1990_Hitachi_IC_Memory_Data_Book 1990 Hitachi IC Memory Data Book
User Manual: 1990_Hitachi_IC_Memory_Data_Book
Open the PDF directly: View PDF .
Page Count: 1330
Download | |
Open PDF In Browser | View PDF |
ICMEMORY DATA BOOK #M11.1 CS-E410T When using this document, keep the following in mind: 1. This document may, wholly or partially, be subject to change without notice. 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission. 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document. 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein. 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd. 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS. January 1990 ©Copyright 1990, Hitachi America, Ltd. Printed in U.S.A. Section INTRODUCTION MOS Static RAM Cache Static RAM and Fast SRAM Modules MOS Pseudo Static RAM Video Memory MOS Dynamic RAM MOS Dynamic RAM Module MOS Mask ROM MOSPROM ECLRAM HITACHI SALES OFFICES o SECTION 9, PAGE 1302 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ~HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ---------------------------------------------------TABLEOFCONTENTS TABLE OF CONTENTS Page Introduction QUICK REFERENCE GUIDE XIII PACKAGE INFORMATION RELIABILITY OF HITACHI I C. MEMORIES .. . 13 QUALITY ASSURANCE OF I C MEMORY 28 .. . OUTLINE OF TESTING METHOD 34 APPLICATION .. 35 Section 1 MOS Static Ram • HM6116 SERIES HM6116P-2/3/4 HM6116LP-2/3/4 HM6116FP-2/3/4 HM6116LFP-2/3/4 2,048-word x 8-blt High Speed CMOS Stalic RAM . . .. 64 • HM6116A SERIES HM6116AP-12/15/20 HM6116ALP-12/15/20 HM6116ASP-12/15/20 HM6116ALSP-12/15/20 2,048-word x 8-bit High Speed Static CMOS RAM ....... . .... . 69 • HM6716 SERIES HM6716P-25/30 2,048-word x 8-bit High Speed HI-BiCMOS Static RAM (with OE) .. 74 • HM6719 SERIES HM6719P-25/30 2,048-word x 9-bit High Speed HI-BiCMOS Static RAM (with OE) ... 74 • HM6268 SERIES HM6268P-25/35/45 HM6268LP-25/35/45 4,096-word x 4-blt High Speed CMOS Static RAM . .... . ..... . 80 • HM6267 SERIES HM6267P-35/45/55 HM6267LP-35/45/55 16,384-word x 1-blt High Speed CMOS Static RAM ..... 87 • HM6264A SERIES HM6264AP-10/12/15 HM6264ALP-10/12/15 HM6264ALP-10LlI2L115L HM6264ASP-10/12/15 HM6264ALSP-10/12/15 H M6264ALSP-l OLl12L115L H M6264AFP-l 0/12/15 HM6264ALFP-10/12/15 H M6264ALFP-10Ll12L115L 8,192-word x 8-blt High Speed CMOS Static RAM .............. . 94 • HM6288 SERIES H M6288P-25/35 HM6288LP-25/35 H M6288J P-25/35 H M6288LJ P-25/35 16,384-word x 4-blt High Speed CMOS Static RAM .. 103 • HM6788 SERIES H M6788P-25/30 16,384-word x 4-blt High Speed HI-BICMOS Static RAM ......... . 111 • HM6788H SERIES HM6788HP-15/20 16,384-word x 4-bit High Speed Hi-BiCMOS Static RAM ......... . 115 • HM6788HA SERIES HM6788HAP-12/15/20 16,384-word x 4-bit High Speed Static RAM. . . . . . . . . . . . . . .. . .. 119 • HM6289 SERIES HM6289JP-25/35 HM6289LJP-25/35 16,384-word x 4-bit High Speed CMOS Static RAM (with OE) ..... . 124 ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 TABLEOFCONTENTS--------------------------------------------------Section l-MOS Static Ram (continued) Page • HM6789 SERIES HM6789P-25/30 HM6789JP-25/30 16,384-word x 4-bit High Speed Hi-SiCMOS Static RAM (with OE) .. 135 • HM6789H SERIES HM6789HP-15/20 HM6789HJP-15/20 16,384-word x 4-bit High Speed HI-SiCMOS Static RAM (with OE) 142 • HM6789HA SERIES HM6789HAP-12/15/20 HM6789HAJP-12/15/20 16,384-word x 4-bit High Speed Static RAM (with OE) 149 • HM6287 SERIES H M6287P-45/55/70 HM6287LP-45/55/70 65,536-word x l-blt High Speed CMOS Static RAM .. 157 • HM6287H SERIES H M6287H P-25/35 HM6287HLP-25/35 HM6287HJP-25/35 HM6287HLJP-25/35 65,536-word x l-bit High Speed CMOS Static RAM. . . . .. . ..... 164 • HM6787 SERIES H M6787P-25/30 65,536-word x l-bit High Speed HI-SIC MaS Static RAM . . 173 • HM6787H SERIES HM6787HP-15/20 HM6787HJP-15/20 65,536-word x l-bit High Speed HI-SiCMOS Static RAM ... 178 • HM6787HA SERIES HM6787HAP-12/15/20 HM6787HAJP-12/15/20 65,536-word x l-bit High Speed Static RAM ... 183 • HM62256 SERIES 32,768-word x 8-bit High Speed CMOS Static RAM. 189 HM62256P-8/10/12/15 HM62256LP-8/10/12/15 H M62256LP-l0SLl12SLl15SL H M62256FP-8Tfl0T 112T115T HM62256LFP-8T/l0T/12T/15T HM62256LFP-8SLT/l0SLT/12SLT/15SLT • HM62832/HM62832H HM62832P-35/45 HM62832LP-35/45 HM62832JP-35/45 H M62832LJ P-35/45 HM62832HP-35/45 HM62832HJP-35/45 32,768-word x 8-bit High Speed CMOS Static RAM 197 • HM6208/HM6208H SERIES H M6208P-35/45 HM6208HP-25/35 H M6208H LP-25/35 HM6208HJP-25/35 HM6208HLJP-25/35 65,536-word x 4-bit High Speed CMOS Static RAM ... 203 • HM6708 SERIES H M6708P-20/25 HM6708JP-20/25 65,536-word x 4-blt High Speed HI-SiC MaS Static RAM ... 211 • HM6708A SERIES H M6708AP-15/20/25 H M6708AJ P-15/20/25 65,536-word x 4-bit High Speed Static RAM .... 217 • HM6709 SERIES HM6709JP-20/25 65,536-word x 4-bit High Speed Static RAM (with OE) .. 222 • HM6709A SERIES H M6709AP-15/20/25 HM6709AJP-15/20/25 65,536-word x 4-bit High Speed Static RAM (with OE) .... 229 ~HITACHI ii Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ---------------------------------------------------TABLE OF CONTENTS Section 1-MOS Static Ram (continued) Page • HM6207 SERIES HM6207P-35/45 HM6207LP-35/45 262,144-word x l-blt High Speed CMOS Static RAM. 236 • HM6207H SERIES HM6207P-35/45 HM6207HP-25/35 HM6207HLP-25/35 HM6207HJP-25/35 HM6207HLJP-25/35 262,l44-word x l-blt High Speed CMOS Static RAM.. .. .... . .. 243 • HM6707 SERIES HM6707P-20/25 HM6707JP-20/25 262,144-word x l-blt High Speed HI-BICMOS Static RAM. 250 • HM6707A SERIES HM6707AP-15/20/25 HM6707AJP-15/20/25 262,144-word x l-blt High Speed Static RAM ..... 255 • HM628128 SERIES HM628128P-7/8/10/12 HM628128LP-7/8/10112 HM628128FP-7/8/10112 HM628128LFP-7/8/10/12 131,072-word x 8-bit High Speed CMOS Static RAM ............ . 261 • HM624256 SERIES HM624256P-35/45 HM624256LP-35/45 HM624256JP-35/45 HM624256LJP-35/45 262,l44-word x 4-blt High Speed CMOS Static RAM ........... . 269 • HM624257 SERIES HM624257JP-35/45 HM624257LJP-35/45 262,144-word x 4-bit High Speed CMOS Static RAM ............ . 275 • HM66204 SERIES HM66204-12/15 HM66204L-12/15 131,072-word x 8-bit High Density CMOS Static RAM Module..... 283 • HM63921-20/25/35 HM63921 P-20/25/35 2K x 9-bit CMOS Parallel In-Out FIFO Memory .... 289 • HM63941-25/35/45 HM63941 P-25/35/45 4K x 9-bit CMOS Parallel In-Out FIFO Memory .. 301 Section 2 Cache Static RAM and Fast SRAM Modules • HM62A168/HM62A188 SERIES HM62168CP-25/35/45 HM62188CP-25/35/45 Direct Mapped 8,192-word x 16/18-blt 2-way .................. . 4,096-word x 16/18-bit Static Cache RAM 311 • HM67C932 SERIES HM67C932CP-20/25 8,192-word x 9-blt x 4-row Static Cache RAM ................. . 319 • HB66B1616A-25/35 HB66B1616A-25/35 16,384-word x 16-bit High Speed Static RAM Module ........... . 333 • HB66A2568A-25/35 HB66A2568A-25/35 262,144-word x 8-blt High Speed Static RAM Module ........... . 343 • HM644332 HM644332G-25/30 2,048 Entry Tag Memory. . . . .. ........................... . 351 • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 iii TABLEOFCONTENTS--------------------------------------------------Section 3 MOS Pseudo Static RAM Page • HM65256B SERIES HM65256BP-l0/12/15/20 HM65256BLP-l0/12/15/20 HM65256BSP-l0/12/15/20 HM65256BLSP-l0/12/15/20 HM65256BFP-l0T112T/15T120T HM65256BLFP-l0T/12T/15T/20T 32,768-word x 8-bit High Speed Pseudo Static RAM. . .. . ...... . 369 • HM658128 SERIES HM658128DP-l0/12/15 HM658128LP-l0/12/15 HM658128DFP-l0/12/15 HM658128LFP-l0/12/15 131,072-word x 8-bit High Speed CMOS Pseudo Static RAM 376 ., , ..' ' ,. Section 4 Video Memory • HM63021 SERIES HM63021 P-28/34/45 2,048-word x 8-bit Line Memory .. 388 • HM53051P HM53051 P-45/60 262,144-word x 4-bit Frame Memory .. 402 • HM53461 SERIES HM53461 P-l0/12/15 HM53461 ZP-l0/12/15 65,536-word x 4-bit Multiport CMOS Video RAM. 412 • HM53462 SERIES HM53462P-l0/12/15 HM53462ZP-l0/12/15 65.536-word x 4-blt Multiport CMOS Video RAM (with Logic operallOn mode) 425 • HM538122 SERIES HM538122JP-l0/12/15 131,072-word x 8-bit Multiport CMOS Video RAM ..... 444 • HM538123 SERIES HM538123JP-l0/12/15 131,072-word x 8-bit Multiport CMOS Video RAM .... " • HM534251 SERIES HM534251JP-l0/11/12/15 HM534251 ZP-l0/11/12/15 262,144-word x 4-blt Multiport CMOS Video RAM .............. . 469 • HM534252 SERIES HM534252JP-l0/11/12/15 HM534252ZP-l0111 112/15 262,144-word x 4-bit Multiport CMOS Video RAM ... 516 • HM534253 SERIES HM534253JP-l0/12/15 HM534253ZP-l0/12/15 262,144-word x 4-bit Multlport CMOS Video RAM ...... . 542 • HM538121JP/ZP-l0/12/15 HM538121 JP-l0/12/15 131,072 x 8-bit Multiport CMOS Video Random Access Memory .. 569 • HM50464 SERIES HM50464P-12/15/20 HM50464CP-12/15/20 65,536-word x 4-bit Dynamic Random Access Memory .......... . 590 • HM50256 SERIES HM50256P-12/15/20 HM50256ZP-12/15/20 HM50256CP-12/15/20 262,144-word x I-bit Dynamic Random Access Memory ......... . 598 • HM51256 SERIES HM51256P-8/10/12/15 HM51256CP-8/10/12/15 HM51256LP-8/10/12/15 HM51256LCP-8/10/12/15 HM51256ZP-8/10/12/15 HM51256LZP-8/10/12/15 262,144-word x I-bit Dynamic Random Access Memory ......... . 606 ... 470 Section 5 MOS Dynamic RAM ~HITACHI iv Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ---------------------------------------------------TABLEOFCONTENTS Section 5-MOS Dynamic RAM (continued) • HM51258 SERIES Page 262,144-word x l-bit Static Column CMOS Dynamic RAM. ... ... . 614 • HM514256 SERIES HM514256P-8/10/12 HM514256JP-8/10/12 HM514256ZP-S/l0/12 262,144-word x 4-blt CMOS Dynamic RAM . . . . . . . . . . . . . . . . . . . . 623 • HM514256S/HM514256A SERIES HM514256P-SS/l0S/12S HM514256JP-SS/l0S/12S HM514256ZP-8S/10S/12S HM514256AP-8/10/12 HM514256AJP-S/l0/12 HM514256AZP-8/10112 262,144-word x 4-bit CMOS Dynamic RAM . . . . . . .. ... ... ... 635 • HM514256API/AJPI/AZPI-6I71S/10/12 (EXTENDED TEMPERATURE RANGE VERSION) HM514256API-6/7/S/10/12 HM514256AJPI-6/7/S/10/12 HM514256AZPI-6171S/10/12 262,144-word x 4-blt Dynamic Random Access Memory. 651 • HM514256ALP/ALJP/ALZP-S/l0/12 HM514256ALP-S/l0/12 HM514256ALJP-8/10/12 HM514256ALZP-S110/12 262,144-word x 4-bit Dynamic Random Access Memory. ........ 667 • HM514256H SERIES HM514256HP-617 HM514256HJP-6/7 HM514256HZP-617 262,144-word x 4-bit CMOS Dynamic RAM. . . . . . . .. . . . . .. .... 6S2 • HM514258S/HM514258A SERIES HM514258P-8S/10S/12S HM51425SJP-SS/l0S/12S HM51425SZP-SS/l0S/12S HM51425SAP-S/l0/12 HM51425SAJP-S/l0/12 HM51425SAZP-S/l0/12 262,144-word x 4-bit CMOS Dynamic RAM. . . . . . . . . . . . . . . . . . . . 696 • HM514266AP/AJP/AZP-61718/10/12 262,144-word x 4-bit Dynamic Random Access Memory. .. ...... 711 • HM511000S/HM511000A SERIES HM511000P-SS/l0S/12S HM511000JP-8S/10S/12S HM511000ZP-SS/l0S/12S HM511000AP-S/l0/12 HM511000AJP-8/10/12 HM511000AZP-S/l0112 1,04S,576-word x l-bit CMOS Dynamic RAM. . . . . . ... .... . . . 725 • HM511000ALP/ALJP/ALZP-S/l0/12 HM511000ALP-8/10/12 HM511000ALJP-8110/12 HM511000ALZP-8/10/12 1,04S,576-word x l-bit Dynamic Random Access Memory. . . . . . . . 737 • HM511000H SERIES HM511000HP-6/7 HM511000HJP-6/7 HM511000HZP-6/7 1,04S,576-word x l-bit CMOS Dynamic RAM........... 751 • HM511001S SERIES HM511001 P-SSI10S/12S HM511001JP-SS/l0S/12S HM511001 ZP-SS/l0S/12S 1,04S,576-word x l-bit CMOS Dynamic RAM. " . . . . . . . . . . . . . . . . 762 HM51258P-8/10/12/15 HM514266AP-6/7/S/10/12 HM514266AJP-6/7/8/10/12 HM514266AZP-6/7/S/10/12 • Hitachi America, Ltd .• H~achi HITACHI Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 v TABLEOFCONTENTS--------------------------------------------------Section 5-MOS Dynamic RAM (continued) Page • HM511001A SERIES HM511001 AP-B/l0/12 HM511001 AJP-B/l0/12 HM511001 AZP-B/l0/12 1,048,576-word x 1-bit CMOS Dynamic RAM .. 773 • HM571000JP-35R/40/45 HM571000JP-35R/40/45 1,048,576-word xl-bit (BiCMOS) Memory 785 • HM574256JP-35R/40/45 HM574256JP-35R/40/45 262,144-word x 4-blt (BiCMOS) ........ . 803 • HM511002S/HM511002A HM511002P-BS/l0S/12S HM511002JP-BS/l0S/12S HM511002ZP-BS/l0S/12S HM511002AP-B/l0/12 HM511002AJP-B/l0/12 HM511002AZP-B/l0/12 1,048,576-word x 1-bit CMOS Dynamic RAM ...... . 816 • HB56A lBA/AT/B-6H/7H/BA/10A/12A HB56A lBA-6H/7H/BA/l0A/12A HB56A lBAT-6H/7H/BA/l0A/12A HB56A lBB-6H/7H/BAI1 OAl12A 1,048,576-word x 8-bit High Density Dynamic RAM Module. 831 • HB56C1BA/AT/B-BA/10A/12A HB56C1BA-BA/l0A/12A HB56C1BAT-BA/l0Al12A HB56C1BB-BA/l0A/12A 1,048,576-word x 8-blt High Density Dynamic RAM Module 837 • HB56A 19A/AT/B-6H/7H/BA/10A/12A HB56A 19A-6H/7H/BA/l0A/12A HB56A 19AT-6H/7H/BA/l0A/12A HB56A 19B-6H/7H/BA/l0A/12A 1,04B,576-word x 9-blt High Density Dynamic RAM Module .. 843 • HB56C19A/AT/B-BA/10A/12A HB56C19A-BA/l0A/12A HB56C19AT-BA/l0A/12A HB56C19B-BA/l0A/12A 1,048,576-word x 9-bit High Density Dynamic RAM Module.. . ... 849 • HM514100JP/ZP-B/l0/12 HM514100JP-B/l0/12 HM514100ZP-B/l0/12 4,194,304-word x 1-bit Dynamic Random Access Memory 855 • HM514100JP/ZP-7 HM514100JP-7 HM514100ZP-7 4,194,304-word x 1-blt Dynamic Random Access Memory. 869 • HM514100LJP/LZP-B/l0/12 HM514100LJP-B/l0/12 HM514100LZP-B/l0/12 4,194,304-word x 1-blt Dynamic Random Access Memory. 883 • HM514400JP/ZP-8/10/12 HM514400JP-8/10/12 HM514400ZP-8/10/12 1,048,576-word x 4-bit Dynamic Random Access Memory • HM514410JP/ZP-8/10/12 HM514410JP-8/10/12 HM514410ZP-8/10/12 1,048,576-word x 4-bit Dynamic Random Access Memory .. 911 • HM514400LJP/LZP-8/10/12 HM514400LJP-B/l0/12 HM514400LZP-8/10/12 1,04B,576-word x 4-bit Dynamic Random Access Memory ...... . 931 • HB561003 SERIES HB561003AR/B-12/15 262,144-word x 9-bit Dynamic Random Access Memory Module ... 954 • HB561409 SERIES HB561409A-10/B-l0 262,144-word x 9-bit Dynamic Random Access Memory Module 958 .. .. 897 Section 6 MOS Dynamic RAM Module ~HITACHI vi Hitachi America, ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 .. ~~------------------------------------------------TABLEOFCONTENTS Section 6-MOS Dynamic RAM Module (continued) Page • HB561008 SERIES H B561 008AR/B-12/B-15 262,144-word x 8-bIt Dynamic Random Access Memory Module 963 • HB56D25608A/B-6H/7H/8A/10A/12A H B56D25608A-6H/7H/8A/1 OA/12A HB56D25608B-6H/7H/8A/10A/12A 262,144-word x 8-blt High Density Dynamic RAM Module. 967 • HB56D25609A/B-85A/10A/12A HB56D25609A-85A/10A/12A HB56D25609B-85A110A/12A 262,144-word x 9-bIt High Density Dynamic RAM Module 979 • HB56D25636B-85/10/12 262,144-word x 36-blt High Density Dynamic RAM Module. 991 • HB56D51236B-85/10/12 524,288-word x 36-blt High Density Dynamic RAM Module 1003 • HB56A48A/AT/B-8/10/12 HB56A48A-8/10/12 HB56A48AT-8/10/12 HB56A48B-8/10/12 4,194,304-word x 8-blt High Density Dynamic RAM Module 1015 • HB56A49A/AT/B-8/10/12 HB56A49A-8/10/12 HB56A49AT-8/10/12 HB56A49B-8/10/12 4,194,304-word x 9-blt High Density Dynamic RAM Module. 1027 • HB56D136B-8/10/12 1,048,576-word x 36-blt High Density Dynamic RAM Module 1039 • HB56D236B-8/10/12 2,097,152-word x 36-blt High Density Dynamic RAM Module 1049 • HN623257p, HN623257F HN623257P HN623257F 32,768-word x 8-blt CMOS Mask Programmable. Read Only Memory 1060 • HN623258P, HN623258F HN623258P HN623258F 32,768-word x 8-blt CMOS Mask Programmable ROM. 1063 • HN62321/HN62331 SERIES HN62321P HN62321BP HN62331 P HN62321F HN62321BF HN62331 F 131,072-word x 8-blt CMOS Mask Programmable ROM • HN62331AP/F HN62331AP HN62331AF 131,072-word x 8-bIt CMOS Mask Programmable Read Only Memory 1069 • HN62331 P/F HN62331P HN62331F 131,072-word x 8-bIt CMOS Mask Programmable Read Only Memory 1073 • HN62321 E/HN62331 E SERIES HN62321EP HN62332EP HN62321EF HN62331EF 131,072-word x 8-blt CMOS Mask Programmable ROM 1077 • HN62321 AlHN62331 A SERIES HN62321AP HN62331AP HN62321AF HN62331AF 131,072-word x 8-blt CMOS Mask Programmable ROM 1080 • HN62412/HN62422 SERIES HN62412P HN62422P HN62412FP HN62422FP 131,072-word x 16-bltl262,144-word x 8-blt CMOS Mask Programmable ROM 1083 Section 7 MOS Mask ROM . 1066 ~HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra Point Pkwy' Brisbane, CA 94005-1819 • (415) 589-8300 vii TABLEOFCONTENTS------------------------------------------------Page Section 7-MOS Mask ROM (continued) • HN62404/HN62424 SERIES HN62404P HN62424P HN62404FP HN62424FP 262,144-word x 16-bitl524,288-word x 8-bit CMOS ............. . Mask Programmable ROM 1087 • HN62304B/HN62324B SERIES HN62304BP HN62324BP HN62304BF HN62324BF 524,288-word x 8-bit CMOS ............................... . Mask Programmable ROM 1091 • HN62444 SERIES HN62444P HN62444FP HN62444F 262,144-word x 16-bitl524,288-word x 8-bit CMOS ......... . Mask Programmable Read Only Memory 1095 • HN62414 SERIES HN62414P-17/20 HN62414FP-17/20 HN62414F-17/20 262,144-word x 16-bitl524,288-word x 8-bit CMOS ............. . Mask Programmable Read Only Memory 1101 • HN62314B SERIES HN62314BP-17/20 HN62314BF-17/20 524,288-word x 8-bit CMOS Mask Programmable Read Only Memory 1107 • HN62344B SERIES HN62344BP HN62344BF 524,288-word x 8-bit CMOS Mask Programmable Read Only Memory 1111 • HN62408 SERIES HN62408P HN62408FP 524,288-word x 16-bitll,048,576-word x 8-bit CMOS ........... . Mask Programmable ROM 1114 • HN62308B SERIES HN62308BP HN62308BF 1,048,576-word x 8-bit CMOS Mask Programmable Read ........ . Only Memory 1119 • HN66403P SERIES HN66403P 524,288-word x 16-bitll,048,576-word x 8-bit CMOS ........... . Mask Programmable Read Only Memory 1123 • HN624016 SERIES HN624016P HN624016F 1,048,576-word x 16-bitl2,097,152-word x 8-bit CMOS .......... . Mask Programmable Read Only Memory 1127 • HN58064 SERIES HN58064P-25/30 8,192-word x 8-bit Electrically Erasable and Programmable ROM ... 1132 • HN58C65 SERIES HN58C65P-25 HN58C65FP-25 8,192-word x 8-bit Electrically Erasable and Programmable ...... . CMOS ROM 1138 • HN58C66 SERIES HN58C66P-25 HN58C66FP-25 8,192-word x 8-bit CMOS Electrically Erasable and ............. . Programmable ROM 1147 • HN58C256 SERIES HN58C256P-15/20 HN58C256FP-15/20 32,768-word x 8-bit Electrically Erasable and Programmable ..... . CMOS ROM 1156 • HN27C256AG SERIES HN27C256AG-l0/12/15 32,768-word x 8-bit UV Erasable and Programmable ROM ....... . 1158 • HN27C256HG SERIES HN27C256HG-70/85 32,768-word x 8-bit CMOS UV Erasable and Programmable ROM .. 1166 • HN27512G SERIES HN27512G-25/30 65,536-word x 8-blt UV Erasable and Programmable ROM ....... . 1176 • HN27Cl024HG SERIES HN27Cl024HG-85/10 65,536-word x 16-bit CMOS UV Erasable and Programmable ROM. 1183 Section 8 MOSPROM • viii HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 ---------------------------------------TABlEOFCONTENTS Page Section 8-MOS PROM (continued) • HN27C101G SERIES HN27C101 G-17/20/25 131,072-word x 8-blt CMOS UV Erasable and Programmable ROM. 1192 • HN27C301G SERIES HN27C301 G-17/20/25 131,072-word x 8-bit CMOS UV Erasable and Programmable ROM 1200 • HN27C256FP SERIES 32,768-word x 8-blt CMOS One Time Electrically ... Programmable ROM 1209 • HN27512P SERIES HN27512P-25/30 65,536-word x 8-bit One Time Electrically Programmable. Read Only Memory 1215 • HN27C101P/FP SERIES HN27C101 P-20/25 H N27C 101 FP-20/25 131,072-word x 8-bit CMOS One Time Electrically Programmable ROM 1222 • HN27C301 P/FP SERIES HN27C301 P-20/25 HN27C301 FP-20/25 131,072-word x 8-blt CMOS One Time .. Electrically Programmable ROM 1229 • HN27C101AG SERIES CMOS 1Mb EPROM 131,072-word x 8-bit CMOS UV Erasable and Programmable ROM. 1237 • HN27C4096 SERIES HN27C4096G-10/12/15 HN27C4096CC-10/12/15 262,144-word x 16-bIt CMOS UV Erasable and Programmable ROM 1247 • HM10494 SERIES HM10494-10/12 HM10494F-10/12 16,384-word x 4-bit Fully Decoded Random Access Memory 1258 • HM10490 SERIES HM10490-10/12 65,536-word x 1-blt Fully Decoded Random Access Memory .. 1263 • HM10504-10/12 65,536-word x 4-bit Fully Decoded Random Access Memory 1267 • HM10500-15 262,144-word x 1-bit Fully Decoded Random Access Memory 1268 • HM100494 SERIES HM100494-10/12 HM100494F-10/12 16,384-word x 4-bit Fully Decoded Random Access Memory .. 1273 • HM100490-10/12 65,536-word x 1-bIt Fully Decoded Random Access Memory ... . 1277 • HM100504F-10/12 65,536-word x 4-bit Fully Decoded Random Access Memory .. . 1281 • HM100500 SERIES HM100500-18 HM100500CG-18 HM100500F-18 262,144-word x 1-blt Fully Decoded Random Access Memory .. 1282 • HM101494 SERIES HM101494-10/12 HM101494F-10/12 16,384-word x 4-bit Fully Decoded Random Access Memory ..... . 1285 • HM101490-10/12 65,536-word x 1-bit Fully Decoded Random Access Memory 1289 • HM101504F-10/12 65,536-word x 4-bit Fully Decoded Random Access Memory 1293 • HM101500F-15 262,144-word x 1-blt Fu!ly Decoded Random Access Memory .... 1294 Section 9 ECl RAM ... HITACHI SALES OFFICES. . . . . . . . . . .. . .............. . 1302 @HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy' Brisbane, CA 94005-1819' (415) 589-8300 ix .HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 INTRODUCTION • Ouick Reference .to Hitachi I.C. Memories • Package Information • Reliability of Hitachi I.C. Memories • Quality Assurance of I.C. Memory • Outline of Thsting Method • Application ~HITACHI® .HITACHI Hitachi America Ltd .• 2210 O'Toole Ave .• San Jose, CA 95131 • (408) 435-8300 QUICK REFERENCE GUIDE TO HITACHI MEMORIES • MOSRAM Mode Total Type No. Process OrgamzatJon (word x bII) ~cess Cycle Time (ns) Max Time (ns) Max 16-2'2 16-4"2 16L"2"2 HM il16L"3"2 ~"1"~2_ nM )11- Hili Hili IV) • Power DIssipation (W) Package 10 CMOS 2048x8 12 15 ,< 2"2 5"2 150 200 ~0"2 16k-b r.7.'i:;;:c=----j Bi-CMOS ~n--'NoG-'---'-PFp'Tl-rspzp"T".C-'G----r CPJ"p-l M Ie e 'e e .e e i4 10a/0.175 '•• i4 10tJO.15 •e ee 0.1m/15m 12 15 21 5tJl0m 2048~ 24 i4 e le • • • Ie Ie Ie 0.28 (withllt) !5 35 ~ 4096x4 15 0.ltJO.25 ~ 5tJO.25 31 41 31 CMOS 74 •• •• e I-----i 20 I-r.:++--t-+-+-+-t-t---:~~-U~' M5l425 5'3 2 34 3 45 45 4 60 190 220 260 190 220 260 10 120 150 10 120 15C 120 150 100 120 150 100 1()( 12( 15( 10 1()( 120 150 ~'3 65536 x 4 NMOS ___ ii~:;-+------l 200 120 262144 x 1 '12 I-IM~1?1;R1 _R CMOS 3 '.'.1. ,.,. 3 ,.,. 176 88 1110 10 l:iO 10 16k-b Page 220 260 190 220 260 190 190 220 260 190 190 220 260 190 120 !SO 120 !60 330 220 15 251 85 100 120 150 155 185 210 250 025 02 I.. 412 I.. 412 ,.. 425 ,.. 425 24 ~1tt~_4_+~.-+-+-+-+~4111~2 ,.. 425 • 569 ,. 444 40 1---~-4-+-+-+-+'.~-I--~444_ +5 I. 35m10 55 ,. 444 470 I. 470 • • • • • I. I. I. I. I. 469 469 469 • • i. I. 516 542 • • I. I. 469 516 542 !j. 18 ~I~.-+-+-+-+I.~-I---I--~~_ 20m10.35 I. I. I. Itt • • • I. I. ,. I. ,. I. I. I. Ie ~ I. I. i9R 106 I. 606 Ie ;98 i98 606 (continued) ~HITACHI xvi Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - QUICK REFERENCE GUIDE • MOSRAM I~cess Cycle Mode Total Process Type No Orgamzabon . ~~. lime (word x bit) (ns) Max Power 110',,. "pol, DissipaMn IV) (W) Package " ~n-"'NoG-r--rpi FP-'-I-"spl zp--'-ICG-I"'--'cpl J.....,...--lPM Page f-I IM512 262144 x 1 f-1,*-C~!O,...., 10m/0.35 12 IS IMOIl 16 r.. I. I. 111, 40 I. I. I. I. i. I· I. I. I. I. I. I. I. Ie Ie I. I. I. Ie Ie I. I. I. ..I. I. I. .- I. I. I. 111: 30 IIIl 75 I. I. I. I. I. I. ·-.·· ··• • · ,..-r.'. ... I.•• .• I 1( IM514 I 1( 120 80 100 12( 5-I:S 160 190 2:!0 10mlO.33 1!10 2:!0 6( 120 71 8( 10! 12( 60 130 160 190 !20 120 140 'H 11/495 ,. 10ml0 45 160 190 1( 220 10mlD 375 160 10 1( 12( 6( Dynamic 1M-b CMOS 7( 80 100 1048576 x 1 120 110 80 160 10 12 190 20 160 8( HM511ooG-IOS HM5111lOO-12S HM511000A-I0 HM511OO0A-12 IM511000ALP-8 IM511000ALP-I0 IM511000ALP-12 lMO 11UWAUP-8 lMO IlUWAUP-I0 MOll IVlOII 11-0: MOil 11-1 IH IH 511 iO 11/495 11/440 +5 11I31l3 190 !20 DC gO 8C 20 60 DC 90 11/3113 ;9 )3 59 10m/0.35 10m/0375 I: Ui385 80 100 I:!O IP_'? '0 ,0 IA-8 IA-I0 IA-12 -ll I. I. I. 171330 1.71275 17/385 17/330 1.71275 11 '20 25 40 10mlO.45 00 20 81 160 101 12( 220 5() ~O • • • • IOmfO.35 50 I. 35 35 651 i96 e- I. 11 11 • .-.- .-.- •• •• • . -. • •• 11 .-. ... · ...• • • • • •• •• .•• • ••• I. ,. I. I. I. I. ,. I. I. ··• .-. •• •• 737 •• • i2 17 17 .-.- I.. . · -. -. I. 60 11 12( 81 10 81 18 •• 6 190 7 81 816 (continued) • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 xvii QUICK REFERENCE GUIDE - - - - - - - - - - - - - - - - - - - - - - - - - - • MOSRAM Mode Total Type No Process Organization (word x bit) I~cess Time (ns) Max Cycle Time S,pply (ns) V"..,. Max IV) Power Dissipation (W) Package ., ~lpm~NO~GP~I~ FPI s~pl~ zprCG~1cP~I~ JPM----j I_ Ie 1 2A-l0 2A-12 JP-35R lM-b~~llj ~M ;7A?'i '_0' CMOS Bi-CMOS 11,048,576 (1~1~~1' lMxl HM574251 P-4( HM'i141r HM51410~10 4,194,304 x 1 HM5141oo-12 40 45 35 4C 45 80 MWIO 144VV- IV MIVlOI44UU-I 4M-b HM514101-8 HM514101-10 HM5141C ·12 CMOS MIVIO 14IV£-O MIVlOI4IV£-lU HM514102-12 Ie 5V ~--~~~8iCO~15~;CO~ 100 180 A 1 12C 21C ~,194,304xl 80 150 100 180 ~__-----j~1~20~2~100~ 80 150 1,048,576:4 100 180 HB56A19-10S 1048576 x 9 HB56A19-10A nooo" ,~-,£" DRAM Module HB56C18-10 HB56C18-12 HB56C18AT-8A HB56C18AT-l0A 1048576x8 CMOS MOOO" '_0'" - 1£" HB56C19-8 HB56C19-1O HB56C19-12 HB56C 19AT-8A HB56C 19AT-l0A 1048576x9 MOOO" I~"I-I'" ~A_A, 262,144 x 8 ~'1-10A -lUll 1-12A 262,144 x 9 210 180 210 180 210 190 220 560 A80 400 830 190 220 630 540 450 180 160 132 110 94 202 170 144 llm/.385 llm1.~5 11 m/.44 I- I- l1m/.44 I_ I- 03 803 I_ 816 816 855 855 855 I_ I_ I_ I_ 883 I_ 883 I_ 883 I_ 883 r.883 I_ I_ I_ I_ 20ml14 20 883 883 883 883 I_ I_ I_ I_ I_ I_ I_ 963 963 854 854 958 831 831 ~~-4-+-+-+-+~Ie~aIT~_ _ 831 5V 20m/1.6 I_ 843 _ 843 _ 843 20m/1.8 837 837 88/3.08 88/2.6A 88/220' 99/3465 _ 849 _ 849 _ 849 _ 96i I_ I_ I_ 967 967 967 22m12.0 9913465 99/2970 99/2475 22/990 221880 221726 22/605 22/517 331 33/94 33/.79 .HITACHI xviii :16 :16 i16 Ie Ie 012/2.42 0.135/2 55 0.135/2.16 60m/18 ;~ ~~~ 120 100 120 100 120 100 120 80 100 120 80 100 120 80 100 120 60 70 80 100 120 85 100 120 11 ml 495 11 mI 44 llm/.385 0.12/2.42 262144 x 9 150 260 ~__~~1~0ICO~18~CO~ 100 180 1048576 x 8 ----- r_ Tj mTS5 1m1.385 llm/.495 11 m/.44 11m1.385 11 mI 495 HIR'ifi1nllOSllL1-~'i~-=~ 150 260 NMOS 1------+-=-120-t~ 21CO-l HB56A 18-1OS I- 1;:3~~ 14C ISV-5 150 180 210 Page lW 11 ml 495 __-+__~H~M5144~10~=__12~----~----~1=_20~1~10 HR'ifi11lOSl_1' 262144 x 8 120 110 ~ r. I_ I_ ~~~ ~~~ 7C 80 1,048,576 (4 100 120 Dynami( 80 85 70 8C 85 150 lOm/0.45 I_ Ie Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 I_ I_ 979 979 (continued) - - - - - - - - - - - - - - - - - - - - - - - - - - - QUICK REFERENCE GUIDE • MOSRAM Mode Total Type No I_R~A 85 10 120 85 262,144 x36 100 120 85 524,288x36 1011 120 262,144 x 9 I-lOA -12A I HB56D5 -IU 2 6B-1 I HB56M DRAM Module MtlOOM~-IU lA1?cess Time (ns) Max Organization (word x bit) Process CMOS 1 4,1 1 4,1 ,9 80 100 120 ,8 80 100 120 80 100 120 80 100 120 no_"''''~"-,£ I HB56A48-8 I HB56A48-10 4M-b ~6~48:!2 1,045,576 36 I HB56D136-12 2,097,152 x36 ~R<;~n?~~_1? Cycle Time (ns) Max Supply Voltage (VI 202 176 144 160 90 20 Power DIssipation (W) Package " IpmN' Page G P fP SP I ZP I CG ' CP JP M • •• •• 33/1 3~.!l~ 30 33/.79 126/4.24 252/4.58 252/3.91 911 20 252/3.36 160 99mJ4455 190 99m/3.96 220 99m/4405 5V 160 88m/396 190 88m/3.52 88m/3.08 220 160 126m/5.25 190 126m/4.62 220 5V 126mJ3.99 160 1±5Ok 252m/5.57 252m/4.94 190 220 252m/4.31 • • • • • •• • •• •• • _.•• 72 30 72 979 979 979 991 991 991003 1003 1003 1027 1027 1027 1015 1015 1015 1039 1039 1039 1049 1049 lQ49 • MOSROM Program Total Bit 256k-b Type No. Process I HN623257 I HN623258 I HN6233P Organlza~on (word x bit) Access Time (ns) Max 150 200 120 150 200 120 200 120 150 150 200 150 200 150 200 32768x8 I HN62321 lM-b 2M-b Mask 4M-b I HN62321B I HN62331E'3 I HN62321E I HN62331A'3 I HN62321A IHN62422'3 I HN62412 I HN62424'3 I HN62404 I M"OL~L4tl' I HN62304B 131072x8 CMOS 524288x8 262144 x 16 or 524288x8 512Kx8 512Kx!j 256 x 16 HN62414 I HN62314 HN62444 BM-b 131072 x 16 or 262144 x 8 262144 x 16 or 524288 x 8 ~OQl1ZO Power Dissipation (W) Package " PION, Page G P FP •• • •• •• • -~ 28 32 40/44 5+ 5,,/01 401 32 200/170 200/170 1QO 100 40 44148 32 40 44/48 200 42/44 o~~~~~68 HN62408'3 Supply Voltage (V) • •• •• •• •• •• _. • • •• •• • •• • • • •• • • . ! • , ! • 1060 1063 1069 1066 1077 1077 1077 1069 1080 1083 1083 1087 1087 1091 1091 1101 1101 1107 1095 1095 1114 (continued) o HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 xix QUICK REFERENCE GUIDE • MOSROM Program Total Bit Type No. Process HN62308B Electrically Erasable & Programmable 16M-b 256k-b 256k-b UV Erasable & Electrically Programmable 512k-b 1M-b 256k-b 512k-b One Time Electrically Programmable 1M-b HN58C65-25 HN58C66-25 HN58C256-20'4 HN27C256A-10'3 HN27C256A-12'3 HN27C256A-15'3 HN27C256H-70 HN27C256H-85 HN27512-25 HN27512-30 HN27C1024H-85 HN27C1024H-10 HN27C101-17 HN27C101-20 HN27C101-25 HN27C301-17 HN27C301-20 HN27C301-25 HN27C256-25T HN27C256-30T HN27512-25 HN27512-30 HN27C101-20 HN27C101-25 HN27C301-20 HN27C301-25 8192 x8 CMOS 32768 x 8 NMOS 65536 x 8 65536 x 16 CMOS 131072x8 32768 x 8 NMOS 65536 x 8 131072 x 8 CMOS HN27C101-AG 128kx 8 HN27C4096 256kx 16 • xx Access Time (ns) Max 1Mx8 1Mx8 512Kx 16 1048576 x 16 or 20978152 x 8 HN66403P HN624016'3 64k-b Organization (word x bit) Supply Voltage (V) Power Dissipation rN) 200 Package " Pin No G 5,,10.1 42 200 250 250 200 100 120 150 70 85 250 300 85 100 170 200 250 170 200 250 250 300 250 300 200 250 200 250 15/12/10 15/12 12/12110 12115 2m/20m 05,,10.1 28 015 50m/0 2 02 40 05,,10.1 32 +5 o5,,/50m 50m/0 2 32 05",01 40 44 Page FP •• 32 250 P • • • • • • • • • • • • • • • • • •• •• •• • • • • • • • •• • HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 • • • • • • • 1119 1123 1127 1138 1147 1156 1158 1158 1158 1166 1166 1176 1176 1183 1183 1192 1192 1192 1200 1200 1200 1209 1209 1215 1215 1222 1222 1229 1229 1237 1237 1247 1247 - - - - - - - - - - - - - - - - - - - - - - - - - - - QUICK REFERENCE GUIDE • ECLRAM level Total Bit 64k-b ECl10K 256k-b 64k-b 256k-b ECL100K 64k-b Type No HM10494-1O HM10494-12 HM10490-10 HM10490-12 HM10504-10 HM10504-12 HM10500-15'3 HM100494-10'4 HM100494-12'4 HM100490-10 HM100490-12 HM100490-15 HM100504F-10 HM100504F-12 HM100500-18'3 HM101494-10 HM101494-12 HM101490-10 HM101490-12 HM101504-10 HM101504-12 HM101500-15'3 Organization (word x bit) Output 16384x4 65536-1 Open 65536x4 262144 x 1 16384x4 65536 x 1 65536x4 262144 x 1 Emitter 16384x4 65536 x 1 Access Time (ns) Max 10 12 10 12 10 12 15 10 12 15 20 10 12 18 10 12 10 12 10 12 Supply Voltage Power DIssipation (V) (W) 08 -52 57 50 052 065 -45 057 50 05 75 -52 .57 ,50 Package " Pm No G F Page CG •• •• 22 • • •• • 28 • 24 • 28 • • •• •• 22 • • •• • 28 • 24/28 • • • 28 • • •• 22 • • •• • • 24 JP 28 • • • • • • 1258 1258 1263 1263 1267 1267 1269 1273 1273 1277 1277 1277 1281 1281 1282 1285 1285 1289 1289 1293 1293 1294 Notes) '1 The package codes of G, F and CG and apphed to the package matenal as foIl17NS G, cerdlp, F, F~t Package, 00, Ceramic leadless Cilp Garner '2 Maintenance Only This dO\l1ce IS not "",,'ab'e for new apphcabon ·3 Preliminary '4 Under Development ~HITACHI Hitachi Amenca, Ltd, • Httachi Plaza • 2000 Sierra Point Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 xxi ~HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 Package Information ~HITACHI® • PACKAGE INFORMATION e Dual-in-line Plastic Unit: mm (inch) Scale 1/1 eDP-16B eDP-18B 192(0756) 2032max ~ (OaGOma.) 9/ ~~:::::Jll~:~ ill I-!- _ _ ~/.m (0035) (0051) ~ ~ • ~ 22.0(0866) 18 2Z16max to loom.x) 10 ~~d 762 /(0300)1 ~h~ i ~e \\02~'!:" o ~ ~ e 254±025 048101 (0100'0010) (0019+0004) 0"~J5' ) ~O\O:~o; '-rr,....,TT"rTTtT[:n:ln:r'~e - e I 13(0.051) _ ~l:i 048±01 254±025(0019±OOO4) (0100±0010) eOP-20N eOP-18C 2540max (I OOOma» 2226(0876) -;:;r~ Ltt-trt""'-c"1E:M:I"V"C'"Ir-.:le ---'.JW 9 (003S) ul~ = -~ =-i (0051) !-lli~2 os. ~~ r~ ",e 2S4:t025 (0100 ± 0 010) -L 048101 (0019' 0004) ~~e. eOP-22N eOP-20NA 2708(1066) 21 9Oma•.( I 098max) 12 ~~ U8±O I (0019±0004) • 2 162 (0300) 254±025 (OIOO±OOIO) HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 --------------------------------------------------------PACKAGEINFORMATION e Dual-in-line Plastic Unit: mm (inch) Scale 1/1 eOP-22NB eOP-24 31 6( I 244) 1"24 27 90max (I 098max) .t::::;:.:[:U 088(0035) II~ -I (~~47) 762 (0300) 12 o25~% ~\ to O\O~U~~) ~~~~ -U-- 13! OJ I 3(0051) ~!! 32 Srr.ax (I 2S0max) .e Q48±OI 254±025 (0019±0004) (0100±0010) eOP-24A eOP-24N r _~~1) __ 31 75madl 250ma,) c::::: ::jl~l! 10~-l.~ (0043) 1 12 13 (0 OSI) eOP-24NC 29.88(1 176) 30 48max (I 2QOrnax ) 24 13 o ~ I 14(0045) 762 (0300) ~!jil--l~l ~.E'E-~ - -----L 048±O I (OOI9±0004) 254±025 (OIOOtOOIO) ,,- ~~ ~~ ..... .9. 0'" ~~ ~ ~ 3:X g IS' N.e @HITACHI Hitachi Amenca, Ltd • Hitachi Plaza. 2000 Sierra POint Pkwy • Bnsbane, CA 94005-1819 • (415) 589-8300 3 PACKAGEINFORMATION-----------------------------------------------------Unit: mm (inch) Scale 1/1 e Dual-in-line Plastic • DP-28 eOP-28N 360(1417) :: ::: :::::::: ~[1~ I -1-1_ I 14 - I 30(0051) wmwmwmi -L D48±OI (0019±0004) ~:. 254±025 COg ~.e. (0100±0010) eOP-32 • 4 HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ------------------------------------------------------PACKAGEINFORMATION Unit. mm (inch) Scale 1/1 e Dual-in-line Plastic eOP-42 528(2019) 53 7m," (2 II.mlx) ~n .- 22 M u~ ...................................................... ""' ........................ _ ~ ~(00.1) 21 1524 (0600) ~li . 09. 254+025 fiilOO+oolO) on g ~5 :;;~ 048+01 ~i9+0004) r.,- eo' Applicable ICs Dp·16B HM50236P Dp-18B IIM50464P Sene,. IIM50465P Sene, Dp-18C DP-20N Dp-20NA DP-22N DP-22NB Sene~. 1I:vI50257P Sene~. HM51236P Sene!., H:\r151256LP Sene~, HM3125HP Sene.., IIM53051P. IIM511000AP Senes. IIM511000SP Senes. IIM511000HP Senes. IIM51100lAP Senes. IIM51l00lSp Sene,. IIM511002AP Senes, HM511002SP Sene, IIM6l6811P Senes, I!M6l6811LP Sene" IIM62b8P Senes, IIM6268LP Senes IIM6167P Sene" Wvlbl67LP Senes, IIM6l671!P Senes, IIM6l67l1Ll' Sene" HM6267P Senes, IIM6267LP Sene, IIM5l4256P Sene" I!M5l4256AP Sene" I!M:J14256SP Sene" I!M5l425611P Senes, IIM5l4258l1LP Senes, IIM514258SP Senes IIM6287P Senes, IIM6287LP Senes IIM6288P Senes, HM6288LP Sene" IIM6788P Senes, IIM6788l1P Sene" IIM628711P Senes, IIM628711LP Senes, IIM6787P Sene" IIM678711P Sene, DP-24 IIM61l6P Senes, IIM61l6LP Senes, IIM61l6Ap Sene" IIM6116ALP Sen., DP-24A IIM5346lP Senes. IIM53462P Senes DP-24N DP-24NC HM6116ASP Series, HM6116ALSp Senes I!M6716P Senes, HM6719P Sene" IIM6789P Senes, IIM6789l1P Senes, I!M6208P Senes, llM6208LP Senes, IIM6208l1P Sene,. llM6208I1LP Senes, HM6708P Senes, llM6207P Senes, HM6207LP Senes, HM6207llP Senes, HM6207HLP Senes, HM6707P Sene. HM6264P Senes, HM6264LP Sene" llM6264LP-L Senes, HM6264AP Senes, HM6264ALP Senes, HM6264ALP-L Senes, Dp-28 IIM62256P Senes, IIM62256LP Senes, IIM62256LP-L Senes, HM65256AP Senes, HM65256BP Senes, HM65256BLP Senes, IIN623257p, IIN623258P, IIN6232lP, HN6232lBP, HN62331P, IIN62321EP, IIN6233lEP, HN6232lAP, IIN6233lAP, IIN58064P. HN58C66P, HN58C256P, IIN27128AP, IIN27256P, HN275l2P DP-28N Dp-32 HM6264ASP Senes, HM6264ALSP Senes, I!M6264ALSP-L Senes, IIM65256ASI' Senes, IIM65256BSP Senes, I1M65256BLSp Senes, HM630211' Senes HM628l28p Senes, HM628128LP Senes, IIM658128DP Senes, IIM65256ASP Sene" HM65256BSP Senes, IIN27C101P Senes, IIN27C30lP Senes DP-40 HN624l2p, IIN62422P, IIN62404P, HN62424P DI'-42 HN624081', HN6240l6P • HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy, • Brisbane, CA 94005-1819 • (415) 589-8300 5 PACKAGE I N F O R M A T I O N - - - - - - - - - - - - - - - - - - - - - - - - - - - - e CERDIP Unit: mm (inch) Scale 1/1 ~ eOG-20N 25 16(0.991) eOG-22N . III 120 r==lJ~ ~ (0040) (0061) ~ "~ - Hd ~ . 2541025 (OIOO:1'OOIO) 762 ~ t.O.8 =~E ~ ~0300) 1L 048tOI (OOI9:t0004) -- ~!~ .. 0 \ \ ~!. ~ ~ .e ~2:~~~:c~~) 048±OI (0 019±0 004) \0 0"'15' :::e 2S4±025 (0100±0010) eOG-24V eOG-28 3683 t::::B:::JJ I ---J ~2 14 ~ (0052) --. .!('~I 1524 (0600) I b~!H!F\~ --~ 2S~~~~ 254 ±O 25 (OIOO±OOIO) -L- 048±OI (OOI9±0004) ~g . ~;;O-IS' °:;) 0 10.. tOO-o N-- eOG-28N ~lU c:::>; 048±OI 254±OZS (0019±0004) (OIOO±OOIO) e ~HITACHI 6 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. Brisbane, CA 94005-1819 • (415) 589-8300 ------------------------------------------------------PACKAGEINFORMAT~N e CERDIP Unit: mm linch) Scale 1/1 eOG·32 11 32 r~2J o 1524 10600) 16 eOG·40A Z S4max (0 100max) Applicable ICs IJG·20N HM10480·15, HMlOO480·15 IJG·22N HMI0490·15, HMlO0490 Senes IJG·24V HMI0500·15 HN27128AG Senes, HN27256G Senes, HN27C256G Senes, HN27C256AG Senes, HN27C256HG Senes, IJG·28 HN27512G Senes DG·28N HMI0494 Senes, HMI00494 Senes DG·32 HN27ClOIG Senes, HN27C301G Senes IJG·4OA HN27Cl024HG Senes • HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005· 1819. (415) 589-8300 7 PACKAGEINFORMAnoN-----------------------------------------------------e Zigzag-in-line Plastic Unit: mm (Inch) Scale 1/1 eZP-16 eZP-20 .. 20 13(0 793) IT065in.X(0813m.. ~~ r'i!!II~ ';,~s ~ 8 ....... 16 ~ ~nTmrnmnrnTnm 0'1:01 (OOI9tOOOt) 1117(0050)] c ~ E - OlS~U' (OOI~UUl ~ =L "'l;! ",r:J~ !Yi?S6YvY'il.J::: ~ eZP-24 eZP-28 I I I 3558(1 '01) 36 57max (I .40malC) - ~mmmmmnmllm~281] II ~:::: (0 020~g gg~) !' Ii I 1 27(0050) I n n n n n n n n n n _U Q Q Q Q UQ U U 3 n I--t.::l~ U g Q U t~8 Applicable ICs ZP-16 HM50256ZP Senes, HM50257ZP Senes, HM51256ZP Senes, HM51256LZP Senes ZI'-20 HM514258SZP Senes, HM511000AZP Senes, HM511000SZP Senes, HM511000HZP Senes, HM511001AZP Senes, HM514256ZP Senes, HM514256AZP SerieS, HM514256SZP Senes, HM514256HZP Senes, HM514258AZP Senes HM511001SZP Senes, HM511002AZP Senes, HM511002SZP Series ZP-24 HM53461ZP Senes, HM53462ZP Senes ZP-28 HM534251ZP Senes, HM534252ZP Senes, HM534253ZP Senes * HITACHI 8 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy • Brisbane, CA 94005-1819. (415) 589-8300 ------------------------------------------------------PACKAGEINFORMATION e Flat Package Unit mm (inch) Scale 1 Y, eFP-24D eFP-28D 1580(0622) O· -10' 162ImaK(0638maK) 1":.\ ~ a; 0H .n ~~ ~ ~ o 17+g g, (O-007± 0003) - o40~g A~ (0 016~g gg;) eFP-28DA 1830(0 W no) O' - 10' -v-- 0;;; Oi ~ 0 0 0 e ~:2 8 ... +< =8 ~ ~1"18' (0007 ±O DOl) eFP-44A 172±03(0677±0012) 14 010 551) ~nnnnnl{ " o ___ 34 ~:g ~ 1 I; 290(0 114)max 1 o 1(0 004) (STAND OFF f=1 0 ~o ~ ~ 44 12 N e E: ~ ~~ ~ I UUUUUUI I 0,!5++ 0 05 111+1015(0 006)MI (0 0 _0 002) I OI5±005 ~IL' I 10 006±0 002) I I, Ill! ~ Ilf~[ ~Ii I . II 'JL ~~ _ L~=~:"--.... (0 031) _________ ~ 1013 ±005 10_~. IIO~59~~~~~ o43±OI 127±02 (OOI7±0004) (0050±0008) ._ _ _ 10037±0007) 235maK ______._ _ _ _ _ _ _---' (0 093max) ~HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Bnsbane, CA 94005-1819 • (415) 589-8300 9 PACKAGE I N F O R M A T I O N I - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Flat Packages (continued) • FG-24A • FG-28D Applicable les FP-24D Senes, 1l:vJ6116LFI' Sene, - - f1l1Vl6116FI' ---- - - - - - - - - - - - - - - - - - -______---c____: - : - : _ _ - - . - - - - - - - - - FP-2BD 1l~16264FI' Senes, IlM6264LFI' Sene>, 1l\16264LFI'·L Senes, 1l\'16264AFP Senes, HM6261ALFI' Sene, 1l1Vl6264ALFp·L Senes, HN58C6jFP Sene" IIN38C66FI' Senr_'s_,._1l._N_·:,_RC.'.Z_3_6_F_P_S_e_n_es_ _ _ _._ _ _ _ _ _ _ _ _ _ _ _ __ IlM6264FI' Senes, HM6264LFP Senes, IIM6264LFI'·L Sene" ILvlliZ64AFP Senes, HM6264ALFP Senes FP·28IlA IIM6264ALFP-L Senes, HM62256FP Senes. JI:v162Z::i6LFP Sene'>, 1J:\i1622:J6SLFP Senes, HM652:)6BFP Senec-" IllVl63256BLFP Senes, IIN623257F, IIN62:1Z5RF, IlN62:121F, IIN62:11111F, HN62:l31F, llN62321EF, IINb233IEF, HN38C65FI', IIN58C66FI', HN58C256FP, IlN27C256FP IIlV1628128FP Senes, FI'·321l 1l~1628128LFP Senes, 1I'I165812HllFP Sene" 1I'I1658128LFP Serw" IIN62:l2IAF, HN62:13IAF, HN623()4HF llN623241lF, IlN27CI()IFI', IIN27C:1()IFI' ---+---------------------------_._--------_._---HN62412FI', IIN62422FP, 1Ir-.i62404FP, IIN62:_24_F_P_,_1I_N~.4_08_F_P_ _ _. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Fp·44A H;·20D HMI0150U~·I' FG-24A HMIOI5WF-15 FG-28D HM l0049F Senes • TSOP Packages • TFP·32DA • TFP-32D 8,0(0.315) 32 17 8.0(0.315) 0.20'0.10 O.50!O.10 (0.02o,o.004) 20.0'0.2(0.787<0.008) 0.50'0.10 (0.020'0.004) 14.0:tO.Z (0.551'0.008) ~HITACHI 10 Hitachi AmerIca, Ltd • Hitachi Plaza' 2000 SIerra Pomt Pkwy' BrIsbane, CA 94005-1819· (415) 589-8300 ------------------------------------------------------PP.ACKAGEINFORMAnON • Leadless Chip Carrier • CG-28 • CG-22A • CG-288 • CG-28A ~ I I 635±02(025±0008) ~i[ I,.,,'" 1~ ! I r[jj""i]ij"n 14 g , 2Z±025 IUH03 N --t-- 0024) ~;'!I 0 00 20 13 n (0 08l±0 010) 719(0283) 86~:15 21 (0339~~ I UUUUUUII 10 • Flat Package (J-bend Leads) • CP-20D • CP-18 I~ ~ ~~~~ L§2J., (0 094~:::) 169(0665) 20 17 21max (0 610max ) I; ~ ) N o 63mm (0 02Smln ) II j ~ I d- 10 074(0029) ~_t~O ______________ IDfOTiO]OO] (SEATING PlANE:) ~ OO±O 10 [I mooso! fI+i fil :0: ~ ... - (0017±000') • CP-280 • CP-24D (0094~:= IS 63(0 61S) 16 OOmax 2' ) o 63mall o63mm 13 (0 02Smm ) ]-!I ; ti ~ : ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra POint Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 11 PACKAGE INFORMATION - - - - - - - - - - - - - - - - - - - - - - - - - Umt: mm (inch) Scale 1% • Flat Packages (J-Bend Leads) (continued) • CP-40D • CP-32D • CP-44 Applicable ICs CG-22A HM6787CG Senes, HMlO0490CG Sene, CG-28 HMI0490CG-15 CG-28A HM2144CG Senes, HMI04ROCG-13 HM 10l5WCG-15 CG-28B HMI00500CG-18 CP-18 HM50464CP Senes, HM50256CI' Sene., IIM50257CP Senes, HM51256CP Senes, HM51256LCP Sene, HM514256JP Senes, HM514256AJP, IIM514256SJP Sene,. HM514256HJP Sene" IIM514258AJP Senes, HM514258SJI' Senes, CP-20D HM511000AJP Senes, IIM511000SJP Sene" HM5110001!)P Senes, IIM511001AJP Sene" IIM511001SJP Senes, HM511002AJP Senes, HM511002SJP Senes HM6288JP Senes, HM6288LJP Senes. HM6289JP Senes, HM6289LJP Senes, IIM6789JP Senes, HM6789HJP Senes, HM6287HJP CP-24D Senes, HM6287HLJP Senes, HM6787HJP Senes, HM6208l1JP Senes, HM6208HLJP Senes, HM6708JP Senes, HM6207HJP Senes, HM6207HLJP Senes, lIM6707JP Senes, CP-28D HM624256JP Senes, HM53425IJP Senes. IIM534252JP Senes, IIM534253JP Senes CP-32D HM624257JP Senes, HM624257LJP Senes CP-40D HM53812IJP Senes, IIM538122JI' Senes, IIM538123JP Senes CP-44 HM67C932 Senes CP-52 HM62A168 Senes, HM62A188 Senes .HITACHI 12 Hitachi Amenca, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy • Bnsbane, CA 94005-1819 • (415) 589-8300 • RELIABILITY OF HITACHI IC MEMORIES 1. STRUCTURE IC memories are basically classified into bipolar type and MOS type and utilized effectively by their characteristics. The characteristic of bipolar memories is high speed but small capacity, instead, MOS memories have large capacity. There are also differences in circuit design, layout pattern, degree of integration, and manufacturing process. These memories have been produced with the standardized concept of design and inspection all through the processes of designing, manufacturing and inspection. IC memories are constituted by the unit patterns called cells, which are integrated in high density. The knowhows based on our experience have been applied in every production stage. In addition, reliability has been ensured using TEG (Test Element Group) evaluation. Examples of cell circuits of bipolar and MOS memories are shown in Table 1. • Table 1 Basic Cell Circuit of IC Memories Classification Bipolar memory (RAM) Application control memory Buffer memory, of high-speed NMOS memory (PROM) NMOS memory (Dynamic RAM) Bipolar memory (PROM) Main memory of computer, Microcomputer control use microcomputer memory computer For microcomputer control Example of basic cell circuit Dies of IC memories are produced in various packages. In this process of packaging, Hitachi has also innovated new techniques and ensured to high level. As packages for IC memories, cerdip (glass-sealed) packages and plastic packages are currently used. Also such packages as LCC (Leadless Chip Carrier) or SOP (Small Outline Package) have been developed for high density packaging. Cerdip packages sealed hermetically are suitable for equipment requiring high reliability. Plastic packages are widely applied to many kinds of equipment. Hitachi plastic packages have been improved the reliability level as highly as that of the hermetically sealed packages. Table 2 shows the outlines of the Hitachi packages. • Table 2 IC Memory Package Outline • Cerdip .16 pin .18 Pin .20 Pin • .24 Pin HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300 13 Reliability of Hitachi Ie M e m o r i e s ' - - - - - - - - - - - - -_ _ _ _ _ _ _ _ _ _ __ • Cerdip (continued) - 28 Pin with lid - 32 Pin with Ud - Plastic DIP -16 Pin - 18 Pin - 20 Pin -24 Pin -28 Pin -28 Pin - Leadless Chip Carrier .20 Pin • 22 Pin .24 Pin • -sop .24 Pin .28/32 Pin - PLCC .18 Pin -SOJ • 20/26/28/32 Pin ~HITACHI 14 Hitachi Amenca, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, GA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - R e l i a b i l i t y of Hitachi IC Memories 2. RELIABILITY Results of reliability tests are listed below. ty control, there is no difference in reliability among the various types. And the larger the capac· ity is, the higher the reliability per bit becomes. 2.1 Reliability Test Data on Bipolar Memories The reliability test data on the bipolar memories are shown in Table 3 and 4. Since they are manufac· tured under the standardized design rules and quali· • Table 3 Results on Bipolar Memory Reliability Test (1) HM10480·15 Test item Test condition Hightemperature (Operating) Ta=125°C VEE=-5.2V High-temp storage Ta=200°C HM2144CG Total FailSam- component pIes ures hours Total FailSam- component ures pIes hours Failure rate* (l/hr) Test condition 340 C.H. 3.4x10' 0 11h 2.7x10-· Ta=125°C VEE=-5.2V 120 351 3.51x10' 0 2.6xI0-' Ta=200°C 120 c.H. 1.2xlO' 1.2x10' Failure rate* (l/hr) 0 11h 7.7x10-· a 7.7x10-· • Confidence level 60% • Table 4 Results on Bipolar Memory Reliability Test (2) Test item HM10480-15 Test condition HM2144CG Samples Failure Samples 160 0 180 Failures 0 0 22 0 Temperature cycling _55°C to +150°C, 10 cycle Soldering heat 260°C, 10 seconds 35 Thermal shock O°C to +lOO°C, 10 cycles 50 0 50 0 Mechanical shock 1500G, a.5ms, Three times each for X, YandZ 30 0 22 0 Variahle frequency 100 to 200 Hz, 20G, Three times each for X, Y and Z 40 0 22 0 Constant-acceleration 20000G, 1 minute, each for X, Y and Z 40 0 22 0 2.2 Reliability test data on Hi-BiCMOS memory Hi-BiCMOS memory is newly designed based on the latest fine machining technologies (2m ~ 1ml. which features low electric consumption / high integrity by CMOS and high speed / high drivability by bipolar. This device also attains high speed close to Eel and low electric consumption as CMOS. Input and output level supports both ECl and TTL. Reliability test data of HM100490-15 (64k-words x 1-bit) and HM6788P-25 (16k-words x 4-bits) are listed in table 5 and table 6. The above shows the sufficient reliability of high speed Hi-BiCMOS in the normal use with some limitations considered from its own circuit composition. For further information, see each data sheet. Besides the caution points with CMOS and bipolar device, avoid abnormal use as in deformed or slow wave form which causes malfunction and latch up. Table 5 Results on Hi-BiCMOS Memory Reliability Test (1) -~~ Test item . HM100490-l5 (Cerdip) Failure Test item Total test Test Samples time Failures rate condition High- HM6788P-25 (Plastic) Test condition test Failures Samples Test time Failure rate tempera~ HightemperaTa = 125'C ture VEE~4.5V pulse operation 380 Hightemp. storage 330 Ta=200'C C.R. 3.8x1O' 3.3x1O' 0 0 Ta = 125'C ture VCC=5.0V pulse operallh tion 2.4xlO-· MOIsture 85'C 85%RH endur5V ance 3.0xI0-· Pressure 121°C100%RH cooker Remarks *\ I/h 4_8xI0-' foreign matter 420 c.R. 4.2xlO' 1*\ 210 2.lxlO' 0 4.8xI0-· 80 0.16x1O' 0 6.3xI0-' - @HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 15 Reliability of Hitachi Ie M e m o r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - Table 6 Results on Hi-BiCMOS Memorv Reliability Test (2) _55°C - -150°C 100 cycles 180 0 Soldering heat 250°C 10 seconds 22 0 Thermal shock DoC - 100°C 10 cycles 50 Mechanical shock 1500G, 0.5ms Three times each for X, Y and Z Variable frequency Temperature cycling 1 Samples Failure 180 0 22 0 0 50 0 22 0 - - 100 - 200Hz, 20G Three times each for X, Y and Z 22 0 - - 20000G, I minute, each for X, Y and Z 22 0 - - ~- - HM6788P-25 (Plastic) HMlO0490-15 (Cerdip) Failure Samples Test condition Test item Constant acceleration The life test is performed at high temperature and high voltage to evaluate the reliability of products using fewer samples. All failures are caused in manufacturing process, so we feedback the data into manufacturing process to improve the quality and reliability. 2.3 Reliability test data on MOS memories 2.3.1 Reliability test data on MOS DRAM and SRAM Table 7 and table 8 shows the reliability test data on the representative types of 1M DRAM (HM511000/ HM514256), 256k SRAM (HM62256) 1M SRAM (HM628128FP) . • Table 7 Reliability Data on 1M DRAM Test item Hightemperature pulse operation Test condition HM511000P/HM514256P Series (D IP) Failure FailSamTotal rate* pies test time ures (l/hr) HM511000JP/HM514256JP Series (SOP) Failure Total FailSamrate* pies total time ures (l/hr) 125°Cf5.5V 300 0 1.53 xl 0-' 200 4.00xlO' 0 2.30xlO"· 125°C/7V 1252 4.50xlO' 1* 4.48xI0'" 3186 9.34xI0' 0 9.85xI0- 7 200 4.00xlO' 0 2.30xI0-· 200 4.00xlO' 0 2.30xI0-· 150"C/7V 6.00xlO' Moisture endurance 85°C 85% RH 420 5.5V 8.40xI0' 0 1.10xI0-· 682 1.36x10· 0 6.74xI0- 7 Pressure cooker 121°C/IOO% RH 4.50xlO· 0 2.04xI0-' 200 6.00xI0' 0 1.53xIO"' 150 Remarks *1 Oxide film Failure xl * ConfIdence level 60% • Table 8. Reliability Data on 256K and 1M SRAM HM62256FP (SOP) Test item Test condition Sampies Total test time Failures Failure rate* (l/hr) HM628128FP (SOP) Failure Failrate' ures (I/hr) SamTotal pies total time Hightemperature pulse operation 3088 3.11xIO· 0 8.88xIO- 7 1038 1.04xIO' 0 8.86xI0- 7 125°C/7V 455 4.55xIO' 0 2.02xI0-· 951 5.33xIO· 1*' 3.79xI0-· 150°C/7V 103 1 *' 2.02xI0"' 80 1.60xlO' 0 5.75xI0-· Moisture endurance 85°C/85% RH7V 680 6.80xI0' 0 1.35xIO-· 127 2.54xlO' 0 3.62xIO-· Pressure cooker 121°C/IOO% RH 320 6.40xlO' 1*' 3.16xIO-' 90 2.70xIO· 0 3.4IxI0-' 125°Cf5.5V 1.00xl0' Remarks *1 Foreign x 2 *2 Leak x 1 , Confidence level 60% ~HITACHI 16 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Reliability of Hitachi Ie Memories 2.3.2 Reliability Test Data on EPROM EPROM has two types; conventional EPROM with transparent window and one time programmable ROM (OTPROM) packaged in plastic package. Table 9 shows reliability test data on the representative EPROM types 512k EPROM (HN27512, HN27512Pl. 1M EPROM (HN27C101, HN27C301). • Table 9. Reliability Data on 512K and 1M EPROM Test condition Test item Hightemperature operation HN27512 (Cerdip/Plastic) Failure Total Failrate' test time ures (l/hr) HN27CIOI/HN27C30I Failure Failrate* ures (l/hr) Sampies 125°C/5.5V 200 3.72xIO' 0 2.47xI0- 6 180 3.24x1O' 0 2.84xI0- 6 125°C/7V 530 7.95x1O' 0 1.16x10-6 327 6.54x1O' 0 1.41xlO-6 150 7.5x1O' 0 1.23x10-6 Hightemperature bake 175°C 260 4.91xlO' 0 1.87x10-6 200°C 240 3.72xIO' 250°C 180 1.89xlO' Moisture endurance 85°C/85% RH 5.5V 290 '121°C/IOO% RH 50 Pressure cooker Remarks SamTotal pies total time I" 5.43xI0- 6 130 6.49x1O' 1*' 3.11xI0-6 7*' 4.44xI0-' 110 3.07x1O' 40*' 1.30x40-4 5.22xIO' 0 1.76xlo-6 - - - - O.IOxIO' 0 9.20xlO-' - - - - *1 Data dissipation x 49 Data of 512K OTPROM * Confidence level 60%. The failure shown in table 9 is due to the data dissipation in memory cells. Getting thermal energy, electrons in memory cells are activated and go through the floating gate. In actual usage, however, it has no problem because this phenomenon dependes on temperature (about 1.OeV of activated energy) greatly. The moisture resistance of OTPROM is also satisfactory . Table 10 shows the example of PROM derating. When derating, the parameter is generally only the temperatu re because other operating cond itions are specified. Especially to lower the junction temperature during mounting is important for stabilizing the operation relative to access time, refresh time and other characteristics. • Table 10 Example of HN27C101/HN27C301 Derating Factor Failure criteria Failure mechanism Tern perature Electrical Characteristics, Function Test Increase of leak current and others 10' 10' j 10' ~ Results: The result from high temperature baking of PROM is shown in the right figure. ,.~ 10' I 10' / j 10' 10' / ~>;,>;, 1il 15 f 20 ~ $-> So> ""' ~ 25~ ~ P 7 "~ 30 35 103jT! ("K- 1 ) Note: Decreasing junction temperature shown in the figure will promise the ~her reliabilitli The junction temperature can be calculated by a formula: Tj = Ta + 8jaOPd Bja in about 100°C with no air ow and about 60 to 700 CfW with 2.S mls air flow. ~HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy. Brisbane, CA 94005-1819 • (415) 589-8300 17 Reliability of HitachllC M e m o r l e a - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.3.3 Reliability Data on MASK ROM Table 9 shows the reliability test data on 2M and 4M bit MASK ROM. MASK ROM is patterned ac- cording to ROM information in manufacturing process, so data dissipation isn't occurred in high temperature like EPROM and EEPROM . • Table 11. Reliability Data on 2M and 4M MASK ROM HN62412P (Plastic) Test condition Test item High-temp. pulse operaton 125°C/5.5V 125°C/7V Moisture endurance Pressure cooker 85°C/85% RH 5.5V 121°C/ 100% RH • Sampies Total test time HN62404P (Plastic) Failure rate· (l/hr) Failures Sampies Total test time Failures Failure rate· (l/hr) - - - - 200 4.0xlOs 0 '1:~)l\()"' 120 1.2xlO s 0 7.67xI0-· 300 3.0x1O s 0 3.0xlO·· 120 1.2x10 s 0 7.67xI0" 120 1.20x10' 0 7.67xI0" 4S 2.3xI0· 0 4.lxI0- s 45 2.3xI0· 0 4.lxI0- s -- Remarks Confidence level 60%. 2.3.4 Reliability Data on MOS Memory (The result of environment test) Table 12 shows examples of each environment test data. They show good results without any failure even in severe environment. V TH of MOS transistor is one of the basic process parameters in MOS memory, which has almost no change using surface stabilization technology and clean process. Figure 4 shows the examples of time changes for 1M DRAM; V DD min. (V min ) and access time (tRAC) in high temperature pulse test. • Table 12 Reliability Data on MOS Memories Test item Temperature cycling Temperature cycling Thermal shock Soldering heat Mechanical shock Variable frequency Constant-acceleration Test condition HM511000P HMS11000JP HM622S6FP HM628128FP (SOJ) (SOP) (SOP) (DIP) EPROM (Cerdip) Sam- Fail- Sam- Fail- Sam- Fail- Sam- Fail- Sam- Failpies ure pies ures pies ures pies ures pies ures -SSoC to 150°C 3755 10 cycle -5SoC to ISO°C ISO 500 cycle -65°C to ISO°C 77 15 cycle 260°C, 22 10 seconds l,500G,O.Sms 100 to 2,OOOHz 20G 6000G - 0 2786 0 3328 0 710 0 2790 0 0 200 0 482 0 lOS 0 450 0 0 100 0 76 0 77 0 80 0 0 22 0 22 0 22 0 22 0 - - - - 0 - - - - - - 38 - 38 0 - - - - - - - 38 0 2.4 Change of Electrical Characteristics on IC Memory The degradation of leBO and hFE are the main factors of degradation in inner cell transistor of bipolar memory. In actual element designing, how· - - *6,OOOG ever, it is designed to operate in the range at which no degradation happen. Therefore no change of characteristics including access time are observed. Time dependence in access time for HM10470 are shown in Fig. 1. ~HITACHI 18 Remarks Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra POint Pkwy· Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - R e l i a b i l i t y of Hitachi Ie Memories Figure 1 Time change in access time for bipolar memory Example Example of time change in access time for Bipolar memory HMI0480-15 Device name Test condition To = 125°C, VEE = -5.2V Failure criteria tAA = 15ns Failure mechanism Surface degration Test Condition 20 Results: Access time is stabilized. 2 V,,=-5.2V Ta=25'C Maximum Average MinImum Marching Pattern -~ - 15 < < ~ 10 5 1- I a I iI I I 500 1,000 \ 2,000 Time (hr 1 I Figure 2 Time change in access time for Hi-BiCMOS memory Example Device name HMIOO490 Test condition To = 125°C, VEE = -4.5V all bit scanning Failure criteria tAA = 15ns Failure mechanism Surface degradation Example of time change in access time for Hi-Bi CMOS memory Test CollditiOIl 20 2 V•• =-4.5V Ta=e5'C ~".m", l,\erage \llmmum \larclllng Panern Results: Access time is stabilized. -;n -5 15 c c 10 ~ 5 t I a I I 1,000 500 T,,,,,, I \ 2,000 hrl @HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy • Brisbane, CA 94005-1819 • (415) 589·8300 19 Reliability of Hitachi M e m o r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - Figure 3 Time change in VCC min and tAA for Hi-BiCMOS memory Examples of time change in Vee min and fAA for Hi-Bi CMOS memory Example Device name HM6788P-25 Test condition Ta = 125°C, Vee = 5.0V all bit scanning Failure criteria Vee = 4.5V, fAA = 25ns Failure mechanism Surface degradation 5 ~ " E 4 ~ 3 g 2 Test Condition > Results: Both of Vee (min) and fAA are stabilized. 2Maximum Average 1 Vc"-=5V Ta-25"C Minimum Marching Pattern 0 0 500 2,000 1,000 Time (he) '30 Test Condition Same as above 25 "'" 3 ~ 20 '15 ::: 0 500 2,000 1,000 Time (he) Figure 4 Time change in V DD min and tRAC for MOS memory Example of time change in VDD min and tRAe for MOS memory Example Device name HM511000P Test condition Ta =125°C, Vee = 7V all bit scanning Failure criteria VDD = 4.5V, AVDD = l.OV Failure mechanism Surface degradation S 4 E Results: Access time (tAA) is stabilized and is within the failure criteria. 3 ~ ~ ~ .~ ~ 2 Test Condition Marching pattern r.=2s'C I N=200pcs i Maximum Average Minimum 0 0 110 500 Q 1,000 Time (hr) . 2,000 Test Condition Same as above 100 ] ~ Note: 90 80 Test accuracy is O.2V, 2ns. 10 t t I I 60 0 500 1,000 Time (hr) 2,000 ~HITACHI 20 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - R e l i a b i l l t y of Hitachi Memories 2.5 Failure Mode Rate Figure 5 and 6 show examples of failure mode happened in users' application. Since IC memories require the finest pattern process technology, the percentage of failures, such as pinholes, defects on photoresist and foreign materials, tends to increase. To eliminate the defects in the manufacturing Figure 5 Failure Mode Rate of Bipolar Memory process, Hitachi has improved the process and performed 100% burn in screening under high tem· perature. Hitachi has been collecting and checking customers' process·data and marketing data for higher reliability of our products. To analyze them is very helpful for the improvement of designing and manufacturing. Figure 6 Failure Mode Rate of MOS Memory 3. Reliability of Semiconductor Devices 3.1. Reliability Characteristics for Semiconductor Devices Hitachi semiconductor devices are designed, manu· factured and inspected so as to achieve a high level of reliability. Accordingly, system reliability can be improved by combining highly reliable components along proper environmental conditions. This section describes reliability characteristics, failure types and their mechanisms in terms of devices. First, semiconductor device characteristics are examined in light of their reliability. (1) Semiconductor devices are essentially structure sensitive as seen in surface phenomenon. Fab· ricating the device requires precise control of a large number of process steps. (2) Device reliability is partly governed by elec· trode materials and package materials, as well as by the coordination of these materials with the device materials. (3) Devices employ thin·film and fine·processing techniques for metallization and bonding. Fine materials and thin film surfaces sometimes exhibit physically different characteristics from the bulks. (4) Semiconductor device technology advances drastically: Many new devices have been developed using new processes over a short period of time. Thus, conventional device reo liability data cannot be used in some cases. (5) Semiconductor devices are characterized by volume production. Therefore, variations should be an important consideration. (6) Initial and accidental failures are only con· sidered to be semiconductor device failures based on the fact that semiconductor devices are essentially operable semipermanently. However, wear failures caused by worn mate· rials and migration should be also reviewed when electrode and package materials are not suited for particular environmental conditions. (7) Component reliability may depend on device mounting, conditions for use, and environment. Device reliability is affected by such factors as voltage, electric field strength, current density, temperature, humidity, gas, dust, mechanical stress, vibration, mechanical shock, and radia· tion magnetic field strength. @HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 21 Reliability of Hitachi Ie M e m o r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - contribute to reliability related fields such as product design, prediction, test, storage and usage by adding physics as a basic technology to conven· tional experimental and statistical approaches. Iniba] faiJure reglOn : Declinmg fBllure rates (m< 1 ) Wearout failure regIOn : Rismg fadure rates (m > 1) ____ ~~I~~~~~!:a~ ____ _ :---------- I : Random fadure region . Constant fadure rates (m = 1) : m . Welbull dlstnbubon : form parameter I I Useful longevity I Tune (t) Figure 7 Typical failure rate curve Device reliability is generally represented by the failure rate. 'Failure' means that a device loses its function, including intermittent degradation as well as complete destruction. Generally, the failure rate of electric components and equipment is represented by the bathtub curve shown in Fig. Z. For semiconductor devices, the configuration parameter of the Wei bull distribution is smaller than 1, which means an initial failure type. Such devices ensure a long lifetime unless extreme environmental stress is applied. Therefore, initial and accidental failures can become a problem for semiconductor devices. Semiconductor device reliability can be physically represented as well as statistically. Both aspects of failures have been thoroughly analyzed to establish a high level of reliability. 3.2 Failure Types and Their Mechanisms 3.2.1 Failure physiCS Failure physics is, in a broad sense, a basic technology of "physics + engineering". It is used to examine the physical mechanism of failures in terms of atoms and molecules to improve device reliability. This physical approach was introduced to the reliability field with the demand for minimized development cost and period, as technology rapidly developed and system performance increased, requiring more complex and higher levels of reliabili· ty. These conditions derived from the development of solid state physics (semiconductor physics) after World War II and associated device development. Failure physics have been employed to: 1) Detect failed devices as soon as possible 2) Establish models and equation used for failure prediction 3) Evaluate reliability in short periods by acceler· ated life test The pu rpose of the fai Iure physics approach is to 3.2.2 Failure types and their mechanism Device failures are physically discussed in this section. Semiconductor device failures are basically categorized as disconnection, short-circuit, de· terioration and miscellaneous failures. These failures and their causes are summarized in Table 11. Typical failure mechanisms are reviewed next. (1) Surface Deterioration The pn junction has a charge density of 1014 1020 fcm 3 . If charges exceeding the above density are accumulated on the pn junction surface, partic· ularly adjacent to a depletion layer, electric characteristics of the junction tend to be easily varied. Although the surface of such devices as planar transistors is generally covered with a Si0 2 film and is in an inactive state, the possibility of deterioration caused by surface channels still exists. Surface deterioration depends heavily on appl ied temperature and voltage and is often handled by the reaction model. One example of recent failures is surface deteriora· tion caused by hot carriers. Hot carriers are generated when such devices as MOS dynamic RAMs are operated at a voltage near the minimum breakdown voltage BVos by raising internal voltage and when a strong electric field is established near the MOS device's drain resulting from reduced device geometry from 2 ).1m to 0.8 ).1m. Generated hot carriers may affect surface boundary characteristics on a part of the gate oxide film, resulting in de· gradation of threshold voltage (V TH ) and counter conductance (gm). Hitachi devices have employed improved design and process techniques to prevent these problems. However, as process becomes finer, surface deterioration may possibly become a serious problem. (2) Electrode·related Failures Electrode·related failures have become increasingly important as multi·layer wiring has become more complicated. Noticeable failures include electro· migration and AI wiring corrosion in plastic sealed packages. CD Electromigration This is a phenomenon in which metal atoms are moved by a large current of about 106 A/cm 2 supplied to the metal. When ionized atoms collide with current of about scattering electrons, an 'electron wind' is produced. This wind moves the ~HITACHI 22 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra POint Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - R e l i a b i l i t y of Hitachi metal atoms in the opposite direction from the current flow, which generates voids at a negative electrode, and hillock and whiskers at an opposite one. The generated voids increase wiring resistance and cause excessive currents to flow in some areas, leading to disconnection. The generated whiskers may cause shortcircuits in multi·metal line. @ Multi-metal line related failures Major failures associated with multi-metal line include increased leak currents, shortcircuits caused by a failed dielectric interlayer, and increased contact metal resistance and disconnection between metal wirings. @ AI line corrosion and disconnection When Plastic encapsu lated devices are subjected to high-temperatures, high-humidity or a bias-applied condition, AI electrodes in devices can cause corrosion or disconnection (Fig. 8). Under high-temperature and high-humidity, corrosions are randomly Ie Memories scopic volume resistivity of sealed resin. The AI line corrosion mechanism described above is summarized in Fig. 9. Figure 9 Plastic package cross section and AI corrosion mechanism 95 13S"C 12TC 0 sJ HOT 6 SO I I 70 I 0 II 0 0 Figure 8 Categorized AI corrosion mode ~ 2 8 10 Corubbon I I I 0 ~ V cc=5.5V RH=85fb I I 5- generated over the element surface. However, after an extended period of time, the corrosions have not significantly increased. Accordingly, this failure is possibly due to an initial failure associated with manufacturing. It is also verified that this type of failure can be generated when the adhesion surface between an element and resin is separated or when foreign materials are attached to the element with human saliva. Under a bias-appllied, high-temperature, high-humidity condition, on the other hand, corrosions are generated in higher potential areas while in lower potential areas, grain corrosion occurs. Once this failure occurs in part of a device, the device can become worn out in a relatively short time. This failure proves to depend on the hydro- I 0 . O. I 10 Figure 10 . 10 . 10 Test Time (hrs) . 10 An Example of Moisture Resistance by High temp. and High humidity and bias ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 23 Reliability of Hitachi Ie Memorles----------------------- , 10 ..L 10' _L 10' / , ~ 10' J Ii' 10' u:u ~-E J0 2.0 ~- t-l-'If' I II I \I 2.5 ~= f= 3.0 3.5 T.............. 1/T (IO'/'K) Figure 11 Relationship between tempereture and Time to 1% failure (RH = 85%) (3) Bonding related failures Degradation caused by intermetallic formation Bonding strength degradation and contact resistance increase are caused by compounds formed in connections between Au wire and AI film or between Au film and AI wire. These are the most serious problems in terms of reliability. The compounds are formed rapidly during bonding and are increased through thermal treatment. Consequently, Hitachi products are subjected to a lower-temperature, shorter-period bonding whenever possible. ® Wire creep Wire creep is wire neck destruction in an Au ball along an intergranular system occurring when a plastic sealed device is subjected to a long-term thermal cycling test. This failure results from increased crystal grains due to heat application when forming a ball at the top of an Au wire, or from an impurity introducing to the intergranular system. Bonding under usual conditions with no loop configuration failures does not cause this failure unless a severe long-term thermal cycling test is applied. Accordingly, wire creep is not a problem in actual usage. ® Chip crack With the increase in chip size associated with the increased number of incorporated functions, more problems have been occurring during assembly, such as chip cracks during bonding. Bonding methods Vcc or Vout < GND for input level Therefore, circuits should be designed so that no forward current flows through the input protection diodes or output parasitic diodes. @ Soft errors When O! particles are generated from uranium or thorium in a package the silicon surface of an LSI chip, electron-hole pairs are formed which act as noise to data lines and other floating nodes, causing temporary soft errors. This phenomenon is shown in Fig. 14. Only electrons from among the electronhole pairs are only collected to a memory cell. As a result, the cell changes from a state of 1 to 0, which is a soft error. Hitachi devices have been subjected to simulation and irradiation tests to prevent soft errors. In some cases, organic material, PIO, is applied to the surface of the device. a Equivalent circuit of charging model @ Latch up Latch up is a problem unique to CMOS devices. This problem is a thyristor phenomenon caused by a parasitic PNP or NPN transistor formed in the CMOS configuration. Latch up occurs when an accidental surge voltage exceeding a maximum rating, a power supply ripple, an unregulated power supply and noise is applied, or when a device is operated from two sources having different set-up voltages. These cases can cause input or output current to flow in the opposite direction from usual flow, which triggers parasitic thyristors. This results in excessive current flowing between a power supply Figure 14 Soft error caused bv Ct particles in dynamic memory @HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 25 Reliability of Hitachi M e m o r i e s - - - - - - - - - - - - - - - - - - - - - - - - - Table 13. Failure causes and mechanism Failure related causes Failure mechanisms Failure modes Passivation Surface oxide film, Insulating film between wires Pin hole, Crack, Uneven thickness, Contamination, Surface inversion, Hot carrier injected Withstanding voltage reduced, Short, Leak current increased, hFE degraded, Threshold voltage variation, Noise Metallization Interconnection, Contact, Through hole Flaw, Void, Mechanical damage, Break due to uneven surface, Non-ohmic contact, Insufficient adhesion strength, Improper thickness, Electromigra tion, Corrosion Open, Short, Resistance increased Connection Wire bonding, Ball bonding Bonding runout, Compounds between metals, Bonding position mismatch, Bonding damaged Open, Short Resistance increased Wire lead Internal connection Disconnection, -~~---~~- Open, Short Sagging, Short - -- - - - - Diffusion, Junction Junction diffusion, Isolation Die bonding Connection between die and package Package sealing Packaging, Hermetic Seal, Lead plating, Hermetic pakage & plastic package, Filler gas Crystal defect, Crystallized impurity, Photo resist mismatching --- ------ Peeling chip, Crack Integrity, moisture ingress, Impurity gas, High temperature, Surface contamination, Lead rust, Lead bend, break ~---- Foreign matter Foreign matter in package Input/output pin Electrostatistics, Excessive Voltage, Surge Disturbance '" particle High electric field -----~-- Short, Leak current increased ~- Electron destroyed ."-~---~.--- ------ Open, Short, Unstable operation, Thermal resistance increased -- f------Short, Leak current Increased, Open, Corrosion disconnection, Soldering failure .---------~- Dirt, Conducting foreign ma tier, Organic carbide - - - - - - - - - t-------~------~--------- Withstanding voltage reduced, Short Electron hole generated 1-----Surface inversion Short, Open, Fusing Soft error Leak current increased ---- ~HITACHI 26 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy • Bnsbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - R e U a b l l i t y of Hitachi Ie Memories (6) Fine geometry related problems In response to higher integration requirements for memories and microcomputers, LSI geometry has been reduced in the way of 3 IJ.m -+ 2 IJ.m -+ 1.3 IJ.m -+O.8IJ.m• However power supply has not been scaled down used for 5V, only line dimensions have been fined increasingly. Problems associated with finer geo· metry are shown in Table 14. Table 14. Finer geometry reletad problems Item Problems Countermeasure 5V single supply voltage • Breakdown voltage of gate oxide films • SiO. defects Oxide film formation process improved • Cleaning • Gettering • Screening Horizontal dimension reduction • Soft errors by .. particles • AI reliability reduced • CMOS latch up • Mask alignment margin reduced • Hot carriers Surface passivation film improved • Metallization improved • Design/layout improved • Process improved Vertical & horizontal dimension r~duction • Higher breakdown voltage not permitted • Electrostatic discharge resistance reduced Use of low voltage examined • Configuration improved • Protection circuits enhanced .HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 27 • QUAUTY ASSURANCE OF IC MEMORY 1. VIEWS ON QUALITY AND RELIABILITY Hitachi basic views on quality are to meet individual users' purpose and their required quality level and also to maintain the satisfied level for general ap· plication. Hitachi has made efforts to assure the standardized reliability of our IC memories in actual usage. To meet users' requests and to cover expand· ing application, Hitachi performs the followings; (1) Establish the reliability in design at the stage of new product development. (2) Establish the quality at all steps in manufactur· ing process. (3) Intensify the inspection and the assurance of reo liability of products. (4) Improve the product quality based on market· ing data. Furthermore. to get higher quality and reliability. we cooperate with our research laboratories. With the views and methods mentioned above, Hitachi makes the best efforts to meet the users' reo quirements. 2. RELIABILITY DESIGN OF SEMICONDUCTOR DEVICES 2.1 Reliability Target Establishment of reliability target is important in manufacturing and marketing as well as function and price. It is not practical to determine the reo liability target based on the failure rate under single common test condition. So, the reliability target is determined based on many factors such as each characteristics of equipment, reliability target of system, derating applied in design, operating condi· tion and maintenance. 2.2 Reliability Design Timely study and execution are essential to achieve the reliability based on reliability targets. The main items are the design standardization, device design including process and structural design, design review and reliability test. (1) Design Standardization Design standardization needs establishing design rules and standardizing parts, material, and process. When design rules are established on circuit, cell, and layout design, critical items about quality and reliability should be ex· amined. Therefore, in using standardized • 28 process or material, even newly developed prod· ucts would have high reliability, with the excep· tion of special requirement on function. (2) Device Design It is important for device design to consider total balance of process design, structure design, circuit and layout design. Especially in case of applying new process or new material, we study the technology prior to development of the device in detail. (3) Reliability Test by Test Site Test site is sometimes called Test Pattern. It is useful method for evaluating reliability of designing and processing ICs with complicated functions. 1. Purposes of Test Site are as foi,ows; • Making clear about fundamental failure mode; • Analysis of relation between failure mode and manufacturing process condition. • Analysis of failure mechanism. • Establishment of QC point in manufacturing. 2. Effects of evaluation by Test Site are as follows; • Common fundamental failure mode and failure mechanism in devices can be evaluated. • Factors dominating failure mode can be picked up, and compared with the process having been experienced in field. • Able to analyze relation between failure causes and manufacturing factors. • Easy to run tests. 2.3 Design Review Design review is a method to confirm systematically whether or not design satisfies the performance required including by users, follows the specified ways, and whether or not the technical items accumulated in test data and application data are effectively applied. In addition, from the standpoint of competition with other products, the major purpose of design review is to insure quality and reliability of the product. In Hitachi, design review is performed in designing new products and also in changing products. The followings are the items to consider at design review. (1) Describe the products based on specified design documents. (2) Considering the documents from the standpoint of each participant, plan and execute the sub· program such as calculation, experiments and HITACHI Hitachi Amenca, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - Quality Assurance of investigation if unclear matter is found. (3) Determine the contents and methods of reliability test based on design document and drawing. (4) Check process ability of manufacturing line to achieve design goal. (5) Arrange the preparation for production. (6) Plan and execute the sub-programs of design ch~nges proposed by individual specialists, for tests, experiments and calculation to confirm the design change. (7) Refer to the past failure experiences with similar devices, confirm the prevention against them, and plan and execute the test program for confirmation of them. In Hitachi, these study and decision at design review are made using the individual check lists according to its objects. I Step 3.1 Activity of Quality Assurance The following items are the general views of overall quality assurance in Hitachi; (1) Problems is solved in each process so that even the potential failure factors will be removed at final stage of production. (2) Feedback of information is made to insure satisfied level of process ability. As the result, we assure the reliability. Purpose Des ign ReVIew ~pet.lficailim I /Il."gn Trl.tl 11 ProductIOn MateriaI-., Parts I\pproval If- Characterlstlts of Material and Parts Appearance DimenSion Heat ReSistance Mechanical Electrical Others II Memory 3. QUALITY ASSURANCE SYSTEM OF SEMICONDUCTOR DEVICES Contents TarRt"t Ie Characteristics Approval 11--- Electrical CharaC'terlo;tlcs Fun('tlOn V~It.g. Current Temperature Conflrmallon of Cha rac te nstlcs and ReliabilIty of MaterIals and Parts ConfirmatIOn of Target Spec. Mamly about Electrical Characteristics O,h.r. Appearance, DimenSion II Qua IIty Approva I (1) II Quality Approval (2) 1MProduction ... .1 jf- H- ReliabilIty Test LIfe Test Thermal Stress MOIsture ReSIstance MechanIcal Stress Others ReliabilIty Test ConfirmatIOn of Quality and Reliability m Design Conhrmation of Quality Process Check same as and Reliability Quality Approval (1) Producllon In Mass Figure 1 Flow Chert of Qualification ~HITACHI Hitachi Amenca, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 29 Quality Assurance of Ie Memory - - - - - - - - - - -_ _ _ _ _ _ _ _ _ _ _ _ _ __ 3.2 Qualification To assure the quality and reliability, the qlJalifica· tion tests are done at each stage of trial production and mass production based on the reliability design described in section 2. The followings are the views on qualification in Hitachi: (1) From the standpoint of customers, qualify the products objectively by a third party. (2) Consider the failure experiences and data from customers. (3) Qualify every change in design and work. (4) Qualify intensively on parts and materials and process. (5) Considering the process ability and factor of manufacturing fluctuation, establish the control points in mass production. Considering the views mentioned above, qualification shown in Fig. 1 is done. Quality Control Process Method Inspection on Ma te ria I and --- Parts for Semiconductor Lot Sampling, Confi;mation of Quality Level Devices Manufacturing Equipment, - Environment. Sub-material. - - Confirmation of Quality Level Worker Control Inner Process Lot Sampling, Quality Control Confirmation of Qua IIty Leve I 100% InspectIOn on Testing, Appearance and Electrical Inspection Characteristics Sampling InspectIOn on Lot Samphng Appearance and Electrical Cha racte rlstlC s Confirmation of Rellablhty Test Quality Level, Lot Sampling r-----------, I I I I Quality Information. Claim Field Experience General Quahty Information I I Feedback of Information I'-- _ _ _ _ _ _ _ _ _ _ ..J Figure 2 Flow Chart of Quality Control in Manufacturing Process 30 $ HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - Q u a l i t y Assurance of 3.3 Quality and Reliability Control in Mass Produc· tion To assure quality in mass production, quality is controlled functionally by each department, mainly by manufacturing department and quality assurance department. The total function flow is shown in Fig. 2. 3.3.1 Quality Control on Parts and Materials With the tendency toward higher performance and higher reliability of devices, quality control of parts and materials becomes more important. The items such as crystal, lead frame, fine wire for wire bond· ing, package and materials required in manufactur· ing process like mask pattern and chemicals, are all subject to inspection and control. Besides qualification of parts and materials stated In 3.2, quality control of parts and materials is defined in incoming inspection. Incoming inspection IS per· formed based on its purchase specification, drawing and mainly sampling test based on MIL·STD·105D. The other activities for quality assurance are as follows. • Table 1. Quality Control Check Points of Parts and Material (example) Material. Parts Wafer ImporUnt Control Items Appearance DimensIOn Sheet ResiStance Defect DensIty Crystal Ax IS Appearance Mask DimensIOn WlTe for WlTe Bonding lion on Surface Flatness Resistance Defect Numher~ ----Defect Numbers, Sc..ratch DimenSion Level Resistoratlon GradatIOn FlOe Pomt for Check Damage and Contam-103- Appearance Uniformity of Gradation Contamination. Scratc..h, Bend, TWist DimensIOn Purify Elongation RatIO AppearanceDimenSion Purity Level Mechanical Strength ContaminatIOn, Scratch Dlmen~lOn Level Processing FrJ.me CeramIC Pac kage PlastiC Accuracy Plating Bondahlilty. Solderabihty Mountmg Heat Resistance Character 1st ICS ----,--Appearance ContamJ031lOn, Scrat(h DimenSIOn DlmeonslOn Level Leak ReSistance Airtightness Plating Bondablilty. Solderablhty Mountmg Heat ReSistance CharacteristiCS Electrical Characteristics MechaOical Mechanical Strength Strength - -;-- -------CompositIOn Charat tenstlcs of PlastiC Mdtenal Eleetr,,:al CharacteristICs Thermal Char de tens tiCS MoldlOg Moldmg Perform ante Performance Mountmg Mounting Characterastlcs CharactenstlCS Ie Memory (1) Technology Meeting with Vendors (2) Approval and Guidance of Vendors (3) Analysis and tests of physical chemistry. The typical check points of parts and materials are shown in Table 1. 3.3.2 Inner Process Quality Control To control inner process quality is very significant for quality assurance of devices. The quality control of products in every stage of production is explained below. Fig. 3 shows Inner process quality control. (1) Quality Control of Products in Every Stage of Production Potential failure factors of devices should be removed in manufacturing process. Therefore, check points are set up In each process so as not to move the products with failure factors to the next process. Especially, for high reliability devices, manufacturing lines are rigidly selected in order to control the quality in process. Additionally we perform rigid check per process or per lot, 100% inspection in proper processes so as to remove failure factors caused by manufacturing fluctuation, and screenings depending on high temperature aging or temperature cycling. Contents of controlling quality under processing are as follows: • Control of conditions of equipment and workers and sam pli ng test of uncompleted produsts. • Proposal and execution of working improvement. • Education of workers • Maintenance and improvement of yield • Picking up of quality problems and execution of countermeasures toward them. • Communication of quality information. (2) Quality Control of Manufacturing Facilities and Measuring Equipment Manufacturing facilities have been developed with the need of higher devices in performance and the automated production. It is also important to determine quality and reliability. In Hitachi, automated manufacturing is promoted to avoid manufacturing fluctuation, and the opera· tion of high performance equipment is controlled to function properly. As for maintenance inspection for quality control, daily and periodically inspections are performed based on specification on every check point. As for adjustment and maintenance of measuring equipment, the past data and specifications are clearly checked to keep and improve quality. ~HITACHI Hitachi Amenca. Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Bnsbane. CA 94005·1819 • (415) 589.8300 31 Quality Assurance of Ie M e m o r y - - - - - - - - - - - - -_ _ _ _ _ _ _ _ _ _ _ __ (3) Quality Control of Manufacturing Circumstances and Sub-material. Quality and reliability of devices are affected especially by manufacturing process. Therefore, we thoroughly control the manufacturing circumstances such as temperature, humidity, dust, and the sub-materials like gas or pure water used in manufacturing process. Process Dust control is essential to realize higher integration and higher reliability of devices. To maintain and improve the clearness of manufacturing site, we take care buildings, facilities, airconditioning system, materials, clothes and works. Moreover, we periodically check on floating dust in the air, fallen dust or dirtiness on floor. Control Point Purpose of Control Purchase of Mater .. 1 Wafer Wafer Surface OXIdatIOn InspectIOn on Surface OxidatIOn Photo Resist CharacteristiCS, Appearance OXIdatIOn Scratch. Removal of Crystal Defect Wafer Assurance of Resistance Appearance. ThIckness of OXIde Flim Pmhole. Scratch DlmenslOn, Appearance D,mension Level Check of Photo Res ist DiffUSIOn Status Photo Resist InspectIOn on Photo Resist o PQC Level Check D,ffus,on Diffusion Diffus IOn Depth. Sheet Resistance Inspec tlOn on Dtffus IOn OPQC Level Check Evaporation In.pectlOn on Evaporation o PQC Level Check Wafer InspectIOn Gate WIdth Characteristics of Oxide Film Breakdown Voltage Evapo- Thickness of Vapor Flim. ration Scratch, ContaminatIOn Wafer ThIckness. VTH Characteristics InspectIOn on Ch,p Electrical Characteristics ChIp Scribe Inspection on Chip Appearance o PQC Lot Judgement Chip Assembhng Assembling Control of Basic Parameters (VTH. etc) Cleaness of surface, Prior Check of VtH Breakdown Voltage Check Assurance of Standard ThIckness Prevention of Crack. Quality Assurance of Scribe Electrical CharacterIStICS Appearance of Ch,p Frame Appearance after Chip Bordmg Appearance after Wire o PQC Bonding Pull Strength. Camp res IOn Width. Shear Strength Appearance after Assembhng Level Check Inspection after Assembling o PQC Lot Judgement Package Sealing Sealmg o PQC Leve I Check Marking Final Electrical Inspection OFailure Analysis Qualtty Check of Chip Bonding Quality Check of Wire Bonding PreventIOn of Open and Short Appearance after Sealing Outline. Dimension Ma rk ing Strength and Dlmens Ion AnalysIs of Faliures. Faliure Mode. Mechanism Feedback of AnalysIs Informatian Guarantee of Appearance Appearance InspectIOn Sampling inspectIon on Products ReceiVing Shipment Figure 3 Example of Inner Process Quality Control ~HITACHI 32 Hitachi America. Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - Q u a l l t y Assurance of 3.3.3 Final Tests and Reliability Assurance (1) Final Tests Lot inspection is done by quality assurance department for the product passed in 100% test in final manufacturing process. Though 100% of passed products is expected, sampling inspection is subjected to prevent mixture of failed products by mistake. Ie Memory The inspection is executed not only to confirm that the products meet users' requirement, but to consider potential factors. Our lot inspection is based on MIL-STO-1050. (2) Reliability Assurance Tests To assure reliability, the reliability tests are per· formed periodically, and performed on each manufacturing lot if user requires. Failure AnalysIs Countermeasure Execution of Countermeasure Report Quality Assurance Dept. Follow-up and Confirmation of Countermeasure Execution Report L ________________________________ ~ Sales Engineering Dept. Reply Customer Figure 4 Proc_ Flow Chart of Coping with Failure to a Customer • HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 33 • OUTUNE OF TESTING METHOD 1. INSPECTION METHOD 2. MARCHING PATTERN Compared to conventional core memories, IC memories contain all peripheral circuits, such as the decoder circuit, write circuit and read circuit. As a result, assembly and electrical inspection of ICs are all performed by IC manufacturers. Consequently, as the electrical inspection of IC memories are becoming more systematic, conventional IC inspec· tion facilities are becoming useless. This has led to the development and introduction of a memory tester with pattern generator to generate the inspec· tion pattern of the memory IC at high speed. A function test for such as TTL gates can be per· formed even by a simple DC parameter facility. However, when the address input becomes multiplexed as in 16K, 64K and 256K memory, even the generation of the function test pattern becomes a serious problem. In the memory IC inspection, its quality cannot be judged by DC test on external pins only, because the number of the element such as transistor which can be judged in the DC test is only 1/1000 of all elements. The followings are the address patterns proposed to inspect whether the internal circuits are functioning correctly. (1) All "Low", All "High" (2) Checker Flag (3) Stripe Pattern (4) Marching Pattern (5) Galloping (6) Waling (7) Ping-Pong Those are not all, but only representative ones. There are the pattern to check the mutual interference of bits and the pattern for the maximum power dissipation. Among the above mentioned patterns, those of (1) to (4) are called N pattern, which can check one sequence of N bit IC memory with the several times of N patterns at most. Those of (5) to (7) are called N3 pattern, which need several times of N2 patterns to check one sequence of N bit IC memory. Serious problem arises in using N 2 pattern in a large-capacity memory. For example, inspection of 16K memory with galloping pattern takes a lot of time - about 30 minutes. (1), (2) and (3) are rather simple and good methods, however, they are not perfect to find any failure in decoder circuits. Marching is the most simple and necessary pattern to check the function of IC memories. The marching pattern, as its name indicates, is a pattern in which "1"s march into all bits of "O"s. For example, a simple addressing of 16 bit memory is described below. (1) Clear all bits ............. See Fig. 1 (a) (2) Read "0" from Oth address and check that the read data is "0". Hereafter, "Read" means "checking and judging data" (3) Write "1" on Oth address ....... See Fig. 1(b) (4) Read "0" from 1st address. (5) Write "1" on 1st address. (6) Read "0" from nth address. (7) Write "1" on nth address ...... See Fig. 1 (c) (8) Repeat (6) to (7) to the last address. Finally, all data will be "1". (9) After all data become "1", repeat from (2) to (8) replacing "0" and "1". In this method, 5N address patterns are necessary for the N-bit memory. • 34 a o Figure1 c b o 0 o 0 0 0 o 0 0 o 0 Addreaing method of for 16 bit memory in the Marching pattern HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 940OS-1819 • (415) 589-8300 • APPLICATION 1. Static RAM 1.1. Static RAM Memory Cell The static RAM memory cell consists of flip-flops organized as 4 NMOS transistors and 2 load resistors as shown in figure 1-1. The data in the cell can be retained as long as power is supplied, and read out without being destroyed. Word Lme Vee Fillure1-1. Vee Static RAM Memory Can 1.2. Data Retention Mode and Battery Back-up System The data in RAM is destroyed at power off. However, CMOS static RAM has a data retention mode. In this mode, power consumption at standby is extremely low and supply voltage can be reduced to 2 V. So, it enables a battery back-up system to retain data during power failure. Data Retention Mode: The important point in designing a battery back-up system is the timing relation between the memory power supply during the change (ordinal source'" battery) and the chip select signal. If the timing for the change is missed, the data in memory might be destroyed_ Figure 1-2. shows the timing for switching the power supply. The following explains the technical terms related to the data retention mode. Data retenbon mode V c c - - -___ VD.R~2.0V OV _ _ _ _ _ _ _ _ _ _Cs(CE)" _ _ _ _VDrO.2V ___________ _ Fillure 1-2. Timing for Battary Back-up Application Data retention mode: The period that the power supply voltage is lower than the specified operation voltage. During this period, memory must be kept in non-select condition (e.g. CS = V OR - 0.2V). teoR (time for chip select to data retention): The minimum time needed to change from operating mode to data retention mode. Normally 0 ns. tR (Operation recovery time): The minimum time needed to change from data retention mode to operating mode. Normally, it is the same as the cycle time of the memory. VOR (data retention voltage): The voltage applied in data retention mode. Normally, the minimum supply voltage needed to retain memory data is 2 V. I eeOR (data retention current): The current consumption in data retention mode. It depends on memory power supply voltage and ambient temperature. It is specified at supply voltage (VOR) = 3.0 V. Battery Back-up System: battery back-up sequence is described in the following: 1. External circuit detects failure of system power supply. 2. External circuit changes RAM to standby mode. 3. External circuit separates RAM from system power supply. 4. External circuit switches to Back-up power supply. Memory Vee System Vee ]§ s;; U .., Memory f---4---------- Figura 1-3. control pm Example of Battery Back-up System The control circuit detects the power failure and cuts off the power after switching memories to standby mode. On recovery, it confirms power supply and after some delay, returns memories to operating mode. The memory control signals depend on the types of memories used in the system. * Using memory with only one CS. NAND signal between the control signal and chip select signal should be connected to CS. As the level of CS in data retention mode must be higher than VOR 0.2V, the power supply for this NAND gate must either be shared with the memory power supply, or be pulled up to the memory power supply. * Using memory with two CS. Basically, the signals are the same as mentioned above. In general use, two pins should be used for the control signal and the chip select signal respec- ~HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra Point Pkwy' Brisbane, CA 94005-1819 • (415) 589-8300 35 Application---------------------------------------- tively. CS, which can intercept current path of other pins in the input buffers, is for control signal input of data retention mode. * Using memory with CS and CS. As CS selects the chips at high level, it is better to use CS than CS as control signal input for data retention mode. As soon as power down is detected, signals should be brought to low level. So a pullRegulating up to the memory power supply level is not needed and circuit organization is simplified. Figure '-4 shows an example of a battery back-up system circuit. Hitachi recommends using CMOS logic for gate G 1 in control circuit and memory Vcc. The low V CE transistor Q 1 is required to switch regulating circuit from system power supply to back-up power supply. CircUit + 5V o-__S_y,_,e,..m_V_'_'-~-h.' ·;tr----~t-..,- j i --l , r"l L___ J Back-up CircUits Figure ,.... Example of Battery Back-up System Circuit • 36 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ------------------------------------Application 2. Pseudo·Static RAM 2.1 Pseudo·Static RAM Features A new type of memory, pseudo-static RAM has been developed providing the advantages of dynamic RAM (low cost, high density), and static RAM (easy usage). IC memory consists of memory cells for data storage, and input/output circuits for interfacing to the external circuits. PSRAM provides the memory cell and peripheral circuits of DRAM and the external control circuits, which includes a part of the refresh control circuits not provided by dynamic RAM, and interface circuits similar to that of static RAM, on a chip, as shown in table 2-1. Address input is not multiplexed and data input/output is byte-wide like standard static RAM. With PSRAM x 8 organization, medium density memory system can be designed easily. PSRAM provides address refresh, automatic refresh and self refresh. Figure 2-1 shows examples of system design using PSRAM and DRAM. Using PSRAM, the circuits -- Data Address C P U ~ 1 Status ~ Timer & Control Busy IPSRAM) Figure 2-1. System Organization Memory Array 11T'+IC/CeIl) Table 2·1. PSRAM Feetures SRAM Memory Cell 4 Tr + 2 R Organization xl,x4,x8 Address 1 Tr + 1 C Nor Necessary External Circuits Data xl,x4 x8 Single Address Refresh DRAM PSRAM Multiplexed Address Column Address Necessary Simple<: :>Complexed Figure 2-2. interfacing CPU to DRAM can be drastically reduced. Figure 2-2 shows block diagram of pseudo static RAM. 2.2. 1 Mbit Pseudo-Static RAM Function Read/Wrlte Cycle: Figure 2-3 and figure 2-4 show the timing chart for the read/write cycle of 1 Mbit pseudo-static RAM HM658128_ The HM658128 Block Diagram (PSRAM) can perform 2 types of access in a read cycle, CE access (Figure 2-3 (a)) and DE access figure 2-3 (b)). It writes the data at the rising edge of WE (figure 2-4 (a)) or at the rising edge of CE (figure 2-4 (b)). The CS" pin should be brought high when the address is latched at the falling edge of ~ in the read/ write cycle. The HM658128 has no U'E" specification at the falling edge of CE as it provides both U'E" pin and RFS'Ff pin. ar cs Da.. (.) CE (b) access Figure 2-3. • DE access Reed Cyda HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 37 A p p l i c a t i o n - - - - - - - - - - - - - - - - - - - - - - - - - - - -_________ CS Standby Mode: The HM658128 enters CS standby mode for one cycle if CS turns to low at the falling edge of CE (figure 2-5). Standby Address :: ;;;;;:J IIIIIIII~ Figure 2-5. CS CS Standby Mode D,.. (a) Write at the riSing edge of WE Figure 2-4. (b) Write at the rlsmg edge of CE Write Cycle Address Refresh: Address refresh mode performs refresh by access to row address (AO - A8) 0 - 511 sequentially within 8 ms, as shown in figure 2-6 (in distributed mode). In this mode, CS should be high at falling edge of CEo 15,us A9-A16 CS--~~--------~---+----------~---+--------~r---~--- Refresh R/W Figure 2-6. Address Refresh Automatic Refresh: The HM658128 goes to automatic refresh mode if RFSH falls while CE is high and it is kept low for more than 180 ns. It is not required to input the refresh address from address pins AO - A8, as it is generated internally. Figure 2-7 shows the timing chart for distributed refresh. In automatic refresh mode, the timing for only CE and RFSH are specified. " RFSH 18Ons;;;;Refresh<8,us Figure 2-7. Self Refresh: Self refresh mode performs refresh at the internally determined interval. The HM658128 enters the mode when the internal refresh timer is Automatic Refresh enabled by keeping CE high and RFSH low for more than 8 Jl.s (figure 2-8). ~HITACHI 38 Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ------------------------------------------------------------------------A~ication Second self refresh current increases at low supply voltage. SXl Figure 2-8. [d:Y Self Refresh Fad Considerations on Using HM658128: The following should be considered when using the HM658128. • Data retention. The HM658128 can retain the data with a battery (but not for long time). The HM658128L, low power version, offers typical self-refresh or standby current of 1001olA. A 1-Mbyte system (using eight HM658128Ls) can retain the data for about 1.5 months with battery of 100 mAh current. Vee = 5 V ± 10% must be maintained for data retention. • Power on. Start HM658128 operation by executing more than eight initial cycles (dummy cycles) more than 100 tJS after power voltage reaches 4.5 V - 5.5 V after power on. • Bypass capacitor. Hitachi recommends inserting 1 bypass capacitor per RAM. 2.3 Pseudo-Static RAM Data Retention PSRAM with self refresh retains data CE and OE are fixed for more than defined period. The following explains considerations for PSRAM data retention. First, PSRAM cannot retain the data at low supply voltage. They employ 1 MOS type memory cell as shown in figure 2-9. The charge is stored on the capacitor C as memory data. The data 1, written at low supply Self Refresh Voltqe Figure 2-10. PSRAM Operating Voltage PSRAM provides the voltage level detector circuit to reduce self refresh current. However, it should be noted that the circuit increases the current with low supply voltage in self refresh (figure 2-11). Self refresh current also increases at low temperature (figure 2-12). Figure 2-11. Self Refr.h Current ft. Voltage Spe, O'c r",m'''''''''''''1 ~ Temperature Figure 2-12. Self-Ref_h Current vs Temperature Word Lme Please use PSRAM within the recommended operation range (Vee more than 4.5 V, temperature more than O°C) for data retention, especially using a battery. Figure 2-9. Memory Cell of PSRAM voltage, cannot be read as 1 at high supply voltage. Figure 2-10 indicates the operation voltage for self refresh and subsequent read of PSRAM. If the data is read out at more than 5 V of Vee, for example, after self refresh is performed at Vee = 3.7 V, it is destroyed. PSRAM must be used at supply voltage from 4.5V to 5.5V. • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 39 Application 3. Video RAM 3.1. Multiport Video RAM Figure 3-1 shows general idea of video RAM_ Multiport video RAM provides an internal data register (SAM) with the memory (RAM). Both of them can be accessed asynchronously. Effective graphic display memory is realized by using the random port of the RAM part for graphic processor drawing and the serial port of the SAM part for CRT display. RAM DRAM Random port memory cell Drawing MultI-port AddN'SS Video RAM Graphic Processor Figure 3-1. Generelldea of Multi-port Video RAM shows the operation modes of the HM53461. Figure 3-2 shows the block diagram of the 256kbit multiport video RAM HM53461, and table 3-1 iIT/OE SI/O I/O Senal port SC Figure 3-2. The operation modes shown in table 3-1 SOE Block Diagram of HM53461 are described as follows. Table 3-1. Operation Modes of HM53461 At the falling edge of RAS WE DT/OE CAS - - - - t--H H H H H L H L H RAM modes SOE "-" SAM modes Notes SIlO direction 1,2,3 Sin/Sout X X X Temporary write mask data program Read transfer Sin/Sout Read/write Sout H L L L Write transfer Sin H ---- L L H X X X Pseudo transfer CBR refresh Sin Sin/Sout L Notes: 1. 2. 3. ---- 1,2,3 2 1,2 H: High L: Low X: Don't Care Transfer cycle executed previously d~s SIlO direction. SIlO is in high impedance state with SOE high, even if the direction is ~ The HMS3461 starts write operation if WE is low at the faIling edge of CAS or become low between the faIling edge of CAS and the rising edge of RAS. ~HITACHI 40 Hitachi America. Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819· (415) 589-8300 ----------------------------------AppIlcatlon Read/Write Operation: Read/write is performed on the random port in the same sequence as for a dynamic RAM (figure 3-3). The HM53461 starts the read operation with WE high and the write operation at the falling edge of WE. AO-A7 Read Transfer Operation: In this cycle, the HM53461 transfers the data of one row in RAM (1024 bits). which address is specified at the falling edge of RAS, to SAM (figure 3-5)_ The start address in SAM can be programmed at the falling edge of CAS in this cycle_ After data transfer, the serial port turns to serial read mode at the rising edge of DT/OE. AO-A7 DRAM memory c:oII DRAM SI/OI - SI/04 memory c:oII 1/01-1/04 Figure 3-3. R.d/Write Operation Figure 3-6. Temporary Write Mask Set and Temporary Masked Write Operation: The HM53461 provides temporary masked write operation which inhibits to write data bit-by-bit (write mask) during one RAS cycle. Temporary write mask set function defines the bits to be inhibited (figure 3-4). This operation puts the data on 1/01 - 1/04 into the internal temporary write mask register. When 0 is programmed to the register, writing to the corresponding bit is inhibited. The temporary write mask register is reset at the rising edge of RAS. R.d Tr....st. Operation Write Transfer Operation: In this cycle, the HM53461 transfers the data in the SAM data register (1024 bits) to one row in RAM, which address is specified at the falling edge of RAS (figure 3-6). The start address in SAM can be programmed in this cycle. After data transfer, serial port turns to serial write mode. AO-A7 AO-A7 DRAM SII01- 51/04 memory ,.11 DRAM memory Figure 3-6. c:oII Pseudo Transfer Operation: This operation switches the serial port to serial write mode (figure 3-7). It does not perform data transfer between RAM and SAM. SAM start address can be programmed in this cycle. 1/01-1/04 Figure 3-4. Write Transfer Operation Temporery Mlllkad Write Operation $HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 41 ~Icationl--------------------------------------------------------------------- Serial RaadJWrite Operation: The HM53461 reads! writes the contents of the SAM data register in serial at the rising edge of SC (serial clock input) (figure 3-9). The address for serial access is generated by the internal address pointer, independently of random port operation. It should be considered that serial access is restricted in transfer cycles. The SAM, employing static-type data registers, requires no refresh. AO-A7 ......do Transfer Operation Fi.... re 3-7. / ~ \ CAS-Before-RAS Refresh Operation: The HM53461 performs refresh by using the internal address counter in this operation (figure 3-8). I ~umn I [];] ::=-1 ~ ~ / Fi.... re 3-9. \ Serial R.d/Wrlte Operation The HM53462 is a multiport video RAM, adding logic operation capability to the advantages of HM53461 . Figure 3-10 shows the block diagram. Table 3-2 describes the operation modes. DRAM .....ory cell Figure 3-8. CAS-Before-RAS Refresh ,--------RAM I ---I SAM ' I I DRAM I/O Raodom port SI/O .....ory cell. , I I I Senal port I I I I I _..J WE-t--------+------+--------------~ SC SOE Figure 3-10. Block Diagram of HM53462 • 42 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 ---------------------------------Appllcatlon Table 3-2. Operation Modes of HM53462 At the falling edge of RAS RAM modes CAS DT/OE WE SOE H H H X Read/write H H L X H L H X H L L L SAM modes SI/O direction Notes Sin/Sout 1,2,3 Temporary masked write Sin/Sout 1,2,3 Read transfer Sout Write transfer Sin 2 H L L H Pseudo transfer Sin L X X X CAS-before-RAS refresh Sin/Sout 1,2 X Logic operation program (CDR Refresh) Sin/Sout 1,2 X L H: High Notes: 1. L L: Low X: Don't Care Transfer cycle previously executed defines SIlO direction. SIlO is in high impedance with SOE high, even if S.!lQ..direction is Sout. __ HM53462 writes if WE is low at the falling edge of CAS or becomes low between the falling edge of CAS and the rising edge of RAS. 2. 3. Logic Operation Programming: This function programs a logic operation (figure 3-11). The logic operation is available until re-programmed or reset. In logic operation mode, HM53462 performs readmodify-write internally when data is written into random port. The result of the logic operation between memory data and written data is put into the address from which the memory data is transferred. In the logic operation programming cycle, the mask register, which differs from the temporary mask register, is also programmed. It is available until reprogrammed. AO-A7 . :! illill--~ti . . --=---->-------'+'" e 8;::; I I 1'-" L_" -lI g..a j 8 I : DRAM memory cell I 1 I~::~:=:~W; 11 11 I I 1 I 1 I 1 I 1 I 1/01-1/04 (dotted hnes mdlcate wnte m logic operabon mode) Figure 3-11. Logic Operation Programming Notes: Notes on using HM53461/HM53462 are as follows. • Dummy RAS cycle. Devices should be initialized by S dummy RAS cycles (minimum) before access to random port. Refresh cycle can be inserted for initialization. It is recommended that the system be initialized by dummy RAS cycle in the automatic reset time of the processor. • Bypass capacitor. One bypass capacitor should be inserted between Vee and Vss to each device. The Vee pin should be connected to the capacitor by the shortest path. A capacitor of several fJ.F is suitable. • Negative voltage input. Negative polarity input level to input pin or I/O pin should be under -1 V. In this range, it has no effect on device characteristics or RAM/SAM data retention. • Initialization of logic operation mode (HM53462). The logic operation programming cycle should be executed before access to the random port to initialize logic operation mode after power on. At this time, the operation codes (0101) and all 1 write mask data are recommended. 3.2_ Line Memory Hitachi has produced a line memory for line buffers with simple circuits, providing specific functions as described below. The line buffer can improve picture quality by storing 1 horizontal line data. It has following features. • Capacity to store 1 horizontal line data • High-speed operation matching the sampling speed of PAL TV signal (4 fsc/S fsc) or NTSC TV signal (4 fsc/S fsc). OHITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 43 Ap~ication-- _______________________________________________________________ • Separate data inputs/outputs and capability of serial data inputs and outputs. The conventional line buffer composed of high speed static RAMs requires separate input/output for double buffer organization. It also requires interleaving for high speed operation, matching 4 fsc/8 fsc, wherefscisthesubcarrierfrequency. In addition, external circuits are needed for serial address scan. The line memory provides all of these functions. Figure 3-12 shows the standard organization of a conventional memory buffer and figure 3-13 shows the block diagram of line memory. Addres.--------\ The Hitachi HM63021 is a 2048-word x 8-bit line memory storing 2 horizontal lines of data. It has five different modes for various video graphic system applications. It realizes high speed opera· tions for PAL and NTSC TV signals, and dissipates little power employing 1.3 Jlm CMOS technology and static·type memory cells. The features of the HM63021 are described as follows: • Five modes for various video graphic system applications - Delay line mode - Alternate 1H/2H delay mode - TBC (Time·Base Corrector) mode - Double speed conversion mode - Time-base compression/expansion mode • High speed cycle time HM63021-34: 34 ns min (corresponds to 8 fsc of NTSC TV signal) HM63021-28: 28 ns min (corresponds to 8 fsc of PAL TV signal). Line memory in the system using digital signal processing technologies offers following applica· tions: 1. com b filter 2. double-speed conversion (non·interlace) 3. compression/expansion of graphics (picturein-picture) 4. dropout canceller 5. time-base corrector 6. noise reducer Address Control Figur.3·12. Standard Orllllnization of Conventional Line Buffer I----t--~k Input Buffer IH Memory Output Buller D_.~_~_1d__T- :-'L--I Figur.3·13. Block Diagram of Line Memory • 44 HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ----------------------------------AppIlcation 4. Dynamic RAM 4.1. Dynamic RAM Memory Cen The dynamic RAM memory cell consists of 1 MOS transistor and 1 capacitor, as shown in figure 4-1. It detects the data in the cell (1 or 0) by the charge stored in capacitor. Dynamic RAM offers higher densiJ;y than that of static RAM because of fewer components per chip. However, Dynamic RAM must rewrite data, called refresh, in a defined cycle because the charge stored in the capacitor leaks. r FI..... 4-1. Memory Cell of Dynamic RAM 4.2. Power On Procedure After turning on power, to set the internal memory circuitry, hold for more than 100 IJS, then apply eight or more dummy cycles before operation. The dummy cycle may be either a normal read/write cycle or a refresh cycle. When using an internal reo fresh counter, eight or more CAS before RAS refresh cycles are required as dummy cycles. 4.3 Address Multiplexing Dynamic RAMs are used to increase capacity be· cause of their smaller cell area. In using dynamic RAMs in systems, however, it is desirable to increase the memory density by using smaller packages. To reduce the number of pins and the package size, address multiplexing is used. Using a 1-Mbit dynamic RAM, 20-address signals are necessary to select one of 1.048,576 memory cells. Address multiplexing allows address signals to be applied to each address pin. Thus only 10-address input pins are required to select one of 1048,576 addresses. Multiplexed address inputs are latched as follows: RAS (Row Address Strobe) selects one of word lines according to the row address signal, and one of column decoders is selected by CAS (column address strobe) following column address signal. Although two extra signals, RAS and CAS, are required, the number of address pins is reduced to half. Figure 4-2 shows the pin arrangement, address latch waveform, and the block diagram of address·multiplexed 1-Mbit dynamic RAM. Systems need an address multiplexer in order to latch the multiplexed address signals into the device. AO-A9 Address Inputs ~ Column Address Strobe Data In Data Out Row Address Strobe ReadfWrite Input Vee Power (+5V) Ground VSS AO-AS Refresh Address Inputs Din Dout RAS WE (b) A_Lotch (.) Pin Arranpment n::. .Ciis_~ld......-w-~_I_.::;:.::.:::=_I E.temol penpberol-+-lntemollllOlllOrl' LSI I Row C"Mcwt Address A_ Cuewt eo..... CoIumn_ (e) BIoek otiqnm 01 Addns. MulbpIeuq FI..re 4-2 Add.... Multiplexing of Dynamic RAMI • HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. Brisbane, CA 94005-t819 • (415) 589-8300 45 Application---------------------------------4.4. Dynamic RAM Function Figure 4-3 shows the normal function of Dynamic RAM. tRC: tRCD: tRAC: Random Read or Write Cycle Time RAS to CAS Delay Time Access Time from RAS tCAC: Access Time from CAS R: Address c: Row Address Column Address Dout (a) Read Cycle CAS Address Address Don Don Dout Hioh Z (Early Write) (b) Write Cycle (Delayed Write) tRWC: Read-Write Cycle Time Address Don DOllt 1f/l111!1/mvv&: { }- (c) Read-Modify-Write Cycle Figure 4-3 Normal Function of Dynamic RAM Read Cycle: In the read cycle, a row address is latched at the falling edge of liAS", and a column address is latched at the falling edge of "CAS' after the "RAS"" fall ing edge. If WE" is high, the data is read out from Dout with the access time of tCAC (Access time from CAS) or i!RAC (Access time from RAS). The tRCD maximum (RAS to CAS delay time) is specified only to guarantee the specified minimum values of other timings such as the cycle time, RAS/CAS pulse width. Therefore, when using these timings with more than the specified minimum value, there is no need to limit the tRCD to the specified maximum value. Write Cycle: Dynamic RAM provides two write cycle modes: early write cycle and delayed write cycle. In the early write cycle, when WE is low, data is written into Din at the falling edge of CAS_ In delayed write cycle, when WE is high, data is written into Din at the falling edge of WE after CAS falling_ Read-Modify-Write Cycle: The read-modify-write ~HITACHI 46 Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 --------------------------------------Application cycle is initiated by taking WE high. Data is read out from Dout at the falling edge of CAS with WE high. Then, when WE goes low, data is written into the same address from Din in the same cycle. The cycle time in the read·modify·write mode (tRWC) is longer than the cycle time in read/write mode {tRcl. When a word line is selected by row address, all data in the memory cells connected to the selected word line is transferred to sense amplifiers. One of these sense amplifiers is selected by the column address, and its contents are output. The output of data from other sense amplifiers is controlled only by the column address. Access controlled only by column address with the row address fixed is called high speed access mode. Table 4·1 compares each mode. Page Mode: This is the most typical access mode in dynamic RAM. The column address is switched synchronized with CAS falling. Nibble Mode: In a nibble mode dynamic RAM, 4.5 High Speed Access Mode Dynamic RAM access time is typically longer than that of static RAMs. To realize higher speed opera· tion, they have high speed access modes. The read operation in dynamic RAM is performed as follows: Tabla 4·1. ComparilOn of Dynamic RAM High Speed Accea Modes RAS Normal Mode CAS Address Dout ~ R : Row Address C . Column Address Page Mode Nibble Mode Static Column Mode ,s-J RAS \ High-Speed Page Mode CAS~~ ~ Address Dout R C 1 2 3 4 b::>- ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300 47 Application-----·-------------------------------data from 4 sequential addresses is stored in the 4·bit output latch circuits. Output is provided by the CAS signal, which controls the latch circuits. When 4 addresses are accessed sequentially, the row addresses on and after second bit need not be selected. Therefore, it facilitates the timing design. In nibble mode, the operation is limited to 4 ad· dresses, however, it enables faster access (tNAcI than that in page mode. Static Column Mode: In static column mode, the column address is switched without the synchro· nized signal by high·speed static RAM technology in the peripheral circuits. High Speed Page Mode: This mode is the advanced mode of static column mode, with CAS providing the address latch function. 4.6 Refresh Refresh operation is performed by accessing every word line within the specified time (refresh cycle). Table 4·2 compares the following refresh modes in dynamic RAM. RAS Only Refresh: In RAS only refresh mode, refresh can be completed by selecting only row addresses synchronized with RAS. CAS Before RAS Refresh: This mode refreshes by the CAS falling edge before RAS in the period de· fined by the internal refresh address generator. This mode simplifies the external address multiplexer. Hidden Refresh: In hidden refresh, CAS before RAS refresh is performed while output data is valid. Tabla ....2. ComparilOn of Dynamic RAM Rafr.h Mod. Read R : Row Address C : Column Addre.. RASOnly Refresh Dout Hch Impedance CAS before RAS Refresh Address Pffl/ff/zvAUt/l?lZ? Dw. - - - - - - - Hidden Refresh W • 48 Don't care HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ------------------------------------Appfication 5. EEPROM 5.1. EEPROM Memory Cell EEPROM is electrically erasable and programmable ROM, which can be erased or written remotely while the system is in operation. The Hitachi EEPROM memory cell is MNOS (Metal ~itride Qxide ~emiconductor) type, as shown in figure 5·1. An MNOS memory cell consists of two layers of oxide film and nitride film. The thickness of oxide film is about 20 A and that of nitride film is 300 to 500 A. There are traps in the boundary of the oxide and nitride films to catch electrons. Electrons move by the tunneling phenomenon between the substrate and traps. MNOS memory cell A5-A13 I/O ROY/BUSY @ AO-A4 Figure 5·2. Poly- slhcon N Substrate Figure 5·1. MNOS Type Memory Transistor 5.2. 64-kbit CMOS EEPROM Function Page Write Function: The 64·kbit HN58C65 can latch 32 bytes (max) and write them in one write cycle. Writer cycle time is specified as 10 ms (max.). The effective byte write speed of HN58C65 in page write mode is: 10 ms/32 bytes = 0.31 ms/byte Thus it takes only 2.56 seconds to write the whole HN58C65. Figure 5.2 shows internal operation. The following describes operation sequence: 1. 32·byte memory cell data at the row address selected by address pins A5 - A 12 is latched. 2. Latched data at the column address specified by address pins AO - A4 is altered with write data, which is put into Din buffer from I/O pins 1/00 -1/07. The 32 bytes (max) of latched data are altered by repeating this operation 32 times. 3. 32·bytes memory cell data in the selected row (1) are erased (All 1). 4. Latched data is written into the selected row (3). 5. CPU acknowledges the completion of write cycle by the internal timer. The HN58C65 provides ROY /BUSY and Data polling to indicate the write completion. HN58C65 Page Write Internal Timer: The HN58C65 indicates the completion of data write to the CPU by using the internal timer. The HN58C65 enters next cycle as soon as detecting the completion of write. This function offers high system throughput as the CPU can access other devices during write cycle. The HN58C65 has two functions, ROY/Busy and Data polling, to indicate the completion of data write. The ROY /Busy approach indicates the completion of data write by using pin 1. It is low when the HN58C65 is in data write operation (Busy) and turns to high impedance state at the end of data write (ROY). ROY/Busy pin should be pulled up as it uses open drain output. The ROY/Busy pins can be wired·OR when using several HN58C65s. The Data polling approach, implemented by soft· ware, indicates the completion of data write through pin 19 (1/07). While the data write is not completed, 1/07 shows the inverted data of what was written in the last cycle. In using this approach, RDY /Busy pin should be opened or grounded. The Data polling approach can acknowledge the completion of data write in an individual HN58C65, even if several HN58C65s are used in the system. Data Protection: EEPROM performs data write with a higher voltage (V pp ) than power supply voltage (Vee). The HN58C65 internally generates V pp by a high voltage generator with the combina· tion of control pins (CE, OE, WE). It supports the following functions to avoid accidental data write (data protection). 1. Data protection against the noise on the control pins (CE, DE, WE) during operation. 2. Data protection against the noise at power-on/ power-off. .HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 49 Application---------------------------------6. EPROM/OTPROM 6.1. EPROM Programming Figure 6·1 shows the sectional structure of an EPROM memory cell. The upper gate, one of the gates made of two·layered polycrystalline silicon, is called the control gate and is connected to a word line. The lower layer is called the floating gate and is not connected. This memory cell is programmed as follows: With substrate and source grounded, apply high voltage between drain and control gate. Then, an electric potential incline occurs between source and drain so that intensity of the electric field becomes high near the drain. Because of this electric field, electrons are accelerated and so-called hot electrons are generated, which jump over the energy barrier of Si0 2 film. Hot electrons are pulled by the electric potential of the control gate and pour into the floating gate. Electrons stored in the floating gate remain stable, as they fall into a well surrounded by an energy barrier of Si0 2 film. Therefore, it is evident that the quality of Si0 2 film surrounding the floating gate is essential for good data retention characteristics. To keep data reten· tion in the 5· or 10·year range, high quality Si0 2 film is needed. Figure 6-2. shows the fundamental characteristics of the EPROM transistor. While 10 in a non·pro· grammed transistor begins to flow with VG of about 1V, the current in a programmed transistor does not flow until VG rises to 7 V - 10 V. Therefore, if the voltage of word line applied to the control gate is about 5 V in readout, the non·programmed memory transistor will be on, and the programmed one will be off. This means that the data can be read out by means of the same structure as NOR·type mask ROM. 6.2. Erasing EPROM When shipped, all bits of the EPROM are at logic 1 with all electrons in the floating gate released (erase). Changing the logic 1 to logic a through the application of the specified waveform and voltage, programs the necessary information. The higher the V pp voltage and the longer the program pulse width tpw, the more electrons can be programmed in, as shown in Figure 6·3. If V pp exceeds the rated value, such as by overshoot, the p·n junction of the memory may yield to permanent breakdown. To avoid this, check V pp overshoot of the PROM programmer. Also, check negative·voltage·induced noise at other terminals, which can create a parasitic transistor effect and reduce the yield voltage. • 50 Hitachi's EPROMs can usually be written and erased more than 100 times. = /Control Got, 5;0, Sourc. Figure 6·1. Err7..,....Z-rZ~7-.,.,r ~ ~rzZ7zY FloaungGate Dra'n Cross Section of EPROM Memory Cell To I Non-programmed Memory cell ~~-----~-----~ ~!01vo VGL+-J Figure 6·2. Fundamental Characteristic of EPROM Memory Cell Programmlnl Conditions; Vcc=6.0V. Vpp=12.5V 10 Program Pu1ae Width t,.w (ms) Figure 6-3. Stand.rd Programming Characteristics of EPROMs EPROMs are erased by ultraviolet light exposure through a transparent window on the package. Electrons in the floating gate get energy from photons and become hot electrons again with enough energy to go over the energy barrier of Si0 2 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ----------------------------------------------------------------------------Application film. The hot electrons go through to the control gate or the substrate and erasure is completed. Therefore, light with enough energy to get the electrons over the energy barrier of Si0 2 film is needed for erasure. Light energy is proportional to its frequency, and described as E = hv. E means the energy of light, h is Planck's constant, v is light frequency. Erasure isn't caused by light over certain wavelengths, and under certain wavelengths, erasure does occur. However, erasure time depends upon the quantity of photons, therefore erasure time cannot be shortened by shorter wavelength. Figure 6-4 shows the relation between wavelength and erasure effectiveness. Erasure starts at about 4000 1\, and is saturated at about 3000A.. be removed with a solvent such as alcohol that does not damage the package. Figure 6-5 shows EPROM standard erasure characteristics. 6.3. EPROM Data Retention Characteristic About 2 to 20 x 10- 14 coulomb of electrons are accumulated in the floating gate when programmed. However, these electrons dissipate with time. Then the data may be inverted. The mechanism of electron dissipation is generally explained as follows. Data Dissipation by Heat: The electrons at the floating gate are in a non-equilibrium state, so the dissipation of electrons by thermal energy is unavoidable. Therefore, the data retention time depends on temperature. Figure 6-6 shows typical data retention characteristics. The data retention time is proportional to the reciprocal of absolute temperature. 10 , I / I , / 10 Wavelength 300 200 150 100 Figu re 6-4. Erasure Efficiency of EPROM For erasure, the wavelength and minimum irradiation rate of ultraviolet light must be 2,5371\ and 15 W's/cm 2 respectively. These conditions can be met by placing the device 2 - 3 cm below a 12,000 W/cm 2 UV lamp for about 20 minutes. The UV transmittance of the transparent lid materials is about 70%. However, it is influenced by contamination or foreign materials on the lid surface. Contamination or foreign materials should Stored temperature ('C) Figure 6-6. EPROM's Data Rentantion Characteristic Data Dissipation by Ultraviolet Light: Ultraviolet rays at a wavelength of not greater than 3,000 40001\ is capable of releasing the electric charge at ::y .\ \. \ 6 5 4 :/ I\- I), V I"> W . IrradiatIOn (W . Figure 6-5. sec/cm~) W ntmg Charge (relative) Standard Erasure Characteristics Figure 6-7. EPROM's Data Retention Time ~HITACHI Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy. Brisbane, CA 94005-1819 • (415) 589-8300 51 Application----------------------------------- floating gate of the EPROM with varying efficiencies. Fluorescent light and sunlight contain some ultraviolet light, and so prolonged exposure to these lights can cause data corruption as a result of electric charge dissipation. Figure 6-7 shows the standard, data retention time under an ultraviolet eraser, sunlight and fluorescent lighting. 6.4 Optimized High-Speed Programming With the increase of EPROM density, the time for programming becomes more important. The method for high speed programming has been developed and put into practical use according to each EPROM generation. Following explains three methods for High-Speed programming_ (1) First generation ... conventional programming. This method is employed in the 3 J.tm and 5 J..!m process products. Programming is performed with a uniform pulse of 50 ms per byte. Although it is the advantage that it applies enough pulse to all bits, it takes much time to program high density devices. High performance (2) Second generation programming This method is employed in 2 J..!m process product. "High Performance programming (figure 6-8) is GO END performed with a base pulse of 1 ms width. It repeats programming and reading (verifying) until the data is programmed enough. There are two good points in this programming. First, the programming itself is performed with optimum program time depending on the capability of each memory cell. Second, after verification, the data is programmed using three times as long a pulse and assures highreliability data retention. (3) Third generation ... Fast High Reliability Programming This method is employed in the 1.3 J.tm process products. "Fast High-Reliability Programming" (figure 6-9) is performed with a base pulse of 0.2 ms. It also shortenes a supplement pulse width to one-third of that of "High Performance Programming". As a result, this method realizes short programming time, reduced to one-tenth theoretically. 1 M bit EPROM series employ "Page Programming", which programs 32-bit at once (figure 6-10), reducing programming time to a quarter of "Fast High-Reliability Programming" for 128k x 8 organization and a half for 64k x 16 organization. Figure 6-11 shows the programming time of above methods. FAIL Figure 6-8. High-Speed Programming (High Performance Programming) Figure 6-9. O.2ms High-Speed Programming (Fast High-Reliability Programming) @HITACHI 52 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 --------------------------------------------------------------------Ap~ication I 50ms programmmg I I 10 I I I 1ms High-speed programmmg " I 2M 32k Address + I-Address Storage capaclty( x 8 orgamzatlOn) 4M (bit) (Note) Actual program time differs according to the programmer. Figure 6-11. Shortened Program Time by HighSpeed Programming. Figura 6-10_ Page-Mode Programming (Page Programming) 6_5 Device I ndentifier Code EPROM programming conditions depend on EPROM manufacturers and device types, confusion may cause miss operation_ As a countermeasure some EPROMs provide device identifier code including such information as manufacture and device type_ Some newly developed commercial EPROM programmers can set write conditions automatically by recognizing this code_ Different programming conditions are as follows: (1) program voltage, (2) program timing, (3) highperformance programming algorithm, (4) pin configuration_ The Hitachi EPROM has a device identifier code area besides the memory access area, as shown in figure 6-12_ • Data access area 1/0 control CII'CUit ¢ Dou' Figure 6-12. Device Identifier Code Table 6-1 describes how to use the device identifier code. Setting A9 at 12 V and A1 - AS, A 10 - A 13 at V IL access the device identifier code area and 1/00 - 1/07 output the programming condition code with V IL or V IH of AO_ HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 53 ~iCMlon-------------------------------------------------------------------- Tablel6-1. Hitachi EPROM Device Identifier Code A. Manufacturer Code ROM code Hitachi V/L HN27128A HN27256 HN27C256 HN27C256H V/H HN27C256A HN27512 HN27CI024H 1/08-1/015 - - - - - 1/07 1/06 1/05 1/04 1/03 1/02 1/01 1/00 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 Hex Data 07 OD 10 BO 31 31 94 BA A9: 12V Al -AB, AIO -AI3: V/L Al4, AIS: Don't care 6.6 Shielding Label When using an EPROM in an environment where it can be exposed to ultraviolet light, Hitachi recommends putting a shielding label on its transparent lid to absorb ultraviolet light. In choosing a shielding label, the following points should be carefully checked. Adhesiveness (mechanical strength). Avoid repeated attaching or exposure to dust that may reduce the adhesive strength. Ultraviolet erasing and reprogramming are recommended after stripping off an attached label. (When the need arises to change a label, it is advisable to put a new one on over the old one since peeling may create a static charge.) Allowable temperature range. Use the shielding label in an environment whose temperature falls within the specified allowable temperature range. Beyond the specified temperature range, the paste on the label may harden or stick too fast: When it hardens, the label may come off easily. When it sticks too fast, the paste may remain on the window glass after the label has been removed. Moisture resistance. Use the shielding label in an environment whose humidity falls within the specified allowable humidity range. * 1. Pin contact check 2. 3. * 4. * 6.7 EPROM Programmer The EPROM programmer stores the user's program in its internal RAM and writes the program in the EPROM. For this programming, 3 functions at least are necessary: blank check function prior to programming, programming function, and the verify function after programming. Figure 6-13 shows the programming flow chart. Some programmers check for pin contact failure or the reverse insertion before the blank check. The outline of each block is as follows. 5. In the ROM pin and socket connection test, checking is normally performed by detecting the forward current at each EPROM pin. Care is necessary as this forward biased resistance differs in products of each company. Reverse insertion check This check detects the reverse insertion of the device, places the equipment in reset mode and protects the device and equipment. Blank check This check is performed before programming. It checks whether the device is an erased EPROM, or it preventing EPROM reprogramming. Since the output data in the erased condition are 1 (high levell. check whether or not data in EPROM are all 1. It will fail-stop even when one bit is 0 (low level). Normally, it is designed to provide warning with a lamp or buzzer. Programming The function of programming the data in the internal RAM of the programmer into EPROM will fail-stop when programming cannot be done. The normal flow is as shown in figure 6-14. The EPROM data will be read out prior to programming and compared with programming data. If they coincide, programming will be skipped and if they differ, programming will be performed. Then, the data will be read out again and compared with the programming data, and if they coincide, the programmer will progress to the next address. Verify This function checks after programming com· pletion whether or not the programming is correct when comparing with the data in the internal RAM of the programmer. It performs fail·stop when they do not coincide. Normally, when it fails, it lights the fail lamp and displays ~HITACHI 54 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Application Figura 6·13. Programming Flow Chart of EPROM Programmar (11 Figura 6·14. Programming Flow Chart of EPROM Program mar (21 the address and data. 6. How to input the program Table 6·2 shows several methods for inputting the program data to the internal RAM of the programmer. Normally, paper tape input and teletypewriter input are prefered options. Tabla 6·2. EPROM Data Input Method Content Copy input Input by copying the master ROM. Manual input Input by the keyswitch on the front panel. Used for correction or revision of program Paper tape input Read the paper tape furnished from the host system with the tape reader Teletypewriter input Input with the teletypewriter. Preparation, correction, and list preparation of the program can be made. 6.8 Handling EPROMs Touched with a charged human body or rubbed with plastics or dry cloth, the glass window of an EPROM generates static electricity which causes de· vice malfunctions. Typical malfunctions are faulty blanking and write margin setting that give the false impression that information has been correctly written in. As already reported at the international conferences concerning the reliability of LSI chips, this is due to the prolonged retention of electric charge (resulting from the static electricity) on the glass window. Such malfunctions can be eliminated by neutralizing the charges by irradiating with ultra· violet rays for a short time. The EPROM should be reprogrammed after this irradiation since it reduces the electric charges in the floating gate, too. The basic countermeasure is to prevent the charging of the window, which can be achieved by the following methods as in the prevention of common static breakdown of ICs. 1. Ground operators who handle the EPROM. Avoid using things such as gloves that may generate static electricity. 2. Refrain from rubbing the glass window with plastic or other materials that may generate static electricity. 3. Avoid the use of coolant sprays which contain some ions. 4. Use shielding labels (especially those containing conductive substances) that can evenly dis· tribute established charge. 6.9 Ensuring OTPROM Reliability ROM One time electrically programmable (OTPROM) has two kinds of packages: standard dual in·line package (DIP) and small outline package (SOP). It is one time only programmable because it has no window for ultraviolet light exposure; testing by programming and erasure cannot be performed after it is assembled. So, Hitachi performs screening test for program· ming, access time, and data retention on wafers at proving test. However, rare defects may occur in the assembly process cannot be completely removed in final test screening which is only a reading test. Therefore, Hitachi recommends that users perform high temperature baking after programming devices to ensure high reliability. Detailed conditions and procedures for screening are shown in figure 6·15. First, program and verify devices. Then, leave them without bias at 125 to 150°C for 24 to 48 hours. After that, check read·out function and remove the chips with data retention failures. From the results of devices in which the recom· mended screening test is properly performed, we confirm that the data retention characteristics of OTPROMs are equal to general EPROMs. .HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 55 Application-----·--------------------------------Programmmg, '----,r--..... Readmg-out ' - - - r - _.... Retention Da.. Wafer Screenmg Program and Venfy by Programmer Bakmg at 125 to 150'C for 24 to 48hrs Recommended Screening Conditions Figure 6·15. Screening Flow Chart of OTPROM • 56 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 -----------------------.-------------- Application 7. MASK ROM PROGRAMMING INSTRUCTION The writing of the custom program code into mask ROMs is performed by the CAD system on a largesized computer. ROM code data should conform to specifications given below, using either paper tape, EPROM, or magnetic tape. Additional instructions, such as chip select and customers' part number, should be given in the "ROM Specification Identification Sheet" 7.1 Specification of EPROM 1. Submit the three sets of the EPROM-stored data. Specify the address of the EPROM in the case of two or four EPROMs. 2. The ROM code data is input from the start address to Final Address in the EPROM. 3. Type of EPROM HN482764 (8-kword x 8-bit, 2764 Compatible) HN4827128 (16-kword x 8-bit, 27128 Compatible) HN27256 (32-kword x 8-bit, 27256 Compatible) HN27C256 (32-kword x 8-bit, 27C256 Compatible) 7.2 Specification of Magnetic Tape 1. Use the following type of magnetic tape which can be used by a magnetic tape device compatible with the IBM magnetic tape device. Figure 7-1. Ualll record Record Start 5 J 5 Record Typ-,- 3 0 0 o Address Sal' J J J J Data J J Data J 3 Dati J 3 Check Sum 0 0 0 0 • •• 8 , •, J 5 I The actual load module mode is shown in figure 7-2. Magnetic Tape Format Header record Byte Count Length ..... 2,400 feet, 1,200 feet or 600 feet Width . . . . . . . . . . . . . . . . . . . . . . . 1!2 inch Channel . . . . . . . . . . . . . . . . . . . 9 channels Bit density .... 800 BPI or 1,600 BPI (Clearly state which it is in the "ROM Specification Indetification Sheet".) 2. Use EBCDIC as the use code. 3. Follow the format of the magnetic tape as described below No leading tape mark No label Record size . . . . . . . . . . . . . 80 byte!l record Block size . . . . . . . . . . . . . 10 records!l block The end of the file should be indicated by 2 successive tape marks (TM) (figure 7-1). 4. HMCS6800 load module data mode. This mode is the object mode output from the assembler HMCS6800. Divide the 8-bit code into the upper and lower 4-bit codes, and convert each into hexadecimal notation. Example: The code 11000110 is as follows under binary notation. (Upper 4-bits) (Low 4-bits) Bit weight 07060504 030201 DO (ROM output 1 0 0 0 1 1 0 equivalence) 6 0000 5 J S 5 J S J I I J , , J J I 6 16 J J 0 J oJ J J J J I I 0 0 ! 100 J J J J 0 0 0 0 0000 48-H J J 44-0 J J 52-R 18 (Check Sum) End of fde record ,, , , , o, • •J • 0 [TI• I J 8 ~ck Fe ( Check Sum I Sum) Figure 7·2 . HMCS68000 Load Module Date Format • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy_ • Brisbane, CA 94005-1819 • (415) 589-8300 57 Application-------------------------------------SO indicates the head of the file and S9 indicates the end of the file. The actual data starts following S1. This means that the data starts from the address (hexadecimal) indicated in the address size. The address of the address size of the data recorder is compared with the next data recorder address by counting in increments of 1 byte of the data and checking whether it is sequential or not. The printed example of the HMCS6800 load module mode is as shown in figure 7·3. Header Record -+ SO 0 BOO 0 0 5 8 204 5584 I 4 D 504 C B 5 Da ta Reco rd -+ S I I 3 F 0 0 0 7 E F 5 5 8 7 E F 7 8 9 7 E F A A 7 7 E F 9 C 0 7 E F 9 C 4 7 E 2 4 Da ta Record End of FdeRecord -+ S I I 2 F 0 I 0 FA 6 5 7 E FA 8 B 7 E F A A0 7 E F 9 DC 7 E F A 2 4 7 EO 6 -+S9030000FC Figure 7·3. HMCS6800 Load Module Example If an address is skipped, enter the skipped address into the "ROM Specification Identification Sheet" and the data (00 or FF) entered into the skipped address. 5. BNPF mode One word is symbolized by the word start mark B, the bit content represented by 8 characters of P and N, and the BNPF slice composed of succes· sive 10 characters of the work end mark F. The contents from F of one BNPF slice up to B of the next BNPF slice are ignored. (Example) The code of AA (hexadecimal) is symbolized as shown in figure 7-4. It is necessary to designate the bit pattern (BNPF slice) on all ROM addresses. Therefore, the term of the ROM head address of "ROM Specification Identification Sheet" always becomes O. B . . . . . .. Indicates start of 1 word. N . . . . . . . . . . . . . . . Indicates 1 bit data. P . . . . . . . . . . . . . . . Indicates 1 bit of 1 data. F . . . . . . . . . . . . . . . Indicates end of 1 word. 7.3 Specification of Floppy Disk 1. Use the following type of floppy disk (figure 7·5): Type .... 8 Inch Single Sided and Single Density Number of Sectors ....... . . . . . . . . .. 26 Number of Tracks. . . . . . . . . . . . . . . . .. 77 Sector 26 I Sector 01 Sector 03 Track 00 (lndex' Trackl Figure 7·5. Floppy Disk Format 2. Use EBCDIC as the use code. 3. Format the floppy disk as described below. Composition is described in table 7·1. Record size . . . . . . . . . . . . . 80 byte/1 record Table 7·1. Floppy Disk Composition --------- No. Item Stand ard Volume La bel Location Track Sector 00 07 00 08 - 26 01- 73 01 - 26 75, 76 01 - 26 00 74 01 - 06 01 - 26 - 2 Standa. rd Head Label 3 Data Area - - - - - - - - - 1----- -- 4 -------~---"". Altern al Track --_.. _- Spare Track Figure 7-4. BNPF Mode Example --.-------~- ~HITACHI 58 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 ------------------------------------Application Use the sectors as in figure 7·6. Use one sector for one record, that is, 80 bytes out of 128 bytes used for one record. 4. Data Mode. See data mode for magnetic tape. 1 Track Sector 1 Sector 2 Sector 3 Record I (80 bytes) Figure 7-6. Check Figure 7·7. Floppy Disk Sector Format ~. unused OK Mask flOM Development Flowchart ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 59 Application 8. INSTRUCTIONS FOR USING MEMORY DEVICES 8.1 Prevention of Electrostatic Discharge As semiconductor memory designs are based on a very fine pattern, they can be subject to malfunction or defects caused by static electricity. Though the built-in protection circuits assure unaffected reliability in normal use, devices should be handled according to the following instructions: 1. I n transporting and storing memory devices, put them in conductive magazine or put all pins of each device into a conductive mat so that they are kept at the same potential. Manufacturers should give enough consideration to packing when shipping their products. 2. When devices touch a human body in mounting or inspection, the handler must be grounded. Do not forget to insert a resistor (1 MQ appro x is desirable) in series to protect the handles from electrical shock. 3. Keep the relative ambient humidity at about 50% in process. 4. For working clothes, cotton is preferrable to synthetic fabrics. 5. Use a soldering iron operating at low voltage (12 V or 24 V, if possible) with its tip grounded. 6. In transporting the board with memory devices mounted on it, cover it with conductive sheets. 7. Use conductive sheets of high resistance (about 109 ohm/D) to protect devices from electrostatic discharge. For, if dropped onto conductive materials like a metal sheet, devices may deteriorate or even breakdown owing to sudden discharge of the charge stored on the surface. 8. Never set the system to which memory devices are applied near anything that generates high voltage (e.g. CRT Anode electrode, etc.). 8.2 Using CMOS Memories As shown in figure 8-1, the input of a CMOS memory is connected to the gate of an inverter consisting of PMOS and NMOS transistors. Figure 8-2 shows the relationship between the input voltage and current in this inverter. The top and bottom transistors turn ON and make current flown when the input voltage becomes intermediate level. Therefore, it is necessary to keep the input voltage below 0.2 V or above Vee - 0.2 V in order to minimize power consumption. The data sheet specifies the stand-by current for both the cases of input level with minimum V 1H and maximum V 1L and that with 0.2 V or Vee - 0.2 V, and the difference in value is remarkably great. Some memory devices are designed to cut off such current flow in standby mode by the control of input signals, but it depends on device type. This should be confirmed in data sheets for each device type. Figura 8-1. CMOS Invarter -E;: 5I1CC~5'OV ~ 4 3 ~ 11 ~ 8 2 1 0123456 Input Voltage Figure 8-2. Relationship between Input Voltage & Currant In CMOS Inverter Another problem particular to CMOS devices is latch-up. Figure 8-3 shows the cross section of a CMOS inverter and the structure of a parasitic bipolar transistor. The equivalent circuit of the parasitic thyristor is shown in figure 8-4. When positive DC current or pulse noise is applied (figure 8-4 (a»), TR3 is turned on owing to the bias voltage generated between base and emitter. And trigger current flows into GND through R p , the base resistance of TR2. As a result, TR2 becomes conductive and current flows from power supply (V cd through the base resistance of TR 1 (R N l. which puts TR 1 into conduction, too. Then, as the base of TR2 is rebiased by collector current from TR 1, the closed loop consisting of TR 1 and TR2 reacts. Thus current flows constantly between power supply (Vee) and GND even without trigger current caused by outside noise. Latch-up can be caused by a negative pulse, too (figure 8-4 (bb». Most of semiconductor memory manufacturers are trying to improve latch-up immunity of their products. Hitachi provides enough guard band by applying diffusion layer around inputs and outputs, taking care not to connect input to p+ diffusion layer. Input voltage for 64 kbit @HITACHI 60 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 --------------------------------------Application static RAM HM6264A, for example, is specified as follows: V 1H max 6.0 V (not depending on Vee! V 1L min 3.0 V (pulse width = 50 ns) -0.3 V (DC level) Thus almost no consideration for latch·up is required in system design. Pm (a) (b) Figure 8-3. Cross Section Structure of CMOS Inverter Closed Loop j--Vc;--l Pm Vee P,n I I Rn: I I I L-H~.rTu: I I I I I Till I : ON L ______ .J (a) Thynstor Effect by Positive Voltage Figure 8-4. (b) Thynstor Effect by Negative Voltage Equivalent Circuit of Parasitic Thyristor 8.3 Noise Prevention Noise in semiconductor memories is roughly clas· sified into input signal noise and power supply noise. 8.3.1 Input Signal Noise In.put signal noise is caused by overshoot and undershoot. If either of them is out of recommended DC operating conditions, normal operation is hindered, and voltage over absolute maximum rating will break the device. In operating high speed systems, special care is required to prevent input signal noise. The noise can be prevented by inserting a serial resistance of less than 50 ohm into each input or a terminating resistance into the input line. Actually, however, input signal noise can be simply reduced by a stable power supply line, because it is often caused by unstable reference voltage (GND level). 8.3.2 Power Supply Noise The power source noise can be classed as lowfrequency noise and high-frequency noise as shown in figure 8-5. To assure stable memory operation, the peak-to-peak power supply voltage in the presence of low-or high-frequency noise should be held below 10 percent of its standard level. 1lIP-~NOIR NotMorethulIO%alStandan! Power Supply Vo_ ~ftftn,,~L -f--~:~r Low-frequenQ' NOIR NOI MOft tIwI10% of StMd-rd POwtl' Supply VollaIt' Total of Low-1IMi ibah-irequeIIc), Not Mwe than + 10% of StalIdatd Pewer Supply Voicue Figure 8-5. Power Source Noise ~HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 61 Application-------------------------------------Devices like dynamic RAMs, which operate from clock signals, or high speed CMOS static RAMs, through which current flows during transition of signals, consume high peak current. When a power supply does not have enough capacity for the peak current, voltage drops. And if the recovery rate of the power supply synchronizes with its time con· stant, it may start oscillating. To reduce the in· fluence of the peak current, a bypass capacitor of 0.1 - 0.01 JlF should be inserted near the device. The following points must be considered in design· ing pattern of the board: For bypass capacitors, use titanium, ceramic, or tantalum capacitors which have better high- * * * * frequency characteristics. Bypass capacitors must be applied as near to the power supply pin of memory devices as possible, and inductance in the path from Vee pin to V55 pin through the bypass capacitor must be as little as possible. The line connected to the power supply on the board should be as wide as possible. It is preferrable for the power supply line to be at right angles to devices selected at the same time, lest too much peak current should flow through one power supply line at a time. Non~preferred Preferred CS Signal f":~5;:~~~ -Faults1 Bypath Lmes are too Long 2. Devices Selected at ~~~==~~ S~:~~h:i~ Vee V~S Vee Vss Vee Vss ~~~-~ Vee Vss ~ Data I/O Figure 8-6. Data 110 Examples of Power Supply Board Pattern 8.4 Address Input Waveform of Hi-BiCMOS Memory Data stored in memory might be destructed in case that Address Input of the HM6716, HM6719, HM6787, HM6788 and HM6789 series becomes floating and sticks at and around threshold voltage. (e.g. CPU does Address Bus to off state in Figure 1.) Consequently, the following three methods are recommended so as to preserve malfunction of memory device. A: Insert latch as shown in Figure 8-7 lest Address Input should become floating. B: Put CS into High while Address Input becomes floating. (Dotted line in Figure 8-8) C: Insert Pull-up Resistor (R) to hold time constant of R ising Edge wave form of Address Input pin (tr = R x C) below 150 ns. Stable operation can be assured if you have already adopted the above three method (A, B, C), while if you have any problem, please contact our sales offices. Pull-up Resistor CPU Address Bus I-r----~-, .s:; CS Input I ..I I Control Memory ;l I .. I L __ I J I L_________________ .J Figure 8-7 xPt 4 Address - - - - ; Input \ _ _ _~ '-_ _ _ __ r------, CS / \ ( Write \ Floating Figure 8-8 ~HITACHI 62 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 Read Section 1 MOS Static RAM .HITACHI® 63 HM6116 Series----Maintenance Only 204B-word x B-bit High Speed CMOS Static RAM .FEATURES • • • • • • • • HM6116l'Senes Single 5V Supply High speed: Fast Access Time 120ns/150ns/200ns (max.) Low Power Standby and Low Power Operation 100~W (typ.) Standby: 10~W (typ.) (L-version) 200mW (typ.) Operation: 175mW (typ.) (L-version) Completely Static RAM: No clock or Timing Strobe Required Directly TTL Compatible: All Input and Output Pin Out Compatible with Standard 16K EPROM/MASK ROM Equal Access and Cycle Time Capability of Battery Back Up Operation (L-version) (DP-Z4) HM6116FP Senes .ORDERING INFORMATION Type No. Access Time HM6116P·2 HM6116P·3 HM6116P·4 120n8 150n8 200n8 HM6116LP·2 HM6116LP·3 HM6116LP·4 120n8 150n8 200n8 HM6116FP·2 HM6116FP·3 HM6114FP·4 120n8 150n8 200n8 HM6116LFp·2 HM6116LFp·3 HM6116LFP·4 120ns 150ns 200n8 Package 600mil24pm Plastic DIP 24pin Pla8tic SOP WI' 241)) .PIN ARRANGEMENT .FUNCTIONAL BLOCK DIAGRAM ----..0 Nemory Matr1x Vee ---OVss 128 x 128 110,0--.......-1 110. 0----1~_I WE o---'L.!-±-I Note' This device is not available for new application. ~HITACHI 64 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6116 Series .ABSOLUTE MAXIMUM RATINGS Item Symbol Voltage on An)' Pm Rt"latlve to V,,, Storage Temperature Storage Temperature Under Bias Power DISSipation *I Unit 0.5" to +7 0 o to +70 -55 to +125 -10 to +85 10 T.,. To,. Operating Temperature ~Htel Rating V, T.... p, V ·c ·c ·c W 3 5\ for pul-.e .... Idth <;. 11111'" .TRUTH TABLE OF. x CS H WE Mode x Not Selected In. Ref. Cycle 1/0 Pin Vee Current High Z lUI Read Cycle 11)-(3) L L H Read Icc Dout L H L Write Icc DIn W rite Cycle 11) L L L Write Icc DIn Write Cycle (2) .RECOMaENDED DC OPERATING CONDITIONS (Ta-O to +70'C) Item Supply Voltage Input Voltage Note) *1 -3 OV for pul&e typ max Unit Vee 4.5 5.0 5.5 V Vs; 0 0 0 V Vi. 2.2 3.S 6.0 V V/L -0.3" - 0.8 V Symbol min wldth~5nns .DC AND OPERATING CHARACTERISTICS (Vcc=5V ± 10%. Vss=OV. Ta=O to +70T) HM6116-Z Symbol Test CondItions Input Leakage Current JILlJ Vee = 5.5V, VIN = Vss to V(e Output Leakage Current IlLol Item Operatmg Power Supply Current Icc [cn"'2 Average Operating Current Standby Power Supply Icc, ISB CS= VIH or OE= VIH, V, '0 = Vs; to Vee [S81 VOL Output Voltage VOH typo, max - - - - Unit mm typO' 10 - - 10 Z03 - - Z0 3 10 - - 10 Z0 3 - - Z03 max - 40 80 - 35 70 - 35 03 70. 3 - 30. 3 60*' VIH=3.5V, VIL=0.6V, - 35 - - 30 Iuo=OmA 30 03 - - Z5*' - Mm. cycle, duty = 100% - 40 80 - 35 70 Iuo=OmA - 35. 3 70 03 - 30. 3 60. 3 - 5 15 - 5 15 4. 3 lZ· 3 - 4. 3 lZ· 3 CS= VIL, Iuo=OmA CS= VIH /-lA /-lA rnA rnA rnA rnA IOL=4mA - - 04 - - - V IOL=Z.lmA - - - - - 0.4 V IOH=-l.OmA Z4 - - Z.4 - - V CS~ Current HM6116·3/ -4 mm Vee-OZV, OV;;> VIN;;> O.ZV or VeL - 0 ZV;;> VIN Z - Z·3 50 03 - Z·3 0.02 O.OZ Z 50. 3 /-lA Notes) *1 Vc.c =5V. Ta=2S0C • 2 Reference Only .3 ThiS charactenstlcs are guaranteed only for L·verSlon • HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 65 HM6116 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .CAPACITANCE (j=lMHz, Ta=2S'C) Symbol Test Conditions typ max Unit Input Capacitance C.. v..-OV 3 5 pF Input/Output Capacitance ClI'O \-I",-OV 5 7 pF Item Note} This parameter IS sampled .nd not 100% tested .AC CHARACTERISTICS (Vcc =5V±10%, Ta=O to +70'C) eAC TEST CONDITIONS Input Pulse Levels: 0.8 to 2.4V Input R,se and Fall T,mes: 10 ns Input and Output TIming Reference Levels: I.SV Output Load: lTTL Gate and CL (100pF) (Including scope and jig) eREAD CYClE HM6116-2 Item HM6116-3 HM6116-4 Symbol UOlt mon max mIn max mon max Read Cycle Time he 120 - 150 - 200 - ns Address Access Tune I" - 120 - 150 - 200 ns Chip Select Access Time tACS - 120 - 150 - 200 ns Chip Selection to Output In Low Z teLz 10 - 15 - 15 - ns Output Enable to Output Valod 10£ - 80 - 100 - 120 ns Output Enable to Output in Low Z tOLZ 10 - 15 - 15 - ns Chip Deselectlon to Output on HIgh Z 'CHZ 0 40 0 50 0 60 ns Chip DIsable to Output on HIgh Z 10HZ 0 40 0 50 0 60 ns Output Hold from Address Change 10. 10 - 15 - 15 - ns eWRITE CYClE Symbol HM6116-4 HM6116-3 HM6116-2 Item mIn max mIn - 150 W rite Cycle Time Iwe 120 Chip Selection to End of Write lew 70 Address Valid to End of Wrote I.w Address Set Up T,me lAS 105 20 W rote Pulse Width Iw, W rite Recovery Tune Iw, Output DIsable to Output on HIgh Z tOHZ 70 5 0 W rote to Output on HIgh Z tWHZ 0 40 50 Data to W nte Tune Overlap low Data Hold from Write Time 10. 35 5 - 10 0 0 40 10 Output Active from End of Write low 5 - 10 90 120 20 90 max min max 200 50 60 - 120 140 20 120 10 0 0 60 10 ns ns - ns ns ns - ns 60 60 ns - ns 10 .TIMNG WAVEFORM eREAD CYClE (1)'1) ~HITACHI 66 UnIt Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 ns ns ns - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6116 Series -READ CYCLE (2)'''''' ( I ) Addnn oOtU -READ CYCLE (3)"'(3"" DOIlI NOTES: 1. 2. 3. 4. W[ is High for Read Cycle. Device is continuously selected. ~= VIL' Address Valid prior 10 or coincident with ~transilion Low. tm"= VIL' • WRITE CYCLE(1) 1--------,.,:--------1 AcId,... 'AI I-___ ,"!.!(l~)_ _~ 110., I) •• _ ________ ~L_'·_·--"'~I~~ <1- • 4XXX HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane. CA 94005-1819 • (415) 589-8300 67 HM6116Series---------------------------------- -WRITE CYCLE(2)'" Address Dou. Din NOTES: _________________~r--' .-----'-D·~~~(~8)~~~ C l>OO 0.2V 2.0 - - Vcc~30V,CS"'28V. VlH~2.8V or OV;; VlN;iO.2V See Retention Waveform 0 t 11("'2 - pA - ns - ns iRe -= Read Cycle TIme _ Low Vee Data Retention Waveform 4SV--------- 1--_____-"0.,,''-'",R'c.:""""",,,::c"..::M,,,"'o..'- - - - - 1 r------------------------------ ------------. V" ~ _ _ _....J w------------------------------------------- .HITACHI 68 V 30 IO.uA max at Ta=O'C to + 40'c' VIL rum:=. -- O.3V Va _ _ _ _ _ _ _--, Unit Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 HM6116A Series---Maintenance Only 2048-word x 8-bit High Speed Static CMOS RAM • FURTURES • High speed: Fast Access Time 120nsl150ns/200ns (max.) • Low Power Standby and Standby: 100~W (typ.) Low Power Operation 5~W (typ.) (L·version) Operation: 15mW (typ.) (f = 1 MHz) 10 mW (typ.) (L·version) • Single 5V Supply and High Density 24 Pin Package • Completely Static RAM: No clock or Timing Strobe Required • Directly TTL Compatible: All Input and Output • Pin Out Compatible with Standard 16K EPROM/MASK ROM • Equal Access and Cycle Time • Capability of Battery Back Up Operation (L·version) HM6116AP Series ---I ) (Top View) I/O. -r---t+-t>-+--I ~-b-~=t-t:--------~ WE o---+iDl--i ~----~~~~--~ Note) This device is not available for new application. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 69 HM6116A S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .ABSOLUTE MAXIMUM RATINGS Item Symbol Vohlle' on Any PIR Relative to Vs.s V, Ope rat Storale Temperalure T... T... Storage Temperature Under Bias T.... Pown DIssipation p, Note) lA, Temperature Rating --0.5" Unit +70 V +70 -55 10 + 125 -10 10 +85 ·c I 0 W 10 o 10 * 1 --35V for pulse wldth;iSOns ·C ·C .TRUTH TABLE CS OF. WI-: Mod. H x x ~ol Sf-Ie-tIed L L H R..d Icc Doul R..d Cyel. 111-131 L H L Wnce I" Dan W nl. Cyel. I II L L L Write Icc D.n Wnl. Cyel. 121 Iu. R.I. Cyel. I/O P,n Vcr Current H•• h Z lUI .RECOMMENDED DC OPERATING CONDITIONS (To-O to +70"() Iyp max Unlt Vee 4.5 5.0 5 5 V Vss 0 0 0 V 3.5 6.0 V - 0.8 V Symbol Item m.n Supply Volta •• v,. Inpul Volta•• 2.2 -03" V" Note) *1 - 3 OV for pulse wldth~50ns • DC AND OPERATING CHARACTERISTICS (Vee = 5V ± 10%, HM6116A-12 min typO' max Vss = OV, Ta =0 to +70°C) Symbol Test Condition Input Leakage Current IILII Vee=5.5V, Vin=VSS to Vee - - 2 - - Output Leakage Current 11£0 1 CS= VIH or OE= VIH, VI/O= VSS to Vee - - 2 - - CS= VIL,lJ/o=OrnA Vin = VIH or VIL - Item --- Icc Operating Power Supply Current Average Opera ling Current Standby Power Supply Current Output Voltage Iee2 ISB CS=VIH - ISBl CS~ Vee-0.2V OV;::;Vin - VOL IOL =4rnA - 2.4 VOH IOH= -I.OrnA 2 - - 2 fJA 2 - - 2 fJA 5 4" 15 12*' - 5 4,2 15 12,2 rnA - 3 - 2,2 15 12*' - 6 - 3 6 - 3 6 - 2'2 5*' - 2*' 5*' - 45 25 20'2 40'2 - 20 15'2 35 30*2 rnA 4 3" rnA 0.02 2 1'2 50" rnA fJA 5" 60 35 30*2 50'2 1 0.5*' 4 3*' - - 5 4" 1 0.5" - 4 3" - 2 - 1 0.5" - 0.02 I" 50" - 0.4 - - 0.4 - - 0.4 V - - 2.4 - - 2.4 - - V OHITACHI Hitachi America, Ltd. 0 Hitachi Plaza 0 rnA 2 0.02 1*' 50'2 Notes) *1. Vee=5V, Ta=2SoC *2. This characteristics is guaranteed only for L-version. 70 Unit -'"-- VIH=Vee, VIL=OV, CS=VIL' II/O=OrnA.J=IMHz min. cycle,II/O-OrnA duty = 100% Ieel HM6116A-20 min typO' max HM6116A-15 min typO' max 2000 Sierra Point Pkwy. 0 Brisbane, CA 94005-1819 0 (415) 589-8300 -------------------------------------------------------------HM6116AS.IH .CAPACITANCE (f-lMHz. Ta-2S'C) Item Input Capacltanc. Sylllbo' Test Cond,tIOns typ C.. v..-OV v,.,-OV 3 5 Input/Output CapacItance C". .... UnIt 5 pF 7 pF Not.) Thll par....eter .1 .. mpled .nd not 100% telted .AC CHARACTERISTICS (Vcc-SV±IO%. Ta-O to +70'Cl eAC TEST CONDITIONS Input Pulse Levels: 0.8 to 2.4V Input RIse and Fall Times: 10 ns Input and Output TImIng Reference Levels. 1.SV Output Load. lTTL Gale and CL • l00pF (,nclud,ng scope and Jlgl • READ CYCLE Item Read Cycle Time Address Access Time Chip Select Access Time Chip Selection to Output iIr Low Z Output Enable to Output Valid Output Enable to Output in Low Z Chip Deselection to Output in Hlah Z Chip Disable to Output in Hi8h Z Output Hold from Address Change HM6116A-12 HM6116A-15 HM6116A-20 max min 200 max - min ISO max tRC min 120 tAA - 120 120 - ISO ISO - 200 200 Symbol Unit - tACS - tCLZ 10 - 10 - 10 tOE - S5 - 60 - 10 0 0 IS - 10 0 0 20 tOLZ lCHZ 10HZ tOH 10 0 0 10 40 40 - SO SO - - - 70 60 60 - ns ns ns ns ns ns ns ns ns • WRITE CYCLE Item Write Cycle Time Chip Selection to End of Write Address Valid to End of Write Address Set Up Time Write Pulse Width Write Recovery Time Output Disable to Output in Hi8h Z Write to Output in Hlah Z Data to Write Time Overlap Data Hold from Write Time Output Active from End of Write Symbol twc tew tAW tAS twp tWR 10HZ tWHZ lDW tDH tow HM6116A-12 HM6116A-15 HM6116A-20 min 120 70 lOS 0 70 0 0 0 35 0 10 min ISO 90 120 0 80 0 min 200 120 140 0 100 0 0 0 SO 0 10 max - - - 40 35 - - 0 max - SO 40 0 40 0 ---10 -- Unit max - 60 SO - - ns ns ns ns ns ns ns ns ns ns ns .TIMING WAVEFeRM eREAD eva.E (1)(1) ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 71 HM8118ASWi•• ---------------------------------------------------------------eREAD CYa.E(2)'1)'2'''' eREAD Cya.E (3)'1)""" NOTES: I. ftis Hiah for Read Cycle. 2. Device is continuously selected, ~= V/L. 3. Address Valid prior to or coincident with ~transition Low. 4. OE". VIL' eWRITE CYCLE(1) Address twp,;:,.ll...:.'_--I ~ut ~~~~~--~--~~--~+----------_________________ ~~~~-w----t-DH-~~~+~~~ Din • 72 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 -------------------------------------------------------------HM8118ASeriM eWAlTE CYCLE(2)'" ~------------twc-------------i Address __ -JI~ _____________________ J Din NOTES: J. A write occurs during the overlap (t.ll!.f) of a low ~ and a 10w"WE". 2. t IIIR is measured from the earlier of CSor WE" going hiah to the end of wrile cycle. 3. During this period, 1/0 pins are in the output state so thaI the input sianals of opposite phase 10 the outpuls must not be applied. 4. If the CS" low transition occurs simultaneously with the WE" low transitions or .fter the WE transition, outpul remain in a hich impedance state. S. llI"is continuously low. (Dr .. VIL) 6. Dout is t"e same phase of write data of this write cycle. 7. DO.ll1.is lhe read data of next address. 8. If CS is Low durinc this period, 1/0 pins are in Ihe output state. 1lIen the data input sianals of opposite phase 10 the outputs must not be applied 10 them . • LOW Vee DATA RETENTION CHARACTERISTICS (To-O to +70'C) This characteristics is guaranteed only for L-version. he.. Vcc for Dato Retenllon Data Retenllon Current ChIp De.elect to Doto RetentIon Til"" Operation Recovery T,me .. Notes)*110JJAmaxatTa-OCto t-40C,Vll.lnlO Symbol V•• Test Conditions ~~V" -O.ZV Iccu· 1 Vee-3.0V. CS~2.8V, OV;;; VtN Ie .. h See Retention Waveform mI. 2.0 0 , .,.2 typ - -- U.,t 30 /AA - - - V •• .1 -03V .2 lie = Read Cycle Time eLow Vee Data Retention Walleform V" _ _ _ _ _ _ _ _"\ I-_________..!Ilo:!!.!... !:Ro~ ..~ ••~ ...~IW:!!.c- _______ I , -_ _ _ _ _ __ tSV--------- C!---...I w-- ________________________________________ _ $ HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 73 HM6716 S e r i e s - - - - Maintenance Only HM6719 Series 2048-word x 8-bit High Speed Hi-BiCMOS Static RAM (with OE) 2048-word x 9-bit High Speed Hi-BiCMOS Static RAM (with OE) • Features • Fast Access Time: 25/30ns (max) • Low Power Dissipation (DC): 280mW (typ.) • +5V Single Supply • Completely Static Memory No Clock or Timing Strobe Required • Balanced Read and Write Cycle Time • Fully TTL Compatible Input and Output • ORDERING INFORMATION Type No. Access Time HM6716p·25 HM6716P-30 25ns 30ns HM6719P-25 HM6719P-30 25ns 30ns • Package (DP-24NC) 300 mil 24 Pin Plastic DIP • • A,o---C;C:J ( Row ) ) Decoder Memory Matrix HM6716 A7 A6 As A_ A3 A2 Al Ao Block Diagram ( PIN ARRANGEMENT --<>Vcc --<>YSS A!O~-~----' Vee As A9 WE OE A,o CS lias 1107 1/0 6 vas VOl V02 1/0 3 110_ Yss (Top View) • HM6719 vee A7 A6 As A_ A3 A2 A, Ao • Absolute Maximum Ratings Item Terminal Voltage to YSS Pin Power Dissipation Operating Temperature Range Storage Temperature Range Symbol VT PT Topr T. tll Rating -0.5 to +7.0 1.0 oto +70 -55 to +125 $ 74 Unit Y W °c °c As A9 WE CS AIO 1109 lias 110 7 110, 110 2 1/06 V03 1105 YSS 110, (Top View) HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300 - - - - - - - - - H M 6 7 1 6 . HM6719 Series • Truth Table e HM6716 L WE Hor L H L L Mode Not selected Read Write Write H H Output Disabled CS H L L L OE Hor L L L H V cc Current Pin HighZ Dout Din Din High Z ISB.ISBI ICC. ICCI ICC. ICCI Icc'/CCI ICc. ICC], Ref. Cycle Read Cycle (1) (2) (3) Write Cycle (1) Write Cycle (2) - eHM6719 WE Hor L H L CS H L L Mode VCC Current Not selected Read Write ISB'/SBI ICC'/CCI ICC'/CCI - Recommended DC Operating Conditions (Ta Item Supply Voltage Input High Voltage Input Low Voltage *) Symbol VCC VSS VlH VIL *) Ref, Cycle I/O Pin High Z Dout Din Read Cycle (2) (3) Write Cycle (2) =0 to +70°C) min 4,5 typ max Unit 5,0 5,5 V 0.0 0.0 0.0 V 2.2 - 6.0 V -3.0 - 0.8 V Pulse Width: 20ns, DC: -0.5V - DC and Operating Characteristics (Vee Item = SV ± 10%. Ta =0 to +70°C) Symbol min typ Input Leakage Current IILl I Vcc=5.5V. VIN= Vssto Vee Test Conditions - - max 2 Unit Output Leakage Current Ihol CS=VIH • Vl/O= VSS to Vee - 2 /J A Operating Power Supply Current Icc 120 rnA Average Operating Current ICCl 130 rnA 30 rnA /J A CS=VIL.II/O=OmA Min. Cycle, Duty: 100%ljIO=OmA - ISB CS=VIH CS ~ VCc-0.2V - - ISBI VIN~0.2Vor VJN~ Vcc-0.2V - - 10 rnA Output Low Voltage VOL - 0.4 V VOH IOL=4mA Ioif-lmA - Output High Voltage 2.4 - - V Standby Power Supply Current -AC Test Conditions Input pulse levels: Vss t03.0V Input and Output reference levels: 1.5V Input rise and fall time: 4ns Output Load: See Figure +5V ~ Dout 6200 9100 +5V ~ 9100 Dout 30pF* 6200 5pF* *including scope and jig Output Load A Output Load B (ICHZ. IWHZ, Icu. lOw. IoU, I(JHz) .HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 75 HM6716. HM6719 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Capacitance (Ta = 2S oC.f= 1.0 MHz) Item Input Capacitance I/O Capacitance Note) Symbol Test Conditions min typ max Unit CIN VIN=OV pF CliO - 6 Vl/O=OV - 8 pF Unit Notes This parameter is sampled and not 100%. tested. -AC Charac1eristics (Vee SV ± 10%, Ta .Read Cycle Item =0 to +70°C, unless otherwise noted.) Symbol HM6716-25 HM6719-25 min HM6716-30 HM6719-30 max min max Read Cycle Time tRC 25 - 30 - ns - Address Access Time tAA - 25 - 30 ns Chip Select Access Time tAcB - - 25 - 30 ns tCLZ 0 - 0 - ns *2 tOE 0 20 0 20 ns *1 Output Enable to Output in Low Z tOLZ 0 - 0 - tCHZ 0 10 0 12 ns ns *1.*2 Chip Deselection to Output in High Z Chip Disable to Output in High Z tOHZ 0 10 0 10 ns *1.*2 Output Hold from Address Change Input Voltage Rise/Fall Time tOH 5 - 5 - tT - 150 - 150 ns ns *3 Unit Notes Chip Selection to Output in Low Z Output Enable to Output Valid *2 - • Write Cycle Item Symbol HM6716-25 HM6719-25 min HM6716-30 HM6719-30 max min max Write Cycle Time twc 2S - 30 - ns - Chip Selection to End of Write tcw 20 - 25 - ns - Address Setup Time tAS 0 - 0 - tAW 20 - 25 - ns Address Valid to End of Write ns - Write Pulse Width twp 20 - 25 - ns - Write Recovery Time tWR 0 - 0 - ns - Output Disable to Output in High Z tOHZ 0 10 0 10 ns *1. *2 Write to Output in High Z tWHZ 0 10 0 12 ns *2 Data Valid to End of Write tDW 15 15 - ns tDH 5 5 - - Data Hold Time - ns - Output Active from End of Write tow 0 - 0 - ns *2 Notes) *1. These parameters are for HM6716. *2. Transition is measured t200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested. *3. If tT becomes more than 150ns, there is possibility of function fail. Please contact your nearest Hitachi's Sale Dept. regarding specification. • 76 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 1 6 , HM6719 Series • Timing Waveforms Read Cycle (1)'1 • - - - - - - - tRC - - - - - - - ....---- tAA ------..M' • • tACS----r-~1 ~u ~~~--~~~ Dout--------------------------~ High impedance • Read Cycle (2) '1, '2, '4 .-tRC~t Address ~ .~=======1~==~~----- -~-H--- +--~H Dout • Previous Data Valid Data Valid Read Cycle (3) '1,'3.'4 cs ~,~ tRC t~"z+ \ Dout Data Valid High impedance Notes) *1. *2. *3. *4. WE is High for Read Cycle. Device is continuously selected, CS=V,L' _ Address Valid prior to or coincident with CS transition Low. OE=V,L. • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 77 HM8716.HM6719Senn----------------------------------------------------• Write Cycle (1) 1+------- twc ------.~ Address 1*1 ~--twp ~ r----- High Impedance Dout~~~-+-+~~~------------------~-------------- $ 78 HITACHI Hitachi America, ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 1 6 . HM6719 Series • Write Cycle (2)·5 ~----------twc---------~ Address ,..------ WE ---t-~~~"'.I...I _ _ - h Din----------«~ tDW tDH J:8 oat: ~>f()O()()( Notesl -1. A write occurs during the overlap (~I of a low CS and low WE. -2. tWR is measured from the earlier of CS or WE going high to the end of write cycle. -3. During this period, I/O pins ere in the outPut state so that the input signals of opposite ph_ to the outputs must not be applied. -4. If the ~ low transition occurs simulteneously with the WE low tran· sitions or after the WE transition, output remain in a high impedance state. -5. ()E is continuously low. (5'EmV'LI. -6. Dout is the same phase of write data of this write cycle. -7. Dout is the read data of next address. -S. If ~ is Low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be appliad to them. $ HITACHI Hitachi America, ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy•• Brisbane, CA 94005-1819 • (415) 589-8300 79 HM6268 Series II 4096-word x 4-bit High 'Speed CMOS Static RAM -FEATURES • • • Single 5V Supply and High Density 20 Pin Package. High Speed: Fast Access Time 25/35/45ns (max.) Low Power Standby: 100~W typ, 5~W typ (L·version) Active: 250mW typo • Completely Static Memory: No Clock or Timing Strobe Required • Equal Access and Cycle Times • Directly TTL Compatible - All Inputs and Outputs • Capability of Battery Back Up Operation (L-version) IDP-20N) J '-------- .ORDERING INFORMATION Type No. 25ns 35ns 45ns HM6268LP-25 HM6268LP-35 HM6268LP-45 25ns 35ns 45ns .PIN ARRANGEMENT Package Access Time HM6268P·25 HM6268P·35 HM6268P·45 300ml120pm Plastic DIP .BLOCK DIAGRAM - Vee Memory Array 64 Row:, Row Decoder 256 Columns .ABSOLUTE MAXIMUM RATINGS Symbol Rating VT -0.5"1 to +7.0 V Power DISSipatIon PT 1.0 W OperatIng Temperature T.,. +70 ·C Storage Temperature T.I, -55 to +125 Temperature under Bias T.,.. -10 to +85 ·c ·c Item Voltag.. on Any Pin Relative to Note) *I Vss o to Unit -3 5V for pulse wldth;;,ilOns .HITACHI 80 Hitachi America, Ltd_ • Hitachi Plaza' 2000 Sierra Point Pkwy_ • Brisbane, CA 94005-1819 • (415) 589-8300 ------------------------------------------------------------HM6288S.~ .TRUTH TABLE CS WE Mode Vee Current I/O Pm Ref Cycle H x Not Selected ISB.IsB' H'ghZ - L H Read lee Dout Read Cycle L L Wnte lee Dm Wnte Cycle .RECOMMENDED OPERATING CONDITIONS (Ta =0 to +70'C ) Parameter Symbol mm typ max UnIt Vee 45 5.0 5.5 V IIss 0 0 0 V Input High (logic 1) Voltage VIH 2.2 - 6.0 V Input Low (logic 0) Voltage V,L -0.5*' - 08 V Supply Voltage Note) *1 -30V for pulse width:; IOns • DC AND OPERATING CHARACTERISTICS (Vee = 5V ± 10%, Vss = OV. Ta = 0 to +70°C Parameter Symbol Input Leakage Current Min. Typ.'1 Max. UOlt IIul Vee = 5.5V. Von = Vss to Vee Test ConditIon - - 2.0 p.A 2.0 p.A 50'3 90 rnA Output Low Voltage VOL IOL = 8mA - Output HIgh Voltage VOH IOH = -O.4mA 2.4 Output Leakage Current IILOI CS = V IH • V IIO = Vss to Vee Operatmg Power Supply Current Icc CS = V IL • 1110 = OmA. min. cycle Standby Power Supply Current ISB CS = V IH • min. cycle Standby Power Supply Current (I) ISBI CS 2: Vee -0.2V. OV :S V IN :S 0.2V or Vee - 0.2V :S V IN 15 25 rnA 0.02 2.0 rnA 1'2 50'2 /lA - 0.4 V - V .. - Notes) .1 TYPical hmlts are at Vee =S.OV. Ta= +2S"C and specified loadmg .2 '. hiS characteristics IS guaranteed only for L·verslOn 3 40mA typ for 45ns verSlon * .CAPAQTANCE (Ta=2S'C,f=l.OMHz) Parameter Symbol Input Capacitance C,N Input/Output CapacItance Ctlo Test CondItions mm max Unit V'N=OV - 6 pF Vt/o=OV - 9 pF Note ThiS parameter IS sampled and not 100% tested .AC CHARACTERISTICS (Vcc=5V±10%. Ta=O to +70'C. unless otherwise noted.) • AC Test Conditions Input and Output timing reference levels: 1.SV Input pulse levels: Vss to 3.0V Output load: See Figure Input rise and fall times: Sns Output Load (8) Output Load (A) (for tHZ. tLZ. twz & tOW) 5V 5V DoUI Doul 255!l 255Q 5pF" • Including scope and jig. • HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589·8300 81 HM6268 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - eREADCYCLE HM6268·25 Parameter Read Cycle TIme IRc 25 Address Access TIme IAA - Chip Select Access TIme lACS Output Hold from Address Change mH ChIp SelectIOn to Output in Low Z fLZ*l 10 ChIp DeselectIOn to Output • 5 0 /Pu 0 Chip DeselectIOn to Power Down TIme /PD Note) *I ~ -- 25 - blz·' HIgh Z 35 ~ 25 ChIp SelectIOn to Power Up Time 10 min max mm 10 ~ 15 0 0 ~ 25 Unit max mm ~ 35 35 5 ~ - HM6268·45 HM6268·35 Symbol ~ 45 - ns - 45 ns 45 ns 5 - ns 10 - ns 0 20 ns 0 - ns 30 ns ~. ~ ~ 20 ~ 25 max - TransitIOn IS measured ± 200mV from steady state voltage with Load (B) This parameter IS sampled and not 10046 tested Timing Waveform of Read Cycle No.1 (1 ),(2) IRe Address I.. 10< Data Valid Dout • Timing Waveform of Read Cycle No. 2(1),(3) ILl Dout High Impedance /PL' Vet SUPPlY -Ie~-----------h------------.. 50% Current Notes: I. WE is High for Read Cycle. 2. Device is continuously selected, CS = VIL. 3. Address Valid prior to or coincident with CS transition Low. e WRITE CYCLE HM6268·25 Parameter HM6268·35 HM6268·45 Symbol Unit mm max min max mm max WrIte Cycle TIme twc 25 - 35 - 45 - ns ChIp SelectIOn to End of Write it. 20 - 30 - 40 - ns Address Valtd to End of Write tMf 20 ns ~. 30 - 40 - 0 - 0 - ns 30 -- 35 - ns 0 _. 0 - ns 20 - 20 _.. ns Address Setup TIme lAS 0 -- Write Pulse WIdth 1M'!' 20 ---- Write Recovery TIme IMR 0 - Data Valid to End of Write Ivw 12 Data Hold TIme IvH 0 -- 0 -- 0 - ns Write Enabled 10 Outpul m HIgh Z twZ*l 0 8 0 10 0 15 ns Output ActIve from End of WrIte toft *1 0 -- 0 - 0 - ns - Note) lie 1 Transition IS measured ±200mV from steady state voltage with Load (B) ThiS parameter IS sampled and not 100°'0 tested • 82 HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 8 2 8 8 Series • Timing Waveform of Write Cycle No.1 (WE Controlled) "it ----------_~1.--Addre .. ~~~ 1--------"" -------~ .-~~~~~~~ tAil ---..:...--~I_r:_I----- '"" -----l ,,_____+ ____ Din *3 Do"! • ( ( (( ( ( (( '"Y~ tOil High Impedance l .. ~ tUH Timing Waveform of Write Cycle No.2 (CS Controlled) 'oe Address lAw ,. 'I'. (2) lew Don Dout High Impedance (4) Notes: 1. A write occurs during the overlap of a low CS and a low WE. (twp). 2. tWR is measured from the earlier of CS or Wi> going high to the end of write cycle. 3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. 4. If the CS low transition occurs simultaneously with the WE low transition or after the WE transition, the output buffers remain in a high impedance state. S. If CS is low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them. 6. Dout is the same phase of write data of this write cycle, if tWR is long enough. • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 83 HM6268 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .LOW Vee DATA RETENTION CHARACTERISTICS (O'C ~ Ta~70'C) This characteristics guaranteed only for L-version.Parameter Data Retention Current VD , ~;, Vee-O.ZV IceDIt v'.;' Vn -O.ZV or OV:i V,.:iiO.ZV Chip Deselect to Data Retention Time tCDIt Operation Recovery Time I, Note<;) *1 ,.~-Read eyrie Time Test Condlhons Symbol Vee for Data Retention mIn typ max Unit Z.O - - V - 30 '2 ZO .J pA - - ns 0 See retentIOn waveform t Itt .1 *2 Vlc -30V *3 VC l-2 OV -LOW Vee DATA RETENTION WAVEFORM DATA RETENTiON MODE Va - - - - - - -....... 1 .5V--------- ___ x,.! _________ _ cs ____...J ov _____________________________________ - ___ - --- • 84 HITACHI Hitachi America, Ltd, • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ns _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ HM6268 Series SUPPL Y CURRENT VS. AMBIENT TEMPERATURE SUPPLY CURRENT VS. SUPPLY VOLTAGE 1.6 I. 6 TF25'C Vcc=50V 1.4 1.4 2 ~ 0 V ./ 2 0--- V .--" 8 - r--- - 8 O.6 O.6 O. 4 5.0 4.75 4.5 o. 4 5.5 5.25 20 80 60 40 Ta Ambient Temperatare Supply Voltage Vee (V) (Oe) ACCESS TIME VS. LOAD CAPACITANCE ACCESS TIME VS. SUPPLY VOLTAGE .8 .3 Ta~25'C 1. 2 .6 I~ 0 ~ j 4 r-- ~ O.9 /' 0 • o. O. 7 V .2 r--- ./ V V ./ .8 4.5 4.75 5.0 5.25 O. 6 5.5 200 100 400 300 Load Capacitance CL (pF) Supply Voltage Vee (V) SUPPL Y CURRENT VS. FREQUENCY ACCESS TIME VS. AMBIENT TEMPERATURE T (ns) I. 3 100 .1 0 33 25 20 Vcc=S.OV 2 11 o. ~ 1 °V'" ~ ~ ~ o. 8 I V ../ ./ V u o. 7 J 8 20 V 9 ~ 9 o7 0 ./ 1.0 40 60 80 O. 6 O. 5 10 • 30 20 Frequency Ambient Temperature Ta ("C) f 40 50 (MHz) HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 85 HM6268 Seri.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INPUT LOW VOLTAGE VS. SUPPLY VOLTAGE INPUT HIGH VOLTAGE VS. SUPPLY VOLTAGE 1.3 1.3 Ta~25'C To=::.25"C 1.0 1 1 ~ 0.9 .3 -- -- 1 1 ~ 4.5 4.75 5.0 :! 1.0 Ij ~ 0.9 ~ 5.25 ~ 0.8 0.7 5.5 4.5 1.6 To = 25·C Vcc=5V ~ 1.4 1.0 J Ta=25'C Vcc=5V 1.4 1\ j \ ~ ] 5.5 OUTPUT CURRENT VS. OUTPUT VOLTAGE 1.6 .! 5.25 Supply Voltage Vee (V) OUTPUT CURRENT VS. OUTPUT VOLTAGE I.2 5.0 4.75 Supply Vohage Vee (V) 1e ----- ---- 1.1 ~ 0.8 0.7 1.2 0.8 1 1. 2 ~ \ o.6 ~ 1.0 f > o.8 \, ! / o.6 o.4 .4 0.2 Output Voltage VOH (V) / L V STANDBY CURRENT VS. AMBIENT TEMPERATURE 0.6 0.4 Output Voltage VOl. (V) STANDBY CURRENT VS. SUPPLY VOLTAGE , 1.4 Vcc=3V CS~2.8V 1.2 . . 10-, j o.8 V .,,/ V 1 6~ u o. V 20 1 o.4 40 60 80 / Ta=25·C CS= Vcc-O.2V o. 2 Ambient Temperature Ta ("C) Supply Voltage Vee (V) • 86 V ~ HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005·1819 • (415) 589·8300 0.8 HM6267 S e r i e s - - - - - - - 16384-word x 1-bit High Speed CMOS Static RAM • • • • • • FEATURES High Speed: Fast Access Time 35/45/55ns (max.) Low Power Standby and Low Power Operation Standby: 0.1 mW (typ.)/5/..1W (typ.) (L·version), Operation: 200mW (typ.) Single 5V Supply and High Density 20 Pin Package Completely Static Memory ...... No Clock or Timing Strobe Required Equal Access and Cycle Time Directly TTL Compatible: All Input and Output Capability of Battery Back Up Operation (L·version) • ORDERING INFORMATION • • Type No. Access Time HM6267P·35 HM6267P45 HM6267p·55 35ns 45ns 55ns HM6267LP-35 HM6267LP45 HM6267LP-55 35ns 45ns 55ns • (DP-20N) • PIN ARRANGEMENT Package 300 mil 20 pin Plactic DIP BLOCK DIAGRAM '" - - Vee \, " " - - v" Kow Mt'II'I .. I) j' ,,!'i ,0 I" o ..!o III IICI o\mblf'nl TemJ)t'ralurt' Tn SUPPLY CURRENT VS. FREQUENCY ACCESS TIME VS. LOAD CAPACITANCE , I r. 0 1 q '1111 ? - I--- l...--- 0 (t) IlK) ./ X ~ /" , 10 \0 V ./ V 0" X r, 200 HlO i 400 300 10 INPUT LOW VOLTAGE VS. SUPPLY VOLTAGE 2\ !f1 Frequenc\ f (MH,l INPUT HIGH VOLTAGE VS. SUPPLY VOLTAGE 3 3 Ta=2S"C Ta=2S"C 2 2 -- I f 0 I---I - - 09 0 ~ 45 I--- 8 475 50 52, II 7 45 55 475 50 525 5.5 Supply VolI~ Vee (VI Supply VohaR! Vee (V) • 92 ~ 9 8 o7 -- .1 1--- :> j V HITACHI Hitachi America, ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 8 2 8 7 Series OUTPUT CURRENT VS. OUTPUT VOLTAGE OUTPUT CURRENT VS. OUTPUT VOLTAGE 6 6 Ta=25t' 1\ 4 1 1 I. 1.0 j 1 0 4 \ \ \ \ 2 3 J Vcc=W 8 6 ~ 12 ~ I0 1 V R / 6 \ 4 / 10 / r.=m; Vcc=5V 1/ 4 06 0.1 02 Output Vnka,ae OUIPUI VnltaA'l! VIM (V) STANDBY CURRENT VS. AMBIENT TEMPERATURE I VIIL STANDBY CURRENT VS. SUPPLY VOLTAGE . " ~rr=3V CS=2RV 12 . ! i / ./ 10-< V ~ OK ! 06 j / , \0"0 0' 20 40 OR (V) 60 110 ,./' / V / V 7 7 / Ta==2S"C Cs=Vcr-02V 2 Suppl'4 VnltaRe \cc (V) Amblei'll Temperature To (t \ • HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 93 HM6264A Series--------Maintenance Only 8192-word x 8-bit High Speed CMOS Static RAM • FEATURES • low Power Standby • • • • • • • HA6264AP Series Standby: O.lmW (typ.) 10~W (typ.) l-/ll-version Operating: 15mW/MHz (typ.) l00ns/120ns/150ns (max.) low Power Operation Fast access Time Single +5V Supply Completely Static Memory ..... No clock or Timing Strobe Required _Equal Access and Cycle Time Common Data Input and Output, Three State Output Directly TTL Compatible: All Input and Output Capability of Battery Back Up Operation (l-/ll-version) (DP-28) HM6264ASP Series • ORDERING INFORMATION Type No. Access Time HM6264AP-I0 HM6264AP-12 HM6264AP-15 lOOns 120ns 150ns HM6264ALP-I0 HM6264ALP-12 HM6264ALP-15 lOOns 120ns 150ns HM6264ALP-IOL HM6264ALP-12L HM6264ALP-15L lOOns 120ns 150ns HM6264ASP·1O HM6264ASP-12 HM6264ASP·15 lOOns 120ns 150ns HM6264ALSP·1O HM6264ALSP-12 HM6264ALSP-15 lOOns 120ns 150ns HM6264ALSP-10L HM6264ALSP-12L HM6264ALSP-15 L lOOns 120ns 150ns HM6264AFP-10 HM6264AFP-12 HM6264AFP-15 lOOns 120ns 150ns HM6 264ALFP-l 0 HM6264ALFP-12 HM6264ALFP-15 lOOns 120ns 150ns HM6264ALFP-10L HM6264ALFP-12L HM6264ALFP-15L lOOns 120ns 150ns Package 600 mil 28 pin Plastic DIP (DP-28N) HM6264AFP Series 300 mil 28 pin Plastic DIP (FP-28D/DA) • PIN ARRANGEMENT 28 pin Plastic SOP (Note) Note) T is added to the end of the type no. for a SOP of 3.00 mm (max.) thickness. (Top V,ew) • 94 HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 6 4 A Series • BLOCK DIAGRAM ~:' A. A, <>----t=i:a:==r-, ,,, " --oVn Row Dttodu A, --0 Memorv Matrix 25b x 256 Vs!. A, ~~----L-----_r------~ (iE 0-------------' • ABSOLUTE MAXIMUM RATINGS Item Symbol Terminal Voltage 1 VT Power Dissipation PT Operating Temperature Topr Storage Temperature TBt, Storage Temperature (Under 8~ TbiOB Notes) * 1. With respect to Vss. *2. -3.0V for pulse width ~ SOns Rating -0.5*2 to +7.0 Unit 1.0 W ·C ·C ·C o to +70 -55 to+12S -10 to +85 V • TRUTH TABLE WE cs. CS. OF; X H X X X X X H H L L L L L L L H H H H H L H L Mode Not Selected (Power Down) Output Disabled Read Write 110 Pin High Z Vee Current High Z High Z Dout Din Din ISB/SBI ICC ICC ICC ICC Note ISB/SBI Read Cycle Write Cycle (I) Write Cycle (2) X: H or L • RECOMMENDED DC OPERATING CONDITIONS (To = 0 III +700q Ilem Supply V"1t.I~C Input Vn1ta~c Symb.. l min Iyp max Vee s.n 5.5 V/H 4.5 0 2.2 VII. -0.3*1 VSS 0 .. n 6.0 0.8 Unit V V V V Note) *1. -3.0V for pulse width ~ SOns ~HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, GA 94005-1819 • (415) 589-8300 95 HM6264A S e r i e s - - - - - - - - - - - - - - - - - - - - - - · - - - - - - - - - - - • DC AND OPERATING CHARACTERISTICS (Vcc Item Symbol = 5V ± 10%, Vss =OV, Ta = 0 to Test Condition min +70°C) typ*1 max Unit ilL/I Vin=VSSto VCC - - 2 p.A Output Leakage Current 11£0 1 CSI= VIH or CS2=VIL orOE= VIHor WE= V/L. VI/O=VSSto Vee - - 2 p.A Operating Power Supply Current ICCDC CSl=VIL. CS2=V/H. h/o=OmA - 7 - 30 30 - Input Leakage Current Min. cycle, duty=100%, CSI=VIL, CS2=V/H h/O=OmA Cycle time - Ip.s, duty - 100%,11/0 = OmA, CSI ~ 0.2V, CS2 ~ VCC -0.2V V/H ~ VCC -O.2V, VIL ~ 0.2V ICCl Average Operating Current ICC2 CSI =VIH or CS2=VIL ISB Standby Power Supply Current CSI~VCC-0.2V, CS2~VCc-0.2Vor OV ~ OS2 ~ 0.2V, OV ~ Vln ISBI*2 Output Voltage VOL IOL=2.lmA VOH IOH=-1.0mA IS rnA 45*' 55*- rnA 3 5 rnA - I 3 rnA - 0.02 2 rnA - 2*' 100*' - 2.4 50*' - 0.4 V - V Notes) *1. Typical limits are at VCC=S.OV, Ta=2S oC and specified loading. *2. VIL min=-O.3V *3. This characteristics is guaranteed only for L-version. *4. This characteristics is guaranteed only for LL-version. *5. For 120ns/1S0ns version. *6. For lOOns version. • CAPACITANCE U = IMHz, To = 25°0 Item Input Capacllancc Input/Output Capacitance Note) This parameter IS Symbol Test ('"ndlllOn Vm = OV On Cuo Vuo = OV typ max - 5 - 7 Unll pF pF sampled and not 100% tested. • AC CHARACTERISTICS (Vee = 5V±100/0. Ta = 0 to +70°C) • AC TEST CONDITIONS Input Pulse Levels: O.SV 12.4V Input R.se and Fall Time IOns Input Tim ing Reference Level: 1.5V Output Timing Reference Level: O.SV 12.0V Output Timing Reference Level: HM6264A-l0 1.5V HM6264A-12/15 0.SV/2.0V Output Load: lTTL Gate and CL (100pF) (including scope and jig) .HITACHI 96 p.A 2*4 Hitachi America. Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 6 4 A Series • READ CYCLE HM6264A-10 HM6264A-12 HM6264A-15 Unit min max min max min max Read Cycle Time 100 120 150 ns tRC Address Access Time 100 120 150 ns tAA 100 120 150 I CS1 ns tC01 Chip Selection to Output 100 120 CS2 ns 150 tC02 Output Enable to Output Valid 50 60 ns 70 tOE 10 10 15 ns CS1 Chip Selection to tLZ1 Output in Low Z 10 10 15 ns CS2 tLZ2 Output Enable to Output in Low Z 5 5 5 ns tOLZ 35 0 0 40 0 50 ns I csr Chip Deselection to tHZ1 Output in High Z 0 35 40 0 0 50 ns CS2 tHZ2 Output Disable to Output in High Z 40 0 35 0 0 50 ns tOHZ Output Hold from Address Change 10 10 10 ns tOH .. Notes) 1. tHZ and tOHZ are defined as the time at whIch the outputs achIeve the open CIrcUIt condItIon and are not referred to output voltage levels. 2. At any given temperature and voltage condition, tHZ max is less than tLZ min both for a given device and from d device to device . Item Symbol I I I I • READ CYCLE ~-------------------tRC-----------------~ ~-------tAA------~ CS1 "\\:\\~~~~\\\\~~-------tCOl-----_! t-------tLZl------i Dout------------____________________________ ~ ~--------tC02'---_+--~ Data Valid Note) 1. WE is high for Read Cycle .HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 97 HM6264A Series-------------------------------• WRITE CYCLE Item Symbol Write Cycle Time Chip Selection to End of Write Address Setup Time Address Valid to End of Write Write Pulse Width Write Recovery Time Write to Output in High Z Data to Write Time Overlap Data Hold from Write Time Output Enable to Output in High Z Output Active from End of Write twe tew tAS tAW twp tWR tWHZ tDW tDH tOHZ tow HM6264A-10 min max 100 80 0 80 60 0 0 35 40 0 0 35 5 - HM6264A-12 min max 120 85 0 85 70 0 0 40 40 0 0 40 5 - HM6264A-15 min max 150 100 0 100 90 0 0 50 50 0 0 50 5 - • WRITE CYCLE 111 IOE clockl ~------twc------~ CS2 Dout--~~-+~~~~~~~~~~~----~~tD-W--~----tD-H------------Din--------------------------------~ . ~----------~~~ • 98 HITACHI Hitachi America, ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 Unit ns ns ns ns ns ns ns ns ns ns ns - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 6 4 A Series (OE • WRITE CYCLE (2) Low F,x) twe / \. Address " \. tAW CSt \ \\ ,\ \~ tWR [4J tew [2J I II /111 ILL V [6J tew [2J ~/I CS2 II 'III/V ~ ,\\\ ,\\\~ill twp [IJ tAS [3J -=x\ \' I tOH J [5J tWHZ tow [7J Dout \ \ \ \ ///i////~jjj/i/ [8J ~ \ tDW tDH 1'-.1 .i":.f..j. [9J Din <1D~ \ \ \ _\\.lSl"-.. '/\LY NOTES: I) A write occurs during the overlap of a low CSI, a high CS2 and a low WE. A wnte begms at the latest transItion among CSi going low, CS2 going high and WE going low. A write ends at the earliest transition among CS1 going high, CS2 going low and WE going high, IWp is measured from the beginning of write to the end of write. 2) lew is measured from the later of CSI going low or CS2 going high to the end of write. 3) I AS is measured from the address valid to the begmning of write. 4) IWR is measured from the earliest of CS1 or WE going high or CS2 going low to the end of write cycle. 5) During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied. 6) If CS1 goes low simultaneously with WE going low or after WE going low, the outputs remain in high impedance state. 7) Dout is the same phase of the latest wntten data in this write cycle. 8) Dout is the read data of next address. 9) If CSI is low and CS2 IS high during this period, I/O pins are in the output state Therefore, the input signals of opposite phase to the outputs must not be applied to them. ~HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra Point Pkwy' Brisbane, CA 94005-1819 • (415) 589-8300 99 HM6264A S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • LOW Vee DATA RETENTION CHARACTERISTICS (Ta This characteristics is guaranteed only for L/LL-version. Symbol Item =0 to +70°C) Test Condition Vee for Data Retention VDR CSlP<'Udt'f ~4 NC Mt'mnr\ v•• \rrav (Top View) 1!M i{n", ji2l .. lum" .. I; ... I 01 Pin Description ~~r:fr-r--l:=rL-~::~;;--1==~~ Culumll I 0 ... Pin Name Function AO-A13 Address Input/Output Chip Select 1/01-1/04 I o~ CS WE "lt11113--L--J Vee VSS • Write Enable Power Supply Ground HITACHI Hitachi America, ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 103 HM6288Serie.---------------------------------- .ABSOLUTE MAXIMUM RATINGS Item Symbol Rating Volt_gf' on Any Pin Relative to Vss Vr -O.S"to +7.0 V Power DIssipation Pr 1.0 W Operating Temperature T.,. Storage Temperature Temperature under Bias ~ote *1 o to Unit +70 ·C T~I. -55to+125 ·C T.... -10 to +85 ·C Vr mm = -2 OV for pulse wldth;;;;;lOns .TRUTH TABLE CS WE Mode Vee Current I/O Pin H X Standby ISB,IsB' H'ghZ L H Read Icc Dout Read'Cycie I, 2 L L Write Icc Din Write Cycle I, 2 Ref. Cycle - .RECOMMENDED DC OPERATING CONDITIONS (Ta=O to +70'C) Symbol mm typ max Unit Vee 4.5 5.0 5.5 V Vss 0 0 0 V Input High (logic 1) Voltage VIH 2.2 - 6.0 V Input Low (logic 0) Voltage V/L -0.5" - 0.8 V Parameter Supply Voltage Note. *1. VEL mm = -2 OV for pulse width;::;';; IOns .DCANDOPERATINGCHARACTERISTICS (Ta=Oto +70'C, Vcc=5V±lO%, VSS=OV) Symbol max Umt IILII Vee=MAX. V/N=Vss to Vee - - 20 p.A Output Leakage Current IILO I CS=VIH,VUO= Vss to Vee - 2.0 p.A Operating Power Supply Current Icc CS= V/L, Iuo=OmA, min. cycle - 60 120 rnA CS= VIH, min. cycle - 15 30 rnA /581*2 CS ~ Vee - 0.2V - 0.02 2.0 rnA 1581*3 OV;;;; V/N;;;;0.2V or Vee-0.2V;;;; VrN - 0.02 0.1 rnA 0.4 V Parameter Standby Vee Current ISH Standby Vee Current 1 Test Condition min Input Leakage Current typ" Output Low Voltage VOL IOL=8mA - - Output High Voltage VOH IOH=-4.0mA 2.4 - - V Test Conditions min max Unit v..=OV - 6 pF VI/O=OV - 8 pF Notes. * 1. TYPical hmlts are at * 2. P version * 3. LP version Vee - S.OV, Ta - + 25 C and specified loadmg .CAPACITANCE ( Ta=25"C, f Parameter Input Capacitance Input/Output Capacitance = l.OMHz) Symbol G•• Grlo Note: This parameter IS sampled and not 100% tested • 104 HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 8 8 Series .AC CHARACTERISTICS • AC Test Conditions Input pulse levels: OV to 3.0V Input rise and fall times: 5ns Input and Output timing reference levels: 1.5V Output load: See Figure 5V 5V Dout Dout 255Q 255Q 30pF' Output Load (A) Output Load (8) (for 1HZ. ILZ. IWZ & tOW) *Includlng scope & Jig. • READ CYCLE Parameter Symbol Read Cycle Time Address Access Time Chip Select Access Time Output Hold from Address Change Chip Selection to Output in Low Z Chip Deselection to Output in High Z Chip Selection to Power Up Time Chip Seselection to Power Down Time * -~---~ tRC .. tAA tACS tOH ILZ* 1HZ * IpU IpD HM6288-25 min max 25 25 25 3 5 12 0 0 25 HM6288-35 max min 35 35 35 5 5 0 20 0 30 - Unit ns ns ns ns ns ns ns ns Transition IS measured ± 200m V from steady state voltage with Load (8) This parameter IS sampled and not 100(./0 tested eTiming Waveform of Read Cycle No.1 [1] [2] I" \/ \. \ Address 1\ I" 10H 10H Dout ~XXX)K ProvlOus Data Valid \(M Data Valid eTiming Waveform of Read Cycle No.2 [1] [3] cs \ / I,,, Dout --------~--H-,.-h-lm-~-d.-n'-.----{~)()K~------D.-~-V-.h-d4_------~)~ Impedance Ipu Vee supply 50% \ \. ("urrent [,. N()t~ I WE IS 2 Device Ihgh for Read Cycle IS contmuously self"Cted, CS= VIL 3 Addres.<; Vahd prtor to or cOlOcldent with CS tranSitIOn Low • HITACHI Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-t819 • (4t5) 589-8300 105 HM8288&wiH-------------------------------------------------------------• WRITE CYCLE Parameter Symbol Write Cycle Time Chip Selection to End of Write Address Valid to End of Write Address Setup Time Write Pulse Width Write Recovery Time Date Valid to End of Write Data Hold Time Write Enabled to Output In High Z Output Active from End of Write twe tew tAW tAS twp tWR tDW tDH tWZ* tOW* HM6288-25 min max 25 20 20 0 20 0 12 0 0 8 5 - HM6288-35 min max 35 30 30 0 30 0 20 0 0 10 5 - Unit ns ns ns ns ns ns ns ns ns ns • TraRS1tJon IS measured ±200mV from stead)' state voltage With Load (81 ThiS parameter IS sampled and not 100°& tested • Timing Waveform of Write Cycle No.1 (WE Controlled) /we Address 'ew 'AW 'D. Don nata DI Vahd DOllt .HITACHI 106 Hijachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 8 8 Series eTiming Waveform of Write Cycle No.2 (CS Controlled) I., Address I,. lew 1.,,..1 I.w Don Data High Impedance Dout In Valid *4 Notes) 1 A write occursdunng the overlap of a low CS and a low WE (IMP) 2 t~ R IS measured from the earher of CS or WE gOing high to the end of wnte cycle 3 DUring this penod, liD pms are In the output state so that the mput signals of oPPOsite phase to the outputs must not be apphed 4 If the CS low transition occurs simultaneously with the WE low transItion or after the WE transition. the output buffers remam In a high Impedance state 5 If CS IS low dUring this penod, 110 PinS are In the output state after tow Then the data mput signals of opposite phase to the outputs must not be apphed to them 6. Dout IS the same phase of write data of this write cycle, If tWR IS long enough e Low Vee Data Retention Characteristics ( Ta = 0 to + 70'C) (This Characteristics is guaranteed only for L-version.l Symbol Parameter Mm Typ Max UOIt Vee for data retention VVR Z.O - - Data retentIon current /CCDR - - 50" 35" I1A tCDR 0 - - ns tR tRc ll - - ns V Test Conditions CS;;;: Vee-O.ZV \1,,;;;: Vee - O.ZV or Chip deselect to data retention time OV~ \1" ~O.ZV See retention waveform OperatIOn recovery time NOTE 1 IRe = Read cycle time 2 Vcc=3.0V 3 Va=20V Low Vcc Data Retention Waveform v~ ________________ Data Retention Mode ~ 4.5V-------- ------------------------- --------- cs _____ --J w- ___________________________________________ _ ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 107 HM6288 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SUPPLY CURRENT VS. SUPPLY VOLTAGE SUPPLY CURRENT VS. AMBIENT TEMPERATURE 1. 6 1.6 Vcc=5 OV Ta=25'C 14 ] 1 ] 1.2 ~ ---- .;: ~ 1.0 c. " 08 " 1. 4 --- u ~ on 0.6 0.4 4.5 V- 1 V-- 2 ~ "" J 1a '"' 08 -- j on 0.6 4.75 50 20 5.5 5.25 1.3 ~ § 1.8 1.2 ] 1.6 1.1 1 14 1.0 r--- b j 80 Ta=25'C ~ i 60 ACCESS TIME VS. LOAD CAPACITANCE ACCESS TIME VS. SUPPLY VOLTAGE ~c 40 AmbIent Temperature Ta (OC) Supply Voltap;e Vee (V) ] t--- r-- 0.9 -- -- ~ ~ ~ t--- 3 1.2 ~ 1.0 ! ~ « .-- ~ ----- V 0.8 08 475 5.0 5.25 50 5.5 100 150 200 Lo.ad Capacitance CdpF) Supply Voltage Vee (V) SUPPLY CURRENT VS. FREQUENCY ACCESS TIME VS. AMBIENT TEMPERATURE 1.3 100 1. 1 50 33 25 20 T (ns) Vcc=5.0V 1. 2 1 ;; j" ~ ~ 1.0 ~ l.--- ........ - ./ 1.a O. 9 ./ O. 8 ~ O. 9 O. 7 0.8 0.6 / V V V ~ o. 7 a 20 40 60 10 80 20 30 40 Frequency f (MHz) Ambient Temperature Ta (OC) ~HITACHI 108 Hitachi Amenca, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 8 8 Series HIGH LEVEL INPUT VOLTAGE VS. SUPPLY VOLTAGE LOW LEVEL INPUT VOLTAGE VS. SUPPLY VOLTAGE 3 1.3 To=25'C To=25'C 1. 2 12 -- 1 1. 0 ~ !-- o. 9 1. 1 ~ 1. 0 o. S O. 7 4.5 i 0.9 ~ 0.8 " 5.0 475 525 0.7 5.5 V- 4.5 -- -- OUTPUT CURRENT VS. OUTPUT VOLTAGE(1) 1. 6 To=25'C Vee =5V i To=25'C Vec=5V 1.4 1. 4 1.2 1. 2 / V z ! u \ 1.0 ]. \j 0 ~ O.S 3 -So ::i: 0.6 \ 1. 0 O.S \ 0.6 1\ V / 0.2 High Level Output Voltage ~ ~ ~ 1. 0 o. 5~ V / /' ] ..~ V . II 1.0 ~ c 1: 8 ]" O.S 0.6 0.4 0.2 20 40 60 so O.S (V) 1 1.2 ~ o. 1 0.6 VOL 1.4 Vee=3V CS=2.SV ] ! j 0.4 STANDBY CURRENT VS. SUPPLY VOLTAGE 10 u L Low Level Output Voltage (V) VOH STANDBY CURRENT VS. AMBIENT TEMPERATURE ~ 5.5 OUTPUT CURRENT VS. OUTPUT VOLTAGE(2) 16 ] 0 5.25 Supply Voltage Vee (V) Supply Voltage Vee (V) 1 5.0 4.75 ~ o 2 Ambient Temperature Ta (4C) -- /V V / / To=25"C CS=Vee-O.2V Supply Voltage Vee (V) .HITACHI Hitachi America, Lid .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 109 HM6288 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - STANDBY CURRENT VS.INPUT VOLTAGE 10 Ta=25'C Vcc=5.0V CS=4.8V ~ 1 0 ~ 6 ~ ~ 4 u " .0 ~ 2 1'\ 1\ J 2 ~ 3 Input Vo1tage 4 Vln (V) • 110 HITACHI Hitachi America, ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HM6788 Series---- Maintenance Only 16384-word' x 4-bit High Speed Hi-BiCMOS Static RAM .FEATURES • Super Fast Access Time: 25/30n5 (max.) • Low power Operation Operating: 230mW (typ). Standby: 10mW (typ) • +5V Single Supply • Co';'pletely Static Memory No Clock or Timing Strobe required • Balanced Read and Write Cycle Time • Fully TTL compatible Input and Output (Dp·22NBl • ORDERING INFORMATION Type No. Access Time HM6788p·25 25ns HM6788P-30 30ns Package .PIN ARRANGEMENT 300 mil 22 pin Plastic DIP .BLOCK DIAGRAM A'V--'A<--...J --OVer A,'"'--..J~--' A.........-..J~--..., A......... _..J~ --oVss Memory Matrix 128X512 Row Asv--, A<--...J Decoder __..., A7o---C~::::J A."--..J~--"" 1/01n--,;v=-=·-=~'::-=-=-=-=~-~==::::;co:lo:m:";l!O===::I~--, .ABSOLUTE MAXIMUM RATINGS Item Symbol Rating Umt Terminal Voltage to Vss pin VT -0 5to +7.0 V Power Dissipation PT l.0 W Operating Temperature Topr Storage Temperature (with bias) Storage Temperature oto +70 ·C T.. ,(bias) -10to+85 ·C T~t(J -55to +125 ·C • HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300 111 HM6788 Seri.. - - - - - - - - - - - - - - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ .TRUTH TABLE CS WE Vee Current Output Pin H x Not selected IS8.Is8' HighZ L H Read Icc. IcC! Dout Read Cycle (1) (2) L L Write Icc. IcC! Din Write Cycle (1) (2) Mode Ref. Cycle - x: H orL .RECOMMENDED DC OPERATING CONDITIONS (O'C ~ Ta ~ 70'C) min typ max Vee 4.5 5.0 5.5 V Vss 0 0 0 V 6.0 V o.s V Symbol Item Supply Voltage Input High Voltage V,H 2.2 Input Low Voltage VII. -0.5*' - Unit Note) *1 -30V with 20ns pulse Width .DC AND OPERATING CHARACTERISTICS (Vcc=5V± 10%. Ta=O'Cto +70'C) Symbol Test Conditions min typ Input Leakage Current I ILl I Vee=5.5V. VIN= Vss to Vee - - 2 Output Leakage Current Ihol CS= VIH. VI/O= Vss to Vee - - 2 ,..A Opearating Power Supply Current Icc CS= VIL. Ii /0 = OmA - SO rnA Average Operating Current Icc, Min. Cycle. Duty: 100% rnA CS= V,H 30 rnA /S81 CS;;: Vee-O.2V. VI.,:;;O.2Vor V,,<: Vee-O.2V - 10 rnA Output Low Voltage VOL 10/. = SmA - 120 IS8 - 0.5 V Output High Voltage VOH IOH=-4mA 2.4 - - V Item Standby Power Supply Current max -AC CHARACTERISTICS (Vee = 5V ±10%, Ta = 0 to +70°C, unless otherwise noted) • AC Test Conditions Input pulse levels: Vss to 3.0V Input rise and fall time: 4ns Input and Output reference levels: 1.5V Output Load: See Figure +5V 255Q .lncIudi", scope and ii.. Output Load B (tCHZ. tWHZ. tCLZ. tOW) Output Load A eHITACHI 112 Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 Unit ,..A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 8 8 Series .READ CYCLE HM6788·25 Item HM6788·30 Symbol Umt mIn max mm max Read Cycle Time IRe 25 - 30 - ns Address Access Time IAA - 25 - 30 ns Chip Select Access Time tACS - 25 - 30 ns Chip SelectIOn to Output In Low Z teLL 2 0 . 0 Chip Deselectlon to Output In High Z tCHZ* 2 0 10 0 12 ns 5 - ns 0 - ns * . ns Output Hold from Address Change IOH 5 .- Chip Selection to Power Up Tlme'l tPF 0 - ChIp Deselection to Power Down Tlme'l IPD - 20 - 30 ns tr - 150 - 150 ns Input Voltage Rise/Fall Time'3 Notes) *1 This parameter IS sampled and not 1oo o/Q tested *2 TranSitIOn IS measured ±200mV form steady .,tate voltage with Load (8) This parameter 1", sampled and not IOGo(, tested *3 If tl becomes more than 150m" there IS POSSibility of functIOn fall plcu\c LonWel your • nc.tn.~ . . t Hlt:llhl Sale . . Dept regardmg "'pcclticdtlOn ·1 *2 Timing waveform of Read Cycle No.1' I" '"" loU DuIU • Data ValId PrevIOus data Valid Timing waveform of Read Cycle No. 2. 1 ,.3 "u ~-------=-------~ Ilu Data ValId BULII High Impedance Note) *1. WE = V/H *2. CS= VIL *3. Address valid prior to or coincident with CS transition Low. • WRITE CYCLE HM6788·25 Item HM6788·30 Symbol min max mIn max Umt Write Cycle Time Iwe 25 - 30 - ns Chip Selection to End of Write tew 20 - 25 - ns Address Setup Time lAS 0 0 - ns Address Valid to End of Wnte lAW 20 - 25 - ns Write Pulse Width Iwp 20 - 25 - ns Write Recovery Time IWR 0 - 0 - ns Write to Output In High Z tWHZ· 1 0 10 0 12 ns Data Valid to End of Write low 15 - ns Data Hold Time IDH Output Active from End of Wnte tow *1 15 *1 - - 5 - 5 - n. 0 .- 0 - ns TranSitIOn IS measured ±200mV from steady state voltage With Load(B) This parameter IS sampled and not lOO?o tested ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 113 HM6788 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Timing waveform of Write Cycle No.1 (WE Controlled) ,,, .1.ddrrss ,,, tAli' /lIP *1 'OH Dout tDW IIlgh Impedance • IDN " Data Vahd HIgh Impedance Timing waveform of Write Cycle No.2 (CS Controlled) 'we Address ,,, lAw "P I llgh 1m ped.nce Il1gh Impedance Dout IDW Om IDN Data V.hd Notes) * 1. A write occurs during the overlap (tWP) of a low CS and a low WE. *2. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. *3. Dout is the same phase of write data of this write cycle. *4. If the CS low transition occurs after the WE low transition, output remain in a high impedance state. *5. If CS is low during this period, I/O pins are in the output state. Then, the data Input signals of oppoSIte phase to the outputs must not be applied to them. *6. tWR is measured from the earlier of CS or WE going high to the end of write cycle . • CAPACITANCE (Ta=2S·C./= I.OMHz) Item ____________ Input CapaCItance Input/Output CapaCltance -------------Note) This parameter 114 IS sampled and not WOO() tested +_S_~_:_:_O_I4_----m;"- ~C,lo _. -- -;" - ~ ~_;____~-----~-~n-,d-~-~-~n-s------ ----- 8.0 ---_.- VOI"T=OV ~HITACHI Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra POint Pkwy. Brisbane, CA 94005-1819 • (415) 589-8300 HM6788H S e r i e s - - - - - - 16384-word x 4-bit High Speed Hi-BiCMOS Static RAM Features • Super Fast Access Time: 15/20ns (max.) • Low power Operation Operating: 280mW (typ) • +5V Single Supply • Completely Static Memory No Clock or Timing Strobe required • Equal Access and Cycle Times • Fully TTL compatible Input and Output (DP·22NB) Ordering Information Type No. Pin Arrangement Package Access Time HM6788HP·15 15ns HM6788Hp·20 20ns 300 mil 22 pin Plastic DIP Block Diagram A.~--~~--~ r-------------~ A, A.~_J"o<..., Memory Matrix A,~_J"o<..., Vee --<> --<> VSS 128X512 A4~-~:::J A.~-~:::J A. O-:~5==~_r=~~;;:;==~:::;_, Column 1/0 1101 c>1102 ~.ff.IH)~ 1103 <>-1r+HH)~ 110. '"'--"'LLULI"-_ (Top View) WE~==~~4=========~ __ Absolute Maximum Ratings Item Symbol Rating Unit Terminal Voltage to Vss pin VT -0.5to +7.0 Power Dissipation Pr 1.0 V 'W Operating Temperature Top, oto +70 ·C Storage Temperature (with bias) T.,,(bias) -IOto +85 ·C Storage Temperature T,t, -55to +125 'C Note) The specitications of this device are subject to change without notice. Please contact Hitachi's Sales Dept. regarding specifications . • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005· 1819 • (415) 589·8300 115 HM6788H S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Truth Table CS Mode Vee Current I/O Pin Not selected IS8.ls81 HighZ H Read lee.leel Data Out Read Cycle (1). (2) L Write Icc. Icc I Data In Write Cycle (1). (2) H x L L Ref. Cycle x: H or L Recommended DC Operating Conditions (O'C;:;; Ta;:;; 70'C) min typ max Unit Vee 4.5 5.0 5.5 V Vss 0 0 0 V Input HIgh Voltage V,H 2.2 6.0 V Input Low Voltage VII. -0.5*' 0.8 V Symbol Item Supply Voltage Note) *1. -3.0V with IOns pulse width. DC and Operating Characteristics (Vcc=5V ± 10%. Ta=O'C to +70'C) Symbol Test Conditions Input Leakage Current Item I ILl I Vee=5.5V. VIN= Vss to Vee 2 pA Output Leakage Current Ihol CS= V,H. Vdo= Vss to Vee 10 pA Opearating Power Supply Current Icc CS= VII.. [, /o=OmA 100 mA Average Operating Current leCl Min. Cycle. Duty: 100% 11/0 =OmA 120 mA ISB CS= V,H 30 mA IS81 CSo= Vce-O.2V. V, .• :;;O.2V or V"o= Vce-O.2V 10 mA Output Low Voltage VOL Im.=8mA 0.4 V Output High Voltage VaH laH=-4mA Standby Power Supply Current AC Characteristics (Vee typ min max V 2.4 =5V ±10%, T, =0 to +70°C, unless otherwise noted) • AC Te.t Condition. Input pulse levels: Vss to 3.0V Input rise and fall time~ 4ns Input and Output reference levels: 1.5V Output Load: See Figure +5V +IV Output Output ..;= 3OoY' 7 .lncIudI....... Mdil~ Output Load B (tHZ. tLZ. tWZ. tOW) Output Load A • 116 Unit HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 8 8 H Series Read Cycle Item HM6788H-15 Symbol min HM6788H-20 max min Unit Note max Read Cycle Time tRC Address Access Time tAA 15 20 ns Chip Select Access Time tACS 15 20 ns ns 1,2 8 ns 1,2 15 Chip Selection to Output in Low Z tLZ 3 Chip Deselection to Output in High Z tHZ 0 Output Hold from Address Change tOH 20 ns 3 6 0 ns 3 Note) *1. This parameter is sampled and not 100% tested. *2. Transition is measured ±200mV from steady state voltage with specified loading in Load B . • Timing waveform of Read Cycle No. 1*1,*2 Address Data Out • Data Valid Previous Data Valid Timing waveform of Read Cycle No. 2*1,*3 Data Out Data Valid High Impedance Note) *1. WE = VIB *2. CS= V/L *3. Address valid prior to or coincident with CS transition Low. Write Cycle Item Symbol HM6788H-15 min max HM6788H-20 min Unit Note 2 max Write Cycle Time twc 15 20 ns Chip Selection to End of Write tcw 10 15 ns o o Address Setup Time tAS Address Valid to End of Write tAW 10 15 ns Write Pulse Width twp 10 15 ns Write Recovery Time tWR ns ns o twz o Data Valid to End of Write tDW 9 10 ns Data Hold Time tDH tow o o ns Output Active from End of Write o o Write Enable to OU.tput in High Z 6 8 ns ns 3,4 3,4 Note) 1. IfCS goes high simultaneously with WE high, the output remains in a high impedance state. 2. All Write Cycle timings are referenced from the last valid address to the first transitioning address. 3. Transition is measured ±200mV from steady state voltage with specified loading in Load B. 4. This parameter is sampled and not 100% tested. ~HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 117 HM6788H S.ies------------------------------__________________________________ • Timing waveform of Write Cycle No.1 /WE Controlled) Address Data In Data Out • .=t Timing waveform of Write Cycle No.2 (CS Controlled) _ t wc Address _ _ _ _ _ _ _ _ _ _ _ _-:-_ __ . ------- ----------~ tAS tcw - - - + 1 , . - - - - - - twp*1 n\!;: tow -+~IJM Data In Data Out ""7r7'~XXr7r7XXr7r7XXr7r7XXnr7'xxnr7'xXL Data Valid M~XX~XX~XX High Impedance *4 Note)*I. A write occurs during the overlap of a low CS and a low WE. (twp) *2. tWR is measured from the earlier of CS or WE going high to the end of write cycle. *3. During this period. I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. *4. If the low transition occurs simultaneously with the WE low transition or after the WE transition. the output buffers remain in a high impedance state. *S. If CS is low during this period. I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them. as *6. Data Out is the same phase of write data of this write cycle. Capacitance ( Ta=25'C. f= 1.0MHz) Item Symbol min typ max Conditions Input Capacitance CIN 6.0 VIN=OV Input/Output Capacitance Cdo 10 VI/O=OV Note) This parameter is sampled and not l00q,.o tested. • 118 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM6788HA Series- Preliminary 16384-Word x 4-Bit High Speed Static RAM • FEATURES • Super Fast Access Time ........................ .12/15/20ns (max.) • + 5V Single Supply • Low Power Dissipation (DC) Operating ..........................300mW (typ.) • Completely Static Memory No Clock or Timing Strobe Required • Fully TTL Compatible-All Inputs and Outputs • PIN ARRANGEMENT • ORDERING INFORMATION Type No. (DP-22NB) Access Time Package 12ns 15ns 20ns 300 mil 22 pin ~o----I AO Al A2 A3 A4 As A6 A7 As CS A3o----I Vss HM6788HAP-12 HM6788HAP-15 HM6788HAP-20 Plastic DIP (DP-22NB) • BLOCK DIAGRAM Aeo----I - 0 Vee -oVss A7o----I Aeo----I As 0----1 Memory Matrix 128 X 512 ~o--~~~ 1101 o---'-1>~ 1102o--#H Vee A13 A12 All Am Ag 1101 1102 1/03 1104 WE (Top View) Column 110 110:1 o---.i+H 1104 o-..-H+H.>-I cso-t-----.--Cf"""l WE~=====±~~~ _____~ • HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 119 HM6788HA Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • ABSOLUTE MAXIMUM RATINGS Symbol Rating Voltage on Any Pin Relative to V ss VT -0.5 to +7.0 V Power Dissipation PT 1.0 W Operating Temperature Topr T stg o to +70 °C Storage Temperature -55 to + 125 °C Temperature Under Bias Tbias -10 to +85 °C Item Unit • RECOMMENDED DC OPERATING CONDITIONS (O°C :5 Ta :5 70°C) Min. 4.5 Typ. Max. Unit 5.0 5.5 V 0.0 0.0 0.0 V Input High (Logic 1) Voltage Vss VIH 2.2 - 6.0 V Input Low (Logic 0) Voltage V IL -3.0* - 0.8 V Item Symbol Vee Supply Voltage 'Pulse width :5 IOns, DC: -0.5V • TRUTH TABLE CS WE Mode Vee Current I/O Pin Ref. Cycle H X Not Selected ISB,IsBI HighZ L L H Read Write Icc, IcC! Data Out Data In Read Cycle (1), (2) L Icc, IcC! • DC AND OPERATING CHARACTERISTICS (Vee Item = O°C to 70°C, Vss = OV) Test Condition Min. Typ. Max. Unit IILlI = 5.5V, VIN = Vss to Vee CS = VIH , VI/O = Vss to Vee CS = V IL , II/O, = OrnA Min. Cycle Duty: 100% II/O = OrnA CS = VIH - - 2 /LA 10 100 /LA rnA - 120 rnA - 30 rnA CS ~ Vee - 0.2V VIN :5 0.2V or V IN - - 10 rnA - - 0.4 V - V IILOI Operating Power Supply Current Icc Average Operating Current Ieel ISB Standby Power Supply Current (1) ISBI Output Low Voltage VOL VOH Output High Voltage ± 10%, Ta Symbol Input Leakage Current Output Leakage Current Standby Power Supply Current = 5V Write Cycle (1), (2) Vee IOL IOH ~ Vee - 0.2V = 8mA = -4mA 2.4 • AC TEST CONDITIONS • Input Pulse Levels: Vss to 3.0V • Input Timing Reference Levels: 1.5V • Output Load: See Figure • Input Rise and Fall Times: 4ns • Output Reference Levels: 1.5V +5V 4800 Dout +5V Dout 2550 2550 4800 5 pF * Output Load B (for tHZ , tLV twz , & tow) Output Load A 'Including scope and jig capacitance. .HITACHI 120 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 8 8 H A Series • CAPACITANCE (Ta = 2SoC, f = 1.0MHz) Symbol Max. Unit Input Capacitance C IN 6.0 pF VIN = OV Input/Output Capacitance CliO 10.0 pF VIla = OV Item NOTE: Conditions This parameter is sampled and not 100% tested . • AC CHARACTERISTICS (Vcc = SV ± 10%, Ta = O°C to 70°C, unless otherwise noted.) • Read Cycle Item HM6788HA-12 HM6788HA-IS HM6788HA-20 Symbol Min. Max. Min. Max. Min. Max. Unit Notes Read Cycle Time tRC 12 - IS - 20 - ns Address Access Time tAA 12 ns 12 - 20 tACS tOH - IS Chip Select Access Time - 20 ns - - 4 - S - 4 tLZ 4 3 S - ns ns 1,2 tHZ 0 6 0 6 0 8 ns 1,2 Unit Notes Output Hold from Address Change Chip Selection to Output in Low Z Chip Deselection to Output in High Z NOTES: IS I. This parameter is sampled and not 100% tested. 2. Transition is measured ±200mV from steady state voltage with specified loading in Load B. • Write Cycle Item HM6788HA-12 HM6788HA-IS HM6788HA-20 Symbol Min. Max. Min. Max. Min. Max. 15 - 20 10 - IS - 10 0 10 0 7 0 0 3 - IS - - Write Cycle Time twc 12 Chip Selection to End of Write Address Valid to End of Write lew tAW 8 - 8 - Address Setup Time tAS twp 0 - Write Pulse Width 8 - Write Recovery Time tWR 0 - Data Valid to End of Write tDW tDH 6 0 - Data Hold Time Write Enable to Output in High Z twz 0 6 Output Active from End of Write tow 3 - NOTES: - ns 2 - ns ns - 0 - ns - IS ns - ns - ns - 10 - 6 0 - ns 0 8 ns - 3 - ns 0 - 3,4 3,4 I. If CS goes high simultaneously with WE high, the output remains in a high impedance state. 2. All write cycle timings are referenced from the last valid address to the first transitioning address. 3. Transition is measured ±200mV from steady state voltage with specified loading in Load B. 4. This parameter is sampled and not 100% tested . • HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 121 HM6788HA Series - - - - - - - - - - - . - - - - - - - - - - - - - - - - • TIMING WAVEFORM • Read Cycle (1) (1) (2) Address tOH tOH Data Out Previous Data Valid Data Valid • Read Cycle (2) (1) (3) tRC cs ~ It' 1'0.. tACS tLZ tHZ Data Out Hig himpede nce NOTES: KXXXXX) K " Data Valid ./ High Impedence 1. WE is High for READ cycle. 2. Device is continuously selected, CS = VIL 3. Address valid prior to or coincident with CS transition low. $ 122 HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 8 8 H A Series • Write Cycle (1) (WE Controlled) twc Address tcw cs WE High Impedance High Impedance Data In tOH(6) Data Out • Write Cycle (2) (CS Controlled) twc "!. / )K Address tWR(2) tAW K tAS I cs ~ tcw /'( twp(1) WE tDW Data In Data Valid High Impedance (4) Data Out NOTES: I. A wnte occurs during the overlap of a low CS and a low WE (twp). 2. tWR IS measured from the earlier of CS or WE going high to the end of write cycle. 3. During this period, 1/0 pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. 4. If the CS low transition occurs simultaneously with the WE low transition or after the WE transition, the output buffers remain in a high impedance state. 5. If CS is low during this period, 1/0 pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them. 6. Dou! is the same phase of write data of this write cycle. eHITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Pomt Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 123 HM6289 Series - - - - - - - - - 16384-Word x 4·Blt High Speed CMOS Static RAM (with OE) The Hitachi HM6289 is a high speed 64k static RAM organized as 16-kword x 4-bit. It realizes high speed access time (25/35/45 ns) and low power consumption, employing CMOS process technology. It is most advantageous for the field where high speed and high density memory is required, such as the cache memory for main frame or 32-bit MPU. The HM6289, packaged in a 300-mil SOJ, is available for high density mounting. Low power version retains the data with battery back up. Features High speed Access time: 25/35 ns (max) High density 24-pin SOJ package Low power 300 mW (typ) Active mode: Standby mode: 100 JlW (typ) Single 5 V supply Completely static memory No clock or timing strobe required Equal access and cycle times Directly TTL compatible: All inputs and outputs Access Time 25ns 35ns 25ns 35ns AI. (Top V,ew) Pin Description Pin Name AO-A13 I!01-I!04 Ordering Information Type No. HM6289JP-25 HM6289JP-35 HM6289LJP-25 HM6289UP-35 Pin Arrangement Package 300-mil 24-pin SOJ (CP-24D) CS OE WE Vee Vss Function Address Input/output Chip select Output enable Write enable Power supply Ground Block Diagram A2 A3 A4 A5 A6 A7 A8 1/01 1/02 1/03 1/04 ~g+:===::t=;~) tlEO+----+~T""'\ • 124 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 8 9 Series Function Table Note: CS OE WE H L L L x x L H L H L L Mode Not selected Read Write Write I/O pin High-Z Dout Din Din Vee Current IsD,ISDI Icc lee lee Ref. Cycle Read cycle (1 H3) Write cycle (IH2) Write cycle (3)-(6) x; HorL Absolute Maximum Ratings Item Voltage on any pin relative to Vss Power dissipation Operating temperature range Storage temperature range Storage temperature range under bias Note: Symbol Vin Value -0.5'1 to +7.0 1.0 to +70 -55 to +125 -10 to +85 Pr Unit V W °C °C °C o Top< To.. Tbiao *1. Yin min = -2.0 V for pulse width :s; 10 os. Recommended DC Operating Conditions (Ta = 0 to +70°C) Symbol Vee Vss Input high (logic 1) voltage Vrn Input low (logic 0) voltage VIL Item Supply voltage Note: Min 4.5 0 2.2 -0.5'1 Max 5.5 0 6.0 0.8 Typ 5.0 0 Unit V V V V *1. VIL min = -2.0 V for pulse width:S; IOns. DC Characteristics (Ta = 0 to +70°C, Vee = 5 V ± 10%, Vss = 0 V) Item Input leakage current Symbol IILlI Min Typ'l Max 2.0 Unit 2.0 J.lA Output leakage current IILaI Operating Vee current lee 60 120 rnA Standby Vee current Standby Vee current (1) IsD Is81'2 Is81" 15 0.02 0.02 30 2.0 0.1 rnA rnA rnA Output low voltage Output high voltage VOL VOH 0.4 V V 2.4 Test Conditions Vee = Max Yin = OV to Vee CS = Vrn VIIO = 0 V to Vee CS = VIL, 1110 = 0 rnA, Min. cycle CS = Vrn, Min. cycle CS ~ Vee - 0.2 V OV:s; Yin :s; 0.2 V or Vee- 0.2 V:s; Yin IOL=8mA IOH=-4.0mA IIA Notes: *1. Typica1limits are at Vee = 5.0 V, Ta = +25OC and specified loading. *2. P-version *3. LP-version Capacitance (Ta = 25°C, f = IMHz) Item Input capacitance Input/output capacitance Note: Symbol Cin ClIO Min Typ Max 6 8 Unit pF pF Test Conditions Yin =0 V VI/O=OV This parameter is sampled and not 100% tested. $HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 125 HM6289 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - AC Characteristics (Ta =0 to +70°C, Vee =5 V ± 10%, unless otherwise noted.) Test Conditions Input pulse levels: Input rise and fall times: Input and output timing reference I~vels: Output load: Vssto 3.0 V 5 ns 1.5 V See figures Output Load (A) Output Load (B) (for IClIZ, Ia..z, 101lZ, ;>+5V ~480!l Dout Nole: 0----<..---+ Dout 25sn~F' ~ 25S!l IOU, IWIIZ & lOW) :8:: 5pF* * Including scope & jig. Read Cycle Item Symbol Read cycle time Address access time Chip select access time Chip selection to output in low-Z Output enable to output valid Output enable to output in low-Z Chip deselection to output in high-Z Chis disable to output in high-Z Output hold from address change Chip selection to ~wer ~ time Chip deselection to power down time Note: IRC HM6289-25 Min Max 25 25 25 1M tACS tcLZ"\ 5 toB tou"\ 0 tc/IZ"\ 0 tollZ"\ 0 toll 3 0 12 IPU 20 10 5 0 25 lPD 0 0 0 30 Unit ns ns ns ns ns ns ns ns ns ns ns *1. Output transition is measured ±200 mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested. $ 126 12 10 HM6289-35 Min Max 35 35 35 5 15 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6289 Series Read Timing Waveform (1) 'I I" ~ l( A""_, ---.I 1\ \/ I\, I .. 0. ,,\\\\\'\ II I II / / I .. cs ~I\ ---!.o!...- /VI IIII'u. III ~ I,a Ie., I,u DOl.lt (&( H..tIlmpeduce nita VaRd \.Vj(\ r\ j Read Timing Waveform (2) 'I :2:4 I" ~I A""N" \V /1\. --.I \. I .. 'M *Xx)K Dout ... D.taVIlIlI I >KX Read Timing Waveform 13)",'3,'4 "a Dout Notes: .1. ·2. ·3. ·4. HiP Impedance WE is high for read cycle. Device is continuously selected, CS = Vn... Address valid prior to or coincident with CS transition low. OE=Vn... Write Cycle Item Write cycle time Chip selection to end of write Address valid to end of write Address setup time Write pulse width Write recovery time Output disable to output in high-Z'! Write to output in high-Z'! Data to write time overlap Data hold from write time Output active from end of write'! Note: HM6289-25 Min Max 25 20 20 0 20 0 0 10 0 8 12 0 5 Symbol twe tew tAw tAS twP twR tOHZ twHZ tDw tDH tow HM6289-35 Min Max 35 30 30 0 30 0 0 10 0 10 20 0 5 Unit ns ns ns ns ns ns ns ns ns ns ns .1. Output transition is measured ± 200 mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested. • HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 127 HM6289 S e r l e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - Write Timing Waveform (1) (OE =High, WE =Controlled) ''''' Addre.. '" ... Ia. Don '" D... Volid Hiah 1m......... Doul Write Timing Waveform (2) (OE = High, CS = Controlled) ''''' Addresl 'e. '''' '" ,..,..1 Ia. Do. Dout nata Valid Iboh I ........... .HITACHI 128 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 8 9 Series Write Timing Waveform (3) (OE =Clocked, WE =Controlled) In .-.~ \V ---.J\ DE II I /~ / v' \1\\\\\ I I" a \ \\ \ 1\\ 1M WE IVI I VII II IV I .. f---!.!!..-- r.... 1 \\\ lou·2 I--huU~ .... \l r- H.... lmpedace .11 I .. I D. (X)l( '''"--- I. I n.. vlhd JKX) Write Timing Waveform (4) (OE = Clocked, CS = Controlled) I" I .. I .. D. 0.., $ HITACHI Hitachi Amenca, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 129 HM6289 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Write Timing Waveform (5) (OE =Low, WE =Controlled) "< Addreu Hllh Impedance 001,11 .5 Dm Write Timing Waveform (6) (OE =Low, CS = Controlled) I~ Addreu HiP. Impedance 001,11 Dm A write occurs during the overlap of a low CS and a low WE. (tWp) tWR is measured from the earlier of CS or WE going high to the end of write cycle. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. If the CS low transition occurs simultaneously with the WE low transition or after the WE transition, the output buffcrs remain in a high impedance state. *5. If CS is low during this period, I/O pins are in the output state after tow. Then the data input signals of opposite phase to the outputs must not be applied to them. *6. Dout is the same phase of write data of this write cycle, if tWR is long enough. *7. If CS low transition occurs simultaneously with the OE high transition or after the OE transition, output remain in high impedance state. Notes: *1 *2. *3. *4. • 130 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6289 Series Low Vee Data Retention Characteristics (Ta =0 to +70°C) This characteristics is guaranteed only for L-version. Item Vee for data retention Data retention current Chip deselect to data retention time Operation recovery time Note: Symbol VDR IccoR Min 2 tcDR ta 0 tac·! Typ Max Unit V 50. 2 35. 3 IlA ns ns Test Conditions CS ~ Vee- 0.2 V, Yin ~ Vcc-O.2 Vor o V ~ Vin~ 0.2 V See retention waveform * I. tac =Read cycle time *2. Vee =3.0 V *3. Vee =2.0 V Low Vee Data Retention Waveform Data Retention Mode v.., _ _ _ _ _ _-.I 4.5V-------- ------------------------- --------- CS"V..,-O.2V ~--------------------------------------------- • HITACHI Hitachi America, ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300 131 HM6289 Series Supply Current ¥s. Ambient Temperature Supply Current vs. Supply Voltage 1.6 '" :.l 1. 6 Vcc=5.0V To=25'C 1.4 ] ~ E ~ 1.2 Jl 1.0 ~ 0.8 8 >- ]: 0.6 ---- ----- ~ 1.4 J ~ c 1.2 Jl 1.0 8~ 0.8 t--- - t--- I--- ~ §: 0.6 11 , ~ 10 } 09 I 0.9 ] 0.8 ] 0.8 i 07 ~ ~ 0.7 4.5 ------- ~ Supply Voltage 1.0 5.25 50 475 1 5.5 ~ 14 .§ 1.2 ~ 1.0 ~ Vee (V) 1 0.8 ] 0.6 i 0.4 1 / \ f o. 0.4 0.6 ~" / / 1 := . / I 10 I d 0.6 II iii 0.8 o!l ! / 40 Ambient TemperabJre 60 80 / /V 0.4 0.2 o 20 VOL (V) / 1.2 CIl o 0.8 Standby Current VI. Supply Voltage :8' o. 1 I I 1.4 I 5.5 / Low Level Output Voltage VOH (V) Vcc=3V CS=2.8V 1 ~ I 0.2 2 10 5 5.25 Vee M Ta=25'C Vcc=5V Standby Current va. Ambient Temperature 1.0 5.0 Output Current VI. Output Voltage (2) \\ High Level Output Voltage ! 4.75 ~ Ta=25'C Vcc=5V i \ 4.5 Supply Voltage Output Current VI. Output Voltage (1) 11.6 ---- -- ~ 2 ---- V Ta=25'C CS=Vcc -O.2V 6 Supply Voltage Vee (V) Ta ("C) ~HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 133 HM6289 S e r l e . - - - - - - - - - - - - - - - - - - - - - - - - - - - Standby Current va. Input Voltage 10 I ! iii .!I 8 6 i 4 ..,E ! Ul 2 a Ta-25"C Vcc=5.0V CS=4.8V 1'\ j 1\ ~ Input Voltage VIII (V) • 134 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 HM6789 Series---- Maintenance Only 16384-word x 4-bit High Speed Hi-BiCMOS Static RAM (with OE) Features • Super Fast Access Time: . . . . . . . . . . . . . . . 25/30 ns (max) • Low Power Dissipation (DC) Operating. . . .. 230 mW (typ.) • +5V Single Supply • Completely Static Memory No Clock or Timing Strobe Required • Balanced Read and Write Cycle Time • Fully TTL Compatible Input and Output HM6789P Series Orderinglnforrnation Type No. Package Access Time HM6789P-25 HM6789P-30 25ns 30ns 300 mil 24 pin plastic DIP HM6789JP-25 HM6789JP-30 25ns 30ns 300 mil 24 pin Plastic SOJ A2 cr-----l (DP-24NC) HM6789JP Series - - 0 Vcc A3cr-----l - - 0 Vss A4o---f~ Memory Matn" AScr-----l 128XS12 A6cr-----\ (CP-24D) A7o-----\ AScr-----\ 1/01 cr--r--I >-1 Pin Arrangement Col.... 1/0 1/02 cr-~f+-I Column Decoder 1/03 cr-..-HH--l 1/04 o-t-++H-f>--1 Absolute Maximum Ratings Item Terminal Voltage to vss Pin Power Dissipation Operating Temperature Range Storage Temperature Range under bias Storage Temperature Range Symbol Rating VT PT -0.5 to +7.0 V 1.0 W Unit o to +70 ·C Tstg(bias) -10 to +85 ·c ·c Topr -55 to+125 Tstg • (Top View) HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 135 HM6789 Serl.. Recommended DC Operating Conditions (Ta = 0 to +70°C) Item Symbol Supply Voltage min typ max VCC 4.5 5.0 5.5 V VSS 0.0 0.0 0.0 V Unit Input High Voltage VIH 2.2 6.0 V Input Low Voltage VIL -0.5*' 0.8 V Note) * 1. -3.0V for pulse width ~ 20ns. Function Table CS OE WE" H HorL HorL L H H L L H L H L L L L Mode VccCurrent 1/0 Pin Not selected ISB,ISBI HighZ Output Disabled ICC,ICCI HighZ ICC, IcCl Dout ICC, ICCI Din Write Cycle (1) (2) (3) (4) ICC, IcCl Din Write Cycle (5) (6) Read Write Ref. Cycle Read Cycle (1) (2) (3) DC and Operating Characteristics (VCc=5V±10%, Ta=O to +70°C) Symbol Item min typ max Test Conditions Unit = S.SV, VIN = VSS to Vee CS = VIH or OE =VIH or WE = VIL VIIO = VSS to Vec CS = VIL, 11/0 = OmA Input Leakage Current (lLlI 2 ",A Output Leakage Current IILOI 2 ",A Operating Power Supply Current ICC 100 rnA Average Operating Current leCl 120 rnA Min.Cycle,Duty: 100%,11/0=OmA VCC ISB 30 rnA CS =VIH ISBI 10 mA CS~ VCC -0.2V VIN ~ 0.2V or VIN ~ VCC - 0.2V 0.4 V 10L V 10H StandbY Power Supply Current Output Low Voltage VOL Output High Voltage VOH 2.4 = 8mA = -4mA AC Test Conditions • Input pulse levels . . . . . . . . . . . . . . . . . . . . Vss to 3.0V • Input and Output reference levels . . . . . . . . . . . . . . 1.5 V • Input rise and fall time . . . . . . . . . . . . . . . . . . . . . . 4 ns • Output Load: See Figure Dout Dou. 2551l • iac1udi... ...,.oadjll 0 ..... Lood A O._LoodB {!:::::i!:f • 136 HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 8 9 Series Capacitance (Ta = 25°C,[= 1.0MHz) Item ----------------.------------------max Unit Imput Capacitance Symbol ClN min typ 6 pF Test Conditions VIN ; OV Input/Output Capacitance ClIO 8 pF Vila ---------------------~------------ -------------------------------- ; OV Note) This parameter is sampled and not 100% tested. AC Characteristics (V cc=5V±1O%, Ta=O to +70°C, unless otherwise noted.) Read Cycle Item Symbol HM6789-30 HM6789-25 min max min max Unit ns 30 Read Cycle Time tRC Address Access Time tAA 25 30 ns Chip Select Access Time tACS 25 30 ns 25 Chip Selection to Output in Low Z tCLZ"! 0 Output Enable to Output Valid tOE 0 Output Enable to Output in Low Z tOLZ"! 0 Chip Deselection to Output in High Z tCHZ"! 0 Output Hold from Address Change tOH tT*2 5 Input Voltage Rise/Fall Time ns 0 15 15 ns 12 ns 150 ns 0 ns 0 10 0 5 150 ns Write Cycle Item HM6789-25 Symbol min max HM6789-30 min Unit max Write Cycle Time twc 25 30 ns Chip Selection to End of Write tew 20 25 ns 0 ns ns Address Setup Time tAS 0 Address Valid to End of Write tAW 20 25 Write Pulse Width twp 20 25 ns 0 ns Write Recovery Time tWR 0 Write to Output in High Z tWHZ"! 0 Data Valid to End of Write tDW 10 15 Data Hold Time tDH 5 Output Disable to Output in Hihg Z tOHZ·! 0 Output Active from End of Write tOW·! 0 0 12 ns 20 ns 5 10 0 ns 10 0 ns ns Notes) * I. Transition is measured ±200mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested. *2. IftT becomes more than 150ns, there is possibility of function fail. Plea,c contact your neare,t Hitachi Sales Dept. regarding specification. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 137 S~ies---------------------------------------------------------------- HM6789H Timing Waveform Read Cyde 11,° 1 Address Dout Read Cyde (2,° 1 , "2,"3 I" Address 108 108 Data Valid PreVIQVS Data Valid Dout Read Cycle (3,"1, °3, °4 cs tCHZ leu Data Vabd Dout High Impedance Notes) *1. *2. *3. *4. WE= VIH ~= VIL (ffi = VIL __ Address valid prior to or coincident with CS transition Low . • 138 HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 8 9 Series Write Cycle (1) (OE = H, WE Controlled) Address tAW t •• D", t •• nata Valid High Impedance Dout Write Cycle (2) (OE = H, CS Controlled) Address t .. tAW 10. Data Vahd Din High Impedance Dout ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589·8300 139 HM6789 Series-------------------------------------------------------------- Write Cycle (3) lOE = Clocked, WE Controlled) t.e Address te. tAW ,.,.*1 Oout tD. tDR HIgh Impedance High Impedance Data Vahd Din Write Cycle (4) IOE = Clocked, CS Controlled) t.e Address tew tAW tD. Din nata Valid Dout • 140 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 8 9 Series Write Cycle (5) (OE = L, WE Controlled) I., Address I,. I,. High Impedance DOllt *5 High Impedance Data Vahd Din High Impedance Write Cycle (6) (OE = L, CS Controlled) I., Address I" f,. es I,. fw*l WE Ibsh Impedance DOllt to. IDH High Impedance Don nata V.bd Notes)*l. A write occurs during the overlap (twp) of a low CS and a low WE. *2. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. *3. Dout is the same phase of write data of this write cycle. *4. If the CS is low transition occurs after the WE low transition, output remain in a high impedance state. *5. If CS is low during this period, I/O pins are in the output state. Then, the data input signals of opposite phase to the outputs must not be applied to them. *6. If CS low transition occurs simultaneously with the OE high transition or after the OE transition, output remain in high impedance state. ~HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 141 HM6789H S e r i e s - - - - - - 16384-word x 4-bit High Speed Hi-BiCMOS Static RAM (with OE) Features • Super Fast Access Time: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15/20 ns (max) • Low Power Dissipation (DC) Operating 0 0 0 0 0 280 mW (typo) • +5V Single Supply • Completely Static Memory No Clock or Timing Strobe Required • Balanced Read and Write Cycle Time • Fully TTL Compatible Input and Output HM6789HP Series Ordering Information Type No. Access Time Package (DP-24NC) HM6789HP-15 HM6789HP-20 15ns 20ns 300 mil 24 pin plastic DIP HM6789HJP-15 HM6789HJP-20 15ns 20ns 300 mil HM6789HJP Series 24 pm pla'lIc SOl Block Diagram A8 0------1 - - 0 Vee A7 0------1 --OVss A6o---i Row Memory MatriX Decoder 128 X 512 A50---~~ A4o---i (CP-24D) A3 o-----l A20---t Pin Arrangement Column I/O 1/02 o-~ft-i 1/03 o-.,-rt+i 1/04 ~++-I-H Absolute Maximum Ratings Item Symbol Rating Terminal Voltage to V SS Pin VT -0.5 to +700 V Power Dissipation PT 1.0 W Operating Temperature Range Storage Temperature Range under bias Storage Temperature Range Note) Topr (Top View) oto +70 °c T.tg(bias) -10 to +85 T.tg Unit -55 to+125 °c °c The specifications of this device are subject to change without notice. Please contact Hitachi's Sales Dept. regarding specifications. ~HITACHI 142 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 8 9 H Series Recommended DC Operating Conditions (Ta = 0 to +70°C) Item Symbol Supply Voltage min typ max VCC 4.5 5.0 5.5 V VSS 0.0 0.0 0.0 V Unit Input High Voltage VIH 2.2 6.0 V Input Low Voltage VIL -0.5*· O.S V Note) *i. -3.0V for pulse width ~ IOns. Function Table CS OE WE H Hor L H orL L H H L L H L H L L L L Mode Not selected Output Disabled Read Write VccCurrent I/O Pin ISD.ISDI High Z Ref. Cycle ICC. IccI High Z ICC. ICCI Data Out ICC. IccI Data In ICC. ICCI Data Out Read Cycle (1) (2) (3) Write Cycle (1) (2) (3) (4) Write Cycle (5) (6) DC and Operating Characteristics (Vcc =5V± 10%, Ta=O to +70°C) Unit Test Conditions Input Leakage Current Item Symbol IILlI 2 p.A VCC = 5.5V. VIN = VSS to VCC Output Leakage Current IILOI 10 p.A CS = VIH orM = VlHorWE=VIL. VIIO VSS to VCC Operating Power Supply Current Ice 100 rnA CS = VIL. 11/0 = OmA Average Operating Current ICCI 120 rnA Min.Cycle.Duty: 100%,II/0=OmA ISD 30 mA CS 10 mA CS~ V cc - 0.2V VIN ~ 0.2V or VIN ~ VCC - 0.2V 0.4 V 10L V 10H min typ max = Standby Power Supply Current ISDI Output Low Voltage VOL Output High Voltage VOH 2.4 = VIH = SmA = -4mA AC Test Conditions • Input pulse levels . . . . . . . . . . . . . . . . . . . . Vss to 3.0V • Input and Output reference levels . . . . . . . . . . . . . . 1.5 V • Input rise and fall time . . . . . . . . . . . . . . . . . . . . . . 4 ns • Output Load: See Figure +5V Output Output 25511 25511 • inciudilll leope .nd iii Output Load A Output Load B ('CHZ. 'rtHz. 10HZ IcLZ. 10", tou) ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 143 HM6789H Series Capacitance (Til = 25°C,[= 1.OMHz) Item Symbol typ min max Test Conditions Unit Imput Capacitance CIN 6 pF VIN = OV Input/Output Capacitance ClIO 10 pF VIIO = OV Note) This parameter is sampled and not .00% tested. AC Characteristics (V cc=5V±10%, Ta=O to +70°C, unless otherwise noted.) Read Cycle Item HM6789H-15 Symbol min max HM6789H-20 min max Unit ns Read Cycle Time tRC Address Access Time tAA 15 20 ns Chip Select Access Time tACS 15 20 ns Chip Selection to Output in Low Z tCLZ·· 3 Output Enable to Output Valid tOE 0 Output Enable to Output in Low Z tOLZ·· 3 Chip Deselection to Output in High Z tCHZ·· 0 Output Hold from Address Change tOH 3 20 15 ns 3 12 0 12 3 6 0 ns ns 8 3 ns ns Write Cycle Item HM6789H-15 Symbol min max HM6789H-20 min Unit max Write Cycle Time twc 15 20 ns Chip Selection to End of Write tew 10 15 ns Address Setup Time ns tAS 0 0 Address Valid to End of Write tAW 10 15 ns Write Pulse Width twp 15 ns Write Recovery Time tWR I ns Write to Output in High Z tWHZ·· 10 0 6 0 8 ns Data Valid to·End of Write tow 9 10 ns Data Hold Time tOH 0 0 ns Output Disable to Output in High Z tOHZ·· 0 Output Active from End of Write tOW·· 0 6 0 8 0 Note) *1. Transition is measured :t200mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested . • 144 HITACHI Hitachi America. Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 ns ns -------------------------------------------------------------HM6789H S.iM Timing Waveform Reed Cycle (1)'1 loe Address OE Data Out Reed Cycle (2)'1, '2, '3 he Address I .. I .. Data Out D... VUd PrevIous Data ValId Reed Cycle (3)'" '3, '4 tRe leu DataV.1uI Data Out Notes) *1. WE = VIH *2. CS = VIL *3. OE- VIL *4. Address valid prior to or coincident with CS transition Low . • HITACHI Hitachi America. Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819· (415) 589-8300 145 HM6789H S-ia------------------------------------------------------------- Write Cyde 111 (OE = H. WE Controlledl ''''' Address '''' cs ". 1.,.*1 WE ". Data In Dara '" v..... Data Out Write Cyde (21 (Of - H. CS Controlledl '" Address ". '" cs ". WE '" Data In Data Out Dara Volid Hilhl.......... • 146 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ----------------------------------------------------------------HM6789H S.iM Write Cyde (3) IOE = Clocked,WE Controlled) I.e Address OE CS I.w WE H.... 1m......." Data Out I .. Iligh Impedance Hlgh Impedance Data In Data Vahd Write Cyde (4) IOE = Clocked, CS Controlled) lwe Address lew CS t ..,.*1 WE 'DW Data In Da.. Valid Data Out $HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra POint Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 147 HM6789H Series-------------------------------- Write Cycle (51 (OE = L, WE Controlled I I'e Address Ie' cs WE I., HOIh Impedance Data Out .5 High Impedance Data In High Impedance Da.. V,M Write Cycle (81 IOf a L, CS Controlledl Address I .. Ie' cs t..,.*1 WE !bob Impedance Data Out I., I .. High Impedance Data In Data V.lld Notes)*l. A write occurs during the overlap (twp) of a low CS and a low WE. *2. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. *3. Data Out is the same phase of write data of this write cycle. *4. If the CS is low transition occurs after the WE low transition, output remain in a high impedance state. *S. If CS is low during this period, I/O pins are in the output state. Then, the data input signais of opposite phase to the outputs must not be applied to them. *6. If CS low transition occurs simultaneously with the OE high transition or after the OE transition, output remain in high impedance state. $HITACHI 148 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM6789HA Series - - - - - - - - - - P r e l i m i n a r y 16384-Word x 4-Bit High Speed Static RAM (with OE) • FEATURES • Super Fast Access Time ....................Add. 12/15/20ns (max.) DE 6/7/8ns (max.) • Low Power Dissipation (DC) Operating ..........................300mW (typ.) • + 5V Single Supply • Completely Static Memory No Clock or Timing Strobe Required • Fully TTL Compatible Input and Output (DP-24NC) • ORDERING INFORMATION Type No. Access Time Package HM6789HAP-12 HM6789HAP-15 HM6789HAP-20 120s 150s 200s 300 mil 24pio Plastic DIP (DP-24NC) HM6789HAJP-12 HM6789HAJP-15 HM6789HAJP-20 120s 150s 200s 300 mil 24 pio Plastic SOJ (CP-24D) • BLOCK DIAGRAM AaO-----l A70-----l Aeo-----l Aso----l A40----l A3 0----1':5;:] A2 -oVcc -oVss Memory Matrix 128 X 512 • PIN ARRANGEMENT Ao vee At A'3 A12 All AID Ag A2 Aa A4 A5 o---~==~ :=::C===::::c:~_ IlOto--_--l 11020---'+-1-1 1103 o-_H-+~ (CP-24D) Column 1/0 1104 o-....,f++~ As NC A7 As 1/0, 1/02 CS 1/03 OE 1/04 Vss WE (Top View) _HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane. CA 94005·1819 • (415) 589-8300 149 HM6789HA Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - • ABSOLUTE MAXIMUM RATINGS Item Symbol Rating VT PT -0.5 to +7.0 V 1.0 W Voltage on Any Pin Relative to Vss Power Dissipation Operating Temperature Range Storage Temperature Range (with bias) o to -10 to +S5 °C °C -55 to + 125 °C Topr Tstg(blas) Tstg Storage Temperature Range Unit +70 • RECOMMENDED DC OPERATING CONDITIONS (O°C :;; Ta :;; 70°C) Item Symbol Min. Typ. Max. Vec 4.5 5.0 5.5 V Vss 0.0 0.0 0.0 V Supply Voltage Unit Input High Voltage VIH 2.2 - 6.0 V Input Low Voltage VIL* -3.0 - O.S V 'Pulse width -; IOns, DC: -O.5V • TRUTH TABLE CS OE WE Mode Vcc Current 110 Pin H HorL Hor L Not Selected HighZ L L H H Output Disabled ISB' ISB! Icc, ICC! HighZ L H Read Icc, IcC! Data Out Read Cycle (1) (2) (3) L H L Icc, Icc! Data In Write Cycle (1) (2) (3) (4) L L L Icc, IcC! Data In Write Cycle (5) (6) Write Ref. Cycle - • DC AND OPERATING CHARACTERISTICS (Vcc = 5V ± 10%, Ta = O°C to 70°C, Vss = OV) Item Symbol Input Leakage Current Output Leakage Current Min. Typ. Max. Unit Ilul Vcc = 5.5V, VIN = Vss to Vcc Test Condition - - 2 p.A IILOI CS = VIH or OE = VIH, WE = V1L VIIO = Vss to Vcc - - 10 p.A Operating Power Supply Current Icc rnA - - 100 IcC! CS = V1L , 1110 , = OmA Min. Cycle, Duty: 100%,1110 = OrnA - Average Operating Current 120 rnA ISB CS = VIH - - 30 rnA ISBl CS ~ Vcc - 0.2V V IN :;; 0.2V or V IN - - 10 rnA VOL VOH - - 0.4 V 10H = -4mA - V Standby Power Supply Current Output Low Voltage Output High Voltage ~ IOL = SrnA Vcc - 0.2V 2.4 • AC TEST CONDITIONS • Input Pulse Levels: Vss to 3.0V • Input and Output Reference Levels: 1.5V ± 200mV from steady level (Output Load 8) • Input Rise and FaJl Time: 4ns • Output Load: See Figure +5V +5V DOU~ DOU~ 4800 4800 2550 L j 5 PF' 2550 L j 3 0 pF • Output Load B (for tCHz, tCLZ , 10HZ' tOLZ , twz & tow) Output Load A *Including scope and jig capacitance. • 150 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6789HA Series • TIMING WAVEFORM • Read Cycle (1) (1) Address OE cs tCLZ Data Out tCHZ Data Valid High Impedance • Read Cycle (2) (1) (2) (3) RC )~ )K Address tAA tOH tOH Data Out JOOO K Previous Data Valid X Data Valid • Read Cycle (3) (1) (3) (4) tRC cs )t K. tACS tCHZ ~ tClZ Data Out NOTES: Highimpedance rXX)K Data Valid " / 1. WE = VIH 2. CS = VIL 3. OE = VIL 4. Address valid prior to or coincident with CS transition low. _HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 151 HM6789HA Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • CAPACITANCE (Ta = 25°C, f = 1.0MHz) Symbol Test Conditions Min. Typ. Max. Unit Input Capacitance CIN VIN = OV pF CliO VIla = OV - 6 Input/Output Capacitance - 10 pF Item NOTE: This parameter is sampled and not 100% tested . • AC CHARACTERISTICS (Vcc = 5V = O°C to 70°C, unless otherwise noted.) ± 10%, Ta • Read Cycle Item Read Cycle Time Address Access Time Symbol HM6789HA-12 HM6789HA-15 HM6789HA-20 tRC tAA Chip Select Access Time tACS Chip Selection to Output in Low Z leLz Notes Max. Min. Max. Min. 12 - - 15 - - ns - - 20 ns - 12 - - 20 ns 6 6 - 5 15 15 7 6 - 20 12 5 8 8 - ns ns 1,2 ns 1,2 ns 1,2 ns - Unit Notes Output Enable to Output Valid toE 3 0 Output Enable to Output in Low Z toLZ 2 Chip Deselection to Output in High Z leHZ tOH 0 4 Output Hold from Address Change Unit Min. 0 2 0 4 0 2 0 4 Max. - I • Write Cycle Item HM6789HA-12 HM6789HA-15 HM6789HA-20 Symbol Min. Max. Min. Max. Min. Max. - 15 - 20 - ns - 10 - - ns - 0 - 15 0 - ns - - 10 - 15 - ns - 6 - 10 - 15 - ns 0 - 0 - ns 0 7 ns 0 - ns 6 I 8 ns - 3 0 10 0 1 3 8 - - 6 6 - - ns Write Cycle Time twc 12 Chip Selection to End of Write Address Setup Time lew tAS 8 0 Address Valid to End of Write Write Pulse Width tAW twp Write Recovery Time tWR Write to Output in High Z tWHz tDW 8 8 0 0 6 0 1 3 Data Valid to End of Write Data Hold Time tDH Output Disable to Output in High Z tOHZ tow Output Active from End of Write NOTES: ns I. Transition is measured ± 200mV from steady state voltage with Load B. 2. This parameter is sampled and not 100 % tested . • 152 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 1,2 1,2 1,2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6789HA Series • Write Cycle (1) (OE = H, WE Controlled) twe Address tew cs twp(1) WE tow Data In tOH Data Valid High Impedance Data Out • Write Cycle (2) (OE = H, CS Controlled) twe Address tAS tew CS tAW twp(1) WE tow Data In Data Valid High Impedance Data Out • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 153 HM6789HA Series - - - - - - - - - - - - - - - - - - - - - - - - - - - • Write Cycle (3) (OE = Clocked, WE Controlled) twe Address OE tew cs twp(1) WE tOLZ(2 High Impedance Data Out tDW Data In • Write Cycle (4) tDH ~,m--------_.+.,.....,..High ImpedancE High Impedance (OE = Clocked, CS Controlled) twe Address OE tew cs tWA twp(1) WE Data In High Impedance Data Out ~HITACHI 154 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6789HA Series • Write Cycle (5) (DE = L, WE Controlled) Address tew cs twp WE (1) (2) Data Out High Impedance tDW Data In tow ..---"'-'-'~ ----... tDH _H.....;ig::..h_l_m..:.p_e_d_an_c_e_ _ _ _ _ _ _-<~r---D-at-a-v-a-li-d---M-.. (S) High Impedance OHITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 155 HM6789HA Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Write Cycle (6) (DE = L, CS Controlled) twc Address cs twp (1) WE High Impedance Data Out tDw Data In NOTES: High Impedance Data Valid I. A write occurs dunng the overlap (twp) of a low CS and a low 2. During this period, 110 pins are be applied. 3. Doul IS tDH 10 WE. the output state so that the input signals of opposite phase to the outputs must not the same phase of write data of this write cycle. 4. If the CS low transItIon occurs after the WE low transitIOn, output remain in a high impedance state. 5. If CS is low dunng this penod, 110 pins are 10 the output state. Then, the data input signals of opposIte phase to the outputs must not be apphed to them. 6. If CS low transitIOn occurs simultaneously with the OE high transitIOn or after the OE transition, output remain in high Impedance state. ~HITACHI 156 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM6287 Series Maintenance Only 65536-word x '-bit High Speed CMOS Static RAM • FEATURES • • • • • • • High Speed: Fast Access Time 45/55/70ns (max.) Single 5V Supply and High Density 22 Pin Package Low Power Standby and Low Power Operation Standby: 100llW (typ.)/10IlW (typ.) (L-version) Operation: 300mW (typ.) Completely Static Memory No Clock or Timing Strobe Required Equal Access and Cycle Times Directly TTL Compatible: All Inputs and Output Capability of Battery Back Up Operation (L-version) (DP-22N) • PIN ARRANGEMENT • ORDERING INFORMATION Type No. Package Access Time HM6287P-45 HM6287P-55 HM6287P-70 45ns 55ns 70ns HM6287LP-45 HM6287LP-55 HM6287LP-70 45ns SSns 70ns 300 mil 22 pin Plastic DIP • BLOCK DIAGRAM A. _Vo< A. A.. R•• +-- Vss Me •• r, Arn, A.. 1111(511 A" A.. A.. D" es WE NOTE: Not for new designs. • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy•• Brisbane. CA 94005-1819 • (415) 589-8300 157 HM6287S.IM-------------------------------------------------------------• TRUTH TABLE CS WE Mode H X Not Selected L H Read L L Write Vee Current Ref. Cycle Dout Pin High Z - Icc Dout Read Cycle Icc High Z Write Cycle ISB,lsBl • ABSOLUTE MAXIMUM RATINGS Item Symbol Rating Unit Voltage on Any Pin Relative to VSS VT -0.5"1 to +7.0 V Power Dissipation PT 1.0 W ·C Operating Temperature Topr o to +70 Storage Temperature Tit. -55 to +125 ·C Temperature Under Bias TblOi -10 to +85 ·C Note) "I. -3.5V for pulse width;;; 20ns • RECOMMENDED DC OPERATING CONDITIONS (Til = 0 to +70°C) Item Supply Voltage Input Voltage Unit Symbol min typ max Vee 4.5 5.0 5.5 V VSS 0 0 0 V VIH 2.2 - 6.0 V VIL -0.5"1 - 0.8 V Note) "1. -3.0V for pulse width ~ 20ns • DC AND OPERATING CHARACTERISTICS (Vee Symbol Item =SV ± 10%, VSS =OV, Ta =0 to +70°C) Input Leakage Current I ILl I Vee = S.5V, Vln = Vssto Vee Output Leakage Current Operating Power Supply Current Ihol lee ISB CS - VIH, Vout= Vssto Vee CS = V/L,lout - OmA, min. cycle Standby Power Supply Current ISBl VOL VOH Output Voltage min typ·l max 2.0 - Test Conditions - CS = VIH, min. cycle CS ~ Vcc-O.2V, OV ::;; Vin ::;; 0.2V or Vee - 0.2V ;;; Vin 10L = SmA 2.4 IOH= -4.0mA Notes) ·1. Typical bmits are at Vee = S.OV, Ta - 2S C and specIfied loadtng. Unit jlA - 2.0 jlA 60 100 rnA 30 rnA 10 rnA 0.02 2.0 2.2 100"2 IIA - 0.4 - V V Q • 2. This characteristics is guaranteed only for L·version. • CAPACITANCE (/= IMHz, Til = 2S 0c) Symbol Item Input Capacitance Output Capacitance qn Cout max min typ V'n =OV - - 5 pF Vout=OV - - 7.5 pF Test Conditions Note) This parameter is sampled and not 100% tested. $ 158 HITACHI Hitachi America, Ltd. • Hitachi Plaza" 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 Unit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 8 7 Series • AC CHARACTERISTICS (Vcc = SV ±10%, Ta = 0 to +70°C, unless otherwise noted) • AC TEST CONDITIONS Input Pulse Levels: Vss to 3.0V Input Rise and Fall Times: 5ns Input and Output Timing Reference Levels: 1.5V Output Load: See Figure Output Load B Output Load A 5V :g 5V '800 '800 . Doo.o---_p-_-+ D.... * Indudln. scope • • 5.F· 2550 3O.F 2550 & JI, upacilance READ CYCLE item Symbol Read Cycle Time Address Access Time Chip Select Access Time Output Hold from Address Change Chip Selection to Output in Low Z Chip Deselection to Ou tpu t iii High 2: Chip Selection to Power Up Time Chip Deselection to Power Down Time tRC tAA tACS tOH tLZ tHZ tpu tPD HM6287-4S min max 45 45 45 5 5 30 0 0 40 - HM6287·SS min max 55 55 55 5 5 0 30 0 40 - HM6287·70 min max 70 70 70 5 5 30 0 0 40 - - - Unit Notes ns ns ns ns ns ns ns ns I 2,3,7 2,3,7 7 7 Timing Waveform of Read Cycle No. 1 (4)( 5 ) ~~----------------'.(----------------~~ Address DoUI ~-,,,"--L-'flH Dala Valid • Timing Waveform of Read Cycle No. 2(4)(6) Dout ~ Vee supply c:.c•• - - • current --------------------------- '~"-l-_ 50'1'1 ISH Notes: I. All Read Cycle timings are referenced from last valid address to the fust transitioning address. 2. At any given temperature and voltage condition, fHZ max. is less than fLZ min. both for a given device and from device to device. 3. Transition IS measured ±500 mV from steady state voltage with specified loadmg m Load B. 4. WE is high for READ Cycle. S. Device is continuously selected, whIle CS = VIL. 6. Address valid pnor to or coincident WIth CS transitIOn low. 7. This parameter is sampled and not 100% tested. ~HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 159 HM6287 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • WRITE CYCLE Symbol Item Write Cycle Time Chip Selection to End of Write Address Valid to End of Write Address Setup Time Write Pulse Width Write Recovery Time Data Valid to End of Write Data Hold Time Write Enabled to Output in High Z Output Active from End of Write twe lew tAW tAS twp tWR tDW IDH IWZ tow HM628745 min max 45 40 40 0 25 0 25 0 0 25 0 - HM6287-55 max min 55 50 50 0 35 0 25 0 0 25 0 HM6287-70 min max 70 55 55 0 40 0 30 0 30 0 0 Unit Notes ns ns ns ns ns ns ns ns ns ns 2 • Timing Waveform of Write Cycle No.1 (WE Controlled) III( Address ~ - 1\ 1---"'_ WE ..". , "tI·~ \\ \ .C Don Dout IJI1 IData . t::! - In 1---"'fJH ValidX' , \---tlJII f-'"~ High Impedance Data Undefined • Timing Waveform of Write Cycle No.1 (CS Controlled) ,., I' tAil t"3 1 ". 1 _I., !---'."- .L l Din .1'0" lJI' Data m Vahd *- l-----tllL Dout Notes) 1. 2. 3. 4. Data Undefined If CS goes high Simultaneously with WE high, the output remains in a high impedance state. All Write Cycle timings are referenced from the last valid address to the first transitioning address. Transition is measured ±500mV from steady state voltage with specified loading in Load B. This parameter is sampled and not 100% tested . • 160 High Impedance HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 3,4 3,4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 8 7 Series • LOW Vee DATA RETENTION CHARACTERISTICS (Ta = 0 to +70°C) This characteristics is guaranteed only for L-version. Parameter Vcc for Data Retention Data Retention Current Chip Deselect to Data Retention Time Operation Recovery Time Note) *1. tRC - Read Cycle Time *2. Vee = 3.0V • Symbol Test Condition VDR ICCDR teDR tR CS~ vee-Nv' V{p ~ Vee-. or o S-Vin S; 0.2V typo max. - - Umt V - I 50.2 /loA 0 - - ns ns min. 2.0 See retention waveform tRC· 1 - LOW Vee DATA RETENTION WAVEFORM Data Retention Mode \.1 Vee _ _ _ _ _ _ _ 45V--------- --- -- ---- -- - -- - - -- - - - - --- CSii=Vcc-O 2V Cs _ _ _ _..1 w ____________________________________________ _ SUPPLY CURRENT vs. SUPPLY VOLTAGE SUPPLY CURRENT vs. AMBIENT TEMPERATURE 6 I.6 Vcc=5.0V Ta=25°C 1.4 • I. 2 8 ~ ~ ~ ] ~ 1 Or--1. 6 0. 4.5 r-- ~ 8 6 • 1.2 4.75 5.0 5.25 • O• 5.5 20 40 60 80 Ambient Temperature To ("C) Supply Voltage Vee (V) • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 161 HM6287 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ACCESS TIME vs. AMBIENT TEMPERATURE ACCESS TIME vs. SUPPLY VOLTAGE 13 1.3 Ta~25·C Vcc=5.0V 1. 2 1.2 1 1 1. 1 ~ 1.0 ~ O.9 :--- ~ j ~ ..., 1 11 J 10 ~ 0.9 r-- j j 08 45 5.25 ,../ ~ 0.8 07 5.0 4.75 V ~ ---- - 7 ..,../ 5.5 o STANDBY CURRENT SUPPLY VOLTAGE STANDBY CURRENT vs. AMBIENT TEMPERATURE 14 j O.8 ] f o. 6 O. -- / V 4~ / 80 Ambient Temperature Ta ("C) VS. 2 60 40 20 Supply Voltage Vee (V) 10 / / Vcc=3V Cs~2.8V 1 .Ta=2S"C V,e-0.2V CSi ,/ '/ ,/' / , o. 2 SUPPLY CURRENT FREQUENCY 60 40 20 AmbIent Temperature Ta (Oe) Supply Voltage Vee (V) STANDBY CURRENT vs. INPUT VOLTAGE ¥s. T(ns) 200 1.1 100 50 66 40 10 Ta=2S·C I ~o' ~ 1.0 Vcc =5.0V -- / 0.9 ] o.6 o. 5 \ / 7 en /' /" .!! o.8 1 o. Cs~4.8V /' / 2 10 15 20 25 Frequency j (MHz) 0 \ "" i'.... Input Voltage VltdV) ~HITACHI 162 Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra POint Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 80 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 8 7 Series INPUT LOW VOLTAGE SUPPLY VOLTAGE INPUT HIGH VOLTAGE SUPPLY VOLTAGE VS. VI. 1.3 1.3 T.~25"C T.~25·C I. 2 1.2 1 1 ------- 1.0 1 j :s: ! 0.9 0.8 O. 7 4.5 4.75 50 ~ I---- 1. :! ~ 1. 0 > oj o. :<: J--- V- 1 o. 5.25 1 8 O.7 5.5 --- ~ 4.5 5.0 4.75 5.25 5.5 Supply Voltage Vcc (V) Supply Volta8e Vee (V) OUTPUT HIGH CURRENT VI. OUTPUT HIGH VOLTAGE OUTPUT LOW CURRENT VI. OUTPUT LOW VOLTAGE I.6 3.0 Ta=2SoC 'i ~ 2.5 ~ 2.0 ~ I.5 <3 ~ I. 0 ! o. 5 0 Vcc=5V \ \ i\ \ 'i I. 4 1 3 1.2 I I. 0 u \ j ! \ 0.8 o.6 o.4 Output High Voltage VOH (V) / / / V .1 Ta=2S"C Vcc=5V V 0.2 0.4 Output Low Voltage 0.6 VOL 0.8 (V) ~HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300 163 HM6287H Series 65536-Word x 1-Bit High Speed CMOS Static RAM The Hitachi HM6287H is a high speed 64K static RAM organized as 64-kword x 1-bit. It realizes high speed access time (25/35 ns) and low power consumption, employing CMOS process technology and high speed circuit designing technology. It is most advantageous for the field where high speed and high density memory is required, such as the cache memory for main frame or 32-bit MPU. The HM6287H packaged in a 300-mil plastic DIP and SOJ, is available for high density mounting. Low power version retains the data with battery back up. HM6287HP Series (DP-22NB) HM6287HJP Series Features • Single 5 V supply and high density 22-pin DIP and 24-pin SOJ • High speed: Fast access time 25/35 ns (max) • Low power Operation: 300 mW (typ) Standby: 100 IlW (typ) • Completely static memory No clock or timing strobe required • Equal access and cycle times • Directly TIL compatible: All inputs and outputs Pin Arrangement Pin Description HM6287HJP Series HM6287HP Series AO Al A2 A3 A4 A5 vee A15 A14 A13 A12 All Ala A6 A7 Dout A9 AS Din WE AO Al A2 A3 vee A15 A14 A13 A12 NC All Ala A4 A5 NC A6 A9 AS Din A7 Dout WE cs Vss (CP-24D) V .. '-'-_ _- ' Pin Name AO-A15 Din Dout CS WE Vee Vss Function Address Input Output Chip select Write enable Power supply Ground CS (Top View) (Top View) Ordering Information Type No. HM6287HP-25 HM6287HP-35 HM6287HLP-25 HM6287HLP-35 HM6287HJP-25 HM6287HJP-35 HM6287HUP-25 HM6287HLJP-35 Access Time 25 ns 35 ns 25 ns 35ns 25 ns 35 ns 25 ns 35 ns Package 300-mil 22-pin plastic DIP (DP-22NB) 300-mil 24-pinSOJ (CP-24D) ~HITACHI 164 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 8 7 H Series Block diagram AO -Vee A2 -Vss A3 Row Memory Array Oecoder 128X512 A4 A5 A6 Din --1':>--+--1 Dout Function Table CS H WE L L H Note: x L Mode Standby Read Write Vee Current ISB,IsBI Icc Icc Ref. Cycle DoutPin High-Z Dout High-Z Read cycle 1, 2 Write cycle 1, 2 x: H orL Absolute Maximum Ratings Item Voltage on any pin relative to V ss Power dissipation Operating temperature Storage temperature Storage temperature under bias Note: *1. VTmin =-2.0 V for pulse width!> IOns Symbol VT PT Topr Tstg Tbias Unit V W Value -0.5"1 to +7.0 1.0 o to +70 -55 to +125 -10 to +85 ·C ·C ·C Recommended DC Operating Conditions (Ta =0 to + 70°C) Item Supply voltage Input high (logic 1) voltage Input low (logic 0) voltage Note: Symbol Vee Vss Vm VIL Min 4.5 0 2.2 -0.5"1 Typ Max 5.0 0 5.5 0 6.0 0.8 Unit V V V V *1. VIL min = -2.0 V for pulse width!> IOns • HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Bnsbane, CA 94005-1819 • (415) 589-8300 165 HM6287H Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - DC Characteristics (Ta =0 to +70°C, Vee =5 V ± 10%, Vss =0 V) Item Input leakage current Typ" Min Symbol I lui Max 2.0 Unit 2.0 JlA Output leakage current Ih.o I Operating Vee current Ice 60 120 rnA Standby Vee current Iso 15 0.02 30 2.0 rnA rnA Standby Vee current (1) Iso, 0.02'2 0.1'2 Output low voltage Output high voltage VOL VOII .-----~ --.-~------------ -_. 2.4 ---- --- _. --- Notes: *1. Typical limits are at Vee =5.0 V, Ta ---------~~- rnA V V -------------- 0.4 --- Tcst Conditions Vee = Max Yin = Vss to Vee CS = VDI VI/O = Vss to Vee CS = VIL lout = 0 rnA, min cycle CS = VOl, min cycl:. ___ CS ~ Vee - 0.2 V oV s Yin S 0.2V or Vee-O.2 Vs Yin - -- -- - -----_. ---101. = 8 rnA ---_._-----1011 = -4.0 mA JlA --- =25°C and specifIed loading. *2. This characteristics is guaranteed only for L-vcr~lOn. Capacitance ( Ta = 25°C, f = ).0 MHz )" Item Input capacitance Output capacitance Note: Symbol Cin Cout Max Min 6 8 - -U-nh pF pF TcstCo~ldili(ms----· Yin = 0 V Vout=OV -------~---~----- .1. This parameter is sampled and not 100% tested. AC Characteristics (Ta =0 to +70°C, Vee = 5 V ± 10%, unless otherwise noted. ) Test Conditions • Input pulse levels: Vss to 3.0V • Input rise and fall times: 5 ns Output Load (A) 00" d 2"0 Note: • Input and Output timing reference levels: 1.5 V Output load: See figures Output Load (El (for til?, 11.7., tWI. & tow) '"OO -I'O'f. Including scope & jig .HITACHI 166 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 .~---- HM6287H Series Read Cycle Symbol Item Read cycle time Address access time Chip select access time Output hold from address change Chip selection to output in low-Z Chip deselection to output in high-Z Chip selection to power up time Chip deselection to power down time IRc tAA lACS tOH ILZ'! tHz'! lPu tI'D HM6287H-25 Max Min 25 25 25 3 5 0 12 0 25 HM6287H-35 Min Max 35 35 35 5 5 20 0 0 30 Unit ns ns ns ns ns ns ns ns Read Timing Waveform (1) '2,'3,'5 .. Addreu ., Doul I" to • PreviOUS Dal& Valid 0,11 Valid Read Timing Waveform (2)'2. '4 "e I.cs 'v Doul Vee S\lPPI, Currenl ke - - - - - - - - - - -Jr-------------------,rso.. ~h-.------------r Notes: *1. *2, *3. *4. Transition is measured ±200 mV from steady state voltage with Load (B). This parameter is sampled and not 100 % tested. WE is high for read cycle. Device is continuously selected, CS = VIL. Address valid priorto or coincident with CS transition low. *5, AU read cycle timing are referenced from last valid address to the first transitioning address. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 167 HM6287H Series WrHeCycle Item Write cycle time Chip selection to end of write Address valid to end of write Address setup time Write pulse width Write recovery time Data valid to end of write Data hold time Write enabled to output in high-Z Output active from end of write HM6287H-25 Max Min 25 20 20 0 20 0 15 0 0 8 5 Symbol twe tcw tAw tAs twp twR tow toH twz') tow') HM6287H-35 Min Max 35 30 30 0 30 0 20 0 0 10 5 Unit ns ns ns ns ns ns ns ns ns ns Write Timing Waveform (1) (WE controlled) Address tDW Data .n Valid Din twz Oaut High Impedance ~HITACHI 168 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6287H Series Write Timing Waveform (2) (CS Controlled) twe Address tew Din High Impedance" Dout Notes: .1. ·2. ·3. ·4. Transition is measured ±200 mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested. A write occurs during the overlap of a low CS and a low WE. (tWP) twa is measured from the earlier of CS or WE going high to the end of write cycle. IT the CS low transition occurs simultaneously with the WE low transition or after the WE transition, the output buffers remain in a high impedance state. ·5. Dout is the same phase of write data of this write cycle, if twa is long enough. Low Vee Data Retention Characteristics ( Ta = 0 to +70°C) (This specification is guaranteed only for L-version.) Item Vee for data retention Data retention current Chip deselect to data retention time Operation recovery time Symbol VOR IcCOR Min 2.0 tCOR Typ 0 IR IRC'! Max Unit V 50'2 35'3 flA ns ns Test Condition TI~ Vcc- 0.2 V Yin ~ Vcc-O.2 Vor oV ::; Yin ::; 0.2 V See retention waveform = = Notes: .1. lac Read cycle time ·2. Vee 3.0 V ·3. Vee = 2.0 V Low Vee Data Retention Timing Waveform Data Retention Mode Vee V. R CS;S:V. R -O.2V OV ----------------------------------• HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 169 HM8287HSer.s----------------------------------------------------Supply Current vs. Supply Voltage Supply Current vs. Ambient Temperature 1.6 1.6 j Ta=25'C :ti' ~ 1.4 ;.; :.; E 1.2 ~ ] 1.0 ~ 08 ~ B: 0.6 ----- ----- ----- Vce=5.0V 1.4 E 1.2 ~u ~ ..!:l ! U >. 1 =' 1.0 t--- r-- 0.8 06 II) ~ 1.0 ~ '0 :> 0.9 .s _ O.S ! 0.7 '" :.; i!l i----"" ~ Ta=25'C ~ 1. 2 ?._ 1. 1 1. 2 § b '" 1. Ta=25'C ;; :> ~ 1. 0 5 ~ O•9 .<:: ~ --- ~ ~ .~ ::c ::; O.S .s4.5 4.75 5.0 5.25 5.5 4.75 5.0 5.25 5.5 Supply Voltage Vee (V) Supply Voltage Vee (V) Output Current va. Output Voltage (1) Output Current vs. Output Voltage (2) ~ 1.6 ] Ta=25'C Vcc=5V i!l 1.4 1\ \ ~ ~ 1.2 .9 i: 1.0 ~ O.S ~ U \ j 3 ~ 0.6 8 4 '" i!l V ~ 1.2 j E 1.0 0 iii O.S ~ ! U 0.6 0.4 .g , 3 CI) 40 0.6 b 5~ 60 SO Ambient Temperature Ta (0C) .J 0.4 1.4 Vcc=3V CS=2.SV 20 0.2 O.S Standby Current va. Supply Voltage 10 1 / i ~ Output Low Voltage VOL (V) Standby Current va. Ambient Temperature / V 0.4 0 Output High Voltage VOH (V) / L J \ 2 Ta=25'C Vcc=5V ., 1.4 , E ~ 1.2 1.6 0.2 -- V L / / / / Ta=25'C ._ cs=rcc -0.2V 345 Supply Voltage Vee (V) ~HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 171 HM6287H Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Standby Current va, Input Voltage a To ='25'(; Vcc=5.0V CS=4.8V _ 8 II ) \ ~ 2 ~ 3 4 5 Input Voltage Vin (V) .HITACHI 172 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM6787 Series Maintenance Only 65536-word x 1-bit High Speed Hi-BiCMOS Static RAM HM6787P Series • FEATURES • • • • • • • • Super Fast Access Time: 25ns/30ns (max.) Low Power Dissipation (DC): Operating l80mW (typ) High Driving Capability: IOL l6mA +5V Single Supply Completely Static Memory No Clock or Timing Strobe Required Balanced Read and Write Cycle Time Fully TTL Compatible Input and Output Skinny 22·pin Plastic Dip (300 mil) and 22·pin Chip Carrier (DP·22NB) • ORDERING INFORMATION Type No. Access Time HM6787p·2S HM6787P·30 2Sns 30ns Package 300 mil 22 pin Plastic DIP • PIN ARRANGEMENT • HM6787P Series • BLOCK DIAGRAM ---() Vee ---0 VS5 Memory Matrix 128X512 j ~~ WE~ -0 ~"~'/O Dout A6A7A8A2A3A4A5AOAl (Top View) .ABSOLUTE MAXIMUM RATINGS Item Terminal Voltage to Vss Pin Power Dissipation Operating Temperature Range Storage Temperature Range Symbol VT PT Top, Tstg Rating -0.5 to +7.0 1.0 o to +70 -55 to +125 • Unit V W 'c 'c HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 173 HM6787 Series---------------------------------- • TRUTH TABLE CS WE Mode H X Not Selected Output Pin L H Read Icc Dout L L Write Icc High Z Vee Current High Z ISB.ISBl • RECOMMENDED DC OPERATING CONDITIONS (O°C ~ Ta ~ 70°C) Item Supply Voltage Input High Voltage Input Low Voltage Note) * 1. min. typo max. Vee 4.5 5.0 5.5 V VSS 0 0 0 V 6.0 V 0.8 V Symbol VlH 2.2 VIL -0.5'1 - Unit -3.0V for pulse width ~ 20ns . • DC AND OPERATING CHARACTERISTICS (Vcc = 5V±1Q%, To =O°C to +70°C) Item Symbol Test Conditions Input Leakage Current IhII Vee =5.5V, VIN = Vss to Vee Output Leakage Current I/LOI CS= VIH , VOUT= Vssto Vee Operating Power Supply Current IcC CS= VIL,IOUrOmA ISB CS= VIH CS~ Vee -0.2V Standby Power Supply Current ISBl min. typo - - 2 IlA 100 40 rnA rnA - - 20 rnA - 0.5 V - V VIN~0.2Vor VIN~Vee-0.2V Output Low Voltage VOL Jo L = 16mA - Output High Voltage VOH IOH=-4mA 2.4 TEST CONDITIONS • AC Input pulse levels: to 3.0V Out put Load A Vss (for 1HZ, ILZ, IWZ 480 Q 480 Q Dout Dout 3OpF* 255 Q 5pF* • Including scope and jig. ~HITACHI 174 IlA & tow) +5V 255 Q Unit 2 Output Load B +5V Input rise and fall times: 4ns Input timing reference levels: 1.5V Output reference levels: 1.5V Output load: See Figure max. Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300 ---------------------------------------------------------------HM6787SeriH • CAPACITANCE (Ta =25°C.I= 1.0MHz) Item Input Capacitance Output Capacitance Symbol max Unit Conditions CIN 5.0 pF VIN = OV 7.0 pF VOUT=OV COUT Note) This parameter is sampled and not 100% tested. • AC CHARACTERISTICS (VCC = 5V±IO%, Ta =O°C to 70°C, unless otherwise noted.) • READ CYCLE Item Read Cycle Time Address Access Time Chip Select Access Time Output Hold from Address Change Chip Selection to Output in Low Z Chip Deselection to Output in High Z Chip Selection to Power Up Time Chip Deselection to Power Down Time Input Voltage Rise/Fall Time HM6787-25 min max 25 25 25 5 5 15 0 0 25 150 Symbol tRC tAA tACS tOH tLZ tHZ tpu tPD tT HM6787-30 min max 30 30 30 5 5 15 0 0 - - Unit ns ns ns ns ns ns ns ns ns 30 150 Notes 1,2 1,2 2 2 3 Notes) 1. Transition is measured ±200m V from steady state voltage with specified loading in Load B. 2. This parameter is sampled and not 100% tested. 3. If tT becomes more than 150ns, there is possibility of function fail. Please contact your nearest Hitachi's Sale Dept. regarding specification. • WRITE CYCLE Item Write Cycle Time Chip Selection to End of Write Address Valid to End of Write Address Setup Time Write Pulse Width Write Recovery Time Data Valid to End of Write Data Hold Time Write Enable to Output in High Z Output Active from End of Write Note: 1. 2. 3. 4. Symbol twc tcw tAW tAS twp tWR tDW tDH twz tow HM6787-2S min. max. 2S - 20 20 0 20 - - - S - 20 0 0 0 15 - HM6787-30 min. max. 30 25 25 0 25 5 25 0 0 15 0 - Unit Notes ns ns ns ns ns ns ns ns ns ns 2 3,4 3,4 If CS goes high simultaneously with WE high, the output remains in a high impedance state. All Write Cycle timings are referenced from the last valid address to the first transitloning address. Transition is measured ±200mV from steady state voltage with specified loading in Load B. This parameter is sampled and not 100% tested. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 175 HM8787SeriM------------------------------------------------____________ • TIMING WAVEFORM OF READ CYCLE NO. 11 ). 2) IRe Address IAA IOH Dati Out Previous Data Valid Data Valid • TIMING WAVEFORM OF READ CYCLE NO. 21 ).3) IRe lACS !LZ Dati Out High Impedance Data Valid IPlJ Vee Supply Current Note: 1. WE Is high and CS is low for READ cycle. 2. Addresses valid prior to or coincident with CS transition low. 3. Transition Is measured ± 200mV from steady state voltage with specified loading in Load B. • 176 HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 8 7 8 7 Series • TIMING WAVEFORM OF WRITE CYCLE NO.1 (WE CONTROLLED) twe Address lew tAW !AS twp tow Data In Data In Val id !wZ Data Out Data Undefined HIgh Impedance Note: 1. Transition is measured ±200mV from steady state voltage with specified loading in Load B. • TIMING WAVEFORM OF WRITE CYCLE NO.2 (CS CONTROLLED) Iwe Address ~ j j~ !AS !ew 'i ,I lAW !WR !wP 1////// \. \. \. \. \. \. '~ tOH tow 'W Data In Data In Valid j\, )\. IWZ Data Out , Data Undefined High Impedance Note: 1. Transition is measured ±200mV from steady state voltage with specified loading in Load B. • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 177 HM6787H S e r i e s - - - - - - 65536-word x 1-bit High Speed Hi-BiCMOS Static RAM Features • Super Fast Access Time: 15n5/20n5 (max.) • Low Power Dissipation (DC): Operating 210mW (typ) • +5V Single Supply • Completely Static Memory No Clock or Timing Strobe Required • Balanced Read and Write Cycle Time • Fully TTL Compatible Input and Output HM6787HP Series (DP-22NB) Ordering Information HM6787H1P Series Type No. Access Time Package HM6787HP-15 HM6787HP-20 15ns 20ns 300 mil 22 pin Plastic DIP HM6787H1P-15 HM6787H1P-20 15ns 20ns 300 mil 24 pin Plastic SOl L Block Diagram Vee A, A, A, As A, A, A, --0 --0 Row Vss Memory Matrix , (CP-240) ----------------~ 128x512 Dout Pin Arrangement HM6787HP Series HM6787HJP Series AO Al A2 AlS A3 Al3 A4 Al2 Vee Al4 AS NC NC All A6 Ala A7 A9 Dout WE A8 Vss CS Din (Top View) Note) The specifications of this device are subject to change without notice. Please contact Hitachi's Sales Dept. regarding specifications. ~HITACHI 178 Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 ----------------------------------------------------------------HM6787H S.i~ Absolute Maximum Ratings Symbol Item Terminal Voltage to Y88 Pin Power Dissipation Opera tin. Temperature Range Storage Temperature Range YT PT Top, Tstg Temperature under Bias TbllJl Rating -o.S to +7.0 1.0 o to +70 -SS to +12S -10 to +SS Unit V W ·C ·C ·C Function Table CS WE Mode H X Not Selected L H Read L L Write Output Pin YccCurrent High Z ICC,lCCl Dout Icc,lCCl High Z Recommended DC Operating Conditions (OOe ~ Ta ~ 70°C) Item Supply Voltage min. typo max. Vcc 4.S S.O S.S V Vss 0 0 0 V Symbol Unit Input High Voltage VIH 2.2 6.0 V Input Low Voltage VIL -O.S*1 O.S V Note) .1. -3.0V for pulse width ~ IOns. DC and Operating Characteristics (Vee =SV±lO%, Ta Item Symbol Input Leakage Current Output Leakage Current Operating Power Supply Current Icc Average Operating Current typo min. =oOe to +70°C) max. Test Conditions Unit 11£11 2 "A Vcc=S.SV, VJN= VSS to Vee Ihol 10 CS = VIH , VOUT= YSS to Yee 100 "A rnA ICCl 120 rnA Min. Cycle, Duty: 100% ISB 30 rnA CS= VIH ISB1 10 rnA Output Low Voltage VOL 0.4 V 10L= SmA Output High Voltage VOH V IOH"'-4mA CS= VIL , IOUT=OmA IOUT=OmA CS~ VCC -0.2V Standby Power Supply Current 2.4 • VIN:!!0.2Vor VIN~Ycc-0.2V HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 179 HM6787H 8«i88---------------------------------------------------------------AC Test Conditions Oul pul Load A Input pulse levels: Vss to 3.0V Input rise and fall times: 4ns Input timing reference levels: 1.5V Output reference levels: 1.5V Output load: See Figure Oul put Load B +5V (for 1HZ. ILZ. IWZ & lOW) +5V 4800 4800 DoUlo--....- -.. 2550 30ph Doulo--....- -... 2550 • Including lOop. and ilg. Capacitance (Ta = 2S o C,f= l.OMHz) Conditions Symbol max. Unit Input Capacitance CIN 6.0 pF VIN= OV Output Capacitance COUT 10.0 pF VOUT=OV Item Note) This parameter is sampled and not 100% tested. AC Characteristics (VCC = SVtlO%, Ta = O°C to 70°C, unless otherwise noted.) Read Cycle Item Read Cycle Time Address Access Time Chip Select Access Time Output Hold from Address Change Chip Selection to Output in Low Z Chip Deselection to Output in High Z Symbol tRC tAA tACS tOH tLZ tHZ HM6787H-15 max. min. 15 15 15 3 3 0 6 HM6787H-20 min. max. 20 20 20 3 3 8 0 ". Unit Notes ns os ns ns ns ns 1,2 1,2 Note: 1. This parameter is sampled and 100% tested. 2. Transition is measured t200mV from steady state voltage with specified loading in Load B. Write Cycle Item Write Cycle Time Chip Selection to End of Write Address Valid to End of Write Address Setup Time Write Pulse Width Write Recovery Time Data Valid to End of Write Data Hold Time Write Enable to Output in Hish Z Output Active from End of Write HM6787H-15 max. min. 15 10 10 0 10 3 12 0 0 6 Symbol twc tcw tAW tAS twp tWR tDW tDH twz tow 0 HM6787H-20 min. max. 20 15 15 0 15 3 15 0 0 8 0 Unit Notes ns ns ns ns ns ns ns ns ns ns 2 Note: 1. If~ goes hish simultaneously with WE high, the output remains in a high impedance state. 2. AU Write Cycle timings are referenced from the last valid address to the first transitloning address. 3. Transition is measured t200mV from steady state voltage with specified loading in Load B. 4. This parameter is sampled and not 100% tested. • 180 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 3,4 3,4 ----------------------------------------------------------------HM6787H S.ies Timing Waveform of Read Cycle No. 11 ). 2) IRC Address IAA IOH Data Out Data Valid Pr.. ious Data Valid Timing Waveform of Read Cycle No. 2 1 ). 3) ~---------------------------------------------------------------------------~ IRC lACS ILZ D.ta Out Hip Impedance Hi Ih Impedance Data Valid Note: I. WE il hlah and CS illow for READ cycle. 2. Addresses valid prior to or coincident with CS transition low. 3. Transition is measured t200mV from steady state voltage with specified loading in Load B. • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819· (415) 589-8300 181 HM6787H Swies---------------------------------------------------------------- Timing Waveform of Write Cycle No.1 (WE Controlled) Iwe Addr ... lew lAW lAS Iwp low Data In Data In Valid IWl Data Out Data Undefined High Impedance Note: I. Transition is measured ±200mV from steady state voltage with specified loading in Load B. Timing Waveform of Write Cycle No.2 (CS Controlled) Iwe Address - )( )~ lAS lew ~ } lAW IWR Iwp 1// / / / \. \. \. \. \. \. ~\. low '.'l Data In )\. IOH Data In Valid ~~ )1\. IWl Data Out Data Undefined High Impedance Note: 1. Transition is measured :t200mV from steady state voltage with specified loading in Load B. _HITACHI 182 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589-8300 HM6787HA Series- Preliminary 65536-Word x 1-Bit High Speed Static RAM • FEATURES • Super Fast Access Time ........................ .12/15/20ns (max.) • Low Power Dissipation (DC) Operating ..........................300mW (typ.) • + 5V Single Supply • Completely Static Memory No Clock or Timing Strobe Required • Fully TTL Compatible Input and Output (DP-22NB) • ORDERING INFORMATION Access Time Package HM6787HAP-12 HM6787HAP-15 HM6787HAP-20 Type No. l2ns l5ns 20ns 300 mil 22 pin Plastic DIP (DP-22NB) HM6787HAJP-12 HM6787HAJP-15 HM6787HAJP-20 l2ns l5ns 20ns 300 mil 24 pin Plastic SOJ (CP-24D) • BLOCK DIAGRAM A80---.,::;.:~J A70----t:i:l Aso----D:l AS 0 - - - " : : ; ' (CP-24D) • PIN ARRANGEMENT HM6787HAP Series Ao A1 A2 A3 A4 As Vee A11 A10 Ag As Row Memory Matrix NC Decoder 256x1024 Ae A7 A40---.,::;.'--J A3o---~::J A2o---~CL_---.J A1S A14 A13 A12 NC Dout L--..,-_ _ _ _ _- , - - ' WE Din Vss CS (Top View) HM6787HAJP Series vee Ao A1 A2 A3 A4 As A1S A14 A13 A12 NC A11 A10 Ag As NC Ae A7 Dout WE Drn Vss CS (Top View) o HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 183 HM6787HA Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - • ABSOLUTE MAXIMUM RATINGS Symbol Rating Voltage on Any Pin Relative to V SS VT -0.5 to +7.0 V Power Dissipation Operating Temperature Range PT 1.0 o to +70 Storage Temperature Range Top, Tstg W °C -55 to + 125 °C Temperature Under Bias Tbias -10 to +S5 °C Item • RECOMMENDED DC OPERATING CONDITIONS (O°C Item s Ta Unit S 70°C) Symbol Min. Typ. Max. Unit Vee 4.5 5.0 5.5 V 0.0 0.0 V Input High Voltage Vss VIH 0.0 - 6.0 V Input Low Voltage V IL 2.2 -3.0· - O.S V Supply Voltage ·Pulse width" IOns, DC: -0.5V • TRUTH TABLE CS WE Mode Vee Current Output Pin H X Not Selected ISB,IsB! L H Read Icc, ICC! HighZ Data Out L L Write Icc, IcC! High Z • DC AND OPERATING CHARACTERISTICS (Vce = 5V ± 10%, Ta Item = O°C to 70°C, Vss = OV) Symbol Test Condition Min. Typ. Max. Unit Input Leakage Current Ilui 2 p.A IILOI - - Output Leakage Current - 10 p.A Operating Power Supply Current Icc - rnA Icc! 120 rnA - - 100 Average Operating Current = 5.5V, VIN = Vss to Vec CS = VIH , VOUT = Vss to Vce CS = V1L , lOUT = OrnA Min. Cycle Duty: 100%, lOUT = OrnA CS = VIH 30 rnA - - 10 rnA - - 0.4 V - V ISB Standby Power Supply Current ISBl Output Low Voltage VOL VOH Output High Voltage Vee CS 2! Vee - 0.2V V IN s 0.2Vor VIN 2! Vee - 0.2V IOL IOH = SmA = -4mA - 2.4 • AC TEST CONDITIONS • Input Pulse Levels: Vss to 3.0V • Input Timing Reference Levels: 1.5V • Output Load: See Figure • Input Rise and Fall Times: 4ns • Output Reference Levels: 1.5V +5V +5V 4800 Dout 4800 Dout 2550 2550 5 pF * Output Load B (for tHZ , tLZ , twz & low) Output Load A 'Including scope and jig capacitance. • 184 HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane. CA 94005·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6787HA Series • CAPACITANCE (Ta = 25°C, f = 1.0MHz) Item Symbol Max. Unit C IN 6.0 pF V IN C OUT 10.0 pF VOUT Input Capacitance Output Capacitance NOTE: Conditions = OV = OV This parameter is sampled and not 100% tested . • AC CHARACTERISTICS (Vcc = 5V ± 10%, Ta to O°C to 70°C, unless otherwise noted.) • Read Cycle Item Read Cycle Time Symbol HM6787HA-12 HM6787HA-15 HM6787HA-20 Min. Max. Min. Unit Notes 20 - ns - - 20 ns - 20 ns - 4 - ns - 5 - - ns 1,2 6 0 6 4 5 0 8 ns 1,2 Unit Notes tAA 12 15 - Chip Select Access Time tACS - 12 - Output Hold from Address Change tOH - Chip Selection to Output in Low Z tLz 4 3 Chip Deselection to Output in High Z tHZ 0 NOTES: Max. IS IS - - tRC Min. - 12 - Address Access Time Max. 1. This parameter is sampled and not 100% tested. 2. Transition is measured ±2oomV from steady state voltage with specified loading in Load B. • Write Cycle Item Symbol HM6787HA-12 HM6787HA-15 HM6787HA-20 Min. Max. Min. Max. Min. Max. Write Cycle Time twc 12 - 15 - 20 - ns 2 Chip Selection to End of Write lew tAW 8 - 10 - - - 10 - - ns ns - 8 15 15 - 0 - ns - 8 - 10 - 0 Write Pulse Width tAS twp 0 15 - ns - Write Recovery Time tWR 0 0 - 0 - ns - Data Valid to End of Write Data Hold Time tDW 7 8 - 10 - 0 0 - 0 Write Enable to Output in High Z twz 0 0 6 0 8 ns ns - tDH ns Output Active from End of Write tow 3 6 - 3 - 3 - 3,4 3,4 Address Valid to End of Write Address Setup Time NOTES: ns - - I. If CS goes high simultaneously with WE high, the output remains in a high impedance state. 2. All write cycle timings are referenced from the last valid address to the first transitioning address. 3. Transition is measured ± 200m V from steady state voltage with specified loading in Load B. 4. This parameter is sampled and not 100% tested . • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 185 HM6787HA Series - - - - - - - - - - - - - - - - - - - - - - - - - - - • TIMING WAVEFORM • Read Cycle (1) (1) (2) Address tOH Data Out Data Valid Previous Data Valid • Read Cycle (2) (1) (3) tRC cs ~ " // tACS tLZ tHZ Data Out High Impedence C'IXIXIJK Data Valid "/ High Impedence NOTES: I. WE is high and CS is low for READ cycle. 2. Addresses valid prior to or coincident with CS transition low. 3. Transition is measured ±200mV from steady state voltage with specified loading in Load B. $ 186 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6787HA Series • Write Cycle (1) (WE Controlled) twc )K Address ) tew "-""-"-"--~ ~ ~ cs / " .,~////////////~ tAW tAS tWA twp WE /~ ~~ ~ tOH tow Data In I Data Out NOTE: Data In Valid twz "I Data Undefined I )/ " tow 1.1 /1 Hi himpe dane 1'\ e 9 I. Transition is measured ±200mV from steady state voltage with specified loading in Load B. • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 187 HM6787HASenes---------------------------------------------------• WrHe Cycle (2) (CS Controlled) twc Address tcw cs twp WE tow Data In Valid twz Data In Data Out NOTE: ~)to------------High Impedance Data Undefined ----------------' I. Transition is measured :l:200mV from steady state voltage with specified loading in Load B. • 188 HITACHI Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM62256 S e r i e s - - - - - - - 32768-word x 8-bit High Speed CMOS Static RAM • FEATURES • • • • • • High Speed: Fast Access Time 85/1oo/120/150n5 (max.) Low Power Standby and Low Power Operation; Standby: 200~W (typ)/10~W (typ) (L-version), Operation: 40mW (typ.) (f= 1MHz) Single 5V Supply Completely Static RAM: No clock or Timing Strobe Required Equal Access and Cycle Time Common Data Input and Output, Three-state Output Directly TTL Compatible: All Input and Output Capability of Battery Back Up Operation (L-/L-SL version) • ORDERING INFORMATION • • Type No. Access Time HM62256P-8 HM62256P-IO HM62256P-12 HM62256P-15 85ns lOOns 120ns lS0ns HM622S6LP-8 HM622S6LP-IO HM622S6LP-12 HM62256LP-15 8Sns lOOns 120ns 150ns HM62256LP-10SL HM622S6LP-12SL HM622S6LP-1SSL lOOns 120ns lS0ns HM622S6FP-8T HM62256FP-10T HM622S6FP-12T HM622S6FP-15T 8Sns lOOns 120ns 150ns HM622S6LFP-8T HM62256LFP-10T HM622S6LFP-12T HM622S6LFP-IST 8Sns lOOns 120ns lS0ns HM62256LFP-10SLT HM622S6LFP-12SLT HM62256LFP-1SSLT lOOns 120ns 150ns HM62256P Series (DP-28) HM62256FP Series Package 600mi128pin Plastic DIP (FP-28DA) • PIN ARRANGEMENT 28 pin Plastic SOP • ABSOLUTE MAXIMUM RATINGS Item Symbol Rating Unit VT - - - ns - ns p.A Note) *1. tRC =Read Cycle Time *2. This characteristic is guaranteed only for L-version, 20p.A max. at T" = 0 to 40·C. *3. This characteristic is guaranteed only for L-SL version, 3p.A max. at T" = 0 to 40·C. • Low Vee Deta Retantion Waveform DATA RETENTION MODE Vee 2.2V-----VDR cs~ CS-_J Note) VDR~2.0V Vee-O.2V OV------------------------------------------------------------ In Data Retention Mode, CS" controls the Address,WE, M, and Din Buffers. Yin for these inputs can be in high impedance state in data retention mode. _HITACHI Hitachi America, Ltd.• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 193 HM82258 Seri.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SUPPLY CURRENT vs. AMBI ENT TEMPERATURE 111 SUPPLY CURRENT vs. SUPPL Y VOLTAGE 111 1. 6 1.6 Ta=25"C 1 ~ Vcc =5.o.V 4 1.4 L 1.2 ~ 0. 8 V LV 2 L - o.r---- 8 o..6 r--- t-- o.. 6 0..4 4.50. 4.75 o.. 4 0. 550 5.25 5.00 20. 40. SUPPLY CURRENT vs. SUPPL Y VOLTAGE (21 SUPPLY CURRENT vs. AMBIENT TEMPERATURE (21 1.3 1.6 Vcc =5.o.V Ta=25'C 2 j -" j 80 60 Ambient Temperature Ta (·C J Supply Voltage Vee (V) 1.0. 0. .8~ ~ V- ---- 1 ~ ] i '" .6 4 0. 4.50 4.75 5.00 5.50 5.25 - 1. 0. 0..9 0..8 0. 7 0. Supply Voltale Vee (V) SUPPLY CURRENT vs. SUPPLY VOLTAGE 131 60 20. 40. Ambient Temperature To (·C) SUPPLY CURRENT VI. AMBIENT TEMPERATURE (31 1.6 1. 3 Ta=25"C Vcc=5.0V 2 1.4 1 "li ~ 1. 2 ~ G ~ ! u j 1.0. 0. 81""""'" L ~ ~ V L 1 0.1--- 9 -- - 0..8 0.6 0..4 4.50 4.75 5.00 5.25 5.50 0. 7 Supply Voltase Vee (V) • 194 80 60 20 40. Ambient Temperature To ("C) HITACHI Hitachi America, ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 80 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 2 5 6 Series ACCESS TIME VI. SUPPLY VOLTAGE ACCESS TIME VI. AMBIENT TEMPERATURE 1.3 1.3 Ta- 25"C Vee = S.OV 1.2 1.2 ... ,.§ -E --- ---r---.. 1.1 r---.. 1.0 ;: ~ I 0.9 -< 0 4.50 5.25 5.00 4.75 Supply Voltage V« STANDBY CURRENT VI. O.7 5.50 20 IV) SUPPLY VOLTAGE / STANDBY CURRENT 8 / 6 AMBIENT TEMPERATURE 4 ~ V / 1 z I . V / L V' , JO" SUPPLY CURRENT o VI. 20 40 60 To. Ambient Temperature FREQUENCY {READ) SUPPLY CURRENT VI. 80 (T) FREQUENCY {WRITE) 1. 2 1. 2 15On, i2On, 1. 0 /' j o. 6 o. 4 ~ ] ~ / V Z J TF25"C Vee = 10 1 o. /' / \50., IkOn, l06ns 85ns V ./ 8 '" o. 2 V V TF25'C Supply V oltage Vee (V) 1 o. -=s.ov 11 o.2 2 ~ c3 VI. 80 Vee II 0 ~ 60 To. ('C) 0 2 ] 40 Ambient Temperature 1. 4 O. V / V' / O. 8 0.8 07 L O.9 j /' 8 / o. 6 / c 5.0V ~ <3 o. 4 .2 V 10 Ta=2S'C /V 10 12 Frequency f (MHz) Frequency • V Vee =S.OV 0 0 L lo6ns 85ns J 12 (MHz) HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 195 HM62256 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - INPUT LOW VOLTAGEvs.SUPPLY VOLTAGE INPUT HIGH VOLTAGE VS. SUPPL Y VOLT AG E 13 1. 3 Ta 2S'C ] 12 ~ Z . 1. 1 ;; 10 E ~ "0 ;,... O,g j Ta -- -r-- 1 ~ 1 ; ~ O. 7450 475 5.00 1 I 09 V-- 4.50 VI OUTPUT CURRENT OUTPUT VOLTAGE % 1.4 4 \ 8 2 \ O. 6 C 1.0 ~ Ta::,2S'C V(c S,QV o j \ o.8 ~ 6 o.6 \ o. 4 O. 4 Output High Voltage ACCESS TIME VI. V(IH 525 550 VI. J \ ~ o 5.00 OUTPUT CURRENT OUTPUT VOLTAGE VI. 1. 6 0 475 Supply Voltafl:(' Vu . \' 1.6 1. 2 ----- 08 0.7 5.50 5.25 Supply Voltage Vee 1.0 :i: 8 1 z J 02 / / / / Ta- 2S'C Vcc --5.0V 0.4 0.6 Output Low Voltage VOl i V (V) I LOAD CAPACITANCE 1.8 1.6 ] 1 z ------ 1.4 0 8 O.6 100 200 300 .--::-:: 500 400 Load Capacitance C L (pF) • 196 25'C 2 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 0.8 HM62832/HM62832H 8-Bit CMOS Static RAM 32768-WORD x a·BIT HIGH SPEED CMOS ST~TIC RAM • FEATURES • High speed: Fast Access time 25/35/45 ns (max.) HM82832-Low power Standby: 10 p.W (typical) (L-version) Active: 300 mW (typical) HM82832H-Low power (DP-28NA) Standby: 300 mW (typical) Active: 30 p.W (typical) (L-version) • Single 5V supply • Completely static memory No clock or timing strobe required • Equal access and cycle times • Common data input and output-Three stage output • Direc1ly TTL compatible-All inputs and outputs (CP-28DN) • ORDERING INFORMATION Part No. Access PIN ARRANGEMENT Package Top View HM62832P-35 HM62832P-45 35 ns 45 ns HM62832LP-35 HM62832LP-45 35 ns 45 ns HM62832JP-35 HM62832JP-45 35 ns 45 ns HM62832UP-35 HM62832UP-45 35 ns 45 ns HM62832HP-25 HM62832HP-35 HM62832HP-45 25 ns 35 ns 45 ns 300 mil 28-pin Plastic DIP (DP-28NA) HM62832HJP-25 HM62832HJP-35 HM62832HJP-45 25 ns 35 ns 45 ns 300 mil 28-pin Plastic SOl (CP-28DN) 300 mil 28-pin Plastic DIP 300 mil 28-pin Plastic SOl A14 Vee A12 WE A7 A6 A'3 As Ag A4 A3 A2 All AI CS AI) 1/07 1100 110, 1102 1106 1/05 1104 1103 As OE A10 VSS • PIN DESCRIPTION Pin Name Ao-A'4 • Function Address 1100 -1/07 Input/Output CS Chip Select WE Write Enable OE Output Enable Vee Power Supply Vss Ground HITACHI Hitachi America, Ltd .• H~achi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 197 HM628321HM62832H - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • BLOCK DIAGRAM Memory Array A12 A14 All A13 I A9 All I Address Buffer Row Decoder X AS All A7 5l2X5l2 VOO - - - - - - I Column 110 1107 WE OE AD Al A2 A3 Al0 A3 A4 CS • ABSOLUTE MAXIMUM RATINGS Symbol Value Voltage on any Pm Relative to VSS Item VT -0.5*1 to + 7.0 V Power Dissipation PT 1.0 W Unit Operating Temperature Topr o to +70 °C Storage Temperature T~tg -55 to +125 °C Storage Temperature Under Bias Tblas -10 to +85 °C NOTE: 1 -2 S V for pulse Width ~ 10 n~ • FUNCTION TABLE CS OE WE Mode Vee Current 1/0 Pm H X X • Not Selected ISB.IsBI HigbZ L L H Read Icc D out Read Cycle(l) 10 (3) L H L Icc Dm Wnte Cycle(1) L L L Icc Dm Write Cycle(2) NOTE: Write I X HorL • 198 Ref. Cycle HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 ---------------------------------------------------------------HM6~~HM6~2H • DC CHARACTERISTICS for HM62832 (TA = 0 to +70·C, Vee = 5V ± 10%, Vss = OV) Symbol Min. Typ.*1 Max. Unit Input Leakage Current Ilul - - 10 p.A Yin = Vss 10 Vee Output Leakage Current IILOI - - 10 p.A CS = VlHorOE = VIH or WE = VIL ' VI/O=VSSIOVcc Average Operating Power Supply Current Icc - 60 120 mA Min. cycle, duty CS = VIL, luo=OmA IS8 - 15 30 mA CS = VIH 1881 - 2 100 p.A oV :s Yin :s 0.2 V, Parameter Test Conditions CS Standby VCC Current ~ OrVin, Output \bltage NOTE: VOL - VOH 2.4 - = 100%, Vcc - 0.2V, ~ L-version V",,-0.2V 0.4 V IoL=8mA - V IoH =-4mA I Typoc:alvalues an: II Vee = 5.0 V. TA = +2S·C and spe<:ifoed loadon,. • DC CHARACTERISTICS for HM62832H (TA = 0 to + 70·C, Vee = 5V :i: 10%, Vss = OV) Symbol Min. Typ.*1 Max. Unit Input Leakage Current lIul - - 2 p.A Von = Vss 10 Vcc Output Leakage Current IILOI - - 2 ,.A CS = VIHorOE = VIH or WE = VIL, Vl/o=Vss lOVee Operating Power Supply Current Icc - 60 120 mA Min. cycle, duty CS = VIL, luo=OmA Standby Power Supply Current IS8 - 15 30 mA CS = VIH - 0.02 2 mA Cs l!: - 0.006 0.1 mA Parameter Standby Power Supply Current Output \bltage NOTE: Note 1881 Test Conditions = 100%, Vee - 0.2V, o V :s V.. :s 0.2 V, or V.., ~ L-version VIX - 0.2 V VOL - - 0.4 V IoL=8mA VOH 2.4 - - V 10H =-4mA I TypICal values are at Vee - S 0 V, TA = Note +2SoC and specified loacbng. • CAPACITANCE (Ta = 25·C, f = IMHz) Parameter Symbol Min. Typ. Max. Unit Input Capacitance Con - - 6 pF V.. =OV Input/Output Capacitance CliO - - \0 pF Vila =OV NOTE: Test Conditions I. This parameter is sampled and not 100" tested. _HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 199 HM62832/HM62832H - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • AC CHARACTERISTICS (Ta = 0 to +70°C, Vee = 5 V ± 10%, unless otherwise noted.) Test Conditions • Input and output timing reference levels: 1.5 V • Output load: See Figures • Input pulse levels: 0.0 V to 3.0 V • Input rise and fall times: 5 ns Output Load (8) Output Load (A) (for telz, toLZ' tcHZ, t OHZ' tWHZ +5V NOTE: tow) +5~80 ~ n=i Dout 255 & Dout 480pF * 30 255 5 pF' "Includmg scope & Jig • Read Cycle HM62832-35 HM62832H-35 HM62832H-25 Parameter Symbol Mm. Max. Mm. HM62832-45 HM62832H-45 Max. Min. Unit Max. Read Cycle Time tRC 25 - 35 - 45 - ns Address Access Time tAA - 25 - 35 - 45 ns Chip Select Access Time tACS - 25 - 35 - 45 ns tOE - 12 - 15 - 20 ns Output Hold From Address Change tOH 5 - 5 - 5 - ns Chip Selection to Output m Low-Z tCLZ 5 - 5 - 5 - ns Output Enable to Output m Low-Z toLZ 0 - 0 - 0 - ns Chip Deselectlon to Output in Hlgh-Z tCHZ 0 12 0 15 0 15 ns Output Disable to Output in High-Z tOHZ 0 12 0 15 0 15 ns Output Enable to Output Vahd Read Cycle Timing (2) "1, "2, "4 Read Cycle Timing (1)"1 Address ~~=====~ Read Cycle Timing (3) "1, "3, "4 -)~~::;--{I-----"~"'----1 Dout~~---D-~-av-al-td-----~ cs Dout NOTES: *1 WE IS *2 Device high for read cycle IS contmuously selected. CS == VIL *3 Address should be valid prior to or cOinCident with *4 OE = VTL ~HITACHI 200 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589·8300 CS tranSition low ------------------------------------------------------------------HM6283~HM62832H • Write Cycle HM62832H-25 Item Symbol HM62832-35 HM62832H-35 HM62832-45 HM62832H-45 Unit Min. Max. Min. Max. Min. Max. - ns ns Write Cycle Time twe 25 - 35 - 45 Chip Selection to End of Write lew 20 - 30 - 40 Address Valid to End of Write tAW 20 - 30 40 Address Setup Time tAS. 0 - 0 - Write Pulse Width twp 15 - 25 tWR 0 - 20 Write Recovery Time 0 - 0 - Write to Output in High-Z tWHz 0 15 0 15 0 20 ns Data to Write Time Overlap tow 12 15 tOH 0 - ns 0 - 20 0 - 10HZ 0 12 0 15 0 20 ns tow 5 - 5 - 5 - ns Data Hold from Write Time Output Disable to Output in High-Z Output Active From End of Write 0 ns ns ns ns ns Write Cycle Timing (1) (OE Clock) Address )I( 0 0."" .... l'-~ ~ ~ ,"\..."\..."\..."\..."\..."'l////~ '" "1.."\...,"\...'1\. ~ Dou. )l(XX )K Din Write Cycle Timing (2) (OE Low Fixed) Address lew twR 2 ..... Dou. D.n NOTES: *1 A wrue occurs durmg tbe overlap (twp) of a low CS and a low WE *2. IWR IS measured from the earher of Cs or WE gomg high to the end of wnte cycle *3 Durmg thiS penod. I/O pms are In the output state The mput signals out of phase must not be apphed *4 lfthe Cs low transition occurs simultaneously with the WE low transition or after the WE low transition, outputs remam *5. 5E IS contmuously low (OE = *6. Doul IS In In a high Impedance state Vll) the same phase of wntten data of thiS Write cycle *7 D0lI1 is the read data of next address *8 IfCS IS low dunng this period, 110 pans are m the output state The mput signals out of phase must not be applied to 110 pins. ·9. WE must be high during all address tranSItions except when deVice IS deselected With CS ~HITACHI Hitachi America, Ltd. • Hilachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 201 HM62832/HM62832H - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Low Vee Data Retention Characteristics (TA = 0 to +70°C) This characteristics is guaranteed only for L-version Parameter Symbol Min. Typ. Max. Unit Vee for Data Retention VOR 2.0 - - V Data Retention Current IeeoR - I 50'2 p.A !cOR 0 - - ns IRe IRe 'I - - ns Chip Deselect to Data Retention Time Operation Recovery Time NOTES: Test Conditions CS '" Vee - 0.2 V, Vin ' " Vee-0.2Vor o V " Vin " 0.2 V "'I tRe = read cycle time *2 Vee == 30V Low Vee Data Retention Timing Waveform Data retention mode V~45V----:ff--~~---------------~------'" ::::: ::::_ ~===============I=--f:==~=====: OS ~R ___________e~~'i:Q._=~2y_________________ _ • PACKAGE DIMENSIONS Unit: mm (inch) HM62832HP Series (DP-28NA) HM62832P/HP HM62832HJP Series (CP-28DN) HM62832JP/HJP 4:;::<: ~!j ~~ !r!--"!i 1_- ' ~--#-- 048±O f (OOI9±OOO4, ZSH025 "'" ... ~ s (OIOO±OOlO) ~HITACHI 202 HitachI America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HM6208/HM6208H Series 4-Bit CMOS Static RAM 65536-Word x 4-BIt High Speed CMOS Static RAM The Hitachi HM6208 and HM6208H are high speed 256k static RAMS organized as 64k-word x 4 bit. They realize high speed access time (25/35/45 ns) and low power consumption, employing CMOS process technology and high speed circuit designing technology. It is most advantageous wherever high speed and high density memory is required, such as the cache memory for main frame or 32-bit MPU. The HM6208 and HM6208H are packaged in the industry standard 300-mil, 24 pin, plastic DIP. The HM6208H is also available in a 300-mil, 24 pin, plastic SOJ package for high density mounting. The low power versions are ideal for battery backed systems. (DP-24NC) Features • Single 5 V supply and high density 24-pin package • High speed: Access time 25/35/45 ns (max.) • Low power 300 mW (typ.) Active: Standby: 100 JLW (typ.) 30 JLW (typ.) (L-version) • Completely static operation requires No clock or timing strobe • Access and cycle times are equivalent • All inputs and outputs TTL compatible • Capability of battery back up operation (L-verslon) (CP-24D) Pin Arrangement AO U 1 Ordering Information AI4 Access Time 35 ns 45 ns 35 ns 45 ns 25 ns 35 ns 25 ns 35 ns 25 ns 35 ns 25 ns 35 ns Type No. HM6208P-35 HM6208P-45 HM6208LP-35 HM6208LP-45 HM6208HP-25 HM6208HP-35 HM6208HLP-25 HM6208HLP-35 HM6208HJP-25 HM6208HJP-35 HM6208HUP-25 HM6208HUP-35 Vee AI5 Package 300-md 24-pin plastic DIP (DP-24NC) 300-md 24-pin plastic SOJ (CP-24D) (fop View) Pin Description Pin Name AO-AI5 Function Address 1/01- 1/04 Input/Output Chip select Write enable CS WE Vee Power supply Vss Ground $ HITACHI Hitachi America, Ltd. • Hitachi Plm • 2000 Sierra Point Pkwy. • 8risbane, CA 94005-1819 • (415) 589-8300 203 HM6208/HM6208H Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Block Diagram AI4~~==r-----~~------------_. -Vee AI50--D=~ AO Al --v,. e>-Dc:::::::I G-Dc:::::::I Row Memory Array Decoder A2 o--D=~ A30--o=:::1 256 x 1,024 A4 O--D=::::l A5 o---1~==L __J Input Da.. Control C5 WE Function Table CS WE H L L X Note: H L Mode Not selected Read Write Vee Current ISB,ISR! Icc Icc I/O Pin High-Z Dout Din Ref. Cycle Read cycle Write cycle x means don't care. Absolute Maximum Ratings Item Voltage on any pin relative to Vss Power dissipation Symbol Vin PT Value -0.5'! to +7.0 1.0 o to +70 _~~~-a-t-in~g~t-em~pe~r-a-ru-r~e-r-an~g~e----------.To~ Storage temperarure range Tstg -55 to +125 -10_to_+85 ~-S-to-r...:ag"'-e-te-m-'p-e-ra-n-!-re-r-a-n"ge-un-d-c-r-b-i_as_ _ _ _ _ Tbias._ _ _ _ _ _ _ _ __ Note: .\' Vin min = -2.5 V for pulse width S \0 ns. Unit V W °C °C °C ~HITACHI 204 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6208/HM6208H Series Recommended DC Operating Conditions (Ta = 0 to +70°C) Item Supply voltage Input high (logic \) voltage Input low (logic 0) voltage Note: • Min 4.5 0 Symbol Vee Vss VIH VIL -------- Max 5.5 0 6.0 0.8 Typ 5.0 0 2.2 _0.5'1 Unit V V V V "I. VIL mm = -2.0 V for pulse WIdth S 10 os . DC Characteristics (Ta = 0 (0 + 70'C, VCC = 5 V Input Leakage Current Output Leakage Current ± 10%. V ss Min Symbol Item = 0 V) Mdx Typ" Tc.." Condition-. UnIt III - - 20 ~A lLO - - 100 ~A Vce = Max Yin = v~\ to Vec CS = V IH -- V I/O = V..,.., to VeT 0 mA. Min Cycle, Duty = 100% - - - - --- CS = V IL . 1110 = Operating Power Supply Current Icc - 60 100 mA Standby Power Supply Current ISB - 15 30 mA Standby Power Supply Current "H" VCP"lon ISB - 20 40 rnA Standby Power Supply Current ISSl - 20 2000 ~A Standby Power Supply Current L- Vcn.,lon I sBr - 6 100 ~A Output Low Voltage VOL -- - 04 V 10L = 8 rnA Output High Voltage VOH 24 - - V IOH = -4 0 mA Note *1 Typlcallmllt~ arc at Vee = 50 V, T" = +25°C and ~pcClrlcd Cs = V 1H . Mm Cycle CS '" Vec - 0 2 V :s: Vm :s 0 2 V or oV Vm~V(C-02V loading Capacitance (Ta =25°C. f = 1MHz)'1 Symbol Cin ClIO Item Input capacitance Input/output capacitance Note: Test Conditions Vin=O V vvo =-O:c-V:c:----- Min *1. This parametens sampled and not 100% tested. AC Characteristics (Ta = 0 to +70°C. Vee = 5 V ± 10%. unless otherwise noted.) Test Conditions Input and output timing reference levels: 1.5 V Output load: See Figures Input pulse levels: Vss to 3.0 V Input rise and fall times: 5 ns Output Load CA) Output Load (B) (for 0/7" tLZ, twz & tow) >IV Do., ~ 2550 Note: * Including scope & ..oo Do., lOpY. ~ 2550 ..oo 5pF. Jig. • HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 205 HM6208/HM6208H Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Read Cycle HM6208-35 HM6208H-35 HM6208H-25 Symbol Item Min. Max. Min. HM6208-45 Max. Min. Unit Max. Read Cycle Time tRC 25 - 35 - 45 - ns Address Access Time tAA - 25 35 ns tACS - 25 - 45 Chip Select Access Time - 45 ns Output Hold From Address Change toH 5 5 5 5 5 - ns tLZ" - 5 Chip Selection to Output in Low-Z - Chip Deselection to Output in High-Z tHZ" 0 12 0 20 0 20 ns Chip Selection to Power Up Time tpu 0 - 0 - 0 - ns Chip Deselection to Power Down Time tpD - 15 - 25 - 30 ns Note: 35 *1 Transition is measured ±200 mV from steady state voltage with Load (B). This parameter is sampled and not 100% tested. Read Timing Waveform (1) '1,'2 t" Address t •• Data V.ltd D.., Read Timing Waveform (2) '1,'3 1\ D.., L ----+-------- " ____ 2 ~4 '025 (0100' 0010) ~~t 00 9 fE\ ~" O.~ :1 e ~,~ , 060(0 024) ~ -ll.-- (OO\O-~\U~) I) [qo 1010004) S(ATING PLANE I " JL- o 43:tO o OI1±O ]~r::; m~ ; +1 +1 , o l,)~'!.~~ _ -I .. r(O 081~~ ::~) p 762 (0300) I • 210 .. lO~~ :~ IS&3(o6IS) 13(0 051) I :; , 10 14(0 0291 " Or ~I~ "- ~wJ~~ 004' HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM6708 S e r i e s - - - - - - - 65536·word x 4·bit High Speed Hi·BiCMOS Static RAM Features • • • • • • HM6708P Super Fast Access Time: 20/25ns (max.) Low Power Dissipation Operating: 350mW (tyP.) (f = 50MHz) +5V Single Supply Completely Static Memory No Clock or Timing Strobe Required Balanced Read and Write Cycle Time Fully TTL Compatible Input and Output (DP·24NC) HM6708JP Ordering Information Access Time Package HM6708p·20 HM6708p·25 Type No. 20ns 25ns 300mil24 pin Plastic DIP HM6708JP-20 HM6708JP·25 20ns 25ns 300 mil 24 pin SOJ (CP-24D) Block Diagram Vee Ao Al Pin Arrangement ---0 A2 A3 ~--, ..-L.1 A4 Memory Matrix Vss Vee 256X 1024 A is As Ag AI4 Alo <>---1:::0 AI3 110 1 ~~~~==~ ~==C=o=lu=m=n=I/=O==c'..-1102 1103 AI2 AII AIO 110 1 1102 1103 110 4 WE 1/04 (Top View) Note} The specifications of this device are subject to change without notice. Please contact Hitachi's Sales Dept. regarding specifications. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 211 HM6708 Sari.. Absolute Maximum Ratings Item Symbol Terminal Voltage to Vss Pin Rating Unit VT -0.5 to +7.0 Power Dissipation PT 1.0 W Operating Temperature Range Topr o to +70 ·C Storage Temperature Range (with bias) T.t,(blu) Storage Temperature Range T,t, V -10 to +S5 ·C -55 to +125 ·C Recommended DC Operating Conditions (Ta = 0 to +70°C) Symbol Item Supply Voltage Input Voltage Note) min. typo max. Unit Vee 4.5 5.0 5.5 V VSS 0 0 0 V VIH 2.2 6.0 V VIL -0.5*1 O.S V *1. -3.0 V for pulse width 20ns. Function Tabla ~ WE H X L L Mode I/O Pin Vee Current Ref. Cycle Not selected ISB.lsBI HlghZ H Read lee.leCI Data OIt Read Cycle L Write Icc.ICCI Data In Write Cycle DC and Oparatlng Charactart.tlcs (Vee = 5 V ±10%, Ta = 0 to +70°C) Item Input Leakage Current Symbol min. typo IILlI max. Unit Test Conditions 2 pi. VCC= 5.5V. VIN= Vssto Vee ~. VIH. VI/O = Vssto VCC Output Leakage Current 11£0 1 10 pi. Operating Power Supply Current Icc 100 mA CS • VIL.II/O = 0 mA Average Operating Current IcC! 120 mA Min. Cycle. Duty: 100%.11/0=OmA ISB 30 mA CS· VIlI. VIN= VIlIor VIL ISBI 10 mA ~~ Vcc-0.2V VIN ~ 0.2 Vor VIN ~ Vcc-0.2V V 10L· SmA V 10H- -4 mA Standby Power Supply Current Output Low Voltage VOL Output High Voltage VOH 0.4 2.4 • 212 HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 0 8 Series Capacitance (Ta =2SoC,f= 1 MHz) Symbol Item Input Capacitance Input/O utput Capacitance Note) max. Unit 6.0 pF VIN= 0 V 10.0 pF VI/O=OV Test Conditions This parameter is sampled and not 100% tested_ AC Characteristics (Vee = S v ±lO%, Ta = 0 to +70°C, unless otherwise noted) AC Test Conditions • • • • • Input pulse levels: Vss to 3.0 V Input timing reference levels: 1.5 V Output Load: See Figure Input rise and fall times: 4 ns Output reference levels: 1.5 V Output Output 255\2 255\2 Output Load A • ineludin. ICOpe and ii, Output Load B (for tHZ, tLZ, twz, & tow) Read Cycle Item Read Cycle Time Symbol tRC HM6708-20 min. max. 20 HM6708-2S min. max. 2S Unit Notes ns Address Access Time Chip Select Access Time Output Hold from Address Change tOH 5 5 ns Chip Selection to Output in Low Z tLz 0 0 ns 1,2 Chip Deselection to Output in High Z tHZ 0 ns 1,2 Note) tAA 20 2S tACS 20 2S 8 0 10 ns ns 1. This parameter is sampled and not 100% tested. 2. Transition is measured ±200 mV from steady state voltage with specified loading in Load B. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 213 HM6708Series------------------------------------------------------------ 1 + - - - - - - tRC ----------+~I Address nata Out ------~-H~~----na-ta-Va-lid-~-H-~*== 1+------- tRC .. --------i~ 1 1+----tACS----~~~1 Data Out nata Valid High Impedance Notes) -I. ft Is High for Read cycle. -2. Device is continuously selected, ~ =VII.-3. Address valid prior to or coincident with CS transition low. Write Cycle Item Symbol HM6708·20 min. max. HM6708·25 max. min. Unit Notes 2 twe 20 25 Chip Selection to End of Write tew 15 20 ns ns Address Valid to End of Write tAW 15 20 ns Address Setup Time tAB 0 0 ns Write Pulse Width twp 15 20 ns Write Recovery Time tWit 3 3 ns Data Valid to End of Write tDW 12 15 ns Data Hold Time tDH 0 0 Write Enable to Output in High Z twz 0 Output Active from End of Write tow 0 Write Cycle Time 8 0 ns 10 0 ns 3,4 ns 3,4 Note) 1. If ~ goes high simultaneously with WE high, the output remains in a high impedance state. 2. All Write Cycie timings are referenced from the last valid address to the first transitioning address. 3. Transition is measured :t200 mV from steady state voltage with specified loading in Load B. 4. This parameter is sampled and not 100% tested • • 214 HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1B19 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6708 Series Write Cycle-1 (WE Controlled) 1....- - - - - - - twc - - - - - - - - - + 1 Address Data In High Impedance Data Out • HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 215 HM6708 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Write Cycle-2 ICS Controlled) =t• -----------tA-W--::::::::::::~~-I~--tW--R-*--2~--------- ~twc-;k Address tAS~ - - - - - - - - - - ' " \ 1-4--- Data In Data Out Note) tcw -----l~~1 \7\1-;- tow -+"~11\7 --,r""7'\XXXXr-7r"1XXr-7r"7Xr-7r"1XXr"'7r7XXM r7r7 Data Valid M~XX~XX~XX High Impedance *4 *1. A write occurs during the overlap of a low CS and a low WE. (twp) *2. tWR is measured from the earlier of CS or WE going high to the end of write cycle. *3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. *4. If the CS low transition occurs simultaneously with the WE low transition or after the WE transition, the output buffers remain in a high impedance state. *5. If CS is low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them. 06. Output is the same phase of write data of this write cycle. ~HITACHI 216 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589·8300 HM6708A SerieS-Product Preview - - - - - - - - - - 65536-Word x 4-Bit High Speed Static RAM • FEATURES • Super Fast Access Time ........................ 15/20/25ns (max.) • Low Power Dissipation ...................... AOOmW (typ.) • + 5V Single Supply • Completely Static Memory No Clock or Timing Strobe Required • Fully TTL Compatible Input and Output (DP-24NC) • ORDERING INFORMATION Type No. Access Time Package HM6708AP-15 HM6708AP-20 HM6708AP-25 15ns 20ns 25ns 300 mi124 pin Plastic DIP (DP-24NC) HM6708AJP-15 HM6708AJP-20 HM6708AJP-25 15ns 20ns 25ns 300 mil 24 pin Plastic SOJ (CP-24D) (CP-24D) • PIN ARRANGEMENT • BLOCK DIAGRAM Ao A20-----I A3 o----C::w A4 o----C::w A7 0----1~::w As 0----1~::w Ag 0----1~::w As 0----1~::w As ---0 Vee A1 -oVss A2 Memory Matrix 256 X 1024 A4 A5 o---~==~ :=::C==========~ 110 1 0---.......-1 A3 Column I/O 1102 o--.-H-l~-1 A6 A7 As As o-~~-H~>--l CS 1/04 o---.1H-tH>--l Vss 1/03 '-----' (Top View) ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 217 HM6708A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • ABSOLUTE MAXIMUM RATINGS Item Terminal Voltage to Vss Pin Power Dissipation Operating Temperature Range Storage Temperature Range (with bias) Storage Temperature Range Symbol VT PT Rating -0.5 to +7.0 1.0 Oto +70 -10 to +S5 -55 to +125 Toor TSI2(bias) TSl2 Unit V W °C °C °C • RECOMMENDED DC OPERATING CONDITIONS (O°C :s T. :s 70°C) Item Symbol Vee Vss V1H V1L Supply Voltage Input High (Logic 1) Voltage Input Low (Logic 0) Voltage ·Pulse width s I5ns. DC: -O.5V Min. 4.5 0.0 2.2 -3.0· Typ. 5.0 0.0 Max. 5.5 0.0 Vee + 0.5 O.S - - Unit V V V V • TRUTH TABLE CS H L L WE X H L Mode Not Selected Read Write Vee Current ISB.IsB! Icc. IcC! Icc. Icc! 110 Pin HighZ Data Out Data In Ref. Cycle Read Cycle (1) (2) Write Cycle (1) (2) • DC AND OPERATING CHARACTERISTICS (Vee = 5V :I: 10%, T. = O°C to 70°C. Vss = OV) Item Input Leakage Current Output Leakage Current Operating Power Supply Current Average Operating Current Symbol ISB! Test Condition Vee = 5.5V, VIN = Vss to Vee CS = VIH, VI/O = Vss to Vee CS = V1L , 1110 = OrnA Min. Cycle, Duty: 100%,1110 = OrnA CS = V1H , VIN = VIH or V1L CS ;:: Vee - 0.2V VIN :s 0.2V or VIN ;:: Vee - 0.2V VOL VOH IOL = SmA IOH = -4mA IILlI IILOI Icc IcC! ISB Standby Power Supply Current Output Low Voltage Output High Voltage Min. Typ. - - Unit - Max. 2 10 100 120 30 - - 10 rnA 2.4 - 0.4 V V - • AC TEST CONDITIONS • Input Pulse Levels: Vss to 3.0V • Input Timing Reference Levels: 1.5V • Output Reference Levels: 1.5V • Input Rise and Fall Times: 4ns • Output Load: See Figure +5V +5V Dout 4800 Dout 2550 2550 4800 5 pF * Output Load B (for t Hz , tLZ ' twz & Output Load A low) *Including scope and Jig capacItance. • 218 HITACHI Hitachi Amenca, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - p,A /LA rnA rnA rnA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6708A Series • CAPACITANCE (Ta = 25°C, f = 1.0MHz) Symbol Test Conditions Max. Unit Input Capacitance Item C 1N 6.0 pF Output Capacitance CliO = OV VIla = OV 10.0 pF NOTE: V IN ThIS parameter is sampled and not 100 % tested . • AC CHARACTERISTICS (Vcc = 5V ± 10%, Ta = O°C to 70°C, unless otherwise noted.) • Read Cycle Item Read Cycle Time Address Access Time Chip Select Access Time Output Hold from Address Change Chip Selection to Output in Low Z HM6708A-15 HM6708A-20 HM6708A-25 Min. Max. Min. Max. Min. tRC 15 - 20 - 25 - ns - tAA - 15 - 20 - 25 ns - tACS - 15 - 20 25 ns - toH tLZ 3 3 - 3 3 - 3 3 - ns - - ns 1,2 ns 1,2 Unit Notes Symbol - - Max. Unit Chip Deselection to Output in High Z NOTES: 0 6 0 8 0 10 tHZ I. This parameter is sampled and not 100% tested. 2. TransitIOn is measured ±200mV from steady state voltage with specified loading in Load B. Notes • Write Cycle HM6708A-15 HM6708A-20 HM6708A-25 Min. Max. Min. Min. Max. twc 15 - 20 - 25 - ns - 15 - 20 - ns - Address Valid to End of Write lew tAW 10 10 - 15 - 20 - ns - Address Setup Time tAS 0 - 0 - 0 - ns - Write Pulse Width twp 10 - 15 - 20 - ns - Write Recovery Time tWR 0 - 0 - 0 - ns - Data Valid to End of Write tDW 9 - 12 - 15 - ns - Data Hold Time tDH 0 - 0 - 0 - ns Write Enable to Output in High Z twz 0 6 0 8 0 10 ns 2, 3 ns 2, 3 Item Write Cycle Time Chip Selection to End of Write Symbol Max. 0 0 0 tow I. All write cycle timmgs are referenced from the last valId address to the first transitionmg address. 2. TransitIon is measured ±200mV from steady state voltage with specified loading in Load B. 3 This parameter IS sampled and not 100% tested. Output Active from End of Write NOTES: 1 - ~HITACHI Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy.• Bnsbane,_ CA 94005-1819 • (415) 589-8300 219 HM6708A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • TIMING WAVEFORM • Read Cycle (1) (1)(2) Address tOH tOH Data Out Previous Data Valid • Read Cycle (2) Data Valid (1) (3) tRC cs / '-'"' tACS tLZ Data Out Hi9 him pedan ce ·V.XX'V I" ./1'\. ~ tHZ Data Valid , / Hi 9h Impedance NOTES: I. WE is High for READ cycle. 2. Device is continuously selected, CS = VIL. 3. Address valid prior to or coincident with CS transition low. ~HITACHI 220 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6708A Series • Write Cycle (1) (WE Controlled) twe Address tew cs twp(1) WE Din High Impedance Dout • Write Cycle (2) (CS Controlled) twe Address tew cs WE tow Data In Data Valid High Impedance (2) Dout NOTES: I. A write occurs during the overlap of a low CS and a low WE (twp). 2. tWR is measured from the earlier of CS or WE going high to the end of write cycle. 3. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. 4. If the CS low transition occurs simultaneously with the WE low transition or after the WE transition, the output buffers remain in a high impedance state. 5. If CS is low during this period, I/O pins are in the output state. Then the data mput signals of opposite phase to the outputs must not be applied to them. 6. Output data is the same phase of write data of this write cycle. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 221 HM6709 SerieS-Preliminary 65536·Word x 4·Bit High Speed Static RAM (with OE) • FEATURES • Super Fast Access Time .......................... .20/25ns (max.) • Fast OE Access Time ............................. 10ns (max.) • Low Power Dissipation .......................350mW (typ.) • + 5V Single Supply • Completely Static Memory No Clock or Timing Strobe Required • Balanced Read and Write Cycle Time • Fully TTL Compatible Input and Output • 300 mil 28 pin SOJ • ORDERING INFORMATION Type No. (CP-28DN) • PIN ARRANGEMENT NC Access Time Package Ao 20ns 25ns 300 mil 28 pin Plastic SOJ (CP-28DN) Al A2 HM6709JP-20 HM6709JP-25 A3 A4 • BLOCK DIAGRAM As 0----1 Alo----I A20----I A30----I A40----i As 0----1 Ag o - - - - i As Aa A7 As Memory Matrix 256 X 1024 Ag CS OE VSS AlOo---~~===! 1/0 1 0--_-1.:>-1 Column 1/0 (Top View) 1/020---.+H 1I030-_++H 1/04 o--'++H-I~-I L...-_--' ~HITACHI 222 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6709 Series • ABSOLUTE MAXIMUM RATINGS Item Symbol Rating VT -0.5 to +7.0 V PT 1.0 W °C Terminal Voltage to Vss Pin Power Dissipation Operating Temperature Range o to Topr Storage Temperature Range (with bias) Tstg(b,as) T stg Storage Temperature Range Unit +70 -10 to +85 °C -55 to + 125 °C • RECOMMENDED DC OPERATING CONDITIONS (O°C :5 Ta :5 70°C) Symbol Min. Typ. Max. Vcc 4.5 5.0 5.5 V 0.0 0.0 0.0 V Input High Voltage Vss VIH 2.2 - 6.0 V Input Low Voltage VIL* -3.0 - 0.8 V Item Supply Voltage Unit 'Pulse width: 20ns, DC: -0.5V • TRUTH TABLE CS OE WE Mode Vcc Current 110 Pin Ref. Cycle H H or L H or L Not Selected ISB,IsBI High Z - L H H Output Disabled Icc, IcC! High Z L L H Read Icc, Icci Data Out Read Cycle (1) (2) (3) L H L Icc, Icc I Data In Write Cycle (I) (2) (3) (4) L L L Icc, Icci Data In Write Cycle (5) (6) Write - • DC AND OPERATING CHARACTERISTICS (Vcc = 5V ± 10%, Ta = O°C to 70°C) Item Symbol Typ. Max. Unit IIul Vcc = 5.5V, VIN = Vss to Vcc - - 2 p.A Output Leakage Current IILOI CS = VIH or OE = VIH , WE = VIL Vila = Vss to Vcc - - 10 p.A Operating Power Supply Current Icc - - 100 rnA Icci CS = VIL , 1110 = OmA Min. Cycle, Duty: 100%,1110 = OmA - - 120 rnA ISB CS = VIH , VIN = VIH or V IL - - 30 rnA ISBI CS ~ Vcc - 0.2V V IN :5 0.2V or VIN - - 10 rnA - - 0.4 V Input Leakage Current Average Operating Current Standby Power Supply Current Output Low Voltage VOL VOH Output High Voltage Test Condition ~ IOL = 8mA IOH = -4mA Min. Vcc - 0.2V 2.4 - - V • AC TEST CONDITIONS • Input Pulse Levels: Vss to 3.0V • Input and Output Reference Levels: 1.5V • Input Rise and Fall Time: 4ns • Output Load: See Figure +5 V +5V DOU~ DOU~ 4800 2550 4800 2550~5PF' ~30PF' Output Load B (for tHz, tLZ' tOHZ' IoLz, twz & tow) Output Load A 'Including scope and jig capacitance. o HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 223 HM6709 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • CAPACITANCE (Ta = 25°C, f = 1.0MHz) Item Symbol Test Conditions C IN = OV Vila = OV Input Capacitance Input/Output Capacitance NOTE: CliO Typ. Max. Unit - - 6 pF - - 10 pF Min. V IN This parameter is sampled and not 100% tested . • AC CHARACTERISTICS (Vcc = 5V ± 10%, Ta = O°C to 70°C, unless otherwise noted.) • Read Cycle Item Symbol HM6709JP·20 HM6709JP·25 Min. Max. Min. Max. Unit Notes tRC 20 - 25 - ns - Address Access Time tAA 20 ns tACS 20 - 25 Chip Select Access Time - 25 ns - Chip Selection to Output in Low Z tLZ 0 - 0 - ns 1,2 Output Enable to Output Valid tOE 0 10 0 10 ns Output Enable to Output in Low Z toLZ tHZ 0 0 - ns 1,2 0 10 ns 1,2 toH 5 8 - 5 - ns - Unit Notes Read Cycle Time Chip Deselection to Output in High Z Output Hold from Address Change NOTES: 0 - I. This parameter is sampled and not 100% tested. 2. Transition is measured ±200mV from steady state voltage with specified loading is Load B. • Write Cycle Item Symbol HM6709JP·20 HM6709JP·25 Min. Max. Min. Max. ns I ns - ns - ns - Write Cycle Time twc 20 - 25 Chip Selection to End of Write tcw 15 20 Address Setup Time tAS 0 20 - Write Pulse Width tAW twp 15 - 15 - 20 - ns - Write Recovery Time tWR 3 - 3 - ns - Address Valid to End of Write 0 Write to Output in High Z twz 0 8 0 10 ns 2,3 Data Valid to End of Write tDW 12 - 15 - ns Data Hold Time tDH 0 - 0 - ns - Output Disable to Output in High Z tOHZ 0 8 0 10 ns 2, 3 Output Active from End of Write tow 0 - 0 - ns 2,3 NOTES: 1. All write cycle timings are referenced from the last valid address to the first transitioning address. 2. This parameter is sampled and not 100% tested. 3. Transition is measured ±200mV from steady state voltage with specified loading in Load B. ~HITACHI 224 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 0 9 Series • TIMING WAVEFORM • Read Cycle (1) (1) Address OE cs tCll Data Out Data Valid High Impedance • Read Cycle (2) (1)(2) (3) )( Address )( tAA tOH tOH Data Out • Read Cycle (3) \ X Data Valid (1) (3) (4) tRC cs "" Data Out NOTES: XXX) K Previous Data Valid /E tCll High Impedance 1. WE 2. CS = = tCHl tACS KX>OK. Data Valid "- / VlH VIL 3. OE = VIL 4. Address valid prior to or coincident with CS transition low. ~HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 225 HM6709 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Write Cycle (1) (OE = H, WE Controlled) twe Address tew cs twp(1) WE tow tOH Data Valid Data In High Impedance Data Out • Write Cycle (2) (OE = H, CS Controlled) twe Address tew cs twp(1) WE tow Data In Data Valid High Impedance Data Out @HITACHI 226 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6709 Series • Write Cycle (3) (OE = Clocked, WE Controlled) IWC Address OE tcw cs twp(1) WE High Impedance Data Out tDW Data In High Impedance ~~----------------~~ High Impedance • Write Cycle (4) tDH (OE = Clocked, CS Controlled) twc Address OE tcw cs tWR twp(1) WE Data In Data Out ~HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 227 HM6709 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Write Cycle (5) (DE = L, WE Controlled) Address cs twp WE (1) (2) High Impedance Data Out tow Data In High Impedance • Write Cycle (6) tow ~~-)Ooj --~ tOH .m-....-------....-l-. (5) High Impedance Data Valid (DE = L, CS Controlled) twc Address cs twp (1) WE High Impedance Data Out tow Data In NOTES: High Impedance tOH Data Valid I. A write occurs during the overlap (twp) of a low CS and a low WE. 2. During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. 3. Output data is the same phase of write data of this write cycle. 4. If the CS is low transition occurs after the WE low transition, output remain m a high impedance state. 5. If CS is low during this period, I/O pins are in the output state. Then, the data input signals of opposite phase to the outputs must not be applied to them. 6. If CS low transition occurs simultaneously with the OE high transition or after the OE transition, output remain in high impedance state. ~HITACHI 228 Hitachi A;nerica, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM6709A Series-Product Preview 65536-Word x 4-Bit High Speed Static RAM (with OE) • FEATURES • Super Fast Access Time ....................... .15/20/25ns (max.) • Fast OE Access Time ......................... .8/10/10ns (max.) • Low Power Dissipation ...................... .400mW (typ.) • + 5V Single Supply • Completely Static Memory No Clock or Timing Strobe Required • Fully TTL Compatible Input and Output (DP-28N) • ORDERING INFORMATION Access Time Package HM6709AP-15 HM6709AP-20 HM6709AP-25 Type No. 15ns 20ns 25ns 300 mil 28 pin Plastic DIP (DP-28N) HM6709AJP-15 HM6709AJP-20 HM6709AJP-25 15ns 20ns 25ns 300 mil 28 pin Plastic SOJ (CP-28DN) • BLOCK DIAGRAM A20----l A30----l A4 0----I A7 0----I As 0----1 As 0----1 As 0----1 As o----l 1/0 1 0---.-1 1/020---.+H 1/03 o-_>++H 1/04 o--,f-H+C> - OO High Impedance Data Valid 1. WE = VIH 2. CS = VIL. 3. OE = VIL. 4. Address valid prior to or coincident with CS transition low. • 232 HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005· 1819 • (415) 589·8300 ) ~ HM6709A Series • Write Cycle (1) (OE = H, WE Controlled) twe Address tew CS tAW twp(1) WE tDW Data In tDH Data Valid High Impedance Data Out • Write Cycle (2) (OE = H, CS Controlled) twe Address tAs tew CS tAW twp(1) WE tDW Data In High Impedance Data Out ~HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 233 HM6709A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Write Cycle (3) (DE = Clocked, WE Controlled) twe Address OE tew cs twp(1) WE tOLZ(2 High Impedance Data Out tDW Data In High Impedance • Write Cycle (4) (DE tDH ~,.-h---------~~High Impedanc. = Clocked, CS Controlled) twe Address OE tew cs tWR twp(1) WE Data In High Impedance Data Out ~HITACHI 234 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6709A Series • Write Cycle (5) (OE = L, WE Controlled) Address cs twp WE (1) High Impedance Data Out tow Data In High Impedance • Write Cycle (6) (OE tow (3) tOH (5) Data Valid High Impedance = L, CS Controlled) Address cs twp (1) WE High Impedance Data Out tow Data In NOTES: High Impedance tOH Data Valid I. A write occurs during the overlap (twp) of a low CS and a low WE. 2. During this period, 110 pins are in the output state so that the input signals of opposite phase to the outputs must not be applied. 3. Output data is the same phase of write data of this write cycle. 4. If the CS is low transition occurs after the WE low transition, output remain in a high impedance state. S. If CS is low during this period. 110 pins are in the output state. Then. the data input signals of opposite phase to the outputs must not be applied to them. 6. If CS low transition occurs simultaneously with the OE high transition or after the OE transition, output remain in high impedance state. • HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 235 HM6207 S e r i e s - - - - - - - - - 262144-word x 1-bit High Speed CMOS Static RAM The Hitachi HM6207 is a high speed 256k static RAM organized as 256-kword x 1-bit. It realizes high speed access time (35/45 ns) and low power consumption, employing CMOS process technology and high speed circuit designing technology. It is most advantageous for the field where high speed and high density memory is required, such as the cache memory for main frame or 32-bit MPU. The HM6207, packaged in a 300 mil plastic DIP, is available for high density mounting. Low power version retains the data with battery back up. Features • High Speed: Fast Access Time 35/45 ns (max.) • Low Power Standby: 100 IJ,W (typ.)/30 IJ,W (typ.) (L-version) Operation: 300 mW (typ.) • Single 5V Supply and High Density 24 Pin Package • Completely Static Memory: No Clock or Timing Strobe Required • Equal Access and Cycle Time • Directly TTL Compatible: All Inputs and Outputs • Capability of Battery Back Up Operation (L·version) (DP-24NC) Pin Arrangement Ordering Information Type No. Package Access Time HM6207P-35 HM6207P-45 35 ns 45 ns HM6207LP-35 HM6207LP-45 35 ns 45 ns 300-mil 24-pin Plastic DIP Absolute Maximum Ratings Symbol Item Voltage on Any Pin Relative to VSS Power Dissipation Topr Operating Temperature Tstg Storage Temperature Storage Temperature under bias Tbias Note)·1. -2.SV for pulse width;:; IOns. (Top View) Rating -0.5.1 to +7.0 1.0 o to +70 -55 to +125 -10 to +85 • 236 Unit V W °c °c °c Pin Description Pin Name AO - A17 Din Dout _ _ CS ____ WE Vee Vss Function Address Data Input Data Output 9tip Select Write Enable Power Supply Ground HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 0 7 Series Block Diagram AI5 AI6 AI7 -Vee Memory Array 256 X 1,024 AO _ V.. Al A2 A3 A4 Dm--{~-1--~ . -......r - 00• 1 Function Table Mode CS WE NOT SELECTED H X H READ L L WRITE L Note) X means don't care. Vee Current ISB,ISBI Ice lee Recommended DC Operating Conditions (Ta Parameter Symbol Vee Supply Voltage VSS Input High (logic 1) Voltage VIH Input Low (logic 0) Voltage VIL Note) .1. -2.0V for pulse width;:;; 10 ns Dout Pin HIGH-Z Dout HIGH-Z Symbol READ CYCLE WRITE CYCLE =0 to +70°C) min 4.5 0 2.2 -0.5.1 typ min max 5.5 0 6.0 0.8 5.0 0 DC and Operating Characteristics (Ta = 0 to +70°C, Vee Parameter Ref. Cycle Unit V V V V =SV ± 10%, Vss =OV) typ·1 max Unit Input Leakage Current tILlI 2.0 pA Output Leakage Current IILOI 10.0 pA 60 100 rnA 15 30 rnA Operating Power Supply Current lee Standby Power Supply Current ISB Standby Power Supply Current (1) ISBI 0.02 0.006.2 2.0 0.1 *2 Output Low Voltage 0.4 VOL Output High Voltage 2.4 VOH Note) .1. Typical limits are at Vee = S.OV, Ta = 2S·C and specified loading. ·2. This characteristics is guaranteed only for L-version. Test Condition Vee = MAX. VIN = VSS to Vee CS= VIH Vout = VSS to Vee CS= VIL lout =Om A, min. cycle CS = VIH, min. cycle CS} Vee-O.2V, rnA OV~ VIN ;:;; 0.2V or VIN ~Vee-0.2V V V IoL- 8mA IOH = -4.0mA .HITACHI Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 237 HM6207 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Capacitance (Ta = 25°C,/= 1.0MHz) Symbol . Parameter Min Input Capacitance Cin Output Capacitance Cout Note) This parameter is sampled and not 100% tested. Typ Unit pF pF Max 6.0 10 Conditions Yin = OV Vout- OV ------------~-----------~- AC Characteristics (Ta= 0 to +70°C, Vee= 5V ± 10%, unless otherwise noted.) AC Test Conditions • Input pulse levels: Vss to 3.0V • Input rise and fall times: 5ns • Input and Output timing reference levels: 1.5V • Output load: See Figures . Output Load (B) Output Load (A) (for +5V 1HZ. & +5V t LZ• twz tow) 480 Dout 0---.----. 255 Dout 3OpF* Q Q 0---.---.. 255 Q *Including scope & jig. Read Cycle Parameter Symbol Read Cycle Time Address Access Time Chip Select Access Time Output Hold from Address Change Chip Selection to Output in Low Z Chip Deselection to Output in High Z Chip Selection to Power Up Time Chip Deselection to Power Down Time tRC tAA tACS tOH tLZ tHZ tpu tPD HM6207-35 min max 35 35 35 5 5 0 30 0 30 HM6207-45 min max 45 45 Unit ns ns ns ns ns ns ns ns 46 5 5 0 0 30 40 Notes *1 *2,*3,*7 *2,*3,*7 *7 *7 Timing Waveform of Read Cycle No. 1.4 ,.5 Address '0. '0' Data Valid Dout ~HITACHI 238 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, GA 94005-1819 • (415) 589-8300 -----------------------------------------------------------------HM8207S.ies Timing Waveform of Read Cycle No. 2"4,·6 cs _______"'"\ J-~-------------'.!!~ 'HZ I" Dout ---------f----------------~ Data Valid H."" Hitch Impt"danct' Impt"dan('(' IpD Vee supply current Notes) .1. AIJ Read Cycle timings are referenced from last valid address to the first transitioning address. ·2. At any given temperature and voltage condition, tHZ max. is less than tLZ min. both for a given device and from device to device. ·3. Transition is measured ±200mV from steady state voltage with specified loading in Load B. ·4. WE is high for READ Cycle. ·5. Device is continuously selected, while CS = V/L. ·6. Addresses valid prior to or coincident with CS" transition low. ·7. This parameter is sampled and not 100% tested. Write Cycle Parameter Write Cycle Time Chip Selection to End of Write Address Valid to End of Write Address Setup Time Write Pulse Width Write Recovery Time Data Valid to End of Write Data Hold Time Write Enable to Output in High Z Output Active from End of Write Symbol twe tew tAW tAS twp tWR tDW tDH twz tow HM6207-35 min max 35 30 30 0 25 3 20 0 0 0 • 20 HM6207-45 min max 45 40 40 0 25 3 20 0 0 0 25 Unit Notes ns *2 ns ns ns ns ns ns ns ns ns *3, *4 *3,*4 HITACHI Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 239 HM6207 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Timing Wa\'eform of Write Cycle No.1 (m Controlled) t.e ------------- ---- " Address /\ __t_ew_ _ _ _ _ _ _ I cs \\\\ \\\ . ~ _____ I -~-~------~--- --~\ _----.J..~---_ .\\I\" \" / ~--V t •• t.w I- V I\" Om /////i////// Data In l( Valid I\" to. ~ V Dout I \ High Impedance Timing Waveform of Write Cycle No. 2 (~ Controlled) twe Address \V \V 11\ /\" te. tAS l / V t.. two top VIIIIIIII/i/; \\\\\\\\\\\\\\\\ to. t.w \/ I Om Data m Valid \V /'\ ~ Dout Notes) '1. '2. '3. '4. / Data Undefmed HlIh Impedance If CS goes high simultaneously with WI;: high, the output remains in a high impedance states. All Write Cycle timings are referenced from the last valid address to the first transitioning address. Transition is measured ±200mV from steady state voltage with specified loading in Load B. This parameter is sampled and not 100% tested . • 240 / HITACHI Hitachi America, ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 0 7 Series Low Vee Data Retention Characteristics (Ta = 0 to +70°C) (This characteristics is guaranteed only for L-version) ._-- ---------- Chip Deselect to Data Retention Time -----Operation Recovery Time Test ConditIOn min _ _--"""-'--_~="___~=_""""'c_;_;--~~~ typo max. Urnt _ _ _ _S-:yc:-m_b_o_l_----'-'= CS ~ VCC - 0.2V VDR 2.0 V V{r~ Vc«- 0.2\! or 50"2 ICCDR 2 IJA o -Vin-0.2V tc DR 0 ns See retention ----=-=--'-'-------.,,.------waveform tRC"! tR ns Note) "1. "2. V CC= 3_0V Parameter V CC for Data Retention Data Retention Current IRC = Read Cycle Time Low Vee Data Retention Waveform Data Rett'ntlOn Mode vcc - - - - - - -..... 4.5V--------- cs ~ Vcc-O.2V c s - -_ _-' w ________________________________________ _ • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 241 • 242 HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HM6207/HM6207H Series 1-Bit CMOS Static RAM 262l44-Word x l-Bit High Speed CMOS Static RAM The Hitachi HM6207 and HM6207H are high speed 256k static RAMs organized as 256-kword x I-bit. They realize high speed access time (25/35/45ns) and low power consumption, employing CMOS process technology and high speed circuit design technology. It is most advantageous wherever high speed and high density memory is reqUired. The HM6207 and HM6207H are packaged In the Industry standard 300-mll, 24-pln plastiC DIP The HM6207H IS also available In a 300-mll, 25-pln plastiC SOJ package for high density mounting The low power versions are Ideal for battery backed systems. (DP':!-1-NC) Features • Single 5 V supply and high density 24-pln package • High speed Access time: 25/35/45 ns (max) • Low power 300 mW (typ) Active. 100 I'W (typ) Standby: 30 I'W (typ ) (L-verslon) • Completely static memory requires No clock or timing strobe reqUires • Equal access and cycle time • All Inputs and outputs TTL compatible • Capability of battery back up operation (L-verslon) , (CP-2..J.D) Pin Arrangement Ordering Information Type No HM6207P-35 HM6207P-45 HM6207HP-25 HM6207HP-35 HM6207HLP-25 HM6207HLP-35 HM6207H1P-25 HM6207H1P-35 HM6207HLJP-25 HM6207HLJP-35 Package 35 n, 45 25 35 ns 25 35 I" n, n, n, 35 ns 25 n, 35ns 300-mll 24-pm plastIc DIP (DP-24NC) 300-11111 24-pm plastiC SOl _~P~ _ _ Pin Description -------,- Pm Nam---=-e_ _ _FuncllOn AD - Al7 Address Om _Data InE"_t_____ _ . Dout______ _ Dataollt!"'.' __ _ CS ChlP--,-C!cct WE----- Wnte enable Vee Vss _~uwcr Sl_lppl~ Ground ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra POint Pkwy· Brisbane, CA 94005-1819 • (415) 589-8300 243 HM6207/HM6207H S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Block Diagram AI5 AI6 AI7 -Vee Melllory Arrll)' 256X 1,024 AO ...._Vs.. AI A2 A3 A4 DID--C::r-~--I Function Table TI WE H x L L H Note: L Mode Not selccted Read Write Dou! Vee Currenl I/O Pin Ref, Cycle IS8, isOI Icc Icc Hlgh-Z Dout High-Z Read cycle Write cycle x means don't care. Absolute Maximum Ratings Symbol Vin Item Voltage on any pin relative to Vss Power dissipation 1.0 Operating temperature range Storage temperature range Storage temperature range under bias Note: *1. Yin min = -2.5 V for pulse widlh Value _0.5'1 to +7,0 Topr Tstg Tbias ~ oto +70 -55 to +125 -10 to +85 Unit V W ·C ·C ·C 10 ns. ~HITACHI 244 Hitachi America, ltd, • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 0 7 / H M 6 2 0 7 H Series Recommended DC Operating Conditions (Ta = 0 to +70°C) Item Symbol Vee Supply voltage Vss Input high (logic 1) voltage VDf Input low (logic 0) voltage VIL Note: *1. VIL min =-2.0 V for pulse width :s; 10 ns. Min 4.5 0 v V V V 6.0 0.8 -0.5" Symbol Unit o 2.2 • DC Characteristics (Ta = 0 to +70°C, vee = 5 V Item Max 5.5 Typ 5.0 0 ± 10%, vss = 0 V) Min Typ '. Max Input Leakage Current IIul - - 20 ~A Ou.put Leakage Current IILOI - - 100 ~A OpcrallOg Power Supply Current Icc - 60 100 rnA I,. - 15 30 rnA Is. - 20 40 mA Is•• - 20 2000 ~A I,.t - 6 100 ~A Standby Power Supply Current Standby Power Supply Current I . H" VCI"\lon Standby Power Supply Current (I) Standby Power Supply Current (I) J L-Vcr"on Tc ...t Condition... Umt Vec = Max Vm = Vss to Vee CS = VtH V110 = VS'i to Vee CS = VtL . 1110 = 0 rnA. Min Cycle. Duty = 100% CS = VIH • Min Cycle CS"V ec -02V o V :s Vm S 02 V or Vm ~ Vee - 0 2V QUlPUI Low Voltage VOL - - 04 V i OL=8mA Output H.gh Vohage VOH 24 - - V IOH = -40mA Note *1 Typical hnllt ... arc at Vee = 50 V. T.. = +25°C and !lPCClflCd loadmg Capacitance (Ta = 25°C, f = 1MHz)"' Item Input capacitance Output capacitance Note: Symbol Cin Cout Min Max Unit 6 10 pF pF Test Conditions Vin=OV V••t=OV *1. This parameter is sampled and not 100% tested. AC Characteristics (Ta = 0 to +70°C, Vee = 5 V ± 10%, unless otherwise noted.) Test Conditions • Input pulse levels: Vss to 3.0 V Input and output timing reference levels: 1.5 V Output load: See Figures • Input rise and fall times: 5 ns Output Load (A) Output Load (B) (for 1HZ, tLZ, +5V .... tow) +5V ~ .F. .... .... ~ 255D 255g Note: lWZ & .... Spr. * Including scope & jig. • HITACHI Hitachi America. Ltd, • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 245 HM6207/HM6207H Senes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Read Cycle Item Mm. Read Cycle TIme Address Access Time HM6207-35 HM6207H-35 HM6207H-25 Symbol Max. Mm. HM6207-45 Max. Min. Unit Max. tRC 25 - 35 - 45 - ns tAA - 25 - 35 - 45 ns 25 - 35 - 45 ns 5 5 5 - ns 5 - tACS - Output Hold From Address Change toH 5 ChIp Selection to Output m Low-Z tLZ' 1 5 - Chip Deselection to Output in Hlgh-Z tHZ' 1 0 12 0 20 0 30 ns ChIp Selection to Power Up TIme tpu 0 - 0 - 0 - ns Chip Deselectlon to Power Down TIme tpD - 15 - 25 - 40 ns Chip Select Access Time Note *1 TranMtlon .. mea.ured ±200 mY from ;teady ;tate voltage wIth Load (B) Th .. parameter .. ;ampled and not 100% tested Read Timing Waveform (1) 'I. '2 I" Address ~ ----.I I .. 10. 10. Dout Data Invahd I IK& Da'" Valid 1,\ Read Timing Waveform (2) 'I. '3 cs - - -.... I" ~----~~----~.---~=--~----- -- - ---- - - - 11,.------ I I tu Dout 1/,-------.,.\ , - - - - - - - t - - -...... Data Invalid I nata Vahd If--- ----+--------{ '--------t---;---tlm.p~:('l' High ImpedancI! Vee supply ---------------+~----------------------~---....+ .../,if _lc_,_______ 50"" Notes: '1. "WEis high for read cyde. '2. Device is continuously selected, CS =VIL. '3. Address vahd prior to or coincident with CS tranSition low. $HITACHI 246 Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ns - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6207/HM6207H Series • Write Cycle HM6207-35 HM6207H-35 HM6207H-25 Symbol Item HM6207-45 Mm Max Mm Max Mm. Max. Unll Write Cycle Time twe 25 - 35 - 45 - n, Chip SelectIOn to End of Wnte tew 20 - 30 - 40 - n, Addre" Valid to End of Write tAw 20 - 30 - 40 - n, Addre" Setup Time tAs 0 - 0 - 0 - ns twp 20 - ~ - 35 - ns ns I Wnte Pube Width I "H" Vcn~lon 30 Wntc Recovery Tmlc tWR 3 - 3 - 3 - Data Valid to End of Wnte tDw 15 - 20 - 20 - ns Data Hold Time tDH 0 - 0 - 0 - ns Wnte Enabled to Output m Hlgh-Z twz 'I 0 8 0 10 0 15 ns Output Active From End of Write tow 'I 0 - 0 - 0 - Note *I Tran~ltlon 1~ mea~ured ±200 mY from high Impedance voltage with Load (B) Thl~ parameter I~ ~arnplcd and not 100% ns tc~tcd Write Timing Waveform (1) (WE Controlled) .-------~~------~~~--------~---------------------------------------~ twe ---~- Address cs ~V ----./"" /\. \\\'\I\\t. t" --~~-- -~--- t .. ----V///~1///// 1-----'--"---- I t., I WE ---- \ \ 1'\ ./ -~~------ ~ \JI A Data Vahd \. tow I---'"'-Dout High Impedance / \. @HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 247 HM6207/HM6207H Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Write Timing Waveform (2) (CS Conlrolled) ------~~.----"------ .. . ! . ! " £ ' - - - - - - - - - - - - _ 1 Address ----~----.-- cs --~---~---- ~----- ------_._- -~-~WE Dm Data Vahd I.'~ Dout -----------« D... l',d,fm,d . Notes: *1. A wnte occurs dunng the overlap of a low CS and a Jow WE. *2. tWR is measured from the eaTHer of CS or WE going high to the end of wnte cycle. *3. If the CS low transition occurs simultaneously with the WE low transtUon or after the WE transition, the output buffers remain in a high Impedance state. *4. Dout is the same phase of wnte data of this write cycle, If tWR is long enough . • 248 r-- - - - - - - - - - - - - - - - - - - HllJh Impedancl' HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6207/HM6207H Series Low Vee Data Retention Characteristics (Ta = 0 to +70'C) These characteristics are guaranteed only for L-version. -----TtCn1-~~-~: ~~ - s)'~l)ol---ivEn-~-f)'LMax_~i~_ Data retention current Notes _____~0·2 IcCOR ------ - - - - - - - - - - - - - " Chip deselect to data retention time Operation recovery I1me v 20 VDR tCDR o tHe "1 ~A ___ _ ns ns Test Condi tions CS ~Vcc-0.2 V. Vm~Vcc-0.2Vor o V ~ Yin ~ 0.2 V ---------- *1. tRc;:: read cycle tIme *2 Vcc=30V. Low Vee Data Retention Timing Waveform ------- v,'--_ _ _ ______ 45V--------- Data retention mode -------------------------- --------- Cs---~ ~----------------------------------------- • PACKAGE DIMENSIONS Unit: mm (inch) HM6207P/HM6207HP Sene, WP-24NC) I , ~ I 298'(1176) 30 48m,,,"OOm," 124 HM6207HJP Senes (CP·24D) 13 ,[::::::;}]!~I --I+-- 11 I 14(0045) 13(0 051) WiViAAANffl sf ;H c 1. 048<01 (0019 + 0004) ~5 (OICOtOQIO) ~~S ~Ig ~f~ N.9 @HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 249 HM6707 S e r i e s - - - - - - - 262144-word x 1-bit High Speed Hi·BiCMOS Static RAM Features • Super Fast Access Time: 20/25ns (max.) • Low Power Dissipation Operating: 350mW (typ.) (f = 50MHz) • • • • HM6707P +5V Single Supply Completely Static Memory No Clock or Timing Strobe Required Balanced Read and Write Cycle Time Fully TTL Compatible Input and Output (DP-24NC) HM6707JP Ordering Information Type No. Access Time HM6707p·20 20ns HM6707p·25 25ns HM6707JP·20 20ns HM6 707 JP-25 25ns Package 300mil 24 pin Plastic DIP 300 mil 24 pin SOJ (CP-24D) Block Diagram Vee Ao AlO---i:A::J A2 ~---'.-<-1 A3~--r~' Pin Arrangement --0 --0 Row Memory Matrix Vss Vee Ao AI AI7 As~--.",,--, A2 AI6 A9 A3 AI5 A4 Au As AI3 A12 All A4 Decoder 256XI024 AIO ~---'r';~-'L-_ _-' Din As A7 AIO As Dout ~<>--=~~ WEo- As WE Din VSS CS (Top View) Note) The specifications of this device are subject to change without notice. Please contact Hitachi's Sales Dept. regarding specifications. ~HITACHI 250 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 0 7 Series Absolute Maximum Ratings Symbol Item Rating Power Dissipation Operating Temperature Range Unit -0.5 to +7.0 Terminal Voltage to Vss Pin Topr W o to +70 °c °c °c Storage Temperature Range (with bias) TstR(bias) -10 to +85 Storage Temperature Range -55 to +125 Tstg Recommended DC Operating Conditions (Ta Item V 1.0 =0 to +70°C) Symbol min. typo max. Unit Vcc 4.5 5.0 5.5 V Vss 0 0 0 V V1H 2.2 6.0 V VIL -0.5*' 0.8 V Supply Voltage Input Voltage Note) *1 : -3.0 V for pulse width 20ns. Function Table CS WE H X Not selected ISB,lSBl High Z L H Read ICC.ICCl Dout L L Write Icc.ICCl High Z Mode DC and Operating Characteristics (Vee Item Symbol Input Leakage Current IILl I Output Leakage Current IILO I Output Pin V cc Current =5 V ±1O%, Ta =0 to +70°C) min. typo max. Unit Test Conditions 2 /loA V C9 =5.5V, V/N=VSS to Vce 10 /loA CS = V1H, VOUT= VSS to Vec CS = V/L,IOUT=OmA Opera ting Power Su pply Current Icc 100 rnA Average Operating Current ICCl 120 rnA Min. Cycle, Duty: 100%,IOUT=OmA ISB 30 rnA CS = VIH, VIN- VIHor V/L ISBl 10 rnA CS ~ Vce-0.2 V V/N;£0.2Vor V/N~ Vec-0.2V Standby Power Supply Current Output Low Voltage VOL Output High Voltage VOH 0.4 2.4 V IOL = 8 rnA V 10H = -4 rnA ~HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 251 HM6707 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Capacitance (Ta = 2S o C,f= 1 MHz) Symbol Item Input Capacitance Output Capacitance COUT max. Unit 6.0 pF Test Conditions V/N = OV 10.0 pF VOUT=OV Note) This parameter is sampled and not 100% tested. AC Characteristics (VCC =SV±lO%, Ta =0 to +70°C, unless otherwise noted) AC Test Conditions • • • • • Input pulse levels: VSS to 3.0 V Input timing reference levels: 1.5 V Output Load: See Figure Input rise and fall times: 4 ns Output reference levels: 1.5 V 480.0 Dout 480.0 Dout 255.0 255.0 30pF* 5pF* *including scope and jig Output L08d B Output Load A (for tHZ, tLZ, twz & tow) Read Cycle Item Symbol HM6707-20 max. min. HM6707-25 min. max. Unit Read Cycle Time tRC Address Access Time tAA 20 25 ns Chip Select Access Time tACS 20 25 ns 25 20 Notes ns Output Hold from Address Change tOH 5 5 ns Chip Selection to Output in Low Z tLZ 5 5 ns 1,2 Chip Deselection to Output in High Z tHZ 0 ns 1.2 Note) 15 0 15 1. This parameter is sampled and not 100% tested. 2. Transition is measured ±200 mV from steady state voltage with specified loading in Load B. ~HITACHI 252 Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 0 7 Series Read Cyele-1*! I - - - - - - - tRC --------1~~, I~.. Address ,. .t----- tAA -----I~~I +-toH Data Out ~ Previous Data Valid Data Valid Read Cycle-2*2 ~------ tRC -------~ .. tACS--' +- tu"3... High Impedance Data Out Data Valid Notes) *1. WE is high and CS"is low for Read cycle . • 2. Addresses valid prior to or coincident with CS transition low . • 3. Transition is measured ±200 mV from steady state voltage with specified loading in Load B. Write Cycle Item HM6707-20 min. max. Symbol HM6707-2S min. max. Unit Notes 2 Write Cycle Time twe 20 2S ns Chip Selection to End of Write tew IS 20 ns Address Valid to End of Write tAW IS 20 ns Address Setup Time tAS 0 0 ns Write Pulse Width twp IS 20 ns Write Recovery Time tWR 3 3 ns Data Valid to End of Write tDW IS 20 ns Data Hold Time tDH 0 0 Write Enable to Output in High Z twz 0 Output Active from End of Write tow 0 Note) 1. 2. 3. 4. IS 0 0 ns IS ns 3,4 ns 3,4 If CS goes high simultaneously with WE high, the output remains in a high impedance state. All Write Cycle timings are referenced from the last valid address to the first transitioning address. Transition is measured ±200 mV from steady state voltage with specified loading in Load B. This parameter is sampled and not 100% tested . • HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 253 - - - - - ----------- - HM6707 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Write Cycle-1 (WE Controlled) I~-------twc --------~.~I Address ~~~~ 1+---- tew -----.1 ~--r_~--~~~~ 1..... . - - - - - - tAW -----------+1 tow -+~tOH. Data In Valid Data In *1 .. tow --+ ~------- Data Out Data Undefined High Impedance Note) *1. TransItion is measured ±200 mV from steady state voltage with specified loading in Load B. Write Cycle-2 (CS Controlled) . Address •, twc ~ I~ ~\ .. tAS. .. •-/' tew ~ .... 1 1\ ... • f- tWR tAW + - - twp -----.. \\\\\\\- \' Data In Data In Valid ~ Data Out Data Undefined If///// 7 tow I '":1\ -I *1 twz .~~ ~II 11\ ~ *2 High Impedance Note) *1. Transition is measured ±200 mV from steady state voltage with specIfied loading in Load B. *2. If the CS low transition occurs simultaneously with the WE low transition or after the WE transition. the output buffer remains in a high impedance state. ~HITACHI 254 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM6707A Series- Product Preview - - - - - - - - - 262144·Word x 1·Bit High Speed Static RAM • FEATURES • Super Fast Access Time ........................ 15/20/25ns (max.) • Low Power Dissipation ...................... .400mW (typ.) • + 5V Single Supply • Completely Static Memory No Clock or Timing Strobe Required • Fully TTL Compatible Input and Output (DP-24NC) • ORDERING INFORMATION Access Time Package HM6707AP-15 HM6707AP-20 HM6707AP-25 15ns 20ns 25ns 300 mil 24 pin Plastic DIP (DP-24NC) HM6707AJP-15 HM6707 AJP-20 HM6707 AJP-25 15ns 20ns 25ns 300 mil 24 pin Plastic SOJ (CP-24D) Type No. (CP-24D) • PIN ARRANGEMENT • BLOCK DIAGRAM A20----I:;;. --0 A30---~::J Vee - - 0 VS3 A40----I A70----I A80---~::J Row Memory Matrix Decoder 2S6x1024 Ago----I:;;. AS 0----1:;;' A60---~j Din o-_ _ _-t>____r-'----------'--l-t>--,oD,OU1 Ao Vee Al A17 A2 A16 A3 A15 A4 A14 A5 A13 A6 A12 A7 All As AlO Dout Ag WE VSS Din CS (Top View) cs~===='~~:J WEC> ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 255 HM6707A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • ABSOLUTE MAXIMUM RATINGS Unit Symbol Rating Terminal Voltage to V ss Pin Power Dissipation VT -0.5 to +7.0 V PT 1.0 W Operating Temperature Range Storage Temperature Range (with bias) Topr o to +70 -10 to +S5 °C -55 to + 125 °C Item Tstg(bias) T stg Storage Temperature Range °C • RECOMMENDED DC OPERATING CONDITIONS (DOC ::;; Ta ::;; 70°C) Item Symbol Min. Typ. Max. Unit Vee 4.5 5.0 5.5 V Vss V/H V1L 0.0 0.0 0.0 V 2.2 - Vee + 0.5 O.S V Supply Voltage Input High Voltage Input Low Voltage -3.0* V *Pulse width: 15ns, DC: -O.5V • TRUTH TABLE Output Pin CS WE Mode H X Not Selected ISB,lsB! HighZ L H Read Icc, Icc! L L Write Icc, IcC! Data Out HighZ Vee Current • DC AND OPERATING CHARACTERISTICS (Vee Item = 5V ± 10%, Ta = DOC to 70°C, Vss = OV) Unit p.A 100 rnA Input Leakage Current Ilui - - Output Leakage Current IILOI - Operating Power Supply Current Icc Average Operating Current IcC! = 5.5V, VIN = Vss to Vee CS = V/H, VOUT = Vss to Vee CS = V1L , lOUT = OmA Min. Cycle, Duty: 100%, lOUT = OrnA - - 120 rnA ISB CS = V1H , VIN = V/H or V1L - - 30 rnA ISB! CS ;;" Vee - 0.2V VIN ::;; 0.2V or VIN ;;" Vee - 0.2V - - 10 rnA - - 0.4 V 2.4 - - V Output Low Voltage VOL VOH Output High Voltage Vee IOL = SrnA IOH = -4rnA - Typ. 2 10 Test Condition Standby Power Supply Current Min. Max. Symbol • AC TEST CONDITIONS • Input Pulse Levels: Vss to 3.0V • Input Timing Reference Levels: 1.5V • Output Reference Levels: 1.5V • Input Rise and Fall Times: 4ns • Output Load: See Figure +5V +5V 4800 Dout Dout 2550 2550 4800 5 pF * Output Load B (for t HZ , tLZ , twz & tOW) Output Load A *Including scope and jig capacitance. ~HITACHI 256 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 p.A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM6707A Series • CAPACITANCE (Ta = 25°C, f = 1.0MHz) Item Symbol Test Conditions Max. Unit C IN V IN = OV 6.0 pF COUT VOUT = OV 10.0 pF Input Capacitance Output Capacitance NOTE: This parameter is sampled and not 100% tested . • AC CHARACTERISTICS (Vcc = 5V ± 10%, Ta = O°C to 70°C, unless otherwise noted.) • Read Cycle Item Symbol HM6707A-15 HM6707A-20 HM6707A-25 Min. Min. Max. Min. Max. Max. Unit Notes Read Cycle Time tRC 15 - 20 - 25 - ns Address Access Time tAA - 15 - 20 - 25 ns - Chip Select Access Time tACS 15 ns - tOH - ns - tLz 3 3 25 Chip Selection to Output in Low Z 3 3 20 Output Hold from Address Change 3 3 ns 1,2 ns 1,2 Unit Notes ns - - - Chip Deselection to Output in High Z NOTES: 0 6 0 8 0 10 tHZ I. This parameter is sampled and not 100% tested. 2. Transition is measured ±2oomV from steady state voltage with specified loading in Load B. - • Write Cycle Item Symbol HM6707A-15 HM6707A-20 HM6707A-25 Min. Max. Min. Max. Min. Max. twc 15 - 20 - 25 Chip Selection to End of Write tcw 10 - 15 - 20 Address Valid to End of Write tAW 10 - 15 - 20 Address Setup Time tAs 0 - 0 - 0 Write Pulse Width twp 10 - 15 - 20 - Write Recovery Time tWR 0 - 0 - 0 - Data Valid to End of Write tDw 9 - 12 - 15 - ns Data Hold Time tDH 0 - 0 - 0 - ns I - Write Enable to Output in High Z twz 0 6 0 8 0 10 ns 2,3 0 - 0 - 0 - ns 2,3 Write Cycle Time Output Active from End of Write NOTES: tow I. All write cycle timings are referenced from the last valid address to the first transitioning address. 2. Transition is measured ± 200mV from steady state voltage with specified loading in Load B. 3. This parameter is sampled and not 100% tested. ns ns ns ns ns ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 257 HM6707A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - • TIMING WAVEFORM • Read Cycle (1) (1) Address tOH Data Out Data Valid Previous Data Valid • Read Cycle (2) (2) RC cs ~I\. .i V tAcs tlZ(3) tHZ(3) Data Out High Impedence NOTES: K200000 K Data Valid / 1. WE is high and CS IS low for READ cycle. 2. Addresses valid prior to or coincIdent with CS transitIOn low. 3. TransitIOn is measured ± 200mV from steady state voltage wIth specified loading In Load B. .HITACHI 258 " High Impedence Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 7 0 7 A Series • Write Cycle (1) (WE Controlled) twe )( Address )( tew cs '"'"'"'"'"~ ~ "l~////////////h tAW tAS tWR twp WE ~ ~~ / tOH tow ) Data In L Data Out NOTES: Data In Valid twz _I '" Data Undefined m.12) ) t' " tow /1 Hgh i Impedance V " I. Transition is measured ±200mV from steady state voltage with specified loading in Load B. 2. If CS goes high simultaneously with WE high, the output remains in a high impedance state . • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 259 HM6707A Series • Write Cycle (2) (CS Controlled) twc Address tcw CS tAW twp WE tDW Data In Valid Data In twz Data Out NOTES: Data Undefined ~ High Impedance I. Transition is measured ± 200m V from steady state voltage with specified loading in Load B. .HITACHI 260 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM628128 S e r i e s - - - - - - - - - 131072·Word x 8·Bit High Speed CMOS Static RAM The Hitachi HM628128 is a CMOS static RAM organized 128kword x 8-bit. It realizes higher density, higher performance and low power consumption by employing 0.8 11m Hi-CMOS process technology. It offers low power standby power dissipation; therefore, it is suitable for battery back-up systems. The device, packaged in a 525 mil SOP (460-mil body SOP) or a 600-mil plastic DIP, is available for high density mounting. Features • • • • • • • High speed: Fast access time 70/85/100/120 ns (max.) Low power Standby: 10 I1W (typ) (L-version) Operation: 75 mW (typ) Single 5 V supply Completely static memory No clock or timing strobe required Equal access and cycle times Common data input and output: Three state output Directly TTL compatible: All inputs and outputs Capability of battery back up operation (L-version) 2 chip selection for battery back up Ordering Information Type No. HM628128P-7 HM628128P-8 HM628128P-10 HM628128P-12 HM628128LP-7 HM628128LP-8 HM628128LP-10 HM628128LP-12 HM628128FP-7 HM628128FP-8 HM628128FP-10 HM628128FP-12 HM628128LFP-7 HM628128LFP-8 HM628128LFP-10 HM628128LFP-12 Note: HM628128P Series ~______ ~(D~P~-3~2)~~__ _ HM628128FP Series (FP-32D) Pin Arrangement Access Time 70ns 85 ns 100 ns 120ns 70 ns 85 ns 100 ns 120ns 70ns 85 ns lOOns 120ns 70ns 85 ns lOOns 120ns Package NC 600 mil 32-pin plastic DIP (DP-32) Vee A16 31 A14 A12 WE 4 A7 A6 A13 6 A8 A5 A9 A4 A3 The specifications of this device are subject to change without notice. Please contact your nearcst Hitachi's Salcs Dept. regarding specifications. A11 bE 9 10 Al0 Al 11 CS[ AO 12 1/07 1/00 13 1/06 1/01 14 1/05 1/02 15 1/04 V" 16 1/03 A2 525 mil 32-pin plastic SOP (FP-32D) ~15 CS2 (Top View) ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 261 HM628128 Series Pin Description Function Address Input/output Chip select 1 Chip select 2 Write enable Output enable No connection Power supply Ground Pin Name AO-Al6 UOO - 1/07 CSl CS2 WE OE NC Vee VSS Block Diagram A13 A15 A16 ':--H~==f-I ---0 Row Memory MatrIX Decoder 1/00 o---t+-Q----IH 1/07 o-1'-H--D---IH Vee 512X2.04B C510-----1 Read/Wnte Control WE 0-- OE 0 ' - -_ _ _ _ _ _--' Function Table WE x x H H L L Note: CSl H CS2 OE x x x L H H H H X L L L L H L H L Mode Not selected Output disable Read Write DoutPin High-Z High-Z High-Z Dout Din Din Ref. Cycle Read cycle Write cycle (1) Write £}'cle (2) x: H orL • 262 Vee Current ISB, ISBI ISB,IsB! Ice Icc Ice Ice HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM628128 Series Absolute Maximum Ratings Item Voltage on any pin relative to Vss Power dissipation Operating temperature Storage temperature Storage temperature under bias Note: Symbol Value -0.5"' to +7.0 Unit 1.0 w Topr Tstg Tbias V Oto +70 -55 to +125 -10 to +85 *\. -3.0 V for pulse half-width ::; 30 ns Recommended DC Operating Conditions ( Ta = 0 to + 70°C) Item Supply voltage Input high (logic I) voltage Input low (logic 0) voltage Note: Symbol Vee Vss VIH VIL Min 4.5 0 2.2 Typ 5.0 0 Max 5.5 0 6.0 0.8 -0.3"' Unit V V V V Note *\. -3.0 V for pulse half-width ::; 30 ns DC Characteristics ( Ta = 0 to +70°C, Vee = 5 V ± 10%, VSS = 0 V) Item Input leakage current Typ" , Max 2 Unit Ilul Output leakage current IILOI 2 IlA Operating power supply current: DC Icc 15 30 rnA Icc, 45 70 rnA IcC2 15 30 rnA 3 rnA 0.02 2 rnA "2"2 100"2 IlA Symbol Min IlA Operating power supply current Standby power supply current: DC ISB Standby power supply current (1): DC Isu! Output low voltage Output high voltage VOL VOH Test Conditions Yin = Vss to Vee CS1 = VlllOr CS2 = VlLor OE= VllI or WE = VIL, VI/o= Vss to Vee CS1= VIl" CS2 = VOl, others = Vul/V IL 11/0= ornA Min cycle, duty = 100%, CS1 = VIL, CS2 = VIII, others = VUI/VIL 11/0 = ornA Cycle tirne = 1 115, duty = 100%, Iva = 0 rnA CS1 ::; 0.2 V, CS2 ?Vee- 0.2 V Vlll?Vee-0.2V, VIl,::;O.2V CS1 = VllI, CS2 = Vlli or CS2 = VIL Vin? 0 V CS1?Vec-0.2V, CS2? Vee- 0.2 V or OV::;CS2::;O,2 V "--------~----- 0.4 2.4 V V 10L = 2,1 rnA 1011 = -LO rnA ------- Notes: *\. Typical values are at Vee = 5,0 V, Ta = +25°e and specified loading. *2. This characteristics is guaranteed only for L-version. @HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 263 HM628128 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - capacitance ( Ta =25°C, f =1.0 MHz) Item Inpul'capacitance Input/output capacitance Note: Symbol Cin ClIO Typ Min Max Unit 8 10 pF pF Test Conditions Yin =OV This parameteris sampled and not 100% tested. AC Characteristics (Ta =0 to +70°C, Vee =5 V ± 10%, unless otherwise noted) Test Conditions • Input pulse levels: 0.8 V :0 2.4 V • Input rise and fall times: 5 ns • • Input and output timing reference levels: 1.5 V Output load: 1 TTL Gate and CL (100pF) (Including scope & jig) Read Cycle Item Symbol Read cycle time Address access time Chip selection (CSt) to output valid Chip selection (CS2) 10 output valid Output enable (DE) to output valid Chip selection (CS1) to output in low-Z Chip selection (CS2) 10 output in low-Z Output enable (OE) 10 output in low-Z Chip deselection (CS1) to output in high-Z Chip deselection (CS2) to output in high-Z Output disable (OE) to output in high-Z Output hold from address change IRe lAA teo! HM628128-7 HM628128-8 HM628128-10 HM628128-12 Min Max Min Max Min Max Min Max 70 100 120 85 70 85 100 120 70 100 120 85 Note ns ns ns teo2 70 85 100 120 ns IoE 35 45 50 60 ns lLZl 10 10 10 10 ns "I .• 2.·3 lLZ2 10 10 10 10 ns ·1, "'2, "3 t0l2 5 5 5 5 ns ·1. "'2.-3 blZl 0 25 0 30 0 35 0 45 ns ·1. -2, '3 blZ2 0 25 0 30 0 35 0 45 ns .'. ·2. "'3 10HZ 0 25 0 30 0 35 0 45 ns *1. "'2, *3 loll 10 10 • 264 Unit 10 10 ns HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589·8300 - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - HM628128 Series Read Timing Waveform'4 .c -:r- "/ Address t .. teol \""-""-\\\\1'-I '/ t HZ1 tC02 CS2 IILLI tlll /llllf .\ r\\\'\'\ l'\ tll2 tOE \\\\\\\\\\\i tHZ2 tOLl '/ V//// / I tOHZ Dout ---l--t:::r---=:--::::-----'-I----, 1/02 <>---ttft?--l 1/03 o-t++H>--l 1/04 ~H+H>--l • FUNCTION TABLE NOTE: CS OE WE Mode Vcc Current 110 Pm H X X Not Selected ISB,ISBI High-Z Ref. Cycle - L L H Read Icc Dout Read Cyele(1)-(3) L H L Write Icc Don Write Cyele( I) L L L Write Icc Don Write Cyele(2) X HorL • ABSOLUTE MAXIMUM RATINGS Symbol Value Voltage on any Pm RelatIve to VSS VT -0.5'1 to + 7.0 V Power DissipatIOn PT 1.0 W 'C Item Unit Operating Temperature Range Topr oto +70 Storage Temperature Range T stg -55 to + 125 'C Storage Temperature Range Under Bias T b,as -10 to +85 'C NOTE: *1 V T mm = -20 V for pulse width S 10 ns ~HITACHI 270 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 4 2 5 6 Series • RECOMMENDED DC OPERATING CONDITIONS (T. = 0 to + 70°C) Item Symbol Min. Typ. Max. Vee 4.5 5.0 5.5 V Vss 0 0 0 V Supply Voltage Unit Input High (Logic I) Voltage VIH 2.2 - 6.0 V Input Low (Logic 0) Voltage VIL -0.5'1 - 0.8 V NOTE: ·1 V1L mm =-20VforpulsewKlth:s IOns • DC CHARACTERISTICS (T. = 0 to +70°C, Vee = 5 V ± 10%, Vss = 0 V) Symbol Min. Typ.'1 Max. Unit Input Leakage Current Ilul - - 2.0 p.A Vee = max. Y,n = Vss to Vee Output Leakage Current IILOI - - 2.0 p.A CS = VIH VOU! = Vss to Vee Operating Power Supply Current lee - 70 120 rnA CS = VIL , loul = 0 rnA, min. cycle Standby Power Supply Current IS8 - 30 60 rnA CS = VIH, min. cycle IS81'2 - 0.02 IS81 '3 - - 2.0 0.2 rnA rnA oV :S Von :s 0.2 V or Output Low Voltage VOL - - 0.4 V IOL=SmA Output High Voltage VOH 2.4 - - V IOH = -4.0mA Item Standby Power Supply Current (I) Test Conditions CS 2: Vee -0.2 V V,n 2: Vee - 0.2V NOTES: *1 TypICal hmltsare aI Vee = 5 0 V, T.. = 25°C amd specified loading "'2 JP-ver510n ·3 UP-version • CAPACITANCE (T. = 25°C, f = IMHz) Symbol Mm. Max. Unit Input Capacitance Con 6 pF Von =OV Input/Output Capacitance CYO - 11 pF VI/O = OV Item NOTE: Test Conditions I ThiS parameter IS sampled and not 100% tested • AC CHARACTERISTICS (T. Test Conditions = 0 to +70°C, Vee = 5 V ± 10%, unless otherwise noted.) • Input and output timing reference levels: 1.5 V • Output load: See Figures • Input pulse levels: Vss to 3.0 V • Input rise and fall times: 5 ns Output Load (A) Output Load (B) (for IcHZ.IcLZ' tWHZ & +5V !ow) +5V 48012 Dout 0---+,---+ 25512 NOTE: 48012 Dout 30pF' 0--;---+ 255!2 5pF' *.ncluchng scope &. JIB $ HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 271 HM624256 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Read Cycle Item HM624256-35 Symbol Min. HM624256-45 Max. Min. Max. Unit Read Cycle Time tRC 35 - 45 - Address Access TIme IAA - 35 45 ns Chip Select Access TIme tACS - 35 - 45 ns IeLZ') ChIp SelecllOn to Output In Low-Z ns 10 - 10 - ns IS - 23 ns ns IoE - Output Enable to Output in Low-Z 10LZ ') 0 - 0 - Chip Deselection to Output In High-Z IeHZ ') 0 20 0 20 ns ChIp Disable to Output in High-Z 10HZ') 0 10 0 l5 ns Output Hold From Address Change IoH 5 - 5 tpu 0 - 0 - ns ChIp Selection to Power Up Time ChIp Deselectlon to Power Down Time tpo - 30 - 30 ns Output Enable to Output Valid Read Timing Waveform (1) '1, '2 t.e Address OE tOLZ Dout Read Timing Waveform (2) '1, '2, '3, '5 I.e Address tOM to. Dout $HITACHI 272 Hitachi America, Ltd .• Hitachi PIa2a • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ns - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 2 4 2 5 6 Series Read Timing Waveform (3) *1, *2, *4, *5 NOTES: '" I Transition IS --9 _l~ICLZ-.&xx-~---- Doul measured ± 200 mv from steady scate voltage with Load (B) This parameter IS sampled and not 100% tested "'2 WE IS high for read cycle "'3 Device IS conltnuously selected, CS = VIL *4 Address valid prior to or cOincident wllh "'5 DE = CS tmnsllton low VIL • Write Cycle Symbol Item HM624256-35 HM624256-45 Unil Min. Max. Min. Max os Write Cycle Time Iwe 35 lew 30 - 45 Chip Selection to End of Write - 40 - 0 - ns 35 ns 3 - 40 ns tAW 30 Address Setop TIme tAS 0 Wnte Pulse Width twp 30 Wnte Recovery Time tWR 3 - Output Disable to Output in High-Z*1 10HZ 0 10 0 15 ns Write to Output in High-Z*1 tWHZ 0 10 0 15 ns Data to Write Time Overlap tDW 20 25 - ns Data Hold From Write Time tDH 0 - 0 - ns Output Active From End ofWrite*1 tv.v 0 - 0 - ns Address Valid to End of Write NOTE: 1 TranSibon IS measured ::I:: ns ns 200 mV from steady state voltage With l.Dad (8) TIus parameter IS sampled and not 100% tested Write Timing Waveform (1) Address Icw Dou! IDW IDK DIn .HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 273 HM624256Series----------------------------Write Timing Waveform (2) ·6 Address tew t WP ., tow Dout laH·' tDW Din NOTES: *1 TransitIOn IS measured ::1:200 mV from high Impedance vollage with Load (B) This parameter IS sampled and not 100% teSled *2 A Write occurs dunng the overlap (twp) of a law CS and a low WE *3 tWR IS measured from the earher of CS or WE gomg high to the end of wnte cycle *4 Durmg this penod, I/O pms are m the output state so that the mput signals of the OPPOSite phase to the outputs must not be apphed *5 If the CS low transition occurs simultaneously With the WE low translbons or after the WE transition, output remam *6 OE IS contmuously low (00 In a high Impedance state = VIL) *7 DoUT IS the same phase of wnte data of this wnte cycle *8 DaUT IS the read data of next address *9 If CS IS low dunng Ihls penod. 110 pms are the output state Then the data Input signals of OPPOSite phase to the outputs must not be apphed to them (OP-28C) (CP-280) D (0 094~~ ~~) 18 17 I8S4 (07Jlmn 3410(1366) 3S 56maK(1 AOOmax) I I~ II t:~~114 o 63(0025)MN ~I ~~~O~ ~(OOO4) (SEATING PLANE) • 274 y, EJ1I0'""'0S0)1"" HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM624257 Series 4-Bit CMOS Static RAM Under Development HM624257 SERIES 262144-WORD x 4-81T HIGH SPEED CMOS STATIC RAM The Hitachi HM624257 is a high speed 1M static RAM organized as 256-kword x 4-bit. It realizes high speed access time (35/45 ns) and low power consumption, employing the advanced CMOS process technology and high speed circuit designing technology. It is most advantageous for the field where high speed and high density memory is required, such as the cache memory for main frame or 32-bit MPU. The HM624257, packaged In a 400-mil plastic SOJ IS available for high density mounting. , • FEATURES • Single 5 V supply and high density 32-pin package (SOJ) • High speed: Access time 35/45 ns (max.) • Low power dissipation Active mode: 350 mW (typ.) Standby: 100 p.W (typ.) • Completely static memory: No clock or timing strobe required • Equal access and cycle time (CP-32D) • Directly TIL compatible: A" inputs and outputs • ORDERING INFORMATION PIN ARRANGEMENT Type No. Access Time Package 35 ns 45 ns 400 mil 32-pin Plastic SO] (CP-32D) HM624257JP-35 HM624257JP-45 HM624257UP-35 HM624257UP-45 35 ns 45 ns Top View • PIN DESCRIPTION Pin Name Function NC Vee Ao A17 Al A16 A2 A1S A3 A4 A14 As A12 A13 Ao-AI7 Address A6 All 11-4 11-04 Data Input A7 NC CS Chip Select Data Output WE Write Enable Vee Power Supply Vss Ground As 11 Ag 12 Al0 01 14 02 13 03 CS 04 Vss WE .HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 275 HM624257 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - • BLOCK DIAGRAM AO Al A2 _Vee AJ -Vss Memory Arrray A4 256X 1,024 A5 AS A7 A8 01 04 cs wE~-1~~------------------------------------~ • ABSOLUTE MAXIMUM RATINGS Item UOIt Symbol Value Voltage on any Pin Relative to VSS VIn _0.5" to + 7.0 V Power DissipatIon PT 10 W o to ·C +70 Operating Temperature Range Topr Storage Temperature Range T stg -55 to + 125 ·C Storage Temperature Range Under Bias T b1m• -10 to +85 ·C *1 V NOTE: In mm = -2 0 V for pulse width :5 10 ns • FUNCTION TABLE CS WE Mode Vee Current Dout Pin H X Not Selected IS8 , IS81 High-Z - L H Read Icc Dout Read Cycle(' )-(2) L Write Icc High-Z Write Cycle(1 H2) L NOTE: x Ref. Cycle H or L .HITACHI 276 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - HM624257 Series • RECOMMENDED DC OPERATING CONDITIONS (T. = 0 to + 70°C) Item Symbol Min. Typ. Max. Vee 4.5 5.0 5.5 V Vss 0 0 0 V Supply Voltage Umt Input High (Logic I) Voltage V IH 2.2 - 6.0 V Input Low (Logic 0) Voltage V IL -0.5'1 - 0.8 V NOTE: *1 V1L mm == -20 V for pulse width ~ 10 ns • DC CHARACTERISTICS (T. = 0 to +70°C, Vee = 5 V ± 10%, Vss = 0 V) Symbol Min. Typ.'1 Max. Umt Input Leakage Current IILlI - - 2.0 p.A Vee = max. VIR = Vss to Vee Output Leakage Current IILOI - - 10.0 p.A CS = V IH VIIO = Vss to Vee Operatmg Power Supply Current Icc - 70 120 rnA CS = V IL , 11/0 = 0 rnA, mm. cycle Standby Power Supply Current ISH - 30 60 rnA CS = V lH , mm. cycle Standby Power Supply Current (I) Isol - 0.02 2.0 rnA Item Test Conditions CS;;,Vee -0.2V :s VIR :s 0.2 V or VIR ;;, Vee - 0.2V oV Output Low Voltage VOL - - 0.4 V IoL = 8 rnA Output High Voltage VOH 2.4 - - V IoH = -4.0 rnA NOTE: 1 Typical hmll'i are at Vee = 5 0 V. T. = +2SoC and specified loadmg • CAPACITANCE (T. = 25°C, f = IMHz) Symbol Min. Max. Unit Input Capacitance Item C IR - 6 pF VIR =OV Output Capacitance Cout - II pF VOU! = OV NOTE: Test Conditions I This parameter IS sampled and not 100% tested • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 2n HM624257 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - • AC CHARACTERISTICS (Ta = 0 to +70°C, Vee = 5 V ± 10%, unless otherwise noted.) Test Conditions • Input and output timing reference levels: 1.5 V • Output load: See Figures • Input pulse levels: Vss to 3.0 V • Input rise and fall times: 5 ns Output Load (A) Output Load (B) (for tCHZ' tClZ' tWHZ & 5V tow) 5V 4800 4800 Dout 255Q ~ Dou! 30pF- 255Q ~i> 5pF· 7/7NOTE: 7/7" *Includmg scope & Jig • Read Cycle HM624257-35 Item HM624257-45 Symbol VOlt Mm. Max. Min. Max. Read Cycle Time tRC 35 - 45 - ns Address Access Time tM - 35 - 4S ns ChIp Select Access TIme tAcs - 35 Output Hold From Address Change IoH S 5 45 ns - ns ChIp Selection to Output in Low-Z tLZ 'I S - 5 - ns ChIp DeselectlOn to Output in Hlgh-Z tHZ 'I 0 20 0 20 ns Chip Selection to Power Vp Time tpu 0 - 0 - ns ChIp Deselecllon to Power Down TIme tpD - - 30 ns NOTE: I Tran.. \tIon I~ mea~urcd ± 200 mV from ..teady voltage With Load (B) Th.\ parameter .'> ~ampled and not 100% te .. ted • 278 HITACHI Hitachi America, ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM624257 Series Read Timing Waveform (1) '1, '2 I" Address 10H Dout Data Vahd Read Timing Waveform (2) '1, '3 "e I" I" Data V.lid Doul High Impedance High Impedance Vee supply ---------------+r------------------------~--~ Icc 50% currC'nt NOTES: *I WE IS high for read cycle *2 Device IS contmuously selected. CS = VIL *3 Address vahd pnor to or comcldent With CS transition low • Write Cycle HM624257-35 Item Symbol HM624257-45 Unit Mm. Max. Min. Max. twe 35 - 45 lew 30 - 40 - ns Chip Selection to End of Write Address Valid to End of Write tAW 30 - 40 - ns ns Write Cycle Time ns Address Setup Time tAS 0 - 0 - Wnte Pulse Width twp 30 - 35 - ns Write Recovery Time tWR 3 3 tDW 20 - ns Data Valid to End of Write - Data Hold Time tDH 3 - 3 - ns Write Enabled to Output in Hlgh-Z twz 'I 0 15 0 20 ns Output Active From End of Wnte !ow'1 5 - 5 - ns NOTE: I TranSition IS measured This parameter IS ns *' 200 m V from steady state voltage With Load (8) sampled and not 100% tested ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 279 HM624257 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - Write Timing Waveform (1) (WE Controlled) Address cs WE Dm Duut Write Timing Waveform (2) (CS Controlled) lwe Address I.. Iwn"J lew WE I,. Data Dm In Valid Duu! NOTES: *I A wrlle occur~ dUring the overlap of a low CS and a low WE *2 tWR I~ mea~ured from the earlier of CS or WE gomg high to the end of write cycle *3 If the CS low tramilion occurs Slmult.l.neou~ly with the WE low trdn<;ltlOnl> or after the WE trao!>ltlOn, output buffer., remain In a high Impedance "tate *4 DOUT 1<; the ,>arne pha<;e of write data of Ihl'> write cycle $ 280 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM624257 Series • Low Vee Data Retention Characteristics (T. = 0 to +70·C) Symbol Min Typ. Max. Unit Vee for Data Retention VDR 2 - - V Data Retention Current icCDR - 2 100'1 /lA !cDR 0 - tR 5 - ns - ms Item Chip Deselect to Data Retention Time Operation Recovery Time NOTE: lest Conditions Cs'",Vcc -0.2V, Von '" Vcc-0.2Vor V :S VIn :S 0.2 V o 'I Vcc=30V Low Vee Data Retention Timing Waveform vu-------~ 4.5V-------- cs _____J w ____________________________________________ _ • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 281 HM624257 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - (CP-32D) (0 094~~ ~?l) 2071(0815) 2108(0830)ma. o 63(0 32 025)MIN ::;~~9~J\i!~J\i!iroJWOOQ~1~ 50,0(0004 1 ,SEATiNG Pl.AN[\ ----U.-- o 43±O 10 .0 OI7±O 0041 uJ.L:' ~ 3 S±D 26 -&~!_~ o~o)) .HITACHI 282 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM66204 Series--- Maintenance Only 131072-word x 8-bit High Density CMOS Static RAM Module The HM66204 is a high density 1 M-bit static RAM module consisted of 4 pieces of HM62256FP/LFP products (SOP type 256k static RAM) and a HD74HC138FP equivalent product (SOP type CMOS decoder logic). An outline of the HM66204 is the standard 600 mil width 32 pin dual-in-line package. Its pin arrangement is completely compatible with 1 M-bit monolithic static RAM. The HM66204 offers the features of low power and high speed by using high speed CMOS devices. And, the HM66204 makes high density mounting possible with no surface mount technology. These features make the HM66204 ideally suited for high density compacted memory systems. (DM-32A) Pin Arrangement Features • High density 32 pin DIP Mounting 4 pcs. of 256k static RAM (SOP; HM62256FPI LFP) and CMOS decoder logic (SOP; HD74HC138FP equivalent) • Pin compatible with 1 M monolithic static RAM • • • • • • High speed - Fast access time 120 ns/150 ns (maximum) Equal access and cycle time Completely static RAM - No clock or timing strobe required Low power standby and low power operation - Standby 40 jJ.W (typical) (L-version) - Operation 50 mW(typical) (f = 1 MHz) Common data input and output, three state outputs Capable of battery backup operation (L-version) Ordering Information Part No. Access Time Package Pin Description 120 ns HM66204-12 HM66204-15 150 ns - - - - - - - - - - - - - - 600-mil 32-pin DIP HM66204L-12 120 ns 150 ns HM66204L-15 Absolute Maximum Ratings Symbol Item Voltage on any pin relative to Vss VT Topr Operating temperature range Tstg Storage temperature range Storage temperature range under bias Tbias Power dissipation PT Rating -0.5 to +7.0 o to +70 -55 to +125 -10 to +85 1.0 Pin Name Unit V °c °c °c AO- A16 1/01 - 1/08 CS OE WE Vee Vss NC Function Address Input/Output Chip Select Output Enable Write Enable Power Supply Ground No Connection W ~HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 283 HM66204 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Block Diagram AO 1/01 *1 RAM :-';o]-\Jo4 IIM62256FI'I.f wd"r H1J74H( 1381- P ur * I" '>t.lUllalenl Mode Selection Mode Not selected (Power down) Read Write CS H L L L WE OE I/O X X High-Z H L L L H L Dout Din Din Current ISB,ISBI ICC ICC ICC Note Read cycle (1) - (3) Write cycle (1) Write cycle (2) Note) X = Don't care (H or L) Electrical Characteristics Recommended DC Operating Conditions (Ta =_0_t_o_+_7_0_0_C-'-)__________________________ Symbol Min Parameter Typ Max Unit Notes Supply voltage Vee Vss Input high (logic I) Voltage Input low (logic 0) Voltage 4.5 0 3.85*' 2.2 5.0 0 -0.5 5.5 0 6.0 6.0 0.8 V V V V V A15, A16, CS Others except A15, A16, CS Note) *1. VIH min is determined by Vee x 0.7. DC Characteristics (Ta = 0 to +70°C, VCC = 5V ± 10%, VSS = OV) Parameter Symbol Min Typ'l Input leakage current Output leakage current IIUI Max 8 2 Unit Test Conditions /JA /JA Vln = Vssto Vee Vtn - Vss to 3.5V 8 /JA CS = V/H or OE = V/H VI/O= Vssto Vee 2 /J A IILOI cs = V/H or OE = V/H VI/O= VSS to 3.5V ICC 10 25 rnA CS= VIL 11/0 = OmA Average operating power supply current (I) ICCI 37 35 80 80 rnA MIN. cycle duty = 100% 11/0 - OmA Average operating power supply current (2) lee2 10 15 rnA CS = VIL, VlH = Vec VIL = OV, 11/0 = OmA f= IMHz Standby power supply current: DC ISB 2 12 rnA 8 400 /JA Operating power supply current: DC Standby power supply current (1): DC Output low voltage . Output high voltage Note) 'I. Typical values are at Vee ISBI 0.16 8 rnA V VOL 0.4 2.4 V VOH =5.0V, Ta= +2Soe and specified loading . • 284 Notes -12 -15 CS = VlH CS ~ Vee-0.2V HM66204L AI5 ·A16 ~ Vee - 0.2V Series or OV :::;; A15· AI6 :::;; 0.2V IOL = 2.1 rnA IOH = -1.0 rnA HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 6 2 0 4 Series Capacitance (Ta = 25°C, f = I MHz) -- - - - - - - -- - - --- - - - - - - - - - - - - - Parameter Inpu-'-ca-pa-citanc~ Input/outPut capacitance Symbol Cin Min Typ CliO Max 45 Unit pF Test Conditions Yin = OV 50 pF VIIO - OV ~~~~~--~~~------~~~--------~--------- Note) This parameter is sampled and not 100% tested. AC Characteristics (Ta = 0 to +70°C, VCC = 5V ± 10%, unless otherwise noted) AC Test Conditions • Input pulse levels: O.BV to 4.0V ... CS, A15, A16 O.BV to 2.4V ... Other pin except A15, A16 • Input rise and fall times: 5 ns • Input and output timing reference level: 1.5V • Output load: 1 TTL Gate and C L (100pF) (Including scope & jig) CS", Read Cycle HM66204-12 HM66204-15 Unit max min min max Read cycle time 120 150 ns tRC 120 150 ns Address access time tAA -------120 150 ns Chip select access time tACS ns__ 60 70 _ _ _ _ Output enable to output valid_ _ _ _ _ _tOE --=--='--___---:--:,---_______ -:--=-_ _ _ _ Output hold from address change 10 10 ns tOH 10 Chip selection to output in low Z 10 ns tCLZ 5 ns 5 tOLZ Output e_~~ble to out~ut!_'!.low Z ns Chip deselection to output in high Z 40 0 50 0 tCHZ ns Output disable to output in high Z 40 0 SO 0 tOHZ Symbol Parameter Read Cycle Timing No.1 ·1 IRC Address IAA IDE IOLZ I-----IACS --+---i ICLZ Dout Read Cycle Timing No. 2. 1 ,.2,,4 IRC Address IOH IAA IOH Dout Data Valid • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 285 HM66204 Series---------------------------------- Read Cycle Timing No. 3.1 • ·3, "4 IC//Z /CLZ Dout Data Vahd Notes) *1. WE is high for read cycle. ·2. Device is continuously selected, ES = VIL. ·3. Address should be valid prior to or coincident with CS transition low. *4. Cffi= VIL. Write Cycle Parameter Symbol Write cycle time Chip selection to end of write Address valid to end of write ----_. Address setup time Write pulse width Write recovery time Write to output in high Z Data to write time overlap Data hold from write time Output disable to output in high Z Output active from end of write Write Cycle Timing No.1 HM66204·12 min max 120 100 100 0 90 5 0 40 50 HM66204-15 min max 150 120 120 0 110 5 ------" twc tcw tAW tAS twp tWR tWHZ tow 0 0 5 tOH tOHZ tow 0 60 0 0 5 40 Unit ns ns ns ns ns ns ns ns ns ns ns 50 50 (Of Clock) we ) V-- Address ) t--tWR*~ LL/' \\1\ t---tAS1\\\ \ " \ tOHZ*3 Dout Din ~ lew I /////// tAw \ \ \ \\, twp *1 \\\\\\\\\\ ////////// tDW / \. \. 1\ tDH XX ~HITACHI 286 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 6 2 0 4 Series Write Cycle Timing No. 2*5 (CE Low Fixed) lwe Address lew lAW lwp* WE 1 IOH low Dout IDW tDH Din Notes) *1. A write occurs during the overlap (twp) of a low CS and a low WE. *2. tWR is measured from the earlier of CS or WE: going high to the end of write cycle. *3. During this period, 1/0 pins are in the output state. The input signals of opposite phase to the outputs must not be applied. *4. If the CS low transition occurs simultaneously with the WE low transition or after the WE low transition, outputs remain in a high impedance state. *5. OE is continuously low. (OE = VIL> *6. Dout should be held in phase of the written data during this write cycle. *7. D out is the read data of next address. *S. If CS is low during this period, 1/0 pins are in the output state. The input signals which are opposite to the output level should not be applied to 1/0 pins. Low Vee Data Retention Characteristics (Ta =O°C to +70°C) Data retention characteristics is guaranteed only for L version. Parameter Symbol Vee for data retention Min Typ Max 2.0 Da ta retention current ICCDR Chip deselect to data retention time tCDR 200 o Operation recovery time Unit Test Conditions v CS L Vcc-o.2V Al5, Al6 L VCC-0.2V or Al5, Al6 ~ 0.2V /JA VCC= 3.0V, CS L 2.SV Al5 •Al6 2'. 2.SV or OV ;£ A15· Al6 ;£ 0.2V ns ns See retention waveform Note) *\. tRC = Read Cycle Time. Low Vee Data Retention Waveform Vee VDR0/;2.0V cs;;;: l'ec-O.2V ov --- --------------------------------------------------------• HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 287 HM66204 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Package Dimensions; Unit: mm (inch) 47.50(1.870 ) C48.26max. (1.900max.)) 2.54(0.100) _+----+-.,:;4.""70(0.185) C5.08max. (O']'OOmax.») 1.02(0.040) 0.35-0.59 (0.014-0.023) I~~HI\ q ~ '/ 'A" 'tl IY !.J " 0.20-0.36 (0.008-0.014) 15.24(0.600) • 288 ~ - 0 - -15- HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 HM63921-20/25/35 - Product Preview - - - - - - - - 2K x 9-Bit CMOS Parallel In-Out FIFO Memory • DESCRIPTION The HM63921 is a First-In, First-Out memory that utilizes a high performance static RAM array with internal algorithm that controls, monitors and declares status of the memory by empty flag, full flag and half-full flag, to prevent data overflow or underflow. Expansion logic warrants unlimited expansion capability in width and depth. Both read and write are independent from each other and their corresponding pointers are designed to select the proper locations out of the entire array serially without address information to load or unload data. Data is toggled in and out of the device through the use of the write enable (W) and read enable (A) pins. The device has a read/write cycle time of 30/35/45ns. Organization of HM63921 provides a 9-bit data bus. the ninth bit could be used for control or parity for error checking at the option of the user. The HM63941 is fabricated using the Hitachi CMOS 1.3micron technology. The device is available in DIP. • • • • • • • • • • • FEATURES First-In, First-Out Dual Port Memory 2k x 9 Organization Low-Power CMOS 1.3micron Technology Asynchronous and Simultaneous Read and Write Fully Expandable in Depth and/or Width Single 5V (± 10oAl) Power Supply Empty and Full Warning Flags Half-Full Flag Access Time .................................20/25/35ns Package ................. 300-mil 28-pin Plastic DIP Package (DP-28NA) • PIN ARRANGEMENT W Vee D8 D3 D2 D1 Do D4 D5 D6 D7 FURT RS EF XO/HF Xi FF 00 01 02 03 08 07 06 05 04 R Vss • ORDERING INFORMATION Type Name Access Time Package HM63921P-20 HM63921P-25 HM63921P-35 20ns 25ns 35ns 300-mil 28-pin Plastic DIP (DP-28NA) $ tTop View) • PIN DESCRIPTION Pin Name Function DO-Dg Data Inputs RS Reset W Write Enable R Read Enable FL First Load RT Retransmit XI Expansion-In XO Expansion-Out HF Half-Full Flag FF Full Flag EF Empty Flag Qo-Qg Data Outputs HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 289 HM63921-20/25/35 - - - - - - - - - - - - - - - - - - - - - - - - - - • BLOCK DIAGRAM 00 01 02 03 D4 0506 0708 W Write Pointer Row Decode Memory Array 2048 X 9 Row Read Decode Pointer Column Decoder co 01 Q2 Q3 Q4 05 06 07 08 • 290 HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - HM63921·20/25/35 • ABSOLUTE MAXIMUM RATINGS Item Symbol Rating Terminal Voltage( l) VT -0.5(2) to +7.0 V Power Dissipation PT 1.0 W Operating Temperature Top, Storage Temperature Ts~ T blas Storage Temperature Under Bias NOTES: o to Unit °C +70 -55 to + 125 °C -10 to +S5 °C I. Relative to Vss. 2. -3.5V for pulse WIdth :s IOns. • Recommended DC Operating Conditions (T. = 0 to +70°C) Parameter Symbol Min. Typ. Max. Unit Vee 4.5 5.0 5.5 V Vss V IH 0 0 0 V 2.2 -0.5(1) - 6.0 V O.S V Supply Voltage Input Voltage NOTE: V1L I. -3.0V for pulse width :S IOns. • DC CHARACTERISTICS (T. = O°C to +70°C, Vee = 5V ± 10%) Parameter Symbol Test Conditions Min. = 5.5V, Vm = OV - Vee = V1H , VOUI = OV - Vee Input Leakage Current IILlI Vee - Output Leakage Current IIwl R -20 Operating Power Supply Current Average Operating Current Icel -25 -35 = W = RS = FLIRT = V1H ISBl R All inputs Output High Voltage ISB2 VOH Output Low Voltage VOL Standby Power Supply Current ~ - Vee -0.2Vor::;; Vee = -4mA IOL = SrnA 2.4 IoH - Typ. Max. Unit - 2 p.A 2 p.A - 120 rnA 110 rnA - 100 rnA 10 rnA - I rnA - - V 0.4 V • CAPACITANCE (T. = 25°C, f = lMHz) Symbol Test Conditions Typ. Max. Input Capacitance Parameter Cm Vm = OV - 6 pF Output Capacitance COUI VOUI = OV - 10 pF NOTE: Unit 1. This parameter is sampled and not 100 % tested. • AC CHARACTERISTICS (Ta = O°C to 70°C, Vee = 5 ± 10%) • Test Conditions • Input Pulse Levels: Vss to 3.0V • Input and Output Timing Reference Level: 1.5V • Input Rise and Fall Times: 5ns • Output Load: See Figure +5V DOU~ 480n 255n L j 3 0 pF • Output Load *Inc1uding scope and jig. • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 291 HM63921·20/25/35 - - - - - - - - - - - - - - - - - - - - - - - - - - - • Read Cycle Parameter Read Cycle Time Access Time Read Recovery Time Read Pulse Width Read Low to DB Low Z Read High to DB High Z Data Valid from Read High Read Pulse Width After Empty Flag High Write High to DB Low Z (Read Data Flow Through Mode) NOTE: Symbol tRC tA tRR tRPW tRLZ(1) tRHz(1) toH tRPE tWLZ(1) HM63921-20 Min. Max. 30 20 10 20 5 15 3 20 3 - HM63921-25 Min. Max. 35 25 10 25 5 15 3 25 3 - HM63921-35 Min. Max. 45 35 10 35 5 20 3 35 3 - Unit ns ns ns ns ns ns ns ns ns I. tRLZ, tRHZ and tWLZ are sampled and not 100% tested. • Write Cycle Parameter Symbol Write Cycle Time twc Write Recovery Time HM63921-20 Min. Max. 30 - - 10 25 - 15 0 - 0 - 20 - 25 - 10 tWR twpw 20 tDS 10 Data Hold Time tDH Effective Write Pulse Width After Full Flag High tWPF Write Pulse Width Data Setup Time HM63921-25 Min. Max. 35 - HM63921-35 Max. Min. 45 10 Unit ns ns 35 20 - ns - ns 5 - ns 35 - ns • Reset Cycle Parameter Symbol Reset Cycle Time tRSC tRs Reset Pulse Width HM63921-20 Min. Max. 30 20 Reset Setup Time tRsS 0 - Reset Recovery Time tRSR 10 - HM63921-25 Min. Max. 35 25 0 10 - HM63921-35 Min. Max. 45 35 Unit ns ns 0 - ns 10 - ns • Retransmit Cycle Parameter Symbol Retransmit Cycle Time tRTC tRT Retransmit Pulse Width Retransmit Setup Time tRTS tRTR Retransmit Recovery Time • 292 HM63921-20 Min. Max. 30 20 - 0 10 - - HM63921-25 Min. Max. 35 20 0 - 10 - HM63921-35 Min. Max. 45 - Unit ns 35 - ns 0 - 10 - ns ns HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - HM63921-20/25/35 • Flag Timing Parameter Reset to Empty Flag Low Symbol HM63921-20 HM63921-25 HM63921-35 Min. Min. Max. Min. Max. Max. Unit tEFL - 20 - 25 - 35 ns Reset to Full Flag High tFFH - 20 - 25 - 35 ns Reset to Half-Full Flag High tHFH - 30 - 35 - 45 ns Read Low to Empty Flag Low tREF - 20 - 25 - 35 ns Read High to Full Flag High tRFF - 20 - 25 - 35 ns Write High to Empty Flag High tWEF - 20 - 25 - 35 ns Write Low to Full Flag Low tWFF - 20 - 25 - 35 ns Write Low to Half-Full Flag Low tWHF - 30 - 35 - 45 ns Read High to Half-Full Flag High tRHF - 30 - 35 - 45 ns • Expansion Timing Parameter Expansion in Setup to Write or Read Expansion in Recovery Time Expansion in Pulse Width HM63921-20 HM63921-25 HM63921-35 Min. Max. Min. Max. Min. tEFL - 15 - 20 - 30 ns tRFF - 15 - 20 - 30 ns - 10 - 10 - ns Symbol Max. Unit tWHF 10 Expansion Out High Delay From Clock tREF 10 - 10 - 10 - ns Expansion Out Low Delay From Clock tRFF 10 - 10 - 15 - ns ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 293 HM63921-20/25/35 - - - - - - - - - - - - - - - - - - - - - - - - - - SIGNAL DESCRIPTIONS tions, until one or more write operations are completed, or FIFO is set to retransmit. Inputs • Reset (RS) The device is reset whenever RS input is taken to low state, for minimum reset pulse width. When device is reset, both read and write pointers are set to the first location. A reset cycl~ is required after power on. Both read enable (R) and write enable (Vii) inputs must be in the high state dur.!!!g reset. Empty!@g (EF) will go low and full flag (FF) and half-full (HF) will go high during reset cycle. • Write enable (Vii) _ Write cycle is initiated at the falling edge of W, if the full flag (FF) is not set, provided that data setup and hold time requirements relative to the rising edge of (Vii) are met. Data is stored in the device sequentially and independently of any simultaneous read operation. To inhibit further write operations and prevent internal data overflow full flag (FF) will go low. • Read enable (Fi) _ Read cycle is initiated at the falling edge of R, if the empty flag (EF) is not set. Data is accessed on a first-in, first-out basis independently of simultaneous write operation. As read enable (Fi) goes high, all outputs will return to high impedance state, till next read operation. After the last data has been read from the FIFO, the empty flag (EF) will go low, preventing further read operations with 0..!ili'ut kept in high impedance state. Empty flag (EF) will go high during a valid write cycle (twEF), thereafter a valid read can start. • First load/retransmit (FLIRT) For depth expansion mode, this pin is grounded to indicate that it is the first device, while this pin of the rest of devices should connect to Vee for correct operation. In single device mode, this pin resets the read pointer to the beginning of the FIFO memory, therefore data can be reread from the beginning. Both R and Vii should be kept high while RT is taken low. • Expansion-in (Xi) For single device mode expansion-in (Xi) is grounded. For depth expansIOn mode, expansion-in @ should be connected to expansion-out (XO) of previous device. • Data In (Do to Os) Data inputs for 9-bit wide data. • Expansion-out (XO)/Half-full flag (HF) This output has dual functionality depending how it is used. In de..e!!.l expansion configuration expansion-out (XO) is connected to next expansion-in (Xi). The expansion-out (XO) of the last FIFO is connected to the expansion-in (Xi) of the first FIFO. In this way the first FIFO indicates the next FIFO that it will receive the next data. In like manner, any FIFO which becomes full will indicate the next FIFO that it will receive the next data. The second function of this output is in stand alone and/or parallel expansion configurations to indicate the system user that the FIFO is almost full. • Data outputs (0 0 to as) Data outputs for 9-bit wide data. Th~se outputs are in high impedance state when R is in high state. VARIOUS OPERATIONS MODE _ • Single device mode If only one FIFO is used, the expansion-in (XI) pin should be grounded. • Width expansion mode Width expansion by 9-bit increments may be achieved when separately paralleling the data inputs and the data outputs. In this configuration any flags of any device may be used. To avoid output contention of the flags for short periods of time, the flag outputs should not be wired together. • Depth expansion mode Multiple of FIFOs could provide multiple of 2k x 9 as (N) x (2k) by 9-bits wide, where N is the number of FIFOs connected in depth expansion mode. The following arrangement must be provided. 1. First load (FL) of the first FIFO should be connected to ground. 2. All other (FL) should be connected to Vee. 3. Connect the expansion-out (XO) of each FIFO to e~nsion-in (Xi) of the...!!ext FIFO serially and XO of the last FIFO to XI of the first FIFO. 4. Connect all the empty flag (EF) t.Qgether to OR gate and connect all the full flag (FF) together to OR gate to obtain two separate valid empty flag (EF) and full flag (FF) outputs. Outputs • Full Flag (FF) The full flag (FF) will go low when FIFO is full, inhibiting further write operations until one or more read operations are completed or the FIFO is reset. 5. (RT) and (AF) will not be available in this mode. • Compound expansion mode Combination of width and depth expansion modes will provide larger FIFO arrays. • Empty flag (EF) The empty flag (EF) will go low when the FIFO becomes empty, inhibiting further read opera· ~HITACHI 294 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - HM63921-20/25/35 • TIMING WAVEFORM • Read Cycle tRPw 00-08 Data out valid Data out valid • Write Cycle twe twpw W ~ ) '" twpw tWR tos V ~ tOH :< Data in valid;- Do-D8 /IL 1'\ los tOH KData in valid) • Reset Cycle tRse R,W tRSR EF FF XO/HF NOTES: 1. W = R = VIH during reset. 2. tRSC = tRST. tRSR· .HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 295 HM63921-20/25/35 - - - - - - - - - - - - - - - - - - - - - - - - - - - • Retransmit Cycle tRTe tRT FURT '\ ./ V tRTS ~ R,W '!>K /f tRTR • Full-Flag Cycle (From Last Write to First Read) Last write Additional reads First Read First Read ~ R W FF • Empty-Flag Cycle (From Last Read to First Write) Last Read First Read First Read W R EF 00-08 @HITACHI 296 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - HM63921-20/25/35 • Half-Full Flag Cycle Write=Read+ 1023 , Write=Read+ 1023 Write=Read+ 1024 I".. tRHF ~ tWHF "'~ / V • Read Data Flow Through Mode Do-D8 w EF 00-08 • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 297 HM63921-20/25/35 - - - - - - - - - - - - - - - - - - - - - - - - - - - • Write Data Flow Through Mode FF Data in valid 00-08 00-08 • Expansion Out Cycle 1 Read from last ~~PhYSical address ~ -l~J tXOL txoH @HITACHI 298 Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM63921-20/25/35 • Expansion Out Cycle 2 (Read Data Flow Through Mode) Write to last physical address ------------------------~ • Expansion Out Cycle 3 ,---------------------- (Write Data Flow Through Mode) Read from last physical address ------------------------~ ~--------------------- w FF ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy· Brisbane, CA 94005-1819 • (415) 589-8300 299 HM63921-20/25/35 - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Expansion In Cycle tXI tXIR tXOL w tXIS Read from first physical address ~HITACHI 300 Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy. Brisbane, CA 94005-1819 • (415) 589-8300 HM63941-25/35/45 - Preliminary 4K x 9-Bit CMOS Parallel In-Out FIFO Memory • DESCRIPTION The HM63941 is a First-In, First-Out memory that utilizes a high performance static RAM array with internal algorithm that controls, monitors and declares status of the memory by empty flag, full flag and almost-full flag, to prevent data overflow or underflow. Expansion logic warrants unlimited expansion capability in width and depth. Both read and write are independent from each other and their corresponding pointers are designed to select the proper locations out of the entire array serially without address information to load or unload data. Data is toggled in and out olthe device through the use of the write enable (W) and read enable (Fi) pins. The device has a read/write cycle time of 35/45/60ns. Organization of HM63941 provides a 9-bit data bus. the ninth bit could be used for control or parity for error checking at the option of the user. The HM63941 is fabricated using the Hitachi CMOS 1.3micron technology. The device is available in DIP. • • • • • • • • • • • FEATURES First-In, First-Out Dual Port Memory 4k x 9 Organization Low-Power CMOS 1.3micron Technology Asynchronous and Simultaneous Read and Write Fully Expandable in Depth and/or Width Single 5V (± 10%) Power Supply Empty and Full Warning Flags Almost-Full Flag Access Time .................................25/35/45ns Package ..............................28-pin DIP Package (DP-28NA) • PIN ARRANGEMENT W Ds D3 D2 D1 Do Vee D4 D5 D6 D7 FLIRT X1 RS FF EF Qo Q1 02 03 Os VSS Q7 06 05 04 XO/AF R • ORDERING INFORMATION Type Name Access Time Package HM6394I P-25 HM63941P-35 HM63941P-45 25ns 35ns 45ns 28-pin Plastic DIP (Top View) • PIN DESCRIPTION Pin Name Function Do-Ds Data inputs RS Reset W Write enable R Read enable FL First load RT Retransmit XI Expansion-in XO Expansion-out AF Almost-full flag FF Full flag EF Empty flag Qo-Qs Data outputs ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 301 HM63941-25/35/45 - - - - - - - - - - - - - - - - - - - - - - - - - - • ABSOLUTE MAXIMUM RATINGS Symbol VT Rating -0.5(2) to + 7.0 Unit Terminal Voltage(1) Item Power Dissipation PT 1.0 Operating Temperature Storage Temperature Top, T stg W °C -55 to + 125 °C Storage Temperature Under Bias Tb,as -10 to +S5 °C NOTES: o to V +70 I. Relative to Vss. 2. -3.5V for pulse width:;; IOns. • ELECTRICAL CHARACTERISTICS • Recommended DC Operating Conditions (Ta = 0 to + 70°C) Parameter Symbol Min. Typ. Max. Unit Vee 4.5 5.0 5.5 V Vss V IH 0 2.0 -0.5(1) 0 0 Supply Voltage Input Voltage NOTE: V 1L - 6.0 V V - O.S V I. -3.0V for pulse width:;; IOns. • DC CHARACTERISTICS (Ta = O°C to +70°C, Vee = 5V ± 10%) Max. Unit Input Leakage Current Ilui Vee = 5.5V, Vm = OV - Vee - - 2 I'A Output Leakage Current IILOI R = VIH , Vout = OV - Vee Average Operating Current - - 2 SO I'A rnA R = W = RS = FLIRT = V IH All Inputs", Vee - 0.2V or s Vee - 10 rnA I rnA Output Low Voltage VOL IOL = SmA 2.4 - - Output High Voltage Iee2 ISB VOH Parameter Operating Power Supply Current Standby Power Supply Current Test Conditions Symbol Ieel IOH = -4mA Min. - Typ. - - 0.4 - V V • CAPACITANCE (Ta = 25°C, f = IMHz) Symbol Test Conditions Typ. Max. Unit Input Capacitance Cm pF C out - TBD Output Capacitance = OV VOUI = OV TBD pF Parameter Vm • AC CHARACTERISTICS (Ta = O°C to 70°C, Vee = 5 ± 10%) • Test Conditions • Input Pulse Levels: Vss to 3.0V • Input and Output Timing Reference Level: 1.5V • Input Rise and Fall Times: 5 ns • Output Load: See Figure +5V 4800 Dout 2550 L 30pF* h7 Output Load *Including scope and jig. ~HITACHI 302 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - HM63941-25/35/45 • Read Cycle Parameter Read Cycle Time Access Time Symbol tRc tA HM63941-25 HM63941-35 HM63941-45 Min. 35 Max. - Min. 45 Max. - Min. 60 - - 25 - 35 - 45 Max. Unit ns ns tRR 10 - 15 25 35 - 45 - ns tRPw - 10 Read Pulse Width Read Low to DB Low Z tRLZ 5 - 5 - 10 - ns Read High to DB High Z tRHZ - 15 20 ns toH 5 - 5 25 Data Valid from Read High 5 - ns Read Recovery Time - ns • Write Cycle Parameter Write Cycle Time Symbol HM63941-25 HM63941-35 HM63941-45 Unit Min. Max. Min. Max. Min. Max. twc 35 - 45 - 60 - ns - 10 - 15 - ns tWR 10 Write Pulse Width twpw 20 - 35 - 45 - ns Data Setup Time tDS 15 - 20 - 25 - ns Data Hold Time tDH 0 - 0 - 5 - ns Write Recovery Time • Reset Cycle Parameter Symbol HM63941-25 Max. Min. Max. 35 45 - Reset Pulse Width tRSC tRS 25 - Reset Recovery Time tRSR 10 - Reset Cycle Time HM63941-35 Min. 35 10 - HM63941-45 Unit Min. Max. 60 - ns 45 15 - ns - ns • Retransmit Cycle Parameter Symbol HM63941-25 HM63941-35 Min. Max. Min. 35 Max. HM63941-45 Min. Max. Unit tRTC tRT - 60 - ns 20 - 45 Retransmit Pulse Width 35 - 45 - ns Retransmit Recovery Time tRTR 10 - 10 - 15 - ns Retransmit Cycle Time • Flag Timing Parameter Symbol HM63941-25 Min. HM63941-35 HM63941-45 Max. Min. Max. Min. Reset to Empty Flag Low tEFL - 30 - 45 Read Low to Empty Flag Low tREF - 25 - 35 - Read High to Full Flag High tRFF - 25 - 35 Write High to Empty Flag High tWEF - 25 - Write Low to Full Flag Low tWFF - 25 - Write Low to Almost-Full Low tWAF - 30 Read High to Almost-Full High tRAF - 30 Max. Unit 60 ns - 45 45 ns ns 35 - 45 ns 35 - 45 ns - 40 - 55 ns - 40 - 55 ns ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 303 HM63941-25/35/45 - - - - - - - - - - - - - - - - - - - - - - - - - - SIGNAL DESCRIPTIONS Inputs • Aeset (AS) The device is reset whenever AS input is taken to low state, for minimum reset pulse width. When device is reset, both read and write pointers are set to the first location. A reset cycl~ is required after power on. Both read enable (A) and write enable (W) inputs must be in the high state durl!:!9 reset. Empty fla9.iEF) will go low and full flag (FF) and almost-full (AF) will go high during reset cycle. • Write enable (W) _ Write cycle is initiated at the falling edge of W, if the full flag (FF) is not set, provided that data setup and hold time requirements relative to the rising edge of 0N) are met. Data is stored in the device sequentially and independently of any simultaneous read operation. To inhibit further write operations and prevent internal data overflow full flag (FF) will go low. • Aead enable (Fi) _ Aead cycle is initiated at the falling edge of A, if the empty flag (EF) is not set. Data is accessed on a first-in, first-out basis independently of simultaneous write operation. As read enable (Fi) goes high, all outputs will return to high impedance state, till next read operation. After the last data has been read from the FIFO, the empty flag (EF) will go low, preventing further read operations with ~ut kept in high impedance state. Empty flag (EF) will go high during a valid write cycle (twEF), thereafter a valid read can start. • First load/retransmit (FLlAT) For depth expansion mode, this pin is grounded to indicate that it is the first device, while this pin of the rest of devices should connect to Vee for correct operation. In single device mode, this pin resets the read pointer to the beginning of the FIFO memory, therefore data can be reread from the beginning. Both Rand W should be kept high while AT is taken low. • Expansion-in (Xi) For single device mode expansi~n-in (Xi) is grounded. For depth expansion mode, expansion-in QQ) should be connected to expansion-out (XO) of previous device. • Data In (Do to Os) Data inputs for 9-bit wide data. Outputs • Full Flag (FF) The full flag (FF) will go low when FIFO is full, inhibiting further write operations until one or more read operations are completed or the FIFO is reset. tions, until one or more write operations are completed, or FIFO is set to retransmit. • Expansion-out (XO)/Almost-full flag (AF) This output has dual functionality depending how it is used. In de.E!!:l expansion configuration expansion-out (XO) is connected to next expansion-in (Xi). The expansion-out (XO) ~the last FIFO is connected to the expansion-in (XI) of the first FIFO. In this way the first FIFO indicates the next FIFO that it will receive the next data. In like manner, any FIFO which becomes full will indicate the next FIFO that it will receive the next data. The second function of this output is in stand alone and/or parallel expansion configurations to indicate the system user that the FIFO is almost full. • Data outputs (0 0 to as) Data outputs for 9-bit wide data. Th~se outputs are in high impedance state when A is in high state. VARIOUS OPERATIONS MODE • Single device mode _ If only one FIFO is used, the expansion-in (XI) pin should be grounded. • Width expansion mode Width expansion by 9-bit increments may be achieved when separately paralleling the data inputs and the data outputs. In this configuration any flags of any device may be used. To avoid output contention of the flags for short periods of time, the flag outputs should not be wired together. • Depth expansion mode Multiple of FIFOs could provide multiple of 4k x 9 as (N) x (4k) by 9-bits wide, where N is the number of FIFOs connected in depth expansion mode. The following arrangement must be provided. 1. First load (FL) of the first FIFO should be connected to ground. 2. All other (FL) should be connected to Vee. 3. Connect the expansion-out (XO) of each FIFO to e~nsion-in (Xi) of the.l!ext FIFO serially and XO of the last FIFO to XI of the first FIFO. 4. Connect all the empty flag (EF) lE,gether to OR gate and connect all the full flag (FF) together to OA gate to obtain two separate valid empty flag (EF) and full flag (FF) outputs. 5. (RT) and (AF) will not be available in this mode. • Compound expansion mode Combination of width and depth expansion modes will provide larger FIFO arrays. • Empty flag (EF) The empty flag (EF) will go low when the FIFO becomes empty, inhibiting further read opera- ~HITACHI 304 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - HM63941·25/35/45 • TIMING WAVEFORM • Read Cycle 00-08 Data out valid Data out valid • Write Cycle twc twpw tWR w ./ I'\. tos jI( tOH "-I" :<: Data in valid) 00-08 ( Data in valid) • Reset Cycle ~, " ' - _ _ _J / w tEFL EF NOTES: I. Vi 2. tRSC = tRST, tRSR. = R= VIH during reset. .HITACHI Hitachi Amenca, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 305 HM63941-25/35/45 - - - - - - - - - - - - - - - - - - - - - - - - - - • Retransmit Cycle FURT • Full-Flag Cycle (From Last Write to First Read) Last write First Read First Read R w FF • Full-Flag Cycle (Effective Write Pulse Width After FF High) FF W @HITACHI 306 Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - HM63941-25/35/45 • Empty-Flag Cycle (From Last Write to First Read) First Read First Write Last Read Data Out • Empty-Flag Cycle (Effective Read Pulse Width After EF High) EF • Almost-Full Flag Cycle Write=Read+4079 Write=Read+4080 Write=Read+4079 "\ I\.. I~RAF. ;V tWAF AF ~I\. ./ • / HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 307 ~HITACHI 308 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 Section 2 Cache Static RAM and Fast SRAM Modules .HITACHI@ 309 ~HITACHI 310 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 HM62A 168/HM62A188 SerieS-Preliminary • PIN-OUT Direct Mapped 8,192-Word x 16/18-Bit 2-Way 4,096-Word x 16/18-Bit Static Cache RAM • DESCRIPTION The Hitachi HM62A168/HM62A188 is a high speed 128/144-kbit static cache RAM organized as 2-way set associative 4k x 16/18 or direct mapped 8k x 16/18. By using two HM62A 168/HM62A 188 with Intel's 82385 cache controller a high performance 80386 system can be achieved. The HM62A 168/HM62A 188, packaged in a 52-pin PLCC is available for high density mounting. • FEATURES • Meets INTEL 82385 cache memory controller • High Speed Access Time ....................... .25/35/45ns (max.) • Address Latch • Pin Programmable for 8k x 16118 or 2-Way 4k x 16/18 (CP-52) • PIN DESCRIPTION • ORDERING INFORMATION Type No. Access Package HM62168CP-25 HM62168CP-35 HM62168CP-45 25ns 35ns 45ns 52-pin PLCC HM62188CP-25 HM62188CP-35 HM62188CP-45 25ns 35ns 45ns 52-pin PLCC • BLOCK DIAGRAM Topology lWo-Way Set Associative (MODE = Logic Low) Pm Name FunctIOn CALEN Cache Address Latch Enable MOOE Mode Select Ao to A\2 Address CSo, CSt Cache ChIp Select COEA,COEB Cache Output Enable CWEA,CWEB Cache WrIte Enahle 0 0 to 0'5 Oata Input/Output CE Cache Chip Enable NC/OPo,OP, No connectIOn Parity Input/Output Way A COEA - - - - - ; 4k, 8/9 4kx 819 • PIN ARRANGEMENT CWEA - - - - - - - l AI A2 M A4 AS AS ~ CALENA1 II. Nl AI0All AD ) DO to D151and OPO, DP1 All-L---.Jn AI 6 5 4 3 2 1 52 51 50 49 48 41 8 U 10 11 42 00Eii - - - - - + I 41 CWEii - - - - - + I 4k, 8/9 Ce - - - - ' 4kx8/9 40 Way B 15 30 ~==========~------~ 16 38 11 31 19 20 Topology Direct Map (MODE = Logic Low) COEA Va:; VccCSO 00Eii -'-----1 6\WA - . - - - - - ; em V.V.COEA l:WED CS; mil Vee Vee MOllE (Top View) CWEii A12 AD ~ DO 10 0151and OPO. OPI All CALEN Ce------o---f----' ~=============~---~ CSI ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra POint Pkwy. Brisbane, CA 94005-1819. (415) 589-8300 311 HM62A168/HM62A188 Series - - - - - - - - - - - - - - - - - - - - - - - - • FUNCTION TABLE • Two-Way Mode (Mode = High) 2-4K x 16/18 110 Pin Input Signal CWEA CWEB CE H CS o X CS I X COEA X COEB X X X H H X X X L L H L H H H L L H H L H L L L L H H L H L H H H H L L L L H H H Function Do-D7/DPo Ds-D'5IDP , X High-Z High-Z X High-Z High-Z Disabled Output High-Z Read Way A H Output High-Z Read Way B H High-Z Read Way A High-Z Output Output Output Output Read Way A Output High-Z Write Way A Disabled Read Way B L L L H L H H Output L L H X X L H Input L L H H L X X X X H L L L H Input High-Z L H L X X H L High-Z Input Write Way B L L L X X L H Input Input Write Way A Read Way B High-Z Write Way B Input Write Way A L L L X X H L Input Input Write Way B L L H L Input High-Z Write Way A & B L L L High-Z H X X L L X X Input Write Way A & B L L L X X L L Input Input Write Way A & B • Direct Mode (Mode = Low) 8K x 16/18 Input Signal CE CSo CS, COEA COEB CWEA CWEB 110 Pin D g-D I5 IDP I Function H X X X X X X Do-D7IDPo High-Z High-Z Disabled X H H X X X X High-Z High-Z Disabled X X X H H X X High-Z High-Z Disabled L L L H H L L L L L H H H High-Z H Output High-Z Output Read Do to 0 7 Read 0 8 to DIS L L L L L H H Output L L H X X L L Input Output High-Z Read Do to 0 IS Write Do to 0 7 L H L X X L L High-Z Input Write Os to D,s L L L X X L L Input Input Write Do to DIS • ABSOLUTE MAXIMUM RATINGS Symbol Value Power Dissipation Vm PT Operating Temperature Range Topr Storage Temperature Range T st• T btas -0.5(1) to +7.0 1.2 o to +70 -55 to + 125 -10 to +85 Item Voltage on Any Pin Relative to Vss Storage Temperature Range Under Bias NOTE: 1. Vm min. = -2.5V for pulse width :s; IOns . • 312 Unit HITACHI Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819' (415) 589-8300 V W °C °C °C - - - - - - - - - - - - - - - - - - - - - - - - - HM62A168/HM62A188 Series • RECOMMENDED DC OPERATING CONDITIONS (T. = 0 to 70°C) Parameter Symbol Min. Typ. Max. Unit Vee 4.S S.O 5.S V 0 V + 0.3 V Input Low (Logic 0) Voltage V1L 0 2.2 -0.3(1) 0 Input High (Logic 1) Voltage Vss VIH Supply Voltage NOTE: - Vee - 0.8 V 1. VIL min. = -2.0V for pulse width s IOns. • DC CHARACTERISTICS (T. = 0 to 70°C, Vee = SV ± 10%, V ss = OV) Min. Typ.
tOH Ooull OPO,OP1 )00K Data Valid tCE ~HITACHI 314 Unit Max. 3 3 2 8 4 5 Output Hold from Address Change Chip Select to Output Low-Z (CWE Max. 25 tOE • Read Timing Waveform (1) Min. tRC Output Enable to Output Valid Address Latch Enable Pulse Width Max. HM62168-45 HM62188-45 tAA tA12 tcs, tCE Chip Select Access Time HM62168-35 HM62188-35 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300 ns ns ns ns ns ns - - - - - - - - - - - - - - - - - - - - - - - - - HM62A168/HM62A188 Series • Read Timing Waveform (2) (CWE = High, COE = Low, CS = Low) tCE / '\. / GALEN tASL tAHL / tRC )K Address AD-A 11 Valid AO-A11 tM )K A12 A12 Valid tA12 tOH )00 ( Doutl DPO, DP1 Data Valid tCE • Read Timing Waveform (3) (CWE = High) tCALEN GALEN ~" / tASL / tAHL " tRC Address )( " ) "- External Address Valid tM tA12 GS,GE /'f' r\. tHZ tcs tCE tLZ l'\. ./ tOLZ Doutl DPO, DP1 p( It" tOHZ Data Valid "- / tOE ~HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 315 HM62A168/HM62A188 Series - - - - - - - - - - - - - - - - - - - - - - - - • Write Cycle Parameter Symbol HM62168-25 HM62188-25 HM62168-35 HM62188-35 HM62168-45 HM62188-45 Unit Min. Max. Min. Max. Min. 35 45 - ns 40 - ns 25 - 40 - ns ns Max. Write Cycle Time twc 25 Address Valid to End of Write tAw 18 tA12W 18 - Chip Select to End of Write tcw 18 - 25 - 30 Data Valid to End of Write tDW 10 10 - 15 tDH 0 0 - 0 - ns tWHZ 3 25 15 - 20 ns tWLz twp 3 18 15 - - - 3 - ns - 30 - ns tcp 18 - 25 - 30 - ns Address Setup Time tAS 0 - 0 - ns tWR 0 0 - 2 - ns 8 10 6 10 Address Hold to Latch Low tAHL 5 - 5 - 5 - ns 4 - 15 Address Setup to Latch Low tcALEN tASL - 0 Write Recovery Time A 12 Valid to End of Write Data Hold from End of Write Write Enable Active to High-Z Write Enable Inactive to Low-Z Write Pulse Width CE Pulse Width During Chip Enable Controlled Write Address Latch Enable Pulse Width 25 ~HITACHI 316 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ns ns ns _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ HM62A168/HM62A188 Series • Write Timing Waveform (1) (CDE = High, WE Controlled) tCALEN CALEN twc Address External Address Valid Din! DPO,DP1 Data Valid • HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy • Bnsbane, CA 94005-1819 • (415) 589-8300 317 HM62A168/HM62A188 Series - - - - - - - - - - - - - - - - - - - - - - - - • Write Timing Waveform (2) (COE = High, CE Controlled) tCALEN CALEN twc Address External Address Valid tWR tcp Din! DPO, DP1 • 318 HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy • Brisbane. CA 94005-1819 • (415) 589-8300 HM67C932 SerieS-Preliminary 8,192-Word x 9-Bit x 4-Row Static Cache RAM • DESCRIPTION The Hitachi HM67C932 is a high speed 288-kbit static cache RAM organized as 4-way set associative 8k x 9 or direct mapped 32k x 9 with 4-row selector for burst mode. By using HM67C932 with high speed standard microprocessors a high performance computer system can be achieved. The HM67C932, packaged in a 44-pin PLCC is available for high density mounting. • • • • • • • • • FEATURES For High Speed Standard Microprocessors High Speed Access Capability with Lower 2-address by Selector Pipeline Access Capability with On Chip Address and Row Latches (Edge Trigger Type Row Latch)' On Chip Parity Generator and Checker Organization .................288-kbit (8-kw x 9 bit x 4 row) Drivability for Heavy Load (C L = 100 pF) &. PLCC 44-pin TTL 1/0 (CP-44) • PIN ARRANGEMENT A3 M AS MALEVssVcc A7 At, M 10 'For cache RAM with transparent row latch, request data sheet HM678932. • ORDERING INFORMATION Type No. Access Time Package HM67C932CP-20 HM67C932CP-25 20ns 25ns 44-pin PLCC (Top View) • MAIN CHARACTERISTICS Item Address Access Time (max.) Access Time • PIN DESCRIPTION Spec. 20/25ns Row Select Access Time (max.) 10113ns OE Access Time (max.) 10ll3ns Cycle Time (min.) Power Dissipation (typ.) Remarks CL = lOOpF& 25/30ns Clock Frequency 33 - 40 MHz 0.8W Vcc = 5.0V tCYC = 60ns Pin Name Function ALE Address Latch Enable Ao-AI2 Address RLE Row Latch Enable (Edge Trigger) Ro-RI Row I/Oo-I10 7 Data InputlOutput 1/08 Data InputlOutput (Even Parity) CS Chip Select WE Write Enable OE Output Enable PC Parity Control PError Parity Error Output (Open Drain) Vcc Power Vss Ground VCCQ Power (For Output Transistors) VSSQ Ground (For Output Transistors) .HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 319 HM67C932 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • BLOCK DIAGRAM Dout Selector Address WE Dout 8k word X 9 bit WE - - - + I Ro.1 RLE • Edge Trigger pc------------------------------------~ CS---I.~ &.. •• Open drain • FUNCTION TABLE • Truth Table CS OE WE H X X L H H L L H L H L L L L L H L L L L NOTE: PC X X X L L H H Mode Not Selected Output Disabled Read Write Write Write (Parity Generate) Write (Parity Generate) Vcc Current ISB,IsBI Icc, Icci Icc, Icc! Icc, Icc! Icc, Icc! Icc, Icc! Icc, IcC! 1/0 Pin HighZ High Z DOllt Din Dm Din(l) Din(l) PError Pin HighZ HighZ High Z or L (Error) HighZ High Z HighZ High Z Ref. Cycle Read Cycle No.1, 2 Write Cycle No. 1-5 Write Cycle No.6, 7 Write Cycle No.1 1. DI8 input is ignored and generated as parity bit from DIO to Dn. • Input Latch Table • Row Latch • Address Latch ALE H L Mode Load Hold Latch Output Address Input Previous Address RLE t HorL Mode Load Hold Latch Output Row Input Previous Row ~HITACHI 320 Hitachi America. Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM67C932 Series • ABSOLUTE MAXIMUM RATINGS Symbol Rating Unit Voltage on Any Pin Relative to Vss Item VT -0.5 to +7.0 Operating Temperature Range Topr V DC Storage Temperature Range (With Bias) o to TS!2(b••s) +70 -10 to +S5 TS!2 -55 to + 125 Storage Temperature Range DC DC • RECOMMENDED DC OPERATING CONDITIONS (T. = 0 to + 70DC) Item Symbol Min. Typ. Vee 4.5 5.0 Vss VIH V1L 0 0 0 V 2.2 -0.5(1) - Vee + 0.5 0.8 V = 5V = 0 to Supply Voltage Input Voltage NOTE: Max. 5.5 Unit V V I. -3.0V for pulse width S 2Ons. • DC AND OPERATING CHARACTERISTICS (Vee Item ± 10%, Ta +70 DC, VSS = OV) Symbol Test Conditions Min. Max. Unit Input Leakage Current ILl - - 2 pA Output Leakage Current ILO - - 10 p.A Operating Power Supply Current Icc Icc I - - TBD mA - - TBD rnA ISB = Vss to Vee CS = VIH or OE = VIH or WE = V1L, VIIO = Vss to Vee CS = V1L, 1110 = OmA Min. Cycle, Duty: 100%, 1110 = OmA CS = VIH - TBD rnA ISBI CS o( Dout )V- Data Valid • Timing Waveform of Read Cycle (2) (1) (3) RC cs /~ ".\K tHZ tACS tCll vXX~V r-. /'1\.. Dout ~ Vccsupply current ............................................................ Icc "' / tpD 150% 50%~ 158 NOTES: 1. WE is high for read cycle. 2. Device IS continuously selected, CS = VIL. 3. Address vabd prior to or coincident with CS transition low. • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 347 HB66A2568A-25/35 - - - - - - - - - - - - - - - - - - - - - - - - - - • Write Cycle Parameter Symbol HB66A2568A-25 HB66A2568A-35 Min. Max. Min. Max. 35 - ns - ns - ns 10 - ns Write Cycle Time twc 25 Chip Selection to End of Write Address Valid to End of Write lew tAw 20 20 Write Pulse Width tAS twp 0 - 20 - 30 Write Recovery Time tWR 3 3 Data Valid to End of Write tDW 15 20 0 Write Enabled to Output in High-Z tDH twz(l) - 0 8 0 Output Active from End of Write tow(2) 0 - 0 Address Setup Time Data Hold Time NOTE: 30 30 0 0 I. Transition is measured ± 200mV from high impedance voltage with Load (B). This parameter is sampled and not 100 % tested . • 348 HITACHI Hitachi America, ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 Unit ns ns ns ns ns ns - - - - - - - - - - - - - - - - - - - - - - - - - - - - HB66A2568A·25/35 • Timing Waveform of Write Cycle (1) (WE Controlled) lWC Address CS1,2 WE Din Dout .HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 349 HB66A2568A-25/35 - - - - - - - - - - - - - - - - - - - - - - - - - - • Timing Waveform of Write Cycle (2) (CS Controlled) twe Address tew CS1,2 twp·1 WE tDW Din Dout NOTES: Data in valid High Impedance ·3 1. A write occurs during the overlap of a low CS and a low WE. 2. tWR is measured from the earlier of CS or WE going high to the end of write cycle. 3. If the CS low transition occurs simultaneously with the WE low transition or after the WE transition, the output buffers remain in a high impedance state. 4. Dou! is the same phase of write data of this write cycle, if tWR is long enough. ~HITACHI 350 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM644332 2K Entry TAG Memory for Cache Sub System The HM644332 TAGM IS a 2048·entry tag memory fabncated with CMOS technology It supports compact cache systems wIth 2·way or 4·way set assocIativity and a hIgh level of performance for 32·blt mIcroprocessor systems, when used to· gether wIth fast static RAMs as data RAMs Features • TIL-<:ompatlble Inputs and outputs • Programmable orgamzation. 512-entry x 4-way or 1024-entry x 2-way • LRU (least recently used) replacement algOrIthm • Memory organization. 512 words x 98 bits 98 bIts = (20 tag bIts + 1 parity bit + 2 validity bits) x 4 ways + 6 LRU bits • Purge functions (all purge and partial purge) • Internal parity generator/checker • Fast access time: 25 /30 ns max from address ip puts, 18 ns max from tag data inputs • 64-pin pin-grid-array • Single + 5 V supply Ordering Information AccesaTlme Part No. From Addresa From Tag Data Package HM644332G-25 25 ns 18 ns 64-pin PGA HM644332G·30 30 ns 18 ns • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point pkwy.• Brisbane, CA 94005-1819 • (415) 589·8300 351 HM644332 Pin Arrangement (9)00000000(9) 19 v a 00 0 00 000 0 0 S1 34 55 sa 29 52 53 '8 51 00 00 .. 30 11 so 00 00 16 60 3' 00 00 Bottom view 6' 32 's 00 00 82 33 " " 00 00 63 34 '3 00 00 80 .ss 64 35 00000000 11 " a ~ ~ B M ~ ~ (9)008 1 00000(9) , 6 S 3 2 ~ ~ ~ ~ ~ ~ . ~ . . . 10 • & • Function Pin No. Function Pin No. Function N.C. 23 A4 45 TD6 MHIT 24 As 46 TOg 3 HITolREPo 25 A7 47 Vee 4 HITiREP2 26 Ag 48 TD'3 5 HIT3/REP3 27 N.C. 49 TD,s 6 TDo 28 N.C. 50 TD17 7 T02 29 PINV 51 TD,g 8 EXTH 30 SBlK 52 Ao 9 MHENBl 31 SB, 53 A2 10 N.C. 32 INH 54 Vss 11 T07 33 INVl 55 A6 12 TOs 34 SET 56 As 13 TD,o 35 H/R 57 PURGE TD" 36 HIT 58 MODE 15 TD'2 37 HColRCo 59 VINV 16 SBo Pin No. 2 14 TD'4 38 HC,IRC, 60 17 TD'6 39 HIT,IREP, 61 Vee 18 TD,s 40 Vss 62 WRITE 19 N.C. 41 TD, 63 RLATCH 20 N.C. 42 TD3 64 PERR 21 A, 43 TD4 22 ~ 44 TDs .HITACHI 352 Hitachi America, ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HM644332 Pin Description 110 Symbol Pin Name Pin No. Function MODE Mode 58 Mode selection MODE ~ H: 512-entry x 4-way MODE = L: 1024-entry x 2-way AO-Ag Address 52, 21, 53, 22, 23, 24, 55, 25, 56, 26 Address Inputs: Ag is not used lor 4-way; fix it to H or L TD O-TD '9 Tag Data 6, 41, 7, 42-45, 11,12,46,13,14, 15,48,16,49,17, 50,18,51 Tag information PURGE Purge 57 All purge is done when PURGE INVL Invalidate 33 Partial purge: V bit of specified address is forced to 0 (L) SBLK Way Select Enable 30 Enables external way selection in replacement and invalidation cycles SBo' SB, External Way Address 60, 31 =L External way address input: Enabled when SBLK = H WRITE Wnte 62 Enables write SET Set 34 Timing pulse Read cycle: Updates LRU Wnte cycle: Stores tag, sets V bits to H, and updates LRU Partial purge cycle: Shifts LRU and sets V bits to L INH Inhibit 32 Inhibits all functions except all purge HIR HitiReplace Selection 35 RLATCH Replace Latch 63 Latch control for replace information PINV Parity Inversion 29 Used for testing only Output selection HIR = H: Hit information HIR = L: Replace information VINV Validity Inversion 59 Used for testing only MHENBL MHIT Enable 9 Enables MHIT output EXTH External Hit Control 8 HIT Hit 36 HCo/RCo HC,tRC, Hit/Replace Code 37,38 Forces MHIT output to L a a Hit output: NOR of HITo to HIT3 Coded output of hit or replace Information HITo'REPo- HitiReplace HIT3/REP3 3,39, 4,5 a Uncoded output of hit or replace information PERR Parity Error 64 0 Indicates parity error MHIT Modified Hit 2 a Hit output modified by MHENBL and EXTH Vce Power 47,61 Connects to + 5V power supply Vss Ground 40,54 Connects to ground .HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 353 HM644332----------------------------------------------------------Block Diagrams Internal Blocks Entry ff- r--- 0 u... - 0 0 0 . Address buffer and decoder 0 0 0 0 0 0 -~ . 0 0 o 0 j.-u.. 'r--v' Memory cells 512 entries x 23 bits x 4 ways Parity data ~ Replace information Tag data D C?0 Hit informatiL Tag data buffer rf--- , 'I Sense out J. Parity checker Comparators 0 ~ y- rr=- Parity generator 0 ~ --.; 0- 0 PURGE --Vss Memory cell 512 entries x 6 bhs f-- -J.., 0 ro i>' 90 Purge buffer I Replace information ~~ ~ LRU logic TL- New LRU data 0 0 0 6- MPXand output control J.. o~ ...... ob Hit/replace information Output control b Panty error .HITACHI 354 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 -------------------------------HM644332 Output Control Block MHENBL EXTH MHIT Cell I-------~HIT 88 .-------0 HITa/REPa ,..-----~ HIT,tREP1 ,..------- VCC-0.2V, OE> VCC-0.2V - - - - 0.05 0.1 rnA ICC2 Operating Power Supply Current in Self Refresh Mode ICC3 CE: V/H, OE : V/L - 1 2 - 0.6 1 rnA CE;:: VCC-0.2V, OE~0.2V - - - - 50 100 I'A Inpu t Leakage Current ILl VCC- 5.5V Vln: VSS to VCC -10 - 10 -10 - 10 I'A Output Leakage Current 1£0 OE: V/H VIIO: VSS to VCC -10 - 10 -10 - 10 I'A VOL IOL: 2.1 rnA - - 0.4 - - 0.4 V VOH IOH- -I rnA 2.4 - - 2.4 - - V Output Voltage • CAPACITANCE Item Symbol Test Conditions typo max. Input Capacitance Cin Vin: OV - 5 pF Input/Output Capacitance C'io VI/a: OV - 7 pF Unit Note) ThIS Parameter IS sampled and not 100% tested. • AC CHARACTERISTICS (Ta = 0 to +70°C, Vee = 5V ±10%) • AC Test Conditions Input Pulse Levels. . . . . . . . . ..... 2.4V, O.4V Input Rise and Fall Times . . . . . . . . . . . 5ns Timing Measurement Level . . . . . . . . . . . . 2.2V, O.BV Reference Level ........... V OH = 2.0V, VOL = O.BV Output Load . . . . . . . . . . . . . . . . . . 1 TTL and 100pF (including scope and jig) Item Symbol HM65256B·IO min. max. Random Read or Write Cycle Time tRC Static Column Mode Read or Write tRse Cycle 160 - 55 - Chip Enable Access Time tCEA Address Access Time tAA - Output Enable Access Time Chip Enable Precharge Time tOEA tCHZ tCLZ tOLZ tOHZ tCE tp Address Set·up Time Row Address Hold Time Column Address Hold Time Chip Disable to Output in High Z Chip Enable to Output in Low Z Output Enable to Output in Low Z Output Disable to Output in High Z Chip Enable Pulse Width 100 50 - 40 - 25 30 - 10 - - 25 lOOn 4m 50 - tAS tRAH 0 20 100 Read Command Hold Time tCAH tRCS tRCH Outpu t Enable Hold Time tOHC 0 Output Enable to Chip Enable Delay Time tOCD 0 Read Command Set·up Time 0 0 HM65256B-12 min. max. 190 - 65 - HM65256B·15 min. max. 235 - 80 - HM65256B-20 - - 105 - ns 150 - 200 ns 100 ns 75 ns 35 ns ns 120 60 - 75 - 50 - 60 - 30 - 30 - 10 - - 35 10 25 120n 4m 60 - - 0 - 20 - 120 - 0 - - 30 150n 4m 40 - 10 - 200n - 100 - 0 - 25 30 150 0 - 0 0 - 0 0 - - 0 - 0 - 0 s - ns - ns ns 0 0 - ns - ns tOH 5 - 5 - 5 - 10 twp 25 - 25 30 - 35 Chip Enable to End of Write tcw 100 - 120 Column Address Set·up Time tASW 0 - 0 - 0 ns 4m ns Write Command Pulse Width - ns - 200 0 Output Hold Time from Column Address 150 ns 35 75 0 Unit 310 - 25 max. min. 200 - ns ns ns ns ns - ns 0 (to be contmued) @HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra POint Pkwy' Brisbane, CA 94005·1819 • (415) 589·8300 371 HM65256B S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Symbol Item HM65256B·I0 min. Column Address Hold Time after Write IAHW Data Valid to End of Write IDW Data In Hold Time for Write Output Active from End of Write 0 20 IDH 0 lOW 5 Write to Output in High Z Transition Time (Rise and Fall) IT Refresh Command Delay Time IRFD max. 20 0 5 - 50 HM65256B·15 min. - 0 25 3 50 max. min. - - IWHZ HM65256B·12 25 3 60 max. min. 0 - 0 25 - 30 0 5 - 0 - 50 HM65256B·20 - 3 75 5 30 - 50 3 100 max. Unit - ns - ns ns - ns 35 50 ns - ns ns Refresh Precharge Time IFP 30 - 30 - 30 - 30 - ns Refresh Command Pulse Width for Automatic Refresh IFAP 80 10000 80 10000 80 10000 80 10000 ns Automatic Refresh Cycle Time IFe 160 - 190 235 190 - 235 - ns 10000 - 310 10000 - Refresh Command Pulse Width for Self IFAS Refresh 10000 Refresh Reset Time for Self Refresh IFRS 160 Refresh Period IREF - 4 - 4 - 10000 310 4 - ns ns 4 ms Notes: (I) 'CHZ, '0HZ and tWHZ are defined as the time at which the output achieves the open circuit conditions. tCLZ' tOLZ and lOW are sampled under the condition of tT=5ns, and not 100% tested (3) A write occurs during the overlap of a low CE and low WE. (4) If CE goes low simultaneously with WE going low or after WE going low, the outputs remam in high impedance state (5) If input signals of opposite phase to the outputs are applied in write cycle, OE or WE must disable output buffers prior to applymg data to the device and data mputs must be floating prior to OE or WE turning on output buffers (6) V m (min) and V IL (max) are reference levels for measuring timing of input signals. Also, transitIOn times are meas· ured between Vm and VIL' (7) An initial pause of 1 OO"S is required after power·up followed by a minimum of 8 initialization cycles . (2) • TIMING WAVEFORMS • Read Cycle No.1 ICE controlled) tH( CE-----J Address Ao-A7 Address A8-AII~UL~3 ~~4_------------------------------------_f~~~~~~~~~~ leu Dout----------------------------~ "'-Jij:...ll..JL.¥ Valid Data Out ~HITACHI 372 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 5 2 5 6 B Series • Read Cycl. No.2 (OE controlled I IH( CE-----..I Address Ao-A, ~~~ ~TT-~~~~~~~~~~~~~~~~~~~~~~~~~~ Address A.-AI4~-L~J~_4~-------------------------------------------r--~ ~-L~~~ WE I(/./. Dout----------------------------~ • Writ. Cycl. No.1 (OE Clockl IRe tCF. CE-------i Address Ao-A7 leAH Address AH-AII tANM WE-----+------.. I----""----Ilr---------tl--- tCH~ • HITACHI Hitachi Amenca, Ltd • Hitachi Plaza. 2000 Sierra POint Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 373 HM65256BSeries------------------------------------------------------------• Writ. Cycle No.2 IOE low fixl IR< ICE CE-----.11 Addressnt'X"'-~iI=====================+1~ __________________________________________ A.-A,,~LX~~-4 _H_f~~u- OE----+----------+------------H------- tllHZ Dout---------=~--~~~~~~~~~~~----------------------- • Static Column Mode Read Cycle CE lAS Address Ao-A7 Address A8-A14 WE OE Dout ~HITACHI 374 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 5 2 5 6 8 Series • Static Column Mode Write Cycle CE Address AS-AI4 Dou! • --------~==::~~~~~--~-------i~~~~~~~-------- Automatic Refresh Cycle CE-----------J ~-~I~R~F~D-~~----I~f~·C----~~-~IF~C~-~ ~____________ IFP • IFAP Self Refresh Cycle ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 375 131072-word x 8-bit High Speed CMOS Pseudo Static RAM The Hitachi HM658128 is a pseudo-static RAM organized as 131,072-word x 8-bit_ HM658128 realizes low power consumption and high speed access time by employing 1_3~m CMOS process technology_ The HM658128 supports 3 refresh functions: Address Refresh, Auto Refresh and Self Refresh_ Low power version dissipates only 0_5mW (typ.) in Self Refresh Mode and retains the data with battery backup for short time_ Self Refresh Mode is guaranteed only for L-version_ The HM658128 is pin-compatible with 256k-bit PSRAM and static RAM_ 11 HM658128P Series (DP-32) HM658128FP Series • FEATURES • • Single 5V (±10%) High Speed o Access Time CE Access Ti me ___ 100/120/150ns o Cycle Time Random Read/Write Cycle Time _.. 180/210/250ns • Low Power ... 200mW typo (Active) 0.5mW (standby) • All inputs and outputs TTL compatible • Non Multiplexed Address • 512 Refresh Cycles (8ms) • Refresh Functions Address Refresh Automatic Refresh Self Refresh (Only for L-version) • (FP-32D) • PIN ARRANGEMENT ORDERING INFORMATION Type No. HM658128DP-10 HM658128DP-12 HM658128DP-15 HM658128LP-1O HM658128LP-12 HM658128LP-15 HM658128DFP-10 HM658128DFP-12 HM658128DFP-15 HM658128LFP-10 HM658128LFP-12 HM658128LFP-15 Access Time lOOns 120ns 150ns lOOns 120ns 150ns lOOns 120ns 150ns lOOns 120ns 150ns Package 600 mil 32 pin Plastic DIP 32 pin Plastic SOP (Top View) • PIN DESCRIPTION Symbol AO - A16 Address Inputs I/O - 1/07 Data Input/Output RFSH CE ~HITACHI 376 Pin Name Refresh Chip Enable OE Output Enable WE Write Enable CS Chip Select Vee VSS Power Supply Ground Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 5 8 1 2 8 Series • BLOCK DIAGRAM A. ~ r-- ·· ·· ·· A. 0- [(10 i'()7 r-- Addr~" Row M~M()R'r MATRIX La1ch D!'<:oder 151t><256!xll (umrol -ce- '--- r-- o-~ t--- (olumn 1'0 Inpui Oala ("mrnl "L- Column Deem!.r '-Addre,s Latch Control ~ --:---:--:--:-~, ~ A" /1 r A. I r~ rE rs Refresh Control I OE WE L I T'm,ng Pul~ Ge .... ra!Or Read "me Control • TRUTH TABLE CS at CE going Low CE RFSH X L H L H X H X L L X L H X L H X H Note) *1. Self refresh IS guaranteed only for L-version . OE L X H X X X WE H L H X X X I/O Pin LowZ High Z HighZ High Z HighZ HighZ Mode Read Write CS Standby Refresh*' Standby • ABSOLUTE MAXIMUM RATINGS Item Terminal Voltage with Respect to V ss Power Dissipation Operating Temperature Storage Temperature Storage Temperature Under Bias • Topr T. t,_ Tbias RECOMMENDED DC OPERATING CONDITIONS (To Item Supply Voltage Input Voltage Note) *1. Rating -1.0 to +7.0 1.0 o to +70 -55 to +125 -10 to +85 Symbol VT PT Symbol VIL min = -3.0V for pulse width ~ °c °c °c =0 to +70°C) min. 4.5 0 2.2 -0.5*' Vee Vss VIH VIL Unit V W typo 5.0 0 - max. 5.5 0 6.0 0.8 Unit V V V V IOns . • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 377 HM~128SeriH------------------ • ___________________________________________ DC CHARACTERISTICS (Ta = 0 to +70°C, V cc = SV ± 10%) Parameter Symbol Operating Power Supply Current Standby Power Supply Current Standby Power Supply Current Test Condition ICCI ISB2 ICC2 Iccs Input Leakage Current ILl Output Leakage Current ho VCC=5.5V Vln = Vssto VCC OE= VIH VIla = Vss to Vcc 10L- 2.1mA 10H= -lmA VOL VOH Note) °1. This characteristics is guaranteed only for L-version. Output Voltage • CAPACITANCE (Ta typo max. Unit - 40 75 rnA - 1 2 rnA - 100 200 IJ.A - 1 2 rnA - 100 200 IJ.A -10 - 10 IJ.A -10 - 10 IJ.A - - 0.4 V V CE = VIH RFSH = VIH CE~ Vcc -0.2V RFSH ~ Vcc -0.2V rn= VIH RFSH = VIL rn~ Vcc -0.2V RFSHS:0.2V ISBI Operating Power Supply Current in Self Refresh Mode*l min. hlo=O tcyc = min. 2.4 - = 2S o C,[= IMHz) Item Input Capacitance Input/Output Capacitance Symbol Test Condition typo Vin -OV VI/a =OV - Cin CliO max. S 10 - Unit pF pF Note) This Parameter is sampled and not 100% tested . • AC CHARACTERISTICS (Ta = 0 to +70°C, VCC = SV ± 10%) • AC Test Conditions Input Pulse Levels ........... 2.4V.0.4V Input Rise and Fall Times ........... 5ns Timing Measurement Level ........... 2.2V.O.SV Reference Level ................... VO H = 2.0V. VOL = O.SV Output Load . . . . . . . . . . . . . . . . . .. 1 TTL and 100pF (including scope and jig) Item c,S-S,z.8-8 Random Read or Write Cycle Time Random Read Modify Write Cycle Time Chip Enable Access Time Output Enable Access Time Chip Disable to Output in High Z Chip Enable to Output in Low Z Output Disable to Output in HighZ Output Enable to Output in Low Z Chip Enable Pulse Width Chip Enable Precharge Time Address Set-up Time Address Hold Time Read Command Set-up Time 4.0 - HM65S12S-10 min. max. ISO tRC 240 tRWC 100 tCEA 30 tOEA 30 tCHZ 30 tCLZ 25 tOHZ 5 tOLZ lOOn 11J. tCE Symbol tp tAS tAH tRCS I~~ 0 30 0 Read Command Hold Time RFSH Hold Time tRHC 0 15 Refresh Command Delay Time (Standby Mode) tRCD - tRCH - HM65S12S-12 min. max. 210 2S0 120 40 35 35 30 5 120n 11J. b~ 0 35 0 0 15 - - 5 - - HM65S12S-15 min. max. 250 330 150 50 40 40 35 5 150n 11J. 70'tCI 0 40 0 0 15 - - 5 - - - 5 Unit ns ns ns ns ns ns ns ns s ns ns ns ns ns ns ns (to be continued) ~HITACHI 378 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 5 8 1 2 8 Series Item b~·z8-& Symbol Chip Select Set-up Time Chip Select Hold Time Write Command Pulse Width 30 Chip Enable to End of Write Data In to End of Write Data In Hold Time for Write Output Active from End of Write Write to Ou tpu t in High Z Transition Time (Rise and Fall) Refresh Command Delay Time ~,.? Refresh Precharge Time Refresh Command Pulse Width for Automatic Refresh Automatic Refresh Cycle Time Refresh Command Pulse Width for Self Refresh Refresh Reset Time for Self Refresh Refresh Reset Time for Automatic Refresh Refresh Period (512 cycles) tess tesH twp tew tDW tDH tow tWHZ tT tRFD tFP tFAP tFe tFAS*9 tRFS*9 HM65S12S-10 min. max. 0 30 30 100 25 0 5 25 50 3 70 - ,c4f( SOn ISO S' ISO 0 tRFA tREF - - HM65S12S-12 min. max. 0 35 35 120 30 0 5 30 3 50 SO <.QW( S" - S - SOn 210 S 210 0 - HM65S12S-15 min. max. 0 40 40 150 35 0 5 35 3 50 90 - }o.M SOn S" - S - 250 S 250 0 - S" nit ns ns ns ns ns ns ns ns ns ns ns s - ns - ItS - ns - ns ns S Notes: (1) tCHZ, tOHZ and tWHZ are defined as the time at which the output achieves the open circuit conditions under the condition of tr = 5ns and not 100% tested. (2)tCHZ, tCLZ, tOHZ. tOLZ. tWHZ and tow are sampled under the condition oftr = 5ns and not 100% tested. (3) A write occurs during the overlap of a low c.E..and a low WE~Write end is defined at the earlier of WE going high or CE going high. (4) If CE~es low simultaneously with WE going low or after WE going low. the outputs remain in high impedance state. (5) If input signals of opposite phase to the outputs are applied in write cycle, OE or WE must disable output buffers prior to applying data to-1.he device and data inputs must be floating prior to OE or WE turning on output buffers. (6) VIH (min) and VI!- (max) are reference levels for measuring timing 0 mput signals. Also, transition times are measured between V IH and V I.{.' (7) An initial pause of 100!,s is requlIed after power-up followed by a minimum of S initialization cycles. (S) After Self Refresh, Auto Refresh should be started within l5!,s. (only for L-version) (9) This characteristics is guaranteed only for L-version . • TIMING WAVEFORMS • Read Cycle cs Address Ao-A16 Dout ~HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy' Brisbane, CA 94005-1819 • (415) 589-8300 379 HM658128 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Write Cycle-1 IOE Clock) cs Address Ao"-AI6 Dout Write Cycle-2 (OE Low Fix) cs Address Ao-AI6 0" DOllt .HITACHI 380 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 5 8 1 2 8 Series • Read Modify Write Cycle CS Address An-A'6 RFSH Dm Dout • Automatic Refresh Cycle • Self Refresh Cycle IT Note) • Self refresh is guaranteed only for L-version. CS Standby Mode ,, 2- cs ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 381 HM658128 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - SUPPLY CURRENT VS. SUPPLY VOLTAGE ( 1 ) SUPPLY CURRENT VS. AM81ENT TEMPERATURE (1 ) 1.3 1.3 To = 25'(; Vee =5 OV 1.2 ] / 1 1.1 - 1.0 z >- 09 8: Ul " - r--- ] i .,./ V - r-- r- 1.0 0.9 en O.S 07 1.2 § z 11 / V ~ u " ] os 4.50 4.75 5.00 5.25 5.50 20 Supply Voltage Vee (V) 40 SUPPLY CURRENT VS. SUPPLY VOLTAGE(2) SUPPLY CURRENT VS. AM81ENT TEMPERATURE (2) 6 1. 3 To = 25'(; 1§ Vee=5.0V ] 1. 4 / z 1. 2 ~ / 1. 0 Sv V u >- O. 44.50 1. 2 "z§ 1. 1 - 1. 0 ~ ~ b, ~ u 8: o. " o. 6 Ul >- 9 0. "" J'--.., ............ Ul 5.00 4.75 5.25 o. S o. 7 0 5.50 Ambient Temperature Ta SUPPLY CURRENT VS. SUPPLY VOLTAGE(3) 1.6 To =25'(; Vee=5.0V :0 1.4 ~ z§ 1.2 0 ~ ~ ~ V .......- ] 1.4 ~ 1. z ] >- 2~ 1. 0 ~ O. S ~ 8: J: o. 6 ~ O. 6 4.75 5.00 5.25 5.50 O. 4 0 Supply Voltage Vee (V) 20 40 ~ 60 Ambient Temperature Ta eel ~HITACHI 382 so eel SUPPLY CURRENT VS. AM81ENT TEMPERATURE (3) 1. 6 O. 4 4.50 i"- 60 40 20 Supply Voltage Vee (V) Sv so 60 Ambient Temperature Ta ('C) Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 so - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM658128 Series ACCESS TIME VS. SUPPLY VOLTAGE ACCESS TIME VS. AMBIENT TEMPERATURE 1.3 1.3 Vee =5.0V Ta=25"C 1.2 ] ~ z 11---_ ----- -----I---- 10 E b ~ 0.9 ~ ~ 11 i5 -E 1.0 b 0.9 ] ~ V V V os O.S 0.7 4.50, 4.75 5.00 Supply Voltage 0.7 5.50 5.25 Vl( o 20 40 60 STANDBY CURRENT VS. SUPPLY VOLTAGE(l) STANDBY CURRENT VS. AMBIENT TEMPERATURE (1) 1.6 1.6 Ta=25"C ~§ 1.4 z 1.2 ~ 8 ]" ~ 1.0 O.S 0.6 0.4 V V 4.5 V Vee=5.0V 1.4 V 1.2 1.0 ] O. S ~ a 50 4.75 0.4 o 1.6 Ta=25"C Vee=5.0V 1.4 ~ 1.0 ~ /v ~ /' -o§ z _ 8 o.Sv V -a @ U 0. " 0.6 0.4 4.5 1.4 1.2 1.0 t--- "- 1 1 ./ if> so 60 STANDBY CURRENT VS. AMBIENT TEMPERATURE(2) 1.6 1.2 40 20 Ambient Temperature Ta ("C) STANDBY CURRENT VS. SUPPLY VOLTAGE(2) ~ z -r--r--- 0.6 5.5 5.25 -- Supply Voltage Vee (V) 1 80 Ambient Temperature Ta ZOe) (V) O.S -....;.. I---I--- 0.6 4.75 5.0 5.25 5.5 0.4 Supply Voltage VeL (V) o 20 40 60 so Ambient Temperature Ta ('C) ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 383 HM658128 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - LOW LEVEL INPUT VOLTAGE VS. SUPPLY VOLTAGE ] 1.3 ] HIGH LEVEL INPUT VOLTAGE VS. SUPPLY VOLTAGE 1.3 -;;; Ta=25"C § Ta=25"C 1.2 3 1.2 x 1. 1 ;;: ~ 1.1 .. ~ 3 - ~ >1l, 1.0 2 "0 :~ 0.9 ] 0.8 ~ :...---- ~ f.---- 1l, ;'I '0 :- 1.0 1 0.9 ] -So ;;: 0.8 ----------- ~ j O. 7 4.50 5.00 4.75 5.25 0.7 5.50 4.50 HIGH LEVEL OUTPUT CURRENT VS. OUTPUT VOLTAGE ~ \3 z 1.4 1.2 c ~ 1.0 u g " 0.8 0 ] ~ :I: 0.6 1.6 1\ \ \ \ \ \ HIgh Level Output Voltage / Ta=25"C Vcc =5.0V 0 8 / 0.2 VOH (V) I / / / Ta=25"C Vcc=5.0V 0.4 0.6 Low Level Output Voltage V OJ (V) ~HITACHI 384 5.50 LOW LEVEL OUTPUT CURRENT VS. OUTPUT VOLTAGE 1.6 ] 5.25 5.00 4.75 Supply Voltage Vee (V) Supply Voltage Vee (V) Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 0.8 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ HM658128 Series ACCESS TIME VS. LOAD CAPACITANCE 1.8 1l 1.6 1 3 1. 4 " Z a 8 O. 6 100 -- ~ ZOO >-- 300 - ~ 400 500 Lead Capac1tance Cd pF) ~HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 385 ~HITACHI 386 Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 Section 4 Video Memory ~HITACHI® 387 HM63021 S e r i e s - - - - - - - 2048-word x 8-bit Line Memory HM63021 is a 2048-word x 8-bit static Serial Access Memory (SAM) with separate data inputs and outputs. Since it has an internal address counter, no external address signal is required and internal addresses are scanned serially. Using five different address scan modes, it is applicable to FIFO memories, doublespeed conversions, 1 H delay lines and 1 H/2H delay lines for digital TV signals. Its minimum cycle times are 28 ns and 34 ns each corresponding to 8 fsc of PAL TV signals and NTSC TV signals. All inputs and outputs are TTL-compartiable. This device is packaged in a 300-mil dual-in-line plastic package. (DP-28N) Features • Five modes for various applications • Corresponds to Digital TV system with 4 fsc sampling (PAL, NTSC) • Decoder signal output pin; Fewer external circuits • Asynchronous ReadlWrite operation; Separate address counters for Read/Write No Address Input required • High Speed; Cycle Time 28/34/45 ns (min) • Completely Static Memory; No refresh required • 8-bit SAM with separate I/O • Low Power; 250 mW typo Active • Single 5 V supply • TTL compatible Ordering Information Cycle Time Type No. HM63021P-28 28 ns HM63021P-34 34 ns HM63021P-45 45 ns Package 300-mil 28-pin Plastic DIP Pin Arrangement D I IH/2H I THC I DSC I THCE MODEl 1 RES i CLK RCLK RRES DInO Dml Dm2 Dm3 Dm4 DECI I WDEC I !dQ~~ ~ Cootml O~ 4 ~ 25 ~ ~ ~ C!~ Dm7 ~ WE 12 HlghZ V" 24 ~ j ~ Dm6 OmS THCE Modes ~ G:= l! ! n Wnte Control ~ I DSC I I IH/2H LRDEC J DEC2 THC I D V" MODE2 MODE3 OE DoutO DoutI Dout2 tm Dout3 19 DoutS 1= ~ 17 Dout6 16 WRES I I DEC3 ~ WCLK I WT I DEC4 ~ I:::: Dout4 Dout7 DS (Top View) ~HITACHI 388 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 3 0 2 1 Series Pin Description Pin No. Pin Name 1 MODEl 2 RCLK/CLK 3 RRES/RES 4·11 12 Functions Mode Input 1 (All Modes) Read Clock Input (TBCE, DSC, TBC) Clock Input (lHl2H, D) Read Reset Input (TBCE, DSC, TBC) Reset Input (l H/2H, D) Data Inputs (All Modes) Write Enable Input (AU Modes) DinO-Din7 WE 13 High Z/WDEC/DECI 14 VSS 15 WCLK/WT /DEC4 16 WRES/DS/DEC3 17·24 25 Dout 0 - Dout 7 OE 26 MODE3/RDEC/DEC2 27 28 MODE2 High Impedance (TBCE, DSC) Write Decode Pulse Output (TBC) Decode Pulse Output 1 (lH/2H, D) Ground (AU Modes) Write Clock Input (TBCE, DSC, TBC) Write Timing Input (l H/2H) Decode Pulse Output 4 (D) Write Reset Input (TBCE, DSC, TBC) Delay Select Input (l HI 2H) Decode Pulse Output 3 (D) Data Outputs (All Modes) Outpl4t Enable Input (All Modes) Mode Input 3 (TBCE) Read Decode Pulse Output (TBC) Decode Pulse Output 2 (lH/2H, D) Mode Input 2 (All Modes) Power Supply (+SV) (All Modes) Vee Mode Table Mode Signals Mode MODEl MODE2 MODE3 H H H Time base compression/expansion (TBCE) H H L Double speed conversion (DSC) ·1 H L Time base correction (TBC) °1 L H 1H/2H delay (lH/2H) °1 L L Delay line (D) Note) 01. Decoder Output Signal (~ImCl) Application Example Picture in Picture Non interlace Time Base Corrector Vertical fJIter Delay line Absolute Maximum Ratings Parameter Voltage on Any Pin relative to V ss Symbol Power Dissipation Operating Temperature Storage Temperature Topr Storage Temperature under bias Tbias Tstg Rating -0.5°1 to +7.0 1.0 oto +70 -55 to +125 -10 to +85 Unit V W ·C ·C ·C Note) 01. -3.SV for pulse width ~ 10 ns Hitachi America, Ltd. • HITACHI ° Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 389 HM83021S.I•• ---------------------------------------------------------------Block Diagram Vee Vss I I DInO WE ~I ~ .---------d WE Input Latch Latch Write Address Con...1 I WDEC _ _--+_+-("'204=7'-1) r- Address Decoder IL...----' DID7 I r......-.. Write Column Decoder (Wnte Stop) iiiiES/RES WCLKIWT WRES/DS Tlmlrlll: Control LOB'c Reid Write MODEl R.w R.w Decoder Decoder MODE2 MODE3 Read Column SwItCh Address Decoder Read Column Decoder (2047) RDEC (900.1810) iiffi (909.1819) DEC2 1-'<.:;11::.34:;}_____ iiEC3 1-'<.:;11.:;25;.:..}----DEC4 H Read Address Control Output Latch DootO I Dout7 I -.l OE Recommended DC Operating Conditions (To = 0 to +70°C) Parameter Symbol min typ max Unit 4.5 5.0 5.5 V Vee Supply Voltage 0 o 0 V VSS 2.4 VIH V 6.0 Input Voltage -0.5"1 VIL 0.8 V Note) '1. -3.0V for pulse width ~ 10 ns. ~HITACHI 390 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy' Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM63021 Series DC and Operating Characteristics (Ta= 0 to +70°C, Vee = SV ± 10%, Vss = OV) Parameter Symbol min typO! max Unit Test Condition Input Leakage Current IIUI 10 /,A Ve e =5.5V Yin = VSS to Vee Output Leakage Current IILOI 10 /'A Of= VIH Vout = VSS to Vee Operating Power Supply Current lee 90 rnA 50 0.4 VOL Output Voltage V OH V Min. cycle, lout = 0 rnA 10L = 8 rnA *2, Dout 0 to Dout 7, DEC Output pin 2.4 V IOH = -4 rnA, Dout 0 to Dout 7 pin 2.4 V IOH = -I rnA, DEC Output pin ----------------------------~----------------~~--Notes) *1. Typical values are at Vee = 5V, Ta = 25°e and for reference only. *2. IOL = 6mA for 45ns version. Capacitance (Ta = 2SoC,f= 1.0 MHz) _ _ _ _ _-'P:.:a::r.=am::....e.:.tec:r_ _ _ _ _-"S"y-"m"'b::..0c:l'---_ _ _:::m:::i:::n_ _ _-=:t__ yp~_ _---=:m:.:-a=x'-_ _--'U=n=i=t____Conditions Input Capacitance Cin 6 pF Yin = OV Output Capacitance "2 Cout 9 pF Vout = OV Notes) *1. This parameter is sampled and not 100% tested. *2. 13, 15 - 24, 26 pin AC Characteristics (Vee = SV ± 10%, Ta = 0 to + 70° C, unless otherwise noted.) • AC Test Conditions I nput and Output timing reference levels: 1.5V Input pulse levels: Vss to 3V I nput rise and fall times: 5 ns HM63021·28/34 Dout Output Load (A) Dout Output Load (8) (toLZ. 10HZ) DEC Output Load 5100 DEC 48011 0--....,.---... 395Q Dout 0--"""1>---~ 30pF *1 4800 Dout *1 30pF 255Q 0 - - -.....- -... *1 5pF 255Q * 1 Including scope and Jig. HM63021-45 Dou! Oulpul Load (8) DEC Output Load (tOLZ, tOHZ) Dout Oulpul Load (A) +5V +5V +5V Dout DoutO-,....-.... DEC ( } - - . - -.... 3()PF~1 294Q 01 0--..--... 30pF*1 Includmg scope and Jig ~HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra POint Pkwy • Brisbane, CA 94005·1819 • (415) 589·8300 391 HM63021 Series Read Cycle Symbol Parameter Read Cycle Time Read Clock Width Access Time (fall) Decode Output Access Time (rise) Output Hold Time (fall) Decode Output Hold Time (rise) Output Enable Access Time Output Disable to Output in High Z Output Enable to Output in Low Z tRC tRWL tRWH tAC tDAl tDA2 tOH tDOHl tDOH2 tOE tOHZ tOLZ HM63021-28 min max 28 HM63021-34 min max 34 10 10 10 10 20 20 40 15 15 25 25 50 5 5 5 0 5 HM63021-45 min max 45 5 5 5 20 15 0 5 30 30 60 5 5 5 25 20 0 5 30 25 Unit ns ns ns ns ns ns ns ns ns ns ns ns Write Cycle Parameter Symbol Write Cycle Time twc tWC(lH/2H Mode) Write Clock Width tWWL tWWH Input Data Setup Time Input Data Hold Time WE Setup Time WE Hold Time WT Setup Time WT Hold Time tvs tDH tWESL tWESH tWEHL tWEHH tWTSL tWTSH tWTHL tWTHH HM63021-28 min max 28 56 10 10 5 5 5 5 5 5 5 5 5 5 HM63021-34 min max 34 68 10 HM63021-28 max min 8 5 8 5 HM63021-34 min max 9 5 10 5 5 5 5 5 5 5 5 5 5 HM63021-45 min max 45 90 15 15 7 7 7 7 7 7 7 7 7 7 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns Reset Cycle Parameter Reset Setup Time Reset Hold Time Clock Setup Time Before Reset Clock Hold Time Before Reset Symbol tRES tREH tREPS tREPH 7 10 7 • ns ns ns ns Double-Speed Conversion Mode This mode turns HM63021 into a 1024-word x ~HITACHI 392 Unit reset to address O. A write-inhibit function of HM63021 stops writing automatically after the data has been written into all addresses 0 to 2047. The write-inhibit function is released by reset using WRES, and the HM63021 restarts writing into address O. Mode Description • Time Base Compression/Expansion Mode This mode turns HM63021 into a 2048-word x 8bit FIFO memory with asynchronous input/ output. The HM63021 provides 2 clocks (RCLK, WCLK) and 2 resets (RRES, WRES), one each for read and write. The internal address counters increment by 1 address clock and are 9 5 HM63021-45 max 10 min Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - . - - - - - - - - - - - - - - - - HM63021 Series 8-bit x 2 memory with asynchronous input/ output. It is used for generating non· interlaced TV signals. When the original signal and the interpolated signal (1 field delay) of interlaced signals are input to the HM63021, multiplexed per dot, it outputs non-interlaced signals for each line. 8 fsc should be input to RCLK and WCLK. A standard H synchronizing signal and a noninterlace H synchronizing signal are input to ii"lRE"S" and tfFfE"S" respectively. A write-inhibit function is provided in this mode, making it applicable to PAL TV, where extra data (1135-1024 = 111 bits) is ignored. • TBC Mode This mode turns HM63021 into 2048-word x 8-bit FIFO memory with asynchronous input/ output. The HM63021 provides 2 clocks (lfcLR, WCIK) and 2 resets (Fi'RB, Wif£"S"). one each for read and write. The internal address counters increment by 1 address at each clock and are reset to address O. The internal address counters return to address 0 after they reach address 2047. The HM{)3021 outputs a write decode pulse from synchronizing it with address 2047 in the write address counter, and read a decode pulse from RDEC, synchronizing with address 2047 in the read address counter. Using these pulses, the memory area can be extended easily (multiple-HM63021s can be used with ease). of RES. Since the HM63021 outputs a 901 decode pulse (DEC1) and a 910 decode pulse (DEC2). connecting ~ to RES, for example, outputs 1 H- and 2H- delayed signals alternately at a 8- fsc cycle when the original signal is input at a 4- fsc cycle. A write-inhibit function is provided in this mode, making it applicable to PAL TV, where extra data (1135-1024 = 111 bits) is ignored. • Notes on Using HM63021 • Hitachi recommends that pin 13 (high impedance) should be fixed by pulling up or down with a resistor (of several kil) in TBC or DSC mode. • Hitachi recommends that the mode signal input pins and DS pin should be fixed by pulling them up or down with a resistor (of several kill. • Data integrity cannot be guaranteed when mode is changed during operation. wr>rr. • 1 H/2H Delay Mode This mode turns HM63021 into a 1024-word x 8-bit x 2 delay line with synchronous input/ output. Delay time is defined by the reset period Delay Line Mode This mode turns HM63021 into a 2048-word x 8-bit delay line with synchronous input/output. Delay time (3 to 2048 bits) is defined by the reset period of RES. The delay is 2048 bits when RES is fixed High. Signals delayed by 910 bits to 1135 bits for example, can be easily obtained without external circuits by just connecting selected decoded pulses on DECl - DEC4 to RES. • When a read address coincides with a write address in TBCE, TBC or DSC mode, the data is written correctly but it is not always read correctly. (1) Read after Write (3 bits delay) WLCK t~twcmln RCLK (2) Write after Read (2048 bits delay) WCLK I ~Ons ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 393 HM63021 Serle8-------------------------------- • At power on, the output of the address counter is not defined. Therefore, operations before the system is reset cannot be guaranteed, and decode signal output is not defined until after the first reset cycle. • The decode signal is latched by a decode output latch circuit at the previous address of the internal counter address and is output synchronized with the ne~t address. For example, WDEC in TBC mode is latched at write address 2046 and is output at write address 2047. If a write reset is performed on address 2047 at this time, • Hitachi recommends that tm (time between mode set and the first cycle (Pre-reset)) should the write address becomes 0 and WDEC is output. The same operation is performed in other modes. • In the reset cycle, the input levels of WRES; R RES, "FfES are raised to satisfy t R E H. and are fixed high until tREPH in the next pre-reset cycle is satisfied. The rise timings of the reset signals (RES; ~. RRES) are optionals provided that the tREPS specification is satisfied. The timings at which RES, WRES, and RRES fall after prereset are also optional, provided that the t R EPH and t R ES specifications are satisfied. be kept for 2 cycle time (56ns / 68ns / 90ns) or more while the power supply is on. (1) TBCE, TBC, DSC and Delay Line Mode ~ ~ mode WCLt (CLK) WRES (RES) --~~TTTTr=~7777T=~ ~~r.rtTTrrTTTTTTTT7777V----' Vahd ~HITACHI 394 Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra POint Pkwy· Brisbane, CA 94005-1819· (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 3 0 2 1 Series (2) 1 H / 2H Delay Mode ~ ~ mod,. DS ~ ~ .Di.=='1'--~=-----+--------+--------_+- Note Whf'n mode pms are fixed with Vee. GND m mode set while the power supply IS on, tm spec If> not needed Decode Signal When internal address counter reaches the specified address as shown below, decode outputs become low. Mode TBC Pin No. 13 26 Pin Name WDEC RDEC Internal Address counter Write 2047 Read 2047 Timing of the Output Signal After Write 2047 Output of 2046 13 DEC! Read 900 (2H) Output of 900 (l H) 26 DEC2 Read 909 (2H) Output of 909 (lH) lH/2H Operation Completion of Writing on all bits is detected. Completion of Reading from all bits is detected. By inputting this signal to pin #3, 901/1802-bit delay output is obtained. By inputting this signal to pin #3, 910/1820-bit delay output is obtained. By inputting this signal to pin #3, 90 I-bit delay output is obtained. DECI 13 By inputting this signal to pin #3 after the Read 1810 Output of 1809 frequency of DECI is devided into two, 1811-bit delay output is obtained. By inputting this signal to pin #3, 91 O-bit delay Read 909 Output of 908 output is obtained. Delay DEC2 26 By inputting this signal to pin #3 after the line frequency of DEC2 is devided into two, 1820-bit Read 1819 Output of 1818 delay output is obtained. By inputting this signal to pin #3, 1135-bit delay 16 DEC3 Read 1134 Output of 1133 output is obtained. By inputting this signal to pin #3, 1126-bit delay DEC4 Read 1125 15 Output of 1124 output is obtained. Note) When counter is reset by Reset Signal (RRES, RES, ~,address becomes O. Read 900 Output of 899 Write-inhibit Function When internal address counter is as follows, writing is inhibited automatically for the next cycle. The write· inhibit function is cancelled by reset through WRES or RES. Write-inhibit Function (internal counter address) Write-inhibit after address 2047 TBCE Write-inhibit after address 1023 x 2 DSC No function TBC Write-inhibit after address 1023 IH/2H No function D Note) When address counter is reset by W"RES or RES, address becomes O. Mode ~HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 395 HM63021 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Read Reset Cycle (TBCE, TBC Modes) Notes) "I. The read address counter I. reset at the first falllns edse of ~ after IfI{!!I f~~Eseetlng the specifications of tREPS and tREPH. and It is not reset at the next falling edge of R'el:'X even If Is kept low. When tRES. tREH. tREPS. and tREPH cannot meet the specifications. the relet operation Is not Iluaranteed. "2. Output Is from the read addre.. of the previoul cycle. "3. When DB Is fixed high. the data at the read addreu counter Is reset after the data of address 2047 Is output. and the same operation restarts. Write Re.et Cycle (TBCE, TBC Mode.) WCLK Din WE Note) The write address counter Is reset at the first falling edge of WCI:K after WRES falls. meeting the specifications of tREPS and tREPH. and it is not reset at the next failing edge of~ even if WIrn'S" is kept low. When tRES. tREH. tREPS. and tREPH cannot meet the specifications, the reset operation is not guaranteed . • 396 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 3 0 2 1 Series Reset Cycle (OSC Mode) D,. RCLK *2. *~. RRES *4 -r~-M",I i'A--f-£.L.'fL../'-LJ.¥-1 Dout Reset Timmg 1 Reset Tlmmg 2 Notes) *1. The write address counter is reset at the first falling edge of WCLR after WRES falls, meeting the specifications of tREPS and tREPH. and is not reset at the next falling edge of WCLK even if WP:ES" is kept low. When tRES. tREH. tREPS. and tREPH cannot meet the specifications. the reset operation is not guaranteed. *2. The read address counter is reset at the first falling edge of ~ after R1(ES falls. meeting the specifications of tREPS and tREPH. and it is not reset at the next falling edge of 1>:CLK even if RRES is kept low. When tRES. tREH. tREPS anr!!REPH cannot meet the specifications. reset operation is not guaranteed. *3. When tREPH. tRES tREH (~to WCLK). or tREPS. tREPH, tRES, tREH (PRES to RCLK) cannot meet the specifications. the output of video signal A is not guaranteed. (Reset Timing I). *4. When tREfS (WRES to RCLK). or tRES, tREH, tREPS, tREPH (PRES to RCLK) cannot meet the specifications. the Interpolation signal B is not guaranteed. (Reset Timing II). ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 397 HM63021 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Reset Cycle (lH/2H Mode) CI.i (SI•• ) *1 WT (41,,) _*2 RES *I.U Din (n-2) U Oout WE DS u \ ~----....\ I ,----~ / \ (Hllh) or (Low) Notes) "I. WT'ls the Input durlllJ_half cycle of c:!t'K. meetins the ~cificatlons of tWTSL. tWTHL. tWTSH.and tWTHH' Data Is written when WT Is low. Reset I. possible when WT Is high. ·2. Read address counter Is reset at the first fa11lns edge of ~ after ltV ~ meeting the specifications of tREPS and tREPH. and it Is not reset at the next failing edge of erR' even if RES is kept low. When tRES. tREH, tREPS, and tREPH cannot meet the specifications, the reset operation Is not guaranteed. ·3. When DS Is fixed high, 1H output data is delayed by n bits and 2H output data is delayed by 2n bits where 2n is the reset cycle of 1tU, When DS is fixed low, 1H output data Is delayed by n-5 bits and 2H output data is delayed by 2n-5 bits . • 398 HITACHI Hitachi America. Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 3 0 2 1 Series Reset Cycle (0 Mode) WE Dm Dout Note) *1. The read address counter is reset at the first falling edge of CLK after RES falls. meeting the specifications of tREPS and tREPH. and it is not reset at the next falling edge of ELf{ even if 'RES is kept low. When tRES. tREH. tREPS. and tREPH cannot meet the specifications. the reset operation is not guaranteed. Write Enable (TBCE, OSC, TBC, 0 Modes) D,. Notes) *1. When tWEHL. tWESH. tWEHH. and tWESL cannot meet this specifications. the write enable operation is not guaranteed. *2. In the delay line mode. CLK takes the place of WCLK. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 399 HM63021 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Write Enable (lH/2H Mode) eLK (Sfsc) WT (4r,c) Din Note) "I. When tWTSL. tWTHL. tWEHL. and tWEHH cannot meet the specifications, the write enable operation Is not guaranteed. Decode Output (TBC. D Modes) Notes) "I. In TBC$D~~ WCLK or RCLK takes theml~ce of CLK. *2. ~Is or~ln 'i'll'I!, ~, 2, ~ or~ in D mode. Decode OutPut (1H/2H Model Note) *1. When tWTSL, tWTHL. tWTSH, and tWTHH cannot meet the specifications. the decode output operation is not guaranteed. ~HITACHI 400 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 6 3 0 2 1 Series Output Enable (All Modes) ~ --------.!.~-"""' Dout*J. H,lhZ ~ IIlm 8 ------- ____D_.~_V_u_,d_ _ _ __'~}---~~~-+-~,~~---D.-~-V-u-,d--- Note) *1. Transition of tOHZ and tWLZ is measured ±200 mV from steady state voltage with Output Load B. This parameter is sampled and not 100% tested. ~HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 401 HM53051P* • An Application Note is available for this device, contact your local Hitachi representative. 262144-word X 4-bit Frame Memory HM53051 P is a 262,144-word x 4-bit frame memory, using the most advanced 1.3t.Lm CMOS processes. It performs serial access by an internal address generator. It offers a high-speed cycle time of 45ns or 60ns (min). As input data and output data can be written or read in any cycle, synchronized with a system clock, and the delay between data read/write operations is freely settable. Y/C separation and frozen pictures can be realized easily in 4fsc NTSC digital TV or VCR systems. Also, it enables random access in 32-word x'l-bit data block. With this function, picture in picture or a multiplexed picture can be displayed with ease. Features • 262,144-word x 4-bit serial access memory • Organized with dual ports Serial input x 4-bit x 4-bit Serial output • High Speed Read/Write Cycle Time: 45ns/60ns (min) Access Time: 35ns/4Ons (max) • Semi-synchronous Read/Write Cycle • Low Power Active: 200mW (typ) • Random Access in 32-word x 4-bit blocks • External Refresh Control is unnecessary Ordering Information Type No. Cycle Time 45ns 60ns HM53051P-45 HM53051P-60 Package 300 mil 18-pin Plastic DIP Block Diagram SAD Memory Array 262,144 X4 (DP-18BJ Pin Arrangement Dout2 Dout3 Doutl OoutO TAS Dm3 Dm2 ~-<- _ _ _ _.J--- Dml (Top View) Pin Description Pin Name Din Dout OE TAS CLK CGW CGR SAD SAS WE Function Data Input Data Output Output Enable Transfer Address Strobe System Clock Clock Gate (Write) Clock Gate (Read) Serial Address Serial Address Strobe Write Enable Read/Write/Refresh Control & Tlmmg Generator DoutO Dout2 Doutt Dout3 DmO Dm2 WE Dlnl Dm3 @HITACHI 402 Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 -----------------------------------------------------------------HM53051P Functional Description Serial access memory with I/O separated Read cycle and write cycle of HM53051 can be operated independently synchronized with a system clock. It realizes time compression or expansion for picture in picture in digital TV. for example. • Write cycle by CGW Write data are taken in at the falling edge of the system clock ClK when CGW is low. If CGW is high. HM53051 does not enter write cycle (cycle time is defined by system clock cycle time). Time is compressed easily with CGW. eLK Dn Dm )@( xxxxxxxxx Dn+1 • Read Cycle by CGR Read data is output at the falling edge of the system clock CD< when C"G"R is low. If ~ is high. HM53051 does not enter read cycle (cycle time is Dn+2 X XXXXXXX defined by system clock time). Time is expanded is realized easily with ml1. eLK D. Doul >®< XXX Dn+1 Dn+2 Random Access The HM53051 is also capable of random access by serial address input. SAD. Random access by the unit of 32-word x 4-bit is performed. when TAS is low after read address (ARO - AR12). write address (AWO - AW12) and mode setting flags. RF (Read SAS Dn+3 Flag). WF (Write Flag) and I'i.W (Mode Flag) are read into by SAD with synchronous MS. In order to output data continuously. the address specified by SAO increments automatically. --- Mode Programming Operation mode in HM53051 is programmed by the combination of SAD 5-bit. MY WF RJf 0 0 0 0 0 0 0 1 0 0 0 0 1 0 Note) AWO x ARO x x x x x x x x x x x x x 1 0 0 0 1 0 1 Mode Write/read address asynchronous transfer Write address asynchronous transfer Read address asynchronous transfer Write/read address synchronous transfer Write address synchronous transfer Read address synchronous transfer System reset Inhibit x means Don't care. .HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 403 HM53051P------------------------------------------------------_________ ReadJWrite Address Asynchronous Transfer Mode • Read address asynchronous transfer mode (1) Read address asynchronous transfer mode (1) (CGR: Low) ---,1 Dout Note) r-1 L-...J CLK r-----'L-.J 31 r-1 32 r-1 33 r-----' 63 r-1 64 r-1 65 r L-I L-I L-I L-.J L-I 2 r-1 3 L-...J L-...J ~------ _ _.....~2--- D3~ .1. .1. AddAR AddAR+l The data block at read address AR, specified by SAD, is output starting from the 32-nd system clock after the ofTAS. (2) Read address asynchronous transfer mode (2) (CGR: High) 2 3 CLK LJl..JLJ----- TAS '---J _ _.....~~~D~I_~~ Dou! I. Add AR Notes) *1. The data block at read address AR, specified by SAD, is output starting from the 32-nd system clock after the falling of TAS". *2. If roR is turned to low after 33-rd clock from the falling edge of TAS, the data at read address AR (D2, D3, D4 ...) is output with synchronous crK while CGR" is low. • Write address asynchronous transfer mode (1) Write address asynchronous transfer mode (1) (CGW: Low) CLK Din 1 2 3 31 32 33 63 64 65 ~-----~-----~ ~ - - - - - .J"n.;;=-/v'-";..:;....IV"-"'D-"2_--~ Add AW+l AddAW Note) Add AW+2 The data block at write address AW, specified by SAD, is taken in starting from the 1-st clock after the falling edge of'fAS. (2) Write address asynchronous transfer mode (2) (CGW; High) ---, 1 r-1 2 r-1 3 CLK L-I L-..J r- ___ _ 31 32 L-I lL-J-----------------------------------------Din -----AddAW Note) If"CGW is turned to low after falling ofTAS":the data block at write address AW is taken in with synchronous eLK. ~HITACHI 404 Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 -----------------------------------------------------------------HM53051P ReadJWrite Address Synchronous Transfer Mode • Read address synchronous transfer mode 1 ";n";32 5 63 64 65 66 ~s--u-ssL..J1.....JLJLJ\~ 1 eLK 2 n 31 32 33 34 II~)S ,GR Dou! Note) IS -----ll----SJ----------IS--------- ~)~~~\~ ~ AddARN-I AddARN+1 I AR When TAS turns to low, the data block at read address AR, specified by SAD, is output after the data block at the present read address ARN, and the next address ARN+ 1 is put out. • Write address synchronous transfer mode ----, 1 2 HI---. LJ· n .----!' + ~~ 31 ,..--, 32 ,..--, 33 ,..--,1 ~~ 32 L.J LJ .. L.J L.J LJ LJ TAS ~~.~\----------------- CGW '}, DIn 'fI:Etlf:K)\~)_ • Note) r---1 LJ eLK Add AW I Add AW+l When TAS turns to low, the data block being written is taken into write address AW. System Reset Mode System reset mode is the same as read/write address asynchronous transfer mode except that read/write address are reset to O. • System reset by SAD Note) System reset mode starts when MF, WF, RF, AWO, and ARO are all high. • System reset by SAS and TAS -u-Ln L.J L.J ~System reset mode Note) • System reset mode starts when both SAS and T AS are low at the falling edge of the eLK. 1 field delay Note) Field-delayed data is output, when CGR and CGW tum to high before the system reset at the beginning of every field, and turn to low simultaneously after the 33rd clock from the system reset. .HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 405 HM53051P----------------------------------------------------------------Notes on Using HM53051 • Input/output data of 32 words is not written or read in read/write address asynchronous transfer mode or during system reset. The data is written or read out in blocks of 32-word x 4-bit. Input data of less than 32 words is not written in write address asynchronous transfer mode or during system reset. When asynchronous read address transfer mode or system reset mode is activated, output from the current data block will continue. When output data from the current data block is finished, the next data block is not read out if it has less than 32 words. • Input data is not read out immediately. The data (32 word x 4-bit) is written into the memory array in the next 32 cycles after it is taken in. The data can be read out only after writing to the memory array is completed. If read address transfer mode is programmed after the 33 word clock from on input data block, new data can be read out. If this mode is programmed before the 33 word clock, new data or old data is output. (1) Read/write address asynchronous transfer mode eLK 32 32 32 32 cycle I (W flte Address I Dm Dout (Read Address ANI AN) I I 1 Om of Address AN Wntlng on Address AN Reading from Address AN Dout of Address AN (2) Read/write address synchronous transfer mode eLK cycle I I 2 I 3 1 .. . 1 32 I 1 2 1 3 1 . . . I 32 I J 21 31 . . . 1 32 1 I 1 2 1 3 1 . . . I 32 I 1 (Read Address ( W flte Addrf'ss ANI ANI Dm Om of Address AN Writing on Address AN Dout Dout of Address AR Readmg from Address AN _/_ Dout of Address ART 1 .1_ ~HITACHI 406 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 Dout of Address AN -------------------------------------------------------------------HM53051P • Mode programming Do not reprogram read address transfer mode before a read operation of the previous read address transfer mode or system reset mode is completed. If it is reprogrammed during a read operation, address becomes inval id, and the device may malfunction. Do not reprogram write address transfer mode or system reset mode before a write operation of the previous write address transfer mode or system reset mode is completed. If it is reprogrammed during a write operation, address become invalid, and the device may malfunction. (1) Read address asynchronous transfer mode eLK 1 cycle I I I .. I 3 2 32 1 I I I 2 3J 1 • 1l2J 3 32 l· j 32 I I TAS (Read Address AN) (Read Address AM) Daut Dout of Address AM Rf'acimg from Readmg from Address AM Address AN Dout of Addre!>s AN (2) Read address synchronous transfer mode eLK 1 cycle .I I I I 2 3 32 I I I. I 1 2 3 1 32 I I I .I 2 3 32 I I 1 2 I I (Read Address AN) (Read Address AM) Dout Readmg from Dout of AJdres:" AN Address AN Readmg from Addre<;s AM ·1· (3) Write address asynchronous transfer mode eLK cycle 1 -TAS I I I .. I 2 3 32 1 I J 1 .1 I I I I . . I 2 3 32 1 2 3 32 I W (Wnte Addre~s (WrIte Address AN) A~fi Om Om of Address AN Wrltmg on Address AN Om of Address AM ~HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 407 HM53051P----------------------------------------------------------------(4) Write address synchronous transfer mode 112 1 1 ... 1 32 3 11 2 1 3 1 . " 1 32 cycle 11 1 2 1",1 3 I (W nte Address AN) 32 LJ (WrIte Address AM) Dm Om of • Om of Wrltmg on Address AN Address AN Address AM 32 elK initialization cycles or more are reo quired. Addresses must be set by read and write address asynchronous transfer or system reset 100MS after power on. Before an address can be set, Absolute Maximum Ratings Symbol Parameter Rating Voltage on Any Pin Relative to Vss Power Dissipation Unit -1.0 to +7.0 V 1.0 Operating Temperature Topr o to +70 W ·C Storage Temperature Tstg -55 to +125 ·C Storage Temperature (under bias) Tbias -10 to +85 ·C Recommended DC Operating Conditions (Ta = 0 to +70°C) Parameter Symbol Supply Voltage Input Voltage min typ max Vee 4.5 5.0 5.5 V VSS 0 0 0 V Unit VIH 2.7 6.5 V VIL _0.5*' 0.8 V Note) * 1. -3.0V for pulse width ;£ IOns. DC and Operating Characteristics (Ta = 0 to +70°C, Vee Test Conditions Symbol Parameter Operating Power Supply Current = 5V ± 10%, V ss = OV) min Min. cycle, lout = 0 mA lee typ max Unit 40 60 mA Input Leakage Current Vee = 5.5 V Yin = VSS to Vee -10 10 "A Output Leakage Current OE=VIH Vout = VSS to Vee -10 10 "A 0.4 V IOL =4.2 mA Output Voltage IOH = -2 mA, Capacitance (Ta =25°C, f Parameter V 2.4 = 1.0 MHz) Symbol Test Conditions min typ max Unit pF pF Input Capacitance Cin Vin= OV 5 Output Capacitance Cout Vout=OV 7 Note) This parameter is sampled and not 100% tested. ~HITACHI 408 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 HM53051P AC Characteristics (Vee = 5 V ± 10%, Ta =0 to +70°C) AC Test Conditions Input and output timing reference levels: 1.5 V Input pulse levels: Vss to 3 V Input rise and fall times: 5 ns • Output Load: 2 TTL + 50 pF (Including scope and jig) • • • Parameter Symbol System Clock Cycle Time CI:K Pulse Width Access Time from CI:K Output Hold Time Output Enable Access Time Output Enable to Output in Low Z Output Disable to Output in High Z CGR Setup Time CGKHoid Time CGW Setup Time CGW Hold Time Write Command Setup Time Write Command Hold Time Data Input Setup Time Data Input Hold Time SAS Cycle Time SAS Pulse Width Serial Address Setup Time Serial Address Hold Time SAS Setup Time during Mode Programming SAS Hold Time during Mode Programming .. TAS Setup Time T AS Hold Time SAS Setup Time during System Reset by SAS/T AS SAS Hold Time during System Reset by SAS/T AS .-~-.--.- tcc tCL tCH tAC tOH tOEA tOLZ tOHZ tGRS tGRH tGWS tGWH twcs tWCH tDS tDH tsc tSL tSH tSAS tSAH tSSH tSHH tTS tTH tSSL tSHL -------~-.-. HM53051-45 max 45 300 15 15 35 5 25 5 0 20 15 5 15 5 15 5 15 5 45 15 15 15 5 15 5 15 5 15 5 min HM53051-60 max 60 300 15 15 40 8 30 5 20 0 15 min 15 5 15 5 15 5 60 15 15 15 5 15 5 15 5 15 5 Unit ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ~HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy. Brisbane, CA 94005-1819 • (415) 589-8300 409 HM53051P----------------------------------------------------------------Read/Write Cycle CLK Don CGR DE Low to. Dout Notes) *1. Write Cycle starts when CGW is low and WE is low. Data are not written when WE is high. Time-compression mode is realized by controlling CGW. *2. Read cycle starts when CGR is low. Time-expansion mode is realized by controlling CGR. Read Cycle (OE control) CLK CGR loLZ Dout Notes) *1. tOHZ is defi.~ed by the time at which the output achieves the open circuit condition. *2. tOLZ and tOHZ are sampled and not 100% tested. ~HITACHI 410 Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 -----------------------------------------------------------------HM53051P Mode Selection SAS SAD TAS Note) SAS operates asynchronously with CIK: When TAS is low at the falling edge of the CI:K, the address transfer cycle starts. SAS should be high during the address transfer cycle. SAs, TAS Reset Mode elK SAS TAS Note) The mode which was selected by SAD before SAs- and TAS reset, if SAS and TAS are reset, should be changed because SAD is newly taken into by SAS. The mode should be reselected by SAD after SAS and TAS reset. @HITACHI Hitachi Amenca, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300 411 HM53461 S e r i e s - - - - - - - 65,536-word x 4-bit Multiport CMOS Video RAM The HM53461 is a 262, 144·bit multi port memory equipped with a 64k·word x 4-bit Dynamic RAM port and a 256·word x 4· bit Serial Access Memory (SAM) port. The SAM port is con· nected to an internal 1,024·bit data register through a 256·word x 4·bit serial read or write access control. I n the read transfer cycle, the memory cell data is transferred from a selected word line of the RAM port to the data register. The RAM port has a write mask capability in addition to the conventional operation mode. Write bit selection out of 4 data bit can be achieved. Utilizing the Hitachi 2J.lm CMOS process, fast serial access operation and low power dissipation are realized. All inputs and outputs, including clocks, are TTL compatible. HM53461P Series (DP·24A) HM5 3461 ZP Series • FEATURES • • • • • • Multiport organization (RAM; 64k·word x 4·bit and SAM; 256 word x 4·bit) Double layer polysilicon/polyicide n·well CMOS process Single 5V (±10%) Low power Active RAM; 380mW max. SAM; 220mW max. Standby 40mW max. Access Time RAM; 100ns/120ns/150ns SAM; 40ns/40ns/60ns (ZP·24) Cycle Time Random read or write cycle time (RAM) 190ns/220ns/260ns Serial read or write cycle time (SAM) 40ns/40ns/60ns • TTL compatible • 256 refresh cycles ..... 4ms • Refresh function R AS - only refresh CAS - before - RAS refresh Hidden refresh • Data transfer operation (RAM~SAM) • Fast serial access operation asynchronized with RAM port except data transfer cycle • Real time read transfer capability • Write mask mode capability INFORMATION • ORDERING Type No. Access Time Package HM53461p·IO HM53461p·12 HM53461p·15 lOOns 120ns 150ns 400 mil 24·pin Plastic DIP HM53461Zp·1O HM53461ZP·12 HM53461ZP·15 lOOns l20ns 150ns 24·pin Plastic ZIP -- ---,.. ----- ._------- ~HITACHI 412 Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005· 1819 • (415) 589·8300 ------ ------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 6 1 Series • PIN ARRANGEMENT • • • HM53461 P Series SI/O, Sl/O, liD, I/o, HM53461ZP Series 1/04 SI/03 Vss 1/03 SOE SI/04 SC 9 SI/02 n 1/01 13 WE 15 A6 17 A4 PIN DESCRIPTION Pin Name AO - A7 Function Address Inputs 1/01 - 1/04 RAM Port Data Input/Output SI/O 1 - SI/04 SAM Port Data Input/Output RAS Row Address Strobe CAS Column Address Strobe SC Serial Clock WE Write Enable 19A7 DT/OE 21 A2 23AO SOE SAM Port Enable Vee VSS Power Supply (Bottom View) Data Transfer/Output Enable Ground (fop View) • BLOCK DIAGRAM .HITACHI Hitachi America, Ltd. • Hitachi Plaza· 2000 Sierra Point Pkwy. Brisbane, CA 94005-1819 • (415) 589-8300 413 HM53461 Series - - - - - - - - - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ .ABSOLUTE MAXIMUM RATINGS Voltage on any pin relative to Vss .............. -1V to +7V Power supply voltage relative to V ss .......... -O.5V to +7V Operating temperature, Ta (Ambient) .......... oDe to +70o e Storage temperature ................... -55°C to +125°e Short circuit output current ..................... 50mA Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W • RECOMMENDED DC OPERATING CONDITIONS (Ta=O to +70°C) typo 5.0 V/H min. 4.5 2.4 VIL _0.5*' - Symbol Parameter Supply voltage Input High voltage Input Low voltage Vee - max. Unit V V V 5.5 6.5 0.8 Notes: 1. All voltages referenced to V ss. 2. -3.0V for pulse width;£ IOns. • DC ElECTRICAL CHARACTERISTICS (Ta Symbol RAM PORT =0 to +70vC, VCC = SV ±IO%, VSS =OV) SAM PORT Standby Active HM53461 -10 HM53461 -12 HM53461 -15 Unit 60 50 rnA 100 7 40 50 90 40 80 rnA rnA rnA rnA rnA rnA rnA rnA rnA mA rnA Operating current RAS, CAS cycling IRC= min. ICC) 0 X 70 ICC7 X 0 Standby current RAS, CAS = VIH lCC2 0 X 110 7 lccs X 0 RAS only refresh curren t CAS = VIH' RAS cycling IRC = min. lCC3 0 X lCC9 X 0 ~mode lCC4 0 X lCCIO Iccs X 0 0 X 100 50 90 60 lCCII X 0 100 90 80 7 30 40 70 35 65 40 70 75 115 65 105 55 85 current RAS = VILo A cycling IpC E min. CDR refresh current RAS cycling IRC= min. Data transfer curren t RAS, CAS cycling IRC = min. lCC6 0 X ICCJ2 X 0 min. -10 -10 2.4 max. 10 10 - 0.4 Symbol Parameter Input leakage Output leakage Output high voltage/OH=-2mA Output low voltage IOL =4.2mA ILl ILO VOH VOL - 40 60 SO Unit ",A ",A V V • INPUT/OUTPUT CAPACITANCE Parameter Address Clocks I/O, SI/O 414 Symbol typo max. CIl CI2 CliO - 5 5 7 - - Unit pF pF pF ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 6 1 Series • ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (To =0 to +70°C, VCC=5V±1O%, VSs=OV)1l·101.111 Parameter Random Read or Write Cycle Time Read-Modify-Write Cycle Time Page !dode Cycle Time Access Time from RAS Access Time from CAS Output Buffer Turn Off Delay referenced to CAS Transition Time (Rise and Fall) RAS Precharge Time RAS Pulse Width CAS Pulse Width RAS to CAS Delay Time RAS Hold Time CAS Hold Time CAS to RAS Precharge Time Row Address Setup Time Row Address Hold Time Column Address Setup Time Column Address Hold Time Write Command Setup Time Write Command Hold Time Write Command Pulse Width Write Command to RAS Lead Time Write Command to CAS Lead Time Da ta-in Setup Time Data-in Hold Time Read Command Setup Time Read Command Hold Time Read Command Hold Time referenced to RAS Refresh Period RAS Pulse Width (Read-Mbdify-Write Cycle) CAS to WE Delay CAS Setup time (CAS-before-RAS refresh) Symbol tRC tRwC tpc tRAC tCAC tOFFl tT tRP tRAS tCAS tRcD tRSH tCSH tCRP tASR tRAH tASC tCAH twcs tWCH twp tRWL tCWL tDS tDH tRCS tRCH tRRH tREF tRws tCWD tCSR CAS Hold Time (CAS-before-RAS refresh) tCHR RAS Precharge to CAS Hold Time t~pc CAS Precharge Time tcp Access Time from OE tOAC Output Buffer Turn-off Delay referenced to OE tOFF2 OE to Data-in Delay Time tODD OE Hold Time referenced to WE tOEH Data-in to CAS Delay Time tDZC Data-in to OE Delay Time tDZO OE to RAS Delay Time tORD Serial Clock Cycle Time tscc Access Time from SC tSCA Access Time from SOE tSEA SC Pulse Width tsc HM53461-10 HM53461-12 HM53461-15 min. max. max. min. max. 190 260 70 - min. 220 300 85 - 260 355 105 - - - 0 3 80 100 50 25 50 100 10 0 15 0 20 0 25 15 35 35 0 25 0 0 10 170 85 10 20 10 10 100 50 25 50 120 - - 60 30 50 - 0 3 - - 0 25 0 0 10 10000 10000 50 - - - 4 10000 - - - - - 90 120 60 25 60 120 10 0 15 0 20 0 25 20 40 40 - - 200 100 10 25 10 15 0 3 - 100 150 75 30 75 150 10 0 20 0 25 0 30 25 45 45 - 0 30 0 0 10 - 10000 10000 60 - - - 4 10000 - 10 30 10 20 - ns - 150 75 40 50 10000 10000 75 - - - 245 125 4 10000 - - - 30 - 0 2S 10 0 0 2S 0 30 15 0 0 40 40 - - 40 30 - 60 40 10 - 10 - 3S - 40 - - 40 2S 10 - 35 30 - - - - 0 40 20 0 0 45 60 Unit Note 40 40 - - - ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ms ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 2, 3 3,4 5 6 7 8 9 8,9 8 10 10 (to be continued) ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 415 HMS3461 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- Parameter SC Precharge Width Serial Data-out Hold Time after SC High Serial Output Buffer Turn-off Delay from SOE Serial Data-in Setup Time Serial Data-in Hold Time DT to RAS Setup Time DTto RAS Hold Time(Read Transfer Cycle) DT to RAS Hold Time DT to CAS Hold Time Last SC to DT Delay Time First SC to DT Hold Time DT to RAS Delay Time WE to RAS Setup Time WE to RAS Hold Time I/O to RAS Setup Time I/O to RAS Hold Time Serial Output Buffer Turn-off Delay from RAS SC to RAS Setup Time RAS to SC Delay Time Serial Data Input Delay Time from RAS Serial Data Input to DT Delay Time SOE to RAS Setup Time SOE to RAS Hold Time Serial Write Enable Setup Time Serial Write Enable Hold Time Serial Write Disable Setup Time Serial Write Disable Hold Time DT to Sout in Low-Z Delay Time Symbol ISCp ISOH ISEZ ISIS ISIH IDTS IRDH IDTH ICDH ISDD ISDH IDTR IWS IWH IMS IMH ISRZ ISRS ISRD ISID ISZD IES IEH ISWS ISWH ISWIS ISWIH IDLZ Notes) 1. AC measurements assume tT=Sns. 2.Assumes that IRCD~IRCD(max). If IRCD is greater than the maximum recommended value shown in this table, I RAC exceeds the value shown. 3. Measured with a load circuit equivalent to 2TTL loads and 100pF. 4. Assumes that I RCD~I RCD(max). S. tOFF(max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels. 6. VIH(min) and VIL(max) are reference levels for measuring timing of input signals. Also, transition times are measured between VIH and VIL' 7.0peration with the IRCD(max) limit insures that IRAC (max) can be met, IRCD(max) is specified as a reference point only, if IReD is greater than the specified tReD (max) limit, then access time is controUed exclusively be HM53461-10 max. min. 10 10 0 0 15 0 80 15 20 5 2S 10 0 15 0 15 10 30 25 50 0 0 15 0 35 0 35 5 25 - - - - - 50 - - HM53461-12 max. min. 10 10 0 0 20 0 90 15 30 S 2S 10 0 15 0 15 10 40 30 60 0 0 15 0 35 2S - HM53461-15 max. min. 10 10 0 0 - 2S - 0 110 - 60 - - 20 4S 10 30 10 0 20 0 20 10 45 35 75 0 0 20 0 55 0 3S - - 0 55 10 - 10 30 - - 75 - - - - Unit Note ns ns ns ns ns ns ns ns ns ns ns ns ns ms ns ns ns ns ns ns ns ns ns ns ns ns ns ns and I CWD are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if twcs~ twcs(min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if t CWD ~lcWD(min), the cycle is a read/write and the data output will contain data read from the selected ceU; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate. 9. These parameters are referenced to CAS leading edge in early write cycle and to WE leading edge in delayed write or read-modify-write cycles. 10.Measured with a load circuit equivalent to 2TTL and 50pF. l1.An L'litial pause of 1001'S is required after power-up. Then execute at least 8 initialization cycles. 8.twcs ICAC. ~HITACHI 416 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 6 1 Series • WAVE FORMS • READ CYCLE IRC CAS --~-----.... Address (Output) 1/0 ---H-----1--~:c;{.-.J~:..r_..r 1/0 (Input) "'""'...."'1~................"[ E2".a Do not care • EARLY WRITE CYCLE IRC CAS----~+_--------~ Addre•• 1/0 (Input) I/O (Output) mDo not care Note) *1. When WE is "R" level, the all data on the I/O can be written into the cell. __ When WE is "L" level, the data on the I/O are not written except for when I/O is 'high' at the falling eclp of RAS. ~HITACHI Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 417 HM53461 Series---------------------------------- • DELAYED WRITE CYCLE tRe Address 1/0 (Input) High-Z 1/0 (Output) 1m Do not care Note) * 1. When WE is "H" level, all the data on I/O 1-1/04 can be written into the memory cell. When WE is "L" level, the data on I/Os are not written exept for when I/O="H" at the falling edge of RAS . • READ MODIFY WRITE CYCLE Address 1/0 (Input) I/O (Output) IZZ2I Do not care Note) * 1. When WE is "H" level, all the data on 1/01-1/04 can be written into the memory cell. __ When WE is "L"level, the data on I/Os are not written except for when I/O="H" at the falling edge of RAS. ~HITACHI 418 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 -------------------------------------------------------------HM53461SeriH • PAGE MODE READ CYCLE Address I/O (Output)--+il--+--fl'---'=_-'r I/O (Input) IZZ2I 00 not care • PAGE MODE WRITE CYCLE (Early Write) Adre •• I/O (Input) I/O (Output) m 00 not care Note) * 1. When WE is "H" level, all the data on 1/0-1/04 can be written into the memory cell. When WE is "L" level, the data on I/Os are not written except for when I/O="H" at the falling edge of RAS . • HITACHI Hitachi America, Ltd • Hitachi Plaza • 2000 Sierra POint Pkwy.• Brisbane, CA 94005-1819-. (415) 589-8300 419 HM53461 Series---------------------------------- • PAGE MODE WRITE CYCLE (Delayed Write) Address 1'0 (Input) I/O (Output) IZZ2I Do not care Note) *1. When WE is "H" level, all the data on 1/0-1/04 can be written into the memory cell. When WE is "L"level, the data on 1/0s are not written except for when 1/0="H" at the falling edge of RAS . • RAS-ONL Y REFRESH CYCLE IRe RAS ----~ ~_ _ _~~______~ ~~------------~ Address I/O (Output) I/O (Input) IZZl Do not care ~HITACHI 420 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 6 1 Series • CAS-BEFORE-RAS REFRESH t.e Address WE /j//////////////////7//////!/fl//fl/, V/II///I////I/I////////lfl/1TIIIf/I I/O (Output) DT/OE /f//////1//1//////II1II/1//111///It IZZiJ Do not care • HIDDEN REFRESH CYCLE IRe tR' RAS - - ' " ' \ I 1 - _ - - = = - _ - 1 Address WE I/O (Output) I/O (Input) IZZl Do not care --~ ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 421 HM53461 Series----------------------------------------------------------------- • READ TRANSFER CYCLE (1,*1,*2 IRe HAS lRA~ Address 110 (Output) I/O (I nput) .J..1.J.-'r"f-L1.J.'"'-'L.L,Lj'"'-1.J.,Ljt..L"rl-'-4.l.,.L.j'+~f_'-'-.....J...jL..£...... SC SI/O (Output) Note SI/O (Input) - - - - - - - - - - . . . : : . - - - - - - - - - - - - - .1) In the case that the previous data transfer cycle was read transfer. IlZ2I Do not care .2) Assume that SOE is "L" level. .3) CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address . • READ TRANSFER CYCLE (2,*1,*2 I", HAS CAS Address WE I/O (Output) I/O (Input) DT/OE SC SI/O (Output) IZZ2I Do not care ~ Inhibit rising transient Note) .1) In the case that the previous data transfer cycle was write transfer or pseudo transfer. 02) Assume that SOE is "L" level, .3) CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address. SI/O (Input) ~HITACHI 422 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra POint Pkwy' Brisbane, CA 94005-1819. (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 6 1 Series • PSEUDO TRANSFER CYCLE Address SC SIlO (Input) --t--t---=':""""---t;/ l"-~.L..L..I...I.-'-'~ IZZ2I Do not care ~ SI/O Note) *1. (Output) ---.1\ Inhibit rising transient "\,4.."j"'...I..'-f CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address . • WRITE TRANSFER CYCLE INc Address SC SIlO (Input) mDonotcare SIiO High-Z (Output) - - - - - - - - - - - - - " - - - - - - - - - - - - - - m Inhibit rising transient Note) *1. CAS and SAM start Address need not be supplied every cycle, only when it is desired to change to a new SAM start Address. ~HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 423 Serie8----------------------------------------------------------------- HM53461 • SERIAL READ CYCLE 50E - - - - - - - ' 5C 5{'0 (Output) I2'ZJ Do not care • SERIAL WRITE CYCLE 50E ----------:-----1 SC 51/0 (Input) ---"" ~Donotcare ~HITACHI 424 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM53462 S e r i e s - - - - - - 65,536-word x 4 bits Multipart CMOS Video RAM (with Logic operation mode) The HM53462 is a 262, 144 bit multipart memory equipped with a 64k-word x 4 bit Dynamic RAM port and a 256-word x 4-bit Serial Access Memory (SAM) port. The SAM port is connected to an internal 1,024-bit data register through a 256-word x 4-bit serial read or write access control. In the read transfer cycle, the memory cell data is transferred from a selected word line of the RAM port to the data register. The RAM port has a write mask capability in addition to the conventional operation mode. Write bit selection out of 4 data bit can be achieved. RAM port has another new function, logic operation capability. By this function logic operation between memory data and input data can be done in one cycle. Utilizing the Hitachi 2~m CMOS process, fast serial access operation and low power dissipation are realized. All inputs and outputs, including clocks, are TTL compatible. HM53462P Series (DP-24A) HM53462ZP Seires • FEATURES • • • • • Multiport organization (RAM; 64k-word x 4 bit and SAM; 256-word x 4 bit) Double layer polysilicon/polyicide n-well CMOS process Single 5V (±10%) RAM; 380 mW max. Low powr Active SAM; 220 mW max. Standby 40 mW max. Access Time RAM; 100ns/120ns/150ns SAM; 40ns/40ns/60ns (ZP-24) • Cycle Time Random read or write cycle time (RAM) 190ns/220ns/260ns Serial read or write cycle time (SAM) 40ns/40ns/60ns • TTL compatible • 256 refresh cycles .. 4ms • Refresh function RAS - only refresh CAS - before - RAS refresh Hidden refresh • Bidirectional data transfer operation (RAM ~ SAM) • Fast serial access operation asynchronized with RAM port except data transfer cycle • Real time read transfer capability • Write mask mode capability • Logic operation capability between Din and Dout • SAM organization can be changed to 1024 x 1 • ORDERING INFORMATION Type No. Access Time Package HM53462P-10 HM53462P-12 HM53462P-15 lOOns l20ns l50ns 400 mil 24 pin Plastic DIP HM53462ZP-10 HM53462ZP-12 HM53462ZP-15 lOOns l20ns l50ns 24 pin Plastic ZIP ~HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra-Point Pkwy_ • Brisbane. CA 94005-1819. (415) 589-8300 425 HM 53462 Series • PIN ARRANGEMENT • HM53462P Series SC v" SI/O. 51/0, • • HM53462ZP Series 1/03 104 SI;03 SOE SI/04 SC SIlO, 9 SI/02 11 1/01 I/O, I/O. I/o, I/O, 13 15 17 19 21 23 WE A6 Al AI Az AI A, r(( A7 WE A6 A4 A7 A2 AO PIN DESCRIPTION Pin Name AO - A7 1/01 - 1/04 SI/Ol - SI/04 RAS CAS SC WE DT/OE SOE Vee VSS Function Address Inputs RAM Port Data Input/Output SAM Port Data Input/Output Row Address Strobe Column Address Strobe Serial Clock Write Enable Data Transfer/Output Enable SAM Port Enable Power Supply Ground (Bottom View) (Top View) • BLOCK DIAGRAM Dout Memory Array (256X256) Are In High- Z State. BY 4 Mode 256X4 (Normal Mode) ~HITACHI 426 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra POint Pkwy. Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 6 2 Series • ABSOLUTE MAXIMUM RATINGS Voltage on any pin relative to V55 . . . . . . . . . . .. -1 V to +7V Power supply voltage relative to V55 . . . . . . . . . . -O.SV to +7V Operating temperature, Ta (Ambient) . . . . . . . . . oOe to +70 0e Storage temperature . . . . . . . . . . . . . . . . . . _55° e to +125° e Short circuit output current . . . . . . . . . . . . . . . . . . . . SOmA Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W • INPUT/OUTPUT CAPACITANCE Parameter Address Oocks I/O. SIlO Symbol CI I CIt typo CliO - - - max. 5 5 7 Unit pF pF pF RECOMMENDED DC OPERATING CONDITIONS (Ta = 0 to +70°C) Symbol Parameter Supply voltage Input High voltage Input Low voltage VCC VIH V/L min. 4.5 2.4 typo max. 5.0 _0.5*' - 5.5 6.5 0.8 - Unit V V V ss. Notes) 1. All voltages referenced to V 2. -3.0V for pulse width ;£ IOns. • DC ELECTRICAL CHARACTERISTICS (Ta Symbol RAM PORT =0 to +70°C, Vee =SV ± 10%, Vss =OV) SAM PORT Standby Active 0 -10 HM53462 -12 HM53462 -15 Unit X 70 60 50 rnA 80 7 50 90 60 100 100 7 40 50 90 40 80 50 90 35 65 40 70 rnA rnA rnA rnA rnA rnA rnA rnA mA 75 115 65 105 55 85 rnA rnA HM53462 Operating current RAS, CAS cycling tRC= min. ICCI ICC7 X 0 110 Standby current RAS, CAS = VIH ICC2 0 X Iccs ICC3 ICC9 ICC4 IcclO Iccs ICCl1 ICC6 X 0 0 X 7 40 60 100 RAS only refresh curren t CAS = VIH.RAScyclingtRC=min. ~ mode current RAS CAS cycling tpc E min. =VIL' eBR refresh current RAS cycling tRC=min. Data transfer current RAS, CAS cycling tRC =min. Parameter Inpu t leakage Ou tpu t leakage Output high voltage IOH a - 2 mA Output low voltage IOL = 4.2 rnA X 0 0 X X 0 0 X X 0 0 X X 0 Symbol min. ILl -10 ho -10 2.4 max. 10 10 ICC12 VOH VOL - • 0.4 30 40 70 Unit ,..A ,..A V V HITACHI Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy· Brisbane, CA 94005-1819 • (415) 589-8300 427 HM53462 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS (Ta =0 to +70°C, Vee =5V ± 10%, Vss =OV)IJ,IO),11) Parameter Symbol HM53462 -10 min. max. HM53462 -12 min. max. HM53462 -15 min. max. Unit Note Random Read or Write Cycle Time Read-Modify-Write Cycle Time Page Mode Cycle Time tRC 190 - 220 - 260 - tRWC tpc 260 - 300 355 - 70 - 85 - 105 - Access Time from RAS tRAC 100 - 120 - 150 ns 2,3 Access Time from CAS tCAC - 50 - 60 - 75 ns 3,4 Out~Buffer Turn Off Delay referenced to CAS Transition Time (Rise and Fall) ns ns ns tOFFI 0 25 0 30 0 40 ns 5 tT 3 50 3 50 3 50 ns 6 tRP 80 - 90 - 100 - ns RAS Pulse Width CAS Pulse Width tRAS 100 120 10000 ns SO 60 10000 10000 150 tCAS 10000 10000 75 RAS to CAS Delay Time RAS Hold Time tRCD 25 50 25 60 30 10000 75 ns ns tRSH 50 tCSH 100 ns ns RAS Precharge Time 75 - 150 - 10 - 10 - 0 - ns 0 CAS Hold Time CAS to RAS Precharge Time Row Address Setup Time tCRP 10 tASR 0 - Row Address Hold Time tRAH 15 - 15 - 20 - tASC 0 - 0 - 0 - ns ns 20 - 25 - ns 0 - 0 25 - 30 20 40 - 25 45 Column Address Setup Time Column Address Hold Time -Wnte Command Setup Time Wnte Command Hold Time - - Write Command Pulse Width Wnte Command to RAS Lead Time Write Command to CAS Lead Time ---- Data-in Setup Time Data·in Hold Time Read Command Setup Time Read Command Hold Time Read Command Hold Time referenced to RAS Refresh Period RAS Pulse Width (Read-Modify-Write Cycle) CAS to WE Delay CAS Setup Time (CAS - before - RAS refresh) CAS Hold Time (CAS - before - RAS refresh) RAS Precharge to CAS Hold Time CAS Precharge Time Access Time from OE out~ Buffer Turn·off Delay referenced to OE to Data·in Delay Time tCAH 20 twcs 0 tWCH twp 25 tRWL 15 35 tCWL 35 tDS 0 tDH 25 60 120 - ns - ns - ns ns ns 40 - 0 - 0 ns 9 - - 25 30 - 0 ns ns 8,9 0 - 0 - 0 - ns 10 - 10 - ns 45 tRCS 0 0 tRRH 10 tREF - tRWS 170 10000 200 10000 245 tCWD 85 - 100 - 125 - ns tCSR 10 - 10 - 10 - ns tCHR 20 - 25 - 30 - ns tRPC 10 - 10 - ns 10 - 10 tcp 15 - 20 40 ns ns 40 ns tOAC - 30 - 0 tODD 25 OE Hold Time referenced to WE tOEH 10 Data·in to CAS Delay Tim~ Data·in to OE Delay Time OE to RAS Delay Time tDZC tDZO 0 0 - tORD 35 - 4 - 25 tOFF2 8 ns tRCH 4 7 35 30 0 - 15 0 - 0 0 40 - ns 0 40 0 ms - - 30 4 10000 20 45 - - 8 ns ns ns ns - ns (to be continued) $ 428 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M S 3 4 6 2 Series Parameter HM53462 -10 Symbol min. max. HM53462 -12 min. HM53462 -15 min. max. Unit Serial Cloc k Cycle Time tscc 40 - 40 - 60 - ns Access Time from SC tSCA 40 - 40 - 60 Access Time from SOE tSEA - 25 - 30 - 40 ns ns tsc 10 - 10 - 10 10 - ns ns 10 - ns ns SC Pulse Width SC Precharge Width , tscp 10 - 10 - Serial Data-out Hold Time after SC High Serial Output Buffer Turn-off Delay from SOE Serial Data-in Setup Time tSOH 10 - 10 - tSEZ 0 25 0 25 0 30 tSIS 0 - 0 0 - ns Serial Data-in Hold Time DT to RAS Setup Time tSIH 15 20 25 0 0 - ns tDTS - - DT to RAS Hold Time (Read Transfer Cycle) tRDH 80 - 90 - 110 - ns rDTH 15 - 15 - 20 - tCDH 20 - - 45 - tSDD rSDH 5 25 10 10 - 10 30 tDTR 0 - 30 5 ns ns 0 - rWH 15 - 15 - rMS 0 - 0 - 15 - 15 - DT to RAS Hold Time DT to CAS Hold Time Last SC to DT Delay Time First SC to DT Hold Time DT to RAS Delay Time WE to RAS Setup Time WE to RAS Hold Time rJII§~l --c-----'- 1/0 to RAS Setup Time 1/0 to RAS Hold Time Serial Output Buffer Turn off Delay from RAS SC to RAS Setup Time RAS to SC Delay Time --- .. --~ rMH - SOE to RAS Setup Time SOE to RAS Hold Time Serial Write Enable Setup Time , ! I - 10 0 - 20 0 - 20 - 60 10 75 ns - 45 - 25 - 30 35 - rSID SO - 60 75 - tSZD 0 - 0 - ns ns 0 - 0 0 - 0 - 15 - 15 - 20 - ~EL.. tEH ------- ns ns ns ns ns ns -- - - - - ns 10 I 10 - 40 ~ 30 10 ns 50 - - I-tSRS rSRD --_.- -------- 0 - rSRZ Serial Data Input Delay Time from RAS Serial Data Input to DT Delay Time I 25 I Note max. .- rSWS 0 - 0 - 0 - Serial Write Enable Hold Time tSWH 35 - 35 - 55 Serial Write Disable Setup Time rSWIS 0 - 0 - 0 Serial Write Disable Hold Time rSWIH 35 - 35 55 DT to Sout in Low-Z Delay Time tDLZ 5 - 10 - - 10 ns ns - _. ---- ns ns ns ns ns ns ns Notes) 1. AC measurements assume tT =5ns. 2. Assumes that tRCD ~ tRCD (max). If rRCD IS greater than the maximum recommended value shown In this table, rRACexceeds the value shown. 3. Measured with a load circuit equivalent to 2TTL loads and 100 pF. 4. Assumes that tRCD ~ rRCD (max). 5. tOFF (max) defines the time at which the output achieves the open circuit condition and IS not referenced to output voltage levels. 6. vIH (min) and V/L (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V IH and V IL' 7. Operation with the rRCD (max) limit insures that tRAC (max) can be met, tRCD (max) is specified as a reference point only, if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively be tCAC' 8. twcs and tcwD are not restrictive operating para- meters. They are included in the data sheet as electrical charactenstics only: if rWCS f; twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if tCWD f; tCWD (mIn), the cycle is a read/write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate. 9. These parameters are referenced to CAS leading edge in early wnte cycle and to WE leading edge in delayed write or read-modify-write cycles. 10. Measured with a load circuit equivalent to 2TTL and 50 pF. 11. After power-up, pause for more than 100"s and execute at least 8 initialization cycles. Then execute at least one logic reset cycle including write mask reset (on the falling edge of RAS, WE = "Low" and 1/01 - I/O = "High"), and execute one or more transport cycle for initiation of SAM port. ~HITACHI Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 429 HM53462 Serie8---------------------------------- • WAVE FORMS • tH< RAS READ CYCLE Address (Output) 1/0 -----Irt-----------~------~~~--~~~~~ 110 (Input) • :...I:;."t.~4~""'''-~ rza Do not care EARLY WRITE CYCLE CAS------~--------------~ Address WE 10 (Input) 10 (Output) I2Za Do not care Note) *1. When WE is "H" level, the all data on the I/O can be written into the cell. When WE is "L" level, the data on the I/O are not written except for when I/O is "H"level at the falling edge of RAS. ~HITACHI 430 Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra POint Pkwy. Brisbane, CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM53462 Series • DELAYED WRITE CYCLE IRe Address 110 (Input) I/O High-Z (Output)--------------,;;...---------------- 1m Do not care Note) *1. When WE is "H"level, all the data on 1/01-1/04 can be written into the memory celL When WE is "L" level, the data on I/Os are not written except for when I/O • "H" at the falling edge of RAS. • READ MODIFY WRITE CYCLE Address 1/0 (Input) 1'0 (Output) IZZ2I Do not care Note) *1. When WE is "H" level, all the data on I/O I -1/04 can be written into the memory cell. When WE is "L" level, the data on I/Os are not written except for when I/O· "H" at the falling edge of RAS. ~HITACHI Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Pomt Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 431 HM53462 • Series---------------------------------- PAGE MODE READ CYCLE Address I/O (Output) I/O (Input) • PAGE MODE WRITE CYCLE (Early Write) CAS --++-';;;;';-L Adress I/O (Input) I/O (Output) mDonot care Note) *1. When WE is "H" level, all the data on 1/01-1/04 can be written into the memory cell. When WE is "L" level, the data on I/Os are not written except for when I/O = "H" at the falling edge of RAS. ~HITACHI 432 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ HM53462 Series • PAGE MODE WRITE CYCLE (Delayed Write) Address 1'0 (Input) 10 10utput) IZZ2I Do not care Note) * I. When WE is "H" level, all the data on I/O 1-1/04 can be written into the memory cell. When WE is "1." level, the data on I/Os are not written except for when I/O = "H" at the falling edge of RAS . • RAS-ON L Y REFRESH CYCLE tH, Address I/O (Output) IZn Do not care ~HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra POint Pkwy, • Brisbane, CA 94005-1819 • (415) 589-8300 433 HM53462 S e r i e s - - - - - - - - - - - - - - - - - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ • ~-BEFORE-~ REFRESH CYCLE IRe tRP I/O (INPUT) 7 I/O HIGH-Z (OUTPUT)-------------.;,;;;.;;..;.;..;;;,...---------- DTIOE zmz7l/l//l/Ollllll7lZZOlllO FllA • Do not care HIDDEN REFRESH CYCLE IX( IHe IH"., RAS - - - " - Address tORD VALID 1'0 (Output) 110 (Input) Dour High-Z rn Do not care .HITACHI 434 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 6 2 Series • READ TRANSFER CYCLE (11- 1 ,-2 IH( RAS Address I/O (Output) 110 (Jnput) -4.1.J.~f-LI.J..L..l[..LL.I.....L..I.J.L.I.....L..~....L..I.J..L..l~t.l::L.I.....L..'""L.I.....L..'- SC 51/0 (Output) SI/O (lnput)----------....;.;,=...;;;,.------------ IZZlI NOTE *1) In the case that the previous data transfer cycle was read transfer. Do not care *2) Assume that SOE is "Low". *3) CAS and SAM start Address need not be supplied every cycle, only when it is desired to change to a new SAM start Address . • READ TRANSFER CYCLE (21- 1,-2 IN ,-. 'H' Address I/O (Qutput) I/O (Input) 51/0 (Output; ..t..1.L£f-~.I..I..u.. .'"'-I.LI.L.I..I..I..I.LIi,t,J..u..u.i.LJt.,I,'u..'"'-I..L.I..L.LLI.LL. 1t:G.~~------_:_j-~(1u.'J.l) IZZ2I Do not care m Inhibit nsing transient SIlO (Input) NOTE *1) In the case that the previous data transfer cycle was read transfer. __ *2) Assume that SOE is "Low" *3) t;,\S and SAM start Address need not be supplied every cycle, only when it is desired to change to a new SAM start Address. • HITACHI Hitachi America. Ltd. - Hitachi Plaza - 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 435 HM53462 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • PSEUDO TRANSFER CYCLE I" Address 5C 510 (Input) --+-+---:----~:y l\L-.L..L..L...I....l...I:....c...L...U IlZ2I Do no t care m Inhibit rising transient 51'0 (Output) *1) CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address . • WRITE TRANSFER CYCLE IRe RAS CAS Address WE DT/OE SOE SC SilO (Input) SIlO (Output) U2!Donotcare High-Z m Inhibit rising transient *1) CAS and SAM start address need not be supplied every cycle, only when it is desired to change to a new SAM start address. ~HITACHI 436 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 6 2 Series • SERIAL READ CYCLE SOE _ _ _ _ _ _J SC SIO (Output I IZZiJ Do not care • SERIAL WRITE CYCLE SOE - - - - - - - - - - - - ' \ SC SI/O (Input) ----' UL1 Do not care • ELECTRICAL AC CHARACTERISTICS (Logic operation mode) Parameter Write cycle time RAS pulse width in write cycle CAS pulse width in write cycle CAS" hold time in write cycle RAg hold time in write cycle Page mode cycle time (Write cycle) CAS""hold time (Logic operation set/reset cycle) CAS hold time from RAg precharge (x4 .... xl set cycle) HM53462-10 min. max. 230 140 10000 80 10000 140 80 100 Symbol tFRC tRFS tCFS tFCSH tFRSH tFPC HM53462-12 min. max. 265 165 10000 95 10000 165 95 120 HM53462-15 min. max. 310 200 10000 105 10000 200 105 135 - Unit ns ns ns ns ns ns tFCHR 90 - 100 - 120 - ns tPSCH 10 - 10 - 10 - ns • HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brtsbane, CA 94005·1819 • (415) 589-8300 437 HM53462 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • • LOGIC CODE (FCO- 3 are AXO- AX3 in Logic Operation Set Cycle) FC3 FC2 FCI FCO 0 0 0 0 0 0 0 0 I I I I I I I I 0 0 0 0 I I I I 0 0 0 0 I I I I 0 0 I I 0 0 I I 0 0 I I 0 0 I I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I LOGIC Write Data Zero 0 Di'Mi ANDl AND2 Di'Mi X4 -+XI AND3 Di 'Mi Di THROUGH DI . Mi + Di . Mi EOR Symbol ORI NOR ENOR INVI OR2 INV2 OR3 NAND I Di+Mi Dl'Mi Di . Mi + Di ' Mi Di Di+ Mi Mi Di+ Mi Di+Mi ONE -+ SAM organization changes to 1024 x I -+ Logic operation mode reset Di Mi : External Data-in : The data of the memory ceU LOGIC OPERATION SET/RESET CYCLE (With CAS before RAS refresh) IRP IRe Address I/O (Input) .L...I....J...J..J HIGH'Z I/O (Output) DT/OE 7//IOllI7lIOI//Z7II7IIOOZOZ /11Za Do not care *1) Logic code AO-A3 (A4-A7: don't care) *2) Write mask data ~HITACHI 438 HItachi America, Ltd .• Hitachi Plaza. 2000 SIerra Point Pkwy· Brisbane, CA 94005·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 6 2 Series • LOGIC OPERATION MODE • inn EARLY WRITE CYCLE tfRSH tHU) tresH Address I/O (Input) I/O (Output) _____~+-------------------------------------------- Note) * 1. When WE is 'high', the all data on the I/O can be written into the cell. When WE is 'low', the data on the I/O are not written except for when I/O is 'high' at the falling edge of RAS . • DELAYED WRITE CYCLE 1--_________-=1'-' ":.::."_ _ _ _ _ _ _ _ _ _---1 lfH~H tHC/) CAS rIllA Do not care IA>" Address WE I/O (Input) 1i0 VALID DATA IN HIGH~ Z (Output) NOTE I) When WE is "H" level, all the data on 1/01-4 can be written into the memory cell. ~ Do not care When WE is "L" level, the data on I/Os are not written except for when I/O ="H" at the falling edge of RAS. ~HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra POint Pkwy • Brisbane, CA 94005-1819 • (415) 589·8300 439 HM53462 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • PAGE MODE WRITE CYCLE (Delayed Write) Address [ 0 (Input) 10 (Output) Note) *1. When WE is 'high', the all data on the I/O can be written into the cell. When WE is 'low', the data on the I/O are not written except for when I/O is 'high' at the falling edge of RAS. • rn Do not care PAGE MODE WRITE CYCLE (Early Write) Address I/O (Input) I/O (Output) ____ Note) ~+_----------------------~~~------------------------------- * 1. When WE is 'high', the all data on the I/O can be written into the cell. IlZlI Do not care When WE is 'low', the data on the I/O are not written except for when I/O is 'high' at the falling edge of RAS. ~HITACHI 440 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 6 2 Series • DESCRIPTION 1. LOGIC OPERATION MODE HM53462 has an internal logic operation unit which makes a process of graphics simple. The logic is determined in "Logic operation set/reset cycle", and the operation is executed in every write cycle succeeding to the logic operatIOn set/reset cycle. In this mode the internal read-modify-write operation is executed and the cell data is converted into the new data given by the logic operation between Din and the old cell data. 2. LOGIC OPERATION SET/RESET CYCLE A logic operation set/reset cycle is performed by bringing CAS and WE low when RAS falls (Fig. 1). The logic code and the bits to be masked are datermined respectively by AxO-3 state and I/O 1-4 state at the falling edge of RAS. Furthermore, in this cycle CAS - before - RAS refresh operation is executed, too. In the case of executing the conventional CAS" - before - RAS refresh operation, WF must be high when RAS falls. 2.1. Logic code The logic code is shown in Table 1. CAS is turned on, at least one logic reset cycle including write mask reset is required to initialize logic code. If the lOgic code is (Ax3, Ax2, Axl, AxO) = (0, 0,1, 1), the SAM organization is changed converter (Fig. 2). In the case that the SAM organization is changed to 1,024 xl, one data transfer cycle is needed to initialie the SAM selector. Once the SAM organization is changed to 1024 x 1, this code is maintained unless power is turned off. 2.2. Write mask HM53462 has two kinds of mask registers (register 1, 2). The register I is set by bringing WE low at the falIing edge of RAS during the write cycle, and the mask data is available only in this cycle. The register 2 is set by level of I/O In the logiC operation set/reset cycle, and the mask data is available until the next logic operation set/reset cycle. If the register I is set during the current logic operation mode, the mask data of the register 1 is preferred (that of the register 2 is ignored) and the logic becomes "THROUGH" only in this cycle (Fig. 3). When power "L" Addros WE DT/OE 110 IlZZI Do not care Fig. 1 LOGIC OPERATION SET/RESET CYCLE .HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra POint Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 441 HM53462S.ies----------------------------------------------------------------Tabla 1. LOGIC CODE (FCO - FC3 are AXO - AX3 in Logic Operation Set Cycle) FC3 FC2 FCI FCO 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 I 0 1 0 1 0 1 0 1 0 1 0 1 0 1 LOGIC Write Data Zero 0 Di'Mi ANDI AND2 Di 'Mi X4 ~Xl AND3 Di'Mi THROUGH Di Di • Mi + Di . Mi EOR Di+ Mi ORI Di 'Mi NOR Di . Mi + or· WI ENOR INVI Di OR2 Di+ Mi INV2 Mi OR3 Di+ Mi Di+Mi NAND 1 ONE Symbol - ~ SAM organiza:!t)n changes to 1024 x 1 ~ Logic operation mode reset Di Mi : External Data-in : The data of the memory 0811 Fig. 2 THE SHIFT WAY OF SAM DATA SAM Data Register Senal I/O l+l ;e j L -________________ f ~ i ~ 1 a b ~~ g_;~:_c~~ __ ~____________~~~j~d~ 1) By 4 mode (SAM organization: 256 x 4) ,;:,----S SI02 X SI03 X X SI04 hu I~ \ I \ x::::: x:= ---~ d X X X g x:::: x:= .HITACHI 442 Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM53462 Series 2) By 1 mode (SAM organization: 1024 x 1) SII:~ ~__ A\. .... r\ I r::::---\ SI/02 _ _ _ _ _ _ _ _ _ _ _ _....;.;H;::lg;;.h·..:;Z;..__ _ _ _ _ _ _ _ _ _ __ SI/03 _ _ _ _ _ _ _ _ _ _ _ _ _....;.;H.:::'g~h·..:;Z;..__ _ _ _ _ _ _ _ _ _ ___ SI/04 ___________________________H_';;.gh__ Z ___________________________ Fig. 3 EXAMPLE OF LOGIC OPERATION MODE RAS LogiC operation set/reset cycle Write cycle r I --. "L" CAS WE I 1/01 \ "L" "H" \ "O"Wnte Masked 1/03 1/04 I "1"Wnte Logic Mask reg.2 IS set J 02,3 .M asked Assume that the logiC IS set to "AND!". r~ AND! I Masked I Masked 1/02 r /'" r~ "H" "L" ~ W nte cycle W nte cycle Write cycle "H" \ '\ "1"Wnte "1"Wnte Masked "O"Wnte Masked Masked "O"Wflte THROUGH r~ ,-':";;:\ AND! " O"Wnte Masked I Masked "1"Write AND! Mask reg.1 is set, and valid only In this cycle J Ol.4:M asked @HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra Point Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 443 HM538122 Series - Preliminary 131072-Word x a-Bit Multiport CMOS Video RAM The HM538122 is a 1-Mbit multiport video RAM equipped with a 128-kword x 8-bit dynamic RAM and a 256-word x 8-bit SAM (serial access memory). Its RAM and SAM operate independently and asynchronously. It can transfer data between RAM and SAM and has a write mask function. It also provides logic operation mode to simplify its operation. In this mode, logic operation between memory data and input data can be executed by using internal logic-arithmetic unit. Pin Arrangement sc Vss 1 SI/OO SI/07 SI/01 SI/06 SI/02 SI/05 SI/04 SI/03 BT/OE SE 1/00 1/07 1/01 1/06 Features 1/02 1/05 • 1/03 1/04 Multiport organization Asynchronous and simultaneous operation of RAM and SAM capability RAM: 128-kword x 8-bit and SAM: 256-word x 8-bit • Access time RAM: 100 ns/120 ns/150 ns max SAM: 30 ns/40 ns/50 ns max RAM: 190 ns/220 ns/260 ns min • Cycle time SAM: 30 ns/40 ns/60 ns min • • • • • • • • Vss 2 WE Ordering Information Type No. Access Time HM538122JP-I0 HM538122JP-12 HMS38122JP-15 100 ns 120ns 150 ns Package 400-mil 40-pin Plastic sm (CP-4OD) NC RAS CAS NC NC A8 AO Al A6 Low power Active RAM: 385 mW max SAM: 275 mW max Standby 40 mW max High-speed page mode capability Logic operation mode capability 2 types of mask write mode capability Bidirectional data transfer cycle between RAM and SAM capability Real time read transfer capability 3 variations of refresh (8 ms/512 cycles) RAS-only refresh CAS-before-RAS refresh Hidden refresh TIL compatible NC NC AS 18 A4 19 22 A3 Vcc 2 20 21 A7 A2 (Top View) Pin Description Pin Name AD-A8 I/O-I/07 SI/OOSII07 RAS CAS WE DT/OE SC SE Vee Vss NC Function Address inputs RAM port data inputs/ outputs SAM port data inputs/ outputs Row adress strobe Column address strobe Write enable Data transfer/Output enable Serial clock SAM port enable Power supply Ground No connection This document contains infonnationon a new product. Specifications and infonnation contained herein are subject to change without notice. • 444 HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM538122 Series Block Diagram RAM 255 SAM 255 Dout Pomter Din c Memory Array E " "0 u .., ~ ex: '" .. ~ rnJj Q) ex: "' '*' E Cl S tR or lRAD is greater than the maximum recommended value shown in this table, tRAC exceeds the value shown. *3. *4. *5. *6. *7. *S. *9. *10. *11. *12. Measured with a load circuit equivalent to 2 TTI.loads and 100 pF. Measured with a load circuit equivalent to 2 Tn. loads and 50 pF. When tRa> ~ tRa> (max) and tRAD S IRAD (max), access time is specified by tCAC. When tRa> S tRa> (max) and tRAD ~ IRAD (max), access time is specified by tAA. IOff (max) is defined as the time at which the output achieves the open circuit condition (VOH- 200 mV, VOL + 200 mV). VUI (min) and VIL (max) arc reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL. When twCS ~ twcs (min), the cycle is an early write cycle, and I/O pins remain in an open circuit (high impedanoe) condition. When lAWD ~ tAWD (min) and tewD ~ tewD (min), the cycle is a read-modify-write cycle; the data of the selected address is read out from a data output pin and input data is written into the selected address. In this case, impedance on I/O pins is controlled by OE. These parameters are referenced to "CAS faDing edge in early write cycles or to WE falling edge in delayed write or readmodify-write cycles. After power-up, pause for 100 lIS or more and execute at least 8 initialization cycles (nonnal memory cycles or refresh cycles), then start operation. H either tRCH or tRRH is satisfied, operation is guaranteed. ~HITACHI 458 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM538122 Series Timing Waveforms Read Cycle Address I/O Oulpul) I/O (Inpul) ~ : Don't care. Early Write Cycle Address I/O (Input) I/O (Oulput) Of/or~ : Don't care Note: *1. When WE is high level, all the data on I/Os can be written into the memory cell. When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS . • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 459 HM538122 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - Delayed Write Cycle t.e Address I/O (Input) I/O Hlgh-Z (Output)----------.....;,;.:.!!.:.:.-=--------------~ : Don't care Note: *\. When WE is high level, all the data on IIOs can be written into the memol)' cell, When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS, Read-Modlfy-Write Cycle Address I/O (Input) I/O (Output) t2ZI : Don't care Note: *1. When WE is high level, all the data on I/Os can be written into the memol)' cell. When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS. ~HITACHI 460 HitaChi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 . - - - - - - HM538122 Series Page Mode Read Cycle Address I/O (Output) I/O , (Input) ~ : Don't care Page Mode Write Cycle (Early Write) t.e Address I/O (Input) I/O (Output) ~ : Don't care Note: *1. When WE is high level, all the data on I/Os can be written into the memory cell. When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS. ~HITACHI Hitachi America, ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 461 HM538122 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - Page Mode Write Cycle (Delayed Write) Address I/O (Input) RlIIIIIIIZI ~ : Don't care. Note: *1. When WE is high level, all the data on IJOs can be written into the memory cell. When WE is low level, the data on I/Os are not written except for the case that the IJO is high at the falling edge of RAS. RA5-0nly Refresh Cycle Address I/O ( Output) I/O (Input) tOTS tOTH EL21 : Don't care, ~HITACHI 462 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - HM538122 Series CAS-Before·RAS Refresh Cycle Address OZIZZZT///I/fl/Il/////OII T/lITfl/T//l//TIlZZOI/Jil I/O (Input) I/O (Output) 'lZIZOIIlORZOOZllOII High-Z 'lll/lllll/lllllllllll; ~ : Don't care. Hidden Refresh Cycle Address I/O (Output) I/O (Input) ii) 1. ~ : Don't care. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 463 HM538122 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - Read Transfer Cycle (1),1, '2 0l'/ ~ tRa> (max) and IRAD ~ tRAD (max). If IRa> or IRAD is greater than the maximum recommended value shown in this table, tRAC exceeds the value shown. ·3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF. ·4. Measured with a load circuit equivalent to 2 TTL loads and 50 pF. *5. When IRa> ~ IRa> (max) and tRAD S IRAD (max), access time is specified by tCAC. *6. When IRa> S IRa> (max) and tRAD ~ IRAD (max), access time is specified by tAA. *7. tOFF (max) is defined as the time at which the output achieves the open circuit condition (VOH- 200 mY, VOL+ 200 mY). *8. Vm (min) and VIL (max) are reference levels for measuring timing of input signals. Transition times are measured between Vm and VIL. *9. When tWCS ~ twcs (min), the cycle is an early write cycle, and I/O pins remain in an open circuit (high impedance) condition. When tAWD ~ IAWD (min) and teWD ~ teWD (min), the cycle is a read-modify-write cycle; the data of the selected address is read out from a data out pin and input data is written into the selected address. In this case, impedance on I/O pins is controlled byOE. *10. These parameters are referenced to CAS falling edge in early write cycles or to WE falling edge in delayed write or readmodify-write cycles. *11. After power-up, pause for 100 IlS or more and execute at least 8 initialization cycles (normal memory cycles or refresh cycles), then start operation. *12. If either IRCH or tRRH is satisfied, operation is guaranteed. • 484 HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM538123 Series Timing Waveforms Read Cycle Address I/O (Output) I/O (Input) ~ : Don't care. DSF Early Write Cycle Address I/O (Input) I/O (Output) DSF r:22I : Don't care. Note: *1. When WE is high level, all the data on 1/05 can be written into the memory cell. When WE is low level, the data on 1/05 are not written except for the case that the 110 is high at the falling edge of RAS . • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589·8300 485 HM538123 S e r l e s - - - - - - - - - - - - - - - - - - - - - - - - - - - Delayed Write Cycle RAS t RCO CAS Address WE miCE I/O (Input) H.gh-Z I/O (Output) t'F'H DSF ~ : Don't care. Note: "I. When WE is high level, all the data on I/Os can be written into the mem~ell. When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS. Read-Modify-Write Cycle tRwc t •• liAS tesH teAs CAS Address WE I/O (Input) I/O (Output) D'f/CE DSF ~ : Don't care. Note: "I. When WE is high level, all the data on I/Os can be written into the memory cell. When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS . • 486 HITACHI Hitachi America, Ltd • Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM538123 Series Page Mode Read Cycle I.e ---++-r-i. fol~.e_D_='--I JC ~-~ Address I/O ( Output),---+-+---'-t='-m : Don't care ~ . Inhibit rising tranSient DSF Notes: I/D : Don't care * I, When the previous data transfer cycle is a special read transfer cycle or special read initialization cycle, it is specified as special read initialization cycle (I). *Z. "SIl is in low level. (When SE is high, SIlO becomes high impedance state.) *3. CAS and SAM start address don't need to he specified every cycle, if SAM start address is not changed. Special Read Initialization Cycle (2) ·1,·2 tus Address QSF sc SI/O (Input) DSF '{][f)---------------------11 ~ : Don't care ~r"rr,:7_r7"7"T'l"'T'rT'T7''T7''T'l.._r:,...,..,r_r.r_r.r_r.r_r.r_rTTTTTTT'TTTTTT'T77 ~ : Inhibit rising .u.+-_4:.u..LJr..LLL.L4~'..L..r..Lu..u..LLu..LLLLLL.u..u..u..u.J..J.J..J..u.J..J...L I/o : Don't care tranSient Notes: *1. When the previous data transfer cycle is a write or pseudo transfer cycle, it is specified as special read initialization cycle (Z). *Z. SE is in low level. (When SE is high, SIlO becomes high impedance state.) *3. CAS and SAM start address don't need to he specified every cycle, if SAM start address is not changed. ~HITACHI 490 Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra POint Pkwy • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM538123 Series Special Read Transfer Cycle 01,02 Address I/O (Output) I/O (Input) SC 51/0 (Output) 51/0 (Input) QSF rn : DSF Don't care Notes: *1. When QSF is low level at the falling edge of RAS, the special read transfer cycle is not perfonned. *2. Sii is in low level. (When SE is high, SIlO becomes high impedance state.) *3. CAS and SAM stan address don't need to be specified every cycle, if SAM stan address is not changed . • HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 491 HM538123 S e r l e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - Pseudo Transfer Cycle RAS CAS Address WE DT/OE SE SC SI/O (Input) SI/O (Output) tROD QSF Note: .-:/.;; Don't care >C(; InhIbIt nsmg tranSIent I/O Don't care *1. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed. Write Transfer Cycle Address SC 51/0 (Input) 51/0 Hlgh-Z (Output) rIIlJ: QSF Note: _____________...._________ Il2lllI: *1. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed . • 492 Don·t care Inhibit rising transient HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM538123 Series Serial Read Cycle h~ ZZ77777777777777777777~~ZZ777777 SC SI/O (Output) ~ : Don't care Serial Write Cycle '1,'2 ~~ 777777777777777777777;~i:z77777771 SC SI/O (Input) ~ : Don't care Notes: ·1, When SE is high level in a serial write cycle, data is not written into SAM, however, the pointer is incremented. ·2. Address 0 is accessed next to address 255. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 493 HM538123 S e r l e 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - Serial Read Cycle (Around Addre•• 255 In SAM) sc 51/0 (Output) QSF Note: *1. Address (i) is the SAM start address provided in the previous special read transfer cycle. When special read transfer cycle isn't executed (QSF remains in high level), address 0 is accessed next to address 255. Color Register Set Cycle (Early Write) toe I/O (Input) DSF ~ : Don't car •. Note: *1. The level of address pin is don't care, but cannot he changed in this period . • 494 HITACHI Hitachi America, ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 HM538123 Series Color Register Set Cycle (Delayed Write) I/O (Input) DSF Address ~ : Don't care Note: *1. The level of address pin is don't care, but cannot be changed in this period. Flash Write Cycle t RCfW tRASFW RAS CAS Address WE I/O (Input) liT/OE DSF ~ : Don't care. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 495 HM534251 Series -Preliminary 262144·Word x 4·81t Multipart CMOS Video RAM The HM534251 is a 1-Mbit multiport video RAM equipped with a 256-kword x 4-bit dynamic RAM and a 512-word x 4-bit SAM (serial access memory). Its RAM and SAM operate independently and asynchronously. It can transfer data between RAM and SAM and has a write mask function. It is suitable for a graphic processing buffer memory. ZP-28 • FEATURES • Multiport Organization Asynchronous and Simultaneous Operation of RAM and SAM Capability RAM ..............................256-kword x 4-Bit SAM ...............................512-word x 4-Bit • Access Time ................ RAM: 100/100/120/150ns (max.) SAM: 30/40/40/50ns (max.) RAM: 190/190/220/260ns (min.) SAM: 30/40/40/60ns (min.) • Low Power Active .................. RAM: 385mW (max.) SAM: 358mW (max.) Standby. . . . . . . . . . . . . . . . 40mW (max.) • High Speed Page Mode Capability • Mask Write Mode Capability • Bidirectional Data Transfer Cycle Between RAM and SAM Capability • Real Time Read Transfer Capability • 3 Variations of Refresh (8ms/512 Cycles) RAS-Only Refresh CAS-Before-RAS Refresh Hidden Refresh • TTL Compatible Pin Arrangement IIMS342SIJP Serie. 28 VII SC 51/00 51/01 3 Dr/OE 1/00 1/01 WE NC ill A8 A6 AS A4 10 11 12 13 14 V" 27 26 25 24 23 22 21 20 19 18 17 16 15 51/03 51/02 SE 1/03 1/02 NC CAS NC AO Al A2 A3 A7 (fop View) HM5342S1ZI' Series 1/022 §:4 51/03 6 SC 8 51/01 10 !l00 12 WE 14 INC 31/03 551/02 7 Vss 9 51/00 11 rrt/il£ 13 1/01 15 NC • ORDERING INFORMATION Type No. Access Time Package HM53425UP-1O HM53425UP-11 HM53425UP-12 HM53425UP-15 lOOns lOOns 120ns 150ns 400-mil 28-pin Plastic SOJ (CP-28D) HM534251ZP-1O HM534251 ZP-ll HM534251ZP-12 HM534251ZP-15 lOOns lOOns 120ns 150ns 400-mil 28-pin Plastic ZIP (ZP-28) This docwnent contains infonnation on a new product. Specifications and infonnation contained herein are subject to change without notice. • 496 (Bottom View) Pin Description Function Pin Name AO-A8 Address inputs lIOO-I/03 RAM port data inputs/ outputs SlIOOSAM port data inputs/ SlI03 outputs RAS Row address strobe CAS Column address strobe WE Write enable DT!OE Data transfer/Output enable SC Serial clock SAM port enable SE' Vee Power supply Vss Ground NC No connection HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 1 Series Block Diagram RAM SAM 511 511 Dou! POinter Din Memory Array ~ E "0 " u .bi> '"~" ~l ~ t;; .bi> '"" ;te .c '" 0 From Column Address (SAM Start Address) Row 0 0 511 Pin Function RAS (input pin): RAS is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input at the falling edge of RAS. The input level of those signals determine the operation cycle of the HM534251. Table 1. Operation Cycles of the HM534251 CAS H H H H H L Note: Input level at the falling edge of RAS DT/OE WE H H H L L H L L L L x x; Don't care. x SE x x x RAM read/write Mask write Read transfer Pseudo transfer Write transfer CBR refresh H L x CAS (input pin): Column address is put into chip at the falling edge of CAS. CAS controls output impedance of 110 in RAM. AO-AS (input pins): Row address is detetmined by AO-ASlevel at the falling edge of RAS. Column address is determined by AO-AS level at the failing edge of CAS. In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer. Operation Cycle WE (input pin): WE pin has two functions at the failing edge of RAS and after. When WE is low at the falling edge of RAS, the HM534251 turns to mask write mode. According to the 110 level at the time, write on each 1/0 can be masked. (WE level at the falling edge of RAS is don't care in read cycle.) When WE is high at the falling edge of RAS, a normal write cycle is executed. After that, WE switches readlwrite cycles as in a standard DRAM. In a transfer cycle, the direction of transfer is determined by WE level at the falling edge of RAS. When WE is low, data is transferred from SAM to RAM (data is written into RAM), and when WE is high, data .HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 497 HM534251 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - is transferred from RAM to SAM (data is read from RAM). 1/00-1103 (input/output pins): 1/0 pins function as mask data at the falling edge of RAS (in mask write mode). Data is written only on high 110 pins. Data on low 1/0 pins are masked and internal data are retained. After that, they function as input/output pins as those of a standard DRAM. DT/oE (input pin): DT/OE pin functions as DT (data transfer) pin at the falling edge of RAS and as OE (output enable) pin after that. When DT is low at the falling edge of RAS, this cycle becomes a transfer cycle. When DT is high atthe falling edge of RAS, RAM and SAM operate independently. RAM Write Cycle (Early Write, Delayed Write, Read-Modify-Write) (DT/OE high, CAS high at the falling edge of RAS) • Normal Mode Write Cycle (WE high at the falling edge of RAS) When CAS and WE are set low after RAS is set low, a write cycle is executed and 110 data is written at the selected addresses. When all 4 1I0s are written, WE should be high at the falling edge of RAS to distinguish normal mode from mask write mode. If WE is set low before the CAS falling edge, this cycle becomes an early write cycle and 1/0 becomes high impedance. Data is entered at the CAS falling edge. SC (input pin): SC is a basic SAM clock. In a serial read cycle, data is output from an SilO pin synchronously with the rising edge of SC. In a serial write cycle, data on an SilO pin at the rising edge of SC is put into the SAM data register. If WE is set low after the CAS falling edge, this cycle becomes a delayed write cycle. Data is input at the WE falling edge. 110 does not become high impedance in this cycle, so data should be entered with OE in high. SE (input pin): SE pin activates SAM. When SE is high, SilO is in the high impedance state in serial read cycle and data on SilO is not put into the SAM data register in serial write cycle. SE can be used as a mask for serial write because internal pointer is incremented at the rising edge of SC. If WE is set low aftertcwo (min) and tAWD (min) after the CAS falling edge, this cycle becomes a readmodify-write cycle and enables write after read to execute in the same address cycle. In this cycle also, to avoid 1/0 contention, data should be input after reading data and setting OE high. S1/00-81103 (input/output pins): SilOs are inputloutput pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SilO outputs data. When it was a pseudo transfer cycle or write transfer cycle, SilO inputs data. • Operation of HM534251 Operation of RAM Port RAM Read Cycle (DT/OE high, CAS high, at the falling edge of RAS) Row address is entered at the RAS falling edge and column address at the CAS falling edge to the device as in standard DRAM. Then, when WE is high and DTI OE is low while CAS is low, the selected address data is output through I/O pin. At the falling edge of RAS, DT/OE and CAS become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (tM) and BAS to column address delay time (tRAO) specifications are added to enable high-speed page mode. Mask Write Mode (WE low at the falling edge of RAS) If WE is set low at the falling edge of RAS, the cycle becomes a mask write mode cycle which writes only to selected 1/0. Whether or not an 110 is written depends on 110 level (mask data) at the falling edge of RAS. Then the data is written in high I/O pins and masked in low ones and internal data is preserved. This mask data is effective during the RAS cycle. So, in highspeed page mode cycle, the mask data is preserved during the page access. High-Speed Page Mode Cycle (DT/OE high, CAS high at the falling edge of RAS) High-speed page mode cycle readslwrites the data of the same row address at high speed by toggling CAS while RAS is low. Its cycle time is one third of the random readlwrite cycle and is higherthan the standard page mode cycle by 70-80%. This product is based on static column mode, therefore, address access time .HITACHI 498 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005··1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM534251 Series (tAA), RAS to column address delay time (tRAO), and (4) Determine first SAM address to access (SAM start address) after transferring atcolumn address. When access time from CAS precharge (tACP) are added. In one SAM start address is not changed, neither CAS nor RAS cycle, 512-word memory cells of the same row address need to be set because SAM start address address can be accessed. It is necessary to specify can be latched internally. access frequency within tRAS max (10 J.Ls). Transfer Operation The HM534251 provides the read transfer cycle, pseudo transfer cycle, and write transfer cycle as data transfer cycles. These transfer cycles are set by driving DT/OE low at the falling edge of RAS. They have following functions: (1) Transfer data between row address and SAM data register (except for pseudo transfer cycle) (2) Determine direction of data transfer (a) Read transfer cycle: RAM ~ SAM (b) Write transfer cycle: RAM +- SAM (3) Determine input or output of SAM 1/0 pin (5110) Read transfer cycle: 5110 output Pseudo transfer cycle, write transfer cycle: SIlO input Read Transfer Cycle (CAS high, DT/OE low, WE high at the falling edge of RAS) This cycle becomes read transfer cycle by setting DT/OE low and WE high at the falling edge of RAS. The row address data (S12x4 bit) determined by this cycle is transferred synchronously at the rising edge of DTI OE. After the rising edge of DTIDE, the new address data outputs from SAM start address determined by column address. This cycle can execute SAM access serially even during transfer (real time read transfer). In this case, the timing tsoo(min) is specified between the last SAM access before transfer and DTIDE rising edge, and tsoH(min) between the first SAM access and DT/OE rising edge (see figure 1). ~HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 499 HM534251 Series ~ AAs / Addre•• ~ / \ CAS Xi ~ Vj X SC 51/0 SAM Data Altar Transfer SAM Data Before Transfer Figure 1. Real Time Read Transfer If read transfer cycle is executed, SilO becomes output state. When the previous transfer cycle is either pseudo transfer cycle or write transfer cycle and SilO is in input state, uncertain data outputs after tRLZ (min) after the RAS falling edge. Before that, input should be set high impedance to avoid data contention. Pseudo Transfer Cycle (CAS high, DT/OE low, WE low, and SE high at the falling edge of RAS) Pseudo transfer cycle is available for switching SilO from output state to input state because data in RAM isn't rewritten. This cycle starts when CAS is high, DTIOE low, WE low, and SE high, at the falling edge of RAS. The output buffer in SilO becomes high impedance within tSRZ (max) from the RAS falling edge. Data should be input to SilO later than tSID (min) to avoid data contention. SAM access becomes enabled after tSRD (min) after RAS becomes high. In this cycle, SAM access is inhibited during RAS low, therefore, SC should not be raised. Write Transfer Cycle (CAS high, DT/OE low, WE low, and SE low at the falling edge of RAS) Write transfer cycle can transfer a row of data input by serial write cycle to RAM. The row address of data transferred into RAM is determined by the address at the falling edge of RAS. Thecolumn address is specified as the first address to serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled aftertsRD (min) after RAS becomes high. SAM access is inhibited during RAS low. In this period, SC should not be raised. SAM Port Operation Serial Read Cycle SAM port is in read mode when the previous data transfer cycle is read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SIIO.IfSE is set high SilO becomes high impedance and internal pointer is incremented at the SC rising edge. ~HITACHI 500 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM534251 Series Serial Write Cycle If previous data transfer cycle is pseudo transfer cycle or write transfer cycle, SAM port goes into write mode. In this cycle, SI/O data is programmed into data register at the SC rising edge like in the serial read cycle. If SE is high, SI/O data isn't input into data resister. Internal pointer is incremented according to the SC rising edge, so SE high can mask data for SAM. RAS-Only Refresh Cycle: RAS-only refresh cycle is performed by activating only RAS cycle with CAS fixed to high by input1ing the row address (= refresh address) from external circuits. In this cycle, output is highimpedance and power dissipation is less than that of normal read/write cycles because CAS internal circuits don't operate. To distinguish this cycle from data transfer cycle,-DT/OE should be high at the falling edge of RAS. Refresh CBR Refresh Cycle: CBR refresh cycle is set by activating CAS before RAS. In th is cycle, refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and powerdissipation is lowered like in RAS-only refresh cycles because CAS circuits don't operate. RAM Refresh RAM, which is composed of dynamic circuits, requires refresh to retain data. Refresh is performed by accessing all512 row addresses every 8 ms. There are three refresh cycles: (1) RAS-only refresh cycle, (2) CAS-before-RAS (CBR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate RAS such as read/write cycles or transfer cycles can refresh the row address. Therefore, no refresh cycle is required for accessing all row addresses every 8 ms. Hidden Refresh Cycle: Hidden refresh cycle performs refresh by reactivating RAS when DT/OE and CAS keep low in normal RAM read cycles. SAM Refresh SAM parts (data register, shift register, selector), organized as fully static circuitry, don't require refresh. Absolute Maximum Ratings Item Tenninal voltage'l Power supply voitage'l Power dissipation Operating temperature Storage temperature Note: "I. Relative to Vss. Symbol Rating Unit VT Vee PT -1.0 to +7.0 -0.5 to +7.0 1.0 o to +70 -55 to +125 V V Topr Tstg W °C °C Recommended DC Operating Conditions (Ta = 0 to +70°C) Item Supply voltage "I Input high voltage" Input low voltage 'I Symbol Min Typ Max Vee VIH 4.5 5.0 2.4 5.5 6.5 -0.5'2 0.8 Unit V V V Notes: "I. All voltages referenced to Vss. *2. -3.0 V for pulse widlh " IOns. @HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy· Brisbane, CA 94005-1819 • (415) 589-8300 501 HM534251 Series - - - - - - - - - - - - - - - - - - - - - - - - - - • DC CHARACTERISTICS (Ta = 0 to 70·C, Vcc = 5V ± 10%, Vss = OV) Test Conditions Item Unit Notes RAM Port Current ~ RAS. CAS Cychng tRe = Min. Standby Current ~ RAS. CAS RAS-Only Refresh ~ IcC9 RASCychng CAS = VIH ~c = Mm. PlgeMode Current ~ CAS Cychng RAS = VIL Icc 10 tRe CAS-BeforeRAS Refresh ~ tRe ~ RAS.CAS Cycling tRC Operatmg Current Current Data Transfer Current HM534251-10 HM53425HI HMS34251-12 HM53425I-15 Symbol Min. = VIH • SC = VIL = VIL• SC Cycling tscc = Min. SE = VIH • SC = VIL SE = VIL. SC Cychng tsec = Min. SE = VIH • SC = VIL SE = VIL • SC Cychng!sec = Mm. SE = VIH • SC = VIL SE = VIL • SC Cychng tsec = Min. SE = VIH • SC = VIL SE = VIL• SC Cycling !sec = Min. SE = VIH • SC = VIL SE = VIL' SC Cycling tscc = Mm. - SE Max. Min. 70 - -10 10 -10 10 ~A 10 -10 10 -10 10 -10 10 ~ - 130 - 110 - 95 - 135 III -10 10 11.0 -10 = Min rnA 10 120 ICCl2 mA 85 -10 70 - = Mm. 55 125 - 120 RASCychng - - 70 - Icell 60 135 - = Mm. Max. 95 - - Min. - 7 = VIH Max. - 70 65 Ices SE - Max,' Min. - IcC7 Input Leakage SAM Port 120 80 60 120 7 55 80 130 60 110 7 - 55 - 100 60 100 70 110 50 90 90 1.2 7 rnA 40 mA 1 55 mA 85 mA 60 rnA 90 rnA 40 mA 70 mA 85 mA 115 mA 2 1.3 2 Current Output Leakage Current OutputH'gh Voltage Output Low Voltage NOTES: VOH 10H = -2rnA 24 - 24 - 2.4 - 24 - V VOL ioL = 4.2rnA - 0.4 - 0.4 - 0.4 - 0.4 V I. Icc depends on output loading condition when the device is selected. Icc max. is specified at the output open condition. 2. Address can be changed less than three times while RAS = VIL. 3. Address can be changed once or less while CAS = VIH. capacitance ('fa =25°C, Vee= 5 V, f = IMHz, Bias: Clock, I/O = Vee, address = Vss) Item Address Clock I/O. SIlO Symbol CII Min Typ CIl Coo 5 7 • 502 Max 5 Unit pF pF pF HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 HM534251 Series AC Characteristics (Ta =0 to 70°C, Vee = 5 V ± 10%, vss =0 V ) 'I. '11 Test Conditions Input rise and fall time: Output load: Input timing reference levels: Output timing reference levels: 5 ns See figures 0.8 V, 2.4 V 0.4 V, 2.4 V Output Load (A) Output Load (B) +5V +SV I/O SI/O L--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Note: ~~~ ______________ *\. Including scope & jig. • Common Parameter Parameter Random Read or Write Cycle Time Symbol tRC HM534251-10 HM534251-11 HM534251-12 HM534251-15 Max. Min. Max. Min. Max. Min. Max. 190 - 190 - 220 - 260 - ns - ns - RAS Precharge Time tRP 80 RAS Pulse Width tRAS 100 10000 100 CAS Pulse Width 30 10000 30 Row Address Setup Time teAS tASR Row Address Hold Time tRAH 80 IS - 15 tASC 0 - 0 RAS to CAS Delay Time teAH tRCO 20 RAS Hold Time tRSH CAS Hold Time teSH 30 100 Column Address Setup Time Column Address Hold Time CAS to RAS Precharge Time Unit Notes Min. 0 25 Transition Time (Rise to Fall) teRP tT 10 Refresh Period tREF DT to RAS Setup Time DT to RAS Hold Time tOTS tOTH Data-In to OE Delay Time tozo Data-In to CAS Delay Time tozc 0 15 0 0 3 70 - 50 8 - - 0 lOOOO 10000 - 90 150 10000 35 10000 40 10000 0 - ns 15 - 20 - ns 0 - 0 - ns 25 - ns 25 70 25 30 100 - 35 120 0 15 0 0 - - ns - 20 3 ns 0 - 50 8 - 100 10000 20 10 - 120 10 3 0 15 0 0 85 - 30 110 ns 40 ns - 150 50 8 - 50 8 - 10 3 - 0 5,6 ns ns ns 8 ms ns 20 - ns - 0 - ns - 0 - ns ~HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 503 HM534251 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Read Cycle (RAM), Page Mode Read Cycle Parameter Symbol HM534251-10 HM534251-11 HM534251-12 HM534251-15 Min. Unit Notes Max. Min. Max. Min. Max. Min. Max. 100 120 150 ns 2,3 40 ns 3,5 40 ns 3 55 - 70 ns 3,6 tRAC - 100 Access Time From CAS tCAC 30 Access Time From OE toAC tAA 30 - Address Access Time - 45 - 45 - Output Buffer Thrn Off Delay Referenced to CAS tOFF! - 25 - 25 - 30 - 40 ns 7 Output Buffer Turn Off Delay Referenced to OE tOFF2 - 25 - 25 - 30 - 40 ns 7 Read Command Setup Time tRCS 0 - ns 0 0 - 0 0 - 0 tRCH - 0 Read Command Hold Time 0 - ns 12 Read Command Hold Time Referenced to RAS tRRH 10 - 10 - 10 - 10 - ns 12 RAS to Column Address Delay Time tRAD 20 55 20 55 20 65 25 80 ns 5,6 Access Time From RAS 30 30 35 35 Page Mode Cycle Time tpc 55 - 55 - 80 - ns tcp 10 - 10 - 65 CAS Precharge Time 15 - 20 - ns Access Time From CAS Precharge tACP - 50 - 50 - 60 - 75 ns • Write Cycle (RAM), Page Mode Write Cycle Parameter Symbol HM534251-10 HM534251-11 HM534251-12 HM534251-15 Unit Notes Min. Max. Min. Max. Min. Max. Min. Max. 0 0 0 0 ns 9 Write Command Setup Time twcs Write Command Hold Time tWCH twp 25 - 25 - 25 - 30 15 - 20 - 25 - ns 15 Write Command to RAS Lead Time tRWL 30 - 30 - 35 - 40 - ns Write Command to CAS Lead Time tCWL 30 - 30 - 35 - 40 - ns 0 0 25 20 - 20 - ns ns ns Write Command Pulse Width Data-In Setup Time tDS 0 - 0 Data-In Hold Time tDH 25 - 25 - WE to RAS Setup Time tws 0 - 0 - 0 tWH 15 - 15 - 15 Mask Data to RAS Setup Time tMS 0 - 0 - 0 Mask Data to RAS Hold Time tMH 15 - 15 - 15 - OE Hold Time Referenced to WE tOEH 10 - 10 - 15 - Page Mode Cycle Time tpc 55 - 80 - 10 - 65 tcp - 55 CAS Precharge Time 15 - 20 - WE to RAS Hold Time • 504 10 30 0 20 0 HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ns ns 10 ns 10 ns ns ns ns - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM534251 Series • Read-Modify-Write Cycle HM534251-10 HM534251-11 HM534251-12 HM534251-15 Parameter Symbol Read Modify Write Cycle Time tRWC tRwS 255 !cWD tAwD 65 - 65 80 80 toDD tRAC 25 100 30 30 45 55 RAS Pulse Width CAS to WE Delay Column Address to WE Delay OE to Data-In Delay Time Access Time From RAS Access Time From CAS Access Time From OE !cAC Address Access Time toAC tAA Min. 165 - Max. Min. - 255 10000 165 Max. Min. - 295 - 195 10000 - 75 95 20 100 30 30 45 55 20 120 35 35 55 65 25 - 10000 Max. 30 - Min. 350 240 Max. - 10000 Unit Notes ns ns 90 - ns 9 120 ns 9 25 150 40 40 70 80 40 - - ns ns ns 2,3 3, 5 ns 3 ns 3, 6 ns 5,6 RAS to Column Address Delay tRAD 20 Output Buffer Turn-Off Delay Referenced to OE tOFF2 - 25 - 25 - 30 - 40 ns Read Command Setup Time tRCS 0 - 0 - 0 - 0 - ns Write Command to RAS Lead Time tRWL 30 - 30 - 35 - 40 - ns Write Command to CAS Lead Time !cWL 30 - 30 - 35 - 40 - ns Write Command Pulse Width twp 15 - 15 - 20 - 25 - ns Data-In Setup Time tDS 0 - 0 - 0 - 0 - ns 10 Data-In Hold Time tDH 25 - 25 - 25 - 30 - ns 10 WE to RAS Setup Time tws 0 0 - 0 - 0 - ns WE to RAS Hold Time tWH 15 - 15 - 20 - ns tMS 0 - 15 0 - Mask Data to RAS Setup Time - 0 - 0 - ns Mask Data to RAS Hold Time tMH 15 - 15 - 15 - 20 - ns OE Hold Time Referenced to WE tOEH 10 - 10 - 15 - 20 - ns - • Refresh Cycle Parameter Symbol HM534251-10 HM534251-11 HM534251-12 HM534251-15 Min. Max. Min. Max. Min. Max. Min. Max. Unit Notes CAS Setup Ti~ (CAS-Before-RAS Refresh) !cSR 10 - 10 - 10 - 10 - os CAS Hold Time (CAS-Before-RAS Refresh) !cHR 20 - 20 - 25 - 30 - ns RAS Precharge to CAS Hold Time tRPC 10 - 10 - 10 - 10 - ns ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 505 HM534251 Series -----------~----------------- • Transfer Cycle Parameter WE to RAS Setup Time Symbol HM534251-10 HM534251-11 HM534251-12 HM534251-15 Min. Max. Min. Max. Min. Max. - 0 - 0 20 - ns 15 - 0 15 0 - 0 - 0 - ns 15 - 15 20 ns 30 - 30 - - ns ns 50 - tws tWH 0 15 SE to RAS Setup Time tES 0 SE to RAS Hold Time tEH 15 RAS to SC Delay Time tSRD 25 - SC to RAS Setup Time 30 - 40 DT Hold Time From RAS tSRS tRDH 80 90 DT Hold Time From CAS tCDH 20 - 30 WE to RAS Hold Time Unit Notes Min. Max. - 90 5 50 - 40 30 35 45 110 45 ns ns ns ns tSDD 5 First SC to DT Hold Time tSDH 20 - 25 DT to RAS Lead Time tDTL 50 - 50 - tDTHH 20 - 25 - 25 - 30 - ns Last SC to DT Delay Time DT Hold Time Referenced to RAS High 5 25 10 30 ns ns DT Precharge Time tDTP 30 - 35 - 35 - 40 - ns Serial Data l!!E!!t Delay Time from RAS tSID 50 - 60 - 60 - 75 - ns Serial Data Input to RAS Delay Time tSZR - 10 - 10 - 10 - 10 ns Serial Output Buffer Turn-Off Delay From RAS tSRZ 10 50 10 60 10 60 10 75 ns RAS to Sout (Low-Z) Delay Time tRLz 5 - 10 - 10 - 10 - ns ns Serial Clock Cycle Time tscc 30 - 40 - 40 - Serial Clock Cycle Time tSCC2 40 - 40 - 40 - 60 60 Access Time From SC tSCA - 30 - 40 - 40 - 50 Serial Data Out Hold Time 7 - 7 - 7 - 7 10 - 10 - 10 10 - 10 10 - 10 SC Precharge Width tSOH tsc tscp Serial Data-In Setup Time tSIS 0 - 0 - 0 - 0 Serial Data-In Hold Time tSIH 15 - 20 - 20 - 25 SC Pulse Width 10 7 ns 13 ns 4 - ns 4 - ns - ns ns ns • Serial Read Cycle Parameter Symbol HM534251-10 HM534251-11 HM534251-12 HM534251-15 Min. Max. Min. Max. Min. Max. Min. Max. Unit Notes tscc tSCA 30 - 40 - 40 - 60 - ns Access Time From SC - 30 40 - 50 ns 4 tSEA - 25 30 - 40 Access Time From SE - 30 - 40 ns 4 Serial Data-Out Hold Time 7 - 7 - ns 4 10 - 10 10 tscp 10 - 10 - 10 10 - ns SC Precharge Width - 7 10 - 7 SC Pulse Width tSOH tsc Serial Output Buffer Turn-Off Delay From SE tSEZ - 25 - 25 - 25 - 30 ns Serial Clock Cycle Time ~HITACHI 506 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ns 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 1 Series • Serial Write Cycle Parameter Serial Clock Cycle Time SC Pulse Width SC Precharge Width Serial Data-In Setup Time Serial Data-In Hold Time Symbol tscc tsc tscp HM534251-10 HM534251-11 HM534251-12 HM534251-15 Min. 30 Max. - Min. Max. Min. 40 - 40 10 10 - 10 10 - tSIS tSIH 0 15 Serial Write Enable Setup Time tsws 0 Serial Write Enable Hold Time tswH Serial Write Disable Setup Time Serial Write Disable Hold Time Notes: - - - Min. 10 10 - - - 10 10 0 - ns ns ns ns - 25 - ns 0 20 - 0 20 - 60 Max. - Unit Notes Max. - - 0 - 0 - 0 - ns 30 - 35 - 35 - 50 - ns tSWIS 0 - 0 - 0 - 0 - ns tswIH 30 - 35 - 35 - 50 - ns = AC measurements assume IT 5 ns. Assume that IRCD :!> tRCD (max) and IRAD:!> IRAD (max). If tRCD or IRAD is greater than the maximum recommended value shown in this table, tRAC exceeds the value shown. *3. Measured with a load circuit equivalent to 2 TI'L loads and 100 pF. *4. Measured with a load circuit equivalent to 2 TI'L loads and SO pF. *5. When IRCD ~ tRCD (max) and IRAD :!> IRAD (max), access time is specified by tCAC. *6. When IRCD :!> tRCD (max) and IRAD ~ IRAD (max), access time is specified by tAA. *7. toI'F (max) is defined as the time at which the output achieves the open circuitcoodition (VOH -200mV, VOL + 200mV). *8. VIII (min) and Vo.. (max) are reference levels for measuring timing of input signals. Transition times are measured between VIII and Vo... *9. When twcs ~ twcs (min), the cycle is an early write cycle, and I/O pins remain in an open circuit (high impedance) condition. When lAWD ~ tAWD (min) and tCWD ~ tCWD (min), the cycle is a read-modify-write cycle; the data of the selected address is read out from a data output pin and input data i. written into the selected address. In this case, impedance on I/O pins is controlled by OB. *10. These parameters are referenced to CAS falling edge in early write cycles or to WE falling edge in delayed write or readmodify-write cycles. . *11. After power-up, pause for 100 /IS or more and execute at least 8 initialization cycles (normal memoty cycles or refresh cycles), then start operation. *12. If either IRat or tRRH is satisfied, operation is guaranteed. *1. *2. *13. tsCC2 is defined as the last SAM cycle time before read transfer in read transfer cycle (I) . • HITACHI Hitachi America, Ltd •• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1B19 • (415) 589-8300 507 HM534251 Series Timing Waveforms Read Cycle I, m ViS Address WE I/O (Oulpul) I/O (lnpul) m'/OE" "j//.l : Don'l care Early Write Cycle Address I/O (Input) I/O (Outpul) ~ : Don't care. Note: *1. When WE is high level, all the data on I/Os can be written into the memory cell, When WE is low level, the data on I/Os are not written eXCIlP.t for the case that the I/O is high at the falling edge of RAS, _HITACHI 508 Hitachi America, Ltd, • Hitachi Plaza. 2000 Sierra Point Pkwy, • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 1 Series Delayed Write Cycle I.e Address I/O (Input) I/O High-Z (Output)----------....;.;""'-...;;;...------------~ : Don't care. Note: *1. When WE is high level, all the data on I/Os can be written into the mem~eIl. When WE is low level, the data on I/O, arc not written except for the case that the I/O is high at the falling edge of RAS. Read-Modlfy-Wrlte Cycle tesH I A Address I/O (Input) I/O (Output) ~ : Don't care. Note: *1. When WE is high level, all the data on I/Os can be written into the memory cell. When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 509 HM534251 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - Page Mode Read Cycle I,e Address I/O (Output) I/O (Input) ~ : Don't care. Page Mode Write Cycle (Early Write) I.e Address I/O (Input) I/O (Output) Note: *1. When WE i. high level, all the data on I/O. can be written into the mem~L When WE is low level, the data on I/O. are not written except for the case that the I/O is high at the falling edge of RAS. $HITACHI 510 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 1 Series Page Mode Write Cycle (Delayed Write) Address I/O (Input) I/O (Output) Note: * I. When WE is high level, all the data on I/Os can be written into the memoty cell. When WE is low level, the data on I/Os are not written except for the case that the 1/0 is high at the falling edge of RAS. RAS·Only Refresh Cycle RAS CAS Address I/O (Output) I/O (Input) toTS tOTH DT/DE EZ2l : Don't care. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 511 HM534251 Series - - - - - - - - - - - - - - - - - - - - - - - - CA5-Before-RAS Refresh Cycle t CRP Address OZllTfl7ITllA/J///lTfl//1 ljjOZ/lii/l/////l7lZZZZZZZ I/O (Input) 0lZI7Z1Z/lIZ77IIZZZZ/lZZZI High-Z I/O (Output) 'lll/lllllllllllllll/l; ~ : Don't care. Hidden Refresh Cycle Address I/O (Output) DT/OE I/O (Input) ~ : Don't care . • 512 HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 1 Series Read Transfer Cycle (1)"':2 I" I" Address I/O (Output) I/O 77".,J+.rrrrrrT7""J::r::;::;:::;::;'::;:;::;:fj-rJ-rT-rT"TT-r7-,-,---r-,r-r" (Input) sc 51/0 (Oulpul) .LJJ'---'=-.4'.LJ..J..J'}-='--"\..f;f::1:.:(:-.::::::-~,.J..J'_"1"='="""''.f: 51/0 (Input) ~ . Don't care Notes: .1. When the previous data transfer cycle is a read transfer cycle, it is defined as read transfer cycle (I). ·2. SE is in low level. (When SE is high, SIlO becomes high impedance.) Read Transfer Cycle (2)"':2 I" m I" as- *3 Address Vir I/O (Oulput) I/O (Input) 151'/0"£"" SC 51/0 (Oulpul) 51/0 (Inpul) f7Zl : Don't care ~ : Inhibit risinR transient Notes: .1. When the previous data transfer cycle is a write or pseudo transfer cycle, it is defined as read transfer cycle (2). ·2. SE is in low level. (When SE is high, SIlO becomes high impedance.) ~HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 513 HM534251 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - Pseudo Transfer Cycle Address sc 51/0 (Input) SI/O (Output) tLZI : Don't care ~ : Inhibit rising tranSient I/O : Don't care Note: *1. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed. Write Transfer Cycle Address sc 51/0 (Input) 51/0 Hlgh-Z (Output) lZ?Za : Don't care ~ : InhibIt nSlng tranSient Note: *1. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed. ~HITACHI 514 Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 1 Series Serial Read Cycle h~ ZZZZZZZZZZZZZZZZZZZZZZ;~77777777 sc 51/0 (Output) r2ZI : Don't care. Serial Write Cycle n~ 7Z7ZZZ77ZZZZZZZZZZZZZ~~Ri_zzzzzzZZi sc 51/0 (Input) ~ : Don't care Notes: "I. When SE is high level in a serial write cycle, data is not written into SAM, however, the pointer is incremented. *2. Address 0 is accessed next to address 511. • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 515 HM534252 Series -Preliminary - - - - - - - - - 262144·Word x 4·811 Multlport CMOS Video RAM The HM534252 is a 1-Mbit multiport video RAM equipped with a 256-kword x 4-bit dynamic RAM and a 512-word x 4-bit SAM (serial access memory). Its RAM and SAM operate independently and asynchronously. It qan transfer data between RAM and SAM and has a write mask function. It also provides logic operation mode to simplify its operation. In this mode, logic operation between memory data and input data can be executed by using internal logic-arithmetic unit. Pin Arrangement Features HM534252JP Series • Multiport organization Asynchronous and simultaneous operation of RAM and SAM capability RAM: 256-kword x 4-bit and SAM: 512-word x 4-bit • Access time RAM: 100 ns/100 nsl120 ns/150 ns max SAM: 30 ns/40 ns/40 ns/50 ns max • Cycle time RAM: 190 ns/190 ns/220 ns/260 ns max SAM: 30 ns/40 ns/40 ns/60 ns max • Low power Active RAM: 385 mW max SAM: 358 mW max Standby 40 mW max • High-speed page mode capability • Logic operation mode capability • 2 types of mask write mode capability • Bidirectional data transfer cycle between RAM and SAM capability • Real time read transfer capability • 3 variations of refresh (8 ms/512 cycles) RAS-only refresh CAS-before-RAS refresh Hidden refresh • TIL compatible SC 51/00 SI/OI mICE 1/00 1/01 WE 6 1 NC RAS A8 10 A6 11 A5 12 A4 13 Vee 14 28 VII 21 26 25 24 23 22 21 20 19 18 SI/03 SI/02 ~ 1/03 1/02 NC CAS NC AD AI 11 A2 16 A3 15 A1 (Top View) HM534252ZP Series INC 31/03 551/02 7 v" 951/00 11 OT/O[ 131/01 15 NC 11 AI "224 AD 26 CAS 21 (Botlom View) Pin Description Ordering Information Type No. HM5342521P-I0 HM5342521P-ll HM5342521P-12 HM5342521P-15 Access Time 100 ns 100 ns 120 ns 150 ns HM534252ZP-1O HM534252ZP-ll HM534252ZP-12 HM534252ZP-15 100 ns 100 ns 120 ns 150 ns Package 400-mil 2S-pin Plastic SOl (CP-2SD) 400-mil 2S-pin Plastic ZIP (ZP-2S) Thisdocwnent cootains infonnation on a new product. Specifications and infonnation cootained herein are subject to change without notice. • 516 Pin Name Function AO-AS Address inputs 1/00--1/03 RAM port data inputs/ outputs SAM port data inputs/ SI/OOoutputs SI/03 Row address strobe RAS Column address strobe CAS Write enable WE Data transfer/Output DT/OE enable Serial clock SC SAM port enable SE Power supply Vee Vss Ground No connection NC HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM534252 Series Block Diagram RAM 511 SAM Dout Pornte :;; Din Memory Array ....1;;., <: E a: " (; ~ c '-' I :;; 1;; '60 [ill ., a: :I' :c '" From Column Address (SAM Start Address) Row 0 511 0 0 510 Pin Function RAS (input pin): RAS is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input althe falling edge of RAS. The input level of those signals determine the operation cycle of the HM534252. Table 1. Operation Cycles of the HM534252 CAS Note: Input level at the falling edge of RAS DT/OE WE SE x x x H H H H H H H H L L L H L L H L L x x H x x x; L L L Operation Cycle RAM read/write Mask write Read transfer Pseudo transfer Write transfer CBR refresh Logie operation set/reset Don'teare. CAS (input pin): Column address is put into chip at the falling edge of CAS. CAS controls output impedance of 110 in RAM. AD-AS (input pins): Row address is determined by AD-AS level at thefalling edge of RAS. Column address is determined by AO-AS level at the falling edge of CAS. In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer. WE (input pin): WE pin has two functions at the falling edge of RAS and after. When WE is low at the falling edge of RAS, the HM534252 turns to mask write mode. According to the 1/0 level at the time, write on each 110 can be masked. (WE level at the falling edge of RAS is don't care in read cycle.) When WE is high at the falling edge of RAS, a normal write cycle is executed. After that, WE switches readlwrite cycles as in a standard DRAM. In a transfer cycle, the direction of transfer is determined by WE level at the falling edge of RAS. When WE is low, data is transferred from SAM to RAM ~HITACHI Hitachi America, Ltd • Hitachi Plaza' 2000 Sierra Point Pkwy' Brisbane, CA 94005-1819 • (415) 589-8300 517 HM53425258rle8---------------------------(data is written into RAM), and when WE is high, data is transferred from RAM to SAM (data is read from RAM). VOO-V03 (input/output pins): I/O pins function as mask data at the falling edge of RAS (in mask write mode). Data is written only on high 110 pins. Data on low VO pins are masked and internal data are retained. After that, they function as input/output pins as those of a standard DRAM. DTIOE (input pin): DTIOE pin functions as DT (data transfer) pin at the falling edge of RAS and as OE (output enable) pin after that. When DT is low at the falling edge of RAS, this cycle becomes a transfer cycle. WhenMis high a1the falling edge of RAS, RAM and SAM operate independently. high-speed page mode. RAM Write Cycle (Early Write, Delayed Write, Read-Modlfy-Wrlte) (DT/OE high, CAS high at the falling edge of RAS) • Normal Mode Write Cycle (WE high at the falling edge of RAS) When CAS and WE are set low after RAS is set low, a write cycle is executed and 110 data is written at the selected addresses. When all 4 IlOs are written, WE should be high at the falling edge of RAS to distinguish normal mode from mask write mode. HWE is set low before the CAS falling edge, this cycle becomes an early write cycle and 110 becomes high impedance. Data is entered at the CAS falling edge. SC (input pin): SC is a basic SAM clock. In a serial read cycle, data outputs from an SIlO pin synchronously with the rising edge of SC. In a serial write cycle, data on an SIlO pin at the rising edge of SC is put into the SAM data register. HWE is set low after the CAS falling edge, this cycle becomes a delayed write cycle. Data is input at the WE falling edge. I/O does not become high impedance in this cycle, so data should be entered with OE in high. SE (input pin): SE pin activates SAM. When SE is high, SI/O is in the high impedance state in serial read cycle and data on SIlO is not put into the SAM data register in serial write cycle. SE can be used as a mask for serial write because internal pointer is incremented at the rising edge of SC. HWE is set low after tCWD (min) and tAWD (min) after the CAS falling edge, this cycle becomes a read-modifywrite cycle and enables write after read to execute in the same address cycle. In this cycle also, to avoid 110 contention, data should be input after reading data and setting OE high. SIIOO-SI103 (input/output pins): SilOs are input/output pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SIlO outputs data. When it was a pseudo transfer cycle or write transfer cycle, SIlO inputs data. • Mask Write Mode (WE low at the falling edge of RAS) Operation of HM534252 Operation of RAM Port RAM Read Cycle (DT/OE high, CAS high, at the falling edge of RAS) Row address is entered at the RAS falling edge and column address at the CAS falling edge to the device as in standard DRAM. Then, when WE is high and DT/ OE is low while CAS is low, the selected address data outputs through 110 pin. Atthe falling edge of RAS, DT/ OE and CAS become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (tAA) and"RAS to column address delay time (tRAQ) specifications are added to enable • 518 HWE is set low at the falling edge of RAS, the cycle becomes a mask write mode cycle which writes only to selected 110. Whether or not an 110 is written depends on VOlevel (mask data) a1thefalling edge of RAS. Thenthe data is written in high 110 pins and masked in low ones and internal data is preserved. This mask data is effective during the RAS cycle. So, in high-speed page mode cycle, the mask data is preserved during the page access. High-Speed Page Mode Cycle (DT/OE high, CAS high at the falling edge of RAS) High-speed page mode cycle readstwrites the data of the same row address at high speed by toggling CAS while RAS is low. Its cycle time is one third of the random readtwrite cycle and is higher than the standard page mode cycle by 70-80%. This product is based on static column mode, therefore address access time (tAA), RAS HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 940()5..1819. (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 2 Series to column address delay time (tRAO), and access time from CAS precharge (tACP) are added. In one RAS cycle, 512-word memory cells of the same row address can be accessed. It is necessary to specify access frequency within tRAS max (10 I1S). (4) Determine first SAM address to access (SAM start address) after transferring at column address. When SAM start address is not changed, neither CAS nor address need to be set because SAM start address can be latched internally. Transfer Operation The HM534252 provides the transfer cycle, pseudo transfer cycle, and write transfer cycle as data transfer cycles. These transfer cycles are set by driving DT/oE low at the falling edge of RAS. They have following functions: Read Transfer Cycle (CAS high, DTIOE low, WE high at the falling edge of RAS) (1) Transfer data between row address and SAM data register (except for pseudo transfer cycle) (2) Determine direction of data transfer (a) Read transfer cycle: RAM ~ SAM (b) Write transfer cycle: RAM (-- SAM (3) Determine input or output of SAM lID pin (SilO) Read transfer cycle: SilO output Pseudo transfer cycle, write transfer cycle: SilO input This cycle becomes read transfer cycle by driving DT/oE low and WE high at the falling edge of RAS. The row address data (512x4 bit) determined by this cycle is transferred synchronously at the rising edge of DTI DE. After the rising edge of DT/OE, the new address data outputs from SAM start address determined by column address. This cycle can access SAM serially even during transfer (real time read transfer). In this case, the timing tsoo (min) is specified between the last SAM access before transfer and DT/OE rising edge, and tsoH(min) between the first SAM access and DT/OE rising edge (see figure 1). ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 519 HM534252 Series 1 RAS / \ CAS ~ Address XI ~ / ~ YI L ~--~--------------------~~_tSDH tSOD SC SI/O SAM Data Before Transfer SAM Data After Transfer Figure 1. Real Time Read Transfer Write Transfer Cycle (CAS high, DT/OE low, WE low, and SE low at the falling edge of RAS) If read transfer cycle is executed. SilO becomes output state. When the previous transfer cycle is either pseudo transfer cycle or write transfer cycle and SilO is in input state. uncertain data outputs after tRLZ (min) after the RAS falling edge. Before that. input should be set high impedance to avoid data contention. Pseudo Transfer Cycle (CAS hiqh. DT/OE low. WE low. and SE high at the falling edge of RAS) Pseudo transfer cycle is available for switching SilO from output state to input state because data in RAM isn't rewritten. This cycle starts when CAS is high. DT/OE low. WE low. and SE high, at the falling edge of RAS. The output buffer in SilO becomes high impedance within tSRZ (max) from the RAS falling edge. Data should be input to SilO later than tSID (min) to avoid data contention. SAM access becomes enabled after tSRD (min) after RAS becomes high. In this cycle, SAM access is inhibited during RAS low, therefore, SC should not be raised. • 520 Write transfer cycle can transfer a row of data input by serial write cycle to RAM. The row address of data transferred into RAM is determined by the address at the falling edge of RAS. The column address is specified as the first address to serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled aftertsRD (min) after RAS becomes high. SAM access is inhibited during RAS low. In this period, SC should not be raised. SAM Port Operation Serial Read Cycle SAM port is in read mode when the previous data transfer cycle is read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SilO. H SE is set high SilO becomes high impedance and internal pointer is incremented at the HITACHI Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane. CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM534252 Series Serial Write Cycle If previous data transfer cycle is pseudo transfer cycle or write transfer cycle, SAM port goes into write mode. In this cycle, SI/O data is programmed into data register at the SC rising edge like in the serial read cycle. If SE is high, SI/O data isn't input into data resister. Internal pointer is incremented according to the SC rising edge, so SE high can mask data for SAM. Logic Operation Mode The HM534252 supports logic operation capability on RAM port. It performs logic operations between the memory cell data and input data in logic operation mode cycle, and writes the result into the memory cell (read modify write). This function realizes high speed raster operations and simplifies peripheral circuits for raster operations. Refresh Logic Operation Set/Reset Cycle (CAS and WE Low at the falling edge of RAS) RAM Refresh RAM, which is composed of dynamic circuits, requires refresh to retain data. Refresh is performed by accessing all512 row addresses every 8 ms. There are three refresh cycles: (1) RAS-only refresh cycle, (2) CAS-before-RAS (CBR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate RAS such as readlwrite cycles or transfer cycles can refresh the row address. Therefore, no refresh cycle is required for accessing all row addresses every 8 ms. RAS-Only Refresh Cycle: RAS-only refresh cycle is performed by activating only RAS cycle with CAS fixed to high by inputting the row address (= refresh address) from external circuits. In this cycle, output is highimpedance and power dissipation is less than that of normal readlwritecycles because CAS internal circuits don't operate. To distinguish this cycle from data transfer cycle, DT/OE should be high at the falling edge of RAS. CBR Refresh Cycle: CBR refresh cycle is set by activating CAS before RAS. In this cycle, refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered like in RAS-only refresh cycles because CAS circuits don't operate. Todistinguishthis cycle from logic operation sellreset cycle, WE should be high at the falling edge of RAS. Hidden Refresh Cycle: Hidden refresh cycle performs refresh by reactivating RAS when DT/OE and CAS keep low in normal RAM read cycles. In logic operation set/reset cycle, the following operations are performed at the same time; 1. Selection of logic operations and logic operation mode sellreset, 2. Maskdataprogramming, 3. CAS-before-RAS refresh. Figure 2 shows the timing for logic operation sell reset cycle. This cycle starts when CAS and WE are low at the falling edge of RAS. In this cycle, logic operation codes and mask data are programmed by row address and I/O pin at the falling edge of RAS respectively. When write cycle is performed after this cycle, the logic operation write cycle starts. In the logic operation mode, the specification of cycle time is longer than that of normal mode because read-modify-write cycle is performed internally. In this cycle, logic operation codes and mask data programmed are available until reprogrammed. In normal mode, mask data is available only for one RAS cycle. Here, the mask data programmed in normal mode is named as "temporary mask data" and the one programmed in logic operation set/reset cycle is named as "mask data". (1 ) Selection of logic operations and logic operation mode set/reset Table 2 shows the logic operations. One operation is selected among sixteen ones by combinations of AOA3 levels at the falling edge of RAS. (A4-A8 are Don't care.) Logic operation codes (A3, A2, A1 ,AO) = (0, 1,0, 1) resets the logic operation mode. When write cycle is performed aiterthat, normal write cycle starts. However, even in this case, mask data is still available. I/O should be at high level at the falling edge of RAS in logic operation set/reset cycle when mask data is not used. SAM Refresh SAM parts (data register, shift register, selector), organized as fully static circuitry, don't require refresh. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 521 HM534252 Series - - - - - - - - - - - - - - - - - - - - - - - - - - (2) Mask data programming High/low level of 110 at the falling edge of RAS functions as mask data. When 110 is high, the data is written in write cycle. When 110 is low, the input data is masked and the same memory cell data remains. Mask data, programmed in this cycle, is available until reprogrammed. It is advantageous when the same mask data continues. \I...-------=.L_ _---.J/ CAS I AO-A3 Logic Code \I...--_L=----_---.J/ WE 1/00-1/03 ------'X'---_Mask,....----; - --lXl...--_ _ __ Figure 2. LogiC Operation SetlReset Table 2. Logic Code Logic Code A3 0 0 0 0 A2 0 0 0 0 Al 0 0 l"\J..,u.] () 0 0 0 0 I 0 I 0 I 0 0 0 I 0 I 0 Write Data ..... TT"I.'" Note 0 Zero ANDl AND2 u I 0 0 0 0 Symbol 0 I 0 u 0 0 Noles: AO Di·Mi Di·Mi Mi ...., Logic operation mode set .... ! U'-J.T.l.l Di THROUGH EOR Di·Mi+Di·Mi Di+Mi ORI Di·Mi NOR ENOR Di·Mi+Di·Mi Di INVI Di+Mi OR2 INV2 Mi Di+Mi OR3 NAND Di+Mi One I Logic operation mode reset Logic operation mode set Di; External data-in Mi; The data of the memory cell ~HITACHI 522 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM534252 Series Logic operation set/reset cycle 1\ Write cycle Write cycle Write cycle r r ~ RAS Write cycle r,\ r,\ r ~PLFC\ CAS "L" WE "L" 1/00 "H" "O"Write Masked "1 "Write "O"Write 1/01 "L" Masked "1 "Write Masked Masked 1/02 "L" Masked Masked Masked 1/03 "H" "1 "Write Masked "O"Write "1 "Write THROUGH ANDI ANDI Logic Remarks "H" "H~ - "L" r r\ \ ANDI Mask data is set. 1/01,2: Masked Assume that the logic is set to ·AND1· rr.u- "H" "O"Write Temporary mask data is set, and valid only in this cycle. 1/00,3: Masked Figure 3. 2 Types of Mask Write Function and Logic Operation Function Also, temporary mask data is programmed by falling WE at the falling edge of RAS in logic operation mode cycle after mask data is programmed in logic operation set/reset cycle. In this case, temporary mask data is available only for one cycle. Logic operation is reset during temporary mask write cycle. It means that external input data is written into 1/0 when temporary mask data is set. Figure 4 shows write mask and logic operations. Thesefunctions are useful when RAM port is devided into frame buffer area and data area, asthey save the need to reprogram logic operation codes and mask data. Write Cycle In Logic Operation Mode (Early Write, Delayed Write, Page Mode) Write cycle after logic operation set cycle is logic operation mode cycle. In this cycle, the following readmodify-write operation is performed Internally. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, GA 94005-1819 • (415) 589-8300 523 HM534252 S e r l e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - (1) Reading memory data in given address into internal bus. (3) Writing the result of (2) into address given by (1) 2) Performing operation between input data and memory data I Execute logic operation set/reset cycle Read l-word source data I Read I-word source data I I Read I-word destination data Execute logic operation between source data and destination data Write the result of operation into the destination address Write read data into the destination address I I (a) Normal Mode (b) Logic Operation Mode Figure 4. Sequence of Raster Operation Figure4 shows sequence of raster operation. Raster operation which needs 3 cycles (destination read, operation, destination write) in normal mode can be executed in one write cycle of logic operation mode. It makes raster operation faster and simplifies peripheral hardware for raster operation. Absolute Maximum Ratings Item Terminal voltage '\ Power supply voltage '\ Symbol Operating temperature Storage temperature Note: *1. Relative to Vss. Rating Unit v Vee -1.0 to +7.0 -0.5 to +7.0 VJ Topr Tstg 1.0 to +70 -55 to +125 V o Recommended DC Operating Conditions (Ta = 0 to +70°C) Item Supply voltage '\ Input high voltage '\ Input low voltage '\ Symbol Vee Vlli VIL Min Typ 4.5 2.4 -0.5'2 5.0 Max 5.5 6.5 0.8 Unit V V V Notes: *1. All voltages referenced to Vss. *2. -3.0 V for pulse width S 10 ng. • 524 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 2 Series • DC CHARACTERISTICS (Ta = 0 to 70°C, Vcc = 5V ± 10%, Vss = OV) HM534252-IO HM534252-11 HM534252-12 HM534252-15 Test ConditIOns Item Symbol Umt Notes RAM Port ICCI Operatmg Current r---- Standby ~ Current RAS-Only Refresh Current Page Mode Current CAS-BeforeRAS Refresh Current Data Transfer Current ICC7 RAS, CAS Cycling tRe = Mm RAS, CAS = V IH ICCS RASCycling CAS = V IH MIn Max. MIn MIn Max Max MIn Max SC = V IL , SE = V IH = V IL, SC Cycling tscc = Min SC = V IL , SE = V IH - 70 - 70 - 60 - 55 rnA SE - 120 - 120 - 100 - 85 rnA - 7 - 7 - 7 - 7 rnA SE = V1L . SC Cychng tscc = - 65 - 55 - 55 - 40 rnA SC = V IL , SE = V IH Mm 1,2 I - 70 - 70 - 60 - 55 rnA SE = V IL, SC CyclIng tscc = Mm - 120 - 120 - 100 - 85 rnA SC = V IL , SE = V IH = V,L, SC Cycling 'SCC = MIn SC = V,L' SE = V IH - 80 - 80 - 70 - 60 rnA SE - 130 - 130 - 110 - 90 rnA - 60 - 60 - 50 - 40 rnA SE = VIL , SC Cychng tscc = Mm. - 110 - 110 - 90 - 70 rnA - 95 - 95 - 90 - 85 rnA - 135 - 135 - 125 - 115 rnA III -10 10 -10 10 -10 10 -10 10 pA ILO -10 10 -10 10 -10 10 -10 10 ~A 24 - 24 - 24 - 2.4 - V - 04 - 04 - 04 V ICC3 r-ICC. IRe = Mm. ICC4 CAS Cychng RAS = V'L ICC 10 IRe ~ IRe r---- ICCH ICC6 r---ICCl2 Input Leakage SAM Port = Mm. RAS Cychng = Mm RAS, CAS Cychng IRe = Min SC = V,L' SE = V IH SE = VIL' SC Cycling tscc = Mm. 2 1,3 2 Current Output Leakage Current Output High Voltage VOH IOH = Output Low Voltage VOL IOL = 4.2rnA NOTES: ~2mA - 04 I. Icc depends on output loading condition when the device is selected, Icc max, is specified at the output open condition, 2, Address can be changed less than three times while RAS = VIL, 3, Address can be changed once or less while CAS = VIH, Capacitance (Ta = 25°C, Vee = 5 V, f= IMHz, Bias: Clock, I/O = Vec, address = Vss) Item Address Clock I/O, SI/O Symbol Cn Min Typ Max CI2 5 5 evo 7 Unit pF pF pF ~HITACHI Hitachi America, Ltd, • Hitachi Plaza' 2000 Sierra Point Pkwy, • Brisbane, CA 94005-1819 • (415) 589-8300 525 HM534252 Series - - - - - - - - - - - - AC Characteristics (Ta = 0 to +70°C, Vee = 5 V ± 10%, vss = 0 V ) ·1,*11 Test Conditions Input rise and fall time: Output load: Input timing reference levels: Output timing reference levels: 5 ns See figures 0.8 V, 2.4 V 0.4 V, 2.4 V Output Load (B) Output Load (A) +5V +5V I/O Note: SI/O "I. Including scope & jig. • Common Parameter Parameter Random Read or Write Cycle Time Symbol tRC HM534252-10 HM534252-11 HM534252-12 HM534252-15 Min. Max. 190 - - Min. Max. Min. Max. Min. 190 - 220 - 260 80 - - 100 Max. Unit Notes - ns - ns RAS Precharge Time tRP 80 RAS Pulse Width tRAS 100 10000 100 10000 120 10000 150 10000 ns CAS Pulse Width Row Address Setup Time teAS tASR 30 0 10000 30 10000 35 10000 40 10000 0 0 0 ns ns - 110 50 8 ms 0 - ns 20 - ns 90 Row Address Hold Time tRAH 15 Column Address Setup Time tASC 0 Column Address Hold Time tCAH 20 RAS to CAS Delay Time RAS Hold Time tRCD 25 70 25 70 25 85 tRSH 30 - 30 - 35 - 40 CAS Hold Time teSH 100 - 100 10 - 10 Transition Time (Rise to Fall) 3 50 3 Refresh Period tREF - DT to RAS Setup Time tDTS 0 8 - 0 15 0 0 50 8 - 150 teRP tT 50 8 - 120 CAS to RAS Precharge Time DT to RAS Hold Time tDTH 15 Data-In to OE Delay Time tDZO 0 - Data-In to CAS Delay Time tDZC 0 - 15 0 20 15 0 20 10 3 0 15 0 0 20 0 25 30 10 3 0 0 ~HITACHI 526 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 ns ns ns ns ns 5,6 ns ns ns ns ns 8 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM534252 Series • Read Cycle (RAM), Page Mode Read Cycle Parameter Symbol HM534252-10 HM534252-11 HM534252-12 HM534252-15 Min. Max. Min. Unit Notes Max. Min. Max. Min. Max. - 150 ns 2,3 40 ns 3,5 40 ns 70 ns 3 3, 6 Access Time From RAS tRAC - 100 - 100 - 120 Access Time From CAS tCAC - 30 - 30 - 35 Access Time From OE tOAC tAA - 30 - 30 - 35 - 45 - 45 - 55 - Output Buffer Turn Off Delay Referenced to CAS toFFI - 25 - 25 - 30 - 40 ns 7 Output Buffer Turn Off Delay Referenced to OE toFF2 - 25 - 25 - 30 - 40 ns 7 Read Command Setup Time tRCS 0 - 0 - 0 - 0 - ns Read Command Hold Time tRCH 0 - 0 - 0 - 0 - ns 12 Read Command Hold Time Referenced to RAS tRRH 10 - 10 - JO - 10 - ns 12 RAS to Column Address Delay Time tRAD 20 55 20 55 20 65 25 80 ns 5,6 Address Access Time Page Mode Cycle Time tpc 55 - 55 - 65 - 80 - ns CAS Precharge Time tcp 10 - 10 - 15 - 20 - ns Access Time From CAS Precharge tAcp - 50 - 50 - 60 - 75 ns • Write Cycle (RAM), Page Mode Write Cycle Parameter Symbol HM534252-10 HM534252-11 HM534252-12 HM534252-15 Max. - 0 30 - ns - 20 - 25 - ns - 35 - 40 - ns 30 - 35 - 40 - ns - 0 - 0 25 - 0 25 - - - 30 - ns ns 0 - 0 - 0 - 0 - ns Max. Min. Max. twcs 0 25 Write Command Pulse Width tWCH twp - 0 25 15 - Write Command to RAS Lead Time tRWL 30 Write Command to CAS Lead Time tcwL Data-In Hold Time tDS tDH WE to RAS Setup Time tws Write Command Setup Time Write Command Hold Time Data-In Setup Time Unit Notes Min. Min. Min. Max. - 0 - 25 15 - - 30 30 - 0 25 WE to RAS Hold Time tWH 15 - 15 - 15 - ns tMS 0 - 0 - 0 - 20 Mask Data to RAS Setup Time 0 - ns Mask Data to RAS Hold Time tMH 15 - 15 - 15 - 20 - ns 10 - 10 - 15 - 20 - ns 80 - ns 20 - ns OE Hold Time Referenced to WE tOEH Page Mode Cycle Time tpc 55 - 55 - 65 - CAS Precharge Time tcp 10 - 10 - 15 - 9 ns 10 10 ~HITACHI Hitachi America, Ltd .• Hitachi PIa2a • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 527 HM534252 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - • Read-Modify-Write Cycle HM534252-10 HM534252-11 HM534252-12 HM534252-15 Parameter Symbol Read Modify Write Cycle Time tRWC RAS Pulse Width CAS to WE Delay tRWS tcWD tAWD 65 - 80 toDD tRAC 255 - 295 350 - ns 165 195 75 10000 - 240 10000 ns 65 10000 - 90 ns 9 - 80 - 95 - 120 - ns 9 25 - 25 30 - ns 100 - ns 2,3 30 ns ns 3,5 - 40 40 Address Access Time tcAC toAC tAA - 150 30 - 45 - 70 ns 3 3,6 20 120 35 35 55 65 40 - 100 30 30 45 55 25 80 ns 5,6 Column Address to WE Delay OE to Data-In Delay Time Access Time From RAS Min. 255 - 165 10000 - - Max. Unit Notes Min. Max. Max. Min. Max. Min. RAS to Column Address Delay tRAD 20 55 20 Output Buffer 'fum-Off Delay Referenced to OE toFF2 - 25 - 25 - 30 - 40 ns Read Command Setup Time tRCS 0 - 0 - 0 - 0 - ns Write Command to RAS Lead Time tRWL 30 - 30 - 35 - 40 - ns Write Command to CAS Lead Time tcWL 30 - 30 - 35 - 40 - ns Write Command Pulse Width twp 15 - 25 - ns 0 0 - ns 10 tDH 25 25 30 ns 10 WE to RAS Setup Time tws 0 WE to RAS Hold Time tWH Mask Data to RAS Setup Time tMS 15 0 - - 0 Data-In Hold Time 15 0 - 20 tDS - 15 Data-In Setup Time - 15 0 Mask Data to RAS Hold Time tMH 15 - 15 - OE Hold Time Referenced to WE toEH 10 - 10 - Access Time From CAS Access Time From OE 0 0 20 0 15 - - 20 - ns 15 - 20 - ns 25 0 0 ns ns ns • Refresh Cycle Parameter Symbol HM534252-10 HM534252-11 HM534252-12 HM534252-15 Unit Notes Min. Max. Min. Max. Min. Max. Min. Max. CAS Setup Ti!!!L (CAS-Befun:-RAS Refn:sh) tcSR lO - 10 - 10 - 10 - n. CAS Hold Time (CAS-Before-RAS Refresh) tcHR 20 - 20 - 25 - 30 - ns RAS Precharge to CAS Hold Time tRPC 10 - 10 - lO - 10 - ns • 528 HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 2 Series • Transfer Cycle Parameter Symbol HM534252-10 HM534252-11 HM534252-12 HM534252-15 Min. Max. Min. Max. - 0 - WE to RAS Setup Time tws 0 WE to RAS Hold Time SE to RAS Setup Time tWH tES 15 0 Min. Max. - 0 15 - 0 - 15 0 Unit Notes Min. Max. - 0 - 20 - 0 - 15 - 20 - 35 40 45 30 - 5 - 10 - ns 30 ns ns ns SE to RAS Hold Time tEH 15 - 15 RAS to SC Delay Time tSRD 25 - 30 SC to RAS Setup Time tSRS 30 40 DT Hold Time From RAS tRDH 80 90 DT Hold Time From CAS 20 30 Last SC to DT Delay Time tcDH tSDD - - 5 - 5 - First SC to DT Hold Time tSDH 20 - 25 - 25 - 30 - ns DT to RAS Lead Time tDTL 50 - 50 - 50 - 50 - ns tDTHH 20 - 25 - 25 - 30 - ns DT Hold Time Referenced toRAS High 90 110 45 ns ns ns ns ns DT Precharge Time tDTP 30 - 35 - 35 - 40 - ns Serial Data ~f Delay Time from RAS tSID 50 - 60 - 60 - 75 - ns Serial Data Input to RAS Delay Time tszR - 10 - 10 - 10 - 10 ns Serial Output Buffer Thrn-Off Delay From RAS tSRZ 10 50 10 60 10 60 10 75 ns RAS to SOUl (Low-Z) Delay Time tRLz 5 - 10 - 10 - 10 - ns 40 - 40 - ns - 60 60 - 40 ns - 40 - 50 Serial Clock Cycle Time tscc 30 - 40 Serial Clock Cycle Time tSCC2 40 - 40 Access Time From SC tSCA 30 - Serial Data Out Hold Time tSOH 7 10 10 0 15 SC Pulse Width SC Precharge Width Serial Data-In Setup Time Serial Data-In Hold Time tsc tscp tSIS tSIH ns - 7 7 - 7 - ns - - 10 - 10 - 10 - 10 - 0 0 - 0 - 20 - 20 - 25 - ns - 10 10 7 13 4 4 ns ns ns • Serial Read Cycle Parameter Symbol HM534252-10 HM534252-11 HM534252-12 HM534252-15 Min. Max. Min. Max. Min. Max. Min. - ns ns - - 7 - 10 - 25 30 - 40 - 40 - tSCA tSEA - 30 40 - 40 60 - 25 30 tSOH - - 7 10 10 30 Serial Data-Out Hold Time 7 10 10 25 - 25 - SC Pulse Width tsc SC Precharge Width tscp 7 10 10 Serial Output Buffer Thrn-Off Delay From SE tSEZ - - - - Unit Notes 50 40 tscc Access Time From SC Access Time From SE Serial Clock Cycle Time Max. ns 4 4 - ns 4 - ns 10 - ns - 30 ns 7 ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 529 HM534252 S e r i e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Serial Write Cycle Parameter Symbol HM534252-10 HM534252-11 HM534252-12 HM534252-15 Unit Notes Min. Max. Min. Max. Min. Max. Min. Max. 40 60 - ns 10 - ns 10 - 10 - ns Serial Clock Cycle Time tscc 30 - 40 SC Pulse Width 10 10 - 10 SC Precharge Width tsc tscp - 10 - Serial Data-In Setup Time tSIS 0 - 0 - 0 - 0 - ns Serial Data-In Hold Time tSIH 15 - 20 - 20 - 25 - ns Serial Write Enable Setup Time tsws 0 - 0 - 0 - 0 - ns 35 - 50 - ns 10 Serial Write Enable Hold Time tSWH 30 - 35 - Serial Write Disable Setup Time tswIS 0 - 0 - 0 - 0 - ns Serial Write Disable Hold Time tSWIH 30 - 35 - 35 - 50 - ns • Logic Operation Mode Parameter Symbol HM534252-10 HM534252-11 HM534252-l2 HM534252-15 Unit Notes Min. Max. Min. Max. Min. Max. Min. Max. tFCHR 90 - 90 - 100 - 120 - RAS Pulse Width in Write Cycle tRFS 140 10000 140 10000 165 10000 200 10000 ns CAS Pulse Width in Write Cycle tCFS 60 10000 60 10000 70 10000 80 10000 ns CAS Hold Time (Logic Operation Set/Reset Cycle) ns tFCSH 140 - 140 - 165 - 200 tFRSH 60 - 60 70 - 80 Write Cycle Time tFRC 230 - 230 - - ns RAS Hold Time in Write Cycle 265 - 310 - ns Page Mode Cycle Time (Write Cycle) tFPC 85 - 85 - 100 - 120 - ns CAS Hold Time in Write Cycle NOTES: ns 1. AC measurements assume tT = 5ns. 2. Assume that tRCD :S tRCD (max.) and tRAD :S tRAD (max.). IftRCD or tRAD is greater than the maximum recommended value shown in this table, tRAC exceeds that value shown. 3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF. 4. Measured with a load circuit equivalent to 2 TTL loads and 50 pF. 5. When tRcD ;e: tRCD (max.) and tRAD :S tRAD (max.), access time is specified by tCAe. 6. When tRCD :S tRCD (max.) and tRAD ;e: tRAD (max.), access time is specified by tAA. 7. toFF (max.) is deiined as the lime at which the output achieves the open CircUit conditIOn (VOH - LWmV, VOL 200mV). + 8. VIH (min.) and VIL (max.) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL. 9. When twcs ;e: twcs (min.), the cycle is an early write cycle, and I/O pins remain in an open circuit (high impedance) condition. When tAWD ;e: tAwD (min.) and leWD ;e: leWD (min.), the cycle is a read-modify-write cycle; the data of the selected address is read out from a data output pin and input data is written into the selected address. In this case, impedance on I/O pins is controlled by OE. 10. These parameters are referenced to CAS falling edge in early write cycles or to WE falling edge in delayed write or read-modify-write cycles. II. After power-up, pause for 100 JLS or more and execute at least 8 initialization cycles (normal memory cycles or refresh cycles), then start operation. 12. If either tRCH or tRRH is satisfied, operation is guaranteed. 13. tSCC2 is defined as the last SAM cycle time before read transfer in read transfer cycle (1). ~HITACHI 530 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 2 Series Timing Waveforms Read Cycle t.e Address I/O (Output) I/O (Input) ~ : Don't care Early Write Cycle Address I/O (Input) I/O (Output) ~ : Don't care Note: *1. When WE is high level. all the data on 00. can be wriuen into the memo!)' celL When WE is low level. the data on I/Os are not written except for the case that the 00 is high at the falling edge of RAS. $ HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 531 HM534252 S e r l e s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Delayed Write Cycle I/O H'gh-Z (Output)----------....:.=-=--------------~ : Don't care Note: *I. When WE is high level, all the data on I/Os can be written into the memory cell. When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS. Read-Modify-Write Cycle Address I/O (Input) I/O (Output) Note: *I. When WE is high level, all the data on I/Os can be written into the memory cell. When WE is low level, the data on I/Os are not written except for the case that the I/O is high at the falling edge of RAS . • 532 HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005· 1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM534252 Series Page Mode Read Cycle tcs::j. j---tRC._ t" teAs t ASR r"I t:r t:: RAH I-- t-'" Address l)'r- ,k AO IX Column l(II I 1/ I /} ~ I.c" /~ tRAC I I/O (Input) f\ tcp teAH ~ t ~"'H I- ~ f9 I I / ill,.,. - ~.1 Valid Doul tt:! ~dC !JJI Y I m tOle f\- .. I I ;'1I /} l' 1\ t Ase ~ ~ t .. teMP teAs -.J teAH (111111 1111/ Column H"C" J: tis ffcS t~1 t"cp teAc ~ Column ~ J-tRSH teAs I 't/0£ WE 14 131/01 m 16 15NC A6 18 17 A8 A4 20 19 AS A7 22 21 Vee A2 24 23 A3 AO 26 25 Al CA5 Z8 27 QSF (Bottom View) Pin Description Pin Name FlDlction AO-AS Address inputs 1/00-1/03 RAM port data inputs! outputs SAM port data inputs! SI/OOSI/03 outputs ~ RC'.I.' ~dd.!e!! 5trObe CAS WE DT/OE Column address strobe Write enable Data tramter/Output enable Serial clock SAM ~rt enable Special function input flag Data register empty flag Power supply Ground No connection· SC SE DSF QSF ThisdocmnentOOlltains infonnation OIl anew product. Specifications and infonnation OOIItained herein are subject to change without notice. Series Vcr:. Vss NC @HITACHI 542 Hitachi America. Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM534253 Series Block Diagram SAM RAM Memory Array From Column Address (SAM Start Address) Row DR : Data Register Pin Function of RAS. The input level of those signals determine the operation cycle of the HM534253. RAS (input pin): RAS is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input at the falling edge Table 1. Operation Cycles of the HM534253 CAS H H H H H H H H L Note: x: Input level at the falling edge of RAS WE ITr/OE SE H H x H H x x H L x H L L H x x L H L H L L L L x x x DSF L H L H L H x x x Operation Cycle RAM read/write Color register set Mask write Flash write Special read initialization Special read transfer Pseudo transfer Write transfer CBR Refresh Don't care. CAS (input pin): Column address is put into chip at the falling edge of CAS. CAS controls output impedance of 110 in RAM. AD-A8 (input pins): Row address is determined by AGA81evel at the falling edge of RAS. Column address is determined by AD-A8level at the falling edge of CAS. In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer. WE (input pin):WE pin has two functions at the falling edge of RAS and after. When WE is low at the falling edge of RAS, the HM534253 turns to mask write mode. According to the 1/0 level at the time, write on each 1/0 .HITACHI Hitachi America, Ltd • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589·8300 543 HM534253 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - can be masked. (WE level at the falling edge of RAS is don't care in read cycle.) When WE is high at the falling edge of RAS, a normal write cycle is executed. After that, WE switches readlwrite cycles as in a standard DRAM. In a transfer cycle, the direction of transfer is determined by WE level at the falling edge of RAS. When WE is low, data is transferred from SAM to RAM (data is written into RAM), and when WE is high, data is transferred from RAM to SAM (data is read from RAM). time transfer cycle. aSF flag turns high when output from one of SAM data registers finished (data register empty flag). If the condition is detected and special read transfer cycle is executed, data is transferred to the empty register. SC (serial clock) and data transfer cycle can be set asynchronously because detection of the last address in SAM and change of data register are executed automatically in the chip. It makes the system design flexible. Operation of HM534253 1/00-1/03 (input/output pins): 1/0 pins function as mask data atthe falling edge of RAS (in mask write and flash write mode). Data is written only on high 1/0 pins. Data on low 110 pins are masked and internal data are retained. After that, they function as input/output pins as those of a standard DRAM. DT/OE (input pin): DT/OE pin functions as DT (data transfer) pin at the falling edge of RAS and as OE (output enable) pin after that. When DT is low at the falling edge of RAS, this cycle becomes a transfer cycle. When DT is high althe falling edge of RAS, RAM and SAM operate independently. SC (input pin): SC is a basic SAM clock. In a serial read cycle, data is output from an SilO pin synchronously with the rising edge of SC. In a serial write cycle, data on an SilO pin at the rising edge of SC is put into the SAM data register. SE (input pin): SE pin activates SAM. When SE is high, SilO is in the high impedance state in serial read cycle and data on SilO is not put into the SAM data register in serial write cycle. SE can be used as a mask for serial write because internal pointer is incremented at the rising edge of SC. SI/00-SI/03 (input/output pins): SilOs are inputloutput pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a special read transfer cycle or special read initialization cycle, SilO outputs data. When it was a pseudo transfer cycle or write transfer cycle, SilO inputs data. DSF (input pin): DSF is a special data input flag pin. It is setto high when new functions such as color register set, special read transfer, and flash write, are used. aSF (output pin): The HM534253 has a double buffer organization which includes two SAM data registers to relax the restriction on tim ings of DT10E and SC in real Operation of RAM Port RAM Read Cycle (DT/OE high, CAS high, DSF low at the falling edge of RAS) Row address is entered at the RAS falling edge and column address at the CAS falling edge to the device as in standard DRAM. Then, when WE is high and DTI OE is low while CAS is low, the selected address data is output through 110 pin. At the falling edge of RAS, DT/OE and CAS become high to distinguish RAM read cycle from transfer cycle and CSR refresh cycle. Address access time (tM) and RAS to column address delay time (tRAO) specifications are added to enable high-speed page mode. RAM Write Cycle (Early Write, Delayed Write, Read Modify Write) (DT/OE high, CAS high, DSF low at the falling edge of RAS) • Normal Mode Write Cycle (WE high at the falling edge of RAS) When CAS and WE are set low after driving RAS low, a write cycle is executed and 1/0 data is written in the selected addresses. When all 4 II0s are written, WE should be high at the falling edge of RAS to distinguish normal mode from mask write mode. H WE is set low before the CAS falling edge, this cycle becomes an early write cycle and 1/0 becomes high impedance. Data is entered at the CAS falling edge. If WE is set low after the CAS falling edge, this cycle becomes a delayed write cycle. Data is input at the WE falling. 1/0 does not become high impedance in this cycle, so data should be entered with OE in high. OHITACHI 544 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 3 Series If WE is set low aftertcwo (min) and tA'NO (min) after the CAS falling edge, this cycle becomes a read modify write cycle and enables readlwrite to execute in the same address cycle. In this cycle also, to avoid I/O contention, data should be input after reading data and driving OE high. • Mask Write Mode (WE low at the falling edge of RAS) IfWE is set low at the falling edge of RAS, the cycle becomes a mask write mode cycle which writes only to selected I/O. Whether or not an I/O is written depends on 110 level (mask data) at the falling edge of RAS. Then the data is written in high 110 pins and masked in low ones and internal data is preserved. This mask data is effective during the RAS cycle. So, in highspeed page mode cycle, the mask data is preserved during the page access. High-Speed Page Mode Cycle (DT/OE high, CAS high, DSF low at the falling edge of RAS) High-speed page mode cycle reads/writes the data of the same row address at high speed by toggling CAS while RAS is low. Its cycle time is one third of the random readlwrite cycle and is higher than the standard page mode cycle by 70-80 %. This product is based on static column mode, therefore, address access time (tAA), RAS to column address delay time (tRAO), and access time from CAS precharge (tACP) are added. In one RAS cycle, 512-word memory cells of the same row address can be accessed. It is necessary to specify access frequency within tRAS max (1 0 ~s) . • Flash Write Function (See figure 1) • Color Register Set Cycle (CAS'DT/oEWE high, DSF high at the falling edge of RAS) In color register set cycle, color data is set to the internal color register used in flash write cycle. 4 bits of internal color register are provided at each 110. This register is composed of static circuits, so once it is set, it preserves the data until reset. The data set is just as same as in the usual write cycle except that DSF is set high at the falling edge of RAS, and early write and delayed write cycle can be executed. In this cycle, memory array access is not executed, so it is unnecessary to give row and column addresses. • Flash Write Cycle (CAS'DT/oE high, WE low, DSF high at the falling edge of RAS) In a flash write cycle, a row of data (512 x 4 bit) is cleared to 0 or 1 at each I/O according to the data of color register mentioned before. It is also possible to mask I/O in this cycle. When CAS'DT/oE is set high, WE is low, and DSF is high at the falling edge of RAS, this cycle starts. Then, the row address to clear is given to row address and mask data is to I/O. Mask data is as same as that of a RAM write cycle. High I/O is cleared, low 110 is not cleared and the internal data is preserved. Cycle time is the same as those of RAM read/write cycles, so all bits can be cleared in 11512 of the usual cycle time. HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 545 HM534253 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - Color Register Set Cycle Set (1103, 1102, 1101, VOO) = (1, 0, 0, 1) into color register. Flash Write Cycle Execute flash write Into 1102, 1103 on row address Xi using color reglstt'r. (Il00, 1101 are masked.) Flash Write Cycle Execute flash write into Il00, 1101, 1103 on row address Xi using color register. (1102 Is masked.) Figure 1. Use of Flash Write .HITACHI 546 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 3 Series Transfer Operation The HM534253 provides the special read initialization cycle, special read transfer cycle, pseudo transfer cycle, and write transfer cycle as data transfer cycles. These transfer cycles are set by driving DTIOE low at the falling edge of RAS. They have following functions: (1) Transfer data between row address and SAM data register (except for pseudo transfer cycle) (2) Determine direction of data transfer (a) Special read initialization cycle, Special read transfer cycle: RAM ~ SAM (b) Write transfer cycle: RAM +- SAM (3) Determine input or output of SAM 110 pin (SIlO) Special read initialization cycle: SIlO output Pseudo transfer cycle, write transfer cycle: SIlO input (4) Determine first SAM address to access (SAM start address) after transferring at column address. When SAM start address is not changed, neither CAS nor address need to be set because SAM start address can be latched internally. Special Read Initialization Cycle (CAS high, DT/OE low, WE high, DSF low at the falling edge of RAS) If CAS is high, DT/OE is low, WE high, and DSF low atthe falling edge of RAS, this cycle becomes a special read initialization cycle. Special read initialization is used (1 ) to start special read transfer operation and (2) to switch SAM input/output pin (SIlO), set in input state by pseudo transfer cycle or write transfer cycle, to output state. If the clock is set as mentioned before, address of SAM transfer word line is set to row address and first SAM address to access (SAM start address) to column address, it becomes possible to execute SAM read after tSRD (min) after RAS is high. In this cycle, 51/0 outputs uncertain data after the RAS falling edge. So when SAM is in input state before executing this cycle, it is necessary to stop input before the RAS falling edge. SAM access is inhibited while RAS is low in this cycle. SC should not be raised during RAS low. Special Read Transfer Cycle (CAS high: DT/OE low, WE high, DSF high at the falling edge of RAS) Ordinary multiport video RAM has some problems; (1) severe limitation on timings between processor clock DT/OE and CRT clock SC, (2) complicated external control circuit to detect SAM last address externally and to insert transfer cycle synchronously. Special read transfer cycle makes it possible to relax the timing limitations and to set serial clock (SC) and transfer cycle perfectly synchronously. Figure 2 shows the block diagram for a special read transfer. SAM double buffers are composed of two data registers (DR). When data is read out from DRO serially, special read transfer cycle transfers a row of RAM data, which will be read from SAM next, to DR1. The end of data read from DRO is detected internally and data register switching circuit automatically switches to DRl output. So data can be output continuously. RAM Memory Array DR : Data Register SOut(DRO) Figure 2. Block Diagram for Special Read Transfer • HITACHI Hitachi America, ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589-8300 547 HM534253 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - QSF becomes low during the cycle. When the last SAM address is accessed, QSF becomes high and the data register, which outputs from the next SAM address, changes, and serial access can be executed. Figure 3 shows special read transfer operation sequence. QSF flag indicates that reading out from data resister has finished (data register empty flag), and special read transfer can be executed while QSF is high. Atfirst, special read operation starts by executing an special read initialization cycle. So QSF becomes high, the processor gives row address and SAM start address, which is needed next, to the memory, and inserts a special read transfer cycle. Data register becomes full after a special read transfer cycle, so RAM By executing these handshakes, serial clock and transfer cycle can be executed perfectly asynchronously, and flexibility of the system design is improved. RAM RAM -ORO QSF _L ) ----II sc sl/O (Output) 7 ---fI'c. ._MfN\._. J\f1 Y=511 ___ --I~ OutpUt from ORO Y=i ~ i+1 i+2 Y=511 Output from ORt Y=I i+1 C Figure 3. Special Read Transfer Operation Sequence Special read transfer cycle is set by making CAS high, DTIOE low, WE high, and DSF high at the falling edge of RAS (same as for special read initialization cycle except DSF).like in other transfer cycles, the address afthe '!'!Ord I!n",!t:' ! ... nAfA. into data register is specified by row address and SAM start is specified by column address. When the last SAM address data is output, the next data is output from the SAM start address specified by this RAS cycle. This transfer cycle can be executed asynchronously with SAM cycle. However, it is necessary to execute SAM access after RAS becomes high after SAM start address is specified by RAS cycle. (See figure 4.) aSF should be high at the falling edge of RAS to execute a special read transfer cycle. A cycle whose aSF is low is neglected (refresh is executed). When the previous transfer cycle is a pseudo transfer or write • 548 transfer cycle and SIlO is in input state, special read transfer cycle cannot be used (neglected). Special read initialization cycle is required to switch SilO to output state. Pseudo Transfer Cycle (CAS high, DTIOE low, WE low, and SE high at the falling edge of RAS) Pseudo transfer tycle is available for switching SVO from output state to input state because data in RAM isn't rewritten. This cycle starts when CAS is high, DTI OE low, WE low, and SE" high, at the falling edge of RAS. The output buffer in SIlO becomes high impedance within tsRZ (max) from the RAS falling edge. Data should be input to SVO later than tSID (min) to avoid data contention. SAM access becomes enabled after tSRD (min) after RAS becomes high, like in the special read HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 940OS·1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM534253 Series (Special read transfer cycle) Address DSF se (Yk) t. OD (Yk+1) Row address Xl data QSF Figure 4. The Restriction of Special Read Transfer initialization cycle. In this cycle, SAM access is inhibited during RAS low, therefore, SC should not be raised. Write Transfer Cycle (CAS high, DT/oE low, WE low, and SE low at the falling edge of RAS) Write transfer cycle can transfer a row of data input by serial write cycle to RAM. The row address of data transferred into RAM is determined by the address at the falling edge of RAS. The column address is specified as the first address to serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled aftertsRD (min) after RAS becomes high. SAM access is inhibited during RAS low. In this period, SC should not be raised. SAM pon Operation Serial Read Cycle SAM port is in read mode when the previous data transfer cycle is special read initialization cycle or special read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SilO. When the last address is accessed at the state of OSF low (data register is full), it is signaled to external circuits that special read transfer is enabled by making OSF high. Next, after SAM access, output data register is switched, then the row address data given by previous special read transfer cycle is output from the SAM start address. If special read transfer isn' performed (OSF high), the column address 0 of the same row address is accessed after the last address is accessed. Serial Write Cycle If previous data transfer cycle is pseudo transfer cycle or write transfer cycle, SAM port goes into write mode. In this cycle, SilO data is programmed into data register at the SC rising edge like in the serial read cycle. If SE is high, SilO data isn't input into data register. Internal pointer is incremented according to the SC rising edge, so SE high can be used to mask data for SAM. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 549 HM534253 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - Refresh RAM Refresh RAM, which is composed of dynamic circuits, requires refresh to retain data. Refresh is performed by accessing all 512 row addresses every 8 ms. There are three refresh cycles: (1) RAS-only refresh cycle, (2) CAS-before-RAS (CBR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate RAS such as readlwrite cycles or transfer cycles can refresh the row address. Therefore, no refresh cycle is required for accessing all row addresses every 8 ms. RAS-Only Refresh Cycle: RAS-only refresh cycle is performed by activating only RAS cycle with CAS fixed to high by inputting the row address (= refresh address) from external circuits. In this cycle, output is highimpedance and power dissipation is less than that of normal readlwrite cycles because CAS internal circuits don't operate. To distinguish this cycle from data transfer cycle, DT/oE should be high atthefalling edge of RAS. CBR Refresh Cycle: CBR refresh cycle is set by activating CAS before RAS. In this cycle, refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered like in RAS-only refresh cycles because CAS circuits don't operate. Hidden Refresh Cycle: Hidden refresh cycle performs refresh by reactivating RAS when DT/OE and CAS keep low in normal RAM read cycles. SAM Refresh SAM parts (data register, shift register, selector), organized as fully static circuitry, don't require refresh. Absolute Maximum Ratings Item Terminal voltage "1 Power supply voltage "1 Power dissipation Operating temperature Storage temperature Note: Symbol Rating VT Unit v -1.0 to +7.0 -0.5 to +7.0 1.0 Oto+70 -55 to +125 Vee Pr Tope Tstg V w ·c ·c *1. Relative to Vss. Recommended DC Operating Conditions (Ta = 0 to +70"C) Item Supply voltage °1 Input high voltage "1 Input low voltage 01 Symbol Vee VIII VIL Notes: *1. All Voltages referenced to Vss. *2. -3.0 V for pulse width S 10 DS. Min Typ Max 4.5 2.4 5.0 5.5 -O.5"Z • 550 6.5 Unit V V 0.8 V HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - --~--~ - --~~~ HM534253 Series DC Characteristics (Ta = 0 to +70°C, Vcc= 5 v ± 10%, Vss = 0 V) ICCI HM534253 -10 Min Max 70 HM534253 -12 Min Max 60 ICC7 120 100 80 Standby current ICCl 7 7 7 lea 50 40 30 rnA RAS,CAS = VIH rnA RAS-only ICC3 refresh current ICCJ 60 50 40 rnA RAS cycling 110 90 70 CAS = VIH rnA IRe = Min ICC4 65 55 45 ICCIo 115 95 75 CAS-beforeRASrefresh current Ices 60 50 40 ICCII 110 90 70 Data transfer current lea 90 90 90 ICCll 125 125 125 Input leakage current Output leakage current Outputbigh voltage Output low voltage Iu -10 10 -10 10 -10 10 f.1A ILo -10 10 -10 10 -10 10 f.1A Symbol Item Operating current Page mode current Vou 2.4 VOL HM534253 -15 Min Max 50 2.4 2.4 0.4 0.4 0.4 Test Conditions Unit RAM port rnA RAS, CAS cycling rnA IRe = Min rnA CAS cycling RAS = Vn. rnA IRe = Min rnA RAS cycling IRe = Min rnA rnA RAS,CAS cycling rnA IRe = Min SAM port SC = Vn., SE = VIH SE =Vn., SC cycling tscc=Min SC = Vn., SE = VIH SE = Vn., SC cycling tscc=Min SC = Vn., SE = VIH SE = Vn., SC cycling tsee=Min SC,SI!= VIH SE = Vn., SC cycling tscc=Min SC = Vn., SE = VIH SE = Vn., SC cycling tscc=Min SC = Vn., ~ = VIH SE = Vn., SC cycling tscc = Min V IOH=-2mA V IOL=4.2mA capacitance (Ta = 25°C, Vcc= 5 V, f=1 MHz, Bias: Clock, I/O = Vcc, address = Vss) Item Address Clock I/O, SI/O Symbol CII Cn Coo Min Typ • Max 5 5 7 Unit pF pF pF HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589·8300 551 HM534253 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - AC Characteristics (Ta= 0 to +70°C, Vee = 5 V ± 10%, Vss = 0 V) '1,'11 Test Conditions Input rise and fall time: Output load: Input timing reference levels: Output timing reference levels: 5 ns See figures 0.8 V, 2.4 V 0.4 V. 2.4 V Output Load (B) Output Load (A) +sv +sv I/O Note: SI/O *1. Including scope & jig. Common Parameter Item Symbol Random read or write cycle time RAS precharge time 'RAS pulse width CAS pulse width Row address setup time Row address hold time Column address setup time Column address hold time RAS to CAS delay time RAS hold time CAS hold time CAS to RAS precharge time Transition time (rise to fall) Refresh period DT to setup time DT to RAS hold time DSF to RAS setup time DSF to RAS hold time Data-in to UE delay time Data-in to CAS delay time m tRC IRP tRAS teAS tASR tRAIl LAsc tCAH tRill tRSH tCSH tCRP tr !REF toTS toTH tsFS tsFH tow tozc HM534253-10 Min Max 190 80 100 10000 30 10000 0 15 0 20 25 70 30 100 10 3 50 8 0 15 0 25 0 0 HM534253-12 Min Max 220 90 120 10000 35 10000 0 15 0 20 25 85 35 120 10 3 50 8 0 15 0 25 0 0 HM534253-15 Unit Min Max 260 ns 100 ns 150 10000 ns ns 40 10000 0 ns ns 20 0 ns ns 25 30 110 ns ns 40 150 ns 10 ns ns 3 50 ms 8 0 ns ns 20 0 ns 30 ns 0 ns 0 ns ~HITACHI 552 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 Note ·5,·6 '8 ----- - - - - - HM534253 Series Read Cycle (RAM), Page Mode Read Cycle Symbol HM534253-1O Item Min Max IRAC 100 Access time from RAS tcAc 30 Access time from CAS Access time from OE toAC 30 45 Address access time lAA 0 Output buffer tum-off delay toWI 25 referenced to CAS toPP2 0 25 Output buffer tum-off delay referenced to OE Read command setup time IRes 0 Read command hold time IROI 0 Read command hold time IRRH 10 referenced to RAS 20 IRAD 55 RAS to colwnn address delay time 55 lPC P~e mode c~cle time 10 CAS precharge time tcP Access time from CAS precharge lACP 50 HM534253-12 Min Max 120 35 35 55 30 0 0 30 0 0 10 20 HM534253-15 Unit Max Min 150 ns 40 ns 40 ns 70 ns 40 ns 0 0 25 60 °3 "3. ,,' °7 °7 ns ns ns °12 80 ns .", "6 75 ns ns ns 80 20 65 15 "2,"3 "3 •• , ns 40 0 0 10 65 Note °12 WrHe Cycle (RAM), Page Mode Write Cycle, Color Register Set Cycle Item Write command setup time Write command hold time Write command pUlse width Write command to RAS lead time Write command to CAS lead time Data-in setup time Data-in hold time WE to RAS setu2 time WE to RAS hold time Mask data to RAS setup time Mask data to RAS hold time OE hold time referenced to WE Page mode cycle time CAS precharge time Symbol twes twOl twP IRWL tcWL IDS tDH tws twH tMs IMH toEH lPC tcP HM534253-10 Min Max 0 25 15 30 30 0 25 0 15 0 15 10 55 10 • HM534253-12 Max Min 0 25 20 35 35 0 25 0 15 0 15 15 65 15 HM534253-15 Unit Max Min 0 ns 30 ns 25 ns ns 40 40 ns ns 0 ns 30 0 ns ns 20 0 ns 20 ns ns 20 80 ns 20 ns Note og °10 0\0 HITACHI Hitachi America, ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 553 HM534253 Series Read-Modify-Write Cycle Item Read-modify-write cycle time RAS pulse width CAS to WE delay Column address to WE delay OE to data-in delay time Access time from RAS Access time from CAS Access time from OE Address access time RAS to column address delay Output buffer tum-off delay referenced to OE Read command setup time Write command to RAS lead time Write command to CAS lead time Write command pulse width Data-in setup time Data-in hold time WE to RAS setup time WE to RAS hold time Mask data to RAS setup time Mask data to RAS hold time OE hold time referenced to WE Symbol IRWC IRWS tcwo tAWD tODD IRAC tcAC toAC tAA IRAD toFF2 IRes IRWL tcWL twp tos toH tws twH tMs tMH toEfl HM534253-10 Min Max 255 165 10000 65 80 25 100 30 30 45 20 55 0 25 0 30 30 15 0 25 0 15 0 15 10 HM534253-12 Min Max 295 195 10000 75 95 30 120 35 35 55 20 65 0 30 0 35 35 20 0 25 0 15 0 15 15 HM534253-15 Unit Max Min 350 ns 240 10000 ns 90 ns 120 ns 40 ns 150 ns 40 ns 40 ns 70 ns 25 80 ns 0 40 ns 0 40 40 25 0 30 0 20 0 20 20 ns ns ns ns ns ns ns ns ns ns ns Note "9 "9 *2,·3 ·3,·5 "3 ·3.*6 ·5,"'6 "10 "10 Refresh Cycle Item Symbol CAS setup time (CAS-before-RAS refresh) CAS hold time (CAS-before-RAS refresh) RAS precharge to CAS hold time tCSR HM534253-10 Min Max 10 HM534253-12 Min Max 10 HM534253-15 Unit Min Max ns 10 tCHR 20 25 30 ns tRPc 10 10 10 ns ~HITACHI 554 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 Note HM534253 Series Transfer Cycle Item Symbol WE to RAS setup time WE to RAS hold time SE to RAS setup time SE to RAS hold time RAS to SC delay time SC to RAS setup time RAS to QSF delay time ~ to QSF (high) delay time Serial data input delay time fromlfJ\S Serial data input to RAS delay time Serial output buffer turn-off delay from RAS RAS to Sout (Low-Z) delay time Serial clock cycle time Access time from SC Serial data out hold time SC pulse width SC precharge width Serial data-in setup time Serial data-in hold time tws twH IBS IEH tsRD tsRS IRQD IRQH tsm HM534253-10 Min Max 0 15 0 15 25 30 100 0 15 0 15 30 40 120 TBO TBO 60 50 tslR 10 tsRZ 10 IRIZ 5 30 tscc tsCA tsOH tsc tsCP tsl5 tslll HM534253-12 Min Max 50 10 10 60 30 0 15 ns 75 ns 60 40 7 10 10 0 20 10 10 10 10 10 10 40 7 HM534253-15 Unit Min Max 0 ns 20 ns 0 ns 20 ns 35 ns 45 ns 150 ns TBO ns 75 ns 50 7 10 10 0 25 ns ns ns ns ns ns ns ns Note ·4 ·7 ·4 ·4 Serial Read Cycle Item Symbol Serial clock cycle time Access time from SC Access time from SE Serial data-out hold time SC pulse width SC precharge width Serial output buffer tum-off delay from SE Last SC to QSF delay time tscc tsCA tsEA tsoo tsc tsCP tsHZ HM534253-10 Min Max 30 30 25 7 10 10 0 25 HM534253-12 Min Max 40 40 30 7 10 10 0 TBO tsQD $ 25 TBO HM534253-15 Unit Min Max 60 ns ns 50 40 ns ns 7 ns 10 ns 10 30 0 ns TBO ns Note ·4 ·4 ·4 ·7 ·4 HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 555 HM534253 Series Serial Write Cycle Item Symbol Serial clock cycle time SC pulse width SC precharge width Serial data-in setup time Serial data-in hold time Serial write enable setup time Serial write enable hold time Serial write disable setup time Serial write disable hold time tsee tse tsCl' tslS tsIH tsws tsWH tsWIS tsWIH HM534253-10 Min Max 30 10 10 0 15 0 30 0 30 HM534253-12 Min Max 40 10 10 0 20 0 35 0 35 HM534253-15 Unit Min Max 60 ns 10 ns 10 ns 0 ns 25 ns 0 ns 50 ns 0 ns 50 ns Note HM534253-1O Min Max 230 140 0 15 20 HM534253-12 Max Min 265 165 0 15 25 HM534253-15 Unit Min Max 310 ns 200 ns 0 ns 20 ns 30 ns Note Flash Write Cycle Symbol Item Flash write cycle time RAS pulse width WE to RAS setup time WE to RAS hold time CAS high level hold time referenced to RAS Mask data to RAS setup time Mask data to RAS hold time Notes: IRCFW IRCSFW tws twH tcHHR tMs IMH 0 15 0 15 0 20 ns ns *1. AC measurements assume tT= 5 ns. *2. Assume that tRill:;; tRill (max) and tRAD:;; tRAD (max). If tRill or tRAD is greater than the maximum recommended value shown in this table, tRAe exceeds the value shown. *3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF. *4. Measured with a load circuit equivalent to 2 TTL loads and 50 pF. *5. When tRill ~ tRCD (max) and tRAD:;; tRAD (max), access time is specified by tCAC. *6. When tRill :;; tRill (max) and tRAD ~ tRAD (max), access time is specified by tAA. *7. tOfF (max) is defined as the time at which the output achieves the open circuit condition (VoH-200 mV, VOL+200 mY). *8. VIH (min) and Vn.. (max) are reference levels for measuring timing of input signals. Transition times are measured between VIHand Vn... *9. When twcs ~ twcs (min), the cycle is an early write cycle, and IJO pins remain in an open circuit (high impedance) condition. When tAWD ~ tAWD (min) and tCWO ~ tCWO (min), the cycle is a read-modify-write cycle; the data of the selected address is read out from a data out pin and input data is written into the selected address. In this case, impedance on IJO pins is controlled by OE. *10. These parameters are referenced to CAS falling edge in early write cycles or to WE falling edge in delayed write or readmodify-write cycles. * 11. Afterpower-up, pause for 100 f.lS ormore and execute at least 8 initialization cycles (nonnal memory cycles or refresh cycles), then start operation. * 12. If either tRCH or tRRH is satisfied, operation is guaranteed. * HITACHI 556 Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 3 Series Timing Waveforms Read Cycle Address I/O (output) I/O (Input) iLZl : Don't care. DSF Early Write Cycle Address I/O (Input) I/O (Output) DSF ~ : Don't care. Note: *1. When WE is high level, all the data on IJOs can be written into the memory cell. When WE is low level, the data on IJOs are not written except for the case that the IJO is high at the falling edge of RAS. @HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 557 HM534253 Series Delayed Write Cycle I" I/O (Input) u,........,....;.-.f "'''1'-----1' .......:..uLl.LI..LL.LLu..UJ. I/O (Output) DSF ~ : Don't care. Note: * 1. When WE is high level, all the data on I/Os can be wriuen into the memory cell. When WE is low level, the data on I/Os are not wriuen except for the case that the I/O is high at the falling edge of RAS. Read-Modlfy-Wrlte Cycle Address I/O (Inpul) I/O (Output) DSF ~ : Don't care. Note: *1. When WE is high level, all the data on I/Os can be written into the mem~1. When WE is low level, the data on I/Os are not wriuen except for the case that the I/O is high at the falling edge of RAS . • 558 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 3 Series Page Mode Read Cycle Address I/O (outPut)--++--'---f!'"'-<1 l'----,c..:..;;.'---'l I/O (Input) -'-L-<+,..;"jJ~ DSF E2ZI : Don't care. Page Mode Write Cycle (Early Write) Note: ·1. When WE is high level, all the data on I/Os can be wriuen into the memory cell. When WE is low level, the data on I/O. are not wriuen except for the case that the I/O is high at the falling edge of RAS . • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 559 HM534253 Series Page Mode Write Cycle (Delayed Write) Address I/O (Input) I/O (Output) DSF rLL:d : Don't care. Note: *1. When WE is high level, all the data on I/O, can be written into the memory cell. When WE is low level, the data on I/O, are not written except for the case that the I/O is high at the falling edge of RAS. RAS-Only Refresh Cycle t.e Address I/O (Output) I/O (Input) DSF t2ZI : Don't care. ~HITACHI 560 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 3 Series CAS"-Befor.~ Refresh Cycle tRe Address W//////I/I/i///////11/1///////1//1//,0 1/IIIIIiII/!////1/1/1//1///////1/1///M \'it: (I~~~t) ?if/!//I$ff##//I/ffffffi'////1/#/!II/J I/O (Output) Hlgh-Z DT/Dr Wfffi'P'$ff$///$$/$lIff//& DSF W/#$/////I/W/////ff#$#Jll/4 E22l : Don't care. Hidden Refresh Cycle t.e Address I/O (Output) j==:l:eEth:~~ __ _Da_ta_o_ut_l~~_ _ v_a"_d I /0 ........-.I:.-~L.....! (Input) E22J : Don't care. OHITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 561 HM534253 Series Special Read Initialization Cycle (1) '1, '2 t .. Address QSF SC SI/O (Output) ~ : Don't care ~ : InhIbit rising tranSient I/O : Don't care DSF Notes: *1. When the previous data transfer cycle is a special read transfer cycle or special read initialization cycle, itis specified as special read initialization cycle (1). *2. SE is in low level. (When SE is high, SIlO becomes high impedance state.) *3. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed. Special Read Initialization Cycle (2) '1.'2 tltAs QSF SC 't~[}-------------------- SI/O (Input)11 DSF Notes: ~ : Don't care ~ : Inhibit rising transient I/O: Don't care *1. When the previous data transfer cycle is a write or pseudo transfer cycle, it is specified as special read initialization cycle (2). *2. SE is in low level. (When SE is high, SIlO becomes high impedance state.) *3, CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed. ~HITACHI 562 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 3 Series Special Read Transfer Cycle '1.'2 Address I/O (Output) I/O (Input) sc 51/0 (Output) 51/0 (Input) QSF DSF ILZI : Don't care. Notes: *1. When QSF is low level at the falling edge of RAS, the special read transfer cycle is not perfonned. *2. SE is in low level. (When SE is high, SilO becomes high impedance state.) *3. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed . • HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 563 HM534253 Sari.. Pseudo Transfer Cycle Ioe m CAS" Address WE" nT/O£" Sf sc 51/0 (Input) 51/0 (Output) ~ : Don't care t ... lSZSZ:i : Inhibit (lSlRg tranSient QSF Note: I/O : Don't car. ·1, CAS and SAM start address don '1 need to be specified every cycle, if SAM start address is not changed. Write Transfer Cycle t •• Address SC 51/0 (Input) Hogh-Z SI/O (Output) t •• UIlJ: Don't care MI : Inhibit rising transient QSF Note: *1. CAS and SAM start address don't need to be specified every cycle, if SAM start address is not changed. _HITACHI 564 Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 3 Series Serial Read Cycle h~ 77////////////////////~_ZZZZZZ// SC SI/O (Output) ~ : Don't care Serial Write Cycle n~ 7ZZZZZZZZ7Z//ZZ/Z7/Z/;~i=7/////Z/i SC SI/O (Input) ~ : Don't care Notes: *1. WhenSE is high level in a serial write cycle, data is not written into SAM, however, the pointer is incremented. *2. Address 0 is accessed next to address 511. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 565 HM534253 Sarle. - - - - - - - - - - - - - - - - - - - - - - - - - - Sarlal Read Cycle (Around Addre•• 511 In SAM) sc 51/0 (Output) QSF Note * I. Addres. (i) is the SAM start address provided in the previous special read transfer cycle. When special read transfer cycle ion't executed (QSF remains in high level), address 0 is accessed next to address 511. Color Register Set Cycle (Early Write) toe t ... 1IAS" t .., m WE" I/O (Input) m'/~ OSF Address ~ : Don't care. Note: *1. The level of address pin is don't care, but cannot be changed in this period. _HITACHI 566 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 940()5.1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H M 5 3 4 2 5 3 Series Color Register Set Cycle (Delayed Write) t .. I/O (Input) OSF ~ : Don't care Note: *1. The level of address pin is don't care, but cannot be changed in this period. ~HITACHI Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 567 HM534253 Series Flash Write Cycle tlCFW tlt"'FW Address I/O (input) DSF E2Zl : Don't care. L -_________________________________________________________________ • 568 HITACHI Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300 HM538121 JP/ZP-10/12/15- Preliminary 131,072 x 8·Bit Multiport CMOS Video Random Access Memory • DESCRIPTION The HM538121 is a 1-Mbit multiport video RAM equipped with a 128-kword x 8-bit dynamic RAM and a 256-word x 8-bit SAM (serial access memory). Its RAM and SAM operate independently and asynchronously. It can transfer data between RAM and SAM and has a write mask function. It is suitable for a graphic processing buffer memory. • FEATURES • Multiport Organization Asynchronous and Simultaneous Operation of RAM and SAM Capability RAM .............................. 128-kword x 8-Bit SAM ...............................256-word x 8-Bit • Access Time ................ RAM: 100/120/150ns (max.) SAM: 30/40/50ns (max.) • Cycle Time ................. RAM: 190/220/260ns (min.) SAM: 30/40/60ns (min.) • Low Power Active .................. RAM: 385mW (max.) SAM: 275mW (max.) Standby. . . . . . . . . . . . . . . . 40mW (max.) • High Speed Page Mode Capability • Mask Write Mode Capability • Bidirectional Data Transfer Cycle Between RAM and SAM Capability • Real Time Read Transfer Capability • 3 Variations of Refresh (8ms/512 Cycles) RAS-Only Refresh CAS-Before-RAS Refresh Hidden Refresh • TIL Compatible • ORDERING INFORMATION Part No. HM538l2IJP-lO HM538l2IJP-l2 HM538l2IJP-l5 Access lOOns l20ns l50ns Package 400-mil 40-pin Plastic SOl (CP-40D) (CP-40D) • PIN ARRANGEMENT SC VSS1 Sl/Oo SI/07 SI/01 SilOs SI/02 SI/05 81/03 SI/04 OTiOE SE 1/00 1/07 1/01 I/0s 1/02 1/05 1/03 1/04 VCC1 VSS2 WE NC NC NC RAS CAS NC NC As As Ao A5 A4 A2 A1 A3 A7 VCC2 (Top View) • PIN DESCRIPTION Pin Name Function Ao-As Address Inputs 1100-1107 SIlOo-SII07 RAM Port Data InputslOutputs SAM Port Data Inputs/Outputs RAS Row Address Strobe CAS Column Address Strobe WE Write Enable DT/OE Data Transfer/ Output Enable SC Serial Clock SE SAM Port Enable Vee Power Supply Vss Ground NC Non Connection ~HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 569 HM538121 JP/ZP-10112/15 - - - - - - - - - - - - - - - - - - - - - - - • BLOCK DIAGRAM RAM SAM 511 Dout POinter Din Memory Array ~ c: 'Tn " J E "0 .. <.> :l Q 0 Table 1. Operation Cycles of the HM538121 Input Level at the Falling EdgeofRAS Operation Cycle WE H H H H H L X H L H X H H L L L L H L L X X X NOTE: 0: .c rn From Column Address (SAM Start Addr.ss) 511 RAS (input pin): RAS is a basic RAM signal. It is active in low level and standby in high level. Row address and signals as shown in table 1 are input at the falling edge of RAS. The input level of those signals determine the operation cycle of the HM538121. DT/OE t! " :; .& Row 0 Pin Function CAS ~! SE X RAM Read/Write Mask Write Read Transfer Pseudo Transfer Write Transfer CBR Refresh X = Don't care. CAS (input pin): Column address is put into chip at the falling edge of CAS. CAS controls output impedance of I/O in RAM. Ao-As (input pins): Row address is determined by Ao-Aslevel at the falling edge of RAS. Column address is determined by Ao-A7 level at the falling edge of CAS. In transfer cycles, row address is the address on the word line which transfers data with SAM data register, and column address is the SAM start address after transfer. WE (input pin): WE pin has two functions at the falling edge of RAS and after. When WE is low at the falling edge of RAS, the HM538121 turns to mask write mode. According to the I/O level at the time, write on each I/O can be masked. (WE level at the fall~edge of RAS is don't care in read cycle.) When WE is high at the falling edge of RAS~ normal write cycle is executed. After that, WE switches read/write cycles as in a standard DRAM. In a transfer ~e, the direction of transfer is determined by WE level at the falling edge of RAS. When WE is low, data is transferred from SAM to RAM (data is written into RAM), and when WE is high, data is transferred from RAM to SAM (data is read from RAM). 1/00 -1/0 7 (input/output pins): I/O ~ function as mask data at the falling edge of RAS (in mask write mode). Data is written only on high I/O pins. Data on low I/O pins are masked and internal data are retained. After that, they function as input/output pins as those of a standard DRAM. DT/OE (input pin): DT/OE pin functions as DT ~ta transfer) pin at the falling edge of RAS and as OE (output enable) pin after that. When DT is low at the falling edge ofJ!,AS, this cycle becomes a transfer cycle. When DT is high at the falling edge of RAS, RAM and SAM operate independently. SC (input pin): SC is a basic SAM clock. In a serial read cycle, data is output from an SI/O pin synchronously with the rising edge of SC. In a serial write cycle, data on an SI/O pin at the rising edge of SC is put into the SAM data register. SE (input pin): SE pin activates SAM. When SE is high, SI/O is in the high impedance state in serial read cycle and data on SI/O is not ~ into the SAM data register in serial write cycle. SE can be used as a mask for serial write because internal pointer is incremented at the rising edge of SC. ~HITACHI 570 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - - HM538121JP/ZP-10/12/15 SI/Oo-SI/07 (input/output pins): SilOs are input/ output pins in SAM. Direction of input/output is determined by the previous transfer cycle. When it was a read transfer cycle, SilO outputs data. When it was a pseudo transfer cycle or write transfer cycle, SilO inputs data. OPERATION OF HM538121 Operation of RAM Port RAM Read cycle (DT/OE high, CAS high, at the failing edge of RAS) Row address is entered at the RAS falling edge and column address at the CAS falling e~ to the device as in standard DRAM. Then, when WE is high and DT/OE is low while CAS is low, the selected address data is o~ut through 110 pin. At the falling edge of RAS, DT/OE and CAS become high to distinguish RAM read cycle from transfer cycle and CBR refresh cycle. Address access time (tAA) and RAS to column address delay time (tRAO) specifications are added to enable high-speed page mode. RAM Write Cycle (EarILWrite, Delayed Write, Read-Modify-Write) (DT/OE high, CAS high at the falling edge of RAS) • Normal Mode Write Cycle (WE high at the falling edge of RAS) When CAS and WE are set low after RAS is set low, a write cycle is executed and 1/0 data is written at the selected addresses. When all 8 I/0s are written, WE should be high at the falling edge of RAS to distinguish normal mode from mask write mode. If WE is set low before the CAS falling edge, this cycle becomes an early write cycle and 1/0 becomes high impedance. Data is entered at the CAS falling edge. If WE is set low after the CAS falling edge, this cycle becomes a delayed write cycle. Data is input at the WE falling edge. 1/0 does not become high impedance in this cycle, so data should be entered with OE in high. If WE is set low after tcwo (min.) and tAWO (min.) after the CAS falling edge, this cycle becomes a read-modify-write cycle and enables write after read to execute in the same address cycle. In this cycle also, to avoid 1/0 contention, data should be input after reading data and setting OE high. • Mask Write Mode (WE low at the falling edge of RAS If WE is set low at the falling edge of RAS, the cycle becomes a mask write mode cycle which writes only to selected 1/0. Whether or not an 1/0 is written depends on 1/0 level (mask data) at the falling edge of RAS. Then the data is written in high 1/0 pins and masked in low ones and internal data is pre- served. This mask data is effective during the RAS cycle. So, in high-speed page mode cycle, the mask data is preserved during the page access. High-Speed Page Mode Cycle (DT/OE high, CAS high at the falling edge of RAS) High-speed page mode cycle readslwrites the data of the same row address at high speed by toggling CAS while RAS is low. Its cycle time is one third of the random readlwrite cycle and is higher than the standard page mode cycle by 70-80%. This product is based on static column mode, therefore, address access time (tM), RAS to column address delay time (tRAO), and access time from CAS precharge (tACP) are added. In one RAS cycle, 256-word memory cells of the same row address can be accessed. It is necessary to specify access frequency within tRAS max. (10 JLs). • Transfer Operation HM538121 provides the read transfer cycle, pseudo transfer cycle, and write transfer cycle as data transf~cles. These transfer cycles are set by driving DT/OE low at the falling edge of RAS. They have following functions: (1) Transfer data between row address and SAM data register (except for pseudo transfer cycle) (2) Determine direction of data transfer (a) Read transfer cycle: RAM --> SAM (b) Write transfer cycle: RAM <-- SAM (3) Determine input or output of SAM 1/0 pin (SilO) Read transfer cycle: SilO output Pseudo transfer cycle, write transfer cycle: SilO input (4) Determine first SAM address to access (SAM start address) after transferring at column address. When SAM start address is not changed, neither CAS nor address need to be set because SAM start address can be latched internally. Read Transfer Cycle (CAS high, DT/OE low, WE high at the falling edge of RAS) _This cycle becomes read transfer cycle by setting DT/OE low and WE high at the falling edge of RAS. The row address data (256 x 8 bit) determined by thi~cle is transferred synchrono~~the rising of DT/OE. After the rising edge of DT/OE, the new address data outputs from SAM start address decided by column address. This cycle can execute SAM access serially even during transfer (real time read transfer). In this case, the timing tsoo (min.) is specified between the last SAM access before transfer and DT/OE rising edge, andJsoH (min.) between the first SAM access and DT/OE rising edge (see figure 1). ~HITACHI Hitachi America, Ltd .• Hitachi Plaza' 2000 Sierra Point Pkwy' Brisbane, CA 94005-1819 • (415) 589-8300 571 HM538121JP/ZP-10112/15 - - - - - - - - - - - - - - - - - - - - - - - - - ~-------'/ \~---'/ CAS Address _ _ _ --'~'__:_--Xi--...J~'---y...;.j-- X'---------------.... SC 51/0 SAM Data Before Transfer SAM Data After Transfer Figure 1. Real Time Read Transfer $ 572 HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - HM538121JP/ZP-10/12/15 If read transfer cycle is executed, SilO becomes output state. When the previous transfer cycle is either pseudo transfer cycle or write transfer cycle and SilO is in input state, uncertain data is output after tRLZ (min.) after the RAS falling edge. Before that, input should be set high impedance to avoid data contention. Pseudo Transfer Cycle (CAS high, DT/OE low, WE low, and SE high at the falling edge of RAS) • Serial Write Cycle If previous data transfer cycle is pseudo transfer cycle or write transfer cycle, SAM port goes into write mode. In this cycle, SilO data is programmed into data register at the SC rising edge like in the serial read cycle. If SE is high, SilO data isn't input into data register. Internal pointer is incremented according to the SC rising edge, so SE high can mask data for SAM. • REFRESH Pseudo transfer cycle is available for switching SilO from output state to input state because data in RAM isn't rewritten. This cycle starts when CAS is high, DT/OE low, WE low, and SE high, at the falling edge of RAS. The output buffer in SilO becomes high impedance within tSRZ (max.) from the RAS failing edge. Data should be input to SilO later than tSID (min.) to avoid data contention. SAM access becomes enabled after tSRD (min.) after RAS becomes high. In this cycle, SAM access is inhibited during RAS low, therefore, SC should not be raised. Write Transfer Cycle (CAS high, DT/OE low, WE low, and SE low at the falling edge of RAS) Write transfer cycle can transfer a row of data input by serial write cycle to RAM. The row address of data transferred into RAM is determined by the address at the falling edge of RAS. The column address is specified as the first address to serial write after terminating this cycle. Also in this cycle, SAM access becomes enabled after tSRD (min.) after RAS becomes high. SAM access is inhibited during RAS low. In this period, SC should not be raised. • SAM PORT OPERATION • Serial Read Cycle SAM port is in read mode when the previous data transfer cycle is read transfer cycle. Access is synchronized with SC rising, and SAM data is output from SilO. If SE is set high SilO becomes high impedance and internal pointer is incremented at the SC rising edge. • RAM Refresh RAM, which is composed of dynamic Circuits, requires refresh to retain data. Refresh is performed by accessing all 512 row addresses every 8 ms. There are three refresh cycles: (1) RAS-only refresh cycle, (2) CAS-before RAS (CBR) refresh cycle, and (3) Hidden refresh cycle. Besides them, the cycles which activate RAS such as readlwrite cycles or transfer cycles can refresh the row address. Therefore, no refresh cycle is required for accessing all row addresses every 8 ms. RAS-Only Refresh Cycle: RAS-only cycle is performed by activating only RAS cycle with CAS fixed to high by inputting the row address (= refresh address) from external circuits. In this cycle, output is high-impedance and power dissipation is less than that of normal readlwrite cycles because CAS internal circuits don't operate. To distinguish this cycle from data transfer cycle, DT/OE should be high at the falling edge of RAS. CBR Refresh Cycle: CBR refresh cycle is set by activating CAS before RAS. In this cycle, refresh address need not to be input through external circuits because it is input through an internal refresh counter. In this cycle, output is in high impedance and power dissipation is lowered like in RAS-only refresh cycles because CAS circuits don't operate .. Hidden Refresh Cycle: Hidden refresl!9'cle performs refresh by reactivating RAS when DT/OE and CAS keep low in normal RAM read cycles. • SAM Refresh SAM parts (data register, shift register, selector), organized as fully static circuitry, don't require refresh. ~HITACHI Hitachi America. Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 573 HM538121 JP/ZP-10/12/15 - - - - - - - - - - - - - - - - - - - - - - - - - • ABSOLUTE MAXIMUM RATINGS Item Symbol Terminal Voltage(\) VT Rating -1.0 to +7.0 Unit V Power Supply Voltage(1) Vce PT Top, T stg -0.5 to +7.0 1.0 o to +70 -55 to + 125 W °c Power Dissipation Operating Temperature Storage Temperature NOTE: V °c I. Relative to V ss. • RECOMMENDED DC OPERATING CONDITIONS (Ta = 0 to 70°C) Parameter Supply Voltage(l) Symbol Input High Voltage(l) Input Low Voltage(l) NOTES: Min. 4.5 Vee VIH V1L 2.4 -0.5(2) Typ. Max. 5.0 - 5.5 6.5 0.8 - Unit V V V I. All voltages referenced to V 55. 2. -3.0V for pulse width,;; IOns. • DC CHARACTERISTICS (Ta = 0 to 70°C, Vee = 5V ± 10%, Vss Item Test Conditions Symbol RAM Port Operating Current ~ Icc7 Standby Current ~ SAM Port = VIH Iccs RAS-Only Refresh Current RAS Cycling ~ CAS = VIH Icc. ~ Page Mode Current IcclO CAS-Before-RAS Refresh Current ~ Icc II ~ Data Transfer Current ICCl2 t RC Min. Max. Min. Max. = VIH - 70 - 60 - 50 rnA SE = V IL , SC Cycling tscc = Min. - 120 - 100 - 80 rnA = VIH - 7 - 7 - 7 rnA SE = V IL , SC Cycling tscc = Min. - 50 - 40 - 30 rnA CAS Cycling RAS = V IL t Re Min. = VIH - 60 - 50 - 40 rnA SE = Vlt , SC Cycling tscc = Min. - 110 - 90 - 70 rnA SC, SE = Min. = VIH - 65 - 55 - 45 rnA SE = V IL, SC Cycling tscc = Min. - 115 - 95 - 75 rnA SC, SE = = VIH - 60 - 50 - 40 rnA SE = V IL , SC Cycling tscc = Min. - 110 - 90 - 70 rnA = VIH - 90 - 90 - 90 rnA SE = V IL , SC Cycling tsec = Min. - 125 - 125 - 125 rnA SC, SE RAS Cycling tRC = Min. SC, SE RAS, CAS Cycling t RC = Min. Unit Max. SC, SE RAS, CAS HM538121-10 HM538121-12 HM538121-15 Min. SC, SE RAS, CAS Cycling t RC = Min. = OV) Input Leakage Current III -10 10 -10 10 -10 10 /LA Output Leakage Current leo -10 10 -10 10 -10 10 !LA Output High Voltage VOH 10H 2.4 - 2.4 - 2.4 - V Output Low Voltage VOL IOL - 0.4 - 0.4 - 0.4 V • 574 = -2rnA = 4.2rnA HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - HM538121JPIZP-10/12/15 • CAPACITANCE (Ta = 25°C, Vee = 5V, f Parameter = IMHz, Bias: Clock, 110 = Vee, address = VSS) Symbol Min. Typ. Max. Unit Address CII - 5 pF Clocks CI2 - - 5 pF 110, SIlO CliO - - 7 pF • AC CHARACTERISTICS (Ta = 0 to 70°C, Vee = 5V ± 10%, Vss = OV) (I). (II) • Test Conditions • Input Rise and Fall Time: 5ns • Output Load: See Figures • Input Timing Reference Levels: 0.8V, 2.4V • Output Timing Reference Levels: O.4V, 2.4V +sv IOM=-2mA I/O --t---.,..---K SI/O - p - - - - 1 p - K Output Load A Output Load B *Inc1uding scope and jig. • Common Parameter Parameter Symbol HM538121-10 HM538121-12 HM538121-15 Min. Max. Min. Max. Min. Max. Unit Random Read or Write Cycle Time tRe 190 - 220 - 260 - ns RAS Precharge Time tRP 80 - 90 - 100 - ns RAS Pulse Width tRAS 100 10000 120 10000 150 10000 ns CAS Pulse Width teAS 30 10000 35 10000 40 10000 ns Row Address Setup Time tASR 0 - 0 - 0 - ns Row Address Hold Time tRAH 15 - 15 - 20 - ns Column Address Setup Time tASC 0 - 0 - 0 - ns teAH 20 - 20 - 25 - ns 70 25 85 30 no ns Column Address Hold Time RAS to CAS Delay Time tReo 25 RAS Hold Time tRSH 30 - 35 - 40 - ns CAS Hold Time teSH 100 - 120 - 150 - ns teRP 10 - 10 - 10 - ns 50 3 50 3 50 ns CAS to RAS Precharge Time Transition Time (Rise to Fall) tT 3 Refresh Period tREF - 8 - 8 - 8 ms DT to RAS Setup Time tOTS 0 0 - 0 - ns DT to RAS Hold Time tOTH 15 - 15 - 20 - ns Data-In to OE Delay Time tozo 0 0 - 0 - ns Data-In to CAS Delay Time toze 0 0 - 0 - ns • - Note 5,6 8 HITACHI Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 575 HM538121JP/ZP-10/12115 - - - - - - - - - - - - - - - - - - - - - - - - • Read Cycle (RAM), Page Mode Read Cycle Parameter Symbol HM538121-10 Max. Min. 100 HM538121-12 Min. Max. 120 HM538121-15 Min. Max. Unit Note - 150 ns 2,3 30 - 35 - 40 ns 3,5 30 - 35 - 40 ns 3 45 - 55 - 70 ns 3,6 0 25 0 30 0 40 ns 7 toFF2 0 25 0 30 0 40 ns 7 Access Time From RAS tRAC Access Time From CAS tCAc Access Time From OE Address Access Time toAC tAA - Output Buffer Thrn Off Delay Referenced to CAS tOFFI Output Buffer Thrn Off Delay Referenced to OE Read Command Setup Time tRCS 0 - 0 - ns tRCH 0 - 0 Read Command Hold Time 0 - 0 - ns 12 Read Command Hold Time Referenced to RAS tRRH 10 - 10 - 10 - ns 12 tRAO tpc 20 55 20 65 25 80 ns 5,6 55 - 65 80 ns 20 - - 75 ns RAS to Column Address Delay Time CAS Precharge Time tcp 10 - 15 - Access Time From CAS Precharge tAcp - 50 - 60 Page Mode Cycle Time ns • Write Cycle (RAM), Page Mode Write Cycle Parameter Write Command Setup Time Write Command Hold Time Write Command Pulse Width Write Command to RAS Lead Time Write Command to CAS Lead Time Data-In Setup Time Data-In Hold Time Symbol HM538121-10 Min. Max. HM538121-12 Min. Max. 35 - 35 twcs 0 - 0 tWCH twp 25 - 25 15 tRWL 30 tcWL tos 30 0 - tOH 25 - HM538121-15 Min. Max. 0 30 Unit Note ns 9 - ns 25 - ns 40 - ns - 40 ns 0 - 0 25 30 0 - 15 - 20 0 - 0 15 - 20 - 20 - ns 20 ns 10 ns 10 WE to RAS Setup Time tws 0 WE to RAS Hold Time tWH 15 Mask Data to RAS Setup Time tMs 0 Mask Data to RAS Hold Time tMH 15 - OE Hold Time Referenced to WE toEH 10 - 15 - Page Mode Cycle Time tpc 55 - 80 - ns tcp 10 - 65 CAS Precharge Time 15 - 20 - ns 0 .HITACHI 576 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy. Brisbane, CA 94005-1819 • (415) 589-8300 ns ns ns ns -------------------------HM538121JP/ZP-10/12/15 • Read-Modify-Write Cycle Parameter Read Modify Write Cycle TIme RAS Pulse Width CAS to WE Delay Column Address to WE Delay OE to Data-In Delay TIme Access time from RAS Access Time from CAS Access TIme from OE Address Access Time RAS to Column Address Delay Output Buffer 'fum-Off Delay Referenced to OE Read Command Setup Time Write Command to RAS Lead Time Write Command to CAS Lead Time Write Command Pulse Width Data-In Setup TIme Data-In Hold TIme WE to RAS Setup Time WE to RAS Hold Time Mask Data to RAS Setup TIme Mask Data to RAS Hold Time OE Hold Time Referenced to WE Symbol tRwC tRWS tcwo tAWO tooo tRAC HM538121-10 Min. Max. 255 165 10000 65 80 25 - - tcAC 195 75 95 30 10000 100 30 20 120 35 35 55 65 0 30 0 35 35 20 0 25 0 15 0 15 15 tAA tRAO 20 30 45 55 toFF2 0 25 tRCS 0 30 30 15 0 25 - toAc tRwL tcwL twp tos tOH 0 15 0 15 10 tws tWH tMS tMH toEH HM538121-12 Min. Max. 295 - - - - - - - HM538121-15 Min. Max. 350 240 10000 90 120 40 150 40 Unit ns ns ns ns ns - 40 25 70 80 ns ns ns ns ns 0 40 ns - 0 - - 40 - - 40 25 0 30 0 20 0 20 20 - ns ns ns ns ns ns - - - - - - - Note 9 9 2,3 3,5 3 3,6 5,6 10 10 ns ns ns ns ns • Refresh Cycle Parameter Symbol CAS Setup Time (CAS-Before-RAS Refresh) CAS Hold Time (CAS-Before-RAS Refresh) tcSR tcHR tRPC RAS Precharge to CAS Hold Time • HM538121-10 HM538121-12 HM538121-15 Unit Note Min. Max. Min. Max. Min. Max. 10 10 ns 10 20 25 30 ns 10 10 ns 10 - HITACHI Hitachi America, Ltd .• Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane. CA 94005-1819 • (415) 589-8300 577 HM538121JP/ZP-10/12115 - - - - - - - - - - - - - - - - - - - - - - - - • 'D'ansfer Cycle Parameter Symbol WE to RAS Setup Time tws WE to RAS Hold Time SE to RAS Setup Time tWH tES HM538121-1O HM538121-12 HM538121-15 Unit Note Min. Max. Min. Max. Min. Max. 0 ns 0 0 20 ns 15 15 ns 0 0 0 - - ns - ns - ns - ns - ns - 10 ns - 10 10 75 - ns ns SE to RAS Hold Time tEH 15 - 15 - 20 RAS to SC Delay Time tSRD 25 - 30 - 35 SC to RAS Setup Time DT Hold Time from RAS tSRS - 40 TBD - tRDH 30 TBD - 45 TBD DT Hold Time from CAS Last SC to DT Delay Time tcDH tSDD 20 - 30 - 45 5 5 tSOH TBD tOTL 50 50 - 10 TBD - tOTHH 20 - 25 - tDTP tSID 30 35 - 50 - 30 40 60 - 75 tSZR - 10 - 10 tSRZ tRLZ 10 50 10 60 5 10 First SC to DT Hold Time DT to RAS Lead Time DT Hold Time Referenced to RAS High DT Precharge Time Serial Data Input Delay Time from RAS Serial Data Input to RAS Delay Time Serial Output Buffer Thm-Off Delay from RAS TBD 50 ns ns ns ns ns ns 7 tscc 30 - 40 - 60 - ns Access Time from SC tSCA - 30 - 40 - 50 ns 4 Serial Data Out Hold Time SC Pulse Width 7 10 - - - 4 ns 10 - 10 10 - ns Serial Data-In Setup Time tSIS 0 - 0 - 7 10 ns - 7 10 SC Precharge Width tSOH tsc tscp 0 - ns Serial Data-In Hold Time tSIH 15 - 20 - 25 - ns RAS to Sout (Low Z) Delay Time Serial Clock Cycle Time • Serial Read Cycle Parameter Symbol Serial Clock Cycle Time tscc Access Time from SC tSCA tSEA Access Time from SE Serial Data-Out Hold Time SC Pulse Width SC Precharge Width Serial Output Buffer Thm-Off Delay from SE tSOH tsc tscp tSEZ HM538121-10 HM538121-12 HM538121-15 Unit Min. Max. Min. Max. Min. Max. ns 30 40 60 40 30 50 ns 30 ns 25 40 7 10 10 0 - 7 - 7 - ns - 10 - 10 - ns - 10 0 - 10 - ns 25 0 30 ns 25 _HITACHI 578 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 Note 4 4 4 7 - - - - - - - - - - - - - - - - - - - - - - - - - HM538121JP/ZP-10/12/15 • Serial Write Cycle Parameter HM538121-10 HM538121-12 HM538121-15 Min. Max. Min. Max. Min. Max. tscc 30 40 - 60 - ns tsc 10 10 - 10 - ns tscp 10 10 10 - ns 0 - ns Symbol Unit tsls 0 Serial Data-In Hold Time tSIH 15 - 20 - 25 - ns Serial Write Enable Setup Time tsws 0 - 0 - 0 ns Serial Write Enable Hold Time tSWH 30 - 35 - 50 Serial Write Disable Setup Time tSWIS 0 - 0 - 0 - Serial Clock Cycle Time SC Pulse Width SC Precharge Width Serial Data-In Setup Time Serial Write Disable Hold Time NOTES: I. 2. 3. 4. 5. 6. 7. 8. 9. 10. II. 12. 0 Note ns ns 30 35 50 ns tSWIH AC measurements assume tr=5ns. Assumes that tRCD s tRCD (max) and tRAD S tRAD (max). IftRCD or tRAD is greater than the maximum recommended value shown in this table, tRAC exceeds the value shown. Measured with a load circuit equivalent to 2 TTL loads and 100pF. Measured with a load circuit equivalent to 2 TIL loads and 5OpF. When tRCD 2: tRCD (max) and tRAD S tRAD (max), access time is specified by tCAC. When tRCD S tRCD (max) and tRAD 2: tRAD (max), access time is specified by tAA. toFF (max) is defined as the time at which the output achieves the open circuit condition (VOH - 200mV, VOL + 200mV). VIH (min) and VIL (max) are reference levels for measuring timing of input signals. Transition times are measured between VIH and VIL. When twcs 2: twcs (min), the cycle is an early write cycle, and 110 pins remain in an open circuit (high impedance) condition. When tAWD 2: tAWD (min) and tCWD 2: !cWD (min), the cycle is a read-modify-write cycle; the data of the selected address is read out from a data output pin and input data is written into the selected address. In this case, impedance on 110 pins is controlled by OE. These parameters are referenced to CAS falling edge in early write cycles or to WE falling edge in delayed write or read-modify-write cycles. After power-up, pause for 100 fLS or more and execute at least 8 initialization cycles (normal memory cycles or refresh cycles), then start operation. If either tRCH or tRRH is satisfied, operation is guaranteed. $ HITACHI Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 579 HM538121JPIZP-10/12/15 - - - - - - - - - - - - - - - - - - - - - - - - • TIMING WAVEFORMS • Read Cycle t. Address t/O (Output) I/O (Input) ~ /,l : Oon't car. • Early Write Cycle Addr••• I/O (Input) I/O (Output) ~ : Do-:,'t care. NOTE: 580 I. When WE is high level, all the data on 1I0s can be written into the memory cell. When WE is low level, the data on Ii0s are not written except for the case that the 1/0 is high at the falling edge of RAS. o HITACHI HHachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - HM538121JP/ZP-10/12115 • Delayed Write Cycle t •• Address I/O (Input) I/O High-Z (OutPut)----------.:.:.;:;~------------- E22:I : Don't care. NOTE: I. When WE is high level, all the data on lias can be written into the memory cell. When WE is low level, the data on lias are not written except for the case that the 1/0 is high at the falling edge of RAS. • Read-Modlfy-Write Cycle Address I/O (Input) I/O (Output) NOTE: I. When WE is high level, all the data on lias can be written into the memory cell. When WE is low level, the data on lias are not written except for the case that the 1/0 is high at the falling edge of RAS. _HITACHI Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 581 HM538121JP/ZP-10/12/15 - - - - - - - - - - - - - - - - - - - - - - - - • Page Mode Read Cycle Address I/O (Output) I/O (Input) tzZJ : Oon't care. • Page Mode Write Cycle (Early Write) t.c I/O (Input) I/O (Output) NOTE: 1. When WE is high level, al1 the data on 110s can be written into the memory cell. When WE 1I0s are not written except for the case that the I/O is high at the fal1ing edge of RAS. IS low level, the data on ~HITACHI 582 Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589·8300 - - - - - - - - - - - - - - - - - - - - - - - - - HM538121JP/ZP·10/12/15 • Page Mode Write Cycle (Delayed Write) Address I/O (Input) I/O (Output) NOTE: I. When WE is high level, all the data on 1I0s can be written into the memory cell. When WE is low level, the data on 1I0s are not written except for the case that the 110 is high at the falling edge of RAS. • RAS·Only Refresh Cycle Address I/O (Output) I/O (Input) E22l : Don't care. • HITACHI Hitachi America, Ltd, • Hitachi Plaza. 2000 Sierra Point Pkwy, • Brisbane, CA 94005-1819. (415) 589-8300 583 HM538121 JP/ZP-10J12/15 - - - - - - - - - - - - - - - - - - - - - - - • CAS-Before-RAS Refresh Cycle Address I/lllfllT!//IflIIT//~////1 IJ!TI/TII//O/////ZZZZTIZZZ I/O (Input) IZ//IJOIIlOOZOZZOIII/ High-Z I/O (Output) 'iIIZlIIIIZlIIIIIIIIIl; ~ : Don't care. • Hidden Refresh Cycle too tRe Address I/O (Output) I/O (Input) ~ : Don't care. ~HITACHI 584 Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300 - - - - - - - - - - - - - - - - - - - - - - - - - HM538121JP/ZP·10/12/15 • Read Transfer Cycle (1) (1), (2) '" I/O (Output) I/O 7,,4,rrrrT?"7"rf7=i;::;~=r.;=;!)""-hrrrrTT-r.rrT?"7""T" (Input) sc SI/O (~~~)~·~~~,-~U~W1~~J~~~:-=~~{~J~~~~~~ SI/O (Input) ~ : Don't care NOTES: I. When the previous data transfer cycle is a read transfer cycle, it is defined as read transfer cycle (1). 2. SE is in low level. (When SE is high, SIlO becomes high impedance). 3. CAS and SAM start address don't need to be specified every cycle if SAM start address is not changed. • Read Transfer Cycle (2) (1), (2) . ~ CAS' , *) '" ... I .... te.. Address WE' I/O
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37 Create Date : 2013:08:24 10:10:05-08:00 Modify Date : 2013:08:24 23:34:56-07:00 Metadata Date : 2013:08:24 23:34:56-07:00 Producer : Adobe Acrobat 9.55 Paper Capture Plug-in Format : application/pdf Document ID : uuid:c40d3745-052c-5546-bb26-3ffcaf821d6b Instance ID : uuid:ae0ed487-d065-d443-b355-61903eef9d3b Page Layout : SinglePage Page Mode : UseNone Page Count : 1330EXIF Metadata provided by EXIF.tools