1990_Samsung_Linear_IC_Vol_4_Voltage_Regulators_PWM_Controllers 1990 Samsung Linear IC Vol 4 Voltage Regulators PWM Controllers

User Manual: 1990_Samsung_Linear_IC_Vol_4_Voltage_Regulators_PWM_Controllers

Open the PDF directly: View PDF PDF.
Page Count: 441

Download1990_Samsung_Linear_IC_Vol_4_Voltage_Regulators_PWM_Controllers 1990 Samsung Linear IC Vol 4 Voltage Regulators PWM Controllers
Open PDF In BrowserView PDF
- - ---- - - - ---------------- -------------------- !'---- ~-------=--== == =---~
== ---

Data Book

~

-------~-

I

~

II

In

I_ L_in_e_a_r _IC------t
VOL. 4,

I
I'

1990

-Voltage Regulators
- PWM Controllers
-Voltage References
-Operational Amplifiers
-Comparators
-Timer & Miscellaneous

Copyright 1990 by Samsung
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photo copying,
recording, or otherwise, without the prior written permission of Samsung.
The information contained herein is subject to change without' notice. Samsung
assumes no responsibility for the use of any circuitry other than circuitry embodied in
a Samsung product.
No other circuit patent licenses are implied.

SAMSUNG
DATA BOOK LIST
I. Semiconductor Product Guide

". Transistor Data Book
Vol. 1: Small Signal TR
Vol. 2: Bipolar Power TR
Vol. 3: TR Pellet

III. Linear IC Data Book
Vol.
Vol.
Vol.
Vol.
Vol.

1:
2:
3:
4:
5:

Audio/CDPlToy
Video
Telecom
Industrial
Data Converters

IV. CMOS Consumer IC Data Book
V. High Speed CMOS Logic Data Book
VI. MOS Memory Data Book
VII. SFET Data Book
VIII. MPR Data Book
IX. CPL Data Book
X. Dot Matrix Data Book

TABLE OF CONTENTS
I.
II.

QUALITY and RELIABILITY ............................................................

11

PRODUCT GUIDE
1. Function Guide ........................................................................................... 43
2. Cross Reference Guide .............................................................................. 50
3. Ordering Information .................................................................................. 54-

III.

VOLTAGE REGULATORS ................................................................

IV.

PWM CONTROLLERS ....................................................................... 193

V.

VOLTAGE REFERENCES ................................................................ 245

VI.

OPERATIONAL AMPLIFIERS ........................................................ 261

VII.

COMPARATORS ....................................................................................

339

VIII.

TIMER & MISCELLANEOUS ..........................................................

373

55

IX.

PACKAGE DIMENSIONS ................................................................. 417

X.

SALES OFFICES ................................................................................... 423

PRODUCT INDEX
Device

Function

Package

Page

3-Terminal Positive Voltage Regulators
3-Terminal Positive Voltage Regulators
3A Positive Voltage Regulators
3-Terminal 1A Positive Voltage Regulators
3-Terminal 0.5A Positive Voltage Regulator
3-Terminal Negative Voltage Regulator
3-Terminal Negative Voltage Regulator
3-Terminal 0.5A Negative Voltage Regulator
3A Adjustable Positive Voltage Regulator
3-Terminal Positive Adjustable Regulator
3-Terminal Positive Adjustable Regulator
3-Terminal Positive Adjustable Regulator
3-Terminal Negative Adjustable Regulator
3-Terminal Negative Adjustable Regulator
3-Terminal Positive Voltage Regulator
Precision Voltage Regulator

TO-92/8 SOP
TO·220
TO-220/TO-3P
TO·220
TO·220
TO·220
TO-92
TO·220
TO-3PITO-220
TO·220
TO-92
TO·220
TO·220
TO-92
TO-3P
14 DIP/14 SOP

57
67
79
90
120
133
142
147
153
161
166
170
174
178
181
186

Regulator Pulse Width Modulator
Regulator Pulse Width Modulator
Regulator Pulse Width Modulator
Regulator Pulse Width Modulator
Current Mode PWM Controller
Current Mode PWM Controller
DC To DC Converter Controller
DC To DC Converter Controller

16 DIP
16 DIP
16 DIP
18 DIP
8 DIP/14 SOP
16 DIP
8 DIP
8 DIP

195
199
207
213
219
226
234
239

VOLTAGE REGULATORS

MC78LXXAC
KA340TXX
KA78TXX
MC78XXC/AC/I
MC78MXXC/I
MC79XXC
MC79LXXAC
MC79MXXC/I
KA350
LM317
KA317L
KA317M
KA337
KA337L
LM323
LM723
PWM CONTROLLERS

KA7500
KA3524
KA3525AN
KA3526BN
KA3842
KA3846N
KA34063N
KA34063AN
VOLTAGE REFERENCES

KA431C!AC/I
KA336-2.5/B!
KA236-2.5
KA336-5.0!B!
KA236-5.0

Programmable Precision References

TO-92!8 DIP!8 SOP

247

Voltage Reference

TO·92

253

Voltage Reference

TO·92

257

PRODUCT INDEX
Package

Page

Single Operational Amplifier
Differential Video Amplifier
Dual Power Operational Amplifier
Quad Jfet Input Operational Amplifiers
Single Operational Amplifier
Dual Operational Amplifier
Dual Jfet Input Operational Amplifier
Dual CMOS Operational Amplifier
Quad CMOS Operational Amplifier

8 DIP/8 SOP
14 DIP/14 SOP
10 SIP
14 DIP
8 DIP/8 SOP
8 DIP/8 SOP
8 DIP/8 SIP
8 DIP/9 SIP
14 DIP

263
268
275
277
279
281
283
285
289

Quad Operational Amplifier

14 DIP/14 SOP

293

Quad Operational Amplifier
Dual Operational Amplifier

14 DIP/14 SOP
8 DIP/8 SOP/9 SIP

Function

Device
OPERATIONAL AMPLIFIERS
KA201 Al301 A
KA733C
KA9256
KF347C/AC
KF351
KF353
KF442C/AC
KS272C/AC, 27211AI
KS274C/AC, 27411AI
LM2241A,
LM324/AlLM2902
LM248/348
LM258A1LM358/A
LM2904
LM741C/EII
MC1458C/ACII/AI
MC3303/MC3403
MC4558C/ACII

I

302
308

8 DIP/8 SOP
8 DIP/8 SOP/9 SIP
14 DIP/14 SOP
8 DIP/8 SOP/9 SIP

316
322
326
333

Dual High Speed Voltage Comparator
High Speed Voltage Comparator
Dual High-Speed Differential Comparator

14 DIP/14 SOP
14 DIP/14 SOP
14 DIP/14 SOP

341
346
350

Qual Differential Comparator

14 DIP/14 SOP

353

Dual Differential Comparator

8 SIP/8 SOP/9 SIP

361-

8 DIP/8 SOP

368

Single Operational Amplifiers
Dual Operational Amplifiers
Qual Operational Amplifier
Dual Operational Amplifier

COMPARATORS
KA219/KA319
KA710CII
KA711CII
LM239/A, LM339/A,
LM2901, LM3302
LM293/A, LM393/A,
LM2903
LM311

Voltage Comparator

TIMER & MISCELLANEOUS
NE555CII
NE556CII
NE558CII
KS555
KS555H
KS556
KA33V
KA331
KA2803
KA2804
KA2807

Single Timer
Dual Timer
Qual Timer
CMOS Single Timer
CMOS Single Timer
CMOS Dual Timer
Silicon Monolithic Bipolar Integrated
Circuit Voltage Stabilizer for Electronic Tuner
Precision Voltage-To-Frequency Converter
Low Power Consumption Earth Leakage Detecfor
Zero Voltage Switch
Earth Leakage Detector

8
14
16
8
8
14

DIP/8 SOP
DIP/14 SOP
DIP/16 SOP
DIP/8 SOP
DIP/8 SOP
DIP/14 SOP
TO-92
8
8
8
8

DIP
DIP
DIP
DIP

375
379
382
385
390
394
398
402
406
409
412

Quality & Reliability
Product Guide
Voltage Regulators
PWM Controllers
Voltage References
Operational Amplifiers

I

I
I

-11
I

Comparators
Timer & Miscellaneous
Package Dimensions
Sales Offices

I
I
I

QUALITY and RELIABILITY
1. INTRODUCTION
SEC has been providing a wide variety of semiconductor products to the world since 1974. Since this time, extensive
in-sights have been gained to create methods which most effectively result in reliable products. The worldwide customers
of SEC have encouraged and helped develop the existing manufacturing and quality philosophy that is a way of life for
SEC management and it's employees. This philosophy dictates the need for a zero defect environment through out SEC's
processes leading ultimately to total customer satisfaction. By developing and using methods of Statistical Process Control and Statistical Quality Control, SEC has made great strides in improving product quality & reliability. The direct result
of these improvements has been reduced product DPM (Defects Per Million) to levels below customer requirements.
SEC's repeated ability to exceed requirements for customer's "Dock to Stock" programs and our commitment to all
our customers needs, has made SEC the company to watch as we move ahead into the 1990's and beyond.
SEC's linear IC products are among the most reliable in the industry. SEC has always made a commitment to achieve
the highest possible quality, reliability, and customer satisfaction with its products. Extensive qualification, monitor and
outgoing programs are used to scrutinize product quality and reliability. Stringent controls are applied to every wafer
fabrication and assembly lot to achieve reproducibility, and therefore maintain product reliability.
In this chapter, the quality and reliability programs established at SEC will be discussed. In addition, a description of
reliability theory, reliability tests and various support efforts provides a broad framework from which to comprehend SEC
quality and reliability.
To better understand the Quality Department's role in product development and manufacturing, a detailed diagram is
listed below. As can be noted, Quality Engineering is involved in all phases, save that of initial product planning.
STEP

CJ

z

zz

<
'[

SALES

I

I M~RKET
l
I

APPLICATION
SURVEY

SPEC. REVIEW

I

DESIGN

I
I

CJ

IL

~

....

<

it

DESIGN

l

•z

I

0

-

0

0

f

APPROVAL

I

I

I

I
I

z

I

0

~

I

PROCESS MONITOR

I

RELIABILITY TEST

0

III
III

<
~

<

I

I

I

I

FAILURE ANALYSIS

I

MASS PRODUCTION

I

}---J
L

LOT ACCEPTANCE TEST

I

INITIATE CORRECTIVE ACTION

I

I

I

I

I

J

I

I

I

:::I

c

CLAIM

INCOMING INSP.

I

II:
11.

p.P

QUALI FICATION

PROCESS CONTROL

()

II:

J

I

II:

~

I

STANDARDIZATION

A
~

w

I

I

EVALUATION & QUALIFICATION

w

~

PRODUCTION
CONTROL

PRODUCTION

I

I

I

I

QC/QA

QUALIFICATION FOR RAW MATERIAL

TRIAL MFG

l

z

0

g~

I

I

iii
w

I

I
I

DESIGN REVIEW

I-

CJ

PROCESS ENG'S'

I
I

COUNCIL FOR DEVELOPMENT

f----

I

b
SHIPPING

I

CUSTOMER

I
I

~

Quality Assurance During Development

c8SAMSUNG
Electronics

13

•

QUALITY and RELIABILITY

2. QUALITY & RELIABILITY PROGRAM
2.1 QUALIFICATION
Procedures to qualify devices are listed below. There are both general and product-specific requirements. Procedures
are detailed for new products, die-only qualifications, and package-only qualifications. The latter two are for products
andlor packages already qualified, but where there is room for further product optimization.

r

•
•
•
•
•
•
•
•
•
•
•

HOPL 1000HR
HTRB 1000HR
1000HR
IOPL
1000HR
HTS
168HR
PCT
WHOPL 1000HR
WHTRB 1000HR
TIC, TIS 200CYC.
20000CYC.
PIC
Solderability
Other as
applicable

1

i

Package
Sub-assembly

* New Process
Wafer-fabrication

•
•
•
•
•
•
•

HOPL
HTRB
HTS
PCT
WHOPL
WHTRB
TIC, TIS

*Testing time for each test items
depends on the grade (group) of devices.
(see the device group list 2.1 2))

=8~~SUNG

I
!

I

r
• New Product

Qualification Program

1000HR
1000HR
1000HR
168HR
1000HR
1000HR
200CYC.

•
•
•
•
•
•

HOPL 500HR
HTRB 500HR
200CYC.
TIC
200CYC.
TIS
168HR
PCT
Other as
applicable

I
* * Other

• Same as
New product
Qual.

* * Design, Equipment,
Material(s), etc ....

14

QUALITY and RELIABILITY

1) PROCESS DEVELOPMENT QUALIFICATION
Purpose: To investigate the change .of a process parameter and then apply it to a production process by reliability testing
of a process which has been newly developed.

New Process, Wafer Fabrication Qualification
Test Item

No

1

2

Package

Test Condition
L-IC

Discrete

YES

-

High Temperature
Operating Life (HOPL)

Ta=Topr(max)
Vcc= Vcc(max)
STATIC, DYNAMIC
1000HRS

High Temperature
Reverse Bias (HTRB)

Ta=Tj(max)
VCB=0.8xVCBO
1000HRS

-

YES

Ta=Tj(max)
1000HRS

YES

YES

3

High Temperature
Storage (HTS)

4

Pressure Cooker
Test (PCT)

Ta= 121°C±2°C
RH = 100% 15 PSIG
168HRS

YES

YES

5

Wet High Temperature
Operating Life (WHOPL)

Ta =85°C, RH=85%
Vcc=Vcc(min)
1000HRS

YES

-

6

Wet High Temperature
Reverse Bias (WHTRB)

Ta =85°C, RH=85%
VcB =0.8 xVCBO
1000HRS

-

YES

7

Thermal Shock (TIS)

- 65°C;:! 150°C (Liquid)
5min, < 10sec, 5min
200 cycles

YES

YES

8

Temperature Cycle (TIC)

- 65°C;:!150°C (Air)
10min, 10min
200 Cycles

YES

YES

When the results of a reliability test are good, the process characteristics good and the yield level is satisfied, the
process can be applied to production. If there are any problems found in a process ~fter it has been applied to production, the problem will be investigated in detail and the process will be revised. Once the process has been revised and
approved it will again be applied to production.

c8SAMSUNG
Electronics

15

•

QUALITY and RELIABILITY

2) PRODUCT DEVELOPMENT QUALIFICATION
Purpose: To develop a stable and uniform product that satisfies the customer's requirements for quality by using the exact reliability test specification.called out for the new product.
Products are grouped according to the importance of their application.

Group 2

Group 1

1.
2.
3.
4.
5.
6.
7.
8.

AID, D/A Converter
IC for LCD
IC for PC
ASIC Master
Codec
MPR
IC for Exchange
New Products

c8SAMSUNG
Electronics

1. Transistor

2. Regulator/OP AMP
3. IC for Telephone
4.
5.
6.
7.

ComparatorlTimer
MICOM
AudioNideo IC
General Mos IC

Group 3

1. ASIC Opinion Product
2. Toy/Melody IC
3. MICOM family
4. Products Except Group 1,
Group 2 Products

16

QUALITY and RELIABILITY

I

New Product Qualification Test Items
Test Condition

No.

Test Item

1

High Temperature
Reverse Bias (HTRB)

Ta=Tj(max)
VCB = 0.8 X VCBO
1000HRS

2

High Temperature
Operating Life
(HOPL)

Ta= Top,(max)
Vcc = Vcc(max)
Static, Dynamic
1000HRS

3

High Temperature
Storage (HTS)

Ta = Tstg(max)
1000HRS

Operating Life (OPL)

Ta=2SoC
Pc = Pc(max)
1000HRS

4

Part
L·IC

Discrete

-

YES

YES

YES

-

Reference
Method

MIL-STD-883
1005

YES

-

YES

MIL-STD-7S0
1026.3

-

YES

MIL-STD-7S0
1036.3

5

Intermittent
OPL (IOPL)

Ta=2SoC
Pc= Pc(max)
2min/2min OnlOff
1000HRS

6

Power Cycle
(PIC)

6Tj = 12SoC
120Sec/120Sec OnlOff
10000CYC.

YES

YES

7

Pressure Cooker
Test (PCT)

Ta = 121°C ± 2°C
RH = 100% 1SPSIG
168HRS

YES

YES

Wet High
Temperature
Reverse Bias
(WHTRB)

Ta = 8SoC, RH = 85%
VCB = 0.8 X VCBO
1000HRS

-

Wet High
Temperature
Operating Life
(WHOPL)

Ta = 8SoC, RH = 8S%
Vcc = Vcc(min) Pdmin
1000HRS

YES

10

Thermal Shock
(TIS)
(Liquid)

- 6SoC- 1SO°C
Smin, < 10Sec, Smin
200 Cycles

YES

YES

11

Temperature Cycle
(TIC)
(Air)

-6soC-1SOoC
10min, 10min
200 Cycles

YES

YES

MIL-STD-883
1011

12

Solder Heat
Resistance
(S/H)

Ta = 260°C ± SoC
t= 10± 2Sec

YES

YES

MIL-STD-750
2031.1

13

Solderability

YES

YES

MIL-STD-883
2003

14

Salt Atmosphere

YES

YES

8

9

Ta = 24SoC ± SoC
t=S±O.Ssec
Reject is > 10%
uncovered surface
Ta = 3SoC, S% NaCI
24HRS

c8SAMSUNG
Electronics

Note

For SmallSignal Device

For
PWR TR,
PWR IC

YES

-

MIL-STD-883
1011

MIL-STD-883
1009A

17

QUALITY and RELIABILITY
New Products Qualification Test Item (Continued)
No.

Test Item

Test Condition

Part
L-IC

Discrete

Reference
Method

Note

15

Mechanical
Shock

1500G, 0.5ms
3 Times Each direction
of X, Y and Z Axis

YES

YES

MIL-STD-750
2016

For
Hermetic

16

Vibration

20G, 3 Axis
f = 20 to 2000 cps
for 4 min, 4 cycles

YES

YES

MIL-STD-883
2007

For
Hermetic

17

Constant
Acceleration

2000G
X,Y,Z Axis
1min for each Axis

YES

YES

MIL-STD-883
2001

For
Hermetic

YES

YES

MIL-STD-883
3015

YES

-

YES

YES

18

ESD
(Human Body
Model)

19

Latch-up Test

20

Fine Leak
Gross Leak

R= 1.5kO
C=100pF
5 Discharge
V~ ± 1000V

Helium
Fluoro Carbon

MIL-STD-883
1014

For
CMOS
For
Hermetic

Note) • SOT-23, TO-92S PKG: PCT-48HR

c8 SAIUISUNG
Electronics

18

QUALITY and RELIABILITY

3) PACKAGE DEVELOPMENT QUALIFICATION
Purpose: Whenever a new package type is developed, it must meet the specifications for devices that have been qualified
and have maintained certain specified quality levels before the new package type may be applied to production.
Remarks

Con,ents

Flow

Beginning of PKG development

Select representative device for product group
(proceed at least 2 lots)
•
•
•
•

Ass'y Qual

Reliability Qual

Approvement of Qual

•
•
•
•

Push Test
Die Thick
Bond Pull
Lead Torque

•
•
•
•

MPT
Dimension
X-Ray
Solderability
• Vibration
HTRB (TR)
• PCT
• LTS
HOPL (IC)
• MIS
• Const
TIC
• 5/H
New PKG Development will be approved
when Rei qual is good for 500HR.

Package Sub-Assembly Qualification Test Items
No.

1

Test Item
High Temperature
Reverse Bias (HTRB)

2

High Temperature
Operating Life (HOPL)

3

Temperature Cycle
(TIC)

4

Pressure Cooker Test
(PCT)

5

Thermal Shock (TIS)

6

Solder Heat Resistance
(S/H)

7

Vibration (VariableFrequency)

8

Mechanical Shock (MIS)

9

Constant Acceleration

Test Condition

Package

Notes

Plastic

Hermetic

Ta=Tj(max)
Vce = 0.8 x Vceo
500HRS

YES

YES

For
Discrete

Ta= Topr(max)
Vcc= Vcc(ma,,)
Static, Dynamic, 500HRS

YES

YES

For IC

- 65°C~25°C~ 150°C
10min, 5min, 10min
200 CYCLES

YES

YES

Ta= 121°C ± 2°C
RH = 100%, 15PSIG
168HRS

YES

-

YES

YES

YES

YES

-65°C~150oC

c8SAMSUNG
Electronics

(Liquid)
5min, < 10sec, 5min
200 CYCLES
260°C±5°C
10± 1 sec
Once without Flux

100-2000-100Hz
20G, 5min, 5Times, X, y, Z

-

YES

For Discrete,
others as
applicable

1500G,O:5ms
3 Times, X, Y, Z

-

YES

same as above

20000G
X, Y, Z Axis
1 min for each Axis

-

YES

same as above

19

•

QUALITY and RELIABILITY

4) CHANGE QUALIFICATIONS:
Purpose: To apply changes to production processes and designs by evaluating the quality levels for those processes
and designs of devices in production.
Change

Classification

Change of more than 1EA MASK for the product in production.

Design

• Coating

Ass'y

• D/A
• W/B
• Mold

Diffusion

• Diffusion/Photo/Etch, etc.
• Metalization
• Passivation

Process

Procedure: Issuance of EIN for the change -> Review of initial characteristics-- Reliability test -> Issuance of ECN
(register of specification)->Application for production. Evaluation level: LTPD 10% (1/2)

2.2 MONITOR PROGRAM
1) ON GOING PROCESS CONTROL
All parameters of each process are controlled by SPC (Statistical Process Control). All resultant SPC data is gathered
by computers and recorded automatically. Trends of each parameter are plotted on control charts by the computer and
corrective actions are immediately taken whenever a parameter goes "out-of-control" beyond the control limits.
Whenever a parameter goes "out-of-control" in a process, engineers involved with that particular process have meetings
to decide the disposition of those lots that were effected by the out-of-control process and corrective actions are implemented. In the case of critical defects, all lots are scrapped by MRB (Material Review Board).
As the key item of ongoing process control, Cp or Cpk value is controlled by computer for each process. The UCL and
LCL for each process is then determined by the computer generated Cp or Cpk value. Cp or Cpk values are continually"
upgraded to insure the stabilization of process and a alP (quality improvement plan) is made out to drive defects down
to zero.
Process capabilities of each process are totaled and analyzed and those results of analysis are reflected on the alP,
The stabilization and maximization of process capabilities are driven by SPC.

2) PRODUCT RELIABILITY MONITOR
The reliability monitor program begins where the qualification program ends, at the start-up of limited production. Everything
that is subject to qualification is considered subject to the monitor program. Generally, the product to be used for reliabili'ty
monitors is gathered from each fab lot each month, where the product selected is representative of:
1)
2)
3)
4)

each
each
each
each

fab process technology
generic product type
package technology
subassembly plant

The product is shipped directly to the appropriate a & R group, which puts the product through a series of electrical,
mechanical, thermal, and environmental tests that usually are identical to those used initially for qualifying the product.
Most tests are of short duration, but some may extend out to thousands of hours. Each month the test results are evaluated
and problems, should they exist, identified.
Each monitor failure is analyzed, If a problem is detected where the failure rate is greater than that considered acceptable, or a reliability problem is suspected, a Material Review Board (MRB) is called. This meeting is attended by appropriate a & R personnel, scheduling personnel, engineering, and any other affected group.
This group reviews the data, decides on disposition of the affected material, decides on appropriate corrective action,
and basically controls the problem or issue until it is satisfactorily resolved.

c8~SUNG

20

QUALITY and RELIABILITY

I

3) FINAL QUALITY ASSURANCE PROGRAM
After the completion of the entire manufacturing process a sample of each lot is pulled and the data sheet verification
test is repeated. This final verification objective is to ensure that test system to test system variations are not compromising the quality, and that inadvertent system or handling problems have not occurred.

4) ENVIRONMENT MONITOR

:J-

• Instruments

-

F.M.S #1 (HIAC/ROYCO System 1 Set)
F.M.S #2 (P.M.S System 1 Set)
Control Particle Monitoring System (2 Set)
Portable Particle Counter, Sensors

On line monitoring system
(Central control room)

• Block Diagram

PATROL INSPECTION

PRODUCT AREA (CLEAN ROOM CLASS 1 -100)

c8SAMSUNG
Electronics

21

QUALITY and RELIABILITY

• Environment Monitor
Frequency

Item

5 min
5 min
5 min
5 min
5 min
5 min
5 min
All HEPAs/1 room/Day
Weekly
Monthly

1. Particle (Air. 0-1 Water)

2. Temperature. Relative Humidity
3. 0.1 Resistivity'
4. Differential Pressure
5. HEPA Air Velocity
6. Gas (H 2 • O2 • N2 • Air) Dew Point
7. Gas Pressure
8. HEPA Filter Particle
9. 0-1 Bacteria Main Lot
10. 0-1 Bacteria Using Lot
Corrective Action Requirement

CENTRAL ENVIRONMENTAL CONTROL

<$>
NO

OUT OF SPEC.

o

cUSAMSUNG
Electronics

NO

22

QUALITY and RELIABILITY

•

2.3 QUALITY CONFORMANCE PROGRAM
1) DESCRIPTION
SEC has established a comprehensive reliability program to monitor and ensure the ongoing reliability Of the
Linear IC family. This program involves not only reliability data collection and analysis on existing parts, but also
rigorous in-line quality controls for all products.
Listed below are details of tests performed to ensure that manufactured product continues to meet SEC's stringent
quality standards. In line quality controls are reviewed extensively in later sections.
The tests run by the quality department are accelerated tests, serving to model "real world" applications through
boosted temperature, voltage, and/or humidities. Accelerated conditions are used to derive device knowledge through
means quicker than that of typical application situations. These acceierated conditions are then used to assess
differing failure rate mechanisms that correlate directly with ambient conditions. Following are summaries of
various stresses (and their conditions) run by SEC on Linear IC products.

2) HIGH TEMPERATURE OPERATING LIFE TEST (HOPL)
(Tj = 125°C, Vee = Vee max, static)
High temperature operating life test is performed to measure actual field reliability. Life tests of 1000HR to 2000HR
durations are used to accelerate failure mechanisms by operating the device at an elevated ambient temperature
(125°C). Data obtained from this test are used to predict product infant mortality, early life, and random failure
rates. Data are translated to standard operating temperatures via failure analysis to determine the activation
energy of each of the observed failures, using the Arrhenius relationship as previously discussed.

3) WET HIGH TEMPERATURE OPERATING LIFE TEST (WHOPL)

=

=

(Ta =85°C, R.H. 85%, Vee Vee opt, static)
Wet high temperature operating life test is performed to evaluate the moisture resistance characteristics of plastic
encapsulated components. Long time testing is performed under static bias conditions at 85°C/85 percent relative
humidity with nominal voltages. To maximize metal corrosion, the biasing configuration utilizes low power levels.

4) INTERMITTENT OPERATING LIFE (IOPL)
(Pmax, 25°C, 2min on/2 min off)
This test is normally applied to scrutinize die bond thermal fatigue. A stressed device undergoes an "ON" cycle,
where there is thermal heating due to power dissipation, and an "OFF" cycle, where there is thermal cooling due
to lack of inputted power. Die attach (between die and package) and bond attach (between wire and die) are the
critical areas of concern.

5) HIGH TEMPERATURE STORAGE TEST (HTS)
(Ta= 125°C, UNBIASED)
High temperature storage is a test in which devices are subjected to elevated temperatures with no applied bias.
The test is used to detect mechanical instabilities such as bond integrity, and process wearout mechanisms.

6) PRESSURE COOKER TEST (PCT)
(121°C, 15PSIG, 100% R.H., UNBIASED)
The pressure cooker test checks for resistance to moisture penetration. A highly pressurized vessel is used to
force water (thereby promoting corrosion) into packaged devices located within the vessel.

7) TEMPERATURE CYCLING (TIC)
(- 65°C to

+ 150°C,

AIR, UNBIASED)

This stess uses a chamberwith alternating temperatures of - 65°C and + 150°C (air ambient) to thermally cycle
devices within it. No bias is applied. The cycling checks for mechanical integrity of the packaged device, in
particular bond wires and die attach, along with metal/polysilicon microcracks.

8) THERMAL SHOCK (TIS)
(- 65°C to + 150°C, LIQUID, UNBIASE,D)
This stress uses a chamber with alternating temperatures of - 65°C to + 150°C (liquid ambient) to thermally cycle
devices within it. No bias is applied. The cycling is very rapid, and primarily checks for die/package compatibility.

c8SAMSUNG
Electronics

23

QUALITY and RELIABILITY

9) RESISTANCE TO SOLDER HEAT
(UNBIASED, 260°C, 10 sec)
Solder Heat Resistance is performed to establish that devices can withstand the thermal effects of solder dip,
soldering iron, or solder wave operations.

10) MECHANICAL SHOCK
(UNBIASED, 1500g, Pulse=0.5msec)
This test determines the suitability of a device to be used in equipment where mechanical "shocks" may occur.
Such shocks result from sudden or abrupt changes produced by rough (non-standard) handling, transportation,
or field operations.

11) VARIABLE FREQUENCY VIBRATION
(UNBIASED, Range = 100 to 2000Hz)
Variable Frequency Vibration is done to model the effects of differential vibration in the specified range. Die attach
and bonding integrity are particularly stressed, testing the mechanical soundness of device packaging.

12) CONSTANT ACCELERATION
(UNBIASED, 10kg to 20kg)
This is an accelerated test designed to indicate types or modes of structural and mechanical weaknesses not
necessarily detectable in Mechanical Shock and Variable Frequency Vibration stressing.

13) RELATIVE STRESS COMPARISONS
Many stresses are run at SEC on many different devices. Through both theoretical and actual results, it was
clearly determined which stresses were most effective. Also established were the stresses which weren't fully
effective.
Comparisons have been made on the basis of defects able to be determined, efficiency in detection, and cost.
For the reader's benefit, SEC provides the results of its conclusions on the following pages.

c8SAMSUNG
Electronics

24

QUALITY and RELIABILITY

•

3. CUSTOMER SUPPORT SYSTEM
3.1 INTRODUCTION
Manufacturing companies have developed customer support systems for the purpose of uniting communications. Through
these communications pass the information and knowledge required to satisfy the customers needs in areas such as
quality and reliability, customer claims, customer training, field service technical issues, pricing or availability and above
all, trust. Open lines of communication establishes thorough trust between the customer and vendor and are essential
for such programs as dock-to-stock in order to achieve the ultimate in customer/vendor relations. SEC, in its commitment to customer satisfaction, has installed within its organization a support system that is designed to produce the open
lines of communication between all facets of relations for both the customer and SEC.

3.2 POLICY
SEC has developed within its organization, a customer support system. SEC's policy requires that this system be manned with the proper personnel that are thoroughly trained in the areas that each represent and are dedicated to opening
and maintaining lines of communication with the customer. Technical data used by SEC to support the customer must
be up to date and always available for use by the customer (privileged or confidential information maybe excluded). Customer
training is provided to the customer by only the most knowledgeable SEC personnel. SEC will provide customer field
service in the form of periodic goodwill visits to customer sites or specialized problem solving services as required. Process change notification procedures as well as safety standards are also strictly adhered to.

3.3 CUSTOMER SUPPORT SYSTEM
1) QUALITY ASSURANCE SERVICE
SEC has felt the need to reorganize its current Quality Assurance Sections in order to better service our customers.
From this new organizational change, a new QA section was born. This new QA section, known as QA Section 3, was
developed specifically for the customer. The customer service team in QA3, was organized to respond prombtly to
customers quality requirements. The purpose of this team is to form a more responsive communication channel between
plant R&D, the sales department and the customer. Customers will achieve satisfaction with our company's products
by use of the newly organized customer service system. This service system is openly available to customers for
comments concerning problems oropinions about SEC'S devices. An .a00 number is published on the inside of the handbooks cover.

2) CUSTOMER SERVICE TEAM
The following organizational chart illustrates the world-wide base that the customer service team of SEC has established. Maintaining continuity between all of SEC's worldwide customer service teams is accomplished through the use of
a newly installed computer network which allows constant communication between all teams.

CIS ORGANIZATION

. ASIA
SEOUL,KOREA
TOKYO, JAPAN
TAIPEI, TAIWAN
HONG KONG

c8SAMSUNG
Electronics

AMERICA
SAN JOSE, CA
CHICAGO,IL
BOSTON,MASS

EUROPE
FFT, WEST GERMANY
LONDON, U.K

25

QUALITY and RELIABILITY

3) CUSTOMER CLAIM SUPPORT SYSTEM
Information from the field concerning quality is an essential factor for the improvement of product quality. Equally important, is the investigation of field failures. Timely feedback of the results from the analysis is required to better service
customers properly. This data also serves as a direct guide to the improvement of reliability and quality for both SEC
and our customers.
The flowchart below demonstrates the process in which SEC currently follows for customer claims.

CLAIM SUBMITTED

CLAIM RECEIVED

PRELIMINARY REPORT

FINAL REPORT

FOLLOW UP AND FEEDBACK
TO MANUFACTURING

NOTIFY CUSTOMER OF
COMPLETED CIA AND THEIR RESULTS

4) CUSTOMER TRAINING SYSTEM
SEC has recently established a training team for the purpose of teaching SEC's customers the methods currently used
by SEC to insure the product quality and reliability at the customers site. SEC offers this training in the form of group
seminars or presentations and when requested or deemed necessary, individualized training is offered. In some cases,
the training will take place at the customers site at the customers convenience while in other cases, SEC will extend
on invitation to the customer to visit our manufacturing site.

5) CUSTOMER FIELD SERVICE
SEC has developed field service teams that are devoted to making customer contact when there aren't any problems.
In other words, SEC is interested in making periodic goodwill visits. The visiting team would be comprised of those managers
and engineers that are involved with the product types that the customer currently uses. The main goal of this team
is to establish customer trust through communication.

c8SAMSUNG
Electronics

26

QUALITY and RELIABILITY

I

3.4 PROCESS CHANGE NOTIFICATION SYSTEM (PCN)
Changes in a process are sometimes required to produce a high~r quality product at a lower price. These changes can
include new or different types of material, new or modified designs and new or different processes. SEC has developed
a PCN procedure that is followed whenever a major or critical change is to be considered for any process. The idea
behind the PCN is to allow change to a process by submitting the planned change for qualification by SEC engineering
and then presenting the PCN to the customer for final approval. By following this procedure, the customer is assured
that no major or critical change will occur to the process without the customers consent.

ENGINEER INFORMATION NOTICE

DECIDE PCN AREA

CHECK ELECTRICAL -CHARACTERISTICS

No

No

Reject Change

3.5 SAFETY STANDARDS
Most customers express the desire to use only products which have been manufactured with materials that meet the
safety specifications of the Underwriters Laboratories: SEC has chosen to adhere to the specifications called out in the
UL standard 94 by purchasing and using only those plastic materials that conform to this standard. UL 94 tests for a
number of different flammability conditions that effect the'plastic material used in semiconductor devices including horizontal
burning, vertical burning and flame spread.

c8SAMSUNG
Electronics

27

QUALITY and RELIABILITY
4. FAILURE ANALYSIS
4.1 PROCEDURE
A general failure analysis procedure is shown below. The method demonstrated in the flow chart applies to all rejects.
However, each analysis is specific unto itself, so that a completely exhaustive analytical flow is impossible for the limits
of this manual. Specific instances and examples of interest are provided later in the chapter. Also included in this section
is a typical day-by-day accounting of a failure analysis in progress. A two-week turnaround is the objective, with greater
than 90% of analysis lasting equal to or less than this duration. A sample analysis plan and report are attached at the
conclusion of this section.

Failure Occurred ;
Obtain Sample
Visual Inspection

I

ti

Failure State
Investigation

Retrieval of Past
Failure Examples

I

Electrical Measurement
Curve tracer,
Oscilloscope,
Tester, etc.

Failure Mode Classification
Probable Mechanism

Failure Check

H

Simulation Test

J
I

Fluoroscopy, Leak Test, Backing, Vibration
Test, Aging Under Power Application, etc. HElectrical Measurement

J

L

Parameter Failure

I

Identify Failed Area

I
I

Identify Circuit of
Failed Area
Analyze Characteristics
of Failed Area

I

Determine Failure Mode

I

t

I

I
I

Function/Logic Failure

I

Identify Failed Block

I

I

Identify Failure by
Bench Tester

J

Identify Circuit of
Failed Area

I
I

Analyze Characteristics
of Sensitivity on
Test Parameter

I

Bake (Ion Contamination)

I

I

RetestlRestress

I

DecapNisual Inspection

J
I

Electrical Analysis by
Dynamic Probing
Isolation for Parameter
Analysis

I DecapNisual Inspection I

Layer StripNisual
Inspection/Cross-Section
Conclusion

l Feedback to Manufacturing Process I

J

I

Corrective Action

I
I

I
I
I
I

l-

Failure Analysis Procedure Flow Chart

"qsSAMSUNG
Electronics

28

QUALITY and RELIABILITY

•

Applicable Comments for the above flow chart are made below.

11) DETERMINATION OF FAILURE MODE
The basic failure mode shall be de1ermined with data from computer and bench testing. As a defect can represent various
electrical failure modes, it is critical to determine the most basic failure mode. (For example, a VoLN oH parameter failure
may be also analyzed as a functional failure. However, it is very important to determine VOL/VOH as the basic failure
mode.)

2) IDENTIFICATION AND ANALYSIS OF FAILED CIRCUIT AREA
Correlation shall be derived with general (macroscopic) failure phenomenon through circuit interpretation of the failed area.

3) SENSITIVITY OF TEST
Parametric value of failed sample shall be determined through adjusting DC and AC parameters, temperature range, etc.

4) ION CONTAMINATION
For a sample assumed to have an inversion phenomenon caused by ionic contamination, characteristics shall be identified by conducting a Ta = 150°C, 24 hour cure and repeating test/restress.
Contamination of a specific layer shall be determined by stripping each layer.

5) DECAPSULATION
There are 5 decap methods with respective merits and demerits. The appropriate method must be utilized on the basis
of the characteristics and potential cause for each failure.

6) ISOLATION AND DYNAMIC PROBING
It is essential to isolate the probable failing part of the circuit for its electrical failure mode. Without isolation, exact detection of a failed part can not be accurately accomplished as an electrical failure mode has an influence on other parts
of the circuit.

7) LAYER STRIPPING
Each layer strip should meet specification requirements with respect to time. It should never be the case that chemical
attack is mistaken for causing the failure of a part.

8) GENERATION OF ACTIVATION ENERGY
Accelerated life testing requires generation of actual activation energies based upon establishing a definitive failure mode.
This generation has a great effect in determining the acceleration factor of Arrehenius' model.

9) CORRECTIVE ACTION
Failure analysis is fully completed only by establishing a future plan and corrective action, which are taken to resolve
a problem and prevent its recurrence.

c8SAMSUNG
Electronics

29

QUALITY and RELIABILITY
4.2 Failure Modes and Mechanisms
1) Failure mechanisms for devices vary widely. They are caused by both front-end (wafer) and back-end (assembly) processing. To classify problems and their instigations; the table listed below is provided.
Items and Causes of Failure Modes
. .
Item

Wire
Bonding

Junction
Region
Case

Type of Failure

Failure Mode

Cause

Incomplete

Wire Disconnection

Open

Wire Short

Short

Manufacture or

Purple Plague

Open, High Resistance

Misuse

Bond Detaching

Open,High Resistance

Misplaced Bonding,
Loose Contact

Open, High Resistance
Short

Improper Bond Shape
Erroneous Bonding

Open, High Resistance
Open, High Resistance

Destruction by Surge
--

Hot Spot
Lead

Disconn~ction

Low Breakdown Voltage,
Short, .open
Open, High Resistance

Lead Short

Short, High Leakage

--

Incomplete
Manufacture
Incomplete
Manufacture or
Misuse
Same as above

Incomplete Seal
Seal

Enclosed High
Humidity Gas

--

Breakdown Voltage
Deterioration, High
Leakage

Same as above

Contamination of Surface

Metallization

Dust and Dirt

Short, Low Breakdown Voltage
Large Leakage

High Current Density

Open, Short

Electromigration

Open, High Resistance

Scratch

Open, Short

Insufficient Thickness
Excessive Etching

Open, High Resistance

Incomplete
Manufacture

Open, High Resistance

Incomplete
Manufacture or
Misuse

Contamination, Dust
and Dirt

--

Poor Wiring and Element
Connection
Chip
Mounting

Oxidized
Film
Surface
Treatment
Mask
Material and
Diffusion

Chip Crack

Open, Short

Chip Detaching

Open, Short, High
Thermal Resistance

Misuse

Same as above

Pinhole, Crack

Low Breakdown Voltage, Short

Insufficiently Oxidized
Film Thickness

Low Breakdown Voltage

Incomplete
Manufacture

Channel Formation

Low Breakdown Voltage
High Leakage

Same as above

Mask Misalignment

Low Breakdown Voltage
Short, Open, High Leakage

Same as above

Improper Impurity Density

Same as above

Same as above

Contamination
Insufficient Photoresist

c8SAMSUNG
Electronics

30

QUALITY and RELIABILITY

2) Standard product reliability tests can naturally generate failures. Here, in this section, a table is given which lists tests
ana their associated rejects. Each test has a specific purpose, and if there exists a particular product weakness, a
given test will expose it. In this manner, by knowing a test and it's function, a clear determination can be made as
to the relevance of a failure for that particular test.

.Reliability Tests and Associated Failure Modes
Failure Cause
Item

TIC

Test Condition

Diffusion

Oxide

oContamination
oCrystal Defect
oPhotoresist
Reject

oContamination
oPin Hole
oCrack
oThickness
Unstable

-65·C~150·C

200 Cycles

TIS

-65·C .... 125·C
200 Cycles

Metallzation Wire Bonding
oConpos.
oScratch

Package
Environment

Package
Seal

oConductive ions oSealing
olnadequate
Reject
oEnvironments'

Lead Solderability
Fatigue
oConpos. oMarking

Mark

Die bonding

oThemal
Reject Resistance
Reject
oCrack
oChip Position
Reject

oVoid
oOpen

olnteriace
oCorrosion
oMisbonding
oWireOpen
oChemical
Interiace

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

90·98~'oR.H.J65"C3HRS

Moisture
80-98%R.H.J25·C8HRS
Resistance 90-98%R.H.J65"C3HRS
10 Cycles
Vibration
Fatigue

20G·3 Axis
Orientation
f=20 to 2000 cpe
for 4 min. 4 cycles

0

0

Pulse Duration:
Constant
0.1·1m sec
Acceleration
Shock pulse: 0.5-3Kg

0

0

15OOg, 0.5ns
Mechanical
Each Di rection of X, Y
Shock
and Z Axis

0

0

Lead
Integrity

W=227g
90·C 3 times

Marking

Isoprophylalcohol

0
0

Solderability Ta=230· 5 Sec.
Once With Flux

0

Salt Spray

Ta=35·C, 5% NaCI

OPL

Individual Spec

0

0

0

0
0

0

0

IOPL

Individual Spec

0

0

0

0

0

0

0

0

0

HTRB

Individual Spec

HTS

Individual Spec

0

WHTS

80·C, 90% RH
85·C, 85% RH

0

WHTRB

85·C, 85% RH
Bias

0

0

0

0

0

0
0
---

0

0

0

I

c8~SUNG

0

0

0

0

0

0

0

0

0

0

31

I

QUALITY and RELIABILITY
3) An anomalous manufacturing step can manifest itself in many ways with respect to product reliability. The chart below
depicts process steps, the types of rejects they can generate, and the way to defect such failures. Of course, there
are numerous QC and Production checks along all stages of the manufacturing process. However, a semiconductor
product typically involves so many operations it's nearly impossible to detect all potential reliability hazards. Thus,
there are final electrical and visual tests, reliability tests, and statistical analyses which are run prior to product releasal.
The chart below speaks to the electrical, visual, and reliability tests.
Failure Mechanisms of Integrated Circuits
Process Step
Affecting
Reliability

Wafer
Fabrication

Failure Mechanism

Failure Mode

Dislocation and Stacking
Fault

Degradation of Function
Characteristics

Electrical Test
Operation Life

Non-Uniform Resistivity

Unpredictable Characteristic
Values

Electrical Test

Surface Abnormalities

Improper Electrical
Characteristics,
Short and Open

Electrical Test
Operation Test

Cracks, Chips,
Scratches (Usually
Caused During Handling)

Open and Short

Electrical Test
Visual Inspection
(Before Seal)
Temperature Cycling

Contamination

Degradation of Junction
Characteristics

Visual Inspection (Before
Seal), Temperature
Cycling, High Temperature
Storage, .Reverse Bias

Cracks and Pin Holes

Shorts, Low Breakdown
Voltage

Temperature Cycling
High Temperature Storage
High-Voltage Test,
Operation Life
Visual Inspection
(Before Seal)

Non-Uniformity of Film
Thickness

Low Breakdown Voltage
Increase of Leakage Current
in Oxide Film

Same as Above

Scratch, Crack, Scar of
Photo Mask
,

Open,Short

Visual Inspection (Before
Seal),
Electrical Test

Misalignment

Open, Short

Same as Above

Abnormality of PhotoResist Pattern (LineWidth, Space, Pin Hole)

Degradation of Characteristics
Due to Parameter Drift
Open,Short

Same as Above

Improper Elimination of
Oxide Film

Open, Short, Intermittent
Failure

Visual Inspection (Before
Seal)
Electrical Test
Operation Life

Under-Cut

Short or Open in
Metallization

Visual Inspection
(Before Seal)
Electrical Test

Passivation

Mask

Failure Detection Method

Etching

c8SAMSUNG
Electronics

--

--

--

--

32

QUALITY and RELIABILITY

•

Failure Mechanisms of Integrated Circ'uits (Continued)
Process Step
Affecting
Reliability
Etching

Diffusion

Metallization

I Die Separation

Failure Mechanism

Failure Detection Method

Spotting (Smear)
Inhomogeneous Etching

Latent Short

Visual Inspection
(Before Seal)
Temperature Cycle.
High Temperature Storage
Operation Life

Contamination
(Photo Resist. Residue
of Chemical Substance)

Low Breakdown Voltage
Increase of Leak Current

Same as Above
Reverse Bias

Improper Control of
Doping Profile

Performance Degradation
Caused by Instability
and Fault

High Temperature Storage
Temperature Cycling
Operation Life
Electrical Test

Scratched and Smeared
Metallization
(Caused During Handling)

Open and Short

Visual Inspection
(Before Seal)
Temperature Cycling
Operation Life

Thin Metallization Due
to Insufficient
Deposition or Oxide
Film Step

Open or High Impedance
Internal Connection

Electrical Test
Operation Life
Temperature Cycle

Oxid Film Contamination
Material Incompatibility

Open Metallization Caused
by Poor Adhesion

High Temperature Storage
Temperature Cycling
Operation Life Test

Corrosion (Residue of
Chemical Substance)

Open Metallization

Visual Inspection
(Before Seal).
High Temperature Storage
Temperature Cycle.
Operation Life

Displacement
Contaminated Contact

High Contact Resistance. Open

Visual Inspection
(Before Seal).
Electrical Test. High
Temperature Storage
Temperature Cycle.
Operation Life

Improper Temperature
and Period for
Metallization

Peeled Metallization
Poor Adhesion
Short

Electrical Test
High Temperature Storage
Temperature Cycle
Operation Life

Cracks and Chips Caused
by Improper Dicing

Open

Visual Inspection
(Before Seal)
Temperature Cycling
Thermal Shock
Vibration Shock

c8.SAMSUNG
.electronics

Failure Mode

--

33

QUALITY and RELIABILITY
Failure Mechanisms of Integrated Circuits (Continued)
Process Step
Affecting
Reliability

Ole Bonding

Wire Bonding

Failure Mechanism

Failure Detection Method

Void Between Header
and Die

Degradation Due to
Overheating

Radiography, Operation Life
Constant Acceleration
Shock, Vibration

Over-Spreading of
Eutectic Solder

Short, Intermittent Short

Visual Inspection
(Before Seal),
Radiography, Vibration
Shock

Poor Bonding of Die to
Header

Die Crack and Lifting

Visual Inspection
(Before Sealing),
Constant Acceleration,
Shock, Vibration

Mismatching of Materials

Crack or Peeling of Die

Temperature Cycling
High Temperature Storage
Constant Acceleration

Poor Bonding Strength

Open Wire, Open, Lifting
Vibration Shock

.Constant Acceleration

Mismatched Material and
Contaminated Bonding
Pad

Lead Bond Peeling

Temperature Cycling
High Temperature Storage
Constant Acceleration
Shock, Vibration

Formation of
Intermetallic Plague

Open Bonding

High temperature storage,
Temperature Cycling.
Constant Acceleration Shock,
Vibration

Insufficient Bonding
Area or Spacing

Open
Bonding Short

Operation Life Test;
Constant Acceleration,
Shock Vibration,
Visual Inspection
(Before Seal)

Improper Bonding
Arrangement

Open, Short

Visual Inspection
(Before Seal)
Electrical Test

Die Cracks or Chips

Open, Shock

Visual Inspection
(Before Seal)
High Temperature Storage
Temperatu~e Cycling
Constant Acceleration,
Shock Vibration

Excessive Loop or Sag
in Wire

Short to the Case, Substrate
or other Parts of the Leads

Visual Inspection
(Before Seal),
Radiography, Constant
Acceleration, Vibration

Crack, Scratch,
or Scar on Lead

Wire Disconnection Causing
Open, Short

Visual Inspection
(Before Seal),
Constant Acceleration,
Shock Vibration

c8SAMSUNG
Electronics

Failure Mode

--

34

QUALITY and RELIABILITY

I

Failure Mechanisms ot Integrated Circuits (Continued)
Process Step
Affecting
Reliability

Sealing

Failure Mechanism

Failure Mode

Failure Detection Method

Insufficent Elimination
of Tail Wire

Short, Intermittent Short

Same as Above
Radiography

Incomplete Hermetic Seal

Performance Degradation,
Shorts and Opens Caused by
Chemical Corrosion and
Moisture

Fine Leak, Gross Leak

Bad Atmosphere in
Package

Performance Degradation Due
to Inversion Layer
Channeling

Operation Life
Reverse Bias, High Temp.
Storage, Temperature
Cycling

Bending or Breaking of
the External Lead

Open

Visual Inspection,
Lead Fatique

Crack or Void in Seal
Glass

Short or Open in Metallization
Due to Leak

Seal, Electrical Test
High Temperature Storage
Temperature Cycling
High'Yoltage Test

Migration on Seal
between Outer Lead and
Metal Case

Intermittent Short

Low \itoltage Test

Electro-Conducting
Particles Floating
in Package

Same as Above

Constant Acceleration, .
Vibration
Radiography

Mismarking

Inoperable

Electrical Test

--

4) Equipment
A listing of important equipment used for failure analysis is shown below in tabular from, SEC's committment to
comprehensive analysis of all relevant rejects necessarily implies a usefulness for key analytical instruments. Constant efforts are made to both use and modify equipment to meet specialized investigations. However, only standard
equipment, not a listing of hybrids (for confidential development purposes), is listed below.
Equipment. for failure analysis
Category

Visual

Item

Application

1. Stereo Microscope

Use for visual inspection

2. SEM (Scanning Electron
Microscope)

Use to inspect the surface or cross-section
of a device at high magnification. Through
voltage contrast techniques, it is
possible to analyze voltage levels
while the device is operating

3. Infrared Microscope

Using the infrared radiation emitted by a
functioning device, a thermal map can be
produced.

4. X-Ray

Use to inspect the bonding wire of
encapsulated devices.

5. Metallugical Microscope

Inspect interconnects, contacts, bonds

6. Radiographic Scope

Inspect bond wires, die attach

c8SAMSUNG
Electronics

35

QUALITY and RELIABILITY
Equipment for failure analysis (Continued)
Category
Elemental
Analysis

Item

Used to detect and analyze
contamination on the surface of a die

2. EDX Spectrometer

Used with SEM to analyze elements present
in a device. This is done by measuring
the energy distribution of X-rays produced
by the interaction of primary electrons
and the sample.

3. Differential Interference
Microscope

Used for elemental analysis

4. Electron Probe
Micro Analyzer (EPMA)
5. Ion Micro Mass Analyzer
(IMMA)

Decapsulation
System

Used for current analysis
Spectral analysis of chemical constituents

6. Surface Eveness Micrometer

Measures planarity

7. Differential Scanning
Calorimeter (DSC)

Permits the analysis of glasses and
polymers-especially encapsulation resinsthrough the measurement of reaction heat

8. Thermo Gravimetric Analyser

Used to determine the thermal stability of
polymers and glasses by measuring
variations in mass with temperature.

9. Plasma Etcher

Used to opan devices encapsulated in
epoxy resins, to remove silicon nitride, and
to remove thin oxide films

10. Transmission Electron
Microscope (TEM)

Used for elemental analysis and high
resolution surface on spectron

11. Surface Tunneling
Microscope (STM)

Used for elemental analysis

12. Electron Spectrometry for
Chemical Analysis (ESCA)

Used for elemental analysis

13. Secondary Ion Mass
Spectroscope

Used for elemental analysis

1.
2.
3.
4.
5.
6.
7.
8.
9.

Grinding Machines
Angle Lapping
Evaporation
Diamond Cutter
(Cross Section Cutter)
Molding System
Jet-Etching System
Etching Solution
Hot Plates
Ventilation Hoods

c8SAMSUNG
Electronics

Application

1. Auger Electron
Spectrometer (AES)

Used to decapsulate devices,
. to cut the cross section of die,
to remove a surface layer.

36

QUALITY and RELIABILITY

•

Equipment for failure analysis (Continued)
Item

Category
Electrical
Test

Stress
Test

Application

1. Curve Tracer
2. TR, IC, MOS Tester
3. ESD Simulator
4. LCR Meter
5. DC-Analyzer
6. Noise Tester
7. Logic State Analyzer
8. Manipulator Probe Ssytem
9. Electron Beam Tester
10. Hot Electron Analyzer
11. I.R Scope

Used to measure electrical
characteristic of devices,
to establish the cause of failure.

1.
2.
3.
4.
5.

Used to stress or cure the failed devices
to identify a failure mechanism.
This is a very important tool for analyzing
degradation phenomena and intermittent
failures.

Temperature Probe System
Constant Temperature Oven
Ovenn for Oper Life Test
Humidity Oven
Vibration System

c8SAMSUNG
Electronics

37

QUALITY and RELIABILITY

Methods and Equipment for Failure Analysis
"."

Contents of Inspection

Item

Eq~ipment for Analysis

External Visual
Check

• Condition of lead, Plating, Soldering,
Welding Area
• Mark, Date Code
• Package damage
• Solderability
• Sealing

Stereo-Optical-Scope x 40
Optical Microscope x 100
Helium leak Detector
Gross leak Detector
(Using Fluorocarbon)

Electrical Test

•
•
•
•

DC Parameter, AC Parameter Test
Function Test
Margin Test of Voltage and Temp.
Diode Characteristics between Each
Pin
• Disconnection, Short Circuit and I
or Electrical Characteristic
detected by the above Inspection

IC Tester
Curve Tracer (HP4145)
Oscilloscope
DC Power Supply

• Internal Structure of Device is
Checked Non-Destructively

Soft X-Ray

, Internal Structure is
observed after decapping

Metal Cutting Scissors, Nippers
Cap opener, plastic etcher,
Hot plate, Drill, HN03

Radiography
Decapplng

\

Internal Visual
Check

Internal Structure
Analysis

Simulation Test

• Detection of Defective Spot on the
Chip Surface
• Detection of Discrepancy of Internal
Connection (Metallization, Wire Bond
-ing, Etc.)
• Electrical Characteristics are. :
Checked by Mechanical Prober
• Detection of Hot Spot
• Existence of Foreign Material

Optical Microscope
Micro-Prober
SEM
Laser Cutter
Infrared Micro Scanner
Thermal Plotter
Infrared ~icroscope

• Cross Sectional Analysis of Chips
to Observe Diffusion Layer of
Oxide Film
• Analysis of Metallic Elements
• Removing of Over-Coating Glass and
Aluminum Metallization

Optical Microscope
SEM, MAX, AES, SAM, IMA
Spectrometer
Micro-Prober

• Operational Test on Actual
Equipment

Actual Electronic Equipment

c8SAMSUNG
Electronics

Oscillator (Sine Wave Pulse)
Heat-Gun, Cooling Gas Spray
Thermo-Spot

38

QUALITY and RELIABILITY

4.3 FAILURE MODE EFFECT ANALYSIS (FMEA)
Failure Mode Effect Analysis is a method used for checking if measures are taken against every possible failure in the
design, the manufacturing process, the operating method, etc. For this analysis, factors such as design, manufacturing
process, packaging, and operating method are divided into small units, and its functions are clearly defined. All possible
failure modes are listed for each item, its effect on the product and the cause of each failure is examined. Each item
is then evaluated to clarify the corrective actionto be taken.
Table shows an example of FMEA in the manufacturing process of plastic encapsulated MOS LSI. The incident
column pertaining to the Evaluation Points show the failure rate; Effectiveness column shows the impact of the effect
by the failure of the product, device, or system; and Detectability shows the rate of detection of the failure. These are
individually graded on the basis of ten points. The result is then e"Jaluated by multiplying the points. The larger value
indicates the importance of the item. A counterplan for each iten is then specified and action taken.
Manufacturing Process FMEA Example (Plastic Encapsulated Products)
Process Name
(Process
Function)

Failure Mode

Failure Effect

Failure Cause

Counterplpn

AI metallization

Improper thickness
Lack of AI wiring
Breakage defect

Electromigration
open circuit

Operator's mishandling, dirt/foreign
matter attachment,
poor adjustment of
equipment

Improvement and adjustment
of written working process,
dust control of clean room,
SEM test in the process

Glassivation

Lack of glassivation
film, failure film
thickness

Increased leak current,
improper operation

Dirt/foreign matter
attachment, operator's
mishandling

Dust control of clean room,
improvement and adjustment
of written working process

Visual Inspection

Scratch, die crack, dirt,
spot, residual resist

Open circuit, increased
junction leak current

Mishandling of wafer,
Misclearning of water

Improvement and adjustment
of written working process

Assembly Process
Die Selection

Die crack

Increased junction leak
current, improper
operation

Poor adjustment of
equipment, operator's
mishandling

Corrective action to device
control operator, improvement
and adjustment of written
working process

Die Bonding

Die crack
Die floating

Open circuit, increased
junction leak current,
improper operation

Operator's mishandling
temperature too low

Corrective action to device
control operator, improvement
and adjustment of written
working process, visual
inspection

Wire Bonding

Open bonding,
improper· bonding
position, shorted
bonding wire

Open circuit, short
circuit

Poor bonding strength,
operator's mishandling,
poor adjustment of
equipment, looped
bonding wire, shape
defact

Improvement and adjustment
of written working process,
corrective action to device
control operator, visual
inspection

.c8~SUNG

39

•

QUALITY and RELIABILITY

Manufacturing Process FMEA Example (Plastic Encapsulated Products) (Continued)
Process Name
(Process
Function)

Sealing (Resin)

Lead Surface
Treatment
(plating)
Lead Formation

Marking

Failure Mode

Counterplan

Failure Cause

Open bonding wire,
shorted bonding wire,
package crack,
corrosion

Open circuit, short
circuit, defective
appearance

Poor adjustment of
equipment, insufficient
cure

Ditto

Poor metal-plating
thickness, dirt

Poor soldering, poor
contact

Operator's mishandling
poor adjustment of
equipment, insufficient
cleaning

Adjustment of written working
process, corrective action to
control operator

Abnormal shape, broken Failure inserting in the
lead
printed substrate poor
operation

Operator's mishandling
poor adjustment of
equipment

Ditto

Marking error illegible
marking

Operator's mishandling
insufficient cure

Improvement and adjustment
of written working process

c8SAMSUNG
Electronics

Failure Effect

Operating destruction

40

III

PRODUCT GUIDE

LINEAR ICs

1. FUNCTION GUIDE

•

1.1 Voltage Regulator
A. 3·Terminal Fixed Positive Voltage Regulator
Package

Features

Application

Function

Type

Viry High
Output
Current (3A)

KA78T05

TO·220

LM323

TO·3P

High Output
Current
(lo=1A)

MC78XX
series

TO·220

5V, 6V, BV, 9V, 10V,
Maximum output current lA
11V, l2V, l5V, lBV and
External components are minimized
Internal protection circuit for output short 24V fixed output voltage

KA340TXX
series

TO·220

Output current in excess of 1A
Very low line regulation: 0.01 %
Very low load regulation: 0.3%

Medium
Output
Current
(l o =500mA)

MC78MXX
series

TO·220

SV,6V,8V, 10V, 12V, lSV,
Maximum output current .SOOmA
External components are'minimized
l8V, 20V and 24V
Internal protection circuit for output short fixed output voltage

Low Output
Current
(l o =100mA)

MC78LXXAC TO·92
series
8·S0P

Output current in excess of 3A
Internal thermal overload protection
Internal short circuit current limiting

SV output voltage
SV output voltage

SV,6V,8V, 9V, 10V, 11V,
12V, 15V, 18V and 24V
fixed output voltage

5V, 6V, 8V, 9V, 10V, 12V,
Output current in excess of 100mA
15V, laV and 24V
External components minimized
Internal protection circuit for output short fixed output voltage

B. 3·Terminal Fixed Negative Voltage Regulator
Function

Type

High Output
Current
(10= lA)

MC79XX
series

Medium
MC79MXX
Output Current series
(10 = 500mA)
Low Output
Current
(10= 100mA)

Package

Features

Application

TO·220

Output current in excess of lA
Internal thermal overload protection
Internal short circuit current limiting

-2V, -5V, -6V, -BV, -9V,
-10V,-12V, -15V, -18V
and - 24V fixed output

TO·220

Output current in excess of 500mA
Internal thermal over load protection
Internal short circuit current limiting

"-5V, -6V, -8V, -10V,
-12V, -lSV, -18V and
- 24V fixed output voltage

Output current in excess of 100mA
Internal short circuit current limiting
Extemal components minimized

- 5V output voltage

MC79L05AC TO·92

cSCSAMSUNG
. . Electronics

c'

43

LINEAR les

PRODUCT GUIDE

c. Adjustable Voltage Regulator
Function

Type

Package

Features

Application

Precision
Voltage
Regulator

LM723

14 DIP
14 SOP

Positive or negative supply operation
Series, shunt, switching or floating
operation
0.01 % line and load regulation
Output current up to 150mA without
external pass transistor

Output voltage adjustable
from 2 to 37V

Adjustable
Regulator

LM317

TO-220

Output current in excess of 1.5A
Positive output adjustable from
1.2V to 37V
Internal short circuit current limiting

Floating operation for
high·voltage operation

KA337

TO-220

Output current in excess of 1.5A
Negative output adjustable from
1.2V to 37V
Internal short circuit current limiting

Floating operation for
high-voltage operation

KA350

TO-220

Output current in excess of 3A
Positive output adjustable from 1.2V
to 33V
Internal short circuit current limiting

Floating operation for
high-voltage operation

tKA317L

TO-92

Output current in excess of 100mA
Positive output adjustable from 1.2V
to 37V
Internal short circuit current limiting

Floating operation for
high-voltage operation

tKA317M

TO-220

Output current in excess of 500mA
Positive output adjustable from 1.2V
to 37V
Internal short circuit current limiting

Floati ng operation for
high-voltage operation

tKA337L

TO-92

Output current in excess of 100mA
Negative output adjustable from
-1.2V to - 37V
Internal short circuit current limiting

Floati ng operation for
high-voltage operation

••

=:=SAMSUNG
. . Electronics

44

LINEAR ICs

PRODUCT GUIDE

1.2 PWM Controller
Function
Voltage Mode
PWM Control
IC

Current Mode
PWM Control
IC

Type
KA3524

Package

Features

•

Application

16 DIP

Complete PWM power control circuitry
Internal short circuit current limiting
Complementary output
Output current up to 100mA

Flyback
Voltage
Voltage
Voltage

converter
inverter
step-down
step-up

KA7500

16 DIP

Complete PWM power control circuitry
Dead-time control
Complementary output
Output current up to 200mA

Voltage inverter
Voltage step-down
Voltage step-up

tKA3525A

16 DIP

Adjustable dead-time control
Internal soft-start
Separate oscillator sync terminal
Pulse-by-pulse shutdown
Input undervoltage lockout with hysteresis

Flyback
Voltage
Voltage
Voltage

ttKA35268

18 DIP

Programmable dead time
Under voltage lockout
Programmable soft-start
Digital current limiting

Push-pull converter
Voltage inverter
Voltage step-down
Voltage step-up

tKA3842

8 DIP
14 SOP

Automatic feed forward compensation
Pulse-by-pulse current limiting
Undervoltage lockout with hysteresis
Double pulse suppression
High current totem pole output

Flyback
Voltage
Voltage
Voltage

16 DIP

Programmable pulse-by-pulse
Current limiting
Double pulse suppression
Under voltage lockout
Soft-start capability
Automatic feed forward compensation

Push-pull converter
Voltage inverter
Voltage step-down
Voltage step-up

8 DIP

Low standby current
Voltage inverter
Current Limiting
Voltage step-down
Output switch current of 1.5A
Voltage step-up
Output voltage adjustable from 1.25 to 40V

coverter
inverter
step-down
step-up

converter
inverter
step-down
step-up
-~

ttKA3846

DC to DC
Converter

tKA34063A
KA34063

1.3 Voltage Reference
Function

Type

Package

Features

Application

Adjustable
Reference

KA431

TO-92
8 DIP
8 SOP

Programmable output voltage from Vref
to 36V
Voltage reference tolerance: ±1.0%
Low output noise voltage

Switching regulator
Constant current source
Constant current sink

Reference

KA336

TO-92

Adjustable 4V to 6V
Low temperature coefficient
0.60 dynamic impedance
Fast turn-on

Adjustable shunt regulator
Precision power regulator

c5!SAMSUNG
. . Electronics

45

PRODUCT GUIDE

LINEAR ICs

1.4 Operational Amplifier
Function
OPAMP

Dual
OPAMP

Type

Package

Features

Appllc8!tlon

LM741C/I/E

a DIP
a SOP

Internal frequency compensation
Short circuit protection

Comparator, DC amp,
Multivibrator, Summing amp,
Integrator or differentiator,
Narrow band or BPF

LM301A

a DIP
a SOP

Short circuit protection
External frequency compensation

Variable capacitance
Multiplier
Sine wave oscillator

KF351

a DIP
a SOP

Internally trimmed offset
Voltage: 10mV
Low input bias current
High input impedance: 1012(}
High slew rate: 13V/p,s
Wide gain bandwidth: 4MHz

Hi-Zin inverting amp
Ultra low duty cycle
Pulse generator
Sample and Hold

MC455aC/I

a DIP
a SOP
9SIP

Internal frequency compensation
Low noise operation

Phone pre-amplifier
Tape playback amplifier

MC145aC/I

a DIP
a SOP
9 SIP

Internal frequency compensation
Short circuit protection

Filter
Schmitt trigger
Comparator Multivibrator

LM35a/A
LM25a/A
LM2904

a DIP
a SOP
9 SIP

Internal frequency compensation
for unit gain
Large DC voltage gain
Wide power supply r~nge
Single supply operation

DC summing amplifier
Power amplification
RC active bandpass filter
Compatible with all forms
of logic.

KA5532

a DIP

Low input noise voltage
High gain bandwidth: 10MHz
High slew rate: 9V/p,s
Large supply voltage range:
- ±3 to ±20V

DC Amp
Telephone channel amplifiers
Audio equipment

KA9256

10 SIP HIS

Internal current limiting: Isc = 350mA
Internal frequency compensation
Minimal cross over distortion

High power amplifier
CD motor driver

KF442

a DIP
a SOP
9 SIP

Low supply current: 500p,A (max)
Low input bias current
High input impedance
High gain bandwidth: 1MHz
High slew rate: W/p,s

Active filter
DC summing amplifier
Oscillator

ttKS272

a DIP

Wide range of supply voltage
: 3V-16V
Common mode input voltage
including the negative rail

Battery-powered appl ication
Active filter
Signal buffer

tKF353

a DIP

Low bias current
Wide band width
High input impedance: 45MHz
High slew rate: 13V/p.s

Sample and hold
D/A converter integrator

)

c5CSAMSUNG
-Electronics

46

LINEAR ICs

PRODUCT GUIDE

OPERATIONAL AMPLIFIER
Function

Quad
OPAMP

Type

Package

(Continued)
Features

Application

14 DIP

Low supply current (Max: 6OOttA)
Single supply: DC + 5V - + 30V
Dual supply: DC ± 2.5V - ± 30V
Low offset voltage

Battery-powered application
Energy-conserving application
DC amp

LM324/A
LM224/A
LM2902

14 DIP
14 SOP

Internal frequency compensation
Wide supply voltage range
Single supply: DC 3V - 32V
Dual supply: DC ± 1.5V - ± 16V

Audio power booster
DC amp, Multivibrator
Switch, Comparator
Schmitt trigger

LM348
LM248

14 DIP
14 SOP

Each amplifier is functionally
equivalent to the LM741C
Pin compatible with LM324
Short circuit protection

Comparator with hysteresis
Voltage reference

MC3403
MC3303

14 DIP
14 SOP

Class AB output stage for minimal
crossover distortion
Single or split supply operation
Internal frequency compensation

Comparator with hysteresis
BI-Quad filter

KF347

14 DIP
14 SOP

Low bias current
Wide gain bandwidth: 4MHz
High slew rate: 13V/tts
High input impedance

D/A converter
Sample and hold
Integrator

ttKS274

14 DIP

Wide range of supply voltage
: 3V-16V
Single supply operation
Very low input bias current, Typ 1pA

Battery-powered application
Energy-conserving
application

tKA420

ft

===SAMSUNG
... Electronics

47

I

PRODUCT GUIDE

LINEAR ICs
1.5 Voltage Comparator
Function

Type

Single
LM311
Comparator

Package

Features

Application

8 DIP
8 SOP

Operates from single 5V supply
Maximum input current: 250mA
Maximum offset current: 50nA
Differential input voltage range: ±30V

Multivibrator output is
compatible with DTL and
as well as MOS circuits
voltage controlled oscillator

KA710C/I

14 DIP

Low offset and thermal drift
Compatible with practically
all types of integrated logic

Line receiver
AID converter
Memory sense amplifier

LM393/A
Dual
Comparator LM2903
LM293/A

8 DIP
8 SOP
9 SIP

High precision comparators
Reduced Vas drift over temperature
Eliminates need for dual supply
Allows sensing near ground
Compatible with all form of logic
Power drain suitable for battery
operation
Low input biasing current: 25nA
Low output saturation voltage 250mA

Output voltage compatible
with TTL, DTL, ECL and
CMOS logic system
Basic comparator
Pulse comparator
MOS clock driver

14 DIP

Two independent comparators
Operates from a single 5V
High common mode slew rate

Relay driver
Window detector

Separate differential input and single
output
Strobing each side

Sense amplifier for core memory
Dual comparator with ORed output
Double-ended limit detector

Wide single supply voltage
range or dual supplies
Very low supply current drain
(O.8mA)-independent of supply
voltage (2mW/Comparator at + 5V DC)
Low input biasing current: 25nA
Input common-mode voltage range
included GND
Low output saturation voltage 250mV
at 4mA

Compatible with all forms of logic
Bi-stablemultivibrator
One-shot multivibrator
Time delay generatory
Square wave oscillator
Pulse generator
Limit comparator
Crystal controlled oscillator

LM319
LM219

KA711C/I 14 DIP
14 SOP
Quad
LM339/A
Comparator LM2901
LM239/A
LM3302

14 DIP
14 SOP

c8SAMSUNG
Electronics

48

LINEAR ICs

PRODUCT GUIDE

1.6 Timer
Function
Single
Timer

Dual
Timer

Quad
Timer

Type

Package

Features

•

Application

NE555

8 DIP
8 SOP

Maximum operating frequency: 500KHz Precision timing
Pulse generator
Adjustable duty cycle

KS555KS555H

8 DIP
8 SOP

Low power consumption by using
CMOS process
High speed operation
Wide operation supply voltage:
2 to 18 volts
Pin compatible with NE555

Precision timing
Pulse generator

NE556

14 DIP
14 SOP

TTL Compatible
Dual NE555

Time delay generation

KS556

14 DIP
14 SOP

Low power consumption
by using CMOS process
Pin compatible with NE556

Time delay generation

NE558

16 DIP

Wide supply voltage range: 4.5 to 16V
100mA output current per section
Time period equal RC

Quad monostable
Sequential timing
Precision timing

1.7 Miscellaneous
Function

Type

Voltage to
Frequency
Converter

tKA331

Package

Features

Application

8 DIP

V·F Conversion
F·V Conversion
Wide range of full scale
frequency: 1Hz to 100KHz

Light intensity to
frequency converter
Temperature to frequency
converter

Earth
Leakage
Detector

KA2803

8 DIP

Low power consumption
Built-in voltage regulator
1mA output current pulse to
trigger SCR's

Earth leakage detector

Zero
Voltage
Switch

KA2804

8 DIP

Very few external compontents
Reference voltage output
Supply voltage control

On-Off temperature control
Time proportional temperature
control

Earth
Leakage
Detector

KA2807

8 DIP

Full advantage of the UL943
Direct interface to SCR
Trip time in normal

Earth leakage detector

..

=SAMSUNG
. . Electronics

49

LINEAR ICs

PRODUCT GUIDE

2. CROSS REFERENCE GUIDE
2.1 Voltage Regulator
A. 3·Terminal Fixed Positive Voltage Regulator
Description
KA78TXX
Series
(l o =3A)

SAMSUNG

MOTOROLA

KA78T05
ttKA78T06
ttKA78T08
ttKA78T12
ttKA78T15
ttKA78T18
ttKA78T24

FAIRCHILD

NEC

MATSUSHITA

MC78T05
MC78T06
MC78T08
MC78T12
MC78T15
MC78T18
MC78T24

TO·220
TO·3P

LM323 (10 = 3A)

LM323

LM323

MC78XXAC/C
Series
(10= 1A)

MC7805AC/C
MC7852C
MC7806AC/C
MC7808AC/C
MC7885AC/C
MC7809AC/C
MC7810AC/C
MC7811AC/C
MC7812AC/C
MC7815AC/C
MC7818AC/C
MC7824AC/C

MC7805AC/C

p,A7805

p,PC7805

AN7805

MC7806AC/C
MC7808AC/C

p,A7806
p,A7808
p,A7885

p,PC7808

AN7806
AN7808

MC7812AC/C
MC7815AC/C
MC7818AC/C
MC7824AC/C

p,A7812
p,A7815
p,A7818
p,A7824

p,PC7812
p,PC7815
p,PC7818
p,PC7824

AN7812
AN7815
AN7818
AN7824

KA340XX
Series
(10= 1A)

MC78MXXC
Series
(10 = 0.5A)

MC78LXXAC
(10= O.lA)

TO·220

TO·220

LM340·12
LM340·15
LM340·18
LM340·24

MC78M05C
MC78M06C
MC78M08C
MC78M10C
MC78M12C
MC78M15C
MC78M18C
MC78M20C
MC78M24C
MC78L26AC
MC78L05AC
MC78L62AC
MC78L08AC
MC78L82AC
MC78L10AC
MC78L09AC
MC78L12AC
MC78L15AC
MC78L18AC
MC78L24AC

TO·3P

LM340·5.0
LM340·6.0
LM349·8.0

tKA340T05
tKA340T06
tKA340T08
tKA340T09
tKA340T10
tKA340T11
tKA340T12
tKA340T15
tKA340T18
tKA340T24

Package

MC78M05C
MC78M06C
MC78M08C

p,A78M05C
jlA78M06C
p,A78M08C

MC78M12C
MC78M15C
MC78M18C
MC78M20C
MC78M24C

p,A78M12C
p,A78M15C

MC78L05AC

jlA78L05AC
p,A78L62AC

MC78L08AC
I

p,PC78M08
p,PC78M10
p,PC78M12
p,PC78M15
p,PC78M18
jlPC78M20
p,PC78M24

p,A78M20C
p,A78M24C

I
I

AN78M05
AN78M06
AN78M08
AN78M10
AN78M12
AN78M15
AN78M18
AN78M20
AN78M24

TO·220

TO·92
SOP

a

I
I

I

MC78L12AC
MC78L15AC
MC78L18AC
MC78L24AC

jlPC78M05

jlA78L82AC
p,A78L10AC
p,A78 L09AC
p,A78L 12AC
p,A78L 15AC

I

t New Product
tt Under Development

qsSAMSUNG
Electronics

50

PRODUCT GUIDE

LINEAR ICs
B. 3·Terminal Fixed Negative Voltage Regulator
Description
MC79XXC
Series
(l o =1A)

MC79MXXC
(l o =O.5A)

MC79LXXAC
(10= O.1A)

SAMSUNG

MOTOROLA

FAIRCHILD

MC7902C
MC7905C
MC7906C
MC7908C
MC7912C
MC7915C
MC7918C
MC7924C

MC7905C
MC7906C
MC7908C
MC7912C
MC7915C
MC7918C
MC7924C

p,A7905

p,PC7905

p,A7908
p,A7912
p,A7915

p,PC7908
p,PC7912
p,PC7915
p,PC7918
p,PC7924

MC79M05C

p,A79M05

MC79M12
MC79M15

p,A79M08
p,A79M12
p,A79M15

MC79M05C
MC79M06C
MC79M08C
MC79M12C
MC79M15C
MC79M18C
MC79M24C
MC79L05AC
ttMC79L12AC
ttMC79L 15AC
ttMC79L 18AC
ttMC79L24AC

NEC

MATSUSHITA

•

Package
TO-220

AN 7905
AN 7906
AN7908
AN7912
AN7915
AN7918
AN 7924
TO-220

TO-92

MC79L05AC
MC79L12AC
MC79L15AC
MC79L18AC
MC79L24AC

C. Precision Voltage Regulator
Description
Adjustable
Voltage

SAMSUNG

MOTOROLA

FAIRCHILD

LM723

MC1723

p,A723

LM723

LM317

LM317

p,A317

LM317

TO-220

KA337

LM337

LM337

TO-220

33V Regulator

KA33V

Adjustable
Voltage

KA350

NEC

MATSUSHITA

p,PC574
LM350

tKA317L

LM317L

tKA317M

LM317M

tKA337L

LM337L

p,A350

Package
14 DIP/14 SOP

TO-92

LM350

TO-220

LM317M

TO-220

TO-92

TO-92

2.2 PWM Controller
Description
DC to DC
Converter
PWM
Controller IC

SAMSUNG
tKA34063
tKA34063A

MOTOROLA

FAIRCHILD

SGS

UNITRODE

MC34063
MC34063A

Package
8 DIP

KA3524

SG3524

SG3524

KA7500

TL494

p,A494

SG3524

UC3524

16 DIP

UC494AC

16 DIP

tKA3842

UC3842A

UC3842

UC3842

tKA3525A

SG3525A

SG3525A

UC3525A

16 DIP

SG3526

SG35268

UC3526A

18 DIP

UC3846

UC3846

16 DIP

ttKA35268
ttKA3846

c8SAMSUNG
Electronics

8 DIP/14 SOP

51

PRODUCT GUIDE

LINEAR ICs
2.3 Voltage Reference
Description

SAMSUNG

MOTOROLA

FAIRCHILD

KA431

TL431

J-tA431

Adjustable
Reference
(2.5V-36V)

Relerence

I

TI

Package

TL431

TO-92
8 DIP
8 SOP

N/S

5V

KA336

LM336

TO-92

2.5V

KA336

LM336

TO-92

2.4 Operational Amplifier
Description
Single OP Amp

Dual OP Amp

Quad OP Amp

SAMSUNG

MOTOROLA

NATIONAL

FAIRCHILD

LM741
KA301
KF351

MC1741
LM301
LF351

LM741
LM301
LF351

J-tA741
J-tA301

KA5532
LM358/A
LM258/A
LM2904
MC1458
MC4558
KA9256
tKF353
KF442
KS272
tKA420
LM324/A
LM224/A
LM2902
LM348
LM248
MC3403
MC3303
KF347
KS274

LM358/A
LM258
LM2904
MC1458
MC4558

LM358/A
LM258/A
LM2904
LM1458

LF353

LF353
LF442

JRC
NJM741

Others
J-tPC301A
TL081

NJM5532
NJM358

J-tA1458
J-tA4558

NJM2904
NJM1458
NJM4558

NJM353

N E5532, RC5332
TA75358

BA4558
TA7256
TL082
TLC272, ICL7621

I
LM324/A
LM224
LM2902
LM348
LM248
LM3403
MC3303
LF347

LM324/A
LM224/A
LM2902
LM348
LM248

SAMSUNG

MOTOROLA

NATIONAL

FAIRCHILD

Single Comparator

LM311
KA710C

LM311
MC710C

LM311
LM710C

LM311
J-tA710C

Dual Comparator

LM393/A
LM2903
LM293
KA319
KA219
KA711C

LM393/A
LM2903
LM293

LM393/A
LM2903
LM293
LM319
LM219
LM711C

J-tA393

LM339/A
LM2901
LM239
LM3302

LM339/A
LM2901
LM239

LM339/A
LM2901
LM239
LM3302

J-tA339
ILA2901
ILA239
J-tA3302

J-tA324
J-tA224
J-tA2902
J-tA348
J-tA248
J-tA3403
J-tA3303

NJM324
NJM2902

NJM3403

LF347

OP420
TA75324
CA224
J-tPC451

J-tPC3403
J-tPC452
TL084
TLC274, ICL7641

2.5 Voltage Comparator
Description

Quad Comparator

CKSAMSUNG
. . Electronics

JRC
NJM311

NJM2903

Others
J-tPC311
MB4001
TA75393
J-tPC277

NJM319
J-tA711C
NJM2901

TA75339
ILPC177
CA239
CA3302

52

PRODUCT GUIDE

LINEAR ICs

2.6 Timer
Function
Single Timer

SAMSUNG

MOTOROLA

NATIONAL

SIGNETICS

NE555
KS555
KS5357

MC1455

LM555

NE555

Dual Timer

NE556
KS556

Quad Timer

NE558

TI

•

Others

TA75555
TLC555
ICM7555

LM556

NE556

NE555
TLC556

ICM7556

NE558

2.7 Miscellaneous les
Function
Toy Radio
Control Actuator

DC Motor Speed
Controller

SAMSUNG

TOSHIBA

NATIONAL

MATSUSHITA

NEC

Others
3 Function

KA2303

2 Function

KA2304
tKA2309

TA7657D

tKA2310

TA7330

KA2401

Turbo +

7 Function (RX)

Turbo +

7 Function (TX)

J-lPC1470H

KA2402

AN6612

* LA5521 D

KA2404

AN6610

J-lPC1470H

* AN6651

tKA2407
Earth Leakage
Detector

KA2803

LM1851

Earth Leakage
Detector

KA2807

LM1851

Zero Voltage SW

KA2804

FDD Read AMP

KA6201

*HA16631P

Smoke Detector

KS3502

S566

*M54123

J-lPC1701C

Conventional Timer

KS8701

TD6347S

Flasher Controller

KA8702

TA8027P

V/F Converter

KA331

c8SAMSUNG
Electronics

UAA1041
LM331

53

PRODUCT GUIDE

LINEAR ICs

3. ORDERING INFORMATION

KA

oooox

x

X

TL.._________ PACKAGE TYPE (SEE BELOW)

' - - - - - - - - - - - - - - - OPERATING TEMP IC'S ONLY
BLANK: SEE INDIVIDUAL SPEC
C: 0-70°C
I : -40-85°C
M: -55- + 125°C

L...-_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

DEVICE NUMBER AND SUFFIX (OPTIONAL)
X:. IMPROVED VERSION

' - - - - - - - - - - - - - - - - - - - - - - - - - DEVICE FAMILY (SEE BELOW)

DEVICE FAMILY
TRANSISTOR I FET
OKS
• IRF
• IRFA
• IRFP

DALINGTON TR
MOS POWER
MOS POWER, TO-126
MOS POWER, TO-3P

PNPTR
PNP TR
NPNTR
NPNTR
• MMBT TR, SOT-23
• MMBTA TR, SOT-23
• MMBTH TR, SOT-23
TR, SOT-23
• MPS
TR, TO-92
• MPSA
TR, T0-92
• MPSH
TR, TO-92
• PN
MOS POWER, TO-3P
SSH.
MOS POWER, TO-3
SSM
MOS POWER, T0-220
SSP
BIPOLAR TR
• TIP
TR
• 2N

• KSA
KSB
KSC
KSD

INTEGRATED CIRCUIT
KA
KF
KG
KS

KT
• LM
• MC
• NE
SA
SO
KSV
KAD
KDA

LINEAR IC
J-FET OP AMP
GATE ARRAY
CMOS IC
TELECOM
NATIONAL
MOTOROLA
SIGNETICS
LINEAR ARRAY
H.D AND LINEAR ARRAY
AlD-D/A CONVERTER
AID CONVERTER
DIA CONVERTER

PACKAGE TYPE
IC'S ONLY
D
DT
J
K
L
N
PL
R \
T
Z
V
W
S
G
E

SOP
D-PACK
CERAMIC
TO-3P
LCCC
PLASTIC
PLCC
TO-126
TO-220
TO-92
TO-92L
ZIP
SIP
BARE CHIP
SSM

• NOTE: Direct-Replacement parts for products initiated by other manufacturers.

c8SAMSU:NG
Electronics

54

VOL TAGE REGULA TORS

..
..

'. 11,.'

~;

()

.

,.,. 1

.

"

'1:.tJ:;;q.~7'

c

.

. . 1»''''';'

; I

3

LINEAR INTEGRATED CIRCUIT

MC78LXXAC
3-TERMINAL POSITIVE VOLTAGE
REGULATORS

TO·92

These regulators employ internal current-limiting and thermal-shutdown,
making them essentially indestructible. If adequate heat sinking is
provided, they can deliver up to 100mA output current. They are intended
as fixed voltage regulators in a wide range of applications including local
(on-card) regulation for eHmioation of noise and distribution problems
associated with single-point regulation. In addition, they can be used with
power pass elements to make high-current voltage regulators. The
MC78LXXAC used as a Zener diodelresistor combination replacement,
offers an effective output impedance improvement of typically two orders
of magnitude, along with lower quiescent current and lower noise.

1: OUTPUT
2: GND
3: INPUT
1: OUTPUT
2,3,6,7: GND
4,5: N.C
8: INPUT

a SOP

FEATURES
•
•
•
•
•

Output current up to 100mA.
No external components required
Internal thermal overload protection.
Internal short circuit current limiting.
Output voltage of 5V, 6V, 8V,
9V, 10V, 12V, 1SV, 18V, and 24V.
• Output voltage tolerances of ± S% over
the temperature range.
• Complementary negative regulators
offered (MC79LXXAC)

ORDERING INFORMATION
Device

Package Operating Temperature

MC78LXXACZ

TO-92

0- + 125°C

tMC78LXXACD

8-S0P

0-+125°C

SCHEMATIC DIAGRAM
INPUT

R4

•..

OUTPUT

R9

01

R5
~----~------~--~~--~----~----------+---------~--

c8SAMSUNG
Electronics

R10

__--~----oGNO
57

•

LINEAR INTEGRATED CIRCUIT

MC78LXXAC

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic
Input Voltage (for Vo = 2.6V to 9V)
(for Vo = 12V to 18V)
(for Vo = 24V)

Symbol

Value

Unit

VIN

30
35
40

V
V
V

Operating Junction Temperature Range

Top'

0- + 125

·C

Storage Temperature Range

Tatg

-65 - +150

·C

MC78LOSAC ELECTRICAL CHARACTERISTICS
VIN =10V, lOUT =40mA, ()OC :sTj:s 125°C, CIN =0.33"F, COUT =0.1 p.F, unless otherwise specified. (Note 1)
Characteristic
Output Voltage

Symbol
Vo

Line Regulation

I1Vo

Load Regulation

I1Vo

Output Voltate
Quiescent Current

Test Conditions
T,=25°C
T,=25°C
Tj =25°C

Min

lYP

4.B

Max

Unit

5.0

5.2

V

7V:s VIN:s 20V

55

150

mV

BV:s VIN:s 20V

45

100

mV

1mAslouT s100rnA

11

60

mV

1mAs louT :s4OmA

5.0

30

mV

"NsVIN s2fN

1mAs louTs40mA

4.75

5.25

V

Vo

1VSVIN SVmax
(Note 2)

1mAslouTs70mA

4.75

5.25

V

5.5

mA

Id

Tj =25°C

with line

I1ld

8V:s VIN s 20V

1.5

mA

with load

I1ld

lmA:s louTs40mA

0.1

mA

Output Noise Voltage

VN

T.=25°C,10Hzsfs100KHz

Temperature Coefficient of VOUT

I1Vo
I1T

louT=5mA

Ripple Rejection

RR

f=120Hz,8VsVIN Sl8V, Tj=25°C

Vo

Tj =25°C

Isc

Tj =25°C

140

mA

Quiescent Current
Change

I
I

Dropout Voltage
Peak Output/Short-Circuit Current

c8SAMSUNG
Electronics

2.0

41

40

p.V

-0.65

mVloC

49

dB

1.7

V

58

MC78LXXAC

LINEAR INTEGRATED CIRCUIT

MC78L06AC ELECTRICAL CHARACTERISTICS
(V IN =12V, louT=40mA, 0°C
I
w

..... ~

~

IOUT=I.0ml~IOUT=1lmA

~g 4.0

/! ~

...

..........

~

V,N_tOY
3.0 f - -I---VOIiT .. 5V

~

Tf

!;
o

1\

2.0

I~ II

li~40i

JiJ

2.8
25

50

75

100

2.0

125

4.0

6.0

10

8.0

INPUT VOLTAGE, V

AMBIENT TEMPERATURE, ·C

Fig. 5 RIPPLE REJECTION vs A
FUNCTION OF FREQUENCY

Fig. 6 LINE TRANSIENT RESPONSE
20

400
Y,N =6V to 16V
80

1--1-

MC78L05AC

~~~T=~~A---+i-++l+l!---+-++-++H4--++H+m

Tj=2SoC

I L-~~~Ti~~~~
1---~~~--~++H*--~H+~--+1~~

~
if

300

INP~T VdLT~E

50

4O~~+U~-++W~~~~~~~~

10

~

~w 100

- - - t--

If'..... '

~
!:l

OUTPUT VOLTAGE
ElEV/ATIO,N

g

~

-100 f- ILT =100mA (RESISTllE'hLo)
VOUT=SV

--.

-200
tOO

tK
FREQUENCY, Hz

c8SAMSUNG
Electronics

10K

tOOK

-r--

I-- i - -

1/

I

§

10

15

MC78LOSAC

:e
I
~200

~
I

~

;

!

o

+
i

i

i
10

I
12

TIME,ItS

63

LINEAR INTEGRATED CIRCUIT

MC78LXXAC
Fig. 7
--_.- ._-_.

LOAD TRANSIENT RESPONSE

.

-

---

,

~

:

-1--

+-+-~---LOAd CURRENT

!

_.

Jl~

200
5.0

100

g
oJ

I

1-

is

0

z

iii
w

if

~

!5.
C
E

I

OUTPUTVOLTA&E
DEVIf'TION

IZ
W

a:
a:
;:)
(.)

-1

0

r-V1N_10~

9

VOUT~5V

-2

~

w
>

2.0

~

1.0

-

~~~~ ~~~ciA~~TH= f==
~

ill

0.5

~

0

Q.

9·125" LEAD LENGT~ ""'~
~
0.2 r----i FROM PC BOARD.
FREE.AIR

w

0.1

is
a:

!i
a:

r----,

WITH 7'Z'crw HEAT siNK
---=:~

0.4"JADJ~

FROM PC BOARD.
FREE AIR
-

~0.05

10

"

0.02

20

30

40

50

60

TIME-,.a

,

,

1t.,

0.D1

o

~

25

50

75

lOO

125

150

AMBIENT TEMPERATURE - ·C

APPLICATION INFORMATION
The MC78LXXAC series regulators have thermal overload protection from excessive power, internal short-circuit
protection which limits each circuit's maximum current, and output transistor safe-area protection for red\.lcing
the output current as the voltage across each pass transistor is increased.
Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified
temperature (125°C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat
sink required, the following thermal resistance values should be used:

Thermal Considerations
The TO-92 molded package manufactured by SST is capable of unusually high power dissipation due to the lead frame
design. However, its thermal capabilities are generally overlooked because of a lack of understanding of the thermal paths
from the semiconductor· junction to ambient temperature. While thermal resistance is normally specified for the device
mounted 1cm above an infinite heat sink, very little has been mentioned of the options available to improve on the conservatively rated thermal capability.
An -explanation of the thermal paths of the TO-92 will allow the designer to determine the thermal stress he is applying
in any given application.

The TO-92 Package
The TO-92 package thermal paths are complex. In addition to the path through the molding compound to ambient
temperature, there is another path through the pins, in parallel with the case path, to ambient temperature, as shown in
Figure 9.
The total thermal resistance in this model is then:
8JA = (8Jc + 8CA) (8Jl + lilA)
8Jc + liCA + 8Jl + 8lA
Where:

liJC

= thermal resistance of the case between the regulator die and a point on the case directly above the die

location.
8CA = thermal resistance between the case and air at ambient temperature.
liJL = thermal resistance from transistor die through the collector lead to a point 1/16 inch below the regulator case.
8lA = total thermal resistance of the collector-base~emitter pins to ambient temperature.
8JA = junction to ambient thermal resistance.

c8SAMSUNG
Electronics

LINEAR INTEGRATED CIRCUIT

MC78LXXAC

TO-92 Thermal Equivalent Circuit
(PIN at Other Than Ambient Tempera-ture)

TO-92 Thermal Equivalent Circuit

OJL

I

P(WATTS)

P (WATTS)

OCA

Ta

'------+------tI

11------'
Fig. 10

Fig. 9

Methods of Heat Sinking
With two external thermal resistances in each leg of a parallel network available to the circuit designer as variables, he
can choose the method of heat sinking most applicable to his particular situation. To demonstrate, consider the effect of
placing a small 72°C/W flag type heat sink, such as the Staver F1-7D-2, on the 78LXX molded case. The heat sink effectively
replaces the OCA (Figure 10) and the new thermal resistance, OJA = 145°C/W (assuming, 0.125 inch lead length).
The net change of 15°C/W increases the allowable power dissipation to 0.S6W with an inserted cost of 1-2 cents. A still
further decrease in OJA could be achieved by using a heat sink rated at 46°C/W, such as the Staver FS-7A. Also, if the case
sinking does not provide an adequate reduction in total OJA, the other external thermal resistance, OLA, may be reduced by
shortening the lead length from package base to mounting medium. However, one point must be kept in mind. The lead
thermal path includes a thermal resistance, OSA, from the pins at the mounting points to ambient, that is, the mounting
medium, OLA is then equal to OLS + OSA. The new model is shown in Figure 10.
In the case of a socket, OSA could be as high as 270°C/W, thus causing a net increase in OJA and a consequent decrease
in the maximum dissipation capability. Shortening the lead length may return the net OJA to the original value, but pin
sinking would not be accomplished.
In those cases where the regulator is inserted into a copper clad printed circuit board, it is advantageous to have a maximum area of copper at the entry points of the pins. While it would be desirable to rigorously define the effect of PC board
copper, the real world variables are too great to allow anything more than a few general observations.
The best analogy for PC board copper is to compare it with parallel resistors. Beyond some point, additional resistors
are not significantly effective; beyond some point, additional copper area is not effective.

Fig. 11 High Dissipation Applications
VOUT

.......--~

VIN o--~~-

R1

C2

R1
240{J

IL
RL

VOUT

VIN ~-"----I

-IL10·30mA

c8SAMSUNG
Electronics

RL

65

•

LINEAR INTEGRATED CIRCUIT

MC78LXXAC

When it is necessary to operate a MC78LXXAC regulator with a large input-output differential voltage, the addition of
series resistor R1 will extend the output current range of the device by sharing the total power dissipation between R1 and
the regulator.
R1 = VIN (MIN) - VOUT - 2.0V
IL(MAX) + '0
Where 10 is the regulator quiescent current.
R,egulator power dissipation at maximum input voltage and maximum load current is now
PD(MAX) = (V3 - VOUT) IL (MAX) + V310
where V3 = VIN (MAX) - (Ie (MAX) + '0) Rl
The presence of R1 will affect load regulation according to the equation:
load regulation (at constant V IN )
= load regulation (at constant V 3)
+(line regulation, mV per V)
x(R1)x(.!lIL).
As an example, consider a 15V regulator with a supply voltage of 30±5V, required to supply a maximum load current
of 30mA. 10 is 4.3mA, and minimum load current is to be 10mA.
Rl

25 -15 - 2
30+4.3

34.3 = 240n
8

V3 = 35 - (30 + 4.3) x 0.24 = 35.82 = 26.8V
PD(MAX) = (26.8 - 15) 30 + 26.8 (4.3)
=354+ 115
=470mW, which permit operation up to 70°C
in most applications.
Line regulation of this circuit is typically 110mV for an input range of 25 - 35V at a constant load current; i.e. 11mVIV
Load regulation=constant V1 load regulation (typically 10mV, 10 - 30mA ,L)
+(11mVlVxO.24x20mA (typically 53mV)
=63mV for a load current change of 20mA at a constant VIN of 30V.

Fig. 12 Typical Application

INPUTo--------~------~

C1
O.331'F
NOTE 2

. - - - - - - . - - - - - - - 0 OUTPUT
O.1J.F
NOTE 2

Notes
1. To specify an output voltage, substitute voltage value for "xx".
2. Bypass Capacitors are recommended for optimum stability and transient response and should be located as
close as possible to the regulator.

qsSAMSUNG
Electronics

66

KA340TXX

LINEAR INTEGRATED CIRCUIT
TO·220

3-TERMINAL POSITIVE VOLTAGE
REGULATORS
The KA340XX series of three-terminal positive voltage
regulators are available in TO-220 package and with several
fixed output voltages, providing better performance than 78XX
series regulators. These are designed to have outstanding ripple rejection, superior line and load regulation in high power
applications (over 15W). Each type employs internal current
limiting, thermal shutdown and safe area protection.
Although designed primarily as fixed voltage regulators, these
devices can be used with external components to obtain adjustable voltage and currents.

•

FEATURES
•
•
•
•
•
•
•

Maximum output current: 1.5A
Output'voltage of 5,6,8,9, 10, 11, 12, 15, 18, 24V
Superior line and load regulation than 78XX series
Output transistor SOA protection
Internal short-circuit current limit
Thermal overload protection
Output voltage tolerances of ± 4% at 25°C and
±5% over the temperature range

1: Input 2: GND 3: Output

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM

INPUT

STARTING
CIRCUIT

ERROR
AMPLIFIER

GND

c8SAMSUNG
Electronics

67

LINEAR INTEGRATED CIRCUIT

KA340TXX

SCHEMATIC DIAGRAM
.-----.-------..---------------1t--------r----+----_--o VIN

012
014
R16

017

VOUT

R12
R20
01

R18
010

D1

02

R21

L--.--~----*--~~-~--~------1~--~~-~---~~GND

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Input Voltage (for Vo = 5V)
Thermal Resistance Junction-Cases
Thermal Resistance Junction-Air
Junction Operating Temperature
Storage Temperature

Vi
8jc
8ja
Topr
Tst9

35
5
65

V
°C/W
°C/W
°C
°C

c8SAMSUNG
Electronics

o - + 150
-65 -

+ 150

68

KA340TXX

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS KA340T05
(Refer to test circuit, 0°C::5Tj::5125°C, Vi =10V, 10=0.5A, unless otherwise specified)

Characteristic

Output Voltage

Symbol

Vo

Test Conditions

Min

Typ

Max

Tj=25°C,5mA::510::51.0A

4.BO

5.00

5.20

5mA::510::51.0A, PD::515W
Vi = 7.5V to 20V

4.75

Tj = 25°C, Vi = 7V to 25V
6V o
10::51A

Load Regulation

6V o

Tj = 25°C

Quiescent Current
Change

Output Noise Voltage

Ripple Rejection

Dropout Voltage
Peak Output Current
Short-Circuit Current
Average TC of

Vau!

Output Resistance

Id

-

3

50

-

-

50

-

-

25

Vi = 7.5V to 20V
Tj = 25°C

-

-

50

5mA::510::51.5A

-

10

50

0.25A::510::50.75A

-

-

25

-

-

50

Tj =25°C

-

-

B

0°C::5Tj::5125°C

-

-

B.5

5mA::510::51A
Quiescent Cu rrent

5.25

Vi=BV to 12V

Vi=BV to 20V
Line Regulation

-

10= 1A

V

mV

mV

mA

5mA::510::51A

-

-

0.5

6 1d

Tj = 25°C
10::51A, Vi = 7.5V to 20V

-

-

1.0

Vi= 7V to 25V

-

-

1.0

Vn

Ta = 25°C, f = 10Hz to 100KHz

-

40

-

f = 120Hz, Vi = BV to 18V
Tj = 25°C

62

BO

-

f = 120Hz, Vi = 8V to 1BV
0°C::5Tj::5125°C

62

-

-

10 = 1A, Tj = 25°C

-

2.0

-

V

Tj = 25°C

-

2.2

-

A

RR

Vd
Ipeak

•

Unit

mA

p.V

dB

Vi = 35V, Tj = 25°C

-

250

-

mA

6V o /6T

10= 5mA

-

±0.6

-

mV/oC

Ro

f=1KHz

-

17

-

mQ

Isc

* Load and line regulation are specified at a constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

69

LINEAR INTEGRATED CIRCUIT

KA340TXX

ELECTRICAL CHARACTERISTICS KA340T06
(Refer to test circuit, O°C::s;Tj::S; 125°C, Vi = 11V, 10 = 0.5A, unless otherwise specified)

Characteristic

Output Voltage

Min

Typ

Max

Tj = 25°C, 5mA::s; 10::S; 1.0A

5.75

6.00

6.26

5mA::s;lo::s;1.0A, PD::s;15W
Vi = 8.5V to 21V

5.70

Symbol

Vo

Test Conditions

3

60

-

-

60

Vi = 9V/to 13V

-

-

30

Vi = 8.5V to 21V
Tj = 25°C

-

-

60

,r;

Vi =9V to 21V
Lo.V o
10::s;1A

5mA::s;lo::s;1.5A

-

10

60

0.25A::s;io::s;0.75A

-

-

60

Tj = 25°C

-

-

8

O°C::s;Tj::S; 125°C

-

-

8.5

-

0.5

Tj = 25°C
lo::s; 1A, Vi = 8.5V to 22V

-

-

1.0

Vi =8V to 25V

-

-

1.0

Ta=25°C, f=10Hz to 100KHz

-

45

-

f = 120Hz, Vi =9V to 19V
Tj = 25°C

59

75

-

f=120Hz, Vi =9V to 19V
O°C::s;Tj::S; 125°C

59

-

-

Tj = 25°C
Load Regu lation

Lo.V o
5mA::s;lo::s;1A

Quiescent Cu rrent

Id

10= 1A
5mA::s;lo::s;1A

Quiescent Current
Change

Output Noise Voltage

Ripple Rejection

Lo.ld

Vn

RR

6.30

-

Tj =25°C, V i =8V to 25V
Line Regulation

-

30

Unit

V

mV

mV

mA

mA

p.V

dB

Dropout Voltage

Vd

10=1A, Tj =25°C

-

2.0

-

V

Peak Output Current

Ipeak

Tj = 25°C

2.2

A

250

-

Vi = 35V, Tj = 25°C

-

Average TC of Vout

Lo.VolLo.T

10=5mA

-

±0.7

Output Resistance

Ro

f = 1KHz

-

18

Short-Circuit Current

Ise

mA
mV/oC
ma

* Load and line regulation are specified at a constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used .

.c8SAMSUNG
Electronics
'-

."70

KA340TXX

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS KA340T08
(Refer to test circuit, 0°C~Tj~125°C, Vi = 14V, 10 = 0.5A, unless otherwise specified)

Characteristic

Symbol

Test Conditions

Min

Typ

Max

5mA~ lo~ 1.0A

7.70

8.00

8.30

1.0A, PD~15W
Vi = 10.5V to 23V

7.60

-

8.40
80

Tj = 25°C,
Output Voltage

Line Regulation

Vo

5mA~lo~

Tj = 25°C, Vi = 10.5V to 25V

-

3

Vi = 11V to 23V
6V o
10~1A

Load Regulation

/iVo

-

-

80

Vi = 11.5V to 17V

-

-

40

Vi = 10.5V to 23V
Tj = 25°C

-

-

80

5mA~lo~1.5A

-

10

80

0.25A~lo~0.75A

-

-

40

-

-

80

Tj =25°C

-

-

8

O°C~Tj~ 125°C

-

-

8.5

5mA~lo~1A

-

-

0.5

-

1.0

Tj = 25°C
5mA~lo~1A

Quiescent Current

Id

10=1A

Quiescent Current
Change

61d

Tj = 25°C
lo~ 1A, Vi = 10.5V to 23V

-

Vi = 10.5V to 25V

-

-

1.0

Output Noise Voltage

Vn

Ta = 25°C, f = 10Hz to 100KHz

-

52

-

f = 120Hz, Vi = 11.5V to 21.5V
Tj = 25°C

56

72

-

56

-

-

Ripple Rejection

RR

=

f = 120Hz, Vi 11.5V to 21.5V
O°C~Tj~ 125°C

•

Unit

V

mV

mV

mA

mA

p.V

dB

Dropout Voltage

Vd

10 = 1A, Tj = 25°C

-

2.0

-

V

Peak Output Current

Ipeak

Tj = 25°C

-

2.2

-

A

Vi = 35V, Tj = 25°C

-

250

-

mA

Average TC of Vaut

6V o/6T

10=5mA

-

±0.9

-

mV/oC

Output Resistance

Ro

f = 1KHz

-

20

-

mO

Short-Circuit Current

Ise

* Load and I ine regulation are specified at a constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

71

LINEAR INTEGRATED CIRCUIT

KA340TXX

ELECTRICAL CHARACTERISTICS KA340T09
(Refer to test circuit,

0°C~Tj~125°C,

Characteristic

Vi =15V, 10 = 0.5A, unless otherwise specified)

Symbol

Test Conditions

Min

Typ

Max

5mA~ lo~

8.65

9.00

9.35

Tj = 25°C,
Output Voltage

Vo

1.0A

5mA~lo~1.0A, PD~15W

Vi = 11.5V to 24V

Line Regulation

3

90

Vi = 12V to 24V

-

90
45

Ti =25°C

Vi = 12V to 19V

-

-

Vi=11.5V to 24V
Tj = 25°C

-

-

90

5mA~lo~1.5A

-

10

90

0.25A~lo~0.75A

-

-

45

-

-

90

Tj = 25°C

-

-

8

O°C ~Tj ~ 125°C

-

-

8.5

5mA~lo~1A

Quiescent Current

Quiescent Current
Change

Id

61d

_.

Output Noise Voltage

Ripple Rejection

Vn

RR

10= 1A

Peak Output Current

Vd
Ipeak

V

mV

mV

mA

5mA~lo~1A

-

-

0.5

Tj =25°C
10~1A, Vi= 11.5V to 24V

-

-

1.0

Vi = 11.5V to 25V

-

-

1.0

Ta = 25°C, f = 10Hz to 100KHz

-

58

-

f = 120Hz, Vi = 12.5V to 22.5V
Tj = 25°C

56

72

-

56

-

-

10 = 1A, Tj = 25°C

-

2.0

-

V

Tj =25°C

-

2.2

-

A

f = 120Hz, Vi = 12.5V to 22.5V
O°C~Tj~ 125°C

Dropout Voltage

9.40

-

6V o

6V o

-

Tj = 25°C, Vi = 11.5V to 25V

10~1A

Load Regulation

8.60

Unit

mA

p.V

dB

Vi = 35V, Tj = 25°C

-

250

-

mA

Average TC of Vout

6V o/6T

10=5mA

-

± 1.0

-

mV/oC

Output Resistance

Ro

f=1KHz

-

22

-

mQ

Short-Circuit Current

Isc

* Load and line regulation are specified at a constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

72

LINEAR INTEGRATED CIRCUIT

KA340TXX

ELECTRICAL CHARACTERISTICS KA340T10
(Refer to test circuit, 0°C;5;Tj;5;125°C, Vi =16V, 10 = 0.5A, unless otherwise specified)

Characteristic

Test Conditions

Min

Typ

Max

Tj =25°C, 5mA~lo~1.0A

9.60

10.00

10.40

5mA.!5:lo.!5:1.0A, PD~15W
Vi = 12.5V to 25V

9.50

Symbol

I

Unit

---

Output Voltage

Line Regulation

Vo

-

3

100

Vi = 13V to 25V

-

-

100

Vi = 13V to 20V

-

-

50

Vi = 12.5V to 25V
Tj = 25°C

-

-

100
100

6V o

Tj =25°C
6V o

5mA.!5:lo.!5:1.5A

-

10

0.25A.!5: 10.!5: 0.75A

-

-

50

-

-

100

Tj =25°C

-

-

8

0° C .!5: Tj.!5: 125 ° C

-

-

8.5

5mA.!5:lo.!5:1A
Quiescent Current

Quiescent Current
Change

Output Noise Voltage

Id

6 1d

Vn

10= 1A

0.5

-

-

1.0

Vi = 12.6V to 25V

-

-

1.0

Ta = 25°C, f = 10Hz to 100KHz

-

58

-

56

72

-

f = 120Hz, Vi = 13V to 23V
0°C.!5:Tj.!5:125°C

56

-

-

10 = 1A, Tj = 25°C

-

2.0

Tj = 25°C

-

2.2

Vi = 35V, Tj = 25°C

-

250

mV/oC

rnn

6V o/6T

10=5mA

-

± 1.1

Ro

f=1KHz

-

24

-

Ipeak
Isc

mA

/tV

dB

Average TC of V aut

Peak Output Current
Short-Circuit Current

mA

-

Output Resistance

Vd

mV

-

-

Dropout Voltage

mV

5mA.!5:lo.!5:1A

Tj = 25°C
RR

V

Tj = 25°C
10.!5: 1A, Vi = 12.6V to 25V

f = 120Hz, Vi = 13V to 23V
Ripple Rejection

10.50

Tj = 25°C, Vi = 12.5V to 25V

10;5;1A

Load Regulation

-

V
A
mA

* Load and line regulation are specified at a constant junction temperature. Changes in Va due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

73

KA340TXX

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS KA340T11
(Refer to test circuit, 0°C:::;;Tj:::;;125°C, Vi = 18V, 10 = 0.5A, unless otherwise specified)

Characteristic

Output Voltage

Line Regulation

Min

Typ

Max

Tj =25°C,5mA:::;;l o :::;;1.0A

11.60

11.00

11.40

5mA:::;;lo:::;;1.0A, PD:::;;15W
Vi = 13.5V to 26V

10.50

Symbol

Va

Test Conditions

-

3

110

Vi = 14V to 26V

-

-

110

Vi = 14V to 21V

-

-

55

Vi = 13.5V to 26V
Tj =25°C

-

-

110

-

10

110

-

55

-

-

110

Tj = 25°C

-

-

8

O°C:::;;Tj:::;; 125°C

-

-

8.5

5mA:::;;lo:::;;1A

-

-

0.5

-

-

1.0

6V o

6V o

Tj = 25°C

5mA:::;;lo:::;;1.5A
0.25A:::;;lo:::;;0.75A

5mA:::;; 10 :::;; 1A
Quiescent Cu rrent

Id

11.50

Tj = 25°C, Vi = 13.5V to 25V

10:::;;1A

Load Regulation

-

10= 1A

Quiescent Current
Change

6 1d

Tj = 25°C
10 :::;; 1A, Vi = 13.7V to 26V
Vi = 13.5V to 25V

-

-

1.0

Output Noise Voltage

Vn

Ta = 25°C, f = 10Hz to 100KHz

-

70

-

72

-

RR

f = 120Hz, Vi = 14V to 24V
Tj = 25°C

55

Ripple Rejection

f = 120Hz, Vi = 14V to 24V
O°C:::;;Tj:::;; 125°C

55

-

-

10 = 1A, Tj = 25°C

-

2.0

-

Dropout Voltage

Vd

Peak Output Current

Ipeak

Short·Circuit Current

Isc

Unit

V

mV

mV

mA

mA

p.V

dB

V

Tj = 25°C

-

2.2

-

A

Vi = 35V, Tj = 25°C

-

250

-

mA

Average TC of Vaut

6V o/6T

10=5mA

-

± 1.3

-

mV/oC

Output Resistance

Ro

f = 1KHz

-

26

-

mO

* Load and line regulation are specified at a constant junction temperature. Changes in Va due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

74

KA340TXX

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS KA340T12
(Refer to test circuit,

O°C~Tj~ 125°C,

Characteristic

Vi = 19V, 10 = 0.5A, unless otherwise specified)

Symbol

Test Conditions

Tj =25°C, 5mA~lo~1.0A
Output Voltage

Vo

5mA~lo~1.0A, PD~15W

Vi = 14.5V to 27V

Line Regulation

Quiescent Current
Change

Id

Lid

11.50

12.00

12.50

11.40

-

12.60

-

4

120

-

-

120

Vi = 16V to 22V

-

-

60

Vi = 14.6V to 27V
Tj = 25°C

-

-

120
120

Tj = 25°C

5mA~lo~1.5A

-

12

0.25A~lo~0.75A

-

-

60

-

-

120

5mA~lo~1A

Quiescent Current

Max

Vi = 15V to 27V
LVo

LVo

Typ

Tj = 25°C, Vi = 14.5V to 30V

10~1A

Load Regulation

Min

Tj = 25°C

10= 1A

-

-

8
8.5
0.5

5mA~lo~1A

-

-

Tj = 25°C
lo~ 1A, Vi = 14.8V to 27V

-

-

1.0

0°C~Tj~125°C

I

Unit

V

mV

mV

mA

mA

--

Output Noise Voltage

Ripple Rejection

Vn

RR

Vi = 14.5V to 30V

-

-

1.0

Ta=25°C, f=10Hz to 100KHz

-

75

-

f = 120Hz, Vi = 15V to 25V
Tj = 25°C

55

72

-

55

-

-

f = 120Hz, Vi = 15V to 25V
0°C~Ti~125°C

Dropout Voltage

Vd

Peak Output Current

Ipeak

Short-Circuit Current

Ise

p.V

dB

10 = 1A, Ti = 25°C

-

2.0

Ti = 25°C

-

2.2

Vi = 35V, Ti = 25°C

-

250

Average TC of Vout

LVolLT

10=5mA

-

± 1.5

Output Resistance

Ro

f=1KHz

-

28

V
A
mA

mV/oC
mf!

* Load and I ine regulation are specified at a constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

75

LINEAR INTEGRATED CIRCUIT

KA340TXX

ELECTRICAL CHARACTERISTICS KA340T15
(Refer to test circuit, 0°C~Tj~125°C, Vi = 23V, 10=0.5A, unless otherwise specified)

Characteristic

Test Conditions

Min

Typ

Max

5mA~ lo~ 1.0A

14.40

15.00

15.60

5mA~lo~ 1.0A, PD~15W
Vi = 17.5V to 30V

14.25

Symbol

Tj = 25°C,
Output Voltage

Line Regulation

Vo

-

4

150

Vi = 18.5V to 30V

-

-

150

Vi = 20V to 26V

-

-

60

Vi = H.7V to 30V
Tj = 25°C

-

-

120
150

6V o

6V o

Tj = 25°C

5mA~lo~1.5A

-

12

0.25A~lo~0.75A

-

-

75

-

-

150

Tj = 25°C

-

-

8

O°C~Tj~ 125°C

-

-

8.5

5mA~lo~1A

Quiescent Current

Quiescent Current
Change

Output Noise Voltage

Ripple Rejection

Id

15.75

Tj =25°C, Vi = 17.5V to 30V

lo~1A

Load Regulation

-

10= 1A
5mA~lo~1A

-

-

0.5

61d

Tj = 25°C
lo~ 1A, Vi = 17.9V to 30V

-

-

1.0

Vi = 17.5V to 30V

-

-

1.0

Vn

Ta = 25°C, f = 10Hz to 100KHz

-

90

-

f = 120Hz, Vi = 18.5V to 28.5V
Tj = 25°C

54

70

-

f = 120Hz, Vi = 15V to 25V
O°C~Tj~ 125°C

54

-

-

RR

Unit

V

mV

mV

mA

mA

IN

dB

Dropout Voltage

Vd

10 = 1A, Tj = 25°C

-

2.0

-

V

Peak Output Current

Ipeak

Tj = 25°C

-

2.2

-

A

Short-Circuit Current

Isc

Vi = 35V, Tj = 25°C

-

250

-

mA

Average TC of Vout

6 Vo/6T

10=5mA

-

± 1.8

-

mV/oC

Output Resistance

Ro

f = 1KHz

-

29

-

mO

* Load and line regulation are specified at a constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

76

KA340TXX

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS KA340T18
(Refer to test circuit, O°C~Ti~ 125°C, Vi = 27V, 10 = 0.5A, unless otherwise specified)

Characteristic

Symbol

Test Conditions

Ti = 25°C,
Output Voltage

Vo

5mA~ lo~ 1.0A

5mA~lo~1.0A, PD~15W

Vi = 21V to 33V

Line Regulation

Quiescent Current
Change

Output Noise Voltage

Ripple Rejection

Id

17.30

18.00

18.70

17.10

-

18.90

5

180

Vi = 22V to 33V

Ti =25°C

-

-

180

Vi = 24V to 30V

-

-

90

Vi ="21 V to 33V
Ti = 25°C

-

-

180
180

5mA~lo~1.5A

-

12

0.25A~lo~0.75A

-

-

90

-

-

180

Ti=25°C

-

-

8

O°C~Ti~ 125°C

-

-

8.5

5mA~lo~1A

Qu iescent Cu rrent

Max

-

6V o

6V o

Typ

Ti = 25°C, Vi =21V to 33V

10~1A

Load Regulation

Min

10= 1A
5mA~lo~1A

-

-

0.5

61d

Ti =25°C
lo~ 1A, Vi =21.5V to 33V

-

-

1.0

Vi = 21V to 33V

-

-

1.0

Vn

Ta= 25°C, f = 10Hz to 100KHz

-

110

-

f = 120Hz, Vi = 22V to 32V
Ti = 25°C

53

69

-

f =120Hz, Vi = 22V to 32V
0° C ~ Ti ~ 125 ° C

53

-

-

-

2.0

-

RR

Dropout Voltage

Vd

10 =1A, Ti

Peak Output Current

Ipeak

Ti

Short"Circuit Current

Isc

Vi

=25°C

=25°C
=35V, Ti =25°C

•

Unit

V

mV

mV

mA

mA

J1.V

dB

V

-

2.2

-

A

-

250

-

mA

Average TC of Vout

6V o /6T

10=5mA

-

±2.2

-

mV/oC

Output Resistance

Ro

f=1KHz

-

32

-

mO

• Load and line regulation are specified at a constant junction temperature. Changes in Vo due to heating effects
must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

77

LINEAR INTEGRATED CIRCUIT

KA340TXX

ELECTRICAL CHARACTERISTICS KA340T24
(Refer to test circuit, 0°C;:5;Tj ;:5;125°C, Vi = 33V, 10=0.5A, unless otherwise specified)

Characteristic

Output Voltage

Line Regulation

Min

Typ

Max

Tj =25°C, 5mA;:5; 10;:5; 1.0A

23.00

24.00

25.00

5mA;:5;lo;:5; 1.0A, PD;:5;15W
Vi = 27V to 38V

22.80

-

25.20

Symbol

Vo

Test Conditions

Tj =25°C, V i =27V to 38V

-

5

240

Vi = 28V to 38V

-

240

6V o
10;:5;1A

Vi = 30V to 36V

-

-

Vi = 27V to 38V
Tj =25°C

-

-

240

5mA;:5;lo;:5;1.5A

-

12

240

0.25A;:5; 10;:5; O. 75A

-

-

240

Tj =25°C
Load Regulation

6V o
5mA;:5;lo;:5;1A

Quiescent Current

Quiescent Current
Change

Output Noise Voltage

Ripple Rejection

Id

61d

Vn

RR

10= 1A

120

120

Tj =25°C

-

-

8

O°C;:5;Tj;:5; 125°C

-

8.5
0.5

5mA;:5;lo;:5;1A

-

-

Tj = 25°C
10;:5; 1A, Vi = 28V to 38V

-

-

1.0

Vi = 27V to 38V

-

-

1.0

Ta = 25°C, f = 10Hz to 100KHz

-

170

-

f = 120Hz, Vi = 28V to 38V
Tj = 25°C

50

66

-

f = 120Hz, Vi = 28V to 38V
O°C;:5;Tj;:5; 125°C

50

-

-

Unit

V

mV

mV

rnA

rnA

p.V

dB

Dropout Voltage

Vd

10 = 1A, Tj = 25°C

-

2.0

-

V

Peak Output Current

Ipeak

Tj = 25°C

-

2.2

-

A

Vi = 35V, Tj = 25°C

-

250

-

rnA

Average TC of Vout

6V o/6T

10=5mA

-

±2.8

-

mV/oC

Output Resistance

Ro

f=1KHz

-

37

-

mO

Short-Circuit Current

Isc

* Load and line regulation are specified at a constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

78

KA78TXX

LINEAR INTEGRATED CIRCUIT
----.------~

TO·220

3A POSITIVE VOLTAGE REGULATOR
This family of fixed voltage regulators are monolithic integrated
circuits capable of driving loads in excess of 3.0 amperes. These threeterminal regulators employ internal current limiting, thermal shutdown,
and safe-area compensation.

I

Although designed primarily as fixed voltage regulators, these devices
can be used with external components to obtain adjustable voltages
and currents.

FEATURES
•
•
•
•
•
•
•
•
•
•
•

Output current in excess of 3.0 ampere
Output transistor safe·area compensation
Power dissipation: 25W (To·220)
Internal short·circuit current limiting
Internal thermal overload protection
Output voltage offered in 2% and 4% tolerance
(2% regulators are available in 5, 12 and 15 volt devices)
No external components required
Thermal regulation is specified
Output voltage of 5; 6; 8; 12; 15; 18; 24V
Mass production: KA78T05
Under develop: 6; 8; 12; 15; 18; 24V

1: Input 2: GND 3: Output

ORDERING INFORMATION
Package Operating Temperature

Device
KA78TXXCT

TO-220

KA78TXXCH

TO-3P

0-125°C

BLOCK DIAGRAM
IN PUT

I

1

I

SERIES
PASS
ELEMENT

SOA
PROTECTOR

CURRENT
GENERATOR

OUTP UT

~
3

..~

I
STARTING
CIRCUIT

-

REFERENCE
VOLTAGE

f-.-

ERROR
AMPLIFIER

I

THERMAL
PROTECTION

~

'-'

c8SAMSUNG
Electronics

I

I----

~

GN o
'-'

19

KA78TXX

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Input Voltage (5.0V -12V)
(15V -24V)

VIN

35
40

V
V

Power Dissipation

Po

Internally limited

Thermal Resistance, Junction to Air
Tc =25°C

9 JA

65

°CIW

Thermal Resistance, Junction to Case

9 JC

2.5

°CIW

Operating Temperature Range

Topr

Storage Temperature Range

Ts,g

o to + 125
-65 to

°C

+ 150

°C

KA78T05C, KA78T05AC ELECTRICAL CHARACTERISTICS
(V'N = 10V, 10 = 3.0A, T j = DoC to 125°C, Po.s Pmax , unless oth~rwise specified)

Characteristic

Symbol

Output Voltage

Vo

Line Regulation

/:::,V o

Load Regulation

/:::,V o

Test Conditions

KA78TOSC
Min

Typ

Max

Unit

4.B

5.0

5.2

4.75

5.0

5.25

7.2V .sV'N .s35V, 10 = 5mA, Tj = 25°C
7.2V .sVIN.s35V,"lo= 1.0A, TJ=25°C
7.5V.sV'N.s20V, 10 = 2.0A
B.OV .s VIN.s 12V, 10 = 3.0A

3.0

25

mV

5mA.slo.s3.0A, TJ= 25°C
5mA.s 10.s3.0A

10
15

30
BO

mV
mV

5mA.s 10.s3.0A, Tj = 25°C
5mA.s 10.s3A;
7.3V .sVIN.s20V,5mA.slo.s2A

Voc

Thermal Regulation

REG lhem

Pulse = 10ms, P= 20W,
Ta=25°C

0.002

0.03

%VoIW

Quiescent Current

Id

5mA.slo.s3A, TJ=25°C
5mA.slo.s3A

3.5
4.0

5.0
6.0

mA
mA

Quiescent Current
Change

/:::,10

7.2V.sVIN.s35V,lo=5mA,
TJ=25°C;
7.5V.sVIN.s20V, 10 = 2A;
5mA.slo.s3A

0.1

O.B

mA

Ripple Rejection

RR

BV.sV IN .slBV, f = 120Hz, 10 = 2.0A

75

dB

Dropout Voltage

Vo

10 = 3A, Tj = 25°C

2.2

Output Noise Voltage

VN

10Hz.sf.sl00KHz, Tj =25°C

10

,NNo
mO

2.5

Voc

Output Resistance

Ro

f= 1.0KHz

2.0

Short Circuit Current
Limit

Isc

VIN =35V, TJ=25°C

1.5

Peak Output Current

Ipeak

T j =25°C

5.0

A

Average Temperature
Cofficient of
Output Voltage

/:::,VJ/:::,T

10=5.0mA

0.2

mV/oC

2.5

A

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

c8SAMSUNG
Electronics

80

LINEAR INTEGRATED CIRCUIT

KA78TXX

KA78T06C ELECTRICAL CHARACTERISTICS
(VIN = 11V, 10 = 3.0V, Tj = O°C to 125°C, Po::S; Pmax , unless otherwise specified)

KA78T06C
Characteristic

Symbol

Test Conditions
5.0mA::s;lo::s;3A, Tj = + 25°C
5.0mA::s;lo::s;3A;
8.3V::s;V IN ::s;21V, 5mA::s;l o::s;2A

Min

Typ

Max

5.75
5.7

6.0
6.0

6.25
6.3
30

Unit

I

V

Output Voltage

Vo

Line Regulation

8.25V ::s; VIN::s; 35V 10 = 5.0mA, Tj = + 25 ° C;
8.25V::s;V IN ::s;35V 10=1.0A, Tj = +25°C;
8.6V::s;VIN::s;21V 10=2.0A
9.0V::s;V IN ::s;13V 10=3.0A

4.0

L:,V o

Load Regulation

L:,V o

5mA::s;lo::s;3A, Tj = +25°C
5mA::s;lo::s;3A

10
15

30
80

mV

0.002

0.03

%VolW

5mA::s;lo::s;3A, Tj = +25°C
5mA::s;lo::s;3A

3.5
4.0

5.0
6.0

mA

8.25V::s;VIN::s;35V, 10=5mA, Tj = +25°C;
8.6V::s;V IN ::s;21V, 10 = 2A;
5mA::s; 10::S; 3.0A

0.1

0.8

Thermal Regulation
Quiescent Current

REG lhenn
Id

Quiescent Current Change

L:,l d

mV

Pulse = 10ms, P = 20W, Ta= 25°C

mA

Ripple Rejection

RR

9V ::s;VIN::s; 19V, f = 120Hz, 10 = 2A

Dropout Voltage

VD

10=3A, T j = +25°C

61

2.2

71

Output Noise Voltage

VN

10Hz::s;f::s; 100KHz, T j = + 25°C

10

dB
2.5

V
p.VlVo

Output Resistance

Ro

f= 1.0KHz

2.0

Short Circuit Current Limit

Isc

VIN = 35V, T j = + 25°C

1.5

Tj = +25°C

5.0

A

10 = 5.0mA

0.3

mV/oC

Peak Output Current

Ipeak

Average Temperature
Cofficient of Output
Voltage

!'No/L:,T

mO
2.5

A

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

c8SAMSUNG
Electronics

81

KA78TXX

LINEAR INTEGRATED CIRCUIT

KA78T08C ELECTRICAL CHARACTERISTICS
(VIN

=14V, 10 =3.0V, T = O°C to 12S0C, Po;:5; Pmax , unless otherwise specified)
j

Characteristic

Output Voltage

Symbol

Vo

Test Conditions

. S.OmA;:5;lo;:5;3A, Tj = +2SoC
S.OmA;:5;lo;:5;3A; I
10.4V 5,V 1N ;:5;23V, SmA;:5;lo5,2A

Line Regulation

6. Vo

10.3V;:5;V1N ;:5;3SV, 10=5mA, Tj = +2SoC
10.3V;:5; V1N ;:5; 35V, 10 = 1.0A, Tj == + 2SoC
10.7V ;:5;V 1N ;:5; 23V, 10 = 2.0A
11V;:5;V1N ;:5;17V,l o=3.0A

Load Regulation

6. Vo

SmA;:5;lo;:5;3A, Tj = +2SoC
SmA;:5;lo;:5;3A

Thermal Regulation
Quiescent Current

REGtherm
Id

Quiescent Current Change

6. ld

KA78T08C

Unit

Min

Typ

Max

7.7

8.0

8.3

7.6

8.0

8.4

4.0

3S

10
1S

30
80

mV

Voc

mV

Pulse=10ms, P=20W, Ta=2SoC

0.002

0.03

%VolW

SmA;:5;lo;:5;3A, Tj = + 2SoC
SmA;:5;lo;:5;3A

3.S
4.0

S.O
6.0

rnA

10.3V;:5;VIN;:5;35V, 'o=SmA, Tj = +25°C
10.7V;:5;V1N ;:5;23V,l o=2A
SmA;:5;lo;:5;3A

0.1

0.8
rnA

Ripple Rejection

RR

11V;:5;V1N ;:5;21V, f = 120Hz,l o= 2A

Dropout Voltage

Vo

'0=3A, Tj = +2SoC

Output Noise Voltage

VN

10HZ;:5; f;:5; 100KHz, Tj = + 25°C

10

Output Resistance

Ro

f= 1.0KHz

2.0

Isc

V1N = 3SV, Tj = + 2SoC

1.S

Tj = + 2SoC

5.0

A

0.3

mV/oC

Short Circuit Current Limit
Peak Output Current
Average Temperature
Cofficient of Output
Voltage

Ipeak

/':, Vo/6. T 10 = S.OmA

61

71
2.2

dB
2.S

Voc
p.VIVo
mO

2.S

A

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

c8SAMSUNG
Electronics

82

KA78TXX

LINEAR INTEGRATED CIRCUIT

KA78T12C, KA78T12AC ELECTRICAL CHARACTERISTICS
(VIN

=19V, 10 = 3.0A, T = O°C to 12SoC, Po:S Pmax , unless otherwise noted)
j

KA78T12C
Characteristic

Symbol

Unit

Test Conditions
Min

Output Voltage

Vo

SmA::s; 10::s;3A, TJ= 2SoC
5mA::s;lo::s;3A;
SmA::s;lo::s;2A,14.5V::s;VIN::s;27V

Typ

Max

11.S

12

12.5

11.4

12

12.6

6.0

45

mV

Voc

Line Regulation

6.Vo

14.5Voc ::s;V1N ::s;35Voc, 10 = SmA, T J= 25°C;
14.5Voc::s;VIN::s;35Voc, 10=1.0A, TJ=25°C
14.9Voc::s;VIN::s;27Voc, 10 = 2.0A
16Voc::s;VIN::s;22Voc, 10 = 3.0A

Load Regulation

6. Vo

5mA::s; 10::s;3A, Tj = 25°C
5mA::s;lo::s;3A

10
15

30
80

mV
mV

REG them

Pulse = 10ms, P = 20W,
Ta=25°C

0.002

0.03

%VJW

Quiescent Current

Id

5mA::s; 10::s;3A, Tj = 2SoC
5mA::s;lo::s;3A

3.5
4.0

5.0
6.0

mA
mA

Quiescent Current
Change

14.5Voc::s;VIN ::s;35V oc , 10 = SmA, T j = 25°C;
14.9Voc::s;VIN::s;27Voc, 10 = 2A;
5.0mA::s; 10::S; 3.0A

0.1

0.8

6. l d

Ripple Rejection

RR

15Voc ::S;V 1N ::s; 25V oc ,
f = 120Hz, 10 = 2.0A

Dropout Voltage

Vo

10=3A, Tj =25°C

2.2

Output Noise Voltage

VN

10Hz::s;f::s;100KHz, Tj = 25°C

10

p.VIVo

Output Resistance

Ro

f=1.0KHz

2.0

mQ

Short Circuit Current
Limit

Isc

V 1N = 35V, Tj = 25°C

1.5

Peak Output Current

Ipeak

Tj =25°C

5.0

A

Average Temperature
Cofficient of
Output Voltage

6.VoI6.T

10=5.0mA

0.5

mV/oC

Thermal Regulation

mA

57

dB

67
2.5

2.5

Voc

A

.. Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects
must be taken into account separately. Pulse testing with low duty is used.

c8~SUNG

83

I

KA78TXX

LINEAR INTEGRATED CIRCUIT

KA78T15C, KA78T15AC ELECTRICAL CHARACTERISTICS
(VIN=23V, 10 = 3.0A, TJ=O°C to 125°C, PoSPmax, unless otherwise noted)

Characteristic

Symbol

Output Voltage

Vo

Line Regulation

6 Vo

Load Regulation

6 Vo

Test Conditions

KA78T15C
Min

Typ

Max

Unit

14.4

15

15.6

14.25

15

15.75

17.6V:sV1N S40V, 10=5mA, Tj = +25°C
17.6V:sV1N S40V, 10 = 1A, Ti = + 25°C
1BV:sVIN:s30V,lo=2.0A;
20V :sV 1N :s26V, 10 = 3.0A

7.5

55

mV

5mA:slo:s3A, Ti= +25°C
5mA:s 10:S 3A

10
15

30
BO

mV
mV

0.002

0.03

%VolW

5mAslos3A, Ti = + 25°C
5mA:slo:s3A;
17.5V oc:s VIN:s30Voc,5mA:slo:s2A

Pulse = 10ms, P = 20W,
Ta= 25°C

Voc

Thermal Regulation

REG thern

Quiescent Current

Id

5mA:slo:s3A, Ti = + 25°C
5mA:slo:s3A

3.5
4.0

5.0
6.0

mA
mA

Quiescent Current
Change

61 0

17.6V :S V1N:s 40V, 10 = 5mA,
Tj = +25°C;
1BV:sV1N :s30V, 10 = 2A;
5mA:slo:s3A

0.1

O.B

mA

2.5

Voc

Ripple Rejection

RR

1B.5Voc:sVIN:s2B.5Voc, f = 120Hz, 10 = 2.0A

Dropout Voltage

Vo

10=3A, Ti= +25°C

Output Noise Voltage

VN

10Hz:sf:s 100KHz, Ti = + 25°C

10

p,VIVo

Output Resistance

Ro

f= 1.0KHz

2.0

mO

Short Circuit Current
Limit

Isc

V1N =40V, Ti= +25°C

1.0

Peak Output Current

Ipeak

Ti= +25°C

5.0

A

Average Temperature
Cofficient of
Output Voltage

6 V o/6 T

10=5.0mA

0.6

mV/oC

55

65
2.2

dB

2.0

A

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

c8~SUNG

84

KA78TXX

LINEAR INTEGRATED CIRCUIT

KA78T18C ELECTRICAL CHARACTERISTICS
(VIN = 27V, 10 = 3.0V, Tj = O°C to 125°C,

Po~ Pmax ,

unless otherwise specified)
KA78T18C

Characteristic

Symbol

Test Conditions
5.0mA~lo~3A,

Output Voltage

Vo

Unit
Min

18

18.7

17.1

18

18.9

10=5mA, Tj = + 25°C;
10=1A, Tj = +25°C;
21.2V~VIN~33V, 10=2.0A
24V 5V IN 530V, 10 = 3A

9.0

80

5mA~1053A,

10
15

30
80

mV

0.002

0.03

%Vo/W

3.5
4.0

5.0
6.0

mA

0.1

0.8

20.7V~VIN~40V,

6Vo

Load Regulation

6Vo

Thermal Regulation

REG thenn

Quiescent Current

Id

Quiescent Current
Change

6 1d

Max

17.3

Tj = + 25°C

5.0mA~lo~3A;

20.6V~VIN~33V, 5mA~lo~2A

Line Regulation

Typ

20.7V~VIN~40V,

mV

T j = +25°C

5mA~1053A

Pulse=10ms, P=20W, Ta=25°C
5mA510~3A,

Tj = + 25°C

5mA~1053A

20.7V~VIN~40V,
21.2V~VIN533V,

Voe

10=5mA, Tj = +25°C;
10 = 2.0A;

mA

5mA~1053.0A

64

Ripple Rejection

RR

22V 5 VIN 5 32V, f = 120Hz, 10 = 2.0A

Dropout Voltage

Vo

10=3A, Tj = +25°C

Output Noise Voltage

VN

10Hz~f~ 100KHz,

10

p.VIVo

Output Resistance

Ro

f= 1.0KHz

2.0

mO

Output Circuit Current
Limit

Ise

VIN = 40V, Tj = + 25°C

1.0

Peak Output Current

Ipeak

Tj = + 25°C

5.0

A

Average Temperature
Coefficient of
Output Voltage

6Vo/6T

10=5.0mA

0.7

mV/oC

Tj = + 25°C

54

2.2

dB
2.5

2.0

Voe

A

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

qsSAMSUNG
Electronics

85

•

LINEAR INTEGRATED CIRCUIT

KA78TXX

KA78T24C ELECTRICAL CHARACTERISTICS
(V IN =33V, 10 = 3.0A, Tj=O°C to 125°C,

Po~Pmax,

unless otherwise specified)
KA78T24C

Characteristic

Symbol

Test Conditions

Typ

Max

23

24

25

22.B

24

25.2

27V ~VIN~40V, 10 = 5mA, Tj = + 25°C;
27V~VIN~40V, 10=1.0A, Tj = +25°C;
27 .5V ~ VIN ~ 39V, 10 = 2.0A;
30V~VIN~36V, 10=3.0A

12

90

5mA~lo~3A,

10
15

30
BO

mV

0.002

0.03

%Vo/W

3.5
4.0

5.0
6.0

rnA

0.1

O.B

5.0mA~lo~3A,

Output Voltage

Vo

Tj = + 25°C

5.0mA~lo~3A;

27.3V ~VIN~39V,

Line Regulation

/:,V o

Load Regulation

/:,V o

Thermal Regulation

REG therm

Unit

Min

5mA~lo~2A

mV

Tj = +25°C

5mA~lo~3A

Pulse=10mS, P=20W, Ta=25°C
5mA~lo~3A,

Tj = +25°C

Quiescent Current

Id

Quiescent Current
Change

/:, Id

Ripple Rejection

RR

2BV~VIN~38V,

5mA~lo~3A
27V~VIN~40V,

Vae

10=5mA, Tj = +25°C;
10=2A;

27.5V~VIN~39V,

rnA

5mA~lo~3A

f=120Hz, 10=2.0A

51

61

dB

Dropout Voltage

Va

10 = 3A, Tj = + 25 ° C

2.2

Output Noise Voltage

VN

10Hz~f~100KHz,

10

p..VIVo

Output Resistance

Ro

f = 1.0KHz

2.0

mO

Short Circuit Current
Limit

Ise

VIN = 40V, Tj = + 25°C

1.0

Peak Output Current

Ipeak

Tj = +25°C

5.0

A

Average Temperature
Coefficient of
Output Voltage

/:,Vol/:,T

10=5.0mA

1.0

mV/oC

Tj = +25°C

2.5

2.0

Vae

A

• Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects
must be taken into account separately. Pulse testing with low duty is used.

=8SAMSUNG
Electronics

86

KA78TXX

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 1 TEMPERATURE STABILITY

Fig. 2 OUTPUT IMPEDANCE

1.02

10'

~

Vo~5.0V

Y'N Vo = 5.bv
lou,=100mA

w

o

V'N=7.5V
'-Iou,= 1.0A
CO=O
TJ -25'C

~

~

....
=>
Q.
....

5 1.00
c
~

-....-

"""""-I--..

"'~

::;

/

10-'

...........

)

'a:"
:10

o

10- 3

z

0.98
-10

70

110

150

1

10

100

Fig. 3 RIPPLE REJECTION Vs FREQUENCY

iD 80

........
lou,=3.0A

:--..

0

i=

&l

60

\

Q.
Q.

1C
a!
40

z

~

1.0

10

100

1K

t,

.....

\

a!

a:

40

10K

100K

Tr

I

30
1M

10M

0.01

100M

0.1

10

1.0

lou" OUTPUT CURRENT (A)

Fig. 6 QUIESCENT CURRENT Vs OUTPUT CURRENT
5.0

r

3.0

TJ

25'C- I - - 4.0

<"
....

I

.§.

ffi

.§.

ffi

~

TJ _25'C
3.0

=>
2.0

ffi
0
fa

:;
0
.§

Vo =5.0V
V,N =10V
I--Co=O
f= 120Hz
2 C
rl I

FREQUENCY (Hz)

Fig. 5 QUIESCENT CURRENT Vs INPUT VOLTAGE

~

7

60

1C

4.0

0

FREQUENCY (Hz)

V
00M

Ul

a:
w
Q.
Q.

\

20

....

1M

--

iD 80

:s.
0

\

<"
....

100K

Fig. 4 RIPPLE REJECTION Vs OUTPUT CURRENT

Vo =5.0V
V,N =10V
Co=O
TJ =25'C

I
lou,=50mA

z

:s.

"",
J

r--,

a:

10K

100

100

Ul

1K

t,

TJ , JUNCTION TEMPERATURE (OC)

a:
w
.....

J

10- 4
30

•

.--

1.0

0

....

I
I
I

ffi
0
fa

2.0

:;

0
.§

Vo = 5.011
lOU'=1 2.OA _

V

10

20
Y,N, INPUT VOLTAGE (VOc)

c8SAMSUNG
Electronics

30

40

Y'N - Vo = 5.0V
1.0

0.01

0.1

1.0

\

\

\

I
10

lou" OUTPUT CURRENT (A)

87

KA78TXX

LINEAR INTEGRATED CIRCUIT
Fig. 7 DROPOUT VOLTAGE

Fig. 8 PEAK OUTPUT CURRENT
B.O

2.5

~

S
....

......ffi
is

-

I~UT=3.dA

t--.

Z

w

g

2.0

....Z

~

6.0

~TL5'C~
~Jl

w

w

r--.. r-..

Cl

~
a

1.5

>

....
:::l

-

t--.

l!:
:::l
a

e....

r-.. t--.
r-.. r-..

a:
a:
:::l
u

....

~

Qi::r--

r---

IOUT=~

......

4.0

I- TJ =125'C.................

a

J

1.0

:::l

'"

~

~

~~

"~
I"'~

lIO:

~

r-..

-

TJlO'C

2.0

"~

i!t
0
70

30

10

0

150

110

TJ • JUNCTION TEMPERATURE (OC)

Fig. 9 LINE TRANSIENT RESPONSE
0.8

w

~
g
~~
l!:~
5~

I I

0.4

TVJ

0.2

 10K

I
B

L.IB=O.7mA over line, load and temperature changes
IB=3.5mA
For example, a 2-ampere current source would require
R to be a 2.5 ohm, 15W resistor and the output voltage
compliance would be the input voltage less 7.5 volts.

Yo, 8.0V to 20V
VIN - Vo~2.5V
The addition of an operational amplifier allows
adjustment to higher or intermediate values while
retaining regulation characteristics. The minimum
voltage obtainable with this arrangement is 3.0 volts
greater than the regulator voltage.
Fig. 1S-CURRENT BOOST WITH SHORT·
CIRCUIT PROTECTION

Fig. 14-CURRENT BOOST REGULATOR
KSA1010 or Equlv.
Input

R
Output

J1~F

J1.0~F

XX = 2 digits of type number indicating voltage.

XX = 2 digits of type number indicating voltage.

The KA78TXX series can be current boosted' with a
PNP transistor. The 2N4398 provides current to 15
amperes. Resistor R in conjunction with the VSE of
the PNP determines when the pass transistor begins
conducting; this circuit is not short-circuit proof. The
input-output differential voltage minimum is increased
by the VSE of the pass transistor.

The circuit shown in Figure 18 can be modified to provide supply protection against short circuits by adding
a short-circuit sense resistor, Rse , and an additional
PNP transistor. The current sensing PNP must be able
to handle the short-circuit current ot the three-terp'linal
regulator. Therefore, an eight·ampere power transistor
is specified.

c8~SUNG

89

•

MC78XXC/ACII

LINEAR INTEGRATED CIRCUIT

3-TERMINAL 1A POSITIVE
VOLTAGE REGULATORS

TO·220

The MC78XX/MC78XXA series of three-terminal positive regulators are
available in the TO-220 package and with several fixed output voltages,
making it useful in a wide range of applications. These regulators can
provide local oncard regulation, eliminating the distribution problems
associated with single point regulation. Each type employs internal
current limiting, thermal shut-down and safe area protection, making
it essentially indestructible. If adequate heat sinking is provided, they
can deliver over 1A output current. Although designed primarily as fixed
voltage regulators, these devices can be used with external components
to obtain adjustable voltages and currents.
M.C78XXI is characterized for operation from - 40°C to + 125°C, and
MC78XXC from O°C to + 125°C.

FEATURES
•
•
•
•
•

Output Current up to 1.SA
Output voltages of 5; 6; 8; 9; 10; 11; 12; 15; 18; 24V
Thermal Overload Protection
Short Circuit Protection
Output Transistor SOA Protection
• No external components required
• Output current in excess of 1A
• Industrial and commercial temperature range

BLOCK DIAGRAM

1: Input 2: GND 3: Output

ORDERING INFORMATION
Device

Package Operating Temperature

MC78XXCT

TO-220

MC78XXACT

TO-220

MC78XXIT

TO-220

IN PUT

0- + 125°C
-40- + 125°C

OUT PUT

SERIES
PASS
ELEMENT

....

~

1

1

f--

3

~~
~

SOA
PROTECTION

I
REFERENCE
VOLTAGE

-

1

CURRENT
GENERATOR

STARTING
CIRCUIT

....

~r

ERROR
AMPLIFIER



Vi =7.3 to 25V

I Vi =8to 12V

Tj =25°C

5.0

6

10=5mA to 1A

0.5

Vi =8 to 25V, 10 =500rnA

0.8

Vi = 7.5 to 20V, T j =25°C

0.8

Output Voltage Drift

Il.Vo
Il.T

10=5mA

Output Noise Voltage

VN

Ri pple Rejection

Unit

V

5

V i =8to 12V
T j =25°C

*Load Regulation

Typ

T j =25°C

Vi = 7.5 to 25V,
10=500mA
* Line Regulation

Min

mV

mV

mA

mA

-0.8

mV/OC

f=10Hz to 100KHz:
Ta=25°C

10

Va

RR

f=120Hz, 10 =500mA
V i =8to 18V

68

dB

Dropout Voltage

Vo

10 =1A, Tj = 25°C

2

V

Output Resistance

Ro

f=1KHz

17

mO

J.tV

Short Circuit Current

Ise

Vi = 35V, T a =25°C

250

rnA

Peak Current

I peak

T j =25°C

2.2

A

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken
into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

102

MC78XXC/AC/I

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS MC7806AC
(Refer to the test circuits, Tj =0 to 150°C, 10 =1A, Vi =11V, C i =0.33p,F, Co =0.1p,F unless otherwise specified)

Characteristic

Output Voltage

*Line Regulation

Symbol

Vo

t:J.Vo

Test Conditions

Min

Typ

Max

T j =25°C

5.88

6

6.12

10=5mA to 1A, PD~15W
Vi = 8.6 to 21V

5.76

6

6.24

Vi = 8.6 to 25V,
10 = 500mA

5

60

V i =9 to 13V

3

60

5

60

Tj =25°C

I Vi =8.3 to 21V

•

V

1.5

30

T j =25°C
10=5mA to 1.5A

9

100

10=5mA to 1A

4

100

I Vi =9 to 13V

Unit

*Load Regulation

t:J.V o

10 = 250 to 750mA

5.0

50

Quiescent Current

Id

T j =25°C

4.3

6

10=5mA to 1A

0.5

Quiescent Current Change

t:J.ld

Vi =9 to 25V, 10 =500mA

0.8

Vi =8.610 21V, Tj =25°C

0.8

Output Voltage Drift

t:J.Vo
t:J.T

10=5mA

Output Noise Voltage

VN

Ripple Rejection
Dropout Voltage

mV

mV

mA

mA

-0.8

mV/oC

f=10Hz to 100KHz
Ta=25°C

10

v::

RR

f=120Hz, 10 =500mA
V i =9to 19V

65

dB

Vd

10=1A, T j =25°C

2

V

p,V

Output Resistance

Ro

f=1KHz

17

mO

Short Circuit Current

Ise

V i =35V, Ta=25°C

250

mA

Peak Current

Ipeak

T j =25°C

2.2

A

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken
into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

103

LINEAR INTEGRATED CIRCUIT

MC78XXC/AC/I

ELECTRICAL CHARACTERISTICS MC7808AC
(Refer to the test circuits, T j =0 to 150°C, 10 =1 A, Vi = 14V, C i =0.33p,F, Co =0.1 p,F unless otherwise specified)

Characteristic

Output Voltage

Symbol

Vo

Min

Typ

Max

T j =25°C

7.84

8

8.16

10=5mAto 1A, PD.::;;15W
Vi = 10.6 to 23V

7.7

8

8.3

6

80

Test Conditions

Vi = 10.6 to 25V,
10 = 500mA
* Line Regulation

!No

3

80

6

80

Vi =11 to 17V

2

40

Tj =25°C
10 =5mA to 1.5A

12

100

10=5mA to 1A

12

100

10 = 250 to 750mA

5

50

T j =25°C

I

*Load Regulation

Quiescent Current

Quiescent Current Change

!No

Id

Aid

AVo

V

I Vi =10.4 to 23V

V i =11 to 17V

T j =25°C

Unit

5.0

6

10=5mA to 1A

0.5

Vi =11 to 25V, 10=500mA

0.8

Vi =10.6 to 23V, Tj =25°C

0.8

mV

mV

mA

mA

-0.8

mV/oC

f=10Hz to 100KHz
Ta=25°C

10

Yo

RR

f=120Hz,l o=500mA
Vi =11.5 to 21.5V

62

dB

Dropout Voltage

VD

10 =1A, Tj =25°C

2

V

Output Resistance

Ro

f=1KHz

18

mO

Short Circuit Current

Ise

V i =35V, Ta=25°C

250

mA

Peak Current

Ipeak

Tj =25°C

2.2

A

Output Voltage Drift

~

10=5mA

Output Noise Voltage

VN

Ripple Rejection

/l-V

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken
into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

104

LINEAR INTEGRATED CIRCUIT

MC78XXC/AC/I

ELECTRICAL CHARACTERISTICS MC7809AC
(Refer to the test circuits, Tj=O to 125°C, 10=1A, Vi =15V, Ci =0.33/lF, Co =0.1/lF unless otherwise specified)
Characteristic

Output Voltage

Line Regulation

Load Regulation

Min

Typ

Max

Tj = 25°C

8.82

9.0

9.18

10=5mA to 1.0A, PD 515W
Vi = 11.2V to 24V

8.65

9.0

9.35

Symbol

Vo

oVo

oVo

Test Conditions

V

Vi = 11. 7V to 25V
10=500mA

6

90

Vi = 12.5V to 19V

4

45

°
Tj =25 C

Vi = 11.5V to 24V

6

90

Vi = 12.5V to 19V

2

45

T) = 25°C
10 = 5mA to 1.0A

12

100

10=5mA to 1.0A

12

100

I
I

10 = 250mA to 750mA
Quiescent Current

Quiescent Current Change

Id

old

Unit

Tj =25°C

5

50

5.0

6.0

Vi = 11.7V to 24V, Tj = 25°C

0.8

Vi = 12V to 25V, 10 = 500mA

0.8

10 = 5mA to 1.0A

0.5

mV

mV

mA

mA

-1.0

mV/oC

VN

f = 10Hz to 100KHz, Ta = 25°C

10

/lVlVo

Ripple Rejection

RR

f = 120Hz, Vi = 12V to 22V
10 = 500mA

62

dB

Dropout Voltage

Vo

10=1.0A, Tj =25°C

2.0

V

Output Resistance

Ro

f = 1KHz

17

m

Output Voltage Drift
Output Noise Voltage

6Vo/6 T

10=5mA

Short Circuit Current

Ishort

Vi = 35V, Tj = 25°C

250

mA

Peak Current

Ipeak

Tj = 25°C

2.2

A

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used.

qsSAMSUNG
Electronics

105

I

MC78XXC/AC/I

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS MC7810AC
(Refer to the test circuits, T]=O to 125°C, 10=1A, Vi =16V, C1 =0.33JlF, Co=0.1JlF, unless otherwise specified)

Characteristic

Symbol

Min

Typ

Max

9.8

10

10.2

9.6

10

10.4

Vi = 12.8V to 26V
10=500mA

8

100

Vi = 13V to 20V

4

50

8

100

Test Conditions
Tj =25°C

Output Voltage

Line Regulation

Vo

10=5mA to 1.0A,
Vi = 12.8V to 25V

6Vo
T=25°C

6Vo

I Vi = 12.5V to 25V
I Vi= 13V to 20V

3

50

Tj =25°C
10 = SmA to "1.5A

12

100

10 = SmA to 1.0A

12

100

I

Load Regulation

Po~15W

10 = 250mA to 750mA
Quiescent Current

Quiescent Current Change

Id
61d

LVJLT

Tj =25°C

5

50

5.0

6.0

10 = 5mA to 1.0A

0.5

Vi = 13V to 26V, 10= 500mA

0.8

Vi = 12.8V to 25V, Tj = 25°C

0.8

Unit

V

mV

mV

mA

mA

-1.0

mV/oC

VN

f = 10Hz to 100KHz, Ta = 25°C

10

p.VNo

Ripple Rejection

RR

f = 120Hz, Vi = 14V to 24V
10=500mA

62

dB

Dropout Voltage

Vo

10 = 1.0A, Tj = 25°C

2.0

V

Output Resistance

Ro

f=1KHz

17

m

Output Voltage Drift
Output Noise Voltage

10=5mA

Short Circuit Current

Ishort

Vi = 35V, Ta=25°C

250

mA

Peak Current

Ipeak

Tj =25°C

2.2

A

• Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects
must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

106

MC78XXC/AC/I

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS MC7811AC
(Refer to the test circuits, Tj=O to 125°C, lo=1A, Vi =18V, Ci =0.33J!F, Co =0.1J!F unless otherwise specified)
Characteristic

. Output Voltage

Min

Typ

Max

Tj = 25°C

10.8

11.0

11.2

10 = 5mA to 1.0A, Po.:S 15W
Vi = 13.8V to 26V

10.6

11.0

11.4

10

110

Symbol

Vo

Test Conditions

t:,.V o

Vi = 15V to 21V
I

Tj = 25°C

Vi = 13.5V to 26V

j Vi = 15V to 21V

Tj = 25°C
10 = 5mA to 1.5A
Load Regulation

t:,.V o

10=5mA to 1.0A
10 = 250mA to 750mA

Quiescent Current

Id

Tj = 25°C

4

55

10

110

3

55

12

100

12

100

5

50

5.1

6.0
6.0

Output Voltage Drift
Output Noise Voltage

t:,.ld

,6.Vo/,6. T

Vi = 14V to 27V, 10 = 500mA

0.8

10 = 5mA to 1.0A

0.5

10=5mA

mV

mV

mA

0.8

Vi = 13.8V to 26V, Tj = 25°C
Quiescent Current Change

I

V

Vi = 13.8V to 27V
10 = 500mA
Line Regulation

Unit

mA

-1.0

mV/oC

VN

f=10Hz to 100KHz, Ta=25°C

10

J!VIVo

Ripple Rejection

RR

f = 120Hz, Vi = 14V to 24V
10 = 500mA

61

dB

Dropout Voltage

Vo

10 = 1.0A, Tj = 25°C

2.0

V

Output Resistance

Ro

f=1KHz

18

m

Short Circuit Current

Ishort

Vi = 35V, Tj = 25°C

250

mA

Peak Current

Ipeak

Tj = 25°C

2.2

A

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

107

MC78XXC/AC/I

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS MC7812AC
(Refer to the test circuits, T j =0 to 150°C, '0=1 A, Vi = 19V, C i =0.33p.F, Co =0.1p.F unless otherwise specified)
Characteristic

Output Voltage

Symbol

Vo

Test Conditions

Min

Typ

Max

T j =25°C

11.75

12

12.25

10=5mA to 1A, PD ;s;15W
Vi = 14.8 to 27V

11.5

12

12.5

10

120

4

120

10

120

Vi= 14.8 to 30V,
'0=500mA
* Line Regulation

!1Vo

V i =16 to 22V
T j =25°C

*Load Regulation

!1Vo

Quiescent Current

Id

.)uiescent Current Change

!1ld

I Vi =14.5 to 27V
I Vi =16 to 22V

V

3

60

Tj =25°C
'0=5mA to 1.5A

12

100

'0=5mA to 1A

12

100

5

50

5.1

6

10 = 250 to 750mA
T j =25°C

Unit

10=5mA to 1A

0.5

Vi =15 to 30V, 10 =500mA

0.8

Vi =14.8 to 27V, T j =25°C

0.8

mV

mV

mA

mA

Output Voltage Drift

!1Vo
!1T

'0=5mA

-1

mVloC

Output Noise Voltage

VN

f= 10Hz to 100KHz
Ta=25°C

10

~

Ripple Rejection

RR

f=120Hz, 10 =500mA
Vi =15 to 25V

60

dB

Dropout Voltage

VD

10 =1A, T j =25°C

2

V
mO

Vo

Output Resistance

Ro

f=1KHz

18

Short Circuit Current

Ise

V i =35V, Ta=25°C

250

mA

Peak Current

Ipeak

T j =25°C

2.2

A

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken
into account separately. Pulse testing with low duty cycle is used.

c8~SUNG

108

LINEAR INTEGRATED CIRCUIT

MC78XXC/AC/I

ELECTRICAL CHARACTERISTICS MC7815AC
(Refer to the test circuits, Tj =0 to 150°C, 10=1A, Vi = 23V, C i =0.33/tF, Co =0.1~ unless otherwise specified)

Characteristic

Output Voltage

Symbol

Vo

Test Conditions

Min

Typ

T j =25°C

14.7

15

15.3

10=5mA to 1A, Po::515W
Vi = 17.7 to 30V

14.4

15

15.6

10

150

5

150

11

150

Vi = 17.9 to 30V,
'0=500mA
* Line Regulation

t:.vo

Vi =20 to 26V
Tj =25°C

*Load Regulation

eNo

Quiescent Current

Id

Quiescent Current Change

Aid

l

Vi =17.5 to 30V

I Vi =20 to 26V

Max

3

75

12

100

10=5mA to 1A

12

100

5

50

10 = 250 to 750mA

•

V

T j =25°C
10=5mA to 1.5A

T j =25°C

Unit

5.2

6

10=5mA to 1A

0.5

Vi =17.5 to 30V, 10 =500mA

0.8

Vi =17.5 to 30V, T j =25°C

0.8

mV

mV

mA

mA

Output Voltage Drift

AVo
AT

10=5mA

-1

mV/oC

Output Noise Voltage

VN

f =10Hz to 100KHz
Ta=25°C

10

~

Ripple Rejection

RR

f=120Hz, 10 =500mA
Vi =18.5 to 28.5V

58

dB

Dropout Voltage

Vo

10 =1A, Tj =25°C

2

V

Output Resistance

Ro

f=1KHz

19

mO

Short Circuit Current

Ise

V i =35V, Ta=25°C

250

mA

Peak Current

Ipeak

T j =25°C

2.2

A

Vo

._-

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken
into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

109

MC78XXC/AC/I

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS MC7818AC
(Refer to the test circuits, T j =0 to 150°C, 10 =1 A, Vi =27V, C i =0.33JtF, Co =0.1 JtF unless otherwise specified)

Characteristic

Output Voltage

Symbol

Vo

Min

Typ

Max

T j =25°C

17.64

18

18.36

10=5mA to 1A, PD 515W
Vi == 21 to 33V

17.3

18

18.7

15

180

5

180

15

180

5

90

T j =25°C
10=5mA to 1.5A

15

100

10==5mA to 1A

15

100

7

50

Test Conditions

Vi == 21 to 33V,
10=500mA
* Line Regulation

tN o

Vi =24 to 30V
T j =25°C

*Load Regulation

tN o

I Vi =20.6 to 33V
I Vi =24 to 30V

10 == 250 to 750mA

Unit

V

rnV

rnV

mA

Quiescent Current

Id

T j ==25°C
10 ==5mA to 1A

0.5

Quiescent Current Change

.:lId

Vi =21 to 33V, 10 ==500mA

0.8

Vi =21 to 33V, T j ==25°C

0.8

Output Voltage Drift

.:lVo
.:IT

10==5mA

-1

mV/oC

Output Noise Voltage

VN

f =10Hz to 100KHz
Ta==25°C

10

~

Ripple Rejection

RR

f==120Hz, 10 ==500mA
V i =22 to 32V

57

dB

Dropout Voltage

5.2

6

mA

Vo

VD

10 =1A, T j ==25°C

2

V

Output Resistance

Ro

f==1KHz

19

rnO

Short Circuit Current

Ise

Vi = 35V, Ta = 25°C

250

mA

Peak Current

I peak

T j =25°C

2.2

A

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken
into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

110

LINEAR INTEGRATED CIRCUIT

MC78XXC/AC/I

ELECTRICAL CHARACTERISTICS MC7824AC
(Refer to the test circuits, T j =0 to 150°C, 10 =1 A, Vi = 33V, Ci =0.33/-tF, Co =0.1p.F unless otherwise specified)
Characteristic

Output Voltage

Symbol

Vo

Min

Typ

Max

T j =25°C

Test Conditions

23.5

24

24.5

10=5mA to 1A, PD~15W
Vi = 27.3 to 38V

23

24

25

18

240

Vi = 27 to 38V,
10=500mA
*Line Regulation

AVo

Vi =30 to 36V
I

T j =25°C

*Load Regulation

AVo

Vi =26.7 to 38V

I Vi =30 to 36V

Quiescent Current

Id

6

240

18

240

6

120

15

100

10=5mA to 1A

15

100

7

50

T j =25°C

5.2

Aid

6

Vi =27.3 to 38V, 10 =500mA

0.8

Vi =27.3 to 38V, T j =25°C

0.8

Output Voltage Drift

AVo
AT

10 = 1mA

Output Noise Voltage

VN

Ripple Rejection

mV

mV

mA

0.5

10=5mA to 1A
Quiescent Current Change

I

V

Tj =25°C
10=5mA to 1.5A

10 = 250 to 750mA

Unit

mA

-1.5

mV/oC

f =10Hz to 100KHz
Ta=25°C

10

V;;

RR

f=120Hz, 10 =500mA
Vi =28 to 38V

54

dB

Dropout Voltage

VD

10 =1A, Tj =25°C

2

V

Output Resistance

/-tV

Ro

f=1KHz

20

mQ

Short Circuit Current

Ise

Vi =35V, Ta=25°C

250

mA

Peak Current

Ipeak

T j =25°C

2.2

A

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken
into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

111

LINEAR INTEGRATED CIRCUIT

MC78XXC/ACII
TEST CIRCUITS
Fig. 3 DC Parameters
1

'"

MC78XX

3

'"

VOUT

2

Co :;:

:;:Ci

O.1pF

O.33,..F

17
Fig. 4 Load Regulation

MC78XX

3

1 - - - - + - - - - - - - - - - - 0 VOUT

~~~~~~_OVO

Jl

VO
oV

3O,..s

Fig. 5 Ripple Rejection

5.10

MC78XX

1--__- - 0

VOUl

Rl
2

120Hz

c8SAMSUNG
Electronics

+

112

MC78XXC/ACII

LINEAR INTEGRATED CIRCUIT

APPLICATION CIRCUITS
Fig. 6 Fixed Output Regulator

VIN 0 - - -____- - - 1

Fig. 7 Constant Current Regulator

3

MC78XX

•

MC78XX

.r

COUT

R1

VXX

L--------+------*---+-'--llIO

Notes:

(1) To specify an output voltage, sUbstitute voltage value for "XX."
A common ground is required between the input and the output
voltage. The input voltage must remain typically 2.0V above the output
voltage even during the low point on the input ripple voltage.
(2) CIN is required if regulator is located an appreciable distance from
power supply filter.
(3) COUT improves stability and transient response.

Fig. 9 Adjustable Output Regulator (7 to 30V)

Fig. 8 Circuit for Increasing Output Voltage

VIN

MC78XX
VOUT

2

0.1
pF

lo=VXX+ 1d
R1

VIN

VOUT

R1
0.1pF

I"

0.33"F
10kll

R2

IR1~51d

Vo=VXX (1+R2/R1)+ld R2

c8SAMSUNG
Electronics

113

MC78XXC/AC/I

LINEAR INTEGRATED CIRCUIT

APPLICATION CIRCUIT (continued)
Fig. 100.5 to 10V Regulator

13V-----o VOUT

MC78XX

Q1

+
C

Note: 02 is connected as a diode in order to compensate the
variation of the 01 VBE with the temperature. C allows a
slow rise-time of the Vo

R2

Vo =V xx (1+R,) + VSE

c8SAMSUNG
Electronics

117

•

MC78XXC/AC/I

LINEAR INTEGRATED CIRCUIT

Fig. 25 Light Controllers (yo min = VXX + VBE)

(a)

(b)
MC78XX
VOUT

VIN

VOUT

Vo rises when the light goes up

Va falls when the light goes up

Fig. 26 Protection Against Input Short·Circuit
with High Capacitance Loads

l~

......

,...

1

v."
IN

MC78XX
2

,..

3

Vo UT

+

Z~

~

-,...

-

"
/"/7

Applications with high capacitance loads and an output voltage
greater than 6 volts need an external diode (see fig. 26) to protect
the device against input short circuit. In this case the input voltage
falls rapidly while the output voltage decreases showly. The
capacitance discharges by means of the Base-Emitter junction of
the series pass transistor in the regulator. If the energy is sufficiently
high, the transistor may be destroyed. The external diode by-passes
the current from the Ie to ground.

c8SAMSUNG
Electronics

118

MC78XXC/AC/I

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
FIG. 27 QUIESCENT CURRENT

FIG. 28 PEAK OUTPUT CURRENT

V'N=10V
V ouT=5V
louT=5mA

Tj = 25·C
2.5

5.5

5.25

V

/

A-

V-I - -

I

I

'"I'"

r'-.

1.5

f'

'"f"\."",

.5

4.75

-50

•

6, VOUTI= 100mV

5.75

-25

25

50

75

100

125

o

o

10

15

20

i
30

25

JUNCTION TEMPERATURE (OC)

INPUT·OUTPUT DIFFERENTIAL (V)

FIG. 29 OUTPUT VOLTAGE

FIG. 30 QUIESCENT CURRENT

35

1.02

VIN-Vour=5V
louT=5mA

Tj =25·C
V ouT =5V
louT=10mA

6.5
1.01

I

---

~

5.5

~ t--...

/
I{

"",

.99

V

~

V--

~~

-

4.5

.98

4
-25

25

50

75

JUNCTION TEMPERATURE (OC)

c8SAMSUNG
Electronics

100

125

5

10

15

20

25

30

35

INPUT VOLTAGE (V)

119

LINEAR INTEGRATED CIRCUIT

MC78MXXC/I
3-TERMINAL O.SA POSITIVE
VOLTAGE REGULATOR

TO·220

The MC78MXXC/lseriesofthree-terminal positive regulatorsareavai1able in the TO-220 package with several fixed output voltages, making it useful in a wide range of applications. These regulators can
provide local on-card regulation, eliminating the distribution problems
associated with Single point regulation. Each type employs internal
current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 0.5 A output current. Although designed
primarily as fixed voltage regulators, these devices can be used with
external components to obtain adjustable voltages and currents.
MC78MXXC is characterized for operation from O°C to 125°C, and
MC78MXXI from -40°C to 125°C.

FEATURES
•
•
•
•
•
•

1: Input 2: GND 3: Output

Output Current up to O.SA
Output Voltages of 5; 6; 8; 10; 12; 15; 18; 20; 24V
Thermal Overload Protection
Short Circuit Protection
Output Transistor SOA Protection
Industrial and commercial temperature range

ORDERING INFORMATION
Device

Package Operating Temperature

MC78MXXCT

TO-220

0- + 125°C

MC78MXXIT

TO-220

-40- +125°C

BLOCK DIAGRAM
IN PUT

....

I

1

f--

REFERENCE
VOLTAGE

I-~

ERROR
AMPLIFIER

OUTP UT

r----,---<)
3

~

~~ R20

SOA
PROTECTION

CURRENT
GENERAlOR

STARTING
CIRCUIT

SERIES
PASS
ELEMENT

... ~

I
~

THERMAL
PROTECTION

1

-

r--

:~

R19

T;:5> 125°C, 10= 350mA, Vi = 33V, unless otherwise specified, Ci = O.33J.tF, Co = O.1J.tF)
Characteristic

Output Voltage

Symbol

Vo

Test Conditions

Min

Typ

Max

T j =25°C

23

24

25

10 = 5 to 350mA

22.8

24

25.2

V

Vi =27to 38V
Vi =27 to
38V
Line Regulation

Load Regulation
Quiescent Current

I'::,.Vo

!::::.Vo

100

I

10 = 200mA
T; =25°C Vi =28to
38V

=
=

I

1

=
=

10 SmA to O.SA, Tj 2SoC
--c-10 SmA to 200mA, TJ 2S °C

480

4.2

6

!::::.Id

!::::.Vo
I'::,.T

Output Noise Voltage

VN

f = 10Hz to 100KHz

Ripple Rejection

RR

f = 120Hz 10=300mA
Vi =28to 38V

Dropout Voltage

VD

Short Circuit Current

Ise

Peak Current

Ipeak

0.8

10=200mA
Vi =27to 38V

Output Voltage Drift

I

10=5mA
T j =0 to 125°C

T; = 25°C, 10 = 500mA

mA

0.5

10 =5mA to 350mA
Quiescent Curlent Change

mV

240

T j =25°C

Id

mV
50

mA

I
-1.2

mV/oC

170

p.V

50

dB
\

2

V

Vi =35V

300

mA

T j =25°C

700

mA

* Tmin

MC78MXXI: Tmin == - 40"C
MC78MXXC: Tmin == O°C
* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects
must be taken into account separately. Pulse testing with low duty is used .

•

c8SAMSUNG
Electronics

130

LINEAR INTEGRATED CIRCUIT

MC78MXXC/I
APPLICATION CIRCUIT

Fig. 2 Constant current regulator

Fig. 1 Fixed output regulator

I

1--__- - < . ) VOUT

Notes:
(1) To specify an output voltage, substitute voltage value for "XX".
(2) Although no output capacitor is needed for stability, it does
improve transient response.
(3) Required if regulator is located an appreciable distance from
Fig. 4 Adjustable output regulator (7 to 30V)

power supply filter.
Fig. 3 Circuit for increasing output voltage

VOUT
VOUT

R1

IR1

~51d

R2

Vo=Vxx (1+R2/R1)+ld R2
Fig. 5 0.5 to 10V Regulator

13V 31d

* C3 optional for improved transient response and

ripple rejection.

Fig. 4 -

High current negative regulator (-5V14A with
5A current limiting)

0.20
-1OV

c8SAMSUNG
Electronics

141

•

MC79LXXAC

LINEAR INTEGRATED C.IRCUIT

3·TERMINAL NEGATIVE VOLTAGE
REGULATOR

T().92

These regulators employ internal current limiting and
thermal-shutdown, making them essentially
indestructible. The are intended as fixed voltage
re~ulators in a wide range of applications including local
regulator for elimination of noise and distribution
problems associated with single-point regulation.

FEATURES
•
•
•
•
•
•
•

Output current up to 100mA
No external components
Internal thermal over load protection
Internal short circuit current limiting
Available in JEDEC TO·92
Mass production: MC79L05
Under development: -12, -15, -18, -24V

1: GND 2: Input 3: Output

ORDERING INFORMATION
Device

Operating Temperature

MC79LXXACZ

SCHEMATIC DIAGRAM

r---~----------+-----------~--------------------~IOGND
R26

R15

IN

Fig. 1

c8~SUNG

142

LINEAR INTEGRATED CIRCUIT

MC79LXXAC

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Symbol

Value

Unit

Input Voltage ( - 5V)
( - 12V to - 1BV)
(-24V)

VI

-30
-35
-40

VDC

Operating Temperature Range

Topr

0-+ 125

°C

Storage Temperature Range

Tstg

- 65 - + 150

°C

r--

I

MC79L05AC ELECTRICAL CHARACTERISTICS
(Vi = -10V, 10 = 40mA, Ci = 0.33/-tF, Co = 0.1/-tF, O°C:5:Tj:5: + 125°C, unless otherwise specified)
Symbol

Characteristic
Output Voltage

Va

Test Conditions
Tj = 25°C

Line Regulation

D, Va

Tj = 25°C

Load Regulation

D, Va

Tj = 25°C

Output Voltage

Va

Quiescent Current
Quiescent
Current Change

I With
I With

Output Noise Voltage

Id
Line
Load

Id

Min

Typ

Max

Unit

-4.B

-5.0

-5.2

V

-7.0V~Vi~

-20V

150

8.0V~Vi~

- 20V

100

1.0mA:5: 10:5: 100mA

60

1.0mA:5:lo:5:40mA

30

-

-7.0V>Vi> -20V, 1.0mA:5:lo:5:40mA

-4.75

-5.25

Vi= -1.0V, 1.0mA:5:lo:5:70mA

-4.75

-5.25

Tj = + 25°C

6.0

Tj = + 125°C

5.5

- BV ~ Vi ~ - 20V

1.5

1.0mA:5: 10:5: 40mA

0.1

VN

Ta=25°C,10Hz:5:f:5:100KHz

Ripple Rejection

RR

f = 120Hz,
Tj = 25°C

Dropout Voltage

VD

-B.O~Vi~

-1BV

I TJ=250C

41

mV

mV

V

mA

mA

40

/-tV

49

dB

1.7

V

* Load and line regulation are specified at constant junction temperature. Change in Va due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

c8SAMSUNG
Bectronics

143

MC79LXXAC

LINEAR INTEGRATED CIRCUIT

MC79L12AC ELECTRICAL 'CHARACTERISTICS
(Vi

= -19V, lo=40mA, Ci=0.33ItF, Co=0.1ItF, 0°C::s;T ::s;+125°C, unless otherwise specified)
j

Characteristic
Output Voltage

Test Conditions

Symbol
Vo

Tj =25°C

Line Regulation

6Vo

Tj =25°C

Load Regulation

6Vo

Tj =25°C

Output Voltage

Vo

Quiescent Current

Id

Quiescent
Current Change

I With Line
I With Load

Output Noise Voltage

Id

-14.5V~VI~

Min

Typ

Max

Unit

-11.5

-12.0

-12.5

V

250

-27V

-16V~VI~ - 27V

200

1.0mA::s;lo::s;1oomA

100 '

1.0mA::s; lo::s;40mA

50

-14.5V>VI> -27V, 1.0mA::s;lo::s;40mA

-11.4

-12.6

Vi = -19V, 1.0mA::s;lo::s;70mA

-11.4

-12.6

Tj = +25°C

6.5

Tj = + 125°C

6.0

-16V~VI~

-27V

1.5

1.0mA::s; lo::S; 40mA

0.1

VN

Ta=25°C,10Hz::s;f::s;100KHz

Ripple Rejection

RR

f=120Hz,
Tj =25°C

Dropout Voltage

Vo

Tj =25°C

-15V~VI~-25V

.

37

mV
mV

V
mA

mA

80

ltV

42

dB

1.7

V

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

MC79L15AC ELECTRICAL CHARACTERISTICS
(Vi = -23V, lo=40mA, Ci=0.33ItF, Co=0.1ItF, 0°C::s;Tj::s;+125°C, unless otherwise specified)
Characteristic
Output Voltage

Symbol
Vo

Test Conditions
Tj =25°C

Line Regulation

6Vo

Tj =25°C

Load Regulation

6Vo

Tj =25°C

Output Voltage

Vo

Qu iescent Cu rrent

Id

Quiescent
Cu rrent Change

I With Line
I With Load

Output Noise Voltage

Id

-17.5V~Vi~
-27V~VI~

Min

Typ

-14.4

-15.0

Max

Unit

-15.6

V

' 300

-30V

-30V

250

1.0mA::s;lo::S; 100mA

150

1.0mA::s; lo::s;40mA

75

-17.5V>VI> -30V, 1.0mA::s;lo::s;40mA

-14.25

-15.75

VI= -23V, 1.0mA::s;lo::s;70mA

-14.25

-15.75

Tj = +25°C

6.5

Tj = + 125°C

6.0

-20V~Vi~

-30V

1.5

1.0mA::s;lo::s;40mA

0.1

VN

Ta=25°C,10Hz::s;f::s;100KHz

Ripple Rejection

RR

f=120Hz,
Tj =25°C

Dropout Voltage

Vo

Tj =25°C

-18.5V~VI~

-28.5V

34

mV

mV
V

mA
mA

90

/LV

39

dB

1.7

V

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects
must be taken into account separately. Pulse testing with low duty is used.

c8SAMSUNG
Electronics

144

IMC79LXXAC

LINEAR INTEGRATED CIRCUIT

MC79L18AC ELECTRICAL CHARACTERISTICS
(Vi = -27V, 10 = 40mA, Ci =0.33JlF, Co=0.1JlF, 0°C~Tj~+125°C, unless otherwise specified)
Characteristic
Output Voltage

Symbol
Vo

Test Conditions
Tj =25°C

Line Regulation

6Vo

Tj =25°C

Load Regulation

6Vo

Tj =25°C

Output Voltage

Vo

Quiescent Current

Id

I With Line
I With Load

Quiescent
Current Change

Output Noise Voltage

Id

-20.7V~Vi~

Min

Typ

Max

Unit

-17.3

-18.0

-18.7

V

-33V

325

-21V~Vi~

- 33V

275

1.0mA~lo~

100mA

170

1.0mA ~ 10~40mA

-20.7V>Vi> -33V,

1.0mA~lo~40mA

1.0mA~lo~70mA

Vi= -27V,

85
-17.1

-18.9

-17.1

-18.9

Tj = +25°C

6.5

Tj = + 125°C

6.0

-21V~Vi~

-33V

1.5

1.0mA~lo~40mA

0.1

10Hz~f~100KHz

VN

Ta=25°C,

Ripple Rejection

RR

f = 120Hz, Tj =25°C

Dropout Voltage

Vo

Tj =25°C

23V~ Vi~

- 33V

33

mV
mV
V
mA
mA

150

JlV

48

dB

1.7

V

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

MC79L24AC ELECTRICAL CHARACTERISTICS
(VI = -33V, 10=40mA, CI =0.33JlF, Co=0.1JlF,
Characteristic
Output Voltage

0°C~Tj~+125°C,

Symbol
Vo

Test Conditions
Tj =25°C

Line Regulation

6Vo

Tj =25°C

Load Regulation

6Vo

Tj =25°C

Output Voltage

Vo

Quiescent Cu rrent

Id

Quiescent
Current Change

I With Line
I With Load

Output Noise Voltage

Id

unless otherwise specified)
Min

Typ

Max

Unit

-23

-24

-25

V

-27V~VI~

-38V

350

-28V~VI~

-38V

300

1.0mAslos100mA

200

1.0mA S los40mA

100

-27V>VI> -38V, 1.0mAslos40mA

-22.8

-25.2

VI = - 33V, 1.0mAslos70mA

-22.8

-25.2

Tj = +25°C

6.5

Tj = + 125°C

6.0

-28V~VI~

-38V

1.5

1.0mA S loS 40mA

0.1

VN

Ta= 25°C, 10Hzsfs 100KHz

Ripple Rejection

RR

f=120Hz,
Tj =25°C

Dropout Voltage

Vo

Tj =25°C

-29V~Vi~

-35V

31

mV
mV
V
rnA
rnA

200

JlV

47

dB

1.7

V

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

c8~SUNG

145

•

MC79LXXAC

LINEAR INTEGRATED CIRCUIT

TYPICAL APPLICATION
Design Considerations
The MC79LXXAC Series of fixed voltage regulators
are designed with Thermal Overload Protection that
shuts down the circuit when subjected to an excessive
power overload condition. Internal Short-Circuit
Protection that limits the maximum current the circuit
will pass.
In many low current applications, compensation
capacitors are not required. However, it is
recommended that the regulator input be bypassed
with a capacitor if the regulator is connected to the
power supply filter with long wire lengths, or if the
output load capacitance is large. An input bypass

capacitor should be selected to provide good highfrequency characteristics to insure stable operation
under all load conditions. A O.33p,F or larger tantalum,
mylar, or other capacitor having low internal
impedance at high frequencies should be chosen. The
bypass capacitor should be mounted with the shortest
possible leads directly across the regulator's input
terminals. Normally good construction techniques
should be used to minimize ground loops and lead
resistance drops since the regulator has no external
sense lead. Bypassing the output is also
recommended.

Fig. 1 POSITIVE AND NEGATIVE
REGULATOR FIG.

Fig. 2 TYPICAL APPLICATION

J-------.---o+ va

- VI ( J - - - _ - - - - I

~----___o-

INPUTtt-----_---O--I

va
A common ground is required between the input
and the output voltages. The input voltage must
remain typically 2.0V above the output voltage even
during the low point on the input ripple voltage.
CIN is required if regulator is located an
appreciable distance from power supply filter.
Co improves stability and transient response.

c8SAMSUNG
Electronics

146

MC79MXXC/I

LINEAR INTEGRATED CIRCUIT

3-TERMINAL O.SA NEGATIVE
VOLTAGE REGULATOR

TO·220

The MC79MXX series of 3-Terminal medium current negative voltage
regulators are monolithic integrated circuits designed as fixed voltage
regulators. These regulators employ internal current limiting, thermal
shutdown and safe-area compensation making them essentially indestructible. If adequate heat sinking is provided, they can deliver up to
500mA output current. They are intended as fixed voltage regulators in
a wide range of applications including local (on-card) regulation for elimination of noise and distribution problems associated with single point
regulation. In addition to use as fixed voltage regulators, these devices
can be used with external components to obtain adjustable output
voltages and currents.

•

FEATURES
•
•
•
•
•
•
•

No external components required
Output current in excess of O.SA
Internal thermal-overload protection
Internal short circuit current limiting
Output transistor safe-area compensation
Available in JEDEC TO·220
Output voltages of -5V, -6V, -8V, -12V,
-15V, -18V, - 24V

1: GND 2: Input 3: Output

ORDERING INFORMATION
Device
MC79MXXCT
* * MC79MXXIT

Package

Operating Temperature

TO-220

0-125°C

TO-220

- 40 -125°C

SCHEMATHIC DIAGRAM
,---~--~--~--~--~--~~--~-4~--~--~----~--~----------~------~-oGND

,---+-------~~OUT

Q1

L-__~__~----~------~--------------~~~--------------+__4--------------~~IN

c8SAMSUNG
Electronics

147

MC79MXXC/I

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Input Voltage (for Vo = - 5 to -1.8V)
(for Vo = 24V)

VIN

-35
-40

V
V

Thermal Resistance Junction-Case
Junction-Air

8 JC
8 JA

5
65

°CIW
°CIW

Operating Temperature Range MC79MXXC
MC79MXXI

Topr

0- + 125
-40- + 125

°C
°C

Storage Temperature Range

Tstg

-65- +150

°C

ELECTRICAL CHARACTERISTICS MC79M05C

(Refer to test circuit, Tmin::5 Tj ::5125°C, 10 =350mA, VI = -1 OV, unless otherwise specified)

Characteristic

Output Voltage

Symbol

Test Conditions

Min

Typ

Max

Tj =25°C

-'-4.8

-5.0

-5.2

Vo

5.0mA:s 10:S 350mA
Vi = - 7V to - 25V

-4.75

-5.0

-5.25

Vi = - 7V to - 25V

7.0

50

Vi= -8V to -18V

2.0

30

10 = 5.0mA to 500mA

30

100

mV

Tj =25°C

3

6

mA

Line Regulation

LVo

Tj =25°C

Load Regulation

LVo

Tj =25°C

Quiescent Current
Quiescent Current Change

Id
Lid

Unit

V

10 = 5.0mA to 350mA

0.4

Vi= -8V to -25V

0.4

mV

mA

LVofLT

10=5mA

0.2

mV/oC

Output Noise Voltage

VN

f = 10Hz to 100KHz Tj = 25°C

40

p.V

Ripple Rejection

RR

f=120Hz, Vi= -8 to -18V

60

dB

Dropout Voltage

Vo

10 = 500mA, Tj = 25°C

1.1

V

Short Circuit Current

Isc

Vi = - 35V, Tj = 25°C

140

mA

Peak Current

Ipeak

Tj = 25°C

650

mA

Output Voltage Drift

54

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

c8~SUNG

148

LINEAR INTEGRATED CIRCUIT

MC79MXXC/I

ELECTRICAL CHARACTERISTICS MC79M06C
(Refer to test circuit, Tmin::5Tr:5125°C, 10 = 350mA, VI = -11V, unless otherwise specified)
Characteristic

Output Voltage

Symbol

Test Conditions

Min

Typ

Max

Tj =25°C

-5.75

-6.0

-6.25

Vo

5.0mA ~ lo~ 350mA
VI = -8.0V to -25V

-5.7

-6.0

-6.3

VI= -8V to -25V

7.0

60

VI = - 9V to - 19V

2.0

40

10 = 5.0mA to 500mA

30

120

mV

Tj =25°C

3

6

rnA

Line Regulation

L.Vo

Tj =25°C

Load Regulation

L.Vo

Tj =25°C

Quiescent Current
Quiescent Current Change

Id
L.ld

Unit

V

10 = 5.0mA to 350mA

0.4

Vi= -8.0V to -25V

0.4

mV

rnA

L.VoIL.T

10=5mA

0.4

mV/oC

Output Noise Voltage

VN

f = 10Hz to 100KHz Tj = 25°C

50

p.V

Ripple Rejection

RR

f=120Hz, Vi= -9 to-19V

60

dB

Dropout Voltage

Vo

10=500mA, Tj =25°C

1.1

V

Short Circuit Current

Isc

Vi= "",,35V, Tj =25°C

140

rnA

Peak Current

Ipeak

Tj =25°C

650

rnA

Output Voltage Drift

54

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

ELECTRICAL CHARACTERISTICS MC79M08C
(Refer to test circuit, T min::5 Tj ::5125°C, 10 = 350mA, VI = -14V, unless otherwise specified)
Characteristic

Output Voltage

Test Conditions

Min

Typ

Max

Tj =25°C

-7.7

-8.0

-8.3

5.0mA:s 10 ~ 350mA
Vi = -10.5V to - 25V

-7.6

-8.0

-8.4

Symbol

Vo

Line Regulation

L.Vo

Tj =25°C

Load Regulation

L.Vo

Tj = 25°C

Quiescent Current
Quiescent Current Change
Output Voltage Drift

Id
L.ld
!::,. VoiL. T

Unit

V

Vi = -10.5V to - 25V

7.0

80

Vi= -11V to -21V

2.0

50

10 = 5.0mA to 500mA

30

160

mV

Tj =25°C

3

6

rnA

10 = 5.0mA to 350mA

0.4

Vi = -10.5V to - 25V

0.4
-0.6

10=5mA

Output Noise Voltage

VN

f = 10Hz to 100KHz Tj = 25°C

Ripple Rejection

RR

f=120Hz, Vi= -11.5V to -21.5V

54

mV

rnA
mV/oC

60

p.V

59

dB

Dropout Voltage

Vo

10 = 500mA, Tj = 25°C

1.1

V

Short Circuit Current

Isc

Vi = - 35V, Tj = 25°C

140

rnA

Peak Current

Ipeak

Tj =25°C

650

rnA

* Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

c8SAMSUNG
Electronics

149

•

MC79MXXC/I

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS MC79M12C

(Refer to test circuit, T min:::; Tj :::; 125°C, 10 =350mA, VI = -19V, unless otherwise specified)
Characteristic

Output Voltage

Line Regulation
Load Regulation

Symbol

Test Conditions

Min

Typ

Max

Tj =25°C

-11.5

-12

-12.5

Vo

5:0mA::s; 10::s;35OmA
VI = -14.5V to - 30V

-11.4

-1.2

-12.6

VI = - 14.5V to - 30V

8.0

80

VI = - 15V to - 25V

3.0

50

10 = 5.0mA to 500mA

30

240

mV

Tj =25°C

3

6

mA

/::,V o

T j =25°C

/::,V o

Tj =25°C

Id

Quiescent Current
Quiescent Current Change

/::, Id

Unit

V

10 = 5.0mA to 350mA

0.4

VI = -14.5V to - 30V

0.4

mV

mA

/::,Vo//::,T

10=5mA

-0.8

mV/oC

Output Noise Voltage

VN

f = 10Hz to 100KHz Tj = 25°C

75

",V

Ripple Rejection

RR

f = 120Hz, VI = -15V to - 25V

60

dB

Dropout Voltage

Vo

10 = 500mA, Tj = 25°C

1.1

V

Short Circuit Current

Isc

VI = - 35V, T j = 25°C

140

mA

Peak Current

Ipeak

T j =25°C

650

mA

Output Voltage Drift

54

• Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects
must be taken into account separately. Pulse testing with low duty is used.

ELECTRICAL CHARACTERISTICS MC79M15C

(Refer to test circuit, Tmin:::; Tj :::;125°C, 10 =350mA, VI = - 23V, unless otherwise specified)
Characteristic

Output Voltage

Line Regulation
Load Regulation
Quiescent Current
Quiescent Current Change

Symbol

Vo

Test Conditions

Min

Typ

Max

Tj =25°C

-14.4

-15

-15.6

5.0mA::s; 10 ::s;350mA
Vi = - 17.5V to - 30V

-14.25

-15

-15.75

Vi = -17.5V to - 30V

9.0

80

Vi= -18V to -28V

5.0

50

10 = 5.0mA to 500mA

30

240

mV

3

6

mA

/::,V o

T j =25°C

/::,V o

T j =25°C

Id
/::'Id

Unit

V

Tj =25°C
10 = 5.0mA to 350mA

0.4

Vi = -17.5V to - 28V

0.4

mV

mA
mV/oC

/::,Vo//::,T

10=5mA

-1.0

Output Noise Voltage

VN

f = 10Hz to 100KHz T j = 25°C

90

",V

Ripple Rejection

RR

f = 120Hz, Vi = -18.5V to - 28.5V

59

dB

Output Voltage Drift

54

Dropout Voltage

Vo

10 = 500mA, T j = 25°C

1.1

V

Short Circuit Current

Isc

VI = - 35V, T j = 25°C

140

mA

Peak Current

Ipeak

Tj =25°C

650

mA

• Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects
must be taken into account separately. Pulse testing with low duty is used.

c8SAMSUNG
Electronics

150

MC79MXXC/I

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS MC79M18C
(Refer to test circuit, Tmin:sTrs:125°C, 10 = 350mA, V, = -27V, unless otherwise specified)

Characteristic

Output Voltage

Line Regulation
Load Regulation
Quiescent Current
Quiescent Current Change
Output Voltage Drift

Symbol

Test Conditions

Min

Typ

Max

Tj =25°C

-17.3

-18

-18.7

Vo

5.0mA ~ 10~350mA
V, =-21Vto -33V

-17.1

-18

-18.9

I:::,.Vo

Tj =25°C

I:::,.Vo

Tj =25°C

Id
I:::,.ld

V

V,= -21V to -33V

9.0

80

Vi= -24V to -30V

5.0

60

10 = 5.0mA to SOOmA

30

360

mV

Tj =25°C

3

6

rnA

10 = 5.0mA to 350mA

0.4

VI = -21V to -33V

0.4

I:::,. Vol I:::,. T

Unit

Output Noise Voltage

VN

f = 10Hz to 100KHz Tj = 25°C

Ripple Rejection

RR

f = 120Hz, Vi = - 22V to - 32V

54

rnA
mV/oC

-1.0

10=5mA

mV

110

p.V

59

dB

Dropout Voltage

Vo

10 = 500mA, Tj = 25°C

1.1

V

Short Circuit Current

Isc

Vi= -35V, Tj=25°C

140

rnA

Peak Current

Ipeak

Tj =25°C

650

rnA

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

ELECTRICAL CHARACTERISTICS MC79M24C

(Refer to test circuit, Tmin:STj:S 125°C, 10= 350mA, V, = - 33V, unless otherwise specified)

Characteristic

Output Voltage

Symbol

Test Conditions

Min

Typ

Max

Tj =25°C

-23

-24

-25

Vo

5.0mA~ 10~350mA

-22.8

-24

-25.2

VI= -27V to -38V

9.0

80

Vi= -30V to -36V

5.0

70

10 = 5.0mA to 500mA

30

300

mV

Tj =25°C

3

6

rnA

VI= -27V to -38V
Line Regulation

I:::,.Vo

Tj =25°C

Load Regulation

I:::,.Vo

Tj =25°C

Quiescent Current
Quiescent Current Change

Id
I:::,.ld

Unit

V

10 = 5.0mA to 350mA

0.4

Vi= -27V to -38V

0.4

mV

rnA
mV/oC

I:::,.VJI:::,.T

10=5mA

-1.0

Output Noise Voltage

VN

f = 10Hz to 100KHz Tj = 25°C

180

p.V

Ripple Rejection

RR

f = 120Hz, VI = - 28V to - 38V

58

dB

Dropout Voltage

Vo

10=500mA, Tj =25°C

1.1

V

Isc

VI= -35V, Tj =25°C

140

rnA

I peak

Tj =25°C

650

rnA

Output Voltage Drift

Short Circuit Current
Peak Current

54

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects

must be taken into account separately. Pulse testing with low duty is used.

c8SAMSUNG
Electronics

151

•

LINEAR INTEGRATED CIRCUIT

MC79MXXC/I
TYPICAL APPLICATION

Bypass capacitors are recommended for stable operation of the
MC79MXX series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient
response of the regulator.
The bypass capacitors, (21'F on the input, 11'F on the output) should
be ceramic or solid tantalum which have good high frequency
characteristics. If aluminum electrolytics are used, their values should
be 1O!!F or larger. The bypass capacitors should be mounted with
the shortest shortest leads, and if possible, directly across the
regulator terminals.

Fig. 1 Fixed Output Regulator

J-----1.....--- VOUT

VIN--_---I

1.0!,F

2.0!,F

Fig. 2 Variable Output

I----_--+--DVOUT

L..-_.....,.__....
~

-

-

TANTALUM

~

SOLID

2.2!,F

SOLIDL

TANTALUM

+r25mF
R2--*"---'-_--,
___
-*-C_2_ _ _ _

J.

Note
1. Required for stability. For value given, capacitor must
be solid tantalum. 25JLF aluminum electrolytic may
be sUbstituted.
2. C2 improves transient response and ripple rejection.
Do not increase beyond 50JLF.

vOUT = VSET (-R-,
R, + R2
-)
Select R2 as follows
MC79M05: 3000, MC79M12: 7500, MC79M15: 110

c8SAMSUNG
Electronics

152

LINEAR INTEGRATED CIRCUIT

KA350

TO·3P

3A ADJUSTABLE POSITIVE VOLTAGE
REGULATOR
The KA350 is an adjustable 3-terminal positive voltage regulator capable of supplying in excess of 3.0 A over an output voltage range of 1.2
V to 33 V. This voltage regulator is exceptionally easy to use and requires only two external resistors to set the output voltage. Further, it
employs internal current limiting, thermal shutdown and safe area compensation, making them essentially blow-out proof. All overload protection circuitry remains fully functional even if the adjustment terminal
is accidentially disconnected.

•

FEATURES
•
•
•
•
•
•
•
•
•
•

Output adjustable between 1_2V and 33V
Guaranteed 3A output current
Internal thermal overload protection
Load regulation typically 0.1 %
Line regulation typically 0.005%N
Internal short-circuit current limiting constant
with temperature.
Output transistor safe-area compensation
Floating operation for high voltage application
Standard 3-lead transistor package
Eliminates stocking many fixed voltages

1: Adj 2: Output 3: Input

Device

Package

KA350H

TO-3P

KA350T

TO-220

Operating Temperature

o-125°C

BLOCK DIAGRAM

VOLTAGE
REFERENCE
PROTECTION
CIRCUITRY

ADJUSTABLE

c8SAMSUNG
Electronics

OUTPUT

153

KA350

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic
I nput-Output Voltage Differential
Lead Temperature
(Soldering, 10 sec)

Symbol

Value

Unit

VIN - VOUT

35

Voc

Tlead

300

°C

Po

Internally limited

Power Dissipation
Operating Junction Temperature Range

Topr

o-

+ 125

°C

Storage Temperature Range

T5t9

- 65 -

4-150

°C

ELECTRICAL CHARACTERISTICS
(VIN-VOUT=5V, IOUT=1.5A, Tj=O°C to 125°C; Pmax , unless otherwise specified)

Characteristic

Symbol

Test Conditions

Line Regulation

6V o

Ta=25°C,3Vs.VI·Vos.35V
(Note 1)

Load Regulation

6Vo

Ta= 25°C, 10mAs.los.3A
Vos.5V (Note 1)
Vo~5V (Note 1)

Adjustment Pin Current

ladj

Adjustment Pin Current Change

61 adj

3V s.V I - Vos.35V,
10mAs.ks.3A, POS.P MAX

Thermal Regulation

REG therm

Reference Voltage

V REF

3V 5,V I - Vo5,35V, 10mA5,lo5,3A, P5,30W

Line Regulation

6V o

3.0V s.V I - Vos.35V

6V o

10mAs.los.3.0A
Vos.5.0V

Load Regulation

Min

Pulse = 20mS, Ta=25°C

Maximum Output Current

Ts
IMAX

0.03

%IV

5
0.1

25
0.5

mV
%

50

100

p.A

0.2

5.0

p.A
%/W

1.25

1.30

V

0.02

0.07

%IV

20
0.3

70
1.5

mV
%

1.0

%

VI-Vos.10V, POS.PMAX

A

VI - Vo = 30V, Pos. PMAX , Ta = 25°C

0.25

1.0

A

RMS Noise, % of VOUT

VN

10Hzs.fs.10KHz, Ta=25°C

RR

Vo = 10V, f = 120Hz,
Cadj =0
Cadj = 10p.F

S

0.005

4.5

IMIN

Long-Term Stability

Unit

3.0

Tj = O°C to 125°C

Minimum Load Current

Ripple Rejection

Max

0.002
1.2

Vo~5.0V

Temperature Stability

Typ

3.5

VI -V o=35V

Tj = 125°C

66

10

mA

0.003

%

65
80

dB
dB

0.3

1

%/1000HR

Note 1: Regulation is measured at constant junction temperature. Changes in output voltage due to heating effects
must be taken into account separately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

154

KA350

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 2 CURRENT LIMIT

Fig. 1 LOAD REGULATION

T, =25'C
LlVour=lOOmV

0.4

~

0.2

w

CI

r

z

'o"

:t:

-

w

CI

~-0.2

g

r-.--- ~A
~
IL=3.0A

~-0.4

-

\ I\.

r::::::

'\,

T

~-0.6

>



:::)

~

0

.!.
~

1.5

:!!:
40
35

-:!I

>

o

25

50

75

100

25

125

TJ, JUNCTION TEMPERATURE (OC)

75

50

Fig. 5 TEMPERATURE STABILITY

T, =25'C

~1,250

r--- ~

~

g

ct

-.........

3.5

1:5
II:

g;

/

2.5

~

0

ffl

:;

W
II:

0
.§

Jl,23O

.5

75

100

c8SAMSUNG
Electronics

125

c---r
j
I

1.5

o

/

...V

w

50,

I

...
...0z

~1,240

TJ , JUNCTION TEMPERATURE (OC)

i

!

.§.

1:5

25

125

Fig. 6 MINIMUM LOAD CURRENT
4.5

1,260

w

100

TJ, JUNCTION TEMPERATURE (OC)

~
t--00

{

I

o

35
20
10
30
15
25
V,- VA, INPUT -OUTPUT VOLTAGE DIFFERENTIAL (V"')

155

KA350

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 7 RIPPLE REJECTION vs
100

..

80

.....

iii

~

140

J

I

CAOr 10"F

120

,
........

~

or:

0

Fig. 8 RIPPLE REJECTION vs louT

VOUT

60

iii 100
~

i"-- I--. C~,=O

or:

0

;:::

~
a:

L&J

60

L&J

..J

N

"-

"-

a:

C""=O

!f

0::0::

40
V,=15V
Vo= 10V

20 f-V,-Vo=5V

ic=500mA
f-f= 120Hz
TJ =f5'C

20

r f=120Hz

TITL

10

15

20

25

30

35

0.1

0,01

Yo, OUTPUT VOLTAGE IV)

60

iii
~

or:

~
0

80

~

a:
w

..J

"a..

Fig. 10 OUTPUT IMPEDANCE
10'

IL~500mA

/
i'-V/
~
~
V
~ \

r Vo 10V
r IL=500mA

z0:(

CadJ=

i

~

20

/

1..

~

1q",F

'C",,=O
10-'

o
,$

"'-.\

0::

10'

w

o

_\ \

a:

Ii

1,/

V

TJ =25'C

S

1\

c",,=o

40

~V,_15V

V,=15V Vo= 10V
TJ =25'C _

... ............

10

10 , OUTPUT CURRENT (A)

Fig. 9 RIPPLE REJECTION vs FREQUENCY
100

0

~

.............

Ul
0::
40

CAOJ =10"F

~

80

0

Ul
0::

j

It c""

V

V-- r---... k/

10- 2

JL

= lO"F

10- 3
10

100

1K

t,

10K

100K

1M

10

10M

Fig. 11 LINE TRANSIENT RESPONSE

"~

1.5

~~

1.0

~z

g~

0.5

6>

>w

'1Q

"~

ic=50mA
2

!5~

CL= 1"F: CAOJ = 10"F

I

-1.5
1.0

ffi

1.0

~

0.5

9

~~

:;

'10

20

c8SAMSUNG
Electronics

30

40

-3

;j

0
Q

>:1:

TIME(,..s)

-1

1.5

0:(

t,

,

~~

g

v,

10

c L=11 "F: .IAOJ = 10"F

o~

I-

0

"-"
~or:

!5Q

-2

~L=O: C",,=o

~
~"""'

>

a..z

:j

-1.0

~~
;jL&J

1M

"

0

'1Q

L&J

"~

100K

Fig. 12 LOAD TRANSIENT RESPONSE

J.Vo=10V
1. _

'r r-

In
~\

-0.5

0:(

1K
10K
f, FREQUENCY (Hz)

w

w

0

100

FREQUENCY (Hz)

0.5

• I

IlcL=o! Cad,lo

V

1

J~'=15V

Ilk

II

Vo =10V -

Ir~i~'-

1\
\

~

10

20

t,

30

40

TIME(,.s)

156

KA350

LINEAR INTEGRATED CIRCUIT

APPLICATION INFORMATION
STANDARD APPLICATION

0

IN

KA350

1'1

ADJ

I,ru

1~'~"F

I

•

-0 VOUT

OUT

R,

~120

;.rR

I~;F
2

m
Fig. 13
Gin: Gin is required if the regulator is located an appreciable distance from power supply filter.
Go: Output capacitors in the range of 1 p.F to 100 p.F of aluminum or tantalum electronic are commonly used to
provide improved output impedance and rejection of transients.
In operation, the KA350 develops a nominal 1.25 V reference voltage, V reh between the output and adjustment
terminal. The reference voltage is impressed across program resistor R, and, since the voltage is constant, a
constant current I, then flows through the output set resistor R2 , giving an output voltage of

R2

Vout = 1.25V (1 +~) + IADJ R2

Since IADJ current (less than 100p.A) from the adjustment terminal represents an error term, the KA350 was
designed to minimize IADJ and make it very constant with line and load changes. To do this, all quiescent operating
current is returned to the output establishing a minimum load current requirement. If there is insufficient load on
the output, the output voltage will rise.
Since the KA350 is a floating regulator, it is only the voltage differential across the circuit which is important
to performance, and operation at high voltage with respect to ground is possible.

qsSAMSUNG
Electronics

157

LINEAR INTEGRATED CIRCUIT

KA350
TYPICAL APPLICATIONS
Fig. 14 LIGHT CONTROLLER

OUT 1---~~-~-oVOUT

KA350

IN

Fig. 15 PRECISION POWER REGULATOR WITH
LOW TEMPERATURE COEFFICIENT

ADJ

KA350

IN

OUTt--.-------.--o Voun~4V

ADJ

IN457

R1
375

'A-~--<10K

IN457

R2

* Adjust for 3.75V across R1 L-._~----+-.<~2Kfih
OUTPUT
ADJUST

Fig. 17 SLOW TURN·ON 15V REGULATOR

Fig. 16 ADJUSTABLE REGULATOR WITH
IMPROVED RIPPLE REJECTION

IN

KA350
C2

l

OUT I!I------.-----.-----.."-O VOUT

ADJ

L-_ _...,.-_ _..I R1

F
0.1/L

___

KA350

OUT 1----.--------....-0 ~~~T

C2 _____A-rD_J_ _...

01"

~_ _ _2_40............_--'1M4802

r--

1N4002

+
C3

1/LFt
R2
5K

+

C1
100/LF

t Solid tantalum
* Discharges C1 if output is shorted to ground
Fig. 18 0 TO 30V REGULATOR

i'~~o------fIN

KA350

Fig. 19 5V LOGIC REGULATOR WITH
ELECTRONIC SHUTDOWN*

OUTt-------<> VOUT
VIN Q----.----fIN
7V -36V

ADJ

KA350

OUTt--......---.--{}

~~UT

ADJ

R1
240

R2
720

LM113
1.2V

1---+-"""'.,....-0 TTL
1K

R3
680

-10V

c8SAMSUNG
Electronics

* Min output

= 1.2V

158

KA350

LINEAR INTERGRATED CIRCUIT

TYPICAL APPLICATIONS

(Continued)
Fig. 21 1.2V - 20V REGULATOR WITH MINIMUM
PROGRAM CURRENT

Fig. 20 PRECISION CURRENT LIMITER

IN

R1*

* 0.4~R1 ~ 1200

KA350

•

OUTJ-----1'---oVOUT

* Minimum load current = 4mA

Fig. 22 5A CONSTANT VOLTAGE/CONSTANT CURRENT REGULATOR

R1
33
35V Q--t------I\,.".,.--fIN

KA350

OUT 1-------~================1~=-=--+_=~____1~ OUTPUT
1.2V - 30

ADJ
C3

R4
630

+

+

C6

1O"F

t Solid tantalum
* Lights in constant current mode

-6V TO -15V

Fig. 23 12V BATTERY CHARGER
500
R6

0.2
IN

KA350

OUTI----1>----_-____1>------------<~-~tNY--_.___u+ VOUT

ADJ

LED

TO 12V
BATIERY
R1
3K

c8SAMSUNG
Electronics

159

KA350

LINEAR INTEGRATED CIRCUIT

R2
720

Fig. 24 TRACKING PREREGULATOR

Fig. 25 3A CURRENT REGULATOR

R1
240

KA350

OUT

ADJ
VIN

IN

KA350

OUT

IN

KA350

OUT

ADJ

+ C2
11'F

R4
1K

OUTPUT
ADJUST

Fig. 26 ADJUSTING MULTIPLE ON·CARD REGULATORS WITH SINGLE CONTROL·

IN

VOUTt

VOUT

KA350

IN

OUT

KA350

VIN

IN

OUT

KA350

1N4002

1N4002

VOUTt

1N4002

+-_______---' ____________

L-.._ _ _ _

R2
1K

OUT

ADJ

ADJ

ADJ

-+-_ _ _---'

t Minimum load -10mA
* All outputs within

± 100mV

Fig. 28 SIMPLE 12V BATTERY CHARGER

Fig. 27 AC VOLTAGE REGULATOR

RS'

KA350

0---- IN

0_2

-

OUT

VIN

'"

IN

ADJ

KA350

OUT

ADJ
120

R1
120

+

I

12 V p _p

1\

6 V p-o

,

{ \

~V

1OOOI'F"

3A

,
480

I

R2
2.4K

LJ

1

~

J480

I

120 .~

Q--IN

KA350

ZOUT = Rs (1
Use of Rs allows low charging rates with fully
charged battery_
• * 1000j-tF is recommended to filter
out any input transients_

* Rs - sets output impedance of charger

ADJ
OUT

c8SAMSUNG
Electronics

-

'"

+~)
1

160

LM317

LINEAR INTEGRATED CIRCUIT

3·TERMINAL POSITIVE ADJUSTABLE
REGULATOR

TO·220

The LM317 is a 3-terminal adjustable positive voltage regulator capable
of supplying in excess of 1.5A over an output voltage range 0f 1.2V to
37V. This voltage regulator is exceptionally easy to use and requires
only two external resistors to set the output voltage. Further, it employs
internal current-limiting, thermal-shutdown and safe area compensation,
making it essentially blow-out proof. The LM317 serves a wide
variety of applications including local, on-card regulation. This device
also makes an especially simple adjustable switching regulator, and a
programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the LM317 can be used as a precision current regulator.

•

FEATURE
•
•
•
•

Output current in excess of 1.SA
Output adjustable between 1_2V and 37V
Internal thermal-overload protection
Internal short-circuit current-limiting constant with
temperature
• Output transistor safe-area compensation
• Floating operation for high-voltage applications
• Standard 3-pin transistor packages

1: Adj 2: Output 3: Input

ORDERING INFORMAliON
Operating Temperature

SCHEMATIC DIAGRAM
3
r---~----~----+---~r---~--~------------------------~------~--r-OVIN

R11

R25
R26

L-~--~~--~--~~--~~~~~~--~--~~--~---4----------------~~-¢\OUT
1 ADJUST

c8SAMSUNG
Electronics

161

LINEAR INTEGRATED CIRCUIT

LM317
ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Input-Output Voltage Differential

Value

Unit

VIN - VOUT

40

Voc

Lead Temperature

T lead

230

°C

Power Dissipation

Po

Internally limited

Operating Temperature Range

Topr

o-

Storage Temperature Range

T stg

-65 -

-

--

°C

+ 125

°C

+150

ELECTRICAL CHARACTERISTICS
(VtN-VOUT=5V, IOUT=0.5A,

0°C~Tj~125°C,

Characteristic

Line Regulation

Imax =1.5A, Pmax = 20W, unless otherwise specified)

Symbol

6Vo

Typ

Max

Unit

Ta:::25°C ~V~VIN -' VouT~40V

0.01

0.04

%IV

~V ~VIN - VouT~40V

0.02

0.07

%IV

5
0.1

25
0.5

mV
%Vo

20
0.3

70
1.5

mV
%Vo

50

100

p.A

0.2

5

p.A

1.25

1.30

V

Test Conditions

Min

Ta = 25°C, 10mA~ loLiT~ IMAx
V0UT~5V

Load Regulation

6Vo

VouT~5V

1OmA ~ louT ~ IMAX
VOUT~5V

VouT~5V

Adjustable Pin Current

ladj
2.5V ~VIN - VouT~40V

Adjustable Pin Current Change

61 adj

10mA~louT~IMAx
P~PMAX

3V ~VIN - V ouT ::5:40V
Reference Voltage

V REF

10mA~louT~IMAx

1.2'0

PO~PMAX

Temperature Stability

0.7

Ts

Minimum Load Current to
Maintain Regulation

IMIN

V IN - VOUT = 40V

Maximum Output Current

IMAx

VIN - VOUT~ 15V, Po~ PMAX
VIN - VOI)T = 40V, Po~ PMAX

RMS Noise, % of VOUT
Ripple Rejection

Long-Term Stability, Tj = Thigh
Thermal Resistance Junction to Case

eN

Ta = 25°C, 10Hz~f~ 10KHz

RR

V ouT =10V, f=120Hz
without C AOJ
C~DJ = 10p.F

S

Ta = 25°C for end point
measurements, 1000HR

RbJC

3.5
1.5
0.15

66

%Vo
10

mA

2.2
0.4

A

0.003

%Vo

65
80

dB

0.3-

5

1

%
°C/W

* 'Load and line regulation are specified at constant junction temperature. Change in Vo due to heating eflect~

must be taken into account separately. Pulse testing with low duty is used.

c8SAMSUNG
Electronics

162

LM317

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 2 ADJUSTMENT CURRENT

Fig. 1 LOAD REGULATION
0.2

60

r----

e

~
a

-0.2

55

0.5A

--.::r--Il

'--

i

~

1'=1.~

ffi

V

~

~ -0.4

i5

..

50

a:

0

~

z

45

Iii
::>

~

ac

V'N= 15V
Voor =10V

o

-0.8

-

~ r--

--

•

V

w
::E

-0.6

~

40

35

-1.0

o

50
75
TEMPERATURE (OC)

25

100

30
-50

125

-25

25

50

75

100

125

150

TEMPERATURE (OC)

Fig. 3 DROPOUT VC;>LTAGE

Fig. 4 TEMPERATURE STABILITY
1,260

1,250

~

---

I"""

w

~

: 1,240

o

ffi
a:

~

a:

~

'" '"
r-....

1,230

1~

____L -____L -____

~

o

25

50

____

75

~

__

~

125

100

TEMPERATURE (OC)

Fig. 5 RIPPLE REJECTION

1,220 L-____L-____L-____L-_ _~_---..l

o

25

50
75
TEMPERATURE (OC)

100

125

Fig. 6 RIPPLE REJECTION

loor---r----,----,---,-----,

100
I

I - - - - - + - - - + - - - + - - V ' N = 15V
VouT =10V
T, =25"C

I

""'"

80

Il=500mA

I
C"",=10pF

~",:

I

~ ~O

~

o

V.. -Voor=5V
IL=5OOmA
f=l2OHz
T,=25"C

I
o

20~--+---+----+---~-~~

I

10
15
20
25
OUTPUT VOLTAGE (VI

c8SAMSUNG
Electronics

30

35

°l'~O----~l~oo~--l~K~---l~O~K-~l=oo=K~--~lM
FREQUENCY (Hz)

163

LM317

LINEAR INTEGRATED CIRCUIT
Fig. 8 OUTPUT IMPEDANCE

Fig. 7 RIPPLE REJECTION
10'

100

i==--V'N

~

80

~VOUT

V""

I/'"

/

T,=25'C

~~

~

15V
10V

r-- IL = 500mA

~

sw

'CADJ-10~F

1()O

o
z

/

~

I II

~ CAOJ=O

/

CADJ=O/

~ 10-'

....

~

11.
....
~

I
20

o

r--

/

--

o

10-'

V,N=15V
VOUT = 10V
f=120Hz
T, =25'C

./

...........

I I III

10-'
10

0.1
1
OUTPUT CURRENT (A)

0.01

10

/
/cADJ

1O~F

.",t

100K

1K
10K
FREQUENCY (Hz)

100

1M

Fig. 10 LOAD TRANSIENT RESPONSE

Fig. 9 LINE TRANSIENT RESPONSE
1.5

w

CJ

~€

1.0

1

Oz

~ ~ 0.5

8~

CIL :(J; LJ = 0

IA

>0

l\
-

0

CL-1~F;

CL=O; CADJ =0

I"

-0.5
-1.0

w

r----

~ ....l
-1

{

VouT =10V
IL=50mA
T,=25'C

-2

-3

-1.5

1.5

~

9€

1.0

.... z
~~

0.5

>~

1.0
0.5

10

r1

CADJ -10~F

20
TIME I"s)

-

30

40

CL=

1~F;

CADJ =

1\

~•.,\

1O~F

I
V'N,,15V
VouT =10V _
INL ,,50mA
T,=25'C

\\ I
V

I
I

\

1\

v

\

10

20
TlMEv,s)

30

40

Fig. 11 MAXIMUM OUTPUT CURRENT
Tj =25'C
6VOUT =100mV

~

r

,

1\

....

\,

i5

a:

§
....

o

~

11.

!;

o
oS

__ +- _ _

J

"\,

"

,

~

--I-

10

15

20

25

30

35

V,- Vo. INPUT-OUTPUT VOLTAGE DIFFERENTIAL (V..)

c8SAMSUNG
Electronics

,164

LM317

LINEAR INTEGRATED CIRCUIT

TYPICAL APPLICATIONS
Fig. 13 Current Limited 6V Charger

Fig. 12 AC Voltage Regulator

VIN

9V TO SOV

VIN

LM317

VOUTt--.....---~

120
SV p_p

~

* Sets peak current (O.SA for 112)
• * The 1000J-tF is recommended to filter out

input transients

Fig. 14 12V Battery Charger

* Rs-sets output impedance of charger

1 R2 Use of Rs allows low
ZOUT = Rs ( + R1) charging rates with
fully charged battery.

c8SAMSUNG
Electronics

Fig. 15 Programmable Regulator

R2
VOUT = 1.25V (1 +"R,") + ladj R2
CIN is required when regulator is located an
appreciable'distance from power supply filter.
COUT is not needed for stability. however, it does
improve transient response_
Since ladj is controlled to less than 100J-tA, the
error associated with this term is negligible in
most appl ications.

165

•

KA317L

LINEAR INTEGRATED CIRCUIT

TO·92

3-TERMINAL POSITIVE ADJUSTABLE
REGULATOR
The KA317L is a 3-terminal adjustable positive voltage
regulator capable of supplying in excess of 1OOmA over an output voltage range of 1.2V to 37V. This voltage regulator is exceptionally easy to use and requires only two external resistors
to set the output voltage. Further, it employs internal currentlimiting, thermal-shutdown and safe area compensation, making it essentially simple adjustable switching regulator, a programmable output regulator, or by connecting a fixed resistor
between the adjustment and output, the KA317L can be used as a precision current regulator.

FEATURES
•
•
•
•
•
•

Output current in excess of 100mA
Output adjustable between 1.2V and 37V
Internal thermal·overload protection
Internal short·circuit current·limiting
Output transistor safe·area compensation
Floating operation for high·voltage applications

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM

'\lIN o-----_-------~-----~-----___,

VOLTAGE
REFERENCE

PROTECTION
. CiRCUITRY

RUMIT
I----~--------<~---------<--_o VOUT

ADJ

c8SAMSUNG
Electronics

166

KA317L

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic
Input-Output Voltage Differential
Power Dissipation
Operating Temperature
Storage Temperature

Symbol

Value

Unit

VIN - VOUT
Po
Topr
T stg

40
Internally Limited
0- + 125
-65- + 150

V

•

°C
°C

ELECTRICAL CHARACTERISTICS
(VIN-VOUT =5V, IOUT=40mA, OOCarately. Pulse testing with low duty cycle is used.

c8SAMSUNG
Electronics

167

LINEAR INTEGRATED CIRCUIT

KA317L

TYPICAL APPLICATIONS
Fig. 1 5V Electronic Shutdown Regulator

Your

~------------~------------------+---~Vo
V1

+

T

120

1.01lF

m

ADJUST u--------------<~---------'

'j.-----------AlMI---------<:: TTL

CONTROL

720

MINIMUM Vo

=1.25V

01 protects the device during an input short circuit.

Fig. 2 Slow Tum·On Regulator

Your

-e Vo

KA317L
VIN

1N4001

240
50K

ADJUST

R2

+
10!,F

c8SAMSUNG
Electronics

l68

LINEAR INTEGRATED CIRCUIT

KA317L

Fig. 3 Current Regulator

I

10

KA317L

<)

I

VOUT

,...

R1

R2

ill

U.l

I

,.,.

-

ADJUST

VREF

lOMAX

_ 1.25V
R1

=(1'11) + IADJ =

VREF
_ 1.25V
10MIN =( R1 + R2)+ IADJ= R1 + R2
5mA< IOUT< 100mA

c8SAMSUNG
Electronics

169

KA317M

LINEAR INTEGRATED CIRCUIT

---------------------------l

TO·220

3-TERMINAL POSITIVE ADJUSTABLE
REGULATOR
The KA317M is a 3-terminal adjustable positive
voltage regulator capable of supplying in excess of
500mA over an output voltage range of 1.2V to 37V. This
voltage regulator is exceptionally easy to use and requires only two external resistors to set the output
voltage. Further, it employs internal current-limiting,
thermal-shutdown and safe area compensation, making
it essentially simple adjustable switching regulator, a
programmable output regulator, or by connecting a fixed resistor between the adjustment and output, the
KA317M can be used as a precision current regulator.

1: Adj 2: Output 3: Input

FEATURES
•
•
•
•
•
•

Output current in excess of SOOmA
Output adjustable between 1.2V and 37V
Internal thermal-overload protection
Internal short·circuit current·limiting
Output transistor safe·area compensation
Floating operation for high·voltage applications

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM

VIN o-----....-----~--___.._-----__+_-----__,

I,

PROTECTION
CIRCUITRY

I-------<~----~>------~>-----OVOUT

ADJ

c8SAMSUNG
Electronics

170

KA317M

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Input-Output Voltage Differential
Power Dissipation
Operating Temperature
Storage Temperature

VIN - VOUT
Po
Topr
Tstg

40
Internally Limited
0- + 125
-65- + 150

V

•

°C
°C

ELECTRICAL CHARACTERISTICS
(VIN-VoUT=5V, IOUT=0.1A, 0°C ADJUST

VREF

_1.25V

lOMAX = (Fi1) + IADJ =

R1

VREF
_ 1.25V
10MIN =( R1 + R2)+ IADJ = R1 + R2
5mA< IOUT<500mA

c8SAMSUNG
Electronics

173

KA337

LINEAR INTEGRATED CIRCUIT

3-TERMINAL NEGATIVE
ADJUSTABLE REGULATOR

-1

TO·220

The KA337 is a 3-terminal negative adjustable regulator. It supply in excess of 1.SA over an output voltage
range of - 1.2V to - 37V.
This regulator requires only two external resistors to
set an output voltage and 1 capacitor to compensate
frequency.

FEATURES
•
•
•
•

Output current in excess of -1.SA
Output voltage adjustable between - 1.2V & - 37V
Internal thermal·overload protection
Internal short·circuit current·limiting
constant with temperature
• Output transistor safe· area compensation
• Floating operation for high·voltage applications
• Standard 3·pin, TO·220 package

1: Ad] 2: Input 3: Output

ORDERING INFORMATION
Operating Temperature

APPLICATION CIRCUIT

- VIN

(j------+----t

KA337

I-----.....----+----{) -

VOUT

ADJ

C2

* - VOUT = -1.2SV (1 + R2/120fl) + (-ladj*R2)
* Output current depends on maximum power dissipation

c8 SAMSUNG~,
Electronics

174

KA337

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Input-Output Voltage Differential
Power Dissipation
Operating Temperature Range
Storage Temperature Range

VIWVOUT
PD
Topr
T5tg

40
Internally limited
0- + 125
-65-+150

V

•

°C
°C

ELECTRICAL CHARACTERISTICS
(V in - Vout = 5V, lout = 0_5A, O°C~Tj~ 125°C, Pmax = 20W, unless otherwise specified)
Characteristic

Line Regulation

Symbol

Vo

Test Conditions

Min

Typ

Max

Ta= 25°C
- 40V ~VOUT - VIN~ - 3V

0.01

0.04

- 40V.VoNo

/lVoN.

1"-1

(%)

Vo=5V
Rsc=O
10=lmA
I!Ni=3V

0.2

1 1-

Vi=12V
VO=5V
Rsc=O
10 =1mA 10 50mA

0.1

-

-r-- ........

0.1

-

V

f'

.......

-'.1

~

I

35

Vi-o (V)

...

voJ"81 I - - -

VIo(V)

/lVI
(V)

I

10=0

4

35

I~PUI Vallag!

(mil)
I

25

Fig. 16 LINE TRANSIENT RESPONSE
/lV.

Jd
(mA),

I

15

Fig. 15 QUIESCENT DRAIN-CURRENT
VS. INPUT VOLTAGE

J
I

-

-~
~

./

~ ::::::

Ta"'Qoc
Ta=25OC
Ta=7O"C

-

~

~V

1
I

I

30

i

40

ILDad

I

If

~urr~nt

'-

.J
i

.

:Vi.12V

~~o..~~A

l(,oeec)

Fig. 18 OUTPUT IMPEDANCE VS. FREQUENCY
Ro
(0)

r-- VO-5V

I

\

I

\

-

25

15

rrr-

-5

i\

I

-4

1:>.10
(mA)

il
~

Vi=12V
VO =5V
lo=1mA
iRSC=o

W

VI (V)

Fig. 17 LOAD TRANSIENT RESPONSE

(mil)

-2

I---

-2

I

!

I

20

!.v.

.......... ~~ltage
V

I

10

/r-...,

I

I

V

-4

J"'.. ~

-u

-0.1

o

•

-

f------

Vi=12V
Rsc .. O
lo=50mA

co=o

1..11"

1
8
6

CO=1,F

4

"'"~v

Output \A)ltage

'RSC=O

i

i

!

I

15

V

0.1
8
6

I

-8

~

2

25

i
35

l(,oeec)

100

c8SAMSUNG
Electronics

1K

10K

'(Hz)

191

NOTES

PWM CONTROLLERS 4

~
~\

Ie

KA7500

LINEAR INTEGRATED CIRCUIT

REGULATOR PULSE WIDTH
MODULATOR

16 DIP

The KA7500 is used for the control circuit of the pulse
width modulation switching regulator. The KA7500 consists of a 5 V reference voltage circuit two error amplifiers, flip-floop, an output control circuit a PWM
comparator a dead time comparator and an oscillator.
This device can be operated in the of switching frequency range, of 1 KHz to 300 KHz.

•

FEATURES
• Internal regulator provides a stable SV reference
supply trimmed to 1%
• Uncommitted output TR for 200mA sink or source
current
• Output control for push-pull or single-ended
operation
• Variable duty cycle by dead time control (pin 4)
• Complete PWM control circuitry
• On-chlp oscillator with master or slave operation
• Internal circuitry prohibits double pulse at either
output

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM
OUTPUT CONTROL

8

13

r - - - - - - - - - - { 12

C1

Vee

5V

BAND GAP REFERENCE t - - - - - - - ; 14

VREF

EA (+)
~~~----~-+------~~---------; 7

GND

EA (-)

c8~SUNG

195

KA7500

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

Characteristic

Symbol

Value

Unit

Supply Voltage
Collector Output Voltage
Collector Output Current
Amplifier Input Voltage
Power Dissipation
Operating Temperature Range
Storage Temperature Range

Vee
Veo
leo
VIN
Pd
Top,
T8tg

42
42
250
Vee + 0.3
1
+70
-65 - +150

V
V
mA
V
W
°C
°C

o-

ELECTRICAL CHARACTERISTICS
(Vee = 20V, f = 10KHz, Ta = 25°C, unless otherwise specified)
Characteristic

Symbol

Test Conditions

Min

Typ

Max

Unit

Vo

I,ef= 1mA

4.75

5.0

5.25

V

REFERENCE SECTION

Reference Output Voltage
Line Regulation

t:"Vo

Temperature Coefficient
Load Regulation
Short-Circuit Output Current

t:"V o

Vee = 7V to 40V

2.0

25

mV

Ta=O°C to 70°C

0.01

0.03

%/OC

I,ef= 1mA to 10mA

lse

V,ef=O

Fose

CT= O.D1p.F, RT = 12K

FoselT

CT=0.01p.F, RT=12K

18

Vee = 15V, 0

R,=30K!l

o

20

~

"-.....",

"

"""~

""

~

R,= RESISTANCE FROM PIN 9 TO GROUND

10

100

1K
10K
100K
FREQUENCY (Hz)

c8SAMSUNG
Electronics

1M

10M

~04

LINEAR INTEGRATED CIRCUIT

KA3524

TYPICAL APPLICATIONS
Fig. 9 CAPACITOR·DIODE OUTPUT CIRCUIT

Vee = 15V

15KU
5KU

KA3524

I

•

1N916

Vee

5KU
INV

EI

NON-INV

C1

REF OUT

C2

RT

E2

CT

+C.L.

SHUT
DOWN

-C.L.

-5V
20mA

50).tF
+

OSC OUT COMF
GND

L_

Fig. 10 FLYBACK CONVERTER CIRCUIT

.........R-+-_-;-" + 15V

~-"M"--'-+--+--II NV

'-fI_---=:~-

-15V

KA3524

c8SAMSUNG
Electronics

205

KA3524

LINEAR INTEGRATED CIRCUIT

Fig. 11 SINGLE·ENDED LC CIRCUIT

Vee

TIP115

=28V

Oo9mH

+5V
1A

1N3880

+

5KU
Vee

5KU
INV

E1

NON-INV

C1

REF OUT

C2

5KU

500ILF

RT

E2

CT

+ CoL.
-CoL.

KA3524
0010
RETURN--+-AWIr----'

Fig. 12 PUSH·PULL TRANSFORMER·COUPLED CIRCUIT

5KU
5KU
--~~~~~--+

+

,c8'SAMSUNG
Electronics

5V,5A

206

KA3525AN

LINEAR INTEGRATED CIRCUIT

REGULATOR PULSE WIDTH MODULATOR
The KA3525A of pulse width modulator integrated circuit is design·
ed to offer improved performance and lowered external parts count
when used in designing all types of switching power supplies.
The on-chip + 5.1 volt reference is trimmed to ± 1% and the error
amplifier has an input common-mode voltage range that includes the
reference voltage, eliminating the need for external divider resistors.
A sync input to the oscillator allows multiple units to be slaved together
or a single unit to be synchronized to an external system clock.
A single resistor between the CT and the discharge terminals provides a wide range of dead time adjustment.
This device also features built-in soft-start circuitry, requiring only an
external timing capacitor.
A shutdown pin controls both the soft-start circuitry and the output
stages, providing instantaneous turn off through the PWM latch with
pulsed shutdown, as well as soft-start recycle with longer shutdown
commands.
These functions are also controlled by an undervoltage lockout which
keeps the outputs off and the' soft-start capacitor discharged for subnormal input voltages.
Another feature of this PWM circuit is a latch following the comparator.
Once a PWM pulse has been terminated for any reason, the outputs
will remain off for the duration of the period.
The latch is reset with each clock pulse.
The output stages are totem-pole designs capable of sourcing or sinking in excess of 200mA.
The output stage of the KA3525A features NOR logic, giving a LOW
output for an OFF state.

16 DIP

•
ORDERING INFORMATION
Operating Temperature

FEATURES
•
•
•
•
•
•
•
•

8.0 to 35V Operation
5.1V ± 1.0% Trimmed Reference
100Hz to 500KHz Oscillator Range
Separate Oscillator Sync Pin
Adjustable Dead Time Control
Input Undervoltage Lockout ,vith Hysteresis
Latching PWM to Prevent Multiple Pulses
Pulse-by-Pulse Shutdown
~ DIJal Source/Sink Output Drivers
• Internal Soft-Start

c8SAMSUNG
Electronics

207

KA3525AN

LINEAR INTEGRATED CIRCUIT

BLOCK DIAGRAM

VC

Vee
GND

C
(SOFT
START)

c8SAMSUNG
Electronics

208

KA3525AN

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit
V

Power Supply Voltage

Vee

40

Collector Supply Voltage

Ve

40

V

Output Current, Sink or Source

10

500

rnA

IREF

50

mA

Reference Output Current

Icharge

5

mA

Power Dissipation

Po

1000

mw

Operating Temperature

Topr

0- +70

°C

Storage Temperature

Tstg

-65- + 150

°C

Lead Temperature (Soldering, 10 sec)

T1ead

+300

°C

Oscillator Charging Current

•

ELECTRICAL CHARACTERISTICS
(Vee = 20V, Ta = 0 - + 70°C, unless otherwise specified)
Characteristic

Symbol

Test Condition

Min

Typ

Max

Unit

5.0

5.1

5.2

V

REFERENCE SECTION
Reference Output Voltage

VREF

Tj=25°C

Line Regulation

6VREF

Vee=S to 35V

10

20

mV

Load Regulation

6VREF

t=O to 20mA

20

50

mV

100

mA

Short Circuit Current

Ise

Total Output Variation (Note 1)

6VREF

Temperature Stability (Note 1)

6VREF/6T

Long Term Stability (Note 1)

TL

SO

VREF = 0, Tj = 25°C
4.95

5.25

V

20

50

mV

Tj = 125°C, 1 KHrs

20

50

mV

Tj =25°C

±2

±6

%

Vee =St035V

±1

±2

Line, Load and Temperature

OSCILLATOR SECTION
Initial Accuracy (Note 1, 2)
Voltage Stability (Note 1, 2)

6f16Vee

Maximum Frequency

f MAx

RT =2KO, CT =470pF

Minimum Frequency

fMIN

RT =200KO, CT =0.1J.tF

Clock Amplitude (Note 1, 2)
Clock Width (Note 1, 2)

Tj=25°C

Sync Threshold
Sync Input Current

c8SAMSUNG
Electronics

Sync=3.5V

400

%
KHz

120

Hz
V

3

3.5

0.3

0.5

1

1.2

2

2.8

V

1

2.5

mA

itS

209

KA3525AN

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
(Vee = 20V, Ta = 0 - + 70°C, unless otherwise specified)
Characteristic

Symbol

Test Condition

Min

Typ

Max

Unit

ERROR AMPLIFIER SECTION (VeM=5.1V)
Input Offset Voltage

VIO

2

10

mV

Input Bias Current

liB

1

10

p.A

Input Offset Current

ho

DC Open Loop Gain

Avo

1
Rl~ 10MO

60

75

p.A
dB

Common Mode Rejection Ratio

CMRR

\!eM = 1.5 to 5.2V

60

75

dB

Power Supply Rejection Ratio

PSRR

Vee = 8 to 3.5V

50

60

dB

45

49

0.7

0.9

PWM COMPARATOR SECTION
Minimum Duty Cycle

Dmin

Maximum Duty Cycle

Dmax

Input Threshold Voltage (Note 2)

VTH1

Zero Duty Cycle

Input Threshold Voltage (Note 2)

VTH2

Max Duty Cycle

0

3.3

%
%
V

3.6

V

SOFT-START SECTION
Soft Start Current

Isoft

Soft Start Low Level Voltage
Shutdown Threshold Voltage

50

80

p.A

0.4

0.7

V

0.8

1

V

Vso=2.5V

0.4

1

mA

0.2

0.4

V

1

2

V

Vso=OV, Vss=OV

25

Vso=25V
0.6

Thso

Shutdown Input Current
OUTPUT SECTION
Low Output Voltage I

VOL I

'Sink=20mA

Low Output Voltage 1/

VOL II

ISink = 100mA

High Output Voltage I

VOHI

Isource = 20mA

18

19

High Output Voltage 1/

VOHII

Isource = 100mA

17

18

Under Voltage Lockout

Vuv

Va and Vg = High

6

7

Collector Leakage Current

kKG

Vee=35V

V
V
8

V

200

p.A

Rise Time (Note 1)

Tr

Cl = 1p.F, Tj =25°C

100

600

nS

Fall Time (Note 1)

Tf

Cl = 1p.F, Tj =25°C

50

300

nS

Is

Vee=35V

14

20

mA

ST ANDBY CURRENT
Supply Current

(Note)
1. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in
production
2. Tested at fose=40 KHz (R T =3.6K, CT =0.01p.F, Ro=OO)

c8SAMSUNG
Electronics

210

LINEAR INTEGRATED CIRCUIT

KA3525AN

Fig. 1. TEST CIRCUIT

3K

PWM
ADJ

I

10K

+
I

I

~~I
1=V1o
2=1 (+)
3=1 (-)

10K

Q

L ___

00l~

mI

----I

L -_ _ _ _ _5_0_p.A--+-_ _ _

L__ ~U2 ____r
2

~2

/

~ Start

-'1' ~5.0P.F~
50~

__-"____J

50K

GND

V."

Sh",~

Fig. 2. KA3525AN OSCILLATOR

~-----+-------+-----4---+-----+---+----f~~~M

BLANKING
TO OUTPUT

c8SAMSUNG
Electronics

211

LINEAR INTEGRATED CIRCUIT

KA3525AN

Fig. 3

\Fig.4 PUSH-PULL CONFIGURATION

SINGLE ENDED SUPPLY

~
1

.vsupply

To Output Filter

·Vsupply

R1

R2

13
11

GND1u-----_-----..

GND

For single-ended supplies, the driver outputs are grounded. The Vc terminal is switched to ground by the totempole source transistors on alternate oscillator cycles.

Fig. 5

DRIVING POWER MOSFETS

In conventional push-pull bipolar designs, forward base
drive is controlled by R1-R3. Rapid turn-off times for the
power devices are achieved with speed-up capacitors C1
and C2.
Flg_ 6

DRIVING TRANSFORMER IN A
HALF-BRIDGE CONFIGURATION

II

GNDLr-~---------+---~

The low source impedance of the output drivers provides
rapid charging of power FET input capacitance while
minimizing external components.

Low poweriransformers can be driven directly by the
KA3525A. Automatic reset occurs during deadtime, when
both ends of the primary winding are switched to ground.

PRINCIPLES OF OPERATION
SHUTDOWN OPTIONS (See Block Diagram)
Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of 100/LA to turn off the outputs. This is subject to the added
requirement of discharging whatever external capacitance may be attached to these pins.
An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available
shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions: the PWM latch
is immediately set providing the fastest turn-off signal to the outputs; and a 150/LA current sink begins to discharge the
external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge
of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting.
Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turnon upon release.
Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.

c8SAMSUNG
Electronics

212

KA3526BN

LINEAR INTEGRATED CIRCUIT

REGULATOR PULSE WIDTH MODULATOR
The KA3526B is a high performance pulse width modulator integrated
circuit intended for fixed frequency switching regulators and other
power control applications.
Functions included in this IC are temperature compensated voltage
reference, sawtooth oscillator, error amplifier, pulse width modulator,
pulse metering and steering logic, and two low impedance power
drivers.
Also included are protective features such as soft-start and undervoltage lockout, digital current limiting, double pulse inhibit, a data
latch for single pulse metering, adjustable deadtime, and provision
for symmetry correction inputs.
All digital control parts are TIL and B-series CMOS compatible. Active low logic design allows easy wired-OR connections for maximum
flexibility. This versatible device can be used to implement singleended or push-pull switching regulator of either polarity, both
transformerless and transformer coupled. The KA3526B is characterized for operation from O°C to + 70°C.

18 DIP

•

FEATURES
• 8 to 35V Operation
• 5V Bandgap Reference Trimmed to ± 1%
•
•
•
•
•
•
•
•
•
•

1Hz to 650KHz Oscillator Range
Dual 100mA Source/Sink Outputs
Programmable Dead Time
Under-Voltage Lockout
Single Pulse Metering
Programmable Soft-Start
Wide Current Limit Common Mode Range
TTl/CMOS Compatible Logic Parts
Symmetry Correction Capability
Digital Current Limiting

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM
VC

r-B
CT

8

SHUTDOWN
CSS

c8 SAMSUNG
Electronics

RESET

213

KA3526BN

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Symbol

Value

Unit

Power supply voltage

Vee

40

V

Collector Supply Voltage

Ve

40

V

Output Current, Sink or Source

10

200

rnA

Characteristic

Reference Load Current

IREF

50

rnA

Power Dissipation

Po

1000

mW

Operating Temperature

Topr

0- +70

°C

Storage Temperature

Tstg

-65- + 150

°C

Lead Temperature (Soldering, 10 sec)

Tlead

+300

°C

ELECTRICAL CHARACTERISTICS
(Vee = 15V, Ta = 0 - + 70°C, unless otherwise specified)
Characteristic

Symbol

Test Condition

Min

Typ

Max

Unit

REFERENCE SECTION (Il = OmA)
5.0

5.1

V

Line Regulation

D. VREF

Vee=7 to 35V

2.0

15

mV

Load Regulation

D. VREF

IL=O to 20mA

5.0

20

mV
mV

Reference Output Voltage

VREF

Temperature Stability (Note)

D.VREF/D. Tj

Output Voltage Range(Note)

D.VREF

Short-Circuit Output Current

Ise

Tj =25°C

4.9

15

50

4.85

5.0

5.15

V

25

50

100

rnA

0.2

0.4

V

Tj=Oto +70°C
VREF=OV

UNDER·VOLTAGE LOCKOUT SECTION
RESET Output Voltage

VRESET

VREF=3.8V

RESET Output Voltage
2.4
VREF=4.7V
VRESET
OSCILLATOR SECTION (folC = 40KHzj RT=4.12KO± 10,4), CT=O.01~F ± 10/0, Ro=OO)

Frequency Change with Temperature (Note)

Tj =25°C

i3

i8

%

Vee=7 to 35V

0.5

1.0

%

D.f/D.Tj

Tj=O tQ70°C

1.0

3.0

%

1.0

Hz

Minimum Frequency

fmln

RT = 150KO, CT= 20j.tF

Maximum Frequency

fmax

RT =2KO, CT= 470pF

Sawtooth Peak Voltage

Vp

Vee = 35V

Sawtooth Valley Voltage

Vv

VIN =7V

SYNC Pulse Width

PW

Rl =2.7KO to Vreh Tj =25°C

c8SAMSUNG
Electronics

V

D.f/D.Vee

Initial Accuracy
Frequency Change with Voltage

4.8

550

650
3.0

0.5

KHz
3.5

V

1.0

V

1.1

j.tS

214

LINEAR INTEGRATED CIRCUIT

KA3526BN
ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

(V IN =15V, Ta=O-

+ 70°C,

Test Conditions

unless otherwise specified)
Min

Typ

Max

Unit

2.0

10

mV
nA

ERROR AMPLIFIER SECTION (VCM = 0 to 5.2V)
Input Offset Voltage

VIO

Input Bias Current

VIS

·350

·2000

Input Offset Current

110

35

200

DC Open Loop Gain

Av

R1 ~ 10MO, T j = 25°C

60

72

dB

High Output Voltage

V OH

Vpln1- Vpln2~0.15V
Isource = 100ltA

3.6

4.2

V

Low Output Voltage

VOL

Vpln2- Vpln1 ~0.15V
ISlnk = 100ltA

Rs.:S2KO

0.2

0.4

nA

V

Common Mode Rejection Ratio

CMRR

Rs.:S2KO

70

94

dB

Supply Voltage Rejection Ratio

PSRR

Vc:x; = 12 to 18V

66

80

dB

PWM COMPARATOR SECTION (fosc=40KHz; Rr =4.12KO:!: 1%, Cr = O.01ItF:!: 1%, RD=OO)
Minimum Duty Cycle
Maximum Duty Cycle

Dmin
Dmax

V pln3 =0.4V
Vpln3= 3.6V

0
45

49

2.4

4.0

%
%

DIGITAL PORTS (SYNC, SHUTDOWN and RESET)
High Output Voltage

VOH

Isource = 40ltA

Low Output Voltage

VOL

ISink = 3.6mA

0.2

V
0.4

V

High Input Current

IIH

V IH =2.4V

·125

·200

itA

Low Input Current

IlL

VIL=OAV

·225

·360

itA

So

From Pin 8, T j =25°C

160

Shutdown Delay

ns

CURRENT LIMIT COMPARATOR SECTION (VCM=O to 12V)
Sense Voltage

Vs

Input Bias Current

\IB

Rs .:S500, Tj = 25°C

80

100

120

mV

-3.0

·10

itA

SOFT·START SECTION
Error Clamp Voltage

VEe

V pin5 = O.4V

C s Charging Current

les

Vpin5 = 2.4V

0.1

0.4

V

50

100

150

itA

OUTPUT DRIVERS (Each Output) (Vc = 15V)
High Output Voltage I

VoHI

Isource = 20mA

12.5

13.5

High Output Voltage \I

VoHIi

Isource = 100mA

12

13

Low Output Voltage I

Vod

Isink =20mA

0.2

0.3

V

Low Output Voltage II

Vodl

Isink = 100mA

1.2

2.0

V

Collector Leakage Current

ILKG

Ve=40V

50

150

I-'A

Rise Time

TR

CL = 1nF

0.3

0.6

p..S

Fall Time

TF

CL = 1nF

0.1

0.2

Cross Conduction Charge

Ce

Per Cycle, T j = 25°C

V
V

I-'S
nC

8

POWER CONSUMPTION SECTION (Vce=35V, Tr=4.12KO)
Standby Current

Icc

Vplns=0.4V

14

25

rnA

NOTE
-These parameters although guaranteed over the recommended operating conditions are not 100% tested in pro·
duction.

c8SAMSUNG
Electronics

215

I

KA3526BN

LINEAR INTEGRATED CIRCUIT

APPLICATION INFORMATION
VOLTAGE REFERENCE
The reference regulator of the KA35268 is based on a temperature
compensated zener diode. The circuitry is fully active at supply
voltages above + 8 volts, and provides up to 20mA of load current
to external circuitry at + 5.0 volts.
In systems wh.ere additional current is required, an external PNP transistor can be used to boost the available current. A rugged low frequency audio-type transistor should be used, and lead lengths
between the PWM and transmitter should be as short as possible to
minimize the risk of oscillations.
Even so, some types of transistors may require collector-base
capacitance for stability.
Up to 1 amp of load current can be obtained with excellent regulation if the device selected maintains high current gain.

Fig. 1
EXTENDING REFERENCE OUTPUT CURRENT

Gnd-------~~---_4_-

UNDER-VOLTAGE LOCKOUT
The under-voltage lockout circuit protects the KA35268 and the power
devices it controls from inadequate supply voltage. If + VIN is too
low, the circuit disables the output drivers and hold RESET pin LOW.
This prevents spurious output pulses while the control circuitry is
stabilizing, and holds the soft-start timing capacitor in a discharged
state.
The circuit consists of a + 1.2 volt bandgap reference and comparator
circuit which is active when the reference voltage has risen to 3 8 BE ,
or + 1.8 volts at 25°C. When the reference voltage rises to approximately + 4.4 volts, the circuit enables the output drivers and release
the RESET pin, allowing a normal soft-start. The comparator has
200mV of hysteresis to minimize oscillation at the trip point.
When + VIN to the PWM is removed and the reference drops to + 4.2
volts, the under-voltage circuit pulls RESET Low gain.
The soft-start capacitor is immediately discharged, and the PWM is
ready for another soft-start cycle. The KA35268 can operate from a
+ 5 volt supply by connecting the Vref pin to the + VIN pin and maintaining the supply between + 4.8 and + 5.2 volts.

SOFT-START CIRCUIT
The soft-start circuit protects the power transistors and rectifier diodes
from high current surges during power supply turn-on. When supply
voltage is first applied to the KA35268, the under-voltage lockout circuit holds RESET LOW with 03. 01 is turned on, which holds
the soft-start capacitor voltage at zero.
The second collector of 01 clamps the output of the error amplifier
to ground, guaranteeing zero duty cycle at the driver outputs. When
the supply voltage reaches normal operating range, RESET will go
high, 01 turn off, allowing the internal 1OO~ current source to charge
Cs. 02 clamps the error amplifier output IVBE above the voltage on
CSo As the soft-start voltage ramps up to + 5V, the duty cycle of the
PWM linearly increases to whatever value the voltage regulation loop
requires for an error rull.

c8SAMSUNG
Electronics

Fig. 2
SIMPLIFIED UNDER-VOLTAGE LOCKOUT

VREF

TO RESET
TO DRIVER A
TO DRIVER B

Fig. 3
SOFT-START CIRCUIT SCHEMATIC

216

KA3526BN

LINEAR INTEGRATED CIRCUIT

DIGITAL CONTROL PARTS

Fig. 4

The three digital control ports of the KA35268 are bi-directional.
Each pin can drive TTL and 5V CMOS logic directly, up to a fan-out
of 10 low-power schottky gates. Each pin can also be directly driven
by open-collector TTL, open-drain CMOS, and open-collector voltage
comparators; fan-in is equivalent to 1 low-power schottky gate.
Each port is normally HIGH; the pin is pulled LOW to activate the
particular function.
Driving SYNC LOW initiates a discharge cycle in the oscillator.
Pulling SHUTDOWN LOW immediately inhibits all PWM output
pulses. Holding RESET LOW discharges the soft-start capacitor.
The logic threshold + 1.1 volts at + 25°C. Noise immunity can be gained at the expense of fan-out with an external 2K pull-up resistor to
+5 volts.

DIGITAL CONTROL PORT SCHEMATIC

SYNC

To
Internal
Logic

SHUTDOWN

I

or
RESET

OSCILLATOR
The oscillator is programmed for frequency and dead time with three components: RT, CT and RD. Two waveforms are
generated: a sawtooth waveform at pin 10 for pulse width modulation, and a logic clock at pin 12.
The following procedure is recommended for choosing timing values:
1. Remember that the frequency at each driver output is half the oscillator frequency, and the frequency at the + Vc ter- -minal is the same as the oscillator frequency.
2. If more dead time is required, select a large value of RD. At 40KHz dead time increases by 400nStn.
3. Increasing the dead time will cause the oscillator frequency to decrease slightly.
Go back and decrease the value of RT slightly to bring the frequency back to the design value.

The KA35268 can be synchronized to an external logic clock by programming the oscillator to free-run at a frequency 10% slower than
the sync frequency. A periodic LOW logic pulse approximately 0.5/lS
wide at the SYNC pin will then lock the oscillator to the external
frequency.
Multiple devices can be synchronized together by programming one
master unit for the desired frequency, and then sharing its sawtooth
and clock waveforms with the slave units.
All CT terminals are connected to the SYNC pin of the master, and
all SYNC terminals are likewise connected to the SYNC pin of the
master. Slave RT terminals are left open or connected to VREF •
Slave Ro terminals may be either left open or grounded.

ERROR AMPLIFIER
The error amplifier is a transconductance design, with an output impedance of 2 megaohms. Since all voltage gain takes places at the
output pin, the open-loop gain/frequency characteristics can be controlled with shunt reactance to ground. When compensated for unitygain stability with 100pF, the amplifier has an open-loop pole at 400Hz.
The input connections to the error amplifier are determined by the
polarity of the switching supply output voltage. For positive supplies,
the common-mode voltage is + 5.0 volts and the feedback connections in Fig. 6A are used. With negative supplies, the common-mode
voltage is ground and the feedback divider is connected between the
negative output and + 5.0 volt reference voltages, as shown in Fig. 68.

Fig. 5
OSCILLATOR CONNECTIONS AND WAVEFORMS

Fig. 6 A
ERROR AMPLIFIER
CONNECTIONS

Fig. 68
NEGATIVE

~~L~~~

R,

~-

V~EFR21
1
+

VOUT=VREF

R,
R,+R z

~

Gnd

-R-2

R _

R,R 2

3-~

qsSAMSUNG
Electronics

217

KA3526BN

LINEAR INTEGRATED CIRCUIT

OUTPUT DRIVERS
The totem-pole output drivers of the KA3526B are designed to source and sink 100mA continuously and 200mA peak. Loads
can be driven either from the output pins 13 and 16, or from the + Vc pin, as required.
Since the bottom transistor of the totem-pole is allowed to saturate, there is momentary conduction path from the + Vc
terminal to ground during switching. To limit the resulting current spikes a small resistor in series with pin 14 is always
recommended. The resistor value is determined by the driver supply voltage, and should be chosen for 200mA peak currents, as shown in Fig. 9.
Fig. 8. SINGLE-ENDED CONFIGURATION

Fig. 7. PUSH-PULL CONFIGURATION

+ V SUPPLY O-~-,

+V,SUPPLY

TO OUTPUT FILTER

II
RETURN
RETURN

0------.....-----

Fig. 9. DRIVING N-CHANNEL POWER MOSFETS
+15V

/I

RETURN

qsSAMSUNG
Electronics

218

LINEAR INTEGRATED CIRCUIT

KA3842
CURRENT MODE PWM
CONTROLLER

8 DIP

The KA3842 is fixed frequency current-mode PWM controller. It is specially designed for Off-Line and DC-toDC converter applications with minimal external components. This integrated circuit features a trimmed
oscillator .for precise duty cycle control, a temperature
compensated reference, high gain error amplifier, current sensing comparator, and a high current totempole
output Ideally suited for driving a power MOSFET.

I

14 SOP

Protection circuitry includes built in under-voltage
lockout and current limiting.

FEATURES
•
•
•
•
•
•
•
•

Automatic feed forward compensation
Optimized for off·llne converter
Double pulse suppression
Current mode operation to 500KHz
High gain totem pole output
Intemally trimmed bandgap reference
Undervoltage lockout with hysteresis
Low start up current

ORDERING INFORMATION
Device

Package Operating Temperature

KA3842N

8 DIP

0- +70°C

KA3842D

14 SOP

0- + 70°C

BLOCK DIAGRAM
Vee (12)

PWR VC (11)

VFB (3)

COMP (1)

CURRENT SENSE (5)

ATICT (7)

0~----------i1
• (

OSCILLATOR

1-----+------'

PWR GND (8)

) IS 14S0lC PIN NO

c8~SUNG

219

KA3842

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Supply Voltage
Output Current
Analog Inputs
Error Amp Output Sink Current
Power Dissipation

Vee
10
V1N
I slnk
Po

30
±1
-0.3 to Vee
10
1

V
A
V
mA

W

ELECTRICAL CHARACTERISTICS
(*Vec=15V, Rr =10KQ, Cr =3.3nF, 0~TA~70°C, unless otherwise specified)
Characteristic

Symbol

Test Conditions

Unit

Min

Typ

Max

4.90

5.00

5.10

V

6

20

mV

REFERENCE SECTION
Output Voltage

VREF

T j = 25°C, 10 = 1mA

Line Regulation

/:,;V o

12V ~ Vce ~ 25V

Load Regulation

/:,;V o

1mA~lo~20mA

Output Short Circuit

lose

TA=25°C

Fose

Tj = 25°C

6

25

mV

-85

-180

mA

52

57

KHz

0:2

1

OSCILLATOR SECTION
Nominal Frequency
Voltage Stability
Amplitude

Sv

47

12V s,V ee s,25V

1.7

Vose

%
V p_p

ERROR AMPLIFIER SECTION
Input Bias Current

IBI

-0.3

-2

Input Voltage

VIN

VPIN1 =2.5V

2.42

2.50

2.58

AVOL

2V~Vo~4V

65

90

12V ~Vec~25V

60

70

dB

2

6

mA

-0.5

-0.8

mA

5

6

Open Loop Gain
Power Supply Rejection Ratio

PSRR EA

Output Sink Current

151

VP1N2 = 2.7V, VP1N1 = 1.1V

Output Source Current

Iso

V PIN2 = 2.3V, VPIN1 = 5V

V Out High

VOH

V PIN2 = 2.3V, RL = 15KQ to GND

V Out Low

VOL

VPIN2 =2_7V, RL=15KQ to Pin 8
----- - - - -

p.A
V
dB

V

0.8

1.1

V

V/V

CURRENT SENSE SECTION
Gain
Maximum Input Signal
Power Supply Rejection Ratio
Input Bias Current

G
VMAX
PSRRse
IB2

c8SAMSUNG
Electronics

(Note 1 & 2)

2.85

3

3.15

V P1N1 = 5V (Note 1)

0.9

1

1.1

12V ~Vee~25V (Note 1)

70
-2

V
dB

-10

p.A

220

KA3842

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
Characteristic

Symbol

(Continued)

Test Conditions

Min

Typ

Max

Isink =20mA

0.1

0.4

V

Isink = 200mA

1.5

2.2

V

Unit

OUTPUT SECTION
Output Low Level

VOL

Output High Level

VOH

Isource = 20mA

13

13.5

Isource = 200mA

12

13.5

V
V

Rise Time

Tr

Tj = 25°C, CL = 1nF (Note 3)

50

150

nS

Fall Time

T,

Tj = 25°C, C L= 1nF (Note 3)

50

150

nS

14.5

16

17.5

V

8.5

10

11.5

V

UNDER·VOLTAGE LOCKOUT SECTION
Start Threshold

VlhH

Minimum Operating Voltage

VlhL

After Turn On

TOTAL STANDBY CURRENT
Start-Up Current

lSI

Operating Supply Current

Icc

VP1N2 = V P1N3 = OV

Zener Voltage

Vz

Icc = 25mA

30

0.5

1

rnA

11

17

rnA

36

V

* Adjust Vee above the start threshold before setting at 15V
Note 1. Parameter measured at trip point of latch with VP1N2 = 0
2. Gain defined as: A _ I::::,. VPIN1 • 0 V
08V
- I::::,. V

PIN3

'

~

PIN3~ •

3. These parameters, although guaranteed, are not 100% tested in production.

c8SAMSUNG
Electronics

221

I

LINEAR INTEGRATED CIRCUIT

KA3842

Fig. 1 Open Loop Test Circuit
r---------~--~------------------------~r_----------~VREF

RT
VI
~----~---+--~COMP

EIA
ADJUST
~ '--+---'-IISENSE

i-"-----ir---+-------o\:} OUTPUT

RT/CT

High peak currents associated with capacitive loads necessitate careful grounding techniques Timing and bypass
capacitors should be connected close to pin 5 in a single point ground. The transistor and 5Kn potentiometer are
used to sample the oscillator waveform and apply an adjustable ramp to pin 3.
Fig. 2 Under Voltage Lockout

IcC

<15mA

< 1mA

1Z::::::::~~

___ VI

10V 16V

During Under·Voltage Lock·Out, the output driver is biased to a high impedance state. Pin 6 should be shunted
to ground with a bleeder resistor to prevent activating the power switch with output leakage current.
Fig. 3 Error Amp Configuration
2.5V
O.5mA

Error amp can source or sink up to O.5mA

qsSAMSUNG
Electronics

222

KA3842

LINEAR INTEGRATED CIRCUIT

Fig. 4 Current Sense Circuit
ERROR

11

~ Is

I

Peak current (Is) is determined by the formula:
_1.0V
ISmax- Rs
A small RC filter may be required to suppress switch transients.
Fig. 5 Oscillator Waveforms and Maximum Duty Cycle
LARGE RT

SMALLCT~

/"

V

~

V

_
VPIN4

~

INTERNAL CLOCK

SMALL RT
LARGE R y \ '

I

V

/\

V

i

~

VPIN4

INTERNAL CLOCK

Oscillator timing capacitor, ~, is charged by VREF through RT, and discharged by an internal current source.
During the discharge time, the internal clock signal blanks the output to the low state. Selection of RT and CT
therefore determines both oscillator frequency and maximum duty cycle. Charge and discharge times are deter·
mined by the formulas:
tc"'" 0.55

RT

CT
0.0063

td "", RT CT In( 0.0063

RT - 2.7
RT _ 4 )

Frequency, then, is: f = (tc + td)-1
For RT >5KO, f"'"

R~·~T

c8SAMSUNG
Electronics

223

KA3842

LINEAR INTEGRATED CIRCUIT

Fig. 6 Oscillator Dead Time & Frequency
Fig. 7 Timing Resistance vs Frequency

DEADTIME vs CT(RT>SK)
30

t, /its)

V

10

/

0.3

/

/
2.2

v"
4.7

10

/

~

22

47

1m

100

10K

lK

lOOK

1M

FREQUENCY (Hz)

Fig. 8 Shutdown Techniques
VREF

COMP

ISENSE
SHUTDOWN

TO CURRENT
SENSE-RESISTOR

SHUTDOWN

Shutdown of the KA3842 can be accomplished by two methods; either raise pin 3 above 1V or pull pin 1 below
a voltage two diode drops above ground. Either method causes the output of the PWM comparator to be high (refer
to block diagram). The PWM latch is reset dominant so that the output will remain low until the next clock cycle
after the shutdown condition at pins 1 and/or 3 is removed. In one example, an externally latched shutdown may
be accomplished by adding an SCR which will be reset by cycling Vee below the lower UVLO threshold. At this
point the reference turns oft, allowing the SCR to reset.
Fig. 9 Slope Compensation

!

ISENSE

ISENSE

RSENSE

A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope compensation for converters requiring duty cycles over 50%.
Note that capacitor, C, forms a filter with R2 to suppress the leading edge switch spikes.

c8~SUNG

224

KA3842

LINEAR INTEGRATED CIRCUIT
Fig. 11 Error Amplifier Open Loop
Frequency Response

Fig. 10 Output Saturation Characteristics
VaAT
(V)

Gvr---,---,----,----------~

(dB)

J,=

lStv
I---T... =2S·C
60 t----+-~""k_--+---+---.Jf______l

40 I---+---+~~-.....d--_l--__I -90

/
~

t::, . . .

SOUR9Es,..T I(V

II
II

I
SINKs..; (VoJ

4

6

8 10-'

•

20 t----+---+----+---~:____.\d-__l -13S

I Vor)1

~
10- 2

- 45

4

6

r--+---r---+--+-~~~ -160

8 16 (A)

10

100

lK

10K

lOOK

1M

I(Hz)

Fig. 12 25W Off· Line Flyback Converter
FUSE

D1

H
C14

C15

117V~CTNR
.
C16
N

P.G

--_._----u + 12V

t--I__

'-I--.=--4-----Q - 12V

R11
2.7K
2W

Power Supply Specifications
1. Input Voltage:
95VAC to 130VAC (50Hz/60Hz)
2. Line Isolation:
3750V
3. Switchino Frequency:
40KHz
4. Efficiency @ Full Load: 70%
Note: T1·Primary: 35 Turns #26 AWG
Secondary ± 12V: 7 turns #30 AWG (2 strands)
Bifiliar wound
Secondary 5.0V: 3 turns (six strands)
#26 Hexfiliar wound
Secondary Feedback: 8 turns #30 AWG
(2 strands) Bifliar wound
Core: TOK EI-28
Bobbin: TOK EI-28
Gap: 0.2mm for a primary
inductance of 1.0mH
L1-151l H

c8SAMSUNG
Electronics

5. Output Voltage:
A. +5V, ±5%: 1A to 4A load
Ripple voltage: 50mV pop Max.
B. + 12V, ±3%: 0.1A to 0.3A load
Ripple voltage: 100mV pop Max.
C. -12V, ±3%: O.1A to 0.3A load
Ripple voltage: 100mV pop Max.

225

KA3846N

LINEAR INTEGRATED CIRCUIT

CURRENT MODE PWM CONTROLLER

The KA3846 control Ie provides all of the necessary features to implement fixed frequency, current mode control schemes while maintaining a minimum external parts count.
The superior performance of this technique can be measured in improved line regulation, enhanced load response characteristics, and
a simpler, easier-to-design control loop. Topological advantages include inherent pulse-by-pulse current limiting capability, automatic
symmetry correction for push-pull converters, and the ability to parallel
"power module" while maintaining equal current sharing.
Protection circuitry includes built-in-under-voltage lockout and programmable current limit in addition to soft-start capability. A shutdown function is also available which can initiate either a complete
shutdown with automatic restart or latch the supply off.
Other features include fully latched operation, double pulse suppression, deadtime adjust capability, and ± 1% trimnled bandgap
reference.
The KA3846 features low outputs in the OFF state.

16 DIP

FEATURES
•
•
•
•
•
•
•
•

•
•
•
•
•

Automatic Feed Forward Compensation
Programmable Pulse by Pulse Current Limiting
Automatic Symmetry Correction in Push-Pull Configuration
Enhanced Load Response Characteristics
Parallel Operation Capability for Modulator Power Systems
Differential Current Sense Amplifier with Common Mode Range
Double Pulse Suppression
200mA Totem-Pole Outputs
± 1% Bandgap Reference
Under-Voltage Lockout
Soft-Start Capability
Shutdown Terminal
500KHz Operation

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM
VIN

15}--------~r----t

SYNC

SHUT

DOWN

COMP

7 ~-----CURRENT LIMIT

ADJUST

c8SAMSUNG
Electronics

226

LINEAR INTEGRATED CIRCUIT

KA3846N

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Power Supply Voltage

Vee

40

V

Collector Supply Voltage

Ve

40

V

Output Current, Sink or Source (Peak)

10

500

rnA

IREF

30

rnA

Soft Start Sink Current

ISOFT

50

rnA

Sync Output Current

ISyNe

5

rnA

Error Amplifier Output Current

IError

5

rnA

Oscillator Changing Current

lose

5

rnA

Power Dissipation

Po

1000

mW

Reference Load Current

Operating Temperature

Topr

0- +70

°C

Storage Temperature

T stg

-65- + 150

°C

Lead Temperature (Soldering, 10 sec)

T1ead

+300

°C

I

ELECTRICAL CHARACTERISTICS
(Vee = 15V, Ta=O- + 70°C, unless otherwise specified)
Characteristic

Symbol

Test Condition

Min

Typ

Max

Unit

5.00

5.10

5.20

V

5

20

mV

REFERENCE SECTION
Reference Output Voltage
Line Regulation
Load Regulation
Temperature Stability(Note 6)

V REF

T j =25°C,l o =1mA

1:5. VREF

Vee=8 to 40V

1:5. V REF

IL= 1 to 10mA

1:5. VREF/1:5. Tj

Output Voltage Range (Note 6)
Short-Circuit Current

Ise

VREF=OV

VNV

f = 10Hz to 10KHz,. Tj = 25°C

Long-Term Stability (Note 6)

TL

Tj = 125°C, 1KHrs

Electronics

15

mV

1.0

mV/oC

5.25

V

4.95

Output Noise Voltage (Note 6)

qsSAMSUNG

3
0.4

-10

-45

rnA

100
2

5

p,V
8

mV

227

LINEAR INTEGRATED CIRCUIT

KA3846N
ELECTRICAL CHARACTERISTICS
(Vee = 15V, Ta=O- + 70°C, unless otherwise specified)
Characteristic

Symbol

Test Condition

Min

Typ

Max

Unit

43

47

KHz

-1

2

%

OSCILLATOR SECTION (Note 2),
Initial Accuracy

Tj =25°C

Frequency Change with Voltage

!::,.fNee

Frequency Change with
Temperature (Note 6)

!::,.f/!::,.Tj

Sync Output High Level

VOH

Sync Output Low Level

VOL

Sync Input High Level

VIH

Pin 8=OV

Sync Input Low Level

VIL

Pin 8=OV

Sync Input Current

II

39

Vee=8 to 40V

-1
3.9

%

4.35
2.3

V
2.5

1.3

Sync Voltage = 3.9V, Pin 8 = OV

V
V

3.9
2.5

V

1.5

mA

mV

ERROR AMPLIFIER SECTION
Input Offset Voltage

VIO

0.5

5

Input Bias Current

liB

-0.6

-1

pA

Input Offset Current

110

40

250

nA

Common-Mode Range

VeMA

Open Loop Voltage Gain

Av

Unity Gain Bandwidth (Note 6)

Vin =8 to 40V

0

Vo= 1.2 to 3V, VeM =2V

80

Vee-2

V

105

dB

Tj =25°C

0.7

1.0

MHz

Common Mode Rejection Ratio

CMRR

VCM=O to 38V, Vcc=40V

75

100

dB

Supply Voltage Rejection Ratio

PSRR

Vcc=8 to 40V

80

105

dB

V IO = -15mV to 5V, Vpin 7= 1.2V

2

6

mA

-0.4

-0.5

mA

4.3

4.6

GBW

Output Sink Current

ISink

Output Source Current

Isource

V IO = 15mV to 5V, Vpin 7=2.5V

High Level Output Voltage

VOH

RL=15KO

VOL

RL=15KO

Low Level Output Voltage

V

0.7

1

V

3.0

V

CURRENT SENSE AMPLIFIER SECTION
Amplifier Gain (Note 1, 3)

Gv

Vpin3 =OV, Pin 1 open

2.5

2.75

Maximum Differential Input
Signal (Vpin4-Vpin3) (Note 1)

VDM

RL = 15KO, Pin 1 open

1.1

1.2

VIO

Vpin1 = 0.5V, Pin 7 open

83

Input Offset Voltage (Note 1)

5

Common Mode Rejection Ratio

CMRR

VCM = 1 to 12V

60

Supply Voltage Rejection Ratio

PSRR

Vin =8 to 40V

60

V
25

mV
dB

84

dB

Input Bias Current (Note 1)

liB

Vpin1 = 0.5V, pin 7 open

-2.5

-10

/LA

Input Offset Current (Note 1)

110

Vpin1 = 0.5V, Pin 7 open

0.08

1

/LA

Delay to Outputs (Note 6)

Td

Tj =25°C

200

500

nS

dCSAMSUNG
• • Electronics

228

KA3846N

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
(Vcc =15V, Ta=O- +70°C, unless otherwise specified)
Characteristic

Symbol

Test Condition

Min

Typ

Max

Unit

0.45

0.5

0.55

V

-10

-30

pA

350

400

mV

CURRENT LIMIT ADJUST SECTION
Current Limit Offset Voltage (Note 1)
Input Bias Current

VCL
115

Vpin3 =OV
Vpin4 =OV, Pin 7 open
VpinS = Vret. VpinS = OV

SHUTDOWN TERMINAL SECTION
Threshold Voltage

VrH

250

Input Voltage Range

VCM

0

Minimum Latching Current (Note 4)

iL, Min

3.0

Maximum Non-Latching Current (Note 5)

IL, Max

Yin

V
mA

1.5
1.5

0.8

mA

UNDER·VOLT AGE LOCKOUT SECTION
Start-up Threshold

VSrH

7

7.7

8.4

V

Threshold Hysteresis

VHYS

0.45

0.75

1.05

V

200

",A
V

OUTPUT SECTION

i

L

Collector-Emitter Voltage

Vc

Collector Leakage Current

ILeak

Vc=40V

V

40

Low Output Voltage I

VaLl

Isink =20mA

0.1

0.4

Low Output Voltage lJ

Valli

Isink = 100mA

0.4

2.1

High Output Voltage I

VOHI

High output Voltage II

VOHII

Isource = 20mA

13

13.5

Isource = 100mA

12

13.5

V
V
V

Rise Time (Note 6)

Tr

C L= 1nF, Tj =25°C

50

300

",5

Fall Time (Note 6)

Tf

CL= 1nF, Tj = 25°C

50

300

",8

17

21

mA

TOTAL STANDBY CURRENT
Supply Current

Is

(Notes)
1. Parameter measured at trip point of latch with Vpins = VREF , Vpins=OV
2. Rr =10KO, Cr =4.7nF
6V.
3. Amplifier gain defined as: G=~; 6Vpin4 =0 to 1.0V
6V pin4
4. Current into Pin 1 guaranteed to latch circuit in shutdown state.
5. Current into Pin 1 guaranteed not to latch circuit in shutdown state.
6. These parameters, although guaranteed over the recommended operating conditions, are not 100% tested in production.

c8SAMSUNG
Electronics

229

•

KA3846N

LINEAR INTEGRATED CIRCUIT

Fig. 1. KA3846N OSCILLATOR CIRCUIT

OSC.

n n

(PIN
10)
---.I

----....

_ _

-111 SYNC

OUTPUT DEADTIME (T9)

Output deadtime is determined by the external capacitor, CT, according to the formula: Td (j.tS) = 145CT (p.F)
For large values of RT: Td (p.S) =145CT (p.F)

12
12 -

3.6

Oscillator frequency is approximately by the formula: h (kHz) = _ _
2_.2_ _
RT(KO) CT(p.F)

Fig. 2. ERROR AMPLIFIER OUTPUT CONFIGURATION

Error amplifier can source up to O.5mA

c8SAMSUNG
Electronics

>230

KA3846N

LINEAR INTEGRATED CIRCUIT

Fig. 3 .. PARALLEL OPERATION

MASTER

I
SLAVE
Slaving allows parallel operation of two or more
units with equal current sharing

Fig. 4. PULSE BY PULSE CURRENT LIMITING
Is

(+)

Peak Current (Is) is determined by the formula:

_(R2 • VREF
Is - R1 + R2

_

0.5)

3R s

Fig. 5. CURRENT SENSE AMP CONNECTIONS
Is

~

R

Rs

A small RC filter may be required in some applications to reduce switch transients.
Differential input allows remote, noise free sensing.

c8SAMSUNG
Electronics

231

KA3846N

LINEAR INTEGRATED CIRCUIT

Fig. 6. SOFT-START AND SHUTDOWN/RESTART FUNCTIONS
V"EF

LIMIT

---1L 1 6 } - - - I - - - - - - I

SHUTDOWN WITH AUTO RESTART

O.5V

;

SHUTDOWN WITHOUT AUTO.RESTART (LATCHE[I)

SHUTDOWN
ON

(~

I~_--------....~rl~------....--~J

OFF

PWM

If

V

REF

R,

< a.SmA, the shutdown latch will commutate

when Iss = a.SmA and a restart cycle will be initiated.

\\:~--....--............-___________

,~f_ _ _~n

.Jill ~
If

VREF>

>3mA (LATCHED OFF)

3mA, the device will latch off

R,
until power is recycled

Fig. 7. SINGLE ENDED BOOST CONFIGURATION

r-............--................~15~............- - - - - - - - - .

FEEDBACK

cRSAMSUNG
•• Electronics

232

KA3846N

LINEAR INTEGRATED CIRCUIT

Fig. 8. BUCK CONVERTER WITH CURRENT SENSE WINDING

•
Ground

Fig. 9. PUSH-PULL CONVERTER SLOPE COMPENSATION
RCOMPENSATION

~----------------'--------~15)---------------~

III
FEEDBACK

~
INDUCTOR CURRENT
DOWNSLOPE

Current loop instability above 50% duty cycle can be corrected using slope compensation derived from the sawtooth oscillator.
Compensation magnitude should be greater than 1/2 of the downslope of the inductor current waveform as shown. Alternatively, the compensation signal can be summed into the negative input of the error amplifier.

c8SAMSUNG
Electronics

233

KA34063N

LINEAR INTEGRATED CIRCUIT

DC TO DC CONVERTER CONTROLLER

8 DIP

The KA34063 is a monolithic switching regulator subsystem intended
for use as DC to DC converter. This device contains an internal
temperature compensated reference, comparator, controlled duty
cycle oscillator with an active peak current limit circuit, driver and
a high current output switch.
It was specifically designed to be incorporated in step-up, step-down
and voltage inverting converter applications.
These function are contained in an 8 pin dual in-line package.

FEATURES
•
•
•
•
•
•

Operation from 2.5 to 40V Input
Short Circuit Current Limiting
Low Standby Current
Output Switch Current of 1.5A
Output Voltage Adjustable from 1.25V to 40V
Frequency of Operation from 100Hz to 100KHz

ORDERING INFORMATION
Operating Frequency

BLOCK DIAGRAM
DRIVE
SWITCH
COLLECTOR COLLECTOR

CQMPARATOR
INVERTING
INPUT
GND

TIMING
CAPACITOR

·Vcc(6)

c8SAMSUNG
Electronics

IPK
OSCILLATOR 1 - - - 4 - - - - - - i R
CT

SWITCH
EMITTER

234

LINEAR INTEGRATED CIRCUIT

KA34063N
ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Vee

40

V

Power Supply Voltage

VIR

-0.3- +40

V

Switch Collector Voltage

Ve(sW)

40

V

Switch Emitter Voltage

VE(SW)

40

V

Switch Collector
To Emitter Voltage

VeE (sW)

40

V

Driver Collector Voltage

Ve (driver)

40

V

Isw

1.5

A

Comparator Input Voltage Range

Switch Current

•

ELECTRICAL CHARACTERISTICS
(Vee = 5.0V, Ta=O- +70°C, unless otherwise specified)
Characteristic

Symbol

Test Condition

Min

Typ

Max

Unit

OSCILLATOR
Charging Current

Ichg

Vee=5 to 40V
Ta=25°C

20

35

50

pA

Discharge Current

IdiSchg

Vee =5t040V
Ta=25°C

150

200

250

p.A

Voltage Swing

Vase

Ta=25°C

0.5

Discharge To Charge
Current Ratio

Idischg
Ichg

Ipk(sense) = Vee,
Ta=25°C

6.0

Current Limit Sense
Voltage

V 1PK
(sense)

Ichg = Idischg
Ta=25°C

Saturation Voltage I (Note)

VeE (sat) I

Saturation Voltage II (Note)

VeE (sat) II

250

V

300

350

mV

Isw= 1.0A,
Ve (driver) = Ve (SW)

1.0

1.3

V

Isw= 1.0A,
Ve (driver) = 50 rnA

0.5

0.7

V

10

200

nA

1.25

1.32

V

0.04

0.2

mVN

OUTPUT SWITCH

DC Current Gain (Note)
Collector off State Current (Note)

hFE

Isw= 1.0A,
VeE =5.0V, Ta=25°C

Ie (off)

VeE = 40V, Ta=25°C

70

150

COMPARATOR
Threshold Voltage

VrH

Threshold Voltage
Line Regulation

!:::.Vth

Input Bias Current

liB

VIN=OV

35

300

nA

Icc

Vee=5 to 40V
Cr =0.001p.F
Ipk (sense) = Vee
Vpin 5> Vth
pin2=GND

2.4

3.5

rnA

1.18
Vee=3 to 40V

TOTAL DEVICE

Supply Current

(Note)
Output switch tests are performed under pulsed conditions to minimize power dissipation.

c8SAMSUNG
Electronics

235

LINEAR INTEGRATED CIRCUIT

KA34063N

Fig. 1. Step-Down Converter

Vee
25V

+

YOU!

·'---------AMr------------47-0-~-Q 5.0 V/500mA

I-tFm

Test

Conditions

Results

Line Regulation

Vee=15 to 25V, 10=500mA

15mV

Load Regulation

Vee =25V, 10=50 to 500mA

5.0mV

Output Ripple

Vee=25 V, 10='500mA

40mV

Short Circuit Current

Vee = 25V, RL = 0.10

2.3A

Efficiency

Vee = 25V, 10 = 500mA

84.7%

r-.
f--

Co

c8SAMSUNG
Electronics

236

LINEAR INTEGRATED CIRCUIT

KA34063N

Fig. 2. Step-Up Converter

L

KA34063N

I
lN5819

Rse

VCCQ---J...-.,...-----t

12V

R2

Vout

~----------ItI+t----------+----o 28V 17SmA
47K

Fig. 6

Test

Conditions

Results

Line Regulation

Vee=8.0 to 16V, 10= 175mA

12mV

Load Regulation

Vee = 12V, 10=75 to 17SmA

45mV

Output Ripple

Vee = 12 V, 10= 175mA

150mV

Short Circuit Current

Vee = 12V, RL=O.1n

2.0A

Efficiency

Vee = 12V, 10= 17SmA

93%

c8SAMSUNG
Electronics

237

LINEAR INTEGRATED CIRCUIT

KA34063N

Table: Design Formula
Calculation

Step-Down

Step-Up

ton
-toft

Vout+ VF

VOUT+VF-VCC (min)

Vee (min)- Vsat- Vout

Vee (min) - Vsat

(ton + toft) max

1
-fmin

1
-fmin

CT

4x 10.5 ton

4x 10.5 ton

Ipk (switch)

2 louT (max)

ton + toft
2 louT (max) - toft

Rsc
L (min)

O.33/lpk (switch)
Vee (min)-Vsat-Vout

ton (max)

Ipk (switch)
Co

Ipk (switch) (ton + toft)
8Vripple (p-p)

O.33/lpk (switch)
Vee (min)-Vsat_ ton (max)
Ipk (switch)
lOUT ton
---Vripple (p-p)

Vsat = Saturation Voltage of the output switch.
VF=Forward Voltage drop of the rectifier.
The following power supply characteristics must be chosen:
Vee: Normal input voltage, if this voltage is not constant, then use Vee (max) for step-down and Vee (min) for step-up converter.
R2
Vout: Desired output voltage, Vout = 1.25 (1 + R1 )
lout: Desired output current.
fmin: Minimum desired output switching frequency at the selected values for Vee and 10.
Vripple (p-p): Desired peak-ta-peak output ripple voltage. in practice, the calculated value will need to be increased due
to the capacitor's equivalent series resistance and board layout.
The ripple voltage should be kept to a low value since it will directly eftect the line and load regulation.

c8SAMSUNG
Electronics

LINEAR INTEGRATED CIRCUIT

KA34063AN

DC TO DC CONVERTER CONTROLLER

8 DIP

The KA34063A is a monolithic switching regulator subsystem intended for use as DC to DC converter. This device contains an internal
temperature compensated reference, comparator, controlled duty
cycle oscillator with an active peak current limit circuit, driver and
a high current output switch.
It was specifically designed to be incorporated in step-up, step-down
and voltage inverting converter applications.
These function are contained in an 8 pin dual in-line package.

I

FEATURES
•
•
•
•
•
•

Operation from 3.0 to 40V Input
Short Circuit Current Limiting
Low Standby Current
Output Switch Current of 1.SA
Output Voltage Adjustable
Frequency of Operation from 100Hz to 100KHz

ORDERING INFORMATION
Operating Frequency

BLOCK DIAGRAM
DRIVE
SWITCH
COLLECTOR COLLECTOR

S
COMPARATOR
INVERTING
INPUT

GND

TIMING
CAPACITOR
'VCd6)

c8SAMSUNG
Electronics

IPK
OSCILLATOR J - - - 4 - - - - - - f R
CT

SWITCH
EMITIER

239

LINEAR INTEGRATED CIRCUIT

KA34063AN
ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Power Supply Voltage

Vee

40

V

Comparator Input Voltage Range

VIA

-0.3- +40

V

Switch Collector Voltage

Ve(sW)

40

V

Switch Emitter Voltage

VE(SW)

40

V

Switch Collector
To Emitter Voltage

VeE (sW)

40

V

Driver Collector Voltage

Ve (driver)

40

V

Isw

1.5

A

Switch Current

ELECTRICAL CHARACTERISTICS
(Vee = 5.0V, Ta = 0 - + 70°C, unless otherwise specified)
Characteristic

Symbol

Test Condition

Min

Typ

Max

Unit

OSCILLATOR
Charging Current

Ichg

Vee=5 to 40V
Ta=25°C

22

33

42

p,A

Discharge Current

IdisChg

Vee=5 to 40V
Ta=25°C

140

200

260

p,A

Voltage Swing

Vose

Ta=25°C

Discharge To Charge
Current Ratio

Idischg
Ichg

Ipk(sense) = Vee,
Ta=25°C

5.2

6.2

7.5

Current Limit Sense
Voltage

V IPK
(sense)

Ichg = Idischg
Ta=25°C

250

300

350

mV

VeE (sal) I

Isw= 1.0A,
Ve (driver)=Ve (SW)

1.0

1.3

V

VeE (sal) II

Isw= 1.0A,
Ve (driver) = 50mA

0.45

0.7

V

100

nA

1.29

V

0.5

V

OUTPUT SWITCH
Saturation Voltage I (Note)
f----~----

Saturation Voltage II (Note)
DC Current Gain (Note)
Collector off State Current (Note)

hFE

Isw= 1.0A,
V eE =5.0V, Ta=25°C

Ie (off)

VeE = 40V, Ta = 25°C

50

120
10

COMPARATOR
Threshold Voltage

VrH

Threshold Voltage
Line Regulation

6Vth

Input Bias Current

he

1.21
Vee=3 to 40V

1.4

5.0

mV

VIN:::OV

40

400

nA

2.5

4.0

mA

TOT AL DEVICE

Supply Current

Icc

Vee=5 to 40V
Cr =0.001p,F
Ipk (sense) = Vee
Vpin 5>Vth
pin2=GND

(Note)
Output switch tests are performed under pulsed conditions to minimize power dissipation.

c8SAMSUNG
Electronics

240

LINEAR INTEGRATED CIRCUIT

KA34063AN
FIG. 1. STEP-DOWN CONVERTER

•

Vee
25V

Vout
5.0 V/SOOmA

470

"Fili
Test

Line Regulation

Co

Conditions

Results

Vee = 15 V to 25 V, 10 = 500mA

12mV= ±0.12%

±0.03%

Load Regulation

Vee=25 V, 10=50 to 500mA

3.0mV =

Output Ripple

Vee = 25V, 10 = 500mA

120mVp-p

Short Circuit Current

Vee = 25V, RL =0.10

1.1A

Efficiency

Vee = 25V, 10 = 500mA

82.5%

Output Ripple with Optional Filter

Vee = 25V, 10 = 500mA

40mVp-p

FIG. 2. STEP-UP CONVERTER

R2

~--~---.~--+---o
Al ;n2.2K

Test

47K

in Co

You!
28V175mA

150 i,F

Results

Conditions

30mV= ±O.O5%

Line Regulation

V ee =8.0 V to 16 V, 10= 175mA

Load Regulation

Vee = 12 V, 10 = 75 to 175mA

10mV= ±O.017%

Output Ripple

Vee = 12V, 10= 175mA

400mVp-p

Efficiency

Vee = 12V, 10= 175mA

89.2%

Output Ripple with Optional Filter

Vee = 12V, 10= 175mA

40mVp-p

c8SAMSUNG
Electronics

241

LINEAR INTEGRATED CIRCUIT

KA34063AN

Fig. 3. VOL.:TAGE INVERTING CONVERTER

0.24
Vee

4.5V to 6.0V

m

100

1N5819

~_ _ _~R.A1"-_ _ _ _ _ _ _ _ _ _"""t---+_-O YOU!

953

-12V 100mA

1000.,...

m

Test

Conditions

Results

Line Regulation

Vee = 4.5 V to 6.0 V, 10 = 100mA

3.0mV = ± 0.012%

Load Regulation

Vcc=5.0 V, 10= 10 to 100mA

0.022V = ± 0.09%

Output Ripple

Vcc=5.0V,lo=100mA

50mVp-p

Short Circuit Current

Vcc=5.0V, RL=O.Hl

910mA

Efficiency

Vcc=5.0V,lo=100mA

64.5%

Output Ripple with Optional Filter

Vcc=5.0V,lo=100mA

70mVp-p

c8SAMSUNG
Electronics

242

LINEAR INTEGRATED CIRCUIT

KA34063AN

Table: Design Formula
Calculation

Step-Down

Step-Up

ton

Vout+ V F

VOUT + V F - Vee (min)

IVoutl + V F

toff

Vee (min) - Vsat - Vout

Vee (min) - Vsat

Vcc- Vsat

(ton + toft) max

1
-fmin

--

CT

4x 10-5 ton

4 x 10-5 ton

Ipk (switch)

2 lOUT (max)

Rse
L (min)

(Vee (min)-Vsat-Vout)

ton (max)

Ipk (switch)
Co

1

1

--

fmin

fmin

2 lOUT (max)

0.3/lpk (switch)

Voltage-Inverting

( ton +toff )
---toff

0.3/lpk (switch)
(Vee (min)-Vsat)

•

4x 10-5 ton
210ut(max) (ton/toft + 1)
0.3/1pk (switch)
(Vcc(min) - Vsat)

ton (max)

Ipk (switch)

Ipk (switch)

ton (max)
--

Ipk (switch) (ton + toff)

louT ton

lOUT ton

8 Vripple (p-p)

Vripple (p-p)

Vripple (p-p)

Vsat = Saturation Voltage of the output switch.
VF = Forward Voltage drop of the rectifier.
The following power supply characteristics must be chosen:
Vee: Normal input voltage, if this voltage is not constant, then use Vee (max) for step-down and Vee (min) for step-up converter.
R2
Vout: Desired output voltage, Vout = 1.25 (1 + R1 )

lout: Desired output current.
fmin: Minimum desired output switching frequency at the selected values for Vee and 10.
Vripple (p-p): Desired peak-to-peak output ripple voltage. in practice, the calculated value will need to be increased due
to the capacitor's equivalent series resistance and board layout.
The ripple voltage should be kept to a low value since it will directly effect the line and load regulation.

c8SAMSUNG
Electronics

243

NOTES

LINEAR INTEGRATED CIRCUIT

KA431C/ACii

PROGRAMMABLE PRECISION REFERENCES
The KA431 is a three-terminal adjustable regulator ~eries with a
guaranteed thermal stability over applicable temperature ranges. The
output voltage may be set to any value between Vref (approximately 2.S
volts) and 36 volts with two external resistors. These devices have a
typical dynamic output impedance of 0.20. Active output circuitry
providl)S a very sharp turn-on characteristic, making these devices
excellent replacement for zener diodes in many applic~tions.
The KA4311 is characterized for operation from - 40°C to + 8SoC, and
the KA431 C/AC from O°C to 70°C.

8 DIP

1: Ref. 2: Anode 3: Cathode

FEATURES
•
•
•
•
•

Programmable output voltage to 36 volts
Low dynamic output Impedance 0.20 typical
Sink current capability of 1.0 to 100mA
Equivalent full·range temperature coefficient of SOppm/oC typical
Temperature compensated for operation over full rated operating
temperature range
• Low output noise voltage
• Fast tum on response

BLOCK DIAGRAM

a SOP

2, 3, 4, 7: N.C.

1

1: Cathode 2, 3, 8,7: Anode 8: Ref.

4,5: N.C.

ORDERING INFORMATION

REFERENCE ()--'-----f"",.

CATHODE

Device

ATHODE(K)

REFERENCE (R) 0 -

Operating Temperature Package

o -+70°C
o -+70°C

TO-92

IKA431CN

IKA431 CD

0-+70°C

a SOP

KA4311Z

-40-+85°C

TO-92

KA431IN

-40-+8SoC

a DIP

0- + 70°C

TO-92

KA431CZ

l

1

1: Cathode 8: Anode 8: Ref.

KA431ACZ

8 DIP

bANODE (A)

SCHEMATIC DIAGRAM
CATHODE

D2

ANODE

c8~SUNG

247

I

LINEAR INTEGRATED CIRCUIT

KA431C/AC/I
ABSOLUTE MAXIMUM RATINGS

(Operating temperature range applies unless otherwise specified.)
Characteristic
Cathode Voltage

Symbol

Value

Unit

VKA

37

V

IK

-100 - + 150

mA

Reference Input Current Range

IREF

0.05 -+10

mA

Power Dissipation
D, Z Suffix Package
N Suffix Package

Po
770
1000

mW
mW

Operating Temperature Range
KA431CZ, KA431CN, KA431CD, KA431ACE
KA4311Z, KA4311N

Topr
0-+70
-40 -+85

Storage Temperature Range

Ts1g

°C
°C
DC

Cathode Current Range (Continuous)

-65 -+150

RECOMMENDED OPERATING CONDITIONS
Characteristic

Typ

Symbol

Min

Cathode Voltage

VKA

VREF

36

V

Cathode Cu rrent

IK

1.0

100

mA

ELECTRICAL CHARACTERISTICS

Max

Unit

(Ta = 25°C, unless otherwise specified)

Characteristic

Symbol

Test Conditions

Reference Input Voltage

VREF

VKA=VREF,IK=10mA

Deviation of Reference
Input Voltage Over·
Temperature (Note 1)

VREF (dev)

VKA=VREF,IK=10mA
TminsTasTmax

KA431C
Min

KA431AC

Typ Max Min

KA431 I

Typ Max Min

Typ Max

2.440 2.495 2.550 2.470 2.495 2.520 2.440 2.495 2.550
4

17

4

17

5

30

Unit
V
mV

Ratio of Change in
Reference Input Voltage
to the Change in
Cathode Voltage

D.VREF

Reference Input Current

IREF

'K=10mA, R1=10KD, R2 =00

2

4

2

4

2

4

pA

Deviation of Reference
Input Current Over
Full Temperature Range

IREF(dev)

IK= 10mA, R1 = 10KD, R2 = 00
Ta=Full Range

0.4

1.2

0.4

1.2

0.8

2.5

pA

Minimum Cathode Cur·
rent for Regulation

IK(min)

VKA = VREF

0.4

1.0

0.4

1.0

0.4

1.0

rnA

Off·State Cathode
Current

IK(off)

VKA =36V, VREF=O

0.1

1.0

0.1

1.0

0.1

1.0

pA

Dynamic Impedance
(Note 2)

ZKA

VKA=VREF, IK=1 to 100mA
fs1.0KHz

0.2

0.5

0.2

0.5

0.2

0.5

0

IK=10mA

D.VKA

D.VKA =10V·VREF

-1.4 -2.7

-1.4 -2.7

-1.4 -2.7

I!:::.KKA=36V-10V

-1.0 -2.0

-1.0 -2.0

-1.0 -2.0

mVN

*KA431C/AC: Tmin=OoC, Tmax= + 70°C
KA4311: Tmin= -40°C, Tmax= +85°C

c8SAMSUNG
Electronics
'

248

LINEAR INTEGRATED CIRCUIT

KA431C/AC/I

Note: 1. The deviation parameters VREF(dev) and IREF(dev) are defined as the differences between the maximum and
minimum values obtained over the rated temperature range. The equivalent full-range temperature coefficient
MAX VREF~:
~_ _
~
__.

of the reference input voltage, aVREF is defined as:

M

ax

V"' Mi

n

V,,,

aVREF

ppm
(-cc) =

Jv,,,

I

"T, V,,,,,,,,
(

VREF(dev) ) X 106
V REF @25°C
6T
A

MIN VREF

,oEVI

---

I·

,--------

~6TA-_____l

where 6 TA is the rated operating free-air temperature range of the device.
aV REF can be positive or negative depending on whether minimum V REF or maximum V REF respectively,
occurs at the lower temperature
Example: Max V REF =2500mV@30°C, Min VREF =2492mV@O°C, V REF =2495mV@25°C, 6T A=70°C for;
KA431C

Because minimum V REF occurs at the lower temperature, the coefficient is positive.
2. The dynamic impedance is defined as:

I ZKA I

=

66~:A

When the device is operated with two external resistors (see Figure 2), the total dynamic impedance of
the circuit is given by:

IZ I =
f

~~

= I ZKA I (1 +

:~)

TEST CIRCUITS
Fig. 1 Test Circuit for VKA = VREF
INPUT

o-~YIt--~--o

Fig_ 2 Test Circuit for VKA~ V REF
INPUT o---ItM....--....----Q

R1

R2

m
Fig. 3 Test Circuit for

VKA = VREF

(1

+ R1/R2) + IREF

R1

loll

c8SAMSUNG
Electronics

249

I

KA431C/AC/I

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 5 CATHODE CURRENT VS CATHODE VOLTAGE

Fig. 4 CATHODE CURRENT VS CATHODE VOLTAGE

800
VKA:::Vrel

T.=25°C

125

VKA::::V ref
T.=25°C
600

100

1m;,

)

5

V

5

-50

/

-75

/

-100

-2

/

I

r

-200
-1

-1

Cathode Voltage (V)

Cathode Voltage (V) .

Fig. 6 CHANGE IN REFERENCE INPUT
VOLTAGE VS CATHODE VOLTAGE

\'
>g

-5

i

-10

I

-15

i

-20

IK =10mA

T.=25°C

1,\

40

~

~
.5

.!!

:.

-25

.5

I

-30

~

'" '"

-35

-40

Fig. 7 NOISE VOLTAGE VS FREQUENCY
50

o

10

15

20

!
t
~

'" '"

25

30

:ll

'"

VKA = V,''.

I K =10mA

I

T.=25'C

I....

-"""'r---

30

20

'0
Z

10

l'

35

__~~~__~~~~-L~~
100
400 1 K
4K 10K
40K lOOK

OL-~LU~

10

40

40

Frequency (Hz)

Cathode Voltage (V)

Fig. 9 SMALL SIGNAL VOLTAGE
Fig. 8 DYNAMIC IMPEDANCE VS FREQUENCY

AMPLIFICATION VS FREQUENCY

100
70

70
;:

1~;~O'1'bomA

T~:!26JJ

IK =10mA

40

60

20

50

r~

10

b-..

iii

:s

§:

6

40

~

30

i

20

~

g
~

!.
.E

1-10-

I

0.7

0.2
0.1

~

,

0.4

Ii
lK

10K

1\

~



ffi

/

.............

I
2.5

3.5

4.5

REVERSE VOLTAGE (V)

5.5

4.84
-50

I
-25

25

50

75

100

125

TEMPERATURE (OC)

Fig. 7 FORWARD CHARACTERISTICS

0.2

_r--

FORWARD CURRENT (mAl

c8SAMSUNG
Electronics

259

KA336·5.01 BI KA236·5.0

LINEAR INTEGRATED CIRCUIT

TYPICAL APPLICATIONS
Fig. 9 5.0V REFERENCE WITH MINIMUM
TEMPERATURE COEFFICIENT

Fig. 8 5.0V REFERENCE
10V

5.0V

1N457'

KA336·5.0

KA336·5.0 ~--·~10K\t
1N457'

t Adjust to 5V
• Any silicon signal diode
Fig. 10 TRIMMED 4V TO 6V REFERENCE WITH TEMPERATURE
COEFFICIENT INDEPENDENT OF BREAKDOWN VOLTAGE
10V

Fig. 11 PRECISION POWER REGULATOR WITH
LOW TEMPERATURE COEFFICIENT

Your

KA336·5.0 ~--<6~~~BRATE

• Does not affect temperature coefficient

R1

625

FIGURE 10

Fig. 12 5VCROWBAR
V+.-----~------~-

SENSITIVE
GATE SCR

c8SAMSUNG
Electronics

260

LINEAR INTEGRATED CIRCUIT

KA201 AlKA301 A

8 DIP

SINGLE OPERATIONAL AMPLIFIER
The KA201A and KA301A are general-purpose operational amplifiers
which are externally phase compensated, permit a choice of operation
for optimum high-frequency performance at a selected gain: unity-gain
compensation can be obtained with a single capacitor.

FEATURES
8 SOP

•
•
•
•

Short-circuit protection and latch-free operation
Slew rate of 10V/p,s as a summing amplifier
Class AB output provides excellent linearity
Low bias current

BLOCK DIAGRAM
NULUCOMPENSATION

1

•

8

COMPENSATION

ORDERING INFORMATION
Device
KA301AN

5

OFFSET NULL

KA201AN
KA301AD
KA201AD

Package Operating Temperature
0- + 85°C
8 DIP

8 SOP

-25- + 70°C
0- +85°C
-25- +85°C

SCHEMATIC DIAGRAM
r---~--~~-------+--~~------------'---oVcc

R11
L------+--~....(J

c8SAMSUNG
Electronics

OUTPUT

263

I

KA201 AlKA301 A

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

KA201A

KA301A

Unit

Supply Voltage
Differential Input Voltage
Input Voltage
Output Short Circuit Duration
Power Dissipation
Operating Temperature Range
Storage Temperature Range

Vs
VID
V,

±22
±30
±15
Continuous
500
-25- +S5
-65 - +150

±1S
±30
±15
Continuous
500
0-+70
-65 - +150

V
V
V

Po
Topr
Tstg

mW
°C
°C

ELECTRICAL CHARACTERISTICS
(Ta = + 25°C, Vee = + 15V,

Characteristic

VEE

= - 15V, unless otherwise specified)

Symbol

Input Offset Voltage

V,o

Input Offset Current

1'0

Input Bias Current •.

Test Conditions

KA201A
Min

0.5

Rss50KO
NOTE 1

1.5

NOTE 1

Is

2.0

Av

Average Temperature
Coefficient of Input
Offset Voltage

I::,V,oII::,T

Average Temperature
Coefficient of Input
Offset Current

I::, hoI I::, T

Input Voltage Range

VIeR

60

75

Vee= ± 15V,

Vo= ± 10V

NOTE 1

1.7
50

mV

10

mV

50

nA

70

nA

250

nA

3.0
3.0

25

160

V/mV

15

25

rnA
rnA

2.5

160

nA
inA

2.0
RL~2KO,

Unit

7.5

300

Vs= ± 15V
Vs= t20V, Ta=Tamax

Large Signal Voltage Gain

4.5

10

100

Vs= ±20V
Supply Current

2.0

20
40

,

2.0

Typ Max

3

NOTE 1

I'B

KA301A

Typ Max Min

V/mV
p,V/oC

3.0

15

6.0

30

25°C s Ta s Tamax

0.01

0.1

0.01

0.3 nA/oC

TaminsTas25°C

0.02

0.2

0.02

0.6 nA/oC

NOTE 1

Vs= ±20V

NOTE 1

Vs= ± 15V

NOTE 1

± 15

V
±12

V

Common-Mode Rejection
Ratio

CMRR

Rs s50KO

NOTE 1

SO

100

70

95

dB

Power Supply Rejection
Ratio

PSRR

RsS50KO

NOTE 1

SO

100

70

100

dB
V

Output Voltage Swing
Input Resistance

Your
R,

Vs= ± 15V

RL=10KO

±12 ±14

±12 ±14

RL=2.0KO

±10 ±13

±10 ±13

1.5

0.5

4.0

2.0

V
MO

NOTE 1 KA201A: -25sTas +85°C
KA301A: OsTas + 70°C

c8SAMSUNG
Electronics

264

KA201 AlKA301 A

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 2 VOLTAGE GAIN

Fig. 1 SUPPLY CURRENT

1...-_-+-_-+-_-: ---±_"""""f---:::::;;;.-f

2.5

110

80

0L-__-L__
5

7.5

~

____L__ _

10

~

_ _~_ _~

15

12.5

70
5

20

17.5

----

-

12.5

s;-

"

i/II

Vs= :t15V

\

ii

I-

~

I::)

70

:2.

~

z

1

80

2

80

iiI
a::

40

'"

15

•

I

Vs= :t15V

r\.,

w
Q
0
:Ii

0

,

~BIAS
.....

fd

a= +25°C

7.5

12.5

Fig. 4 INPUT CURRENT

r-....

1

z

10

80

"

10

.!!

- 25ic:STaS700C

7.5

Fig. 3 CURRENT LIMITING

-.....;:;:;

l.-----

SUPPLY VOLTAGE (:tV) MINIMUM

SUPPLY VOLTAGE (:tV)

15

M\"'\~

~

30

z

0

:Ii
:Ii

I

2.5 ~--

"T'

-1--_. -_.--

10

-

20

0

--

()

10
OFFSET

I

15

20

30

25

-40

a

-20

20

40

Fig. 6 COMMON MODE REJECTION

Fig. 5 POWER SUPPLY REJECTION
120

100

" "~

'\..
80

1

60

I-

Z

W

a::
a::
::)
()

"K.
'" ~
~1;'1'

20

10

iz

~
~?;..
::::::

b..

1M

20
10M

lK

10K

lOOK

FREQUENCY (Hz)

265

KA201A1KA301 A

LINEAR INTEGRATED CIRCUIT
Fig. 8.0PEN LOOP FREQUENCY RESPONSE

Fig. 7 SINGLE POLE COMPENSATION
R,

100 r---~--~~--r---+----r-

225

R,
INPUT

R,

80

180

60

1351

40

90

20

45

iii

'it

:s.
z

'i

CI

CI

:5

w

CI

~0

R,Cs
C,2:-_
R,+R2
Cs 2:30pF

>

;:z:
A.

10

100

1K

10K

100K

1M

10M

FREQUENCY (Hz)

Fig. 10 VOLTAGE FOLLOWER PULSE RESPONSE

Fig. 9 LARGE SIGNAL FREQUENCY RESPONSE
16

10

T~=kJ,~

Vs

~a=25lc

:!:15V

Vs=:!:15V-

-

12
C1=3pF

~
CI

z

itil

I

\

r----J I-- ~

\

INPUT

~

C1 =30PF'

\

\

\
i\

10K

1K

>

-

'i'..

I

I

10

20

-10
30

40

60

80

Fig. 12 OPEN LOOP FREQUENCY RESPONSr::

R,

1\

VO\JT

80

:s.
z

60

CI

~

~SE,

l\

w

CI

225

r\,

iii

'i

TWJ POLE

"'",

100

40

180

1

'-I'

>
20
Ta=2S'C
Vs= :!:1SV
t--C1 =30pF
C2=jPF
1

10

100

,lK

10K

FREQUENCY (Hz)

90

I

!i
if:

"

lOOK

I
135

~

GAI~

0

-20

c8SAMSUNG
Electronics

70

120

-VIN

R,Cs
_
C,2: _
R,+R 2
Cs =30pF
C2 =10C,

50

TIME(,.s)

R,

R,

I

SINGLE POLE

10M

Fig. 11 TWO POLE COMPENSATIOIII

+VIN

I

-

FREQUENCY (Hz)

INPUT

IOUTPUT

V

\

--- -- I't.

-8
1M

100K

-4

-6

\

.........

o

-2

0
SINGLE POLE

I

\

W

CI

I /

45

1\

1M

10M

266

KA201A1KA301A

LINEAR INTEGRATED CIRCUIT

Fig. 13 LARGE SIGNAL FREQUENCY RESPONSE

Fig. 14 VOLTAGE FOLLOWER PULSE RESPONSE

16

10
Js=1 ±11JJ
Ta=25'C
Cl =30pF
C2=300pF

\

12

\
\

>-

!!.
CI

z
j



OUTPUT

\

!

1&1
CI

~

I-"-~'

INPUT

,\

~

::>
0

I I

-10

lOOK

-

JOJLE

10

1M

20

30

FREQUENCY (Hz)

40

50

60

70

80

TIME(p.s)

120

C,
100

"'

iii
:g.

R,

z
C

INPUT

Cl
1&1
Cl

~

I

Vs = ± 15V
Ta=25'C -

I -........

80

~

225

180

"'" rv
" '\

PHASE~

60

135

~

40

0

>

\

20

c,

•

Fig. 16 OPEN LOOP FREQUENCY RESPONSE

Fig. 15 FEEDFORWARD COMPENSATION

1

FEED FORWARD
I
I

C2 = - 2xfoR2
fo = 3M Hz

90

45

~IN

"'

-20
10

100

lK

10K

lOOK

1M

10M

100M

FREQUENCY (Hz)

Fig. 18 INVERTER PULSE RESPOSE

Fig. 17 LARGE SIGNAL FREQUENCY RESPONSE
16

12

10

t~2~Jcl

\

rrrn

,

~

- --- ---

FEED FORWARD

1--- ~--

1'4

--

1

INPUT

z

I

!

1&1

\

r,\

lOOK

-2

> -4
-6

~
o

II

CI

~
0

1M

"

FREQUENCY (Hz)

c8SAMSUNG
Electronics

~

..FEE?FORfARD

J

-8

r-..

I--

I

~
CI

~

OU~PUT

--. ---1---1--i
Ta=25'C
s = ±115V -

-10
10M

10

20

30

40

50

80

70

80

TIME(p.s)

267

LINEAR INTEGRATED CIRCUIT

KA733C
DIFFERENTIAL VIDEO AMPLIFIER

14 DIP

The KA733C is a monolithic differsntial input, differential output,
wideband video amplifier.
The use of internal series-shunt feedback gives wide bandwidth with
low phase distortion and high gain stability. The KA733C offers fixed
gains 10,100,400 without extemal components, and adjustable gains from
10 to 400 by use of an external resistor.
The KA733C is intended for use as a high performance yideo and pluse
amplifier in communications, magnetic memories, displays and video
recorder systems.

14 SOP

FEATURES
• 80M Hz bandwidth

• 170KO Input resistance
• Selectable gains of 10,100,400
• No frequency compensation required

BLOCK DIAGRAM

•

GSE~:~~

ORDERING INFORMATION
G2B GAIN
12 SELECT

3

G 1A GAIN'
SELECT

OUTPUT (+)

11 G1B GAIN
SELECT

Device

Package

KA733CN

14 DIP

KA733CD

14 SOP

Operating Temperature
0- -t 70°C

7

SCHEMATIC DIAGRAM
vcco-----.---~---+----+---~------+-~

+--__

L-.-_ _ _

GAIN SELECT

~,......-_+-___*--<'}

OUTPUT

2~:>-____1--_""

VEED-------........-------4....-----.......--------'-.....----J

c8SAMSUNG
Electronics

268

LINEAR INTEGRATED CIRCUIT

KA733C
ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Differential Input Voltage
Common mode input Voltage
Power Supply Voltage
Output Current
Power Dissipation
Operating Temperature Range
Storage Temperature Range

V ID
VI
Vs

±5
±6
±8
10
500
0-+70
-65- + 150

V
V
V
rnA
mW
°C
°C

10
Po
Topr
T519

ELECTRICAL CHARACTERISTICS
(VCC= +6V, V EE = -6V, Ta=25°C, unless otherwise specified)
Characteristic
Differential Voltage Gain
Gain 1 (Note 1)
Gain 2 ( " 2)
Gain 3 ( " 3)
Bandwidth
Gain 1 (
Gain 2 (
Gain 3 (
Rise Time
Gain 1 (
Gain 2 (
Gain 3 (
Propagation
Gain 1 (
Gain 2 (
Gain 3 (

"

1)
2)
3)

"

1)

"
"

" 2)
"

Test
Symbol
Figure

Delay
1)
2)
3)

Input Resistance
Gain 1 ( " 1)
Gain 2 ( " 2)
Gain 3 ( " 3)

Power Supply Rejection Ratio
Gain 2
Output Offset Voltage
Gain 1
Gain 2 and 3
Input Capacitance

c8SAMSUNG
Electronics

Max

Unit

250
80
8

400
100
10

600
120
12

V/V

RL = 2KO, Voul = 3V p.p

2

BW

Rs= 500

2

tr

Rs= 500
VOUT = 1Vp.p

10.5
4.5
2.5

12

ns

2

t pd

Rs= 500
VOUT = 1Vp.p

6.0
6.0
3.6

10

ns

3

Ri

Voo:::;;1V

Input Offset Current

Input Voltage Range

Typ

Av

Input Bias Current

Common Mode Rejection Ratio
Gain 2
Gain 2

Min

1

3)

"
"
"

Test Conditions

40
60
80

10

MHz

4.0
30
170

KO

ho

0.4

5

p,A

hs

9

30

p,A

1

VICR

±1

4

CMRR

VCM = ± 1V, f:::;; 100KHz
VCM = ±1V, f=5MHz

60

86
95

dB
dB

1

PSRR

L, Vs=

50

86

dB

1

Voo

RL=oo

0.6
0.35

Gain 2

2.0

±0.5V

V

1.5
1.5

V
V
pF

269

I

KA733C

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTIC

(Continued)

Test
Figure

Symbol

Output Common Mode Voltage

1

VOCM

Output Voltage Swing

1

VauT

Characteristic

Output Sink Current
Power Supply Current

Min

Typ

Max

Unit

RL=oo

2.4

2.9

3.4

V

RL=2Kn

3.0

4.0

V

2.5

3.6

mA

Test Conditions

Isink
1

Output Resistance

Is

RL=OO

18

24

20

Ro

mA
n

ELECTRICAL CHARACTERISTICS
The following specifications apply over the range of 0°C::sTa::s70°C Vcc= +6V, V EE = -6V

Characteristic

Differential Voltage Gain
Gain 1 (Note 1)
Gain 2 (Note 2)
Gain 3 (Note 3)

Test
Figure

Symbol

1

Av

Test Conditions

RL=2Kn
Vout = 3V p.p

Min

250
80
80

Typ

Max

Unit

600
120
12

VIV

Input Bias Current

lis

40

fJ.A

Input Offset Current

110

6.0

fJ.A

Input Voltage Range

1

VICR

±1.0

V

Input Impedance (Gain 2)

3

Ri

8.0

Kn

Common Mode Rejection Ratio
Gain 2 (Note 2)

4

CMRR

VCM = ± 1V, f::s100KHz

50

dB

Power Supply Rejection Ratio
Gain 2 (Note 2)

1

PSRR

L.Vcc= ±O.5V
L.V EE = ±O.5V

50

dB

1

Vao

1

Vap

2.8

V

Isink

2.5

mA

Output Offset Voltage
Gain 1 (Note 1)
Gain 2 and Gain 3 (Note 2, 3)
Output Voltage Swing
Output Sink Current
Power Supply Current

Is

1.5
1.5

27

V

mA

Notes 1. Gain select pins G1A and G1S connected together.
2. Gain select pins G2A and G2S connected together.
3. All gain select pins open.

c8SAMSUNG
Electronics

270

KA733C

LINEAR INTEGRATED CIRCUIT

PARAMETER MEASUREMENT INFORMATION
TEST CIRCUITS

VOD

2Kn

1KQ

Fig. 1

Fig. 2

50Q

VOD

O.2p,F

2KQ

VIC

1Kn

Fig. 4

Fig. 3

2B? 1Bcr--J

VOD

2Kn

VOLTAGE AMPLIFICATION ADJUSMENT

Fig. 5

c8SAMSUNG
Electronics

Fig. 6

271

•

KA733C

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 7 PHASE SHIFT VI FREQUENCY

~
-5

"

"-"",

~

GAIN 2
V.= :l:8V_
Ta=25·C

~~
~

1a- 100
II!ell

l-l50

t:

I'

%
II)

" '"

-20

VI FREQUENCY

-.. ~1'"

-50

..... ~

-25

Fig. 8 PHASE SHIFT

-200

1\
~\
\\~

~n

~ -250
110.

~

i:~:5~6-

~'Gi'li

-300

I\~I~~
GAIN 1

-350

o

5

8

7

10

10

FREQUENCY (MHz)

Fig. 9 VOLTAGE GAIN VI FREQUENCY

50

100
FREQUENCY (MHz)

1000

Fig. 10 PULSE RESPONSE
1.6

60

1.4

50

GAIN 1

ii'

"""",,

l!.

z

:iii!

40
GAIN 2

ell

1.2

"'"

1&1

~

30

~
Q
1&1
Q

20

~

GAIN 3

Z

"~

1&1

~

ell
Z

10

ili

~

Vs= :l:8V
Ta=25·C

1&1

~

lN3

1.0

II"'"

I J"

Gi

0.8
GAIN2

~ 0.6

II

:::>

~~
~

110.
I-

0.4

0

0.2

i:::5~6-

/GAINl

I-

R,=lKO

IV

:::>

})

-0.2

~
10
50
100
FREQUENCY (MHz)

500

-0.4
-15 -10

1000

-5

0

10

15

20

25

30

35

TIME (ns)

Fig. 9

Fig. 11 PULSE RESPONSE VI SUPPLY VOLTAGE
1.6

I
I

1.4
1.2

~
~

V......

0.8

II J

0.6

i

~ 0.4

-10 -5

c8SAMSUNG
Electronics

20

25

~

0.6

110.
I-

~~=7~~Ta=85.CTa=25°C

,

0.4

J

:::>

0

~i'=lKI-

Ta=O·C

1.0
0.8

:::>

1
1
10
15
TIME (nl)

I
25OC

I~ -1

I-

I
GAIN 2
Ta=25·CR,=lK11

V

GAIN 2 Vs= :l:6V

ell

~

1

-0.2
-0.4
-15

1&1

Vs= :l:3V

IV

o 0.2

~

s =:l:1 6V

Jf

!;

I r

1.4
1.2

Vs= :l:8V

~ 1.0

III

Fig. 12 PULSE RESPONSE VI TEMPERATURE
1.6

0.2

-0.2
30

35

-0.4
-15 -10

-5

5

10
15
TIME (n.)

25

30

35

272

KA733C

LINEAR INTEGRATED CIRCUIT
Fig. 13 COMMON MODE REJECTION RATIO
VI FREQUENCY

Fig. 14 OUTPUT VOLTAGE SWING VI FREQUENCY

100

II

90

Q

II

,.....,.

iii
~

80

i""o

Q

~

2
u

80

::::I

50

w
Q
0
:I

40

~:~:S~~-

1'1"-

0

Vs= ±6V

5.0

Ta=2S'~-

RL =lKO

CI

~

...... ~

w

4.0

~

CI

c

i'o..

!:i
0

3.0

>

to-

ito-

30

0

:I
:I

~
z

Z

z

6.0

GAIN 2

r-.....

70

Z

UI
a:

7.0

::::I

"

2.0

0

20

1.0

U

1\
\

10

o
lOOK

10K

1M

10M

10

1

100M

FREQUENCY (Hz)

50

500

100

Fig. 15 DIFFERENTIAL OVERDRIVE RECOVERY TIME
1.4

Tl=25

1.3

.

.s.

/v

60
50

>

Vs= ±6V
Ta=2S'C
40 I--GAIN 2

:IE
i=

iii>

V

0

fd

a:
w
~
a:
Q

iii>

30

;C

10

w 1.0

~

0

0.9

>

w
~

~

a:

0.8

./
o

20

40

60

80

100

120

140

160

180

SUPPLY VOLTAGE (±y)

Fig. 18 GAIN VI FREQUENCY VI SUPPLY VOLTAGE

50

iii

I

~~~:S~~~

5.0

;C

GAIN2 Ta=2S'C

40

w

CI

4.0

~

:/

)

1.0

50

100

fil
ffi

20

~

10

\\

Q

V

CI

\

z

iii

V
I-~
10

'\ \

>

V

2.0

0

"IIii\

30

0

3.0

to-

i

~
Z

CI

>

to-

V

60

w

::::I

/v

LV

200

CI

~

-

0.4

6.0

0

y

)..-'r--- V

.... I - ~

GAIV

0.5

7.0

~

~~

0.7
0.6

Fig. 17 OUTPUT VOLTAGE SWING
VI LOAD RESISTANCE

~
z

./.

CI

DIFFERENTIAL INPUT VOLTAGE (my)

5

... V

1.1

CI

1c
./

1.2
Z

V

0

o

V

V

/

20

I/

I

Fig. 16 VOLTAGE GAIN VI SUPPLY VOLTAGE

70

w

1000

FREQUENCY (MHz)

200

500

lK

c8SAMSUNG
Electronics

SK

10K

-III

V
VrlY

-10

LOAD RESISTANCE (0)

Vs.=.±.8VVs= ±6V

10

100

500 1000

FREQUENCY (MHz)

273

KA733C

LINEAR INTEGRATED CIRCUIT

Fig. 20 SUPPLY CURRENT vs SUPPLY VOLTAGE

Fig. 19 SUPPLY CURRENT vs TEMPERATURE
28

21

I I

Ta=25'C20

~

24


0

i

//

18



::>

1/1

/V'

.§.

1/1

V

/

V

16
12

//

15

/V'

14

8

-60

-20

60

20

100

140

3
SUPPLY VOLTAGE (±VJ

TEMPERATURE (OC)

Fig. 21 VOLTAGE GAIN vs RADJ

Fig. 22 VOLTAGE GAIN ADJUST CIRCUIT

1000

\..

"
100

i!::5~6-

"I'

I

r\.

'"

I'-

,

i'. ~ ..

10
10

100

1K

""~10K

Rad) (n)

c8SAMSUNG
Electronics

274

KA9256

LINEAR INTERGRATED CIRCUIT

DUAL POWER OPERATIONAL AMPLIFIER
10 SIP

The KA9256 is a dual power operational amplifier and it is output
maximum current is 1.0A (Vs = ± 15V). It can be used in arm driver for
player, driver for brush motors forward and reverse rotation control and CD
output driver for hole motor.

FEATURES
•
•
•
•

=

Internal current limiting: los 350mA (Rse
High output current: 10 SOOmA max
10 SIP HIS package
Intemal phase compensated

=

=2.20)

BLOCK DIAGRAM

ORDERING INFORMATION
Operating Temperature
w

;::

a5

0

C/l
C/l

>

;:)

I

+

~

~

~

I

N
~

N

0

a5C/l

;:)

N

~

w

C/l

>

~ :J

~

SCHEMATIC DIAGRAM
SENSE
~-----~~~~-~----~-----~----~~Vcc

IN(-)

IN( +) O---+----+-.....J

t-----+--t-f

~------+---~>--<>OUTPUT

L-~-~----~~-+-~~>---~--4-~----~----~-oVEE

TO OTHER HALF

c8~SUNG

275

•

LINEAR INTERGRATED CIRCUIT

KA9256
ABSOLUTE MAXIMUM RATINGS
Characteristics

Symbol

Value

Unit

Supply Voltage
Output Current
Power Dissipation
Operating Temperature Range
Storage Temperature Range

Vs

±18
1.0
12.5
-20- + 70
-65 -+ 150

V
A
W
°C
°C

10
PD
Topr
Tstg

ELECTRICAL CHARACTERISTICS
(Vee = +15V, VEE = -15V, Ta=25°C, unless otherwise specified)

Characteristic

Symbol

Test Conditions

Min

Typ

Max

Unit
mV

Input Offset Voltage

VIO

2

6

Input Offset Current

110

10

200

nA

Input Bias Current

he

100

700

nA

10

20

rnA

Supply Current

Is
± 12

± 13

V

100

dB

VieR

±12

± 14

V

Common Mode Rejection Ratio

CMRR

70

90

dB

Power Supply Rejection Ratio

Output Voltage Swing

VOUT

Large Signal Voltage Gain

RL = 330

Av

Input Voltage Range

PSRR

50

Bandwidth

BW

1.0

150

MHz

Slew Rate

SR

Av = 1, RL = 330, R = 100, C = 0.1/-tF

0.15

V//-ts

INN

Limiting Current

los

Rse = 2.20

0.35

A

Cross Talk

CT

RL = 330, Vo = 1Vp.p

60

dB

c8SAMSUNG
Electronics

276

LINEAR INTEGRATED CIRCUIT

KF347C/AC
QUAD JFET INPUT OPERATIONAL
AMPLIFIERS

14 DIP

The KF347 is a high speed quad JFET input operational amplifiers. This feature high impedance, wide bandwidth, high slew rate, and low input offset and bias
currents. The KF347 may be used in circuits requiring
high input impedance, high slew rate and wide bandwidth, low input bias current.

FEATURES
•
•
•
•

Low input bias
High input impedance
Wide bandwidth: 4 MHz (Typ)
High slew rate: 13 V/p.s (Typ)

BLOCK DIAGRAM
ORDERING INFORMATION

SCH EMATIC DIAG RAM

Device

Package

Operating Temperature

KF347CN
KF347ACN

14 DIP

0- +70°C

(One Section Only)
. .<)

L - - -.......- - - G

c8SAMSUNG
Electronics
.

vee

OUTPUT

277

I

LINEAR INTEGRATED CIRCUIT

KF347C/AC

ABSOLUTE MAXIMUM RATINGS
Characteristics

Symbol

Value

Unit

Power Supply Voltage
Differential Input Voltage
Input Voltage Range
Output Short Circuit Duration
Power Dissipation
Operating Temperature Range KF347C/AC
Storage Temperature Range

Vs
VIP
VI

±18
±30
±15
Continuous
570
0-+70
-65 -+150

V
V
V

Po
, Topr
Tstg

mW
°C
°C

ELECTRICAL CHARACTERISTICS
(Vec= +15V, VEE = -15V, Ta=25°C, unless otherwise specified)
Characteristic

Input Offset Voltage
Input Offset Voltage Drift

Symbol

VIO

Rs =10KO

Input Bias Current

liB

3
NOTE1

Av
VOUT

Min

5

RL =10KO

VICR

10

100

25

100

50

200
8

25

15

100
4

200

100

±13.5

± 11

+15
-12

pA

pA

V/mV

15

±12

mV

p.V/*C

10

8
50

Unit
Max

13

4
50

I NOTE1

Typ
5

10

I NOTE1
RL =2KO

KF347C
Max

7

I NOTE1

Vo= ± 10V

Input Voltage Range

Typ

25
110

Output Voltage Swing

I

KF347A
Min

!::.Vlol!::.T Rs =10KO

Input Offset Current

Large Signal Voltage Gain

Test Conditions

±12

±13.5

V

± 11

+15
-12

V

Common-Mode Rejection Ratio

CMRR

Rs~10KO

80

100

80

100

dB

Power Supply Rejection Ratio

PSRR

Rs~10KO

80

100

80

100

dB

RI

1012

1012

Is

7.2

SR

13

13

V/p.S

4

4

MHz

Input Resistance
Supply Current
Slew Rate
Gain Bandwidth Product

GBW

Channel Seperation

CS

f= 1Hz-20KHz
(input referenced)

Equivalent Input Noise
Voltage

eN

Rs=1000
f=1KHz

Equivalent Input Noise
Current

iN

f=1KHz

0
7.2

11

11

rnA

120

120

dB

20

20

InV/v'Rz

0.01

0.01

pAlv'Rz

NOTE 1. KF347C/AC: O~Ta~ + 70°C

c8~SUNG

278

KF351

LINEAR INTEGRATED CIRCUIT

SINGLE OPERATIONAL AMPLIFIER

a DIP

The KF351 is JFET input operational amplifier with an internally compensated input offset voltage. The JFET input device provides wide
bandwidth, low input bias currents and offset currents.

FEATURES
•
•
•
•
•

Internally trimmed offset voltage: 10mV
Low input bias current: 50pA
Wide gain bandwidth: 4MHz
High slew rate: 13V/p.s
High input impedance: 10120

a SOP

I

BLOCK DIAGRAM
OFFSET
NULL

VEE

8

4

NC

5 OFFSET
NULL

ORDERING INFORMATION
Device

Package

KF351N

8 DIP

KF351D

8 SOP

Operating Temperature

0- + 70°C

SCHEMATIC DIAGRAM
r--------
0

I

:t-

zz

o +

Z

~en '"
~

>

'":::>

I

I-

C\I

0

~

+85°G

9 SIP

KS272AIS

>

70°C

9 SIP

KS272ACS

SCHEMATIC DIAGRAM

I

8 DIP

KS272ACN

BLOCK DIAGRAM

Operating Temperature

0
0

>

VDDo-~~------~------------------__------------------__- - - - - -

M9

IN( -)

0---1

~-o

IN(+)

OUTPUT

M10
M15

M7

02

VsSIGND
Rz

c8SAMSUNG
Electronics

Cc

285

PRELIMINARY

KS272C/AC, KS2721/AI

CMOS INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

Characteristic

Symbol

Supply Voltage
Differential Input Voltage
Input Voltage
Duration of Short Circuit (Note 1)
Power Dissipation
Operating Temperature Range KS272C/AC
KS272I1AI
Storage Temperature

Voo
VIO
VI

Value

Unit

18
18
- 0.3 - + 18
unlimited
500
0-+70
-25 - +85
-65 - + 150

Po
Topr
Tstg

(Note 1) The output may be shorted to ground or either supply, for
that the dissipation rating is not exceeded.

Voo~14V.

V
V
V
mW
°C
°C

Care must be taken to insure

ELECTRICAL CHARACTERISTICS
(Voo = 10V, Ta= 25°C, unless otherwise specified)
Symbol

Characteristic

Test Conditions

KS272C/KS2721
Min

Typ

Vo= 1.4V

Input Offset Voltage

VIO

Input Offset Current

110

Input Bias Current

lis

Common-Mode
Input Voltage Range

VICR

Output Voltage Swing

VOUT

Large Signal Voltage Gain

Av

Rs= 500

I NOTE2

Min

5

12

12
1
100
1

-0.2
to 9

-0.2
to 9
8
7.8

[ NOTE2

77.5

80

Vo= 1 to 6V

150

150

[ NOTE2

Max

10

1
[ NOTE2

VID = 100mV

Typ

100

[ NOTE2

Vlc =5V
Vo=5V

KS272AC/KS272AI

1

Vlc =5V
Vo=5V

Max

8.6

8

8.6

80

pA

pA

V

7.8
92

mV

V

92
-,-------

Rs = 500

Unit

77.5

dB

Common-Mode
Rejection Ratio

CMRR

Vo=1.4V
VIC = VICR min

70

88

70

88

dB

Power Supply Rejection
Ratio

PSRR

Voo = 5 to 10V
Vo=1.4V

65

82

65

82

dB

Isource

Vo=OV
VIO = 100mV

Isink

Output Current

Supply Current
(each amplifier)

100

-55

-55

V;= Voo
VID = -100mV

15

15

No load, VIC = 5V

1

Vo=5V

rnA

I NOTE2

2

1

2
2.2

2.2

mA

Unity Gain Bandwidth

BW

Av = 40dB, CL= 10pF
Rs = 500

4.5

4.5

MHz

Slew Rate

SR

Unity Gain
RL~2KO, CL= 100pF

2.3

2.3

V//J-s

CS

Av = 100

120

120

dB

Channel Seperation
NOTE 1. KS272C/AC:
2. KS272I1AI: -

O~Ta~

+ 70°C
25~Ta~ + 85°C

c8SAMSUNG
Electronics

286

PRELIMINARY

KS272C/AC, KS2721/AI

CMOS INTEGRATED CIRCUIT

TYPICAL APPLICATION INFORMATION
Latch Up Avoidance
Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (p-Il-p-n) structure that
can function as an SCR, and under certain conditions may be triggered into a low impedance state, resulting in
excessive supply current. To avoid such conditions, no voJtage greater than O.3V beyond the supply rails may be
applied any pin. In general, the OP amp supplies should be established simultaneously with, or before any input
signals are applied.

Output Stage Considerations
The amplifier's output stage consists of a source-follower connected pull up transistor and an open-drain pulldown transistor. The high-level output voltage (VOH) is virtually independent of the IDD selection, and increases with
higher values of Voo and reduced output loading. The low-level output voltage (VOL) decreases with reduced output current and higher input common-mode voltage. With no load, VOL is essentially equal to the GND pin potential.

Circuit Layout Precaustions
The user is caustioned that, due to extremely high input impedance, care must be exercised in layout, construction board cleanliness, and supply filtering to avoid hum and noise pick up.

TYPICAL APPLICATIONS
+5

">---_--.--·n VOUT
VOUT
~--_----TOCMOSOR

LPTTL LOGIC

1M

Fig. 2

Fig. 1

Pulse Generator

AC Coupled Non-Inverting Amplifier

R1

R2

R1

OJ)
AV=1+~
R1

V

2Vp.p

Av=11

Fig. 3

c8 ~l!"SUNG

Fig. 4

287

•

PRELIMINARY

CMOS INTEGRATED CIRCUIT

KS272C/AC, KS27211AI
TYPICAL APPLICATION

Bi·Quad Filter
R

C

Q=~

C1

VIN

100KO

o---t I-------¥ltt-l...-....I

where
AVCF == Center frequency gain
AVBN == Bandpass notch gain
R1
R2 = TBP
R3=TNR2
C1=10C
Example: 10 1000Hz
BW=100Hz
AVCF=1
AVBN=1
R==160KO
R1 =1.6MO
R2=1.6MO
R3= 1.6MO
C==O.o1,.F

1
fo 211"RC
R1 =QR

=

=

R2

Fig. 5

c8SAMSUNG
Electronics

288

PRELIMINARY

KS274C/AC, KS2741/AI

CMOS INTEGRATED CIRCUIT

QUAD CMOS OPERATIONAL
AMPLIFIER

14 DIP

The KS274 is a CMOS operational amplifier designed
to operate with single or dual supplies.
This device has extremely high input impedance, low
input bias and offset current.
Application areas include translucer amplifier, ampli·
fier blocks, active filters, signal buffers, and all the con·
ventional OP Amp circuits which can be easily
implemented in single power supply systems.

FEATURES
• Wide operating voltage range; 3V to 16V or
or ± 1.5V to ± BV
• High Input Impedance: 10120
• Very low input bias current
• Common-mode input voltage range includes the
negative rail
• Single-supply voltage operation_

BLOCK DIAGRAM

I
ORDERING INFORMATION
Device

Package

KS274CN
KS274ACN
KS2741N

Operating Temperature

14 DIP

0-

14 DIP

KS274AIN

- 25 -

+ 70°C
+ 85°C

SCHEMATIC DIAGRAM (One Section Only)

M13
M9

IN(-to-l
M1

OUTPUT
M10

M11
M7

M5

02
R4

I

Vss/GNO

Rz

c8SAMSUNG
Electronics

~

cc

289

PRELIMINARY

KS274C/AC, KS2741/AI

CMOS INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

Characteristic

Symbol

Value

Unit

Supply Voltage
Differential Input Voltage
Input Voltage
Duration of Short Circuit (Note 1)
Power Dissipation
Operating Temperature Range KS274C/AC
KS27411AI
Storage Temperature

Voo
VIO
VI

18
18
- 0.3' + 18
unlimited
570

V
V
V

Po

mW

o ~+70

Topr

°C

-25 ~ +85
-65 - + 150

Tstg

°C

(Note 1) The output may be shorted to ground or either supply, for Voo::S; 14V. Care must be taken to insure
that the dissipation rating is not exceeded.

ELECTRICAL CHARACTERISTICS
(Voo = 10V, Ta = 25°C, unless otherwise specified)
Characteristic

Symbol

Test Conditions

KS274C/KS2741
Min

Input Offset Voltage

Input Offset Current

Input Bias Current
Common-M~de

Input Voltage Range
Output Voltage Swing

Large Signal Voltage Gain

Typ

Vo=1.4V
VIO

ho

lis

Rs = 50n

I NOTE2

Av

5
12
1

8

Vo = 1 to 6V
Rs = 50n

80

I NOTE2

pA

pA
150

-0.2
to 9
8.6

8

7.8

V
8.6

V

7.8
92

80

92

dB

77.5

77.5

mV

100
1

-0.2
to 9

I NOTE2

Unit
Max

12

150

I NOTE2

V ID = 100mV

Typ

10

1

VICR
VOUT

Min

100

I NOTE2

Vlc =5V
Vo=5V

KS27 4AC/KS27 4AI

1

Vlc =5V
Vo=5V

Max

Common-Mode
Rejection Ratio

CMRR

Vo = 1.4V
VIC = VICR min

70

88

70

88

dB

Power Supply Rejection
Ratio

PSRR

Voo= 5 to 10V
Vo=1.4V

65

82

65

82

dB

Isource

Vo=OV
V IO = 100mV

ISink

Output Current

Supply Current
(each amplifier)

100

-55

-55

Vo= Voo
VIO = -100mV

15

15

No load, VIC = 5V

1

Vo=5V

mA

2

1

2.2

I NOTE2

2
2.2

mA

Unity Gain Bandwidth

BW

A v =40dB, CL= 10pF
Rs= 50n

2.3

2.3

MHz

Slew Rate

SR

Unity Gain
RL~2Kn, C L=100pF

4.5

4.5

V/p.s

Channel Seperation

CS

Av = 100

120

120

dB

NOTE 1. KS274C/AC: O::s;Ta::s; + 70°C
2. KS27411AI: - 25::s;Ta::s; + 85°C

c8!!~~SUNG

290

PRELIMINARY

KS274C/AC, KS2741/AI

CMOS INTEGRATED CIRCUIT

TYPICAL APPLICATION INFORMATION
Latch Up Avoidance
Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (p-n-p-n) structure that
can function as an SCR, and under certain conditions may be triggered into a low impedance state, resulting in
excessive supply current. To avoid such conditions, no voltage greater than O.3V beyond the supply rails may be
applied any pin. In general, the OP amp supplies should be established simultaneously with, or before any input
signals are applied.

Output Stage Considerations
The amplifier's output stage consists of a source-follower connected pull up transistor and an open-drain pulldown transistor. The high-level output voltage (V OH) is virtually independent of the 100 selection, and increases with
higher values of Voo and reduced output loading. The low-level output voltage (VOL) decreases with reduced output current and higher input common-mode voltage. With no load, VOL is essentially equal to the GND pin potential.

Circuit Layout Precautions
The user is cautioned that, due to extremely high input impedance, care must be exercised in layout, construction board cleanliness, and supply filtering to avoid hum and noise pick up.

TYPICAL APPLICATIONS
+5

>-___.-_-0

VOUT
VOUT
>---~----TOCMOSOR

LPTTL LOGIC

Fig. 1

Fig. 2

AC Coupled Non-Inverting Amplifier
R1

Pulse Generator

R2

R1

Co

F

VOUT

VOUT

RL

00
AV=1+~

V

2 V p•p

R1

Av=11

Fig. 3

c8SAMSUNG
Electronics

Fig. 4

291

•

PRELIMINARY

KS274C/AC, KS2741/AI

CMOS INTEGRATED CIRCUIT

TYPICAL APPLICATION INFORMATION
Bi-Quad Filter

R

Q=:~
where
AVCF = Center frequency gain
AVBN = Bandpass notch gain
fo=_12?1"RC
R1 =QR

R2=~

TBP
R3=TNR2
C1=10C
Example: fo = 1000Hz
BW= 100Hz
AVCF= 1
AVBN = 1
R=160KO
R1 =1.6MO
R2=1.6MO
R3=1.6MO
C=O.01/LF

Fig. 5

c8SAMSUNG
Electronics

292

LM224/A, LrJl324/A, LM2902

LINEAR INTEGRATED CIRCUIT

,----

QUAD OPERATIONAL AMPLIFIERS
The LM224 series consists of four independent, high gain, internally
frequency compensated operational amplifiers which were designed
specifically to operate from a single power supply over a wide voltage
range.
Operation from split power supplies is also possible so long as the
difference between the two supplies is 3 volts to 32 volts.
voltage.
Application areas include transducer amplifier, DC gain blocks and all
the conventional OP amp circuits which now can be easily implemented
in single power supply systems.

I

-

--

-----------,

--

14 DIP

14 SOP

FEATURES
• Internally frequency compensated for unity gain
• Large DC voltage gain: 100dB
• Wide power supply range: LM224/A, LM324/A: 3V - 32V (or ± 1.5V - 16V)
LM2902: 3V - 26V (or ± 1.5V - 13V)
• Input common-mode voltage range includes ground
• Large output voltage swing: OV DC to Vcc·1.5V DC
• Power drain suitable for battery operation.

ORDERING INFORMATION
BLOCK DIAGRAM
OUT1

Device

Package

LM324N
LM324AN

14 DIP

LM324D
LM324AD

14 SOP

LM224N
LM224AN

14 DIP

LM224D
LM224AD

14 SOP

Operating Temperature

OUT4
IN4 (-)
IN4 (+)

IN3 (+)

0- + 70°C

-25 - +85°C

r---

SCHEMATIC DIAGRAM (One Section Only)

LM2902N

14 DIP

LM2902D

14 SOP

-40 - + 85°C

Vcco---~~-~-----------------~-----~~-.-,

__.-----+---QOUTPUT

GND

,c8SAMSUNG
Electronics

293

•

LM224/A, LM324/A, LM2902

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

LM224/LM224A

LM324/LM324A

LM2902

Unit

Power Supply Voltage
Differential Input Voltage
Input Voltage
Output Short Circuit to GND
Vee::::;; 15V Ta = 25"C (One Amp)
Power Dissipation
Operating Temperature Range
Storage Temperature Range

Vs
V ID
VI

± 18 or 32
32
-0.3 to +32

±180r32
32
-0.3 to +32

± 13 or 26
26
-0.3 to + 26

V
V
V

Continuous

Continuous

Continuous

PD
Topr
T stg

~

570
-25 - +85
-65-= + 150

570
0- + 70
-65= +150

mW
"C
°C

570
-40- +85
-65 + 150

=-

ELECTRICAL CHARACTERISTICS
(Vee = 5.0V, VEE = GND, Ta = 25°C, unless otherwise specified)

Symbol

Test Conditions

Input Offset Voltage

VIO

VleM = OV to Vee - 1.5V
Vo=1.4V, Rs=OO

Input Offset Current
Input Bias Current

Characteristic

Min Typ Max Min Typ Max Min Typ Max
1.5 7.0

mV

Ito

(2.0

30

3.0

3.0

liB

:zto

150

40 250

Supply Current

lee

Vee = 30V
(Vee = 26V for LM2902)

1.0

3

RL=oo, Vee=5V (all Amps)

0.7

1.2

0.7

1.2

Vee = 15V, RL~2KO
Vo= 1V to 11V

50 100

TRL= 2KO 26
Vee = 30V
Vee = 26V for 29021R L= 10KO 27

5
70

Power Supply
Rejection Ratio

PSRR

65 100

CS

f = 1KHz to 20KHz

20

85

40

los

20

3

mA

75

40

mA
Vim V

V
24
5

V
100

mV

75

dB

50 100

dB

50

120
60

V

0.7 1.2

23

65 100

120

Vee
-1.5

22
28
5

65

nA

100

26
27

nA

1.0

25 100

28

50

40 250
0

3

CMRR

120
60

40

dB
60

mA

V in + =1V, Vin - =OV
Vee = 15V, Va = 2V

20

40

20

40

20

40

mA

Vin + =OV, Vin - = 1V
Vee = 15V, Va = 2V

10

13

10

13

10

13

mA

V in + =OV, Vin - = 1V
Vee = 15V, Va = 200mV

12

45

12

45

Isource
Output Current
ISink

Differential Input
Voltage

Vee
-1.5

1.0

Common-Mode
Rejection Ratio

Short Circuit to GND

0

50

RL=oo, Vee=30V (all Amps)
(Vee = 26V for LM2902)

Av

VOH
VOL

Vee
-1.5

0

V ee =5V, RL>10KO

Channel Separation

Unit

1.5 7.0

VieR

Output Voltage Swing

LM2902

LM324

1.5 5.0

Input Common-Mode
Voltage Range

Large Signal
Voltage Gain

LM224

V ID

c8SAMSUNG
Electronics

Vee

f.lA
Vee

Vee

V

294

I

j
)

LM224/A, LM324/A, LM2902

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
(Vee = 5.0V, VEE = GND, unless otherwise specified)
The following specification apply over the range of - 25°C5Ta5
for the LM324; and the - 40°C:5:Ta5 + 85°C for the LM2902

Characteristic

Symbol

Input Offset Voltage

VIO

Test Conditions

+ 85°C for the LM224; and the 0°C5Ta5 + 70°C

LM224

V,eM = OV to Vee -1.5V
Vo = 1.4V, Rs = on

1'0

Input Offset Current
Drift

61d6T

Input Bias Current

VieR

Large Signal Voltage
Gain

Output Voltage Swing

10.0

7.0

10

200

10

500

nA

Vee
-2.0

V

0

Av

Vee = 15V, RL~2.0Kn
Vo= 1V to 11V

25

15

15

V/mV

IRL= 2Kn 26
Vee = 30V
Vee = 26V for 2902 RL = 10Kn 27

26

22

V

V OH

28

VOL

Vee = 5V, RL~ 10Kn

5

Isource

Vin + = 1V, V in - = OV
Vee = 15V, Vo=2V

10

20

10

20

10

20

mA

Isink

V in + = OV, V in - = 1V
Vee = 15V, Vo = 2V

10

13

5

8

5

8

mA

1

V,o

c8SAMSUNG
Electronics

Vee
-2.0

0

27
20

Vee

Vee
-2.0

nA

pA/oC

10
500

300

mV

INloC

7.0
150

100

Unit

Vee = 30V
(Vee = 26V for LM2902)

Output Current

Differential Input
Voltage

7.0

I,s

Input Common-Mode
Voltage Range

LM2902

9.0

7.0

Input Offset Voltage
6V,0/6 T
Drift
Input Offset Current

LM324

Min Typ Max Min Typ Max Min Typ Max

28
5

0

23
20

Vee

V

24
5

100

Vee

mV

V

295

a

LM224/A, LM324/A, LM2902

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
(Vcc= 5.0V, VEE=GND, Ta=25°C, unless otherwise specified)

Characteristic

Symbol

Input Offset Voltage

Via

Input Offset Current

110

Input Bias Current

hs

Input Common-Mode
Voltage Range
Supply Current (All Amps)
Large Signal Voltage Gain

Output Voltage Swing

VICR
lee

Test Conditions

Min Typ Max Min Typ Max

V1CM =OV to Vcc -1.5V
Vo= 1.4V, Rs=O

1.0

3.0

1.5

2

15

40

80
Vce
-1.5

0

Vee = 30V

LM324A

LM224A

Unit

3.0

mV

3.0

30

nA

40

100

nA

Vce
-1.5

V

0

RL=

, Vee = 30V

1.5

3

1.5

3

rnA

RL=

, Vee=5V

0.7

1.2

0.7

1.2

rnA

Av

Vee = 15V, RL~2KQ
Va = 1V to 11V

VOH

Vee = 30V
Vee = 26V for 2902

VOL

Vce =5V,

100

25

27

28

27

28

50

I RL= 2KQ
I RL = 10KQ

26

RL~10KQ

100

VIm V

26

5

20

V

5

V
20

mV

Common-Mode Rejection Ratio

CMRR

70

85

65

85

dB

Power Supply Rejection Ratio

PSRR

65

100

65

100

dB

Channel Separation

CS

Short Circuit to GND

los
Isource

Output Current
ISink

Differential Input Voltage

V ID

c8SAMSUNG
Electronics

120

f = 1KHz to 20KHz

40

dB

120
40

60

60

rnA

Vin+ = 1V, Vin - = OV
Vce = 15V

20

40

20

40

rnA

Vin + = OV, Vin - = 1V
Vee = 15V, Vo= 2V

10

20

10

20

rnA

Vin + = OV, Vin - = 1V
Vee = 15V, Va = 200mV

12

50

12

50

!J.A

Vee

Vee

V

296

LINEAR INTEGRATED CIRCUIT

LM224/A, LM324/A, LM2902
ELECTRICAL CHARACTERISTICS

(Vee=5.0V, VEE=GND, unless otherwise specified)
The following specification apply over the range of - 25°C,!S;Ta,!S; + 85°C for the LM224A; and the O°C,!S;Ta,!S; + 70°C
for the LM324A

Characteristic

Symbol

Min
Input Offset Voltage
Input Offset Voltage Drift

V IO

Typ

V ICM = OV to V cc - 1 .5V
Vo = 1.4 V Rs = on

Max

Min

Typ

4.0
7.0

6V 10/6T

Input Offset Current
Input Offset Current Drift

I

LM324A

LM224A

Test Conditions

110

7.0

20
30

Unit

Max
5.0

mV

30

p.V/oC

75

nA

6110/6T

10

200

10

300

pA/oC

liB

40

100

40

200

nA

Vee
-2.0

V

Input Bias Current
Input Common-Mode
Voltage Range

Vee
-2.0

VieR

Vee = 30V

0

Av

Vee = 15V RL~2.0Kn

25

15

V OH
VOL

Vee = 30V ~I

1

60

"~

i:j

50

>

0

!!.

""--.

w

~

0

:::l
0..

~

~

~

Vee= +30'1

"1--- - ... --

__~:5~

40

I-

l-

'"""- .......

--.---L--.---

I-

1---

-

Vee = +5V

30
20
10

-25

-50

25

POWER SUPPLY VOLTAGE (:!:Voc)

75

50

100

•

TEMPERATURE (OC)

Fig. 3 SUPPLY CURRENT

Fig. 4 VOLTAGE GAIN
160

120

Oi'

g

-...........

/"

Gi
~

I-

RL =20K!l

,......-

r:::;:

Z

Z

w



:::l
UI

40

o

o
SUPPLY VOLTAGE

15

7.5

M

30

22.5

SUPPLY VOLTAGE

M

Fig. 6 COMMON·MODE REJECTION RATIO

Fig. 5 OPEN LOOP FREQUENCY RESPONSE
120

140

I

120

100

-

Gi
~

z


f.-"'"

0

II

~

Z

0

40

"

20

40

~
~

0
0

20

i'
10"

10'

10'

1()l

10'

FREQUENCY (Hz)

qsSAMSUNG
Electronics

10'

10"

II

o
10'

10'

10'

10'

10'

10'

FREQUENCY (Hz)

299

LM224/A, LM324/A, LM2902

LINEAR INTEGRATED CIRCUIT
Fig. 8 VOLTAGE FOLLOWER PULSE
RESPONSE (SMALL SIGNAL)
500

RL=2.0K
Vee=15V

Ta= 25°C
Vee= +30V
450

>
~

I-- ~

f1

400

IC7

INPUT

CJ

~
g

OUTPUT

I-

II
/

I--

~

1\,

!;
o

t\

~

--

350

I"

300

\: i - -

\I

20

40

30

50

TIMElJ.ts)

TIME (j.s)

Fig. 9 LARGE SIGNAL FREQUENCY RESPONSE

z

i


0

I
I-

::>

T\

Q.

I

I-

I

I'

::>

o

I

N-

10'

10'

10'

V
10-

10'

3

10-'

FREQUENCY (Hz)

10-'

10'

Fig. 11 OUTPUT CHARACTERISTICS
CURRENT SINKING

Fig. 12 CURRENT LIMITING

T

+25°C
70



I-

::>

60

.s

10'

III

I-

10'

80
Ta

~

10'

OUTPUT SOURCE CURRENT (rnA)

,
10

~

1--

1

I

CJ

....-

Tl1 ~~I~lIC

i

----

i

Fig. 10 OUTPUT CHARACTERISTICS
CURRENT SOURCING

11

I
15

i

i

275

10

+5VF

::>
0

,

vee -

+15V

~

t=

ff-

I--

10-'

40

I-

:::>

~e~~1 ~~~V\

010- 'I--

50

Q.

I-

:::>

30

~

-- --t--..

r-- r--.

T"'O

20

10

o
10'

10'

OUTPUT SINK CURRENT (rnA)

c8SAMSUNG
Electronics

10'

-50

-25

25

50

75

100

TEMPERATURE (OC)

300

LINEAR INTEGRATED CIRCUIT

LM224/A, LM324/A, LM2902
TYPICAL APPLICATIONS

(Vee=5.0V)

Fig. 13 Voltage Reference

Fig. 14 Non·lnverting DC Gain

Vee
+VIN

+5V

-- ---_

+VO

Va

VOUT

R1 1.0Mfl
10K
VIN

R1

I

Fig. 16 Pulse Generator

Fig. 15 AC Coupled Non·lnverting Amplifier

R1

R2
1Mfl

>-+---0

1

VOUT

OVOUT

RL

Vee

100Kfl

oJlJ"L

00
Av=1

+~

V

Av=11

Fig. 17 Bi·Quad Filter

R
R
C

100Kfl

_BW
- fa
where
T BP = Center frequency gain
TN Bandpass notch gain

Q

=

1
fo= 2".RC
R1=QR

R1
R2 = Tsp
R3=TNR2
C1 =10C
Example: fa = 1000Hz
BW= 100Hz
Tsp= 1
TN=1
R= 160Kfl
R1 = 1.6Mfl
R2=1.6Mfl
R3 = 1.6Mfl
C=O.01I'F

c8SAMSUNG
Electronics

301

LM248/LM348

LINEAR INTEGRATED CIRCUIT

QUAD OPERATIONAL AMPLIFIERS
The LM248/LM348 is a true quad LM741. It consists of four
independent, high-gain, internally compensated, low-power operational
amplifiers which have been designed to provide functional
characteristics identical to those of the familiar LM741 operational
amplifier. In addition the total supply current for all four amplifiers is
comparable to the supply current of a single LM741 type OP Amp.
Other features include input offset currents and input bias current which
are much less than those of a standard LM741. Also, excellent isolation
between amplifiers has been achieved by independently biasing each
amplifier and using layout techniques which minimize thermal coupling.

14 DIP

14 sOP

FEATURES
•
•
•
•
•
•
•
•
•
•

LM741 OP Amp operating characteristics
Low supply current drain
Class AB output stage·no crossover distortion
Pin compatible with the LM324 & MC3403
Low input offset voltage·1mV Typ.
Low input offset current·4nA Typ.
Low input bias current·30nA Typ.
Gain bandwidth product for LM348 (unity gain)·1.0MHz Typ.
High degree of isolation between amplifiers·120dB
Overload protection for inputs and outputs

BLOCK DIAGRAM

SCHEMATIC DIAGRAM

ORDERING INFORMATION
Device

Package

LM348N

14 DIP

LM348D

14 SOP

LM248N

14 DIP

LM248D

14 SOP

Operating Temperature
-

--

0- + 70°C

-25 - +85°C

(One Section Only)
---------~~-~vcc

IN (-) 0----+--------,

R7

IN (+)

...--------<.----0

OUTPUT

R8

302

LINEAR INTEGRATED CIRCUIT

LM248/LM348

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic

Symbol

Supply Voltage
Differential Input Voltage
Input Voltage
Output Short Circuit Duration
Operating Temperature LM248
LM348
Storage Temperature

Vs
VID
VI

Value

Unit
V
V
V

±18
±36
±18
Continuous
-25 - +85
0-+70
-65 - + 150

Topr
T5tg

°C
°C
°C

ELECTRICAL CHARACTERISTICS
(Vee = 15V, VEE= -15V, Ta= 25°C, unless otherwise specified)

Characteristic

Symbol

Input Offset Voltage

VIO

Input O.ffset Current

110

Input Bias Current

liB

Test Conditions

Rs~10KQ

LM248
Min

LM348

Typ Max Min
1

NOTE 1

6.0

Typ Max
1

4
NOTE 1

50

4

30

200

30

nA

R;
Is

Large Signal Voltage Gain

Av

RL~2KQ

Channel Separation

CS

f = 1KHz to 20KHz

Common Mode Input
Voltage Range

VieR

Small Signal Bandwidth

BW

Av = 1

1.0

1.0

MHz

Phase Margin

rpm

Av=1

60

60

Degrees

Slew Rate

SR

Av= 1

0.5

0.5

V//ts

Output Short Circuit Current

los

25

25

mA

VOUT

25
NOTE 1

NOTE 1

RL~ 10KQ
RL~2KQ

NOTE 1

160

4.5

2.5

nA

Input Resistance

2.4

0.8

mV

Supply Current (all Amplifiers)

Output Voltage Swing

2.5

200
400

500
0.8

50
100

125

NOTE 1

6.0
7.5

7.5

Unit

2.4
25

160

15

15
120
±12

120
± 12

Mn
4.5

mA
V/mV
dB
V

±12 ±13

±12 ± 13

±10 ±12

±10 ±12

V

Common Mode Rejection Ratio CMRR

Rs~10Kn

NOTE 1

70

90

70

90

dB

Power Supply Rejection Ratio

Rs~1aKn

NOTE 1

77

96

77

96

dB

PSRR

• NOTE 1
LM348: a ~ Ta ~ + 7aoc
LM248: -25~Ta~ +85°C

qsSAMSUNG
Electronics

303

I

LM248/LM348

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 2 VOLTAGE SWING

Fig. 1 SUPPLY CURRENT
50

~
z

40

CI

:c

i

§.

1/1
I-

!Zw

::;,

30

Go
I-

a:
a:
::;,
u

::;,

0
lie
c(

~

w 20

Go
Go

Go

e

::;,
1/1

lie
c(

W
Go

10

/

/

V

V

V

/

!

..

OL---~----~----~----~----~--~

o

10

15

20

10

SUPPLY VOLTAGE ( ± V)

15

Fig. 3 SOURCE CURRENT LIMIT
15

I
Vs~ ±15
T. 25°C

I
Vs~ ± 15V
T,~25°C

""" ..........

~
CI
Z

~

~

w -10

~

CI

~

g
I-

::;,
::;,

o

~

\

15

10

20

\

Go
I-

1\

o

-5

5i

ffl

z

\

o
25

30

o

10

OUTPUT SOURCE CURRENT (mA)

15

20

Fig. 5 OUTPUT IMPEDANCE

Fig. 6 COMMON·MODE REJECTION RATIO
I
Vs~±15V

Av

100
80

.....,...1

Z

~

100

~~

100

U

Go

/'

10

.. 111

Av

10

iii'
:!!.

l/

II:

a:
:&
u

I-

::;,

Go
I-

1/

::;,

0

30

120
=Vs ±15V
=T, 25°C

!

25

OUTPUT SINK CURRENT (mA)

1k

e:w

25

Fig. 4 SINK CURRENT LIMIT
-15

'\\

o

20

SUPPLY VOLTAGE (± V)

V
/'
0.1
100

/

60

40

A~ 1

I

'"'"

~

20

,

~

/

1k

10k
FREQUENCY (Hz)

c8SAMSUNG
Electronics

100k

1M

100

1k

10k

T.~25°C

,

100k

FREQUENCY (Hz)

304

LM248/LM348

LINEAR INTEGRATED CIRCUIT

Fig. 7 OPEN LOOP FREQUENCY RESPONSE
110

90

I

~

Fig. 8 BODE PLOT
20

J

Vs= ±15VT.=2SoC

'\.

70

IS
10

I

~

iii

~

:2z SO

"

i

'\.

C
CJ

30

lk

JHls~

~

CJ

-15

'\.

-20

~

-25

~

10k

lOOk

=rn

~
I/)

!:i
§!

-10

/

~

r'\,.GAIN

~

30 ~

~

i\

\

20

!,

10

r\

-10
10

•

Fig. 10 SMALL SIGNAL PULSE RESPONSE

/~

\ ."

T.=25°C

I
/

\

\

!
I/)

!:i
0- 100

1

A~=1
Vs= ±15V-

Jo

100

r\1

L

\

FREQUENCY (MHz)

I

Av=l
Vs= ± 15V
R,,,2k
T.=25°C

Q

\'"

lk

~

III

40 ;;

-35
0.1

Va

V

III
III

SO

2k

Fig. 9 LARGE SIGNAL PULSE RESPONSE

/

60 U;

~

FREQUENCY (Hz)

10

70

,

I"'"

-30 I - -

1M

90
80

~~

-5

-10
100

'"

~

r--- ~

)s=LU
T.=25°C

z
C -10

10

10

100

I

1\

\

!

~

I

\

~

:3
i
V,N

10

V,N

100

-100

-10

40

80

120

160

200

TlME(j.s)

-TIME (!'s)

Fig. 12 INVERTING LARGE SIGNAL
PULSE RESPONSE

Fig. 11 UNDISTORTED OUTPUT VOLTAGE SWING

I

/

r\

V
~

~

-10

I

I
Vs= ±15VR,=2k

Vo

10V

/

1

~::2~~C-

\

J

\

\

§!
10

v,,.!

-10

20
FREQUENCY (Hz)

c8SAMSUNG
Electronics

40

60

80

100

120

140

160

180

200

TlME(!'5)

3DS

LINEAR INTEGRATED CIRCUIT

LM248/LM348

Fig. 13 INPUT NOISE VOLTAGE AND
NOISE CURRENT
160

Fig. 14 POSITIVE COMMON·MODE INPUT
VOLTAGE LIMIT

140

20

1.6

v1= 1115~
T.=25°C

1.4

~

~
g

80

1.2

i

1\

w

~

60

~

1.0

.s

0.8

a:
a:

l-

Z

W

'~~

~

CJ

MTAN NOISE VOLTAGE

w

0.6

III

6

z
z
c(

MEAN NOISE CURRENT

:Ii

~
C

">

~

III

40

0.4 w
:Ii

20

0.2

w

CI

~
~

15

I-

~

II.

!

w
Q
0

l'f
z

0
:Ii
:Ii
0

10

CJ

w

>
i=
iii
0

II.

o

10

+85°C

::::;

120

;; 100

I

I

-25°C~Ta~

l-

I

~

I

~

100

lk

10k

FREQUENCY (Hz)

5

/

5

/

/
10

/

/

15

/

20

POSITIVE SUPPLY VOLTAGE (V)

Fig. 15 NEGATIVE COMMON·MODE INPUT
VOLTAGE LIMIT
-20r----.-----r-----r----~----~--~

~
I-

~

~
~

oU --+------,N'I~

rt'

x
-15 r-----t---+--~ttf _:--t--_~+__-__I

g
~

oU

~------+---1

(----<:>

NOTCH OUTPUT

Q=BW
fa
where
T BP = Center frequency gai n
TN = Bandpass notch gain
10=_12,,-RC
R1 =QR

R2=~

TBP
R3=TNR2
C1=10C

Example: fa = 1000Hz
BW=100Hz
TBP= 1
TN =1
R= 160KIl
R1 = 1,6MIl
R2=1,6MIl
R3 = 1.6MIl
C = O.01"F

Fig. 17

c8SAMSUNG
Electronics

307

LM258/A, LM358/A, LM2904

LINEAR INTEGRATED CIRCUIT

DUAL OPERATIONAL AMPLIFIERS

8 DIP

The LM258 series consists of four independent, high gain, internally frequency compensated operational amplifiers which were designed specifically
to operate from a single power supply over a wide range of voltage.
Operation from split power supplies is also possible and the low power supply
current drain is independent of the magnitude of the power supply voltage.
Application areas include transducer amplifier, DC gain blocks and all the
conventional OP amp circuits which now can be easily implemented in Single
power supply systems.

8 SOP

FEATURES
• Internally frequency compensated for unity gain
• Large DC voltage gain: 100dB
• Wide power supply range: LM258/A, LM358/A: 3V - 32V
(or ± 1.5V - ± 16V)
LM2904: 3V - 26V (or ± 1.5V - ± 13V)
• Input common-mode voltage range includes ground
• Large output voltage swing: OV DC to Vee -1.5V DC
• Power drain suitable for battery operation.

9 SIP

BLOCK DIAGRAM

•
ORDERING INFORMATION
SCHEMATIC DIAGRAM

(One section only)

c8SAMSUNG
Electronics

Device

Package

LM358N
LM358AN

8 DIP

LM358S
LM358AS

9SIP

LM358D
LM358AD

8 SOP

LM258N
LM258AN

8 DIP

LM258S
LM258AS

9 SIP

LM258D
LM258AD

8 SOP

LM2904N

8 SIP

LM2904S

9 SIP

LM2904D

8 SIP

Operating Temperature

0- + 70°C

-25- + 85°C

-40- +85°C

308

LM258/A, LM358/A, LM2904

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

LM258/LM258A

LM358/LM358A

LM2904

Unit

Power Supply Voltage
Differential Input Voltage
Input Voltage
Output Short Circuit to GND
Vee~15V Ta=25°C (One Amp)
Operating Temperature Range
Storage Temperature Range

Vs
VID
VI

±160r32
±32
-0.3 to +32

± 16 or 32
±32
- 0.3 to +32

± 13 or 26
±26
-0.3 to +26

V
V
V

Continuous

Continuous

Continuovs

0-+70
-65 - +150

-40-+85
-65 - + 150

Topr
Tstg

-25 -+85
-65 - + 150

°C
°C

ELECTRICAL CHARACTERISTICS
(Vee=5.0V, VEE=GND, Ta=25°C, unless otherwise specified)

LM258
Characteristic

Symbol

Test Conditions

I

LM2904

LM358

Min Typ Max Min Typ Max Min Typ Max

i
VICM = OV to Vcc -1.SV
Vo = 1.4V, Rs = 00

2.9

5.0

2.9 7.0

2.9 7.0

Unit

Input Offset Voltage

VIO

mV

Input Offset Current

110

3

30

50

nA

Input Bias Current

lis

45

150

45 250

45 250

nA

Vee
-1.5

Vee
-1.5

Vce
-1.5

-------

Input Common-Mode
Voltage Range
Supply Current

VieR

Icc

Vce=30V
(LM2904, Vee = 26V)

0

RL =00, Vee = 30V
(LM2902, Vee = 26V)
RL = 00 ,,,wer full temperature range

Large Signal
Voltage Gain

Av

Output Voltage Swing

VOH
VOL

Vce = 15V, RL~2KO
Vo=1V to 11V

Vee =5V RL~10KQ

mA

0.5

1.2

0.5

0.5

mA

28
5

Power Supply
Rejection Ratio

PSRR

65 100

los
Isource

Output Current
Isink

Differential Input
Voltage

f = 1KHz to 20KHz

V

0.8 2.0

70

CS

0

0.8 2.0

CMRR

Short Circuit to GND

5

2.0

Common-Mode
Rejection Ratio

Channel Separation

0

50

0.8

50 100

IR L=2KO 26
Vce = 30V
Vee=26V for 29041 RL= 10KO 27

5

25 100

25 100

26

22

27
20

85

65

23

28
5

20

80

40

V/mV

24

V
100

80

dB

120
60

40

mV
dB

50 100

120
60

1.2

V

5
50

65 100

120
40

1.2

dB
60

mA

V in + = 1V, Vin - = OV
Vee =15V, Vo=2V

10

30

10

30

10

30

mA

Vin + = OV, Vin - = 1V
Vee = 15V, Vo = 2V

10

15

10

15

10

15

mA

V in + =OV, Vin - = 1V
Vee = 15V, Vo = 200mV

12 100

V ID

c8SAMSUNG
Electronics

12 100
Vee

p.A
Vee

Vee

V

309

I

LM258/A, LM358/A, LM2904

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
(Vec=.5.0V, VEE=GND, unless otherwise specified)
The following specification apply over the range of - 25°C:::;;Ta:::;; + 85°C for the LM258; and the O°C:::;;Ta:::;; + 70°C
for the LM358; and the -40°C:::;;Ta:::;; +85°C for the LM2904

Characteristic

Symbol

Input Offset Voltage

Via

110

Input Offset Current
Drift

f:"ldf:"T

Input Bias Current
Input Common-Mode
Voltage Range
Large Signal Voltage
Gain

VICM = OV to Vce -1.5V
Vo= lAV, Rs=OO

7.0
7.0
100

40

VICR

Vce = 30V
(LM2904, Vce = 26V)

0

Av

Vee = 15V, RL~2.0KO
Va=. 1V to 11V

25

V OH

26
/R L=2KO
Vee = 30V
Vee = 26V for 2904 1 RL = 10KO 27

45 200

10
300
Vce
-2.0

40
0

500

40 500

nA

Vec
-2.0

Vee
-2.0

V

0

V/mV

15

26
27

nA

pA/oC

10

15

28

mV

V

26
28

27

V

28

VOL

Vee =5V, RL~10KO

Isource

V in + = 1V, Vin - = OV
Vee = 15V, Vo=2V

10

30

10

30

10

30

mA

ISink

Vin + =OV, Vin - = 1V
Vee = 15V, Va = 2V

5

8

5

9

5

9

mA

Output Current

Differential Input
Voltage

Unit

/J- V/ oC

7.0
150

10

liB

10.0

9.0

7.0

<

Output Voltage Swing

LM2904

Min Typ Max Min Typ Max Min Typ Max

Input Offset Voltage
f:"Vlolf:" T Rs=OO
Drift
Input Offset Current

LM358

LM258

Test Conditions

V ID

c8SAMSUNG
Electronics

5

20

Vee

5

5

20

Vee

100

Vee

mV

V

310

LINEAR INTEGRATED CIRCUIT

LM258/A, LM358/A, LM2904

ELECTRICAL CHARACTERISTICS
(Vee = 5.0V, VEE=GND, Ta=25°C, unless otherwise specified)
LM258A
Characteristic

Symbol

Input Offset Voltage

Via

Input Offset Current

Ira

Input Bias Current
Input Common-Mode
Voltage Range
Supply Current

Large Signal Voltage Gain

Output Voltage Swing

Test Conditions

Unit

V leM = OV to Vee - 1.5V
Vo:::1.4V, Rs:::O

lee
Av

Vee::: 3OV

3.0

mV

5

30

nA

45

100

nA

1.0

3.0

2.0

2

15

40

liB
VieR

LM358A

Min Typ Max Min Typ Max

80

Vee

0

-1.5

Vee

0

-1.5

V

RL:::oo ,.Vee =30V

0.8

2.0

0.8

2.0

rnA

RL==,over full temperature range

0.5

1.2

0.5

1.2

rnA

Vee::: 15V, RL~2KO

Va::: 1V to 11V

VOH

I RL ::: 2KO
Vee::: 30V
Vee = 26V for 2904 I RL = 10KO

VOL

V ee =5V,

50

100

25

28

27

26
27

RL~10KO

VlmV

100

V

26

5

20

V

28
5

20

mV

Common-Mode Rejection Ratio

CMRR

70

85

65

85

dB

Power Supply Rejection Ratio

PSRR

65

100

65

100

dB

Channel Separation

CS

Short Circuit to GND

los
Isource

Output Current
ISink

Differential Input Voltage

VID

c8SAMSUNG
Electronics

f = 1KHz to 20KHz

40

=

120

120
60

40

dB
60

rnA

Vin + ::: 1V, Vin - OV
Vee::: 15V, Va = 2V

20

30

20

30

rnA

V in + = OV, Vin - ::: 1V
Vee = 15V, Va = 2V

10

15

10

15

rnA

Vin + =OV, Vin -::: 1V
Vo:::200mV

12

100

12

100

!J.A

Vee

Vee

V

311

•

LINEAR INTEGRATED CIRCUIT

LM258/A, LM358/A, LM2904

ELECTRICAL CHARACTERISTICS (Vee = 5.0V, VEE=GND, unless otherwise specified)
The following specification apply over the range of - 25°C:sTa:s + 85°C for the LM258A; and the O°C:sTa:s
for the LM358A
Characteristic

Input Offset Voltage
Input Offset Voltage Drift
Input Offset Current
Input Offset Current Drift
Input Bias Current
Input Common-Mode
Voltage Range

Output Voltage Swing

Large Signal Voltage Gain

I

I

Symbol

VIO

V leM =OV to Vee -1.SV
Vo = 1.4V, Rs = 00

LM358A

4.0
7.0

15

7.0

30

110

I':::. hoI I':::. T

10

liB

40

VieR

Vee = 30V

VOH

Vee=30V
Vee = 30V

IRL=2KO
I

RL= 10KO

RL~ 10KO

mV

20

p,V/oC

75

nA

10

300

pA/oC

100

40

200

nA

Vee
-2.0

V

26
27

5.0

200

Vee
-2.0

0

0
26

28
S

Unit

27
20

V
28
5

V
20

mV

VOL

Vee = SV,

Av

Vee = 15V, RL~2.0KO
Vo=1V to 11V

25

Isource

Vin + = 1V, Vin - =OV
Vee = 15V, Vo = 2V

10

30

10

30

mA

Isink

Vin + = OV, Vin - = 1V
Vee = 15V, Vo=2V

5

9

5

9

mA

V1D

qsSAMSUNG
Electronics

LM258A

Min Typ Max Min Typ Max

I':::.Vloll':::.T

Output Current

Differential Input Voltage

Test Conditions

+ 70°C

15

Vee

V/mV

Vee

V

312

LM258/A, LM358/A, LM2904

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 1 SUPPLY CURRENT

Fig. 2 VOLTAGE GAIN
160

RL =20KO
120

~

...
ffi
§

~

2

...............

....

, ....,

RL

=2KO

80

tJ

i
rJl

~

-J--- 1----

Ta=O'C to +85'C
j"
-

40

Ta= -40jC

o

o

o

10

30

20

40

o

Fig. 3 OPEN LOOP FREQUENCY RESPONSE

I

Fig. 4 LARGE SIGNAL FREQUENCY
20
Vee

100

40

30

SUPPLY VOLTAGE (V)

140

120

20

10

SUPPLY VOLTAGE (V)

i

-

I

+15VI

!,

I'i

15

'\

I

I
I

II
I-- t--r-.",

80

~

Vcc ='30V &

-25~CSTaS

60

I

10

85'C

::,

Vee =;)9J8 ?Y,&, ~
' + 85'C
- 25'CSTaS

I

\

i

~r-10'

10'

10'

10'

10'

10'

10'

I

-

i"-

o
10'

10'

FREQUENCY (Hz)

I
I

10'

10'

FREQUENCY (Hz)

Fig. 6 OUTPUT CHARACTERISTICS
CURRENT SINKING

Fig. 5 OUTPUT CHARACTERISTICS
CURRENT SOURCING
10'

+al~ IJIJ~,c

Ta

+25'C

'I

If
100

Vee = + 15V_

~e~;I!'~OV ~
rll

1.1

rI

V

-

'--

100

10'

OUTPUT SOURCE CURRENT (mA)

c8SAMSUNG
Electronics

10'

.L~
10-'

10°

10'

10'

OUTPUT SINK CURRENT (mA)

313

LINEAR INTEGRATED CIRCUIT

LM258/A, LM358/A, LM2904
Fig. 7 INPUT VOLTAGE RANGE

Fig. 8 COMMON·MODE REJECTION RATIO
120
Vs= :t 7.5V
100

I---~

III

:!i!.

I--~

0

~
lii

>-

.!!.
w
CI

~

~

>

w
c

Q.

~

0

...:::>

80

60

0

Z

i!:

0

40

- r-

--

~
~

0
0

--..

20

I

10'

15

10

I
103

10'

10'

10'

FREQUENCY (Hz)

POWER SUPPLY VOLTAGE (:tV)

Fig. 9 CURRENT LIMITING

Fig. 10 INPUT CURRENT

OO.----r----,----,----,----,----,

80

80~---+----~----+----_r----+_--_1

ill

Of:

60

...

ffiIX:

g;
0

~

4'

50
40

30

~'''''''
60~---··+~~~-~~V__e~e=--+~30-V--_+----~--~

70

:i'
§.

----

to---

50

g;

40

~~

30

I---

20

~--_+--

~

r--- t--- r-

r--

0

- ...........

;:

20

- .. _ _
1

------.Vee= +15V

1'-----4 _____ _

--~~
------'----

-i--

--+----+-

10 ~--_I__-----+___--_+----_+_----_l_i ____

10

25

-25

-50

50

100

75

-25

-50

25

75

50

100

TEMPERATURE (DC)

TEMPERATURE (OC)

Fig. 12 VOLTAGE FOLLOWER PULSE
RESPONSE (SMALL SIGNAL)

Fig. 11 VOLTAGE FOLLOWER PULSE RESPONSE
RL=2KIl
Vee = 15V

T.= 25'C
Vee=30V
450

I

---

>§.

I

w 400

INPUT

CI

~ I--

~
0

"

i-""

OUTPUT

...>

I

II
V
~ I--

~

f\

\

J

350

0

I

~ i--

300

{}

275
10

20

30

TIME{JLs)

c8SAMSUNG
Electronics

40

10

50
TlME{JLs)

314

LM258/A, LM358/A, LM2904
TYPICAL APPLICATIONS

LINEAR INTEGRATED CIRCUIT

(Vee = 5.0V)

Fig. 13 Voltage Reference

Fig. 14 Non·lnverting DC Gain

Vee
+5V

~

_

~

__ _

Va
VOUT

GAIN=1

+~

R1 1.0M!l
10K

(a)
b)

Fig. 16 Pulse Generator

Fig. 15 AC Coupled Non·lnverting Amplifier

I

R1

R2

R1

1

1M!l

Co

\lOUT

~'o",

RL

100K!l

100K!l
R5

DC
Av=1

+~

V

100K!l

0

JL.rL

2 Vp . p

Av= 11

Fig. 17 Bi·Quad Filter
R

R
C

100K!l

100K!l
Q=BW
fa
where
TBp:: Center frequency gain'
TN = Bandpass notch gain
fo=_12"RC
R1 =QR

VREF

R2

c8SAMSUNG
Electronics

R2=~

Tsp
R3=TNR2
C1 =10C
Example: fa = 1000Hz
BW= 100Hz
Tsp==1
TN == 1
R==160K!l
R1 ==1.6M!l
R2= 1.6Mn
R3= 1.6M!l
C=O.01I'F

315

LM741C/E/I

LINEAR INTEGRATED CIRCUIT
8 DIP

SINGLE OPERATIONAL AMPLIFIERS
The LM741 series are general purpose operational amplifiers which
feature improved performance over industry standards like the LM709.
It is intended for a wide range of analog applications.
The high gain and wide range of operating voltage provide superior
performance in intergrator, summing amplifier, and general feedback
appl ications.

8 SOP

FEATURES
•
•
•
•
•

Short circuit protection
Excellent temperature stability
Internal frequency compensation
High input voltage range
Null of offset

BLOCK DIAGRAM

ORDERING INFORMATION

OFFSET
NULL

OFFSET
NULL

SCHEMATIC DIAGRAM

Device

Package

LM741ECN
LM741CN

8 DIP

LM741ECD
LM741CD

8 SOP

LM7411N
LM741EIN

8 DIP

LM7411D
LM741EID

8 SOP

Operating Temperature

o - + 70°C

- 40- + 85°C

.-~------~----~----~--~--------------~~--ovcc

IN (+)

R6
IN (-)

u------+-~--t----'

~------+----_o

OUTPUT

R7

OFFSET 0-----+---+____
NU LL 0 - - - - - -. .

c8SAMSUNG
Electronics

316

LINEAR INTEGRATED CIRCUIT

LM741C/E/I
ABSOLUTE MAXIMUM RATINGS (Ta

=25°C)

Characteristic

Symbol

LM741C

LM741E

LM741 I

Unit

Power Supply Voltage
Differential Input Voltage
Input Voltage
Output Short Circuit Duration
Power Dissipation
Operating Temperature Range
Storage Temperature Range

Vs
VIO
VI

±18
±30
±15
Indefinite
500
0- + 70\
-65 -+ 150

±22
±30
±15
Indefinite
500
0-+ 70\
-65- + 150

± 18
±30
± 15
Indefinite
500
-40- + 85
- 65 - + 150

V
V
V

Po
Topr
Tstg

mW
°C
°C

ELECTRICAL CHARACTERISTICS
(VCC = 15V, VEE = -15V, Ta = 25°C, unless otherwise specified)

Characteristic

Symbol

Test Conditions

Min

Typ

Max Min

0.8

3.0

VIO

Input Offset Voltage
Adjustment Range

VIOR

Input Offset Current

110

3.0

liB

30

Input Resistance
Input Voltage Range

Large Signal Voltage Gain

Output Short Circuit Current

Ri

Rs:s;50n

RL~2Kn

Vs= ±20V,
Vo=±15V

PSRR

c8SAMSUNG
Electronics

80

6.0

0.3

±16

RL~2Kn

±15

mV
200

nA

80

nA

2.0

Mn
V

V/mV

25

35

200
25

RL~10Kn

±12 ± 14

RL~2Kn

±10 ± 13

Rs:s;10Kn, VCM = ± 12V
Rs:s;50Kn, VCM = ± 12V

80

95

Vs= ±20V to Vs= ±5V
Rs:s;50n

86

96

Vs= ±15V to Vs = ±5V
Rs:s;10Kn

mV

500

±12 ±13

20

RL~10Kn

Unit

20

50

10

VOUT

Common Mode Rejection Ratio CMRR

30

Vs=±15V,
Vo = ± 10V

los

6.0

±15

±12 ±13

Vs= ± 15V

Power Supply Rejection Ratio

1.0

Vs= ±20V

Vs= ±20V
Output Voltage Swing

±10

Vs= ±20V

VICR

Av

Typ Max
2.0

Rs:s;10Kn

Input Offset Voltage

Input Bias Current

LM741 C/LM741I

LM741E

70

90

77

96

mA

V

dB

dB

317

•

LM741C/E/I

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
Characteristic
Transient
Response

I
I

Symbol

Rise Time

t,

Overshoot

OS

Bandwidth

BW

Slew Rate

SR

Supply Current
Power Consumption

(Continued)

Test Conditions

LM741E
Min

Unity Gain

Unity Gain

LM741C/LM741I

Typ

Max Min

Typ

0.25

0.8

0.3

6.0

20

10

0.43

1.5

0.3

0.7

80

Vs= ±20V
Pc

Unit
p's
%

MHz

V/p.s

0.5

RL=OOO

Is

Max

1.5

2.8

rnA

50

85

mW

150

Vs= ± 15V

ELECTRICAL CHARACTERISTICS
(-40CC:::;Ta:::;85°C for the LM7411, 0°C:5Ta:570°C for the LM741C and LM741E, Vcc= ± 15V, unless otherwise
specified)

Characteristic

Input Offset Voltage
Input Offset Voltage Drift
Input Offset Current
Input Offset Current Drift
Input Bias Current
Input Resistance
Input Voltage Range

Symbol

Test Conditions

0.5

liS

0.21
Vs= ±20V

VOUT

RL~10KO

±16

RL~2KO

±15

c8SAMSUNG

nA

0.8

p.A
MO

±12 ±13

±12 ±14

RL~2KO

± 10 ± 13'
10

40

Rs:510KO, VCM = ± 12V
Rs:550KO, VCM = ± 12V

80

95

Vs= ±20V Rs:5500
to±5V Rs:510KO

86

96

RL~2KO

mV

nA/oC

RL~10KO

los

Av

300

0.5
±12 ±13

VICR

Unit

p.V/oC

61 10/6T

PSRR

Max

7.5

70

Ri

Typ

15

10

V

V

40

70

90

77

96

mA
dB

dB

32

Vs = ± 15V,
Vo= ± 10V
Vs= ± 15,
Vo=2V

Electronics

LM741C/LM741I
Max Min

110

Vs=±20V,
Vo= ± 15V
Large Signal Voltage Gain

Typ

4.0

6V lol6 T

Common Mode Rejection Ratio CMRR

Power Supply Rejection Ratio

I

Rs:510KO

Vs= ± 15V
Output Short Circuit Current

Min

Rs:5500

VIO

Vs = ±20V
Output Voltage Swing

LM741E

15

V/mV

10

318

LM741C/E/I

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 7 OUTPUT RESISTANCE vs FREQUENCY

Fig. 8 INPUT RESISTANCE AND INPUT
CAPACITANCE vs FREQUENCY

600

10M

100

R'N

~

500

sw
o

400

z

~

iii

I,

\

Vs=±1SV_
Ta=2S'C

Ii:

10

.s
w

0

~

Z

~

0

:.

300

a:

1

I-

...
:::>

c(

0

II

~ 200

o

-

100

1
10K

1K

100

~

C,N

~

~

10K

0.1

FREQUENCY (Hz)

WOK

10K

1K

100

1M

100K

1M

•

FREQUENCY (Hz)

Fig. 10 POWER CONSUMPTION vs AMBiENT
TEMPERATURE

Fig. 9 INPUT BIAS CURRENT vs AMBIENT
TEMPERATURE
100
Vs= ±1SV

Vs= ±'20V

90 t----i--

120

80

............

~

70

.........

l-

i
0

1'........

60

1'-,

50

INPUT BlAS- t - - -

Ul
c(

iii

-

40

I-

...
:::>

~

--

CURRENT
j-...

30

S"
~
w

100

0

Z

c(

Iii

iiia:

-."

80

r-- r--- I"""-

I-

...
:::>

~

---r--

60

20
INPUT OFFSET

10

40

~RE~T

-40

- 20

20

40

60

-20

80

20

100

60

TEMPERATURE (OC)

TEMPERATURE (OC)

Fig. 12 INPUT·RESISTANCE vs AMBIENT
TEMPERATURE

Fig. 11 INPUT OFFSET CURRENT vs AMBIENT
TEMPERATURE
100

V s = ±' 15V

Vs= ± 15V
150

3'

~

.§.

Z

0

W

~

:::>

0

Ul

z

10.0

0
0

~

0

I-

~

--+-~

Ii:

100

Iii

~

30

z

I-

§

--I-----

50

50

"-

a:

~

...............

~

r--

3.0

I

-

~

.---.-----

=:i
i

-20

5.0

20
TEMPERATURE (OC)

c8SAMSUNG
Electronics

I
60

100

1.0
-20

20

100

TEMPERATURE (OC)

319

LM741C/E/I

LINEAR INTEGRATED CIRCUIT
Fig. 14 FREQUENCY CHARACTERISTICS
va AMBIENT TEMPERATURE

Fig. 13 NORMALIZED DC PARAMETERS
va AMBIENT TEMPERATURE

1.75 ...--..,...--"""T"--r----,---r--.,.----,
Vs= ±15V

Vs= ±1SV
1.8

1.6

1.5

1.4
IU

:3
~

.... t'-o,

1.2

-~~
r- POWER SUPPLY

IU

f:

:s

IU
II:

INPUT RESISTANCE~
f=1KHz
./

.

CURRENT

~ ..""""

...

. /~

....

.... ,,"

.8

IU

:3

~

1.2S

IU

-

~ :::--~

2:

OUTPUT
SHORT CIRCUIT
CURRENT-

IIC

~

....

r--

.6

.4
.2

o

-40

-20

40

20

60

60

AMBIENT TEMPERATURE (OC)

TEMPERATURE (OC)

Fig. 15 FREQUENCY CHARACTERISTICS
va SUPPLY VOLTAGE

Fig. 16 OUTPUT SHORT CIRCUIT CURRENT
va AMBIENT TEMPERATURE

1.7so---r--,---,--"""T"--'----'

30

Ta= +2S·C

28

C

§.

zIIU

26

IIC
II:

:::>
U

!::

24

:::>

U

II:

0

~

'" '"
.........

.........

...........
...............

22

~

0

:r

............

!II

20

18

·\L---=7:l::.S:-'---:l10:----:-:!12'-=.S,------:1c1:
S -----:1,.:.7.':'"S-~2O'

:::>

INPutl
0.0

-10

/

I

Iil'

:s

100

i

90

60

70

z

1\

70

Ul

60

Q

50

0

=Ii

Z
0
:&
:&
0

-20

40

30
20

r-

10

t-

o
.600

TIME \itS)

c8SAMSUNG
Electronics

~

IU

/0"'""'
.400

IIIl

Vs = ± 15V
Ta= +25°C

80

t

II:
IU

/ .J
.200

IIIIIII~

0

'(

u

0.0

50

110

r-..

I
-5

40

120

I

Vs= ±1SV
RL=2KIl
CL= 100pF

I-

:::>
0

30

Fig. 18 COMMON·MODE REJECTION RATIO
va FREQUENCY

10

...

20

Fig. 17 TRANSIENT RESPONSE

20

>
§.

10

TEMPERATURE (OC)

I

I-

o

SUPPLY VOLTAGE (±V)

.800

1.0

...,.
10"

10'

10'

10'

10'

10'

10'

107

FREQUENCY (Ht)

320

LM741C/EII

LINEAR INTEGRATED CIRCUIT

Fig. 19 OUTPUT SWING AND INPUT RANGE
vs SUPPLY VOLTAGE

Fig. 18 VOLTAGE FOLLOWER LARGE
SIGNAL PULSE RESPONSE

40r-----r------r--~-___,--r__-_,

IVS=~15V

35

~

-INPUT

r-----c

CJ

~
f--

1

iUl

\,

I

I)
0.0

20

40

60
TIME (j.s)

c8SAMSUNG
Electronics

80

~
50

"c..~

e
"~

\

-5

-7

r----

\

-3

-

---

30

15

25

12.5

20

10

15

.7.5

z

1\

JOUTPUT

20

RL=2Kll

~a=25·C

10

I----+----t-------t---c-------i 2.5

100

0~5-~7.75--~10~~1~2.5~~1~5--7-17~.5--~2~·

•

SUPPLY VOLTAGE (:tV)

321

MC1458CI AC/II AI

LINEAR INTERGRATED CIRCUIT

DUAL OPERATIONAL AMPLIFIERS

8 DIP

The MC1458 series is a dual general purpose operational amplifier.
The MC1458 series is a short circuit protected and require no external
components for frequency compensation.
High common mode voltage range and absence of "latch up" make the
MC1458 ideal for use as voltage followers.
The high gain and wide range of operating voltage provides superior
performance in intergrator, summing amplifier and general feedback
applications.

8 SOP

FEATURES
•
•
•
•
•

Interal frequency compensation
Short circuit protection
Large common mode and differential voltage range
No latch up
Low power consumption

9 SIP

BLOCK DIAGRAM

•
0
0

>

~

::::>

0

I

+

~ ~

w
w

>

+
N

!:

I
N

N

gI-

0
0

>

!:

ORDERING INFORMATION
Device

Package

MC1458CN
MC1458ACN

8 DIP

MC1458CS
MC1458ACS

9 SIP

MC1458CD
MC1458ACD

8 SOP

MC14581N
MC1458AIN

8 DIP

MC14581S
MC1458AIS

9 SIP

MC14581D
MC1458AID

8 SOP

Operation Temperature

0- + 70°C

-25 - +85°C

c8SAMSUNG
Electronics

322

LINEAR INTERGRATED CIRCUIT

MC1458C/AC/IIAI
SCHEMATIC DIAGRAM

~~--------------+-----~--~~----------------~~Vcc

INPUT(+)
INPUT( -)

R6

0-------+---1--------+------'
OUTPUT

R7

L-----4-----+--------*------~--__+__--__+_--__+__---L----~------"'-----4~_oVEE

ABSOLUTE MAXIMUM RATINGS
Characteristic
Power Supply Voltage
Input Differential Voltage
Input Voltage
Operating Temperature Range MC145811AI
MC1458C/AC
Storage Temperature Range

c8SAMSUNG
Electronics

Symbol

Value

Vs
VID

±1B
±30
±15
-25- +85
0-+70
-65 -+ 150

VI
Topr
I

T~tg

Unit
V
V
V
°C
°C

qc

323

•

MC1458C/AC/I/AI

LINEAR INTERGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
(Vee =

+ 15V, Vee = -15V, Ta=25°C, unless otherwise specified)
MC1458AC/AI

MC4558CII
Unit

Symbol

Test Conditions

Input Offset Voltage

Vlo

RsS10KO

Input Offset Current

110

20

200

20

300

nA

Input Bias Current

liB

80

500

80

700

nA

Characteristic

Large Signal Voltage Gain
Input Voltage Range
Input Resistance

Min Typ Max Min Typ Max
2.0

Vo = ± 10V, RL~2.0KO

Av

20

6.0

20

200

±12 ±13

VieR

0.3

RI

200

1.0

1.0

MO
dB

RsS10KO

70

90

60

90

Rss10KO

77

90

77

90

Output Voltage Swing

2.3

Is
VOUT

5.6

dB
8.0

2.3

RL=10KO

±12 ±14

± 11 ± 14

RL=2KO

±10 ±13

±9 ± 13

20

Output Short Circuit Current

los

Power Consumption

Pc

Vo=OV

70

Transient Response (Unity Gain)
Rise Time
Overshoot
Slew Rate

tr
OS
SR

Vi = 20mV, RL~2KO, CLS 100pF
Vj =20mV, RL~2KO, CLS100pF
Vi = 10V, RL~2KO, CLS100pF

0.3
15
0.5

V

0.3

Power Supply Rejection Ratio
Supply Current (Both Amplifier)

mV

V/mV

± 11 ±13

Common Mode Rejection Ratio CMRR
PSRR

10

2.0

V

20
170

mA

mA
240

70

mW
p's
%
V/p.s

0.3
15
0.5

ELECTRICAL CHARACTERISTICS
(Vee =

+ 15V, VEe = -15V, NOTE ,1, unless otherwise specified)
Characteristic

Symbol

Test Conditions
RsS10KO

MC1458CII

MC1458AC/AI
Min

Typ

Max

Min

Typ

Max

Unit

Input Offset Voltage

VIO

7.5

12

mV

Input Offset Current

110

300

400

nA

Input Bias Current

liB

800

1000

Large Signal Voltage Gain

Av

Vo=±10V, RL~2.0KO

15

15

nA
V/mV

Common Mode Rejection Ratio

CMRR

Rs~10KO

70

90

70

90

dB

Power Supply Rejection Ratio

PSRR

Rs~10KO

77

90

77

90

dB

RL=10KO

±12

±14

± 11

±14

RL=2KO

±10

±13

±9

± 13

Output Voltage Swing

VOUT

Input Voltage Range

VieR

±12

± 12

V
V

NOTE 1
MC1458C/AC: O~ Ta~ 70°C
MC14581/AI: -25~Ta~ +85°C

c8SAMSUNG
Electronics

324

MC1458CI AC/II AI

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 1 OPEN·LOOP VOLTAGE GAIN
vs POWER SUPPLY VOLTAGES

Fig. 2 OPEN·LOOP FREQUENCY RESPONSE

120

120

115

~

100

-

110

Z

~

105

UI

~
~

100

9

95

g

./""

~-

-

80

60

,/

Q.

40

z

~

o

'"

20
90

85

-20

80
30

6.0

9.0

12

15

POWER SUPPLY VOLTAGE

18

21

10

M

32

•

10M

"""'---'--'--'--'--'--'-'-"'-----'--'-1--'-'-11~

\

CI

16

\

>

...~

\

1M

\

20

UI

!;
o

100K

~

24

~

10K

28~--+-~-rrH~---+-+'v~s=-±~15~V~

28

«

lK

Fig. 4 OUTPUT VOLTAGE SWING
vs LOAD RESISTANCE

Fig. 3 POWER BANDWIDTH
(LARGE SIGNAL SWING vs FREQUENCy)

o

100

FREQUENCY (Hz)

32

~

'"'"
'"'"

12
8.0

4.0

o

RL=2K FOLLOWER
VOLTAGE
,- j1i(iLj SUTi1ii TH D<5[

\
r---

1

10

100

1K
FREQUENCY (Hz)

c8SAMSUNG
Electronics

10K

100K
LOAD RESISTANCE (0)

325

MC3303/MC3403

LINEAR INTEGRATED CIRCUIT

QUAD OPERATIONAL AMPLIFIER

14 DIP

The MC3303 series is a monolithic Quad operational amplifier
consisting of four independent amplifiers. The device has high
gain, internally frequency, compensated operational amplifiers
designed to operate from a single power supply or dual power
supplies over a wide range of voltages. The common made input
range includes the negative supply, thereby eliminating the
necessity for external biasing components in many applications.
14 SOP

FEATURES
• Output voltage can swing to GND or negative supply
• Wide power supply range;
Single supply of 3.0V to 36V
Dual supply of :!: 1.SV to :!: 18V
• Electrical characteristics similar to the popular LM741
• CLASS AB output stage for minimal crossover distortion
• Short circuit protected output.

BLOCK DIAGRAM

ORDERING INFORMATION
Device

Package

MC3403N

14 DIP

MC3403D

14 SOP

MC3303N

14 DIP

MC3303D

14 SOP

Operating Temperature
0- +70 o C

-40- +85°C

SCHEMATIC DIAGRAM
r---.---------~----------~-----~~~--~---~~------Qvcc

R4
~~~~Q

. c8SAMSUNG
Electronics

OUTPUT

326

MC3303/MC3403

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Supply Voltage
Differential Input Voltage
Input Voltage
Output Short Circuit Duration
Power Dissipation
Operating Temperature MC3303
MC3403
Storage Temperature

Vs
VID
V,

± 18 or +36

V
V
V

±36
±18
Continuous
670
-40-+85
0-+70
-65-+150

Po
Topr
Ts1g

ELECTRICAL CHARACTERISTICS
CVcc= + 15V, VEE = -15V for MC3403, Vcc= + 14V, VEE=GND for MC3303, Ta=25°C,
Characteristic

Input Offset Voltage

Symbol

Test Conditions

V,O

,0

I NOTE1

Input Bias Current

lis

1NOTE1

Large Signal Voltage Gain

Av

Input Impedance

I

NOTE1

Ri

VOUT

RL =2KO

f---.

RL =2KO
Input Common Mode
Voltage Range
Common Mode Rejection
Ratio

1.5

8.0

NOTE1

V,CR
CMRR

Rs~

10KO

Power Supply Current

Is

Vo=O, RL = co

Output Short Circuit
Current

los

Each amplifier

Positive Supply
Rejection Ratio

PSRR+

Negative Supply
Rejection Ratio

PSRR-

Average Temperature
CoeffiCient of Input
Offset Current

L,1,olL,T

c8 !e!'lSUNG

Min

Typ

Max

1.5

10
12

10
75

5

150
200

200

30

200

0.3

1.0

0.3

1.0

+12.5

±12

±13.5

+10

+12

±10

±13

+10

±10

12V- 12.5VVEE
VEE

13V- 13.5VVEE
VEE

±10

90

70

2.8

7.0

±30

±45

30

150

50

±10

Unit

mV

nA

nA

VIm V

15

+12

70

200
400

20

15

50
100

500
20

RL = 10KO
Output Voltage Swing

Max

30

Vo= ± 10V
RL =2KO

MC3403

Typ

I NOTE1

'

unless otherwise specified)

MC3303
Min

5

Input Offset Current

mW
°C
°C
°C

MO

V

V
dB

90
2.3

7.0

mA

±20

±45

mA

30

150

p.VN

30

150

p.VN

50

pAloC

327

•

MC3303/MC3403

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS (Continued)
(Vee =

+ 15V,

VEE = -15V for MC3403, Vee =

Characteristic

+ 14V,

VEE = GND for MC3303, unless otherwise specified)
MC3303

Test Conditions

Symbol

Min

Input Offset Voltage Drift /:::,VIJ/:::,T
GBW Av =1, RL=2KO, Vo=20Vp-p, THD=5%

Power Bandwidth

Typ

MC3403
Max Min

Typ

Max

Unit

p.V/oC

10

10

9.0

9.0

KHz

1.0

1.0

MHz

V//J.s

Small Srgnal Bandwidth

BW

Slew Rate

SR

Av=1, VIN = -10V to +10V

0.4

0.4

Rise Time

tr

A v =1, RL =10KO, Vo =50mV

0.35

0.35

/J.S

Fall Time

t,

A v =1, RL=10KO, Vo=50mV

0.35

0.35

/J.S

Av =1, RL =10KO, Vo=50mV

Over Shoot

OS

Av =1, RL =10KO, Vo=50mV

20

20

%

Phase Margin

¢m

Av = 1, RL = 2KO, C L= 200pF

60

60

Degrees

Crossover Distortion

CD

VIN = 30mVp-p, Vo = 2.0Vp-p, f = 10KHz

1.0

1.0

%

NOTE 1
MC3403: O~Ta~ + 70°C
MC3303: -40~Ta~ +85°C

ELECTRICAL CHARACTERISTICS
(Vce= 5.0V, VEE=GND, Ta=25°C unless otherwise specified)

Characteristic

Symbol

Test Conditions

MC3303
Min

Typ

MC3403
Max

Min

Typ

Unit

Max

Input Offset Voltage

VIO

10

2.0

10

Input Offset Current

ho

75

30

50

nA

Input Bias Current

lis

500

200

500

nA

Large Signal Open
Loop Voltage Gain

Av

Power Supply
Rejection Ratio
Output Voltage Range
Supply Current
Channel Separation

200

PSRR
VOUT

RL= 10KO, Vee=5.0V
RL=10KO,

5.0V~Vee~30V

3.3

3.5

200

f = 1KHz to 20KHz

120

V/mV
150 p.V/v

3.3

3.5

V

Vec·2.0 Vee· 1 .7

Vee-2.0 Vee-1.7
2.5

Icc
CS\

10
150

c8SAMSUNG
Electronics

10

RL = 2.0KO

7.0

mV

2.5
120

7.0

mA
dB

328

MC3303/MC3403

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 1 OPEN LOOP FREQUENCY RESPONSE
120 r-

iii

:!!

z
:;;:

CI

w

CI

~

110

r-

100

rI-

"-

50

9

40

r-

30

r--

Z

w
"0

o

:;;
on

o

1\ I

"

1\

\,

,I

IJ IV fV IV V

1\
>

i

o

f'"

:;;

E

1il

20'r-

~

h " !-'-1

.....

o
10'

10'

10'

"I

r

,.......

v.... v...."

NOTE: Class AS output stage produces
distortioniess sinewave

r--

10
10'1

1\ I

i/

:J

\

I

10'

{\

J\
f\ I\
II ,
II

~

70: -

tl>

t=160
>

~

r-80Ir-r-r--

0

l-

90

60

Fig. 2. Wave Response

I'~~'=
± !~V""
Ta- +25°C'

I

50

10"

~s/DIV

•

FREQUENCY (Hz)

Fig. 4 OUTPUT VOLTAGE vs FREQUENCY

Fig. 3 OUTPUT SWING
30

30 r-Mmmrr-r1"TT1T1Tr-r1-rmm-rrnmrr-rr1WTT11I~I~TIr
...1 ±'.
~'T1~.~JTTTTI1III:"

Ta~25°C

..~.;;. +2!i°
R=10KIl

25 f-+H+tllff--++ttHfttI--i-+

25

't

c:.

w

CI

/

20

z
~

w

CI

~

15

0

...>

~

10

0

y
o
o

/v

VV

V

/

10 I--++++tlttr--t-+

oLlliill~~illL~~~~~ilill~~~~
10"

2.5

7.5

10

12.5

15

17.5

10'

10'

Fig. 5 INPUT BIAS CURRENT vs TEMPERATURE
100

...~

60

Z

g;

U
VI

50

ID

40

~

30

::!i

~

Ta=12soc

50

40

-

~

-

20
10

30

-r--r-- - -..

10

-20

20

40

TEMPERATURE (OC)

c8SAMSUNG
Electronics

60

80

-r--

r---...

20

o
-40

10'

Fig. 6 INPUT BIAS CURRENT vs SUPPLY VOLTAGE

V.='± 15V

60

w

10'·

60

90

a:

10'

FREQUENCY (Hz)

SUPPLY VOLTAGE (±Vl

70

10'

20

100

o

2.5

7.5

10

12.5

15

17.5

20

SUPPLY VOLTAGE (±Vl

329

LINEAR INTEGRATED CIRCUIT

MC3303/MC3403
TYPICAL APPLICATIONS
Fig. 7. Multiple feedback bandpass filter

Fig. 8. Wein bridge oscillator
50kfl
,.----4\J"'IIr---~~

~1---N\I'v-

V"

Rl

fo

VOUT

______R-I3

C2

=center frequency

R

~C

fo = 2

BW = Bandwidth
R in kfl
C in ",F

for fo = 1 kHz
R=16 kfl
C=O.OI ",F

1r

Fig. 9. Comparator with hysteresis

Q=~<10
BW

R2

HYSTERESIS

Cl=C2=~
3

Rl = R2= I}
R3=9Q2-1

If source impedance is high or varies, filter may be preceded with voltage
follower buffer to stabilize filter parameters.

VOUT

V,N0-------f

I

VOUT

VOL

I

I V,NH
I
VREF

V,NL

Design example:
given: Q 5, fo 1 kHz
Let Rl = R2 = 10 kfl
then R3 9(5)2 - 10
R3=215 kfl

=

VOHEOi

Rl

Use scaling factors in these expressions.

=

Rl
V,NL = Rl + R2 (VOL - VREF) + VREF

=

Rl
V,NH = Rl + R2 (VOH - VREF) + VREF
Rl
H = Rl + R2 (VOH - VoLl

C=f=I.6 nF

Fig. 11. AC Coupled inverting amplifier

Fig. 10. High impedance differential amplifier
R

RI
100kn

VI
VOUT
COFVOUT
RL
10kfl
Rl

f\

f\
\r

VOUT=C (1 +a+b) (V2-Vl)
V2

Av=

R

c8SAMSUNG
Electronics

=~

1

2V p p
o

T

Av = 10. (as shown)

330

LINEAR INTEGRATED CIRCUIT

MC3303/MC3403

Fig. 13. Voltage reference

Fig. 12. Ground referencing a differential input signal

V+
R2
10kO

>---OVOUT

R1
10kO

+VCM~--~~~----~~~--~

R3
1MO

I
I
I

R1

V+

VOUT = R1 + R2 (= 2

as shown)

I

VOUT= +Vcc

Fig. 15. Pulse generator

Fig. 14. AC Coupled non·inverting amplifier

1N914

1MO

100kO

R2

•

VOUT

Co

R3
100kO
R5
100kO

o {\

Av=1 +

:~

V

f\

Av = 11 (as shown)

2 V p. p
·Wide control voltage range:
OVOCSVCS2 (V + -1.5Voc)

T

Fig. 16. Bi·Quad filter

R
R

C

100kO

C

C1

VIN

R2

o-----t ~.-------4I'IIN--+-~

100kfl
100kO

R3

C1

>-----t J--o NOTCH

VREF

where
Tsp = Center frequency gain
TN = Bandpass notch gain
fO=

211"~C

R1=QR

c8SAMSUNG
Electronics

OUTPUT

R2=~
. Tsp
R3=TNR2
C1=10C

Example: fo = 1000 Hz
BW=100 Hz
Tsp=1
TN=1
R=160 kO
R1 1.6 MO
R2=1.6 MO
R3=1.6 MO
C= 0.001 "F

=

331

LINEAR INTEGRATED CIRCUIT

MC3303/MC3403

Fig. 17. Voltage controlled oscillator

OUTPUT 1

/'.A
OUTPUT 2

Fig. 18. Function generator
TRIANGLE WAVE
OUTPUT
SQUARE WAVE
,----I\N'\o----r---Q OUTPUT

R1

100kll

f- R1+R2 of R3=~
- 4CRfR1

c8SAMSUNG
Electronics

I

R2 + R1

332

MC4558C/AC/I

LINEAR INTEGRATED CIRCUIT

DUAL OPERATIONAL AMPLIFIER

8 DIP

The MC4558 series is a monolithic integrated circuit designed
for dual operational amplifier.

FEATURES
•
•
•
•
•
•
•

8 SOP

No frequency compensation required.
No latch-up.
Large common mode and differential voltage range.
Parameter tracking over temperature range.
Gain and phase match between amplifiers.
Internally frequency compensated.
Low noise Input transistors.

9 SIP

•

BLOCK DIAGRAM

•
g

>

;::::
::)

o

I'
~

+

~

w

W

>

+
N

~

I
N

~

N

to-

::)

0

o
o
>

ORDERING INFORMATION
Device

Package

MC4558CN
MC4558ACN

8 DIP

MC4558CS
MC4558ACS

9 SIP

MC4558CD
MC4558ACD

8 SOP

MC45581N
MC4558AIN

8 DIP

MC45581S
MC4558AIS

9 SIP

MC45581D
MC4558AID

8 SOP

Operation Temperature

0- + 70°C

-40- +85°C

=8~SUNG

333

LINEAR INTEGRATED CIRCUIT

MC4558C/AC/I

SCHEMATIC DIAGRAM (One Section Only)
vcco-----~--------~-----~~~----~~

IN (-)

Q15

IN (+) 0----+-----1------'

C2

L---+---+----+--o OUTPUT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Power Supply Voltage MC4558AC/AI
MC4558C/I
Differential Input Voltage
Input Voltage
Power Dissipation
Operating Temperature Range MC455811AI
MC4558C/MC4558AC
Storage Temperature Range

c8SAMSUNG
Electronics

Symbol

Vs
V,o
Vi
Po
Topr
T51g

Value

Unit

±22
±18
±30
±15
400
-40 - +85
0- + 70
-65 - + 150

V
V
V
V
mW
°C
°C
°C

334

LINEAR INTEGRATED CIRCUIT

MC4558C/AC/I
ELECTRICAL CHARACTERISTICS

(Vcc=15V, VEE= -15V, Ta==25°C, unless otherwise specified)
MC4558AC/AI
Characteristic

Symbol

Input Offset Voltage

VIO

Input Offset Current

Input Bias Current

Large Signal
Voltage Gain
Common Mode Input
Voltage Range

Test Conditions

Rs ;:5;10KO

hB

NOTE 1

Supply Voltage
Rejection Ratio

PSRR

Rs;:5; 10KO

RL~2KO

5

1

6

Is

Pc

Vi == 10V, RL~2KO
CL;:5;100pF

7.5

20

500

300

30

500

Ta=T max

20

500

800

Ta=T min

100

1500

800

50

NOTE 1

NOTE 1
NOTE 1

5

30

20

200

Unit

mV

200

Ta==T min

nA

500

200

nA

V/mV

15

25
± 12

±13

±12

::!:13

70

90

70

90

± 12 ±13

70

90

76

90

76

90

76

90

76

90

± 12

±14

± 12 ±14

±10

±13

± 10 ±13
5.0

3.5

V

dB

dB

V
5.6

Ta=T max

4.5

5.0

Ta=T min

6.0

6.7

70
Power Consumption
(Both Amplifiers)

6

300

3.5
Supply Current
(Both Amplifiers)

2

200

RL~10KO

VOUT

1

Typ Max

200

NOTE 1

CMRR Rs ;:5;10KO

Max Min

5

NOTE 1
VICR

MC4558CII

-~

Typ

3

max

Vo= ± 10V, RL~2KO

Common Mode
Rejection Ratio

Output Voltage Swing

Min

. Ta== T

110

Av

f-----

150

70

170

Ta=T max

135

150

Ta== T min

180

200
1.2

1.2

mA

mV

Slew Rate

SR

Rise Time

t,

Vi == 20mV, RL~2KO,
C L;:5;100pF

0.3

0.3

iJ.s

Overshoot

OS

V i ==20mV, RL~2KO,
C L;:5;100pF

15

15

%

V/iJ.s

NOTE 1
MC4558C/AC: Tmin:5Ta:5Tmax = O:5Ta:5 + 70°C
MC4558AIII: Tmin:5Ta:5Tmax= -40:5Ta:5 +85°C

c8SAMSUNG
Electronics

335

I

LINEAR INTEGRATED CIRCUIT

MC4558C/AC/I

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 2 RMS NOISE vs SOURCE RESISTANCE

Fig. 1 BURST NOISE vs SOURCE RESISTANCE
1000 _

__

100

~-1.0HZ Tq,).OKH.z
~

~

iw

sw

!; 100

Ii' 10

~Z

~

Z

IIL

~

.Ii

I-

1/

::;)

::;)

IL

~

10

.Ii

~
1.0

=
0~10~UW100~WU~1~~-K~llWl0LK-U~100m-K~WW10M
SOURCE RESISTANCE

(fl)

100

10

140
7'

i

fij

~

~

lJlllIlI.

::;)

IL
::;)

0

0.1

.Ii

Av

1

~~

Ii

1\
Ii :-.....

20

111111
100

\

40

~

III

10

~

/

111111
0.01

Rs = 100KO

",

1111111

I-

100

100

A,

1.0K
10K
SOURCE RESISTANCE

lOOK

1.0M

o

10

100

1.0K
FREQUENCY (Hz)

(n)

i

1

I

180

+140

~

\

I

"

'\.
~

\..

-~

"I\..
+20

j

-20

1.0

10

100

1.0K

"f\.\'\

10K lOOK 1.0M 10M
FREQUENCY (Hz)

c8SAMSUNG
Electronics

1001<

1

~

180

'\.

10K

Fig. 6 PHASE MARGIN vs FREQUENCY

Fig. 5 OPEN LOOP FREQUENCY RESPONSE

- '-

1M

In"

l1J11(lo

120 r---

~io-'

Av-looo

1.0

W

I-

lK
10K
lOOK
SOURCE RESISTANCE (n)

Fig. 4 SPECTRAL NOISE DENSITY

Fig. 3 OUTPUT NOISE vs SOURCE RESISTANCE
10

~

r-

I-

!

40

I

20

o

1.0

10

100

~
\ UNITY GAIN

i

_.

1.0K

i

\

I

I \

1

10K lOOK 1.0M 10M
FREQUENCY (Hz)

336

MC4558C/AC/I

LINEAR INTEGRATED CIRCUIT

Fig. 7 POSITIVE OUTPUT VOLTAGE SWING
vs LOAD RESISTANCE
15

'i

11

~
UI
li
!:l
g

9.0

!;

7.0

II.
I-

5.0

3.0

1.0

~

±12V

1

V

~

9.0

I-

7.0

J

::)

0

~

500

1.0K

2.0K

10K

LOAD RESISTANCE

5.0

I
3.0

±3V

20K

50Kl00K

(n)

..... 10-

V~

~I

::)

II.
I-

ifN

f...--

100

11

UI

li
!:l
g

±9V

_10-

... ~
j V
V'

""

± 15V SUPPLIES

I

),

::)

o

~

-

I

IIV

13

V

II

±15V SUPPLIES I

~ .....

/

13

Fig. 8 NEGATIVE OUTPUT VOLTAGE SWING
vs LOAD RESISTANCE
15

4-

1.0
100

~

±12V

±9V

±6V

...
1(3V
500

1.0K 2.0K
LOAD RESISTANCE

10K

20K

50K lOOK

•

(Il)

Fig. 9 POWER BANDWIDTH
(LARGE SIGNAL SWING VERSUS FREQUENCy)
28

24

1~

Fig. 10 TRANSiENT RESPONSE TEST CIRCUIT

20

UI

CJ

~
g
::)

II.
I-

I-

16

r-o---+--....--- To Scope
(Output)

I-

12

-

I-

::)

0

~ 8.0

1\1\

4.0

10

100

1.0K

10K

lOOK

1.0M

FREQUENCY (Hz)

c8SAMSUNG
Electronics

337

NOTES

KA219/KA319

LINEAR INTEGRATED CIRCUIT

DUAL HIGH SPEED VOLTAGE COMPARATOR
The KA219 is a dual high speed voltage comparator designed to operate from a single + 5V supply up to ± 15V dual supplies.
Open collector of the output stage makes the KA219 compatible with
RTL, DTL and TTL as well as capable of driving lamps and relays at
currents up to 25mA. Typical response time of BOns with ± 15V power
supplies makes the KA219 ideal for application in fast AID converts, level
shifters, oscillaters, and multivibrators.
14 SOP

FEATURES
•
•
•
•
•
•
•

Operates form a single SV supply
Typically 80ns response time at ± 1SV
Open collector outputs: up to + 3SV
High output drive current: 2SmA
Inputs and outputs can be isolated from system ground
Minimum fan-out of 2 (each side)
Two independent compators

BLOCK DIAGRAM

ORDERING INFORMATION
NC

Device

Package

KA319N

14 DIP

KA319D

14 SOP

Operating Temperature

NC
OUTPUT1

IN2 (-)

KA219N

14 DIP

KA219D

14 SOP

O-+70°C

-25 - +85°C

SCHEMATIC DIAGRAM
,-~~~--~~-'------------~~~~-------'-----OVcc

IN (_)"----__--'--T

IN (+)

l---+---+---~--O

OUTPUT

y
i

R17
L-----~-o

GN D

L----~VEE

c8SAMSUNG
Electronics

341

•

KA219/KA319

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Supply Voltage
Output to Negative Supply Voltage
Ground to Negative Supply Voltage
Ground to Positive Supply Voltage
Differential Input Voltage
Input Voltage
Output Short Circuit Duration
Power Dissipation
Operating Temperature Range KA219
KA319
Storage Temperature Range

Vs
Vo - VEE
GND-VEE
GND-Vee
VIO
VI

Unit

Value

V
V
V
V
V
V
sec
mW

36
36
25
18
±5
±15
10
500
-25 - +85
0-+70
-65 - +150

Po
Top,
T s1g

°C
°C

ELECTRICAL CHARACTERISTICS
(Vee = +15V, V EE = -15V, Ta=25°C, unless otherwise specified)

Characteristic

Symbol

Input Offset Voltage
(Note 1)

VIO

Input Offset Current
(Note 1)

ho

Input Bias Current

118

KA219

Test Conditions

Min

Rss5KO

I Note

3

I Note

3

Max

0.7

4.0

Voltage Gain

Av

Response Time
(Note 2)

t,

Min

VOL

150

10

75

80

VinS - 5mV, 10 = 25mA

0.6

250

VEE=OV
VinS - 6mV, ISinkS3.2mA

0.23

8

Vjn~10mV,

Input Voltage Range

VieR

Note 3

c8SAMSUNG
Electronics

2

1

10

I Vee = 5V,

80

ns
V

±13
1

0.4

10

±13
3

V

V
p.A

0.2

VEE = OV

1.5

V

Vo=35V
IVs =±15V

nA
V/mV

0.4

0.2

nA

40

0.3

I Note 3

1000

1.5

VEE=OV
VinS -10mV, IsinkS3.2mA
Vo=35V

mV

1200

0.6

Vee~4.5V,

200

Unit

300

500

40

Vs= ± 15V

IOL

8.0

1000

3
10

Vin~5mV,

2.0

100

Vee~4.5V,

Output Leakage
Current

Max

10

VinS - 10mV, 10 = 25mA
Saturation Voltage

Typ

7.0
10

I Note

KA319

Typ

1

p.A
V

3

342

KA219/KA319

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
(Vec = + 15V, VEE = -15V, Ta = 25°C, unless otherwise specified)

Characteri stic

I
I
I

!
I

Symbol

Test Conditions

~Min

KA219
Typ

KA319
Max

Min

Typ

Max

Unit

Differential In put
Voltage

VID

Positive Supply
Current

Icc1

Vcc =5V, VEE=OV

3.6

Positive Supply
Current

Ice2

Vs= ±15V

7.5

11.5

7.5

12.5

rnA

Negative Supply
Current

lEE

Vs= ± 15V

3

4.5

3

5

rnA

±5

±5

V
rnA

3.6

Note 1. The offset voltage and offset currents given are the maximum values required to drive the output within
a volt of either supply with a 1rnA load. Thus, these parameters define an error band and take into account
the worst case effects of voltage gain and input impedance.
2. The response time specified is for a 100mV input step with 5rnV overdrive.
3. KA319: O!'>Ta:::;; + 70°C
KA219: - 25 !'> Ta:::;; + 85°C

c8SAMSUNG
Electronics

343

•

KA219/KA319

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 1 INPUT CURRENT

Fig. 2 OUTPUT SATURATION VOLTAGE

500

Vs= ±115V

-

400

CC

...S

~

25~--~--+---+---+---+'~+---i--~

r-- ~ t---

r-

a:
a:

i

15~--~--~--~--~~~--+---+-~

...
(,)

(,)

~

20~--~--~--~--~~~--+---+-~

::)

::)

...

1
...

300

::)

200

0..

g

~

10~--~--+---+-~~--+---+---+---i

100

o

-40

OFFSET

- --

-20

20

40

60

01~0--~~~~~--~.4--~~~~~.7~~.8

80

TEMPERATURE (OC)

OUTPUT VOLTAGE (V)

Fig. 4 RESPONSE TIME FOR VARIOUS
INPUT OVERDRIVER

Fig. 3 TRANSFER FUNCTION
40

8.0

I
I
Vs = ±15V
35 r- RL =l.4KIl
Ta=25"C

~

:z:
~
:z:

/
/

25
20

...~
...~

15

0

10

6.0

I

5.0
4.0

-1.0

3.0

...>
~

0

2.0

RL =5OOIl
5 0V
1+ =1 .

-40

>

...

~ -60
~

~

::)

~~

-120
6.0

E
w

CI

~

0

~

~

4.0

~

1\ 1\ r\ ?urn

C

...>

2.0 f--

fornv ~

::)

1.0

..- ..hi)

a..

~

,......' r-...' r-...

0

~-

-0.6

w

~

0

0

1"

o ~-- ro-- ~

9
CI

J:i

5.0

~
~

V+ =5.0V
If'

II/

::)

~s= J5.0V

w

CI

I
/

S

7.0

V

30

w

"~

:;;-

tJ6V

o

-0.2

0.2

0.6

40

1.0

DIFFERENTIAL INPUT VOLTAGE (mV)

120

80

160

TIME (nS)

Fig. 5 RESPONSE TIME FOR VARIOUS
INPUT OVERDRIVER

Fig. 6 INPUT CHARACTERISTICS

120

S

w

";!

6

l

r-- r -

:;;-

700

60
40

...
15

::)

0..

~

a:

w

g 2.0
...
::)

S

5.0m

/
1/

I

I

I

I

I
I

I

I

~

I

~

!

100

'/

I

./ -:b

I

1

0

60

120

I

J

... 200

~ ~ 2.0m~

40

I

I

~

20mV-

I
I

400

m

4.0

!

I

~

~

I
..1

I

(,) 300

6.0

";!

600

~ 500

...>

I

I

Ta=12S "C

Vs=5.0V
RL =5000
V + =5.0V

160

-100
-10

If

-8

r-JAxlMtiM DIFFEjNTIAIL
i INPUT VOLTAGE
-6

-4

-2

8

10

TIME (n5)

c8SAMSUNG
Electronics

344

LINEAR INTEGRATED CIRCUIT

KA219/KA319
Fig. 7 RESPONSE TIME FOR VARIOUS
INPUT OVERDRIVER
120

Fig. 8 RESPONSE TIME FOR VARIOUS
INPUT OVERDRIVER

IVs=~15V

t-- I--

:;§.
w

Rl =500U
V+ =5.0V

0

~

Vs = l15V
Rl = 5000
V+ 15.0V

~ -4 0

....

~ -80

0

~

I-- t...-12O
6. 0

6. 0

~

,

~

~

4.0

~

g

~ ~5Lv

20mV-

j

2.0

2.0my~

~

~V

4. 0

~
g

2.0

I
20mV-

160

120

80

40

V

~
()

i
Ul

J

V

V

V

,. 1----

2.5

I

-'

-- --

--- NEGA IVE

10

7.5

V

1./

---

,/It"

12.5

15

17.5

20

Fig. 12 OUTPUT LIMITING CHARACTERISTICS

~
~ -1. 2

i

o
~
o

~
~

Vs· =5.0V, v s - =0-

t-- t--t-

i . . . . .1'---"

f---R-"r--_t_--t---_f---t-----j1.0

<-

V,i± 15

:::;
w -1. 6
o

80

,..---........,.------,-----,-------r----,-------, 1.2

I I 1

f:::

-0. 8

60

40

TEMPERATURE (OC)

Fig. 11 COMMON MODE LIMITS

:::- t['-.::

20

-20

SUPPLY VOLTAGE (;tV)

-0.4

160

10~--~--~----r---'---~----r-~

,.J)--

....

120

80

Fig. 10 SUPPLY CURRENT

Fig. 9 SUPPLY CURRENT
10

15II:

f-2,Or V

TIME (n5)

TIME (n5)

POSITIVE

)

5 0mV
.

l\ f\:

~
o

o

<-§.

r\ I~ t-

!;

~
40

~

§.

....

........

0.8

15II:

~

II:

::>

o

0.6 iii

....

REFERRIED TOI SUPPLY VOLTAGES

!!!

:;

-2.0

c
II:
w

()

II:

o
Ii:o

1.2

8
0.8
Vs =

i

~
z

9

0.4

:z:

~

fl

Ul

15V, is. = 5 OV, Vi = 0

i--J--------,~---_t_--+__-_f--_+_----j

i

0.4

0.2

V- 55 - 35

-15

5.0

25

45

65

TEMPERATURE (OC)

c8SAMSUNG
Electronics

85

105

125

5.0

10

OUTPUT VOLTAGE (V)

345

KA710C/I

LINEAR INTERGRATED CIRCUIT

HIGH SPEED VOLTAGE COMPARATOR

14 DIP

The KA710CII is a high speed voltage comparator intended for use as
an accurate, low-level, digital level sensor or as a replacement for
operational amplifiers in comparator applications where speed is of
prime importance.
The output of the comparator is compatible with all intergrated logic
forms.
The KA710C/I is useful as pulse height disciminators, a variable threshold
schmitt trigger, voltage comparators in high-speed AID converters, a
memory sense amplifier or a high noise immunity line receiver.

14 SOP

FEATURES,
• Low offset voltage: 5mV
• High gain: 1000 VN
• High speed: 40ns Typ

BLOCK DIAGRAM
ORDERING INFORMATION
Device

Package

KA710CN

14 DIP

KA710CD

14 SOP

KA7101N

14 DIP

KA710lD

14 SOP

Operating Temperature

o -+ 70°C
-

-25 - +85°C

SCHEMATIC DIAGRAM

OUTPUT

IN (+)
IN (-)
GND~+-----------------------------------~--~

c8SAMSUNG
Electronics

346

LINEAR INTERGRATED CIRCUIT

KA710C/I

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Positive Supply Voltage
Negative Su pply Voltage
Peak Output Current
Output Short Circuit Duration
Differential Input Voltage
Input Voltage
Power Dissipation
Operating Temperature Range KA710C
KA7101
Storage Temperature Range

Vee
VEE
Ipeak

Input Offset Voltage

Symbol

Via

Input Offset Current
(Note 1)

110

Input Bias Current

liB

Large Signal Voltage Gain

Av

Input Voltage Range

VieR

Po
Top,
Tstg

°C
°C

KA7101

Test Conditions

Min

RsS2000, NOTE 1

Max

0.6

2.0

I Note 2
INote 2
1250

Positive Output Level

VOH

OsI0<5mA,

Negative Output Level

VOL

Vin~5mV

Output Sink Current

ISink

VO=OV Vin~5mV

lee

VoSOV

Max

1.6

5.0
6.5

0.75

3.0

1.8

7.0

5.0

20

7.0

25

27

45

25

40

1800

1.8

5.0
7.5

1000

±5.0

VIDR

Typ

1700

Unit

mV

p,A

p,A

VIV

2

Vee= -7V

CMRR

Min

3.0

NOTE 1

I Note

KA710C

Typ

I Note 2

Differential Input Voltage Range

Rss2000, NOTE 2

80

±5.0
95

70

±5.0
Vin~5mV

V
94

dB

±5.0

V

2.5

2~9

4.0

2.5

2.9

4.0

V

-1.0

-0.5

0

-1.0

-0.5

0

V

2.0

2.2

1.6

2.2

4.7

9.0

4.7
4.0

Negative Supply Current

lEE

Vo=OV, Vin= +5mV

4.0

7.0

Power Consumption

Po

Va = OV, Yin = 10mV

80

150

t,

(Note 3)

40

Response Time

V
V
mA
Sec
V
V
mW

(Vee = + 12V, VEE = -6V, Ta=25°C, unless otherwise specified)

Common Mode Rejection Ratio

Pdsitive Supply Current

Unit

+14
-7
10
10
±5
±7
300
0-+70
-25 - +85
-65-+150

VID
VI

ELECTRICAL CHARACTERISTICS
Characteristic

Value

mA
9.0

mA

7·9

mA

150

mV

J

40

nS

Note 1. The input offset voltage and input offset current are specified for a logic threshold voltage as follows:
For 7101, 1.65V at -25°C, 1.4V at +25°C, 1.15V at +85°C. For 710C, 1.5V at O°C, 1.4V at +25°C, 1.2V
at + 70°C.
Note 2. KA710C: OsTas + 70°C
KA7101: -25sTas +85°C
Note 3. The response time specified is a 100mV input step with 5mV overdrive (KA710).

c8SAMSUNG
Electronics

347

I

KA710C/I

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 2 VOLTAGE GAIN

Fig. 1 SUPPLY CURRENT
10r--r--~-.--'--'--'-~--'--'--'

I---+-+--+-+--+-+---+-

2000

Ve~=12~

I.

-r-....

VEE = - 6V -Ta=2S"C
1---+--f---+------1--+---+--+-l o 0
-

=

~

1800

1600

2

~

'\
\

1400

1000

-.2

.2

\

'\

1200

.--I---+--~_+--+-_+-+-_+~

-.4

~
~

PO ITIVEI

..

Vcc=12V _
VEE = -6V

.4

\

-40

80

40
TEMPERATURE (OC)

INPUT VOLTAGE (V)

Fig. 4 INPUT BIAS CURRENT

Fig. 3 INPUT OFFSET CURRENT
loS

J

J.

Vee=12V
VEE = - 6 V -

Vee=12V
VEE = - 6 V -

~

I-

I~

Z

III
II:

~

Q

Iii

"

~0

~
!:

.S

o

-40

'"'"

'-...... ~

--

o

80

40

-40

..........

I'- r--

r-

80

40
TEMPERATURE (OC)

TEMPERATURE (OC)

Fig. 6 OUTPUT SINK CURRENT

Fig. 5 OUTPUT VOLTAGE LEVEL
l

I

Vee = 12V
VEE = -6V-

f--

-~~~LEJEL

--

-r-----

Vee = 12V
VEE = -6V

ct

.§.
I-

ffi

II:
II:

:>
Q
lo<

Z

iii

I-

:>

~

o

NEGATIVE OUTiUT LEVEL

-1
-40

-

I
40
TEMPERATURE (OC)

c8SAMSUNG
Electronics

80

1~--~--~--~--~----~--~--~

-40

40

80

TEMPERATURE (OC)

348

LINEAR INTEGRATED CIRCUIT

KA710C/I

Fig. 8 RESPONSE TIME

Fig. 7 RESPONSE TIME
120

g

0

80

UI
CI

~
g

...

~

Vcc=+12V
Vee = -6V
'Ta=25'C

I--I--

:;

-4 0

0
Vee = +12V
VEE = -6V
Ta=25'C

-80

~

I--I--

I

-,120

0

I

~
UI

~
g

:
_
......

4.0

.2.0

~
10mv
1

0.0

20mV

NnL
~~

4.0

7'?5mV

2012.0

10ft ~ ~

5mV
0.0

o

....i
I

-2.0

i

-2.0
0.0

40

80

TIME (nS)

120

160

0.0

40

80

120

160

TIME (nS)

I

c8SAMSUNG
Electronics

349

LINEAR INTEGRATED CIRCUIT

KA711C/I
DUAL HIGH~SPEED DIFFERENTIAL
COMPARATOR

14 DIP

The KA711CII contain two voltage comparatorsth
with separate differential inputs, a common output and
provision for strobing each side independently. The dev·
ice features high accuracy, fast response, low offset
vol tage, a large input voltage range, low power consumption and compatibility with practically all integrated logic forms.
The KA 711 CII can be used as a sense amplifier for
memories, and a dual comparator with OR'ed outputs
is required, such as a double-ended limit detector.

14 SOP

FEATURES
•
•
•
•

Fast response time: 40ns (Typ)
Output compatible with most TTL circuits
Indepel"!dent strobing of each comparator
Low offset voltage

ORDERING INFORMATION

BLOCK DIAGRAM

Device

Package

KA711CN

14 DIP

KA711CD

14 SOP

KA7111N

14 DIP

KA7111D

14 SOP

Operating Temperature
0- + 70°C
-25 -+85°C

SCHEMATIC DIAGRAM

INPUT(-)B

INPUT(-) A

~---+--u

INPUT( +) B o--+--~

INPUT (+) B

VEE ( ) - - - - - - * - - - - + - - - * - - - - - - - - - '

GND

c8·SAMSUNG
Electronics

350

LINEAR INTEGRATED CIRCUIT

KA711C/I
ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

Characteristic

Symbol

Value

Unit

Positive Supply Voltage
Negative Supply Voltage
Differential Input Voltage
Input Voltage
Strobe Voltage
Peak Output Current
Continuous Total Power Dissipation
Operating Temperature Range KA711C
KA7111
Storage Temperature Range

Vee
VEE
lO
VI
Vst
Ipeak
Po

+14
-7
±5
±7
0-6
50
500
0- + 70
-65 - + 150
-25 - +85

V
V
V
V
V
mA
mW

v

Top,
Tstg

°C
°C

ELECTRICAL CHARACTERISTICS
(Vcc=

+ 12V, VEE = -6V, Ta=25°C, unless otherwise specified)
Characteristic

Symbol

I

KA711C

KA71111

Test Conditions

Min

Typ

Max

1.0

3.5

Min

Typ

Max

1.0

5.0

Unit

I
Input Offset Voltage

VIO

I Rs 2: 2000.

V1CM =OV

• VOUT= 1.4V
Input Offset Current

110

INOT~_2

VOUT = 1.4V

0.5

I NOTE

liB
750
Av

Input Voltage Range

VICR

Differential Input Voltage Range

VIOA

Output Resistance

Ro

Output Voltage (High)

VOH

I NOTE

2

VEE = -7.0V

75

25

700

1500

500

±5.0

±5.0

4.5

Output Voltage (Low)

VOL

VIN~10mV

Loaded Output High Level

VLOM

VIN~10mV,

Strobed Output Level

Vso

Vstrobe ~ 0.3V

Output Sink Current

ISink

VIN~ 10mV, Vo~OV

Positive Supply Current

lee

Vo=OV, VIN =10mV

8.6

-1.0
2.5

0
3.5
0

-1.0
0.5

V
0
5.0

-1.0

-0.5

0

2.5

3.5

-1.0
0.5

0.8

p.A

V

4.5

5.0

f.LA

VJV

200

200

10=5mA

1500

±5.0

±5.0

VIN~10mV

100
150

500

mV

15
25

150

!Ta=o°c
Large Signal Voltage Gain

0.5

10.0
20

2
25

Input Bias Current

6.0

4.5

V
V
V

0

V

0.8

mA

8.6

mA

Negative Supply Current

lEE

Vo = OV, VIN = 10mV

3.9

Strobe Current

1st

Vstrobe = 100mV

1.2

2.5

1.2

2.5

mA

Power Consumption

Po

Vo=OV, VIN~10mV

130

200

130

230

mW

Response Time

t,

(NOTE 1)

40

40

ns

12

12

ns

Strobe Release Time

t,s

3.9

mA

Note: 1. The response time specified is for a 100mV input step with 10mV overdrive
2. KA711C: O~Ta~ + 70°C
KA7111: - 25~Ta~ + 85°C
3. The input offset voltage and input offset current are specified for a logic threshold voltage of 7111, 1.65V
at -25°C, 1.4V at +25°C, 1.15V at +85°C, for 711C, 1.5V at O°C, 1.4V at +25°C, 1.2V at + 70°C.

c8SAMSUNG
Electronics

351

•

LINEAR INTEGRATED CIRCUIT

KA711C/I
TYPICAL APPLICATIONS
• Fig. 1 Sense Amplifier With Supply Strobing
for Reduced Power Consumption*

KA711C
POSITIVE
SUPPLY
BUS

Fig. 2 Double-Ended Limit Detactor
With lamp Driver

UPPER
LIMIT
VOLTAGE
L1
INPUT

LOWER
LIMIT
VOLTAGE
FROM
SENSE
LINE

* Standby dissipation is about 40mW

c8SAMSUNG
Electronics

352

LM239/A, LM339/A, LM2901, LM3302 LINEAR INTEGRATED CIRCUIT
QUAD DIFFERENTIAL COMPARATOR

14 DIP

The LM239 series consists of four independent voltage comparators designed to operate from single power supply over a wide
voltage range.

FEATURES
• Single or dual supply operation
• Wide range of supply voltages LM239/A, LM339/A: 2 - 36V
LM2901 ,(or ± 1 - ± 18V)
LM3302: 2 - 28V
(or ± 1 - ± 14V)
• Low supply current drain 800pA 1YP• Open collector outputs for wired and connectors
• Low input bias current 25nA 1YP• Low input offset current ± 2.3nA Typ.
• Low input offset voltage ± 1.4mV Typ.
• Common mode input voltage range includes ground.
• Low output saturation voltage
• Output compatible with TTL, DTL and MOs logic
system

BLOCK DIAGRAM

OUT2

1

•

~-----,

sop

ORDERING INFORMATION

r - - - - - - - - f 14 OUT3

c8SAMSUNG
Electronics

14

Device

Package

LM339N
LM339AN

14 DIP

LM339D
LM339AD

14 SOP

LM239N
LM239AN

14 DIP

LM239D
LM239AD

14 SOP

LM2901N
LM2901D
LM3302N
LM3302D

14
14
14
14

Operating Temperature

0-70°C

-25- +85°C

DIP
SOP
DIP
SOP

0- +85°C

353

•

LM239/A, LM339/A, LM2901, LM3302 LINEAR INTEGRATED CIRCUIT

SCHEMATIC DIAGRAM
VccO~-----------.-----------~------~~

IN (+)

o---+---I

IN (-)

o------+---+-----If-.---+-----I

____+---+----l-O OUTPUT

D5

D6

GNDo------+--~----*--~----~~~_+----~

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Power Supply Voltage
Power Supply Voltage Only LM3302
Differential Input Voltage
Differential Input Voltage Only LM3302
Input Voltage
Input Voltage Only LM3302
Output Short Circuit to GND
Power Dissipation
Operating Temperature LM239/LM239A
LM339/LM339A
LM2901/LM3302
Storage Temperature

Vs
Vs
VID
VID
VI
VI

±18 or 36
± 14 or 28
36
28
-0.3 to +36
-0.3 to +28
Continuous
570
0- +70
-25- +85
-40- +85
-65 -+ 150

V
V
V
V
V
V

c8SAMSUNG
Bectronics

PD
Topr
Tstg

mW
°C
°C
°C
°C

354

LM239/A, LM339/A, LM2901, LM3302 LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
(Vee = 5V, Ta = 25°C, unless otherwise specified)

Characteristic

Symbol

Test Conditions

LM239A/LM339A
Min Typ

Input Offset Voltage

VIO

V leM = OV to Vee -1.5V
Vo = 1 .4 V, Rs = 0

±1

NOTE 1

Input Bias Current
Input Common Mode
Voltage Range
Supply Current

NOTE 1

NOTE 1

VieR

NOTE 1

AVOL

Vee = 15V, RL~ 15KO (for large swing)

Large Signal
Response Time

t RES

VIN =TTL Logic Swing
V,ef=1.4V, V RL =5V, RL=5.1KO

Response Time

tRES

V RL =5V, RL=5.1KO

Output Sink Current

Isink

VIN-~1V,

V IN + =OV, Vo::s;1.5V

Output Saturation
Voltage

V sat

VIN-~1V,

V IN + =OV

V ID

±5

mV

±9.0

±50

±2.3

±50
± 15lJ

57

250

250

0

Vec-1.5

0

Vee-1.5

0

Vee-2

0

Vee-2

1.1
50

2.0

200

1.1
50

350
1.4
6

18
140

6
400

nA

400

400

RL=OO

lee

Voltage Gain

Differential Voltage

±1.4

± 150
57

Is

Ileak

±2

Unit

Max

nA

"0

Output Leakage
Current

Min Typ

±4.0
±2.3

Input Offset Current

LM239/LM339

Max

2.0

V
mA

200

V/mV

350

ns

1.4

f,.tS

18

mA

140

400
mV

Isink =4mA

NOTE 1

V IN - =0

Vo =5V

700

V IN + = 1V

Vo=30V

1.0

1.0

f,.tA

NOTE 1

36

36

V

0.1

700
0.1

nA

* NOTE 1

LM339/A: O::s;Ta::s; + 70°C
LM239/A: - 25::s;Ta::s; + 85°C
LM2901/3302: - 40::s;Ta< + 85°C

c8SAMSUNG
Electronics

355

•

LINEAR INTEGRATED CIRCUIT

LM239/A, LM339/A, LM2901, LM3302

ELECTRICAL CHARACTERISTICS
(Vec = 5V, Ta = 25°C, unless otherwise specified)

Characteristic

Symbol

Input Offset Voltage

VIO

Input Offset Current

110

Input Bias Current
Input Common Mode

Voltage Range
Supply Current

Test Conditions

2

7

Vo=1.4V, Rs=O

9

15

16

VICR

NOTE 1

2.3

50

NOTE 1

50

200

57

250

NOTE 1

200

500

NOTE 1

Icc

VIN = TTL Logic Swi ng
Vret = 1.4V, RRL = 5V, RL = 5.1 Kn

Response Time

t RES2

VRL =5V, RL=5.1Kn

Output Sink Current

ISink
V sat

Output Leakage
Current

Ileak

Differential Voltage

V ID

VIN_~1V,

VIN+ =OV, Vo~1,5V

Isink=4mA
VIN+ = 0

Vo=5V

VIN + = 1V

Vo =30V
NOTE 1

250

._-

1000
Vcc·1.5
Vcc ·2

25

100

1.1

2

350
1.4
6

VIN - ~ 1V, VIN+ = OV
NOTE 1

57

0

2.5

tREsT

100
300

0

2.0

Large Signal
Response Time

3

18
140

6
400

0

nA

nA

V

2.0
mA

30

VIm V

350

ns

1.4

p's

18

mA

140

700
0.1

Unit

mV

Vcc ·2
1.1

(for large swing)

20
40

Vcc· 1.5

1.6

RL~15Kn

2

Max

0

RL =00,

Vcc= 15V,

Min Typ

0

RL=oo, Vcc=30V

AVOL

Output Saturation

LM3302

Max

VICM =OV to Vcc =1.5V

Voltage Gain

Voltage

LM2901
Min Typ

400
700

0.1

mV
nA

1.0

1.0

p.A

36

28

V

NOTE 1 LM339/A: O~Ta~ + 70°C
LM239/A: - 25~Ta~ + 85°C
LM2901/3302: - 40 ~Ta< + 85°C

c8SAMSUNG
Electronics

356

LM239/A, LM339A, LM2901, LM3302 LINEAR INTEGRATED CIRCUIT
TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 1 SUPPLY CURRENT
2.2

Ta ~ - 40

1.8
:;(

...

~

ffia:
g;

1.4
1.2

/

0

i

::>
Ul

..,,;

;'

.8

/-

---

. --

. /~

1.6

§

_

... ~-

....

0

Fig. 2 INPUT CURRENT
120 r---,-----r--;---,--..,--~r-r-I-,

6_I-

1101-----+--+---+--+-----1-

~--I....... Tj=-25°C

~-d-Ta-25°C

--'""
70

.--.--

Ta= 85°C

-

....

I

__

---r---

f--t---

a_ +jOC

OO~~_~~_~~~~rI
50~~~a~=--±15=OC~~----1~-4--+----+-~

.6
.4

RLI""~

.2

o

-

oo~~~~~_r==:t::4===~~~r--80
Ta- 40°S-r--

1--"--

T

---- .-

V,,(ICM)=OV oc
Ru..(ICM)=1GIl

100 1------j--+----I----+--+--t----1r---_1

401------j==:~~--=~~,-----~!~----4~.-==b..~~-1
30 ~ra.:-+ is°c---I--+----I---+---+------1
20 i---------jif--_4-- ---+-----+------+--+--+------1
1

101------j--+----I----+--+--+---f----I
a

10

15

20

25

30

35

40

0~0--~--~10---1~5--~2~0--~25---3~0--~3~5~40
SUPPLY VOLTAGE (V)

SUPPLY VOLTAGE (V)

Fig. 4 RESPONSE TIME FOR VARIOUS INPUT
OVERDRIVE·NEGATIVE TRANSITION

Fig. 3 OUTPUT SATURATION VOLTAGE
10'

--t-

l
Ta =25

0

•

OUT OF
SATURATION
10°

~
w

~
0
>
z

10-'
-Ta 85°C

0

40°C

Ta

~

6.0

_,~o-n

g;

~

--

-100

~

CJ

~ ~a~12boC

10-'

--

t---

-

1----1--

f-

-I--

---t--

--

\\

4.0

- fL

17

,,

2.0

omv

10-

• 10-'

10-'

i

10'

10°

10'

OUTPUT SINK CURRENT (mA)

,"T°'Fr

\

---

H

jrmv l5.om(

0.4

0.8

---

•

i

1.4

TIME (usee)

Fig. 5 RESPONSE TIME FOR VARIOUS INPUT
OVERDRIVE·POSITIVE TRANSITION
C('

-

w

I

CJ

~.
0

100

i

i

i
i

>

~
~

I
i

~

w
CJ


b
I

Ta-25 o

!

.§

0.41

5,Or-

0.81

TIME (usee)

c8SAMSUNG
Electronics

357

LM239/A, LM339/A, LM2901, LM3302

LINEAR INTEGRATED CIRCUIT

APPLICATION INFORMATION
The LM239 series includes four high gain, wide bandwidth devices which, like most comparators, can easily oscillate
if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. That occurs
during the output voltage transitions, when the comparator changes state.
To minimize this problem, the PC board layout should be designed to reduce stray input-output coupling; reducing
the input resistors to less than 10 KO reduces the feedback signal levels and finally, adding even a small amount
(1 to 10mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback
are not possible.
It is a good design practic8 to ground all unused pins.
The differential input voltage may be larger than positive supply without damaging the device. Note that voltages more negative
than -O.3V should not be used: an input clamping diode can be used as protection.
The outputLM339 is the uncommitted collector of a NPN transistor with grounded emitter. This allows the device to be used
like any open-collector gate providing the OR-wide facility.
The output sink current capability is approximately 16 mA; if this limit is exceeded, the output transistor will come out of
saturation and the output voltage will rise very rapidly.
Under this limit, the output saturation voltage is limited by the approximately 600

TYPICAL APPLICATIONS

rsat

of the outpput transistor.

(Vee = + 15V)

Fig. 6 Basic comparator

Fig. 7 Non-inverting comparator with Hysteresis
5V

5V

3KO
+VREF

o------t
>--+--OVo

Vo
+VINcr-~~.........

10KO

Fig. 8 Inverting comparator with Hysteresis

3KIJ
+VIN 0 - - - - - 1

>--+--OVo
1Mil

c8SAMSUNG
Electronics

358

LM239/A, LM339/A, LM2901, LM3302

LINEAR INTEGRATED CIRCUIT

Fig. 10 Driving TTL

Fig. 9 Driving C/MOS

5V

5V

Fig. 12 OR gate

Fig. 11 AND gate
15V

15V

3KO

A
B

A·B·C

B

+1~C

+~C

o

0

"0" "1"

•

3KO

A

A+B+C

"0" "1"

Fig. 14 Squarewave oscillator

Fig. 13 Large fan·in AND gate

15V

15V

100KO

4.3KO

3KO

">-+----<.lVo
A·B·c·r

c8SAMSUNG
Electronics

~ ±Vee
f=100KHz

359

LM239/A, LM339/A, LM2901, LM3302

Fig. 1S ORing the outputs

LINEAR INTEGRATED CIRCUIT

Fig. 16 Peak audio level display

5800

15V

3KO

>--t---oVo

6800
IN

lKO

6800

>----~6800

Fig. 17 Zero crossing detector (single supply)

Fig. 18 Zero crossing detector (split supplies)
VINmln ... O.4V peak for 1% phase distortion (A 8)

15V

20
8.2KO

6.8KO

KO

01

c8SAMSUNG
Electronics

360

LM293/A, LM393/A, LM2903

LINEAR INTEGRATED CIRCUIT

DUAL DIFFERENTIAL COMPARATOR

8 DIP

The LM293 series consists of two independent voltage comparators
designed to operate from a single power supply over a wide voltage
range.

FEATURES
•
•
•
•
•
•
•
•

Single Supply Operation: 2V to 36V
Dual Supply Operation: ::t: 1V to ::t: 18V
Allow Comparison of Voltages Near Ground Potential
Low Current Drain 800J'A Typ
Compatible with all Forms of logic
Low Input Bias Current 2SnA l'yp
Low Input Offset Current ± SnA l'yp
Low Offset Voltage ::t: 1mV Typ

8 soP

9 SIP

BLOCK DIAGRAM

•

I

ORDERING INFORMATION
Device

Package

LM393N
LM393AN

8 DIP

LM393S
LM393AS

9 SIP

LM393D
LM393AD

8 SOP

LM293N
LM293AN

8 DIP

LM293S
LM293AS

9 SIP

LM293D
LM293AD

8 SOP

LM2903N

8 DIP

LM2903D

8 SOP

LM2903S

9 SIP

Operating Temperature

0- + 75°C

-25- +85°C

-40- +85°C

c8SAMSUNG
EIectrorics

361

LM293/A, LM393/A, LM2903

LINEAR INTEGRATED CIRCUIT

SCHEMATIC DIAGRAM
VccO~--------~~--------~~____~~

IN

(+) O---+---f

IN (-) Q------+---+------l--+------.j

____1---+--+---0

OUTPUT

05

06
GNOQ-----~--+_--~~-~----~--~+_----

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Power Supply Voltage

Vs

± 18 or 36

V

Differential Input Voltage

VID

36

V

Input Voltage

VI

-0.3 to +36

V

Output Short Circuit to GND
Power Dissipation

Continuous
PD

570

mW

Operating Temperature
LM393/LM393A
LM293/LM293A
LM2903

Topr

0- +70
-25- +85
-40- +85

°C

Storage Temperature

Tstg

-65- + 150

°C

c8SAMSUNG
Electronics

362

LINEAR INTEGRATED CIRCUIT

LM293/A, LM393/A, LM2903
ELECTRICAL CHARACTERISTICS

(Vee = 5V, Ta= 25°C, unless otherwise specified)
LM293AJLM393A LM293/LM393

Characteristic

Test Conditions

Symbol

Input Offset Voltage

V IO

Input Offset Current

ho

Min Typ
±1

V leM = OV to Vee -1.5V
Vo = 1.4V, Rs=O
NOTE 1

NOTE 1
65

Supply Current

lee

Voltage Gain

NOTE 1

V IN = TTL Logic Swing
V,ef = 1.4V, V RL = 5V, RL = 5.1 KO

Response Time

tRES2

V RL =5V, RL=5.1KO

Output Sink Current

Isink

VIN-~1V,

V 1N + =OV, Vo~1.5V

Output Saturation Voltage

V sat

VIN-~1V,

V 1N + =OV

Output Leakage Current

heak

Isink =4mA
V 1N - =0,
V in + = 1V

65

Vee-1.5

0

Vee-1.5

Vee-2

0

Vee-2

0.6

1

0.6

1

0.8

2.5

0.8

2.5

50 200

160

V o =5V

400

0.1

mA

nS
J.l.S

18

mA

160

400
700

0.1
1.0

V

1.4

700

NOTE 1

Vo =30V

6

18

nA

V/mV

350

1.4
6

nA

250
400

350

mV

±50
± 150

250

Vee = 15V, RL~ 15KO(for large Va swing) 50 200

t RES1

±5

±50

Unit

±5
±9.0

0

RL=OO Vee = 30V

Large Signal Response
Time

Max

0

RL=oo

Av

±1

400

NOTE 1
VieR

±2

± 150

18

Input Common Mode
Voltage Range

Min Typ

±4.0
±5

Input Bias Current

Max

mV
nA

1.0

J.l.A

NOTE 1
LM393/A: O:sTa:s + 70°C
LM293/A: - 25:s Ta:s + 85°C
LM2903: -40:sTa:s +85°C

c8SAMSUNG
Electronics

363

•

LINEAR INTEGRATED CIRCUIT

LM293/A, LM393/A, LM2903
ELECTRICAL CHARACTERISTICS
Characteristic

Input Offset Voltage

Input Offset Current

Input Bias Current

V ICM =OV to Vcc - 1.5V
Vo=1.4V, Rs=O

LM2903
Min

Supply Current

lec

Max

± 1

±7

±9

±15

±5

±50

NOTE 1

±50

±200

65

Is

VICR

Typ

NOTE 1

110

Input Common Mode
Voltage Range

Voltage Gain

Test Conditions

Symbol

VIO

(V cc =5V, Ta=25°C, unless otherwise specified)

NOTE 1

0

Vcc·1.5

0

Vcc·2

RL=OO
RL=OO Vec = 30V
Vcc = 15V, RL~ 15Kn (for large Vo swing)

nA

0.6

1

1

2.5

nA

V

mA

100

V/mV

tRES1

V IN = TTL Logic Swing
V ref =1.4V, V RL =5V, RL=5.1Kn

350

nS

Response Time

tRES2

VRL =5V, RL=5.1Kn

1.5

p.S

Output Sink Current

ISink

V IN -

16

mA

Output Saturation Voltage

V sat

VIN - ~ 1V, VIN + = OV
Isink =4mA

Output Leakage Current

Ileak

V IN - = 0,
V in + = 1V

Large Signal Response
Time

Av

~1V,

V IN + =OV, Vo5.1.5V

25

mV

250
500

NOTE 1

Unit

6

160
NOTE 1
Vo=5V
Vo=30V

400
700

0.1

mV
nA

1.0

p.A

NOTE 1
LM393/A: O:5Ta:5 + 70°C
LM293/A: -25$Ta$ +85°C
lM2903: -40$Ta$ +85°C

c8SAMSUNG
Electronics

364

LM293/A, LM393/A, LM2903

LINEAR INTEGRATED CIRCUIT

TYPICAL PERFORMANCE CHARACTERISTICS
Fig. 2 INPUT CURRENT

Fig. 1 SUPPLY CURRENT
1.2

,...--r--r--,..----,---,----r----r---,

120

-.--- -

110
100
Ta=

90

e.§.

Ie
..s

.8

I-

~
a:

:::l

§

.6

(J

i
I/)

./

80

...",.

I-

~
(J

I-

~
~

.4

L5,~a= -~~

70

~

....... ......

50

,

40

1..---

30

.2

f..-:

-.-~.Ta=25'v

~

~

60

-;;:::-.

t::--

-- -----

I-~

r-==-- ~Ta-85'C

20
V1N{CM)

10

R'N,CM)

10

15

20

25

30

35

o

40

o

15

10

SUPPLY VOLTAGE (II)

20

25

30

= OVoc
~ 1Gil

35

40

SUPPLY VOLTAGE (II)

Fig. 4 RESPONSE TIME FOR VARIOUS INPUT
OVERDRIVE·NEGATIVE TRANSITION

Fig. 3 OUTPUT SATURATION VOLTAGE
10'

I

I

>-

I

w

,

Cl

~0

10'

I:::l
Q.

~

:;

~~

Ta=85'C

0

10-'

z

0

-

~~

~

Ta=25'C

~
w

~

0

4.0

>

I:::l
Q.

L
10- 3
10-'

,

6.0

Cl

V

10- 2

100

Ta= -40'C

"-'iI'

I/)

I

I

>

~
W
Cl

>

T. =25'

I

.§.

I:::l

0

10u

10 '

..

10'

10'

OUTPUT SINK CURRENT (rnA)

I)'

",
\

2.0

NPUT OVE DRIVE

5 0 t t 20mV 5.0my
0.4

0.8

1.4

TIME (usee)

Fig. 5 RESPONSE TIME FOR VARIOUS INPUT
OVERDRIVE·POSITIVE TRANSITION
Tl=25.1c

>-

.§.
w
Cl

~

_.

100

0

>
I:::l
Q.

~

~

6.0

w

Cl

~

4.0

0

>

I:::l

Q.

I:::l

0

2.0

/

..... 1'

11 pUT fVERPRIVE

f'"

bLv.:mr-Ar-

f--

j

0.4

0.8
TIME (usee)

c8SAMSUNG
Electronics

1.4

365

LM293/A, LM393/A, LM2903

LINEAR INTEGRATED CIRCUIT

APPLICATION INFORMATION
The LM293 series are high gain, wide bandwidth devices which, like most comparators, can easily oscillate if the
output is inadvertently allowed to capacitively couple to the inputs via stray capacitance. That occurs during the
output voltage transitions, when the comparator changes state.
To minimize this problem, the PC board layout should be designed to reduce stray input-output coupling; reducing
the input resistors to less than 10 KO reduces the feedback signal levels and finally, adding even a small amount
(1 to 10mV) of positive feedback (hysteresis) causes such a rapid transition that oscillations due to stray feedback
are not possible.
It is a good design practice to ground all unused pins.
The differential input voltage may be larger than positive supply without damaging the device. Note that voltages more negative
than -0.3V should not used: an input clamping diode can be used as protection.
The output of the LM239 series is the uncommitted collector of a NPN transistor with grounded emitter. The allows
the device to be used like any open-collector gate providing the OR-wide facility.
The output sink current capability is approximately 16mA; if this limit is exceeded, the output transistor will come out of saturation and the output voltate will rise very rapidly.
Under this limit, the output saturation voltage is limited by the approximatively 600 rSal of the output transistor.

TYPICAL APPLICATIONS

(Vee=

+ 15V)

Fig. 7 Non·inverting comparator
with Hysteresis

Fig. 6 Basic comparator

Fig. 8 Inverting comparatoTi
with Hysteresis

+Vee

+vcc

3KO

+VREF
+VIN

Fig. 9 Driving C·MOS
+5V

c8SAMSUNG
Electronics

3KO

TVee
+VIN

10KO

3KO

1M{!

Fig. 10 Driving TTL
+5V

366

LM293/A, LM393/A, LM2903

LINEAR INTEGRATED CIRCUIT

APPLICATION INFORMATION (continued)
Fig. 11 AND gate

Fig. 12 OR gate
+Vcc

+Vcc

3Kf!
3x100Kf!

3x 100kf!

......

>-~-----10A·B·C

Ao--~

B

o--~~>----~-I~~

A

o---~,.-,

B

o-~~~~----~~

c

+Vcc C o-_~...--'

:~
"a"

o-..J
"a"

"1"

"1"

FOig. 14 Squarewave oscillator
Fig. 13 Large fan·in AND gate

+Vcc

•

+Vcc

+V::ruVo

f=100KHz

+Vcc ----.

a -.J A'o----...t-=--+---4:~
"a"

"1'" B G--MI--....

Co----N-"::"":";
D 0--......----'

Fig. 15 Pulse generator

Fig. 16 One·shot multivibratoi

+Vcc

+Vcc
15KO
R1
1MO
R2

D1

ol

1N914
D2

,n<:f). ~n -V+

6p.S.J ~ L
to 11
12

10

10Kfl

PW

tms-:r-E"

>--+--0

Va

to

v+

11

Vo

c8SAMSUNG
Electronics

367

LINEAR INTEGRATED CIRCUIT

LM311

8 DIP

VOLTAGE COMPARATOR
The LM311 series is a monolithic, low input current
voltage comparator.
The device is also designed to operate from dual or
single supplies voltage.

FEATURE
•
•
•
•
•
•

Low input bias current: 2S0nA (Max)
Low input offset current: SOnA (Max)
Differential Input Voltage: ± 30V.
Power supply voltage: single 5.0V supply to ± 15V.
Offset voltage null capability.
Strobe capability.

8 SOP

BLOCK DIAGRAM
GND

1

ORDERING INFORMATION
7 OUTPUT

6 BALANCE/STROBE

Device

Package

LM311N

8 DIP

LM311D

8 SOP

Operating Temperature

0-+ 70

0

e

5 BALANCE

SCHEMATIC DIAGRAM
~--------'-~--~~------~~---OVcc

~-I---.\--_--n

OUTPUT

IN (+)

IN ( - ) o . r - -......

'-----_____.--

a..

30

~AISED

u

300

rn

I-

'~

1

r---......

ffi

§

0

~

20

-,

-

NORMAL

-25

25

.-1-.

50

' - - - . NORMAL

-t---I

o

100

75

-50

-25

'JId-:

iiH
J' -----; i-'

w

CI

.....

~

g

It
10

-

---

I-

~

:!S
5

_.-

-t=-

7

. /~--

- -1--

a

jU

!

I

-

:

I

10K

,I
ii

7

I:!

ex:

'--

!fl100

"""

iii

-

I-

~

75

!!!:

'-

50
SIOS

10M

-16 -12

0

4

12

16

Rg. 6 OUTPUT VOLTAGE VS DIFFERENTIAL

50

-

-1.0

~

-- ---

€

40

~

g

0

-~~Lr~ER

--

~

~

---

I-

:::>
0

I

30

I-

0.2

l

w

:IE

U

VS=3O~

Ta=25°C

CI

-1.5

OA

-

NORJAL OU.fPUT
RL=1KII
V++=4OV

z

0

-4

DIFFERENTIAL INPUT VOLTAGE (V)

f--~G~~~~%~~AJES

:IE
::;

:IE
:IE

-8

60

€

0

- -c--

I

1M

Rg. 5 COMMON MODE LIMITS VS TEMPERATURE

w
c

..

I

25

V+

~

--

125

INPUT RESISTANCE !(II)

-0.5

I

.-

~

TYPICAL

fffHl

IVS=±15V
To=25°C
c-- 1 - - -

I

'"

~ 150

6
~.-

JJ;-L--

200 I-- 1----

175 I-- - - -

-nill!iI

I
100K

100

Rg. 4 INPUT BIAS CURRENT VS DIFFERENTIAL

=25°6

/

/

----

:1

--1--

0

I

~-

---

75

225

,II,
MAXIMUM'

/

1-

0

II' _2

./

--- .

Iii

~
!!!:

I

---1'-0.

50

TEMPERATURE (OC)

Rg. 3 OFFSET VOLTAGE VS INPUT RESISTANCE
100

.-...

25

TEMPERATURE (OC)

>
.§.

"-...

10

I
-50

I-

..............

~
!!!:

!!!:
100

±15V'

--

20

_OUTPUT
RL=60011

-35

-15

25

45

55

TEMPERATURE (OC)

c8SAMSUNG
Electronics

85

105

125

-1.0

--

\.

10

V-55

""r\. II
\

-0.5

J\ '-

..

0.5

-

1.0

DIFFERENTIAL INPUT VOLTAGE (mV)

370

LM311

LINEAR INTEGRATED CIRCUIT

Fig. 7 SATURATION VOLTAGE VS CURRENT

Fig. 8 SUPPLY CURRENT VS TEMPERATURE

0.8

J

s ;±15V

0.7 I--- TaJ50 C

~

./
./

0.6

III
CI

~

0.5

§!
Z

2

0.4

~

:::I

!c

./

0.3

V
./

V

V

./

-

---

V"

I/)

t"-_

1/

0.2

/

o

o

--...

r--- r-

-

t---. 1'-

POSITIVE AND

~G¥~J~V~I~~iPLy.

1/

0.1

POSITIVE SUPPLY·

~LOW

1

10

20

30

40

-25

50

I-

75

50

100

TEMPERATURE (OC)

OUTPUT CURRENT (mA)

Fig. 9 LEAKAGE CURRENTS VS TEMPERATURE

Fig. 10 SUPPLY CURRENT VS SUPPLY VOLTAGE

•

TaL25 0 C

L/

POSITIVE SUPPLY
(OUTPUT HIGH)

.

/'

l.-/'

--1--- t - - - 1---

~rOSITIVEAND
NEGATIVE SUPPLY
(OUTPUT LOW)

t - - - - iNPUT wi:"1.5V __
1

10-11~
25

35

0
45

55

65

10

75

15

20

25

30

SUPPLY VOLTAGE (V)

TEMPERATURE (OC)

Fig. 11 OUTPUT SATURATION VOLTAGE

Fig. 12 OUTPUT LIMITING CHARACTERISTICS

·8~----~----~----~------r---~

120

1.2

f\
C

100

.§.

ffi

II:

~

r-!J

80

~

80

Ii:
o

0

1.0

0-9"
\

C}-9,

~

U

;

oS'-Y.

°0"O(/~

~"9~1t"

--.c:::
./

o

,/

.a.\O~
~ fbr:,\~~
~~\>-O~

:I:
UI

0.6

0 .4

0 .2

/
'I

o
10

c8SAMSUNG
Electronics

0.8

.i'V~~
20

OUTPUT CURRENT (mA)

/

15

OUTPUT VOLTAGE (V)

371

LINEAR INTEGRATED CIRCUIT

LM311
TYPICAL APPLICATIONS
Fig. 1 Switching Power Amplifier

,-----------~--------------~------------~------------__Ovcc

02
2N6125
OUTPUT---4

620

620

3

04

2

2N6121

300K

300K
510

39K

39K

510
15K

'---------------------4-~t_----+-------------------------I--<~YtIi>---OINPUT

REFERENCE

'----------------------------~----------------------------~~~Mr_o
15K

Fig. 2 Relay Driver with Strobe

Fig. 3 Digital Transmission Isolator

r--------4~------~------~~vcc

1.0K

~7----+--o~~PUT

c8~SUNG

372

II

NE555C/I

LINEAR INTEGRATED CIRCUIT

SINGLE TIMER

8 DIP

The N E555 series are a monolithic integrated circuit and high
stable device for.generatingaccurate time dE-lay or oscillation.
The NE5551 is characterized for operation from - 40°C to + 85°C,
aAd the NE555C from O°C to 70°C.

FEATURES
•
•
•
•
•
•
•

Turn off time less than 2/ls
Maximum operating frequency greater than 500KHz
Timing from microseconds to hours
Operates in both astable and monostable modes
High output current
Adjustable duty cycle
Temperature stability of 0.005% per °C

8 soP

APPLICATIONS
•
•
•
•
•
•

Precision timing
Time delay generation
Pulse generation
Pulse position modulation
Sequential timing
Missing pulse detector

ORDERING INFORMATION

BLOCK DIAGRAM

Vee

Device

Package

NE555CN

8 DIP

NE555CD

8 SOP

NE5551N

8 DIP

NE5551D

8 SOP

Operating Temperature
0- + 70°C

I

-40- + 85°C

Control Voltage

R1

R2
Comparator

c8SAMSUNG
Electronics

375

LINEAR INTEGRATED CIRCUIT

NE555C/I

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic
Supply Voltage
Lead Temperature (soldering 10 sec)
Power Dissipation
Operating Temperature Range NE555C
NE5551
Storage Temperature Range

Symbol

Value

Unit

Vee
T1ead
Po
Topr

16
300
600
0- +70
-40- +85
-65- + 150

V
·C
mW
·C
·C
·C

TsIg

ELECTRICAL CHARACTERISTICS
(Ta=25OC, Vcc=5-15\1, unless otherwise specified)
Characteristic
Supply Voltage
Supply Current
'l(low stable)

Symbol

Icc

MTl

'Timing Error
(astable)
21nitial Accurary
Drift with Temperature
Drift with Supply Voltage

MT2

Threshold Voltage

Ve

VTH

Min

Typ

Max

Unit

16

V

Vee = 5V, RL =00

3

6

mA

Vee = 15V, RL =00

10

15

mA

RA = 1KG to
100KG
C =0.1p.F

1.0
50
0.1

3.0

%
ppm/·C
%IV

4.5

Vee

'Timing Error
(Monsotable)
21nitial Accurary
Drift with Temperature
Drift with Supply Voltage

Control Voltage

Test Conditions

RA = 1 K to
100KG
C=0.1p.F

0.5

%
ppm/oC
%IV

2.25
150
0.3

Vee = 15V

9.0

10.0

11.0

V

Vee = 5V

2.6

3.33

4.0

V

Vee = 15V

10.0

V

Vee = 5V

3.33

V

0.1

0.25

p.A

Vee=5

1.1

1.67

2.2

V

VTR

Vee = 15V

4;5

5

5.6

V

Trigger Current

IrR

VT=OV

0.5

2.0

p.A

Reset Voltage

V RE

0.7

1.0

V

Reset Current

IRE

0.1

0.4

mA

'3Threshold Current

IrH

Trigger Voltage

VTR

Trigger Voltage

c8SAMSUNG
Electronics

0.4

376

LINEAR INTEGRATED CIRCUIT

NE555C/I
ELECTRICAL CHARACTERISTICS
(Ta =25°C, VCC =5 -15V, unless otherwise specified)

Characteristic

Symbol

Output Voltage (low)

VOL

Output Voltage (high)

VOH

Test
Conditions

Typ

Max

Unit

Vee=15V
Isink =10mA
Isink = 50mA

0.1
0.4

0.25
0.75

V
V

Vee = 5V
Isink =5mA

0.25

0.35

V

Min

Vee = 15V
Isource = 200mA
Isource = 100mA

12.75

Vee=5V
Isource = 100mA

2.75

12.5
13.3

V
V

3.3

V

Rise Time of Output

Tr

100

nsec

Fall Time of Output

T,

100

Discharge Leakage Current

10

20

nsec
100

nA

Notes:
1. Supply current when output is high is typically 1mA less at Vee =5V.
2. Tested at Vee =5.0V and Vee =15V
3. This will determine the maximum value of RA +Ra for 15Voperation, the max total R=20MO, and for 5V operation the
max total R=6.7Mfl.

APPLICATION CIRCUIT
Cl

GND

R3

RB

RA

Rl

Vee

Flip-Flop

----------------------------~3~--------------~
Output

c8SAMSUNG
Electronics

377

I

NE555C/I

LINEAR INTEGRATED CIRCUIT

APPLICATION NOTE
The application circuit shows astable mode.
Pin 6 (threshold) is tied to Pin 2 (trigger) and Pin 4 (reset) is tied to Vee (Pin 8).
The external capacitor C, of Pin 6 and Pin 2 charges through RA, Rs and discharges through Rs only.
In the internal circuit of the NE555 one input of the upper comparator is the 2/3 Vee (*R, = R2 = R3), another input
if it is connected Pin 6 .•
As soon as charging C, is higher than 2/3 Vee, discharge transistor 0, turns on and C, discharges to collector of
transistor 0,.
Therefore, the flip-flop circuit is reset and output is low.
One input of lower comparator is the 1/3 Vee, discharge transistor 0, turn off and C, charges through RA and Rs.
Therefore, the flip-flop circuit is set and output is high.
So to say, when C, charges through RA and Rs output Is high and when C, discharges through Rb output is low
The charge time (output is high) T, is 0.693 (RA +Rs) C, and the discharge time (output is low) T2 is 0.693 (Rs C,).

(In Vcc=1/3Vcc -0.693)
Vec-213Vee
Thus the total period time T is given by
T=T, +T2=0.693 (RA+2Rs).C,.
Then the frequency of astable mode is given by
f=..:!..=
1.44
T (RA +2Ra)C,
The duty cycle is given by

D.C=T2=~
T

RA+2Ra

If you make use of the N E556 you can make two astable modes.
If you want another application note, request information on our timer Ie application circuit designer.

c8SAMSUNG
Electronics

378

LINEAR INTEGRATED CIRCUIT

NE556C/I
DUAL TIMER

The NE556 series dual monolithic timing circuits are highly stable controllers capable of producing accurate time delays or oscillation.
The NE556 is a dual NE555. Timing is provided by an external resistor
and capacitor for each timing function.
The two timers operate independently of each other, sharing only Vee
and ground.
The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200 mA.
The N E5561 is characterized for operation from - 40° C to + 85 ° C, and
the NE556C from O°C to 70°C.

14 DIP

14 soP

FEATURES
•
•
•
•
•
•
•
•

Direct replacement for NE556
Replaces two N E555 timers
Operates in both astable and monostable modes
High output current
TTL compatible
Timing from microsecond to hours
Adjustable duty cycle
Temperature stability of 0.005% per °C

ORDERING INFORMATION

APPLICATIONS
•
•
•
•
•

Precision timing
Pulse shaping
Pulse width modulation
Frequency division
Traffic light control

•
•
•
•
•

Sequential timing
Pulse generator
Time delay generator
Touch tone encoder
Tone burst generator

BLOCK DIAGRAM

c8SAMSUNG
Electronics

Device

Package

NE556CN

14 DIP

NE556CD

14 SOP

NE5561N

14 DIP

NE5561D

14 SOP

Operating Temperature
0- + 70°C

-40- +85°C

379

I

LINEAR INTEGRATED CIRCUIT

NE556C/I

ABSOLUTE MAXIMUM RATINGS (Ta=25°C)
Characteristic

Symbol

Value

Unit

Vee
T1ead
Po
Topr

16
300
600
0- +70
-40- +85
-65 -+150

V
°C
mW
°C
°C
°C

Supply Voltage
Lead Temperature (soldering 10 sec)
Power Dissipation
Operating Temperature Range NESS6C
NESS61
Storage Temperature Range

T stg

ELECTRICAL CHARACTERISTICS
(Vee = +5V to + 15V, unless otherwise specified)
Characteristic
Supply Voltage
*1 Supply Current (Two timers)
(low state)
*2 Timing Error (monostable)
Initial Accuracy
Drift with Temperature
Drift with Supply Voltage
Control Voltage

Symbol

Icc
MT1i

Ve

VrH

*3 Threshold Current

IrH

Trigger Voltage

VrR

Trigger Current

IrR

*5 Reset Voltage

V RE

Reset Current

IRE

c8SAMSUNG
Electronics

VOL

Min

lYP

4.5

Vee

Threshold Voltage

Output Voltage Low

Test Conditions

Vee =5V, RL = 00
Vee =lSV, RL=oo

5
16

RA =2KO to 100KO
C=O.lJAF
T = 1.lRe

Max
16

V

12
30

mA
mA

%

0.75
50
0.1

ppm/oC

%N

Vee=15V

9.0

10.0

11.0

Vee=5V

2.6

3.33

4.0

Vee=15V

10.0

Vee=5V

3.33

Unit

V
V
V
V

30

250

nA
V

Vee=15V

4.5

5.0

5.6

Vee=5V

1.1

1.67

2.2

V

0.5

2.0

pA

Vr=OV
0.4

Vee=15V
'sink=10mA
's;nk=50mA
'sink =100mA
'sink =200mA
Vee=SV
Isink =8mA
'sink=5mA

0.7

1.0

V

0.1

0.6

mA

0.1
0.4
2.0
2.5

0.25
0.75

V
V
V
V

0.25
0.15

0.3
0.25

3.2

V
V

380

NE556C/I

LINEAR INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
(Vee = +5V to + 15V, unless otherwise specified)
Characteristic

Output Voltage (high)

Rise Time of Output

Symbol

VOH

Min

Typ

Vee=15V
Isource =200mA
Isource =100mA

12.75

12.5
13.3

Vee=5V
Isource = 100mA

2.75

Test Conditions

nsec

100

300

nsec

20

100

nA

1.0
10
0.2

2.0

Fall Time of Output

T,

Discharge Leakage Current

10
MeH

MT2

RA, Rs =1kn to 1QOkn
C=0.1J,lf
Vee=15V

V
300

100

*2 Timing Error (astable)
Initial Accuracy
Drift with Temperature
Drift with Supply Voltage

Unit

V
V

3.3

Tr

*4 Matching Characteristics
Initial Accuracy
Drift with Temperature
Drift with Supply Voltage

Max

2.25
150
0.3

%
ppm/oC

0.5

%N'
%
ppm/oC
%N

Notes:
Supply current when output is high is typically 1.0mA less at Vee =5V.
*2. Tested at Vee=5V and Vee=15V
*3. This will determine the maximum value of RA + Rs for 15V operation.
The maximum total R=20MO, and for 5V operation the maximum total R=6.6Mn.
*4. Matching characteristics refer to the difference between performance characteristics of each timer section in
the monostable mode.
*5. As reset voltage lowers, timing is inhibited and then the output goes low.
* 1.

c8SAMSUNG
Electronics

381

I

LINEAR INTEGRATED CIRCUIT

NE558C/I
QUAD TIMER

16 DIP

The NE558 series are monolithic Quad Timers which can
be used to produce four entirely independent timing
functions. These highly stable, general purpose controllers can be used in a monostable mode to produce
accurate time delays, from microseconds to hours. The
time is precisely controlled by one external resistor and
one capacitor in the time delay mode. A stable mode
can be operated by using two of four time sections.
The N E5581 is characterized for operation from - 40°C
to + 85°C, and the NE558C from O°C to 70°C.

16 soP

FEATURES
•
•
•
•
•

Wide supply voltage range: 4.SV to 16V
100mA output current per section
Edge triggered without coupling capacitor
Time period equals RC
Output independent of trigger conditions.

ORDERING INFORMATION

APPLICATIONS
•
•
•
•

Quad one-shot
Sequential timing
Precision timing
Time delay generation

Device

Package

NE558CN

16 DIP

NE558CD

16 SOP

NE5581N

16 DIP

Operating Temperature
0- + 70°C
-40- +85°C

BLOCK DIAGRAM

OUTPUT D

TIMING D

TRIGGER D

OUTPUT A

TIMING A

TRIGGER A

c8SAMSUNG
Electronics

RESET

CONTROL
VOLTAGE

GROUND

Vee

TRIGGER C

TRIGGER B

TIMING C

OUTPUT C

TIMING B

OUTPUT B

382

NE558C/I

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Supply Voltage
Lead Temperature (soldering 10 sec)
Power Dissipation
Operating Temperature, Range NE556C
NE5561
Storage Temperature Range

Symbol

Value

Unit

Vee
T'ead
PD
Topr

16
300
600
0- +70
-40- +85
-65 - + 150

V
°C
mW
°C
°C
°C

TSl9

ELECTRICAL CHARACTERISTICS
(V ee =5V-15V, Ta=25°C unless otherwise specified)
Characteristic

Test Conditions

Symbol

Supply Voltage

Vee

Supply Current

lee

Min

=

MT

Max

16

V

16

36

mA

±2

5

%

4.5

Vee = 15V, reset voltage = 15V

Timing Error (T RC)
Initial Accuracy
Drift with Temperature

Typ

R

=2Kn to 100Kn, C =1/LF

Drift with Supply Voltage
1Trigger Voltage

V TR

Vee = 15V

1Trigger Current

IrR

Trigger voltage

2

Reset Voltage

VRE

Reset

2

Reset Current

IRE

Reset

0.8

=OV
0.8

Unit

30

150

PPM/OC

0.1

0.9

%/V

1.5

2.4

V

5.0

100

/LA

1.5

2.4

V

50

500

/LA

Threshold Voltage

VTH

0.63 X Vee

V

Threshold Current

III

15

nA

30utput Voltage

VOUT

IL= 10mA

0.1

0.4

k= 100mA

1.0

2.0
500

Output Leakage Current

IOL

10

Propagation Delay Time

Tp

1.0

V
nA
/LS

Rise Time

Tr

IL= 100mA

100

nS

Fall Time

TI

IL= 100mA

100

nS

NOTES: 1. The trigger functions only on the falling edge of the trigger pulse only after previously being high. After
reset the trigger must be brought high and then low to implement triggering.
2. For reset below 0.8V, outputs set low and trigger inhibited.
3. Output structure is open collector which requires a pull up resistor to Vee to sink current.
The output is nomally low sinking current.

c8SAMSUNG
Electronics

383

I

NE558C/I

LINEAR INTEGRATED CIRCUIT

APPLICATIONS
Fig. 1 Long·Time Delay

Fig. 2 Timing Chart

Vcc~r-T-----~~------~~----~-'

TRIGGER'lJ
OUTPUT

T

OUTPUT 4

TRIGGER

. . _______

~'l

:::~:~~
~~~t-OU-TP-UT"'T"f=OUTPUT~
TOELAY: 3(R1C)
TOUT: R2C2

Fig. 3 Ring Counter

START
RESET 0---t----'-=+-------=+-------=4-------'-"-'
10K

Fig. 4 TII11lng Chart

START

RESET

L

01

c8SAMSUNG
Electronics
.

384

KS555

CMOS INTEQRATED CIRCUIT

8 DIP

CMOS SINGLE TIMER
The KS555 is a CMOS timer with improved performance
over a standard bipolar one. Due to its high-impedance
inputs, it is capable of producing accurate time delays
and oscillations with less expensive (smaller) timing
capacitors than a standard bipolar timer.
Its dramatic advantages over bipolar ones are very low
power consumption and wide operating voltage range
especially during stable low voltage operations.

8 SOP

FEATURES
• Low power consumption
• Pin to pin operation with bipolar
timer in most cases
• Extremely low trigger, threshold,
and reset pin current
• High·speed operation (500KHz)
• Stable low voltage operation
(possible 1.SV operation with most samples)
• Wide operating voltage range: 2 to 18V
• High output source/sink driver meet TTL/CMOS
• Immunized to static charge with inner protection
devices

APPLICATIONS
•
•
•
•
•
•
•

Precision Timing
Pulse Generation
Sequential Timing
Time Delay Generation
Pulse Width Modulation
Pulse Position Modulation
Missing Pulse Detector

ORDERING INFORMATION
Device

SCHEMATIC DIAGRAM

Vee

(8)O--~_--------r----r------'

CONTROL (5)

Package

KS555N

8 DIP

KS555D

8 SOP

Operating Temperature

-20 _+85°C

Vee (8)

O----~---I

THRESHOLD (6)0----+-------1

TRIGGER (2)0----+----1

GND

c8SAMSUNG
Electronics

385

•

CMOS INTEGRATED CIRCUIT

KS555

BLOCK DIAGRAM
Vee
R
THRESHOLC'

lO------<.--~

~-__~

>O----() CUTPUT

3
CONTROL
VOLTAGE

P

7J DISCHARGE

GN~t

TRIGGEP

COMPARATOR

R

B

GND 1

This block diagram reduces the circuitry down to its simplest equivalent components. Tie down unused inputs.
R = 1OOKQ ± 20% Typ.

TRUTH TABLE

l
I

Threshold
Voltage

Trigger
Voltage

Don'teare
>2/3 (Vee)

Don't Care

Reset

- --- -

> 1/3 (Vee)

<1/3(V~e)-=2~ > 1/3(Vee) -

----~--

'1

Don't Care

2/3(Vee)

< 1/3 (Vee)

Low

---

High

--_

..

_-

Discharge
Switch

Low

On

---------

----1--

Low

-- - - - - - - -

High
- - - -1-----

High

Output

On
---

t---~~~~-~

Stable

Stable

---~-~

1----

High

Off

Note: RESET will dominate all other input.TRIGGER will dominate over THRESHOLD.

ABSOLUTE MAXIMUM RATINGS
Characteristic

(Note 1)

Symbol

Supply Voltage

Vee

Input Volage
(Trigger, Control Voltage,
Threshold and Reset)

VIN

-0.3

Value

Unit

18

V

Vee+0.3

V

Power Dissipation

PD

200

mW

Operating Temperature Range

Topr

-20- +85

°C

Storage Temperature Range

Tstg

-65 - + 150

°C

Note 1: Stresses above those listed under absolute maximum rating may cause permanent damage to the device.

@SAMSUNG
Electronics

386

KS555

CMOS INTEGRATED CIRCUIT

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 2 to 15V, unless otherwise specified)
Characteristic
Supply Voltage Range

Symbol
Vee

Supply Current

lee

Timing Error

MT

Initial Accuracy

Drift With Temperature

Test Conditions
- 20°C

Lead Temperature
(Soldering 10 sec)

T lead

300

°C

Power Dissipation

Po

600

mW

Operating Temperature Range

Topr

0-+70

°C

Storage Temperature Range

T stg

-65-+150

°C

ELECTRICAL CHARACTERISTICS
(Ta = 25°C, Vee = 5V, refer to application circuit unless otherwise specified)
Characteristic

Symbol

Supply Voltage

Vee

Supply Current

Icc

Control Voltage

Test Conditions

Threshold Current
Trigger Voltage

Typ

3

Vee = 15V

VTH

p.A

Vee = 15V

Vee = 15V

Reset Current

IRE

50
IOL=5mA

0.1

IOL=8mA

0.15

Vee =15V

IOL= 10mA

0.1

Vee = 15V

IOL=50mA

0.5

Vee = 15V

IOL= 100mA

4.5

IOH = -2mA

4

IOH= -1mA
IOH= -5mA
IOH= -10mA

pA
1

V
pA

V

1

IOH= -1mA

Vee = 15V

V

5
50

VOH

pA

1.67

0.7

VOL

V

10
50

ITH
VTR

V

3.33

IrR

Electronics

V

10

VRE

c8SAMSUNG

18

3.33
Ve

Reset Vpltage

High Level Output Voltage

Unit

480

Trigger Current

Low Level Output Voltage

Max

240
Vee= 15V

!

( Threshold Voltage

Min

14.8
14
12.7

V

395

•

CMOS INTEGRATED CIRCUIT

KS556

ELECTRICAL CHARACTERISTICS

(Continued)

Characteristic

Symbol

Initial Error of Timing Interval

TEl

Supply Voltage Sensitivity of
Timing Interval

TES

Rise Time

Tr

Fall Time

Tf
Fmax

RA = 4700, RB = 2000
CT =200pF

Maximum Astable Oscillation

Test Conditions

Typ

Min

Max

Unit

1

%

0.1

%IV

RL = 10MO, CL= 10pF

20

nS

RL = 10MO, CL= 10pF

20

nS

2

MHz

Vee=5 to 15V
RA=RB=1 to 100K
CT =0.1j.tF

APPLICATION CIRCUIT
1) Astable
The circuit can be connected to trigger itself and free runs as a mutivibrator. The external capacitor charges
through RA and RB and discharges through RB only. Thus, the duty cycle may be precisely set by the rajo of these
two resistors. In this mode of operation, the capacitor charges and discharges between 1/3 Vee and 2/3 Vee. As
in the trigger mode, the charging and discharging times, and therefore the frequency are essentially independent
of the supply voltage. This oscillation frequency is given by
F = 11T = 1.44/(RA + 2*R B)/CT
Voo

;>

OPEN

,J

~

o

"'±
(14)

Voo

CONT

~
(1.13)

·~RL (1K)
RESET

DISCH

KS556
OUT

RB !>

.~

(2.12)

(5.9)

,.. OUTPUT

Ie",:

OpF)

. - - THRES

(6.8)

TRIG

-I.-

GND

;h(7)

c8SAMSUNG
Electronics

396

CMOS INTEGRATED CIRCUIT

KS556

2) Monostable
In this operation mode, the timer functions as one shot. Initially, the external capacitor (C) is held discharged
by a transistor inside timer. Upon application of a negative trigger pulse to trigger pin the flip flop is set which
releases the short circuit across the external capacitor and drives and output high.
The voltage across the external capacitor now increases exponentially with time constant T = RA X C. When the
voltage across the extemal capacitor equals 2/3 x Vee, the comparator resets the flip flop, which in turn discharges
the capacitor rapidly and also drives the output to its state.

voo
()

OPEN

~

13.,

01"1

,,1

(14)

Voo

CONT

RL (1K)

(4.10)

-------<:

RESET

(1.13)
DISCH

KS556
~

....
-

OUT

(2.12)
THRES

(6.8)

INP UT

~

(5.9)

i

I

'" OUTPLUT
CCI10 OpF)

TRIG
GND

J(7)

c8SAMSUNG
Electronics

397

KA33V

LINEAR INTEGRATED CIRCUIT

SILICON MONOLITHIC BIPOLAR INTEGRATED
CIRCUIT VOLTAGE STABILIZAER FOR
ELECTRONIC TUNER

TO·92

The KA33V is a monolithic integrated voltage stabilizer especially
deSigned as voltage supplier for electronic tuners.

FEATURES
• Low Temperature Coefficient
• Low Dynamic Resistance
• Typical Reference Voltage of 33V

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)
Characteristic

Symbol

Value

Unit

10
200

mA
mW

Topr

-20-75

°C

T5t9

-40-125

°C

1: Anode 2: Cathode

Zener Current
Power Dissipation (T a = 75°C)
Operating Ambient TemperatureRange
Storage Temperature Range

Iz

PD

ELECTRICAL CHARACTERISTICS (Ta =25°C)
Characteristic

Symbol

Stabilized Voltage
Stabilized Voltage-Temperature Drift

Vz
/I, VzJ/I, T

Dynamic Resistance

rz

Test Conditions
Iz=5mA
Iz=5mA
Ta = - 20 to 75°C
Iz =5mA, f=1KHz

Min

Typ

Max

Unit

31
-1

0

35
1

V
mV/oC

10

25

\

"

SCHEMATIC DIAGRAM

. - - - - - - - 1 - - - - -__- - - - _ - - - - - 0 2

1 - -_ _ _---J_ _ _ _.-J.-_ _ _ _O

c8SAMSUNG
Electronics

\~

Cathode

1 Anode

398

KA33V

LINEAR INTEGRATED CIRCUIT

MEASURING CIRCUITS
Fig. 1 Measuring Circuit for Stabilized Voltage Vz
---lz=5mA

A

v

KA33V

Volt Meter

Fig. 2 Measuring Circuit for Dynamic Resistance
Iz

IZ--

----IAc=ffi

50!,F

I

100

Fig. 3

c
0.1 iF

IZ

VV1

-........,

f=lKHz

EB
Vz

0.5mA

VV 1
rz= O.5mA

#--1--+------1 5mA

IZ

VV1

c8SAMSUNG
Electronics

399

KA33V

LINEAR INTEGRATED CIRCUIT

TYPICAL APPLICATION
Ach

Ych

Bch

Zch

Ri

C
Channel
setting
variable
resistor

Vi

(1) UHF TUNER

TR1

TR2

-(

-(

Antenna

TR1: RF AMP: KSC1393
KSC1070 (Under development)
TR2: OSC: KSC1730
01-04: 1S220 05: MIXER: 1SS16

~AFC
terminal

(2) VHF TUNER

-(
TR3
TR2

TR1: RM AMP: KSC1393
TR2: MIXER : KSC1394
TR3: OSC
: KSC1730
01, 04: 1S2209
02,03: 1S2207

c8SAMSUNG
Electronics

~

0

AFC terminal
Low/High Channel
Switching terminal.

400

KA33V

LINEAR INTEGRATED CIRCUIT

POWER-TEMPERATURE DERATING CURVE
Fig. 7 ALLOWABLE DISSIPATION
AMBIENT TEMPERATURE

~
I
z
o

~
iisZ

40

I~

c:

I

~
j!

200

I
100

-20

25
50
AMBIENT TEMPERATURE (OC)

~

~
I

'"

10

6

r--.....

--

4

75

4

E

~

+60
FREJAIR I
Iz=5mA
_
Vz=33.11V

=e

I +60
z
~+40

~

-1

J

-2

£l

-3

~

-4

~

g
filN

I

a
Iz =5mA XY·RECODER

-2a

::::;

iD_40 I - - t - -

~

II
I

I -60 I - - t - -

~

i
I

-----o VOUT

L....r-:--~

Fig. 3 Light Intesity to Frequency Converter

I

+5V TO 15V

LIGHT
INPUT

\~

c8SAMSUNG
Electronics

3.3K
~--+--------e-- FOUT

100KHz FULL SCALE

405

LINEAR INTEGRATED CIRCUIT

KA2803

LOW POWER CONSUMPTION EARTH
LEAKAGE DETECTOR

8 DIP

The KA2803 is designed for use in earth leakage circuit interrupters, for
operation directly off the AC line in breakers. The input of the differential amplifier is connected to the secondary coil of ZCT (Zero Current
Transformer). The amplified output of differential amplifier is integrated
at external capacitor to gain adequate time delay that is specified in
KSC4613.
The level comparator generates high level when earth leakage current
is greater than some level.

FUNCTIONS
• Differential amplifier
• Level camparator
• Latch circuit

FEATURES
•
•
•
•
•
•
•
•
•

Low power consumption (P d =5mW, 100Vl200V)
Built-in voltage regulator
High gain differential amplifier (VT =13.5mV)
1mA output current pulse to trigger SCR'S
Low external part count, economic
Mini-dip package (8 Dip), high packing density
High noise immunity, large surge margin
Super temperature characteristic of input sensitivity
Wide operating temperature range (Ta = -25°C - +80°C)

ORDERING INFORMATION
Operating Temperature

APPLICATION CIRCUIT
1. Full Wave Application Circuit

2. Half Wave Application Circuit
LOAD

LOAu

C4
0.Q11'

(----9-- ----------------- --________ J
Fig. 1

c8SAMSUNG
Electronics

Fig. 2

406

KA2803

LINEAR INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS (Ta =25°C)
Characteristic
Supply Voltage
Supply Current
Power Dissipation
Lead Temperature (soldering 10 sec)
Operating Temperature
Storage Temperature

Value

Unit

20
S
300
260
-25- +SO
-65- +150

V
mA

Symbol
VeeNEE

Is
Po
T lead
Topr
T stg

mW
°C
°C
°C

ELECTRICAL CHARACTERISTICS (Ta =25°C)
Characteristic

Supply Current 1

Symbol

IS1

Test Conditions

Min

Vee=12V (-25°C)
VA-VI =300mV (25°C)
(SO°C)

Typ

Max

Unit

400

5S0
530
4S0

p.A
p.A
p.A

13.5

17

mVrms

Vee =16V (-25°C - SO°C)
VA-VI=X

10

hOI

Vee=16V (25°C)
V A-V I =30mV
Voo=1.2V

12

30

p.A

h02

Vee=16V (25°C)
Voo=0.6V
VA. V 1 short

17

37

p.A

Output Current

10

Vse=1.4V
Vos=O.SV
Vee= 12V (-25°C)
(+25°C)
(+SO°C)

Latch on Voltage

Vscon

Vee = 16V (25°C)

Latch Input Current

Iscon

Vee=12V (25°C)

10sL

Vee=12V (-25-S0°C)
VosL=0.2V

200

Vloe

hoc =100mA (-25 - SO°C)

0.4

2

V

VSM

ISM =7mA (-25°C)

20

2S

V

Supply Current 2

IS2

VA-VI =X (25 - SO°C)
Vos=0.6
t

900

p.A

Latch Off Supply Voltage

VSOf!

Vos =high (25°0;)

7.0

Ton

Vee =16V (25°C)
V A-V I =0.3V

2

Trip Voltage
Differential Amplifier Output
Current 1
c--Differential Amplifier Output
Current 2
~-

-200
-100
-75

p.A
p.A
p.A

-

Output Low Current
c--Diff. Input Clamp Voltage
f----

Maximum Current Voltage

Response Time

c8SAMSUNG
Electronics

0.7

1.4

V

5

p.A
p.A

V

4

msec

407

I

KA2803

LINEAR INTEGRATED CIRCUIT

APPLICATION NOTE
(refer to full wave application circuit Fig. 1)
The Fig 1 shows the KA2803 connected in a typical leakage current detector system.
The power is applied to the Vee terminal (Pin 8) of the KA2803 directly from the power line.
The resistor Rs and capacitor Cs are chosen so that pin 8 voltage is at least 12V.
The value of C s is recommended above 1# at this time.
If the leakage current is at the load, it is detected by the zero current transformer (ZeT).
The output voltage signal of ZCT is amplified by the differential amplifier of the KA2803 internal circuit and appears as halfcycle sine wave signal referred to input signal at the outPl,.lt of the amplifier.
The amplifier closed loop gain is fixed about 1000 times with internal feedback resistor to compensate for zero current transformer (ZCT) Variations.
The resistor RL should be selected so that the breaker satisfies the required senSing current.
The protection resistor Rp is not usually used put when the high current is injected at the breaker, this resistor should be used
to protect the earth leakage detector IC the KA2803.
The range of Rp is from several hundred 0 to several kO.
The capacitor C, is for the noise canceller and standard value of C, is 0.0471'F. Also the capacitor C2 is noise canceller
capacitance but it is not usually used.
When high noise is only appeared at this system O.047I'F capacitor may be connected between pin 6 and pin 7.
The amplified signal is finally appeared to the Pin 7 with pulse signal through the internal latch circuit of the KA2803.
This signal drivies the gate of the external SCR which energizes the trip coil which opens the circuit breaker.
The trip time of breaker is decided by the capacitor C 3 and the mechanism breaker.
This capacitor should be selected under 1pF for the required the trip time.
The full wave bridge supplies power to the KA2803 during both the positive and negative half-cycles of the line voltage.
This allows the hot and neutral lines to be interchanged.
If your application want the detail information, request it on our application circuit designer of KA2803.

c8SAMSUNG
Electronics

408

LINEAR INTEGRATED CIRCUIT

KA2804
ZERO VOLTAGE SWITCH

8 DIP

The KA2804 is a TRIAC controller providing a complete solution for temperature controlled electric panel heaters, cookers, film processing baths
etc.
SWitching occurs at the zero voltage point in order to minimize radio frequency interference. The device is suitable for mains-on-line operation
and rcquh::s rr"n'r'1al components.

FEATURES
•
•
•
•

Easy operation either through the AC line or a DC supply.
Supply voltage control
Very few external components.
Symmetrical burst control - No DC current components in the
load circuit.
• Negative output current pulse up to 250mA-short circuit protection.
• Reference voltage output.

ORDERING INFORMATION
Operating Temperature

BLOCK DIAGRAM

Vs

I

Is

GND

AC
VSYN
INPUT O-~~~--{
RSYN

Q

Q
REFERENCE
VOLTAGE

Va

REF
1 VOLTAGE
OUTPUT

La

c8SAMSUNG
Electronics

409

LINEAR INTEGRATED CIRCUIT

KA2804

ABSOLUTE MAXIMUM RATINGS (Ta =2S0C)
Characteristic

Symbol

Value

Unit

Supply Voltage
Supply Current
Synchronous Current
Input Voltage
Power Dissipation
Junction Temperature
Operating Ambient Temperature
Storage Temperature

-Vs
-Is
ISYN
V,
Po
TJ
Topr
TSl9

8.2
40 (average)
5.0 (rms)

V
mA
mA
V
mW
°C
°C
°C

~IVsl

350
125
-20- +70
-65- +150

ELECTRICAL CHARACTERISTICS
(VS =8.0V, V SYN =100 to 115Vrms , Ta = 25°C, f=50/60Hz, unless otherwise specified)

Characteristic

Test Conditions

Symbol

Min

Typ

Max

Unit
mA

Circuit Current

-Is

Pin 5, RSYN =56K

-

2.0

2.5

Supply Voltage 1

-Vs 1

Pin 5, Is =2.5mA
RsyN =56K

7.2

-

8.4

V
--

Supply Voltage 2

-Vs 2

Pin 5, Is=20mA
RsyN =56K

7.2

-

8.6

V

Synchronous Current

ISYN

Pin 8

0.3

-

-

mA

Output Pulse Width

Tp

Pin 6, RSYN =56K

-

200

-

pS

Output Voltage

Vo

Pin 6, lo~200mA

4.2

5.2

-

V

Output Current

10

Pin 6, Ro~25

200

250

-

mA

Output Leakage Current

ILO

Pin 6

2.0

pA

V,o

Pin 3, 4

2.0

5.0

mV

Input Bias Current

I,

Pin 3, 4

-

-

Input Offset Voltage

0.5

1.0

pA

-V,CM

Pin3,4

0

-

5.7

V

Common Mode Input
Voltage Range
Output Leakage Current
Reference Voltage

ILc
-VR

c8SAMSUNG
Electronics

Pin 2

-

-

0.2

pA

Pin 1, IR~1uA

-

3.6

-

V

410

LINEAR INTEGRATED CIRCUIT

KA2804

APPLICATIONS
ON-OFF TEMPERATURE CONTROL

AC

,-------1~-----------------.__------___.--_o 100Vrms

50/60Hz

NTC
Ao
56

7
KA2804

AH

VA

Asyn
56K

AH: HYSTEAESIS VOLTAGE SET

TIME PROPORTIONAL TEMPERATURE CONTROL

..--______

-..._--.---~~----------....,...-------..,......-___<>

AT

AC
100Vrms
50/60Hz

39K

Ao
56

KA2804

AT CT: TIMING PEAIOD SET.

ci$SAMSUNG
Electronics
'.

As
6.8K
2W

Asyn
56K

411

I

KA2807

LINEAR INTEGRATED CIRCUIT

EARTH LEAKAGE DETECTOR

8 DIP

The KA2807 is designed for use in earth circuit interrupters, for operation directly off the AC line interrupters.
Full advantage of the U.S. UL943 timing specification
is taken to insure maximum immunity to false triggering due to fine noise.

FEATURES
•
•
•
•
•
•
•
•
•

Full advantage of the UL943
Externally programmable fault current threshold
Direct interface to SCR
Operates under line reversally both load Vs line
and hot Vs neutral
Power supply shunt regulator in chip
Sense coil: 1000:1
GND/Neutral coil: 200:1
Normal fault sensitivity current is SmA typical
Trip time in normal fault and ground neutral fault
is 18ms typical

----~----------'

ORDERING INFORMATION
Operating Temperature

-40- + 70 0 C

BLOCK DIAGRAM

Vee

AMP OUT

TIMING
RESISTOR

--.-----------~

GND

TRIGGER OUT

Fig_ 1

c8SAMSUNG
Electronics

412

LINEAR INTEGRATED CIRCUIT

KA2807

ABSOLUTE MAXIMUM RATINGS
Characteristic

Symbol

Value

Unit

Supply Current
Power Dissipation
Operating Temperature Range
Storage Temperature Range

Icc
Po
Topr
TsIg

19
1250
-40 - + 70
- 55 - + 150

mA
mW
°C
°C

ELECTRICAL CHARACTERISTICS
Characteristics

Symbol

(Ta= 25°C, Icc = 5mA)
Test Conditions

Min

Typ

Max

Unit

Shunt Regulator Voltage

Vreg

Pin 8, S1:2, S2:0FF

22

26

30

V

Amp Reference Voltage

V inl

Pin 3, S1:2, S2:0FF

9

10.5

12

V

Amp Output High Voltage

VOH

Pin 5, S1:3, S2:0N
Sig: 800Hz, 3.0Vp.p
Sinewave

17

19

21

V

Amp Output Low Voltage

VOL

Pin 5, S1:3, S2:0N
Sig: 800Hz, 3.0V p.p
Sinewave

1

2.5

4

V

Amp Sensitivity Current

ISEN

Pin 2, S1:3, S2:0N
Sig: 800Hz, 1.0Vp.p -2.5Vp.p
Sinewave

3

5

7

JlArms

Latch On Voltage

VON

Pin 7, S1:3, S2:0N
Sig: 800Hz, 3.0Vp.p
Sinewave

15

17.5

20

V

SCR Trigger Current

ITR

Pin 1, S1:3, S2:0N
Sig: 800Hz, 3.0Vp.p
Sinewave

0.5

1

2.4

mA

Output Low Voltage

240

mV

Vs1

Pin 1, S1:2, S2:0FF

100

Output Impedance

Ro

Pin 1, S1:2, S2:0FF

100

n

Output Sink Current

ISink

Pin 1, S1:2, S2:0FF

5

mA

c8SAMSUNG
Electronics

2.0

413

I

LINEAR INTEGRATED CIRCUIT

K.'\2807
TEST CIRCUIT
I
Ilss=5mA

Fig. 2

APPLICATION CIRCUIT
SENSE COIL
1000:1

GND/NEUTRAL
COIL 200:1

LINE

LOAD

Rset'

10l'F

+ TANTAL
15K12W

1N4004
8 Vee

-IN 2

1 trig

+IN 3

5 OUTPUT

Rset 6

lL

~

o
c:i

C3
0.011'F

7 CAP

C8
200pF

GND 4

C5
15nF

* Adjust

Aset

for desired sensitivity leakage current.

Fig. 3

c8SAMSUNG
Electronics

414

LINEAR INTEGRATED CIRCUIT

KA2807

Typical earth leakage detector circuit is shown in Fig. 3. This is designed to operate on 120V AC line voltage with
5mA normal fault sensitivity. Full-wave rectifier diode and 15K12W resistor are used to supply the DC power supply
required by the KA2807 C4 (1Jl.F) is used to filter the ripple of the supply voltage and peak current when fault current
generate over 5mA typical, SCR is turned ON and a large current can flow through the breaker coil to pull the contact
open. Once opened, the fault condition is removed and the discharge current 31th reset both the timing capacitor
and output latch causing the SCR to turn off.
A 1000:1 Sense coil is used to detect the normal fault. The fault current generated is stepped down by 1000 and
fed into the input pins of the OP amp through C7 (10Jl.F) capacitor.
C6 (0.0033Jl.F) and C8 (200pF) are added to obtain better noise immunity. The normal fault sensitivity current is
determined by discharging current of timing capacitor.
D'ISCh
'
argmg
current Ith 'IS R 7Vx 2 ...... (1)
set
Because the average fault current just equals the threshold current Ith at the decision point.
0.91
(2)
Ith -- If(rms) X
2
......
The factor 0.91 converts the rms value to an average value.
7V
Rset = If(rms)X 0.91 ...... (3)

in (1) and (2)

The precision value of Rset depends on the specific sense coil used KA2807 tolerances in as much as UL943
specifies a sensitivity "window" of 4mA-6mA, provision should be made to adjust Rset on a per·product bisic.
You can be obtained the desired integration time through proper selection of the timing capacitor CS.
The sense amplifier is capacitively coupled to a 200-turn coil in order to detect the grounded neutral fault.
In FIG. 3, grounded neutral detection is accomplished by feeding the neutral coil with 120Hz energy continuously
and allowing some of this energy to couple into the sense coil during conditions of neutral fault.
HOT

--l

AC

LINE

RL

ELD
NEUTRAL

I
I

~RB

Explain: An unintentional electrical path, RB , between
the load terminal of the hot line and the ground,
as shown by the dashed lines.

I

----~-----l
FIG. 4 NORMAL FAULT

HOT
AC

LINE

~

ELD
NEUTRAL

RG

r-------wv---- -

Explain: An unintentional electrical path between the
load terminal of the neutral line and the ground,
as shown by the dashed lines.

t

m
FIG. 5 GROUNDED NEUTRAL FAULT

qsSAMSUNG
Electronics

415

I

NOTES

I
~

PACKAGE DIMENSIONS

Unit: mm

TO·92

TO·220

Unit: mm

4.33
4.83
,

,

/

(/)3.61
TYP-1 ~
1.40

I I·

,

I

\

4.33
4.83

-----

I

6.12
6.62

6.98[ --~
7.49
2.16

3.12

8.94
9.44

13.97
14.97

o

0

0.36---11~

0.56
'1_
1.27 TYP----iI---I-_----,2=-=.5=4
I
TYP

(/) 3.20
TYP

1.80
TYP

4.55
5.05

8 DIP

1UB

0.45
0.55

Unit: mm

1.95

2.20

I
37.66
38.68

o

0-10°

B.95
9.45

!

~].09
~6.60

20.25

~

3.27
3.53

02
1r-------:-11.52

'f\1W:

.-=7

~37

Y

7.87

0.20
0.30

I I
~

4.05
4.55
-r-c-2.92

1.75
2.25

0.88
1.14

12.72

0

r - - - -.. .4--.-

2.79
3.04

I

(0 0)]::~~
Unit: mm

15.55
16.05

~I

r

2.54 TYP-l----l=-t-5.08 TYP

1

TO·3P

3.97
4.23
2.08
2.33.

~::~ -11~L I

3.46~1i .02 TYP
3.96
3.35
3.85

-~

-

1Ir--J
1

10.87
TYP

1---~5.4","=-5

TYP

c8~SUNG

II

"I

0.55

0.71

2.54
TYP

-I-

t-1-1L
~
0.56

3.42
0.51

1.02

419

I

PACKAGE DIMENSIONS

14 DIP

Unit mm

16 DIP

I

Unit mm

I

0-10·

OJ ~:
19.15
19.65

·09

o

7.87

6.60

~

~--H1.52

0.20
0.30

.Y

-W.

_----~-+

I~

.

~I 0.36
0.56

2.54

TYP

18 DIP

Unit: mm

8 SOP

4.31

'2.92
fo-L.3.43

0.51
1.02

Unit: mm

-:}
mJ
0-10·

6.09
6.60
~~~~~~~I-L

1.02

1;52

0.20

N,aSl
2'~ O~l

0.30

.......L 4.31

.92
3.43

TYP

o.~

=8~SUNG

0.79

7.37
7.87

-

If--

0.41

1.02

~

7

II

0.36

~O'51

~::~

1.27
TYP

j

--.J~

II

0.20

j

420

PACKAGE DIMENSIONS

Unit: mm

14 SOP

0]

~
It

0.20

,37
4.62

o

---11

mT-'-g-:j~--r-6'10
I 0.10
0.20

660
.

9'85

~

c::u
.

8 SIP

Unit mm

0.71

Unit mm

21.59
22.10
6.68
7.18

r- -i~

I

1 47
.
1.73

9 SIP

21.59
22.10

*--i

0.79 6.10
6.60

I g:~

1.27
TYP

TYP

TYP

let

O'20~j=-----r""1M:!

~

1.47
1.73

1.27

0

0.10

II-

~i I-U

10.11

.

Unit mm

4.37
4.62

0.35
0.51

0.36
0.51

..

16 SOP

~.~

I 3.30
I 1.21 3.81 -11
1.78

Im======:=t}
12.75
~----_---'-_-1..3.25

c8SAMSUNG
Electronics

6.09

0.20
0.30

0

6.68
7.18
3.30
3.81
1.27
1.78

~~

6.09

~
0.30

1==========~1!'2.75
~---_ _...J.U3.25

421

I

PACKAGE DIMENSIONS

Unit: mm

10 SIP

24.13
24.64

o

o

~:~p~:~

-=-+--+--~2.~ , 2.24

TYP

2.74

c8SAMSUNG
Electronics

0.30
0.41

422

I
I

SAMSUNG SEMICONDUCTOR SALES OFFICES-U.S.A.
Southwest

Southwest

22837 Ventura Blvd.
Suite 305
Woodland Hills, CA
91367
(818) 346-6416
FAX: (818) 346-6621

Northwest

3027 Greenwich St.
Carlsbad, CA 90028
(619) 720-0230
FAX: (619) 720-0230

Southeast

South Central

204 Battleground
Corporate Park
3859 Battleground Ave.
Greensboro, NC 27410
(919) 282-0665
FAX: (919) 282-0784

15851 Dallas Parkway
Suite 840
Dallas, TX 75248-3307
(214) 770-7970
FAX: (214) 770-7971

2700 Augustine Drive
Suite 198
Santa Clara, CA
95054
(408) 727-7433
FAX: (408) 727-5071

North Central
901 Warrenville Road
Suite 120
Lisle, IL 60532-1359
(708) 852·2011
FAX: (708) 852·3096

North East
20 Burlington Mall Road
Suite 205
Burlington, MA 01803
(617) 273·4888
FAX: (617) 273·9363

SAMSUNG SEMICONDUCTOR REPRESENTATIVES
ALABAMA
SOUTHERN COMPONENT
SALES
307 Clinton Ave. East #413
Huntsville, AL 35801

TEL: (205) 533-6500
FAX: (205) 533-6578

CALIFORNIA
12
3350 Scott Blvd.
Building 10
Santa Clara, CA 95054

TEL: (514) 624-1340
FAX: (514) 624-2911

COLORADO

ARIZONA
HAAS & ASSOC. INC.
7441 East Butherus Drive
Suite 300
Scottsdale, AZ. 85260

INTELATECH, INC.
4737 Prevel Street
Pierefonds, Quebec H9K 1J4

TEL: (602) 998-7195
FAX: (602) 998-7869

CANDAL INC.
2901 So. Colorado Blvd.
Suite A
Denver, CO 80222

TEL: (303) 692-8484
FAX: (303) 692-8416

CONNECTICUT

TEL: (408) 988-3400
FAX: (408) 988-2079

PHOENIX SALES
267 Main Street
Torrington, CT 06790

TEL: (203) 496-7709
FAX: (203) 496-0912

FLORIDA

SPINNAKER SALES
11545 West Bernardo Court
Suite 200
San Diego, CA 92127

TEL: (619) 451-8595
FAX: (619) 485-0561

WESTAR REP COMPANY
2472 Chambers Road
Suite 100
Tustin, CA 92680

TEL: (714) 832-3325
FAX: (714) 832-7894

WESTAR REP COMPANY
25202 Crenshaw Blvd.
Suite 217
Torrance, CA 90505
WESTAR REP. COMPANY
26500 Agoura Rd.
Suite 204
Calabasas, CA 91302

MEC
700 W. Hillsboro Blvd.
Bldg. 4, Suite 204
Deerfield Beach, FL33441

teL: (305) 426-8944
(305) 426-8960
FAX: (305) 426·8799

FLORIDA
MEC
11 Emerald Court
Sate lite Beach, FL

TEL: (407) 773·1100
FAX: (407) 777-6529

TEL: (213) 539-2156
FAX: (213) 539-2564

MEC
830 North Atlantic Blvd.
Suite B401
Cocoa Beach, FL 32931

TEL: (407) 799-0820
FAX: (407) 799-0923

TEL: (818) 880-0594
FAX: (818) 880·5013

MEC
10637 Harborside Drive, N
Largo, FL 34643

TEL: (813) 393-5011
FAX: (813) 393-5202

GEORGIA
CANADA
INTELATECH, INC.
1115 Crestlawn Drive
Suite 1
Mississauga, Ontario L4W1A7

TEL: (416) 629-0082
FAX: (416) 629-1795

c8SAMSUNG
Electronics

SOUTHERN COMPONENT
SALES
6075 The Corners Parkway
Suite 103
Norcross, GA 30092

TEL: (404) 729-8117
FAX: (404) 729-8056

425

II

SAMSL'NG SEMICONDUCTOR REPRESENTATIVES
ILLINOIS
RI
8430 Gross Point Road
Skokie, IL 60076

TEL: (708) 967-8430
FAX: (708) 967-5903

TEL: (301) 296-9360
FAX: (301) 296-9373

ATMI
6700 S.w. 105th Street
Suite 303
Beaverton, OR 97005

TEL: (503) 643-8307
FAX: (503) 646-9536

PENNSYLVANIA

MASSACHUSETTS
NEW TECH SOLUTIONS, INC.
111 South Bedford St~eet
Suite 102
Burlington, MA 018'03

TEL: (216) 273-3798
FAX: (216) 225-1461

OREGON

MARYLAND
ADVANCED TECH SALES
100 West Road
Suite 412
Towson, MD 21204

BAILEY, J.N. & ASSOC.
1667 Devonshire Drive
Brunswick, OH 44212

TEL: (617) 229-8888
FAX: (617) 229-161 A

BAILEY, J.N. & ASSOC.
1660 Hancock Avenue
Apollo, PA 15613

TEL: (412) 568-1392
FAX: (412) 568-1479

RIVCO JANUARY INC.
RJI Building
78 South Trooper Road
Norristown, PA 19403

TEL: (215) 631-1414
FAX: (21.5) 631-1640

MICHIGAN
JENSEN C.B.
2145 Crooks Rd.
Troy, MI 48084

TEL: (313) 643-0506
FAX: (313) 643-4735

MINNESOTA
IRI
1120 East 80th Street #200
Bloomington, MN 55420

TEL: (612) 854-1120
FAX: (612) 854-8312

NEW JERSEY
NEPTUNE ELEC.
2460 Lemoine Avenue
Ft. Lee, NJ 07024

TEL: (201) 461 -2789
FAX: (201) 461-3857

NEW MEXICO
S.w. SALES, INC.
7137 Settlement Way, N.w.
Albuquerque, NM 87120

TEL: (505) 899-9005
FAX: (505) 899-8903

PUERTO RICO
DIGIT-TECH
P.O. Box 1945
Calle Cruz #2
Bajos, San German 00753

TEL: (809) 892-4260
FAX: (809) 892-3366

TEXAS
S.W. SALES INC.
2267 Trawood, Bldg. E3
EI Paso, TX 79935

TEL: (915) 594-8259
FAX: (915) 592-0288

VIELOCK ASSOC.
555 Republic Drive
Suite 105
Plano, TX 75074

TEL: (214) 881-1940
FAX: (214) 423-8556

VIELOCK ASSOC.
9430 Research Blvd.
Echelon Bldg. 2, Suite 330
Austin, TX 78759

TEL: (512) 345-8498
FAX: (512) 346-4037

UTAH
NEW YORK
NEPTUNE ELEC.
-255 Executive Dr.
Plainview, NY 11803

TEL: (516) 349-160
FAX: (516) 349-1343

T-SQUAREIJ
6443 Ridings Road
Syracuse, NY 13206

TEL: (315) 463-8592
FAX: (315) 463-0355

T-SQUARED
7353 Victor-Pittsford Road
Victor, NY 14564

TEL: (716) 924-9101
FAX: (7-16) 924-4946

ANDERSON & ASSOC.
270 South Main, #108
Bountiful, UT 84010

TEL: (801) 292-8991
FAX: (801) 298-1503

VIRGINIA
ADVANCED TECHNOLOGY
SALES, INC.
406 Grinell Drive
Richmond, VA 23236

WASHINGTON
ATMI
16150 NE 85TH St. Suite 217T
Redmond, WA 98052

OHIO
BAILEY, J.N. & ASSOC.
129 W. Main Street
New Lebanon, OH 45345

TEL: (513) 687-1325
FAX: (513) 687-2930

BAILEY, J.N. & ASSOC.
2978 Findley Avenue
Columbus, OH 43202

TEL: (614) 262-7274
FAX: (614) 262-0384

c8SAMSUNG
Electronics

TEL: (804) 320-8756
FAX: (804) 320-8761

TEL: (206) 882-4665
FAX: (206) 882-7517

WISCONSIN
IRI
16745 W. Bluemound Rd.
Suite 340
Brookfield, WI 53005

TEL: (414) 789-9393
FAX: (414) 789-9272

426

SAMSUNG SEMICONDUCTOR SALES OFFICES-EUROPE
SAMSUNG
SEMICONDUCTOR
EUROPE GmbH
Mergenthaler Allee 38-40
06236 Eschborn
(West Germany)
Tel: 06196/9009-0
Fax: 0196/9009·89

PARIS
Centre d'Affaires La
Boursidiere RN 186, Bat.
Bourgogne, BP 202
F-92357 Le Plessis-Robinson
(France)
Tel: 0033-1-40 94 0700
Fax: 0033-1-40 94 02 16

MILANO
Viale G. Matteotti, 26
1-20095 Cusano Milanino
(Italy)
Tel: 0039-2-6 13 2888
Fax: 0039-2-6192279

MONCHEN
Carl-Zeiss-Ring 9
0-8045 Ismaning
(West Germany)
Tel: (49) 0-89 96 4838
Fax: (49) 0-89 96 48 73

SAMSUNG SEMICONDUCTOR REPRESENTATIVES
EUROPE
GERMANY (WEST)

AUSTRIA
SATRON HANDELSGES. MBH
Hoffmeistergasse 8·101115 TEL: 0043-222-87 30 20
A-1120 Wien
FAX: 0043-222-85 95 93
TLX: 047-753 11 85 1

TERMOTROL GmbH
Pilotystr 4
.
0-8000 MOnchen 22

BELGIUM
C&S ELECTRONICS NV
Heembeekstraat 111
B-1120 Brussels

SILCOM ELECTRONICS VERTRIEBS GmbH
Neusser Str. 336-338
TEL: (49)-0-2161-6 07 52
0-4050 Monchengladbach FAX: (49)-0-2161-6516-38
TLX: 85 2189

TEL: 0032-2-2 44 29 74
FAX: 0032-2-2 42 89 30
TLX: 046-2 58 20

TEL: (49)..Q-89-2303 52 52
FAX: (49)-0-89-2303 52 80
TLX: 17898453

ING. THEO HENSKES GmbH
Laatzener Str. 19
TEL: (49)-0-511-86 50 75
Postfach 72 12 26
FAX: (49)-0-7249 79 93
0-3000 Hannover 72
TLX: 92 35 09

DENMARK
EXATEC ALS
Oortheavj 1-3
OK-2400 Kopenhagen

TEL: 00453-1-19 10 22
FAX: 00453-1 1931 20
TLX: 27253

TEL: (49)-0-89-61 30303
FAX: (49)-0-89-61 31 668
TLX: 5 21 61 87

MSC VERKAUFSBURO MinE
Wormser Str. 34
TEL: (49)-0-62-332 66 43
Postfach 37
FAX: (49)-0-332 02 98
0-6710 Frankenthal
TLX: 46 52 30

FINLAND
INSTRU COMPONENTS
P_O. Box 64, Vitikka 1
SF-02631·ESPOO
Helsinki

ASTRONIC GmbH
GrOnwalder Weg 30
0-8024 Oeisenhofen

TEL: 00358-0-5 28 43 25
FAX: 00358-0-5 28 4333
TLX: 057-12 44 26

MICRONETICS GmbH
Wail Our Stadter Str. 45
0-7253 Renningen

TEL: (49)·0-7159-60 19
FAX: (49)-0-715 951 19
TLX: 72 47 08

ITALY

FRANCE
ASIA MOS (OMNITECH ELCCTRONIQUE)
Batiment Evolic 1 165,
TEL: 0033-1-47 60 1247
Boulevard Oe Valmy
FAX: 0033-1-47 601582
F-92705 Colombes
TLX: 042-61 38 90

DIS. EL. SPA
Via Orbetello 98
1-10148 Torino

SONEL·ROHE (SCAIB)
6, Rue Le Corbusier
Silic 424
F-94583 Rungis, Cedex

MOXEL S.R.L.
Via C. Frova, 34
TEL: 0039-2-61 29 05 21
1-20092 Cinisello Balsamo FAX: 0039-2-6 17 25 82
TLX: 043-35 20 45

TEL: 0033-1-46 86 81 70
FAX: 0033-1·45 60 55 49
TLX: 042-20 69 52

c8SAMSUNG
Electronics

TEL: 0039-1-12 20 15 22
FAX: 0039·1-12 16 59 15
TLX: 043-21 51 18

427

II

SAMSUNG SEMICONDUCTOR REPRESENTATIVES
THE NETHERLANDS

UNITED KINGDOM

MALCHUS BV HANDEIMIJ.
Fokkerstraat 511-513
TEL: 0031-10-4 27 77 77
Postbus 48
FAX: 0031-10-4 154867
NL·3125 BO Schiedam
TLX: 044·2 15 98

NORWAY
EXATEC ALS
Solheimveien 50
Postbox 314
N-1473 Skarer

TEL: 0047-2-97 29 50
FAX: 0047-2-97 29 53

STC ELECTRONIC DISTRIBUTION
Edinburgh Way Harlow TEL: (0279) 441144
FAX: (0279) 441787
Essex CM20 20F

BYTECH LTD.
3 The Western Centre,
Western Road,
Bracknell Berkshire
RG121RW

TEL: Sales 0344 482211
Account/Admin
0344424222
FAX: 0344 420400
TLX: 848215

SPAIN
SEMICONDUCTORES S.A.
Ronda General Mitre
TEL: 0034-3-2 172340
240 Bjs
FAX: 0034-3-2 17 65 98
E-08006 Barcelona
TLX: 052-9 77 87

SWEDEN
MIKO KOMPONENT AB
Segers by Vagen 3
P_O. Box 2001
S-14502 Norsborg

TEL: 0046-753-89080
FAX: 0046-753-75 34 0
TLX: 052-9 77 87

ITT MULTI COMPONENTS
346 Edinburgh Avenue
TEL: 0753 824212
Slough SL 1 4TU
FAX: 0753 824160
TLX: 849804
NELTRONIC LIMITED
John F_ Kennedy Road,
Naas Road, Qublin 12,
Ireland

TEL: (01) 503560
FAX: (01) 552789
TLX: 93556 NELT EI

SWITZERLAND
PANATEL AG
Grundstr. 20
CH-6343 Rotkreuz

TEL: 0041-42 64 30 30
FAX: 0041-42 64 30 35
TLX: 045-86 87 63

cKSAMSUNG
. . Electronics

428

SAMSUNG SEMICONDUCTOR REPRESENTATIVES
ASIA

SANT SONG CORP.
Room A, 8F No. 180, Sec·4,
Chung Hsiao E. Rd., Taipei,
Taiwan, R.O.C.
'

HONG KONG
AV, CONCEPT LTD.
ROOM 804, Tower A, 81F1.,
TEL: 3629325
Hunghom Commercial Centre, FAX: 7643108
37·39 MA Tau Wai Road,
TLX: 52362 AOVCC HX
Hunghom, Kowloon,
Hong Kong
PROTECH COMPONENTS LTD.
Unit 2, 3/F, Wah Shing Centre, TEL: 7930882
11 Shing Yip Street, Kowloon, FAX: 7930811
Kwun Tong, Hong Kong
WISEWORLD TECHNOLOGY CO.
Room 708, Tower A, 7/FI.,
TEL: 7658923
Hunghom COmmercial Centre, FAX: 3636203
37·39 MA Tau Wai Road,
Kowloon, Hong Kong
RIGHT SYSTEM CO., LTD.
Room A 19, 6/FI.,
Proficient Ind. Centre,
Block A, 6 Wang Kwun Road,
Kowloon Bay, Kowloon,
Hong Kong

TEL: 7566331
FAX: 7998985
TLX: 52896 OSPCL HX

SOLARBRITE ENTERPRISE CO.
(CALCULATOR & WATCH)
Room 903, The Kwangtung
TEL: 7701010
Provincial Bank Bldg.,
FAX: 7700559
589·591 Nathan Road,
TLX: 52543 SECL HX
Kowloon, Hong Kong
SOLARI COMPUTER ENGINEERING LTD.
(4 BIT/S BIT ONE CHIP SOFTWARE HOUSE)
Unit 703-4, 7/FI., Jordan House, TEL: 7213318
6-8 Jordan Road, Kowloon,
FAX: 7235288·
Hong Kong
CENTRAL SYSTEMS DESIGN LTD.
(ASIC DESIGN HOUSE)
Room 1704, Westlands Centre, TEL: 5620248
20 Westlands Road,
FAX: 5658046
Quarry Bay, Hong Kong
TLX: 73990 CSO HX
DATAWORLD INTERNATIONAL LTD.
(MIYUKI ELECTRONICS (HK) LTD.)
(ASIC DESIGN HOUSE)
Flat No. 3-4, 5/F1.,
TEL: 7862611
Yuen Shing Ind. Bldg.,
FAX: 7856213
1033, Yee Kuk Street, West,
TLX: 45876 MYK HX
Kowloon, Hong Kong

TAIWAN
YOSUN INDUSTRIAL CORP.
7F, No. 76, Chern Kong Rd.,
Sec. 1~ Nan Kang, Taipei,
Taiwan R.O.C.
KINREX CORP.
2nd. FI., 514-3, Tun Hwa S.
Rd., Taipei, Taiwan, R.O.C.

TEL: (02) 788-1991 (Rep.)
FAX: (02) 788-1996

TEL: 02-700-4686-9
FAX: 02-704-2482
TLX: 20402 KINREX

c8SAMSUNG
Electronics

TEL: (02) 775·2506
FAX: (02) 771·8413

JAPAN
ADO ELECTRONIC INDUSTRIAL CO., LTD.
7th FI., Sasage Bldg., 4·6
TEL: 03·257·1618
Sotokanda 2·Chome Chiyoda· FAX: 03·257·1579
ku, Tokyo 101, Japan
INTERCOMPO INC.
Ihi Bldg., 1·6·7, Shibuya,
Shibuya·ku, Tokyo 150 Japan

TEL: 03·406-5612
FAX: 04·409·4834

CHEMI·CON INTERNATIONAL CORP.
Mitauya Toranomon Bldg.,
TEL: 03·508-2841
22·14, Toranomo~ l·Chome,
FAX: 03-504·0566
Minato·ku, Tokyo 105, Japan
TOMEN ELECTRONICS CORP.
1-5, Takamatsu·Cho 3 Chome TEL: 0425·22·6145
Tachikawa, Tokyo 190
FAX: 0425·22-6159
DIA SEMICON SYSTEMS INC.
Wacore 64 1·37·8, Sangenjaya, TEL: 03·487·0386
Setagaya·ku, Tokyo 154 Japan FAX: 03·487·8088
RIKEI CORP.
Nichimen Bldg., 2·2·2,
Nakanoshima, Kita·ku,
Osaka 530 Japan

TEL: 06·201·2081
FAX: 06·222-1185

SINGAPORE
GEMINI ELECTRONICS PTE LTD.
100, Upper Cross Street
TEL: 65·5351777
#09·080G Bldg.
FAX: 65·5350348
Singapore 0105
TLX: RS-42819
BOSTEX ELECTRONICS PTE LTD.
#05·14 Bylands Bldg.
TEL: 65·3395713
135 Middle Road
FAX: 65-3389538
Singapore 0718
ASTINA ELECTRONICS (M) SON BHD
23, Jalan Pantai Jerjak Satu
TEL: 04-876697
11900 Bayan Lepas Penang,
FAX: 04·876780
West Malaysia
ASTINA ELECTRONICS (S) PTE LTD.
315, Outram Road,
TEL: 65·2232221
#11·02 Tan Boon Liat Bldg.,
FAX: 65·2213776
Singapore 0315

INDIA
COMPONENTS AND SYSTEMS MARKETING
ASSOCIATES (INDIA) PVT. LTD.
100, Oadasaheb Phalke Road,
Dadar, Bombay 400
TEL: 4114585
014
FAX: 4112546
TLX: 001·4605 PDT IN

429

•

SAMSUNG SEMICONDUCTOR REPRESENTATIVES
TURKEY
ELEKTRO SAN. VE TIC. KOLL.
Hasanpasa, Ahmet Rasim Sok
No. 16 Kadikoy Istanbul,
Turkey

STI.
TEL: 337·2245
FAX: 336·8814
TLX: 29569 elts tr

THAILAND
VUTIPONG TRADING LTD., PART.
51·53 Pahurat Rd. (Banmoh)
TEL: 221·9699·3641
Bangkok 10200 THAILAND
223·4608
FAX: 224-0861
TLX: 87470 Vutipong TH

KOREA
NAEWAE SEMICONDUCTOR
Room 503, 22·dong, Sunjn
Bldg., 16·1, Hankangro·2ka,
Yongsan·ku, Seoul, Korea
Cable: ELECONAEWAE
SEOUL
c.p.a. BOX 1409

CO., LTD.
TEL: 717·4065-7
702·4407-9
FAX: 702·3924
TLX: NELCO K27419

SAMSUNG LlGHT·ELECTRONICS CO., LTD.
4th FI. Room 2·3,
TEL: 718·0045,
Electronics Main Bldg., 16·9,
718·9531-5
Hankangro·3ka, Yongsan·ku, FAX: 718·9536
Seoul, Korea

c8SAMSUNG
Electronics

NEW CASTLE SEMICONDUCTOR CO., LTD.
4th FI. Room 10-11,
TEL: 718·8531-4
Electronics Main Bldg., 16·9, FAX: 718·8535
Hankangro·3ka, Yongsan·ku,
Seoul, Korea
HANKOOK SEMICONDUCTOR &
TELECOMMUNICATIONS CO., LTD.
402 Suite, Sowon Bldg.,
TEL: 338·2015-8
354·22, Seokyo·dong,
FAX: 338·2983
Mapo·ku, Seoul, Korea
SEG YUNG INTERISE CORP.
21·301, Sunin Bldg., 16·1,
TEL: 701-6811-6,
Hankangro·2ka, Yongsan·ku,
701-6781-4
Seoul, Korea
FAX: 701-6785
SEGYUNG ELECTRONICS
182·2, Jangsa·dong,
Jongro·ku, Seoul, Korea

SAMTEK
Room 704, Euylim Bldg.,
16·96, Hankangro·3ka,
Yongsan·ku, Seoul, Korea

TEL: 273-6781-3
FAX: (02) 273-6597
TLX: K24950
SUKSEMT
TEL: 703·9656-8
FAX: 703·9659

SUNIN INDUSTRIES CO., LTD.
Sunin Bldg., 7FI., 16·1,
TEL: 718·7113-6
Hankangro·2ka, Yongsan·ku,
702·1257-9
Seoul, Korea
FAX: 715·1031

430

SAMSUNG SEMICONDUCTOR DISTRIBUTORS
ALABAMA
HAMMOND
4411-B Evangel Circle, N.w .
. Huntsville, AL 35816

(205) 830-4764

ARIZONA
ADDED VALUE
7741 East Gray Road
Suite #9
Scottsdale, AZ 85260

(602) 951-9788

CYPRESS/RPS
2164 E. Broadway Road #310-8
Tempe, AZ 85282

(602) 966-2256

JACO
2260 Townsgate Road
Westlake Village, CA 91361

(805) 495-9998

JACO
2880 Zanker Road
Suite 202
San Jose, CA 95134

(408) 432-9290

JACO
23-441 South Pointe Drive
Laguna Hills, CA 92653

(714) 837-8966

MICRO GENESIS
2880 Lakeside Drive
Santa Clara, CA 95054

(408) 727-5050

CANADA

CALIFORNIA
ADDED VALUE
3320 East Mineral King
Unit 0
Visalia, CA 93291

(209) 734-8861

ADDED VALUE
1582 Parkway Loop
Unit G
Tustin, CA 92680

(714) 259-8258

ADDED VALUE
6397 Nancy Ridge Road
San Diego, CA 92121

(619) 558-8890

ADDED VALUE
31194 La Baya Drive, #100
Westlake Village, CA 91362

(818) 889-2861

ALL AMERICAN
369 Van Ness Way #701
Torrance, CA 90501

(BOO) 669-8300

BELL MICRO PRODUCTS
18350 Mt. Langley
Fountain Valley, CA.92708

(714) 963-0667

BELL MICRO PRODUCTS
550 Sycamore Drive
Milpitas, CA 95035

(408) 434-1150

CYPRESS/RPS
6230 Descanso Avenue
Buena Park, CA 90620

(714) 521-5230

CYPRESS/RPS
10054 Mesa Ridge Ct
Suite 118
San Diego, CA 92121

(619) 535-0011

CYPRESS/RPS
2175 Martin Avenue
Santa Clara, CA 95050
CYPRESS/RPS
21550 Oxnard, #420
Woodland Hills, CA 91367

ELECTRONIC WHOLESALERS
1935 Avenue De L'Eglise
Montreal, Quebec, Canada
H4E 1H2

(514) 769-8861

PETERSON, C.M.
220 Adelaide Street North
London, Ontario, Canada
N6B 3H4

(519) 434-3204

SAYNOR VARAH
99 Scarsdale Road
Don Mills, Ontario, Canada
M3B 2R4

(416) 445-2340

SAYNOR VARAH
1-13511 Crestwood Place
Richmond, B.C., Canada
V6V 2G5

(604) 273-2911

WESTBURNE IND. ENT., LTD.
300 Steep rock Drive
Downsview, Ontario, Canada
M3J 2W9

(416) 635-2950

COLORADO
ADDED VALUE
4090 Youngfield
Wheat Ridge, CO 80033

(303) 422-1701

CYPRESS/RPS
12503 E. Euclid Drive
Englewood, CO 80111

(303) 792-5829

CONNECTICUT
ALMO ELECTRONICS
31 Village Lane
Wallingford, CT 06492

(203) 288-6556

(408) 980-8400

JACO
384 Pratt Street
Meriden, CT 06450

(203) 235-1422

(818) 710-7780

JV
690 Main Street
East Haven, CT 06512

(203) 469-2321

c8SAMSUNG
Electronics

431

II

SAMSUNG SEMICONDUCTOR DISTRIBUTORS
FLORIDA
ALL AMERICAN
16251 N.W. 54th. Avenue
Miami, FL 33014

(305) 621-8282

HAMMOND
6600 N.w. 21st. Avenue
Fort Lauderdale, FL 33309

(407) 973-7103

. HAMMOND
1230 W. Central Blvd
Orlando, FL 32802
MICRO GENESIS
2170 W. State Road 434 #324
Longwood, FL 32779

(407) 849-6060

(407) 869-9989

JACO
Rivers Center
10270 Old Columbia Road
Columbia, MD 21046

(301) 995-6620

MASSACHUSETS
ALMO ELECTRONICS
60 Shawmut Avenue
Canton, MA 02021

(617) 821-1450

GERBER
128 Carnegie Row
Norwood, MA 02062

(617) 329-2400

JACO
222 Andover Street
Wilmington, MA 01887

(617) 273-1860

GEORGIA
HAMMOND
5680 Oakbrook Parkway
#160
Norcross, GA 30093

(404) 449-1996

QUALITY COMPONENTS
6145 Northbelt Parkway
Suite B
Norcross, GA 30071

(404) 449-9508

MICHIGAN
CALDER
4245 Brockton Drive
Grand Rapids, MI 49508

(616) 698-7400

CHELSEA INDUSTRIES
34443 Schoolcraft
Livonia, MI 48150

(313) 525-1155

MINNESOTA

ILLINOIS
(312) 860-7171

ALL AMERICAN
11409 Valley View Road
Eden Prairie, MN 55344

(612) 944-2151

GOOLD
101 Leland Court
Bensenville, IL 60106

(312) 884-6620

CYPRESS/RPS
7650 Executive Drive
Eden Prairie, MN 55344

(612) 934-2104

QPS
101 Commerce Dr. #A
Schaumburg, IL 60173

VOYAGER
5201 East River Road
Fridley, MN 55421

(612) 571-7766

INDIANA
ALTEX
12744 N. Meridian
Carmel, IN 46032

(317) 848-1323

CHELSEA INDUSTRIES
8465 Keystone Crossing, #115
Indianapolis, IN 46240

(317) 253-9065

MISSOURI
CHELSEA INDUSTRIES
2555 Metro Blvd.
Maryland Heights, MO 63043

(314) 997-7709

NEW JERSEY

MARYLAND
(301) 251-1205

ALMO ELECTRONICS
12 Connerty Court
East Brunswick, NJ 08816

(201) 613-0200

ALL AMERICAN
1136 Taft Street
Rockville, MD 20853

(301) 953-2566

GENERAL RADIO SUPPLY
600 Penn St. @ Bridge Plaza
Camden, NJ 08102

(609) 964-8560

ALMO ELECTRONICS
8309B Sherwick Court
Jessup, MD 20794

(301) 995-6744

JACO
Ottilio Office Compl~x
555 Preakness Avenue
Totowa, NJ 07512

(201) 942-4000

GENERAL RADIO SUPPLY
6935L Oakland Mills Road
Columbia, MD 21045

c8SAMSUNG
Electronics

432

SAMSUNG SEMICONDUCTOR DISTRIBUTORS
OKLAHOMA

NEW YORK
ALL AMERICAN
33 Commack Loop
Ronkonkoma, NY 11779

(516) 981·3935

CAM/RPC
2975 Brighton Henrietta TL Road
Rochester, NY 14623

(716) 427·9999

JACO
145 Oser Avenue
Hauppauge, NY 11788

(516) 273·5500

MICRO GENESIS
90·10 Colin Drive
Holbook, NY 11741

(516) 472-6000

QUALITY COMPONENTS
3158 S. 108th East Avenue
Suite 274
Tulsa, OK 74146

(918) 664·8812

OREGON

NORTH CAROLINA
QUALITY COMPONENTS
3029·105 Stonybrook Drive
Raleigh, NC 27604

(919) 467·4897

DIXIE
2220 South Tryon Street
Charlotte, NC 28234

(704) 377·5413

HAMMOND
2923 Pacific Avenue
Greensboro, NC 27420

(919) 275-6391

RESCO/RALEIGH
Hwy. 70 West & Resco Court
flaleigh, NC 27612

(919) 781·5700

CYPRESS/RPS
15075 S. Koll Parkway
Suite D
Beaverton, OR 97006

(503) 641·2233

PENNSYLVANIA
ALMO ELECTRONICS
9815 Roosevelt Blvd.
Philadelphia, PA 19114

(215) 698-4003

CAM/RPC
620 Alpha Drive
Pittsburgh, PA 15238

(412) 782·3770

ALMO ELECTRONICS
220 Executive Drive
Mars, PA 16046

(412) 776·9090

SOUTH CAROLINA

OHIO

DIXIE
4909 Pelham Road
Greenville, SC 29606

(803) 297·1435

DIXIE
1900 Barnwefl Street
Columbia, SC 29201

(803) 779·5332

HAMMOND
1035 Lowndes Hill Rd.
Greenville, SC 29607

(803) 233·4121

CAM/RPC
749 Miner Road
Cleveland, OH 44143

(216) 461·4700

CAM/RPC
15 Bishop Drive #.104
Westerville, OH 43081

(614) 888·7777

CAM/RPC
7973·B Washington Woods Drive
Centerville, OH 45459

(513) 433·5551

ADDED VALUE
4470 Spring Valley Road
Dallas, TX 75244

(214) 404·1144

CHELSEA INDUSTRIES
10979 Reed Hartman, Highway
#133
CinCinnati, OH 45242

(513) 891·3905

ADDED VALUE
6448 Highway 290 East
#A103
Austin, TX 78723

(512) 454·8845

CHELSEA INDUSTRIES
1360 Tomahawk
Maumee, OH 43537

(216) 893-0721

ALL AMERICAN
1819 Firman Drive, #127
Richardson, TX 75081

(214) 231·5300

SCHUSTER
11320 Grooms Road
Cincinnati, OH 45242

(513) 489·1400

CYPRESS/RPS
2156 W. Northwest Highway
Dallas, TX 75220

(214) 869·1435

SCHUSTER
20570 East Aurora Road
Twinsburg, OH 44087

(216) 425·8134

JACO
1209 Glenville Drive
Richardson, TX 75080

(214) 235·9575

TEXAS

c8SA~SUNG
Electromcs

433

I

SAMSUNG SEMICONDUCTOR DIS'fRIBUTORS
MICRO GENESIS
9221 LBJ Freeway, #220
Dallas, TX 75243

(214) 644·5055

OMNIPRO
4141 Billy Mitchell
Dallas, TX 75244

(214) 233'()500

QUALITY COMPONENTS
4257 Kellway Circle
Addison, TX 75244

(214) 733·4300

QUALITY COMPONENTS
1005 Industrial Blvd.
Sugar Land, TX 77478

(713) 240·2255

QUALITY COMPONENTS
2120·M Braker Lane
Austin, TX 78758

(512) 835'()220

VIRGINIA ELEC.
715 Henry Avenue
Charlottesville, VA 22901

(804) 296-4184

WASHINGTON

UTAH
ADDED VALUE
1836 Parkway Blvd.
West Valley City; UT 84119

VIRGINIA

CYPRESS/RPS
22125 17th Avenue
Suite 114
Bothell, WA 98021

(206)483·1144

JACO
15014 N.E. 40th Street
Bldg. "0", Unit 202
Redmond, WA 98052

(206) 881·9700

PRIEBE
14807 N.E. 40th
Redmond, WA 98052

(206) 881·2363

WISCONSIN
(801) 975·9500

c8~SUNG

MARSH
1563 S. 101st. Street
Milwaukee, WI 53214

(414) 475-6000

434

NOTES

NOTES

NOTES

NOTES

Semiconductor Business
HEAD OFFICE:
8/10FL. SAMSUNG MAIN BLDG.
250, 2-KA, TAEPYUNG-RO,
CHUNG-KU, SEOUL, KOnEA
cpo. BOX 8233

TELEX KORSST K27970
TEL: (SEOUL) 751-2114
FAX 753-0967

BUCH EON PLANT:
82-3, DODANG-DONG,
BUCHEON, KYUNGKI-DO, KOREA
CPO BOX 5779 SEOUL 100

-TELEX: KORSEM K28390
TEL: (SEOUL) 741-0066, 664-0066
FAX: 741-4273

KIHEUNG PLANT:
SAN H24 NONGSUH-RI, KIHEUNG-MYUN
YONGIN-GUN, KYUNGKI-DO, KOREA
cPO. BOX 37 SUWON

TELEX: KORSST K23813
TEL: (SEOUL) 741-0620/7
FAX: 741-0628

GUMI BRANCH:
259, GONDAN-DONG, GUMI,
KYUNGSANGBU~DO, KOREA

TELEX: SSTGUMI K54371
TEL: (GUMI) 2-2570
FAX: (GUMI) 52-7942

SAMSUNG SEMICONDUCTOR mc.:
3725 NORTH FIRST STREET
SANJOSE, CA 95134-1708, USA

TEL (408) 434-5400
TELEX: 339544
FAX: (408) 434-5650

HONG KONG BRANCH:
24FL. TOWER 1 ADMIRALTY CENTER
18 HARCOURT ROAD HONG KONG

TEL: 8626900
TELEX: 80303 SSTC HX
FAX 86613A3

TAIWAN OFFICE:
RM. 2401, 24F, INT'L TRADE BLDG.,
333, KEEtLUNG RD., SEC. 1, TAIPEI,
TAIWAN, RO.C.

TEL: (2) 757-7292
FAX: (2) 757-7311 '

SAMSUNG ELECTRONICS JAPAN CO., LTD.
6F. SUDAMACHI BERDE BLDG.
2-3, KANDA-SUDAMACHI
CHIYODA-KU, TOKYO 101, JAPAN

TELEX: 2225206 SECJPN J
TEL: (03) 258-9506 .
FAX: (03) 258-9695

SAMSUNG SEMICONDUCTOR EUROPE GMBH:
MERGENTHALER ALLEE 38-40
0-6236 ESCHBOflN, WIG

TEL: 0-6196-90090
FAX: 0-6196-900989
TELEX: 4072678 SSED

SAMSUNG (U.K.) LTD.:
SAMSUNG HOUSE 3 RIVERBANK WAY
GREAT WEST ROAD BRENTFORD
MIDDLESEX TW8 9RE

TEL: 862-9312 (EXT) 304
862-9323 (EXT) 292
FAX: 862-0096, 862-0097
TELEX: 25823

SINGAPORE OFFICE:
10 COLLYER QUAY H14-07
OCEAN BUILDING S'PORE 0104

TEL 535-2808
FAX: 532-6452

PRINTED IN KOREA
AUGUST, 1990



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:16 10:22:45-08:00
Modify Date                     : 2017:07:16 10:42:22-07:00
Metadata Date                   : 2017:07:16 10:42:22-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:25ea1024-87c9-0e4a-b749-760903ca6a13
Instance ID                     : uuid:7f7df1f7-4087-7147-a372-193969dd8372
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 441
EXIF Metadata provided by EXIF.tools

Navigation menu