of Junction Capacitance ultra-last
PN-Junctlon VB. Comparable Schottky Rectifier
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-Q404 • FAX (617) 924·1235
12-76
PRINTED IN U.S.A.
APPLICATION NOTE
voltage across the rectifier reaches full switching
voltage, energy stored in the leakage inductance
continues to charge up the junction capacitance.of
the rectifier above the switching voltage reflected
back in the secondary. These voltages can force the
device into the breakdown region if the proper
snubber circuit is not employed.
U·85
The loaded Q L should be 0.5 for a critically damped
case to prevent any ringing of the voltage and to
provide minimum losses in the snubber resistor. LC
tuned circuits will have only real roots. Loaded Q L
can be described by the equation:
Q L = 0.5 =
4.1 Snubber Network Design
The equivalent circuit referred back to the primary
side when the junction capacitance is charging up is
shown in Figure 4b. The junction capacitance ofthe
Schottky and the leakage inductance of transformer
T2 form a resonant circuit. The winding resistances,
Rpw and Rsw, and saturation resistance, R" provide
very little damping to this LC tuned circuit. Therefore, its effect on damping can be neglected. The
interwinding capacitance of the power transformer
is much lower than the junction capacitance of the
Schottky rectifier and may be neglected. The simplified circuit referred back to the secondary side is
shown in Figure 4c.
Since Schottkys are prone to excessive heating and
possible damage in the breakdown mode, a proper
snubber is required. The design of the snubber network minimizes voltage spikes and snubber losses.
The snubber network also helps to reduce conducted and radiated RFI.
The optimum snubber network'should be designed
on the basis of critical damping of the LC tuned
circuit and limiting the maximum excursion of the
voltage below the PIV ratings of the rectifier.
Shown below is the LC tuned circuit with resistor
Rsnb paralleled across the junction capacitance of
the Schottky rectifier for a critically damped
condition.
Where: XL
I~t
(4.1 )
= jwL
:."Rsnb = 0.5 . w . L
0.5
Rsnb =
(I (4L~Jn2)C) (:~
')
n1;r:;V c.
Where: Cj
L(
(4.2)
I
Junction capacitance of rectifier
Leakage inductance of power
transformer
A capacitor is required in series with the resistor in
order to block the dc voltage present. The blocking
capacitor should be at least ten times the rectifier
junction capacitance:
(4.3)
To transfer the power effectively from the input
power source to the output load, the time constant
(R snb x Csnb ) should at at most one-tenth the minimum pulse width of the switched-mode converter.
This occurs at maximum input voltage. Therefore:
(4.4)
Where: f is the operating frequency ofthe switc~ing
regulator.
The power dissipation in the snubber resistor Rsnb
can be calculated by the equation:
For Half-Bridge:
Figure 6 - Damping Resistor R' nb Added Across the
LC Tuned Circuit lor Critical Damping
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA02172
TEL. (617) 926·0404 • FAX (617) 924·1235
PR snb
12-77
= 'hCsnb
.fEinnmax]2
(4.5)
PRINTED IN U.SA
lEI
APPLICATION NOTE
U-85
For Push-Pull for Full-Bridge:
P'~'Snb
= V,C""" Ir- -n - J
2(E;nmaJ12
"n"
Where: E;n max
n
• f
time to "recover" because of its high junction capacitance. I n a switched-mode converter, reverse recovery time is, to a large extent, determined by the
(4.6)
Maximum input voltage
Primary to secondary turns ratio of
power transformer
Every inch of wire represents 20 nanohenries of
inductance. When the output current is high. the
energy stored in the lead and package inductance in
the secondary circuit can generate high voltage
spikes across the rectifier during reverse recovery
time. To reduce these spikes, two snubber networks
are required. One should be placed across each
Schottky rectifier as shown in Figure 7 below.
parasitic leakage inductance of the transformer
which resonates with the junction capacitance of
the Schottky rectifier. Design equations for reverse
recovery time and cu rrent overshoot can be derived
as shown below.
Reverse Recovery Time:
From basic equations of an LC tuned circuit:
Substituting f
Since Tf2 =
t
= 1fT and
rearranging:
by definition:
(4.7)
trr~
Figure 7 - High Current Outputs
For low current outputs, the snubber network can
be connected across the secondary winding as
shown in Figure 8.
T
L
lAM (REG)
Figure 9 - Reverse Recovery Time of a Rectifier
Figure 8 - Low Current Outputs
4.2
Reverse Recovery Time and Overshoot
Current, IRMIREC)
Reverse recovery time is defined as the time required
to change a rectifier from the forward conduction
state to the reverse blocking state. Although a
Schottky rectifier is a majority carrier device, it takes
UNITRODE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404. FAX (617) 924·1235
Assuming the rise time of the transistor is much
faster than t" of the rectifier, and substituting LR=
leakage inductance of the transformer and CI =junction capacitance of the Schottky rectifier. Neglecting the interwinding capacitance of the transformer,
the reverse recovery time (when no snubber network is employed across the rectifier) can be calculated by the equation:
t" due to junction capacitance:
(4.8)
PRINTED IN U.S.A.
APPLICATION NOTE
Where:
U·85
n = Primary to secondary turns ratio
The ringing frequency can be calculated by the
equation:
f -
n
- 47TJG(C;)
(4.9)
From the characteristic impedance of the LC tuned
circuit, overshoot current, IRM, in the Schottky rectifier can be calculated by:
(4.10)
charge up to full input voltage. Meanwhile capacitor
CT charges up slowly through resistor RT • When the
voltage across CT reaches the anode-gate voltage of
the programmable unijunction transistor Q., it will
turn on and dump the stored charge from capacitor
CT into one of the proportional base drive windings
ofthe trans./ormerT,. The polarity of the windings is
such that it will turn on only transistor O 2 , transferring energy from input capacitor C2 into the output
capacitor C3 (isolated from the input line) through
power transformer T 2 • The control circuit LM3524
starts to switch transistor O 2 , At the instant when
transistor O 2 turns on, capacitor CT will be isolated
from current transformer T, with the help oftransistor 0 3 , The programmable unijunction transistor
now remains off. The capacitor C3 is now continuously charging up through the secondary winding
of the transformer.
a.
4.3 Practical Example
A detailed diagram of a 150W, multiple output
switching regulated power supply is shown in Figure 10. The power supply is designed to operate
with a line input voltage of 117Vac, 60 Hz or 220V ac,
50 Hz. The regulated output voltages are +5V @ 1A,
+12V @ 1.2A, -12V @ 1A and -5V @ 1A.The output
voltage is regulated by power switching hybrid circuits
and O2 which are housed in four pin electrically isolated packages.
The output circuit of the switched-mode converter
utilizes coupled inductor L, to provide bettertracking among all the output voltages and improve transient response. Coupled inductor L2 (which is not in
the control loop) maintains the sawtooth current in
the +5V winding of L, (which is in the control loop)
providing stability in the control circuit.
a,
Since the case is electrically isolated from the active
devices, it provides the following advantages:
a) lower conducted and radiated RFI
b) ease in mounting - two devices can be
mounted on the same heat sink.
The selected switching transistor provides fast
switching time «100ns) and the diode in the hybrid
circuit provides low reverse recovery «50ns) and
forward recovery time. The proportional base drive
current to the switching transistor is supplied by the
current transformer T,.
One of the output voltages (+5V) is regulated with a
pulse width modulated (PWM) control chip
Unitrode's UC3524. The auxiliary voltage to power
the control circuit should be electrically isolated
from the line voltage. Conventionally, the 60 Hz
transformer is utilized to provide isolation and the
transformer output voltage is rectified and regulated to supply bias voltage to the control circuit.
Transistors, 0 3 and 0 4 , provide a low cost approach
in developing bias voltage for the control circuit
without the use of a 60 Hz transformer. The operation of the circuit is described in detail below.
Calculations of Snubber Network:
In the 150W switching regulator shown in Figure 10,
first calculate the current overshoot IRMIREc), the ringing frequency and the apparent reverse recovery
time without the snubber network. Then determine
the resistor and capacitor values (for critically
damped case) of the network across the Schottky
rectifier.
Given: L/, Leakage inductance of power transformer = 22pH
Ci , Junction capacitance of Schottky = 850pF
f, Operating frequency = 30 KHz
n, Primary to secondary turns ratio = 14
Ein . IE in ,Ratio of maximum input voltage
to ,;;;ninimm~m input voltage = 400/200 = 2
When the 117Vac input line voltage is applied to the
switched-mode converter, capacitors C, and C2
UNITRODE. SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
12-79
PRINTED IN U.S.A.
APPLICATION NOTE
U·85
AT
0'
2N6028
8.2K
2.
4,70
4.7K
....- ' 1 " " ' - - 1 6 AT
....--II--I'C,
.OO~F
c.'ot--..............
COMP 9
4581114
r--------,
I
_l,_
I
.,v·'o . 20A
h."......H+t---!YT\.-+-...-o
I
°
50241 Dual Schottky
°.,06 -
USD820 Schonky
r---.J _ '00,,'
0,,° 7 -
UES2401 Dual
1
O2 , De -
UES 1401
o·g. 0'0 -
UES1106
3, Os -
•
.N,
Imln
IT
r-;--' -
ll~ 1
t-....~H+1"',...,'-:"ii-t.rv'-:-+-....9'O -sv. '0 '
All rll$.slor$/lreO.5W unless noled
"2V, 10' 1.2A
·12V, 10 ,
Figure 10- 150 Wall Mulllple Output "OFF Line" Switched-Mode Converter
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-80
PRINTED IN U.S.A.
APPLICATION NOTE
U-85
Solution:
Current overshoot,
IRMIREc)
= Ei2n
IRMIREc),
The power dissipation in snubber resistor, Rsnb ' from
Equation 4.5:
from Equation 4.10:
J~I,
PR snb
,
320V
2
V850
x 10.
22
10X
'h(0.01 x 10-6 )
12
r41040 J2
30 X 103
= 0.121W
.. The snubber resistor Rsnb should have at least
0.5W rating.
The ringing frequency from equation 4.9:
=
[Ein~.x 12 . f
6
= 1A
f
= 'hCsnb
The criteria for the snubber network should satisfy
the conditions below:
n
471' JL/(Cj )
14
47TV (22 x 10-6 ) (850 x 10.12 )
8.1 MHz
The apparent reverse recovery time from equation
4.8:
0.1ps :::; 0.993ps
The voltage across the Schottky rectifier with and
without the snubber network in a 150W off-line
switched-mode converter is shown in Figures 11 a
and 11 b. Note that the voltage across the Schottky
rectifier with a snubber network has no voltage
overshoot. Thus, it prevents failure of the Schottky
due to large 'voltage transients during transistor
turn-on. The ringing frequency is about 10 MHz
without the snubber and is close to calculated
values.
= 67ns
The value of the snubber resistor from Equation 4.2:
1rr:;-
Rsnb
=n
"c.
J
"0
= 10.90
The value of the snubber capacitor from Equation
>
~
s
g
4.3:
-10
-20
-30
10(850 x 10-'2 )
= 0.01pF
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
time(~
Figure 11a - Voltage Across Rectifier Without Snubber Network
12-81
PRINTED IN U.S.A.
HI
U-85
APPLICATION NOTE.
1/f, where f is the operating
frequency
1
Forward current
t:"rul~""" ""I+~,..o
-tiD
I
V . . . . UIU
YVI"u.~",
"!I+ f"nu"!ll"""
"'.I .. ron+
I V ' ' ' ' ' U ' U Il0l10.111'''111.
U"
(at temperature)
:;
&
J!!
0
-10
>
-20
\
TJ
Since both Il and VF are temperature sensitive
parameters, wecan express IL and VFas functions of
temperature in the above equation for thermal stability and obtain:
-30
400
800
Junction temperature
1200
Figure 11 b - Vollage Across Recllfler Wllh Snubber Network
100 - D.1pF
4.4 Thermal Stability Considerations
The reverse leakage current of a Schottky rectifier is
much higher than PN junction devices because of
the Schottky's lower barrier height. The magnitude
of this leakage current doubles approximately every
ten degrees Centigrade. Since it is temperature sensitive, the thermal stability of the system should be
checked over to avoid thermal runaway. In a PWM
switched-mode converter (i.e. push-pull, halfbridge, etc.) the rectifier can be operated at 50%
duty cycle in the reverse blocking state while the
remaining 50% of the time it will operate in the forward conduction mode under worst case conditions. However, forWard drop is also a temperature
sensitive parameter and this should also be considered when thermal stability calculations are made.
The criteria for thermal stability is defined as: "the
rate of change in power pumped into a device with
respect to temperature (dPin/dt) should be less than
the rate of change in power removed (in the applicable thermal environment) in the form of heat from
the device with respect to temperature (dPoul/dt)".
l-I
(1 - ton)
-1-
(TJ - TA)
VR
•
•
10 • 2
Y
I
j
+
< TJ-TA [412)
-
RaJA
.
Leakage current at room temperature
Where: 10
VFO = Forward voltage drop at room temperature
x
Temperature coefficient for forward
voltage at operating current
y
Temperature difference for which
leakage current doubles.
Differentiating the above equation:
(1 - tan)
-1- •
VR
•
10 • 2
(Tr TA)
Y
1
ton
·-·X<-1
-
RaJ-A
•
..1..
Y
In 2 + IF
[4.13)
(TJ - TA)
In a switched-mode converter, the power dissipated
in the device and the power removed can be
expressed by:
Defining 10 • 2
Y
as the critical current, IRlcrot)
at maximum temperature, and solving for IRw,t) we
obtain:
(4.11 )
[4.14)
Where: VR
Design Example
In the practical example previously discussed, the
maximum reverse voltage across the rectifiers is
30V. Each rectifier is mounted on a heat sink. The
Applied reverse voltage
IL
Leakage current at temperature
t..n
Rectifier on-time
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-82
PRINTED IN U.S.A.
APPLICATION NOTE
U·85
thermal resistance of the heat sink is 1° C/W. The
Schottky rectifier, S0241, has a maximum thermal
resistance of 1.4° C/W from case to junction. Its
reverse leakage current doubles every ten degrees
Centigrade, while the forward voltage at IF=20A
decreased by 1mV /0 C as the junction temperature
increases. The designer desires to limit the maximum operating junction temperature of the
Schottky rectifier to 125° C under worst case
conditions
Calculate the maximum reverse leakage current
allowed for these rectifiers at 125° C to prevent
thermal instability
Calculation:
RaJA
(ReH + ReJ.cl
° C/W
16.6ps
In switched-mode converter applications, current
sharing can be accomplished by using separate
windings for each rectifier and by matching forward
drops. The series resistance of each winding acts as
a current ballasting impedance.
tau
16.6ps
5. Guidelines for Selecting the Schottky
= ton + tou
33.2ps
1°C/W + 1.4°C/W
2.4°C/W
T
Smaller chip size will have less chance of
voids in the chip bond to the package, thus,
the reliability of the system is improved.
The disadvantage of paralleling rectifiers is that
some kind of circuit technique is required to share
the current among the paralleled devices. If the current is not shared equally, the junction temperature
of the device which conducts the higher current will
increase. The forward voltage of the device will
decrease due to its increased temperature and will
conduct an even larger share of the load current. If
adequate matching is not provided, this regenerative process continues; and if not checked in time,
the junction temperature will exceed the maximum
rating. and the device will be damaged.
3)
Rectifier in Pulse Width Mode (PWM)
Switched-Mode Converter
Applications
Using equatio!) 4.14:
IA(cri.) S 1
[
co C
x
(33.2 x 1O-6 )/(2.4°CIW) - (20A) (16.6 x 10-6) (-1 x 10-3 V)]
.693(33.2 x 10-6 sec - 16.6 x 10-6) (30V)
S 410mA
From the S0241 specification, the maximum reverse leakage cu rrent at 125° C is 1OOmA; therefore
this system will be thermally stable.
The minimum required dc blocking voltage of the
Schottky rectifier and its maximum power dissipation can be calculated for different types of switchedmode power supplies summarized in Tables II and
III. After calculating the maximum power dissipation, the designer can determine the required thermal resistance of the rectifier and the heat sink
using the equation:
R
eH +
R
- Tima•
eJC -
Where: ReJc
4.5 Paralleling Rectifiers
When the output current required is greater than the
maximum rated forward current of commercial rectifiers, it becomes necessary to parallel the devices.
In some instances, it may be preferable to parallel
devices even when a single device of higher current
ratings is available. The advantages ot" paralleling
these devices are:
1) Heat is easier to remove when compared to a
single device with a higher current rating
because the heat is spread between two or
more devices.
2) The transformer is easier to wind since the
wire size is smaller, using a separate winding
for each rectifier.
UN)TRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-83
-
Pma •
T Ama•
[5.1]
Thermal resistance of rectifier
ReH
Thermal resistance of heat sink
Tjma •
Maximum operating junction temperature of device
TAma •
Maximum ambient temperature
When calculations are made for maximum power
dissipation in a rectifier, the voltage drop VF and
leakage current IA should be taken at the maximum
operating junction temperature.
During start up and for step changes in the output
load current, the voltage across the rectifier should
be limited to below its maximum dc blocking voltage
to avoid failures due to transient voltage across the
Schottky.
PRINTED IN U.S.A.
IfI
""mc
»"'CI
TABLE 1 - GUIDELINES FOR DETERMINING THE RATING OF A RECTIFIER IN A PWM SWITCHED-MODE
CONVERTER
~~~
-"",
£!~o
"'CI
r-
..:::!:>o
",.
q'I~U'I
~~~
TYPES OF SWITCHING REGULATORS
"!"fll8
~!!le
OUTPUT VOLTAGE
~~;g
f'°o
:::;:Eo
wZc
Ol~~
>en
2
~
MINIMUM DC BLOCKING
V'DLTAGE REQUIRED
Power dissipation in Diode 0, due to forward
conduction:
~'" Ql"~ }~>~:
Eo = E;n x
~
Eo"" Ein x
~
::j
o
o
-I
Einmax - Eo
~
P01 F = lOmax x VF
n
»
2
2
BUCK REGULATOR
X'c
~~~
t::j.....jO
-m",
STEADY STATE -- POWER DISSIPATION
IN RECTIFIERS
For Diode 0,:
1.2
rn
x Einmax
Power dissipation due to leakage current, IR:
POl R :S IR x Eo·
In @ Ein max
PUSH-PULL CONVERTER (50'10 Duty Cycle)
E~
~--;;,-;-t
)
.....
N,
If
I\)
~
--------. <>-
..L
N2
Power dissipation in F:ectifier 0, or 02 due 10
forward conduction:
lOmax
0,
I
,
r1
o_":L-.J
L
Eo = Eo + V F
oo_~:fU
Eo
:=
Ein x
For 0, or 02:
P01F or P02F = IOmax2 x VF
N2
N1
Power dissipation due to leakage current, IR:
2.4 (Ein max ) x
N2
N1
Ein
)
PD1 R or P02R = 2.0 x Ein max x
N2
N'"1 x
IA
02
PWM FORWARD CONVERTER
Ein
1
N2
N,
~
t ,~ f· "~'r~,: :'.
'0' -n'.':''':''r-
o-=----v
Power dissipation dUB to forward conduction
in Rectifier 0 1:
,
Eo = Eo + VF + lOmax x A
N,
P01F
N3
Eo = Einmin N, + N2
Where:
0::
lOrna" x VF
Power dissipation
P
N, + N2
j"
For 01:
Rectifier 02:
- I
x V
02F .... 0rnax
F
r; - _N_,_.
L N1 + N2
1.2 x Ein rnax x
N3
N2
Ein rnax ]
E.
IOrnin
Eo = de Output Voltage
,
Eo
=:
Output of Secon-
Power dissipation clue to reverse leakage
Current:
dary Winding When
01 is conducting
N3
P01R ;; Einrnin . IR . N1 + N2
For 02:
1.2 Ein rnax x N3
"N,-
°ma"
'~2~-
P02 R = IR x
N3
N1 +N2
x E lOmin
c
00
UI
-Hn C
~rg~
.a,~;ti
l:o
TABLE II
."
."
s~8
",enm
","',
",zen
6-1m
t~~
...
;un
TYPES OF SWITCHING
REGULATORS
STEADY STATE - POWER DISSIPATION IN
RECTIFIERS
OUTPUT VOLTAGE
,mo
~~5
MINIMUM DC
BLOCKING
VOLTAGE
REQUIRED
PWM PUSH-PULL CONVERTER
~~~
:::;~g
",Zc
01~@
2
~
L
Rf
~
o
~
m
r-
Power diSSipatIOn In Rectlller 010f D2due 10 forward conduction
'om"
I ~IC~_~.~
, 0,
l:o
:z
:z
X'c
m~~
.9rri~
C
n
E~
= Eo • VF
Eo
=
+ lOmax x R
f
P Dl For PD2F '
~max
x (VF @ lOrna,;)
2
Emm1n
xr-lOmax
N2
Emmm xN"l
For 01 or 02:
2.4 (Eo' VF • R
I
(v@IOma:w:J e _
.·~M _F~~2_ x
2
-E
lOmax _.~
Emax
Emmax
x lOmax) x Emmm
For Push-Pull and Full
Bridge
Power diSSIpation due to leakage current
'om"_I~
....
f\)
00
01
ID2U
__
PD1R or PD2A = IA!E lnmm ) (N11N21
La
I
NOTE
~'
~~
°2
f R @2{E o
•
VF •
'a
max
x
R£J
x :rn max
lnmin
CO
PWM FULL BRIDGE
CONVERTER
PWM HALF-BRIDGE CONVERTER
". 'J:"
I
Eo = Eo + VF x lOrna", x R {
qJ·"~·~"~rJ-0...
Eo =
Eln~TlIn x ~
SAME AS ABOVE
SAME AS ABOVE
For Half-Bridge
lOmax
-~2LJL
o
c:
Co
(J'I
I
APPLICATION NOTE
6
U·85
Conclusion
Complete design guidelines for Schottky rectifiers
used in switched-mode converters have been provided. The Schottky, when compared to a fast PN
junction rectifier, offers the advantages of !O\A!sr
forward voltage and a faster reverse recovery time
which is independent of temperature. Efficiency is
improved at least 3 to 5% when Schottky rectifiers
are used in place of PN junction devices for power
rectification in switched-mode converters. Schottky
rectifiers are available with a maximum reverse
blocking voltage up to only 50 to 60V. Thus, applications of Schottky devices are limited to low output
voltages (+5V) in PWM switched-mode converters
(except for buck type and 50% duty cycie converiers). When the rectifier requires voltage blocking
capability of greater than 60V, fast PN junction devices like UES800 series rectifier offers the optimum
choice without sacrificing speed and forward voltage.
SCHOTTKY RECTIFIERS
IN6492
USD245C
.45@2A
BOA
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
LiSD635
.48@6A
150A
USD735
.48@SA
200A
USD635C
.60@ 12A
150A
USDS35
.51 @ 12A'
200A
USD640
.48@6A
150A
USD740
.48@SA
200A
USD640C
.60@12A
150A
USD840
.45@ 12A
200A
USD645
.4S@6A
150A
USD745
.4S@SA
200A
USD645C
.60@J2A
150A
USD845
.45@ 12A
200A
.4S@6A
150A
.4S@SA
200A
USD650C
.60@ 12A
150A
USDS50
.45@12A
200A
12-86
PRINTED IN U.S.A.
APPLICATION NOTE
U-85
SCHOTTKY RECTIFIERS
. AVERAGE •..•..
DC OUTPUJ ,
'CURRENT'.' .
USD735C
.60@16A
200A
USD935
.53@ 16A
250A
USD740C
.60@16A
200A
USD940
.53@ 16A
250A
USD745C
.60@ 16A
200A
USD945
.53@16A
250A
USD750C
.60@ 16A
200A
USD950
.53@ 16A
250A
NOTES: 1. Center·tap 6A per leg.
2. Center·tap 8A per leg.
3. Center·tap lSA per leg.
4. VRR .. @ 2S·C is 4SV, VRR .. @ lS0·C is 3SV.
USD335C'
.6@20A
400A
IN6391'
.6S@50A
600A
USD3040S
.70@30A
450A
USD3040C
.71 @30A
400A
USD3045S
.70@30A
450A
USD3045C
.71 @30A
400A
USD345C'
SD241'
.6@20A
400A
S. Available as JAN, JANTX, JANTXV.
6. Available with High·Reliability (HR2) Screening.
7. Center·tap 23A per leg.
SCHOTTKY RECTIFIERS
US07525
.425 @60A
1000A
USD4530S
.70@45A
450A
USD4530C
.70@45A
450A
IN6097
.S6 @ 157A
SOOA
US0535
.6 @ 60A
IOOOA
USD4540C
.70@45A
450A
USD4540C
.70@45A
450A
USD4545S
.70@45A
450A
USD4545C
.70@45A
450A
IN609S
.S6 @ 157A
SOOA
IN
S051
.6 @60A
SOOA
US0545
.6 @ 60A
1000A
USD550
.6 @ 60A
IOOOA
NOTES: 1. Center·tap 6A per leg.
2. Center·tap 8A per leg.
3. Center·tap lSA per leg.
4. VRR .. @ 2S·C is 4SV, VRR.. @ 150·C is 3SV.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924-1235
5. Available as JAN, JANTX, JANTXV.
6. Available with High·Reliability (HR2) Screening.
7. Center-tap 23A per leg.
12-87
PRINTED IN U.S.A.
APPLICATION NOTE
U·I03
USING BIPOLAR SYNCHRONOUS RECTIFIERS
IMPROVES POWER SUPPLY EFFICIENCY
INTRODUCTION
In an off-line, switching regulated,lowvoltage power supply
for applications such as high density CMOS logic, high
speed ECl logic, etc., the power dissipated in the output
rectifiers accounts for 20-30% of the total input power.
These rectifier losses could be reduced significantly with a
synchronous rectifier technique. The bipolar synchronous
rectifier (BISYN'M) provides a cost -effective approach compared to power MOSFET synchronous rectifiers. A low
c~h Ir~tinn rQcict~n""Q IQ ........ _ .. ,
....................... ,,
...........................
The BISYN not only provides low forward voltage but also
has a lower temperature co-efficient compared to power
MOSFETs. Thus, it maintains the high efficiency of a
switching regulated power supply. The storage time of a
BISYN Is on the order of 300-400 nano seconds. However,
the circuit presented in this paper eliminates even this
storage time lim~ation of the BISYN. The device characteristics are also briefly described.
nn tho nrnc.r nf a foul ""to,
milli-
\"\,A;;.I:»aLIJ ... ,' ....................................
The reciifier losses of ihe Schoiiky, power iviOSFET, and
BISYN are compared when used as output rectifiers. The
half-wave and center-tapped full-wave BISYN output circu~ for a switching regulated power supply is presented.
ohms is accomplished by cancelling two forward biased
junctions while in saturation. The BISYN is designed for low
«S.OV) voltage outputs and has the following featllres:
a) low saturation voltage with high forced gain.
b) Ultra-fast switching times.
c) First and third quadrant switching capability.
CONVERSION EFFICIENCY
The power conversion efficiency for a switching regulated
power supply is a measure of heat generated and lost in the
system. The temperature rise in the system affects the
reliabil~y. Note that the failure rate increases rapidly (log
function) with an increase in operating junction temperature. lower efficiency not only affects the reliability but also
increases the operating cost of the system. Higher efficiency results in a compact and lighter power supply w~h
simple thermal management requirements. In a typical
line-operated switch-mode converter, as shown in Figure
1, the power lost in the output rectifiers accounts for 2030% of the total input power. The circuit shown is a single
ended forward converter. Energy from the input bulk
capacitor CIN is transferred to output filter inductor land
the load, through a power transformer T, and rectifier diode
0" when transistor Q, is on.
>--.-__--.,15:1
However, when transistor Q, is off, diode 0, becomes
reverse biased and the output load receives the energy
from the output filter inductor l, through rectifier diod~ O2 .
During this period the transformer core is reset with an
eqljal and opposite voH-second product. Note that maximum conduction duty for transistor Q, is SO% and that one
of the rectifiers (0, or O2 ) is always conducting. From
Figure 1, the fraction of input power lost in the rectifier can
be calculated as follows:
Transistor Q, DC losses; [VCElsaul x
I
Tumsoratio ] [Outy.cycie]
(2)
Assuming transistor switching losses are equal to DC
losses.
L
Total transistor losses
~~~
PT; 2
X
PTdC ; 2W
(3)
Since one of the rectifiers always conducts; the total
rectifier losses
Po; 10 VF; (30A)(1V) = 30W
(4)
N
Therefore the fraction. of input power lost in the output
rectifiers;
FIGURE 1. SINGLE ENDED FORWARD CONVERTER.
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
(1)
30A
PTdc ; (1.0V)(-1-S- ) (O.S); 1.0W
.TII~o:2'5V
D
Output Power Po ; Vo x 10 ; (2.S)(30) ; 7SW
30
= 0.28
7S + 30 + 2
12-88
(S)
PRINTED IN U.S.A.
U-I03
APPLICATION NOTE
The above calculation shows that rectifier losses are a
significant portion of total power lost in a low voltage output
supply. The reduction in efficiency due to these rectifier
losses can be represented in terms of forward voltage drop
by a simple equation:
increased by utiiizing a power MOSFET with a low onresistance. Unfortunately, the power MOSFET synchronous rectifier is not a cost-efficient approach because:
1) Twice the silicon chip area is required when compared
with a BISYN for the same forward voltage drop at
room temperature.
Loss of efficiency due to rectifier, %
_-,V,,-F__ x 100%
Vo + VF
2)
(6)
_--'.1.:..:.0,--_ X 100% = 28.6%
2.5 + 1.0
Note that the temperature dependent forward offset voltage VF and and output voltage influences the efficiency of
a switching power supply. The rectifier losses are minimized with the low forward voltage of a Schottky rectifier;
but it still represents 20% of the total input power lost in
these rectifiers when used in 2.5V supply. From the above
equation, it is obvious that there is a nearly fixed fraction of
input power lost in the output rectifiers regardless of load
current. To improve the efficiency of the switching power
supply, one must select an altemative such as synchronous rectification using either a power MOSFET or a
BISYN.
The typical application of a synchronous rectifier using a
power MOSFET is shown in Figure 2.
ROs IOn) of a power MOSFET increases three times
faster with temperature than RCE of a BISYN.
As such the power MOSFET requires three to four times as
large a silicon chip for the same output current and performance as the BISYN.
BIPOLAR SYNCHRONOUS RECTIFIER
Unlike a bipolar transistor, BISYNs offer features such as
low saturation resistance (8 milliohms for 4.5mm sq. chip)
with light base drive (forced gain;::: 25) and symmetrical
voltage blocking capability for both positive and negative
input voltages. The device is specifically designed for synchronous rectifier applications with low output voltages
such as required for high density CMOS logic and high
speed ECL.
Like a power MOSFET, the saturation resistance of the
BISYN has a p0sitive temperature co-efficient; however, it
is three times smaller in magnitude. Thus it maintains high
efficiency even at elevated temperatures. The switching
times are optimized through a lightly doped, narrow base
region. The storage time and fall time of the device is on the
order of 300 and 80 nano seconds, respectively.
Unlike a power MOSFET,the BISYN has both positive and
negative input voltage blocking capability. This opens the
door for new applications, such as a synchronous PWM
regulator in which the output voltage is regulated with a
BISYN by controlling the conduction period in synchronization with the primary switching voltage.
The cross-sectioned area of a BISYN and waveforms of its
electrical characteristics are shown in Figures 3 through 6.
FIGURE 2. POWER MOSFET SYNCHRONOUS RECTIFIER.
During the on-time of primary transistor 0" power
MOSFET 02 is tumed on with a voltage generated across
winding N2, this allows secondary current to flow through
the low source-to-drain resistance ROSlon). When primary
transistor 0, is off, the power MOSFET 02 reverts to its
blocking state. The MOSFET 03 tums on and facilitates a
path for inductor current. Some inductor energy through
winding N3 is used to tum on power MOSFET 0 3. Since a
power MOSFET is a majority carrier device, the turn-off
delay is negligible. The switching losses are negligible due
to its fast switching times. The fraction of power lost in this
synchronous rectifier:
PFR = (1 - 17) =
Ros IOn ) 10
Va = Roslon) 10
BASE
BASE
n+
n+
COLLECTOR
(7)
FIGURE 3. CROSS SECTION OF BISYN TRANSISTOR (TWO BIPOLAR
JUNCTIONS TEND TO CANCEL EACH OTHER IN THE ON-STATE).
Unlike conventional rectifiers, the rectifier loss and consequently the efficiency of the power supply is a function of
output current. The power supply efficiency can be
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
EMITTER
12-89
PRINTED IN U.S.A.
Ill'
APPLICATION NOTE
FIGURE 4. SYMMETRICAL REVERSE CHARACTERISTICS
OF A BISYN RECTIFIER.
U·I03
A BISYN is a classical low voltage bipolar transistor. When
both junctions are forward biased, the forward drops
cancel each other and provide a low drop from collector to
emitter. The saturation resistance of a BISYN is less than 2
milliohms while the rest of the 6 milliohms is contributed by
metallization, wire bond and package resistances. This is
the main reason for low composite temperature coefficient of saturation resistance. Both positive and
negative collector to emitter voltage blocking capability of
the device, with base open, are shown in Figure 4. The first
and third quadrant VeE vs. Ie characteristics of the BISYN
are displayed in Figure 5. It is obvious that the DC gain is as
high as 200 in the first quadrant and 40 in the third quadrant;
and is practically independent of collector to emitter'
voltage. First quadrant VCE vs Ie characteristics up to 100A
arc presented in Figure 6. The saturation resistance Rct:lsatlt
independent of collector current, is less than 8 milliohms;
and the device has a high gain (30) even at 100 amperes.
PERFORMANCE COMPARISON
AMONG SCHOTTKY,
POWER MOSFET & BISYN
The power losses of a Schottky, a power MOSFET and a
BISYN when used as a rectifier are compared in Figure 8.
4.0
!flen
3.2
ffi
2.4
w
~~D CbNV~R~~k
//
9
//
~
:5:Cii'
O~
~g~~~s;:; ~URATION
LOSSES
~~1.6
ill
u::
t5
FIGURE 5. FIRST AND THIRD QUADRANT VeE vs Ie
CHARACTERISTICS OF A BISYN RECTI FER.
-7
---
FREQUENCY ~ 25KHz
DUTY CYCLE ~ 50%
JUNCTION TEMP. ~ 125"C .
O.B
ill
a:
o
o
~
5
~
~
10
VBE LOSSES
LEAKAGE LOSSES
15
OUTPUT LOAD CURRENT -
'\\
20
25
(amps)
FIGURE 7. RECTIFIER POWER LOSSES.
The devices are normalized to the same size chip and
reverse blocking vottage. For example, the commercially
available power MOSFET IRFZ40 has 28 milliohms ROS(on)
and Bvoss = 40V ratings. The chip size is about the same as
that of a BISYN, however, the normalized MOSFET with
Bvoss = 25V, not commercially available, will have only 18
milliohms ROS(on) and is used as a comparison with the
BISYN. Similarly, the power Schottky rectifier is a 25V
Schottky (not yet commercially available). Again the area
of the silicon chips is normalized against the BISYN area.
Let us first define the losses in the BISYN.
FIGURE 6. FIRST QUADRANT VeE vs Ie CHARACTERISTICS.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404· FAX (617)924·1235
12·90
PRINTED IN U.S.A
U·103
APPLICATION NOTE
For most low voltage applications the BISYN provides the
most cost-effective and efficient approach for secondary
rectification.
The power losses can be expressed by the equation:
PLBI = [RcElsau 102] [0]
+ [VaElon)
~:
] [0]
BISYN SYNCHRONOUS RECTIFIER
APPLICATIONS
+ [IR VR] [1-0]
Where:
Two popular types of synchronous rectifiers are detailed in
this section.
10: output current
0: BISYN on Duty cycle
1) Single Ended Forward Converter;
Half-Wave Synchronous Rectifier
BF : Forced gain to keep BISYN in saturation
IR: Emitter to collector leakage current IEcx
In a single ended forward converter, the output voltage is
developed by half wave rectification in the secondary circuit as previously shown in Figure 1. The rectifier diode O2,
which carries filter inductor current, must recover fast,
when primary switch 0 1 is closed to prevent problems due
to shorting the secondary through diode 0 1 . During the
recovery period high peak current will be reflected back to
the primary side. Besides EMI generation, the high peak
current will increase the power dissipation in the swttch 0 1
and can damage the power switch. Therefore, diode O2
must have very short reverse recovery time. However, the
BISYN utilized for diode O2 had long recovery time (storage
time), on the order of 300-400 nano seconds. This necessitated development of a unique circuit as shown in Figure 9,
which eliminates the storage time limitation.
VR: Emitter to collector voltage
From the above equation, it is obvious that the lower the
saturation resistance and higher the forced beta, the lower
the rectifier losses. The individual components of power
loss at 125°C junction for the BISYN are presented in
Figure 7. The worst case BISYN rectifier losses are reali:zed
at elevated temperatures. Unlike the Schottky rectifier, the
power losses are a square function of the output load
current instead of linear function.
The rectifier losses in a secondary output circuit are compared for a Schottky, a power MOSFET and a BISYN at a
typical operating junction temperature (75°C) in a single
ended forward converter, as shown in Figure 8. All the
curves are normalized for devices with equal blocking voltage and silicon chip area.
15 r--
'rr-i
--
SCHOTTKY
~-
-
.--, L- ~
MOSFET (18mohms)
y
~
/
e-
1/
/
/
r--r--
- -,---
v
BISYN ™
V
FORWARD CONVERTER
JUNCTION TEMP. ~ 75°C OUTPUT VOLTAGE ~ 2.5V
o
o
5
10
15
OUTPUT LOAD CURRENT FIGURE 8. COMPARISON LDSSES.
20
FIGURE 9. BIPOLAR SYNCHRONOUS RECTIFIER IN A TWO
TRANSISTOR FORWARD CONVERTER.
25
(amp)
The operation of the circuit is as follows. During the on-time
of transistors 0 1 and O2, BISYN 03 is biased on and
delivers output load current through filter inductor L. The
polarity of voltage developed across winding N2 is such
that BISYN 04 remains in a blocking state. Diode 0 3 is also
biased off. When transistors 0 1 and O2 tum off, some of the
energy stored in the magnetizing and leakage inductance
enhances the recovery process of BISYN 0 3 . The recovery time (300-400 nano seconds) of BISYN 03 extends the
reset time of the core. However, in a typical design, half of
the switching period is allocated for core reset time. Thus,
the storage time has no significant effect on operation. The
TOTAL SECONDARY RECTIFIER
The BISYN rectifier uses a 4.5mm sq. silicon chip. For a
2.5V output supply, and output load current below 4A, the
power MOSFET offers high efficiency because there are
no VaElon) losses. At elevated temperatures the output current crossover point favoring the BISYN will be even lower
due to·the higher temperature co-efficient of Ros lOn) for the
MOSFET. At high output currents use of a BISYN reduces
the power losses to half of the losses of Schottky rectifiers.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926-0404. FAX (617) 924-1235
12-91
PRINTED IN U.S.A.
III
APPLICATION NOTE
U·I03
BISYN Q. starts conducting filter inductor current as soon
as the voltage across the secondary collapses. BISYN
receives base drive energy from the filter inductor L,
through winding N2. The diode 0 3 still remains reverse
biased.
a.
VEe
When transistors 0, and O2 tum on again, the voitage
across winding N3 is. clamped to approximately zero by
diode 03 and the forward biased collector to base junction
of BISYN
This junction acts as a voltage source
(=O.7V) as long as BISYN a. is conducting during the
storage time. The turn-on of BISYN 03 is held off due to
lack of base drive because winding N3 is shorted, through
diode 0 3 and the collector-base junction of BISYN
Meanwhile, the current through the shorted turns (the rate
of rise of which is limited by leakage inductance) is utilized
to commutate BISYN a. off rapidly. Diode 0 3 is then
reverse biased and BISYN 03 turns on through winding N,.
-0
a•.
Ie
a•.
-0
FIGURE 9b. TURN-ON WAVEFORMS. VERTICAL SCALE: 2V/em.
The effect of the turn-off circuit (consisting of winding N3
and diode 0 3) on secondary current is demonstrated in
Figure .9a. The upper waveform shows secondary current
identical to the lower waveform except for high peak
current.
VEe
Is
WITH
D3
-0
Ie
-0
-0
Is
WITHOUT
D3
FIGURE ge. TURN-OFF WAVEFORM. VERTICAL SCALE: 2V/em.
-0
FIGURE 9a. SECONDARY CURRENT EFFECT OF DIODE D •.
VERTICAL SCALE: SAlem.
The oscillograms 9b and c demonstrate that there are
practically no switching losses ina single ended forward
converter.
2) Push-Pull Converter; Center-Tapped
Full Wave Synchronous Rectifier
R3
The center-tapped push-pull BISYN synchronous rectifier
circuit is shown in Figure 1O.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924-1235
03
03 - UESl101
FIGURE lOa. BIPOLAR SYNCHRONOUS RECTIFIER IN A CENTERTAP OUTPUT CONFIGURATION.
12-92
PRINTED IN U.S.A.
APPLICATION NOTE
U·I03
During the on-time of primary transistor 01, BISYN 0 3 is on.
At this time all other devices in the secondary circuit are in
the off state. The energy from the primary side is being
transferred to the secondary through the transformer and
the BISYN 03. When primary transistor 01 turns off, current
flow in the secondary winding ceases and the vo~age
across the secondary winding collapses. The catch diode
0 1 provides the patl) for inductor current. The filter inductor
energy causes current flow through diode O2 and speeds
up the turn-off process of BISYN 03. When 0 3 recovers,
diode O2 becomes reverse biased. The induped voltage,
caused by stored magnetizing energy in the core, will turn
on BISYN 0 4 and remains on until magnetizing current
drops below diode 03 current. When both transistors 0 1
and 02 are off, 03 remains off. The catch diode D1 provides
the current path for the filter inductor. Since BISYN 0 3 is off
prior to turn-on of primary transistors 02, recovery time of
the BISYN is of no consequence other than limiting maximum dead-band period oi the circuij. The input voltage and
current waveforms of the BISYN are shown in Figure 10a.
SYNCHRONOUS PWM REGULATORS
In a typical switching regulated power supply only one of
the outputs is regulated through a closed loop; while other
auxiliary outputs may provide rough regulation. When
these outputs require tighter regulation, usually linear or
switching regulators are utilized.
In a synchronous PWM regulator, the regulated auxiliary
output is derived in one step through rectification and regulation of the secondary winding output voltage. A BISYN is
the only device which can perform this function because of
its unique third quadrant characteristics. Also, its low saturation resistance maintains high efficiency. The output voltage is regulated by gating the input pulsating DC voltage
(from secondary winding) to the LC filter, in synchronism
with the primary switching cycle. The detailed schematic of
the regulator is shown in Figure 11 .
Input collector
voltage BISYN
0,
BISYN 03
Base drive
BISYN 0,
collector
current
FIGURE 10b. WAVEFORMS. CENTER-TAP RECTIFIERS.
FIGURE 11. BISYN SYNCHRONOUS PWM VOLTAGE REGULATOR.
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-93
PRINTED IN U.S.A.
APPLICATION NOTE
U·I03
Note that there is no standard commercially available PWM
circuit which can perform these functions without some
additional circuitry. The biasing requirements of the BISYN
03 necessitate the use of a positive and negative supply
voltage for the PWM control chip.' A commonly required
±12V output voltage can serve as a bias supply for the
PWM circuit. However, in this circuit the PWM supply voltage is developed directly from the secondary winding as
shown in the previous figure.
A level shifter is required to feed back the output voltage
sample because the control chip ground reference is different from the output Voltage. The circuit consists of transistor Oe, diode De and resistors R9 and R". A diode De
temperature compensates for the VBE of transistor 0 6. The
transistor 06 in conjunction with resistor R" converts the
output voHage into an output voltage dependent current
source. The output voltage, referenced to the negative
supply rail, is developed across resistor R9 and diode De.
The BISYN is controlled by one olthe totem-pole outputs of
the control chip 3525A. The drive current (200mA) is
limited by resistor Rs during on-time. However, during initial
turn-on, it receives a large peak value of bias drive current
because the emitter of BISYN 0 3 is maintained at a negative O.7V potential by catch diode 03 which carries the fiRer
inductor current. I he turn-on wavetorm shown In I-igure
12a demonstrates that turn-on drive current is three times
higher than steady state base drive current.
The sync pulses, referenced to the negative supply voltage, are developed with transistors Os, diode Os and the
associated Rc circuit. The resistor R2 and capacitor C2
function as a differentiator circuit, while" Os clamps the
negative voHage excursion to prevent a malfunction of the
control chip. The free running frequency is set about two
times higher than the primary transistors switching irequency by capacitor C4 and resistor R4 .
SUMMARY
In addition to synchronous rectifier, the application of a
BISYN is demonstrated for voltage regulation with
improved transient response through a synchronous. PWM
regulation technique. This is possible due to its unique third
quadrant characteristics, unlike power MOSFETs. Ultra
fast switching times allow the switching regulator to be
operated up to 250kHz.
Ie
COLLECTOR
CURRENT
2A/em
The BISYN has extremely low «8 milliohm) saturation
resistance with a small size (4.5mm sq.) chip. Thus it provides an efficient and cost-effective approach for synchronous rectifiers and synchronous PWM regulators' when
compared to power MOSFETs and Schottky rectifiers. The
output current capability can be extended by paraneling
these devices,' which is possible because of the positive
temperature co-efficient.
BASE.
CURRENT
181
O.5A/cm
FIGURE ,20. RISE TIME.
ACKNOWLEDGEMENT
The totem-pole output of the control chip also provides
high negative base drive current (Figure 12b) during turnoff times, and also maintains proper biasing voltage to the
base of the BISYN 03 during off-time.
I want to thank Lloyd Dixon for his insight into problems that
required solving using bipolar transistors in these applications and David Reilly for constructing and assisting in the
evaluation of these circuits. And finally, to Fred Blatt for his
contributions.
BIBLIOGRAPHY
Ie
Chenming Hu, Trends in Switching Power Semiconductor
Devices. International Electronic Device and Material
Symposium.
MOSFETs, Schottky Diodes vie for low voltage Supply
Designs. EON, June 28, 1984.
4A/cm
P. L. Hower and G. Kepler - Unitrode Corp. Solid State
Devices, A Bipolar Transistor for Synchronous Rectifier.
O.5A/cm
18
Low Voltage FETs slash on-resistance to boost power
density, Electronic Design, July 12, 1984.
FIGURE ,2b. FALL TIME.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
~ISYNrll
12-94
is a trademark of Unitrode Corporation.
PRINTED IN U.S.A.
U-I05
APPLICATION NOTE
HOW TO MEASURE KT and Kv
WITHOUT MEASURING
TORQUE OR ANGULAR VELOCITY
INTRODUCTION
minute (ft Ib/min). Borrowing some typical horses, and with
the aid of harness, weights, ropes, pulleys, and a handful of
whips, Watt determined by actual measurement that a
horse can do work at the rate of 33,000 It Ib/min - on the
average. This number is used to this day to define the unit
of mechanical work known as the horsepower:
Motor manufacturers must be able to supply a good deal of
technical details conceming the mechanical, electrical,
and thermal specifications of their motors to enable the
equipment designer to optimize their use. Among these
specifications, there are two that state a motor's performance in converting electrical into mechanical energy,
namely the torque constant KT, and the voltage constant
Kv.
1HP = 33,000 It Ib/min
or
1HP = 550 ft Ib/sec
The torque constant relates the torque produced at the
motor shaft to the applied current, and is measured in units
of torque per ampere. Thus, a motor having a KT of2 Nm/ A
will produce a torque of 2 Nm when driven with a current of
1 ampere. (The Newton-meter, Nm, is equal to 141.6.12 in
oz.) To measure KT, one applies a known current to the
motor winding - or windings - and measures the resulting shaft torque.
Suppose a certain motor can produce torque of T It Ib at a
speed of M rpm. The work done in one revolution is 21T T ft
Ib, and the rate of doing this work is 21T TM ft Ib/ min. This,
divided by James Watt's measured horse equivalent, will
be the motor's horsepower rating.
The voltage constant is a measure of the motor's back emf,
which is the voltage generated in the windings as a consequence of the rotor's movement.·This back emf increases
directly as the angular velocity increases, and is usually
given in units of volts per thousand revolutions per minute,
or V/KRPM, in this country. But there are certain advantages in stating this parameter in terms of volts per radian
per second, or Vsec/rad. To measure it, you must measure
voltage and angular velocity. This, by the way, applies to
DC tachometers as well. Torque and angular velocity are
not easy to measure, and measuring current in the
amperes range is at best inconvenient. Can one obtain
reliable values for KT and Kv through a simple measurement that is easy and inexpensive to make? A positive
answer to this question is given below.
HP - horsepower
TE-ft Ib
M - RPM.
33,000-ft Ib/HP min
If, instead of M (RPM) we prefer to use c.J (rad/ sec) for the
angular velocity, this relationship becomes
HP =
TEc.J
550
c.J - rad/sec
550 - It Ib/HP sec
Again, if we express the torque in metric units of Newtonmeters, at 1.356 Nm/It Ib, we get:
=~
HP
745.7
Tm-Nm
c.J - rad/sec
745.7-Nm/HP sec
Finally if we express power jn Watts instead of horsepower,
using 745.7 watts/HP, we have:
It was James Watt, the Scottish engineer and inventor
(1738-1819), who first thought of defining the output power
of his steam engines in terms of horse-power. There was a
demand for these engines to replace the working horses
that were used in the various industrial operations of the
time, such as textile, flour mills, etc. In those early days of
the Industrial Revolution, Watt and his helpers must have
been up to their necks in problems that ranged from
strength of materials, fuel selection and handling, lubrication, corrosion, mechanics, dynamics, thermodynamics,
noise, and safety, to the effects of mineral deposits in
boilers, and so on. And then, there was the problem of how
to rate the engine's power so that a given customer could
be assured that his engine, once installed, would be adequate for the job.
W-Watts
W=TMc.J
. which tells us where the number of watts per horsepower
comes from. Consequently, the shaft power in watts is
simply the product of the torque in Nm and the angular
velocity in rad/sec. And since W = VI we can write:
VI = TMc.J
V-Volts
and
V
TM
I
c.J
Th~s
~
I-amperes
c.J-rad/sec
is an interesting result, for it states that the quantity
,in volts per rad/sec is identical to the quantity TIM
in Nm per ampere. Thus, in any electric motor, since
Power is the work done per unit time. In the English system,
this can be measured, for example, in foot-pounds per
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN: MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
.
21TTEM
33,000
HP =
~-K
c.J -
12-95
van
d
™
-K
I - T
Kv=KT
Kv-voltsec/rad
Kv-Nm/A
APPLICATION NOTE
U-I05
By the way, expressing the torque in in. oz, and the shaft
speed in KRPM, we get, as you can verify,
VI
=
T. MK
B) Rotate the motor shaft by a known angle, such as T
turns.
C) Measure the voltage eo.
D) The motor's voltage constant will be:
Te-in oz.
M K - KRPM
1.352
so that
KTE = 1.352 KVE
KTE - in oz/A
KVE - volts/KRPM
Kv =
e RC
----"----T volt sec/ rad
2rr
KVE =
16.67 eoRC voltlKRPM
or,
This brings us from James Watt's steam engines and his
customer's horses all the way to the modern electric motor,
and the fixed ratio between torque constant and voltage
constant turns out to be just a matter of definition. Both Kv
and KT have the same mks dimensions: ML2 T-'O-'. If you
know one, you also know the other; once you have measured one, you are through.
T
E) The motor's torque constant in Nml A will be the
same number as Kv.
To convert Kv (volt sec/rad) to KVE (volt/KRPM);
KVE = Kv x (104.72)
"T" _ _ _ ._ . . __ ...1-
1/
I U LiUIIVt:ll r\.T
Measuring the voltage or torque constant of a permanent
magnet brush motor or tachometer, for example, can be an
extremely simple affair, requiring almost no equipment.
Note that the units of Kv are volt sec/rad, which suggests
that a measurement by means of an integrating circuit
should be possible. In fact, if you integrate the voltage
generated at the terminals as you tum the shaft through a
given angle, you will have it.
'" • __
I
~1\l1111
f\ \
... _
1/
1:_
~_
I'" \,
M) LU r\TE \111 UL/ M).
KTE = KT x (141.612)
An interesting thing about this method is that it makes no
difference how fast you rotate the shaft during the measurement - provided that your integrator drift is negligible.
Furthermore, if you overshoot your angle, simply turn the
shaft back to the right place before you read the output
voltage.
Figure 1 shows a possible circuit.
This method gives a true and accurate measurement of
two important motor parameters, without any need to
measure current, torque, or angular velocity. In principle,
and with a few more parts, it should be adaptable to measurements of hybrid steppers and brushless DC motors as
well.
The operational amplifier used should have very low input
current and should be carefully balanced to minimize drift.
All you need do is this:
A) Push the reset switch initially to discharge C and set
the output voltage eo to zero.
RESET
Vee::: ±15V
MOTOR
OR
TACH
CA3240
8~O
SDk
FIGURE 1. ACTIVE INTEGRATOR FOR MEASURING Kv. THE OP-AMP
SHOULD BE WELL BALANCED TO MINIMIZE DRIFT.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
12-96
PRINTED IN U.S.A.
APPLICATION NOTE
U-I08
SCHOTTKY RECTIFIERS FOR
lOW-VOLTAGE OUTPUTS
ABSTRACT
Schottky rectifier device designs are reviewed with the aim
of obtaining minimum power loss for output rectifier applications operating in the 2 to 3 volt range. The performance
of a new low VF Schottky design is described.
Nd, Wn: doping and thickness of the n-type epitaxial
layer
Xj:
metallurgical junction depth of the p-type diffusion
AJ: area of the Schottky junction
INTRODUCTION
CPa: barrier height (V) for the Schottky junction
Schottky rectifiers are routinely used as output rectifiers in
switching power supplies. For output voltages of 5 volts or
more, the efficiencies achieved are satisfactory for most
applications. As output voltages decrease to the 2 to 3 volt
range needed for the latest MOS ICs and t02V needed for
bipolar ECl, we need to look critically at the Schottky
rectifier to see whether there is anything that can be done
to reduce the losses in this device.
n+
In this paper the circuit and device are treated together as
one problem. The circuit operating conditions are taken as
parameters and the device design is varied with the aim of
achieving minimum rectification loss. The intention is to
present results in terms which are familiar to most device
users and circuit designers. Device physics nomenclature
and analyses are kept to a minimum.
FIGURE 1. SCHOTTKY RECTIFIER CROSS-SECTION.
The paper concludes with a discussion of a new low VF
Schottky rectifier design which is currently in production.
The implications of improved cooling techniques on the
optimum Schottky design are also discussed.
'R
DEVICE DESIGN
A cross-section of a typical Schottky rectifier is shown in
Figure 1. Recent Schottky designs make use of a p-n
junction "guard ring" which is the p-type region that is used
to terminate the edge of the Schottky. A major reason for
incorporating the guard ring is to provide a transient voltage
suppressor with good energy absorption capability as
close as possible to the main Schottky junction.
Device Variables
Consider the behavior under reverse bias. If the current
flowing over the guard ring is I" and 12 is the current in the
Schottky portion, then the two components will behave with
voltage as indicated in Figure 2. The guard ring is designed
to give a breakdown voltage BV, slightly less than BV2 , the
breakdown voltage of the Schottky junction. With this
approach, transient reverse current, e.g. due to transformer
leakage inductance, which would be destructive if carried
by the 12 path will be safely shunted by the p-n junction.
FIGURE 2. REVERSE I-V CHARACTERISTICS SHOWING THE CURRENT
COMPONENTS I, AND 12 of FIGURE 1.
The vertical dimensions Wn and Xj together with Nd determine the breakdown voltage and thereby the reverse
voltage rating of the rectifier. These variables are usually
chosen to meet a given BV requirement and at the same
time minimize the series resistance contributed by the epitaxial layer.
There are five variables which are generally used to describe each design. These are:
nn
SEMICONOUCTOR
~ PRODUCTS
12-97
_UNITRODE
APPLICATION NOTE
U-I08
The (electron) barrier height rpB is defined here in volts, and
it refers to the energy band diagram shown in Figure 3,
where qrpB is the distance in eV from the metal fermi level at
the surface to the conduction band edge in the silicon. The
barrier height is a function of the metal used for the barrier
material which is normally deposited by RF sputtering.
Metals such as platinum, tungsten, nickel, chromium, and
molydenum which form a silicide are preferred for the
barrier material.
age power dissipated by one rectifier. This power flows
through the device package and associated heat sink to
the surrounding ambient which is at temperature TA. The
junction temperature TJ is given by
TJ =TA +PL oR8JA
where R8JA
resistance.
(1)
is the net junction-to-ambient thermal
A full-wave or push-pull type of output circuit with each
rectifier conducting 112 of the period is taken to be representative of a typical Schottky application. For an inductive
input filter, the wave forms can be approximated as shown
in Figure 4. Actual waveforms will show a recovery type of
behavior during turn-off which can become important at
switching frequencies comparable to 1MHz. For this analy-
The choice of barrier height represents a compromise
between trying to achieve a low forward drop (small rpB)
and the ability to survive high temperatures without thermal
runaway (large rpB). The influence of barrier height on
rectification losses is considered later in the paper.
From a manufacturinQ standpoint, it is desirable to limit the
number of variations of the list of five variables while still
providing a product line that meets market needs. Usually
what is done is to fix everything except AJ which is then
varied by selecting various die sizes to meet a·range of
forward current ratings.
sis, v'/e are ignoring s\AJitching losses
For each application we assume that these quantities are
defined:
IF: the peak rectified forward current
VR: peak reverse voltage
The next level of adjustment involves designing to meet a
different reverse voltage while still keeping the same barrier
height. This is the type of design variation considered at the
end of the paper.
TA: ambient temperature
R8JA: junction-to-ambient thermal resistance. This
value includes the junction-to-casethermal resistance
of the package.
Adjusting rpB can be done, but it represents the most costly
of the changes available in terms of capital equipment and
process development. Therefore, manufacturers need to
be convinced of a satisfactory market size before they
undertake a change in barrier material.
If we use (1 ) to convertTAand R8JA input data to TJ, then this
list is equivalent to defining three quantities which mustbe
met by a design which is a function of the five device
variables. That is, there are two degrees of freedom in
selecting the device design. The usual procedure is to try to
minimize both the power losses PL and the device size,
which is roughly equivalent to minimizing the device cost.
CB
[,
!
I.
FERMI~LEVEL
I--- T/2 ----0-0-11...- - T / 2 - - + j
VB
-p=-
METAL
SILICON
EPITAXIAL LAYER
-1
n
SUBSTRATE
I
FIGURE 3. ENERGY BAND DIAGRAM AT EQUILIBRIUM (VF
n+
= 0).
Circuit Conditions
For a given application, each rectifier is subjected t6 current and voltage waveforms which determine PL, the aver-
UNITRODE SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET 0 WATERTOWN, MA 02172
TEL. (617) 926.()4()4 0 FAX (617) 924-1235
FIGURE 4. CURRENT, VOLTAGE, AND POWER WAVEFORMS.
0
12-98
PRINTED IN U.S.A.
APPLICATION NOTE
U-I08
100
The scheme followed in this paper is to determine how the
power losses change as a function of ROJA and TA, with
various device variables or suitable combinations of variables taken as parameters.
-
."
/
CALCULATED
• MEASURED
/~
~~
,~
)' I
Device Model
Accurate predictions of device performance can only be
achieved if one has an accurate device model. We have
found that the usual Schottky model of an ideal barrier in
series with a fixed resistance works well for a wide range of
Situations, but it is also frequently necessary to account for
conductivity modulation of the n-Iayer. This modulation is
not due to the guard ring, which injects a relatively small
amount of excess charge, but is due to the Schottky barrier
itself (1). For a given barrier this effect becomes more
important when Nd is small (higher BVs) or when the junction temperature is raised.
125:1/
I
10
I
I
The curves of Figure 5 show the comparison between
measured and calculated forward I-V characteristics for a
BV = 55V Schottky, which is similar to a Unitrode USD545
(AJ = 0.176 cm2 ). The dashed line shows the calculated I-V
curve assuming a fixed series resistance, that is, no conductivity modulation. Note that there is a significant discrepancy between this and the solid curve at high currents and
1.0
f
I
I
I
II
I
1
1
0.2
0.4
0.6
0.8
VF-IV)
FIGURE 5. COMPARISON OF MEASURED AND CALCULATED FORWARD
I-V CHARACTERISTICS FOR A USD545.
1.0
CALCULATED
125°C.
--
MEASURED
When there is significant conductivity modulation, most of
the current is still carried by electrons. The major effects of
hole injection are to reduce the series resistance of the
n-Iayer and to increase the magnitude of recovered charge
during turn-off [1], [2]. For these reasons high-voltage
Schottky rectifiers (BV ;;: 1OOV) tend to look more like p-i-n
rectifiers than a Schottky. The junction vs. Schottky rectifier
trade-off study of Page [3] does not take into account
conductivity modulation, and it is probably worthwhile to
re-examine some of the conclusions of this paper. For the
device designs discussed here, conductivity modulation
effects are generally negligible except for the larger values
of rpe at high junction temperatures.
~
I
0.1
./
,.-
"
_
.....-
TJ-175°C-
150°C
125°C r - -
~
0.01
..)/
10
20
30
40
Nd = 4.3E15 em
2
AJ = 0.18 em
50
-,
60
VR-IV)
FIGURE 6. REVERSE I-V CHARACTERISTIC FOR A DEVICE SIMILAR TO
THAT OF FIGURE 5. rps = 0.695V.
more advanced microwave and VLSI technologies, but the
cost of using such an approach should be weighed against
the fact that the major benefit appears to be a reduction in
high temperature leakage current by abouttwo orthreefold.
Reverse Current
Figure 6 shows a plot of high-temperature leakage current
for a device similar to that of Figure 5. The increase in
leakage current with reverse voltage is due to "barrier
lowering" or Schottky effect[4], in which the magnitude of
I::!..rp indicated in Figure 3 increases with VR.
Thermal Instability
The major consequence of the temperature dependence
of IR is that the reverse power increases with TJ and at some
point the combination of the device and its heat sink
become thermally unstable. Some device data sheets
reflect this situation by giving a TJ MAX value, but this number
can only approximate the onset of thermal instability.
Barrier lowering effects can be greatly reduced by using an
embedded grid of p-type regions under the Schottky to
achieve the "pinch rectifier" proposed by Baliga [5]. Unfortunately the dimensions of these p-regions have to be
rather small compared to Wn to avoid a severe increase in
series resistance that penalizes high-current performance.
This means p-regions with lateral metallurgical dimensions
of about 1JIm or less for the device designs being considered here. Dimensions in this range can be achieved by the
UNITRODE. SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
/TJ=25 0 C
~
One way to describe the problem is shown in Figure 7. Here
the solid curves represent the power IR·VR which will be
"generated" by the Schottky junction under reverse bias VR.
The waveforms of Figure 4 are assumed with negligible
12-99
PRINTED IN U.S.A.
APPLICATION NOTE
U·108
P L vs. R 8JA Curves
forward power. The dashed curves are plots of (1 ) which
gives the value of TJ that must occur if PR is to flow through
ROJA to some ambient temperature TA.
The results of this type of comparison are conveniently
displayed as plots of total power lost PL vs. RoJA. Various
combinations of device variables and input conditions are
used to give an accurate picture of the tradeoffs involved.
If the system is to be stable, the heat sinking system must
be capable of removing more power than the junction can
generate. That is, the dashed curve must lie above the solid
curve for some value ofTJ.ln the example shown, it can be
seen that for a TA of 75°C, there is no problem with thermal
instability for a wide range of ROJA values.
For the first set of comparisons (Figures 8-13) the following
conditions are used:
AJ = 0.176 cm2 , which is the same as for the US0545.
Nd
The second set of dashed curves shows the situation when
TA is increased to 175°C, which is the TJMAX for the
US0545. In this case, ROJA must be less than 2°C/W if the
system is to be stable. These curves correspond to a
CPs = 0.695V. If cps is decreased, for example, to reduce
forward power losses, then the solid curves will shift
upward. Over the temperature range shown, PR will double
for a decrease of about 22 mV in cps. Thus if barrier height is
to be used as a method of decreasing losses, more effective cooling methods must accompany this change. These
tradeoffs are considered in more detail in the next section.
5°C/W
1°C/W
Eq.(1) for
TA = 75°C
\
~
I
50V ~
I
1.0
20V
I
Efficiency will depend on the output voltage being conslo
ered and can be calculated using
I d I
I
I
I
/
V,
I
1
It V:R
Efficiency =
= 'oV
l
"
"-
TA
II I
/
I
I
0.1
I
II VI
100
I,Va
I,Va + 2,P L
(2)
Influence of Forward Current
175°C
The relation between power loss PL and forward current is
shown in Figure 8, where the waveforms of Figure 3 are
assumed. PL is approximately proportional to IF, with the
change being slightly greater than calculated from this rule
due to an additional term which varies logarithmically with
current. The slight negative slope of the curves in Figure 8
is due to the decrease in VFthat occurs as TJ increases. For
each curve, PL is calculated as ROJA is increased from zero.
The plot is terminated when thermal instability is reached.
I
I
I
I
200
TJ - lOCI
FIGURE 7. REVERSE POWER VS. JUNCTION TEMPERATURE FOR A
USD545 (SOUD CURVES). TJ PREDICTED BY (1) FOR DIFFERENTCONDITIONS (DASHED CURVES).
For the plots of Figures9-13, IF is fixed at1 OOA. Figure8 can
be used to extrapolate most of these results, at least up to
the point where a minimum in PL is reached.
POWER LOSS COMPARISONS
One way to see the benefits and penalties of various
changes in the device design is to use the model to calculate total power losses under a variety of conditions. To be
strictly correct, the influence of each of the five device
variables should be examined separately; however, the
problem is simplified by combining Wn, Xj, and Nd into a
function which minimizes the series resistance for a given
breakdown voltage. A slightly different procedure has been
used to analyze a foward converter [6], but the results
obtained are in general agreement with the method used
here.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
1.4E16 cm 3 , Xj = 1 .1 Jim, Wn = 1 .9 Jim, corresponding
to a breakdown voltage (BV, of Figure 2) of 25V.
This value of breakdown voltage is approximately one-half
that of the US0545. The ratio VR to output voltage VRIVa,
ignoring any inductive voltage spikes, is typically less than
about 5 for a forward converter and 2.5 for a push-pull
output. If we consider an output voltage of2.5V, then a BV of
25V will provide a margin of at least 12V for any inductive
spikes. Probably the BV could be reduced even further, and
for this reason the tradeoff is considered later in Figure 14.
In this connection it should be noted that the guard ring is
capable of absorbing inductive spikes, but the corresponding power will contribute to the temperature rise of the
Schottky.
10
AeJA
=
It should also be noted that ROJA will always be greater than
the junction-to-case thermal resistance ROJC For the
US0545 which uses a 00-5 package, ROJC is about
Typical heat sinks are several times this value. If
ROJA is to approach values less than 1 °C/W, liquid cooling
must be used.
orc/w.
Influence of T A
Figures 9 and 1 0 show how PL behaves vs. ROJA for different
ambient temperatures. Points to the right of the minimum in
PL are stable, but there is no advantage in operating in this
12-100
PRINTED IN U.S.A
APPLICATION NOTE
U-I08
Influence of Barrier Height
range. These results show that for a given barrier height
there will be a minimum power dissipation that can be
achieved.
Figures 11 -13 show power loss curves with cpa as the
parameter for three different values of ambient temperature. These figures provide additional quantitative detail to
the arguments advanced in connection with Figures 9 and
10.
This minimum can be further reduced by decreasing CPa as
shown in Figure 10; however, ambient temperature must
also be reduced significantly in order to avoid thermal
instability. That is, approximately 6W could be saved, in this
example, by going from a combination of TA = 75°C/W,
R9JA = 4°C/W (point 'a') to TA = 25°C, R9JA = 1 °C/W (point
'b'). The second pair of numbers would probably require
liquid cooling, which is currently used in some mainframe
computer designs.
Surface mount conditions represent extremes in the other
direction. For example, Figure 13 shows that a TA of 100°C
and R9JA of 7°C/W can still be accommodated by a
Schottky giving a respectable PL of 21 W provided cpa is
increased to 0.75V. In this case, increasing the barrier
height is beneficial.
30
r-- cpa - O.75V
Q~70
25
~0.65
r-
-,....
~O
o
TA
IF
-
VR
r--
saae
100V'
5V
=
r...~
"'T
0.45
0.55
1L
0.50
5
10
AOJA -
FIGURE 8. POWER LOSS VS. THERMAL RESISTANCE FOR DIFFERENT
FORWARD CURRENTS. AJ = 0.176 em 2•
(OC/W)
FIGURE 11. POWER LOSS VS. THERMAL RESISTANCE FOR DIFFERENT
BARRIER HEIGHTS.
30
-
IPB - O.45V
TA
75"C
IF 100A"
VR - 5V
25
~
~
I
a'
.L
I
a'
0.5
0.65~
50
cpa -
.L
30
0.70_
~
TA - DOG
0.65
I
./
TA - 100"e
IF = 100A VR 5V
-
r-
25
, 25
...-:
~t-rpB =O.50V
0.75~
_
20
15
0.75V_
FIGURE 12. SIMILAR TO FIGURE 11, BUT FOR AN AMBIENT TEMPERATURE OF 75° C.
O.45V _
~R==1~~V
~B -
0.7
10
FIGURE 9. POWER LOSS VS. THERMAL RESISTANCE FOR DIFFERENT
AMBIENT TEMPERATURES.
i
0.60
15
10
H75
.55
20
./
25
=
1""00
~
a.
20
r-b
.A
r--
10
0.60
O.S5V
15
10
ROJA -
q>B
10
(0 C/W)
FIGURE 10. SIMILAR TO FIGURE 9, BUT FOR A LOWER BARRIER HEIGHT.
UNITRODE • SEMICONDUCTOR PRODUCTS
560 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
FIGURE 13. SIMILAR TO FIGURE 11, BUT FOR AN AMBIENT TEMPERATURE OF 100°C.
12-101
PRINTED IN U.S.A.
U·I08
APPLICATION·NOTE
(17.6mm2 ), the VF becomes dominated by the Schottky
junction. For this suuation the terminal VF will change logarithmically with AJ, and an order of magnuude increase in
AJ is needed to reduceVF by 60mV at 25°C.
Influence of Breakdown Voltage
It is desirable to minimize the series resistance of the
epuaxiallayer by keeping the avalanche breakdown voltage BV small. Note that this BV is equivalent to the BV,
defined in Figure 2. The effect of changing BV on power
losses is shown in Figure 14. Two sets of conditions are
assumed corresponding to "low:' and "high" temperature
designs. The device AJ is 0.176 cm2 , the same as the
USD545.
JAj100 125
30
20
.
t::j~o
-m:o
:S~;g
t§ilo
~.?=g
"';:!:l
>CJ>
o
N
0.62
CI
600
220\'
-
ae
117Vac
uf
~
fP
T,.
49K
3W
It
0
679-'6
115V
~
C2
600
06
n
Nd
•
~
UZ- 0 7
6715
47
C3
N.
""""'6
~I- 1-0 7
g
Nb
~
UC1524A
~ --
.
C4
110-t-
•
,
lN4946
lN4946
lW
l
cs
To
0,
lN4942
f
1'1
r
f -5051
NS
+SV, 51 IA
~f
D.
110 1
VO
'K
~
06
~-~
. ./ r
::;>
rvvv· 3
'~~9'4
~l
lN914
~
11(
UZ8715
05
~?J
.
~
It
I~
1~
C6
~-HDOS
01
lN914
0.1
.2
33K
' - -r<>2
~
R4
UPT212
300
~I-t- 1-0.6
~
2.2K
SW
~
,~
13
.40-
05
R,O
2N373S
-l~ 1-09
O.
MJE
13005
200Cl.1W
T
UK
~ ':.0015
0.82
5051
1('
461"
G0.~~
T
VOO
33K
sw
GJ
.r:l
~
0.1
r - -!!
'N49
I
"'tIl
T2
2.2K
Nc
N
I\)
I\)
d
lN4946
~
Nb,
!:;j
....
~
....
lN4942
z
>
::u
~
C1'300S
220V
!!
.0015
°5
MJE
8
4
!?
°3
~
2N3735
5
h
1..
30K
,oosT
1.SK
Figure 2. Complete 250 Watt Switching Power Supply
~
>
....
5T-Al
SEMINAR TOPICS
THE COMPLETE POWER SUPPLY CIRCUIT
The compl ete 250 wett switching power supply schematic is given
in Figure 2.
This supply meets all of the specification
requirements defined on page 1.
LINE INPUT AC TO DC CONVERSION
The input rectifier/fil ter section converts the AC line vol tage
into a crudely filtered and unregulated DC voltage, Vin' which
powers the downstream switching regul ator.
The input section is
configured as a full-wave bridge when operating from the 230 vol t
line, and as a vol tage doubl er when operated from 117 vol ts.
This provides approximately the same Vin range (200-380 vol ts)
for the switching regul ator with either line vol tage.
Minimum
input vol tage, Vmin, is 200 vol ts at low line.
The design of the input section is covered extensively in Section
11 of the Design Reference Addenda at the end of this book.
The power input required in this application equals power output
(250W) divided by efficiency (75%), or 333 watts.
Circuit values
for this application can be obtained by multiplying the 100 watt
input values given in Table I of Section 11 by "Pin/100 = 3.33,
using the worst case vol tage doubl er configuration:
Cl
IchS
= C2 = 3.33(160) = 533
= 3.33(1.126) = 3.75
~F
(ule 600
~F)
(1 )
( 2)
Amps RMS AC
The switching regul ator draws 40 KHz rectangul ar currant pul ses
which discharge the input capacitors.
Peak discharge current,
ietis' occurs at Vmin when the duty cycle, 0, is maximum (50%):
Idl1
= Pin/(VminD) = 333/(200
.5)
= 3.33
A peak
(3)
The RMS AC component of the "discharge current, letis, which flows
through the input capacitors at worst case 50% duty cycle is:
Idls
= (ldll)/2 = 3.33/2 = 1.67
Amps RMS AC
(4)
The total R MS AC current rating requi red for the input capacitors
is calcul"ated from Equation 8 of Section 11:
lCAP = ..JIcha" + Idis" =
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
-J3. 752 + 1.67"
12-123
(5)
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·Al
SWITCHING CIRCUIT TOPOLOGY
The two transistor forward converter configuration shown in
Figure 3 wes used in this 250 watt switching power supply for the
following reasons:
1. Transistor voltage ratings are half the voltage required in a
comparable single transistor circuit (400V vs. BOOV).
Only 1/4
the silicon chip area is required for the same current rating,
and the switching speeds will be twice as fast.
2. The snubber networks are for load line shaping only and are
not required to absorb all the energy stored in the transformer
leakage reactance.
Instead,cl amp diodes 05 and 06 conserve most
of this energy by returning it to the input, improving the
effi ci ency •
3. Closed-loop stability is easier to achieve than with a
flyback converter because there is no right half plane zero.
4. Filter capacitor reqllirements are much less severe than in
boost or .flyback converters because of the output fit ter
inductor.
5. Transformer construction is simplified because there is no
need for a cl amp winding (N a is used for the auxiliary supply),
6. Reliability' is improved because faster transistors result in
reduced switching losses, and each transistor ~ssipates only one
half of these reduced losses.
L
Figure 3. Two Transistor Forward Converter
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404· FAX (617) 924-1235
12-124
PRINTED IN U.S.A.
SEMINAR TOPICS
sT·AI
Disadvantages of this topology are:
1. Two transistors are required instead of one (but cost may be
less) •
2. Restri cted to I ess than 50% duty cycl e to permi t core reset.
This results in poorer transformer utilizetion.
3. Added cost of fil ter inductor,
the flyback converter.
whi ch is not
requi red for
SPECIFYING THE SWITCHING TRANSISTORS
Maximum peak primary current flowing through the
ICM, is tha same as idis from Equation 3, or 3.33 A.
transistors,
The transistors should have good VCE(sat) and switching speeds at
a collector current of at least 4.0 amperes, which includes an
allowance for unusual conditions such as short circuit current.
(Disregard spec sheet "maximum current ratings" which are
inflated for competitive marketing reasons, and focus on the
speci fied test condi ti ons.)
I!I
The collector voltage rating must be greater than maximum Vin, or
3BO volts in this application.
Conservatively, this should be
the BVCEO rating, but with careful load line shaping to make
certain the transistor is compl etely off before vol tage is
applied, a less conservative designer might specify BVCEX greater
than Vin(max).
The UMT13007 satisfies the above requirements, with BVCEO of
4DOV, VCE(sat) less than 2.0V at 5A, and worst case fall time of
4DOns under the proporti ona I base dri ve condi tions prov'; ded.
SNUBBER NETWORK DESIGN
The turn-off snubber networks shown across each transistor in
Figure 3 provide shaping of the load line to ensure that it
remains below tha reverse bias safe operating area (RBSOA) of the
transistors.
Capacitors C3 and C4 accomplish this by holding the
vol tage across each transistor ,low duri ng current turn-off.
The
snubber capaci tors thus absorb the turn-off transi ti on energy
that otherwise woutd have been dissipated in the transistors (see
Figure 4).
ICII tf
2 Vin(lIu)
(6)
= 3.33 x ... x 10-'
2 x 380
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02112
TEL. (611) 926·0404 • FAX (611) 924·1235
12-125
.00175 pF
(use .0015 pF)
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·AI
WITHOUT SNUBBER-II
I
Figure 4. Effect of .Snubber Network on Turn-Off Characteristic
Resistors R2 and R3 are designed to discharge the snubber
capacitors with a discharge time constant of one-hal f the minimum
on time, ton(min).
D(max) Vin(min)
f
Vin(max)
ton (min)
R2
ton (min)
2C3
R3
0.5
200
40.000 380
(7)
6.58 JlS
6.58xl0- t = 2.2K
2 x 1.5x10-'
Maximum power dissipation in each resistor:
1
Pal = PR3 = '2C2Vin(max)S f
(8)
1.5~1O-' x 380S x 40,000
4.3 watts
POWER TRANSFORMER DESIGN
The design of the 40 KHz inverter transformer is detailed
Appandix A.
A primary to secondary turns ratio of 148/9,
15.33, ensures that 5 volts output is prov1dedwith minimum
of 200 volts at 50% duty cycle, including voltage drops
rectifiers, transistors and windings.
in
or
Vin
in
Transformer winding ,Na is used to provide an auxiliary supply to
power the control and base ,drive circuits.
This makes'good use
of the energy stored in the transformer primery inductance.
OUTPUT FILTER DESIGN
The output filter and its associated waveforms are shown in
Figure 5.
The filter inductor calculation is based on the
maximum "off" time:
D(
min
)
=
toff(max)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
D(
) Vin(min)
. 200
mu Vin(max) = 0.5 iiO
1-D(min)
f
1-.263
- 40,000
12·126
=
= 18.4
.263
JlS
(9)
(10)
PRINTED IN U.S.A.
ST-Al
SEMINAR TOPICS
n:l
L
..
911~
01
fCo
O2
o --
~
~'"
----
Ro
ESR
-----
I-T-1
-
-
Vo
-
-
- - V f (02)
°c
=_~_~~
T-~
d-
vo·Vo
,....,.....,...
iLr
--- -10
0------------Figure 5. Output Power Filter Design
IS
The inductance required to prevent discontinuous mode operation
depends upon the minimum load current:
.1IL(max)
= 2Io(min) = 2 % 5 = lOA
[11 )
L = (Vo + VF)toff(max) = (5 + 0.6)18.35
.1IL(ma%)
10
The capaci tance requi red to achieve
specification of 0.1 vol ts is:
the
output
10 liB
(12)
ri ppl e vol tage
[13 )
The maximum ESR of the capacitor is:
ESR = vo/.1IL(ma%) = 0.1/10
.01 0
(14)
To obtain the necessary ESR requires a capacitor much larger than
tha 312 microfarads calculated.
This design will use thrae 220
microfarad solid tantalum capacitors, Mallory THF227M010P1 G, in
parallel.
A single 14,000 microfarsd aluminum electrolytic
capacitor, Mall ory CG0143M10R2C3PL could also be usad.
With the tanta I um capaci tor, the resonant frequency of the fil ter
is 2KHz. With tha aluminum electrolytic, the resonant frequency
is reduced to 425Hz, changing the closed-loop design.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-127
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·AI
CLOSING THE CONTROL LOOP
The Unitrode.·UC1524A is used for the control circuit.
It has
additional faatures such as pulse by putse current limiting and
high current and vol tage output capabi I ity (200mA, 60V) compared
The UC1524'A reference is trimmed to +/- 1 %
with the 5G1524.
which mekes it possible to avoid using a voltage-setting
potentiometer in many instances.
The control to output transfer function, dVo/dV c , shown in Figure
6, incudes the casceded gain of the sawtooth moduletor within the
UC1524Acontroi IC, the power switching circuit, and the output
filter characteristic, He(s).
In the oont.,"oi Ie, a contral voltage Vc is cbmpared wit.'": sawtooth
ramp voltage Vs [2.5 volts) to establish the drive pulse width to
the power switches.
For the forward converter, only one of the
two alternating outputs of the UC1524A is used so as to limit the
duty cycl e to 50% maximum and allow for transformer core reset:
(15)
D = O.SVc/Vs = O.SVc/2.S = VclS
The forward converter is a member of the buck regulator family.
Transformer turns ratio n
16.44:
:0
Vo=Vin D
n
Yin Vc
[16 )
n 2Vs
J
+20 Vin = 375V
,.-\
13.2
a
\
GAIN (db)
1\
-20
-26.8 1 - - -
r--
2
L ":0
Vc
,:1
.1
25
MES"
I"
-40
PHASE
\
WITHOUT ESR
20
Itkt
10
100
..
1
1
1000
FREQUENCY (KHz)
Figure 6. Control to Output Transfer Function
LC Filter and Modulate:'
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
12-128
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·AI
The low frequency control to output transf.er characteri sti cis
obtained by differentiating with respect to Vc:
avo = YiL- =
380
aVe
n 2Vs
15.33
J:
5 = 4.95 = 13.2 db
(17)
Note thet gain is greatest at maximum Vin.
The overall control
to output transfer characteri sti c i ncl udi ng the fil ter is:
avo = Y1D-- Be(s)
aVe
n 2Vs
(18)
The fil ter introduces a two-pol e characteristic at its resonant
frequency (2 KHz).
Above resonance, the gain drops 40db per
decade, and the phase shift becomes -1 80 degrees.
Combined with
the -180 degree phase shift of the feedback network, this will
cause instability ,and oscillations unless compensated.
Closing the loop involves feeding back the error voltage from the
output terminal of the supply (vo) to the IC control voltage port
(vc) through the UC1524A error amplifier. The approach taken is
to make the gain of the feedback networ.k such that the overall
loop gain crosses zero db (with adequate phase margin) at one
half the switching frequency.
m
As shown in Figure 6, control to output gain is 13.2db at low
frequencies, rolling off above 2K Hz at -40db per decade, so that
at 20 KHz the control to output gain is 13.2 - 40, or -26.8db.
For overall loop gain of zero,the feedback network gain must be
made +26.8 db at 20 KHz.
From 20KHz down to 2Kz, there is a net single zero in the
feedback network which cancel s one of the two fil ter pol es and
reduces the phase shift in this region to -270 degrees.
Below the fil ter resonant frequency the two fil ter pol es are
gone. However, the resonant frequency may be less than 2KHz
because of pi us tol erances on the fil ter capacitor. The feedback
network is therefore designed to transi tion from a net si ngl e
zero to a single pole at 1 KHz, half the resonant frequency.
Figure 7 shows the gain and phase pi at of the error amplifier and,
the overall feedback loop.
Figure B shows the specific feedback
network used to achieve this result.
The high frequency error amplifier gain is set by R2 and R3'
R3 value of 33 K is chosen to minimize amplifier loading:
AVI
= R3/R.2
R.2 = RS/Av1
- 26.8db = 21.9
An
(19)
33000/21.9 = 1500 0
The required error amplifier gain at 1KHz is:
AV2 .. Av1
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
J:
1KHz/20KHz = 21.9
12-129
J:
1/20 = 1.095 (O.8db) (20)
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·AI
60.-----,------.-----,------r-----.
GAIN (db)
PHASE
.01
10
.1
1000
100
FREQUENCY (KHz)
Figure 7. Open Loop Gain and Phase Plot
c,
33K
ZEROS:
R1 C1-1KHz
R3C 2 -1KHz
.005
POLES:
R2C1 - 20KHz
ERROR
AMPL. -10Hz
30K
33K
Figure 8. Error Amplifier with Compensation
The 9a; n at 1 KHz ;
6
determ; ned by R1., R2 amd Ra:
AVl .. R3/CR1+R2) .. S3I:/CR1+1500)
R1 .. 28.6K
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
= 1.095
(21 )
(use SOK)
12-130.
PRINTED IN U.S.A.
SEMINAR TOPICS
sT·A!
The two zeros at 1 KHz which changes the feedback network from a
net single zero to single pole are equal to:
[22)
.0048 IlF
C1 and R1 in parallel wHh R2 result in an addHional pole at
20KHz.
This flattens the error amplifier gain above 20 KHz.
The
ov·erall phase shift will gradually increase toward 360 degrees,
but it doesn't matter beceuse the overall gai n is I ess than one.
An additional pole occurs below 10Hz.
This is the inherent
single-pole characteristic of the error amplifier's 5 megohm
output impedance loaded by feedback capacitor C2.
PROPORTIONAL BASE DRIVE
In Figure 2, transistors 0.2 and 0.3 and base drive transformer T1
provide proportional drive to the bases of power switching
transistors 0.4 and 0.5. The proportional- base drive technique
provides excellent performance from high voltage bipolar
trensistors.
It provides large base current pul ses for fast
turn-on and tu·rn-off, but with modest drive power requirements.
Sustaining base drive is provided regeneratively from a collector
current winding on the drive transformer.
The transistors are
never overdriven, even under light load conditions, since the
sustaining base drive is proportional to the collector current.
Oesign considerations for the proportional base drive technique
are given in Section 01 in the design section at the back of this
book.
lEI
Referring to the circuit of Figure 2, .when 0.3 is on, R4
establishes 75 rnA magnetizing current in drive winding Nd of T1.
When 0.3 turns off, the energy stored in T1 drives 150 mA into the
base of each transistor.
Collector current starting to flow in
Nc provides sustaining base drive.
With IC of 3.33 A under full
load conditions, an additional 667 mA of drive is provided to
each base.
Whil e 0.3 is off,
Then,
microsecond.
base drive pul se
off in less than 1
capacitor C5 charges through 0.2 in less than 1
when 0.3 turns back on, C5 provides a negative
of -1.5 A to each transi stor, achi evi ng turnmicrosecond.
.
Drive: transformer T1 has a drive winding inductance of 0 .7mH and
is designed to saturate at 75 mAo
High vol tage insul ation is not
required because all windings are on the line side of the supply.
Core:
Nd:
Nb:
Nc:
UNITRODE • SEMICONDUCTDR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEl. (617) 926-0404 • FAX (617) 924-1235
Ferroxcube 1107P-LOO-3B7 Pot Core
20 turns AWG34
5 turns AWG2Bx2 [2 wires, one for each base)
2 turns 5xAWG28 [5 wires paralleled)
12-131
PRINTED IN U.S.A.
ST-Al
SEMINAR TOPICS
AUXILIARY POWER SUPPLY
A 15 volt auxiliary .supply powers the control and driver
circuits, obtaining its energy from capacitor C3. Flyback energy
is normally provided by T2 through winding Na and DS to maintain
the charge on C3 every switching cycl e.
However, at initial
power-up it is neccessary to provide separate means to activate
the Vdd supply.
Otherwise, the control and driver circuits could
not become functional and the supply could not start to switch.
The unique under-voltage lockout feature of the UC1524A
facilitates this technique.
All of its internal circuits are
disabled (except the reference) until the Vdd voltege reaches 8
vol ts.
Thi s hoi ds the standby current to I ess than 4mA until the
e volt threshold ';s reached, and permits C3 tD be initi~!!y
charged through R1 from the unregulated input.
Enough energy ~s
stored in C3 to operate the control/drive circuits for several
switching cycles, until flyback energy from winding Na can take
over and mai ntai n the vol tage on C3'
It is also necessary to eliminate base drive to 0.3 during initial
pow·er-up, otherwise 0.3 will draw current through. R4 which will
prevent C3 from initially chargi.ng.
This is accomplished by
transi stor 0.1 which di sconnects base d rive source capaci tor C4.
When the, UC1524A becomes active, its second output turns 0.1 on
periodically to charge C4.
The amount of energy stored in the power transformer is twice the
drive/control circuit requirements.
Excess energy is dumped into
15 vol t zener diode D7 whi ch establ i shes the Vdd suppl Y vol tage
at that level.
Thi s al so p rovi des a constant cl am p vol tage
across the swit chi ng t ransi stors,
rega rdl ess of line vol tage.
With good coupling between Na and pr,imary winding Np ' . it may be
possible.to eliminate clamp diodes D12 and D13.
'
OUTPUT VOLTAGE SENSE AND DVERCURRENT SENSE
A small, inexpensive transformer, T3, coupl as the output 'vol tage
to the line side control circuit with high voltage isol,ation.
The transformer is wound on a Ferroxcube 204-T250-3E2A ferrit'e
toriodal core.
Primary and secondary windings are both 14 turns
AWG32.
During the time the power switching transistors are. on, o.s is on,
applying Vo to the primary of T3. Through 02, this provides a
real-time feedback voltage to the control circuit across CS.
When o.s is off, 05 cl amps the flyback voltage to 15 volts. Core
reset is accomplished well before the end of the "off" time,
since the "off" time of the forward converter is always more than
50%.
All transformer ~indings then go to zero volts,
establishing a DC coupling level.
01 in series with the ground
return compensates for the forward vol ta~e drop and temperature
coefficient of 02'
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-132
PRINTED IN U.S.A.
SEMINAR TOPICS
ST-AI
Pulse by pulse current limiting is set by sense resistor R10.
Primery current is limited to 4A, corresponding to 62A load
current.
Transient response of the switching supply is shown in Figure 9
with changes in' load from:' 20A to BOA and back to 20A.
This
behavi or is a large si gnal phenomenon.
It doesn't matter how
fast the control loop is, it is temporarily driven into the
bounds because the load change is much I arger than tha output.
fil ter inductor current can accomodate in one cycl e.
Nevertheless, recovery is smooth and there is no evidence of
ringing or oscillations, demonstrating the stability of the
control loop.
Step changes in load current that are small enough
for the control loop to remain functional are barely noticable at
the output.
Transient response can be improved by reducing the filter
inductor and increasi ng the fi I tel" capacitor siz e, but thi s wi II
increase the minimum load current required to keep the inductor
cu rrent from becoming di sconti nuous.
OUTPUT
VOLTAGE +5V
OUTPUT
VOLTAGE +5V
OUTPUT
LOAD
20A
CURRENT
IfI
1V/cm
1V/cm
OUTPUT BOA
LOAD
CURRENT
20A/cm
20A/cm
Figure 9. Step Change in Output Load
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-133
PRINTED IN U.S.A.
SEMINAR TOPICS
ST-Al
APPENDIX A
DESIGN OF THE POWER TRANSFORMER
AND FILTER INDUCTOR
.The design procedure used herein is defined in Design Reference
Section MS _ Symbols, definitions and various core and wire data
are given in Reference Sections Mt, M2, and M3.
Equation
references are to Section MS.
FIUl Dea.ity B!cur.ioa
In this f(l!'~!!!'d (!.,n~!.'!'t!.'!' Annliclltion:
the flux excursion is
entirely within the first quadrant of the B-H characteristic,
from zero flux density toward saturation.
With simple duty cycle
control, using the UC1524A control IC, it is possible to have
nearly twice the normal volt-seconds, Vin(max)ton(max), during
startup or after a large step increase in load current.
This
means that the flux density cannot be permitted to go more than
half way toward sa tura tion under normal conditions or the core
will saturate under transient conditions.
flu
Saturation.
density for 3C8 power ferrite material is greater
-than 0.3 Tesla ·(3000 Gauss), allowing aAB of 0.15 T (0 to O.lS
T) in this application.
(With volt-second control, available in
the U C184 0 control IC, a AB of 0.3 Twould be permissible,
significantly reducing the transformer size.)
Core Selection
The core area product, AP,requirementsin this application are
calculated using Equation 1 and Table I of Section loiS with power
input of 333 watts and frequency of 40 KHz.
=
.AP
_/11.1
_I
Pia\1.143
11.1 333
\1.143 =
4
AwAe -~K AD f
-\0.141 0.15 40,000)
5.4 ca
1
'fbis equation is based on the assumptions that the windings
occupy 40'11 of the window area, the prilllary and secondary wiDdings
are of equal area, and the windings are operated at a current
density that will result in a temperature rise of 30 0 C with
natural convection cooling.
Deailpial the lipdiRI'
The minimum number of primary turns required to support the vol tseconds required for normal operation is calculated from Equation
2 of Section MS:
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
12-134
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·AI
N ( i )
p ma
> 5000
Via(mia)
AD Ao f
From Equation 3,
n ..
!!J!. ..
N.
>
5000 200
0.15 1.83 40,000
> 91
turn.
the primary to secondary turns ratio is:
0.9 D [Via(mia) -VCB<"U] .. 0.45(200-2) .. 15.36
Vo+VF
5+0.8
Secondary turns from Equation 4:
N... Intosor(Np/a) = latosor(91/15.36)
6 turns
Recalcula te the primary turns:
Np = 6 x 15 .36 = 92 turns
RltlS primary current from Equation 6:
I
p
= Ii (
)/Kt = Pin(max)
n max
Via(min) Kt
From Equation 7,
333
200 0.71 = 2.34 A
the maximum current density for this size core
is:
Imax = 450 AP-·u. = 450(5.71)-·12'
362
O/cm s
I!I
The minimum primary wire area, Axp. is:
Axp = Ip(max)/lmax = 2.34/362 = .0065 cmS
From the Wire Table in Sec tion M2 under 'AREA. Copper'. A WG 19 is
appropriate.
The maximum RMS secondary current •. Is. occurs at SO .. duty cycle:
I.(max) = lo(max)/1.414 = 50/1.414 = 35.3 A
Minimum secondary wire area. Axs. is:
Ax.
= 1.(max)/lmax = 35.3/362 = .0975 cm s
From the Wire Table. this calls for AW G 7 to 8.
Ten AWG 18 wires
in parallel wUl carry the required secondary current and provide
a smooth winding with less leakage inductance and acceptable eddy
curent losses. Copper strip 2.5x.04 cm could also be used.
Th number of turns required for the auxiliary winding is:
Na
D
VII Hp
Vin(min)
..!!-!!
200
= 7 turn.
This wUl provide enough volt-seconds during flybackto reset the
core (back to zero flux deasity) at SO .. maximum duty cycle.
AWG 32 wire is adquate to carry the Vdd supply current.
This
winding should be tightly coupled to the primary.
UNITRDDE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-135
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·AI
Double-check the wire fit in the window (ne,glect Na ).
The total
copper area of all ,windings' should be less than 4011'0 of the total
window area of the core (0.40x3.12 = 1.25 em Z max).
A.,,'
> NpAxp + N.Au
;" 92( .0065) + hlO( .00823)
Calculate Lo.se. and Teaperature Rise
The total losses in the windings is calculated from Equation 12.
The mean length per turn, It, for the ECS 2 core is 7.3 em, and
AWG 19 wire is .000353 a/cm from the Wir,e Table at 1000C.
The total core losses for 3 C8 ferrite are obtained. from
Figure 1 in Section M3.
The flux density axis of this graph
assumes the transformer is operating with a symmetrical flux
swing about the origin.
The forward converter operates
asymmetrically,
so enter the graph with· I!B/2, or .075 T.
The
resulting 0.01 WIcm 3 must be multiplied by the core volume to
obtain the ~otal core loss, Pc'
Pc
=
.01~18.7
=
.187 watts
Total transformer losses are:
2.59 + '.187
2.78 watts
The temperature rise of the' core
calulated from Equation 14:
A6
= 850
As
Pt
850(2.78)
91
for
natural
convection
cooling
is
25.9 0 C
Summarizing the transformer design:
Core:
Np:
Na:
Ns:
Ferroxcube EC52, 3C8 Ferrite E-E core
92 turns AWG19
7 turns AWG32
6 turns 10xAWG18 (10 wires paralleled)
The primary and auxiliary windings are tightly coupled.
The secondary is
insulated with 2mil mylar tape to provide 3750 volt line isolation
capability.
Filter Iuductor Desiln
The design of the filter inductor is covered extensively in
Unitrode Applicat;ion Note U68A, in the Unitrode Databook.
Using
this approach, the inductor design is summarized as follows:
Core:
Winding:
Losses:
Temperature Rise:
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
Ferroxcube 4229-3C8 Ferrite Pot Core
7 turns 10xAWG17 (10 wires parall eled)
2.2 watts.
35 0 C
12-136
PRINTED IN U.S.A.
ST-A2
SEMINAR TOPICS
HIGH FREQUENCY SERIES RESONANT
POWER SUPPLY - DESIGN REVIEW
By Raoji Patel and Roger Adair
I. INTRODUCTION
In the past decade, power conversion technology has advanced from linear to switching due
to the inherent high efficiency, smaller size, and lower cost of the latter technology. Recently,
designers involved with conversion technology have started to consider resonant sine wave
power supplies because they offer even smaller size, improved reliability, and reduced EM!.
It is possible to operate these power supplies at high frequency for two reasons. First,
low-cost power MOSFETs, which, unlike bipolar transistors, have no storage time, are now
available. Second, series resonant topologies are tolerant of some undesirable features of
power semiconductor devices, (e.g., switching transition time and reverse recovery times.)
This paper explains the basic operation of the power output stage of a series resonant
converter and examines its advantages and disadvantages compared to a conventional
switching-regulated power supply. To provide a practical example, the paper details the
design of an off-line series resonant power supply. The Unitrode low-cost UC3S24A PWM
Control Circuit is utilized to provide control for the series resonant power supply.
The 200kHz resonant power supply developed herein, as shown in Figure I, operates from a
117V(±IS%), 60Hz line and meets the following requirements:
1. Output Voltage
A. +SV ±S% 2.SA - S.OA
Ripple Voltage: 100mV P-P maximum
B. +12V ±3% IA - 2A
Ripple voltage: 100mV P-P maximum
C. +24V ±S% IA - 2A
Ripple Voltage: 200mV P-P maximum
2. Efficiency 80% minimum.
3. Short-circuit protected.
nn
L::::::J
12·137
SEMICONDUCTOR
PRODUCTS
_UNITRODE
-Hoc:
ti mO
~,.O
",enm
~~.
, -I en
0!!l~
!:
z
;a:.
C;'L...-f"'-C-4"""""': 12V@2A
~;g
cn~~
~~g
m
T2~D7T~2
CR2
UES1105
C2
1.0
C1
200pF
§""
. m~·
Srrif5
~~;g
en
CR6
P:!!!l~
a~~
d
."
CR5
~:~r£,L1
INPUT
117V AC
1T
.
(YY'!
.
U1~~
2
;:ItI
Co
~
1·
0
T C5
0
5V @ 5A
CR7
S
F1, F2
FERRITE
BEADS
9:r~T ,La
CR
CR1
UES1105
(YY'!L.....,~~
4T
.047
.
R10
270
C6
i
C7 : 24V @ 2A
L 1, L2, L3 = 1.BpH
C4, C5, C7 = 10pF
....N
,:..
T2 ..; FERROXGUBE
EC35 -- 3CB
W
OJ
+30V@70mA
I
CR4
~ C14
UES1102* ~ 47
T1 - FERROXCUBE
1B11 - 3CB
POT CORE
•
2.5 MIL GAP
R5
6.BK
II
2 N.I.
R9
2.7K
V 1N 15
30SC/SYNC
= C9
.002
lIH
IC1
UC3524A
6 Cr
'-------il
1
2
3
C10
.002
'IH
16
15
I~I
IC2
UC3524A
Wr
CA 12
6
EA111
"
II k/\/\r.-i
R4
10K
Figure 1. Schematic of Resonant Converter
~
SEMINAR TOPICS
ST-A2
Basic Principle and Operation
The power output stage and its associated waveforms at typical input voltage are shown in
Figures 2 and 3. During the on-time of power switch QI, the energy is delivered from the
input supply to the output load and series resonant capacitor CR. During the on-time of
transistor Q2, the energy is transferred from capacitor CR to the output load. Note that the
rectifier diodes, CR I and CR2, clamp the voltage across capacitor CR by providing a current
path through the Yin supply or ground. The AC current in the secondary winding of the
transformer is rectified by rectifier diodes CR3 and CR4 and flltered with output fllter
capacitor Co.
Under steady state condition, the output voltage Vo is reflected back to the primary side by
NVo, where N is the transformer turns ratio. The polarity of the reflected voltage depends
upon the state of transistors Q I and Q2. When transistor Q I turns on, the input voltage Vin is
applied across the series resonant network LRCR and the primary of the power transformer.
Since voltage across the primary is fixed by its turns ratio and the output voltage, the current
iR in the primary increases in a sinusoidal manner (starting at zero) because it is controlled by
the series resonant network. The voltage across capacitor CR increases in a sinusoidal manner
starting at zero, while the voltage across the inductor decreases toward zero. When the
voltage across the inductor reaches zero, the current in the resonant network ceases to
increase. At this instant, the peak current IRP can be expressed by the equation:
IRP
=
Where Zo is the characteristic impedance
of the series resonant network
Vin-NVO-VCi
IZol
VCi is the initial voltage across the
capacitor; VCi = 0 for input
voltage above Vin(min)
III
Vin
~
Irlon~1
lin
~cJ
I
CR2
01
I
I
I
I
I
-
CR3
N:~.
iR
VinINPUT DRIVE
LR
I
---I Tlonli--
I
I
I
t=O
n
Vo
~-----
cJ
CR
02
T2 CR4
ICo
_
CR1
Figure 2. Power Output Stage
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-139
PRINTED IN U.S.A.
SEMINAR TOPICS
Figure 3A.
Drive
Pulses
J
ST·A2
01 - Drive
II 02 - Drive
I
I
1
1
~1----+-2 T(On,---\-I-~
.. 1
..
I"
/"'",;...::...-.<.-;--
1500(.864)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
= 52 amperes/turn
12-150
(1.9)
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·A2
Since for an inductor, all the energy is stored in the gap,
H£g
= NIpk(H) = 52 A-T
(UO)
The number of turns required, from above equation, is:
Hi e
52
N= - - - = - = 8 turns
Ipk(H)
6.8
(Ul )
The gap required to store the energy is:
NI
NI
= --= --=
i
g
H (B.\ (
--;:-,
52
.15
(411")10
.435 mm.
)
(U2)
7
The windings must cover this gap to reduce fringing of the flux. The core and copper losses
are maximum at high line. For this design, the total losses are equal to 1.4 watts and result in
an increase in core temperature above ambient of 310.
D. Transformer Design
The reflected output voltage across the transformer primary should be equal to half the value
of the minimum input supply voltage. This will determine the primary to secondary turns
ratio. For the +5V output, the turns ratio is:
Vin(min)
m
120
----=11
2(5 + 0.6)
(I.13)
The rest of the transformer design procedure is straightforward.
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926.Q404 • FAX (617) 924-1235
12-151
PRINTED IN U.S.A.
ST.;Dl
SEMINAR TOPICS
PROPORTIONAL BASE DRIVE OF BIPOLAR POWER TRANSISTORS
IN SWITCHING POWER SUPPLIES
Proportional base drive is a simple and effective method of
achieving improved performance with high voltage bipolar power
switching transistors in off-line applications.
As shown in
Figure 1, a current transformer provides regenerative base drive
current whose amplitude is proportional to the collector current
being switched. The drive current ratio is established by the
turns rati.o of the collector and base windings.
The proportional drive method may be employed with any power
switching circuit topology.,
Advantages over conventional fixed
bese current drive methods include:
1. Fixed base drive current must be large enough to handle the
full load [or short-circuit load) collector current. Under
lightly loaded conditions, the. switching t~ansistors are
severely overdriven, resulting in long storage and fall
times and more difficult turn-off.
Proportional drive
provides optimal performance under varying load current
conditions.
2. Proportional base drive requires less drive power. from the
control circuit.
During the' "on" time of' the switching transistor, base drive is provided regeneratively from the collector circuit through the current transformer. The control drive circuit is not required to provide sustaining base drive current. It must only provide short pulses of drive current to initiate turn-on and turn-off. The amplitude of these drive current pulses can easily be made , large enough to obtain good switching performance from high voltage bipolar devices in .off-line applications. Rl d D1 C1 -: Figure 1. UNITROOE • SEMICONDUCTOR PRODUCTS 580 PLEASANT STREET. WATERTOWN, MA 02172 TEL (617) 926·0404 • FAX (617) 924·1235 s: Proportional Base Drive Circuit 12-152 PRINTED IN U.S.A. SEMINAR TOPICS ST-01 Referring to Figures 1 and 2, when driver transistor Q1 is on, power switch Q2 is off. Magnetizing current ld1 in the control drive winding Nd approaches a steady-state value equal to the drive circuit supply voltage Vdd divided by R1. Capacitor C1 is discharged and there is zero voltege across all windings of T1. When the output of the control circuit turns on, driver Q1 turns off end primary current ld1 must cease. Energy stored in T1 causes the voltage at the dotted ends of aLL windings to fLyback in the positive direction. ld1 multiplied by turns ratio Nd Nb becomes Ib1, the turn-on base drive current pulse to Q2. CoLLector current Ic starting to flow in winding Nc causes a regenerative increase in base drive to Q2 until it is switched fully on. The final value of Ic induces a proportional base drive current, lb, according to the turns ratio Nb N c. o uri n g th e ti me th at Q2 is on and Q1 is off, capacitor C1 charges through R1 to supply voltage V dd. At the end of this "on" period, driver transistor Q1 is turned on again, applying the voltage on capacitor C1 to the d ri v e t ran s for mer primary. This drives the voltage on the base of Q2 sharply negative. The turn-off base current pulse, lb2, can be made larger than Q2 coLLector current, resulting in very rapid turn-off of Q2. After Q2 is off and Ib2 ceases, any remaining voltage on C1 across the drive transformer primary helps to rebuild the magnetizing current. Diode 01 prevents the possibility of any underdamped ringing from driving the upper end of Nd negative. At the end of the "off" period, magnetizing current Id1 has been re-estabHshed and the cycle repeats. UNITRODE • SEMICONDUCTOR PRODUCTS 580 PLEASANT STREET. WATERTOWN, MA 02172 TEL, (617) 926-0404 • FAX (617) 924-1235 Ie , J III -'b -'b1 I I - p r i Vd ~'",.N"N' Id ., ~'sat i i Id1 VC1 Figure 2. 12-153 Waveforms PRINTED IN U.S.A. SEMINAR TOPICS ST-D1 It is quite feesibLe to operate high voLtage bipoLar transistors at frequencies above 50 KHz with reesonabLe efficiency because of the Large ampLitude base drive puLses obtainabLe with this method. However, the circuit of Figure 1, es just described, is not capabLe of operation at frequencies above a few kilohertz. This is becausE! capacitor C must charge to V dd during the "on" period of Q2, and the R1 C1 charging time constant is far too Long for this to be accompLished at 50 KHz. This problem is solved by the addition of a rapid recharge circuit as shown in Figure 3. During the time that Q2 is on and Q1 is off, current through R1 is muLtipLied by the current gain of Q3, which significantLy reduces the charging time of C1. When Q1 turns on, C1 discharges through 02. The base-emitter of Q3 is revarss bi:Jsad, hoLding it off during the entire 112 "off" time. Figure 3. Improved ProportioneL Base Drive Circuit DESIGN PROCEDURE: Application parameter values must be defined, including drive requirements for the power switching transistors: Ic Ib1 Ic Ib Ib2 Vbb2 t2 Vdd f Maximum collector current InitiaL turn-on base drive current Sustaining proportional base drive ratio Turn-off base drive current at max. Ic Turn-off base drive source voltage at max. Ic Maximum transistor turn-off time Drive circuit suppLy voltage Operating frequency Drive transformer base collector turns ratio is equal to the desired proportional base drive ratio: (1 ) UNITRODE • SEMICONDUCTOR PRODUCTS 580 PLEASANT STREET. WATERTOWN, MA 02172 TEL. (617) 926-0404 • FAX (617) 924·1235 12-154 PRINTED IN U.S.A. SEMINAR TOPICS ST·Ol Drive transformer driver base turns ratio is estabLished by the desired turn-off base source voLtage and the drive circuit suppLy voLtage, minus 1 voLt diode drop: [ 2) When Q1 turns off, primary magnetizing current, Id1, transferred to the base winding must provide the required ·turn-on base drive, Ib1· [3) The R1 vaLue required to obtain this magnetizing current is: [4) During initiaL turn-off, driver primary current Id2 must absorb the proportional base drive current and transformer magnetizing current Id1 in addition to the turn-off base drive current: m [5) Capacitor C1 is designed to suppLy the worst-case energy required to turn off Q2: (Vdd-l)Id2 t2 [6) When Q2 is operated at very low duty cycle (such as immediately after a sudden decrease in load current), C1 may not have time to fully charge to Vdd during the very short "on" time, in spite of the assistance provided by Q3. This will probably not be a probLem, because Q2 wiLL aLso not have time to store much charge and will be much easier to turn off. The time required for Q2 to reach equilibrium charge storage is comparabl~ to the time required to remove this charge during turn-off. The C1 charging time constant (reduced according to the gain, Hfe, of Q3) will generalLy be adquate if it is less than 1 2 the Q2 turn off time, t2' C1 charging time constant: (7) UNITRODE • SEMICONDUCTOR PRODUCTS 580 PLEASANT STREET. WATERTOWN, MA 02172 TEL. (617) 926·0404 • FAX (617) 924·1235 12-155 PRINTED IN U.S.A. SEMINAR TOPICS ST·01 DRIVE TRANSFORMER DESIGN: Turns ratios for the drive trensformer were established in equations [11 end [21. Only certain integral number of turns are permissible for eech winding. For example, if Nd Nc is 25, the permissible number of drive winding turns' ere 25, 50, 75, etc., corresponding to 1, 2, and 3 coLLector turns. Winding I2R losses are usueLLy negligible. The drive transformer design is based on the foLLowing two considerations: 1. Magnetizing current Ib1 is required for initial turn-on of the power switching transistor. During the time Q2 is on, the magnetizing current wiLL decrease due to voltage Vbe across the base winding. The fflEigiistizliig currant iiiust not' be ::;LLcwed to decrease to less than zero, or it will cause premature turnoff under light load conditions by overcoming the small proportional drive current lb. Referred to the primary, the drive winding inductance must be large enough to prevent Id1 [Equation 31 from reaching zero with voltage Vbe[Nd Nb1 during the longest possible "on" time [usually half the switching period, 1 2f1: 2. Under Light load conditions, relatively little charge is required to turn off Q2. C1 will then have substantial voltage remaining which wiLL be applied to the drive winding during the remainder of the "off" period. This will cause the magnetizing current [and its associated energy storage] to becom e much larger than desired. The problem is solved by deSigning the drive winding to saturate a.t a current level slightly 'greater than the desired value of magnetizing current, Id1. This will result in dumping any excess energy remaining in C1 and establishing a consistent starting point on the B-H characteristic at the beginning of each "on" period. Figure 4 shows the B-H characteristic of the core as seen from the drive winding. For the vertical axis, B times cor ear e a .A e and N d equals !Vddt [Faraday's Law1. For the horizontal axis, H times effective core length, l, and divided by Nd equals the magnetizing current Id, [Ampere's Law1. The characteristic slope equals the drive winding inductance, Ld, and the area to the left equals the energy stored. UNITRODE • SEMICONDUCTOR PRDDUCTS 580 PLEASANT STREET. WATERTOWN, MA 02172 TEL. (617) 926-0404 • FAX (617) 924-1235 HI Nd = Id (Magnetizing Current) Figure 4. 12-156 PRINTED IN U.S.A. SEMINAR TOPICS ST-01 The operating point shown will satisfy the two requirements above i f i t ex c e e d sId 1 0 nth e h 0 ri z 0 n tal a xis and i f it e x c e e d s Vbe[Nd Nb) 2f on the vertical axis under worst case conditions at high temperature. Procedurally, use Faraday's Law with 8 close to saturation at high temperature and with the area, Ae , of the core selected. Solve for Nd: Vbe (Nd Nb) 1f
= B AeNd [8) Use the smaLLest permissible Nd equal to or greater than the value calculated above. An Nd value larger than the calculated amount simply means that the change in flux density will be less than the maximum permitted. Next, use Ampere's law with a value for H correspo!1ding to the 8 value chosen before, the smaLLest permissible Nd fr'om above, and I equal to Id1. Solve for the magnetic path length, l. [9) Compare the actual le value for the core selected with the value calculated above. If the actual le of the core is significantly larger than the calculated l, it w.iLL be necessary to use either a smaLLer core, or use a larger permissible number of turns, Nd. Otherwise, the operating point will not be close enough to saturation, and the 8 and H levels will both be too low to prevent the magnetizing current from becoming negative at the end of the "off" period. If the actual core le is smaller than the calculated l, the core wiLL be too heavily saturated, and wiLL not store enough energy to provide the desired Ib1. Either go to a larger core, or introduce a smaLL gap, 19, according to the relationship: l = (le + 1a 19). where 1a = BIB [10) Driying Two Transistors. Two power s"fitching transistors are often used in series in order to halve their high voltage V be rating requirements. It is usuaLLy desirable to drive these two transistors from a single drive circuit. This can be accomplished by means of two identical base win~ings in the transformer. Nb Nc must be halved and Nd Nb doubled from thtl values calculated in Eq. [1) and [2) because the total base current is twice as much as with a single transistor. As shown in Figure 5, it is also necessary to add a small amount of resistance in series with each base in order to ensure current sharing. A resistor which drops 0.5 volts at maximum sustaining base drive, Ib' should be adequate. The added resistance does not affect the calculation of Nd in Equation (8) because its voltage drop .is negligible compared to Vbe under light load conditions, when the sustaining base drive is small. However, during turn-off, each series base resistor must be shunted by a UNITRODE • SEMICONDUCTOR PRODUCTS 580 PLEASANT STREET. WATERTOWN, MA 02172 TEL. (617) 926-0404 • FAX (617) 924-1235 12-157 PRINTED IN U.S.A. SEMINAR TOPICS ST-Ol smaLL diode. Otherwise, a very large Vbb2 value would be required in order to pull the desired Ib2 out of each base. The forward drop of this diode must be added to the Vbb2 requirement in Equation (2). Vdd ~-..---., Figure 5. Two-Transistor Driver Line-side ys Output-side Control Circuit. The base and collector windings of the drive trallsformer are' normally on the input, or line side, of the power supply. When the controL driver circuits are located on the output side of the supply, high voltage insulation is required between the drive winding and the base and collector windings. This high volta,ge insulation, usually greater than 3000 volts, will impair the coupling between lineside and output-side windings. This results in high leakage inductance, causing voltage spikes during turn-on and turn-off which may necessitate additional snubbing or clamping the drive transistor collector and the power switching transistor base. When the control and driver circuits side, the drive transformer does insulation. Leakage reactance can especially if multi filar windings are are are located on the line not require high voltage be made almost negligible, employed. REFERENCES: (1) J. Gregorich and W. Hazen, "Designing Switched-Mode Converters with a New Proportional Drive Technique," Proceedings of POWER CON 5, May 1978, pp. E2[1-8). (2) P. Wood, "High Efficiency, Cost Effective Off-line Switching Converters," TRW Applications Note 143, April 1978, pp. 3-4 (3) R. Severns, "A New Improved and Simplified Proportional Base Drive Circuit," Proceedings of POWERCON 6, May 1979, pp. B2[1-12). UNITRODE • SEMICONDUCTOR PRODUCTS 580 PLEASANT STREET· WATERTOWN, MA 02172 TEL. (617) 926-0404 • FAX-(617) 924-1235 12-158 PRINTED IN U.S.A. SEMINAR TOPICS S1-Tl THERMAL CONSIDERATIONS FOR SEMICONDUCTOR DEVICE RELIABLITY By Glenn Fritz This paper is a guide to enhancing reliability and avoiding semiconductor failures in switching power supplies. Since semiconductor reliability is strongly related to junction temperature, a brief thermal design review is included. Several semiconductor failure modes are discussed, with emphasis on power supply circuits susceptible to such failure modes, methods of identifying failure mechanisms, and techniques for avoiding same. Many semiconductor failures are the result of overheating the semiconducting silicon. Such failures can be broadly classified into two groups. First, failure can be due to excessive "average" heating, characterized by an expected distribution of high temperatures throughout the active regions, including junctions. For the purpose of this discussion, this includes repetitive transient heating within temperature ratings. Such heating is quantitatively predictable and can be controlled by appropriate device selection and heat sinking. The other failure mechanisms are related to localized overheating, and cannot be effectively addressed with the thermal models used for the average heating failure modes. A better approach to these potential problems involves relating identifIable transient circuit conditions to device ratings and safe operating area curves. SECTION 1. AVERAGE HEATING CONSIDERATIONS Degradation of semiconductors results from chemical reactions which change the structure of such devices on an atomic scale. The rate at which such reactions occur is found to follow the Arrhenius equation: R(T) = Ce- Ea KT where: (Eq. I) R(T) = temperature dependent reaction rate C = constant Ea = activation energy K = Boltzmann's constant T = temperature Figure I is a typical plot of semiconductor failure rate, as a function of junction temperature, which follows Equation l. Note that failure rate decreases rapidly as the operating junction temperature is lowered. Semiconductor manufacturers commonly specify an absolute maximum junction temperature for any given device. This temperature is chosen to correspond to an "acceptable" failure rate for that device. However, as shown by Figure I, improved reliability' can be obtained by operating semiconductors at temperatures below their maximum rating. A tradeoff ultimately must be made between reliability and the cost and size of the semiconductor device and its associated heat sink. nn SEMICONOUCTOR ~ PRODUCTS 12·159 _UNITRODE SToll SEMINAR TOPICS Appendix A describes the thermal model usually used by designers to predict semiconductor junction temperatures and to thereby determine device and heat sink requirements. Readers unfamiliar with such a model are referred to this material. Following are illustrations of the application of this model to various power semiconductor devices commonly.used in switching power supplies. OPERATING LIFE "",' 200 ~ 150 '""" ~ 100 75 TJ = JUNCTION TEMPERATURE - "" 50 °C Figure 1. Approximate Arrhenius Model·for Unltrode Bipolar Transistors BIPOLAR TRANSISTORS Power losses due to leakage current in the off state are usually negligible for bipolar transistors in switched-mode supplies. Therefore, equation A2 reduces to: p = Pconducting + Pswitching (Eq.2) Conducting losses for bipolars can be expressed: - Pconducting where: ton (.
=T Ie· . Vee + Ib • Vbe) (Eq.3) ton = transistor on time per cycle T
= switching period The variables ie, Vee. ib and Vbe in Equation 3 are mutually dependent. This is illustrated by the characteristic curves of Figures 2 and 3, which are curves typically supplied· by power semiconductor manufacturers. In order to minimize conduction losses (Eq. 3) for a UNITRODE • SEMICONDUCTOR PRODUCTS 580 PLEASANT STREET· WATERTOWN, MA 02172 TEL. (617) 926-0404 • FAX (617) 924·1235 12·160 PRINTED IN U.S.A. SEMINAR TOPICS ST·ll particular bipolar transistor, it is necessary that the designer choose an optimum base current (ib). If ib is too small, then the transistor will fail to saturate resulting in high power dissipation due to the Vee term in Equation 3. However, too large an ib will result in higher transistor dissipation due to the ib term in Equation 3, and overall supply economy and efficiency might be affected adversely by losses in the high current drive circuitry. Finally, excessive ib will result in increased minority carrier storage in the bipolar transistor base region. It will be shown below that such a "hard saturation" condition causes poorer switching performance due to increased storage and fall times (t., tf). Unfortunately, while providing general guidance for selecting a transistor and determining base drive requirements, the curves of Figures 2 and 3 are insufficient for making the choice of optimum ib' Figure 2 gives current gain (hFE) values only for non·saturation conditions (vee 3 or lOY), while Figure 3 shows saturation voltage at only one gain (ie ib 5). A family of curves such as that shown in Figure 4 is more useful in this connection. From these curves the designer can determine just how much base current is needed to keep Vee low without overdriving the transistor.
=
= 200 100 1=
150'C f-- z ;;: (!l 50 I- f- Z '" D: D: ::J u 20 c..i 0 Iw 10 ~5,b tJ:,l f..-- - r- .... -, - ~ " , ~ .......".' N~ '~l' lEI -- .r:;~ 5 -- --- 2 0.1 0.2 Ie -
=
VeE lOV V cE =3V 0.5 2 5 10 COLLECTOR CURRENT (Al Figure 2. D.C. Current Gain for Typical Transistor UNITROOE· SEMICONDUCTOR PRODUCTS 580 PLEASANT STREET. WATERTOWN, MA 02172 TEL. (617) 926·0404 • FAX (617) 924·1235 12·161 PRINTED IN U.S.A. SEMINAR TOPICS ST-Tl 5 I Iells - 5 2 ~ w C!l ~ ~ V.E~~ ~~ 55°C - 25°C 0.5 ~ 'j 0 data-cf-modified-4128f324bce036ecc4cc8ff6-="">
V
-
/.
V ./ /
I'
./
....
ls60c i"""
....
~~
~
.,0.1 ~
0.2
V VVCE(SATI
:,,-
f?if§ I "" III I I I I IIII II
55°C
.05
0.1
0.2
IC -
0.5
2
5
COLLECTOR CURRENT (A)
10
Figure 3. Saturation Voltages for Typical Transistor
5.0
\
4.0
~3.0
j
~
>
\
\
~
1\
1\
le= 2A
le= SA
le= 5A\
1\
2.0
\
\
\
1.0
~
0.0
10
1\
\
\
20
50
-
100
\
\
\.
I-
200
500
"- -
1000
2000
5000
la-BASE CURRENT (rnA)
Figure 4. Typical VCE vs Ic and la for Typical Transistor
Bipolar Switching Losses
The other element contributing to average heating in bipolar transistors is power dissipation
during switching (see Equation 2). Power pulses-which are large in magnitude compared to
the average power, but short in duration-occurboth at tum-on and tum-off of the power
transistor in switched-mode supplies.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
12-162
PRINTED IN U.S.A.
SEMINAR TOPICS
ST-T!
In some topologies, turn-on losses are negligible when compared to turn-off losses. Figure 5
shows a basic flyback converter, with the associated transistor ie and Vee waveforms.
Transformer leakage inductance, L f , is in series with the switching transistor and prevents ie
from rising significantly until v ce has fallen at turn-on. Therefore, the peak power dissipation,
which is proportional to the area of the shaded region under the curves of Figure 5, is not
great. During turn-off, Lf again restJ::ains ic from changing significantly until Vee has
completed its transition. In this case, however, a large power pulse occurs because both ic and
Vee momentarily have large values. Figure 6 shows an expanded scale of this turn-off period.
In order to calculate the energy dissipated during this transition, a method of triangular
approximation is well suited. The energy under the curves is given by:
Esw :::.:
where:
1 .
2·
le(on) • Vce(oft) • tr
(Eq.4)
=
Esw
switching energy dissipated per cycle
ie(on) = on-state transistor current
Vee(oft) = off-state transistor voltage
tr total fall time (sometimes called "crossover" time (te) by manufacturers)
=
+
lEI
Figure 5. Flyback Topology and
Associated Transistor Waveforms
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12·163
PRINTED IN U.S.A.
STOll
SEMINAR TOPICS
The average transistor power due to switching in the flyback converter
_
Psw
E_
I
= T = 2'""
ic(on) " vce(off)
is therefore:
"~
(Eq.5)
T
If total fall time tf is not specified, then current fall time tfi can be used to calculate the area of
region II in Figure 6, and the area of region I can be estimated. For a more careful study of
switching losses, transition times should be measured under actual circuit conditions. Using
the former method, and assuming tf = 2tfi:
Esw = ic(on) " Vce(oft) " tfi
(Eq.6)
(Eq. 7)
ic(on)
Vce(off)
VceCon)
Figure 6" Bipolar Turn-Off
In the case of a buck regulator, tum-on losses are also significant. Figure 7 shows the buck
topology and its associat~ transistor waveforms. In this case, the catch diode forces the
transistor to see the full input voltage, Vin, at any time that diode carries any forward current.
This results in the switching waveforms of Figure 7, with much energy dissipated during both
tum-on and turn-off. Tum-off losses can be calculated by the same method used for the
flyback regulator (Equation 7). Figure 8 shows the tum-on transition in more detail. If the
catch diode recovery time is negligible, then:
Esw(tum-on)
where tr
Also:
I
.
= 2'"" lc(on) " vce(off) "tr
(Eq.8)
= current rise time (as defined in Figure 8)
p.w(turn-on) =
UNITRODE "SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET" WATERTOWN. MA 02172
TEL. (617) 926·0404" FAX (617) 924-1235
1- •
tr
2"
lc(on) " vce(off)"-;
12-164
(Eq.9)
PRINTED IN U.s.A.
SEMINAR TOPICS
ST·ll
The effect of diode recovery time on transistor turn-on losses will be considered on
subsequent. pages. Total switching losses for the transistor in the buck configuration are
given by (from Equations 5 and 9):
Paw =
-
Paw
-
Paw
Ptum-on
+ Ptum-off
1.
tr
1
= 2'
1c(on) • Vce(off)' T + 2
ic(on)' Vce(off) •
..!!..T
= -fa2 . ic(on) • Vce(off) • (tr + to
(Eq. 10)
where: fa = 1/ T = switching frequency
+.-----\ I
Figure 7. Buck Topology and
Associated Transistor Waveforms
v""
/l
.{ i
\
'
\ I
\
/
10%
:~~-~
0
\\ I'
\!
Jj--
Figure 8. Bipolar Tum-On
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
12-165
PRINTED IN U.S.A.
SEMINAR TOPICS
ST-Tl
Reducing Losses
In order to minimize bipolar transistor switching losses in any given circuit (for which ic(on),
Vce(off) and fs are fIxed), the designer has two methods available. First, he can seek to
minimize· tf and tr by providing appropriate base drive. Second, designers can alter the
switching waveforms by using snubber circuits.
1. Drive Circuit Optimization
Stored.minority carriers in the base region are the cause of bipolar transistor storage and, to a
lesser extent, fall times. Fall time, as seen above, relates directly to switching power
dissipation. Storage time, while typically having little effect on power dissipation, must
nevertheless be controlled in order to avoid problems of flux imbalance and poor dynamic
response with some topologies.
Designers commonly use two techniques to mInimize stored-charge-induced transition
times. First, the amount of stored charge is kept low by driving the transistor with the lowest
possible turn-on base current (ibl)' This current is usually chosen to drive the transistor just
into "hard" saturation at maximum ic in order to keep Vee low and minimize on-state losses.
Higher base currents would cause increased switching losses without signifIcant
improvement in on-state losses. When switching losses are extremely critical, as in high
frequency circuits (see Equation 10), a Baker clamp is sometimes used to keep the transistor
out of hard saturation altogether. Second, designers seek to remove from the base region as
quickly as possible that stored charge which does develop. This is accomplished by reverse
biasing the base-emitter junction during turn-off so that an. electrical fIeld is set up in the base
region which acts to drive out the unwanted minority carriers.' Storage and fall times are
inversely related to both turn-off curent (ib2) and voltage (Vbe(off), as shown in Figure 9.
1800
1600
1400
~ 1200
w
:::E 1000
~
...J
...J
~
800
600
400
10M = 5.0A
IB1 = 1.0A
VCLAMP = 250V
L = 200pH
DUTY CYCLE :5 5%
\
\
•
'. \
\ \' "
TA = 25°C
\·,.,~f
"
.,..... tfi
....
________ _
~-·-._w_._._.
200
o L-~~
o 1 2
_ _L-~~_ _~~~_ _~-L_ _~
3 4 5 6 7 8 9 10 11
VBE(off), BASE-EMITTER REVERSE BIAS (V)
Figure 9 A. Typical Clamped Inductive
Turn-Off Switching Times vs VSE(oif)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-166
PRINTED IN U.S.A.
STOll
SEMINAR TOPICS
2N6545
TA = 25°C
-
700
~
en
INDUCTIVE LOAD
ICM = 5A
IBI = 1A
L = 200tlH
VCl = 250V
600
--- RESISTIVE LOAD
Ic =5A
IBI = 1A
.s 500
en
~ 400
i= 300
R = 50n
Vee = 250V
-l
-l
~ 200
~
100
a ~-L~ ~-L ~~~~
a
2345678
___
182
__
REVERSE BASE CURRENT (A)
Figure 9 B. Typical Fall Times for Resistive
and Clamped Inductive Loads as a
Function of Reverse Base Current 182
This method must remain within the limitations of allowable on-state dissipation and base
drive circuit complexity. Further improvements can resultfrom innovative practices such as
proportional base drive and "speed-up" capacitors.
2. Snubbers
Figure 10 shows a simple turn-off snubber used to limit switching power dissipation in the
transistor by delaying the collector-to-emitter voltage rise until after the collector current has
fallen. Power previously dissipated in the transistor is now lost in the snubber resistor R a •
This leads to improved transistor reliability, but does not increase overall circuit efficiency.
+
Figure 10 A. Turn-Off Snubber
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12·167
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·ll
WITHOUT SNUBBER-rI
I
Figure 10 B. Effect of Snubber Network on Turn-Off Characteristics
Capacitor C. holds Vee low during current tum-off. Resistor R. is designed to discharge C s in
less than the minimum transistor on time, ton(min)' Hence, time constant RsC s is chosen to be
one half of ton(min):
C. = ic(max) • tr/ Vee(max)
(Eq. 11)
R. = ton(min)/2 C.
(Eq. 12)
Example· Transistor Losses in a Buck Regulator
To illustrate the relationships among transistor drive conditions, power dissipation, heat
sinking, and reliability, we consider a typical transistor operated in the buck regulator
circuit of Figure 7. We assume that the following worst-case conditions exist:
.
Vin(max) = 400V
ic(max)
4A
f.
50kHz
ton(max)
lO~s
TA(max) = 80°C
=
=
=
From Figure 4, it is apparent that 400mA of base drive is adequate to insure vee(on) ~ O.5V at
ie
4A and TJ 25°C. Figure 3 indicates that this value could increase to O.75V at TJ
l50°C, and that 1.2Vis a conservative value for Vb•. Therefore, from equation 3:
=
=
=
Pconducting = 50kHz • lO~s (4A • O.75V
+ O.4A • 1.2V) =
1.74W
Datasheet curves indicate that tr and tf will both be -250ns. This assumes a tum-off base
current (iB~ of 400mA from a -5V source. From equation 10:
_
p.w
50kHz
= - 2- . 4A' 4OOV' (25Ons + 25Ons) = 20W.
The total average power dissipation, which is clearly dominated by switching losses, is
21.7W.
RlIJC for a typical transistor is specified as less than 1.4°CjW, and Rl/CS is -O.2°CjW
for a T0-3 package mounted with a thermally conductive paste.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-168
PRINTED IN U.s.A.
ST-Tl
SEMINAR TOPICS
Designing for a worst-<:ase junction temperature of 150° C, we can expect a transistor MTBF
of 7 . 107 hours (from Figure I). The required heat sink is determined as follows, from
equations AI and A3:
I500C = 80°C + 21.7W . (1.4
ROSA
= 1.6
°C
°C
w+ 0.2 W + RosA)
°C
W
Figure AI shows that with natural convection cooling (no fan), a 10 in3 heat sink would be
needed to fulfill this requirement. In order to reduce this volume, we consider using a tum-off
snubber which can reasonably be expected to reduce total switching losses by 40% to I2W.
Calculating as above, we obtain ROSA = 3.5 ° Cf W, requiring a 5.3 in 3 sink. The addition of a
tum-off snubber can therefore decrease the required transistor heat sink volume by nearly
one half. Conversely, keeping the same heat sink, the transistor can be operated cooler:
TJ= 80°C + 13.7W • (1.4
°C
°C
°C
W
+ 0.2 W + 1.6 w) =
124°C
Now a MTBF of -1.7' 108 hours can be anticipated, so that the snubber improves transistor
reliability by a factor of -2.4.
MOSFETS
IfI
MOSFET power dissipation in a switching power supply is analogous to that of a
bipolar transistor:
P = Pconducting + Pswitching
P =
-P =
(Eq. 13)
ton.
1
T'
Id(on) • Vds(on) + "2'
~
fs . ton' rds(on) . 1 d(on) +
(tr
+ tf) .
- r - - . Id(on) . Vds(off)
~
.
2'
(tr + to . Id(on) . Vds(off)
where: rds(on) = drain-to-source resistance in the on state
Values of rds(on) for MOSFETs are of such a magnitude as to produce greater on-state losses
than with the equivalent bipolar transistor operated in saturation. Furthermore, rds(on)
increases markedly with junction temperature, as illustrated in Figure I I. Note that rds(on),
and therefore on-state dissipation, doubles with an increase in junction temperature of
100°C.
Switching times, however, do not increase with temperature, as they do with bipolar devices.
Low switching losses somewhat offset the high on-state MOSFET dissipation, particularly
at high frequencies. Since MOSFETs are majority carrier devices, they are immune from
stored-charge related switching constraints. MOSFET switching times are dependent on the
rate at which the input capacitance, Ciss, can be charged or discharged by the gate drive
circuit. Transition times of 1O-20ns are readily achievable with MOSFETs driven from
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404. FAX (617) 924·1235
12-169
PRINTED IN
U.S.A.
ST-T!
SEMINAR TOPICS
simple gate circuits. In practical power supply circuits, however, the designer must plan on
somewhat slower MOSFET switching in order to avoid rectifier recovery problems. This
will be discussed later.
With bipolar transistors, the power supply designer is faced with a complex trade-off among
on-state losses, switching losses, drive circuit dissipation and complexity, and reliability.
MOSFET designs are more straightforward, largely because on-state and switching losses
can be independently optimized.
I ::lllllllltf I
a:
/'
w
0-
~
"?_ 1.5
zo
ow
w!::!
..,....0
a:«
Oa:
6~ 1.0
V
./
::>lIE
0--
Z
:;;;:
V~
a:
o
C
"
en
o
.J'
V
L
V
VGS = 10V
ID = 5.5A
0.5
a:
o
o
-40
40
80
120
160
TJ. JUNCTION TEMPERATURE (DCI
Figure 11. Normalized On-Resistance vs Temperature for UFN342
RECTIFIERS
Rectifier losses are given by the equation:
-.
tlb
Esw
p= 1f."Vf"T+ - 7 -
(Eq. 14)
where: tn, = rectifier forward bias time per cycle
Expected values of Vf can easily' be found from manufacturers' specifications and design
curves. Calculating E.w, however, requires careful consideration of rectifier reverse recovery
characteristics. Figure 12 shows rectifier current and voltage waveforms during reverse
recovery. Note that the voltage does not begin to fall appreciably until after the end of period
ta. Significant switching dissipation occurs only during tb, so that:
(Eq. 15)
UNITROOE " SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET" WATERTOWN, MA 02172
TEL. (617) 926-0404 " FAX (617) 924·1235
12·170
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·ll
I
I
I
I
I
~------ta------~~~1~4~tb~
~--------t"----TI--~~
iI
Figure 12. Rectifier Current and Voltage Waveforms
During Reverse Recovery
As mentioned earlier, rectifier recovery can also cause increased power dissipation in
switching transistors. In the buck regulator circuit of Figure 13 rectifier recovery results in a
collector (or drain) current overshoot at tum-on. Since the collector voltage cannot fall until
the rectifier is beyond transition period t a, large power dissipation occurs in the transistor
throughout that period. In Figure 14 cross·hatched area II corresponds to transistor
switching dissipation in addition to the losses incurred due to tri (area I). Figure 15 shows how
transistor switching-losses are affected by the ratio ofta to trio Note that even when ta is only
0.4 • tri, that switching losses are doubled.
IDI
Typical Circuit
iOon - - -...\-01••
I
I
t
Figure 13. Buck Topology - Typical Circuit in Which Diode Recovery
Affects Transistor Dissipation
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924-1235
12-171
PRINTED IN U.S.A.
SToll
SEMINAR TOPICS
Waveforms
I OVERSHOOT
TRANSISTOR
'"I~
'"I la
Figure 14. Additional Transistor losses Due to ta
2.8
2.6
2.4
P(tri + tal
P(tri)
2.2
2.0
1.8
1.6
~~
1.4
1.2
1.0
/
o
/
/
/
'/
/
I
7
/
0.2
'0.4
IOvershoot
Ie
0.6
0.8
1.0
ta
tri
Figure 15. Relative Magnitude of losses as a Function of ta/trl
Rectifier manufacturers normally publish only a single trr specification, without separate
indication of ta and tb. The ratio tal tb can vary widely, but lacking other information, a value
of 2 is a good approximation. But since transistor losses depend so heavily on t a, designers
may want to obtain more complete characterization as shown in Figures 16 and 17.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12·172
PRINTED IN U.S.A.
SEMINAR TOPICS
ST-Tl
200r---~r----1----~-----t~--=r~
Ul
.s
~
di
100 f--4--+----..~~-+----\----',:+\_-df = 100A/J.IS
200
'---+300
50~_-+_ _~_ _~==~~4~00~-+~
OL-_ _L -_ _L -_ _~_ _~_ _~~
o
5
10
15
20
25
iF(A)
di
Figure 16. Typical trr vs iF and dt for a Fast Recovery Rectifier
-' d'
iF = 3A'd~ = 50A JiS
100
80
V
';i 60
ta
~
~
Ul
c:
-.IS
il
40
20
o
o
~~
50
100
~
150
VR(V)
Figure 17. Typical Effect of Reverse-Bias Voltag~t
on Relative Values of ta and tb During
Rectifier Recovery
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-173
PRINTED IN U.S.A.
STOll
SEMINAR TOPICS
SECTION 2. OTHER FAILURE MODES
The previous section described how to design against unreliable semiconductor performance
.due to excessive average power consumption. The assumptions were made that the entire
semiconductor junction or active region.was at a safe temperature which varied little through
the switching period. These assumptions allowed .the use of the very simple time invariant
thermal model of Appendix A.. However, these assumptions can become invalid if a
semiconductor is exposed to transient overheating conditions reSUlting froin excessively high
rates of change of current or voltage, or by extreme energy levels. Generalized time-variant
thermal models can be developed for such situations, but are too complex to serve as useful
design tools. Instead, designers address separately each such potential problem by relating
circuit conditions to device ratings or safe operating area curves.
One such potential problem relates to transient voltage "spiking" which can drive
semiconductors into their highly-dissipative or possibly unreliable breakdown regions. This
problem is particularly important when using Schottky rectifiers because their energyhandling capability when reverse biased can be significantly less than the forward biased
capability. The usual approach. to reliable designs when voltage spiking is possible is to limit
the spike voltage, using clamps or snubbers, to a level \Jelow the rated breakdown voltage of
the endangered semiconductor device.
Figure 18 shows a buck regulator circuit, in which the catch diode is susceptible to voltage
spiking. During turn-on of power switch Q I, parasitic wiring inductance Lw charges to a
peak current (ipk) which exceeds the filter inductor current (ir) by an amount determined by
the ta portion of the catch diode recovery time. After period ta , the catch diode can no longer
support that portion of ipk which exceeds iL, except by operating in the breakdown region.
The solution is to provide an alternative current path through a snubber network as shown in
Figure 18. This snubber also helps to reduce conducted and radiated RFI.
O~------------J-----------------L--------------~------D
Figure 18. Snubber Prevents Catch Diode Breakdown
Bipolar Es/ b
During turn-off of an inductive load with a bipolar transistor, current crowding occurs at the
center of each emitter region as illustrated in Figure 19. With conditions easily obtainable
using typical switching power supply base-drive circuits, high current densities under the
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926·0404· FAX (617) 924-1235
12·174
PRINTED IN U.S.A.
ST·T!
SEMINAR TOPICS
emitter region can cause severe localized heating. Under such conditions, the transistor can
lose its ability to sustain its rated voltage and lapse into destructive second breakdown. The
result is a collector-to-emitter short.
B
Figure 19. Reverse-Biased Current Crowding
The extent to which current flow is restricted depends largely on the turn-off reverse bias
voltage and current across the base-emitter junction. Increased negative bias results in
narrower current constriction. While VBE(off) determines the effective device area for
dissipating inductive energy, the inductance value L determines the total amount of energy
which is coriverted to heat within that area:
E
=
+
Li~
(for undamped inductive switching)
Therefore, transistor Es/b capability varies qualitatively as shown in Figure 20.
ES/B
V(BEIOFF. RBE.
L
Figure 20. ES/B vs VBE(OFF)' L, and RBE
A device which has failed due to Es/b can often be identified. after the fact, by observing the
damaged die with a microscope. A localized damage area which has its center near the
middle of an emitter "finger" is evidence of Es/b failure. Figure 21 shows an example of this
kind of damage.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
12·175
PRINTED IN U.S.A.
-SToll
SEMINAR TOPICS
Figure 21. Photomicrograph of Damage Due to ES/B
Transistor manufacturers supply several pieces ofinformation which can be used as guides to
, preventing Es/b failure. First, -a minimum ''unclamped Es/b" specification is sometimes given.
This figure guarantees that the given amount of inductive energy can be safely dissipated by
the transistodor, a specific set ofturn-off conditions. Designers must keep in mind, however,
that E./b capability will vary with base drive parameters as shown in Figure 20.
Often, in switched-mode converters, the unclamped E./b capability of the power transistor is
inadequate to handle the highly inductive load. In these cases, designers. provide a voltage
clamp which diverts inductive energy while keeping the collector-to-emitter voltage below
the level sustainable by the bipolar transistor. Figure 22 illustrates the use of non- at which this can occur varies inversely with VCE. Manufacturers determine the
position of the FBSOA ciJrve in region III by taking many devices to second breakdown
under a number of VCE and pulse width conditions. A guard band is applied to the results to
ensure reliable operation within FBSOA curves.
COLLECTOR
BASE
DEPLETION
n
~
Figure 25. Forward-Biased Current Crowding
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
12-178
PRINTED IN U.S.A.
ST·ll
SEMINAR TOPICS
A transistor which has experienced Is/b failure may be identifiable by a damaged die area
which centers on an emitter finger edge, as shown in Figure 26.
Figure 26. Photomicrograph of Damage Due to
ISIB
As noted, transistor operating points in switching supplies usually fall well within the area
defined by the FBSOA curves. In many topologies, transformer leakage inductance delays
turn-on current rise until VeE has fallen, thus preventing operation near the Is/b limit line. (Y)
With those topologies for which this is not the case, a small inductor «IOOJLH) can be ~
purposely connected in series with the collector to serve as a turn-on snubber. Figure 27
illustrates this technique.
Figure 27. Tum-On Snubber
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-179
PRINTED IN U.S.A.
IfI
SEMINAR TOPICS
ST·ll
POWER MOSFET
dVds
dt
A highly touted advantage of power MOSFETs is that their safe operating area curves are
not limited by second breakdown considerations, as is shown by Figure 28. However, with
the high currents and short pulse widths typical of switching power supplies, a MOSFET
parasitic effect can limit the user's ability to utilize the entire "SOA". Figure 29 shows a
parasitic npn transistor which can cause problems when a MOSFET is operated at high
turn-off dvds/ dt.
100
OPERATION IN THIS
AREA IS lIMITEO
BY ROS on
50 I-UFN340.1
-1;"'1"'"
~N342:3
7n
in
w
0::
W
.
-
UFN340.1
"
10
"-
~
:;;
~
~
~
J I I I
~
.
" f'.
~
z
~
0::
0
6
r~ 10 ~s
100r~
UFN342.3
z
:::>
u
F'.,.,
r,
.....
W
0::
0::
.
['\..
I'
. .'
"
1.0
r,
I'
r,
~ TC - 25 0 C
0.5 ~TJ - 150 0 C MAX.
I- RthJC ~ 1.0 K'W
UFN341,3
, 1II1I
""
UFN340,2 t-
II I
0.1
1.0
2.
1101~s
100 ms
0.2 f- SINGLE PULSE
'1 I
'WIIIr
10
20
50
100
200
YIII
II
500
Vas. DRAIN·TO·SOURCE VOLTAGE (VOLTS)
Figure 28. MOSFET Safe Operating Area
If "collector-base" junction capacitance Ccb cannot be charged through shorting resistance
Rbe at the desired rate of dVds/dt (= dvce/dt), the "base" voltage Vbe will rise. This can cause
turn-on action in the parasitic npn which opposes the desired MOSFET turn-off. The initial
effect is delayed turn-off, but observations show that with repetitive pulses second
breakdown can occur.
This undesirable effect can be minimized by keeping shorting resistance rbe low. Unitrode
power MOSFETs use a hexagonal geometry which is optimal for achieving low rbe, and have
far better dVds/dt capabilities than do devices with other constructions.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
.
12-180
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·T!
.---,,,-,uRCE METAL
n
D
Figure 29. Power MOSFET Construction Showing Parasitic npn
Power MOSFET Gate Voltage
Power MOSFETs are constructed with a very thin (-IOOOAO) dielectric oxide between the
gate and source. Because of its thinness, this oxide is unable to withstand large gate-to-source
voltages, and most manufacturers have ±20V ratings for this parameter. MOSFET gates are
highly susceptible to damage caused by transient circuit voltages or electrostatic discharge.
This is particularly true of low-current devices, because their small die have low gate-tosource capacitance. Evidence of this type of failure includes high gate-to-source leakage
current (IGss) and degraded transfer characteristics (VGS(th), gfs).
A simple method of protecting against gate oxide breakdown is to clamp the gate-to-soure
voltage with an avalanche breakdown transient suppressor such as the Unitrode TVS3l5
(see Figure 30). This device will clamp positive gate transients to approximately l8V, without
leading-edge overshoot.
J
.-----,---J
9
TVS315
Figure 30. MOSFET Gate Protection
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
12-181
PRINTED IN U.S.A.
SEMINAR TOPICS
ST-5
Selecting and Applying Rectifiers
for Optimum Performance
In Switching Power Supplies
Fred Blatt
Abstract:
Rectifier behavior pertaining to switched
mode power supply applications is examined.
Characteristics important to rectifier selection
and other relevant factors are reviewed in the
context of several important applications.
General Perspective
To achieve smaller and less noisy power supplies, switching power converters are being
designed with shorter transition times and
higher switching frequencies. Historically this
has required overcoming various limitations
which have impeded progress. These usually
appeared sequentially; solving one problem
allowed a step-wise advance. Each step might
allow increasing the switching frequency or
power level until another limiting cause arose.
In this process the limiting characteristics of
various components have eventually been overcome. Power supply circuits have also been improved and new topologies developed. Some of
the advances that have taken place are:
• faster, more efficient bipolar transistors
• high efficiency ultra-fast recovery rectifiers
• power Mosfets
• integrated control circuits
• rugged Schottky rectifiers
• low ESR output capacitors
• surface-mount construction
• resonant converter designs
• high voltage ultra-fast rectifiers
Rectifier Limitations
As switching frequencies increase (and as
output power at a given frequency increases),
rectifiers may be a limiting component. Their
recovery times can impose an extra burden on
the Mosfet switch during turn-on. In resonant
converters a similar. situation may exist, but at
much higher frequency. Clamp diodes (in
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404· FAX (617) 924-1235
bridge inverters, etc.) and output rectifiers for
medium and high voltage supplies can have
losses or noisy transient voltages which are
more important than DC losses. These probiems arid their causes are reviewed herein" and
some solutions are discussed.
Forward conduction losses: One limitation
of swithcing power supply output rectifiers is
that of forward losses. In the popular full-wave
configuration, rectifiers are conducting either
alternately or together at all times. The rectifiers in any buck derived topology, including
push-pull and forward converters, conduct the
full output current, la. Thus the DC loss equals
VF· la. Forward conduction losses are higher in
Ryback converters, since conduction is for only
a fraction of each cycle so that peak current
(and associated VF) are necessarily higher.
Forward conduction losses limit the overall
power conversion efficiency. This is a substantial limitation when the output voltage, Va, is
low. Even a Schottky rectifier, with typical VF
of O.6V, introduces a loss of 12% of the output
power in a 5V supply, 20% in a 3V output.
Designs covering the military range of input
voltages typically specify a peak inverse voltage
rating of 7 times Va. This limits the use of
most Schottkys to 5V outputs--those with PIV
above 45V are less popular and have higher VF
approaching the high efficiency, ultra-fast PN
junction devices which have the additional benefits of lower reverse loss, lower capacitance
and higher operating temperature.
When used in a 15V output, a conventional
fast recovery type (1.2V forward) loses 8%; the
high efficiency PN loses 5.3%. In higher voltage
applications, forward current is usually lower,
so this DC loss is of less concern than losses
from other components. However, other rectifier losses, transient voltages, and noise generation may be more sIgnificant.
12-182
PRINTED IN U,S.A
SEMINAR TOPICS
ST-5
depend on the device design
and wafer processing. Stored
Anode termination ~
charge removal can be
Heavily doped Si ~ ~r----L--L..--.
hastened by applying a
reverse current to the device.
Lightly doped Si -............ ~
p+
This "sweeps out" stored
Bonding materia~
N
charge by mechanisms oppoCathode
" ~'----------L
site
to those which created
termination
r----=~==============l
the charge with forward
current flow.
Referring to Fig. 2, both
recombination. and sweep out
are at work during interval ta
if appreciable reverse
Fig. 1 - Section of Typical Power Rectifier
current, IRM, is present.
Reviewing semiconductor rectifier basics: In
During interval tb, recombination is the domimetals typically used for wiring or interconnecnant mechanism.
tions, electrical conductivity is high. Current
Reverse recovery behavior: Popular power
flows readily because electrons move freely
circuit topologies impose current through the
under the influence of a very small electric field
rectifier. which ramps up and down as a funcassociated with a small potential across the
tion 'of external circuit values. The ramp-down
conductor.
in current during the forward to reverse transiSemiconductor materials such as silicon have
tion is shown in Fig. 2, as well as the resulting
resistivities that are much higher than a metal.
voltage across the device. This is an example of
The high resistance region of a rectifier is
the general case where IRM is limited by the
shown in Fig. 1 as N type silicon, and in the
rectifier lifetime, rather than by 'other circuit
model of Fig. 5 as "rv",- a variable resistance.
constraints. The effects of this behavior on a
(The N + and P + regions in Fig. 1 are heavily
typical circuit (catch diode, output rectifier,
"doped" which greatly reduces their resistance.)
high voltage clamp etc.) are discussed by analyThe resistance, rv, changes dramatically as a
zing the waveform in three parts: tf, ta, and tb.
if interval: During time tr, the circuit typicfunction of applied forward current. When a
positive voltage is applied to the P + (anode)
ally switches from forward to reverse polarity
region, minority carriers ("holes" from the P +)
but the rectifier will not feel reverse voltage
are injected into the N layer, greatly reducing
until near the end of tao dildt and tr are deterits resistance. This mechanism is called "conmined by circuit inductance and transistor fall
ductivity modulation"--it creates an excess of
time.
minority and majority carriers in the N region.
Semiconductor devices would not be practical
without this fundamental benefit.
A penalty must be paid for this benefit,
iF - - - -.....
however. The minority carriers contribute a
charge, QF = IF" lL, which is stored in the high
resistivity N region. This charge must be reo VF-moved either by recombination or by sweepout before the device can subsequently achieve
a reverse blocking capability. When the forward
IRM - - - - - - + - -........
current (anode +) is terminated, the excess
majority and minority carriers will gradually
decay by recombining. The time constant of
charge recombination is called the "lifetime", tL,
of the minority carriers. This lifetime will
Fig. 2 - Reverse Recovery I/V Wavefonns
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL. (617) 926·0404· FAX (617) 924·1235
12-183
PRINTED IN U.S.A.
IDI
ST-5
SEMINAR TOPICS
t. interval: During ta the current has reversed, but the rectifier remains a very low
resistance. Charge (minority carriers) stored
before and during tf must be swept out before
reverse voltage can appear across the device.
During ta the switch turns on while current is
highest (output current plus IBM). In a buckderived regulator, this occurs with high voltage
across the switch, causing high peak power dissipation. It will help to reduce IBM by:
a. Using afaster rectifier (If not characterized
under conditions similar to the intended use,
be sure to compare devices under identical
test conditions), and
b. Increasing tf.This is done by not turning the
Mosfet on any faster than necessary. It is
often better to have more power dissipated
in the switch and avoid the high IBM.
Keeping IBM low has -the additional benefit
of reduced snubber needs, lower transient voltage generation, and reducing the switch drive
requirements.
With a moderate switching time relative to
the recovery time of the rectifier, IBM will be
less than /Po Under these conditions ta is constant, equal to the lifetime, and not varying
with dil dt, or even with /P if the device temperature is constant. IBM will thus be proportional to dil dt.
Significantly faster switching will make IBM
much greater than IF and approach the condition where Oa equals OF, the cIiarge stored by
/Po In this case ta will decrease somewhat and,
although IBM may be un4esirably high, it will
not increase as fast as dil dt.
For various switching conditions it is helpful
to characterize IBM vs. dil dt (or vs. current rise
time), as in the data sheets for the recently
introduced UHVP types. Measurements require
current sensors with extremely low inductance,
otherwise IBM will appear incorrectly high.
tb interval: The characteristic waveshape,
soft or abrupt, as shown in Fig. 3 during tb, will
affect device heating and circuit behavior
(generation of transient voltages and circuit
noise). The waveshape is influenced by both
device design and circuit interaction.
Device effect: Diffusion profiles including
concentration gradients, resistivity and width of
the high resistance region have a major
influence on the tb value and shape. Soft
UNITRODE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEl. (617) 926-0404 • FAX (617) 924-1235
recovery is more common in high voltage recti,
fiers, where it is more difficult to implement an
abrupt design .
An example of device design for a specific
purpose is the "multiplier diode": long lifetime
(ta) and an abrupt characteristic are. combined
to produce a device capable of shock exciting
a resonant tank. circuit, which then rings, providing output at a multiple of the pulse driving
frequency.
Although soft recovery is desireable relative
to damping transients it causes more device
heating which in turn increases ta and IBM. It is
important that total dissipation be compatible
with available heat sinkillg to maintain thermal
stability.
Abrupt recovery devices have the advantage
of dissipating less power during recovery and
should thus be operable at higher frequencies
than otherwise equivalent soft types. However
more electrical noise may require filtering and
cause a higher peak voltage, VRM, which must
be examined to ensure it will not impair the
reliability of the switch or the rectifier by
driving them into the breakdown region. These
problems are controllable by snubbing; energy
is then absorbed in a resistor instead of heating
the rectifier, or the snubber energy is partly
returned to the circuit.
Whether the goal is a soft or an abrupt characteristic, a-trade-off in other features is to be
expected--refer to Fig. 3.
12-184
POSITIVE AND NEGATIVE FEATURES
SOFT
+ LOW TRANSIENTS
+ LOW NOISE
ABRUPT
+ LOWEST LOSS
(Lower Til -
+ LESS EFFECT ON
- MORE INCREASE OF
trr AT HIGH Tj
trr AT HIGH Tj
- TRANSIENTS
- HIGHER LOSSES
- NOISIER
(Higher Til
~-o
Fig. 3 - Recovery Characteristics and Features
PRINTED IN U.S.A.
SEMINAR TOPICS
ST-5
Circuit effect: The circuit layout
TABLE I
(loop inductance, other parasitics)
Rectifier Power Dissipation during Reverse Recovery
influences tb appreciably; lower inductance decreases it, making the
Pxc
Total I2Qwer Reactive
device appear more abrupt. Tranp;.:I2Qwer
BYill ~
sients will not increase, however,
Device
IRM
P
Pxc
Cj
ta tb Prr
rr
because less energy is stored in the
pf
Type
A
V
ApI<
ns
ns
Wpl<
Wavg
Wavg
lower inductance. Ringing frequency,
UES 2.5 150 1.5 15 5 45
.022
5 .0036 .16
where loop inductance resonates with
UHVP 2 900 3 30 10 540 0.54 1.5 .039 .072
device capacitance, will be higher.
UES
6 150 4 40 12 120 0.14
15
.011 .077
Measurements of tb are difficult to
UES 70 150 7 75 25 210 0.52 150
.11
.21
USD 75 45 6 60 60 54 0.32 4700
.30 .95
duplicate on different test kits. This
is partly due to differences in the
Conditions: IF = rating, di/dt = 100 A/~s.
VRM = 0.8 rated PIV -- no overshoot.
circuit layout, and to the choice of
f = 100kHz. Typical trr such that IRM,
reverse voltage. Higher voltage
t a , and tb will be as noted.
results in appropriately higher tb
values. For good test repeatability,
where N = 3 for UES types, 4 for UHYP, and
reverse voltages of 30 to SOY are often used,
even though tb may be less than expected in
0.75 for Schottky USD.
high voltage circuits.
Reactive power, P xc ::: C· y2. f/2.
(3)
Estimating PD during tIT: Dissipation during
Snubber
design:
Snubbers
reduce
V
noise,
RM,
reverse recovery occurs during time tb, causing
and device heating. Peak recovery voltage,
device heating. It may be computed by integratYRM, is a result of the series resonant circuit
ing the instantaneous recovery power during a
composed of device capacitance and circuit
typical recovery interval:
inductance. For a Schottky rectifier in a fullwave output circuit, C is Cj and L is the transPIT = -1
i·v dt
tb
former leakage inductance referred to the full
secondary. In PN junction devices, charge
Approximating with triangular waveforms
recovered from minority carriers is a major
this simplifies to:
portion of the effective C.
An optimum RC snubber can be designed
Pulse power, PIT = iRM· vRMI4
(1)
for critical damping-with a loaded QL = 0.5.
Avg. power, PIT = prr· tb/T = prrM (2)
Using the optimized approach to compute the
snubber component values, Rsnb and Csnb,
where f = rectifying frequency
fb
T
= 11f = period
QL
This PIT value is the total apparent power. It
includes the energy stored per cycle in the
junction capacitance which is returnable to the
circuit. In practice this returnable energy is
usually dissipated in the transistor and snubber
resistor. The power dissipated in the rectifier,
PD, is Prr minus this "reactive power". For PN
junction devices this will not be an appreciable
part of the total. Table I shows examples for
several fast devices, including a Schottky rectifier (USD). The IRM for the Schottky is largely
due. to its high capacitance.
Note that Cj is dependent on YR. A reasonable simplification uses Cj(avg) = Cj«~)1OV) IN,
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
= Rsnb IXL = 0.5.
where XL is the inductive reactance.
Rsnb
1[LJl/2
=2 C
(4)
The snubber capacitor, Csnb is used to block
the dc voltage present (refer to Fig. 4). Its
value should be at least ten times the junction
capacitance:
Csnb
= 10· Cj
(5)
To transfer the power effectively from the
input source to the output load, the time constant (Rsnb Csnb) should be less than 1/10 the
minimum pulse width of the converter. Since
12-185
PRINTED IN U.S.A.
ST-5
SEMINAR TOPICS
Rsnb
device will initially have a high resistance, ret),
the limit of which depends on device design.
The forward voltage during this transient
interval:
CSnb
VF
Fig. 4 - Output Circuit Snubbers
this occurs at maximum input voltage, Vin max,
RsnbCsnb :s; (Vin min/Vin max)/(20t)
(6)
ret) max = p·wjA
and the power dissipated in the resistor is, for
a half bridge:
(7)
The complete rectifier model is shown below. During the forward recovery periodrv has
a major influence. Lpkg and Cj can play an
additional, usuall minor, role.
Lpkg package
inductance
rp
= VRM· tb/iRM
(8)
From Q = C· V= [. t and simplifying by assuming a triangular waveform,
C
=
~[RM(ta
+ tb)/VRM
(11)
where p = resistivity of the lightly doped (or
bulk) region.
w = width of the region where the
resistivity = p
A = area of the plane through the w
region.
where n is the transformer turns ratio. In the
general case where L is not known, or with any
functional circuit, an experimental approach to
defming snubber values may be practical. This
is especially true for abrupt PN devices, where
tb is much less than tao
However, measuring (transient) VRM, [RM,
and tb can help to implement an optimum design. The loop inductance and effective capacitance, including stored charge effects, can be
computed:
L
= itt)· ret)
The value of ret) decreases with time because
as soon as current starts to flow conductivity
modulation begins. This is the process of injecting minority carriers -- the resistance is lowered very quickly such that the instantaneous
forward voltage in many practical circuits often
has little, or no, overshoot. The maximum
initial ret) value is:
Ideal_
diode
parallel
resistance (high)
junction
capacitance
(9)
rv
variable
resistance
This is the effective Cj.
Equations (4) and (5) may be used to compute the snubber values with Land C values
from (8) and (9). Some fine tuning may be
necessary. The intent is to increase tb without
significantly increasing iRM, thus reducing VRM.
Forward recovery behavior -- cause, effect
and optimization: The resistance of a semiconductor diode, in the general steady state case,
is dependent on the bias developed by the circuit. Resistance is lowest when conducting high
forward current and highest when blocking
reverse voltage.
However, if a steeply rising forward biasing
current is applied to the circuit, a PN junction
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
J,
series
resistance (lOW)
Fig. 5 - Rectifier Model
When the circuit driving forces are significant (high compliance voltage, low inductance
and fast switching rate) the current turns on
quickly (e.g. over 50 mAIns) and a transient
forward voltage exceeding the usual measured
dc VF value will decay to nearly this. dc value
during the "forward recovery time". This is
usually between 10 and 200 ns, depending on
.device design. Forward recovery time is usually
less than the reverse recovery time, although
12·186
PRINTED IN U.S.A.
SEMINAR TOPICS
ST-5
not directly related to it. Fig. 6 shows the
forward recove characteristic.
forward current,
steady value
forward voltage,
steady value
instantaneous
forward current
Fig. 6 - Forward Recovery Wavefonns
where:
VFRM = maximum forward recovery voltage
IF
= forward current, steady value
VF
= forward voltage, steady value
= instantaneous forward current
In low voltage, low energy applications, or in
circuits with compliance voltage less than
VFRM, this phenomenon can even delay the rise
of forward current until sufficient charge has
been injected (conductivity modulation) to reduce VF. Generally this condition is limited to
fast, low voltage logic circuits or to poorly
chosen devices in medium power circuits.
In well-designed r(!ctifier circuits the limiting
VFRM is well below the compliance voltage so
there is no delay in current rise time attributable to the rectifier. This is even true for most
low voltage output circuits (5V), where higher
pulsed compliance voltage is available due to
the inductance of circuit elements (output
inductor, transformer inductances, etc).
Devices with high forward recovery voltage:
Equation (11) shows that wide base width and
h~gh resistivity worsen the forward recovery
characteristi{:. However, these are device design
parameters required to achieve. high reverse
breakdown voltage. Fortunately these factors
can be optimized for particular requirements;
This is not normally done for reasons of device
standardization and lower manufacturing costs.
It is particularly important to optimize ultrafast reverse recovery, high voltage device types
because reducing minority carrier lifetime may
significantly increase VFRM. Unitrode recently
introduced the UHVP product line, with optimized forward recovery and other features.
Applications likely to have forward recovery
problems: Rectifier applications which experience high diF/ dt and which require high reverse blocking voltage capability are most likely
to have significant forward voltage overshoot.
An example is the clamp diode in an "off-line"
half-bridge (or full bridge) inverter, particularly
when transistor switches with fast current rise
times are used.
Misapplications (usually unintended), where
the best device has not been chosen, are also
candidates for high VFRM. It is common semiconductor industry practice to "downgrade"
devices that are really designed for higher PIV.
Also, users seeking high reliability often specify
higher voltage devices than required. These
practices cause problems not only in the high
voltage clamp application-they also generate
undesirable transients in low voltage output
rectifier and catch diode applications. This, in
turn, requires higher voltage switches and/or
wider use of turn-off snubbers or transient
suppressing components.
Selecting the Best Device
This section focuses on those characteristics
which will optimize performance in a specific
application. Thus, when there is a range of
devices with appropriate current and voltage
ratings to choose from, the circuit designer can
rank the desireable characteristics for each
major usage. First, however, we should review
the effects of each characteristic:
Fig. 7 - Tum-On with Low Compliance Voltage
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-187
o Low forward voltage, VF. Keeps losses
low, and efficiency high-most relevant to
high current, low voltage applications.
• Low peak recovery current, iRM , and the
related (low)
• Reverse recovery time, tn. Limits Transistor peak drain/collector current and
dissipation during turn-on. Important
when the diode is reversed directly from
PRINTED IN U.S.A.
ST-5
SEMINAR TOPICS
forward conduction with high WF / dt.
• Recovery softness factor, RSF, defined as
tb/ta. High values result in smaller voltage
transients and less noise generation but
more dissipation; low values give less
device heating (most relevant to high
voltage applications) but more snubbing
may be needed.
• Low forward recovery voltage, VFRM.
Limits forward voltage peak when forward
current is applied rapidly. Most relevant in
clamp functions, especially with high PIV
devices and with some ultra-fast types.
• Reverse (leakage) current, IR. Of concern
only at high junction temperature in high
voltage applications. The added dissipation
may cause thermal runaway or raise the
junction temperature to the point where
trr or reliability is undesirable.
Rectifier Applications
OUTPUT RECTIFIER:
Vout = 4V
req. PIV: 25
Rank:
VF
trr
Pref.
Types:
vas
USD
5
45
VF
trr
VFRM
24
150
trr
RSF
VFRM
VF
48
400
trr
VFRM
RSF
Higher
600+
trr
IR
RSF
VFRM
ti50
UES
.111\'....
tll'''ft
un WI""
unwr
UES
CATCH DIODE:
Typical applications are shown below. Voltages
in common practice are noted, relevant characteristics are ranked, and recommended device
families are given.
Yin = 25V
req. PIV: 45+
Rank:
trr
VF
.Device Family Descriptions
UBS:
Synchronous rectifier ("BISYN")
USD:
Schottky rectifier. USDx45, IN6391-2,
IN6492. USD7525 is low VF, 25V.
UES:
High efficiency ultra-fast rectifier.
Families to 200V & 400V, including
IN5802 - IN5816, IN6304 - IN6306.
Pref.
Types:
CLAMp·DIODE:
USD
UES
150+
85
150+ 300+
trr
trr
RSF
VFRM
RSF VFRM
IR
UES
UES
UHVP
UHVP: High voltage (families to lOOOV), ultrafast (35, 50 ns), with low VFRM, low
high-temp IR, and softer recovery than
UES. Includes IN6620 - IN6631.
Rectifier Comparisons
UBS
PIV
VF
trr
VFRM
IR
5-6
1a
6
3
USD
25V
5
2
1b
1
4c
USD UES UES UHVP
45V 150V 400V
4
3
2
1
3
4
5
6
1b
2-3
1
2
1
6
3-5
2
5c
6c
2.
1
Bus Volts
req. PIV:
Rank:
Grade 1 is best
a. Above continuous IF rating, usn is lower.
b. Effective recovery time for Schottkys.
c. High temp leakage-can result in lower
max operating temp. at high voltages.
UNITROOE· SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926·0404 • FAX (617) 924·1235
=
Pref. Types:
12-188
350-700V
>1.3 o BusV
VFRM
IR
trr
UHVP
PRINTED IN U.S.A.
.... tne:
~2l~
a~~
EXAMPLES OF DESIRED CHARACTERISTICS FOR RECOMMENDED DEVICES:
.5i~~
o~l;;,
.... m
~1!l8
"mz
~:'g
-e~~
.::1 m ",
"''''."
Nd::tl
t::e8
"'Ze:
t:i;: £1
>(J)
~
VF of USD and UBS
(CASE MOUNT TYPES)
IRM. VFRM. and IR of 600V.
2A UHVP (AXIAL TYPES)
.J=o~3:
EXAMPLES OF DESIRED CHARACTERISTICS FOR RECOMMENDED DEVICES:
VF of UES (CASE AND AXIAL MOUNT)
and IR (AXIAL)
Typical Forward Current
Revel'$(! Recovery Current vs eli/cit
€
w€
~I
.,y
~g
!!;!~
IIIII kfMlittO
;ia
~>
~.~
j~
\.,,\p>
I
"
a~
2'
§
,
,
,
100
L v. DL
J
75'C-
0.1
02
03
0.4
0.5
;:
.1
,02
~
.....
I})
.....
~
.01
Ij
"I-
I
I1I1
!~1
1.05
II
,"
I
II
.01
I
.05
n=1 I I I 11
;:
I
V. - FORWARD VOLTAGE - (V)
USD 7545
r
II
Jlrlfl ~
.,
0.6065
Typical Forward Current
vs Forward Voltage
I1I1
g
/
V k Hi]:c.
1J1lL 1 :r
~~
.005
II
II
II
.002
i
.001
.1.2.3.4.5.6.7.8.911.11.21.3
,u !>
1(1 5/
~
I
-
II
IT1
s:
-»z
:::c
a
-en
""0
("')
II
II
.1.2.3.4.5.6.7.'.911.11.21.3
V, - VOLTAGE {VI
V, _VOLTAGE (VI
~~
rill
/
//
1.1 II
10
J75'~
dlldt - RATE OF FALL OF FORWARD CURRENT - (AI.,5)
Typical Peak Forward Recovery Voltage vs diFJdt
iF = IA. di/cIt measured from 10% to 90% of iF
lO'2AMPSERIES' i 1111
i L l Iii ill
JAN & JANTX fN58D2·51D6
~~
20
J..IL
:
200
50
.LJ. rLJ 1
, 125'cJ.lL'
I
Typical Forward CUrrent vs. forward Voltage
JAN & JANTJ( fN58Dl·5811
100
,
II,
Typical Forward Current VS. forward Voltage
vs Forward Voltage
USD 545
2AMPSERIES
en
J...-
5~
~§
Typical Reverse CUrrent vs. Voltage
JAN & JANTX fN51D2·51D6
Forward Current I vs. Forward Voltage
JAN & JANTX IN6306
Iw
.~
,;
.00
50
20
100
d.. ldt - RATE OF RISE OF FORWARD CURRENT -
..
3
4
'j
f>
7
B
50
I
V,-FORWAROVOLTAGE(V)
,ImA
Typical Reverse Current
vs Applied Reverse Voltage
'o,.A
~
-
'lO~
"'"
""
IQ
~
~
2~
I
I
l~
,
,
,
-
-
\150(;_ _ _
J-l~ ~
.-.-l'""
,
20'
,
)
-
~
Z5s,....
75
PERCENT OF V~ RATING
~.~,
;
T::- ,,-2S'C
I
lO
ia·
F=
=t=-It--
I
~
!--'!--'
i
I
/ .PI
=
leila" 100
~~TC"25'C
§=
SO;..
, 25'E;;
I
500
'=r-r-
~
so' )t=
200",
1000A
Collector· Emitter Voltage VI Colleclor Current
at Various Forced Gains
UBS 430
100'
2 AMP SERIES
~50!C
100
200
(AI~S)
0.2
J
04
06
0.8
10
V. - FORWARD VOLTAGE (V)
1.2
1.4
I
50
~~lZ
10' I
)~T1~~--~-Ulli
~
i
I
Tl1L
(
120
1009080706050403020100
VOLTAGE IN % OF PIV
---.J
10
20
so
~
I
Ie COLLECTOR CURRENT _ (A)
(J1
iii
SEMINAR TOPICS
ST·12
PROTECTING CIRCUITS FROM TRANSIENT ENERGY SOURCES
Transient energy pulses are notorious among designers of all kinds of electronic hardware
for their ability to cause failures in circuits of apparently conservative design. Logic circuits,
for example, are subject to "glitches" and timing problems if even small transient voltages
appear on supply lines. The problem is not limited to sensitive integrated circuits. Transient
energy "spikes", either coupled from AC lines or internally generated in medium and highpower equipment, can generate blown fuses, misfired thyristors and other problems having
various degrees of subtlety. Worse, unsuppressed transients can drive reverse biased
semicond uctor junctions into their highly dissipative breakdown regions. The heat generated
at these jurictions can then lead to the onset of second breakdown and permanent
degradation or outright failure of semiconductor devices and the equipment of which they
are a part. Even circuit failures of short duration or apparently minor importance can cause
serious damage to the reputations of manufacturers and designers.
Fortunately, various devices exist for protecting circuits from damage due to transient
energy pulses. The method chosen depends on the type of transient expected.
Transient Pulses Characterized
In terms of capability of causing damage, the key characteristics of a transient energy pulse
are its total energy and energy distribution in time. A large amount of energy delivered in a
short period of time is most damaging to semiconductor components. Unfortunately, total
energies of transients from many sources are unpredictable. Figure I shows where transients
produced by various common sources fall on a scale of energy predictability.
lightning
entirely
unpredictable
_
changing load on AC line:
due to
heavy
equipment, due to
motors
appliances
energy predictability
switching of
well-defined
inductive loads
I
_-
entirely
predictable
Flg.1 Predictability of Common Transient
Energy Sources
Some common transient energy pulses are quite unpredictable; still, designers want to
protect their circuits from these transients as best as is practical. What, then, can be said to
characterize these transients as much as is possible?
Figures 2a and 2b show generalized models which are widely useful in evaluating the effect
that transient energy sources can have on circuit-protecting devices (transient suppressors).
Some transient sources behave like voltage sources (Figure 2a), and can deliver to a transient
suppressor currents which are limited only by the source-to-suppressor impedance. Other
energy sources behave more like current sources (Figure 2b). One or the other of these
models can help us to understand some of the kinds of transients shown in Figurc l.
nn
SEMICONDUCTOR
~ PRODUCTS
12-190
_UNITRDDE
SEMINAR TOPICS
ST-12
I
a.
Transient Source
I
b.
Fig.2
Transient Source Models
a. Voltage Source
b. Current Source
Lightning is a voltage source having virtually unlimited available current. Voltages of I kV to
lOOkV for l,us to 50,us are typical at the point at which lightning strikes an AC power line.
The source-to-suppressor impedance can be thought of as having two resistive components:
Z.
= RUne
+ Rint
where RJine is the resistance of the AC line between the strike point and the susceptible
equipment, and Rint is any additionalline-to-suppressor resistance internal.to the equipment.
Commonly, Rint = Oil; the transient suppressor is directly across the AC line in the
equipment. Rline depends very much on where the lightning strikes, and is, therefore,
extremely unpredictable.
Transients produced on AC power lines due to sudden load changes differ qualitatively from
those produced by lightning, and cannot easily be interpreted as arising from voltage sources.
In fact, no simple model composed of discrete components is particularly useful in describing
these transients, because their nature is determined by the complex distributed impedance of
the AC line. In general, it can only be stated that energy stored in inductive components of
the distributed line impedance-when some load is drawing current from the line-is
released as transient energy when that load' is switched off of the line. The transient so
generated can then be thought of as arising from a current source and as having a peak
amplitude that does not exceed the peak current drawn by any single piece of equipment
located near the circuit being.protected. Experience shows that these transients are typically
less than lOOms in duration.
Up to this point, we have been discussing transients produced on AC power lines and have
reached rather tentative conclusions. Transients generated internal to the equipment being
protected are another matter and can be much better described and predicted. Designers
simply know much more about the equipment they are designing than they do about AC
power distribution systems or long-range meteorological forecasts. The generalized models
of Figure 2 can be replaced by detailed schematic diagrams showing the transient sources
and their connection to sensitive components. The tools of circuit analysis can be used to
predict with great precision the power dissipation, as a function of time, required of a
transient suppressor.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
12-191
PRINTED IN U.S.A.
ST· 12
SEMINAR TOPICS
For example: bipolar transistors are commonly used to switch inductive loads in switching
power supplies. Often the circuit has the basic form of Figure 3a. In this case, the danger is
. that the energy stored in the inductor while the transistor is on cannot safely be dissipated by
the transistor after· it turns off.· The common method of protecting the transistor is to provide
a voltage clamp which prevents the reverse biased collector-base junction being operated
beyond breakdown. This, too, is shown in Figure 3a. Inductor current k is forced through
the transient suppressor when the transistor is off. This k is about the same as just before
turn-off, since the current through an inductor cannot change instantaneously. After that, k
decreases at a rate determined by the inductor voltage VL and the inductance value L:
dk _
VL
dt
L
-
if ihe ciamp voitage Vc is assumed constant untii k"'" 0, then i", behaves as in Figure 3b. Tne
resultant transient suppressor current, voltage and power waveforms are as in Figure 3c.
+v
1S:
~T
+
L
VL
, iL
b.
----I
0
! /+
'Z5~ VS
I
__ - ..-1)
i,
8.
-
Fig.3 Transient Produced by
Inductive Switching
a. Typical Circuit
b. Inductor Current
c. Suppressor Current,
Voltage and .Power
This type of internally generated transient is so common and its effects so precisely definable,
that the current waveform it generates has become a standard waveform for testing transient
suppressors. Figure 4 shows two specific linearly decaying waveforms used by manufacturers
" and users of semiconductor transient voltage suppressors. (The finite slopes of the leading
edges of these waveforms reflect the fact that in a real circuit, di/ dt is limited by wiring
inductances and transistor fall times.) These test waveforms have the additional advantage
that they can be closely approximated by an easily generated exponential waveform (see
Figure 5).
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-192
PRINTED IN U.S.A.
ST·12
SEMINAR TOPICS
Fig.4 Commonly used Tesl Waveforms
a. "Sx20" f.ls
b."10 x 1000" f.ls
Fig.S Similarity of Triangular and
Exponential Pulses
Desired Transient Suppressor Characteristics
In principle, it is possible to limit the transient energy that can be delivered to a sensitive
component by limiting either the voltage or the current that that component can experience.
In practice, however, transient current limiting is difficult to implement, and most designs
employ some type of transient voltage suppressor (TVS) connected in parallel with the
circuit to be protected. What, then, are the qualities required of a practical TVS?
First, a TVS must not interfere with the normal operation of the circuit; i.e., at voltages less
than the maximum non-transient circuit voltage, a TVS must initially draw little current. We
define that voltage at which a TVS can be guaranteed to draw less than some specified
current as the stand-off voltage (VR) for that current. A second requirement of the TVS is
that it quickly clamps the voltage to a safe level when a transient does occur. Clamping
voltage (V c) is defined as the maximum voltage that will appear across the TVS under some
pulsed current condition after the TVS has been fully activated. Clamping time (tc) is the
time it takes the TVS to activate. "Protected" circuits may experience voltages in excess of Vc
during this defined clamping time. A figure of merit commonly used to describe TVSs is the
clamping ratio (CR), defined by:
CR =
Vc
VR
An ideal clamp would have CR = 1.
A third TVS requirement is that it be capable of safely dissipating expected transient energy
pulses. This capability is usually described in terms of allowable power dissipation as a
function of pulse time.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEL (617) 926-0404. FAX (617) 924-1235
12-193
PRINTED IN U.S.A.
ST·12
SEMINAR TOPICS
Earlier, we discussed the predictability of various types of transients. Predictability greatly
influences the process by which TVS power requirements are determined. For predictable
pulses, the procedure is to minimize cost by specifying power requirements just safely in
excess of the expected power for the known pulse duration. The design process is more
complex for unpredictable transients. In this case, greater TVS power capability translates
into great reliability. Therefore, the designer must make a trade-off between reliability and
cost.
Other qualities desired of a transient voltage suppressor include freedom from the need to be
"reset" after a surge and the ability to allow the protected circuit to function even during the
transient period. With respect to these qualities there are two classes of TVS widely in use.
Passive devices are those with monotonic characteristic curves, as shown in Figure 6a, while
active TVSs are switches, with negative resistance regions on their I-V curves (Figure 6b). A
passive TVS has CR > I, does not need to be reset, and allows many circuits to function
during a transient. Metal Oxide Varistors (MOVs) and semiconductor avalanche TVSs'" are
passive. An active TVS works by switching to a near-short condition when it senses a
transient pulse; so that CR O. Circuits protected by an active TVS do not funciton during
the transient period (since they effectively become shorted out) and, in fact, will continue not
to function after the transient period until the TVS "switch" is somehow turned off. Active
transient suppressors include spark gap, gas tube and thyristor "crowbars". Combinations of
active and passive TVSs, together with isolating elements and special reset circuits may be
designed to keep circuits functional during most transients while utilizing the best features of
both types of TVS.
=
Is
Is
a.
VA
Vc
Vs
b. Vc
VR
VS
Fig.6 Comparison of (a) Passive and (b) Active
Transient Suppressor Characteristics
Comparison of Commonly Used Suppressors
Active TVSs, in addition to their need to be reset, have the added disadvantage of being
bulky and costly in comparison to passive devices. Furthermore, they do not protect below
Ve during the clamping time te. Their advantage, and the reason for their continued use, is
their ability to safely handle very large pulse currents. Passive devices cannot operate at
extreme current levels for two reasons. They clamp at higher voltages and are physically
smaller than the active TVSs, and therefore-at any given current level-the passive devices
dissipate more power and operate at higher current densities. An advantage of
semiconductor TVSs is their freedom from overshoot during the transient.
MOVs have other limitations. They degrade with use, and their rated pulse currents decrease
markedly as the number of lifetime pulses they are to experience increases (Figure 7). MOVs
have higher clamping ratios than those of equivalent semiconductor TVSs (Figure 8). MOVs
are bidirectional devices, i.e. they clamp at approximately the same voltage in each direction.
*Hereafter referred to as simply "semiconductor TVSs".
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924-1235
12-194
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·12
This can be a disadvantage when protecting many unidirectional circuits (particularly logic
circuits), as will later be discussed in greater detail.
IMPULSE DURATION 'liS I
Flg.7 MOV Lifetime Pulse Ratings
80
70
~ra
60
_
50
~
40
V33MA1A
~
..a
-= ~
TV5528 ..........
....-
P
....
Lo -- -- -- -- ---- -- -- I - L - 20
TYPICAL CIRCUIT
VOLTAGE
:' _ MAXIMUM RATED PULSE
CURRENT FOR PW. 3 1ms
10
~
1000 PUlSEF PEA lIFET1ME-
o
0.001
01
001
10
100
I(AMPSI
Flg.8 Clamping Voltage Versus Current
Table I summarizes the relative merits of typical transient voltage suppressors.
Clamping
Speed
(typical)
Allowable
Current
(for lms)
Available
Passive
Voltages
Degradation?
-{).
lO-~s
Active
10 3.10 5A
to 20kV
DC
No
Thyristor
Crowbar
-{).
lO'7-10'~s
Active
to 10 3A
Metal
Oxide
Varistor
1-2
10-8 .10- 7 5
Passive
-l00A
AC (AMS)
1-1.5
10- 12 5
Passive
-SOA
5-4OOV
AC or DC
Clamping
Ratio
Spark Gap
or
Active
or
Gas Tube
Semiconductor
TVS
to
AC
aoov
or
DC
10-260V
No
TYPical
Protection
From:
Size
Cost
Applications
Large
Very
HIgh
Phone Lines,
Input to
Heavy
EqUIp
High
DC
Power
Supply
Over-voltage
Protection
low
10
Moderate
ACLme
to EQuIp
and
Instruments
Transients
due to Load
Changes
and lightning
low
10
Moderate
··on-board··
ProtectIOn
Moderate
10
Large
Small
Ves
10
Moderate
No
Small
Lightning
Outpul
Internally
Generated
Transients
• After te only.
Table 1 Comparison of Transient Suppressors
UNITROOE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (6171924·1235
12-195
PRINTED IN U.S.A.
5T-12
SEMINAR TOPICS
Semiconductor TVS devices are preferred by power supply designers who must guard
against predictable, moderate energy transients. The following section describes these
devices in more detail, and offers selection guidelines and design examples.
Semiconductor TVSs
Unitrode offers several semiconductor TVS lines to commercial, industrial and military
customers. Unitrode TVSs exploit the extremely rapid avalanche breakdown of a p-n
junction in order to function as voltage clamps. TVS power ratings are specified for I ms (for
50% decay) exponentially decaying pulses (ref. Figure 5). Units are available with 150W and
500W power ratings for industrial/commercial applications, and 500W and 1500W military
types meet MIL-S-19500/551 and /434 respectively. Also, Unitrode markets zener diodes
(I to lOW DC) which have the same avalanche characteristics as the TVS devices, and can be
used as transient suppressors.
To select the appropriate TVS for a given application, begin by determining the required
stand-off voltage. VR should be equal to or greater than the maximum non-transient voltage
that is expected to appear across the TVS. Next, determine the TVS power requirements.
Unitrode publishes room temperature pulsed power curves, in conjunction with junction
temperature derating curves, for each TVS family (Figure 9). The pulse power rating curves
(Figures 9a and 9b) apply to exponential pulses. If the expected pulse is not exponential, or
approximately so, then construct an exponential pulse having the same peak power and total
energy (i.e. area under the power curve) as the expected pulse (see Figure 5). Use the duration
of this pulse when using the peak pulse power curves to determine which device family has
adequate capability. The power and stand-off voltage considerations should point to one
TVS part number.
TVSSOO Series
TVS300 Series
Peak Pulse Power
10
"-
Pulse Duration
Peak Pulse Power vs. Pulse Duration
['00
EXPONENTIAL
PULSE
"- "-
1
o1
.1ps 1ps
a.
VS.
a:
.~
"
lOps lOOps
10
~
~
~I
"-
1
"
"-
~
"-
.t
1
.1ps
1ms lOms
lps
b.
PULSE TIME (tp)
EXPONENTIAL
PULSE
tOps lOOps
"-
1ms lOms
PULSE TIME (tp)
Derating Curve
100
\
ffi
Flg.9 Pulse Power Ratings for Unitrode TVSs
~a
"-z
a. TVS300 Series
~~
b. TVSSOO Series
c. Junction Temperature Derating
~~
,,-0
75
\
~lJ 50
I
rr
t.
25
o
o
50
"
100
\.
150
200
TEMPERATURE ('e)
c.
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404· FAX (617) 924-1235
12-196
PRINTED IN U.S.A.
SEMINAR TOPICS
ST-12
As a final step in the selection process, determine if the clamping voltage of the tentatively
selected TVS is low enough at the expected pulse current. Figure 10 is a convenient graph
used to quickly determine if the clamping voltage will be adequate. If not, try a TVS with a
higher power rating.
1.5
CLAMPING 1.3
"
RATIO
1.2
(CR)
v---
1.1
1.0 LO---:O~.2---:0~.'---:O~.6---:0~.8~'
0
P, ACTUAL
P, RATED
Flg.10 Clamping Ratio VS. Peak Power for
for Unltrode TVSs
j'l'.~
L= 2mH
RL =10
=it
j
,
o
a.
I,
III
1
b.
Flg.11 A Typical TVS Application
a. Typical Circuit
b. (Idealized) Resultant Current in the TVS
To illustrate this selection process, let us consider in detail an inductive switching application
of the type earlier mentioned. Figure Iia shows such an application.
Determining the required stand-off voltage rating is simple. The greatest non-transient
voltage that will appear across the TVS is just the supply voltage Vee = 15V. So a TVS with
VR = 15V will not interfere with the normal operation of the circuit.
As discussed before, the transient current induced in the TVS will show a linearly decaying
time response (see Figure II b). The peak current ip is equal to the inductor current just prior
to the turn-off of QI. Making the worst-case assumptions that this system is in equilibrium
before Q I turns off, and that Q I is then well saturated;
ip = idt = 0-) = 15V flO = 15A
The peak pulse power pp is given by:
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-197
PRINTED IN U.S.A.
ST·12
SEMINAR TOPICS
For a first estimate of this power, assume Vc
=1.3 VR =19.5V.
Then:
pp
= 15A x 19.5V = 290W
The time for the current pulse to decay to zero is:
ipL _ 15A x 2mH =
1.5ms
Vc 19.5V
The equivalent exponential pulse would have tp"'" t1/2 = .75ms. Referring to Figures 9a and
9~, We can see that a Unitrodc T\'S300 serie5 device \vcu!d net be adequate for this
application, but that a TVS515 would operate with a comfortable margin for error.
Finally, we check to see if our estimate that Vc = 1.3 VRis reasonable. To use Figure 10, we
first calculate:
pp (ACTUAL)
pp (RATED)
The clamping ratio,. curve then gives Ve/VR "'" 1.32. Had our original estimate been less
accurate, we could have re-itterated the calculations, using the clamping voltage obtained in
the final step.
If available TVS devices do not meet all the needs of a particular application, consider using
a U nitrode zener diode. These diodes are not characterized as conveniently as are the TVS
series for use as transient suppressors. However, designers can assume that these zeners will
stand off voltages up to 85% of their minimum Vz, and that they follow the clamping voltage
curve of Figure 10. Other requirements for improved P and/ or CR can be serviced by series
connected TVSs or zeners.
Designers often ask about the use of bidirectional semiconductor TVSs. Bidirectional
suppressors should only be used when the non-transient voltage is bidirectional; i.e. when
both positive and negative non-zero stand-off voltages are required. This applies regardless
of the. expected transient polarities. The reason for this is that the unidirectional TVS has a
lower· voltage clamp for negative polarity transients than does the bidirectional. Consider the
protection of a bipolar transistor, as shown in Figure 12. If a bidirectional TVS is used
(Figure 12a), then a negative transient current is will break over the transistor's emitter-base
junction if the TVS has Vs greater than the breakdown voltage of that junction. On the other
hand, a unidirectional TVS (Figure 12b) becomes forward biased and clamps at no more
than a few volts even at very high currents. The low voltage emitter-base junction is safe in
this case. Knowledge of the usefulness of this low voltage negative clamping characteristic
has prompted the military to include reverse clamping voltage specifications for new IN-type
transient suppressors. (See, for instance, MIL-S-19500 /55 I.)
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-198
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·12
b.
8.
Flg.12
(a) Bidirectional VI. (b) Unidirectional
Protection for a Bipolar Transistor
The predictability of transient energy sources was earlier discussed. Often, it was found, the
designer cannot accurately characterize expected transients.
It is possible, then, that a TVS could experience a pulse with energy in excess of that
predicted by the designer. Faced with this potential situation, the designer should consider
how the TVS behaves if overpowered.
A TVS, operating at a power level it cannot sustain, must react either to decrease the current
that is flowing through it, or to decrease the voltage across which the current flows. Either the
TVS tends toward an open circuit, or it becomes nearly 'a short circuit.
From a design standpoint, it is most often advantageous for the TVS to become a short
circuit or very low resistance when subjected to a high energy transient. The primary purpose
of the TVS is to protect other components. This is not accomplished if the TVS becomes
highly resistive.
When overpowered by high transient field conditions, Unitrode Transient Voltage
Suppressors and zener diodes fail in the "shorted mode. The mechanism is the sam~ "second
breakdown phenomenon observed in power transistors.
ft
ft
Only under very extreme pulse conditions will Unitrode TVSs fail "open". The pulse would
need to have enough energy to initiate the second breakdown of the silicon junction followed
by enough "follow through" energy to cause considerable heating in the now 10wTesistance
silicon.
Unitrode TVSs are of a voidless construction, so that even at very high chip temperatures the
units cannot "explode" by igniting a contained gas. Cracking and chipping of the glass can
occur, but this does not normally result in damage to surrounding components.
Reliability has always been important in electronic equipment; today it is even more so.
Complex military and industrial systems must be ,built with circuit blocks of unquestioned
reliability, if the overall system reliability is to be acceptable. Consumers now rightly demand
long life for the products they buy. By better understanding the nature of transient energy
sources and of available transient suppressors, the designer is better able to meet toughening
reliability goals.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12·199
PRINTED IN U.S.A.
ST-13
SEMINAR TOPICS
LIMITING INRUSH CURRENT TO A SWITCHING POWER SUPPLY
IMPROVES RELIABILITY, EFFICIENCY
Active inrush-current limiters-unlike fuses and circuit breakersprevent dangerous situations instead of only reacting to them.
Apply limiting techniques, and you need not employ extra-hefty
rectifiers just to ensure rectifier survival during turn on.
Roger Adair, Unitrode Corp
The input filter capacitor employed in many dc
power-supply designs creates a potential problemhigh inrush current. Fortunately, though, adding a few
extra components can prevent inrush current and its
associated circuit damage.
How does the input capacitor cause such problems?
Intentionally chosen for high storage capacity and low
equivalent series resistance (ESR), it behaves like a
nearly perfect short circuit when the supply first turns
on. The resulting short-duration peak inrush current
can reach levels much greater than the tolerable
single-cycle ratings of the supply's semiconductor
rectifiers (thus destroying them) and still not contain
sufficient total energy to open protective fuses or
-.
-,
Fig 1-8eHCI upon this generelized model, analysis
indicates the inrush-current problem's magnitude. Chosen
for its low ESR. the input filter capacitor (CJ behaves /ilee a
nearly perfect short circuit when -the supply first turns on.
ECAP
300
TRANSiENT ANALYSIS
0'
N
C
...
-
F..1
200
$
z
........
..
U
Z
...
100
II)
!
N(
83
R'
85
86
N(i',3),R~.i
87
88
N(S,6),R:::.1
NCb,7) ,L=10E-6
S9
N(7,O),C:1QOOE-6
E1
.-
N (0, 1) ,R=.1
~ ,'7 ) 1 i.• ..: 1 50E" 6
B2
N(3,OI,C.:?OOOE.-1.2
Ne3,') ,R:;..OOt
N<4,5I,L o 4oE-Q
(1)
,0,0,0, 160
TIME STfP.1GOF-6
r:NISH TIHEo3E- 3
=,
1 ~RROH
PRl NT NV,
CA
PlOT,'5CAL£OJ.CA'61
c
BINARY,NV,CA
.
I
-100
·c
~
,..,
i
low.
=e e o c 0-c 0
cocccc::oac
... :-... I"'"J .. U"'I
r::, 0
f ' IC 0-
~~oo~~ci~~
C::JCC=:OCOQ
..........
000000000
N~" l/"l.Q ...... IS:' C'_
....
'
.... : ... I"] .....
_ _ _ _ ............ t
TIMElmSEC)
,
,
,
.r..o,...,cco-
Fig 2-Puk. glNtar than 200A
818
predicted by ECAP for the circuit model
shown in FIg -1. Rectifier-diode revel3e·
recovery capability would inhibit the
indicated 50A overshoot in an actual
circuit design.
Reprinted from EON. May 20.1980
1980 by CAHNERS PUBLISHING CO.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
I
ooc~=cocco
o
o
!
QOQCCOCOC
12-200
SEMINAR TOPICS
ST-13
Turn on an analysis before
you turn on a power supply
circuit breakers. Additionally, the supply's rapidly
rising voltage and current levels could cause dv/dt- or
di/dt-sensitive devices in neighboring hardware to fail
or malfunction.
Computer analysis proves useful
To appreciate the inrush-current problem, consider
an estimate of its magnitude before examining possible
control techniques. Fig 1 depicts a model of the ac-input
and rectifier/filter sections for a typical dc power
supply. Although shown in a straight off-the-powermains configuration, the model should be valid for any
other design with the same output-power capability.
An ECAP computer analysis performed for this
circuit assumed worst-case conditions: switch closure at
160V (peak voltage). The results (Fig 2) indicate that
an inrush current greater than 200A can exist for
several milliseconds.
Now compare this predicted performance with the
measured characteristics (Fig 3) of a typical design.
The current pulse's high level and short duration could
generate severe, localized hot spots in rectifier
junctions or cause false triggering of rate-sensitive
devices elsewhere in the circuit.
A standard approach to current limiting is depicted in
Fig 4a-a resistor. It's simple, reliable and easy to
design in, but efficient it isn't. At any current level, it
dissipates power that would otherwise be available to
Fig 3-Measured Inrush current appears close to that predicted in FIg 2. This large current inrush could cause junction
hot spots and generate troublesome EMI.
the load. The resistor does perform a surge-currentlimiting function, however.
Alternatively, a thermistor-controlled current limiter (Fig 4b) alleviates the resistor's efficiency problems
to some extent, but it aggravates the dropout-recovery
problem. The same cold-to-hot resistance variation that
permits turn-on current limiting and high efficiency at
low operating currents fails in dropout-recovery
situations: The thermistor's long thermal time'constant
prohibits fast recovery.
SCR spells efficiency
In view of resistor and thermistor drawbacks, active
soft-start designs offer a best-of-both-worlds
(.)
~
~
l17VAC
LINE
+
__----------~------_e~--_o+
DC OUTPUT
AC LIN E
Vo
;-
~
R,
(b)
R,
R.
+
C,
DC OUTPUT
AC LINE
NOTES
Fig 4-Two common methods of inrush limiting employ
either a resistor (a) or a thermistor (b). But if the resistor is
c3: 2,..F
R,,: 1k
0,: UZ4715
As: 1k. 2W
Dz: lN4245
0,: UT6BO·4
R, : 2k
large enough to effectively control surge currents, it also
significantly reduces efficiency. The thermistor, while more
efficient, offers little protection during dropout recovery
because of its long thermal time constant.
UNITRODE - SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET - WATERTOWN, MA 02172
TEL. (617) 926·0404. FAX (617) 924-1235
R,: 3.5W
R,:0.2. lOW
R,: 3k. 5W
C,: 1ooo"F
C,: 10"F
a,: L2R06254
0,: UPT3l2
Fig 5--SCR soft starting bypasses the current-limiting resistor (R,J only when the peak-detected voltage across Q, drops
below the zener breakdown, ie, when C,bacomes almost
fully charged through R,.
12-201
PRINTED IN U.S.A.
ST·13
SEMINAR TOPICS
solution--effective inrush limiting, fast recovery and
high operating efficiency. This type of circuit, shown in
Fig 5, essentially incorporates a current-limiting
resistor (R,) and a bypass switch (Q,). At turn on, Q, is
OFF, and the surge current (Is) develops a voltage
across R,. This voltage is peak detected by D2 and
stored in Cz• When the voltage exceeds D,'s zener
breakdown-an event that should occur almost
instantaneously-Q2 .turns on, disabling Q,'s gatetriggering network (R 3C3). As the power supply's filter
capacitor C, charges up, the inrush peaks diminish until
the detected IsR, voltage falls below D,'s zener
breakdown. Qz then turns off, and the RaCa network
charges up and fires Q" bypassing R,.
This circuit recovers rapidly enough to limit inrush
currents that could occur as a result of even short lin~
dropouts. When the ac input voltage goelS Lo zeru,·LlIe
voltage across Q, also goes to zero, and Q, turns off.
When the input voltage reappears, ~ keeps Q,'s gate
circuit OFF until R, has allowed C, to become almost
fully charged.
Fig 6 graphically depicts this design's inrush-limiting
ability. Note how the IsR, voltage level (up·per trace)
tracks the diminishing inrush-current pulses (lower
trace) for the first three cycles. At the 17-msec point
(slightly after the third current pulse), the peak
detected voltage has dropped below the zener breakdown point, and Q, switches on, bypassing R,. Then R2
limits inrush currents.
.
After determining your design's maximum continuous dc output current (1 0 ) and inrush limit (Is), you can
select an appropriate SCR. (The major SCR considerations are the peak repetitive blocking voltages and the
maximum average plus peak current levels.) Typical
SCRs exhibit a gate-turn-on voltage (VGT) of about
O.6V; typical power-supply circuits exhibit a rate
Fig &-Inrush-current pulses of decreasing msgnltude (bottom
trace) lower the SCR's hold-off voltage (upper trace). After 17
msec, the SCR fires.
sensitivity (di/dt) of about lAllLsec-two quantities
required for calculating the values of the other critical
components:
.
R, =-J2V Ac/ls
Rz=PR2Io2
Vz=IsR2
C32:(2,j2 VAC Vz)/(R 3VGTR,(di/dt».
In the second equation, specify P R2 as the maximum
power your requirements allow across R2.
Another effective inrush-current limiter is the
phase-controlled triac design shown in Fig 7, which
operates by controlling the conduction time of the
current surges. Initiall;y;, the dc voltage (Vo) across C,
builds up slowly because of R,'s current-limiting action.
This dc voltage helps establish a reference (via Rll and
zener diode D,) for the programmable unijunction
transistor (PUT) Q. and charges the phase-control
TR'AC
117V AC
LINE
)-~~----~------~--------~--~~----~+~
+
C,
1000
~F
NOTES
0,: UZ4718
0,: UT680·4
0,: lN3612
a,: L7B08104
a,: UPTA510
R,.
0,
lk
QJ: U2TA506
Q.: 2N6027
T,: SPRAGUE llZ2000
lN914
Fig 7-Phase controlling a triac limits inrush-currant pulses' amplitude and duration. Cycle-by-cycle triggering-handled by the
PUT comparator-ensuras instant recovery from line dropouts.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926-0404 • FAX (617) 924-1235
12-202
PRINTED IN U.S.A.
SEMINAR TOPICS
ST·13
Switch out the limiting resistor
when the inrush is over
timing capacitor C~ (via R3). The PUT fires when its
trigger point is reached, turning the triac on. Thus,
when Vo is initially low, C2 charges slowly, and the triac
triggers on late in the half cycle. As Vo rises, Ql turns
on earlier in each cycle until nearly 100% conduction is
achieved.
Fig 8-Triac conduction follows the gradually increasing dc output
voltage, decreasing the would-be inrush current. When the out·
put voltage reaches design level, the triac is bypassing the current
limiter nearly 100% of the time.
The remaining circuit components (D a, Q2, Qa, etc)
discharge timing capacitor Cz on each half cycle,
thereby assuring cycle-by-cycle current limiting and
fast recovery from dropouts. Fig 8 depicts the
relationship between the ac input voltage, the dc output
voltage and the varying conduction angle of the
triac.
EDiJI1I
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924·1235
12-203
PRINTED IN U.S.A.
TO·220 PACKAGE
MOUNTING AND THERMAL CONSIDERATIONS
The leads of the TO-220 rectifiers and Schottky diodes may be
formed, but they are not intended to be flexible or ductile enough for
unrestrained lead wrapping.
The advantages of mounting the flange to the printed circuit
board is that improved thermal heat transfer allows operating at
higher levels of power dissipation. The individual specification
sheets give the safe operating area as a function of a case
temperature.
The figures show the typical device and hardware recommended.
Several typical configurations of lead forming are illustrated.
)if .,
i-SCREW 4-40
@ __
'8
SHOULDER
BUSHING
~
SCREW 4-40
fl -
@_SHOULDER
BUSHING
B
TRANSISTOR
HEADER
PRINTED
CIRCUIT
BOARD
......... MICA WASHER
~--- WITH
NOT SUPPLIED
@/'
DEVICE
Figure A_ Device and Hardware for
Insulated Mounting_
TH·l
/
TRANSISTOR
HEADER
~ --.:...
@/'"
NOT SUPPLIED
WITH DEVICE
Figure B_ Two Alternative Configurations for Axial Strain Relief and Electrical Isolation.
BENDING THE LEADS
Whenever the leads of the T-220 are to be formed, whether by a
special fixture or by the use of long-nosed pliers, several important considerations must be followed. Internal damage to the
device or lead damage may result if anyorall ofthese precautions
are not considered.
7. Forming fixtures or pliers should not touch the plastic case
because axial strain of= .005" could cause irreversible internal damage.
8. The leads must be fully restrained during the lead ,forming
operation to prevent relative movement between the body
and the leads.
1. Minimum bend distance between the plastic body and the
bend is
'Is inch.
2. The minimum radius of the bend is
'A. inch.
SOLDERING INTO THE CIRCUIT
3. Avoid repeating bending at the same flexure point.
The leads on the TO-220 are solderable; however, there are a few
precautions that must be observed.
4. Whenever possible, use one of the lead forming configurations which relieve strain induced by mechanical or thermal
loads.
1. Soldering temperature must not exceed 270· C.
5. Leads should not be bent greater than 90 degrees.
2. Maximum soldering temperature must not be applied for
more than 5 seconds.
6. Avoid axial pulling or bending that would induce axial strain.
The maximum axial component is 4 pounds.
3. Maximum soldering temperature should not be applied
closer than 'I. inch from the plastic body of the device.
nn
SEMICONDUCTOR
~ PRODUCTS
12-204
_UNITRODE
TO·220 PACKAGE MOUNTING AND THERMAL CONSIDERATIONS
TH·1
MOUNTING THE FLANGE
Flange mounting is recommended for maximum power handling
applications. A 6·32 machine screw is recommended. Eyeletting
(hollow rivet) is acceptable ifcare is taken not to distort the flange.
For insulated mount. a 4·40 screw and a shoulder bushing is
recommended (see figure). Suggested material for bushings are:
Diallphthalate. fiber·glass·filled nylon. or fiber-glass·filled poly·
carbonate. Note unfilled nylon should be avoided. The flange
should not be directly soldered because the use of lead·tin could
produce temperatures in excessofthe maximum storage temperature. See the individual specification for the device.
2. Always fasten the flange prior to lead soldering.
4. Maximum mounting torque-is 8 inch·pounds.·-
Check list and summary for flange mounting:
7. Use recommended insulation bushings. Avoid materials that
exhibit hot·creep problems.
3. Do not allow the forming tool to come in contact with the
plastic body.
5. Avoid modifying the flange by machining and_ do not use
oversized screws.
6. Provide axial and transverse strain relief of the leads.
1. Use recommended hardware.
Thermal Considerations 10-220 Power Diodes
Thermal Resistance. Case to Ambient;
Free Air. No Heatsink ............ 60·C/W typical
Thermal Capacitance
of Package ..... , ......... , . 4.8 watt-secondsl"C
Thermal Ti me Constant. ......•...... 305 seconds
Device Type
IF(AV)
Thermal
Resistance
Junction Case
·C/W
UES1401-4
8
UES1501-4
16
1.5
USD635·50
6
3.0
USD835·50
12
2.4
USD935·50
16
2.0
2.5
Note: When using a 2 mil MICA washer for electrical isolation,
add OA'C/W to heatsink thermal resistance.
Thermal jOint compound should be used at the interface of the 10-220
flange and the heatsink to which it is attached.
Consider a 10-220 power rectifier with a thermal resistance junction .to case of 1.5OCNtl. The junction temperature produced depends upon
the mounting conditions and power dissipated in the circuit. The table
shows junction temperature resulting from 15W of dissipation when
mounted on an infinite heatsink at lOO·C with different methods of
interfaCing.
Thermal Resistance
Case-Heatsink
Interface Condition
Between Case and Heatsink
Assumed direct. ideal metallic contact (no interference)
1 mil air gap'
•
Junction
Temperature
·C/W
·C
0.0
122
1.2
140
Thermal compound; Tab screw torqued at 8 inch· pound
0.09
124
2 mil mica washer with thermal compound applied to
both surfaces; tab screw torqued at 8 inch pound
0.58
131
..
A film of aor one mil In length has the thermal resistance of =
1.2'C/W.
When using a small heat sink in free air one must consider the
additional thermal resistance of the heat sink to ambient and
operate at an appropriate power level. For example with an
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
18·C/W rated sink and thermal compound as above the device
will have a junction temperature of 1230C when operating at 5W in
an-ambient.of 25·C free air.
12-205
PRINTED IN U.S.A.
III
THERMAL DESIGN CONSIDERATIONS
FOR LEADED DEVICES
~I/."
For Lead Mounted Rectifiers
and Zeners, for 5 types
of ·mounting.
Determining The power Rating tor Your Appiication.
The information given in this section is presented for
straight·forward use by the designer. The value given in
this table is RElJA' the "Total" thermal resistance of the
diode and mounting together. no other graphs or tables
are needed.
Pmo,
=T
J .... -
TH·2
t
o
.060"
TYPE 1
.;
D
J/e"
1112"
~I
a>
\'/'''OIA.
PC BOARD, LIGHT
~'12"
,!
+
·1.
lI(" . .
OIA.
1'12'.---1
-
TYPE 2
PC BOARD, MEDIUM
TYPE 3
PC BOARD, HEAVY
TAmo•
RElJA
Where: p.... is the maximum power that can be dissipated
in the device reliably. TJ.... is the maximum of the
operating temperature range, usually 17S'C, unless
derated for a military or hi reI application.
TA.... is the max temp that the ambient reference (air
below the device) will reach during operation.
Alternately,
Junction Temp Rise
PReJA
=
.060"
~I/'''~
~ponce
\
.
____ and solder
fZZZZZZZ{]uLLLL
.060 Epoxy Glass
.060" dia. x 'I." high
Terminals are per MS 17122·7
TYPE 4 PC BOARD WITH CHESSMEN TERMINALS
~ 'I." ~
#16 H,!Ok Up
w,.e
~
Wrap once
- - - - = " " d solder
.060 Epoxy Glass
.125" dia. x 1/2" high
Terminals are per MS 17122·8
TYPE 5 TERMINALS AND HOOK·UP WIRES
nn
TEL. (617) 926·0404 • FAX (617) 924·1235
SEMICONDUCTOR
~ PRODUCTS
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
12·206
_UNITRODE
TH·2
ReJA
Total Thermal Resistance in Degrees c/watt
Mounting Type
Type
lN3611-36l4
1N4245-4249
1N4461-4489
1N4736-4764
1N4942-4946
1N4954-4996
IN5063-5117
IN5186-5189
1N5186-5190
1N5550-5553
1N5614-5622
lN5802-5806
1N5807-5811
TVS 505-528
UES1101-1106
UES1301-1306
UR105-125
UR205-225
UT236-347
UT249-363
UT251-364
UT261-268
UT2005-2060
UT3005-3060
UT4005-4060
UTR01-61
UTR02-62
UTRlO-60
UTR2305-2360
UTR3305-3360
UTR4305-4360
UTX105-125
UTX205-225
UTX3105-3120
UTX4105-4120
UZ706-140
UZ4706-4120
UZ5706-5140
UZ7706L-7710L
UZ8706-8120
UZS306-440
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN .. MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
1
2
3
4
5
105
105
105
140
98
75
94
75
92
92
92
127
85
62
81
62
59
62
80
81
62
62
81
62
129
85
114
97
92
85
84
75
75
75
110
68
45
64
45
42
45
63
64
45
45
64
45
112
68
97
80
75
68
67
55
50
97
68
146
67
55
50
112
68
55
50
64
45
45
43
110
64
97
97
97
132
90
67
86
67
64
67
85
86
67
67
86
67
134
90
119
102
97
90
89
77
73
119
90
168
89
77
65
65
65
100
58
35
54
35
32
35
53
54
35
35
54
35
102
58
87
70
65
58
57
45
40
87
58
136
57
45
40
102
58
45
40
54
35
35
33
100
54
72
75
93
94
75
75
94
75
142
98
127
110
105
98
97
85
80
127
98
176
97
85
80
142
98
85
80
94
75
75
73
140
94
II
72
67
114
85
163
84
72
67
129
85
72
67
81
62
62
60
127
81
12-207
72
134
90
77
72
86
67
67
65
132
86
PRINTED IN U.S.A.
TVS200
TRANSIENT VOLTAGE SUPPRESSOR GUIDE
Introduction (
Unitrode has been a leading supplier of discrete components for more than 25 years. Our Transient Voltage
Suppressors (TVS) are used by some of the largest corporations in the world..,..:. Lockheed, IBM, Hughes, G.E.,
Univac, for example - in applications where high reliability and performance are important. These have
included military programs such as MILSTAR, PATRIOT, and Peacekeeper.
In addition to its traditional suppressor products, Unitrode now offers a variety of bipolar and unipolar devices
in custom packages, ranging from miniature plastic smaller than 1 x 1O·3cubic inches to 20-pin DIP zener
arrays.
n.
L:::::Jn
12-208
SEMICONOUCTO.R
PRODUCTS
_UNITRDDE
TVS200
INTRODUCTION TO TRANSIENTS
Unsuppressed transients can cause circuit malfunctions
or even circuit failure. Voltage transients from sources
external to a circuit occur randomly, and with a frequency
which is virtually impossible to predict. Transients which
are created by the circuit itself can be very specifically
defined. Figure 1 illustrates the range of predictability of
both internally and externally generated transients.
TRANSIENTS CAUSED
BY SOURCES INTERNAL
TO THE CIRCUIT
TRANSIENTS CAUseD BY SOURCES
EXTERNAL TO THE CIRCUIT
DUE 10
N.E.M.P.
DUE 10
LIGHTNING
ENTIRELY
UNPREDICTABL.E
DUE TO
HEAVY EQUIPMENT
MOTORS
_
The lower frequency components could, of course, see a
much lower impedance which would be the impedance of
the network associated with the 60 hertz transmitted power
frequency. The value of impedance could be significantly
lower if the lightning were to strike at a point close to the
susceptible equipment.
In other words, the effective impedance in such a case is
hard to estimate, and thus the surge current would be difficult to resolve. Figure 3 illustrates response to such a random transient.
POINT.
POINTB
POINTe
DUE 10
APPLIANCES
os
ENERGYPREDICTABllllY - - - . . ENTIRELY
PREDICTABLE
FIGURE 1.
Both types must be considered by the designer in order to
achieve optimum performance and reliability.
TRANSIENT MODELS
The models in Figure 2 represent transient sources. As the
diagram illustrates, externally generated transients may
appear to be like a voltage or a current source. In circuits
which switch inductive loads, internally generated transients appear to be from a current source.
m
FIGURE 3.
A. TRANSIENT VOLTAGE SOURCE
a
TRANSIENT CURRENT SOURCE
FIGURE 2. TRANSIENT SOURCE MODELS
When considering how to protect against transients generated from external sources, the value of impedance in
series with the transient is relevant. If it is known, an approximation of the current - and therefore of the surge power
handling capability of the required suppressor - can be
determined. However, this impedance value is often difficult to determine accurately.
EXAMPLES OF EXTERNALLY
GENERATED TRANSIENTS
An example of an externally generated transient would be
lightning striking a power transmission line. The effective
impedance of a typical U.S. residential branch network
could be as much as 300 ohms. The peak currents associated with the high frequency components of the transient
could be limited by this effective impedance.
UNITROOE • SEMICONOUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA02172
TEL. (617) 926·0404 • FAX (617) 924·1235
Another type of external transient is generated when parallel inductive loads are switched on and off on the same
branch of a power distribution system. These transients
would appear to come from a current source.
Still another transient source of concern to many designers
today is the Nuclear Electromagnetic Pulse (N.E.M.P.).
In the event of a nuclear explosion, voltage fields of very
high intensity are generated. These transients are of great
concern because of their far reaching effects.
For example, a nuclear explosion occuring at a height of
300 miles above the center of the United States would generate an intense electromagnetic field that would affect
electrical circuits from coast to coast.
While the explosive power of such a blast is classified, it is
of sufficient military concern to have started a major effort
to develop E.M.P. hardened systems.
While shielding may help to provide proper protection from
such transients, the effects from input and output lines
would remain of concern. Ultimate protection, therefore,
would have to involve effective suppression of voltage transients on these lines.
12-209
,PRINTED IN U.S.A,
TVS200
EXAMPLES OF INTERNALLY
GENERATED TRANSIENTS
Internally generated transients, unlike external, can be very
specifically defined.· When swITching inductive loads,
energy built-up in the magnetic field of the inductor during
the transistor on time must not be transferred to the voltage
sensitive load. Such a transfer could have a serious detrimental effect on the performance of the circuit. A solution
isto provide a fast acting voltage clamp which would safely
limit the peak voltage across the load. An example of a
voltage sensITive item would be the reverse biased collector-base junction. The value of voltage, in this case, should
never exceed the applicable BV rating of the transistor.
Figure 4 shows the current and voltage waveforms associated with the application of a semiconductor transient
voltage suppressor in an inductive switching situation.
+V
~
ILl
Idt)
"
VL
-
. +
v,...(t)
":" :;,1_(1)
TYPICAL CIRCUIT
lsurge(t)
I
VTVS(t)
, . . . - _ - - , .••CLAMPING IIOIl'AGE
PTVS(t)
FIGURE 4.
CHOOSING AN APPROPRIATE
TRANSIENT VOLTAGE SUPPRESSOR
With this brief discussion of transients behind us, it now
becomes time to get a clearer understanding of how to
choose an appropriate transient voltage suppressor (TVS).
The key items of concern are as follows:
1. Stand-off voltage
2. Peak pulse power capabiiity .
3. Maximum clamping voltage
4. Maximum junction temperature
5. Response time
First, a definition of terms is warranted.
Stand-off Voltage
This isthe circuit operating voltage which relates to the suppression device. At the stand-off voltage, the TVS will be
essentially non-conducting such that the insertion loss will
be minimal. A device should be chosen with a stand-off
voltage equal to, or greater than, the maximum normal cir-.
cuit operating voltage. The stand-off voltage of a device is
clearly defined in the manufacturer's electrical specifications table.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL: (617) 926-0404 • FAX (617) 924-1235
Peak Pulse Power
The peak pulse power is equal to the clamping voltage
times the peak current. A device must be chosen which
has the capability to handle this peak pulse power. The
pulse power vs pulse duration graph on manufacturers'
datasheets can be used to determine whether a particular
device would be operating within its safe operating region.
(For examples of these types of curves see the individual
datasheets.)
Maximum Clamping Voltage
This is the maximum voltage that will occur across theTVS
for the duration of the transient. A device must be chosen
which will clamp below the voltage that may damage any
components. For effective use, it is necessary to define the
surge current that will equate to the clamping voltage.
Maximum Junction Temperature
The junction temperaiure is equal to the pulsed thermal
impedance times the peak pulse power, plus the junction
temperature just prior to the transient pulse. An understanding of the maximum junction temperature is vital with
regard to reliability of the TVS itself..
Response Time
When protecting sensitive components, the response time
of the protection device is also of importance. Special
attention must be paid to insuring that the protection
device is inherently fast enough in ITs response time and
that parasitic inductance is kept to a minimum. The intrinsic
characteristics of a semiconductor TVS enable it to effectively respond to transients of extremely short duration, or
transients of longer duration with very fast rise times. Other
forms of protection are much slower in their response. A
semiconductor TVS is the fastest device available, re- .
sponding in pico seconds.
SELECTION CRITERIA
To properly select a device, it is essential to understand the
maximum clamping voltage as accurately as possible,
since this value impacts on whether proper protection has
been achieved. It is also necessary to know this value to
determine the peak power and peak junction temperature.
Unitrode TVSs are characterized as having a minimum
breakdown voltage at some very low current, usually 1
milliampere. For reverse currents other than this, the TVS
voltage will differ due to three factors:
1. TVS dynamic impedance varies as a function of bias
current and is avid.ent at intermediate currents (less
than 1 ampere). Dynamic impedance is closely tied
to the physics of the breakdown mechanism.'
2. Surge impedance dominates the TVS's I-V characteristics at large reverse currents. The surge impedance is essentially the sum of ttie semiconductor
bulk resistance, contact, pin, and lead resistance and
varies little with bias current.
12·210
PRINTED IN U.S.A.
TVS200
3. Power dissipation in the TVS, varies directly with
reverse current. As a result, an increase in reverse
current will create an increase in junction temperatura Power related heating gives rise to increased
reverse voltage in TVSs because of the positive temperature coefficient of reverse voltage associated
with the semiconductor junction.
AVTVS (thermal):
Power is dissipated at a semiconductor junction as heat
and acts to raise the temperature of the junction and, in
turn, the semiconductor bulk, the pins, and the leads. To
understand how heat transfer occurs it is useful to consider
both the thermal resistance and thermal impedance
models.
Model to Determine Clamping Voltage
The expected TVS voltage under bias conditions other
than the low current condition described in the data table
would therefore be:
Vclamp = VTVS at 1mA + AVTVS (dynamic)
+ AVTVS (surge) + AVTVS (thermal)
Where: AVTVS (dynamic) = change in TVS voltage due
to dynamic impedance.
AVTVS (surge)
= change in TVS voltage due
to surge impedance.
AVTVS (thermal) = change in TVS voltage due
to ambient and power induced temperature
excursions.
Vclamp
= voltage which will occur
across the TVS as a result of
the surge.
1500
WAn
DEVICE
AVTVS (dynamic):
A rigorous way to obtain a value for AVTVS (dynamic) involves the integration of the impedance-current product
over the current range from the low current test point to the
surge current. The results of this integration, for Unitrode
axial TVSs are:
Vsr-STAND.OFFvOLTAGE-VOlTS
AVTVS (dynamic)
for 150W TVSs
= 0.133 {VTVS)'DB [lsurgeO.'3B~"': ltestn'3Bntn;s1
FIGURE 5.
AVTVS (dynamic) = 0.029 {VTVS),·2B [Isurgen,01 ~ -ltestn,O' ~l
Thermal Resistance Model
for 500W and 600W TVSs
AVTVS (dynamic)
for 1500WTVSs
In a situation where a repetitive transient occurs at a fixed
frequency, it is simple to determine the average and estimate the peak junction temperatura To determine the average junction temperature one should derive the average
power diSSipation by using the following relation:
Pd (average) = (Vclamp x Isurge) tp/t
Where tp = duration of the rectangular equivalent pulse
l' = period of the waveform
= 0.031 {VTVS),·23 [Isurgen'05~ _ltestn,05~1
Where: VTVS = low current breakover voltage which is
defined in the data table.
Isurge = peak surge current.
Itest = low level test current; defined in manu- .
facturers' data tables.
AVTVS (surge):
Figure 5 shows surge impedance as a function of stand-off
voltage for Unitrode axial transient voltage suppressors.
The voltage increase due to surge impedance is simply:
AVTVS (surge) = Zs (Isurge -Itest)
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
The average junction temperature then becomes:
Tj (average) = TA + (RaJ-A) x Pd (average)
where: TA = ambient temperature
RaJ-A = thermal resistance, junction to' ambient
In order to assure a safe operating junction temperature,
the designer must achieve a sufficiently low thermal resistance, junction to ambient.
12-211
PRINTED IN U.S.A.
TVS200
To carry the thermal analysis one step further, and to be
more rigorous, ohe can consider the effective thermal
impedance for a given repetitive pulsing situation to be as
follows:
Zeeff = (ReJ-A) (tiT) + (l-tlT)[r(t + T)]- r(T)+ r (t)
Where: Zeeff
.= effective pulsed thermal impedance
= pulse width
.
.
t
T
= period
r (t + .T) = transient thermal impedance at time
t + T
r (t)
= transient thermal impedance at
timet
== transient thermal impedance
r (T)
at time T
The peak junction temperature of a device subjected to a
periodic train of power pulses can be calculated by using
the following relation:
ReJ-A· is dependent on both device construction and
mounting conditions. It is useful to separate these dependencies by invoking the relation:
ReJ-A = ReJ-L + ReL-A
Where: ReJ-L = thermal resistance junction t() lead and
is device construction dependent.
ReL-A = thermal resistance lead to ambie~t and
is mounting dependent.
For a simple conservative estimate of the peak junction
temperature, the designer needs only add to the average
junction temperature the excursion of junction temperature
obtained by utilizing the thermal impedance model. Figure
6 offers a qualitative representation of the effects produced
by a transient which ()ccursat a fixen frequency.
'jOO~.~~~.~ ::::~:~~;:::=:::~URE
_ _ _ _ _ _ _ _ ~ _ _ AEFEAENCETEMPERATUAE
Pd
Tj (peak) = Tambient + (PD)
t
.
(I)
I
_
-
._-"_ _
PEAKPOWER
T
.
t
A clear understanding of the junction temperature is
important to the. designer for two reasons:
1. The maximum junction temperature is the fundamental
criterion for device reliability assurance. Unitrode transient voltage suppressors will operate with virtually no
permanent degradation if the junction temperature is
kept below 175°e. This criterion allows the designer to
choose the proper TVS (body size/rated maximum
power dissipation) for his application.
2. The thermally related change in VTVS is given by
AVTVS (thermal) = Tj x TCI100 x BVmin
Where Te = temperature coefficient of reverse
•
vciltage in percent of BVmin/oC
BVmin = minimum breakover voltage
Thermal Impedance Model
Under single pulse reverse bias conditions the thermal
capacitance of the TVS becomes evident, and its thermal
behavior is best characterized by a pulse-width-dependent thermal impedance. For pulse widths less than one
half secondin duration, heat flow from the lead to a typical
mounting is minimal, and the thermal response is nearly
independent of mounting conditions. In this situation:
ATj = PDX Ze
Where: PD = pulsed power
Ze = pulsed thermal impedance
Figure 7 shows pulsed thermal impedance versus pulse
duration for Unitrode transient voltage suppressors. These
curves give Ze values for rectangular power pulses. A designer should determine the pulse energy equivalent for
his speCific pulse, and use the duration of that pulse when
employing Figure 7.
o. 11
•
,
''''''~
-
:~ k::::: V,~
"US
l00US
'M'
#
//
...
PULSED THEAMAlIMPEDANCE
V
(Zeeff)
IMPORTANCE OF JUNCTION
TEMPERATURE
FIGURE 6.
,
X
_ _ _ _ _ .AVERAGE POWER
__ P0.07
~ ~ 1'---
I
~ f:://
rl
I'-'S00w
/)
lOOMS
"s
10V
100V
BVMIN - MINIMUM BREAKOVER VOLTAGE - VOLTS
TIME IN SECONDS
FIGURE B.
FIGURE 7.
UNITRODE· SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN. MA 02172
TEL. (617) 926-0404 • FAX (617) 924-1235
12-212
PRINTED IN U.S.A.
TVS200
Figure 8 shows TC as a function of stand off voltage for
Unitrode transient voltage suppressors.
often used alone or in combination with other types of
transient voltage suppressors. Often a snubber can be
chosen which would limit the voltage across a sensitive
component until the current has reached a safe level. However, in certain situations, an R-C network designed to minimize transients can have negative effects. R-C networks
may cause undesirable time delays in relay or solenoid
applications. The use of a semiconductor TVS would minimize the problem and the component count would be less.
Although, as stated above, the junction temperature is
clearly related to the long term reliability of the TVS, it must
be noted that a failure mechanism not strongly related to
junction temperature, but rather to current density manifests itself - when the transients are very short in duration
(less than 1 micro second) and the values of current are
very high. Conditions which may generate this type of transient may possibly occur in some equipment as a result of
an electromagnetic pulse.
In conclusion, the advantages of a semiconductor transient suppressor are as follows:
•
•
•
•
•
•
.COMPARISON OF.SUPPRESSOR
TECHNOLOGIES
It would be helpful to the designer to have a better feel for
the relative merits associated with the different types of
transient suppression devices and schemes available
today. A comparison of the different suppression technologies available today is presented in Table 1.
low insertion loss
simplification of protection circuitry
immediate recovery after operation
most effective clamping
protection against fast rising transients
circuit operation can continue for the duration
of the transients
Unitrode offers a wide range of transient voltage suppressors that are suitable for many common transient suppression applications.
R-C snubber networks, though not shown in the table, are
Table 1
10-5S '
Active
103-105A
..;..0·
10-1-10-4s
Active
t0103A
t0800V
ACorDC
No
High
·1-2
1O-9 -10-7s
Passive
100A
10-2BOV
AC(RMS)
Yes
1-1.S
10-12S
Passive
SOA
S-400V
(See Note) ACorDC
No
to
Moderate
Low
to
Moderate
Low
Small
AC Line to
Equip. and
Instruments
"on· board"
Protection
"Aftertnggering on only.
""All types oftransients as a final line of defense.
TABLE 1. COMPARfSON OF TRANSIENT SUPPRESSORS
NmE: Though the values in this column are useful for companng'suppressortechnologies on a oneto one basis it must be noted that for shorter pulse
widths a semiconductor TVS is capable of sustaining hundreds of amperes. For example the smallest TVS component Unitrode presently offers was tested
with a 200 nanosecond exponentially decaying waveform with a rise time of 10 nanoseconds. This device did not suffer degradation until peak values of
BOO amperes had been reached. This is an extremely important point as the other technologies have response times which severely limit their effective·
ness when the pulse widths and the associated current rise times are ofthls nature. Non·semiconductortypes are excessively slowin response such that
the circuit is not adequately protected. In cases where the transients are of very short duration the only viable solution is to use semiconductorTVS.
a
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924·1235
12-213
PRINTED IN U.S.A.
TVS200
TVS APPLICATIONS
The following suggested semiconductor TVS applications
provide the designer with several methods for protecting
the voltage sensitive elements of his circuit.
FIGURE 11. IC POWER LINE PROTECTION
OUT
DATA
BUS
Unitrode TVSdevices can be used to protect ICs from ESD,
lightning generated, and power supply turn on aSsociated
transients.
UART
+
FIGURE 9. DATA LINE PROTECTION
;
TVS devices are used to absorb high energy transients normally associated with signalldata lines. These transients if
not suppressed would destroy an ICs integrated clamp
diode. The TVS devices when used for this application also
suppress EMP and ESD induced transients. The.destruc- '
tive energy can be coupled via the 1/0 lines, which act like
antennas passing through the faraday shielding. For mUltiple data line applications, TVS arrays are often utilized'.
M~~~~r--JVVv--'--'
-i
FIGURE 12. lOTEM POLE OUTPUT CIRCUIT
TVS devices are used to protect memory systems from cur, '
rent spikes on the output of a totem pole circuit.
FIGURE 13. OP AMP PROTECTION
TVS devices can be used to prevent a short circuit or inductive load transients from being transmitted to the output.
FIGURE 10. COIL RECOVERY SPEED-UP
In this application, the use of a TVS device will minimize'
the reset time required to discharge the current in the inductive element being switched.,Since the coil recovery time
is inversely proportional to the voltage across the coil, the
circuit can be operated at higher frequencies.
FIGURE 14_ MOSFET GATE PROTECTION
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
MOSFET gates can be protected from transients·that are
delivered by the drive or coupled to the gate. through the .
drain to gate capacitance.
12-214
PRINTED IN U.S,A.
TVS200
TVS SELECTION. GUIDE
The following selector guide tables summarize Unitrode's
broad offerings in semiconductor Transient Voltage Suppressor devices. In addition to these suppressor products,
Unitrode also offers a variety of unidirectional.,and bidireotional chips in custom packages. These products range
from pin connectors to various diodeJTIJS combinations.
We welcome your requests to satisfy special needs. Please
contact us or call your local authorized Unitrode
representative.
TRANSIENT VOLTAGE SUPPRESSORS.,
GLASS AXIAL,UNIDIRECTIONAL
5.0
10.0
12.0
15.0
1B.0
24.0
2B.0
4B.0
60.0
100.0
200.0
300.0
5.0
11.1
13.B
16.7
20.4
2B.4
30.7
54
67
111
234
342
5.0
10.0
12.0
15.0
1B.0
24.0
2B.O
6.0
11.1
13.B
16.7
20.4
2B.4
30.7
5.0
6.0
12.0
15.0
24.0
30.5
40.3
51.6
5.6 @ 25mA
6.5 @ 20mA
13.6@5mA
16.4 @ SmA
27.0 @ .2mA
33.0 @ 1mA
43.7 @ 1mA
54.0 @ 1mA
33.0
43.7
54.0
191.0
B.7
16.B
21.0
25
31
42
46
B2
105
160
360
520
17
B.9
7.1
5.9
4.9
3.6
3.2
1.7
1.4
.91
.42
.2B
53.7
30.3
23.B
19.B
16.3
11.9
10.7
9.3
16.5
21.0
25.2
30.5
42.0
46.5
56
46
22
19
12
11
6
8
9
11
22.6
26.5
41.4
47.5
7B.5
63.5
47.5
63.5
79.5
265.0
32.0
24.0
19.0
5.7
150
IEII
B Body
500
500
~
CCl Body
1500
f
• Available as JAN, JANDe
•• Available as JAN, JANTX, JANTXV.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
12-215
PRINTED IN U.S.A.
TVS200
",; TRANSIENT VOLTAGE SUPPRESSORS
GLASS AXIAL, BIDIRECTIONAL
The EPSS-48 series is designed to protect linear integrated
circuits from spurious transient disturbances, especially
NEMP and ESD events.
TRANSIENT. VOLTAGE SUPPRESSORS
GLASS AXIAL, BIDIRECTIONAL
The 1N6102A series is designed to meet the requirements
of MIL-S-19S00/S16A.
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926.()4()4 • FAX (617) 924·1235
12-216
PRINTED IN U.S.A.
·
SALES OFFICES
Sales Offices ................................................... 13-3
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
13-1
PRINTED IN U.S.A.
UNITROOE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL (617) 926-0404 • FAX (617) 924-1235
13-2
PRINTED IN U.S.A.
nn
SEMICONDUCTOR
~ PRODUCTS
_UNITRDDE
Effective Date: June 1, 1989
UNITRODE REGIONAL OFFICES
Eastern Area Office, 580 Pleasant Street, Watertown, MA 02172, Tel. (617) 926-0404, FAX (617) 924-1235
Mid-Atlantic Office, 900 Route 9, Suite 208, Woodbridge, NJ 07095, Tel. (201) 855-8444, FAX (201) 855-8677
Mid-America Office, 2 Salt Creek Lane, Suite 200, Hinsdale, IL 60521, Tel. (312) 325-0077, FAX (312) 325-0632
South Central Office, 4975 Preston Park Blvd., Suite 775, Plano, TX 75093 Tel. (214) 985-4191 FAX (214) 985-4193
Western Office, 23801 Calabasas Rd., Suite 2038, Calabasas, CA 91302, Tel. (818) 992-6894, FAX (818) 992-4926
DOMESTIC REPRESENTATIVES
ALABAMA
Advanced Components Mktg.
Huntsville
205-881-5493
ARIZONA
Compass Mktg. & Sales, Inc.
Phoenix
602-996-0635
Compass Mktg. & Sales, Inc.
Tucson
602-293-1220
ARKANSAS
See Texas
CALIFORNIA - NORTHERN
12 Inc.
Santa Clara
408-988-3400
CALIFORNIA - SOUTHERN
Centaur Corp.
Irvine
714-261-2123
Centaur Corp.
San Diego
619-278-4950
Centaur Corp.
Calabasas
818-704-1655
COLDRADO
Component Sales, Inc.
Denver (Englewood)
303-779-8060
CONNECTICUT
Conntech Sales
Waterbury
203-754-2823
DELAWARE
See Pennsylvania-Eastern
DISTRICT OF COWMBIA
See Maryland
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926·0404 • FAX (617) 924-1235
FLDRIDA
Delmac Sales, Inc.
Longwood
407-831-0040
Delmac Sales, Inc.
Deerfield Beach
305-427-7788
Delmac Sales, Inc.
Clearwater
813-447-5192
LDUISIANA
See Texas
GEORGIA
Advanced Compo Mktg.
Norcross
404-448-7025
IDAHO
See Washington
MASSACHUSETTS
Kanan Associates
Needham
617-449-7400
Byrne Associates, (DEC only) .
Maynard
617-897-3131
ILLINOIS - NORTHERN
Oasis Sales Corp.
Elk Grove Village
312-640-1850
MICHIGAN
Greiner Associates
Grosse Pointe Park
313-499-0188
ILLINOIS - SOUTHERN
Contact Factory
MINNESOTA
Aldridge Associates
Eden Prairie
612-944-8433
INDIANA
Scott Electronics
Indianapolis
317-841-0010
Scott Electronics
Fort Wayne
219-489-5690
MAINE
See Massachusetts
MARYLAND
Third Wave Solutions
Columbia
301-290-5990
MISSISSIPPI
See Alabama
MISSOURI
Spectrum Sales
Hazelwood
314-731-5151
IOWA
See Minnesota
MONTANA
See Colorado
KANSAS
Spectrum Sales
Overland Park
913-648-6811
NEBRASKA
See Missouri
NEVADA - NORTHERN
See California - Northern
KENTUCKY
See Ohio
13-3
PRINTED IN U.S.A.
SALES OFFICES
DOMESTIC REPRESENTATIVES (Continued)
NEVADA - SOUTHERN
See Arizona
NEW HAMPSHIRE
Kanan North
Hooksett
603·645·0034
NEW JERSEY - NORTHERN
ERA Inc.
Commack
516·543'()758
NEW JERSEY - SOUTHERN
See Pennsylvania - Eastern
NEW MEX!CO
Compass Mktg. & Sales, Inc.
Albuquerque
505·888'()800
NEW YORK - METROPOLITAN
ERA Inc.
Commack
516·543'()758
NEW YORK - UPSTATE
Reagan/Compar Albany, Inc.
Albany
518·489·7408
Reagan/Compar Albany, Inc.
New Hartford
315·732·3775
Reagan/Compar Albany, Inc.
Fairport
716·271-2230
Reagan/Compar Albany, Inc.
Endwell
607·723·8743
Regan/Compar Albany, Inc.
Endwell
607·754·2171
Reagan/Compar Albany, Inc.
Rochester
716·271-2230
NORTH CAROLINA
Prime Components, Inc.
Raleigh
919·850·9867
NORTH DAKOTA
See Minnesota
OHIO
Thompson and Associates
Dayton
513435·7733
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN MA 02172
TEL. (617) 926.0404 • FAX (617) 924·1235
Thompson and Associates
Beachwood
216-831·6277 .
Thompson and Associates
Orient
614·8774304
VERMONT
See New Hampshire
OKLAHOMA
Nova Marketing Inc.
Tulsa
918·660·5105
WASHINGTON
Jas. J. Backer Company
Seattle
206·285·1300
OREGON
Jas. J. Backer Company
Portland
503-627·0775
WEST VIRGINIA
See Western Pennsylvania
PENNSYLVANIA - EASTERN
Omni Sales
Erdenheim
215·233·4600
PENNSYlVANIA - WESTERN
See Ohio
PUERlO RICO
Dynamic Sales, Inc.
Cuguas
809-746·1091
RHODE ISLAND
See Massachusetts
SOUTH CAROLINA
See North Carolina
SOUTH DAKOTA
See Minnesota
VIRGINIA
See Maryland
WISCONSIN - EAST
Oasis Sales COrD.
Brookfield
.
414·782·6660
WISCONSIN - WEST
See Minnesota
WYOMING
See Colorado
CANADA
Kaytronics, Inc.
Quebec
514·745·5800
Kaytronics, Inc.
Concord, Ontario
416-669·2262
Kaytronics, Inc.
Surrey
604-581·5005
Kaytronics, Inc.
Kanata, Ontario
613·564.Q080
TENNESSEE
See Alabama
TEXAS
Nova Marketing, Inc.
Dallas
214·750-6082
Nova Marketing, Inc.
Austin
512·343·2321
Nova Marketing, Inc.
Houston
713·988·6082
UTAH
Harris C.S.1.
Salt Lake City
801·974-5155
13·4
PRINTED IN U.S.A.
BRANCHES
DOMESTIC DISTRIBUTORS
ALABAMA
Zeus Components/Yorba Linda
Future Electronics/Huntsville
714-921-9000
205-882-3190
Hall-Mark/Huntsville
205-837-8700
Hamilton/Avnet/Huntsville
205-837-7210
INDIANA
Hall-Mark/Indianapolis
317-872-8875
COLORADO
Future Electronics/Westminster
303-421-0123
Hall-Mark/Englewood
Hamilton/Avnet/Carmel
317-844-9333
IOWA
303-790-1662
Hamilton/Avnet/Cedar Rapids
ARIZONA
Hamilton/AvnetiEnglewood
319-362-4757
Future Electronics/Phoenix
303-799-0663
602-968-7140
Hall-Mark/Phoenix
602-437-1200
Hamilton/Avnet/Chandler
602-961-6400
KANSAS
CONNECTICUT
Hall-Mark/Lenexa
Anthem Corporation/Meriden
913-888-4747
203-237-2282
Hamilton/AvnetiOverland Park
Future Electronics/Bethel
913-888-8900
203-743-9594
CALIFORNIA - NORTHERN
Hall-Mark/Wallingford
MARYLAND
Future Electronics/San Jose
203-271-2844
Anthem Corporation/Columbia
408-434-1122
Hamilton/AvnetiDanbury
301-995-6640
Hall-Mark/San Jose
203-797-2800
Future Electronics/Columbia
408-432-0900
Hall-Mark/Citrus Heights
916-722-8600
Hamilton/AvnetiSacramento
916-920-3150
Hamilton/Avnet/Sunnyvale
408-743-3355
Zeus Components/San Jose
301-290-0060
FLORIDA
Hall-Mark/Columbia
Future Electronics/Altamonte Springs
301-988-9800
305-767-8414
Hamilton/Avnet/Columbia
Future Electronics/Clearwater
301-995-3500
813-578-2770
Zeus Components/Columbia
Hall-MarkiFt. Lauderdale
301-997-1118
305-971-9280
Hall-Mark/Orlando
MASSACHUSETTS
407-830-5855
Anthem Corporation/Wilmington
CALIFORNIA - SOUTHERN
Hall-Mark/Clearwater
617-272-9400
Avnet Electronics/Costa Mesa
813-541-7440
Future Electronics/Westborough
714-754-6111
Hamilton/Avnet/Ft. Lauderdale
508-366-2400
408-998-5121
Future Electronics/Chatsworth
305-971-2900
Hall-Mark/Billerica
818-772-6240
Hamilton/Avnet/St. Petersburg
617-935-9777
Future Electronics/Irvine
813-573-3930
Hamilton/Avnet/Peabody
714-250-4141
Hamilton/Avnet/Winter Park
508-531-7430
Future Electronics/San Diego
407-628-3888
Zeus Components/Lexington
619-278-5020
Zeus Components/Oviedo
617-863-8800
Hamilton/Avnet/Ontario
407-365-3000
714-989-8809
Hamilton/Avnet/San Diego
619-571-7510
Hall-MarklTorrance
213-217-8400
Hall-Mark/San Diego
619-268-1201
Hall-Mark/Canoga Park
MICHIGAN
GEORGIA
Future Electronics/Livonia
Future Electronics/Norcross
313-261-5270
404-441-7676
Hallmark-Detroit
Hall-Mark/Norcross
313-462-1205
404-447-8000
Hamiiton/AvnetiGrand Rapids
Hamilton/Avnet/Norcross
616-243-8805
404-447-7500
Hamilton/AvnetiLivonia
313-522-4700
818-716-7300
ILLINOIS
Hall-MarklTustin
Future Electronics/Schaumburg
714-669-4100
Hamilton Electro Sales/Costa Mesa
MINNESOTA
312-882-1255
Future Electronics/Eden Prairie
Hall-Mark/Wooddale
612-944-2200
714-641-4199
312-860-3800
Hall-Mark/Eden Prairie
Hamilton/Avnet/Chatsworth
Hamilton/Avnet/Bensenville
612-941-2600
818-700-6500
312-860-7700
Hamilton/Avnet/Minnitonka
612-932-0600
Hamilton/Avnet/Gardena
213-217-6700
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN MA 02172
TEl. (617) 926-0404. FAX (617) 924-1235
13-5
PRINTED IN U.S.A.
IDI
BRANCHES
OOMESTICDISTRIBUlORS (Continued)
MISSOURI
Future. Electroilics/St. Louis
314-469-6805
Hall-Mark/Earth City
314-491-5350
Hamilton/Avnet/Earth City
314-344-1200
NEW HAMPSHIRE
. Hamilton/Avnet/Manchester
603-624-9400
NEW JERSEY - NORTHERN
Antham CCiPQrntioiifFairfi61d
201-575-3390
Future Electronics/Fairfield
201-227-4346
Hall-Mark/Fairfield
201-575-4415
Hamilton/Avnet/Fairfield
201-575-3390
Nu Horizons Electronics/Fairfield .
201-882-7950
.NEWJERSEY - SOUTHERN
Future Electronics/Mt. Laurel'
609-778-7600
Hall-Mark/Mt. Laurel
605-235-1900
Hamilton/Avnet/Cherry Hill
604-424-0100
NEW MEXICO
Hamilton/Avnet/Albuquerque
505-765-1500
NEW YORK
Future Electronics/Hauppauge
. 516-234-4000
Future Electronics/Liverpool
716-272-1120
Future Electronics/Rochester
716-272-1120
Hall-Mark/Rochester
716-425-3300
Hall-Mark/Ronkonkoma
516-737-0600
Hamilton/Avnet/Hauppauge
516-231-9800
Hamilton/Avnet/Rochester
716-475-9130
Hamilton/Avnet/Syracuse
315-437-2641
UNITRODE • SEMICONDUCTOR PRODUCTS
580 PLEASANT STREET· WATERTOWN, MA 02172
TEL. (617) 926-0404 • FAX (617) 924·1235
· Anthem Corporation/Hauppauge
516-226-6000
Nu Horizons Electronics/No. Amityville
516-226-6000
Zeus Components/Port Chester
914-937-7400
NORTH CAROLINA
Future Electronics/Charlotte
·704-529-5500
Hall-Mark/Raleigh
919-872-0712
· Hamilton/Avnet/Raleigh
9i9-878-0810
OHIO
Hall-MarklSolon
216-349-4632
Hall-Mark/Worthington
614-888-3313
Hamilton/Avnet/Dayton
513-439-6700
Hamilton/Avnet
216-349-5100
Hamilton/Avnet/Westerville
614-882-7004
OKLAHOMA
Hall-Mark/Tulsa
918-254-6110
OREGON
Future Electronics/Beaverton
503-645-9454
Hamilton/Avnet/Lake Oswego
503-635-8831
PENNSYLVANIA - EASTERN
Anthem Corporation/Horsem
215-443-5150
. PENNSYLVANIA - WESTERN
Hamilton/Avnet/Pittsburgh
412-281-4150
TEXAS
Future Electronics/Richardson
214-437-2437
Hall-Mark/Austin
512-258-8848
Hall-Mark/Dallas
214-553-4300
. Hall-Mark/Houston
713-781-6100
13-6
Hamilton/Avnet/Austin
512-837-8911
Hamilton/Avnet/Houston
713-240-7733
Hamilton/Avnet/lrving
214-550-7755
.ZeusComponentS/Richardson
214-783-7010
UTAH
Future Electronics/Salt Lake City
801-972-8489
Hall-MarkIW. Valley City
801-972-1008
Hamilton/Avnet/Salt Lake City
801-972-2800
WASHINGTON
Future Electronics/Redmond
206-881-8199
Hall-Mark/Seattle
206-547-0415
Hamilton/Avnet/Redmond
206-881-6697
WISCONSIN
Future Electronics/Waukesha
414-786-1884
Hall-Mark/New Berlin
414-797-7844
Hamilton/Avnet/Maukehsa
414-784-4510
CANADA
. Future Electronics/Calgary
.403-235-5325
Future Electronics/Edmonton
403-438-2858
Future Electronics/Montreal
514-694-7710
Future Electronics/Ottawa
613-820-8313
Future Electronics/Quebec
418-682-8092
.
Future ElectronicsfToronto
416.638-4771
Future ElectronicsNancouver
604-294-1166
FutureElectronics/winnipeg
204-786-7711
Hamilton/Avnet/Calgary
403-250-9380
PRINTED IN U.S.A.
BRANCHES
DOMESTIC DISTRIBUTORS (Continued)
Hamilton/Avnet/Montreal
514-335-1000
Hamilton/Avnet/Nepean
613-226-1700
Hamilton/Avnet/Mississauga
416-667-7432
Hamilton/Avnet/Burnaby
604-437-6667
INTERNATIONAL
Hamilton/Avnet/Gardena
213-327-3693
Hamilton/Avnet/Westbury
516-997-6868
1.11
UNITROOE· SEMICONOUCTOR PROOUCTS
580 PLEASANT STREET. WATERTOWN, MA 02172
TEL. (617) 926-0404. FAX (617) 924.1235
13-7
PRINTED IN U.S.A.
n .n
SEMICONDUCTOR
~ PRODUCTS
_UNITRDDE
Effective Date: June 1, 1989
UNITRODE SALES OFFICES
Corporate International and Asian. Regional Sales Office, 5 Forbes Road, Lexington, MA 02173 Tel. (617) 861-6540, Telex 95-1064
Unitrode Electronics GmbH, Hauptstrasse 68, 8025 Unterhaching, West Germany Tel. 089/6190 04105/06, Telex 841-05-22-109,
Fax: 49-89-617984
Unitrode (U.K.) Limited, 6 Cresswell Park, Blackheath, London SE3 9RD, United Kingdom Tel. 01-318-1431/4,
Telex 896270 .UNTRUK G, Fax: 01-318-2549
Unitrode S.R.l., Via Dei Carracci, 5, 20149 Milano, Italy Tel. 02/439-6831, 434 604, Telex 310085 UNITRD I
Unitrode-lreland, Ltd., Industrial Estate, Shannon, County Clare, Ireland Tel. 353-61-62377, Telex 26233
Unitrode Electronics Asia, Ltd., Suite 939, New World Office Bldg., 24 Salisbury Rd., ir:ation . .
Shinjuku DaHch/Selmel Bldg.
Nishi·Shinjuku 2·7·1
Shinjuku·Ku
Tokyo 163
Tel: 3·348·0611
FAX: 3·348·0623
KOREA R.O.K.
MS International Corp.
CPO Box 6780
Room 1205 Haechun Building
831 Yucksam·dong
Kangnam·Ku, Seoul
Tel: 553·0901
TELEX: K24965 MSIPARK
FAX: 553·0046
NETHERLANDS
Koning en Hartman
Elektrotechniek av.
Energieweg1
2600 AC DELFT
P.O. Box 125
Tel: (31) 15609906
TELEX: 38250 Koha NL
FAX: (31) 15619194
NEW ZEALAND
Professional Electronics
22 A Milford Road
Auckland
Tel: 493·029, 499-048
TELEX: NZ21084
FAX: 64·9·493-45 .
NORWAY
REPRESENTATIVE
See Sweden
DISTRIBUTOR
NecoA/S
Jerikoveien 22
Box 29·Lindeberg Gaard
1007 OSLO 10
Tel: (47) 2301230
TELEX: 19247 BRAKE N
FAX: (47) 2301694
UNITROOE • SEMICONOUCTOR PROOUCTS
580 PLEASANT STREET. WATERTOWN. MA 02172
TEl. (617) 926·0404 • FAX (617) 924·1235
SINGAPORE
Desner Electronic PTE, Ltd.
190 Middle Road, #16-07
Fortune Centre
Singapore 0718
Tel: 337·3188
TELEX: RS 39191 DTD
FAX: 3373180
SOUTH AFRICA
Electrolink (Pty) Ltd.
Fleetway House
Martin Hammerschlag Way
Foreshore Capetown
Tel: 215350
TELEX: 98·206
FAX: 27·21-4196256
SPAIN
Monolithic SA
Av. Hospital Militar 78·80 ENTLO
08023 Barcelona
Tel: (3) 2194016-4154-4212
TELEX: 08026
FAX: (3) 2141193
SWEDEN
REPRESENTATIVE
Repretech Scandanavia AS,
Box 2042
172 02 Sundbyberg
Tel: (46) 8·7330475
FAX: (46) 8·7330558
DISTRIBUTOR
Nordquist & Berg
Engundavagan 7
Box 1458 S·l71
28 Solna
Tel: (46) 87646710
TELEX: 10407 NORDSWE S
FAX: (46) 87644730
SWITZERLAND
ElkomAG
Durisolstr. 12
5612 Villmergen
Tel. 057·211145
FAX: 057·229658
UNITED KINGDOM·
REPRESENTATIVES
Albur Electronics
4 Peddlars Grove
Yateley, Camberley,
Surrey GU17 7AS
Tel: 0252·871882
FAX: 0252-890313
EC&E
.
22 Honeyborne Road
Sutton Coldfield,
West Midlands
B756BT
Te:: 021-378·1128
FAX: 021·311-1426
Millfield
Little Chesterford
Saffron Walden,
Essex
CB10 IUD
Tel: 0799·30434
FAX: 0799·31119
NETS
(New England Technical Sales)
Unit 17
M.E.T. Enterprise Workshops
Dalziel Street,
Motherwell,
Scotland ML11PJ
Tel: 0698·61904
FAX: 0698·69320
Pristine Marketing
3 High Street
Lenham,
Kent
ME172QD
Tel: 0622·858100
FAX: 0622·858103 .
DISTRIBUTORS
VSI Electronics (UK) Ltd.
Roydonbury Industrial Park
Horsecroft Road
Harlow, Essex
CM195BY
Tel: 0279·29666
TELEX: 81387 VSI UK G .
FAX: 0279·418068
TAIWAN
Wanroc, Inc.
.
8F·2, 15, Hsin·1 Road
Sec. 2, Taipei, 011·886·
Tel: (02) 394-5236
FAX: (02) 397·1696
13·10
PRINTED IN U.S.A.
-
,-.:c
Unitrode Corporation
580 Pleasant Street
Watertown, MA 0217l
Tel: (617) 926·0404
FAX: (617) 924·1235
k
~"
~-~.
~~.'.
~.'
"-
~.
F':
~:
,
i>"",
DB600
.•..>
Printed in U.S.A.
...
<:<-
.....
-
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:08 15:40:22-08:00 Modify Date : 2017:07:08 16:13-07:00 Metadata Date : 2017:07:08 16:13-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:6cb4d6fb-fdb3-9c47-9056-7ffed58b757a Instance ID : uuid:bc93ad27-7163-0b45-83ee-886c4c690fd2 Page Layout : SinglePage Page Mode : UseNone Page Count : 766EXIF Metadata provided by EXIF.tools