1990_Samsung_Linear_IC_Vol_1_Audio_CDP 1990 Samsung Linear IC Vol 1 Audio CDP

User Manual: 1990_Samsung_Linear_IC_Vol_1_Audio_CDP

Open the PDF directly: View PDF PDF.
Page Count: 705

Download1990_Samsung_Linear_IC_Vol_1_Audio_CDP 1990 Samsung Linear IC Vol 1 Audio CDP
Open PDF In BrowserView PDF
- ----- ---------...------- -- - - --------~~§=~~= =~====
-

-

-

Linear
Vol. 1,

Data Book

Ie
1990

,

I

-Audio

-cop

-Toy Radio Control
Actuator

Copyright 1990 by Samsung
All rights reserved. No part of this publication may ut:: reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photo copying,
recording, or otherwise, without the prior written permission of Samsung.
The information contained herein is subject to change without notice. Samsung
assumes no responsibility for the use of any circuitry other than circuitry embodied in
a Samsung product.
No other circuit patent licenses are implied.

SAMSUNG
DATA BOOK LIST
I. Semiconductor Product Guide

II. Transistor Data Book
Vol. 1: Small Signal TR
Vol. 2: Bipolar Power TR
. Vol. 3: TR Pellet

III. Linear IC Data Book
Vol.
Vol.
Vol.
Vol.
Vol.

1:
2:
3:
4:
5:

Audio/CDP/Toy
Video
Telecom
Industrial
Data Converters

IV. CMOS Consumer IC Data Book
V. High Speed CMOS Logic Data Book
VI. MOS Memory Data Book
VII. SFET Data Book
VIII. MPR Data Book
IX. CPL Data Book
X. Dot Matrix Data Book

TABLE OF CONTENTS
I.

QUALITY and RELIABI LlTY ......................................................

II.

PRODUCT GUIDE

11

1. Function Guide ...................................................................................... 43
2. Cross Reference Guide ........................................................................ 49
3. Ordering Information ............................................................................. 51

III.

AUDIO ICs ........................................................................................... 53

IV.

CDP ICs ............................................................................................... 477

V.

TOY RADIO CONTROL ACTUATORS .............................. 593

VI.

PACKAGE DIMENSIONS .......................................................... 675

VII.

SALES OFFICES ............................................................................ 689

Audio Application
Device
KA1222
KA2201
KA2201B
KA2206
KA22062
KA22063
KA22065
KA2209
KA221 0
KA22101
KA22102
KA22103
KA2211
KA2212
KA2213
KA22130
KA22131
KA22134
KA22135
KA22136
KA2214
KA2220
KA2221
KA22211
KA2223
KA22231
KA22232
KA22233
KA22234
KA22235
KA2224
KA22241
KA22242
KA2225
KA22261
KA2228
KA22291
KA2230
KA2231
KA22421
KA22426
KA22427
KA22429
KA2243
KA2244
KA22441

Function
Dual Low Noise Equalizer Amplifier
1.2W Audio Power Amplifier
0.5W Audio Power Amplifier
2.3W Dual Audio Power Amplifier
4.5W Dual Power Amplifier
4.5W Dual Power Amplifier
4.6W Dual Power Amplifier
Dual Low Voltage Power Amplifier
5.5W Dual Power Amplifier
23W Power Amplifier
15W Dual Power Amplifier
19W Dual Power Amplifier
5.8W Dual Power Amplifier
0.5W Audio Power Amplifier
One-Chip Tape Recorder System
One-Chip Tape Recorder System
Dual Pre-Power Amplifier for Auto Reverse
Dual Pre-Power Amplifier with DC Volume Control
Dual Pre-Power Amplifier and DC Motor Speed Controller
Dual Pre-Power Amplifier, Volume Controller and
DC Motor Speed Controll~
1W Dual Power Amplifier
Equalizer Amplifier with ALC
Dual Low Noise Equalizer Amplifier
Dual Low Noise Equalizer Amplifier
5-Band Graphic Equalizer Amplifier
5-Band Dual Graphic Equalizer Amplifier
3-Band Dual Graphic Equalizer Amplifier
3-Band Dual Graphic Equalizer Amplifier
5-Band Dual Graphic Equalizer Amplifier
5-Band Graphic Equalizer Amplifier
Dual Equalizer Amplifier with ALC
Dual Equalizer Amplifier with ALC
Dual Equalizer Pre-Amplifier with ALC
Dual Pre-Amplifier for 3V Using
Dual Equalizer Amplifier with Ree AMP
Dual Equalizer Amplifier System
Quad Equalizer Amplifier for Double Cassette
9-Program Music Selector
Audio Level Sensor
AM 1-Chip Radio
AM/FM One-Chip Radio
AM/FM 1-Chip Radio
FM One-Chip Radio
AM/FM IF System
FM IF System for Car Radio
FM I F System for Car Stereo

Package

Page

8 DIP
8 DIP
8 DIP
12 DIP IF
12 SIP HIS
12 SIP HIS
12 SIP HIS
8 DIP
12 SIP HIS
12 ZIP HIS
17 ZIP HIS
17 ZIP HIS
12 SIP HIS
9 SIP
14 DIP HIS
16 DIP
24 SOP
16 DIP
22 SDIP

55
59
63
66
74
81
87
90
93
98
105
111
117
122
127
134
138
145
150

28 SDIP/28 SOP

155

14 DIP HIS
9 SIP
8 SIP
8 SIP
16 DIP
28 SOP
20 SOP
22 DIP
24 ZSIP
18 ZIP
14 DIP
9 SIP
10 SIP
16 DIP/16 SOP
16 DIP
21 ZSIP
24 SDIP
22 DIP
9 SIP
16 DIP/16 SOP
28 DIP/28 SOP
16 DIP
16 SOP
16 DIP
9 DIP
16 ZSIP

159
164
169
173
177
183
187
191
195
199
204
211
216
224
229
235
245
250
257
262
272
276
285
290
296
300

Audio Application (Continued)
Device
KA2245
KA22461
KA2247
KA22471
KA2248
KA2249
KA22495
KA22496
KA2261
KA2262
KA2263
KA2264
KA2265
KA2266
KA2271
KA22711
KA22712
KA2272
KA2281
KA2283
KA2284/85
KA2286/87
KA2288
KA2292
KA2293
KA2401
KA2402
KA2404
KA2407
KA7226
KA8602
LM386

Function
FM IF System for Car Radio
Electronic Tuning AM Radio Receiver for Car Stereo
FM IF/AM Tuner System
FM IF/AM Tuner System
3V FM IF/AM Tuner System
FM Front End Portable Radio
FM Front End for FM Band
FM Front End for TV Band
FM Stereo Multiplex Decoder
FM Stereo Multiplex Decoder for Car Stereo
FM Stereo Multiplex Decoder
FM Stereo Multiplex Decoder
Vco Non-Adjusting FM Stereo Multiplex Decoder
MPX for Car Stereo
Dolby B-Type Noise Reduction Processor
Dolby B-Type Noise Reduction Processor
Dolby B-Type Noise Reduction Processor
FM Noise Canceller
5-Dot Dual Led Level Meter Driver
5-Dot Dual Led Level Meter Driver
5-Dot Led Level Meter Driver
5-Dot Led Linear Level Meter Driver
7-Dot Led Level Meter Driver
AM/FM Tuner+ MPX
AM/FM Tuner+ MPX
DC Motor Speed Controller
Low Voltage DC Motor Speed Controller
DC Motor Speed Controller
DC Motor Speed Controller
Dual Equalizer Amplifier with ALC
Low Voltage Audio Amplifier
Low Voltage Audio Power Amplifier

Package

Page

7 SIP
19 ZSIP
16 DIP
16 DIP
16 DIP/20 SOP
7 SIP/8 SOP
9 SIP/14 SOP
9 SIP
16 DIP
16 ZSIP
9 SIP
9 SIP/16 SOP
16 DIP
16 ZIP
16 DIP
16 DIP
16 DIP
16 ZSIP/16 SOP
16 DIP
16 DIP
9 SIP
9 SIP
16 DIP
24 SDIP
24SDIP
8 DIP
8 DIP
TO-92L
TO-126
14 DIP
8 DIP/8 SOP
8 DIP/8 SOP

308
312
317
322
327
332
336
344
352
357
367
371
376
382
386
393
400
407
413
416
420
423
426
429
433
437
443
450
456
460
466
473

COP Application
Device
KA9201
KS5990
KS5991
KA8309
KA9255
KA9256
KA9257
KDA0316
KS56C820

Function
RF and for CDP
Digital Signal Processor
Digital Signal Processor
Servo Signal Processor
PWM Motor Driver
Dual Power Operational Amplifier
Dual Power Operational Amplifier
16-bit D/A Converter for CDP
4-bit Microcontroller

30
80
80
48
22
10
12
20
80

Package

Page

SOP
FOP
FOP
FOP
SOP
SIP HIS
SIP HIS
DIPf20 SOP
FOP

551
449
508
537
568
573
575
579
588

Toy Application
I

Device
KA2303
KA2304
KA2305A
KA2306A
KA2309
KA2310
KA2311
KA2312
KA2314
KA2303
KA2309
KA2311
KA2312

Function
Toy Radio Control
Toy Radio Control
Toy Radio Control
Toy Radio Control
Toy Radio Control
Toy Radio Control
Toy Radio Control
Toy Radio Control
Toy Radio Control
Application Note
Application Note
Application Note
Application Note

Actuator
Actuator
Actuator
Actuator
Actuator
Actuator
Actuator
Actuator
Actuator

Package

(Rx)
(Rx)
(Rx)
(Tx)
(Rx)
(Tx)
(Tx)

9 SIP
9 SIP
12 SIP-SH
14 DIP
16 DIP
9 SIP
16 DIP
9 SIP
9 SIP

Page
595
601
603
609
614
622
625
630
633
638
645
655
666

· . .-

.

QUALITY & RELIABILITY

,

\

~'Z',

...

l'J (;
~'
1
;

j

1

QUALITY and RELIABILITY
1. INTRODUCTION
SEC has been providing a wide variety of semiconductor products to the world since 1974. Since this time, extensive
in-sights have been gained to create methods which most effectively result in reliable products. The worldwide customers
of SEC have encouraged and helped develop the existing manufacturing and quality philosophy that is a way of life for
SEC management and it's employees. This philosophy dictates the need for a zero defect environment through out SEC's
processes leading ultimately to total customer satisfaction. By developing and using methods of Statistical Process Control and Statistical Quality Control, SEC has made great strides in improving product quality & reliability. The direct result
of these improvements has been reduced product DPM (Defects Per Million) to levels below customer requirements.
SEC's repeated ability to exceed requirements for customer's "Dock to Stock" programs and our commitment to all
our customers needs, has _made SEC the company to watch as we move ahead into the 1990's and beyond.
SEC's linear IC products are among the most reliable in the industry. SEC has always made a commitment to achieve
the highest possible quality, reliability, and customer satisfaction with its products. Extensive qualification, monitor and
outgoing programs are used to scrutinize product quality and reliability. Stringent controls are applied to every wafer
fabrication and assembly lot to achieve reproducibility, and therefore maintain product reliability.
In this chapter, the quality and reliability programs established at SEC will be discussed. In addition, a description of
reliability theory, reliability tests and various support efforts provides a broad framework from which to comprehend SEC
quality and reliability.
To better understand the Quality Department's role in product development and manufacturing, a detailed diagram is
listed below. As can be noted, Quality Engineering is involved in all phases, save that of initial product planning.
STEP

SALES

I M~RKET
I
I

CI
Z

Z

Z
 10%
uncovered surface
Ta = 3SoC, S% NaCI
24HRS

c8SAMSUNG
Electronics

Note

For SmallSignal Device

For
PWR TR,
PWR IC

YES

-

MIL-STD-883
1011

MIL-STD-883
1009A

17

QUALITY and RELIABILITY
New Products Qualification Test Item (Continued)
No.

Test Item

Test Condition

Part
L-IC

Discrete

Reference
Method

Note

15

Mechanical
Shock

1500G,0.5ms
3 Times Each direction
of X, Y and Z Axis

YES

YES

MIL-STD-750
2016

For
Hermetic

16

Vibration

20G, 3 Axis
f =20 to 2000 cps
for 4 min, 4 cycles

YES

YES

MIL-STD-883
2007

For
Hermetic

17

Constant
Acceleration

2000G
X,Y,Z Axis
1min for each Axis

YES

YES

MIL-STD-883
2001

For
Hermetic

YES

YES

MIL-STD-883
3015

YES

-

-

YES

YES

18

I---

ESD
(Human Body
Model)

19

Latch-up Test

20

Fine Leak
Gross Leak

R= 1.5kO
C = 100pF
5 Discharge
V~ ±1000V

Helium
Fluoro Carbon

MIL-STD-883
1014

For
CMOS
For
Hermetic

Note) • SOT-23, TO-92S PKG: PCT-48HR

c8SAMSUNG
Electronics

18

QUALITY and RELIABILITY

3) PACKAGE DEVELOPMENT QUALIFICATION
Purpose: Whenever a new package type is developed, it must meet the specifications for devices that have been qualified
and have maintained certain specified quality levels before the new package type may be applied to production.
Remarks

Contents

Flow

Beginning of PKG development

Select representative device for product group
(proceed at least 2 lots)
•
•
•
•

Ass'y Qual

Reliability Qual

Approvement of Qual

•
•
•
•

Push Test
Die Thick
Bond Pull
Lead Torque

•
•
•
•

MPT
Dimension
X-Ray
Solderability
• Vibration
HTRB (TR)
• PCT
HOPL (IC)
• MIS
• LTS
• Const
TIC
• S/H
New PKG Development will be approved
when Rei qual is good for 500HR.

--

Package Sub-Assembly Qualification Test Items
No.

1

Test Item
High Temperature
Reverse Bias (HTRB)

Package

Test Condition

Hermetic

Ta=Tj(max)
VeB = 0.8 x VCBO
500HRS

YES

YES

For
Discrete

Ta = Topr(max)
Vce = Vee(mat<)
Static, Dynamic, 500HRS

YES

YES

For IC

- 65°C:;=25°C:;= 150°C
10min, 5min, 10min
200 CYCLES

YES

YES

2

High Temperature
Operating Life (HOPL)

3

Temperature Cycle
(TIC)

4

Pressure Cooker Test
(PCT)

Ta= 121 OCt 2°C
RH = 100%, 15PSIG
168HRS

YES

5

Thermal Shock (TIS)

-65°C:;=150°C (Liquid)
5min, < 10sec, 5min
200 CYCLES

YES

YES

6

Solder Heat Resistance
(S/H)

260°C±5°C
10± 1 sec
Once without Flux

YES

YES

7

Vibration (VariableFrequency)

8

Mechanical Shock (MIS)

9

Constant Acceleration

c8SAMSUNG
Electronics

Notes

Plastic

-

100-2000-100Hz
20G, 5min, 5Times, X, Y, Z

-

YES

For Discrete,
others as
applicable

1500G,0.5ms
3 Times, X, Y, Z

-

YES

same as above

20000G
X, Y, Z Axis
1 min for each Axis

-

YES

same as above

19

•

QUALITY and RELIABILITY

4) CHANGE QUALIFICATIONS:
Purpose: To apply changes to production processes and designs by evaluating the quality levels for those processes
and designs of devices in production.
Change

Classification

Change of more than 1EA MASK for the product in production.

Design
Ass'y

• DIA
• WIB

• Coating

• Mold

Process
Diffusion

• Diffusion/Photo/Etch, etc.
• Metalization
• Passivation

Procedure: Issuance of EIN for the change ..... Review of initial characteristics·~ Reliability test ..... Issuance of ECN
(register of specification) ..... Application for production. Evaluation level: LTPD 10% (1/2)

2.2 MONITOR PROGRAM
1) ON GOING PROCESS CONTROL
All parameters of each process are controlled by SPC (Statistical Process Control). All resultant SPC data is gathered
by computers and recorded automatically. Trends of each parameter are plotted on control charts by the computer and
corrective actions are immediately taken whenever a parameter goes "out-of-control" beyond the control limits.
Whenever a parameter goes "out-of-control" in a process, engineers involved with that particular process have meetings
to decide the disposition of those lots that were effected by the out-of-control process and corrective actions are implemented. In the case of critical defects, all lots are scrapped by MRB (Material Review Board).
As the key item of ongoing process control, Cp or Cpk value is controlled by computer for each process. The UCL and
LCL for each process is then determined by the computer generated Cp or Cpk value. Cp or Cpk values are continually'
upgraded to insure the stabilization of process and a alP (quality improvement plan) is made out to drive defects down
to zero.
Process capabilities of each process are totaled and analyzed and those results of analysis are reflected on the alP.
The stabilization and maximization of process capabilities are driven by SPC.

2) PRODUCT RELIABILITY MONITOR
The reliabilitY monitor program begins where the qualification program ends, at the start-up of limited production. Everything
that is subject to qualification is considered subject to the monitor program. Generally, the product to be used for reliabili'ty
monitors is gathered from each fab lot each month, where the product selected is representative of:
1)
2)
3)
4)

each
each
each
each

fab process technology
generic product type
package technology
subassembly plant

The product is shipped directly to the appropriate a & R group, which puts the product through a series of electrical,
mechanical, thermal, and environmental tests that usually are identical to those used initially for qualifying the product.
Most tests are of short duration, but some may extend out to thousands of hours. Each month the test results are evaluated
and problems, should they exist, identified.
Each monitor failure is analyzed. If a problem is detected where the failure rate is greater than that considered acceptable, or a reliability problem is suspected, a Material Review Board (MRB) is called. This meeting is attended byappropriate a & R personnel, scheduling personnel, engineering, and any other affected group.
This group reviews the data, decides on disposition of the affected material, decides on appropriate corrective action,
and baSically controls the problem or issue until it is satisfactorily resolved.

c8~SUNG

20

QUALITY and RELIABILITY

3) FINAL QUALITY ASSURANCE PROGRAM
After the completion of the entire manufacturing process a sample of each lot is pulled and the data sheet verification
test is repeated. This final verification objective is to ensure that test system to test system variations are not compromising the quality, and that inadvertent system or handling problems have not occurred.

4) ENVIRONMENT MONITOR
•
-

:J-

Instruments
F.M.S #1 (HIAC/ROYCO System 1 Set)
F.M.S #2 (P.M.S System 1 Set)
Control Particle Monitoring System (2 Set)
Portable Particle Counter, Sensors

On line monitoring system
(Central control room)

• Block Diagram

PATROL INSPECTION

PRODUCT AREA (CLEAN ROOM CLASS 1 -100)

c8SAMSUNG
Electronics

21

•

QUALITY and RELIABILITY
• Environment Monitor
Frequency

Item

5 min
5 min
5 min
5 min
5 min
5 min
5 min
All HEPAs/1 room/Day
Weekly
Monthly

1. Particle (Air, 0-1 Water)
2. Temperature, Relative Humidity
3. 0.1 Resistivity
4. Differential Pressure
5. HEPA Air Velocity
Gas (H2' O2, N2, Air) Dew Point
Gas Pressure
HEPA Filter Particle
0-1 Bacteria Main Lot
0-1 Bacteria Using Lot

6.
7.
8.
9.
10.

Corrective Action Requirement

CENTRAL ENVIRONMENTAL CONTROL

<$>
NO

OUT OF SPEC.

o

c8SAMSUNG
Electronics

NO

22

QUALITY and RELIABILITY

2.3 QUALITY CONFORMANCE PROGRAM
1) DESCRIPTION
SEC has established a comprehensive reliability program to monitor and ensure the ongoing reliability of the
Linear IC family. This program involves not only reliability data collection and analysis on existing parts, but also
rigorous in-line quality controls for all products.
Listed below are details of tests performed to ensure that manufactured product continues to meet SEC's stringent
quality standards. In line quality controls are reviewed extensively in later sections.
The tests run by the quality department are accelerated tests, serving to model "real world" applications through
boosted temperature, voltage, and/or humidities. Accelerated conditions are used to derive device knowledge through
means quicker than that of typical application situations. These accelerated conditions are then used to assess
differing failure rate mechanisms that correlate directly with ambient conditions. Following are summaries of
various stresses (and their conditions) run by SEC on Linear IC products.

2) HIGH TEMPERATURE OPERATING LIFE TEST (HOPL)
(Tj =125°C, Vee =Vee max, static)
High temperature operating life test is performed to measure actual field reliability. Life tests of 1000HR to 2000HR
durations are used to accelerate failure mechanisms by operating the device at an elevated ambient temperature
(125°C). Data obtained from this test are used to predict product infant mortality, early life, and random failure
rates. Data are translated to standard operating temperatures via failure analysis to determine the activation
energy of each of the observed failures, using the Arrhenius relationship as previously discussed.

3) WET HIGH TEMPERATURE OPERATING LIFE TEST (WHOPL)
(Ta =85°C, R.H. =85%, Vee =Vee opt, static)
Wet high temperature operating life test is performed to evaluate the moisture resistance characteristics of plastic
encapsulated components. Long time testing is performed under static bias conditions at 85°C/85 percent relative
humidity with nominal voltages. To maximize metal corrosion, the biasing configuration utilizes low power levels.

4) INTERMITTENT OPERATING LIFE (IOPL)
(Pmax, 25°C, 2min on/2 min off)
This test is normally applied to scrutinize die bond thermal fatigue. A stressed device undergoes an "ON" cycle,
where there is thermal heating due to power dissipation, and an "OFF" cycle, where there is thermal cooling due
to lack of inputted power. Die attach (between die and package) and bond attach (between wire and die) are the
critical areas of concern.

5) HIGH TEMPERATURE STORAGE TEST (HTS)
(Ta= 125°C, UNBIASED)
High temperature storage is a test in which devices are subjected to elevated temperatures with no applied bias.
The test is used to detect mechanical instabilities such as bond integrity, and process wearout mechanisms.

6) PRESSURE COOKER TEST (PCT)
(121°C, 15PSIG, 100% R.H., UNBIASED)
The pressure cooker test checks for resistance to moisture penetration. A highly pressurized vessel is used to
force water (thereby promoting corrosion) into packaged devices located within the vessel.

7) TEMPERATURE CYCLING (TIC)
(- 65°C to + 150°C, AIR, UNBIASED)
This stess uses a chamber with alternating temperatures of - 65°C and + 150°C (air ambient) to thermally cycle
devices within it. No bias is applied. The 'cycling checks for mechanical integrity of the packaged device, in
particular bond wires and die attach, along with metal/polysilicon microcracks.

8) THERMAL SHOCK (TIS)
(- 65°C to + 150°C, LIQUID, UNBIASED)
This stress uses a chamber with alternating temperatures of - 65°C to + 150°C (liquid ambient) to thermally cycle
devices within it. No bias is applied. The cycling is very rapid, and primarily checks for die/package compatibility.

qsSAMSUNG
Electronics

23

•

QUALITY and RELIABILITY
9) RESISTANCE TO SOLDER HEAT
(UNBIASED, 260°C, 10 sec)
Solder Heat Resistance is performed to establish that devices can withstand the thermal effects of solder dip,
soldering iron, or solder wave operations.

10) MECHANICAL SHOCK
(UNBIASED, 15009, Pulse = 0.5msec)
This test determines the suitability of a device to be used in equipment where mechanical "shocks" may occur.
Such shocks result from sudden or abrupt changes produced by rough (non-standard) handling, transportation,
or field operations.

11) VARIABLE FREQUENCY VIBRATION
(UNBIASED, Range = 100 to 2000Hz)
Variable Frequency Vibration is done to model the effects of differential vibration in the specified range. Die attach
and bonding integrity are particularly stressed, testing the mechanical soundness of device packaging.

12) CONSTANT ACCELERATION
(UNBIASED, 10kg to 20kg)
This is an accelerated test designed to indicate types or modes of structural and mechanical weaknesses not
necessarily detectable in Mechanical Shock and Variable Frequency Vibration stressing.

13) RELATIVE STRESS COMPARISONS
Many stresses are run at SEC on many different devices. Through both theoretical and actual results, it was
clearly determined which stresses were most effective. Also established were the stresses which weren't fully
effective.
Comparisons have been made on the basis of defects able to be determined, efficiency in detection, and cost.
For the reader's benefit, SEC provides the results of its conclusions on the following pages.

c8SAMSUNG
Electronics

24

QUALITY and RELIABILITY

•

3. CUSTOMER SUPPORT SYSTEM
3.1 INTRODUCTION
Manufacturing companies have developed customer support systems for the purpose of uniting communications. Through
these communications pass the information and knowledge required to satisfy the customers needs in areas such as
quality and reliability, customer claims, customer training, field service technical issues, pricing or availability and above
all, trust. Open lines of communication establishes thorough trust between the customer and vendor and are essential
for such programs as dock-to-stock in order to achieve the ultimate in customer/vendor relations. SEC, in its commitment to customer satisfaction, has installed within its organization a support system that is designed to produce the open
lines of communication between all facets of relations for both the customer and SEC.

3.2 POLICY
SEC has developed within its organization, a customer support system. SEC's policy requires that this system be manned with the proper personnel that are thoroughly trained in the areas that each represent and are dedicated to opening
and maintaining lines of communication with the customer. Technical data used by SEC to support the customer must
be up to date and always available for use by the customer (privileged or confidential information maybe excluded). Customer
training is provided to the customer by only the most knowledgeable SEC personnel. SEC will provide customer field
service in the form of periodic goodwill visits to customer sites or specialized problem solving services as required. Process change notification procedures as well as safety standards are also strictly adhered to.

3.3 CUSTOMER SUPPORT SYSTEM
1) QUALITY ASSURANCE SERVICE
SEC has felt the need to reorganize its current Quality Assurance Sections in order to better service our customers.
From this new organizational change, a new QA section was born. This new QA section, known as QA Section 3, was
developed specifically for the customer. The customer service team in QA3, was organized to respond prombtly to
customers quality requirements. The purpose of this team is to form a more responsive communication channel between
plant R&D, the sales department and the customer. Customers will achieve satisfaction with our company's products
by use of the newly organized customer service system. This service system is openly available to customers for
comments concerning problems oropinions about SEC's devices. An .a00 number is published on the inside of the handbooks cover.

2) CUSTOMER SERVICE TEAM
The following organizational chart illustrates the world-wide base that the customer service team of SEC has established. Maintaining continuity between all of SEC's worldwio~ customer service teams is accomplished through the use of
a newly installed computer network which allows constant communication between all teams.

CIS ORGANIZATION

I

ASIA
SEOUL,KOREA
TOKYO, JAPAN
TAIPEI, TAIWAN
HONG KONG

qsSAMSUNG
Electronics

AMERICA
SAN JOSE, CA
CHICAGO,IL
BOSTON,MASS

EUROPE
FFT, WEST GERMANY
LONDON, U.K

25

QUALITY and RELIABILITY

3) CUSTOMER CLAIM SUPPORT SYSTEM
Information from the field concerning quality is an essential factor for the improvement of product quality. Equally important, is the investigation of field failures. Timely feedback of the results from the analysis is required to better service
customers properly. This data also serves as a direct guide to the improvement of reliability and quality for both SEC
and our customers.
The flowchart below demonstrates the process in which SEC currently follows for customer claims.

CLAIM SUBMITTED

CLAIM RECEIVED

-~O

PRELIMINARY FIA
PRELIMINARY REPORT

FINAL REPORT

FOLLOW UP AND FEEDBACK
TO MANUFACTURING

NOTIFY CUSTOMER OF
COMPLETED CIA AND THEIR RESULTS

4) CUSTOMER TRAINING SYSTEM
SEC has recently established a training team for the purpose of teaching SEC's customers the methods currently used
by SEC to insure the product quality and reliability at the customers site. SEC offers this training in the form of group
seminars or presentations and when requested or deemed necessary, individualized training is offered. In some cases,
the training will take place at the customers site at the customers convenience while in other cases, SEC will extend
on invitation to the customer to visit our manufacturing site.

5) CUSTOMER FIELD SERVICE
SEC has developed field service teams that are devoted to making customer contact when there aren't any problems.
In other words, SEC is interested in making periodic goodwill visits. The visiting team would be comprised of those managers
and engineers that are involved with the product types that the customer currently uses. The main goal of this team
is to establish customer trust through communication.

·c8SAMSUNG
Electronics

26

QUALITY and RELIABILITY

3.4 PROCESS CHANGE NOTIFICATION SYSTEM (PCN)
Changes in a process are sometimes required to produce a higher quality product at a lower price. These changes can
include new or different types of material, new or modified designs and new or different processes. SEC has developed
a PCN procedure that is followed whenever a major or critical change is to be considered for any process. The idea
behind the PCN is to allow change to a process by submitting the planned change for qualification by SEC engineering
and then presenting the PCN to the customer for final approval. By following this procedure, the customer is assured
that no major or critical change will occur to the process without the customers consent.

ENGINEER INFORMATION NOTICE

DECIDE PCN AREA

CHECK ELECTRICAL CHARACTERISTICS

No

No

Reject Change

3.5 SAFETY STANDARDS
Most customers express the desire to use only products which have been manufactured with materials that meet the
safety specifications of the Underwriters Laboratories. SEC has chosen to adhere to the specifications called out in the
UL standard 94 by purchasing and using only those plastic materials that conform to this standard. UL 94 tests for a
number of different flammability conditions that effect the plastic material used in semiconductor devices including horizontal
burning, vertical burning and flame spread.

c8SAMSUNG
Electronics

27

•

QUALITY and RELIABILITY
4. FAILURE ANALYSIS
4.1 PROCEDURE
A general failure analysis procedure is shown below. The method demonstrated in the flow chart applies to all rejects.
However, each analysis is specific unto itself, so that a completely exhaustive analytical flow is impossible for the limits
of this manual. Specific instances and examples of interest are provided later in the chapter. Also included in this section
is a typical day-by-day accounting of a failure analysis in progress. A two-week turnaround is the objective, with greater
than 90% of analysis lasting equal to or less than this duration. A sample analysis plan and report are attached at the
conclusion of this section.

I

Failure Occurred

I

Obtain Sample

I

Visual Inspection

ti

Failure State
Investigation

Retrieval of Past
Failure Examples

J

Electrical Measurement
Curve tracer,
Oscilloscope,
Tester, etc.

Failure Mode Classification
Probable Mechanism

H

Failure Check

Simulation Test

Fluoroscopy, Leak Test, Backing, Vibration
Test, Aging Under Power Application, etc. HElectrical Measurement

,

I

I

Parameter Failure

l

Identify Failed Area

I
I

Identify Circuit of
Failed Area
Analyze Characteristics
of Failed Area

I

Determine Failure Mode

I

I
I

~

I

I
I

I
I

Function/Logic Failure

I
I

I
I

Identify Failure by
Bench Tester

I

Analyze Characteristics
of Sensitivity on
Test Parameter

I

DecapNisual Inspection

I

Electrical Analysis by
Dynamic Probing

I
l

Isolation for Parameter
Analysis

I

Bake (Ion Contamination)

I

I

Retest/Restress

I

I DecapNisual Inspection I

I Feedback to Manufacturing process:

I

Identify Failed Block

Identify Circuit of
Failed Area

Layer StripNisual
Inspection/Cross-Section

I

Conclusion

I
I

Corrective Action

l-

Failure Analysis Procedure Flow Chart

"=8SAMSUNG
Electronics

28

QUALITY and RELIABILITY

Applicable Comments for the above flow chart are made below.

1) DETERMINATION OF FAILURE MODE
The basic failure mode shall be determined with data from computer and bench testing. As a defect can represent various
electrical failure modes, it is critical to determine the most basic failure mode. (For example, a VoLNoH parameter failure
may be also analyzed as a functional failure. However, it is very important to determine VOL/VOH as the basic failure
mode.)

2) IDENTIFICATION AND ANALYSIS OF FAILED CIRCUIT AREA
Correlation shall be derived with general (macroscopic) failure phenomenon through circuit interpretation of the failed area.

3) SENSITIVITY OF TEST
Parametric value of failed sample shall be determined through adjusting DC and AC parameters, temperature range, etc.

4) ION CONTAMINATION
For a sample assumed to have an inversion phenomenon caused by ionic contamination, characteristics shall be identified by conducting a Ta = 150°C, 24 hour cure and repeating test/restress.
Contamination of a specific layer shall be determined by stripping each layer.

5) DECAPSULATION
There are 5 decap methods with respective merits and demerits. The appropriate method must be utilized on the basis
of the characteristics and potential cause for each failure.

6) ISOLATION AND DYNAMIC PROBING
It is essential to isolate the probable failing part of the circuit for its electrical failure mode. Without isolation, exact detection of a failed part can not be accurately accomplished as an electrical failure mode has an influence on other parts
of the circuit.

7) LAYER STRIPPING
Each layer strip should meet specification requirements with respect to time. It should never be the case that chemical
attack is mistaken for causing the failure of a part.

8) GENERATION OF ACTIVATION ENERGY
Accelerated life testing requires generation of actual activation energies based upon establishing a definitive failure mode.
This generation has a great effect in determining the acceleration factor of Arrehenius' model.

9) CORRECTIVE ACTION
Failure analysis is fully completed only by establishing a future plan and corrective action, which are taken to resolve
a problem and prevent its recurrence.

c8SAMSUNG
Electronics

29

•

QUALITY and RELIABILITY
4.2 Failure Modes and Mechanisms
1) Failure mechanisms for devices vary widely. They are caused by both front-end (wafer) and back-end (assembly) processing. To classify problems and their instigations, the table listed below is provided.
'Items and Causes of Failure Modes
Item

Wire
Bonding

Junction
Region
Case

Failute Mode

Type of Failure

Cause

Wire Disconnection

Open

Incomplete

Wire Short

Short

Manufacture or

Purple Plague

Open, High Resistance

Misuse

Bond Detaching

Open, High Resistance

Misplaced Bonding,
Loose Contact

Open, High Resistance
Short

Improper Bond Shape
Erroneous Bonding

Open, High Resistance
Open, High Resistance

Destruction by Surge
Hot Spot

Low Breakdown Voltage,
Short, Open

Lead Disconnection

Open, High Resistance

Lead Short

Short, High Leakage

Incomplete
Manufacture
Incomplete
Manufacture or
Misuse
Same as above

Incomplete Seal
Seal

Enclosed High
Humidity Gas

--

Breakdown Voltage
Deterioration, High
Leakage

Same as above

Contamination of Surface

Metallization

Dust and Dirt

Short, Low Breakdown Voltage
Large Leakage

High Current Density

Open, Short

Electromigration

Open, High Resistance

Scratch

Open, Short

Insufficient Thickness
Excessive Etching

Open, High Resistance

Incomplete
Manufacture

Open, High Resistance

Incomplete
Manufacture or
Misuse

Contamination, Dust
and Dirt
Poor Wiring and Element
Connection
Chip
Mounting

Oxidized
Film
Surface
Treatment
Mask
Material and
Diffusion

Misuse

Chip Crack

Open, Short

Chip Detaching

Open, Short, High
Thermal Resistance

Same as above

Pinhole, Crack

Low Breakdown Voltage, Short

Insufficiently Oxidized
Film Thickness

Low Breakdown Voltage

Incomplete
Manufacture

Channel Formation

Low Breakdown Voltage
High Leakage

Same as above

Mask Misalignment

Low Breakdown Voltage
Short, Open, High Leakage

Same as above

Improper Impurity Density

Same as above

Same as above

Contamination
Insufficient Photoresist

c8SAMSUNG
Electronics

30

QUALITY and RELIABILITY

2) Standard product reliability tests can naturally generate failures. Here, in this section, a table is given which lists tests
and their associated rejects. Each test has a specific purpose, and if there exists a particular product weakness, a
given test will expose it. In this manner, by knowing a test and it's function, a clear determination can be made as
to the relevance of a failure for that particular test.
Reliability Tests and Associated Failure Modes

Item

TIC

Test Condition

Package
Seal

Lead Solderability
Fatigue

Mark

Die bonding

'Contamination
'Crystal Delect
'Photoresist
Reject

'Contamination
'Pin Hole
'Crack
'Thickness
Unstable

·Conpos.
'Scratch
.Void
'Open

'Interiace
'Corrosion
'Misbonding
'WireOpen
'Chemical
Interiace

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-65°C~150°C

- 6SoC ~ 12SoC
200 Cycles

90-98%R.H./6soC3HRS
80-980f0R.H.J2soC8HRS
Moisture
Resistance 90-980f0R.H./65°C3HRS
10 Cycles
Vibration
Fatigue

Package
Environment

Oxide

200 Cycles

TIS

Metalization Wire Bonding

Diffusion

Failure Cause

20G·3 Axis
Orientation
1= 20 to 2000 cpe
for 4 min. 4 cycles

'Conductive ions 'Sealing
Reject
• Inadequate
'Environments

·Conpos. 'Marking

'Themal
Reject Resistance
Reject
'Crack
'Chip Position
Reject

0

0

Pulse Duration:
Constant
0.1·1m sec
Acceleration
Shock pulse: 0.S·3Kg

0

0

1500g, O.Sns
Mechanical
Each Direction 01 X, Y
Shock
and Z Axis

0

0

Lead
Integrity

W=227g
90°C 3 times

Marking

Isoprophylalcohol

0
0

Solderability Ta =230° SSec.
Once With Flux

0

Salt Spray

Ta=3SoC, SOlo NaCI

OPL

Individual Spec

0

0

0

0

0

0

IOPL

Individual Spec

0

0

0

0

0

0

HTRB

Individual Spec

0

0

0

0

0

HTS

Individual Spec

0

0

0

WHTS

BO°C, 90010 RH
85°C, 8S0f0 RH

0

0

WHTRB

85·C, 8S0f0 RH
Bias

0

0

0

0

c8SAMSUNG
Electronics

0

0

0

0
0
0

0

0

0

0

0

0

31

•

QUALITY and RELIABILITY
3) An anomalous manufacturing step can manifest itself in many ways with respect to product reliability. The chart below
depicts process steps, the types of rejects they can generate, and the way to defect such failures. Of course, there
are numerous QC and Production checks along all stages of the manufacturing process. However, a semiconductor
product typically involves so many operations it's nearly impossible to detect all potential reliability hazards. Thus,
there are final electrical and visual tests, reliability tests, and statistical analyses which are run prior to product releasal.
The chart below speaks to the electrical, visual, and reliability tests.
Failure Mechanisms of Integrated Circuits
Process Step
Affecting
Reliability

Wafer
Fabrication

Failure Mechanism

Failure Mode

Failure Detection Method

Dislocation and Stacking
Fault

Degradation of Function
Characteristics

Electrical Test
Operation Life

Non-Uniform Resistivity

Unpredictable Characteristic
Values

Electrical Test

Surface Abnormalities

Improper Electrical
Characteristics,
Short and Open

Electrical Test
Operation Test

Cracks, Chips,
Scratches (Usually
Caused During Handling)

Open and Short

Contamination

Degradation of Junction
Characteristics

Visual Inspection (Before
Seal), Temperature
Cycling, High Temperature
Storage, Reverse Bias

Cracks and Pin Holes

Shorts, Low Breakdown
Voltage

Temperature Cycling
High Temperature Storage
High-Voltage Test,
Operation Life
Visual Inspection
(Before Seal)

Non-Uniformity of Film
Thickness

Low Breakdown Voltage
Increase of Leakage Current
in Oxide Film

Same as Above

Scratch, Crack, Scar of
Photo Mask

Open,Short

Visual Inspection (Before
Seal),
Electrical Test

Misalignment

Open,Short

Same as Above

Abnormality of PhotoResist Pattern (LineWidth, Space, Pin Hole)

Degradation of Characteristics
Due to Parameter Drift
Open,Short

Same as Above

Improper Elimination of
Oxide Film

Open, Short, Intermittent
Failure

Visual Inspection (Before
Seal)
Electrical Test
Operation Life

Under-Cut

Short or Open in
Metallization

Visual Inspection
(Before Seal)
Electrical Test

Passivation

--

Electrical Test
Visual Inspection
. (Before Seal)
Temperature Cycling

--

--

Mask

Etching

c8SAMSUNG
Electronics

--

32

QUALITY and RELIABILITY

•

Failure Mechanisms of Integrated Circ'uits (Continued)
Process Step
Affecting
Reliability
Etching

Diffusion

Metallization

Failure Mechanism

Failure Mode

Failure Detection Method

Spotting (Smear)
Inhomogeneous Etching

Latent Short

Visual Inspection
(Before Seal)
Temperature Cycle,
High Temperature Storage
Operation Life

Contamination
(Photo Resist, Residue
of Chemical Substance)

Low Breakdown Voltage
Increase of Leak Current

Same as Above
Reverse Bias

Improper Control of
Doping Profile

Performance Degradation
Caused by Instability
and Fault

High Temperature Storage
Temperature Cycling
Operation Life
Electrical Test

Scratched and Smeared
Metallization
(Caused During Handling)

Open and Short

Visual Inspection
(Before Seal)
Temperature Cycling
Operation Life

Thin Metallization Due
to Insufficient
Deposition or Oxide
Film Step

Open or High Impedance
Internal Connection

Electrical Test
Operation Life
Temperature Cycle

Oxid Film Contamination
Material Incompatibility

Open Metallization Caused
by Poor Adhesion

High Temperature Storage
Temperature Cycling
Operation Life Test

Corrosion (Residue of
Chemical Substance)

Open Metallization

Visual Inspection
(Before Seal),
High Temperature Storage
Temperature Cycle,
Operation Life

Displacement
Contaminated Contact

High Contact Resistance, Open

Visual Inspection
(Before Seal),
Electrical Test, High
Temperature Storage
Temperature Cycle,
Operation Life

Improper Temperature
and Period for
Metallization

Peeled Metallization
Poor Adhesion
Short

Electrical Test
High Temperature Storage
Temperature Cycle
Operation Life

Cracks and Chips Caused
by Improper Dicing

Open

Visual Inspection
(Before Seal)
Temperature Cycling
Thermal Shock
Vibration Shock

Die Separation

c8SAMSUNG
Electronics

--

--

33

QUALITY and RELIABILITY
Failure Mechanisms of Integrated Circuits (Continued)
Process Step
Affecting
Reliability

Die Bonding

Wire Bonding

Failure Mechanism

Failure Detection Method

Void Between Header
and Die

Degradation Due to
Overheating

Radiography, Operation Life
Constant Acceleration
Shock, Vibration

Over-Spreading of
Eutectic Solder

Short, Intermittent Short

Visual Inspection
(Before Seal),
Radiography, Vibration
Shock

Poor Bonding of Die to
Header

Die Crack and Lifting

Visual Inspection
(Before Sealing),
Constant Acceleration,
Shock, Vibration

Mismatching of Materials

Crack or Peeling of Die

Temperature Cycling
High Temperature Storage
Constant Acceleration

Poor Bonding Strength

Open Wire, Open, Lifting
Vibration Shock

Constant Acceleration

Mismatched Material and
Contaminated Bonding
Pad

Lead Bond Peeling

Temperature Cycling
High Temperature Storage
Constant Acceleration
Shock, Vibration

Formation of
Intermetallic Plague

Open Bonding

High temperature storage,
Temperature Cycling.
Constant Acceleration Shock,
Vibration

Insufficient Bonding
Area or Spacing

Open
Bonding Short

Operation Life Test,
Constant Acceleration,
Shock Vibration,
Visual Inspection
(Before Seal)

Improper Bonding
Arrangement

Open, Short

Visual Inspection
(Before Seal)
Electrical Test

Die Cracks or Chips

Open, Shock

Visual Inspection
(Before Seal)
High Temperature Storage
Temperature Cycling
Constant Acceleration,
Shock Vibration

Excessive Loop or Sag
in Wire

Short to the Case, Substrate
or other Parts of the Leads

Visual Inspection
(Before Seal),
Radiography, Constant
Acceleration, Vibration

Crack, Scratch,
or Scar on Lead

Wire Disconnection Causing
Open, Short

Visual Inspection
(Before Seal),
Constant Acceleration,
Shock Vibration

c8SAMSUNG
Electronics

Failure Mode

--

34

QUALITY and RELIABILITY

•

Failure Mechanisms of Integrated Circuits (Continued)
Process Step
Affecting
Reliability

Sealing

Failure Mode

Failure Mechanism

Failure Detection Method

Insufficent Elimination
of Tail Wire

Short, Intermittent Short

Same as Above
Radiography

Incomplete Hermetic Seal

Performance Degradation,
Shorts and Opens Caused by
Chemical Corrosion and
Moisture

Fine Leak, Gross Leak

Bad Atmosphere in
Package

Performance Degradation Due
to Inversion Layer
Channeling

Operation Life
Reverse Bias, High Temp.
Storage, Temperature
Cycling

Bending or Breaking of
the External Lead

Open

Visual Inspection,
Lead Fatique

Crack or Void in Seal
Glass

Short or Open in Metallization
Due to Leak

Seal, Electrical Test
High Temperature Storage
Temperature Cycling
High Voltage Test

Migration on Seal
between Outer Lead and
Metal Case

Intermittent Short

Low Voltage Test

Electro-Conducting
Particles Floating
in Package

Same as Above

Constant Acceleration,
Vibration
Radiography

Mismarking

Inoperable

Electrical Test

--

4) Equipment
A listing of important equipment used for failure analysis is shown below in tabular from, SEC's committment to
comprehensive analysis of all relevant rejects necessarily implies a usefulness for key analytical instruments. Constant efforts are made to both use and modify equipment to meet specialized investigations. However, only standard
equipment, not a listing of hybrids (for confidential development purposes), is listed below.
Equipment. for failure analysis
Category

Visual

Item

Application

1. Stereo Microscope

Use for visual inspection

2. SEM (Scanning Electron
Microscope)

Use to inspect the surface or cross-section
of a device at high magnification. Through
voltage contrast techniques, it is
possible to analyze voltage levels
while the device is operating

3. Infrared Microscope

Using the infrared radiation emitted by a
functioning device, a thermal map can be
produced.

4. X-Ray

Use to inspect the bonding wire of
encapsulated devices.

5. Metallugical Microscope

Inspect interconnects, contacts, bonds

6. Radiographic Scope

Inspect bond wires, die attach

c8~SUNG

35

QUALITY and RELIABILITY
Equipment for failure analysis (Continued)
Item

Category
Elemental
Analysis

Used to detect and analyze
contamination on the surface of a die

2. EDX Spectrometer

Used with SEM to analyze elements present
in a device. This is done by measuring
the energy distribution of X-rays produced
by the interaction of primary electrons
and the sample.

3. Differential Interference
Microscope

Used for elemental analysis

4. Electron Probe
Micro Analyzer (EPMA)

Decapsulation
System

Application

1. Auger Electron
Spectrometer (AES)

Used for current analysis

5. Ion Micro Mass Analyzer
(IMMA)

Spectral analysis of chemical constituents

6. Surface Eveness Micrometer

Measures planarity

7. Differential Scanning
Calorimeter (DSC)

Permits the analysis of glasses and
polymers-especially encapsulation resinsthrough the measurement of reaction heat

8. Thermo Gravimetric Analyser

Used to determine the thermal stability of
polymers and glasses by measuring
variations in mass with temperature.

9. Plasma Etcher

Used to opan devices encapsulated in
epoxy resins, to remove silicon nitride, and
to remove thin oxide films

10. Transmission Electron
Microscope (TEM)

Used for elemental analysis and high
resolution surface on spectron

11. Surface Tunneling
Microscope (STM)

Used for elemental analysis

12. Electron Spectrometry for
Chemical Analysis (ESCA)

Used for elemental analysis

13. Secondary Ion Mass
Spectroscope

Used for elemental analysis

1.
2.
3.
4.

Used to decapsulate devices,
to cut the cross section of die,
to remove a surface layer.

5.
6.
7.
8.
9.

Grinding Machines
Angle Lapping
Evaporation
Diamond Cutter
(Cross Section Cutter)
Molding System
Jet-Etching System
Etching Solution
Hot Plates
Ventilation Hoods

c8SAMSUNG
Electronics

36

QUALITY and RELIABILITY

•

Equipment for failure analysis (Continued)
Item

Category
Electrical
Test

Stress
Test

Used to measure electrical
characteristic of devices,
to establish the cause of failure.

1.
2.
3.
4.
5.

Used to stress or cure the failed devices
to identify a failure mechanism.
This is a very important tool for analyzing
degradation phenomena and ~intermittent
failures.

Temperature Probe System
Constant Temperature Oven
Ovenn for Oper Life Test
Humidity Oven
Vibration System

c8SAMSUNG
Electronics

Application

1. Curve Tracer
2. TR, IC, MaS Tester
3. ESD Simulator
4. LCR Meter
5. DC-Analyzer
6. Noise Tester
7. Logic State Analyzer
8. Manipulator Probe Ssytem
9. Electron Beam Tester
10. Hot Electron Analyzer
11. I.R Scope

37

QUALITY and RELIABILITY

Methods and Equipment for Failure Analysis
Item

Contents of Inspection

Equipment for Analysis

.-

External Visual
Check

• Condition of Lead, Plating, Soldering,
Welding Area
• Mark, Date Code
• Package damage
• Solderability
• Sealing

Stereo-Optical-Scope x 40
Optical Microscope x 100
Helium Leak Detector
Gross Leak Detector
(Using Fluorocarbon)

Electrical Test

•
•
•
•

DC Parameter, AC Parameter Test
Function Test
Margin Test of Voltage and Temp.
Diode Characteristics between Each
Pin
• Disconnection, Short Circuit and I
or Electrical Characteristic
detected by the above Inspection

IC Tester
Curve Tracer (HP4145)
Oscilloscope
DC Power Supply

• Internal Structure of Device is
Checked Non-Destructively

Soft X-Ray

• Internal Structure is
observed after decapping

Metal Cutting Scissors, Nippers
Cap opener, plastic etcher,
Hot plate, Drill, HN03

• Detection of Defective Spot on the
Chip Surface
• Detection of Discrepancy of Internal
Connection (Metallization, Wire Bond
-ing, Etc.)
• Electrical Characteristics are
Checked by Mechanical Prober
• Detection of Hot Spot
• Existence of Foreign Material

Optical Microscope

Radiography
Decapping

Internal Visual
Check

Internal Structure
Analysis

Simulation Test

Micro-Prober
SEM
Laser Cutter
Infrared Micro Scanner
Thermal Plotter
Infrared Microscope

• Cross Sectional Analysis of Chips
to Observe Diffusion Layer of
Oxide Film
• Analysis of Metallic Elements
• Removing of Over-Coating Glass and
Aluminum Metallization

Optical Microscope
SEM, MAX, AES, SAM, IMA
Spectrometer
Micro-Prober

• Operational Test on Actual
Equipment

Actual Electronic Equipment

c8SAMSUNG
Electronics

Oscillator (Sine Wave Pulse)
Heat-Gun, Cooling Gas Spray
Thermo-Spot

38

QUALITY and RELIABILITY

4.3 FAILURE MODE EFFECT ANALYSIS (FMEA)
Failure Mode Effect Analysis is a method used for checking if measures are taken against every possible failure in the
design, the manufacturing process, the operating method, etc. For this analysis, factors such as design, manufacturing
process, packaging, and operating method are divided into small units, and its functions are clearly defined. All possible
failure modes are listed for each item, its effect on the product and the cause of each failure is examined. Each item
is then evaluated to clarify the corrective actionto be taken.
Table shows an example of FMEA in the manufacturing process of plastic encapsulated MOS LSI. The incident
column pertaining to the Evaluation Points show the failure rate; Effectiveness column shows the impact ot the ettect
by the failure of the product, device, or system; and Detectability shows the rate of detection of the failure. These are
individually graded on the basis of ten points. The result is then evaluated by multiplying the pOints. The larger value
indicates the importance of the item. A counterplan for each item is then specified and action taken.
Manufacturing Process FMEA Example (Plastic Encapsulated Products)
Process Name
(Process
Function)

Failure Mode

Failure Effect

Failure Cause

Counterplpn

AI metallization

Improper thickness
Lack of AI wiring
Breakage defect

Electromigration
open circuit

Operator's mishandling, dirt/foreign
matter attachment,
poor adjustment of
equipment

Improvement and adjustment
of written working process.
dust control of clean room,
SEM test in the process

Glassivation

Lack of glassivation
film, failure film
thickness

Increased leak current,
improper operation

Dirt/foreign matter
attachment, operator's
mishandling

Dust control of clean room,
improvement and adjustment
of written working process

Visual Inspection

Scratch, die crack, dirt,
spot, residual resist

Open circuit, increased
junction leak current

Mishandling of wafer,
Misclearning of water

Improvement and adjustment
of written working process

Assembly Process
Die Selection

Die crack

Increased junction leak
current, improper
operation

Poor adjustment of
equipment, operator's
mishandling

Corrective action to device
control operator, improvement
and adjustment of written
working process

Die Bonding

Die crack
Die floating

Open circuit, increased
junction leak current,
improper operation

Operator's mishandling
temperature too low

Corrective action to device
control operator, improvement
and adjustment of written
working process, visual
inspection

Wire Bonding

Open bonding,
improper bonding
position, shorted
bonding wire

Open circuit, short
circuit

Poor bonding strength,
operator's mishandling,
poor adjustment of
equipment, looped
bonding wire, shape
defact

Improvement and adjustment
of written working process,
corrective action to device
control operator, visual
inspection

c8~SUNG

39

•

QUALITY and RELIABILITY

Manufacturing Process FMEA Example (Plastic Encapsulated Products) (Continued)
Process Name
(Process
Function)
Sealing (Resin)

Lead Surface
Treatment
(plating)
Lead Formation

Marking

Failure Mode

Failure Effect

Failure Cause

Counterplan

Open bonding wire,
shorted bonding wire,
package crack,
corrosion

Open circuit, short
circuit, defective
appearance

Poor adjustment of
equipment, insufficient
cure

Ditto

Poor metal-plating
thickness, dirt

Poor soldering, poor
contact

Operator's mishandling
poor adjustment of
equipment, insufficient
cleaning

Adjustment of written working
process, corrective action to
control operator

Abnormal shape, broken Failure inserting in the
lead
printed substrate poor
operation

Operator's mishandling
poor adjustment of
equipment

Ditto

Marking error illegible
marking

Operator's mishandling
insufficient cure

Improvement and adjustment
of written working process

c8SAMSUNG
Electronics

Operating destruction

40

1:' Function Guide
2. Cros.s: Reference Guide
,~¥

PRODUCT GUIDE

LINEAR ICs
1. FUNCTION GUIDE
1.1 Audio Application
A. FM Front End
Function

Package

Type

Use

RF

OSC

MIXER

RIC

*

*

*

*

Car

KA2249/D

7 SIP/8 SOP

KA22495

9 SIP/14 SOP

*

*

*

*

*

KA22496

9 SIP

*

*

*

*

..

•

Remark

Hi-Fi

Vee=2-7V
Vee = 1.6-6V
Vee = 1.6-6V

B. FM/AM RF, IF and Detector System, AM Tuner System
Function
Type

Package

AM RF
CONY

AM IF
AMP

*

*

*

*

*

AM
DET

Use

FMIF
AMP

FM
DET

S/M

RIC

"

..

..

..

Hi-Fi

Car
*

Remark

KA22461

19 ZSIP

KA2243

16 DIP

KA2244

9 SIP

*

*

*

*

Vee= 8-16V

KA22441

16 ZSIP

*

*

*

*

Vee = 6-14V

KA2245

7 SIP

*

*

KA2247

16 DIP

*

*

*

*

*

*

KA22471

16 DIP

*

*

..

..
..

..

..
..

..

KA2248A/D

c.

16 DIP/16 SOP

*

*

*

*

..

*

Vee=8-15V
*

Vee=3-14V

Vee = 8:-15V
Vee=3- 8V

..

Vee =3- 8V
Vee = 1.8-6V

FM Stereo Multiplex Decoder
Type

Package

Pll

lamp
Driver

VCO
Stop

Use

Sep.
Cont.

RIC
*

KA2261

16 DIP

*

*

*

*

KA2262

16 ZS!P

*

*

*

*

9 SIP

*

*

*

*

9 SIP/16 SOP

*

*

*

*

KA2265

16 DIP

*

*

*

*

KA2266

16 ZSIP

*

*

*

*

KA2263
KA22641D

Car

Remark
Hi-Fi

*

Sep=45dB

..

SNC/HCC

*

Sep=45dB
Vee = 1.8-5V
*

*

VCO NonAdjusting MPX
Pilot Canceller
SNC/HCC

t New Product

tt

Under Development

c8~SUNG

43

LINEAR ICs

PRODUCT GUIDE

D. Audio Power Amplifier
Type

Package

KA2201/N/B
KA2206

8 DIP

Vee
(V)

Output Power
RL=4 ohm

RL=8 ohm

6

0.5W

9

1.2W

Use
RIC Car Hi·Fi

Remark

*

Vee=3-14V

12 DIPIF

9

2.3Wx2

*

Vee=4.5-11V

KA22062S

12 SIP HIS

12

4.5Wx2

*

Vee =6-15V

KA22063S

12 SIP HIS

12

4.5Wx2

*

Vee =6-15V

12 SIP HIS

12

4.6Wx2

*

Vee=6~15V

KA2214

14 DIP HIS

9

KA2209

8 DIP

3

110mWx2

ttKA22065

1.2Wx2

*

Vee=3-13V

*

Vec=1.8-9V

KA2210

12 SIP HIS

13.2

5.5Wx2

*

Vee=10-16V

KA22101

12 ZSIP HIS

13.2

23W

*

Vee =9-18V

tKA22102

17 ZSIP HIS

13.2

15Wx2

*

Vee =9-18V

tKA22103

17 ZSIP HIS

13.2

19Wx2

*

Vee =9-18V

KA2211

12 SIP HIS

13.2

5.8Wx2

*

Vee=10-18V

KA2212

9 SIP

6

0.5W

*

Vee=3.5-12V

8 DIP/9 SIP/8 SOP

6

0.325W

*

Vee =4-12V

KA2213

14 DIP HIS

6

1W'

*

Included
Pre-Amp with ALC

tKA22130

16 DIP

6

1W

*

Included
Pre-Amp with ALC

KA22131

24 SOP

3

69mW x 2(RL = 160)

*

Vee = 1.8 - 3.6V
Included
Auto Reverse Pre-AMP

KA22134

16 DIP

3

27mW x 2(RL = 32n)

*

Vee= 1.8-6V
Dual PRE + POWER AMP
with Volume Control

KA22135

22 SDIP

3

28mW x 2(RL = 320)

*

Vee=2-7.5V
Dual PRE-POWER AMP
and DC Motor
Speed Controller

*

Vee=2-5V
Dual PRE-POWER AMP
with Volume Control and
DC Motor Speed Controller

*

Vee=2-16V
Rl = 80-1000

LM386/S/D

tKA22136

28 SOP

3

28mWx2
(R L =320)

KA8602

8 DIP/8 SOP

6

300mW (RL = 320)

t New Product
tt Under Development

:5CSAMSUNG
. . Electronics

44

PRODUCT GUIDE

LINEAR ICs
E. Pre-Amplifier

1\

Function

Use

Type

Package

KA1222

8 SIP

Dual Pre-amplifier

*

KA2220

9 SIP

Pre-amplifier with ALC

*

KA2221

8 SIP

Dual Pre-amplifier

*

RIC

Car

Hi·Fi

Remark
Vee= 2.5-6V

*

*

Vee = 3.5-14V

*

Included Voltage Regulator

KA22211

8 SIP

Dual Pre-amplifier

*

*

*

Vee = 5-14V

KA2223

16 DIP

5 Band Mono Graphic EO AMP

*

*

*

Vee = 5-13V

KA22231

28 SOP

5 Band Dual Graphic EO AMP

*

KA22232

20 SOP

3 Band Dual Graphic EO AMP

*

KA22233

22 DIP

3 Band Dual Graphic EO AMP

*

*

*

Vee = 5-15V

KA22234

24 ZSIP

5 Band Dual Graphic EO AMP

*

*

*

Vee = 3.5-14V

KA22235

18 ZSIP

5 Band Mono Graphic EO AMP

*

*

*

Vee = 3.5-16V

KA2224

14 DIP

Dual Pre-amplifier with ALC

*

*

Vee = 4-13V

KA22241

9 SIP

Dual Pre-amplifier with ALC

*

Vee = 4.5-14V

KA22242

10 SIP

Dual Pre-amplifier with ALC

*

Vee = 4-12V

KA2225/D

16 DIP/16 SOP

Dual Pre-amplifier with Mute

*

KA22261

16 DIP

Dual Pre-amplifier with ALC

*

*

Included REC AMP

KA2228

21 ZSIP

Dual Pre-amplifier system

*

*

Vee = 3.5-7V

24 SDIP

Ouad Pre-amplifier system

*

*

Vee=5-14V

Dual Pre-amplifier with ALC

*

*

Vee=3-16V

ttKA22291
KA7226

14 DIP

Vee = 1.6-6V
Vee = 1.6-6V

Vee = 1.6-5V

F. LED Level Meter Driver
Type

Package

Function

Remark

KA2281

16 DIP

5 Dot dual red/yellow/green LED driver

VU scale, input amplifier
Reference voltage included

KA2283

16 DIP

5 Dot dual red/yellow/green LED driver

VU scale, input amplifier
Reference voltage included

KA2284

9 SIP

5 Dot mono green LED driver

VU scale
Reference voltage included

KA2285

9 SIP

5 Dot mono red LED driver

VU scale
Reference voltage included

KA2286

9 SIP

5 Dot mono red LED driver

Linear scale
Reference voltage included

KA2287

9 SIP

5 Dot mono green LED driver

Linear scale
ReferenceVoltage included

KA2288

16 DIP

7 Dot mono LED driver

VU scale
Reference vol'tage included

t New Product
Under Development

tt

=SAMSUNG
. . Electronics

45

•

PRODUCT GUIDE

LINEAR ICs

G. Music Selector
Type

Package

KA2230

22 DIP

KA2231

9 SIP

Function

Remark

9-Program Random Selector

Vee=5-14V

Audio Level Sensor

Vee = 3.5-14V

H. 1 Chip Radio
Type

Package

Remark

AM 1 Chip Radio

Vee = 2-5V

ttKA22426

28 SOP

AM/FM 1 Chip Radio

Vee = 1.6-6V

KA22427

16 DIP

AM/FM 1 Chip Radio

Vee= 3-12V

tKA22429

16 SOP

FM 1 Chip Radio

Vee = 1.8-6V

ttKA2292

24 SDIP

AM/FM TUNER + MPX

Vee = 1.8-7V

ttKA2293

24 SDIP

AM/FM TUNER+MPX

Vee = 1.8-7V

KA224211D

16 DIP/16 SOP

Function

I. Noise Reduction
Type

Package

Function

Remark

KA2271

16 DIP

Dolby B Type

Vee = 8-16V

tKA22711

16 DIP

Dolby B Type

Vee= 5-16V

tKA22712

16 DIP

Dolby B Type

Vee = 6.5 -16V

16 ZSIP/16 SOP

FM Noise Canceller

Vee = 8-15V

14 DIP

DNR for Car Stereo

Vee = 4.4-18V

KA22721D
KA2273

J. DC Motor Speed Control
Type

Package

Function

Remark

KA2401

8 DIP

DC Motor Speed Controller

Vee-4-12V

KA2402

8 DIP

DC Motor Speed Controller

Vee-1.8-BV

KA2404

TO-92L

DC Motor Speed Controller

Vcc- 4 -12V

KA2407

TO-126

DC Motor Speed Controller

Vee = 3.5-14.4V

c8SAMSUNG
Electronics

46

LINEAR ICs

PRODUCT GUIDE

1.2 Digital Audio Application

•

A. CD Player
Type

Package

KA9256

10 SIP HIS

Dual Amp for CDP
Motor Driver

Vee = 15V,
VeE = -15V

KA9257

12 SIP HIS

Dual Amp for CDP
Motor Driver

Vee = 5V

KA9255

22 SOP

PWM Motor Driver for CDP

Vee = 3.5-12V

tKS5990

80 FOP

16K SRAM
Processor

Function

+ Digital Signal

Remark

Vee=5V

tKS5991

80 FOP

Processor

ttKA9210

80 FOP

16K SRAM

tKA8309

480FP

Servo Signal Processor

Vee = 5V

tKA9201

30 SOP

RF AMP for CDP

Vee = 5V

ttKDA0313

20 SOP

13 Bit D/A Converter

Vee = 5V

tKDA0316

20 DIP/20 SOP

16 Bit D/A Converter

Vee=5V

Vee = 3.4V

+ DSP + Digital Out 1

I

Vee= 5V

B. OAT
Type

Package

Function

Remark

ttKA9301

44 FOP

IPre Signal Processor

Vee=5V

ttKA9302

28 FOP

Data Strobe

Vee = 5V

ttKA9310

100 FOP

Digital Signal Processor

Vee= 5V

ttKA9320

80 FOP

Servo Control

Vee = 5V

C. wCOM
Remark

Type

Package

Function

ttKS55C232

64 FOP

Digital Tuning System (DTS)
for Car Stereo

Vee =5V,
Vee= -5V

ttKS56C820

80 FOP

System Control for CDP

Vcc =5V,
V ee = -5V

ttKS56C460

64 SDIP

System Control for CDP

Vec =5V,
Vee= -5V

t New Product
tt Under Development

c8SAMSUNG
Electronics

47

LINEAR ICs

PRODUCT GUIDE

1.3 Toy Application

Device

Function
FIW BIW Stop URTum Turbo

Av

Operating
Mode

Package

Vcc(V)

9 SIP

2.5·10

65

RF

9SIP

2.5·10

65

RF

2 Function RC TOY CAR (RX)

12 SIP

3·18

58

RF+PWM

3 Function RC TOY CAR (RX)

(dB)

Application

KA2303

0

0

KA2304

0

0

KA2305A

0

0

0

KA2306A

0

0

0

0

14 DIP

3·18

58

KA2309

0

0

0

0

0

16 DIP

3·18

58

KA231 0

0

0

0

0

0

9 SIP

6·12

KA2311

0

0

0

0

0

16 DIP

3·18

KA2312

0

0

0

0

0

9 SIP

6·12

RF+FM+PWM KA2311 Transmitter

tKA2314

0

0

0

0

0

9 SIP

6·12

RF+FM+PWM KA2309/11 Transmitter

0

RF+FM

3 Function RC TOY CAR (RX)

3 Function + Turbo (RX)

RF+FM+PWM 7 Function RC TOY CAR (RX)
RF+FM+PWM KA2309 Transmitter

65

RF+FM+PWM

Full Function RC TOY CAR (RX)
(UR Turn on stop state)

t New Product
tt Under Development

c8SAMSUNG
Electronics

48

LINEAR ICs

PRODUCT GUIDE

2. CROSS REFERENCE GUIDE'
SANYO

SAMSUNG

Application

KA2201/N
KA2201B
KA2212

Power Amplifier

LA4145
LA4145
*LA4140

KA220~

KA2210

*LA4182/3

Dual EQ AMP+ Power

EQ AMP+ALC
Dual EQ AMP

Graphic EQ AMP

LA4530
*LA4445

LA4440

*TA821O
*TA7240AP

KA2213

*LA4160

TA7628P

KA22130
KA22131

*LA4160
LA4560M

TA7628

KA22134
KA22135
tKA22136
KA2220

*LA3210

KA1222

*LA3160

KA2221
KA22211
KA2223
KA22231
KA22232

*LA3161
*LA3160
*LA3600
LA3610M

KA22241
KA22242
KA22261

Dual EQ AMP + Mute

KA2225
KA2230
KA2231
KA22421

Music Selector
AM 1 Chip Radio
AM/FM 1 Chip Radio

ttKA22426
KA22427

~2429--

Electronics

AN7143

*TBA820M
*TBA820M

BA526
MC34119
*LM386/*NJM386

BA534

TEA2025

BA5406

*TDA2822M

AN7118
AN7147

BA532

AN7178

BA532
*/LPC1263C
/LPC1165C
*BA3502F

*TA8119P
*LAG637D
*LAG665
*TA7137P
TA7312P

AN7320

*BA333

*TA7375P
TA7312P
*TA7796P

AN7310

*BA328

pPC1158H
*M51521L
*M5152L
*M51521L
*M5226P
TK10586M
TK10580M

AN7330K
*BA3822L
*BA3812L
*LA3220

AN7312

LA3225/6N
LA3225/6N

BA343
*BA3308
*SA3312N

M51544L
M51544L

*TA7668BP
*TA7658P
*TA7417P
LA3230
LC7517
*LA2010

r---

TA8189N
*TA7709P/F
TC9167P
TA7341P
*TA7641BP

AN7312

BA343
BA3416BL

AN7315

BA3304

AN6262N/3N

BA335

M51166P
*IR3R24

tt Under Development

*CIC7641
*CXA1019
*TDA 1083/* ULN2204

*TA7613AT
*TDA7021T

1

*BA4220

KA2243

c8SAMSUNG

BA527
BA527

*TA8205

KA7226
KA2228
ttKA22291

Quad EQ AMP

t New Product

TA7376P
TA7227P

KA22233
KA22234

Dual EQ AMP+ALC

AM/FM IF + DET

TA7769P

tKA22103
KA2211
KA2214

KA22235
KA2224

•

Others

ROHM

BA546

*TA7283AP
*TA7282
*TA8207

tKA22102

I EQ AMP + Power

AN7116
AN7116
*AN7112

TA7336P

KA22063
ttKA22065
Dual Power Amplifier

*TA7313AP

MATSUSHITA

*TA7250BP

KA22101
KA8602
LM386
KA2206
KA22062

TOSHIBA

!I *HA1~1~~. _ _

* Direct Replacement

49

PRODUCT GUIDE

LINEAR ICS
Audio les

(Continued)

Application

SAMSUNG

KA2244
KA22441
KA2245
KA22461
KA2247
KA22471
KA2248A

FM IF+DET
AM Tuner S~stem
AM Tuner+AM/FM IF
+DET

*LA3361
*LA3370

~263

KA2264
LA3330
----I*LA3410
KA2265 _
KA2266
' *LA3375
,--------KA2271
-

AN278
AN7277

*BA404
*BA4110
*BA403

*TA7640AP
*TA7687AP
TA7335P
*TA7358AP
*TA7358P
*TA7604P
TA7401AP
*TA7343AP
*TA7342P
TA7413AP
TA7401AP
TA7719P

,---- --

~

ROHM

*TA7130P
TA7402P

LA1270
LA1180
*LA1185

KA22495
KA22496
KA2261
KA2262
--

FM Stereo Multiplex
Decoder

MATSUSHITA

*TA7303P
*LA1140
*LA1150
LA1135
*LA1260

~249

FM Front End

TOSHIBA

SANYO

*BA4260
BA4228L
BA4402

*AN7213
*AN7205

*BA1330
BA1356

*AN7410
AN7417
*AN7420
*AN7421
AN7470

jl-COM

LED Lever Meter
Driver

AM Tuner + MPX

Motor Speed
Controller

COP

-*CXA1101P
*CXA1163
*CXA1102

OAT

..

t New Product

~-

ttKA9210
ttKDA0313
KDA0316
ttKA9301
ttKA9302
ttKA9310
ttKA9320

--

*LA2110
*LM1894
*/A-PD1719
CXP5024
LC652001
*TA7666P
*TA7667P
TA7366P
TA7366P

*LB1403
*LB1423
*LB1433
*LB1413

IR2E27
*AN6884

*BA6124
*BA6137
BA656
*BA6125

--

*IR2E02
*TA8167
*TA8122
*jlPC1470H
*LA5521D
jlPC1470H
jlPC1470H

*AN6651
*TA7256
*BA6290
*BA6280

LC7860

I

I

tt Under Development

=SAMSUNG
. . Electronics

*HA112271*~PC1197C

BA1360

--~

tKA22712
KA2272
KA2273
ttKS55C232
ttKS56C820
ttKS56C460
KA2281
KA2283
KA2284
KA2285
KA2286
KA2287
KA2288
ttKA2292
ttKA2293
KA2401
KA2402
KA2404
KA2407
KA9256
tKA9257
tKA9255
tKA9201
tKA8309
tKS5990
tKS5991

'"PC102B~~~
*jlPC1215V

AN7250S
AN7223
AN7223

j!0~2711

Noise Reduction

Others

* LC7881

I

*CXA1081Q
*CXA1082Q
CXD1167
CXD1247
CXD1135+SRAM
*CXD1140
*CXD1161
*HA12133MP
*HA12062
*H049212
*H049011A

* Direct Replacement

50

LINEAR ICs

PRODUCT GUIDE

3. ORDERING INFORMATION

oooox

KA

x

•

X

T1-_ ________ PACKAGE TYPE (SEE BELOW)

' - - - - - - - - - - - - - - - OPERATING TEMP IC'S ONLY
BLANK: SEE INDIVIDUAL SPEC
C: 0-70 o C
I : -40-85°C
M: -55-

+ 125°C

' - - - - - - - - - - - - - - - - - - - - DEVICE NUMBER AND SUFFIX (OPTIONAL)
X: IMPROVED VERSION

L - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

DEVICE FAMILY (SEE BELOW)

DEVICE FAMILY
TRANSISTOR I FET
DKS

DALINGTON TR

• IRFP

MOS POWER
MOS POWER, TO-126
MOS POWER, TO-3P

• KSA
KSB
KSC
KSD

PNPTR
PNP TR
NPN TR
NPN TR

• IRF
·IRFA

TR, SOT-23
• MMBT
• MMBTA TR, SOT-23
• MMBTH TR, SOT-23
TR, SOT-23
• MPS
• MPSA

TR, TO-92

• MPSH

TR, TO-92
TR, TO-92
MOS POWER, TO-3P
MOS POWER, TO-3

• PN
SSH
SSM
SSP
• TIP

MOS POWER, TO-220
BIPOLARTR

• 2N

TR

INTEGRATED CIRCUIT
KA
KF

LINEAR IC

PACKAGE TYPE
IC'S ONLY

KG

J-FET OP AMP
GATE ARRAY

KS

CMOS IC

KT

TELECOM
NATIONAL
MOTOROLA
SIGNETICS
LINEAR ARRAY
H.D AND LINEAR ARRAY

J

CERAMIC

K
L
N

TO-3P
LCCC
PLASTIC

PL
R

PLCC
TO-126

ND-D/A CONVERTER
ND CONVERTER
D/A CONVERTER

T

TO-220
TO-92
TO-92L

• LM
• MC
• NE
SA
SD
KSV
KAD
KDA

D
DT

Z
V
W
S
G
E

SOP
D-PACK

ZIP
SIP
BARE CHIP
SSM

• NOTE: Direct-Replacement parts for products initiated by other manufacturers.

c8SAMSUNG
Electronics

51

NOTES

Device
KA1222
KA2201
KA2201B
KA2206
KA2206.2
KA22063
KA22065
KA2209
KA2210
KA22101
KA22102
KA22103
KA2211
KA2212
KA2213
KA22130
KA22131
KA22134
KA22135
KA22136
KA2214
KA2220
KA2221
KA22211
KA2223
KA22231
KA22232
KA22233
KA22234
KA22235
KA2224
KA22241
KA22242
KA2225
KA22261
KA2228
KA22291
KA2230
KA2231
KA22421
KA22426
KA22427
KA22429
KA2243
KA2244
KA22441
KA2245
KA22461
KA2247
KA22471
KA2248
KA2249
KA22495
KA22496
KA2261
KA2262
KA2263
KA2264
KA2265
KA2266
KA2271
KA22711
KA22712
KA2272
KA2281
KA2283
KA2284/85
KA2286/87
KA2288
KA2292
KA2293
KA2401
KA2402
KA2404
KA2407
KA7226
KA8602
LM386

Function
Dual Low Noise Equalizer Amplifier
1.2W Audio Power Amplifier
0.5W Audio Power Amplifier
2.3W Dual Audio Power Amplifier
4.5W Dual Power Amplifier
4.5W Dual Power Amplifier
4.6W Dual Power Amplifier
Dual Low Voltage Power Amplifier
5.5W Dual Power Amplifier
23W Power Amplifier
15W Dual Power Amplifier
19W Dual Power Amplifier
5.8W Dual Power Amplifier
0.5W Audio Power Amplifier
One-Chip Tape Recorder System
One-Chip Tape Recorder System
Dual Pre-Power Amplifier for Auto Reverse
Dual Pre-Power Amplifier with DC Volume Control
Dual Pre-Power Amplifier and DC Motor Speed Controller
Dual Pre-Power Amplifier, Volume Controller and
DC Motor Speed Controller
lW Dual Power Amplifier
Equalizer Amplifier with ALC
Dual Low Noise Equalizer Amplifier
Dual Low Noise Equalizer Amplifier
5-Band Graphic Equalizer Amplifier
5-Band D'ual Graphic Equalizer Amplifier
3-Band Dual Graphic Equalizer Amplifier
3-Band Dual Graphic Equalizer Amplifier
5-Band Dual Graphic Equalizer Amplifier
5-Band Graphic Equalizer Amplifier
Dual Equalizer Amplifier with ALC
Dual Equalizer Amplifier with ALC
Dual Equalizer Pre-Amplifier with ALC
Dual Pre-Amplifier for 3V Using
Dual Equalizer Amplifier with Ree AMP
Dual Equalizer Amplifier System
Quad Equalizer Amplifier for Double Cassette
9-Program Music Sel~ctor
Audio Level Sensor
AM i-Chip Radio
AM/FM One-Chip Radio
AM/FM i-Chip Radio
FM One-Chip Radio
AM/FM IF System
FM IF System for Car Radio
FM IF System for Car Stereo
FM IF System for Car Radio
Electronic Tuning AM Radio Receiver for Car Stereo
FM IF/AM Tuner System
FM IF/AM Tuner System
3V FM IF/AM Tuner System
FM Front End Portable Radio
FM Front End for FM Band
FM Front End for TV Band
FM Stereo Multiplex Decoder
FM Stereo Multiplex Decoder for Car Stereo
FM stereo Multiplex Decoder
FM Stereo Multiplex Decoder
Vco Non-Adjusting FM Stereo Multiplex Decoder
MPX for Car Stereo
Dolby B-Type Noise Reduction Processor
Dolby B-Type Noise Reduction Processor
Dolby B-Type Noise Reduction Processor
FM Noise Canceller
5-Dot Dual Led Level Meter Driver
5-Dot Dual Led Level Meter Driver
5-Dot Led Level Meter Driver
5-Dot Led Linear Level Meter Driver
7-Dot Led Level Meter Driver
AM/FM Tuner + M PX
AM/FM Tuner+ MPX
DC Motor Speed Controller
Low Voltage DC Motor Speed Controller
DC Motor Speed Controller
DC Motor Speed Controller
Dual Equalizef Amplifier with ALC
Low Voltage Audio Amplifier
Low Vol!!ige Audio Power Amplifier

Package

Page

8 DIP
8 DIP
8 DIP
12 DIP IF
12 SIP HIS
12 SIP HIS
12 SIP HIS
8 DIP
12 SIP HIS
12 SIP HIS
17 ZIP HIS
17 ZIP HIS
12 SIP HIS
9 SIP
14 DIP HIS
16 DIP
24 SOP
16 DIP
22 SDIP

55
59
63
66
74
81
87
90
93
98
105
111
117
122
127
134
138
145
150

28 SDIP/28 SOP

155

14 DIP HIS
9 SIP
8 SIP
8 SIP
16 DIP
28 SOP
20 SOP
22 DIP
24 ZSIP
18 ZIP
14 DIP
9 SIP
10 SIP
16 DIP/16 SOP
16 DIP
21 ZSIP
24 SDIP
22 DIP
9 SIP
16 DIP/16 SOP
28 DIP/28 SOP
16 DIP
16 SOP
16 DIP
9 DIP
16 ZSIP
7 SIP
19 ZSIP
16 DIP
16 DIP
16 DIP/20 SOP
7 SIP/8 SOP
9 SIP/14 SOP
9 SIP
16 DIP
16 ZSIP
9 SIP
9 SIP/16 SOP
16 DIP
16 ZIP
16 DIP
16 DIP
16 DIP
16 ZSIP/16 SOP
16 DIP
16 DIP
9 SIP
9 SIP
16 DIP
24 SDIP
24 SDIP
8 DIP
8 DIP
TO-92L
TO-126
14 DIP
8 DIP/8 SOP
8 DIP/8 SOP

159
164
169
173
177
183
187
191
195
199
204
211
216
224
229
235
245
250
257
262
272
276
285
290
296
300
308
312
317
322
327
332
336
344
352
357
367
371
376
382
386
393
400
407
413
416
420
423
426
429
433
437
443
450
456
460
466
473

LINEAR INTEGRATED CIRCUIT

KA1222

DUAL LOW NOISE EQUALIZER AMPLIFIER

8 SIP

The KA 1222 is a monolithic integrated circuit consisting of a
2-channel pre-amplifier in a 8-pin plastic single in line package.
Minimum operating voltage is 2.5 volts, thus it is suitable for low
voltage application.

•

FEATURES
•
•
•
•
•

Wide operating supply voltage range (2.5V -6V).
Low noise (VNI =1.0p. V: Typ).
High channel separation.
Good ripple rejection ratio .
Minimum number of external parts required.

ORDERING INFORMATION

SCHEMATIC DIAGRAM

R7

Fr2
07

1=l4
02x4

Rs

.2

Rs

6

7

3

Fig. 1

c8SAMSUNG
Electronics

55

KA1222

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic

Symbol

value

Unit

Vee

7.5
200
-20- +70
-40-+125

V
mW
°C
°C

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Pd
Topr
Tstg

ELECTRICAL CHARACTERISTICS
(Ta =25°C, Vee=4V, RL = 10KO, Rg = 6000, f= 1KHz, NAB, unless otherwise specified)
Characteristic

Symbol

Quiescent Circuit Current

lee

Voltage Gain (Open Loop)

Avo

Voltage Gain (Closed Loop)

Av

Output Voltage
Total Harmonic Distortion
Input Resistance

Rj

Min

Test Conditions
Vj=O

Typ

Max

Unit

2.0

6.0

mA

37

dB

0.3

%

65

80

Vo=O.2V

33

35

Vo

THD=1%

0.4

0.7

THD

Vo=O.2V

Equivalent Input Noise Voltage

VN1

Cross Talk

cr

0.1

dB

V

KO

150

Rg=2.2KO

1.0

BW ('-3dB)=15Hz - 30KHz

Rg=2.2KO

50

65

2.0

p.V
dB

TEST CIRCUIT
.-----~-__t_t_-~~~e

)-----0

9
fil
III
9

~

i

50

40

Vcc=9V
RL=80
f=lKHz

I'I'
I"-

30

---

r-

20
10

50

100

150

R~O), FEEDBACK RESISTANCE

61

KA2201

LINEAR INTEGRATED CIRCUIT

POWER DISSIPATION·OUTPUT POWER
Vcc=9V

~~~~z

0.6

POWER DISSIPATION·SUPPLY VOLTAGE
1.0

ff-

RLr
= 4O
-

I

II

0.8

z

o

~jg

0.5

r--

~

V

II

0.4

z

r-...

o

I"

a:

~
~

0.3

~

c
a:

I

w

~
~

~ 0.2

0.4

/

~
0.2

0.1

l~O

I
II
1

/ II /
/ / V
1/
II /

~

iii 0.6

.....

is

~

1

I

)'

lL ~V
1~V
~.".

0.5

1.5

P.(W), OUTPUT POWER

c8SAMSUNG
Electronics

12

16

20

Vcc(\l), SUPPLY VOLTAGE;

62

LINEAR INTEGRATED CIRCUIT

KA2201B
o.SW AUDIO POWER AMPLIFIER

8 DIP

The KA2201 B is a monolithic integrated audio amplifier in a 8-pin
plastic dual in line package, desigmtd for audio frequency class
B amplifiers.

FEATURES
• Wide operating supply voltage (3V -12V).
• Medium output power.
Po =O.5W at Vee =6V, RL =80, THD=10%.
• Low quiescent circuit current (Icc =3.5mA: Typ).
• Good ripple rejection.
• Minimum number of external parts required.
• Built-in bootstrap resistor R7 (External resistor R3 (560) of the
KA2201)

•
ORDERING INFORMATION
Operating Temperature

SCHEMATIC DIAGRAM

@--..~~~~-~~--~

cbcb

@

TEST CIRCUIT

Fig. 1

. - - - - - - - - - - - - - - - - - < 1 , - - - - 0 Vee

.J... C4
(h0.l!'

+

C7

100j 40

I
I
I

0.2

Vec =9V
RL=811
l=lKHz

60

1.2

1.4

o

50

100

150

R~II), FEEDBACK RESISTANCE

65

LINEAR INTEGRATED CIRCUIT

KA2206

2.3W DUAL AUDIO POWER AMPLIFIER
12DIP/F

The KA2206 is a monolithic integrated circuit consisting of a
2-channel power amplifier. It is suitable for stereo and bridge
amplifier application of radio cassette tape recorders.

FEATURES
• High output power
Stereo: Po =2.3W (lYp) at Vcc =9V, RL =40.
Bridge: Po =4.7W (lYp) at Vcc =9V, RL =80.
• Low switching distortion at high frequency.
• Small shock noise at the time of power on/off due to a
built·in muting circuit
• Good ripple rejection due to a built·in ripple filter.
• Good channel separation.
• Soft tone at the time of output saturation.
• Closed loop voltage gain fixed 45dB (Bridge: 51dB) but availability
with external resistor added.
• Minimum number of external parts required.
• Easy to design radiator fin.

ORDERING INFORMATION
BLOCK DIAGRAM
PRE AMP

GND

POWER AMP

INPun

NF1

GND

POWER AMP

BS1

OUTPUT1

BS2

OUTPUT2

BTL OUTPUT

GND

Fig. 1

qsSAMSUNG
Electronics

66

LINEAR INTEGRATED CIRCUIT

KA2206

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic
Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

Vee
Pd
Topr
Tstg

15
4*
-20- +70
-40- +150

V
W
°C
°C

•

* Fin is soldering on the PCB

ELECTRICAL CHARACTERISTICS
(Ta =25°C, Vee =9V, f=1KHz Rg =6000, unless otherwise specified)
Characteristic

Symbol

Operating Supply Voltage

Vee

Quiescent Circuit Current

Icc

Closed Loop Voltage Gain

Av

Test Conditions

CB

Stereo
Stereo

Output Power

Po
Bridge

Total Harmonic Distortion

THD

Stereo
Bridge

Input Resistance

V i =-45dBm

RL =40, THD=10%,

RR

Output Noise Voltage

VNO

Cross Talk

CT

Unit

9

11

V

40

55

mA

45

47

dB

49

51

53

dB

-1

0

+1

dB

1.7

2.3

W

1.3

W

RL =80, THD=10%

4.7

W

0.3

Po =250mW, RL =4(}

Stereo, Rg =00, V, = 150mV
f=100Hz

%
%

21

30

KO

40

46

dB

Stereo, Rg =00

Stereo, Rg =10KO, V o =OdBm

1.5

0.5

Stereo, Rg =10KO

c8SAMSUNG
Electronics

Max

RL =80, THD=10%

Ri

Ripple Rejection

Typ

43

Vi =0, Stereo
Stereo
Bridge

Channel Balance

Min

40

0.3

1.0

mV

0.5

2.0

mV

55

dB

67

LINEAR INTEGRATED CIRCUIT

KA2206

TYPICAL APPLICATION CIRCUIT: Stereo Amplifier

+

100p./16V
C2

INPUT 1 0 - - - - - - ,

r-It....,----__----fl-::--~-_n OUTPUT 1

INPUT 2 o---'---+__---'

L....tf............----T-----tl-=--~-_o OUTPUT 2
RL

* (polyester film capacitor)

Fig. 2

TYPICAL APPLICATION CIRCUIT: Bridge Amplifier
C2100pl16V
INPUT 0 - - - - - ,
r---+----+--~-_ovcc

+

+

Cs
1000pl16V

KA2206

Cg ,100pl16V

*(polyester film capacitor)

Fig. 3

c8SAMSUNG
Electronics

. 68

LINEAR INTEGRATED CIRCUIT

KA2206
VOLTAGE GAIN ADJUSTMENT

1. Stereo application

•

i) Fixed voltage gain
(Pin 9 connected to GND directly)

R1

Av=20 10gFi2"(dB)

SG

ii) Variable voltage gain
(Rt and C1 connected with pin 9)

R1
R2+Rf

Av=20 log - - ( d B )

2. Bridge application

i) Fixed voltage gain (Pin 9 connected to GND directly)

R2

Av =20 log A1 + 6 (dB)

ii) Variable voltage gain (R f and C 1 connected with pin 9)
Av =20 log -

R2
__ + 6 (dB)
R1 +Rf

·c8SAMSUNG
Electronics

69

KA2206

LINEAR INTEGRATED CIRCUIT
FREQUENCY RESPONSE

OUTPUT POWER·INPUT VOLTAGE
10
RL=40
R,,=6OOII
1=IKHz
Av =45dB/lKH2
STEREO I

I

Vcc~

/~

a:

11.1
~

2

~

!;
o

RL=40
Vo=OdBm
OdB = Av (\l5dB/l KH.,
-STEREO

2

l?it

1.0

7

~
III

'"

Z -4

2

~

)

0.1

-8

If

7

10

5

10

7 100

2 3

5 100 2 3 5 1 K 2 3 5 10K 2 3 5 lOOK
I(Hz), FREQUENCY

WmV), INPUT VOLTAGE

VOLTAGE GAIN·FREQUENCY

L
l

5101

40

z

cc

CJ

30

,

t"'-r--.,

~

2

~

~

10

II

o

I

'~

if

RL=40
Av = 45dB/l KH2
Rg =6000
STEREO

Q

~

>

~

5

::E
~

3

:z:

~

f= 10KHz

"-

..:: 1.0

~

~ 7
Q

--_.

I

I

I

I

-'

25

20

I

Vee~6VI

i

0

i

TOTAL HARMONIC DISTORTION·OUTPUT POWER

Vcc=9V
RL=40
Vo=OdBm
R,=600!l
STEREO

1\

lJ

III

~

........

tl

35

CJ

\

J"

-12

100Hz

...
:z:

---

Ij

J

[I

./

1KHz

3

5 7 1K

2 3

5 7 10K 2 3 5 7 lOOK 2 3
I(Hz), FREQUENCY

5

3

0.1

7

100

~ 2 _~:~~~/1KH2
STEREO
10

3

~

I I

Q

i!=

I--

7

100Hz

5

lK~Z

3

2

.....

fA

\~

'to.\ r+-

l/U

f=10KHz

I

I

I

..:: 1.0

!

I

11

2

1.0

I

I I

Q 7

o

::E
~
:z:
-'

I

P.=250mW
-RL=40
R,=6000
- Av = 45dB/l KHz
_STEREO

Vcc=9V
-R L=40

5

5 7
p.(W), OUTPUT POWER

TOTAL HARMONIC DISTORTION·FREQUENCY

TOTAL HARMONIC DISTORTION· OUTPUT POWER

~

i

2

15

Ii:
~

~

-16

5

1.0

45

civ'

,

a:

II

~=9V

j'

ffl

II

.... ~

V
II

iii

~Y--

-

Vee = 6V./

_V /

-".......,"

\

. /~

~~

I-

~~ /'

:/

9V~""

0.1
3

5

7

0.1

2
5 7
P.(W), OUTPUT POWER

c8SAMSUNG
Electronics
.

10

2

3

10 2 3 5 100 2 3 5 1 K 2 3 5 10K 2
f(Hz), FREQUENCY

3 5 lOOK

70

KA2206

LINEAR INTEGRATED CIRCUIT

CHANNEL SEPARATION·FREQUENCY

TOTAL HARMONIC DISTORTION·FREQUENCY
10

z
o

~

~

80

Vcc=9v
Rc=4D
Po = 250mW
R,=6OOIl
STEREO

3

70

z

~

2

is

~

1.0

~

7


..... 10-"
J...,;V

iii
z

I\. I'.. j....o~

....

50

Z


=><1.
<1. ...
... =>
=>0

Amp.
Amp.

~~

r-.....

3

!:i~
g>

•

60

rn

9~'O '#:~ V

l' \

Vcc=9V
Rc=4D
Vo=OdBm
R,= 10KD
STEREO

/~ ~~

'iV

VNO

3

~

2

f

-

V,

-:::::::..

Q

Vee=11V

is

V

cz:

W

~

1.0

~

7

,/

.... V
i.,...--

I

0.4

~,/

po ~7

......
VV

~ .......

2

5

........

V~
~

Jv

~ I.--" rt~

--

.........

Vtt"-- t\.

~ ~V

\

1\
~

1\

f\~, 1\

2
1OK

20K
30K
40K
SOK
Rg(O), GENERATOR RESISTANCE

BOK

0.01

70K

3

7 0.1
2 3
5 7 1.0
Po!W), OUTPUT POWER

2

3

5

OUTPUT POWER·SUPPLY VOLTAGE

POWER DISSIPATION ·OUTPUT POWER
10

10

f=lKHz
f--THD=10%
R,=6OOIl

Rc=40
f=lKHz
Using specified fin
STEREO

l/~

VV

L.,.oi.---

~~ r'\.

Rc=2D .3!2D
... 40

"' 1\

~

V V I-f-f\1\ 1\
vV
i\
V~
. /V
.. V V
1\ 1\ '
V

BV

/

v~

~

~I-""

\

~
~

2

~ 1.0

c8SAMSUNG
Electronics

V

'f/

~

I /

0.1
2
3
5 7 1.0
2
P,(W). OUTPUT POWER

ff/ /

o

II

2
5 7 0.1

~

A~

...=>

\

3

./ ~ /

cz:

3

5 7 10

Y
4

6

8

10

12

14

VcdV), SUPPLY VOLTAGE

71

KA2206

LINEAR INTEGRATED CIRCUIT

QUIESCENT CIRCUIT CURRENT ,SUPPLY VOLTAGE

QUIESCENT CIRCUIT CURRENT·AMBIENT TEMPERATURE
45

80

V,=O
STEREO

R, =6OO!l
v,=o

70

ffi

a:

550
~
i3

!Z

40

~ 30

]

/~

20

o

~
ffi
l3

./

30

5 25

a

~
E

1""

---- -- -r--

20

i

4

10

,....... ......

/'

I

3

12

~ 2
~
!:; 1.0

§

J

0

J

0.1

J

y

w

'"~

z -4

~
~

10

-t -

-_~.
--_ -

i

I

r. . . ~t\cc=9V
I

,

6V\r\

i
!

j

I

~i

I

II

\\

I

I
I

I

i

\

I
10 2

7 100

I

3 5 100 2

3 5 1K

2 3 5 10K 2

--l--f---j-.--

-+-+-t---+--+--1

r---r---- --1--+----+-1--1
I--+---r-+-I---fl/r-T-~

7 f-

TOTAL HARMONIC DISTORTION·OUTPUT POWER

z

I

I

lii

is 10

/J

~ 7
~

c(

I

Vcc =9V
Rl =80
Av =51dB
R,=6000
BRIDGE

5

~ 3
~ 2

o

51----

II

5

I
L

c(

J:
...J

1-

_ __ t-----..:.=
h
l1.0 I--T--r---+----J ------ -- +/-1,.T1,+--r--i---l
2

10KHz

---I---

~

-~-- - - - -

3 -I--

100Hz

--1-1KrZ -

...... _ "
-

-

3 5 100K

!(Hz), FREQUENCY

...J

I-

I
,

I .
I

I

-16

:I:

~

80

I

I

I

100
7

1---- -

70

I

I

2 f- t-

c

~

,

-12

TOTAL HARMONIC DISTORTION·OUTPUT POWER

U

J 'I

~

I-itt

60

i

100
71- Vcc =6V

z

50

40

.I.

V ""
J

iii'
:!!.

i

Rl = all
R,=6000
3 I- Av = 51dBI1 KHz
BRIDGE
i

30

t---

-8

5

20

6V

7 10
v,(mV), INPUT VOLTAGE

o
~

10

Rl=all
II
R,=6000
Vo=OdBm
1-0dB = Av (51dB11 KHz)
BRIDGE

I
Vcc:;':v r--- - --

/

r---

r--..

FREQUENCY RESPONSE

/

I

5

-i

15
-2C -10

14

/,....... ~

7

r---

r--_

T,(·C), AMBIENT TEMPERATURE

+-

Rl=all
I
R,=6000
f=1KHz --\-A v =51dBI1KHz
BRIDGE
I
I

o

'--

6V

--

OUTPUT POWER·INPUT VOLTAGE

ffi

Vcc=9V

--r--

Vcc(V), SUPPLY VOLTAGE

10

r--__

I

]
I

o

35

u

.I

10

~
~
5
~

",

/

~

w

1;l

a
~

40

I-

ffi
:i80
::>
u

~
e
1.0

--

f-.

f= 10KHz

-" 7

C
c
i=

5

100Hz

3

------1---

.J.

L
r

k::::::: ';/

TZ
0.1

5

7

0.1

5 7 1.0
P.,(W), OUTPUT POWER

c8SAMSUNG
Electronics

5

7 0.1

2

3
5 7 1.0
2
p.(W), OUTPUT POWER

3

5

7 10

72

KA2206

LINEAR INTEGRATED CIRCUIT
POWER DISSIPATION·OUTPUT POWER

TOTAL HARMONIC DISTORTION·FREQUENCY
10

100

~
~

o

RL =8{J

RL =80
t- Rg=6oo0
Po = 250mW
3 t-Av =51dB
2 BRIDGE

I-f = 1KHz
Using specified fin
I-BRIDGE

~ 10

~

g

5

1

3

0:

I,

r--~

~
:
I>:

12~

30

;:)

!::

r---

;:)

...Z

Icc

20

(

w

(,)

f3

;j

]

10

"."
o

,"
-'

V

.V

./
v,.

V

~

0

>

7

~ --

,.....

1--- t--

- - r--- t----

-

!:i

!:i
0

>

~
~

~
..:

40

V

0

...::
CD

20

>

--

!

i

o

w

CJ

..:

8~

4

•

CJ

z

ii:

--f--

VlO

z
;;:

0

V-

(,)

I>:

U

60

~

(,)

a

8

12
Vec(V), SUPPLY VOLTAGE

16

2 3

20

5 100

3

5

1K

3

5 10K

1I111II

11111II

Vee -9V
RL =40
f,=100Hz_l-V,=0.2V

-20

z

o

i

!;3

~
~

_

~ -40

-40

a:
t-

~

'"~

o-

V

1-1-

3 5 10K

3

....

a:

iii'

5 100K

RIPPLE REJECTION·GENERATOR RESISTANCE

Vee =9V
RL =40
V,=0.2V
Rg=6000

-20

3

!(Hz), FREQUENCY

RIPPLE REJECTION· FREQUENCY

z
o
;:::

RL=411
,_
Vo=0.775V
R,=82!l

cr -60

I>: -60

-80

2 3

5 100

3

5 1K

3

5 10K

3

-80 2 3

5 100K

5 100

3 5

1K

5 100K

Rg(O), GENERATOR RESISTANCE

!(Hz), FREQUENCY

CROSS TALK·FREQUENCY

OUTPUT NOISE VOLTAGE·GENERATOR RESISTANCE
1.6

-20

1111111

I

1111I1I
vcc=9V
RL =40
Rg=6000

Vee =9V
RL =40
BW=20-20KHz

!

w

~ 1.2

I-

Vo=OdBm

!:i
o

>
!!l
w

o

;:: 0.8
;:)

~

~~

'" \

-60

.....

.., ~

;:)

a

S

.....

I/'

E

J

0.4

/

II

~ .....
-60
2 3

5 100

3

5

1K

3 5 10K

f(Hz), FREQUENCY

c8SAMSUNG
Electronics

3

5 100K

2 3

5 100

3 5

1K

3 5 10K

3

5 100K

Rg(O), GENERATOR RESISTANCE

77

KA22062

LINEAR INTEGRATED CIRCUIT
POWER DISSIPATION·OUTPUT POWER

POWER DISSIPATION·OUTPUT POWER

l

Vee =

/'

z

o

~
iii

!!l

RL=1 411
f=1KHz

12t

r- .........

/

3

I

c

',-r-f...,. i"'--

II:

~

~ 2

I

o

r-.. . .

I

'I

I'

I~ r.!2..

,/

6V

o

o

2

3

4

RL=411
f=1KHz
Vo=0.775V

o
~

::I!

2

3

4

TOTAL HARMONIC DISTORTlON·AMBIENT TEMPERATURE
l
Vcc =9J
RL=4!l
Vo=0.775V

z

r-- -

o

~

~ 1.0

i-+

7

is

7

~

5

'..."

3

o

'-

II:
:I:

f-----

1.0

o

...'"

o

P,(W), OUTPUT POWER

I I-

z

o

i"-- ..........

.........

TOTAL HARMONIC DISTORTION·SUPPLY VOLTAGE

Z

......... ................

IV""

P.(W), OUTPUT POWER

~is

-

'311

I

~

Vee=9V
f=1KHz

-r-.

/'

9V

§ (
(

'RL=b

r--

f

./

~

5

:I:

~
~

e'"

,

1KHz

I

...::

~

V
,-"r-

2

e:

0.1

10KHz

k---'r-"

l

~"

V

..V

,/

~i"'"

100Hz

r--< -

- 1---

0.1
4

-40

14

8
10
12
Vcc(V), SUPPLY VOLTAGE

-20

II

1

f=\KHZ
THD=10%- r--

z

o

J

~ 10
~ 7

J

I

f

II

f=1KHz
RL=411

~ 5
o

II

J '~Il

Z

3

~

2

o

311

RL=2!l1

100

TOTAL HARMONIC DISTORTlON·OUTPUT POWER

OUTPUT POWER·SUPPLY VOLTAGE
10

I

80

0
20
40
60
T.('C), AMBIENT TEMPERATURE

Vee=6V
12V

9V

'"~ 1.0

VJ

:I:

e

'IV

VJ 'I

............

.~~

h

i"'"

~'

0.1
12
16
Vcc(V), SUPPLY VOLTAGE

c8SAMSUNG
Electronics

20

24

0.Q1

2 3

5

0.1

2 3

5

1.0

2 3

5

10

P,(W), OUTPUT POWER

78

KA22062

LINEAR INTEGRATED CIRCUIT

TOTAL HARMONIC DISTORTION·OUTPUT POWER

TOTAL HARMONIC DISTORTION-OUTPUT POWER

II
~

10

~

5

~

3

I

2

e
o

I

~
a:

7

-"

5

h

Z

3

I

2

o

r

«(

"""'<::1:$1!

Fli

2 3

5

~

2 3

5

Q

5

0.1
2 3 5
1.0
p.(W), OUTPUT POWER

2 3

~

a: 30 -

~

-

~

2

r----- 6~

~

iii
(,)

RL

13

~

30 III
V I 40

r::

r

0.1
0.01

2 3

5

0.1

2 3

~

20

5

1.0

~

,/

g

1-----

./

V"

Z

c::

,;'

-

:;

;::--.

V"

20

0
.......::::~

--

V

C3

~

3

10

5

I

f----

::>

(,)

«(

:z:

III
2 3

i

(,)

7
5

Vi

QUIESCENT CIRCUIT CURRENT .AMBIENT TEMPERATURE
OUTPUT PIN VOLTAGE

§

1.0

...

Vcc=9V

5

:;i!

r-t-nTI

I.

~

~
o 7

b

-.;;:::~

Z

40

Vcc=12V
f=lKHz

o 10

3 --

0.1
0.01

10

II I
z

1KHz

.... ....

~

1-40

0.1
2 3 5
1.0
p.(W), OUTPUT POWER

7

~ 5

20"/1
,...,-30

TOTAL HARMONIC DISTORTlON·OUTPUT POWER

~

•

f= 10KHz

11'-l+-

~

0.01

£

1.0

e
RL

~

0.1

~

-fo-

:z:

:;i!

i!:

a:
:z:

7

~ 5

Q

Z
o

I

(,)

e

Q

RL =40

10

e

~ 1.0

Iii

v~~~J,

z

7

~

~

•

III

Voo=9V
f=lKHz

z

..,,/'

/'

4

Icc

o

•

"/

~
~

:>

i

2-;;

10

]

!

i
I

I,

I
2 3

I
5

10

-20

P.(W), OUTPUT POWER

:

20

40

80

60

T,(°C), AMBIENT TEMPERATURE

POWER DISSIPATION·SUPPLY VOLTAGE

OUTPUT POWER·AMBIENT TEMPERATURE
12

f=11K~Z

10

z
o

;:::

./

if

8

~

,/'

Q

ffi

,/

6

-

~

V V
J / /'
3ri~[J/

/

~

l
Vcc =9V
f=lKHz
THD=10%

RL =20

/' /lL
4

.......

V

/

/

v V/

...... 1.--"
o
-40

o
-20

20

40

60

T,(°CI. AMBIENT'TEMPERATURE

c8SAMSUNG
Electronics

60

o

8

10

12

14

16

Vcc(V), SUPPLY VOLTAGE

79

KA22062

LINEAR INTEGRATED CIRCUIT

APPLICATION CIRCUIT
~--------~~--nvcc

+
C10

INPUT1

22001"

o-----~
~-----'

/V
-l-

]

/'

V

(3

....

w

>

Z

c;:
C!l

w

Z

C!l

....
:::>
c..
....
:::>

0

ii:

0

~

RL =4n
Vo=0.775V
R,=82n

60

C!l

~

40

>

.....::

'"

~



20

-t

1

o

/i

I

I

I
I

o

12

20

16

2 3

5 100

2 3

5

Vcc(V), SUPPLY VOLTAGE

1K

2 3 5

10K

2 3 5 100K

f(Hz), FREQUENCY

1

TOTAL HARMONIC DISTORTION-OUTPUT POWER

TOTAL HARMONIC DISTORTION-OUTPUT POWER

II

z
o
~

IUJ

I

Vcc=~V

I

RL =4n

10

~

~

~

10

~Q

Q
()

<)

Z

Vj
~f

Z

o
~

I-


UJ

(/)

......... ~

0
....

z

.......

r-

'-~

.8

=>

/V

"1\

c..

Il

!:;

/

/V

0

S

~

-60

I

-80

2 3

5 100

2 3

.4

>

I
5

1K

2 3

5

2 3

10K

..- ....
o2

5 100K

I

J

-L&J

I!l

30

(3

)/

0

~

::;

0'

;;t

10

./'
V

Z

I

'£

20

L&J

>

./

V'/., VlO

a:

]

~

0

./

!::

:::>
0

....

5

1K

2 3 5

10K

2 3

5 100K

OUTPUT POWER-AMBIENT TEMPERATURE

Vcc=9V

Z

2 3

QUIESCENT CIRCUIT CURRENT
OUTPUT PIN VOLTAGE-AMBIENT TEMPERATURE

....

~
~

5 100

R,(Q), GENERATOR RESISTANCE

40

:::>
0

3

'(Hz), FREQUENCY

./

ii:

4

-f--

.-~

-.

---

r--

-i-- -

2

~

....
:::>

0

0

S

~0V

a:

~

....

~:::>

'"
->
:t

II

Vcc=9V
,
f=1KHz
THD=10%

~

I

~

V

./'

V""
,

I

I
o

-40

-20

20

40

60

Ta(OC), AMBIENT TEMPERATURE

c8SAMSUNG
Electronics

80

o
100

- 40

- 20

20

40

60

80

100

Ta(OC), AMBIENT TEMPERATURE

86

PRELIMINARY

KA22065

LINEAR INTEGRATED CIRCUIT

4.6W DUAL POWER AMP

12 SIP HIS

The KA22065 is a monolithic integrated circuit consisting of a
2-channel power amplifier with power onloff (stand-by switch)
function. It is suitable for portable radio cassette recorders.

•

FEATURES
•
•
•
•
•
•
•
•

2-channel amplifier: 4.6W x 2 (typ.)
Low quiescent circuit current: Icc = 21 rnA (typ.)
High output (Po =4.6W, Vee = 12V/8W)
Small pop noise at power on
Minimum external parts required
Supply voltage: 6 V to 15 V
Includes the thermal protection circuit
Connect HIS to GN 0

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM

INPUT1

RIPPLE

INPUT2

Fig. 1

c8SAMSUNG
Electronics

87

PRELIMINARY

LINEAR INTEGRATED CIRCUIT

KA22065

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Symbol

Value

Unit

Vee
10 (peak)

20

V

2.5

A

12.5
-20- + 70
-40- + 150

W
°C
°C

Characteristic
Supply Voltage
Output Current (Channel)
Power Dissipation
Operating Temperature
Storage Temperature

Pd
Topr
Tstg

I

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 9V, RL = 40, f = 1KHz, Rg = 6000, unless otherwise specified)
Characteristic

Symbol

Quiescent Circuit Current

Test Condition

P02
Total Harmonic Distortion

---

Max

Unit

21

45

mA

THD=10%

2.0

2.5

THD=10%, Vee=12V

4.0

4.6

f--------- f---- .-.-.. - .. -... - ---..

P01
_.. _._ .._--_.... _-

Output Power

Typ

Vj=O

lee

-~

Min

--1------'

THO

--f.--------

AV 1

Voltage Gain (Closed Loop)

Po= 1W/CH
------~--------------

-- -

AV 2

.~

1-----

54.5

-

VNO

47

dB

56.5

58.5

dB

30

36

KO

-

24
---

Output Noise Voltage

45

%
C'"

Rf = 00, Vo = 0.775V
-~---------------

0.9

---

Rj

Input Resistance

W

0.2
43

Rf =1200, Vo=0.775V

W

-----------

._--

--

0.3

Rg = 10KO, BW = 20Hz-20KHz

.--

1.0

i· ..·---·

mV

---

Ripple Rejection Ratio
-~

Rg = 6000, f = 120Hz

44

C.T

Rg=10KO, Vo=OdBm, f=1KHz

40

- - - - -1-----'--.----

Cross Talk
Input Offset Voltage

RR

- - . - - - - ---- .. - -

- - _ . _ _ _ _ _ _ _ 0_ _ _ 0 _ -

----

c8SAMSUNG
Electronics

Isb

SW10ff

--

dB

50
-

"-

_._------

dB

-

V 5 , V7

Stand By Current

52

--

..

_-

30
------------

1

-_ •• ___ 0.'

60
------

20

-

...

mv

t-----···

Jl.A

88

PRELIMINARY

LINEAR INTEGRATED CIRCUIT

KA22065

TEST AND APPLICATION CIRCUIT
47iJ.

Vcc 1
NF2

KA22065

OUTPUT1

'CIN

tfj---------'o

INPUT1 G - - - - - - I ' t - - - - - - - - '

INPUT2

Fig. 2

c8SAMSUNG
Electronics

89

•

KA2209

LINEAR INTEGRATED CIRCUIT

DUAL LOW VOLTAGE POWER AMPLIFIER
The KA2209 is a monolithic integrated audio amplifier in a 8-pin
plastic dual in line package. It is designed for portable cassette
players and radios.

8 DIP

FEATURES
•
•
•
•

Wide operating supply voltage: Vee =1.8V -9V
Low crossover distortion
Low quiescent circuit current
Bridge/stereo configuration

BLOCK DIAGRAM
ORDERING INFORMATION
Operating Temperature

Vee

Fig. 1

c8SAMSUNG
Electronics

90

KA2209

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

i

Supply Voltage
Output Peak Current

(Ta=25°C)

Symbol

Value

Unit

Vee

15
1
at Tamb=50°C 1.0
at Tease = 50°C 1.4
-20- + 70
- 40 - + 150

V
A

10 (peak)

Power Dissipation

Pd

Operating Temperature
Storage Temperature

Topr
Tstg

I

W
°c
°c

.

ELECTRICAL CHARACTERISTICS
(Ta =25°C, Vee =6V, f=1KHz, unless otherwise specified)
Characteristic

Symbol

Operating Supply Voltage
Quiescent Circuit Current
Closed Loop Voltage Gain

Vee
lee

Av

I

_.-c----

Vee =6V, RL =40, THD=10%J

0.4

Vee=6V, RL =80, THD=10%

I
I

0.9

Vee =3V, RL =40, THD=~

Input Resistance

c8SAMSUNG
Electronics

I

Ri

I

Stereo, f=1KHz

.

I

0.35

10.5

..

(---I

I Bridge, R =80, P =0.5W ...
o
L

-RR--r&e;~~~F 1- ~~
VNo-~eo, BW(-3dB)=20HZ-20~

r--------~----------4_

W

-

100

W

1.35
I

:=R=iP=p=le=R=e=je=c-t_i-o_n=-=..-=.-_-____- = _ +
I

0.65

THD=100~ _.?~

f----------------lI-----·-t----s-te-re--o~,-R-L=-8-O-,-P-o-:"oiN

Output Noise Voltage
f---C-ro-s-s-Ta-Ik------------+[-·CT

I

. dB
~

~--~~--- ---~

Vee =3V, RL =40,
.
Bndge

~. THO

40

-----t-----t--A.
I ste:preo
Bridge--------+--~l:
~~~
dB
_~_____ --1__-1
_~ ~_~_
Stereo

Total Harmonic Distortion

Unit

- - - - - - - - - -.. - - -

Po

Output Power

Max

1.8
9
V
-----------j----------g------r-mA

--f-----~-_s;;:;o---·---·------I-

--r---~

Channel Balance

Vi =0

Typ

Min

Test Conditions

I

I
I

W

f

W

I

%
I

0.5

3~
0.5
50

i

I

%

dB
2.0

mV
dB

"1

KO

91

KA2209

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT 1: STEREO

vee

INPUT 1 cr----.-----t----i
C44701'
0.11'

1
R3
4.7

INPUT 2 o - - . . - - - - - - f - O - - - i

R2

Rl

Rl

10K

4

Fig. 2

TEST CIRCUIT 2: BRIDGE

INPUT ~--.----+---I

Rl

Fig. 3

c8SAMSUNG
Electronics

92

LINEAR INTEGRATED CIRCUIT

KA221 0

12 SIP HIS

S.SW DUAL POWER AMPLIFIER
The KA2210 is a monolithic integrated circuit consisting of a
2-channel power amplifier. It is suitable for stereo and bridge
amplifier application in car stereos.

•

FEATURES
• 2-channel amplifier: 5.5W x 2 (Typ).
• Minimum number of external parts required.
• Small shock noise at the time of power on/off and good starting
balance.
• High ripple rejection ratio: 46dB (Typ).
• Good channel separation.
• Small residual noise. (Rg=O)
• Include various kinds of protector;
Thermal protector.
Surge and over-voltage protector.
Vee and output short protector.
• Connect HIS to G N D

ORDERING INFORMATION
Device

BLOCK DIAGRAM

KA2210
KA2210G

Package
12 SIP HIS
PELLET

Operating Temperature
-20 -

+ lOoe

POWER AMP GND
NF1

NF2

Fig. 1

c8SAMSUNG
Electronics

93

KA221 0

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS {Ta = 25°C)
Characteristic
Maximum Supply Voltage
(Quiescent)
Maximum Supply Voltage
(with Signal)
Surge Voltage (t~0.2 sec)
Maximum Output Current
(1-Channel)
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

Vee (max 1)

25

V

Vee (max 2)

18

V

Vee (Surge)

50

V

10 (peak)

3.5

A

Pd (max)
Top,
Tstg

15
-20 - + 70
-40 - + 150

W
DC
DC

ELECTRICAL CHARACTERISTICS

D
(Ta=25 C, Vee = 13}V, RL =40, f=1~Hz, Rg=6000, 100x100x1.5mm3 AI HIS, unless otherwise specified)
Min

Typ

10

13.2

16

V

75

150

mA

51.5

53.5

dB

0.15

1.0

Characteristic

Symbol

Operating Supply Voltage

Vee

Quiescent Circuit Current

Icc

Vi=O

Output Power

Po

THO = 10%, Stereo

5.0

5.5

Voltage Gain

Av

Po=1W

49_5

THO

Po=1W

Total Harmonic Distortion
Input Resistance
Output Noise Voltage

Test Conditions

0.6

1.0

mV

Rg = 10KO, BW( - 3dB) = 20Hz.::. 20KHz

1.0

2.0

mV

Ripple Rejection Ratio

RR

Rg=O, V,=200mV, f=100Hz

Sep

Rg = 10KO, Vo = OdBm

Electronics

%
KO

Rg = 0, BW( - 3dB) = 20HzF- 20KHz

Channel Separation

c8SAMSUNG

Unit

W

30

Ri
VNO

Max

45

46

dB

55

dB

94

KA221 0

LINEAR INTEGRATED CIRCUIT

TYPICAL APPLICATION CIRCUIT: STEREO

POWERGND

INPUT 1

•

n-----{
RL4fl

INPUT 2 0 - - - - \

100"

·mylar capacitor

10V

Fig. 2

APPLICATION CIRCUIT: BRIDGE

IN PUT o---I----{

RL4fl

0.1"

+

1

100"

4.7

• polyester film capacitor

Fig. 3

c8SAMSUNG
Electronics

95

LINEAR INTEGRATED CIRCUIT

KA221 0
OUTPUT POWER·INPUT VOLTAGE
10

7
5

..l--

/

~~==4~3.2V

;'

/
V

....

~

!;
o

~

3

_

R,=6OOIl 1=IKHz
STEREOr--

V

rr: 1.0
~ 7
~ 5

QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE
150

V
I

1

/

~

120
V,=o

0

5

90

~

13

....

L

0.1

....

§

ffi

0

J

-.--:-----~

----

-

..-

-----

/

60

ffi

,....,,,--

:;

"

....
::>

Q:/ ~
~.,OIO
Q'l
\)°1 0

w

~

V'~ ""1

\

~
o

rr:

I

V',

J

~/1
20

I

L

10K 2 3 5 lOOK

I

24

I

i

3

...::

j!:

,

II

~

:I:

~

I

II!

5 lK 2 3 5
I(Hz), FREQUENCY

RL = 411

\

o

c(

--+-_

I

I

2 3

28

,~ -+ iH<'''~
~T~~~~_
I

100

OUTPUT POWER·SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION·FREQUENCY

Q

5

5

10

'I

12

13

14

15

16

17

18

Vec(V), SUPPLY VOLTAGE

96

KA221 0

LINEAR INTEGRATED CIRCUIT

POWER DISSIPATION·OUTPUT POWER

OUTPUT POWER·SUPPLY VOLTAGE
12

R~=~O

rrz

-r..
;rJ_

10

z

,'0-.\'..,-

7

(ii

~

5

r-...

, / ~~
/'
'-lcF)-:./ /'

a:

~

~ 3
"","'"

V /"'"
V

~

6

~

V
/'

I

.-IV

I . II
II

I
I

5 7 0.1

•

VI

I

I

2 3

8

o
I

I
:

1.0

ffi

~...

"

i\

./

V

I

I

o

~

10

!

RL =40
f=1KHz
THD=10%
STEREO

i

2 3
5 7 1.0
2 3
P,(W), OUTPUT POWER

5

if'

10

10
12
14
16
Vcc(V), SUPPLY VOLTAGE

18

20

OUTPUT NOISE VOLTAGE~SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION·SUPPLY VOLTAGE

R,lo

RL =40
STEREO
I

I

w

~
o

>

2

w

I

rJ)

oz
...:::>

o

I

~ 7

~

..:

o

0.1

I

~ 1.0

I
P,=0.1W

i=

I

.-

,r

f----''I'---"!---+--+--..,....--t----j
10

12

14

16

20

18

Vcc(V), SUPPLY VOLTAGE

10

12

14

16

18

20

Vcc(V), SUPPLY VOLTAGE

CHANNEL SEPARATION·FREQUENCY
70

Vcc=~3.2V

,

I
I RL =40
:R g =10KO I Vo=OdBm

I

I
I

60

50

~

~
z
z
~
o

!

I

z
o

~

I

V

V

",.

.............. ,

I

i

40

:

II
30
!

if

I

~ 20

~

i
r

10

+.......,'

.......

i

i

lcdd-

It~~~k7
Cf.(7~Cf.(2

_

!

i
I

I

I
2 3

5 7 100 2 3 5 7 1 K 2 3
f(Hz), FREQUENCY

5 7 10K 2

c8SAMSUNG
Electronics

3

5

97

KA22101

LINEAR INTEGRATED CIRCUIT

23W POWER AMPLIFIER
12 ZIP HIS

The KA22101 is a 23W power amplifier suitable for car
audio and it can be used in bridge applications.
It is designed for high power, low distortion and low
noise, in step with trends in new hi-fi car stereo
systems.
And this device includes various kinds of protection circuit for car.

FEATURES
• High Power
Po1 =23W (Typ) at Vee = 13.2V, Rl = 40, THD=10%,
f=1KHz
P02 = 26W (Typ) at Vee = 13.2V, Rl = 3.20,
THD=10%, f=1KHz
• Wide Output Range
Po3 =18W (Typ) at Vee=13.2V, Rl =40,
THD = 1 %, f = 50Hz -'- 20KHz
• Low Distortion
THD = 0.015% (Typ) at Vee = 13.2V, f = 1KHz,
P o =4W, Rl = 40
• Include various kinds of protection circuit
: Temperature, Overvoltage, Output pin to Vee
short, Output pin to GND short, Load short protection.
• Wide Operating Voltage: Vee = 9V - 18V
• Connect HIS to GND

ORDERING INFORMATION

BLOCK DIAGRAM
vee

RIPPLE FILTER

6

PRE GND

3

NF1

NF2

Fig. 1

c8SAMSUNG
Electronics

98

KA22101

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta

=25°C)

Characteristic

Symbol

Test Condition

Value

Unit

Surge Voltage
Maximum Supply Voltage
Maximum Supply Voltage
Maximum Output Current
Power Dissipation
Operating Temperature
Storage Temperature

Vee (surge)
Vee (max. 1)
Vee (max. 2)
10 (peak)
Pd
Topr
Tstg

t=0.2 sec
Vj=O
with signal

50
25
18
9
25
- 20 - + 70
-40 - +150

V
V
V
A
W
°C
°C

•

ELECTRICAL CHARACTERISTICS
(Ta= 25°C, Vee = 13.2V, RL = 412, Rg = 60012, f = 1KHz, unless otherwise specified)
Characteristics
Quiescent Circuit Current

Output Power

Total Harmonic Distortion
Voltage Gain
Output Noise Voltage
Ripple Rejection Ratio

Symbol

Test Conditions

Min

Typ

Max

Unit

120

200

mA

lee

Vj=O

POt

THD= 10%

20

23

P02

THO = 10%, RL = 3.212

22

26

W

P03

THO = 1%, f = 50Hz - 20KHz

15

18

W

THO
Av

Po =4W
V j = -50dBm

39.5

0.015

0.1

%

41

42.5

dB

VNOt

Rg = 0, DIN45405 (Noise Filter)

0.25

VN02

Rg = 10K12, BW = 20Hz - 20KHz

0.35

RR

c8'SAMSUNG
Electronics

f = 100Hz, Vr = OdBm

40

W

47

mV
0.9

mV
dB

99

KA22101

LINEAR INTEGRATED CIRCUIT

TEST AND APPLICATION CIRCUIT
O~--.-------,

Vee

+
1K
~---~--

INPUT}-,
30K

820

1
Fig. 2

PIN DC VOLTAGE
(Typical value in the test circuit, Vee

=13.2V, Ta =25°C)

Pin No.

1

2

3

4

5

6

7

8

9

10

11

12

DC Voltage (V)

1.95

0.01

GND

0

1.95

6.6

6.6

12.5

GND

Vee

12.5

6.6

qsSAMSUNG
Electronics

100

LINEAR INTEGRATED CIRCUIT

KA22101

PRECAUTIONS AND APPLICATION METHODS
1. VOLTAGE GAIN CONTROL
When feedback resistor Rt1 couples with the external
parts, as the temperature characteristic is better than
being built into the I.C., and the KA22101 obtains
stabilized gain.
If Ro»Rt1>Rt2' voltage gain (A v) is
Av = 20 log RRt1

•

+ 6 (dB) (Ro = 20KQ)

t2

Because Pin 12 has the center voltage level of the output
and the current I is supplyed with Rt1 and Rt2, it is
recommend that Rt1 and Rt2 are not use a at values that
are too small.

Fig.3

2. OSCILLATION SUPPRESS

For using a capacitor for getting rid of oscillation between the output and GND or another output, in order to reduce
the temperature influence (especially when uses the ceramic capacitor), a polyester film capacitor is recommended.
Also, the value of this capacitor must not exceed the recommended value and oscillation margin range (temperature
assurance range) should be confirmed through a temperature test.
Especially when an IC is used with the low voltage gain and with the amount of feedback increased,so the phase
inverses at a high frequency range and the oscillation is liable to be produced, the value, type and mounting position
of the capacitor must be considered before using it above Av = 40dB.

3. ASO CIRCUIT
The IC contains protection circuits of an output-Vee fault, output-GND fault, and output-output fault.

OUTPUT-GND

I
,----

BIAS

OUTPUT-OUTPUT
DETECTION

THYRISTOR

I

I

OUTPUT-Vee
DETECTION

_....

leoRIPPLE

Fig. 4

c8SAMSUNG
Electronics

101

KA22101

LINEAR INTEGRATED CIRCUIT

4. RIPPLE REJECTION
Vee

+

V01

V1

INPUT

RL

820P

I

V2
V02

100!,

Fig. 5
When the value of the ripple capacitor is small, the following influences are expected:
(1) If the C-ripple is small (recommended value = O.033p.F), a ripple figure is produced equal to the output of gain
1 through the phase inversion amp of the primary stage.
This becomes input signal V1 & V2 at the power amp stage.
(2) V1 and V2 are amplified to V1 and V2 at the power stage and IV o1 - Vo2 1 appears as output ripple voltage when
the BTL is operated.
The characteristics of ripple rejection is determined by:
1. gain dispersion of power stages CH1 and CH2
2. the dispersion between the external feedback resistance (RI1' R12, Rw , Rid and the internal resistance.
$0, as the pair characteristics (CH1, CH2) of external feedback resistance control the ripple characteristics,
it must be used with highly precise resistance which has both characteristics.

5. CAPACITY OF RIPPLE FILTER
The protector ON/OFF time constant of the KA22101 is determined by the capacity of Pin 6 (ripple fitter).
If the capacity of ripple capacitor increases, the ripple rejection improves, but it is achieved at the risk of two problems:
1. Sound interruption at over-input.
2. Reduction in the protector strength for the short of output-Vee, output-GND, output-output.
So a ripple capacity of O.033p.F is recommended.

c8SAMSUNG
Electronics

102

KA221 01

LINEAR INTEGRATED CIRCUIT

QUIESCENT CIRCUIT CURRENT-SUPPLY VOLTAGE

OUTPUT POWER-SUPPLY VOLTAGE

250

50
V;=o

....

ifi

~

ex:

0

ex:
(j

~
....

//

....

I

50

•

o

§

IV

0

30

~
::>

'/

100

;t

-%
-"l

~

. . . .V

....

:; 150
0

ifi0
ffl
:;

1=1KHz
- - - THD = 10% -

40

200

20 - - .

10

I

10

15

20

25

30

12

20

16

VecM, SUPPLY VOLTAGE

VedV), SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION-OUTPUT POWER

TOTAL HARMONIC DISTORTION-OUTPUT POWER

z

~

3
2

Iii

1.0

0
0

C

:>

r--r-- 1=1KHz
RL =4(l

r-f-

Q

:~,

~

I~

',>

II~'I e"

0

Z

0

~

..J

_
0
:.
....

~
c

0'1~11~;I.tl
100Hz

:r
....

I

~

1=10KHz

I--+-!H-++t-+t---+- 1 ~HZ +t+ti-t-I--It--t-i--H

.J

;:

I

II

..J

0.1

~
-"

~
c
~

I Ii

I
'-"
./

I0.01

3

2

1.0

5

10

3

2

2

1.0

3

10

3

2

POWER DISSIPATION-OUTPUT POWER

TOTAL HARMONIC DISTORTION-FREQUENCY
30

10

H

1-

i

Vee 13.2V ffPo =15W
RL =4(lr--f-

z

0

~

\

0

Iii

C

25

z

0

1.0

~
iii

0

Z

2i

ex:

ct

!

..J

~

~

10

\

c

\

:r
....

....... V
o

2 3

5

100

2 3

5

1K

2 3

I(Hz), FREQUENCY

c8SAMSUNG
Electronics

5

10K

2 3 5

Vee

I 1II/i -..
1/1

\-

0.01

i...../:

:r

/

0.1

I

15

~

:r

i

1=1KHz
RL =4(l

--~----

I

20

IJl

0

:E
ex:
ct
....
~

3

Po(W), OUTPUT POWER

Po(W), OUTPUT POWER

zv~

'Z"

---

-

-~~

--r--..

-.......
""'-

""'-,

!
{)

16V-

10

20

30

40

Po(W), OUTPUT POWER

103

KA221 01

LINEAR INTEGRATED CIRCUIT
RIPPLE REJECTION RATIO-FREQUENCY

OUTPUT NOISE VOLTAGE-GENERATOR RESISTANCE
.8

i

III
Vee = 13.2V
RL=4Q

I I

0

~

-20

r-

~:;g~I'F

z

I

IIII

I

Vee = 13.2V
RL=4Q

UJ

CJ

~

i

>

!3

UJ

'"0z

L1I

a:

L1I

i

-40

....
::>

I

-'
D.
D.

I

::E

...::

'J

-60

_..

.. r--

-

V

I
I

-

0

III

~

.4

D.
....
::>

a:
a:

.6

0

0

iil

I

.2

I

-80
2 3

5

100

2 3

5

1K

2 3

5

10K

2 3

5

2 3

I(Hz), FREQUENCY

5

100

23

5

1K

2 3

5 10K

2 3

5 100K

R,(Q), GENERATOR RESISTANCE

QUIESCENT CIRCUIT CURRENT
OUTPUT PIN VOLTAGE-AMBIENT TEMPERATURE
250

I

I

= 13.2V
I--- _ Vee
V,=O

~

6.8

i

(.)

:;

I

200

a:
a:

::>

....

150

(.)

a:

V

U

i
I

-

~:;
]

CJ

6.6

+-~
!

100

~

0

>
z

ii:

6.4

....
::>
D.
....
::>
0

Icc

CI

~

L1I

I

VN

....

ffi

--

i

~

>
50

6.2

o
-20

20

40

60

80

Ta(OC), AMBIENT TEMPERATURE

c8SAMSUNG
Electronics

104

KA22102

LINEAR INTEGRATED CIRCUIT

15W DUAL POWER AMP

17ZSIP HIS

The KA22102 is a monolithic integrated circuit consisting of a
2-channel15W power amplifier for car stereos. It is designed for
high power, low distortion and multi functions. Since it uses an
excellent 17-pin package, thermal characteristics are good with
high performance.

•

FEATURES
• High power: 15W12-Ch
(Vec=13.2V, f=1KHz, THD=10%, RL=4n)
• Minimum number of external parts required
• Low distortion: THO = 0.04%
• Low noise: Vno = 0.25mVrms
(Vee = 13.2V, RL=4n, Rg =10Kn, A v =40dB,
BW = 20 - 20KHz)
• Built-in stand-by and mute function
• Protector: Thermal shut down
Over voltage protection
DC short protection with Vee-output and GND
AC short protection with each output channel
• Operating voltage range: Vee = 9 -18V
• Connect HIS to GND

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM
Vee

Vee

Vee

STAND-BY
CONTROL

OUT1 (+)

GND

MUTE
CONTROL

FUNCTION
&
PROTECTION

1

GND

,OUTPUT1 ( - )

INPUT 2

~---l

11 ,OUTPUT1(+)

R.R

GND

Fig. 1

c8SAMSUNG
Electronics

105

KA22102

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic

Supply Voltage
Maximum Supply Voltage
Operating Supply Voltage
Maximum Output Current
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

Vee (surge)
Vee (DC)
Vee (opr)
10 (peak)

50
25
18
9
50
-30- +85
-55- + 150

V
V
V
A

Pd
Top,
T5tg

W
°C
°C

ELECTRICAL CHARACTERISTICS
(Vee = 13.2V, RL = 4Q, f = 1KHz, Ta = 25°C)
Characteristic

Quiescent Circuit Current

-- ------------

Symbol

Unit

Icc

mA

---- - - - - - - - - - - - - - - - - - - - - - - - - + - - - + - - - - - - + - - - - - - t

Output Power

Po

W

----- -------------------------------

~~

Total Harmonic Distortion
Voltage Gain
Output Noise Voltage
Ripple Rejection Ratio

THD

%
dB

Av

- - - - - - ------- - - - - - - - - - - - - - - - - - - - - - - - --- -------

VNO

Rg = 10KQ, BPF

R.R

f,=120Hz, Rg=O

- -------!---- -----+------t--___1

-----------------=----------------

- -------- '-----

Input Resistance

43

R,.

0.25

mV

50

dB

--~----_____j---___1

- - ----t----_____j

30

- - - - - - - - - - - - - , - - - - - - - - - - - - - - - - - - - - - - - - - - - + - - - - + - - - ---

f--~--

KQ
----

O_u_tput_O_ff~~_t_V_o__I_ta_g_e______-+-__V_o_ff_set_-+-______V_i_=_O_______ ~_~ __ 0 ____ f--~_~_+-mv~

_~-::-:-:-~-al-~-u-r-r-en-t----------~~~

At

::a~~-bY

---

---65- -75- - - - - r ~:

+--------

Saturation Voltage

VTH(SB)

------------"-------------

Saturation Voltage

VTH(Mute)

c8SAMSUNG
Electronics

Pin 4, Po= 1W>100mW

1.8

----- - -

2.1

2.4

V

3.0

V

---

Pin 1, Po=1W>100mW

1.4

1.7

106

KA22102

LINEAR INTEGRATED CIRCUIT

TEST AND APPLICATION CIRCUIT
lee
STAND-BY 0---"""1
CONTROL

•

Vee (13.2V)
2200"

RL

Vi 1

fCB
R4

MUTE
CONTROL

FUNCTION
&
PROTECTION

111' 4 (R)

RL

C10

C1
R5

I

R6

Fig. 2

107

LINEAR INTEGRATED CIRCUIT

KA22102

EXTERNAL COMPONENTS
Condition

Recommended
Value

Used for

C1, C3

3.3JLF

DC coupling

Reduce the pop noise
at Vee-ON

C2,C4

33JLF

Feedback
capacitor

Reduce the pop noise
at Vee-ON

Parts

Small value

I

Remark

Large value

Caution
with gain

--

Concerned with the low cut-off
frequency
C2 = 1/(6.28 x fL x Rt)
--

C5
C7,

ca,

C9, C10

C6
C11, C12

220JLF

Reduce
the ripple

0.1JLF

Compensation
osc.

2200JLF

Ripple
filter

1000pF

Compensation
osc

--.-------

._- _ . _ - - - - -

Easy to get
oscillation

I

Increase
the compensation

Used for ripple filter and Hum
noise filter

-- - - - - - - - - - - - - -

----_._--- ----

Reduction of noise
increase the compensation

NOTICES FOR DESIGNING
1. SELECTION OF FEEDBACK RESISTANCE
Since the KA22102 has a built-in pre-amp and power-amp, the
amp gain is similar to the following equation.
Pre-amp gain = Av (PRE)
Power-amp gain = Av (PWR)
Av = Av (PRE) + Av (PWR)
So, that voltage gain in next equation at BTL type.
Av total = Av (PRE) + Av (PWR) + 6 (dB)
Depending on the internal circuit.
Av (PRE) = 20 log [ (3.2K + Rf) / (Rt + 200)
Av (PWR) = 20 (dB)

1(dB)

So, Av total is
Av total = 20 log [ (3.2K + Rt) / (Rt + 200) 1+ 20 (dB)
By using the last equation, Rt tor total gain can be selected.

qsSAMSUNG
Electronics

108

LINEAR INTEGRATED CIRCUIT

KA22102

2. STAND·BY FUNCTION
It is available with supply voltage ON and OFF by using pin 4.
Because of the small control current, it can use a small capacitance switching relay and it can be controlled
by micom directly (except the relay).
Operating voltage of pin 4 is 2.1 V typically and operating supply current is 1 JJ.A typically in stand-by ON mode .

n
11

STAND-BY
Switch

Fig.3

STAND-BY FUNCTION

3. PREVENTION OF OSCILLATION
The sources of oscillation are listed bellow:
1. Gain of amplifier
2. Capacitance of capacitor
3. Kind of capacitor
4. Location of external components on the printed circuit board
Capacitor C4 for compensation of the OSC must use a polyester film capacitor to get better temperature and
frequency variation characteristics.
Especially, if the feedback capacity is higher at low gain; the oscillation at high frequency of audio must be
watched.

4. PREVENTION OF INPUT OFFSET AT Vcc· ON .
The input pin and negative feedback pin are the same voltage level with each pre-amp at Vee-ON.
The KA22102 presses the offset voltage of the input stage and prevents pop noise of the supply voltage. So,
C1 and C2 of the input stage and the NFB capacitor are varied by amp-gain.
 At Av=53.5 (dB) (Rf=O)
C1 =4.7/lF, C2=47JJ.F.
At Av = 40.5dB (Rf = 4700)
C1 = 3.3/lF, C2 = 33/lF.

c8SAMSUNG
Electronics

109

•

LINEAR INTEGRATED CIRCUIT

KA22102
5. PROTECTION CIRCUIT

The KA22102 consists of a short protection circuit between the output and GND, output-Vee, output-output
(each CH).

I

I

(1) Output Voltage Detector

I

t

I

THYRISTER SET/RESET

I
I

~

(2) PTR Output Detector

I

I

(3) Over Voltage Detector

I

I

Current Limiter Circuit

J

POWER TR. Protection

J

I

THYRISTER ON

J

t

I

BIAS Circuit CUT

I

L

I

I

Fig. 4 FLOW CHART OF PROTECTIOIN CIRCUIT

At Fig. 5, the output voltage detector divides the THYRISTER SET
with RESET areas and sets on-mode by setting the THYRISTER
circuit. When of released because of an output shortage the
THYRISTER returns to the reset mode again and KA22102 is
returned to the normal mode.

Vee r - - - - - - - - - - SET Area
RESET Area
SET Area
GND 1 - - - - - - - - - - - - -

6. MUTE FUNCTION

Fig. 5

Mute is available by setting pin 1 at low level.
In Fig. 6 when the level is low, 01 and 02 is in turn-on and the ripple capacitor of Pin 8 is discharged. So,
it cuts the bias voltage in the internal circuit. The mute attenuation radio is above 60 dB.

Fig. 6 MUTE Circuit

c8SAMSUNG
Electronics

110

KA22103

LINEAR INTEGRATED CIRCUIT

17ZSIP HIS

19W DUAL POWER AMP
The KA22103 is a monolithic integrated circuit consisting of a
2-channel19W power amplifier for car stereos. It is designed for
high power, low distortion and multi functions. Since it uses an
excellent 17-pin package, thermal characteristics are good with
high performance.

•

FEATURES
• High power: 19W/2-Ch
(Vee = 13.2V, f=1KHz, THD=10%, RL=4Q)
• Minimum number of external parts required
• Low distortion: THO = 0.04%
• Low noise: Vno = 0.2SmVrms
(V cc =13.2V, RL=4Q, Rg =10KQ, A v =40dB,
BW = 20Hz - 20KHz)
• Built-in stand-by and mute function
• Protector: Thermal shut down
Over voltage protection
DC short protection with Vee-output and GND
AC short protection with each output channel
• Operating voltage range: Vee = 9 -18V

ORDERING INFORMATION
Operating Temperature

• Connect HIS to GND

BLOCK DIAGRAM
Vee

Vee

Vee

STAND·BY
CONTROL

OUT1 (+)

GND

MUTE
CONTROL

FUNCTION
1

GND

&

PROTECTION
GND

OUTPUT1(-)

">-----f 11

OUTPUT1(+)

R.R

GND

Fig. 1

c8SAMSUNG
Electronics

111

LINEAR INTEGRATED CIRCUIT

KA221 03

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Symbol

Value

Unit

Vee (surge)

50

V

Maximum Supply Voltage

Vee (DC)

25

V

Operating Supply Voltage

Vee (opr)

18

V

Maximum Output Current

10 (peak)

Characteristic
Supply Voltage

I

I

9

A

50

W

Topr

- 30- + 85

°C

Tstg

- 55- + 150

°C

Power Dissipation

Pd

Operating Temperature
Storage Temperature

ELECTRICAL CHARACTERISTICS
(Vee = 13.2V, RL =4fl, f=1KHz, Ta=25°C)
Characteristic

Symbol

Test Condition

Quiescent Circuit Current

lee

Output Power

Po

THD= 10%

THO

Po=1W

- - - - - - - ----------_._-----+-------

Vi=O

--- - - - - - - - - - - - - --- - - - - - - - - -- - - f----

- - - - - - - - - - ...- - - - - - - - - - - - l - - - - - - - - ----.....

Total Harmonic Distortion
------~-.---

Min

Voltage Gai._n_.___________ I - - -__
A_v__ _
Output Noise Voltage

VNO

Ripple Rejection Ratio

R.R

-

fr = 120Hz, Rg = 0

Vi = 0

. _ - - - - - - - - - - - - - - - - - + - - - - - - - - - + - - - - - - - - - - - - - -------------

__S_t_a_n_db_y__
C_u_rr_e_nt____________ ~--ls-d-~-------A-t-s_ta_n_d__
-b~y___ _
C.T

W

-----

0.04

0.3

%

50

52

dB

-- I - - ---1---------

0.25

._ .. ~- ----_.--!--

43

-80

.--~

1

mV

- - - - - - - - - - _ ..

..

o

-

Kfl

1·-- . - - - --------

+80

------1--

mV

65

75

VTH(SB)

Pin 4, Po= 1W> 100mW

1.8

2.1

2.4

V

Saturation Voltage

VTH(Mute)

Pin 1, Po=1W>100mW

1.4

1.7

3.0

V

c8SAMSUNG
Electronics

-

p.,A

------- +-- - - - --- ------+----

Saturation Voltage

Cross Talk

_-

dB

50
30

Ri

Vallset

mA
---

- - - - - - - - - - - - - - - - - - - - 1 - . _ - - - - - - - 1 - - - - - - - _ .. _ - - - - - - - - - - - - .. -.---

Output Offset Voltage

180

19

- - - - - - - - --------If------------+-------------------l---------

Input Resistance

100

----j------+-----_._-- . -------

48

Rg=10Kfl, BPF

Unit

-- f - - - - - 1---'

Rt = 0

--_._--------

Max

16

- - - - - - - - - - -------1---------- - - - - - - - - - - - - - - - - - - -- ---- - - - - - --

- . - - - - - . - - - - - - - - - - - - f----------+-------

Typ

dB

---------~----+----~-----+----

112

KA22103

LINEAR INTEGRATED CIRCUIT

TEST AND APPLICATION CIRCUIT

lee

STAND-BY
CONTROL

C6

Vee (13.2V)

+

10001'

RL

C8

f
R4

MUTE
CONTROL

FUNCTION
&
PROTECTION

RL

C5
2201'

Fig. 2

c8SAMSUNG
Electronics

113

•

LINEAR INTEGRATED CIRCUIT

KA22103

EXTERNAL COMPONENTS
Recommended
Value

Parts
C1, C3

Used for
DC coupling

4.7/-tF
---- --

-------~---

C2,C4

-----

-

Feedback
capacitor

47/-tF
I

- - - - - - -------

C5

- -- -

---

C7, C8, Cg, C10

0. 12/-t F

f - - - - - - - - - - '-----

1000pF

Remark

Large value

Reduce the pop noise
at Vee-ON

--

Caution
with gain

----"----

Reduce the pop noise
at Vee-ON

Reduce
the ripple

Compensation
osc.
- - - - - - - -' - - - - - - - - - - - C6
Ripple
1000/-tF
filter
C11, C12

I

Concerned with the low cut-off
frequency
C2 = 1/(6.28 x fL x Rf)

- --

220{{F

Condition
Small value

Compensation
osc

Easy to get
oscillation

I

Increase
the compensation

Used for ripple filter and Hum
noise filter
Reduction of noise
increase the compensation

NOTICES FOR DESIGNING
1. SELECTION OF FEEDBACK RESISTANCE
Since the KA22103 has a built-in pre-amp and power-amp, the
amp gain is similar to the following equation.
Pre-amp gain = Av (PRE)
Power-amp gain = Av (PWR)
Av = Av (PRE) + Av (PWR)
So, that voltage gain in next equation at BTL type.
Av total = Av (PRE) + Av (PWR) + 6 (dB)
Depending on the internal circuit.
Av (PRE) =20 log [ (3.2K + Rt) / (Rf + 200) 1(dB)
Av (PWR) = 20 (dB)
So, Av total is
Av total = 20 log [ (3.2K + Rt) / (Rt + 200) 1+ 20 (dB)
By using the last equation, Rf for total gain can be selected.

c8SAMSUNG
Electronics

114

KA22103

LINEAR INTEGRATED CIRCUIT

2. STAND·BY FUNCTION
It is avai.lable with supply voltage ON and OFF by using pin 4.
Because of the small control current, it can use a small capacitance switching relay and it can be controlled
by micom directly (except the relay).
Operating voltage of pin 4 is 2.1 V typically and operating supply current is 1 p..A typically in stand-by ON mode .

STAND-BY
SWitch

Fig.3

STAND-BY FUNCTION

3. PREVENTION OF OSCILLATION
The sources of oscillation are listed bellow:
1. Gain of amplifier
2. Capacitance of capacitor
3. Kind of capacitor
4. Location of external components on the printed circuit board
Capacitor C4 for compensation of the OSC must use a polyester film capacitor to get better temperature and
frequency variation characteristics.
Especially, if the feedback capacity is higher at low gain; the oscillation at high frequency of audio must be
watched.

4. PREVENTION OF INPUT OFFSET AT Vcc·ON.
The input pin and negative feedback pin are the same voltage level with each pre-amp at Vee-ON.
The KA22103 presses the offset voltage of the input stage and prevents pop noise of the supply voltage. So,
C1 and C2 of the input stage and the NFB capacitor are varied by amp-gain.
 At Av=53.5 (dB) (Rf=O)
C1 = 4.7JJ..F, C2 = 47JJ..F.
At Av = 40.5dB (Rf = 470Q)
C1 = 3.3JJ..F, C2 = 33JJ..F.

c8SAMSUNG
Electronics

115

•

LINEAR INTEGRATED CIRCUIT

KA22103

5. PROTECTION CIRCUIT
The KA22103 consists of a short protection circuit between the output and GND, output-Vee, output-output
(each CH).

r

(1) Output Voltage Detector

I

t

1 I

THYRISTER SET/RESET

l

(2) PTR Output Detector

r

(3) Over Voltage Detector

I

r

Current Limiter Circuit

I

POWER TR. Protection

J

1

I

THYRISTER ON

I

BIAS Circuit CUT

I

I

t

I
I

I

I

I

Fig. 4 FLOW CHART OF PROTECTIOIN CIRCUIT
Vce~

___________________

At Fig. 5, the output voltage detector divides the THYRISTER SET
with RESET areas and sets on-mode by setting the THYRISTER
circuit. When of released because of an output shortage the
THYRISTER returns to the reset mode again and KA22103 is
returned to the normal mode.

SET Area
RESET Area
SET Area
GND~------------------

6. MUTE FUNCTION

Fig. 5

Mute is available by setting pin 1 at low level.
In Fig. 6 when the level is low, 01 and 02 is in turn-on and the ripple capacitor of Pin 8 is discharged. So,
it cuts the bias voltage in the internal circuit. The mute attenuation radio is above 60' dB.

+,

Fig. 6 MUTE Circuit

c8SAMSUNG
Electronics

116

KA2211

LINEAR INTEGRATED CIRCUIT
12 SIP HIS

S.8W DUAL POWER AMPLIFIER
The KA2211 is a dual audio power amplifier for consumer
application. It is designed for high power, low dissipation and
low noise.
It also contains various kinds of protector. It is suitable for high
performance car-audio power amplifiers.

•

FEATURES
• Operating supply voltage range: Vee = 9V -18V
• High power (Dual)
Po=5.8W (Typ) at Vee=13.2V, RL=40, THD=10%
• Low distortion (Dual)
THD=O.06% (Typ) at Vcc=13.2V, RL=40, Po=1W, Av =52dB
• Low noise (Dual)
VNo=O.7mV (Typ) at Vce=13.2V, RL=40, Rg=10KO,
Av = 52dB, BW( - 3dB) = 20Hz - 20KHz
• Protector, thermal shut down
Over voltage protection
DC short protection
• Connect HIS to GND

L -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~

ORDERING INFORMATION

BLOCK DIAGRAM
RIPPLE
FILTER

Vee

PRE GND

POWER GND

Fig. 1

c8SAMSUNG
Electronics

117

KA2211

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic

Symbol

Condition

Value

Unit

Surge Voltage
Maximum Supply Voltage
Maximum Supply Voltage
Maximum Output Current
Power Dissipation
Operating Temperature
Storage Temperature

Vee (surge)
Vee (max 1)
Vee (max 2)
10 (peak)
Pd
Topr
T 5tg

t = 0.2 sec
Vj=O
with signal

45
25
18
3.5
15
-20 - + 70
-40-+150

V
V
V
A
W
°C
°C

I

I

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 13.2V, RL = 4n, Rg = 600n, f = 1KHz, unless otherwise specified)
Characteristic

Symbol

Quiescent Circuit Current

lee

Vj=O

Output Power

Po

THO = 10%

Total Harmonic Distortion

THO

Test Conditions

Min

Typ

Max

Unit

80

145

mA

5

5.8

Po=1W

W

0.06

0.3

%

Voltage Gain

Av

Vo=OdBm

50

52

54

dB

Channel Balance

CB

Vo=OdBm

-1

0

1

dB

Output Noise Voltage

VNO

Rg = 10Kn, BW(- 3dB)= 20Hz-20KHz

0.7

1.5

mV

Ripple Rejection Ratio

RR

f = 120Hz, Vr = OdBm

Cross Talk

CT

Input Resistance

Rj

c8SAMSUNG
Electronics

40

52

dB

Vo=OdBm

57

dB

f = 1KHz

33

Kn

118

LINEAR INTEGRATED CIRCUIT

KA2211

TEST AND APPLICATION CIRCUIT
Vee
10001'

+

I

0.221'

INPUT1
~+--~--'~'-N-~~--Q

OUTPUT1

RL
INPUT2

Fig. 2
TOTAL HARMONIC DISTORTION·FREQUENCY

TOTAL HARMONIC DISTORTION·OUTPUT POWER
10
Vee = 13.2V
RL=4!l
Av =52dB
DUAL

z

Q

Ie

~

3

Z

0

C
(.)

1.0

Z

a:

<

:I:

...

~

«

:I:

...

10KHz

j!

""IT r-- 10..11

100lJ

0.1

./

a:
==

;....

~
.....

V

0

-

:Ii

:I:

13.2V
RL=4!l
Po=1W
DUAL

1/1

(.)

o

-m~
I-V cc

0
.....

2

c

Z

1.0

i=
a:

0
.....

VV

II'Y
0.1

~

17

1"-

C
.....

"'"

:I:

.....

1KHz

II III
3

5

0.1

2

3

5

1.0

2 3

P.(W), OUTPUT POWER

c8SAMSUNG
Electronics

5

10

5

100

2

3

5

1K

2

3

5

10K

2 3

!(Hz), FREQUENCY

119

LINEAR INTEGRATED CIRCUIT

KA2211

CROSS TALK·FREQUENCY

RIPPLE REJECTION::RATIO"FREQUENCY

IIIII

0

IIIIIII

V~I=11~W

~

LU1IH~

R,=6000

~

RL=40
R,=6000
Vo=OdBm
DlnIL II

Z!
0

I

RL=40
z -20 C,=47I'F

Q

-20

DUAL

~

~

ii3

II:

....Do.

Ul

-40

-40

II:

Do.

;;:

~~

/if

i

0

/if
~

CH,-

,/

~

C~n

5

100

2 3

5

1K

2 3

5

10K

2 3

2 3

5 100

2 3

I(Hz), FREQUENCY

z

Ul

=13.2\1 I
~~~~~dB --+,
BW(· 3dB) =20Hz-20KHz

Ul

CJ

~

DUAL'

r...~

V

I

>
Ul
rn
(5
z

~

>

III

48

:!}

0

,;
E
1
>


rn
(5
z

Ul

'-.....

-

1.2

-

I Av

j

::>
Do.

vL

I-

r-

::>
0

0.8

,;

R, 10Ko
B1( - 3?B) = fO-310KHZ

E

"1

56

(f:=1K~Z)

I-

~

t----

0.4

I

40

I
-20

20

40

Ta(°C), AMBIENT TEMPERATURE

qsSAMSUNG
Electronics

60

80

-20

o

20

40

80

80

Ta(°C), AMBIENT TEMPERATURE

120

KA2211

LINEAR INTEGRATED CIRCUIT
POWER DISSIPATION-SUPPLY VOLTAGE

QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE
100

20

l-

i

I,

V;=O_
80

0

I-

:;

r

0

a:

(3
I-

~

/'

V

...-

V

~
I

--

V

Z

:
iii

12

RL=2!l

./

a:

ffl

~

~

0

40

~-

I

20

r----

10

I

i

r-- ~

f'

•

..V

....... ~ f----- f-----

...---V

o

i

:
12

~

I

1

--

V

/

/'"

~

0

/

V

~

:;



f=1KHl
THD=10%
RL=4!l
DUAL

I

12

!:i
0

~

I
8 f------

--

o
8

10

,./
12

/"

14

/
16

18

20

VccM, SUPPLY VOLTAGE

c8SAMSUNG
Electronics

121

LINEAR INTEGRATED CIRCUIT

KA2212

o.SW AUDIO POWER AMPLIFIER
The KA2212 is a monolithic integrated audio power amplifier in
a 9-pin plastic single in line package, designed for audio frequency
class B amplifiers.

9 SIP

FEATURES
• Suitable for portable radios, cassette tape recorders.
• Medium output power.
Po =O.5W (Typ) at Vee =6V, RL =80, THD=10% .
• Wide operating supply voltage range (3.5V -12V) .
• Low quiescent circuit current.
• Excellent thermal stability.

SCHEMATIC DIAGRAM
ORDERING INFORMATION
Operating Temperature

Fig. 1

c8SAMSUNG
Electronics

122

KA2212

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta =2S0C)
Characteristic

Symbol

Value

Unit

Vee
Pd
Topr
Tstg

14
750
-20- + 70
-40- + 150

V
mW
°C
°C

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

I

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 6V, RL = 80, Rg = 6000, Rf = 680, f = 1KHz, unless otherwise specified)
Characteristic

Symbol

Test Conditions

Min

Typ

Quiescent Circuit Current

Icc

Vi=O

Voltage Gain (Open Loop)

Avo

Rt=OO

60

75

Voltage Gain (Closed Loop)

Av

Rt = 680

47

50

Output Power

Po

THD=10%

0.45

0.5

Total Harmonic Distortion

THO

Po =100mW

Input Resistance

Ri

Output Noise Voltage

VNO

Max

14

0.3

mA
dB
52

dB

1.0

%

W

15
Rg= 10Kn
BW (-3dB)=50Hz-20KHz

0.4

Unit

KO
1.0

mV

TEST CIRCUIT

.----11 .....~-----_-___Q VeC=6V
Cl0

+

+

cs
470pJ16V

100pJ16V

+

C7
47pl10V

INPUT

o--...---Itt-'-----t

C6

+

470pJ16V

r-----.---'-tif-----...---oOUTPUT

AL
80

Cl

Cs
0.068"

220P

Fig. 2

c8SAMSUNG
Electronics

123

LINEAR INTEGRATED CIRCUIT

KA2212

TOTAL HARMONIC DISTORTION-FREQUENCY

VOLTAGE GAIN-FREQUENCY
10

100

~ RL=811
Vee:"'!""

80

i

I f=IKHz
I

z

I ~.,f$\

70

Ci
w 60

g

iii
:2.
~

~."6l\.

I/~

1

~~~~I

~""o~

CI

~
!:i

H

II!!:!!!

90

t---(

V".

50

, '

....

I

II

AV (Rf:-6jll)

~

12VI

,

>->--

J.,.o

Vv

is 1.0

o

gZ

5

!Ii:I:

3

SOdS

0.1

1JJ

Av 60dS

g

I

Fo

30

Vee 6V
RL 80
Po=O.IW

f--

3

....

I

40

z
o

I

§!

--I-

5

~

I
- --I-

10

III
10

2 3 5 100

2 3 5

lK

0.01

2 3 5 10K

10

2 3 lOOK

2 3

S 100

2 3

OUTPUT POWER-FREQUENCY
1.0

-J Ij.ll\1

1

II11111

0.9

,1

Vec=fN

I-~~D~~O%

0.8 -

_

0.6

~

0.5

~

1

_Vee=6V
I

---~~:~gdB

I

'

I

-L

!

----r-

I

H-',

~

o

!: 0.4

i

'i1

~ 0.3

!:i

2

f--

ffi

0.1

~.

~

5

~
o

~

:::)

~

0.2

IJ
j

0.01
5

100 2 3 5

lK

2 3

5 10K

1~
)t

'l/c'"~,,:::>
4-

-I---

2 3 lOOK

Jrl

~

10

~

-~+-::

tt

-~

V

1.0

100

j=j:j:

+--t--

-

RL=4!l

~

z

J...-""

0

~

12VI
is

51--- Vee=6V
31--- RL=8!l
21--- Av=50dB

+--- 1---

It

--

II

I

10

0

Z

5

./

Q.

~

I-

100
I--- +- THD_l0%
>-- +-f=IKHz --+-

!:i
!:io

!

TOTAL HARMONIC DISTORTION-OUTPUT POWER

OUTPUT POWER-SUPPLY VOLTAGE

~

I

V; (mV), INPUT VOLTAGE

10

iii

~

rJ

III

f (Hz), FREQUENCY

I---

2 3 lOOK

r#r=10~HI

-- +-

10 2 3

5 10K

-

----+-

:! Ii

i
'

I

0.1

2 3

OUTPUT POWER-INPUT VOLTAGE
1.0

!
I

5 lK

f (Hz), FREQUENCY

f (Hz), FREQUENCY

0.7

~l---

~

20

a::

./

./

0

5

a::

3
2

:E
c(

V

:I:

....

j!

12

O. 1

~

0

5~!o;;:

~

3

.....

2

I--- +-

:I:

0.1

0.Q1

3

4

9

,10

11

Vee (V), SUPPLY VOLTAGE

c8SAMSUNG
Electronics

12

13

14 15

+, I f 100Hz
f=IKHz"_
I

0.01

2 3

Il

f 10KHz

1.0 1---+-

Iii
5

iii

0.1

i

-I

:

2 3

!! I'I
,,' II
5

1.0

Ii Ii
2 3

5

10

Po (W), OUTPUT POWER

124

LINEAR INTEGRATED CIRCUIT

KA2212
OUTPUT NOISE VOLTAGE-GENERATOR RESISTANCE

QUIESCENT CIRCUIT CURRENT-SUPPLY VOLTAGE

l°rnt~~~mt1
====~~J+~--~~~+H~-r~Y+~

l,.o

VCCz&/ ++++____+-+.++++-t++___--~t_+~ft_H

5 -

~

30

-~~:s':B'++++----+-++++++++-----~t-+++ft-H

~

3 - -

~

2

-

--t---++++-++I---r---+-++-t-t-tt+-------t------t---t-t-t-tffl

I

!:i
~~~tt=ml~F-~ffi!~~~~1
§
~

V

1.0

!

5 _

•

-

-"'" ~

---

I

.t-t_++-H-l::I:!._"F-++++t-+++---t----+---t-+t+-t-H
"

~

3'--+-..,.."Ft++-t++___-~t----+-+-H_ttt--t----t---H--rtt_H

-

j

..

':

i¥

0.1
100

2 3

5

2 3

lK

5

10K

2 3

5 lOOK

10

POWER DISSIPATION-SUPPLY VOLTAGE

r--- RL=811
1--------, 1.1KHz

1=IKHz
I

1.6

/

1.4

J
I ~V

1

10 -t-.

Y
./\

~ 0.8
0.6

l..

0.4
0.2

z

io

RL_4Il

1.2

-=
.5-

16

POWER DISSIPATION-OUTPUT POWER

1.8

~

14

10

2.0

i~

12

Vee (V). SUPPLY VOLTAGE

Ru (II). GENERATQR RESISTANCE

rY
Yv 1-1
V

?f'"1

V

iiiis

1.0

5

II:

~

V
~

~

/

0.1

,.........
~

~

~

--

Cc=9

-

r-

&/

1

4V

0.01

i
10

11

Vee M. SUPPLY VOLTAGE

c8SAMSUNG
Electronics

12

13

14

0.Q1

2

3

0.1

2

3

1.0

2

3

Po (W). OUTPUT POWER

125

KA2212

LINEAR INTEGRATED CIRCUIT

External Components (Refer to test circuits)
C1: Noise filter
C2 : Input coupling capacitor
The recommended value for this capacitor is 3. 3t.t F.
If made too small, the low frequency characteristic changes for the worse. Too large a capacitance value will
increase the rise time when power is applied and may generate noise due to the charging current when the
volume control is adjusted.
Rt. C3 : Feedback components
The variation of the closed loop gain depends on the components which are determined as follows:
20000
Av = 20 log ~ (dB)
Where fl : low cut-off frequency
Av: closed loop gain
C4 : Compensation capacitor
The high cut-off frequency is determined by C4 , which helps to suppress the oscillatioin in the higher frequency
ranges.
C5 , Cg: Oscillation supression capacitors
The mylar capacitor is be used for C5 to get a better characteristic for temperature and frequency.
C6 : Output coupling capacitor
It decides the output power level of low frequency.
C7 : Boostrap capacitor
For low value reduced rated output power and increased distortion at low frequency.
Cs : Ripple filter for power supply
The large value is required to get an excellent ripple characteristic under the line operation, but the small models
can be used with a battery.
C10: Filter capaCitor
Rejects power line hum.

c8~SUNG

126

LINEAR INTEGRATED CIRCUIT

KA2213

ONE·CHIP TAPE RECORDER SYSTEM

14 DIP HIS

The KA2213 is a monolithic integrated circuit consisting of a
preamplifier, ALe circuit, power amplifier in a 14-pin plastic dual
in line package with heat sink.

•

FEATURES
• Suitable for the play and recording functions of mono
cassette tape recorders.
• Wide operating supply voltage range (4V -12V).
• High gain preamplifier and power amplifier.
• Output power of power amplifier state
Po =lWat Vcc =6V, RL =40, THD= 10%.
• Soft tone quality at the time of output saturation.
• Wide ALe range and small variation In output voltage.
• Small shock noise at the time of power on/off due to built-In
prevention circuit.
• variable monitor capability due to recording amplifier consisting
of preamplifier alone.
• Minimum number of external parts required.

ORDERING INFORMATION

BLOCK DIAGRAM

KA2213

i

'----------------------_._-_._------

Device

Package Operating Temperature
14 DIP HIS

KA2213G

PHASE
COMPENSATION ,PRE IN

PRE NF

PRE OUT

ALC OUT

ALC IN

PRE GND

POWER IN

DECOUPLE DECOUPLE

--~

PELLET

-20 -

+ 70°C

Vee

POWER NF BOOTSTRAP POWER OUT

POWEFI
GND
*eOTTOMVIEW

Fig. 1

c8~SUNG

127

LINEAR INTEGRATED CIRCUIT

KA2213

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic

Symbol

value

Unit

13
1.2
2.25*
-20- +70
-40- + 150

V
W
W
°C
°C

Supply Voltage

Vee

Power Dissipation

Pd

Operating Temperature
Storage Temperature

Topr
Tstg

* Mounted and soldered on a 50mm x 50mm copper foil of PCB

ELECTRICAL CHARACTERISTICS
(Ta= 25°C, Vee = 6V, f= 1KHz, unless otherwise specified)
Characteristic

Symbol

Quiescent Circuit Current

Icc

Test Conditions

Min

Typ

Max

Unit

Vee = 6V, Vi=O

18

30

mA

Vee =9V, Vi=O

23

40

mA

Pre·amplifier
Voltage Gain (Open Loop)

Avo

Open loop

85

dB

Voltage Gain (Closed Loop)

Av

Closed loop, Play

40

dB

Output Voltage

Vo

THD=l0f0, Play

Input Resistance

Ri

Equivalent Input Noise Voltage

VN1

ALC Input Level

ALC

THD

Voltage Gain (Closed Loop)

Av

Output Power

Po

Total Harmonic Distortion

THO

0.9

1.2

V

21

30

KO

-20

-12

Rf =510

43

45

Vee =6V, RL =40, THD=100f0

0.7

1.0

W

Vee=7.5V, RL =40,
THD=10%

1.0

1.5

W

Vee =9V, RL =40, THD=10%

1.7

Play

1.0

=1%, Ree

2.0

p.V
dBm

Power Amplifier

Ri

Output Noise Voltage

VNO

Rg=10KO

Ripple Rejection

RR

Rg-OO, V,=150mV, f=l00Hz

c8SAMSUNG
Electronics

W
1.5

30

Input Resistance

0.6

40

45

--dB
--

2;2
0.3

Po = 250mW

47

%
KO

1.8

-.

mV
dB

128

LINEAR INTEGRATED CIRCUIT

KA2213
TEST CIRCUIT
C2

C3

•
SG

IN60x2

Fig. 2

TEST CONDITION
Characteristic

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 Test

Point

Test Method

on

on

off

on

on

off

off

Av

2

off

off

off

on

on

off

off

A.O

Q.

Po

2

off

off

off

on

on

off

off

0

Test output voHage at TH 0 = 10%

<

THO

2

off

off

off

on

on

off

off

0

Test THO at output voltage Vo= 1V

VNO

on

off

off

on

on

off

off

0

Test output noise voltage

RR

on

off

off

on

on

off

off

0

RR = 20 log Vrof\50 (dB)
Test output ripple voltage (Vro)

Icc

Test circuit current
.-.-~----------

lD

!E

E

J
~
Q.

Avo

1

off

off

on

off

on

off

off

A.B

Vo

1

off

off

off

on

on

off

off

B

off

on

off

on

on

on

off

C

------

Avo = 20 log VoN; (dB)
Test output voltage at THO = 1%
--------

E
co

VN1

c..

ALC
Input
level

~

Av=20 log VoN; (dB)

Convert output noise voltage
at Rg =2.2KO, VN1 =VNOIAv

-----

1

off

off

qsSAMSUNG
Electronics

off

off

off

off

on

A.B

Test input voltage at THO = 1%

129

KA2213

LINEAR INTEGRATED CIRCUIT

TYPICAL APPLICATION CIRCUITS
1. Mono cassette tape recorder

2. Radio cassette tape recorder
1000p

2.2K

4.7~

r-----r----O

vee.

+
1000",

MIC.J.

TAPE

SP

R/P Head

; - - - - - - - to Radio
SW1 to SW4 (PLAY/REC SW): PLAY

Fig. 4

qsSAMSUNG
Electronics

130

KA2213

LINEAR INTEGRATED CIRCUIT
OUTPUT VOLTAGE·INPUT VOLTAGE
10

PRE AMP

w

/""

1.0

o

~

~

#fJl'

g
~
!:;

.('/
V

5
3

2

fV
./V

0.1

100

Vcx;=6V
Rl =10Kll
Av = 40dB/1 KHz
Playback

Cl

~

TOTAL HARMONIC DISTORTlON··OUTPUT VOLTAGE

~

Vcx;=6V
Rl =10Kll
Av = 40dB/1 KHz
Playback

o
~

~ 10

~~

C

o
~

,<-"v//

~ 1.0

~~

~

~/.-~~

e-"

f--~

5

~

3

g

2

~

~~

0.1

0.1

2

3

5

1.0

2

3

5

10

2

3

5

5

7 0.1

5

VOLTAGE GAIN·FREQUENCY

Vcc=6V
Rl =10K(J

i!

Terminate
C=Pin(j)to@ - - - j - -

Z



10K

2

~ 0.1

....

~

-80

-50
V~dBm),

/

/ I'

-4V/

V

~

-70

3.5V

J

~""

!""V

, -

II

/'

/,,-,1-

V

\J1 V<'
1\% I

-80

~

Va

/"

3

I

I

I

I

5

56

Vcc=6V
Vo=OdBm

'.

I

I-

0.033~
4.7K
~--1---4~~N---~

!

Vcc=BV
4V

I

!:;

100

Av =58dB/1KHz

-L _~I- Refer to rst Circuit 2.

51K

c8SAMSUNG
Electronics

I

~ (Pre + Power)
I

i

2 3 5 100 2 3 5

Vo=OdBm
Reier to Test Circuit 1.

-Ht'iI

I

~

'S"

I

I.

...............

g

I:
10

J

80

Cl

"~

i

III
c(

z


"-

0

g

~

3K

0

o

12

Q

10

::Ii

...J

r--.:::::::~

30
2

3

5 7 1K

2

3

~

-

4

r-

Vcc =6V

40

100

z
o

:I:

,\\~

50

!:l

6 ~

~

60

;::
~

Iii

9V

\l\--

if

j

14 Z

m

!Votr
Vcc =6V

""",--

Cl

16

f=1KHz

eN' = 470pF Terminate -

r

5 7 10K

3

2

~

i5"

i=

5

RL(O), LOAD RESISTANCE

~g~:~TH~~IJ~~I~

~~~~~A~5~JA~:UT

DISTORTION· LOAD RESISTANCE

3.2

1.6

Av = 58dBfl KHz

PRE AMP

3.2

Vo:THD=1%

2.8

1.4

TiD: Vo = 0.5V

z
;::

w

~

~-

!:; 2.0

g

...
ir

1.2 ~

Vcc=9V

Vo

is

1.0 0

Z

0

1.6

5o

0.8

, \'VI

0.8

:I:

6V

Vo

XK-

~ 1.2

.;

il!

 2.4
w
VI

i5
z

2.0

I-

V

:::>

"-

~ 1.6
I-

~



.,?

/

Vcc =6V
RL= 10KO
Av =40dBf1KHz Playback
BW = 20Hz - 20KHz

~ 0.4 -

-"---

o
100

2

3

5

7 1K

2

3

5

7110K

2

3

6

5

RL(O), LOAD RESISTANCE

8

10

12

14

16

18

20 22

Rg(KO), GENERATOR RESISTANCE

TOTAL HARMONIC DISTORTION-OUTPUT POWER
96
94
92

~ 90

g

~

88

II.

88

~
o

84

~

~ 82

\

.[80

100

4.0
PRE AMP
I
RL= 10KO
Av = 40dBf1 KHz
Playback
THD=1%

"- "'""-

I

POWER AMP

Vcc =6V
RL=40
Av = 45d Bf1 KHz

3.6

r- r-~

z

---

~o

.
I-

2.0 :::>
"I-

/

:::>

1.6 0
1.2

/

0.8

/~

~

0.4

I

.r- r-

5

0

3

Z

c-I

1.0

0

il!
0..

I-

~-

-_.-

~

32
l-

i

~ . / 81l
k-:::~

U

28
24 1-----

/'

I-

._--

:;
~

._-

I-

U

---

'/

::>
0

V,=O

--

.~
~c'" ~ 41l

,, ~

a::

20

ffi
u

16

:;

12

III

0

;t
E

r-'

0.1

~

~I\

-10

5 100K

(J'

1\ '

'(Hz), FREQUENCY

~

%>\
'~

0>

-8

++-

10K

-4

•

'~<>6'~~~
~\

I

>

iii'

-6

2
100

-2

o

~

V-

3 5

~

~

\~I()OyV

140d~

\

is' 0.1

~

~tl.-c-

z

Q

8

]

r---

(

_._.-

V

/'

V

~- .

I

3

a

4

6

10

12

14

16

8
10
12
Vcc(V), SUPPLY VOLTAGE

VccM, SUPPLY VOLTAGE

16

POWER DISSIPATION·OUTPUT POWER

QUIESCENT CIRCUIT CURRENT·AMBIENT TEMPERATURE
40

14

RL~4(l1

POWER AMP

V,=O

f=lKHz
35
I-

~
g;

--- ---

30

r--

u

5
~
U

I-

ffi
u
f3

:;

25

---

20
15

~ I--

r--r--r-- r--

I""-

r-- '6V
r-- r-r-- r--....

E

~
~

./

1.0

2i
a::
~

~

~

10

./

".- .........
./

k- r-....

-:;;-...... ~
9V

vV ' / . /""-"1""', "'\
6V
vV: /
'\
",'/
V
/
./

--

III

0

;t

ll=lL

z

o

V
CC"OllV

3

\

]

-20

I
40
60
20
T.,(°C), AMBIENT TEMPERATURE

c8SAMSUNG
Electronics

0.1
80

5 7 0.1

2

3

5

7 1.0

2

3

5 7 10

P.,(W), OUTPUT F-OWER

133

PRELIMINARY

LINEAR INTEGRATED CIRCUIT

KA22130

ONE CHIP TAPE RECORDER SYSTEM

16 DIP

The KA22130 is a monolithic integrated circuit consisting of
preamplifier, ALe circuit, power amplifier in 16 pin plastic dual
in line package.

FEATURES
•
•
•
•
•
•
•
•
•

Suitable for play and recording mono cassette tape recorder.
Wide operating supply voltage range (4V -12V).
High gain preamplifier and power amplifier.
Output power of power amplifier state
Po =1W at Vee =6V, RL =40, THO= 10%.
Soft tone quality at the time of output saturation.
Wide ALe range and small variation in output voltage.
Small shock noise at the time of power on/off due to built-in
prevention circuit.
Variable monitor capability due to recording amplifier consisting
of preamplifier alone.
Minimum number of external parts required.

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM

PHASE
COMPENSATION· PRE IN

PRE NF

PRE OUT

ALC OUT

PRE GND

ALC IN

POWER IN

DECOUPLE DECOUPLE

vee

POWER NF BOOTSTRAP POWER OUT

GND

GND
BOTTOM VIEW

Fig. 1

c8SAMSUNG
Electronics

134

PRELIMINARY

KA22130

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

Symbol

Characteristic
Supply Voltage
f-------

Unit

Value

Vee

13

V

Pd

1.5

W

-~

Power Dissipation

---r--~------

Operating Temperature

Top,

- 20- + 70

°C

Ts'g

-40- + 150

°C

~.

Storage Temperature

ELECTRICAL CHARACTERISTIC
. (Ta = 25°C, Vee = 6V, f = 1KHz, unless otherwise specified)
Characteristic

Symbol

Quiescent Circuit Current

lee

Typ

Max

Unit

Vee =6V, V;=O

18

30

mA

Vee =9V, V;=O

23

40

mA

Test Condition

Min

Pre-amplifier

Avo

Open loop

85

dB

Voltage Gain (Closed Loop)

Av

Closed loop, Plan

40

dB

Output Voltage

Vo

THD = 1 %, Play

Input Resistance

R;

Voltage Gain (Open Loop)

Equivalent Input Noise Voltag_

VN1

ALC Input Level

ALC

0.9

1.2

V

21

30

KO

THD = 1 %, Play

-20

-12

Rf =510

43

45

Vee = 6V, RL = 40, THD = 10%

0.7

1.0

W

Vee = 7.5V, RL = 40,
THD = 10%

1.0

1.5

W

Vee =9V, RL = 40, THD = 10%

1.7

Play

1.0

2.0

J.N
dBm

Power Amplifier
Voltage Gain (Closed Loop)

Av

Output Power

Total Harmonic Distortion

Po

THD

Input Resistance

R;
VNO

Rg=10KO

Ripple Rejection

RR

Rg=On, V,=150mV, f=100Hz

0.6
40

45

dB

W
1.5

%
KO

30

Output Noise Voltage

c8SAMSUNG
Electronics

2.2
0.3

Po = 250mW

47

1.8

mV
dB

135

•

PRELIMINARY

LINEAR INTEGRATED CIRCUIT

KA22130

TEST CIRCUIT

IN60x 2

Fig. 2

TEST CONDITION
Characteristic

SW1 SW2 SW3 SW4 SW5 SW6 SW7 SW8 Test
Point

Test Method

on

on

off

on

on

off

off

Av

2

off

off

off

on

on

off

off

A.D.

Po

2

off

off

off

on

on

off

off

0

Test output voltage at THO

THO

2

off

off

off

on

on

off

off

0

Test THO at output voltage Va

VNO

on

off

off

on

on

off

off

0

Test output noise voltage

RR

on

off

off

on

on

off

off

0

RR 20 log V ro /150 (dB)
Test output ripple voltage (V ro )

Icc

Test circuit current
Av

=20 log VoNI (dB)
=10%
=1V

=

=20 log VoNt (dB)

Ava

1

off

off

on

off

on

off

off

A.B

Va

1

off

off

off

on

on

off

off

B

Test output voltage at THO

Convert output noise voltage
at Rg 2.2Kn, V N1 VNo/Av

VN1
ALC
Input Level

1

off

on

off

on

on

on

off

C

off

off

off

off

off

off

on

A.B

c8SAMSUNGI
Electronics

Ava

=

=1%

=

Test input voltage at THO

=1%

136

PRELIMINARY

KA22130

LINEAR INTEGRATED CIRCUIT

TYPICAL APPLICATION CIRCUIT
1. Mono cassette tape recorder
2.2K

•

, - - - - - - - 1 ' - - - - - - u Vee
+
1000
"

EAR. J.
MIC

SW6

51

Fig.3

2. Radio cassette tape recorder
1000p

2.2K

47~

,-------1>------()

vee

+
lO00i<

MIC. J

TA'PE

EAR. J.

SP

RIP Head

t - - - - to Radio
SW1 to SW4 (PLAY/REC SW): PLAY

Fig.4

c8SAMSUNG
Electronics

137

LINEAR INTEGRATED CIRCUIT

KA22131
DUAL PRE·POWER AMPLIFIER FOR
AUTO REVERSE

24 SOP

The KA22131 is a monolithic integrated circuit consisting of an
autoreverse dual pre and power amplifier. It is suitable for 3V
portable radio cassettes with an auto-reverse function.

FEATURES
•
•
•
•
•

Dual pre·power amplifier on 1 chip
Auto·reverse switch included
Muting circuit included for Metal/Normal gain control
LED drive circuit Included for tape direction Indication
Power ON muting circuit Inclued for suppression of shock·
noise at the power ON time.
• Operating supply voltage range: Vee = 1.8V - 3.6V

ORDERING INFORMATION
BLOCK DIAGRAM
PRE INPUT2
BIAS

LED B

I
2A

I

2B

PRE
NF2

PRE
OUTPUT2

FIR
CONT

MUTE
INPUT2

POWER
INPUT2

POWER
METAL
OUTPUT2 CONT

SW
CO NT

F/RSW

GND

LED A

vee

1A

1B

I

I

PRE
NF1

PRE
OUTPUT1

MUTE
INPUT1

POWER
INPUT1

POWER
OUTPUT1

FILTER

GND

PREINPUT1

Fig. 1

c8~SUNG

138

LINEAR INTEGRATED CIRCUIT

KA22131

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Symbol

Value

Unit

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Vee
Pd
Topr
T stg

4.5
600
-20 - + 70
- 55 - + 125

V
mW
°C
°C

•

ELECTRICAL CHARACTERISTICS
(Ta=25°C, Vee =3V, f=1KHz, unless otherwise specified)
Characteristic
Quiescent Circuit Current
PRE·AMP (RL

Symbol

Test Conditions
Vi = OV, Pin 14, 18: Open

lee

Min

Typ

Max

Unit

4

9

15

mA

=10Kn)

Open Loop Voltage Gain

Avo

Vo = -10dBm

72

83

dB

Output Voltage

Vo

THD=1%

300

450

mV

Total Harmonic Distortion

THO

Vo = 0.2V, NAB = 33dB

0.03

0.08

%

0.9

1.2

}tV

Equivalent Input Noise
Voltage

VN1

Rg=2.2Kn
BW( - 3d B) = 20Hz - 20KHz

Ripple Rejection Ratio

RR

Vr = - 20dBm, f = 100Hz
NAB=33dB

43

53

dB

Vo = -10dBm, Rg = 2.2Kn
BW = 20Hz-20KHz

65

75.5

dB

FWD-REV Cross Talk
Input Bias Current
POWER·AMP (RL

CT F -

R

Is

Vi=OV

130

500

nA

=160)

Output Power

Po

THO = 10%

Closed Loop Voltage Gain

Av

Vi= -40dBm

Total Harmonic Distortion

THD

Po = 1mW

Output Noise Voltage

VNO

Rg = on, BW( - 3dB) = 20Hz-20KHz

Ripple Rejection Ratio

RR

Vr = - 20dBm, f = 100Hz, Rg = 00

Input Resistance

Ri

Input Bias Current

mW

50

69

24.6

26.6

28.6

0.27

0.5

%

27

39

}tV

45

61

21.4

30

dB

dB
38.6

Kn

Vi = OV, Rg = 100Kn

10

90

nA

Channel Balance

CB

Vo= -10dBm

0.1

0.7

dB

LED Maximum Current

ILED

VeE(sat) = 0.3V

5

VR: Max, PRE: Rg = 2.2KO
BW = 20Hz-20KHz, Power: Vo= -5dBm

40

Is

mA

PRE + POWER AMP
L-R Cross Talk

CT L -

Signal Leakage

SL

R

c8SAMSUNG
Electronics

PRE: Vo = -12dBm
VR: Min

48
-66

dB
-60

dBm

139

KA22131

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT

Fig. 2

c8SAMSUNG
Electronics

140

LINEAR INTEGRATED CIRCUIT

KA22131

APPLICATION CIRCUIT
Vee

•
r - - - - - - - - . . - - - - Vee

SW1: FIR
SW2: METAL

4.7/,-

Vee

Fig. 3

c8SAMSUNG
Electronics

141

LINEAR INTEGRATED CIRCUIT

KA22131
QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE

RIPPLE REJECTION·SUPPLY VOLTAGE

25

100

20

80

FILTE R=220"F

...

15II:

g;

z

0

0

~

!::
::>

15

0

iil

II:

POVI ER ONLY
60

II:

...0

1
I

....a..

W

15
0

10

:fi
a

:;

V

V

:t

.."v

a..
iE

iif
~
II:

/'"

j

40

PRE ONLY

20

V

Vcc(V), SUPPLY VOLTAGE

Vcc(V), SUPPLY VOLTAGE

SATURATION VOLTAGE·OUTPUT CURRENT
200 , - - - - - - , - - - - - , - - - - - , - - - - - - , 200

0.5

0.4
w

z
o

~

>

z

0.3

0

;::

~
~
~
->

0.2

0.1

.~~~~~~

150

/

V

/

/

V

...

100

I--------:=---i-"'=--

20

~

::>

50 if---"--7i"'-

~

__

~L-

:t
E

1i

_ _~_ _~~

100

50

50

150

200

TOTAL HARMONIC DISTORTION ,OUTPUT VOLTAGE

10m_~

400

*

___

o

25

~----~--~

OUTPUT VOLTAGE·SUPPLY VOLTAGE

600

200

...
...::>a..

P.(mW), OUTPUT POWER

PRE ONJ
THD=1%
800 -Rg=2.2KIl
RL =10KIl
w
f=1KHz

...>
::>
...::>a..

:;
~
0

o

lo(mA), OUTPUT CURRENT

1000

~

100

~

O~

5

-~-t-----l

~

15

~

o

ill

c

II:

g
~

10

150

1= 1KHz

~

0

...z

PRE+PWR

------

- - - -- '

CI

I

/

/

V

~

I
Vcc(V), SUPPLY VOLTAGE

c8SAMSUNG
Electronics

PRE ONLY
Av 33dB
NAB
f--t--+-+-+t-t+t+---t-+-+-+-t-t-rtt----1v cc = 3V
f--4--+-+-+t-t+t+---t-t-+-+-t+I+t----IRg = 2.2KIl
RL =10KO
f 1KHz

y

0.Q1

L.----'--.l-.L..J,.,.u...L.U----'---"-............J....LJLJ..L..._-'--J.....i.."'-'-'........

0.01

2 3

5

0.1

2 3

5

1.0

2 3

5

10

V.(II), OUTPUT VOLTAGE

142

LINEAR INTEGRATED CIRCUIT

KA22131

TOTAL HARMONIC DISTORTION·OUTPUT POWER

VOLTAGE GAIN·FREQUENCY
100

III

PRE ONI:.Y
R,=2.2KIl
RL =10KIl
Vcc=3V
Vo=-OdBm
Av =33dB
NAB

A~_

80

\

z
;;:
CI

/

w

~

60

•

.......

g

"

ii
}

'"
~

40

20

Av

...::

rf!. 0.1
Q

~

a

0.01 L-...l-J...U..l.l.lll_...L....;u...L.lllli_.L...J.J....L.LWl._.L.I..J..J...WJJ

10

2 3 5 100

2 3 5

1K

2 3 5 10K

2 3 5 100K

0.1

2 3 5 1.0

I(Hz), FREQUENCY

2 3

VOLTAGE GAIN·FREQUENCY

!IIII

V; = -40dBm

40~-+-+++~f--+-1++Hffi-~H+~~TlIH~

z
;;:

..J

60

ii

20

:!lt;

40

101 f---+-++++ttJIf---H++Httt--i-i-tt-ttHt--t-+++tttil

20

O'-----'-J...LJ..J..LW_--'--'.J....W..J.J..U._-'--'..L.J.Jl.i.J.L_J......J...J...LJ.J..UI

a

10

2 3 5 100

2 3 5 1K

2 3 5 10K

10

2 3 5100K

2 3 5 100

f(Hz), FREQUENCY

OUTPUT POWER·AMBIENT TEMPERATURE

25

P,=P~WER

15(

125

12!

100

10<

a:

~

20

~

~
0

...::>
...::>c..

15

V -

75

0

()

iE

Rl

0

2 3 5 100K

V,= PRE

()

5

2 3 5 10K

150

30

w

2 3 5 1K

f(Hz), FREQUENCY

QUIESCENT CIRCUIT CURRENT,·AMBIENT TEMPERATURE

...z

~

...

()

~

5

r--

PRE + POWER

V

li1

>

...

Vcc=3V
PRE = NAS(33dB)

'"

IJl
IJl

~
0

i

I

~~~ ONLyl

...-

SO

~

30

CI

ii

2 3 51000

CROSS TALK·FREQUENCY

~-+-+++-t+llf--+-1+tt-iHt-+-f+ttIJVcc = 3V
RL =16{J

w

2 3 5 100

100

POWER ONLY

CI

5 10

P,(mW), OUTPUT POWER

10

~

~

~

50

75
P, (THi=10%1
50
V,(THD=l%)

E

]

25

o
-50

25

o
-25

25

50

Ta('C), AMBIENT TEMPERATURE

c8SAMSUNG
Electronics

75

100

-50

o
-25

25

50

75

100

Ta('C);AMBIENT TEMPERATURE

143

KA22131

LINEAR INTEGRATED CIRCUIT
TOTAL HARMONIC DISTORTION·AMBIENT TEMPERATURE

VOLTAGE GAIN·AMBIENT TEMPERATURE

0.3

60

PRE ONLY
pdWER ONLy

z 0.25
0

50

i=

a::

z

C

e
UI

40

is

CJ

Z

CJ

~

0

::E

30

a:: 0.15
C

0

>

c

:J:

~

if
~

0.2

0

w

....
C

I-

20

0

I-

0.1

...::

c

a

b

c

a
a
a

b

c

a

a

b

a =close, x =open

qsSAMSUNGI
Electronics

148

PRELIMINARY

LINEAR INTEGRATED CIRCUIT

KA22134

APPLICATION CIRCUIT
RADIO IN

•

RADIO IN

Fig. 3

c8SAMSUNG
Electronics

149

KA22135

LINEAR INTEGRATED CIRCUIT
,---------~---

DUAL PRE·POWER AMPLIFIER AND
DC MOTOR SPEED CONTROLLER

22 SOIP

The KA22135 is a monolithic integrated circuit designed for use
in low voltage and low power applications. It has all functions
including a dual audio pre-power amplifier and motor speed
controller in a single chip. It is suitable for portable tape recorders,
head phone cassette tape recorders or battery-powered radios.

FEATURES
• Low current consumption in a operating voltage range.
• Wide operating supply voltage range; Vee = 2V - 7.5V.
• Only a few components to build headphone cassette
tape recorders.
• Dual audio pre·power amplifier and motor speed controller
in a single chip.
• Reduced input and output coupling capacitors because of 1/2
Vee AMP adoption on chip as AC GND.

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM

PRE
NF2

PRE
INPUT2

PRE
OUTPUT2

AC GND
(1/2 vecl

PRE
NF1

PRE
INPUT1

-20 -

RIPPLE

PWR
INPUT2

PRE
OUTPUT1

PWR
INPUT1

PWR
COM PEN
-SATION2

PWR
OUTPUT2

PWR
COM PEN
-SATION1

Vee

PWR
DC GND
OUTPUT1

1/2 AMP
COMPEN
-SATION

1/2 Vee
OUTPUT
(AC GND)

+ 70

0

e

BASE
DRIVE

Vs

SPEED
ADJUST

Fig. 1

c8SAMSUNG
Electronics

150

KA22135

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Symbol

Value

Unit

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Vee
Pd
Tapr
T5tg

10
600
-20 - + 70
-40 - + 125

V
mW
°C
°C

ELECTRICAL CHARACTERISTICS
Characteristic
Quiescent Circuit Current

Symbol
lee

•

(Ta=25°C)
Test Conditions

Typ

Max

Unit

15

25

mA

Min

Typ

Max

Unit

40

42

0.35

0.6

Min

Vee =3V, Vj=O, Im=OmA

PRE AMPLIFIER SECTION
(Ta = 25°C, Vee = 3V, f = 1KHz, RL1 = 10KO, unless otherwise specified)

Characteristic

Symbol

Test Conditions

Open Loop Voltage Gain

Avo

Vo= -10dBm, RL =

Closed Loop Voltage Gain

Av

Va = -10dBm

Output Voltage

Va

THD=1%

Total Harmonic Distortion

THO

Va = 400mV

Output Noise Voltage

VNO

V j = 0, Rg = 2.2KO
BW( - 3d B) = 30Hz - 20KHz

72

00

dB
44

dB

0.05

0.5

%

70

300

p.V

V

Input Resistance

Rj

Va= -10dBm

18

22

KO

Cross Talk

CT

Rg = 2.2KO, Va = -10dBm

45

62

dB

Min

Typ

Max
30

POWER AMPLIFIER SECTION
(Ta = 25°C, Vee = 3V, f = 1KHz, RL2 = 320, unless otherwise specified)

Characteristic

Symbol

Closed Loop Voltage Gain

Av

Po =5mW

26

28

Output Power

Po

THD=10%

20

28

Test Conditions

Total Harmonic Distortion

THO

Po =5mW

Output Noise Voltage

VNO

Rg = 10KO, BW( - 3dB) = 30Hz-20KHz

Unit
dB
mW

0.2

2.0

%

0.25

1.0

mV

Input Resistance

Rj

Po=5mW

10

20

KO

Cross Talk

CT

Po = 5mW, Rg = 10KO

35

50

dB

c8.SAMSUNG
"trl\f1ics
CI...

151

LINEAR INTEGRATED CIRCUIT

KA22135

MOTOR SPEED CONTROLLER SECTION
(Ta = 2SoC, Vee = 3V, 1m = 100mA, unless otherwise specified)
Characteristic
Base Driving Current

Symbol

Min

Test Condition

Typ

Max

Unit

Is

10

18

Reference Voltage

Vret

0.22

0.26

Reference Voltage
Regulation 1

L. V ref1

Vee = 2.0- 6.SV

O.OS

%/V

Reference Voltage
Regulation 2

L. V ref2

1m = 2S- 200mA

0.1

%/mA

Reference Voltage
Regulation 3

L. V ref3

Ta= -10-

0.01

%/oC

Current Coefficient

K

K= V L -V R2
V R1 + VR2

Current Coefficient
Regulation 1

L.K1

Vee = 2.0-6.SV

O.OS

%/V

Current Coefficient
Regulation 2

L.K2

1m = 2S- 200m A

0.1

%/mA

Current Coefficient
Regulation 3

L. K3

Ta= -10- +60°C

0.1

%/oC

+ 60°C
3.7

mA
0.30

V

4.3

4

TEST CIRCUIT

vee

2.2K

R2

+
'"
~

2K

-

+

220",

0100K

SW11~1

SW2

~~~-+-----+--~

s.G.

D-

o

§

+

220",

Fig. 2

c8SAMSUNG
Electronics

Note: PIN8 is DC GND
PINg is AC GND

DCGND

152

LINEAR INTEGRATED CIRCUIT

KA22135

TEST METHODS

~
TEST ITEM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

1

1

2

1

1

2

1

2

1

1

2

1

2

CH1 Avo

"

1

2

2

II

"

"

"

"

II

"

"

"

"

CH1 Av

II

II

1

1

"

"

II

"

"

II

II

"

II

II

II

II

"

/I

"

"

"

/I

"

/I

"

"

/I

"

"

"

/I

"

/I

"

"

"

"

/I

"

"

/I

/I

/I

"

"

"

"

/I

"

"

Icc

CH1 Vo

"

II

CH1 THO

"

"

"

CH1 Vno

/I

2

/I

/I

"
II

"

"

"

"

/I

2

2

/I

"

/I

/I

"

1

1

/I

"

/I

"

"

CH1 Ri

2

1

"

/I

CH2 Avo

1

2

"

/I

/I

"

1

CH2 Av

/I

/I

/I

"

/I

"

/I

CH2 Vo

/I

"

II

/I

/I

/I

/I

II

II

/I

II

"

"

"

CH2 THO

/I

/I

II

/I

"

/I

/I

II

"

/I

/I

/I

II

"

CH2 Vno

II

/I

II

/I

/I

/I

2

/I

II

/I

II

/I

/I

/I

CH2 Ri

II

/I

/I

/I

II

2

1

/I

II

/I

"

/I

/I

II

C.T1 (2->1)

/I

II

II

II

/I

1

1

II

/I

/I

II

"

/I

/I

C.T2 (1->2)

/I

1

/I

II

/I

/I

2

II

"

/I

/I

/I

II

"

CH1 Av

II

2

/I

/I

1

/I

/I

/I

II

/I

II

/I

II

/I

CH1 Po

/I

II

/I

/I

/I

/I

"

II

/I

/I

/I

II

/I

/I

CH1 THO

/I

/I

II

II

/I

/I

/I

II

II

"

/I

/I

II

II

CH1 V no

/I

/I

/I

/I

2

"

/I

/I

/I

/I

/I

/I

/I

/I

CH1 Ri

II

/I

/I

/I

1

/I

II

II

/I

/I

II

/I

2

/I

CH2 Av

/I

II

II

/I

2

/I

II

II

II

1

II

"

1

/I

S

CH2 Po

/I

/I

/I

/I

/I

/I

"

II

"

/I

II

/I

/I

/I

0..

CH2 THO

/I

/I

II

/I

/I

/I

/I

/I

/I

/I

II

/I

II

/I

CH2 Vno

II

/I

/I

/I

/I

/I

II

/I

/I

2

II

/I

/I

/I

CH2 Ri

/I

II

II

/I

/I

/I

/I

II

/I

1

II

II

II

2

C.T1 (2->1)

/I

/I

/I

II

/I

/I

/I

II

II

/I

/I

/I

II

1

C.T2 (1->2)

II

/I

/I

/I

1

II

/I

/I

/I

2

II

/I

/I

/I

Ib

/I

/I

II

/I

2

/I

/I

II

"

/I

2

1

II

/I

Vrel

II

/I

/I

/I

/I

II

/I

/I

/I

/I

1

/I

/I

/I

6V rel

/I

/I

II

/I

/I

/I

"

/I

/I

/I

II

/I

/I

II

K

/I

II

II

II

/I

/I

II

/I

/I

/I

/I

"

II

/I

6K

/I

/I

/I

/I

/I

/I

/I

/I

/I

"

II

II

II

II

0..
~

«
IlJ

0:

0..

0..
~

«
0:

IlJ

0

cj

en
~

c8SAMSUNG
Electronics

I
"

153

•

LINEAR INTEGRATED CIRCUIT

KA22135

APPLICATION CIRCUIT
Rg
0.47

M

R8
1K

sw

KA22135

+
C13
2201"

TR1

C12

+

KSD471A

2201"

DC GND.

Fig. 3
Note: 1. For C12, use a capacitor of Low TANa
2. For C9 and C11, use solid state capacitors with better characteristics at low temperature
3. Locate C7 just around the emitter TR1, KSD471A.

c8SAMSUNG
Electronics

154

KA22136

LINEAR INTEGRATED CIRCUIT
~.---~---~----~

DUAL PRE-POWER AMPLIFIER, VOLUME
CONTROLLER AND DC MOTOR SPEED
CONTROLLER

I

The KA22136 is a molithic integrated circuit designed for use in low
voltage and low power applications. It has all functions including dual
audio pre-power amplifier, electronic volume controller and DC motor
speed controller in a single chip. It is suitable for portable tape
recorders headphone cassette tape recorders or radios by batteries.

I
I

28 SOP

FEATURES
• Low current consumption in a operating voltage range.
• Operating supply voltage range: Vee == 2.1 V - 5 V
• Only a few components in composing headphone cassette tape
recorder.
• Dual audio pre-power amplifier, electronic volume controller
and DC motor speed controller in a single chip.
• Reduced input and output coupling capacitors because of V2
Vee AMP adoption on chip as AC GND.

ORDERING INFORMATION
Device
KA22136

Package Operating Temperature
28SDIP

-20-+65°C

KA22136D 28S0P

-20- +65°C

BLOCK DIAGRAM

PRE
GND

PRE
IN2

COMPEN
-SATION

NF2

PRE
OUT2

COMNF1
PENSATION

PRE
OUT1

ATT
IN2

PRE
OFF

PRE
Vee

Vee

PWR
OUT2

MOTOR
CNT

MOTOR TORQUE SPEED
Vee
CNT
ADJ.

VOLUME

VOL
REF

PWR
OUT1

PWR
GND

V2Vee2

MOTOR MOTOR
GND

3
V2 Vec1

PRE
IN1

MOTOR
CNT

Fig. 1

c8SAMSUNG
Electronics

155

I

KA22136

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic

Symbol

Value

Unit

Vee
Pd
Topr
T5tg

7.5
450
-20- + 70
-40- + 125

V
mW
°C
°C

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 3V, unless otherwise specified)
Characteristic

Symbol

Test Condition

lee

Vee=3V, Vj=O, Im=O

Quiescent circuit current

PRE AMPLIFIER SECTION
Characteristic

Typ

Max

Unit

18

25

rnA

Max

Unit

(Vee = 3V, f = 1KHz, RL1 = 10Kfl, unless otherwise specified)

Symbol

Test Condition

Open Loop Voltage Gain

Ava

Va = -10dBm, RL = 00

Closed Loop Voltage Gain

Av(1)

Vo= -10dBm

Output Voltage
Total Harmonic Distortion

Min

Vo

THD= 10%

Min

Typ

40

42

0.45

0.6

72

dB
44

dB
V

THD(1)

. Vo=400mV

0.05

0.5

%

VNo(1)

Vi = 0, Rg = 2.2KO,
BPF (30 - 20KHz)

150

300

p.V

Output Noise Voltage
Input Resistance

Ri (1)

Vo= 10dBm

18

Cross Talk

CT(1)

Rg =2.2KO, Vo= -10dBm

30

Output Voltage In Pre OFF

Vo(off)

Vi= 100mV
Pre OFF (pin 22) = Vee

22

KO
dB
-50

dB

POWER AMPLIFIER SECTION (Ta=25°C, Vee =3V, f= 1KHz, RL2= 160, unless otherwise specified)
Characteristic

Symbol

Closed Loop Voltage Gain

Av(2)

Voltage Gain Difference

6Av

Output Power 1

Po(1)

Output Power 2

Test Condition

Min

Typ

Max

Unit

Po=5mW

26

28

30

dB

0

3

THO = 10%, RL = 320

20

28

30

Vcont= Max

dB
mW

Po(2)

TH 0 = 10%, RL = 160

Total Harmonic Distortion

THD(2)

Po=5mW

Pre + Power Noise

VNo(2)

Output Noise Voltage

VNo(3)

Cross Talk

CT(2)

Po=5mW

20

30

dB

RR

Vcc=3V, 100Hz, 100mVp-p

34

40

dB

Ripple Rejection Ratio

c8SAMSUNG
Electronics

mW
0.2

2.0

%

Vi=O, Rg =2.2KO, Veont=Max

6

10

mV

Rg =2.2KO, Veont = Min

0.25

1.0

mV

156

LINEAR INTEGRATED CIRCUIT

KA22136

ATTENUATOR SECTION
I

l
I

l
!
I

Characteristic

(Ta = 2S0C, Vee = 3V, f = 1KHz, unless otherwise specified)
Symbol

Test Condition

Maximum input voltage

Vi (Max)

Maximum attenuation

Va (max)

Vcont= Min

Attenuation error

Va (err)

Vcont= Max

Input impedance

Ri (2)

MOTOR SPEED CONTROLLER
Characteristic

Symbol

Min

Typ

Max

Unit

0.2

V

66

dB
0
- -- "
20

1S

dB
KG

(Ta=2S0C, Vee =3V, Im= 100mA, unless otherwise specified)
Test Condition

Min

Typ

Max

Unit

3.0

S.O

mA

0.80

0.87

!
\

Consumption Current

Ime

Starting Current

Ims

SOO

mA

I

Vref

V (pin 15, 16)

Reference Voltage Regulation 1

DVref (1)

* Vee=2.1-S.0V

O.OS

%IV

Reference Voltage Regulation 2

DVref (2)

, m = 2S - 2S0mA

0.01

%/mA

Reference Voltage Regulation 3

DVref (3)

Ta=-10-S0°C

0.01

Reference Voltage

I
\

Ii

Current Coefficient

K

32

--

Current Coefficient Regulation 1

6K(1)

I Current Coefficient Regulation 2
Current Coefficient Regulation 3

6K(2}
6K(3}
Vsat

Im=200mA, Pin14=Vee

ILK

Pin 18=Vee

l
I

Saturation Voltage

I Leakage Current

0.72

38

V

%IOC

43

--

O.SO

%IV

1m = 25 - 2S0mA

O.OS

%/mA

Ta= -10-S0°C

0.02

Vee=2.1-S.0V

50

%IOC
--

0.6

V

200

p.A

--

*Voltage across Pin 13, 17

c8SAMSUNG
Electronics

157

I

KA22136

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT
vee

KA22136

APPLICATION CIRCUIT
vee(r------------~----------------~r-------~------~~~----------.

Fig. 3

c8SAMSUNG
Electronics

158

KA2214

LINEAR INTEGRATED CIRCUIT

1.2W DUAL POWER AMPLIFIER
The KA2214 is a dual audio power amplifier in a 14-pin dual
in line package. It is designed for portable audio sets.

•

FEATURES
• Wide operating voltage; Vee = 3V -13V
• High output power; Po = 2W at 12V/SUITHD = 10%
Po = 1.6W at 9V/4UITHD = 10%
Po=1.2W at 9V/SUITHD=10%
Po = 0.7W at 6V/4UITHD = 10%
Po = 0.5W at 6V/SUITHD = 10%
Po = 50mW at 4.5V/32UITHD = 10%
• High ripple rejection ratio; 50dB (Typ)
• Low quiescent current; 10mA (Vee = 9V)
• Easy assembly so that two power amplifiers are built in a
package.

ORDERING INFORMATION
BLOCK DIAGRAM

Operating Temperature

FILTER

r--------{ 1

COMPENSATION 1

11

~---(

,---------{ 9

BOOTSTRAP 1

TAB

.---------\ 5

BOOTSTRAP 2

COMPENSATION 2

Fig. 1

c8SAMSUNG
Electronics

159

KA2214

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic

Symbol

Value

Unit

Supply Voltage (No Signal)
Supply Voltage (Operating)
Power Dissipation'
Operating Temperature
Storage Temperature

Vee
Vee
Pd
Top,
T stg

18
16
2.4
-20- + 70
-40 - + 150

V
V
W
°C
°C

ELECTRICAL CHARACTERISTICS
(Ta=25°C, Vee =9V, Rt =33D, f= 1KHz, RL=8D, Rg = 6000, unless otherwise specified)
Characteristic
Quiescent Circuit Current
Voltage Gagin

Output Power

Total Harmonic Distortion

Symbol

Test Conditions

Min

Typ

Max

Unit

lee

V;=O

10

mA

AVl

Po =0.25W, Rt = 330

44

dB

Po = 0.25W, Rt = 1200

34

dB

AV2
POl

Vee = 12V, RL=80, THD=10%

2

W

Po2

Vee = 9V, RL=4D, THD=10%

1.6

W

Po3

Vee =9V, RL=8D, THD=10%

1.2

W

P04

Vee = 6V, RL = 4D, THD = 10%

0.7

W

Pas

Vee = 6V, RL = 80, THD = 10%

0.5

W

Pas

Vee = 4.5V, RL=32D, THD=10%

50

mW

%

0.9

THDl

Po=0.5W, Rf = 330

0.8

THD2

Po = 0.5W, Rt = 1200

0.4

%

Output Noise Voltage

VNO

Rg = 10KD, BW( - 3dB) = 20Hz-20KHz

0.6

mV
dB

Ripple Rejection Ratio

RR

Rg=O, f=120Hz, V,=0.3V

50

Cross Talk

CT

Rg = 0, Po = 0.25W

55

Channel Balance

CB

Po = 0.25W

Input Resistance

Ri

c8SAMSUNG
Electronics

-2

0
5

dB
2

dB
MD

160

LINEAR INTEGRATED CIRCUIT

KA2214

APPLICATION CIRCUIT
.-------~-~----o

Vee

I

8

INPUT1

'1--

C4

,--11----

C6
1001"

'1

rh
C2 (Cs)

+
R2

.0.11"

1 C7

T 0.11"

•

rh
+ C5

- -- -----t-------t~--___,

SP1

TAB
INPUT2

'1--

:

C11 (Cs)

~-

---1 ~---+-------t+-----,
22p

1:
•

01

Fig. 2

12
SP2

• Mylar Capacitor

APPLICATION NOTES
(1)
(2)
(3)
(4)

Mylar capacitor is recommended for C4, C12.
Add C2, C11, for reducing voltage gain at high frequency.
Add C7 or increase capacitance of C4, C12, when a oscillation may occur due to the pattern on the PCB.
Voltage gain can be changed by the values of R1, R3.

c8SAMSUNG
Electronics

161

KA2214

LINEAR INTEGRATED CIRCUIT
OUTPUT POWER~UPPLY VOLTAGE

QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE
50

2.0

I

/

11

1.6

I

f=1KHz
tHD=10~

I
VI

-

RL =40

a:

~ 1.2

L1

~

V,=o V

0 0 .8

V
./

I
o

o

o
VccM,

¥g~~~~~~~NIC

8
12
SUPPLY VOLTAGE

16

20

~

30

is
3 !:2

z

RL =80

(!J

~

0

i~~~~~ -f - -

g

~

c(

R,=330

:I:

2-'

20

~

i

DISTORTION-FEEDBACK RESISTANCE

o

~

\

0

>

~

c(

o

20

50

~
iiiis

(!J

/ V

0.4

i!

e
~

i!:

THO

100
FEEDBACK RESISTANCE

li~

200

~
0

V

30

>

~

Jo~11b~IJ

c1J

I~~

.#'/"
Ifco= 471'F

V

UJ
(!J

I

/

~

-'

o

40
;(

80

a:

.....::

o

z

II

~

o

::E

VOLTAGE GAIN
-FREQUENCY
TOTAL HARMONIC DISTORTION

Z 4

j

\

R~O),

o

RL =40

~is
1.2

0.8

'i'-..

60

UJ

-

1'--......

1\

10

POWER DISSIPATION-SUPPLY VOLTAGE

a:

-r--

z

o

1.6 ~

1\

iii' 20

o
16

J'-.- ~v

~ 30
(!J

i!:

THO

f',.

z

10'

12
Vec(l/), SUPPLY VOLTAGE

RL =BIJ
f=1KHz
Vo=1V

;(

.....::
;!-

\
\

10

"'

40

:;:

I

;(

(!J

~2

20

2.0

z
4 Q

I

z

~

16

'[\.

-- --

I

40

o

8
12
Vec(l/), SUPPLY VOLTAGE

50
Av

iii'

~V

o

..Lv
. . . .V

¥g~lt~~~~~NIC

DISTORTION"SUPPLY VOLTAGE

50

UJ

V

/

)~2Il

LV

0.4

V

/

BIJ

11/

~

./

I--- V

/1

Vcc =9V
RL =BIJ
R,=330
Vo=1V

V

iii'

~

o ~>O,c.
~~;o::

'f?o

... ~

~ 20

c(

32:;"'- /'

10

~~ /

12
Vee(\/), SUPPLY VOLTAGE

c8SAMSUNG
Electronics

V.l

I'

~V /~
16

20

r-

THO

""'"

IIIII

o
2 3

5

100

2 3

5 1K
2 3 5 10K
f(Hz), FREQUENCY

2 3

5

162

KA2214

LINEAR INTEGRATED CIRCUIT

TOTAL HARMONIC DISTORTION·OUTPUT POWER
100

Vee 9V
RL 81l
R,=331l

z

o
~

o~

•

,

10

()

~
~

ct
l:

5

3
2

..J

ct

b
I-

f=10KHz

1.0

l

5

~

3

Q

.........

\ '" ,r;:tJ'r'I1.

r--

f

1KHz

2
0.1

0.01

2 3

5

0.1
2 3 5
1.0
P.IWl. OUTPUT POWER

2 3

c8SAMSUNG
Electronics

5

10

163

KA2220

LINEAR INTEGRATED CIRCUIT

EQUALIZER AMPLIFIER WITH ALC
9 SIP

The KA2220 is a monolithic integrated circuit consisting
of a preamplifier and ALe circuit for cassette tape recorders

FEATURES
•
•
•
•
•
•

Low noise amplifier.
Wide operating supply voltage range: Vee = 3.SV -14V
High output voltage.
Low distortion.
Wide ALC range.
KA2220 ST: Good ALC pair characteristic for stereo
tape recorders

SCHEMATIC DIAGRAM

ORDERING INFORMATION

Fig. 1

TEST CIRCUIT
Rl 12K

.----.----4W'¥---.-----------Q

INPUT

Vee = 5V

o---I'~--{

J-+--'-N------.-~~Q

OUTPUT

RL

5.1K

·Pin 4: ALC IN
PIN 6: ALe OUT

R4 lOOK

Fig. 2

c8SAMSUNG
Electronics

164

LINEAR INTEGRATED CIRCUIT

KA2220

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic
Supply Voltage
Power, Dissi pation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

Vee
Pd
Topr
Tstg

15
200
-20- + 70
-40- + 125

V
mW
°C
°C

•

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 5V, RL = 5.1 KO, Rg = 6000, f = 1KHz, NAB, unless otherwise specified)
Characteristic

Symbol

Quiescent Circuit Current

lee

Voltage Gain (Open Loop)

Avo

Voltage Gain (Closed Loop)

Av

Test Conditions
Vi = 0, ALC OFF

Max

Unit

1.4

2.0

mA

37

dB

69

Vo =0.7V

33

35

0.7

Output Voltage

Vo

THD=1%

THD

Vo=0.2V

Input Resistance

Ri

60
Rg =2.2KO, NAB
BW ( - 3dB) = 15Hz - 30KHz

V N1

Typ

66

Total Harmonic Distortion

Equivalent Input Noise Voltage

Min

dB

1.0

V

0.1

%

100

KO

1.0

",V

.---.

ALC Transistor Saturation Voltage

VSAT

75

100

mV

ALC GRADE BINNING TEST CIRCUIT
r - - - - - t - - - - - - - - - - - Q Vee=5V
68K

r----------.,
I
I

12K

I
I

AC VOLT

METER

I
I

5.6K

I

I
I
I

100

:
I
I

I
I

I

I
I
L __________ .J

Fig. 3
Test condition: S.G output level should be adjusted to be 13.8mV of the AC voltmeter reading (Vs) when the D.U.T is not connected from the test circuit (Vee =5V, VA =1.16V, Ta = 25°C)
ALC RANK is defined as ALC-G.R=2010g V S2/VSl
where
VS1 : AC voltmeter reading when the D.u.T is not connected
V S2 : AC voltmeter reading whn the D.u.T is connected

c8SAMSUNG
Electronics

165

KA2220

LINEAR INTEGRATED CIRCUIT

ALC-G.R BINNING TABLE

Symbol
KA2220 H
KA2220J
KA2220 K
KA2220 L
KA2220 M
KA2220 N

ALC Grade (dB)

Av(dB)
Min

34-

Max

Min

Max

36

-16.0
-18.5
-21.0
-24.0
-27.0
-30.0

-20.0
-22.5
-25.0
-28.0
-31.0
-34.0

External Components (Refer to test circuits)
C 1 : Input coupling capacitor
The recommended value is 1O/-lF. If made too small the low frequency characteristics will change for the worse,
and too large a capacitance value will increase the rising time when power is applied.
C2 : Ripple filter for power supply
A large value is required to get an excellent ripple characteristic under the line operation, but must be made
smaller to shorten the starting time.
C3 : Bypass capacitor
Short emitter resistor on the AC and prevents an AC signal from feedback to input.
C4 : Output coupling capacitor
C4 is determined as follows:

C4 =_1_21r'fL 'RL

k: low cut-off frequency
RL: load resistance
Cs : Phase compensation capacitor.
Prevents high frequency oscillation by phase error when feedback is heavy.
C6 , R3 , R4 : Equalizer network
The closed loop voltage gain is determined by these components in relation to the internal resistance at Pin 3.
R,: Filter resistance.
R2 : Collector resistor of first stage transistor of the IC
Low voltage characteristic can be improved by adjusting this resistance.

c8SAMSUNG
Electronics

166

LINEAR INTEGRATED CIRCUIT

KA2220

TOTAL HARMONIC DISTORTION..QUTPUT VOLTAGE

VOLTAGE GAIN-FREQUENCY
100

10

II iiiil

90

I

Vcc-5V
Rl-5.1KD

80

Avo

~~~

I-

,!

I

li

~

I])

F,

•

,,1§I.~"y

l'

! II

..............

'---vcc-5V
_RL_5.1KD

i

!

~

II

~

~~)
~

1.~1<

Av(NA B 4.75cmlsec

20
10
ODl

10 2 3 5 100

2 3 5

2 3 5 10K

lK

2 3 lOOK

2

0.1

3

OUTPUT VOLTAGE-8UPPLY VOLtAGE

1.8

Vcc-5V
RL-5.1KD

-

RL-5.1KD
I-1KHz

~

1.8 i - THO-l'111

---

w 1.4

I-

L l-lor~Z'

2

3

5

lD

2

3

. /~
'f

I

~o.e

~

0.4

'~i

5

~

~~
-."....

/

lD

~o.e
~

/

L

~I

l(iI
0.1

~

f

1~~

/

IJ"

!~ 1.2

v.~~

I';

0.2

10

2

3

5 100

4

5

10

VI (mY). INPUT VOLTAGE

11

'13 14

12

Vee (V). SUPPLY VOLTAGE

VOLTAGE GAIN-SUPPLY VOLTAGE

QUIESCENT CIRCUIT CURRENT-8UPPLY VOLTAGE
2.4

120

I
100

10

2D

---

0.1

3

Vo (V). OUTPUT VOLTAGE

OUTPUT VOLTAGE·INPUT VOLTAGE
10

2

lD

f (Hz), FREQUENCY

-

Rl-5.1KD
-1KHz

15

V --;;;;-

~~

2D

II!

--

a

i

1.8

i"

,/

"".

.,V

V

.--

i-"""""

80.8

t

Av

i

20

10
Vee (V). SUPPLY VOLTAGE

c8SAMSUNG
Electronics

12

14

18

0.4

10

12

14

18

'Vee (V), SUPPLY VOLTAGE

167

KA2220

LINEAR INTEGRATED CIRCUIT

EQUIVALENT INPUT NOISE VOLTAGE
- GENERATOR RESISTANCE

INPUT IMPEDANCE-FQEQUENCY
1000

- - -Vee
-

/

w

U

z 100

~
Go

i!

5V
-Rl=5.1KII / " \

5

I-

~

!

-

~
a:

3
2
10

10

2 3 5 100

2 3 5

lK

2 3

5 10K

2 3 lOOK

2

3

f (Hz). FREQUENCY

5

lK

3

5

10K

2

3

5

lOOK

Rg (II). GENERATOR RESISTANCE

TYPICAL APPLICATION CIRCUIT
100
r---~~~~----------~------------~~------~Vcc
100~6.3V

+

12K

+

470~10V

1)------

POWER

2.2K

+ >
0

~

120

SW (PLAY/REC): PLAY

150p

3300p

AUDIO BIAS CHECK

Fig. 4

c8SAMSUNG
Electronics

168

KA2221

LINEAR INTEGRATED CIRCUIT

DUAL LOW NOISE EQUALIZER AMPLIFIER
The KA2221 is a monolithic integrated circuit consisting of
2-channel low noise amplifiers and regulated power supply for
car stereos.

i

8 SIP

•

FEATURES
•
•
•
•
•
•

Suitable for car stereos.
Low noise amplifier.
Voltage regulator included.
Good ripple rejection.
High channel separation (65dB Typ).
Minimum number of external parts required.

L - -_ _ _ _ _ _ _ _ _

ORDERING INFORMATION

SCHEMATIC DIAGRAM

Device
KA2221

Package Operating Temperature
8 SIP

Fig. 1

c8SAMSUNG
Electronics

169

KA2221

LINEAR INTEGRATED CIRCUIT

=

ABSOLUTE MAXIMUM RATINGS (Ta 25°C)
Characteristic
Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

Vee
Pd
Topr
T5tg

18
200
-20- + 70
-40- + 125

V
mW
°C
°C

ELECTRICAL CHARACTERISTICS
(Ta = 25 0 C, Vee = 12V, RL =10KO, f=1KHz, NAB, unless otherwise specified)
Characteristic

Symbol

Quiescent Circuit Current

lee

Voltage Gain (Open Loop)

Ava

Voltage Gain (Closed Loop)

Av

Output Voltage

Min

Test Conditions
Vi=O

Typ

Max

Unit

6.0

9.0

mA

65

80

Vo=0.5V

33

35

Va

THD=1%

0.6

1.0

Total Harmonic Distortion

THD

Vo=0.5V

Input Resistance

Ri

Equivalent Input Noise Voltage

VN1

Rg =2.2KO
BW ( - 3dB) = 15Hz - 30KHz

Cross Talk

CT

Rg =2.2KO

0.1

dB
37

dB

0.3

%

V

150
1.0
50

65

KO
2.0

p.V
dB

TEST CIRCUIT
330
.--------.---~~r-4J

INPUT 1 O-__-H-'---l

Vee

r - -__'-tf-__-oOUTPUT 1
RL
10K

}---~.:..u-

INPUT 2 D--.---H-'-{

__o

OUTPUT 2

Fig. 2

c8SAMSUNG
Electronics

170

KA2221

LINEAR INTEGRATED CIRCUIT
FREQUENCY RESPONSE

OUTPUT VOLTAGE-INPUT VOLTAGE

28

10

IIIIIII1

24

-

--

Vcc-12V
RL-10Kll
20 f--- Rg-eooo

-

AV-iTI,t

16

Iw

8

",

II!

4

~

1/1-'

•

r\.

12

~

--

Vee-12V
RL-10K0
Rg-eooo

f-100Hz
1-

l/~

V
~~

1"-"",

-4

f-1KHz

f-10KHz

I

-8
-1~

10

2 3 5 100

2 3 5 1K

2 3 5 10K

l/~V

0.01

2 3 5 100K

0.1

2 3

5

1.0

11Hz), FREQUENCY

2 3

5

100

OUTPUT VOLTAGE-SUPPLY VOLTAGE
1.2

I,d

Wlll

10

V, (mY), INPUT VOLTAGE

CROSS TALK-FREQUENCY
-20

i
i
5

2 3

I'

I'"

!

I
I

-30 f - - t-RL-10K0
Rg-2.2K1l
Vo-OSV

_......

1.1

,

w 1.0 t----

i

a

RL-10K0
'-1KHz
Rg-eooo
Av-35dB

J

!;o.s

1\

i-""""

/

0.9

i

II

~

o 0.7

t---

I

~

~ 0.6

-80
0.5

l'..

OA

--

-70
0.3

2 3 5 100

2 3 5 1K

2 3 5 10K

o

2 3 5 100K

6

101214161820

Vee (V), SUPPLY VOLTAGE

'(Hz), FREQUENCY

TOTAL HARMONIC DISTORTION-oUTPUT VOLTAGE
10

I

I

--

0.2

-80
10

--

QUIESCENT CIRCUIT CURRENT-SUPPLY VOLTAGE
10

f------ Vee -5V
3 f------ AL-10Kll
Av-4OdBl1KHz

V,-O

i

I

1.0
,

I "-'r-....
~

2

~

0.1

t
a
j!:

1.1OCtiz

I-10KHz

V
/

f.1KHz

3

I

I

0.D1
0.1

3

5

1.0

Yo (V), OUTPUT VOLTAGE

c8SAMSUNG
Electronics

~

V

V

i

J-.-........

......

i

o
10

o

6

10

12

14

16

18

20

Vee (V), SUPPLY VOLTAGE

171

LINEAR INTEGRATED CIRCUIT

KA2221

External components (Refer to test circuits)
C 1 (C 3):

Noise filter
These capacitors prevent radio interference in strong electric fields. The recommended value is 1000pF.

C 2 (C4):

Input coupling capacitor
The recommanded value is 1D/-tF. If made too small, the low frequency characteristics will change for
the worse, but too large a value will increase the rising time when power is applied.

Cs (C 1O): Negative feedback capacitor
The lower cut-off frequency depends on the value of these capacitors and is determined as follows:

fL : Low cut-off frequency
If the value of these capacitors is made larger, the starting time of amplifier is delayed further.
C7 (Ca): Output coupling capacitor
The recommended value is 10jAF.
R 2 , R3 • Cs (R 4 • Rs, Cg): Equalizer network
The time constants of standard NAB characteristic are follow.

Tape speed

9.5cm/sec

4.75cm/sec

Cs (R2 + R3 )
R2, C s

3180jAsec

1590/-tsec
120jAsec

90Jlsec

Rl (Re): Feedback component
The closed loop gain is determined approximately by the following relationship:

Av = 20 10g~dB)
RNF

Ztot =R2 + R:J/C s

* Choose R2 , R3 , (DC resistance of NAB element) as 100K1l approximately.

c8SAMSUNG
Electronics

172

KA22211

LINEAR INTEGRATED CIRCUIT

DUAL LOW NOISE EQUALIZER AMPLIFIER
8 SIP

The KA22211 is a monolithic integrated circuit consisting of a
2-channel pre-amplifier in a 8-pin plastic single in-line package.

•

FEATURES
•
•
•
•

Recommended operating supply voltage range (5V-14V)
Low noise (V NI = 1_0JlV: Typ)
High channel separation
Minimum number of external parts required

SCHEMATIC DIAGRAM
ORDERING INFORMATION

2

NF1

Vee
01

R1
R2

02

03

06

05

Rg

RlO

04

7

NF2

Fig. 1

c8SAMSUNG
Electronics

173

KA22211

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

Characteristic

Symbol

Value

Unit

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Vee

18
200
-20- + 70
-40 -+ 125

V
mW
°C
°C

Pd
Topr
Tstg

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 9V, RL = 10KO, Rg = 6000, f = 1KHz, NAB, unless otherwise specified)
Characteristic

Symbol

Quiescent Circuit Current

lee

Voltage Gain (Open Loop)

Avo

Voltage Gain (Closed Loop)

Av

Output Voltage

Vo

Total Harmonic Distortion

THD

Test Conditions

Min

V1=0

Max

Unit

4.0

6.0

mA

65

80

Vo=0.5V

33

35

THD= 1%

1.1

1.3
0.1

Vo=0.5V

Input Resistance

Ri

Equivalent Input Noise Voltage

VN1

Rg=2.2KO
BW ( - 3dB) = 15Hz -30KHz

Cross Talk

CT

Rg =2.2KO

TEST CIRCUIT

Typ

70

dB

0.3

%

V

100
1.0

50

dB
37

KO
2.0

65

,N
dB

,-------------~------~~--------DVee

+

47p.

Icc

IN PUT 1 Q------t,;l--:---{

1---------..,...-t:If---+-"---Q OUTPUT 1

INPUT 2 u------t:-~_I

I-------
1.0
0.5

80

10

2 3

5 100

2 3 5 lK 2 3 5 10K 2 3 5 lOOK
f(Hz), FREQUENCY

c8SAMSUNG
Electronics

10
12
14
16
Vcc(V), SUPPLY VOLTAGE

18

20

176

LINEAR INTEGRATED CIRCUIT

KA2223

16 DIP

5·BAND GRAPHIC EQUALIZER AMPLIFIER
The KA2223 is a monolithic integrated circuit consisting of an
operational amplifier with five resonant circuits and a active filter,
and it is suitable for radio-cassette tape recorders, car stereos
or music center audio systems.

•

FEATURES
• Tone control with independent adjustment of each band through
an external capacitor_
• Gain control through an external variable resistor.
• Increasing the bands by adding resonant circuit or using two
KA2223 in series.
• Low noise (VNo =7p.V: Typ. Flat).
• Low distortion (THD=O.02% Typ. f=1KHz Flat).
• Large allowable input (Vi = 2.3V: Typ, Vee =9V, f=1KHz Flat).
• Operating supply voltage (5V -13V)

ORDERING INFORMATION
Device

SCHEMATIC DIAGRAM

KA2223

GND

BIAS

Vee

OUTPUT

NF

Package Operating Temperature

16 DIP

KA2223G

PELLET

NF5

BASE S

IN PUT

-20·-

I

+ 70°C

I

1.2K

Fig. 1

c8SAMSUNG
Electronics

177

LINEAR INTEGRATED CIRCUIT

KA2223

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Symbol

Value

Unit

Supply Vol,tage
Power Dissipation
Operating Temperature
Storage Temperature

Vee
Pd
Topr
Ts1g

20
700
-20 - +70
-55 -+125

V
mW
°C
°C

ELECTRICAL CHARACTERISTICS
(T.=25°C, Vee =9V unless otherwise specified)

Characteristic
Quiescent Circuit Current
Flat

Symbol

Test
f(Hz)

Conditions
VI=O

1K

VI = -10dBm

lee
Av (Flat)

Typ

Max

Unit

3.0

5.2

B.O

mA

-3.8

-O.B

2.2

dB

Min

dB

10B
Boost

Av (Boost)

I--

dB

343
1.0BK

B

VI = -10dBm

10,5

112

3.43K
Voltage Gain

dB

t---

10.BK

dB

fOB

dB

Av (Cut)

1,OBK

r--

I

343
Cut

VI= -1OdBm

dB

~

-12

-10.5

-8

3.43K

Output Noise Voltage

THD
VNo

c8~SUNG

dB

r-dB

r-dB

10.BK
Total Harmonic Distortion

r-dB
r--

VI =1V

0.02

0.1

0/,0

Flat, Input Short
BW( - 3d B) = 10Hz - 30KHz

7.0

30

p.V

1K

178

LINEAR INTEGRATED CIRCUIT

KA2223

TYPICAL APPLICATION CIRCUIT

Vee

OUTPUT

+
471'-

+

KA2223

o
390p

6800P

100Kx5

INPUT

+
4.7K

108Hz

343Hz

3.43KHz

1.08KHz

10.8KHz

Fig. 4

Resonant frequency fa =

1

271" JR 1 R2 C1 C2
(R1 =1.2K, R2 =68K on-chip resistor)

c8SAMSUNG
Electronics

179

•

KA2223

LINEAR INTEGRATED CIRCUIT

APPLICATION CIRCUIT 1 (7-Band)
OUTPUT

vee

100Kx7

INPUT

4.7K

46Hz

108Hz

343Hz

1.08KHz

3.43KHz

10.8KHz

15.B7KHz

Fig. 2

APPLICATION CIRCUIT 2 (10-Band)
Vee

OUTPUT

KA2223

o

KA2223

o

4.7K
INPUT

Fig. 3

c8SAMSUNG
Electronics

180

KA2223

LINEAR INTEGRATED CIRCUIT
TOTAL HARMONIC DISTORTIO~"()UTPUT VOLTAGE

QUIESCENT CIRCUIT CURRENT..sUPPLY VOLTAGE
10

r-----

V =5V

r--- Rcc=10Kll
r--- f=1KHz
R,=6000

/

L

~

~

-'"

/'

/

V

~C

./

/

3
2

2

:I:

.....

g
...

7

j!:

5
3

0.1

YoM.

I--

Rc=10K!l
2 I-----t= 1KHz
R,=6001l
1.0
!!! 7
c
ALL CUT

V

e:z:

3
2

V

:I:

.....

/

I--

/

V

V

Z

V

7
~ 5

~

Q

~

3

,/

0.01

7

/V

-"

/

V

~ f--

...........

t--+1

3

YoM.

0.01

5
7 1.0
OUTPUT VOLTAGE

7

ALL CUT

i'-I-V1--!"-....
Vcc=8V

o

~ 0.1

ct

:I:

.....

r+-

-_.

R,=600!l
IV.= -1OdBm

-- ""

12

........

i\

iii" 4
~

w

~
~

ALL BOOST

7

ffi
II:

~ 5

0

4

e
iQ

3

j!:

2

ALL FLAT

~

1

lL

I
ALL FLAT./

--r-r

V

7 1.0
V.(V). OUTPUT VOLTAGE

16

2 f- RL =10K!l -

Z

0.1

./

FREQUENCY RESPONSE

TOTAL HARMONIC DISTORTION·FREQUENCY
1.0

3

........,.

i-"""
1'-

J

V

V

ALL BOOST . /

...........

0.1

...i.

ALLC'L"

1/

ALL FLAT

"'"

1

)

./

e

1.0

OUTPUT VOLTAGE

Vcc=12V
RL =10KO
f=1KHz
R,=600!l

V

ALL BOOST

~ 0.1

.... ..i.

10

z

U

ALL FLAT

TOTAL HARMONIC DISTORTION·OUTPUT VOLTAGE

I

Q

~
u

--

~

0.01

t-- Vcc =8V

~

,.......

r--...

16

14

•

--t
L/

ALL BOOST

-----+-

0.1

8
10
12
VccNl. SUPPLY VOLTAGE

I

5

~

r""

TOTAL HARMONIC DISTORTION·OUTPUT VOLTAGE

z
o

~

3

ct

~

4

j!:

./

7

o
~

2

~
~

ALL CUT

1.0

o
Z

./

_V
12

AIL~ B~OS~

~

~~ h~ .... '1 \\ ~h roY'II r\\
V' ~
).~ ) ~ II!\.
~
~ . . V ~r-1'
1
\.. ~i\
K
~K..
I

r--~LL FLAT~ r-~

)'

~

(;

~

V

r\V VII"

~~
Ii\ II iii
~l\
"~ ~ ~~ V/ ~~ I\~
'1/

~
AiLlcUTI

I'"'

t-'

16

0.01

7100

2

3

5 7 lK
2 3 5 7110K
I(Hz). FREQUENCY

c8SAMSUNG
Electronics

2

3

5

2 3 5 7 100 2 3

5 71 K 2 3 5 710K 2 3
I(Hz), FREQUENCY

5 7100K

181

KA2223

LINEAR INTEGRATED CIRCUIT
~?S~'g-R~fo~MONIC ·AMBIENT TEMPERATURE

QUIESCENT CIRCUIT CURRENT·AMBIENT TEMPERATURE

Vcc=18V
f=lKHz R,=6001l
RL =10KIl

Vcc=8V

z

Q

~

---

I---r--

3
-40

-.......1----

ALL FLAT

~c 0.1

V.=1.0V

~

~

7

::Ii

~

5

e~

3

...
:J:

r--

- I'--

I'---

0.Q1

-20

0
20
40
80
Ta(°C), AMBIENT TEMPERATURE

c8SAMSUNG
Electronics

80

-40

-20

0
20
40
60
Ta(°C), AMBIENT TEMPERATURE

80

182

KA22231

LINEAR INTEGRATED CIRCUIT
--------

-----------~

28 SOP

5·BAND DUAL GRAPHIC
EQUALIZER AMPLIFIER
The KA22231 is a monolithic integrated circuit
consisting of an operational amplifier and 5 resonant
circuits with an active filter.
It is suitable for 3V headphone stereos and mini radio
cassette tape recorders.

•

FEATURES
• Tone control with independent adjustment of each
band through external an capacitor
• Gain control through an external variable resistor
(Gain = ±9dB)
• Low noise (V NO = 41N, Typ at f = 1KHz, Flat)
• Low distortion (THD=0.04% Typ. at f=1KHz, Flat)
• Low current dissipation (Icc = 4mA Typ at Vi = 0)
• Operating supply voltage range: Vee = 1.6V - 6V

ORDERING INFORMATION

BLOCK DIAGRAM

Note:R1=68K

R2=1.2K

R3=4.7K

R4=13.5K

R5=13K

Fig. 1

c8SAMSUNG
Electronics

183

KA22231

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Symbol

Value

Unit

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Vee
Pd
Topr
T81g

8
300
-20- +70
-40 -+ 125

V
mW
°C
°C

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 3V, RL = 10KO, unless otherwise specified)
Test Conditions
. Characteristic

Symbol

f(Hz)

Min

Condition

Typ

Max

Unit

8.0

mA

Quiescent Circuit Current

lee

Vi=O

2.0

4.0

Output Voltage

Vo

1K

THD= 1%

500

800

THO

1K

Vo=300mV

Channel Balance

CB

1K

Cross Talk

CT

1K

Total Harmonic Distortion

Output Noise Voltage
Flat

V NO
Av(Flat)

Rg=O

0.1

%

-1.0

0

1.0

dB

40

50

Flat, Input Short
BW( - 3dB) = 10Hz - 30KHz
1K

mV

0.04

dB

4.0

20

ltV

Vi = 100mV

-4.0

-1.0

2.0

dB

Vj =100mV

8.0

10.0

12.0

dB

Vi= 100mV

-12.0

-10.0

-8.0

dB

100
340
Boost

Av(Boost)

1K
3.4K
10K

Voltage Gain

100
340
Cut

Av(Cut)

1K
3.4K
10K

c8SAMSUNG
Electronics

184

KA22231

LINEAR INTEGRATED CIRCUIT

TYPICAL APPLICATION CIRCUIT
OUTPUTl

3

INPUTl 4.7K

.-.....--- Vee

100!,

INPUT2

4.7K

3
100Hz

300Hz

1KHz

3KHz

10KHz

OUTPUT2

Note. Point 1: Boost,

Point 2: Flat,

Point 3: Cut
Fig. 2

c8SAMSUNG
Electronics

185

•

KA22231

LINEAR INTEGRATED CIRCUIT

QUIESCENT CIRCUIT CURRENT·SUPPL Y VOLTAGE

TOTAL HARMONIC DISTORTION·OUTPUT VOLTAGE

15

Vcc=3V
t=1KHz
RL = 10 Kohm
FLAT

I-

Z

::!

12

~
o

t--I--++++-II+--+---+-+-I

l-

S

~

o

9

IZ

~
~

S

6

o



~

(3

...

ffi
!3

:;

6

a

./

vV'

,/'

3

L......-

V

V

1.0

I

/

o.1

V
/'

;t
E
]

•

Vee 8V
f=lKHz
FLAT

12

I

.......
.

a

16

14

12

10

4

Vec(V), SUPPLY VOLTAGE

::--....

............

I- t-I--'

0.0 1

0.1

3

5

1.0

Vo(V), OUTPUT VOLTAGE

FREQUENCY RESPONSE
16

!

II
I

V
, ,v

I
I
I

i

'IV
V"

I

I'

V!t

N
~I

./

'I'li

I
I

VI f\~

8

Jci61~lf

III

I

j\

I

i

\11

[\~
lJ'1

11\

~/I/

f\

Vr'\

J7

[\,

I.

II

FLAT

V
••

__

I/' 'U F1Ulii
II

I

10 2 3

5 100 2 3

5

I

J~

V

I

-16

i

lK

i

I

Iii

2 3 5 10K 2 3 5 100K

f(Hz), FREQUENCY

c8SAMSUNG
Electronics

203

LINEAR INTEGRATED CIRCUIT

KA2224

DUAL EQUALIZER AMPLIFIER WITH ALC

14 DIP

The KA/224 is a monolithic integrated circuit consisting of a dual
equalizer amplifier with ALC, and it is suitable for stereo radio
cassettes.

FEATURES
• Dual equalizer amplifier with a built· in ALe circuit.
• Recording amp available because of high gain characteristic
(Variable monitor possible).
• Good channel separation (Sep=50dB 'lYp).
• Quick stabilization after power on.
• Capabie of direct meter driving and ALe transistor.
• Good ALe response balance between channels.
• Wide operating supply voltage range (4V -13V).

ORDERING INFORMATION
Device
KA2224

BLOCK DIAGRAM

KA2224G

DC

ALC
OUTPUT2

ALC
INPUT

ALC
OUTPUT1

INPUT2

INPUT1

NF2

PC2

NF 2

PC1

OUTPUT2

OUTPUT1

Package Operating Temperature
14 DIP
PELLET

-20 -

+ 70°C

Vee

GND

Fig. 1

c8SAMSUNG
Electronics

204

KA2224

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature
ALC TR Maximum Current

Symbol

Value

Unit

Vee
Pd
Topr
Tstg

14
600
-20- + 70
-40- + 125
3.5

V
mW
°C
°C
mA

•

ELECTRICAL CHARACTERISTICS
(Ta=25°C, Vee =5V, RL =10KO, f=1KHz: play, RL =6800: Recording)
Characteristic

Quiescent Circuit Current
Voltage Gain (Open Loop)
Voltage Gain (Closed Loop)

Test Conditions

Symbol

lee

Vi=O

Avo
AVl

Play

AV2

Record

Output Voltage

Vo

THD=1%, Play

Total Harmonic Distortion

THD

Vo =0.5V, Play

Input Resistance

Ri

Equivalent Input Noise Voltage

Min

V N1

0.9

Typ

Max

Unit

4.5

10

mA

85

dB

40

dB

58

dB

1.2
0.1

21
BW(-3dB)
=20Hz- 20KHz

V
1.0

KO

30
1.0

%

2.0

,N

Cross Talk

CT

Rg=2.2KO

40

50

dB

ALC Range

ALC(R)

Vi = -60dBm, Record

35

45

dB

ALC Balance

ALC(B)

Vi = -20dBm, Record

0

2.0

dB

ALC Distortion

ALe (THO)

Vi = -20dBm, Record

0.5

2.0

%

c8SAMSUNG
Electronics

205

LINEAR INTEGRATED CIRCUIT

KA2224
TEST CIRCUIT
1

S1.2

1
.----!---l A

B1

S6-1~

Fig. 2

TEST METHODS

Icc

Avo
----Av

Vo
-THD

20-20KHz

r-~:!J~~-+-~-+-o-~

2.2K

Characteristic

Vee =5V

Test
Point

51

S2

S3

S4

S5

S6

2

off

off

1

off

off

1

on

off

1

off

off

A,B

Avo =20 log VoNi (dB) with
Input voltage Vi, output voltage at Vo

1

off

on

1

off

off

A,B

Av=20 log VONi (dB)

1

off

on

1

off

off

B

Measure output voltage Vo at
THD=1%

1

off

on

1

off

off

B

Measure distortion factor at Vo =0.5V

Test Method

-----

S1-1I S1 -2 __
CT

r--~ l--~-

-off

on

1

off

off

B

Measure crosstalk of amp 1,2
at output voltage Vo =0 dBm

VN1

2

off

on

1

off

on

C

Convert output noise voltage
at 1KHz gain when Rg =2.2KD

ALC Range

1

off

off

2

on

off

B

Input voltage range from when input
voltage Vi = -60dBm until output
voltage Vo goes up 3 dB.

ALC Balance

1

off

off

2

on

off

B

Output voltage Vo level difference of
amp 1, 2 when input voltage
Vi = -20dBm is applied.

ALC Distortion

1

off

off

2

on

off

B

Measure distortion factor when input
voltage Vi = -20dBm is applied.

r----

---

c8SAMSUNG
Electronics

206

KA2224

LINEAR INTEGRATED CIRCUIT

TYPICAL APPLICATION CIRCUIT

h

•

awer

SP

VR

200

+-+--+---I'-.!...!.-~~--oVCC

' - - - + - - - - - 0 Tuner R
0--_ _- - - - 0

Tuner L

SP

Fig.3

GENERAL OPERATING CONSIDERATIONS
1. Closed loop voltage gain
Z
r-------,
:R1

51K

:

C1
22/,

Fig. 4
SWon: play
off: record
A. Playback amplifier
Av =20 log

Z
At
(dB) at f=1KHz, Av =42dB (Typ)

1
Z = R1//(R2 + 27rf.C)

B. Recording amplifier
Av=20 log -

R1
Rf

(dB) at f=1KHz, Av=58dB (Typ)

c8SAMSUNG
Electronics

207

KA2224

LINEAR INTEGRATED CIRCUIT

2. ALC Circuit

INPUT 0-~~...a-~
R1

R3

Fig.S
The ALC circuit is consist of TR 1, TR2 and some external components. The output level of the amplifier is rectified by external circuits. Since this DC level is applied to the ALC input terminal (Pin 7), the impedance between
the collector and emitter of TR1 can change its value, therefore the pre-amplifier input level can be controlled.

:3. Oscillation Suppression

INPUT

O-~~~--{

1
_0331-'

RL

10

Fig.S
If the closed loop gain of the amplifier is designed lower than 40dB, the circuit should be compensated by connecting 10pF between Pin 3 and Pin 2, and O.0331lF (mylar) + 10n to the load end.

c8~SUNG

208

LINEAR INTEGRATED CIRCUIT

KA2224

TOTAL HARMONIC DISTORTION·OUTPUT VOLTAGE

OUTPUT VOLTAGE-INPUT VOLTAGE
10

vee-M IIII

t-t--

I--

:c

0

~~

..... ~

!iic

~

0

r\

~



o

g

'/

II:

~
,0.1

V

,..-. /

y'"

(V,= -20

V

0.2

/

V

V

I
0.3

l

V

•

-r--

V

./

,./

-SOdB)

I

0.47 0.68 0.82 0.91

l
1

1.2

1.5

1.8

0.1

0.2

0.3

0.47 0.68 0.82 0.91

R (ALC) (MOl

R (ALC) (M!l)

(A) Rg=390!l

(6) Rg=47!l

Fig. 6

Fig. 7

1

1.2

1.5

1.8

As the Figure 3, because the Rg range is 47 -100 ohm normally at the set application, the matching between R3
and C4 occurs.

4. Mute Function
The KA22242 has a mute function to mute at the power switch on/off. To pr",vt:H1( a malfunction of the ALC circuit,
the KA22242 is muted at this time. If the ALC is not muted, the supply voltage charges the ALC capacitor ::lnd
generates error-operations. The muting time is varied by the time-constant of the ripple filter.
C3*R internal (15K)
If C3 is too large, the rise time gets too slow and pop noises occur when other IC begins to operate faster than
the KA22242 in some application circuit. In this case, if the combination with resistance is about 1Kohm, the DC
voltage (VoDd at the output terminal is nearly constant.

R6100
VCCo---~~--~--~r-~----~

C4
2201'

+
15K

+

Fig. 8

c8SAMSUNG
Electronics

221

KA22242

LINEAR INTEGRATED CIRCUIT
CENTER' POINT VOLTAGE
OUTPUT VOLTAGE·SUPPLY VOLTAGE

QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE

V,=O

~

~
g

...............

/"

/

VV

6

~

,,-'"

VNV

Z

~

a:

4

V

III
~

Z
III

~

!

I

2

i
•

)

!

o

12

15

/

VV

/'

'/

o
12

5 ==~Vee-8V
RL=4.7K!l
3 - f - Av = 45clB~-+t-++Htt-~-+-t-++Htt-~-+t++ttff
2
Vo=0.5V

~

ALC OUTPUT VOLTAGE ALC TOTAL
HARMONIC DISTORTION·INPUT VOLTAGE
100

z

~

-

o

~

1

==

Q

-,------J..

Vee B,,---1RL-4.7K!l'
f-Av=52dB~

~ 1.0~.~.~.~.
1=

;;;

a:

Z

o

------r--

:J:
..J

~

c(

:J:
..J

~ 0.1~IMI~111
~
Q

~

r--

2

III

1.0

Vo I---

0

CJ

~

>
~

5

..

3
2

~

-

~

I----

5o

/

::

\/

5

._- I----

-~

_.- I----

0.1

::

"\.

Q

'~"

>

c(

:J:

~

~

\.

::

\~~

c(

0.01 L-.-'-J...J..I..WJ'--'-J...J..I..WJ,":--:-",:-,-:--w'::-:--:-"':-'-~
10 2 3 5 100 2 3 5 1K 2 3 5 10K 2 3 5 100K

0.1
-100

-60

-40

20

-20

V~dBm), INPUT VOLTAGE

RIPPLE REJECTION RATIO·FREQUENCY

II11111
Vee=BV
Av = 45dB
o -10 c-- f-c- V,
= - 20dBv
~
R,= 1000
a:

II

r-

z

C,=220~F

o

ti

-40

~

lil()

-20

~
~ -30

1'\

a:

I

af
~

a:

-80

-100

0.01

-80

I(Hz), FREQUENCY

1111111
Vee=8V
RL=4.7KO
-20 r R,=2.2KO
Av=45dB
-f-c- Vo=OdBv

18-60
ff

/

CROSS TALK·FREQUENCY

..J

10

2 3 5 100

2 3 5

1K

2 3 5 10K

I(Hz), FREQUENCY

=8SAMSUNG
Electronics
i

2

I

10

::
1.0
c(

l

3

I

::E

~

-.~-.

I

!

()

oZ

~

18

15

Vcc(V), SUPPLY VOLTAGE

10~~_

'"
'"
:z

./
V

~V

Vec(V), SUPPLY VOLTAGE

z

/

V/
./
Vo

18

TOTAL HARMONIC DISTORTION·FREQUENCY

o
~

/

()

.........

~ I----

/

/

i

1

o

vi

i

I

2 3 5 100K

-40

-50 10

"
2 3 5 100

2 3 5 1K

2 3 510K

23 5 100K

I(Hz), FREQUENCY

222

KA22242

LINEAR INTEGRATED CIRCUIT
QUIESCENJ CIRCUIT
CURRENT·AMBIENT TEMPERATURE

VOLTAGE GAIN OUTPUT
VOLTAGE·AMBIENT TEMPERATURE
100

I

I

Vee=8V
V,=O

BO

z

:;;:
Cl

v

Avo

V

Cl

~

0

r-- t--- t--

t--- I---

--

>

iii

40

j

i=tj-t-i-+-1

40

60

-20

Ta(°C), AMBIENT TEMPERATURE

100

111111111

~RL=I{T

'I
w

Wr---. t'-.i

60

>

i!

w

.....

I

Do

~

NAB

.....

1.0

/'

/,

j

I

~m

v

I

il

I

~


:;

1


.:2

I

I

20

II
; I

::

II11

2 3 5

10

I! ,

'"0z

III

o

BO

1

:>

t--.....

~

60

II

1

>

40

o
40

Vee- BV

I-- RL=4.7KIl
I-- Av =45dB

~
0

j

I'---

l..-

t=

w

Cl

~

~
0

--

Ta(°C), AMBIENT TEMPERATURE

II

z
:;;:
Cl

Vec=8V
f=1KHz
RL=,4.7KIl,

EQUIVALENT INPUT NOISE
VOLTAGE·GENERATOR RESISTANCE

Avo

vV'

BO

--1--

10

II

Vce=BV

.

~-I---

---

20

VOLTAGE GAIN·FREQUENCY

Cl

til
i--t

j...--:
20

BO

•

--

i

-~ ~'I~IJ+

I--t----ho

o
20

1

1

-+~t--

I

-20

I

+--j

1

w 60 I---

-I-- I---

10

1

I

100

2 3 5 1K

2 3 5 10K

I'
2 3 5 100K

0.1
100

~

3

1K
R,(Il~

'(Hz), FREQUENCY

2

3

5

10K

2 3

5

100K

GENERATOR RESISTANCE

TOTAL HARMONIC DISTORTION·OUTPUT VOLTAGE

OUTPUT VOLTAGE·INPUT VOLTAGE
10

Vee=BV
RL=4.7KIl
Av 45 dB/1KHz

-

z

~

.;'"'""t;:::'

Cl

~

o
>
.....

V

'=100Hz /

w
1.0

5

is
u

Z

1KHz

o

/


Do

.....

:>

o

~ 0.1

1/10KHz

V

/

S

0.1

2 3

~

1m

0.0

5

1.0

2 3

5

10

WmV), INPUT VOLTAGE

c8SAMSUNG
Electronics

1.0

:

-'

!-"

Vee BV
RL=4.7KIl
Av=45 dB/1KHz

/V

I
I

i'-

:I:

II

1/

1V

10

o

:;;

1

,

"

' " '-100Hz

l'-

0.1

I
I

,

~~z

Q

:I:

.....

T
2 3

I

5

100

,

0.0 1
0.01

2

3

5

I
0.1

10~HZ,_

T
2

3

1.0

2 3

5

10

Vo(V), OUTPUT VOLTAGE

223

LINEAR INTEGRATED CIRCUIT

KA2225
DUAL PREAMPLIFIER FOR 3V USING

~---------------

The KA2225 is a monolithic integrated circuit consisting of a dual
equalizer amplifier, and it is suitable for 3Vstereo radio cassettes.

FEATURES
•
•
•
•

16 SOP

High open loop gain: 85dB (Typ~(Vee=3V, f=1kHz).
Not necessary the input coupling capacitors.
Operating supply voltage range: Vee =1.6V - 5V•
Good channel separation: 60dS (Typ).

ORDERING INFORMATION
Device

BLOCK DIAGRAM
OUTPUT1

Package Operating Temperature

KA2225

16 DIP

KA2225D

16 SOP

-20 -

+70°C

Vee

RIPPLE FILTER

Fig. 1
t.

c8SAMSUNG
Electronics

224

KA2225

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Symbol

Value

Unit

Vee

7

V

Supply Voltage

I

Power Dissipation

KA2225

750

Pd

KA2225D

I

•

mW

350

+ 70
-+ 125

Operating Temperature

Topr

-20 -

°C

Storage Temperature

Tstg

-40

°C

ELECTRICAL CHARACTERISTICS
(Ta =25°C, Vee =3V, f::: 1KHz, unless otherwise specified)
!

Characteristic

Symbol

Circuit Current

I

[

I

Voltage Gain

I

Ava

Closed Loop

Av

Output Voltage

---------

THD=1%

Total Harmonic Distortion

Va
----+-- --------"-------------+
THD

I

-----1- -

Min

Typ

Max

Unit

2

3.4

mA

70

85

dB

40

dB

Vo =0.1V,

Muting Attenuation

--

______--t+

---r"-----~------- - - - f - - I

I

------

V

0.07

0.14

I

Input Resistance

0.8

0.5

I

Rg =2.2KO, Av =40dB
V NO
I BW(-3dB):::50Hz-20KHz
"---------~--t_"---~'---~~--~T___ Rg =6000, Vo= -10dBv
---

Output Noise Voltage
Cross Talk

i

'1=0

Icc

Open Loop

Test Conditions

M (att) PUTE =1V
R,

I

0.5

%

0.22

mV

60

dB

43

dB

30

KO

--~---

,

I

20

TEST CIRCUIT
10K
AvO

..----..__..--w-.. . . . . .

~_-+_--'-IIf-___4>------+-_O

OUTPUT(l)

5.6K

..-----+__..-0 Vee

M-OUT(l)

VMUTE

M-OUT(R)

- - - - - - +___oOUTPUT(R)

L-----4>-4--JW~-.-~,......-_+_---'-I. . .

10k

Fig. 2

c8SAMSUNG
Electronics

3.31'

10K

225

KA2225

LINEAR INTEGRATED CIRCUIT

TOTAL HARMONIC DISTORTION-OUTPUT VOLTAGE
f=lKHz I
NAB

1.0

~r-gr--

0

Iii
Z
0

:IE

.......

a:



Q

1

Z
0

~

~

S:l

Vcc=I:>V
NAB

1.0

Z
0

:J:

TOTAL HARMONIC DISTORTION-OUTPUT VOLTAGE

~

"

~

~

15

...

~

:J:

:>

,
N
~

'I'
0.01

0.01
0.01

2

1.0
0.1
2 3
Vo(V), OUTPUT VOLTAGE

:>

2

3

5

2

0.01

2:>

5

CROSS TALK-FREQUENCY

VOLTAGE GAIN-FREQUENCY

Vc~~3:"

120

0.1
2 3
1.0
V.(V), OUTPUT VOLTAGE

3

-10

Vcc =3V
Vo = -10dByNAB

-

-20
100

z


x: 0.1

!;

0.8

Vo-O.1V= =I=~

..J

~

0.6

o

2.0

I

.......

iii

0.01

0.5V

I

ffi

J
5

J

o

0.8
THD=l%
f=1KHz

_I 0.4

i

i

4

VccM.

()

8l

0.2

I

I

fi!

1.20

\.

i=

•

t::

'{

~

~a::
B
::>

1.6

J

> 0.4

-'

1ft
C

"j
I

I

Il.

4:

"

Vo

A

w 1.0

~

2.4 t-

i.,...-' ~

0

4

VccM.

SUPPLY VOLTAGE

SUPPLY VOLTAGE

MUTING ATIENUATION-MUTING VOLTAGE

'II
'li l'~

w

Cl

~
g

i

i

+

\:

,~AB 1

I

I!

,'

I

(5

I

Iii

z

.....

::>

Il.

T

I

1.0

4:

~_

I

-~

z
.....

;=..

.-."""

>

j

:

: !

I

[I

~

~- ..... {

:1

-"-- -~ t--l

S

->

I;!

0.1

3

I
I

5 100

i

3

5

::>

1K

1'111

3

5

3

J

1.6

-

1

---+-

~--r
I

I

w

Vcc=3V
f=lKHz
THD=l%Vo,;,O.1V

I

I
--

-

4:

>

Vo

I--r-"

0.8

-~

i

~

............. 1--..

0.4

0.8

1.2

1.6

2.0

2.4

2.8

z
o

;::

Iii
o

~

::>
0

· I',

0.20

I

0

...

.-

0.16 ~

Cl

t-

f--

VMU,.(V). MUTING VOLTAGE

1.2

:;;>
Il.

-50

..-

DISTORTION-AMBIENT TEMPERATURE
I

I

I

o

5

R,(!l). GENERATOR RESISTANCE

~~~=~TH~~~T~~~

-40

_

-60

I

10K

iii

-

)~

::;;

-t

Iml

ili-

'\ f=lKHz

!\

;::

!

1'I1

I

-f---

<:> -30

; II

--+

-2

VMUTE

S

+

---

5
~

f---

z

!

11

~-

~ -20

z

,

-r--t--

;::

+1
:lI
11/ '1

I

~

10K!l

\

i

o

t,n--

--

~I,L,!-

\'

-10

z

w
en

~

Iii:

:

!

I

i

10

i

I

THD
I
0.4

~

-

i--

-

i-- ....-

(J

-

z

o

0.08 ~
4:

x:

..J

~

I

0.04

I
!

I

-40

L"-

i

,t

-20
20
40
60
Ta(OC). AMBIENT TEMPERATURE

c8SAMSUNG
Electronics

#.
Q

i=

80

227

LINEAR INTEGRATED CIRCUIT

KA2225

APPLICATION CIRCUIT
r---II-_---.:~---"N'f--~---- LINE OUTPUT1

r--------+--..---p---o Vee
+

o

0.022,.

1,.

47,.

NORMAL

LINE OUTPUT2

Fig. 3
• Capacitor C 1 and C2 may be required to prevent instability caused by the pattern layout or interference of external high frequency signals.

c8SAMSUNG
Electronics

228

LINEAR INTEGRATED CIRCUIT

KA22261

DUAL EQUALIZER AMPLIFIER WITH REC AMP

16 DIP

The KA22261 is a monolithic integrated circuit consisting of a dual
equalizer amplifier with REC AMP, and it is suitable for stereo radio
cassettes.

•

FEATURES
• Dual equalizer amplifier with ALC circuit.
• High open loop voltage gain: 78dB (Typ).
• Recording amplifier available because of high open loop voltage
gain.
• Not necessary diode or transistor for ALe.
• Good channel separation: 60dB (Typ).
• Good ALC response balance between channels.
• Wide operating supply voltage range: Vee = 6V -15V.

ORDERING INFORMATION
Operating Temperature

REG
MUTE
OUTPUT1 OUTPUT1 MUTE IN

PRE OUTPUT1

PRE GND

REG
MUTE
OUTPUT2 OUTPUT2

REG OUTPUT2

REG GND

Fig. 1

c8SAMSUNG
Electronics

229

KA22261

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta =2S0C)
Characteristic

Value

Unit

16
750
-20 - + 70
-40 - +125

V
mW
°C
°C

Symbol

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Vee
Pd
Topr
Tstg

ELECTRICAL CHARACTERISTICS
(Ta =25°C, Vee =9V, f=1KHz, unless otherwise specified)
Characteristic

Symbol

Current

Test Conditions

Min

lee

Typ

Max

Unit

8.5

10.5

mA

~-----~----------------+-------+--------------------------~-----+-----r----~

Open Loop Gain

Avo

Vi = -80dBm

65

78

dB

~--------------+-------~-------------------~r---~-----T-----r----~

Output Voltage

V0 1

THD=1%

Total Harmonic
Distortion

THO (1)

Vo=0.2V

f-------------------------------

PRE
AMP

- ---

0.5

0.8

0.15

0.5

%

f - - - - - - - - - - - - - - - - - - f-------I--------------------------il-------f________---+---------+------1

.

Rg=2.2KQ. NAB

~_ou~put Noise VOltag_e______f________V-N-o----f________B-W-{_---3-d-B)-=--3-0_-H--Z--___2_0__
KH-=--I---_____+-0_._26__+---0_._6------+__m_V---1
Cross Talk
------~-------

CT

Rg=2.2KQ

Av

RL =10KQ

----1----

Closed Loop Gain

---------------1-------

Output Voltage

V02

47

--1------

60

Total Harmonic
Distortion

THO (2)

14.7

2.0

2.5

~ist~rtion_________ t_ALC THO

ALCVoltage
I---M---u-ti-n--g-A-t-.Lte-n-u--a-t-io-n---------------------------- ---------ALC Balance

ALCV o

M(att)--

16.7

dB

------------+------+-------il-------I-----------j

THD=1%
Vo =1.5V

~~~g~ i~~i__ ~~LC~~,-~ -60dB, R9=2.2Kn_~= =-~~
!,LC

dB

---t---------t~--__t__-------j

12.7

- - - - - - - - - - ----I-------r---------------- ----------1---------

REC
AMP

V

- - - - - -- ------------- -------+-------1

__

0.3
+_

0.9

1.0

%

~-=l~--~~--

Vi = -20dBm, Rg=2.2KQ ______ 1-0.3
Vi =-20dBm,Rg=2.2KQ

V

------+-------+----------1

1.1

---- 451-- 55
f-

J

1.0

I 1.42

I

%
V
dB

---~f________-----------------------f_----- r----------t----~---____I

ALC (B)

Vj =-20dBm

0

2

dB

Note 1: Input voltage range from Vi = -60dB to output voltage Vo =3dB up.

=8SAMSUNG
Electronics

230

KA22261

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT
TO 85
18K

TO (3)PIN

•

CH1

IN
82

OFF

Vee

CH2
2.2K

ON

I
I
I

810

:

OFF

IT- l

2.2M

+ 47".

Mute OUT

I

Ll47bo

P

I

I

I

I

:-~ 700P
:

Pre OUT

1fi

r--I

Fig. 2

c8SAMSUNG
Electronics

-1
I

:

I

I

I

-t> LPF 20KHz

I
I
I
I
L ____ J

231

LINEAR INTEGRATED CIRCUIT

KA22261
TEST METHOD

~.

Symbol
lee

*: NO specified.

S1

S2

*

*

S3

S4

S5

S6

S7

sa

S9

*

*

*

*

*

*

OFF

*

Pre OUT

Avo

OFF

CH1

-Avo

FLAT

CH1

Vo (1)

OFF

CH1

Av

NAB

CH1

'THO (1)

OFF

CH1

Av

NAB

V NO

OFF

OFF

Av

C.T.

OFF

CH1

Av

OFF

CH1

Vo(2)

OFF

THO (2)

S10

Measure Terminal
Vee

*
*
*

*

OFF

*

OFF

OFF

Pre OUT

CH1

*
*
*

OFF

*

OFF

OFF

NAB

CH2

CH1

*

*

OFF

OFF

Pre OUT
----Pre O-OUT

Av

FLAT

CH1->CH2

*

*

*

OFF

OFF

Pre OUT

Av

FLAT

CH1

*

CH1

CH2

OFF

OFF

CH1

Av

FLAT

CH2

*

CH1

CH2

OFF

OFF

OFF

CH1

Av

FLAT

CH2

*

CH1

CH2

OFF

OFF

ALC(R)

OFF

CH1

Av

FLAT

CH2

CH1

CH2

OFF

ON

ALC(THO)

OFF

CH1

Av

FLAT

CH2

CH1

CH2

OFF

ALC (Vo)

OFF

CH1

Av

FLAT

CH2

CH1

CH2

OFF

ATT

OFF

CH1

Av

FLAT

CH1

ALC(B)

CH2

CH1->CH2

Av

FLAT

*

*
*
*
*
*

f-----

t------ -----

,

70

z

;C

I-""

CJ

CH1->CH2

"

ON

Ree OUT

OFF

Mute OUT

ON

Ree OUT

III +

i

II

Ree, OUT

t........
~

1\

FLAT
Pre, OUT

t'--..~

,I'

r\.

1\

Pre + Ree
Vcc =9V,
V;=O.16mV

I

5

2

3

5

10K

f(Hz), FREQUENCY

=8SAMSUNG
Electronics

2

3

5 100K

"
\

III
111

50

1K

f\

Vcc=9V
v, =0.045mV

60

J
2 3

j

~
r--....

~

100

Ree OUT

90

iii'50

5

:::~~~

r---------

ON

OFF

*

Pre

..... N1AU

30

--1

f--------- -

100

g

40

Ree OUT

VOLTAGE GAIN·FREQUENCY

III

w 60

i

~~~~~C_~~2J

1----- 1 - - . _ - - - - -

OFF->ON
CH1
* -- \----------

VOLTAGE GAIN·FREQUENCY
80

--

5

100

2

3

5

1K

2

3

5

10K

2

3

5 100K

I(Hz), FREQUENCY

232

KA22261

LINEAR INTEGRATED CIRCUIT
TOTAL HARMONIC DISTORTION ·OUTPUT VOLTAGE

TOTAL HARMONIC DISTORTION-OUTPUT VOLTAGE

10

Z

~

JJ lit

10

~f= FLAT. Rec

Z

Q

,

~

~

~a

I

5

~

a
!.!
z

a

~

1.0

~

5

~

o

~

g

:::E

a:
:z::

c
f= 10KHZr
100Hz I
~

3

:z::

"

1.0

-'

II

f--i--t-

~

\

lK~
0.1

2

3

I

"-

I

II

J

'=::::.i
0.1

1.0

5

2

3

5

1.0

VoM. OUTPUT VOLTAGE

VoM. OUTPUT VOLTAGE

TOTAL HARMONIC DISTORTION·OUTPUT VOLTAGE

CROSS TALK·FREQUENCY

~

10

~
~

5

9.12V

0.1

0.1

IIIIII

v~J~~

;:::= NAB. Pre

+-

Vcc=9V
VovT =lV
Pre+ Ree

-10

I

---r--

is

:s

o
o

Z

-20

~

m-30

:::E

a:
~ 1.0

oa:

o

~

e

Ii

iii' -40 -

5

~

3

:z::

2

~

ff

f=.10KHz
100Hz
1KHz

~

0.1

~

..... V

-60

I

0.1

3

2

3

5

-70

1.0

FLAT

100

2 3

12
.

:

I

-t

:

1 ]1

c.--

--tot+-t-r-t-~1j1-..,"I~-~-I----

THD=l% -

-

~ 1.0 r--r--f-- -L - g r--r--t-- --~----c-

--j

r--+- r--t----1-- - - r---

Pre OUT

---

I-

1-

0.8

f--f---f---jlt--+--+--+-+-+-+-+--+--+--t---t---t---i

I

~

i-f--

g~

L-L-L-L-L-L-L-~~~~~~~~-L~

6

8

10

12

VtrlVl. SUPPLY VOLTAGE

c8SAMSUNG
Electronics

5

14

16

f=1KHz

~

1-1~a:

... 0

1-1~rn

oiS

1.0

Ree. OUT _

\

. . . .V

"","

18

~\.

otf.
ox
wa 5

rv

a::z::

~g

>c

0.2 r-----i'--l'-f
'-+--+-+-+--+--+--+--+--+--t---+--t---l

2

23

'--t-- FLAT

~~

~~~~+-+-+-+-+-+-~-~~~-r-r~

o

10K

Z-'

~0.6
0.4

w

C!I 0

--

o
>

5

r--t-- Vcc=9V
i-f-- R,=2.2KIl

1

----t-~

r------

I---f--f----- -

2 3

10

I I i I ! I I I I jl-j !j
f=lKHZ
-

i
!

1K

~~

:~gOD~~+~~T~g~PUT VOLTAGE.INPUT VOLTAGE

OUTPUT VOLTAGE·SUPPLY VOLTAGE
,--r-,-.,..-.,..-..,-..,-.,..-.,..--r-...,.......,....-,-~....,........,........,

1.4

5

V

f(Hz). FREQUENCY

Vo(V). OUTPUT VOLTAGE

1.6

CH2~CHl

--

IT~1112/
5

~,

IIJ

'- ...

-CH2~ '-!!...
r--.
3

~
v~

CH1~CH2

111~r--..

-50

5

~

Vcc=5V 7V

U. J<

I-

~

•

o
Z

o

I-

fll\KHZ
FLAT. Ree

=~

~

3

'/

I

0.1
-60

-70

ALC THD

\

1'--

-60

-50

I"'.

~-

-40

,~

-30

-20

-10

V~dBm). INPUT VOLTAGE

233

LINEAR INTEGRATED CIRCUIT

KA22261

APPLICATION CIRCUIT

+
r---f-l-----+---'\Mr-+------ RECORDING HEAD
100

36K

3.3/,

, - - - - - - - - - - - - LINE OUT
1.8K

Vee

' - - - - - - - - - - - _ L l N E OUT

~-+'_tt--_.-_¥./\r_1'-----RECORDING HEAD
36K

100

Fig. 3
OUTPUT VOLTAGE-SUPPLY VOLTAGE
2.8

QUIESCENT CIRCUIT CURRENT-SUPPLY VOLTAGE
20

I
I

2.6

Ree, OUT-

2.4

I

~ 2.2

a:
a:

I
r- ~~~ON
r- Mute~OFF

I-

ffi

L

16

B 14

:!

!::

5 2.0

~

I

>

~

I

18
f--~

:)

01.6

I

~1.4

I-

Z

I

;t

~~~~H1Z./o -

IL

1.0

...

6

....

./

/

y

./

V

./

I'

./
./

./

V

.... 1-

E

"] 4

I

o
2

10

M8

5

o

,J

1.2

12

c:;

If

1.8

1/
/
/
Ta= -25·C
~5·C ~
/
Y
I'WC'/
/

8
10
12
14
Vcc(V), SUPPLY VOLTAGE

c8SAMSUNG
Electronics

16

18

o

2

6

8

10

12

14

16

18

Vce(V), SUPPLY VOLTAGE

234

LI·NEAR INTEGRATED CIRCUIT

KA2228

21 ZSIP

DUAL EQUALIZER AMPLIFIER
SYSTEM
The KA2228 is a monolithic integrated circuit consisting of play back AMP, REC AMP with ALC, mic AMP
with ALC and monitor AMP. It is dual EO AMP system
built-in switch for selecting REC/PLAY mode, tape or
radio (Aux) modes. It is used for radio cassette players
and can be applicated easily by getting rid of the conventional mechanism REC/PLAY switch.

•

FEATURES
• Following 4 modes can be operated by a combination
of external switches: radio (Aux), radio (Aux)
recording, mic recording and tape play back
• Built-in switch for selecting REC/PLA Y mode.
• Built-in switch for selecting radio (Aux) or tape
input.
• Few external parts.
• Small package: 21 shrinkZSIP type.
• Operating supply voltage range: 3.5 - 7.0V

L _ _------'
ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM

OSC

R/P

TAPE/RADIO

sw

sw

ALG

MIC INPUT(B)

STR
Ro----,

5

MONITOR
OUTPUT(B)

MONITOR
OUTPUT(A)

MIC INPUT(A)

TAPE

Vee

INPUT(B)

TAPE
INPUT(A)

NF(B) NF(A)

TAPE TAPE
OUT(A) OUTIB)

RADIO
(AUX.)
INPUT (A)

RADIO
(AUX.)
INPUT (B)

VREF

REG

REG

OUT(A) OUT(B)

Fig. 1

c8SAMSUNG
Electronics

235

LINEAR INTEGRATED CIRCUIT

KA2228

ABSOLUTE MAXIMUM RATINGS

(Ta= 25°C)

Characteristic

Symbol

Value

Unit

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Vcc
Pd
Topr
Ts1g

8
750
- 25- + 75
- 55- + 155

V
mW
°C
°C

ELECTRICAL CHARACTERISTICS
(Ta=25°C, V cc =5V, f= 1KHz, unless otherwise specified)
Characteristic

Symbol
Iccl

Quiescent Circuit Current

Test Conditions
Radio, Vi=O

Min

------

Icc2

Radio REC, Vi = 0

Icc3

Tape PB, Vi = 0

e-f--

Typ

7

10

~

-

-

Icc4
Reference Voltage
1--

Mic REC, Vi = 0
---

--------

-~------

----~------

14

----

10
----

--

-------

14

-

-~~.-

mA
-------

-----

mA
----~--

mA

12

mA

2.3

V

t------- t - - - - -

2.0
---

Unit

-1------ \ - - - - -

9
--

-----

16

--

--

6
1.8

Vref

10
---

13

--

7

Max

---

-~-

----~---

MONITOR AMP
-~---

Voltage Gain

AVI

Vi = -50dBv

Maximum Output Voltage
f---

Total Harmonic Distortion

VOM1

14
'-------

~-

THD= 1%

THDI

Vo= -10dBv

Output Noise Voltage

VN01

Audio Band

Cross Talk

CT 1

Vo=OdBv

Ripple Rejection Ratio

RRI

Vr = - 20dBv f = 120Hz

AV2

Vi = -50dBv

1.0

----

------

-----~-,---

16
---~-

18

1.3
--~---

--~--

dB

~-

V
..

0.06

0.2

%

14

30

jlV

j------

45

--

60

dB

50

dB

PLAY BACK AMP
Closed Loop Voltage Gain

35

38

41

dB

Open Loop Voltage Gain

Avo2

Vi = -90dBv

70

78

Maximum Output Voltage

VOM2

THD= 1%

1.0

1.3

V

Total Harmonic Distortion

THD2

Vo= -10dBv

0.02

%

dB

Output Noise Voltage

VN02

Audio Band

Cross Talk

CT2

Vo=OdBv

55

65

dB

Ripple Rejection Ratio

RR2

VR= -20dBv f = 120Hz

34

42

dB

=8SAMSUNG
Electronics

80

150

jlV

236

LINEAR INTEGRATED CIRCUIT

KA2228

ELECTRICAL CHARACTERISTICS
Characteristic
-

RECORDING AMP
~-----~~-~-

Voltage Gain

----

Symbol
------,

AV3

Vi = - 50dBv

THD3

Vo = -10dBv

- - - - - - t---

-

Min

Test Conditions

Typ

----------

Max

Unit

---30
27

-----~,----

Total Harmonic Distortion
---

(Continued)

24

dB

0.04

0/0

Output Noise Voltage

VN03

Audio Band

Cross Talk

CT3

Vo= -10dBv, Audio Band

55

120
65

250

dB

p..V

Ripple Rejection Ratio

RR3

Vr = -20dBv, f= 120Hz

34

42

dB

--

ALC Voltage

ALC31

Vi = - 20dBv

-4.4

-2.7

0

dBv

ALC Voltage

ALC 32

Vi = -15dBv

-4.2

-2.5

0.2

dBv

ALC 33

Vi= -5dBv

-4.0

-2.2

0.5

dBv

60

I

66

dB

I

2.0

0/0

7.0

mv

ALC Voltage
MIC+REC AMP
Voltage Gain

63

AV4

Vi = -80dBv

Total Harmonic Distortion

THD4

Vo= -10dBv

0.7

Output Noise Voltage

VN04

Audio Band

3.5

Cross Talk

CT 4

Vo = -10dBv

30

43

dB

V R = - 20dBv, f = 120Hz

13

20

dB

Ripple Rejection Ratio

RR4

ALC Voltage

ALC 41

Vi= -60dBv

-4.0

-2.0

ALC Voltage

ALC42

Vi = -40dBv

-4.0

-2.0

ALC Voltage

ALC 43

Vi = -10dBv

-4.0

-2.0

I

I

0.5

dBv

0.5

dBv

0.5

dBv

OPERATION MODE BY EXTERNAL SWITCHES (51,52) COMBINATION
S2
CIRCUIT
BLOCK

S1

S2=REC
S1 = RADIO

S2=PLAY
S1 =TAPE

S1 = RADIO

S1

=TAPE

MIC AMP

ON

ON

OFF

PB AMP

OFF

OFF

ON

ON

REC AMP

ON

ON

OFF

OFF

MONITOR AMP

ON

OFF

ON

OFF

ON

SMP

M

M

P

P

STR

R

T

R

T

SRE
OPERATION MODE

ON

ON

OFF

OFF

RADIO REC

MIC REC

RADIO PLAY

TAPE PLAY BACK

c8SAMSUNG
Electronics

237

•

LINEAR INTEGRATED CIRCUIT

KA2228

CONTROL SWITCH TERMINAL (2·, 6·PIN) THRESHOLD VOLTAGE

VCC-0.3

RADIO-REC

MIC-REC

RADIO-PLAY

TAPE-PLAY

2:


Q)

~

1.3

(5

>

ec

0
(.)

0.2


z

-

V

u

ffi

I

..-

I-

:so

III

"~

I

8

•

3

ii:

MIC REC

V18

//
V"

4

o

1

0

o

4

Vcc(V), SUPPLY VOLTAGE

Vcc(V), SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION·OUTPUT VOLTAGE

OUTPUT VOLTAGE·INPUT VOLTAGE
10

!5

2

~

1.0

Z

o

~

V

5

III

~

MONITOR A

//

o

~ 0.1

~
o
~
~

P

'Co="'

5

/

0.0 1
5

3

o.001

5

5

0.D1

!

0.1

1.0

0.D1

2

3

~

~

1KHz

~is

0:(

~
III

~

z
o

II



"

O. 1

II

c

i=

" "'"

2

0.01

/V
2 3 5 0.001 2 3 5 0.01

i

3 5 0.1

V,(V), INPUT VOLTAGE (TAPE IN)

c8SAMSUNG
Electronics

2 3 5

1.0

0.0 1
0.001

2 3

5

0,01

3

5

0.1

2 3

5

1.0

2

3

YoM, OUTPUT VOLTAGE (PB AMP)

241

KA2228

LINEAR INTEGRATED CIRCUIT
OUTPUT VOLTAGE·INPUT VOLTAGE

TOTAL HARMONIC DISTORTION·OUTPUT VOLTAGE

10
ALC 0 FF t---f-

~

o

IIII

1.0

ALC 0 N

&l

5w

~ 10

\==;=


~

!;
o

V

~

:I:

REC AMP
Vee 5V
1_1KHz
BW = 400Hz - 30KHz

./

5

...::

3
2

e
~
o

0.01

>

ct.

...
:I:

J'I".

0.1

I'
0.00.1
0.001 2 3

5

0.01

2 3

5

0.1

2 3

5 1.0

2 3

0.01

2

5w

~

1.0

2

3

5

10

1

jl

z

0

V

'I

Ald

1.0

Id~

2i
!

I

I

~

0

:;;
a:

i

:1

I

I

:I:

...

MIC AMP+REC AMP,Vcc=5V
, f=1KHz
I BW = 400Hz - 30KHz

I

~

...0...::

/

~

0.1
I- --

5

l-

I



5

1

:\

o

3

TOTAL HARMONIC DlSTORTION·OUTPUT VOLTAGE

10

...

2

OUTPUT VOLTAGE·INPUT VOLTAGE

&l

~

0.1

VoM, OUTPUT VOLTAGE (REC OUT)

o

g

5

V,(V), INPUT VOLTAGE (RADIO IN)

H
~

3

0

i!=

1.0

2
I
I
2 3 5 0.001 2 3 5 0.01

0.0 1

,

2 3 5

0.1

0.1

2 3 5 1.0

Vo(V), OUTPUT VOLTAGE (REC OUT)

CROSS TALK·FREQUENCY

CROSS TALK·FREQUENCY

RIEbl~U+

UII~

-

Vee=5V
V=0.32V
-20 ' - BW = - 80KHz

'"~

g

..J

-40
MIC (Mt + REC AMP

gj

~


..::

'"

~

MONITOR AMP



z

a:
~
:>
:>

-r-

--- --

r- r-.

r---

~

1.5
V,,: IMIG lEG M10DE

OL--L__~~__~__L-~__~~~~~
-20

20

40

60

80

1

-20

20

40

60

80

Ta(OC), AMBIENT TEMPERATURE

Ta(°C), AMBIENT TEMPERATURE

VOLTAGE GAIN AMBIENT TEMPERATURE
100

80

z

;;:

(!)

w

MIG AMP+REG AMP Av

-

60

(!)

~
0
>

iif
~
«

r--

Av PIB AMi + MONITOR AMP Av

40

r--20

r----

-20

-

REGIAMPIAV

MO~ITORI AMP Av

20

40

60

80

Ta(OC), AMBIENT TEMPERATURE

c8SAMSUNG
Electronics

244

PRELIMINARY

KA22291

LINEAR INTEGRATED CIRCUIT

24 SDIP

PLA YBACKIRECORD PRE AMPLIFIER
FOR DOUBLE DECK
The KA22291 is a monolithic integrated circuit consisting of a
dual input playback amplifier, a channel for double or auto-reverse
operation and a two-channel record amplifier.
It is suitable for 6V-9V double deck or auto-reverse cassette appi ications.

•

FEATURES
•
•
•
•
•
•
•
•

Dual input two·channel playback amplifier
Two·channel record amplifier
Built in ALC and Muting circuit
PB/REC and playback input select switch included
Power ON ALC discharge circuit included
Operating supply voltage: 4V·12V
RECIPB power on quick start circuit
Few external part required.

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM
PB
NF(2)

PB
NF(1)

PB IN(2)

PB IN(1)

RIP
SW

MUTE MUTE
sw IN(2) ALC RECOUT(2)

AlB PB GND MUTE
SW
IN(1)

REC
OUT(1)

Fig. 1
* These specifications are subject to change without notice.

cRSAMSUNG
• • Electronics

245

KA22291

LINEAR INTEGRATED CIRCUIT

ABSOLUTE: MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Symbol

Value

Unit

Vee
Pd
Topr
T5t9

12
1000
-25- + 75
-55- + 125

V
mW
°C
°C

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 9V, f = 1KHz, unless otherwise specified)
Characteristic

Test Condition

Symbol

Min

Typ

Max

Unit

26

rnA

Circuit Current

lee

Vi = 0, REC MODE

10

18

Open Loop Voltage Gain

Ava

Vi= -80dBm

60

90

0.75

1.2

>-----

-~

Max. Output Voltage
~

I
I

U

«
al
>«
...J
a..

Total Harmonic Distortion
TCh"to Ch

r·

Cross Talk

Ain to Bin

1-----

Equivalent Input Noise Voltage

THD(1)

Va = 0.2V, NAB

0.05

0.3

CT(1)

Vo=0.5V, NAB

-55

-45

Va = 0.5V, NAB

-55

-45

dB

Filter: 20Hz - 20KHz
Rg =2.2K, Vi=O

1.2

2.2

IN

62

dB

V N1

----

Close Loop Voltage Gain

------

Max. Output Voltage
0

a:

Total Harmonic Distortion

0

ALC Output Voltage

a:

ALC THD

0

w

-~

-------

dB
f---

Av

Vi = 68dBm, ALC off

58

60

TH D = 1%, ALC off

1.2

1.6
0.2

1

0.75

0.95

1.35

V

0.2

1.0

%

THD(2)

Vo = OdBm, ALC off
Vi= -20dBm

THD(ALC)

Vi= -20dBm

ALC Range

%

Vo(2)

ALC Va

c---

V

THD= 1%, NAB

CT(2)

~

dB

Vo(1)

Vi = - 60dBm, + 3dB UP

ALC(R)

40

V
%

dB

50

Cross Talk (ALC)

CT(3)

Vi= -50dBm

-55

-40

dB

RECORD TO PLAYBACK
Cross Talk

CT(4)

REC input=O
PLAY output = 0.5V

-55

-40

dB

Muting Range

Rmute

Vi= -20dBm

-55

-40

dB

- f---

*These specification are subject to change without notice.

c8SAMSUNG
Electronics

246

LINEAR INTEGRATED CIRCUIT

KA22291

TEST CIRCUIT

PB
A-IN

PB
OUT

PB
B-IN

MUTE MUTE
IN
OUT

t

Vee =9V

REG
IN

REG
OUT

I

~

2.2K

10K

10jL

10~

+

+

MUTE

KA22291

10~

1000P

SW4-2

PB
OUT

150
PB
A-IN

I

PB
B-IN

OPEN=GLOSE
LOOP
SHORT=OPEN
LOOP

*

MUTE MUTE
IN
OUT

REG
OUT

REC
IN

Fig. 2
These specifications are subject to change without notice.

c8SAMSUNG
Electronics

247

KA22291

LINEAR INTEGRATED CIRCUIT

*INFORMATION OF MODE CHANGE
1. RIP SWITCH
Apply RIP input voltage at PIN 8.
PLAY: ov (GND)
REC: 4.SV -12V (Don't apply 13V above).
Only valid AlB input select in playback mode.
In record mOQe, the playback A-input was available and the ALC was turned on by record bias.

A. RECORD MODE SCHEMATIC

AlB SELECT
DISABLE

A-INPUT AVAILABLE

B. PLAYBACK MODE SCHEMATIC

A-INPUT
BIAS

Fig_ 3

AlB SELECT
VALID

Fig. 4
* These specifications are subject to change without notice.

c8SAMSUNG
Electronics

248

LINEAR INTEGRATED CIRCUIT

KA22291

2. PLAYBACK AlB INPUT SELECT SWITCH (only playback mode)
VCC

•
~

A_INPUT

BIAS

B-INPUT
BIAS

Fig_ 5

3. MUTE SWITCH
0---

Vee

SHORT = MUTE ON

"THIS CIRCUIT IS OPERATED ON
REVERSE SATURATION MODE

Fig_ 6
*These specification are subject to change without notice_

c8SAMSUNG
Electronics

249

KA2230

LINEAR INTEGRATED CIRCUIT

9·PROGRAM MUSIC SELECTOR

F

The KA2230 is an automatic music selector Ie which can scan
and detect the start point of up to 9-programs. Selection of the
program number can be taken by pressing the select button number times in succession. After, the setting of the program count,
the display changes one program at a time until the preselected
program is reached, at which point the control output is set on.
The display is a 7-segment numeric display. It is suitable for radio cassettes, cassette decks and car stereos.

FEATURES
•
•
•
•
•

Maximum g-program random search
On-chip amplifier, detector, comparator
On-chip automatic reset circuit
7-segment of numerical display
Operating supply voltage: Vee = 5 -14V

I

~J
ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM
Vcc 2

Vcc 1

Oa

Of

PRE
INPUT

7 SEGMENT DECODER

PRE
OUTPUT
DET
INPUT

UP/DOWN COUNTER

DET
OUTPUT

COMP
INPUT

4

GND2

GND1

UP INPUT

INHIBIT

EXT RESET

a

egg

b

d

c8SAMSUNG
Electronics

c

The segment output
pins Oa-Og accord to
the numerical display
segment a -g.

250

KA2230

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Symbol

Condition

Value

Unit

Supply Voltage

Vee 1

16

V

Supply Voltage

Vee 2

20

V

0-Vee1

V

20

mA

Input Voltage

Vi

7-Segment Display Current

Id

Except for the
pre-amp or the
detector input

Control Output Voltage

Va

20

V

Control Output Current

10

50

mA

Power Dissipation

Pd

Derating

•

Ta = 25°C

850

mW

Ta:::s25°C

12.5

mW/oC

Operating Temperature

Topr

-20 -

Storage Temperature

Tstg

-40- + 125

°C

+ 70

°C

ELECTRICAL CHARACTERISTICS
(Ta= 25°C, Vee = 9V, f = 10KHz, Rg = 600n, OdB = 1Vrms, unless otherwise specified)
Characteristic
Operating Supply Voltage
Quiescent Circuit Current

Symbol

Test Conditions

Vee

-20 -

lee1

Vi=O

+60°C

lee2*

Id = 20mA, at the reset

Vith

Av= 53dB

Min
5

Typ

Max

Unit

T/F

V

9

14

8

12

125

130

-60

-58

-55

40

56

KHz

600

800

Hz

1

2

dB

mA

1

Input Level
Input Threshold Level
Frequency Characteristics

Fvih
Fvil

Input Threshold Level
Variation by a Supply
Voltage
Maximum Input Voltage

Vid

Vih , Vii = Vith + 3dB
The difference of
Vith between Vee
= 9V and 5V

Vi (max)

250

ms

Difference of Tdl ,
Vee = 9V and 5V

10

ms

Tdh

V (pin6) = OV - 3V

5

ms

Tdhd

Difference of Tdh ,
Vee=9V and 5V'

0.1

ms

Tdl

Vi =-37dB- -97dB

Release Time Variation
by a Supply Voltage

Tdld

Attact Time

2.3

mV

350

Release Time

Attact Time Variation
by a Supply Voltage

dBv

2.3

4

Pre-Amp
Input Resistance

Ri

Av =53dB

Output Noise Voltage

Vno

Av = 53dB, Rg = 100Kn

Open Loop Voltage Gain

Ava

Vi= -90dB

37

65

47

68

57

Kn

5

20

mV

6

72

dB

7

* Icc = 5mA + Xld, X: The number of 7-segment display Bit-on at the reset.

qsSAMSUNG
Electronics

251

KA2230

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
Characteristic

(Continued)

Symbol

Test Conditions

Saturation VTG (turn on)

Vo (sat)

10=50mA

Leakage Current (turn ott)

10 (leak)

Min

Typ

Max

Unit

T/F

Control·Output

0.5

V

5

p.,A

1

p.,A

7·Segment Display Output

Output Voltage (turn on)
Leakage Current (turn ott)

Vdh

V

7

10=20mA

10 (leak)

Up Input, Reset Input

Input Voltage (H)

Vih

Input Voltage (L)

Vii

Input Current

Iii

2

V

250

1

V

500

p.,A

1

V

Inhibit

Input Voltage (H)

Vih

Input Voltage (L)

Vii

Input Current

lih

1.8

V

350

700

100

Hysteresis Width

p.,A
mV

PIN CONNECTIONS
Pin No.

Pin Name

Pin Name

Pin No.

1

Up Input

12

Vcc2

2

Reset

13

7·Segment Display Output (b)

3

Vcc 1

14

7·Segment Display Output (g)

4

Comparator Input

15

7-Segment Display Output (c)

5

Detector Output

16

7-Segment Display Output (d)

6

Detector Input

17

7-Segment Display Output (e)

7

Pre-Amp Output

18

7-Segment Display Output (f)

8

Bypass

19

7-Segment Display Output (a)

9

Pre-Amp Negative Feedback

20

Inhibit

10

Pre-Amp Input

21

Control Output

11

GND 1

22

GND 2

c8SAMSUNG
Electronics

252

LINEAR INTEGRATED CIRCUIT

KA2230
TEST CIRCUIT

Vcc=9Vcr----~----------4_--~--------------------------------~

•
KA2230

ICC1
Rd

_ Pin Voltage
-

20 mA

Fig. 1

Vcc=9V,5V
7-Segment Display

Fig. 2

c8SAMSUNG
Electronics

253

KA2230

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT

(Continued)

1...-_ _ _ Inhibit

- - - - - ----+-1- - - 0

7-Segment Display

-----1111111111111111

Vi

!
I

---~
----------".

Tdh

I

I

I
I

I

COMPARATED VOLTAGE

Detector Output

--j I- --1 f-- T
I

dl

. . . _ _ - - - Control Output

Fig. 3

VCC=9V, 5V

(}------.--------+----I--------------~

KA2230

Fig. 4

c8SAMSUNG
Electronics

254

KA2230
TEST CIRCUIT

LINEAR INTEGRATED CIRCUIT

(Continued)

Vcc=9V~----~----------~---+---------------------------------1

•

KA2230

Vo (R = Rin)_~
Vo (R=O) - 2

Fig. 5

VCC=9V

KA2230

Fig. 6

c8SAMSUNG
Electronics

255

LINEAR INTEGRATED CIRCUIT

KA2230
TEST CIRCUIT

(Continued)

v~=wo---~----------~--~------------------------------~

KA2230

Fig. 7

FUNCTION DESCRIPTION
(1) Auto Reset
The Power-on reset circuit is reset between Vee = 1.7 -4V on the rise of the supply voltage, while the control output
turns off with the segment output initialized to 0 PROGRAM.

(2) Up
The UP-input pin going from "High" to "Low·' level counts up on its rise.
(The segment output goes PROGRAM 0 -l-PROGRAM 2-PROGRAM 3-PROGRAM 4-PROGRAM 5PROGRAM 6-PROGRAM 7-PROGRAM 8-PROGRAM 9-PROGRAM 1-PROGRAM 2)

(3) Down
The signal input, amplified and detected, is supplied as DC voltage to the comparator circuit. The down-count takes
place when the comparator circuit input falls from the "High" to "Low" level.
(The segment output goes PROGRAM 9-PROGRAM 8-PROGRAM 7-PROGRAM 6-PROGRAM 5-PROGRAM 4
-PROGRAM 3-PROGRAM 2-PROGRAM 1-PROGRAM O-PROGRAM 0)
For down-count to proceed, INHIBIT should be at "High" level.

(4) Inhibit
Inhibits the down-count at the "Low" level and resets the control output.
The "High" level enables the down-count.

(5) Reset
Resets the segment output to Program 0 and control output to OFF.

(6) Control Output
The control output turns ON on the next down-count when the segment output is Programs 0 or 1. It can be reset
again to OFF using the INHIBIT or RESET pin.

(7) Power Supply
Only the power supply for the segment output circuit is Vee2 , while the others are VCC1 •

(8) GND
Only the GND of the control output circuit is GND2, while the others are GND1.
GND1 and GND2 should be at the same voltage.

c8~SUNG

256

KA2231

LINEAR INTEGRATED CIRCUIT

AUDIO LEVEL SENSOR
The KA2231 is an interprogram spaces detection Ie with the function
of music selection and can be used for radio cassettes, cassette decks,
and car stereos.

•

FEATURES
• Built·in plunger driver TR (Max: 600mA).
• Built·in protection diode to prevent induced reverse voltage.
• Built·in protection circuit to prevent the error operation of
the plunger, when power switching on.
• Built·in detector for detecting recorded area.
• Capable of desired timing setting by using external C.R.
• Detects unrecorded areas of tape and drives plunger.
• Wide operating supply voltage range: Vee = 3.5V - 14V.
• Recommended operating supply voltage: Vee =9V.

ORDERING INFORMATION
BLOCK DIAGRAM

VCC1

DET OUTPUT

RESET

VCC2

OUTPUT

IGND

Fig. 1

c8SAMSUNG
Electronics

257

KA2231

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta

=25°C)

Characteristic

Symbol

Value

Unit

Supply Voltage
Flow-in Current
Power Dissipation
Operating Temperature
Storage Temperature

Vee
16
PD
Topr
Tstg

15
600
540
-20 -+ 70
-40 -+ 125

V
mA
mW
°C
°C

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 9V, f = 1KHz, unless otherwise specified)

Symbol

Characteristic
Circuit Current

Test Conditions

Min

Typ

Max

Unit
mA

VI = -30dBv

11

22

Output TR Saturation VTG

VeE (sat)

16 = 600mA

1.1

1.6

V

Output Diode Forward VTG

VF

IF =600mA

1.5

2.0

V

lee

Input Sensitivity
Comparator Level (1)

Comparator Level (2)

ON

VI (sen)

Pin6: L-->H

-47

-50

-53

dBv

Vth 1-H

Pin6 Inverted

3.0

3.5

4.0

V

OFF

Vth 1-L

Pin6 Inverted

1.S

2.2

2.6

V

ON

Vth 2-H

Pin6 Inverted

4.7

5.5

6.3

V

OFF

Vth 2-L

Pin6 Inverted

3.6

4.0

4.6

V

0.02

0.1

V

Pi n4 Reset Level
PinS Reset
Voltage

V4

VI = - 30dBv, PinS = 1.0V

1

VSR·1

Pin1 Inverted, Rg = 0

0.6

0.7

O.S

V

2

VSR-2

VI = - 30dBv, Pin4 Inverted

1.1

1.3

1.5

V

c8SAMSUNG
Electronics

258

KA2231

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT

•

10K

TEST METHOD
Characteristic
Input Sensitivity

R·SW

SW·1

SW·2

1

1

1

Test Method
Measure AC input level VI at Pin 6 L->H
inversion mode

Circuit Current

5

1

1

Measure supply current

Output TR Saturation VTG

6

1

1

Measure Pin 6 voltage V6 at 600mA

Output diode forward VTG

6

2

1

Measure Pin 6 voltage V6 at 600mA

Comparator (1) ON Level

2

1

1

Measure Pin 2 V2 at Pin 6 L->H inversion mode

Comparator (1) OFF Level

2

1

1

Measure Pin 2 V2 at Pin 6 H->L inversion mode

Comparator (2) ON Level

3

1

1

Measure Pin 4 V4 at Pin 6 H--+L inversion mode

Comparator (2) OFF Level

3

1

1

Measure Pin 4 V4 at Pin 6 L--+H inversion mode
Measure Pin 4 voltage V4 at VX = 1V

Pin 4 Reset Voltage

5

1

2

Pin 8 Reset Voltage 1

4

1

2

Measure VX voltage at Pin 1 inversion mode

Pin 8 Reset Voltage 2

5

1

2

Measure VX voltage at Pin 4 inversion mode

c8SAMSUNG
Electronics

259

LINEAR INTEGRATED CIRCUIT

KA2231
APPLICATION CIRCUIT

R4100K

R5100

r-----4r-~~--.~r-~~~~---------4r---~VCC=9V

IN L}--JY.'f'f-----.----I

EXTERNAL COMPONENTS

Fig. 4

C1

: Input coupling capacitor
The recommended value is 0.047j.tF.
R1, R2 : Input level control resistor
Pin 1 is high in input impedance; in order to be free from external effect, R2 must not exceed 10KQ and
must be GNO.
C2, R3 : Interprogram space detect time (TO)-setting capacitor and resistor
TO = 1.34 * C2 * R3 (sec)
It is recommended to use R3 of 150KQ to 500KQ.
It is recommended to use C2 of 0.22j.tF (Mylar Capacitor).
C3
: Negative feedback capacitor
The lower cut-off frequency depends on the value of this capacitor, and determined as follows:
1
C3 = 0.942 * A (j.tF)
INPUT
The recommended value is 0.47j.tF.
C4, R4 : Recorded area detect time (T8)-setting capacitor and resistor
The recorded area detect time is set by:
T8 = C4 * R4 (msec)
PIN2
It is recommended to use R4 of 100KQ.
(The resistance value of R4 must be 50KQ to 200KQ)
It is recommended to use C4 of 1j.tF to 3.3j.tF.
(The capacitance value of C4 must not exceed 4.7j.tF)
PIN4
For recorded area T8 T1 + TO
Therefore, if the recorded area detect time (T8) is longer than the input signal time (T1) + the unrecorded
area detect time (TO), no program is present.
C5
: For setting reset time.
The capacitor is used to set the time for initializing the circuit at the time of application power.
The reset pulse is generated for a certain period of time TR = 14.4 • C5 (msec), that is set each time power
is applied.
C6, R5 : For power ripple filter.

c8SAMSUNG
Electronics

260

KA2231

LINEAR INTEGRATED CIRCUIT

TIMING CHART

INPUT

V(PIN8)~

/'

RESET~~----------------------------------------~rl~---------------V(PIN2)~

~--------------------------~
~------~-----~

V(PIN4) - - - , , - - - off
VO(PIN6)

--.J

on

COMP1---...J

COMP2-----------------...J

Fig. 5

DESCRIPTION OF OPERATION

(See Timing Chart)

When the power supply is applied, the reset circuit operates to initialize the inner circuit. The reset time is determined by the capacitance value of C5 on Pin 8, and input signal is not accepted while the reset circuit is operating.
When the reset mode is released and the input signal exceeds the input check level, C2 and R3 on Pin 2 are
charged and the potential on Pin 2 rises, therefore the comparator (1) is inverted.
When the comparator (1) is inverted, C4 on Pin 4 charged and the potential on Pin 4 begins rising.
When this potential exceeds the threshold voltage, the comparator (2) is inverted and program presence mode
is memorized; thus the potential on Pin 4 is held at the high level. During this period of time, the output terminal
(Pin 6) is held at the high level.
When the input signal disappears and the comparator (1) is inverted, the output terminal (Pin 6) turns to the low
level, therefore causing the plunger to be driven.
The reset pulse is generated for a certain period of time whenever the power supply is applied, therefore causing
the inner circuit to be initialized.

PROPER CARE IN USING ICs
• Maximum Ratings
It the maximum ratings are exceeded, breakdown or deterioration may result.
Use the IC in the range where the maximum ratings are not exceeded.
• Pin to Pin Short and Inverted Insertion
These may cause breakdown or deterioration to occur.
Be extremely careful when mounting the IC on the board.
• The voltage on Pin 1 must not exceed that on Pin 9.
• The current flowing into Pin 2 and Pin 4 must not exceed + 0.5mA continuously.
• The voltage on Pin 8 is 2.5V max. and must not exceed that on Pin 7.
• Electrolytic capacitors are used to set the recorded area detect time and reset time. The actual time constants
are 15 to 20% larger than the calculated values obtained by using the catalog values of such capacitors.
For polyester film capacitors and tantalum electrolytic capacitors, the calculated values hold to a fairly good
approximation.

c8SAMSUNG
Electronics

261

•

KA22421

LINEAR INTEGRATED CIRCUIT

AM 1·CHIP RADIO
16 DIP

The KA22421 is a monolithic integrated circuit designed for the
p0rtable AM radio.

FUNCTIONS
•
•
•
•

Converter
IF Amp
AM DET
Power Amp

16 SOP

FEATURES
•
•
•
•
•

Portable AM 1·chip radio.
Low quiescent current: I cc =1.6mA(Typ)atV cc =3V.
Operating supply voltagerange:V cc = 2V - 5V.
High power efficiency
Power output: Po =100mW(Typ)atTHD=10%.

ORDERING INFORMATION
Device

BLOCK DIAGRAM

KA22421

Package Operating Temperature
16 DIP

KA22421D 16 SOP
NF

CONY OUTPUT

BYPASS

IF INPUT

Vee1

IF OUTPUT

GND

AGe

-20 -

+ 70°C

Vee 2

B. STRAP

Fig. 1

c8SAMSUNG
Electronics

262

LINEAR INTEGRATED CIRCUIT

KA22421

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic
Supply Voltage
Power Dissipation

I
I

KA22421

Symbol

Value

Unit

Vee

6

V

Pd

KA224210

750

10 (Peak)

0.2

A

Operating Temperature

Top.

-20-+70

°C

Storage Temperature

T stg

-55-+150

°C

Output Current

•

mW

350

Note: Derated above Ta = 25°C in the proportion of 6mW/oC (KA22421 0: 2.BmWrC)

ELECTRICAL CHARACTERISTICS
(Vcc= 3V, f=1MHz, fm=1KHz, 30% Mod, Rg =500, RL=BO, Ta=25°C)
Characteristic

Symbol

Quiescent Circuit Current
Maximum Sensitivity

--

Icc
Max (Sen)

Test Conditions

1
1

Signal to Noise Ratio

SIN

1

Vj =42dB/L
Vo=200mV

Output Noise Voltage

VNO

1

Vj=O, VR=Max

16-Pi n Parallel Input

RIP (16)

~-Pin Parallellnpul
Impedance
5-Pin Parallel Output
Impedance

c8~SUNG

Rop (1)
Cop (1)
RIP (3)
C IP (3)
Rop(5)
Cop (5)

1.S

3.0

mA

0.7
200

Po

1-Pin Parallel Output
Impedance

Unit

Vj =20dBJL, VR=Max

THO

C IP (1S)

Max

Vj=O

Output Power

Impedance

Typ

1

Total Harmonic Distortion

t

Min

1

Vj =42dBJL, VR=Max

--

I

Test
Circuit

2

3

4

5

f=1MHz

f=1MHz

f=500KHz

f=500KHz

BO

mV
100
2

mW
S

%

44

dB

3.5

mV

500

KO

2.5

pF

500

KO

3.9

pF

SO

KO

2.2

pF

100

KO

3.0

pF

263

LINEAR INTEGRATED CIRCUIT

KA22421

TEST CIRCUIT 1

0.021'
Rg

50'0 Vi

l

VCC=3V

1MHz

g

"
...J

c::

'---~~--+--+-fl--O

OUT

100"

0.221'

0.

o
o

&3

Fig. 2

c8SAMSUNG
Electronics

264

KA22421

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT 2
-___._-----___+-____.__{ )Vee =3V

r---------<~_ _

•

R-X Meter

Hi 0---+-----+----1

La

}------I~+_-_+_--f

+

Fig_ :;

TEST CIRCUIT 3
r - - - - - - - - - - 1 > - - -_ _----.---------.--~-__{

Vee =3V

R-X Meter

Hi o---+-----+-----f

La

}---I~_.__--+-__i

+

Fig. 4

c8SAMSUNG
Electronics

265

LINEAR INTEGRATED CIRCUIT

KA22421
TEST CIRCUIT 4

R-X Meter

Hi~-----'---

Lo

)---+~

1
Fi9_ 5

TEST CIRCUIT 5

R-X Meter

Hi

}-J-----+---1

Lo

Fig_6

=8SAMSUNG
Electronics

266

KA22421

LINEAR INTEGRATED CIRCUIT
Vee =3V

APPLICATION CIRCUIT

3300p

ANTENNA

•

I
I

I
I

I

I
I
I
I

I

+

I

100~

I

I
I

I

T2

}

I
I

(180

I

L ______ _

~SP

,J0.o221'

330

Fig. 7

ELECTRICAL CHARACTERISTICS (at application circuit)
(Unless otherwise specified Ta=25°C, Vee =3V, f=1MHz, 30% Mod, RL = 8Q, fm = 1KHz, Rg = 50Q)
I

Characteristic

I

Symbol

Test Conditions

I

Typ.
Value

Unit

Quiescent Circuit Current

lee

Vj=O

1.6

mA

Maximum Sensitivity

Max (Sen)

Po =5mW

41

dB/m

Usable Sensitivity

Use (Sen)

S/N=20dB

49

dB/m

SIN

Vj =74dB/m

44

dB

AGC Ratio (Note 1)

AGC

-10dB Output Reduction
(from 100dB/m)

50

dB

Recovered Output Voltage

VOD

V j =74dB/m
Measure Pin 7

131

mV

Power Amplifier Voltage Gain
(Note 2)

Av

RNF =120KQ, Rt = 3.31UEW
(Bottom View)

T20SC Coil
L (/-lH)
f
(kHz) 1-3
796

360

00

TURNS

1-3

1-2 [ 2-3

125

92% [

8

14-6
[10%

KOREA TOKO

Wire: 0.08mmct>UEW
(Bottom View)

T3AM 1FT

000 (5)~
0i3® 0E'I0

f

Co (pF)

11-2

7-8

[150

150

(kHz)

TURNS

00

f

1-2
-

1-3

2-3

6-7

6-8

80

148

196

32

7-8
455

65

KOREA TaKa

(Bottom View)

Wire: 0.08mmct>UEW
T4 Detector Coil

nJ
®
1

0
0

Co (pF)
-- f
1-3 (kHz)
180

455

00

TURNS

1-3

1-3

65

142

KOREA TaKa

Wire: 0.08mmct>UEW

(Bottom View)

L1 Bar Antenna Coil
L (p,F)
f
(kHz) 1-2
796

00
1-2

625 200 Min

TURNS
1-2

I

3-4

105 [ 20

Core: 12mmct> x 52mmct>
Wire: USTC-0.1 mmct>

c8SAMSUNG
Electronics

268

KA22421

LINEAR INTEGRATED CIRCUIT
POWER EFFICIENCY·OUTPUT POWER

90

CIRCUIT CURRENT·OUTPUT POWER
100

!

~ B:~~~T~~:U~O~~ER ¥ 100 (%)

o>

z

!!!

o

~

r- fm=lKHZ, 30% Mod

V,=940B/m
f m=lKHz
30% Mod
RL=8Il

70

eo

II

r-Vcc =3V, RL=8Il

90 r- V,=94dB/m

80 r- Vcc=3V

80
'{
I-

ffiII:

70

::>
0

eo

50

50

II:

50

II:

~

~ 40

~
<"
E

./
/

]

10

o
5

3

1.0

2

3

10

5

2

3

100

5

~

I""

20

I-'

,..,..

10

40
30

./

20

2 3

--2

1.0

~

10

3

w

~

20

~~
!5 iii

VR: CONTROL

to P.=5mW

SENSITIVITY·FREQUENCY

~

is
0

Z

\

V

\

40
r-f=lMHz
f m=lKHz

~
V~dB/m),

I

I

~

60

0
7 :;;
II:
iil
50

~

0

I-

°li
~~

0

10

Ul

r\

V
30

11 Z

\

/

~g

>-'

100

12

74~B/ml

'V

~

w

I
V, =

V

I\.

3

80

.1

Q 10

2

P.(mW), OUTPUT POWER

TOTAL HARMONIC DISTORTION
·ANTENNA INPUT
SIGNAL TO NOISE RATIO
OUTPUT VOLTAGE
VOLTAGE

V·V

./

.... i'"

P.(mW), OUTPUT POWER

!iz

•

I

I

II:

3 :I:
I-

f m=lKHz
30% Mod

I

1
120

400

I
800

600

ANTENNA INPUT VOLTAGE

1000

1200

1400

1600

I(Hz), FREQUENCY

SIGNAL TO NOISE RATIO
.SUPPLY VOLTAGE
TOTAL HARMONIC DISTORTION

f-~HZ

vlo i.--1'"1-

/V

w

CJ

~
00
~~

I

10

!;!!2
00
C z
wo
CCI-

20

V

w-,

>iil
~

f=lMHz
f m=lKHz

1

30

/
II

[/="

(5

z
0

20

z

0

II:

~30

:I:



5

~

~

~

3

...

2

i!:

0

~

~

J

II)

7

I'

1/

30

0.1

;t
)0 ]

1/ .;
./

1.0

2

3

10

5

7

100

2

1.0

2

10

3

v,cmV),

P,(mW), OUTPUT POWER

z

"

'\

~ -10
~

60

40

~

\

I

O

K

~.

'L

/

~ -20
I-

:::>

o

-20

l=lMHz
30% Mod
V,=74dBlm
PIN 8

'I

g

}

.\

\.. ...-

-40

20

i

I!

V,

~

LIJ

~-10
o
if

1\

~

~-30

>

'"

4

2

~IN r I III
lK

2

3

Im(Hz), MODULATION FREQUENCY

c8SAMSUNG
Electronics

..J

4

~
I-

V

o
2 3
lK
2 3
,m(Hz), MODULATION FREQUENCY

~I

10K

/

:::>

I-

:J:

'"

0

~
I-

~ 100

:J:

I-

~

IIL

a:

C

iKHz 1

~

:::>

/

~

V

. /V

/

,/

-"
~

-so
3

:::E

~

-40

2

~

Z

f=lMHz
30% Mod
V,=74dB/m

100

a:

!:1
0

6

/

THO

'"
'"

:J:

~

f- THO =10%
f-R L =8!l

!i:
Iii

0

8 C

J
""'-

a:

OUTPUT POWER·SUPPLY VOLTAGE
1000

10 ~

I"

g

i\.

L

100

3

30

12

t-

~-20

~

-50
10

TOTAL HARMONIC DISTORTION .MODULATION
OUTPUT VOLTAGE
FREQUENCY

:::>

Z

o

:::E

1\

41(KHz), FREQUENCY

...

8 ~
u

j

-10

10

§
g

1\
1\

\

;:

I{

10 ~

/

~ -30

\/

-30

~

LIJ

~

3

INPUT VOLTAGE

_I-

/'

0

~

2

100

12

80

Z

3

10

f=lMHz
fm =lKHz
30% Mod

~

2

TOTAL HARMONIC DISTORTION .MODULATION
OUTPUT VOLTAGE
FREQUENCY

ATTENUATlON·FREQUENCY

~
::J

B
!::
B
a:
(3

V

--I--:: ~f;1

"-

Icc- ' - - 50

[7 17

!;

I

a:
a:

~

0

:::E
u:

~

l00ffi

~

U

~

1.0

Cl

§

~

300

/

17

/
7

0

10K
Vcc(V), SUPPLY VOLTAGE

270

KA22421

LINEAR INTEGRATED CIRCUIT

TOTAL HARMONIC DISTORTION·OUTPUT POWER

Vcc=3V
f=lKHz
RL =80

I

~ 10 ~RNF=1.2KIl
j:

~

is 5
u

o

~ 3
.....

~....
~
~

2

~

I.J
R,=12KIl
= 3OdB)

':::.t.

R,=3.3KIl
(A,=26dB)
1.0

:E

V

"'"

CC

..... 3

~

/~

~

.... 2

~

I ~

-

10

too

I-5

100

P.,(mW), OUTPUT POWER

c8SAMSUNG
Electronics

I

7

/ ....... 1.-'
~".
~

:I:

-R,=2.2KIl
-(A,=15dB)

•

~~

'")

17

5

:I:

./

,

:::>&

a:

..... ~

/

V

~ 10

U

Z

CC

f=lKHz
RL =80

z
o

~
!!! 7
c

7

:I:

TOTAL HARMONIC DISTORTlON·OUTPUT POWER

10

3

5

7

100

P.,(mW), OUTPUT POWER

271

PRELIMINARY

KA22426

LINEAR INTEGRATED CIRCUIT

AM/FM ONE·CHIP RADJO
The KA22426 is a monolithic integrated circuit designed for radiocassette tape recorders, clock radios and headphone radios.

FUNCTIONS
•
•
•
•
•
•
•
•
•
•

AM/FM RF AMP
LocalOSC
AM AGC Control
FM AFC Control
Audio Power AMP
Tuning Indicator
DC Volume
AM/FM IF AMP
FM Quadrature DET
AM DET

28

sop·

FEATURES
• Built-in AM/FM Switching Circuit
• Wide operating supply voltage: Vee=2-S.5 V
• low current consumption (Vee = 3V)
FM: Icc = 5.3mA(typ)
AM: lee=3.4mA(typ)
• High Power Audio Amplifier: O.5W(typ) at Vee =6V, Rl=Sn,
THD=100f0

ORDERING INFORMATION
Device

Package Operating Temperature

KA22426

28 DIP

- 20- + 70°C

KA22426P

28 SOP

- 20- + 70°C

BLOCK DIAGRAM
FM/AM
IF OUT

FE
GND

FM
RF IN

AM
RF IN

FM
RF

REG
OUT

OSC

AFC

AM
OSC

BAND
SELECT

AM
IF IN

FM
IF IN

TUNING
METER

IF
GND

AFC
AGC

AFC
AGC

DET
OUT

AF
IN

VOL

RIPPLE
FILTER

NF

Vee

FM
DISCRI

AF
OUT

MUTE

GND

Fig. 1

c8SAMSUNG
Electronics

272

PRELIMINARY

KA22426

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic
Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

Vee
Pd
Topr
T8t 9

9
1000
-20- + 70
-40- + 125

V
mW
°C
°C

•

ELECTRICAL CHARACTERISTICS

(Vee = 6V, Ta = 25°C, FM; 61 =22.5KHz, 1m = 1KHz, AM; 30% Mod unless otherwise specified)

FM

AM

Test Condition

SW Condition Test
1 2 3 4 5 6 point

Characteristic

Symbol

Min

Quiescent Circuit Current

lee(1)

Vi=O

A B A A B A

FIE Voltage Gain

Ay(1)

Vi(1) = 40dB/i, 1= 100MHz, DI = 0

A B A A B A Vo(1)

32

Vo(1)

-26

®

Typ

Max

Unit

7.0

14.0

mA

39

46

dB

Vi(3) '" 90dB/i, 1= 10.7 MHz

A- -A B A Vo(3)

-20

-14

dBm

IF·3dB Sensitivity

Vi (lim) Vo(Vi(3)=90dB/i)-3dB, 1=10.7 MHz

A- -A B A Vo(3)

24

32

dB/i

Total Harmonic Distortion

THD (1) Vi(3)=90dB/i, 1= 10.7MHz (Df= 75KHz) A- -A B A Vo(3)

0.3

2.0

%

3.5

7.0

mA

3.5

10.0

mA

22

29

dB

Detect Output Gain

Meter Drive Current

IL(1)

Vi(3)= 60dB/i, f= 10.7MHz

Quiescent Circuit Current

lec(2)

FIE Voltage Gain

Ay(2)

IF Voltage Gain
Detect Output Voltage
Total Harmonic Distortion
Meter Drive Current
Closed Loop Voltage Gain

AF Total Harmonic Distortion
Output Power

A- -A B A

1M

Vi=O

A B A A AA

®

Vi(2)=60dB/i, I", 1660KHz, m=O%

A A A A A A Vo(2)

Ay(3)

Vo(S) = -S4dBm, f=455KHz

A A -A A A Vo(3)

14

20

27

dB""

Vo(2)

Vi = (3) = 85dB/i, f = 455KHz

A A -A A A Vo(3)

-26

-20

-14

dBm

THD(2) Vi(2)= 95dB/i, f=1660KHz, Vee=7.8V A A B B A A Vo(3)
IL(2) Vi(3) = 85dB/i, 1= 455KHz
A A -A A A 1M

0.6

2.0

%

1.3

3.0

7.0

mA

27

31.5

36

dB

0.3

2.5

%

Ay(4)

Vo(4)=OdBm, f= 1KHz

THD(3) Po =50mW, 1= 1KHz
Po

RL =8fl, THD=10%, 1=1KHz

c8SAMSUNG
Electronics

A..,....

-- -B

Vo(4)

1.8

15

A- - - -B Vo(4)
A-

-- -~

Vo(4)

0.4

0.5

W

273

-t

db

~(I)

gJ)

~

~'I

tn
C

100

0~0.11'

m

AFC

REG

"DOpd", ,soi

,OpI
T

150l'H

en

"'frfl rfll fIr, ci
r

SOK

uf

-t

0
~

~

I\)
~
I\)
0)

V,(2)

I

V,(l)

I

V o(l)

2

Ci)

Vo(2)

"'Tl

~.

N

•

·c

r-1\l1/,..1\l1

Z

m

l>

:tJ

Z

-I

m

C>
:tJ

~
m'1:J

0:0
83

::.

~c

0.011'

Pl
Q3:
:tJ~

("):t::;

I\)

.......
~

I

V,(3)~

sO

1M

V 0(3)

V,(4)

S::o
-1"'<

»
"'tJ

db
~~
a
~.

"'tJ

r(;

VR

s:

»
-I

50K

22p
ANT

en

0

6p

"l>
I\)

I\)
~
I\)

en

Z
0

10K

jj

C

0

c

2

=i

Ci)

."

~.

w

c
z

S1

~

:D

Z
---4

S2

FM

m
C')

:D
AM
BATT

=.

~1J

m::n

Cp!
O§:
:D~

0)::;
I\)

......

01

Cll

=4-<:

LINEAR INTEGRATED CIRCUIT

KA22427
AM/FM 1·CHIP RADIO

16 DIP

KA22427 is a monolithic integrated circuit designed for the portable
AM/FM radio or AM/FM clock radios.

FUNCTIONS
•
•
•
•

AM RF & MIX
AM AGC
AM/FM DET
Regulator

AM Local OSC
AM/FM IF ~MP
Audio Power AMP
FM AFC Control

•
•
•
•

FEATURE
• Portable AM/FM 1·chip radio
• Wide operating supply voltage range; Vee 3 -12V (Approximately)
(Depending on the internal regulator tolerance)
ORDERING
• Recommended operating supply voltage; Vcc=4.S-9V

=

INFORMATION
Operating Temperature

~

4.SV

BO

160
450

RL

9.0V

Line Operated

0

X

X

0

0

X

0

0

0

6.0V

7.SV

0

0

0

0

0

0

• On using AC line as an internal shunt regulator mode, it is possible to use low cost application without a
transformer (approximately 42mA)
• IF AMP gain is determined by DC voltage appeared at IC Pin 16.
• Power output: Po 0.2BW (Min.) at THD 10% (Vee 5.5V/BO).

=

=

=

BLOCK DIAGRAM
AM IF
OUTPUT

RF
GND

AM/FM
IF INPUT

IF
BYPASS

AFC
AGC
AM/FM
BYPASS IF OUTPUT

IF DET
INPUT

vee

15

AM OSC

AM RF
INPUT

RF
AUDIO
AUDIO RIPPLE
AUDIO
BYPASS DET OUTPUT POWER REJECTION GND

AUDIO
POWER OUTPUT

Fig. 1

c8SAMSUNG
Electronics

276

KA22427

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic
Supply Voltage
Power Dissipation (Note)
Supply Current
Thermal Resistance
Operating Temperature
Storage Temperature

Ta~65°C

Symbol

Value

Unit

Vee
Pd
lee
Rj-a
Topr
Tstg

13
600
44
100
-20- + 70
-55 -+ 150

V
mW
rnA
°C/W
°C
°C

•

ELECTRICAL CHARACTERISTICS
(Ta=25°C, Vee = 5.5V, fm=1KHz, AM: f=1Mf:-iz, 30% Mod, FM: f=10.7MHz
l:,. f = 22.5KHz, Unless otherwise specified)
Characteristic
Quiescent Circuit Current
FM

Pin 16 Terminal Voltage
Input Limiting Sensitivity
Internal Regulated Vtg.
Pin 16 Voltage

AM

Min

Typ

Max

SW: FM, Vee=3V

10

15

20

SW: FM, Vee = 9V

13

20

26

V16 (FM)

SW: FM, Vee =9V, Vj=O

2.0

2.4

3.1

Vj (lim)

SW: FM, -3dB
V16 =2.4V, VR Min

lee

Vee
V16 (AM)

Test Conditions

SW: AM, lee = 42mA

12

SW: AM, Vee =9V, Vj=O

1.4

13.2

Max (Sen)

Signal to Noise Ratio

SIN

Vi = 37.5dB/l, RL = 80
Po =50mW

15

Po

f=1KHz, THD=10%
V R Min, RL=80

0.28

THD

lee = 42mA, RL = 450
f = 1KHz, Vo = 2V
V R Min

0.5

f = 1KHz, RL = 80
Po =50mW

41

Voltage gain

c8SAMSUNG
Electronics

Av

V
dB/l

14.0

V

1.9

V
\

Maximum Sensitivity

Total Harmonic Distortion

Unit
rnA

57

SW: AM, Vee=12V
V j = 37dB/l, RL = 450

Output Power
PWR
AMP

Symbol

1.5

3.0

V

20

dB
W

4.0

0/0

dB

277

db

Vee

VI
~'"
g
J:II
crl
=t

~

en

C17

~

T6

470. +
RS
1.2K

C
2

C14
470"

I I~

"~ ~"~.

'- _ _ _ _ _ _ _ _ _ J

~

'II

I I--{)

V16

C12zk
220

'- _ _ _ _ _ _ _ _ _ J

__

".

• -m
I

~

~~

~~

52 en

5 _

0
....:II
POWER
0
OUTPUT
c:

+

~

-

-t

c.

C11
..L 0.001
""T""

"

FM

AMO

c:
z

m

l>

::J:J

Z

-I

m

C)

+
C19
3.3"

!m
C

o
::J:J
o

-

FM IF INPUT

AM RF INPUT

I\)

""

ex>

Fig. 2

AUDIO
AUDIO
DET OUTPUT POWER INPUT

c:
~

KA22427

LINEAR INTEGRATED CIRCUIT

EXTERNAL PARTS TABLE
Parts
Number
R5

R7

R8
C2
C4

Purpose
AM Gain
Control
FM Detector
Damper
FM Gain
Adjust
IF Bypass
IF Filter

Typical
47Kn
(33K-oo)

Influence
Smaller Than Typ
Low AM Gain

Greater Than Typ

Low Detector Output,
Stable IF Gain,
Low FM Gain

Sharp IF AMP Curve

Low FM Gain

High Gain, but Noise
Increases

0.022tLF

Should Not Be Less Than
0.005tLF

High IF Gain,
SIN Ratio Degrade

0.022tLF

Removal May Cause IF
Oscillation

No Influence

4.7Kn

470

I

AGC Distortion
Increase, High Gain

C7

AM Bypass

0. 047tLF

Low Gain

Using over 1tLF
Will Cause FM
Distortion at Small
Signal

C9

Detector
Filter

0.01tLF

Unstable IF AMP
Oscillation

Poor FM Frequency
Response

0.022tLF

Lower Sensitivity,
Poor Low Frequency
Response

Bass Boost
Affects De-emphasis
Curve

Audio Oscillation

Poor Response

220tLF

Poor Frequency Response
& Low Gain

Improves AC Hum

Poor Low Frequency
Response

Can Achieve Optimum
Output Power

Poor AC Hum

Improves AC Hum

Narrow IF Bandwidth

Wide IF Bandwidth

Removal Will Cause
FM Oscillation

No Influence

C10

C11
C12

Audio
Coupling
Audio Input
High-Cut
Ripple Filter

0.001tLF

C13

Audio Output
Coupling

470tLF

C14

Power Line
Filter

470tLF

C15

FM Detector
Phase-Shift

10pF

C16

High Freq.
(IF) Bypass

0.047tLF

C17

AM AGC Time
Constant and
High Frequency
(IF) Bypass

0.047tLF

c8SAMSUNG
Electronics

Not Recommend to
Charge

279

KA22427

LINEAR INTEGRATED CIRCUIT

APPLICATION NOTE (Pin 16 DC Voltage)
1. IF Gain Grouping Table
(1) Test Condition: Vee = 9V (Pin 13).
Pin 8 resistance (AM) = 47KO.
Pin 16 resistance (FM) = 1.2KO.
(2) Grouping Table

V16 (FM)
2.6-3.0V

1.4 -1.7V

1.7-1.9V

C1

C2

2. IF gain is determined by DC voltage appeared at IC Pin 16.
The DC voltage at Pin 16 to the following values:
AM = 1.4-1.65V (DC)
FM = 1.9-2.10V (DC)
AM gain can be adjusted by the loading resistor value of Pin 8 (AM) from 33KO to infinity.
FM gain can be adjusted by the loading resistor vale of Pin 16 (FM) from 3900 to 6800.
Recommended resistance (Pin 8, Pin 16).
Pin 8 (AM) = 47KO
Pin 16 (FM)=4700

c8SAMSUNG
Electronics

280

APPLICATION CIRCUIT 1

00

aU);
g

s.P.

(1;-

en

~

+

I

*0.1J.1

tn

~22

C

2

G)

GND

ANT

Y

Jlin
20p

r15P

!:
AM OSC

z
~

::D

Z

-I

m

C)
820p

~

GND

m
C

NOTE: 1. SW1: AM Position.
2. *Marking: Value of C and R have to be selected for good conditions.

c:
=i

I\)

~

220

o
::D
o

'C

Fig. 5

II

KA22427

LINEAR INTEGRATED CIRCUIT

·COIL SPECIFICATION 1
Coil No.

f

00

T1

10.7MHz

120

T2

10.7MHz

70 min

Turns

1-3

1-3
4-6

Connections

Co

8T

111
2T

~"

150pF

®

::

1

II

T4

455KHz

10.7MHz

80 min

45 min

1-2
2-3
4-6

911
55T
6T

180 ±5pF

1-3

111

82±3pF

II
II

10.7MHz

25 min

1-3
4-6

7T
7T

II
II
II

2

1

~II
CD II
II

AM Local
Oscillator

90 min

1-3
4-6

6

0
®

CD
~ii(

180pF

II
II

1

L1

6

~"(
1

T5

0

~ii(

®

75±5pF

1

T3
(T6)

0

6

~II~

86T
7T

2

1

II
II
II

6

Core: 10 mm lI> x 55 mm
L2

AM ANT

200

1-2
(L=560J.tH)
3-4

'JFfu ~I

138T
9T

V.C
0.8 mm lI>
L3

FM ANT

UEW

TAP

~

5T
0.5T

7mm

10T

~

0.32 mmll>
L4

Trap

L5

FM
Oscillator

c8SAMSUNG
Electronics

UEW

7mm

0.8 mm jIS
UEW

GND

4T

-

~
7mm

Pin 6

GND

L

T

5mm

l

T

5mm

L

T

5mm

282

»
'1J

db

..»
'1J

[~
g

Vee

(")

+

~'S:

4701'

-f

~

I\)
~

I\)

"""-I

0

Z

en

(")

: 47K

C

T4

:a

SP

I

(")

c-G:~

2

III
Ii:
_
III
I"
I II
L_____ --'

Ci)

c:

2.2K
4.7K

~

I\)

FM
{).........

OAM

rZ

~
~

Z

-I

m
C)
0.011'

~

m

0.011'

C

0.041'

0.021'

o
~
o

1K

c:

I\)

=i

00
W

II

KA22427

LINEAR INTEGRATED CIRCUIT

COIL SPECIFICATION 2
Coil No.

f

00

10.7MHz

90

Turns
1-3

T1

T2

T3

T4

10.7MHz

455KHz

10.7MHz

C.L.
11
82pF

4-6

3

1-3

5

100

45 (Min)

4-6

2

1-2

127

2-3

28

4-6

10

1-3

11

®
1

390pF

60

mile
Connections

2

1-3

T6

L6

10.7MHz

455KHz

796KHz

180pF
4-6

7

1-2

50

100
2-3

50

1-3

100

4-6

10

2

1

360jlH

6

II

::
II
II

6

CD
®

II
mll~

CD
1

390pF

100

,c8SAMSUNG
Electronics

7

25 (Min)

II
II
II
II

m"
m'
CD
1

T5

II
II
II
II

mll~
1

82pF

6

®
mll~
1

180pF

II
II
II
II

II
II

II
II
II
II
II

6

CD
®

0)
Oii~
1

II
II
II
II

6

284

KA22429

LINEAR INTEGRATED CIRCUIT

FM ONE·CHIP RADIO
The KA22429 is an integrated circuit for FM portable
radios, stereo as well as mono, where a minimum periphery is important in terms of small dimensions and low
cost. It is fully compatible for applications using the low
voltage micro tuning system IC (MTS). The IC has a frequency of 76KHz, locked loop (FLL) system with an intermediate frequency.
The selectivity is obtained by active RC filters. The
only function to be tuned is the resonant frequency of
the oscillator. Interstation noise as well as noise from
receiving weak signals is reduced by a correlation mute
system.

•
i

FEATURES
•
•
•
•
•
•
•
•
•
•
•

Rf input stage
Local oscillator
Frequency detector
MTS compatible
Internal reference circuit
LF amplifier for mono earphone amplifier or mux
filter
Field strength dependent channel separation
control facility
Mixer
IF amplifierllimiter
Mute circuit
Loop amplifier

I

_______________________J
ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM

+
IF FILTER

+

-L

c8SAMSUNG
Electronics

285

KA22429

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

(Ta=25°C)

Symbol

Value

Unit

7

V

Supply Voltage

Vee

Oscillator Voltage

V5

-0.5 -

+0.5

V

Operating Temperature

Topr

-10 - + 70

°C

Storage Temperature

Tstg

-55 - +150

°C

Thermal Resistance

8ja

300

KIW

DC ELECTRICAL CHARACTERISTICS
Characteristic

(Ta=25°C, Vee =3V, unless otherwise specified)

Symbol

Min

Typ

Max

Unit

Supply Voltage

Vee

1.8

3.0

6

Quiescent Circuit Current

lee

6.3

mV

/lA

V

Oscillator Current

15

250

Voltage at Pin 13

V13

0.9

V

Output Voltage

V14

1.3

V

c8SAMSUNG
Electronics

286

KA22429

LINEAR INTEGRATED CIRCUIT

AC ELECTRICAL CHARACTERISTICS
MONO OPERATION
(fRF = 96MHz, fm = 1KHz, 6 f = ± 22.5KHz, EMF = 300jl.V
(EMF Voltage at Source Impedance of 750hm), Ta = 25°C, Vee = 3V unless otherwise specified)
Characteristic

Sensitivity

Symbol

4.0

jl.V

- 3dB: Mute Enable

5.0

jl.V

EMF3

SIN = 26dB: Mute Enable

7.0

jl.V

THD<10%, 6f= ±75KHz

200

mV

60

dB

YOM

THD1

6 f = ± 22.5KHz

0.7

%

THD2

6f= ±75KHz

2.3

%

AMR

AM: fm=1KHz, m=80%
FM: fm = 1KHz, 6f = ± 75KHz

50

dB

Ripple Rejection

RR

Oscillator Voltage

Vose

Selectivity

Unit

Max

- 3dB: Mute Disable

S/N 1

Variation of Oscillator
Frequency

Typ

EMF1

Signal Handling

Am Rejection Ratio

Min

EMF2

Signal to Noise Ratio
Total Harmonic Distortion

Test Conditions

6Vee =100mV, f=1KHz

30

dB

250

mV

5

KHzlV

fose/6 T

With Temperature

0.2

KHz/oC

S+300

Without Modulation
; Test Circuit Fig. 3

30

dB

46

dB

fosc/6 Vee

S-300

6 Vee= 1V

AFC Range

± 6f RF1

160

KHz

Mute Range

± 6 fRF2

120

KHz

Band Width

BW

10

KHz

AF Output Voltage

V01

90

mV

AF Output Current

6V o =3dB
Pre-Emphasis t = 50jl.s

10 (DC)

Max DC LOAD

10 (AC)

THO = 10%, PEAK VALUE

+ 100

-100

jl.A
mA

3

STEREO OPERATING
(fRF = 96MHz Modulated with Pilot 6 f = ± 6.75KHz
and AF Signal 6 f = ± 22.5KHz; fm = 1KHz; EMF = 1mV (EM F Voltage at a Source Impedance of 750hm)
Characteristic

Symbol

Test Conditions

Min

Typ

Max

Unit

Sensitivi~y

EMF4

Signal to Noise Ratio

S/N 2

Channel Separation

Sep

20

dB

Pilot Voltage of Pin 14

Vp14

13.5

mV

80

mV

22

dB

40

dB

AF Output Voltage
Selectivity

SIN = 46dB

V02
S+300
S-300

c8SAMSUNG
Electronics

Without Modulation
; Test Circuit Fig. 3

300

jl.V

53

dB

287

•

PRELIMINARY

LINEAR INTEGRATED CIRCUIT

KA22429
TEST CIRCUIT

AF
Output - - - - - - - - - - - - - - ,

10K

Vee
56nH

Fig. 1 Test Circuit for Mono Operation
r---------------------------~----OFIELD

.....- ......_--,
(MONO/STEREO)
STEREO
t-~~Mr--~-'V'~---"'--~---o
DECODER

STRENGTH
Vmux

R

J]IKD
O.1pF

Veeo-~~------~--~-----~--~---~-~~

Fig. 2 Test Circuit for Stereo Operation

c8~SUNG

288

LINEAR INTEGRATED CIRCUIT

KA22429

•

KA22429
Vee

Va

Vi·Fi

fa

Fig. 3 Test Circuit
NOTES:

Setup with circuitry as Fig. 1 as Fig. 2
Cs (O.1/t F) deleted and replaced by Rs 100Kohm; Vi
Ci;:s8pF; fo=fi

=

=30mV: fi = 76KHz output selective voltmeter R1 ~ 1MQ;

SELECTIVITY

S

- 20L
V01 /(300KHz - ti)
og
Vo/fi

S

+300 -

c8 SAMSUNG
Electronics

_ 20L
VolI(300KHz + ti)
og
Vo/fi

-300 -

289

LINEAR INTEGRATED CIRCUIT

KA2243

AM/FM IF SYSTEM
16 DIP

The KA2243 is a monolithic integrated circuit developed for
radio cassette tape recorders which include AM/FM IF amplifier
and detector.

FUNCTIONS
• AM Section:
IF amplifier with AGe detector.
Signal meter driver circuit.
Voltage regulator for RF external circuit.
• FM Section:
IF amplifier.
Quadrature detector.
Post amplifier.
Signal meter driver circuit.

FEATURES
•
•
•
•

Suitable for radio cassettes and home stereos.
Wide operating supply voltage range. (3.0V -14V).
Low quiescent circuit current.
AM section.
Simplified input circuit 1FT (Ceramic filter type).
RF AGe available.
• FM section.
High limiting sensitivity (33dBp., Typ).
Low residual noise (45dB at Vj ;:::-10dBp.).
Small side peak of detuned output voltage.

ORDERING INFORMATION
Operating Temperature

KSA733

TEST CIRCUIT

r-1>4W'Irl--c:-::-:t--_ _-c-__+_--O Vee =5V

}--fo-f'I'---..--O FM
OUTPUT
22K

r - -,

(!): :50
~l !
_..

-- r----- 1----

I
II

1.6

320

I
I

I

II

0

m

OUTPUT VOLTAGE·SUPPLY VOLTAGE
400

1.2 1----

-~I---

1.0

0.6

20

if
II

V~-5!N

1m_1KHz
 UEW

I

2. T2

~~

®~

3. T3

o
®
®

Co (pF)

TURNS
----

------,-

3-4
82

10.7

65

Co (pF)

f (KHz)

Qo(%)

c8SAMSUNG
Electronics

180

455

120

Seoul Jupa
SJ-59JG-043
0.07mm UEW

9

f---

-,---

TURNS

1-2

2-3

51

92

Seoul Jupa
SJ-015-521
0.07mm UEW

295

•

KA2244

LINEAR INTEGRATED CIRCUIT
9 SIP

FM IF SYSTEM FOR CAR RADIOS
The KA2244 is a monolithic integrated circuit consisting of FM
IF amplifier, detector, muting circuit and signal meter driver. It
is suitable for car radios.

FUNCTIONS
•
•
•
•

3-stage IF amplifiers.
Peak detector.
Muting circuit.
Signal: meter drive circuit.

FEATURES
•
•
•
•
•
•
•
..

Suitable for FM car radios.
Wide operating supply voltage range (8V -15V).
High detector output voltagel(Vo =500mV, Typ).
Variable muting level.
Muting off by Pin 4 open.
Simplified single coil tuning.
Low distortion (THD=O.l%; Typ) .
Minimum number of external parts required.

ORDERING INFORMATION

TYPICAL APPLICATION CIRCUIT
Vee

AF
OUTPUT

C4

~O.Q11'
JOE.EMPH""IS

Fig. 1

c8SAMSUNG
Electronics

296

LINEAR INTEGRATED CIRCUIT

KA2244

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
- .
I
i

Ch

acteristic

Supply Voltage
Input Voltage
Power Dissipation
Operating Temperature
Storage Temperature
*: Derated above Ta

Value

Unit

16
0.7
750
-20- + 70
-40- + 125

V
V
mW
°C
°C

Symbol

I

Vee
Vi
*P d
Topr
Tstg

•

=25°C in the proportion of 4mW/oC

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee =12V, f=10.7MHz, fm=400Hz, unless otherwise specified)
Characteristic

Symbol

Test Conditions

Min

Typ

10

14

I

Max

Unit

18

mA

55

dB/l

i

I

i
I

Quiescent Circuit Current
Input Limiting Sensitivity

lee

Vj=O

Vj(lim)

-3dB point from Vo
(V j =80dB/l, ~f=±75KHz)

I

50
I

FM: ~f=+75KHz dev
AM: 30%-Mod, fm=1KHz
V =80dB/l

I
I

AM Rejection Ratio

AMR

I

!

50

I

j

Detector Output Voltage

M= ± 75KHz dev
V =80dB/l'

Vo

dB

I

300

500

700

mV

j

Total Harmonic Distortion

~f= ±22.5KHz

THO

dev

0.1

%

75

dB

dev
V j =80dB/l, V 4 =0

70

dB

V j =110dB/l

4.0

V

f=1O.7MHz
1 PIN-GND

5

Kg

V =80dB/l
j

Signal to Noise Ratio

SIN

Muting Attenuation

M (att)

Meter Driver Voltage
Input Impedance
I

I

Output Impedance
i

~f= ± 75KHz

~f= ± 75KHz

V3 (max)
Resistance

Rip

Capacitance

Cip

Resistance

Rop

Capacitance

Cop

!output Resistance

f=10.7MHz
6 PIN-GND

Ro
I

c8SAMSUNG
Electronics

dev

Vj =80dB/l

f=400Hz
8 PIN-GND

4.5

pF

1.3

Kg

4

pF

7.7

Kg

I

297

LINEAR INTEGRATED CIRCUIT

KA2244
TEST CIRCUIT
Vee

Tank Coil

0.01,.

INPUT

o-----f

)------1----0

OUTPUT

Fig. 2

COIL SPECIFICATIONS
TURNS

Co (pF)

f(MHz)

00(%)

27

10.7

150

4-6
18

Seoul Jupa SJ-59JG-045 O.1mm UEW

c8SAMSUNG
Electronics

298

KA2244

LINEAR INTEGRATED CIRCUIT

OUTPUT VOLTAGE
SIGNAL TO NOISE RATIO
AM REJECTION RATIO

-

OUTPUT VOLTAGE.
TOTAL HARMONIC DISTORTION

INPUT VOLTAGE

-FREQUENCY
DEVIATION

1000

1.0
0.9

10
20

I:

~~

wll:

~~

W

§! 600
II-

z:=;

mfi
,,-II:

z:=;

inc

~

0.7

~
C

0.6

(J

Z

0

:::l

0.5

Q.

:::l

:=;

II:
C
~

~400

0.4

t

0.3

~

70

Z

0

U)

~

CII:

.... ii}

0.8

CJ

zti
~w

U) _
50 !2c

60

800

0

0.2

200

g
F-

l.
0

~

I-

80
-90

0.1

90
20

60

40

80

100

120

20
40
60
80
Af (±KHz). FREQUENCY DEVIATION

VIIdBI'). INPUT VOLTAGE

OUTPUT VOLTAGE
TOTAL HARMONIC DISTORTION -SUPPLY VOLTAGE
SIGNAL TO NOISE RATIO

100

OUTPUT VOLTAGE-MODULATION FREQUENCY

,-------,---,---,------,---,---,----,--,-----,--, 1.0

f---b;o;;;J_4-...-4--4-4--+--+-+-'" 0.9
Z

O-W

i

-20

-

I-----+-~-I--I--___+_--+--I-----

-2

~

w -4

.!----+--.l------1 0.7

~~
~ ~ -30
§!~

M ~

0.6

c

CJ

:=;

l-

~

-40

0.5

-50

0.4

g

il-60

0.3

~

1- ....
:::lC

g~

II:
C
~

Q.Z

~~ ~

M~

~

§!

i

-6
-8

I-

:::l

0 - 10

!if

:20 - 12
>
-14

I-

-16

10

Z

~

z

12

13

14

15

10

12

14

16

18

fm (KHz). MODULATION FREQUENCY

MUTING ATTENUATION-MUTE DRIVE VOLTAGE

OUTPUT DC VOLTAGE-INPUT FREQUENCY

J

o

11

Vee M. SUPPLY VOLTAGE

20

_~I___ ~ __

Vcc=l2V
·f=10.7MHz
Vi=80dBI'
fm=400Hz
. Af=±75KHz

-10
-20

w
S
-30
CJ

!!: -40

I-

:::l

~-50

fD
:2-

!-60

~ -70

-90L-~_~_L-~_~_L--L_~~_~

o

0.2

0.4

0.6

V. (V). MUTE DRIVE VOLTAGE

c8SAMSUNG
Electronics

0.8

1.0

-400

-200

200

400

fiN (KHz), INPUT FREQUENCY

299

•

LINEAR INTEGRATED CIRCUIT

KA22441

FM IF SYSTEM FOR CAR STEREOS
The KA22441 is a monolithic integrated circuit consisting of an
FM IF system suitable for use in car stereos and music centers.

16 ZSIP

It features practically all of the functions used in an FM tuner,
including an AGC output, AFC output, level meter output in a
single package.

FUNCTIONS
•
•
•
•
•
•
•

FM IF amplifier.
Quadrature detector.
AFC output.
AGC output.
Level meter output.
Muting for weak signal.
Muting for detuned condition.

FEATURES
•
•
•
•
•
•
•

•
•
•
•
•

---

Soft muting function.
Variable muting maximum attenuation.
Variable muting attack input signal.
Va'riable muting slope with respect to input signal level.
Level meter output.
AFC output.
AGC output.
High sensitivity (Vi (Iim)=25dBft: Typ).
High output level.
Good SIN ratio (78dB: Typ).
Low distortion (0.05%: Typ).
Wide operating supply voltage range (6V -14V).

.-----~ _

_ _ _ ____.J

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM
QUAD
IF OUTPUT INPUT

vee

VREF

VOLTAGE
REGULATOR
AFC CLAMP

IF INPUT

1

AF
MUTE
AMP.

AGC

S-METER

MUTE DRIVE

MUTE IN

5. MUTE ATT ADJ.

GND

Fig. 1

c8SAMSUNG
Electronics

300

KA22441

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic
Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

Vee
Pd
Topr
Tstg

16
640
-20- +70
-40-+125

V
mW
°C
°C

•

I

ELECTRICAL CHARACTERISTICS
(Ta =25°C, Vee =8V, M=± 75KHz, Vi =100dBfL, fm=400Hz, unless otherwise specified)

Characteristic

Symbol

Supply Voltage

Vee

Quiescent Circuit Current

Icc

Input Limiting Sensitivity

Vi (lim)

Dectector Output Voltage

Vo

Total Harmonic Distortion

THD

Signal to Noise Ratio

SIN

AM Rejection Ratio

AMR

--

--

-------

Min

Test Conditions
------

Vi=O

------

---~-

Typ

Max

Unit

6

8

14

V

15

21

27

mA

25

29

200

260

320

_dB~
mV

0.05

0.2

-

Vo (Vi =100dBfL) -3dB down

I

AM: fm=1KHz, 30% Mod

--~

%

70

78

dB

50

63

dB

-------

Signal Meter Output Voltage

AGC Output Voltage
Muting Sensitivity
Muting Attenuation
Muting Bandwidth

c8.SAMSUNG
Electronics

VM

V(AGc)
M (sen)
M(att)
M(Bw)

0

0.1

0.3

Vi =100dBfL

4.5

5.3

6.0

Vi =0

Vi =0

3.5

4.1

4.5

Vi =100dBfL

0

0.02

0.3

V 14 =2V

22

26

32

V6=2V

10

15

20

V6=5V

24

28

32

V 14 =2V

140

210

370

V

V
dBfL
dB

---------

KHz

301

!

LINEAR INTEGRATED CIRCUIT

KA22441

TEST CIRCUIT
6.8K

VcC=8V

Vrat

AFC

AGC OUTPUT (V16)

Fig. 2

c8SAMSUNG
Electronics

302

KA22441

LINEAR INTEGRATED CIRCUIT
OUTPUT VOLTAGE

I~lft~~~~m~N~·m5'TORTION ·INPUT VOLTAGE

PIN VOLTAGE·INPUT VOLTAGE

OUTPUT NOISE VOLTAGE
10

fl=10.7MH~

,IVo (OdB=1260mV)
I

Mod OFF

V

/
./

--

~

I
Vee=8V
1m = 400Hz
61= :t75KHz
1=10.7MHz -

,"'

\

\

~

\.

-70
-80

o

20

40

"1\

~

"~V

J

Noise

')

80

100

120

OUTPUT VOLTAGE·SUPPLY VOLTAGE

1
1
Vi= 100dB~
1 = 10.7MHz
Im=400Hz

~

:::J

...a.

260

!----

1~.7MHZ

s:

6f=",75KHz~

w
0

120

1=
1m = 400Hz
61= :t75KHz

>
l-

CI

>

100

INPUT LIMITING SENSITIVITY·SUPPLY VOLTAGE
30

«

80

60

V~dB~), INPUT VOLTAGE

300

...

\....

40

WdB~), INPUT VOLTAGE

280

V"

ll>

1\

L

-

:li1: 24

240

E

~
22

220
12

10

14

10

16

SIGNAL TO NOISE RATIO·SUPPLY VOLTAGE
80

12

16

14

Vee(\/), SUPPLY VOLTAGE

VccCV), SUPPLY VOLTAGE

AM REJECTION RATIO·SUPPLY VOLTAGE

r-----,-----,------,-----,-----,

68.---r---~I---'I---'I----'
V, = 100dB~, f= 10.7MHz
FM: 1m = 400Hz, 6 I :t 75KHz
AM: Im=1KHz, 30% Mod.

=

0

~w

g 66

78

(5

z

g
...J

z

g
fil

~ 64

76

«
Z

~

CI

«

it

it
~

iii
~

z

iii

00

72
10

12

Vee(\/), SUPPLY VOLTAGE

c8SAMSUNG
Electronics

14

16

I----+---+----\----+------l

r\-~'-+---+---+----1

~ 62

74

6

I----+----+----\----+------l

~

V, = 100dB~
1=10.7MHz
1m = 400Hz
61= :t75KHz

rJ)

P---+---+----\----+---l

~

____

~

____J -____- L____-L____
10

12

14

~

16

Vcc(\/), SUPPLY VOLTAGE

303

KA22441

LINEAR INTEGRATED CIRCUIT

MUTING BANDWIDTH-SUPPLY VOLTAGE

MUTING ATTENUATION-SUPPLY VOLTAGE
400

f=110.7MHZ

l'=l00dB"
Mod OFF

f m =400Hz
M= ±75KHz

~

10

fi::>

~----+-----~-----+----~----~
V,=2V

Z

S
~

20

"-

~----+-----~-----+----~----~

§
:::E

if

V,=5V

~

~ 30 ~----+-----~-----+----~----~
:::E

40

~

____

~

____- L____

6

~

____~____~

12

10

14

16

o
10

6

12

14

VccM, SUPPLY VOLTAGE

Vcc(V), SUPPLY VOLTAGE

QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE

MUTE DRIVE OUTPUT·SUPPLY VOLTAGE

16

28

...
ffi

26

II:
II:

::>
0

!::

::>
0

24

II:

0

...
ffi

0

ffl

22

;;

r-

a

U)
5 a: -20

a! :t: 75Lz

800

~~
IDa:

1.4

Ii:

~

is

1.2 !:I

z

0

1.0

\\

~~ -40

O.B

I-'

:t:75KHz dey

\

60
V~dBI'),

~
«

...:J:

g
....
...::

0.6 ~

w

800

«

~

0

>

~4oo

50

200

~M;R\

BO
INPUT VOLTAGE

0.4

V

100

--

Vo

J.....-

V

~+-'

iii"

~

r-...

-5

~

1.20

:;;
is

:J:

22.~KHZ Idev)

...«

0.6

e

0.4

~

CI

~

g

....

~ -8

---j--

5o

,1

I

200pF
+-----1-1-

j-t---~
I

li

iii" -12

1

~

!

0.011'F

-16

i!=
-20

0.2

-24
10

12

14

16

10

~~
'\

30

100

300

1K

3K

10K

30K 100K 300K 11000K

fm(Hz), MODULATION FREQUENCY

OUTPUT VOLTAGE
-3dB INPUT LIMITING VOLTAGE

PUTPUT DC VOLTAGE·INPUT FREQUENCY

~
g

-J-

-4

Vcc(V), SUPPLY VOLTAGE

w

~.

~~

w

-6

CI

100

J3J~~rT~

o

l--I--

THO (:t: 75KHz dey)

THO I(:t:

i!=

V,=60dBp

Z
o

-4

i3'
0.2

1.4 Z

::II!
0.8 ~

-3

0.4 -;.

OUTPUT VOLTAGE·MODULATION FREQUENCY

1.00

1"-

g

20
40
60
BO
"'f(KHz), FREQUENCY DEVIATION

>

o

«
:J:

...

"
/THD

V

O.B

0.6 ~

1.6

5

~ -2

V

~

o
~

0.2
120

V, = BOdBl',
fm = 400Hz

~ -1
5

b k'

....

~~~:~TH~~~~~I~ DISTORTION ·SUPPLY VOLTAGE

w

VV

E

~

/

1.0

Z

/V

VoV

;;

z

~

Iii

V""'"

....

i3'

1.2

/V

CI

:J:

-60
40

1.4

Z

Q

Vo

THO

1.6
Vcc }12V,
V,=80dBI'

1.6

L

~.

"-::II!

20

~~~:~TH~~~~~I~ DISTORTION ·FREQUENCY DEVIATION

1.B

·AMBIENT
TEMPERATURE
80

=80~Bp,

V,
1m = 400Hz

Vcc=1 12V ,
V,=BOdBI'

w

Cl

70

~

0

>

[\.

w

....

~
o
~

~ _1~~~__~__~V~.~(li~m)~--r---r-~~~ 50 ~
~
1-

5

III

o

'\

i/0.7 MHZ)

~ -2~--~--~--~--~--r---r---r-~ 40
;:

200

,~

300

f,.,(KHz), INPUT FREQUENCY

c8SAMSUNG
Electronics

;ll
I

'i
III
:g,

I

100

~

i
::;
....

g

'\
-300 -200 -100

60

~

"",

oQ

Cl

Vo

Cl

400

500

-3~--~--~--r---~--r---~--r-~

30~

-4L-__L -__L -__L -__L -__L -__L -__

20

-2.5

25

50

L-~

~

75

Ta(°C), AMBIENT TEMPERATURE

310

LINEAR INTEGRATED CIRCUIT

KA2245

APPLICATION CIRCUIT
100
+VCC

I

CF

VI

0-----....
c::::::J

VOUT

I

1'01,
1

(fa = 27rA(C1 +Qg

Fig. 3

)

2

COIL SPECIFICATIONS

Co (pF)

f (MHz)

0 0 (%)

27

10.7

150

Turns

4-6

•

18

OUTPUT VOLTAGE
TOTAL HARMONIC DISTORTION ·INPUT VOLTAGE
AM REJECTION RATIO
10

1.6

v~

(Od =Jmv J±75 Hz dlv)
1.4 Z

lpPLIbATI~N CIJCUIT 1.2~o
FM: ± 75KHz dey

V

Iii

AM: 30% Mod
Vcc=12V, fm =400Hz

/'"'I

\

\

-60

is

1.05,1
Z

o

\

::IE
0.8 ~

:z:

\ ........ ~

1'- . . .

THO

0.6

AV~

e...
c

...r:
0.4 ~

(:-22.~KHZ de~

...:z:
0.2

-70

20

40

60

80

100

120

V~dBI'), INPUT VOLTAGE

c8~SUNG

311

LINEAR INTEGRATED CIRCUIT

KA22461

---------------

ELECTRONIC TUNING AM RADIO
RECEIVER FOR CAR STEREOS

19 ZSIP

The KA22461 is a monolithic integrated circuit for the AM tuner
system of car stereos.
It contains a subsystem that provides the mixer, oscillator, IF
AMP, detector and ON channel detector for electronic tuning of
the AM radio receiver.
It is suitable for the radio receiver in car audio sets.

FEATURES
•
•
•
•
•
•
•
•
•

Varactor·diode tuning
Excellent overload characteristics
Wide AGC range and good sensitivity
On channel detector for auto scan stop
Local/distance selector
Oscillator buffer output
Delayed AGC for RF amplifier
Special low level oscillator to reduce tracing error
Wide operating supply voltage range (8V -15V)

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM
AGC
(RF)

AGC
(ANT)

GND1

AGC
FILTER

OSC
MIX INPUT BUFFER OUTPUT GND2

OSC
TANK

OSC
BYPASS

MIX OUTPUT

AGC INPUT

DET OUTPUT

1st. IF
1st. IF
AMP INPUT AMP OUTPUT

2nd. IF
AMP INPUT

LOIDX
CONTROL INPUT

ON
DET INPUT CHANNEL
SIGNAL OUTPUT

Fig. 1

c8SAMSUNG
Electronics

312

KA22461

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Symbol

Value

Unit

Supply Voltage
Input Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Vee
Vj
Pd
Topr
T8tg

15
3.0
430 (Ta = 75°C)
-20 - +70
-40 - + 125

V
V
mW
°C
°C

I

ELECTRICAL CHARACTERISTICS
(Ta=25°C, Vee =10V, f=1MHz, f m =400Hz, 30% Mod)
Characteristic

Symbol

Quiescent Circuit Current

Test Conditions

Min

Typ

Max

Unit

Vj=O

10

14

21

mA

Maximum Sensitivity

Vj (Sen)

Vo=30mV

14

21

28

dBIl

Signal to Noise Ratio

SIN

Vj = 21dBil

8

13

Vo

Vj = 74dBil

70

100

130

mV

Icc

Detector Output Voltage
Total Harmonic Distortion

ON Channel Signal

dB

THD1

Vj = 74dBil

0.3

1.0

THD2

Vj = 120dBil

0.5

1.0

V19 (L)

Vj=OdBIl, RL =18K

V19 (H)

Vj =74dB/L, RL =18K

%

0.5

V

8.0

TUNER PERFORMANCE CHARACTERISTICS
(Ta=25°C, Vee =10V, f=1MHz, f m =400Hz, 30% Mod)
Characteristic

Test Conditions

Value

Unit

Maximum Sensitivity

Vo=30mV

22

dBIl

Usable Sensitivity

SIN =20dB

28

dBIl

Detector Output Voltage

V j =74dBIl

100

mV

V j =74dBIl

0.3

V j = 126dBil

0.6

V j = 74dBIl, 80% Mod

1.2

Signal to Noise Ratio

V j =74dBIl

52

dB

IF Rejection Ratio

Vo = 30mV, IF = 450KHz

56

dB

Total Harmonic Distortion

%

Image Rejection Ratio

Vo=30mV, f+21F

57

dB

Selectivity

6f=±10KHz

39

dB

Tweet

V j =74dBIl

DX Sensitivity

V19 =8V

ON Channel Bandwidth

V j =74dBIl

Oscillation Voltage

qsSAMSUNG
Electronics

I
I

21F = 900KHz

40

31F = 1350KHz

47

dB

26

dBIl

5

KHz

at pin 5

150

mV

at pin 8

4

V

313

KA22461

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT

m
50K

0.0221'
Dummy Antenna

V

AC. Volt Meter
Distortion Meter

r--------------------------------------1------~----------~O

Vcc=10V

SG: 50n

KA22461

DC. Volt Meter

Fig. 2

APPLICATION CIRCUIT
AF Output

VCC=10V

Fig. 3

qsSAMSUNG
Electronics

314

LINEAR INTEGRATED CIRCUIT

KA22461

COIL SPECIFICATIONS
L 1 & L2: Ant. & RF Coil

~4

MIX 2

Tank

GND

1

6

Drain

au (%)

L ~H)

80 min

170

Vee

Turns
1-2

7

I

2-3

I

62

I

1 4-6
I

14

L3: OSC Coil

0

~

au (%)

L~H)

60 min

95

MIXt(Y4 CF1

au (%)

C (pF)

115±20

180

CD
1

0

Turns
1-3

I

I

48

I

I

IFT1: 1FT

Vee

2
1

6

GND

Turns
1-2
69

I
I

2-3
77

I

I

4-6
14

IFT2: 1FT

~
o

0

1

L

~H)

L

C (pF)

1-3
680

6

180

680

~H)

I

I

I

I

CERAMIC FILTER
CFM2·450BL

CFM2·450ZL

Center Frequency

450KHz

450KHz

6d B Bandwidth

6KHz min.

4KHz min.

Selectivity ± 9KHz

16dB min.

18dB min.

Insertion Loss

6dB max.

6dB max.

Input Impedance

1.5KO

1.0KO

Output Impedance

2.0KO

1.5KO

. c8SAMSUNG
Electronics

Marking
1 2 3

1: Input
2: GND
3: Output

315

KA22461

LINEAR INTEGRATED CIRCUIT

OUTPUT VOLTAGE·INPUT VOLTAGE

SIGNAL TO NOISE RATIO·INPUT VOLTAGE

+10

,...
I

III -10

~g

~

-

Vee = 10V
f=1.0MHz fm =400Hz _
Mod 30%

I

J
'I
.......
J,.
,.

-20

!:i-30

o

~

if
:!:!.

60

40
V~dBI')'

80

20

I

20

Z
0

~

, 1\

Z

0

::E

a:

c(

J:

....
~

i

~

I

500

8

400

~

6

c---

,

40

4

e

""'-

,..,.,

40
60
MOD(%), MODULATION

~~~~LR~,~MONIC .MODULATION

~

r----.
-10

>

80

-20

FREQUENCY

VC~=11WI
1=1.0MHz
Vi = 74dBI'

8

::E

tr:

«
J:
~

1\

~
>

4

e

~

i\

-30 f-Vcc= 10V
f=1.0MHz
f-30% Mod

\

I)

"N:ndl

~M.fd

'f'rmrl
100

2

3

5

1K

2

3

f",(Hz), MODULATION FREQUENCY

c8SAMSUNG
Electronics

100

(.)

if

3

100

z
....

-40

V

/

o

i\
\

I-

::>

>

~

\

c(

S

~

j

z

III
CJ

300

::>
200 0

10

~r--.

~

/"

"J.H:£;. ~

20

120

~

~

V

V

V r<-...

OUTPUT VOLTAGE·MODULATION FREQUENCY

0

.-+--

/'

//

:r:::::;::..

80
100
60
INPUT VOLTAGE

Vo

f------ , - f-- -

CJ

./"

L_

80% Mod
30% Mod

+10

0

/V

J:

V~dBI')'

!:;

III

f-f-·

c(

\ ..........
20

I

Vcc =10V
f = 1.0MHz
1m = 400Hz
Vi= 74dBI'

z

ga:
~
o
:;:

.....

120

OUTPUT VOLTAGE
·MODULATION
TOTAL HARMONIC DISTORTION

a:

~t-.

c

100

INPUT VOLTAGE

is

~\

e

80

60

10

~

t\
\\
\

(.)

40
V~dBI'),

TOTAL HARMONIC DISTORTION·INPUT VOLTAGE

:n
is

II

120

10

0

/

INPUT VOLTAGE

Vcc=10V
f= 1.0MHz
f m=400Hz

- --Vee = 10V
f=1.0MHz
f m =400Hz
30% Mod

V

10

100

f-- ~

/
I

~

Noise

--

/

I

~
S!
 UEW

56

T2 AM 1FT (MIX OUT)

IfflCI

Co(PF)
1-3

12

95

00

f

(KHz)

TURNS

1-3

1-2

2-3

4-6

110

90

62

8

Seoul Jupa
0.07mm1/>UEW

180

T3(MWOSC)

o

10.7

f
(KHz)

455

L(pH)

00

1-3

1-3

1-2

2-3

140

140

32

32

TURNS
Seoul Jupa
0.07mm1/>UEW

796

T4(SWOSC)

o

L(PH)

00

1-3

1-3

1-2

2-3

12

80

12

12

TURNS
Seoul Jupa
0.1mmI/>UEW

c8SAMSUNG
Electronics

319

LINEAR INTEGRATED CIRCUIT

KA2247
(AM SECTION)

~~T;~~~~i~:~E ·ANTENNA INPUT VOLTAGE

OUTPUT VOLTAGE
·MODULATION
TOTAL HARMONIC DISTORTION FREQUENCY

40
1=1MHz
1m = 400Hz
30% Mod
20 I- Vcc= 4.5V

f=1MHz

30% Mod
5

Ii:0
Iii

w

Clw

~~

,-

o!:i
>0

... >
=>w

4

z

1\

IV

-e-e

V

111111

~~-40

Iiv 1"\ r\

-so ~

1/"

Vi " ' Il

f~

1/

3

2

,fJ

~U

~~

1

~

~
0

-2

...'"

-r--.,
I\.

\

-8

0

Vo

t-'i

> -4
=> -S

I!:=>

g
...

1\

w

CI

...

~

"""
'I

THO

V, = 100dBlm
Vcc= 4.5V

0

:r

~o

tl

@'

I"-V

-80

is

!:!

Vo

5 -20
oz
~

z
2

"'",

,

-14

...

\

'",

> -12

is"
:r

~

~

~ -10

"

-16

r-

-18

~
.........;;~

THO

~

-20

o

20

40
V~dB/m),

SO
80
100
120
ANTENNA INPUT VOLTAGE

5

140

7 100

2

,

3

5

7

1K

o
5

2

,m(Hz), MODULATION FREQUENCY

OSC FREQUENCY
PIN 16 VOLTAGE

·SUPPLY VOLTAGE
SOO

10mA max

\\..

I

Icc (V;=O)

'-:::-f---

L-~--~~==~~:::t~t::r
Vo
w

r
...

8

7

--

~-20

~

~-+--+-~--~--r--~--+--+--1--~5

ffi
~_
0
i
~

0

40
4

ffi

~

o

3

~-60

2

g

1

~

~

~

ti

z

-3

li:

-4

o
~ -5

J

-6



1.2

VI'

1.0

0.8
0.6

1.---' .....

t- I----

I--I-- !---'V

o

~

IT

14

~

12

g;

0

10

V,!

VV

,..-

6

V

80
80
100
120
40
WdB/m), ANTENNA INPUT VOLTAGE

c8~SUNG

1SO

-8

100

-9

SO
10

140

7r\
7 \

!::

13

-20

j

I

~

>-30

a:
0

!3



v"

-10

16

1.S

s

2OO.!i

SELECTIVITY·FREQUENCY

2.4

CI

::

;;:

2SO

II

4

20

Vcc= 4.5V
2.2 1--1=1MHz
I m=400Hz
30% Mod
w 2.0

0

300:2
z

1

PIN 11 VOLTAGE .ANTENNA INPUT VOLTAGE
CIRCUIT CURRENT

>

w

~

!:;
3SO ~

Vcc(V), SUPPLY VOLTAGE

2.6

1.8

400

-10

10

4
6
Vcr;('/), SUPPLY VOLTAGE

500
4SO

(

~ -2

lil
If

550

-,...-

V

-1

+--+----+--+-i'--+--+----,O~

'"
!:i

61J

OSC frequency (2M Hz}

,

f=1MHz
Vo=2.5mV (cont)
Vcc=4.5V

1\

.\
\

,
~

II

\

J
V

,
1\

-80
-25 -20 -15 -10

-5

6f(KHz~

0
5
10
FREQUENCY

15

20

25

320

LINEAR INTEGRATED CIRCUIT

KA2247
(FM SECTION)
OUTPUT VOLTAGE
AM REJECTION RATIO· INPUT VOLTAGE
NOISE VOLTAGE

TOTAL HARMONIC DISTORTION-INPUT VOLTAGE

v,

V
-20
w

0

~

0

>

I-

:::>

IL

I-

:::>
0

~

a:

J

~ -40

:IE -60

~

~

'/ "

.I

\

~

~ -SO

a:

~

/

2

\,

..J

I!

\ V- .....

,,~

:IE

~

\

VN

~~~

Vee=4.5V
Llf= ±75KHz
fm 400Hz
O7 HZ
f=l .
I

=

-100

o

I

•

\

Z

" AMR

<

,

is
u

l'\

E
af
10
~
>

o

iij

I

f=

lil
L;!
a:

z

II

0

f=10.7MHz
fm=400Hz
Vcc=4.5V

Llf= ±75KHz

,,~

i

so

40

20

V;(dB~),

100

So

20

120

V~dB~),

INPUT VOLTAGE

~:~dJI~~~~AR~~T

40

±~2.5KIHZ
60

80

100

120

INPUT VOLTAGE

·INPUT VOLTAGE

2.S rf-="T\-0.-7JT"H-z-'I-"-..,.--r--'-...,~-r-...,....., 20
2.4
2.2

fm=400Hz
Llf=±75KHz
Vee ~ 4.5V

---+-t--+----+-I--+--+-r----i

1S

2.3

~ 2.0

1----+--+---1-+--+-+-+--+---+-+---+-----f

~ 1.S
;: 1.S

a:

Icc (No LED)

r--

1--+--+--I-+./,;<+/--+-+--+--+-+--+------1

I-

14 ~
12 ~
10

u

1.4

~

1.2

1--+--+--I-+--+,--+-+--+--+-+-_+_-----1

1.0
0.8

~

/
r---

I

S

40

SO

V(dB~),

SO

100

~ ~ 2.2

f---=_+_--I.---t--+--+--+-+-__+_
I---+---I--+--+--+--+-+--+--

..JO

0>
~ ~ 1.6

I---+--.f-+--+--+=.....+-=:.+--__+_-I----I-----I

z~

J ~~

1.5 f-,."""""''--t-+--+-

»

V" +--+-j-7t-t--+----+-I--+--+-t---I

20

w
wO

1.4

I----I---=l-"F--+-+--+--+__

1.3

I--_+_--I-+----+--+--+-+__

1.2 L--L----'_-L---'._..l---'-_"-----'-_"---'---'
- 30 - 20 -10 0
10 20 30 40 50 60 70 SO

120

INPUT VOLTAGE

Ta(OC), AMBIENT TEMPERATURE

OUTPUT VOLTAGE
.SUPPLY VOLTAGE
QUIESCENT CIRCUIT CURRENT
11

I
!

-20
UJ

o

~
o

-

I
I

I

I
i

V,
10

I~e (Vi~O)
--

I-

9

~
~

I

;

U

l-

S
u
a:
U

I

>

r

40

o

E

~ -60

j

I

!

I-

I

6

I

I
I

I

0

I

I

il:i
ffl

u

5 S

;t

I

4

E

]

-80

10
Vcc(V), SUPPLY VOLTAGE

c8SAMSUNG
Electronics

321

LINEAR INTEGRATED CIRCUIT

KA22471

FM IF/AM TUNER SYSTEM
The KA22471 is a monolithic integrated circuit developed for the radio
cassette tape recorder.

16 DIP

FUNCTIONS
• AM SECTION: Converter, IF amplifier, Detector, Tuning indicator.
• FM SECTION: IF amplifier, Quadrature detector, Tuning indicator.

FEATURES
• Low quiescent circuit current.
AM: 7mA (Typ) FM: 10mA (Typ)
• A minimum number of external parts required.
• Built-in AM/FM function switch.
• Tuning indicator: direct LED driving capability (Il =10mA(MAX).
• One terminal AM/FM detector output.
• Advanced performance at high input signal.
• Operating supply voltage range: Vcc =3V -avo

----------------------~

ORDERING INFORMATION
BLOCK DIAGRAM

Operating Temperature

r - - - - - - - - - - - - - - + - - - - - . . . . - - - - - - - - -_____-------u Vee =5V

FM

INPUT

1

0-----;;..

Fig. 1
Note: The dot line denotes a tuning meter application.

qsSAMSUNG
Electronics

322

LINEAR INTEGRATED CIRCUIT

KA22471

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic
Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

Vee
Pd
Topr
Tstg

8
600
-20- +70
-40- +125

V
mW
°C
°C

•

ELECTRICAL CHARACTERISTICS
(Ta =25°C, Vee =5V, unless otherwise specified)
FM Section (f=10.7MHz, fm=400Hz, ~f= ±22.5KHz)
Characteristic

Symbol

Test Conditions

Min

Typ

Max

Unit

Quiescent Circuit Current

lee

Vi =0

10

15

mA

Input Limiting Sensitivity

Vi (lim)

Va (Vi =80dB/L) -3dB down

40

46

dBj.t

Detector Output Voltage

Va

Vi =66dBj.t, RouMP =4.7KO

85

114

mV

Total Harmonic Distortion

THD

Vi =80dBj.t

AM Rejection Ratio

AMR

Vi =80dB/l. AM: fm=1KHz, 30% Mod

Signal to Noise Ratio

SIN

Vi =80dBj.t

Signal Meter Output

VM

Vi =100dBj.t

Tuning Indication Voltage

VL

IL=1mA

57

0.05

%

38

dB
dB

65
1.55

1.7

1.85

V

46

52

dBj.t

Min

Typ

Max

Unit

AM Section (f=1MHz, 30% Mod, fm=400Hz)
Characteristic

Symbol

Test Conditions

Quiescent Circuit Current

lee

Vi=O

7

10

mA

Voltage Gain

Av

Vi =26dBj.t

20

30

60

mV,

Detector Output Voltage

Va

Vi =60dBj.t

65

95

125

mV

Total Harmonic Distortion

THD

Vi =60dBj.t

1.0

Signal to Noise Ratio

SIN

Vi =60dBj.t

47

Signal Meter Output

VM

Vi 1=100dBj.t

Tuning Indication Voltage

VL

IL=1mA

Oscillator Stop Voltage

Vstop

RouMP =

qsSAMSUNG
Electronics

00

1.55

1.7

%
dB
1.85

V

32

dBj.t

1.5

V

323

LINEAR INTEGRATED CIRCUIT

KA22471
TEST CIRCUIT

VCC=5V

Ar1f~;;':no33. 1
,

'

,

0

: rv :
"--

___ J

100
SW1

FM:SHORT
AM: OPEN

Fig. 2

COIL SPECIFICATIONS
T1 FM IF (DET)

VL (ON) TEST TERMINAL

Co (pF)

o

4-6

o

47

f
(MHz)

®

Qo

TURNS

4-6

4-6

150

14

Seoul Jupa

0.12mml/> UEW

T2 AM 1FT (MIX OUT)

Co (PF)
1-3

10.7

TURNS

Qo

f
(KHz)

1-3

1-2

2-3

4-6

110

90

62

8

Seoul Jupa

0.07mmq,UEW
180

T3 AM 1FT (DET)

I!E

Co (pF)

o

1-3

. Qo

f
(KHz)

TURNS

1-3

1-3

110

152

Seoul Jupa

O.07mml/> UEW
180

T4(MWOSC)

I~

455

o

c8SAMSUNG
Electronics

f
(KHz)

455

TURNS

L",H)

Qo

1-3

1-3

1-2

2-3

288

120

13

75

Seoul Jupa

O.OGmmq,UEW
796

324

LINEAR INTEGRATED CIRCUIT

KA22471
(AM SECTION)

I

I
I
OdB=95mV

Vl=5~

V

V

/

J."

Jo

VL.-'"

./V

I

Vcc=5V
f- 1= 1MHz
I m=4ooHz
f- 30% Mod

~c'"....

f--

1=1MHz
1m = 400Hz
30% Mod

I

z
o
~

•

2~
z",
00"
::;;",

-

"'w
~t;;

'i\.

...J::;;

::

~

2

Oz

r--.... t- I---SIN

.... 0

,~

----

.... > 1

V

.....V

j..-

-I--

~-...-

n

THD

'V

)
'\.V

..... h

-so
20

40

60

100

so

20

120

V~dB~). INPUT VOLTAGE

40

60

V~dB~).

80

100

120

INPUT VOLTAGE

DETECTOR OUTPUT VOLTAGE ·AMBIENT
TEMPERATURE
SIGNAL METER OUTPUT

TOd~~95~V

T

I

Vo

w

o

::

g
....

I

V. =60dB~
1=1MHz
1m = 400Hz
30% Mod

Od~=9~mV

-

-20

3

'"....

....
'"....Q.

'"o

i

t:i

5 -30

...J

0
~-40

::;;
VM

~
~

2

iii

~

I

I



-so
10

4

12

0

:: -10

'"a:0

w

Q.

'"0-40

v7 (V. !60d~~)

w

-

0

-20

a:

100dIB~) f - -

V M (V,

-

I-

t;;

c -50

1

~

-70

Vcc=5V
1=1MHz
I m=400Hz
30% Mod

-80

I I

;:-60

-20

40

20

VcdV), SUPPLY VOLTAGE

~>

r-80

60

Ta(OC). AMBIENT TEMPERATURE

(FM SECTION)
DETECTOR OUTPUT VOLTAGE
AM REJECTION RATIO
·INPUT VOLTAGE
SIGNAL TO NOISE RATIO
od1 = s1mv

V;

/'~
1/

I

J--

-V~

~

'1\

\V

\
-60

-80

\
20

40

80

80

V~dB~). INPUT VOLTAGE

qsSAMSUNG
Electronics

_~v

/V

St--

.............

Vcc=5V
1= 10.7MHz
1m = 400Hz
'" I = ± 22.5KHz
I
I

V

AMR

i-

100

120

20

40

!"

60

THD
80

100

120

WdBlL). INPUT VOLTAGE

325

KA22471

LINEAR INTEGRATED CIRCUIT

DETECTOR OUTPUT VOLTAGE
·SUPPLY VOLTAGE
SIGNAL METER OUTPUT
PIN 4 VOLTAGE

DETECTOR OUTPUT VOLTAGE.AMBIENT
INPUT LIMITING VOLTAGE
TEMPERATURE

V~

odtsJmv

,

10
I:::)
Q.

I-

:::)

0

3~ffi

,,--

,"
,,

,

I-

!;

2~~

.~

~>
I
1=10.7MHz
1m = 400Hz
L'. 1= ± 22.5KHz

V'[soyl'

t-- t--

w

0

Vo(OdB = S5mV)

10

>

0 ....

>«
... z

v~

~

I
1= 10.7MHz
1m = 400Hz
r- L'.I= ±22.5KHz

0

«Iii
~::E

Vi

W

CI

r-V~=5~

I

Z

:::)
Q.

20

0

a:

30 ~
~

I-

0

W

Iii
c
iii

V,(lim)

40

~

50

,g

~

~-20

~

60
-30

12

i:::;
I-

0-10

>

10

~

0

>
CI

t-- t--

-80

CI

70
-20

20

40

60

80

Ta(°C), AMBIENT TEMPERATURE

Vcr;{V), SUPPLY VOLTAGE

SIGNAL METER OUTPUT·AMBIENT TEMPERATURE

I I I
I---+----+-+--+-f--+--t-Vcc = 5V

I---+--+-+--+-t-+--+

1=10.7MHz
1m = 400Hz
L'. 1= ± 22.5KHz

-t-t--

!;
~31---l--+-+--+-l-+---+-+--+--11-+--i

o

a:

~

::E

:i
z

--

2

V,

CI

iii

1OOd BI'

-r-

~1
-20

40
20
60
Ta(°C), AMBIENT TEMPERATURE

c8SAMSUNG
Electronics

80

326

LINEAR INTEGRATED CIRCUIT

KA2248

3V FM IF/AM TUNER SYSTEM
The KA2248 is a monolithic integrated circuit developed the for
headphone stereo.

•

.FUNCTIONS
• AM SECTION: Converter, IF amplifier, Detector, Tuning indicator
• FM SECTION: IF amplifier, Quadrature detector, Tuning indicator

FEATURES
• Low quiescent current: AM; lee =3mA (Typ), Vee =3V
FM; lee=8mA (Typ), Vee=3V
,. Wide operating voltage range: Vee =1.8V - 6V.
• Built·in AM/FM function switch.
• Tuning indicator: direct LED driving capability: 10mA (Max).
• One terminal AM/FM detector output.
• A minimum number of external parts required.

ORDERING INFORMATION

BLOCK DIAGRAM

KA2248A

16 DIP

KA2248D

20 SOP

Device

MIX OUT

FM INPUT

BY2

IF INPUT

QUAD

AM DET

Package Operating Temperature

Vee

-20 -

+ 70

0

e

AF OUTPUT

(18),(19)

NC

BY1

AM INPUT

sw

osc

VREF

Fig. 1

c8SAMSUNG
Electronics

AGC

IND

GND
(

): KA2248D

327,

LINEAR INTEGRATED CIRCUIT

KA2248

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Symbol

Characteristic

Supply Voltage
Power Dissipation

Value

Unit

6

V

Vee
!

I

KA2248A

I

KA2248D

600
Pd

mW

350

-+ 70
+ 125

Operating Temperature

Topr

-20

Storage Temperature

Tst9

-40-

°C
°C

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee =3V, unless otherwise specified)
* FM Section (f=10.7MHz, fm=1KHz, .::If=22.5KHz)

Characteristic

Symbol

Min

Test Conditions

Typ

Max

Unit

Quiescent Circuit Current

Icc

Vi =0

8

13

mA

Input Limiting Sensitivity

Vi (lim)

Vi =86dBtt

46

52

dBtt

Detector Voltage

Vo

Vi =86d Btt

60

85

120

mV

Signal to Noise Ratio

SIN

Vi =86dBtt

50

65

Total Harmonic Distortion

THD

Vi =86dBtt

AM Rejection Ratio

AMR

Vi =86dBtt

Tuning Indication Voltage

VL

IL=1mA

50

Output Resistance

Rn

f=1KHz

0.7

~--

0.1

dB
1.0
~-

30

45

%

-----

dB
58

dBtt
KO

* AM Section (f=1MHz, fm=1KHz, 30% Mod)

Characteristic

Test Conditions

Symbol

Min

Typ

Max

Unit

Quiescent Current

Icc

Vi =0

3

7

mA

Voltage Gain

Av

Vi =26dBtt

15

30

50

mV

Detector Voltage

Vo

Vi =6OdBtt

35

50

70

mV

Signal to Noise Ratio

SIN

Vi = 6OdB tt

35

45

Total Harmonic Distortion

THD

Vi =6OdBtt

Oscillator Stop Voltage

Vstop

Output Resistance

Ro

Tuning Indication Voltage

VL

~-

qsSAMSUNG
Electronics

-

1.0

dB
3.5

%

1.2

V

f=1KHz

8.3

KO

IL=1mA

26

40

dBtt

328

c$b
~£e
g.....

-f

m

CJ)

-f

~.~

en

~~------------------------~~---,~:----r------~r------------------~~
SW1
Vee

c

Ci)

r-

56K

2

FMSG
240

FMINPUT

~~01'

I1

o
jj
o

S
I\l
~

CD

c:
=i

AF OUTPUT
51K

I

',20.'

(17)

(16)

"5)

(1)

(2)

(3)

(4)

(14)

"3)

""'2)

"0)

(6)

(7)

(8)(9)

KA2248A
(5)

r

Z

~

:0

AMSG

Z

AM INPUT

-t

rro"
SW2

m

C)

:0

100

!f
m

AM: OPEN
FM: SHORT

c

o

Vl
(

Fig. 2

~

co

): KA2248D

~

c:

=t

KA2248

LINEAR INTEGRATED CIRCUIT

COIL SPECIFICATIONS (BOTTOM VIEW)
Tl FM IF (DET)
Co (pF)

®

CD

o

4-6

f
(MHz)

Qo

TURNS

4-6

4-6

150

14

Seoul Jupa
0.12mmc/> UEW

100

10.7

T2 AM 1FT (MIX OUT)
Co (PF)
1-3
180

TURNS

Qo

f
(KHz)

455

1-3

1-2

2·3

4-6

110

90

62

8

Seoul Jupa
O.07mmc/>UEW
T3 AM 1FT (DET)
Co{pF)
1-3
180

f
(KHz)

455

Qo

TURNS

1-3

1-3

110

152

Seoul Jupa
O.07mmc/>UEW

T4{MWOSC)

f
(KHz)

LCltH)

Qo

1-3

1-3

TURNS
1-2

2-3

Seoul Jupa
0.08mmc/>UEW

796

c8SAMSUNG
Bectronics

288

120

13

75

330

KA2248

LINEAR INTEGRATED CIRCUIT

AM REJECTION RATIO
SIGNAL TO NOISE RATIO
·INPUT VOLTAGE
(FM) TOTAL HARMONIC DISTORTION

TUNING INDICATION VOLTAGE
DETECTOR VOLTAGE
·AMBIENT
(FM) INPUT LIMITING SENSITIVITY
TEMPERATURE

Od~=~mv

VoJ,=a/;dBl'i

-

20

~

III

........ ~

/'

I

a:

I'-- I'-- ~

~
-20

~

....

40
V~dBI')'

i '"60

60
80
INPUT VOLTAGE

100

>

QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE

3

80

QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE
(AM)

o
2

-40

o
20
40
60
Ta(°C), AMBIENT TEMPERATURE

-20

120

(FM)

~J-~

__

L-J-~

o

4

__

L-~~~

3

__

~-L~

4

VcdV), SUPPLY VOLTAGE

VcdV), SUPPLY VOLTAGE

TUNING INDICATION VOLTAGE
(AM) DETECTOR VOLTAGE

Vc~=3VI

Vo

1=1MHz
1m = 400Hz
30% Mod.

·AMBIENT
TEMPERATURE

!V,=~dBJ)
~

t--r-.

~

III

CI

-20

V

o

z

e

\
.........

-'

~ -40

~

CI

iii

~

iif

Ius

~

-30

THO

20

\!l

iif

r-

V,(lim)

SIN

"-r-'i

-80

o

!rl

Iii
c

VL

I\.

•

>

\

Vcc=3V
1=10.7MHz
1m = 400Hz
61= "'22.5KHz
30% Mod

~

o

AMR

.........

V I-- ~

-10

\

-80

-80

o

--i"-

10~

....

VL

o

>

a:

~
20

N

f'... ~O
r-

c

iif

"'-

~

Ii---

30

J
o

40
80
WdBI'), INPUT VOLTAGE

c8SAMSUNG
Electronics

~

100

120

-40

80

-20

02040
Ta(°C~

80
AMBIENT TEMPERATURE

80

331

KA2249

LINEAR INTEGRATED CIRCUIT

FM FRONT END FOR PORTABLE RADIO
The KA2249 is a monolithic integrated circuit designed for the
FM front end of portable radios.

7 SIP

FEATURES
• High frequency amplifier, frequency converter, local oscillator.
• Wide operating voltage: Vee = 2V - 7V (KA2249)
Vee = 2V - 5V (KA2249D)
• Low current consumption: Typ. 2mA (Vcc=4V).

ORDERING INFORMATION

SCHEMATIC DIAGRAM

Vee

RF OUTPUT

MIX OUTPUT

osc

3

Fig. 1

c8SAMSUNG
Electronics

332

KA2249

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic

Symbol

Value

Unit

Vee

7

V

14

V

30
-20 -+ 70
-55 - + 125

mW
°C
°C

Supply Voltage

•

V (3-4)
-----v(5-4)~

Terminal Voltage

V (6-4)
Power Dissipation (Ta=70°C)
Operating Temperature
Storage Temperature

Pd
Topr
Ts\g

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee';' 4V, unless otherwise specified)
Characteristic

Circuit Current

Symbol

Test Conditions

Vi = 0

Icc

- - - - - + -------

Output Voltage
-----------------

--------

Oscillation Voltage

-------

Va
-

Vase

Min

Typ

1 .4

Unit

Fig

3.0

mA

2

-----------f---+-----f------ - - - - - - - - - - -

Vi=70dB.u,106MHz

30.5

Vee=2V

130

- --------- -t----t-----

---

Max

68.5
f------ -

mV

3

mV

3

----+--

TEST CIRCUIT 1

KA2249/D
4

0,011'

Vee=4V

cr------i A

Fig. 2

c8SAMSUNG
Electronics

333

KA2249

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT 2 (Vo, Vose)
r----..---~-~-~-

100

__----_-__M;,,_____1n Vee =4V/2V
220

1°·0011'

J

O001
.
f<

~----~~-~-~Vo

470
L2

r--------.--4--~----<~VoSC
75Q
SSG~
0.0011'

( ): KA2249D

Fig. 3

OUTPUTVoLTAGE -FREQUENCY

SENSITIVITY - FREQUENCY
28

82

24
VCC-4V

20
16

,

12

I'
I

--

./

~~

V

sable Seraltivity

~

'-'ax ~naltivity
-4

~~r-+-+-+-~~~~-+--+~~

-8

·f------f---I----

i

38

-12
84

86

92

96

100

f (MHz). FREQUENCY

c8SAMSUNG
Bectronics

104

108

86

90

-~

I

+-~--4 ~--'

- L---+----+-------+-----l

.

94

96

102

100

110

f (MHz). FREQUENCY

334

LINEAR INTEGRATED CIRCUIT

KA2249
OSCILLATION VOLTAGE
OUTPUT VOLTAGE
- AMBIENT TEMPERATURE
320

..

280

~

r-.....

IU

li 240

200

VOSCI(4V)

r-.....

;; 200

~

j:::;

~ 160

~

~-120

-

i

~

>

- ,

80

w

CI

i"-

r--.....

48

~

44

I-

tiz

~

II.

40

.....

t--~4V)

--r--...

I'....

-r--...

::)

0

~

32

.........

2B

~

r--.... 24

Q

W

•

'-..
..................

0

~~

::)

aw

If

"~

;0"-100

::c

!!!!.

,

';
-200

20

",,-

40

I-

36

~

0

§ 100 r--....

>
W

::)

~2V)

.........

.I

VCC= 4V
f-fOSC=108MHz

-

z

!:l
o
o

FREQUENCY DEVIATION- AMBIENT TEMPERATURE
300

I

""r-

12

-300
20

30

40

50

60

70

-20

BO

40

20

60

80

T. (DC). AMBIENT TEMPERATURE

T. (OC). AMBIENT TEMPERATURE

APPLICATION CIRCUIT
r -__

~

__

~

__

~~

______

~

______

~

________________

~-oVCC

Fig. 4

COIL SPECIFICATIONS
T1 FM 1FT

Co (pF)

f (MHz)

TURNS

Qo(%)
1-3

56

c8SAMSUNG
Electronics

10.7

95

12

4-6
2

Seoul Jupa
SJ-015-382
0.1mm¢ UEW

335

LINEAR INTEGRATED CIRCUIT

KA22495

9 SIP

FM FRONT END
The KA22495 is a monolithic integrated circuit designed for the mNT
fM front end of portable radio cassettes or music centers.
It consists of RF AMP, local OSC, OSC buffer and mixer.
~ etc.
Compared with conventional types, it is improved in the follow- laracing characteristics:
1) Low supply voltage.
2) Strong input.
3) Spurious radiation.

14

soP

FEATURES
• Wide supply voltage range: Vee = 1.6V - 6.0V
• Low local oscillation stop voltage: Vee = O.9V (Typ)
• Improved inter·modulation characteristiCs by double balanced type
mixer circuit.
• Low spurious radiation.
ORDERING
• Built·in clamping diode in the mixer output stage.
Device
KA22495

BLOCK DIAGRAM

KA22495D

INFORMATION

Package Operating Temperature
9 SIP

-25 - + 75°C

14 SOP

REGULATOR

LOCAL
MIX

RF INPUT

BYPASS

RF OUTPUT

MIX IN

GND

OSC

MIX OUTPUT

OSC OUTPUT

OSC

vee

(1)(2)(6)(9)(10);

NC

Fig. 1

cgSAMSUNG
Electronics

): KA22495D

336

KA22495

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

Symbol

Characteristic
Supply Voltage

Vee

Power Dissipation

Pd

Operating Temperature
Storage Temperature

I

I

Value

Unit

B

V

KA22495

600

KA22495D

300

Topr

-25 -

T5t 9

-55 -

•

mW

+ 75
+ 150

°C
°C

*: Derated above Ta = 25°C in the proportion of 4mW/oC.

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 5V, f = 9BMHz, fm = 1 KHz, """ f = ± 22.5KHz, unless otherwise specified)
Characteristic

Symbol

Quiescent Circuit Current

lee

- 3dB Limiting Sensitivity

Vj (lim)

Min

Typ

Max

Unit

Vj=O

5.2

B.O

mA

V D (V j =60dB/-!)-3dB Down

3.0

7.0

dB/-!

Ave

V j =60dB/-!

Use (Sen)

SIN =30dB

Conversion Gain
Usable Sensitivity

Test Conditions

25

31

dB

11

dB/-!

Oscillation Voltage

Vose

165

250

mV

Oscillation Stop Voltage

V sTOP

0.9

1.3

V

Pin 1
Impedance

Parallel Input
Resistance

RIP1

57

0

Parallel Output
Resistance

Rop3

25

KO

Parallel Output
Capacitance

Cop3

2.0

pF

Parallel Input
Resistance

R1P4

2.7

KO

Parallel In'put
Capacitance

C 1P4

3.3

pF

Parallel Output
Resistance

Rop6

100

KO

4.B

pF

Pin 3
Impedance

Pin 4
Impedance

Pin 6
Impedance

Parallel Output
Capacitance

c8SAMSUNG
Electronics

fose = 10BMHz

f = 9BMHz

90

f= 10.7MHz
Cop6

337

KA22495

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT 1
(Icc, Vi(lim), Use (Sen), Ave, Vose, VSTOP)

//}'T

Vee

L I_ _ _ _ _ _ _ _ _

): KA22495D

Vee

Fig. 2

When using the KA22471 for the IF stage.

,-------~----------~------~------QVee

...--------'-«----0

A F OUT

Vee

Fig. 3

c8SAMSUNG
Electronics

338

KA22495

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT 2
1. Ri p1

2. Rop3, Cop3
Vee

Vee

1'01,

IDOl'
H

H

RX METER

RX METER

Fig. 4

Fig. 5

r - - - - + - - -__-~-u Vee

H

Vee

H

RX METER

RX METER

Fig. 6

c8 SAMSUNG
Electronics

O--+---H

Fig. 7

339

•

LINEAR INTEGRATED CIRCUIT

KA22495

, COIL SPECIFICATIONS (BOTTOM VIEW)

I

T1 FM RF
f

00

Turns

100

4

00

Turns

100

3

(MHz)
98

T2 FM

* In a Diameter of 5.5mm

0.8mm1:5 UEW

ase
f
(MHz)
98

* In a Diameter of 5.5mm

0.8mm f(f UEW

T3 FM 1FT
Co (pF)

f

00

1-3

(MHz)

1-3

1-3

4-6

75

10.7

115

12

1

Turns
KOREA TaKa
0.12mm ¢ UEW

T4 FM 1FT (DET)
Co (pF)

f

00

Turns

1-3

(MHz)

1-3

1-3

56

10.7

95

12

KOREA TaKa
0.12mm 1:5 UEW

T5 FM 1FT (DET)

o

Co (pF)

00

Turns

CD

f

4-6

(MHz)

4-6

4-6

0)

47

10.7

115

14

c8SAMSUNG
Electronics

KOREA TaKa
0.12mm ¢ UEW

340

KA22495

LINEAR INTEGRATED CIRCUIT.

DESCRIPTION
1. RF AMP
The RF AMP is a common base type, so the operating frequency range is improved. The GND of the bypass
capacitor (Pin2) should be located closely at Pin 5 (GND). When using the bypass capacitor at Vee-line of Pin 3,
we can expect an improvement of the SIN ratio.

T1

"-------0 Vee

2. MIXER
The mixer stage uses a double balanced type in order to protect the leakage of OSC, spurious radiation. Also,
this is built into the limiter in order to improve the strong input characteristic.
--------------------------------------------.---------0 Vee

~IFAMP
,---------------------~----~----~------~Vee

OSC

OUT

MIX
IN

1
c8SAMSUNG
Electronics

341

I

LINEAR INTEGRATED CIRCUIT

KA22495

LOCAL OSCILLATION
The local oscillator uses a colpitts oscillator for stable oscillation at high frequency. This is built into the OSC
buffer in order to stably operate the OSC frequency and OSC voltage at strong input.

vee

MIX

-------1_---___------,

OSC BUFF

c8~SUNG

342

LINEAR INTEGRATED CIRCUIT

KA22495

LOCAL OSCILLATION VOLTAGE
·AMBIENT TEMPERATURE

LOCAL OSCILLATION FREQUENCY DEVIATION,
LOCAL OSCILLATION VOLTAGE·SUPPLY VOLTAGE
Z

300

300

100

o

~

UJ

UJ

Cl

~
0

Cl

o
>
u

1ii

~

\~ I--

5l

If

~

z

o

I

~
~

o

-100

;;;;;;--

-

- -~

C,\

\

Vase

~I200

I I

I---- Vee=5V
lose = 1OSM Hz

~
0

>

>

0

0

z

z

CIl

CIl

0

0

..J

..J

'" u'g"
g

I

200

~ t:i~
t:i

-

--

f--"

u

100

~

1
>

"G

g

J

;;i'

100

~
E

~
E

..J

J:

"~ -200

o

o

o

10

-20

20

SENSITIVITY·SUPPLY VOLTAGE

QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE
0

40
I

V,=o

1

r

:

I

~>
;::>!:::>

I

I
I

!

:--1--- '-"
I

UJCIl

-

__ f-

V

/'

CIl~

f-- t--

ClCll

E~

-~

II

i

I

l!g

l

10

o

I

o

~

~'i

10

Usa (sen)

"

>

I

i

\\

20

III~

~~

i
I

~~

~i

!

i

1=9SMHz
I m =1KHz
"" 1= 22.5KHz dey. -

30

~E

I

I

o

so

60

40

Ta(OC), AMBIENT TEMPERATURE

VecM, SUPPLY VOLTAGE

Vlm)

o

10
Vee(V), SUPPLY VOLTAGE

VecM, SUpPLY VOLTAGE

LOCAL OSCILLATION FREQUENCY DEVIATION
·AMBIENT TEMPERATURE

SENSITIVITY·AMBIENT TEMPERATURE
Z

40

o

200

!i
'--

[fi

Vee=5V
1=9SMHz
Im =1KHz
"" I = 225KHz dey.

o

~
~

100

"'-

~

5l

If
z

o

--

r--_
'"'----

Usa (sen)

r--

m
Vr )

o
-20

20

--------

40

Ta(°C), AMBIENT TEMPERATURE

c8SAMSUNG
Electronics

60

80

~

Vee=5V
1=9SMHz

"" "- "'~

~

o

..J

~

g

-100

I m =1KHz -

'"

r--

"",

"""'r-

;;i'
J:

~

()

:

I

~

I

~

\....

@

If
Z

o

--

Clw

400

Z

0

i=

j

(3
00

~

(3

:g -100

(

..J



0



i

~

:;g -200

o
o

10

z

i~

o

f = 98MHz
f m = 1KHz
6 f = 22.5KHz dey.

~

I-..J

ffi=>
fil
If

..JII)

o

wOO

II)Z

~~

~

"-

;

;5!-;f

l!g

Vec=5V
f=98MHz
f m =lKHz -

" "'~

U

-"x

r8! r--E ..
..

100

z

;!~ 20
III=>

x

200

~
~
o

Vee =5V

f---

10

==>

:.:

r--

--

--

~,(lim)1

20

CJl

o

-V

Usa(sen)

-20

40

60

~

..J

~ -100

9
o;f
:I:

""" ""'"

"""",

:.::

:;;- -200
-20

80

20

Ta('C), AMBIENT TEMPERATURE

40

60

80

Ta(OC), AMBIENT TEMPERATURE

QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE

SENSITIVITY·SUPPLY VOLTAGE
40

10

V,=o

I-

~~
ES:

Z

w

0::
0::

=>

()

!::
=>

~E

(3

(f--r-

ffi

()

00

/

w

5

0

E

r--- t- 6 f = 22.5KHz dey.

wOO

--- --

.\

Zw

Err:
~~

20

~

III=>

.

'0"'::

'"l!g

"

:f~

!i

V

;;

f =98MHz
f m = 1KHz
30

ooffi
Cloo

f.--

1;1

I-

10

- =>

~

o

o

10
Vcc(ll), SUPPLY VOLTAGE

c8SAMSUNG
8ectronics

Usa(sen)

\

E ..

]

o

80

LOCAL OSCILLATION FREQUENCY DEVIATION
·AMBIENT TEMPERATURE

SENSITIVITY·AMBIENT TEMPERATURE

30

60

Ta(OC), AMBIENT TEMPERATURE

40

~

40

20

-20

VedV), SUPPLY VOLTAGE

V,(lim)

I

o

10
VcdV), SUPPLY VOLTAGE

351

KA2261

LINEAR INTEGRATED CIRCUIT
16 DIP

FM STEREO MULTIPLEX DECODER
The KA2261 is a monolithic integra.ted circuit consisting of a
phase locked loop FM stereo demodulator. It was designed
for use in car stereos, cassette recorders and other
equipment.

FEATURES
•
•
•
•
•

A PLL Is used for high multiplexing perforMance.
Wide operating supply voltage range (3V - 14V).
Low quiescent circuit current (Icc =8.5mA, :yp).
High SCA rejection ratio.
High channel separation (45dB, lYp) and can be controlled by
an external resistor.
• Built-in VCO disable and monaural muting cll :uits.
• Built-in stereo indicator lamp drive circuit.

ORDERING INFORMATION
Operating Temperature

TYPICAL APPLICATION CIRCUIT

STEREO
MONOSW
AND
VCO STOP

c8SAMSUNG
Electronics

352

LINEAR INTEGRATED CIRCUIT

KA2261

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic

Symbol

Value

Unit
I

Supply Voltage
Lamp Current
Power Dissipation
Operating Temperature
Storage Temeprature

16
40
400
-20- +70
-40- +125

Vee

k
Pd
Topr
Tstg

I

I

V
mA
mW

•

°C
°C

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee =6V, f=1KHz, RL =3.3KO, unless otherwise specified)
Characteristic
Quiescent Circuit Current
Channel Separation

I Mono
I Stereo

Symbol

Test Conditions

lee

Vi=o

Sep

Vi =100mV, L+R=90%
P=10%, f=1KHz

Min

35

Typ

Max

Unit

8.5

12

mA

45

dB
%

THD1

V,=100mV

0.2

THD2

L+R=90mV, P=10mV

0.7

Output Voltage

Vo

Vi =100mV, f=1KHz

85

115

Channel Balance

CB

Vi =100mV, f=1KHz

0.5

1.5

Lamp on Level

Vdon)

L+R=90%, P=10%

65

THD=2%

450

Total Harmonic
Distortion

Lamp Hysteresis

HY

Maximum Input Level

Vi (max)

66

3.5

%
mV
dB

----

mV
6.0

dB

--

mV

SCA Rejection Ratio

SCA Rej

L+R=900f0, P=100f0

70

dB

Signal to Noise Ratio

SIN

Vi =100mV, f=1KHz

75

dB

Carrier Leak

CL

VI =100mV, L+R=900f0
P=100f0

32

dB
--

Capture Range

CR

VI =100mV, L+R=90%
P=100f0

±3

%

Input Impedance

RI

20

KO

qsSAMSUNG
Electronics

15

.-

353

LINEAR INTEGRATED CIRCUIT

KA2261

TEST CIRCUIT

Cs 0.47,.

+

19KHz CHECK

Vee 0 - - - - - - - - - '
INPUT o - - - I : F - - - - - '

Fig. 2

qsSAMSUNG
Electronics

354

LINEAR INTEGRATED CIRCUIT

KA2261

SEPARATION
- INPUT VOLTAGE
TOTAL HARMONIC DISTORTION

SEPARATION
-FREQUENCY
TOTAL HARMONIC DISTORTION
1.2

III

1.1

z

1.0 -

~

0.9

o

v&:~~_11

RL-3.3KO
V,-loomV
L+R-90%
P-l0%

-

1.1

II

Q 0.8

I
1.0

I

100

V

90
80

I/stereoTHO

~

0.7

!

0.6

60

0.5

50

o

~

e

0.4

£ 0.3
Q

i!:

0.2
0.1

r..

r-

----~

n

iiit

--

70

~O~OIT~

40

~

30

I'

'N--U'

20

~

5

lK

2

3

~
z
2

~

~

Z

if
w

0
:E

!

%

II)

J

,

0.7

iereolTHO

a: 0.6

,.

CC

~

~

£
Q

10K

2 3

V

0.5

I

0.4

...

% 0.3

i..-- --I---~

0.2

5 lOOK

200

II)

if
:!!.

J

10

o

300

500

400

V, (mY), INPUT IIOLTAGE

SEPARATION
TOTAL HARMONIC DISTORTION

LAMP ON/OFF LEVEL-8UPPLY VOLTAGE
10

SUPPLY VOLTAGE

1.0

"-

40

l5

~
if
w

20

HO

100

t (Hz), FREQUENCY

70
60

30

V

jnoi

-I-"-"

80

50

..........

Separation

0.1

5

I

i
VI
.//

Q
U

10

I

100 2 3

z

Vee-IN
I-1KHz
0.9 f - - Rl-3.3KO
L+R-90%
0.8 f - - P-l0%

100

80

,

ON

80
stereo THO
I

I

\

\

b.:F

~

,

I
Sep

/

\

mono~o

\

20

I

10

o

0
2

10

11

12

2

10

Vee (V), SUPPLY VOLTAGE

11

12

Vee (V), SUPPLY VOLTAGE

QUIESCENT CIRCUIT CURRENT-8UPPLY VOLTAGE

CAPTURE RANGE

15

50
I

!

v,-o
I

-

-

.....0

I

40

~

I

~

!!:

30

-

9

ii:

I-- ~

J~

S

~

j

I

lCl

I
5

o

20

!

10

12

14

Vee (V), SUPPLY VOLTAGE

c8SAMSUNG
Electronics

18

18

20

17

18

19

20

21

CR (KHz), c:APJURE RANGE

355

•

KA2261

LINEAR INTEGRATED CIRCUIT

External Components (Refer to Test Circuit)
1. Input coupling capacitor (Pin 2)
The recommended value is 4.7/-tF. If smaller values than 4.7/-tF are used, low frequency separation will worsen,
and if larger values are used, the DC operating point will require time for stabilization.
2. Demodulator output (Pin 4, 5)
These components provide Rand L channel output load circuits. The recommended circuits are follows:

~---.....-----'¥IfIIr---~--O

3.

OUTPUT

Separation control (Pin 8)
This component is a variable resistor used to adjust the out signal separation.

4. Low pass filter (Pins 10, 11)
This capacitor is used to filter the 19KHz signal detected by the phase comparator. The recommended value is 1pF. If
made too small, the. lamp may light improvely when a large mono input signal or external noise is received,
too large a capacitance value will take more time to switch between mono and stereo modes.
5. Preamplifier output capacitor (Pins 3, 13)
This capacitor coupled preamplified with phase comparator. The recommanded value is O.047/-lF.

6.

Phase compensation capacitor (Pin 3, GND)
This capacitor is prepared in order to compensate the phase advanced.

7. Loop filter (Pins 14, 15)
This is the low pass filter for the PLL, which is determined the capture range. The recommended value as follows:
V j::5250mV
C14. 1S =0.47/-lF
Vj~250mV
C14-1S =1pF
8.

Control of Pin 9
Function of Pin 9 is a change-over of stereo/mono and VCO stopping.
SCHEMATIC DIAGRAM of PIN 9 CONTROL

J .

vco Stopping

MONO

MODE
STEREO

o

0.7

1.4

2.1

2.8

V9 (V), SUPPLY VOLTAGE to PIN 9
9. VCO network (Pin 16)
Since the veo has a negative temperature coefficient, the RC network compensates by using a polyester film
capacitor and a resistor.

c8SAMSUNG
. Electronics

356

LINEAR INTEGRATED CIRCUIT

KA2262
FM STEREO MULTIPLEX DECODER
FOR CAR STEREOS

16 ZSIP

The KA2262 is a multiplex IC for FM car stereos, and it has the
following 2 functions through its utilization of the IF meter output voltage:

•

1. Stereo noise control (SNC) under which the noise particular on the
FM stereo unit in the weak electric field is reduced smoothly.
2. High-cut control (HCC) under which the high frequency is smoothly
attenuated.
In addition, the KA2262 can be, due to its low distortion factor,
an Ie for multiplex stereo demodulators which is appropriate for
car component stereo units.

FUNCTIONS
•
•
•
•
•

Stereo noise control (SNC Terminal).
High-cut control (HCC Terminal).
Stereo/Monaural automatic conversion.
Stoppage of VCO oscillation.
With separation control terminal.

ORDERING INFORMATION

FEATURES
•
•
•
•
•

Low distortion (0.05%: Typ).
Good ripple rejection (35dB: Typ).
Wide operating supply voltage range (6.5V -14V).
The space factor is advantageous because of the ZSIP.
High channel separation (50dB: Typ).

BLOCK DIAGRAM CONTROL OF SEPARATION

Device

Package Operating Temperature

KA2262

16 ZSIP

KA2262G

PELLET

-20 - + 70°C

HIGH-CUT CONSTANT
_ - 1 1 - - - 4 OSCILCATION

CONSTANT

INPUT

Vee

I1.

19KHz

100K

11"
HIGH-CUT CONTROL STEREO NOISE
(HCC)
CONTROL (SNC)

Note: There exists a possibility of change on the VCO Oscillation Constant.

c8SAMSUNG
Electronics

Fig. 1

357

KA2262

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=2S0C)
Characteristic

Value

Unit

16
40

V
mA

520

mW

-20- +70
-40- +125

°C
°C

Symbol

Supply Voltage
Lamp Current

Vee
IL
Pd

Power Dissipation

(Ta~45°C)

Operating Temperature
Storage Temperature

Topr
Tstg

ELECTRICAL CHARACTERISTICS
(Ta =25°C, Vee =10V, f=1KHz, RL =3.3Kn, unless otherwise specified)

Characteristic

Test Conditions

Symbol

Min

Typ

Max

Unit

21

27

mA

40

50

Quiescent Circuit Current

Icc

Vi =0

Channel Separation

Sep

Vi =300mV, L+R=90%, P=10%

Mono

THD1

Vi =300mV

0.05

0.2

%

Stereo

THD2

Vi =300mV, L+R=90%, P=10%

0.05

0.2

%

Output Voltage

Vo

Vi =300mV, Sub

200

280

mV

Channel Balance

CB

Vi =300mV

0.5

1.5

dB

Lamp on Level

VL (on)

L+R=90%, P=10%

60

85

120

mV

3

6

L+R=90%, P=10%, THD=1%

700

800

mV

L+R=90%, P=10%

80

dB

Vi =300mV

78

dB

35

dB

Total Harmonic
Distortion

I

I

Lamp Hysteresis

HY

Maximum Input Level

VI (max)

SCA Rejection Ratio

SCA Rej

Signal to Noise Ratio

SIN

Ripple Rejection

RR

Capture Range

CR

Input Impedance

Ri
-- -

-"

----~-.-

.. --

.---.-------.----..

Va =0.6V, L-R=90%, P=10%

SNC Output Voltage

SNCVo

Va=O.1V, L-R=90%, P=10%

4$SAMSUNG

dB

±3

%

20

KO

--.---~-

SNC (ATT)

HCC Output Attenuation

70

P=30mV

SNC Output Attenuation

Electronics

140

dB

-8.5

HCC(ATT) 1

V7 =0.6V, L+R=90%, P=10%

-15.0

HCC(ATT) 2

V7 =1V, L+R=90%, P=10%

-2.0

-3.0

-6.0

-0.3

dB

5

mV

-0.5

dB

0

dB

358

LINEAR INTEGRATED CIRCUIT

KA2262

TEST CIRCUIT

KA2262

•

POLYESTER FILM
CAPACITOR

Vee <>-------<_------l
+

* :100{tF connected between pin 4 and GND is for measurement of SNC
output voltage, HCC output voltage.

Fig. 2

c8SAMSUNG
Electronics

359

KA2262

LINEAR INTEGRATED CIRCUIT

SNC (STEREO NOISE CONTROL) AND HCC (HIGH-CUT CONTROL)
In order to ameliorate the signal to noise (SIN) ratio in the weak electric field, both SNC and HCC Terminals
are installed in the KA2262. When the SNC Terminal is controlled, the noise particular on the stereo reception
in the weak electric field can be decreased.
By using the HCC Terminal, the FM noise at the high-frequency level can be reduced, resulting in the effective
improvement of the SIN ratio. (Refer to Fig. 4)
As shown in Fig. 4 the deterioration of the SIN ratio is larger by approx. 21.7dB in the stereo mode than in the
monaural mode, as far as the weak electric field is concerned.
In general, the noise is considerably harsh (offensive) to the ear if the SIN ratio is lower than 30-40dB. So, the
Areas "A", "B" and "C" have, in this study, been prepared, as shown in Fig. 4, according to the intensity of the
electric field on a provisional criteria of 30-40dB (SIN ratio).
The procedures of setting SNC and HCC are described below on the presumption of SNC operation in Area "A"
and of HCC operation in Area "B".
Regarding the Area "C", a light level of muting is made at the IF stage.

1. SNC (Stereo Noise Control)
The SIN ratio of stereo reception is worse by 21. 7dB than with the monaural reception. However, such an SIN
ratio can be ameliorated if the separation of the stereo reception is changed. The effect of SIN-ratio amelioration
can become significant when the separation is less the approx. 20dB. The relationships between this separation
and the degree of SIN improvement are shown in Fig. 5.
Under the SNC utilized in the KA2262, the SIN ratio improvement is accomplished in the weak electric field by
the alteration of the separation mentioned above. In detail, the separation of stereo reception is controlled by changing
the demodulation level of this sub-signal.
If the level output of the signal meter in the IF stage is utilized as the source of control signal, the SIN ratio
can be made lower than approx. 40dB in 'the Area "A" Shown in Fig. 4.
In the case of an idealistic SIN-ratio improvement, a gradual conversion should be made from the stereo mode
to monaural mode so that the SIN ratio may be constant from the point of stereo SIN ratio, 40dB, to that of monaural
SIN ratio, 40dB. The procedures of setting the control level will be described later.
In Fig. 6 are shown the relationships between the voltage applied to Pin 8 (SNC Terminal) of the KA2262 and
the characteristics of separation (SNC characteristics).
Since Pin 8 is positioned at the base of common-collector PNP transistor, the unit is set in the stereo mode
if Pin 8 is open. In contrast, it is set in the monaural mode when Pin 8 is grounded.
The control through the use of SNC Terminal is available only when the stereo indicator lights on by the locking
to the pilot signal.
Since the SNC control current is less large, the constant of the outer circuit can be set at a large amount, resulting in no influence on the meter output circuit of the IF stage. Thus, the deSigning work of this circuit can easily
be made.

2. Design of Outer Circuit for SNC Characteristics (Setting Charactristics through Drawings)
The SNC characteristics can be set in order to change the separation smoothly from stereo mode to monaural
mode in Area A shown in Fig. 4. The following procedures are preferable for such a setting:
Relationships between separation and improvement of the SIN ratio ............ ,................................................ Fig. 5
Relationships between the voltage applied to the SNC terminal and separation characteristics ................ Fig. 6
If both the "graph" showing the relationships between signal meter output (in IF stage) and antenna input and
the "graph" which shows the relationships between antenna input and SIN ratio improvement characteristics are
obtained by using Figs. 5 and 6, the relationships between the antenna input and SIN ratio improvement characteristics can be obtained through the preparation of drawings.
Also, the characteristics of SNC-terminal application voltage can adversely be obtained from the SIN characteristics which are desirable for the user.
An example of drawing preparation is shown in Fig. 8. In order to simplify the recognition, all of "SNC characteristics." "IF meter characteristics" and "stereo SIN-ratio characteristics" are made similar to one another with
straight lines. The example of the preparation is as follows:

c8SAMSUNG
Electronics

360

LINEAR INTEGRATED CIRCUIT

KA2262

The stereo SIN-ratio improvement characteristics are obtained from the SNC characteristics. In the chart diagram, (a) of the 2nd sector is a base for the SNC characteristics. Through the projection to the 3rd sector from
(a), the separation is 20dB at Point "1", while the level of the SIN-ratio improvement is 1dB.
When projection is made from the 1st sector to the 4th sector, the point where the SIN ratio is improved by
1dB from the line of stereo SIN ratio in the 4th sector corresponds with Poin 1.
Similarly, Point 2 on the SNC characteristics in the 2nd sector corresponds with Point 2 in the 4th sector as
well as Point 3 in the 2nd sector with Point 3 in the 4th sector. Thus, the individual SIN-ratio improvement characteristics can be obtained.
Similarly to the above, the characteristics (b) of the 2nd sector is projected like characteristics (b) of the 4th
sector, while the characteristics (c) of the 2nd sector is projected like characteristics (c) of the 4th sector. Thus,
the drawing of improvement characteristics can be prepared.
As a result of preparation of drawing, the SIN-ratio improvement characteristics of Fig. (b) in the 4th sector is
ideal. However, the SNC characteristics corresponding there with becomes the characteristics shown with Fig.
(b) of the 2nd sector. It is difficult to realize such characteristics.
From the viewpoint of practica1 characteristics, the one like Fig. (C) seems to be appropriate. The SNC characteristics shown in Fig. (c) are obtained by the use of both the shifting operation made by 2 diodes and a 1/2 bleeder.

3. HCC (High·Cut Control)
In Area B where the SIN ratio is lower than 40dB even in the monaural mode, the SIN ratio can be improved
from the acoustic standpoint if the leel of high frequency (at about 7KHz) is lowered.
When the signal meter output voltage of the IF stage is given to the HCC Terminal (Pin 7) of KA2262, a smooth
high-level attenuation (high-cut control) can be made according to the meter's voltage.
In Fig. 9, are shown the frequency characteristics (monaural) of the MPX output caused from the voltage applied
to Pin 7. The frequency characteristics obtained when 100% high cut is made can freely be set by the 4-pin outer
capacitor.
The equivalent circuit at this stage is determined by the time constant of "5KO" and "C", as shown in the following diagram. By the approx. amount of C, the degree of attenuation at 10KHz is as follows:

INPUT 0

[>
C(J.tF)
0.Q1
0.033
0.047
0.068

5K

....+ff
"''''

Degree of attenuation at
10KHz. (dB)
-11
-21
-25
-28

lOOECOOER

lp;"®

1

The relationships (HCC characteristics) between Pin 7's applied voltage and high-cut rate (%) are shown in Fig. 10.
When the characteristics of the IF meter output voltage and the SIN-ratio characteristics of Area B (shown in
Fig. 4) are obtained in addition to Fig. 10, the characteristics of the SIN-ratio improvement wtiich is implemented
by HCC can be drawn.
The output of meter of IF amplifier IC used for quadrature detection is usually the one shown in Fig. 4. (Fig.
3 shows the data of the KA22441). Thus, the HCC characteristics (Fig. 10) are set so that the Area B may be ameliorated when the output mentioned above is directly connected with the HCC Terminal (Pin 7) of the KA2262.
Being very small similarly to the control current of Pin 8, such a control current of Pin 7 gives no influence to
the output of the meter.

c8SAMSUNG
Electronics

361

•

LINEAR INTEGRATED CIRCUIT

KA2262

4. SNC/HCC Connectio Circuit when they are connected with· the IF Stage
In Fig. 3, is shown an example of SIN-ratio characteristics caused from the antenna input when SNC and HCC
are connected with the IF stage through the outer circuit shown below.

5. Improvement of SIN Ratio in Area C shown in Fig. 3
In Area C shown in Fig. 3, the SIN ratio is further worsened. Its improvement should be performed by the IF
muting. The KA22441 can be enumerated as an IC which can vary ghi IF muting linearly. The SIN-ratio improvement effect of the KA2262 can further be enhanced if the KA2262 is used together with the KA22441.

6. Use of HCC Terminal for the Muting Functioin
In the event that the removal of high-frequency noise is not required when the HCC Terminal is used for a home
stereo unit, the muting can be accomplished by approx. 37dB if this HCC function is utilized for the muting function.
If the time constant is applied on the control of Pin 7, the "Fade in" and "Fade Out" operations can be performed on the muting. The muting can be performed without offensiveness to the ear as alien factors such as
shock noise, are removed thereby.

KA2262

MUTE SWITCH

4

~------~--------~~--------~~~~--------~O
2V

t-

2.0

::::)

1.8

::::)

Do

t0

a:
1.6

UJ

tUJ

:e

(SNC Characteristics)

~

(Characteristics of IF Meter)
KA22441

ANTENNA INPUT (dBtt)

SEP (dB)
40

30

20

20

10

30

40

4th Sector

3rd Sector

(Stereo SIN
improvement
characteristics)

(Separation-SIN Characteristics)
20

40

SIN (dS)

30

50

Fig. 8

c8SAMSUNG
Electronics

364

LINEAR INTEGRATED CIRCUIT

KA2262
WORKING AREA OF SNC AND HCC

RELATIONSHIPS BETWEEN SEPARATION
AND SIN IMPROVEMENT

ANTENNA INPUT (dB~)

-20

20

60

4U

80

AI-22.5KHz

~

-101-----ft--f"::---+---+---r----___

o

~"

~-2O
w

If)

~-~r---~~~-r~~_+--~r_-~
~
....J

~-~I----~~-~--~~~~r-------I

!g 10

C!!

!

iii

!g -SO 1----~~--+___:JIlI""--+-+._-r----___I

~

Z
iii

•

'""
I

0.5

10

20

S/N(dB), SIGNAL TO NOISE RATIO
Fig. 5

Fig. 4

SNC CHARACTERlmCS (SUB-LEVEL) KA2262 SNC CHARACTERISTICS

SNC CHARACTERISTICS (SEPARATION)

dB

Fig. 6-2

Fig. 6-1

60

20

./

I

0.4

/

0

I
/

~

~

III

~

"C

20

10

0.8

1.211

v

/
0.4

Fig. 6

/

I

/
1.2

0.8

UN

V,(V), PIN 8 VOLTAGE

KA2262 HIGH-CUT CONTROL
CHARACTERISTICS

SNC/HCC CONTROL PIN CURRENT
(dB)

....

/

~

V,(V), PIN 8 VOLTAGE

i

/

z SO
>=
~

/r

r----,.---,--..,----,---,--,.---.

0.8

U

z

0::

0.6

....J

~Z
0

U

0.4

u

~

(}

~ 0.2
;t

j
j

~ ~IHCC

,.H

~l

V,(V), V,(V), PIN 7,8 VOLTAGE
Fig. 7

=8SAMSUNG
Electronics

z
o

-10r-------~---r---+-~~~~--~~

~

z

~ -20r---------~--~---+-~--~

«

iii'

:!!.

~ -30r-------~---r----+_~---4

-40r-------+----r----+---r_--r---+--~

100

1K
5
I(Hz), FREQUENCY

10K

Fig. 9

365

KA2262

LINEAR INTEGRATED CIRCUIT
CHARACTERISTICS OF CURRENT AT VCO
STOP FUNCTION CONTROL TERMINAL

KA2262 HCC CHARACTERISTICS
0.6

J.1OY

V

l20

i
~

...

40

:z:

60

60

100

-V
0.4

/
/
/
1.2

V,l.V), PIN 7 VOLTAGE
Fig. 10

c8SAMSUNG
Electronics

----

0.2

V

o
OB

r

0.4

lB

o

~

12

veo

16

20

STOP (V)

Fig.

11

366

LINEAR INTEGRATED CIRCUIT

KA2263

9 SIP

FM STEREO MULTIPLEX DECODER
The KA2263 is a monolithic integrated circuit consisting of a
phase locked loop FM stereo demodulator. It was designed for
use in car stereos, cassette recorders and other equipment.

•

FEATURES
• Wide operating supply voltage range (3V -12V).
• High pilot lamp ON sensitivity.
VL (on)=9mV (Typ) .
• Built-in stereo indicator lamp drive circuit.
Maximum lamp current: 20mA (continuous).
• High channel separation: Sep=45dB (Typ).
• Low distortion
THD=O.OSOfo (Typ) at Vi = 200mV.
• veo stop and stereo lamp turn off are simultaneously operated by
connected pin 7 to Vee.
• Minimum number of external parts required.

ORDERING INFORMATION
Device

TYPICAL APPLICATION CIRCUIT

KA2263
KA2263G

Package Operating Temperature
9 SIP

-20 -

PELLET

+ 70

0

e

38KHz

L·CH
OUTPUT

R·CH
OUTPUT

SW 1: VCO STOP SWITCH
SW 2: 38KHz MONITOR SWITCH

vee

Fig. 1

c8SAMSUNG
Electronics

367

KA2263

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic

Value

Unit

12
16

V
V

20

rnA

40
500'
-20- +70
-40- +125

mA
mW
°C
°C

Symbol

Supply Voltage
Lamp Voltage

Vee
VLAMP
IL
(continuous)
IL (peak)
Pd
Topr
Tstg

Lamp Current
Power Dissipation
Operating Temperature
Storage Temeprature

'Derated above Ta =25°C in the proportion of 4mW/oC

ELECTRICAL CHARACTERISTICS
(Ta =25°C, Vee =8V, f=1KHz, unless otherwise specified)
Characteristic

Symbol

Quiescent Circuit Current

Test Conditions

lec

Min

Vi =0

Typ

Max

Unit

11

18

mA

- - - - - - - - .. - - - - - - - - - . - - - - 1 - - - - - - - - - - - - - . - - . - - - - - - - - - - r - - - - - - - - j - - - - - - - j - - - - - + - - - - - - f

Input Impedance
-----

----

V (

Maximum Input Level

I

-- -_._--------

Channel Separation

~~:~~~~~~oniC
-

T:,:;:

J_~
- -

=

~.--.-------~-----

)

mV
..~

L+R=180mV
P=20mV

Sep

36

dB

45

==- ~~ :~::~~\f------=---.------~:~--: -~:~ '-()~=--:=-:--~.
P=20mV

-----------+---+----1----------.-

Av
Vi =200mV
- 2.0
0
+ 2.0
dB
---------- ----_._---+------ ~-----------+----+-----+----- - - - - j - - - j
CB
1.5
dB
Vi ==200mV
0
-.-. - - - - - - - - . - - - -----------.
----_._---- - - - -

Channel Balance

------

Lamp ON Level

..

VL (on)

-------

:~ ~:: ~;:'e~:: [- :
Carrier Leak

550

----~---------~--.-------- --.--.---+--~+------

- - - - ----

Voltage Gain

KO

f----.----f-----+_----f-------j

L+R=90%, P=10%,
THD=1%

max

33

.

Pilot only
..

-.---~-------

-- ~~(Off)=_~~O~~::;

19KHz - - 38KHz

9

...---

~~=a:

CL

15

1--

P=20mV

42

mV

.--.. - - - -

::---dB

L-CH
OUTPUT
INPUT
R-CH
OUTPUT

• POL VESTER FILM CAPACITOR

Fig. 2

c8SAMSUNG
Electronics

368

LINEAR INTEGRATED CIRCUIT

KA2263

External Components (Refer to Test Circuit)
1. Input coupling capaCitor (C l )
The recommended value is 1OJLF. If smaller values than 10JLF are used, low frequency separation will worsen,
and if larger values are used, pop noise occurs strongly.
2. Low pass filter (C 2 , C 3 , R7)
This is the low pass filter fr the PLL, which is determined the capture range and THO at low frequency.
3. VCO network (C 4 , R2 , R7 )
The VCO free running frequency is adjusted by connecting a frequency counter to monitor the 38KHz output
of Pin 6.
4.; Decoder output (Pi ns 8, 9)
These components provide Rand L channel output load circuits. The recommended circuits as follows:

"-_----4..".---....-----0 Output

t---~u

5.

Output

Lamp sensitivity control (R4)
Lamp on level can be controlled by this resistor.

OUTPUT CURRENT
-SUPPLY VOLTAGE
QUIESCENT CIRCUIT CURRENT
20
18

ffi

a:
a:

B

2.0

1

16

1

14

1

I-

Ii!

o

§
IS
~

12
10

8

~

6

i

4

!

1.6
1.4

_I----p.o-

r+-t7W

1.2

p~

j

I
i

!Z

w
a:
a:

B

I-

1.0

Pff-,t
i

vdc~tlJ II
~ 1.0 I - - V,-200mV

I

I

VI

IIII

1.8

t:

:::I

SEPARATION
-FREQUENCY
TOTAL HARMONIC DISTORTION

:::I

II.
l-

:::I

0.8 0

~

0.6
0.4

I

0.2

1-I
10
Vee (V). SUPPLY VOLTAGE

c8SAMSUNG
Electronics

n

i

100

Ii:

RL-3.3Kl1
0.9 I - - L+RP.10%
!!! 0.8

90

Q

80

~ 0.7

70

e
0

Ie
3

~

0.6

80

0.5

Sap

0.4

t

0.3

j!:

0.2

40

13

....

~~D

Q

10

2

3

5

100

2 3

J
5

I

~

I

30
~

20

I

0.1

o
12

50

~

~

10

0
1K

2 3

5

10K

f (HZ). FREQUENCY

369

•

LINEAR INTEGRATED CIRCUIT

KA2263
~gi:~~:~~~~~~ DISTORTION -INPUT VOLTAGE

~~~:~~~~:ONIC DISTORTION -INPUT VOLTAGE

~-+---+--V'--I 1.8

900

111700 -

~

~6OO-

z

1.6
-- 1.4

~

~

-+--l--

...
...~ 500

1.2

!o!

i

1.0 ~

:::I

C!.400

~

~ 300 - .. --I---t.'-+-

o
:.

~ 1.0

0.6 ..::

t

0.4

~

Vcc-SV I~
I-1KHz
I--- 1.6 1 - - Rl-3.3K-Q
L+R-90%
1.4 l - - P-10%

is
~ 1.2

~

!
200

~

~

0.8

400

500 600

700

800

Sep

--" '\
-

0.6

...

THO

900 1000 1100

SEPARATION
TOTAL HARMONIC DISTORTION
-FREE RUNNING FREQUENCY

o

100

200

1.0

1.0

90

0.9

0.9

z

Vcc=SV

-L~~!~~mV

~

70

fIII

0.7

'"ai

60

~ 40

!

0.6

50 f - -

~

7' ~ ~

20

Fr

/"'"

r-..

..........

r--....

~HO

~

300 400 500 600 700 800
VI Int./), INPUT VOLTAGE

t7

40

ai
~

30

!

20
10

900 1000

~

is
!o!

~

~

VI=2OOmV

0.8 l - - RL-3.3Ko
L+R-90%
P"1~%

i

0.4

~

~

0.4

0.3

t t

0.3

~

80
70

0.7

i~

0.2

90
I-1KHz

is
~ 0.6

I

~

I

I--.

Sap

50

--~

0.2

i
m

'"ai

40 ~

7t\.

\

z

Q
60

~ 0.5

0.1

10

100

z

0.5

I

30

1

0.8 0

L+R=90%
-P=10% !

Q

!C
a:

V

:I

~~:~~~~:ONIC DISTORTION - -SUPPLY VOLTAGE

100

80

----

0.2

VI (mY), INPUT VOLTAGE

!

I

0.8

o
300

80
70

~ 0.4

0.2

100 200

t-----.

1.8

z
~

800 -

30
THO

!

20

10

0.1

o
38

2

39

10

11

12

Vee M. SUPPLY VOLTAGE

fvco (KHz), FREE RUNNING FREQUENCY

LAMP ON/OFF LEVEL-SUPPLY VOLTAGE

CAPTURE RANGE
20

18

I-- I--Vcc-SV

iii

~

i
,

!

34

ON

bFF

I

\ (
30

10

is
1\

26

14
12 ~-

(

1/

~

10

16

38

o
42

CR (KHz), CAPTURE RANGE

c8SAMSUNG
Electronics

46

50

2

10

11

12

Vee (V), SUPPLY VOLTAGE

370

KA2264

LINEAR INTEGRATED CIRCUIT

FM STEREO MULTIPLEX DECODER
The KA2264 is a mon'olithic integrated circuit consisting of a phase
locked loop FM stereo demodulator. It is designed for use in 3V radio
cassette recorders.

FEATURES

•

16 SOP

•
•
•
•

Low voltage operation: Vee=1.8V - 5V.
Excellent space·factor: 9 SIP/16 SOP.
Minimum number of external parts required.
Easy monitoring of veo free running frequency is available at
Pin 6.
• High pilot sensitivity: VL (on)=9mV (Typ).
• Lamp drive current: max lamp current=8mA.
• veo stop and stereo lamp turn-off are simultaneously operated
by connecting Pin 7 to Vee.

ORDERING INFORMATION
Device

BLOCK DIAGRAM

KA2264

Package Operating Temperature
9 SIP

KA2264D

16 SOP

KA2264G

PELLET

- 20

~

+ 70°C

L.P.F1

(7)

S.T
LAMP

COUNTER
76KHz CHECK

SW1: VCO STOP SWITCH
SW2: 76KHz MONITOR SWITCH

): KA2264D

Fig. 1

c8SAMSUNG
Electronics

371

KA2264

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic

Symbol

Value

Unit

Vee
VLAMP
ILAMP

6
8
8

V
V
mA

Supply Voltage
Lamp Voltage
Lamp Current

I

Power Dissipation

1

KA2264

500

Pd

KA2264D

Operating Temperature
Storage Temperature

-20- + 70
-40 -+ 125

Topr
Tstg

* Derated above Ta=25°C in the proportion of

mW

350

°C
°C

4mW/oC (KA2264D: 2.8mW/°C)

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 3V, f = 1KHz, unless otherwise specified)
Characteristic

Symbol

Circuit Current

lee

Input Resistance

Ri

Output Resistance

Ro

Maximum Input Level

Vi (max)
Stereo

Test Conditions

Min

Vi=O

Typ

Max

Unit

4.5

8.0

mA
KQ

10
4.0
L+R=90%, P=10%
f=1KHz, THD=5%

5.0

6.0

400

KQ
mV
-~

Sep

Channel Separation

L+R=180mV
P=20mV

35

f=100Hz
f= 1KHz

30

I

Mono

THD 1

Vi =200mV

0.4

I

Stereo

THD2

L+R=180mV, P=20mV

0.5

Voltage Gain

Av

Vi =200mV

Channel Balance

CB

Vi =200mV

Lamp Level

I

ON

I

OFF

Lamp Hysteresis

HY

Capture Range

CR

Carrier Leak

I

19KHz

j

38KHz

CL

%

-5.0

-3.5

dB

0

1.5

dB

9

15

6

mV

3

mV

±3

%

P=20mV

32
" " - _ . --

--

dB

L+R=180mV

60

80

dB

82

dB

SCA Rej

P=20mV
L+R=160mV
SCA=20mV
fseA =67KHz

Signal to Noise Ratio

SIN

Vi =200mV
Rg =620Q

Electronics

2

1.0

P=20mV

SCA Rejection Radio

c8SAMSUNG

-6.5

VL(on)

-- Pilot only
VL(off)

dB

35

f=10KHz
Total Harmonic
Distortion

--

35

372

KA2264

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT 1
B.P.F.
19KHz,,; -55dB

38KHz~ -55dB

KA2264 (FM MPX)

...n
/

\

I

1

&N.,

............

\

IN

\

SW2-1

\
\

()-----1:)

+-=--'tt---:Q

\

ROUT

\

SW

SW4·'
LOUT

o SW,

Vee

'POLYESTER FILM CAPACITOR
VCOCHECK

Fig. 2

TEST CIRCUIT 2
INO----------<>

SW3
C1

J

+

cece

"0"0

10,

R'i'O'-----

l()l()
l()l()

R1

5.6K

I

4.7JJ-

+

C9

.

I

VI VI

N

LOUT

N

LLII
o.::.c:.c
. a:> co
al~C'")

ROUT

~~--~~~~~~~~--~~~~~~--~,

3.3JJC3
R2

SW1

1K

L---~----~----~--~------------+_--~--~--~----~-------oVce

VCO CHECK

j

SW2

R6

0

220K

Fig. 3

c8SAMSUNG
Electronics

373

LINEAR INTEGRATED CIRCUIT

KA2264

~~~:~TH~~~~:I~ DISTORTION ·INPUT VOLTAGE

QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE

300

~10~~-+--~~-+--+-~-+--+-~-+~

Vcc=3V
f=1KHz
MONO

250

"

III

~
::>
o

III
(!)

~

.... 8 1-+---+--+--+--+---+-+--+--+-+---+---1

S
o

g

(3

~

IX

ffi

~
o

6

~~-+~-=~~~V1i:0~=4==+=~~~~~

ffi

sa

200

150

,I'

.

%100

50

2
3
4
Vcc{V), SUPPLY VOLTAGE

....
::>

V

o

.
I

,,
iHD~ •••,1

~ I--

I--

o

400
200
300
V,(mV), INPUT VOLTAGE

100

I
I

II!
o>

/

V

500

600

250

II
w

Vo/

>

o

III

(!)

"

V

S

~
""21-+--+--+--+--+--+-+--+--+-+---+---1

;: -10

V

V

I

I ~~

I

II

II

I

:

i

i

I

-V cc =3V--I-V =200mV
i--MONO

--

~ -20

o

I

~

!

~-30
-40

5

~

4 is

3

..J

Ii
I

i

:

2

~

....
::>

c(

;:
g
.-::
~

is
150

3
I

....
::>

c(

:I:

0
~ 100

,
I

E

I

>

I

"5

Vo

2

--e- 1---

I
I

50

i=

~

o

~

--t--

Q.

C

1

~

I

w

0
:;;
:I:

IX

(!)

g

IX

z

o

4 ;::

200

0

z

I

!

I

~

~

--~

I Ii

I

----

-

-r-. . .

I

V,=200mV
f=1KHz
MONO

I

~
i

1~
....

I

I

I

\

THD(L,R)

iTJb (L,R)
-50

100

5

2

3

5

1K

2

3

10K

5

2

~6~~rAJl~~ONIC
50

Vcc(V), SUPPLY VOLTAGE

40

Vcc=3V
L+ R =90%
P=10%
I
f= 1KHz
Sep_
t-- t-- L~R
STEREO

z

60

. \\
"
,-,

,

./j/
R~L

4

3
I
I

~

,,

af

%

c(

:I:

I

~

2

10

o

o

100

c8SAMSUNG
Electronics

:I:

....

"

300
200
400
WmV), INPUT VOLTAGE

~

~

I

I

TH1D(L'T

~
o:;;
IX

,

20

I

IX

is

30

50

~

~

'.

1/1

Vcc=3V
L+ R = 180mV
P=20mV

z

0

~

~6~~rAJl~~ONIC DISTORTION ·FREQUENCY

DISTORTION . INPUT VOLTAGE

I

10

4

3

!(Hz), FREQUENCY

Z
0

40

~

30

I
Sep_
,L~R

~

R~L

1/1

af

%
Jl

20

10
iTHD(L,R)

o
500

600

III

o
3

5

100

2

3 5
,1 K
2 3
I(Hz), FREQUENCY

5

10K

2

3

374

KA2264

LINEAR INTEGRATED CIRCUIT

~:T~:~~~~LTAGE

SEPARATION·AMBIENT TEMPERATURE

.AMBIENT TEMPERATURE

800

-2
Vcc=3V
V,N=2oomV
f=1KHz
MONO

700

60

Z

C!I

-"""" ...........

..... t--- ...........

w

-

;:2

!:i

fli
en

0

>

t--- .:.t,ax)

~

-6 ~

V

300

--- ....

-7

.....

40

i=

C!I



a
~

77

C!I

z

Z

z
=>
a:
w
w
a:
...

76

r----

---- r-... ......... ......

75

1i

:J:

:.::

J

74

73
-40

-20

0

20

40

60

80

Ta(°C), AMBIENT TEMPERATURE

c8SAMSUNG
Electronics

375

KA2265

LINEAR INTEGRATED CIRCUIT

veo NON-ADJUSTING FM STEREO

16 DIP

MULTIPLEX DECODER
The KA2265 is a monolithic integrated circuit consisting of a veo
non-adjusting FM stereo demodulator with a phase locked loop. It is
designed for use in home stereos and portable Hi·Fi systems.

FEATURES
• Non·adjusting VCO: non·adJusting of free·runnlng frequency.
• Excellent temperature characteristics of VCO: ± 0.1 % (Typ) at

±SooC.
• Excellent stereo high frequency distortion. (f=10KHz: 0.06% (Typ)).
• Excellent distortion: f=1KHz, VI =300mV, mono: 0.025% (Typ).
stereo: 0.020/0 (Typ).
• High SIN: 91dB (Typ) (mono VI =300mV, LPF).
92dB (TYP)(mono VI =300mV, IHF BPF).
• High gain: about S.SdB.
• Wide dynamic range: mono SOOmV (f=1KHz, THD=10Al)
• Good ripple rejection: 34dB (Typ).
• Operating voltage range: Vee = 6.SV -14V

BLOCK DIAGRAM

c8SAMSUNG
Electronics

ORDERING INFORMATION

veo STOP

Rs

Vee

376

LINEAR INTEGRATED CIRCUIT

KA2265

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic

Power Supply Voltage
Lamp Current
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

Vee
IL
Pd
Topr
Tstg

16
30
480
-20- + 70
-40- + 125

V
mA
mW
°C
°C

•
•

ELECTRICAL CHARACTERISTICS
(Vee = 12V, f = 1KHz, Ta = 25°C, unless otherwise specified)
Characteristic

Circuit Current

Test Conditions

Symbol

lee

Min

Vi=O

Total Harmonic
Distortion

Sep

Stereo

Mono

THD 1

P=30mV,
L+R=270mV

P=30mV
L+R=270mV

THD2

Vi =300mV

Output Voltage

Va

Vi =300mV

Channel Balance

CB

Vi =300mV

VL (on)

Pilot Level

Lamp ON Level
c-------Lamp Hysteresis

f=1KHz

Max

Unit

18.5

28

mA

45

f=100Hz
Channel Separation

Typ

40

42

f= 100Hz

0.025

f=1KHz

0.02

f=10KHz

0.06

500

4

dsJ

55

f=10KHz

0.15
%
0.15

0.025

0.15

730

1000

0

1

dB

8

17

mV

mV

HY

3

dB

Capture Range

CR

P=30mV

+0.8
-1.2

%

Signal to Noise Ratio

SIN

Vi=-:OOmV
Rg =5.1Kn

80

91

dB

20

Kn

700

800

mV

31

dB

Input Impedance

Ai

Maximum Input Level

Vi (max)

Mono, THD=1%

Carrier Leak

CL

P=30mV, L+R=270mV

VCO Stop Voltage

VCO S1OP

Ripple Rejection

AR

c8SAMSUNG
Electronics

5.5

Vee-3
34

V
dB

377

KA2265

LINEAR INTEGRATED CIRCUIT

TOTAL HARMONIC DISTORTION-INPUT VOLTAGE

TOTAL HARMONIC DISTORTION·INPUT VOLTAGE

1.0 r----,-..,-----,---.-r---,-..,..-----..,--,--,

z

~

5

1.0,----,---,---r---,----.---,

Z

5

o

~ 3

;::
~

3

is

2

Iii

Iii

o
Z

o
Z

is 2

o

~ 0.1 I---+-+-----;---'-+--l---+--,..-y-ri-=-_+___I

c(

o

~ 0.1 I__-_+---+----'-+---#-h~_+_-__I

c(

:71---+-+--+-_+_-+-_+----:011"1'-1-1--+__1

:

c(

~ 51__-__t--+_-~~~~~-_+_-__I

b

...

5 1---+-+--__t-+--bo''''t....,'V_t-_+___I

g31--_+-+--+--7''"+:;~~-J.o~+----1I---+__I

~ 2r--t-~~~~~F--t-t--i-II-I

7r---+--+---j--~~~~+--~

~31__-_+-~"'h...s-S-F_-__+­

C

i= 2 1__-~----9_--j__-__t--_+_-__I

0.01 l..--'-_-'------1._--'-_L-.......J...._...L....--1_-'----'

o

200

400
600
WmV), INPUT VOLTAGE

800

0.01 ' - - - - - ' - - - - ' - - - ' - - - - - ' - - - - ' - - - - '
400
o
600
800
1000
200
1200

1000

V~mV),

INPUT VOLTAGE

TOTAL HARMONIC DISTORTION·INPUT VOLTAGE

1.0 1--;:::====:;T-I--;-=-=~-==-7":::=--'

-l~

Z

-

~1.0

e

I

7 -

I

sleJO'L,R

C1(C2)

!!l 5

1(H,)

c

l

o

Z
o
~

~

~

~

~0.1

o

~ 0.1 j---+_--+----1I---+--r-i"-i"---It-__I

c(

:

Ijr
U

7

:-; 5

i= 3

e

mono

Vee

~ 3j---+---+~~~~~-_+_-_t-__I
i= 2~-~~~~~--~-~
0.01 '--_-'-_-'-_---'_ _'--_-'-_----1._--'
100
300
400
500
600
700
200
800

0.01
SOK

100K

120K

140K

160K

5

C
12V_

t-THZ
60K

7j---+_--+----11---+-~~~_t-__I

c(

"""'-~ ~-- ~

C

2

o
Z

m,'1

2

c(

:J:

b
...

z

Q

J sub
IJ

1S0K

200K

R,(R,) (Il), FEED BACK RESISTANCE

V~mV),

--

TOTAL HARMONIC DISTORTION·INPUT VOLTAGE

1.0 r - - - - . , . - - - , - - - , - - - - , - - - - . - - - ,

r-... ........ b-.,

-10

z

o

is

-20

21--~_r--~-~-~_+--+_-__I

o
Z
o

1\:'1 S2Ir

,

;::

~ 3

Iii

INPUT VOLTAGE

FREQUENCY RESPONSE
(INCLUDING DE·EMPHASIS)

1

iii"

~-30
Ul

~ 0.1 I__-__t--+_--j---__t-l' ..

z

~

c(

:J:

e5

ffj-40

..J
c(

~--+--+--___1---+~~+---4

~31-----t--+---f-:;....P9----+----I
i= 2 I__-__t---i!!:_"-"j---__t-

100

200
300
400
WmV), INPUT VOLTAGE

c8SAMSUNG
Electronics

,

-50

J~1\

-60

0.01 ' - - - - - ' - - - - ' - - - ' - - - - - ' - - - - ' - - - - - '

o

a:

500

600

3.3K

'\

-70

lK

5

7 10K

2

3

5

7 lOOK

I(Hz), FREQUENCY

378

LINEAR INTEGRATED CIRCUIT

KA2265
TOTAL HARMONIC DISTORTION·FREQUENCY

Vee = 12V
V,=300mV

~

c:

.~

5

t
a:

is

~ 3~_4-+-r--~~-+~--+--~~-+-+~­

~

2

g

TOTAL HARMONIC DISTORTION·INPUT YOLTAGE

~_4-+-r--~~-+~--+-~~__+--fI sub

(J

~

'%"

~

~ 0.1 ~_4-+-r--~~-+~--+--~~----/l__--t--I

e
. .:

I

c

Z

~

i

in mono equivalent

~
~~
~ 0.1 I--____-+-____- r____-+_m_ainy-,Ui...ilr-J

7~_4-+-r--~~-+~--+--~~~~--t--I

J
5~~-+-r--+-~~-+--+-~+-Hh~~~

~::I'

71-------+------r-----+~~~----~

~

a:

51-------+------r----~_.~_4----~

....J

~

e

3~----+---~~-~~~~--_4----~

mono

t-~ 3'E~~~~~~~~~~7-~

i!:

I-

2

0.Q1

0.01 '--____- L -_ _ _ _---"-_ _ _ _- L ._ _ _---'_ _- - '
1000
200
40C
600
800
o

L......J..---'.......J..----"-_ _.l..-J--..J-L.-'--_ _-"--L-.L..J.-L._ _--'---'

2 3

5 7 100

2 3

5 7 1K

2 3

5 710K

2 3

V~mV),

I(Hz), FREQUENCY

INPUT VOLTAGE

LIMITING RESISTANCE·YCO STOP VOLTAGE

CAPTURE RANGE

10'---'--.---.---r--~-~

I
Vcc=12V

-r

60

w

I

....J
W

50

~

\

I-

~

40

~

S

ii:
~
E

30

.;:

20

(J

i~

--

\

l-

']

-

::;:

~

~U:

~~-

1\

--

1,\

~

10

~~
J a:a

- ----

"I

-2.4 -2.0 -1.6 -1.2 -O.S -0.4

;I

a

V

0.4

1

I
1.2

~
13a:

6
6V

";:::
z

:E
:::;

4
7V

~
~

/
O.S

z

10

1.6

12

14

16

VsM, VCO STOP VOLTAGE

CR(%), CAPTURE RANGE

b?S~'6LR~~MONIC .AMBIENT TEMPERATURE

FREE RUNNING FREQUENCY·INPUT VOLTAGE
0.2
I
Vcc=12V

0.1

Mono-

~
S
If:

I: 1KHz,

r--- ............

-0.1

"z

~

-

6KHz

e!!l 0.1 1-----+----r--_4----+-----r---+------i
c

o

~

"'HZ

~ -0.2

~

~

a::

III
If:

z

o

~

-0.3

'"

%

71-----+----t--_4----+--5

~~4_--_+---4----+---~--__+--~

....J

...::

~-O.4


---

~

--

o

L-_J-_-L_~L_

-40

-20

0

20

__

~

__- L_ _

40

60

~

__

-

~

~

80

100

-40

-20

Ta(°C), AMBIENT TEMPERATURE

0

20

40

60

SEPARATION·FREQUENCY

TOTAL HARMONIC DISTORTION·SUPPLY VOLTAGE
80
f=IKJV,=300mV

z

Q

70

Ii:

60

~0.1
c

z

~ 50

(.)

~

,

7

:::E
cz:

~

...

5

g

3

~

2

i!:

~ 40

'"

IL-~
....... 1---" ~ ~r-...

vcc~IL.J

V,=300mV-

~,

r-...

I/)

iii'

~30
~

l

1..... 1-

It:' ...........

mono

stereor L,

- '"'

main

I

0.01
4

V .......

-== F;f::::~

o

~
~

if

40

t

~

30

30

20

20

10

10
10

4

12

14

16

18

o

200

400
V~mV).

Vcc(V). SUPPLY VOLTAGE

600
800
INPUT VOLTAGE

PllotJel

10
91

~

u:l

a:
w 90

(5

Z

z 89
~

«
z

88

iii

87

...o

~

~

\

7

'\r-- ,.,/

S



~

lPF Output

85
4

84
2

6

8

10

12

14

16

18

4

8

10

12

14

16

18

Vcc(V). SUPPLY VOLTAGE

Vcc(V). SUPPLY VOLTAGE

LAMP HYSTERESIS·SUPPLY VOLTAGE

~

5

1------~--+--+__-1---r-~---+

~

4

~~\~~--~-~--4--~-4--~

~

3

~-~---+----~--4----+---4-~

~

~
):'
J:

o L - _ - L__
4

~

8

____L -__

10

~

__- L_ _

t2

14

~

__

16

~

18

VccM. SUPPLY VOLTAGE

c8SAMSUNG
Electronics

381

KA2266

LINEAR INTEGRATED CIRCUIT

MPX FOR CAR STEREOS
16 ZSIP

The KA2266 is a monolithic integrated circuit consisting of a phase locked loop FM stereo demodulator with
pilot canceller. It is designed for use in car stereos.

~

I

FEATURES
•
•
•
•
•
•
•
•
•

I

Built-in pilot-cancelling circuit
Stereo noise controlling (SNC)
High-cut controlling (HCC)
With separation control terminal
Stereo·monaural automatic conversion
Stopping of VCO oscillation
Power supply ripple rejection: 35dB typo
Low distortion: THO 0.05% typo at VI 300mV, mono.
Wide operating voltage range: Vee = 6.5V - 14V

=

=

I

ORDERING INFORMATION

BLOCK DIAGRAM

Fig. 1

c8SAMSUNG
Electronics

382

KA2266

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic

Symbol

Value

Unit

Supply Voltage
Lamp Driving Current (Ta=:;45°C)
Power Dissipation
Operating Temperature
Storage Temperature

Vee
IL
Pd
Topr
Ts1g

16
40
520
-20 -+ 70
-40 -+ 125

V
mA
mW
°C
°C

I

ELECTRICAL CHARACTERISTICS
(Ta=25°C, Vee =10V, f=1KHz, Vi =300mV, L+R=90%, pilot=10%, Rg =20Kfl, unless otherwise specified)
Characteristic

Circuit Current

Icc

I
I

Test Conditions

Min

Typ

Max

Unit

22

28

rnA

40

50

Vj=O

Sep

Channel Separation
Total Harmonic
Distortion

Symbol

dB

Mono

THD1

V; = 300mV

0.05

0.2

Stereo

THD2

Main

0.05

0.2

%

85

120

mV

3

6

dB

300

mV

Lamp on Level

V L (on)

Hysteresis

HY

Capture Range

CR

Output Signal Level

Vo

L+R=90%, P=10%

60

P=30mV
Sub

±3
150

215

%

%

f--~

SIN Ratio
Input Resistance (Pin 3)

SIN

Rg = 20Kfl

68

74

dB

Rg= 10Kfl

70

78

dB

Ri

20

Kfl

SCA Rejection Ratio

SCARej

80

dB

Maximum Input Level

Vi (max)

900

mV

450

mV

SNC Output Attenuation

SNC(ATT)

V8=0.6V, L- R = 90%
P=10%

SNC Output Voltage

SNC Vo

V8=0.1V, L-R=90%
P=10%

HCC(ATT)1

V7=1V, L+R=90%,
P=10%

-1.5

HCC(ATT)2

V7= iV, L+ R = 90%,
P=10%

-2.0

HCC Output Attenuation

Ripple Rejection
VCO Stopping Voltage

THO = 1 %, Rg = 20KO

700

THO.= 1 %, Rg = 10KO
-8.5

-3.0

-0.9

-0.3

dB

5

mV

-0.5

dB

0

dB

RR

35

dB

VCO S1OP

7.3

V

Channel Balance

CB

Carrier Leak

CL

c8SAMSUNG
Electronics

0.5
20

25

1.5

dB
dB

383

KA2266

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT

KA2266

+Vee

a SW1

+

Rg

;;qJ
VR

a

b

Control
of Separation

1K

+ 4.7p.

1500p

O.1V

Vee
3300p

pilot cancel adjust

Composite input

R
3.3K

3.3K

Av::::OdB

; It has a 100KHz bandwidth, 0.01 % or better
distortion factor, and 330K or higher input
impedance.

Fig. 2

c8~SUNG

384

KA2266

LINEAR INTEGRATED CIRCUIT

APPLICATION CIRCUIT
OUTPUT

L

R

•

Vee

• polyester
film cap.,

2.2K
2.2K
2.7K

3.9K

5DK

1DOK

INPUT

c8SAMSUNG
Electronics

385

LINEAR INTEGRATED CIRCUIT

KA2271

(][I

16 DIP

DOLBY· B·TYPE NOISE REDUCTION
PROCESSOR
The KA2271 is a monolithic integrated circuit designed
for use in Dolby*B-type noise reduction systems.

FEATURES
•
•
•
•
•

Few external components
Low power consumption (typ Icc 4.3mA)
High crosstalk rejection ratio
Built in NR·switch, REC/PB·switch
Recommended supply voltage: 8V -16V

=

-----------------------~

ORDERING INFORMATION

BLOCK DIAGRAM

Operating Temperature

REC IN2

PB IN2

PB OUT2

REC OUT2

)---------('14 )----------(

Vee
RMS

R/R

RIPPLE
FILTER

DETECTOR

GAIN
FACTOR

NR SW

RMS
DETECTOR

REC IN1

PB IN1

PB OUT1

RECOUT1

*; "Dolby" and double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.
This I.C. is available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, from whom
licensing and application information must be obtained.

c8SAMSUNG
Electronics

386

KA2271

LINEAR INTEGRATED CIRCUIT

PIN CONFIGURATION

REC OUTPUT1

1

REC OUTPUT2

RIPPLE FILTER

2

RIPPLE FILTER

PB OUTPUT1

3

PB OUTPUT2

REC/PB CONTROL

4

NR CONTROL INPUT

R-CONSTANT

5

RIPPLE FILTER

PB INPUT1

6

REC INPUT1

8

•

Vee

ABSOLUTE MAXIMUM RATINGS
Characteristic

(Ta=25°C)

Symbol

Value

Unit

Supply Voltage

v

16

V

Power Dissipation

Pd

750

mW

Operating Temperature

T",

-30- +85

°C

Storage Temperature

Tstg

-40- + 125

°C

Note: Derated above Ta = 25°C in the propation of 10mW/oC

c8SAMSUNG
Electronics

387

LINEAR INTEGRATED CIRCUIT

KA2271
ELECTRICAL CHARACTERISTICS

(Ta=25°C, Vee = 12V, f=1KHz, OdB=245mV (-1OdBm). at REC OUT, unless otherwise specified)
Characteristic

Symbol

Test Conditions

Min

Typ

Max

Unit

Circuit Current

Icc

REC mode, NR·off, V1N =0

3.5

4.3

6

rnA

Buffer Voltage Gain

Av

REC mode, PBout = OdB

25

27

29

dB

RECout = - 25dB, f = 500Hz

1.4

2.5

4.4

dB

RECout = - 25dB, f = 2KHz

5.5

7.0

8.5

dB

RECout = - 25dB, f = 5KHz

3.9

5.4

6.9

dB

NR·REC Boost

BST

RECout = - 40dB, f = 10KHz
RECo~=Od~f=10KHz

NR-Boost Balance

BL

NR·REC boost CH to CH ratio

MAX. RECout level

Vo(max)

REC mode, N R-off TH D = 1 %

RECout Distortion

N R·effect SIN

Crosstalk

Input Impedance
Switch Control
Voltage

THD

SIN

CT

11.9

dB

0.4

1.9

dB

a

1

dB

14

16
0.1

%

REC mode, NR-on
RECout = 10dB

0.04

0.1

%

REC mode, Rg = 2.2K
Filter= CCIR/ARM

65

-70

-65

dB

CH to CH, NR-off
OUTPUT=OdB

-70

-65

dB

47

60

KO

30
High mode

2.4

Low mode

0

V
0.4

V

24.5

31.0

mV

19.5

24.5

31.0

mV

489

549

616

mV

PB Vi

PB mode, NR·off
RECout =OdB

Vout

REC mode, N R-off
RECout=OdB
Testpoint = PB output

qsSAMSUNG
Electronics

dB

69

NR·off
OUTPUT=OdB
PB to REC

19.5

REC Vi

dB

0.04

REC mode, NR-off
RECout =OdB

Input Level

Output Level

10.4

REC mode, NR·off
RECout = 10dB

Zin
VC

9.7
-1.1

388

KA2271

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT

11"

•

REC

REC

OUTPUT2

OUTPUT1

PB

PB

OUTPUT2

OUTPUT1

KA2271

PB

PB

INPUT2

INPUT1

REC

REC

INPUT1

INPUT2

.-------~~r_--------------~VCC

ON

OFF

PB

APPLICATION NOTE
1) POWER SUPPLY
The KA2271 can be operated at 8V - 16V in case of single and ± 4V - ± 8V in dual power supply.

1-------,0 GND

/ - - - - - - - - ( ) + VBB

Dual power connection

c8SAMSUNG
Electronics

389

LINEAR INTEGRATED CIRCUIT

KA2271

2) SWITCH CONTROL VOLTAGE
All function of KA2271 are controlled by internal electronic switchs. The function switch is operated by D.C. voltage
of NR and RIP control pins.

NR, RIP
Condition

VH

VL

PB

REC

NR-off

NR-on

Single Power

Dual Power

2.4V~VH

VH~ VEE + 2.4V

O.4V~VL

VEE+O.4V~VL

3) REFERENCE LEVEL
The reference output level of Dolby noise reduction system is defined as Dolby level. The Dolby level of KA2271
is 245mV (-10dBm) at f = 400Hz.

c8SAMSUNG
Electronics

390

KA2271

LINEAR INTEGRATED CIRCUIT

CIRCUIT CURRENT

TOTAL HARMONIC DISTORTION (RECl
I=NR-ofl
t-f 1KHz
t-REG MODE

4.5

v V ~t

<"

.s.....

i

V

(J

-----

3.5
I

.......

~

~~

~

~

•

II

8
>

Vee=8V

cC

l-;tn

Vce=15V

0.1

::z::

,.;
~

I

"'" !'.....
r-......::

3

.1

I

LL

V ..... V

_V

0.01

2

10

12

14

16

18

-8

-4

12

16

20

POWER SUPPLY (V)

REC·OUTPUT LEVEL (dB)

REC (ENCODE) CHARACTERISTIC

TOTAL HARMONIC DISTORTION (RECl

12

Il

10

V-

NR-on
f 1KHz
REG MODE

40dS

~
II

II

/Vt-

If

r--C

0.1

::z::
,.;

""r-.
" "~

I--r-....
~

JI

~~

--

~

Vcc=8V

-30dS

..... 1'--1--

24

OdS

ilr

Vee = 15V

/

I
./
__ V ./

r--

-10dS

I"-

II

1K

10K

OdS
0.01
-8

20K

-4

12

FREQUENCY (Hz)

16

20

24

REC·OUTPUT LEVEL (dB)

MAX REC·OUTPUT LEVEL

TOTAL HARMONIC DISTORTION (RECl

21

18

THDI= 1%
f=1KHz
NR-off

=Vee 12V
NR·on
REG MODE

..-

V

./

15

iii"
~

1;l 12
E

/

~

1/

C
C
::z::

0.1

~~
f

,.;

I
II

100

't-I'
0.01 L-_L..----I_---LI_--l._--J.._.....J..._....I...---I
10

12

POWER SUPPLY (V)

c8SAMSUNG
Electronics

14

16

18

-8

-4

12

16

20

24

REG·OUTPUT LEVEL (dB)

391

KA2271

LINEAR INTEGRATED CIRCUIT
RIPPLE REJECTION (REC)

TOTAL HARMONIC DISTORTION (REC)
1

0

I=~CR.Of?V -+

f---- I -..

t.RE~ MODE

~

-10

m

iQ

-20

~

~ -30

.1

~

III

'-

"'

ii2 -40

-

20

24

VCC=12V.I .

m

lK

10K

20K

1-10

~

'i',
PBM DE /

-30

17

"-t"--,....

'"

"J

.l..llU

-20

-80

I·,

RIPPLE REJECTION (PB)

-50

-70

I!

FREQUENCY (Hz)

~[j:?~LT LEVEL=OdB

0"'-

I;

~,~

I

100

CROSSTALK (CH TO CH)
-40

I,

~

-60
4
8
12
16
REC·OUTPUT LEVEL (dB)

I

i i

1'1 IiIR-0r:-

t--

-so

i
-4

I

I·

~

f-\~ ~ ?

0.0 1
-8

1"-

~

J
./

'" r-=:~1'-

j...
-40

------

t'r-........

....

l'..

'1--.r-.

RIE

~

I

-so

20K

FREQUENCY (Hz)

100

_.

~~
~k-on
II

-60
10K

lK

100

1-

I':1-1-

lK

10K

20K

FREQUENCY (Hz)

CROSSTALK (BETWEEN REC TO PB)

11 UJ

-40

VCC=112VI
NR-olf
I
OUTPUT LEVEL = OdS

I

I

j

II

I

-50

REC TO PB

!I~

I
I

I

j;7'

I

~~

-7Or........

V~
V

100

I

I

L-PS TO REC

I

I

I

-80

j..;

iii

I

lK

10K

20K

FREQUENCY (Hz)

c8SAMSUNG
Electronics

392

KA22711

LINEAR INTEGRATED CIRCUIT

DC

16 DIP

DOLBY* B·TYPE NOISE REDUCTION
PROCESSOR

The KA22711 is a monolithic integrated circuit designed
for use in Dolby*B-type noise reduction systems.

•

FEATURES
•
•
•
•
•

Few external components
Low power consumption (typ Icc = 4.5mA)
High crosstalk rejection ratio
Built in NR·switch, REC/PB·switch
Recommended supply voltage: 5V -16V

ORDERING INFORMATION

BLOCK DIAGRAM

Operating Temperature

REC IN2

PB IN2

PB OUT2

REC OUT2

~------.....- -..........~14~""'--""'''''''''''--''''''''''4

Vee
RMS

RIR

RIPPLE
FILTER

DETECTOR

GAIN
FACTOR

NR SW

RMS
DETECTOR

REC IN1

PB IN1

PB OUT1

REC OUT1

*; "Dolby" and double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.
This I.C. is available only to licensees of Dolby Laboratories Licensing Corporation, San Francisco, from whom
licensing.and application information must be obtained.

c8SAMSUNG
Electronics

393

LINEAR INTEGRATED CIRCUIT

KA22711

PIN CONFIGURATION

REC OUTPUT1

1

REC OUTPUT2

RIPPLE FILTER

2

RIPPLE FILTER

PB OUTPUT1

3

PB OUTPUT2

REC/PB CONTROL

4

NR CONTROL INPUT

R·CONST ANT

5

RIPPLE FILTER

REC INPUT1

8

ABSOLUTE MAXIMUM RATINGS
Characteristic

(Ta=25°C)

Symbol

Supply Voltage

V

Power Dissipation

Pd

Value

Unit

16

V

750

mW

Operating Temperature

T"i"

-30- +85

°C

Storage Temperature

Tstg

-40- + 125

°C

Note: Derated above Ta=25°C in the propation of 10mW/oC

c8SAMSUNG
Electronics

394

LINEAR INTEGRATED CIRCUIT

KA22711

ELECTRICAL CHARACTERISTICS
(Ta=25 0 C, Vcc =6V, f=1KHz, OdB=245mV (-10dBm) at REC OUT, unless otherwise specified)
Characteristic

Symbol

Test Conditions

Min

Typ

Max

Unit

Circuit Current

Icc

REC mode, NR-off, VIN =0

3.5

4.5

6

mA

Buffer Voltage Gain

Av

REC mode, PBout = OdB

19

21

23

dB

RECout = - 25dB, f = 500Hz

1.4

2.9

4.4

dB

RECout = - 25dB, f = 2KHz

5.5

7.0

8.5

dB

RECout = - 25dB, f = 5KHz

3.9

5.4

6.9

dB

RECout = - 40dB, f = 10KHz

9.1

10.4

11.9

dB

-1.1

0.4

1.9

dB

a

1

dB

N R-REC Boost

BST

RECout = OdB, f = 10KHz
NR-Boost Balance

BL

NR-REC boost CH to CH ratio

MAX. RECout level

VOlmax)

REC mode, NR-off THD = 1%

RECout Distortion

NR-effect SIN

Crosstalk

THD

SIN

CT

Input Impedance

Zin

Switch Control
Voltage

VC

dB

15
0.04

0.1

%

REC mode, NR-on
RECout = 10dB

0.04

0.1

%

REC mode, Rg = 2.2K
Filter= CCIR/ARM

65

dB

69

NR-off
OUTPUT=OdB
PB to REC

-75

-65

dB

CH to CH, NR-off
OUTPUT=OdB

-68

-62

dB

47

60

Kn

30
High mode

2.4

Low mode

0

V
0.4

V

REC mode, NR-off
RECout=OdB

19.5

24.5

31.0

mV

PB Vi

PB mode, NR-off
RECout=OdB

19.5

24.5

31.0

mV

Vout

REC mode, NR-off
RECout=OdB
Testpoint = PB output

2'18

245

275

mV

REC Vi
Input Level

Output Level

14

REC mode, NR-off
RECout = 10dB

c8SAMSUNG
Electronics

395

•

LINEAR INTEGRATED CIRCUIT

KA22711

TEST CIRCUIT

1",

REC

REC

OUTPUT1

OUTPUT2

PB

PB

OUTPUT2

OUTPUT1

KA22711

PB

PB

INPUT1

INPUT2

REC

REC

INPUT1

INPUT2

.-------~~~--------------~vcc

APPLICATION NOTE
1) POWER SUPPLY
The KA22711 can be operated at 8V-16V in case of single and ± 2.5V - ± 8V in dual power supply.

I-------OGND

I-------~")

+ VaB

!-----------------{) -

VEE

Dual power connection

c8SAMSUNG
Electronics

396

KA22711

LINEAR INTEGRATED CIRCUIT

2) SWITCH CONTROL VOLTAGE
All function of KA22711 are controlled by internal electronic switches. The function switch is operated by D.C.
voltage of NR and RIP control pins.
NR, RIP
Condition

VH

VL

PB

REC

NR-off

NR-on

Single Power

Dual Power

2.4V::s;V H

VH~VEE+2.4V

O.4V~VL

VEE+O.4V~VL

•

3) REFERENCE LEVEL
The reference output level of Dolby noise reduction system is defined as Dolby level. The Dolby level of KA22711
is 245mV (- 10dBm) at f = 400Hz.

c8SAMSUNG
Electronics

397

LINEAR INTEGRATED CIRCUIT

KA22711

CIRCUIT CURRENT

TOTAL HARMONIC DISTORTION (REC)

~Rl~~Z
REC MODE

v
~/

4.5

4

3.

I{

5V-

3

~

~V
8

2

~

W

~-

V V'"
NR-on

M

~

.....

U

ex;=1J

Vex;=5V

~
~ o. 1
..:

""-

L

/

I'..

/
Vex;=15V _

L
//

//

-..... ..........., . /
.......: /"

0.0 1

U

-8

-4

4
8
12
16
REC·OUTPUT LEVEL (dB)

POWER SUPPLY (V)

20

24

TOTAL HARMONIC DISTORTION (REC)

REC (ENCODE) CHARACTERISTIC
12

1_
10

I
-

/"

j ,..- r-. . . .

I((

NR-on
f_1KHz
REC ~ODE

4OdB

I

-30dB

'I

Vee=5V

.................

o

~

l.oiI~
~~
~

100

-

Vee = 12V

~ o.1 " ' ..:

I..-- ........

............ r--

,

J

"

' 1- 20dB

r

,.../

I

~

/

/ . .",

I"-

. . . =-

~Vcc=15

lOdB

I

OdB

10K

lK
FREQUENCY (Hz)

0.0 1

20K

-8

4
12
16
REC·OUTPUT LEVEL (dB)

-4

20

24

TOTAL HARMONIC DISTORTION (REC)

MAX REC·OUTPUT LEVEL
27

21

/

iii
!!.
!i 18

J
16

/

12

9

Vex; 5V
NR-on
REC MODE

V

24I

V

/'
HD= %
·f=lKHz
NR-off

!

ci

~ 0.1

V

10
12
POWER SUPPLY (V)

c8SAMSUNG
Electronics
.

-- --

f~KHz

::""00-

f-""'"

/
2

f=1010H~

~~

14

16

18

0.01
-9

i/'=10KHz-

i
-6

-3

0
3
6
9
REC·OUTPUT LEVEL (dB)

12

15

398

KA22711

LINEAR INTEGRATED CIRCUIT

RIPPLE REJECTION (REC)

TOTAL HARMONIC DISTORTION (REe)
' - - - Vee 5V

r--

NR-off
f - - REC MODE

-10

•

iii

:!!.-20

z

o

f= 100Hz
f=1KHz
f= 10KHz

0.1

t

~ -30
a:

~~
~~

w
~
!!: -4c

/

L

~~n

I'

a:

~ r--....

~

~v

~

-50

111

~~~ff

~

-I-"

-so

0.01

-9

-s

-3

a

3

6

12

15

1K

100

CROSSTALK (CH TO CH)
-40

RIPPLE REJECTION (PS)

-1 0

I

iii

-so ~

'"

-7a

-80

100

:!!. -20

PB

z

MODE
~

]\..

V

1',...,

1'\.

'!o.",
REC

~

jjl-30

'"

a:

ia:

.... 1-'

-

~ODE

10K

1K

20K

0

~~i~t: l1JUI

-50

10K

FREQUENCY (Hz)

REC·OUTPUT LEVEL (dB)

20K

l'

,,~~

~~ I'r-

-40

1'-

-50

-so

100

1K

IT-o,~

rtt:

r~k-on

III

10K

20K

FREQUENCY (Hz)

FREQUENCY (Hz)

CROSSTALK (BETWEEN REC TO PB)
-4a

J lU

Vcc=6V
I[ I
~~-O:~T LEVEL = OdB '
I ill I

-50

Wll!~

~

-70

-80

~

100

~~

~~ ~PBTO

1K

REC

10K

20K

FREQUENCY (Hz)

c8SAMSUNG
Electronics

399

KA22712

LINEAR INTEGRATED CIRCUIT

[J[]

16 DIP

DOLBY* B·TYPE NOISE REDUCTION
PROCESSOR
The KA22712 is a monolithic integrated circuit designed
for use in Dolby*B-type noise reduction systems.

FEATURES
•
•
•
•
•

Few external components
Low power consumption (typ Icc = 4.SmA)
High crosstalk rejection ratio
Built in NR-switch, REC/PB-switch
Recommended supply voltage: 6.SV -16V

ORDERING INFORMATION

BLOCK DIAGRAM

Operating Temperature

REC IN2

PB IN2

PB OUT2

REC OUT2

~...................................~14~....................""''''''''''''''''~

Vee
RMS

RIPPLE
FILTER

R/R
DETECTOR

GAIN
FACTOR

NR SW

RMS
DETECTOR

REC IN1

PB IN1

PB OUT1

REC

*; "Dolby" and double-D symbol are trademarks of Dolby Laboratories Licensing Corporation.
This I.C. is available only to licensees of Dolby Laboratories licensing Corporation, San Francisco, from whom
licensing and application information must be obtained.

c8SAMSUNG
Electronics

400

LINEAR INTEGRATED CIRCUIT

KA22712

PIN CONFIGURATION

REC OUTPUT1

1

•

REC OUTPUT2

RIPPLE FILTER

2

RIPPLE FILTER

PB OUTPUT1

3

PB OUTPUT2

REC/PB CONTROL

4

NR CONTROL INPUT

R·CONSTANT

5

RIPPLE FILTER

PB INPUT1

6

Vee
REC INPUT1

8

..

ABSOLUTE MAXIMUM RATINGS
Characteristic

Supply Voltage
Power Dissipation

("ie=25°C)

Symbol

Value

Unit

Vcr

16

V

Pd

750

mW

Operating Temperature

Topr

-30- +85

°C

Storage Temperature

T5tg

-40- + 125

°C

Note: Derated above Ta = 25°C in the propation of 10mW/oC

c8SAMSUNG
Electronics

401

LINEAR INTEGRATED CIRCUIT

KA22712

ELECTRICAL CHARACTERISTICS
(Ta= 25°C, Vee = 9V, f= 1KHz, OdB = 245mV (-10dB-m) at REC OUT, unless otherwise specified)
Characteristic

Symbol

Test Conditions

Min

Typ

Max

Unit

Circuit Current

lee

REC mode, NR-off, V1N = 0

3.5

4.5

6

mA

Buffer Voltage Gain

Av

REC mode, PBout = OdB

22

24

26

dB

RECout = - 25dB, f = 500Hz

1.4

2.9

4.4

dB

RECout = - 25dB, f = 2KHz

5.5

7.0

8.5

dB

RECout = - 25dB, f = 5KHz

3.9

5.4

6.9

dB

RECout = - 40dB, f = 10KHz

9.1

10.4

11.9

dB

-1.1

0.4

1.9

dB

0

1

dB

NR-REC Boost

BST

RECout=OdB, f=10KHz
N R-Boost Balance

BL

NR-REC boost CH to CH ratio

MAX. RECout level

Vo(max)

REC mode, NR-off THO = 1%

RECout Distortion

N R-effect SIN

Crosstalk

Input Impedance
Switch Control
Voltage

THD

SIN

CT

dB

0.04

0.1

%

REC mode, NR-on
RECout = 10dB

0.04

0.1

%

REC mode, Rg = 2.2K
Filter= CCIR/ARM

65

69

dB

NR-off
OUTPUT=OdB
PB to REC

-75

-65

dB

CH to CH, NR-off
OUTPUT=OdB

-68

-62

dB

47

60

Kfl

0.4

V

30
High mode

2.4

Low mode

0

V

REC mode, NR-off
RECout =OdB

19.5

24.5

31.0

mV

PB Vi

PB mode, N R·off
RECout=OdB

19.5

24.5

31.0

mV

Vout

REC mode, N R-off
RECout =OdB
Testpoint = PB output

346

388

436

mV

REC Vi
Input Level

Output Level

16

REC mode, N R-off
RECout = 10dB

Zin
VC

14

c8SAMSUNG
Electronics

402

LINEAR INTEGRATED CIRCUIT

KA22712

TEST CIRCUIT

11'

REG

REG

OUTPUT1

OUTPUT2

•

PB

PB

OUTPUT2

OUTPUT1

KA22712

PB

PB

INPUT1

INPUT2

REG

REG

INPUT1

INPUT2

. - - - - - -__- - - f - - - - - -.. ~

Vee

PB

APPLICATION NOTE
1) POWER SUPPLY
The KA22712 can be operated at 6.5V-16V in case of single and ±3.25V - ± 8V in dual power supply.

1-------0 GND
KA22712
+Vss

Dual power connection

c8SAMSUNG
Electronics

403

LINEAR INTEGRATED CIRCUIT

KA22712

2) SWITCH CONTROL VOLTAGE
All function of KA22712 are controlled by internal electronic switches. The function switch is operated by D.C.
voltage of NR and RIP control pins.
NR, RIP
Condition

VH

VL

PB

REC

NR-off

NR-on

Single Power

Dual Power

2.4V 5,V H

VH ~ VEE + 2.4 V

O.4V~VL

VEE+O.4V~VL

--

3) REFERENCE LEVEL
The reference output level of Dolby noise reduction system is defined as Dolby level. The Dolby level of KA22712
is 245mV (-10dBm) at f = 400Hz.

c8SAMSUNG
Electronics

404

KA22712

LINEAR INTEGRATED CIRCUIT

CIRCUIT CURRENT

TOTAL HARMONIC DISTORTION (REC)
1
NR-off
f=lKHz
REG ~ODE

4.5

/V

Ci'

§.

....

_.

~
g;

"Icc = 6.5V

V ~~

0

3.

5V

~~

~
~~

32

8

~

,.:

V""'=,12V

o.1

NR-on

~

. / V Vcc =15V

.......

./ V"/

I'

10

12

POWER SUPPLY

14

16

.... ~

E§ ~V

0.0 1

18

-8

-4

4

M

8

12

16

20

TOTAL HARMONIC DISTORTION (REC)
1

12

,

,,

NR-on
f 1KHz
REG MODE

11_ 40dS

/~

V

I

I

II

I-~

V

-30dB

t--

'n

-"'-

J....--t-....

~

0
100

~ t::-~

/

IL/
. / ./
I" ..... 1'--"'"

"

-2OdS

iI

IL

15V

fVcc

f

f

)

II

Vcc=12V

~ o.1 ' "

. . . ,,1"-

J

VCC=S.5V

,.:
4

24

REC·OUTPUT LEVEL (dB)

REC (ENCODE) CHARACTERISTIC

0

I

~f-

V

./

-lOdS

to-

IT

OdB

10K

lK

0.01

20K

-8

12

-4

FREQUENCY (Hz)

16

20

24

REC·OUTPUT LEVEL (dB)

TOTAL HARMONIC DISTORTION (REC)

MAX REC·OUTPUT LEVEL
27

24

/

21

m
:Eo

i

18

>

15

/

12

II

V

Vcc ".5V
NR-on
REG MODE

./

THD=l%
f=lKHz
NR-off

V

~
ci

:z:

,.:

0.1

~ "-

I.A
~

[""'000,

I.......

f 100Hz

/

.....

f

:....

lKHz\

;ii"

,/./
~

I=~

II

9

2

8

10

12

POWER SUPPLY (VI

c8SAMSUNG
Electronics

14

16

18

0.01
-9

-6

-3

0

3

6

9

12

15

REC'()UTPUT LEVEL (dB)

405

KA22712

LINEAR INTEGRATED CIRCUIT
RIPPLE REJECTION (REC)

TOTAL HARMONIC DISTORTION (REC)
t - - - Vcc -6.5V
t - - - NR-ott
t--- REC MODE

-10
I
I

ii

:!!-20

O.

~

f= 100Hz
f= 1KHz
f= 10KHz

1~

~ -30
a:

~~

w

f':~1'-

.......

..-

a:

..........

"-

)

...........

jo~-

I

l'

~
!!: -40

.........

-

~

-50

Iott

r--....

--

..,.,...

-60

0.0 1
-9

-6

-3

0

3

6

9

12

100

15

lK
FREQUENCY (Hz)

REC'()UTPUT LEVEL IdB)

CROSSTALK (CH TO CH)
-40
Vcc=9V

.tI III

-10

-50
ii

",r--l'-t--.
-7o

I'...

I

-00
100

:!!-20

g

PB
MODE

I

't'--

..-

20K

RIPPLE REJECTION (PB)

~~~!tUT LEVEL =OdB

~!

10K

-

./

-

V

III

ijl-3O

a:
w

i

i

I

-

1

~

-40

I

"r-..~~

11~~

~ODE

10K

lK
FREQUENCY (Hz)

20K

I I

-60
100

./

V
~-on

f

-50

REG

I

f'..l"oo

i

~-ott

i
1K

1 K

20

FREQUENCY 1Hz)

CROSSTALK (BETWEEN REC TO PB)
-40

E5i~: JEVl Uj
1

=

I LIITI

-50

I
I
I

-70

~

-80
100

~~

IA~I.~
II
J.I

"'~
~~ ~PB TO REO

lK

10K

20K

FREQUENCY 1Hz)

c8SAMSUNG
Electronics

406

KA2272

LINEAR INTEGRATED CIRCUIT

FM NOISE CANCELLER

16 ZSIP

The KA2272 is a monolithic integrated circuit for the FM noise
canceller used in car stereos.
It is used in combination with a PLL FM multiplex demodulator
(such as the KA2266) with a pilot signal canceller.

I

FEATURES
•
•
•
•
•

16 SOP

Operation voltage range: 8V - 15V
Low power dissipation
Low distortion: THD 0.02% at Vi 300mV
Pilot signal compensation
The space factor is advantageous
because of the signal·end·package.
• Built·in monostable multivibrator.
• Variable input type noise AGe system.

=

=

ORDERING INFORMATION
Device

BLOCK DIAGRAM

KA2272

Package Operating Temperature
16 ZSIP

KA2272D 16 SOP

-20 -

+ 75°C

GATE
CIRCUIT

GATE
CIRCUIT

NOISE
DETECTOR

MONO
STABLE
MULTIVIBRATOR

Fig. 1

c8~SUNG

407

KA2272

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Symbol

Characteristic

Supply Voltage

--

I
I

Power Dissipation

KA2272

Vee

Pd

KA2272D

Operating Temperature

Unit

Value

16

I--

V

450

mW

300

mW

Topr

- 20 -

+ 75

°C

T51g

-40 - + 125

°C

I
--

~------~---------~~----

Storage Temperature

ELECTRICAL CHARACTERISTICS
(Ta

=25°C, Vee =12V, V =300mV, f =1KHz,
7

unless otherwise specified)
Test Conditions

Characteristic

Symbol

Circuit Current

i- --

c8SAMSUNG
Electronics

I Min

I Typ

Max

Uni'
mA

408

KA2272

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT

+

V15

V4

V5

4.71'

l00J
11

680P
6800p

4.7K

I

4.7K

I

+

L
T

= 12V

4.71'

4.71'

+

Vee

...L 680P

T

rt;
4.71'

V7~

INPUT

+

KA2272

OUTPUT

.~

1

270p
270p

270p

;r
.L

22K

01
'

100K

+

+
4.71'

1
V9

4.71"

V10

Fig. 2

c8SAMSUNG
Electronics

409

KA2272

LINEAR INTEGRATED CIRCUIT

APPLICATiON CIRCUIT

OUTPUT

L

R

Vee

Fig. 3

c8SAMSUNG
Electronics

410

KA2272

LINEAR INTEGRATED CIRCUIT
QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE

TOTAL HARMONIC DISTORTION·INPUT SIGNAL LEVEL
10

~

i

Vee

12V

f---- f=1KHz -

o

l-

cc-r---

r---

z

- '

----r-

- - --

o

til

0

2i

I-

:;
~

1.0

o
Z
o

16

U

r---_ -~ ~c- 1--

- --

~

I-

I

-

---

---N--"\III,~~1r4

KA2283

INPUT2

o---l+~~WW~

Fig. 2

2_ 10-dot mono application

05

+

04

03

02

01

INPUT

+

Vi =822, 653, 519, 412, 327, 260, 206, 163, 129, 102mVrms
+6, +4, +2, O. -2, -4, -6, -8, -10, -12dB

Fig. 3

=8SAMSUNG
Electronics

418

KA2283

LINEAR INTEGRATED CIRCUIT

3. 10·dot dual application with KA2281

KA2283

KA2281

INPur--......tf-1 K

Signal Detection Output High Level

VOh

Vee = 12V, RL=10K

Signal Detection Output Leakage Current

10L

Vee = 12V, Vso = OV

10

0
50

70

2.4

2.6

-0.5

-0.3

10

10.3

mA

V
dB

2.9

V
V
V

1

p.,A

Output Current 1

10 (1)

Vee = 12V, RA = 10K, Rs =00

4.2

7.1

10.0

mA

Output Current 2*

10 (2)

Vee = 12V, RA = 10K, Rs = 22K

6.3

10.6

15.0

mA

20

p.,A

Output Leakage Current

Comparator Level

10L

Vee = 12V, RA = 4.7K, Rs =00

CL1

-22

-20

CL2

-11

-10

-9

CL3

-6.5

-6

-5.5

-3.5

-3

-2.5

CL4
CL5

Vee = 6.2V -16V
CL5 shall be taken
for OdB

CL6
CL7
OdB Level

CL5

Vee=6.2-16V, Vref=2.4-2.9V

-18

dB

0
+3.5

+2.5

+3

+5

+6

+7

1.2

1.3

1.45

V

* : Applied pin: 4, 5, 6, 7

c8SAMSUNG
Electronics

427

KA2288

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT
,----H--:--------10 Input

Vee

* NOTE: Following values of the elements are for a typical test circuit.
Re: 18K, RD: 9OK, RE: 10K, VR: 22K
CA : 3.3~, CB : 1O~, Ce: 4. 7~, CD: 1O~

INTRODUCTION TO OPERATION
The KA2288 has 7 built-in comparators to each of which is applied the reference voltage corresponding to each
step. (The step for this reference voltage is VU. For the LED switch-over level, refer to the comparator level in the
electrical characteristics.)
Each of these comparators compares its reference voltage inherent to the IC and the input DC voltage applied
to its input terminal and if the input DC voltage is higher than the internal reference voltage, it will turn on the
steady current driver transistor connected to the comparator output to drive the LED.
The output terminal So goes "High" when the bottom most LED glows.

c8SAMSUNG
Electronics

428

PRELIMINARY

KA2292

LINEAR INTEGRATED CIRCUIT

AM/FM TUNER + MPX
The KA2292 is a monolithic integrated circuit which consists of
a 3V one chip tuner and FM multiplex for AM/FM radios and headphone radios.

24 SDIP

•

FUNCTIONS
FM Stage

RFIIF/AF amp, Quadrature Detector, MIX, ose,
Tuning Indicator.
AM Stage
RFIIF/AF amp, Detector, MIX, ose, AGe, Tuning
Indicator.
MPX Stage: PLL amp, Decoder, Flip Flop, veo Stop, Phase
Detector, Stereo Indicator.

FEATURES
• 3 V one chip tuner with built-in FM Multiplex
• No AM detect coil, IF coupling capacitor, FM IF by-pass
capacitor needed.
• Built-in tuning indicator function.
• Built-in AM/FM selection switch.
• Minimum number of external parts required.
• Wide operating voltage range: Vee = 1.8 - 7V
• Low distortion (FM IF: 0.4%, AM IF: 1%, MPX: 0.2% (Typ)).

ORDERING INFORMATION

BLOCK DIAGRAM
AM
RF IN

FM
RF OUT

GND1

RF
Vee

FM

AM

ose

OSC

FM

AM

MIX

MIX

AGC

DET
OUT

MPX

Vee

AM IF
IN

IN

LPF1

FM IF
IN

LPF2

GND2

vco

TUN
LED

LOUT

ST

ROUT

QUAD

LED

Fig. 1

c8~~SUNG

429

PRELIMINARY

LINEAR INTEGRATED CIRCUIT

KA2292

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic

Symbol

Value

Unit

Vee
Pd
Topr
T519
VLEO
kEo

8
1200
-20- +75
-55- + 150
10
10

V
mW
°C
°C
V
mA

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature
LED Drive Voltage
LED Drive Current

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 3V, unless otherwise specified)
FM FIE: f = 98M Hz, fm = 1KHz, .6 f = 22.5KHz AM
FM IF . f= 10 7MHz fm = 1KHz lif= 225KHz MPX
Characteristic

Circuit Current

FIE

Input Limiting Sensitivity
Oscillation Voltage

Symbol

: f=1MHz, fm=1KHz, 30% Mod
. f=1KHz, L+R=90%, P=10%, Vj =150mV

Test Condition

Min

Typ

Max

Unit

Test
Circuit

lee(1)

FM, Vj=O

8.4

13.2

20.0

mA

1

lec(2)

AM, Fj=O

4.4

8.4

13.4

mA

1

Vj(lim)(1)

Vo= - 3dB

Vose

10

fosc = 98MHz

40

70

dB/L

1

110

mV

2

Input Limiting Sensitivity

Vj(lim)(2)

Vo=-3dB

40

46

53

dB/L

1

FM

Detector Output Voltage

Vo(1)

V j =80dB/L

55

80

110

mV

1

IF

Signal to Noise Ratio

S/N(1)

Vj =80dB/-t

60

Total Harmonic Distortion

THD(1)

Vj =80dB/-t

dB

1

1

%

1

70
0.4

AM Rejection Ratio

AMR

V j =80dB/-t

22

32

dB

1

Tuning Indication Voltage

VL(1)

k=1mA

45

51

56

dB/-t

1

Voltage Gain

Av(1)

Vj =26dB/-t

40

70

110

mV

1

AM

Detector Output Voltage

Vo(2)

Vj =60dB/-t

55

80

110

mV

1

IF

Signal to Noise Ratio

S/N(2)

Vj =60dB/-t

32

42

dB

1

Total Harmonic Distortion

THD(2)

V j =60dB/-t

Tuning Indication Voltage

VL(2)

Maximum Input Voltage

MPX

Channel Separation

Total Harmonic Distortion
Voltage Gain

1

30

dB/-t

1

1

25

Vj(max)

Stereo, THD = 3%

250

350

mV

Sep(1)

Stereo, f = 100Hz

32

42

dB

1

Sep(2)

Stereo, f= 1KHz

32

42

dB-

1

Sep(3)

Stereo, f = 10KHz

32

dB

1

THD(3)

Mono

0.2

1

%

1

THD(4)

Stereo

0.2

1

%

1

Av(2)

Mono

-5

-3

-1

dB

1

CB

Mono

-2

0

2

dB

1

8

16

mV

1

mV

1

mV

1

%

1

dB

1

VL(off)

Lamp Hysteresis

HY

Capture Range

CR
S/N(3)

c8SAMSUNG
Electronics

%

20

VL(on)

Signal to Noise Ratio

2

k=1mA

Channel Balance
Lamp on Level

1

Pilot only

42

Pilot only

2

6

Pilot only

±1

±3

Mono

60

70

2
±5

430

PRELIMINARY

KA2292

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT 1

Fig. 2

'POLYESTER FILM CAPACITOR

TEST CIRCUIT 2

AM RE
IN

FM RF
OUT

Vee 1

FM
OSC

AM
OSC

DET
OUT

LPF1

MPXIN

LPF2

VCO

LOUT

ROUT

KA2292
GND1

AM
MIX

AGC

Vee2

AM IF
IN

FM IF
IN

GND2

TUN
LED

ST
LED

QUAD

Vee

c8SAMSUNG
Electronics

431

PRELIMINARY

KA2292

LJNEAR INTEGRATED CIRCUIT

COIL SPECIFICATIONS
T1 FM 1FT (MIX OUT)

1-3

TURNS

f

Co(pF)

-

00

(MHz)

75

10.7 70(min)

1-3

I

4-6

I

11

I

2

I

KOREA TaKa
O.1mmct>

T2 AM 1FT (MIX OUT)

1-3

TURNS

f

Co(pF)

-

00

(MHz)

180

1-3

455 70(min) 180

I
I

4-6
15

I
I

KOREA TaKa
O.08mmct>

T3 FM 1FT (DET)

o
o

o

00

1-3
47

TURNS

f

Co(pF)

I - - - (MHz)

1-3

10.7 80(min)

14

I
I

I
I

KOREA TaKa
0.1mmct>

L1 FM RF

V1
[D o
4

o
1

0
0

f
(MHz)

00

100

100

f
(MHz)

00

100

100

TURNS
1-4

2V2

I
I

I
I

0.5mmct>

L2 FM OSC

o
o

TURNS
1-3
2 3;4

I
I

I
I

0.5mmct>

L3 AM OSC

o
o

G)

cRSAMSUNG
Electronics

f
(KHz)

TURNS

00

796 80(min)

1-2
13

I 2-3 l
I 73 I

L
(/LH)

KOREA TaKa

288

0.08mmct>

432

PRELIMINARY

KA2293

LINEAR INTEGRATED CIRCUIT

FM/AM TUNER + MPX

24 SDIP

The KA2293 is a monolithic integrated circuit which consists of
a one chip tuner and no adjustment FM multiplex for AM/FM radios and headphone radios.

FEATURES

•

24 SOP

• One·chip tuner with built·in FM multiplex.
• No adjustment for FM detector and VCO.
• No AM detect coil, IF coupling capacitor, FM IF bypass
capacitor needed.
• Built·in AM/FM selection switch.
• Minimum number of external parts required.
• Wide operating voltage range: Vee = 1.8 - 7V
• Low distortion
(FM IF: 0:4%, AM IF: 1%, MPX: 0.2% (Typ».

ORDERING INFORMATION
BLOCK DIAGRAM

RF

FM RF
IN

GND1

FM
MIX

AM
MIX

AGC

DET
OUT

MPX
IN

Vee

AM IF
IN

Device

Package

KA2293

24 SDIP

-20-+75°C

KA2293D

24 SOP

-20- + 75°C

LPF1

FM IF
IN

LPF2

GND2

VCO

TON
LED

Operating Temperature

LOUT

ST

LED

ROUT

OUAD

Fig. 1

c8SAMSUNG
Electronics

433

PRELIMINARY

KA2293

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic

Symbol

Value

Unit

Vee

8
1200
-20- + 75
-55- +150
10
10

V
mW
°C
°C
V
mA

Supply Voltage
Power Dissipation
Operating Temperature
Storage Temperature
LED Drive Voltage
LED Drive Current

Pd
Topr
T.1g
V LED
ILED

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 3V, unless otherwise specified)
FM FIE: f = 98M Hz, fm = 1KHz, 6 f = 22.5KHz
FM IF : f = 10, 7MHz, fm = 1KHz, Df = 22.5KHz
AM
: f= 1MHz, fm = 1KHz, 30% Mod
MPX
. f=1KHz L+R-90%
P-10% V-150mV
,-

-

Characteristic
Circuit Current

FIE

Input Limiting Sensitivity

Symbol

FM
IF

AM
IF

Max

Unit

Test
Circuit

FM, Vj=O

10

14

18

mA

1

lee(2)

AM, Vi=O

3.5

6.0

9

mA

1

Vj(lim)(1)

Vo= -3dB

10

14

18

dBIt

1

fose = 72.3MHz

70

105

140

mV

2

Vo= -3dB

39

44

49

dBIt

1

110

mV

1

dB

1

Vose
Vj(lim)(2)
Vo(1)

Vj =80dB/L

55

80

S/N(1)

V j =80dBIt

60

70

Total Harmonic Distortion

THD(1)

V j =80dBIt

AM Rejection Ratio

AMR

V j =80dBIt

40

50

Tuning Indication Voltage

VL(1)

IL= 1mA

43

48

Voltage Gain

Av(1)

V j =23dBIt

20

Detector Output Voltage

Vo(2)

V j =60dBIt

50

Signal to Noise Ratio

S/N(2)

V j =60dBIt

34

44

Total Harmonic Distortion

THD(2)

V j =60dBIt

Tuning Indication Voltage

VL(2)

Detector Output Voltage

Maximum Input Voltage

MPX

Typ

Signal to Noise Ratio
--------

--

Min

lee(1)

Oscillation Voltage
Input Limiting Sensitivity

Test Condition

Channel Separation

Total Harmonic Distortion
Voltage Gain

1

53

dBIt

1

40

80

mV

1

60

100

mV

1

dB

1

1

2

%

1

19

24

30

dBIt

1

Stereo, THD = 3%

250

350

mV

1

Sep(1)

Stereo, f = 100Hz

35

42

dB

1

Sep(2)

Stereo, f = 1KHz

35

42

dB

1

Sep(3)

Stereo, f = 10KHz

35

42

dB

1
1

THO(3)

Mono

0.2

1

%

THD(4)

Stereo

0.2

1

%

1

Av(2)

Mono

-5

-3

-1

dB

1

Mono

-2

CB
VL{on)

Pilot only

VL(off)

Pilot only

Lamp Hysteresis

2

HY

Capture Range
Signal to -Noise Ratio

1

dB

1

Vj(max)

Channel Balance
Lamp on Level

IL= 1mA

%

0.4

CR

S/N(3)

c8SAMSUNG
Electronics

Pilot only
Mono

60

0

2

dB

1

8

16

mV

1

6

mV

1

2

mV

1

±3

%

1

70

dB

1

434

PRELIMINARY

KA2293

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT 1
DET OUT

vee

•
-

MPX IN

FM-RF IN

FMIFIN~,---I~

______

~

Fig. 2

TEST CIRCUIT 2
POWER
.------<~~-,._-o

BV

Fig. 3

c8SAMSUNG
Electronics

435

PRELIMINARY

KA2293

LINEAR INTEGRATED CIRCUIT

COIL SPECIFICATIONS
L1 FM RF

n
o
1

.4

0

G)

!

f
: (MHz)

00

I 100

100

TURNS
I

I

2V2 I

I

1-4

0.5mm¢

L2 FM OSC

D

0
0
G)

f
(MHz)

00

100

100

f

00

TURNS
1-3

I

I

2 3;4

I

I

1-2

I
I

0.5mm¢

T1 AM OSC

a

0

0

G)

(MHz)
796

115

TURNS
13

2-3
73

L
(Il H)

I
I

288

KOREA TOKO
0.08mm¢

T2 AM 1FT (MIX OUT)
Co(pF)

c8SAMSUNG
Electronics

1-3

f
(KHz)

00

180

455

120

TURNS
11-3 I 4-6

I

180 I

I

1

15

KOREA TOKO
0.08mm¢

436

KA2401

LINEAR INTEGRATED CIRCUIT

DC MOTOR SPEED CONTROLLER
The KA2401 is a monolithic integrated circuit designed for DC motor
speed controllers.

8 DIP

•

FEATURES
• Suitable for DC motor speed controllers of cassette tape recorders and radio cassettes.
• Excellent stability of each characteristics against ambient
temperature.
• Low quiescent current (O.SmA; Typ).
• Low reference voltage.
• Wide operating supply voltage range (4V -12V).

ORDERING INFORMATION
EQUIVALENT CIRCUIT BLOCK DIAGRAM

Operating Temperature

Rt

Fig. 1

c8SAMSUNG
Electronics

437

KA2401

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic
Supply Voltage
Circuit Current
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

value

Unit

Vee
14

16
*2
600
-20- +70
-40- + 125

V
A
mW
°C
°C

Pd
Topr
Tstg

*t<5 sec

ELECTRICAL CHARACTERISTICS
(Ta=25°C, Vee=6V, unless otherwise specified)

Characteristic

Symbol

Test Conditions

Min

~p

Max

Reference Voltage

Vref

14=10mA

1.10 1.27 1.40

Quiescent Current

Id

Rm=1800

0.5

K

Rm1 =440, Rm2 =330

18

V4 (sat)

Vcc=4.'ZVt Rm=4.40

~/fl.Vcc
K

14= 100mA, Vcc=4-12V

fl.Vref't:Ncc
Vref

Reflection-Coefficient
Saturation Voltage

Voltage Characteristic

0.8

1.2

20

22

1.5

20

Unit

Test Fig

V

2

rnA

5

3
V

4

0.4

%N

3

14=100mA, Vcc=4-12V

0.06

%N

2

fl.: 1fl.14

14 =30 - 200mA

-0.02

%/mA

3

fl. Vref'fl.1
Vref
4

14 =30 - 200mA

-0.02

%/mA

2

~K Ifl.Ta

14=100mA
Ta=-20-+75°C

0.01

%/OC

3

fl.VrefJfl.T
Vref
a

14=100mA
Ta=-20-+75OC

0.01

%/OC

2

Current Characteristic

Temperature Characteristic

c8SAMSUNG
Electronics

438

LINEAR INTEGRATED CIRCUIT

KA2401
TEST CIRCUIT 1

TEST CIRCUIT 2
Reflection Coefficient

Reference Voltage

r-------.....-----..----<) Vee

. - - - - - _ - - - - - . . - - . ( ) Vee

I

RM

2
RM2

!:Nref
tNref
tNref
Vref,-ItNcc, --/~14 ,--/~Ta
Vref
Vref
Vref

Fig. 3
~K

K'-K I~Vcc,

~K

~K

K

K

-/~14, -

I~Ta

14 (SW 2)-14 (SW 1)
K=----12 (SW 2)-12 (SW 1)

TEST CIRCUIT 4

TEST CIRCUIT 3
Saturation Voltage

Quiescent Current

r-----------~-~·vcc

r--------~-----~----ovcc

4.4

Fig. 4
Fig. 5

c8SAMSUNG
Electronics

439

KA2401

LINEAR INTEGRATED CIRCUIT

TYPICAL APPLICATION

veeo---~~~----~--------~----------~

M

~--~--~--~~--~

Motor

Rt: Torque control resistance
Rs: Speed control resistance

Fig.6

BASIC EQUATION
vee
~11

Rm: Internal resistance of the motor
Eo: Back electronic force
K: Reflection coefficient
Em=lm·Rm+Eo
=11·Rt+12·Rs
=Vref+( Im+b +Iq+ Vref )-Rt
K
Rs

Fig. 7
If, Rm=.B!. then
K
Eo=Vref {1 + B.!. (1 + ~)}+ Rt-Iq
Rs
K

c8SAMSUNG
Electronics

440

LINEAR INTEGRATED CIRCUIT

KA2401

REFERENCE VOLTAGE-8UPPLY VOLTAGE

REFLECTION COEFFICIENT·SUPPLY VOLTAGE

1.6

35

1.5

....

"~

g

1.4

t-

~

25

~

o
~2O

Z

8
i5

15

~

10

w 1.3
U
W

II:

~
w 1.2

•

>=

II:

~

1

Rml=44 _
Rm2 =33n

30

I
Im =l00mA

1.1

II:

1.0

10

12

14

16

18

10

12

14

16

18

Vcc(V), SUPPLY VOLTAGE

Vcc(V), SUPPLY VOLTAGE

REFERENCE VOLTAGE·MOTOR CURRENT

QUIESCENT CURRENT·SUPPLY VOLTAGE

1.6

1.5

1.5

1

w

m

t-

Cl 1.4

~

~

!

0

::i:::l

> 1.3
w

o 1.0

~

~

t-

U

II:

~

~

1.2

S

o

II:

~

1R = 180n
1

vcc =16V

~

1.1

0.5

:::§

1.0

o
30

60

90

120

150

180

210

10

2

240

12

14

1.6

I

Vcc=6V
K

30

t-

1.5 I----l----l----l----l----+-- :

Q

30

ffi

!:i
~

0

~1.3

20

15

~~ 1.2

10

:: 1.1

tiw

~

:::~~~

w
52
~ 1.4 1---+---+--+---+---+---+---+----1 25 ;:

25

(3

U
Z

35

I

V",: Im = 100mA

Vcc=1 6V

Z
W

~
0

18

REFERENCE VOLTAGE
.AMBIENT TEMPERATURE
REFLECTION COEFFICIENT

REFLECTION COEFFICIENT·MOTOR CURRENT
35r---r---r---r---r---r---r---r--.

g

16

Vcc(V), SUPPLY VOLTAGE

Im(mA), MOTOR CURRENT

20~
V"'

15

~

II:

~

II:

8
i5

10 ILl:!

1.01---+_--+--+--+--+--+--+_---1
O~~

o

__~__-L__~__~__L-~__~

30

60

90

120

150

l",(mA), MOTOR CURRENT

c8SAMSUNG
Electronics

160

210

240

-60

-40

-20

0

20

40

60

80

100

Ta(°C), AMBIENT TEMPERATURE

441

KA2401

LINEAR INTEGRATED CIRCUIT

, MOTOR CURRENT·SUPPLY VOLTAGE

vLsv

l

Im =100mA-

150

10

12

14

16

18

VccM. SUPPLY VOLTAGE

c8SAMSUNG
EJectronics

442

LINEAR INTEGRATED CIRCUIT

KA2402

LOW VOLTAGE DC MOTOR SPEED
CONTROLLER

8 DIP

USE
• Speed control or general-purpose low-voltage compact DC
motor for microcassette tape recorders, radio cassettes and
their 8Quivalents.

I

FEATURES
• Wide operating supply voltage range (1.8V - 8V).
• Capable of making the applicable set compact because of a
minimum to adjust speed.
• Easy to adjust speed.
• Built-in stable low reference power meeting the requirements for
2 speeds.
• Vref=O.2V

I

J

EQUIVALENT CIRCUIT BLOCK DIAGRAM

Rs

+-----------l

Ra

Rt

M ~-----~

Vee

Fig. 1

c8SAMSUNG
Electronics

443

LINEAR INTEGRATED CIRCUIT

KA2402

ABSOLUTE MAXIMUM RATINGS (Ta=2S0C)
Characteristic

Maximum Supply Voltage
Maximum Motor Current
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

Vee
1m
Pd
Topr
Tstg

10
700
600
-20- +80
-40- + 125

V
mA
mW
°C
°C

RECOMMENDED OPERATING CONDITIONS (Ta=2S0C)
Supply Voltage

Vee

1.8-8

V

Operating Temperature

Topr

-20- +60

°C

ELECTRICAL CHARACTERISTICS (Ta =2S0C)
Characteristic

Reference Voltage

Symbol

Test Conditions

Min

Typ

Max

Unit

Vref

Vee =3V, 1m =100mA

Icc

K

Vee =3V,l m=100mA

Saturation Voltage

V (sat)

Vee =3V,l m=100mA

Voltage Characteristic
of Reference Voltage

--~Vee

~Vref!

Im=100mA
Vee=1.8-8V

0.1

%N

Voltage Characteristic
of Shunt Ratio

~KI
K~Vee

1m =50, 150mA
Vee=1.8-8V

0.3

%IV

Current Characteristic
of Reference Voltage

--~Im

~vreft

Vee=3V
1m =20 - 200mA

0.005

%/mA

Current Characteristic
of Shunt Ratio

~K!
-K~lm

Vee =3V, 1m =20, 50mA
-170,200mA

-0.07

%/mA

Temperature Characteristic
of Reference Voltage

--~Ta

Vee =3V, 1m =100mA
Ta=-20- +80°C

-0.008

%/oC

Temperature Characteristic
of Shunt Ratio

K~Ta

0.02

%/oC

--

Circuit Current
Shunt Ratio

Vref

Vref

~Vref!
Vref

c8SAMSUNG
Electronics

~K!

Vee=3V, Im=50mA
Im=100mA

Vee =3V, 1m =50, 150mA
Ta=-20- +80oC

0.18

45

0.2

0.22

V

2.4

6.0

mA

50

55

0.13

0.3

V

444

KA2402

LINEAR INTEGRATED CIRCUIT

TEST CIRCUIT
~----~------------------------------------------Cvcc
100

I

~----------------~~
10

sw

Fig. 2

TEST METHOD
1. Vref
2. Icc
3. K

: With SW turned on, measure the voltage developed across Ra.
: With SW turneq off, measure Icc for the voltage developed across resistor 10.00 ohm.
: With SW turned on, measure current Iso flowing through resistor 100 ohm
at 1m =50mA and current 11so flowing through resistor 100 ohm
at 1m =150mA, and obtain K by use of the follOWing eQuation.
K=
100mA

(11so - Iso) (mA)
4. V (sat) : With SW turned on, set Vcc =Vs =CONT=3V and feed Im=100mA, and measure the voltage developed across
pins 4 and 5.

c8SAMSUNG
Electronics

445

LINEAR INTEGRATED CIRCUIT

KA2402

Application Circuit 1

Vee
+

M

+

Fig. 3

Unless Rt (max)< K· Rm (min), the operation becomes unstable.
Ra must be set as follows: 2KO
Rm Motor internal resistance

=

Rm (Internal resistance)

Eo (Counter electromotive force)

The values of the electrolytic capacitors depend on the type of the motor to be used.

c8SAMSUNG
Electronics

446

LINEAR INTEGRATED CIRCUIT

KA2402

Application Circuit 2: with stop circuit

•

vee
+

M
1pF

sw

250

Rt (max) < K· Rm (min) must be observed.
Ra must be set as follows: 2 KQ

Fig.4

c8SAMSUNG
Electronics

447

KA2402

LINEAR INTEGRATED CIRCUIT
FREQUENCY

(SPEED~.sUPPLY

4500

REFERENCE VOLTAGE-8UPPLY VOLTAGE

VOLTAGE

r-----,---r--r-----,---r-----,

0.24

DC3vlTo~L

Im=1~mA

0.20

TEST TAPE: MTT-111 (3KHz

w

  • 0.04 a a 10 10 12 Vee:(1/), SUPPLY VOLTAGE 12 Vee:(1/), SUPPLY VOLTAGE SHUNT RATIO·SUPPLY VOLTAGE REFERENCE VOLTAGE·MOTOR CURRENT 56 0.24 I Vcc =3V 54 0.20 w g 52 _'flO~ \~ 0 i... 50 ~ - ... .....,.,.,. w u ffiIIC ~ z 0.16 ~ 0.12 ~ => W IIC J: U) ~ 0.08 48 > 46 0.04 o o I 44 10 12 40 Vee:(1/), SUPPLY VOLTAGE 80 120 160 200 240 1",(mA), MOTOR CURRENT SHUNT RATIO·AMBIENT TEMPERATURE REFERENCE VOLTAGE·AMBIENT TEMPERATURE 0.24 56 I 'V cc =3V' Im =501-15OmA Vee=3V Im =100mA ___ =---..:..j---I 0.20 ~--+--+--+--"""' 0.16 ~--+---+---t---+---+----l 54 w CJ ~ g ~ ffi ffi :li g 52 -- Q 0.12 ~--+---+---t---+---+----l i... z 50 => :z: ~ 0.08 ." 48 -- ~ ~ > 0.04 r---+---+---t----+---+-----i 46 44 -20 20 40 60 Ta(°C), AMBIENT TEMPERATURE 'c8SAMSUNG Electronics 80 100 -20 20 40 80 80 100 Ta(°C), AMBIENT TEMPERATURE 448 KA2402 LINEAR INTEGRATED CIRCUIT CIRcurr CURRENT·MOTOR CURRENT ClRCUrr CURRENToSUPPLY VOLTAGE -- -- !Zw V·~ II: II: ~~ t: ~ ./ 6 ~ • ,/ B3 / ~~ I 10 12 Vc&VI. SUPPLY VOLTAGE 40 80 120 160 200 240 280 l.,(mA), MOTOR CURRENT CIRCUIT CURRENT·AMBIENT TEMPERATURE I Vcc=3V Im =100mA ............. I'-. -20 --- --- 20 r--- 40 60 80 100 TI(·C), AMBIENT TEMPERATURE c8~SUNG 449 KA2404 LINEAR INTEGRATED CIRCUIT DC MOTOR SPEED CONTROLLER TO·92L The KA2404 is a monolithic integrated circuit designed for DC motor speed controllers. FEATURES • Suitable for DC motor speed controllers of cassette tape recorders and radio cassettes. • Excellent stability of each characteristics against ambient temperature. • High output current. • Low quiescent current (1.3mA: typ). • Low reference voltage. • Wide operating supply voltage range (4V -12V). EQUIVALENT CIRCUIT BLOCK DIAGRAM ORDERING INFORMATION Operating Temperature l Vee 0 47/,H <0 ~Rt Rs M@' 1: i 3 Y Vref I COMPARATOR CURRENT MIRROR STARTING CIRCUIT I ¢ I Fig. 1 =8SAMSUNG Electronics 450 KA2404 LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATINGS (Ta =25°C) Characteristic Symbol Supply Voltage Circuit Current Power Dissipation Operating Temperature Storage Temperature Vee 13 Pd Topr Tstg Value Unit 16 *2 800 -20- +70 -40- +125 V A mW °C °C • * t<5 sec ELECTRICAL CHARACTERISTICS (Ta=25°C, Vee=9V unless otherwise specified) Characteristic Symbol Typ Max Unit Fig Reference Voltage Vref b=10mA 1.10 1.27 1.40 V 2 Id Rm=1800 0.8 1.3 1.8 mA 4 Reflection Coefficient K Rm,=440 Rm2=330 16 18 20 ~K-} Voltage Characteristic 3 b=100mA Vee=4-12V 0.4 %N 3 13=100mA Vref ~Vee Vee=4-12V 0.06 %N 2 1---------'-. ~Vret ~Kf K~b b=30-200mA -0.02 %/mA 3 ~Vreff~13 -----. Vref 13 = 30 - 200mA -0.02 %/mA 2 ~r b=100mA Ta=20- +75°C 0.01 %/oC 3 ~vref-) b=100mA Ta=-20- +75°C 0.01 %/oC 2 Current Characteristics K~Ta I Min Quiescent Current K~Vcc I Test Conditions Temperature Characteristics --~Ta I c8~SUNG Vref 451 LINEAR INTEGRATED CIRCUIT KA2404 TEST CIRCUIT 1 Reference Voltage vee Am 220 ""'--------1 V 1------------+ 3 I l:i.Vref! l:i. Vref Vref - l:i.VCC,--llb , Vref Vref l:i.Vref!ll Ta Vref Fig. 2 TEST CIRCUIT 2 Reflection Coefficient 2 Ami Am2 l:i.K/ l:i.K/ K,~l:i.VCC'Kl:i.b l:i.Kj Kl:i.Ta Fig. 3 13 (SW 2)-(SW 1) K=-----h (SW 2)-(SW 1) c8SAMSUNG Electronics 452 LINEAR INTEGRATED CIRCUIT KA2404 TEST CIRCUIT 3 Quiescent Current • Vee 180 Fig. 4 TYPICAL APPLICATION Rt Rs Rt: Torque control resistance Rs: Speed control resistance Fig. 5 qsSAMSUNG Electronics 453 LINEAR INTEGRATED CIRCUIT KA2404 BASIC EQUATION ___11_Rt "I ___ Iq I Em Rs I _1m Vref .=. Q~ Em =lm'Rm+Eo =11 Rt+12 Rs Rm: Internal resistance of the motor Eo: Back electronic force K: Reflection coefficient =Vref+( Im+b +Iq+ Vref )'Rt K Rs Rt 1 Rt =Vref (1+Rs(1+K))+Rt'lq+Klm If. Rm= Rt K then Rt 1 Eo =Vref (1+ Rs(1+ ))+Rt'lq K Fig. 6 REFERENCE VOLTAGE·SUPPLY VOLTAGE MOTOR CURRENT·SUPPLY VOLTAGE 1.6 .----,--.--,-----.--.1,-----;1--,--., 130 I 1m = 1OO';'A 1.5 I---+--!--+---I---+----+--+------l I Vcc =9V Im =100mA_ 120 ~ 1.4 I---+--!--+---I---+--+--+-------l i'! g ~ 1.3 I---+--!--+---I---+--+--+-------l ffi 15 1.2 I----+--+--+---I--+--j--t----l ~ 1.1 iiia: I---+--!--+---I---+--+--+-------l > 1.0 I----+--+--+---I--+--j--t----l 70 60 10 . 12 14 VCc(V), SUPPLY VOLTAGE c8~SUNG 16 20 2 10 12 14 VcdV), SUPPLY VOLTAGE 16 18 454 KA2404 LINEAR INTEGRATED CIRCUIT REFLECTION COEFFICIENT-SUPPLY VOLTAGE 1.6 20 I---I---I---I---+---+---+ ::: ~~: - - 1.5 g 19 ~~ 18r---~~F---~--~--r_--r---r-~ CJ ~ 0 8 i _ ~cc=9J III i z REFERENCE VOLTAGE·MOTOR CURRENT r---r---r---r---.---.---.---.-1-o 21 171---1---1---1---+---+---+---+-~ > 1.3 III - CJ Z III II: III ~ - 1.2 II: 161---1---1---+---+---+---+---+-~ ~ > II: • 1.4 1.1 1.0 151---1---1---1---+---+---+---+-~ 0.9 8 10 12 14 16 20 18 40 Vcc(V), SUPPLY VOLTAGE REFLECTION COEFFICIENT·AMBIENT TEMPERATURE Rml=44 _ Rm2 =33 I L=9V I m= 100mA 1-- ~ 0 > 18 III CJ 1.3 z CJ ~ 280 c:J 1.4 19 (; Z 240 III III 0 200 1.5 g ~ 0 160 1.6 L=9) ...z 120 REFERENCE VOLTAGE·AMBIENT TEMPERATURE 21 20 60 l",(mA), MOTOR CURRENT III II: ~ 1.2 17 III II: 16 ~ 1.1 ;;i 15 1.0 II: 14 0.9 -40 -20 20 40 60 80 100 -40 -20 120 Ta(°C), AMBIENT TEMPERATURE 20 40 60 80 100 120 Ta(°C), AMBIENT TEMPERATURE (APPLICATION CHARACTERISTICS) FREQUENCY (TAPE SPEED) SUPPLY VOLTAGE FREQUENCY(TAPE SPEED)-SUPPLY VOLTAGE 4000 4000 3500 3500 Q ~3000 ~ ~ ( / f/l III ... 2500 V z !!: 2000 S If -;j 1500 ~ 9V DC MOTOR 111 PE : Mr- 1000 rEST T r KHZ ) 500 6V DC MOTOR TEsrr PE : iTT-1111 (3KHz) 1000 500 2.5 5.5 8.5 10 12.5 Vcc(V), SUPPLY VOLTAGE c8SAMSUNG Electronics 13 14.5 2 5 6 7 8 10 Vcc(V). SUPPLY VOLTAGE 455 ~407 LINEAR INTEGRATED CIRCUIT DC MOTOR.SPEED CONTROLLER The KA2407 Is a monolithic Integrated circuit designed for DC motor speed controllers. TO·126 FEATURES • High stable operation over a wide range of supply voltage; Vee 3.SV -14.4V • Stable low reference voltage (1.0V Typ) for wide motor speed .. setting • A minimum number of external parts required • Small four·lead plastic package for compact motor • Reverse voltage protection circuit = APPLICATIONS • Tape recorders & recorder players • Home stereos • Car components ORDERING INFORMATION Operating Temperature BLOCK DIAGRAM CONTROL Vee 1 GND Fig. 1 c8~SUNG 456 LINEAR INTEGRATED CIRCUIT KA2407 ABSOLUTE MAXIMUM RATINGS (Ta=25°C) Characteristic Symbol Value Unit Supply Voltage Supply Current Power Dissipation Operating Temperature Storage Temperature Vee Icc (Note 1) Pd (Note 2) Topr Tstg 14.4 2 1.3 -20-+75 -40 -+150 V A W °C °C (Note 1): ts5 sec (Note 2): Ta= 25°C, With a 100 x 100mm bakelite printed circuit board ELECTRICAL CHARACTERISTICS Characteristic Reference Voltage Symbol Test Circuit Vref 1 (35~m • Cu leaf) (Ta=25°C, Vee =6V) Test Conditions Ra=1KO Min Typ Max Unit 0.85 1.0 1.15 V 0.8 1.8 rnA Bias Current Ie 3 Current Shunt Ratio K '2 /::,.1 4=40mA 40 45 Vsat 1 Vee = 4.2V, Ra=50 1.15 2 Voltage Characteristic 1 !::::. Vref Nee Vref 1 Vee = 3.5V -14V, Ra = 1KO -0.1 %N Voltage Characteristic 2 /::"KN ce K 2 Vee =3.5V-14V, /::,.1 4=40mA 0.1 %N Current Characteristic 1 /::"V refll4 Vref 1 14 = 5OmA- 200mA -0.02 %/mA Current Characteristic 2 /::"KK/14 2 14 = 50mA- 200mA -0.01 %/mA Temperature Characteristic 1 /::,. Vref ITa Vref 1 Ta= -20-+75°C, Ra=1KO 0.Q1 %/OC Temperature Characteristic 2 /::,.K ITa K 2 Ta = - 20 - + 75°C, /::,,14 = 40mA 0.01 %fOC Saturation Voltage c8SAMSUNG Electronics 35 V 457 KA2407 LINEAR INTEGRATED CIRCUIT TEST CIRCUIT 2 TEST CIRCUIT 1 r-------.-----~r____v Vee .-----~------r____u Fig. 2 Fig. 3 K, TEST CIRCUIT 3 Vee 6K 6K 6K KNee, K"4' K lTa APPLICATION CIRCUIT Vee ~:: + Fig. 4 Fig. 5 * Motor Constant Ka: Electromotive force constant =1.1mV/rpm Ra = Internal Resistance = 50 . KT : Torque Constant 100g.cm/A = c8SAMSUNG Electronics 458 KA2407 LINEAR INTEGRATED CIRCUIT REFERENCE VOLTAGE-5UPPLY VOLTAGE REFERENCE VOLTAGE·AMBIENT TEMPERATURE 1.04 1.04 1.=lhmA 1.02 w ... 50ml <:I ~ g 1.00 ~ o w ...u> 1.00 l00mA u z a: ~ ,. • r-- z ~ ffi J:; 1.02 ~ 0.98 a: 0.98 ~ 0.96 0.96 0.94 0.94 16 12 -40 40 VccM. SUPPLY VOLTAGE 60 120 TII(°C). AMBIENT TEMPERATURE SATURATION VOLTAGE·MOTOR CURRENT SHUNT RATIO·SUPPLY VOLTAGE 2.0 44 1.6 42 w <:I ~ - 0 > 1.2 z i2' 0' i 10- Q ~ a: ::> a 0.8 ~ V , i--"'" I---"" 40 1.=10mA - I 100m1 I- Z ::> :t: I/) 38 > 36 0.4 34 200 400 600 600 .8 12 16 VccM. SUPPLY VOLTAGE Im(mA). MOTOR CURRENT SHUNT RATIO·AMBIENT TEMPERATURE 44 42 ...... i2' 40 0' fia: r-- -r--- I-- I- z ::> :t: 38 I/) 36 34 -40 40 80 120 TII(°C), AMBIENT TEMPERATURE c8SAMSUNG Electronics 459 KA7226 LINEAR INTEGRATED CIRCUIT DUAL EQUALIZER AMPLIFIER WITH ALC 14 DIP The KA7226 is a monolithic integrated circuit consisting of a dual equalize amplifier with ALe. It is suitable for use in the record/ playback amplifier of stereo radio cassettes. FEATURES • • • • • • Dual equalizer amplifier with ALe circuit Built·in buffer amplifier Not necessary input coupling capacitor Quick stabilization after power on High output voltage: Vo = 1.7V (Typ) at TH D = 1 % Wide operating supply voltage range: Vee = 3V -16V ORDERING INFORMATION BLOCK DIAGRAM PREAMP OUTPUT (L) FEED·BACK1 5 t----~ BUFFER OUTPUT1 ALC CONTROL 7 BUFFER OUTPUT2 FEED·BACK2 GND PREAMP OUTPUT (R) Fig. 1 c8SAMSUNG Electronics 460 KA7226 LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATINGS (Ta=25°C) Characteristic Symbol Value Unit Supply Voltage Output Current (Buffer AMP: Pin 2, 13) Output Current (Pre AMP: Pin 6, 9) Power Dissipation Operating Temperature Storage Temperature Vee 12, 1'3 16 , Ig) ·Pd Topr Tstg 16 3 2 600 - 25- + 75 - 40- + 125 V mA mA mW °C °C • • : Derated above Ta = 25°C in the propotion of 5mW/oC. 'ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vee = 5V, f = 1KHz, unless otherwise specified) Characteristic Symbol Quiescent Circuit Current Icc Input Terminal DC Voltage V6 , Vg Test Conditions Vi=O Min 6 Typ Max Unit Test Circuit 10 15 mA 1 20 100 mV 1 Output Terminal DC Voltage V3, V'2 2.2 2.5 2.8 V 1 Buffer Output DC Voltage V2, V'3 1.4 1.7 2 V 1 0.4 0.55 0.7 V 1 5 30 mV 1 dB 2 ALC Bias Voltage V7 ALC ON Voltage VI (ALC) V7 = 1.4V ALC Range ALC (R) Vi = -60dBm 35 ALC (L) Vi = - 20dBm -3 ALC (THD) Vi= -20dBm ALC Level Total Harmonic Distortion Vj = -20dBm 40 -1 1 dBm 2 0.6 2.0 % 2 0 2 dB 2 ALC Balance ALC (B) . Output Voltage Vo THD= 1% 1.3 1.7 V 2 Cross Talk CT Rg = 2.2KQ, Vo = OdBm 40 60 dB 2 Open Loop Voltage Gain Avo Vi= -80dBm 67 dB 2 Equivalent Input Noise Voltage VNI Rg = 2.2KQ /l-V 2 c8SAMSUNG , Electronics 75 1.3 2.7 461 KA7226 LINEAR INTEGRATED CIRCUIT TEST CIRCUIT 1 TEST CIRCUIT 2 Fig. 2 r - - - - - , - - - - Q Vee =5V 470 : 30Hz-20KHz 01-02: 151555 or Equivalent 03-04: IN60 Fig. 3 c8SAMSUNG Electronics 462 LINEAR INTEGRATED CIRCUIT KA7226 TEST METHOD OF TEST CIRCUIT 2 S1 Symbol S2 S3 S4 Test Point Test Method Avo = 20 log VoNI (dB) with input voltage VI, output voltage at Va Avo 1 2 OFF ON ON A.C.D. Va (ALC) 1 2 OFF OFF OFF B Measure output voltage Va at input voltage VI = - 20 dBm THD (ALC) VNI 1 2 S1-1-1 S1-1 =2 S1-2=2 S1-2=1 OFF OFF OFF B Measure distortion factor at input voltage VI = - 20dBm ON OFF ON B Convert output noise voltage at 1KHz gain when Rg - 2.2Kn Measure output voltage Vo at THD=1% I VaM 1 2 ON OFF ON C, D CT 1 2 ON OFF ON B Measure crosstalk of amplifier 1, 2 at output voltage Va - OdBm ALC Range 1 2 OFF OFF OFF B Input voltage range from VI = - 60dBm to output voltage Va 3dB up ALC Balance 1 2 OFF OFF OFF B Output voltage Va level difference of amp 1,2 when VI 20dBm is applied -- TYPICAL APPLICATION CIRCUIT NOTE: Each switch position is playback o OUTPUT (R) Fig. 4 c8SAMSUNG Electronics 463 KA7226 LINEAR INTEGRATED CIRCUIT QUIESCENT CIRCUIT CURRENT·SUPPLY VOLTAGE OUTPUT VOLTAGE·SUPPLY VOLTAGE 20 ... 15 f=1KHz Av=42dB 16 1---1--+--+-- l---l--.-t--+.----:>---.-l----I r-- f-THD=1% ~ Ia 12~-+-~~-~-·~-+-+_~-~~ / IJ , o / r o V 12 16 20 Vcc(V), SUPPLY VOLTAGE Vcc(V), SUPPLY VOLTAGE OUTPUT VOLTAGE·AMBIENT TEMPERATURE 2.5 I/ .;IV VOLTAGE GAIN·AMBIENT TEMPERATURE 100 I I !--- l-- Vcc=5V f=1KHz f - - j- Av =42dB THD=1% 80 ./ f - - t-- z C 1.5 C!J I-- v ..... r-- r- r-r-. V! 60 III C!J ~ 0 > if 40 l Vcc=5V I----f=1KHz RL=10 Kohm .( 20 0.5 --- o -20 20 60 40 -20 80 40 20 60 .80 Ta(°C), AMBIENT TEMPERATURE Ta(°C), AMBIENT TEMPERATURE EQUIVALENT INPUT NOISE VOLTAGE ·GENERATOR RESISTANCE VOLTAGE GAIN·FREQUENCY 100 I-- Jl[1J~v I 80 10 I I f-f-f-- III TI C!J ~ Avo I g III 3: c C!J i,.; III C!J :! g if l c "\ II 60 "NAB 40 Vcc=5V RL=10 Kohm A v =42dB r---..jo.. I !!! ..... // I 0 ...z ~ ...z~ V 1 i.-- 1-1--1-- 1.0 ~ c ~ ::> a III S .~ 20 -:: o 0.1 10 2 3 5 100 2 3 5 1K 2 3 5 10K I(Hz), FREQUENCY c8 !e!"SUNG 2 3 5 100K 100 2 3 5 1K 2 3 5 10K 2 3 5 100K 110(11), GENERATOR RESISTANCE 464 KA7226 LINEAR INTEGRATED CIRCUIT OUTPUT VOLTAGE·INPUT VOLTAGE TOTAL HARMONIC DISTORTION·OUTPUT VOLTAGE 10 ~Vcc-5V t== RL = 10 Kohm f--Av=42dB/rm '"~ i t-'ij.. LI1~IHZ/ l.- Q ~10KHZ ; o. 1 """-...;: II: C :l: 1KHz/ / '""-"'" '" ~ Q / 7 7 ~ fA zV /I " "'-~~J}VV! e: i!: o. 1 '/ • I ~ i .~ ~ o J 1.0 !:1 z 5 r RL =10 Kohm I-- Av = 42dB/1 KHz ; 1.0 g ~ I-----Vcc=~ z o ~ f=1ooH 1°1~ 1KHz-l--- 0.0 1 0.1 2 3 1.0 2 3 10 2 3 5 1.0 0.1 VoM, V~mV), INPUT VOLTAGE ALC OUTPUT VOLTAGE ALC TOTAL HARMONIC DISTORTION·INPUT VOLTAGE TOTAL HARMONIC DISTORTION·SUPPLY VOLTAGE 10 -t Q Ii: Q 1.0 = f 1KHz RL =10 KohmAv=42dB Vo=0.5V ,- z ~ OUTPUT VOLTAGE , I U Z o ~ II: C :l: ... ~ o. 1 - -- 0.1 -- . -- 5 iT.. r i 2 0.0 1 0.1 12 Vcc(V), SUPPLY VOLTAGE c8~SUNG 16 20 : L-L~-L.~-'--L...Ji--L--'-~-'---.J 0.01 -100 -80 -60 -40 -20 20 VddBm), INPUT VOLTAGE 465 KA8602 LINEAR INTEGRATED CIRCUIT LOW VOLTAGE AUDIO AMPLIFIER I 8 DIP The KA8602 is a audio power amplifier available for low voltage. This amplifier supplies differential outputs for maximizing output swing at low voltages. The KA8602 doesn't need coupling capacitors to the speaker. The gain of this amp is controlled easily by two external resistors. I I 8 soP FEATURES • • • • • • • • Wide Supply Voltage (2V -16V) Low Quiescent Supply Current (Icc = 3mA) Easy Gain Control Medium Output Power Po = 250mW at Vcc =6V, RL =320, THD=10% Minimum External Parts Load Impedance Range (SO -1000) Low Distortion Mute Function (Icc = 75p.A) ORDERING INFORMATION Device BLOCK DIAGRAM Package Operating Temperature KA8602N 8DIP KA8602D asop -20- + 70°C RIPPLE 8 REJECTION RIPPLE REJECTION GND c8SAMSUNG Electronics 466 KA8602 LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATINGS Characteristics Symbol Value Unit Vee -1.0- + 18 ±250 - 1.0 - Vee + 1.0 -1.0-Vee+ 1.O -55- + 140 V mA V V °C Supply Voltage Output Current (output pin) Maximum Voltage (input, RR, Mute pin) Applied Output Voltage (output pin) when disabled Junction Temperature 10 VIR VOR Tj • ELECTRICAL CHARACTERISTICS (Vee =6 V, Ta =25°C, unless otherwise noted) Characteristic Test Condition Symbol Min Typ Max Unit 2.7 3.3 65 4.0 5.0 100 mA mA p.A 1.15 2.65 5.65 1.25 V 0 +30 mV DC ELECTRICAL CHARACTERISTICS Power Supply Current (RL=O) Icc Vee=3.0V, Mute=0.8V Vee = 16.0V, Mute = O.BV Vee = 3.0V, Mute = 2.0V Output Voltage (output Pin) Vo RL= 160 R1 = 75KO Output Offset Voltage Output High Level Output Low Level Vee = 6.0V, RI = 75KO, RL = 320 VOH 2.0VsVee s16V, lout= -75mA 1.0 -30 2.0VsVee s16V, lout = 75mA RE Input Low Voltage VIL Input High Voltage VIH Input Resistance RI Vee-1.0 V 0.16 V -100 1M Equipment Resistance Mute 6Vo VOL Input Bias Current (pin 2) Vee=3.0V Vee=6.0V Vee= 12.0V -200 mA 220 40 KO 0.8 V --f-- pin 1 pin 8 100 18 150 25 2.0 Vee = Mute = 16V 50 V 90 175 0 +0.35 KO AC ELECTRICAL CHARACTERISTICS Open Loop Gain (Amp 1) AOL Closed Loop Gain (Amp 2) AeL f = 1 .0KHz, RL = 320 Po Vee=3.0V, RL= 160, THDs 10% Vee = 6.0V, RL=320, THDs10% Vee=12V, RL=1000, THDs10% Total Harmonic Distortion (f = 1.0 KHz) THD Vee=6.0V, RL=320, Po =125mW Vees3.OV, RL=80, Po =20mW Vees12V, RL=320, Po =200mW Gain Bandwidth Product GBP Output Power I ! Power Supply Rejection (Vee = 6.0V, !':,Vee = 3.0V) i .Muting I c8SAMSUNG Electronics 80 -0.35 dB 55 250 400 mW 0.5 0.5 0.6 1.5 PSRR C1= 00, C2 = 0.01p.F C1=0.1p.F, C2 =0, f=1.0KHz C1= 1.0p.F, C2 = 5.0p.F, f = 1.0KHz GMT Mute=2.0V,1.0KHzsfs20KHz dB 50 1.0 % MHz dB 12 52 >70 dB 467 LINEAR INTEGRATED CIRCUIT KA8602 PIN DESCRIPTION Pin No. Name Function 1 Input (+) Analog Ground for the amplifiers. A 1.0{tF capacitor at this pin (with a 5.0{tF capacitor at pin 8) provides 52dB (Typ) of power supply rejection. Turn-on time of the circuit is affected by the capacitor on this pin. This pin can be used as an alternate input. 2 Input (-) Amplifier input. The input capacitor and resistor set low frequency rolloff and input impedance. The feedback resistor is connected to this pin and output. Amplifier 1's output. The DC Level is:::.: (Vee-0.7V)/2 3 Output 4 Vee DC supply voltage (+ 2.0- + 16V) is applied to this pin. 5 GND Ground pin. 6 Output Amplifier 2's output. This signal is equal in amplitude, but 180 0 out of phase with that at output pin. The DC level is :::.:(Vee - 0.7V)/2.. 7 Mute This pin can be used to power down the IC to conserve power, or for muting, or both. When at a logic "Low" (0 to 0.8 volts), tlie KA8602 is enabled for normal operation. When at a logic "High" (2.0 to Vee 'tolts), the IC is disabled. If Mute is open, that is equivalent to a logic "Low". "- 8 . A capacitor at this pin increases power supply rejection,' and affects turn-on time. Ripple This pin can be left open if the capacitor ,at pin 1 is sufficient. Rejection ~. TYPICAL APPLICATION CIRCUIT Rt 75K 0.1 Audio t"L-J J-4II"""~ Input~ Speaker DIFFERENTIAL GAIN c8SAMSUNG Electronics = 2 x~ 468 KA8602 LINEAR INTEGRATED CIRCUIT Fig. 1 AUDIO AMPLIFIER (HIGH INPUT IMPEDANCE)· 75K • Fig. 2 DUAL SUPPLY OPERATION 75K 0.1 Audio,... I ~W\i""'--<4 Input V"""""I Vee Mute (+ 1.0- +8.0V) VEE ( - 1.0 - - 8.0V) c8SAMSUNG Electronics 469 KA8602 LINEAR INTEGRATED CIRCUIT Fig. 3 AUDIO AMPLIFIER (BASS SUPPRESSION) 0.05 0.05 11:1K i' Input 0.1 O--f Fig. 4 AUDIO AMPLIFIER (BANDPASS) 1000P 0.05· 0.05 ~IP-----+------t 100K rf,'K f Input 0.1 O--t c8SAMSUNG Electronics 470 KA8602 LINEAR INTEGRATED CIRCUIT Fig. 6 FREQUENCY RESPONSE OF Fig. 4 Fig. 5 FREQUENCY RESPONSE OF Fig. 3 36 36 v 32 32 I ~ 24 V \ l/V !IV 16 V 1/11 8.0 8.0 o 10K 1.0K 100 loOK 100 20K 10K 20K !(Hz), FREQUENCY !(Hz), FREQUENCY Fig. 7 OPEN LOOP GAIN & PHASE (AMP 1) Fig. 8 DIFFERENTIAL GAIN vs FREQUENCY 100 1111 80 72 1111 lOB I 1111 60 144 d~in .......... r-, 36 36 IiPhase l r"'---"" ~ 180 40 ........ r-, 20 ; ~ '" ~ ~1:i 32 iii' :5!z ;;: Cl 24 ...J I ,nput~~L!+ ~ -tt 16 C j ~ut t-t-t---t-t-t-t-tttt--1 ").. ll~ t-r- t--t-t-t--t-ttttH--t--t--t-t-Hlllill llllllli 1.0K 100 lOOK 10K 1.0M 1.0K laO !(Hz), FREQUENCY Fig. 9 POWER SUPPLY CURRENT 4.0 iR,=32ri RL=OO Mutl=o 3.0 --- g 2.0 ~ ~ ....- --- I-- 400 L 300 « g 200 r---- o 2.0 -~ 4.0 6.0 8.0 10 Vee (V) qsSAMSUNG Electronics - 12 14 100 - a 16 ./il 1\ \\ \ ~ L Q o , R,=16{l II ~ ~ \ \ 1 ~ 1.0 I II ~ II }" 20K Fig. 10 MAXIMUM ALLOWABLE LOAD POWER 500 I <" 10K !(Hz), FREQUENCY R,=8.0{l \~ 11 '~ I TA= 25°C - Derate at ~ "~..... hig~er temperature a 10 12 14 16 Vee (V) 471 KA8602 LINEAR INTEGRATED CIRCUIT Fig. 11 PSRR vs FREQUENCY (C.=10"F) 60 I--50 Fig. 12 PSRR vs FREQUENCY (C.=5.0"F) 60 Cl~~l.U ....... - 40 30 iii" ~ a: 30 a: iii" ~ a: a: f-- 40 Cl=O If r-.. . . 20 t--- T 50 f;;,; Cl=O.lI'F If Cl~~l.JI'~ ~ I I--- ~~+::LJF 1-0... "'" - ~~,... ....... 20 " 10 o 1.0K 200 10K 20K ~ 10 1.0K 200 I(Hz~ FREQUENCY 60 I I--- cll,JJI') I--- ......... UJ lM I---40 V 1,.-J,... J,..."" ./ i-"'" /'" V V ~r-.. ~~ o 1.0K f(HZ),' FREQUENCY c82!'1SUNG 10K 20K i........ ~ 20 " Cl=O ~ .... V Cl=1.0I'F 10 200 I Cl ~=O~lJ 20 I ~ XI 40 I 50 Clfl.?I'~ 20K Fig. 14 PSRR vs FREQUENCY (C. = 0) Fig. 13 PSRR vs FREQUENCY (C.=1.0"F) 60 50 10K f(Hz), FREQUENCY ./ Cl =O.lI'F 10 200 .Yr 1.0K 10K 20K f(Hz), FREQUENCY 472 LINEAR INTEGRATED CIRCUIT LM386 LOW VOLTAGE AUDIO POWER AMPLIFIER 8 DIP The LM386/SID is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep the external part count low, but the addition of an external resistor and capacitor between Pins 1 and 8 will increase the gain to any value up to 200. The inputs are ground referenced, while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 30 milliwatts when operating from a 6-volt supply, making the LM386 ideal for battery operation. • 8 SOP FEATURES 9 SIP • Battery operation. • Minimum external parts. • Wide supply voltage range: 4V - 12V (LM386) 4V - 9V (LM386S/D) • Low quiescent current drain (4mA.) • Voltage gains: 20 -.'200.1 • Ground referenced Input. • Self-centering output quiescent voltage. • Low distortion. • 3 kinds of package types LM386 (8 Dip), LM386S (9 Sip), LM386D (8 Sop) ORDERING INFORMATION Device Package Operating Temperature SCHEMATIC DIAGRAMS LM386 8 DIP LM386S 9 SIP LM386D 8 SOP -20 - +70°C LM386G PELLET GAIN GAIN INPUT+ (LM386/D) O :LEFT RIGHT (LM386S) Fig. 1 c8SAMSUNG Electronics 473 LINEAR INTEGRATED CIRCUIT LM386 CONNECTION DIAGRAM (LM386/D) GAIN 1 (LM386S) 8 GAIN GAIN TOP VIEW -IN + IN NC GND Vo Vee BY PASS GAIN Fig. 3 Fig. 2 ABSOLUTE MAXIMUM RATINGS (Ta= 25°C) Symbol Characteristic Supply Voltage ~-----------,---- Value Vee ..- .. -------- - - - - - - - --------------+- 15 v --r- 660 LM386 Power Dissipation Unit 500 LM386S mW r------- ------- ------300 LM386D --- 1 - - - - - - - - - - - - - - - - - ' - - - - - - - - - - 1 - - - - - - - - - - - - - - - - - - - - - - ---- - - - - - - - - - - - - - - Input Voltage Operating Temperature Storage Temperature Vi Topr T5tg ±0.4 -20- + 70 -40- + 125 ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vee= 6V, RL = 80, f = 1KHz, unless otherwise specified) Characteristic Symbol Quiescient Circuit Current Icc Output Power Voltage Gain (D-Type) Bandwidth (D-Type) Total Harmonic Distortion (D-Type) Po Av BW THO Input Resistance Ri Input Bias Current Ib c8SAMSUNG Electronics Min Typ Max 4 8 Vee = 6V, THO = 10% 250 325 mW Vee =9V, THD=10% 500 700 mW Test Conditions Vi=O Unit mA Pins 1 and 8 Open 26 1OjJ.F from Pin 1 to 8 46 Pins 1 and 8 Open 300 10jJ.F from Pin 1 to 8 60 Po = 125mW, Pins 1 and 8 Open 0.2 50 KO Pins 1 and 8 Open 250 nA dB KHz % 474 LINEAR INTEGRATED CIRCUIT LM386 TYPICAL APPLICATIONS (LM386) Amplifier with Gain=50 1(34' dB) Low Distortion Power Wienbridge Oscillator 390 Vee I ELDEMA CF-S-2158 3I.L15mA , I I !7 I ~YPASS ~ C1 10 RL I ~0.05~ t J;0.05~ 10 I rh f= Fig. 4 Fig. 5 Square Wave Oscillator 1 21fC1 VR1R2 f=.1KHzIAS SHOWN Amplifier with Bass Boost Vee Vee Vee >=:--n--.-_._-OVo RL 1 1K f=1KHz Fig. 7 Fig. 6 AM Radio Power Amplifier SU SPEAKER Fig. 8 c8SAMSUNG Electronics 475 LINEAR INTEGRATED CIRCUIT LM386 TOTAL HARMONIC DISTORTION-oUTPUT POWER 10 TOTAL HARMONIC DISTORTION-FREQUENCY II r- 2.0 1.8 Vcc-fN RL-BO I-1KHz ~ I I r--- 1.6 ~ 1.4 is Vcc-fN RL-80 Po-125rrtN Av-26dB (C,. -0) U 1.2 1 / 10 . !iii 0.8 ~ 0.6 !c i!: II -- ~ 0.4 0.2 l- t) 0.001 0.1 0.01 / / V V ~ t"""'- o 1.0 20 100 50 200 500 1K 2K 5K 10K 20K P. (W). OUTPUT POWER , (Hz). FREQUENCY V01.TAGE GAIN-FREQUENCY QUIESCENT CIRCUIT CURRENT-SUPPLY VOLTAGE lim 60 50 I: Iii 'I I Vi·O ~- ;:) (;) !: 1\ c .. -o a u § 4r---r---r---r---r---r---+---+-~ II: 1"""'--/\ ~ 1" 3r---~--~--~--~--+---+_--+_~ ~ 1 .l! 10 I 100 1K 10K 100K 10 1M 11 12 Vee (VI. SUPPLY VOLTAGE f (Hz). FREQUENCY OUTPUT VOLTAGE SWING-SUPPLY VOLTAGE FREQUENCY RESPONSE WITH BASS BOOST_ 27 26 25 z V \ 24 :cCI w 23 CI ~ 22 if 21 §! :!!. ~ I ~r 1\ \ 1/ 20 \ I, ~ 19 r-- 18 10 Vee M. SUPPLY VOLTAGE c8SAMSUNG Electronics 11 12 I 17 20 50 100 200 500 1K 2K 5K 10K 20K f (Hz). FREQUENCY 476 CDP ICs COP APPLICATION Device KA9201 KS5990 KS5991 KA8309 KA9255 KA9256 KA9257 KDA0316 KS56C820 Function RF Amp for COP Digital Signal Processor Digital Signal Processor Servo Signal Processor PWM Motor Driver Dual Power Operational Amplifier Dual Power Operational Amplifier 16-bit D/A Converter for COP 4-bit Microcontroller Package 30 80 80 48 22 10 12 SOP FQP FQP FQP SOP SIP HIS SIP HIS 20 DIP/20 SOP 80 FQP Page 551 449 508 537 568 573 575 579 588 • KS5990 CMOS INTEGRATED CIRCUIT DIGITAL SIGNAL PROCESSOR The KS5990 is a monolithic integrated circuit designed for compact disc players application. It is consisting of 16KSRAM, digital filter and digital signal processingcircuits. 80 FOP FEATURES • All digital signals for regeneration are processed using one chip. • Internal aperture compensation digital filter • EFM·Pll circuit for bit clock regeneration • EFM data demodulation • Frame synchronous signal detection, protection • Compensation using mean value, prior value retention • Subcode signal demodulation subcode Q detection • ClV servo for spindle motor • 8·bit tracking counter • CPU interface with serial bus • Subcode Q reaister • Built-in 17th digital filter • Built·in 16KSRAM • 80 Quad flat package type ABSOLUTE MAXIMUM RATING ORDERING INFORMATION Operating Temperature (Ta=25°C) Characteristic Symbol Supply Voltage Input Voltage Output Voltage Operating Temperature Storage Temperature Voo VI Vo Topr T51g c8~SUNG I Value -0.3- + 7 -0.3- + 7 -0.3- + 7 - 20- + 75 -40- + 125 Unit V V V °C °C 479 KS5990 CMOS INTEGRATED CIRCUIT BLOCK DIAGRAM :.c:: :.c::t-z:.c:::.c::t- o ocr:wooo ctJooooo cr: t- cncncncncncn CPU INTERFACE TRACKING COUNTER CLV SERVO SUBCODE BLOCK DIGITAL FILTER BLOCK SMEF SMON SMPD 3 INTERPOLATOR BLOCK SOS1 LKFS VCOI VCO TIMING GEN. PHASE DETECTOR ECC BLOCK EFM DEMODULATOR EFMO PHAS SEL1 38 SEL2 SEL3 MODE SELECTOR SEL4 X'TAL TIMING GEN. SRAM ADDRESS GEN. SS 48 SEL5 c8SAMSUNG Electronics AD01 480 AD11 KS5990 CMOS INTEGRATED CIRCUIT ELECTRICAL CHARACTERISTICS 1. DC Characteristics (Voo = 5V ± 10%, Vss = OV, Ta = 25°C, unless otherwise specified) Characteristic Symbol Test Conditions Min Typ Max Unit Input High Level Voltage V1H 1 Note 1 0.7 Voo VOD V Input Low Level Voltage V1L 1 Note 1 0 0.3 Voo V Input High Level Voltage V1H 2 Note 2 0.8 Voo Input Low Level Voltage V1L2 Note 2 0.2 Voo V Output High Level Voltage VOH IOH = -1mA Voo-0.5 VOD V Output Low Level Voltage VOL IOL= 1mA 0 0.4 V I V Input Leak Current kc V1N = 0-5.5V -5 +5 p.A Three-State Pin Output Leak Current ILO VOUT = 0-5.5V -5 +5 p.A SRAM Input Leak Current ISLC V1N = 0-5.5V -5 +200 p.A Note 1. Related pins-EFMI, RESET, TEST, MUTE, SEL 2 - 5, ML T, MOAT, SOEN, SOCK. Note 2. Related pins-TRCK, MCK, SRAM. 2. AC Characteristics A. XIN Pin, VCOI Pin (1) When pulse applied to XIN and VCO (Voo = 5V ± 10%, Vss = OV, Ta = 25°C, unless otherwise specified) Item Symbol Min Typ Max Unit "H" Level Pulse Width tWHX 20 ns "L" Level Pulse Width twLX 20 ns ns Pulse Frequency tcx 55 Input "H" Level V1H Voo-1.0 Input "L" Level V1L 0.8 V Rising Time Breaking Time t R, tF 15 ns V I-I------tcx--------l ~tWHX---I---tWLX-----+ I I I I I I I XTAL I I I VOD/2 I I ----1 I t, ~ I c8SAMSUNG Electronics 481 CMOS INTEGRATED CIRCUIT KS5990 B. Pins MCK, DATA, MLT, TRCK, SaCK (V DD =5.0V±10%, Vss=OV, Topr=25°C) Item Symbol Clock Frequency fCK Clock Pulse Width tWCK Setup Time tsu Hold Time tH Delay Time tD Latch Pulse Width tWL CNIN SOCK Frequency fr CNIN SOCK Pulse Width twr Min Typ Max Unit 1 MHz 300 -300 300 300 300 ns -- ns ns ns ns 1 300 MHz ns 1IfCK tWCK tWCK MCK DATA MLT tsu tH to tWL TRCK SOCK (When SOEN = "H") twr twr 1/fr SOOT (In relation to SOCK) c8SAMSUNG Electronics 482 KS5990 CMOS INTEGRATED CIRCUIT C. OAC Interface (Voo =5V ± 10%, Vss =OV, Topr =25°C, CL =50pF) Item Symbol OF is OFF Min Typ When OF ON Max Typ Min Max Unit Clock Pulse Width tw Clock Skew (Fast) tIck 40 40 ns Clock Skew (Delay) tdck 40 40 ns Data Skew (Fast) tID 0 0 ns tdO 80 80 ns Data Skew (Delay) 236 118 ns I----tw---I---tw---l BLCK BLCK --+--+---tdO tIck - "I II-- tdck DATA * Note: CHCK, WDCK, APTR, APTL DA01 through DA16 during parallel DA conversion or C1 F1, C1 F2, C2F1, C2F2, C2FL, C2PO, XTFR, 2WDCK, DATA during serial conversion. c8SAMSUNG Electronics 483 • KS5990 CMOS INTEGRATED CIRCUIT PIN CONFIGURATION l<:: U J: U l<:: U 0 :;; ~ « 0 l<:: ...J u [D /g l<:: U 0 :;; I~ 0 0 > <'II CI) 11. l<:: ...J ::J :;; 0 ~ I~ II: 11. [D Q. II: 11. !;( 0 ...J 11. 11. U U U Q. <'II <'II <'II <'II C2F1 SMON C1F2 SMPD C1F1 APTL EFMI APTR EFMO SEL5 SEL4 VCOO SEL3 VCOI SEL2 TEST SEL1 PHAS XOUT Vss XIN MCK Vss MLT 4MCK MOAT CS XRST WE TRCK AD11 ISTAT AD10 MUTE AD9 SBCK AD? SDAT AD6 saOT AD5 AD8 AD4 SOS1 l<:: () 0 CI) z w 0 CI) ~ « en 11. CI) ...J II: l<:: co !Xl 0 qsSAMSUNG Electronics ,... .... .., [D [D <'II [D 0 0 0 Iii 0 0 « <'II 0 « ..,0 « 484 KS5990 CMOS INTEGRATED CIRCUIT PIN DESCRIPTION Symbol 1/0 1 SMEF 0 No. Description Pin 1 output is switched constant when output filter of the spindle motor is energized. 2 SMON D- ON/OFF control for spindle motor. 3 SMPD 0 Spindle motor drive. Provides rough control during CLV·S mode arid phase control during CLV·P mode. 4 SMSD 0 Spindle motor drive. Controls speed during CLV-P mode. 5 EFMZ I EFM signal from RF amplifier. 6 EFMO 0 Controls slice level of the EFM signal. 7 LOCK 0 The output of pin 7 reflects the status of the GFS signal which is sampled at PBFR/16. When the GFS signals is "H", but, when the signal has remained "L" for at least 8 samples, the output of pin 7 is "L". 8 VCOO 0 VCO output. The frequency is f =8.6436M Hz, when locked by the DBFR signal. 9 VCOI I VCO input. 10 TEST I (OV). 11 PHAS 0 The output of Pin 11 provides phase comparison of EFM signal and VCO/2. - GND (OV). 12 Vss 13 MCK I Pin 13 provides serial transmission clock from the CPU. Data is latched on the leading edge of the clock. 14 MLT I Pin 14 prbvides latch input from the CPU. 8-bit shift register data (serial data received from the CPU) is latched in each of the registers. 15 MOAT I Serial data from the CPU. 16 XRST I System reset ("L"). 17 TRCK I Tracking pulse input. 18 ISTAT 0 Output reflecting internal condition as designated by address. 19 MUTE I Muting input. MUTE is "L" when ATTM of internal register A is "L" (normal condition). MUTE is "H" when meting condition is set. 20 SOOK 0 Output the results CRC check of subcode O. 21 SBCK I Clock input for subcode serial output. 22 SDAT 0 Serial output of subcode. 23 SOOT 0 Output of subcode O. 24 SOS1 0 Output of subcode sync SO + S1. 25 SOCK I/O Clock for reading subcode O. 26 SOEN I Input for selecting SOCK (L; SOCK is output, H; SOCK is input) 27 SRAM I SRAM is "H" in Nomal, SRAM is "L" when system is testing. 28 LKFS 0 Display output for frame sync lock status. c8 !!e!'ISUNG 485 • KS5990 CMOS INTEGRATED CIRCUIT PIN DESCRIPTION No. Symbol 1/0 (Continued) Description 29 DB8 1/0 Data pin for external RAM. DATA8 (MSB) in test mode. Hi·Z in nomal 30 DB7 1/0 Data pin for external RAM. DATA7 in test mode. Hi-Z in nomal 31 DB6 1/0 Data pin for external RAM. DATA6 in test mode. Hi-Z in nomal 32 DB5 1/0 Data pin for external RAM. DATA5 in test mode. Hi-Z in nomal 33 VDD - Power supply ( + 5V). 34 DB4 1/0 Data pin for external RAM. DATA4 in test mode. Hi-Z in nomal 35 DB3 1/0 Data pin for external RAM. DATA3 in test mode. Hi-Z in nomal 36 DB2 1/0 Data pin for external RAM. DATA2 in test mode. Hi-Z in nomal 37 DB1 1/0 Data pin for external RAM. DATA1 (LSB) in test mode. Hi-Z in nomal 38 AD01 0 (LSB) 39 AD02 0 40 AD03 0 41 AD04 0 42 AD05 0 43 AD06 0 44 AD07 0 45 AD08 0 46 AD09 0 47 AD10 0 48 AD11 0 (MSB) 49 WE 1/0 In nomal mode, this is WE output. In test mode, write enable input. 50 CE 1/0 In nomal mode, this is CE output. in test mode, chip enabl,e input. 51 4MCK 0 Divider output for crystal. f 52 Vss - GND (OV) 53 XIN I Input to crystal oscillator circuit. Depending on the mode the frequency is either f 8.4672 r 16.9344M Hz. 54 XOUT 0 Output from crystal oscillator circuit. Depending on the mode the frequency is either f 8.4672 or 16.9344MHz. 55 SEL1 I Mode selection input 1. 56 SEL2 I Mode selection input 2. 57 SEL3 I Mode selection input 3. 58 SEL4 I Mode selection input 4. ' Code switch input for audio data output. 2's complement output when "L", offset binary output when "H". 59 SEL5 I Mode selection input 5. Code switch input for audio data output. Serial output when "L", parallel output when "H". = = = =4.2336MHz = = eSC SAMSUNG'CTOR • • Electronics = In nomal mode (TEST 'L', SRAM 'H'), these pins are High impedance (Hi-Z) In test mode (TEST 'H', SRAM 'L'), these pins are Output address of external RAM 486 KS5990 CMOS INTEGRATED CIRCUIT PIN DESCRIPTION No. Symbol 110 (Continued) Description 60 APTR 0 Output for aperture compensation. "H" when R-ch. 61 APTL 0 Output for aperture compensation. "H" when L-ch. 62 C1F1 0 Monitor output reporting status of error correction for C1 decoder. When SEL5='L', DA01 (LSB of parallel audio data) is output when SEL5='H'. 63 C1F2 0 Monitor output reporting status of error correction for C1 decoder when SEL5 = 'L', DA02 is output when SEL5 = 'H'. 64 C2F1 0 Monitor output reporting status of error correction for C2 decoder when SEL5 = 'L', DA03 is output when SEL5 = 'H'. 65 C2F2 0 Monitor output reporting status of error correction for C2 decoder when SEL5::"L', DA04 is output when SEL5='H'. 66 C2FL O' When SEL5 = 'L', output of status condition. C2FL is set 'H' when the C2 sequence. Presently being corrected becomes impossible to correct. DA05 is output when SEL5='H'. 67 C2PO 0 Display output of the C2 pointer when SEL5 = 'L', DA06 is output when SEL5='H'. 68 XTFR 0 When SEL5 = 'L', output of read frame dock which is 7.35KHz of the crystal system. DA07 is output when SEL5 = 'H'. 69 PBFR 0 When SEL5 = 'L', output of write frame clock which is 7.35KHz when locked by the crystal system. DA08 is output when SEL5 = 'H'. 70 PBCK 0 When SEL5 = 'L', output of VCO/2 (f = 4.3218MHz when locked by the EFM signal). DA09 is output when SEL5 = 'H', 71 FSDW 0 When SEL5 = 'L', output for unprotected frame sync patterns. DA10 is output when SEL5='H'. 72 ULKFS 0 Output for display of status of frame sync protection when SEL5 = 'L', DA11 is ouput when SEL5='H'. 73 Voo - Power supply ( + 5V). 74 JIT 0 When SEL5 = 'L', output for display of either RAM overflow or underflow for +4 frame jitter absorption. DA12 is output when SEL5='H'. 75 ZWDCK 0 When SEL5 = 'L', output for strobe signal (352.8KHz when OF is ON, 176.4KHz when OF is OFF). DA13 is output when SEL5='H'. 76 BLCK 0 When SEL5 = 'L', inverse output of BLCK. DA 14 is output when SEL5 = 'H'. 77 BLCK 0 When SEL5= 'L', bit clock output (4.2336MHz when OF is ON, 2.1168MHz when OF is OFF) DA15 is output when SEL5='H'. 78 DATA 0 Serial data output of audio signal when SEL5 = 'L'. DA16 is output when SEL5='H'. 79 WDCK 0 Strobe signal output. Output is 176.4KHz when OF is on. Output is 88.2KHz when OF is off. 80 CHCK 0 Strobe signal output. Output is 88.2KHz when OF is on. Output is 44.1 KHz when OF is off. c8~~SUNG I 487 CMOS INTEGRATED CIRCUIT KS5990 DESCRIPTION OF FUNCTION MODE SELECTOR To control several blocks in KSS991, there are S selecting pin signals. Table 1. Shows selected mode by these signals. Function * Input Pins 1-. SEL1 SEL2 SEL3 SEL4 SEL5 XIN OF PIS 08/2'S CO ROM/Audio 0 1 0 0 0 16M ON S 2'S Audio Audio 0 1 0 1 1 16M ON P OB 0 1 1 0 0 16M OFF S 2'S Audio 0 1 1 1 1 16M OFF P OB Audio 1 0 0 0 0 SM ON S 2'S Audio 1 0 0 1 1 SM ON P OB Audio 1 0 1 0 0 SM OFF S 2'S Audio 1 0 1 1 1 SM OFF P OB Audio 1 1 1 1 0 SM OFF S 2'S CD ROM Table 1. Mode Selection • Note: • • • • SM/16M: Selection of either the XIN or XOUT clocks will provide either a S.4672MHz or 16.9344MHz signal. OF: Digital Filter PIS: Parallel mode/serial mode OB/2'S: Offset • Clock selection Selectioin of an 16.9344MHz or S.4672MHz oscillator clock is possible at pins XIN and XOUT. However only 16.9344MHz clocks are provided for digital out usage. • Digital filter selection When the digital filter function is switched to ON, all signals on the DAC interface are handled at twice the normal speed. • Parallel/Serial output selection When the output is parallel, 16-bit parallel data is output from pins DA01 through DA16. When the output is serial, the following signals are output at pin DA01 through DA16. DATA (DA16) Serial data output (MSB or LSB first output) BLCK (DA15) Internal system clock (with OF ON 4.2336MHz and with OF OFF 2.116SMHz) BLCK (DA14) Bit clock (BLCK inversion signal) 2WDCK (DA13) 4X multiplied CHLK Signal JTF (DA12) Jitter Margin Overflow/Underflow signal ULKFS (DA 11) Display output of frame sync protection status FSDW (DA1D) Unguarded (unprotected) frame sync signal PBCK (DA09) Signal at 1/2 Veo pin cycle times. When locked 4.321SMHz PBFR (DAOS) Write Frame Clock Signal. When locked 7.3SKHz. XTFR (DAD7) Read Frame Clock signal. Crystal system 7.35KHz. C2PO (DA06) C2 Pointer signal C2FL (DAOS) Correction mode output, C2FL C2F1, C2F2 C2F2 (DA04) Monitor Output of Error Correction Mode for C2 Decode C2F1 (DA03) C1F2 (DA02) Monitor Output of Error Correction Mode for C1 Decode C1F1 (DA01) = c8SAMSUNG Electronics 488 CMOS INTEGRATED CIRCUIT KS5990 • OFFSET Binary/2's Complement Selection When pin SEl4 is at "H" output occurs at OFFSET BINARY; when it is at "l" output occurs at 2's complement. • CDROM/AUDIO Selection When SEl1 SEl2 SEl3 "H", CDROM is selected. Then the C2 pointer is output with each byte (8 bits) and neither the mean value interpolation nor the preceding value hold are exercised. That is, if an error occurs in the upper 8 bits of a 16-bit data, only the C2 pointer related to those upper 8 bits switches to "H" while the lower 8 bits are handled as correct data. = = = Microcomputer Interface Data from microcomputer are inputed through M DAT pin by MCK which is clock signal of microcomputer and pulse signal through MlT pin is for inputed data load one of 6 kinds of control registers. Fig. 1 Shows the timing diagram of data input from microcomputer MCK _D_7__ (M_S_Bl___________________________ MOAT I· MLT Register I• Data Address - - - - - - I u __________________________________________ __________ -Jx~ va_li_d_Da_ta___________ Fig. 1 Data Input Timing Diagram According to the address of MDAT, control register is selected as below table 1. Control Register Comment Data Address D7-D4 D3 D2 D1 DO ISTAT Pin CNTl-Z Data Control 100 1 ZCMT HIPD NClV CRCD Hi-Z CNTl-S Frame Sync Protection Attenuation Control 1 o1 0 FSEM FSEl WSEl ATTM Hi-Z CNTl-l Tracking Counter lower 4 Bit 1 o1 1 TRC3 TRC2 TRC1 TRCO Complete CNTl-U Tracking Counter Upper 4 Bit 1 1 o0 1 o1 TRC7 TRC6 TRC5 TRC4 COUNT COM WB WP GAIN Hi-Z CNTl-W ClV Control 1 CNTl-C ClV Mode 1 1 1 0 ClV Mode PW~64 Table 1. Data of Selected Control Register c8SAMSUNG Electronics 489 • CMOS INTEGRATED CIRCUIT KS5990 According to DO through 01 OAA, The function of each control registers is described below 1) CNTL·Z Register This is a control register for the zero cross mute of audio data, PHAS, the control signal of phase servo and CRCF data. Data=O Data=1 ZCMT 03 Zero cross mute "OFF" Zero cross mute "ON" HIPO 02 Phase normally active Phase convert "L" to "Hi-Z" by LKFS NCLV 01 Phase servo driven by frame sync Phase servo be controlled by base counter CRCO DO SOOT output without SOaK SODT = CRCF during the rising time of SOS1 2) CNTL·S Control Register This is a control register for frame sync. Protection and attenuation. FSEM FSEL 0 0 1 0 1 1 Frame WSEL Clock 0 2 0 1 4 1 ATTM MUTE ±3 0 0 ±7 0 1 - 8 1 0 -12 13 1 1 -12 dB 0 3) CNTL·L, U Control Register When the numbers of tract will be counted is inputed from microcomputer, data loaded these registers. (See tracking counter) ,c8SAMSUNG Electronics 490 KS5990 CMOS INTEGRATED CIRCUIT 4) CNTL·W Control Register This is a control register for CLV-Servo Oata=O Data = 1 Comments COM 03 XTFR/4 & PBFR/4 XTFR/4 & PBFR/4 Phase comparative frequency during PHASE-mode WB 02 XTFR/32 XTFR/16 Bottom hold period during SPEED and HSPEED-mode WP 01 XTFR/4 XTFR/2 Peak hold period during SPEED-mode GAIN DO -12dB OdB SMPD gain during SPEED & HSPEED-mode I 5) CNTL·C Control Register This is a control register for CLV-Servo Mode 07-04 03-00 SMOP SMSD SMEF SMON Forward 1 000 H Hi-Z L H Reverse 1 010 L Hi-Z L H SPEED 1 1 1 0 SPEED mode Hi-Z L H HSPEED 1 1 HSPEED mode Hi-Z L H 1 1 1 1 PHASE mode PHASE mode Hi-Z H XPHSP o1 1 0 SPEED, PHASE mode Hi-Z or PHASE mode Lor Hi-Z H VPHSP o1 o1 SPEED PHASE mode Hi-Z or PHASE mode Lor Hi-Z H STOP o0 L Hi-Z L L PHASE 1 1 1 0 o0 0 0 c8SAMSUNG Electronics 491 KS5990 CMOS INTEGRATED CIRCUIT ------------------------------------------------------------------------------TRACKING COUNTER This counter i,s used to improve track-jumping characteristics. The number of tracks that are to be jumped are loaded into either register CNTL-L or CNTL-U. After either register CNTL-L or CNTL-U have been loaded and at the rising edge of the next M LT, TRCK pulse count begins. n (if register CNTL-L register CNTL-U 0, then n 256) is loaded into the register, and when the address is set in CNTL-L, the signal (COMPLETE) is output from pin SENS at high level until the "n"th pulse and then at low level for succeeding pulses. When the adjress is set in CNTL-U, the signal (COUNT) TRCK/2n is output. Fig. 2 shows the timing of the tracking counter. = = = = MLT CNTL·L, U Tracking Command Data Loading TRCK ISTAT (Count) ISTAT (Complete) _ _ _~" Fig. 2 Tracking Count Timing Chart MOAT MLT CNTL State ISTAT X X U U X X CNTL-L Complete X X X U CNTL-H Count X X CNTL-C PW~64 X U X X Mode Hi-Z Fig. 3 ISTAT Output Signal by CNTL Register c8SAMSUNG Electronics 492 KS5990 CMOS INTEGRATED CIRCUIT X'TAL OSCILLATION 1) Block Diagram SEL F/F IN Q CK Q "'- 2) Timing Chart (SEL = 0) in Use f = 16.9344MHz X'tal I asc. XIN 4MCK 3) Timing Chart (SEL =1) in use f =8.4612MHz X'tal asc. XIN 4MCK c8SAMSUNG Electronics 493 CMOS INTEGRATED CIRCUIT KS5990 DIGITAL FILTER KS5990 is built-in 17th FIR Digital Filter. The digital filter consists of RAM, multiplier, serial to parallel and parallel to serial converter and controller. 1) Block Diagram DATA IN '>---I-~ RAM (288 Bit) Multiplier FTCK ">-----1 (ADDER) Overflow ~f-- DATA OUTPUT Limiter t---- LRCK DF Controller .........- - WDCK ~-------------------------------------------------' 2) Specification DC through 18KHz ripple 20KHz of attenuation against 1KHz ±O.07dB max O.65dB max 44.1 ± 1KHz attenuation against 1KHz 44.1 ± 5KHz attenuation against 1KHz 44.1 ± 10KHz attenuation against 1KHz 44.1 ± 20KHz attenuation against 1KHz - 30dB frequency range against 1KHz - 60dB frequency range against 1KHz 87dB min 58dB min 44dB min 10dB min 44.1 ± 14KHz 44.1 ±4KHz c8SAMSUNG Electronics 494 KS5990 CMOS INTEGRATED CIRCUIT 3) Frequency Characteristic A. Ripple Characteristic Graph B. Low Pass Filler Frequency Characteristic Graph -4.4 ~-r'\ i--"'~ -4.9 ....... \ .... f- 1\ -5.4 -5.9 -40 1\ \ -6.4 -7.4 -120 15.0 20.0 Frequency (KHz) c8SAMSUNG Electronics V I J I 1"1 11"\ -so -100 10.0 ""1"""\ -60 -6.9 5.0 '\ -20 10.0 20.0 30.0 40.0 50.0 Frequency (KHz) 495 KS5990 CMOS INTEGRATED CIRCUIT EFM BLOCK The EFM Block is made up of an EFM Demodulator which demodulates the EFM data inputted from a recorded disc, EFM Phase Detector, Frame Sync Detector/Protector/lnserter, Subcode Sync Detector, and Controller for the EFM Block. 1) EFM Phase Detector AS the EFM signal inputted from the disc contains 2.16 MHz component, a 4.32 MHz bit clock is generated to detect the phase of the signal. The PBCK outputs the result to the PHAS terminal after detecting the phase on the edge of the EFM signal. The relationship between the EFM signal and the PBCK is explained in the following Timing Chart. A. In normal operation VCOI; PBCK; EFMI: _ _ _ _ _.... EFMD; -----+---' Hi-Z Hi-Z PHAS;----~ Fig. 5 EFM Phase Detection Timing Chart CaseJ ,: When the EFM signal is slower than the VCO Case ~: When the EFM signal is locked up the veo Case @: When the EFM signal is faster than the veo B. In abnormal operation When the HIPD of CNTL-Z is chosen as 'L' from M-COM, the detector of the EFM phase operates as in Fig. 5. When the HIPD is 'H' and the time 'L' of LKFS is below 3.5T against a PBFS period T, it outputs Hi-Z to the PHAS terminal as long as 'L". When it is above 3.5T, it outputs Hi-Z as long as 3.5T 2) EFM (Eight to Fourteen) Demodulator The modulated 14 bit Data is inputted from a disc, then it is inputted into a NRZ-I circuit. As the EFM Data passes by the ~RZ-I circuit which converts 14 bit data into 8 bit data, it gets demodulated 8 bit Data. There are two kinds of demodulated data: subcode and PCM data. The subcode data is inputted into the subcode Block, and the PCM Data is written into 16KSRAM by, with both CE signal and WE signal. 3) Frame Sync Detector/Inserter/Protector A. Frame Sync Detector A CDP data is composed of units of frame. A frame is made up of Frame Sync, Subcode Data, PCM Data, Redundancy Data. A Frame sync is detected per frame against this format. c8SAMSUNG, Electronics . 496 KS5990 CMOS INTEGRATED CIRCUIT B. Frame Sync Protector/lnserter There are cases in which the Frame Sync is left out or detected from the data besides the frame sync because of the effects of an error on the disk or Jitter. In this case the frame sync needs to be protected and inserted. To protect the frame sync, a window is made by the use of WSEL signal of CNTL-S Reg. The frame sync which comes into the window is true data, and the frame sync deviating from the window is disregarded. 1 Frame (588 CHANNEL BITS) I REDUNDANT BITS FOR MERGING AND LOW FREQ. SUPPRESSION D-J~T'_A________\~/~----D----'~-----------\~ ( (_ _ _ _ _ 4 7 8 14 14 14 14 14 14 14 14 ~4 0 1 2 3 5 6 9 10 - 11 - 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 - 27 - 28 29 30 - 31 Frame Sync. Pattern (24 Channel bits) (Frame Format) The width of the window is determined by the WSEL signal from the CNTL-S Reg. (cf. CNTL-S) Being inserted frame syncs continuously. If the frame sync is not detected inside a frame sync protection window, insert a frame sync. When the fame sync reaches the number of a frame designated by the FSEM and FSEL by the CNTL-S Reg ULKFS becomes 'L' and the frame sync protection window is disregarded. In this case an outputted frame sync is unconditionally accepted. After the frame sync is received, the ULKFS signal becomes 'H' and accepts a frame sync detected inside the window. LKFS ULKFS I I When a play back frame sync coincides with a generated frame sync. a I EFM Write demand > ECC R/W demand. 2) EFM Demodulation Data Write Demand EFM demodulated data mube be written to SRAM, priority is controlled when the write demand signal is transmitted to ttle SRAM Address Generator, and the Enable signal is transmitted to the EFM Block. The generated address is transmitted to the SRAM Interface circuit. Generated address is data which deinterleave is considered, and in a frame 32 addresses are generated. A. In the use of 16K SRAM (in EFM & ECC Write): SRAM terminal 'H' DB1-DB8 and AD1-AD11 terminals are in a state of Hi-Z. CE and WE are 'Don't Care.' 4 MCK: n INCS: fl I I I I INWE:' r-, I I I I I I n fl fl I I I I I I I IAD1 - IAD11: Read IDB1-IDB8: 3) RIW Demand of ECC Data For C1 and C2 ECC treatment 129 times of Address demand signals generated due to an R/W operation must be given to 64 PCM data and 65 Pointers during a frame. The write of FCC processing is the same as 2) EFM Write operation. In reading it is as follows: A. In the use of 16K SRAM Reading Timing (SRAM: H) 4MCK: INCS: (lNWE='H) IAB1 n n n n n n n n.- -IAD~ECC ADDRXECC ADDRXECC ADDRXECC ADDRXECC ADD*CC ADDRXECC ADDRe IDB1-IDB8: ECC Data Bus: *: Valid ECC Data c8SAMSUNG Electronics 501 I KS5990 CMOS INTEGRATED CIRCUIT 4) D/A Converter Read Demand Since each 6 sampling data on the left and right channel and 12 C2 Pointer data must be read for a frame, 36 read enable demand signals are caused. The timing chart for O/A Converter Read is the same as the R/W demand block of ECC data. As a result the number of the maximum R/W operation action demanded for a frame is 179 times. 5) Address Generated Block The interleaving data in encoding is deinterleaved in decoding. The data of 108 frames is needed to get 8 frame of PCM data in a COP format. To get data suitable for a COP format 2 counters are needed. A write base counter is used to write EFM demodulation data are hindered in storing data in SRAM due to disk shaking, the instability of a servo system etc. 6) Jitter Margin EFM demodulation data are hindered in storing data in SRAM due to disk shaking, the instability of a servo system etc. Now that the data that must be kept is limited by the size of SRAM in view of time, data is destroyed if the value of read/write base counter has a difference above ± 5 frames. Being loading into the value of write base counter with enforcement, the value of read base counter has a jitter margin below ± 4 frames when there is a difference over ± 5 frames in the read/write base counter value. A read base counter value is baded into a write base counter with enforcement when data on the left and right channels are all muting, or when NCLV is 'H', and CLV-Servo is stop, forward and reverse. When the difference between read/write base counter is above ± 4 frame, a 'H' signal is outputted to the Jlf terminal for a period. c8SAMSUNG Electronics 502 KS5990 CMOS INTEGRATED CIRCUIT INTERLEAVE, MUTE BLOCK When a burst error occurs on a disk, sometimes the data can't be corrected even if a ECC process is conducted. An interpolator block revises data by using C2 Pointer outputted through the ECC Block. PCM data inputted into a data bus are inputted to the left and right channels respectively in order of 8 bit C2 POinter, Lower 8 bit and Upper 8 bit. A pre-hold method is taken when a DA Flag is 'H' continuously. In case of the occurrence of a single error, a mean value interpoalting method is carried out with the range of PCM Data before and after an error happens. When a check against a checked cycle is 'L', R-CH Data is outputted. L-CH Data is outputted when the check is 'H'. As to the timing chart of a interpolator block see figure 6. • A D C2 Pointer: E /,/ ./" F ........ __ __.. H G -----""'-------.!....-....._-'-__________ A+C . I' B = -2- : Mean value mterpo atlon F = E = D : Pre-hold interpolation G = F + H : Mean value interpolation 2) Mute and Attenuation By a Mute terminal and a ATTM signal by the CNTL-S Reg., AUDIO data is muted or reduced. There are two kinds of mute: zero cross muting, muting. A. Zero Cross Muting Audio data is muted when a mute terminal is 'H' and when 6 bits in a high position of Audio Data is all 'H' or 'L'. B. Muting Audio data is muting when ZCMT of the CNTL-Z Reg. is 'L' and when a mute terminal is 'H'. C. Attenuation By means of the ATTM signal of the CNTL-S Reg. and the signal of Mute terminal, a audio signal attenuation occurs as the following. ATTM MUTE Degree of Attenuation 0 a o dB 0 1 - 1 a -12 dB 1 1 -12 dB c8SAMSUNG Electronics dB 503 CMOS INTEGRATED CIRCUIT KS5990 BCLK: 2WD~..._ _ _...... L WDCKl~_ _ _ _ _ _ ___ L L CH~...____________________________~ APTR: I APTL: I DAFL: DAFL for 16 Bit RIGHT CHANNEL DATA (Audio Dat~) DAFL: ,!i-DA-F-L-fo-r-a-B-it-R--C-H-U-P-p-E""'R·rD-A-F-L -fo-r-a-Bi-tR---C-H-LO-W--ER"IID-A-F-L-fo-r-a-B-it-L--C-H-U-P-P-E-'R'--------------1 ' ______________ ______________J I~ J~ (CD-ROM Data) Fig. 6. When Sel. 5 is "L', and OF is off, the Timing Chart of PCM Data c8SAMSUNG Electronics 504 KS5990 CMOS INTEGRATED CIRCUIT CLV SERVO CNTl-C Reg. is selected to control ClV Servo by the Data inputted from wCOM. In CNTl-C Reg, the data from appoint CLV servo action mode and control spindle motor. wcom 1) Forward The states of output terminal related to the mode to rotate a spindle motor forward are SMDP = 'H', SMSD;: Hi-Z, SMEF = 'L' and SMON = 'H' respectively. I 2) Reverse The modes to rotate a spindle motor reversly are SMDP='L', SMSD='Hi-Z', SMEF='L', and SMOD='H'. 3) SPEED-Mode The SPEED-Mode is the mode for the rough control of a spindle motor when a track jumping or a EFM phase is unlocked. If a cycle of VCO is 'T', the pulse width of a frame sync is '22T'. Sometimes EFM signal is above 22T due to noises on a disc, etc. A correct frame sync cannot be detected when the signal is not removed. In this case, the pulse width of EFM signal is detected at a cycle of XTFR/2 or XTFR/4 which are peak hold clocks. The pulse width of EFM signal is detected at a cycle of XTFR/16 or XTFR/32 which are bottom hold clock. The value detected is used for a frame synchronization signal. When the frame synchronization signal is smaller than 21T, the SMPD terminal outputs 'L'. When it is 22T, Hi-Z is outputted. 'H' is outputted when it is above 23T. When the GAIN signal of CNTL-W Reg. is 'L', the SMDP terminal is outputted after being attenuated at - 12dB when the signal is 'H', the terminal is outputted without any attenuation. In SMSD, SMEF, and SMON terminals Hi-Z. 'L', and 'H' are outputted. 4) HSPEED-Mode The rough servo mode which moves 20,000 tracks in high speed acts between inside of CD and outside of CD. In the domain of a mirror of the track without a pit EFM and the signal of 20KHz overlap. In the case, since in the speedmode the peak range of a longer mirror signal than the original frame sync is detected, the servo operation become unstable. In HSPEED-mode a peak hold uses a 8.4672/256 MHz signal, and a bottom hold removes a mirror component and stabilizes the high speed servo operation by using XTFR/16 or XFFR/32 period signal. In SMSD, SMEF, and SMON terminals, Hi-Z, 'L', and 'H' are outputted. 5) PHASE-Mode A PHASE Mode is the mode to control an EFM Phase. When NCLV of CNTL-Z is 'L', it detects a phase difference between PBFR/4 and XTFR/4, and when NCLV is 'H', it detects the phase difference between. Read base Counter/4, write base Counter/4, and then output to SMPD ~:rminal. See figure 8. If the VCO/2 signal cycle is put as 'T' and the PBFR during a 'H' period as a Wpb , it outputs 'H' to a SMSD terminal· from the falling edge of PBFR for (Ww 278T) x 32, and later outputs 'L' to the falling edge of PBFR. Refer to figure 9. 6) XPHSP-Mode A XPHSP mode is the mode used in normal operation. It samples a lKFS signal made in the frame sync block at a cycle of PBFR/16. After sampling 'H', DHASE mode is carried out. When 'L' is sampled continuously 8 times, it goes over to speed-mode. CNTL-W Reg. decides the choice of the peak hold of speed-mode, the bottom hold cycle of SPEED and HSPEED-Mode and the choice of a gain. c8SAMSUNG Electronics 505 KS5990 CMOS INTEGRATED CIRCUIT 7) VPHSP-Mode A YPHSP-Mode is the mode used for rough servo control. It uses YCO instead of X'tal in the EFM pattern test. When the range of YCO center changes, YCO is easily loaded because the rotation of a spindle motor changes in the same direction. 8) STOP Stop is the mode to stop a spindle motor. SMDP = '~.', SMSD = Hi-Z, SMEF = 'L', SMON = 'L' ~--------TB'----------~-TP-i PHC: BHC:----~----~--~~--_+------~------~r_--~~--~~---=----~.----~- BH F/F (~22T) BH F/F (~23T) ------------~~----------------~ Latch (22T) Latch (23T) Z: 22T (output of CD) SMSD: _________ ~ L: 21T~(output of ®) ~____------------~H:23T~ (output of ®) Fig. 7 When gain is 'H' in a speed-mode Timing Charg of SMSD output qsSAMSUNG Electronics 506 KS5990 CMOS INTEGRATED CIRCUIT XTFR/4:----.... (XTFR/8) ------+i~1 PBFR/4: _ _ _---' (PBFR/8) I ~ I I ! I H~-------~LJ~----------I Hi-Z SMDP:------------...I Hi-Z I Hi-Z I Fig. 8 Output Timing Chart of a SMDP terminal r- 287T PBFR:~ =:1 I =1~ 1 _ ._ _ _ _ --...IF SMSD: ------,L..-_ _ 288T ______..--------,L (a) When PBFR is 287T, Timing Chart of SMSD output .Jp PBFR: _ _ 294T 1&..____. . . .------:._____1 J I-----s12T-----jl SMSD:--------~ • ~---------~LJ~-------- (b) When PBFR is 294T, Timing Chart of SMSD output Fig. 9 In a PHASE Mode Timing Chart of SMSD output (T: VCO/2) c8SAMSUNG' Electronics 507 CMOS INTEGRATED CIRCUIT KS5991 DIGITAL SIGNAL PROCESSOR The KS5991 is a monolithic integrated circuit designed for compact disc player application. It is consisting of 16KSRAM, digital filter and digital signal processing circuits, and it is suitable for headphone stereo COP. 80 FOP FEATURES • All digital signals for regeneration are processed using one chip. • Internal aperture compensation digital filter • EFM·Pll circuit for bit clock regeneration • EFM data demodulation • Frame synchronous signal detection, protection • Compensation using mean value, prior value retention • Subcode signal demodulation subcode Q detection • ClV servo for spindle motor • 8-bit tracking counter • CPU interface with serial bus • Subcode Q reaister • Built-in 17th digital filter • Built-in 16KSRAM • 80 Quad flat package type • Operating supply voltage: Vee = 3.4V - 5.5V ABSOLUTE MAXIMUM RATING Symbol Supply Voltage Input Voltage Output Voltage Operating Temperature Storage Temperature VI:)O V1 ElectrO!lics ORDERING INFORMATION Operating Temperature (Ta=25°C) Characteristics c8SAMSUNG -------~--~------' Vo Topr T51g Value -0.3- + 7 -0.3- + 7 -0.3- + 7 -20- + 70 -40- + 125 Unit V V V °C °C 508 KS5991 CMOS INTEGRATED CIRCUIT BLOCK DIAGRAM I~ SMEF CPU INTERFACE TRACKING COUNTER CLV SERVO SUBCODE BLOCK ~I-Z~~I­ ()<{W()OO CllCOOOO rJ) rJ) rJ) rJ) rJ) rJ) DIGITAL FILTER BLOCK 78 DATA 1 SMON SMPD SMSD INTERPOLATOR BLOCK 4 SOS1 LKFS VCOI VCO TIMING GEN. ECC BLOCK VCOO PHASE DETECTOR EFM DEMODULATOR 16K SRAM EFMO PHAS SEL1 38 SEL2 SEL3 MODE SELECTOR SEL4 X'TAL TIMING GEN. SRAM ADDRESS GEN. SS 48 SEL5 c8SAMSUNG Electronics AD01 509 AD11 I CMOS INTEGRATED CIRCUIT KS5991 ELECTRICAL CHARACTERISTICS 1. DC Characteristics (V oo =SV±10%, VSs=OV, Ta=2S0C, unless otherwise specified) Characteristics Symbol Test Condition Min Typ Max Unit Input High Level Voltage V1H1 Note 1 0.7 Voo Voo V Input Low Level Voltage V1l1 Note 1 0 0.3 Voo V Input High Level Voltage V1H2 Note 2 0.8 Voo Input Low Level Voltage V1l2 Note 2 Output High Level Voltage VOH IOH= -1mA VOL Output Low Level Voltage V 0.2 Voo V Voo-O.S Voo V IOl=1mA 0 0.4 V +S p.A Input Leak Current Ilc VIN=O-S.SV -S Three-State Pin Output Leak Current ILO VOUT=O-S.SV -S +S p,A SRAM Input Leak Current ISlC VIN=O-S.SV -S +200 p,A Max Unit (Voo= 3.4V, Vss=OV, Ta=2S°C) Item Symbol Test Conditions Min Typ Input High Level Voltage V 1H3 Note 1 0.7 Voo Voo V Input Low Level Voltage V1l3 Note 1 0 0.3 Voo V Input High Level Voltage V1H4 Note 2 0.8 Voo V Input Low Level Voltage V1l4 Note 2 0.2 Voo V Output High Level Voltage VOH IOH= -O.SmA Voo-O.S Voo V Output Low Level Voltage VOL IOL=O.SmA 0 0.3 V Input Leak Current ke VIN=O-S.SV -5 +S p.A Three-State Pin Output Leak Current ILO VOUT=O-S.SV -S +S p,A SRAM Input Leak Current ISLe VIN=O-S.SV -S +200 p.A Note 1. Related pins-EFMI, XRST, TEST, MUTE, SEL1-S, MLT, MOAT, SBCK, SOEN, SOCK Note 2. Related pins-CNIN, MCK. 2. AC Characteristics A. XIN Pin, VCOI Pin (1) When pulse applied to XIN and VCO (V oo =SV±10%, Vss=OV, Ta=2SoC, unless otherwise specified) Item Symbol Min Typ Max Unit "H" Level Pulse Width tWHx 20 ns "L" Level Pulse Width twLX 20 ns Pulse Frequency tex SS rtS Input "H" Level V1H Voo-1.0 Input "L" Level V1L 0.8 V Rising Time Breaking Time t R, tF 1S ns c8SAMSUNG . Electronics V 510 CMOS INTEGRATED CIRCUIT KS5991 B. Pins MCK, DATA, MLT, TRCK, SaCK (Voo = 5.0V ± 10%, Vss = OV, Topr= 0 to + 75°C) Item Symbol Min Typ Max Unit 1 MHz Clock Frequency fCK Clock Pulse Width tWCK 300 ns Setup Time tsu 300 ns Hold Time tH 300 ns Delay Time to 300 ns tWL 300 ns Latch Pulse Width CNIN SOCK Frequency h CNIN SOCK Pulse Width twr 1 300 I MHz ns 1 - - - lIfCK----i -tWCK tWCK MCK --~ DATA -+-----1--4-----..-+----_ MLT tsu tH TRCK SOCK - - - - I I (When SOEN::: "H") tWT - t WT --! ~---1/fT----! SODT (In relation to SOCK) I-I------tcx------~ ~tWHX--..-.j---- t w L X - - - - I I I VIH VIH xO.9 I I I II XTAL I I I Voo/2 I I ----i I tr ~ I c8SAMSUNG Electronics 511 KS5991 CMOS INTEGRATED CIRCUIT C. OAC Interface (V oo =5V±10%, Vss=OV, Topr=O to +75°C, C l =50pF) OF is OFF Symbol Item Min Typ When OF ON Max Min 236 Typ Max 118 Unit Clock Pulse Width tw Clock Skew (Fast) tIck 40 40 Clock Skew (Delay) tdck 40 40 ns Data Skew (Fast) tID 0 0 ns Data Skew (Delay) tdO 80 80 ns ns ns J-----tw-~_+_---tw--_i BLCK BLCK -+--+----tdO DATA * Note: CHCK, WDCK, APTR, APTL DA01 through DA16 during parallel DA conversion or C1 F1, C1 F2, C2F1, C2F2, C2FL, C2PO, XTFR, 2WDCK, DATA during serial conversion. c8SAMSUNG Electronics 512 KS5991 CMOS INTEGRATED CIRCUIT PIN CONFIGURATION :.:: () :r: () :.:: () Cl ~ oct foct Cl :.:: ...J () III la :.:: () Cl ~ I~ 0 0 > (f) LL :.:: ...J :::l ~ Cl (f) u.. I~ a: LL III a. a: LL ~ 0 ...J C\I () () a. ~ C\I LL [j • C2F1 SMON C1F2 SMPD C1F1 APTL APTR EFMI EFMO SEL5 LOCK SEL4 SEL3 VCOI SEL2 TEST SEL1 PHAS XOUT Vss XIN KS5991 MCK Vss MLT 4MCK MDAT CS XRST WE TRCK AD11 ISTAT AD10 MUTE AD9 SOOK AD8 SBCK AD? SDAT AD6 SOOT AD5 SOS1 AD4 :.:: () 0 (f) z :::!: (f) a: (f) (f) :.:: ...J w 0 oct u.. c8SAMSUNG Electronics co III Cl I"- III Cl eo III Cl III III Cl 0 0 > .... III Cl C') III Cl C\I III Cl iii 0 C oct C\I Cl oct C') Cl oct 513 KS5991 CMOS INTEGRATED CIRCUIT PIN DESCRIPTION Symbol 1/0 1 SMEF 0 Pin 1 output is switched constant when output filter of the spindle motor is energized. 2 SMON 0 ON/OFF control for spindle motor. 3 SMPD 0 Spindle motor drive. Provides rough control during CLV-S mode and phasse control during CLV-P mode. 4 SMSD 0 Spindle motor drive. Controls speed during CLV-P mode. 5 EFMZ I EFM signal from RF amplifier. 6 EFMO 0 Controls slice level of the EFM signal. 7 LOCK 0 The output of pin 7 reflects the status of the GFS signal which is sampled at PBFR/16. When the GFS signals is "H", but, when the signal has remained "L" for at least 8 samples, the output of pin 7 is "L". 8 VCOO 0 VCO output. The frequency is f = 8.6436MHz, when locked by the DBFR signal. No. Description 9 VCOI I VCO input. 10 TEST I (OV). 11 PHAS 0 The output of Pin 11 provides phase comparison of EFM signal and VCO/2. 12 Vss - GND (OV). 13 MCK I Pin 13 provides serial transmission clock from the CPU. Data is latched on the leading edge of the clock. 14 MLT I Pin 14 provides latch input from the CPU. 8-bit shift register data (serial data received from the CPU) is latched in each of the registers. 15 MDAT I Serial data from the CPU. 16 XRST I System reset ("L"). 17 TRCK I Tracking pulse input. 18 ISTAT 0 Output reflecting internal condition as designated by address. 19 MUTE I Muting input. MUTE is "L" when ATTM of internal register A is "L" (normal condition). MUTE is "H" when meting condition is set. 20 SOOK 0 Output the results CRC check of subcode O. 21 SBCK I Clock input for subcode serial output. 22 SDAT 0 Serial output of subcode. 23 SODT 0 Output of subcode O. 24 SOS1 0 Output of subcode sync SO+S1. 25 SOCK I/O Clock for reading subcode O. 26 SOEN I Input for selecting SOCK (L; SOCK is output, H; SOCK is input) 27 SRAM I SRAM is "H" in Nomal, SRAM is "L" when system is testing. 28 LKFS 0 Display output for frame sync lock status. c8~SUNG 514 KS5991 CMOS INTEGRATED CIRCUIT PIN DESCRIPTION No. Symbol (Continued) 1/0 Description 29 DB8 1/0 Data pin for external RAM. DATA8 (MSB) in test mode. Hi·Z in nomal 30 DB7 Data pin for external RAM. DATA7 in test mode. Hi-Z in nomal 31 DB6 32 DB5 110 110 110 33 Voo - Power supply (+ 5V). 34 DB4 110 Data pin for external RAM. DATA4 in test mode. Hi-Z in nomal 35 DB3 36 DB2 110 110 Data pin for external RAM. DATA2 in test mode. Hi-Z in nomal 110 110 (LSB) 37 DB1 38 AD01 39 AD02 40 AD03 41 AD04 42 AD05 43 AD06 44 AD07 110 110 110 110 Data pin for external RAM. DATA6 in test mode. Hi-Z in nomal Data pin for external RAM. DATA5 in test mode. Hi-Z in nomal Data pin for external RAM. DATA1 (LSB) in test mode. Hi-Z in nomal = = = In nomal mode (TEST 'L', SRAM 'H'), these pins are High impedance (Hi-Z) In test mode (TEST 'H', SRAM 'L'), these pins are Output address uT external RAM = 110 110 110 110 110 45 AD08 46 AD09 47 AD10 48 AD11 49 WE 50 CE 51 4MCK 0 Divider output for crystal. f 52 Vss - GND (OV) 53 XIN I Input to crystal oscillator circuit. Depending on the mode the frequency is either f 8.4672 r 16.9344MHz. 54 XOUT 0 Output from crystal oscillator circuit. Depending on the mode the frequency is either f 8.4672 or 16.9344MHz. 55 SEL1 I Mode selection input 1. 56 SEL2 I Mode selection input 2. 57 SEL3 I Mode selection input 3. 58 SEL4 I Mode selection input 4. Code switch input for audio data output. 2's complement output when "L", offset binary output when "H". 59 SEL5 I Mode selection input 5. Code switch input for audio data output. Serial output when "L", parallel output when "H". 110 110 110 (MSB) In nomal mode, this is WE output. In test mode, write enable input. In nomal mode, this is CE output. In test mode, chip enable input. =4.2336MHz = = c8SAMSUNG Electronics • Data pin for external RAM. DATA3 in test mode. Hi-Z in nomal 515 KS5991 CMOS INTEGRATED CIRCUIT PIN DESCRIPTION No. Symbol (Continued) I/O Description 60 APTR 0 Output for aperture compensation. "H" when R-ch. 61 APTL 0 Output for aperture compensation. "H" when L-ch. 62 C1F1 0 Monitor output reporting status of error correction for C1 decoder. When SEL5 = 'L', DA01 (LSB of parallel audio data) is output when SEL5 = 'H'. 63 C1F2 0 Monitor output reporting status of error correction for C1 decoder when SEL5 = 'L', DA02 is output when SEL5 = 'H'. 64 C2F1 0 Monitor output reporting status of error correction for C2 decoder when SEL5 = 'L', DA03 is output when SEL5 = 'H'. 65 C2F2 0 Monitor output reporting status of error correction for C2 decoder when SEL5='L', DA04 is output when SEL5='H'. 66 C2FL 0 When SEL5 = 'L', output of status condition. C2FL is set 'H' when the C2 sequence. Presently being corrected becomes impossible to correct. DADS is output when SEL5 = 'H'. 67 C2PO 0 Display output of the C2 pointer when SEL5 = 'L', DA06 is output when SEL5='H'. 68 XTFR 0 When SEL5 = 'L', output of read frame dock which is 7.35KHz of the crystal system. DA07 is output when SEL5 = 'H'. 69 PBFR 0 When SEL5 = 'L', output of write frame clock which is 7.35KHz when locked by the crystal system. DA08 is output when SEL5 = 'H'. 70 PBCK 0 When SEL5 = 'L', output of VCO/2 (f = 4.3218M Hz when locked by the EFM signal). DA09 is output when SEL5 = 'H'. 71 FSDW 0 When SEL5 = 'L', output for unprotected frame sync patterns. DA 10 is output when SEL5 = 'H'. 72 ULKFS 0 Output for display of status of frame sync protection when SEL5 = 'L', DA11 is ouput when SEL5='H'. 73 VDD - Power supply ( + 5V). 74 JIT 0 When SEL5 = 'L', output for display of either RAM overflow or underflow for +4 frame jitter absorption. DA12 is output when SEL5 = 'H'. 75 ZWDCK 0 When SEL5 = 'L', output for strobe signal (352.8KHz when OF is ON, 176.4KHz when OF is OFF). DA13 is output when SEL5='H'. 76 BLCK 0 When SEL5='L', inverse output of BLCK. DA14 is output when SEL5='H'. 77 BLCK 0 When SEL5 = 'L', bit clock output (4.2336MHz when OF is ON, 2.1168MHz when OF is OFF) DA15 is output when SEL5='H'. 78 DATA 0 Serial data output of audio signal when SEL5 = 'L'. DA16 is output when SEL5='H'. 79 WDCK 0 Strobe signal output. Output is 176.4KHz when OF is on. Output is 88.2KHz when OF is off. 80 CHCK 0 Strobe signal output. Output is 88.2KHz when OF is on. Output is 44.1 KHz when DF is off. c8SAMSUNG Electronics 516 CMOS INTEGRATED CIRCUIT KS5991 DESCRIPTION OF FUNCTION MODE SELECTOR _To control several blocks in KS5991, there are 5 selecting pin signals. Table 1. Shows selected mode by these signals. Input Pins SEL1 SEL2 Function* SEL3 SEL4 SEL5 XIN DF PIS OB/2'S CD ROMIAudio 0 1 0 0 0 16M ON S 2'S Audio 0 1 0 1 1 16M ON P OB Audio 0 1 1 0 0 16M OFF S 2'S Audio 0 1 1 1 1 16M OFF P OB Audio 1 0 0 0 0 8M ON S 2'S Audio 1 0 0 1 1 8M ON P OB Audio 1 0 1 0 0 8M OFF S 2'S Audio 1 0 1 1 1 8M OFF P OB Audio 1 1 1 1 0 8M OFF S 2'S CO ROM • Table 1. Mode Selection * Note: • 8M/16M: Selection of either the XIN or XOUT clocks will provide either a 8.4672MHz or 16.9344MHz signal. • OF: Digital Filter • PIS: Parallel mode/serial mode • OB/2'S: Offset • Clock selection Selectioin of an 16.9344MHz or 8.4672MHz oscillator clock is possible at pins XIN and XOUT. However only 16.9344MHz clocks are provided for digital out usage. • Digital filter selection When the digital filter function is switched to ON, all signals on the DAC interface are handled at twice the normal speed. • Parallel/Serial output selection When the output is parallel, 16-bit parallel data is output from pins DA01 through DA16. When the output is serial, the following signals are output at pin DA01 through DA16. DATA (DA16) Serial data output (MSB or LSB first output) BLCK (DA15) Internal system clock (with DF ON 4.2336MHz and with DF OFF 2.1168MHz) BLCK (DA14) Bit clock (BLCK inversion signal) 2WDCK (DA 13) 4X multiplied CHLK signal JIT (DA12) Jitter Margin Overflow/Underflow signal ULKFS (DA11) Display output of frame sync protection status FSDW (DA10) Unguarded (unprotected) frame sync signal PBCK (DA09) Signal at 1/2 Veo pin cycle times. When locked 4.3218MHz PBFR (DA08) Write Frame Clock signal. When locked 7.35KHz. XTFR (DA07) Read Frame Clock signal. Crystal system 7.35KHz. C2PO (DA06) C2 Pointer signal C2FL (DA05) Correction mode output, C2FL = C2F1, C2F2 C2F2 (DA04) Monitor Output of Error Correction Mode for C2 Decode C2F1 (DA03) C1F2 (DA02) Monitor Output of Error Correction Mode for C1 Decode C1F1 (DA01) c8SAMSUNG Electronics 517 CMOS INTEGRATED CIRCUIT KS5991 • OFFSET Binary/2's Complement Selection When pin SEL4 is at "H" output occurs at OFFSET BINARY; when it is at "L" output occurs at 2's complement. • CDROM/AUDIO Selection When SEL 1 SEL2 SEL3 "H", CDROM is selected. Then the C2 pointer is output with each byte (8 bits) and neither the mean value interpolation nor the preceding value hold are exercised. That is, if an error occurs in the upper 8 bits of a 16-bit data, only the C2 pointer related to those upper 8 bits switches to "H" while the lower 8 bits are handled as correct data. = = = Microcomputer Interface Data from microcomputer are inputed through MDAT pin by MCK which is clock signal of microcomputer and pulse signal through MLT pin is for inputed data load one of 6 kinds of control registers. Fig. 1 Shows the timing diagram of data input from microcomputer MCK ___________________________ MDAT~D_7_·_(M_S_B) I· Data I· I Address MLT Register I I U~--------------- __________________________________________J)(~__________v_al_id_D_a_ta___________ Fig. 1 Data Input Timing Diagram According to the address of MDAT, control register is selected as below table 1. Control Register Comment Data Address D7-D4 D3 D2 D1 DO ISTAT Pin CNTL-Z Data Control 1 001 ZCMT HIPD NCLV CRCD Hi-Z CNTL-S Frame Sync Protection Attenuation Control 1 o1 0 FSEM FSEL WSEL ATTM Hi-Z CNTL-L Tracking Counter Lower 4 Bit 1 o1 1 TRC3 TRC2 TRC1 TRCO Complete CNTL-U Tracking Counter Upper 4 Bit 1 100 TRC? TRC6 TRC5 TRC4 COUNT CNTL-W CLV Control 1 1 o1 COM WB WP GAIN Hi-Z CNTL-C CLV Mode 1 1 1 0 CLV Mode PW>64 Table 1_ Data of Selected Control Register c8SAMSUNG Electronics 518 CMOS INTEGRATED CIRCUIT KS5991 According to DO through 07. The function of each control registers is descriped below 1) CNTL·Z Register This is a control register for the zero cross mute of audio data, PHAS, the control signal of phase servo and CRCF data. Data=1 Data=O ZCMT 03 Zero cross mute "OFF" Zero cross mute "ON" HIPO 02 Phase normally active Phase convert "L" to "Hi-Z" by LKFS NCLV 01 Phase servo driven by frame sync Phase servo be controlled by base counter CRCO DO SOOT output without SOOK SOOT = CRCF during the rising time of SOS1 I 2) CNTL·S Control Register This is a control register for frame sync. Protection and attenuation. FSEM FSEL Frame WSEL Clock ATTM MUTE dB 0 0 2 0 1 4 0 ±3 0 0 0 1 ±7 0 1 1 0 8 1 0 1 1 13 -12 1 1 -12 - 3) CNTL·L, U Control Register When the numbers of tract will be counted is inputed from microcomputer, data loaded these registers. (See tracking counter) c8~SUNG 519 CMOS INTEGRATED CIRCUIT KS5991 4) CNTL·W Control Register This is a control register for CLV-Servo Oata=O Oata= 1 Comments COM D3 XTFR/4 & PBFR/4 XTFR/4 & PBFR/4 Phase comparative frequency during PHASE-mode WB D2 XTFR/32 XTFR/16 Bottom hold period during SPEED and HSPEED-mode WP D1 XTFR/4 XTFR/2 Peak hold period during SPEED-mode GAIN DO -12dB OdB SMPD gain during SPEED & HSPEED-mode 5) CNTL·C Control Register This is a control register for CLV-Servo Mode 07-04 03-00 SMOP SMSO SMEF SMON Forward 1 000 H Hi-Z L H Reverse 1 o1 L Hi-Z L H SPEED 1 1 1 0 SPEED mode Hi-Z L H HSPEED 1 1 HSPEED mode Hi-Z L H 1 1 1 1 PHASE mode PHASE mode Hi-Z H XPHSP o1 SPEED, PHASE mode Hi-Z or PHASE mode Lor Hi-Z H VPHSP o1 0 SPEED PHASE mode Hi-Z or PHASE mode Lor Hi-Z H STOP 000 0 L Hi-Z L L PHASE 1 1 1 0 0 o0 1 0 1 c8SAMSUNG Electronics 520 KS5991 CMOS INTEGRATED CIRCUIT TRACKING COUNTER This counter is used to improve track-jumping characteristics. The number of tracks that are to be jumped are loaded into either register CNTL-L or CNTL-U. After either register CNTL-L or CNTL-U have been loaded and at the rising edge of the next MLT, TRCK pulse count begins. n (if register CNTL-L = register = CNTL-U = 0, then n = 256) is loaded into the register, and when the address is set in CNTL-L, the signal (COMPLETE) is output from pin SENS at high level until the "n"th pulse and then at low level for succeeding pulses. When the adjress is set in CNTL-U, the signal (COUNT) TRCKl2n is output. Fig. 2 shows the timing of the tracking counter. • MLT CNTL·L, U Tracking Command Data Loading TRCK ISTAT (Count) ISTAT (Complete) _ _ _~r, Fig. 2 Tracking Count Timing Chart MDAT MLT CNTL State ISTAT X U X U X X X CNTL·L Complete X X X U CNTL·H Count X X U CNTL·C PW~64 X X Mode Hi·Z Fig. 3 ISTAT Output Signal by CNTL Register c8SAMSUNG Electronics 521 CMOS INTEGRATED CIRCUIT KS5991 X'TAL OSCILLATION 1) Block Diagram SEL F/F IN Q ~- CK 2) Timing Chart (SEL Q CK a =0) in Use f =16.9344MHz X'tal OSC. XIN 4MCK 3) Timing Chart (SEL = 1) in use f = 8.4672MHz X'tal OSC. XIN 4MCK c8SAMSUNG Electronics 522 CMOS INTEGRATED CIRCUIT KS5991 DIGITAL FILTER KS5990 is built-in 17th FIR Digital Filter. The digital filter consists of RAM, multiplier, serial to parallel and parallel to serial converter and controller. 1) Block Diagram I DATA IN RAM (288 Bit) FTCK Multiplier '>----1 (ADDER) DATA OUTPUT Overflow Limiter t----- LRCK OF Controller 1 - - - - WDCK ~------------------------------------------------~ 2) Specification DC through 18KHz ripple 20KHz of attenuation against 1KHz ±O.07dB max O.65dB max 44.1 ± 1KHz attenuation against 1KHz 44.1 ±5KHz attenuation against 1KHz 44.1 ± 10KHz attenuation against 1KHz 44.1 ± 20KHz attenuation against 1KHz - 30dB frequency range against 1KHz - 60dB frequency range against 1KHz 87dB min 58dB min 44dB min 10dB min 44.1 ± 14KHz 44.1 ±4KHz c8SAMSUNG Electronics 523 CMOS INTEGRATED CIRCUIT KS5991 3) Frequency Characteristic A. Ripple Characteristic Graph B. Low Pass Fliter Frequency Characteristic Graph -4.4 v 1-1'\ io-"i--'+-" -4.9 1'0 1\ 1\ -5.4 I\. -20 I-'" -40 II 1'-1-"'1\ -60 -5.9 I 1\ 11 -6.4 -6.9 -100 -7.4 -120 5.0 10.0 15.0 20.0 Frequency (KHz) c8SAMSUNG Electronics r, " -80 10.0 20.0 30.0 40.0 50.0 Frequency (KHz) 524 KS5991 CMOS INTEGRATED CIRCUIT EFM BLOCK The EFM Block is made up of an EFM Demodulator which demodulates the EFM data inputted from a recorded disc, EFM Phase Detector, Frame Sync Detector/Protector/Inserter, Subcode Sync Detector, and Controller for the EFM Block. 1) EFM Phase Detector AS the EFM signal inputted from the disc contains 2.16 MHz component, a 4.32 MHz bit clock is generated to detect the phase of the signal. The PBCK outputs the result to the PHAS terminal after detecting the phase on the edge of the EFM signal. The relationship between the EFM signal and the PBCK is explained in the following Timing Chart. • A. In normal operation VCOI; PBCK; EFMI;-----.... EFM 0; -----+---' Hi-Z Hi-Z PHAS;------' en ® Fig. 5 EFM Phase Detection Timing Chart Case.l When the EFM signal is slower than the VCO Case (1): When the EFM signal is locked up the VCO Case ®: When the EFM signal is faster than the VCO l : B. In abnormal operation When the HIPD of CNTL-Z is chosen as 'L' from M-COM, the detector of the EFM phase operates as in Fig. 5. When the HIPD is 'H' and the time 'L' of LKFS is below 3.5T against a PBFS period T, it outputs Hi-Z to the PHAS terminal as long as 'L". When it is above 3.5T, it outputs Hi-Z as long as 3.5T 2) EFM (Eight to Fourteen) Demodulator The modulated 14 bit Data is inputted from a disc, then it is inputted into a NRZ-I circuit. As the EFM Data passes by the NRZ-I circuit which converts 14 bit data into 8 bit data, it gets demodulated 8 bit Data. There are two kinds of demodulated data: subcode and PCM data. The subcode data is inputted into the subcode Block, and the PCM Data is written into 16KSRAM by, with both CE signal and WE signal. 3) Frame Sync Detector/Inserter/Protector A. Frame Sync Detector A CDP data is composed of units of frame. A frame is made up of Frame Sync, Subcode Data, PCM Data, Redundancy Data. A Frame sync is detected per frame against this format. c8SAMSUNG Electronics 525 KS5991 CMOS INTEGRATED CIRCUIT B. Frame Sync Protector/lnserter There are cases in which the Frame Sync is left out or detected from the data besides the frame sync because of the effects of an error on the disk or Jitter. In this case the frame sync needs to be protected and inserted. To protect the frame sync, a window is made by the use of WSEL signal of CNTL-S Reg. The frame sync which comes into the window is true data, and the frame sync deviating from the window is disregarded. 1 Frame (588 CHANNEL BITS) REDUNDANT BITS FOR MERGING AND LOW FREQ. SUPPRESSION (Z_____ ~T'_A D__ ___,\~/r------D-J~~---------'l\~ riW11111trt13 14 rtr rtl19tr\Mr 14f1ptrllvlrll29lral ~111 ____ 111110 15 h4~1~ 3 \ \ ~, ~~ ~ ~ ; ~~ I~btb ~~ ~~bI1~l~~l~ ~;;tt- \' 3 3 3 :3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 PCM Data Symbol Parity Symbols Symbol) (14.Channel Bits=8 bit Control Display Symbol Data Frame Sync. Pattern (24 Channel bits) (Frame Format) The width of the window is determined by the WSEL signal from the CNTL-S Reg. (cf. CNTL-S) Being inserted frame syncs continuously. If the frame sync is not detected inside a frame sync protection window, insert a frame sync. When the fame sync reaches the number of a frame designated by the FSEM and FSEL by the CNTL-S Reg ULKFS becomes 'L' and the frame sync protection window is disregarded. In this case an outputted frame sync is unconditionally accepted. After the frame sync is received, the ULKFS signal becomes 'H' and accepts a frame sync detected inside the window. LKFS Explanation ULKFS I I When a play back frame sync coincides with a generated frame sync. 0 I EFM Write demand> ECC R/W demand. 2) EFM Demodulation Data Write Demand EFM demodulated data mube be written to SRAM, priority is controlled when the write demand signal is transmitted to the SRAM Address Generator, and the Enable signal is transmitted to the EFM Block. The generated address is transmitted to the SRAM Interface circuit. Generated address is data which deinterleave is considered, and in a frame 32 addresses are generated. A. In the use of 16K SRAM (in EFM & ECC Write): SRAM terminal 'H' DB1- DB8 and AD1-AD11 terminals are in a state of Hi-Z. CE and WE are 'Don't Care.' 4 MCK: n INCS: fl I I I I I I I I n fl I I I INWE:' n ~ I I I I I I I I IAD1 - IAD11: Read IDB1-IDB8: 3) R/W Demand of ECC Data For C1 and C2 ECC treatment 129 times of Address demand signals generated due to an RIW operation must be given to 64 PCM data and 65 Pointers during a frame. The write of FCC processing is the same as 2) EFM Write operation. In reading it is as follows: A. In the use of 16K SRAM Reading Timing (SRAM: H) 4MCK: INCS: (INWE='H) IAB1 n n n n n n n rL- -IAD~ECC ADDRXECC ADDRXECC ADDRXECC ADDRXECC ADDRXECC ADDRXECC ADDRe ID81-IDB8: ECC Data Bus: *: Valid ECC Data c8SAMSUNG Electronics 530 KS5991 CMOS INTEGRATED CIRCUIT 4) D/A Converter Read Demand Since each 6 sampling data on the left and right channel and 12 C2 Pointer data must be read for a frame, 36 read enable demand signals are caused. The timing chart for D/A Converter Read is the same as the R/W demand block of ECC data. As a result the number of the maximum R/W operation action demanded for a frame is 179 times. 5) Address Generated Block The interleaving data in encoding is deinterleaved in decoding. The data of 108 frames is needed to get 8 frame of PCM data in a COP format. To get data suitable for a COP format 2 counters are needed. A write base counter is used to write EFM demodulation data are hindered in storing data in SRAM due to disk shaking, the instability of a servo system etc. 6) Jitter Margin EFM demodulation data are hindered in storing data in SRAM due to disk shaking, the instability of a servo system etc. Now that the data that must be kept is limited by the size of SRAM in view of time, data is destroyed if the value of read/write base counter has a difference above ± 5 frames. Being loading into the value of write base counter with enforcement, the value of read base counter has a jitter margin below ± 4 frames when there is a difference over ± 5 frames in the read/write base counter value. A read base counter value is baded into a write base counter with enforcement when data on the left and right channels are aI/ muting, or when NCLV is 'H', and CLV-Servo is stop, forward and reverse. When the difference between read/write base counter is above ± 4 frame, a 'H' signal is outputted to the ..Hf terminal for a period. c8SAMSUNG Electronics 531 I KS5991 CMOS INTEGRATED CIRCUIT INTERLEAVE, MUTE BLOCK When a burst error occurs on a disk, sometimes the data can't be corrected even if a ECC process is conducted. An interpolator block revises data by using C2 Pointer outputted through the ECC Block. PCM data inputted into a data bus are inputted to the left and right channels respectively in order of 8 bit C2 Pointer, Lower 8 bit and Upper 8 bit. A pre-hold method is taken when a DA Flag is 'H' continuously. In case of the occurrence of a single error, a mean value interpoalting method is carried out with the range of PCM Data before and after an error happens. When a check against a checked cycle is 'L', R-CH Data is outputted. L-CH Data is outputted when the check is 'H'. As to the timing chart of a interpolator plock see figure 6. A C2 Pointer: - - - - - " " ' - - - - - - - ' - - - " " ' - -.......- _ _ _ _ _ _ _ __ A+C .. B = -2- : Mean value interpolation F = E = D : Pre-hold interpolation G = F + H : Mean value interpolation 2) Mute and Attenuation Bya Mute terminal and a ATTM signal by the CNTL-S Reg., AUDIO data is muted or reduced. There are two kinds of mute: zero cross muting, muting. A. Zero Cross Muting Audio data is muted when a mute terminal is 'H' and when 6 bits in a high position of Audio Data is all 'H' or 'L'. B. Muting Audio data is muting when ZCMT of the CNTL-Z Reg. is 'L' and when a mute terminal is 'H'. C. Attenuation By means of the ATTM signal of the CNTL-S Reg. and the Signal of Mute terminal, a audio Signal attenuation occurs as the following. ATTM MUTE 0 0 0 1 - 1 0 -12 dB 1 1 -12 dB c8SAMSUNG Electronics Degree of Attenuation o dB dB 532 CMOS INTEGRATED CIRCUIT KS5991 BCLK: 2WD~~______~ ~ WD~+--_ _- - , ---.L r - -_ _ _ _ _ _ CH~~--------------------------~ APTR: i APTL: i DAFL: DAFL for 16 Bit RIGHT CHANNEL DATA (Audio Dat~) DAFL:'~DA-F-L-fo-r-a-B-it-R--C-H-U-P-p-E~RrD-A-F-L-fo-r-a-Bi-tR---C-H-LO-W-E-RwD-A-F-L-fo-r-a-B-it-L--C-H-U-P-P-E~R~r-------------~ (CD-ROM Data) I ' I----------------I---------------J Fig. 6. When Sel. 5 is 'L', and OF is off, the Timing Chart of PCM Data qsSAMSUNG Electronics 533 ~ I KS5991 CMOS INTEGRATED CIRCUIT elV SERVO CNTL-C Reg. is selected to control CLV Servo by the Data inputted from wCOM. In CNTL-C Reg, the data from wcom appoint CLV servo action mode and control spindle motor. 1) Forward The states of output terminal related to the mode to rotate a spindle motor forward are SMDP = 'H', SMSD = Hi-Z, SMEF = 'L' and SMON = 'H' respectively. 2) Reverse The modes to rotate a spindle motor reversly are SMDP='L', SMSD='Hi-Z', SMEF='L', and SMOD='H'. 3) SPEED-Mode The SPEED-Mode is the mode for the rough control of a spindle motor when a track jumping or a EFM phase is unlocked. If a cycle of VCO is 'T', the pulse width of a frame sync is '22T'. Sometimes EFM signal is above 22T due to noises on a disc, etc. A correct frame sync cannot be detected when the signal is not removed. In this case, the pulse width of EFM signal is detected at a cycle of XTFR/2 or XTFR/4 which are peak hold clocks. The pulse width of EFM signal is detected at a cycle of XTFR/16 or XTFR/32 which are bottom hold clock. The value detected is used for a frame synchronization signal. When the frame synchronization signal is smaller than 21T, the SMPD terminal outputs 'L'. When it is 22T, Hi-Z is outputted. 'H' is outputted when it is above 23T. When the GAIN signal of CNTL-W Reg. is 'L', the SMDP terminal is outputted after being attenuated at - 12dB when the signal is 'H', the terminal is outputted without any attenuation. In SMSD, SMEF, and SMON terminals Hi-Z, 'L', and 'H' are outputted. 4) HSPEED-Mode The rough servo mode which moves 20,000 tracks in high speed acts between inside of CD and outside of CD. In the domain of a mirror of the track without a pit EFM and the signal of 20KHz overlap. In the case, since in the speedmode the peak range of a longer mirror signal than the original frame sync is detected, the servo operation become unstable. In HSPEED-mode a peak hold uses a 8.4672/256 MHz signal, and a bottom hold removes a mirror component and stabilizes the high speed servo operation by using XTFR/16 or XFFR/32 period signal. In SMSD, SMEF, and SMON terminals, Hi-Z, 'L', and 'H' are outputted. 5) PHASE-Mode A PHASE Mode is the mode to control an EFM Phase. When NCLV of CNTL-Z is 'L', it detects a phase difference between PBFR/4 and XTFR/4, and when NCLV is 'H', it detects the phase difference between. Read base Counter/4, write base Counter/4, and then output to SMPD terminal. See figure 8. If the VCO/2 signal cycle is put as '1' and the PBFR during a 'H' period as a W pb , it outputs 'H' to a SMSD terminal from the falling edge of PBFR for (Wpb"278T) x 32, and later outputs 'L' to the falling edge of PBFR. Refer to figure 9. 6) XPHSP-Mode A XPHSP mode is the mode used in normal operation. It samples a LKFS signal made in the frame sync block at a cycle of PBFR/16. After sampling 'H', DHASE mode is carried out. When 'L' is sampled continuously 8 times, it goes over to speed-mode. CNTL-W Reg. decides the choice of the peak hold of speed-mode, the bottom hold cycle of SPEED and HSPEED-Mode and the choice of a gain. c8SAMSUNG Electronics 534 KS5991 CMOS INTEGRATED CIRCUIT 7) VPHSP-Mode A VPHSP-Mode is the mode used for rough servo control. It uses VCO instead of X'tal in the EFM pattern test. When the range of VCO center changes, VCO is easily loaded because the rotation of a spindle motor changes in the same direction. 8) STOP Stop is the mode to stop a spindle motor. SMDP='L', SMSD=Hi-Z, SMEF='L', SMON='L' I TB----------~-TP_1 PHC: -..., r--.,,.---. ,---_1..__--. ,---, ,...---. ......-_ti--.. BHC:-~-~~-~~-~--~~-~-~"""----------~-----~-----~~---------- BH F/F (~22T) BH F/F (~23T) -----------H+---------------~ Latch (22T) Latch (23T) Z: 22T (output of CD) SMSD: _ _ _ _ _ _.-... L: 21T~ (output of @) ...._ _ _ _ _ _ _ _ _ _ ~ H: 23T;;,; (output of ®) Fig. 7 When gain is 'H' in a speed-mode Timing Charg of SMSD output c8SAMSUNG Electronics 535 KS5991 CMOS INTEGRATED CIRCUIT XTFR/4:----.... (XTFR/8) ~----+i~' PBFR/4: _ _ _ _..I (PBFR/8) I H -----------~ Hi-Z SMDP: I ~ I I Ul-------- Hi-Z I ...- - - -....... I Hi-Z Fig. 8 Output Timing Chart of a SMDP terminal t-- =:1 287T 1....- _ _ _ _...1 PBFR:----.J ----.lF 288T SMSD: __________ (a) When PBFR is 287T, Timing Chart of PBFR: _ _ =1. ____r---------,L SMSD output ~p=294T 1. ________.,..------:.____. .r J f----- SMSD:------__ S1 2 T - - - - - 1 • 1 1----------~LJr-------- (b) When PBFR is 294T, Timing Chart of SMSD output Fig. 9 In a PHASE Mode Timing Chart of SMSD output (T: VCO/2) c8SAMSUNG' Electronics 536 LINEAR INTEGRATED CIRCUIT KA8309 SERVO SIGNAL PROCESSOR The KA8309 is SiCMOS integrated circuit designed for the servo control of the comp;3.ct disc player application. FEATURES • Servo control functions; (focus, tracking, seld servo control) • Loop filter and VCO for EFM clock reproduction PLL • Provide function Preventing sled runaway Anti-shock Spindle servo Auto-sequencer • Provide adjustable peak of focus search, track jump and sled kick with external resistor • Low power consumption (100mW typ; ± 5V, 80mW, 5V) • Single power supply, 5V • Split power supply, ± 5V I ORDERING INFORMATION Operating Temperature ABSOLUTE MAXIMUM RATINGS Characteristic Symbol Value Unit Supply Voltage Power Dissipation Operating Temperature Storage Temperature Vee - VEE Pd Topr Tstg 12 600 -20- + 75 -55- + 150 V mW °C °C c8SAMSUNG Electronics 537 KA8309 LINEAR INTEGRATED CIRCUIT BLOCK DIAGRAM z o ::E Q. I- ::E !a o W LL ii: Q. o III o z 8 ~ ...J U (J) o u u « E; 9 :::i I- (J) (J) (J) « « o oQ. o...J tiiw o cc Q. (J) o SERIAL TO PARALLEL DECODER SEQUENCER z u w w > « OUTPUT DECODER FOCUS GAIN CONTROL tfj > o TRACKING TRACK JUMP JUMP SLED 1 - + - - - - , / GAIN PEAK VALUE PEAK VALUE CONTROL CONTROL CONTROL I-+---~ (J) Z W (J) tii ti:o (J) LL TRACKING w H-+-t--+I PHASE ~ COMPEN SAllON I- SLED JUMP PEAK VALUE CONTROL Q. oI- (J) TRACK JUMP PEAK VALUE CONTROL oW ...J (J) z W ...J en w U LL > U o (!) LL en LL cc LL ...J J: c8SAMSUNG Electronics ow J: U LL LL en en u u > « ow iii I- I- ~ ~ 538 KA8309 LINEAR INTEGRATED CIRCUIT PIN DESCRIPTION Pin No. Descriptions Symbol 1 CV 2 HFGD 3 FS Center voltage. Reduce high frequency gain with capacitor connected between pin 2 and pin 3. High frequency gain of focus servo can be changed by switching FS3 on or off. 4 lFR 5 FSEO Focus servo error output. 6 FSEI Inverting input pin for focus amplifier. 7 FSCH Time constant external pin to generate focus search waveform. 8 RTG Time constant external pin to switch the tracking gain of high frequency. I Rising low frequency bandwidth of focus loop. 9 TG 10 AVec Analog positive power supply. Provide time constant to change the high frequency tracking gain. 11 TKEO Tracking error output. 12 TKEI Inverting input pin for tracking amplifier. 13 SlEN Non·inverting input pin for tracking amplifier. 14 SlEO Sled output. 15 SlEI Inverting input pin for sled amplifier. 16 STOP Pin for detecting a signal for the on/off limit switch of the innermost part of the disc. 17 FSET Setting the peak frequency of the focus, tracking phase compensation and to fa the ClV lPF. 18 SENS Output pin for FZC, AS, TZC, STOP and BUSY by command from CPU. t-----~ 19 AV EE Analog negative power supply. 20 CNO Track number count output. 21 DRCT Control pin for one track jump. 22 REST Reset input pin, reset at "l". 23 SDATA 24 SlOAD 25 SClK Serial data transfer clock. 26 DGND Digital ground. 27 BPF c8SAMSUNG Electronics Serial data input. latch input. Provide time constant for the loop filter .. 539 LINEAR INTEGRATED CIRCUIT KA8309 PIN DESCRIPTION Pin No. (Continued) Symbol Descriptions 28 DPI Input pin for detected phase. 29 ISET Current is input, determining the peaks of focus track jump, and sled kick. 30 FVC External resistor to adjust free running frequency of VCO. 31 3.5V Regulated output voltage. 32 864M Output pin of 8.64MHz VCO. se~rch, 33 LOCK Pin for the operation of the sled runaway prevention circuit at "L". 34 MDP Pin for connecting the DSP. 35 MON Pin for connecting the DSP. 36 FSW Providing an external LPF time constant of the CLV servo. 37 DVcc 38 SPDLI Inverting input for spindle servo amplifier. 39 SPDLO Spindle servo error output. 40 WDCK Clock input for auto-sequence. 41 FOK Focus ok signal input pin. 42 MRR Mirror signal input pin. 43 DV EE Digital negative power supply. 44 DFT Defect signal input pin. 45 TKE Tracking error signal input pin. Digital positive power supply. 46 TZC Input pin for the zero cross tracking comparator. 47 ATS Input pin for detect ATSC. 48 FCE Input pin for focus error signal. c8SAMSUNG Electronics 540 LINEAR INTEGRATED CIRCUIT KA8309 ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=2.5V, Voo=2.5V, VEE= -2.5V, GND=OV, unless otherwise specified) Characteristic No. Symbol Test Conditions Min Typ Max Unit Supply Current 1 1 ICCA 2 6 10 rnA Supply Current 2 2 Icco 5 10 15 rnA Supply Current 3 3 IEF Supply Current 4 4 IGNO 5 A FEo SG = 10Hz, 200rnV 6 VFEOF SG = 10KHz, 40rnV Gain difference between 08 and 00 of SD DC Voltage Gain Feed Through 0 c: Q) Max. Output Voltage 1 7 VFE01 SG =0.5V oc (/) Max. Output Voltage 2 8 VFE02 SG =O.5V oc u. Max. Output Voltage 3 Max. Output Voltage 4 9 V FE03 SG=0.5V oc SG =0.5V oc en :J 2 4.5 8 rnA 4.8 8 11 rnA 18 21 24 dB -35 dB 1.98 V -1.98 V (.) 0 0 1.18 V 10 VFE04 Search Output Voltage 1 11 VSRCH1 -0.64 Search Output Voltage 2 12 VSRCH2 0.36 0.55 0.64 V DC Voltage Gain 13 A TEO SG = 10Hz, 200mV 11.6 14.6 17.6 dB Feed Through 14 VTEOF SG = 10KHz, 10mV Gain difference between 25 and 20 of SD -39 dB c: -1.18 -0.55 -0.36 V V Q) en Max. Output Voltage 1 15 VTEP1 SG =0.5V oc :x: Max. Output Voltage 2 16 VTEP2 SG = -0.5Voc ~ Max. Output Voltage 3 17 VTEP3 SG =0.5V oc VTEP4 SG = -0.5Voc OJ c 1.98 V -1.98 V (.) I- Max .. Output Voltage 4 18 Jump Output Voltage 1 19 VJUMP1 Jump Output Voltage 2 20 VJUMP2 21 AsLo SG = 10Hz, open loop gain Max. Output Voltage 1 22 V SLP1 SG =O.4V oc Max. Output Voltage 2 23 VSLP2 SG = -0.4VDC Max. Output Voltage 3 24 VSLP3 SG =O.4V oc en Max. Output Voltage 4 25 VSLP4 SG = -O.4Voc SG = 10KHz, 200mV Gain difference between 25 and 20 of SD 0 V -1.18 -0.64 -0.55 -0.36 DC Voltage Gain c: 1.18 V V 0.36 0.55 0.64 V 50 56 62 dB -1.98 V 1.09 V 1.18 V Q) "0 Q) U5 -1.18 V -34 dB Feed Through 26 VSLOF Kick Output Voltage 1 27 VKICK1 -0.75 -0.6 -0.45 V Kick Output Voltage 2 28 VKICK2 0.45 0.6 0.75 V c8SAMSUNG Electronics 541 I LINEAR INTEGRATED CIRCUIT KA8309 ELECTRICAL CHARACTERISTICS Characteristic (Continued) No. Symbol Test Conditions Min Typ Max Unit 14 16.5 19 dB -1.78 V Spindle Servo Gain 29 Aspo SG = 10Hz, 20mV Max. Output Voltage 1 30 VSPP1 SG=1,OVoc Max. Output Voltage 2 31 VSPP2 SG = -10Voc 'a' Max. Output Voltage 3 32 V SPP3 SG = 1.0Voc Max. Output Voltage 4 33 VSPP4 PLL Reg. Output Voltage 34 Vreg Self-running Frequency 35 Fvco V1=OmV a. Frequency Deviation 1 36 D.F1 Frequency deviation from Fvco , V1 = 148mV Frequency Deviation 2 37 D.F2 V1 = 148mV -1.98 V 0 c:C1l en C1l 15 c: en ...J ...J Sexs Low Level V 1.13 V -1.13 SG = -10Voc 38 VSENS COUT Low Level 39 VCOUT FZC Threshold Value 40 VTZC ATSC Threshold Value 41 VATSC1 ATSC Thre'shold Value 42 VATSC2 Value of E when SENS becomes high (=1.1V) by E1 to E4 TZC Threshold Value 43 VTZC Varying SG = OV SSTOP Threshold Value 44 VSSTOP c8SAMSUNG Electronics 1.78 V 3.3 3.5 3.85 V 7.4 8.6 9.7 MHz 7 11 15 % -15 -11 -7 % -1.98 V 39 50 61 mV -45 -26 -7 mV 7 26 45 mV -20 0 20 mV -65 -50 -35 mV 542 LINEAR INTEGRATED CIRCUIT KA8309 TEST METHODE (SWITCH CONDITIONS) SW Conditions No. Symbol S1 S2 S3 S4 S5 S6 S7 sa S9 S10 S11 I SD 00 1 Alcc 2 Dlcc 3 A.DIEF 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 IDGND 08 GFED VFEOF VFE01 VFE02 VFE03 VFE04 VSRCH1 VSRCH2 GTEO VTEOF VTEP1 VTEP2 VTEP3 VTEP4 VJUMP1 VJUMP2 GSLO VSL1 VALP2 VSLP3 VSLP4 VSLOF VKicK1 VKICK2 0 0 0 0 0 0 0 0 0 0 Gspo VSPP1 VSPP2 VSPP3 VSPP4 Vreg 0 0 0 0 0 0 0 0 08 08 08 08 02 03 26 13 25 25 25 25 2C 28 25 25 25 25 25 22 23 0 0 0 0 0 0 0 Fvco 6F1 6F2 VSENS VCOUT VTZC VATSC1 VATSC2 VTZC VSSTOP c8SAMSUNG Electronics 00 10 10 20 30 Bias Conditions E1 E2 E3 E4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 * 0 0 0 0 0 * 0 0 0 0 0 . Input Test Point Point 48 48 48 48 48 48 45 45 45 45 45 45 13 13 13 13 13 13 34 34 34 34 34 48 47 47 46 16 10 37 19 43 26 5 5 5 5 5 5 5 5 11 11 11 11 11 11 11 11 14 14 14 14 14 14 14 14 39 39 39 39 39 31 32 32 32 18 20 18 18 18 18 18 543 I KA8309 LINEAR INTEGRATED CIRCUIT TEST CIRCUIT ---1> ClK AVCC +2.5V - - AVEE -2.5V ~ DVCC +2.5V ----e DVEE -2.5V -;t, DGND -2.5V AGND OV m FSW MON MDP LOCK 864M 3.5V FVC ISET DPI BPF DGND SClK SPDLI SDATA SPDlO RESET WOCK ORCT CNO FOK MRR KA8309 AVEE DVEE SENS OFT FSET A43 44 45 TKE STOP 16 1 103~ S12 2~ 5K V4 TZC SlEI ATS SLED FCE SlEN V1 1k =8SAMSUNG Electronics 544 KA8309 LINEAR INTEGRATED CIRCUIT CPU Serial Interface Timing Chart DATA x ___ OO_ _ 01 X X X X X 02 03 04 05 06 X,-__ 07_ _ • elK 1lfck I~ XlT DVcc - DGND = 4.5 to 5.5V Item Symbol Min Typ Max Unit 1 MHz Clock Frequency fCK Clock Pulse Width fWCK 500 ns Hold Time tsu 500 ns Setup Time tH 500 ns Delay Time tD 500 ns Latch Pulse Width tWL 1000 ns 4I~SUNG 545 KA8309 LINEAR INTEGRATED CIRCUIT SYSTEM CONTROL Address Item Oata Sens Output 07 06 05 04 03 02 01 00 Focus Control 0 0 0 0 FS4 Focus On FS3 Gain Down FS2 Search On FS1 Search Up Tracking Control 0 0 0 1 Anti Shock Brake On TG2 Tracking Mode 0 0 1 0 Select Auto Sequence *4 BI i nd(A, E)/Overflow(C) Brake(B) Kick(D) Track Jump(N) Track Move(M) 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 Tracking Mode *2 PS4 Focus Search +2 PS3 Focus Search + 1 FZC TG1 Gain Set *1 A.S Sled Mode *3 TZC PS2 Sled Kick+2 PS1 Sled Kick + 1 AS3 AS2 AS1 ASO 0.18ms 0.09ms 0.045ms 0.022ms 0.36ms 0.18ms 0.09ms O.045ms 11.6ms 5.8ms 2.9ms 1.45ms 64 32 16 8 128 64 32 16 1 SSTOP BUSY Hi-Z Note: *1. GAIN SET It is possible to set TG1 and TG2 independently. When the anti-shock is 1 (00011xxx), invert both TG1 and TG2 when the internal anti-shock is H. *5 RAM SET *3 SLEO MOOE *2 TRACKING MOOE *4 AUTO SEQUENCE 03 02 01 00 OFF 0 0 OFF 0 0 AS3 AS2 AS1 ASO CANCEL 0 0 0 0 ON 0 1 ON 0 FWD JUMP 1 0 FWD MOVE 1 1 FOCUS ON 0 1 1 1 0 1 TRACK JUMP 1 0 0 X REV JUMP 1 1 REV MOVE 1 1 10 TRACK JUMP 1 0 1 X 2N TRACK JUMP 1 1 0 X M TRACK MOVE 1 1 1 X X=O FORWARD X= 1 REVERSE • When CANCEL $40 is sent, the status immediately preceding the auto sequence mode (just before $4X is sent) is reset. • The auto sequence mode starts with the first falling of the pin 40 input pulse (WDCK) after the $4X transfer and the falling of latch pulse. *5 RAM SET • Values $0 to $E (not $F) can be set. • The above set values are ones when WDCK (88.2KHz) is input to pin 40. • The RAM is preset when the power is switched on and the internal initiaVset values are as follows: c8SAMSUNG Electronics 546 KA8309 LINEAR INTEGRATED CIRCUIT Address Data 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 • The actual count values are slightly different from the set values. A set value + 4 to 5 WDCK WDCK 8,D,E set value+3 C set value + 5 WDCK Count out N,M set value + 3 • SERIAL DATA TRUTH TABLE Serial Data Hexa. Function FOCUS CONTROL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 0 1 FS=4321 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 $00 $01 $02 $03 $04 $05 $06 $07 $08 $09 $OA $08 $OC $OD $OE $OF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 i 0 1 1 1 1 1 1 1 1 AS=O TG=2 TRACKING CONTROL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 c8SAMSUNG Electronics $10 $11 $12 $13 $14 $15 $16 $17 $18 $19 $1A $18 $1C $10 $1E $1F 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 AS=1 TG=2 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 1 0 1 0 547 LINEAR INTEGRATED CIRCUIT KA8309 Hexa. Serial Data TRACKING MODE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 ~ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 c8SAMSUNG Electronics $20 $21 $22 $23 $24 $25 $26 $27 $28 $29 $2A $28 $2C $2D $2E $2F Function DIRC=1 TM=654321 DIRC=O 654321 DIRC=1 654321 000000 000010 010000 100000 000001 000011 010001 100001 000100 000110 010100 100100 00'1000 001010 011000 101000 001000 001010 011000 101000 000100 000110 010100 100100 001000 001010 011000 101000 000100 000110 010100 100100· 000011 000011 100001 100001 000011 000011 100001 100001 000011 000011 100001 100001 000011 000011 100001 100001 548 LINEAR INTEGRATED CIRCUIT KA8309 APPLICATION CIRCUIT 1. ± 5V SPLIT POWER SUPPLY VR FE From RF Amp (KA9201) FROM DSP ~(KS5999) 200 • 20K FROM DSP (KS5990) (9 z 8 « 82K a: f- a: w f- ::> \~----------------------~I 0.. :::;: o u oa: FROM MICROCOMPUTER u ~ of- i~ -5 c8SAMSUNG Electronics i +5 549 KA8309 LINEAR INTEGRATED CIRCUIT 2. + 5V SINGLE POWER SUPPLY FROM DSP (KS5990) Ill. W ~ CIl O---VR <:i--+ 5V flOV FROM MICROCOMPUTER FRO~g~~ >-___-{ From{::: RFAmp DFT ) - - - - TO MICROCOMPUTER >-----{ TE FE KA9257 FOCUS COIL TRACKING COIL SPINDLE MOTOR c8 SAMSUNG Electronics SLED MOTOR 550 KA9201 LINEAR INTEGRATED CIRCUIT 1:----- RF AMP FOR CDP I The KA9201 which is the RF amplifier is a monolithic integrated circuit designed for three-spot type optical pick-up of the compact disc player. It is consisting of RF signal processing circuit, Focus Error AMP, Tracking Error AMP, Focus OK Detector, Mir· ror Detector, Defect Detector, EFM Comparator and automatic power controller for laser diode. -~---.--- 30 SOP • FEATURES • Functions: RF AMP Focus Error AMP Tracking Error AMP Focus OK Detector Mirror Detector Defect Detector EFM (Eight to Fourteen Modulation) Comparator Automatic Asymmetry Control AMP Center Voltage Buffer APC (Automatic Power Control) AMP for Photo· Diode and Laser-Diode drive ORDERING INFORMATION Device Operating Temperature KS9201D • • • • • • Single power supply operation (+ 5V) as well as split power supply operation (± 5V) Low power consumption (100mW at ± 5V, 50mW at + 5V) Built-in automaticpower controller use for P·sub and N·sub of the laser diode Minimum number of external components required Built·in disc defect detection circuit for improvement to playability Recommend operation supply voltage range: Vee - VEE: 4 -11 V Vee - DGNo: 4 - 5.5V • Power Supply Condition: Vee Single Power Supply .. -.- Split Power Supply VEE Power Supply GND + Power Supply - Power Supply c8SAMSUNG Electronics V R (V,ef) Ve VR DGND DGNO VC GND No Connecting GND I 551 LINEAR INTEGRATED CIRCUIT KA9201 BLOCK DIAGRAM CURRENT REFERENCE RFI VOLTAGE REFERENCE RF- PIN APC CIRCUIT LD RF SUMMING PO PO PD2 Vc DEFECT DETECTOR F I-V AMP TRACKING ERROR AMP E I-V AMP FOCUS EO ERROR AMP EI Gi _ FE BIAS - CENTER VOLTAGE + BUFFER Fig. 1 c8SAMSUNG Electronics 552 KA9201 LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATINGS Characteristic (Ta=25°C) Symbol Supply Voltage r------------Power Dissipation Unit Value Vee - VEE 12 V Pd 800 mW -- Operating Temperature Topr - 25- + 75 °C Storage Temperature T 8tg - 55- + 150 °C • ELECTRICAL CHARACTERISTICS (Ta = 25°C, Vee = 2.5V, VEE = DGND = - 2.5V, VC = GND, unless otherwise specified) Stage Power Supply Current -- No 1 Vee Current 1------ 2 VEE Current r----- - 3 DGND Current 4 RF AMP Characteristic 5 Test Conditions lice DC Current lEE I Min Typ Max Unit 8.0 11.4 15.5 mA -15.0 -11.0 -7.5 mA -1.1 -0.85 -0.6 mA VRF(offset) DC voltage -50 0 50 mV AVRF Vi = 2KHz, 40mV sinewave, Output; sinewave 25.1 28.1 31.1 dB -- Maximum Output Amplitude VRFpp1 Vi =0.2V DC Output; + peak voltage Maximum Output Amplitude VRFpp2 Vi = -0.2V DC Output; - peak voltage DC voltage Offset Voltage Voltage Gain IDGND I---- 1---- H Focus Error AMP Symbol 8 Offset Voltage VFdoffset) 9 Voltage Gain AVFE1 10 Voltage Gain AVFE2 11 Gain Unbalance 6AvFE 12 Maximum Output Amplitude H VFEpp1 13 Maximum Output Amplitude L VFEpp2 14 Offset Voltage VTE(offset) DC voltage Voltage Gain F AVTE(F) Vi = 1KHz, 0.3V sinewave, input to output ratio Output; sinewave Vi = 1KHz, 32mV sinewave, Output; sinewave - - - - -- - - -- Vi = -0.2V DC Output; - peak voltage 1.3 V -120 -0.3 V 120 mV 27 30 33 dB 27 30 33 dB -3 0 3 dB 1.9 V Vi=0.2V DC Output; - peak voltage -1.9 V ~-- -+-- 15 Tracking Error AMP 16 Voltage Gain E AvTE(E) Gain Unbalnce 6AvTE 18 Maximum Output Amplitude H Maximum Output Amplitude L c8SAMSUNG Electronics VTEpp(H) VTEpp(L) Vi=2.0V DC Output; + peak voltage Vi= -2.0V DC Output; - peak voltage mV 50 -- 17 19 -50 -------~ r----~ I 7 10 13 7 10 13 dB -3 0 3 dB r--- 1.9 dB V -- -1.9 ~ V 553 I KA9201 LINEAR INTEGRATED CIRCUIT ELECTRICAL CHARACTERISTICS Stage APC AMP Focus OK Mirror AMP Defect AMP No Characteristic Symbol (Continued) Test Conditions 20 Output Voltage 1 VAPC1 V j =190mV DC 21 Output Voltage 2 VAPC2 V j =90mV DC 22 Output Voltage 3 VAPC3 V j = 100mV DC 23 Output Voltage 4 VAPC4 V j =170mV DC 24 Output Voltage 5 VAPC5 Vj=OV DC 25 Output Voltage 6 VAPC6 Vj=OV DC 26 Maximum Output Amplitude H VAPcpp(H) Va=OV, la= -0.8mA Output; + peak voltage 27 Maximum Output Amplitude L VAPcpp(L) Va = 0.6V, la = 0.8mA Output; - peak voltage V j = output (V cc + DGNo)/2 must be adjusted by the DC voltage across RFI and RFO 28 Threshold Voltage VFOK(th) 29 High Level Output Voltage VFOK(H) 30 Low Level Output Voltage VFOK(L) 31 Maximum Operating Frequency fFOK(max) 32 High Level Output Voltage VM1R(H) 33 Low Level Output Voltage VM1R(L) 34 Mirror Hold fM1R(M) Frequency Response 35 Bottom ,Hold fM1R(B) Frequency Response 36 Maximum Input fM1R(max) Operating Frequency 37 Minimum Input Operating Voltage VM1R(min) 38 Maximum Input Operating Voltage VM1R(max) 39 High Level Output Voltage VoEF(H) 40 Low Level Output Voltage VoEF(L) c8SAMSUNG Electronics Min Typ Max 1.4 V -1.4 1.4 -1.4 V -1.4 V V 0 V -390 0 V -350 mV 2.2 Input across RFI and RFO 1V, 375mV(DC) sinewave, Output; pulse V j = 10KHz 0.8V, - O.4V(DC) sinewave, Output; pulse V 45 KHz 1.8 V V j = 0.8V, O.4V(DC) sinewave, Output; pulse 30 V j =32mV, +15mV(DC) sinewave, Output; pulse V 1.8 V j = 0.8V, 0.2V(DC), f(carrier) = 500KHz AM modulation Output; pulse V j = 10KHz, O.4V(DC) sinewave, Output; pulse V V 1.4 -430 Unit -2.2 V 400 600 Hz 500 900 Hz 70 0.1 KHz 0.2 V 1.8 V 1.8 V -2.2 V 554 KA9201 LINEAR INTEGRATED CIRCUIT ELECTRICAL CHARACTERISTICS Stage Defect AMP (Continued) Symbol Test Conditions No Characteristic 41 Minimum Input Operating Frequency fOEF(min) 42 Maximum Input Operating Frequency foEF(max) 43 Minimum Input Operating Voltage VoEF(min) 44 Maximum Input Operating Voltage VOEF(max) 45 Duty 1 DEFM1 46 Duty 2 DEFM2 47 High Level Output Voltage VEFM(H) 48 Low Level Output Voltage VEFM(L) 49 Minimum Input Operating Voltage VEFM(min) 50 Maximum Input Operating Voltage VEFM(max) 51 Maximum Input Operating Frequency fEFM(max) Vi = 750KHz, 0.7V sinewave, Output; pulse 52 Offset Voltage Vev(offset) DC voltage 53 Maximum Output Current ( + ) Ievpp( +) 54 Maximum Output Current (-) Ievpp( -) Min Vi = 32mV, + 15mV(DC) sinewave, Output; pulse 2.0 Typ Max Unit 670 1000 Hz 4.7 0.3 Vi = 50Hz, 15mV(DC) pulsewave, symmetry; 95% Output; pulse KHz 0.5 1.8 Vi = 750KHz, 0.7V sinewave, Output; DC voltage V V -50 0 50 mV 0 50 100 mV Vi = 750KHz, 0.7V, EFM Comparator Center Voltage Buffer + 0.25V(DC) sinewave Output; DC voltage 1.2 Vi = 750KHz, 0.7V sinewave Output; pulse Vi = 750KHz sinewave Output; pulse V -1.2 V 0.12 V 1.8 V 4.0 MHz -100 0 100 mV mA 5 -5 mA (Ta=25°C, Vee = 5.0V, VEE = -5.0V, DGNo=VC=GND, unless otherwise specified) 55 Maximum Output Amplitude (H) VRFpp(H) Vi =0.2V DC Output; DC voltage 56 Maximum Output Amplitude (L) VRFpp(L) Vi = -0.2V DC Output; DC voltage Focus Error AMP 57 Maximum Output Amplitude (H) VRFpp(H) Vi= -0.2V DC Output; DC voltage 58 Maximum Output Amplitude (L) VRFpp(L) Tracking Error AMP 59 Maximum Output Amplitude (H) VTEpp(H) Vi=2.0V DC Output; DC voltage 60 Maximum Output Amplitude (L) VTEpp(L) Vi = -2.0V DC Output; DC voltage RF AMP qsSAMSUNG Electronics V 3.5 0.3 4.2 Vi=0.2V DC V -2.2 Output; DC voltage V 4.2 V V -2.2 V 555 • KA9201 LINEAR INTEGRATED CIRCUIT ELECTRICAL CHARACTERISTICS Stage APC AMP Mirror AMP Defect AMP EFM Comparator Symbol Test Conditions No Characteristic 61 Output Voltage 7 V APC7 Vi = 190mV DC Output DC voltage 62 Output Voltage 8 V APC8 V i =90mV DC Output DC voltage 63 Output Voltage 9 V APC9 Vi= 100mV DC Output DC voltage 64 Output Voltage 10 V APC10 Vi= 170mV DC Output DC voltage 65 Output Voltage 11 VAPC11 Vi=OV DC Output DC voltage 66 Output Voltage 12 V APC12 Vi = 190mV DC Output DC voltage 67 Maximum Output Amplitude H VAPc(H) Va = OV DC, la = - 0.8mA Output; DC voltage 68 Maximum Output Amplitude L V APc(L) Va = 0.6V DC, la = 0.8mA Output; DC voltage VFOK(th) Input DC voltage; output (V cc + DGND)/2 must be adjusted by the DC voltage across RFI and RFO 69 Focus OK AMP (Continued) Threshold Min 1.4 -3.8 Low Level Output Voltage VFOK(L) 72 High Level Output Voltage VM1R(H) 73 Low Level Output Voltage VM1R(L) 74 High Level Output Voltage VDEF(H) 75 Low Level Output Voltage VDEF(L) 76 Duty 3 D EFM3 Vi = 750KHz 0.7V sinewave Output; DC voltage 2.45 77 Duty 4 DEFM4 Vi = 750KHz O.7V, + O.25V(DC) sinewave Output; pulse 2.50 78 High Level Output Voltage VEFM(H) 79 Low Level Output Voltage VEFM(L) V V 2.5 71 V V 3.8 VFOK(H) V V -1.4 -430 Unit V -1.4 High Level Output Voltage c8SAMSUNG Electronics Max 1.4 70 Vi = 1V, - 375mV(DC) across RFI and RFO; sinewave, Output; pulse Typ -390 -2.5 V -350 mV 4.7 V 0.7 4.3 V V Vi = 10KHz O.BV, - O.4V(DC) sinewave, Output; pulse 0.3 = Vi 1KHz 32mV, + 15mV(DC) sinewave, Output; pulse Vi = 750KHz O.7V, sinewave, Output; pulse V V 4.3 -0.3 V 2.50 2.55 V 2.55 2.60 V V 3.7 1.3 V 55.6 KA9201 LINEAR INTEGRATED CIRCUIT TEST CIRCUIT SIG-1 ~--------~ • -----~~----_1 la~ 1 --0 Fig_ 2 vc *) Note: KS74HCTLS04: Supply Voltage c8SAMSUNG Electronics DGND =5V 557 db flU) ~. Ul tn C 2 Ci) TEST METHODE (SWITCH CONDITION) 5tage Power Supply Current RF AMP Focus Error AMP Tracking Error AMP APC AMP No AMP Mirror AMP co - ON AVFE1 AVFE2 ON 18 19 20 21 22 23 24 ON ON ON ON VFEppl VFEpp2 VTE (offset) a a ON ON ON ON VAPC5 VAPCS VAPcpp(H) VFOK(L) tFOK(max) 32 VMIA(H) VMIR(L) 36 fMIA(M) fMIA(B) fMIA(max) 37 VMIA(min) _2.8 ~ax) ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON a a ON ON b b ON ON VAPC2 VAPC3 VAPC4 30 31 b b ON VAPCl 28 29 ON ON ON VTEpp(H) ATEpp(L) VAPCpp(L) VFOK(th) VFOK(H) 33 34 b b ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON - a - L - A A SIG·2 Vb Vb - i ~ E I A I A G SIG·2 SIG·2 G Vb G Vb - G I I SIG·3 SIG·3 I I II G I AVFE AVTdF) 16 AVTE(E) 17 AVTE 35 01 01 ON ON ON ON ON ON ON ON 6 VAFppl 7 VRFpp2 8 VFE(offset) 13 14 15 Test I 59 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 Input Point ON 5 AVAF 9 10 11 12 sa ON ON 2 lEE 3 IDGND 4 VAdoffset) 27 Focus 52 53 S4 55 56 57 1 Icc 25 26 OK Characteristic 51 (Vcc=2.5V, VEE=DGNo= -2.5V, Vc=GND) ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON Vt VI Va Va Va Va Va Va Va, la Va, la SIG·1 SIG·1 SIG·1 SIG·1 SIG·1 SIG·1 I I I I I C I C C I C C C C C P I cz £!XI --t Z m C') P P I P K K SIG·1 K I SIG·1 SIG·1 SIG·1 K K K SIG·1 K I I ~m c o XI o c: =t cSb ~Icn en g (IS" (/) c 2 Ci) (J1 (J1 c.o TEST METHODE (SWITCH CON DITION) 5tage No Characteristic 51 52 53 54 Defect AMP 39 VOEF(H) 40 VOEF(L) 41 tOEF(min) 42 tOEF(max) 43 VOEF(min) 44 VOEF(max) EFM 45 DEFMl Comparator 46 DEFM2 47 VEFM(H) 48 VEFM(L) 49 VEFM(min) 50 VEFM(max) 51 tEFM(max) Center 52 Vcv(offset) Voltage 53 IcvpP(+1 Buffer 54 IcvpP(-1 (Vcc=5.0V, VEE = -5.0V, RF 55 VRFpp(H) AMP 56 VRFpp(L) Focus 57 VFEpp(H) Error AMP 58 VFEpp(L) Tracking 59 VTEpp(H) Error AMP 60 VTEpp(L) APC 61 VAPC7 AMP 62 VAPC8 63 VAPC9 64 VAPC10 65 VAPCll 66 VAPC12 67 VAPcpp(H) 68 VAPcpp(L) Focus 69 VFOK (thres) OK AMP 70 VFOK(K) 71 VFOK(L) Mirror 72 VMIR(H) AMP 73 VM1R(L) Defect 74 VOEF(H) AMP 75 VOEF(L) EFM 76 DEFM3 Comparator 77 DEFM4 78 VEFM(H) 79 VEFM(L) ON ON ON ON ON ON ON 55 56 57 ON ON ON ON ON ON ON ON ON ON ON ON 58 (Continued) Test 59 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 Input Point a a a a a a ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON DGNo=Vc=GND) ON ON ON ON ON ON ON ON ON ON b b b b ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON a a ON ON b b ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON II ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON SIG·2 SIG·2 SIG·2 SIG·2 SIG·2 SIG·2 SIG·1 SIG·1 SIG·1 SIG·1 SIG·1 SIG·1 SIG·1 ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON ON Vb Vb Vb Vb Vt Vt Va Va Va Va Va Va Va, la Va, la SIG·1 SIG·l SIG·1 A A G G SIG·1 K SIG·1 SIG·2 SIG·2 SIG·1 SIG·1 SIG·1 SIG·1 K - Ib Ib J J J J J J ~ ~ ~ M M 0 a N N N D D D 1 1 C C C C C C C C P P P J J M M a 0 c z m l> :a Z -I m G) ~ m o (') :a (') c: =i LINEAR INTEGRATED CIRCUIT KA9201 APPLICATION NOTE 1. Description The KA9201 is a RF amplifier for compact disc player. It is designed for 3-spot type optical pick-up assembly. T/lle photo detector is composited of 6 light sensor (A through F). The photo detector A, 8, C and D detectors for detecting audio modulation on the disc and also utilizing to develop focus error signal, the E and F photo detectors to detecting of tracking error signal. 2. Operating Theory 1) RF AMP 58K RF I-V AMP(1) and RF I-V AMP(2) are converted into voltage from current signal of PD1(A + C) and PD2(B + D) through the 58Kohm internal resistor. Furthermore, it is added in RF summing amplifier, this signal (A + B + C + 0) is output at RFO (pin 2). The RF output voltage (Io~ frequency) is as follow. VRF = - R3* (iPD1 + iPD2) = - R3* (V1/R1 + V2/R2) = - 22K* (V1/10K + V2/10K) = - 2.2* (V1 + V2) 2) Focus Erros AMP R2 174K -(8 + D) _V_l( - r - - -_____-I -(A+G)V2 The Focus Error AMP is the difference between RF I-V AMP(1) output (A + C) and RF I-V AMP(2) output (8 + D). This two [ - (A + C), - (8 + D)] signals are each appl ied to the ( - ) and ( + ) input of Focus Error AMP. As the result of differential voltage, Focus Error signal is appeared at FE pin (pin 19). This FE output voltage (lOW frequency) become [(A + C) - (8 + D)], as follow. V FE = R2/R1 *(V2 - V1) = 5.4 (V2 - V1) The focus error voltage is directed to the focus servo circuit, to maintain optimum focusing at all times. vee o---c::J---e VEE 47K c8SAMSUNG Electronics KA9201 LINEAR INTEGRATED CIRCUIT 3) Tracking Error AMP 260K 26K PITS VF VE • TRACKING ERROR AMP EO E I-V AMP GAIN CONTROL Fig. 5 The output of photo detector F is directed to the ( -) input of F I-Vamp, and output of photo detector E is directed to the (-) input of F I-Vamp. These input signals are current. E I-V AMP and F I-V AMP are converted into voltage from the current signal. When correct tracking, two input (VF, VEl signals are equal. The occurence of tracking error is due to difference between F I-Vamp output and E I-Vamp output, and the TE output voltage is as follow. VF =iF*[(260K*13K/26K) + 273K] =iF*403K VE =iE*[260K*(VRAIVRB + 22K) + (VRA + 260K)] accordingly, VTE = (iE - iF)*1290K 4) Focus OK Circuit from RF Summing amp from Level Shifter Fig. 6 The focus OK circuit generates a timing window to look on the focus servo at focus search status. When RFO (Pin 2) voltage is more than - 0.37 volt, the focus amp output is inverted. The RFI pin (Pin 1) will get the HPF output from a RF signal of RFO (Pin 2), and the Pin 2 is LPF output opposite for focus OK amplifier output. Time constants of HPF in EFM comparator and in mirror circuit, and that of LPF in focus OK amp are determined by the capacitor (0.01j.t) between RFI and RFO. In case of 0.01j.tF, cut-off frequency will be 1KHz. This capacitor reduce error due to damaged RF envelop result from the scratched disc, and so on. c8SAMSUNG Electronics 561 KA9201 LINEAR INTEGRATED CIRCUIT 5) Mirror Circuit C H> MIRROR DIFFERENTIAL AMP MIRROR COMPARATOR Fig. 7 After RF input signal is amplified by Mirror Amp, it is held in Bottom & Peak hold circuit. Such a hold is determined by the time constant. Envelop signal J (demodulated to DC) is two-thirds of the peak value of this signal the time constant of J signal is held when it is larger than that of K signal. Therefore, mirror output is; Low at track on disc, High at between tracks on disc, High when defect is detected. The time constant of mirror hold required to be larger enough than that of traverse signal traverse signal. 6) EFM (Eight to Fourteen) Comparator Fig. 8 The EFM comparator convert a RF signal to a binary signal. A processing of disc production be occured disproportion because by modification of disc, that is not reduced by only AC coupling. The reference voltage of EFM comparator is controlled utilizing the fact that the generation-probability 1, 0 is 50%. In the binary EFM signal, As this comparator is a current switching type, each of the high and low levels are differention feedback through power supply and C-MOS buffer. R1, R2, C1 and C2 is for get (Vee + DGNo)/2 Volt. When the cut-off frequency is larger than 500Hz, EFM low frequency may be deterioration, and black error rate may be bad. c8SAMSUNG Electronics 562 KA9201 LINEAR INTEGRATED CIRCUIT 7) Defect Circuit • Fig. 9 The bottom hold has had two time constant of long and short, after than the RFI signal inverted. The short time constant of bottom hold is generated tv shoter than 0.1 msec of disc mirror defect, and long time constant is generated by previous mirror level. Mirror defect detection signals are generated by differentiate on capacitor coupling and then transfor level. 8) APC (Automatic Power Control) Circuit As the laser diode has had large negative temperature characteristic when do something for regularly supply current on laser diode. Therefore, the output on processing monitor photo diode, must be a controlled current for get regularly output power. Thus APe circuit composed, this circuit use for P-sub and N-sub of laser diode, single power supply operation as well as split power supply operation. (1) + 5V Single Power Supply P·sub Laser c8SAMSUNG Electronics 563 KA9201 LINEAR INTEGRATED CIRCUIT (2) - 5V Single Power Supply N·sub Laser D02 Fig. 11 (3) ::!: 5V Split ~)ower Supply P·sub Laser D03 Fig. 12 c8~SUNG 564 KA9201 LINEAR INTEGRATED CIRCUIT (4) ::t 5V Split Power Supply N·sub Laser I 004 Fig. 13 (5) Voltage Reference Circuit Fig. 14 This circuit generates a center voltage when the KA9201 and KA8309 is driven with a + 5V single power supply. The motor or acturator is no connected when the maximum current output ~urrent is approximatly ::t 5mA. c8SAMSUNG Electronics 565 KA9201 LINEAR INTEGRATED CIRCUIT APPLICATION CIRCUIT 1) + 5V Single Power Supply for P·sub Laser Diode 2) + 5V Single Power Supply for N·sub Laser Diode 47K Fig. 15 47K c8SAMSUNG Electronics 566 KA9201 LINEAR INTEGRATED CIRCUIT APPLICATION CIRCUIT 3) ::!: 5V Split Power Supply for P·sub Laser Diode 47K I Fig. 17 4) ::!: 5V Split Power Supply for N·sub Laser Diode 47K c8SAMSUNG Electronics 567 KA9255 LINEAR INTEGRATED CIRCUIT PWM MOTOR DRIVER The KA9255, a monolithic integrated circuit, is a dual pulse width modulation (PWM) driver. It is designed for potable compact disk players, and is capable of driving sled and spindle motor. FEATURES • • • • • 2 channel PWM driver Maximum output current is O.SA Wide operating supply voltage range (3.SV to 12V) Capability of controlling modulation index The servo loop gain stabilized by a current feed back loop • Internal thermal overload protection • 22 SOP type package I I L_ _ ORDERING INFORMATION Operating Temperature BLOCK DIAGRAM ACR MUTE AOUT ( - ) ART AOUT ( + ) GND AIN NC CLOCK TC c8SAMSUNG Electronics Vo BOUT (-) BRT BOUT (+) TEST VCC BCT BIN REF 568 KA9255 LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATING Characteristic (Ta=25°C) Symbol Value Unit Vee 12 V Vo 12 V 10 0.5 A Supply Voltage Output Current r--------Power Dissipation Po 550 mW Operating Temperature Topr -25- + 75 °C Storage Temperature Tstg -55- + 125 °C I ELECTRICAL CHARACTERISTIC (Ta = 25°C, Vee = 5.0V, Vo = 9V, VB = 1/2 Vee) Characteristic Symbol Quiescent Current (Control Stage) Quiescent Current (Output Stage) Typ Max Unit 18 24 mA 240 500 p.A Test Conditions Min Icc VIN =OV 8.5 10 VIN =OV 80 Output Saturation Voltage Vsat RL = 160, VIN = 1.5V 2.1 3.0 V Input vs. Output Pulse Width WIN VIN = 1V, V21 = Vee 2.7 5.0 7.3 p'sec Input Deadband Offset Vth IN See the figure below 20 80 150 mV Input Deadband Width Offset Vott IN See the figure below -50 0 +50 mV ,---------- Input Resistance RIN VIN = 1V 10.8 15.5 20.2 KO Clock Threshold Voltage Vtc VIN = 1V 0.56 0.64 0.72 V WM V IN = 1.5V, V21 = 0.5V 2.0 3.8 5.6 jtsec Muting Pin Voltage to Output Pulse Width Output Power Input Voltage A; Negative input deadband width 8; Positive input dead band width C; Input deadband width Vth IN = abs(A) + abs(8) = C Voll IN = (abs(8) - abs(A)) x 1/2 Reference Voltage (Pin 11) c8SAMSUNG Electronics 569 KA9255 LINEAR INTEGRATED CIRCUIT TEST CIRCUIT Vo CLOCK Vee JnUn-=r: L 2Vp.p OV APPLICATION CIRCUIT Vee from SL SSP C)o-------t (KA8309) from DSP (KS5990) RLCK from SSP (KA8309) SP Sled Motor Vref 0-----1 ~ c8SAMSUNG Electronics Protective Diode 570 LINEAR INTEGRATED CIRCUIT KA9255 Allowable Power Dissipation When internal power is consumed intermittently, the allowable power dissipation is the value correspol'\ding to the power application condition. The figure below shows an example of the heat reduction curve when the 6Po power is repeatedly applied three times in one second width and at one second interval while the Poe power consumption is consistent. (When 50mm x 50mm, t = 1.6mm glass epoxy circuit board is mounted.) I Pcc=OmW z ~ -+---t-- ~ I'.. 0.8 Poe+ 6P o o C ~ 0.6 Q. enen o a:: w UJ ~ 0.4 !!! ......... 50 100 1~0 ~ ~ ~ f'... i'-. 200 ~ a: == o Q. ~ ~ §0.2 Poe: Constant internal power consumption 6 Po: internal transient power consumption "'" "-i'-... . . . . ~ ~ ~" III t: time '" 'i'-. ' ' ~~ 1\ o iii' 1 VD=9.0V 5 1--t---t-+--1i--l---f-+-II\-+ \-+-+.III----~-l- ~~~l~gV 1--t---t-+--1i--l---f-+-I-\I---+--II--+--+---+--+-- ~:E~~~5V t-T---t-~--+--+-+ +--t\+-I+-+-I++ r' 'I O~ I -1 -1 V,N(V) INPUT c8SAMSUNG Electronics 571 LINEAR INTEGRATED CIRCUIT KA9255 OUTPUT-INPUT PULSE WIDTH OUTPUT -INPUT PULSE WIDTH W,N,V,N (2 PIN INPUT, PINS 18 AND 20 OUTPUT) W,N,V ,N (10 PIN INPUT, PINS 14 AND 16 OUTPUT) ~D19,b) 15 Vcc=5.0V RL=1611 VREF = 2.5V V,N=DC RT=111 CT=O.OI~F , I-+-++-+--jf--+-++-+-+---+-+-+++ 15 VREF=2.5V 1-I-I-....+--l--J.....4-1-....+--l--J.....4-1-....+--I--I- V,N = DC 1-I-I-....+--+-+--1-1-....+--l--+--1-1-....+--I--I- R; = III i!=c ~ C,=O,01~F 10 ~ 1'\ 1'\ !; 1\ I'\. V 1\ , II 1\ ~ 1./ 1\ o ~ 5 ~ ~~-l-J.....4~,rl-+--l-l---+-~~--+-+-~~ '\ 1.1 1,\ I 1\ 1\11 -2 -1 -2 -1 V,,.(\/) INPUT V,N(V) INPUT OUTPUT PULSE WIDTH-MUTING PIN VOLTAGE OUTPUT PULSE WIDTH-MUTING PIN VOLTAGE W,N,V. UTE (PINS 18 AND 20 OUTPUT) 15 ~ i w ~ ~ W,N,V.UTE (PINS 14 AND 16 OUTPUT) t10J I 1--t--+--+-+-1---+-+--+-+-+-+I-+-+-l--+-+-+-I-I-I-HI- Vee = 5.0V I-+-+-+-+-I-I-I-I-I-HI- RL = 1611 VREF=2.5V I-+-+-+-I-I-I-I-I-I-HI- V,N = -1.5VDC I-+-+-+-+-+-I-I-I-I-HI- ~;~~~l~F 10~+-+-+-+-+-1-1-1-1-1-~~~~~ 15 ~-t--+-I-+-t--+-+-+-t-+-l ]9.J 1 I--I--I--f---JI--II--II--II--II--I~~- Vee = 5.0V I-I-I-hl---'HHHH---I---I- RL = 1611 VREF=2.5V I-I-I-I-I-I---'HH---I---I---I- V,N = - 1.5VDC I-I-I-f...-I-f--I-I-HH---I---I- RT= 111 10 1--1--1--1--1--1---1---1------1---1---1- CT = 0.D1 ~F v / 5 ~ t 19.U 1-I-I-....+--l--J.....4-1-....+--l--J.....4-1-....+--I--I- Vcc = 5.0V 1-I-I-....+--l--J.....4-1-....+--l--J.....4-1-....+--+--t- RL = 1611 5 v I-H--+-+-7fI/+/++-+-+-+-H--+-+---j v V a I a 0.5 1.0 VMUT.(V) MUTING PIN VOLTAGE c8SAMSUNG Electronics 1.5 ~ 0.5 1.0 1.5 VMUT.(V) MUTING PIN VOLTAGE 572 LINEAR INTEGRATED CIRCUIT KA9256 DUAL POWER OPERATIONAL AMPLIFIER 10 SIP HIS The KA9256 is a dual power operational amplifier and its output maximum current is 1.0A (Vs= ± 15V). It can be used in arm driver for player, driver for brush motors forward and reverse rotation control and output driver for hole motor. FEATURES • • • • I Interal current limiting: Ise = 3S0mA CRse = 2_2) High output current: 10 = SOOmA max 10 SIP HIS package Internal phase compensation type BLOCK DIAGRAM ORDERING INFORMATION Operating Temperature UJ (/) z UJ (/) > f::0 0 > Z :> I Z :> + UJ UJ > '" Z :> + '" Z :> I ~0 > '" UJ (/) f5 0 0 > (/) > SCHEMATIC DIAGRAM SENSE r---------~~~~--+-------~----------~------~~vcc INVERTING INPUT NON-INVERTING fr----+------+-----' INPUT ...----+---+-f c8SAMSUNG Electronics OUTPUT 573 KA9256 LINEAR INTEGRATED CIRCUIT .ABSOLUTE MAXIMUM RATINGS Characteristic Symbol Value Unit Vs ±8 1.0 12.5 -25- + 75 -65- + 150 V A W °C °C Supply Voltage Output Current Power Dissipation Operating Temperature Range Storag,e Temperature Range 10 Po Topr Ts1g ELECTRICAL CHARACTERISTICS (Vcc = + 15V, VEE = -15V, Ta = 25°C, unless otherwise specified) Characteristic Symbol Test Conditions Min Typ Max Unit Input Offset Voltage Via 2 6 mV Input Offset Current 110 10 200 nA Input Bias Current liB 100 700 nA 10 20 mA Supply Current Output Voltage Swing Is VOUT Large Signal Voltage Gain Input Voltage Range RL=330 ±12 Av ±13 V 100 dB VICR ±12 ±14 V Common Mode Rejection Ratio CMRR 70 90 dB Power Supply Rejection Ratio p.VN PSRR 50 Bandwidth BW 1.0 MHz Slew Rate SR Av = 1, RL = 330, R = 100, C = 0.1p.F 0.15 V/p.S Limiting Current los Rsc= 2.20 0.35 A Cross Talk CT RL = 330, Va = 1Vp.p 60 dB c8SAMSUNG Electronics 150 574 LINEAR INTEGRATED CIRCUIT KA9257 DUAL POWER OPERATIONAL AMPLIFIER 12 SIP HIS The KA9257, a monolithic integrated circuit, is a dual power operational amplifier with maximum output cur· rent of O.5A. Since it consists of balance transless, both forward and reverse operation of the motor can be a achieved on a single power. The device is suitable for a CD player. I FEATURES • • • • 2 channel BTL driver Low input bias (lib = 30nA) Built in phase compensation capacitor Housed in a 12SIP HIS package for easy heat discharge • Improved crosstalk: (CT BOdB) • High output current: (10 = O.SA) = ORDERING INFORMATION Operating Temperature BLOCK DIAGRAM c8SAMSUNG Electronics 575 LINEAR INTEGRATED CIRCUIT KA9257 ABSOLUTE MAXIMUM RATINGS Characteristic Supply Voltage (Ta=25°C) Symbol Value Vee 18 V Pd 15 W Power Dissipation Operating Temperature Topr Storage Temperature Ts1g -25 -55 - Unit +75 °C +150 °C ELECTRICAL CHARACTERISTIC (Ta=25°C, Vcc =12V, f=1KHz, RL=4ohm, unless otherwise specified) Characteristic Symbol Test Conditions Min Typ Max Unit Quiescent Circuit Current lee Vin=O - 3 10 rnA Input Bias Current lib Vin=O - 30 100 nA Input Bias Pin Current Ib Vin=O - 100 300 nA Output Offset Voltage Voo Vin=O 0 50 mV Maximum Source Current Isou RL=4ohm, Vout=GND 0.7 1.4 Isnk RL=ohm, Vout=Vec 0.4 0.8 Maximum Output Voltage Yom Yin = 2V rms 1.8 2.5 - A Maximum Sink Current Closed Loop Gain Ave Yin = 0.1Vrms 5.0 6.0 7.0 dB Cut-off Frequency 15 20 KHz -50 A Vrms fr Yin = 0.1 rms, 3dB Down Cross-Talk CT Yin = 0.1 rms, BPF: 20-20KHz 40 80 - Ripple Rejection Ratio RR VRR =0.1V rms FRR =120Hz 30 40 - dB Slew-Rate SR Yin = 0.3V pp squarwave - 0.3 - V/p.S c8SAMSUNG Electronics dB 576 KA9257 LINEAR INTEGRATED CIRCUIT TEST CIRCUIT KA9257 I 100!, + SWl ~~1 ! Vee SGl I c8~SUNG 577 LINEAR INTEGRATED CIRCUIT KA9257 APPLICATION CIRCUIT Vee FOCUS ERROR OUT BIAS TRACK ERROR OUT ACT vee------I SERVO PRE AMP Precautions 1. In designing the board, minimum 6cms of segregation should be allowed between motor drive ICs (KA9257, KA9256) and other components such as Micom and/or Recorder/Player ICs. 2. To get stable supply of voltage and shield effect of radiation, the CD Deck needs to be grounded. c8SAMSUNG Electronics > 578 KDA0316 CMOS INTEGRATED CIRCUITS 16·81T D/A CONVERTER FOR COPs I" The KDA0316 is a CMOS 16-bit digital-to-analog converter for compact disc player that uses a dynamic level shift conversion method combining R-string, Pulse Width Modulation and level shift. DIP FEATURES • • • • • • • • • • 2's complement serial data input Contains two-channel D/A converter Can output L out and R out in phase To 176_4kHz maximum sampling frequency (corresponding to four oversampling) No deglich circuit needed Si-gate CMOS process (low power consumption) Single 5V supply voltage Built-in test circuit for PWM DAC Output swing level can be adjusted by the VR input voltage MSB first and LSB first mode of input digital audio data is available TYPICAL APPLICATIONS • • • • • • Portable cassette radios with CDP Home audio component systems Electronic keyboards Music centers ORDERING INFORMATION Mini CDPs Car CDPs THD(Max)(%) Package Temperature Range Max Oversampling r Device r KDA0316LN 0.05 rKDA0316N 0.08 i KDA0316LD 0.05 KDA0316D 0.08 20 DIP - 30°C - + 75°C 4Fs 20 SOP Fs: sampling frequency (44.1 KHz) PIN CONFIGURATION ROUT Dual-in-line Package & Small Outline Package NC VR,8TM2 A GND KDA0316 VR,8TM1 D GND MS T'N2 TIN1 rop View c8SAMSUNG Electronics 579 KDA0316 CMOS INTEGRATED CIRCUITS BLOCK DIAGRAM VR,TOP1 LOUT I BITCK 0 - WDCK1 0 0 ROUT I 0-- WDCK2 0 - LRCK 0-- MS o-r- DATA VR,BTM1 VR,TOp2 VR,BTM2 0- f-- Y TIMING GENERATOR SHIFT REGISTER MULTIPLEXER c8SAMSUNG Electronics PlNM SWITCH PWM SWITCH I I POTENTIOM ETRIC DAC POTENTIOMETRIC DAC I 1 DECODER DECODER I I L-CH LATCH R-CH LATCH 1 I 580 KDA0316 CMOS INTEGRATED CIRCUITS ABSOLUTE MAXIMUM RATINGS (Note 1 & 2) Characteristics Supply Voltage Input Voltage Output Voltage Operating Temperature Range Storage Temperature Range ESD Susceptibility (Note 3) Latch-up Current Symbol Value Unit Voo V 1N VOUT Vopr Tstg V ESO -0.3- + 7.0 - 0.3 - Voo + 0.3 -0.3- Voo+0.3 -30- + 75 -40- + 125 ±9QO V V V °C °C hat 50 mA I V RECOMMENDED OPERATING CONDITIONS Characteristics Symbol Min Typ Max Unit Supply Voltage Operating Temperature Range Input "H" Voltage Input "L" Voltage Reference "H" Voltage Reference "L" Voltage Sampling Frequency Voo Topr V 1H V 1L VR,TOP VR,8TM fs 4.5 -30 2.2 -0.3 Voo-O.S 0 5.0 5.5 7S Voo + 0.3 0.8 Voo 0.5 176.4 V °C V V V V KHz ELECTRICAL CHARACTERISTICS (Converter Specifications: V oo =5V, VrefH=SV, VrefL=A GND, IF=OV, fs=176.4KHz, Ta=2SoC, unless otherwise noted) Characteristics Supply Current Total Harmonic Distortion Signal to Noise Ratio Crosstalk Symbol Icc THO SNR CT Test Conditions Min Typ Max Voo=SV 3.S 5.S Voo=5.5V 4.0 7.0 mA MS=OV or SV Data = 1KHz, OdB 0.OS"1 0.08 MS=OV or SV Data = 1KHz, - 20dB 0.2 Data = 1 KHz, Od B 92 Voo=4.5V Data = 1KHz, OdB 87 MS=SV Data = 1 KHz, Od B 92 MS = SV, Voo = 4.SV bata= 1KHz, OdB 87 Data = 1 KHz, OdB Unit -8S % dB dB *1: User's option value (KDA016LN, KDA0316LD) Note 1: ABSOLUTE MAXIMUM RATINGS are those values beyond which the life of the device may be impaired. Normal operation is not guaranteed at these extremes. Note 2: A" voltage are measured with respect to the GND, unless otherwise noted. The separate A GND point should always be wired to the 0 GND. Note 3: 100pF discharged through a 1.SKO resistor. c8SAMSUNG Electronics 581 CMOS INTEGRATED CIRCUITS KDA0316 TIMING DIAGRAM 1 (When MS="H") 10 15 20 25 30 35 40 45 50 55 BITCK LRCK DATA WDCK1 WDCK2=0 n L·CHLATE* R·CHLATE* CVSCK* .-fl n n LOUT~ H;9hZ~ H;9hZ~ High Z ROUT=2!f High Z *L·CHLATE, R·CHLATE, and CVSCK is internal signal. TIMING DIAGRAM 2 10 BIT CK = 8.4672M Hz (Is = 176.4KHz) 4.2336MHz (Is = 88.2KHz) 2.1168MHz (Is = 44.1 KHz) (When MS="L") 15 20 rL 25 30 35 40 45 50 55 BIT CK LRCK DATA WDCK1 WDCK2 n L·CHLATE* ...In______ R·CHLATE* _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ CVSCK* LOUT ROUT --1l~=================~n~== ~-H-i9-h~Z-------------------------------Hi-9-h-Z~ ~H;9hZ HI9hZ~"--*L·CHLATE, R·CHLATE, and CVSCK is internal signal. c8SAMSUNG Electronics BIT CK = 8.6436MHz (Is = 176.4KHz) 4.3218MHz (Is = 88.2KHz) 2.1609MHz (Is = 44.1 KHz) 582 CMOS INTEGRATED CIRCUITS KDA0316 PIN DESCRIPTION Pin No Symbol Function 1 LOUT Left channel output pin 2 V R,TOP 1 Top reference voltage 1 pin 3 VR,TOp2 Top reference voltage 2 pin 4 A VDD 5 WDCK2 6 LRCK 7 WDCK1 8 DATA Analog supply voltage pin Left/right clock input pin Word clock 1 input pin Digital audio data input pin 9 BITCK 10 D VDD Digital supply voltage pin 11 TOUT Test output pin Bit clock input pin 12 TIN1 Test input pin 13 TIN2 Test input pin 14 MS Mode selecting pin 15 D GND Digital ground pin 16 V R,BTM 1 Bottom reference voltage 1 pin 17 A GND Analog ground pin 18 V R,BTM 2 Bottom reference voltage 2 pin 19 NC 20 ROUT c8SAMSUNG Electronics • Word clock 2 input pin No connection Right channel output pin 583 KDA0316 CMOS INTEGRATED CIRCUITS FUNCTIONAL DESCRIPTION 1. Calling for Digital Audio Data Digital audio data is a 16-bit serial 2's complement signal. The KDA0316 corresponds to MSB first code or LSB first code of digital audio data: the mode can be changed by the level of the MS pin. Data through the DATA pin is applied to the LCH latch and RCH latch of the two D/A converters built in the separate LCH and RCH. (1) When MSB First (MS="H" level) (see Timing Diagram 1) Digital audio data is carried in MSB first sequence from the data pin to the Shift Register in synchronization with . the BIT CK rising edge (Data transition occurs at the BIT CK falling edge.). LCH data and RCH data are carried to the LCH latch and RCH latcti by both the LCH latchable (L-CHLATE) and RCH latchable (R-CHLATE). (2) When LSB First (MS = "L" level) (see Timing Diagram 2) Digital audio data is carried in LSB first sequence from data pin to Shift Register in synchronization with BIT CK falling edge (Data transition is occurred at the BIT CK falling edge.). LCH data and RCH data are carried to the LCH latch and RCH latch by both the LCH latchable (L-CHLATE) and RCH latchable (R-CHLATE). 2. DIA Conversion Circuit (see Fig. 1) The KDA0316 has two D/A conversion circuits in the LCH and RCH independently. The two conversion methods are the same: a Complex Potentiometric Method, combining Resistor-Ladder D/A conversion, PWM (Pulse Width Modulation) D/A conversion, and Variable Resistor D/A conversion. After storing in the latch, the upper 9 bits of data (015 - 07) inputs into the Resistor-Ladder DAC, the middle 3 bits of data (06 - 04) into the PWM DAC and the lower 4 bits of data (03- DO) into the Variable Resistor DAC of the whole 16 bits of digital audio data (015- DO), respectively. The Digital audio data of the LCH and RCH, which were inputted by the time division multiplexing method from the DATA pin, synchronize with the conversion clock and after being converted by the D/A converters the respective analog signals in phase are outputted from the L OUT and R OUT pins. (1) Resistor-Ladder DAC The 9-bit D/A conversion circuit, which has a 512 (= 29) unit resistor string, divides the whole voltage (VR,TOP, VR,BTM) across a Resistor-Ladder into 512 steps. The two adjoining Va and Vb of th~ whole voltage, which are divided into 512 steps according to the upper 9 bits of data (015- 07), are outputted by a switching circuit of PWM DAC, where Vb - Va = (V R,TOP - VR,BTM)/512. (2) PWM DAC The 3-bit PWM DAC makes the differential voltage between Va and Vb, which is applied from a Resistor-Ladder DAC, divided into 8 steps by pulse width modulation. According to the value of the upper 3 bits of data (06 - 04), Va and Vb is outputted through the LCH or RCH terminal. A PWM DAC clock uses the BIT CK, and a relationship of sampling frequency and BIT CK frequency is shown in the Timing Diagrams. (3) Variable Resistor DAC The 4-bit Variable Resistor DAC has two variable resistors, VRTOP and VR BTM , in series with the Resistor-Ladder. According to the lower 4 bits of data (03- DO), VR TOP and VR BTM vary as follows: 1) Irrespective of the value of data, (VRTOP + VR BTM) is constant. 2) According to the value of data, VRTOP and VR BTM ranges from zero to 15R/128 (R is a unit resistor of the Resistor-Ladder): in R/128 steps. Therefore according to the lower 4 bits of data (03- DO), Va and Vb of an R-string DAC outputs range from zero to 15L:.V/128 [L:.V=(VTOP-VBTM)/512j in L:.V/128 steps. c8SAMSUNG Electronics 584 KDA0316 CMOS INTEGRATED CIRCUITS 3. How to Use VR (see Fig. 1) = = VR, the reference voltage across a Resistor-Ladder, is usually recommended with VR,TOp1 5V, VR,BTM1 OV. One way of avoiding an amplitude mismatching between the VR and OP amp input connected to the output of the KDA0316 is to reduce the analog output amplitude with V R,Top2 = 5V and V R,BTM2 = OV (at this time about 47p.F -100p.F capacitors should be connected from V R,TOP 1 and V R,BTM 1 to GND.). By the effect of built-in RTop and RBTM with this choice, the maximum analog output amplitude results in a narrow range of abo·,t 1.5-3.5V for OdB playback. • VR,TOP2 0 - - - - , ,---------VR,TOp1 0 - - -..... I I I I r------ Variable Resistor OAC I I I I I I I I I I rRe~;;-;'-- VRTOP I ____ 1 ,------, ---------l II Ladder 0AC I I Ii II I Va Resistor-Ladder (512 x R) & Voltage Select Circuit II II Vb I I I I: I PWM Control I VR,BTM1 0---4 VR,BTM2 L}---....J L-rr-_ ----, VRBTM I __ .J I LOUT ROUT I I L-----L---- I S~tch H-------~I II I I I 1-+----=------+-1 II PWM OAC I I RBTM Low 4 bits (03-00) High 9 bits (015- 07) Middle 3 bits (06-04) Fig. 1 c8SAMSUNG Electronics 585 CMOS INTEGRATED CIRCUITS KDA0316 TYPICAL APPLICATIONS (1) +6V LOUT DIGITAL INPUTS from DSP ROUT LPF: low pass filter (fe = 20kHz) Voo=5V VR=5V (2) LOUT DIGITAL INPUTS from DSP ROUT KDA0316 A GND (3) LPF: low pass filter (fe = 20KHz) Voo=5V VR=5V +5V LOUT Voo Q----.,----i DIGITAL INPUTS from DSP ROUT KDA0316 c8SAMSUNG Electronics LPF: low pass filter (fe Voo=5V VR=5V =20KHz) 586 KDA0316 CMOS INTEGRATED CIRCUITS Note: (1) D GND should be wired to the digital ground group and A GND to the analog ground group. (2) Voo and VR power supply should be low impedance and high stable (for example, three-terminal voltage regulator). (3) Because of the low output impedance and weak noise immunity of Pin 1 or Pin 20, noise reduction should be done by reducing the lead-wire length to the next OP amp stage. TEST CIRCUIT • +8V LOUT ~~--~--------------+------------------UGND DIGITAL INPUTS' ROUT LPF: low pass filter (fc Voo=5V VR=5V fs= 176.4KHz c8SAMSUNG Electronics =20KHz) 587 PRELIMINARY KS56C820 4·81T MICROCONTROLLER CMOS INTEGRATED CIRCUIT 80 FOP KS56C820 is an SMCS56 core-based 4 bit CMOS Microcomputer with LCD drivers, various peripherals that allows a high level control of target products, and numerous I/O's. The flexible I/O control commands that can handle 1,4, and 8 bit data manipulations will allow diverse applications control. KS56C820 has enough LCD drivers, and many CPU clock modes that minimizes current that it is suitable for applications on portable products like COP, OAT, camera, and LCD remote controllers. FEATURES • • • • • • • • • • • • • • • • Memory Mapped I/O ROM: 8064 x 8 bits RAM: 512 x 4 bits One 8-bit timer/counter input source: 2 external, and 4 internal inputs Watch timer One 8-bit SIO - Can send either from LSB or MSB_ - Can choose either transmit and receive, or receive only modes Multiple vector interrupts - Three external source interrupts: INTO, INn, INT4 - Three internal source interrupts: Basic Timer, Timer/counter, SIO - One external edge detectable quasi-interrupt: INT2 - One quasi-interrupt for clock: INTW 32 I/O bits (max 40 I/O bits) - Inputs: 8 bits - I/O: 16 bits; built-in LED driver. - N-channel open drain 110: 8 bUgs; can handle up to 10 volts. - Output: Maximum 8 bits (including segment driver output) Max. 16 digits of LCD driver - Static, 1/2, 1/3, 1/4 duty selectable. - 24, 28, 32 segment output selectable. 2KHz output for buzzer 16·bit Bit Sequential Carrier useful for remote con· lroller. Two types of power·down mode - Idle: Only the CPU clock stops. - Stop: All internal clocks stop. Can choose from various in~truction cycle time for power saving. - Using Main·system clock: 1,2, 16JtS/4MHz - Using Sub·system clock: 122pS/32.768KHz Built·in crystal/ceramic oscillator circuits for clock. - Crystal/ceramic oscillator circuit for main· system clock. - Crystal oscillator circuit for sub·system clock. 3/5V single power supply 80 Plastic Quad Flat Package c8SAMSUNG Electronics 588 PRELIMINARY KS56C820 CMOS INTEGRATED CIRCUIT PIN CONFIGURATION L() en Cl () co N N M a. ~ M ,... 0 c;; N ~ N en ~ x: M 0 cO r-.: C') ' UEW 3-1 2% T I T2 o Q Inductance (1) 0.52JlH ± 10% Qo fo (MHz) TURNS 60 (min) 25.2 6%T I Wire I I I 0.3<1>UEW 2. Receiver T1 Inductance 1.15JlH± 10% Qo 60 (min) TURNS 1-3 fo (MHz) Wire 4-6 2%T 7.96 0.3<1> UEW I 8%T I L1 : ~! Inductance Qo TURNS fo (MHz) Wire 33JlH± 10% 60 (min) 45T 2.52 0.14d2UEW c8SAMSUNG Electronics 599 KA2303 LINEAR INTEGRATED CIRCUIT DEMO BOARD (1:1 SCALE) 0 .1. c+.' .1. ca +T CST Ie I Js (;;Ie ? 11. R4+ c.ls T ~ R2~ ANT 0 -U-C4 til -n-C3 ;;t.. ~C!l;- r:t"'" ~ ~ LI B~E + ~R6 .JVVv- R3~ 6 C~ f C '4 IPOWERSW I ~ -u+ OFF ON -It-=: cBSAMSTJNG KA2303 -W Elcctronics C2 CI (TOP) (BOTTOM VIEW) c8SAMSUNG Electronics 600 LINEAR INTEGRATED CIRCUIT KA2304 TOY RADIO CONTROL ACTUATOR 9 SIP The KA2304 is a monolithic integrated circuit designed for remote\., controlled 2-function (forward, backward) actuators. ' It is suitable for radio-controlled toy cars. FEATURES • Include Amplifier, Detector, Comparator, Latch, Voltage Regulator, Actuator • Wide operating supply voltage range (Vee =2.5V -10 V) • Minimum number of external parts required. I ORDERING INFORMATION Operating Temperature BLOCK DIAGRAM DRIVER OUT 1 DRIVER OUT 2 NF DET GND 1 NC Fig. 1 c8SAMSUNG Electronics 601 LINEAR INTEGRATED CIRCUIT KA2304 ABSOLUTE MAXIMUM RATINGS (Ta = 25°C) Characteristic Symbol Value Unit Supply Voltage Power Dissipation Operating Temperature Storage Temperature Vee Pd Topr Tstg 11 500 -20 -+ 70 -40 - + 150 V mW °C °C ELECTRICAL CHARACTERISTICS (Ta =25°C, Characteristic Operating Voltage Symbol Vee lee Vee = 5V Input Impedance Zi Vee = 5V Output Saturation Voltage Sensitivity Comparator Hysteresis =5V) Test Conditions Circuit Current Output Sink Current Vee ISINK VSAT Vi (sen) Pin 8 is actuated Min HY Max Unit 2.5 5 10 V 10 20 40 mA 15 20 mA KO 10 6 Pin 6 is actuated Output is actuated Typ 0.25 0.45 V 2 4 6 mV 5 8 11 dB TYPICAL APPLICATION CIRCUIT KSA643·Y Fig. 2 c8SAMSUNG Electronics 602 LINEAR INTEGRATED CIRCUIT KA2305A TOY RADIO CONTROL ACTUATOR (RX) 12 SIPS H The KA2305A is a monolithic integrated circuit having 3 function designed for receiving signals for radio-controlled toy cars. FEATURES • Includes regulator for super regeneration circuit. • Simple 3 function on nonsequencial mode : forward, backward, stop • Wide operating supply voltage range: Vee=3V - 18V • Low quiescent circuit current (Icc = 10.SmA: Typ) • Low operating supply voltage Nee = 3V) • A minimum number of external parts are required I ORDERING INFORMATION Operating Temperature BLOCK DIAGRAM Vee ANT RC INTEGRATOR Fig. 1 c8SAMSUNG Electronics 603 KA2305A LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATINGS (Ta=25°C) Characteristic Symbol Value Unit Supply Voltage Drive Voltage Drive Current Regulator Output Current Power Dissipation Operating Temperature Storage Temperature Vee Vd Id Ireg Pd Topr Tstg 20 20 40 15 625 -20 - + 75 -40 - +125 V V rnA rnA mW °C °C ELECTRICAL CHARACTERISTICS Characteristic Circuit Current Saturation Voltage Symbol Icc (Ta=25°C, Vee = 6V) Test Condition Vee =6V, Vj=O Vg(sat) Dt = 25%, Ig = 30mA V10(sat) Dt = 75%, 11O =30mA Regulator Output Voltage V reg Vee=6V Low Operating Voltage V eeL V reg =2.3V High Operating Voltage VeeH V reg = 2.3V(min) - 2.7V(max) Sensitivity (Vi square wave) Vg(sen) Dt =25% V 10(sen) Dt =75% = Voltage Gain Av Min 2.3 Vi = 0.8mV rms , /= 1KHz Typ Max Unit 10.5 13.5 rnA 0.9 1.2 V 2.5 2.7 V 3 V 20 55 V 2 4 mVp.p 58 61 dB TEST CIRCUIT vreg vee Fig. 2 c8SAMSUNG Electronics 604 KA2305A LINEAR INTEGRATED CIRCUIT PIN DESCRIPTION Pin No. Symbol 1 Function OUT2 The 2'nd AMP. OUTPUT The 2'nd AMP. BY-PASS 2 BY2 3 BY1 4 INPUT The 1'st AMP. BY-PASS Signal Input Regulator Output (V reg 5 V reg 6 GND GND 7 N.C. N.C. 8 GND GND =2.5V) 9 OUTPUT1 Output of FORWARD (25% duty) 10 OUTPUT2 Output of BACKWARD (75% duty) 11 Vee 12 RC-INT. I Supply Voltage (3-18V) Output of RC INTEGRATOR APPLICATION CIRCUIT TANT ..L 10P KA2305A 01,2: B564·Y 03,4: KSA928· Y 05,6: KSC2328·Y Fig_ 3 c8SAMSUNG Electronics 605 KA2305A LINEAR INTEGRATED CIRCUIT TRANSMITTER APPLICATION CIRCUIT FOR KA2305A ,f 81 RS 470K R6 -=-sv 47K C2 ~ I'~' 1 R13 18K I" C1 R14 18K C4 103 CS I~ Rl0 22K R12 22K Q1,2,3,4-CS45Y __~~________~ ~_RI_GH_T Fig. 4 c8SAMSUNG Electronics 606 KA2305A LINEAR INTEGRATED CIRCUIT KA2305 DRIVER OUTPUT APPLICATION STAGE CDAPPLICATION I @APPLICATION ][ 1 Vcc 1 '=Vcc • COIL SPECIFICATION I Inductance fo (MHz) Wire 0.52/lH ± 10% 25.2 0.3<1:> UEW • KA2314 APPLICATION CIRCUIT FOR KA2305A POWER SWITCH " , " J 0-0 T :" 150p ~---I 1 T J m 33p c8SAMSUNG Electronics 607 KA2305A LINEAR INTEGRATED CIRCUIT DEMO BOARD (1:1 SCALE) o 3FUNCTION RIC CAR KA230 5 ;J fil10U.+ k SAM9MG /IFP I ~x .1U( UK 1 , I 12 Tt,03. U T1K V 0 ~ ~GND 270 4,7U -..L..L Ii•• T "';2T 472 ~Q7~t n.. 56P J. ";} T.!J "'''.,o ..L 3--i:T T .... 15OP ,.10P Lo QI &.6K-t.... .l.L1 .. 47u 270 ~ Q~Q2 6,8u AN'¥PO 473 ~t- E :- M+ 8 C E Q6 (TOP) (BOTTOM VIEW) c8~SUNG 608 KA2306A LINEAR INTEGRATED CIRCUIT 14 DIP TOY RADIO CONTROL ACTUATOR (RX) The KA2306A is a monolithic integrated circuit having 3 functions designed for receiving signals for radio-controlled toy cars. FEATURES • Includes regulator for super regeneration circuit. • Simple 3 functions : forward, backward, stop • Wide operating supply voltage range: • Vee=3V - 18V • • • • Low quiescent circuit current (Icc = 10.SmA: Typ) Low operating supply voltage (Vee = 3V) A minimum number of external parts required Internal TURBO circuit ORDERING INFORMATION BLOCK DIAGRAM Operating Temperature vee .,~ ~fij . Fig. 1 c8SAMSUNG Electronics 609 KA2306A LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATINGS (Ta=25°C) Characteristic Symbol Value Unit Supply Voltage Drive Voltage Drive Current Regulator Output Current Power Dissipation Operating Temperature Storage Temperature Vee Vd Id Ireg Pd Topr T stg 20 20 40 15 625 -20 - + 75 -40 - +125 V V rnA rnA mW °C °C ELECTRICAL CHARACTERISTICS Characteristic Circuit Current Saturation Voltage Regulator Output Voltage Symbol Icc (Ta=25°C, Vee =6V) Test Condition Vee =6V, VI=O V5(sat) V4 = 0.8V, 15 = 30mA Vs(sat) V4 = 2.0V, Is = 30mA V7(sat) V4 =1.5V,1 7 =30mA V reg Vee=6V Low Operating Voltage VeeL V reg =2.3V High Operating Voltage VeeH Vreg = 2.3V(min) - 2.7V(max) Vs(sen) Vee = 6V, f= 300Hz Sensitivity (VI = square wave) Vs(sen) Vee =6V,j= 900Hz Vrt sen) Vee = 6V, f= 600Hz Voltage Gain Av qsSAMSUNG Electronics Min VI = 0.8mV rms , f= 1 KHz 2.3 Typ Max Unit 10.5 13.5 rnA 0.9 1.2 V 2.5 2.7 V 3 20 55 V V 2 4 mVp-p 58 61 dB 610 KA2306A LINEAR INTEGRATED CIRCUIT TEST CIRCUIT OUTU--£~------1----+----~--~ IN 0---'-1'-1----, Vee I Fig. 2 PIN DESCRIPTION Pin No. Symbol Function 1 Vreg Output of REGULATOR (Vreg 2 BU Output of BUFFER 3 INT-I Input of Miller Integrator 4 INT-O Output of Miller Integrator 5 OUTPUT1 Output of BACKWARD 6 OUTPUT2 Output of TURBO 7 OUTPUT3 8 GND 9 Vee 10 AMP-O Output of FORWARD GND Vee Output of the 2'nd AMP. 11 BY-2 BY-PASS of the 2'nd AMP. 12 GND GND 13 BY-1 14 INPUT c8SAMSUNG Electronics =2.5V) BY-PASS of the 1'st AMP. Signal INPUT 611 KA2306A LINEAR INTEGRATED CIRCUIT' APPLICATION CIRCUIT INT 10p 1.8K l-_+-_~5.6K 1K 5.6K 472 I ~110T~,~7K 10/L 01,2: 0928·Y 03,4: C2328· Y 85,6: 8564·Y 07: A928-Y 5.6K 177m Fig. 3 TRANSMITTER APPLICATION CIRCUIT FOR KA2306A L2 2.2/LH ~l R3 1M R8 4.7K ":'TUR80 ::'9V R9 470K L3 2.2/LH C2 R15 22K i 01 Q2 C7 47P ~ rIO' T 5P C1 C4 103 C9 I'~ R10 22K R11 4.7K R12 22K 01,2: C945-G 03,4: C945-Y Fig. 4 c8SAMSUNG Electronics 612 KA2306A LINEAR INTEGRATED CIRCUIT COIL SPECIFICATION Wire Inductance 0.52flH ± 10% 0.3 1.7 I --I W > W --I (.) Cl " ~ -I-- ! 3.0 +---+--+---+-+----1--+--+---+-+----l ~ 2.51---j.._4-...j.-+~-+-+_-+-+___1 r--r ~ 2.0 ""/'----+___+-+---+-_+_-1_-+-+---+---1 ~ 1.5 1---+-+---+--+--+--_+-+__--+-_+_----1 ~ 1.01----+_-+--+-+--+--+---+-+--+_-I 0.5 f-----f-----t---- 0 10 11 VccM, SUPPLY VOLTAGE OUTPUT SATURATION VOLTAGESUPPLY VOLTAGE AMP GAIN-SUPPLY VOLTAGE 1.5 63 .r--- AMJ STAdE 62 1.4 f = 1KHz V,= -70dBm w CI 61 ~ 1.3 > 1.2 0 60 CI z 0 ~~ 59 IL ;; 0( 58 I ...:: '"~ 0.9 - - - -- -- IL V I- :::> 0 56 ~ 55 ~ 54 53 1.1 1.01----- .' 0.8 0.7 0.6 0.5 5 2 6 7 8 9 10 11 10 12 VccM, SUPPLY VOLTAGE 12 AMP GAIN-FREQUENCY INPUT SENSITIVITY-SUPPLY VOLTAGE 5.0 11 Vcc(V), SUPPLY VOLTAGE JL_F(~e~ 4.5 VIsa!) = 1.2V ~ 4.0 t: 3.5 - f - ' ffi III 3.0 ~ 2.5 ~ III !!E '1 > ! ..V \ z UEW DEMO BOARD (1:1 SCALE) • -n-CI9 C20 Q 12 ++ ~++~~ ~++~* ~++ ~~++~E~ ~I&I CIO B C RII Q3 1. I C9 ~ ~ CS • en II,/'II'IrRIO Q8 I Wv II,/'II'IrRS C7 :JJiv ~~ R19~ P,9 C2* R1 -u- CI]I<:lI~QI3 C B E C B E .1. ~ -t..... C3 ~ T L2 CII II,/'II'IrRI8 ~~ CI 2 C2 ~ 0 Q2 ++ OJ ~~ .ly\lyRl2tjen .A/'fvR13 Q9 Q4 Q5 ,,1&1 a! e~~~I~ If~1&I C B E J. Qst:I:JI of -.Iy\Iy- R14!:: a 0 en QJ I !J~t R4R'~ ~~ ~~ *~: ~ ~ ~~ ANT C5 .FULL FUNCTION RIC CAR. APP .. I Q7 (TOP) (BOTTOM VIEW) c8SAMSUNG Electronics 621 LINEAR INTEGRATED CIRCUIT KA2310 TOY RADIO CONTROL ACTUATOR 9 SIP (TX) The KA2310 is a monolithic integrated circuit having 7 functions designed for transmitting signals for radiocontrolled toy cars. In order to obtain a suitable radio control system for toys, the KA231 0 (Transmitter IC) should be used in combination with a KA2309 (Receiver IC). FEATURES • Includes Auto power swftch, Pulse generator, Modulator High frequency amplifier, Pulse width controller, Transmitting signal oscillator. • Wide operating supply voltage range: Vcc=6V - 12V ORDERING INFORMATION • Minimum number of external parts required • Low current dissipation Operating Temperature BLOCK DIAGRAM vee O.5I'H Rf MODULATOR Fig. 1 c8SAMSUNG Electronics 622 LINEAR INTEGRATED CIRCUIT KA231 0 ABSOLUTE MAXIMUM RATINGS (Ta=25°C) Characteristic Symbol Value Unit Supply Voltage Supply Voltage (PIN 8) Acceptable Load (PIN 8) Power Dissipation Operating Temperature Storage Temperature Vee Va RL Pd Topr Tstg 12 18 300 600 -20 - +70 -40 - +125 V V ELECTRICAL CHARACTERISTICS Characteristic Stand By Current Circuit Current Duty Cycle Oscillator Frequency Transmitting Power Test Condition SW2 SWL SWR Test Point ISb OFF OFF ON ON A1 Min Typ Max Unit 0 0.1 mA led1) ON B ON OFF A1 8 12 17 mA led2) ON B OFF ON A1 10 16 22 mA led3) ON B ON ON A1 10 15 22 mA Is ON A ON ON A2 2 3 mA fm(1) ON A ON OFF F/M 1.8 KHz fm(2) ON A ON ON F/M Dt(1) ON A ON OFF F/M Dt(2) ON A OFF ON F/M Dt(3) ON A ON ON F/M fosc ON B ON ON H/F Po(1) ON B fc=27MHz H/F Po(2) ON B fc=40MHz H/F Output Sink Current Modulation Frequency (Ta=25°C, Vee =9V) SW1 Symbol n mW °C °C 3.6 20 KHz 25 30 % 70 75 80 % 45 50 55 15 % 27 MHz 20 mW 17 mW TEST CIRCUIT lG: 11 I SWL SWR 0.0471<..,...... 500hm I m Fig. 2 c8SAMSUNGI Electronics 623 • LINEAR INTEGRATED CIRCUIT KA231 0 PIN DESCRIPTION Pin No. Symbol Function 1 PS Auto Power switch function and modulating signal oscillation. Backward, Turbo, Forward input (DUTY 50%) 2 FM Modulating signal oscillation. 3 DL Translation pulse width of modulating signal. Left turn input (DUTY 25%) 4 DR Translation pulse width of modulating signal. Right turn input (DUTY 75%) 5 GND GND 6 FC1 Transmitting signal oscillation. 7 FC2 Transmitting signal oscillation. 8 Vo The output signal of modulating and transmitting. 9 Vee Vee (6-12V) APPLICATION CIRCUIT .-----------.---------~--o Vee B 47p 150p g:J3P B: BACKWARD (350Hz) F: FORWARD (600Hz) T: TURBO (800Hz) SWL: LEFT TURN (Ot =25%) SWR: RIGHT TURN (01=75%) Fig. 3 c8SAMSUNG Electronics 624 KA2311 LINEAR INTEGRATED CIRCUIT 16 DIP TOY RADIO CONTROL ACTUATOR (RX) The KA2311 is monolithic integrated circuit having full functions designed for receiving signals for radio-controlled toy cars. In order to obtain a suitable radio control system for toys, the KA231"1 (Receiver IC) should be used in combination with a KA2312 (Transmitter Ie). FEATURES • It is possible to turn left or right on stop state. • Includes Regulator, Amp,Duty Integrator, Miller Integrator • Wide operating supply voltage range: Vee = 3V - 18V • Low operating supply voltage Nee = 3V) • A Minimum number of external parts are required (Includes turbo circuit) I ORDERING INFORMATION Operating Temperature BLOCK DIAGRAM IN BYPASS·1 GND BYPASS·2 OUT·1 INT·O vee DRIVER·5 REG OUT·2 INT·1 INT·O DRIVER·1 DRIVER·2 DRIVER·3 DRIVER·4 Fig. 1 c8SAMSUNG Electronics 625 KA2311 LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATINGS (Ta=25°C) Characteristic Symbol Condition Value Unit Supply Voltage Drive Voltage Drive Current Regulator Output Current Power Dissipation Operating Temperature Storage Temperature Vee Vd Id Ireg Pd Topr Tstg V , = 2.3V -:-: 2.7V ILK= 100ltA Vsat =1.2V V, =2.3V 20 20 150 20 625 -20 - + 75 - 40 - + 125 V V mA mA mW °C °C ELECTRICAL CHARACTERISTICS Characteristic Symbol (Ta=25°C, V ee =6V) Test Condition Min Typ Max Unit Circuit Current Icc V ee =6V, Vj=O 15 20 mA Leakage Current ILK Vee::::.6V, Vj=O 0 100 itA Saturation Current tv; = 10mV p.p, V(sat) = 1.2V) ~ JL pop T Regulator Output Voltage ' 5(sat) f=300Hz, V5(sat)= 1.2V ' 6(sat) f= 900Hz, V 6(sat) = 1.2V '7(sat) f= 600Hz, V 7(sat) = 1.2V Is(sat) f = 900Hz, V s(sat) = 1.2V Ig(sat) f=300Hz, Vg(sat)= 1.2V V reg Vee=6V Low Voltage Operating VeeL V reg = 2.3V High Voltage Operating VeeH Vreg::::' 2.3(min) - 2.7V(max) Sensitivity tv; = square wave) Voltage Gain V5(sen) Vee = 6V, f= 300Hz V6(sen) Vee::::. 6V, f= 900Hz V 7(sen) Vee::::. 6V,j= 600Hz Av qsSAMSUNG Electronics Vi = 0.3mV rms , f = 1 KHz 100 150 2.3 2.5 mA 2.7 V 3 V 20 60 V 2 4 mVp-p 65 70 dB 626 KA2311 LINEAR INTEGRATED CIRCUIT TEST CIRCUIT .---_-----+--.--- ~-O Vee 101" OUT~~----+--+--+-~ 11" LED SW6 IN KA2311 Vrey I 0--- LED*4 Fig. 2 PIN DESCRIPTION Function Pin No. Symbol 1 V reg Regulator Output (V reg 2 BU Buffer Output =2.5V) 3 INT·I Miller Integrator Input 4 INT·O Miller Integrator Output =30mA) =30mA) Forward Output (Isink =30mA) 5 D1 Backward Output (lsink 6 D2 Turbo Output (Isink 7 D3 =30mA) =30mA) 8 D4 Left Turn Output, DUTY 25% (Isink 9 D5 Right Turn Output, DUTY 75% (lsink 10 Vee Vee 11 INT·O Integrator Output 12 OUT2 The 2'nd AMP Output 13 BY2 The 2'nd AMP By·Pass 14 GND GND 15 BY1 16 IN c8SAMSUNG Electronics The 1'st AM P By·Pass Super Regenerator Signal Input 627 LINEAR INTEGRATED CIRCUIT KA2311 APPLICATION CIRCUIT ANT ~~------------~------------~-'12V 0471 0471 r---------4-------~------_.9V B772 B772 R15 SWl 300 Q7 C21473 l~ 6V '8564 0882 TRANSMITTER APPLICATION CIRCUIT FOR KA2311 POWER SWITCH ~---------'---~~>-----------Jl STOP .=. 9V 0.22,,(M) ff733 P 1 B/W: 350Hz F/W: 600Hz TURBO: 850Hz SW L: 01=75% SW R: 01=25% Fig. 4 c8SAMSUNG Electronics 628 KA2311 LINEAR INTEGRATED CIRCUIT TIME BASE WAVEFORMS 1 (Frequency Detector) WAVEFORMS 2 (Duty Detector) J1JLfl.SL-- I JlJ1JUl PIN11 OUTPUT 1.25 _DJJJJJJ LJ LJ U I (Duty 50%J O.625-n n n n (DutY25%)~ (~:75%rumr PIN4 OUTPUT _ _.....I._ _... ~ Fig. 4 c8SAMSUNG Electronics 629 KA2312 LINEAR INTEGRATED CIRCUIT TOY RADIO CONTROL ACTUATOR 9 SIP (TX) The KA2312 is monolithic integrated circuit having full functions designed for transmitting signals for radio controlled toy cars. In order to obtain a suitable radio control system for toys, the KA2312 (Transmitter IC) should be used in combin ation with a KA2311 (Receiver IC). FEATURES • Includes Pulse generator, Modulator High frequency amplifier, Pulse width controller, Transmitting signal oscillator. • Wide operating supply voltage range: Vcc=6V -12V • Minimum number of external parts required • It is possible for the user to select the modulating frequency ORDERING INFORMATION Operating Temperature BLOCK DIAGRAM Vee Fig. 1 ci$SAMSUNG Electronics 630 LINEAR INTEGRATED CIRCUIT KA2312 ABSOLUTE MAXIMUM RATINGS (Ta=25°C) Characteristic Symbol Value Unit Supply Voltage Supply Voltage (PIN 8) Acceptable Load (PIN 8) Power Dissipation Operating Temperature Storage Temperature Vee Va RL Pd Topr Tstg 12 18 300 600 -20 - + 70 -40 - +125 V V ELECTRICAL CHARACTERISTICS Characteristic Circuit Current Output Sink Current Modulation Frequency Duty Cycle Oscillator Frequency Transmitting Power Symbol n mW °C °C (Ta = 25°C, Vee = 9V) Test Condition SW1 SW2 SWL SWR Test Point Min Typ Max Unit lee(1) OFF B ON ON A1 15 20 25 mA 1cc(2) ON B ON OFF A1 13 18 23 mA Icc(3) ON B OFF ON A1 7 12 17 mA lec(4) ON B ON ON A1 11 16 21 mA 2 5 8 Is ON A ON ON A2 fm(1) ON A ON OFF F/M fm(2) ON A ON ON F/M Dt(1) ON A ON OFF F/M 70 75 80 Dt(2) ON A OFF ON F/M 20 25 30 % Dt(3) ON A ON ON F/M 45 50 55 % fosc ON B ON ON H/F Po(1) ON B fc=27MHz H/F Po(2) ON B fc=40MHz H/F 2 KHz 4 15 mA KHz % 27 MHz 20 mW 17 mW TEST CIRCUIT 500hm Fig. 2 c8SAMSUNG Electronics 631 I LINEAR INTEGRATED CIRCUIT KA2312 PIN DESCRIPTION Pin No. Symbol 1 FM1 2 FM2 Function Modulating signal oscillation. Backward, Turbo, Forward input (DUTY 50%) Modulating signal oscillation. 3 DL Translation pulse width of modulating signal. Left turn input (DUTY 75%) 4 DR Translation pulse width of modulating signal. Right turn input (DUTY 25%) 5 GND GND 6 FC1 Transmitting signal oscillation. 7 FC2 Transmitting signal oscillation. 8 Vo The output signal of modulating and transmitting. 9 Vee Vee (6-12V) APPLICATION CIRCUIT Fig. 3 KA2312 POWER SWITCH ~~~O--O----------'l STOP 150K ..=. 9V 1 m 33P O.22JL(M) B/W: 350Hz F/W: 600Hz TURBO: 850Hz SWL: Dt=75% SWR: Dt=25% Fig. 3 c8SAMSUNG Electronics 632 KA2314 LINEAR INTEGRATED CIRCUIT TOY RADIO CONTROL ACTUATOR (TX) 9 SIP The KA2314 is an integrated circuit designed to transmitter of full function RIC toy car which consists of a pulse generator, pulse width controller, modulator, TX signal osc, and high frequency amp. The KA2314 TX IC is used as one kit with the KA2311 (or KA2309) RX IC. The main application is a TX set of full function RIC toy car or some other kinds of TX for RIC toy car. FEATURES • Includes Pulse generator, Modulator High frequency amplifier, Pulse width controller, Transmitting signal oscillator. • Wide operating supply voltage range: Vee 6V - 12V • Minimum m!mber of external parts required • It is possible for user to select modulating frequency • It is possible of applicate for GUN TX. (The duty SW is open method) I = ORDERING INFORMATION BLOCK DIAGRAM Vee Fig. 1 c8SAMSUNG Electronics 633 LINEAR INTEGRATED CIRCUIT KA2314 ABSOLUTE MAXIMUM RATINGS (Ta = 25°C) Characteristic I Supply Voltage Supply Voltage (PIN 8) Acceptable Load (PIN 8) Power Dissipation Operating Temperature Storage Temperature Range Output Sink Current Modulation Frequency Duty Cycle Oscillator Frequency Transmitting Power Unit Vee Va RL Pd Topr Tst9 12 18 300 600 -20- + 70 -40- + 125 V V I n mW °C °C I I (Ta = 25°C, Vee == 9V) Test Condition Symbol Icd1 ) Circuit Current Value I ELECTRICAL CHARACTERISTICS Characteristic Symbol - - Test SWR Point SW1 SW2 SWL OFF B ON ON OFF Min Typ Max Unit A1 15 20 25 mA A1 13 18 23 mA mA led2) ON B ON led3) ON B OFF ON A1 7 12 17 led4) ON B ON ON A1 11 16 21 ma Icd5) ON B OFF OFF A1 11 16 21 mA 2 5 8 Is ON A ON ON A2 fm(1) ON A ON OFF F/M 2 KHz fm(2) ON A ON ON F/M 4 KHz fm(3) ON A OFF OFF F/M Dt(1) ON A ON OFF F/M 20 25 30 % Dt(2) ON A OFF ON F/M 70 75 80 % Ot(3) ON A ON ON F/M 45 50 55 % Ot(4) ON A OFF OFF F/M 45 50 55 % fose ON B ON ON H/F 27 MHz Po(1) ON B fe=27MHz H/F 15 20 mW Po(2) ON B fe=40MHz H/F 17 mW 1.5 mA KHz TEST CIRCUIT Fig. 2 c8SAMSUNG Electronics 634 LINEAR INTEGRATED CIRCUIT KA2314 PIN DESCRIPTION Pin No. Symbol 1 FM1 Function [, Modulating signal oscillation, Backward, Turbo, Forward Input (DUTY 50%) 2 FM2 3 DL Translation pulse width of modulating signal. Left turn input (DUTY 25%) 4 DR Translation pulse width of modulating signal. Right turn input (DUTY 75%) [ ----1 Modulating signal oscillation, --~---~I --~-~-- 5 GND GND Transmitting signal oscillation, --- ----------1 I I ~ 6 FC1 7 FC2 8 Vo The output signal of modulating and transmitting, 9 Vee Vee (6-12V) 1I Transmitting signal oscillation, ----~-I APPLICATION CIRCUIT AND DESCRIPTION 1) APPLICATION CIRCUIT FOR KA2311 (Duty SW: Open type) POWER SWITCH Tl 1 ..=.9V 68,H STOP: 100Hz B/W: 350Hz FIW: 600Hz TURBO: 850Hz SWL: Dt=25% SWR: Ot=75% SWL. R Open: Dt=50% Fig. 3 c8SAMSUNG Electronics 635 LINEAR INTEGRATED CIRCUIT ·KA2314 2) DESCRIPTION (Duty SW: Open type) Modulation frequency is determined by both external resistor of pin 1 and capacitor of pin 2. Therefore the modulation frequency according to their functions depends on the resistor of pin 1. Duty percent is determined by pin 3, pin 4 and when both pin 3, pin 4 are open. Duty percent is 50%. When pin 3 open and pin 4 GND, Duty 75%. When pin 3 GND and pin 4 open, then Duty percent becomes 25%. In the case of both pin 3, pin 4 open, the modulation frequency appears low value compared with that of Duty 25% or 75%. In order to obtain the same value of frequency, for this reason, the external proper capacitor must be connected in parallel to the pin 2. X-TAL, which has the equal value of the desired RF Signal, must be connected between pin 6 and pin 7. When 27MHz X-TAL is used, 10pF capacitor should be connected between both pins and GND, but when 49MHz X-TAL, 10pF capacitor may be connected between pin 6 and GND. Through these preparations, when the desired Signal is made completely then outputted through pin 8. Output level of pin 8 can be optimized by controlling the tank coil between pin 8 and Vee. (1) DUTY FUNCTION DUTY SW SW L OFF SWR OFF DUTY FUNCTION OUTPUT WAVEFORM 50% STOP, B/W, F/W, TURBO n ""'n WifNr- ·'N·iH -_.- @ MODULATION FREQUENCY FUNCTION STOP B/W F/W TURBO fm (Hz) 100 350 600 850 3) APPLICATION CIRCUIT FOR KA2311 (Duty SW: Short type) POWER SWITCH T1 1 .=. 9V 68,H STOP: 100Hz B/W: 350Hz F/W: 600Hz TURBO: 850Hz SWL: Dt=25% SWR: Dt=75% SW L.R Short: Dt = 50% Fig. 4 c8SAMSUNG Electronics 636 LINEAR INTEGRATED CIRCUIT KA2314 4) APPLICATION CIRCUIT FOR KA2309 (Duty SW: Open type) Vee 6.8/'H I 104(M) 1 BfW: 350Hz FfW: 600Hz TURBO: 850Hz SWL: 01=25% SWR: 01=75% SW L, R Open (01=50%) Fig. 5 ATTENTION FOR PROPER USAGE 1) It is desirable that the lowest error capacitor connected to pin 2 should be used in order to get the stable modulation frequency characteristics. (below ± 2% recommended) Mylar capacitor is better than electrolytic capacitor in characteristics. If a high error capacitor is used, the deviation of modulation frequency appears severe according to the individual device. 2) In case that the transmitted signal was over the occupied band width (20KHz/Max) of FCC standard, the modulation frequency should be lowered and used. 3) In the event of mismatching impedance between the external transmitter ANT and output circuit, duty cycle may be changed. At this event, it is necessary that the choke coil, which is connected to the TX ANT in tandem, should be changed to another one. (27MHz - 6.8J.tH, 49MHz - 2.2J.tH recommended). c8SAMSUNG Electronics 637 KA2303 APPLICATION NOTE 1. INTRODUCTION 9 SIP The KA2303 is an integrated circuit intend to drive remote controlled toy cars. By obtaining the 27MHz (or 49MHz) nonmodulated signal from wireless transmitter through a super regenerative detection circuit, the IC is designed to control the 3 functions (forward, stop, backward) of the DC motor. The circuit consists of amplifier, detector, comparator, latch, driver, and regulator. Reduced components surrounding the circuit enable an easily-designed circuit. 2. BLOCK DIAGRAM AND OPERATIONAL OF EACH BLOCK 1) A SIMPLIED BLOCK DIAGRAM AND OPERATION DRIVER OUT 1 DRIVER OUT 2 NF DH GND Fig. 1 : As an AC amplifier, it only amplifies noise signals within an audio frequency range. : With capacitor connected to Pin 4, a peak detector is formed. The low frequency noise signal amplified in the previous block is converted into DC. COMPARATOR: A schmitter trigger circuit with hysteresis characteristic. LATCH : Through the switching operation, it generates the signal to determine the direction of the motor. DRIVER 1, 2 : With output from direction control circuit, the driver 1 & 2 control the direction of the motor. The motor is connected to Pins 6-9. As a constant voltage supplier circuit, it stabilizes the operation of the device against the ripple REGULATOR and noise generated when the motor is set. A) AMPLIFIER 8) DETECTOR C) D) E) F) c8SAMSUNG Electronics 638 KA2303 APPLICATION NOTE 2) DETAILED BLOCK DIAGRAM AND OPERATION DESCRIPTION IN oJ I Fig. 2 A) AMPLIFIER a) Consists of operational amplifier (36), resistors (R25, R16 and R17), and a capacitor C25. b) Input signal is fed to a non-inverting terminal ( + ) of the operational amplifier. c) Since Pin 3 couples with capacitor C25, DC output is kept "0" in spite of offset voltage of operational amplifier. d) Amplification rate of alternative voltage should be (R17/R16) + 1. 8) DETECTOR a) Consists of operational amplifier (37), Transistor 04, Resistor R18 and Capacitor C26. b) The output voltage of the amplifier stage is supplied to the non-inverting terminal ( + ) of the operational amplifier, while the terminal voltage of capacitor C26 is fed to the inverting terminal ( - ). c) When input voltage of the non-inverting terminal is bigger than that of the inverting terminal, transistor 04 is turned on and the output voltage of the operational amplifier is charged to capacitor C26. d) If the condition of input voltage is reversed to c), Transistor 04 is turned off while the voltage charged at capacitor C26 is discharged through resistor R18. . . . . . e) As a result, the low frequency peak voltage fed to the non-inverting terminal of the operational amplifier IS detected at this stage. c8SAMSUNG Electronics 639 KA2303 APPLICATION NOTE C) COMPARATOR a) Consists of operational amplifier (38), resistors (R19 and R20) and reference voltage (Va). b) When the comparator output is high (Vr), the input voltage becomes: R20 Vax R19+R20 c) If the comparator output is low, the input voltage is: R20 R19 Vax R19+ R20 + Vrx R19+ R20 OUTPUT ~--------~----~--~-----------------------------INPUT R20 R19 Vax R19+R20 +Vrx R19+R20 R20 VaxR19+R20 d) The hysteresis characteristic prevents any misoperation caused by noise from the motor, ripple from the detector, or the fluctuation of the input signal. D) LATCH (DIRECTION CONTROL CIRCUIT) a) Consists of T flip-flop (39) and transistor buffer (40 & 41) b) The T flip-flop has its logic output 0 converted when the output from the comparator is elevated from low (0) to high (1). c) When the comparator output is lowered from high (1) to low (0), the T flip-flop maintains up edge operation to keep output 0 constant. d) The output 0' of T flip-flop is generated as non-inverted logic output. e) The output from the comparator becomes the gate signal of tristate buffer (40 & 41). f) When gate signal is "1" (high), the input of tristate buffer is delivered to the output. g) If gate signal is "0" (low), the output from tristate buffer becomes "0." GATE I INPUT ~ OUTPUT ~TATE BUFFER (40,41) GATE INPUT OUTPUT L (0) L (0) L (0) L (0) L (0) H (1) H (1) L (0) L (0) H (1) H (1) H (1) E) MOTOR DRIVER CIRCUIT a) Consists of buffers (42,43,44 & 45), resistors (R21, R22, R23, R24, R25 & R26) and transistors (05, 06, 07 & 08). b) The buffer has a role of driving the transistors. c) Transistor 07 and 08 are saturated by Resistors R23 and R24 when input of the buffer is "1." d) By Resistors R25 and R26, Transistors 05 and 06 operate as constant current suppliers. e) Pins 1, 6, 7, 8 & 9 of the motor driver circuit are connected to the motor circuit consisting of Transistors 09 and 010 the motor (M) and voltage (V) supplier. f) When the driver 1 input is "1" and Driver 2 input is "0", Transistors 05 and 07 are turned on while 06 and 08 are turned off. As a result motor driver current flows through Transistor 09, motor (M) and Transistor (07). ("Forward") g) When both inputs of Drivers 1 & 2 are in the opposite condition to 1), Transistors 05 and 07 are turned off whereas 06 and 08 are on. Therefore, the motor driver current flows through Transistor 010, motor (M) and 08. The motor is driven "backward". h) When the input of T flip-flop is "0", output of Tristate Buffers 40 and 41 also becomes "0". Since the transistors from 05 to 08 are turned off, the motor stops functioning. c8SAMSUNG Electronics 640 KA2303 3) DYNAMIC WAVEFORM OF EACH BLOCK. A) DYNAMIC WAVEFORMS a) ~~~~~~~~---1[[[[[[[[[[[[[[[[[[[[[[[[[[[il...------411[[[[[[[[[[[[[[[[[[[[[[1[[[[1"'-------tlllillillllllllllllllllllllll~ b) DET OUTPUT~ L WAVEFORM • c) COMPARATOR OUTPUT ~ WAVEFORM~I________~ d) T-FF OUTPUT-O WAVEFORM L L...---_------'I e) T-FF OUTPUT-Q WAVEFORM f) TRISTATE BUFFER (40) OUTPUT WAVEFORM ___________~ (DRIVE 1) l g) TRISTATE BUFFER (41) OUTPUT WAVEFORM (DRIVE 2) ~______~________~______~ ~-------4--------~--------4---------+-------~ T1 T2 T1 T3 T1 B) OPERATION OF DYNAMIC WAVEFORMS a) For waveform (f) and (g), input signals of the motor driver circuit become "0" during period T1. So the transistors from 05 to Q8 are turned off and the motor stops its operation. b) In period T2, Motor Driver 1 input becomes high whereas that of Motor Driver 2 is low. So Transistors Q5 and Q7 are activated while Q6 and Q8 are turned off. As a result, the motor is driven forward. c) In period T3, Motor Driver 1 has low input while high input is provided to Motor Driver 2. So Transistors 05 and Q7 are turned off while Q6 and Q8 are turned on. The direction of the motor is "backward." c8SAMSUNG Electronics 641 KA2303 APPLICATION NOTE 3~ APPLICATION CIRCUIT AND THEIR OPERATIONS 1) APPLICATION CIRCUIT 1 + C6 100" '='3V Jl Fig. 3 2) APPLICATION CIRCUIT 2 R6 ·2.2K Fig. 4 c8SAMSUNG Electronics 642 KA2303 APPLICATION NOTE 3) OPERAT10NAL DESCRIPTION (Please refer to above block diagrams) A) WHEN NO SIGNAL IS TRANSMITTED ("Stop" motion of the motor). a) Noise signal within audio frequency range is obtained at the antenna. b} Quenching signal is generated by Transistor Q1, Capacitor C2 and Coil L1 of the super regeneration receiver circuit. (Quenching frequency of 100KHz to 500KHz). c) The Quenching signal and noise signal are mixed before entering Pin 2 through loP.F. (R4 and C5). d) In the amplifier stage, an AC amplifier, only the noise signal is amplified to be delivered to the detector stage. The amplification rate should be about 43dB. e) The peak voltage of the low frequency noise signal fed to non-inverting terminal (+) of the operational amplifier is detected at the detector stage. Here the noise component of AC voltage is converted into DC voltage so the size of the DC voltage is determined by the amount of noise input. The. amplification rate is about 24.6dB. f) Detected peak voltage should be "1" (High condition: the voltage detected should be above O.7V) and it is input to the inverting terminal ( - ) of the operational amplifier in the comparator stage. g) The high signal fed to the inverting terminal ( - ) of the comparator is generated as low output to be delivered to the latch. h) Since low (0) input is provided to the T flip-flop of the latch stage, the original output from the T flip-flop remains unchanged. Both gate signals of the tristate buffer and the output of latch stage are low. i) As the low input is fed to the motor driver stage, transistors from Q5 to Q8 are turned off so the motor stops its function. B) WHEN SIGNAL IS TRANSMITTED FROM THE TRANSMITTER (Forward/Backward) a) A non-modulated high frequency signal (in the KA2303: 27-49MHz) resonated by the coil (T1) of the super generation receiver circuit and by Capacitor C1 is obtained at the antenna. b) The non-modulated high frequency signal organized at the antenna and the quenching signal are fed to the loP.F. of R4 and CS. c) The only signal passing through the loP.F. is the quenching signal and it is impressed on Pin 2. d) Only noise signal can be amplified at the amplifier stage. However, only the signal provided to the stage is the quenching signal, so no noise can be generated. e) Without any noise signal input, the detector stage has low (0) output. (To be low, the detector voltage should be less than 0.3V). f) With 10V¥ input, the inverting terminal of the comparator generates high output which will enter the latch stage. g) The T flip-flop of the latch stage has high input which will be inverted into a previous one. Since the gate signal of the triste buffer is high, the output of T flip-flop is delivered to the tristate buffer output. Tn On+1 0 1 an an Here Tn: Input of T-FF an: Previous output is maintained Qn: Inversion of previous output Qn + 1: Present output condition h} When the T flip-flop output is high (1), Transistors as and Q7 are turned on while 06 and 08 are turned off. So the operational current flows through Transistor 09, motor (M) and Transistor 08. . i)_ With low output (a) of the T flip-flop, Transistors QS and Q7 are turned off while Q6 and Q8 are turned on. So the operational current flows through Transistor 010, motor (M) and Transistor Q8. Consequently, the motor is driven backwards. c8SAMSUNG Elec.tronics 643 I KA2303 APPLICATION NOTE 4) EXTERNAL COMPONENTS A) R5: INPUT RESISTOR Misoperation (When the motor maintains only one direction) caused by low input noise is prevented by R5. If its value is small, the sensitivity of the receiver drops, whereas excessive value blunts the prevention of a misoperation. Therefore a value of 2MOhm is recommended. B) C8: INPUT BYPASS CAPACITOR If the capacitor value is reduced, the sensitivity of the receiver is also reduced. However, a large value may result a misoperation. So an appropriate value of O.02J.tF is recommended. C) C9, C10: FEEDBACK CAPACITOR They control the forward/backward converting time of the motor. When their value's are small, the motor either stops or misoperates when encountered with an obstacle. Also their voltage are low (Vee = less then 2.5V). On the other hand, a large value delays the forward/backward conversion time. In addition, if a weak signal is obtained due to remote transmission, a misoperation can be expected. Therefore O.0047J.tF for C9 and 2.2J.tF - 3.3J.tF for C10 are recommend. 0) C11: PEAK DETECTOR CAPACITOR A misoperation is expected if a weak signal is provided. On the other hand, a large value stabilizes DC voltage of Pin 4 but it delays the forward/backward time of the motor. Also when it encounters with an obstacle and voltage is low, the motor can misoperate. Satisfying results can be achieved with a value within the range of 2.2J.tF to 3.3J.tF. 5) PROPER CARE IN USING THE IC. A) Since the KA2303 is operated by the noise within audio frequency range, it is sensitive to noise. If it does not match properly with the super regeneration receiver circuit, misoperation of the motor can be expected. Therefore, care is required when deSigning the set. B) Input noise voltage can be easily modulated by the DC voltage difference of Pin 4. That is, an easy design of a set is provided if the DC voltage of Pin 4 is O.7V -1.0V when the motor stops, and less than O.3V when motor is driven either backward or forward. Therefore, whether the input noise is present in the device determines the conversion of the motor. Also the motor can be activated by directly feeding DC voltage to Pin 4. C) By inserting a proper DC resistor between Pin 3 terminal and feedback capacitor, the amplifier gain is controlled to obtain a desirable sensitivity of the receiver. 0) In order to apply the device in a low voltage (3V) circuit, super regeneration receiver circuit and power supply should be used separately. If they share same power source, the motor may misoperate. *.super regeneration receiver circuit: Vee =9V, KA2303: Vee=3V. E) If your circuit design contrasts with our recommendation, characteristics deviation should be reviewed. c8SAMSUNG Electronics 644 KA2309 APPLICATION NOTE 16 DIP 1. INTRODUCTION The KA2309 is an integrated circuit designed for 7 function RIC toy car. This I.C. consists of a regulator, an amplifier, a frequency detector, a duty detector, a comparator and two stages of drivers. The device operates on low voltage (3V) due to its structure requiring only minimum number of external parts and having 2.SV as regulator output. It is also free from any misoperation expected when power is switched ON/OFF. Built-in Turbo function is also available. For a best performance, the device is recommended to be used with a transmitter I.C. KA2310. • 2. BLOCK DIAGRAM & OPERATIONAL DESCRIPTION 2·1. BLOCK DIAGRAM Fig_ 1 c8 SAIUISUNG Electronics . 645 KA2309 APPLICATION NOTE 2·2. OPERATIONAL DESCRIPTION 1) Regulator Q26 R36 Q25 The circuit is used as current biasing for the super regeneration detector and other circuits. Constant 2.5V is always maintained in the circuit against changes in power or load, therefore a stable operation is guaranteed. As a negative feedback, 051-027-052 loop maintains continuous control action after being initiated by 026-025-023. R38 Q23 C1 + R39 R37 R41 Fig. 2 2) Amplifier By amplifing the signal divided at the super regeneration detector, the signal can be separated into noise and functional signal at the detector. Equivalent circuit of the 1st Amp Equivalent circuit of the 2nd Amp R12 Vo 1st Amplifier Output 2nd Amplifier V15 Vo Input R16 V12 C? 1 B'' '1 Fig. 3 Av1 Av ~ 20 log (1 + =~~) =Av1 + Av2 =58dB 0033 Fig. 4 :;: 29.5dB c8SAMSUNG Electronics Av2!;: 20 log (=~;) ~ 28.5dB 646 ' KA2309 APPLICATION NOTE Frequency Characteristic (i) The low frequency characteristic is determined by R5?, R15, and external C1 and C2. A(1) 1 211".RS7.C1 (Hz) A(2) 1 211". R1S.C2 (Hz) For example, when lowest frequency of the signal to be amplified is SOHz, C1 becomes larger than 17.7JLF (1/(211" x SO x 180)J. (ii) The high frequency is determined by the frequency characteristic of the amplifier. The 3dB cutoff frequency is, iH(1) = 2::V1 (Hz) • iH(2) = 2::V2 (Hz) *G.B = Avo-Wc Avo: open loop gain Wc: - 3dB corner frequency 3) Miller Integrator (Frequency Detector) DC (V) ~--~--~, + 1" ~t Fig. 5 The Miller Integrator converts functional signals into the DC level. After the Pin 2 square wave is differentiated to pass through the positive clipper, only negative spikes remain. Therefore no matter what the duty is, negative spikes are generated in certain intervals. If functional signals (square wave) are not available, the DC level of Pin 3 becomes more than zero and that of Pin 4 is kept nearly grounded. When the negative spikes at a certain interval are impressed on Pin 3 a negative spike proportional to frequency is generated at Pin 4 to drive the subsequential drive stage. c8~SUNG 647 KA2309 APPLICATION NOTE Since the integrator has a high gain due to its structure, the output voltage can easily drift from the '0' level. In order to prevent such a drift, a large resistor like R9 is connected between the output and inverting input. The integrator at low frequency is not affected by the DC gain that is cut down by R9. If the input frequency is too low, that capacitance impedance becomes higher than R9, and the integrator becomes disabled even though the capacitor is not affected. Therefore, C12 should be Xc12 .. R9. Generally Xc12 is set as R9/10. __ 1 _ _ R9 27T!LC12 - 10 10 iL= 211'C12R9 4) RC Integrator (Duty Detector) Fig. 6 Certain levels of DC in respect to duty is generated by the RC integrator. The output waveform of the RC serial circuit relies on the relationship between the time constant (CR) and pulse width (PW). This circuit, a CR I/- (10 x PW), obtains output from both ends of the capacitor. Input Waveform 2'5V~JUUUl ov Output 1.25V-JtRflR Setted (Duty 50%) Waveform 06~V--W n (Duty 25%) J~L Fig. 7 c8SAMSUNG Electronics 648 KA2309 APPLICATION NOTE 5) Driver Stage (1) Driver 1 • 058 Base Fig. 8 i) When the Pin 4 DC level is 0.5-1.3V: 061 is turned off 062,054 and 058 are turned on, So the Pin 5 DC level becomes low. ii) When the DC level is 1.3-1.85V: 021 is turned off, 024, 022, 053, 018 and 058 are turned on. 053 is turned on, 054 becomes turned off and the Pin 7 voltage becomes low. iii) When the DC level is above 1.85V: 081 is turned off. 082 and 083 are turned on. Then Pin 6 and Pin 7 can not be operated at the same time, but Pin 7 operation is not disturbed owing to external application circuit. 058 holds the operation of Driver 2 while Driver 1 is inhibited. In order words, Driver 2 is active only when the operation of Driver 1 is determined. (2) Driver 2 Fig. 9 Q1 and 013 are turned off if 058 connected with R46 is active. With 1.0 -1.4V of Pin 11 voltage, Pin 8 and Pin 9 become high. However, If Pin 11 voltage is higher than Vo(1.4V), turns off 03, while 02 and 074 are turned on. On the other hand, Pin 11 voltage lower than VE (1.0V) turns off 012 and turns on 014 and 075. As a result Pin 8 voltage becomes low. When current sinking is 30mA, Output Terminals 5, 6, 7, 8 and 9 of both drivers are designed to be less than 1.2V. c8~AMSUNG Electronics 649 KA2309 APPLICATION NOTE 3. APPLICATION CIRCUIT & OPERATIONAL DESCRIPTION C3 47P Fig. 10 01: C83a-O 02,03,06,07: B564-Y 04, OS: D471-Y oa, 09, 012: B772-Y 010,011: D882-Y 013: C945-Y OPERATIONAL DESCRIPTION The square wave inputted and detected by the super regeneration receiver is impressed to the input stage of the KA2309 Pin 16. The super regeneration receiver power is supplied by the regulator output voltage (2.5V) and the oscillator consists of TR 01, L2, C3, C4, C5 and R1. The Pin 16 input signal is sufficiently amplified by the AM P (Av = 52dB) to be divided into a noise component and functional signal. The functional signal is fed to the Miller integrator through a buffer, RC differential and positive clipper circuit. Also, it is fed to the RC integrator stage. The functional signal is outputted through Pin 2 of the buffer circuit and then differentiated by the RC differentiator consisting of C23 and R20. A positive differential waveform of over O.6V is inverted against the collector of 013 and then generated through 013. The waveform appearing at the 013 collector is fed to the Miller Integrator via the positive clipper circuit of D1. DC level proportional to the frequency of function signal appears at the Miller integrator output stage at Pin 4. Here, the R9 is connected to minimize drifting of output voltage generated by the high gain of the operational amplifier. Therefore operation of the integrator is disturbed at low frequency. The Pin 4 DC level proportional to frequency is determined by RS, R9 and C12. The relationship between function frequency and Pin 4 DC level is as below: c8SAMSUNG Electronics 650 KA2309 APPLICATION NOTE 2.3 R8: 3.3KO > ....J w R9: 150KO 1.8 1.7 C12: 0.1,..F > ~ u 0 ...z 1.3 1.1 a:: X a: o 200 450 510 650 700 • 950 TX MODULATION FREQUENCY-Hz Fig. 11 Operation of each driver stage is determined by the DC level of Pin 4. - When the level is less than O.5V (zero signal: Tx off): The driver stages stop functioning. Accordingly, transistors of the external driver stage are turned off. Therefore the Reel Motor STOPS. - When the level is 0.5V-1.1V: Driver 1 is turned on (Pin 5 is low) while external driver transistors 06, oa, 010 are turned on. Therefore the Reel Motor turns Backward. - When the level is 1.3-1.7V: Driver 3 is turned on (Pin 7 is low) and external driver transistors Q7, 09, 011 are turned on. Therefore the Reel Motor turns forward. - When the level is above 1.aV. Driver 2 is turned on (Pin 6 is low) and active Driver 3 turns on driver transistors 07, Q9, 012, 011 on. Therefore the Reel Motor repeats Forward of Turbo function. ~------------~--.6V Fig. 12 c8SAMSUNG Electronics 651 KA2309 APPLICATION NOTE The amplified functional signal fed to the RC integrator is converted into a DC level proportional to duty. - Duty = 50%: DC level of Pin 11 becomes approximately 1.25V. So Drivers 4 & 5 are disabled. Accordingly, the external steering motor driver TR is turned off. Therefore the steering motor stops. - Duty = 25%: Driver 4 is active if DC level of Pin 11 is approximately 0.625V (Pin 8 is low). Then external driver TRs 02 and 04 are turned on. Therefore the steering motor turns left. - Duty =75%: Driver 5 is active when DC level of Pin 11 is approximately 1.875V (Pin 9 is lOw). TR03 and 05 are turned on. Therefore the steering 'motor turns right. ----------------~------------~~~12V C19 ~--------------~6V Fig. 13 4. REMARK 1) Adjustment of Receiver Sensitivity Pin 12 square wave of the amplifier output terminal should adjust L1 and C2 resonance circuit of super regeneration receiver to an optimum point where waveform is free from noise. su-L 0 ~X Fig. 14 c8SAMSUNG Electronics 652 KA2309 APPLICATION NOTE 2) Operational Mode (Forward, Backward, Turbo) Check Pin 4 DC level and pin voltage of each driver stage need to be checked. Function Pin 4 VTG (DC) Driver Pin (H -+ L) 0.5V~ Pin 5, 6, 7: High Backward 0.5 - 1.1V Pin 5 Forward 1.3 - 1.7V Pin 7 1.8Vi Pin 6 Stop Turbo • 3) Left·Turn and Right Turn Pin 12 DC level and pin voltage of each driver stage need to be checked. Function Pin 12 VTG (DC) Driver Pin (H -+ L) 1.0 -1.4V Pin 8, 9: High Left Turn 1.0V ~ (Typ: 0.625V) Pin 8 Right Turn 1.4Vi (Typ: 1.875V) Pin 9 Stop 4) Motor Noise Causing a Misoperation can be Eliminated as Below Steering Motor Reel Motor 473 r-----------I I 473 I I I I I Interior of Motor Filter Coil Filter Coil Recommended Applications of - 1 - - - _ PCB GND Steering Motor. Recommended Application of FiQ.15 Reel Motor. Fig. 16 c8SAMSUNG Electronics 653 KA2309 APPLICATION NOTE 5) When the device is applied with transmitter I.C. KA2310: Tx modulation frequency should be adjusted to center frequency of each operation mode (forward, backward, turbo) after checking the range of each functional frequency. KA2309 (RX) Function Frequency (Hz) Pin 4 VTG (V) KA2310 (TX) Modulation Frequency Backward 200 - 450 0.5 - 1.1 320Hz Forward 510 -650 1.3 -1.7 580Hz Turbo 700 - 950 1.8 - 2.3 820Hz • Frequency range against KA2309 Pin 4 voltage changes in respect to surrounding time constant (R8, R9, C12). Therefore the modulation frequency of Tx should be adjusted properly. 6) 'Each base resistor value of the steering motor driver stage and the reel motor driver stage should be set according to the type of the motor and operation voltage. If the values are too small, driver TR may be distracted by being overloaded. If it is large, performance of the driver is inhibited. 7) If the external driver TRs are not used properly according to voltage, current and the capacity of the motor, especially when they exceed Absolute Maximum Rating the driver TR can be destroyed. Recommended Driver TR ~ TR 1A 2A 3A PNP B564A A928A B772 NPN D471A C2328A D882 c8SAMSUNG Electronics 654 KA2311 APPLICATION NOTE 1. INTRODUCTION 16 DIP The KA2311 is an integrated circuit designed for full function radio-controlled toy cars. This I.C. consists of a regulator, an amplifier, a frequency detector, a duty detector, a comparator and two stages of drivers. The device operates on low voltage (3V) due to its structure requiring only minimum number of external parts and having 2.SV as regulator output. It is also free from any misoperation expected when power is switched ON/OFF. A built-in Turbo function is also available. For a best performance, the device should be used with a transmitter I.C., KA2312. I 2. BLOCK DIAGRAM & OPERATIONAL DESCRIPTION 2·1 BLOCK DIAGRAM BYPASS-1 GND BYPASS-2 OUT-1 INT-O vee DRIVER-5 OUT-2 INT-1 INT-O DRIVER-1 DRIVER-2 DRIVER-3 DRIVER-4 Fig. 1 c8~SUNG 655 KA2311 APPLICATION NOTE 2·2 OPERATIONAL DESCRIPTION 1) Regulator 026 R36 025 R38 The circuit is used as current biasing for super regener· ation detector and other circuits. Constant 2.5V is al· ways maintained in the circuit against changes in power or load, therefore stable operation is guaranteed. As a negative feedback, 051·027·052 loop maintains continuous control action after being initiated by 026·025·023. 023 R37 R41 Fig. 2 2) Amplifier By amplifing the signal divided at the super regeneration detector, the signal can be separated into noise and func· tional signal at the detector. Equivalent circuit of the 1st Amp Equivalent circuit of the 2nd Amp R12 Vo 2nd Amplifier Vo Input AV1 =2010g (1 +~) R57+ Rj = 39.06dB (Rj= 0) Fig. 3 AV2 = 2010g (1 + R12) R23 27.6dB = Av c8SAMSUNG Electronics Fig. 4 = 20loglAyf1 1 + 20loglAyf2 1 =39.06 + 27.6 =66.66dS 656 KA2311 APPLICATION NOTE Frequency Characteristic (i) Low frequency characteristic is determined by R57, R15, and external C1 and C2. A(1) 1 27r'R57.C1 (Hz) A(2) 27r'R~5'C2 (Hz) For example, when lowest frequency of the signal to be amplified is 50Hz, C1 becomes larger than 17.7JLF (1/(27r x 50 x 180)}. (ii) High frequency is determined by the frequency characteristic of the amplifier. The 3dB cutoff frequency is, G.B /H(1)= 27r'Av1 (Hz) I G.B (H /H(2) = 27r'Av2 z) *G.B = Avo-Wc Avo: open loop gain Wc: - 3dB corner frequency 3) Miller Integrator (Frequency Detector) 1- - , DC (V) ...-------H-------. ___ + t 1" Fig. 5 The Miller Integrator converts functional signal into the DC level. After the Pin 2 square wave is differentiated to pass through the positive clipper, only negative spikes remain. Therefore no matter what the duty is, negative spikes are generated at certain intervals. If a functional signal (square wave) is not available, the DC level of Pin 3 becomes more than zero and that of Pin 4 is kept nearly grounded. When the negative spikes at a certain interval are impressed on Pin 3, negative spikes proportional to frequency are generated at Pin 4 to drive subsequential drive stage. c8SAMSUNG Electronics 657 KA2311 APPLICATION NOTE Since the integrator has a high gain due to its structure, the output voltage can easily drift from the '0' level. In order to prevent such a drift, a large resistor like R9 is connected between the output and inverting input. The integrator at a low frequency is not affected by the DC gain that is cut down by R9. If the input frequency is too low that capacitance impedance becomes higher than R9, the integrator becomes disabled even though the capacitor is not affected. Therefore, C12 should be Xc12«R9. Generally Xc12 is set at R9/10. __ 1_ _ R9 27rAC12 -10 10 !L = 27rC12R9 4) RC Integrator (Duty Detector) Fig. 6 A certain level of the DC in respect to duty is generated by RC integrator. The output waveform of the RC serial circuit relies on the relationship between the time constant (CR) and pulse width (PW). This circuit, a CR /I (10 x PW), obtains output from both ends of the capacitor. 2.5V--n Input Waveform n n n ovJ U U U L 1.25V-~ ;f1I IT lJ L Output Setted Waveform (Duty 50 o O.625V-. [ (Duty 25%) [ rr n -u J'C:I'L...:Jt::::rL 1.875V ~r= (0"" 75%) - Fig. 7 c8~SUNG 658 KA2311 APPLICATION NOTE 5) Driver Stage (1) Driver 1 • ,058 Base Fig. 8 i) When the Pin 4 DC level is O.5-1.3V: 061 is turned off 062,054 and 058 are turned on. So the Pin 5 DC level becomes low. ii) When the DC level is 1.3-1.85V: 021 is turned off. 024, 022, 053, 018 and 058 are turned on. 053 is turned on, 054 becomes turned off and Pin 7 voltage becomes low. iii) When the DC level is above 1.85V: 081 is turned off. 082 and 083 are turned on. Then Pin 6 and Pin 7 can not be operated at the same time, but Pin 7 operation is not disturbed owing to an external application circuit. 058 holds the operation of Driver 2 while Driver 1 is inhibited. In order words, Driver 2 is active only when the operation of Driver 1 is determined. (2) Driver 2 Fig. 9 01 and 013 are turned off if 058 connected with R46 is active. With 1.0 - 1.4V of Pin 11 voltage, Pin 8 and Pin 9 become high. However, Pin 11 voltage higher than Vd (1.4V) turns off 03 while 02 and 074 are turned on. On the other hand, Pin 11 voltage lower than VE (1.0V) turns off 012 and turns on 014 and 075. As a result Pin 8 voltage becomes low. When current sinking is 30mA, Output Terminals 5, 6, 7, 8 and 9 of both drivers are designed to be less than 1.2V. c8SAMSUNG Electronics 659 KA2311 APPLICATION NOTE 3. APPLICATION CIRCUIT & OPERATIONAL DESCRIPTION Fig. 10 01: C838·0 02,03,06,07: B564·Y 04,05: D471·Y 08, 09, 012: B772·Y 010,011: D882·Y 013: C945·Y OPERATIONAL DESCRIPTION The square wave inputted and detected by the super regeneration receiver is impressed to the input stage of the KA2311 Pin 16. The super regeneration receiver power is supplied by the regulator output voltage (2.5V) and the oscillator consists of TR 01, L2, C3, C4, C5 and R1. The Pin 16 input signal is sufficiently amplified by the AMP (Av = 56dB) to be divided into noise component and functional signal, the functional signal is fed to the Miller integrator through the buffer, RC differential and positive clipper circuit. Also, it is fed to the RC integrator stage. The functional signal is outputted through Pin 2 of the buffer circuit and then differentiated by the RC differentiator consisting of C23 and R20. A Positive differential waveform of over O.6V is inverted against the collector of Q13 and then generated through 013. The Waveform appearing at 013 collector is fed to the Miller integrator via the positive clipper circuit of D1. A DC level proportional to the frequency of the function signal appears at the Miller integrator output stage at Pin 4. Here, R9 is connected to minimize drifting of the output voltage generated by the high gain of the operational amplifier. Therefore, operation of the integrator is disturbed at low frequency. A Pin 4 DC level proportional to frequency is determined by RB, R9 and C12. The relationship between the function frequency and Pin 4 DC level is as below: c8SAMSUNG; Electronics 660 KA2311 APPLICATION NOTE 2.3 R8: 3.3KO > ....J w R9: 150KO 1.8 1.7 C12: 0.1/LF > ~ u 0 ...,. z 1.3 1.1 ii: X a: 200 450 510 650 700 I 950 TX MODULATION FREQUENCY·Hz Fig. 11 Operation of each driver stage is determined by the DC level of Pin 4. - When the level is less than O.5V (zero signal: Tx off): The driver stages stop functioning. Accordingly, the transistors of the external driver stage are turned off. Therefore the Reel Motor stops. - When the level is O.5V-1.1 V: Driver 1 is turned on (Pin 5 is low) while external driver transistors Q6, Q8, Q10 are turned on. Therefore the Reel Motor turns Backward. - When the level is 1.3-1.7V: Driver 3 is turned on (Pin 7 is low) and external driver transistors Q7, Q9, Q11 are turned on. Therefore the Reel Motor turns Forward. - When the level is above 1.BV. Driver 2 is turned on (Pin 6 is low) and active Driver 3 turns on driver transistors Q7, 09, 012, Q11 on. Therefore the Reel Motor repeats forward of Turbo function. ~----~------~========~~r-I~ Fig. 12 c8SAMSUNG Electronics 661 KA2311 APPLICATION NOTE The amplified functional signal fed to RC integrator is converted into DC level proportional to duty. - Duty = 50%: DC level of Pin 11 becomes approximately 1.25V. So Drivers 4 & 5 are disabled. Accordingly, the external steering motor driver TR is turned off. Therefore the steering motor stops. - Duty =25%: Driver 4 is active if DC level of Pin 11 is approximately 0.625V (Pin 8 is low). Then external driver TRs 02 and 04 are turned on. Therefore the steering motor turns left. - Duty =75%: Driver 5 is active when the DC level of Pin 11 is approximately 1.875V (Pin 9 is low). TR03 and 05 are turned on. Therefore the steering motor turns right. ----------------~------------~~-.12V C19 .---------------~6V Fig. 13 4. REMARK 1) Adjustment of Receiver Sensitivity Pin 12 square wave of the amplifier output terminal should adjust the L 1 and C2 resonance circuit of the super regeneration receiver to an optimum point where the waveform is free from noise. !J;' JLIL 103 0 ~x Fig. 14 c8SAMSUNG Electronics 662 KA2311 APPLICATION NOTE .2) Operational Mode (Forward, Backward, Turbo) Check Pin 4 DC level and pin voltage of each driver stage need to be checked. Function Stop Pin 4 VTG (DC) Driver Pin (H ..... L) 0.5V~ Pin 5, 6, 7: High Backward 0.5 - 1.1V Pin 5 Forward 1.3 -1.7V Pin 7 1.8Vt Pin 6 Turbo I 3) Left·Turn and Right Turn Pin 12 DC level and pin voltage of each driver stage need to be checked. Pin 12 VTG (DC) Driver Pin (H ..... L) 1.0 - 1.4V Pin 8, 9: High Left Turn 1.0V~ (Typ: 0.625V) Pin 8 Right Turn 1.4Vt (Typ: 1.875V) Pin 9 Function Stop 4) Motor Noise Causing a Misoperation can be Eliminated as Below Steering Motor Reel Motor 473 r-----------i I I 473 I I I I I-- Interior of Motor I _____J Recommended Applications of +--__ Steering Motor. Fig. 15 PCB GND Recommended Application of Reel Motor Fig. 16 c8~SUNG 663 KA2311 APPLICATION NOTE 5) When the device is applied with transmitter I.C. KA2312, the Tx modulation frequency should be adjusted to center on a frequency of each operation mode (forward, backward, turbo) after checking the range of each functional frequency. KA2311 (RX) Frequency (Hz) Pin 4 VTG (V) KA2312(TX) Modulation Frequency Backward 200 - 450 0.5 - 1.1 320Hz Forward 510 - 650 1.3 - 1.7 580Hz Turbo 700 - 950 1.8 - 2.3 820Hz Function * The frequency range against KA2311 Pin 4 voltage changes in respect to surrounding time constant (R8, R9, C12). Therefore the modulation frequency of Tx should be adjusted properly. 6) Each base resistor value of the steering motor driver stage and the reel motor driver stage should be set according to the type of the motor and operation voltage. If the values are too small, the driver TR may be distracted by being overloaded. If it is large, performance of the driver is inhibited. If the external driver TRs are not used properly according to voltage, current and the capacity of the motor, especially when they exceed Absolute Maximum Rating, the driver TR can be destroyed. 7) Recommended Driver TR ~ TR 2A 3A PNP B564A A928A B772 NPN 0471A C2328A 0882 :c8SAMSUNG Electronics 1A 664 KA2311 APPLICATION NOTE 8) AMP GAIN Equivalent circuit of the 1st Amp Vo 2nd Amplifier Input V15 The gain of amp stage can be controlled with the insertion of an external resistor in tandem. Because the amp stage of the KA2311 is high and the value of reference voltage is low, it is necessary that the gain should be adjusted by the insertion of a feedback resistor in order to get stable operation. (Without using an Rt resistor, malfunctions would appear. Accordingly Rt must be used and the value of 1Kohm is recommended.) R16 * Av =2010g (1 +~) I R57 + RJ The graph of Amp Gain according to the value of feedback resistors is as follows; 70 r--..... ........ 60 ........ ~ - ""'- -- r- r- r- ~ 50 [II '0 ""- ....... [""0. ........ r--.. 40 I «> r:: 'OJ (!) 30 a. E « 20 10 o o 100 200300 470 560 680 750 820 910 1K 1.5K 2K 3K 5K 7K 10K Feedback Resistor, Rf - ohm c8SAMSUNG Electronics 665 KA2312 APPLICATION NOTE 9 SIP 1. INTRODUCTION The KA2312 is an integrated circuit designed for the transmitter of full function radio-controlled toy cars. It consists of a pulse generator, pulse width controller, modulator, TX signal osc, and high frequency amp. The KA2312 TX IC is used as one kit with the KA2311 RX IC. The main application is a TX set of full function radio-controlled toy cars or some other kinds of TX for radio-controlled toy cars. 2. BLOCK DIAGRAM & OPE-RATIONAL DESCRIPTION 2·1 BLOCK DIAGRAM Vee ~--------------------------~9~-------------------------, HIGH FREQ. AMP GND Fig. 1 c8~SUNG 666 KA2312 APPLICATION NOTE 2·2. OPERATIONAL DESCRIPTION 1) PULSE GENERATOR ~--~~--~------~~-------------------------------Vee Q20 R28 I R31' o VB Idischarge Control R10 R17 D14 Fig. 2 The capacitor Cf charges or discharges according to the state Nodes A and B. 1. Charge When VA is larger than VB1 022 turns on and off, and at this moment 021 is saturated (V sat = D.2V). r-------...------a Vee Vsat (0.2V) To calculate the voltage value of node A, VA is as follows: R10 VA = Vd14 + R1D + R28/R31 x (Vee - D.7) =0.7 + 5.01 =5.71V R10 qsSAMSUNG Electronics Where Vsat = 0.2V is neglected. At this time, 020 makes the discharge control terminal turn off and the charge. 667 KA2312 APPLICATION NOTE 2. Discharge When VA is less than VB1 023 turns on and 020, 021, 022, off according as the charge voltage of capacitor is larger than 5.71 V. After that 020 turns off and discharge control terminal on, as the last currents charged on the capacitor discharge. 3. Recharge When 021 turns OFF, the voltage of Node A is as follows: R10 VA = 0.7 + R10 + R2S(V cC - 0.7) = 0.7 + 2.79 = 3.49V After capacitor discharges, when the voltage of Node B is less than 3.49V, then 022 turns on and 023 off. There-after, the capacitor is in the charge-state again. 2) DUTY CONTROLLER Duty is controlled by the current ratio of 02, 04, 010; 011 current mirror in which the collector current of 03 is reference. R2 R3 01 R6 Iref 03. Collector Vx 020 Collector (Discharge Control) Fig. 3 c8.!e!"SUNG 668 KA2312 APPLICATION NOTE The amplified functional signal fed to the RC integrator is converted into the DC level proportional to duty. Ie (02): I ref Ie (04): 2 Iref Ie (010): Iref Ie (011): 2 Iref 1. DUTY 50% (Charge:Discharge = 50:50) Condition: Pin 3=GND Pin 4=GND 1. Charge Current When 020 is on, Yx become high stage. When Pin 3, Pin 4 are connected to the GND, 05 and 026 turns off. The high state of Yx makes 06, 028 become in saturation and then 028 is saturated and 07, 027, are off. Therefore the charge current of Cf at Node B is as follows: I charge = le(1 0) + 1c(11) = Iref + 2 Iref = 3 Iref at this time, Ie (04) flows through 06, but Ie (10) cannot flow because 07 is off. I 2. Discharge Current When 020 turns off because of a voltage increase above 5.71V. Yx falls into a low state, and when Yx low, then 06 and 028 are off. When 028 turns off, 07 and 027 on. At this moment, the discharge current is as follows: I discharge = Ie (04) + Ie (10) = 2 Iref + Ie (10) = 3 Iref Therefore, it is obvious that charge current equals the discharge current. I charge = I discharge (Duty 50%) :~~:~~~~~+3~-I_r-e_f-.~~~~3~1 .....;r-ef:~~~~VV\Z\~~_.-_..-_.-_-_-_~~_-_-_-.-'_-_-_-_~~_-_~. .-'_-_-_-_~,.._-_-_-~-_-_-_-_-_-_~ . _ T1.T2=1.1 T1 T2 2. DUTY 25% (Charge:Discharge = 75:25) Condition: Pin 3 = Open Pin 4=GND 1. Charge Current *020·0N: Vx High *026 turns ON in Pin 3 open state and Ie (011) flows through 026. *1 charge = Ic (04) + Ie (010) = Iref 2. Discharge· Current *020 OFF: Vx Low *1 discharge = Ic (04) + Ic (010) = 2 Iref + Iref - 3 Iref = 3 'ref I charge = I discharge (Duty 25%) :.3 c8SAMSUNG Electronics 669 KA2312 APPLICATION NOTE 5'71V-~-'ref ~31'~~\\\//7---"--. c::::..________......:w::;._ _ _ _ _ _ __ 3.49V---....,..~-------I--......:i~1 I~ 3. DUTY 75% (Charge:Discharge T1:T2=3:1 =25:75) Condition: Pin 3 = GND Pin 4=Open 1. Charge Current *020 ON: Vx High *05 turns ON in Pin 4 open state and Ie (04) flows through 05. *1 charge = Ic (010) + fc (011) = fref + 2 fref = 3 fref 2. Discharge Current *020 OFF: Vx Low *1 discharge = Ic (010) = fref :. I charge = 3 I discharge (Duty 75%) 5.71V------.:-----------.,.111!""'"---------___-----3.49V ------Io---I-------....;:lIII'--_ _ _ _ _ _ _ _ ~ _ _ _ _ _ _ _ __ 4. Pulse Generator Frequency Condition: Vcc =9V, Rf=33Kn, Cf=0.047j.tF 1. Duty 50% 5.71V------------""K""----"""'Ir-----.,r-----r------VH f 3. 'ref . . . 3.49V----..f.~:......--I---Jt'-----lIC...----~----...JIC;.....---~---VL . T1 T2 c8SAMSUNG Electronics 670 KA2312 APPLICATION NOTE O=CV,O=IT • T_ CV -I • T1 - (VH - VL)C - (5.71 - 3.49)0047 F = 1 22 10- 4 S •• - 3 1ref 3 x 285/LA' /L • X ec (V~ ~e~L)c (;:1;~~~)0.047/LF = 1.22 x 10- 4 Sec T2 1 1 1 • •• f=T=T1+T2=2.44x10- 4 4.0 98H K z 2. Duty 25% I 5J1V~~~-~~-I-ffi-f~~~~~3-'-ffif~~~~~~~~~~~~~~~~~~VH 3.49V-~~"':;""~~~~~--I-~~~~~~~~~~~.....J.r::;;...~~-~~~-VL I :. T1 . T2 T1 = (5'~~~/L;'49)0.047/LF = 3.661 x 10- 4 Sec T2 (;:12~~~~)0.047/LF = 1.22 x 10- 4 Sec f= ~ = T1 : T2 ~2) x 10 (3.661 + 1 c8 !e!'lSUNG -4 2.049KHz 671 KA2312 APPLICATION NOTE 3. Duty 75% 1 1 f=r= T1 +T2 (1.22+ 3.661) x 10- 4 2.049KHz When Duty = 50%, the frequency doubles compared with that of 25% or 75%. Therefore, one more capacitor must be connected in parallel to use properly in an application circuit. If so, the frequency of Duty = 50% equals that of 25% or 75%. 3) RF OSCILLATOR AND RF AMP R35 R34 R36 Sl-IM----- OX.TAL 034 Fig. 4 RF oscillator circuit is constituted easily by 035, R35, R36. 27MHz high frequency is amplified by 033 and the amplified high frequency is outputted through Pin 8 when 27MHz X-TAL is external connected across Pin 6 and Pin 7. Collector current through 033 is controlled by 034. While 1M flows into the base of 034 by the signal made by pulse generator, RF signal oscillated from X-TAL is amplified and outputted through Pin 8. On the contrary when 1M doesn't flow, 034 turns off, therefore RF signal is not outputted owing to 033 off alos. c8~SUNG 672 KA2312 APPLICATION NOTE 4) WAVEFORM OF INDIVIDUAL BLOCK Condition: Vee = 9V, Pin 3=Open, Pin 4=GND (Duty=25%) 5'71V""I~r-----------~~--------~::IIIIIf""---------~IIP""----Node B in Fig. 2 Charge Discharge 3.49V---,.-;---------.....;...::;;.---------......Ji,'----------...J..-- u 5.71V Node A in Fig. 2 3.49V---'" u LJ. O.8V 034 Base Pin 8 - (OUTPUT) ~ fm 27MHz Carrier Frequency A B Duty A =A+B x100% Fig. 5 27MHz signal is outputted when the capacitor connected between Pin 2 and GND discharges. c8~SUNG 673 KA2312 APPLICATION NOTE 3. APPLICATION CI,RCUIT AND DESCRIPTION POWER SW TURBO ! STOP I I I I B~~ WK18K F~~ l~Kt )----.<) lov 100 I l J 47p 6.81'H O.47I'H Fig. 6 Modulation frequency is determined by both the external resistor of Pin 1 and capacitor of Pin 2. Therefore the modulation frequency according to their functions depends on the resistor of Pin 1. Duty percent is determined by Pin 3, Pin 4 and when both are Pin 3 and Pin 4 are grounded, Duty percent is 50%. When Pin 3 is open and Pin 4 is grounded, Duty 25%. When Pin 3, GND and Pin 4 open, then Duty percent becomes 75%. In the case of both Pin 3, Pin 4 is ground, the modulation frequency appears double the value when of Duty = 25% or 75%. In order to obtain the same value of frequency, for this reason, the external same capacitor must be connected in parallel to Pin 2. X-TAL, which has the equal value of the desired RF signal, must be connected between Pin 6 and Pin 7. When 27M Hz X-TAL is used, a 10pF capacitor should be connected between both pins and grounded, but when 49MHz X-TAL, 10pF capacitor may be connected between Pin 6 and the ground. Through these preparations, when the desired signal is made completely then outputted through Pin 8. Output level of Pin 8 can be optimized by controlling the tank coil between Pin 8 and Vee. 4. ATTENTION FOR PROPER USAGE 1) It is desirable that the lo.west error capacitor connected to Pin 2 should be used in order to get the stable modulation frequency characteristics. (below ± 2% recommended) Mylar capacitor is better than electrolytic capacitor in characteristics. If a high error capacitor is used, the deviation of the modulation frequency appears severe according to the individual device. 2) When the transmitted signal is over the occupied bandwidth (20KHz/Max) of FCC standard, the modulation frequency should be lowered and used. 3) In the event of mismatching impedance between the external transmitter antenna and output circuit, the duty cycle may be changed. At this event, it is necessary that the choke coil, which is connected to the TX antenna in tandem, should be changed. (27M Hz - 6,8JLH, 49MHz - 2.2JLH recommended). c8SAMSUNG Electronics 674 I ! I I PACKAGE DIMENSIONS TO·92L Unit: mm 5.59 6.10 I ,. TO·126 Unit: mm I " / '. ------ 8.25 8.75 2.99 3.50 I L Lm 3.22 13.00 14.02 0.36 0.56 1.50TYP ==tLL 4·~1 5.15 : I \ .... 3.30 3:56 0.89 1.14 \ 4.12 5.01 2.39 TYP 7 SIP 1~lut-11 0.45 0.65 4.57 j .." • 15.62 16.38 ~ TYP Unit: mm , 8 SIP 0.45 0.64 TYP Unit: mm 21.59 22.10 21.59 22.10 ~:~: 3.30 3 81 1.27 . 1.78 2 75 . t=======::m4fT -L3.25 " - -_ _ _ _ _ _..L__ c8SAMSUNG Electronics ~ JI .58 6.68 7.18 6.09 I 0.20 0.30 ~ TIP, L --.JI ,- I 0.45 0.71 5.58 ~ 6.09 ~I 0.20 I 0.30 1m==>=======mJ) 12.75 "--------~---'--3.25 677 PACKAGE DIMENSIONS Unit: mm 9 SIP 9 SIP HIS Unit: mm 24.74 25.25 3.35 21.59 22.10 rm~·58 1I 6 09 . -11 0.20 0.30 1.42 1.68 1: 11ff+o---'---"" 1.27 1.52 5 ..13.25 E= = = = 3 " 2 .1:..7 26.87 Unit: mm 10 SIP 0.43 0.64 10 SIP HIS Unit: mm 24.13 24.64 9.12 9.63 .86 737 . 2.54 . 2.24 ·-=-+--+--r:::-yp 2.74 0.30 0.41 £ /------25-.1-5--25.65 c8SAMSUNG Electronics 678 PACKAGE DIMENSIONS Unit: mm 12 SIP 12 SIP HIS Unit mm R1.78 TYP"'-,...j..,----~ 0.58 29.13 29.64 8.71 ~::ft: J~ J:~ 8.15 3.25 3.76 ...!:2~.54:::"'--I-l---++---:-1.~07,::" _-tt----'0=:..::.3:78 TYP 1.32 0.64 0.41 0.61 ~ ~ ~I--I~0.~45 TYP -l~ 0.65 • 0.35 b=====~\]3.25 29.35 _ 1-~_~~_----Ill 3.75 29.85 8 DIP Unit: mm 0-10 8.95 9.45 1i;=;='T"'T""';O;;;=;~ 6.09 ] 6.60 1.02 1.52 ~ t-'-'L 9 Unit: mm 12 OIP/F 0 L:,;7 7.87 0.20 0.30 114.05 254 rYp 3.81 4.31 -.l.. 4.55 2.92 3.42 ~ 0.56 L...-_...,..0.=51 1.02 qsSAMSUNG Electronics 3.30 3.81 "---1---L- 2.54 p TY II --=..:.;:0.36:..:.......-.j1~ I- 0.56 0.51 1.02 679 PACKAGE DIMENSIONS . 14 DIP Unit: mm Unit mm 14 DIP HIS le J 0:7 E:J 9.15 _ I9 65 I . o I:09 6.60 TYP rfllJ;.37 -L.j 152 ----I f---- 2:03 0.20 0.30 J- 1,&2.10 7.87 _ ----- I I .0 -10· 0-1\0. r 5.74 =4- ~~ ~ 1-----4--=6.~24 0.35 I 0.45 4.01 I....---~;;;..;;;..-...,---t--t- 4.51 \,t::::J:==I=:;:....-.a...3.83 l....I.IL_---'-------.L4.33 0.51 RO.79 1.02 TYP Unit mm 16 DIP I 0-10· I I;::::: J]:: [)J 19.15 19.65 ~ 7. 37 ~-H1.52 - 7.87 J 0.207 18 DIP 22.73 23.24 I~ 2.54 TYP I I- ~I 0.36 0.56 2.92 3.43 0.51 1.02 c8SAMSUNG Electronics 0-10· I _L f::::::3J:mJ~¥ 1.02 II ~-l f--- 0.30 WWWW1.~!:~~ Unit: mm 0.20 0.30 WVWWW-t 2.54 TYP I f- ~~ 0.56 i= 3.81 ~::~ 3.43 0.51 1.02 ·680 PACKAGE DIMENSIONS Unit: mm 20 DIP (400) Unit: mm 0 26 36 . 26.87 1 22 DIP . 0 -10 ~ I [?:::::::~)]::~~ II U~_a 1.02 1.52 ------1 . 0.20 0.30 r • Unit: mm 24 DIP I i 31.37 0- 10 0.20.r ~ ~J~lW\1WV-t.I~:~~ l -g~~~ I"-11- 9~ I ·343 . I TYP II 36 0.56 I I. Unit mm ::~=1 0 1t: : : l: ~: : ~: :I}:~ [~ 1.52- ------1 t- -- 28 DIP I 1- ~~::::::::~Jf~ rn1~ II 02O:-Y 1.02 1.52 0.30 292 ._ c8SAMSUNG Electronics 0.51 -1."02 681 PACKAGE DIMENSIONS 42 DIP Unit: mm Unit: mm 22 SDIP 19.15 ft'=!=!:~= 1= 9: :!.6 = : !: !: !: :!: : !~ 606~ ~Oi=;::;::;:::;::;=;=r=;::;=;::r=;::rTTi''i==r=ff'l601Ullll!L 0.55 1.07 4.57 .07 3.51 4.27 i£J 0.30 ~~2092 -41 ~~_ I I _ TYP - i , - , 0.36 0.56 3.43 _ 0.51 1.02 24 SDIP 0.76 0.38 1 78 ~TY-P---t--t-- -1-.02--t-+--tt--~0.-;;-;64 Unit: mm 30 SDIP 22.71 23.22 0-10° e 0.76 1.02 0-10° 27.22 27.72 i- aOM[E 6 0 1 m j7.87 7 6.65 0.20 0.30 0.33 3.66 4.-17 1.78 TYP 0.33 0.58 c8SAMSUNG Electronics 2.79 3.81 ~41 9.35 ~ 0.41 0.91 2.82 3.84 0.36 0.56 f 5.15 5.65 2.92 3.43 1.27 1.n 682 PACKAGE DIMENSIONS Unit: mm 42 SDIP 3861 39.12 ~ 0 II 1.78 TYP II 42.21 42.72 0-10° - 0 Unit: mm 48 SDIP .J-- 3.7°ml4.~9 1 14.20 15.49 bL O.20.J 0.30 0.92 0.22 0.45 0.63 3.05 MIN 0.38 MIN 8 SOP Unit: mm 0.41 0.79 15.49 1!:iffiriffi'i'i'fi'i:i'f'i'[ffirDi:i'ffiJFiffiiiilt'i'ffili8B' ~I--I~0.64,=- ~~O'51 1.27 TYP , , i j 1.47 1.73 c8SAMSUNG Electronics " 0.20 MIN 0.63 Unit: mm 14 SOP 0 ] 4.62 ---JI -.JLQJQ I 1~ TYP . o 0.36 15.49 0.20 0.30 0.89 .37 . II ]4·IO~:'~ ~~ 0.20 ~ j ~~~g:i~ ~ 6.60 6.10 I Q20 0.36 0.51 9.85 ~ 10.11 " 1.47 1.73 1.27 TYP 683 PACKAGE DIMENSIONS 16 SOP Unit mm 0.10 c::::a o 0.35 0.51 IH- lJMj 0'2O~~ 4.37 4.62 1.......- 0.00 8.05 0-.2- 0 II- ~:UIo TYP 7.54 0.79 6.10 6.60 ~ 0.18 0.28 I 1.68 13.44 10:11 1.27 Unit: mm 22 SOP ~tY1mF1?+ 1 47 . 1.73 1.93 1.27 TYP Unit: mm 24 SOP 28 SOP Unit: mm 0.41 0.79 7.54 7.80 ~ . -11 9.73 0.10 10.24 0.20 0.10 0.20 0.41 ---0.79 I;[, 34 "irTr"iT'TFTT"'!T'iiT'Ti"'T~_~ I I~ 0.51 W' 0.10 0.20 10.18 10.69 ~~ 0.30 ~- . g:i~---~ DtmOaOOOOD Or", ,,~ b .......... " TYP c8SAMSUNG Electronics " 1.27__ ~ 1---- 2.23 2 48 . 684 PACKAGE DIMENSIONS Unit: mm 30 SOP 16 ZIP Unit: mm 10.06 0.0_5 10.57 1....-_ 0.25 I Unit: mm 18 ZIP 24.28 Unit: mm 19 ZIP 2.79 24.15 24.65 ~I 01 ~( 1.14 6.86 7.36 I 1ij ~ ij ij ij ij ij ~ ~ ij ij ij ij ij ~ ~ ~ ~ t~~ ~_....::::2:;;,;2~6=-5_ _-!I 2.92 23.15 3.68 ~ IT0.31 II 0.46 ~ TYP !~2ii5&tf~ ciijCjC TYP c8SAMSUNG Electronics 0.41 0.61 685 PACKAGE DIMENSIONS 21 ZSIP-8H Unit: mm Unit:mm 24 SZIP 21.59 22.10 2.74 3.25 o 0.89 TYP 0.69 TYP 12 ZSIP+l/S Unit: mm 4.3 MAX <1>3.05 <1>3.35 1.45 1.55 17ZSlp·H/S Unit: mm ,13.74 14.25 7.75 8.26 9.7 10.3 1.25 1.65 1.778 TYP c8SAMSUNG Electronics o 6 3.56 0.36 2.00 0 . 4 6 , .6 4.06 TY=P.-H'-- --tt-0=-.6S,.-.;t--=0-::.9:-:""1 -=~::';'~=-+-l--.=.:.0.46 686 PACKAGE DIMENSIONS Unit: mm 48 QFP Unit: mm 8 SIP 21.59 22.10 10.26·· ~:~: ~~:: 1.19 1.70 ~ TIP I L ,- I JI --.JI 0 .45 I 0.71 0.20 0.30 0.10 0.20 75 . It========l} 123.25 L...-_ _ _ _ _ _____'__ ~ 0.64 1.14 c8~SUNG 687 • NOTES I~ II~ '\ I~ SAMSUNG SEMICONDUCTOR SALES OFFICES-U.S.A. Southwest Southwest 22837 Ventura Blvd. Suite 305 Woodland Hills, CA 91367 (818) 346-6416 FAX: (818) 346-6621 Northwest 3027 Greenwich St. Carlsbad, CA 90028 (619) 720-0230 FAX: (619) 720-0230 Southeast South Central 204 Battleground Corporate Park 3859 Battleground Ave. Greensboro, NC 27410 (919) 282-0665 FAX: (919) 282-0784 15851 Dallas Parkway Suite 840 Dallas, TX 75248-3307 (214) 770-7970 FAX: (214) 770-7971 2700 Augustine Drive Suite 198 Santa Clara, CA 95054 (408) 727-7433 FAX: (408) 727-5071 North Central 901 Warrenville Road Suite 120 Lisle, I L 60532-1359 (708) 852-2011 FAX: (708) 852-3096 North East 20 Burlington Mall Road Suite 205 Burlington, MA 01803 (617) 273-4888 FAX: (617) 273-9363 SAMSUNG SEMICONDUCTOR REPRESENTATIVES ALABAMA SOUTHERN COMPONENT SALES 307 Clinton Ave. East #413 Huntsville, AL 35801 TEL: (205) 533-6500 FAX: (205) 533-6578 TEL: (602) 998-7195 FAX: (602) 998-7869 12 CANDAL INC. 2901 So. Colorado Blvd. Suite A Denver, CO 80222 TEL: (303) 692-8484 FAX: (303) 692-8416 CONNECTICUT CALIFORNIA 3350 Scott Blvd. Building 10 Santa Clara, CA 95054 TEL: (514) 624-1340 FAX: (514) 624-2911 COLORADO ARIZONA HAAS & ASSOC. INC. 7441 East Butherus Drive Suite 300 Scottsdale, AZ. 85260 INTELATECH, INC. 4737 Prevel Street Pierefonds. Quebec H9K 1J4 TEL: (408) 988-3400 FAX: (408) 988-2079 PHOENIX SALES 267 Main Street Torrington, CT 06790 TEL: (203) 496-7709 FAX: (203) 496-0912 FLORIDA SPINNAKER SALES 11545 West Bernardo Court Suite 200 San Diego, CA 92127 TEL: (619) 451-8595 FAX: (619) 485-0561 WESTAR REP COMPANY 2472 Chambers Road Suite 100 Tustin, CA 92680 TEL: (714) 832-3325 FAX: (714) 832-7894 WESTAR REP COMPANY 25202 Crenshaw Blvd. Suite 217 Torrance, CA 90505 WESTAR REP. COMPANY 26500 Agoura Rd. Suite 204 Calabasas, CA 91302 MEC 700 W. Hillsboro Blvd. Bldg. 4, Suite 204 Deerfield Beach, FL 33441 TEL: (305) 426-8944 (305) 426-8960 FAX: (305) 426-8799 FLORIDA MEC 11 Emerald Court Satelite Beach, FL TEL: (407) 773-1100 FAX: (407) 777-6529 TEL: (213) 539-2156 FAX: (213) 539-2564 MEC 830 North Atlantic Blvd. Suite B401 Cocoa Beach, FL 32931 TEL: (407) 799-0820 FAX: (407) 799-0923 TEL: (818) 880-0594 FAX: (818) 880-501 3 MEC 10637 Harborside Drive, N Largo, FL 34643 TEL: (813) 393-5011 FAX: (813) 393-5202 GEORGIA CANADA INTELATECH, INC. 1115 Crestlawn Drive Suite 1 Mississauga, Ontario L4W1A7 TEL: (416) 629-0082 FAX: (416) 629-1795 c8SAMSUNG Electronics SOUTHERN COMPONENT SALES 6075 The Corners Parkway Suite 103 Norcross, GA 30092 TEL: (404) 729-8117 FAX: (404) 729-8056 691 I SAMSUNG SEMICONDUCTOR REPRESENTATIVES ILLINOIS RI 8430 Gross Point Road Skokie, IL 60076 TEL: (708) 967-8430 FAX: (708) 967-5903 TEL: (216) 273-3798 FAX: (216) 225-1461 OREGON MARYLAND ADVANCED TECH SALES 100 West Road Suite 412 Towson, MD 21204 BAILEY, J.N. & ASSOC. 1667 Devonshire Drive Brunswick, OH 44212 TEL: (301) 296-9360 FAX: (301) 296-9373 ATMI 6700 s.w. 105th Street Suite 303 Beaverton, OR 97005 TEL: (503) 643-8307 FAX: (503) 646-9536 PENNSYLVANIA MASSACHUSETTS NEW TECH SOLUTIONS, INC. TEL: (617) 229-8888 111 South Bedford St~eet FAX: (617) 229-1614 Suite 102 Burlington, MA 01803 BAILEY, J.N. & ASSOC. 1660 Hancock Avenue Apollo, PA 15613 TEL: (412) 568-1392 FAX: (412) 568-1479 RIVCO JANUARY INC. RJI Building 78 South Trooper Road Norristown, PA 19403 TEL: (215) 631-1414 FAX: (215) 631-1640 MICHIGAN JENSEN C.B. 2145 Crooks Rd. Troy, MI 48084 TEL: (313) 643-0506 FAX: (313) 643-4735 MINNESOTA IRI 1120 East 80th Street #200 Bloomington, MN 55420 TEL: (612) 854-1120 FAX: (612) 854-8312 NEW JERSEY NEPTUNE ELEC. 2460 Lemoine Avenue FI. Lee, NJ 07024 TEL: (201) 461-2789 FAX: (201) 461-3857 NEW MEXICO S.W. SALES, INC. 7137 Settlement Way, N.w. Albuquerque, NM 87120 TEL: (505) 899-9005 FAX: (505) 899-8903 PUERTO RICO DIGIT-TECH P.O. Box 1945 Calle Cruz H2 Bajos, San German 00753 TEL: (809) 892-4260 FAX: (809) 892-3366 TEXAS s.w. SALES INC. 2267 Trawood. Bldg. E3 EI Paso, TX 79935 TEL: (915) 594-8259 FAX: (915) 592-0288 VIELOCK ASSOC. 555 Republic Drive Suite 105 Plano, TX 75074 TEL: (214) 881-1940 FAX: (214) 423-8556 VIELOCK ASSOC. 9430 Research Blvd. Echelon Bldg. 2, Suite 330 Austin, TX 78759 TEL: (512) 345-8498 FAX: (512) 346-4037 UTAH NEW YORK NEPTUNE ELEC. -2.55 Executive Dr. Plainview, NY 11803 TEL: (516) 349-16C FAX: (516) 349-1343 T-SQUAREu 6443 Ridings Road Syracuse, NY 13206 TEL: (315) 463-8592 FAX: (315) 463-0355 T-SQUARED 7353 Victor-Pittsford Road Victor, NY 14564 TEL: (716) 924-9101 FAX: (716) 924-4946 ANDERSON & ASSOC. 270 South Main, H108 Bountiful, UT 84010 TEL: (801) 292-8991 FAX: (801) 298-1503 VIRGINIA ADVANCED TECHNOLOGY SALES, INC. 406 Grinell Drive Richmond, VA 23236 WASHINGTON ATMI 16150 NE 85TH SI. Suite 217T Redmond, WA 98052 OHIO BAILEY, J.N. & ASSOC. 129 W. Main Street New Lebanon, OH 45345 TEL: (513) 687-1325 FAX: (513) 687-2930 BAILEY, J.N. & ASSOC. 2978 Findley Avenue Columbus, OH 43202 TEL: (614) 262-7274 FAX: (614) 262-0384 c8SAMSUNG. Electronics TEL: (804) 320-8756 FAX: (804) 320-8761 TEL: (206) 882-4665 FAX: (206) 882-7517 WISCONSIN IRI 16745 W. Bluemound Rd. Suite 340 Brookfield, WI 53005 TEL: (414) 789-9393 FAX: (414) 789-9272 692 SAMSUNG SEMICONDUCTOR SALES OFFICES-EUROPE SAMSUNG SEMICONDUCTOR EUROPE GmbH Mergenthaler Allee 38-40 06236 Eschborn (West Germany) Tel: 06196/9009-0 Fax: 0196/9009-89 PARIS Centre d'Affaires La Boursidiere RN 186, Bat. Bourgogne, BP 202 F-92357 Le Plessis-Robinson (France) Tel: 0033-1-40 94 07 00 Fax: 0033-1-40 94 02 16 MILANO Viale G. Matteotti, 26. 1-20095 Cusano Milanino (Italy) Tel: 0039-2-6 13 2888 Fax: 0039-2-6192279 MUNCHEN Carl·Zeiss·Ring 9 0·8045 Ismaning (West Germany) Tel: (49) 0-89 96 48 38 Fax: (49) 0-89 96 48 73 SAMSUNG SEMICONDUCTOR REPRESENTATIVES EUROPE GERMANY (WEST) AUSTRIA SATRON HANDELSGES_ MBH Hoffmeistergasse 8-10/1/5 TEL: 0043-222-87 30 20 A-1120 Wien FAX: 0043-222·85 9593 TLX: 047-753 11 85 1 TERMOTROL GmbH Pilotystr 4 0-8000 Munchen 22 BELGIUM C&S ELECTRONICS NV Heembeekstraat 111 B-1120 Brussels SILCOM ELECTRONICS VERTRIEBS GmbH Neusser Str. 336-338 TEL: (49)-0-2161-6 07 52 0-4050 Monchengladbach FAX: (49)-0-2161-6516-38 TLX: 85 2189 TEL: 0032-2-2 44 29 74 FAX: 0032-2-2 42 89 30 TLX: 046-2 58 20 TEL: (49)-0-89-2303 52 52 FAX: (49)-0-89-2303 52 80 TLX: 17898453 ING. THEO HENSKES GmbH TEL: (49)-0-511-86 50 75 Laatzener Str. 19 Postfach 72 12 26 FAX: (49)-0-7249 79 93 0-3000 Hannover 72 TLX: 92 35 09 DENMARK EXATEC ALS Oortheavj 1-3 OK-2400 Kopenhagen TEL: 00453-1-19 1022 FAX: 00453-1 1931 20 TLX: 27253 TEL: (49)-0-89-61 30 303 FAX: (49)-0-89-61 31 668 TLX: 5 21 61 87 MSC VERKAUFSBORO MinE Wormser Str. 34 TEL: (49)-0-62-332 66 43 Postfach 37 FAX: (49)-0-332 02 98 0-6710 Frankenthal TLX: 46 52 30 FINLAND INSTRU COMPONENTS P.O. Box 64, Vitikka 1 SF-02631-ESPOO Helsinki ASTRONIC GmbH Grunwalder Weg 30 0-8024 Oeisenhofen TEL: 00358-0-5 2843 25 FAX: 00358-0-5 28 43 33 TLX: 057-12 44 26 MICRONETICS GmbH Wail Our Stadter Str. 45 0-7253 Renningen TEL: (49)-0-7159-60 19 FAX: (49)-0-715 951 19 TLX: 72 47 08 ITALY FRANCE ASIA MOS (OMNITECH ELCCTRONIQUE) Batiment Evolic 1 165, TEL: 0033-1-47 60 1247 Boulevard Oe Valmy FAX: 0033-1-47 60 1582 F-92705 Colombes TLX: 042-61 38 90 DIS. EL. SPA Via Orbetello 98 1-10148 Torino SONEL·ROHE (SCAIB) 6, Rue Le Corbusier Silic 424 F-94583 Rungis, Cedex MOXEL S.R.L. Via C. Frova, 34 TEL: 0039-2-61 29 05 21 1-20092 Cinisello Balsamo FAX: 0039-2-6 17 25 82 TLX: 043-35 20 45 TEL: 0033-1-46 86 81 70 FAX: 0033-1·45 60 55 49 TLX: 042-20 69 52 c8SAMSUNG Electronics TEL: 0039-1-12 20 15 22 FAX: 0039-1-12 16 59 15 TLX: 043-21 51 18 693 I SAMSUNG SEMICONDUCTOR REPRESENTATIVES THE NETHERLANDS UNITED KINGDOM MALCHUS BV HANDEIMIJ. Fokkerstraat 511·513 TEL: 0031·10·4 27 77 77 Post bus 48 FAX: 0031·10·4 154867 NL·3125 BD Schiedam TLX: 044-2 15 98 NORWAY EXATEC ALS Solheimveien 50 Postbox 314 N-1473 Skarer TEL: 0047-2-97 29 50 FAX: 0047-2-97 29 53 STC ELECTRONIC DISTRIBUTION Edinburgh Way Harlow TEL: (0279) 441144 Essex CM20 2DF FAX: (0279) 441787 BYTECH LTD. 3 The Western Centre, Western Road, Bracknell Berkshire RG121RW TEL: Sales 0344 482211 Account/Admin 0344424222 FAX: 0344 420400 TLX: 848215 SPAIN SEMICONDUCTORES S.A. Ronda General Mitre TEL: 0034-3-2 172340 240 Bjs FAX: 0034-3-2 17 65 98 E-08006 Barcelona TLX: 052-9 77 87 SWEDEN MIKO KOMPONENT AB Segers by Vagen 3 P.O. Box 2001 S-14502 Norsborg TEL: 0046-753-89 08 0 FAX: 0046-753-75 34 0 TLX: 052-9 77 87 ITT MULTI COMPONENTS 346 Edinburgh Avenue TEL: 0753 824212 Slough SL 1 4TU FAX: 0753 824160 TLX: 849804 NELTRONIC LIMITED John F. Kennedy Road, Naas Road, Qublin 12, Ireland TEL: (01) 503560 FAX: (01) 552789 TLX: 93556 NELT EI SWITZERLAND PANATEl AG Grundstr. 20 CH-6343 Rotkreuz TEL: 0041-426430 30 FAX: 0041-42643035 TLX: 045-86 87 63 •• C:CSAMSUNG . . Electronics 694 SAMSUNG SEMICONDUCTOR REPRESENTATIVES ASIA SANT SONG CORP. Room A, 8F No. 180, Sec-4, Chung Hsiao E. Rd., Taipei, Taiwan, R.O.C. HONG KONG AV, CONCEPT LTD. ROOM 804, Tower A, 8/FI., TEL: 3629325 Hunghom Commercial Centre, FAX: 7643108 37·39 MA Tau Wai Road, TLX: 52362 ADVCC HX Hunghom, Kowloon, Hong Kong PROTECH COMPONENTS LTD. Unit 2, 3/F, Wah Shing Centre, TEL: 7930882 11 Shing Yip Street, Kowloon, FAX: 7930811 Kwun Tong, Hong Kong WISEWORLD TECHNOLOGY CO. Room 708, Tower A, 7/FI., TEL: 7658923 Hunghom Commercial Centre, FAX: 3636203 37-39 MA Tau Wai Road, Kowloon, Hong Kong RIGHT SYSTEM CO., LTD. Room A19, 6/F1., Proficient Ind. Centre, Block A, 6 Wang Kwun Road, Kowloon Bay, Kowloon, Hong Kong TEL: 7566331 FAX: 7998985 TLX: 52896 OSPCL HX SOLARBRITE ENTERPRISE CO. (CALCULATOR & WATCH) Room 903, The Kwangtung TEL: 7701010 Provincial Bank Bldg., FAX: 7700559 589-591 Nathan Road, TLX: 52543 SECL HX Kowloon, Hong Kong SOLARI COMPUTER ENGINEERING LTD. (4 BIT/8 BIT ONE CHIP SOFTWARE HOUSE) Unit 703-4, 7/FI., Jordan House, TEL: 7213318 6-8 Jordan Road, Kowloon, FAX: 7235288· Hong Kong CENTRAL SYSTEMS DESIGN LTD. (ASIC DESIGN HOUSE) Room 1704, Westlands Centre, TEL: 5620248 20 West lands Road, FAX: 5658046 Quarry Bay, Hong Kong TLX: 73990 CSD HX DATAWORLD INTERNATIONAL LTD. (MIYUKI ELECTRONICS (HK) LTD.) (ASIC DESIGN HOUSE) Flat No. 3-4, 5/FI., TEL: 7862611 Yuen Shing Ind. Bldg., FAX: 7856213 1033, Yee Kuk Street, West, TLX: 45876 MYK HX Kowloon, Hong Kong TAIWAN YOSUN INDUSTRIAL CORP. 7F, No. 76, Chern Kong. Rd., Sec. 1; Nan Karlg, Taipei, Taiwan R.O.C. KINREX CORP. 2nd. FI., 514·3, Tun Hwa S. Rd., Taipei, Taiwan, R.O.C. TEL: (02) 788-1991 (Rep.) FAX: (02) 788-1996 TEL: 02-700-4686-9 FAX: 02-704-2482 TLX: 20402 KINREX c8SAMSUNG Electronics TEL: (02) 775-2506 FAX: (02) 771-8413 JAPAN ADO ELECTRONIC INDUSTRIAL CO., LTD. TEL: 03-257-1618 7th Fl., Sasage Bldg., 4-6 Sotokanda 2-Chome Chiyoda- FAX: 03-257-1579 ku, Tokyo 101, Japan INTERCOMPO INC. Ihi Bldg., 1-6-7, Shibuya, Shibuya-ku, Tokyo 150 Japan TEL: 03-406-5612 FAX: 04-409-4834 CHEMI·CON INTERNATIONAL CORP. Mitauya Toranomon Bldg., TEL: 03-508-2841 22-14, Toranomon 1-Chome, FAX: 03-504-0566 Minato-ku, Tokyo 105, Japan TOMEN ELECTRONICS CORP. 1-5, Takamatsu-Cho 3 Chome TEL: 0425-22-6145 Tachikawa, Tokyo 190 FAX: 0425-22-6159 DIA SEMICON SYSTEMS INC. Wacore 64 1-37-8, Sangenjaya, TEL: 03-487-0386 Setagaya-ku, Tokyo 154 Japan FAX: 03-487-8088 RIKEI CORP. Nichimen Bldg., 2-2-2, Nakanoshima, Kita-ku, Osaka 530 Japan TEL: 06-201-2081 FAX: 06-222-1185 SINGAPORE GEMINI ELECTRONICS PTE LTD. 100, Upper Cross Street TEL: 65-5351777 #09-080G Bldg. FAX: 65-5350348 Singapore 0105 TLX: RS-42819 BOSTEX ELECTRONICS PTE LTD. #05-14 Bylands Bldg. TEL: 65-3395713 135 Middle Road FAX: 65-3389538 Singapore 0718 ASTINA ELECTRONICS (M) SON BHD 23, Jalan Pantai Jerjak Satu TEL: 04-876697 FAX: 04-876780 11900 Bayan Lepas Penang, West Malaysia ASTINA ELECTRONICS (S) PTE LTD. 315, Outram Road, TEL: 65-2232221 #11-02 Tan Boon Liat Bldg., FAX: 65-2213776 Singapore 0315 INDIA COMPONENTS AND SYSTEMS MARKETING ASSOCIATES (INDIA) PVT. LTD. 100, Dadasaheb Phalke Road, Dadar, Bombay 400 TEL: 4114585 014 FAX: 4112546 TLX: 001-4605 PDT IN 695 I SAMSUNG SEMICONDUCTOR REPRESENTATIVES TURKEY ELEKTRO SAN. VE TIC. KOLL. Hasanpasa, Ahmet Rasim Sok No. 16 KadikOy Istanbul, Turkey STI. TEL: 337-2245 FAX: 336-8814 TLX: 29569 ells tr THAILAND VUTIPONG TRADING LTD., PART. 51-53 Pahurat Rd. (Banmoh) TEL: 221-9699-3641 Bangkok 10200 THAILAND 223-4608 FAX: 224-0861 TLX: 87470 Vutipong TH KOREA NAEWAE SEMICONDUCTOR Room 503, 22-dong, Sunin Bldg., 16-1, Hankangro-2ka, Yongsan-ku, Seoul, Korea Cable: ELECONAEWAE SEOUL C.P.O. BOX 1409 CO., LTD. TEL: 717-4065-7 702-4407-9 FAX: 702-3924 TLX: NELCO K27419 SAMSUNG L1GHT·ELECTRONICS CO., LTD. 4th FI. Room 2-3, TEL: 718-0045, Electronics Main Bldg., 16-9, 718-9531-5 Hankangro-3ka, Yongsan-ku, FAX: 718-9536 Seoul, Korea c8SAMSUNG Electronics NEW CASTLE SEMICONDUCTOR CO., LTD. 4th FI. Room 10-11, TEL: 718-8531-4 Electronics Main Bldg., 16-9, FAX: 718-8535 Hankangro-3ka, Yongsan-ku, Seoul, Korea HANKOOK SEMICONDUCTOR & TELECOMMUNICATIONS CO., LTD. 402 Suite, Sowon Bldg., TEL: 338-2015-8 354-22, Seokyo-dong, FAX: 338-2983 Mapo-ku, Seoul, Korea SEG YUNG INTERISE CORP. 21-301, Sunin Bldg., 16-1, TEL: 701-6811-6, Hankangro-2ka, Yongsan-ku, 701-6781-4 Seoul, Korea FAX: 701-6785 SEGYUNG ELECTRONICS 182-2, Jangsa-dong, Jongro-ku, Seoul; Korea SAMTEK Room 704, Euylim Bldg., 16-96, Hankangro-3ka, Yongsan-ku, Seoul, Korea TEL: 273-6781-3 FAX: (02) 273-6597 TLX: K24950 SUKSEMT TEL: 703-9656-8 FAX: 703-9659 SUNIN INDUSTRIES CO., LTD. Sunin Bldg., 7FI., 16-1, TEL: 718-7113-6 Hankangro-2ka, Yongsan-ku, 702-1257-9 Seoul, Korea FAX: 715-1031 696 SAMSUNG SEMICONDUCTOR DISTRIBUTORS ALABAMA HAMMOND 4411-B Evangel Circle, N.W. Huntsville, AL 35816 (205) 830-4764 ARIZONA ADDED VALUE 7741 East Gray Road Suite #9 Scottsdale, AZ 85260 (602) 951-9788 CYPRESS/RPS 2164 E. Broadway Road #310-8 Tempe, AZ 85282 (602) 966-2256 JACO 2260 Townsgate Road Westlake Village, CA 91361 (805) 495-9998 JACO 2880 Zanker Road Suite 202 San Jose, CA 95134 (408) 432-9290 JACO 23-441 South Pointe Drive Laguna Hills, CA 92653 (714) 837-8966 MICRO GENESIS 2880 Lakeside Drive Santa Clara, CA 95054 (408) 727-5050 CANADA CALIFORNIA ADDED VALUE 3320 East Mineral King Unit D Visalia, CA 93291 (209) 734-8861 ADDED VAr..uE 1582 Parkway Loop Unit G Tustin, CA 92680 (714) 259-8258 ADDED VALUE 6397 Nancy Ridge Road San Diego, CA 92121 (619) 558-8890 ADDED VALUE 31194 La Baya Drive, #100 Westlake Village, CA 91362 (818) 889-2861 ALL AMERICAN 369 Van Ness Way #701 Torran~e, CA 90501 (800) 669-8300 BELL MICRO PRODUCTS 18350 Mt. Langley Fountain Valley,CA.92708 (714) 963-0667 BELL MICRO PRODUCTS 550 Sycamore Drive Milpitas, CA 95035 (408) 434-1150 CYPRESS/RPS 6230 Descanso Avenue Buena Park, CA 90620 (714) 521-5230 CYPRESS/RPS 10054 Mesa Ridge Ct Suite 118 San Diego, CA 92121 (619) 535-0011 CYPRESS/RPS 2175 Martin Avenue Santa Clara, CA 95050 CYPRESS/RPS 21550 Oxnard, #420 Woodland Hills, CA 91367 ELECTRONIC WHOLESALERS 1935 Avenue De L'Eglise Montreal, Quebec, Canada H4E 1H2" (514) 769-8861 PETERSON, C.M. 220 Adelaide Street North London, Ontario, Canada N6B 3H4 (519) 434-3204 SAYNOR VARAH 99 Scarsdale Road Don Mills, Ontario, Canada M3B 2R4 (416) 445-2340 SA YNOR VARAH 1-13511 Crestwood Place Richmond, B.C., Canada V6V 2G5 (604) 273-2911 WESTBURNE IND. ENT., LTD. 300 Steeprock Drive Downsview, Ontario, Canada M3J 2W9 (416) 635-2950 COLORADO ADDED VALUE 4090 Youngfield Wheat Ridge, CO 80033 (303) 422-1701 ' CYPRESS/RPS 12503 E. Euclid Drive Englewood, CO 80111 (303) 792-5829 CONNECTICUT ALMO ELECTRONICS 31 Village Lane Wallingford, CT 06492 (203) 288-6556 (408) 980-8400 JACO 384 Pratt Street ~eriden, CT 06450 (203) 235-1422 (818) 710-7780 JV 690 Main Street East Haven, CT 06512 (203) 469-2321 c8SAMSUNG Electronics 697 I SAMSUNG· SEMICONDUCTOR DISTRIBUTORS FLORIDA ALL AMERICAN 16251 N.W. 54th. Avenue Miami, FL 33014 (305) 621·8282 HAMMOND 6600 N.W. 21st. Avenue Fort Lauderdale, FL 33309 (407) 973·7103 HAMMOND 1230 W. Central Blvd Orlando, FL 32802 (407) 849·6060 MICRO GENESIS 2170 W. State Road 434 #324 Longwood, FL 32779 (407) 869·9989 JACO Rivers Center 10270 Old Columbia Road Columbia, MD 21046 (301) 995·6620 MASSACHUSETS ALMO ELECTRONICS 60 Shawmut Avenue Canton, MA 02021 (617) 821·1450 GERBER 128 Carnegie Row Norwood, MA 02062 (617) 329·2400 JACO 222 Andover Street Wilmington, MA 01887 (617) 273·1860 GEORGIA HAMMOND 5680 Oakbrook Parkway #160 Norcross, GA 30093 (404) 449·1996 QUALITY COMPONENTS 6145 Northbelt Parkway Suite B Norcross, GA 30071 (404) 449·9508 MICHIGAN CALDER 4245 Brockton Drive Grand Rapids, MI 49508 . (616) 698·7400 CHELSEA INDUSTRIES 34443 Schoolcraft Livonia, MI 48150 (313) 525·1155 MINNESOTA ILLINOIS (312) 860·7171 ALL AMERICAN 11409 Valley View Road Eden Prairie, MN 55344 (612) 944·2151 GOOLD 101 Leland Court Bensenville, IL 60106 (312) 884·6620 CYPRESS/RPS 7650 Executive Drive Eden Prairie, MN 55344 (612) 934·2104 QPS 101 Commerce Dr. #A Schaumburg, IL 60173 VOYAGER 5201 East River Road Fridley, MN 55421 (612) 571·7766 INDIANA ALTEX 12744 N. Meridian Carmel, IN 46032 (317)848·1323 CHELSEA INDUSTRIES 8465 Keystone CrOSSing, #115 Indianapolis, IN 46240 (317) 253·9065 MISSOURI CHELSEA INDUSTRIES 2555 Metro Blvd. Maryland Heights, MO 63043 (314) 997·7709 NEW JERSEY MARYLAND (301) 251·1205 ALMO ELECTRONICS 12 Connerty Court East Brunswick, NJ 08816 (201) 613·0200 ALL AMERICAN 1136 Taft Street Rockville, MD 20853 (301) 953·2566 GENERAL RADIO SUPPLY 600 Penn St. @ Bridge Plaza Camden, NJ 08102 (609) 964·8560 ALMO ELECTRONICS 8309B Sherwick Court Jessup, MD 20794 (301) 995·6744 JACO Ottilio Office Compl:?x 555 Preakness Avenue Totowa, NJ 07512 (201) 942·4000 GENERAL RADIO SUPPLY 6935L Oakland Mills Road Columbia, MD 21045 c8SAMSUNG Electronics 698 SAMSUNG SEMICONDUCTOR DISTRIBUTORS NEW YORK OKLAHOMA ALL AMERICAN 33 Commack Loop Ronkonkoma, NY 11779 (516) 981·3935 CAM/RPC 2975 Brighton Henrietta TL Road Rochester, NY 14623 (716) 427·9999 JACO 145 Oser Avenue Hauppauge, NY 11788 (516) 273·5500 MICRO GENESIS 90·10 Colin Drive Holbook, NY 11741 (516) 472-6000 QUALITY COMPONENTS 3158 S. 108th East Avenue Suite 274 Tulsa, OK 74146 (918) 664·8812 OREGON NORTH CAROLINA QUALITY COMPONENTS 3029·105 Stonybrook Drive Raleigh, NC 27604 (919) 467·4897 DIXIE 2220 South Tryon Street Charlotte, NC 28234 (704) 377·5413 HAMMOND 2923 Pacific Avenue Greensboro, NC 27420 (919) 275·6391 RESCO/RALEIGH Hwy. 70 West & Resco Court flaleigh, NC 27612 (919) 781·5700 CYPRESS/RPS 15075 S. Koll Parkway Suite D Beaverton, OR 97006 (503) 641·2233 PENNSYLVANIA ALMO ELECTRONICS 9815 Roosevelt Blvd. Philadelphia, PA 19114 (215) 698·4003 CAM/RPC 620 Alpha Drive Pittsburgh, PA 15238 (412) 782·3770 ALMO ELECTRONICS 220 Executive Drive Mars, PA 16046 (412) 776·9090 SOUTH CAROLINA OHIO DIXIE 4909 Pelham Road Greenville, SC 29606 (803) 297·1435 DIXIE 1900 Barnwe~1 Street Columbia, SC 29201 (803) 779·5332 HAMMOND 1035 Lowndes Hill Rd. Greenville, SC 29607 (803) 233·4121 CAM/RPC 749 Miner Road Cleveland, OH 44143 (216) 461·4700 CAM/RPC 15 Bishop Drive #104 Westerville, OH 43081 (614) 888·7777 CAM/RPC 7973·B Washington Woods Drive Centerville, OH 45459 (513) 433·5551 ADDED VALUE 4470 Spring Valley Road Dallas, TX 75244 (214) 404·1144 CHELSEA INDUSTRIES 10979 Reed Hartman, Highway #133 Cincinnati, OH 45242 (513) 891·3905 ADDED VALUE 6448 Highway 290 East HA103 Austin, TX 78723 (512) 454·8845 CHELSEA INDUSTRIES 1360 Tomahawk Maumee, OH 43537 (216) 893.()721 ALL AMERICAN 1819 Firman Drive, #127 Richardson, TX 75081 (214) 231·5300 SCHUSTER 11320 Grooms Road Cincinnati, OH 45242 (513) 489·1400 CYPRESS/RPS 2156 W. Northwest Highway Dallas, TX 75220 (214) 869·1435 SCHUSTER 20570 East Aurora Road Twinsburg, OH 44087 (216) 425·8134 JACO 1209 Glenville Drive Richardson, TX 75080 (214) 235·9575 TEXAS c8SAMSUNG • Electronics 699 I SAMSUNG SEMICONDUCTOR DIST~IBUTORS MICRO GENESIS 9221 LBJ Freeway, #220 Dallas, TX 75243 (214) 644-5055 OMNIPRO 4141 Billy Mitchell Dallas, TX 75244 (214) 233-0500 QUALITY COMPONENTS 4257 Kellway Circle Addison, TX 75244 (214) 733-4300 QUALITY COMPONENTS 1005 Industrial Blvd. Sugar Land, TX 77478 (713) 240-2255 QUALITY COMPONENTS 2120-M Braker Lane Austin, TX 78758 (512) 835-0220 VIRGINIA ELEC. 715 Henry Avenue Charlottesville, VA 22901 (804) 296-4184 WASHINGTON UTAH ADDED VALUE 1836 Parkway Blvd. West Valley City, UT 84119 VIRGINIA CYPRESS/RPS 22125 17th Avenue Suite 114 Bothell, WA 98021 (206)483-1144 JACO 15014 N.E. 40th Street Bldg. "0", Unit 202 Redmond, WA 98052 (206) 881-9700 PRIEBE 14807 N.E. 40th Redmond, WA 98052 (206) 881-2363 WISCONSIN (801) 975-9500 c8~~SUNG MARSH 1563 S. 101st. Street Milwaukee, WI 53214 (414) 475-6000 700 NOTES NOTES c8SAMSUNG Electronics Semiconductor Business HEAD OFFICE: 8/10FL. SAMSUNG MAIN BLDG. 250, 2-KA, TAEPYUNG-RO, CHUNG-KU, SEOUL, KOREA CPO. BOX 8233 TELEX KORSST K27970 TEL: (SEOUL) 751-2114 FAX 753-0967 BUCHEON PLANT: 82-3, DODANG-DONG, BUCHEON, KYUNGKI-DO, KOREA CPO. BOX 5779 SEOUL 100 TELEX: KORSEM K28390 TEL: (SEOUL) 741-0066, 664-0066 FAX: 741-4273 KIHEUNG PLANT: SAN 1f24 NONGSUH-RI, KIHEUNG-MYUN YONGIN-GUN, KYUNGKI-DO, KOREA CPO. BOX 37 SUWON TELEX KORSST K23813 TEL: (SEOUL) 741-0620/7 FAX 741-0628 GUMI BRANCH: 259, GONDAN-DONG, GUMI, KYUNGSANGBU~DO, KOREA TELEX: SSTGUMI K54371 TEL: (GUMI) 2-2570 FAX: (GUMI) 52-7942 SAMSUNG SEMICONDUCTOR INC.: 3725 NORTH FIRST STREET SANJOSE, CA 95134-1708, USA TEL (408) 434-5400 TELEX: 339544 FAX: (408) 434-5650 HONG KONG BRANCH: 24FL. TOWER 1 ADMIRALTY CENTER 18 HARCOURT ROAD HONG KONG TEL: 8626900 TELEX: 80303 SSTC HX FAX: 8661343 TAIWAN OFFICE: RM B. 4FL. NO 581 TUN-HWA S, RD, TAIPEI, TAIWAN TEL: (2) 706-6025/7 FAX: (2) 784-0847 SAMSUNG ELECTRONICS JAPAN CO" LTD. 6F. SUDAMACHI BERDE BLDG. 2-3, KANDA-SUDAMACHI CHIYODA-KU, TOKYO 101, JAPAN TELEX: 2225206 SECJPN J TEL: (03) 258-9506 FAX: (03) 258-9695 SAMSUNG SEMICONDUCTOR EUROPE GMBH: MERGENTHALER ALLEE 38-40 0-6236 ESCHBORN, WIG TE L 0-61 96-90090 FAX: 0-6196-900989 TELEX: 4072678 SSED SAMSUNG (U.K.) LTD.: SAMSUNG HOUSE 3 RIVERBANK WAY GREAT WEST ROAD BRENTFORD MIDDLESEX TW8 9RE TEL: 862-9312 (EXT) 304 862-9323 (EXT) 292 FAX: 862-0096, 862-0097 TELEX: 25823 SINGAPORE OFFICE: 10 COLLYER QUAY 1f1 4-07 OCEAN BUILDING S'PORE 0104 TEL: 535-2808 FAX: 532-6452 PRINTED IN KOREA JULY, 1990

  • Source Exif Data:
    File Type                       : PDF
    File Type Extension             : pdf
    MIME Type                       : application/pdf
    PDF Version                     : 1.3
    Linearized                      : No
    XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
    Create Date                     : 2017:07:16 10:22:22-08:00
    Modify Date                     : 2017:07:16 11:13:42-07:00
    Metadata Date                   : 2017:07:16 11:13:42-07:00
    Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
    Format                          : application/pdf
    Document ID                     : uuid:728e40a5-f104-554e-9c9f-255db4861b48
    Instance ID                     : uuid:e1c27739-3cbf-ec47-95fc-fc6aaf8c0b01
    Page Layout                     : SinglePage
    Page Mode                       : UseNone
    Page Count                      : 705
    
    EXIF Metadata provided by EXIF.tools

    Navigation menu