1990_Siemens_Discrete_Semiconductors_for_Surface_Mounting 1990 Siemens Discrete Semiconductors For Surface Mounting
User Manual: 1990_Siemens_Discrete_Semiconductors_for_Surface_Mounting
Open the PDF directly: View PDF
.
Page Count: 952
| Download | |
| Open PDF In Browser | View PDF |
'"-m
s:m
SIEMENS
Z
'"
aD
.., 05 "
(f)0
C
CD
&-$
o(f)
(1) (1)
g~3o·
::J 0
...... ::J
-
::J
0..
C
COo
oen
Discrete Semiconductors
for Surface Mounting
•
Data Book
Discrete Semiconductors
for Surface Mounting
Data Book
Preface
At present the conventional through-hole mounting technology used for printed circuit assemblies is increasingly superseded by surface mounting. Instead of inserting leaded components,
special miniaturized components are directly attached and soldered to the PC board. These
new surface mounted devices (SMDs) and their packing are particularly suitable for automatic
assembly. The major advantages of surface mounting are rationalized production, reduced
board size and increased reliability.
Compared to the through-hole mounting technology, surface mounting requires more careful
planning of the overall design and production process. The better the components, PC board
layout, automatic placement, soldering method, testing and repair are attuned to each other, the
more efficiently surface mounting can be applied.
For many years diodes and transistors have been offered as part of the family of "miniature
semiconductors" or "semiconductors for film circuits". The SOT 23, which was introduced to
the market in the early sixties, is the most common package type. During the mid seventies,
the SOT 89 was added. Additional package types are the SOT 143, SOT 223 and SOD 123.
An outstanding design feature of these Siemens package versions is the closely tolerated
clearance between device and PC board (0.1 mm), which is essential for good glueing
conditions.
The available range of products is considerable. Practically all standard devices provided with
leads are now available in miniature package as well.
Owing to the allround experience Siemens has gained in this field, components in conventional
package types can be easily converted into components in miniature package. Thus, a quick
adaption to market demands is possible. It should be especially mentioned here that LEDs are
available in SOT 23 package as well.
SMD - Surface Mounted Device
Literature Selector
Further literature concerning e. g. SMD technology is listed in the following survey and can be
obtained from:
Siemens Components, Inc.,
186 Wood Avenue South, Iselin, NJ 08830,
1-800-888-7730, Fax (908) 632-2830
Title
Ordering code
Tuner Semiconductor Devices, Data 800k
Transistors for Amplifier and Switching Applications, Data 800k
Discrete Semiconductors for Surface Mounting SMD, Data 800k
An Introduction to Surface Mounting, Product Information
SOT-23 Semiconductors, Off-Print
.
SMD Components, Short Form Catalog
Recommendation for PC8 Layouts, Product Information
Components Library, Product Information
Soldering in SMD Technology, Product Information
SIPMOS Small-Signal Transistors
83-83587 -X-X-7600
83-83789-X-X-7600
83-83497 -X-X-7600
83-83289-X-X-7600
83-83342-X-X-7600
83-83907 -X-X-7400
83-83580-X-X-7600
89-83695-X-X-7600
89-83741-X-X- 7600
8352-86155-XX-7400
4
Siemens
Table of Contents
Page
Summary of types ......................................................................7
Technical information ................................................................ .19
Type designation in accordance with Pro Electron ..............................................19
Terms and symbols (DIN 41785) .............................................................20
Standards .................................................................................21
Maximum ratings ...........................................................................22
Characteristics ............................................................................22
Thermal resistances ........................................................................22
Quality specifications ................................................................25
Definition of defects ........................................................................25
AQL values ................................................................................25
Sampling plan for normal inspection ..........................................................26
Package outlines ......................................................................28
Mounting instructions ................................................................29
Mode of delivery (packing) ..................................................................29
Blister tape ............................. '...................................................30
PCB layout ................................................................................35
Glueing ...................................................................................36
Connecting methods .......................................................................36
Evaluation of solder joints ...................................................................38
Diodes ..................................................................................39
Transistors .. ..........................................................................189
GaAsFETS ............................................................................916
GaASMMICS ..........................................................................934
Sensors ........................................... , .................................. .946
Siemens
5
Summary of Types
Switching diodes
lYpe
BAL 74
BAL99
BAR 74
BAR 99
BAS 16
BAS 19
BAS 20
BAS 21
BAS 28 (Dual)
BAS78A
BAS78B
BAS78C
BAS 78 D
BAS 79 A (Dual)
BAS 79 B (Dual)
BAS 79 C (Dual)
BAS 79 D (Dual)
BAS 116
BAV 70 (Dual)
BAV 74 (Dual)
BAV 99 (Dual)
BAV 170 (Dual)
BAV 199 (Dual)
BAW 56 (Dual)
BAW78 A
BAW78B
BAW78C
BAW78D
BAW 79 A (Dual)
BAW 79 B (Dual)
BAW 79 C (Dual)
BAW 79 D (Dual)
BAW 100 (Dual)
BAW 101 (Dual)
BAW 156 (Dual)
BGX50A (Bridge)
5MBD 914
Maximum Ratings Characteristics
(Tamb=2S0C)
V,atl,
VRII
IF
trr
(V)
(mA)
(V)
(mA)
(ns)
s4
s1.0
50
250
100
s1.0
s6
70
50
250
s4
s1.0
50
250
100
s1.0
s6
70
250
50
s1.0
s6
250
50
85
120
s1.0
100
s50
200
s1.0
s50
200
200
100
s1.0
s50
250
200
100
s1.0
s6
85
.250
50
s1.6
1000
1000
50
1fJ.S
100
1000
1000 ,s,.6
1fJ.S
s1.6
200
1000
1000
1fJ.S
s1.p
1000
400
1000
1fJ.S
s1.6
1000
50
1000
1fJ.S
s1.6
100
1000
1000
1fJ.s
s1.6
1000
200
1000
1fJ.s
s1.6
400
1000
1000
1fJ.s
s1.0
10
85
s3fJ.s
250
s6
s1.0
70
250
50
s1.0
s4
100
50
250
s1.0
s6
70
250
50
s1.0
70
250
10
s3fJ.s
s1.0
70
250
10
s3fJ.s
s6
s1.0
70
250
50
s1.6
50
1000
1000
1fJ.s
s1.6
100
1000
1000
1fJ.s
s1.6
200
1000
1000
1fJ.s
400
s1.6
1000
1000
1fJ.s
. 1000
s1.6
1000
50
1fJ.s
s1.6
1000
100
1000
1fJ.s
s1.6
200
1000
1000
1fJ.s
s1.6
400
1000
1000
1fJ.s
s6
s1.0
70
250
50
s1.3
300
200
100
1fJ.s
s1.0
70
250
10
s3fJ.s
s2.6
s6
70
140
100
s1.0
s4
100
250
10
Siemens
Package
Page
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-143
SOT 223
SOT 223
SOT 223
SOT 223
SOT 223
SOT 223
SOT 223
SOT 223
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-143
SOT-143
SOT-23
SOT-143
SOT-23
47
51
65
69
73
77
77
77
81
91
91
91
91
94
94
94
94
97
106
110
114
118
122
126
130
130
130
130
133
133
133
133
136
139
160
164
7
Summary of Types
Switching diodes
Maximum Ratings Characteristics
(Tamb=25°C)
V,atl,
VRM
IF
trr
(mA)
(ns)
(V)
(mA)
(V)
::;6
::;1.0
75
250
50
::;6
::;1.0
75
250
50
::;6
::;1.0
75
250
50
::;6
;;;1.0
50
75
250
::;10
::;1.1
70
250
100
::;15
::;1.1
100
70
250
::;15
::;1.1
100
100
250
Type
5MBD
5MBD
5MBD
5MBD
5MBD
5MBD
5MBD
2835
2836
2837
2838
6050
6100
7000
(Dual)
(Dual)
(Dual)
(Dual)
(Dual)
(Dual)
Package
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
Page
168
168
172
172
176
180
184
MOSFET tetrodes
Type
Vos
V
BF989
20
BF993
20
BF994 S 20
BF995
20
BF996 S 20
BF997
20
BF 998
12
10
Tch
rnA
30
50
30
30
30
30
30
°C
150
150
150
150
150
150
150
g..
PIo'
rnW
200
200
200
200
200
200
200
Gpo
rnS dB
12 16,5
25 25
18 25
17 23
18 18
18 25
24 20
F
dB
2,8
1,5
1
1,8
1,8
1
1
Vos
10
f
Package Page
V
15
15
15
15
15
15
8
rnA
7
10
10
10
10
10
10
MHz
800
200
200
200
800
200
800
SOT-143
SOT-143
SOT-143
SOT-143
SOT-143
SOT-143
SOT-143
362
370
376
382
392
399
405
Schottky Diodes for General Purposes
Type
BAS 40
BAS 40-04
BAS 40-05
BAS 40-06
BAS 40-07
BAS 70
BAS 70-04
BAS 70-05
BAS 70-06
BAS 70-07
BAT 17
BAT 17-04
BAT 17-05
BAT 17-06
BAT 64
8
Max.
ratings
Characteristics at TA = 25°C
VR
IF
VBR
VF
V
40
rnA
80
V
40
rnV
380
70
4
30
40
30
200
70
4
-
410
350
1000
CT
pF
5
2
1
6
IR
ILA
1.0
0.1
0.25
200
Siemens
I.
ps
100
100
-
-
Package
SOT-23
SOT-23
SOT-23
SOT-23
SOT-143
SOT-23
SOT-23
SOT-23
SOT-23
SOT-143
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
Page
85
88
101
104
Summary of Types
Switching transistors
Maximum Ratings
TYpe
CPN=:)
PNP=P
VCEO
BSS63
P
BSS64
N
BSS79
N
BSS80
P
BSS81
N
BSS82
P
PZT2222
N
PZT2222A N
PZT2907
P
PZT2907A P
PZT3904
N
PZT3906
P
5MBT2222 N
SBMT2222A N
5MBT2907 P
5MBT2907A P
5MBT3904 N
5MBT3906 P
5MBTA70 P
SXT2222A N
SXT2907A P
SXT3904
N
SXT3906
P
100
80
40
40
35
60
30
40
40
60
40
40
30
40
40
60
40
40
40
40
60
40
40
(V)
Ic
(rnA)
800
800
800
800
800
800
600
600
600
600
200
200
600
600
600
600
200
200
200
600
600
200
200
P.
(mW)
330
330
330
330
330
330
1500
1500
1500
1500
1500
1500
330
330
330
330
330
330
330
1000
1000
1000
1000
IT
(MHz)
150
100
250
250
250
250
200
200
200
200
300
250
250
300
200
200
300
250
125
300
200
300
250
Characteristics (Tamb = 25°C)
Ic
at
VCE VCE("')
(rnA) (V) (V)
;::,30
10 5 ",;0.25
80
10 1 ",;0.7
40 - 300' 150 10 "';1.3
40 - 300' 150 10 ",;1.6
40 - 300' 150 10 ",;1.3
40 - 300' 150 10 "';1.6
100 - 300 150 10 ",;0.4
100 - 300 150 10 ",;0.3
100 - 300 150 10 ",;0.4
100 - 300 150 10 ",;0.4
100 - 300
10 1 ",;0.3
100 - 300
10 1 ",;0.4
100 - 300 150 10 ",;0.4
100 - 300 150 10 "';0.3
100 - 300 150 10 ",;0.4
100 - 300 150 10 ",;0.4
100 - 300
10 1 "';0.3
10 1 ",;0.4
100 - 300
40 - 400
5 10 ",;0.25
100- 300 150 10 "';0.3
100 - 300 150 10 "';0.4
10 1 "';0.3
100 - 300
100 - 300
10 1 ",;0.4
Package Page
hFE
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-89
SOT-89
SOT-89
SOT-89
279
275
701
706
701
706
758
758
763
763
768
773
794
794
800
800
806
812
863
883
888
894
900
MOSFET triodes
TYpe
BF543
BF999
Vos
V
20
20
10
rnA
30
30
Tch
Ptot
9"
rnW rnS
150 200 12
150 200 16
°C
Gpo
dB
22
25
F
dB
1
1
Siemens
Vos
V
10
10
f
Package Page
rnA MHz
4 200 SOT-23
302
10 200 SOT-23
413
10
9
Summary of Types
High voltage transistors
Maximum Ratings
Type
rpN=~
PNP=P
BF622
BF623
BF720
BF721
BF722
BF723
BFN16
BFN17
BFN18
BFN19
BFN20
BFN21
BFN22
BFN23
BFN24
BFN25
BFN26
BFN27
BFN36
BFN37
BFN38
BFN39
PZTA42
PZTA43
PZTA92
PZTA93
5MBTA42
5MBTA43
5MBTA92
5MBTA93
SXTA42
SXTA43
SXTA92
SXTA93
10
VCEO
Ic
p,
(V)
(mA)
100
100
100
100
100
100
500
500
500
500
100
100
100
100
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
(mW)
1000
1000
1500
1500
1500
1500
1000
1000
1000
1000
1000
1000
360
360
360
360
360
360
1500
1500
1500
1500
1500
1500
1500
1500
360
360
360
360
1000
1000
1000
1000
N 250
p 250
N 300
P 300
N 250
P 250
N 250
P 250
N 300
p 300
N 300
p 300
N 250
P 250
N 250
p 250
N 300
P 300
N 250
P 250
N 300
P 300
N 300
N 200
P 300
P 200
N 300
N 200
P 300
P 200
N 300
N 200
P 300
P 200
fT
(MHz)
100
100
100
100
100
100
70
100
70
100
100
100
100
100
70
100
70
100
70
100
70
100
50
50
50
50
50
50
50
50
50
50
50
50
Characteristics (Tamb = 25°C) Package Page
Ie
at
VCE VCE("')
(mA) (V) (V)
hFE
;0:50
;0:50
;0:40
;0:40
;0:50
;0:50
;0:40
;0:40
;0:30
2:30
;0:40
;0:40
;0:50
;0:50
;0:40
;0:40
;0:30
;0:30
;0:40
;0:40
;0:30
;0:30
;0:40
;0:40
;0:25
;0:25
;0:40
;0:40
;0:25
;0:25
;0:40
;0:40
;0:25
;0:25
Siemens
25
25
25
25
25
25
30
30
30
30
25
25
25
25
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
20
20
20
20
20
20
10
10
10
10
20
20
20
20
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
:50.5 SOT-89
:50.5 SOT-89
:50.5 SOT-223
:50.5 SOT-223
:50.5 SOT-223
:50.5 SOT-223
:50.4 SOT-89
:50.4 SOT-89
:50.5 SOT-89
:50.5 SOT-89
:50.5 SOT-89
:50.5 SOT-89
:50.5 SOT-23
:50.5 SOT-23
:50.4 SOT-23
:50.4 SOT-23
:50.5 SOT-23
:50.5 SOT-23
:50.4 SOT-223
:50.4 SOT-223
:50.5 SOT-223
:50.5 SOT-223
:50.5 SOT-223
:50.4 SOT-223
:50.5 SOT-223
:50.4 SOT-223
:50.5 SOT-23
:50.4 SOT-23
:50.5 SOT-23
:50.4 SOT-23
:50.5 SOT-89
:50.4 SOT-89
:50.5 SOT-89
:50.4 SOT-89
326
330
337
341
337
341
418
422
418
422
426
430
434
438
442
446
442
446
450
454
450
454
782
782
790
790
851
851
867
867
906
906
910
910
Summary of Types
AF transistors
Maximum Ratings
p,
fT
(NPN=N) VCEO Ic
PNP=P
(V) (rnA) (mW) (MHz)
BC807
P 45 1000 330 220
BC808
P 25 1000 330 200
BC817
N 45 1000 330 170
BC818
N 25 1000 330 170
N 65 200 330 200
BC846
BC847
N 45 200 330 200
BC848
N 30 200 330 200
BC849
N 30 200 330 200
BC850
N 45 200 330 200
P 65 200 330 250
BC856
P 45 200 330 250
BC857
BC858
P 30 200 330 250
BC859
P 30 200 330 250
P 45 200 330 250
BC860
BCW60
N 32 200 330 200
BCW61
P 32 200 330 250
BCW65
N 32 1000 330 170
N 45 1000 330 170
BCW66
BCW67
P 32 1000 330 200
BCW68
P 45 1000 330 200
P 45 1500 1500 125
BCP51
BCP52
P 60 1500 1500 125
BCP53
P 80 1500 1500 125
BCP54
N 45 1500 1500 100
N 60 1500 1500 100
BCP55
BCP56
N 80 1500 1500 100
BCP68
N 20 2000 1500 100
BCP69
P 20 2000 1500 100
'TYpe
-Available in hFE sub groups.
Characteristics (T.mb = 25°C)
at
Ic
VCE VCEI ••')
(rnA) (V)
(V)
100 - 630' 100
1 :s0.7
100 - 630' 100
1 :s0.7
100 - 630' 100
1 :s0.7
100 - 630' 100
1 :s0.7
100 - 450'
2
5 :s0.6
110 - 800'
2
5 :s0.6
2
110 - 800'
5 :s0.6
200 - 800'
2
5 :s0.6
200 - 800'
2
5 :s0.6
125 - 475'
2
5 :s0.6
125 - 800'
2
5 :s0.6
125 - 800'
2
5 :s0.6
220 - 900'
2
5 :s0.6
2
220 - 800'
5 :s0.6
120 - 630'
2
5 :s0.25
120 - 630'
2
5 :s0.25
100 - 630' 100
5 :s0.7
100 - 630' 100
5 :s0.7
100 - 630' 100
5 :s0.7
100 - 630~ 100
5 :s0.7
40 - 250'
150
2 :s0.5
40 - 250'
150
2 :s0.5
40 - 250'
150
2 :s0.5
40 - 250'
150
2 :s0.5
40 - 250'
150
2 :s0.5
40 - 250'
150
2 :s0.5
63 - 400
500
1 :s0.5
63 - 400
500
1 :s0.5
Package Page
hFE
Siemens
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
191
191
195
195
199
199
199
199
199
206
206
206
206
206
253
260
267
267
271
271
221
221
221
225
225
225
229
233
11
Summary of Types
AF transistors
Type
=25°C)
Maximum Ratings
CPN=:)
PNP=P
BCX41
BCX42
BCX51
BCX52
BCX53
BCX54
BCX55
BCX56
BCX68
BCX69
BCX70
BCX71
5MBT4124
5MBT4126
5MBT5086
5MBT5087
5MBT6428
5MBT6429
5MBTA05
5MBTA06
5MBTA20
5MBTA55
5MBTA56
12
*Available in hFE sub groups.
VCEO
(V)
N 125
P 125
p 45
P 60
P 80
N 45
N 60
N 80
N 20
P 20
N 45
P 45
N 25
p 25
P 50
p 50
N 50
N 45
N 60
N 80
N 40
P 60
P 80
Ic
(mA)
1000
1000
1500
1500
1500
1500
1500
1500
2000
2000
200
200
200
200
50
50
200
200
500
500
200
500
500
Characteristics (Tamb
at
Ic
VCE
(mW) (MHz)
(mA) (V)
100
1
330 100 ~63
100
1
330 150 ~63
1000 125 40 - 250'
150
2
150
2
1000 125 40 - 250'
150
2
1000 125 40 - 250'
1000 100 40 - 250'
150
2
150
1000 100 40 - 250'
2
1000 100 40 - 250'
150
2
1000 100 63 - 400'
500
1
1000 100 63 - 400'
500
1
330 200 120 - 630'
2
5
330 250 120 - 630'
2
5
2
1
330 300 120 - 360
2
1
330 250 120-360
40 ~150
330
10
5
40 ~250
10
330
5
10
330 100 ~250
5
10
5
330 100 ~500
330 100 ~50
10 1.0
10 1.0
330 100 ~50
5 10
330 125 40 - 400
330
50 ~50
10 1.0
330
50 ~50
10 1.0
P.
fT
hFE
Siemens
Package Page
VCE("')
(V)
::;;0.9
::;;0.9
::;;0.5
::;;0.5
::;;0.5
::;;0.5
::;;0.5
::;;0.5
::;;0.5
::;;0.5
::;;0.25
::;;0.25
::;;0.3
::;;0.4
::;;0.3
::;;0.3
::;;0.6
::;;0.6
::;;0.25
::;;0.25
::;;0.25
SOT-23
SOT-23
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
~0.25 SOT-23
::;;0.25 SOT-23
275
279
283
283
283
287
287
287
291
295
253
260
818
821
824
824
834
834
839
839
847
855
855
Summary of Types
Darlington Transistors
Maximum Ratings
Type
(NPN=N) VCEO Ic
P.
fr
PNP=P (V) (mA) (mW) (MHz)
BCP28
BCP29
BCP48
BCP49
BCV26
BCV27
BCV28
BCV29
BCV46
BCV47
BCV48
BCV49
BSP50
BSP51
BSP52
BSP60
BSP61
BSP62
PZTA13
PZTA14
PZTA63
PZTA64
5MBT6427
5MBTA13
5MBTA14
5MBTA63
5MBTA64
P
30
N 30
P
N
P
N
P
N
P
N
P
N
N
N
N
P
P
P
N
N
P
P
N
N
N
P
P
60
60
30
30
30
30
60
60
60
60
45
60
80
45
60
80
30
30
30
30
40
30
30
30
30
800
800
800
800
800
800
800
800
800
800
800
800
2000
2000
2000
2000
2000
2000
500
500
500
500
500
500
500
500
500
1500
1500
1500
1500
360
360
1000
1000
360
360
1000
1000
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
360
330
330
330
330
200
150
200
150
200
170
200
150
200
170
200
150
200
200
200
200
200
200
125
125
125
125
130
125
125
125
125
Characteristics (Tamb = 25°C)
at
Ic
VCE VCE(Sa')
(mA) (V)
(V)
:s1.0
?:20,OOO
100 5
:s1.0
?:20,OOO
100 5
?:10,OOO
:s1.0
100 5
:s1.0
?:10,OOO
100 5
?:20,OOO
:s1.0
100 5
2:20,000
:s1.0
100 5
2:20,000
:s1.0
100 5
:s1.0
2:20,000
100 5
:s1.0
2:10,000
100
5
2:10,000
:s1.0
100 5
2:10,000
100
:s1.0
5
:s1.0
?:10,OOO
100 5
2:2,000
500 10 :s1.8
2:2,000
500 10 :s1.8
?:2,OOO
500 10 :s1.8
2:2,000
500 10 :s1.8
2:2,000
500 10 :s1.8
2:2,000
500 10 :s1.8
:s1.5
2:10,000
100
5
:s1.5
2:20,000
100 5
:s1.5
2:10,000
100 5
:s1.5
2:20,000
100
5
:s1.5
?:20,OOO
100
5
2:10,000
:s1.5
100 5
:s1.5
2:20,000
100
5
:s1.5
?:10,OOO
100 5
2:20,000
:s1.5
5
100
Package Page
hFE
Siemens
SOT-223
SOT-223
SOT-223
SOT-223
SOT-23
SOT-23
SOT-89
SOT-89
SOT-23
SOT-23
SOT-89
SOT-89
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
213
217
213
217
237
241
245
249
237
241
245
249
648
648
648
653
653
653
778
778
786
786
830
843
843
859
859
13
Summary of Types
SIPMOS'" small-signal transistors
Type
(" channel =N)
pchannel=P
BSP88
N
BSP89 N
BSP92
P
BSP125 N
B8P129* N
BSP135* N
BSP149* N
B8P295 N
B8P296 N
BSP297 N
B8P315 P
B8S84
P
B8887
N
BSS119 N
B8S123 N
BSS131 N
BSS138 N
B8S139* N
B88192 P
SN7002 N
SP0610T P
Maximum Ratings
P,
VOS
10
Page
(V)
240
240
240
600
240
600
200
50
100
200
50
50
240
100
100
240
50
250
240
60
60
Characteristics (T8mb = 25'C)
at Vos RoS{on) VGS{Ih)
(V)
(il)
(V)
(""A)
Package
loss
$20.0
$60
$60
$0.1
$0.1
$0.1
$0.2
$1.0
$1.0
$1.0
$1.0
$15
$60
$0.5
$1.0
$15
0.5
$0.1
$60
$1.0
$1.0
80T-223
80T-223
SOT-223
80T-223
80T-223
80T-223
80T-223
80T-223
80T-223
SOT-223
80T-223
80T-23
80T-89
SOT-23
SOT-23
80T-23
SOT-23
SOT-23
80T-89
80T-23
SOT-23
658
663
668
673
678
680
682
684
689
694
699
712
716
724
730
736
742
748
752
871
877
(rnA)
260
340
180
110
190
100
440
1700
1000
600
1000
130
290
170
170
100
200
40
150
190
130
(mW)
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
360
1000
360
360
360
360
360
1000
360
360
240
240
240
600
240
600
240
50
100
200
50
50
240
100
100
240
50
250
240
60
60
*Depletlon mode
14
Siemens
$6.0
$6.0
$20.0
$45.0
$20.0
$60.0
$3.5
sO.3
$0.8
$2.0
sO.95
$10.0
$6.0
$6.0
$6.0
$16
$3.5
$100
$20
$5.0
$10
s 1.2
$ 2.0
$ 2.0
$ 2.5
$-0.7
$-0.7
$-0:7
$ 2.0
$ 2.0
$ 2.0
s 2.0
$ 2.0
$ 2.0
$ 2.6
$ 2.0
$ 2.0
$ 1.6
$-0.7
$ 2.0
$ 2.0
$ 2.0
Summary of Types
RF transistors
Type
Characteristics (Tamb = 25°C)
leBo
hFE
at Ie
VeE
(mW) (MHz) (nA)
(rnA) (V)
Maximum Ratings
(NPN=N) VeEo Ie
PNP=P (V) (rnA)
BF517
N 15
25
BF550
P 40 150
BF554
N 20
30
BF569
P 35
30
BF579
P 20
30
BF599
N 25
25
BF660
P 30
25
BF770A
N 15
50
BF771
N 12
80
BF772
N 12
80
BF775
N 12
30
BF799
N 20
50
BFP81
N 16
30
BFP93A
N 12
50
BFP193
N 12
80
BFQ17P
N 25 300
BFQ19P
N 15 150
BFQ19S
N 15 150
BF029P
N 15
30
BFQ64
N 20 250
BFQ81
N 16
30
BFR35AP P 12
30
BFR92P
N 15
30
BFR93A
N 12
50
BFR93P
N 15
50
BFR106
N 15 100
BFR193
N 12
80
BFS17P
N 15
50
BFT92
P 15
35
BFT93
P 12
50
P.
fr
280
330
280
280
280
280
280
280
300
300
280
280
300
250
300
1000
1000
1000
280
1000
280
280
280
250
280
350
300
280
200
200
2000
350
250
925
1600
550
700
4500
7000
7000
3500
1100
5800
5500
7000
1200
5100
5100
5000
3000
5800
4900
5000
5500
5000
3700
7000
2500
5000
5000
:s50
:s50
:s100
:s100
:s100
:s100
:s50
:s50
:s50
:s50
:s50
:s100
:s100
:s50
:s50
:s100
:s100
:s100
:s50
:s200
:s100
:s50
:s50
:s50
:s50
:s100
:s50
:s50
:s50
:s50
2:25
2:50
2:60
2:20
2:20
2:38
2:30
2:30
100
100
2:25
2:40
2:50
2:40
100
2:25
2:25
2:25
2:50
2:25
2:50
2:40
2:40
2:40
2:30
2:25
100
2:20
2:20
2:20
Siemens
5
1
1
3
10
7
3
25
30
30
5
20
15
30
30
150
50
50
10
120
15
5-20
14
30
25
30
30
25
14
30
10
10
10
10
10
10
10
8
8
8
6
10
10
5
8
5
10
10
6
5
10
6
10
5
5
6
8
1
10
5
Package Page
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-143
SOT-23
SOT-23
SOT-143
SOT-143
SOT-89
SOT-89
SOT-89
SOT-89
SOT-23
SOT-80
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
299
307
312
316
319
322
334
345
348
352
356
359
458
479
495
512
516
520
526
536
540
560
577
594
602
611
614
631
640
644
15
Summary of Types
PIN diodes
'tYpe
BA582
BA585
BA885
BAR 14-1
BAR 15-1
BAR 16-1
BAR 17
BAR 60
BAR 61
Maximum Ratings
VR
IF
(V)
(rnA)
100
35
50
50
50
50
100
100
100
100
100
100
100
100
100
100
100
100
Characteristics (T.."b = 25°C)
VF
R,
IR at
Co
(pF)
(V)
(n)
(nA)
:s1.1
:51.0
:50.5
20
:s0.6
:s1.1
:57.0
50
:s0.6
:s1.1
:57.0
50
:51.0
:50.5
100
9
:s1.0
:s0.5
100
9
:s0.5
:51.0
100
9
:51.0
:s0.55
100
9
0.2-0.3 :51.1
100
9
0.2-0.3 :s1.1
100
9
Package
Page
VR
(V)
20
30
30
50
50
50
50
50
50
SOO-123
SOO-123
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-143
SOT-143
41
43
45
55
55
55
58
61
61
Tuning diodes
Type
Maximum Ratings
VRM
(V)
BB419
BB512
BB515
BB619
BB620
BB804
BB811
BB814
16
30
12
30
30
30
20
30
20
IF
(rnA)
20
50
20
20
20
50
20
50
=
Characteristics (Tomb 25°C)
CD at VR
CD at VR
(pF)
(V)
(pF)
(V)
26-32
4.3-6
25
3
440-520
1
16.5-29
8.5
17.7
1.8-2.4 28
1
37.5-39
2.5-3.2 28
1
1
3.15
28
69
42-47.5
2
25
8
9.8
1
28
1
45
2
20
8
Siemens
Package
Page
SOO-123
SOO-123
SOO-123
SOO-123
SOO-123
SOT-23
SOO-123
SOT-23
143
145
147
149
151
153
156
158
Summary of Types
GaAs FETs
Type
Characteristics at TA 25°C
-VG,s -VG2S ID
VOS
CF739
=
Max. ratings
V
10
V
6
rnA
80
V
6
loss
F
rnA
10
dB
1.8
1~8
IGHz
atf
117
11.75
Package Page
SOT-143
917
GaAs FETs
Type
Max. ratings
CFY30
V
5
=
Package Page
dB
IGo
IGHz
at f
111.5
14
SOT-143
Characteristics at T A 25°C
ID
rnA
80
-VGS
Vos
V
-4 ... +0.5
gm
F
dB
1.4
rnS
30
923
GaAs MMICs
Type
Characteristics at TA
CGY50
=25°C
VOS
10
f
V
5.5 ... 7.5
rnA
60
MHz
200 ... 1800
G
dB
8.5
F
IP3
dBrn
31
dB
3.0
Package
Page
SOT-143
935
Temperature sensors
R25
Type
R25-Tol.
(typ)
'N= 1 rnA
n
KTY
KTY
KTY
KTY
13 A
13 B
13 C
13 D
%
±1
±2
±5
±10
2000
2000
2000
2000
I
t=10 rns
rnA
7
7
7
7
1:
Air
s
7
7
7
7
Oil
s
1
1
1
1
TA
Package Page
°C
-50 ... +150
-50 ... +150
-50 ... +150
-50 ... +150
SOT-23
SOT-23
SOT-23
SOT-23
949
949
949
949
R,o
Package
Page
900 ... 1200
SOT-143
947
Position sensor
Type
KSY 13
V20
VR.
rnV
95 ... 145
rnV
:s±30
"N
rnA
5
Siemens
n
17
Technical Information
Type designation in accordance with Pro Electron
This type designation applies to small-signal semiconductor components - in contrast to integrated circuits - multiples of these components and semiconductor chips.
The number of the basic type consists of:
Two letters and a three-digit code
First letter
gives information about the material.
A.
B.
C.
R.
Germanium or other material with a band gap of 0.6 .. ·1.0 eV
Silicon or other material with a band gap of 1.0·· ·1.3 eV
Gallium-arsenide or other material with a band gap of 1.3 eV
Compound material (e.g. cadmium-sulfide)
Second letter
indicates the function for which the device is primarily designed.
A.
B.
C.
D.
E.
F.
G.
H.
L.
N.
P.
a.
R.
S.
T.
U.
X.
Y.
Z.
Diode: signal, low power
Diode: variable capacitance
Transistor: low power, audio frequency
Transistor: power, audio frequency
Diode: tunnel
Transistor: low power, high frequency
Multiple of dissimilar devices; miscellaneous devices (e.g. oscillator)
Diode: magnetic sensitive
Transistor: power, high frequency
Optocoupler
Radiation-sensitive semiconductor component
Radiation-emitting semiconductor component
Control or switching device: low power (e.g. thyristor)
Transistor: low power, switching
Control or switching device: power (e.g. thyristor)
Transistor: power switching
Diode: multiplier, e.g. varactor, step recovery
Diode: rectifier, booster
Diode: voltage reference or regulator; transient voltage suppressor diode
The three-digit code of the type designation consists of:
- a three-digit number, running from 100 to 999, for devices primarily intended for consumer
equipment etc.
- one letter and a two-digit number for devices primarily intended for industrial/professional
equipment. This letter has no fixed meaning.
.
Siemens
19
Technical Information
Terms and symbols (DIN 41785)
The notation of currents, voltages, powers (alternate, continuous and mean values) and types
of resistance (alternate or continuous) is represented by small or capital lettering of the symbols.
Symbols
Letter symbols for currents, voltages and powers
Small letters are used for the representation of instantaneous values which vary with time.
Examples: i, v, P
Capital letters are used for the representation of continuous (dc), average (mean), root-me ansquare and periodic peak (maximum) values, i.e. time-constant values of current, voltage and
power.
Examples: [, V; P
Subscripts
The following subscripts are used:
E, e
B, b
C, c
F, f
R, r
M, m
av
emitter
base
collector
forward direction (diode in forward direction)
reverse direction (diode in reverse direction)
peak (maximum) value
average (mean) value
Subscripts representing peak or mean values can be omitted if there is no possibility of confusion.
Subscripts with capital letters are used for total values counted from zero, e.g. for instantaneous, continuous (dc), mean (average), root-me an-square and peak (maximum) values.
Examples: ic, Ic,
VSE, VSE,
Pc, Pc
Subscripts with small letters are used for values of varying components, e.g. instantaneous
values, peak (maximum) and root-mean-square values counted from the mean value.
Examples: ie, Ie, Vbe, Vbe, Pc, Pc
In order to distinguish peak, mean and root-mean-square values, further subscripts can be
added. The recommended abbreviations are:
Peak values
Mean values (average values)
M,m
Av, av
Examples: [CM, [CAV, [em, [cav
Sign" - " can also be used over the symbol for peak values:
Examples:
20
i c, ie
Siemens
Technical Information
I:
--I
Ic
--Time
No Signal 1--- - -- ---- With Signal--------------
ICAV
DC value, no signal
(Arithmetic) mean value of total current (referred to zero)
I CM, i c
Peak value of total current (referred to zero)
IcRMS
Root-mean-square value of total current (referred to zero)
(Arithmetic) mean of the varying component which is superimposed on the closedcircuit direct current I c (referred to the DC no-signal value I c)
Ieav
I c, I ems
I em, i c
ic
ie
Root-mean-square value of the varying component (referred to the mean value I CAV)
Peak value of the varying component (referred to the arithmetic mean I CAV)
Instantaneous total value (referred to zero)
Instantaneous value of the varying component (referred to the arithmetic mean ICAV)
The following equations correspond to the given values in the above diagram:
Ic + Ieav
Ic = ICAV + Iem
IcRMS = vi 12 cAV + [2erms
Ic
~ICAV+ic
ICAV
=
iCM
=
Standards
For detailed information please refer to the following DIN literature:
DIN
DIN
DIN
DIN
DIN
DIN
41782:
41785:
41791:
41852:
41853:
41854:
Diodes
Maximum Ratings
General Instructions
Semiconductor Technology
Terms Relating to Diodes
Terms Relating to Bipolar Transistors
Siemens
21
Technical Information
Maximum ratings
The maximum ratings specified are absolute ratings which, if exceeded, may result in the destruction or permanent functional impairment of the component. When testing the component,
as for example in respect to breakdown voltages, or during application, protection is to be provided in order to reliably ensure that maximum ratings are not exceeded.
Characteristics
Typical characteristics describe the component behavior at defined operating conditions. The
numerical values and diagrams pertain to the component type and shall not be considered as
characteristics of an individual component. The minimum and maximum ratings stated for reasons of essential quality and application requirements describe the actual spread of the characteristics, whereas spread curves in diagrams usually specify the spread range which is to be expected. Electrical values are grouped into "static" DC values and "dynamic" AC values. The
thermal resistance is closely related to the maximum ratings and, constituting the upper spread
value, comes immediately after the maximum ratings. The component's case data is defined by
reference to standard sheets and dimensional drawings.
Thermal resistance
The heat dissipation of SMOs depends on material and thickness of the PC board and of the
conductor paths (inherent heating). as well as on the packing density (external heating). Hence,
inherent and external heating determine the junction temperature, and thus the permissible
thermal stress of SMOs.
The values for thermal resistance given in the data sheets should only be used for rough estimations of the junction temperature 1i, since they were measured under certain laboratory conditions, where no regard was paid to specific applications.
The thermal resistance can be calculated by:
R thJL = Thermal resistance between junction
RthJA = RthJL
+ RthLS + RthSA
and terminals of the component
Environment
22
RthLS =
Thermal resistance between terminals
and solder pads of the substrate
RthSA =
Thermal resistance between substrate
and enVironment, e.g. air or cooling
area
The Internal thermal resistance RthJL is
determined by the design of the component and can therefore be exactly specified, whereas the external thermal resistance, being the sum of RthLS + RthSA,
depends on the individual application.
Siemens
Technical Information
Groups according to total power dissipation
SMDs are grouped according to their max. permissible power dissipation Ptot :
Group
Package: SOT 23, SOT 143
II
III
Diodes, RF transistors, MOSFET tetrodes, sensors
AF and switching transistors
Darlington and high-voltage transistors, SIPMOS small-signal transistors
Group
Package: SOT 89
RF and AF transistors, SIPMOS small-signal transistors
Group
Package: SOT 223
Diodes; AF, Darlington and high-voltage transistors; SIPMOS small-signal
transistors
Package
Thermal Resistance
Group
R 1hJL
R1hLS
R thsA
RthJA 1)
SOT 23
I
355 K/W
30K/W
SOT 143
II
280 K/W
30K/W
65K/W
65K/W
375 K/W
III
255 K/W
30K/W
65K/W
350 K/W
SOT 89
I
20K/W
15K/W
90K/W
125K/W
SOT 223
I
73.3 K/W
83.3 K/W
10K/W
450 K/W
1) The data represents a typical value for the various component groups, which
relates to a uniform alumina substrate, 15 mm x 16.7 mm x 0.7 mm in size.
Siemens
23
Technicallnformatioh
In order to obtain a reduced thermal resistance, the PCB pad for the connection of the collector
is enlarged. This is particularly effective when epoxy PCBs with low heat conductivity are used.
Package sg;r 89
Package SOT 23, SOT 143
Iii
Iii
200
600
~
\
SOOt!
\
\
\
170
160
'U
... ""
1.11'
....."
JA
t 180
irt.
"-
lfJ-- .........
150
\
.il"'"
:4
I\,
130
...... r-.
~
\
140
.....
-~
r.-.-- PC board
I-- - - PC board
- - - Ceramic substrate
110
100
b
IL
RthJA 190
120
~
K
K
o
1
1
I
I
20
40
I---
i--
1 I
J
200
60
o
I
I
2
I
4
-
Generally, these specifications sltffi
The determination of the junct" ~
path is more exact, however,
If it becomes nevertheless ne
sa
perature TL of the component conn
_
- - - Ceramic substrate
6
8mm 2
Collector area
termine the junction temperature 7j.
ure via the temperature dependence of the diode
ely complicated.
xactly determine the junction temperature 7j, the temons has to be measured. Then 7j can be calculated by:
7j =
TL
+ RthJL x
Ptot
Methods for measuring the temperature at component connections
•
Measuring with thermocouple element (e.g. Thermocoax)
For this method a miniature coated thermocouple element with low thermal capacitance is
used. The element, which is coated with a heat-conducting paste. is pressed against the
connection with the collector. There is hardly any influence on the device under measurement and deviations do not exceed a few percent.
•
Measuring with temperature indicators (e.g. thermopaper)
Temperature indicators do not cause heat dissipation and thus allow an almost exact determination of temperature. A certain degree of deviations can only result from the rough grade
indication of the temperature indicators. This method is quite easy and provides sufficient
accuracy. It is particularly suitable for measurement on PC boards.
24
Siemens
Quality Specifications
AQL values and definitions of defectives
Explanations
AQL (acceptable quality level) agreements specify the sampling conditions for the incoming inspection of consignments (conformance test). AQL values in conjunction with the standard
sampling inspection plans determine the acceptance or rejection of delivery lots. The size and
maximum permissible number of defects of the samples is based on DIN 40080 (identical with
MIL Standard 105 D and lEG 410), single sampling plan for normal inspection, inspection level II.
The sampling instructions of this standard are such that a delivery lot will most probably be accepted (> 90 0/0) if the defect percentage is equal or less than the specified AQL value. Generally, the average defect percentage of the products we deliver is far below the AQL value.
Definitions of defectives
A component is considered defective if it does not comply with the characteristics specified in
the data sheet or in an agreed upon delivery specification. Defectives can be divided into inoperatives, which generally exclude a functional application of the component, and defectives of
less significance.
Inoperatives are:
-
open or short circuit,
broken component, package, terminals or encapsulation,
missing or incorrect marking,
.
incorrect identification of terminals,
intermixing with other component types,
alternating orientation in a packaging tube or tape.
The remaining defectives can be divided into:
- electrical defectives
(maximum ratings exceeded),
- mechanical defectives, e.g. dimensions not adhered to, package damaged, illegible marking,
bent leads.
Grouping into major defects and minor defects according to DIN 40080 has been purposely
avoided here because these terms are defined primarily on the basis of applications and not
specifications. In contrast to this the defective classes that we use - for which AQL values are
given below - are clearly outlined by the specification and the mentioned inoperatives.
AQL values
The AQL values valid for the different product families are comprised in the following table:
Type of defectives
AQL values
Inoperatives (mechanical and electrical)
I: static defectives (dc)
I: dynamic defectives (ac)
I: mechanical defectives (package and connections)
0.1
0.4
1.5
0.4
for switching times and noise measurements an AQL of 1.5 applies.
Siemens
25
Quality Specifications
Incoming inspection
If the user wants to carry out an incoming inspection, the use of a sampling inspection plan is
recommended. The test method that is applied must be agreed upon between the user and the
supplier.
The following information is necessary for judging any claims that may arise: test circuit, sample
size, number of defective items found, sample of evidence, packing list.
Sampling plan for normal inspection
in accordance with DIN 40080 or ABC-Std 1050, inspection level II
AQL value
Sample 0,065 0,10 0,15 0,25 0,40 0,65 1,0
1,5 2,5
4,0
6,5
size
A R A R AR A R A R A R A R A R AR AR A R
Lot size
2 to
8
2
9 to
15
3
16 to
25
5
26 to
50
8
51 to
90
13
91 to
150
20
151 to
280
32
281 to
500
50
501 to
1200
80
1201 to
3200
125
3201 to 10000
200
10001 to 35000
315
35001 to 150000
500
150001 to 500000
800
500001 and more
1250
1
1 i
01
01
12
+
I
~
01
01
01
I
I
12
23
12
23
34
12
23
34
56
12
23
34
56
78
12
23
34
56
78
1011
12
23
34
56
78
12
23
34
56
78
12
23
34
56
78
12
23
34
56
78
12
23
34
56
78
23
34
56
78
01
I
i I
01
01
01
I
I
01
01
•
I
~
~
10 11 1415
10 11 1415 2122
1011 1415 2122
10 11 1415 2122
1011 1415 2122
1011 1415 2122
i
ir
A = Acceptance number, i. e. maximum number of defectives in a sample up to which a lot is accepted.
R = Rejection number, i. e. the number of defectives which must be found in a sample as a minimum for rejection of the lot.
26
Siemens
Quality Specifications
Other conditions
As the combination "Acceptance O/Rejection 1" is not particularly clear, the next largest sample should be taken.
Additional information
Stating AQL values is no assurance of characteristics in a legal sense. The agreement of sampling inspections and AQL values does not prevent the customer from carrying out more extensive tests in incoming inspection and claiming replacements for individual defective components under the terms of sale. Any further liability, especially as regards the consequences of
component defects, cannot be recognized.
Note
Siemens has made preparations for and is interested in making agreements on ppm values with
large-scale customers.
Siemens
27
Dimensional outlines
SOT 23 (TO 236)
rf~
DIM.
A
B
C
.Ii
~.
I-N
L
0
F
G
H
K
L
SOT 23
N
MILLIMETERS
MIN .
MAX.
2.60
3.0
2.30
2.60
1.10
1.0
1.40
1.20
0.09
0.15
0.38
0.48
INCHES
MIN.
MAX.
0.118
0.110
0.091
0.102
0.039
0.043
0.047
0.055
0.0035 0.0059
0.015
0.019
-
-
-
0
1.84
0.92
0.10
1.98
0.98
0
0.072
0.038
0.0039
o.on
0.039
SOT 143 (TO 253)
f1 ,B
~
N
DIM.
A
F
B
~I '~~!
C
0
F
G
H
K
L
N
-Ie
A-J
SOT 143
MILLIMETERS
MIN.
MAX.
2.80
3.0
2.30
2.60
1.0
1.10
1.20
1.40
0.09
0.15
0.38
0.48
0.78
0.88
0.10
0
1.84
1.96
1.60
1.60
SOT 89 (TO 243)
~A_
icr
---jHJ-
k
r-i
1-11
~
lIB
G
rf[t--;~
II
--l
-
~
NI--
r
0
F
I-F
'~~r
G
~~
~eJ
~~:~
~LF
SOD 123
r1~J IT!
lJ
~
!
~.
G~~L~
K~~
l
Ffr C
,DB
I
P
Siemens
MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
4.40
0.173
0.181
4.60
4.25
0.167
1.40
1.60
0.55
0.63
2.60
0.102
0.25
0.39
0.0098 0.015
0.40
0.65
0.016
0.026
1.50
1.70
0.059
0.067
2.60
2.85
0.91
0.112
2.90
3.10
0.114
0.122
1.40
1.60
0.55
0.63
SOD 123
DIM.
A
B
C
0
F
G
H
K
L
N
MILLIMETERS
MIN.
MAX.
2.55
2.85
0.95
1.40
0.45
0.26
0
3.55
-
1.35
1.70
0.15
0.65
INCHES
MIN.
MAX.
0.100
0.112
0.037
0.055
-
0.10
3.85
O.01n
0.0098
0
0.140
-
-
-
0.053
0.067
0.0059
0.0256
0.0039
0.152
-
SOT 223
DIM.
A
B
C
0
F
G
H
K
L
N
SOT 223
28
B
G
H
K
l
N
SOT 89
I
DIM.
A
C
I--l-
INCHES
MIN.
MAX.
0.110
0.118
0.091
0.102
0.039
0.043
0.047
0.055
0.0035 0.0059 .
0.Q15
0.019
0.031
0.035
0.0039
0
0.072
0.077
0.063
0.071
MILLIMETERS
MIN.
MAX.
6.30
6.70
6.80
7.20
1.50
1.70
3.30
3.70
0.32
0.60
0.80
2.90
3.10
0
0.10
4.60 Typ
2.30 Typ.
INCHES
MIN.
MAX.
0.248 0.264
0.268 0.283
0.059 0.067
0.130 0.146
0.013
0.024 0.032
0.114 0.122
0
0.0039
0.182 Typ.
0.091 Typ.
-
Mounting Instructions
Supply for automatic assembly
In contrast to components with wire leads, practically all SMDs can be supplied in two package
forms:
• Bulk
• Tape
Bulk
The most straightforward and low-cost mode of SMD d\il!Jyery is in bulk, in either antistatic or
plastic containers. Contrary to components with wire I~~ds, SMDs can be supplied in this type
of packaging for automatic assembly as no bending orlriterlocking of terminals can occur. At
the placement machine the components are suitably,. pgsitioned. If required, a large quantity of
components can thus be supplied in line, i.e. without interrupting the placement procedure.
,(ih:'
,.'",,'
Bulk packaging units
Component
Packing
Diodes
Transistors
LEDs
Sensors
Plastic container
MOSFETs, SIPMOS
Antistatic contaiper
f.'F' l~~
'J",~':CI
~ (}
Tape (in acc. with IEC 286-3)
Tape packaging is a frequently useif9r":l 0t;;upplying surface mounted devices. The major benefit of the tape method is that it Rreventji':\'Onfusion of different components and meets the requirements of most placement ,~!,hin?~$'Cardboard and blister tapes are available tape forms.
The blister tape has preforme,it
? ents corresponding to the component sizE;!, which are
nsist either of plastic material or of plastic-clad alumicovered with fixing tape. 8Iist~i'<'4ap
num foil.
rv.
rom .,
The tapes are internationally standardized in accordance with DIN IEC 286·3. This ensures that the
tapes are accepted by all machines designed for this kind of assembly. The tape width is generally
between 8 mm and 12 mm but additional tape widths are at present being manufactured.
8mmtape
For packages SOT 23, SOT 143 and SOD 123
12 mmtape
For package SOT 89 and SOT 223
Tape packaging units
Size of reels
Packages
SOT 23
SOT 143
SOT 89/S0T 223
SOD 123
18cm
33cm
3000 pieces
10000 pieces
3000 pieces
10000 pieces
1000 pieces
2500 pieces
3000 pieces
10000 pieces
Siemens
29
Mounting Instructions
Blister tape
Ko
T
T,
Direction of unreeling
30
Siemens
Mounting Instructions
TAPE PACKAGE
SYMBOL
8mm
SOT 23, SOT 143, SOD 123
12mm
SOT 89, SOT 223
AO • BO ') 3). KO ').
Do
D1
1.5 + 0.1
1
1.5
+ 0.2
+ 0.1
1.5mm
E
1.75 ± 0.1
1.75 ± 0.1
F
3.5 ± 0.05
5.5 ± 0.05
G
0.75 mm 4)
0.75mm
Po
4 ± 0.1
4 ± 0.1
P1
4
8
P2
2 ± 0.05
2 ± 0.05
T
0.3 max
0.3 max
T1
0.1 max
0.1 max
T2 1) 2)
2.5 max
4.5 max
W
B±0.3
12 ± 0.3
W3
5.5
9.5
S
, ) The nominal dimension for component compartment shall be derived
from the relevant component specification.
. 2). The actual dimension Is given by the component height and the condition that the
component cannot be tumed.
3) Component has to tall out of the carrier tape compartment when the stili opened
carrier tape Is upside down. The maximum clearance Is 0.5 mm or given by the
maximal rotation angle allowed.
4) On long devices like 500.123. G could be smaller than 0.75 mm.
Siemens
31
Mounting Instructions
Polarity and orientation of taped components
All polarized components are oriented in one direction. The mounting side is
oriented to the bottom side of the component compartment. The bottom side is
defined as the invisible side of the tape during unreeling.
SOT 23
000000000
[lj]1j] IIR RlRJ[jIR
000000000
SOT 89
000000000
SOT143
IIlIllIlMIIIIIIII
SOT 223
32
Siemens
Mounting Instructions
Fixing of components
Components are prevented from falling out of the device compartment by a transparent fixing
tape.
-S
Storage of tapes
A storage temperature of 40 + 5 °C at a relative humidity of ~ 950/0 is permissible up to a maximum of 240 h.
q;
Break force of tape
;;::
The minimum break force of the tape in the direction of unreeling ;?:10 N.
"
,,~
Peel force of fixing tape
11"1.
During peel-off the angle between the fixing tape and the direction of unreeling is 180°. The peel
force of the fixing tape ranges from 0.2 N to 1.0 N.
V.;P
l)
Break force of fixing tape
The minimum break force of the fixing tape iS~ N.
It:::
CfJ
.....::f
If!
0
.~s-force meter.....
/
os ""
Peel speed of fixing tape
Reel packaging
Component tapes are wound onto r
for automatic assembly.
as shown in the illustration below and are then suitable
Currently available:
- Tape width=8 mm (SOT 23, SOT 143,
SOD 80) and 12 mm (SOT 89)
- Reel size=18 cm and 33 cm.
The reels are delivered in a protective wrapping.
Cross section
Reel dimensions
DI·
SOT 23 SOT 89
men- SOT 143 SOT 223
slon SOD 123
(mm)
80T23
80T89
80T143 80T223
SOD 123
a
b
c
d
8.4+ 1.5
330 max.
100 min.
14.4 max.
8.4+ 1.5
180 max.
SO min.
14.4 max.
12.4+ 1.5
180 max.
SO min.
18.4 max.
12.4+1.5
330 max.
100 min.
18.4 max.
Siemens
a
33
Mounting Instructions
Reel Labelling
Each reel is labelled with manufacturer, type, series number, and date.
Missing components
A maximum of two consecutive components may be missin
by six components. The number of empty places shall not e
components per reel. Upon request, other agreements
o
~~ovided that this gap is followed
ed 0.25% of the total number of
Leader and trailer
Carrier tape with fixing tape, without components
Tape leader
T
min. 400 mm (100 pitches)
(75 pitches)
DDD[][]DODDDBBB
ESD
SMDs can also be supplied on tapes protected against electrostatic charges. During processing, the reel has therefore to be electrically connected with the placement machine, which must
be grounded. This method of taping complies with IECIT 640.
ESD ;;; Electrostatically Sensitive Devices
34
Siemens
Mounting Instructions
PCB layout
When using surface mounted devices, the PCB layout has to be accommodated to
. this new technology. This demand should be fulfilled not only to better utilize
'the packing density, but also to meet the requirements resulting from the new
placement am;! processing system. Some factors influencing the PCB design are:
•
•
•
•
Distance between conductor paths
Component tolerances
Distance between components
Misalignment of component and conductor path
Recommended minimum solder pad dimensions (mm)
S00123
SOT 89
SOT 23
SOT 143
SOT 223
Siemens
35
Mounting Instructions
Glueing
Prior to soldering, SMDs must be fixed to the PCB by means of an adhesive. The adhesive has
to fulfil the following conditions.
•
•
•
•
•
•
•
Adequate adhesive strength
Short curing time at a low temperature
Uniform viscosity to ensure easy coating
No chemical reactions upon curing in order not to impai
Straightforward exchange of components in case of r
As non-toxic, odorless and solvent-free as possible (/)
Good thermal conductivity
4;
:t
mponent and PC board
Connecting methods
The connecting method is particularly important
well as for inhibiting short circuits. The choice
sign of the PC boards (components on upper
plied components and on the production fa
In addition to manual soldering, which is onl
dering methods: flow soldering, which incl
ing.
ng good electrical connections as
method largely depends on the desides, multilayer board), on the sup-
(b
for repairs, there are two automated soldrag and dip soldering, and reflow solder-
Wave soldering
Wave soldering is the most widely u
ated solder method in the manufacture of PCB
assemblies.
With a maximum bath temperature
the soldering time should not exceed 8 s. Prior to
the wave the flux is applied by a
Max. perm. temperature stress on the
Solder bridges and solder sh
cur if the components ar
SMD (soldering without preheating)
O(
erepacked on the wave soldering Sl
300
fore, with respect to soldering, the compoI I
nent arrangement has to be considered in the
PCB layout.
T
I/'"
\
I
Dual wave soldering equipment will in general
I- Soldering\ Cooling
be better suited to SMD methods. The first
I
200
turbulent wave of solder ensures good wet.1
\ Ts
ting of all metallization areas, while the second more laminar wave removes the excess
solder (solder accumUlation and solder
bridges).
100
t
o
o
10
20
-f
Ts = Melting point of the solder
36
Siemens
30 s
Mounting Instructions
Reflow soldering
For reflow soldering a specific amount of solder, e.g. in the form of solder paste, is applied to
the mounting pads. After the SMD has been placed the connection is established by one of the
following methods:
•
•
•
•
Vapor phase soldering
Hot gas soldering
Heated collet ~oldering
Infrared soldering
'~'v
,.,:;~~J
\~",;,
The most recent reflow soldering method is vapor Pha!i!;I'l~Oldering, where the entire assembly
is uniformly heated to a specific temperature. This form"'Of soldering is a very gentle process,
since it prevents overheating. At present, it is the b ., Idering method for densely positioned
components of different thermal capacity.
Max. perm. temperature stress on the SMD
(soldering with preheating)
°C
300
~~~~~~~~~~~
T
t200 1-+-l-+-+-II...f-.jI-+-l-+-+-¥-+-l100
I-I+-l-+-+--l-+-+-I-+-+-I-+-,j~
Preheating
o
o
~-L~~-L~~-L~~_~
m
~
~s
-t
Iron soldering
Soldering with a temperature-controlled miniature iron should be used only in exceptional
cases (e.g. repairs), since as well as being uneconomical there is the risk of damage to the
components and to the PCB.
Soldering flux
•
The soldering flux used for wave soldering is not subject to changes, i.e. use of collophony
(F-SW 32 in acc. with DIN 8511).
•
On the other hand, the majority of soldering pastes necessary for reflow soldering contains
aggressive soldering flux, the residues of which must always be removed by cleaning.
Siemens
37
....
-
Mounting Instructions
PCB cleaning
• Cleaning in solvents is permitted at approx. 70°C to 80 °C for about 15 seconds, Detailed Information is available upon request.
• Ultrasonic cleaning (double half-wave operation)
Ultrasonic cleaning is less advisable; should it, however,1i used, the following has to be
~
taken into account:
Cleaning agent:
Isopropanol, Freor-/!!
8ath temperature:
approx.30°C
Duration of cleaning:
max. 30 s
4;
Ultrasonic frequency:
40 kHz
Ultrasonic changing pressure:
approx, 0.5 b~
0
0
0
Evaluation of solder joints
View of the concave tin area
~
Defective solder JOints
·s
(j
1~~'§ lO I~~~~~~~
Height of tin surface L1
.:;1
~
2 X L2
~~~~~~ -'"j
Height of tin surface L1 SO,S L2
SMD
Unwetted pad area S > 50/0
38
Siemens
Diodes
Siemens
39
SA 582
Silicon RF Switching Diode
• Low-loss VHF band switch for TVNTR tuners
c.t~
Type
Marking
Ordering code
(taped)
Package
BA582
bluetS
Q62702-A829
SOD-123
Maximum Ratings
Parameter
Symbol Value
Unit
Reverse voltage
VR
35
V
Forward current, TA :s 60 ° C
IF
100
mA
Operation temperature range
Top
-55... + 125
°C
Storage temperature range
Tstg
-55 ... + 150
°C
Thermal Resistance
Junction - ambient
I
RthJAtyP·1
Siemens
600
IKIW
41
BA 582
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
Parameter
Symbol Ratings
Forward voltage
IF= 100 mA
VF
Reverse current
VR=20 V
~R
Diode capacitance
f= 1 MHz
VR=1 V
VR=3 V
Cr
Forward resistance
f= 100 MHz
IF=3 mA
'F = 10 mA
min.
typo
max.
-
-
1
-
-
20
0.6
nA
0.92
0.85
1.4
1.1
n
'f
11gp
Series inductance
Ls
Siemens
v
pF
-
Reverse resistance
f= 100 MHz
VR=1 V
42
Unit
-
0.55
0.36
-
100
-
-
2.8
-
0.7
0.5
kn
nH
Silicon PIN Diode
BA 585
• Current-controlled RF resistor for RF attenuators
• Frequency range 1 MHz ...2 GHz
c.t~
Type
Marking
Ordering code
(taped)
Package
BA 585
white/R.
Q62702-A859
SOO-123
Maximum Ratings
Parameter
Symbol Value
Unit
Reverse voltage
VR
50
V
Forward current
IF
50
mA
Operation temperature range
Top
-55 ... + 125
·C
Storage temperature range
T stg
-55 ... +150
·C
Thermal Resistance
Junction - ambient
I
RthJA
Siemens
I
S
450
IKIW
43
BAS8S
Electrical Characteristics
at TA =25 ·C, unless otherwise specified.
Parameter
Symbol Ratings
Forward voltage
IF=50 rnA
VF
Reverse current
VR=30 V
IR
Diode capacitance
f= 1 MHz, VR = 10 V
f= 100 MHz, VR =0 V
CT
min.
typo
max.
-
-
1.1
50
-
0.28
0.23
0.6
0.4
n
gp
Series inductance
Ls
Diode capacitance CT = f (VR)
f=1 MHzlf=100 MHz
-
22
5
40
7
-
70
-
2.8
-
Forward resistance 'f = f (IF)
f= 100 MHz
1,0
pF
0,8
r\.
L
0,4
\
\
5
\..
'
[\
f = 1 MHz-
....
r--. ....
0,2
f
o
10
20
I I
1
i 1,00,
MrZ
5
-
V 30
- - - - IF
44
nA
'f
Zero bias conductance
f= 100 MHz, VR =0 V
[T
V
pF
-
Forward resistance
f=100 MHz
IF=1.5 rnA
IF= 10 rnA
Unit
Siemens
pS
nH
BA 885
Silicon PIN Diode
c{J.
• Current-controlled RF resistor
for RF attenuators
• Frequency range:
1 MHz ... 2 GHz
• Especially useful
as antenna switch
in TV-sat tuners
Type
BA 885
Ordering code
bulk: Q62702-A742
Marking
PA
taped: Q62702-A608
Maximum ratings
Reverse voltage
Forward current
Operating temperature range
Storage temperature range
Thermal resistance
Junction - ambient
I)
VR
IF
Top
Tstg
RthJA
50
50
-55 ... +125
-55 ... +150
I :5450
V
mA
°C
°C
I KIWI)
Package mounted on alumina 16.7 mm x 15 mm x 0.7 mm.
Siemens
45
BASS5
Characteristics (TA = 25°C)
typ
min
max
Forward voltage
/F= 50 rnA
VF
1.1
V
Reverse current
VR = 30V
IR
50
nA
Diode capacitance
VR = 10V,f=
1 MHz
OV,
100 MHz
CT
0.28
0.23
0.6
0.4
pF
pF
Forward resistance, f = 100 MHz
/F= 1.5 rnA
10 rnA
rf
22
5
40
Q
Q
Zero bias conductance
VR = 0, f= 100 MHz
gp
70
(.IS
Series inductance
Ls
2
nH
Diode capacitance CT = f (VRI
f= 1 MHz/100 MHz
Forward resistance
f=100 MHz
rf
Q
pF
1.0
103
i
5
f\.
'~
0.6
5
0.4
'\.
\
r\
r-- ....
f=lMHz-
~r-..
5
f=llfilt
0.2
o
46
10'
10
lOV
Siemens
7
= f (hI
BAL74
Silicon Switching Diode
•
For high-speed switching
Type
o SAL 74
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
JC
Q62702-A614
Q62702-A718
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 !is
Total power dissipation
TA= 25°C
Junction temperature
Storage temperature range
VR
V
V
hs
50
50
250
250
4,5
Ptot
330
mW
Tj
Tstg
175
-65···+150
°C
°C
RthJA
:0;
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VRM
h
hM
450
mA
mA
A
K/W
o Preferred type
Siemens
47
BAL 74
Electrical characteristics
at TA = 25°C, unless otherwise specified
Symbol
min
typ
max
Unit
Breakdown voltage
I(BR) = 100 I-1A
V(BR)
50
-
-
V
Forward voltage
IF = 100 mA
VF
-
-
1
V
Reverse current
IR
-
-
0,1
100
I-1A
I-1A
DC characteristics
VR = 50V
VR=50V, TA=150°C
-
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
VR=OV,f=1 MHz
Co
-
-
2
pF
Reverse recovery time
IF = 10 mA, IR = 10 mA,
trr
-
-
4
ns
RL= 100n,
measured at I R = 1 mA
Test circuit for reverse recovery time
OUT
Oscilloscope: R = 50 n
Pulse generator: tp = 100 ns, D = 0,05
t, = 0,6 ns, Ri = son
t, = 0,35 ns
C:5 1 pF
48
Siemens
BAL74
Total power dissipation Ptot
=
Reverse current fA
f (TA)
= f(
TA)
nA
105
rnW
400
VR~70V
1'\
V
~
max.
70~//
200
5
1,\
25V
I'.
:\.
100
5
typo
1/
o
o
so
100
150
200
°c
10t
[I
o
50
100
-7;.
Forward current IF
TA = 25°C
=
0(
10°
5
Peak forward current lFM = f(t)
TA =25°C
f (VF)
rnA
150
I
I/D~0005
5
0.01
0.02
V~05
i/rll
0.2
II
I
100
150
-li,
I max.
typo
~
i
;
50
1
i
Ii
o
o
T
V
0,5
f~
T
D=.J...
1,5 V
10-2
10-6
II
10-5
11111 I 1111 I I
10-4
10- 3 10-1
10-1
-f
Siemens
49
BAL74
Forward voltage VF = f (TA)
V
1,0
-HJ
IF =100 rnA
I-r-.
I I
f
-1-1-
W
10 rnA ............
I'-r-.
in} . . .
0,5
-
~
0,1 rnA
1'-...... 1'-
r-
I'I'-
i'r"r--,
.....
o
o
50
50
100
"'"
150
0(
Siemens
Silicon Switching Diode
•
BAL99
For high-speed switching
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BAL99
JF
Q62702-A611
Q62702-A687
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 111s
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VR
V
V
IF
IFM
IFs
70
70
250
250
4,5
Ptot
330
mW
Tj
Tstg
175
-65···+150
°C
°C
RthJA
5450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VRM
Siemens
mA
mA
A
51
BAL99
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Breakdown voltage
I(BA) = 100 f!A
V(BA)
70
-
-
V
Forward voltage
IF= 1 mA
IF= 10mA
IF= 50mA
IF=150mA
VF
-
-
715
855
1
1,25
mV
mV
V
V
Reverse current
VA = 70V
VA = 25 V, TA = 150°C
VA = 70 V, TA = 150°C
IA
-
-
2,5
30
50
f!A
f!A
f!A
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
VA = 0 V, f = 1 MHz
CD
-
-
1,5
pF
Reverse recovery time
IF = 10 mA, IA = 10 mA,
trr
-
-
6
ns
-
-
RL=100n,
measured at I A = 1 mA
Test circuit for reverse recovery time
OUT
Oscilloscope: R = 50 n
tr = 0,35 ns
C :5 1 pF
Pulse generator: tp = 100 ns, D = 0,05
tr = 0,6 ns, Ri = 50 n
52
Siemens
BAL99
Total power dissipation P'o'
Reverse current I R = f (TA)
((TA)
=
nA
mW
400
105
VR =70V
V
V
max.
70~/J
200
25V
I' r\
100
typo
o
o
10'
100
50
200 'C
150
IlL
J
o
50
Peak forward current I FM
TA = 25°C
Forward current IF = ((V F)
TA= 25°C
mA
150
I
0.1
0.2
I
Ij max.
typo
10°
S
f (t)
V~05
/
100
O(
0=0.005
0.01
0.02
IF
I
=
150
:=1=
....
,.::)(
Ii
~
Ii
50
,
1
t~
i
o
o
i..-'
0,5
0=-.2..
T
./
1,0
1,5 V
10-1
10-6
Illil 1111
10-5
10- 4
T
I lULL!
10-1 10-1
W-l
-t
-VF
Siemens
53
BAL99
Forward voltage VF = {(TAl
V
1,0
ill
I F = 100mA
r-
r-r-r-
I I
W.
10 mA
L _1
~,
0,5
rr-
I
i'-k
0,1 mA
I
54
r--,
I
'r--.
,
r--. . . . .
r--r-.,
I
o
o
r--.
50
150 .(
Siemens
Silicon PIN Diodes
BAR 14-1
... BAR 16-1
• RF switch, RF attenuator
• Low-distortion factor
• Long-term stability of electrical characteristics
Type
Marking
Ordering code
(tape and reel)
Pin configuration
BAR 14-1
L7
Q 62702 - A772
3
10
BAR 15-1
La
Q 62702-A731
L9
SOT-23
3
10
BAR 16-1
~I I ~I 02
Package
Q 62702-A773
~ I I~
02
3
10
~ I ~ 02
Maximum Ratings per Diode
Parameter
Symbol
Values
Unit
Reverse voltage
VR
100
V
Forward current
IF
100
rnA
Total power dissipation, TA = 25 °C2)
Ptot
140
mW
Junction temperature
7j
150
Operating temperature range
Top
-55 ... +150
Storage temperature range
Tstg
-55 ... +150
°c
°c
°c
Thermal Resistance
I
Junction - ambient 1
RthJA
I 5450
IKIW
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
Siemens
55
BAR 14-1
... BAR 16-1
Electrical Characteristics per Diode
at TA = 25°C, unless otherwise specified.
Parameter
Symbol
min
Reverse current
VR = 50V
VR = 100V
IR
Forward voltage
100 mA
VF
Diode capacitance
VR =50V, f= 1 MHz
VR = 0, f= 100 MHz
Or
Forward resistance
f= 100 MHz, IF = 0.01 rnA
IF = 0.10 rnA
I F = 1 rnA
I F = 10 rnA
Ii
Zero bias conductance
VR = 0, f= 100 MHz
gp
-
'L
0.7
Values
typ
Unit
max
-
-
-
100
1
J,tA
-
1.05
1.25
V
-
0.25
0.2
0.5
nA
I F=
pF
-
Q
-
2800
380
45
7
-
Charge carrier life time
I F =10mA,IR =6mA
-
-
50
-
IlS
1
-
Ils
Forward resistance rf = f (IF)
f= 100 MHz
rf
1,/ I r,. =lS00(
85°( '§
25°( ;=
_400( i=
t
'\
./
ltV III
5
10'1
II
J
I
W
5
S
II
I
0.5
1.0
1.5 V
0.1
-~
56
'\.
Siemens
1.0
10
SOmA
BAR 14-1
... BAR 16-1
Diode capacitance
Cr = f
(VR)
pF
1.0
0.5
\ .......
o
o
-
r- QMHf
f=11
00JH; l""- I""-
10
20
30
40
-VR
SOY
Siemens
57
Silicon PIN Diodes.
BAR 17
• Current-controlled RF resistor for RF attenuation
• Switching applications above 1 MHz
Type
Marking
Ordering code
(tape and reel)
Pin configuration
BAR 17
L6
Q 62702 - A785
10
~
03
Package
SOT-23
Maximum Ratings
Parameter
Symbol
Values
Unit
Reverse voltage
VR
100
V
Forward current
IF
100
mA
Total power dissipation, TA = 25 °C2)
P tot
140
mW
Junction temperature
7j
150
°c
Operating temperature range
Top
-55 ... +150
°c
Storage temperature range
Tstg
-55 ... +150
°c
Thermal Resistance
I
Junction - ambient I
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
58
Siemens
RthJA
I :5450
IKIW
BAR 17
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC/AC Characteristics
Symbol
Parameter
Reverse current
VR = 50V
VR =100V
IR
Forward voltage
I F= 100 mA
VF
Diode capacitance
VR = 50 V, f = 1 MHz
VR = 0., f= 100 MHz
Or
Charge carrier life time
IF = 10 mA, IR = 6 mA
'lL
Forward resistance
f= 100 MHz, IF = 0.01 mA
IF=0.1 mA
I F= 1.0mA
I F= 10mA
Ii
Values
Unit
min
typ
max
-
-
50
1
I!A
-
0.91
1
V
-
0.32
0.37
0.55
-
-
4
-
-
1150
160
23
3.5
-
nA
pF
~s
n
-
Forward resistance rf = f (IF)
f= 100 MHz
Forward currentlF =f (VF)
II
T,.=-400(
25°(
85°( ===
1500 (
==
=
W-
I
I
I\.
1\
I
II
I
I II
0.5
1.0
10°
10- 2
1.5 V
-Vf
Siemens
5 10-'
5 10°
5 10'
-IF
59
BAR 17
Diode capacitance
Cr =
f (VR)
pF
2
1\
I'::
1"-.. t--...
f = 1MHz
100Mr
1
o
o
60
10
20
30
40
-VR
sov
Siemens
BAR 60
BAR 61
Silicon PIN Diodes
3i~2
• For RF attenuation
• Switching applications for frequencies above 10 MHz
4tlJ) 1
Type
Marking
Ordering code
(tape and reel)
BAR 60
60
Q 62702 - A786
Pin configuration
Package
,+,
SOT-143
1
2
BAR 61
61
Q 62702-A120
01
1>1
30
* *
4
2
Maximum Ratings per Diode
Symbol
Values
Unit
Reverse voltage
VR
100
V
Forward current
IF
100
mA
Ptot
140
mW
7j
150
Operating temperature range
Top
-55 ... +150
Storage temperature range
Tstg
-55 ... +150
°c
°C
°C
Parameter
Total power dissipation, TA = 25
°C
2)
Junction temperature
Thermal Resistance
RthJA
Junction - ambient 1.
1::0;450
KIW
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
Siemens
61
BAR 60
BAR 61
Electrical Characteristics per Diode
at TA = 25°C, unless otherwise specified.
DC/AC Characteristics
Parameter
Symbol
Reverse current
VR = 50V
VR = 100V
IR
Forward voltage
VF
Values
Unit
min
typ
max
-
-
-
100
1
nA
~
-
-
1.25
V
-
0.25
0.2
0.5
-
2800
380
45
I F = 100 mA
Diode capacitance
VR =50V, f= 1 MHz
VR = 0, f= 100 MHz
Or
Differential forward resistance
f= 100 MHz, IF = 0.01 mA
IF=0.1 mA
I F = 1.0 mA
I F = 10mA
'f
Zero bias conductance
VR = 0, f= 100 MHz
gp
Charge carrier life time
!L
pF
-
n
-
7
-
-
50
-
J.lS
-
1
-
J.ls
-
I F =10mA,IR =6mA
Forward current h = f (VF)
Forward resistance
f= 100MHz
'f = f (IF)
5
I ~;.1500[
II
1
85°[ E
25°[ f=
_400[ 1=
"
1/ II I
0
10
5
5
I
I
1
W
5
2
IJ
I
I
0.5
1.0
0.1
1.SV
-~
62
Siemens
1.0
10
SOmA
BAR 60
BAR 61
Diode capacitance
Cr = f
(VR)
pF
1.0
0.5
1\ r--...
o
o
-
I - QMH
10
r
f~1100JHZ l -I -i--
20
40
30
50 V
Circuit example for attenuation networks with diode BAR 60
I
1kn
I
1nF
1nF
1kn
1nF
Input >--1t--.--o.---+cI7l--t---lE++--<>---<"'--+---I'K Output
I
I
5.6kn IL __
r
I
__-.1 4.7kn
1nF
50kn
Siemens
63
BAR 60
BAR 61
Circuit example for attenuation networks with diode BAR 61
SOk!!
f--I:z:l------.-o+12V
lnF
I
H
1nF
BC 236
lk!!
BAR 61
r------~
I
1k!!
1nF
lnF
I
Input )-U-....-<>-+-+--lE'I--........-+-o--+-.......--~I---+---{ Output
I
lnF
I
I
L
1.6k!!
2.2kn
64
Siemens
BAR 74
Silicon Switching Diode
•
For high-speed switching
c{ff:
Type
o BAR 74
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
JB
Q62702-A615
Q62702-A704
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 ~s
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VR
VRM
/P
/PM
/Ps
50
50
250
250
4,5
V
V
Ptot
330
mW
Tj
Tstg
175
-65···+150
°C
°C
RthJA
::; 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
mA
mA
A
o Preferred type
Siemens
65
BAR 74
Electrical characteristics
at TA = 25°C, unless otherwise specified
Symbol
min
typ
max
Unit
Breakdown voltage
I(BR) = 100 itA
DC characteristics
V(BR)
50
-
-
V
Forward voltage
IF = 100 rnA
VF
-
-
1
V
Reverse current
VR = 50V
VR = 50 V, TA = 150°C
IR
-
-
-
0,1
100
ItA
ItA
AC characteristics
Symbol
min
typ
Co
-
-
max
2
Unit
Oiode capacitance
VR = OV, f=1 MHz
Reverse recovery time
IF = 10 rnA, IR = 10 rnA,
RL= 1000,
measured at I R = 1 rnA
trr
-
-
4
ns
Test circuit for reverse recovery time
OUT
Pulse generator: tp
tr
66
= 100 ns, 0 = 0,05
= 0,6 ns, Ri = 500
Oscilloscope: R = 500
tr = 0,35 ns
C::;; 1 pF
Siemens
pF
BAR 74
Total power dissipation P'o' = f (TA)
Reverse current I R
rnW
400
nA
101
=
f ( TA)
VR =70V
V
//
1\
max.
70~1/
200
25V
r-..
100
typo
/1/
o
o
10'
100
50
200 ·C
150
IJ
o
100
50
150
O(
10°
5
-T"
Forward current iF = f (VF)
TA = 25'C
Peak forward current lFM = f (t)
TA = 25'C
rnA
150
I
0=0005
0.01
0.02
5
V~05
0.1
/
0.2
I
100
j max.
typo
)(
Ii
50
,
J
t~
T
i
o
o
V
0,5
O=-L
T
/
1,5 V
10- 2
10- 6
111111111 I IIII I I
10-5
10- 4
10- 3
10- 2
10-'
-t
Siemens
67
BAR 74
Forward voltage VF
V
1,0
ill
IF=10~~A
f
=
f ( TA)
lI-
CI
10 mA
~r--
0,5
1-1-
"'N::
O.1mA
"
"r-- . . .
r--" I'-t--..r-- t-...
j-..
j-..~
o
o
68
50
150 ·C
Siemens
BAR 99
Silicon Switching Diode
•
For high-speed switching
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BAR 99
JG
Q62702-A610
Q62702-A388
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 its
Total power dissipation
C
TA = 25 D
Junction temperature
Storage temperature range
VR
VRM
iF
iFM
iFs
70
70
250
250
4,5
V
V
mA
mA
A
Ptot
330
mW
Tj
Tstg
175
-65··· + 150
DC
DC
RthJA
::5 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
Siemens
69
BAR 99
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Breakdown voltage
I(BR) = 100!lA
Forward voltage
IF= 1 mA
IF= 10mA
IF= 50mA
IF=150mA
V(BR)
70
-
-
V
-
715
855
1000
1250
mV
mV
mV
mV
VF
-
-
-
-
-
-
-
-
2,5
30
50
).LA
).LA
).LA
Reverse current
VR = 70V
VR = 25 V, TA = 150°C
VR = 70 V, TA = 150°C
IR
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
VR=OV,f=1MHz
Co
-
-
1,5
pF
Reverse recovery time
IF = 10 mA, IR = 10 mA,
RL= 100n,
measured at I R = 1 mA
trr
-
-
6
ns
-
Test circuit for reverse recovery time
OUT
Pulse generator: tp
=
100 ns, 0
=
Oscilloscope: R = 50 n
tr = 0,35 ns
C:5 1 pF
0,05
tr = 0,6 ns, Ri = 50n
70
Siemens
BAR 99
Total power dissipation P tot = f (TA)
Reverse current I R = f (TA)
mIN
400
nA
105
VR =70V
V
V
max.
i-'
/1/
7OV/
200
5
25V
1\
100
1\
typo
o
o
11/
I
10'
50
a
200 ·C
150
100
50
150 .(
100
-TA
Forward current IF = f (VF)
TA = 25°C
Peak forward current IFM
TA = 25°C
mA
150
I
=
f (t)
1/0= 0005
0.01
0.02
5
V~05
100
rl0.21
I
I max.
typo
tl=
I"'>
ii
ii
50
1
I
i
o
T
,
l/
o
0,5
t~
T
D=~
101,0
-V,
1,5 V
10-6
1IJIII11LIlIlili
10-5 10- 4 10- 3 10-' 10-'
10° s
-t
Siemens
71
BAR 99
Forward voltage VF = f (TA)
V
1,0
W
r--t- I-~
I F=10~~A
U
10 mA
t--r--
r--t-1'--1'--1'--
1;j;-"
0,5
1-1-
't-l
O,lmA
-I--.
""-I'--I'-I'--
1'--"
1'01'0
o
o
50
100
150
0(
-TA
72
.Siemens
Silicon Switching Diode
•
BAS 16
ell.
For high-speed switching
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BAS 16
A6
Q62702-A726
Q62702-A739
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 ~s
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VR
VRM
h
hM
hs
75
85
250
250
4,5
V
V
Ptot
330
mW
Tj
Tstg
175
-65··· +150
°C
°C
RthJA
~450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
Siemens
mA
mA
A
73
BAS 16
Electrical characteristics
at TA = 25 ce, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Breakdown voltage
f (BR) = 100 J.lA
V(BR)
75
-
-
V
Forward voltage
iF= 1 mA
iF= 10 mA
if = 50 mA
if =150 mA
VF
-
715
855
1000
1250
mV
mV
mV
mV
Reverse current
VR = 75 V
VR = 25 V, TA = 150 c
VR = 75 V, TA = 150 c
fR
1
30
50
1,75
J.l.A
J.l.A
J.l.A
V
-
-
-
-
Forward recovery voltage
if = 10 mA, tp = 20 ns
VI,
-
AC characteristics
e
e
-
-
Symbol
min
typ
max
Unit
Diode capacitance
VR = 0 V, f= 1 MHz
Co
-
-
2
pF
Reverse recovery time
if = 10 mA, fR = 10 mA,
RL = 100n,
measured at f R = 1 mA
t"
-
-
6
ns
Test circuit for reverse recovery time
OUT
Pulse generator: tp = 100 ns, 0 = 0,05
t, = 0,6 ns, Ri = 50 n
Oscilloscope: R = 50 n
t, = 0,35 ns
C 51 pF
74
Siemens
BAS 16
Total power dissipation Ptot
=
Reverse current I R = f ( TA)
f( TA)
nA
105
mW
400
VR =70V
~
,/
~
max.
r-'
70~J /
200
5
25V
1\
100
1\
5
typo
1/
o
o
lot
50
100
200 ·C
150
Forward current if = f(VF)
TA = 25°C
11.1
o
150 DC
50
Peak forward current iFM
TA =25°C
=
fIt)
mA
150
I
I/ D=0005
5
0.01
0.02
IFH
100
t
J
5
II max.
typo
[!~05
rl0.21
10'
...
[")
~
i
~
50
,
I
t~
i
o
o
i..-'
0,5
D=.J..
T
,
1/
10-
1,5 V
10-6
IIIIII
10- 5
10- 4
T
1111 I 1111 I I
10- 3
10-'
10-'
100 5
-t
Siemens
75
BAS 16
Forward voltage VF = f ( TA)
V
1,0
1TI
I-I-r-.
IF=10~~A
I-
. ..1
~ m,A
1-...
1-1-
t-.r-.
;;}I-
0,5
r:(
f-f-
O,1mA
I-
1--.1-
...
!'.ro-.
. . . 1-
o
o
76
50
150
O(
Siemens
BAS 19
... BAS 21
Silicon Switching Diodes
•
High-speed, high-voltage switch
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BAS 19
BAS 20
BAS 21
JP
JR
JS
Q62702-A242
Q62702-A707
Q62702-A708
Q62702-A95
Q62702-A 113
Q62702-A79
SOT 23
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol BAS 19
BAS 20
BAS 21
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VR
VRM
IF
IFM
150
200
200
625
280
200
250
V
V
mA
mA
mW
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
100
120
Ptot
150
-65 .. ·+150
Tj
T stg
:5 450
RthJA
Siemens
°C
°C
K/W
77
BAS 19
... BAS 21
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Breakdown voltage ')
I(SR) = 100 IlA
V(SR)
BAS 19
BAS 20
BAS 21
Forward voltage
IF =100 mA
IF =200 mA
VF
Reverse current
IR
VR =
VR =
typ
max
Unit
120
200
250
-
-
V
V
V
-
-
1
1,25
V
V
-
100
100
nA
IlA
-
VRmax
VRmax;
min
-
Tj = 150°C
-
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
VR=OV,f=1 MHz
Co
-
-
5
pF
Reverse recovery time
IF = 30 mA, IR = 30 mA,
trr
-
-
50
ns
RL= 100n,
measured at IR = 3 mA
Test circuit for reverse recovery time
OUT
Pulse generator: tp = 100 ns, D = 0,05
tr = 0,6 ns, Ri = 50 n
Oscilloscope: R
=
50 n
tr = 0,35 ns
C:5 1 pF
') Pulse test: tp :5 300 Ils, D = 20/0.
78
Siemens
BAS 19
... BAS 21
Total power dissipation Ptot = f (TA)
Raverse current I R = f ( TA)
rnW
400
)JA
10 2
5
~ot
I
V
300
1/
Ityp.
/
200
1I
max.
"\
1'\
/
I\.
IJ
IJ
100
\
1"\
o
I
1"\
o
150
100
50
50
O(
-TA
Forward current IF
=
f ( VFl
Forward voltage VF = f(TA)
rnA
800
V
1,5
r:
I
-
v"
I,
II
f
1,0
500
I
400
I
300
I
........
I
.
250mA
--
~
~A
r-
I I
k
10mA
r-...
0,5
I
200
.......
I
100
o
o
/,
--....
I
IF =625mA
0.5
1.0
-VF
1.5 V
o
o
Siemens
100
200°C
-TA
79
BAS 19
... BAS 21
Forward current IF
=
Reverse voltage VR
f ( TA)
rnA
V
300
300
200
200
=
f( TA)
IF
"- f'\
BAS 21
. . .+-
~
I\.
B~s12
,
1\
100
'\
\
1\
150 0 (
100
50
o
Peak forward current lFM = f (t)
D= 0.005:
VO.0 1
VO.0 2
1:/,0.05
0.1
>0.2
I"-
1
Ii
..
D =--E.
10-2
10-6 10-5
~~
..
I i
t"T -_
1:f1fpl--
1m I ~~
10-'
1I11
10-3
II
10-2
10- 1
10°
S
-f
80
o
50
100
-1A
-TA
10°
,
1\
[\
1\
°°
BA519
100
t\.
Siemens
,
BAS 28
Silicon Switching Diode Array
•
•
For high-speed switching
Electrically isolated diodes
A2~C2
A1~C1
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BAS 28
JT
Q62702-A 163
Q62702-A77
SOT 143
Maximum ratings
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
f=1lls
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VR
V
V
lFM
lFs
75
85
250
250
4,5
Ptot
330
mW
Tj
Tstg
175
-65···+150
°C
°C
RthJA
:::;450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VRM
IF
Siemens
mA
mA
A
81
BAS 28
Electrical characteristics
at TA = 25°C, unless otherwise specified
Symbol
min
typ
max
Unit
Breakdown voltage
I(BA) = 100 llA
DC characteristics
V(BA)
85
-
-
V
Forward voltage
h= 1 mA
h= 10 mA
h= 50mA
h =150 mA
VF
-
-
-
715
855
1000
1250
mV
mV
mV
mV
Reverse current
VA = 75V
VA = 25 V, TA = 150°C
VA = 75 V, TA = 150°C
IA
-
-
-
-
-
1
30
50
l1A
l1A
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
Co
-
-
2
pF
trr
-
-
6
ns
VA=OV,f=1MHz
Reverse recovery time
h = 10 mA, IA = 10 mA,
RL= 100n,
measured at IA = 1 mA
Test circuit for reverse recovery time
OUT
Pulse generator: tp = 100 ns, D = 0,05
tr = 0,6 ns, Ri = 50 n
82
Oscilloscope: R = 50 n
tr = 0,35 ns
C:s 1 pF
Siemens
llA
BAS 28
Total power dissipation Ptot = f (TA)
Reverse current I R = f ( TA)
mW
nA
105
400
5
j"3oo
VR =70V
~
V
I"
max.
f-"
1/
70~/1/
200
5
25V
V
100
1\
1\
o
o
typo
/1/
so
100
50
200 'C
150
Forward current IF = f (VF)
Peak forward current iFM
TA = 25°C
TA= 25°C
rnA
150
A
10 2
I
10°
S
f (t)
0.01
0.02
5
rl0
0.1
0.2
I
If max.
typo
0(
0=0.005
5
/
100
=
150
r..,.'/0
i
Ii
50
1
J
t~
i
o
o
0=....1'.T
Vl/
0,5
1,5 V
10-2
10-6
IIII
T
I IIII I 1111 I
10- 5 10- 4
10- 3
L
10- 2
10-1
-t
Siemens
83
BAS 28
Forward voltage VF = '(TAl
V
1,0
ill
I F=100 mA
1-1-
I I
f
~~
10 mA
l"'-
I'--
~I"'-
0,5
.~
-r- ~
1-1-....
1'-- ....
t'--
O,lmA
....
t'--r--,
..... r--.
o
o
84
50
150 °C
Siemens
BAS 40 ...
Silicon Schottky Diodes
•
•
•
•
General-purpose diodes for high-speed switching
Circuit protection
Voltage clamping
High-level detecting and mixing
:5 - available with CECC quality assessment
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
:5 BAS 40
43
Q 62702 - 0339
Pin configuration
SOT-23
10
:5 BAS 40-04
44
Q 62702 - 0980
•
•
•
•
Q 62702 - 0978
03
~I~
02
3
Q 62702 - 0979
10
:5 BAS 40-06 46
~
3
10
:5 BAS 40-05 45
Package
~ I I~
02
3
101E;JI~
02
3/7h2
General-purpose diodes for high-speed switching
Circuit protection
Voltage clamping
High-level detecting and mixing
4t$J1
:5 - available with CECC quality assessment
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
:5 BAS 40-07
47
Q 62702 - A697
Pin configuration
40
[>1
01
30
~
02
Siemens
Package
SOT-143
85
BAS 40 •••
Maximum Ratings per Diode
Parameter
Symbol
Value
Unit
Reverse voltage
VR
40
V
Forward current
IF
40
mA
Peak forward current
IFRM
80
mA
Surge forward current, t ~1 0 ms
I FSM
200
mA
Junction temperature
Ii
150
°C
Operating temperature range
Top
-55 ... +150
°C
Storage temperature range
Tstg
-55 ... +150
°C
Thermal Resistance
I
Junction - ambient1)
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
I
Parameter
RthJA
I ~450
IKIW
Values
Symbol
I typ
I max
I
Unit
DC characteristics
Breakdown voltage
"'I
01
30
E>I
02
Siemens
Package1)
SOT-143
BAS 70 ...
Maximum Ratings per Diode
Parameter
Symbol
Value
Unit
Reverse voltage
VR
70
V
Forward current
IF
15
mA
Peak forward current
IFRM
40
mA
Surge forward current, t s1 0 ms
I FSM
100
mA
Junction temperature
7j
150
°C
Operating temperature range
Top
-55 ... +150
°C
Storage temperature range
Tstg
-55 ... +150
°C
RthJA
s450
Thermal Resistance
Junction - ambient1)
IKIW
Electrical Characteristics per Diode
at TA = 25°C, unless otherwise specified.
Parameter
Unit
DC characteristics
70
-
-
-
-
0.1
10
-
380
690
780
410
750
1000
Or
-
1.6
2
pF
Charge carrier life time
I F =25mA
'!
-
-
100
ps
Differential forward resistance
IF = 10 mA, f= 10 kHz
Ij
-
30
-
n
Breakdown voltage
IR = 10 IlA
V(SR)
Reverse current
VR =50V
VR =70V
IR
Forward voltage
I F= 1 mA
I F= 10mA
I F= 15 mA
VF
Diode capacitance
VR=O, f= 1 MHz
V
IlA
mV
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
Siemens
89
BAS 70 ...
Characteristics per Diode
at TA = 25 °C, unless otherwise specified.
rnA Forward currentIF = f (VF)
~A
102
102
5
5
IF
AI II~
tW
~
Ii ':'
Reverse currentIR
...
-
7;.=150,,\
-
5
I--
II
II
100
=f (VR)
I-- 1A=-400 (
25 0 ( -I-85°( _I-"""150 0 (-1--
5
85°(
=
10- 1
~
1/
-25°(
5
10- 2
0
0.5
1.5 V
1.0
20
-VF
Diode capacitance
f= 1 MHz
c;. =f (VR)
80 V
40
Differential forward resistance rf = f (IF)
f= 10 kHz
pF
2.0
5
5
~
1.0
\
,
"\
0.5
o
o
90
I""..
10
--
10 1
5
-
20 30 40 50 60 70
-VR
1\
10 0
0.1
80 V
Siemens
0.5 1
5 10
5 100mA
Silicon Switching Diodes
BAS 78A ... BAS 78D
• Switching applications
• High breakdown voltage
Type
Marking
Ordering code (12-mm tape)
Package'
BAS 78A
BAS 78A
062702 - A910
SOT -223
BAS 78B
BAS 78B
062702 - A911
SOT-223
BAS 78C
BAS 78C
062702 - A912
SOT-223
BAS 78D
BAS78D
062702 - A913
SOT-223
Maximum Ratings
Parameter
BAS BAS BAS BAS
Symbol 78A 78 B 78C 780
Reverse voltage
Peak reverse voltage
VR
VRM
Forward current
IF
1
A
Peak forward current
IFM
1
A
Surge forward current t=ll1 S
Unit
50
100
200
400
V
50
100
200
400
V
I FS
10
A
Total power dissipation, TA :525°C 1)
PIOI
1.5
W
Junction temperature
Tj
Storage temperature range
T"lg
150
-65
to
+ 150
·C
·C
Thermal Resistance
Junction - ambient 1)
:583.3
IKIW
I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.5mm.
Mounting pad for the collector lead min 6 cm 2.
•) For detailed dimensions see chapter Package Outlines.
Siemens
91
BAS 78A ... BAS 780
Characteristics
at TA =25 ·C, unless otherwise specified.
Parameter
Unit
DC Characteristics
Breakdown voltage
Ic = 10mA, Is = 0
Forward voltage
IF = lA
IF =2A
BAS
BAS
BAS
BAS
VISR)
78A
78B
78C
780
VF
1)
Reverse current
VR = VA max
VA = VA max, TA = 150 ·C
IR
50
100
200
400
--
-
-
-
1.6
2
-
-
1
50
-
10
-
-
1
-
V
V
~A
AC Characteristics
Diode capacitance
VA =0, f= 1 MHz
Co
Reverse recovery time
IF = 200mA, IR = 200mA,
RL = lOOn
measured at IA = 20mA
trr
Test circuit for reverse recovery time
I ~ III
Oscilloscope
90%
I
Pulse generator:
tp = 100ns,D = 0.05
t, " 0.6ns.R; " SOQ
Vp = VR + /pR,
Oscilloscope: R"
C:S IpF
1)Pulse test conditioRs:t;?; 300~s;D = 2%
92
son
t, = 0.3Sns.
Siemens
pF
~s
BAS 78 A ... BAS 78 0
= ((TAl
Total power dissipation P IOI
2.0
'-,-
-'-"-T-r-'-~-'-'~-'
----i-f--I--I-- - - -
W
~-I-'H-r-~~-+-14-4-'-I
-1---1---- 1------1-- I--
-I--H-t--t-j-I- -- -
Forward current IF
A TA=2S"C
10'
5
,/.V
I--
hl·-'- - - - -1--- -.--
-1-1\
1--+- - - - - -
--1-1\1--
H--t--H-I-l\-,\-.--~-· 1= _ ~ ,:::..~
1.0
I--
I--
-~
- .-
-
0.5
1\ - -
_
10-
,
I
1- - - - r-r--
1--1-1----\_._---
=_ =~~I~-=:~
.-
5
. --1---
- -f--j-f-j--+·H-t-'H-I--II-I-f\ -
= ((VFI
-
=~~-=~~
I
c-- I -
- -. - -- - - - --. -. - '\ -i-
--'-
. - -- -1\'-: .:. _'l~ __ L-\
-_.-
100
O(
10- 3
I
o
150
2 V
----v,
Reverse currant fR = ((TAl
nA VeE
= 10 V
10 5
5
:-
-
.-
I-
-- ..
~
I.
!
. 17-
,-
m'
5
1-'
-
",,""
~.
l typ.
max ......
10 3
-
10 1
5
--
Z.:.. - ~-/-
5
.
-
I
-1- --
1=
-T,.
Siemens
93
BAS 79A ... BAS 790
Silicon Switching Diodes
• Switching applications
• High breakdown voltage
• Common cathode
A2
Type
Marking
Ordering code (12-mm tape)
Package·
BAS 79A
BAS79A
062702 - A914
SOT-223
BAS 79B
BAS 79B
062702 - A915
SOT-223
BAS 79C
BAS 79C
062702 - A916
SOT-223
BAS 790
BAS790
062702 - A917
SOT-223
Maximum Ratings
Parameter
BAS BAS BAS
Symbol BAS 79'B
79C 790
79A
Peak reverse voltage
VR
VRM
Forward current
Reverse voltage
Unit
50
100
200
400
V
50
100
200
400
V
IF
1
A
Peak forward current
IFM
1
A
Surge forward current t=l\ls
IFS
10
A
Total power dissipation, TA S 25 ° C 1)
P tot
1.5
W
Junction temperature
Tj
150
°C
Storage temperature range
Tstg
-65
to
Thermal Resistance
s83.3
Junction - ambient 1)
1) Package mounted on an epoKy printed circuit board 40mm x 40mm x I.Smm
Mounting pad for the collector lead min 6cm2
Of For detailed dimensions see chapter Package Outlines.
94
Siemens
+ 150
°C
'.....,...--
BAS 79A ... BAS 790
Characteristics
at TA =25°C. unless otherwise specified.
I
Parameter
Symbol Values
min. Ityp.
Imax.
IUnit
DC Characteristics
Breakdown voltage
Ic 10mA. 18 =0
VISA)
=
Forward voltage
IF =1A
IF =2A
BAS
BAS
BAS
BAS
79A
79B
79C
79D
VF
1)
Reverse current
VA =VA max
VA VA max. TA =150°C
IA
=
50
100
200
400
-
-
-
-
1.6
2
-
-
1
50
-
10
-
-
1
-
V
V
V
1-1
A
AC Characteristics
Diode capacitance
VA =O. f =1 MHz
Co
Reverse recovery time
IF =200mA. IA =200mA.
trr
Rl
= lOOn
measured at IA
pF
I-IS
=20mA
Test circuit for reverse recovery time
OUT
I ~ III
Osci II oscope
90%
-*-_ _ _ _--'
1, _ _ _
Pulse generator: tp =100m,D = 0.05
t, = 0.6m.R, = 50n
Vp = V R + IfXR,
Oscilloscope: R = 50n
Ir = O.35ns.
C :s 1pF
1}Pulse test conditions:t:2 3001-ls;0 = 2%
Siemens
95
BAS 79 A ... BAS 79 0
Forward current IF = f(VF)
Total power dissipation Plot = f(TA )
A TA = 2S"C
2.0 ,,-.,-,,'-Y- ~
W
10'
-I-~-- ~
5
- .. c-- -. -. '- .- -t--j-l--j-j
1--1- -. - - -. -,,1~h'"
r'l-
/'
--'I-i-J--t-l-+-+-j
-- -f\.---- \
-'-1---1-1-
--
s
1-1-+-1---1
rr- 'S-r-- __ _~-.IH-+-t-\- H-+-i
1.0
,
10"
r-- - -- --1\ --t--lH---t-+-H
f\- -r-- 0- \ -- -1-0-1-
- ~ ..
- --
0.5
I .
S
. - 1-:--1-- -
- - .. -. --
~
\-"'\-+-+--I-l
2
I\.
- - 1-1-- - - - -1--+'<1-1--1
I---f------.- .. -1-
f\~
OLL~LL_L_LL~LL~l_L~I\J
100 ·C
150
o
50
10"l
-Ti.
Reverse current lR = ((TA )
nA VeE = 10 V
lOS
5
max .....
Ityp,
lO l
S
V
10'
o
so
100
ISO
°c
-~
96
Siemens
a
2 V
Silicon Low Leakage Diode
BAS116
• Low Leakage applications
• Medium speed switching times
• Single diode
c(J.
Type
Marking
Ordering code B-mm tape
Package
BAS116
JVs
Q62702-A919
SOT 23
Maximum Ratings
Description
Symbol
Reverse voltage
Peak reverse voltage
VR
VRM
Forward current
IF
250
mA
mA
Surge forward current ,t = 1ps
IFM
IFs
250
Total power dissipation, TA=25·C
P IOI
330
mW
Junction temperature
1j
150
·C
Storage temperature range
Tsig
Peak forward current
BAS116
75
V
85
V
4.5
-65
Unit
to + 150
A
·C
Thermal Resistance
IRIhJA
Junction-ambient 1)
:$450
IKIW
1) Package mounted on alumina 15mm x 16.7mm x O.7mm
Siemens
97
BAS116
Silicon Low Leakage Diode
Characteristics
at TA = 25°C, unless otherwise specified.
Description
max.
IUnit
DC Characteristics
breakdown voltage
I(SR) =100 vA
V(SR)
Forward voltage
IF = 1mA
IF= 10mA
IF = 50mA
IF= 150mA
VF
Reverse current
VR=75V
VR=75V, TA=150°C
IR
75
·
.
V
·
·
·
·
·
·
·
900
1000
1100
1250
mV
mV
mV
mV
·
5
80
nA
nA
.
pF
3
lIs
·
·
·
·
·
,. 2
AC Characteristics
Diode capacitance
VR=OV, f=1 MHz
Co
Reverse recovery time
IF = 10mA, IR = 10mA,
RL = 100Q
measured at IR = 1mA
t"
·
Test circuit for reverse recovery time
OUT
Oscilloscope
Pulse generator: tp= 100ns,O= 0.05
t, 0.6ns,Rj = son
=
98
Oscilloscope: R = 50Q
t, = 0.35ns.
C:s 1pF
Siemens
0.5
Silicon Low Leakage Diode
BAS116
Total powar dissipation p.o. = f( TA )
Rever.e current I.
mW
400 ,.,-,.,-,.,-,.,-rnrnrn;-r"1;-r"1'"
= f(
TA )
10'
VA -7 V
ox.
/'
v
,/
10'
/..
/
typo
'"
1/
100 1+1+1+H-f-Hf-Hr+I'-H'-H-t-!
/
O~LLLLLLUUUUUUUW~~
o
50
100
150
200
°c
100
00
- - - TA
-T.
'c
tao
--'A
Forward current I, = fIV,)
TA = 25 "C
Peak forward current I'M = f(t)
T. = 25 "C
,,
,.0
mA
,p.
,
,,
,
100
m• •
5
!
~
l~O_1I
I
.0
J
lO-'mmll3:~~!31m
I
1
o=+~
5
/
..
/
.
1O-1L...L-L.LJ1...L..LJ.
111.u.....1.L..J
11Iu.JJIIUL...J,I...LIIULIIU.......
IJ..LI1...IL..J..LU
1
-VF
V
1.'
10-6
10-5 10- 4
10- 3
10-1
10-'
100 s
-t
Siemens
99
Silicon Low Leakage Diode
BAS116
=
Forward voltage VF f (TA)
1.2
-I'- I'-I'-r-.
-I ---1.0
v.
-t-
."
100
l"- I"-
-r-. r-. t-
--
&0
l"- i-
IF ., Om
Om
i- i- tt- t- r-.
r-. r-. :-r-. I'- r-.
Om
1m
O 1m
-- -
t-
--T.
100
C·
r--
1&0
Siemens
Silicon Schottky Diodes
BAT 17 ...
• For mixer applications in the VHF/UHF range
• For high-speed switching
ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
BAT 17
53
Q 62702 - A504
Pin configuration
SOT-23
~
10
BAT 17-04
54
55
~I~
Q 62702 - A776
56
02
3
10 ~
BAT 17-06
03
3
Q 62702 - A775
1a
BAT 17-05
Package
I ItEI
02
3
Q 62702 - A777
10
!tEl
I~
02
Maximum Ratings per Diode
Parameter
Symbol
Value
Unit
Reverse voltage
VR
4
V
Forward current
IF
30
rnA
Junction temperature
1j
150
Operating temperature range
Top
-55 ... +150
Storage temperature range
Tstg
-55 ... +150
°C
°C
°C
Thermal Resistance
I
Junction - ambient1
RthJA
I :5450
IKIW
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
Siemens
101
BAT 17 ...
Electrical Characteristics per Diode
at TA = 25°C, unless otherwise specified.
Unit
Parameter
DC characteristics
Breakdown voltage
V(SR)
4
-
-
-
-
0.25
1.25
10
200
350
275
340
425
350
450
600
V
IR = 10 J.tA
J.tA
Reverse current
VR =3V
VR = 3 V, TA = 60°C
VR=4V
IR
Forward voltage
IF=0.1mA
IF = 1 mA
h= 10mA
VF
Diode capacitance
VR=O, f=1 MHz
Cr
-
0.75
1
pF
Differential forward resistance
Ii
-
8
15
n
F
-
5.8
7
dB
mV
-
IF = 5 mA, f= 10 kHz
Noise figure
h=2 mA, f=900 MHz
IF noise figure:
F= 1.5 dB, f= 35 MHz
102
Siemens
BAT 17 ...
Reverse current IR
=f (VAl
5
i::
f--
25°(
85°(
1500 (
I/'
/
~TA=
~-400(
f'Z I'"
TA =150 0(
V
IT
~ J ~ f-.. ]
850(
7 IT
II
25°(
J I
10-2
o
0.1
0.2
I
0.3
0.4
0.5
0.6 V
1.0
2.0
3.0
4.0 V
-If
=
Diode capacitance Or f (VR)
f= 1 MHz
Differential forward resistance
f=10kHz
'f =f (4)
pF
1.0
5
\
[T
~
-..;;
1
[\
1"......
0.5
I\,
1
10
5
o
o
1.0
2.0
3.0
'"
!'....
4.0 V .
Siemens
103
Silicon Schottky Diode
BAT 64
• For low-loss, fast-recovery rectifiers, meter protection,
bias isolation and clamping applications
• Integrated diffused guard ring
• Low forward voltage
Type
Marking
Ordering code
(tape and reeQ
BAT 64
64
Q 62702 - A879
Pin configuration
~
10
03
Package
SOT-23
Maximum Ratings
Parameter
Symbol
Value
Unit
Reverse voltage
VR
30
V
Forward current
IF
200
rnA
Average forward current (50/60 Hz, sinus)
I FAV
100
rnA
Surge forward current (t $10 ms)
I FSM
800
rnA
Ptot
230
mW
°c
°c
»
Total power dissipation (TA $ 25 °C2
Junction temperature
7j
125
Storage temperature range
Tstg
-55 ... +150
Thermal Resistance
I RthJA
Junction - ambient1
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
104
Siemens
1$430
IKIW
BAT 64
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
Parameter
Unit
DC characteristics
Reverse current
VR=25V
VR = 25 V, TA = 125°C
fR
Forward voltage
fF= 1 mA
fF= 10mA
fF= 30mA
fF= 100 mA
VF
Diode capacitance
VR = 1 V, f = 1 MHz
Or
Reverse recovery time
fF:fRl:fR2=10:10:1 mA
trr
-
-
2
200
-
-
-
320
375
420
550
-
4
6
-
-
5
mV
-
Siemens
J.IA
1000
pF
ns
105
BAV70
Silicon Switching Diode Array
•
•
For high-speed switching
Common cathode
Type
(3 BAV70
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
A4
Q6800O-A3574
Q68000-A6622
SOT 23
Maximum ratings per diode
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 ~s
Total power dissipation
TA= 25°C
Junction temperature
Storage temperature range
VR
IFM
IFs
70
70
250
250
4,5
V
V
mA
mA
A
Ptot
330
mW
Tj
175
Tstg
-65 .. ·+150
°C
°C
RthJA
::::;450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VRM
IF
(3 Preferred type
106
Siemens
BAV70
Electrical characteristics per diode
at TA = 25°C, unless otherwise specified
DC characteristics
Breakdown voltage
I(BR) = 100 IlA
Forward voltage
iF= 1 rnA
IF= 10mA
iF= 50mA
iF=150mA
Reverse current
VR = 70V
VR = 25 V, TA = 150°C
VR = 70 V, TA = 150°C
Symbol
min
typ
max
Unit
V(BR)
70
-
-
V
-
-
715
855
1000
1250
mV
mV
mV
mV
-
-
2,5
30
50
IlA
IlA
IlA
VF
-
-
IR
-
-
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
VR=OV,f=1MHz
Reverse recovery time
if = 10 rnA, IR = 10 mA,
RL = 100n,
measured at IR = 1 mA
Co
-
-
1,5
pF
trr
-
-
6
ns
Test circuit for reverse recovery time
OUT
Oscilloscope: R = 50 n
tr = 0,35 ns
C:5 1 pF
Pulse generator: tp = 100 ns, D = 0,05
tr = 0,6 ns, Ri = 50 n
Siemens
107
BAV70
Total power dissipation Ptot
=
Reverse current I R = f (TA)
f( TA)
nA
105
mW
400
5
VR =70V
V
-"
max.
i--"
1/
7OV/
200
5
25V
100
1\
5
typo
/
o
o
10'
100
50
200 ·C
150
/,/
o
50
Forward current iF
=
Peak forward current IFM = f(t)
TA= 25°C
A
10 1
/D=0.005
5
0.01
F02
'lOS
f (VF)
rnA
I
II
100
I
I max.
typo
O(
-7i.
TA = 25°C
150
150
100
-1A
....
'll0.2
~
~
~t2<
i
50
o
i
lO-
Ii
S
0,5
t~
D=i
T
T
l/
o
,
1,5 V
10-1
10-6
1111 I 1111 I 1111 I I
10- 5 10- 4 10- 3 10-1 10-'
-t
108
Siemens
100 s
BAV70
Forward voltage VF = f (TA)
V
1,0
ill
I F = 100 mA
I I
f
r-
t-t-_
r....
~w.
r--r-ij;--r-10 mA
t---
J
0,5
-I- -
'r-l
O,1mA
't---r--
r--r-- ......
1"',
,,~
r-.,
'i'
o
o
50
100
150
°c
-TA
Siemens
109
BAV74
Silicon Switching Diode Array
•
•
For high-speed switching
Common cathode
C~A1
~A2
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
BAV74
JA
Q62702-A498
Q62702-A695
SOT 23
Maximum ratings per diode
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 I-Ls
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VR
VRM
IF
IFM
IFs
50
50
250
250
4,5
V
V
rnA
rnA
A
Ptot
330
mW
Ti
Tstg
175
-65 .. · +150
°C
°C
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
RthJA
~450
K/W
110
Siemens
BAV74
Electrical characteristics per diode
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Breakdown voltage
V(BR)
50
-
-
V
VF
-
-
1
V
-
0,1
100
j.!A
j.!A
I(BR) = 100 j.!A
Forward voltage
IF =
100 rnA
Reverse current
IR
VR = 50V
VR = 50 V, TA = 150°C
-
-
-
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
VR = 0 V, f= 1 MHz
Co
-
-
2
pF
Reverse recovery time
trr
-
-
4
ns
IF =
10 rnA, IR = 10 rnA,
RL= 1000,
measured at I R = 1 rnA
Test circuit for reverse recovery time
OUT
= 100 ns, 0 = 0,05
tr = 0,6 ns, Ri = 50 0
Oscilloscope: R = 50 0
Pulse generator: tp
tr = 0,35 ns
C::; 1 pF
Siemens
111
BAV74
Total power dissipation P tot = f ( TA)
Reverse current IR
mW
400
nA
= f(TA)
105
5
YR =70V
/
/
max.
1-"'
7O~1/
200
I'
25V
1'1
1\
100
1\
typo
III
o
o
j
100
50
150 °C
50
200 ·C
150
Forward current IF = f(VF)
Peak forward current I FM
TA = 25°C
TA=25°C
mA
150
10
f (t)
A
I
100
5
I
II max.
typo
:~:~5
/
10'
~O.2
5
"l'
"I><
10°
i
5
~
50
10-'
I
Ii
o
o
=
0,5
"'"
5
I
tt\{L
D=--.F...
T
T
[/
1,5 V
IV
111111111 11111 I I
10-6
10-5 10-4
10- 3 10-1
-t
112
Siemens
10-'
10°
5
BAV74
Forward voltage VF = f ( TA)
V
1,0
ill
r-_
I F = 100 rnA
I I
hl
10 mA
~
'}.k
0,5
l-
I- O,1mA
r-r-r-
..........
r--- .....
. . . . . . r-1' ....
r--r-..
r-. . . .
I'1'1'-
.....
o
o
50
100
""
150
0(
Siemens
113
BAV99
Silicon Switching Diode Array
•
•
For high-speed switching
Connected in series
C2,Al
Type
Iil BAV99
f;jfo
A2
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
A7
Q68000-A 1185
Q68000-A549
SOT 23
Maximum ratings per diode
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 ~s
Total power dissipation
TA= 25°C
Junction temperature
Storage temperature range
VR
VRM
IF
IFM
IFs
70
70
250
250
4,5
V
V
mA
mA
A
Ptot
330
mW
Tj
Tstg
175
-65···+150
°C
°C
RthJA
:5 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
mPreferred type
114
~Cl
Siemens
BAV99
Electrical characteristics per diode
at TA = 25°C, unless otherwise specified
Symbol
DC characteristics
min
typ
max
Unit
70
-
-
V
-
-
715
855
1000
1250
mV
mV
mV
mV
-
-
2,5
30
50
!LA
min
typ
max
Unit
-
-
1,5
pF
-
6
ns
Breakdown voltage
I(BR) = 100 !LA
V(BR)
Forward voltage
h= 1 rnA
h= 10 mA
h= 50mA
h =150 mA
VF
Reverse current
VR = 70V
VR = 25 V, TA = 150°C
VR = 70 V, TA = 150°C
IR
AC characteristics
Symbol
Diode capacitance
VR = 0 V, f= 1 MHz
Co
Reverse recovery time
h = 10 mA, IR = 10 mA
RL= 100n,
measured at I R = 1 mA
trr
-
!LA
!LA
Test circuit for reverse recovery time
OUT
Oscilloscope: R = 50 n
tr = 0,35 ns
C::; 1 pF
Pulse generator: tp = 100 ns, 0 = 0,05
tr = 0,6 ns, Ri = 50 n
Siemens
115
BAV99
Total power dissipation Ptot = '( TA)
Reverse current I R = '( TA)
mW
400
nA
101
5
V.=70V
,/
1\
V
max.
t-.
II
70V
200
'j
5
\
25V
\
100
5
typo
1/
o
I
o
50
100
Forward current IF
TA = 25°C
=
50
200 ·C
150
150°C
Peak forward current I FM
TA = 25°C
'(VF)
=
'(t)
mA
150
I
;0-0.005
5
0.01
F02
l'oS
/
I'll
0.2
I
100
Ii max.
typo
~
100
i
5
50
1
f~
Ii
o
o
0=+
T
V
0,5
2
1111111111 I 1111 I I
1,5 V
-f
116
Siemens
BAV99
Forward voltage VF = f (TAl
V
1,0
ill
IF=10~~A
w..
10 mA
0,5
r-
i:} . . .
X
r- O,1mA
r-r-
-r--r--
. . . r--.. .
r--r-. .....
"' ..... .....
~,
r--.....
~~
o
o
50
100
150 ·C
Siemens
117
Silicon Low Leakage Diode Array
BAV170
• Low Leakage applications
• Medium speed switching times
• Common cathode
Type
Marking
Ordering code B-mm tape
Package
BAV170
JXs
Q62702-A920
SOT 23
Maximum Ratings
Description
Symbol
Reverse voltage
Peak reverse voltage
VR
VRM
Forward current
BAV170
Unit
70
V
70
V
IF
250
rnA
Peak forward current
IFM
250
mA
Surge forward current ,t = 1115
IFs
4.5
Total power dissipation, TA = 25· C
PlOt
330
mW
150
·C
Junction temperature
Tj
Storage temperature range
Ts,g
-65
to +150
A
·C
Thermal Resistance
Junction-ambient 1)
:;;450
1) Package mounted on alumina 15mm x 16.7mm x O.7mm
118
Siemens
IKIW
BAV170
Silicon Low Leakage Diode Array
Characteristics
at TA = 25 • C, unless otherwise specified.
I
Description
DC
I
Symbol Ratings
min. Ityp.
Imax.
IUnit
Characterl~tlcs
breakdown voltage
'IBR) = 100 llA
VIBR)
Forward voltage
IF= 1mA
IF= 10mA
IF = 50mA
IF= 150mA
VF
Reverse current
VR=70V
VR = 70V, TA = 150·C
IR
70
-
-
V
-
-
900
1000
1100
1250
mV
mV
mV
mV
-
-
5
80
nA
nA
-
2
-
pF
-
0.5
3
lIS
AC Characteristics
Diode capacitance
VR=OV, f=1 MHz
Co
Reverse recovery time
IF = 1OmA, IR = 10mA,
RL = 100Q
measured at IR = 1mA
trr
Test circuit for reverse recovery time
DUT
Oscilloscope
Pulse generator: tp= 100ns,D= 0.05
t,
= 0.6ns,Ri = son
Oscilloscope: R =
son
t, = O.35ns,
C:s 1pF
Siemens
119
Silicon Low Leakage Diode Array
BAV170
Total pow.r diaaipation Po.. = fl TA)
Rav.,.. curr.nt I. '" fl TAl
..w
10'
400
r.
v._
x.
r..;'
1/
V
10'
200
Yo.
10'
I' ~
100
II
°°
100
.0
150
tOO
- TA
,,
"'"
,0=0.005
f
0.01
,0.02
/~.OS
'/~·1 ::
0.2
/
m.
yo.
100
s
I
I
,:
...
~
.,.:
~
II
.0
I
I
to- 1
I
I
o
120
..
110
P..k forward current 10M '" fIt)
TA - 25 "C
110
o
·c
--'A
-1A
Forward currant I, = fW,)
TA = 25 "C
"
1
10'
so
S
II
~ ... ~'
-v.
1
V
t.'
Siemens
I
tiQ-L
0=-;-
nm
T
111111111111
to-2
to-6 10-S to'" tool to-2 to-'
-t
v:/' s
Silicon Low Leakage Diode Array
BAV170
Forward voltage VF =f (TA)
1.2
r- -l1.0
IIF
~-
v.
I
..
-----r---r--I-
1-1--0
80
·1 Om
-I- l0m
-
1"""_
t- 1--
r- l-I-Om
1m
r---_
o 1m
r-- r--_
I""" I-
--r-.
-
--
-
--T.
100
C·
....
150
Siemens
121
BAV199
Silicon Low Leakage Diode Array
J7Jw
• Low Leakage applications
• Medium speed switching times
• Connected in series
fifo
C2,A1
Type
Marking
Ordering code B-mm tape
Package
BAV199
JYs
Q62702-A921
SOT23
C1
A2
Maximum Ratings
Description
Symbol
Reverse voltage
VR
VRM
70
V
Peak reverse voltage
70
V
Forward current
IF
250
mA
Peak forward current
IFM
250
mA
BAV199
Surge forward current ,t = 1lIS
IFS
4.5
Total power dissipation, TA = 25 ° C
P IOI
330
Junction temperature
Tj
Storage temperature range
TSl9
150
-65
to + 150
Unit
A
mW
°C
·C
Thermal Resistance
Junction-ambient! )
'l
IRiJlJA
Package mounted on alumina 15mm x 1S.7mm x O.7mm
122
Siemens
S450
IKM'
Silicon Low Leakage Diode Array
BAV199
Characteristics
at TA = 25 • C, unless otherwise specified.
Description
Imax.
Unit
DC Characteristics
breakdown voltage
I(BR) = 100 pA
V(BR)
Forward voltage
IF = 1mA
IF= 10mA
IF = 50mA
IF= 150mA
VF
Reverse current
VR=70V
VR=70V, TA=150·C
IR
70
-
-
V
---
-
---
900
1000
1100
1250
mV
mV
mV
mV
-
-
-
5
80
nA
nA
-
2
-
pF
-
0.5
3
ps
AC Characteristics
Diode capacitance
VR=OV,f=1 MHz
Co
Reverse recovery time
IF = 10mA, IR = 10mA,
RL =100Q
measured at IR = 1mA
tf(
Test circuit for reverse recovery time
OUT
Oscilloscope
Pulse generator: tp= 100ns,D= 0.05
t, == 0.6ns,Rj = son
Oscilloscope: R = 50n
t, = 0.35n5,
C s 1pF
Siemens
123
Silicon low leakage Diode Array
BAV199
Total power dissipation p••• = f( TA)
Rever.e current I.
mW
= f( TA )
'0'
400
VA =7 V
ox.
r-
./
:/
V
'0'
~
200
typo
'0'
"
\
100
.
/
'0'
o
o
'0'
50
100
200
150
IF
= f(VF)
Peak forward current
TA = 25 OC
·C
100
IFM
= fIt)
'
A
'.0
mA
I,
10 2
I
5
"
I
1/ 0 =0005
0.D1
IF M
r
,
,
,
yp.
ma.
'00
II
10'
0.02
[;~.05
rl'0.2
5
10°
I:
!
tl'
5
I
.0
,
,
II
10-
I
5
I}
..
124
100
--'A
-J,i
Forward current
TA = 25 OC
--T.
'0
ec
,/
=
I
tl};r-
O=-f
T
.... ~'
-v.
1
Y
1.8
1111 I I III I 1111 I I
10-2
10-6 10-5 10"' 10- 3 10- 2 1(r'
-t
Siemens
10° s
Silicon Low Leakage Diode Array
BAV199
Forward voltage VF = f (TA)
1.'
~:-
1.0
--r-'F -1 Om
~-
v.
I
--- -
r- r--r-.
---
Om :-I-Om
--
-- --- -- -
-- -I-r1m
..
--f-
o 1m
SO
-.-.
-
100
C'
180
--TA
Siemens
125
BAW56
Silicon Switching Diode Array
•
•
For high-speed switching applications
Common anode
Type
!:"IBAW56
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
A1
Q62702-A471
Q62702-A688
SOT 23
Maximum ratings per diode
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t = 1 !!s
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range
VR
VRM
V
V
hM
hs
70
70
250
250
4,5
Ptot
330
mW
Tj
Tstg
175
-65···+150
DC
DC
RthJA
:5 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
h
!:"I Preferred type
126
Siemens
mA
mA
A
BAW56
Electrical characteristics per diode
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Breakdown voltage
I(BR) = 100 (.LA
V(BR)
70
-
-
V
Forward voltage
IF= 1 rnA
IF= 10mA
IF= 50mA
IF =150 rnA
VF
-
-
715
855
1000
1250
mV
mV
mV
mV
Reverse current
VR = 70V
VR = 25 V, TA = 150°C
VR = 70 V, TA = 150°C
IR
-
2,5
30
50
(.LA
(.LA
(.LA
AC characteristics
Symbol
Diode capacitance
VR = OV, f=1 MHz
Co
Reverse recovery time
IF = 10 rnA, IR = 10 rnA,
RL= 1000,
measured at I R = 1 rnA
trr
-
-
-
min
typ
max
Unit
-
-
2
pF
-
6
ns
Test circuit for reverse recovery time
OUT
Oscilloscope: R = 50 0
tr = 0,35 ns
CS 1 pF
Pulse generator: tp = 100 ns, 0 = 0,05
tr = 0,6 ns, RI = 50 0
Siemens
127
BAW56
Total power dissipation Ptot = f (TA)
Reverse current I R = f (TA)
mY!
400
105
nA
5
\-R=70V
r-.
V
,;'
max.
/1/
7OY/II
200
5
25V
1\
1\
100
1\
5
o
o
typo
J/
/J
50
100
100
50
200 ·C
150
150
O(
10°
S
-/A
Forward current
IF = f(VF)
Peak forward current I FM = f (t)
TA= 25°C
TA= 25°C
mA
A
150
10 1
I
1/0= 0.005
5
II
I
100
0.01
0.02
[;~.05
I/ r
0.2
ll
Ii max.
typo
~
i
50
1
I
Ii
o
o
i,..o'
0,5
O=J...
t
T
tQ-tT
1/
1,5 V
10-1
10-6
I 1111 I 1111 I 1111 I I
10-5
10-4
10- 3
10-1
-t
128
Siemens
10-1
BAW56
Forward voltage VF = f (TA)
V
1,0
ill
1---
I F= 10~ ~A
f
~
10 mA
r-. ....
1:}-~
0,5
-
"'N...
O,1mA
r-...
I--
r-.r-. ....
r-. .....
I"-.
.....
I"-.r-.
1"-. .....
o
o
50
100
150 DC
-TA
Siemens
129
BAW78 A
···BAW78 D
Silicon Switching Diodes
•
•
Switching applications
High breakdown voltage
Type
BAW78
BAW78
BAW78
BAW78
A
B
C
0
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
GA
GB
GC
GO
Q62702-A675
Q62702-A676
Q62702-A677
Q62702-A678
Q62702-A778
Q62702-A779
Q62702-A784
Q62702-A 109
SOT 89
SOT 89
SOT 89
SOT 89
Maximum ratings
Parameter
Symbol
BAW78 A BAW78B BAW78 C BAW7S D Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
f=1ll s
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VR
VRM
50
50
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
130
100
100
h
hM
hs
200
200
1
1
10
400
400
V
V
A
A
A
W
P tot
150
-65 ... +150
Tj
Tstg
:5125
RthJA
Siemens
°C
°C
K/W
BAW78 A
.. ·BAW78D
Electrical characteristics
at TA = 25 cC, unless otherwise specified
DC characteristics
Symbol
Breakdown voltage
I(BRI = 100!lA
V(BRI
BAW78A
BAW78B
BAW78C
BAW78D
Forward voltage')
IF= 1 A
1F=2A
Reverse current
VR = VRmax
VR = VRmax, TA = 150 cC
VF
IR
min
typ
max
Unit
50
100
200
400
-
-
-
V
V
V
V
-
-
1,6
2
V
V
-
-
-
1
50
!lA
!lA
AC characteristics
Symbol
min
typ
max
Diode capacitance
VR = 0, f=1 MHz
Reverse recovery time
IF = 200 rnA, IR = 200 rnA,
RL= 1000,
measured at IR = 20 rnA
Co
-
10
-
Unit
pF
trr
-
1
-
I1s
Test circuit for reverse recovery time
OUT
Pulse generator:
t p = 100 ns, D = 0,05
t r = 0,6 ns, RI = 50
Oscilloscope: R = 50 0
tr = 0,35 ns
CS 1 pF
') Pulse test: tp S 300 1lS, D = 20/0.
Siemens
131
BAW78 A
···BAW78D
Total power dIssIpatIon Ptot = '(TA)
Forward current
IF =
f (VF)
TA=25°C
A
10 1
W
1,2
r
5
1.0
/'
'\.
\
0,8
".,
5
1\
1\
I
1
0,6
1\
1\
0,4
1\
2
1(1
1\
5
0,2
o
1\
o
100
50
150
10-3
o
0(
2 V
-T.
Peak forward current I FM = '(t)
Reverse current I R = f ( TA)
VR = VRrnax
TA= 25°C
0=0.005
5
V?·OI
~0.02
V~·05
0.1
/02
"
5
100
V
~~
I'-
max ....
Ityp
5
lO-1
5
fpl--
fp -
S
O=T _r-~
I--T
IIII
10-2
m-6
V
10 2
10-5
'I"
I Illl I 1111 I I
10- 4
10- 3
10- 2
101
10-1
100
5
o
132
SO
100
-T.
-f
Siemens
150
0(
BAW79 A
···BAW79 D
Silicon Switching Diodes
•
•
•
A2
For high-speed switching
High breakdown voltage
Common cathode
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 12 mm-tape
Package
BAW79 A
BAW79B
BAW79 C
BAW79 0
GE
GF
GG
GH
Q62702-A679
Q62702-A680
Q62702-A681
Q62702-A682
Q62702-A7B1
Q62702-A782
Q62702-A771
Q62702-A733
SOTB9
SOT 89
SOT 89
SOT 89
Maximum ratings per diode
Parameter
Symbol
BAW 79 A BAW 79 B BAW 79 C BAW 79 0
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 its
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VR
50
50
V
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VRM
100
100
h
~
hs
200
200
1
1
10
400
400
V
A
A
A
W
Ptot
n
150
-65···+150
Tstg
:5125
RthJA
Siemens
°C
°C
K/W
133
BAW79 A
···BAW79D
Electrical characteristics per diode
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Breakdown voltage
I(BR) = 100!lA
V(BR)
BAW79 A
BAW79B
BAW79C
BAW79 D
min
typ
max
Unit
50
100
200
400
-
-
V
V
V
V
-
-
-
1,6
2
V
V
-
-
1
50
IlA
-
Forward voltage')
IF = 1 A
IF=2A
VF
Reverse current
VR = VRmax
VR = VRmax, TA = 150°C
IR
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
VR = OV, f=1 MHz
Co
-
10
-
pF
Reverse recovery time
IF = 200 mA, IR = 200 mA,
trr
-
1
-
Ils
RL= 1000,
measured at I R = 20 mA
Test circuit for reverse recovery time
OUT
Pulse generator: tp
= 100 ns, D =
tr = 0,6 ns, R; =
Oscilloscope: R = 500
tr = 0,35 ns
C:::; 1 pF
0,05
50
') Pulse test: tp:::; 300 Ils, D = 20/0.
134
Siemens
!lA
BAW79A
",BAW79 D
Total power dissipation Ptot = f( TA)
Forward current IF = f (VF)
TA = 25°C
W
1,2
A
10'
5
1"1,0
./
\.
1\
0,8
""
1\
\.
,
0,6
I
1\
0,4
1\
2
\.
0,2
1\
o
\
o
50
150·(
100
10-3
o
2 V
--~
Peak forward current
TA = 25°C
lFM = f (t)
Reverse current I R = f ( TA)
VR = VRrnax
D=0.005
V~·Ol
:%~.02
:/:,~05
~'
0.1
/02
/
~
V
Vtyp.
max~
100
5
V
,
t ' - fplT _ I-'-~
D=--'£'
10-2
10-6
II
10-5
I--T
V
I IIII I IIII I I
10- 4
10- 3
10- 2
10-'
10° s
50
100
150
0(
-t
Siemens
135
Silicon Switching Diode Array
•
BAW101
Electrically isolated high-voltage medium-speed diodes
A2/lkC2
A1~C1
Type
Marking
Ordering code
for versions In bulk
SAW 101
JP
Q62702-A3444
Ordering code for
Package
versions on 8 mm-tape
----!.-4----SOT 143
Q62702-A71"
Maximum ratings
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 LlS
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VR
V
V
IFS
300
300
200
500
4,5
Ptot
280
mW
Tj
Tstg
150
-65 ... +150
°C
°C
RthJA
::5450
KIW
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
136
VRM
IF
IFM
Siemens
mA
mA
A
SAW 101
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Breakdown voltage
I (BR) = 100 f.lA
V(BR)
300
-
-
V
Forward voltage
IF= 100 rnA
VF
-
-
1,3
V
Reverse current
VR = 250 V
VR = 250 V, TA = 150°C
IR
-
-
-
150
50
nA
/!A
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
VR = 0, f= 1 MHz
Co
-
6
-
pF
Reverse recovery time
IF = 10 rnA, IR = 10 rnA,
RL= 100n,
measured at IR = 1 rnA
trr
-
1
-
/!s
Total power dissipation Ptot
f ( TAl
=
mW
400
~ot
t 300
I-I-h,.
1\:
200
1\:
i\
1\
r-...
l\.
1\:
100
1\:
\
l\.
l\.
o
o
50
100
K
150 °C
-7;.
Siemens
137
BAW101
Forward current IF = f (VF)
TA = 25°C
Reverse current I R = f ( TA)
A
10°
lL
,
1/
I
5
1/
1/ typo
m.x. 1/
2
~.
,,'
IJ
5
10-l
o
10'
1,0
2,0 V
o
-Ii
138
Siemens
so
100
150 'C
Silicon Low Leakage Diode Array
BAW156
A~Cl
[;jfo
• Low Leakage applications
• Medium speed switching times
• Common anode
C2
Type
Marking
Ordering code 8-mm tape
Package
BAW156
JZs
Q62702-A922
SOT 23
Maximum Ratings
Description
Symbol
Reverse voltage
VR
VRM
Peak reverse voltage
Forward current
IF
Peak forward current
IFM
Surge forward current ,t
=l11S
=25· C
BAW156
70
70
250
250
4.5
330
150
IFS
Total power dissipation, TA
PID1
Junction temperature
Ii
Storage temperature range
Tstg
Thermal Resistance
I
Junction-ambient 1)
RlhJA
-65
to + 150
:;;450
Unit
V
V
mA
mA
A
mW
·C
·C
IKIW
1) Package mounted on alumina 15mm x 16.7mm x O.7mm
Siemens
139
Silicon Low Leakage Diode Array
BAW156
Characteristics
at TA =25°C, unless otherwise specified.
Description
Unit
DC Characteristics
breakdown voitage
I(BR) 100 pA
V(BR)
Forward voltage
IF= 1mA
IF= 10mA
VF
=
-
V
-
--
900
1000
1100
1250
mV
mV
mV
mV
-
-
5
80
nA
nA
-
2
-
pF
-
0.5
3
}1s
70
IF=50mA
IF=150mA
Reverse current
VR=70V
VR=70V, TA=150°C
IR
AC Characteristics
Diode capacitance
VR=OV, f= 1 MHz
Co
Reverse recovery time
IF = 10mA, IR = 10mA,
t"
RL =100Q
measured at IR = 1mA
Test circuit for reverse recovery time
OUT
Oscilloscope
Pulse generator: tp= 100ns,O= 0.05
t, = 0.6ns,Rj = son
140
Oscilloscope: R = son
t, = 0.3Sns,
C:s lpF
Siemens
Silicon Low Leakage Diode Array
Total power dissipation
BAW156
p,., = f( TAl
Rever.e current I. = f( TAl
mW
400
I.'
r.
V. -7
a ••
,;
V
I.'
200
,
V
I.'
I,p.
\
100
.
I.'
o
o
I.'
so
100
200 ·C
lS0
I.
100
'C
150
-TA
--'A
-~
Forward current I, = fW,1
TA = 25 "C
Peak forward current I'M = fit)
TA = 25 "C
15.
'F
/
I,
....
I
I
,
,
,!
rp·
I ••
ma.
S
I
I.
II
II
I
I
J
~ .. I.1
,
V
1.1
-VF
-I
Siemens
141
BAW156
Silicon Low Leakage Diode Array
Forward voltage VF =f (TA)
'.2
.1- I'.0
.1.1- l-
.-
1-1-
...
IF ., Om
I--
-
I- 1-1--
1-- :--Om
------
..... ~
~Om
-r-.. r--r-.. r-_
r-~
'm
..
'm ......
60
~
............
100
C'
150
--TA
142
Siemens
Silicon Tuning Diode
BB 419
• For VHF tuned circuit applications
calh~
Type
Marking
Ordering code
(taped)
Package
BB 419
white/2
062702-B499
SOD-123
Maximum Ratings
Parameter
Symbol Value
Reverse voltage
VA
28
V
Peak reverse voltage
VAM
30
V
Unit
Forward current, TA :5 60 °C
IF
20
mA
Operating temperature range
Top
-55 ... +125
°C
Storage temperature range
Tstg
-55 ... + 150
°C
Siemens
143
BB 419
Characeristics
at TA=25 °C, unless otherwise specified.
Parameter
Symbol
Reverse current
VR=28 V
VR =28 V, TA =60 °C
fR
Diode capacitance
f = 1 MHz
VR = 3V
VR = 25 V
CT
Capacitance ratio
VR=3 V/25 V
CT3V/CT25V
Series resistance
= 100 MHz, CT = 12 pF
rs
Figure of merit
(=50 MHz, VR =3 V
(=200 MHz, VR =25 V
Q
Diode capacitance CT = ( (VR)
pF
60
l"40
\.
r\
30
\
20
10
o
0,3
144
"'
10
-VR
30 V
Siemens
Unit
Value
min.
typo
max.
-
-
20
200
nA
pF
26
4.3
-
32
6
5
-
6.5
-
0.35
0.5
-
280
600
-
n
-
Silicon Tuning Diode
BB 512
cal~
• For AM tuning applications
• Specified tuning range 1... 8 V
Type
Marking
Ordering code
(taped)
Package
BB 512
white/M
Q62702-A479
SOD-123
Maximum Ratings
Parameter
Symbol Value
Unit
Reverse voltage
VR
12
V
Forward current, TAS60 ·C
IF
50
mA
Operating temperature range
Top
-55 .. : + 125
Storage temperature range
T stg
-55 ... + 150
·C
·C
Siemens
145
BB 512
Electrical Characteristics
at TA = 25 ° C, unless otherwise specified.
Parameter
Reverse current
VR= 10 V
VR=10V, TA=60 °C
fR
Diode capacitance
f= 1 MHz
VR=1 V
VR=8 V
CT
Capacitance ratio
VR = 1 V/8 V
Cn/CTS
Series resistance
f=0.5 MHz, VR=1 V
rs
Figure of merit
f=0.5 MHz, VR=1 V
Q
Temperature coefficient of diode capacitance
f= 1 MHz, VR = 1 V
TCe
Capacitance matching
VR= 1... 8 V
ACT/CT
146
Unit
Symbol Value
Siemens
min.
typo
max.
-
-
20
200
nA
pF
440
17.5
470
-
520
34
15
-
-
-
1.4
-
-
480
-
-
500
-
-
3
Q
ppm/K
0/0
Silicon Tuning Diode
88515
cal~
• For UHF and VHF TV/VTR tuners
Type
BB515
Ordering code
Q62702-B398
Marking
white/S
Maximum ratings
30
20
Reverse voltage
Forward current
V
rnA
TA ::;;60oC
-55 ... +125
-55 ... +150
Operating temperature range
Storage temperature range
Siemens
147
BB 515
Characteristics (TA
= 25°C)
min
Reverse current
VR 30 V
30 V, TA 85°C
IR
Diode capacitance, f= 1 MHz
1V
VR
28V
CT
Capacitance ratio
VR 1 V, 28 V; f= 1 MHz
CT1
CT28
Capacitance matching
VR 0.5 V... 28 V
~CT
Series resistance
CT 9 pF, f= 470 MHz
r.
Series inductance
L.
=
=
=
16
1.85
=
=
Diode capacitance CT = f(VR)
f= 1 MHz
pF
24
f\
\
~
1\
~
8
4
"-"
o
0.3
148
3
-
8
max
10
200
nA
nA
19.5
2.25
pF
pF
9.6
3
%
CT
=
12
typ
10
30V
Siemens
0.5
0
2.8
nH
Silicon Tuning Diode
88619
ca'h~
• For VHF/CATV TV/VTR tuners
with extended frequency band
Type
88619
Ordering code
Q62702-8401
Marking
yellow/S
Maximum ratings
Reverse voltage
Forward current
Operating temperature range
Storage temperature range
30
20
-55 ... +125
-55 ... +150
Siemens
V
mA
149
BB 619
Characteristics (TA = 25°C)
min
typ
max·
Reverse current
VR = 30 V
30 V, TA = 85°C
IR
Diode capacitance, f= 1 MHz
VR = 1 V
28 V
CT
Capacitance ratio
VR = 1 V, 28 V; f= 1 MHz
CT l
CT28
Capacitance matching
VR = 1 v. .. 28 V, f = 1 MHz
..1CT
CT
Series resistance
CT = 30 pF; f= 100 MHz
rs
0.7
Q
Series inductance
Ls
2.8
nH
Diode capacitance CT = f (VR )
f= 1 MHz
pF
60
"
40
i\.
'\
30
\
r\
20
"
10
'\.
o
0,3
10
-
30V
-VR
150
Siemens
33.5
2.4
-
12.5
14
10
200
nA
nA
41
2.9
pF
pF
2.5
%
Silicon Tuning Diode
88620
Cath~
• For Hyperband TV/VTR tuners, 8d I
Type
88620
Ordering code
Q62702-8403
Marking
red/S
Maximum ratings
Reverse voltage
Forward current
Operating temperature range
Storage temperature range
Siemens
30
20
V
-55 ... +125
-55 ... +150
°C
°C
mA
151
88620
Characteristics (TA = 25°C)
min
Reverse current
VR = 30 V
30 V, TA = 85°C
Diode capacitance, f
VR = 1 V
28V
typ
max
IR
= 1 MHz
10
200
nA
nA
76
3.4
pF
pF
CT
62
2.9
-
Capacitance ratio
VR = 1 V. 28 V; f = 1 MHz
CT 1
CT28
Capacitance matching
VR = 1 V... 28 V, f = 1 MHz
LlCT
CT
Series resistance
CT = 30 pF; f= 100 MHz
'.
1.3
Q
Series inductance
los
2.8
nH
Diode capacitance CT = f (VR)
f= 1 MHz
pF
100
"
I\.
60
so
\..
"I"
\
40
30
20
'\..
10
o
0,3
152
......
3
10
30V
Siemens
19.5
25
2.5
%
88804
Silicon Dual Tuning Diode
•
•
•
•
•
IJ
Application in FM tuners
Monolithic chip with common cathode for perfect tracking of both diodes
Uniform "square law" C-V characteristics
Ideal hifi tuning device when used in low distortion back-to-back configuration
Available in capacitance subgroups') for convenient tuner alignment
C
A1
A2
Type
Marking
88804
SF')
Ordering code
for versions In bulk
Q62702-8328
Ordering code for
versions on 8 mm-tape
Q62702-8356
Package
SOT 23
Maximum ratings
Parameter
Symbol
Reverse voltage
Peak reverse voltage
Forward current
VR
TA:5
IF
Ratings
18
20
50
Unit
V
V
mA
Top
Tstg
100
-65···+150
°c
°c
VRM
60°C
Operating temperature
Storage temperature range
') For group coding refer to page 154.
Siemens
153
88804
Electrical characteristics per diode
at TA = 25 ac, unless otherwise specified
Characteristics
Symbol
Reverse current
VR = 16V
VR= 16V, TA=60 a C
Diode capacitance
VR=2V,f=1MHz
Capacitance ratio
VR =2V/8V, f=1 MHz
Series resistance
CD = 38 pF, f= 100 MHz
fR
min
typ
max
Unit
-
20
200
nA
nA
47,5
pF
Co
42
-
C02v/C08V
1,65
1,7
-
-
rs
-
0,25
-
n
Quality factor
CD = 38 pF, f=100 MHz
Q
-
170
-
-
Temperature coefficient
of diode capacitance
VR = 2 V, f= 1 MHz
TCe
-
330
-
ppm/K
Capacitance groups')
VR=2V,f=1MHz
CD
42
43
44
45
46
-
43,5
44,5
45,5
46,5
47,5
pF
pF
pF
pF
pF
Group- no. 0
Group- no. 1
Group- no. 2
Group - no. 3
Group-no.4
-
') The capacitance group number is marked on the component and the package labels. One
packaging unit (e.g. 8 mm-tape) contains diodes of one group only. Delivery of discrete capacitance groups requires special contract.
154
Siemens
88804
Diode capacitance per diode Co = f (VR)
f=1 MHz
pF
60
Capacitance deviation per diode
Co(vN)fCo(VR) = ((VR)
VN = 1 V, 2 V, (= 1 MHz
3
UI
VN=1V
r-.
~ =2V
V
I\.
50
'\
40
V-
~
\
30
II
\
1/
III
rJ
I'-..
20
10
o
0.3
to
10
-VR
20 V
o
o
2 4 6
8 10
a •
~
m mv
-I'll
Temperature coefficient of diode capacitance
TCe = f(VR)
f=1 MHz
,
K
10-3
"'"' ':--.
4
"-
5
5
30 V
Siemens
155
BB 811
Silicon Tuning Diode
cat~
• Frequency range up to 2 GHz;
special design for use in TV-sat indoor units
Type
Marking
Ordering code
(taped)
Package
BB 811
whiterr.
Q62702-B478
SOO-123
Maximum Ratings
Parameter
Symbol Value
Unit
Reverse voltage
VA
30
V
Forward current, TA:S 60 ° C
IF
20
mA
Operating temperature range
Top
-55 ... + 125
°C
Storage temperature range
Tstg
-55 ... + 150
°C
156
Siemens
BB 811
Electrical Characteristics
at TA = 25 ° C, unless otherwise specified.
Symbol Ratings
min.
typo
Parameter
Reverse current
VR=30 V
VR=30 V, TA =85 °C
IR
Diode capacitance
f= 1 MHz
VR=1 V
R=28 V
CT
Capacitance ratio
f= 1 MHz, VR = 1 V/28 V
CT1 /CT28
Series resistance
f= 100 MHz, CT = 9 pF
rs
Case capacitance
f=1 MHz
Cc
Capacitance matching
f= 1 MHz, VR = 0.5 ... 28 V
ACT/CT
Series inductance
Ls
-
-
Unit
max.
nA
20
500
pF
7.8
0.85
8.8
1.02
9.8
1.2
7.8
8.6
9.5
-
1
-
-
0.1
-
-
-
3
2.8
Q
pF
%
nH
Diode capacitance CT = f (VR)
f= 1 MHz
12
pF
[T
1
10
8
1\
\.
\
1\
6
~
4
I\.
2
o
0,3
"- r-...
1,0
10
V 30
Siemens
157
Silicon Dual Tuning Diode
88814
Preliminary data
c
• For FM radio tuners with
extended frequency band
• High tuning ratio at low
supply voltage (car radio)
J7Jw
~A2
• Monolithic chip (common
cathode) for perfect dual
diode tracking
• Coded capacitance groups and
group matching available
Ordering code
BB 814
Q62702-B404
Marking
SH
Tvpe
Maximum ratings per diode
Reverse voltage
Peak reverse voltage
Forward current
18
20
50
V
V
mA
-55 ...+125
-55 ... +150
°C
°C
TA :::; 60°C
Operating temperature range
Storage temperature range
158
Siemens
A1
88814
Characteristics per diode (TA = 25°C)
min
Reverse current
VA = 16 V
16 V, TA = 60°C
fA
Diode capacitance, f= 1 MHz1)
VR = 2V
SV
CT
Capacitance ratio
VR = 2 V, S V; f= 1 MHz
CT2
CTS
Capacitance matching
.dCT
CT
VA = 2V, SV
typ
max
20
200
nA
nA
43
1S.2
44.75 46.5
20.S 24
pF
pF
1.95
2.15
2.35
-
3
%
Diode capacitance CT = f (VA)
per diode, f= 1 MHz
pF
100
BO
70 1'0.
60
'\.
50
'\.
40
30
20
........
10
o
0,3
1)
10
3
20V
Capacitance groups, coded 1, 2
Code
1
2
CT (2V)
CT
43 -45
44.5 - 46.5
18.2-23.2pF
18.8 - 24 pF
(BV)
Siemens
159
BGX50A
Silicon Diode Array
•
•
Bridge configuration
High-speed switch diode chip
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BGX50A
U1
Q62702-G35
Q62702-G38
SOT 143
Maximum ratings per diode
Parameter
Symbol
Ratings
Unit
Surge reverse voltage
Peak reverse voltage
Forward current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VRS
V
V
Ptot
50
70
140
280
Tj
Tstg
150
-65···+150
°C
°C
RthJA
:5 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
160
VRM
IF
Siemens
mA
mW
BGX50A
Electrical characteristics
at TA = 25 DC, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Forward voltage
(two diodes connected in series)
IF=100mA
VF
-
-
2,6
V
Reverse current
VR = 50V
VR = 50 V, TA = 150°C
IR
-
-
-
0,2
100
flA
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
VR = 0, f= 1 MHz
Co
-
-
1,5
pF
Reverse recovery time
IF = 10 mA, IR = 10 mA, RL = 100 n
measured at IR = 1 mA
t rr
-
-
6
ns
t-tA
Test circuit for reverse recovery time
OUT
Oscilloscope: R = 50 n
tr = 0,35 ns
C:5 1 pF
Pulse generator: tp = 100 ns, D = 0,05
tr = 0,6 ns, Ri = 50 n
Siemens
161
BGXSOA
Total power dissipation Ptot = (( TA)
Reverse current fR = ((TA)
mW
nA
400
105
5
VR =70V
V'
'/
max.
r\
1"\
200
I\.
7O~A/
,
5
1\
25V
100
typo
II
1,\
o
o
50
100
-lj.
1'\
150
°c
Forward current IF = ((V F)
TA = 25°C
10 '
I)il
o
50
150 0 C
Pesk forward current f FM = ((t)
TA = 25°C
mA
150
I/D= 0.005
0.01
;/°.02
rl0 5
II r1?1
II
0.2
100
[1 max.
typo
t>
II
j
50
11
lO- 1
J
II
o
o
7/
0,5
S
T
10-2
1,0
1,5 V
TIIIIIIIIIIIIIIII
10-6 10-5 10-4
10- 3 10-2
-t
-\of
162
tt£r-
D=+
7
Siemens
10-1
10°
5
BGX50A
Forward voltaga VF = ((TA)
V
1,0
ill
\of
I F = 100 rnA
I I
t
~~
r--_
I-
10 rnA I'r-.
~I'
0,5
l-
'r-..r-.
Ir-k
I- 0.1 rnA
r-..
t'--r---
1',
t'--
r---r-.
"
o
o
50
150 O(
Siemens
163
Silicon Switching Diode
•
5MBD 914
c{J.
For high-speed switching applications
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
5MBD 914
S5D
Q68000-A6418
Q68000-A625
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 111S
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VR
VRM
V
V
hM
hs
70
100
250
250
4,5
Ptot
330
mW
Tj
Tstg
175
-65···+150
°C
°C
RthJA
:s; 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
164
h
Siemens
mA
mA
A
5MBD 914
Electrical characteristics
at TA
=
25°e, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Breakdown voltage
I(BR) = 100!lA
Forward voltage
IF = 10 mA
V(BR)
100
-
-
V
VF
-
-
1
V
Reverse current
VR = 20V
VR = 75 V
VR = 20 V; TA = 150 0 e
VR = 75 V; TA = 150 0 e
IR
-
-
25
5
30
50
nA
flA
flA
flA
AC characteristics
Symbol
min
typ
max
Unit
Diode capacitance
VR = 0, f = 1 MHz
CD
-
-
2
pF
Reverse recovery time
IF = 10 mA, IR = 10 mA
VR = 1 V, RL= 100n
measured at IR = 1 mA
trr
-
-
4
ns
-
-
-
Test circuit for reverse recovery time
OUT
Pulse generator: tp
=
100 ns, D = 0,05
Oscilloscope: R
=
50 n
tr = 0,35 ns
tr = 0,6 ns, Ri = 50 n
C
Siemens
~
1 pF
165
5MBD914
Total power dissipation Ptot = f (TA)
Reverse current I R = f ( TA)
mW
400
105
nA
5
VR =70V
1/
r\
1/
max.
~.
7O~J'/
200
5
25V
r\
100
r\
typo
1/
a
a
50
100
200
150
ec
10'
J
o
50
150 0 C
100
-T"
Forward current
TA=
IF = f(vd
Peak forward current
25°C
TA=
IFM = f(t)
25°C
mA
150
I
!/D=OOOS
0.01
5
~/?02
II
100
J
I max.
typo
i
r/~05
ll
Ir
0.2
5
i
50
,
I
i
o
1/
o
a,s
D=i&
./
1,5 V
10- 2
10-6
IIIIII III1 11111 I I
10-5
10-4
10- 3
10- 2
-t
166
Siemens
10-'
10° s
5MBD 914
Forward voltage VF = !(TA)
V
1,0
ill
I-
IF= 10~ iA
f
r-t-
W.
10 mA
I
............. r---
I
ij--,
0,5
-
r-t.
O,1mA
r-....
"
,
I'-.~
'I'-.
o
o
50
100
150
O(
Siemens
167
5MBD 2835/36
Silicon Switching Diode Array
• For high-speed switching applications
• Common anode
A
f7JwCl
~C2
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
5MBD 2835
5MBD 2836
SA3
SA2
upon request
upon request
upon request
upon request
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
5MBD2835
5MBD2836
Unit
Reverse voltage
30
50
V
75
V
Peak reverse voltage
VR
VRM
Forward current
IF
250
Peak forward current
IFM
250
mA
I FS
4.5
A
Ptot
330
mW
7j
175
°C
- 65 ... +150
°C
Surge forward current
t= 1 fls
Total power dissipation
]A = 25°C
Junction temperature
Storage temperature range
r.tg
75
mA
Thermal resistance
junction - ambient
package mounted on alumina
15mm x 16.7mm x 0.7mm
168
RthJA
Siemens
:S;
450
K/W
5MBD 2835/36
Characteristics
at T,. = 25 ce, unless otherwise specified
DC characteristics
Symbol
Breakdown voltage
= 100 jJA
min.
typo
max.
Unit
75
75
-
-
V
V
-
-
-
-
1000
1000
1200
mV
mV
mV
-
-
-
100
100
nA
nA
VIBR )
5MBD 2835
5MBD 2836
IIBR)
Forward voltage
= 10 rnA
I F = 50 rnA
I F = 100 mA
-
VF
IF
Reverse current
VR = 30 V
VR = 50 V
IR
SMSD 2835
5MBD 2836
AC characteristics
Symbol
min.
typo
max.
Unit
Diode capacitance
V R = 0, f= 1 MHz
Co
-
-
4
pF
Reverse recovery time
IF = 10 rnA. IR = 10 rnA, RL = 100 Q
measured at IR = 1 mA
trr
-
-
6
ns
Test circuit for reverse recovery time
"
Lt7.t
/JmA
Speci men
IF
Pulse generator:
= 100 ns, D = 0.05
t, = 0.6 ns, R; = 50 Q
tp
I
Oscillograph: R= 50 Q
t, = 0.35 ns
Cs. 1 pF
Siemens
169
5MBD 2835/36
Total power dissipation Ptot = f I TA )
Reverse current IR = f I TA )
nA
mW
400
lOs
5
i..
\.'R=70V
~
~
max.
7O~)rJ
200
5
r\
100
2SV
r\
5
typo
1/
o
o
50
100
I
10'
200 ·C
150
o
50
150°C
100
-7A
Peak forward current IFM = fIt)
TA = 25°C
Forward current IF = f I ~)
TA = 25°C
mA
A
150
102
I
©
/0=0.005
0.01
0.02
5
II
100
I
typo
/?os
'll
0.2
5
Imax.
~
~
i
50
lO-
J
Ii
o
o
S
1/
0,5
,
=
tl£rL
O=-f
10-2
11111111/1111111
10-6 10-5 10-4
1,5 V
10-3 10-2
-t
170
Siemens
10-'
100 5
5MBD 2835/36
Forward voltage VF = f (TAl
V
m
1,0
I F= 10~ ~A
r-_
1-1-1-1-
.~
10 rnA
t-t-..
..
r-l ....
~
0,5
-
I- O,1rnA
1' ............
t-t-..
t-
....... .....
t-.....
o
o
50
100
150
·c
Siemens
171
5MBD 2837/38
Silicon Switching Diode Array
• For high-speed switching applications
• Common cathode
Type
Marking
OrC\ering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
5MBD 2837
5MBD 2838
SA5
SA4
upon request
upon request
upon request
upon request
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
5MBD 2837
5MBD 2838
Unit
Reverse voltage
VR
30
50
V
75
75
V
Peak reverse voltage
VRM
Forward current
IF
250
mA
Peak forward current
IFM
250
rnA
Surge forward current
I FS
4.5
A
Total power dissipation
~ = 25°C
Junction temperature
Ptot
330
mW
175
°C
Storage temperature range
T.tg
- 65 ... +150
°C
t= 11.1s
7j
Thermal resistance
junction - ambient
package mounted on alumina
15 mm x 16.7 mm x 0.7 mm
172
RthJA
Siemens
:::;;450
KjW
SMSD 2837/38
Characteristics
at ~ = 25 cC, unless otherwise specified
DC characteristics
Symbol
Breakdown voltage
= 100 iJA
min.
typo
max.
Unit
75
75
-
-
V
V
-
-
1000
1000
1200
mV
mV
mV
-
-
100
100
nA
nA
V(BA)
5MBD 2837
5MBD 2838
I(BA)
Forward voltage
IF = 10 rnA
I F= 50 rnA
IF = 100 rnA
VF
Reverse current
VA= 30 V
VA = 50 V
IA
5MBD 2835
5MBD 2836
AC characteristics
Symbol
min.
typo
max.
Unit
Diode capacitance
CD
-
-
4
pF
t"
-
-
6
ns
VA = 0, f= 1 MHz
Reverse recovery time
IF = 10 rnA. IA = 10 rnA. RL = 100 Q
measured at IA = 1 rnA
Test circuit for reverse recovery time
rt?t"
Specimen
IF
t
;jmA
Pulse generator:
= 100 ns, D = 0.05
t, = 0.6 ns, Rj = 50 Q
tp
Oscillograph: R= 50 Q
t,= 0.35 ns
C::;;; 1 pF
Siemens
173
5MBD 2837/38
Total power dissipation P'o'
= f ( TA )
Reverse current IR
= f (h)
mW
400
P.o,
VR =70V
/
V
1300
max.
/,/
~.
70~/J
200
\
\
100
25V
\
typo
/1/
o
J
o
50
100
Forward current IF = f ( l'F)
Peak forward current
TA =25°C
TA = 25°C
mA
150
150 0 C
100
50
200 ·C
150
IFM
= f(t)
A
10 1
I
©
/D=0.005
5
0.01
;0-02
'lOS
l'l1
0.2
I
100
jmax.
typo
~
Ii
Ii
50
,
i
t~
L
o
o
L.-'
0,5
D=..1..
T
V
10-z
10-6
1,5 V
11111111/1111111
10-5
10-4
10- 3
10-1
-t
174
Siemens
10-1
10°
5
5MBD 2837/38
Forward voltage VF = f ( TA )
V
1,0
t.U
I-
h= 100 rnA
--
I I
f
.J
10 rnA
..........
~ .....
0,5
i-f-
r.k
0,1 rnA
r-.r-.
..... .....
r-. ..... .....
i'
t'-..t'-..
............
o
o
50
100
150
0(
Siemens
175
Silicon Switching Diode
5MBD6050
• For high-speed switching applications
cr(}
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
SMSD 6050
S5A
upon request
upon request
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Reverse voltage
VR
70
V
Peak reverse voltage
VRM
70
V
Forward current
IF
250
rnA
Peak forward current
IFM
250
mA
Surge forward current
I Fs
4.5
A
Ptot
330
mW
175
°C
-65 ... +150
°C
t= 1 iJs
Total power dissipation
1A = 25°C
Junction temperature
Storage temperature range
7j
T.tg
Thermal resistance
junction - ambient
package mounted on alumina
15rnm x 16.7rnm x 0.7mm
176
RthJA
Siemens
:5 450
K/W
5MBD6050
Characteristics
at ]A = 25 °C, unless otherwise specified
DC characteristics
Symbol
min.
typo
max.
Unit
Breakdown voltage
= 100 IJA
VIBR )
70
-
-
V
Forward voltage
IF = 1 rnA
I F= 100 rnA
VF
550
850
-
700
1100
mV
mV
Reverse current
VR= 50 V
IR
-
-
100
nA
AC characteristics
Symbol
min.
typo
max.
Unit
Diode capacitance
VR= 0, f= 1 MHz
Co
-
-
2.5
pF
Reverse recovery time
IF = 10 rnA, IR = 10 rnA, RL = 100 Q
measured at IR = 1 rnA
trr
-
-
10
ns
IIBR)
Test circuit for reverse recovery time
Specimen
90%
Pulse generator:
tp = 100 ns, D = 0.05
t,= 0.6 ns, R = 50 Q
j
Oscillograph: R= 50 Q
t,= 0.35 ns
C~l
pF
Siemens
177
5MBD 6050
Total power dissipation
Pl0l
= '( TA )
Reverse current IR = '(TA )
nA
mW
400
105
5
If.t
VR =70V
f-.
\300
V
r\
'"
max.
L..-
-I-'
I
1/
7°~A/
200
5
25V
1'\
1\
100
typo
o
o
l)iJ
II
so
100
50
200 ·C
150
I
Forward current h = '( ~)
Peak forward current
TA =25°C
TA =25°C
mA
150
hM =
f(t)
A
10 2
II
©
1/ 0 =0.005
5
0.01
;F02
II
J
100
150 ·C
100
r;~'OS
I/rll
0.2
rT max.
typo
""~
Ii
Ii
so
o
o
t...,..
0,5
;
lO- 1
7
S
T
II [Ii
j/
1,0
T
11111 11111 I
10- 2
10-6 10- 5 10- 4 10- 3 10- 2
1,5 V
---\If
178
tt£r-
O=...l
I
---f
Siemens
10-1
10°
S
5MBD6050
Forward voltage VF = f (TAl
V
1,0
W
i
t--t-- t--I-
IF= 100 rnA
I I
W.
10 rnA
I-r-.
.... 1-
~r--.
0,5
~
r-r- r- 0,1 rnA
I-r-- ....
i"--r-.. !-..
....
..... r-..
r--. .....
o
o
50
100
150 DC
Siemens
179
5MBD 6100
Silicon Switching Diode Array
• For high-speed switching applications
• Common cathode
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
5MBD 6100
S5B
upon request
upon request
SOT 23
Maximum ratings
Ratings
Parameter
Symbol
Unit
Reverse voltage
VR
70
Peak reverse voltage
VRM
70
Forward current
IF
250
rnA
Peak forward current
IFM
V
V
Surge forward current
t= 11.1s
Total power dissipation
1A = 25°C
Junction temperature
I Fs
250
4.5
A
Ptot
330
mW
Storage temperature range
T.tg
7j
rnA
175
°C
- 65 ... +150
°C
Thermal resistance
junction - ambient
package mounted on alumina
15 mm x 16.7 mm x 0.7 mm
180
RthJA
Siemens
:5 450
K/W
SMSD 6100
Characteristics
at ~ = 25°C, unless otherwise specified
DC characteristics
Symbol
min.
typo
max.
Unit
Breakdown voltage
= 100 I1A
V(SRI
70
-
-
V
Forward voltage
= 1 rnA
= 100 rnA
VF
550
850
-
700
1100
mV
mV
Reverse current
VR = 50 V
IR
-
-
100
nA
AC characteristics
Symbol
min.
typo
max.
Unit
Diode capacitance
VR = 0, f= 1 MHz
CD
-
-
2.5
pF
Reverse recovery time
= 10 rnA. fR = 10 rnA. RL = 100 Q
measured at IR = 1 rnA
trr
-
-
15
ns
I(SRI
IF
IF
IF
Test circuit for reverse recovery time
Specimen
Pulse generator:
= 100 ns, D = 0.05
t, = 0.6 ns, Rj = 50 Q
tp
Oscillograph: R= 50 Q
t,= 0.35 ns
CS; 1 pF
Siemens
181
5MBD 6100
Total power dissipation Ptot = f ITA)
Reverse current
IR
= f I TA )
nA
mW
400
105
5
~.I
VR =70V
V
"'"
1300
max.
iii)
7O'{ifl
200
5
I'
25V
1\
100
5
"-iyp.
If
o
o
AI
50
100
150
100
50
200 ·C
150
0(
-7A
Peak forward current IFM = fIt)
Forward current h = f I lip)
TA = 25°C
TA =25°C
mA
150
©
A
10 2
I
1/ 0 =0.005
5
0.01
0.02
05
rl
rl' :
II
100
0.2
I
II max.
typo
EE
5
~
Ii
II
50
10-1
Ii
o
o
5
Iiii
l/
0,5
1,0
11111 TI 1111 I I
10-2
10.6 10-5 10-4
1,5 V
-Vf
182
0=+t~
10- 3 10-2
-t
Siemens
10-1
100 S
5MBD 6100
Forward voltage VF = f (h)
V
1,0
-WJ
..J.
10 rnA
--
t-
I f = 100 rnA
I I
r-. . . .
t-r-.
ir}
0,5
--
~
0,1 rnA
...... 1"'-
r-. . . . ......
~r--.
I""'-r-.
'~
o
o
50
100
150
O(
Siemens
183
Silicon Switching Diode Array
5MBD 7000
• For high-speed switching applications
• Connected in series
C2,A1
~C1
f;jfo
A2
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on a-mm tape
Package
5MBD 7000
S5C
upon request
upon request
SOT 23
Maximum ratings
Parameter
Symbol
Reverse voltage
VR
100
Peak reverse voltage
VRM
IF
100
V
rnA
IFM
250
250
IFS
4.5
A
Ptot
330
mW
175
°C
°C
Forward current
Peak forward current
Surge forward current
t= 1I.Js
Total power dissipation
1A = 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted on alumina
15mm x 16.7mm x 0.7mm
184
7j
T.tg
RthJA
Siemens
Ratings
- 65 ... +150
:S450
Unit
V
rnA
K/W
5MBD7000
Characteristics
at ~ = 25 °C, unless otherwise specified
DC characteristics
Symbol
min.
typo
max.
Unit
Breakdown voltage
VIBR )
100
-
-
V
Forward voltage
VF
550
670
750
-
700
820
1100
mV
mV
mV
-
-
300
500
100
nA
nA
IJA
IF = 1 rnA
IF = 10 rnA
IF = 100 rnA
-
Reverse current
VR = 50 V
VR = 100 V
VR = 50 V, TA = 125 °C
IR
AC characteristics
Symbol
min.
typo
max.
Unit
Diode capacitance
= 1 MHz
Co
-
-
2
pF
trr
-
-
15
ns
-
VR = 0, f
Reverse recovery time
IR = 10 rnA, RL
IF = 10 rnA,
= 100 Q
-
Test circuit for reverse recovery time
Speci men
rr
~
/JmA
h
90"!.
Pulse generator:
= 100 ns, D = 0.05
t, = 0.6 ns, Rj = 50 Q
tp
t
Oscillograph: R = 50 Q
t, = 0.35 ns
C:::; 1 pF
Siemens
185
5MBD7000
Total power dissipation Ptot
= 'I TA )
Reverse current
IR
= 'I TA )
nA
mW
400
105
5
Ifot
VR =70V
1300
'/
1\
I--'
max.
1/
7O~AJ
200
5
1'\
1\
100
25V
~
typo
I
1/
o
o
AI
so
100
so
200 O(
150
100
150
0(
-~
Forward current
TA = 25°C
IF
= 'I ~)
rnA
150
Peak forward current
TA = 25°C
©
A
10 2
I
5
II
100
. typo
Ii
5
=
1
t~
r,
L..o-
1/f;~.1
~
so
0,5
./0=0.005
0,01
0.02
1I?·05
0.2
IJ
II max .
1QO
o
o
= 'It)
IFM
0=+
1/
1111111/1111111
10-2
10-6 10- 5 10-4 10- 3 10-2 10-1
1,5 V
-t
186
Siemens
10°
5
5MBD7000
Forward voltage VF = f (TAl
V
1,0
ill
.w.
I F= 100 rnA
I-r-.
I I
f
10 rnA
0,5
i;},
[)-k
0,1 rnA
---
l-
"r-.
1', ,
r-..
r"1'
"
o
o
50
100
150 .(
Siemens
187
Transistors
Siemens
189
PNP Silicon AF Transistors
•
•
•
•
•
BC807
BC808
For general AF applications
High collector current
High current gain
Low collector-emitter saturation voltage
Complementary types: BC 817, BC 818 (NPN)
Type
BC 807-16
11) BC 807-25
11) BC 807-40
11)
Marking
5A
5B
5C
Type
I1)BC 808-16
I1)BC 808-25
11) BC 808-40
Marking
Ordering code
Package
5E
5F
Refer to index
SOT 23
5G
Maximum ratings
Parameter
Symbol
BC807
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
Ic
ICM
45
50
5
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
RthJA
11)
IB
IBM
Ptot
Tj
Tstg
BCaOa
Unit
25
30
5
500
1
100
200
330
V
V
V
150
-65···+150
DC
DC
:5 375
mA
A
mA
mA
mW
K/W
Preferred type
Siemens
191
BC807
BC808
Electrical characteristics
at
TA =
25°C, unless otherwise specified
min
typ
max
Unit
45
25
-
-
V
V
50
30
-
-
V
V
5
-
-
V
-
-
100
5
IlA
-
-
100
nA
BC 808-16
BC 808-25
BC 808-40
100
160
250
160
250
350
250
400
630
-
BC 808-16
BC 808-25
BC 808-40
60
100
170
-
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 10 rnA
BC807
BC808
V(BR) CEO
Collector-base breakdown voltage
Ic = 100 IlA
BC807
BC808
V(BR)CBO
Emitter-base breakdown voltage
IE = 10 IlA
Collector cutoff current
VCB = 25 V
VCB = 25 V, TA = 150°C
V(BR)EBO
Emitter cutoff current
VEB = 4 V
DC current gain')
Ic = 100 rnA, VCE = 1 V
BC 807-16,
BC 807-25,
BC 807-40,
I c = 300 rnA, VCE = 1 V
BC 807-16,
BC 807-25,
BC 807-40,
ICBo
lEBO
-
-
nA
hFE
-
-
Collector-emitter saturation voltage ')
I C = 500 rnA, I B = 50 rnA
VCEsat
-
-
Base-emitter saturation voltage')
I C = 500 rnA, I B = 50 rnA
VBEsat
-
-
AC characteristics
-
-
-
0,7
V
2
V
Symbol
min
typ
max
Unit
Transition frequency
Ic = 50 rnA, VCE = 5 V, f= 20 MHz
fT
-
200
-
MHz
Output capacitance
VCB = 10V, f= 1 MHz
Cob
-
10
-
pF
Input capacitance
VEB = 0,5 V, f= 1 MHz
Cib
-
60
-
pF
') Pulse test: t:5, 300 Ils, D = 20/0.
192
Siemens
Bca07
Bcaoa
Total power dissipation Ptot = f (TA)
Transition frequency fT = f (I cl
VCE = 5V
mW
MHz
10l
400
f\ot
t
r-~
300
I\,
./
\
200
\.
5
100
I\,
\.
°°
I
2
\
150 0 (
100
50
Pulse handling capability
(standardized)
rth =
5 10'
Collector cutoff current leBO = f (TA)
VCBo=60V
f(t)
K
W
10°
Ii,
r
III
~
1
0,5
0,2
0,1
0,05
0,Q2
0,01
0,005
0=0
1
.-
I I
V
max.
Vtyp.
v'
1111
10 '
~
0=;
T
10- 3
'"
'
"
10-6 10- 5 10- 4 10- 3 10- 1 10- 1 10°
10' s
50
100
150
O(
-f
Siemens
193
BC807
BC808
Base-emitter saturation voltage Ie = '( VBE sat)
hFE
=
Collector-emitter saturation voltage
Ie
10
= '(VCEsar)
hFE = 10
rnA
103
rnA
1Ql
150 0 : " f-_ 25°(
/-50 0 [
5
--
--
150 0 ( -/h "" "25°(
,"-<50 0 (
._ ...
--
"r!
~
f----
10'
10'
--
I
- - f----
- -Ii - f----
r
--
,
,
--f---
j
4 V
2
VeE
.. j
200
-
-f-
-1.]
-
400
sot
-f----
-- - - f----
600
BOO mV
--liEsat
DC current gain h FE
= '(l cl
VCE = 1 V
10 3
5
l00 0 (
r r-t
5 iI(
f-
....
-:SO °
5
101
5
100
10-'
194
Siemens
5 100
5 1Q1
5 10 2
-Ie
5 103 rnA
BC817
BC818
NPN Silicon AF Transistors
•
•
•
•
•
For general AF applications
High collector current
High current gain
Low collector-emitter saturation voltage
Complementary types: BC 807, BC 808 (PNP)
Type
m BC 817-16
m BC 817-25
m BC817-40
Marking
6A
6B
6C
Type
mBC 818-16
mBC 818-25
m BC 818-40
Marking
Ordering code
Package
6E
6F
6G
Refer to index
SOT 23
Maximum ratings
Parameter
Symbol
BC817
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
45
50
5
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
BC818
Ptot
25
30
5
500
1
100
200
330
Tj
Tstg
150
-65 .. · + 150
VEBO
Ie
ICM
Ie
IeM
:5 375
RthJA
Siemens
Unit
V
V
V
rnA
A
rnA
rnA
mW
°C
°C
K/W
195
BC 817
BC818
Electrical characteristics
at
TA =
25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 10 mA
BC 817
BC 818
V(BR) CEO
min
typ
max
Unit
45
25
-
-
V
V
Collector-base breakdown voltage
Ic = 100 !-LA
BC 817
BC 818
V(BR) CBO
50
30
-
-
V
V
V
Emitter-base breakdown voltage
le= 1O !-LA
Collector cutoff current
VCB = 25 V
VCB = 25 V, TA = 150°C
V(BR) EBO
-
-
100
5
BC 818-16
BC 818-25
BC 818-40
100
160
250
160
250
350
250
400
630
-
BC 818-16
BC 818-25
BC 818-40
60
100
170
-
ICBo
Emitter cutoff current
VEB = 4 V
leBO
DC current gain')
Ic = 100 mA, VCE = 1 V
BC 817-16,
BC 817-25,
BC 817-40,
I C = 300 mA, VCE = 1 V
BC 817-16,
BC 817-25,
BC 817-40,
hFE
5
-
-
100
nA
!-LA
nA
-
-
0,7
V
2
V
Collector-emitter saturation voltage ')
I c = 500 mA, I B = 50 mA
VCEsat
-
-
Base-emitter saturation voltage ')
Ic = 500 mA, IB = 50 mA
VBEsat
-
-
-
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 50 mA, VCE = 5 V, f= 20 MHz
fr
-
170
-
MHz
Output capacitance
VCB = 10V, f= 1 MHz
Gob
-
6
-
pF
Input capacitance
VEB = 0,5 V, f= 1 MHz
Gib
-
60
-
pF
') Pulse test: t:'5 300 !-Ls, D = 20f0.
196
Siemens
BC817
BC 818
Transition frequency fT
Total power dissipation Ptot = f (TA)
VCE =
f (/ cl
MHz
103
rnW
400
":ot
r
=
5V
fr
"'\
5
f
300
\
\.
v
1\
200
\
5
100
I\,
2
a
a
1\
100
50
5 1Q3 rnA
-7",.
Collector cutoff current I cso = f ( TA)
Vcso = 60V
Pulse handling capability rth = f (t)
(standardized)
K
Vi
10°
•
'ih
t
.M'J'\l
1
5
'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
0=0
2
/
max.
/
/typ.
1111
5
0=
r
10- 3
1tr-L
t-- r-J
!i
""
10- 6 10- 5 10- 4 10- 3 10- 2 10- 1 10°
10'
50
S
-t
100
150 °C
-T,.
Siemens
197
BC817
BC818
Base-emitter saturation voltage Ie
hFE = 10
= f (VBE sad
mA
10 3
150·(" 1-,25·(
-50·(
Ie
1 10 2
5
10-1
L...L--"-L.L--'L--"---'----'L-~__'
o
3
4 V
--VBEsat
--VcEsat
DC current gain hFE = f( Ie)
VeE = 1 V
5
100 L-L...LLLw"----'--'...LLUliL--'-'-'.Lllill'----'--'-'-CUlli
10-1 5 10°
5 W
5 10 2
5 103 mA
-Ie
198
Siemens
NPN Silicon AF Transistors
•
•
•
•
•
BC846
... BC 850
For AF input stages and driver applications
High current gain
Low collector-emitter saturation voltage
Low noise between 30 Hz and 15 kHz
Complementary types: BC 856, BC 857,
BC 859, BC 860 (PNP)
Type
BC 846
BC 846
BC 847
BC 847
BC 847
BC 848
Marking
A
B
A
B
C
A
1A
1B
1E
1F
1G
1J
Type
(:'3 BC 848 B
(:'3 BC 848 C
BC849
BC849
BC 850
BC 850
B
C
B
C
Marking
Ordering code
Package
1K
1L
2B
2C
2F
2G
Refer to index
SOT 23
Maximum ratings
Parameter
Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Peak collector current
Peak base current
Peak emitter current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
Symbol
BC846
BC847,
BC850
BC 848,
BC849
Unit
VCEO
65
80
80
6
45
50
50
6
30
30
30
5
V
V
V
V
VCBO
VCES
VEBO
Ic
100
200
200
200
330
ICM
IBM
!eM
Ptot
150
-65···+150
Tj
Tstg
~375
RthJA
mA
mA
mA
mA
mW
°C
°C
K/W
(:'3 Preferred type
Siemens
199
BC846
... BC 850
Electrical characteristics
at TA = 25 cC, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic=10mA
BC846
BC 847, BC 850
BC 848, BC 849
V(BR) CEO
Collector-base breakdown voltage
V(aR) caD
min
typ
max
Unit
65
45
30
-
-
V
V
V
80
50
30
-
-
-
-
-
V
V
V
80
50
30
-
-
V
V
V
6
5
-
-
-
V
V
-
15
5
nA
-
140
250
480
-
-
110
200
420
180
290
520
220
450
800
-
-
90
200
250
600
mV
mV
-
700
900
-
mV
mV
580
660
-
-
700
770
mV
mV
Ic=10~A
BC846
BC 847, BC 850
BC 848, BC 849
Collector-emitter breakdown voltage
Ic = 10 ~A, VaE = 0
BC846
BC 847, BC 850
BC 848, BC 849
V(BR)CES
Emitter-base breakdown voltage
lE= 1 ~
BC 846, BC 847
BC 848, BC 849, BC 850
V(BR)EBO
Collector cutoff current
VCB = 30 V
VCB = 30 V, TA = 150 cC
ICBo
DC current gain
/c= 10~A, VCE=5V
BC 846 A, BC 847 A, BC 848 A
BC 846 B ... BC 850 B
BC 847 C, BC 848 C, BC 849 C, BC 850 C
Ic=2mA, VCE=5V
BC 846 A, BC 847 A, BC 848 A
BC 846 B ... BC 850 B
BC 847 C, BC 848 C, BC 849 C, BC 850 C
hFE
Collector-emitter saturation voltage ')
Ic = 10 mA, IB = 0,5 mA
Ic = 100 mA, Ia = 5 mA
VCEsat
Base-emitter saturation voltage ')
Ic = 10 mA, Ia = 0,5 mA
Ic= 100mA, /a=5 mA
VBEsat
Base-emitter voltage
Ic= 2mA, VCE=5V
Ic=10mA, VCE=5V
VaE (on)
-
-
-
') Pulse test: (:5 300 ~s, D = 2%.
200
Siemens
-
-
-
~A
-
BC846
... BC 850
AC characferistics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 rnA, VCE = 5 V, f= 100 MHz
fT
-
250
-
MHz
Output capacitance
Vce = 10V, f=1 MHz
Cob
-
3
-
pF
Input capacitance
Vce = 0,5 V, f= 1 MHz
Cib
-
8
-
pF
Short-circuit input impedance
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC 846 A ... BC 848 A
BC B46 B ... BC B50 B
BC B47 C ... BC B50 C
h11e
-
2,7
4,5
B,7
-
kQ
kQ
kQ
Open-circuit reverse voltage transfer ratio
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC B46 A ... BC 84B A
BC B46 B ... BC B50 B
BC B47 C··· BC B50 C
h12e
-
-
10- 4
-
1,5
2,0
3,0
Short-circuit forward current transfer ratio
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC B46 A ... BC 84B A
BC B46 B ... BC 850 B
BC B47 C ... BC 850 C
h21e
-
200
330
600
-
Open-circuit output admittance
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC B46 A .. BC 84B A
BC B46 B .. BC 850 B
BC B47 C .. BC 850 C
h22e
-
1B
30
60
-
o-
IlS
IlS
ilS
Noise figure
Ie = 0,2 rnA, VCE = 5 V, Rs = 2 kQ
f= 30 Hz .. ·15 kHz
BCB49
BCB50
f= 1 kHz, M= 200 Hz
BCB49
BCB50
F
-
1,4
1,4
1,2
1,0
4
3
4
4
dB
dB
dB
dB
Equivalent noise voltage
Ie = 0,2 rnA, VeE = 5 V, Rs = 2 kQ
f=10Hz .. ·50Hz
BCB50
Vn
-
0,135
IlV
0
0
0
-
Siemens
-
-
-
-
10- 4
10- 4
-
201
BC846
... BC 850
Total power dissipation Ptot = f (TA)
Collector-base capacitance CeBo = f(VeBo)
Emitter-base capacitance CEBO = t(VEBO)
mW
400
pF
12
( (SO
~ot
t
('T
~h.
~
l lo
'~
300
'\
8
I'\:
~
200
"
4
r-..
I}(SO
f':
'""'-
~
./ ....... 1--
'ESO
100
1'\
2
r\
o
o
50
100
o
10·t
150 ·C
-7;.
Pulse handling capability
rth
= fIt)
Transition frequency tT =
VeE =5V
(standardized)
t (lo)
K
Iii
10°
1111
tth 5
t
fy
t
oI!fAtJ(I
0,5
0,2
0,1
0,05
0,02
0,01
0,005
D:O 1111
10' t
5
2
5
I-t--
I/V
5
5
~T
~
tp
D=f
.. ;
10-3
10-6 10-5 10- 4 10-3 10- 2 10"
10°
,
10' s
5 10 2 mA
-f
202
Siemens
BC 846
... BC 850
Base-emitter saturation voltage Ie
hFE = 20
= f (VBE sat)
rnA
W2
DC current gain hFE
VCE = 1 V
= f (I e)
~
-
r-l000(
l'/
12S
2S 0 (
0(
_SOO(
I
~ -
I- 2S 0(
~
5
5
L
I
5
10- 1
10°
o
0,2
0,4
0,6
0,8
1,0
10- 2
1,2 V
5 10- 1
5 10°
5 10'
5 10 2 rnA
-Ie
-VBEsat
Collector cutoff current I CBO = f ( TA)
VCB = 30V
Collector-emitter saturation voltage
Ie = f(VCE,,')
hFE = 20
rnA
10 2
I
/
II
I
./
max. ~...
/
102
t-Il;
10'
_SOO(
25°(
%1000(
5
5
,.
typo
lr!'
5
,
10-
o
,
/
50
100
1500(
0,1
-7;
0,2
0,3
0,4
a,s
V
- - - - VCEsaf
Siemens
203
BC846
... BC 850
h parameter he
VeE = 5V
= f(Ie)
h parameter he
Ie = 2 mA
10 2
= f(VeE)
2,0
I
Ic:1 mA,I
h,
I
~11'
l'
VcE =5V
~
\\
,\
f--
....
1,..- .....
'\
~h'2.
=h21
h~,.
1,5
1,0
....
~ .//
1\1,.0t-1'\
h'le
;;:;;
h2~ ..... 7
r-..
0,5
....-:-:
h22 •
o
o
10
NOise figure F = f ( VeE)
Ie = 0,2 mA, Rs = 2 kQ, f= 1 kHz
Noise figure F = f (f)
Ie = 0,2 mA, Rs = 2 kQ
dB
20 r--"TnTITr-'--rTTTTm--.TTnnn
dB
20
F
I
20
--VcE
-Ie
15 1-t-+++tfttt---++H+tt++-t-++t+H+1
10
5
O'--'-'-J-LllilL--L-L1..LllllL.-LLLJLlillJ
10·'
5
10'
5 10 2 V
---VcE
204
Siemens
_\
30 V
BC846
... BC 850
Noise figure F = f (I cl
Noise figure F = f (I e)
VCE=5V, f= 120Hz
VCE =5V, f= 1 kHz
dB
20
dB
20
r- !?s=lMfl 100kfl
J
II
I
10kfl/
Rs =lMQ 100 k II 10kQ
I
/
\
/
\
10
10
\
J sOOQ
lkQ
I
5
J
'"
r10- 2
IJ
5
L
1\
'\.
lkQ
11111
11111
11111
10' mA
o-
10-3
II
1
II' SOOfl
I III
I'-
",
".I.
11111
10- 2
-Ie
Noise figure F= f(Ie)
VCE = 5 V, f= 10 kHz
dB
20
-
Rs=lMQ
1100k
I I I II
II II
/
10
II II
OOQ
10kQ
I\,
5
lkQ\.
J
111111
J IIiU
o
10-3
JaIl"..
,..:;
10- 1
-Ie
Siemens
205
PNP Silicon AF Transistors
•
•
•
•
•
BC856
... BC 860
For AF input stages and driver applications
High current gain
Low collector-emitter saturation voltage
Low noise between 30 Hz and 15 kHz
Complementary types: BC 846, BC 847,
BC 849, BC 850 (NPN)
Type
BC 856
BC 856
BC 857
BC 857
BC 857
BC 858
BC 858
Marking
A
B
A
B
C
A
B
3A
3B
3E
3F
3G
3J
3K
Type
rn BC 858 C
BC
BC
BC
BC
BC
859A
859 B
859 C
860 B
860C
Marking
Ordering code
Package
3L
4A
4B
4C
4F
4G
Refer to index
SOT 23
Maximum ratings
Parameter
Symbol
Be 856
Be 857,
BC860
Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Peak collector current
Peak base current
Peak emitter current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VCES
VEBO
Ic
ICM
IBM
IEM
65
80
80
5
45
50
50
5
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
RthJA
Unit
Ptot
100
200
200
200
330
V
V
V
V
mA
mA
mA
mA
mW
Ti
Tstg
150
-65·.·+150
°C
°C
:S 375
rn Preferred type
206
Be 858,
BC859
30
30
30
5
Siemens
K/W
BC 856
... BC 860
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 10 mA
BC856
BC 857, BC 860
BC 858, BC 859
V(SR) CEO
Collector-base breakdown voltage
Ic= 10 !lA
BC856
BC 857, BC 860
BC 858, BC 859
V(SR) cso
Collector-emitter breakdown voltage
Ic=10!lA,VsE=0
BC856
BC 857, BC 860
BC 858, BC 859
V(SR) CES
Emitter-base breakdown voltage
h=1!lA
V(SR) ESO
Collector cutoff current
Vcs = 30V
Vcs = 30 V, TA = 150°C
Icso
DC current gain
Ic = 10 !lA, VCE = 5 V
BC 856
BC 856
BC 857
Ic=2mA, VCE=5V
BC 856
BC 856
BC 857
hFE
min
typ
max
Unit
65
45
30
-
-
-
V
V
V
-
-
-
V
V
V
V
V
V
80
50
30
-
-
-
-
80
50
30
-
-
-
5
-
-
-
V
-
-
1
15
4
nA
!lA
A ... BC 859 A
B ... BC 860 B
C ... BC 860 C
-
140
250
480
-
-
A ... BC 859 A
B ... BC 860 B
C ... BC 860 C
125
220
420
180
290
520
250
475
800
-
-
75
250
300
650
mV
mV
-
700
850
-
mV
mV
600
650
-
-
750
820
mV
mV
Collector-emitter saturation voltage ')
Ic= 10 mA, Is = 0,5 mA
Ic = 100 mA, Is = 5 mA
VCEsat
Base-emitter saturation voltage ')
Ic = 10 mA, Is = 0,5 mA
Ic = 100 mA, Is = 5 mA
VSEsat
Base-emitter voltage
Ic = 2mA, VCE=5V
I c = 10 mA, VCE = 5 V
VSE(on)
') Pulse test: t::5, 300 !ls, D = 20/0.
Siemens
207
BC856
... BC 860
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 rnA, VCE = 5 V, f= 100 MHz
fT
-
250
-
MHz
Output capacitance
VCB = 10V, f=1 MHz
Cob
-
3
-
pF
Input capacitance
VCB = 0,5 V, f= 1 MHz
Cib
-
8
-
pF
Short-circuit input impedance
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC 856 A .. · BC 859 A
BC 856 B ... BC 860 B
BC 857 C ... BC 860 C
h11e
-
-
-
2,7
4,5
8,7
-
kO
kO
kO
Open-circuit reverse voltage transfer ratio
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC 856 A··· BC 859 A
BC 856 B .. · BC 860 B
BC 857 C ... BC 860 C
h12e
-
1,5
2,0
3,0
-
Short-circuit forward current transfer ratio
I c = 2 rnA, VCE = 5 V, f = 1 kHz
BC 856 A ... BC 859 A
BC 856 B ... BC 860 B
BC 857 C ... BC 860 C
h21e
-
200
330
600
-
-
-
Open-circuit output admittance
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC 856 A ... BC 859 A
BC 856 B ... BC 860 B
BC 857 C ... BC 860 C
h22e
-
18
30
60
-
~S
~S
~S
Noise figure
Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kO
f=30Hz .. ·15kHz
BC859
BC860
f= 1 kHz, M= 200 Hz
BC859
BC860
F
-
-
1,2
1,0
1,0
1,0
4
3
4
4
dB
dB
dB
dB
Equivalent noise voltage
Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kO
f = 10Hz ... 50 Hz
BC860
Vn
-
-
0,110
~V
208
-
-
-
Siemens
-
-
10--
10-10--
BC856
'" BC 860
Total power dissipation Ptot
= f (TA)
Collector-base capacitance CCBO = f(VCBO)
Emitter-base capacitance CEBO = f (VEBO)
pF
mW
400
~ot
t
12
'\.
I-~
I\.
300
"-
200
}CBO
""- I"-
1\
~
\
\
""
4
100
o
o
.....
[E~O 1""--.....
1\
1\
50
150 0 (
100
--T,
Transition frequency fT = f (l c)
VeE = 5V
Pulse handling capability rth = f (t)
(standardized)
K
W
100
,
10- 2
•
I
'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
0:0 1111
,;'
-
/
~ ---J tp I---
o:1-ILJL
T I--- T-i
10- 3
'"
10- 6 10- 5 10- 4 10,3 10'2 10"
10°
10' s
-t
Siemens
209
BC856
, .. BC 860
Base-emitter saturation voltage Ie = '(VBE sat)
hFE = 20
Collector-emitter saturation voltage
rnA
rnA
W1
W1
~
~
12soe
2Soe
-sone
r
Ie = '(VcEsat)
hFE = 20
'1
/
5
IV /
t
{:;~
5
/
II
V
VV
./
-sooe
25°(
100 0 e
-
r-
5
II
5
lO-
,
,
II
a
0,2
0,4
0,6
0,8
1,0
1.2 V
0)
0,2
0,3
01+
0,5 V
~\.hsat
---VBE sat
Collector cutoff current I CBO = '( TA)
DC current gain hFE =
VCB=30V
VCE = 1 V
'(lei
100 0 e
_25·
~
0/
max. "
10 2
=
-
5
5
..
~
w'
typ;
5
5
lif'
=
=
r-
5
,
!--
./
50
100
150
0(
100 '-:c
10-2
-JA
210
5 10-'
5 10°
5 10'
-Ie
Siemens
5 102 mA
BC856
... BC 860
h parameter he = f (I e)
VeE = 5V
h parameter he
10 2
2,0
= f (VeE)
Ie = 2 rnA
I
I
Je=12~A
h.
h l1 -
1
h".
i.-
n
liE =5V
t..V
1\
'(
V
1,0
I\. h12 •
"
5
""""'r-.
I'
~ I/ V
y~
vi
i"'I
......h ._+-22
0,5
~h2'.
,
1\
h2o/
o
o
10
20
30 V
- - liE
-Ie
Noise figure F = f(VeE)
Ie =0,2mA, Rs = 2kn, f= 1 kHz
Noise figure F = f (f)
Ie = 0,2 rnA, Rs = 2 kn, VeE = 5 V
dB
20
dB
20
~~TTnmr---.-,-,-,crrrr'--"TT;
F
!
15
~+4+H~-+++Htt~~+#~
1\
10
5
OL-L.L-liLWL--L-LLUWL-LlJ....llillJ
10-'
5
10'
5 10 2 V
o
10-2
--liE
Siemens
211
BC8S6
···BC860
Noise figure F = f (I oj
VCE=5V, f= 120Hz
Noise figure F = f (Io)
VCE = 5 V, f= 1 kHz
dB
20
dB
20
r-
~s=lMQ
100kQ
/
10kQ/
I
/
Rs =lMQ lOOk 110kQ
I
\
II
II
10
10
\
, 500Q
1kQ
I
II
5
.I
'"
o
10-3
-
I
1/
"
1kQ
11111
11111
101 mA
o-
'"
1
i
I'
IIIII
I
500
I
I
I
[".ol
10-3
1Q1 mA
Noise figure F = f (Io)
VCE = 5 V, f= 10 kHz
dB
20
Rs=lHQ
I
[lOOk
[
!I
10
OQ
lkQ\.
lUll
IIIU
o
10- 3
212
Siemens
uaw~
III
10kQ
\.
5
/ I II
III
/
PNP Silicon Darlington Transistors
•
•
•
•
BCP 28; BCP 48
For general AF applications
High collector current
High current gain
Complementary types: BCP 29/49 (NPN)
E
Type
Marking
Ordering code (12-mm tape)
Package"
BCP 28
BCP 28
Q62702 - C1234
SOT-223
BCP 48
BCP 48
Q62702 - C1235
SOT-223
Maximum Ratings
Unit
Parameter
Symbol
BCP28
BCP48
Collector-emitter voltage
VCEO
30
60
V
Collector-base voltage
Vcso
40
80
V
10
10
V
Emitter-base voltage
VESO
Collector current
Ic
500
mA
Peak collector current
ICM
800
mA
Ie
100
mA
ISM
200
mA
P'O'
1.5
W
T,
T519
150
·C
Base current
Peak base current
Total power dissipation, TA $ 25°C
1)
Junction temperature
Storage temperature range
-65
to
+ 150
·C
Thermal Resistance
s83.3
Junction - ambient 1)
') Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm
Mounting pad for the collector lead min 6cm 2
.) For detailed dimensions see chapter Package Outlines
Siemens
213
BCP 28, BCP 48
Characteristics
at TA = 25°C, unless otherwise specified.
Parameter
Unit
DC Characteristics
Collector-emitter I;>reakdown voltage
Ic = 1mA, Ie = 0
BCP 28
BCP 48
VCBRlCEO
Collector-base breakdown voltage 1)
Ic = 100 jlA, Ie = 0
BCP 28
BCP 48
VceRlCBo
Emitter-base breakdown voltage
IE = 10 jlA, Ic = 0
VCeR)EeO
Collector-base cutoff current
Vce=30 V,/E=O
Vce=60 V,/E=O
Vce = 30 V, IE = 0, TA = 150°C
Vce = 60 V, IE = 0, TA = 150°C
BCP 28
BCP 48
BCP 28
BCP48
Emitter-base cutoff current
VEe =4 V, Ic =0
DC current gain 1)
Ic=100jlA, VCE=lV
Ic =10mA,VCE =5V
Ic =100mA, VCE=5V
Ic = 500 mA,VCE = 5 V
Iceo
'EBO
30
60
-
-
V
V
40
80
-
-
V
V
10
-
-
V
-
-
100
100
10
10
nA
nA
\1 A
\1 A
-
-
100
nA
4000
2000
10000
4000
20000
10000
4000
2000
-
-
-
-
--
-
-
1.0
V
-
-
1.5
V
-
200
-
MHz
-
8
-
pF
hFE
BCP
BCP
BCP
BCP
BCP
BCP
BCP
BCP
28
48
28
48
28
48
28
48
Collector-emitter saturation voltage
Ie = 1OOmA.lB = 0.1 mA
VCEsal
Base-emitter saturation voltage
Ie = 100mA,/e = O.lmA
VBEsal
AC Characteristics
Transition frequency
Ic=50 mA, VCE = 5V,f=100MHz
fT
Output capacitance
VCB = 10 V,f= 1 MHz
Cob
1) Pulse test conditions: t ~ 300\1s; D = 2%
214
Siemens
BCP 28; BCP 48
Total power dissipation P101
= '(TA)
Collector cutoff current ICBO = '(TA )
VCB = VCE max
nA
2.0
W
10'
f1--l- I--
-- -
1-;-
r=
...-.1-
I-
1-1./
h
I-t\
II- .
-
1--' --
-
0.5
-
-
1-
-
-
-
- --
o
?~ r\:- --
--
- - - I-
1-.I- -- ~~
I-
--!-
'1
1
-
Vtyp.
H-
so
-
rs: -1-1\.
-- .- -- . -- - -- - -- -- -- -
r=--
1-1-
K
-
I- -
-I-
\
100
·C
50
lS0
--r.
100
150 'C
--T,.
'T = '(I~)
,--
-- .-- --
1--'
r-
I-1---
S
-
-
--+- 1-- - r -
o
5
Transition frequency
MHz VCE = 5 V
10 1
I-I-
\
-I- -
I-
,/ max.
-
--
1.0
-1- --
,-
r-.
,/
~
7
1~
101 , -
-
I-
-
I--
'-
--
Siemens
215
BCP 28; BOP 48
DC current gain
Vce=5V
10'
F
F-
~
I--
~
~
r
5
= ((Ie)
I--
-
I--
IIi===
~
~
-55"(
~
~
~
5
hFE
-
'--
10'
S
1111111
10"
5 100
5 10'
~
==1 ~
I-~
__ •.~ _ _
0.5
100'-'"--'-~-
5 101
o
5 10 1 mA
-- ,-- -1-1-
- - -- - -+-1-
I-- 1- - - -
1111111
11111111
101
==~-~:-:1:1j~J~
c.= -- - :::::
. :: .-- : : I~--+---1-+-1
10' 1=
C:$$==j-
--- I1tII11I
5
_ ._L- _ _ ' '_0
V
1.')
- --- \'cE.o'
- /c
B•••·.mltt.r .aturatlon voltage Ie
Collector-base capacitance Cob = (Vca)
pF Emitter-base capacitance C'b = (VEa)
hFE" 1000
10
CUD
IC (801
t "'"~
I"-
....
~80
5
~
C
EBO
'--
,
'"
10'
--
s
- --
o
10"
5
10°
5
-
216
10' V
F3===t::J=lI=:f=
~ ~J;~-
=fr-
-- ~ -~- ~ =- -_.- -. -- -
-
I--
lI-
~
I-
10 0 L-L ......"--'---'.->-."-L J_'-L_J._LJ...J
o
V
3
Vnol Vclol
- Veho'
Siemens
= ((VaE sat)
NPN Silicon Darlington Transistors
•
•
•
•
BCP 29; BCP 49
For general AF applications
High collector current
High current gain
Complementary types: BCP 28/48 (PNP)
E
c
C
B
Type
Marking
Ordering code (12-mm tape ) Package"
BCP 29
BCP 29
Q62702 - C1236
SOT-223
BCP49
BCP49
Q62702 - C1237
SOT-223
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
BCP49
BCP 29
Unit
Emitter-base voltage
VCEO
VCBO
VESO
Collector current
Ic
500
rnA
Peak collector current
ICM
800
rnA
Base current
Is
100
rnA
ISM
200
rnA
Collector-base voltage
Peak base current
Total power dissipation, TA:s 25°C
30
60
V
40
80
V
10
10
V
P IOI
1.5
W
Junction temperature
T.
150
°C
Storage temperature range
T. lg
Thermal Resistance
Junction - ambient 1)
1)
-65
I
RU>JA
to
:s 83.3
+ 150
°C
IKIW
I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.5mm
Mounting pad for the collector lead min 6cm2
') For detailed dimensions see chapter Package Outfines.
Siemens
217
BCP 29, BCP 49
Characteristics
at TA = 25 ·C, unless otherwise specified.
Parameter
Values
min.
!typ.
max.
IUiilt
DC Characteristics
Collector-emitter breakdown voltage
Ic = 1mA, IB = 0
BCP 29
BCP 49
V(BR)CEO
Collector-base breakdown voltage
Ic = 100 pA, Ie = 0
BCP 29
BCP 49
V(SR)CBO
Emitter-base breakdown voltage
IE = 10 pA, Ic = 0
V(BR)EeO
Collector-base cutoff current
Vce=30 V, IE=O
Vce=60 V, IE=O
Vce=30 V,/E=O, TA = 150'C
Vcs =60 V'/E =0, TA = 150'C
BCP
BCP
BCP
BCP
ICBO
29
49
29
49
Emitter-base cutoff current
VEe = 4 V, Ic = 0
DC current gain 1)
Ic = 100 IlA , VCE = 1V
Ic = 10 mA, VCE = 5 V
Ic = 100 rnA, VCE = 5 V
Ic = 500 rnA,VCE = 5 V
lEBo
29
49
29
49
29
49
29
49
VCE•AI
Base-emitter saturation voltage
Ic 1OOrnA'/e 0.1 rnA
VSEsal
=
-
-
V
V
40
80
-
-
V
V
10
-
-
V
-
-
-
100
100
10
10
nA
nA
11A
11A
-
-
100
nA
4000
2000
10000
4000
20000
10000
4000
2000
-
-
-
-
-
1.0
V
-
-
1.5
V
-
200
-
MHz
-
6.5
-
pF
hFE
BCP
BCP
BCP
BCP
BCP
BCP
BCP
BCP
Collector-emitter saturation voltage
Ic 1OOrnA'/e 0.1 rnA
=
30
60
=
=
AC Characteristics
Transition frequency
Ic = 50 rnA, VCE =5 V, f= 100 MHz
fr
Output capacitance
Vcs=10V,f=1 MHz
Cob
1) Pulse test conditions: t :;;;; 30011S; D = 2%
218
Siemens
BCP 29; BCP 49
Total power dissipation PIOI
= ({TAl
Collector cutoff current Iceo
Vce = VCEmax
= ({TA)
nA
2.0 -
r
--,-,-,- - - --- -,-'--1-'-,
W
r--~
1--
Ii..
t
-
re-
'-r -1-0--
1.5
~'~~§~f~F-f-3I~~--!~~-I-~~-~;t'~
~
lceo
IIO J
5
=-='='::"'~~:'.~~I= -=:::'={;
H-'
.-
~~~~I_-~~+1~-+1-r~'~
r~ ·~-+-t+-H-!
1.0
H-~-+++--l'
1---
0.5
\ -I-H--H-H
--I---i:-I\----f1-1-
-
-1-'i.--1I-1--+-1
,:. -'-r ~:--T.: -~
o
50
Transition frequency
VCE = 5 V
100·C
100
150
L-L-L-.L..J.-L...L...JL-L-L--'--l-'--...L...JL...J
o
SO
100
--r.
150
°c
'T = ((lel
MHz
10 1
:= --
'1
1
5
5 10'
5 10'mA
Siemens
219
BCP 29; BCP 49
DC current gain hFE
= ((Ie)
Collector-emitter saturation voltage
Ie ((VCE sal)
=
VcE =10V
hFE
= 1000
10'
t=
lIf-
~
~
5
1~
=
I-1'T
-55°(
,~
-
po
:::-
I=- -
'--
_.
--
r=~
-.
---
-.
---
10l
=
5 10°
5 10'
5 10 1
-- - --f-
----
- .
o
5 IO l mA
=
=
"FE
10 I
~..::~.-=
=
--- -: --.
.. -- --- . - ---j-r=
:: --:.:--- -1=
I-
- -,
-~·;f:il-r·:
---'-liY- -- - -- - f-
t =~ ~~ ~~~f; ~i :~~ _~ :-- t
5
c
Jr.- J~Jr-=-150;c -..
II
10 2
S
~BO
t"'--
1.5
Vr:Esol
= 1000
mA -. - .. -
l
"t--.
V
1-
Base-emitter saturation voltage Ie
l
t--.
1.0
_._ ..... -
Collector-base capacitance Cob ((Vca)
;Emilter-base capacitance C'b ((VES )
pF
10
''""
-1-1--
f- --- -
-Ie
1
--
I- -1- . -100 _ '-- ___I ___ __
0,5
'-
10-'
-
- -- -I- -- -I·-H-'I---~1-- - .--
--
_il-
2S0 (
f-
I_
~~ -~I::SOO( - ~
=~-- ft ~- =I~ _-- , ~__I---
+_f__I
t'!'- ~ r[E80
~ .--
---
-
-
I-
--_.-
5
100
5
-
220
VEBO
10' V
I
-
10 0 L_..L_L....--'_
o
VcBol
--
f-
.-. -- -- --1-+-1-+-1
_',-'l-'_'--'-~_..L-''--'--'.
V
- - - VBEsol
Siemens
I-
= !(VBE sal)
BCP 51 ... BCP 53
PNP Silicon AF Transistors
•
•
•
•
For AF driver and output stages
High collector current
Low collector -emitter saturation voltage
Complementary types: BCP 54 ... BCP 56
(NPN)
E
~
Type
Marking
Ordering code (12-mm tape)
Package"
BCP 51
BCP 51
062702 - C2 107
SOT-223
BCP 51-10
BCP 51-10
062702-C2109
SOT-223
BCP 51-16
BCP 51-16
062702-C2110
SOT-223
BCP 52
BCP 52
062702 - C2 146
50T-223
BCP 52-10
BCP52-10
062702 - C2 1 12
SOT-223
BCP 52-16
BCP 52-16
062702 - C21 13
SOT-223
BCP 53
BCP 53
062702 - C2 147
50T-223
BCP 53- 10
BCP 53-10
062702-C2115
50T-223
BCP 53-16
BCP 53-16
062702 - C21 16
50T-223
Maximum Ratings
Symbol BCP51 BCP52 BCP53 Unit
Parameter
Collector-emitter voltage
Roe:S 1kn
Collector-base voltage
Vceo
VCeR
45
45
60
60
80
100
V
V
Vcoo
45
60
100
V
Emitter-base voltage
Veoo
Collector current
Ic
Peak collector current
Base current
Peak base current
Total power dissipation, TA:s 25'C
I)
Storage temperature range
V
1
A
ICM
1.5
A
18
100
mA
IBM
200
mA
P IOI
1.5
W
r.
Junction temperature
5
TSI\I
150
-65
to
+ 150
'c
'c
Thermal Resistance
Junction - ambient I)
:S 83.3
IKJW
I) Package mounted on an epoxy printed circuit board 40mm x 40rnrn x 1.5mm
Mounting pad for the collector lead min 6cm 2
.) For detailed dirnensions see chapter Pack ago Outlines
Siemens
221
BCP 51 ... BCP 53
Characteristics
at TA = 25 ° C, unless otherwise specified.
Parameter
1
Symbol 1 V~lues
min. Ityp.
Imax.
Unit
1
DC Characteristics
Collector-emitter breakdown voltage
Ic = 10mA'/B = 0
Collector-base breakdown voltage
Ic = 1OOpA,/B = 0
V1BR)CEO
BCP 51
BCP 52
BCP 53
45
60
80
-
-
V
V
V
45
60
100
-
-
V
V
V
5
-
-
V
-
-
100
20
nA
pA
-
-
10
pA
25
-
-
V1BR)CBO
BCP 51
BCP 52
BCP 53
Emitter-base breakdown voltage
IE = 10pA.Ic = 0
V1BR)EBO
Collector-base cutoff current
VcB =30VA=0
VCB = 30 V'/E = O,TA = 150 °C
ICBO
Emitter-base cutoff current
VEs =5V,/c =0
lEBO
DC current gain 1)
hFE
Ic = 5 rnA, VCE = 2 V
Ic= 150 rnA, VCE=2 V
BCP 51/BCP 52/BCP 53
BCP 51/BCP 52/BCP 53-10
BCP 51/BCP 52/BPC 53-16
Ic = 500 rnA, VCE = 2 V
40
63
100
25
Collector-emitler voltage
Ic = 500 rnA, 18 = 50 rnA
Base-emitler voltage
Ic = 500 rnA, VCE = 2 V
1)
VCEsat
VBE
1)
-
-
-
-
-
0.5
V
-
-
1
V
100
160
250
160
250
AC Characteristics
Transition frequency
Ic = 50 rnA, VCE = 10 V, f= 100 MHz
1-
1) Pulse test conditions: t ;;,; 300ps; D = 2%
222
Siemens
MHz
BCP 51 ... BOP 53
Total power dissipation Ptot = '(TA)
2.0..-- - W I- I--
f
1.5
-- -I-f-
--. -
~
l-
- -1- -I--I-I--I-j
-. --
"
-+-I--I--l-lf·-
l-
- - - - \ - - -1--1-
1--
5
1-+++-H1fH1--+-~Hl#---t-+-l+H1lI
f
1\
I-
'1 = '(Icl
101EEml33~
-r-'~-'-'-'--'--"-r--'-'
--
I- -- .-- - -
l'1ot
Trlnlltlon frequency
HHz VCE = 10 V
~-=~:.~~y= -~=-;~:--1.01-
-
~ -1--1- -1--1-+-1--1
--
I- - - - -
- -
-\l-I-j--+-l--t--l-l
I-- ----~~44-+-l-+
I-- -- - - - - - - - \ -1-1-1-1-1
====~ : : _-"~I.-
1--- - -- ---- 0.5
1= =- I:::: =-
-1-__-1-1--1
I- -- -- - - - -
I--
\.
- --
-
-1\ - -
---H\
- - - - -- -.~
- -. - - - --1-
oo
100
50
.(
lO'~~~WL-L~~lli~-U~
10°
150
---IA
5 10'
5 10 1
-Ie
5 10 J mA
DC current gain hFE = '(/ c)
VCE =2 V
10 J 1=
E-
f=
l-
f:::
l-
I-
-
-
'= --
I--
-
I-
100·(
t-
III
F2S'
~
5 I--SO'(.
10
""
,
F= -
r=
f:::-
5
-
-
~-
10°
10°
5 10'
5 10 1
5 10 J
-Ie
5 10~ mA
------r.
Siemens
223
BCP 51 ... BCP 53
Base-emitter saturation voltage Ie
hFE =10
= f(VBE .al)
mA
Collector-emitter saturation voltage
le=f(VCEsal)
mA hFE 10
=
5
100 O(
25°(,
'/./
SOO(
"I')
10 1
h /
10 1
./
'11,// v--::
'K
-5
O(
5
5
I
10'
10'
5
5
'K)O
o
0,2
0,4
0,6
0,8
1,0
0,2
1.2 V
224
0,4
0,6
-\'cEsat
- - VeE sal
Siemens
0,8 V
NPN Silicon AF Transistors
•
•
•
•
BCP 54 ..• BCP 56
For AF driver and output stages
High collector current
Low coll~ctor -emitter saturation voltage
Complementary types: BCP51...BCP53 (PNP)
Type
BCP 54
BCP 54-10
BCP 54-16
BCP 55
Marking
E
Ordering code (12-mm tape)
Package'
BCP 54
062702 - C2117
SOT-223
BCP54-10
062702 - C2119
SOT-223
BCP 54-16
062702 - C2120
SOT-223
BCP 55
062702 - C2148
SOT-223
BCP 55-10
BCP 5S-1O
062702 - C2122
SOT-223
BCP 55-16
BCP 55-16
062702 - C2123
SOT-223
BCP 56
BCP 56
062702 - C2149
SOT-223
BCP 56-10
BCP56-10
062702 - C2125
SOT-223
BCP 56-16
BCP 56-16
062702 - C21 06
SOT-223
Maximum Ratings
Parameter
Symbol BCP54 BCP55 BCP56 Unit
VCEO
VCER
45
Collector-base voltage
Vceo
Emitter-base voltage
Veso
45
5
Collector current
Collector-emitter voltage
Rees lk!1
45
60
60
80
100
V
V
60
100
V
5
5
V
Ic
1
A
Peak collector current
ICM
1.5
A
Base current
Is
100
mA
Peak base current
ISM
P 'o'
200
mA
1.5
W
Total power dissipation, TA s25°C
II
Junction temperature
Tj
Storage temperature range
Tslg
·C
150
-65
to
+ 150
·C
Thermal Resistance
Junction - ambient 1)
IR
1hJA
s83.3
I) Package mounled on an epoxy prinled circuil board 40mm x 40mm. x 1.5mm
Mounting pad lor Ihe colleclor lead min 6cm 2
.) For delailed dimensions see chapler Package Outlines
Siemens
225
BCP 54 ... BCP 56
Characteristics
at TA = 25 ·C, unless otherwise specified.
Parameter
Imax.
IUnit
DC Characteristics
Collector-emitter breakdown voltage
Ic = 1OmA.IB = 0
V\BRICEO
BCP 54
BCP 55
BCP 56
Collector-base breakdown voltage 1}
Ic = 1OOpA.lB = 0
BCP 54
BCP 55
BCP 56
V\BnICBO
Emitter-base breakdown voltage
IE = 1OpA.lc = 0
V\BRIEBO
Collector-base cutoff current
VeB =30 V.lE =0
VCB =30 V.IE =0. TA = 150 ·C
ICBO
Emitter -base cutoff current
VEB =5V
lEBO
DC current gain
Ic = 5 mAo VCE = 2 V
Ic = 150 mAo VCE = 2 V
BCP 54/BCP 55/BCP 56
BCP 54/BCP 55/BCP 56-10
BCP 54/BCP 55/BCP 56-16
Ie = 500 mAo VCE = 2 V
hFE
Collector-emitter voltage
Ic = 500 mAo IB = 50 mA
Base-emitter voltage
Ic = 500 mAo VCE = 2 V
1)
VBE
AC Characteristics
Transition frequency .
Ie =50 mAo VCE = 10V. f= 100 MHz
1) Pulse test conditions: t ::.; 300ps; D = 2%
226
Siemens
-
-
-
V
V
V
45
60
100
-
.
.
V
V
V
5
-
.
V
-.
.
-
100
20
nA
pA
-
-
10
pA
25
-
-
-
100
160
250
160
250
-
-
-
-
0.5
V
-
-
1
V
40
63
100
25
VCEsat
1)
45
60
80
BCP 54 .. . BCP 56
Total power dissipation Plol = f (TAl
2.0
=
101~mIIfE!_
r-
W
I-I-f1--
~o,
t
Transition frequency fT = f(lel
MHz VeE 10 V
--- -- - - -
.- .- f-..- "-'- - h - i- :-1-~
1-1- -fi[Sf- --
1.5
-'"
I
-
-.
I- -- I-' - -I- 1-1- -~-
1.0
"
-
f·- -1- -.1- - .\ -
K
5
2
l-
~+++H11~-+-H~It~+;~+ffl
1- -
1--·1--I- -1-1- :-·K~-- -1--- - - - - - .._- -- - ._. - ..- -- -- ...
~.-
0.5
-
-
- --1---- 1- --1-.-11--._.
o
o
100 O(
-TA
50
150
DC current gain hFE = f(1e)
VeE =2 V
IO J
--
-::
hI[ S
1-.
t=
i-
f--
10' I--.L-L.LJ..1.WL-L..L..Lll.WIL-.L.J...ll.1.lJJ1
100
S 10'
5 10 1
5 10' mA
--II
Collector cutoff current leBO = f(TAI
VeE =30 V
nA
_.-
r,oo·
f
101
S
III
1=15°
_50 0 (
l-
.-
-
f---
\"
f-
f-
1-
10'
10'
-
- - -- - -.f- V1ypl-
~:o:::= = =.
==.1= =1~l1.-:~Et§:§
I-I-f--
1-11
5 F'---:E=i==:::;l'f::+-'=:
i=
1=
S ~.
I-
.-
-
-
.
-.
~*~~~~*~~~~
I=I=:..~ i- ---- -- 1=1=
5 FF-:
10°
I-f-V-
10°
10- 1
S 10°
5 10'
I-
10-'
S 10 1
o
S 10 1 mA
I-t-
-I- -t-t--I--t-,H--t-t-l
1/
50
100
150°C
--/A
-II
Siemens
227
BCP 54 . .. BCP 56
Base-emitter saturation voltage Ie
hFe = 10
= {(VBe sa')
mA
10'
-
- i-=-
~ 1= =-r=
F
- r= 1-= 1=
=r= .:=
f--- r= r=
~ f-:
1=
== i== -= =
-::-50·(~ Y- ~ 1-=1==
Y
V- l -iI
-.
101
== --
c-.=
l00·~-~ =
2S·C
1=
1-' ~
"
rt
rl- ~ iF..
--
10'
-
5 F r= F
l- I--I-
o
0.2
~~ ~
f--
1=
f~ ~ ~
o.
0,4
0,6,
=
'10'
i-
5 r::=-~ cc7
L
100 "C
·C
~ l/2S
-SO ·c
5
10'
f-- f--
-:""1- f--- f---
0,8
i-
.. 1-- I - f---
1.0
1.2 V
0,2
0,4
0,6
-\'cE ..,
- - VO£ut
228
-
5
f=
1=
.1
I-- 1--
'10 0
~
Collector-emitter saturation voltage
Ie = ((VeE.a,)
mA h Fe 10
Siemens
0,8 V
Bep 68
NPN Silicon AF Transis\ors
•
•
•
•
•
For general AF application
High collector current
High collector gain
Low collector -emitter saturation voltage
Complementary type: BCP 69 (PNP)
E
Type
Marking
Ordering code (12-mm tape)
Package"
BCP 68
BCP 68
Q62702-C2126
SOT-223
-
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
V CEO
VCES
20
25
V
V
Collector-base voltage
V CBO
25
V
Emitter-base voltage
VEBO
5
V
Collector current
Ic
1
A
Peak collector current
ICM
2
A
Base current
IB
100
rnA
IBM
200
rnA
Peak base current
BCP 68
Unit
PIOI
1.5
W
Junction temperature
TI
150
°C
Storage temperature range
T~lg
-65 to + 150
°C
IR'hJA
:s83.3
Total power dissipation. TA:s 25°C
1)
Thermal Resistance
Junction - ambient
1)
I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm
Mounting pad lor the collector tead min 6cm 2
·1 For detailed dimensions see chapter Package Oullines
Siemens
229
BCP 68
Characteristics
at TA = 25 DC, unless otherwise specified.
Parameter
I
I
Unit
Symbol
/max.
DC Characteristics
Collector-emitter breakdown voltage
Ic = 30mA, IB = 0
V(BR)CeO
Collector-emitter breakdown voltage
Ic = lOIlA, VBE 0
V1BR)CES
Collector-base breakdown voltage
Ic = lOIlA, '13 = 0
V'BR)CBO
Emitter-base breakdown voltage
IE = lOIlA, IB = 0
V(BR)EBO
Collector-base cutoff current
VeB =25V
VC:B = 25 V, TA = 150 DC
ICBO
Emitter-base cutoff current
VEI3=5V./c=0
lEBO
DC current gain 1)
Ic = 5 mA, Vee = 10 V
Ie = 500 mA, VeE = 1 V
le=lA,VeE=lV
hFE
Collector-emitter voltage 1)
Ie 1 A, IB = 100 mA
VCEsal
Base-emitter voltage
Ic =5mA, VcE =10 V
Ie = 1A, VCE = 1V
VBE
=
=
1)
20
-
-
V
25
-
-
V
25
-
-
V
5
-
-
V
·
·
-
100
10
nA
llA
-
·
10
Il A
50
63
60
-
400
·
.
.-
·
-
0.5
V
0.6
-
V
·
·
-
·
-
-
1
AC Characteristics
I·
Transition frequency
Ie = 100 mA, VeE = 5 V, f= 100 MHz
1) Pulse test conditions: t 3; 30011S; D = 2%
230
Siemens
MHz
BCP68
Total power dissipation PIOI
2.0
W
"101
~
- - -j---t-t-t---t---l
--1- ---- -- r-- - - r--- --- -- - 1- -j----I-f---+--t---l
-
f---
-+--
1--
-
-1-
h - --1-1--1-\
l-
- -
--
-
o
- -I-I-
-
-
~-
\,
fe:-
--
f:=;k'
1--
10'
10°
150
5 10 1
-~
Collector cutoff current/CBO
VCE = 30 V
-
I-r-
_L-'--'------'---'---'--'-------'---"----'_,
100°C
_.
V-
I--2
50
-f=
r--
5 I---
-/-- - - - - - -- - --IV---I--------i- --1-1\
'--L_
,-
I---
-- -- -- -. -t---t-'l-t---j
- -- -
1----
- I - -"--1-1--1--1
- - --- -- - - -
--
f--
10 1
-- := := =~- =~~~K++-I--'-I
0.5
= ((l cl
I--1----
!
I~ .-j--t-I-j---I-iH---t---l
1-1-[:\ --t-t-t--t-I-j--f---i
--1-1-
1-
I--
f,
_
1.0
fT
10 3
- 1- -
r-
o
Transition frequency
MHz VCE = 5 V
r-r-,.---,-r-r-,.---,-r-r-r--,-r-r--.-,
1.5 -
f
= f(TAl
= ((TAl
5 10 1
--Ie
5 10 3 mA
DC current gain hFE = ((lcl
VCE = 1 V
hI[ 5
I
100°
10 1
5
2S o
f-?'50-o-c
I-
F-
I-
'-:- ~
-
r--
nln~~'=H1111l.
~
1-
5r10'
I---
1---·-
.100 '---'---'---'---'-'----'--J ----'---'---,----'---'-'-'--.
o
50
100
150°C
10'
Siemens
5 10 1
5 10 3
---Ie
5 10' mA
231
BCP68
Collector-emitter saturation voltage
Ie = f(VCEsal )
mA hFE = 10
10·
5
-- l=: :=
'=
- f--- ~
-
-
~100 °c
~b rL
~.::::/ V25 °C ~
mA
-
-
-SO °c
i=
r==
-
10 I
= ((VBE sal)
-- ----- I - - -
f71 V
rJ / '
Base-emitter saturation voltage Ie
hFE = 10
5 C=f-.:-
5
f-
--
-1-
1--l-l--I--4--f-.:-I-l-....-l--1- 10'
=
5
=
==
- --
i=:f=f,-.
f--
5 1---'.1'-'1--'-
J_-t
-- f- fI-t-- _. _- -I--~I'-'I=
10'
I--
~4-1~1-I-+- I'-'
1'-'1'-' -
10a
o
0,2
0,4
0,6
0.6 V
I'-'
-1/- -If -- - - - 1 -
100 L.l--L_l_.L.L-lIL.1.L.L-L..J.....L-l
o 0,2 0,4 0,6 0,6 1,0 1,2 V
....:..- "Esa'
- - - - \'r.Esat
232
I'-'
Siemens
PNP Silicon AF Transistors
•
•
•
•
•
BOP 69
For general AF application
High collector current
High collector gain
Low collector -emitter saturation voltage
Complementary type: BCP 68 (NPN)
E
~:
Type
Marking
Ordering code (12-mm tape)
Package"
BCP 69
BCP 69
Q62702 - C2130
SOT-223
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
VCES
VC80
VE80
Collector-base voltage
Emitter-base voltage
Collector current
Ic
Peak collector current
ICM
Base current
Peak base current
Total power dissipation. TA ::; 25· C
BCP 69
Unit
20
25
V
V
25
V
5
V
1
A
2
A
18
100
mA
IBM
200
mA
Ptot
1.5
W
Junction temperature
Tj
150
·C
Storage temperature range
T stg
-65 to + 150
·C
::;83.3
IIVW
1)
Ther.mal Resistance
Junction - ambient
1)
IR
thJA
t) Package mounled on an epoxy prinled circuil board 40mm x 40mm x 1.5rnm
Mounling pad for the collector lead min 6cm2
.) For delailed dimensions see chapler Package Oullines
Siemens
233
BCP 69
Characteristics
at TA = 25 • C, unless otherwise specified.
Parameter
I
I
Symbol Values
min. Ityp.
Imax.
I
Unit
_
DC Characteristics
Collector-emitter breakdown voltage
Ic =30mA, Ie = 0
V(BR)CEO
Collector-emitter breakdown voltage
Ie =10\-1 A, veE = 0
V(BR)CES
Collector-base breakdown voltage
Ie = 10\-lA, IB = 0
V(BR)CBO
Emitter-base breakdown voltage
IE = 10\-lA, IB = 0
V(BR)EBO
Collector-base cutoff current
VCB =25 V
VcB =25 V, TA =150·C
leBo
Emitter-base culort current
VEe = 5 V, Ie = 0
IEeo
DC current gain 1)
le=5mA, VcE =10V
Ic = 500 mA, VeE = 1 V
le=1A,VeE=1V
hFE
Collector-emitter voltage 1)
Ie = 1 A, Ie = 100 mA
VeEsal
Base-emitter voltage
Ie = SmA, VCE = 1U V
le=1A, VeE=1V
VeE
20
25
25
5
1)
-
-
-
V
-
-
V
-
V
-
V
-
-
-
100
10
nA
\-I A
-
-
10
\-I A
50
63
60
-400
-
-
--
-
0.6
-
-
-
0.5
V
-
V
1
AC CharacterIstics
Transition frequency
le= 100 mA, VcE =5 V, f= 100 MHz
MHz
1) Pulse test conditions: t ~ 300\-ls; D = 2%
234
Siemens
BCP 69
Transition frequency
MHz VCE = 5 V
Total power dissipation PIOI = ((TA )
2.0,,· - .. ---:- , - - - - , - ,
(T
= ((I c)
lOll--
W - - -- .- - -. -.- -- .- - -- - ·-11-1-'------ i1-1- - -- - - -- - -/--I-t-t-t--t--i
I- - - . I1.5 r- , - - - - - - 1 - - - - 1 - - l I- - _t--ot-t--t--trf-t-
f
5 t--t-t-t+IHttt-t-t-HttHt--t-++t+ttH
i\.-
~==I=~S= == c=~=~
10
i--
-
. 1-1-.- --1---[\- - -I--t-H--j
I-I- ~ - -I- -
f\t--t--t--t--t--I-i
1-1-_.-1- -I- - -I- '\
I- - - - - - - -.··1-1-I- - - -- -I- .. - ~ - I-
OS
-
I-I-----------~-
1-1-- -.- -I- -/--f-t-i-t-+'IJ-t-t
--_ .. 1 - - _ . _ . _ - - - - - \
- --. -. -- .- - -. -- -- _. - -- -1\
o . -. - '---.
o
.L-
50
100
10'
_ _ L..:
<--..L-J...LJJUliL--.<.....L...U.llUL..--'.....L.LU.llU
5 10 1
5 la'
10°
150
O(
nA
Collector cutoff current
. VCE = 30 V
10~
ICBO
= ((TA )
DC current gain hFE = ((I c)
VCE = 1 V
II
-
5 1-1-1I eao
I
--- -.
--
l-
I-
100 O( -
.'
10'
.-
-
-
i---
1--
maxi/
10l
I-I-
-
25°(
1/
-50 O(
V
--
5
5 -
I-
r-
-,/
10 1
~
-
-
-
ii-
- -
Vlyp
-
la'
.-
5
10'
5
ro
-
-
-
5
10°
sIal mA
---Ie
-7",.
50
-T.
100
150
10°
10°
O(
5 10'
=
-==
.-
5 10 1
5 IO J
5 10' mA
---Ie
Siemens
235
BCP69
Base-emitter saturation voltage Ie = ((VOE .n')
Collector-emitter saturation voltage
hFE
Ie = ((VeE sa')
mA hFE = 10
10'
5 I--
1-- - - - - -
-I-
==
= 10
5
-I-- -
-
=t.
rt
L4 '/'-
- 100 °c
~
fL r ' 25 °C
~ ,-50 o C
100 °C '\.
25°C _
-50 0 C
-- -
~
/ II
1/
I / I
10'
5
0,2
-I-
5
-I=:::: _ -- I - -
10'
0,4
0,6
-
I I
5
0,8 V
10°
o
0,2
0,4
01>
0,8
1,0
- VOEgt
236
Siemens
1,2 V
PNP Silicon Darlington Transistors
•
•
•
•
BCV26
BCV46
For general AF applications
High collector current
High current gain
Complementary types: BCV 27, BCV 47 (NPN)
Type
(;] BCV 26
(;] BCV46
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
FD
Q62702-C 1151
Q62702-C 1153
Q62702-C1493
Q62702-C1475
SOT 23
SOT 23
FE
Maximum ratings
Parameter
Symbol
BCV26
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
30
40
10
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VEBO
Ic
ICM
IB
IBM
Ptot
7j
Tstg
BCV46
V
V
V
mA
mA
mA
mA
mW
150
-65··· + 150
°C
°C
::::; 350
RthJA
Unit
60
80
10
500
800
100
200
360
K/W
(;] Preferred type
Siemens
237
BCV26
BCV46
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 10 rnA
BCV26
BCV46
V(BR) CEO
Collector-base breakdown voltage
V(BR)CBO
min
typ
max
Unit
30
60
-
-
V
V
40
80
-
-
V
V
-
V
-
-
-
100
100
10
10
nA
nA
IlA
-
-
100
nA
4000
2000
10000
4000
20000
10000
4000
2000
-
-
-
-
-
-
-
-
-
-
-
-
Ic=1001lA
BCV26
BCV46
Emitter-base breakdown voltage
h = 10 IlA
Collector-cutoff current
BCV26
VCB = 30V
BCV46
VCB = 60V
Vce = 30 V, TA = 150°C
BCV26
BCV46
Vce = 60 V, TA = 150°C
Emitter cutoff current
VEe = 4 V
DC current gain')
Ic = 100 IlA, VCE = 1 V
Ic = 10 rnA, VCE = 5V
Ic = 100 rnA, VCE = 5 V
Ic = 0,5 A, VCE = 5 V
V(BR) EBO
ICBo
10
-
hBo
J.lA
hFE
BCV26
BCV46
BCV26
BCV46
BCV26
BCV46
BCV26
BCV46
-
-
Collector-emitter saturation voltage ')
Ic = 100 rnA, Ie = 0,1 rnA
VCEsat
-
-
1
V
Base-emitter saturation voltage')
Ic = 100 rnA, IB = 0,1 rnA
VBEsat
-
-
1,5
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic=50mA, VCE=5V, f= 20 MHz
fr
-
200
-
MHz
Output capacitance
VCB = 10V, f= 1 MHz
Cob
-
4,5
-
pF
') Pulse test: t 5 300 Ils, D = 20/0
238
Siemens
BCV26
BCV46
Total power dissipation P'o' = f (TA)
Collector-base capacitance CCBO = f( VCBO)
Emitter-base capacitance CEBO = f (VEBO)
pF
10
mW
400
CE BO
IC eBo)
~ot
I
\
'"
300
i'--- "r--.
1\
\
200
r--.
~BO
jt-.... '-. .....
1\
CEBO
\
\
100
'\
o
1\
o
50
100
150 0 (
10 0
------- ~
Pulse handling capability
(standardized)
r'h
5
-
Transition frequency
VCE = 5 V
= f (t)
fT = f
10' V
VEBO I Veso )
(l cl
K
lih
Iii
MHz
10 0
10 3
III
5
I
,
'0.5
0,2
0,1
0,05
, 0,02
0,01
0,005
0:0 IIII
5
2
D~
I-..
V
5
~J!tn-
.l.
T
f-- T-i
10- 3
10-6 10- 5 10- 4 10- 3 10- 2 10-' 10 0
10' s
5 10'
-f
Siemens
239
BCV26
BCV46
Base-emitter saturation voltage Ie = f ( VeE sat)
hFE = 1000
Collector-emitter saturation voltage
Ie = ((VcEsad
hFE = 1000
mA
10l
150 0 C
rnA
~
Base-emitter saturation voltage Ie
hFE = 1000
=
t( VBEsat)
rnA
~
150 °c+l. 25 OC
I
U
VI
II
-50°C
/ I/
5
I125°C
-25°C
-55°C
F=
5
II
100
o
10-'
0,2
0,4
0,6
0,8
1.2 V
1,0
--Vcr
-
o
3 V
2
VeE SIt
sat
Collector-base capacitance GeBo = t(VeBo)
Emitter-base capacitance GEBO = t (VEBO)
DC current gain h FE = f (I cl
VeE = 5V
pF
10
[E BO
I[ eBO 1
5
"""
125°C
"t'r--..
°
~BO
-55°(
............
':r-.... .........
[EBO
10'
./
10l
10 0
5
-
252
VEBO
10' V
I
10-'
VeBol
5 100
5 10'
5 10 2
-Ie
Siemens
5 10 J rnA
NPN Silicon AF Transistors
•
•
•
•
•
BCW60
BCX70
For AF input stages and driver applications
High current gain
Low collector-emitter saturation voltage
Low noise between 30 Hz and 15 kHz
Complementary types: SCW 61, SCX 71 (PNP)
c{!j:
Type
Marking
Type
Marking
Ordering code
Package
SCW60A
BCW60 B
SCW60 C
SCW60 D
BCW60 FF
AA
AS
AC
AD
AF
SCW60 FN
SCX70 G
SCX70 H
SCX 70 J
SCX 70 K
AN
AG
AH
AJ
AK
Refer to index
SOT 23
rn
rn
rn
rn
Maximum ratings
Symbol
BCW60
BCW60 FF
BCX70
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
Ic
ICM
IBM
P tot
32
32
5
32
32
5
45
45
5
100
200
200
330
V
V
V
mA
mA
mA
mW
150
-65···+150
°C
°C
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
RthJA
Parameter
Tj
Tstg
:s; 375
K/W
rn Preferred type
Siemens
253
BCW60
BCX70
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 10 mA
BCW 60, BCW 60 FF
BCX70
V(BR) CEO
Collector-base breakdown voltage
BCW 60, BCW 60 FF
Ie = 10 !lA
BCX70
V(BR)CSO
Emitter-base breakdown voltage
le=1!lA
V(SR) ESO
Collector cutoff current
VCB=32V
VCB = 45 V
Vcs = 32 V, TA = 150°C
VCB = 45 V, TA = 150 0 e
Icso
typ
max
Unit
32
45
-
-
V
V
-
-
V
V
-
V
-
-
20
20
20
20
nA
nA
!lA
!lA
20
nA
20
20
40
100
140
200
300
460
-
-
120
180
250
380
170
250
350
500
220
310
460
630
-
50
70
90
100
-
-
-
-
32
45
5
-
BCW 60, BCW 60 FF
BCX70
BCW 60, BCW 60 FF
BeX 70
-
Emitter cutoff current
VEB = 4 V
leBO
DC current gain')
Ic = 10 !lA, VCE = 5 V
BCW 60 A, BCX 70 G
BCW 60 B, BeX 70 H
BCW 60 FF, BeW 60 e, BeX 70 J
BCW 60 FN, BeW 60 D, BCX 70 K
Ic=2mA, VCE=5V
BCW 60 A, BCX 70 G
BeW 60 B, BeX 70 H
BCW 60 FF, BCW 60 e, BCX 70 J
BCW 60 FN, BeW 60 D, BCX 70 K
Ic = 50 mA, VCE = 1 V
BCW 60 A, BeX 70 G
BCW 60 B, BeX 70 H
BCW 60 FF, BeW 60 C, BeX 70 J
BCW 60 FN, BeW 60 D, BeX 70 K
hFE
Collector-emitter saturation voltage ')
Ic = 10 mA, Is = 0,25 mA
Ic = 50 mA, Is = 1,25 mA
VCEsat
Base-emitter saturation voltage ')
Ic = 10 mA, Is = 0,25 mA
Ic = 50 mA, Is = 1,25 mA
VSEsat
Base-emitter voltage
I c = 10 !lA. VCE = 5 V
Ic = 2 mA, VCE = 5 V
Ic = 50 mA, VCE = 1 V')
VBE(on)
-
-
-
-
-
0,12
0,20
0,25
0,55
V
V
-
0,70
0,83
0,85
1,05
V
V
-
0,52
0,65
0,78
-
V
V
V
-
Siemens
-
-
0,55
') Puls~ test: t:$ 300 !ls, D = 20/0.
254
min
0,75
-
BCW60
BCX70
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 rnA, VCE = 5 V, f= 100 MHz
fr
-
250
-
MHz
Output capacitance
VCB = 10V, f=1 MHz
Cob
-
3
-
pF
Input capacitance
VCB = 0,5 V, f= 1 MHz
Cib
-
8
-
pF
Short-circuit input impedance
Ic = 2 rnA, VCE = 5 V, f= 1 MHz
sew 60 A, sex 70 G
sew 60 s, sex 70 H
sew 60 FF, sew 60 e, sex 70 J
sew 60 FN, sew 60 D, sex 70 K
h11e
-
2,7
3,6
4,5
7,5
-
kQ
kQ
kQ
kQ
Open-circuit reverse voltage transfer ratio
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
sew 60 A, sex 70 G
sew 60 s, sex 70 H
sew 60 FF, sew 60 e, sex 70 J
sew 60 FN, sew 60 D, sex 70 K
h12e
-
1,5
2,0
2,0
3,0
Short-circuit forward current transfer ratio
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
sew 60 A, sex 70 G
sew 60 s, sex 70 H
sew 60 FF, sew 60 e, sex 70 J
sew 60 FN, sew 60 D, sex 70 K
h21e
Open-circuit output admittance
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
sew 60 A, sex 70 G
sew 60 s, sex 70 H
sew 60 FF, sew 60 e, sex 70 J
sew 60 FN, sew 60 D, sex 70 K
h22e
Noise figure
Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kQ
f= 1 kHz, M= 200 Hz
sew 60 A to sex 70 K
F
-
-
-
-
-
Equivalent noise voltage
Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kQ
f=10Hz···50Hz
sew 60 FF, sew 60 FN
Siemens
-
-
10- 4
10- 4
-
10- 4
10- 4
-
-
-
-
-
-
-
J.!s
J.!s
J.!s
J.!s
-
2
-
dS
-
1
2
dS
-
-
0,135
J.!V
-
Vn
-
18
24
30
50
-
Noise figure
Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kQ
f= 1 kHz, M= 200 Hz
sew 60 FF, sew 60 FN
200
260
330
520
-
-
255
BCW60
BCX70
Total power dissipation Ptot ,.; f ( TA)
Collector-base capacitance CCBO = f( VCBO)
Emitter-base capacitance CEBO = f(VEBO)
mW
400
pF
12
"lot
t
\.
1-1- ...
~
300
200
l\
,
'"
8
\.
"""\
1'\
iJCBO
i'-
f'
~
4
.100
. . . . r-.
\.
2
,
o
o
CE~O
r-.
1'\
50
100
150 DC
5
10' V
-7.4
Pulse handling capability rth = fIt)
(standardized)
K
Transition frequency fT = f (Ie)
VCE = 5V
Vi
MHz
10°
103
,
III
~
5
fy
t
TT
0,5
0,2
0,1
0,05
0,02
0,01
0,005
1--1"-
10 2
0=0 1111
10- 2
5
l/
i.I
5
5
~T-,,;
~
tp
O=y
10-3
10-6 10- 5 10-4 10- 3 10- 2 10-' 10°
,
10' s
10
10-'
-f
256
5 10'
-Ie
Siemens
5 10 2 rnA
BCW60
BCX70
Base-emitter saturation voltage Ie
hFE
=
= f (Vae sail
Collector-emitter saturation voltage
Ie
40
= {(VeEsa')
hFE = 40
mA
10 2
Ie
./
Ie
!
r- -
100°C
-
25O~~
I I I
- 50 oC I
I
II
II
/ /
VI d V V
-50°C
25°(
l00 0 (
5
5
10-1
°
0,2
0,4
0,6
0,6
1,0
1,2 V
10-1
°
VSE sat
Collector current Ie
=
0,1
0,2
0,3
0,4
0,5 V
----VcEsat
DC current gain hFE = f (le)
{(VaE)
VeE = 1 V
VeE = 1 V
II
/
l00°C
I
rl00 0 (
I
r- 25 °(
~
-
II
25°C
_50 0 (
10'
5
10- 2
o
I
0,5
1.0 V
10°
10- 1
5 10- 1
5 10°
5 10'
5 10 1 mA
-Ie
Siemens
257
BCW60
BCX70
Collector cutoff current I csc = f ( TA)
h parameter he = f(Ie)
VCE=5V
nA
104
5
101
5
j'
~".
10'
V
max.
5
::h'1.
1/
10'
5
=h1,
typo
VcE=5V
~ jV
5
~
h11•
,
V
100
50
150°C
5
h parameter he = f (VCE)
Ie = 2 mA
10' mA
Noise figure F = f ( VCE)
Ie = 0,2 mA, Rs = 2 kO, f= 1 kHz
dB
20
2,0
r-rrTITmr-rTn~r-rTTn"m
1
I
I
j'
Ic=2mA
"1- c-
1,5
.H
........
\\
1\ ....
",.
t-
h ll •
t;;;
h111,
P
~ ;;;;p.
1 15
~~~~-r~~r-+++*~
~
'\
1,0
h 1"
F
~
"\
0,5
o
OL-~LUillL~~Uill~~~=
o
258
10
20
-VcE
30 V
10·'
Siemens
BCW60
BCX70
Noise figure F ~ f(f)
Ie ~ 0,2 mA, Rs ~ 2 kQ, VCE
Noise figure F
~
VCE~5V, f~
5V
~ f (/ c)
120Hz
dB
20
dB
20
Rs=1 Mil
i-
1/
1\
10kll/
I
I
10
100kll
II
I
10
J 50011
II
1\
,
.I
V\-
I
I
1kll
11111
11111
r10°
IIIII
10 ' mA
10 '
--f
Noise figure F ~ f (l cl
VCE ~ 5 V, f~ 1 kHz
Noise figure F ~ f (/ c)
VCE ~ 5V, f~ 10 kHz
dB
20
dB
20
I
Rs=~11
Rs=1MIl 100k I 10 kll
I
\
I
/100k
10 1\
II
10
\
1kll
I I II
III
ill
10kll
0011
/
(\
II
/
......
",-
o r-
\.
1kll ......
" 50011
1000'
10- 3
I III
I III
IIIII
/
111111
IIIU
10 ' mA
o
10- 3
--Ie
1aIII~
"
10' mA
--Ie
Siemens
259
BCW61
BCX71
PNP Silicon AF Transistors
•
•
•
•
•
For AF input stages and driver applications
High current gain
Low collector-emitter saturation voltage
Low noise between 30 Hz and 15 kHz
Complementary types: BCW 60, BCX 70 (NPN)
Type
BCW61
BCW61
BCW61
BCW61
BCW61
A
B
C
0
FF
Marking
Type
BA
BB
BC
BO
BF
BCX61
BCX 71
BCX71
BCX71
BCX 71
~
~
~
~
FN
G
H
J
K
Marking
Ordering code
Package
BN
BG
BH
BJ
BK
Refer to index
SOT 23
Maximum ratings
Parameter
Symbol
BCW61
BCW61 FF
BCX71
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
32
32
5
32
32
5
45
45
5
V
V
V
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
~
VCBO
VEBO
Ic
ICM
IBM
PlOt
Tj
Tstg
mA
mA
mA
mW
150
-65···+150
°C
°C
:<:; 375
RthJA
Preferred type
260
100
200
200
330
Siemens
K/W
BCW61
BCX71
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
BCW 61, BCW 61 FF
Ic = 10 rnA
BCX 71
V(BR) CEO
Collector-base breakdown voltage
BCW 61, BCW 61 FF
Ie = 10 flA
BCX71
V(BR) CBO
Emitter-base breakdown voltage
lE=1flA
V(BR) EBO
Collector cutoff current
VCB=32V
VCB = 45 V
VCB = 32 V, TA = 150°C
VCB = 45 V, TA = 150°C
ICBo
BCW 61, BCW 61 FF
BCX71
BCW 61, BCW 61 FF
BCX71
Emitter cutoff current
VEB = 4 V
lEBo
DC current gain')
Ic = 10 flA, VCE = 5 V
BCW 61 A, BCX 71 G
BCW 61 B, SCX 71 H
BCW 61 FF, BCW 61 C, SCX 71
BCW 61 FN, BCW 61 D, BCX 71
Ic=2mA, VCE=5V
BCW 61 A, BCX 71 G
BCW 61 B, BCX 71 H
BCW 61 FF, BCW 61 C, BCX 71
BCW 61 FN, BCW 61 D, BCX 71
Ic = 50 mA, VCE = 1 V
BCW 61 A, BCX 71 G
BCW 61 B, BCX 71 H
BCW 61 FF, BCW 61 C, BCX 71
BCW 61 FN, BCW 61 D, BCX 71
hFE
J
K
J
K
J
K
Collector-emitter saturation voltage')
Ic = 10 mA, IB = 0,25 mA
Ic = 50 rnA, IB = 1,25 mA
VCEsat
Base-emitter saturation voltage')
Ic = 10 mA, IB = 0,25 mA
Ic = 50 mA, IB = 1,25 mA
VBEsat
Base-emitter voltage')
Ic = 10 flA, VCE = 5 V
Ic = 2 mA, VCE = 5 V
I c = 50 mA, VCE = 1 V
VBE (on)
min
typ
max
Unit
32
45
-
-
V
V
-
V
V
-
-
32
45
-
5
-
-
-
20
20
20
20
nA
nA
flA
flA
-
-
20
nA
20
30
40
100
140
200
300
460
-
-
120
180
250
380
170
250
350
500
220
310
460
630
60
80
100
110
-
-
-
-
-
0,12
0,20
0,25
0,55
V
V
-
0,70
0,83
0,85
1,05
V
V
-
0,52
0,65
0,72
-
V
V
V
0,55
-
-
-
0,75
-
V
-
-
-
-
') Pulse test: t:5 300 fls, D = 20/0.
Siemens
261
BCW61
BCX71
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 mA, VCE = 5 V, f= 100 MHz
Output capacitance
VCB = 10V, f=1 MHz
Input capacitance
VCB = 0,5 V, f= 1 MHz
Short-circuit input impedance
Ic = 2 mA, VCE = 5 V, f= 1 MHz
sew 61 A, SeX.71 G
sew 61 s, sex 71 H
sew 61 FF, sew 61 e, sex 71 J
sew 61 FN, sew 61 D, sex 71 K
fT
-
250
-
MHz
Gob
-
3
-
pF
Gib
-
8
-
pF
-
2,7
3,6
4,5
7,5
-
kn
kn
kn
kn
h11e
-
-
Open-circuit reverse voltage transfer ratio
Ic = 2 mA, VCE = 5 V, f= 1 kHz
sew 61 A, sex 71 G
sew 61 s, sex 71 H
sew 61 FF, BeW 61 e, sex 71 J
sew 61 FN, Bew 61 D, sex 71 K
Short-circuit forward current transfer ratio
Ic = 2 mA, VCE = 5 V, f= 1 kHz
sew 61 A, sex 71 G
sew 61 s, sex 71 H
sew 61 FF, sew 61 e, sex 71 J
sew 61 FN, sew 61 D, sex 71 K
h12e
Open-circuit output admittance
Ic = 2 mA, VCE = 5 V, f= 1 kHz
sew 61 A, sex 71 G
sew 61 S, BeX 71 H
sew 61 FF, sew 61 e, sex 71 J
sew 61 FN, sew 61 D, sex 71 K
Noise figure
Ic = 0,2 mA, VCE = 5 V, Rs = 2 kn
f= 1 kHz, M= 200 Hz
sew 61 A to sex 71 K
Noise figure
Ic = 0,2 mA, VCE = 5 V, Rs = 2 kn
f= 1 kHz, M= 200 Hz
sew 61 FF, sew 61 FN
h22e
Equivalent noise voltage
Ic = 0,2 mA, VCE = 5 V, Rs = 2 kn
f= 10 Hz ... 50 Hz
sew 61 FF, sew 61 FN
Vn
262
-
-
10- 4
10- 4
10- 4
10- 4
200
260
330
520
-
-
-
-
-
18
24
30
50
-
I1S
I1 s
I1 s
I1s
-
2
-
dS
-
1
2
dS
-
-
0,11
I1V
-
1,5
2,0
2,0
3,0
-
-
-
h21e
-
-
-
-
F
Siemens
BCW61
BCX71
Total power dissipation Ptot
= f (TA)
Collector-base capacitance GCBO = f(VCBO)
Emitter-base capacitance GEBO = f (VEBo)
pF
rnW
400
12
CC60
(CT) 10
.c;ot
i
I-~
300
"
"-
'\.
200
\.
4
I\..
"}C60
'" "-"
/
[£60
100
......
"
......
\.
1\
o
o
50
100
150°C
-
-T.
Pulse handling capability
(standardized)
(th
VC60 (V [BO
)
Transition frequency fT = f (I cl
VCE = 5V
= f (t)
K
W
MHz
103
10°
'ih 5
I
,
~
j,...1"..-
~
10- t
~
2
III
I
0.5
0.2
0.1
0.05
0.02
0.01
0.005
0=0
~
2
V
V
~
o=~
1(r3
10-6
10-5
'"
10- 4
T
10- 3 10- 2
10-'
10°
5
5 10 3 rnA
5 10'
-t
-IC
Siemens
263
BCW61
BCX71
Base-emitter saturation voltage VBE sat
=
= 40
hFE
f (I c)
Collector-emitter saturation voltage
VCEsat = f(Iel
hFE =
mA
mA
~
~
l000e
l -I f--
j
771
1
250~f::
_ 50 0[1
40
I I I
1/ II
77
1/, A ~ V
-SOO(
2S 0 [
lODO(
5
5
5
10-1
o
0.2
0.4
0.6
0.8
1,0
1.2 V
xr1
o
0,1
0,3
0,2
0,4
0,5 V
---VcEsat
Collector current I C = f (VBE)
VeE = 1 V
DC current gain h FE = f (l c)
VCE = 1 V
100 0(
rT
/
J
1- 250
~(
fT
l00°Cf
2S 0 [
5
_50 0 [
10°
5
10 1
1
5
2
I
0.5
1.0 V
°
10 ,0-2
5 10-1
5
100
5 101
-Ie
264
Siemens
5 101 mA
BCW61
BCX71
h parameter he = ((l cl
VeE = 5V
Collector cutoff current I eBO = (( TA)
nA
10 2
10 4
5
h,
5
1
h ll •
\'h=5V
V
ma~/
5
,h,2 •
1/
10'
5
" ........
typo
,
"'-
VII'
IoCh 21,
h2y
1/
50
150 ·C
100
-Ie
h parameter he = ((VeE)
Ie = 2 mA
Noise figure F = f (VeE)
Ie = 0,2 mA, Rs = 2 kn, f= 1 kHz
2,0
dB
20 r-rTTITmr-,Tnmnr-"Tnrn
I
I
}e =12~A
F
h,,-~
f--
\
....
"
1,0
~
1 15 ~~+H~-+-H~m-~~~
,,-
I\.
h'y~
"
".,
10 I-H++ttHl--t-H-tttHt--+++1-ttffl
l/'
..-+'"
hn-r-
0,5
o
o
0L--.L--'.-Ll..!.J.llL----'.-L'-"-ll=----'--.L.L~
10
30 V
10-'
Siemens
265
BCW61
BCX71
Noise figure F = f (l cl
Noise figure F = f (f)
Ie = 0,2 rnA,
Rs = 2 kn, VCE = 5 V
VCE=5V,f=120Hz
dB
20
dB
20
I- ~s=1MQ
I
\
10
100kl1
10kl1f
I
II
10
J 500Q
I
5
o
10- 2
10°
.I
"
-
o
10-3
10'
--f
L
II
11111
11111
11111
10' mA
Noise figure F = f (l c)
VCE =5V, f= 1 kHz
Noise figure F = f (l cl
VCE =5V, f= 10kHz
dB
20
dB
20
"TTI=r"Tmm-rnn=-'Trr~
1kl1
F
!
15
r++m~++#ffi~**~/#+~
f\+++tflfll-~Rs=1MI1 100k
\
10
Rs= 1MI1
I 10kl1
I
f100k
~~ct+Httttt---+-+++~-++t*ll1t-+--tl+tttII
I
10
1kl1
II
/
I
I\,
266
1kQI\'
11111
11111
11111
Jllll
lUll
010- 2
I 1111
IIIII
IIIII
10kQ
OOQ
II 50011
10- 3
f
10°
--Ie
o
10' mA
..ws:J+1c:::
/
...-:
~
10- 3
10' mA
--Ie
Siemens
BCW65
BCW66
NPN Silicon AF Transistors
•
•
•
•
For general AF applications
High current gain
Low collector-emitter saturation voltage
Complementary types: SCW 67, SCW 68 (PNP)
Type
0SCW65A
o SCW 65 S
0BCW65C
Marking
EA
EB
EC
Type
o BCW66 F
0BCW66G
o BCW 66 H
Marking
Ordering code
Package
EF
EG
EH
Refer to index
SOT 23
Maximum ratings
Parameter
Symbol
BCW65
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
32
60
5
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VEBO
Ic
ICM
IB
IBM
Ptot
Tj
Tstg
BCW66
V
V
V
mA
A
mA
mA
mW
150
-65···+150
°C
°C
~375
RthJA
Unit
45
75
5
800
1
100
200
330
K/W
o Preferred type
Siemens
267
BCW65
BCW66
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
BCW65
Ic = 10 rnA
BCW66
Collector-base breakdown voltage
BCW65
Ie = 10 !-LA
BCW66
Emitter-base breakdown voltage
le=1O!-LA
Collector cutoff current
BCW65
VCB = 32V
BCW66
VCB = 45V
VCB = 32 V, TA = 150°C
BCW65
BCW66
VCB = 45 V, TA = 150°C
Emitter-base cutoff current
VEB = 4 V
DC current gain ')
V(BR) CEO
min
typ
max
Unit
32
45
-
-
V
V
60
75
5
-
-
-
V
V
V
-
-
-
-
20
20
20
20
20
nA
nA
!-LA
V(BR) CBO
V(BR) EBO
ICBo
-
leBO
-
-
AC characteristics
Transition frequency
Ic = 50 rnA, VCE = 5 V, f= 20 MHz
Output capacitance
VCB = 10V, f= 1 MHz
Input capacitance
VEB = 0,5 V, f= 1 MHz
') Pulse test: t:5, 300 !-Ls, D = 20/0.
268
!-LA
nA
hFE
Ic=100!-LA, VCE=10V
BCW 65 A, BCW 66 F
BCW 65 B, BCW 66 G
BCW 65 C, BCW 66 H
Ic = 10 rnA, VCE = 1 V
BCW 65 A, BCW 66 F
BCW 65 B, BCW 66 G
BCW 65 C, BCW 66 H
Ic = 100 rnA, VCE = 1 V
BCW 65 A, BCW 66 F
BCW 65 S, SCW 66 G
BCW 65 C, BCW 66 H
Ic = 500 mAo VCE = 2V
SCW 65 A, BCW 66 F
SCW 65 S, BCW 66 G
BCW 65 C, SCW 66 H
Collector-emitter saturation voltage ')
Ic = 100 rnA, IB = 10 rnA
Ic = 500 rnA, IB = 50 rnA
Base-emitter saturation voltage ')
Ic = 100 rnA, IB = 10 rnA
I c = 500 rnA, I B = 50 rnA
-
VCEsat
VBEsat
35
50
80
-
75
110
180
-
-
-
-
100
160
250
160
250
350
250
400
630
-
35
60
100
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0,3
0,7
V
V
-
-
-
1,25
2,00
V
V
Symbol
fT
min
typ
max
Unit
-
170
-
MHz
Gob
-
6
-
pF
Gib
-
60
-
pF
Siemens
BCW65
BCW66
Total power dissipation Ptot = f (TA)
Transition frequency
fT = f (/ c)
VCE =5V
MHz
103
rnW
400
":01
i
f--",
300
\.
v
200
1\
\.
5
100
1\
2
o
o
I\,
50
100
150 DC
5
W
5 103 rnA
-~
Pulse handling capability rth = f (t)
(standardized)
K
Collector cutoff current I cso = f ( TA)
VCBO = SOV
Iii
10 0
,
II
•
1/
/
I
'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
max.
~.
/
I'typ
0:0 1111
2
V
5
1G--L
-7;!
O:f
I-- T
10-3
10-6 10- 5 10- 0 10- 3 10- 2 10-' 100
10' s
50
100
150
D(
-r.
-t
Siemens
269
BCW65
BCW66
Base-emitter saturation voltage Ie = f (VBE sat)
hFE = 10
mA
Collector-emitter saturation voltage
Ie = f(VCEsat)
hFE = 10
rnA
10l
10 l
5 150 0 (
5
If:.. 25°(
V- 5OO (
150 0 [
25°[
-~500[
10'
,
t
200
2
400
600
800 rnV
-~fEsat
-VaEso.t
DC current gain hFE = f(Ie)
VCE = 1 V
10l91l~• •
100 0
nBI
1o' • •
100 L...L..liJ.lilJJ..-'--.lJ.lJ.illL-Ll-Lll1llL.J..LWilll
10-'
5 100
5 10'
5 10 1
5 10l rnA
-Ie
270
Siemens
BCW67
BCW68
PNP Silicon AF Transistors
•
•
•
•
For general AF applications
High current gain
Low collector-emitter saturation voltage
Complementary types: SCW 65, SCW 66 (NPN)
Type
Marking
I'!l SCW67 A
I'!l SCW67 S
I'!lSCW67 C
DA
DS
DC
Type
I'!l SCW 68 F
I'!l BCW 68 G
I'!l SCW 68 H
Marking
Ordering code
Package
DF
DG
Refer to index
SOT 23
DH
Maximum ratings
Parameter
Symbol
BCW67
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
VCEO
32
45
5
BCW68
Unit
V
V
V
Ptot
45
60
5
800
1
100
200
330
Junction temperature
Storage temperature range
Ti
Tstg
150
-65 .. · + 150
DC
DC
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
RthJA
TA
=
25 DC
VCBO
VEBO
Ic
ICM
IB
IBM
::5 375
mA
A
mA
mA
mW
K/W
I'!l Preferred type
Siemens
271
BCW67
BCW68
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 10 mA
BCW67
BCW68
Collector-base breakdown voltage
BCW67
Ic=10~A
BCW68
Emitter-base breakdown voltage
IE = 10 ~
Collector cutoff current
VCB = 32V
BCW67
VCB =45V
BCW68
VCB = 32 V, TA = 150°C
BCW67
VCB = 45 V, TA = 150°C
BCW68
Emitter-base cutoff current
VEB = 4V
DC current gain')
Ic = 100 !LA, VCE = 10 V
BCW 67 A, BCW 68 F
BCW 67 B, BCW 68 G
BCW 67 C, BCW 68 H
Ic = 10 mA, VCE = 1 V
BCW 67 A, BCW 68 F
BCW 67 B, BCW 68 G
BCW 67 C, BCW 68 H
Ic = 100 mA, VCE = 1 V
BCW 67 A, BCW 68 F
BCW 67 B, BCW 68 G
BCW 67 C, BCW 68 H
Ic = 500 mA, VCE = 2V
BCW 67 A, BCW 68 F
BCW 67 B, BCW 68 G
BCW 67 C, BCW 68 H
Collector-emitter saturation voltage')
Ic = 100 mA, IB = 10 mA
Ic = 500 mA, IB = 50 mA
Base-emitter saturation voltage')
Ic = 100 mA, IB = 10 mA
Ic = 500 mA, IB = 50 mA
V(BR) CEO
AC characteristics
Transition frequency
Ic= 50 rnA, VCE = 5V, f= 20 MHz
Output capacitance
VCB = 10 V, f= 1 MHz
Input capacitance
VEB = 0,5 V, f= 1 MHz
') Pulse test: t ~ 300 !Ls, D = 20/0.
272
min
typ
max
Unit
32
45
-
-
V
V
45
-
-
-
V
V
V
-
-
20
20
20
20
20
nA
nA
~
~
nA
35
50
40
-
-
-
75
120
180
-
-
100
160
250
160
250
350
250
400
630
-
35
60
100
-
-
-
-
-
-
0,3
0,7
V
V
--
-
1,25
2
V
V
V(BR)CBO
V(BR) EBO
ICBo
60
5
-
-
-
-
leBO
-
-
hFE
VCEsat
-
VBEsat
-
-
-
--
-
Symbol
fT
min
typ
max
Unit
-
200
-
MHz
Gob
-
6
pF
Gib
-
60
-
Siemens
pF
BCW67
BCW68
Total power dissipation Ptot = f ( TAl
Transition frequency fr
VCE = 5V
mW
MHz
103
400
flo!
t
=
f (I cl
~h.
300
..,
I\,
\
200
"
5
100
1/
1'\
I'i
a
1'\
a
50
150 °C
100
5 10'
-~
Pulse handling capability fth = f(t)
Collector cutoff current I CBO = f ( TA)
(standardized)
K
VCB = VCEmax
iii
10°
'ih
5
t ,
II
'-,
II
0,5
0,2
0,1
0,05
0,02
0,01
0,005
5
max.
v'
1/
typo
0=0 '"'
I
5
~
fp
D=r
10-1
T7,!
~~ ~ ~ WI
~
~
~s
50
100
150 0 C
-t
Siemens
273
BCW67
BCW68
Base-emitter saturation voltage VBE sa' = f (I cl
hFE = 10
Collector-emitter saturation voltage
VCEsa' = f(Ie)
hFE = 10
mA
103
mA
103
150'
Ie
iI"_ 25'C
i-"-50 ·c
5
lS0'C
/h ~ "Z5 .(
l~
110 2
,
10-' L-L...JL.L...l._-'----"---''---'---'----'
o
2
3
4 V
-
i"-SO'(
_._-
zoo
400
600
800 mV
VaEso.t
DC current gain hFE = f(Ie)
VCE = 1 V
5
r
lDO'C
1-~51'
.....
r-::50'
5
-
5
10°
10-'
5 10°
5 10'
5 10 1
-Ie
274
Siemens
5 10 3 rnA
BCX41
BSS64
NPN Silicon AF and Switching Transistors
•
•
•
High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: BCX 42, BSS 63 (PNP)
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
iii BCX 41
EK
BSS64
AM
Q62702-C946
Q62702-5394
Q62702-C1659
Q62702-5535
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
BSS64
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collect-or current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
Ic
ICM
IB
IBM
80
120
5
Thermal resistance
RthJA
Ptot
BCX41'
125
125
5
800
1
100
200
330
150
-65· .. +150
Tj
Tstg
S375
Unit
V
V
V
mA
A
mA
mA
mW
°C
°C
K/W
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
iii Preferred type
Siemens
275
BCX41
BSS64
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 10 mA
BSS64
BCX41
Collector-base breakdown voltage ')
BSS64
Ic = 100 !LA
BCX41
Emitter-base breakdown voltage
Ie = 10 !LA
Collector cutoff current
BSS64
Vcs= BOV
BCX41
Vcs = 100V
BSS64
Vcs= BOV, TA= 150°C
Vcs = 100V, TA = 150°C
BCX41
Collector cutoff current
VCE = 100 V, VSE = 0,2 V
BSS64
TA= 85°C
TA = 125°C
BCX41
Emitter cutoff current
VES = 4 V
DC current gain')
BCX41
Ic = 100 !LA, VCE = 1 V
BSS64
Ic = 1 mA, VCE = 1 V
BSS64
Ic= 4 mA, VCE = 1 V
BSS64
Ic = 10 mA, VCE = 1 V
BSS64
Ic = 20 mA, VCE = 1 V
Ic = 100 mA, VCE = 1 V
BCX41
BCX41
Ic = 200 mA, VCE = 1 V
V(SR) CEO
typ
max
Unit
BO
125
-
-
V
V
120
125
-
-
V
V
-
-
100
100
20
20
nA
nA
!LA
!LA
-
-
-
-
10
75
100
!LA
!LA
nA
25
-
-
-
-
V(SR) cso
V(SR) ESO
Icso
5
-
-
V
ICEO
leBO
hFE
-
20
-
-
Collector-emitter saturation voltage')
Ic = 300 mA, Is = 30 mA
BCX41
BSS64
Ic = 4 mA, Is = 0,4 mA
BSS64
Ic= 50mA,Is=15mA
Base-emitter saturation voltage')
I c = 300 mA, Is = 30 mA
BCX41
VCEsat
AC characteristics
Transition frequency
Ic = 20 mA, VCE = 5 V, f= 20 MHz
Output capacitance
Vcs = 10V, f= 1 MHz
-
60
80
80
55
63
40
-
-
-
-
-
-
-
-
V
V
V
V
-
-
0,9
0,7
3,0
-
-
1,4
Symbol
min
typ
max
Unit
fr
-
100
-
MHz
Cob
-
12
-
pF
VSEsat
') Pulse test: t 5, 300 !Ls, D = 2010.
276
min
Siemens
-
BCX41
BSS64
Total power dissipation Ptot = f (TA)
Collector current I c = f (VBE)
VCE = 1 V
mW
400
mA
103
5
~ot
i
TA =l?OoC
Ir
-""
300
\
~
5
\.
200
I
7i. =25 O(
=_
CO(
10'
I\,
5
1\
100
\
5
\
a
\
o
50
. 100
,
2
150 0 (
3 V
-VBE
-~
Transition frequency fT = f (/cl
VCE = 5V
Pulse handling capability rth = f(t)
(standardized)
K
W
10°
,
If
I
1'0,5
0,2
0,1
0,05
0,Q2
0,01
0,005
·0:0 1111
1
;I
V
5
~
2
tp
0:T
T
10-3
'"
6
4
10- 10- 5 10- 10- 3 10- 1 10-' 10°
10' s
5 1Q1
5 10 3 rnA
-t
Siemens
277
BCX41
BSS64
Base-emitter saturation voltage Ie = f( VeE sat)
Collector-emitter saturation voltage
Ie = '(VCEsat)
hFE = 10
hFE
10
103
~
150·C4i 25 "(
Ie
r
=
mA
mA
103
;oO(
l///f"
/I
10 2
Atr25 '(
-SO ·C
~ lS0'(
lot
10'
5
5
10°
5
,
lO-t
10·
2
0
3 V
o
1\
200
400
600
800 mV
5 10 2
5 10 3 mA
VeE sat
Collector cutoff current I ceo = '( TA)
DC current gain hFE = '(/e)
VCE = 1 V
Vce = VCEmax
max. ,/
150 0 (
f ....
V
~
2S .(
I-
-SO'(
typ.
10 '
S
5
1
1/
10'
50
100
150 .(
1/
10·'
5 10'
--Ie
-TA
278
5 10°
Siemens
PNP Silicon AF and Switching Transistors
•
•
•
•
BCX42
BSS63
For general AF applications
High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: BCX 41, BSS 64 (NPN)
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
o BCX42
DK
BSS63
BM
062702-C945
062702-S401
062702-C1485
062702-S534
SOT 23
SOT 23
Type
Maximum ratings
Parameter
Symbol
BSS63
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
Ic
ICM
100
110
5
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
RthJA
IB
IBM
Ptot
BCX42
125
125
5
800
1
100
200
330
150
-65···+150
Tj
Tstg
:5 375
Unit
V
V
V
rnA
A
rnA
rnA
mW
°C
°C
K/W
o Preferred type
Siemens
279
BCX42
BSS63
Electrical characteristics
at TA = 25 cC, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
BCX42
Ic=10mA
BSS63
V(BR) CEO
Collector-base breakdown voltage')
BCX42
Ic=100~A
BSS63
V(BR) CBO
Emitter-base breakdown voltage
IE = 10~A
V(BR) EBO
Collector cutoff current
VCB = 80V
VCB=100V
VCB = 80 V, TA = 150°C
VCB = 100 V, TA = 150°C
ICBo
Collector cutoff current
VCE = 100 V, VBE = 0,2 V
TA = 85°C
TA=125°C
BSS63
BCX42
BSS63
BCX42
typ
max
Unit
125
100
-
-
V
V
125
110
-
-
-
V
V
5
-
-
V
-
-
-
100
100
20
20
nA
nA
-
-
10
75
~A
~A
100
nA
-
-
-
~A
~A
ICEO
BCX42
BCX42
Emitter cutoff current
VEB = 4 V
DC current gain')
Ic = 100 ~A, VCE = 1 V
Ic= 10mA, VCE=5V
Ic= 20 mA, VCE = 5V
Ic = 100 mA, VCE = 1 V
Ic = 200 mA, VCE = 1 V
min
lEBO
hFE
BCX42
BSS63
BSS63
BCX42
BCX42
25
30
30
63
40
Collector-emitter saturation voltage ')
Ic = 300 mA, IB = 30 mA
BCX42
BSS63
Ic = 25 mA, IB = 2,5 mA
BSS63
Ic = 75 mA, IB = 7,5 mA
VCEsat
Base-emitter saturation voltage ')
I c = 300 mA, I B = 30 mA
BCX42
VBEsat
-
-
-
-
-
-
-
0,9
0,25
0,9
V
V
V
1,4
V
-
-
-
-
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 mA, VCE = 5 V, f= 20 MHz
fT
-
150
-
MHz
Output capacitance
VCB = 10V, f= 1 MHz
Cob
-
12
-
pF
') Pulse test: t 5, 300 ~s, D = 20/0.
280
Siemens
BCX42
BSS63
Total power dissipation P'ot = f (TA)
Collector current
VCE = 1 V
mW
400
mA
Ie
=
f (VBE)
103
T, =150 0 (
-,;"
t
r-h.
r,. = 25 O(
300
r;.. = -
5
~O(
I\,
200
10'
I\,
5
\
100
\.
I\.
o
o
5
,
1\
50
150
100
3 V
0 (
-~
Pulse handling capability
(standardized)
rth
= f (t)
Transition frequency fT = f (lo)
VCE = 5V
K
Vi
10°
'ih
t ,
JI
~
5
1
'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
2
./
0=0 1111
1
\
5
/
5
~
tpl--
o=1.YLn-
T i--- T _-j
III
III
"I
10-3
10- 6 10- 5 10- 4 10- 3 10- 1 10-' 10°
10'
5 lOt
5
-t
Siemens
281
BCX42
BSS63
Base-emitter saturation voltage Ie
hFE = 10
= '( VeE sat)
COllector-emitter saturation voltage
Ie = '(VCEsat>
hFE = 10
mA
103
1soo C-+i 25 OC
=
iOO(
I
/I
1///1'
~25°C
-50°C
150°C
5
5
10-'
,
o
1\
200
3 V
2
600
800 mV
5 10 2
5 10 3 mA
400
DC current gain hFE = '(1 e)
VCE = 1 V
Collector cutoff current I ceo = '( TA)
Vce = VCEmax
max .• /
..-
--
/
150 0 (
25°C
_50 0 (
typo
10'
5
5
,
1/
10'
50
100
150
D(
10-'
-TA
282
5 10°
5 10'
-Ie
Siemens
BCX51
... BCX 53
PNP AF Transistors
•
•
•
•
For AF driver and output stages
High collector current
Low collector-emitter saturation voltage
Complementary types: SCX 54··. SCX 56 (NPN)
Type
SCX
BCX
SCX
SCX
BCX
51-6
51-10
51-16
52-6
52-10
Marking
Type
AS
AC
AD
AF
AG
BCX
BCX
BCX
SCX
52-16
53-6
53-10
53-16
E
Marking
Ordering code
Package
AM
AJ
AK
AL
Refer to index
SOT 89
Maximum ratings
Parameter
Symbol
BCX 51
BCX52
BCX53
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range
VCEO
Vcso
45
45
5
60
60
5
80
100
5
1
1,5
100
200
1
V
V
V
A
A
mA
mA
W
150
-65 .. ·+150
DC
DC
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VESO
Ic
ICM
Is
ISM
Ptot
7j
Tstg
:5125
RthJA
Siemens
K/W
283
BCX51
·.·BCX53
Electrical characteristics
at TA = 25 DC, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 10 mA
BCX51
BCX52
BCX53
V(BR) CEO
Collector-base breakdown voltage
Ic = 100 J.lA
BCX 51
BCX52
BCX53
V(BR)CBO
Emitter-base breakdown voltage
h = 10 J.lA
V(BR)EBO
Collector cutoff current
VCB = 30V
VCB = 30 V, TA = 150 DC
ICBo
Emitter cutoff current
VEB = 4V
hBO
DC current gain')
Ic = 5 mA. VCE = 2V
Ic = 150 mA. VCE = 2 V
BCX 51, BCX 52, BCX 53-6
BCX 51, BCX 52:BCX 5~10
BCX 51-16, BCX 52-16, BCX 53-16
Ic = 500 mA, VCE=2V
hFE
Collector-emitter saturation voltage')
I c = 500 mA, I B = 50 mA
VCEsat
Base-emitter voltage ')
I C = 500 mA, VCE = 2 V
VSE
AC characteristics
Transition frequency
Ic = 50 mA, VCE = 10 V, f= 20 MHz
') Pulse test:
284
(5,
min
typ
max
Unit
45
60
80
-
-
V
V
V
45
60
100
-
-
V
V
V
-
V
-
100
20
J.lA
20
nA
-
-
-
63
100
160
100
160
250
-
-
-
-
-
0,5
V
-
-
1
V
Symbol
min
typ
max
Unit
fr
-
125
-
MHz
5
-
25
,
300 J.ls, D = 2010.
Siemens
40
63
100
25
-
-
nA
-
-
BCX51
... BCX 53
Total power dissipation P'o' = f (TA)
Collector current I C = f (VSE)
VCE = 2V
W
rnA
1,2
10"
1"1,0
'\
100 0 (
25°(
-50 0 (
[\
0,8
[\
"JI
1,\
/ /7
0,6
\.
1\
0,4
I I
1\
J
10'
1'\
I
0,2
'\
1\
°
50
°
150
100
10°
0(
o
0.2
0.4
--T,
Pulse handling capability
(standardized)
r'h
0,6
0,8
1.0
1.2 V
-VBE
Transition frequency fT
VCE = 10V
= f (t)
= f (I c)
K
iii
10°
'ih
I
,
~,
,
;;;;
5
0.5
0.2
0.1
0.05
0.02
0.01
0.005
2
r-
t'-D=O
2
5
~
D=f
T
10-3
10-6
10-5
10- 4
10- 3
10- 2 10-'
10° s
5 10'
-t
5 10 2
-Ie
Siemens
285
BCX51
···BCX53
DC current gain h FE = f (l cl
VeE = 2V
Collector-emitter saturation voltage
Ie = f(VeEsa')
hFE =
10
rnA
104
5
-
1- 100 O(
II
I-- 25
°
5
"
~
~SOo
~
-
,/
'Iv /
-
-5
O(
5
-
10'
5
5
10°
10°
5 101
5 101
5 103
10°
5 10'rnA
o
0.4
0.2
0.8 V
0.6
-~hsat
-Ie
Base-emitter saturation voltage Ie = f(VBEsa')
Collector cutoff current leBo = f ( TA)
VeB = 30V
hFE
= 10
5
max L/
1/
Ie
f
..... ~ ....
100 O(
25°(
V
SOO(
l-l
"'J
typo
10'
5
J 1
10'
5
II
1
1/
so
100
150
10°
0(
-TA
286
II
o
0.2
0.4
0.6
0.8
1.0
- - - - VSEsat
Siemens
1.2 V
NPN Silicon AF Transistors
•
•
•
•
BCX54
... BCX 56
For AF driver and output stages
High collector current
Low collector-emitter saturation voltage
Complementary types: BCX 51.·. BCX 53 (PNP)
Type
BCX
BCX
BCX
BCX
BCX
54-6
54-10
54-16
55-6
55-10
E
Marking
Type
Marking
Ordering code
Package
BB
BC
BO
BF
BG
BCX 55-16
BCX 56-6
BCX 56-10
BCX 56-16
BM
BJ
BK
BL
Refer to index
SOT 89
Maximum ratings
Parameter
Symbol
BCX54
BCX55
BCX56
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
Vcso
VESO
Ic
ICM
Is
45
45
5
60
60
5
80
100
5
V
V
V
A
A
mA
mA
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
ISM
Ptot
1
1,5
100
200
1
W
Tj
Tstg
150
-65···+150
°C
°C
:'> 125
RthJA
Siemens
K/W
287
BCX54
···BCX56
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
V(BR) CEO
min
typ
max
Unit
45
60
80
-
-
V
V
V
45
60
100
-
-
V
V
V
-
100
20
nA
20
nA
-
-
-
63
100
160
100
160
250
-
Ic=10mA
BCX54
BCX55
BCX56
Collector-base breakdown voltage
Ic = 100 J.lA
BCX54
BCX55
BCX56
V(BR)CBO
Emitter-base breakdown voltage
IE = 10 J.lA
V(BR)EBO
Collector cutoff current
VCB = 30V
I(CB = 30 V, TA = 150°C
ICBo
Emitter cutoff current
VEB = 4V
lEBO
DC current gain')
Ic=5mA, VCE=2V
Ic = 150 rnA, VCE =2V
BCX 54, BCX 55, BCX 56-6
BCX 54, BCX 55, BCX 56-10
BCX 54-16, BCX 55-16, BCX 56-16
Ic = 500 rnA, VCE=2V
hFE
Collector-emitter saturation voltage')
Ic = 500 rnA, IB = 50 rnA
VCEsat
Base-emitter voltage')
Ic = 500 rnA, VCE = 2V
VBE
AC characteristics
Transition frequency
Ic = 50 rnA, VCE = 10 V, f= 20 MHz
-
25
40
63
100
25
-
V
J.lA
-
-
-
-
-
0,5
V
-
-
1
V
Symbol
min
typ
max
Unit
fT
-
100
-
MHz
') Pulse test: t:5, 300 its, D = 20/0.
288
5
-
Siemens
BCX54
···BCX56
Total power dIssIpatIon P,o' = f( TA)
TransItion frequency fT = f (l cl
W
1,2
MHz
VCE =
10 V
10'~m~m~_
1"',0
\.
1\
0,8
2
1\
1\
0,6
\.
\
0,4
\
1\
0,2
\.
\
o
o
100
50
150 0 (
-~
Pulse handling capability
(standardized)
r'h = f(t)
10' '--.J....-L-.U.JL.LW.---L-'-L.1.J.J.J..IJ...---L-L..Ll..Ujlj
100
5 10'
5 10 2
5 10' mA
-Ie
Collector cutoff current I CBO = f ( TA)
VCB =
K
iii
nA
10°
10'
5
I
'ih 5
I
I<::
,
ro;;
5
I--
max.
I" I
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=O
,
~
I
2
30V
V
I.'
....
V
typo
10'
5
5
/
~
D=~
,
10-6
T
10-' 10- 2 10-'
HJ
10-
10-5
10- 4
1
10° s
./
50
-t
100
150
0 (
-T..
Siemens
289
BCX54
···BCX56
Collector current JC = f (VSE)
VCE = 2V
Collector-emitter saturation voltage
Ie = f(VCEsa')
hFE = 10
mA
rnA
104
'0 4
5
5
Ie
Ie
1
1
l00 0(
25°(
-SO 0\1::
5
Jr'i
j
103
'I
10 2
If;v
100 0 (
25 °(
r== -SO O(
5
II
10 1
5
IT
100
11
o
0.2
0.4
0.6
100
0.8
1.0
0,2
0
1.2 V
0,4
-\'sE
0.6
0.8 V
- - - - VcESit
Base-emitter saturation voltage J e = f (VBE sad
hFE = 10
DC current gain hFE = f (Ie)
VCE = 2V
rnA
10'
l00 0 (
25°(
-50 0 ( : \
100°
10 2
Nil
-SO O(
II rA
10 2
TTT
e-:25 °
5
101
5
T
10a
o
0.2
0.4
0,6
II
100
0,8
1,0
1.2 V
10- 1
5 101
5 10 2
-Ie
--VBEsat
290
5 100
Siemens
5 10 3 rnA
BCX68
NPN Silicon AF Transistors
•
•
•
•
•
For general AF applications
High collector current
High current gain
Low collector-emitter saturation voltage
Complementary type: BCX 69 (PNP)
E
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 12 mm-tape
Package
BCX68-10
BCX68-16
BCX68-25
CB
CC
CD
Q62702-C1077
Q62702-C1078
Q62702-C1079
Q62702-C1864
Q62702-C1865
Q62702-C1866
SOT 89
SOT 89
SOT 89
Maximum ratings
Parameter
Symbol
Ratings
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
Vcso
20
25
5
1
2
100
200
1
A
A
mA
mA
W
Tstg
150
-65···+150
°C
°C
RthJA
:5125
K/W
Thermal resistance
VESO
Ic
ICM
Is
ISM
P tot
Tj
Unit
V
V
V
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
Siemens
291
BCX68
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 30 mA
V(BR) CEO
20
-
-
V
Collector-base breakdown voltage
V(BR) CBO
25
-
-
V
V(BR) EBO·
5
-
-
V
-
-
100
10
nA
-
10
~A
Ic=10~A
Emitter-base breakdown voltage
lE=1~A
Collector cutoff current
VCB = 25 V
VCB = 25 V, TA = 150°C
ICBo
Emitter cutoff current
VEB = 5 V
lEBO
DC current gain')
Ic = 5 mA, VCE = 10 V
Ic = 500 mA, VCE = 1 V
hFE
50
BCX 68-10
BCX 68-16
BCX 68-25
Ic = 1 A, VCE = 1 V
Collector-emitter saturation voltage')
I C = 1 A, I B = 100 mA
VCEsat
Base-emitter voltage')
Ic=5mA, VCE=10V
Ic = 1 A, VCE = 1 V
VBE
AC characteristics
Transition frequency
Ic = 100 mA, VCE = 5 V, f= 20 MHz
~A
-
-
-
100
160
250
160
250
400
63
100
160
60
-
-
-
-
-
0,5
V
-
0,6
-
-
-
1
V
V
Symbol
min
typ
max
Unit
fT
-
100
-
MHz
') Pulse test: t:5, 300 ~s, D = 20f0.
292
-
Siemens
BCX68
Collector current I c = f (VBE)
VeE = 1 V
Total power dissipation Ptot = f (TA)
W
1,2
5
1"1,0
-SOo(
\
0,8
q, '/
100 oS",
25°(
1\
\
I I
\.
II/II
0,6
I\,
1\
0,4
1\
I
\.
0,2
5
\.
a
1\
a
100
50
150 DC
100
o
0,2
0.4
0.6
--T"
0,8
1,0
1.2 V
-VBE
Transition frequency fT = f (I cl
VCE = 5V
Pulse handling capability rth = fIt)
(standardized)
K
'th
W
MHz
100
10 3
5
1':
t
"'-.:I
t
P'
0.5
0.2
0.1
0.05
0.02
0.01
0.005
5
V
~
D=O
2
/
5
~
D=?
10-3
10-6
r
10-5
10- 4
10-3
10- 2 10- 1
100 S
-t
Siemens
293
BCX68
DC current gain h FE
VCE
=
= '(le)
Collector-emitter saturation voltage
1V
Ie = '(VcEsad
10
rnA
10 4
hFE =
5
v~ ,/
100°
25°
~50oe
/"
5
100 °e
25 °e
-SO °C
5
10°
10°
10°
5 1Q1
5 1Q1
5 10 3
5 104 rnA
o
0,2
0,4
~/(
0,6
0,8 V
--~hsat
Collector cutoff current I CBO = '( TA)
Base-emitter saturation voltage Ie = '( VBE sad
VCB=25V
hFE
= 10
nA
105
5
5
1/
ICBO
!
~;
104
5
1/
rnaxl/
103
5
V
II 'i
III
1/-
102
5
1/ '
/. ~
100°C
25°C
-50'oe
Vtyp.
5
50
100
150°C
10°
o
-TA
294
0,2
0,4
0,6
0,8
1,0
-"Esat
Siemens
1,2 V
BCX69
PNP Silicon AF Transistors
•
•
•
•
•
For general AF applications
High collector current
High current gain
Low collector-emitter saturation voltage
Complementary type: BCX 68 (NPN)
E
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 12 mm·tape
Package
BCX69-10
BCX 69-16
BCX69-25
CF
CG
CH
Q62702-C1080
Q62702-C1081
Q62702-C1082
Q62702-C1867
Q62702-C1868
Q62702-C1869
SOT 89
SOT 89
SOT 89
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
Vcso
VESO
20
25
5
1
2
100
200
1
V
V
V
A
A
mA
mA
W
T stg
150
-65 .. ·+150
°C
°C
RthJA
5125
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
Ic
ICM
Is
ISM
Ptot
Tj
Siemens
295
BCX69
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Collector-emitter breakdown voltage
Symbol
min
typ
max
Unit
V(BR) CEO
20
-
-
V
V(BR)CBO
25
-
-
V
-
-
V
-
-
100
10
nA
-
-
10
Ic=30mA
Collector-base breakdown voltage
Ic=101lA
Emitter-base breakdown voltage
le=11lA
Collector cutoff current
VCB = 25V
VCB = 25 V, TA = 150°C
Emitter cutoff current
VES = 5V
DC current gain')
5 mA, VCE = 10 V
Ic =
Ic = 500 mA, VCE = 1V
BCX69-10
BCX69-16
BCX69-25
Ic = 1 A, VCE = 1 V
Collector-emitter saturation voltage ')
Ic = 1 A, IB = 100 mA
Base-emitter voltage ')
Ic=5mA, VCE= 10V
Ic = 1 A, VCE = 1 V
hFE
AC characteristics
Transition frequency
Ic = 100 mA, VCE = 5 V, f= 20 MHz
ICBo
leBO
50
63
100
160
60
VCEsat
-
IlA
IlA
-
-
-
100
160
250
160
250
400
-
-
-
0,5
V
0,6
1
V
V
VSE
-
-
-
Symbol
min
typ
max
Unit
fT
-
100
-
MHz
') Pulse test; t 5, 300 Ils, D = 20/0.
296
5
V(BR)ESO
Siemens
BCX69
Total power dissipation Ptot
Transition frequency fT = f (I cl
VCE = 5V
= f (TA)
W
MHz
1,2
10 3
r
1,O
~
1\
0,8
1\
-
\
0,6
r\.
\
0,4
\
1\
0,2
'\
\
o
o
50
100
150
5 10 2
-Ie
0(
-7,;
Pulse handling capability rth = f(t)
(standardized)
K
Collector cutoff current
ICBO = f(TA)
VCB=25V
100
nA
105
W
5
~II!
'ih
:/
kf> ~.rt
r-
r
1
,.
~
5
2
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=O
max,/
,,'
5
1(r3
10-6
10-5 10- 4
1/
/typ.
V
10'
1!:r-
D=~
/
5
T
10- 3
10- 2 10- 1
100 S
100
o
-t
50
100
150
O(
-li
Siemens
297
BCX69
Base-emitter saturation voltage Ie c= f( VeEsatl
Collector-emitter saturation voltage
hFE
Ie = f(VCEsat)
hFE = 10
rnA
10 4
=
10
rnA
10'
5
~~
l/. ~
100 °C "25°C
-SOO(
100 .(
25°C
-50 .(
fl
I I
I
10 2
5
I
10'
I
10'
5
S
10°
o
0,2
0,4
O~
0,2
0,8
1,0
1,2 V
- VeEso!
0,6
0,4
Collector current I C = f ( VeE)
DC current gain hFE = f (I cl
VCE = 1 V
VCE
rnA
10'
103
5
hFE
I
~7
l000( "2S0(
-SOOC
I I
/I
0,8 V
--VCEsat
5
=
1V
I
l00 0 (
25°C
10 2
-SO·(
5
I
I
II I I
10'
S
10°
I I
o
0,2
0,4
0,6
I
0,8
1,0
-VeE
290
1,2 V
100 L...l.lJJl.WL...LllliillL...L.L.ilU.llL..LLJ..LJill
10°
5 1Q1
5 10 2
S 103
S 10 4 rnA
-Ie
,...~------
vit:::I I 1t::1I",
BF517
NPN Silicon RF Transistor
•
Broadband amplifier and oscillator applications
up to 1 GHz
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
BF517
LR
Q62702-F988
Q62702-F78
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
Vceo
VEeo
15
20
25
5
280
V
V
V
mA
mA
mW
Tstg
150
-65···+150
°C
°C
RthJA
:S 450
K/W
Thermal resistance
Ic
Ie
Ptot
Tj
3
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
Siemens
299
BF 517
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
V(SR) CEO
15
-
-
V
Icso
-
-
50
nA
hFE
25
-
250
-
Collector-emitter saturation voltage
I c = 10 rnA, Is = 1 rnA
VCEsat
-
0,1
0,5
V
Base-emitter saturation voltage
Ic = 10 rnA, Is = 1 rnA
VSEsat
-
-
0,95
V
Collector-emitter breakdown voltage
Ic = 1 rnA, Is =
Collector cutoff current
Vcs = 15 V, Is =
DC current gain
Ic = 5 rnA, VCE = 10 V
°
°
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ie = 5 rnA, VCE = 10 V, f= 200 MHz
fT
1
2
-
GHz
Collector-base capacitance
Vcs = 10V, VSE = 0, f= 1 MHz
Geb
0,3
0,5
0,75
pF
Collector-emitter capacitance
Vcs = 10V, VSE = 0, f= 1 MHz
Gee
-
0,26
0,4
pF
Noise figure
Ic = 5 rnA, VCE = 10 V, f= 100 MHz
Ic = 5 rnA, VCE = 10 V, f= 800 MHz
F
-
2,5
5,0
-
dB
dB
300
-
Siemens
SF 517
Total power dissipation Ptot = f( TAl
Transition frequency fT = f (I cl
VeE = 10 V. f= 100 MHz
mW
GHz
400
3
i
l300
v ....
II
\
200
i"'-
I\.
I\.
100
1\
o
o
50
1,\
150
100
o
0(
o
-Ti.
10
20
-Ie
30 mA
Collector-base capacitance Ccb = f(Veel
f=l MHz
pF
1.0
~
t 0.8 1\
[eb
\
1\
0,6
"- t'-
-... -...
01+
-
~~
0.2
o
o
20V
10
-'ie
Siemens
301
Si-N Channel MOS FET Triode
BF 543
Preliminary Data
• For RF stages up to 300 MHz
preferably in FM applications
• loss 4 mA, gfs 12 mS
=
=
ESD:Electrostatic discharge sensitive device, observe handling precaution!
Type
Marking
Ordering code
(taped)
Package
SF 543
LD
Q62702-F1230
SOT-23
Maximum Ratings
Parameter
Symbol Value
Drain-source voltage
VOS
20
V
Drain current
10
30
rnA
Gate-source peak current
Unit
±/GSM
10
mA
Ptot
200
mW
Storage temperature range
T stg
-55 ... + 150
·C
Channel temperature
Tch
150
·C
-55 ... + 150
·C
Total power dissipation, TA
:s 60 ·C
Ambient temperature range
TA
Thermal Resistance
I RthJA l:s 450
Junction - ambient 1 )
1) Package mounted on alumina t6.7 mm x 15 mm x 0.7 mm
302
Siemens
IKIW
BF 543
Electrical Characteristics
at TA = 25 DC, unless otherwise specified.
Parameter
ISymbol Imin.
Value
Itypo Imax.
IUnit
DC characteristics
Drain-source breakdown voltage
V(BR)DS
ID= 10 llA, -VGS =4 V
Gate-source bread own voltage
± IGS = 10 rnA, VDS = 0
± V(BR)GSS
Gate cutoff current
± VGS = 6 V, VDS = 0
± IGSS
Drain current
VDS = 10 V, VGS = 0
IDSS
Gate-source pinch-off voltage
VDS = 10 V, ID = 20 llA
-VGS(p)
20
-
-
7
-
12
-
-
50
1.5
4
6.5
-
0.7
1.5
9.5
12
-
-
2.7
-
-
25
-
-
0.9
-
-
22
-
-
1
-
V
V
nA
rnA
V
AC characteristics
Forward transconductance
gfs
VDs=10V,/D=4mA,f=1 kHz
Gate-1 input capacitance
VDS= 10 V, ID=4 rnA, f= 1 MHz
Cgss
Reverse transfer capacitance
Cdg
VDs=10V,/D=4mA,f=1 MHz
Output capacitance
VDS = 10 V, ID = 4 rnA, f = 1 MHz
Cdss
Power gain (test circuit)
VDS= 10 V, ID=4 rnA, f=200 MHz
GG =2 mS, GL =0.5 mS
Gps
Noise figure (test circuit)
VDS= 10 V, ID=4 rnA, f=200 MHz
GG =2 mS, GL =0.5 mS
F
Siemens
mS
pF
fF
pF
dB
dB
303
SF 543
Characteristics
at Tj =25 °G, unless otherwise specified.
Power dissipation Ptot = f (TA)
rnW
300
Typ. output characteristics field
10 = f (Vos)
rnA
10
!
8
I
200
\
1
r\ ,
I
6
1
1
I
I
I
i
I
4
100
\1
o
",
50
150
100
~
--
l..- ~ 0,2V
...-
OV
I
-0,2V
\t1
If
~
o
I
--
J
-OtV
o
o
0(
-T,..
Gate transconductance gls = f (VGs)
Vos = 10 V, loss =4 m A, f= 1kHz
rnA
15
10
gfs
10
20V
-Vos
Drain current 10 = f (VGs)
Vos = 10 V
rnS
I
10
r-.
r
I
10
/
"'-
I
304
4
\
I
-0,1
/
I
\
I
°
/
/
\
I
o
8
\
I
5
t
\
I
Vg:O,4V
.....
0,1V
/
2
o
-0,1
J
l/
o
0,1V
-\{;s
Siemens
BF 543
Gate Input capacitance Cgss = f (VGs)
Vos = 10 V, loss =4 rnA, f= 1 MHz
Output capacitance Cdss = f (Vos)
VGs=O,/oss=4 rnA, f=1 MHz
pF
5
pF
5
T'
4
3
,
V
f..-
3
-
2
1\1'--
o
o
-0,1
o
o
O,1V
10
5
15V
-Its
-Vos
Reverse transfer capacitance Cdg =f (Vos) Gate 1 Input admittance Y11s
VGs=O,/oss=4 rnA, f=1 MHz
Vos=10 V,/oss=4 rnA, VGs=O
(source circuit)
fF
mS
15
50
b"s
t
\
30
\
f=800MHz
V
10
/600MHz
\
20
~OMH~
1\
-
1'--
JJ
1/ rOO~HZ
~400;MH~
5-
3010MHz
f,1200~HZ
1 I
10
100MHz
I
o
o
5
10
o
o
15V
-Vos
I
50lMH
f
0,1
0,2
0,3
0,4
Q5ms
---g11s
Siemens
305
BF 543
Output admittance Y22s
Vos = 10 V, loss = 10 rnA, VGS =0
(source circuit)
Gate 1 transconductance Y21S
Vos = 10 V, loss = 4 rnA, VGS = 0
(source circuit)
mS
mS
o
S
~+u
SrIZ~
4
10~MHZ
,,I,
j'I00MHz--
1/600MHz
I
I
lliOOMHZ
rO?MHZ
-S
1100~HZ
J.I. 1/
1300~H~
yrHj
4~OMHV
SOOM~z I
I-
-10
if
600~H~
f=800MmMHZ
o
10
S
o
o
1SmS
"20~M1
I
I
100 M~i
S07 HZ
0,1
0,2
0,3
Test circuit for power gain Gp and noise figure F
'=200 MHz
Input
60Q
1nF
1
kQ
15pF
1SpF
;;---1270
1nF
I
BBS15
!
;~ fS i
Iot"n
306
0,4
-9zz,
-9Z1S
Siemens
Output
60Q
1nF
~
O
'
t
D.}
O,SmS
BF550
PNP Silicon RF Transistor
•
•
•
•
For amplifiers in common emitter configuration up to 300 MHz
Specially suitable for mixer applications in AM/FM radios and
VHF/TV tuners
Low collector-base capacitance due to shield diffusion
Controlled low output admittance
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BF 550
LA
Q62702-F547
Q62702-F944
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range
VCEO
VCBO
40
40
4
25
5
280
V
V
V
mA
mA
mW
Tstg
150
-65···+150
DC
DC
RthJA
::; 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VEBO
Ic
IB
Ptot
Ti
Siemens
307
BF550
Electrical characteristics
at TA = 25 DC, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 1 rnA, IB = 0
V(BR) CEO
40
-
-
V
Collector-base breakdown voltage
Ic= 1°ftA,h=0
V(BR)CBO
40
-
-
V
Emitter-base breakdown voltage
h=10ftA,Ic=0
V(BR) EBO
4
-
-
V
Collector cutoff current
VCB = 30 V, h = 0
ICBo
-
-
100
nA
DC current gain
I c = 1 rnA, VCE = 10 V
hFE
50
-
250
-
Base-emitter voltage
Ic = 1 rnA, VCE = 10 V
VBE
-
0,72
-
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 1 rnA, VCE = 10 V, f= 100 MHz
fT
-
350
-
MHz
Collector-base capacitance
VCB = 10V, VBE = 0, f= 1 MHz
Ceb
-
0,33
-
pF
Collector-emitter capacitance
VCB = 10V, VBE = 0, f= 1 MHz
Cee
-
0,67
-
pF
Noise figure
Ic = 1 rnA, VCE = 10 V, f= 100 kHz,
Rs=300O
Ic = 2 rnA, VCE = 10 V, f= 100 MHz,
Rs = 600
F
-
2
-
dB
-
3,4
-
dB
-
550
17
35
1,3
5
5
-
fts
pF
mS
pF
fts
fts
Four-pole characteristics,
common-emitter configuration
Ic=1mA,VcE=10V
f= 0,45 ... 10 MHz
glle
Clle
IY2lei
f= 450 kHz
f= 10 MHz
308
C22e
g22e
g22e
Siemens
-
-
-
-
8
10
BF 550
Total power dissipation P'o' = f (TA)
Current gain hFE
VeE = 10V
mW
= f (l e)
:3 _ _
400
r
f!ot
1 300
2
10 _ _
1,\
200
1,\
'\
100
o
'\
o
150
100
50
100 L...C...l..J..l-UW--L-LLllillL-'-'--'..LU.UL--L.UU-Cllll
10-2
5 10- 1 5 10°
5 10'
5 10 2 rnA
o(
-T,.
-Ie
ColIsctor-emltter saturation voltage
Ie = f(VeEsatl
hFE = 10
Collector current
VeE = 10V
Ie = f (VBE)
rnA
102
Ie
!
5
Ie
'/
10'
!
-
/
10'
/
I
1
,
10-
o
0,1
0,2
0,3
0,4
0,5 V
10-2
0,5
0,6
0,7
0,8
0,9
1,0 V
--~hsat
Siemens
309
BF550
Collector cutoff current I caD = f ( TA)
Vca = 30V
Transition frequency tT = t (l c)
t=100MHz
nA
10 4
5
MHz
600
f,
f
'/max.
...
~
'-'"
SOO
....
~
400
V
1-1-
~
I,...
i"i"
r--
r"-,
i"-
V
5'\
1\
300
f;s-I'-.....
10
VeE = 2V
Vtyp.
200
100
o
o
10-1
o
100
50
150
0(
10
5
15 mA
-1A
Collector-base capacitance CCb
t=1 MHz
Output conductance g22e = t(l cl
VeE = 10 V, t= 500 kHz
= t(Vca)
pF
1,0
mS
20
gzz.
18
I
16
t
0,5
14
-
I
10
~
i""'-- ........
--
o
/11
I
4
'J
"
I
o
-\'cB
310
typo
; I
6
20 V
If7J
IL I
8
o
10
II
i J
2
o
-max
J
J
i
12
1\
I
1/
I
Siemens
2
3
4
5 mA
BF550
Forward transfer admittance IY21el
f= 10,7 MHz
= f(I c)
Forward transfer admittance Y21 e
VCE= 10V
rnS
400
15
~
250
/
200
150
/
100
50
/
o
o
~~
VCE =5V-
V
/
10
15 rnA
90'
75'
60'
-Ie
Siemens
311
BF554
NPN Silicon RF Transistor
•
General RF small-signal applications up to 300 MHz,
amplifier, mixer and oscillator in circuits
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BF 554
CC
Q62702-F551
Q62702-F1042
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
20
30
5
30
280
V
V
V
rnA
mW
Tstg
150
-65···+150
°C
°C
RthJA
:$ 450
K/W
Thermal resistance
Ic
Ptot
7j
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
312
Siemens
BF554
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic= 1 mA, IB =0
V(BR)CEO
20
-
-
V
Collector cutoff current
VCB=20V, /e=0
ICBo
-
-
100
nA
DC current gain
Ic = 1 mA, VCE = 10V
hFE
60
-
250
-
Base-emitter voltage
Ic=1mA,VCE=10V
VBE
-
0,7
-
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 1 mA, VCE = 10 V, f= 100 MHz
fT
-
250
-
MHz
Noise figure
VCE = 10 V, Ic = 1 mA
f= 200 kHz, gs =2 mS
f= 1 MHz, gs =1,5 mS
f= 100 MHz, gs = 10 mS
F
-
1,5
1,2
-
-
dB
dB
dB
Collector-base capacitance
VCE = 10 V, VBE = 0, f= 1 MHz
Output conductance
Ic= 1 mA, VCE= 10V, f=O,5···10MHz
Ccb
-
0,6
-
g22e
-
4
-
Siemens
3
pF
IlS
313
BF554
Total power dissipation Ptot
DC current gain h FE = f (I cl
VCE = 10 V
= f(TA)
rnW
400
10
_111
3
f'
'r"
1 300
1"-
200
1,\
'\
1 0 1 l 1 l i. .
100
'\
o
1\
o
150 DC
100
50
-~
Collector-emitter saturation voltage
Ie = f(VcE.at)
hFE = 10
rnA
Collector current I C = f (VBE)
VCE = 10V
10 1
Ie
5
Ie
t
t
I
1Q1
/
101
J
,
/
I
1
5
10-1
o
0,1
0,2
0,3
0,4
0,5 V
10-1
0,5
-VCEsat
314
Siemens
0,6
0,7
0,8
0,9
1,0 V
BF554
Collector cutoff current I CBO = f ( TAl
VCB = 20V
nA
10·
Transition frequency fr = f (l c)
VCE = 10V
f=100 MHz
MHz
500
S
,
....
l/max.
r- .....
/
~
1/
/
....
"'
I
typo
,
200
100
,
1..1
o
150 0(
100
50
o
20 mA
10
-r,.
Noise figure F = f(f)
VCE = 10 V, Ic = 1 rnA,
Collector-base capacitance Ccb
f=1 MHz
Rs=60n
dB
S
pF
1,5
=
f(VeB)
F
4
I
r
'/
1,0
10-'
\
'" "
1\
o
\
r-
0,5
S 10°
5 10'
5 101
-f
5 103 MHz
o
o
20 V
10
-\'cB
Siemens
315
BF569
PNP Silicon RF Transistor
•
Suitable for oscillators, mixers and self-oscillating
mixer stages in UHF TV tuners
.
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BF 569
LH
Q62702-F548
Q62702-F869
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
Ic
IB
Ptot
35
40
3
30
5
280
V
V
V
mA
mA
mW
Tj
Tstg
150
-55···+150
°C
°C
RthJA
::; 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
316
VEBO
Siemens
BF569
Electrical characteristics
at TA
=
25 ac, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
I c = 1 rnA, I B = 0
V(BR) CEO
35
-
-
V
Collector cutoff current
VCB = 20 V, IE = 0
DC current gain
Ic=3mA,VCE=10V
ICBo
-
-
100
nA
hFE
20
50
-
-
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 3 rnA, VCE = 10 V, f= 100 MHz
fr
-
950
-
MHz
Collector-base capacitance
Vce = 10V, VeE = 0, f= 1 MHz
Gcb
-
0,32
-
pF
Collector-emitter capacitance
VCE = 10 V, VeE = 0, f= 1 MHz
G ce
-
0,15
-
pF
Power gain, common base
Ic = 3 rnA, Vce = 10 V, f= 800 MHz
RL = soon
Gp
-
14,8
-
dB
Noise figure
Ic = 3 rnA, Vce = 10 V, f= 800 MHz
Rs = 60n
F
-
4,5
-
dB
Siemens
317
BF569
Total power dissipation Ptot
Transition frequency fT = f (I cl
f= 100 MHz, VCE = 10 V
= f (TA)
MHz
1200
rnW
400
f,
!fat
( 1000
.........
1 300
"-
V
800
"-
200
600
"- I\.
\
/
\
\
I
I\.
"00
100
200
1\
o
1\
o
100
50
150 .(
o
o
-T"
--Ie
Collector capacitance
Ccb = f(VCB)
f=1 MHz
pF
1,0
feb
!
~.
0,5
\
I\.
o
o
318
........
--10
10 rnA
5
r-
20 V
Siemens
BF 579
PNP Silicon RF Transistor
•
•
Suitable for low distortion, low noise
VHF/UHF amplifier and UHF oscillator
applications in TV tuners
High transition frequency of 1.6 GHz
at typical operating current of 10 mA
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BF 579
LJ
Q62702-F552
Q62702-F971
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
20
25
3
30
5
280
V
V
V
mA
mA
mW
Tstg
150
-55···+150
°C
°C
RthJA
:5 450
K/W
Thermal resistance
Ic
IB
Ptot
Ti
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
Siemens
319
BF579
Electrical characteristics
at TA
=
25 ac, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 1 rnA, IB = 0
V(BR) CEO
20
-
-
V
Collector cutoff current
ICBO
-
-
100
nA
DC current gain
Ic = 10 rnA, VCE = 10 V
hFE
20
-
-
-
VCB
= 20V, IE = 0
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 10 rnA, VCE = 10 V, f= 100 MHz
fr
-
1,6
-
GHz
Collector-base capacitance
VCB = 10V, VBE = 0, f= 1 MHz
Ceb
.-
0,41
-
pF
Collector-emitter capacitance
VCE = 10 V, VBE = 0, f= 1 MHz
C ee
-
0,16
-
pF
Power gain, common base
Ic = 10 rnA, VCB = 10 V, f= 800 MHz
RL = soon
Gp
-
16
-
dB
Noise figure
Ic = 10 rnA,
Rs =60n
Ic = 10 rnA,
Rs =60n
F
-
4
-
dB
-
2,9
-
dB
320
VCB
= 10 V, f= 800 MHz
VCB
= 10 V, f= 200 MHz
Siemens
BF 579
Total power dissipation Ptat = f( TA)
Collector-base capacitance
Ccb = f(Vea)
f=l MHz
pF
1.0
mW
400
'tot
\\
1 300
"200
I"I\.
o,s
I\.
\
'r--.. r--..
-
I-- I--
100
1,\
o
1'\
o
150
100
50
0(
-T,.
o
o
10
lOV
Transition frequency fT = f (le)
f= 100 MHz, VeE
=
10 V
MHz
2000
'r
l/
1
,.....
.....
f7
t-.... r-....
I'"
1000
o
o
10
20 mA
-Ie
Siemens
321
NPN Silicon RF Transistor
•
•
BF599
Suitable for common emitter RF, IF amplifiers
Low collector-base capacitance due to contact
shield diffusion
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BF599
NB
Q62702-F550
Q62702-F979
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Vceo
Vceo
Veeo
V
V
V
Ptot
25
40
4
25
5
280
Tj
Tstg
150
-65···+150
°C
°C
RthJA
::;;450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
322
Ic
Ie
Siemens
mA
mA
mW
BF 599
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 1 mA, IB = 0
V(BR) CEO
25
-
-
V
Collector cutoff current
VCB=20V, Ie=O
ICBo
-
-
100
nA
DC current gain
Ic=7mA, VCE=10V
hFE
38
70
-
-
Collector-emitter saturation voltage
Ic = 10 mA, IB = 1 mA
VCEsat
-
0,15
-
V
Base-emitter voltage
I c = 7 mA, VCE = 10 V
VBE
-
0,78
-
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 5 mA, VCE = 10 V, f= 100 MHz
fr
-
550
-
MHz
Collector-base capacitance
VCB = 10V, VBE = 0, f= 1 MHz
Cob
-
0,35
-
pF
Collector-emitter capacitance
VCE = 10V, VBE = 0, f= 1 MHz
C oe
-
0,68
-
pF
Optimum power gain')
Ic = 7 mA, VCE = 10 V, f= 35 MHz
Gp
-
43
-
dB
Forward transfer admittance
Ic = 7 mA, VCE = 10 V, f= 35 MHz
IY21el
-
175
-
mS
Siemens
323
BF599
Total power dissipation Ptot = ((TA)
DC current gain hFE = ((I e)
VCE = 10 V
mW
400
l300
200
\
1'\
I\.
......
100
\
o
1'\
o
50
100
150
100~~~-LUWillL~~lli-LLllllW
°c
10-1
5 10- 1
5 100
-J;,
Collector current Ie = ((VSE)
VCE = 10V
5 10'
-Ie
5 101 rnA
Collector-emitter saturation voltage,
Ie = ((VCEsat)
hFE = 10
rnA
rnA
1)1
101
5
Ie
V
10'
5
t
5
If
10'
I
5
/
I
I
1
5
10-1
0,5
1
0,6
0.7
0,8
0,9
1.0 V
0,1
0,2
0,3
0,4
--I;hsat
324
Siemens
0,5 V
BF599
Collector cutoff current leBO = f (TA)
Transition frequency fT
=
f(l c), f = 100 MHz
VCB=20V
nA
MHz
104
600
5
leBO
V
10 3
5
1/
1""-
J=I=
.... ,1-"
400
V
.......,
V
V-
max.
..- ........
\
\
\
\
V
VcE =2V
5
!\
1\ \
\
300
10'
~
\
r-~ l~V- I -
200
typo
100
,
50
100
o
o
150·[
10
Collector-base capacitance Ccb = f (V CB)
f = 1 MHz
Forward transfer admittance IY21e I= f(l cl
f= 35 MHz
pF
mS
1.0
300
~
I(
1\
r 1\
.................
---
I
/
100
1\
\
15_
1
1\
"b-.
/.. "\
~h
200
\\
0.5
20 mA
--Ie
~TA
5
10,_ -
"
VeE~2V
II
/
o
1/
o
10
20 V
10
20
24mA
-Ie
--VcB
Siemens
325
BF622
NPN Silicon High Voltage Transistor
•
•
•
•
•
Suitable for video output stages in TV sets
High breakdown voltage
Low collector-emitter saturation voltage
Low capacitance
Complementary type: SF 623 (PNP)
E
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 12 mm-tape
Package
SF 622
DA
Q62702-F568
Q62702-F1052
SOT 89
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
(RBE = 2,7 kn)
Emitter-base voltage
Collector current
Peak collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
250
250
V
V
VCER
VEBO
Ic
ICM
250
5
50
100
1
V
V
mA
mA
W
Tstg
150
-65···+150
°C
°C
RthJA
:5125
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
326
Ptot
Tj
Siemens
BF622
Electrical characteristics
at
TA =
25 cC, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 1 mA
Ic = 10 !-lA, RBE = 2,7 kQ
V(BR) CEO
250
250
-
-
V(BR)CER
V
V
Collector-base breakdown voltage
Ic=10!-lA
Emitter-base breakdown voltage
Ie = 10 !-lA
V(BR)CBO
250
-
-
V(BR) EBO
5
-
-
V
Collector cutoff current
VCB = 200 V
VCB = 200 V, TA = 150°C
ICBo
-
-
100
20
nA
llA
Collector cutoff current
VCE = 200 V, RBE = 2,7 kQ
VCE = 200 V, RBE = 2,7 kQ,
ICER
-
-
-
V
-
1
50
llA
llA
IeBO
-
10
llA
hFE
50
-
-
-
Collector-emitter saturation voltage ')
Ic=10mA,IB=1mA
VCEsat
-
-
0,5
V
Base-emitter saturation voltage ')
Ic = 10 mA, IB = 1 mA
VB Esat
-
-
1
V
AC characteristics
typ
max
Unit
-
TA
= 150°C
Emitter cutoff current
VEB = 5V
DC current gain')
I c = 25 mA, V CE = 20 V
Symbol
min
Transition frequency
Ic = 10 mA, VCE = 10 V, f= 20 MHz
fT
-
100
-
MHz
Output capacitance
VCB = 30V, f= 1 MHz
Cob
-
0,8
-
pF
') Pulse test: t:5, 300 lls, D = 20/0.
Siemens
327
BF622
Total power dissipation Ptot = (( TA)
Output capacitance
f= 1 MHz
W
pF
4
1,2
r
1,0
1\
3
f\
0,8
Cob = ((VCE)
1\
1\
1\
0,6
1
2
1\
1\
0,4
""
r\
1\
~
0,2
1\
o
o
r\
100
-1,;.
50
150 ·C
Pulse handling capability rth = ((t)
(standardized)
K
o
o
10
Transition frequency fT = (( I c)
VCE = 10V, (= 20 MHz
'iii
10°
r
J
5
1
1.-1 III I
1
5
•
..-t-
I
lO-2
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
2
t-O=O
5
S
D=ft~
T
10""3
10-6 10-5 10- 4
10-3
10- 2 10- 1 1QO
2
5
-t
328
20
Siemens
17
30V
BF622
DC current gain h FE
VCE = 20V
= f (l c)
Collector current I C
VCE = 20V
= f (VBE)
rnA
102
5
I
I
I
100 '--'....u.u=-'-.w..LUllL.--'-'~.w-.LJ..ll.llW
10.2
10·'
10°
10'
10 2 rnA
-Ie
Collector cutoff current I CBO
VCB = 200 V
0,5
1V
= f ( TA)
1/
max
~/
f ....
V
typ. ,
,
/
50
100
150
O(
-1A
Siemens
329
BF623
PNP Silicon High Voltage Transistor
•
•
•
•
•
E
Suitable for video output stages in TV sets
High breakdown voltage
Low collector-emitter saturation voltage
Low capacitance
Complementary type: BF 622 (NPN)
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 12 mm-tape
Package
BF 623
DB
Q62702-F567
Q62702-F1053
SOT 89
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
(RBE = 2,7 kQ)
Emitter-base voltage
Collector current
Peak collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
250
250
V
V
250
5
50
100
1
V
V
Tstg
150
-65···+150
°C
°C
RthJA
:0;
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
330
VCBO
VCER
VEBO
Ic
ICM
Ptot
Tj
125
Siemens
mA
mA
W
K/W
BF623
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 1 mA
Ic = 10 /lA, RBE = 2,7 kQ
V(BR) CEO
V(BR) CER
250
250
V(BR) CBO
250
-
V
V
Collector-base breakdown voltage
Ic=10/lA
-
Emitter-base breakdown voltage
lE=10/lA
V(BR) EBO
5
-
-
V
Collector cutoff current
VCB=200V
VCB = 200 V, TA = 150°C
ICBo
-
-
100
20
nA
/lA
Collector cutoff current
VCE = 200 V, RBE = 2,7 kQ
VCE = 200 V, RBE = 2,7 kQ, TA = 150°C
ICER
/lA
/lA
lEBO
-
1
50
Emitter cutoff current
VEB = 5 V
-
10
/lA
DC current gain')
Ic=25mA, VCE=20V
hFE
50
-
-
-
Collector-emitter saturation voltage ')
I c = 10 mA, I B = 1 mA
VCEsat
-
-
0,5
V
Base-emitter saturation voltage ')
Ic = 10 mA, IB = 1 mA
VBEsat
-
-
1
V
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 10 mA, VCE = 10 V, f= 20 MHz
fT
-
100
-
MHz
Output capacitance
VCB = 30V, f= 1 MHz
Cob
-
1,2
-
pF
') Pulse test: t:$ 300 /ls, D = 2010.
Siemens
331
BF623
Total power dissipation Ptot
=
f (TA)
Output capacitance
f= 1 MHz
Cob = f(VCE)
pF
4
W
1,2
1"1,0
1\
3
1\
0,8
\
\
2 \
\
0,6
~
\
0,4
r-...
\
....
\
0,2
1\
o
\
o
100
50
150
o
0 (
o
10
--T"
Transition frequency fT
VCE = 10 V, f= 20 MHz
Pulse handling capability rth = f (t)
(standardized)
K
'ih
W
MHz
10°
10 3
5
--~
,
~
5
5
1,...1""'"
~III
t ,
0.5
0.2
0.1
0.05
0.02
0.01
0.005
2
0=0
2
5
v
5
~
o-!I
-r
10-3
10-6
10-5
10- 4
2
T
10-3
10- 2 10-'
10° s
5 10'
-t
332
20
-\0(,
Siemens
=
f (l cl
30 V
BF623
Collector current I c
VCE = 20 V
= f (VSE)
DC current gain hFE
VCE = 20V
= f (I c)
mA
10 2
5
I
/
I
II
L
0,5
100 '----'---'-'"Will-'-LL'-'.illL..--'--'-LLililL--L.L-LLlliU
10-2
10-'
10°
10'
102mA
1V
-Ie
Collector cutoff current I cso = f ( TA)
Vcs = 200 V
nA
10'
5
leBO
max ,/
,.,.
-'"
typ_
10'
5
,
1/
50
100
150
°c
-7;,
Siemens
333
BF660
PNP Silicon RF Transistor
•
Particularly suitable for application in VHF tuner
oscillators
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BF660
LE
Q62702-F549
Q62702-F982
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Emitter current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
Ic
IE
Ptot
30
40
4
25
30
280
V
V
V
mA
mA
mW
Tj
Tstg
150
-65·.·+150
°C
°C
RthJA
:5 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
334
Siemens
BF660
Electrical characteristics
at TA = 25 DC, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
V(BR) CEO
30
-
-
V
V(BR) CBO
40
-
-
V
V(BR) EBO
4
-
-
V
Collector cutoff current
VCB=20V, h=O
ICBo
-
-
50
nA
DC current gain
lc=3mA, VCE=10V
hFE
30
-
-
-
~C
Ic=1mA,h=0
Collector-base breakdown voltage
Ic= 10 11A,h=0
Emitter-base breakdown voltage
h= 10 11A, I c=0
Symbol
min
typ
max
Unit
Transition frequency
Ic = 5 mA, VCE = 10V, f= 100 MHz
characteristics
fT
-
700
-
MHz
Collector-base capacitance
VCB = 10 V, VBE = 0, f = 1 MHz
Gcb
-
0,6
-
pF
Collector-emitter capacitance
VCE = 10 V, VBE = 0, f= 1 MHz
G ce
-
0,28
-
pF
Siemens
335
BF660
Total power dissipation P tot = f (TA)
Transition frequency fT = f (I c)
VCE = 10 V, f= 100 MHz
mW
400
MHz
1200
f
f..
?'ot
1000
1 300
600
1\
1\
200
'\.
400
r-....
/'"
600
'\.
If
,
1
100
200
\
o
1\
o
100
50
150 .(
o
o
-T,.
Collector-base capacitance Ccb = f(Vcs)
f=1MHz
pF
1.5
1.0
\
I'\.
-- r-
0.5
,0
i"'--
o
10
20 V
-\'cB
336
Siemens
10
20 mA
NPN Silicon High-Voltage Transistors
•
•
•
•
•
BF 720; BF 722
Suitable lor video output stages in TV sets
and switching power supplies
High breakdown voltage
Low collector -emitter saturation voltage
Low capacitance
Complementary types: SF 721/723 (PNP)
E
Type
Marking
Ordering code (12-mm tape)
Package*
SF 720
SF 720
Q62702 - F1238
SOT-223
SF 722
SF 722
Q62702 - F1306
SOT-223
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
VCER
VCBO
VEBO
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Total power dissipation, TA ::5 25°C
11
Storage temperature range
Thermal Resistance
Junction - ambient 1)
BF722
-
250
300
-
V
V
300
250
V
5
V
5
ICM
100
mA
Pl01
1.5
W
Tsig
"
mA
Ic
50
150
Tj
Junction temperature
Unit
BF720
-65
I
RlhJA
to
::583.3
+ 150
°C
°C
IKIW
1) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm
Mounting pad lor the collector lead min 6cm 2
.) For detailed dimensions see chapter Package Outlines.
Siemens
337
BF 720; BF 722
Characteristics
at TA = 25°C, unless otherwise specified.
Parameter
Unit
DC Characteristics
Collector-emitter oreakdown voltage
Ic = 1 mA, IB = 0
BF 722
V(BR)CEO
Collector-emitter breakdown voltage
Ic = 10 llA, Rse = 2. 7kn
BF 720
V(BR)CER
Collector-base breakdown voltage
BF 720
Ic = 10 llA, Is = 0
BF 722
V(BR)CSO
Emitter-base breakdown voltage
Ie = 10 llA, Ic = 0
V(BR)eBO
Collector-base cutoff current
Vcs = 200 V, Ie = 0
leBo
Collector-emitter cutoff current
Vee = 200 V, Rse = 2.7kn
Vce = 200 V, Rse = 2.7kn,TA = 150°C
leeR
Emitter-base cutoff current
VEB = 5 V, Ie = 0
leso
DC current gain 1)
IC=25 mA, Vce=20 V
hFE
Collector-emitter saturation voltage
Ie = 30 rnA, Is = 5 rnA
1)
VOe,al
250
-
-
V
300
-
-
V
300
250
-
-
V
V
5
-
-
V
-
-
10
nA
-
-
50
10
nA
llA
-
-
10
llA
50
-
-
-
-
-
0.6
V
-
100
-
MHz
-
0.8
-
pF
AC Characteristics
Transition frequency
Ic = 10 mA, VCE = 10 V, ,= 100 MHz
'T
Collector-base capacitance
VCB =30 V, Ie =0. f= 1 MHz
Cob
1) Pulse test conditions: t ~ 30011S; D = 2%
338
Siemens
BF 720; BF 722
Collector cutoff current Iceo = '(TA )
Total power dissipation Plol = '(TA)
nA Vce = 200 V
2.0
,-- --,- .-- - - -.,--,--",
W , - . - - --1-1- -- - -I--HI-I-+-I
5
1-
P.o'
t
IO J
I- - _. -- -- -- --
I-
m xV
--1- -I- - - .- - - - -I-
1.5:=
--[\ - I- --- - -
/
1--1-1I--
1---
---.~ I-
I-
f\-
to
II-
os
\'-1--
---
1\-
- -
_.- -
----
I-
--
,,-
........
la'
5
1/
/
'\
1-1- ---
1-11--I-
.-.
o '-'-- 0
t p.
-f\-
-_. -.
--- ---
- --
-l-
100 °C
- - TA
50
Collector current Ie
\;
1
150
50
100
150 'C
-Ii
= '(VeE)
rnA VCE = 20 V
101
5
II
I
-
I
-
10'1
o
I
1 V
0.5
--Vat
Siemens
339
BF 720; BF 722
DC current gain hFE
VeE = 20 V
1:
3
hFE
= ((I c)
Transition frequency (T = ((Ic)
MHz VCE = 10 V, (=100 MHz
1116111
1
10
EEmlEIEtII
I,:,. . . .
--Ie
Collector-base capacitance Cob = ((Vce)
pF'/C = 0, (= 1 MHz
4
II
2
1\
-
t-I-
o
o
10
20
30V
---VcB
340
Siemens
PNP Silicon High-Voltage Transistors
•
•
•
•
•
BF 721; BF 723
Suitable for video output stages in TV sets
and switching power supplies
High breakdown voltage
Low collector -emitter saturation voltage
Low capacitance
Complementary types: SF 720/722 (NPN)
Type
E
Marking
Ordering code (12-mm tape)
Package"
BF 721
BF 721
Q62702 - F1239
SOT-223
BF 723
BF723
Q62702 - F1309
SOT-223
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
Emitter-base voltage
VCEO
VCER
VCBO
VEBO
Collector current
Ic
50
ICM
100
mA
P IOI
1.5
W
Collector-base voltage
Peak collector current
Total power dissipation, TA:s 25°C
\)
Junction temperature
Ii
Storage temperature range
TSlg
BF721
BF723
Unit
-
250
-
V
300
300
250
V
5
5
V
mA
150
-65
to
+ 150
°C
°C
Thermal Resistance
Junction - ambient
:s 83.3
1)
IKiW
I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm
Mounting pad for the collector lead min 6cm 2
.) For detailed dimensions see chapter Package Outlines
Siemens
341
BF 721; BF 723
Characteristics
at TA = 25°C, unless otherwise specified.
Parameter
I
I
Symbol Value.
min. Ityp.
Imax. .I
Ul1lt
DC Characteristics
Collector-emitter .breakdown voltage
Ic = 1 mA, IB = 0
SF 723
V(BR)CEO
Collector-emitter breakdown voltage
Ic = 10 pA, RBE = 2.7kn
SF 721
V(BR)CER
Collector-base breakdown voltage
Ie = 10 pA, Is = 0
8F 721
SF 723
V(BR)CBO
Emitter-base breakdown voltage
IE = 10 pA, Ic = 0
V(BR)EBO
Collector-base cutoff current
VcB =200 V, IE=O
ICBO
Collector-emitter cutoff current
VcE =200 V, RBE=2.7kn
VcE =200 V, R sE =2.7kn,TA =150°C
ICER
Emitter-base cutoff current
VEB = 5 V,Ic = 0
lEBO
DC current gain 1)
Ic = 25 rnA, VCE = 20 V
hFE
Collector-emitter saturation voltage
Ic=30 mA,/B =5 rnA
VCEssl
250
-
-
V
300
-
-
V
300
250
-
-
-
V
V
5
-
-
V
-
-
10
nA
-
-
50
10
nA
l1 A
-
-
10
Il A
50
-
-
-
-
-
0.6
V
-.
100
-
MHz
0.8
-
pF
AC Characteristics
Transition frequency
Ic= 10 rnA, VCE = 10 V, f= 100 MHz
fT
Collector-base capacitance
VcB =30 V, Ic=O, f= 1 MHz
Cob
1) Pulse test conditions: t ;;; 300ps; D = 2%
342
Siemens
BF 721; BF 723
Total power dissipation Plol
2,0
""
r(TAI
r-r-..-,--.-r-r-
Collector cutoff current I CBO = r(TAI
nA' VCB = 200 V
10 1
W rt-r'j~~-~'rt~+4-4-~~
-,-_.
":..
I-
S
_.- - -- - _.-
-t--I-H-j-I-I-
t I.S ~.__ ~
m x,,1
-1-
__
1I
--I- -+-f-f-f-+--l
I- - - . - \
:=
\-:-
- ~ -t--I-+-l-l-
1,0
1 - - --I-l--+-t'U-
-I-
f\ -t-t-+-+-I-l
f-- -- -- ~_:-
__
1/
t p,
5
\1--l-+4--H
. - _00
O,S 1-++1--+_-1__-1:-
i--'k
10'
oo
1I
,
r= : - -= _-f-J_\~-+_~~
------ - --1- - -------
:--1--t-1-.,•...-.
Ol-L~-J--~--L-~-~'-L-'~_J~Li_~\J
100 DC
ISO
o
so
10-1
o
SO
100
150 DC
-/A
-1i.
Collector current Ie"" r(VBEI
mA VCE = 20 V
101
5
I
I
I
-
lO- I
S
10-1
o
l0.5
f-- I--
1 V
Siemens
343
BF 721; BF 723
DC current gain hFe
VCE = 20 V
= '(lc)
Transition frequency 'r = f (I cl
MHz VCE = 10 V, f= 20 MHz
10l
IO l
5
10 1
10
,
f-
5
17
0
5 'lJ1
10' rnA 10 1
Collector-base capacitance
pF Ic = 0, f = 1 MHz
COb
= ,(VCB)
4
IT
f\
-
o
344
o
10
20
-\(6
30 V
Siemens
BF 770 A
NPN Silicon RF Transistor
•
•
Low-noise broadband transistor for frequencies
up to 2 GHz at collector currents up to 30 mA
Specially suitable for IF amplifiers in TV-sat tuners
as well as for VCR modulators
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BF770 A
LS
Q62702-F 1068
Q62702-F 1080
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector. current
Base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range
VCEO
VCBO
12
15
2
50
10
280
V
V
V
mA
mA
mW
Tstg
150
-65 .. ·+150
DC
DC
RthJA
:5 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VEBO
Ic
IB
Ptot
Tj
Siemens
345
BF 770 A
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic=1mA,IB=0
V(BR) CEO
12
-
-
V
Collector cutoff current
VCB = 5 V, Ie = 0
ICBo
-
-
50
nA
DC current gain
Ic=30mA, VCE=5V
hFE
40
90
-
-
Collector-emitter saturation voltage
,- __ A
Ie - OU 1111-\,18 -- \) 1111"\
VCEsat
-
0,13
0,5
V
T
,-"
___
A
T
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 30 mA, VCE = 5 V, f= 200 MHz
fT
-
5,5
-
GHz
Collector-base capacitance
VCB = 5 V, VBE = 0, f= 1 MHz
Gcb
-
0,6
-
pF
Collector-emitter capacitance
VCB = 5 V, VBE = 0, f= 1 MHz
G ce
-
0,3
-
pF
Noise factor
Ic = 10 mA, VCE
F
-
2
-
dB
= 5 V,
f= 800 MHz
Power gain
Ic = 30 mA, VCB
Gp
-
13
-
dB
= 5 V,
f= 800 MHz
346
Siemens
BF770A
Total power dissipation P tot = {( TA)
Transition frequency
I cl
{T = {(
VCE = 5 V, {= 200 MHz
GHz
6
mW
400
~ I--
1
1
1/
trot
1 300
II
I
4
~
./
/
/
II
1\
200
[\..
,,\
/
i
I
100
\
I
a
a
'\
-
'\
150
100
50
a
O(
o
10
20
30
50 rnA
40
-7;.
Collector-base capacitance Ccb = {(VeB)
Noise figure F = f (/ cl
f= 1 MHz
VCE = 8 V
pF
dB
1,0
6
Rs =50n ....
F
\
t
4
-
\
0,6 f--~d-+-+---i-+---t--+-+-I
.....
--..., -II~---
f=2GHz
\.
0,41
I
0.2 .
a
,
I
1-:
1
I!
i
I
i
±
!
3
i
.I-+-+--L--+--Ir-1
t-n-t-I r
'--+-H-_'f---.;'f--lf--l
Il
+--t.
II
2
10
20 V
f=O,8G~
\~ ;::;...,
....
1-1-
o
o
--Vcs
11.l,..--_
s 50Q ....
kbP :::rsJ;, -
~;~;;::: :;:;;
~ ::::::F==F'"
f=10HHz
1'1- kn
I
L ~JJ~t1-rl fj
a
\
-
~
Zr'l
10
20
3l rnA
-Ie
Siemens
347
BF 771
NPN Silicon RF Transistor
• For low noise, high gain amplifiers up to 2GHz
• For linear broadband amplifiers
• For modulators and amplifiers in VCR-tuners
Type
Marking
Ordering code for
versions on 8 mm-tape
Package
BF 771
RB
Q62702-F990
SOT 23
Maximum Ratings
Parameter
Collector-emitter voltate
Collector-emitter vOltage ( VBE =O)
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation ( TA ", 60°C ')}
Junction temperature
Storage temperature range
Ambient operating temperature range
Symbol
Ratings
Unit
18
p,.t
Tj
T.tg
TA
12
20
20
2
80
10
300
150
-65 to +150
-65 to +150
V
V
V
V
mA
mA
mW
·C
·C
°C
RthJA
",300
KfIN
VCEO
VCE.
VCBO
VEBO
Ie
Thermal resistance
Junction-ambient '}
'} Package mounted on alumina 15mm x 16.7mm x 0.7mm
348
Siemens
BF 771
min
typ
V(BR)CEO
12
-
-
V
VBE = 0
ICES
-
-
100
pA
Ie = 0
ICBO
-
-
50
nA
Ic=O
lEBO
-
-
1
pA
Ic = SmA, VCE = BV
hFE
-
90
-
-
-
100
-
-
-
0.4
DC characteristics (TA = 25°C)
Collector-emitter breakdown voltage
Ic= 1 rnA,
IB = 0
Collector-emitter cutoff current
VCE
= 20V,
Collector-base cutoff current
VCB=10V,
Emitter-base cutoff current
VEB = lV,
DC current gain
IC = 30mA, VCE = B V
Collector-emitter saturation voltage
Ic = SOmA, IB = SmA
VCEsat
Siemens
max
V
349
BF 771
min
AC characteristics (TA = 25°C)
Transition frequency
Ic= SmA,VCE = 8V,f= 200MHz
-
3.5
GHz
7
-
Ceb
-
0.68
-
pF
Cee
-
0.24
-
pF
Cibo
-
2.2
-
pF
Cobs
-
0.95
-
pF
0.8
-
dB
1,7
-
-
2
-
Gpe
-
13.5
-
dB
iS21ei2
-
11.5
-
dB
Vo' = Vo2
-
250
-
mV
1P3
-
31
-
dBm
fr
Ic = 30mA, VCE = 8V,f= 200MHz
Collector-base capacitance
VCB = 10V,VBE = Vb. = O,f= IMHz
Collector-emitter capacitance
VCE= 10V, VBE= Vb. = O,f= lMHz
Input capacitance
VEB = 0.5 V, Ic = it = 0, f= lMHz
max
typ
.
Output capacitance
,VCE = 10V,VBE= Vbe= O,f=lMHz
c
Noise figure
Ic= SmA,VCE= 8V,f= 10MHz,
zs= 750
Ic = 30mA, VCE = 8V,f = 800M Hz,
Zs=ZSopt
I GHz,
Ic = 30mA, VCE = 8V,f=
Zs=
F
son
Power gain
Ic = 30 mA,vCE = 8V,f = 800M Hz,
zs= 500
ZL=ZLOpt
Transducer gain
Ic = 30mA,vCE = 8V,f=
zo=
1 GHz,
son
-
Linear output voltage
two tone intermodulation test
Ic=40mA,VCE= SV,d'M = 60dB,
f, = 806MHz,f2 = 810MHz,
ZS=ZL=
son
Third order intercept point
Ic = 40mA, VCE = SV,f=800MHz
350
Siemens
BF 771
Common emitter S - parameters
5".522 = f (f) • Z-plane
Ie = 30mA. VeE = 8V. Zo = son
... j50
Ie = 30mA, VeE
.,
= 8V. Zo = son
_-'r-_
90·
GR.
--
- 90·
- jsO
Siemens
351
NPN Silicon RF Transistor
BF772
• For low noise, high gain amplifiers up to 2GHz
• For linear broadband amplifiers
• For modulators and amplifiers in VCR-tuners
sfilwE
E~C
Type
Marking
Ordering code for
versions on 8 mm-tape
Package
BF772
RA
QS2702-F1192
SOT 143
Maximum Ratings
Symbol
Ratings
Unit
VCES
12
20
V
V
Collector-base voltage
VCBO
20
V
Emitter-base voltage
VEBO
2
V
Collector current
Base current
Total power dissipation ( TA :5 SO·C '))
Junction temperature
Storage temperature rangE:
Ambient operating temperature range
Ic
IB
mA
mA
mW
·C
T.t.
TA
80
10
300
150
-S5to +150
-S5to +150
RthJA
:5300
K!W
Parameter
Collector-emitter voltate
Collector-emitter voltage (
VCEO
VeE
=0)
fI.t
7j
·C
·C
Thermal resistance
Junction-ambient ')
') Package mounted on alumina 15mm x 1S.7mm x 0.7mm
352
Siemens
BF772
DC characteristics
(TA
= 25°C)
min
typ
max
Collector-emitter breakdown voltage
le=1 mA,
Is=O
V(SR)eEO
12
-
-
V
Collector-emitter cutoff current
veE = 20V,
VSE=O
ICES
-
-
100
lI A
Collector-base cutoff current
Vcs=10V,
IE=O
leBO
-
-
50
nA
Emitter-base cutoff current
VEa = lV,
le=O
lEBO
-
-
.
1
lI A
Ic = SmA, VCE = 8V
hFE
-
90
-
-
-
100
-
-
-
0.4
DC current gain
IC=30mA, VCE= 8V
Collector-emitter saturation voltage
Ic = SOmA, la = SmA
VCEsat
Siemens
V
353
BF772
min
AC characteristics (TA = 25°C)
Transition frequency
Ic= SmAYCE =
GHz
7
-
0.6
-
pF
Cce
-
0.33
-
pF
Cibo
-
2.3
-
pF
Cobs
-
0.95
-
pF
-
0.8
dB
1.9
-
-
15
-
dB
-
13.5
-
dB
-
250
-
mV
-
31
-
dBm
-
3.5
Ccb
fr
Ic = 30mA, VCE = 8V.f= 200M Hz
Collector-base capacitance
Collector-emitter capacitance
VCE= 10V, VBE=Vbe=O,f= lMHz
Input capacitance
VEB=O.SV,/c=;,=O, f= lMHz
Output capacitance
veE = 10V, VBE = Vbe = o,f= lMHz
Noise figure
F
Ic= SmA,vcE = 8V,f= 10MHz,
7sn
Zs=
le= 30mAYeE = 8V.f= 800M Hz,
Zs = ZSopt
1 GHz.
Ic = 30mA, VCE = 8V.f=
Zs=
son
Power gain
Ie = 30 mA, VeE = 8V,f=800MHz.
zs= son
ZL=ZLopt
Gpe
Transducer gain
Ic = 30mA, VCE = aV.f=
zo= son
1 GHz,
max
-
av J = 200M Hz
VCB = 10VYBE = Vbe = oJ= lMHz
typ
5
1 21el 2
1,6
Linear output voltage
two tone intermodulation test
Ic=40mA,VCE= SV.d'M = 60dB,
f, =806MHz.f2=810MHz.
Zs= ZL=
VOl
= V0 2
son
Third order intercept point
Ie = 40mA, VCE = SV. f= 800MHz
354
1P3
Siemens
BF772
Common emitter 5 - parameters
5".522 = f (f), Z-plane
Ie = 30mA, VeE = 8. Zo = son
Ie = 30mA, VeE
+j50
90·
- j50
- 90·
Siemens
= 8V, Zo =son
355
BF775
NPN Silicon RF Transistor
•
•
Broadband amplifier, mixer, oscillator,
and switching applications up to 2 GHz
Specially suited for use in TV-sat and UHF TV tuners
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BF 775
LO
Q62702-F991
Q62702-F102
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
Ptot
12
20
2,5
30
4
280
V
V
V
mA
mA
mW
Tj
T stg
150
-65···+150
°C
°C
RthJA
:5450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
356
Ic
IB
Siemens
BF775
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 1 rnA, Is = 0
V(SR) CEO
12
-
-
V
Collector cutoff current
Vcs = 10 V, IE = 0
Icso
-
-
50
nA
DC current gain
Ic = 5 rnA, VCE
I c = 20 rnA, VCE
hFE
40
40
90
100
250
-
-
= 6V
= 6V
Collector-emitter saturation voltage
Ic = 20 rnA, Is = 2 rnA
VCEsat
-
0,16
0,5
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 5 rnA, VCE = 6 V, f= 200 MHz
Ic = 20 rnA, VCE = 6 V, f= 200 MHz
fT
3,5
4,5
-
GHz
GHz
Collector-base capacitance
VCE = 6V, VSE = OV, f= 1 MHz
Ceb
-
0,58
-
pF
Collector-emitter capacitance
VCE = 10 V, VSE = 0 V, f = 1 MHz
C ee
-
0,27
-
pF
Noise figure
Ic = 2 rnA, VCE
F
-
2,1
-
dB
= 6 V,
f= 800 MHz
Siemens
357
BF775
Total power dissipation Ptot
=
Transition frequency fT
VCE = 6 V. f = 200 MHz
f(TAl
=
f (l cl
GHz
5
mW
400
/
r
I
1/
3
1"\
I
'\
200
'\
I\.
2
I\.
I
I
100
1'\
o
o
50
100
I\150
0(
o
o
Collector-base capacitance Ccb = f(VcBl
f= 1 MHz
pF
1,0
Ceb
f
0,6
\
\
\
0,4
'
.........
-- - - -
0.2
o
o
20V
-i'cB
358
Siemens
10
20 mA
NPN Silicon RF Transistor
•
•
BF799
Suitable for broadband RF amplifiers
up to 500 MHz in the high tuning range
Particularly suitable for SAW filter driver application
in TV tuners
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
SF 799
LK
Q62702-F788
Q62702-F935
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Peak collector current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VCER
VEBO
Ic
ICM
IBM
P tot
20
30
30
3
35
50
15
280
V
V
V
V
mA
mA
mA
mW
Tj
Tstg
150
-65···+150
°C
°C
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
RthJA
::; 450
K/W
Siemens
359
BF799
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 1 rnA, Is = 0
V(BR) CEO
20
-
-
V
Collector-base breakdown voltage
Ic = 10 I1A, IE = 0
V(BR) CBO
30
-
-
V
Emitter-base breakdown voltage
IE = 10 I1A
V(BR) ESO
3
-
-
V
Collector cutoff current
VCB = 20V
ICBo
-
-
100
nA
DC current gain
Ic = 5 rnA, VCE = 10V
Ic = 20 rnA, VCE = 10V
hFE
35
40
95
100
250
-
Collector-emitter saturation voltage
Ic=20mA,/B=2mA
VCEsat
-
0,15
0,5
V
Base-emitter saturation voltage
I c = 20 rnA, I B = 2 rnA
VBEsat
-
-
0,95
V
min
typ
max
Unit
-
-
800
1100
-
AC characteristics
Symbol
Transition frequency
Ic = 5 rnA, VCE = 10 V, f= 100 MHz
Ic=20mA, VCE= 8 V, f= 100 MHz
fr
Output capacitance
Vcs = 10 V, f= 1 MHz,
Cob
-
0,96
-
Collector-base capacitance
Vcs = 10 V, VBE = 0, f= 1 MHz
Ccb
-
0,7
-
pF
Collector-emitter capacitance
VCE= 10V, VSE=O, f= 1 MHz
C ce
-
0,28
-
pF
Noise figure
Ic = 5 rnA, VCE = 10 V, f= 100 MHz
Rs =50n
F
-
3
-
dB
Output conductance
Ic = 20 rnA, VCE = 10 V, f= 35 MHz
g22e
-
60
-
I1S
360
IE =
-
MHz
MHz
pF
0
Siemens
BF799
Total power dissipation Ptot
=
Transition frequency fr = f (/ cl
f (TA)
f= 100 MHz
mW
MHz
400
1200
f
f,
'i'ot
I
/
~
1000
300
200
1'\
,
\.h=2\
I
800
1'\
I-"""
.........
1\
\
\
I
600
5V
I
1\
400
100
200
\
a
1\
a
100
50
150
O(
a
o
10
20
-1,;.
40
50 rnA
-Ie
Collector-base capacitance C cb = f ( Vce)
Forward transfer admittance !Y21e! = f(/ cl
f= 1 MHz
f=35 MHz
pF
mS
500
1,5
1\
1\
\
\
\
1,0
\
'"
.......
r-.....
-r-
0,5
a
10
V =5V
/ 1h
200
100
a
",-
300
20 V
/
/
II
o
o
Siemens
/
10
20
30
40
-Ie
50 rnA
361
BF989
Silicon N Channel MOSFET Tetrode
•
•
For amplifier and mixer stages in UHF
and VHF TV tuners
Low input and output capacitance
G2
G1
~D
~s
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
SF 989
MA
Q62702-F874
Q62702-F969
SOT 143
Maximum ratings
Parameter
Symbol
Ratings
Unit
Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = 60°C
Storage temperature range
Channel temperature
Vos
20
30
V
mA
10
200
mA
mW
Tch
-55···+150
150
°C
°C
RthJA
:;;450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
362
10
±
IG1/2sM
Ptot
Tstg
Siemens
BF989
Electrical characteristics
at TA
=
25°C, unless otherwise specified
DC characteristics
Drain-source breakdown voltage
10 = 10 fJ.A, - VG1S = - VG2S = 4 V
Gate 1 source breakdown voltage
± IG1s = 10 rnA, VG2S = Vos = 0
Gate 2 source breakdown voltage
± IG2s = 10 rnA, VG1S = Vos = 0
Gate 1 source leakage current
± VG1S = 5 V, VG2S = Vos = 0
Gate 2 source leakage current
± VG2S = 5 V, VG1S = Vos =0
Drain current
Vos = 15 V, VG1S = 0, VG2S = 4 V
Gate 1 source pinch-off voltage
Vos = 15 V, VG2S = 4 V, 10 = 20 fJ.A
Gate 2 source pinch-off voltage
Vos = 15 V, VG1S = 0,10 = 20 fJ.A
Symbol
V(BR) os
min
20
typ
max
-
-
Unit
V
± V(BR)G1SS
8,5
-
17
V
± V(BR)G2SS
8,5
-
17
V
± IG1sS
-
-
50
nA
± IG2sS
-
-
50
nA
loss
2
-
20
rnA
- VG1S(P)
-
-
2,7
V
- VG2S(P)
-
-
2,7
V
AC characteristics
Forward transconductance
Vos = 15V, 10 = 7mA, VG2S = 4V, f= 1 kHz
Gate 1 input capacitance
Vos = 15V, 10 = 7 rnA, VG2S = 4V, f= 1 MHz
Gate 2 input capacitance
Vos = 15V, 10 = 7 rnA, VG2S = 4V, f= 1 MHz
Reverse transfer capacitance ')
Vos = 15 V, 10 = 7 rnA, VG2S = 4 V, f= 1 MHz
Output capacitance
Vos = 15 V, Jo = 7 rnA, VG2S = 4 V, f= 1 MHz
Power gain (test circuits 1, 2)
Vos = 15 V, 10 = 7 rnA,
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
f= 800 MHz, GG = 3,3 mS, GL = 1 mS
Noise figure (test circuits 1, 2)
Vos = 15 V, 10 = 7 rnA
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
f= 800 MHz, GG = 3,3 mS, GL = 1 mS
Control range (test circuit 2)
Vos = 15 V, VG2S = 4··· -2V, f= 800 MHz
Mixer gain (test circuit 3)
Vos = 15 V, VG2S = 4 V, f= 800 MHz,
flF = 36 MHz, 2 ~flF = 5 MHz, VOse = 800 mV
') G2 and S on screen potential.
Symbol
min
9,5
typ
12
max
gfs
-
Unit
mS
C g 1ss
-
1,8
-
pF
1
-
pF
Cdg1
-
25
-
fF
Cdss
-
0,8
-
pF
-
23
16,5
-
dB
dB
-
1,6
2,8
-
~Gp
40
-
-
dB
dB
dB
Gpse
-
16
-
dB
C g 2ss
Gp
-
F
Siemens
-
363
BF989
Total power dissipation
Output characteristics
10 = f(Vos)
VG2s=4V
Ptot = f(TA)
mA
mW
300
~~~~~~~I~Tr~
r,B'\
~ot
i
200
1\
1\
1
1\
10
HII-++±.Iool-l-H-IH-+-+6.2~
o
100
5~~~~~HH~*=~.?~
I'
1\
~+b~4+~~~~g~
\
\
o
o
50
100
150 0 C
o ~~8;e;~~ti~V~Gll~s=~-o~.BBv
o
5
10
15
20V
-~
-Vos
Gate 1 forward transconductance gls1 = f(VG1S)
Vos = 15V
loss = 7 rnA, f= 1 kHz
mS
15
~!2! ~~
tJI
n
-.
o
-2
-1
10
J
rl
,
~c.s~1\
I/HIV 1\
IINIII ~
.UI1
1/
~1V
OM
rl.v
5
lOY
1\
I......
o
VG1s =-O,5V
~I-'"
I I VI-'"
II It-
5
L...- V'
....
1\
,....
. . J.........
I
1\
I HI.
~:*
OV
V
I-
1\
YIJ
15
~!3'
Vjll
1)'(1
10
Gate 1 forward transconductance gls1 = f(VG2S)
Vos=15V
loss = 7 rnA, f= 1 kHz
mS
1\
V, J
III
-:-~ 5V
1V
o ljV
-1
0
2
4
- VG2S
364
Siemens
5V
BF989
Gate 1 input capacitance
C g 1SS = f(VG1S)
VG2S =4V, Vos = 15V
loss = 7 mA, f= 1 MHz
pF
Gate 2 input capacitance
C g2ss = f(VG·2S)
VG1S = 0 V, Vos = 15 V
loss = 7 mA, f= 1 MHz
pF
2,0
2,0
~
~
C g 1ss
i
V
1,5
~
Cg2ss
i
./
1,5
v r-.
f---
~
1,0
'-.
.......
1,0
0,5
0,5
~
o
o
-1
1V
o
5V
Drain current 10 = f(VG1S)
Vos=15V
Output capacitance
Cdss = f(Vos)
VG1S = 0 V, VG2S = 4 V
loss = 7 mA, f= 1 MHz
pF
2,0
-1
rnA
30
I
V~2S=4V
I
i
J =3V
II
I
VII
V
VG2S -4V
1,5
=2V
t'
20
~
\
\
1,0
--
~
-
II
IJ,
10
r;,
=1V
i-'
W
0,5
By i-'
o
o
20 V
10
o IoIjrffl
-1
o
=ov
3 V
-VOS
Siemens
365
BF989
Gate 1 input admittance Y11s
Vos = 15 V, VG2S = 4 V
(common-source)
mS
10
1 _I
10PlIO= 15mA
-
I--
8
Z
3, f-800 MHz
r- ~1
-
-
I
I---; 15
600MHz
f
.!1
~5
I
400MHz
4
&
~
20~M~z
~100MHZ
o I I
o
5mS
4
Gate 1 forward transfer admittance Y21s
Vos = 15V, VG2S = 4V
(common-source)
Output admittance Y 22s
Vos = 15V, VG2S =4V
(common-source)
mS
mS
5
o
-5
IllIo=lmA
-f=100MHz
200MHzp....
1
1
"UU':MZ
6Oo~l
7
r-i'-_
"'r--.
J
1
10=1 3 7
15
Ie
!
15mf
f=800MHz
1"0'\,
I\.
r\
I\.
3
15
'"
I"'~
6~OMHZ
1~
1
2
~
~
15
1
""",-
11.. '"
800MHz
-10
10~
l?mAI
13
400MHz
I
I\,
1~
15
1
--tr200MHZ
I I
1 rr
15
10
-15
o
10
15 mS
o
o
366
0,1
0,2
0,3
0,4
- 9 225
-9215
Siemens
0,5 mS
BF989
Power gain G p = f(VG2S)
Vos = 15 V, VG1S = 0;
loss = 7 rnA, f= 200 MHz
Noise figure F = f ( VG2S)
VOS = 15 V, VG1S = 0;
loss = 7 rnA, f= 200 MHz
dB
dB
(test circuit 1)
40
(test circuit 1)
10
F
-,
I
10
1\
8
7
6
\
o
9
5
4
~o
3 f- - -
I
-20
2
-30
~
~
-40
4
3
o
2
-1
o
-2V
5
4
3
2
0
-1 V
VG2S
- VG2S
Power gain G p = f(VG2S)
Vos = 15 V, VG1S = 0;
loss = 7 rnA, f= BOO MHz; Rs = 0
Noise figure F = f(VG2S)
Vos = 15 V; VG1S = 0;
loss = 7 rnA; f= 800 MHz; Rs = 0
-
dB
10
(test circuit 2)
dB
._-
40
F
r
'\.
10
(test circuit 2)
9
,
8
7
6
o
\
5
1\
\
-'0
I
II
4
3
-20
2
II
-30
1\
I
-40
4
o
-,
-2V
o
5
4
3
2
o -,
V
- VG2S
Siemens
367
BF989
Interference voltage lor 1010 cross modulation
Vint(I%)
=
f(fin,)'); mint
= 15 V; VG2S = 4 V,
VG1S = 1 V; Rs = 150 n
mV
= 1000/0;
Vint (1%) = f(Ll.G ps)'); fo = 800
fint = 700 MHz; mint = 1000/0;
Vos
103
r-
Interference voltage lor 1010 cross modulation
Vos
(test circuit 2)
mV
= 15 V;
VG1S
= 1 V;
Rs
MHz;
= 150 n
(test circuit 2)
103
"'\
-
:/
V
r--.
f-
1~
700
800
900 MHz
-20
-10
-30 dB
- - <1G ps
Mixer gain G pse = fIRs)
fo = 800 MHz; fose = 836 MHz
Vose = 800 mV; Vos = 15 V
VG2S = 4 V; loss = 7 mA
dB
(test circuit 3)
20 ,,-,~,,-,.-,,~.-,,~
Mixer gain G pse = f ( Vose)
15 K-I-+-t-+-+-+-+-+-+-+-+-+-+--1
15
fo
= 800 MHz; fose = 836 MHz
Vos = 15 V; VG2S = 4 V;
loss = 7 mA; Rs = 150 n
dB
20
(test circuit 3)
Gpsc
r0-
"
t
II
10
H-+-H++----1-+-+-H++----1-l
10
5
O'-'--'---L-"---,---'----'--'--L---'--'---'-"---,-J
o
100
200
300 Q
o
o
--Rs
0,5
1,0
1,5V
--Vose.
') Vint(l%) is the rms value of half the EMC (terminal voltage at matching) of a 1000/0 sine modulated TV carrier at an internal
generator resistance of 60 n, causing 10/0 amplitude modulation on the active carrier.
368
Siemens
BF989
Test circuit 1, power gain and noise figure
f = 200 MHz; GG = 2 mS, GL = 0,5 mS
VCi2S
HI
~"';l----~
lnF
~ 15p£[
,nputl~nF
FB5~
lnF
27~ I
60\1
Ii
270k
I-J
Test circuit 2, power gain, noise figure and cross modulation
f= 800 MHz, GG = 3,3 mS, GL = 1 mS
vGZS
lnF
~270k
lnF
H~I---------~--1lklO~~~t
lnF
,:g~'rL~I
vG1S
'.. H
0,
Vos
Test circuit 3, mixer gain
f= 800/36 MHz
Output
Input
6011
f=36MHz
I
~t--.-_ _
lnF_
oscillator l '
836 MHz J..0~pF
Input
60ll ~r
800MH~
VDS
Siemens
369
BF993
Silicon N Channel MOSFET Tetrode
•
•
High gain, low distortion
For VHF 1V and FM mixer
and input stages
G2/lAO
G1~S
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BF993
ME
Q62702-F899
Q62702-F1018
SOT 143
Maximum ratings
Parameter
Symbol
Ratings
Unit
Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = 60°C
Storage temperature range
Channel temperature
Vos
20
50
V
mA
10
200
mA
mW
Tch
-55···+150
150
°C
°C
RthJA
~450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
370
10
± IG1f2SM
Ptot
Tstg
Siemens
BF993
Electrical characteristics
at TA = 25°e, unless otherwise specified
DC characteristics
Drain-source breakdown voltage
ID = 10 !lA, - VGIS = - VG2S = 4 V
Gate 1 source breakdown voltage
± !GIS = 10 mA, VG2S = VDS = 0
Gate 2 source breakdown voltage
± IG2s = 10 mA, VGIS = VDS = 0
Gate 1 source leakage current
± VGIS = 5 V, VG2S = VDS = 0
Gate 2 source leakage current
± VG2S = 5 V, VGIS = VDS =0
Drain current
VDS = 15 V, VGIS = 0, VG2S = 4 V
Gate 1 source pinch-off voltage
VDS = 15 V, VG2S = 4 V, ID = 2O!lA
Gate 2 source pinch-off voltage
VDS = 15 V, VGIS = 0, ID = 20 !lA
Symbol
min
20
typ
max
V(BR) DS
-
-
Unit
V
± V(BR)GISS
a,5
-
17
V
± V(BR)G2SS
a,5
-
17
V
± IGISS
-
-
50
nA
± IG2sS
-
-
50
nA
IDss
6
-
40
mA
- VGIS(p)
-
-
3,5
V
- VG2S (p)
-
-
3,0
V
AC characteristics
Forward transconductance
VDS = 15 V, ID = 10 mA, VG2S = 4 V,
f= 1 kHz
Gate 1 input capacitance
VDS = 15 V, ID = 10 mA, VG2S = 4 V,
f= 1 MHz
Gate 2 input capacitance
VDS = 15 V, ID = 10 mA, VG2S = 4 V,
f= 1 MHz
Reverse transfer capacitance')
VDS = 15 V, ID = 10 mA, VG2S = 4 V,
f= 1 MHz
Output capacitance
VDS = 15 V, 10 = 10 mA, VG2S =.4 V,
f= 1 MHz
Power gain (see test circuit)
VDS = 15 V, ID = 10 mA,
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
2M=12MHz
Noise figure (see test circuit)
VDS = 15 V, ID = 10 mA
f= 200 MHz, GG = 2 mS, GL =0,5 mS
') G2 and S on screen potential.
Symbol
min
16
typ
25
max
gls
-
Unit
mS
CglSS
-
6
-
pF
Cg2ss
-
2,5
-
pF
Cdgl
-
50
-
fF
Cdss
-
2,5
-
pF
Gp
-
25
-
dB
F
-
1,5
-
dB
Siemens
371
BF993
Total power dissipation Ptot
=
Output characteristics J D = f (VDS)
VG2s=4V
f (TA)
rnA
25
mW
300
IIG1S= 0.4V
~ot
I
~.2V
I I
200
1\
15
i\
OV
1\
10
100
-0.2V
5
\
1\
o
-0.4V
\
o
100
50
150 0 (
-0.6V
o
o
10
20V
15
-TA
Gate 1 forward transconductance
VDS = 15V
JDSS = 10 mA, f= 1 kHz
mS
40
Gate 1 forward transconductance
g1s1 = f(VG2S)
VDS = 15V
JDSS = 10 mA, f= 1 kHz
rnS
40
30
30
g1s1 = f(VG1S)
I
I
VG1S=~H-
V
~G2s=4V-
'\ 1'\
I
III V
20
II
\
20
II I
II
1\
\
--- OV
V
I
1\
1\
~
V
V
-0.5V
3V
VI\ 1\
10
1\
1\
o
r:.f/JA
-1
372
/'
1\
OV r-
o
i'
10
2~
l1
/
/'
V
r-1J0.5V
II
o
2V
-1
Siemens
,/
~'r'"
0
2
4
5
6V
BF993
Gate 1 input capacitance
C g 1ss = f(VG1S)
VG2s=4V, Vos=15V
loss = 10 rnA, f= 1 MHz
Gate 2 Input capacitance
C g 2SS = f(VG2S)
VG1S = 0 V, Vos = 15 V
loss = 10 rnA, f= 1 MHz
pF
8
pF
5
I-
,/
6
,/
1/
4
l'
,..-
1\
./
\
\
I'..
/
o
o
-1
Output capacitance Cdss
VG1S = 0 V, VG2S = 4 V
loss = 10 rnA, f= 1 MHz
1V
=
o
-1
o
5V
4
3
Drain current 10 = f(VG1S)
Vos = 15V
f(Vos)
rnA
pF
10
SO
VG2S =4V
II
=3V
I
=12~
40
8
iI'
V
6
4
30
\
f'.. .......
IIV,
2
o
o
10
10
II.
20
20V
o
-1
Siemens
...
=1V
~
~II
~~
~~
o
=OV
II
3 V
373
BF993
Gate 1 forward transfer admittance Y21S
Vos = 15 V, VG2S = 4 V
(common-source)
Gate 1 input admittance Ylls
Vos = 15 V, VG2S = 4 V
(common-source)
mS
mS
30
~J =1mA~5 710
i~mtt.'=800 MHz
25
1
20
15
7
o
15
I
1
10
Sf7
3 600MHz
3
-20
~\O
5 15 10
{tit
I
200 MHz
-30
100~IHZ
10
n~~~z
15
20
25
30mS
-40 1111111
-30 -20 -10
-g"5
Output admittance Y22s
Vos = 15 V, VG2S = 4 V
(common-source)
mS
20
b ZZ5
JD=1m~
15
I I 110f=800MHz -
10 r-r-
5
1 10
5 15600MHz
r=ITsttio
5 151
1 I
MH~
t~5_12do~Hi
~5l100MHz
o
o
I
0,1
0,2
0,3 mS
-gZ15
374
-1~
15 1
Siemens
5710
I~
3~
7:1+
\10
1\J15
400MHz
5
7
o
o
I
5
400MHz
ti
'115
1,*0 5
3 200MHz
5] II
3
11
10
111
1
-10
15
10
?fit
~ir=1?°Wiit
10 =1mA
7
10
I
15
600MHz
111111
0
10
20
30 mS
BF993
Power gain G p = f(VG2S)
Vos=15V, VG1S=0
loss = 10 rnA, f= 200 MHz
Noise figure F= f(VG2S)
Vos = 15 V, VG1S = 0
loss = 10 rnA, f= 200 MHz
dB
30
dB
10
(test circuit)
Gp
I"
20
t
f..-
-
F
t
J
10
(test circuit)
8
I
I
-10
4
I
'-
-20
o
-30
-1
4V
-
o
-1
4V
- - VG2S
Test circuit for power gain and noise figure
f = 200 MHz; GG = 2 mS, GL = 0,5 mS
1nF
1nF
lSpF
1SpF
l~t~t
60\1
1nF
'"'"[
60\1
I
IDr
270k
I
~
VG1S
Vtun
Vtun
Siemens
Vos
375
BF994 S
Silicon N Channel MOSFET-Tetrode
•
For VHF applications, especially for
input and mixer stages with wide tuning
range, e.g. in CATV tuners
G2~D
G1
~s
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
SF 994S
MG
Q62702-F963
Q62702-F1020
SOT 143
Maximum ratings
Parameter
Symbol
Ratings
Unit
Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = BODC
Storage temperature range
Channel temperature
Vos
20
30
V
mA
10
200
mA
mW
Tch
-55···+150
150
DC
DC
RthJA
:S 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 1B.7 mm x 0.7 mm
376
10
±
IG1/2sM
Ptot
T stg
Siemens
BF 994 S
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Drain-source breakdown voltage
10 = 10 1-lA. - VG1S = - VG2S = 4 V
Gate 1 source breakdown voltage
± IG1s = 10 rnA, VG2S = Vos = 0
Gate 2 source breakdown voltage
± IG2s = 10 rnA, VG1S = Vos = 0
Gate 1 source leakage current
± VG1S = 5 V, VG2S = Vos = 0
Gate 2 source leakage current
± VG2S = 5 V, VG1S = Vos =0
Drain current
Vos= 15V, VG1S=0, VG2s=4V
Gate 1 source pinch-off voltage
Vos = 15 V, VG2S = 4 V, 10 = 20 I-lA
Gate 2 source pinch-off voltage
Vos = 15 V, VG1S = 0, 10 = 20 I-lA
V(BR) os
20
-
-
V
± V(BR)G1SS
8,5
-
17
V
± V(BR)G2SS
8,5
-
17
V
± IG1sS
-
-
50
nA
± IG2sS
-
-
50
nA
loss
2
-
20
rnA
- VG1S(P)
-
-
2,5
V
(p)
-
-
2,0
V
- VG2S
AC characteristics
Symbol
min
typ
max
Unit
Forward transconductance
Vos = 15 V, 10 = 10 rnA, VG2S = 4 V,
f= 1 kHz
Gate 1 input capacitance
Vos = 15 V, 10 = 10 rnA. VG2S = 4 V,
f= 1 MHz
Gate 2 input capacitance
Vos = 15 V, 10 = 10 rnA, VG2S = 4 V,
f= 1 MHz
Reverse transfer capacitance
Vos = 15 V, 10 = 10 rnA, VG2S = 4 V,
f= 1 MHz
Output capacitance
Vos = 15 V, 10 = 10 rnA, VG2S = 4 V,
f= 1 MHz
Power gain (see test circuit)
Vos = 15 V, 10 = 10 rnA,
f= 200 MHz, GG = 2 rnS, GL = 0,5 rnS
Noise figure (see test circuit)
Vos = 15 V, 10 = 10 rnA,
f= 200 MHz, GG = 2 rnS, GL =0,5 rnS
Control range (see test circuit)
Vos= 15V, VG2s=4··· -2V,
f= 200 MHz
gfs
15
18
-
rnS
Cg1ss
-
2,5
-
pF
Cg2ss
-
1,2
-
pF
Cdg1
-
25
-
fF
Cdss
-
1
-
pF
Gp
-
25
-
dB
F
-
1
-
dB
~Gp
50
-
-
dB
Siemens
377
SF 994 S
Total power dissipation Ptot =
t (TA)
Output characteristics
10 = t(Vos)
VG2s=4V
mA
mW
300
25
10
VGtS=0,6V
~ot
i
t
200
\
20
0,4V
O,2V
15
\
O~
\.
10
-O;lV
100
-0,4~
\
5
i\
-O,6V
\
1\
o
o
100
50
150°C
-O,BV
o
o
5
10
-1i.
20V
15
-VOS
Gate 1 forward transconductance
Gate 1 forward transconductance
gfst = t(VGts)
gfst = t(VG2S)
Vos=15V
loss = 10 rnA,
Vos = 15V
loss = 10 rnA,
t= 1 kHz
mS
t= 1 kHz
mS
20
20
III I
Yf,zs=4V
VGts=OV15
15
VT/
If'
i\
/
\
1\
10
1\
1,V
1\
12V
o
-2
378
I,
5
-1
~~
OV
o
2V
o,~V
./
/
11111
v.:
/
10
1\
5
I
/
/",
'-0,5V
V
/
I
"1
V
1/
olL ~ ~
-2
Siemens
-1
o
3
4V
BF 994 S
Gate 1 Input capacitance C g 1SS = f(VG1S)
VG2S = 4 V, Vos = 15 V
loss = 10 mA. f= 1 MHz
Gate 2 Input capacitance C g 2ss
VG1S =0, Vos = 15V
loss = 10 mA, f= 1 MHz
pF
2,5
pF
2,0
[g1ss
t
.,2,0
--
V
y
/'
1,5
= f( VG2S)
..1\
1,5
1,0
1,0
0,5
0,5
o-1
o
Output capacitance Cdss
VG1S=OV, VG2s=4V
loss = 10 mA, f= 1 MHz
1V
= f (Vos)
pF
5rr"""~"",,,,-'~
o
-1
o
4
2
Drain current
Vos = 15V
mA
30
5V
lo = f(VG1S)
VG1s =4V
II
=3V
=2V
I-'
rl
II
V
20
V
=1V
i;'
W
u
rl
10
=OV
o WI!
-1
Siemens
'"
o
3 V
379
BF 994 S
Gate 1 Input admittance Y115
Vos = 15 V, VG2S = 4 V
(common-source)
Gate 1 forward transfer admittance Y 215
Vos = 15 V, VG2S = 4 V
(common-source)
mS
mS
o
14
f=100 MHz 1
b11 •
I
-'71~p1~
12
-2
1 ~
10
r-~;1
8 - f--3 5
f
15
2
"
Il
........
3
~
I~I-15-
60~HZ
I"-?
~
15
r-
-
8~OMIHZ -
-18
-20
o
-9"s
Output admittance Y 225
Vos = 15 V, VG2S = 4 V
(common-source)
mS
3 5 7110 115
f=tOOMHZ
llo. ,..:015 600MHzI
3
1bo1~ 400 MHz
2
cJ? 200 MHz
J51100~HZI
380
400 MHz
'5
-16
2 mS
o
o
I~~-
N
-14
15
1 100MHz
10=lmA
2fM~Z-
3
'\
-12
15
1 200 MHz
5
........
1~t15 I
-0.
........ ~
i'\.
-10
15 400MHz
4
-f--k.
-6 10 =1mA
-8
1~ 600MHz
6
J,
-4
o=1mA f=800MHz-
-
-
1
b 21s
0,1
O,2mS
Siemens
10
20mS
BF 994 S
Power gain G p = f (VG2S)
Vos=15V.VG1S=OV
loss = 10 rnA. f= 200 MHz
Noise figure F = f (VG2S)
Vos = 15 V. VG1S = 0 V
loss = 10 rnA. f= 200 MHz
dB
30
dB
10
(test circuit)
F
Up
I
(test circuit)
~-
20
9
r
I
10
6
7
6
o
5
-10
4
3
-20
\
2
-30
\
I
-40
-1
2
3
I"'---.
4
2
3
4V
Test circuit for power gain and noise figure
f=200MHz; GG=2mS. GL=0.5mS
lnF
l
Input H
60Q
15pF
1 nF
kloutput
60Q
I
lOr
270k
I
Vos
Siemens
381
BF995
Silicon N Channel MOSFET Tetrode
•
For FM and VHF TV input and mixer stages
G2
i/)wo
G1~S
Type
Marking
BF995
MB
Ordering code
for versions in bulk
Q62702-F872
Ordering code for
versions on 8 mm-tape
Q62702-F936
Maximum ratings
Parameter
Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = 60°C
Storage temperature range
Channel temperature
Symbol
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
382
Ratings
20
30
Unit
V
mA
Ptot
10
200
mA
mW
Tstg
Tch
-55 .. ·+150
150
°C
°C
RthJA
:5 450
K/W
Vos
10
± IG1/2sM
Siemens
Package
SOT 143
BF995
Electrical characteristics
at TA = 25 cC, unless otherwise specified
Symbol
min
typ
max
Unit
Drain-source breakdown voltage
10 = 10 !lA, - VG1S = - VG2S = 4 V
DC characteristics
V(BR) os
20
-
-
V
Gate 1 source breakdown voltage
± IG1s = 10 mA, VG2S = Vos = 0
± V(BR)G1SS
8,5
-
17
V
Gate 2 source breakdown voltage
± iG2S = 10 mA, VG1S = Vos = 0
± V(BR)G2SS
8,5
-
17
V
Gate 1 source leakage current
± VG1S = 5 V, VG2S = Vos = 0
± IG1sS
-
-
50
nA
Gate 2 source leakage current
± VG2S = 5 V, VG1S = Vos =0
± IG2sS
-
-
50
nA
loss
4
-
20
mA
Gate 1 source pinch-off voltage
Vos = 15 V, VG2S = 4 V, 10 = 20 flA
- VG1S(p)
-
-
3,5
V
Gate 2 source pinch-off voltage
Vos = 15 V, VG1S = 0,10 = 20 flA
- VG2S (p)
-
-
3,5
V
Drain current
Vos = 15 V, VG1S = 0, VG2S
=
4V
Siemens
383
BF995
AC characteristics
Symbol
min
typ
max
Unit
Forward transconductance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 kHz
gfs
12
17
-
mS
Gate 1 input capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
C g 1ss
-
3,6
-
pF
Gate 2 input capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
C g2ss
-
1,6
-
pF
Reverse transfer capacitance')
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
Cdg1
-
25
-
fF
Output capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
Cdss
-
1,6
-
pF
Power gain (test circuit 1)
Vos = 15V, 10 = 10 mA,
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
2M= 12MHz
Gp
-
23
-
dB
Noise figure (test circuit 1)
Vos = 15 V, 10 = 10 mA
f= 200 MHz, GG = 2 mS, GL =0,5 mS
F
-
1,8
-
dB
Control range (test circuit 1)
Vos = 15V, VG2S =4 ... -2V,
f= 200 MHz
~Gp
-
50
-
dB
Mixer gain (additive test circuit 2)
Vos = 15V, VG2S = 6V, Rs = 220n
f= 200 MHz, flF = 36 MHz
2 ~flF = 5 MHz, VOse = 0,5 V
G pse
-
16
-
dB
Mixer gain (multiplicative test circuit 3)
Vos = 15V, VG1S = 1,7V, VG2S= 2,5V
Rs = 220 n, f= 200 MHz, flF = 36 MHz
2 ~flF = 5 MHz, VOse = 2 V
G pse
-
18
-
dB
') G2 and S on screen potential.
384
Siemens
BF995
Total power dissipation Ptot = f (TA)
Output characteristics I D = f (VDS)
mW
300
mA
VG2S = 4 V
20
~.t
I
VG1S = 0,6 V
-I-
_. tt
-
°L4.'1. . -- -200
0,2
\
--
/
\.
·1
10
'·mrv
tv
/
II
100
~
-
7'
..
v
\
-06V!
1\
50
o
o
150 0 (
100
10
5
-TA
= f(VG1S)
1
"
i-- -
(VG2S)
1
.1.
1
1/
1---1--
-+ .
f--- f--- .. 1--- I-- I-- '-1---
VG 2~::';_Y
9 15 1
15
(I
I
5
,
VI
1\
-1V I -
1/ L/
vTI
...... i........ : -O,5'v r----
I II I
\
I
5
~1V
1
I
~lf1V
.J-- I-- r----
J
I I II
I'- O,5V N
-0,5V
I
II
2 V\,.
1\
A '\
-1
10
\
1\
1\
i-""'"OV
//
l-
'I
.......
~
I
10
.I
VG1S=O,5V~ ~
r-~1
./1/ -~
3V
1/
I-I--
-2
Gate 1 forward transconductance g1s1 = f
VDS = 15V
loss = 10 mA. f= 1 kHz
20
-
c-+-
o
20 V
mS
mS
I--
15
-Vos
Gate 1 forward transconductance g1s1
VDs=15V
IDss = 10 mA, f= 1 kHz
20 -
-O~BV±
-
1\
o
o
..
-
--
J/
o~V
-1
Siemens
o
--
I
1
5V
385
BF995
Gate 1 Input capacitance C 9 1 ss
VG2S =4V, Vos = 15V
Joss = 10 rnA, f= 1 MHz
= f (VG 1s)
Gate 2 input capacitance C g 2ss
VG1S = OV, Vos = 15V
Joss = 10 rnA, f= 1 MHz
PF
pF
5
5
= f(VG2S)
[g2ss
g1ss
4
.......
VV
l- ~
t
j...- j...- ~
4
I-
p- I""
o
o
-1
~
-1
= f(Vos)
3
Drain current Jo
Vos = 15V
pF
mA
5
30
10
,
=1 V
\I
1'--- t-
t-i-.
20V
10
1/
10
o
-1
- - Vos
386
=2V
II
\
o
o
= f( VG1S)
IPff
20
I\..
5V
IN
t
2
4
VG2 s=4V I I/dv
4
3
~ +-.
o
1V
Output capacitance Cdss
VG1S = 0 V, VG2S = 4 V
Joss = 10 rnA, f= 1 MHz
"
Siemens
=ov
I
r;
T
T
o
2
-\(;,s
3 V
BF995
Gate 1 input admittance Ylls
Vas = 15V, VG2s=4V
(common-source)
Gate 1 forward transfer admittance
Vas = 15 V, VG2S = 4 V
(common-source)
mS
mS
20
Io~
10
5
t
} Zi=60bM~z1
15
15
T lin-I'
o rrr-rTTTrTT1"'IITlnII"'
1n-ITTTl
I
11
1-H-+++l-HIo-1mA
IIII I
1
31 5 171015
1
1
f.l00MHz
-5
1
IIII
H-fI-++mrH-H+-f'l'-I.a:~:fl1
j11 15
I"
jY
1-+I1-+M--H-l'-++++++-1?n0 MH z
600 MHz
35
-1/
-
- 15/1
10
-10
I
1-H-H-H-t-HHI---P\;r,(tH-t-t-t-H-t-t-H
;t 400 MH
400MHz 10
5+r1-ti;+-ril~i'-H'''i.15
3
-1
{op
~
5
-15
1200 MHz
1
Y21 s
I
z
0t-HHr~o++-HH++t-H-++-H
1-H~~~~~1~5t-H++t-H++~
600 MHz
1~
t-1~0 M,Hz
o I
o
-2 0
10 mS
5
III
IIIII
L.L.L..L.L.O..LI~
11u.1J...L<
I--LWLLLLLL.L.L.L-'-J
-5
-911.
0
10
15
20 mS
-911'
Output admittance Y 22s
Vas = 15 V, VG2S = 4 V
(common-source)
mS
+
10
t
f--
I
b 225
6 -
f- '---
10= lmA
5
10
f=R(IO
15mA
~IH7
51
1
6
.-~
00 MHz
'-
1 5 lp 15
4
- -c-
..
---
4 OMHz
1-
3
2
-
15
110 5
120 1M iz
115
100MHz
o
o
0,1
0,2
0,3
0,4
0,5
0,6 mS
-9115
Siemens
387
BF995
Noise figure F= f(VG2S)
Vos = 15 V, VG1S = 0 V
loss = 10 rnA, f= 200 MHz
Power gain G p
= f(VG2S)
Vos= 15 V, VG1S = 0 V
loss = 10 rnA, f= 200 MHz
dB
(test circuit 1)
dB
40
Gps 30
t
(test circuit 1)
10
20
II
10
/
---
F
\
\
5
388
-
--.-
..
_.
.
-
\
-
-- - - 1-- . . - - -
\
4
-
.--
---
-
-
- r- _
..
r
-
\
I
-1
_.
--
1\
1\
3
-40
-2
~-
--
6
~
..
f-- -
-20
,I
r-- - - r..
--
I
-30
~I--- -
---
I
-10
\
i
r-
II
0
1
--
---- -
r.- -
o
4V
o
-1
Siemens
o
-
----
SV
BF995
Mixer gain (additive)
G psc = f( Vos c); Vo = 15 V; VG1S = 0;
VG2S = 6 V; Rs = 2200; loss = 10 mA;
f= 200 MHz; flF = 36 MHz;
2 LlflF = 5 MHz
dB
(test circuit 2)
dB
20
20
.....
/
i
~
I--
Mixer gain (additive)
G psc = f(VG2S); Vo = 15 V; VG1S = 0;
Rs = 220 0; Vosc = 0,5 V;
loss = 10 mA; f= 200 MHz;
flF = 36 MHz;
2 LlflF = 5 MHz
(test circuit 2)
10
/'
_. --
II
1/
--- t-
r
/
10
t-
I
.
11
II
o
o
-10
~
t-
t-
t-
I--
1--+--
t-
f-
f-
.. -
-20
-10
-20
o
0,5
1,5 V
1,0
-2
4
-1
~VOS(.
Mixer gain (additive)
G psc = f(Rs); Vo = 15 V; VG1S = 0;
VG2S = 6 V; Vosc = 0,5 V; f= 200 MHz;
flF = 36 MHz; 2 LlflF = 5 MHz
(test circuit 2)
dB
20
I--IOSS -
i
15
SmA
~
J.
1umflt'
~mA
-
II
I:::::
I
V
I
2,OV
1/ _.
/
10
/
--
/
o
V
1/
II
-5
5
~
Vose;' 2,5V
I)
10
6V
II
I
Gps< 20
1-""/
5
VG2S
Mixer gain (multiplicative)
G psc = f(VG2S); Vo = 15 V; VG1S = 1,7 V;
Rs = 2000; loss = 10 mA;
f= 200 MHz; flF = 36 MHz;
2 LlflF = 5 MHz
dB
(test circuit 3)
25
I II
II
~
--
Gpsc
/
/
If 1,5 V
tov
II
/
lJ
-10
j/
-15
-20
-3 -2
-Rs
-1
0
2
3
4
5
6V
_VG2S
Siemens
389
BF995
Interference voltage for 1% cross modulation
Vint (t%) = f(fint)'); mint = 1000/0;
fe = 200 MHZ; Vos = 15 V; VG2S = 4 V,
VG1S = 0; loss = 10 mA
Interference voltage for 1% cross modulation
Vint (1%) = f(LlG p)'); fe = 200 MHz;
fint = 221 MHz; mint = '1000/0;
Vos = 15 V; VG1S = 0; loss = 10 mA
(test circuit 1)
mV
(test circuit 1)
3
rn=liOOaWt-tlE~
,10
f-
17
1'\1\.
1/
\
1/ 7
II
\
.. f-
1\11
f-
f-
f-
f-
10'
200
180
220
UJ...Ll...Ll...LL.LL.LLLU...Ll...Ll..LL.LL..LJ
o
240 MHz
10
15
20
25 dB
------.. L1 Gp
Test circuit 1, power gain, noise figure and cross modulation
f= 200 MHz; GG = 2 mS, GL = 0,5 mS
lnF
ISpF
kloutput
60\1
BB5.QL
1nFI
I
270 k
270k
lOr
I
270!"
Vos
') Vint (1%) is the rms value of half the EMF (terminal voltage at matching) of a 1000/0 sine modulated TV carrier at an internal generator resistance of 60 n, causing 1% amplitude modulation on the active carrier.
390
Siemens
BF995
Test circuit 2, mixer gain (additive)
f= 200 MHz; fosc = 236 MHz; 2 .MIF = 5 MHz
VG2S
~~cQinput
~'00.'
rb H~
'Q
I
'oF
3,3pF
l .. 6pF'\,
Input
60Q
Ir---1
'nlFoutput
60Q
1nF
~
10nF I
I
I
IDr
I
Vos
Test circuit 3, mixer gain (multiplicative)
f= 200 MHz; fosc = 236 MHz; 2 LlflF = 5 MHz
VG2 s
68Q
Osc.input
60Q
Input
60Q
100k
I
1... 6pF\
I
\nlF
60Qoutput
\
10nF I
100k
12 k
100k
Vos
Siemens
391
Silicon N Channel MOSFET Tetrode
•
•
•
BF 996 S
For input stages in UHF TV tuners
High transconductance
Low noise figure
G2
/7}yo
Gl9;s
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
BF 996 S
MH
Q62702-F964
Q62702-F1021
SOT 143
Maximum ratings
Parameter
Symbol
Ratings
Unit
Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = 60 DC
Storage temperature range
Channel temperature
Vos
20
30
V
mA
10
200
mA
mW
Tch
-55···+150
150
DC
DC
RthJA
::; 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
392
10
±
IG1/2SM
Ptot
Tstg
Siemens
BF 996 S
Electrical characteristics
at TA = 25 ac, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Drain-source breakdown voltage
10 = 10 !lA, - VG1S = - VG2S = 4 V
V(BR) os
20
-
-
V
Gate 1 source breakdown voltage
± IG1s = 10 mA, VG2S = Vos = 0
± V(BRI G1SS 8,5
-
17
V
Gate 2 source breakdown voltage
± IG2S = 10 mA, VG1S = Vos = 0
± V(BRIG2SS 8,5
-
17
V
Gate 1 source leakage current
± VG1S = 5 V, VG2S = Vos = 0
±
IG1sS
-
-
50
nA
Gate 2 source leakage current
± VG2S = 5 V, VG1S = Vos =0
±
IG2SS
-
-
50
nA
Drain current
Vos = 15 V, VG1S = 0, VG2S = 4 V
loss
2
-
20
mA
Gate 1 source pinch-off voltage
Vos = 15 V, VG2S = 4 V, 10 = 2O!lA
- VG1S (p)
-
-
2,5
V
Gate 2 source pinch-off voltage
Vos = 15 V, VG1S = 0,10 = 2O!lA
- VG2S (p)
-
-
2,0
V
AC characteristics
Symbol
min
typ
max
Unit
Forward transconductance
Vos = 15V, 10= 10mA, VG2S =4V, f= 1 kHz
gfs
15
18
-
mS
Gate 1 input capacitance
Cg1SS
Vos = 15V, 10 = 10mA, VG2S =4 V, f= 1 MHz
-
2,3
-
pF
Gate 2 input capacitance
Cg2ss
Vos = 15V, 10 = 10mA, VG2S = 4V, f= 1 MHz
-
1,1
-
pF
Reverse transfer capacitance ')
Cdg1
Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz
-
25
-
fF
Output capacitance
Cdss
Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz
-
0,8
-
pF
-
25
18
-
dB
dB
-
1
1,8
-
dB
dB
40
-
Power gain (test circuits 1, 2)
Vos = 15 V, 10 = 10 mA,
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
f= 800 MHz, GG = 3,3 mS, GL = 1 mS
Gp
Noise figure (test circuits 1, 2)
Vos = 15 V, 10 = 10 mA
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
f= 800 MHz, GG = 3,3 mS, GL = 1 mS
F
Control range (test circuit 1)
Vos = 15 V, VG2S = 4··· -2 V, f= 800 MHz
~Gp
-
-
-
dB
') G2 and S on screen potential.
Siemens
393
BF996 S
Total power dissipation
=
Ptot
Output characteristics
10 = t(Vos)
VG2s=4V
mA
25
t(TA)
mW
300
10
VG1s =0.6V
~ot
t
r 200
r\
20
0.4V
15
1\
0.2V
r-..
O~
10
-OJ.V
100
-0,4~
\
5
\
-0.6V
\
o
o
100
-7;
50
o
o
150 0 (
5
10
15
20V
-Vos
Gate 1 forward transconductance
Gate 1 forward transconductance
gfs1 = t(VG1S)
gfs1
Vos = 15V
loss = 10 mA,
mS
20
Vos = 15V
loss = 10 mA,
t=
1 kHz
=
t(VG2S)
t=
1 kHz
mS
I
20
II
Vuzs=4V
gl.1
f
-O.BV
1\
gf.1
r
15
1\
II
VG1S =OV15
Vf/
If'
v.:
/
10.5V
\
\
10
III
III
o
-2
394
Isv
-1
1\
I
/
j.V
/7
2V
I
/
I
I
1V
~~
OV
2V
V
o .L .L. V
-2
Siemens
-1
I
Y
..., V_ ........-0.5V
II
I
o
II
/
10
1\
fII0r
.11/1 1\ \
5
3V
/
1/
/
/
o
4V
BF 996 S
Gate 1 Input capacitance
Gate 2 Input capacitance
C g 2ss = f(VG2S)
VG1S = 0, Vos = 15 V
loss = 10 rnA, f= 1 MHz
C g 1ss = f(VG1S)
VG2S
= 4 V,
loss
=
Vos = 15 V
10 rnA, f= 1 MHz
pF
2,5
'r
2,0
/'
....
pF
2,0
-
v
r
1\
1,5
~
1,0
1,0
0,5
0,5
o-1
o
o
lV
-1
o
3
Output capacitance
Cdss = f (Vos)
VG1S=0, VG2s=4V
loss = 10 rnA, f= 1 MHz
Drain current 10 = f(VG1S)
Vos= 15V
pF
mA
30
5rrTT"".-rrTT""'-~
VG2s =4V
5V
4
=3V
=2V
i;'
10
V
II,
If
f
20
,N
lJ.rl
=lV
i-'
rJ,
IJI}
V
10
=OV
i-'
OLLLLLLLLLLLLLLLLLL~
o
10
15
20V
o .. ~
-1
Siemens
o
'3 V
395
BF 996 S
Power gain G p = f(VG2S)
Vos = 15 V, VG1S = 0
loss = 10 mA, f= 200 MHz
dB
30
I
(test circuit 1)
dB
--
10
-
Ip
Noise figure F = f (VG2S)
VOS = 15 V, VG1S = 0
loss = 10 mA, f= 200 MHz
-r~
!
V"'"
20
/
10
(test circuit 1)
8
7
6
o
-10
4
II
-20
3
\
\.
-30
I
-40
-1
o
4
-2
3
4V
- VG2S
Noise figure F = f(VG2S)
Vos = 15 V, VG1S = 0
loss = 10 mA, f= 800 MHz
Power gain G p = f(VG2S)
Vos = 15 V, VG1S = 0
loss = 10 mA, f= 800 MHz
(test circuit 2)
dB
20
}p
I
/
10
--
(test circuit 2)
dB
10
--.
~r--
F
I
I
/
o
I
-10
/
II
-20
4
'\
\
\
\i
.......
-30
--
I
/
-40
-1
396
4V
o
o
Siemens
3
4V
BF 996 S
Gate 1 Input admittance y 11 s
VDs=15V, VG2s=4V
(common-source)
Gate 1 forward transfer admittance Y21s
Vos=15V, VG2s=4V
(common-source)
mS
mS
o
14
b 11s
I
12
~0=1mA
10
8
f=800MHz~
I
r-;}(
5
),
-4
-f-,1
-6 10 =1m~o::.
'\.
-8
- f-3
1J'"600MHz
'\.
-10
~:5
15 400MHz
-12
15
1 200 MHz
-16
1~t---'"00
r-.
i'..
3
....... ~
N
15
200MHz _
I I
7~:_
400MHz
"'-5
f"..: ~-f-
3
.""-
151-
I'\.?
7
tl.,
-14
4
2
1
b21s
O~?
-
f~100' MHz 1
-2
-'71],1'1
60~Hz{l
15- f-
8foMIHZ
-18
15
1 100MHz
o
o
2 mS
-20
o
r20mS
10
~g2's
--------- g, 1s
Output admittance Y22s
VDS = 15 V, VG2S = 4 V
(common-source)
mS
5
10=1mA
11.0-
3 5 7110 115
f=1800 MHz
P]600MH~
3
,1,.,~ 400MHz
o.!?200MHz
J51100~HZI
o
o
0,1
O,2mS
Siemens
397
BF 996S
Test circuit 1, power gain and noise figure
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
1nF
1nF
l~'P"'
60Q
1nF
,"p~r
60Q
I
lOr
270k
I
H
vG1S
VI un
v'un
Vos
Test circuit 2, power gain, noise figure and cross modulation
f= 800 MHz, GG
= 3,3 mS,
GL
= 1,0 mS
1
1nF
0utput
60Q
1nF
';lo' rh----J--~
Dr
Vos
398
Siemens
BF997
Silicon N Channel MOSFET Tetrode
•
•
For VHF applications especially in TV tuners
with extended VHF band
Integrated suppression network against
spurious VHF oscillations
G2
G1
~D
g;s
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
SF 997
MK
QS2702-F993
QS2702-F1055
SOT 143
Maximum ratings
Parameter
Symbol
Ratings
Unit
Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = SO°C
Storage temperature range
Channel temperature
Vos
20
30
V
mA
Ptot
10
200
mA
mW
Tstg
Tch
-55 .. ·+150
150
°C
°C
RthJA
::5 450
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 1S.7 mm x 0.7 mm
10
±
IG1/2sM
Siemens
399
BF997
Electrical characteristics
at TA = 25 cC, unless otherwise specified
DC characteristics
Drain-source breakdown voltage
10 = 10 !-lA, - VG1S = - VG2S = 4 V
Gate 1 source breakdown voltage
± IG1s = 10 mA, VG2S = Vos = 0
Gate 2 source breakdown voltage
± IG2s = 10 mA, VG1S = Vos = 0
Gate 1 source leakage current
± VG1S = 5 V, VG2S = Vos = 0
Gate 2 source leakage current
+ VG2S = 5 V, VG1S = Vos =0
Drain current
Vos = 15 V, VG1S = 0, VG2S = 4 V
Gate 1 source pinch-off voltage
Vos = 15 V, VG2S = 4 V, 10 = 20!-lA
Gate 2 source pinch-off voltage
Vos = 15 V, VG1S = 0, 10 = 2O!-lA
Symbol
V(BR)os
min
20
typ
max
-
-
Unit
V
± V(BR) G1SS
8,5
-
17
V
± V(BR)G2SS
8,5
-
17
V
± IG1sS
-
-
50
nA
± IG2sS
-
-
50
nA
loss
2
-
20
mA
- VG1S(p)
-
-
2,5
V
- VG2S(p)
-
-
2,0
V
AC characteristics
Forward conductance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 kHz
Gate 1 input capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
Gate 2 input capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
Reverse transfer capacitance ')
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
Output capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
Power gain (see test circuit)
Vos = 15 V, 10 = 10 mA,
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
Noise figure (see test circuit)
Vos = 15 V, 10 = 10 mA,
f= 200 MHz, GG = 2 mS, GL =0,5 mS
Control range (see test circuit)
Vos = 15 V, VG2S = 4··· -2V,
f= 200 MHz
') G2 and S on screen potential.
Symbol
gls
min
15
typ
18
max
-
Unit
mS
Cg1SS
-
2,5
-
pF
Cg2ss
-
1,2
-
pF
Cdg1
-
25
-
fF
Cdss
-
1
-
pF
Gp
-
25
-
dB
F
-
1
-
dB
l>.G p
50
-
-
dB
400
Siemens
BF997
Total power dissipation
=
Ptot
Output characteristics
10 = t(Vos)
VG2s=4V
t(TA)
mA
mW
25
300
10
VG1S=0,6V
~.t
r
t
200
1\
20
0,4V
15
1\
O,2Y
1\
o~
10
-0,2Y
100
\
-O,4V
5
1\
-~,~J
1\
o
1\
o
50
100
150 ·C
-/A
Gate 1 forward transconductance
g'st = t(VGts)
Vas = 15V
loss = 10 mA, t= 1 kHz
mS
- O,BY
°°
5
10
15
20V
-Vos
Gate 1 forward transconductance
g'st = t(VG2S)
Vas = 15V
loss = 10 mA, t= 1 kHz
mS
25
25
\f;2S= 4V
0,5;£...
OV
20
v
iA
V(;t =-O,SV
lS
15
3V
II
10
10
2V
·i~
5
o
-2
I
-1
~
~~y
o
o
-1
2V
0
4
7V
- VGtS
Siemens
401
BF997
'i
Gate 1 Input capacitance
C g 1ss = f(VG1S)
VG2S =4V, Vos = 15V
Joss = 10 mA, f= 1 MHz
Gate 2 Input capacitance
C g 2ss = f (VG2S)
VG1S = 0, Vos = 15 V
Joss = 10 mA, f= 1 MHz
pF
2,5
pF
2,0
-
./
2.0
~
l
1,5
..1\
1,5
.....
1,0
1,0
0,5
0,5
o-1
o
o
1V
-1
o
3
2
Output capacitance
Cdss = f (Vos)
VG1S = 0, VG2S = 4 V
Joss = 10 mA, f= 1 MHz
Drain current 10 = f(VG1S)
Vos= 15V
pF
rnA
30
5rrrrTT~,,-.rrTT~"~
VG2s =4V
=3V
5V
4
=2V
II
/0
V
1/
t
20
=1V
I'"
10
~
"~
rJ.
=OV
~
OLLLL~~-LLLLL~~-LLW
o
5
10
15
20V
o
-1
o
2
-\t,s
402
Siemens
3 V
BF997
Gate 1 Input admittance
Gate 1 forward transfer admittance
Y115
15 V, VG2S = 4 V
Vos =
Vos =
VG1S = 0, Joss = 10 rnA
(common-source)
mS
VG1S =' 0, Joss = 10 rnA
(common-source)
mS
14
80 10 MHlz_
I
o
f=100 MHz <;
/"
b 1\, 12
/
/
10
P
400 M~Z--' I-
-10
f--- ~400MHZ
I
1/
J
1
/
/200I M~zI
-
V
,/
-20
a
VG2S
20 mS
15
-gl\,
-gIl,
Output admittance
V
-c;:; r- 800 MHz
10
4 mS
= 15Y,
/600MHz -
-15
~ f -100 MHz
Vos
!---
I
/
o
M~z
200
I
L
600MHz
I
4
Y215
15 Y, VG2S = 4 V
Y 225
=4 Y
VG1S = 0, JDDS = 10 rnA
(common-source)
mS
6
800M Hz n
V
/1'
4
/
600MHz
V
II 400J MHz
2
I
1200 MHi
c! f =100 MHz
°°
0,2
0,4
0,6
0,8
1.0 mS
-gll.
Siemens
403
BF997
Power gain G p = f (VG2S)
VOS = 15 V, VG1S = 0 V
loss = 10 rnA, f= 200 MHz
Noise figure F = f (VG2S)
Vos= 15V, VG1S =OV
loss = 10 rnA, f= 200 MHz
dB
dB
10
(test circuit)
30
20
f
v
(test circuit)
F
I
10-
10
8
7
6
o
5
-10
4
3
-20
-30
-40
-1
\.
I
o
2
3
i'-
4
3
Test circuit for power gain and noise figure
f = 200 MHz; GG = 2 mS, GL = 0,5 mS
1nF
1nF
1~
1 nF
'""[
60Q
60Q
I
BB5~
270k
1nFI
IDr
I
27OS:-
~
VG1S
404
270k
Vt"n
H
Vt"n
Siemens
VDS
4V
Silicon N-Channel MOSFET Tetrode
•
Short-channel transistor
with high SIC quality factor
•
For low-noise, gain-controlled
input stages up to 1 GHz
BF998
G2
G1
~D
~s
Type
Marking
Ordering cod~
for versions in bulk
Ordering code
for versions on tape
BF 998
MO
Q62702-F37
Q62702-Fl129
Maximum ratings
Symbol
Ratings
Unit
Drain-source voltage
VDS
12
V
Drain current
ID
30
Gate l/Gate 2 source peak current
±h1l2SM
10
rnA
rnA
Total power dissipation
T A :5 60 °C
P tot
200
mW
Storage temperature range
T stg
-55 ... +150
°C
Channel temperature
Tch
150
°C
I RthJA
I :5 450
I K/W
Thermal resistance
Channel - ambient')
I) Package mounted on alumina 16.7 mm x 15 mm x 0.7 mm
Siemens
405
BF998
Electrical characteristics
at TA = 25 °e, unless otherwise specified
DC characteristics
Symbol
min.
typo
max.
Unit
Drain-source breakdown voltage
ID = 10 J.lA, -VG1S = -VG2S = 4 V
Gate l-source breakdown voltage
±hlS = 10 rnA, VG2S = VDS = 0
Gate 2-source breakdown voltage
±h2S = 10 rnA, VG1S = VDS = 0
Gate l-source leakage current
± VG1S = 5 V, VG2S = VDS = 0
Gate 2~source leakage current
±VG2S = 5 V, VG1S = VDS = 0
Drair, current
VDS = 8 V, VG1S = 0, VG2S = 4 V
Gate l-source pinch-off voltage
VDS = 8 V, VG2S = 4 V, ID = 20 J.lA
Gate 2-source pinch-off voltage
v:DS = 8 V, V.G1S = 0 , I D = 20 A
V(BR)DS
12
-
-
V
± V(BR)G1SS
8
-
14
V
± V(BR)G2SS
8
-
14
V
±/G1SS
-
-
50
nA
±/G2SS
-
-
50
nA
IDSS
2
-
18
rnA
-VG1S (P)
-
-
2.5
V
-VG2S (p)
-
-
2
V
Symbol
min.
typo
max.
Unit
9fs
-
24
-
rnS
Cg lss
-
2.1
2.5
pF
Cg 2ss
-
1.2
-
pF
Cdgl
-
25
-
fF
Cdss
-
1.05
-
pF
-
28
-
dB
-
20
-
dB
AC characteristics
Forward transconductance
VDS = 8 V, 10 = 10 rnA, VG2S
f= 1 kHz
=4V
Gate 1 input capacitance
VDS = 8 V, 10 = 10 rnA, VG2S
f= 1 MHz
=4 V
Gate 2 input capacitance
VDS = 8 V, ID = 10 rnA. VG2S
f= 1 MHz
=4
V
Reverse transfer capacitance
VDS = 8 V, ID = 10 rnA, VG2S = 4 V
f= 1 MHz
Output capacitance
VDs =8V,/ o = lOrnA. VG2s=4V
f= 1 MHz
Power gain
(test circuit 1)
VDS = 8 V, ID = 10 rnA, f= 200 MHz,
GG = 2 rnS, GL = 0.5 rnS, VG2S = 4 V
(test circuit 2)
VDS = 8 V, ID = 10 rnA, f= 800 MHz,
GG = 3.3 rnS, GL = 1 rnS, VG2S = 4 V
406
Gps
Siemens
BF998
AC characteristics
Symbol
Noise figure
(test circuit 1)
Vos = 8 V, 10 = 10 mA, f= 200 MHz,
GG = 2 mS, G L = 0.5 mS, VG25 = 4 V
(test circuit 2)
Vos = 8 V, 10 = 10 mA, f= 800 MHz,
GG = 3.3 mS, G L = 1 mS, VG2S = 4 V
F
Control range
(test circuit 2)
Vos = 8 V, VG2S
f= 800 MHz
dG ps
min.
typo
max.
Unit
-
0.6
-
dB
-
1
-
dB
40
-
-
dB
= 4 ... -2 V
Total power dissipation p.o. = f (TA )
rnA
25
rnW
300
Output characteristics 10 = f (Vos)
VG2 • = 4 V
\{;ls =O,5V
O'rVI200
~
15
\
O,2Vl-
1/
Or
10
100
":0,2 V
"1\
o
o
50
100
~.4~
~
o
o
150 0 (
-7i.
-U.bV
5
10
15 V
-Yes
Siemens
407
BF 998
Gate 1 forward transconductance
= f (VOls)
Vos = 8 V, loss = 10 rnA. f= 1 kHz
Gate 1 forward transconductance
g",
g", = f (V
Vos
=8
G2S )
V, loss
= 10 rnA, f = 1 kHz
mS
mS
30
171-
9'sl
/7
\3V
\
~
\"
20
\
It\
I
10
V
IJ
"-
liN
t;P
o
-1
2 V
o
2
--~IS
Vos
=8
V, loss
= 10 rnA.
3
4 V
-\1;25
Gate 1 input capacitance c g' " = f (VOls)
VG2S = 4 V, Vos = 8 V, loss = 10 rnA
f = 1 MHz
Gate 1 forward transconductance
g", = f (10 )
V
I'll
"'-
o
-1
V
I
ov
~r-I-
-O,25J!.
flA-
1\
["\[
o
II
1\
.- e:::
)
\
\
v ....
//
1\
10
V
V
1\
l\lV
rI
V
1
1\
"' 2V
rtJl_
rl
9'sl
1\
ffJrr
20
VG15 =O,2SV
~
I
f
30
.... \(;2S=!+V
/'
f= 1 kHz
mS
pF
30
2.5
VG25 =4V
~y
9'sl
I!::
t
Cgl ss
2V
t
~r;.
20
~
11
2
/
""" "-'\
II
/
1,5
II'
"
1\1V
10
f'\ 0,5
0,5
OV
YT
o
408
1;;[
o
5
10
15
-10
o
20 mA
-3
-2
-1
o
-\{;'5
Siemens
1V
BF 998
Gate 2 input capacitance
VG1S ; O. V DS ; 8 V
loss; 10 rnA. f ; 1 MHz
C U2 .. ;
f
Output capacitance Cd"
VGlS ; O. V G2S ; 4 V
loss ~ 10 rnA. f ; 1 MHz
(VG2S )
pF
2
;
f (VDS )
pF
3
r~1.5
~
oJ
,
~
2
\
,
~
0.5
o
-2
o
-1
3
2
o
o
4 V
5
Drain current 10 ; f
VDS ; 8 V
-\fos
Power gain Gp , = f (VG2S )
(VG1S )
V Ds ;8V. VGls= 0
loss = 10 rnA. f = 200 MHz
(5. test circuit 1)
mA
30
dB
30
I
~2s=4V'
3V,
2
~
J
t
1V
20
15 V
10
-\IG2s
~
G~
20
t
10
o
II
I
I
II
-10
II
10
-20
r-
r-
r-
~_
o L-L-1
OV
-30
"...
o
-40
-1
2 V
o
2
3
4 V
-l.'r;2S
-~IS
Siemens
409
BF998
Noise figure F = t (VG2S )
VDS = 8 V, VOIS = 0, loss = 10 rnA.
t = 200 MHz, (5. test circuit 1)
Power gain Gp , = t (VG2S )
VDS = 8 V, VOIS = 0, loss = 10 rnA,
= 800 MHz, (5. test circuit 2)
t
dB
dB
30
5
F
4
t
20
t
10
-
v
I
I
I
-10
2
1
i'-
o
Gps
-20
-
-30
-40
o
2
3
4 V
o
-1
2
4 V
3
-\tzs
Noise figure F = t (VG2S )
VDS = 8 V, VOIS = 0, loss = 10 rnA,
= 800 MHz, (s. test circuit 2)
Gate 1 input admittance Yll,
VDS = 8 V, VG2S = 4 V, VGlS = 0,
loss = 10 rnA, (common-source)
dB f
5
14
1200lMHZ
mS
4
t
3
900lMHzI-- I--
~BOOMHz
,
"-
./J,1000MHZ
/
8
\
2
r
j100~HZ -1/
], t - -
l:
F
/700MHz
1600MHz
6
I/sOOMHz
r- r- '---
t:~"~
I I
1
o
4
~
I
300MHz
20~MH,
100 HZ
o
o
2
3
o
4 V
-\tzs
410
2
3
mS
-g11s
Siemens
4
BF998
Gate 1 forward transfer admittance Y2"
VDS ~ 8 V, V02S ~ 4 V, Vo,s ~ 0
i DSS ~ 10 mA, (common-source)
Output admittance Y22, '
VDS ~ 8 V, V02S ~ 4 V, Vo,s ~ 0
i DSS ~ 10 rnA, (common-source)
o
8
mS
I
bZT.
·10~M~z
-5
l-
t-.
31001M~Z
400MHz
I I I
500MHz
I I If
600MHz
1100 lMHz
-10
\100~Hi~ I
r-
~OO~HV'
800MHz/
4 t-
10()~Hz
_
-25
10
700MH~ ,
I
i-500MHz.,r
1f400MHz
2
,r
1300MHz
fJ .. L
1200MHz
H_120,0~H~.
t- ~lobM~Z
20
15
-
t- 60pM1i'
-JOOOMHzX
-20
/
1000MHz If'
I I
apOr Hz
900MHz
-15
12~OM~~
-
ldo~H~'
o
o
25
m5
-gzl.
TT
0,1
0,2
0,3
0,4 mS 0,5
-gzz.
Test circuit 1, power gain and noise figure
f= 200 MHz, GG = 2 mS, GL = 0.5 mS
lnF
lnF
·~n
6Ml
BB5.Qi.
lnF
.~~ I
14
I-:l
, VGIS ,
1'
:
'
"
fI
270k
Vtun :,
5
nF
iCh
H
Vtun
VDS
Siemens
411
BF 998
Test circuit 2. power gain and noise figure
f= 800 MHz. GG = 3.3 mS, GL = 1 mS
412
Siemens
Silicon N-Channel MOSFET Triode
•
BF999
For high-frequency stages up to 300 MHz,
preferably in FM applications
Type
Marking
Ordering code
for versions in bulk
Ordering code
for versions on 8 mm tape
BF 999
LB
Q62702-F38
Q62702-F1132
Maximum ratings
Symbol
Ratings
Unit
Drain-source voltage
Vos
20
V
Drain current
10
30
rnA
Gate-source peak current
±hSM
10
rnA
Total power dissipation
TA~ 60°C
Ptot
200
mW
Storage temperature range
T stg
-55 ... +150
°C
Channel temperature
Tch
150
°C
Thermal resistance
junction - ambient11
RthJA
I S; 450
K/W
1) Package mounted on alumina 16.7 mm x 15 mm x 0.7 mm.
Siemens
413
BF 999
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min.
typo
max.
Unit
Drain-source breakdown voltage
10 = 10 iJA, - VGS = 4 V
V[BR)DS
20
-
-
V
Gate-source breakdown voltage
±hs = 10 mA Vos = 0
Gate-source leakage current
± VGS = 5 V, VDS = 0
Drain current
VDS = 10 V. VGS = 0
± V[BR)GSS
6.5
-
17
V
±hss
-
-
50
nA
loss
5
-
18
mA
Gate-source pinch-off voltage
Vos = 10 V. 10 = 20 iJA
-VGS(P)
-
-
2.5
V
AC characteristics
Symbol
min.
typo
max.
Unit
gfs
14
16
-
mS
C gss
-
2.7
-
pF
Reverse transfer capacitance
Vos = 10 V, I D = 10 mA, f = 1 MHz
Crss
-
25
-
fF
Output capacitance
Vos =10 V, 10 = 10 mA, f= 1 MHz
C dss
-
1
-
pF
Power gain
(test circuit)
Vos = 10 V, 10 = 10 mA, f = 200 MHz,
GG = 2 mS, GL = 0.5 mS
Gp
-
25
-
dB
Noise figure (test circuit)
Vos = 10 V, 10 = 10 mA, f = 200 MHz,
GG = 2 mS, GL = 0.5 mS
F
-
1
-
dB
Forward transconductance
VDS = 10 V, I D = 10 mA f = 1 kHz
Gate 1 input capacitance
VDS = 10 V, 10 = 10 mA f = 1 MHz
414
Siemens
BF999
Total power dissipation Ptot = f(TA )
Output characteristics 10 = f(Vos)
mA
mW
300
25
\'c;=O,BV
10
0,6
1 20
O,4V
200
\.
15
r-..
O,2V
!\
ov
10
100
:6,1\
"1\
5
-P.4V
-,v
'\
o
~
o
50
o
o
150_0 (
100
10
5
15
20 V
-lifls
Drain current 10 = f(Vos)
Gate transconductance 9,. = f(Vos)
Vos
= 10 V,Ioss = 10 rnA, f= 1 kHz
Vos = 10 V
mS
mA
20
30
1/
II
10
II
20
II
II
I
1/
10
5
"
1\
o
-1
o
2
/
o
3 V
-1
/
II
o
2 V
-\6s
Siemens
415
BF 999
Gate input capacitance C,,, = f(VGs)
VDS = 10 V, loss = 10 rnA, f= 1 MHz
Output capacitance Cd" = f( VDS )
VGS = 0, loss = 10 rnA, f= 1 MHz
pF
3
,
pF
2,0
\
i-'r'"'"
t
II
1'\
,
Cds,
,.,I
\
1,5
"-
~
1,0
>0,5
o
-2
-1
o
o
o
1 V
10
-Vos
5
-\1;s
Reverse transfer capacitance C",
= 10 rnA, f= 1 MHz, VGS = 0
= f(VDS)
loss
pF
0,2
mS
Crss
t
Gate 1 input admittance Yll,
VDS = 10 V, VGS = 0,
loss = 10 rnA. (common-source)
14
r-T---'-...---r-T---'-'---'----'---'-'-"-'--'--'
b"s
15 V
f=800MHz~
/
12
/700MHz
t
0,15 f-+-t--Hf-+-t-+-i-+-t-+-If-+-H
/1
/6IOOMHz
10
/0
7
I
iOOMHZ
0,1
6
/400MHz
/1
---.
/
4
0,05 f-+--l-t-f\++-I-+-t-+-+-++-H
300 MHz
l
1200M8z
I
If 109MHz
o "-,--'--'-L-L-'--'-'------'--'--'-L.J.....J.-J
o
5
10
15
J-sor Hz
o
o
V
-Vos
416
Siemens
4mS
SF 999
Gate 1 forward transfer admittance Y21,
VDS = 10 V, VGS = 0,
loss = 10 rnA, (common-source)
Output admittance Y22 ,
VDS = 10 V, VGS = 0,
loss = 10 rnA, (common-source)
mS
mS
o
5
f=~OO~Hz ~
SJMHlzt
100MHzl1
4
ar::~
Y
I-
-5
210
-
H
I-
1 ~I- - 300MHZ
1
I
4010M~/
-10
i--400MHz
II
j
I
SOOMHT.JI
600MHz
°i i
f=18 M z
8
6
"
30~MHz
J 100[MH~
rr- .J.
4
I
l/200M~Z
17
700M~
-15
~
706MH~ JI' V
600MHz /
.I V
500MH V
10
12
14
o
o
16mS
I 50~HZ
0,1
0,2
0,3
0,4
O,SmS
-gl15
-g115
Test circuit: Power gain and noise figure
200 MHz
t=
Input
6011
--1-1SP-F--1
lnF
~~I
kl1
Output
'-1
lnF
I
'oF
6011
rl~
BBSOS
270
kl1
Siemens
417
BFN 16
BFN 18
NPN Silicon High-Voltage Transistors
•
•
•
•
Suitable for video output stages in TV sets
and switching power supplies
High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: BFN 17, BFN 19 (PNP)
E
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 12 mm-tape
Package
BFN 16
BFN18
DO
DE
Q62702-F694
Q62702-F696
Q62702-F885
Q62702-F1056
SOT 89
SOT 89
Maximum ratings
Parameter
Symbol
BFN 16
BFN 18
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
250
250
300
300
V
V
V
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
418
VCBO
5
200
500
100
200
1
VEBO
Ic
ICM
IB
IBM
Ptot
150
-65···+150
Tj
Tstg
::; 125
RthJA
Siemens
mA
mA
mA
mA
W
°C
°C
K/W
BFN 16
BFN 18
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 1 rnA
BFN 16
BFN 18
V(BR) CEO
Collector-base breakdown voltage
Ic = 100 IJA
BFN16
BFN 18
V(BR)CBO
Emitter-base breakdown voltage
IE = 100 I1A
V(BR) EBO
Collector cutoff current
VCB = 200 V
VCB = 250 V
VCB = 200 V, TA = 150°C
VCB = 250 V, TA = 150°C
typ
max
Unit
250
300
-
-
V
V
250
300
-
-
-
V
V
5
ICBo
BFN
BFN
BFN
BFN
-
16
18
16
18
Emitter cutoff current
VEB = 3V
lEBO
DC current gain
Ic = 1 rnA, VCE
Ic = 10 rnA, VCE
Ic = 30 rnA, VCE
hFE
=
=
=
min
10V
10 V1)
10 V1)
BFN 16
BFN 18
Collector-emitter saturation voltage 1)
-
V
-
100
100
20
20
-
100
nA
25
40
40
30
-
-
-
-
0,4
0,5
V
V
0,9
V
-
-
-
nA
nA
IJA
I1A
-
VCEsat
Ic=20mA,IB=2mA
Base-emitter saturation voltage 1)
Ic = 20 rnA, IB = 2 rnA
VBEsat
-
AC characteristics
BFN 16
BFN 18
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 rnA, VCE = 10 V, f= 20 MHz
fT
-
70
-
MHz
Output capacitance
VCB = 30 V, f= 1 MHz
Cob
-
1,5
-
pF
1) Pulse test: t =:; 300 I1s, D = 20/0.
Siemens
419
BFN 16
BFN 18
Operating range Ie = (VeEO)
Total power dissipation Ptot = f ( TA)
TA = 25°C, 0= 0
mA
W
1,2
103
5
1"',0
'\
1\
10~~
\
0,8
1\
100~
lmSITI
1\
1111
0,6
lOOms
10'
\
0,4
DC
1\
\
0,2
,
1\
°
50
°
100
150
0(
5 10 '
--7;,
-VCEO
Collector current Ie = (VSE)
Pulse handling capability rth = (t)
VCE =
10 V
mA
103
5
'ih 5
1 ,
,
I
~.
~
5
0.5
0.2
0.1
0.05
0.02
0.01
0.005
5
10'
5
0=0
1
5
5
~
O=f
10-3
10-6 10-5
420
T
10- 4
10- 3 10- 1 10-'
--f
1
10° s
0,5
Siemens
1,5 V
BFN 16
BFN 18
Transition frequency fT = f (I c)
VCE = 10 V
Collector cutoff current J CBO
VCB = 200 V
MHz
10 3
nA
=
f ( TA)
10'
5
fr
l(BO
max ~/
1
.....
V
typo
10'
5
V
/
,
5 10'
/
50
100
150
O(
~r"
DC current gain hFE = f(Iel
VCE = 10V
10'
10°
10-'
5 10°
5 10'
5 10 2
-Ie
5 103 mA
Siemens
421
PNP Silicon High-Voltage Transistors
•
•
•
•
BFN 17
BFN 19
Suitable for video output stages in 1V sets
and switching power supplies
High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: BFN 16, BFN 18 (NPN)
E
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 12 mm-tape
Package
BFN 17
BFN 19
DG
Q62702-F695
Q62702-F697
Q62702-F884
Q62702-F1057
SOT 89
SOT 89
DH
Maximum ratings
Parameter
Symbol
BFN 17
BFN19
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
Ic
ICM
IB
IBM
250
250
300
300
V
V
V
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
RthJA
422
Ptot
5
200
500
100
200
1
Tj
Tstg
150
-65 .. ·+150
~
Siemens
125
rnA
rnA
rnA
rnA
W
°C
°C
K/W
BFN 17
BFN 19
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 1 mA
BFN 17
BFN 19
V(BR) CEO
Collector-base breakdown voltage
Ic = 100 j.LA
BFN 17
BFN 19
V(BR) CBO
Emitter-base breakdown voltage
lE= 100j.LA
V(BR) EBO
Collector cutoff current
VCB=200V
VCB = 250 V
VCB = 200 V, TA = 150°C
VCB = 250 V, TA = 150°C
min
typ
max
Unit
250
300
-
-
-
V
V
250
300
-
-
-
V
V
5
-
-
V
-
-
100
100
20
20
nA
nA
j.LA
j.LA
100
nA
-
-
ICBO
BFN
BFN
BFN
BFN
17
19
17
19
-
Emitter cutoff current
VEB = 3 V
lEBO
DC current gain
Ic= 1 mA, VCE = 10 V
Ic = 10 mA, VCE = 10 V')
Ic = 30 mA, VCE = 10 V')
hFE
-
25
40
40
30
BFN17
BFN 19
Collector-emitter saturation voltage')
I C = 20 mA, I B = 2 mA
BFN 17
BFN19
VCEsat
Base-emitter saturation voltage')
Ic = 20 mA, IB = 2 mA
VBEsat
-
-
-
-
-
-
-
0,4
0,5
V
V
-
-
0,9
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 mA, VCE = 10 V, f= 20 MHz
fT
-
100
-
MHz
Output capacitance
VCB = 30V, f= 1 MHz
Cob
-
2,5
-
pF
') Pulse test: t:-:; 300 j.Ls, D = 20f0.
Siemens
423
BFN 17
BFN 19
rnA
Operating range Ie =f(VCEO)
TA = 25°C, 0 = 0
Total power dissipation Ptot = f( TA)
W
1,2
Ie
\",1,0
\.
tI
\
0,8
\
1:
3
m••n.
2
E
105
10~5
'11~1'\1111\!1
.\1\
II
\1\ 100fl5
1\
~.n.g1rnls~
100ms
DC
0,6
\.
1Q1
\
0,4
\
1\
0,2
r-..
\
°°
100
50
150
0 (
--7,;
------VCEO
Collector current Ie = f(VBE)
Pulse handling capability rth = f (t)
(standardized)
VCE = 10 V
K
W
mA
103
10°
5
iIt
lih 5
t
1
5
•
I
0.5
5
0.2
0.1
0.05
0.Q2
0.01
0.005
5
D~O
2
5
~
D=~
10-3
10-6
424
T
10-3 10- 2 10- 1
-f
II>.
10-5
10-'
1()""t
10°
5
o
I
0,5
1,0
-i1lE
Siemens
1,5 V
BFN 17
BFN 19
Transition frequency fT
= f (I cl
Collector cutoff current I CBO
VCE=lOV·
VCB
MHz
nA
10 3
104
5
= f (TA)
= 200V
max. /'
/'
k
typ
10'
5
/
V
2
10 '
1
10°
5 10 1
5 10 '
5 10 3 mA
1/
50
100
150
O(
-/A
--Ie
DC current gain hFE = f (I cl
VCE
= lOV
10 3
hf[
r
10 2
5
2
10 '
5
2
10°
10-1
5 10°
5 10 '
5 10 1
5 10 3 A
-Ie
Siemens
425
BFN20
NPN Silicon High-Voltage Transistor
•
•
•
•
•
Suitable for video output stages in TV sets
and switching power supplies
High breakdown voltage
Low collector-emitter saturation voltage
Low capacitance
Complementary type: BFN 21 (PNP)
E
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 12 mm-tape
Package
BFN 20
DC
Q62702-F584
Q62702-F1058
SOT 89
Maximum ratings
Parameter
Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
RBE = 2,7 kQ
Emitter-base voltage
Collector current
Peak collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
426
Symbol
Ratings
Unit
VCEO
300
300
300
V
V
V
5
50
100
1
V
mA
mA
W
Tstg
150
-65···+150
°C
°C
RthJA
:5125
K/W
VCBO
VCER
VEBO
Ic
ICM
Ptot
Tj
Siemens
BFN20
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Cc.Jlector-emitter breakdown voltage
Ic = 1 mA
V(BR) CEO
300
-
-
V
Collector-base breakdown voltage
le = 10 IlA
V(BR) CBO
300
-
-
V
Collector-emitter breakdown voltage
Ic = 10 IlA, RBE = 2,7 kQ
V(BR) CER
300
-
-
V
Emitter-base breakdown voltage
lE= 1O IlA
Collector cutoff current
VCB = 250 V
VCB = 2,50 V, TA = 150°C
V(BR) EBO
5
-
-
V
-
-
-
100'
20
nA
IlA
-
-
1
50
IlA
IlA
-
10
IlA
Collector cutoff current
VCE = 300 V, RBE = 2,7 kQ
VCE = 300 V, TA = 150°C, RBE
leBo
ICER
Emitter cutoff current
VEB = 5 V
lEBO
-
DC current gain')
le = 25 mA, V CE = 20 V
hFE
40
-
-
-
Collector-emitter-saturation voltage ')
I C = 10 mA, I B = 1 mA
VCEsat
-
-
0,5
V
Base-emitter saturation voltage ')
Ic = 10 mA, IB = 1 mA
VBEsat
-
-
1
V
=
2,7 kQ
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 10 mA, VCE = 10V, f= 20 MHz
fT
-
100
-
MHz
Output capacitance
VCB = 30V, f= 1 MHz
Cob
-
0,8
-
pF
') Pulse test: t:::; 300 Ils, D = 2%.
Siemens
427
BFN20
Total power dissipation Ptot = f (TA)
Output capaCitance
f=lMHz
W
1,2
pF
Cob = f(Vce)
4
1"1,0
i\.
r\
0,8
3
r\
1\
\
2 \
0,6
1\
~
1\
0,4
,\
~
\
r-,...
0,2
['.,.
o
\
o
150 .(
100
50
o
o
10
--T"
Pulse handling capability rth = f(t)
(standardized)
K
Transition frequency fT
Vce=lOV
iii
MHz
100
10 3
~
,10':' III
1
~
5
xr2
1
0. 5
0.2
0.1
0.05
0.02
0.01
0.005
1'-0=0
2
5
/
5
~
2
O=f
1~
o
50
100
150 DC
-r,.
Siemens
457
BFP81
NPN Silicon RF Transistor
• For low-noise amplifiers up to 2 GHz at collector
currents from 0.5 to 25 mA.
~
BIlAE
CECC-type in preparation: CECC 50002/...
E~C
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFP81
FA
Q 62702 - F1122
SOT-143
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
16
V
Collector-base voltage
Vcso
25
V
Emitter-base voltage
VESO
2
V
Collector current
Ic
30
mA
Base current
Is
4
mA
Total power dissipation, TA :5 25 °C2 )
Ptot
280
mW
Junction temperature
1j
150
°c
Ambient temperature range
TA
-65 ... +150
°c
Storage temperature range
Ts1g
-65 ... +150
°c
Thermal Resistance
I
Junction - ambient 1)
1} Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
458
Siemens
RthJA
I :5450
KIW
BFP81
Electrical Characteristics
at TA = 25 cC, unless otherwise specified.
DC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
Collector-emitter breakdown voltage
Ic = 1 rnA, IB = 0
\l(BR)CEO
16
-
-
V
Collector-base cutoff current
VcB =15\f,IE=0
ICBo
-
-
100
nA
Emitter-base cutoff current
VEB = 2 \f, Ic = 0
lEBo
-
-
10
!IA
DC current gain
lc= 5 rnA, VCE = 10V
Ic=15mA, VcE =10V
Iq,E
50
50
-
250
-
-
0.2
0.4
Collector-emitter saturation voltage
Ic =30 rnA, IB=3mA
VCEsat
Siemens
V
459
BFP81
AC characteristics
Symbol
Parameter
min
Values
typ
max
Unit
-
4.2
5.8
-
Transition frequency
Ic= 5 mA, VCE = 10 V,f= 200 MHz
Ic = 15 rnA, VCE = 10V,f= 200 MHz
f-r
Collector-base capacitance
VcB =10V, VBE =Vbe=0,f=1 MHz
Ceb
-
0.34
-
pF
Collector-emitter capacitance
VcE =10V, VBE = Vbe=O,f= 1 MHz
Gee
-
0.32
-
pF
Input capacitance
VEB = 0.5 V, Ic = ie = 0, f= 1 MHz
Gibo
-
1.2
-
pF
Output capacitance
VCE = 10V, VBE = Vbe=O, f= 1 MHz
Cobs
-
0.65
-
pF
Noise figure
Ic=3mA, VcE =10V,f= 10 MHz, Zs = 75Q
Ic = 5 mA, VCE = 10 V, f= 800 MHz, Zs = ZSopt
Ic=5mA, VcE =10V,f=
2 GHz, Zs = Zsopt
F
-
0.9
1.25
2.25
-
Power gain
Ic = 5 rnA, VCE = 10V, f= 800 MHz,
Zs = 50 Q, ZL = ZLopt
Ic = 10 rnA, VCE = 10 V, f= 800 MHz,
Zs = 50 Q, ZL = ZLoPt
Gpe
Transducer gain
Ic = 20 rnA, VCE = 10 V, f= 1 GHz, Zo = 50 Q
GHz
dB
-
-
dB
-
15.5
-
-
16.5
-
l~lel2
-
15
-
dB
Linear output voltage
two-tone intermodulation test
Ic = 25 rnA, VCE = 10 V, diM = 60 dB
fl = 806 MHz, f2 = 81 0 MHz, Zs = ZL = 50 Q
Vol = Vo2
-
160
-
mV
Third order intercept point
Ic = 25 rnA, VCE = 10V, f= 800 MHz
IP3
-
27
-
dBm
460
Siemens
BFP81
Transition frequency fT = f {lei
f=200MHz
Total power dissipation Ptot = f {T,J
Package mounted on alumina
GHz
rnW
400
6
+4-
V
Plot
V,V
t 300
1\
1\
3
\
I
i\
Ih
4
200
Ih=5V
t-r-,
1V
rt
I
\
\
2
100
\
a
1'\
a
50
10
150 0 (
100
----T,.
Collector-base capacitance
VBE = Vbe=O. f= 1 MHz
Ccb
20
30 rnA
-Ie
= f (VeB)
pF
1
1\
0.5
\
"-
I--.....
r-
--
10
20 V
----\I[B
Siemens
461
BFP81
Common Emitter Noise Parameters
Ie = 5 rnA, VeE = 10 V, Zo = 50 0
f
Fmin
Gp
GHz
dB
dB
MAG
0.01
0.8
2.0
0.8
1.25
2.25
-
(Zs
0.26
0.32
Ie
=
10 rnA, VeE
(Fmin)
16
10
=
10 V,
Zo =
RN
N
Fson
Gp (Fso.,)
lANG
0
-
dB
dB
1200)
177
178
-
0.151
0.334
1.1
1.4
2.7
-
9.6
8.6
RN
N
ropt
=
15.5
8.5
50 0
f
Fmin
Gp
Fson
Gp (Fso.,)
GHz
dB
dB
MAG
lANG
0
-
dB
dB
0.01
0.8
2.0
1.05
1.4
2.5
-
(Zs = 75 0)
0.21
193
0.33
-167
-
0.155
0.413
1.2
1.5
2.9
-
8.3
10.8
(Fmin)
17
11
ropt
Noise figure F = f (IcI
VeE = 10V, f= 10 MHz
dB
3
F
t
2
Zs=1S0Q
L
SOQ
,/
7SQ" );(
f-"
f-"
~~
r-
-
\""-. k
~
......::: ~ f-"
10
462
-
20 rnA
Siemens
16.5
9.5
BFP81
=
Noise figure F = f (IcI
VCE = 10V, f= 800 MHz, ZLoP,(G)
Circles of constant noise figure F f (ZS>
and available power gain Gav = f (ZS>
Ic = 5 rnA, VCE = 10\1, f= 800 MHz
dB
5
3
2
\
I-..
rr--
~~ r::: ~
-7s1
pt
-j50
20 rnA
10
-Ie
=
Circles of constant noise figure F f (ZS>
and available power gain Gav f (Zs)
Ic=10mA, VcE =10\l, f=800MHz
=
+j50
-j50
Siemens
463
BFP81
Circles of constant noise figure F = f (Zs)
and available power gain Gav f (Zs)
Ic=5mA, VcE =10V,f=2GHz
Noise figure F= f (/d
VCE = 10 V, f= 2 GHz, ZLopt (G)
=
dB
5
+j50
Zs=50S V
V
.......
r'-- '-- ~ V V
..--
\-
-j50
-
-
vV
~
Zsopt
20 mA
10
-Ie
Circles of constant noise figure F= f (Zs)
and available power gain Gav = f (Zs)
Ic = 10 mA, VCE = 10V, f= 2 GHz
+j50
-j50
464
Siemens
V
BFP81
Common Emitter Power Gain
Power gain Gms , 15:".1 2 = f (lei
VeE = 10 V, f= 500 MHz, Zo = 50 n
Power gain Gm .. 15:".1 2 = f (lei
VeE = 10 V, f= 200 MHz, Zo = 50 n
dB
30
i.-6 m• ,,/
V
/
/
-
r--
r-
dB
30
.....
.......... 1-"'"
-
6~ ...........
I--
15 21.1 2
I-
I--
/
I
V
-
10
/"-
II
-'521 .1 2
10
_1 52"1
\m'i 5t
li
rr-
6
52
"1
20 mA
10
mi-_1 512",jJ-~
20 mA
10
---Ie
-Ie
Power gain Gms , 15:".1 2 =f (lei
Power gain Gma , 15:".12 = f (lei
VeE = 10 V, f= 1 GHz, Zo = 50 n
VeE = 10V, f=2 GHz, Zo= 50n
dB
30
dB
30
6m•
/
V
r- rV
/
......
I
15 21.1 2
10
10
52 "1
6 m, = 1
512.
r-
o
-
521
6m
o
o
20 rnA
10
;- i .1_12
/""
I 1 I
o
6..
I
-Ie
.= 15'2.
5 2"1"( k-h 2-1')
I I [ [ I I
20 rnA
10
---Ie
Siemens
465
BFP81
Ic = 5 rnA, VCE = 10\1, Zo =500
dB
30
dB
30
6ma
6ma
6ms
1521,1 2
t
"
20
-
'"
........,
t
~ms
10
"'-
"
"'"6m~
'"
"
2
o
3 GHz
\
521 '1 '(k- .[k2:1
k -1)
6 ma --1 S
12,
0.1
2
0.5
Power gain Gma• Gms• 18.!'el' = f (f)
VCE = 10\1, Zo= 50 0
Ic = 20 rnA,
Ic=10mA, VCE=10\l,Zo=500
." ""
t
'"
dB
30
,
6 ma
6ms
1521,1 2
\
t
...... 6ms
IS21.12"\
20
""'-
I
I 1
t'--
1"-
"
II
"'\
"2'
- IS21.1
6mls I
\
20
~ 6ma _
_\
\6ffia
\
10
I-
o
I--
0.1
\
\
I\.
10
I
\
6ms = S21'j
512,
i- 6ma
21 '1
=15512,
f- 6 ma =1521e1'(k -,fk2:1)
f512,
=15 21 '1'(k_Jk 2_1')
I' S12, I I I I I II
2
0.5
I\.
\
I- 6ms
3 GHz
o
0.1
I
I
Siemens
"-
\
I 11111
0.5
235Hz
-f
-f
466
3 GHz
-f
Power gain Gma• Gms• 18.!,.I' = f (f)
""'-
\
'\
-f
dB
30
\ 6ma
i\.
"-\
10
'\
0.5
'"
"
r--l s21l
20
6ms
I"
6 ms = IS21'I
512,
6 ma = 1521 '1'(k - [k2:1)
S12,
0.1
r---
\.
""-
6 ms = jS21'j
S12,
o
.............
6ms
15210 12
_ 1521.1 2 I'--
6ma
6ms
15 21,1 2
=f (f)
Power gain Gma• Gms• 18.!'e12
Power gain Gma• Gms• 18.!'e1 2 = f (f)
Ic = 2mA, VCE = 10\1, Zo = 50 0
BFP81
Common Emitter 5 Parameters
Ic
=
1 rnA,
VCE
=
1 V,
Zo =
50 n
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
0.959
0.948
0.934
0.916
0.896
0.868
0.832
0.802
0.773
0.758
0.754
0.741
0.721
0.706
0.701
0.699
0.707
0.711
- 18.9
- 28.1
- 37.1
- 45.8
- 54.0
- 69.1
- 83.2
- 95.6
-107.0
-116.5
-126.0
-135.0
-150.2
-162.6
-168.3
-173.8
176.0
167.0
3.63
3.57
3.49
3.39
3.26
3.01
2.78
2.54
2.34
2.15
2.00
1.86
1.61
1.42
1.34
1.27
1.16
1.05
166.5
159.9
153.6
147.3
141.4
131.2
121.7
113.2
105.4
98.6
92.3
86.2
75.4
66.3
62.0
57.7
49.6
42.1
0.040
0.058
0.076
0.092
0.106
0.130
0.148
0.161
0.171
0.180
0.186
0.188
0.189
0.188
0.186
0.184
0.178
0.170
78.6
72.9
67.6
62.6
57.8
49.0
41.4
35.0
29.4
24.6
19.5
15.2
8.5
2.7
0.2
-1.9
-6.1
-9.9
0.985
0.971
0.953
0.931
0.907
0.861
0.814
0.773
0.736
0.709
0.681
0.655
0.618
0.595
0.587
0.582
0.572
0.563
- 7.9
-11.7
-15.3
-18.6
-21.7
-27.3
-32.0
-35.8
-39.2
-41.9
-44.9
-47.3
-51.9
-56.7
-59.0
-61.3
-65.6
-69.9
5.11
Siemens
5.12
467
BFP81
f
8 11
GHz
MAG
ANG
0.921
0.904
0.880
0.854
0.827
0.798
0.761
0.733
0.712
0.699
0.697
0.694
0.681
0.682
0.681
0.679
0.685
0.691
- 25.8
- 38.1
- 49.6
- 60.4
- 70.0
- 87.7
-102.9
-115.5
-126.4
-135.2
-143.1
-151.3
-164.8
-175.6
179.9
174.9
166.5
158.7 .
468
50
n
VCE =
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00·
1.20
1.40
1.50
1.60
1.80
2.00
1 V,
~ =
Ic = 2 rnA,
~1
MAG
6.99
6.76
6.44
6.11
5.71
5.09
4.50
3.99
3.58
3.21
2.95
2.70
2.30
2.00
1.89
1.78
1.60
1.45
~2
812
ANG
162.9
154.8
147.2
140.1
133.8
123.5
114.1
106.4
99.5
93.6
88.5
83.2
74.1
66.4
62.9
59.1
52.0
45.5
Siemens
MAG
0.038
0.055
0.070
0.083
0.094
0.111
0.122
0.129
0.134
0.139
0.142
0.142
0.142
0.142
0.140
0.139
0.137
0.133
ANG
75.5
68.6
62.3
56.5
51.5
42.5
35.6
30.2
26.0
22.4
18.7
15.7
11.5
8.0
6.6
5.7
3.9
2.3
MAG
ANG
0.968
0.938
0.901
0.861
0.820
0.747
0.681
0.630
0.589
0.559
0.532
0.507
0.474
0.455
0.447
0.444
0.438
0.432
-12.0
-17.4
-22.4
-26.8
-30.5
-37.1
-41.8
-45.5
-48.3
-50.6
-53.3
-55.5
-59.3
-63.4
-65.4
-67.3
-71.0
-75.0
BFP81
Ic
=
2 mA, VCE
=
3 V,
Zo =
50
n
f
5 11
GHz
MAG
5 12
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.930
0.914
0.896
0.873
0.848
0.821
0.781
0.752
0.725
0.709
0.705
0.698
0.679
0.677
0.675
0.673
0.675
0.680
0.717
0.728
- 22.1
- 32.8
- 43.0
- 52.6
- 61.4
- 78.0
- 92.8
-105.5
-116.7
-125.7
-134.0
-142.8
-157.3
-169.1
-174.1
-179.3
171.7
163.2
146.0
130.5
7.00
6.83
6.59
6.32
5.98
5.44
4.91
4.41
4.00
3.61
3.34
3.08
2.64
2.31
2.17
2.06
1.84
1.67
1.33
1.10
165.2
158.0
151.2
144.7
138.8
129.0
119.8
112.0
105.1
99.2
94.0
88.6
79.4
71.5
68.1
64.3
57.2
50.7
36.3
22.6
0.027
0.039
0.050
0.060
0.068
0.083
0.092
0.099
0.104
0.108
0.111
0.112
0.113
0.113
0.112
0.111
0.109
0.106
0.100
0.097
77.8
71.7
66.1
60.9
56.3
47.9
41.0
35.7
31.3
27.8
24.0
20.9
16.7
13.4
11.9
11.2
9.8
8.6
10.1
14.3
0.979
0.959
0.933
0.905
0.876
0.819
0.765
0.721
0.685
0.659
0.633
0.610
0.578
0.559
0.551
0.547
0.540
0.532
0.523
0.533
- 8.6
-12.5
-16.2
-19.5
-22.4
-27.5
-31.3
-34.3
-36.6
-38.5
-40.6
-42.5
-45.5
-49.0
-50.6
-52.2
-55.5
-58.9
-70.2
-80.1
8.21
Siemens
8.22
469
BFP81
Ic = 5 mA,
VCE
= 3 V, Zo = 50 Q
f
S"
~Hz
MAG
ANG
8.2,
MAG
ANG
MAG
ANG
8.22
MAG.
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.844
0.814
0.780
0.747
0.717
0.706
0.670
0.650
0.635
0.626
0.637
0.638
0.631
0.639
0.639
0.639
0.644
0.651
0.692
0.704
- 35.5
- 51.6
- 66.0
- 78.6
- 88:9
-107.8
-123.0
-134.7
-144.3
-151.6
-158.1
-165.5
-177.2
173.6
169.7
165.3
157.9
151.1
137.3
123.8
15.15
14.18
13.04
11.92
10.78
9.23
7.86
6.79
5.97
5.28
4.81
4.38
3.68
3.18
2.99
2.82
2.51
2.26
1.80
1.49
157.5
147.7
139.0
131.4
125.3
115.8
107.3
100.6
95.0
90.4
86.3
81.9
74.5
68.2
65.2
62.0
55.9
50.3
37.9
25.5
0.025
0.035
0.043
0.049
0.054
0.061
0.065
0.068
0.071
0.074
0.076
0.076
0.079
0.082
0.083
0.084
0.087
0.090
0.098
0.109
71.7
64.0
57.5
52.2
48.3
40.3
36.1
33.5
32.1
31.0
28.7
27.9
28.0
27.3
27.8
28.3
28.9
29.5
31.5
32.5
0.938
0.885
0.825
0.767
0.717
0.633
0.565
0.519
0.487
0.466
0.444
0.424
0.400
0.386
0.381
0.379
0.376
0.371
0.365
0.377
-15.4
-21.6
-26.8
-30.8
-33.8
-39.3
-41.8
-43.5
-44.7
-45.9
-47.8
-48.8
-50.9
-54.0
-55.3
-56.8
-59.7
-63.0
-74.6
-84.3
470
S'2
Siemens
BFP81
Ic
=
2 rnA, VCE = 6 V.
2D =
50
n
~,
~2
f
8"
GHz
MAG
ANG
MAG
ANG
MAG
8 ,2
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.935
0.922
0.903
0.881
0.857
0.830
0.790
0.759
0.731
0.712
0.706
0.700
0.679
0.673
0.670
0.668
0.670
0.674
0.709
0.719
- 20.7
- 30.7
- 40.3
- 49.5
- 57.9
- 74.0
- 88.5
-101.1
-112.2
-121.6
-129.9
-138.8
-153.7
-166.0
-171.0
-176.4
174.2
165.4
147.6
131.6
6.91
6.77
6.56
6.33
6.02
5.53
5.01
4.53
4.13
3.74
3.47
3.21
2.76
2.41
2.27
2.15
1.93
1.75
1.40
1.16
166.0
159.3
152.7
146.5
140.7
131.1
122.1
114.3
107.4
101.4
96.2
90.8
81.4
73.6
70.0
66.2
59.1
52.7
38.2
24.4
0.022
0.032
0.042
0.050
0.058
0.070
0.079
0.085
0.090
0.094
0.097
0.098
0.099
0.099
0.098
0.097
0.096
0.093
0.088
0.086
78.6
72.7
67.7
62.8
58.3
50.1
43.4
38.1
33.8
30.2
26.6
23.4
19.2
16.0
14.6
14.0
12.9
12.0
14.3
19.9
0.983
0.967
0.945
0.922
0.897
0.849
0.802
0.763
0.731
0.707
0.684
0.662
0.632
0.614
0.607
0.603
0.596
0.589
0.577
0.585
- 7.2
-10.6
-13.7
-16.6
-19.0
-23.5
-26.8
-29.4
-31.6
-33.3
-35.3
-36.9
-39.8
-43.0
-44.5
-46.0
-49.0
-52.2
-62.6
-72.0
5", Sz, = f (f)
St2. $", = f (f)
Ic = 2 mA, VCE = 6 V, Zo = 50 n
Ic =2 mA, VCE = 6 V, Zo = 50 n
+j50
90·
160·
-j50
0
-90·
Siemens
471
BFP81
= 6 V, Zo = 50 n
Ic = 5 rnA,
VCE
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.859
0.829
0.794
0.762
0.728
0.713
0.672
0.647
0.628
0.618
0.626
0.626
0.618
0.626
0.623
0.626
0.629
0.636
0.676
0.689
- 32.4
- 47.4
- 60.8
- 72.9
- 82.9
-101.8
-117.2
-129.2
-139.1
-146.6
-153.7
-161.3
-173.6
176.6
172.6
168.1
160.3
153.3
139.0
125.1
14.96
14.12
13.11
12.08
11.00
9.53
8.18
7.11
6.26
5.55
5.07
4.62
3.89
3.38
3.17
2.99
2.66
2.40
1.91
1.58
159.0
149.7
141.3
133.9
127.7
118.2
109.5
102.7
96.9
92.3
88.1
83.6
76.0
69.6
66.6
63.4
57.3
51.8
39.1
26.5
0.021
0.029
0.036
0.042
0.047
0.054
0.057
0.060
0.063
0.066
0.068
0.068
0.070
0.073
0.073
0.074
0.078
0.080
0.088
0.099
73.3
65.9
59.8
54.5
50.6
42.8
38.4
35.7
34.3
32.9
30.6
29.8
30.0
29.4
29.8
30.5
31.4
32.2
35.0
36.5
0.951
0.907
0.855
0.806
0.761
0.685
0.624
0.581
0.551
0.532
0.511
0.492
0.469
0.456
0.451
0.448
0.445
0.441
0.431
0.440
-12.6
-17.9
-22.3
-25.7
-28.1
-32.8
-34.8
-36.3
-37.3
-38.3
-39.9
-40.7
-42.6
-45.4
-46.5
-47.9
-50.6
-53.6
-63.9
-73.1
~2
5.!1
5.!2
=
S". s", = f (f)
Ic=SrnA, VcE =6V,Zo=Son
S,2, 8" f (f)
Ic= S rnA, VCE = 6 V, Zo= son
o
1800
-j50
472
_90·
Siemens
BFP 81
Ic
=
10 rnA,
VCE =
20 = 50 Q
6 V,
~2
f
8
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.764
0.724
0.685
0.653
0.626
0.638
0.607
0.594
0.584
0.578
0.595
0.600
0.598
0.610
0.610
0.611
0.615
0.623
0.668
0.680
- 47.7
- 67.5
- 84.0
- 97.2
-107.2
-125.6
-139.8
-150.0
-157.9
-163.4
-168.9
-175.4
174.5
166.6
163.2
159.1
152.5
146.5
134.2
121.5
24.13
21.53
18.95
16.67
14.62
12.14
10.06
8.55
7.42
6.52
5.92
5.36
4.48
3.88
3.63
3.42
3.03
2.73
2.17
1.80
150.6
139.2
129.9
122.5
116.8
108.4
100.8
95.1
90.3
86.6
83.0
79.1
72.7
67.1
64.3
61.4
55.8
50.7
39.2
27.3
0.019
0.025
0.030
0.033
0.036
0.040
0.042
0.045
0.048
0.051
0.053
0.054
0.059
0.064
0.066
0.069
0.074
0.079
0.093
0.107
67.6
59.2
53.4
49.6
47.1
40.6
39.7
40.0
40.7
40.7
39.1
40.0
42.2
41.9
42.8
43.7
44.3
44.4
44.8
43.6
0.893
0.812
0.736
0.670
0.622
0.542
0.486
0.455
0.434
0.423
0.406
0.391
0.376
0.366
0.364
0.363
0.363
0.360
0.352
0.362
-18.9
-25.3
-29.8
-32.5
-34.1
-38.0
-38.1
-38.3
-38.4
-39.2
-40.7
-41.2
-42.8
-45.6
-46.6
-48.0
-50.9
-54.0
-64.9
-74.3
~,
"
8 '2
5, .. 5z2 = f (f)
Ie = 10 mA, VeE = 6 V, Zo = 50 n
5,2, $." = f (f)
Ie = 10 mA, VeE = 6 V, Zo = 50 n
+j50
180·
_90·
-j50
Siemens
473
BFP81
Ic = 20 rnA,
VCE
= 6 V. Zo = 50
f
8"
GHz
MAG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.660
0.626
0.599
0.582
0.565
0.606
0.586
0.578
0.571
0.568
0.588
0.595
0.597
0.612
0.612
0.612
0.617
0.624
0.670
0.683
Q
ANG
8:1,
MAG
ANG
MAG
ANG
MAG
ANG
- 69.0
- 92.6
-109.8
-122.2
-130.5
-146.0
-157.5
-165.4
-171.4
-175.4
-179.5
175.1
166.7
160.0
156.9
153.4
147.4
142.0
131.1
119.0
33.24
27.53
22.90
19.35
16.52
13.34
10.84
9.10
7.84
6.86
6.20
5.59
4.66
4.03
3.77
3.55
3.14
2.83
2.25
1.86
140.5
127.9
118.9
112.3
107.7
100.5
94.1
89.4
85.4
82.3
79.2
75.6
69.8
64.8
62.1
59.3
54.0
49.2
38.1
26.4
0.016
0.020
0.023
0.025
0.028
0.030
0.033
0.036
0.039
0.043
0.046
0.047
0.054
0.060
0.063
0.066
0.073
0.080
0.096
0.112
61.4
53.9
49.7
48.1
47.8
43.4
46.0
48.0
49.9
49.9
48.5
50.4
52.4
51.7
52.4
53.0
52.8
52.2
50.6
47.9
0.803
0.690
0.604
0.543
0.505
0.436
0.398
0.379
0.369
0.365
0.351
0.341
0.333
0.326
0.325
0.326
0.328
0.327
0.320
0.331
-25.2
-31.0
-34.0
-35.0
-35.2
-37.6
-35.9
-35.3
-35.2
-36.2
-37.8
-38.1
-39.9
-43.0
-44.2
-45.7
-48.9
-52.3
-63.9
-73.7
=
s", s"" f (f)
Ie = 20 mA, VeE = 6 V,
8 '2
8:12
S,2, 5" = f (f)
Ie = 20 mA, VeE = 6 V, Zo =
Za = son
son
90·
o
180·
_90·
-j50
474
Siemens
BFP81
Ic = 2 mA,
VCE =
10 V, Zo
=
50
n
~,
~2
f
S"
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.940
0.927
0.910
0.889
0.864
0.838
0.797
0.764
0.735
0.714
0.710
0.699
0.676
0.671
0.666
0.663
0.664
0.668
0.701
0.715
- 19.8
- 29.5
- 38.7
- 47.5
- 55.8
- 71.5
- 85.8
- 98.2
-109.3
-118.6
-127.2
-136.3
-151.3
-163.8
-168.9
-174.5
175.9
166.8
148.8
132.6
6.80
6.66
6.47
6.27
5.97
5.51
5.01
4.55
4.16
3.77
3.51
3.25
2.80
2.46
2.31
2.19
1.97
1.79
1.43
1.18
166.5
159.9
153.6
147.5
141.8
132.4
123.3
115.6
108.6
102.7
97.5
92.0
82.6
74.7
71.1
67.3
60.1
53.7
39.0
25.3
0.020
0.029
0.038
0.046
0.053
0.065
0.073
0.080
0.084
0.088
0.091
0.092
0.093
0.094
0.092
0.091
0.090
0.088
0.083
0.082
79.0
73.5
68.4
63.7
59.4
51.4
44.7
39.4
35.0
31.5
27.9
24.8
20.6
17.3
16.0
15.4
14.2
13.4
16.1
21.8
0.985
0.971
0.952
0.930
0.908
0.864
0.820
0.785
0.754
0.731
0.709
0.689
0.659
0.642
0.634
0.630
0.624
0.616
0.604
0.611
- 6.6
- 9.7
-12.5
-15.2
-17.4
-21.6
-24.8
-27.3
-29.3
-31.0
-32.8
-34.3
-37.1
-40.2
-41.7
-43.1
-45.9
-49.0
-58.9
-67.9
S'2
5'2. 5", = f (f)
Ic =2 mA, VCE = 10V, Zo=50
511 , 522 = f (f)
Ic=2 mA, VCE = 10V, Zo = 50[1
+j50
90 0
- j 50
-900
Siemens
[1
475
BFP81
Ic = 5 mAo VCE = 10 V,
Zo = 50 Q
~1
~2
8 12
f
5.1
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.873
0.844
0.809
0.775
0.742
0.720
0.675
0.647
0.626
0.613
0.621
0.619
0.608
0.615
0.613
0.613
0.617
0.623
0.665
0.679
- 30.5
- 44.7
- 57.6
- 69.2
- 79.1
- 97.6
-113.0
-125.3
-135.3
-143.2
-150.4
-158.4
-171.1
179.0
174.7
170.0
162.1
154.9
140.1
126.1
14.61
13.87
12.94
11.99
10.97
9.57
8.27
7.20
6.36
5.65
5.17
4.72
3.98
3.45
3.24
3.06
2.72
2.46
1.96
1.62
159.9
150.9
142.7
135.4
129.3
119.8
111.0
104.1
98.3
93.5
89.3
84.6
77.0
70.5
67.5
64.2
58.1
52.5
39.8
27.1
0.019
0.027
0.034
0.039
0.044
0.051
0.055
0.058
0.060
0.063
0.065
0.065
0.067
0.070
0.071
0.071
0.074
0.077
0.084
0.094
74.1
67.1
61.0
56.0
52.0
44.3
39.7
36.8
35.2
33.9
31.6
30.7
30.6
30.0
30.3
31.2
32.0
32.7
35.9
37.6
0.956
0.917
0.871
0.825
0.785
0.714
0.654
0.613
0.584
0.565
0.545
0.526
0.504
0.490
0.485
0.483
0.480
0.474
0.463
0.472
-11.4
-16.1
-20.2
-23.3
-25.6
-30.0
-32.0
-33.3
-34.3
-35.3
-36.7
-37.5
-39.4
-42.0
-43.1
-44.4
-47.0
-49.8
-59.5
--68.2
S,2. 5.>, = f (f)
s". 5.>2 = f (f)
Ie = 5 rnA, VeE = 1011, Zo= 50 Q
Ie = 5 rnA, VeE = 1011, Zo=50Q
90·
o
160·
-90·
-j50
476
Siemens
BFP 81
Ic=10mA, VCE=10V,Zo=50Q
~,
~2
f
S"
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.794
0.750
0.707
0.670
0.637
0.640
0.606
0.586
0.574
0.567
0.584
0.585
0.583
0.594
0.594
0.594
0.598
0.607
0.652
0.665
- 43.8
- 62.4
- 78.1
- 91.2
-101.2
-120.1
-134.5
-145.2
-153.6
-159.5
-165.2
-172.2
177.3
168.9
165.3
161.1
154.4
148.0
135.2
122.4
23.34
21.08
18.73
16.61
14.65
12.26
10.22
8.70
7.56
6.66
6.05
5.48
4.58
3.97
3.72
3.50
3.11
2.80
2.23
1.85
152.3
141.1
132.0
124.5
118.7
110.1
102.3
96.4
91.5
87.7
84.1
80.1
73.5
67.8
65.0
62.1
56.4
51.3
39.7
27.7
0.018
0.024
0.029
0.032
0.035
0.039
0.042
0.044
0,046
0.050
0.052
0.053
0.057
0.062
0.064
0.066
0.072
0.076
0.089
0.103
69.0
60.8
55.0
50.9
48.3
41.9
40.5
40.2
40.8
40.8
39.3
40.0
41.9
41.8
42.6
43.6
44.3
44.5
45.0
44.2
0.907
0.835
0.764
0.703
0.657
0.579
0.526
0.493
0.472
0.461
0.445
0.430
0.415
0.405
0.402
0.401
0.401
0.397
0.387
0.396
-16.8
-22.6
-26.8
-29.4
-31.0
-34.5
-34.8
-34.9
-35.0
-35.8
-37.2
-37.7
-39.1
-41.7
-42.7
-44.0
-46.7
-49.7
. -59.7
-68.7
S'2
5 ,2• 5", = f (f)
Ic = 10 mA, VCE = 10V,Zo=50n
5 11 , Sz, = f (f)
Ic=10mA, VcE=10v,Zo=50n
1800
-j50
-90 0
Siemens
477
BFP81
Ic = 20 mA,
VCE
= 10 V, Zo = 50 n
~2
f
5 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.707
0.658
0.619
0.592
0.570
0.597
0.572
0.562
0.553
0.549
0.570
0.575
0.575
0.591
0.590
0.591
0.596
0.604
0.649
0.665
- 61.6
- 84.0
-101.2
-113.9
-122.7
-139.7
-152.0
-160.7
-167.1
-171.5
-176.2
178.1
169.2
162.1
158.8
155.2
149.1
143.7
132.2
120.1
31.92
26.93
22.66
19.30
16.56
13.46
10.96
9.22
7.95
6.97
6.31
5.70
4.75
4.11
3.84
3.61
3.21
2.88
2.29
1.89
142.9
130.5
121.3
114.4
109.6
102.1
95.4
90.5
86.5
83.2
80.0
. 76.3
70.4
65.2
62.6
59.7
54.4
49.5
38.3
26.5
0.016
0.020
0.023
0.025
0.028
0.030
0.033
0.036
0.039
0.043
0.045
0.047
0.053
0.059
0.061
0.065
0.071
0.077
0.092
0.107
63.1
55~ 1
50.7
48.6
47.9
43.4
45.3
47.1
48.9
49.0
47.7
49.3
51.4
50.9
51.6
52.2
52.0
51.5
50.4
47.8
0.830
0.728
0.646
0.587
0.549
0.480
0.442
0.423
0.413
0.408
0.394
0.384
0.376
0.369
0.368
0.368
0.370
0.368
0.358
0.369
-22.1
-27.6
-30.4
-31.6
-31.8
-34.0
-32.5
-32.0
-31.9
-32.9
-34.3
-34.6
-36.2
-39.2
-40.3
-41.7
-44.7
-47.8
-58.5
-67.8
8.21
8.22
S,2' 5", =f If)
Ic = 20 mA, VCE = lOll, Zo=50 0
5 11 , 5,,2 = f If)
Ic =20 mA, VCE = 10V, Zo = 500
+j50
0.1-~~~
o
1800
-j50
478
-90 0
Siemens
NPN Silicon RF Transistor
BFP93A
• For broadband amplifiers and oscillators up to 2 GHz at
collector currents from 5 to 30 mA.
~
BIlME
CECC-type in preparation: CECC 50002/ ...
E~C
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFP93A
FE
Q 62702 - F1144
SOT-143
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
12
V
Collector-base voltage
Vceo
15
V
Emitter-base voltage
VEeo
2
V
Col/ector current
Ic
50
rnA
Ie
6
rnA
Ptot
280
rnW
7j
150
°C
Ambient temperature range
TA
-65 ... +150
°C
Storage temperature range
Tstg
-65 ... +150
°C
Base current
Total power dissipation, TA $ 25
°C2 )
Junction temperature
Thermal Resistance
RthJA
Junction - ambient 1)
1$450
KIW
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
Siemens
479
BFP93A
Electrical Characteristics
at TA = 25 cC, unless otherwise specified.
DC characteristics
Parameter
Unit
min
Values
typ
max
Symbol
Collector-emitter breakdown voltage
Ic=1 mA,/B=O
\l(BR)CEO
12
-
-
V
Collector-base cutoff current
VCB = 5 \I, IE = 0
ICBO
-
-
50
nA
Emitter-base cutoff current
lEBO
-
-
10
IIA
DC current gain
Ic = 30 mA, VCE = 5 V
hroE
40
90
250
-
Collector-emitter saturation voltage
Ic= 50 mA, I B =5mA
VCEsat
-
0.13
0.4
V
VEB=2\1,/c=0
480
Siemens
BFP93A
AC characteristics
Symbol
Parameter
min
Values
typ
max
Unit
Transition frequency
Ic = 30 rnA, VCE = 5 V, f= 200 MHz
fT
-
5.5
-
GHz
Collector-base capacitance
Vcs = 10V, VSE = Voe = 0, f= 1 MHz
Ceo
-
0.47
-
pF
Collector-emitter capacitance
VCE = 10V, VSE = Voe = 0,(= 1 MHz
Cce
-
0.34
-
pF
Input capacitance
VES = 0.5 v,/c = ic = 0, f= 1 MHz
c'oo
-
2.2
-
pF
Output capacitance
VCE = 10 V, VSE = Voe = 0, f= 1 MHz
Coos
-
0.8
-
pF
Noise figure
Ic= 5 rnA, VCE = 8V, f= 10 MHz, Zs = 50 Q
le= 5 rnA, VeE = 8 V, f= 800 MHz, Zs = Zsopt
Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = ZSopt
F
-
1.1
1.7
2.6
Power gain
Ie = 30 rnA, VCE = 8 V, f= 800 MHz,
Zs = Zsopt. ZL = ZLOPt
Gpe
-
16.5
-
dB
Transducer gain
Ic=30mA, VcE =8V, f= 1 GHz,ZQ=50Q
l~lel2
-
13.4
-
dB
Linear output voltage
two-tone intermodulation test
Ic = 30 rnA, VCE =8 V, oiM = 60 dB
fl = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 Q
Vol = V02
-
280
-
mV
Third order intercept point
Ic = 30 rnA, VCE = 8 V, f= 800 MHz
IP3
-
32
-
dBm
Siemens
dB
481
BFP93A
Total power dissipation p.o. = f (TAl
Package mounted on alumina
Transition frequency fT = f (Ic)
VCE = 5 V, f= 200 MHz
rnW
400
GHz
6
I -' Plot
1 300
/
4
\
1\
200
I\.
1\
2
-
/
3
\
V
./
",
I
I
100
\
1\
1'\
100
50
Is0
10
0(
20
30
40
-Ie
Collector-base capacitance Ceb = f (Vca)
VSE = Vbe=O, f=1 MHz
pF
1
\
\
0.5
"-
-:---
r-
10
20 V
-liB
482
Siemens
50 rnA
BFP93A
Common Emitter Noise Parameters
Ie = 5 rnA, VeE = 8 V. Zo = 50 il
f
Fmin
Gp
GHz
dB
dB
0.01
0.8
0.8
1.7
-
T opt
(Fmin)
MAG
(Zs = 150 il)
1124
0.26
13.5
Ie = 30 rnA, VeE = 8 V.
JANG
RN
N
FSOQ
Gp (Fson>
il
dB
dB
-
-
1.1
-
8.3
0.199
1.8
13
Zo = 50 il
f
Fmin
Gp
GHz
dB
dB
MAG
0.01
0.8
2.0
2.6
-
(Zs = 100 il)
0.2
1156
Topt
(Fmin)
15.5
lANG
RN
N
FSOQ
Gp (Fson>
il
-
dB
dB
-
0.31
2.15
2.85
-
10.9
15
Noise figure F= f (lei
VCE=8\1, f= 10 MHz
dB
3
F
t
1;'1--'
2
?s=SOQ\ ';I;'r-"
~
,
I::::
I/t/
~
1\
Zsopt
V
./
10
20
30 mA
-Ie
Siemens
483
BFP93A
Noise figure F = f (Iel
VCE = 8 V, f= 800 MHz, ZLopt (G)
Circles of constant noise figure F = f (Zs)
and available power gain Gav = f (Zs)
Ie = 5 rnA, VeE = 8 V, f= 800 MHz
dB
3
+jSO
Zs=SOQ
F
0
t
r;::v
Y
V
vi-'"
~/ Zs opt
"I:: . . .
-jSO
o
o
10
20
-Ie
Circles of constant noise figure F = f (Zs)
and available power gain Gav = f (Zs)
Ie = 30 rnA, VCE = 8 V, f= 800 MHz
-jSO
484
Siemens
30 rnA
BFP93A
Common Emitter Power Gain
Power gain Gms• 15",.1 2 = f (Iel
VCE = 8V, f= 200 MHz, Zo = 50 Q
Power gain Gms• 15",.1 2 =f (lc)
VCE = 8 V, f= 500 MHz, Zo = 50 Q
dB
30
dB
30
I--- 6ms
1/
V
./
i--'
~~ I
S21.1 2
,
6ms ---
~
V
7
7
IS21_1 2
J-,k::: --7
I
10
10
o
-ls
IsUi 1--
6 ms = S210
21'1m'-I SUjl_
(j
o
10
20
I
40 rnA
30
10
Power gain Gma• Gms• 15",.1 2 = f (Iel
20
40 rnA
30
Power gain Gma • 15",.12 = f (Iel
VCE = 8 V, f = 1.5 GHz, Zo = 50 Q
VCE = 8 V, f=800 MHz, 20 =50 Q
dB
30
dB
30
6m•
6ms
~~
·=I
6m
S21-I·[k_
S12_
A2_1')
-
IS2101 2
t
6 ms
20 I--- .;>i--
6 ma I---
I
I
6 m•
~
V
.....
IS2101 2
7
I
I
10 -[
I--- I--
10
I
I
-I
21-1
I---I--- (jms- -S
S12_
I---
-
~
-
-
S120
20
,.
IS21_1
/
6 m• ~IS21_1'[k -Jk 2-1') 10
/ ' I--
-
-
30
40 rnA
Siemens
10
20
30
40 rnA
485
BFP93A
Power gain Gma , Gms , 1~1e12 = f (f)
Ie = 10mA, VeE=8V,~=500
Power gain Gma , Gms, 1~1e12 = f (f)
Ic = 5 mA, VcE =8V, ~ = 50 0
dB
dB
30
30
f'.-.
~
"- ~ms
I--..
........
I'..
f---IS21,1 2
_I S21.1 2
,
...
10
\
-I
6 ms- -S21',
S12,
\
,
'\.
\
'\ \6ma
10
~
'\ \.
\
2
0.5
\
IS12.
f- 6ms = S21',
_
0.1
.....
~ma
6m'=I~I'(k-Jk2 -1')
o
"
" ""-
........
~
I
~ms
I-
o
3 GHz
.
"\
6ma = IS21·I·(k-!k2_1')
S12e
0.1
-f
Power gain Gma , Gms , 1~1eI2=f(f)
Ie =30 mA, VCE = 8 V, Zo= 50 0
Power gain Gma , Gms , 1~1.12 = f (f)
Ic= 20 mA, VCE = 8 V, Zo= 500
dB
30
dB
,,,,-
30
II
"\.. "\.. ,,6ms
I
6ma
6ms
IS21l
'\.
- ls21i
t
1"\. . . .
'\.
I
"
6ms
IS21.\2 '\. "-
,;
20
'\
\ \ 6ma -
\
10
I
12.
I
I-
I I I I II
2
0.5
3 GHz
o0.1
Siemens
\
6ma=I~I'(k-N-l')
I
S12. ,
II
0.5
2
-f
-f
486
.
f- 6ms = IS21·1
IS12.
'\
lI- 6m'=1~21'1'(k_&:1)
6ma -
\\
\
\ '\
10
\ '\
I- 6ms =IS21'I
S12,
o0.1
3 GHz
2
0.5
-f
3 GHz
BFP93A
Common Emitter S Parameters
Ic = 10 rnA, VCE = 3 V. Zo = 50 n
~2
512
~1
f
5 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.669
0.638
0.619
0.606
0.613
0.636
0.619
0.609
0.602
0.604
0.627
0.631
0.632
0.641
0.641
0.647
0.653
0.664
0.708
0.721
- 66.5
- 89.6
-106.6
-118.7
-127.6
-145.7
-157.9
-166.3
-172.9
-177.0
177.4
171.4
162.5
155.3
151.4
148.3
141.4
136.0
123.4
111.6
21.87
18.34
15.41
13.08
11.38
9.21
7.51
6.31
5.43
4.78
4.31
3.89
3.24
2.80
2.62
2.47
2.20
1.97
1.57
1.29
142.0
129.5
120.3
113.8
109.3
100.5
93.5
88.1
83.6
80.1
76.4
72.4
65.9
60.2
57.3
54.2
48.4
42.9
31.1
18.7
0.027
0.034
0.039
0.043
0.047
0.050
0.051
0.054
0.059
0.065
0.066
0.067
0.075
0.082
0.085
0.089
0.097
0.105
0.124
0.144
61.1
52.6
47.7
44.6
41.5
36.3
37.3
39.0
40.8
40.3
38.2
40.3
43.1
42.7
43.8
44.2
44.2
43.9
42.9
40.4
0.820
0.705
0.612
0.546
0.502
0.412
0.359
0.330
0.314
0.308
0.292
0.278
0.268
0.262
0.261
0.264
0.267
0.267
0.275
0.301
- 28.4
- 36.3
- 41.2
- 44.3
- 47.1
- 51.8
- 52.1
- 52.2
- 52.5
- 54.1
- 57.0
- 57.7
- 60.6
- 65.8
- 67.4
- 69.6
- 73.9
- 78.7
- 95.3
-107.7
Siemens
487
BFP93A
Ic = 30 mA,
VCE =
3 V,
Zo
=
50
n
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.527
0.536
0.543
0.548
0.570
0.616
0.603
0.596
0.590
0.592
0.620
0.625
0.626
0.637
0.637
0.645
0.647
0.658
0.706
0.717
-104.9
-126.7
-139.7
-147.4
-152.2
-165.9
-174.8
179.3
175.0
172.6
168.4
163.1
155.9
149.7
146.3
143.4
137.3
132.7
121.1
109.8
32.22
24.42
19.32
15.85
13.55
10.71
8.60
7.16
6.14
5.38
4.85
4.37
3.62
3.13
2.93
2.75
2.45
2.19
1.75
1.44
127.4
115.7
108.3
103.6
100.5
93.4
87.8
83.5
79.9
77.1
73.8
70.3
64.6
59.5
56.7
54.0
48.5
43.4
32.3
20.5
0.019
0.023
0.027
0.030
0.034
0.035
0.039
0.044
0.051
0.058
0.059
0.062
0.074
0.083
0.088
0.093
0.103
0.112
0.134
0.155
55.0
50.7
50.1
49.5
47.2
46.0
51.1
54.4
55.8
53.6
52.0
54.6
55.7
53.7
54.2
53.9
52.4
50.6
47.0
42.5
0.636
0.498
0.412
0.362
0.333
0.255
0.214
0.196
0.189
0.190
0.178
0.165
0.161
0.160
0.160
0.164
0.170
0.174
0.193
0.222
- 43.7
- 51.3
- 55.1
- 57.4
- 60.9
- 67.8
- 66.9
- 66.2
- 66.1
- 68.6
- 74.0
- 74.7
- 77.8
- 84.9
- 86.3
- 88.3
- 92.6
- 98.0
-116.0
-126.6
488
8 12
5.21
Siemens
5.22
BFP93A
Ic = 10 rnA,
VCE =
Zo = 50 Q
5 V,
f
Bt1
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.686
0.649
0.624
0.606
0.611
0.628
0.608
0.597
0.588
0.591
0.614
0.617
0.618
0.627
0.628
0.635
0.638
0.650
0.698
0.710
- 62.1
- 84.6
-101.6
-113.9
-123.2
-142.1
-154.7
-163.6
-170.5
-174.8
179.4
173.0
163.9
156.4
152.4
149.4
142.4
136.8
124.2
112.0
21.91
18.59
15.74
13.44
11.73
9.54
7.80
6.56
5.65
4.97
4.50
4.06
3.38
2.92
2.73
2.57
2.29
2.06
1.63
1.35
143.6
131.2
121.9
115.3
110.7
101.8
94.6
89.2
84.6
81.0
77.3
73.3
66.8
61.0
58.1
55.1
49.3
43.7
31.8
19.4
0.025
0.032
0.037
0.041
0.045
0.048
0.050
0.053
0.057
0.063
0.064
0.065
0.072
0.079
0.082
0.086
0.094
0.100
0.120
0.139
62.5
54.0
49.1
45.7
42.6
37.3
37.9
39.5
41.1
40.7
38.7
40.6
43.4
43.1
44.3
44.7
44.9
44.6
43.8
41.6
0.838
0.730
0.641
0.577
0.533
0.443
0.390
0.362
0.346
0.339
0.322
0.308
0.298
0.291
0.290
0.292
0.294
0.294
0.295
0.317
-25.8
-33.1
-37.6
-40.4
-43.0
-47.1
-47.2
-47.1
-47.2
-48.7
-51.3
-51.7
-54.3
-59.0
-£0.6
-£2.6
-£6.8
-71.2
-86.9
-99.3
$12
S:!1
S:!2
=
S,2, S:!, f (f)
le=10mA, VeE=5V,Zo=50n
S",~=f(f)
le= 10 rnA, VeE = 5 V, 20= 50 n
90·
o
180·
-j50
-900
Siemens
489
BFP93A
Ic = 30 rnA,
VCE =
5 V, Zo = 50 Q
8,2
f
$11
GHz
MAG
ANG
Szl
MAG
ANG
MAG
ANG
Sz2
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.544
0.536
0.533
0.534
0.554
0.596
0.581
0.573
0.566
0.570
0.598
0.603
0.603
0.615
0.616
0.622
0.625
0.640
0.687
0.700
- 95.7
-118.5
-132.7
-141.3
-147.0
-162.1
-171.7
-178.1
177.2
174.8
170.2
164.8
157.3
151.0
147.4
144.6
138.5
133.5
121.8
110.4
32.88
25.24
20.09
16.54
14.17
11.25
9.04
7.53
6.45
5.66
5.11
4.61
3.82
3.30
3.08
2.90
2.58
2.31
1.84
1.52
129.4
117.5
109.9
105.0
101.8
94.5
88.7
84.3
80.7
77.8
74.5
71.0
65.2
60.2
57.4
54.7
49.3
44.1
32.9
21.1
0.019
0.023
0.026
0.030
0.033
0.035
0.038
0.043
0.050
0.057
0.058
0.061
0.072
0.081
0.085
0.090
0.100
0.109
0.130
0.150
56.3
51.3
50.3
49.7
47.3
45.8
50.4
53.7
55.2
53.3
51.7
54.1
55.4
53.5
54.1
53.8
52.3
50.8
47.3
43.0
0.667
0.532
0.445
0.394
0.363
0.283
0.242
0.225
0.218
0.218
0.203
0.191
0.186
0.182
0.182
0.185
0.19Q
0.191
0.200
0.225
- 39.4
- 46.3
- 49.4
- 51.3
- 54.1
- 59.1
- 57.3
- 56.1
- 55.7
- 58.2
- 62.4
- 62.4
- 64.9
- 71.1
- 72.4
- 74.6
- 79.0
- 84.1
-102.2
-113.9
~,,~=f(f)
~2'
Ic =30 rnA, VCE = 5 V, Zo = 50 n
S:!, = f (f)
Ic = 30 rnA,
VCE
= 5 V, Zo = 50 n
o
180·
-90·
490
Siemens
BFP93A
Ic = 5 mAo
VCE =
f
8 11
GHz
MAG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.811
0.771
0.735
0.703
0.691
0.679
0.649
0.631
0.618
0.617
0.633
0.633
0.631
0.636
0.637
0.644
0.647
0.658
0.704
0.720
8 V.
Zo =
50
n
~,
~2
8 '2
ANG
MAG
ANG
MAG
ANG
MAG
ANG
- 43.1
- 61.5
- 77.3
- 90.2
-100.7
-121.1
-135.9
-147.1
-156.0
-162.2
-169.4
-176.7
172.4
163.5
159.0
155.4
147.7
141.2
127.1
114.2
13.94
12.68
11.34
10.09
9.03
7.58
6.35
5.41
4.71
4.17
3.78
3.43
2.86
2.48
2.32
2.19
1.95
1.75
1.39
1.14
152.9
141.8
132.5
125.2
119.6
109.4
101.0
94.5
89.0
84.6
80.3
75.8
68.3
61.9
58.6
55.4
49.1
43.2
30.3
17.6
0.027
0.037
0.045
0.051
0.056
0.061
0.063
0.066
0.068
0.072
0.073
0.073
0.076
0.080
0.081
0.083
0.088
0.092
0.106
0.123
68.3
59.7
53.4
48.5
44.2
36.6
33.5
32.2
32.1
31.4
28.8
29.4
31.4
31.6
32.9
33.9
35.3
36.5
39.5
40.2
0.922
0.856
0.789
0.733
0.689
0.605
0.550
0.515
0.494
0.483
0.465
0.451
0.438
0.428
0.426
0.427
0.428
0.426
0.423
0.442
-16.4
-22.3
-26.7
-29.8
-32.3
-36.2
-37.4
-38.3
-39.2
-40.4
-42.5
-43.4
-46.3
-50.5
-52.2
-54.3
-58.3
--62.5
-76.8
-89.3
5 ,2• 5.!, = f (f)
5 11 .502=f(f)
Ie = 5 mA, VeE = 8 V,zo= 50 Q
Ie = 5 mA, VeE = 8 V,
Zo =
50 Q
900
o
1800
_90 0
Siemens
491
BFP93A
Ic = 10 mA,
VCE =
8 V, Zo
=
50 Q
f
S"
GHz
MAG
ANG
MAG
ANG
MAG
ANG
$,2
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.709
0.668
0.635
0.605
0.584
0.612
0.588
0.574
0.566
0.566
0.593
0.591
0.594
0.601
0.602
0.605
0.614
0.626
0.675
0.690
- 58.1
- 80.0
- 97.3
-110.8
-120.3
-137.3
-150.5
-159.8
-167.3
-171.8
-177.7
175.9
166.9
159.3
155.3
151.8
145.1
139.4
126.7
114.1
21.68
18.62
15.93
13.65
11.81
9.62
7.90
6.66
5.74
5.06
4.58
4.13
3.44
2.98
2.79
2.62
2.33
2.09
1.67
1.38
145.0
132.6
123.3
116.0
110.6
102.9
95.5
90.0
85.4
81.8
78.0
73.9
67.5
61.7
58.8
55.7
49.9
44.5
32.2
20.3
0.024
0.031
0.036
0.040
0.043
0.047
0.050
0.053
0.057
0.062
0.063
0.065
0.072
0.079
0.082
0.086
0.094
0.100
0.120
0.139
63.4
54.8
49.6
46.4
44.7
38.7
39.4
40.6
42.0
41.7
39.9
41.7
44.0
43.9
44.7
45.3
45.5
45.3
44.6
42.3
0.853
0.750
0.662
0.593
0.546
0.471
0.418
0.390
0.374
0.368
0.349
0.336
0.324
0.315
0.314
0.315
0.316
0.314
0.310
0.327
-23.8
-30.9
-35.3
-37.8
-39.0
-43.1
-43.1
-43.0
-43.3
-44.8
-46.8
-47.3
-49.6
-54.0
-55.7
-57.7
-61.7
-66.1
-81.5
-94.0
$"
S'2
S,2, 5" = f (tl
Ic=10mA, VCE=BV,Zo=50Q
s",~=f(tl
Ic=10mA, VCE=8V,Zo=50Q
90·
o
-90·
- j50
492
Siemens
BFP93A
Ic = 20 rnA,
VCE =
8 V, 20
=
50 f.l
~,
~2
f
8"
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.617
0.582
0.560
0.550
0.562
0.591
0.571
0.562
0.553
0.557
0.583
0.588
0.587
0.601
0.600
0.605
0.610
0.623
0.674
0.688
- 76.1
- 99.6
-115.8
-126.6
-134.2
-151.9
-163.2
-170.8
-176.6
-179.8
175.0
169.0
160.6
153.8
150.0
147.0
140.5
135.3
123.1
111.5
29.26
23.50
19.20
16.03
13.84
11.11
8.99
7.51
6.44
5.66
5.12
4.61
3.83
3.31
3.09
2.91
2.59
2.32
1.85
1.53
136.3
123.8
115.3
109.6
105.9
97.8
91.4
86.6
82.6
79.5
76.0
72.3
66.3
61.1
58.2
55.4
49.9
44.6
33.3
21.3
0.021
0.026
0.030
0.034
0.037
0.039
0.042
0.046
0.051
0.058
0.059
0.062
0.071
0.080
0.083
0.088
0.097
0.105
0.126
0.145
59.2
52.2
49.3
47.9
45.2
41.9
45.4
48.1
50.0
48.8
47.0
49.4
51.3
49.9
50.8
50.7
49.7
48.5
46.0
42.3
0.755
0.627
0.536
0.478
0.440
0.353
0.307
0.286
0.275
0.272
0.255
0.243
0.235
0.229
0.228
0.230
0.233
0.232
0.234
0.255
- 32.3
- 39.6
- 43.3
- 45.4
- 47.9
- 52.1
- 50.8
- 49.9
- 49.7
- 51.5
- 54.6
- 54.6
- 56.8
- 61.9
- 63.2
- 65.2
- 69.3
- 74.0
- 90.4
-102.7
8'2
S,2, 5", = f (f)
Ic = 20 rnA. VCE
5 11 , 5,,2 = f (f)
Ic=20mA, VCE=BV.Zo=50n
= B V. Zo = 50 n
90 0
+jSO
0.1
1800
.
_90 0
-jSO
Siemens
493
BFP93A.
Ic = 30 rnA,
VCE =
Zo = 50 n
8 V,
f
5 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.578
0.548
0.533
0.528
0.545
0.579
0.561
0.552
0.543
0.548
0.576
0.580
0.580
0.592
0.595
0.601
0.605
0.619
0.669
0.684
- 86.6
-110.0
-125.2
-134.6
-141.3
-157.7
-168.2
-174.9
-180.0
177.4
172.4
166.7
158.9
152.3
148.6
145.8
139.6
134.5
122.7
111.0
32.52
25.24
20.22
16.71
14.35
11.43
9.19
7.66
6.56
5.76
5.21
4.69
3.89
3.36
3.14
2.96
2.63
2.36
1.88
1.55
131.3
119.2
111.3
106.2
103.0
95.4
89.4
84.9
81.2
78.4
75.0
71.4
65.6
60.4
57.7
54.9
49.5
44.3
33.1
21.1
0.019
0.024
0.027
0.031
0.034
0.035
0.039
0.044
0.050
0.057
0.058
0.061
0.072
0.081
0.085
0.090
0.099
0.108
0.128
0.148
56.9
51.6
50.1
49.3
47.0
45.1
49.5
52.5
53.9
52.2
50.5
53.1
54.3
52.6
53.0
52.7
51.3
49.9
46.6
42.4
0.693
0.561
0.473
0.422
0.389
0.307
0.267
0.250
0.243
0.242
0.226
0.214
0.208
0.203
0.202
0.205
0.209
0.209
0.212
0.235
- 36.4
- 43.0
- 45.9
- 47.5
- 50.1
- 54.0
- 52.0
- 50.7
- 50.3
- 52.6
- 56.0
- 55.8
- 58.1
- 63.7
- 65.0
- 67.0
- 71.4
- 76.2
- 93.5
-105.7
512
5:21
s", Sz. =f (f)
S,2. S:z, = f (f)
Ie =30 rnA, VeE = 8\1, Zo = 50 n
Ie =30 rnA, VeE = 8\1,
Q
o
180·
-j50
494
Zo = 50 n
90·
+j50
o
5:22
-90·
Siemens
NPN Silicon RF Transistor
BFP 193
• For low-noise, high-gain amplifiers up to 2 GHz.
• For linear broadband amplifiers.
• fT = 8 GHz.
F= 1.2 dB at 800 MHz.
B~E
E~C
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFP 193
RC
Q 62702 - F1217
SOT-143
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
12
V
Collector-emitter voltage, VSE = 0
VeEs
20
V
Collector-base voltage
Veso
20
V
Emitter-base voltage
VESO
2
V
Collector current
Ie
80
mA
Base current
Is
10
mA
Total power dissipation, TA ::; 50 °C2)
Ptot
400
mW
Junction temperature
7j
150
°c
Ambient temperature range
TA
-65 ... +150
°c
Storage temperature range
Tstg
-65 ... +150
°c
Thermal Resistance
Junction - ambient 1)
RthJA
\ ::;250
\KIW
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
Siemens
495
BFP 193
Electrical Characteristics
at TA = 25 °C, unless otherwise specified.
DC characteristics
Parameter
Values
Symbol
Unit
min
typ
max
Collector-emitter breakdown voltage
Ic=1 mA,ls=O
II(SR)CEO
12
-
-
V
Collector-emitter cutoff current
VcE =20V; VSE=O
ICEs
-
-
100
J.lA
Collector-base cutoff current
Icso
-
-
50
nA
Emitter-base cutoff current
VES = 1 V; Ic = 0
I Eso
-
-
1
J.lA
DC current gain
flroE
-
90
100
-
-
0.4
Vcs=10V,IE=0
lc= 5mA, VCE=8V
Ic=30mA, VcE =8V
Collector-emitter saturation voltage
Ic = 50 rnA, Is = 5 rnA
496
VCEsat
Siemens
V
BFP 193
AC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
-
3.5
8
-
Transition frequency
Ic= 5 mA, VCE = 8 V, f= 500 MHz
Ic = 30 mA, VCE = 8 V, f= 500 MHz
fr
Collector-base capacitance
VcB =10V, VBE =Vbe=0,f=1 MHz
Geb
-
0.6
-
pF
Collector-emitter capacitance
VCE = 10 V, VBE = vbe = 0, f= 1 MHz
Gee
-
0.33
-
pF
Input capacitance
VEB = 0.5 V, Ic = ie = O,f= 1 MHz
Gibo
-
2.3
-
pF
Output capacitance
VcE =10V, VBE =Vbe=0,f=1 MHz
Gobs
-
0.95
-
pF
-
-
-
O.B
1.6
1.9
-
15
-
-
13.5
-
Noise figure
Ic= 5mA, VcE=BV, f= 10 MHz, Zs = 75
Ic = 30 mA, VCE = 8 V, f= BOO MHz, Zs = Zsopt
1 GHz,Zs=50Q
Ic = 30 mA, VCE = 8 V, f=
F
Power gain
Ic = 30 mA, VCE = 8 V, f= BOO MHz,
Zs = 50 Q, ZL = ZLOPt
Gpe
Transducer gain
Ic = 30 mA, VCE = B V, f= 1 GHz, Zo = 50 Q
l~lel2
Linear output voltage
two-tone intermodulation test
Ic = 40 mA, VCE = 5 V, diM =60 dB
fl = B06 MHz, f2 = 810 MHz, Zs = ZL = 50 Q
VOl = Vo2
Third order intercept point
Ic = 40 mA, VCE = 5 V, f= BOO MHz
IP3
n.
GHz
dB
-
Siemens
dB
dB
mV
-
250
-
-
31
-
dBm
497
BFP 193
=
Total power dissipation P,ot f ITAI
Package mounted on"alumina
Transition frequency fT = f (Ie)
VCE = 8 V, f= 500 MHz
mW
GHz
500 r-r-rr-r--,-,,.,.,-,--r-TO-rTO
10
III
~E=~ I--
400 1-+-+-+-+++-+++-+++-+-+--1
6
flot
~ V' '"
6
/
4
100 H-+--H-+--H-+--H-+-N---t-1
2
=f (Vea)
pF
1.0
1\
\
1
0.5
o
o
498
"'I'-- r--.
20V
Siemens
3V
--
,
I
I
o
o
Collector-base capacitance Ccb
VSE=Vbe=0,f=1 MHz
,
~ ~ rs'1
10
30
40
----<--lc
20
SOmA
BFP 193
Common Emitter Noise Parameters
Ie = 10 mA, VeE = 8 V,
Zo = 50 Q
f
Fmin
Gp
GHz
dB
1
1.2
2.3
dB
-
MAG
0.01
0.8
2.0
15.4
9
-
Ie
=
30 mA, VeE
=
8 V,
Fmin
f
(Fmin)
GHz
dB
dB
0.01
0.8
2.0
1.65
1.6
2.6
-
lANG
50
RN
N
Fson
Gp (Fson)
Q
-
dB
dB
-
RN
N
Fson
Q
-
dB
dB
-
-
1.65
1.95
3.3
-
-
(Zs = 75 Q)
Zo =
Gp
rapt
1=
-
14.4
7
Q
(Fmin)
rapt
MAG
lANG
(Zs = 50 Q)
-
16.7
9.5
1=
Noise figure F = f (Iel
VCE = 8 V, f= 10 MHz
Gp (Fson)
15.4
7.5
Noise figure F = f (Iel
Power gain G = f (Iel
VCE = 8 V, f= 800 MHz, ZLopt (G)
dB
3
dB
dB
4
V
F
V
2
11
II
I
I
~;... """1.1
b
10
-
/
F
7S1l
v(
,.
..-
m
I I
I I
i~(- e::=
1/
Zs=1S01l
o
o
1.05
1.35
2.8
3
1-
6
Lo--r-L--r--
I
Zs=S01l,_
15
6
f--
".
I
".
2
~~
~\
Zs =SOil,;;: p~:::::
F
10
,....
~I
J....H"""
Zsopt
20
o
o
30mA
10
- - - I....
Siemens
o
20
30mA
Ie
499
BFP 193
Common Emitter Power Gain
Power gain Gms• 1S:!1.12 =f (Ie)
VcE =8V,
dB
30
.1
-
Power gain Gm •• 1S:!1.12 =f (Ie)
f=200MHz,~=50Q
um~
ZV
/
VCE
= 8 V, f= 500 MHz, ~ = 50 Q
dB
30
l-t-
I,
A-
IS 21.1 2
/'
,.,.
/
20
ums
-
I---'"
1
u ms
I
=S2Ie,-
IS21el2
l"- t--
SI2e
10
10
ums =,S21e
o
o
o
10
20
30
40
- - - - <....
~
= 8 V, f = 800 MHz,
10
20
Ie
30
40
Power gain Gms• 1S:!1.12
= 50 Q
VCE
dB
30
= 8 V, f= 1.5 GHz,
=f (Ic)
~
= 50 Q
Um.
"
1
"
IS21eI 2
I
SlZe'l
20
30
1~21~IZ
",
/
S2Ie,lims = _
10
10
I
10
40
I
-
I
.= ISZlellk_hz_11
-
t-- t- um
I i
o
o
SOmA
10
20
Siemens
'--
J
,SIZt
30
.. Ie
500
SOmA
Ie
dB
20
Ums
o
o
r
----<....
=f (Ie)
Power gain G...•• 1S:!1.12
VCE
o
o
SOmA
SI2e
-1-
40
50 rnA
BFP 193
Power gain Gma • Gms • 15",.1 2 = f (f)
Ic=5mA, VcE =8V,Zo=50Q
Power gain Gm .. Gms• 15",.1 2 = f (tl
Ic=10mA, VcE =8\1,Zo=50Q
dB
30
dB
30
" "-
.......................
""
r--...
I'-..
I'\.
~
1
I
ms !5,5212 ••1
I--
I--- 6
=
""
dB
30
6ma
\6ma
\. '\.
\. '\
ISzl.I Z
10
- 6ms =!SZ1. 1
S12.
C-
"
: 6ma ~ I~~~: 1~ kl~~WI
'\
o
235Hz
0.5
0.1
ms
1'\
"\.\. "\
~6ma~I~~~: 1(lk-Jr~111)1
o
6
i'.
1\
"
IS 21.1 2
10
\. f"I\,
6ms
~~
~
2
0,5
0.1
3 GHz
---- f
---- f
Power gain Gma • Gms • 15",.1 2 = f (f)
Ic = 20 mA, VeE = 8 V, Zo = 50 Q
Power gain Gma • Gms• 15",.1 2 = f (tl
Ic = 40 mA, VCE = 8 V, Zo = 50 Q
~"
'\ .""-.
r\: 1'\
I\.
dB
30
r-..,. 11'\.
1\. l\.
\
,. , 6ms
1\
"
l\
1521.1 2
1\.
f\
l' 6ms
1\
r-..
ISZll
\. 6ma _
\. 6ma _
I\, \
\. I\.
I\. \.
\. I\.
10
10
'\
f- 6m
,=15 z1 .1
f\.
I - - - 5,2 •
\
I- 6 =15 z1 •!(k-.fK2=1)
s
'
1----1 '~. I III
o
Z1·1
6ms=I S
I-S12.
f-6rna =IS
5Z1·I(k-h 2-1l
1--1'21.1 11111
o
f--
rna
0.1
0.5
\
\.
'I
235Hz
0.1
-f
0.5
235Hz
-f
Siemens
501
BFP 193
Common Emitter S Parameters
= 10 rnA, VCE = 3 V, Zo = 50 n
Ic
~2
f
5 11
GHz
MAG
ANG
5.!1
MAG
ANG
MAG
ANG
5.!2
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.673
0.665
0.660
0.650
0.645
0.666
0.669
0.663
0.658
0.657
0.676
0.684
0.687
0.692
0.692
0.696
0.703
0.714
0.758
0.763
- 68.6
- 92.3
-109.9
-123.2
-132.9
-146.1
-158.2
-166.6
-173.4
-178.1
177.6
172.2
163.7
156.8
153.2
149.9
143.4
138.0
126.1
113.6
22.95
19.44
16.49
14.07
12.18
9.65
7.98
6.74
5.81
5.11
4.59
4.15
3.45
2.98
2.79
2.62
2.34
2.09
1.66
1.38
143.4
130.9
121.6
114.5
109.1
101.8
94.9
89.6
85.1
81.2
77.9
74.1
68.0
62.7
59.8
56.8
51.1
45.9
34.4
23.1
0.029
0.037
0.042
0.046
0.049
0.054
0.055
0.058
0.061
0.066
0.069
0.069
0.075
0.081
0.084
0.087
0.095
0.101
0.118
0.136
60.3
51.4
45.5
41.9
39.8
35.3
34.2
35.3
36.6
36.9
34.9
35.8
38.6
38.6
39.5
40.2
40.6
40.5
40.5
38.6
0.820
0.701
0.602
0.524
0.465
0.392
0.329
0.291
0.268
0.257
0.246
0.229
0.213
0.210
0.210
0.212
0.216
0.219
0.240
0.269
- 32.7
- 43.2
- 50.6
- 55.9
- 59.5
- 66.5
- 71.0
- 73.1
- 75.0
- 76.8
- 81.2
- 83.8
- 87.6
- 93.7
- 95.6
- 97.8
-101.4
-106.2
-122.1
-131.3
502
Siemens
BFP 193
Ic
=
30 mA,
VCE =
3 V,
4J
=
50
n
~1
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.545
0.585
0.605
0.611
0.613
0.648
0.658
0.653
0.649
0.647
0.668
0.676
0.680
0.687
0.686
0.691
0.697
0.707
0.748
0.754
-113.4
-133.8
-146.4
-154.9
-160.5
-167.4
-176.1
178.1
173.6
170.4
167.6
163.1
156.3
150.5
147.1
144.3
138.6
133.8
123.0
111.2
35.23
26.85
21.33
17.49
14.77
11.44
9.32
7.79
6.67
5.85
5.24
4.73
3.93
3.39
3.18
2.98
2.66
2.37
1.89
1.57
128.3
116.3
108.7
103.3
99.5
94.5
89.0
84.8
81.2
78.1
75.5
72.2
67.0
62.4
59.7
57.1
51.9
47.1
36.8
25.9
0.020
0.023
0.026
0.029
0.032
0.037
0.039
0.044
0.050
0.057
0.060
0.063
0.073
0.082
0.087
0.092
0.102
0.111
0.132
0.153
53.9
48.8
47.8
48.1
49.0
46.4
50.2
53.4
54.9
54.2
51.6
53.5
54.9
53.2
53.3
53.3
51.8
50.2
46.5
41.9
0.631
0.488
0.396
0.336
0.294
0.259
0.215
0.191
0.179
0.178
0.181
0.172
0.165
0.172
0.173
0.176
0.181
0.189
0.222
0.246
- 54.0
- 66.8
- 75.5
- 81.9
- 86.3
- 96.9
-105.7
-109.5
-112.5
-114.4
-120.8
-126.1
-131.4
-137.3
-138.6
-139.8
-142.0
-145.9
-157.1
-162.1
Siemens
503
BFP 193
Ic = 5 rnA,
VCE
= 5 V, Zo = 50 Q
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.796
0.772
0.751
0.727
0.708
0.717
0.699
0.690
0.682
0.681
0.695
0.700
0.699
0.707
0.707
0.713
0.715
0.726
0.764
0.776
- 46.6
- 66.3
- 82.9
- 96.7
-107.6
-125.9
-140.1
-150.6
-159.2
-165.1
-171.5
-178.1
171.6
163.5
159.4
155.8
148.4
142.1
128.7
116.2
14.63
13.32
11.95
10.64
9.46
7.86
6.58
5.61
4.89
4.32
3.91
3.54
2.96
2.56
2.39
2.26
2.01
1.80
1.43
1.17
153.0
141.9
132.5
124.8
118.7
109.3
101.3
94.9
89.5
85.2
81.0
76.7
69.5
63.4
60.4
57.2
51.1
45.2
33.2
21.0
0.033
0.044
0.053
0.060
0.065
0.071
0.074
0.076
0.078
0.082
0.082
0.082
0.084
0.086
0.086
0.087
0.090
0.093
0.103
0.117
67.0
58.1
51.0
45.5
41.5
33.7
30.2
28.1
27.2
26.3
23.8
23.7
24.8
24.3
25.7
26.6
28.0
29.3
33.9
36.5
0.911
0.837
0.759
0.692
0.636
0.547
0.483
0.440
0.411
0.394
0.375
0.359
0.342
0.333
0.332
0.332
0.335
0.336
0.349
0.376
- 20.5
- 28.4
- 34.6
- 39.2
- 42.4
- 48.5
- 51.4
- 53.4
- 55.0
- 56.8
- 59.3
- 60.7
- 64.2
- 68.8
- 70.7
- 72.7
- 76.9
- 81.1
- 95.9
-106.7
8.!1
8.!2
=
5,1. Sn = f (f)
Ie = 5 rnA, VeE = 5 V. Zo =50n
5,2.5,,1 f (f)
Ie = 5 mA, VeE = 5 V. 2'0= 50 n
90 0
o
-j50
504
-90 0
Siemens
BFP 193
Ic = 10 mA,
f
VCE
= 5 V.
Zo = 50 Q
8 11
8 12
8.21
8.22
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.690
0.675
0.664
0.651
0.639
0.674
0.661
0.656
0.650
0.649
0.670
0.675
0.677
0.688
0.688
0.695
0.696
0.705
0.747
0.755
- 65.1
- 88.5
-106.2
-119.4
-128.8
-144.6
-156.5
-165.1
-171.7
-176.1
178.8
173.2
164.3
157.3
153.6
150.5
143.6
138.1
125.8
114.1
22.92
19.63
16.74
14.33
12.39
9.99
8.19
6.90
5.96
5.24
4.73
4.27
3.55
3.07
2.87
2.71
2.41
2.16
1.71
1.41
144.7
132.3
122.8
115.7
110.5
102.6
95.7
90.4
86.0
82.4
78.9
75.0
68.8
63.5
60.7
57.8
52.3
46.9
35.9
24.3
0.028
0.037
0.042
0.046
0.049
0.053
0.055
0.058
0.062
0.067
0.068
0.069
0.075
0.081
0.084
0.087
0.094
0.100
0.117
0.134
61.6
52.4
46.6
43.0
40.8
35.1
35.0
35.9
36.9
36.7
35.1
36.5
38.8
38.5
39.9
40.4
40.9
40.8
41.0
39.5
0.833
0.719
0.619
0.544
0.488
0.403
0.343
0.307
0.284
0.274
0.258
0.242
0.231
0.225
0.224
0.226
0.231
0.233
0.253
0.280
- 30.9
-41.1
- 48.4
- 53.4
- 56.7
- 64.5
- 67.5
- 69.6
- 71.2
- 73.4
- 77.3
- 79.0
- 82.9
- 88.4
- 90.1
- 92.1
- 95.8
-100.2
-114.9
-123.8
S",~=f(f)
S,2. $." = f If)
Ic=10mA, VcE =5V,Zo=50n
Ic= 10 mA, VCE = 5 V. Zo = 50n
90°
+j50
o
-j 50
Siemens
505
BFP 193
Ic = 30 mA,
VCE
= 5 V. Zo = 50 n
Sz,
f
S11
GHz
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.556
0.581
0.595
0.597
0.595
0.651
0.640
0.636
0.633
0.630
0.655
0.662
0.664
0.676
0.676
0.682
0.683
0.693
0.733
0.744
-106.4
-128.5
-142.1
-151.0
-156.4
-166.5
-174.8
179.5
174.9
172.4
168.6
163.9
156.8
150.9
147.6
144.7
138.8
133.8
122.8
111.6
Sz2
S'2
MAG
ANG
MAG
ANG
MAG
ANG
36.18
27.79
22.15
18.19
15.32
12.09
9.73
~ 8.11
6.97
6.10
5.50
4.95
4.11
3.54
3.32
3.12
2.78
2.49
1.97
1.63
129.6
117.6
109.7
104.3
100.6
94.8
89.5
85.5
82.0
79.2
76.3
73.0
67.7
63.3
60.8
58.1
53.1
48.1
38.2
27.4
0.020
0.024
0.027
0.029
0.033
0.035
0.039
0.045
0.051
0.057
0.059
0.063
0.074
0.082
0.087
0.092
0.102
0.111
0.132
0.152
54.6
49.1
47.9
48.3
48.9
46.2
50.7
53.4
54.7
53.3
51.9
53.9
54.8
53.1
53.6
53.3
51.8
50.1
46.8
42.5
0.648
0.506
0.411
0.349
0.312
0.260
0.217
0.195
0.184
0.185
0.182
0.172
0.169
0.174
0.174
0.177
0.184
0.189
0.221
0.244
- 51.6
- 64.3
- 72.7
- 78.3
- 81.9
- 95.6
-100.6
-104.4
-106.9
-109.5
-116.4
-120.0
-124.6
-130.9
-132.0
-133.4
-135.5
-139.3
-150.2
-155.3
5,2, So, = f (f)
Ie = 30 rnA, VeE = 5 V, Zo = 50 n
S11,~=f(f)
Ie =30 rnA, VeE = 5 V. Zo = 50 n
90 0
+j50
o
-90 0
-j50
506
Siemens
BFP 193
Ic
=
50 rnA,
VCE =
5 V.
Zo =
50
n
~,
~2
f
Sl1
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.544
0.580
0.599
0.602
0.598
0.657
0.647
0.643
0.638
0.635
0.661
0.666
0.670
0.682
0.681
0.686
0.688
0.698
0.737
0.746
-124.1
-142.5
-153.3
-160.4
-164.3
-172.5
-179.8
175.4
171.4
169.3
165.9
161.6
154.8
149.3
146.0
143.3
137.5
132.6
121.9
111.0
39.07
28.97
22.68
18.45
15.46
12.13
9.73
8.10
6.95
6.08
5.47
4.93
4.08
3.53
3.30
3.11
2.77
2.47
1.96
1.63
123.8
112.6
105.5
100.8
97.7
92.5
87.6
83.9
80.6
78.0
75.2
72.1
66.9
62.6
60.1
57.6
52.6
47.7
38.1
27.2
0.017
0.020
0.023
0.026
0.029
0.032
0.036
0.043
0.049
0.056
0.058
0.062
0.074
0.083
0.088
0.093
0.104
0.113
0.135
0.155
53.8
50.5
51.3
52.9
53.7
51.8
56.9
59.3
60.1
57.7
56.6
58.5
58.3
56.5
56.6
56.2
54.3
52.3
48.2
43.5
0.560
0.425
0.341
0.290
0.262
0.225
0.190
0.174
0.166
0.171
0.172
0.164
0.165
0.172
0.173
0.176
0.184
0.190
0.224
0.246
- 59.8
- 72.7
- 81.3
- 87.0
- 90.5
-106.1
-111.6
-115.5
-117.8
-119.8
-126.8
-130.6
-134.6
-139.9
-141.1
-142.2
-143.7
-147.1
-156.6
-160.9
S'2
5,2,5.!, =f If)
Ie = 50 rnA, VeE = 5 V, Zo = 500
5". Sz, = f If)
Ie =50 rnA, VeE = 5 V, Zo = 50 0
+j50
o
-j50
Siemens
507
BFP 193
Ic
=
f
5 rnA,
VCE =
8 V,
Zo =
50
n
~,
$"
~2
$'2
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.808
0.782
0.758
0.733
0.712
0.718
0.698
0.687
0.678
0.676
0.691
0.694
0.694
0.702
0.700
0.709
0.708
0.721
0.759
0.772
- 44.9
- 64.1
- 80.6
- 94.1
-105.1
-123.7
-138.0
-148.9
-157.6
-163.7
-170.2
-176.8
172.7
164.3
160.3
156.6
149.0
142.8
129.4
116.6
14.57
13.32
12.01
10.74
9.56
7.96
6.68
5.71
4.98
4.41
3.99
3.62
3.02
2.61
2.44
2.30
2.06
1.84
1.46
1.19
153.6
142.7
133.4
125.8
119.5
110.2
102.1
95.7
90.3
85.8
81.7
77.3
70.0
64.0
60.9
57.7
51.7
45.8
33.7
21.6
0.032
0.044
0.053
0.059
0.064
0.071
0.074
0.076
0.078
0.082
0.083
0.082
0.084
0.086
0.086
0.087
0.090
0.092
0.102
0.116
67.7
58.9
51.7
46.2
42.2
34.4
30.7
28.6
27.4
26.5
24.0
23.8
24.7
24.4
25.6
26.4
27.8
29.0
33.5
36.1
0.914
0.843
0.768
0.703
0.647
0.558
0.493
0.449
0.420
0.403
0.383
0.366
0.348
0.338
0.337
0.337
0.340
0.339
0.351
0.376
- 19.8
- 27.5
- 33.6
- 38.2
- 41.5
- 47.6
- 50.5
- 52.6
- 54.1
- 55.8
- 58.3
- 59.7
- 63.1
- 67.6
- 69.4
- 71.4
- 75.5
- 79.7
- 94.2
-105.0
S11,~=f(f)
5,2, 5:2, = f (f)
Ic = 5 rnA, VCE = 8 V, Zo = 50 Q
Ic = 5 mA,
VCE =
8 V, Zo = 50 Q
90°
+j50
o
-90 0
-j50
508
Siemens
BFP 193
Ic = 10 rnA,
VCE
= 8 V, Zo = 50 n
f
8 11
8 12
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.707
0.686
0.669
0.653
0.639
0.670
0.656
0.648
0.643
0.642
0.662
0.669
0.669
0.679
0.679
0.685
0.687
0.698
0.739
0.748
- 62.3
- 85.3
-103.0
-116.4
-126.0
-142.3
-154.4
-163.3
-170.3
-174.7
180.0
174.3
165.2
158.2
154.3
151.1
144.3
138.7
126.2
114.3
23.03
19.82
16.98
14.59
12.63
10.22
8.39
7.08
6.12
5.38
4.85
4.39
3.65
3.15
2.95
2.78
2.47
2.22
1.76
1.45
145.5
133.2
123.8
116.6
111.3
103.3
96.3
91.0
86.5
83.0
79.4
75.6
69.3
64.0
61.2
58.4
52.9
47.4
36.5
24.9
0.028
0.036
0.042
0.046
0.049
0.054
0.056
0.058
0.062
0.067
0.068
0.069
0.076
0.081
0.084
0.087
0.094
0.100
0.117
0.134
62.2
53.2
47.3
43.5
41.3
35.5
35.3
35.9
36.9
36.7
34.8
36.3
38.6
38.1
39.6
40.0
40.5
40.4
40.6
39.2
0.838
0.729
0.631
0.554
0.498
0.412
0.351
0.313
0.290
0.279
0.262
0.246
0.233
0.226
0.225
0.226
0.231
0.232
0.250
0.276
- 30.0
- 40.1
- 47.4
- 52.4
- 55.7
- 63.6
- 66.6
- 68.7
- 70.3
- 72.5
- 76.4
- 78.0
- 81.8
- 87.2
- 88.9
- 90.8
- 94.6
- 98.8
-113.6
-122.5
&.!,
&.!2
=
5,2, 5", f If)
Ie = 10 mA. VeE = 8 V, Zo =50 Q
5, .. s"" = f If)
Ie = 10 mA. VeE = 8 V, Zo = 50 Q
90 0
o
-j50
-900
Siemens
509
BFP 193
Ic
=
20 rnA,
VCE =
8 V, 2Q
=
50 Q
~,
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.607
0.607
0.609
0.604
0.600
0.630
0.637
0.630
0.624
0.622
0.645
0.654
0.657
0.663
0.664
0.666
0.675
0.684
0.731
0.735
- 85.2
-109.4
-125.7
-137.3
-145.4
-155.3
-166.5
-173.8
-179.5
176.6
173.3
168.0
160.2
153.9
150.4
147.3
141.2
136.1
124.7
112.7
32.08
25.79
21.10
17.60
15.00
11.73
9.64
8.08
6.94
6.09
5.46
4.94
4.10
3.54
3.31
3.11
2.77
2.48
1.97
1.64
136.1
123.6
114.9
108.7
104.2
98.4
92.2
87.6
83.6
80.3
77.6
74.0
68.5
63.7
61.1
58.4
53.1
48.2
37.7
26.7
0.023
0.029
0.032
0.035
0.038
0.043
0.044
0.048
0.053
0.059
0.062
0.064
0.074
0.081
0.085
0.090
0.099
0.107
0.127
0.146
57.0
49.5
46.1
44.7
44.4
41.3
42.9
45.6
47.5
47.6
45.1
46.7
49.0
47.8
48.3
48.6
47.8
46.6
44.1
40.4
0.731
0.592
0.492
0.419
0.367
0.315
0.256
0.225
0.207
0.201
0.197
0.182
0.169
0.170
0.170
0.173
0.176
0.181
0.207
0.232
- 42.7
- 54.6
- 62.7
- 68.5
- 72.3
- 81.2
- 88.1
- 91.0
. - 93.4
- 95.5
-101.7
-106.2
-111.1
-117.9
-119.5
-121.4
-124.2
-128.9
-143.0
-149.6
8'2
S,,,~=f(f)
5'2, ~, = f (f)
Ie = 20 rnA, VeE = 8 V, Zo = 50 Q
Ie = 20 rnA, VeE = 8 V, Zo = 50 Q
90 0
- jSO
510
-90 0
Siemens
BFP 193
Ic = 40 rnA,
VCE
f'
5 11
GHz
MAG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
= 8 V.
0.558
0.578
0.590
0.589
0.589
0.624
0.633
0.625
0.620
0.616
0.642
0.650
0.654
0.661
0.661
0.665
0.671
0.681
0.725
0.732
~
= 50 Q
5 12
5.!1
ANG
-108.0
-129.8
-143.1
-152.1
-158.1
-165.3
-174.6
179.3
174.6
171.6
168.7
163.9
156.9
151.1
147.7
144.7
139.1
134.3
123.3
111.4
MAG
38.69
29.36
23.28
19.06
16.07
12.46
10.16
8.49
7.26
6.36
5.71
5.16
4.27
3.70
3.46
3.25
2.89
2.58
2.05
1.71
ANG
127.7
115.9
108.3
103.1
99.4
94.6
89.1
85.0
81.5
78.6
76.1
72.8
67.7
63.2
60.6
58.0
52.9
48.2
38.1
27.4
MAG
0.019
0.023
0.025
0.028
0.031
0.036
0.039
0.044
0.050
0.057
0.060
0.063
0.074
0.083
0.088
0.093
0.103
0.112
0.133
0.154
5.!2
ANG
53.5
49.3
48.9
49.3
50.1
47.6
51.4
54.6
56.1
55.2
52.4
54.3
55.5
53.6
53.7
53.5
51.8
50.2
46.2
41.4
MAG
ANG
0.614
0.473
0.383
0.324
0.284
0.254
0.208
0.184
0.173
0.173
0.176
0.167
0.159
0.166
0.166
0.169
0.174
0.180
0.212
0.234
- 54.7
- 67.6
- 76.2
- 82.5
- 86.9
- 97.8
-107.0
-110.8
-113.6
-115.4
-122.4
-128.0
-133.3
-139.5
-140.8
-142.0
-144.1
-148.0
-159.4
-164.2
S,2, Sz, = f (f)
Ie = 40 mA, VeE = 8V, Zo = 50 0
S,h~=f(f)
Ie = 40 rnA, VeE =8\1, Zo= 500
90 0
o
-j 50
-900
Siemens
511
NPN Silicon RF Transistor
BFQ 17P
• For low-distortion broadband amplifiers up to 900 MHz
at collector currents from 20 to 150 mA.
E
Type
Marking
Ordering code
(tape and reel)
Package
BFQ 17P
FD
Q 62702 - F983
SOT-89
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
25
V
Collector-base voltage
VCBO
40
V
Emitter-base voltage
VEBO
2
V
Collector current
Ic
150
mA
Peak collector current, f?:. 1 MHz
ICM
300
mA
Total power dissipation, TA :5 25 DC2 )
Ptot
1
W
Junction temperature
7j
150
DC
Ambient temperature range
TA
-65 ... +150
DC
Tstg
-65 ... +150
DC
RthJA
:5125
KJW
Storage temperature range
Thermal Resistance
Junction - ambient 1)
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
512
Siemens
BFQ 17P
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Collector-emitter breakdown voltage
Ic = 10 rnA, Is = 0
V(SR)CEO
Collector-base cutoff current
Vcs = 20 V. IE = 0
Vcs = 20 V. IE = 0, TA = 125°C
Icso
Emitter-base cutoff current
VES = 1 V. Ic = 0
I ESO
DC current gain
Ic= 50 rnA, VcE =5V
Ic = 150 rnA, VCE = 5 V
hFE
Collector-emitter saturation voltage
Ic= 100 mA, Is= 10 rnA
VCEsat
Siemens
Unit
min
Values
typ
max
25
-
-
-
-
0.1
20
-
100
25
25
-
-
-
0.2
0.5
Symbol
V
pA
nA
V
513
BFQ 17P
AC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
-
-
-
1.4
1.2
Transition frequency
Ic= 70 rnA, VCE = 5 V, f= 200 MHz
Ic= 150 rnA, VcE =5V, f=200MHz
fr
Collector-base capacitance
Vce=10V, VeE =Vbe=0,f=1 MHz
C cb
-
1.9
-
pF
Input capacitance
VEe = 0.5 V, Ic = ic = 0, f= 1 MHz
C,bo
-
13
-
pF
Output capacitance
VCE = 10 V, VeE = vbe = 0, f= 1 MHz
Cobs
-
2.5
4
pF
Power gain
Ic = 60 rnA, VCE = 15 V, f=500 MHz,
Zs = ZSOPh ZL = ZLOPt
Gpe
-
11.5
-
dB
Linear output voltage
two-tone interrnodulation test
Ic = 60 rnA, VCE = 15 V, aiM =60 dB
fl = 206 MHz, f2 = 210 MHz, Zs = ZL = 50 Q
Vol = Vo2
-
480
-
rnV
Third order intercept point
Ic = 60 rnA, VCE = 15 V, f= 200 MHz
IP3
-
36.5
-
dBrn
514
Siemens
GHz
-
BFQ 17P
=
Transition frequency f.r = f (lei
VeE = 5 V, f= 200 MHz
Total power dissipation P'o' f (TiJ
Package mounted on alumina
mW
GHz
r
1.5
1.2
1.0
1/
1\
II
~
0.8
i",
"
to
i\
I
1\
0.6
1\
~
0.4
0.5
i\
\
0.2
1\
\
o
o
o
150·(
100
50
-7,;
COllector-base capacitance Ccb
VBE = Vbe=O, f= 1 MHz
o
50
100
159 mA
-Ie
=f (VeB)
pF
5
4
,
\
3
2
o
o
\
"- r-....
r--. r--. I-
-20V
10
-liB
Siemens
515
NPN Silicon RF Transistor
BFQ 19P
• For low-distortion broadband amplifiers in antenna and
telecommunications systems at collector currents from
10 to 70 mA.
E
For new design refer to BFQ 19S
Type
Marking
Ordering code
(tape and reel)
Package
BFQ19P
FE
Q 62702 - F1 060
SOT-89
~Y1a;dmum
Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
Collector-base voltage
VCEO
15
V
VCBO
20
Emitter-base voltage
V
VEBO
3
V
Collector current
Ic
75
mA
Peak collector current, f2:. 1 MHz
ICM
150
mA
Total power dissipation, TA
Ptot
1
W
Junction temperature
Ii
150
°c
Ambient temperature range
TA
-65 ... +150
°c
Storage temperature range
Tstg
-65 ... +150
°c
:::;
25
°C 2)
Thermal Resistance
Junction - ambient ')
j
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
516
Siemens
RthJA
j :::;125
jKIW
BFQ 19P
Electrical Characteristics
at TA = 25 cC, unless otherwise specified.
DC characteristics
Parameter
Symbol
Unit
Values
min
typ
max
"1eR)CEO
15
-
-
V
Iceo
-
-
100
nA
Emitter-base cutoff current
VEe = 2 \I, Ic = 0
I Eeo
-
-
10
~
DC current gain
hFE
25
70
-
-
VCEsat
-
0.2
0.5
V
Collector-emitter breakdown voltage
Ic= 1 mA,Ie=O
Collector-base cutoff current
Vce= 10\l,IE =0
Ic = 50 mA, VCE = 10 V
Collector-emitter saturation voltage
Ie = 75 mA, Ie = 7.5 mA
Siemens
517
BFQ 19P
AC characteristics
Symbol
Parameter
Values
Unit
min
typ
max
4
4.4
4.B
5.1
-
Transition frequency
Ic=50mA, VCE=10V; f=200MHz
Ic = 75 rnA, VCE = 10 V; f= 200 MHz
fir
Collector-base capacitance
VCB=10V; VBE =Vbe=0,f=1 MHz
CCb
-
1.1
1.5
pF
Collector-emitter capacitance
VCE=10V; VBE = Vbe=O,f= 1 MHz
Cee
-
0.4
-
pF
Output capacitance
VCE = 10 V; VBE = Vbe = O,f= 1 MHz
Cobs
-
1.5
-
pF
Noise figure
Ic = 50 rnA, VCE = 10 V; f = BOO MHz, Zs = ZSopt
F
-
3.B
-
dB
Power gain
Ic = 70 mA, VCE = 10 V; f= BOO MHz,
Zs = ZsoPt, ZL = ZLOPt
Gpe
-
11.5
-
dB
Linear output voltage
two-tone intermodulation test
Ic = 70 mA, VCE = 10V; ~M = 60dB
f, = B06 MHz, f2 = B10 MHz, Zs = ZL = 50 n
Vo1 = Vo2
-
500
-
mV
Third order intercept point
Ic = 70 mA, VCE = 10 V; f= BOO MHz
IPs
-
37
-
dBm
51B
Siemens
GHz
BFQ 19P
Total power dissipation Pto. = f ITAl
Transition frequency fT = f (Iel
VCE = 10 V, f= 200 MHz
Package mounted on alumina
GHz
W
1.2
6
Po
f1.0
,/'
I\.
V
1\
0.8
",
4
\
V
\
0.6
/
3
I
1\
1\
0.4
2
1\
I
1
I
.\
0.2
\.
1\
o
o
100
50
o
150 0 (
o
100 mA
50
-Ic
Collector-base capacitance Ceb = f (Vee)
VSE = Vb. = 0, f= 1 MHz
pF
3
\
\
i'\.
o0
20 V
10
-\I(e
Siemens
519
NPN Silicon RF Transistor
BFQ 19S
• For low-noise, low-distortion broadband amplifiers in
antenna and telecommunications systems up to
1.5 GHz at collector currents from 10 to 70 mA.
E
Ii CECC-type available: CECC 500021259.
Type
Marking
Ordering code
(tape and reel)
Package
BFQ 19S
FG
Q 62702 - F1 088
SOT-89
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
15
V
Collector-base voltage
VC60
20
V
Emitter-base voltage
VE60
3
V
Collector current
Ic
75
mA
ICM
150
mA
Base current
16
10
mA
Total power dissipation, TA $ 25 °C~
Ptot
1
W
Junction temperature
7j
150
°c
Ambient temperature range
TA
-65 ... +150
°c
Storage temperature range
Tstg
-65 ... +150
°c
Peak collector current,
' 2: 1 MHz
Thermal Resistance
I
Junction - ambient1 )
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
520
Siemens
RthJA
1$125
IKIW
BFQ 195
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
min
Values
typ
max
\t(SR)CEO
15
-
-
V
Collector-base cutoff current
Vcs = 10 V. IE = 0
Icso
-
-
100
nA
Emitter-base cutoff current
VES = 2 V. Ic = 0
I ESO
-
-
10
JlA
DC current gain
Ic = 50 rnA, VCE = 10 V
hFE
25
70
-
-
VCEsat
-
0.2
0.5
V
Parameter
Collector-emitter breakdown voltage
Ic= 1 mA,Is=O
Collector-emitter saturation voltage
Ic =75 rnA, Is=7.5mA
Symbol
Siemens
Unit
521
BFQ 195
AC characteristics
Symbol
Parameter
Transition frequency
fr
Ie = SO rnA, VeE = 10 \I, f= 200 MHz
Ie = 70 rnA, VeE = 10\1, f=200 MHz
Values
Unit
min
typ
max
-
-
GHz
-
5
5.1
Col/ector-base capacitance
Vce = 10\1, VeE = vbe= 0, f= 1 MHz
Ccb
-
1
-
pF
Col/ector-emitter capacitance
VeE = 10\1, VeE = vbe = 0, f= 1 MHz
Cee
-
0.4
-
pF
Input capacitance
VEe = O.S \I, Ie = ic = 0, f= 1 MHz
Gibe
-
4.S
-
pF
Output capacitance
VCE = 10\1, VeE = Vbe = 0, f= 1 MHz
Cobs
-
1.4S
-
pF
Noise figure
F
-
0.9
2.B
Gpe
-
11.B
-
dB
Linear output.voltage
two-tone intermodulation test
Ic = 70 rnA, VCE = 10\1, diM = 60dB
~ = B06 MHz, f2 =810 MHz, Zs=ZL =50 n
Vol = Vo2
-
520
-
mV
Third order intercept point
I c =70mA, VeE = 10\1, f=800MHz
IP3
-
37.5
-
dBm
Ic= 5 rnA, VCE = 10V. f= 10 MHz,Zs=Son
Ic = 50 rnA, VCE = 10 V. f= BOO MHz, Zs = Zsopt
Power gain
dB
Ic = 70 rnA, VeE = 10 V. f= BOO MHz,
Zs = SO n, ZL = ZLopt
522
Siemens
BFQ 19S
Total power dissipation Ptot = f (T,J
Package mounted on alumina
Transition frequency fT = f (Iel
VcE =10V, f=200MHz
W
1.2
~ot
GHz
6
1.0
5
/
\.
t
I\.
0.6
/
4
1\
I
\
0.6
3
"
I
I\.
1\
0.4
I
I
I\.
I
\
0.2
I\.
1\
o
o
150 0 (
100
50
20
40
60
BO
100 rnA
-T,
Collector-base capacitance
VBE = Vb. = 0, f= 1 MHz
Cob
= f (VCB)
pF
3
Ceb
1
2
\
\
,
.......
o
o
~
10
20 V
-ifcB
Siemens
523
BFQ 198
Common Emitter Noise Parameters
Ie = 5 rnA, VeE = 10 V, Zo = 50 Q
f
Fmin
Gp (Fmin)
GHz
dB
dB
0.01
0.9
-
Ie
ropt
MAG
lANG
RN
N
Fson
Gp (Fsonl
Q
-
dB
dB
0.9
-
Fson
dB
dB
2.2
3.5
-
-
(Zs = 50 Q)
= 50 rnA, VeE = 10 V, 20 = 50 Q
Fmin
dB
RN
N
GHz
dB
MAG
ANG
Q
0.01
0.8
2.2
2.8
-
-
-
-
-
f
Gp (Fmin)
ropt
Noise figure F = f (Ie!
VCE = 10\1, f= 10 MHz
Gp (Fsonl
Noise figure F = f (Ie!
VCE = 10\1, f= 800 MHz, ZLoPt (G)
dB
4
dB
4
I
I
Z,=50Q
F
F
"1"-
II \
t
r
3
3
\
V
2
V
V
.....
-
./
'-IZ,'Sop!
2
/'
"-
./
V
V
\
o
524
o
I-'
V
10
/'
Zs='SOQ
20
30
40
50 rnA
Siemens
o
o
10
20
30
40
50 rnA
BFQ 19S
linear output voltage Vo = f (lei
VeE
= 10V, diM = 60 dB,', = 806 MHz
'2 = 810 MHz, Zs =ZL = 50 n
mY
600
1~
-I-
/
400
/
/
I
300
V
200
II
/
100
a
o
20
40
60
BO mA
-Ie
Siemens
525
BFQ29P
NPN Silicon RF Transistor
• For low-noise IF and broadband amplifiers up to 1 GHz
at collector currents from 1 to 20 mA.
€ CECC-type available: CECC 50002/258.
ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFQ29P
KC
Q 62702 - F659
SOT-23
Maximum Ratings
Value
Parameter
Symbol
Collector-emitter voltage
VCEO
15
V
Collector-base voltage
VCBO
20
V
Unit
Emitter-base voltage
VEBO
3
V
Collector current
Ic
30
mA
Base current
IB
4
mA
Total power dissipation, TA :5 25 °C2 )
Ptot
280
mW
Junction temperature
Ii
150
°C
Ambient temperature range
TA
-65 ... +150
°C
Storage temperature range
Tstg
-65 ... +150
°C
Thermal Resistance
I
Junction - ambient1 )
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
526
Siemens
RthJA
I :5450
IKIW
BFQ 29P
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Collector-emitter breakdown voltage
Symbol
\t(BR)CEO
Values
Unit
min
typ
max
15
-
-
-
-
0.05
10
-
100
V
Ic=1 mA,Is=O
Collector-base cutoff current
VCB = 10 V. h = 0
VCB = 20 V. IE = 0
leBo
Emitter-base cutoff current
VEB = 3 V. Ic = 0
lEBO
DC current gain
hFE
~
-
Ic= 3 rnA, VcE =6V
Ic=10mA, VcE =6V
50
50
-
250
140
-
Collector-emitter saturation voltage
Ic = 20 rnA, IB = 1 rnA
-
0.1
0.4
VCEsat
Siemens
~
V
527
BFQ 29P
AC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
-
-
3.6
2.7
5
Transition frequency
Ic= 3 rnA, VCE = 6 V, f= 200 MHz
Ic = 20 rnA, VCE = 6 V, f= 200 MHz
fr
GHz
Collector-base capacitance
Ceb
-
0.5
0.65
pF
Gee
-
0.28
-
pF
C,bo
-
1.35
-
pF
Gobs
-
0.8
-
pF
-
0.9
1.5
1.2
-
Vcs=10V, VSE=Vbe=0,f=1 MHz
Collector-emitter capacitance
VCE = 10 V, VSE = Vbe = 0, f= 1 MHz
Input capacitance
VES = 0.5 V, Ic = ie = 0, f= 1 MHz
Output capacitance
VCE = 10 V, VSE = Vbe = 0, f= 1 MHz
Noise figure
Ic=3mA, VcE =6V, f= 10MHz,Zs=75n
Ic=4mA, VcE =6V, f=800MHz,Zs=50n
F
Power gain
Ic = 20 rnA, VCE = 6 V, f= 800 MHz,
Zs = 50 n, ZL = ZLOPt
Gpe
-
14
-
dB
Transducer gain
Ic = 20 rnA, VCE =6 V, f= 1 GHz, Zo = 50n
lS:!lel 2
-
11
-
dB
Linear output voltage
two-tone intermodulation test
Ic = 20 rnA, VCE = 6 V, ~M = 60dB
fl = 806 MHz, f2 = 810 MHz, Zs =ZL =50 n
Vol = Vo2
-
180
-
mV
Third order intercept point
Ic = 20 rnA, VCE = 6 V, f= 800 MHz
IP3
-
28
-
dBm
528
Siemens
dB
BFQ29P
Transition frequency f.r '" f (lei
VeE = 6 V. f= 200 MHz
GHz
Total power dissipation p.o. '" f IT,J
Package mounted on alumina
mW
400
6
-
Plot
t
k"'~
300
V
I
1,\
1'\
200
3
I\.
I
~
100
'\
'\
o
o
100
50
~~
"'
o
150 0 (
o
10
20
30 rnA
-Ie
Collector-base capacitance Cob'" f (VCB)
VBE = Vbe = 0, f= 1 MHz
pF
1.2
r
to
\
0.8
\
~
\
0.6
0.4
r"-
--
0.2
o
o
20 V
10
-VcB
Siemens
529
BFQ29P
Common Emitter Noise Parameters
Ie = 3 rnA, VeE = 6 V, Zo = 50 n
f
Fmin
Gp (Fminl
GHz
dB
dB
0.01
0.85
-
Ie = 5 rnA, VeE = 6 V,
RN
N
Fson
lANG
n
-
dB
Gp (Fson>
dB
(Zs=130n)
-
-
1.2
-
RN
N
Fson
-
dB
Gp (Fson>
dB
ToP!
MAG
Zo = 50 n
f
Fmin
Gp (Fmin)
GHz
dB
dB
MAG
lANG
n
0.01
0.8
0.85
1.25
-
(Zs=100n)
0.25
93.5
-
Top!
I
13
Noise figure F= f (4)
VeE =6 V. f= 10 MHz
,
dB
3
/
Ic=30mA /
F
/
/
t
II
\
2
/ II
\
II
/
1.1
~i""
V
V
t'-~
l
~
20
\
~ .... _:I<
~
'" ..........
"'"
o
o
~f'
J-f'
1
100
200
300Q
-Zs
530
Siemens
11.1
0.20
1.1
1.45
-
14
BFQ29P
Circles of constant noise figure F = f (ZS>
in Zs-plane,lc = 5 rnA, VCE = 6 V, f= 800 MHz
Noise figure F = f (Ie)
VeE = 6 V. f= 800 MHz, ZLopt (G)
dB
3
F
t
,
I.
\
"""- r-j50
o
o
--
,.. .....-::
Zs=50Q
.....I-:;::::
~
'lSDpt
20 rnA
10
-Ie
Siemens
531
BFQ29P
Common Emitter S Parameters
= 2 mA, VCE = 6 V, Zo = 50 Q
Ic
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.2
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.93
0.86
0.79
0.66
0.50
0.47
0.45
0.43
0.45
0.46
- 20
- 45
- 62
- 93
-129
-147
-161
179
159
149
6.76
6.42
5.16
4.19
2.99
2.48
2.11
1.78
1.51
1.42
158
144
133
113
92
82
74
63
54
48
0.03
0.06
0.08
0.11
0.11
0.12
0.13
0.14
0.16
0.17
76
65
57
47
41
41
42
47
52
56
0.97
0.89
0.85
0.73
0.62
0.59
0.57
0.55
0.54
0.52
- 7
-17
-23
-29
-33
-35
-37
-40
-46
-48
~1
~2
8 12
5,2, 5". = f (f)
Ie = 2 mA, VeE = 6 V, Zo = 50 Q
S11,~=f(f)
Ie = 2 mA, VeE = 6 V, Zo = 50 Q
90 0
+j50
o
-j50
532
-90 0
Siemens
BFQ29P
Ic
= 5 mA,
= 6 V. Zo = 50 n
VCE
f
5 11
GHz
MAG
ANG
MAG
ANG
5 12
MAG
ANG
MAG
ANG
0.1
0.2
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.80
0.69
0.57
0.46
0.35
0.34
0.34
0.34
0.36
0.37
- 31
- 66
- 84
-118
-152
-167
-180
164
148
139
13.96
11.55
8.56
6.06
4.00
3.25
2.74
2.28
1.94
1.80
147
129
119
102
85
0.03
0.05
0.06
0.08
0.10
0.12
0.13
0.16
0.19
0.20
72
60
55
53
55
57
58
59
60
60
0.89
0.76
0.68
0.54
0.46
0.45
0.43
0.42
0.41
0.39
-13
-28
-31
-34
-33
-35
-36
-39
-44
-44
5.!1
77
71
61
54
49
=
S,1, S:zz f If)
Ie =5 rnA, VcE =6V, ~=50n
S,2, Sz1
5.!2
=f If)
Ic=5mA, VCE=6\t,~=50n
90·
o
-j50
-90·
Siemens
533
BFQ29P
Ic = 10 rnA, VCE = 6 V,
ZO = 50 n
~,
~2
f
S"
GHz
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.2
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.65
0.53
0.42
0.35
0.29
0.30
0.30
0.30
0.33
0.35
- 46
- 87
-104
-137
-169
179
169
155
141
133
20.65
14.88
10.41
6.92
4.47
3.59
3.04
2.50
2.11
1.97
135
117
108
94
80
74
69
60
53
49
0.03
0.04
0.05
0.07
0.10
0.12
0.14
0.17
0.20
0.22
69
58
59
61
63
65
64
63
62
62
S'2
= 10 mA,
VCE
= 6 V, Zo = 50 n
Q
-18
-32
-33
-33
-30
-32
-34
-36
-41
-42
o
1800
-j50
534
0.79
0.61
0.54
0.43
0.39
0.38
0.36
0.36
0.35
0.33
90 0
+j50
o
ANG
S,2, 5", = f If)
Ic=10mA, VcE =6V,Zo=50n
s". 5,,2 = f If)
Ic
. MAG
-90 0
Siemens
BFQ29P
Ic = 20 rnA,
VCE
=
6 V,
20 = 50 Q
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.1
0.2
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.47
0.40
0.33
0.31
0.28
0.29
0.30
0.30
0.33
0.35
- 64
-108
-125
-154
178
169
161
148
135
128
25.26
16.60
11.22
7.16
4.57
3.65
3.09
2.54
2.15
2.00
126
109
102
89
0.02
0.03
0.04
0.06
0.09
0.12
0.14
0.17
0.21
0.22
67
62
65
68
68
69
68
66
64
63
0.69
0.50
0.46
0.39
0.36
0.36
0.35
0.34
0.34
0.32
-21
-32
-30
-28
-26
-28
-30
-33
-39
-39
5.21
77
72
67
59
52
48
5.22
=
S.1,~=f(f)
S.2, 8.!1 f (f)
Ie = 20 rnA, VeE = 6\1,.zo =500
Ie = 20 rnA, VeE =6 \I,.zo =500
90 0
o
- j50
-90 0
Siemens
535
NPN Silicon RF Transistor
BFQ64
• For low-distortion broadband amplifiers in antenna and
telecommunications systems at collector currents from
70 to 150 mA.
E
Type
Marking
Ordering code
(tape and reel)
Package
BFQ64
FC
Q 62702-F1061
SOT-89
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
20
V
Collector-base voltage
Vcso
30
V
Emitter-base voltage
VESO
3
V
Collector current
Ic
200
mA
ICM
250
mA
Base current
Is
25
mA
Total power dissipation, TA ~ 25 °C2)
Ptot
1
W
°c
Peak collector current,
f~
1 MHz
Junction temperature
7j
150
Ambient temperature range
TA
-65 ... +150
°c
Storage temperature range
Tstg
-65 ... +150
°c
Thermal Resistance
I
Junction - ambient 1)
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
536
Siemens
RthJA
I ~125
IKIW
BFQ64
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Symbol
Unit
Values
min
typ
max
Collector-emitter cutoff current
VCE = 30 V. VBE = 0
ICES
-
-
1
mA
Collector-base cutoff current
VCB = 15 V. IE = 0
ICBO
-
-
200
nA
Emitter-base cutoff current
VEB = 2 V. Ic = 0
lEBO
-
-
10
!lA
DC current gain
Ic=120mA, VcE =5V
hFE
25
-
-
-
Siemens
537
BFQ64
AC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
Transition frequency
Ie = 100 rnA, VeE = 5 V; f= 200 MHz
fT
-
3
-
GHz
Collector-base capacitance
VCB = 10 V; VBE = vbe = 0, f= 1 MHz
Ccb
-
1
-
pF
Input capacitance
VEB = 0.5 V; Ie = ic = 0'(= 1 MHz
C,bo
-
11.5
-
pF
Power gain
Gpe
-
10
-
dB
Linear output voltage
two-tone intermodulation test
Ie = 100 rnA, VeE = 10 V; diM = 60 dB
f1 = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 n
Vo1 = Vo2
-
600
-
mV
Third order intercept point
Ie = 100 rnA, VeE = 10V; f= 800 MHz
IP3
-
38.5
-
dBm
Ie = 100 rnA, VeE = 10V; f= 800 MHz,
Zs = ZSopt> ZL = ZLopt
538
Siemens
BFQ64
Total power dissipation P tot = f IT,.)
Package mounted on alumina
W
1.2
P.
fl.0
O.B
\.
\
[\
\
0.6
\
0.4
\
1\
0.2
\.
o
o
\
50
100
150 "C
Siemens
539
NPN Silicon RF Transistor
BFQ81
• For low-noise amplifiers up to 2 GHz and broadband
analog and digital applications in telecommunications
systems at col/ector currents from 0.5 to 20 mA.
~
CECC-type available: CECC 50002/257.
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFO 81
RA
o 62702 -
SOT-23
F1 049
Maximum Ratings
Parameter
Symbol
Value
Unit
Col/ector-emitter voltage
Col/ector-base voltage
VCEO
16
V
VCBO
25
V
Emitter-base voltage
VEBO
2
V
Collector current
Ic
30
mA
Total power dissipation, TA ~ 25 °C2)
PIOI
280
mW
Junction temperature
7j
150
°c
Ambient temperature range
TA
-65 ... +150
°c
Storage temperature range
Tslg
-65 ... +150
°c
RthJA
~450
Thermal Resistance
Junction - ambient 1 )
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
540
Siemens
IKIW
BFQ81
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
V(BR)CEO
16
-
-
V
Collector-base cutoff current
VCB = 15 V, IE = 0
ICBO
-
-
100
nA
Emitter-base cutoff current
VES = 2 V, Ic = 0
lEBO
-
-
10
J.LA
DC current gain
hFE
50
50
-
250
-
Collector-emitter breakdown voltage
Ic=1 mA,Is=O
Ic= 5 mA, VCE = 10V
Ic=15mA, VcE =10V
-
Collector-emitter saturation voltage
Ic = 30 mA, Is = 3 mA
VCEsat
-
0.2
0.4
V
Base-emitter voltage
Ic = 10 mA, VCE = 10 V
VBE
-
0.78
-
V
Siemens
541
BFQ81
AC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
-
4.2
5.8
-
Transition frequency
Ic= 5 rnA, VCE = 10 V, f= 200 MHz
Ic = 15 rnA, VCE = 10V, f= 200 MHz
fr
Collector-base capacitance
VCB = 10 V, VBE = Vbe = 0, f= 1 MHz
Gcb
-
Collector-emitter capacitance
VCE = 10 V, VBE = Vbe = 0, f= 1 MHz
Gce
Input capacitance.
VEB = 0.5 V,Ic = ic = 0, f= 1 MHz
GHz
0.38
-
pF
-
0.22
-
pF
C,bo
-
1.27
-
pF
Output capacitance
VcE =10V, VBE =Vbe=0,f=1 MHz
Gobs
-
0.6
-
pF
Noise figure
Ic= 3 rnA, VCE = 10V, f= 10MHz,Zs=75n
Ic= 5 rnA, VCE = 10 V,f= 800 MHz, Zs = 50 n
Ic=10mA, VcE =10V,f= 2 GHz, Zs = Zsopt
F
0.9
1.4
2.5
Power gain
Ic= SmA, VcE =10V,f=800MHz,
Zs = 50 n, ZL = ZLOPt
Gpe
-
15
-
dB
Transducer gain
Ic = 20 rnA, VCE = 10V, f= 1 GHz, 2{. = 50 n
1~1e12
-
12.4
-
dB
Linear output voltage
two-tone intermodulation test
Ic = 25 rnA, VCE = 10V, diM =60dB
r, =806 MHz, f2 =810MHz,Zs=ZL=50n
Vo1 = Vo2
-
160
-
mV
Third order intercept point
Ic = 25 rnA, VCE = 10 V, f= 800 MHz
1P3
-
27
-
dBm
542
Siemens
dB
BFQ81
Total power dissipation P'ot = f IT,J
Package mounted on alumina
Transition frequency fT = f (Icl
f=200MHz
mW
6Hz
6
400
i--l
1/
VCE=~V
1I 1---1-1'--
1//
,
"200
,
3
"
,
IA
4
I"1'\
\
1V
II
\
1\
2
100
1'\
o
o
50
1'\
150 DC
100
o
o
10
20
30 mA
--Ie
-TA
Collector-base capacitance COb
VBE = Vbe=O, (=1 MHz
=f (Vca)
pF
1.0
r\\
0.5
o
i'-- I-....
o
-. t- t -
10
t--
20 V
-\'cs
Siemens
543
BFQ81
Common Emitter Noise Parameters
Ie = 3 rnA, VeE = 10 V. Zo = 50 Q
f
Fmin
Topt
Gp (Fmin)
GHz
dB
dB
0.01
0.7
-
MAG
1 ANG
(Zs = 150 Q)
Ie = 5 rnA, VeE = 10 V. 2Q =50
Topt
Fmin
Gp (Fmin)
GHz
dB
dB
MAG
0.01
0.8
0.8
1.3
-
(Zs = 150 Q)
0.22
71.5
1 ANG
I
14.2
Ie = 10 rnA, VeE = 10 V, 2Q = 50
f
Fmin
Gp (Fmin)
dB
dB
MAG
2.0
2.5
8.5
0.27
Topt
1ANG
1-139
Noise figure F=f(lcl
VeE = 10V, f= 10 MHz
dB
3
F
\
Zs=1S0~\ - rsoQ
7SQ, ~
,...
I
,'-. ~ r'
-~
i--"'""
K::
./
I>i--"'"" ~ I-"
.......:: i:---'
'-
o
o
10
20 mA
-Ie
544
F 50n
Q
-
dB
dB
-
1.2
-
RN
·N
F50n
Gp
Q
dB
dB
-
0.19
1.15
1.4
-
11.7
Gp
(F50nl
(F50nl
14
Q
GHz
2
N
Q
f
t
RN
Siemens
RN
N
F 50n
Gp
Q
-
dB
dB
14.2
0.39
2.8
-
(F50nl
BFQ81
Noise figure F = f (Iel
VCE = 10 V, f= 800 MHz, ZLopt (G)
Circles of constant noise figure F= f (Zs)
and available power gain Gav = f (Zs)
Ic=5mA, VcE =10Y, f=800MHz
+
dB
3
j50
F
t
I
\
is=5011~ V
\f\.. f- ~
~
- j SO
o
Circles of constant noise figure F = f (Zs)
and available power gain Gav = f (Zs)
Ic= 10 mA, VCE = 10V, f= 2 GHz
+ j 50
-
....-::
-::..--
i--""" :lsopt
o
20 rnA
10
Noise figure F= f (Iel
VCE = 10V, f= 2 GHz, ZLoPt (G)
dB
4
I
I
_I
I
r
2s=5011 :;;;; ~
/'
I V
..,-
\
\
....--r
I
"- -
\\.
/'
2
I
I
7
]7
./
"'Zsopt
6.,=10.3,10,9,8,7 dB
- j 50
o
o
20 rnA
10
-Ie
Siemens
545
BFQ81
Common Emitter Power Gain
dB
30
Power gain Gms, 15;,1.12 = f (lei
VCE = 10V, f= 200 MHz,.20 = 50n
Um.
/
1/
7
/
dB
30
--
Power gain Gma, 15;,1.12 =f (lei
VCE = lOll, f= 500 MHz,.20= 50n
I-
l.--"
l - I - I- Um.
7 IS21.12
1/
~./
10
-
l-
II IS21.1
I-
ams-
2
10
-l I
>-- I- U s21.
>-- I- I m· l- ~12. 'I
10
-I
-S
2"1
S12.
10
20 mA
-Ie
20 mA
-Ie
Power gain Gm., Gms, 15;,1.12 =f (leI
VCE = 10 II, f= 1 GHz,.20 = 50 n
Power gain Gma, 15;,1.12 =f(lel
VCE = 1011, f= 2 GHz,.20 = 50n
dB
20
dB
20
1
I
u""
Um.
l- I-
V
d .1 I I I
=Is21·I·(k -/kG') -
I I
um.
112 •
I
Um.
V
IS21.1 2
10
10
~
I-
II
I-
Um• = S21.
I-
um.
S12.
I
V
- -
=l s21·1·(k_Jk 2_1',- ~12"1 I I I
I
10
20 mA
10
20 mA
-Ie
-Ie
546
IS21.1 2
Siemens
BFQ81
Power gain Gma , Gmso 1$",.1 2 = f (fl
Ic
Power gain Gma , Gms• 1$",.1 2 = f (fl
= 2 mA, VCE = 10 V, Zo = 50 n
Ie = 5 mA, VeE = 10 V, Zo
dB
30
Oma
Oms
1521 i
1
15
"'- r--.. 0 ms
20
15 21,1
I------
2,i
t
.........
20
"" "
1521,1 2
"
i'l'.
\. Oma
10
r'\.
o ms-_\5
- 21 , 1
5'2,
o
I
Oms
-.... I'-..
I-
Oma
-"'"""," "
Oma
Oms
~
"'-\
"1~2"'2. I· (k -Jk2J J
0.5
0.1
"'"\.
10
2
52 ",
_Oms= 15'2,
o ma -_1 -52 "1 ·(k- k -1)
5'2.
I
o
3 GHz
0.1
0.5
dB
30
.1
Oma
Oms
Oms
1 20
15
'\.
I------ 1521,1 2
'\
~
~
2,i
I
I-- Oms = 152', 1
=1~21'1·(k_./kG')
f- Om,
I
1'2 • i
20
I------
'\
I\.
&1
ms
I\.
r\
1\
15 2,,1 2
"'
'\
Oma - I--
"'-"""
10
"'-
_1 5'2, I
I5'2, I·
Oma = 52', (k
2
"fm
- "
o ms- 52
I I I I II
0.5
3 GHz
'\.
"\
5'2,
I--
1"'-
1
2
-f
f--
"'-"
"\ ~
10
~
~ r'\.
"'
'\
1\ Oma
'fm
Power gain Gma • Gms • 1$",.1 2 = f (tl
le=20mA, VcE =10Il,Zo=50n
dB
30
I5 21 i
"'-\
.Jk21
Power gain Gma , Gms .I$",.1 2 = f (fl
le=10mA, VeE =10V,Zo=50n
"'"" "
'" " "'
_'\. oma-
I'
1"'1
1\
-f
Oma
Oms
= 50 n
dB
30
3 GHz
-f
o0.1
"\
-IkG\
0.5
2
3 GHz
-f
Siemens
547
BFQ81
Common Emitter S Parameters
Ic = 1 rnA, VCE = 1 V, ~ = 50 n
GHz
5 11
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
0.950
0.931
0.910
0.882
0.854
0.797
0.743
0.700
0.659
0.636
0.612
0.590
0.566
0.551
0.546
0.547
0.548
0.559
- 18.8
- 28.0
- 36.9
- 45.5
- 53.6
- 68.8
- 82.4
- 94.9
-106.5
-116.6
-126.7
-136.0
-152.5
-167.0
-173.7
-179.7
168.9
158.6
3.58
3.51
3.42
3.30
3.17
2.90
2.64
2.41
2.21
2.04
1.90
1.76
1.54
1.37
1.31
1.25
1.15
1.06
165.3
158.2
151.3
144.8
138.6
127.5
117.9
109.3
101.8
94.9
88.6
82.7
72.7
64.2
60.6
56.7
49.8
43.5
0.046
0.067
0.087
0.105
0.120
0.145
0.163
0.175
0.184
0.190
0.192
0.192
0.190
0.185
0.182
0.181
0.179
0.180
78.6
73.2
68.1
63.2
58.7
50.9
44.6
39.5
35.3
31.7
28.9
26.9
24.5
24.1
24.9
26.0
29.1
33.3
0.980
0.962
0.939
0.913
0.885
0.827
0.775
0.729
0.690
0.657
0.628
0.603
0.567
0.544
0.535
0.529
0.518
0.506
- 8.6
-12.5
-16.3
-19.8
-22.9
-28.3
-32.7
-36.2
-39.1
-41.4
-43.6
-45.5
-49.0
-52.7
-54.6
-56.6
-60.8
-65.5
f
548
~2
5.21
Siemens
5.22
BFQ81
1 V,
Zo =
50
n
Ic = 2 rnA,
VCE =
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
0.904
0.869
0.829
0.784
0.742
0.668
0.611
0.569
0.535
0.518
0.501
0.488
0.476
0.472
0.468
0.473
0.477
0.493
- 25.9
- 38.1
- 49.5
- 60.0
- 69.7
- 86.8
-101.3
-114.0
-125.4
-135.0
-144.8
-153.4
-168.4
178.6
172.8
167.8
157.8
149.4
6.71
6.42
6.06
5.67
5.27
4.57
3.99
3.51
3.14
2.83
2.59
2.37
2.04
1.79
1.69
1.62
1.48
1.36
160.4
151.4
143.2
135.9
129.2
118.2
109.1
101.5
95.0
89.1
83.8
78.9
70.6
63.3
60.0
56.6
50.5
44.7
0.045
0.064
0.081
0.094
0.106
0.122
0.133
0.141
0.147
0.152
0.156
0.159
0.166
0.173
0.178
0.183
0.195
0.209
75.4
68.8
63.1
58.1
53.9
47.5
43.1
40.2
38.3
37.0
36.4
36.3
37.3
38.9
40.1
41.1
43.0
44.7
0.955
0.917
0.870
0.823
0.776
0.692
0.627
0.575
0.535
0.503
0.476
0.454
0.422
0.401
0.395
0.390
0.380
0.367
-13.1
-18.8
-23.8
-28.1
-31.7
-37.2
-41.0
-43.8
-46.0
-47.6
-49.2
-50.4
-53.0
-56.0
-57.6
-59.4
-63.2
-67.8
~2
8 12
~1
Siemens
549
BFQ81
= 3 V.
zo = 50 n
Ic = 2 rnA,
VCE
f
~1
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.916
0.886
0.851
0.810
0.770
0.695
0.629
0.580
0.534
0.511
0.486
0.466
0.444
0.431
0.424
0.427
0.426
0.440
0.491
0.518
- 21.7
- 32.2
- 42.0
- 51.2
- 59.9
- 75.5
- 89.2
-101.6
-112.8
-122.7
-132.7
-141.9
-158.1
-172.8
-179.2
175.2
164.1
154.8
133.9
117.9
6.74
6.52
6.25
5.92
5.58
4.94
4.37
3.90
3.51
3.18
2.91
2.68
2.30
2.03
1.91
1.82
1.66
1.52
1.26
1.10
163.0
155.0
147.6
140.8
134.5
123.8
114.9
107.3
100.7
94.8
89.5
84.6
76.2
68.9
65.6
62.3
56.3
50.5
38.6
28.4
0.032
0.046
0.058
0.069
0.078
0.093
0.102
0.110
0.115
0.120
0.123
0.126
0.132
0.139
0.143
0.148
0.159
0.172
0.216
0.273
77.8
72.3
67.2
62.8
58.9
52.8
48.4
45.6
43.8
42.5
42.0
42.1
43.2
45.4
46.9
48.3
50.9
53.1
57.5
57.9
0.970
0.943
0.911
0.875
0.840
0.773
0.718
0.673
0.639
0.611
0.586
0.567
0.538
0.520
0.515
0.511
0.503
0.491
0.465
0.457
- 9.3
-13.4
-17.1
-20.3
-23.1
-27.2
-30.2
-32.4
-34.0
-35.2
-36.3
-37.2
-39.1
-41.3
-42.5
-43.9
-46.8
-50.2
--60.6
-71.6
550
8 12
5:11
Siemens
5:12
BFQ81
Ic
=
5 mA,
VCE =
3 V.
Zo =
50 !1
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.807
0.741
0.673
0.611
0.558
0.479
0.425
0.389
0.363
0.351
0.340
0.335
0.331
0.333
0.329
0.335
0.341
0.359
0.413
0.444
- 34.6
- 49.5
- 62.5
- 73.9
- 84.1
-101.1
-115.1
-127.2
-138.1
-146.9
-156.1
-164.3
-178.1
168.8
163.5
159.1
150.4
143.3
126.8
114.2
14.10
12.83
11.53
10.31
9.23
7.55
6.33
5.44
4.77
4.24
3.82
3.47
2.95
2.57
2.41
2.29
2.07
1.89
1.57
1.37
153.1
142.1
132.9
125.4
119.2
109.4
102.1
96.1
90.9
86.5
82.3
78.5
72.0
66.0
63.3
60.5
55.3
50.4
39.6
29.7
0.029
0.040
0.049
0.055
0.061
0.070
0.078
0.085
0.093
0.101
0.108
0.116
0.132
0.149
0.158
0.168
0.186
0.205
0.255
0.308
72.7
66.2
61.7
58.6
56.4
54.3
54.0
54.4
55.2
55.8
56.6
57.5
58.6
59.3
59.6
59.7
59.5
59.0
57.2
54.0
0.912
0.842
0.773
0.711
0.659
0.579
0.527
0.491
0.465
0.447
0.431
0.418
0.399
0.388
0.386
0.383
0.378
0.366
0.336
0.326
-16.5
-22.4
-26.7
-29.8
-31.8
-34.0
-35.1
-35.4
-35.9
-36.1
-36.6
-36.9
-38.1
-39.8
-40.9
-42.2
-45.3
-48.6
-58.4
-69.1
5.11
Siemens
5.12
551
BFQ81
Ic
=
2 mA, VCE
6 V,
=
ZO
=
50 n
5.z1
GHz
8 11
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.924
0.896
0.863
0.824
0.785
0.709
0.642
0.588
0.539
0.511
0.481
0.457
0.427
0.410
0.402
0.403
0.402
0.415
0.465
0.492
- 20.0
- 29.6
- 38.8
- 47.5
- 55.6
- 70.5
- 83.6
- 95.6
-106.7
-116.4
-126.5
-135.8
-152.6
-167.9
-174.6
179.4
167.6
157.7
135.6
119.2
6.69
6.50
6.25
5.96
5.64
5.04
4.49
4.03
3.64
3.31
3.04
2.80
2.41
2.12
2.00
1.90
1.72
1.58
1.31
1.14
164.0
156.5
149.4
142.8
136.7
126.2
117.4
109.8
103.2
97.3
92.0
87.1
78.7
71.3
68.0
64.7
58.7
53.1
41.0
30.7
0.026
0.038
0.048
0.058
0.066
0.079
0.088
0.094
0.099
0.104
0.107
0.110
0.115
0.121
0.125
0.129
0.139
0.151
0.193
0.248
78.8
73.5
69.0
64.8
61.1
55.1
51.0
48.2
46.4
45.2
44.7
44.9
46.3
48.7
50.5
52.0
55.1
57.8
63.0
64.1
0.976
0.954
0.927
0.898
0.868
0.811
0.763
0.723
0.692
0.667
0.645
0.627
0.602
0.586
0.582
0.579
0.573
0.563
0.540
0.535
- 7.7
-11.2
-14.2
-16.9
-19.2
-22.8
-25.4
-27.2
-28.6
-29.7
-30.6
-31.4
-33.1
-35.0
-36.1
-37.2
-39.8
-42.7
-51.7
-61.2
f
~,.
s.,. = f (f)
Ic=2 mA,
5.z2
8 12
~2.
VCE=6V,~=50Q
s", = f (f)
Ic=2 mA,
+j50
VCE=6V,~=50Q
90·
o
180·
-j50
552
-90·
Siemens
BFQ81
Ic
=
f
5 rnA, VCE
=
6 V.
Zo =
50
n
511
MAG
ANG
5 12
MAG
ANG
MAG
ANG
13.95
12.83
11.65
10.51
9.48
7.83
6.60
5.69
4.99
4.45
4.02
3.66
3.10
2.70
2.53
2.40
2.17
1.98
1.65
1.43
154.8
144.3
135.4
127.9
121.7
111.8
104.3
98.2
93.0
88.5
84.3
80.5
74.0
68.0
65.2
62.6
57.4
52.6
41.8
31.9
0.024
0.034
0.041
0.048
0.053
0.061
0.068
0.075
0.081
0.088
0.095
0.102
0.116
0.131
0.139
0.147
0.164
0.181
0.228
0.278
74.1
68.3
63.9
60.7
58.5
56.2
55.7
56.2
57.0
57.7
58.6
59.4
61.0
61.9
62.5
62.7
63.0
62.8
61.8
59.4
0.929
0.872
0.813
0.759
0.713
0.641
0.594
0.561
0.538
0.521
0.507
0.497
0.480
0.470
0.469
0.467
0.463
0.453
0.426
0.419
-13.4
-18.3
-21.9
-24.4
-26.1
-27.8
-28.6
-29.0
-29.2
-29.5
-29.9
-30.2
-31.3
-32.9
-33.8
-35.0
-37.6
-40.4
-48.6
-57.5
5.?1
GHz
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.827
0.764
0.698
0.634
0.577
0.490
0.426
0.385
0.352
0.332
0.318
0.308
0.300
0.297
0.294
0.298
0.303
0.321
0.379
0.408
- 31.1
- 44.7
- 56.7
- 67.4
- 76.8
- 93.0
-106.3
-118.4
-129.1
-138.4
-147.9
-156.8
-171.9
173.9
168.2
162.9
153.6
146.0
128.4
115.3
5", s.:. = f If)
5.?2
5,2. 5", = f If)
Ie =5 rnA, VeE = 6\1, Zo = 50 Q
Ie =5 rnA, VeE = 6\1, Zo = 50 Q
90'
o
180'
_135'
-90'
-j50
Siemens
553
BFQ81
Ic
=
10 mA,
VCE =
6 V,
Zo =
50 Q
S:e,
f
8"
8 '2
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.704
0.610
0.529
0.465
0.415
0.348
0.304
0.278
0.261
0.254
0.248
0.248
0.250
0.256
0.255
0.260
0.266
0.286
0.346
0.377
- 43.8
- 60.5
- 74.2
- 85.5
- 95.3
-111.8
-125.2
-137.0
-147.1
-156.0
-164.7
-172.2
174.1
161.4
156.4
152.1
144.3
138.5
123.8
112.9
21.34
18.27
15.62
13.44
11.72
9.26
7.62
6.46
5.61
4.96
4.45
4.04
3.41
2.96
2.78
2.63
2.37
2.16
1.79
1.55
144.8
132.6
123.4
116.4
110.9
102.7
96.6
91.6
87.4
83.7
80.3
77.0
71.4
66.0
63.6
61.2
56.5
52.2
41.9
32.4
0.022
0.029
0.035
0.039
0.044
0.052
0.060
0.068
0.077
0.086
0.094
0.103
0.121
0.139
0.148
0.158
0.177
0.195
0.244
0.293
70.4
65.1
62.6
61.7
61.3
62.1
63.3
64.6
65.6
66.1
66.6
67.0
67.2
66.9
66.8
66.4
65.6
64.4
61.5
57.8
0.855
0.763
0.687
0.629
0.586
0.528
0.496
0.474
0.461
0.451
0.442
0.436
0.424
0.418
0.418
0.417
0.413
0.403
0.375
0.366
-19.0
-23.8
-26.4
-27.5
-27.8
-27.5
-27.1
-26.7
-26.8
-26.9
-27.2
-27.5
-28.8
-30.5
-31.6
-32.8
-35.7
-38.6
-46.7
-55.6
5", s." = f (f)
5,2, ~, = f (f)
Ic = 10 mA, VCE = 6 V, Zo = 50 n
Ic=10mA, VcE =6\1,Zo=50n
_90 0
-j50
554
S:e2
Siemens
BFQ81
Ic = 20 rnA, VCE = 6 V,
~
= 50
Q
~1
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.566
0.464
0.394
0.345
0.311
0.271
0.247
0.236
0.229
0.228
0.231
0.232
0.242
0.253
0.253
0.258
0.266
0.284
0.345
0.374
- 59.2
- 78.4
- 93.3
-105.1
-115.2
-131.9
-144.7
-155.3
-164.1
-171.4
-178.8
174.7
163.6
152.6
148.5
144.9
138.1
133.9
121.1
110.8
27.49
21.82
17.76
14.82
12.67
9.78
7.93
6.68
5.78
5.09
4.56
4.13
3.48
3.02
2.83
2.68
2.41
2.19
1.82
1.58
134.2
121.9
113.6
107.7
103.1
96.4
91.4
87.2
83.6
80.4
77.3
74.4
69.3
64.3
62.0
59.7
55.2
51.0
41.0
31.7
0.019
0.024
0.029
0.034
0.038
0.047
0.056
0.065
0.075
0.084
0.094
0.103
0.122
0.141
0.151
0.161
0.180
0.200
0.249
0.297
67.5
64.6
64.7
65.3
66.3
68.2
69.6
70.6
71.1
71.2
71.3
71.2
70.6
69.7
69.3
68.6
67.3
65.8
62.2
58.1
0.760
0.655
0.584
0.538
0.507
0.469
0.451
0.439
0.431
0.426
0.421
0.417
0.409
0.404
0.405
0.404
0.401
0.391
0.363
0.353
-22.9
-25.9
-26.3
-25.9
-25.1
-23.6
-22.9
-22.6
-22.8
-23.2
-23.8
-24.3
-25.9
-27.9
-29.1
-30.5
-33.6
-36.7
-44.8
-53.9
S,2, ~, = f If)
Ie =20 rnA, VeE = 611,.2{,= 500
S",~=flf)
Ie = 20 rnA, VeE = 611,.2{, = 500
+j50
o
1800
_90 0
-j50
Siemens
555
BFQ81
= 10 V, Zo = 50 Q
Ic = 2 rnA,
VCE
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.931
0.905
0.874
0.836
0.796
0.722
0.654
0.597
0.544
0.513
0.481
0.455
0.421
0.399
0.390
0.390
0.385
0.398
0.447
0.478
- 18.9
- 28.2
- 36.9
- 45.2
- 53.0
- 67.4
- 80.2
- 91.9
-102.7
-112.3
-122.3
-131.7
-148.7
-164.4
-171.2
-177.8
170.4
160.0
136.9
119.7
6.59
6.41
6.19
5.92
5.62
5.05
4.52
4.06
3.68
3.35
3.09
2.85
2.45
2.16
2.03
1.93
1.76
1.61
1.33
1.15
164.6
157.4
150.4
144.1
138.0
127.7
118.9
111.3
104.7
98.9
93.5
88.5
80.0
72.6
69.4
66.1
60.1
54.4
42.3
31.8
0.023
0.034
0.043
0.052
0.059
0.071
0.079
0.085
0.090
0.094
0.097
0.100
0.105
0.110
0.114·
0.118
0.127
0.138
0.177
0.229
79.4
74.4
70.0
65.9
62.5
56.5
52.4
49.7
47.9
46.6
46.2
46.5
47.9
50.5
52.4
54.0
57.3
60.2
66.0
67.7
0.978
0.960
0.937
0.911
0.884
0.833
0.789
0.753
0.725
0.702
0.681
0.666
0.642
0.628
0.625
0.622
0.617
0.609
0.589
0.587
- 6.7
- 9.8
-12.5
-14.9
-17.0
-20.1
-22.4
-24.1
-25.4
-26.3
-27.2
-27.9
-29.5
-31.2
-32.2
-33.3
-35.6
-38.2
-46.2
-54.8
~,
~2
8 '2
5,1 ,5,2 = f If)
Ie = 2 rnA, VeE = 10V, Zo = 50 n
5,2,5" = f If)
Ie = 2 rnA, VeE = 10V, Zo = 50 n
+j50
o
1800
_90 0
-j50
556
Siemens
BFQ81
Ic = 5 rnA, VCE = 10 V.
Zo = 50 Q
~1
~2
f
$11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.847
0.786
0.721
0.657
0.599
0.506
0.437
0.389
0.351
0.329
0.310
0.296
0.283
0.278
0.273
0.278
0.280
0.298
0.357
0.390
- 28.9
- 41.7
- 53.1
- 63.1
- 72.1
- 87.6
-100,4
-112.2
-122.8
-132.0
-141.8
-150.7
-166.8
178.1
171.8
166.1
156.3
148.3
129.4
116.1
13.60
12.60
11.53
10.46
9.48
7.89
6.68
5.77
5.08
4.53
4.10
3.73
3.17
2.76
2.58
2.45
2.21
2.02
1.67
1.45
156.0
145.9
137.1
129.7
123.4
113.5
105.9
99.6
94.4
89.8
85.6
81.7
75.2
69.1
66.4
63.7
58.7
53.8
42.9
33.1
0.022
0.030
0.038
0.043
0.048
0.056
0.062
0.069
0.075
0.081
0.087
0.093
0.106
0.120
0.127
0.134
0.150
0.166
0.209
0.257
75.1
69.5
65.1
61.9
59.7
57.2
56.7
57.0
57.8
58.5
59.4
60.4
61.9
63.1
63.9
64.2
64.8
64.9
64.6
62.8
0.939
0.889
0.837
0.790
0.747
0.682
0.639
0.607
0.586
0.570
0.557
0.548
0.532
0.524
0.523
0.522
0.518
0.510
0.487
0.482
-11.5
-15.8
-19.0
-21.2
-22.7
-24.3
-25.0
-25.3
-25.6
-25.9
-26.2
-26.5
-27.6
-29.0
-29.9
-31.0
-33.3
-35.9
-43.1
-51.1
$12
5,2. 5", = f If)
5". Sn = f If)
Ic=5mA, VcE =10\/'Zo=50Q
Ic = 5 rnA, VCE = 10\/, Zo =50 Q
90·
o
180·
_90·
-jSO
Siemens
557
BFQ81
Ie = 10 rnA, VeE = 10
V. Zo
=
50
Q
~1
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.744
0.650
0.566
0.497
0.441
0.362
0.310
0.277
0.254
0.242
0.234
0.229
0.227
0.232
0.231
0.237
0.242
0.261
0.324
0.355
- 39.7
- 55.4
- 68.1
- 78.7
- 88.0
-103.8
-116.5
-128.3
-138.5
-147.7
-157.0
-165.8
179.4
165.5
159.6
155.1
146.5
140.5
124.8
113.5
20.56
17.86
15.44
13.39
11.74
9.33
7.70
6.54
5.70
5.04
4.52
4.10
3.46
3.01
2.82
2.67
2.40
2.19
1.82
1.57
146.8
134.8
125.6
118.5
112.8
104.4
98.1
93.0
88.6
84.9
81.4
78.1
72.4
67.1
64.6
62.2
57.6
53.2
42.9
33.4
0.020
0.027
0.032
0.037
0.041
0.048
0.055
0.063
0.071
0.079
0.086
0.094
0.111
0.127
0.135
0.144
0.161
0.179
0.224
0.270
71.5
66.3
63.4
62.1
61.7
62.2
63.3
64.6
65.7
66.3
67.0
67.5
67.9
67.8
68.0
67.7
67.2
66.3
64.0
61.0
0.877
0.798
0.729
0.675
0.635
0.580
0.549
0.529
0.516
0.507
0.499
0.493
0.483
0.477
0.477
0.476
0.474
0.465
0.440
0.433
-16.2
-20.4
-22.7
-23.8
-24.1
-23.9
-23.6
-23.3
-23.4
-23.6
-23.9
-24.2
-25.4
-27.0
-28.0
-29.1
-31.7
-34.3
-41.4
-49.3
5 ,2, 5", = f (f)
Ie = 10 mA, VCE = 10V, Zo = 50 n
5 11 ,5,,2 = f (f)
le=10mA, VcE =10V,Zo=50n
o
558
Siemens
BFQ81
Ic = 20 rnA,
VCE
= 10 V, Zo = 50 Q
~,
~2
f
8"
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.628
0.517
0.435
0.376
0.332
0.277
0.243
0.227
0.215
0.211
0.210
0.210
0.218
0.227
0.228
0.234
0.241
0.260
0.324
0.355
- 52.7
- 70.3
- 84.1
- 95.1
-104.6
-121.1
-133.6
-145.2
-155.2
-163.0
-171.5
-179.1
168.5
156.3
151.2
147.5
140.0
135.5
122.0
111.7
26.24
21.27
17.51
14.71
12.62
9.79
7.97
6.72
5.82
5.13
4.59
4.16
3.50
3.04
2.84
2.69
2.42
2.21
1.83
1.58
137.1
124.7
116.0
109.8
105.0
98.0
92.7
88.4
84.7
81.4
78.3
75.4
70.1
65.0
62.7
60.4
56.0
51.7
41.7
32.3
0.018
0.023
0.028
0.032
0.036
0.044
0.052
0.060
0.069
0.078
0.086
0.095
0.112
0.130
0.139
0.147
0.165
0.183
0.229
0.275
68.5
65.1
64.3
64.8
65.6
67.3
68.9
70.0
70.7
71.0
71.2
71.3
71.1
70.4
70.2
69.7
68.7
67.5
64.5
61.1
0.800
0.705
0.639
0.595
0.565
0.528
0.510
0.498
0.492
0.486
0.481
0.477
0.470
0.466
0.467
0.467
0.465
0.456
0.431
0.424
-19.4
-22.1
-22.7
-22.4
-21.8
-20.6
-20.1
-19.9
-20.1
-20.5
-21.0
-21.6
-23.0
-24.9
-26.0
-27.3
-30.0
-32.8
-40.0
-48.1
8'2
S,2, 5:., =f (f)
le= 20 mA, VeE = 10V, Zo= 50 0
s". 5z! = f (f)
Ie = 20 mA, VeE = 10 V, Zo=500
-jSO
-90 0
Siemens
559
BFR35AP
NPN Silicon RF Transistor
• For broadband amplifiers up to 2 GHz and fast nonsaturated switches at collector currents from 0.5 to
20 mA.
ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFR35AP
GE
Q 62702 - F 938
SOT-23
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
Collector-emitter voltage, VSE = 0
Values
Unit
VCEO
12
V
VCES
20
V
Emitter-base voltage
VESO
2.5
V
Collector current
Ic
30
mA
Base current
Is
4
mA
Total power dissipation, TA ~ 25 °C 2)
Ptot
280
mW
Junction temperature
7j
150
°c
Ambient temperature range
TA
-65 ... +150
°c
Storage temperature range
Tstg
-65 ... +150
°c
Thermal Resistance
Junction - ambient 1)
RthJA
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
560
Siemens
I ~450
IKIW
BFR35AP
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
Collector-emitter breakdown voltage
Ic = 1 mA,ls= 0
\l(sR)CEO
12
-
-
V
Collector-emitter cutoff current
VcE =20V, VSE=O
ICES
-
-
100
~
Collector-base cutoff current
Vcs =10V,IE =0
Icso
-
-
50
nA
Emitter-base cutoff current
VES = 2.5 V, Ic = 0
I Eso
-
-
100
~
DC current gain
Ic= 5mA, VcE =6V
Ic=20mA, VcE =6V
!Jr,E
40
40
85
90
-
Collector-emitter saturation voltage
Ie =30 mA, Is =3 mA
VCEsat
-
0.16
0.4
Siemens
V
561
BFR35AP
AC characteristics
Symbol
Parameter
min
Values
typ
max
-
Unit
GHz
Transition frequency
Ic= 5mA, VcE =6V, f=200MHz
Ic = 20 mA, VCE = 6 V, f= 200 MHz
fT
3.6
3.8
4.9
Collector-base capacitance
VCB = 6 V, VBE = vbe = 0, f= 1 MHz
C eb
-
0.56
0.7
pF
Collector-emitter capacitance
VCE = 6 V, VBE = Vbe = 0, f= 1 MHz
C ee
-
0.27
-
pF
Input capacitance
VEB = 0.5 V, Ic = ie = 0, f= 1 MHz
C,bo
-
0.9
-
pF
Output capacitance
VCE = 6 V, VBE = Vbe = 0, f= 1 MHz
Cobs
-
0.85
-
pF
Noise figure
Ic=5mA, VCE = 6V, f= 10 MHz, Zs = 75 n
Ic=2mA, VCE = 6V, f=800MHz,Zs=Zsopt
Ic = 3 mA, VCE = 10V, f= 2 GHz, Zs = Zsopt
F
-
-
1.5
1.5
3.9
Power gain
Ic = 15 mA, VCE = 6 V, f= 800 MHz
Zs = 50 n, ZL = ZLOPt
Gpe
-
14
-
dB
Transducer gain
Ic=15mA, VcE =6V, f=1 GHz,Zo=50n
15.11e1 2
-
11
-
dB
Linear output voltage
two-tone intermodulation test
Ic = 15 mA, VCE = 10V, ~M = 60dS
fl = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 n
Vol = Vo2
-
110
-
mV
Third order intercept point
Ic = 15 mA, VCE = 10V, f= 800 MHz
IP3
-
23.5
-
dBm
562
Siemens
-
dB
BFR35AP
Total power dissipation Ptot = f (Till
Transition frequency fT = f (Id
VeE = 6 V,f= 200 MHz
Package mounted on alumina
GHz
rnW
400
6
flot
t 300
V
~
v
,..
/
\
1,\
200
f
3
1\
I
I\.
2
100
I
I
\
i\
I\.
o
o
o
o
150 0 (
100
50
10
20 rnA
-T,.
Collector-base capacitance Ccb
VSE = Vbe = O. f= 1 MHz
=f (Vee)
pF
1.0
1\
1\
\
1\ ......
O.S
o
o
........ r-.....
----
10
I--
20 V
-lis
Siemens
563
BFR 35AP
Common Emitter Noise Parameters
= 2 rnA, VeE = 6 V. Zo = 50 n
Ie
f
Fmin
Gp
GHz
dB
dB
0.01
1.05
-
Ie
= 5 rnA,
VeE
= 6 V.
Zo
f
Fmin
GHz
dB
dB
0.01
0.8
1.3
1.7
-
Gp
r opt
RN
N
Fson
Gp (Fson)
lANG
n
dB
(Zs= 150n)
-
-
3
dB
-
RN
N
Fson
Gp (Fsonl
lANG
n
dB
-
-
dB
(Zs = 100n)
-
16.9
0.24
1.6
1.9
(Fmin)
MAG
= 50 n
r opt
(Fmin)
MAG
14.3
I 58.5
0.25
=
Noise figure F f (Zs)
VcE =6 V. f= 10 MHz
dB
4
IA
AI
~=~O~~
lF
3
V
V
:l
I....V lOrnA
I
J...1'"
2
W~
\..
".
-"SmA2m~
lmA -
o
o
564
100
200
300Sl
Siemens
14
BFR35AP
Circles of constant noise figure F =f (Zs)
lc= 5 rnA, VCE = 6 V, f= 800 MHz
Noise figure F=f(Icl
VCE = 6 V, f= 800 MHz, ZLopt (G)
dB
5
F
l
4
3
2
-j 50
o
\
-
z~~ ~
~
~
;...-"
\ ~ ~oPt
o
10
20 rnA
-Ie
Siemens
565
BFR35AP
Common Emitter S Parameters
Ie = 0.5 rnA, VeE = 1 V,
.20 =
50 n
~1
~2
~2
f
$11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
0.967
0.956
0.941
0.923
0.903
0.859
0.812
0.765
0.717
0.686
0.645
0.610
- 12.3
- 18.4
- 24.3
- 30.2
- 35.9
- 47.0
- 57.2
- 67.2
- 76.5
- 85.5
- 94.5
-103.1
1.83
1.82
1.81
1.78
1.75
1.68
1.59
1.51
1.44
1.36
1.31
1.25
168.2
162.3
156.4
150.8
145.2
134.7
125.1
116.1
108.0
100.3
93.3
86.6
0.050
0.075
0.098
0.120
0.141
0.177
0.207
0.231
0.249
0.265
0.275
0.281
81.5
77.4
73.2
69.3
65.4
58.2
51.8
46.2
41.2
36.3
32.3
28.6
0.990
0.982
0.970
0.955
0.939
0.902
0.864
0.826
0.790
0.757
0.725
0.695
- 6.7
-10.0
-13.0
-16.2
-19.1
-24.5
-29.4
-33.6
-37.4
-40.7
-43.8
-46.4
Ie = 1 rnA, VeE = 1 V,
.20 =
50 n
~1
~2
f
$11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
0.938
0.917
0.892
0.862
0.829
0.763
0.699
0.643
0.591
0.557
0.521
0.490
- 16.4
- 24.5
- 32.2
- 39.7
- 46.7
- 60.1
- 72.0
- 83.2
- 93.4
-103.0
-112.6
-121.7
3.51
3.45
3.37
3.26
3.13
2.88
2.64
2.41
2.22
2.05
1.92
1.79
165.6
158.7
151.9
145.5
139.4
128.5
118.9
110.4
102.9
96.1
89.8
84.0
0.050
0.073
0.095
0.114
0.132
0.160
0.182
0.198
0.209
0.219
0.225
0.229
79.4
74.4
69.6
65.1
60.8
53.5
47.6
42.8
38.9
35.5
32.9
30.8
0.981
0.962
0.938
0.910
0.881
0.819
0.761
0.709
0.665
0.626
0.591
0.559
. - 9.4
-13.8
-17.9
-21.9
-25.5
-31.7
-37.0
-41.2
-44.7
-47.5
-50.2
-52.4
566
$12
Siemens
BFR35AP
Ic
=
2 rnA, VCE
= 6 V,
Zo
= 50 Q
~,
~2
f
8"
8 ,2
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.91
0.79
0.66
0.46
0.40
0.36
0.31
0.29
0.29
- 15
- 46
- 71
-102
'-119
-134
-156
-178
168
6.49
5.25
4.49
3.29
2.80
2.43
2.03
1.77
1.66
161
139
120
98
88
80
69
60
54
0.03
0.08
0.11
0.13
0.15
0.15
0.17
0.19
0.20
79
64
55
47
46
45
48
49
51
0.97
0.88
0.77
0.64
0.60
0.56
0.53
0.51
0.49
- 6
-22
-30
-35
-38
-40
-43
-48
-49
s...
5'2, 5:.. = f (f)
Ic=2mA, VcE =6v,2
=
50
Q
ANG
5.2,
MAG
ANG
8'2
MAG
ANG
5.22
MAG
ANG
- 14
- 43
- 65
- 95
-111
-125
-146
-170
175
6.46
5.28
4.54
3.35
2.87
2.45
2.07
1.81
1.68
161
140
122
99
90
83
71
62
56
0.03
0.07
0.10
0.12
0.14
0.15
0.16
0.18
0.19
80
66
57
49
48
47
49
50
52
0.98
0.90
0.80
0.68
0.64
0.61
0.58
0.56
0.54
-6
-19
-27
-33
-35
-38
-40
-45
-46
5,2' 5.., = f (f)
Ic =2 rnA, VCE = 10V, Zo= son
Sz. = f (f)
Ic=2mA, VcE =10v,Zo=50n
90 0
+j50
o
1800
-135 0
-90 0
- j50
572
-45 0
Siemens
BFR 35AP
10 V, Zo
Ic = 5 mA,
VCE =
f
Sl1
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.83
0.65
0.49
0.31
0.27
0.24
0.21
0.21
0.22
- 19
- 57
- 84
-112
-129
-144
-167
170
155
12.74
8.56
6.35
4.29
3.53
2.97
2.45
2.13
1.96
152
125
107
89
82
0.03
0.06
0.08
0.10
0.13
0.14
0.16
0.19
0.21
78
63
58
55
57
57
58
58
58
0.95
0.80
0.67
0.56
0.54
0.51
0.50
0.48
0.47
- 9
-25
-31
-33
-35
-36
-38
-43
-43
=
50 Q
~,
~2
S'2
77
67
59
54
5", s", = f (f)
Ie = 5 mA, VeE = 10V, Zo = 50 n
5'2, $;" = f (f)
Ie
= 5 mA,
VeE
= 10 V, Zo = 50 n
90 0
____-r-_____ 2GHz
o
1800
-j50
-90 0
Siemens
573
BFR35AP
Ic
=
10 rnA,
VCE =
10 V,
Zo =
50 n
f
5 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.75
0.52
0.37
0.23
0.21
0.20
0.18
0.19
0.20
- 28
- 71
- 99
-129
-146
-163
177
157
143
18.20
10.23
7.00
4.57
3.72
3.11
2.56
2.19
2.03
142
114
99
84
78
74
64
57
53
0.02
0.05
0.07
0.09
0.12
0.13
0.16
0.19
0.21
74
63
63
63
65
65
64
63
62
0.88
0.67
0.56
0.50
0.48
0.47
0.46
0.46
0.44
-13
-27
-29
-28
-29
-31
-34
-39
-39
5,2
8.!1
5 ,2 ,5.., =1(f)
Ic = 10 rnA, VCE = 10V, Zo=50 0
Sl1,~=f(f)
Ic = 10 rnA,
VCE
8.!2
= 10V, 2'0=500
90 0
--~
-------;--~
o
180 0
-j50
574
-90 0
Siemens
BFR35AP
Ic
= 15 rnA,
VCE
= 10 V, Zo = 50
Q
~,
~2
f
$"
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.64
0.38
0.28
0.19
0.19
0.19
0.19
0.21
0.22
- 37
- 87
-117
-151
-166
180
162
145
134
19.16
10.29
7.00
4.49
3.65
3.09
2.53
2.15
2.01
140
112
96
81
76
71
62
55
51
0.02
0.04
0.06
0.09
0.11
0.13
0.16
0.19
0.21
72
64
66
67
68
67
66
65
64
0.85
0.63
0.53
0.49
0.49
0.47
0.47
0.47
0.45
-14
-26
-26
-25
-27
-29
-32
-37
-38
$'2
5'2, 5", = f If)
Ic=15mA, VcE =10V,Zo=50n
~"
5,,2 = f If)
Ic = 15 mA, VCE = 10V, -4J = 50 n
o
180 0
- j50
-90 0
Siemens
575
BFR35AP
Ic
= 20 rnA,
VCE
= 10 V, Zo =
50 Q
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.58
0.34
0.27
0.20
0.20
0.21
0.21
0.23
0.25
- 45
- 98
-129
-163
-176
173
156
140
20.30
10.12
6.72
4.32
3.47
2.93
2.41
2.05
1.92
135
108
94
79
74
69
60
53
49
0.02
0.04
0.06
0.09
0.11
0.13
0.16
0.19
0.21
71
65
68
69
70
69
68
67
65
0.82
0.61
0.54
0.49
0.50
0.50
0.49
0.49
0.47
-14
-23
-23
-49
-25
-27
-30
-36
-37
S:z1
131
S:z2
5,2, 5" = f If)
Ie = 20 rnA, VeE = 10V, Zo = 50n
5",~=flf)
Ie =20 rnA, VeE = 10V, Zo= 50n
+j50
ZGHz
o
-j50
576
-90·
Siemens
BFR92P
NPN Silicon RF Transistor
• For broadband amplifiers up to 2 GHz and fast
non-saturated switches at collector currents from 0.5 to
20 mA.
€ CECC-type available: CECC 50002/254.
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFR92P
GF
Q 62702 - F1 050
SOT-23
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
V
20
V
Emitter-base voltage
VCEO
VCBO
VEBO
15
2.5
V
Collector current
Ic
30
mA
Base current
Is
4
mA
Collector-base voltage
Total power dissipation, TA ::; 25
DC2 )
Ptot
280
mW
Junction temperature
7j
150
DC
Ambient temperature range
TA
-65 ... +150
DC
Storage temperature range
Tstg
-65 ... +150
DC
RthJA
::;450
Thermal Resistance
Junction - ambient1)
IKIW
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm
Siemens
577
BFR92P
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Collector-emitter breakdown voltage
Symbol
V(SR)CEO
min
Values
typ
max
Unit
15
-
-
-
0.05
10
-
100
!-lA
V
Ic= 1 mA,Is=O
Collector-base cutoff current
Vcs = 10 V, IE = 0
Vcs = 20 V, IE = 0
Icso
Emitter-base cutoff current
VES = 2.5 V, Ic = 0
I ESO
-
DC current gain
hFE
40
100
-
-
VCEsat
-
-
0.4
V
!-lA
Ic=14mA, VcE =10V
Collector-emitter saturation voltage
Ic= 30 mA, Is =3 mA
578
Siemens
BFR92P
AC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
-
3.B
Transition frequency
Ic= 5 mA, VCE = 10 V, f= 200 MHz
Ic=14mA, VcE =10V,f=200MHz
fr
5
Collector-base capacitance
V CB = 10 V, VBE = Vbe = 0, f= 1 MHz
Geb
-
-
0.5
0.7
pF
Collector-emitter capacitance
VCE = 10 V, VBE = Vbe = O,f= 1 MHz
Gee
-
0.27
-
pF
Input capacitance
VEB = 0.5 V, Ic = ie = 0, f= 1 MHz
G.bo
-
0.9
-
pF
Output capacitance
VCE = 10 V, VBE = vbe = 0, f= 1 MHz
Gobs
-
0.77
-
pF
Noise figure
F
-
-
-
1.5
1.5
3.9
-
GHz
dB
Ic=5mA, VCE = 6 V, f= 10 MHz, Zs=75Q
Ic = 2 mA, VCE = 6 V, f= BOO MHz, Zs = Zsopt
Ic = 3 mA, V CE = 10 V, f=
2 GHz, Zs = Zsopt
-
Power gain
Ic = 15 rnA, VCE = 6 V, f= BOO MHz,
Zs = 50 Q, ZL = ZLOPt
Gpe
-
14
-
dB
Transducer gain
Ic = 15 mA, VCE = 6 V, f= 1 GHz, Zo= 50Q
1s.z1e1 2
-
11
-
dB
Linear output voltage
two-tone intermodulation test
Ic = 15 mA, VCE = 10 V, diM =60 dB
f1 = B06 MHz, f2 = B10 MHz, Zs = ZL = 50 Q
V01
-
110
-
mV
Third order intercept point
Ic=15mA, VcE =10V,f=BOOMHz
1P3
-
23.5
-
dBm
Siemens
=
Vo2
579
BFR 92P
Transition frequency fT = f (Jcl
VeE = 6 V, f= 200 MHz
Total power dissipation Ptot = f (TAl
Package mounted on alumina
rnW
400
6Hz
6
'1ot
f
\300
1'\
200
1'\
V
4
V
I
3
1'\
v ..-
I
'\
2
100
I
I
I
1,\
o
\.
o
50
Collector-base capacitance
VSE ~ Vbe = 0, f= 1 MHz
o
150 0 (
100
CCb
= f (VcBl
pF
1,0
~
\
\
0.5
o
580
o
.......
I"-...
10
r-- r- r-
20 V
Siemens
o
10
20 rnA
BFR 92P
Common Emitter Noise Parameters
Ie = 2 rnA, VeE = 6 V, 2{, = 50 Q
f
Fmin
Gp (Fmin)
GHz
dB
0.01
1.05
dB
-
Ie = 5 rnA, VeE = 6 V,
rept
MAG
lANG
(Zs
= 150 Q)
RN
N
F50n
Q
dB
dB
-
-
3
-
RN
N
F50n
Gp (F5onl
Q
-
dB
-
dB
-
16.9
0.24
Gp (F5onl
Zo = 50 Q
f
Fmin
Gp (Fmin)
GHz
dB
0.01
0.8
1.3
1.7
dB
-
rept
MAG
lANG
(Zs'" 100Q)
0.25
58.5
I
14.3
1.6
1.9
14
Noise figure F =f (Zsl
VeE = 6 V. f= 10 MHz
dB
4
IA
IAl
lLf_~O I ~_
r'cF
1
m r-
3
~
V
'\--
1/
V 10mA
\~-.l,1---
I\..
~~
I I
'"
2
I J....1""
i-'"
.."
VsmA-
?~
1mA -
o
o
100
200
300Sl
Siemens
581
BFR 92P
Noise figure F= f (lei
VeE = 6 V. f= 800 MHz, ZLopt (G)
Circles of constant noise figure F= f (Zsl
Ie = 5 rnA, VeE = 6 V, f= 800 MHz
dB
5
F
t
4
3
\
2
\
-j 50
o
o
Z~OQ ~ V
I'-
~ Zpt
~ -;:::::.
~
20 rnA
10
-Ie
582
Siemens
BFR92P
Common Emitter S Parameters
Ie = 0.5 rnA, VeE = 1 V, ZO = 50 Q
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
0.967
0.956
0.941
0.923
0.903
0.859
0.812
0.765
0.717
0.686
0.645
0.610
- 12.3
- 18.4
- 24.3
- 30.2
- 35.9
- 47.0
- 57.2
- 67.2
- 76.5
- 85.5
- 94.5
-103.1
1.83
1.82
1.81
1.78
1.75
1.68
1.59
1.51
1.44
1.36
1.31
1.25
168.2
162.3
156.4
150.8
145.2
134.7
125.1
116.1
108.0
100.3
93.3
86.6
0.050
0.075
0.098
0.120
0.141
0.177
0.207
0.231
0.249
0.265
0.275
0.281
81.5
77.4
73.2
69.3
65.4
58.2
51.8
46.2
41.2
36.3
32.3
28.6
0.990
0.982
0.970
0.955
0.939
0.902
0.864
0.826
0.790
0.757
0.725
0.695
- 6.7
-10.0
-13.0
-16.2
-19.1
-24.5
-29.4
-33.6
-37.4
-40.7
-43.8
-46.4
Ie = 1 rnA, VeE = 1 V,
f
8 11
GHz
MAG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
0.938
0.917
0.892
0.862
0.829
0.763
0.699
0.643
0.591
0.557
0.521
0.490
8.11
8.12
ZO = 50 Q
8 12
8.11
8.12
ANG
MAG
ANG
MAG
ANG
MAG
ANG
- 16.4
- 24.5
- 32.2
- 39.7
- 46.7
- 60.1
- 72.0
- 83.2
- 93.4
-103.0
-112.6
-121.7
3.51
3.45
3.37
3.26
3.13
2.88
2.64
2.41
2.22
2.05
1.92
1.79
165.6
158.7
151.9
145.5
139.4
128.5
118.9
110.4
102.9
96.1
89.8
84.0
0.050
0.073
0.095
0.114
0.132
0.160
0.182
0.198
0.209
0.219
0.225
0.229
79.4
74.4
69.6
65.1
60.8
53.5
47.6
42.8
38.9
35.5
32.9
30.8
0.981
0.962
0.938
0.910
0.881
0.819
0.761
0.709
0.665
0.626
0.591
0.559
- 9.4
-13.8
-17.9
-21.9
-25.5
-31.7
-37.0.
-41.2
-44.7
-47.5
-50.2
-52.4
Siemens
583
BFR92P
Ic
= 2 rnA,
VCE
= 6 V. .2iJ = 50 Q
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.91
0.79
0.66
0.46
0.40
0.36
0.31
0.29
0.29
- 15
- 46
- 71
-102
-119
-134
-156
-178
168
6.49
5.25
4.49
3.29
2.80
2.43
2.03
1.77
1.66
161
139
120
98
88
80
69
60
54
0.03
0.08
0.11
0.13
0.15
0.15
0.17
0.19
0.20
79
64
55
47
46
45
48
49
51
0.97
0.88
0.77
0.64
0.60
0.56
0.53
0.51
0.49
-6
-22
-30
-35
-38
-40
-43
-48
-49
8.11
8.12
=
St2, ~1 f (f)
Ic =2 mA, VCE = 6 V, 4,=50n
St1,~=f(f)
Ic=2mA, VcE =6v,4,=50n
90·
o
180·
-j50
584
-90·
Siemens
BFR92P
Ic = 5 rnA, VCE = 6
V. Zo
=
50 Q
f
5 11
GHz
MAG
ANG
MAG
ANG
5 12
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.80
0.58
0.44
0.28
0.26
0.24
0.22
0.23
0.25
- 24
- 66
- 97
-128
-144
-160
179
159
146
12.96
8.56
6.27
4.19
3.45
2.93
2.43
2.08
1.93
150
123
106
88
81
74
65
57
52
0.03
0.06
0.08
0.11
0.13
0.14
0.17
0.20
0.22
75
61
58
57
59
58
59
59
58
0.92
0.74
0.59
0.49
0.49
0.45
0.44
0.43
0.40
-11
-29
-35
-35
-36
-38
-40
-45
-46
5.!1
5.!2
St2. 5.z1 = f (f)
Ic=5 mA, VcE =6V, Za = 500
St1,~=f(f)
Ic=5mA, VcE=6V,Zo=500
900
+j50
o
-j50
-90 0
Siemens
585
BFR 92P
Ic = 10 rnA,
VCE
= 6 V, 20 = 50 n
~,
~2
f
8 11
8 '2
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.66
0.42
0.32
0.22
0.21
0.21
0.21
0.22
0.24
- 35
- 85
-116
-149
-164
-178
164
147
136
18.62
10.32
6.92
4.49
3.65
3.09
2.54
2.18
2.02
140
113
98
83
0.03
0.05
0.07
0.10
0.12
0.14
0.17
0.21
0.22
73
62
63
64
65
64
63
62
61
0.85
0.62
0.50
0.44
0.43
0.41
0.41
0.40
0.38
-15
-31
-33
-31
-32
-34
-36
-41
-42
77
71
63
55
51
S,2. 5", = 1 (f)
S".5",,=1(f)
Ic = 10 rnA,
VCE
= 6 \I, 20= 50 Q
Ic
= 10 rnA,
VCE = 6\1, Zo = 50 Q
90 0
+j50
o
-j50
586
-90 0
Siemens
BFR92P
Ic = 15 mA,
VCE =
6 V, Zo = 50
n
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.57
0.35
0.27
0.21
0.21
0.21
0.22
0.24
0.26
- 43
- 95
-127
-162
-174
174
158
142
133
20.30
10.53
7.00
4.49
3.65
3.09
2.54
2.15
2.00
137
109
95
80
75
70
61
54
50
0.02
0.05
0.07
0.10
0.12
0.14
0.17
0.21
0.23
71
54
66
67
68
66
65
64
63
0.81
0.58
0.48
0.43
0.43
0.41
0.41
0.41
0.39
-16
-29
-29
-27
-29
-31
-34
-40
-40
8.11
8.12
=
S,1,~=flf)
S,2, 5,,1 f If)
le= 15 rnA, VeE = 6 V, Zo = 50 n
Ie = 15 rnA, VeE = 6 II, Zo= 50 n
o
-j50
-90 0
Siemens
587
BFR92P
Ic
=
20 rnA,
VCE =
6 V. Zo
=
50
Q
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.51
0.32
0.27
0.22
0.22
0.23
0.24
0.26
0.28
- 49
-106
-138
-171
179
169
153
139
131
21.13
10.35
6.76
4.34
3.49
2.97
2.43
2.07
1.93
133
106
92
78
74
68
60
53
48
s;'1
511,5,2 = f (f)
Ie = 20 mA, VeE = 6 V, Zo = 50 Q
s;'2
MAG
ANG
MAG
ANG
0.02
0.05
0.07
0.09
0.12
0.14
0.17
0.21
0.22
70
65
67
68
69
68
66
65
64
0.79
0.56
0.48
0.45
0.44
0.43
0.43
0.42
0.40
-16
-27
-27
-25
-28
-30
-33
-39
-39
5,2, 5" = f (f)
Ie = 20 mA, VeE = 6V, Zo = 50 Q
90 0
o
180 0
-.i,?0
588
-90 0
Siemens
BFR 92P
10 V,
Za
Ic = 2 rnA,
VCE =
f
3"
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.92
0.81
0.69
0.48
0.42
0.36
0.30
0.28
0.27
- 14
- 43
- 65
- 95
-111
-125
-146
-170
175
6.46
5.28
4.54
3.35
2.87
2.45
2.07
1.81
1.68
161
140
122
99
90
83
71
62
56
0.03
0.07
0.10
0.12
0.14
0.15
0.16
0.18
0.19
80
66
57
49
48
47
49
50
52
0.98
0.90
0.80
0.68
0.64
0.61
0.58
0.56
0.54
- 6
-19
-27
-33
-35
-38
-40
-45
-46
=
50
Q
~,
~2
3 '2
5 ,2 .5" =f(f}
5". Sz:, = f (f)
Ie = 2 rnA, VeE = 10V, Zo = 50 n
Ie = 2 rnA, VeE = 10V, Zo = 50 n
90 0
+j50
o
180 0
- j50
-90 0
Siemens
589
BFR92P
Ic = 5 rnA, VCE = 10 V,
Zo = 50 n
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.83
0.65
0.49
0.31
0.27
0.24
0.21
0.21
0.22
- 19
- 57
- 84
-112
-129
-144
-167
170
155
12.74
8.56
6.35
4.29
3.53
2.97
2.45
2.13
1.96
152
125
107
89
82
0.03
0.06
0.08
0.10
0.13
0.14
0.16
0.19
0.21
78
63
58
55
57
57
58
58
58
0.95
0.80
0.67
0.56
0.54
0.51
0.50
0.48
0.47
-9
-25
-31
-33
-35
-36
-38
-43
-43
&.11
77
67
59
54
&.12
~2. $,1 =f (f)
Ie = 5 rnA, VeE = 10Y, 2Q = 500
5 11 • $,2 = f (f)
Ie = 5 rnA, VeE = 10V, 2Q = 500
90 0
o
-j50
590
-90 0
Siemens
BFR 92P
Ic
=
10 rnA,
VCE =
10 V. Zo
=
50
Q
~1
~2
f
$11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.75
0.52
0.37
0.23
0.21
0.20
0.18
0.19
0.20
- 28
- 71
- 99
-129
-146
-163
177
157
143
18.20
10.23
7.00
4.57
3.72
3.11
2.56
2.19
2.03
142
114
99
84
78
74
64
57
53
0.02
0.05
0.07
0.09
0.12
0.13
0.16
0.19
0.21
74
63
63
63
65
65
64
63
62
0.88
0.67
0.56
0.50
0.48
0.47
0.46
0.46
0.44
-13
-27
-29
-28
-29
-31
-34
-39
-39
$12
s,,, s". = f (f)
Ic=10mA, VcE=10v,Zo=50n
S,2, 50, = f (f)
Ic = 10mA, VCE = 10V, Zo = 50 n
90 0
o
180 0
-j50
-90 0
Siemens
591
BFR92P
Ic = 15 rnA, VCE = 10 V, Zo = 50
n
GHz
511
MAG
ANG
5.!,
MAG
ANG
5'2
MAG
ANG
5.!2
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.64
0.38
0.28
0.19
0.19
0.19
0.19
0.21
0.22
- 37
- 87
-117
-151
-166
180
162
145
134
19.16
10.29
7.00
4.49
3.65
3.09
2.53
2.15
2.01
140
112
96
81
76
71
62
55
51
0.02
0.04
0.06
0.09
0.11
0.13
0.16
0.19
0.21
72
64
66
67
68
67
66
65
64
0.85
0.63
0.53
0.49
0.49
0.47
0.47
0.47
0.45
-14
-26
-26
-25
-27
-29
-32
-37
-38
f
=
5,2. 5", f (f)
Ie = 15 mA, VeE = 10V, Zo = 50n
5". ~ =f (f)
Ie = 15 mA, VeE = 10V, Zo= 50n
90 0
~--r--~
2GHz
o
-j50
592
-90 0
Siemens
BFR92P
Ic = 20 rnA,
VCE =
10 V,
Zo =
50
n
~1
~2
f
S11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.58
0.34
0.27
0.20
0.20
0.21
0.21
0.23
0.25
- 45
- 98
-129
-163
-176
173
156
140
131
20.30
10.12
6.72
4.32
3.47
2.93
2.41
2.05
1.92
135
108
94
79
74
69
60
53
49
0.02
0.04
0.06
0.09
0.11
0.13
0.16
0.19
0.21
71
65
68
69
70
69
68
67
65
0.82
0.61
0.54
0.49
0.50
0.50
0.49
0.49
0.47
-14
-23
-23
-49
-25
-27
-30
-36
-37
S12
5,1, s.", = f (f)
Ic = 20 rnA. VCE = 10V, Zo = 50n
5,2, 5;,1 = f (f)
Ic =20 rnA. VCE = 10V, Zo = 50 n
90 0
-j50
- 90 0
Siemens
593
NPN Silicon RF Transistor
BFR93A
• For low-distortion broadband amplifiers and oscillators
up to 2 GHz at operating currents from 5 to 30 mA.
€ CECC-type available: CECC 50002/256.
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFR93A
R2
Q 62702 - F1 086
SOT-23
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
12
V
Collector-base voltage
VCBO
15
V
Emitter-base voltage
VEBO
2
V
Collector current
Ic
50
mA
Total power dissipation, TA:S 25 OC2)
Ptat
280
mW
Junction temperature
1j
150
Ambient temperature range
TA
-65 ... +150
Storage temperature range
Tstg
-65 ... +150
°c
°c
°c
Thermal Resistance
I
Junction - ambient 1)
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
594
Siemens
RthJA
I:s450
IKIW
BFR 93A
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
\.I(BR)CEO
12
-
-
V
Collector-base cutoff current
VeB = 5 \I, IE = 0
ICBO
-
-
50
nA
Emitter-base cutoff current
lEBO
-
-
10
~
hFE
40
90
-
-
VeEsat
-
0.13
0.4
V
Collector-emitter breakdown voltage
Ie=1 mA,IB=O
VEB=2\1,Ie=0
DC current gain
Ie = 30 mA, VeE = 5 V
Collector-emitter saturation voltage
Ie = 50 mA, IB = 5 mA
Siemens
595
BFR93A
AC characteristics
Symbol
Parameter
Values
Unit
min
typ
max
Transition frequency
Ic = 30 rnA, VCE = 5 V, f= 200 MHz
fr
-
5.5
-
GHz
Collector-base capacitance
VCB = 5 V, VBE = Vbe = 0, f= 1 MHz
Ceb
-
0.55
-
pF
Collector-emitter capacitance
VCE = 5 V, VBE = vbe = 0, f= 1 MHz
Gee
-
0.28
-
pF
Input capacitance
VEB = 0.5 V, Ic = ic = 0, f= 1 MHz
C,bO
-
2.1
-
pF
Output capacitance
VcE =10V, VBE = Vbe=O, f=1 MHz
Cobs
-
0.8
-
pF
Noise figure
Ic= 5 rnA, VcE =8V, f= 10MHz,Zs=50n
Ic= 5 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt
Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt
F
-
1.1
1.7
2.6
-
Power gain
Ic = 30 rnA, VCE = 8 V, f= 800 MHz,
Zs = ZSOph ZL = ZLopt
Gpe
-
13.5
-
dB
Transducer gain
Ic = 30 rnA, VCE = 8 V, f= 1 GHz, Zo = 50n
1~1e12
-
11.5
-
dB
Linear output voltage
two-tone intermodulation test
Ic= 30 rnA, VCE = 8 V, diM = 60 dB
f1 = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 n
V o1
-
280
-
mV
Third order intercept point
Ic = 30 rnA, V CE = 8 V, f= 800 MHz
IP3
-
32
-
dBm
596
Siemens
dB
=
V o2
BFR93A
Total power dissipation p.o. = f (T,J
Transition frequency
Package mounted on alumina
VeE
~ot
./
300
/
1"-
200
"-
2
100
'\
o
V
f..-
-
I--
/
/
1,\
'\
o
= f (Ic)
GHz
6
rnW
400
t
fT
= 5 V, f= 200 MHz
50
100
'\.
150
o
0[
-TA
/
I
o
10
20
40
30
-Ie
50 rnA
Collector-base capacitance Ceb = f (VCB)
VSE = Vbe = 0, f= 1 MHz
pF
1.0
\
'\..
.........
0.5
o
o
........
'-
r-
20 V
10
-li(B
Siemens
597
BFR93A
Common Emitter Noise Parameters
Ie = 4 rnA, VeE = 8 V, Zo = 50 Q
f
Fmin
Gp (Fmin)
GHz
dB
dB
0.01
0.8
-
Ie
=
30 rnA, VeE
=
8
V. Zo
r opt
MAG
lANG
(Zs= 150Q)
=
Fmin
GHz
dB
dB
MAG
0.01
0.8
2.0
2.6
-
(Zs = 100 Q)
0.13
1108
Topt
Gp (Fmin)
13.5
lANG
Noise figure F = f (Iel
VeE =8 V. f= 10 MHz
dB
3
F
t
1,; .....
Z. =50Q" ..... VV
~
"" .....
ZSopt
~
1'1-- /
\
o
o
1/
10
20
30 mA
-Ie
598
N
Fson
Q
-
dB
dB
-
-
1.1
-
RN
N
Fson
Gp (Fson)
Gp (Fson)
50 Q
f
,
RN
Siemens
Q
-
dB
dB
-
-
-
19.3
0.41
2.15
2.85
13
BFR93A
Circles of constant noise figure F= f (Zs)
inZs-pJane,lc=30mA, VCE=BV, f=BOOMHz
Noise figure F=f(leJi
VCE = B V, f= BOO MHz,.ZLopt (G)
dB
3
Zs=50Q
F
V
'Y vV
M
:;::v Zs·opt·
1
v;:::
"f:1--'
-j 50
o
o
10
20
30 rnA
-Ie
Noise figure F = f (Icl
VeE = B V, f= 2 GHz, ZLopt (G)
dB
6
Zs=5011~
F
1\
t
4
J..--~
I'.r-_
1\
Zs opt J..--I-
I\.
1-1-1-""
2
o
o
10
20
30 rnA
-Ie
Siemens
599
BFR93A
Common Emitter 5 Parameters
Ic = 5 rnA, VCE = 8 V, Zo = 50 Q
~,
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
8 '2
MAG
ANG
MAG
ANG
0.1
0.2
0.5
0.8
1.0
1.2
1.5
2.0
0.74
0.64
0.49
0.45
0.44
0.43
0.41
0.40
- 45
- 81
-132
-158
-169
-179
169
160
13.5
10.5
5.6
3.7
3.0
2.6
2.1
1.7
150
129
101
86
79
73
65
54
0.033
0.052
0.078
0.097
0.113
0.127
0.145
0.194
69
57
53
57
61
64
66
71
0.93
0.73
0.50
0.41
0.39
0.38
0.42
0.44
-21
-30
-56
-37
-39
-40
-45
-48
St2, 5:., = 1 (f)
St" 5:.2 =1 (f), Z-plane
Ic = 5 mA, VCE = 8 V. Zo = 50n
Ic = 5 mA,
VCE
= 8V, Zo=50n
90·
o
-j50
600
-90·
Siemens
BFR93A
Ic
=
30 rnA, VCE
=
8 V. Zo
=
50 Q
~1
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.1
0.2
0.5
0.8
1.0
1.2
1.5
2.0
0.38
0.37
0.36
0.36
0.35
0.34
0.31
0.30
-105
-138
-170
-178
177
173
157
152
27.6
16.5
7.2
4.6
3.8
3.2
2.6
2.1
125
107
90
80
75
71
65
55
0.021
0.032
0.066
0.101
0.125
0.147
0.169
0.228
64
66
73
74
73
72
70
69
0.69
0.41
0.26
0.21
0.20
0.20
0.23
0.28
-41
-44
-39
-32
-40
-41
-43
-46
s", 5.z:, = f (f), Z-plane
Ie = 30 mA, VeE = 8 V, Zo = 50 Q
S,2. 5", = f (f)
Ie = 30 mA, VeE
= 8 V, 2Q = 50 Q
90 0
+j50
o
-j50
-90 0
Siemens
601
BFR93P
NPN Silicon RF Transistor
• For low--distortion'broadband amplifiers up to 1 GHz at
collector currents from .2 to 30 mA.
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
·Marking
Ordering code
(tape and reel)
Package
BFR93P
GG
Q 62702-F1051
SOT-23
Maximum Ratings
Symbol
Value
Unit
Collector-emitterNoltage
VCEO
15
V
Collector-base voltage
Vcso
20
V
Emitter-base voltage
VESO
2.5
V
Collector current
Ic
50
mA
Base current
Is
10
mA
Parameter
Ptot
280
mW
Junction temperature
7j
150
°c
Ambient temperature range
TA
-65 ... +150
°c
Storage temperature range
Tstg
-65 ... +150
°c
Total power dissipation, TA :0;25
°C2)
Thermal Resistance
Junction - ambient1 )
RthJA
For detailed dimensions see chapter Package Outlines.
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
602
Siemens
I :0;450
K/W
BFR93P
Electrical Characteristics
at TA = 25 DC, unless otherwise specified.
DC characteristics
Parameter
Collector-emitter breakdown voltage
Symbol
\t(SR)CEO
Values
Unit
min
typ
max
15
-
-
-
-
0.05
10
V
Ic= 1 mA,Is=O
Collector-base cutoff current
lJA
Icso
Vcs=10\/,IE=0
Vcs = 20 \/, IE = 0
Emitter-base cutoff current
VES = 2.5 V, Ic = 0
I ESO
-
-
100
lJA
DC current gain
hFE
30
100
-
-
VCEsat
-
0.2
0.5
V
Ic = 25 mA, VCE = 5 V
Collector-emitter saturation voltage
Ic = 50 mA, 1s = 5 mA
Siemens
603
BFR 93P
AC characteristics
Symbol
Parameter
Values
typ
max
-
5
4.7
-
0.6
0.75
pF
min
Transition frequency
Ic = 30 rnA, VCE = 5 V, f= 200 MHz
Ic = 50 mA, VCE = 5 V, f= 200 MHz
Unit
GHz
fT
-
Collector-base capacitance
VcB =10V, VBE =Vbe=0,f=1 MHz
Geb
-
Collector-emitter capacitance
VCE = 10 V, VBE = Vbe = 0, f= 1 MHz
Gee
-
0.28
-
pF
Input capacitance
VEB =0.5V,Ic =ie =0, f=1 MHz
Gibo
-
2.1
-
pF
Output capacitance
VCE = 10 V, VBE = Vbe = 0, f = 1 MHz
Gobs
-
0.9
-
pF
Noise figure
Ic=10mA, VcE =8V,f= 10 MHz, Zs = 75 Q
Ic= 5 mA, VCE = 8 V, f= 500 MHz, Zs = Zsopt
Ic = 10 mA, VCE = 8 V, f= 800 MHz, Zs = 50 Q
F
-
-
Power gain
Ic = 25 rnA, VCE = 8 V, f= 800 MHz,
Zs = Zsopt, ZL = ZLopt
Gpe
-
1.7
1.9
2.4
13
-
dB
Transducer gain
Ic = 25 rnA, VCE = 8 V, f= 500 MHz, Zo = 50 Q
1~1e12
-
15.8
-
dB
Linear output voltage
two-tone intermodulation test
Ic = 25 rnA, VCE = 8 V, diM = 60 dB
f1 = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 Q
Vo1 = Vo2
-
240
-
mV
Third order intercept point
Ic = 25 rnA, VCE = 8 V, f= 800 MHz
IP3
-
30.5
-
dBm
604
Siemens
dB
-
BFR93P
Transition frequency fT = f (IcI
VCE = 5 V. f= 200 MHz
Total power dissipation p.o. = f (TAl
Package mounted on alumina
rnW
GHz
400
6
~ot
5
f
/
300
V
i'-
I
4
/
1'\
200
II
3
'\
........
I
I
100
'\
o
'\
o
50
100
150°C
o
o
10
20
30
40
50 rnA
-TA
Collector-base capacitance
VBE = vbe=0,f=1 MHz
Ccb =
f (VcBI
pF
1.5
1.0
\
\
\
"-
t'---
0.5
o
o
10
20 V
-Vca
Siemens
605
BFR 93P
Common Emitter Noise Parameters
Ie = 2 rnA, VeE = 8 V, Zo = SO 0.
f
Fmin
Gp (Fmin)
GHz
dB
dB
0.01
1.0
-
Ie = 10 rnA, VeE = 8 V,
MAG
lANG
Zo =
RN
N
Fson
Gp (Fson)
0.
-
dB
dB
1.6
-
-
(Zs= 1S0Q)
SO 0.
f
Fmin
Gp (Fmin)
GHz
dB
0.01
0.8
2.3
dB
-
1.S
T opt
Topt
MAG
lANG
(Zs =900.)
(Zs =Zsopt)
RN
N
Fson
Gp (Fsonl
0.
-
dB
-
-
2.4
dB
-
Noise figure F= f (Id
VCE = 8 V, f= BOO MHz, ZLopt (G)
Noise figure F = f (Zs)
VCE=BV,f=10MHz
dB
dB
4
1
1
Ic=30rnA 1/
F
r
/
3
4
1/
20/
V
/
F
/
/
1\
t
/
r-
/
,/
3
..-:V
10
",
r~~
~
2
.,
~I-"""
...
,...
r---
100
200
2
o
300Q
-Zs
606
Zs=50Q I--~:::;
.A:::: V
I--: "Zs opt I-~
I--f--
V
r-!-""'
I'
o
o
1.7
Siemens
o
10
20
-Ie
30 rnA
BFR93P
Common Emitter 5 Parameters
= 5 rnA, VCE = 8 V, ZO = 50 !l
Ic
f
8 11
8 12
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.74
0.51
0.40
0.32
0.31
0.31
0.31
0.32
0.33
0.35
- 34
- 92
-125
-157
-171
177
166
156
146
137
12.96
7.50
5.13
3.35
2.71
2.32
2.05
1.84
1.64
1.52
143
113
97
78
72
65
59
52
47
42
0.03
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
70
55
55
57
59
60
62
61
61
61
0.87
0.65
0.54
0.48
0.48
0.46
0.45
0.45
0.45
0.44
-14
-31
-33
-32
-35
-38
-41
-46
-49
-52
5.!1
5,10 ~ =f(f)
Ie =5 rnA, VeE =8 If, Zo= 500
5.!2
5,2. ~1 = f (f)
Ie =5 mAo VeE = 8 If, Zo = 50 0
90 0
o
n
o
180 0
-j50
-90 0
Siemens
607
BFR93P
VCE
= 8 V. Zo = 50 Q
GHz
8"
MAG
ANG
S:!,
MAG
ANG
8'2
MAG
ANG
S:!2
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.58
0.37
0.30
0.25
0.25
0.26
0.26
0.28
0.29
0.31
- 49
-108
-139
-170
180
169
160
151
142
133
18.73
9.17
5.92
3.85
3.09
2.63
2.33
2.07
1.84
1.72
133
105
90
76
70
64
58
52
48
43
0.03
0.05
0.07
0.10
0.13
0.15
0.17
0.20
0.22
0.24
68
60
63
65
65
64
64
62
61
60
0.77
0.53
0.45
0.41
0.40
0.39
0.38
0.38
0.38
0.36
-19
-32
-32
-31
-34
-37
-40
-44
-47
-49
Ic = 10 mA,
f
-,
5,1, 5z! = f If)
Ie = 10 rnA, VeE = 8 \I, 4> = 50 Q
5,2, 5.21 = f If)
Ie = 10 rnA, VeE = 8 \I, 20=50 Q
o
-j50
608
-90 0
Siemens
BFR93P
Ic = 20 rnA,
VCE =
8 V.
Zo =
f
~1
GHz
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.41
0.28
0.25
0.23
0.23
0.25
0.25
0.27
0.28
0.30
- 64
-123
-151
-179
172
164
155
147
139
131
50
n
~1
MAG
22.91
9.89
6.24
4.03
3.22
2.74
2.41
2.14
1.92
1.79
5 12
~2
ANG
MAG
ANG
123
98
86
74
69
63
57
51
47
42
0.02
0.05
0.07
0.11
0.13
0.16
0.18
0.20
0.23
0.25
67
66
68
68
68
66
66
63
61
60
MAG
ANG
0.67
0.46
0.40
0.37
0.37
0.35
0.35
0.35
0.35
0.33
-22
-30
-30
-28
-32
-35
-38
-43
-46
-48
=f (f)
~"Sa=f(f)
~2' S:z,
Ic = 20 mA, VCE=S V, Zo =500
Ic = 20 mA, VCE=SII, Zo= 500
90·
o
-jSO
-90·
Siemens
609
BFR 93P
Ic = 25 rnA,
VCE =
8 V.
Zo
= 50 Q
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.37
0.26
0.24
0.22
0.23
0.24
0.25
0.27
0.28
0.30
- 68
-127
-154
179
170
162
153
146
138
130
23.71
9.89
6.20
3.98
3.18
2.71
2.37
2.11
1.89
1.77
120
97
85
73
68
62
57
51
47
42
0.02
0.05
0.07
0.11
0.13
0.16
0.18
0.20
0.23
0.25
67
67
70
69
68
66
66
63
62
60
0.64
0.44
0.39
0.37
0.37
0.36
0.36
0.35
0.35
0.34
-22
-29
-28
-27
-31
-35
-37
-42
-46
-48
8 12
8..!1
8..!2
S,2, 5:>, = f (f)
Ie = 25 rnA, VeE = 8 V, Zo =50 n
S",~=f(f)
Ie = 25 rnA, VeE = 8 V, Zo = 50 n
o
-j50
610
-90 0
Siemens
BFR 106
NPN Silicon RF Transistor
• For low-noise, high-gain amplifiers
• For linearbrdadband amplifiers
• Special application: antenna amplifiers
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFR 106
R7
Q 62702 - F1219
SOT-23
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
15
V
Emitter-base voltage
VCEO
VCBO
VEBO
Collector current
Total power dissipation, TA :5 45 °C2 )
Collector-base voltage
20
V
3
V
Ic
100
mA
Ptot
350
mW
Junction temperature
Ii
150
°c
Ambient temperature range
TA
-65 ... +150
°c
Storage temperature range
Tstg
-65 ... +150
°c
Thermal Resistance
IR
Junction - ambient 1)
thJA
I :5300
IKIW
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
Siemens
611
BFR 106
Electrical Characteristics
at TA = 25 °C, unless otherwise specified.
DC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
Collector-emitter breakdown voltage
Ic=1 mA,Is=O
\l(SR)CEO
15
-
-
V
Collector-base cutoff current
Vcs = 10 V, IE = 0
Icso
-
-
100
nA
Emitter-base cutoff current
VEs=2V, Ic=0
I Eso
-
-
10
~
DC current gain
Ic= 5mA, VcE =6V
Ic=30mA, VcE =6V
hFE
25
25
90
-
Collector-emitter saturation voltage
Ic = 50 mA, Is = 5 mA
VCEsat
-
-
0.4
612
Siemens
V
BFR 106
AC characteristics
Symbol
Parameter
Values
Unit
min
typ
max
Transition frequency
Ic = 30 rnA, VCE = 6 V, f= 200 MHz
fT
-
3.7
-
GHz
Collector-base capacitance
Vcs=10V, VSE=Vbe=0,f=1 MHz
Ccb
-
1
-
pF
Collector-emitter capacitance
VCE = 10 V, VSE = Vbe = 0, f= 1 MHz
Cce
-
0.3
-
pF
Input capacitance
VEB = 0.5 V, Ie = ic = 0, f= 1 MHz
C,bo
-
4.5
-
pF
Output capacitance
VeE = 10 V, VSE = Vbe = 0, f= 1 MHz
Cobs
-
1.3
-
pF
Noise figure
Ie = 30 rnA, VeE = 6 V, f= 800 MHz, Zs = Zsopt
F
-
3.6
-
dB
Power gain
Gpe
-
11.5
-
dB
Vol = Vo2
-
250
-
mV
Ie = 30 rnA, VeE = 6 V, f= 800 MHz,
Zs = 50 n, ZL = ZLopt
Unear output voltage
two-tone intermodulation test
Ie =30 rnA, VeE = 6V,
= 60 dB
fl =806 MHz, f2 =810MHz,Zs=ZL=50n
"'M
Siemens
613
NPN Silicon RF Transistor
BFR 193
• For low-noise, high-gain amplifiers up to 2 GHz.
• For linear broadband amplifiers.
• fT = 8 GHz.
F= 1.2 dB at 800 MHz.
ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFR 193
RC
Q 62702- F1218
SOT-23
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
12
V
Collector-emitter voltage, VBE = 0
VCES
20
V
Collector-base voltage
VCBO
20
V
Emitter-base voltage
VEBO
2
V
Collector current
Ic
80
mA
Base current
IB
10
mA
Total power dissipation, TA ~ 50 °C2}
Ptot
400
mW
Junction temperature
7j
150
°c
Ambient temperature range
TA
Tstg
-65 ... +150
°c
-65 ... +150
°c
Storage temperature range
Thermal Resistance
I
Junction - ambient 1)
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
614
Siemens
RthJA
I ~250
IKIW
BFR 193
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
Collector-emitter breakdown voltage
Ic = 1 mA, IB = 0
V(BR)CEO
12
-
-
V
Collector-emitter cutoff current
VCE = 20 V, VBE = 0
ICES
-
-
100
I1A
Collector-base cutoff current
VCB = 10 V, IE = 0
IcBo
-
-
50
nA
Emitter-base cutoff current
VEB = 1 V, Ic = 0
lEBO
-
-
1
I1A
DC current gain
Ic= 5mA, VcE =8V
Ic=30mA, VcE =8V
hFE
-
90
100
-
Collector-emitter saturation voltage
Ic = 50 mA, IB = 5 mA
VCEsat
-
-
0.4
Siemens
V
615
BFR 193
AC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
-
3.S
7
-
Transition frequency
Ic= SmA, VCE = 8 V, f= 200 MHz
Ic = 30 rnA, VCE = 8 V, f= 200 MHz
fT
Collector-base capacitance
Vce = 10 V, VeE = vbe = 0, f= 1 MHz
Ccb
-
Collector-emitter capacitance
VcE =10V, VeE =Vbe=0,f=1 MHz
Cce
Input capacitance
VEe = O.S V, Ic = ic = 0, f= 1 MHz
GHz
0.66
-
pF
-
0.24
-
pF
C,bo
-
2.2
-
pF
Output capacitance
VCE = 10 V, VeE = Vbe = 0, f= 1 MHz
Cobs
-
0.9
-
pF
Noise figure
Ic= SmA, VcE =8V,f= 10MHz,Zs=7Sn
Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt
Ic =30 rnA, VCE = 8 V, f=
1 GHz,Zs=Son
F
0.8
1.7
2
-
Power gain
Ic = 30 rnA, VCE = 8 V, f= 800 MHz,
Zs = SO n, ZL = ZLOPt
Gpe
-
Transducer gain
Ic = 30 rnA, VCE = 8 V, f= 1 GHz, Zo = SO n
15.21e1 2
Linear output voltage
two-tone intermodulation test
Ic =40 rnA, VCE = S V, diM = 60 dB
fl = 806 MHz, f2 = 810 MHz, Zs = ZL = SO n
Third order intercept point
Ic = 40 rnA, VCE = S V, f= 800 MHz
616
dB
13.S
-
dB
-
11.S
-
dB
Vol = Vo2
-
2S0
-
IP3
-
31
-
Siemens
,
mV
dBm
BFR 193
Total power dissipation p.o. = f (T,J
Package mounted on alumina
Transition frequency
VeE = 8 V, f= 200 MHz
mW
500rT'-"-''-"-''-",,,,
fT
= f (Ie)
GHz
10
I I
VeE =8V l -
Ptot
I 400~4-~~+4~~~4-~~
,,-I---I ~ '/
I
4
'I
~V
V
.....
5V
3V
'"
/
II
50
150 0 [
100
10
20
30
40
50 rnA
~/r
Collector-base capacitance
VBE =vbe=0,f=1MHz
CCb
= f (VCB)
pF
1.0
\
"'-
-r-
0.5
10
20 V
Siemens
617
BFR 193
Common Emitter Noise Parameters
Ie = 10 rnA, VeE = 8 V, 4J = 50 Q
f
Fmin
Gp
GHz
dB
dB
0.01
0.8
2.0
1
1.25
2.4
-
Ie
= 30 rnA,
VeE
r opt
(Fmin)
MAG
lANG
-
N
FSOQ
Gp (Fson>
-
dB
dB
1.05
1.35
-
-
-
-
(Zs = 75 Q)
13.5
7
RN
Q
1=
= 8 V, Zo = 50 Q
f
Fmin
Gp
GHz
dB
dB
0.01
0.8
2.0
1.65
1.7
2.7
-
r opt
(Fmin)
MAG
(Zs
-
14.2
7.5
=
RN
N
FSOQ
Gp (Fson>
lANG
Q
-
dB
dB
50 Q)
-
-
1.65
1.95
-
-
-
1=
-
=
Noise figure F = f (Iel
Power gain G = f (Iel
VCE = B V, f= BOO MHz,
Noise figure F f (Iel
VcE=BV, f= 10 MHz
13.3
ZLopt
(G)
dB
dB
dB
3
4
W
/
Zs=1S0Q
F
/
2
7SQ
~
~--
-
o
o
/
F
/" "
/'" ...."
....
3
,.
1
2
,/
1
10
- - - - i....
Ie
--'-1 S
Zs= SOQ
--
1 'I -I
*'"
1
I
\
o
o
30mA
20
Zs opt (F)
- - -(j
/
~rsOQ
I
618
12.4
-
Zs=SOQ.... ;;>~
i-F
.....r--r
_-tTl
Zs opt
~
S
o
10
20
--_
.. Ie
Siemens
.... 1o
30mA
(j
1
BFR 193
Common Emitter Power Gain
Power gain Gms. 15,'e1 2 = 1 (Ie!
VeE = 8 V, f= 200 MHz, Zo = 50 n
Power gain Gms. 15,'e1 2 = 1 (Ie)
VeE = 8 V, f= 500 MHz, Zo = 50 n
dB
dB
30
30
I.
6 ms
/
,/
"-!""z
15 21,1
V
10
-
-
6 ms
15 21,1 2
10
5Z1 , 1
s;:-
6 ms = 1
I
o
o
10
20
6ms =1521
51Z,' 1
40
30
SOmA
a
a
10
I I
1
20
30
---1,,-'
Power gain Gma• Gms• 15,'eI2 =1(Ie!
VeE = 8 V, f= 800 MHz, Zo = 50 n
40
SOmA
Ie
Power gain Gma• 15,'e1 2 =1 (Ie!
VeE = 8 V, f= 1.5 GHz, Zo = 50 n
dB
20
20
I
6 ms
!
6 mu
/~
r-
15z1,1 2
6 mu
10
10
1521 ,1 2
/
-
-
o
o
-1
5 Z1'1
-
/KC1
lOla -I 51r :K- K 1
6
10
20
I
I
ms- -521
- G _1 512 '1
,
I-I 1- )1-
30
40
SOmA
a
a
I
6 ma = 1521 '1 IK-hZ-1)
1 '[ 512 , 1 1 1
10
20
30
-
4iJ
I--
SOmA
-Fc
- - - I. .
Siemens
619
BFR 193
Power gain Gma• Gms.I5,'eI 2 =f(f)
Ie = 5 rnA, VeE = 8 V, Zo = 50 n
Power gain Gma• Gmso 15,'e1 2 = f (f)
Ie = 10 rnA, VeE = 8 V, Zo= son
dB
dB
30
30
"-
"
~
r-...."
.........
"-"
6 ms
"-
"
-
~ma r-10
'\.
f- 6 ms = 1521 .1
512•
I- 6 ma '" 1521 .1 (K-fk2=1,
I1 5,2 • I ·1 I 1111
o
"'
"
0.5
.. f
\.
\
I5521 .1
= I~~~:I ~K,~,2111
6 ms =
"
2
1\ 6 ma f-'\
'\' 6 ms
.'\ '\
10
6 ms
6 ma
o
l\.
12 •
2
0.5
0.1
3 GHz
3 GHz
.. f
Power gain Gma• Gms• 15,'e1 2 =f (f)
Ie = 40 rnA, VeE = 8 V, ZO =50 n
Power gain Gma• Gms• 15,'e1 2 = f (f)
Ie =20 rnA, VeE = 8 V, Zo= son
dB
dB
30 :::--...
30
'\."\
6 ms
\ 1\
1521.1 2 \
-
"-
1----1521.12
0.1
"-
'\
6 ma
1'\.'\
'\
6 ms
\ '\
1521.1 2
1
'\ 6ms
,\\
20
r-- 1521.1~ \
6ma
\.
""
10
'\"
6ms
.'\
6ms = 155,2•
~
.
I
t-- 6ma = 1521 .1 (K_II<-2_1l- ~
r-oI - I 151~. 111111f--
0.1
0.5
2
.. f
620
Siemens
3GHz
BFR 193
Common Emitter S Parameters
Ic = 10 mA, VCE = 3 V, Zo = 50 Q
~1
~2
f
S11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.594
0.530
0.484
0.451
0.431
0.409
0.397
0.388
0.386
0.388
0.390
0.392
0.400
0.399
0.398
0.401
0.405
0.420
0.461
0.473
- 64.8
- 87.0
-103.6
-116.9
-127.0
-142.4
-153.2
-161.6
-168.7
-174.1
-179.3
176.2
167.6
159.6
156.0
153.3
147.6
143.1
131.3
120.0
20.60
16.80
13.87
11.67
10.04
7.80
6.38
5.38
4.66
4.13
3.70
3.35
2.83
2.47
2.33
2.20
1.99
1.82
1.53
1.34
137.8
125.1
116.4
109.8
104.9
97.5
91.9
87.3
83.4
79.7
76.4
73.3
67.9
62.7
60.2
57.7
52.8
48.6
39.0
30.0
0.031
0.039
0.046
0.051
0.056
0.066
0.077
0.087
0.098
0.109
0.120
0.132
0.155
0.179
0.191
0.203
0.228
0.252
0.313
0.376
64.3
59.3
57.5
57.1
57.5
59.4
61.2
62.7
63.8
64.5
65.1
65.4
65.5
65.2
64.8
64.4
63.1
61.6
57.9
53.0
0.770
0.643
0.547
0.478
0.428
0.363
0.326
0.302
0.285
0.275
0.264
0.256
0.241
0.235
0.236
0.236
0.234
0.225
0.206
0.208
- 31.2
- 38.6
- 42.7
- 44.9
- 45.8
- 46.2
- 46.3
- 46.3
- 46.7
- 47.2
- 48.0
- 48.8
- 50.9
- 53.7
- 55.6
- 57.8
- 62.7
- 68.2
- 85.0
-100.0
S12
Siemens
621
BFR 193
Ic = 30 rnA, VCE = 3 V, Zo = 50
Q
~1
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.375
0.355
0.346
0.340
0.338
0.338
0.336
0.334
0.336
0.338
0.344
0.347
0.358
0.359
0.359
0.361
0.362
0.380
0.419
0.431
-101.9
-124.1
-138.3
-148.1
-155.1
-165.5
-172.6
-178.1
177.0
173.5
169.7
166.4
159.7
152.7
149.4
147.5
142.8
139.3
128.7
118.8
29.20
21.58
16.90
13.80
11.65
8.88
7.19
6.03
5.20
4.60
4.11
3.71
3.13
2.73
2.57
2.43
2.20
2.01
1.68
1.47
122.8
111.8
105.0
100.3
96.7
91.3
87.2
83.6
80.4
77.3
74.6
72.0
67.2
62.5
60.2
58.0
53.5
49.5
40.5
31.6
0.023
0.030
0.036
0.043
0.049
0.063
0.077
0.091
0.104
0.118
0.132
0.146
0.173
0.200
0.213
0.227
0.253
0.278
0.340
0.398
65.8
66.1
67.9
69.3
70.5
72.0
72.7
72.8
72.5
72.1
71.5
70.7
69.1
67.2
66.3
65.2
62.9
60.6
55.1
49.3
0.564
0.429
0.348
0.297
0.261
0.219
0.196
0.182
0.172
0.166
0.159
0.153
0.141
0.136
0.138
0.139
0.138
0.131
0.117
0.125
- 46.0
- 51.8
- 54.0
- 54.8
- 54.6
- 53.8
- 53.3
- 53.1
- 53.7
- 54.6
- 55.6
- 56.9
- 59.5
- 62.5
- 64.8
- 67.5
- 74.1
- 81.9
-105.4
-122.4
622
8 12
Siemens
BFR 193
Ic
= 5 mA,
VCE
= 5 V, Zo = 50 n
f
$11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.762
0.698
0.643
0.597
0.560
0.515
0.485
0.470
0.460
0.456
0.454
0.454
0.458
0.461
0.458
0.461
0.466
0.479
0.519
0.539
- 45.7
- 64.3
- 80.1
- 93.2
-104.4
-122.1
-135.6
-146.3
-155.3
-162.4
-169.4
-175.5
174.0
164.5
160.4
156.9
149.9
143.8
129.6
117.5
13.63
12.06
10.57
9.26
8.18
6.56
5.44
4.65
4.06
3.60
3.24
2.94
2.50
2.18
2.05
1.95
1.77
1.62
1.35
1.18
148.8
136.9
127.4
119.9
113.8
104.5
97.5
91.7
86.8
82.5
78.4
74.7
68.2
62.4
59.7
56.9
51.8
46.9
36.9
27.5
0.036
0.048
0.056
0.063
0.068
0.076
0.083
0.090
0.097
0.104
0.112
0.120
0.137
0.155
0.166
0.176
0.199
0.221
0.284
0.353
68.4
61.1
56.1
53.0
51.1
49.6
50.0
51.3
52.7
54.1
55.6
57.0
59.4
61.1
61.9
62.3
62.7
62.4
61.0
57.1
0.885
0.798
0.716
0.649
0.594
0.516
0.468
0.436
0.415
0.399
0.386
0.375
0.360
0.351
0.350
0.351
0.349
0.341
0.320
0.324
~20.5
$12
5.<1
5.<2
-27.3
-32.0
-35.1
-37.0
-39.0
-40.0
-40.7
-41.4
-42.0
-43.0
-43.9
-46.3
-49.4
-51.1
-53.1
-57.4
-62.4
-77.1
-91.7
5,2, 5.>, =f If)
Ie = 5 rnA, VeE = 5 V. Zo = 50 n
5", Sz. =f If}
Ie = 5 rnA, VeE = 5 V. Zo =50 n
900
+j50
o
-j50
-90 0
Siemens
623
BFR 193
Ic = 10 rnA,
VCE
= 5 V. Zo = 50 n
~2
5 12
~1
f
5.1
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40'
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.620
0.547
0.497
0.459
0.434
0.407
0.390
0.384
0.379
0.379
0.382
0.385
0.391
0.393
0.392
0.395
0.402
0.415
0.457
0.477
- 61.0
- 82.5
- 99.3
-112.3
-122.8
-138.9
-150.4
-159.4
-166.9
-172.8
-178.6
176.2
167.2
158.5
154.9
152.0
145.9
140.9
128.0
117.6
20.54
16.91
14.07
11.90
10.25
7.99
6.53
5.52
4.79
4.23
3.79
3.44
2.91
2.53
2.38
2.26
2.05
1.87
1.56
1.37
139.2
126.6
117.6
111.0
105.9
98.3
92.6
87.9
83.9
80.2
76.7
73.5
67.9
62.7
60.2
57.6
52.9
48.4
38.6
29.3
0.031
0.040
0.046
0.051
0.057
0.066
0.076
0.087
0.098
0.109
0.120
0.131
0.154
0.177
0.189
0.201
0.226
0.249
0.310
·0.370
65.2
60.0
57.7
57.0
57.3
58.8
60.5
62.0
63.1
63.7
64.4
64.7
64.7
64.4
64.1
63.6
62.3
60.8
57.0
52.1
0.787
0.664
0.568
0.498
0.446
0.379
0.339
0.315
0.299
0.286
0.276
0.267
0.253
0.245
0.246
0.246
0.244
0.236
0.213
0.217
-29.7
-37.2
-41.4
-43.6
-44.7
-45.4
-45.4
-45.4
-45.7
-46.1
-46.8
-47.4
-49.5
-52.3
-53.9
-55.9
-60.5
-65.8
-81.2
-96.3
8", s..:. =f (f)
8,2' 8.2, =f (f)
Ic =10 rnA, VCE = SV; Zo=son
Ic =10 rnA, VCE =S V; Zo= son
o
-j50
624
-900
Siemens
BFR 193
Ic = 30 rnA,
VCE
= 5 V.
zo = 50 n
f
8"
GHz
MAG
ANG
8;;,
MAG
ANG
MAG
ANG
8;;2
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.403
0.363
0.346
0.335
0.327
0.324
0.319
0.320
0.321
0.323
0.327
0.332
0.340
0.346
0.344
0.347
0.351
0.367
0.408
0.431
- 93.0
-115.9
-131.4
-142.0
-150.2
-161.7
-169.8
-176.2
178.8
174.5
170.2
166.2
158.8
151.3
148.5
146.0
141.1
137.1
125.9
116.6
29.73
22.16
17.44
14.29
12.07
9.21
7.44
6.25
5.40
4.76
4.25
3.85
3.25
2.83
2.66
2.52
2.28
2.08
1.74
1.52
124.4
113.1
106.0
101.2
97.5
92.0
87.7
84.1
80.8
77.8
74.9
72.2
67.3
62.6
60.4
58.1
53.7
49.4
40.4
31.1
0.023
0.030
0.036
0.043
0.049
0.063
0.076
0.090
0.104
0.117
0.131
0.144
0.171
0.197
0.211
0.224
0.250
0.275
0.335
0.392
65.7
65.3
66.8
68.3
69.5
70.9
71.7
72.0
71.8
71.3
70.7
70.0
68.4
66.5
65.6
64.4
62.1
59.8
54.3
48.5
0.588
0.452
0.368
0.314
0.277
0.232
0.208
0.194
0.184
0.176
0.170
0.163
0.152
0.145
0.147
0.148
0.147
0.140
0.120
0.129
- 44.1
- 50.1
- 52.4
- 53.1
- 53.0
- 52.1
- 51.4
- 51.2
- 51.6
- 52.1
- 53.0
- 53.9
- 56.4
- 59.5
- 61.2
- 63.6
- 69.5
- 77.0
- 98.2
-115.6
8 '2
=
s", s", = f (f)
Ie = 30 rnA, VeE = 5 V, Zo = 50 n
S,2' s", f (f)
Ie = 30 rnA, VeE = 5 V, Zo = 50 n
o
-j 50
-90 0
Siemens
625
BFR 193
Ic = 50 rnA,
VCE
= 5 V,
Zo = 50 Q
512
f
~1
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.358
0.337
0.330
0.325
0.322
0.322
0.318
0.321
0.322
0.325
0.330
0.335
0.344
0.348
0.346
0.349
0.355
0.368
0.411
0.432
-106.3
-128.1
-141.8
-151.1
-158.2
-167.9
-174.8
179.8
175.0
171.4
167.4
163.9
156.8
149.6
146.7
144.6
140.0
135.9
125.0
116.2
31.26
22.75
17.72
14.43
12.16
9.25
7.46
6.25
5.40
4.76
4.25
3.84
3.24
2.82
2.65
2.51
2.27
2.08
1.73
1.52
120.1
109.7
103.3
98.9
95.5
90.5
86.4
83.0
79.9
77.0
74.2
71.5
66.8
62.1
59.9
57.6
53.3
49.1
40.0
31.0
0.022
0.028
0.035
0.042
0.049
0.063
0.077
0.091
0.106
0.120
0.134
0.148
0.175
0.202
0.216
0.230
0.256
0.281
0.341
0.398
66.9
67.9
69.9
71.4
72.4
73.5
73.7
73.7
73.2
72.4
71.7
70.8
68.9
66.8
65.7
64.4
62.0
59.5
53.8
47.7
0.518
0.390
0.314
0.268
0.236
0.198
0.178
0.166
0.158
0.152
0.146
0.140
0.130
0.124
0.125
0.127
0.128
0.121
0.105
0.117
- 48.1
- 53.3
- 54.9
- 55.2
- 54.8
- 53.8
- 53.0
- 52.9
- 53.6
- 54.2
- 55.4
- 56.6
- 59.5
- 63.0
- 64.8
- 67.4
- 73.9
- 82.5
-107.0
-124.8
5.11
$", Sn =f (f)
Ic =50 mA, VCE = 5 V. Zo= 50n
5.12
$,2' ~, =f (f)
I c =50mA, VcE =5V,Zo=50n
+j50
o
-j50
626
-90 0
Siemens
BFR 193
Ic = 5 mA,
VCE
= 8 V, Zo = 50 Q
~,
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
8 '2
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.774
0.709
0.652
0.602
0.565
0.515
0.482
0.465
0.454
0.448
0.447
0.447
0.449
0.450
0.448
0.453
0.458
0.468
0.512
0.529
- 44.4
- 62.6
- 78.1
- 91.0
-102.0
-119.9
-133.3
-144.3
-153.5
-160.9
-167.9
-174.3
175.0
165.4
161.3
157.5
150.5
144.4
130.1
117.9
13.63
12.11
10.64
9.35
8.26
6.65
5.52
4.72
4.12
3.66
3.29
2.99
2.54
2.22
2.08
1.98
1.80
1.64
1.37
1.20
149.3
137.5
128.1
120.6
114.5
105.1
98.0
92.3
87.4
83.0
78.9
75.2
68.7
62.9
60.2
57.4
52.3
47.4
37.3
28.0
0.035
0.047
0.056
0.062
0.067
0.075
0.082
0.089
0.096
0.103
0.111
0.119
0.135
0.154
0.164
0.174
0.196
0.219
0.281
0.348
68.7
61.5
56.6
53.3
51.3
49.9
50.1
51.3
52.8
54.1
55.6
57.0
59.3
61.0
61.9
62.3
62.8
62.5
61.2
57.5
0.889
0.804
0.724
0.657
0.602
0.525
0.476
0.444
0.422
0.407
0.394
0.382
0.367
0.358
0.357
0.357
0.356
0.347
0.326
0.329
-20.0
-26.7
-31.3
-34.4
-36.3
-38.4
-39.4
-40.0
-40.7
-41.3
-42.2
-43.0
-45.3
-48.3
-50.0
-51.8
-56.1
-60.9
-75.2
-89.5
5,2. S:!, = f If)
Tc = 5 rnA, VCE = 8 V, Zo= 50n
5",5.z:,=flf)
Ic = 5 rnA, VCE = 8 V, Zo = 50 n
+j50
900
o
-j50
-90 0
Siemens
627
BFR 193
Ic = 10 rnA,
VCE
= 8 V, Zo = 50 n
f
811
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.642
0.564
0.507
0.466
0.437
0.405
0.384
0.375
0.371
0.369
0.371
0.372
0.378
0.383
0.381
0.385
0.390
0.404
0.446
0.466
- 58.2
- 79.1
- 95.6
-108.4
-119.1
-135.6
-147.3
-156.9
-164.5
-170.7
-176.8
177.7
168.5
159.6
156.1
152.9
146.8
141.7
128.8
117.9
20.47
16.98
14.19
12.03
10.39
8.11
6.63
5.61
4.87
4.30
3.86
3.50
2.96
2.58
2.42
2.30
2.08
1.90
1.59
1.39
140.2
127.6
118.5
111.9
106.7
99.0
93.2
88.5
84.4
80.7
77.3
74.0
68.4
63.2
60.7
58.2
53.5
48.9
39.1
29.8
0.031
0.040
0.046
0.052
0.057
0.066
0.076
0.087
0.097
0.108
0.119
0.130
0.152
0.175
0.187
0.199
0.223
0.246
0.306
0.366
65.6
60.3
57.9
57.1
57.3
58.5
60.1
61.7
62.8
63.5
64.0
64.4
64.6
64.2
63.9
63.4
62.3
60.8
57.1
52.4
0.796
0.676
0.580
0.510
0.457
0.389
0.349
0.324
0.307
0.295
0.284
0.275
0.261
0.252
0.252
0.253
0.251
0.242
0.218
0.220
-28.8
-36.2
-40.4
-42.7
-43.8
-44.5
-44.6
-44.5
-44.8
-45.2
-45.8
-46.5
-48.4
-51.0
-52.6
-54.4
-58.9
--64.0
-78.8
-93.4
S:!,
S:!2
8'2
5,2,50, = f (f)
Ic = 10 mA, VCE = 8 I/, Zo = 50 n
5 11 , Sz, = f (f)
Ic=10mA, VCE=8I/,Zo=50n
90 0
-j50
628
Siemens
BFR 193
Ic = 20 rnA, VCE = 8 V, Zo = 50
Q
~,
~2
f
8 11
8 '2
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.491
0.426
0.386
0.358
0.343
0.329
0.321
0.314
0.314
0.316
0.320
0.322
0.330
0.330
0.330
0.333
0.336
0.353
0.394
0.408
- 75.9
- 98.2
-114.3
-126.7
-136.0
-149.9
-159.5
-167.1
-173.5
-178.2
176.9
173.0
165.1
157.0
153.6
151.2
146.0
142.4
130.9
120.7
27.10
20.95
16.78
13.87
11.79
9.06
7.35
6.18
5.34
4.72
4.22
3.82
3.22
2.81
2.64
2.50
2.26
2.06
1.73
1.51
130.2
118.2
110.4
104.8
100.7
94.4
89.8
85.9
82.5
79.3
76.4
73.6
68.7
64.0
61.7
59.4
55.0
50.9
41.6
32.9
0.026
0.033
0.039
0.045
0.051
0.063
0.075
0.088
0.100
0.113
0.126
0.139
0.164
0.189
0.202
0.215
0.241
0.265
0.324
0.382
64.7
62.5
63.0
64.0
65.2
67.3
68.5
69.3
69.6
69.5
69.3
69.0
67.9
66.5
65.8
65.0
63.0
61.0
56.2
50.8
0.669
0.531
0.440
0.379
0.336
0.284
0.255
0.237
0.224
0.215
0.206
0.199
0.186
0.180
0.181
0.181
0.179
0.170
0.147
0.149
- 38.2
- 44.9
- 47.8
- 49.1
- 49.3
- 48.6
- 48.1
- 47.7
- 47.9
- 48.5
- 49.1
- 49.9
- 51.6
- 53.9
- 55.9
- 58.2
- 63.5
- 69.4
- 87.5
-102.8
5,2, ~, = f (f)
Ic =20 rnA, VCE = 8 V, Zo = 50 n
S",~=f(f)
Ic =20 rnA, VCE = 8 V, Zo = 50 n
+j50
-j50
-90 0
Siemens
629
BFR 193
Ic
=
40 rnA, VCE
=
8 V, Zo
=
50
n
~1
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
8 12
MAG
ANG
MAG
ANG
0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00
0.395
0.351
0.327
0.313
0.306
0.300
0.297
0.293
0.295
0.296
0.302
0.306
0.314
0.318
0.315
0.317
0.321
0.337
0.378
0.392
- 92.9
-115.2
-130.1
-141.2
-149.0
-160.6
-168.5
-174.7
179.9
176.0
172.1
168.5
161.3
153.8
150.5
148.7
143.9
140.9
129.8
120.2
31.23
23.03
18.02
14.70
12.41
9.46
7.65
6.42
5.54
4.89
4.37
3.95
3.33
2.90
2.73
2.58
2.33
2.13
1.78
1.56
122.5
111.6
105.0
100.3
96.8
91.6
87.5
84.1
81.0
78.1
75.3
72.8
68.3
63.7
61.5
59.3
54.9
51.0
42.0
33.3
0.023
0.029
0.036
0.042
0.049
0.062
0.076
0.090
0.104
0.117
0.131
0.145
0.172
0.198
0.211
0.225
0.251
0.275
0.335
0.392
65.6
66.2
68.1
69.6
70.6
72.3
72.7
72.9
72.6
72.1
71.4
70.8
69.1
67.2
66.2
65.2
62.9
60.6
55.2
49.4
0.553
0.422
0.343
0.293
0.259
0.219
0.198
0.184
0.175
0.169
0.161
0.155
0.143
0.139
0.140
0.141
0.139
0.131
0.112
0.117
- 45.3
- 50.5
- 52.3
- 52.7
- 52.2
- 50.9
- 50.1
- 49.7
- 50.1
- 50.9
- 51.7
- 52.8
- 54.8
- 57.5
- 59.6
- 62.3
- 68.5
- 75.8
- 98.3
-115.1
S.2, 5..1 = f (f)
Ic=40rnA, VCE=8\1,Zo=50n
$11' 5..2 = f (f)
Ic =40 rnA, VCE=8V, Zo= 50n
+j
90 0
50
o
-j50
630
Siemens
NPN Silicon RF Transistor
BFS 17P
• For broadband amplifiers up to 1 GHz at collector
currents from 1 to 20 mA.
€ CECC-type available: CECC 50002/262.
ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFS 17P
MC
Q 62702 - F940
SOT-23
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
Collector-base voltage
Value
Unit
VCEO
15
V
VCBO
25
V
Emitter-base voltage
VEBO
2.5
V
Collector current
Ic
25
mA
mA
Peak collector current,
10 MHz
ICM
50
Total power dissipation, TA:s 25 °C 2)
Ptot
280
mW
Junction temperature
°C
fO?
7j
150
Ambient temperature range
TA
-65 ... +150
°C
Storage temperature range
Tstg
-65 ... +150
°C
Thermal Resistance
IR
Junction - ambient 1)
thJA
I :s450
IKIW
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
Siemens
631
BFS 17P
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Collector-emitter breakdown voltage
Values
Symbol
\t(BR)CEO
Unit
min
typ
max
15
-
-
-
-
0.05
10
-
100
20
20
-
150
70
-
-
0.1
0.4
V
Ic=1 mA,IB=O
Collector-base cutoff current
VcB =15V,IE=0
VCB = 25 V, h = 0
ICBo
Emitter-base cutoff current
VEB = 2.5 V, Ic = 0
lEBO
DC current gain
fl.,E
lc= 2 mA, VCE = 1 V,
Ic=25mA, VCE=1 V
Collector-emitter saturation voltage
Ic=10mA,IB=1 mA
632
VCEsat
Siemens
I!A
I!A
-
V
BFS 17P
AC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
1
1.3
1.4
2.5
-
Transition frequency
Ic= 2 rnA, VCE = 5 V, f= 200 MHz
Ic = 25 rnA, VCE = 5 V, f= 200 MHz
fT
Collector-base capacitance
Vce = 5 V, VeE = vbe = 0, f= 1 MHz
G eb
-
0.55
0.8
pF
Collector-emitter capacitance
VcE =5V, VeE = Vbe=O, f=1 MHz
Gee
-
0.28
-
pF
Input capacitance
VEe = 0.5 V, Ic = ie = 0, f= 1.MHz
Gibo
-
1.2
-
pF
Output capacitance
VcE =10V, VeE = Vbe = O,f= 1 MHz
Gobs
-
-
1.5
pF
Noise figure
Ic = 2 rnA, VCE = 5 V, f= 800 MHz, Zs = 50n
F
-
3.5
5
dB
Transducer gain
Ic = 20 rnA, VCE = 5 V, f= 500 MHz, Zo = 50n
1~1e12
-
12.7
-
dB
Linear output voltage
two-tone intermodulation test
Ic = 14 rnA, VCE = 5 V, diM = 60 dB
f, = 806 MHz, f2 = 810 MHz, Zs =ZL = 50 n
Vo1 = Vo2
-
100
-
mV
Third order intercept point
Ic = 14 rnA, VCE = 5 V, f= 800 MHz
IP3
-
23
-
dBm
Siemens
GHz
-
633
BFS 17P
Total power dissipation Ptot = f (TAl
Package mounted on alumina
Transition frequency fT
VCE ~ 5 V, t~ 200 MHz
GHz
rnW
400
3
Prot
r
=f (Icl
f
300
,...
V
2
/
1"\
"
200
I\.
r\.
I
100
"
o
+o
100
50
~"150
o
0(
-~
Collector-base capacitance
VBE~ Vbe~O. f~1 MHz
CCb
= f (VCB)
pF
to
1
\.
0.5
o
o
~ i'-.
-- -r-
10
20 V
-VcB'
634
Siemens
o
10
20
-Ie
30 rnA
BFS17P
Common Emitter S Parameters
Ic = 2 rnA, VCE =; 5 V, Zo = 50 Q
~1
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.83
0.58
0.45
0.35
·0.34
0.34
0.36
0.37
0.41
- 30
....: 76
-106
-142
-160
-175
165
147
137
5.96
3.69
2.69
1.84
1.53
1.33
1.13
0.97
0.91
147
118
100
79
71
64
52
44
39
0.03
0.07
0.08
0.10
0.11
0.12
0.14
0.17
0.19
73
53
49
51
54
57
62
66
68
0.95
0.82
0.74
0.71
0.70
0.69
0.67
0.67
0.67
- 7
-19
-21
-27
-31
-35
-43
-50
-54
8 12
5 11 • 5z! = f (f)
~2. 5,,1 = f If)
Ie =2 rnA, VeE = 5 V, Zo = 50 n
Ie = 2 rnA, VeE = 5 V. Zo = 50 n
90 0
+j50
o
-j50
-90 0
Siemens
635
BFS 17P
Ic
=
5 mA,
VCE =
5 V, Zo
=
50
Q
8.2,
f
8"
GHz
MAG
ANG
MAG
ANG
8 '2
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.63
0.38
0.32
0.28
0.29
0.30
0.33
0.35
0.39
- 44
- 98
-130
-161
-177
170
155
140
132
10.78
5.37
3.59
2.39
1.94
1.67
1.40
1.18
1.11
134
107
92
74
68
61
50
43
38
0.03
0.05
0.07
0.09
0.11
0.13
0.15
0.19
0.21
69
57
60
63
65
66
67
69
69
0.87
0.70
0.64
0.62
0.62
0.60
0.59
0.60
0.59
-11
-20
-21
-25
-29
-33
-41
-47
-51
5", $,,2 = f (f)
Ie
8.22
5'2, $", = f (f)
= 5 mA, VeE = 5 \/, 20 = 50 Q
Ie = 5 mA, VeE
= 5 \/, Zo = 50 Q
90 0
o
-j50
636
-90 0
Siemens
BFS 17P
Ic
= 10 rnA,
VCE
= 5 V. Zo = 50 Q
f
8 11
8 12
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.44
0.29
0.27
0.26
0.28
0.30
0.32
0.35
0.38
- 60
-117
-148
-176
173
163
150
136
128
14.21
6.35
4.10
2.69
2.18
1.86
1.55
1.30
1.22
125
100
88
72
66
60
49
42
37
0.02
0.04
0.06
0.09
0.12
0.13
0.16
0.20
0.22
69
64
68
69
70
70
69
69
69
0.79
0.63
0.58
0.57
0.57
0.56
0.55
0.56
0.56
-14
-19
-19
-23
-27
-31
-38
-45
-49
5.!1
5.!2
5,2, 8,,1 =f (f)
Ic = 10 rnA, VCE =S \I, Zo = son
5,1. s.", =f (f)
Ic=10mA, VCE=s\l,Zo=son
90 0
-j50
-90 0
Siemens
637
BFS 17P
Ic
=
15 mA,
VCE =
f
S11
GHz
MAG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.34
0.26
0.26
0.26
0.28
0.30
0.33
0.36
0.39
5 V, Zo
=
50
Q
ANG
8.21
MAG
ANG
MAG
ANG
8.22
MAG
ANG
- 69
-130
-156
179
169
160
147
135
128
15.94
6.76
4.29
2.80
2.25
1.92
1.58
1.34
1.25
120
98
86
70
65
59
49
41
36
0.02
0.04
0.06
0.09
0.12
0.14
0.16
0.20
0.22
69
68
71
71
71
71
70
70
69
0.75
0.60
0.56
0.55
0.55
0.55
0.54
0.54
0.54
-15
-19
-19
-22
-27
-31
-38
-44
-48
S12
S.2, S:!1 =f (f)
S.h~=f(f)
Ic = 15 mA, VcE =5 V. Zo= son
Ic = 15 mA, VCE = 5 V. Zo = son
o
-jSO
638
-90 0
Siemens
BFS 17P
Ic = 20 mA,
VCE =
5 V. Zo = 50
Q
~1
~2
f
S11
GHz
MAG
ANG
MAG
ANG
MAG
ANG
MAG
ANG
0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0
0.27
0.25
0.26
0.27
0.29
0.31
0.34
0.36
0.40
-77
16.69
6.88
4.34
2.82
2.26
1.93
1.59
1.34
1.26
117
96
84
69
64
58
48
40
35
0.02
0.04
0.06
0.09
0.12
0.14
0.16
0.20
0.22
70
69
72
71
72
71
70
70
70
0.72
0.58
0.54
0.54
0.54
0.53
0.53
0.54
0.53
-14
-17
-18
-22
-26
-29
-37
-44
-47
-138
-161
175
166
157
146
133
125
S12
5". ~=f(f)
5,2. ~, = f (f)
Ie = 20 mA, VeE = 5 V, Zo = 50n
Ie = 20 mA, VeE = 5 V, Zo = 50n
Siemens
639
BFT92
PNP Silicon RF Transistor
• For broadband amplifiers up to 2 GHz at collector
currents up to 20 mA.
• Complementary type: BFR 92P (NPN).
ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
BFT92
W1
Q 62702 - F1 062
SOT-23
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current,
f~
10 MHz
Total power dissipation, TA :5 60
°C2 )
Value
Unit
VCEO
15
V
VCBO
20
V
VEBO
2
V
Ic
25
mA
ICM
35
mA
Ptat
200
mW
Junction temperature
7j
150
°c
Ambient temperature range
TA
-65 ... +150
°c
Storage temperature range
Tstg
-65 ... +150
°c
Thermal Resistance
I
Junction - ambient 1)
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
640
Siemens
RthJA
I :5440
IKIW
BFT92
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
min
Values
typ
max
V(eR)CEO
15
-
-
V
Collector-base cutoff current
Vce = 10 V. IE = 0
Iceo
-
-
50
nA
DC current gain
Ic = 14 rnA, VCE = 10 V
~E
20
50
-
-
Collector-emitter breakdown voltage
Ic = 1 rnA, Ie = 0
Symbol
Siemens
Unit
641
BFT92
AC characteristics
Parameter
Symbol
Values
Unit
min
typ
max
Transition frequency
Ic = 14 rnA, VCE = 10V, f= 500 MHz
~
-
5
-
GHz
Collector-base capacitance
VcB =10V, VBE=Vbe=0,f=1 MHz
Ccb
-
0.6
-
pF
Input capacitance
VEB = 0.5 V,Ic = ic = 0, f= 1 MHz
C,bo
-
0.8
-
pF
Noise figure
Ic = 2 rnA, VCE = 10 V, f= 500 MHz
F
-
2.4
-
dB
Power gain
Ic = 14 rnA, VCE = 10 V, f= 500 MHz
Gpe
-
18
-
dB
642
Siemens
BFT92
Total power dissipation p.o. = f (TtJ
Package mounted on alumina
Transition frequency fT = f
VeE = 10V, f= 500 MHz
(Iel
GHz
mW
300
6
I-
5
r--.,
/
200
4
1\
i\
3
\
100
II
2
\
\
\
1\
o
o
50
o
o
150 0 (
100
10
20
30mA
-Ic
Collector-base capacitance
VBE = vbe=0,f=1 MHz
Cob
= f (VcBI
pF
1.5
1.0
\
~
0.5
o
o
.........
10
20 V
-VCB
Siemens
643
BFT93
PNP Silicon RF Transistor
• For low-distortion broadband amplifiers up to 1 GHz at
collector currents from 2 to 30 rnA.
• Complementary type: BFR 93P (NPN).
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reeQ
Package
BFT93
X1
Q 62702 - F1 063
SOT-23
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
12
V
Collector-base voltage
VCBO
15
V
Emitter-base voltage
VEBO
2
V
Collector current
Ic
35
mA
Peak collector current, f?:: 10 MHz
[CM
50
mA
Total power dissipation, TA :5 60 Dc;2)
Ptot
200
mW
Junction temperature
7j
150
DC
Ambient temperature range
TA
-65 ... +150
DC
Storage temperature range
Tstg
-65 ... +150
DC
Thermal Resistance
I
Junction - ambient1)
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
644
Siemens
RthJA
I :5440
IKIW
BFT93
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Symbol
min
Values
typ
max
V(SR)CEO
12
-
-
V
Collector-base cutoff current
Vcs= 5\1, IE=O
Icso
-
-
50
nA
DC current gain
hFE
20
50
-
-
Collector-emitter breakdown voltage
Unit
Ic = 1 mA, Is = 0
Ic=30mA, VcE =5V
Siemens
645
BFT93
AC characteristics
Values
Symbol
Parameter
Unit
min
typ
max
Transition frequency
Ic = 30 mA, VCE = 5 V, f= 500 MHz
fr
-
5
-
GHz
Collector-base capacitance
VCB = 5 V, VBE = vbe = 0, f= 1 MHz
Ccb
-
1
-
pF
Input capacitance
VEB = 0.5 v,/c = ic = 0, f= 1 MHz
C,bo
-
1.8
-
pF
F
-
2.4
-
dB
Gpe
-
16.5
-
dB
Noise figure
Ic = 2 rnA, VCE = 5 V, f= 500 MHz, Zs =
Power gain
Ic = 30 rnA, VCE = 5 V, f= 500 MHz,
ZSopt
Zs = ZSOPb ZL = ZLopt
646
Siemens
BFT93
Transition frequency fT = f (lei
VCE = 5 V, f= 500 MHz
Total power dissipation p.o. = f IT,.)
Package mounted on alumina
GHz
6
mW
300
/
200
4
1\
r\
V
.......
V
/
/
\
100
\
\
\
o
o
o
o
100
50
10
20
30
40 mA
-Ic
Collector-base capacitance
VSE = Vbe=O, f= 1 MHz
COb
= f (VCB)
pF
1.5
\
!\.
1.0
"- ..........
........
---
0.5
o
o
20 V
10
-VCB
Siemens
647
NPN Silicon Darlington Transistors
BSP 50 ••• BSP 52
• High collector current
• Low collector -emitter saturation voltage
• Complementary types: SSP 60... SSP 62 (PNP)
E
c
B
Type
Marking
Ordering code (12-mm tape) Package'
BSP 50
BSP 50
062702 - Pl163
SOT-223
BSP 51
BSP 51
062702 - Pl164
SOT-223
BSP 52
BSP 52
062702 - Pl165
SOT-223
Maximum Ratings
Parameter
Symbol BSPSO BSPSl BSPS2 Unit
Collector-emitter voltage
Emitter-base voltage
VCER
VCBO
VEBO
Collector current
Ic
Collector-base voltage
Peak collector current
ICM
Sase current
IB
Total power disSipation, TA ~ 25·C
I,
45
60
80
V
60
80
100
V
5
5
5
V
1
A
2
A
0.1
A
Plo1
1.5
W
Junction temperature
TI
150
·C
Storage temperature range
T" g
-65
to
+ 150 ·C
Thermal Resistance
~83.3
Junction - ambient 1)
.) Package mounted on an epoxy printed circuit board 40mm x 40mm x I.Smm
Mounting pad lor the collector lead min 6cm2
1 For detailed dimensions see chapter Package Outlines
648
Siemens
IKMI
BSP 50 ... BSP 52
Characteristics
at TA = 25 'C, unless otherwise specified.
Parameter
Unit
DC Characteristics
Collector-emitter breakdown voltage
Ic = 10mA, RBE = 4.5Mn
Collector-base breakdown voltage
Ic = 1OOIlA, 18 = 0
1)
SSP 50
SSP 51
SSP 52
V(BR)CER
V(BR)EBO
Collector-emiller cutoff current
VCE = VCERmax,VBE = 0
ICES
Emiller-base cutoff current
VEB =4 V, Ie =0
lEBO
DC current gain 1)
Ic=150mA, VcE =10V
Ie = 500 m~, VCE = 10 V
hFE
Base-emiller saturation voltage
Ic =500 rnA, 18 =0.5 rnA
Ic = 1 A'/B = 1 rnA
-
-
V
V
V
60
80
100
-
-
V
V
V
5
-
-
V
-
-
10
llA
-
-
10
Il A
1000
2000
-
-
-
-
-
1.3
1.8
V
V
-
-
1.9
2.2
V
V
200
-
MHz
400
1500
-
ns
ns
V(BR)CBO
SSP 50
SSP 51
SSP 52
Emiller-base breakdown voltage
IE = 100IlA, IB = 0
Collector-emitter saturation voltage
Ic = 500 rnA, Ie =0.5 rnA
Ic = 1 A'/B =1 rnA
45
60
80
2)
VCEsal
VBEsal
2)
AC Characteristics
Transition frequency
Ie = 100 rnA, VCE = 5 V, f= 100 MHz
'T
-
Switching times
Ic = 500 mA,IBI = 182 = 0.5 rnA
(see Fig. 2 and 3)
ton
.
toll
-
1) Compare RBE for thermal stability
2) Pulse test conditions: t ~ 300115; D = 2%
Siemens
649
BSP 50 ... BSP 52
-2.2V
+10V
18n
ljlS
D.U.T.
9kn
-1r-
1S38~1
trGR
ID
I Dpul.
V••
PD
Ratings
Unit
240
240
0.29
1.16
±20
1.5
V
V
~s =20kO
A
A
TA =29°C
TA =25°C
V
W
aperiodic
TA =25°C
7j
T.t.
-55... +150
55... 150... 56
·C
:583.3
KJIN
DIN IEC 68 part 1
Thermal resistance
Chip - air
Chip - substrate rear side
658
Conditions
RthJA
Siemens
BSP88
Electrical Characteristics
Condition
Static characteristics
Drain-source
breakdown vottage
V(BA)DSS
240
Gate threshold vottage
VaS(th)
0.6
Zero gate vottage
drain current
IDSS
-
-
0.8
1.2
1.0
20.0
V
Vas =OV
ID =0.25 rnA
V
VDS = Vas; ID =lmA
JlA
1j =25°C;
VDS =240V
Vas =OV
IDSS
-
10.0
200
JlA
1j =125°C;VDS
=240V
Vas =OV
IDSS
Gate-source leakage current
Drain-source on-state
resistance
I ass
RDS(on)
-
10.0
100
nA
1j =25°C;
VDS =100V
Vas =OV
100
nA
Vas =20V, VDS =0V
Vas =4.5V
I D =0.29A
Vas =10V
I D =O.29A
8.0
0
6.0
0
0.32
-
S
VDS 2:2" I D * R DSon max
ID =0.29A
90
140
pF
Vas =OV
VDS =25V
f =lMHz
6.0
-
RDS(on)
Dynamic characteristics
Forward transconductance
gl.
0.14
Input capacitance
CI ••
-
Output capacitance
Co ••
20
30
Reverse transfer
capacitance
Cr ••
6
9
t d(on)
-
5
8
10
15
30
40
25
30
Turn-on time ton
(t on =t d(on) +t,)
t,
Turn-off time t off
(t off =t d(ofl) +t I)
tl
-
Continuous aource
current
Is
-
-
0.29
A
Pulsed source current
ISM
-
-
1.16
A
Diode forward on-vottage
VSD
-
1.3
V
t d(olf)
ns
Vee =30V
Vas =10V
I D =0.28A
Ras =500
Reverse diode
1.0
Vas =OV
'/ F =0.58A
Reverse recovery time
trr
-
-
Reverse recovery charge
Orr
-
-
Siemens
-
ns
VA =l00V, IF = 'D A
dl F Idt = 100A/Jls
JlC
VA =100v, 'F = 'D A
dl F Idt = l00A/Jls
659
BSP88
Permissible power dissipation PIOI == I(TA)
aSP88
1.6
W f-I- h
14
P.o.
12
1---
1-1-
10 0.50
1-1- f----- H- I- -I-
1\
02
-·3V
f-tt-!t-!- ~~~
-.-r-- '--1-·- 1\--~~= ]\
0.35
f- t--
l- t- t-.
o' - ' - o
20
---+1---
Li-~~~
_~-=_L
40
60
60
--
.--. --.- 2.5V
- - -----._-:-+
0.30
0.25
0.6 f0.4
f-~'---l
0.55
t-t_ -
1.0
0.8
A
- -- -- -- I-t-
IS
B5P88
0.65~~
.'--
-- - I -I - - - - I - --
-f\ .-
-I;-
Typ. output characteristics 10 == I (Vos)
'-
---
-f-
0.20
'\
-:.;;.oIf--t--t---t- 2V
-1\ t- f-!-
---
-'-
-._-+
0.10
i~t±
:b=f==l==-+~+----=4~ 1.5 V
0100...-'-.--"'--'-- - - - -
o
100 120 140·( 160
23456V8
-TA
- - - V05
Typ. transfer characteristic To == f (VGs)
parameter: Vos == 25 V, tp == 80 lIS, TJ == 25 ·C
Permissible operating area fo == f (Vos)
parameter: 0 == 0.01, Tc == 25·C
0.60
r-- -
.---,-
A I-- ~- I
o
.!l..~!' .~~-- - ... -- - -.--~
- - - - --- . -
0.50 1-- t-
.-- -.-.1--
- --- - - -- --I -
1--1- -1-1------- -
---
t 0.40 ;--1---+-+1--+--1---1-- ----1--1-0.301--1--
-j-I-- -.- -- -- -
·-i-
1-+--+-1-1--1-- --1-1--- - - -
0.201-1--"
-1-1--
-f-
f--I---/---ii-I--I-- --1--1----
0.10
I/
1--[7--
--.--- - - 1 -
... -
-
o'---"--'-_-'__.'-_
o
4
660
Siemens
-
_..
.. _--
_....
----
_____ L_
L_
6
8 V 10
_VGs·
BSP88
Typ. drain-source on-state resistance
ROS(on) = ((10)
parameter: VGS , TI = 25°C
Drain-source on-state resistance
ROS(on)
= ((TI)
parameter: VGS
26r-r-r-r-r-T_BrS~P66
= ~.5 V, 10 = 0.29 A, (spread)
BSP 88
20
(l
ROSlon) 22
ROSlon) 16 I-- -
20
-
V
I-
I
16
1/
16
14
-
12
\- -
1 - -98%;-
p- ~
6r_~~~l
4-
I......
po
o
o
o
'--- ----"
8
4
0.10
0.20 0.30 0.40 0.50
-10
Typ. transconductance gls = ((10)
parameter: Vos = 25 V, Ip = 80 liS, Tj
0.45 - - -
88
-- ---asp
._-- -- -
... -
---- --7
30
S 1--1---1--1--1-1- --- --
gr ::: -
VG S (I h)
f
-40
~~
-]f
o
40
/
I--
-
80
-- -- '---
120°C 160
SP'-'8:6;:- -----y-T---,----r--,
.---,---.----.---r_;Br:
V 1---+-4--1-- ---1-+--1---+--+--1
2.6 t-+-+--l-+-+---+-t--t-t-t-i
2.4 I--+--+---j--t--jl----t---I--t---t--jl---t
2.0 1---1-+-- t --\----+-'I---+---I--t---t--1
1.8 I----+-+-+_+_+_ I--+--I-+-t----I
------ ----- -- --7--1--- - -- .---. ---
0.15- - - - - 1 - - - - 1 - -
...... V
1-
/
2.21--1--1f--11---:1---t--t--I-+--t---t---I
--VJ:~
0.25 0.20
~I-!=~V~=_~--·~
-
/
Gate threshold voltage VGS(lh) = ((Tj)
parameter: VGS = Vos, 10 = 1 rnA
(spread)
= 25°C
-V-r-:
//
~
-80
A 0.65
1.1
~/ v-
8
10
II
._-
12
-----
0.10 1--/--1+-+-11---1-+---1-- - ! - - -
----
o 05 H--+-+- t-+-+--j-- -- -- .- -
o '--- _l_-'---'--'__ L--'-_---.J'_-'-----'---'
o 0.10 0.20 0.30 0_40 A 0.55
o
20 40 60 80 100 120°C 160
~
10
Siemens
661
BSP88
Continuous drain current 10 = f(TA)
0.30
1
0
r---;-_.,-_.,--:B::..:S.:,P_;c:88--,-_-,-_-y--,
A
==~.-
0.26
'" .
~:~
020
o18
0.16
Drain-source breakdown voltage
VIBR)OSS (T,) = b X VIBR)OSS (25°C)
--t--t---l--t--l
---j---+-~--t--l
A
1.16
'\K---r---
b 1.14
1.12
--1--"\
~-
- - r - -.- -.-.-'\-
asp 88
1.20
t
-1-
'0
.
1.10
108
-1--1-----1
0.14 1---1----1--1--1---1,·- , - f -
0.12 f - --+--+--+-_. r - - \ I 010 1--1--+--+--\--1-·-1--\
r---
0.08 1---1---+--.1--1-.-1--1-----1\--\-1
1
0061---I--+--~·-~---t~-I--+\·--t
004
0.02
f- -- -
o
o
---1---1--+---+-\11-1
---. --- ---t---t-H
L....._. _ _ _ _ .. _ _ . ._._._
20
40
60
. ___ • . __ ._. _
80 100 120
-TA
._l
160
O(
0.90
-
-- - - - -----
- 60 -40 -20 0 20 40 60 80 100 120
_
Forward characteristics of reverse diode
Typ. capacitance C = f(Vos)
parameter: VGS = 0, f = 1 MHz
IF =
f(Vso)
parameter: Ip = 80
US,
~~
~
5
. _ _. _
--- - -
10--+---1---·-- -
A
5
110
2
5
E~~'\gEE~~~~·---~·--~C~s
~
t--
-+---+--1
f- f - -
5
~:--1--->t----f--t-===y--t--4-.-;;;!-Coss
10 1 f--'-...
- f-
C'55
r>E
... ~!:.-I--I---
~:: -1-11-- -...
25°( typo
- I - 150 0 ( typo
,lP -is.
--~
L1J--.
FF ~~ ~ r.!25°((98%J
-
--;:--
._-1-
:/ ~Cc __ 1-1--- ~~
- -- -c- -~
- -e-
----
5 I---I---r--t--~-+--- _
u
--- -
..
-
T, (spread)
r- r-
~~-'lr-t--+----ir--- -.+--t--I.--
C
160
o(
T(
5
f-f-
c-"< ~ J
If-
-1-
-~-~-
~~om
- --
=
.-=
-- I l-
-- I -1-
=r=
-
- - I- c--I-
-
10° L--'--_'----'-_-'- _-'-__'---'_..J
o
10
20
30
--662
V
40
VOS
---
Siemens
V 3
2
V~o
SIPMOS N Channel MOSFET
BSP89
Preliminary Data
• 81PM08 - enhancement mode
• Drain-source voltage
Vos = 240V
10 = 0.34A
• Continuous drain current
ROS(on) = 6.00
• Drain-source on-resistance
Po = 1.5W
• Total power dissipation
s
Type
Marking
Ordering code for
versions on 12 mm-tt:pe
Package
SSP 89
SSP 89
Q67002-8652
80T223
Maximum Ratings
Parameter
Drain-source vOltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vcs
I4>GR
10
lopu,.
V••
Pc
7j
T.ta
Ratings
Unit
240
240
0.34
1.36
:!:20
1.5
V
V
A
A
V
W
-55 ... +150
55 ... 150 ... 56
°C
:583.3
K/W
Conditions
Ros =20 kO
TA =25°e
TA =25°e
aperiodic
TA =25°e
DIN lEe 68 part 1
Thermal resistance
Chip - air
Chip - substrate rear side
RthJA
Siemens
663
BSP89
Electrlcsl Characteristics
Condition
Static characteristics
-
Drain-source
breakdown voltage
VIBA)DSS
Gate threshold voltage
VGSlth)
0.8
1.5
2.0
V
VDI= Val; ID -1mA
Zero gate voltage
drain current
'DSS
-
4.0
60.0
fAA
1j =25°C;
240
V
Vas =OV
'D =0.25mA
v
VDS =240
Vas =OV
'DSS
-
8.0
200
/oI A
1j = 12SOC; VDS
v
=240
VGS =OV
'DSS
-
200
nA
1j =25°C;
VDS =60V
VGS =OV
Gate-source leakage current
I ass
Drain-source on-state
resistance
RDSlo.)
RDSlo.)
-
10.0
100
nA
Vas =20V, VDS =OV
5.5
6.0
Q
I D =O.34A
9.0
10.0
Q
Vas=10V
Val =4.5V
I D =0.34A
Oynamlc characteristics
Forward transconductance
gl.
Input capacHance
C •••
Output capacitance
Co ••
Reverse transfer
capacitance
Cr ••
0.14
-
-
t dlo.)
0.29
-
90
140
20
30
6
9
S
VD...2*/D
* RDSo. max
ID =O.34A
pF
VG' =OV
VD• =25V
f
=IMHz
5
8
8
12
Val =1OV
25
30
I D =0.28A
22
28
Vcc =3OV
Tum-on time to.
=t dlo.) +t.)
(t
t.
Tum-off time toll
(t 011 =t d(oll) +t I)
tl
-
Continuous source
current
Is
-
-
0.34
A
Pulsed source current
ISM
-
-
1.36
A
Diode forward on-voltage
VSD
-
1.4
V
VGS =OV
=0.68A
Reverse recovery time
t ••
-
-
-
ns
VA =100v, IF = 'D A
di F /dt = 100A//oII
Reverse recovery charge
Or.
-
-
-
/oIC
VR =100v, IF = ID R
di F /dt = 100A//ols
0.
t d(oll)
-
ns
Rat =500
Reverse diode
664
1.1
Siemens
'F
BSP89
Permissible power dissipation
16
W l-I14
Ptot
!
B~P
1\
13
f--- ' -
"-~
Pial
= t(TA )
89
0.75 r-,--._-=-~:--:-::.:BS,PT.:.:69-'--r_-r--,-l
f--'-_I\~OI =15W___ --j-+--t
Its = .~
--1-
I
10
--i.- -- .._---
12
11 I- - i 1.0
09
0.8 f-- I - i-. \ -f07
--- -1-- - i 0.6
r\
05
-i- -- .-- -~ - - -I0.4
.. --- - I 03 l - I- i - ---- \I - - i 02 l-I- -I- -1- -1-- -- - - I \ - i 01 i- I- -- -- - -- _. - - 1--- - - ,\1-
~
Typ. output characteristics 10 = t(Vos)
"-
S
A
10V-0.60 - 9V ---1---.--1---~"I
8V- .
7V0.50 - 6V
5V=040 t---t--+ ,I"
--=
030
0.20
--
o
o
20
40
60.
80
100
1.--:j:::::::j::::::J==I==l==I==l= 25 V
0~±=±=±=~~=c=t=t=2V
o
120 140°(160
3
4
5
6
7
8
V
10
-Vas
--~TA
Typ. transfer characteristic 1D = f (VGs )
parameter: Vos = 25 V, Ip = 80 jls, Tj = 25°C
Permissible operating area 10 = t(Vos)
parameter: 0 = 0_01, Tc = 25 DC
BSP 69
0.70 - - --- A
------i---------~
10 0.60 - - - - ---- --
t
4
--- -- -- - - r - -
c--I--
-
-r--- ----- ---
--. ---I- --- --- -
I 050 I - - ! - - I - - - -
- - -- --
I-
---
0.40~~ ~~~~-_~~_-===-__
030 - - - - --
- - - - - - -- - - - -
-
. - --
-
-
020 1----1---1-- - - -
-------·-1--+-+---1
- - -1-- --------+----
0.10 f--+--l-/H--t---l-l-
o '--_'-L..L.---,_-,----,_-'--'_J o
Siemens
2
3
4
5
6
7
'--
V
10
665
BSP89
Drain-source on-state rl!slstllnce
f(TI)
parameter: VGS = 10 V,lo = 0.34 A, (spread)
Typ. drain-source on-state resistance
ROSlon}
= ((10)
ROSlon} =
parameter: VGS' TJ = 25°C
16 .--..--,-.,- ,-- .~~':-!!-
R
~- c -
r" ~--- --~--- -/~~
Q
R
OSloo}
16
1 14
-+--
Q
--l--l-I~~-l
10 - - - - 1- - -~;%./.V
12
8~
6
-
.- .... -.- ..
~:LI--f--
.,~
_ .. -- -- .. - ~ . typ.- -
::~~~ ~~ :~i-- ~
4
o
o
0.1
0.2
OJ
Q4
0.5 0.6
A 0.75
-fA
g,. =
Typ. transconductance
((10)
parameter: Vos = 25 V, tp = 80 liS, TJ = 25 °C
I-I-
-1-
~~--.~ - -- j -._1_L-J~
o
L-I_.L~
- 80 -60 -40 -20 0 20 40 60 80 100 120
---r.
O(
160
Gate threshold voltage VaSl/h} '" f(1j)
parameter: Vas Vos, 10 '" 1 mA
(spread)
=
5 r-~-.--"'_'r_8~~9
g~
--,- -
-
.-- --
--
S - - - - - - - 1 - - - l.......-+--l--l--l--l
/
t OJO -
//
/ L __
025 -- - -- -.
.
020 '-- -- /
0.15
010
-- --. -
1-1--4-+-.-- ---- .-- .-- --- -
-J-J--lf-I--l--l
- - - ..
--! ------- ----
-I-l-f--J
r7----- -- -. ---- - - --
0.051/- -.- - - - --- --1--
- -
o '- '- -. --- .- -- __ '--.1_
o 0.1 0.2 03 04
05
-I-
A 0.65
- /0
666
Siemens
o
-60 -40 -20 0 20 40 60 80 100 120
-r.
O(
160
BSP89
Continuous drain current 10
= f(TA)
Drain-source breakdown voltage
V1BR)OSS
036r--r--r-~-_BS~P_69__r _ - r _ . - - '
A f--~
.
10 0.3Z
~:---.j--+--t--j---I---l
I
~
OZ8
A
10
- ----
f-
-
--
f--
0.94
--.- --+_.- --_.- - -
r-- .L-
160
.L
/-
V-
~
V-
I-
V-
I - I--
r-- I-.-- ' - -
V- . -
--
--.-
--
-
1--- -
' - 1--
f--
c-
~
090 ---- - - ' - -60 - 40 -ZO 0 ZO 40 60 80 100 lZ0 • ( 160
-T(
Typ. capacitance C = ((Vos)
parameter: VGS = 0, (= 1 MHz
Forward characteristics of reverse diode
IF = f(Vso)
parameter: tp
B5P89
11
I-
BSP89
~ I- 1-1- ~
A I-
I--
= 80 liS, 1j (spread)
101
f=:
f--
pF I--r-
I--
----- ---
V-
V-
- ---- ,/ ,- I--
-
I--
\
o -_. -- . ---- ---- --- .-----o ZO 40 60 80 100 lZ0 .(
---Ii.
[
I -I - -
1.06
0.98
10
I -I--
1.0Z
::: == -~-~ -~~= ~-==~
--- -
I- -
f--
\
-
- - r - - -- r--- f-- -- - I l -I--I -I - - -- -- f-- f -
- - -
----1---1\--
O.IZ 1 - - - - - - - - 1 - -
(25°C)
BSP89
t 1.10 I - -
OZO~-+__~'---~-I~I __ ~~4-~
o16
X V(BR)OSS
1.Z0
114
OZ4 f---r---1- ---+~~.--1--1--+---1
f--+---+--ji- -~ .---I~---j
(1j) = b
!-=:= - - II-
- 11
f - 1i-- f - I-
1=
-l-
I-f-
t
10 2
5
~\
----~~: ---
TJ
~I-
I-- - , - - - --j---,I---t--;---{
f--
=
25'(1 yp~
1= IS00C t
-- f--.
5
~ .....::::::::-+-:---11--1--+--1--1
1-1-1-1---
1-1-1-:
I-
5
100
__
~~
t--
r/~
=f::
-I-
.--.. P-:= -- c
~ V-r=- ----=.;= -:~
~
::,..,
r--I-
T.J =
1-::
=- __._--
- --
~~_
2SoC (98%)
150°C (98%)
-
---
- -lI-
==
---
L - - - L _ - ' - - - ' _ - L _ . L - - - L .__- ' - - - '
o
5
10
15
ZO
Z5
30
V
40
2
V
3
----Vos
Siemens
667
BSP92
SIPMOS P Channel MOSFET
Preliminary Data
• 81PM08 - enhancement mode
• Drain-source voltage
Vos = -240V
• Continuous drain current
10 = -0.18A
Ros(on) = 200
• Drain-source on-resistance
Po = 1.5W
• Total power dissipation
s
Type
Marking
Ordering code for
versions on 12 mm-tepe
Package
SSP 92
S8P 92
062702-8653
80T223
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
\i>GR
10
I Cpuls
V••
Po
7j
T•••
Ratings
Unit
-240
-240
-0.18
-0.72
±20
1.5
V
V
A
A
V
W
-55... +150
55 ... 150... 56
°G
668
R.hJA
~83.3
K/W
Siemens
Ros =20 kO
TA =33"G
TA =25°G
aperiodic
TA =25°G
DIN lEG 68 part 1
Thermal resistance
Chip - air
Chip - substrate rear side
Conditions
BSP92
Electrical Characterlatlcs
Condition
Static characterlatlcs
Drain-source
breakdown vo~age
V(BR)OSS
Gate threshold vo~age
VGS(th)
Zero gate vottage
drain current
loss
-240
-
V
VGs=OV
10 =-0.25 rnA
-0.8
-1.5
-2.0
V
Vos= VGS; 10 =-lmA
-4.0
-60.0
J.iA
1j =25°C;
Vos =-24 OV
VGS =OV
loss
-
-8.0
-200
J.iA
1j = 125°C; Vos
=-24 OV
VGS =OV
-
loss
-200
nA
1j =25°C;
Vos =-60v
VGS =OV
Gate-source leakage current
I GSS
Drain-source on-state
resistance
Ros(on)
Dynamic characterlatlcs
-
v
-10.0
-100
nA
VGS =-20V, Vos =0
12.0
20.0
0
10=-0.18A
0.13
-
S
Vos .,,2* I 0 * R OSon max
10 =-0.18A
pF
VGS =OV
Vos =-25V
f =IMHz
ns
Vcc =-30V
VGS =-10V
I D =-0.25A
RGS =500
VGS =-10V
Forward transconductance
g,.
Input capacitance
CI..
70
105
Output capacitance
Co ••
20
30
Reverse trensfer
capacitance
Cr ••
8
12
0.06
-
8
12
30
45
I d(off)
15
20
If
30
40
I d(on)
Turn-on time Ion
(Ion =1 d(on) +t r)
Ir
Turn-off time loff
(1011 =1 d(off) +1,)
Reverae diode
Continuous source
current
Is
-0.18
A
Pulsed source current
ISM
-0.72
A
-1_2
V
Diode forward
on-vo~age
VSD
-0.9
Siemens
VGS =OV
IF =-0.36A
669
BSP92
Permissible power dissipation PIOI = ((TA)
Typ. output characteristics 10
BSP92
1.6
W
= f(Vos)
BSP 91
-0.40
f- f-
1.4
A
1\01
10
\
12
~
1.0
-5V
1- 0.30
I
.--- -- --4.5V
""1\
I
-0.20
0.8
1 - -1---
06
'\
04
---4--
~
J..--I--I--t--t--t-- 3.5 V
-0.10
""
o 2 1--- .- -
o' o
·-'-0
-
-
--
---~.
20
40
_.
-- -.
80
~-+~--~+-+--r-3V
-f\ f- f-
~.
60
I___+-+-~-t-- 4V
1\
--- -- .- -
--- -- .--- ---1--
"..-!--1r--t-+-+--t--t--t-- 2.5 V
r--
o~+--t--t--t--+~~r-+-~-2V
---- --
°
100 120 1400 ( 160
-1 -2 -3 -4 -5 -6 -7 -6 -9
_TA
-
Permissible operating area 10 = ((vos)
parameter: 0 = 0.01, Tc = 25°C
V-ll
Vos
Typ. transfer characteristic 10 = ((VGs )
parameter: Vos 25 V, Ip 80 lIS, 7j 25 °C
=
A -
ItO--Oo::
-
=
--- ----. --- - -.. - --.
=
..- ---
==- ==:1----: ~~--~~--~ =~
, -1--.- --- -- - -- 1 -- - --. -.-- --- --
I-----I----l-- -
- 0.20
I---- 1-. -
- - - -.-- --.- - - -- .--
-0.161-1--- -
-0.12 1-1--1---
---- ----1--
1-- ----~. =~ =~
II
----1----
- 0.08 1--+--+-I/--1--j--- - -
--I---- -
I---l----l--I.-j--t-t---t--i-- - - - -
- O. 04 I----t----l-/I-+--t.-t--+--t----t-- - I--+--bf-t-+--t--I---t--j·-- - O~~/'~_~J--L_~~ __ ' _ _ _
o
670
Siemens
-2
-4
-6
-8
V -10
'ssp 92
Typ. drain-source on-state resistance
ROS(on) = f (10)
parameter: VGS , T, = 25 DC
Drain-source on-state resistance
RoS(on)
BSP 91
65
55
50
r-f
= 10 V, 10 = 0.18 A,
(spread)
BSP 91
50
~J"JI_
I I
o -2.5V-3V
-3.5V-::W--4.5V - 5 V - -
ROSlonl
=f(~)
parameter: VGS
ROSlonl
40
'---
45
40
30 1---1--1---1
I
35
- - - f--.
/
30
25 -
/
:/
-
20 ...L ::::;;;:;;; ~
15
.-
-- f 1-
-/- V- -/- - --6V
---: ~ V
20
--- -.,.-
~
10
-7V -6V-9V-l0V- - - f -
10
5o-
o
-i----i----tj---
-- I -- ._._- - - - '
---- -- -_..
- 0.10
-0.20
- 0.30
o
- 60
A -040
____ .... 1--
-1.0
o
40
120 0 ( 160
rJ
-10
Typ. transconductance g,s = f(/o)
parameter: Vos = 25 V, tp = 80 liS, Tj = 25 DC
Gate thre.hold voltege VGS(lh) = f(7j)
parameter: VGS = Vos, 10 = 1 mA
(spread)
SP,..:.9.:.2- , - - - , - - - ,
0.20 ,---_,--__ r-_B:.::c
-5
v ....
s
VGSllhl
9 Is 0.16
t
1-
80
BSP oZ
8
-
-
----1--
-4
0.12
-3
0.08
-2
. t-
-1
o --- - ----- - o -005 -010 -0.15 -0.20
o
A
-0.30
-60 -40-20 0
20 40 60 80 100120·( f60
-~
- - - 10
Siemens
671
BSP92
Continuous drain current 10
- 004
-
~--~~-.
------~
I
10
~
104
L
60
80
100 120 O(
--_to
. _.
TA
160
asp 92
11
~==l==~=r==f~
pF
1.00
0.96
0.92
o
----- - - --
- 60 -40-20 0 20 40 60 80 100120 O( 160
-T(
Typ. capacitance C = I(Vos )
parameter: VGS = 0, 1= 1 MHz
10J
-~-
f--
-I-
40
--- ---, --- . --- ---
108
1]
20
-
112
8-.]Jt:c:~-,--~1\-
o
o
~-t---!
Forward characteristics of reverse diode
IF = l(Vso)
parameter: tp = 80 liS, 1j (spread)
100
asp 92
12
= --: : ==-- - -
A ~ =.}~:::
~-~~ t:: ~r25°(1 yp. -izlT-~1i2
--.- . - - - 1 - - ---115
1500 (
'-1=
tYr;/lI-v~~
c
I
r
92
b
i
5
asp
1 20
1.16
""-
c--- 008
=
A
A
f -012
Drain-source breakdown voltage
VIBRIOSS (1j)
b X VIBR/OSS (25 Oe)
aSP91
-0.20
10 -0.16
= l(rA)
'" ",1= -c
--
~ '25°((98%)
=
cO: , 150.~,"'J
" ·-1-_=, ~
-----
- - - , . -- I-- - -
1-:-
I- - --1-:------ -- -- -.- --I- - --- c-
-r-
. - - I-I---r-
5 r----
5
__. . --- - - ~
-~~ T; - -1------:--
1-'-
-:-1:-=
.
1
~
-_.
JJ--- =- ==1=:::
o
. :=+-1- --:-i=1=
I-:F-I-i==l=
5
1-1--
1--I- -
_.
J
-20
-30· V -40
- - - - <...
Vos
672
Siemens
-1
~-
-2
V -3
SIPMOS N Channel MOSFET
BSP 125
Preliminary Data
• SIPMOS - enhancement mode
VOS = 600V
• Drain-source voltage
/0 = .110A
• Continuous drain current
Ros(Dn) = 450
• Drain-source on-resistance
Po = 1.5W
• Total power dissipation
s
Type
Marking
Ordering code for
versions on 12 mm-tepe
Package
SSP 125
SSP 125
062702-S654
SOT 223
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
. Climatic category
Symbol
VDS
\.DOR
/0
IOpuls
V.s
Po
7j
Tat.
Ratings
Unit
600
600
0.110
0.44
:t20
1.5
V
V
A
A
V
W
-55... +150
55... 150... 56
DC
::;83.3
K/W
Conditions
RGS =20 kO
TA =39DC
TA =25°C
aperiodic
TA =25DC
DIN lEG 68 part 1
Thermal resistance
Chip - air
Chip - substrate rear side
RthJ'
Siemens
673
BSP 125
Electrical Characteristics
Condition
Static characteristics
Drain-source
breakdown vo~age
VeBR)OSS
600
Gate threshold vo~age
VGSeth)
1.5
Zero gate vo~age
drain current
2.0
V
Vas =OV
10 =0.25mA
2.5
V
Vos= Vas; 10 =lmA
TJ =25OC; Vos =600V
1j =125°C;Vos
loss
10.0
100
nA
loss
8.0
50.0
JlA
Vas =OV
=600V
Vas =OV
Gate-source leakage current
Drain-source on-state
resistance
I GSS
10.0
100
nA
V GS =2OV, Vos =0V
V GS =10V
30.0
AOSeon)
45.0
0
10=0.11A
S
VDS ",2*/0 • A DSo. max
10 =O.llA
pF
Vas =OV
Vos =25V
f =lMHz
Dynamic characteristics
Forward transconductance
g'l
0.06
0.15
Input capacftance
CII.
110
170
Output capacftance
Co ••
10
15
Reverse transfer
capacftance
Cr ••
B
10
Turn-on time 10 •
(Ion =1 dCo.) +t r)
Ideo.)
Turn-off time loll
(loll =1 dColI) +t f)
5
8
10
15
I deolll
18
25
I,
20
25
Ir
ns
=30V
=10V
10 =0.21A
Aas =500
Vee
VGS
Reverse diode
Continuous source
current
Is
Pulsed source current
ISM
Diode forward
674
on-vo~age
Vso
-
1.0
Siemens
0.11
A
0.44
A
1.4
V
VGS =OV
IF =0.22A
BSP125
Permissible power dissipation P'ol
= ((TA )
Typ. output characteristics 10
85P115
1.6
-r-r
W 1-- t"\-I-I- -~o, 1.4 f - I-- -[S~ -1.2 1-- f - -
1-\
- I -l-
~
f
"\
1.0
-"
f-I-
0.1.
- -I - -
1-- 1 - -1 - - -- - l - I - - _.
----
w
4~~: 'l'V-~I-V--I).--I-\-+--+--+- 35V
I-
0.06
-J WI7 -
Z:
"I -
~~~
~,
--t--i-il-"";;:;Ir--.--t-.-t--l
I--
.......
3{ -
--
I
V
--
_.1--
o r_-,---,-_.
o 2 4 6
'--
~
~- V- ,/
0.04
002
1---- -'I [S ,-
~
00
IV7'l--I--+-'I--+--I-4
rJ''-),-~""",l---lI-t--+-+-+--1
5.5V
0.08 I--
"\.
'-- - - -\ - l - I -
~
7V--
0.10 I-- - ~
0.2 f - - 1 - - -
o w
I-- 6V - -
0.12
1\
0.6 I- -- f - - _.- - - I-
o
:~
0.18
0.14 -
--1\
= V-V
~LD-k::::'---il--t---I-+--l
0.20
0.16
1--1-
0.8 I-
R
lo,=l5W
;tv=+_--J'~-"..,~--r;~~~-~;:;-4tt-._-l
ItO 0;2
- l -I -
85P125
I
0.26
= t(Vos)
I-- --I- 2 5V
1---
8
j
10 12 14 16 18 V 22
- - - TA
Typ. transfer characteristic 10 = {(VOS)
parameter: Vos = 25 V, tp = 80 jJS, ~ = 25 °C
Permissible operating area 10 = ((VOS)
parameter: 0
0.01, Tc 25°C
=
=
85P125
l-
I-
I-
=r~~~-
-
~~~
r\.
-
-
-
=1-
5
-
-.
q.f\
--
- --
5
~~~-:
~~=-~-.-
1- -'
1- --
-
- _.
-- - -
. 'p
It
-
T
,_
-,
-
~-
.~ '=::.
--
0.16
.U
~-
I
ms
\
II
10
ms
-
---
\IS
1100
?C ~
,-
rO.~
0.01
. \IS
i~ms
A
-
-
1--1- . -
--
0.12
0.08
....
0.04
-
LillJJllll I II
o
---Vos
85P 115
--
014
III
'p=
-
~
-I-.f--
D-!L~
--T_
-11U
..
-
~-:-
-- 1---'
I--
~
-.\<>~
-
o
I
2
I
3
4
5
6
7
8
V
-VGS
Siemens
675
10
BSP 125
Typ. drain-source on-state resistance
Drain-source on-state resistance
= ((f0)
ROSlon)
ROSlon)
parameter: VGS , TI = 25°C
140
~r:::
- GS
r
f- -_.- '-
1- -
I-- -c
80
7
/
20
1- ._.
l-
- - -./
/
tI
~
,...--:
~ __ 4SViL
.- - !- -
~
-
I-
J
.?
V
./
~
ssv 6V
I-
f-- I - I -
7v'~V ~V
008
012
016
020
I-
./
10V
20
t
-/
V-- L -
40
~
/
98%/
60
~
-.-
/
-
J L JL
004
- - . - 0-_-
--
- -- - - ==J=r±i±+
o
o
-
-I-- -
80
,..-
40
-
f--
/
1- -
60
4V
, - r-- -·1- -
1-- f--
A, (spread)
-8SPl15
r-l SV
-- " - -_. !.- -
-
= 10 V,lo = 0.11
B~P II~
V. =3V l-
\l I--
= (Tj)
parameter: VGS
V
/ 7'V ,/
./
,;- typo
i-
V V
I- -
o
-80 -60 -40 -20 0 20 40 60 80 100 120·C 160
A 0.26
-~
g,. =
Typ. transconductance
parameter: Vos = 25 V, Ip
Gate threshold voltage VGSllh) = f(TI)
parameter: VGS = Vos, 10 = 1 mA
(spread)
((/0)
= 80 IlS, 1j = 25°C
BSP11~
ssP liS
9"
S
I-~ --
1 016 -
--- ---
-
-- -
-
~V'L~
Vr-+--~-r-+--l-~I-t---I----~
r-!.--V- -
_. -
4t-+-~-r-+~-jl-+-~--j--r-1
1
r-
-1/1----
0 0 4 / - --- -
I--I--+--+-+-I---I---I---/-3
--I---j-+-+---1
1-1~i== ~I:::::
1--
--I---!-+-+--t--I--!--j---j
=:2;<-8°",,1'°+--+-_1-_1_+-_1
1--1--+--+- .~ -- I-- - - -I--t
br-- --- - 2 _ - ::-- r-;;,,_
1--1-) -- -- --j-I-t---!--+--j
0.08
I--!--I---+--I--I--!--t---I- - 1 -
\{;SlIhl
~~ - - ; ; ; r-~I-I--j--i
I-I----~--I---!012
S.-r--r-.--.---i-"-r--r---,--,r-r--l
,/
----
'{!:..
---t--t-I-I-I-
-;:;,f--t;::::~-..j.,~=
.:.:...~ %+-+--+=~-I:;:-i
.--1=.-
I--!--I-- - - - --- I--+--.f-. 1 - - - - ---..-- I I - r - - r - ' - - - - r - --1-1-j--t-+-+--j--f---I---+-t-I- I-o L - - L - _ _ L...- _ _ _ _ _ _-1--1-1--1-________ .•. 1---
-- ---·--I--!--I--+--1
~
004
0.08
0.12
0.16
A 0.22
-~
-/0
676
-60 -40 -20 0 20 40 60 80 100 120·C 160
Siemens
BSP125
Continuous drain current /0 = ((TA )
012
--- --- -
Drain-source breakdown voltage
V(BAIDSS (7j) = b X V(BAIDSS (25°C)
asp 115
---
--
A
A
10
r
10
120
b
010
009
1"4
006
110
007
106 -
-- --.
006
005
102
004
098
003
002
-1-- -- ----
094
001
o
---
o
20
1.0
60
80
-- ---- -
100
120
O(
-
090
- --- --. ---60 -40 -20 0 20 40 60 80 100 120 DC 160
160
-----r.,
Typ. capacitance C = ((Vos)
parameter: VGS = 0, (= 1 MHz
o
II
OSP 125
10
nF
B,P 115
~-=EE == .='1-
==___
I ---- -l./t-Zs. ~
I,
~=±=l
It::±=-±::-::-l=-
lS0 D C
10 '
Hjl
S
5
-V~p
----
.- _. -- v: ,,==:.:-: .
20
25
30
V
40
Siemens
----_=e:=- ___
__ ~_-=--=~~,=
.- --- -1-
- --r-
=-== - ~~~~ ~~~ ~:=.= -=1::::=
=
_. _.
-
_.
15
'I---:-
=
2S D C (98%)·-=:' - - -==
lS00e (96%) :~~+::--=
== - -- -- - -- =-:t=t=*=F=l=t=l
-
100 ~_L_
o 5 10
t~~ ~ fl----I-~l""~+-·+--1.-+--4---1
S =~-:I/
- --.
- _.
5
II
'-r--t=t:::-- - -- . '25~(t p :-=
:.....f:-.:.t=- =;=1=
T
A
[
1,.,
Forward characteristics of reverse diode
IF = ((Vso)
parameter: tp = 60 liS, 7j (spread)
--r- -- -r- -.- - .. r----
-- _. --- _._. - -- _.
.._--_.-:.- --.-. -.- -- -. -- - - 1 - - - -
V 3
-Vso
677
SIPMOS N Channel MOSFET
SSP 129
Preliminary Data
•
•
•
•
•
81PM08 - depletion mode
Drain-source voltage
Continuous drain current
Drain-source on-resistance
Total power dissipation
S
Ves = 240V
Ie = 0.19A
ReS(on) = 200
Pc =1.5W
Type
Marking
Ordering code for
versions on 12 mm-u:pe
Package
B8P 129
B8P 129
062702-8510
80T223
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Ves
\,bGR
Ie
I Dpuls
V.'
Pc
7j
T.t.
Ratings
Unit
Conditions
240
240
0.19
0.57
±20
1.5
V
V
A
A
V
W
=20 kO
TA =29°C
TA =25°C
aperiodic
TA =25°C
-55 ... +150
55 ... 150... 56
°C
$83.3
K/W
DIN IEC 68 part 1
Thermal resistance
Chip - air
Chip - substrate rear side
678
RthJA
Siemens
RGS
asp 129
Electrical Characterlatlca
Condition
Description
Static characterlstlca
Drain-source
breakdown voRage
V(BR)DSI
Gate threshold voRage
VaS(th)
Zero gate voRage
drain current
I Dss
240
-
-
V
Vas =-3V
ID =0.25 rnA
-1.8
-
-0.7
V
VDS= 3V;
ID =1mA
100
nA
1j =25'C;
VDS =240V
Ves =-3V
I Dss
200
IlA
1j = 125'C; VDS
=240V
Ves =-3V
Gata-source leakage current
Drain-source on-state
resistance
I ass
-
RDS(on)
10.0
100
nA
Vas =20V, Vos =OV
Ves =OV
I D =.014A
9.5
20
0
S
VDS .. 2* I D * R DSon max
I D =0.25A
pF
Ves =OV
VDS =25V
f =1MHz
Dynamic characterlstlca
Forward transconductance
g'l
0.14
0.2
-
Input capac Hance
ClIO
-
110
-
Output capacRance
Co ••
20
Reverse transfer
capacHance
Cr••
5
Tum-on time ton
(t on =t d(Gn) +t ,)
Turn-off time t olf
(t olf =t d(G'" +t I)
t d(on)
-
10
t,
15
t dColf)
80
tI
-
Continuous source
current
Is
-
Pulsed source current
ISM
-
Diode forward on-voRage
VSD
-
Reverse recovery time
trr
Reverse recovery charge
Or,
ns
-
VCC =30V
Ves =-2V... +5V
I D =0.25A
Ras =500
150
Reverse diode
0.7
-
Siemens
0.15
A
0.45
A
1.4
V
Vas =OV
IF =O.3A
-
ns
VR =100v, IF = 10 R
d/ F Idt = 100A/lls
-
IlC
VR =100V, IF = ID R
dlF Idt = 100A/IlS
679
SIPMOS N Channel MOSFET
SSP 135
Preliminary Data
• SIPMOS - depletion mode
• Drain-source voltage
• Continuous drain current
S
Vos = 600V
• Drain-source on-resistance
• Total power dissipation
10 = 0.100A
RDS(Dn) = 600
Po = 1.5W
Type
Marking
Ordering code for
versions on 12 mm-tepe
Package
SSP 135
SSP 135
062702-S655
SOT 223
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vo•
YbGR
10
J Opul.
V.a
Po
7j
Tatg
Ratings
Unit
Conditions
600
600
0.100
V
V
A
A
V
W
=20 kO
=27"C
TA =25 D C
aperiodic
TA =25"C
0.30
±20
1.5
-55 ... +150
55 ... 150... 56
Thermal resistance
Chip - air
Chip - substrate rear side
680
RthJA
::;83.3
Siemens
RGS
TA
DC
DIN IEC 68 part 1
SSP 135
Electrical Characterlstlca
Condition
Static characteristics
Drain-source
breakdown voHage
V(BR)DaV
600
Gate threshold voHage
VaS(lh)
-1.8
Zero gate voHage
dreln current
I DSV
-
Drain-source on-state
resistance
-
Vas =-3V
ID =0.25 rnA
-0.7
V
VD.= 3V;
ID =lrnA
100
nA
1j =2S'C;
VDS =600V
200
/lA
Vas =-3V
' DSV
Gate-source leakage current
-1.2
V
I ass
-
1j = 12S'C; VDS
=600V
Vas =-3V
-
10.0
45.0
RDS(on)
100
60.0
nA
Vas =20V, VDS =0V
Cl
Vas =OV
I D =10rnA
Dynamic characteristics
Forward transconductance
9,"
0.01
S
0.04
VDS ",2* I D * R DSon max
ID =10mA
Input capacnance
CII I
-
110
Output capacHance
Co ••
-
20
Reverse transfer
capacnance
Cr ••
Turn-on time ton
(t on =t d(on) +t,)
Turn-off time t off
(t off =t d(olf) +t ,)
5
t d(on)
10
t,
10
t dColf)
t,
-
-
15
25
-
-
pF
ns
-
-
Vas =-3V
VDS =2&1
f =lMHz
Vee =30V
Vas =-3V... +5V
I D =0.2A
Ras =500
Revense diode
Continuous source
current
Is
Pulsed source current
ISM
-
Diode forward on-voHage
VSD
-
Reverse recovery time
trr
-
-
Reverse recovery charge
Qrr
-
-
0.90
Siemens
0.100
A
0.300
A
1.30
V
Vas =ov
IF =0.2A
-
/ls
VR =l00V, 'F = IDR
dl F Idl = l00A//ls
-
/lC
VR =l00v,/ F = I DR
d/F Idl = 100A//ls
681
SSP 149
SIPMOS N Channel MOSFET
Preliminary Data
• SIPMOS - depletion mode
• Drain-source voltage
• Continuous drain current
S
Vos = 200V
• Drain-source on-resistance
• Total power dissipation
10 = .44A
Ros(on) = 3.50
Po = 1.5W
Type
Marking
Ordering code for
versions on 12 mm-tape
Package
BSP 149
BSP 149
Q67000-S071
SOT 223
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
\.bGR
10
J Dpuls
VB.
Po
7j
T.I.
Ratings
Unit
200
200
0.44
1.32
±20
1.5
V
V
-55 ... +150
55 ... 150... 56
Thermal resistance
Chip - air
Chip - substrate rear side
682
RlhJA
::;83.3
Siemens
A
A
V
W
Conditions
=20 kO
TA =28"C
TA =25°C
aperiodic
TA =25°C
RGS
°C
DIN IEC 68 part 1
BSP 149
electrical Characterlatlcs
CondItIon
StatIc characterIstIcs
Drain-source
breakdown vo~age
V(BR)DSV
200
Gate threshold vo~age
Vas(th)
-1.8
Zero gate vo~age
drain current
I DSV
-
-
-
V
-0.7
V
VD.= 3V;
ID =1mA
0.2
pA
1j =25'C;
VDS =200V
Vas =-3V
ID =0.25mA
Vas =-3V
IDSV
-
200
pA
1j = 125'C; VDS
=200
v
Vas =-3V
Gate-source leakage current
Drain-source on-stste
resistance
I ass
10.0
3.0
RDS(on)
100
3.5
v
nA
Vas =20V, Vos =0
n
Vas =OV
I D =30mA
DynamIc characteristics
Forward transconductance
gl.
0.4
1.0
Input capac~ance
C ...
-
400
Output capac~ance
Co ••
Reverse transfer
Cr ••
capac~ance
Turn-on time ton
(Ion =1 d(on) +t r)
50
-
t d(on)
15
Ir
10
II
-
Continuous source
current
Is
-
Pulsed source current
ISM
-
Diode forward on-voHage
VSD
Reverse recovery time
I rr
Reverse recovery charge
Q,.r
Turn-off time I off
(I off =1 d(off) +t I)
15
I d(off)
100
-
S
VOl :.:2' I D * R DSon max
10 =O.44A
pF
Vas =OV
VDI =25V
f =1MHz
ns
-
40
Vee =30V
Vas =-2V... +SV
10 =O.29A
Ras =500
Reverse dIode
0.9
Siemens
0.44
A
1.32
A.
1.2
V
Vas =OV
IF =0.88A
ps
VA =100v, IF = ID R
dlF Idt = 100Nps
pC
VA =100v, IF = I DR
dl" Idt = 100Nps
683
SSP 295
SIPMOS N Channel MOSFET
Preliminary Data
• 81PMOS - enhancement mode
VOS = 50V
• Drain-source voltage
10 = 1.7A
• Continuous drain current
Ros(on) = .30
• Drain-source on-resistance
Po = 1.5W
• Total power dissipation
s
Type
Marking
Ordering code for
versions on 12 mm-tape
Package
SSP 295
S8P 295
067000-8066
80T223
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
ItbGR
10
I Cpula
V••
Po
Ratings
Unit
50
50
1.7
6.8
±20
1.5
V
V
684
A
V
W
=20 kO
TA =25°C
TA =25°C
,aperiodic
TA =25°C
RGS
7j
T.,.
-55 ... +150
55 ... 150 ... 56
Thermal resistance
Chip - air
Chip - substrate rear side
A
Conditions
R'hJA
~83.3
Siemens
°C
DIN lEG 68 part 1
BSP295
Electrical Characterlstlca
Condition
Static characteristics
.
Drsln-source
breskdown voHage
V(BR)OSS
50
Gale threshold voHage
VGS(th)
0.8
1.2
Zero gate voHage
drain current
loss
·
1058
I GSS
Gate-source leakage current
Drain-source on-state
resistance
Dynamic characteristics
ROS(on)
V
VGS =OV
10 =0.25 rnA
2.0
V
Vos= VGS; 10 =1mA
0.1
1.0
pA
TI =25'C; Vos =50V
VGS =OV
·
8.0
50.0
pA
TI =125'C;Vos =50V
VGS =OV
·
10.0
100
nA
·
ROS(on)
0.2
0.3
0
0.4
0.5
0
Forward transconductance
g,.
Input capacHance
CI..
370
550
Output capac Hance
Co ••
110
170
Reverse transfer
capacHance
Cr ••
40
60
Turn-on time Ion
(Ion =1 d(on) +t r)
Turn-off time loll
(1011 =1 d(off) +t,)
0.5
1 d(on)
Ir
1 d(olt)
I,
1.4
8
12
15
25
100
150
75
110
VGS =20V, Vos =0V
VGS =10V
10 =1.7A
VGS =4.5V
10 =1.7A
S
Vos ",2* I 0 * R OSon max
10 =1.7A
pF
VGS =OV
Vos =25V
f =1MHz
ns
Vce =30V
VGS =10V
10 =O.29A
Ros =500
Reverse diode
Continuous source
current
Is
Pulsed source current
ISM
Diode forward on-voHage
Reversa recovery time
·
1.7
A
·
6.8
A
Vso
1.0
1.5
V
Irr
·
ps
VGS =OV
IF =3.4A
VR =100V, IF = 10 R
diF /dt = lOONps
Reverse recovery charge
Orr
·
.
pC
VR =1oov, IF = I OR
diF /dt = looNps
Siemens
685
BSP 295
Permissible power dissipation PIOI
=f(TA )
Typ. output characteristics 10 = fIVes)
16
40 --
W
14
Fi'o; = i.~w -
12
19,)
ri - -: =i~
A -- \ -
P.o.
a~r
\{;s=10V
(/-I--I---I--I--j.-I- 4 S V
30 -
"I/_-'5SV
'II .--- -~:::::
2.5 ----
10
~y
--4V
0.8
2.0 t--
~-
06
1.5 -
rl--~- __________ .__ ._3~::'
04
1.0
--I- -
-~
1
0
,:::: -. -.-- ----r--..
1/
02 -0
_._-- -_.
0.5
20
40
60
80
100
o
120 140 0 ( 160
.. --
3V
--- ._._-
--r-
_____~1!v
'/
o
4
3
-- TA
2W
V
5
- - - Vos
Permissible operating area /0 = fIVos)
parameter: 0 0.01. Tc 25 °c
=
---- --- -----
Typ. transfer characteristic Ie = fIVGs)
parameter: Ves = 25 V. Ip = 80 115. Tl = 25 OC
=
A
10
--
4.5 --._-1----
:: ~~ ~- ---~~~j~{~~~--:~~~-~~- ~=
30 -----
---~-I1-~ --- -- -----
- _.--- --
2.5 -- ---1--.1-- - - - - - .--- -.- ---I-2.0 1-1-- -
~fl--
IS
-----------
:: ----/----~~= - - - - --~=
o~
o
- - -.. -
686
Vos
Siemens
1
2
3
4
5
6
1
8
V
10
l3SP 295
Typ. drain-source on-state resistance
ROS(onl = f (10)
parameter: VGS , 7j = 25 °C
3~t·.,i.v
Vus =25V- jv---
09
Drain-source on-state resistance
. ROS(onl
= f{T,)
parameter: VGS = 10 V,lo = 1.7 A, (spread)
Rc"r7q~,
4.5V
055
5V"
R~,.", 0"=/== .=- ~=-
11
Rn ... tofll 045
040
06
0.35
030
025
5.5V
_.,
01
6V
BV 9V
0.10
lOV
---
·-·~I
005
o
0
A
0
4
-80 -60 -40 -20 0 20 40 60 80 100 120
-------10
------
9,. = f(lo)
Typ. transconductance
. parameter: Vos = 25 V, Ip
160
Gata threshold voltage VGS(thl = f{T,)
parameter: VGS = Vos, 10 = 1 rnA
(spread)
= 80 \1S, T, = 25 OC
BSP 195
22
S
9"
"
O(
v
18
16
14
1.2
lO
oB
0.6
04
02
0
0
4
A
5
o-
-60 -40 -20
0
20 40 60 80 100 120
°c
160
-r,
Siemens
687
BSP 295
Continuous drain current 10 = f(TA)
Drain-source breakdown voltage
VIBR)OSS (7j) = b X VIBR)OSS (25 °C)
1 8 r---"---r---'!~ l~~_-r--r--r---'
r-i"-..
A I - - I-- 1.16 I-- -
10
A
10
"'"
1 4 I----+.---f---f--'"< +-+--+-+-j
'\
1.12
r----~--- .---I---i
12
I - - ----.-- - -
1.0
t------+---1---+-+-.1\
o
102
100 I--I-0.98 I-0.94
____ ._______._1
o
20
40
60
80
100
120
°(
-
i-- e---
0.96 I--
--- I-- - ,.- I-- - I -
/
-- :-.- '-- -- /- -
106
rt-
-- -
.- -
104
1----+--.. - - - - -
- --
-
'-- ----
- -. r-I-- ---
1 1.08
r\:=
o2 I----+----f---f---- --- - - -
-
110 I--
:: I--r-------~_= _____
----1--1\04
114
--10
BSP19S
1.20
---
"/V-
V
V-
2
VI--
--- I -
-- I--
~- : - -- - -- I--
I-
-
1----
-- -
/
f-- I--
092 L I-- - I -I-- -- 1---0.90 -- -- - - --'- ._- '---- , -60 -40 -20 0 20 40 60 80 100 120 O( 160
__ l - .
160
-----.---. - TA
Typ. capacitance C = fWos)
parameter: VGS = 0, f = 1 MHz
10
1
o-:c_: -_::::c:
.:-0 ..
--- -_. -.. - j
'I
.-~
. -.-- -. - ._-
asp 29')
--::_-=
:-::-:-._ =-= .:::: __ .___"_
-----. ----- - - -~---i
.
11"--!-"'--+__..:._--_.+-_-_-'_4_-__~c.,,-
__
c
..
~" ~~L:': _=-=-
150°(198%)
25°( (98%)
t
10'
_.
10- 2
5101~202530V
40
--.--..--- Vos
688
-- ... --
-
L-'C_Jl---'ILL...L..LJ-..L_L-JLJ--L-----L...L..J
o
2
----VSO
Siemens
V
BSP 296
SIPMOS N Channel MOSFET
• SIPMOS - enhancement mode
• Drain-source voltage
VDS = 100V
• Continuous drain current
ID = 1.0A
• Drain-source on-resistance
• Total power dissipation
S
Ros(onl = 0.80
PD = 1.5W
Type
Marking
Ordering code for
versions on 12 mm-tepe
Package
SSP 296
SSP 296
Q67000-S067
SOT 223
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
VDGR
ID
I Dpuis
Vg.
PD
7j
Totg
Ratings
Unit
100
100
1.0
4.0
:!:20
1.5
V
V
A
A
V
-55 ... +150
55 ... 150 ... 56
Conditions
RGS
=20 kO
TA =25°C
TA =25°C
aperiodic
TA =25°C
W
°C
I
DIN IEC 68 part 1
Thermal resistance
Chip - air
Chip - substrate rear side
RthJA
:583.3
Siemens
689
BSP296
Electrical Characteristics
Condldo"
StatIc characteristics
Drain-source
breakdown voltage
V(BA)DSS
Gate threshold voltage
Vas(th)
Zero gate voltage
drain current
100
0.8
' DSI
I DIS
-
-
V
Val=OV
'D =0.25 rnA
1.2
2.0
V
0.1
1.0
/JA
VDI = Val; ID =1rnA
7j =25"C;
VDI =100V
Val =OV
-
8.0
SO.O
/JA
7j = 12SOC;VD1
=100V
Val =OV
RDS(on)
-
Forward transconductance
g,"
Input capacHance
C,"
Output capac Hance
COli
Reverse transfer
capacitance
C rol
Gate-source leakage current
Drain-source on-state
resistance
I ass
RDI(on)
10.0
100
nA
Val =2OV, VDS =0V
Val =1OV
I D =1.OA
Val =4.5V
I D =1.OA
0.55
0.8
0
0.95
1.4
0
0.5
1.1
-
S
VDI ~2· ID
ID=1.0A
-
400
600
pF
65
100
Val =OV
VDI =25V
f =1MHz
20
30
ns
VCC =3OV
Val =1OV
ID =0.29A
Ral =500
Dynamic characteristics
Turn-on time ton
(t on =t d(on) +t ,)
Turn-off time t off
(t off =t d(ofl) +t,)
t d(on)
t,
t d(off)
t,
-
Continuous source
current
'I
-
Pulsed source current
ISM
-
Diode forward on-voltage
VSD
-
Reverse recovery time
trr
Reverse recovery charge
Or,
7
10
10
15
100
1SO
50
75
* RDSon max
Reverse diode
690
-
0.9
1.0
A
4.0
A
1.3
V
Val =OV
I, =2.OA
-
-
/Js
VII =100v, I, = IDII
dl, /dt = 100A//J.
-
-
/JC
IDII
VII =100v, I,
dl, /dt = 100A//J.
Siemens
=
asp 296
Permissible power dissipation P iol
= ((TA )
Typ. output characteristics 10 = ((Vos)
P -'296
1.6 ,---,---,---,_-,--,--,,--iB:,:Si-1 :,-,---"---,,,-;
2.4
W ~-+,~+-+4-+-1--~+-~-~~4~
1.4
r-t-t--t'\. -
-
H---t--t-I\-' -
1.2
10
-
-I--I---~+__I---I
- --f- -
-- -. ,-- - ---
-
\.
- -
-- ---
----:--~-
r-:-----~. --------.. - :\ - - '-1--- - . - f--:-r---r-\--r-----~
0.8 -r-:-i- -- -1- - ,
0.6
0.4
A
- -- - --I-
:=
::::r:=~I::::==:::: -~ -~ \ - ~....~. - -I-I--~------~-I---I-
0.8
f--+-+-t- -. --. -- -- - -....-\ - -.. - -
H-I'--I--t- - . - - - 0.2 -- - - - --_.
--
a- .
a 20
--- ---
40
. --
t\1---
---f\-
_.-
60
0.4
.\---
80
100
120
.(
a
a
160
Permissible operating area 10 = ((Vos )
parameter: 0 = 0.01, Tc = 25 DC
BSP 296
-=tI-7'='"
== ,\'"
--
V
"-, -
,,--
-t -
10)Jsr
-
~--
-
=:1. -~-=- ---
:::::::' ~-
~~
'\
-- -
--
t==
;~.
p
O=!!:..
T
T
f
_UWlllLilL
5
.
--
..
:
.
16
10ms.~-
.
------ --
.
--I -
---.-~
.
=:--~-l-- ~-~ -~ ~~ ~-=- --
-
--
1--+--+--+-- . -
100)Js
.
___ BSP~ ________
10 28 - - - -
1ms - - -
~ .;~..:.. 5 I--
A
32
001)Js - -
-1--=__
-1'
-I.....,"
\.-
.'\
36
~-:
..
//
-«-"''X
-
.
,-\",'"
-
5
-
--
:-.- t=-- -
j'
Typ. transfer characteristic 10 ", f(VGs )
parameter: Vos = 25 V, tp - 80 IlS, ~ = 25 DC
12
j~ ~~::
----0--- --
--
---
~
--- -- - --- --
.....
-1--- --
. -
I-+-+--I~-+--I--
.
-- -
.... --
.-
--.
-- . . . -
100ms" -
-
-i1
..
-
I-...L--J-..J.-I-.-I--I-- -
--
--I-~-+---
DC
5
10 1
Siemens
- .. - --.. -
--- --"-V
691
10
BSP 296
Typ. drain-source on-state resistance
ROSlon) = ((10)
parameter: VGs • TI = 25 "C
Drain-source on-state resistance
ROSlon)
n
n
= 10 V. 10 = 1.0 A. (spread)
-- - - - - - ~SP!.2.6 - - - r _
1.8 -
2.6 .--..-..--.---.----,"-"--r'-'--,------,-.--.-..,--',
1--1--1--1--1--- -.- ---- --
h~+-+-
22
R
ost ~:
I
= ((TI)
parameter: VGS
ROSlon) 1.41-+---'1-1-1-- - --
t
1.4 r--1'-T"-r---,1.2 r-"C.:..o--l
1.0
0.81~~~
0.6~
-...!
--J--If-l
/
---I--~I-/-1f-l
---17 /--- -
f--t-l-I
1.6
--
1 . 2 - - - - - --- -
V--7~
O.S
~-r- -V----0.6 ~I-l-..,..g..'/.- - t~/ ~I-- - - - 10
.
-f------'-=- - / - - -
98%
....................... - - - - - _.. ---
r....
0.4
_\S5V 6V 8V 9Vl0V
~: ~-1-j_-1-- -+-~t~j
a
0.4
1.2
08
0.21-+-+-+ 1-+-+--1--1---------t--t--+--I
g,. =
Typ. transconductance
parameter: Vos = 25 V. Ip
1.4
../'"
12
I1
1.0
V
V
i
08
0.6
rl- Ir
t -fII
I
0.4
02
a
a
692
-
!
i
I
I
i
,
iI
1
i
l-
I
f-+-+--I-- I-- - --- - -- ---1- - - - 1 - - - - - - - 1 - - '-14
----.-- - - - f - - - I - - -- --:- ---1- - - - - 1 - - - --1--- -
3
--
"-+-1-
-- -- --- - I V 1--1-- --c-- 1 - - - - - - - ----I--
..... ~
-,-
-
-
- 1- -
--
._--- -- .~
---11-----
~f..--;-I--
1-1--
---- -
-- ---I-
-
==,=
--+-- - --:--
%-=
f-+--+--+---l---+-I::::j::::; :::::-
f-f-I-
-- - -
.•:.::+-- !~6
2
.- - l -
- -- -
- -- -
2
-
f-+--+---I--+---1--I--+---1-- ---I-f-+-+--+--I--I--I-I- r - - f-+-+--+--+--I--I---II- -- - - f-+-'+--I--1--'-\- ---t-- -- -.--.-
--1-- --
8
-'--r--
I-- - 1 - - - -
""V
-- f--I-
- -
BSP 296
5
Vk
--
Gate threshold voltage VGS(lh) = ((1j)
parameter: VGS = Vos. 10 = 1 mA
(spread)
((10)
1-- --- 7 L
S
- . 1 - . - - -...
-80 -60-40 -20 0 20 40 60 60 100120 O( 160
_T)
= 80 IlS. 1j = 25 °C
BSP 296
1.8
q"
o '-- ___ .._ .__
2.0 A 2.4
10
1.6
1-
-r--..
~
___ typ.- - - ":~i'--
__ ':;'--I---~~,:::,-
~ - -11-~--+--"'-'f-'-=r-'--/-_==--j--j
I--f-t---t-- I--I--I---t-----C- -=-1-f--f--I--~-- - --I-f---!--I-
'--'--
3 A 3.4
Siemens
o
,
- 60-40·20
a
20 40 60 80 100 120 0 ( 160
BSP 296
Continuous drain current /0
= f(TA )
Drain-source breakdown voltage
V{BR)OSS
SSP 296
1.1
(T))
=b
x
V{BR)OSS
(25°C)
SSP 296
10
1.20 ,-,-,---,----- ---- -A
A
1.16
[0
0.9
b 1.14
0.8
1.12
1.10
0.7
1.08
0.6
1.06
1.04
0.5
0.4
100
0.98
f--~-j"'--- -1- . i
0.2
0.96
-~-
0.1
0.92
0
20
40
60
80
100
120
O(
160
I
'
-~ i
. . j. -_. -
1--i
--- -- --..-J
~
Fj
I--V-t-_I I 1-1- i-I
0.90
- 60 - 40 -20 0
0
-1----
.. -....
0.3
0.94
-I--
I
1.02
20 40 60 80 100 120 "C 160
_T~
Typ. capacitance C = f(Vos)
parameter: Vos = 0, f = 1 MHz
Forward characteristics of rever•• diode
lr = f(Vso)
parameter: tp = 80 115, T, (spread)
103
BSP 296
11
~==-==_--.-:=~~
pF
5 ~\:::, - - - - - - - - - - - - - [",~- -
[
-1-----.-----
-1 1\
r-.....
10 2
5
=-:::::=:--
f--
5
r&~i~;~'!~rm "
1=!==::::II=rt~~ 25°((98%)= :,-
f=f= -- ~-
t= ~~5?1~(9:~%)
.
·---'-~--r--4----
~_r--.t--...
105
10
~~-~ ---r--t---t--- --i~
~
1
1, '::
-
['SS_
1-1-
~~~!~~I~t~~t~
1--
i----f--
f--.-t--+--- - -
~~
--
5 ~f=
- '--- - - - - --- ---1---
1--1--+---1-- -
- I - -- .... - ..
1
10- 1 l=!==j:lItlll==l=i= t=-=j.=-
__ ~-=
1--- --
-
1-1--
---- - - 1 , -
~I- --
1-'-= --~ -:.: :::"
=--
1- - - - _. - - --
I - -- -
-- --- .. ---
H-II-Hf-t-+--f- -. -- --
--._--100 ' - - - - ' - - - " - - - ' - -
o
10
---- -
' - ' - - - - . _.._--
20
30
V
40
2
v
---Vos
Siemens
693
SIPMOS N Channel MOSFET
BSP 297
• SIPMOS - enhancement mode
Vos =,200V
• Drain-source voltage
10 = 0.6A
• Continuous drain current
RoS(on) = 2.00
• Drain-source on-resistance
Po = 1.5W
• Total power dissipation
S
Type
Marking
Ordering code for
versions on 12 mm-tepe
Package
BSP 297
BSP 297
067000-S068
SOT 223
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
\-bGR
10
I Dpuis
V••
Po
7j
Tot.
Ratings
Unit
200
200
0.6
2.4
±20
1.5
V
V
A
A
V
-55 ... +150
55 ... 150 ... 56
Thermal resistance
Chip - air
Chip - substrate rear side
694
RthJA
:583.3
Siemens
W
Conditions
Ros =20 kO
TA =25°C
h =25°C
aperiodic
TA =25°C
°C
DIN IEC 68 part 1
BSP 297
Electrical Characteristics
Condition
Static characteristics
200
-
-
Drain-source
breakdown vottage
V(BR)DSS
Gate threshold vottage
VaS(th)
0.8
1.2
2.0
V
VDS = Vas; ID =lrnA
Zero gate vottage
drain current
IDSS
-
0.1
1.0
J.lA
1j =2SoC;
V
Vas =OV
I D =0.25 rnA
VDS =200V
Vas =OV
8.0
IDSS
50.0
J.lA
1j =12SoC;VDS
=130V
Vas =OV
Gate-source leakage current
I ass
-
10.0
100
nA
Vas =20V,
Drain-source on-state
resistance
RDS(on)
-
1.6
2.0
0
I D =0.6A
2.0
3.3
0
RDS(on)
VDS =0V
Vas =10V
Vas =4.SV
I D =0.6A
Dynamic characteristics
Forward transconductance
g,.
input cepecttance
ClIO
Output capacHance
Reverse transfer
capacHance
0.5
0.9
420
630
Co ••
40
60
Or ..
10
15
t d(on)
Turn-on time ton
(t on =t d(on) +t,)
t,
Turn-off time t olf
(t olf =t d(olf) +t,)
t,
t dColf)
8
15
10
15
100
150
40
60
S
VDS ;,,2* I D * RDSon max
I D =0.6A
pF
Vas =OV
VDS =2SV
f =lMHz
ns
Vee =30V
Vas =10V
I D =0.29A
Ras =500
Reverse diode
Continuous source
current
Is
0.6
A
Pulsed source current
ISM
2.4
A
Diode forward on-vottage
VSD
1.1
V
Reverse recovery lime
trr
-
0.85
J.ls
Vas =OV
IF =1.2A
VR =100V, IF = ID R
Idt = 100NJ.ls
diF
Reverse recovery charge
Qrr
J.lC
Siemens
VR =lOOV, IF = I DR
d/ F Idt = 100NJ.ls
695
BSP297
Permissible power dissipation Ptot = (TA )
SSP /97
1.6
W ......
14
~.t
Typ. output characteristics J0 = (Vos)
-
"'
,-,- - \
1\
.r\.
1.2
i\
1.0
-'-
'-'0.8 '- .- f---,- ~-- '-'-
i\
\
06
:-..
~
0.4 1-"-1-- -e-- 1- -
1-- -- -02 1-1-
_._. H-
-1- 1-1--
'-'-
1-'- --'- - -'- ---- 1 - -
o 'o
..
20
--
_-,- -
40
60
80
1\
100 120 140 °C 160
- - - - TA
---Vos
Permissible operating area 10 = t(Vos)
parameter: 0 = 0.01, Tc = 25·C
Typ. transfer characteristic 10 = (VGs )
parameter: Vos = 25 V, tp = 80 liS, TI = 25 OC
SSP /97
2.6
,-.-
A
2.2
10
I--1--
2.0
j
1.8
I
1.6
I
II
14
12
1.0
I-- I---
0.8
I
I
0.6
0.4
1/
02
o
-Vos
696
Siemens
.J
o
2
3
4
5
6
7
8
V
10
BSP297
Typ. draill-source on-state resistance
f.!reln-Iource on-Itete reliallhCe
ROSlon) ,,;, ([D)
ROSIOn) - (T)
parameter: VGs • 1j = 25°C
6.5
Q
I I I
- -
ROSfonl
50 4.5 -
li
7
:/
l- I-
r- - -
-
-
3.0 - .;.;;.. i..- ~
I---" i/
-
1.5
1.0
-
--. ----
~I.::;:~
-EI-t=
-=_.
o
0.2
0.4
0.6
~
35V
It
v
--
=1=1=
- r-
S
-
l-i-
--I -
1.3
g"
1.2
1.1
-- -. _.
,-- - --
0.9
0.7 1-0.6 I 0.5
OJ
02
0.1
~
-
t
os
~-
L-. 1 _
1.2 A 1.4
V
-- --
/
"'/
/"
/"
V
/
{yp
...- .' .....V
o
-80 -60 -40 -20 0 20 40 60 80 100 120 °C 160
Gate threshold voltage VaS(lh) = f(1j1
parameter: Vas = Vos. 10 = 1 rnA
(spread)
5
BSP 291
I- -
v I - f--
/7
- 1- -
1- -
V-- I -
:- -
","
/
-
V
V
,/
1.5
t-- t--
7
-
l-
/
'.-
r-
0.8
0.4
V
Z
I
r-
- r- -
98%
-- I -
2.0
1.0
-- ----
/
~
1.0
~-
4V
-I-
_-
V
2.5 I -
5V4.~V
1.0
191
,- SSP
-,---
.
-
4.0
Typ. transconductance gr, = f(lo)
parameter: Vos = 25 V. tp = 80 liS. TJ = 25°C
1.5
-. ---
.. - ..
.--- -- -_. _ . .. -/
1-
30
.- - I-
0.8
I - -- -
_.-
3S
- --
I-
~
ROSlonl
._. --I-
10V 9V 8V 6V 55V
-
05 ,-
o
-
/-
2.0 -.
--_.
..
--I
p...- ~
1-= l- I-
--
2.5
-
I-
4.0
Q
.- -
1--
l-
- 3V- --- - -
BSP 297
--- -_. _.
5.0 r - -
I
-- -Vijs=2.5V
--
5.5 -
3.5
parameter: Vas - 10 V./o "" 0.6 A. (spread)
BSP 197
- l-
-~
-
o ,- .- _.- ' - - .-- - -04
0.8
12
o
p,.
.- -
_L-
1.6
I-
-. ,...-
____
20 A 2.4
98%
- -~
~- -'" tr- -
--
--- - -
.
r- r ;;;;:-
-- - -
-- I- - -- I ._- --
l-
I-
o
-
-60 -40 -20
r-
typ
~
- 2%
'-
r--,.
r-.
- '- -
0 20 40 60 80 100 120·C 160
-----10
Siemens
697
SSP 297
Continuous drain current to = '(TA )
Drain-source breakdown voltage
V(BRIOSS
BSP 297
065
0.55
10
0.50
I
0.45
040
10
A
"""""
- - - - f-~
---
b
K
\
1. 04 '---
1.00 e-- --
0.05
80
100
0.96
0.94
-- .-l
------ , -. - -
120 O(
l2
0.98 I---
:\
010
60
i-
160
-
I---
0.92
v-
_. V- I--/
- -- /
--;/
/
- --I -I -
102
~f -
0.20
015
I---I---
/
106
1\
40
-
I---I---
1 08
025
20
'--
1.10 c- .- 1 - -
""
-
1.14
1.12
0.30
1---- -- c -
I--
1.16
035
oo
(25°C)
X V'BRIOSS
SSP 191
120
-
A
(7j) = b
/
V-
i-- -
-- I -
1c_
/-
-I--i--
-
0.90
-60 -40 -20
0
_. - - - - - - ' -
20 40 60 80. 100 120 O( 160
-----r,.
Typ. capacitance C = f(Vos)
parameter: VGS = O.
1 MHz
Forward characteristics of reverse diode
,=
tT-
c
pF
,\-\.
parameter: tp
-1---
-
-=:\ -- =
--I-
s
..........
10 '
-.;
=
=--.
5
[ oss
----
.- -I--. 1---- e--
..
7
£(
~=
===
=== - i. ~ =
==
=-=---
I- I- 10 0
698
.-
-.
L-LJ _
o
5
10
15
20
25
30
V
40
Siemens
-
-- --
_.
= == --=c = = =
--~
--
""-150 0 ( typo -
10" - 5
__- .- - -
---- - f -/>- 2S 0 ( typo
-Crss
11
.-.
A
[ISS
:-= - - --- - -
-.....;
= 80 Ils. 7j (spread)
sSP lq7
10 '
\1
I
h= f(Vso)
11
SSP 197
- ~Jl-ll
. .::. I
.
- --,---
. -::--25°((98%)
_'::150 O( (98%)
I--
f-~~
i - -.
f--I-c--
'-- L_
L._
2
V
3
ssp 315
SIPMOS N Channel MOSFET
• SIPMOS - enhancement mode
Vos = -50V
• Drain-source voltage
10 = -1.0A
• Continuous drain current
ROSCon) = .950
• Drain-source on-resistance
p.o. = 1.5W
• Total power dissipation
s
Type
Marking
Ordering code for
versions on 12 mm-tr.pe
Package
BSP 315
B8P 315
067000-8027
SOT 223
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Ratings
Unit
-50
-50
-1.0
-4.0
RGS =20 kO
TA =25°C
TA =25°C
TA =25°C
V.c
~20
V
V
A
A
V
p.o.
7j
T.t.
1.5
W
-55 ... +150
55 ... 150... 56
°C
:$83.3
:$10
KNJ
Vos
I.ilGR
10
IOPuIs
Conditions
aperiodic
DIN IEC 68 part 1 ,
Thermal resistance
Chip - air
Chip - substrate rear side
R.hJA
R.h JSR
Siemens
699
BSP 315
ElectrIcal CharacterIstIcs
at TJ =25'C, unless otherwise specified.
Condition
Parameter
Static characteristics
Drain-source
breakdown voHage
V(BR)OSS
-50
Gate threshold voHage
VaS(th)
-0.8
-1.2
-2.0
V
Vas = Vos
10 =1 rnA
Zero gate voHage
drain current
loss
-
-0.1
-8
-1
-50
Jl.A
Jl.A
1j
1j
V
Vas =0
10 =0.25 rnA
=25'C
=125'C
Vas =0
Vos =-5OV
Gate-source leakage
current
I ass
Drain-source on-state
resistance
ROSeon)
-
Forward transconductance
g,.
0.25
Input capacHance
CI••
Output capacHance
Co••
Reverse transfer
capac Hance
Co••
15
Turn-on time Ion
(Ion =1 dCon) +t,)
1 deon)
15
20
I,
10
15
Turn-off time loll
(loll =1 deolf) +t f)
I dColf)
-10
-100
nA
VGS =-20V, Vos =0
.95
0
Vas =-10V
10 =-1.0A
.5
S
Vos =-25V
10 =-1.0A
400
pF
DynamIc characterIstics
-
-
50
ns
100
130
If
40
55
Continuous reverse drain
current
Is
-1.0
A
Pulsed reverse drain
current
ISM
-
-4.0
A
Diode forward on-voHage
Vso
-
-1
Vas =0
Vos =25V
f =lMHz
Vec =-3OV
VGS =-lOV
10 =..().29A
Ras =500
Reverse dIode
700
Siemens
-1.5
V
Te =25'C
TJ
IF
=25'C, VGS =0
=-2.0A
NPN Silicon Switching Transistors
•
•
•
BSS79
BSS81
High DC current gain
Low collector-emitter saturation voltage
Complementary types: BSS 80, BSS 82 (PNP)
Type
BSS
BSS
BSS
BSS
79
79
81
81
B
C
B
C
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8-mm tape
Package
CE
CF
CD
CG
Q62702-S403
Q62702-S402
Q62702-S420
Q62702-S419
Q62702-S503
Q62702-S501
Q62702-S555
Q62702-S559
SOT 23
SOT 23
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
BSS79
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range
VCEO
Vcso
VESO
40
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
BSS81
Unit
V
V
V
rnA
A
rnA
rnA
Ptot
35
75
6
800
1
100
200
330
Tj
Tstg
150
-65···+150
DC
DC
Ic
ICM
Is
ISM
:::; 375
RthJA
Siemens
mW
K/W
701
BSS79
BSS81
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 10 mA
BSS79
BSS 81
V(BR) CEO
min
typ
max
Unit
40
35
-
V
V
V(BR)CBO
75
-
-
Collector-base breakdown voltage
Ic=10fiA
Emitter-base breakdown voltage
IE = 10 fiA
V(BR) EBO
6
-
-
V
Collector cutoff current
VCB=60V
VCB =60V, TA= 150°C
ICBo
-
10
10
Emitter cutoff current
VEB = 3 V
lEBO
-
nA
fiA
nA
DC current gain
Ic=100fiA, VCE=10V
BSS 79 B/81
BSS 79 C/81
Ic = 1mA,VCE=10V
BSS 79 B/81
BSS 79 C/81
Ic= 10mA, VCE=10V')
BSS 79 B/81
BSS 79 C/81
Ic = 150 mA, VCE = 10 V')
BSS 79 B/81
BSS 79 C/81
Ic = 500 mA, VCE = 10 V')
BSS 79 B/81
BSS 79 C/81
hFE
10
B
C
20
35
-
-
-
-
-
B
C
25
50
-
-
-
B
C
35
75
-
-
-
-
-
B
C
40
100
-
120
300
-
B
C
25
40
-
-
-
-
-
0,3
1,3
V
V
-
-
1,2
2,0
V
V
Collector-emitter saturation voltage')
Ic = 150 mA, IB = 15 mA
I c = 500 mA, I B = 50 mA
VCEsat
Base-emitter saturation voltage ')
Ic = 150 mA, IB = 15 mA
I c = 500 mA, I B = 50 mA
VBEsat
-
') Pulse test: t::s; 300 fis, D = 20;0.
702
-
V
Siemens
-
-
-
BSS79
BSS81
AC chararacterlstics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 rnA, VCE = 20 V, f= 100 MHz
fr
-
250
-
MHz
Open-circuit output capacitance
Vcs = 10V, f=1 MHz
Cob
-
6
-
pF
-
-
10
25
250
60
ns
ns
ns
ns
Vcc = 30V, Ic = 150 rnA,
IS1 = IS2 = 15 rnA, VSE = 0,5 V
Delay time
Rise time
Storage time
Fall time
td
tr
tstg
tf
-
-
-
-
Test circuits
Delay and rise time
Storage and fall time
30V
30V
"'100~s
200n
Osz.
> 100 kn
< 12 pF
tr < 5 ns
Oscilloscope: R
C
Siemens
703
BSS79
BSS81
Total power dissipation P tot = f (TA)
Collector-base capacitance Ccb = f(VeB)
f= 1 MHz
pF
mW
400
"iO\
t
10'
5
r300
\.
-r-.
10'
200
I\,
r....
5
\
100
\.
\.
o
o
.\
so
100
5
-7",.
Pulse handling capability rth
(standardized)
K
10'
-VC8
= fIt)
Transition frequency fT = f (I e)
VeE = 20V
'Vi
10 0
,
II
"
1
'0.5
0,2
0,1
0,05
, 0,02
0,01
0,005
000 1111
2
/ ....
'\
/
--' tpl-t.
0= .E.
J-Ln..
T
I--
T-i
10- 3
10- 6 10,5 10- 4 10- 3 10- 2 10- 1 10 0
10' s
5 10'
-t
704
Siemens
BSS79
BSS81
Saturation voltage VeE sat
hFE
= 10
VCEsat
= f (I el
= f(Iel
DC current gain hFE
f (I el
=
VCE = 10V
mA
103
5
V
/VCE
I
/
VeE
175°C
-
I
~
2~.lcl \
-55°C
5
'If
5
10-1
o
0.2
0,4
0.6
0.8
-
1.0
1.2 V
VIE ••"Vce ••,
Storage time tstg = f (I e)
Fall time
tf = f (1 e)
Delay time td = f(Ie)
Rise time t, = f(Iel
--
\
\
5
'\
stg
\r--
bc.h FE-1O
1\ tf
'->
I
5
Siemens
-20
~
h FE -l0
-Ic
hFE
5
-Ic
705
PNP Silicon Switching Transistors
•
•
•
BSS80
BSS82
High DC current gain
Low collector-emitter saturation voltage
Complementary types: BSS 79, BSS 81 (NPN)
Type
BSS
BSS
BSS
BSS
80
80
82
82
B
C
B
C
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8-mm tape
Package
CH
CJ
CL
CM
Q62702-S398
Q62702-S399
Q62702-S409
Q62702-S408
Q62702-S557
Q62702-S492
Q62702-S560
Q62702-S482
SOT 23
SOT 23
SOT 23
SOT 23
Maximum ratings
Parameter
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
706
Symbol
BSS80
VCEO
40
VCBO
VEBO
Ic
ICM
IB
IBM
Ptot
Tj
Tstg
BSS82
V
V
V
mA
A
mA
mA
mW
150
-65···+150
DC
°C
~375
RthJA
Siemens
Unit
60
60
5
800
1
100
200
330
K/W
BSS80
BSS82
Electrical characteristics
at TA = 25 DC, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic= 10 mA
BSS80
BSS82
V(eR) CEO
Collector-base breakdown voltage
V(eR) ceo
Emitter-base breakdown voltage
lE = 10 itA
VIeR) Eeo
Collector cutoff current
Vee = 50V
Vee = 50 V, TA = 150 DC
IceD
Emitter cutoff current
VEe = 3V
lEeo
DC current gain
Ie = 100 itA, VeE = 10 V
BSS 80 B/82 B
BSS80 C/82 C
Ie= 1 mA, VCE =10V
BSS 80 B/82 B
BSS 80 C/82 C
Ic= 10 mA, VeE = 10 V')
BSS 80 B/82 B
BSS 80C/82 C
Ic = 150 mA, VeE = 10 V')
BSS 80B/82 B
BSS80 C/82 C
Ie = 500 mA, VCE = 10 V')
BSS80 B/82 B
BSS80 C/82 C
hFE
Collector-emitter saturation voltage')
Ie = 150 rnA, Ie = 15 mA
Ie = 500 rnA, Ie = 50 rnA
VCEsat
Base-emitter saturation voltage')
Ie = 150 rnA, Ie = 15 rnA
Ie = 500 rnA, Ie = 50 rnA
VeEsat
min
typ
max
Unit
40
60
-
-
V
V
60
-
6
-
-
V
-
-
10
10
llA
10
nA
40
75
-
-
-
40
100
-
-
-
V
Ic=10llA
') Pulse test:
ts; 300 Its,
-
-
-
nA
-
-
40
100
-
-
-
-
40
100
-
120
300
-
40
50
-
-
-
-
-
0,4
1,6
V
V
-
-
1,3
2,6
V
-
-
-
V
D = 20/0.
Siemens
707
BSS80
BSS82
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 mA, VCE = 20 V, f= 100 MHz
AC characteristics
fr
-
250
-
MHz
Open-circuit output capacitance
Vcs = 10V, f=1 MHz
Cob
-
6
-
pF
td
tr
-
-
-
10
40
ns
ns
tSlg
-
-
tf
-
-
80
30
ns
ns
Vcc = 30 V, Ic = 150 mA, IS1 = 150 mA
Delay time
Rise time
Vcc = 6 V, Ic = 150 mA,
IS1 = IS2 = 15 mA
Storage time
Fall time
Test circuits
Delay and rise time
Storage and fall time
-6V
-30V
+15V
Eingang
Zo=5011
tr < 2ns
-~0-[
Eingang
Zo=5011
tr <: 2ns
<>-.,.-{=:J----i-l
-~0-[
200ns
708
200ns
Siemens
3711
OSlo
1k
501/
BSS80
BSS82
Total power dissipation Ptot = f( TA)
COllector-base capacitance C cb = f ( Vce)
f= 1 MHz
rnW
400
pF
5
-':'1
r
10 2
r-h
300
-
\.
i"..
200
I\,
5
100
"
\.
r-..
o
o
'\
50
100
150 'C
-lice
-7;.
Transition frequency fT = f (/c)
Vce=20V
Pulse handling capability rth = f(t)
(standardized)
K
W
10°
1
'"
M'
I
'0,5
0,2
0,1
0,05
, 0,Q2
0,01
0,005
v~
2
V
0=0 IIII
10- 2
~
2
tp
0=-
T
f--- T---r
10-3
'"
'" "'
6
5
4
3
10- 10- 10- 10- 10- 2 10- 1 10°
10' s
5 10 '
-t
5 10 2
5 10 3 rnA
-Ie
Siemens
709
BSS80
BSS82
Saturation voltage Ie = f(VeEsat. VeEsat!
hFE = 10
Delay time td = f(le)
Rise time t, = f(le)
'"
103
ns
5
111111
~
....
i.I' VeE
VI!(
/
f--
VBE-OV, Vee·l0V ~
r-
~-- VBE -20V,Vcc -30V
f--
~
II
111
f--
~
td
~.
5
\
5
,\
1\
1)'
\
5
i\
1)'"
o
0,6 0.& 1.0 11 lit 1.6 V
01 0.4
-
VSEmt'
tst9
5 10'
-Ic
veE lOt
Storage time t stg = f (l cl
Fall time tf = f (I e)
5
r
""'~-
Vcc ·30V
\{7fE=20
I
"
hFE
5 :--
FE- 1
y
5 10'
710
.\\
...
~
jI'
iIlFE=
=1
20
r,
"1'-0
'5 10'
5 10 1
5 103 mA
-Ie
Siemens
BSS80
BSS82
DC current gain hFE
VeE = 10V
=
f (l c)
10 3
175 ·C
;'
-
]J "
25 ·C
-5 ·C
-Ie
Siemens
711
BSS84
SIPMOS P Channel MOSFET
• SIPMOS - enhancement mode
• Drain-source voltage
I.b. = -50V
• Continuous drain current
10 -0.13A
RoSConl = 10.00
• Drain-source on-resistance
Po 0.36W
• Total power dissipation
=
=
Type
Marking
Ordering code for
versions on 8 mm-tape
Package
BSS84
SP
Q62702-5568
SOT 23
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
IoiIOR
ID
1Dpul.
V••
Po
1j
T.I.
Ratings
Unit
-50
-50
-0.13
-0.52
:!:20
0.36
V
V
A
A
V
W
-55... +150
55... 150... 56
°C
s350
s285
KfIN
Conditions
Ros =20kO
TA =30"C
TA =2SOC
aperiodic
TA =25°C
DIN IEC 68 part 1
Thermal resistance
Chip - air
Chip - substrate
rear side
712
RlhJA
RlhJSR
Siemens
Mounted on
Ceramic substrate
2.5cm2
BSS84
Electrical Characteristics
at TJ =25°C, unless otherwise specHied.
DescrIption
I
Characteristics
Symbol
min.
I
typo
I
Unit
Condition
max.
Static characterlattca
·50
Draln·source
breakdown vottage
V(BR)DSS
Gate threshold vottage
VGS(lh)
·0.8
·1.5
I DSS
.
Zero gate vottage
drain current
'
Dss
V
VGS =OV
ID =·0.25 rnA
·2.0
V
VDS = VGS;/D =·lmA
·1.0
·15.0
JiA
TJ =25°C; VDS =·50V
VGS =OV
·2.0
·60.0
JiA
7j =125°C;VDS
0.1
JiA
7j =25°C; VDS =·25V
VGS =OV
·1.0
·10.0
nA
VGS =·20V, VDS =OV
5.0
10.0
0
I DSS
Gate-source leakage current
I GSS
Draln·source on·state
resistance
RDS(on)
=·50V
VGS =OV
V GS =·10V
' D =0.13A
Dynamic characteristics
Forward transconductance
9,.
Input capac~ance
CI..
30
45
Output capacHance
Co ..
17
25
Reverse transfer
capacHance
Cr ••
8
12
8
12
35
50
t d(on)
Turn·on time Ion
(Ion =1 d(on) +t,)
I,
Turn·off time I off
(I off =1 d(off) +1,)
I,
I d(off)
0.05
0.08
8
10
20
25
S
VDS =·25V
ID =·0.13A
pF
VGS =OV
VDS =·25V
f =1MHz
ns
Vec =-30V
VGS =·10V
I D =-0.27A
RGS =500
Reverse diode
Continuous source
current
Is
·0.13
A
Pulsed source current
ISM
-0.52
A
Diode forward on-vottage
VSD
·1.2
V
VGS =OV
IF =·0.26A
Reverse recovery time
trr
ns
VR =-30V,
= ID R
diF Idt = ·100NJis
Reverse recovery charge
Or,
JiC
VR =-30V, IF = ID R
diF Idt = -100NJis
·0.9
-
Siemens
'F
713
BSS84
Switching Time Measurement
Test circuit
Switching tim••
Vee
V
I
Typical output characteristic
ID =fVD1
X Axis: VDS IV
YAxls: 1 D IA
..
p.
,
-,0
::~~
[\
-1V
,
if!IJ II
rtII
[\
1(/
f/
1\
f\
5V
'\
-,
f\
-4
,
'J
1\
,
p. 0.36
"VV
IOV
I-
2
90%
Vas
Permissible power dissipation versus temperatura
PD =fTA
X Axis: TA I'e
YAxis: P D IW
VDS
90%
v
0
'j
.....
-3~V-
/
1\
V
\
-2 !IV
1\
0
0
--TA
714
v
-,
2V
-2
-3
-4
-&
- - - - " Vos
Siemens
BSS84
Safe operatIng area
10 =fVOS
X Axis: Vos I V
Y Axis: 10 I A
Parameter: D = 0.01, D =t pIT;
Rcs(on)'" VDs/lo
'I-Frf1_
__
D
T
TypIcal transfer characteristIc
ID =fVGS
X Axis: VGS IV
YAxis: lolA
Parameter: Vos = -25V; t p = BOps; 1j = 25'C
Tc = 25'C
II
t
'p'
20ps
i,
r'
I.
L,
"
,
1.-<
1m.
/
/
10ms
-5
I
r-:
"
1/
100m.
f',
II
J
-5
/
V
_10
V _'0 2
1
----vas
- - - v. s
TypIcal transconductance
DraIn to source on resIstance (spread)
g,.= flo
Roso.= fTj
X Axis: T j I'C
X Axis: ID IA
Y Axis:
g,. IS
Parameter:
Y Axis:
Vos = -25V; t
p
= BOiLs; T j
V
17
Roso.
I0
Parameter: VGS
= 25'C
= -10V;
10
= -0.13A
P
V i.)
RCS(on )
V
1
1/
/
17
/v
J
1/ ""
V
rJ
",.
/
V
--
D
-0.6
---_i,
Siemens
V
/
. . . . v i-""
V
yp.
---_T,
C
160
715
BSS84
Typical capacitances
C=fV DS
X Axis: VDs/V
YAxls: C IpF
Parameter: VGS =0; f = 1MHz
c
~
..
~ I--
" ""'-'" "'"
"'"
,
-
I-
Go ..
- - - VDS
Drain currant
Gate thrashhold voltage (spread)
VGSlh =fT1
X Axis: TJ I'C
I D = fTA
X Axis: TA I'C
Y Axis: I D I A
'D
Y Axis: VGSlh I V
Parameter: VGs= VDS ; I D = -1mA
V
A
,
·
·
V GSUb )
" '\
[-
4
r'\:
\
- .-- - - ." -
I-
,
\
"
t--
r-.
i--
\
·
0
100
- - TJ
--TA
716
c·
Siemens
-
BSS84
Typical drain-source on-stale resistance
RDSO" = fI D
X Axis: I D I A
Y Axis: R DSo" I 0
Parametar: VGS ; 1j = 2SoC
Vc. ==
'JV
-2SV
.v
_35
,v
"
n
·W
Rcs(on )
V
V
v
V
I;
t.-- V 1---'"
1/
/
,/
I.....:'
,--
I- I-f.- '-f.- ~
-8\1
_9V ·lQV
A
'0
Typical ravarse diode forward voltage (spread)
IF=fVSD
X Axis: VSD IV
Y Axis: I F I A
Parameter: t p =BD!Is; TI
,,'
"
.
2S
,
:
p.
F
'C
typo
"
7r7 IA
II
1ft
O-C 98
25
:9 %
I
I
J
-,
---v"
Siemens
717
BSS87
SIPMOS N Channel MOSFET
• SIPMOS - enhancement mode
• Drain-source voltage
Vos = 240V
10 = 0.29A
• Continuous drain current
ROS(on) = 6.00
• Drain-source on-resistance
• Total power dissipation
Po
1.0W
s
=
Type
Marking
Ordering code for
versions on 12 mm-tape
Package
BSS87
KA
Q62702-S506
SOT 89
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
\!baR
10
IDpUIS
V••
Po
7j
T.t.
Ratings
Unit
240
240
0.29
1.16
±20
1.0
V
V
A
A
V
-55 ... +150
55 ... 150... 56
W
718
$125
RthJA
Siemens
RGS
TA
TA
=20 kO
=25°C
=2SoC
aperiodic
TA =2SoC
°C
DIN IEC 68 part 1
Thermal resistance
Chip - air
Conditions
K/VV
BSS87
Electrical Characteristics
Condition
Static chsracterlstlcs
Drsln-source
breskdown vonage
V(BR)DSS
240
Gate threshold vonage
Vas(th)
O.B
Zero gate vottage
drain current
loss
V
Vas =OV
ID =0.25mA
1.5
2.0
V
Vos = Vas;/o =1mA
4.0
60.0
}.IA
1j =25'C;
Vos =240V
Vas =OV
B.O
IDSS
200
}.IA
1j =125'C;Vos
=240V
Vas =OV
200
nA
1j = 25'C; Vos =60V
Vas =OV
10.0
100
nA
Vas =20V, Vos =OV
4.0
6.0
0
I D =0.29A
5.7
10.0
0
IDSS
Gate-source leakage current
I ass
Drain-source on-state
resistance
ROS(on)
Vas =10V
Vas =4.5V
10 =0.29A
Dynamic characteristics
Forward transconductance
g,.
0.14
S
0.29
Vos =25V
10 =0.29A
Input capacitance
C, ••
90
140
Output capacitance
Co ••
20
30
Reverse transfer
capacitance
Cr ••
6.0
9.0
pF
Vas =OV
Vos =25V
f =IMHz
ns
Vee =3QV
Vas =10V
10 =0.2BA
Ras =500
Turn-on time ton
(t on =t d(on) +t,)
t d(on)
5
B
I,
B
12
Turn-off time t off
(I off =1 d(olf) +t ,)
I dlo'!)
I,
25
30
22
2B
-
0.29
A
1.16
A
1.4
V
Reverse diode
Continuous source
current
Is
Pulsed source current
ISM
Diode forward on-vonage
Vso
Reverse recovery lime
Irr
0.B5
-
ns
Vas =OV
IF =0.5BA
VR =30V, IF = 10 R
Idt = 100N}.Is
diF
Reverse recovery charge
Orr
-
}.IC
VR =3OV, IF = 10 R
Idt = 100N}.Is
diF
Siemens
719
BSS87
Switching Time Measurement
Switching times
Test circuit
Vcc
Permissible power dissipation versus temperature
PD
= fTA
X Axis:
YAxis:
Typical output characteristic
=fVDS
X Axis: VDS IV
YAxls: tD fA
tD
TAloe
PD IW
...
p
"f'i
/4.8
rt!J
,v, '1/, I I
1"'- ,/1 "., v
v,
i\
10
l'
\
1\
\
Ix
[II
rl
..
1\
fj
\
1\
'I
'1
\
1/1
o
720
I~
1\
o
Ii
I-'"
V
--
v
., l -I -
•. v
r-. ....,
.
V
.
•. v
V 8.5
--T.
---~Vo.
Siemens
BSS87
Safe operating area
10 =tVos
X Axis: vos f V
Y Axis: 10 I A
Parameter: 0 = 0.01, 0 =tp IT;
It_~-y
= VDI /lp
ROS(on)
10'
TypIcal transfer characterIstic
10 =tVas
X Axis: Vas IV
YAxls: 10 fA
Parameter: VDS = 2SV; t p
TC = 25°e
= SO/ls; 1j
= 25°e
P-t'
I
A
r:
I.
I
N
~
I
I
!I
I" I
I
I
II
J
a
'0'
10'
5
10 2
"
5 V10 l
- - V••
----VG.
Typical transconductance
g,. = flo
DraIn to source on resIstance (spread)
RDson = tTl
X Axis: lolA
YAxls:
VDS = 2SV;
Parameter:
TI loe
RDSon I 0
X Axis:
Y Axis:
g,./S
t p = SO/Is; TJ = 25°e
VV
Parameter: Vas = 10V; 1D = O.29A
v~
n
VV
)
17
1/
I)
V
II
I
,.
1
V
./
V
V
...-
V
1/
1/
V .. 1/
l/
V
typo
.... f-'"
0
C·
---_T,
----'.
Siemens
1&0
721
BSS87
Typical capacitances
C = fV DS
VDS I V
X Axis:
y Axis:
C IpF
Parameter: VGs=O; f =lMHz
,,'
pF
c
~
I~\
"-
r- r-
"'-
Co••
u r••
-Vos
Gate threshhold voltage (spread)
Drain current
f D = fTA
X Axis: T A I"C
Y Axis: f D I A
I-
'.
r--.
VGSlh
= fT J
TJ I"C
Y Axis: VGSlh I V
Parameter: VGs= VDS
X Axis:
"-
;
f
D
= lmA
VGS(th )
I\.
"\
'\
\
\
\
\
-
\
r-
- .....
r-
-_T,
o
100
--TA
722
.;,:,::"
-- ."--
1\
o
.." -
Siemens
c·
180
BSS87
Typical drain-source on-state resistance
RDson =fl D
X Axis: ID fA
Y Axis: R DSon f n
1j = 25"C
Parameter: VelS ;
Va -
v
v
I--"Y
I--
I--
--
'"
I
--'.
.<
Typical reverse diode forward voHage (spread)
IF=fVSD
X Axis: VsD/V
YAxls: IF fA
Paramater: t p = BOps; TJ
150 ~P'
"'~~m
~
25:
;111
!SO
fj
Ii
".'~/~m
,
--~Vs.
Siemens
723
BSS 119
SIPMOS N Channel MOSFET
• SIPMOS - enhancement mode
• Drain-source voltage
~S = 100V
• Continuous drain current
10 = 0.17A
• Drain-source on-resistance
• Total power dissipation
= 6.00
Po = 0.36W
RoS(on)
Type
Marking
Ordering code for
versions on 8 mm-tape
Package
BSS 119
SH
Q62702-8631
SOT 23
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
\obGR
/0
I Opul.
V••
Po
Ratings
Unit
100
100
0.17
0.68
V
V
A
A
V
W
:t20
0.36
724
Ra. =20kO
TA =28"C
Tc =25°C
aperiodic
TA =25°C
7j
T.t.
-55 ... +150
55 ... 150... 56
Thermal resistance
Chip - air
Chip - substrate rear side
Ceramic substrate
15mm x 16.7mm x 0.7mm
Conditions
RthJA
Rth JSR
0$350
0$285
Siemens
°C
DIN IEC 68 part 1
BSS 119
Electrical Characteristics
Condition
Static characteristics
Drain-source
breakdown vottage
V(BR)D.S
Gate threshold vottage
VeSUh)
Zero gate vottage
drain current
-
100
1.6
loss
V
Ves =OV
'D =0.2SmA
2.0
2.6
V
Vos = VeB;/D =lmA
-
O.S
tJ A
1j =2S·C;
VDS =100V
Ves =OV
-
loss
S.O
tJA
1j = 12S·C;VDS
=100V
Ves =OV
'DSS
-
100
nA
1j
=2S·C; VDS =60V
Ves =OV
Gate-source leakage current
Drain-source on-state
resistance
DynamiC characteristics
less
10.0
RDS(on)
-
Forward transconductance
g,.
0.10
Input capacttance
C •••
-
100
3.2
6.0
0
4.7
10.0
0
0.20
-
40
60
IS
6.0
Output capacitance
Co ••
10
Reverse transfer
capacitance
Cr••
4.0
Turn-on time ton
(t on =t d(on) +t r)
t d(on)
-
S
8
tr
-
8
12
Turn-oft time t off
(t off =t d(off) +t ,)
t,
t
cl(off)
-
nA
12
16
17
22
Ves =20V, VDS =OV
Vas =10V
10 =0.17A
Vas =4.5V
I D =0.17A
S
VDS =25V
ID =0.17A
pF
Vas =OV
VDS =25V
f =IMHz
ns
Vcc =30V
Vas =10V
I D =0.2BA
Ras =SOO
Reverse diode
Continuous source
current
Is
Puised source current
ISM
Diode forward on-yottage
Vso
Reverse recovery time
t rr
Reverse recovery charge
Orr
0.8S
-
Siemens
0.17
A
0.68
A
1.4
V
Vas =OV
IF =O.34A
-
ns
VR =30V, 'F = 10 R
diF Idt = looAltJs
-
tJC
VR =30V, 'F = 10 R
dl F Idt = 100AltJs
725
ass 119
Switching Time Measurement
Switching times
Test circuit
Vcc
VDS
90%
90%
VGS
90%
Permissible power dissipation versus temperature
PD =fTA
X Axis: TA lOG
Typical output characteristic
ID =fVDS
X Axis: VDS I V
YAxis: 1 D IA
Y Axis: P D IW
I.
.4
'0
I
'"
(., "'~ ~ ~
\
OV
8V
7V
3
'""'-
\
\
,
rl/1 /
.ov
0
4V
/
\
r/J/
\
\
VI/'
\
.1
I
7
1\
0
C
-_T,
\
\
"
.ov
"- .....
........ ,'v
1\
726
PD 0.36
8V
f
1\
o
HIO
.ov
o
----Vos
Siemens
BSS 119
Safe operating area
ID =fVDS
X Axis: VDs/V
V Axis: ID IA
Parameter: D = 0.01, D =tp IT;· Tc = 25'C
ROB' ..)- VOB/lo /
Typical transfer characteristic
ID =fV as
X Axis: Vas IV
V Axis: I D IA
Parameter: VDS = 2SV; t p = 80jls; 7j = 25'C
t-~-n
-T
...
I-t
'0'
A
I.
'p-
20111
1..
/0
'\
1,0"
'm.
I
I
10m.
\
I
100mi
'\
/
II
o
a
'0'
10 J
5 V10'
-VDS
Drain to source on resistance (lipread)
Typical transconductance
Rglon = fT)
X Axis: T) I'C
V Axis: RDSon 10
Parameter: Vas = 10V; I D
k
= O.17A
n
/'
I
10
Va,
g,"=f/ D
X Axis: ID IA
V Axis: g,"IS
Parameter: VDS = 25V; t p = 80jls; TJ = 25'C
g"
V
o
./
/
V
/
0.'
I
/
V
II
/
V
..
V
.//
-,..,.,
A
-eo
0.5
----10
/
./,/
L
I
I
V ..
V
typo
c·
'80
---_.TI
Siemens
727
BSS 119
Typical capacltancaa
O=IV DS
X Axis: VDI/V
YAxls: O/pF
Parameter: Val =0; I = 1MHz
1.'
pF
G
1.'
\\
Jl
CIII
\
\"
---
~
-
_
c,..
1.'
••
v
---v.s
Drain current
ID
Gate threshhold voltage (spread)
=ITA
=IT J
VOlth
X Axis: TA I'C
Y Axis: I D I A
X Axis:
YAxis:
TJ I'C
VeSth
IV
Parameter: Vos= VDS
;
I
D
= 1mA
.11
'.
A
r-- t""""'\
V
Va'Uh )
"\
'\
\
-'- -- - -,...,... ...
- ...
\
...,
\
...
'"
. ..
•
728
100
c·
1110
100
c·
- TJ
--TA
Siemens
...
BSS 119
Typical drain-source on-state resistance
RDlo" =f'D
'D
X Axis:
fA
Y Axis: R Dlo" f 0
Parameter: Vas; 1j = 2S0C
..
Vas""
n
RDS(on
,
,
.
.,
.
1
/
/
...... V
::t:::
-
V
V
1--''"'
/
-
I-'v
=.'"
.i. I), ,
'"
--'.
•3
A
Typical reverse diode forward voltage (spread)
'F=fVSD
X Axis: VsDfV
YAxis: , F fA
Parameter: t p =80J,rs; TJ
,.,
.,
.
,,~.
'01
P"
c--" ""
.
"" "
Ij
I
'II
10"
---v,.
2
Siemens
729
SIPMOS N Channel MOSFET
BSS 123
• SIPMOS - enhancement mode
• Drain-source voltage
lIba = 100V
10 = 0.17A
• Continuous drain current
• Drain-source on-resistance
• Total power dissipation
RoSlon) = 6.00
PD = 0.36W
Type
Marking
Ordering code for
versions on 8 mm-tape
Package
BSS 123
SA
Q62702-S512
SOT 23
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
\V
"
••
A
--I,
Typical reverse diode forward voltage (spread)
IF=fVSD
X Axis: VsDfV
YAxls: I F fA
Parameter: t p =8D1Js; TJ
1SO
!9
:
~
'rJ II
'CI~II
'0"."
-,,,,,, ""
1!J'r
2
---v,o
Siemens
735
BSS 131
SIPMOS N Channel MOSFET
• SIPMOS - enhancement mode
• Drain-source voltage
~s = 240V
Ic = 0.10A
• Continuous drain current
Ro8(on) = 16.00
• Drain-source on-resistance
Pc = 0.36W
• Total power dissipation
Type
Marking
Ordering code for
versions on 8 mm-tape
Package
BSS 131
SR
Q62702-8565
SOT 23
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vcs
\,bGR
Ic
I Cpul.
Va.
Pc
7j
T.ta
Ratings
Unit
Conditions
240
240
0.10
0.40
:!:20
0.36
V
V
A
A
V
W
ROI =20kO
TA =26"C
TA =25"C
aperiodic
TA =25°C
-55 ... +150
55 ... 150... 56
°C
Thermal resistance
Chip - air
Chip - substrate rear side
Ceramic substrate
25mm x 25mm x 0.7mm
736
RthJA
RthJSR
:s350
:s285
Siemens
DIN IEC 68 part 1
BSS 131
Electrical Characteristics
Condition
Static characterlatlcs
Drain-source
breakdown vottage
V(BR)OSS
240
Gate threshold vottage
Va8(th)
0.8
Zero gate vottage
drain current
'DSS
V
Va8 =OV
10 =0.25mA
1.4
2.0
V
VOl = Val;lo =1mA
1.0
15.0
flA
1j =25°C;
VOl =240V
Val =OV
2.0
'DSS
60.0
flA
1j = 125°C; VDS
=240V
Val =OV
30.0
'DSS
nA
1j -25°C;
VDS =130V
Vas =OV
Gate-source leakage current
Drain-source on-state
resistance
Dynamic characteristics
Forward transconductance
I ass
1.0
RDS(on)
g,.
0.06
10_0
12.0
16.0
15.0
26.0
nA
Vas =20V. VDS =OV
n
n
Val =10V
I D =0.1A
Val =4.5V
10 =0.1A
S
0.14
VOl =25V
ID =0.1A
Input capacHance
C,..
60
90
Output capacHanee
Co••
8
12
Reverse transfer
capacHance
Cr ••
2.5
5.0
Turn-on time ton
(Ion =1 d(on) +t,)
t d(o.)
5
8
I,
8
12
Turn-off time lolf
(1 0 " =1 d(ofl) +1,)
t d(o")
t,
.
.
12
16
15
20
pF
Val =OV
VOl =25V
f =1MHz
ns
Vec =3OV
Val =IOV
10 =0.2BA
Raa =500
Reverse diode
Continuous source
current
Is
0.10
A
Pulsed source current
ISM
0.40
A
Diode forward on-vottage
Vso
1.2
V
Va. =OV
I, =0.2A
Reverse recovery time
trr
ns
VR =3OV. IF = 10R
dl, Idt = 100A/fl8
Reverse recovery charge
Orr
flC
VR =3OV. IF = 10R
dl F Idt = 100A/fls
0.8
Siemens
737
BSS 131
Switching Time Measurement
Switching tl_
Test circuit
Vee
Pulse
Generator
V.ut
f·····························l
Permissible power dissipation versus temperature
Typical output characteristic
Pc =fTA
XAxis: TA I'e
V Axis: Pc IW
Ie =fVes
X Axis: Ves IV
V Axis: I c I A
.Z4
p -
p.
1\
,
4.'
.
Y/II t'\
8Vf-:
f\
rA
1\
r~
f\
1
".
1\
,
j
,II
100
1--'1-
"-
~
1
\
1/
y
3V
IW,II
f\
1\
I)
4V
v
1-1-
1\
.,
..
V 7.6
----1'00
--TA
738
3
\ 'v
I.v.
TYrJ,
Siemens
BSS 131
Typical transfer characteristic
Safe operating range
/0 =fVos
X Axis: Vos I V
YAxis: /o/A
Perameter: D = 0.01. D = t pIT;
Tc = 2S'C
/0 = fV GS
X Axis: VGS IV
Y Axis: /0 I A
Psrameter: Vos = 2SV; t p = BOils;
1j
= 2S'C
Ros"., ~vostlo It_~- 0
1_,
-T
,,'
A
10
'p.
2 0 11'
I'
I,
,
1
~
110'
1\
\
:\
I
I
II
\1
n
(>
10'
5
10'
I
(>
10
V 10'
V"
V"
Drain to source on resistance (spread)
Typical transconductance
Ros."= fTI
X Axis: TI I'C
gh = flo
X Axis:
/0 I A
Y Axis:
gh IS
Parameter:
Vos = 2SV;
Y Axis: Ros." I 0
Parameter: VGS 10V; /0
=
t p = BOils; TI = 2S'C
n
v~
g"
ROs(on)
VV
j"
= 0.1 A
L
V
V
/
V
.
/
/
/
V
/
V
./
::: ........
,.,
/
V "L
V V
/
typo
VV V
C
---_I,
160
---_Tj
Siemens
739
BSS 131
Typical capacitances
C = (V es
X Axis: Ves I V
Y Axis: C IpF
Parameter: VGS =0;
f = 1MHz
,,'
pF
c
to'
\
",
....... ' -
r--
-"""k,
- -
Cns
- - - VDS
Drain currant
Gata threshhold voltage (spread)
= (TI
Ie = (TA
VGllh
X Axis:
Y Axis:
TA 1°C
X Axis:
TI 1°C
Ie IA
Y Alds:
VGllh I V
Parameter: VGs= Ves; Ie = 1mA
'D •
V
"
V CSUh )
~
1
r\.
"-
4
\
\
\
r-
\
740
r-
typo
-
..
'- - ,--
1\
0
.... ...
-_T.
- -
-k,
tr-
-_T,
100
Siemens
C
BSS 131
Typical draln-sourca on-atata raslstanca
RDlon = fI D
X Axis; Ip fA
Y Axis; R Dlon f 0
Paramater: VGS ; 1j = 25"C
"I v.,
I",
R.",~)
,..
I·v
I
..
J
I'"
II
J
....... /'
--
..
L..-- V
I- r.,,,
Ir
Ifll~rev~
"
r;ov~--.v7V
"
.
.1
.2
--'.
1""
A.24
Typical ravarsa dloda forward voItaga (apraad)
IF=fVSD
X Axis; VIDfV
YAxis; I F fA
Parameter; t p =80/1s; T,
",
,
,~
,
l'
f2i
10
"'
;
11
%
])
t- h Fc ..
""
"'
.
--v,.
Siemens
741
SIPMOS N Channel MOSFET
BSS 138
• 51PM05 - enhancement mode
• Drain-source voltage
"bs = SOV
• Continuous drain current
10 = 0.22A
• Drain-source on-resistance
• Total power dissipation
~S(onl
= 3.50
fb = 0.36W
Type
Marking
Ordering code for
versions on 8 mm-tape
Package
B55138
55
Q62702-S566
50T23
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Ratings
Unit
Conditions
50
50
0.22
0.88
±20
0.36
V
V
A
A
V
W
Rcs =20kO
TA =31°C
TA =25°C
aperiodic
TA =25°C
-55 ... +150
55 ... 150... 56
°C
RthJA
~3S0
K/W
Rth JSR
~285
Vos
IobGR
10
I Dpul.
Vg•
PD
1j
T.tg
DIN IEC 68 part 1
Thermal resistance
Chip - air
Chip - substrate rear side
Ceramic substrate
2Smm x 25mm x 0.7mm
742
Siemens
BSS 138
Electrical Characteristics
Condition
Static characteristics
Drain-source
breakdown vo~age
V (BR)DSS
50
Gate threshold vo~age
VaS(th)
0.8
Zero gate vo~age
drain current
loss
1.2
V
Vas =OV
ID =0.25 rnA
1.6
V
VDS = Vas JD =lrnA
0.5
J1A
TI =25'C; Vos =50V
5.0
J1A
Vas =OV
-
loss
~ =125'C;VD8 =50V
Vas =QV
IDSS
Gate-source leakage current
Drain-source on-state
resistance
I ass
10.0
RDS(on)
100
nA
100
nA
1.8
3.5
0
2.8
5.8
0
~ =25'C; Vos =30V
Vas =OV
Vas =20V. VDS =OV
Vas=10V
I D =0.22A
Vas =4.5V
I D =0.22A
Dynamic characteristics
Forward transconductance
gr.
0.12
0.20
-
S
VDI =25V
ID =D.22A
Input capacitance
CI ••
40
60
Output capacitance
Co ..
15
25
Reverse transfer
capacitance
Cr ••
5
10
I d(on)
5
8
I,
8
12
Turn-on time ton
(Ion =1 d(on) +1,)
Turn-off time tOil
(/011 =1 d(olll +t r)
I dColI)
12
16
If
17
22
pF
ns
Val =DV
VDI =25V
f =lMHz
Vce
=3OV
Vas =10V
I D =D.29A
Ras =500
Reverse diode
Continuous source
current
Is
0.22
A
Pulsed source current
ISM
0.88
A
1.4
V
Vas =OV
IF =O.44A
Diode forward
on-vo~age
VSD
0.9
Reverse recovery time
Irr
ns
VR =30V. IF = ID R
diF Idt = lDOA/J18
Reverse recovery charge
Orr
J1C
VR =3OV. IF = ID R
dl F Idt = 100A/J1s
Siemens
743
ass 138
SwItchIng TIme Measurement
Switching times
Test circuit
Vec
Typical output characteristic
Permissible power dissipation versus temperature
PD =fTA
X Axis: TA I'C
YAxls: P D IW
ID =fVDS
X Axis: VDS IV
YAxis: ID IA
,
.8
.4
I
1DV
P,
~ 'l
8V
'v
ev
\
P,~
0.36
4.8V
j1
\
4V
'/,\
.3
\
Ii
.. 1//
\
,\
\
Y
\
.,
\
/
\
,
3.8V
., .....
-3V
2.6V
1\
o
o
\J
,,
2V
4
V
•
v,s
744
Siemens
ess 138
Safe operating area
Typical tranafer characteristic
'D
'D
=fVas
X Axis: Vas IV
=fVDS
X Axis: vDs/V
'D
YAxis:
IA
Parameter: D = 0.01, D
=t pIT;
D_~
t
T
Tc
'D
YAxis:
IA
Parameter: VDS
= 2S'C
= 2SV;
tp
= 80jJs;
= 2S'C
TI
0
'1-~-I-t
__
T
'0'
'D
Ip'
30".
100".
'D
"
1··
,,.,
"
I
"
I
10m.
"'-
100m.
~
I
II
/
10'
5 V 10 2
----vas
---VDS
Typical transconductance
Drain to source on resistance (spread)
g,.="D
X Axis:
Y Axis:
'D
RDSon = fT J
X Axis: TJ I'C
Y Axis: RDSon I Q
IA
g,. IS
Parameter:
VDS
= 2SV; t p = 80jJs;
TJ
= 25'C
gf,
'D = 0.22A
n
i--"'"
[
Parameter: Vas = 10V;
[,
ROS(on)
/1-"
V
/
/
/
/
""
V
/
II
I
,;
/
--
I
II
----'.
V
..,. ..,. i--"'"
//
V
,/
,/
typ_
----TJ
Siemens
745
BSS 138
Typical capacitances
C = fV DS
X Axis: Vos I V
Y Axis: C I pF
Parameter: VGS =0; f = lMHz
10'
,F
c
CI..
1\
\
\
r--...
-
Co ..
n'
---v"
Drain current
Gate threshhold voltage (spread)
VGSlh = fT J
X Axis: T J I'C
10 = fTA
X Axis: TA I'C
Y Axis: 10 I A
Y Axis: VGSlh I V
Parameter: VGs= Vos; 10 = lmA
...
I
'.
A
.2
""'I'..
VCS(th )
""'\
.~
,
..... 98%
"'-\
t--..
\
\
,
r---~
'\
.....
,
, ,
'"
typo
......
-I-
....
........
,
......
'-
.
c
- - TJ
746
Siemens
BSS 138
Typical drain-source on-state resistance
ROSon = f1 0
XAxis: lolA
Y Axis: R OSon I 0
Parameter: VGS ;
1j = 2S'C
.,
11
"'"
.,$V
n
.35V
~5V
~,
,
/
J.
/
::
./
-",.-
.....- ..... V
V
./
V
f-""'" I--' I--"
L--'
J
--~
"
.$V
.,
7V
l
--10
Typical reversa diode forward voltage (spread)
IF =fVso
X Axis: VSD IV
Y Axis: I F I A
Parameter: t p =8~s; TI
,,'
IF'
150
;
''C:~.
rJ
XI
'-"1-- " : "
r-- .,. re: "
I
,
- - - vso
Siemens
747
SIPMOS N Channel MOSFET
• 51PMOS - depletion mode
• Drain-source voltage
• Continuous drain current
'i.bs
SSS 139
= 250V
10 = 0.04A
• Drain-source on-resistance
• Total power dissipation
~S(on) = 1000
Po = 0.36W
Type
Marking
Ordering code for
versions on 8 mm-tape
Package
B55139
5T
Q62702-5612
SOT 23
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
'i.bGR
10
10Pul.
V••
Po
7j
T.,s
Ratings
Unit
250
250
0.04
0.12
±20
0.36
V
V
-55... +150
55 ... 150 ... 56
Thermal resistance
Chip - air
Chip - substrate rear side
Ceramic substrate
25mm x 25mm x 0.7mm
748
RlhJA
RthJSR
::;350
::;285
Siemens
A
A
V
W
Conditions
RGS
=20 kO
TA =25°C
TA =25°C
aperiodic
TA =25"C
°C
DIN IEC 68 part 1
BSS 139
Electrical Characteristics
CondHlon
Static characteristics
Drain-source
breakdown vottege
Gate threshold
vo~age
Zero gate vo~age
drain current
V(BR)OSV
2S0
-
-
V
'0
VaS(th)
-1.B
-1.0
-0.7
V
VOl = 3V;
100
nA
-
'osv
Vas =-3V
=0.2SmA
7j =2SoC;
'0
=lmA
Vos =2S0v
Val =-3V
200
'osv
jJA
7j =12SoC;Vos
=2S0V
Vas =-3V
'osv
r, =2SoC;
-
Vos =-V
Vas =OV
Gate-source leakage current
, ass
-
Drain-source on-state
resistance
ROS(on)
-
gt.
O.OS
10.0
-
100
nA
Vas =±20V,VDS =0V
100
0
'0
-
S
Vas =OV
=14mA
Dynamic characteristics
Forward transconductance
Input capac~ance
Output
capac~ance
0.07
C •••
SO
Co ••
10
pF
-
-
3
10
-
tr
-
20
-
t d(olf)
-
Reverse transfer
capacitance
Cr ••
Turn-on time ton
(t on =t d(on) +t r J
t d(on)
Turn-off time t olf
(tolf =t d(olf) +t tJ
=O.04A
Val =OV
Vos =2SV
f =IMHz
Vee
=30V
Vas =-2V... +5V
=O.ISA
Ras = SOD
'0
70
120
If
ns
VOl =25V
'0
-
Reverse diode
Continuous source
current
's
Pulsed source current
ISM
Diode forward
on-vo~age
0.9
Vso
Reverse recovery time
Irr
Reverse recovery charge
Orr
0.04
A
0.12
A
1.2
V
Vas =OV
=O.OBA
ns
VR =100V,
10 R
d/ F Idt = 100A/jJs
jJC
VA =looV, IF = 10 A
dl F Idt = 100A/jJs
'F
-
Siemens
'F =
749
BSS 139
Switching Time Measurement
Switching times
Test circuit
Vec
v
I
90%
VGS
90%
Safe operating area
Permissible power dissipation versus temperature
Po =fTA
X Axis: TA loe
V Axis: PD IW
VOS
90%
'0 =fVDS
X Axis: VDs/V
V Axis:
'D
Parameter:
IA
0
= 0.01.
ROS(on) ::
0
= t pIT;
Te
= 25°e
vos 110
,,'
A
\
10
\
-I"
lr
110"
[\
\
\
1\
\
\
,o·~
\
1\ I
o
750
o
~
",
Siemens
5
10'
- - v..
5 V10 3
BSS 139
Drain to source on resistance (spread)
Drain current
= fT J
TJ I·e
RDso •
X Axis:
Y Axis: RDso • I (l
Parameter: Vas =0; I
I D = fTA
X Axis: TA I·e
Y Axis: I D I A
D
= 14rnA
240
n
'.
A
""1"'- \
)
.03
/
/
...,
//
100
\
.02
1\
V
I/'
C
..
180
---_.T)
Typical reverse diode forward voltage (spread)
Gate threshhold voltage (spread)
VaSlh = fT J
X Axis:
YAxis:
IF =fVSD
X Axis: V.D/V
T j I·e
VaSlh IV
Parameter: Vas
--TA
= 3V;
I
D
YAxls: IF IA
Parameter: t p =8Ops; Tj
= 1rnA
",
"
VCSUh )
I
-- - -
.
""
.......
r-.
r--...
.... r-
,
'--
T
=
I'"
;
1_"
typo
j-li
"C;98
l[r-- ''''1'''
".
........
........,
~~
"
-...
_T,
100
C
180
2
---Vso
Siemens
751
BSS 192
SIPMOS P Channel MOSFET
• SIPMOS - enhancement mode
• Drain-source voltage
Vos = -240V
• Continuous drain current
10 = -0.15A
Ros(o.) = 20.00
• Drain-source on-resistance
Po =1.0W
• Total power dissipation
S
Type
Marking
Ordering code for
versions on 8 mm-tape
Package
BSS 192
KB
Q62702-8602
80T89
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
9ontinuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
Vos
~GR
10
I Dpuls
V.,
Po
7j
T,t.
Ratings
Unit
Conditions
-240
-240
-0.15
-.6
±20
1.0
V
V
A
A
V
Rca =20 kO
TA =23"C
TA =25°C
-55 ... +150
55 ... 150... 56
W
°C
DIN IEC 68 part 1
Thermal resistance
Chip - air
752
RthJA
:;;125
Siemens
aperiodic
TA =25"C
K!W
BSS 192
Electrical Charllcterlatlc.
Condltlon
Static characteristics
Drain-source
breakdown vobage
V (BR)DSI
-240
-
Gate threshold vobage
Val(th)
-0.8
-1.5
-2.0
Zero gate vobage
drain current
I DSI
-
-4.0
-60.0
V
Vas =OV
ID =-0.25 rnA
V
VDI = Val;lD =-1 rnA
IlA
7j =2S·C;
VDS =-24OV
Val =OV
-8.0
IDBI
-200
IlA
7j =125"C; VDI
=-24OV
Val =OV
I DSS
-
-
-0.2
IlA
7j =2S·C;
VDS =-60V
Vas =OV
Gate-source leakage current
I GSI
Drain-source on-state
resistance
RDS(on)
Dynamic characteristics
Forward transconductance
-10.0
-100
nA
10.0
20.0
0
Vas =-2OV, VD• =OV
Val =-1OV
I D =-O.15A
g,.
0.06
0.12
-
S
VDI =-2~
ID =-0.15A
-
Input capacitance
C. oo
Output capacitance
Ca ••
Reverse transfer
capacitance
C roo
-
1d(on)
-
Tum-on time 1on
(Ion =1 d(on) +t ,)
I,
Tum-off time 1off
(t orr =t d(o'!) +t ,)
t c[~f!)
t,
-
70
10S
20
30
8.0
12.0
8
12
30
4S
15
20
30
45
pF
ns
Va.
=OV
VDI =-2~
f =1MHz
Vcc =..3(N
Val =-1OV
I D =-O.25A
Ral =500
Reverse diode
Continuous source
current
Is
-
-
-0.15
A
Pulsed source current
ISM
-
-
-0.60
A
Diode forward on-voltage
VSD
-
-0.85
-1.2
V
Reverse recovery time
t rr
-
130
Reverse recovery charge
Orr
300
-
ns
-
nC
Val =OV
IF =-O.3A
VR =-100v,1, =0. 5A
dl F Idt = -100A/lls
VR =-100V,/ F =0. 5A
dl" Idt = -100A/lls
Siemens
753
ass 192
Switching Time Measurement
Switching tlmea
Teat circuit
Vcc
v
Vos
Permissible power dissipation versus temperature
Typical output characteristic
'D
PD =fTA
X Axis: TA loe
V Axis: Po IW
=fVD1
X Axis: VDI
IV
V Axis: 'D IA
t.t
p.
-.-.
w
-.3
'.
-to
I
1\
r\
\
p ~1fv
lh -,
I"'.W V
IlI.'111 1/
W
V
U r.:
1. 0 1-f--I--I--I-I-+'>.I-t-+-iH--t-H-l
101
=tIL
-
l-~
'--
5 -_.
\
05
. r-r-f- -.-
o
-
f-+-t-H-I-+-+-I-+-I~'I.-IH--I-I
....-
o
·-t--IH-+-+-I~I-~-++-I
-
'-
.-.. - ,,-.- -
50
-
21-1-1-1-+-It
-,
100 °C
-TA
-
10' L-.L-l..l..LLlllL._
100
ISO
Saturation voltage Ie - (VBES.t. VeE ..,)
--
-=t= ':"
5
/
VV
Ii VI(= '=
C(
-
-
~
t-
. - f-
zJJCI ~
II
10'
~ ....
.. ... --- ~:= ..::.
-f-.
!-- - -- - 1 - " --. _. - f - ' -. -f- 1f- : -
'L
5
.=-c .--
r!
-55'C
5
-
5
f-+-
,
10'
o
,
0.2
0.4
0,6
OJ
-
762
5 10'
DC current gain hFE - f (/ e)
VeE - 10V
.•
hFE - 10
mA
IO J
1--'
to
10'
1l V
-/c
VR.lt,VCl.ot
Siemens
PZT 2907;PZT 2907A
PNP Silicon Switching Transistors
• High DC current gain: 0.1 to 500 mA
• Low collector -emitter saturation voltage
• Complementary types: PZT 2222 (NPN)
PZT 2222A (NPN)
E
c
Type
Marking
Ordering code (12-mm tape) Package"
PZT 2907
ZT 2907
Q62702 - Z2028
SOT-223
PZT 2907A
ZT2907A
Q62702 - Z2025
SOT-223
Maximum Ratings
Parameter
Collector-emitter voltage
Collector-base voltage
Symbol
PZT 2907
PZT 2907A Unit
VCEO
40
60
V
VCBO
60
60
V
5
5
V
Emitter-base voltage
VEBO
Collector current
Ie
Total power dissipation, TA:525'Cl)
P IOI
Junction temperature
Tj
Storage temperature range
Ts1g
-65
to
600
mA
1.5
W
150
'c
'c
+ 150
Thermal Resistance
Junction - ambient 1)
IR
tl1JA
:5 83.3
IKtW
1) Package mounted on an epoKy printed circuit board 40mm K 40mm K 1,5mm
Mounting pad for the collector lead min 6cm 2
0) For detailed dimensions see chapter Package Outlines
Siemens
763
PZT 2907;PZT 2907 A
Characteristics
at TA = 25 ·C, unless otherwise specified.
Parameter
Unit
DC Characteristics
Collector-emitter breakdown voltage
Ic = 10 rnA, IB = 0
PZT 2907
PZT 2907A
V(SR)CEO
Collector-base breakdown voltage
Ic = 10 pA, Is = 0
PZT 2907
PZT 2907A
V(SR)CSO
Emitter-base breakdown voltage
IE = 10 pA, Ie = 0
V(SR)ESO
Collector-base cutoff current
VCS = 50 V, IE = 0
Vcs=50 V, Ie =0, TA = 150°C
PZT
PZT
PZT
PZT
2907
2907A
2907
2907A
'CBO
leBo
Collector-emitter cutoff current
VcE =30 V,+VBE=0.5 V
,cEv
Collector-base cutoff current
Vce =30 V, +VBE =0.5 V
lesv
Ic= 1 rnA,
VcE =10V
Ic= 10 rnA,
Vce=10V
PZT 2907
PZT 2907A
PZT 2907
PZT 2907A
PZT 2907
PZT 2907A
PZT 2907
PZT 2907A
PZT 2907
PZT 2907A
Ic=150mA, VcE =10V
Ic=500 rnA, VcE =10V
hFE
Collector-emitter saturation voltage 1)
Ie = 150 rnA, Is = 15 mA
Ic 500 mA,/s = 50 rnA
VCEsat
Base-emitter saturation voltage 1)
Ie = 150 rnA, Is = 15 mA
Ie 500 mA,Is = 50 rnA
VSEsat
=
=
1) Pulse test conditions:
764
t
~ 30°115; D
-
-
V
V
-
-
V
V
5
-
-
V
-
-
20
10
20
10
nA
nA
llA
pA
-
-
10
nA
-
-
50
nA
-
-
50
nA
35
75
50
100
75
100
100
100
30
50
--
---
-
-
-
--
60
60
Emitter-base cutoff current
VEs =3 V, Ic=O
DC current gain 1)
Ic=0.1 rnA, VcE =10V
-
40
60
=2%
Siemens.
-
-
-
300
300
-
-
-
-
0.4
1.6
V
V
-
-
1.3
2.6
V
V
PZT 2907;PZT 2907A
AC Characteristics
Transition frequency
Ic=20mA, VcE =20V, f=100 MHz
fT
Collector-base capacitance
VCB = 10 V,f= 1 MHz
Cob
Input capacitance
VEB = 0.5 V,f = 1 MHz
C,b
Vcc =30 V, Ic = 150 mA, IBI = 15 mA
(see Fig.2)
Delay time
Rise time
Vcc = 6 V, Ic = 150 mA, IBI =/ B2 = 15 mA
(see Fig.3)
Storage time
Fall time
200
-
-
MHz
-
-
8
pF
-
-
30
pF
td
t,
-
-
10
40
ns
ns
tsig
tf
-
-
80
30
ns
ns
Siemens
765
PZT 2907;PZT 2907 A
Turn-on time (see Fig.2)
when switched to-Icon
=150mA;-/Bon =15mA
-30V
...---( I
Va
Fig.2 Input waveform and test circuit for
determining delay,rise and turn-on time
Turn-off time (see Fig.3)
when switched to-Icon = 150mA;-/Bon = 15mA
to cut-off with + IBoff = 15mA
+15V
-6V
Fig.3 Input waveform and test circuit for
determining storage,fall and turn-offtime
Pulse generator (see Fig.2 and 3)
Oscilloscope (see Fig.2 and 3)
frequency
pulse duration
rise time
output impedance
rise time
output impedance
766
f=150Hz
tp=200ns
tr~2ns
Zo=50Q
Siemens
tr~ 5ns
Zj: 10MQ
PZT 2907; PZT 2907A
Total power dissipation PIOI
= I (TA )
Transition frequency IT = I (l c)
= 20 V. 1= 100 MHz
HHz'VCE
2.0
Wf-
~ot
fr
-f-
t
. 1- 1-1--
1--
1
f-f\ I-f--
V
2
1'\
f'\
10 1
~-
II-
P\--1\
r-
l"\_
1.0 I-
~
r-
H - -- --.- -
--1\ -
~-
,:::- -
f-.-
.
5 1--- -
f-~
1-1-
0.5
t---- -f- - -- 1f- - --- - - - --
-!\,-H-
-
2 t-!-+-
-t-I\'I-f1-1-+--1-1--1-+-1-1--1-1-+-+-+....1-1
o
f--
f---
1.5
-1--
10 1 ,-- - .
1-- t-- 1-5 t--
- -1- -1-1-I-+1--f--jH-I-i-f\
1-'._-'-..L...I--L...l_L..J..-L..L1-1_-'-LJI
o
100
50
·C
10'
150
10°
Saturallon voltaga Ie = ((VBE,al. VCE.a,)
hFE = 10
la'
5
5 10 1
----Ie
5 10 1 rnA
DC current gain hFE = l(lel
VCE 10 V
=
W
-
5
-- -
--1- .
Ic
1=-
I-
t-
1~
1.1
r-
1.1 VII[
Vcr
5
175°(
rII
10'
10
21=
I.-1--
5
5
lt-
I-
1U
25°C
~~, DC
t'\
r-:
~
1-
'I)'
5
10-1
1--
o
01 0.4 0,6
O.~
1.0 11 1/. 1.6 V
_
Vir",,' VcrIGt
-/c
Siemens
767
PZT 3904
NPN Silicon SWitching Transistor
• High DC current gain 0.1 to 100 mA
• Low collector -emitter saturation voltage
• Complementary type: PZT 3906 (PNP)
E
Type
Marking
Ordering code (12-mm tape) Package"
PZT 3904
ZT 3904
Q62702 - Z2029
SOT-223
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
40
V
60
V
Emitter-base voltage
VCEO
VCBO
VEBO
6
V
Collector current
Ic
200
mA
Total power dissipation, TA:s 25°C I)
Collector-base voltage
PZT 3904
Unit
P 101
1.5
W
Junction temperature
Ti
150
°C
Storage temperature range
TSIg
-65 to + 150
°C
:s83.3
IKIW
Thermal Resistance
Junction - ambient 1)
.) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm
Mounting pad for the colleclor lead min 6cm 2
'J For detailed dimensions see chapter Package Outlines
768
Siemens
PZT 3904
Characteristics
at TA = 25 °C, unless otherwise specified.
I
Parameter
I
Symbol Values
min. Ityp.
Imax. .I
Unit
DC Characteristics
Collector-emitter breakdown voltage
Ic 1 rnA, IB 0
V(BR)CEO
Collector-base breakdown voltage
Ic = 10 pA, IB = 0
V(BR)CBO
Emitter-base breakdown voltage
IE = 10 pA, Ic = 0
V(BR)EBO
Collector-base cutoff current
VcB =30 V,/E=O
ICB~
Collector -emitter cutoff current
VCE = 30 V,-VBE = 0,5 V
,CEV
=
=
Base-emitter cutoff current
VCE 30 V,-VBE = 0,5 V
=
'
DC current gain 1)
Ic = 0.1 rnA, Vce = 1 V
le= 1 rnA,
VCE = 1 V
Ic = 10 rnA, VCE 1 V
Ic=50 rnA, VCE = 1 V
Ic = 100 rnA, VCE 1 V
BEV
hFE
=
=
Collector-emitter saturation voltage
Ie = 10 rnA, IB 1 rnA
le=50 mA,IB=5 rnA
=
Base-emitter saturation voltage
Ie = 10 rnA, Ic 1 rnA
le=50 mA,le=5 rnA
=
1) Pulse test conditions: t ;;; 300ps; D
VeEsat
1)
1)
VBEsat
40
-
-
V
60
-
-
V
6
-
-
V
-
-
50
nA
-
-
50
nA
-
-
50
nA
40
70
100
60
30
--
300
-
--
-
-
-
0.2
0.3
V
V
-
-
0.85
0.95
V
V
-
-
-
-
=2%
Siemens
769
PZT 3904
AC Characteristics
Transition frequency
Ic = 10 rnA, VCE =20 V, f= 100 MHz
fr
Collector-base cpacitance
VCB = 5 V,f= 1 MHz
Cob
Input capacitance
VEB = 0.5 V,f = 1 MHz
C,b
Noise figure
Ic = 100 lIA,vCE = 5 V,Rs = 1kn,
f= 10 Hz to 15.7 kHz
F
Input impedance
Ic = 1 rnA, VCE = 10 V, f = 1 kHz
h lle
Open-circuit reverse voltage transfer ratio
Ic = 1 mA,VCE = 10 V, f= 1 kHz
h '2a
Short-circuit forward current transfer ratio
Ie = 1 mA,vCE = 10 V, f= 1 kHz
h 21e
Open circuit output admittance
Ic = 1 mA,VeE = 10 V, f= 1 kHz
h 22e
Vcc=3 V, Ie = 10 rnA, IBI = 1 rnA
VBEIOIf) = 0.5 V
Delay time
Rise time
Vce =3 V,/c = 10 rnA,
'B' = 'B2 = 1 rnA
Storage time
Fall time
770
300
-
-
MHz
-
-
4
pF
-
-
8
pF
-
-
5
dB
1
-
10
kn
0.5
-
8
10-4
100
-
400
-
1
-
40
\lS
-
-
35
t,
35
ns
ns
t. ,g
t,
-
-
200
50
ns
ns
td
Siemens
PZT 3904
Switching times
Turn-on time (see Figs 2 and 3 ) when switched from
-VSEoft=0.5Vto ICon = 10mA;/s on = 1mA
Vi (V)
+ 10.6
+3V
--"""-~Vo
I
I
=t=Cs
I
I
Ol--~+-~----------~r-~
I
I
-0.5
Fig.2 Input waveform;tr < 1ns;tp = 300ns
Ii = 0.02
Fig.3 Delay and rise time test circuit;total
shunt capacitance of test jig and
connectors Cs <4pF;
scope impedance ~ 10MCl
Turn-off time (see Figs 4 and 5 )
ICon =1OmA; Ison =-/soft =1mA
Vi (V)
+3V
+ 10.91----,...------...
.C
",-......-vVo
I
I
O~~------~--------~~
I
I
I
I
s
-..
-9. 11--~------t--+'-----../
Fig.4lnput waveform; tr< 1ns;
lOjls 100 kQ
C < 12 pF
tr < 5 ns
Siemens
797
5MBT2222
5MBT 2222 A
Total power dissipation Ptot = f (TA)
Collactor-base capacitance
Cob = f(Vce)
f= 1 MHz
pF
mW
102
400
"lot
t
r-b
i
300
5
I\,
200
-I"-
\
\.
r-...
5
100
o
o
1\
\
100
50
150°C
-~
Transition frequency
VCE = 20V
Pulse handling capability 'th = fIt)
(standardized)
fT = f
(1 0 )
K
W
10°
,
10-
II
"~,5
5
10- 2
0,2
0,1
0,05
0,02
0,01
0,005
2
0=0 1111
5
v ...
'\
I
II
5
~
'"
tp
D=r
10-3
T
'"
10-6 10-5 10- 4 10- 3 10- 2 10-' 10°
10' s
5 10'
-t
798
Siemens
5MBT 2222
5MBT 2222 A
Saturation voltage Ie = f(VBEsat, VCEsatl
DC current gain h FE = f (Ie)
hFE = 10
VCE = 10V
rnA
103
5
IL
VVeE
/ VBE
l?E:£
r-
I
2~.lcl 1\
II
10'
5
-55°C
5
vi
5
10-'
o
0.2
0.4
0,6
0.8
-
Delay time t d = If (I e)
Risetime tr= f(Iel
1.0
'-:-
1.2 V
VeE sat- VeE sat
Storage time tst9 = f(Ie)
tf = f (l e)
Fall time
--
~
\
5
'"
s,
\
...,hFE -l0
i\ tl
r
hFEI- 1
I
5
hFE -20
I'"
r'-.... ).
5
-Ie
Siemens
799
5MBT2907
5MBT 2907 A
PNP Silicon Switching Transistors
•
•
•
High DC current gain: 0.1 to 500 mA
Low collector-emitter saturation voltage
Complementary types: 5MBT 2222, 5MBT 2222 A (NPN)
Type
5MBT 2907
5MBT 2907 A
. Marking
S2B
S2F
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
Q68000-A4336
Q68000-A4337
Q68000-A6501
Q68000-A6474
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
5MBT 2907
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
40
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
800
VCBO
VEBO
Ic
P tot
5MBT2907 A
60
60
5
600
330
150
-65 .. ·+150
Ti
Tstg
~
RthJA
Siemens
375
Unit
V
V
V
mA
mW
°C
°C
K/W
5MBT2907
5MBT2907 A
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
5MBT2907
Ic = 10 rnA
5MBT2907 A
V(BR) CEO
Collector-base breakdown voltage
5MBT2907
Ic=10~A
5MBT2907 A
V(BR) CBO
Emitter-base breakdown voltage
Ie = 10 ~A
V(BR)EBO
Collector cutoff current
VCB = 50V
VCB = 50V
VCB = 50 V, TA = 150°C
VCB = 50 V, TA = 150°C
ICBo
5MBT2907
5MBT 2907 A
5MBT 2907
5MBT2907 A
Emitter .::utoff current
VEB = 3V
leBO
DC current gain
Ic=100~A, VCE=10V
hFE
Ic=
1 rnA, VCE
Ic= 10 rnA, VCE
Ic = 150 rnA, VCE
Ic = 500 rnA, VCE
5MBT2907
5MBT2907 A
= 10V 5MBT2907
5MBT2907 A
= 10 V') 5MBT2907
5MBT2907 A
= 10 V') 5MBT 2907
5MBT2907 A
= 10 V') 5MBT2907
5MBT2907 A
Collector-emitter saturation voltage ')
Ic = 150 rnA, IB = 15 rnA
Ic = 500 rnA, IB = 50 rnA
VCEsat
Base-emitter saturation voltage ')
Ic= 150 rnA, IB= 15mA
Ic = 500 rnA, IB = 50 rnA
VB Esat
1) Pulse test: t:5 300
~s,
min
typ
max
Unit
40
60
-
-
-
V
V
60
60
-
-
V
V
5
-
-
V
-
-
20
10
20
10
nA
nA
-
-
10
nA
35
75
50
100
75
100
100
100
30
50
-
-
-
300
300
-
-
~A
~A
-
-
-
-
-
-
0,4
1,6
V
V
-
-
1,3
2,6
V
V
-
D = 20/0.
Siemens
801
5MBT 2907
5MBT2907 A
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 mA, VCE = 20 V, f= 100 MHz
fT
200
-
-
MHz
Output capacitance
Vcs = 10V, f=1 MHz
Cob
-
-
8
pF
Input capacitance
VES = 0,5 V, f= 1 MHz
Cib
-
-
30
pF
td
tr
-
-
10
40
ns
ns
t519
tl
-
-
-
80
30
ns
ns
Vcc = 30 V, Ie = 150 mA, IS1
Delay time
Rise time
Vcc = 6 V, Ie = 150 mA,
IS1 = IS2 = 15 mA
Storage time
Fall time
= 15 mA
-
Test circuits
Delay and rise time
Storage and fall time
-6V
-30V
.1SV
200n
Osz.
Eingang
zo=son
tr < 2ns
Eingang
Zo =50 n
1k
-~0-[ o--rlso=n=:J-+I
t,
-~0-{
200ns
802
< 2ns
200ns
Siemens
37n
Osz.
1k
son
5MBT2907
5MBT2907 A
Total power dissipation P tot = f (TA)
Collector-base capacltanca
Ccb = f(Vcs)
f= 1 MHz
pF
mW
400
~.t
t
102
5
'-~~
300
\.
1- ..
~
200
I\.
5
100
""
\.
I\,
o
o
50
100
5 1~
150 ·C
-~
Pulse handling capability 'th = f(t)
Transition frequency
Vce=20V
(standardized)
fT = f (Ic)
K
iii
100
lih
5
f
,
10·
l1li
ut
5
'0,5
0,2
0,1
0,05
0,02
0,01
0,005
0:0
10·2
vi---
2
'\
II
17
1111
5
5
1tn..
D=~
T
2
~T7.!
10" 3
10.6 10. 5 10. 4 10.3 10. 2 10·' 10°
10' s
10
I
0
10
5 10'
5 10 3 mA
-t
Siemens
803
5MBT2907
5MBT2907 A
Saturation voltage Ie = f ( VeE sat, V CE sat)
hFE = 10
Delay time td = f(Ie)
Rise time tr = f(Ie)
hFE = 10
ns
'II
103
5
f~
VCE
~
I--
VI[
TIlT
H
-lovl
VBE ;;ov,Vcc
- - - VBE -20V,Vcc -30V
II
f-
rl
"
I--
I~
If
td
~.
5
5
\
5
o
\1\
1\
"
1f'
1\
'I
r"
01 0.4 0.6 0.& 1.0 1.2 1/+ 1.6 V
-
-Ic
VaEsaI' VCEIGt
Fall time tl = f (I cl
Storage time tstg = f(Ie)
ns
103
tstg
5
..
i
Vcc -30V
~fFE=20
"
hFE. =1 ~ \
5 f-
FE- 1
lY'
1]/
~
"
fhFE= 20
'-
5 10'
-Ic
804
-Ic
Siemens
5MBT 2907
5MBT2907 A
DC current gain h FE
=
f (I c)
175°C
,
]J
t'\
25 ·C
-55 ·C
--Ie
Siemens
805
NPN Silicon Switching Transistor
•
•
•
5MBT3904
High DC current gain: 0.1 to 100 mA
Low collector-emitter saturation voltage
Complementary type: 5MBT 3906 (PNP)
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
5MBT3904
S1A
Q68000-A4340
Q68000-A4416
SOT 23
Maximum ratings
Parameter
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Total power dissipation
TA"= 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
806
Symbol
V
V
V
PIOI
Ratings
40
60
6
200
330
Tj
Tstg
150
-65 ... +150
°C
°C
RthJA
~375
K/W
VCEO
VCBO
VEBO
Ic
Siemens
Unit
mA
mW
5MBT3904
Electrical characteristics
at TA
=
25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 1 mA
V(BR) CEO
40
-
-
V
Collector-base breakdown voltage
Ie = 10 !lA
V(BR)CBO
60
-
-
V
Emitter-base breakdown voltage
h= 1O !lA
Collector cutoff current
VCB = 30V
V(BR)EBO
6
-
-
V
ICBo
-
-
50
nA
40
70
100
60
30
-
-
-
-
-
300
-
-
0,2
0,3
V
0,85
0,95
V
V
DC current gain
Ic = 100 !lA, VCE =
Ic =
1 mA, VCE =
Ic = 10 mA, VCE =
Ic = 50 mA, VCE =
Ic = 100 mA, VCE =
hFE
1V
1V
1 V')
1 V')
1 V')
Collector-emitter saturation voltage')
I C = 10 mA, Ie = 1 mA
I C = 50 mA, Ie = 5 mA
VCEsat
Base-emitter saturation voltage')
I C = 10 mA, I B = 1 mA
I C = 50 mA, I B = 5 mA
VeEsat
') Pulse test: t::;:; 300 !ls, D
=
-
-
-
-
0,65
-
-
-
V
20/0.
Siemens
807
5MBT3904
AC characteristics
Symbol
max
fT
min
300
typ
Transition frequency
Ic = 10 rnA, VCE = 20 V, f= 100 MHz
Output capacitance
VCB=5V,f=1 MHz
Input capacitance
VEB = 0,5 V, f= 1 MHz
-
-
Unit
MHz
Gob
-
-
4
pF
Gib
-
-
8
pF
Input impedance
Ic = 1 rnA, VCE = 10V, f= 1 kHz
h11e
1
-
10
kQ
Open-circuit reverse voltage transfer ratio
Ic = 1 rnA, VCE = 10V, f=1 kHz
h12e
0,5
-
8
10- 4
Short-circuit forward current transfer ratio
Ic = 1 rnA, VCE = 10V, f=1 kHz
h21e
100
-
400
-
Open-circuit output admittance
Ic = 1 rnA, VCE = 10V, f=1 kHz
h22e
1
-
40
/lS
Noise figure
Ic = 100 /lA, VCE = 5 V, Rs = 1 kQ
f= 1 kHz
F
-
-
5
dB
td
t,
-
-
-
35
35
ns
ns
tstg
-
-
200
50
ns
ns
Vcc = 3V, Ic = 10mA, IB1 = 1 rnA
VBE (off) = 0,5 V
Delay time
Rise time
Vcc=3V,Ic=10mA,
IB1 = IB2 = 1 rnA
Storage time
Fall time
-
tf
-
Test circuits
:g
Delay and rise time
OOns
Storage and fall time
+3.0V
0=2%
-+10.9 V
275!l
10 k!l
o cr-C::J-H
-0.5V
<1.0ns
I
J£
T<4.0pF lI
I
-~
< tOns
808
Siemens
5MBT3904
Total power dissipation P'o' = f (TA)
Saturation voltage
rnW
400
/
//
~ot
300
= f (VeE sa', VeE sa')
V
rnA
r
Ie
""
I
I
I
1\
I
VeE
200
1'\
VBE
5
100
\
'\
o
o
50
100
10 0
150·(
o
I
0,2
0,4
--~
0,6
0,8
1,0 V 1,2
--VSfsat
Input impedance
hll. = f(Ie)
VeE = 10V, f= 1 kHz
Open-circuit reverse voltage
transfer ratio h
= f (I e)
VeE = 10V, f= 1 kHz
10 2
10'
I
VCEsat
,2.
kfl
h".
5
1", "
"\.
5
\.
r'-..
r'\
5
......... ....- V"'"
"
i"'.,
5
5
,
-Ie
Siemens
809
5MBT3904
Short-circuit forward current
transfer ratio h21e = f(Iel
VCE = 10V, f= 1 MHz
Open-circuit output admittance h22e = f (I e)
VCE = 10V, f= 1 MHz
10 3
5
--
f-
/
5
5
V
/'
-Ie
Storage time tstg = f(Ie)
Delay time td = f(Ie)
Rise time tr = f(Ie)
3
C:::=!=!=fffi:m=~ffi~R
10 f.ns
5
~f=
~~
- - td-=f=
=
hFE= 10
- - I ; --t--t--m"tttt---1
5
-
-.
-.
2S 0 (
125°(
I--
hFE = 20
v 10
I'\'[\
::= F"'
5
---== :""..:f::
~~
hFE=2
1
5 102 rnA
-Ie
810
Siemens
5MBT 3904
Fall time If
=
Rise time I,
f (l c)
no
25°(
--125°(
t=:: =.
1--~
=
I'ce= 40V
=
=
f(Ie)
ns
t,
5
\ICe =40V
hFE =10
"-
.~
" "
~
'\
~
1250(
r=
hFE= 20
~
5
I'\.~
5
~
~ ,I"
~
hFE=10
f-~
~
~
I-~
25°(
'"'\.
~
;1
I--
5
102 mA
5 102 mA
-Ie
-Ie
DC current gain h FE = f (l c)
VeE = 10 V
5
lJfflC
25°C
~
_55°(
v
5
1/
10- 1
10-1
~
111111
5 10 0
III~
5 101 rnA 10 2
_Ie
Siemens
811
PNP Silicon Switching Transistor
•
•
•
5MBT3906
High DC current gain: 0.1 to 100 mA
Low collector-emitter saturation voltage
Complementary type: 5MBT 3904 (NPN)
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
5MBT3906
S2A
Q68000-A4341
Q68000-A4417
SOT 23
Maximum ratings
Parameter
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
812
Symbol
Ratings
Unit
VCEO
VCBO
VEBO
40
40
5
200
330
V
V
V
mA
mW
Tstg
150
-65···+150
DC
DC
RthJA
::5 375
K/W
Ic
Ptot
Tj
Siemens
5MBT 3906
Electrical characteristics
at TA = 25 DC, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 1 rnA
V(BR) CEO
40
-
-
V
Collector-base breakdown voltage
Ic=10[.lA
V(BR)CBO
40
-
-
V
Emitter-base breakdown voltage
lE=10[.lA
V(BR) EBO
5
-
-
V
Collector cutoff current
VCB = 30V
ICBo
-
-
50
nA
DC current gain
I C = 100 [.lA, VCE =
Ic = 1 mA, VCE =
Ic = 10 rnA, VCE =
Ic = 50 mA, VCE =
Ic = 100 mA, VCE =
hFE
60
80
100
60
30
-
-
-
-
-
-
0,25
0,4
V
V
0,65
-
0,85
0,95
V
V
1V
1V
1 V')
1 V')
1 V')
Collector-emitter saturation voltage')
Ic=10mA,IB=1mA
I C = 50 mA, I B = 5 mA
VCEsat
Base-emitter saturation voltage')
Ic=10mA,IB=1mA
I C = 50 mA, I B = 5 mA
VBEsat
-
300
-
') Pulse test: t:5 300 I1s, D = 20/0.
Siemens
813
5MBT3906
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 10 rnA, VCE = 20 V, f= 100 MHz
fT
250
-
-
MHz
Output capacitance
VCB = 5V, f=1 MHz
Gob
-
-
4,5
pF
Input capacitance
VEB = 0,5 V, f= 1 MHz
Gib
-
-
10
pF
Short-circuit input impedance
I c = 1 rnA, V CE = 10 V, f = 1 kHz
h11e
2
-
12
kO
Open-circuit reverse voltage transfer ratio
Ic = 1 rnA, VCE = 10V, f=1 kHz
h12e
0,1
-
10
10-'
Short-circuit forward current transfer ratio
Ic = 1 rnA, VCE= 10V, f=1 kHz
h21e
100
-
400
-
Open-circuit output admittance
Ic = 1 rnA, VCE = 10V, f=1 kHz
h22e
3
-
60
!lS
Noise figure
Ic = 100 !lA, VCE = 5 V, Rs = 1 kO
f=1 kHz
F
-
-
4
dB
td
tr
-
Vcc
= 3 V,
VBE (off) =
Ic = 10 rnA, IB1 = 1 rnA
0,5 Vdc
Delay time
Rise time
Vcc = 3 V, Ic = 10 rnA,
IB1 = IB2 = 1 rnA
Storage time
Fall time
fstg
tf
-
-
-
35
35
ns
ns
-
-
225
75
ns
ns
-
Test circuits
Delay and rise time
Storage and fall time
-lOV
<1.0ns
<1.0ns
~_~::()ov-[10=k:JQ-+-[
275Q
275Q
~----hf----O
-1d=O:2%
814
Siemens
O---£::::J--_+-r
5MBT 3906
Total power dissipation Ptot = (( TA)
Saturation voltage I c = (( VSEsat,
mW
400
i
:;
,/"
//
~ot
300
VCEsat)
5
II
I\,
200
Y(E
{VBE
I\,
5
100
L
I\,
\.
o
o
50
100
0,2
150 0 (
--T;,
Short-circuit input impedance h11. = ((le)
VCE = 10V, (= 1 kHz
0,4
0,6
-
0,8 V 1,0
VSEsat IVCEsat
Open-circuit reverse voltage
= ((l c)
transfer ratio h
'2.
102
kQ
hI,.
-"
5
",
""
5
'\..
'\
'\
"
5
1- ....
5
1
-Ie
-Ie
Siemens
815
5MBT3906
Open-circuit output admittance h22e = f (I e)
VCE"; 10V, f= 1 MHz
Short-circuit forward current
transfer ratio h 21 e = f (I el
VCE = 10V, f= 1 MHz
103
h 22e
5
/
/
-
/
/
5
5
-Ie
-Ie
Fall time tf = f(le)
Delay time td = f(le)
Rise time tr = f(lel
3
ns
10
~~~~~~~ijml~
=
td _ _"
_
td.tr 5 ~-- tr --hFE=10 -
~\~~~ttm~~ttm~
r
10 2 \
,-- -
5
25°(
~ --125°( -
Vee=40V -
"\ ,
\.
,~
~AhFE=20
5
5
,..
-"
h FE =10
-
~
"
~
.....
t:::
5
~~~~llL-J-L~WW~
10°
816
5
10'
5
10 2 mA
-Ie
Siemens
5MBT3906
DC current gain hFE = f(lel
Siemens
817
5MBT 4124
NPN Silicon Switching Transistor
•
High current gain: 0.1 to 100 mA
•
Low collector-emitter saturation voltage
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
5MBT 4124
SCZ
upon request
upon request
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
VCEO
25
Collector-base voltage
VCBO
30
Emitter-base voltage
VEBO
5
V
V
V
Collector current
Ie
200
mA
Total power dissipation
TA = 25°C
Ptot
330
mW
Junction temperature
7j
Tstg
150
°C
-65 ... +150
°C
RthJA
:5
Storage temperature range
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm
818
375
K/W
,
"
Siemens
5MBT 4124
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Collector-emitter breakdown voltage
min
typ
max
Unit
V(BRICEO
25
-
-
V
V(BRICBO
30
-
-
V
V(BRIEBO
5
-
-
V
IeBO
-
-
50
nA
lEBO
-
-
50
nA
120
60
360
-
0.3
V
Ie = 1 mA
Collector-base breakdown voltage
Ie = 10 fJA
Emitter-base breakdown voltage
IE = 10 fJA
Collector cutoff current
V CB = 20 V, IE = 0
Emitter cutoff current
VEe
= 3 V. Ie = 0
DC current gain
hFE
Ie = 2 mA, VCE = 1 V
Ie = 50 mA, VCE = 1 V
Collector-emitter saturation voltage 1)
mA; I B = 5 mA
Ie = 50
Base-emitter saturation voltage 1)
Ie = 50 mA; I B = 5 rnA
AC characteristics
VCEsat
-
-
VBEsat
-
-
0.95
V
min
typ
max
Unit
fr
300
-
-
MHz
Cobo
-
-
4
pF
C ibo
-
-
8
pF
hIe
120
-
480
-
NF
-
-
5
dB
Symbol
Transition frequency
Ic = 10 mA, VCE = 20 V,
f=
100 MHz
Output capacitance
V CB = 5 V, f = 1 MHz
Input capacitance
V EB = 0.5 V, f = 1 MHz
Small-signal current gain
V CE = 5 V, f = 1 kHz
Ie = 1 rnA;
Noise figure
Ie = 0.1 rnA,
Rs = 1 kG
VCE
= 5 V,
1) Pulse test: t:S 300 IJs,
f=
10 Hz to 15 kHz
D :S 2 %
Siemens
819
5MBT 4124
Total power dissipation Plot
= f( TA )
Ie = f(V."", Ve",,)
Saturation voltage
mW
400
i
II
//
~ot
r-I"\.
300
I
I
\.
I
I
200
II
I
\t(E
I
\
VeE
1,\
r\
5
100
1,\
1\
o
o
50
100
I
---
~
150 DC
100
o
I
0,2
0,4
-~
Small-signal current gain hr.
VeE = 10 V, f = 1 MHz
0,6
0,6
1,0 V 1,2
--VBEsat , VCEsat
= f(Id
DC current gain hFE = f(Id
VeE = 10 V (standardized)
5
f.--
-
125°(
~ 1'\
-55°(
5
5
V
!
V
\\
~
5 10'
mA
10 2
-Ie
820
Siemens
5MBT 4126
PNP Silicon Switching Transistor
•
High current gain: 0.1 to 100 rnA
•
Low collector-emitter saturation voltage
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
5MBT 4126
SC3
upon request
upon request
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
VCEO
25
V
Collector-base voltage
VCBO
25
V
Emitter-base voltage
V EBO
4
V
Collector current
Ie
200
rnA
P'o'
330
mW
Tj
Ts,g
150
°C
-65 ... +150
°C
R'hJA
:::; 375
K/W
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm
Siemens
821
5MBT 4126
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
min
typ
max
Unit
V(BR)CEO
25
-
-
V
V(BR)CBO
25
-
-
V
V(BR)EBO
4
-
-
V
I cBo
-
-
50
nA
hBO
-
-
50
nA
360
-
Symbol
Collector-emitter breakdown voltage
Ie = 1 mA
Collector-base breakdown voltage
I c =10iJA
Emitter-base breakdown voltage
= 10 iJA
IE
Collector cutoff current
VCB = 20 V, h = 0
Emitter cutoff current
VEB = 3 V, Ie = 0
DC current gain
2 mA, VCE = 1 V
50 mA, VCE = 1 V
hFE
Collector-emitter saturation voltage 1 )
Ic = 50 mA; IB = 5 mA
VCEsat
-
-
0.4
V
VBEsat
-
-
0.95
V
Ie =
Ie =
120
60
Base-emitter saturation voltage 1)
50 mA; IB = 5 mA
Ie =
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ie = 10 mA, VCE = 20 V, f= 100 MHz
fT
250
-
-
MHz
Output capacitance
VCB = 5 V, f = 1 MHz
Cobo
-
-
4.5
pF
Input capacitance
VEB = 0.5 V, f= 1 MHz
Cibo
-
-
10
pF
hIe
120
-
480
-
NF
-
-
4
dB
Small-signal current gain
5 V, f = 1 kHz
Ie = 1 mA; VCE =
Noise figure
Ic=0.1 mA, VcE =5 V. f=10 Hz to 15 kHz
Rs = 1 kQ
1) Pulse test: t';; 300 I-is, D';; 2 %
822
Siemens
5MBT 4126
Saturation voltage
Total power dissipation PIo ' = f(TA )
mW
400
2
/
~ot
t
Ie
= f( VBE ,,,. VeE ",)
vV
V
I-f- '"
I
300
I
I
\.
200
IV
VcE
SE
\.
5
100
I\,
o
o
'\
50
100
0,2
--~
Small-signal currant gain
VeE = 10 V, f = 1 MHz
0,4
0,6
-
h,. = f(le!
0,8 V 1,0
~Es.t ,vCE ..,
DC current gain hFE = f(le!
(standardized), VeE = 1 V
SH-H-t-tWIt-t-HI+tt1-tt-+-t-t+ffi1tt----1
5
10-1
L--L..Lu.wW--'-l..LW-LW--L-L.LL'-"'-'-~-,,"
10-1
-Ie
Siemens
5 100
5 101
rnA 102
-Ie
823
5MBT 5086
5MBT 5087
PNP Silicon Transistors
•
For AF input stages and driver applications
•
•
High current gain
Low collector-emitter saturation voltage
•
Low noise between 30 Hz and 15 kHz
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on a-mm tape
Package
5MBT 5086
5MBT 5087
S2P
S20
upon request
upon request
upon request
upon request
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
VCEO
50
V
Collector-base voltage
VCBO
50
V
Emitter-base voltage
VEBO
V
Collector current
Total power dissipation
TA = 25°C
Ie
3
50
330
Junction temperature
Tj
150
°C
Storage temperature range
T stg
-65 ... +150
°C
R thJA
:5 375
K/W
Ptot
mA
mW
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm
824
Siemens
5MBT 5086
5MBT 5087
Electrical characteristics
at TA = 25 DC, unless otherwise specified
DC characteristics
Collector-base breakdown voltage
Ic = 100 IlA
Emitter-base breakdown voltage
IE = 10 IlA
Collector cutoff current
VCB = 10 V, h = 0
VCB = 35 V, h = 0
VCB = 35 V, h = 0, TA = 150 DC
DC current gain
Ie = 1 00 1lA, VCE = 5 V
Ic = 1 mA, VCE = 5 V
Ie
= 10 mA, VCE = 5 V
min
typ
max
Unit
VIBRICEO
50
-
-
V
VIBRICBO
50
-
-
V
VIBRIEBO
3
-
-
V
-
-
10
50
20
nA
nA
IlA
500
800
-
-
-
0.3
V
Symbol
Collector-emitter breakdown voltage
Ie = 1 mA
I CBO
-
hFE
5MBT
5MBT
5MBT
5MBT
5MBT
5MBT
VCEsat
-
-
VBEsat
-
-
0.85
V
5086
5087
5086
5087
5086
5087
Collector-emitter saturation voltage 1)
I C = 10 mA; I B = 1 mA
Base-emitter saturation voltage.)
= 10 mA; IB = 1 mA
150
250
150
250
150
250
Ie
-
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ie = 0.5 mA, VCE = 5 V, f= 100 MHz
fT
40
-
-
MHz
Output capacitance
VCB = 5 V, f = 1 MHz
Cabo
-
-
4
pF
150
250
-
600
900
-
-
-
3
2
dB
dB
-
-
3
2
dB
dB
Small-signal current gain
Ic = 1 mA; VCE = 5 V, f= 1 kHz 5MBT 5086
I C = 1 mA; VCE = 5 V, f = 1 kHz 5MBT 5087
Noise figure
= 100 IlA, VCE = 5 V, f= 1 kHz,
Rs = 3 kO
5MBT 5086
5MBl' 5087
Ic = 2 mA, VCE = 5 V, f = 10 Hz to 15 kHz,
Rs = 10 kO
5MBT 5086
5MBT 5087
hfe
NF
Ie
1) Pulse test: t $;300 j.Js, D $;2 %
Siemens
825
5MBT 5086
5MBT 5087
Total power dissipation P'o' = f(TA )
mW
pF
400
12
~.t
i
Collector-base capacitance CeBo = f(VeBo)
Emitter-base capacitance CEBO = f( VEBO)
I\.
~~
I\.
300
~
8
I\.
,
'"
~
I/CCBO
200
6
I\.
~
i'
~
4
./ f"".r-,
C EBO
100
1\
2
o
o
100
50
I\.
150·(
-~
Pulse handling capability r'h = fIt)
K (standardized)
W
MHz
10°
103
r
5
-u.o
fr
~
!:;;
1
ITll
1'-0.5
0.2
0.1
0.05
0.02
0.01
0.005
III
5
2
fT
= f(Id
5
t
I
j...~
Transition frequency
VeE = 5 V
l2
t,..
V
1'-0=0
5
5
t~
T
T
O=.l.
1
3
10""
10-6 10-5 10-4 10-3
10-2 10- 1 10°
10 10-1
S
-t
826
5 10'
-Ie
Siemens
5MBT 5086
5MBT 5087
Collector-emitter saturation voltage
Base-emitter saturation voltage Ie ; f( VB' ",)
hFE = 40
Ie = t(Ve, ",)
rnA
10 2
Ie 5
Ie
100
0(
2so~8
r
1/ I I
II
_50°(1
25°(
If, V V l00
5
5
5
10-1
0,2
0,4
0,6
-
Collector current Ie
Ve, = 1 V
1,0
0,8
-SOO(
//
t
1/
= 40
5
5
o
hFE
0(
'"
11)"1
o
1,2 V
0,1
0,2
0,3
0,4
0,5 V
-VcEsa'
VBfsat
= f(VB')
DC current gain hFE = f(lel
Ve, = 1 V
I
l00 0 (
1QD
5
I
_50 0 (
25°(
,
I
lO- 1
S
I
0.5
100 l-L...llLLWL.--'-'--'-lllllL..L.LlJ..WlJL.....L.J.J.J.J.JJlJ
10-2 5 10-1 5 100
5 101
5 10 2 rnA
I,O-V
-Ie
Siemens
827
5MBT 5086
5MBT 5087
Collector cutoff current
IeBO
Noise figure NF = fWe,)
rnA, Rs = 2 kO, f
= f( TA )
Ie = 0.2
dB
20
= 1 kHz
~"nTIm-.-~n=-'~T'=
NF
1 15 ~~~~~H+Hm-4-H~
V
max.
i7
1/
typo
,
1.1
1.1
OL-LLLUlliL-L~Ull~~~~
150 DC
50
5 100
10-'
5 102 V
5 10'
-VcE
Noise figure NF = f(f)
= 0.2 rnA. Rs = 2 kO, VeE
Ie
Noise figure NF = f(Iel
VeE = 5V,f= 120Hz
=5 V
dB
20
dB
20
II'
m
IIII
I'
Ii!
I
,
~
IRs=1Mn
100kn
!I
,
10
II
,
1\
10
I
~
5
10kn/
111I
I~
!
i
,
i
i'!
5
i
I
,
l
j 5oon
I
il
I
IY\
n---;;
~
·i!l!
lkQ
11111
11111
11111
101 rnA
828
Siemens
5MBT 5086
5MBT 5087
Noise figure NF = f(lel
VeE = 5 V, f=10 kHz
Noise figure NF = f(lel
VeE = 5 V, f = 1 kHz
dB
20
dB
20
I
NF
I
Rs=lMIl
Rs =lMIl 100 k if 10k11,
I
IV
\
fl00k
II I I
I
10 1\
I
10
lkll ,
II
II
0011
i
10kll
17
5
1\
'\.
o
-
,/
II
/
I\,
,
5
11'50011
~
III
III
lkll\.
I III
I III
11111
III~
I III
o
10-3
10-3
jJ5j.,..
I
/
V-
'"
--Ie
-Ie
Siemens
829
5MBT 6427
NPN Silicon Darlington Transistor
•
For general amplifier applications
•
High collector current
•
High current gain
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
5MBT 6427
S1V
upon request
upon request
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Total power dissipation
.TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
40
40
12
500
800
360
V
V
V
rnA
rnA
mW
Tst9
150
-65 ... +150
°C
°C
RthJA
=::; 350
K/W
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm
830
Ie
ICM
Ptot
7j
Siemens
5MBT 6427
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Collector-emitter breakdown voltage
min
typ
max
Unit
V(BR)CEO
40
-
-
V
V(BR)CBO .
40
-
-
V
V(BR)EBO
12
-
-
V
-
50
10
nA
I1A
ICED
-
-
1
I1A
hBO
-
-
50
nA
Symbol
1e=10mA
Collector-base breakdown voltage
Ic = 100 I1A
Emitter-base breakdown voltage
IE = 10 I1A
Collector cutoff current
VeB = 30 V, h = 0
VeB = 30 V, h = 0, TA = 150°C
Collector cutoff current
VCE = 30 V, IB = 0
Emitter cutoff current
V EB = 10 V. Ic = 0
DC current gain
= 10 mA, VeE = 5 V
Ic = 100 mA, VeE = 5 V
Ie = 500 mA, VeE = 5 V
leBO
hFE
Ie
Collector-emitter saturation voltage 1)
= 50 mA; IB = 0.5 mA
= 500 mA; IB = 0.5 mA
VCEsat
Base-emitter saturation voltage 1)
= 500 mA; IB = 0.5 mA
Ie
Ie
Ie
Base-emitter voltage
I C = 50 mA; VeE = 5 V
100000 200000 140000
10000
20000
14000
-
-
1.2
1.5
.V
V
VB Esat
-
-
2.0
V
VBE(on)
-
-
1.75
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 50 mA, VCE = 5V, f = 100 MHz
fT
130
-
-
MHz
Output capacitance
VeB = 10 V, f = 1 MHz
Cobo
-
-
7
pF
Input capacitance
V EB =0.5V,f= 1 MHz
Cibo
-
-
25
pF
Noise figure
NF
-
-
10
dB
1e=1 mA, VcE =5 V, Rs=100 kQ
f
= 1 kHz to 15kHz
1) Pulse test: t'; 300 fls. D'; 2 %
Siemens
831
5MBT 6427
Total power dissipation p.o. = f(TA )
COllector-base capacitance CeBo = f(VeBo)
Emitter-base capacitance CEBO = f(VEBO)
pF
10
mW
400
CEBO
ICcBo)
,
~Dt
1
,
1
300
"'"
1\
"
200
5
r\
" .....
~BO
.....
. . . . r11'
-....
I"EB .......
,
100
I'\.
o
o
100
50
-~
.K
W
10°
150 DC
5
Pulse handling capability r'h = f(t)
(standardized)
MHz
fr
0,2
0,1
0,05
0,02
5
10-
,
V
I
5
5
~
2
D:1
T
T
'"'
'III
III'
10-3
10-6 10-5 10-4 10- 3 10- 2 10- 1 10°
1
°
10 10
101 S
-f
832
101 V
I
102
0,005
D:O 1111
,
5
VEBO (VCBO )
5
2
0.01
2
~
Transition frequency fT = f(Iel
VeE = 5 V
t
f',1
I' 0,5
1
10°
10 3
II
M
5
r
"
Siemens
5 101
5MBT 6427
Base-emitter saturation voltage Ie = f( VB' ,,,)
h" = 1000
mA
103
Ie
Collector-emitter saturation voltage
Ie = f We",,)
h" = 1 000
5
'/
1/11
t
I
/7
5
I
IL.
125°C
t---2~oC
1=
-55°C
5
100
3 V
2
o
0,2
0,4
0,6
Collector cutoff current leBO
VeB
=
0,8
= f(TA )
DC current gain h"
VeE = 5 V
VeE max
1,2 V
1,0
--VcE
VeE sat
sat
= f(lel
5
r
'"
l. .
5
max.
i
III
1~OC
....
25°C
~
-55°C
i
I
I
I
II
.,
I
V
f7
Vtyp.
!
I..-
5
5
!
50
100
-7;.
103
10-1
150 DC
i
5 100
5 10 1
5 10 2
5 103 mA
-Ie
Siemens
833
5MBT6428
5MBT 6429
NPN Silicon Transistors
•
For AF input stages and driver applications
•
•
High current gain
Low collector-emitter saturation voltage
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
5MBT 6428
5MBT 6429
S1 K
S1 L
upon request
upon request
upon request
upon request
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
5MBT 6428
5MBT6429
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-b~se voltage
Collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
50
60
45
V
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm
834
VEBO
Ic
55
V
V
Ptot
6
200
330
7j
Tstg
150
-65 ... +150
°C
°C
RthJA
:s; 375
Siemens
mA
mW
K/W
5MBT 6428
5MBT 6429
Electrical characteristics
at TA = 25°C, unless otherwise specified
Symbol
DC characteristics
Collector-emitter breakdown voltage
5MBT 6428
= 1 mA
5MBT 6429
min
typ
max
Unit
50
45
-
-
V
V
60
55
-
-
V
V
6
-
-
V
-
-
10
10
~A
leED
-
-
100
nA
lEBo
-
-
10
nA
VIBRICED
le
Collector-base breakdown voltage
5MBT 6428
= 10 fJA
5MBT 6429
VIBRICBO
le
Emitter-base breakdown voltage
= 1 fJA
VIBRIEBO
IE
Collector cutoff current
VCB = 30 V, IE = 0
VCB = 30 V, h = 0, TA = 150 °C
leBO
Collector cutoff current
nA
VcE =30V,I B =0
Emitter cutoff current
VEB = 5 V, Ic = 0
DC current gain
= 10 fJA, VCE = 5 V
le
IC
= 100 fJA,
le
= 1 mA,
le
= 1 0 mA,
VCE
VCE
= 5 V
= 5 V
VCE
= 5 V
hFE
5MBT
5MBT
5MBT
5MBT
5MBT
5MBT
5MBT
5MBT
6428
6429
6428
6429
6428
6429
6428
6429
Collector-emitter saturation voltage 1}
= 10 mA; IB = 0.5 mA
= 1 00 mA; I B = 5 mA
250
500
250
500
250
500
250
500
VCEs,t
le
IC
Base-emitter voltage
= 1 rnA; VCE = 5 V
650
1250
-
VBElonl
-
-
0.2
0.6
V
V
0.56
-
0.66
V
IC
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
= 5 rnA, VCE = 5 V. f = 100 MHz
fT
100
-
700
MHz
Output capacitance
VCB = 10 V, f = 1 MHz
Cobo
-
-
3
pF
Input capacitance
VEB = 0.5 V, f= 1 MHz
Cibo
-
-
15
pF
le
I) Pulse test: t:5 300 fjs, D:5 2 %
Siemens
835
5MBT 6428
5MBT 6429
Total power dissipation p.o. = f( TA )
PF
mW
400
12
-':01
I
Collector-base capacitance CeBo = f(VeBo)
Emitter-base capacitance CEBO = f(VEBO)
~b.
""
......
300
8
1\
200
6
\
""- "-
/CCBO
"""
"'-
1'0
1\
1\
4
, / 1' ....
C EBO
\
100
....
\
1\
o
o
2
1\
50
100
150°C
5
-~
Pulse handling capability r'h = f(t)
10 0
-
Transition frequency fT
VeE = 5 V
K (standardized)
5
10' V
VCBO (VEBO)
= f(lel
Iii
100
1
11
tR
5
10-2
t'O,5
0,2
0,1
0,05
0,Q2
0,01
0,005
0=0 1111
~r-
/V'
I
Ii
5
5
1t::f1-
0=1
T
T
,to,
10-3
10-6 10- 5 10- 4 10- 3 10- 2 10-1 100
10' s
5 10'
-I(
~f
836
Siemens
5MBT 6428
5MBT 6429
Base-emitter saturation voltage
Collector-emitter saturation voltage
Ie= fW"",)
h" = 40
[e = fWeE "tl
h" = 40
mA
10 2
Ie
Ie
)
>->-
100·(
>- 25.~8J
IT 77
- 50 .(1
II
t
II
I
5
II
I
A
VV
-SO·C
2S·C
l00·C
0,2
0,3
5
,
10-
o
,
0,2
0,4
0,6
1,0
0,8
VeE
10-
1,2 V
VeE
7
J
=
0,5 V
1 V
f-l00 .( f-
7
I
0,4
DC current gain h" = f(Iel
VeE = 1 V
100·C
0,1
-VcEsat
Collector current Ie = f(VB ,)
lO-
o
sat
~
-50·(
a
1=
1=
I-
II
2S·C
-so·c
5
,
5
S
2
I
0,5
10°
1,0 V
10-2
5 10-'
5 10°
5 10'
5 10 2 mA
-Ie
Siemens
837
5MBT 6428
5MBT 6429
Collector cutoff current
leBO
= f( TA )
1/
ma~I'
1.1
10'
5
typo
,
/
50
100
150 0 (
-7A
838
Siemens
NPN Silicon AF Transistors
•
•
•
5MBTA 05
5MBTA06
High break down voltage
Low collector-emitter saturation voltage
Complementary types: 5MBTA 55, 5MBTA 56 (PNP)
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
5MBTA05
5MBTA06
S1H
S1G
Q68000-A6402
Q68000-A6403
Q68000-A3430
Q68000-A3428
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
5MBTA05
5MBTA06
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature
VCEO
VCBO
VEBO
Ic
ICM
60
60
80
80
Ptot
4
500
1
100
200
330
V
V
V
mA
A
mA
mA
mW
Tj
Tstg
150
-65 .. ·+150
°C
°C
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
RthJA
IB
IBM
:5 375
Siemens
K/W
839
5MBTA05
5MBTA06
Electrical characteristics
at
TA =
25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
5MBTA05
Ic = 1 rnA
5MBTA06
V(BR) CEO
Collector-base breakdown voltage
5MBTA05
Ic = 100 IJ.A
5MBTA06
V(BR)CBO
Emitter-base breakdown voltage
IE = 10 IJ.A
Collector cutoff current
5MBTA05
VCB = 60V
5MBTA06
VCB = 80V
5MBTA05
VCB = 60 V, TA = 150°C
5MBTA06
VCB = 80 V, TA = 150°C
V(BR)EBO
min
typ
max
Unit
60
80
-
-
-
-
V
V
60
80
-
-
-
V
V
4
-
-
V
-
-
100
100
20
20
nA
nA
IJ.A
IJ.A
nA
ICBo
Collector cutoff current
VCE = 60V
ICEO
DC current gain')
Ic = 10 rnA, VCE = 1 V
Ic = 100 rnA, VCE = 1 V
Collector-emitter saturation voltage ')
Ic = 100 rnA, IB = 10 rnA
Base-emitter saturation voltage ')
Ic = 100 rnA, VCE = 1 V
hFE
AC characteristics
-
-
-
VCEsat
-
-
VBEsat
-
-
50
50
100
-
-
0,25
V
1,2
V
-
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 rnA, VCE = 5 V, f= 20 MHz
fT
-
100
-
MHz
Output capacitance
VCB = 10V, f= 1 MHz
Cob
-
12
-
pF
840
Siemens
5MBTA05
5MBTA06
Total power dissipation P,o' = ((TA)
Collector current
mW
rnA
400
10 J
~ot
t
Ie
= f (VeE sat)
1-"- I-l00 0 (
1---1---
I--- 25°(,
-50 O( '1.'1
300
\.
200
II
10'
I\,
o
o
I
\
100
i".
I\,
50
,
II
a
0,5
lO-
150 O(
100
-7;.
Pulse handling capability
(standardized)
r'h =
1,0
1,5 V
-Val
Transition frequency fT = f (l c)
VeE = 5V
f (t)
K
Iii
10°
lih 5
f
,
5
R
-
I
"0,5
0,2
0,1
0,05
0,02
0,01
0,005
0=0 IIII
2
5
/
V
5
~
tp
O=y
I--- T
10- J
"'
10-6 10- 5 10- 4 10- J 10- 2 10-' 10°
10'
5 101
S
-t
Siemens
841
5MBTAOS
5MBTA 06
Base-emitter saturation voltage I c
hFE =
=
f
(VBE sad
10
Collector-emitter saturation voltage
Ie = f( VeE sat)
10
hFE =
mA
10 3
Ie
100 °c'
H- 25 o~"
_ 50 °c,
I-
1
./
il/I/
//
//~ ~
II
I
10'
/
::::
100 "C
/,25 °c
-50 o C
5
II
5
,
0,5
1,0
0,2
1.5 V
0,4
-~VBEsat
Collector cutoff current I CBO
=
0,6
0,8 V
-~VcEsat
DC current gain h FE = f (l c)
VCE = 1 V
f ( TA)
VCB = VCEmax
nA
10 4
5
1/
max ~/
-100 °c
i""-
125 °c
/
f.....
=50
0
5 ;;;
-
typ,
10'
5
10'
5
,
/
50
100
150
°c
10°
10-1
-TA
842
5 1fP
5 10'
5 10 2
-Ie
Siemens
5 103 mA
5MBTA 13
5MBTA 14
NPN Silicon Darlington Transistors
•
•
•
High DC current gain
High collector current
Collector-emitter saturation voltage
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
5MBTA 13
5MBTA 14
S1M
S1N
Q68000--A4331
Q68000--A4332
Q68000--A6475
Q68000--A6476
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range
VCEO
Ptot
30
30
10
300
500
100
200
330
V
V
V
mA
mA
mA
mA
mW
Ti
Tstg
150
-65···+150
DC
DC
RthJA
::; 375
K/W
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VCBO
VEBO
Ic
ICM
IB
IBM
Siemens
843
5MBTA 13
5MBTA 14
Electrical characteristics
at TA
=
25 cC, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ie = 10 flA
V(BR) CEO
30
-
-
V
Collector-base breakdown voltage
Ic=10flA
V(BR) CBO
30
-
-
V
Emitter-base breakdown voltage
Ie = 10 flA
V(BR) EBO
10
-
-
V
Collector cutoff current
VCB = 30V
ICBO
-
-
100
nA
Emitter cutoff current
VEB = 10V
leBO
-
-
100
nA
DC current gain
Ic = 10 mA, VCE
hFE
5MBTA 13
5MBTA 14
5000
10000
-
-
-
-
5MBTA 13
5MBTA 14
10000
20000
-
-
-
Ic
=
=
5V')
100 mA, VCE = 5 V')
Collector-emitter saturation voltage')
Ic = 100 mA, IB = 0,1 mA
VCEsat
-
-
1,5
V
Base-emitter saturation voltage ')
Ic = 100 mA, IB = 0,1 mA
VBEsat
-
-
2
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 50 mA, VCE = 5 V, f= 20 MHz
fr
125
-
-
MHz
844
Siemens
5MBTA 13
5MBTA 14
Total power dissipation P tot = f( TA)
Capacitance Gcso = f(Vcso)
Geso = f (Veso)
f= 1 MHz
mW
400
pF
10
[ EBO
~ot
t
I[ CBO)
-
t
300
'"
"'- ",,
\.
200
.
~BO
5
h'-.... I'-.... ....
I\,
[EBO
\
100
o
o
\
I\,
50
150 0 (
100
10 0
5
5
10 ' V
- - - VEBO ( VcBol
-7;,
Transition frequency fr = f (I cl
VCE = 5 V, f= 20 MHz
Pulse handling capability rth = f(f)
(standardized)
K
W
10 0
,
10-
l1li
~
5
I
'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
/'
D=O 1111
I
5
5
o=f1tn10-1
~~
,
i--- r-i
w·
'"
~ WI
''''~
~
~s
5 10'
-t
Siemens
845
5MBTA 13
5MBTA 14
Base-emitter saturation voltage VSE sa'
hFE = 1000
'(l el
Collector-emitter saturation voltage
VCEsa, = f(Iel
hFE = 1000
mA
mA
1Ql
10l
5
150°C4i 25 OC
Ie
r
=
I
/I
10 2
/1/
-50°C
L11
5
5
I
IL
125°C
1--25°C
-55°C
10'
10-'
L-JLJL...L---'-_-'--_--'-_...L...----'
o
2
10°
3 V
o
0.2
0,4
0,6
0,8
1,0
-VCE
Collector cutoff current I cso = '( TA)
DC current gain hFE
Vcs=30V
VCE
==
1.2 V
sat
= '(Ic)
= 5V
;'
125°(
~~
~.1
_55°(
..... r-
1/
Vtyp.
10'
5
50
100
150°C
103
10-'
--7;.
846
°
5
max.
5 10°
5 10'
5 10 2
-Ie
Siemens
5 10 l rnA
NPN Silicon AF Transistor
•
•
5MBTA20
High DC current gain
Low coliector-emitter saturation voltage
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
5MBTA20
S1C
068000-A4333
068000-A6477
SOT 23
Maximum ratings
Parameter
Coliector-emitter voltage
Emitter-base voltage
Coliector current
Peak coliector current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
Symbol
Ratings
Unit
VCEO
VEBO
40
4
100
200
200
330
V
V
mA
mA
mA
mW
Tstg
150
-65··· + 150
°C
°C
RthJA
::5 375
K/W
Ic
ICM
IBM
Ptot
Tj
Siemens
847
5MBTA20
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
Ic = 1 mA
V(BR) CEO
40
-
-
V
Emitter-base breakdown voltage
le = 100 ~A
V(BR) EBO
4
-
-
V
Collector cutoff current
VCB=30V
VCB = 30 V, TA = 150°C
ICBo
-
100
20
~A
Emitter cutoff current
VEB = 4 V
leBO
-
-
20
nA
DC current gain
hFE
40
-
400
-
Collector-emitter saturation voltage')
I C = 10 mA, I B = 1 mA
VCEsat
-
-
0,25
V
-
nA
Ic=5mA, VCE= 10V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20 mA, VCE = 5 V, f= 100 MHz
fT
125
-
-
MHz
Output capacitance
VCB = 10V, f= 1 MHz
Cob
-
-
4
pF
848
Siemens
5MBTA20
Collector-base capacltence CeBo = t(VeBo)
Emitter-base capacitance CEBO = t(VEBO)
t= 1 MHz
Total power dissipation Ptot = t( TA)
mW
pF
400
12
~ot
t
T) "-
( eso
(C
10
r-I-\.
300
8
\.
6
200
"
"'- r"-
'\
jeso
"'"
r-.
I\,
..........
4
CE-;;: 1'- ....
\
100
....
1\
1\
o
o
50
~
150 0 (
100
--7;.
Transition frequency tT = f (I c)
VeE = 5 V, f= 100 MHz
Pulse handling capability rth = t (t)
(standardized)
K
'Vi
MHz
10°
101
III
~
10-1
10-I
'r
5
t
1'0,5
0,2
0,1
0,05
0,02
0,01
0,005
0=0 IIII
V
/
-
5
5
~
tp
D=r
10-1
~~ ~
I-- T-
'" '"
W1 Wi ~
~
~s
10'
10-'
-t
5 10 '
5 10 1 rnA
-Ie
Siemens
849
5MBTA20
Base-emitter saturation Yoltage Ie = f (VBE sat)
hFE = 20
Collector-emitter saturation Yoltage
~
~
10 2
10 2
f
125°(
25°(
'f
_50°(,
t;~
Ie = f(VeE5.t)
hFE = 20
" -50
II
I /
f
[r
0(
25°(
/100 0 (
5
II
5
10-
5
,
,
II
o
0,2
0,4
0,6
0,8
1,0
----- VBE
0,1
1,2 V
0,3
0,2
0,4
0,5 V
, - - - VCEsat
sat
Collector cutoff current leBO = f (TA)
VeB = 30V
DC current gain hFE
VeE = 1 V
=
f (l c)
nA
10·
-
r-100 O(
1/
max.
V
~
_50
0(
IL
k
typ.
10'
5
10'
5
,
/
50
100
150
10°
O(
10- 2
-JA
850
5 10-'
5 10°
5 10'
-Ie
Siemens
5 10 2 mA
NPN Silicon Transistors for High Voltages
•
•
•
5MBTA42
5MBTA43
High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: 5MBTA 92. 5MBTA 93 (PNP)
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
5MBTA42
5MBTA43
SlO
S1E
068000-A4329
068000-A4330
068000-A6478
068000-A6482
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
5MBTA42
5MBTA43
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA= 25°C
Junction temperature
Storage temperature range
VCEO
300
300
200
200
Ptot
6
500
100
360
V
V
V
mA
mA
mW
Tj
Tstg
150
-65 .. ·+150
°C
°C
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
VCBO
VEBO
Ic
IB
:S;
RthJA
Siemens
350
K/W
851
5MBTA42
5MBTA43
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 1 rnA
5MBTA42
5MBTA43
VCBR) CEO
Collector-base breakdown voltage
Ic = 100 ~A
5MBTA42
5MBTA43
VCBR)CBO
Emitter-base breakdown voltage
iE = 100 ~A
Collector cutoff current
5MBTA42
VCB = 200 V
5MBTA43
VCB = 160V
VCB = 200 V, TA = 150°C
5MBTA42
VCB = 160 V, TA = 150°C
5MBTA43
VCBR) EBO
min
typ
max
Unit
300
200
-
-
V
V
-
-
V
V
nA
nA
300
200
6
-
V
ICBo
-
Emitter cutoff current
VEB = 3 V
iEBo
DC current gain
Ic = 1 rnA, VCE = 10V
Ic = 10 rnA, VCE = 10 V')
Ic = 30 rnA, VCE = 10 V')
hFE
5MBTA42
5MBTA43
Collector-emitter saturation voltage ')
Ic = 20 rnA, IB = 2 rnA
5MBTA42
5MBTA43
VCEsat
Base-emitter saturation voltage')
I c = 20 rnA, I B = 2 rnA
VBEsat
-
-
-
100
100
20
20
~A
~A
-
-
100
nA
25
40
40
40
-
-
-
-
-
-
-
-
0,5
0,4
V
V
-
-
0,9
V
-
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 10 rnA, VCE = 20 V, f= 100 MHz
fr
50
-
-
MHz
Output capacitance
VCB =20V, f= 1 MHz
Cob
-
-
3
4
pF
pF
5MBTA42
5MBTA43
-
') Pulse test: t ~ 300 ~s, D = 20/0.
852
Siemens
-
5MBTA42
5MBTA43
Total power dissipation P tot = t(TA)
Transition frequency tT = t (l e)
VCE = 10 V, t= 100 MHz
mW
MHz
400
103
Ptot
fr
1\
1
300
I
\
5
1\
1\
200
\
5
\.
100
V
I\.
o
/
\
o
50
150°C
100
5 10'
-~
Pulse handling capability rth = t(t)
(standardized)
K
10°
'i.
5
I'
10~s
'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
0=0 1111
5
2
= tWCEO)
rnA
103
IIIJ
,
Ie
TA=25°C,D=0
..
iii
I
Operating range
\\
10'
100 ~s
1m s
lOOms
5
SOOms
DC
T
10- 3
fp I--
.fi.:.-rL.
--i
0=.1
i-- T-,
tiL
,
UH
10- 6 10- 5 10- 4 10- 3 10- 2 10-'
10°
10' s
5 10'
-t
Siemens
853
5MBTA42
5MBTA43
Collector cutoff current I ceo = '( TA)
Vce = 160V
Collector current Ic = '(VeE)
VCE = 10V
nA
10 4
5
mA
10 3
5
max.
."
1"-
je
5
/
k
10 2
10 1
typo
101
5
f-
5
5
/
1
1
50
100
150
0,5
0(
hFE =
'(le)
F
1=
i=!
,--'
'-;
--
5
~
2
i
10 1
5
,
-!
,
--
100
10- 1
5' 100
5 10 1
5 10 2
5 10 3 mA
-Ie
854
1,0
-VaE
-TA
DC current gain
VCE = 10V
,
Siemens
1,5 V
5MBTA 55
5MBTA 56
PNP Silicon AF Transistors
•
•
•
High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: 5MBTA 05, 5MBTA 06 (NPN)
Type
Marking
Ordering code
for versions In bulk
Ordering code for
versions on 8 mm-tape
Package
5MBTA55
5MBTA56
S2H
S2G
Q68000-A7420
Q68000-A7421
Q68000-A3386
Q68000-A2882
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
5MBTA55
5MBTA56
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO,
VEBO
Ic
ICM
60
60
80
80
V
V
V
Thermal resistance
Junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
RthJA
Ptot
4
500
1
100
200
330
Tj
Tstg
150
-65···+150
IB
IBM
:5 375
Siemens
mA
A
mA
mA
mW
°C
°C
K/W
855
5MBTA55
5MBTA56
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 1 mA
5MBTA55
5MBTA56
V(eR) CEO
Collector-base breakdown voltage
Ic = 100 itA
5MBTA55
5MBTA56
V(eR) ceo
Emitter-base breakdown voltage
IE = 10 ItA
V(BR)EBO
Collector cutoff current
Vce = 60V
Vce = 80V
VCB=60V, TA= 150°C
Vce = 80 V, TA = 150°C
ICBo
5MBTA55
5MBTA56
5MBTA55
5MBTA56
min
typ
max
Unit
60
80
-
-
V
V
60
80
-
-
V
V
-
100
100
20
20
nA
nA
itA
ItA
100
nA
-
-
-
0,25
V
1,2
V
4
-
-
-
Collector cutoff current
VCE = 60V
ICEO
DC current gain')
Ic= 10 mA, VCE = 1 V
Ic = 100 mA, VCE = 1 V
hFE
Collector-emitter saturation voltage ')
Ic = 100 mA, IB = 10 mA
VCE(sat)
-
-
Base-emitter saturation voltage ')
Ic = 100 mA, VCE = 1 V
VBE(sat)
-
-
50
50
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 20mA, VCE = 5V, f= 20 MHz
fT
-
100
-
MHz
Output capacitance
Vce = 10V, f= 1 MHz
Cob
-
12
-
pF
') Pulse test: t~ 300 its, D = 20/0.
856
Siemens
5MBTA55
5MBTA 56
Total power dissipation Ptot = f (TA)
Collector current Ie = f (VBE sat)
VCE = 1 V
rnW
400
rnA
10 3
5
;:;,1
t
r-_ 1OOO(
1-- 25 'C bL
"'\
J
-50 o~'J Ii
300
1\
200
I
101
\
.'\
100
o
o
I
1\
\
50
100
10-1
o
150 ·C
0,5
1,0
1,5 V
-VBE
Pulse handling capability rth
(standardized)
Transition frequency fT = f (l cl
VCE = 5V
= f (t)
K
W
MHz
•
10°
10 3
1111
~Rll
I I
0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
0=0 1111
1
2
v
~ .....
5
l"-
5
D=
1trr
!£.
T
10-
3
1--- T _-j
'"
10-' 10- 5 10- 4 10- 3 10- 2 10-' 10°
10' s
5 101
-t
Siemens
857
5MBTA55
5MBTA 56
Collector-emitter saturation voltage
Base-emitter saturation voltage VBE sat = '(l e)
hFE = 10
VCE,at = '(le)
hFE = 10
mA
10 3
100°C
f- 25 o~"
-S( °C
'=
Ie
f'll
5
'./
I'
t
I
{
,.,'"
~
V
100·C
25 ·C
-SO·C
5
I
5
,
0.5
1.0
1.0 V
0.5
1.5 V
~VcEsClt
----- VBE sat
DC current gain hFE = '(l cl
VCE = 1 V
Collector cutoff current I cao = '( TA)
VCB = VCEmax
If
max.
V
'100°
25°C
.....
.....
-50°
5
typo
5
,
/
50
100
150°C
10°
'10-'
-7i..
858
Siemens
5 10°
5 10'
5 10 2
-Ie
5 103 mA
5MBTA63
5MBTA64
PNP Silicon Darlington transistors
•
•
High collector current
High DC current gain
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
5MBTA 63
5MBTA 64
S2U
S2V
Q6800Q-A6419
Q6800Q-A6420
Q6800Q-A2625
Q6800Q-A2485
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
5MBTA63
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
Vcso
VESO
30
30
10
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
Ic
ICM
Is
ISM
Ptot
Tj
Tstg
5MBTA64
V
V
V
mA
mA
mA
mA
mW
150
-65···+150
°C
°C
:S 350
RthJA
Siemens
Unit
30
30
10
500
800
100
200
360
K/W
859
5MBTA63
5MBTA64
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
min
typ
max
Unit
Collector-emitter breakdown voltage
V(BR) CEO
30
-
-
V
Collector-base breakdown voltage
Ic=101lA
Emitter-base breakdown voltage
IE = 1O!lA
V(BR)CBO
30
-
V
V(BR) EBO
10
-
-
Collector cutoff current
VCB = 30V
ICBo
-
-
100
nA
Emitter cutoff current
VEB=10V
lEBO
-
-
100
nA
DC current gain')
Ic= 10mA, VCE=5V
hFE
5MBTA63
5MBTA64
5000
10000
-
-
-
-
-
5MBTA63
5MBTA64
10000
20000
-
-
-
1,5
V
2
V
Ic=10!lA
Ic= 100mA, VCE=5V
V
-
Collector-emitter saturation voltage')
Ic = 100 mA, IB = 0,1 mA
VCEsat
-
-
Base-emitter saturation voltage')
Ic = 100 mA, IB = 0,1 mA
VBEsat
-
-
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 50 mA, VCE = 5 V, f= 20 MHz
fT
125
-
-
MHz
') Pulse test: t:5, 300 !ls, D = 20/0.
860
Siemens
5MBTA 63
5MBTA64
Total power dissipation Ptot
= f
(TA)
Collector-base capacitance C CBO = f ( V CBO)
Emitter-base capacitance CEBO = f (VEBO)
f= 1 MHz
pF
10
mW
400
[ EBO
I[ (BO)
Ptot
i
\
I'" "I'-
300
1\
~
I'-
\
200
5
*BO
't-~ .....
[EBO
\
l"100
\.
o
[\
o
100
50
150°C
10 0
Pulse handling capability rth
( standardized)
=
5
--
-~
VEBO
10' V
I
V(BO)
Transition frequency IT = f (I c)
f (t)
VeE =
5V
K
W
MHz
10 0
10 3
'in
1 ,
It
I
'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
5
I-"
D=O 1111
1
tp
5
~
D=y
f-- T ---J
10- 3
""
10- 6 10- 5 10- 4 10- 3 10- 1 10- 1 10 0
101
5 10 1
S
-f
Siemens
861
5MBTA63
5MBTA64
Base-emitter saturation voltage Ie = ((VeE satl
hFE = 1000
Collector-emitter saturation voltage
Ie = ((VeEsatl
hFE = 1000
mA
10l
Ie
5
III
t
I //
5
I125°C
-25°C
-55°C
101
~
5
II
10-1 L..L.JL..I.---L_-.L_...L_-'-----1
o
2
3 V
10°
o
0,2
0,1,
0,6
0,8
1,0
1,2 V
--\thSit
Collector cutoff current I ceo = ( TAl
Vce = VCEmax
DC current gain hFE = f (I cl
VCE = 5 V
nA
106
10'
V
125°C
·7<;0
l ...
max.
-55°C
5
1.1
10'
I......
Dtyp.
5
10l
50
100
150°C
10-'
--7;..
862
5 10°
5 10'
5 10 2
-Ie
Siemens
5 10l mA
5MBT A 70
PNP Silicon Transistor
•
For AF input stages and driver applications
•
•
High current gain
Low collector-emitter saturation voltage
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
5MBT A 70
S2C
upon request
upon request
SOT 23
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
VCEO
40
V
Emitter-base voltage
V EBO
4
V
Collector current
Ie
100
rnA
Peak collector current
IeM
200
rnA
Peak base current
IBM
100
rnA
Total power dissipation
TA = 25°C
Ptot
330
mW
Junction temperature
7j
150
°C
Storage temperature range
T stg
-65 ... +150
°C
RthJA
:5 375
K/W
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm
Siemens
863
5MBTA 70
Electrical Characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Collector-emitter breakdown voltage
Symbol
min
typ
max
Unit
V(BR)CEO
40
-
-
V
V(BR)EBO
4
-
-
V
-
100
20
nA
iJA
hBo
-
20
nA
hFE
40
-
400
-
VCEsat
-
-
0.25
V
Ie = 1 mA
Emitter-base breakdown voltage
= 100 iJ A
h
Collector cutoff current
V CB = 30 V, IE = 0
VCB = 30 V. h = 0, TA = 1 50°C
Emitter cutoff current
V EB = 4 V, Ie = 0
DC current gain
mA, VCE = 10 V
I CBO
Ie = 5
Collector-emitter saturation voltage 1 )
Ie = 10 mA; IB = 1 mA
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ie = 5 mA, VCE = 10 V, f= 100 MHz
fT
125
-
-
MHz
Output capacitance
V eB = 10 V, f = 1 MHz
Cobo
-
-
4
pF
864
Siemens
5MBTA 70
Total power dissipation PIo1
= f( TA)
Saturation voltage
rnW
400
~o,
t
2
Ie =
f( VB' "I, VC",')
1/
V
v
/
1--"
,
300
I
I
L
i/
\.
,
200
lVBE
VcE
\.
,
100
5
1\
o
o
1\
50
0,2
150 D(
100
0,4
0,6
0,6 V 1,0
--T;,
Small-signal current gain
VCE = 10 V, f = 1 MHz
h,. = f(lel
DC current gain hFE = f(lel
(standardized), Vc, = 1 V
101
5
1
125°(
-
....... 1--'
~Jl~~
_55°(
l-
5
5
I
,\
~
1
5 101
5 rnA 101
rnA 102
• Jc
-Ie
Siemens
865
5MBT A 70
Total power dissipation P'o'
= f(TA )
Saturation voltage Ie
rnW
2
rnA
400
/
~ol
t-- 300
'/
= f(V. E ,,,, VeE",)
V
if
rI
J
il
\.
200
/V
1'cE
eE
\.
5
\
100
1\
o
o
\
50
0,2
100
0,4
--~
Small·signal current gain h'e
VeE = 10 V, f = 1 MHz
0,6
-
0,6 V 1,0
VeE.al
,VeE.al
DC current gain h" = f(lel
(standardized), VeE = 1 V
= f(lel
5~f-+H++HI-+-t+ttttll--t-t-t+ttttt---1
5
L-LLllllllL..Ll.LLlillL:-'-LLLWlL~.,w
10·'
10·'
-Ie
866
Siemens
5 100
5 10'
rnA 102
-Ie
5MBTA92
5MBTA93
PNP Silicon Transistors for High Voltages
•
•
•
High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: 5MBTA 42, 5MBTA 43 (NPN)
Type
Marking
Ordering code
for versions in bulk
Ordering code for
versions on 8 mm-tape
Package
5MBTA92
5MBTA93
S2D
S2E
Q6800Q-A4338
Q6800Q-A4339
Q6800Q-A6479
Q6800Q-A6483
SOT 23
SOT 23
Maximum ratings
Parameter
Symbol
5MBTA92
5MBTA93
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
VCEO
VCBO
VEBO
Ic
IB
300
300
200
200
Ptot
5
500
100
360
V
V
V
mA
mA
mW
Tj
Tstg
150
-65···+150
°C
°C
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
:5 350
RthJA
Siemens
K/W
867
5MBTA 92
5MBTA 93
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characterl~tlcs
Collector-emitter breakdown voltage
Ic = 1 mA
5MBTA92
5MBTA93
Symbol
Collector-base breakdown voltage
Ic = 100 f.IA
5MBTA92
5MBTA93
V(BR)CBO
Emitter-base breakdown voltage
Ie = 100 f.IA
V(BR) EBO
Collector cutoff current
VCB = 200 V
VCB=160V
VCB = 200 V, TA = 150°C
VCB = 160V, TA = 150°C
ICBo
min
typ
max
Unit
300
200
-
-
V
V
300
200
-
-
-
-
V
V
V(BR) CEO
5
-
5MBTA92
5MBTA93
5MBTA92
5MBTA93
IeBO
DC current gain
Ic = 1 mA, VCE = 10V
Ic = 10 mA, VCE = 10V')
Ic = 30 mA, VCE = 10V')
hFE
5MBTA92
5MBTA93
-
V
250
250
20
20
nA
nA
JlA
-
-
,
100
nA
25
40
25
25
-
-
-
-
-
0,5
0,4
V
V
-
0,9
V
-
Emitter cutoff current
VEB = 3V
-
-
Collector-emitter saturation voltage ')
I C = 20 mA, I B = 2 mA
5MBTA92
5MBTA93
VCE,at
Base-emitter saturation voltage ')
Ic = 20 mA, IB = 2 mA
VBE,at
-
f.IA
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 10 mA, VCE = 20 V, f= 100 MHz
fr
50
-
-
MHz
Output capacitance
VCB = 20 V, f= 1 MHz
Cob
-
-
6
pF
pF
5MBTA92
S~BTA93
') Pulse test: t:5. 300 Jls, D = 20/0.
868
Siemens
-
8
5MBTA92
5MBTA93
Total power dissipation Ptot =
t (TA)
Transition frequency tT = t (I cl
VCE = 20 V, t= 100 MHz
MHz
10 3
mW
400
Ptot
r
1\
300
\
1\
\
200
1\
I\.
100
/
II\.
o
v
1\
o
50
150°C
100
5 10'
-~
Pulse handling capability
(standardized)
K
rth =
5 10 2
-Ie
t (t)
Operating range Ie
TA = 25°C, D = 0
= t(VCEO)
W
10°
lih 5
r
,
II
5
I".
10~s
1'-,1 I
0,5
0,2
0,1
0,05
0,02
0,01
0,005
000 1111
5
2
~
\
10'
\ 100 ~s
1ms
10ums
5
500ms
DC
5
lLn-
~
D=..E..
~
T
fpf---
,
I- T-i
10-3
'"
""
10-6 10- 5 10-' 10- 3 10- 2 10-' 100
10' s
5 10'
~f
Siemens
869
5MBTA 92
5MBTA 93
Collector cutoff current I CBO
=
Collector current I C = f (VBE)
f ( TA)
VCB = 160V
VeE = 10V
nA
rnA
104
10 3
5
1/
rnax;..'~
V
10'
typo
10'
5
,
,
1/
10·
50
100
-J.;.
150 .(
l
10
= 10 V
gUE• •
w. . . .
100 L....L...L.U.llllL.....L.L.Lll.ll!L--'...J.-'..LU.llL-.L..LJLlllllJ
10·'
5 10°
5 10'
5 10 2
5 10 3 rnA
-Ie
870
I
0,5
1,0
-----VSE
DC current gain hFE = f (I c)
VCE
a
Siemens
1,5 V
SIPMOS N Channel MOSFET
SN 7002
• SIPMOS - enhancement mode
• Drain-source voltage
'-bs = 60V
• Continuous drain current
10 = 0.19A
• Drain-source on-resistance
• Total power dissipation
= 5.00
Po = 0.36W
ReS
Po
7j
T.t.
Ratings
Unit
60
60
0.19
0.76
±20
0.36
V
V
A
A
V
W
-55 ... +150
55 ... 150 ... 56
°C
:5350
:5285
KNV
Conditions
RGS
=20 kO
TA =25°C
TA =25°C
aperiodic
TA =25°C
DIN IEC 68 part 1
Thermal resistance
Chip - air
Chip - substrate rear side
RthJA
Rth JSR
Siemens
Mounted on
Ceramic substrate
2.5cm2
871
SN 7002
Electrical Characteristics
CondlUon
Static characteristics
Drain-source
breakdown vottage
V(BA)DSS
Gate threshold vottage
Vas(th)
Zero gate voHage
drain current
'
0.8
Dsa
Gate-source leakage
current
I ass
Drain-source on-state
resistance
RDS(on)
-
V
1.4
2.0
V
0.1
1.0
jlA
60
Val =0
'D =0.25 rnA
Val = VDI
'D =1 rnA
1j
=25"C
Vas =0
VDI =60V
-
1.0
10
nA
2.0
5.0
0
3.0
7.5
0
Val =2OV, VDS = OV
Vas =10V
I D =O.SA
Vas =4.5V
I D =O.OSA
Dynamic characterlBtlcs
Forward transconductance
g,.
Input capacitance
C,••
Output capacitance
Co ••
Reverse transfer
capacitance
Cn •
0.1
-
t d(on)
Tum-on time ton
(ton =td(on) +t,)
t,
Tum~off time t off
(t off =t d(off) +t ,)
t d(off)
t,
-
S
0.18
40
60
15
25
5
10
5
8
8
12
12
16
17
22
pF
ns
VDI .,,2*/D * RDS(on)max
ID =0.2A
Vas =OV
VDI =25V
f =1MHz
Vee
=3OV
Val =1OV
I D =-O.29A
ROl =500
Reverse diode
Continuous source
current
Is
-
-
0.19
A
Pulsed source current
ISM
-
-
0.76
A
Diode forward on-voHage
VSD
0.85
1.2
V
Val =OV
IF =0.2BA
Reverse recovery time
-
trr
-
ns
VA
diF
Reverse recovery charge
872
Orr
-
-
Siemens
jlC
=100V, 'F = 'D A
100A!jls
/dt =
VA
=100v, 'F = ID A
dlF
/dt = 100A!jl8
SN 7002
Switching Time Measurement
Switching times
Test circuit
Vee
V
90%
r
Pulse
Generator
Vas
90%
r····························1
Permissible power dissipation versus tempersture
Typical output characteristic
'D
PD = fTA
=fVD8
X AxIs: VD• / V
V Alds: , D /A
X AxIs: TA /'C
V AxIs: PD /W
4
p.
\
lOV
k
'.
\
3
1..
\
p. 0.36
e
~
IV
.V
'-'v
r
eV
7V
4V
){
\
,
f
\
~
II
\
V
1
1\
o
100
••V
\
"-
3V
r--
\
o
\
C
'/
\
150
2.5V
'v
.
----110.
--TA
Siemens
873
SN 7002
Typical transfer characteristic
Safe operating area
X Axis:
VDS I V
1 D = fV ClI
X Axis: VClS
V Axis:
'D
V Axis:
'D =fVD1
IA
Parameter: D = 0.01, D =tp IT;
Tc = 25"C
'D
IV
IA
Paramater: VDS = 25V; t p = 80jJs;
II-~-n
...-1
1=,
D_2
T
,
I.
v
1"'-
1,0'
, ,
I.
I
l'..
'm.
II
I
10ml
'"
10'~
= 25"C
I
'0'
'p'
3051'
100111
1j
I
I
100ml
1"'-
J
V
I
o
10 1
5
V 10 z
o
- - - Vos
Drain to source on resistance (spread)
Typical transconductance
g,.
R DS_n = fT J
= tiD
X Axis:
V Axis:
'D
X Axis:
V Axis:
g,. IIS
A
VDI .. 2· 1 D • R Da_n mox ; t p
Parameter:
= 80jJs;
T J 1°C
RDs _n I
()
Paramater: V CIS = 10V; 1D
= O.SA
TJ =25"C
,..
g,.
V
1
.>~
/
RDS(on )
/
1
/
V
I
0.'
/
I
VI/'
1
-~
o
o
A
"....-
'-' '-'
.......
"....-
typo
C
0.7
---_I.
874
/
.,,'
----TJ
Siemens
180
SN 7002
Typical capacitances
C = fV DS
X Axis: vDS I V
Y Axis: C I nF
Parameter: VGS =0; f = lMHz
,,'
c
\\
,
\\
Gial
\ I'--
,,'
Co ..
v, ..
---vos
Drain current
Gate threshhold voltage (spread)
f D = fTA
X Axis: TAl 'C
Y Axis: I D I A
10
A
VGSlh = fTI
Tj I 'C
X Axis:
Y Axis: VGSlh I V
Parameter: VGs= VDS
;
I D
''''
....
= 1rnA
-
""'"
'"
VaS(th )
4
'\
\
\
r\
\
r-..
1\
o
r-
~.".
-
-- ,%--
....
....
-
----
-_T,
o
100
Siemens
C
875
SN 7002
Typical drain-source on-state resistance
RDSon = "D
X Axis: 'D fA
Y Axis: R DSon f Q
Parameter: VGS ; 1j = 2S'C
VG•
.
,..,
'"
'"
)
"V
'"
I
./
;
V
/
:::::: ~
--
V
",
~
9~
10V
;:;...
V
'v
i--" ....
7V
'v
'0
Typical reverse diode forward voltage (spread)
, F =fVSD
X Axis: VsDfV
YAxis: , F fA
Parameter: t p =8~s; TJ
",
'F
15<
,
25
;
p.
:
W
""
%
,""
J r-
~
1/
2
- - - Vso
876
Siemens
SIPMOS P Channel MOSFET
SP Q610T
• SIPMOS - enhancement mode
• Drain-source voltage
Vos = -60V
• Continuous drain current
/0 = -0.13A
• Drain-source on-resistance
• Total power dissipation
ROS(on)
= 10.00
Po = 0.36W
Type
Marking
Ordering code for
versions on 12 mm-tape
Package
SP 0610T
SF
067000-S065
SOT 23
Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category
Symbol
VDS
~GR
/0
J Opul.
V.s
Po
Tj
Tst.
Ratings
Unit
-60
-60
-0.13
-0.52
±20
0.36
V
V
A
A
V
W
-55 ... +150
55 ... 150... 56
°C
:5350
:5285
K/W
Conditions
RGS =20 kO
TA =36"C
TA =25°C
aperiodic
TA =25°C
DIN IEC 68 part 1
Thermal resistance
Chip - air
Chip - substrate rear side
RthJA
Rth JSR
Siemens
Mounted on
Ceramic substrate
2.5cm2
877
SP 0610T
Electrical Characteristics
Condition
Static characteristics
Drain-source
breakdown vottage
V(BR)DSS
-60
Gate threshold vottage
Vas(th)
-1.0
Zero gate vottage
drain current
V
Vas =0
ID =0.25 rnA
VDS = Vas
-1.5
-2.0
V
ID =1 mA
IDSS
-0.1
-1.0
IlA
TJ =25°C
VDS = -6OV
Vas = OV
Gate-source leakage
current
I ass
-1.0
-10
nA
Vas =-20V, VDS =0V
Drain-source on-state
resistance
RDS(on)
6.0
10.0
0
Vas = -10V
I D = -0.2A
9.0
12.5
0
Vas = -4.5V
I D = 0.025A
Dynamic characteristics
0.075
-
S
CI..
30
45
pF
Output capacitance
Co ..
17
25
Reverse transfer
capacitance
Cr ••
a
12
Forward transconductance
gt.
Input capacitance
0.06
Turn-on time ton
(t on =t d(on) +t,)
t ~(on)
8
12
t,
35
50
Turn-off time toll
(t oil =t d(olt) +t t)
t d(oll)
a
10
I,
20
25
ns
VDS :<2*/D * RDS(on) max
ID=-O.5A
Vas =OV
VDS = -25V
f =IMHz
Vcc =-SOV
Vas =-10V
I D =-0.27A
Ras =500
Reverse diode
Continuous source
current
Is
Pulsed source current
ISM
Diode forwerd on-vottage
VSD
Reverse recovery time
Reverse recovery charge
878
-0.12
A
-
-0.48
A
-0.B5
-1.2
V
Vas =OV
IF = -O.IBA
Irr
ns
VR = -SOV, IF = ID R
diF /dt = -100NIlS
Orr
Il C
VR = -SOV, IF = ID R
di F /dt = -100NIlS
Siemens
SP 0610T
Switching Time Measurement
Switching times
Test circuit
Vcc
v
Vos
I
Permissible power dissipation versus temperature
Typical output characteristic
'D
Po =fTA
X Axis: TA I"e
YAxis: Po IW
=fVos
Vos IV
X Axis:
YAxis:
'0 IA
-3'
Po
l--
,
I
-.v
1\
-BV
-7V
Po
0.36
'j. Tj II
tR 'J
II
1/
J
I (fj IV
/I (f v, V
1111 'J V
fIJI II 1/ "",
[\
2
1\
1\
-1
1\
•
'fill
rJ
r~
1
.\
1\
\
•
lP'
~
Iv
/
(If V
1\
.
I
10V
1..-,"""
-4
"
V
4V
....
-3r-V'"
./
rl
-1
5V
V
3V
-25V
V
-3
-4
~---. Vos
Siemens
879
SP 0610T
Safe operating area
Typical transfer characteristic
'D
'o=fVOS
X Axis: Vos I V
'0
Y Axis:
IA
Parameter: 0 = 0.01, 0 =t piT;
RDS(on)"VDSIID
t
D ... -.!.
T
=fVas
X Axis: Vas IV
Y Axis:
IA
Parameter: Vos = -25V; t p = 80j.ls;
'0
Tc = 2S'C
1j
10'
tp=
II
10
3011S
10
= 2S'C
It_~- 0
..... T
1_ t
10°11_
,
1/
1···
,,,,.
"
I
/
r
10ms
'\.
/
100ml
1'\
II
/
V
10 1
5
V
/
10 1
' - ' - ' - - Vos
Typical transconductance
Drain to source on resistance (spread)
g,.=fi o
'0
X Axis:
Y Axis:
IA
g,. /
Parameter:
RoS.n= fT,
X Axis: T, I'C
s
Vos "" 2· I
0 •
R OS.n max ; t p = 80IlS;
Y Axis: Ros.n / 0
Parameter: Vas = -10V; 10 = 0.2A
T, = 2S'C
g t. .1'
11
"
1.-1-
2
·
·/
1/
V
1/
1
0
·
II
RaSCon )
V
V
17
/ '"''
/
0
V
I
,,/
V
V
V
1/
typo
---- ---- ----
2
0
A
~O.EI
---_T)
----I,
880
Siemens
SP 0610T
Typical capacitances
C = fV DS
X Axis: VDs/V
y Axis: C InF
Parameter: VGS =0; f = 1MHz
,,'
c
,,'
......
"'-
tt--,
j"-.
"-
'\
......
c...
r--
Co ..
,,'
---v,s
Drain curren1
Gate threshhold voltage (spread)
VGSlh = fT, .
X Axis: T, I·e
Y Axis: VGSlh I v
J D = fTA
X Axis: TA I·e
Y Axis: J D I A
Parameter: VGs= VDS
;
J D = -1mA
v~+-~-+--~+--r-1--+-~-+-1
v GS(th)~+-~-+--~+--r-1--+-~-+-1
1
'\
-4
"'- '\.
f--+--+-+-+---+-+---+-+--t--H
\
\
-
\
!\
\
o
o
I
-r-
typ.
-- ---..
-100
C'
- - TJ
Siemens
BB1
SP 0610T
TVplcal draln-source on-state resistance
RDSon = fI D
X Axis: I D fA
Y Axis: R DSon f 0
Parameter: VGS ; 1j = 25"C
Q
., V
4V
-3V -35
·5V
>V
)
II
II
/
/
1/
Vv
V
.o
5
-Ie
887
SXT 2907 A
PNP Silicon Switching Transistor
•
High current gain: 0.1 to 500 rnA
•
Low collector-emitter saturation voltage
E
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
SXT 2907 A
S2F
upon request
upon request
SOT 89
Maximum ratings
Pa~ameter
Symbol
Ratings
Unit
Collector-emitter voltage
VCEO
60
V
Collector-base voltage
VCBO
60
V
Emitter-base voltage
VEBO
5
V
Collector current
Ie
600
rnA
Total power dissipation
TA = 25°C
Ptot
1
W
Junction temperature
Tj
Tstg
150
°C
-65 ... +150
°C
RthJA
::; 125
K/W
Storage temperature range
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm
888
Siemens
SXT 2907 A
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Collector-emitter breakdown voltage
min
typ
max
Unit
V{BR)CEO
60
-
-
V
V{BR)CBO
60
-
-
V
V{BR)EBO
5
-
-
V
-
-
10
10
nA
IJA
IeEX
-
-
50
nA
hBO
-
-
10
nA
I BL
-
-
50
nA
75
100
100
100
50
-
-
-
Symbol
Ie=10mA
Collector-base breakdown voltage
Ie = 10 IJA
Emitter-base breakdown voltage
= 10 IJA
h
Collector cutoff current
VCB = 60 V, IE =
VCB = 60 V, IE = 0, TA = 125°C
°
Collector cutoff current
VCE = 30 V, V BE = 0.5 V
Emitter cutoff current
V EB = 3 V, I C = 0
Base cutoff current
VCE = 30 V, V BE = 3 V
DC current gain
I cBo
hFE
Ie = 100 IJA, VCE = 10 V
IC = 1 mA, VCE = 10 V
Ie = 10 mA, VCE = 10 V
Ie = 150 mA, VCE = 10 V
Ic = 500 mA, VCE = 10 V
Collector-emitter saturation voltage 1)
Ie = 150 mA; IB = 15 mA
Ie = 500 mA; IB = 50 mA
Base-emitter saturation voltage 1 )
15 mA
50 mA
-
-
-
300
VCE,at
-
-
0.4
1.6
V
V
-
-
1.3
2.0
V
V
VBE,at
Ie = 150 mA; IB =
Ie = 500 mA; I B =
1) Pulse test: t:5 300 f.ls. D:5 2 %
Siemens
889
SXT 2907 A
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ie = 50 mA, VeE = 20 V, f= 100 MHz
fr
200
-
-
MHz
Output capacitance
VeB = 10 V, f = 1 MHz
Cobo
-
-
8
pF
Input capacitance
VEB = 2 V, f = 1 MHz
Cibo
-
-
30
pF
Switching times
Vee = 30 V, VBE = 0.5 V, Ie = 150 mA,
IB1 = 15 mA
td
tr
-
-
ns
ns
t,
-
10
40
Switching times
Vee = 6 V, Ie = 150 mA, IB1=/B2 =15 mA
-
80
30
ns
ns
ts
Test circuits
Storage and fall time
Delay and rise time
-6V
-30V
Input
Zo=5011
tr < 2ns
-~0-{
Input
Zo =50 11
tr <2ns
200ns
200ns
890
1k
-~0-{FOI1
<>--1r-C::J---H
Siemens
SXT 2907 A
Total power dissipation Ptot
~
f( TA )
Collector-base capacitance
Co. ~ f(VeB)
f ~ 1 MHz
W
1,2
r
10
.
1\
f\
0,8
f\
1\
0,6
1\
I
1\
0,4
1\
1\
0,2
\
i\
o
o
150
100
50
0(
-lice
--~
Pulse handling capability
K (standardized)
rth ~
fIt)
Transition frequency fT
VeE
iii
5
t
~
f(lel
20 V
MHz
100
'ih
~
,
II
II
10 3
~,50,2
0=0
2
V
2
0,1
0,05
0,02
0,01
0,005
5
"-
1/
1111
5
5
~
tp
O=r
2
T
,,:
10-3
10-6 10-5 10-4 10- 3 10- 2 10-' 100
10' s
-t
Siemens
891
SXT 2907 A
Delay time t, = f(lel
Rise time t, = f (Iel
hFE = 10
Saturation voltage Ie = f(V.E,'" VeE"t)
hFE = 10
ns
103
/
~
,,-
VCE
1/ VBE
1111
II
-
~-- VBE-OV;Vcc-l0V~
-
- - - VBE -2.0VYcc=30V
-
N
i.~
r----
1\
td
,\
.-
\
5
\1\
1\ r\
\
1\
101
o
0.2 0.4
to
0.6 O.B
r"1-
11 11+ 1.6 V
VBE,a!' VCEsa!
-
- - - Ic
Storage time t, = f(lel
Fall time
tf
= f (Iel
.~
ts
5
c--
I
,+1J.t
~
Vcc=30V
!
I
[\~FE=20
\
c-
!
I
I
5
r----
hFE =1
1
FE- 1
~
Iy'
IhFE= 20
~ \
---
5
~
f----
~
.
1---
1"\
r----
-
~,
r--...
-Ic
---Ic
892
-
Siemens
SXT 2907 A
DC current gain h" = f(lel
175°C
,..
III
~
2S °C
5
-5 °C
Siemens
893
NPN Silicon Switching Transistor
•
High current gain: 0.1 to 100 mA
•
Low collector-emitter saturation voltage
SXT 3904
E
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
SXT 3904
S 1A
upon request
upon request
SOT 89
Maximum ratings
Parameter
Symbol
Ratings
Unit
Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Vceo
VCBO
VeBo
40
V
60
6
200
1
V
mA
W
T stg
150
-65 ... +150
°C
°C
RthJA
:s; 125
KjW
Ie
Ptot
7i
V
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm
894
Siemens
SXT 3904
Electrical characteristics
at TA = 25°C, unless otherwise specified
min
typ
max
Unit
V1BR)CEO
40
-
-
V
V1BR)CBO
60
-
-
V
V1BR)EBO
6
-
-
V
Base cutoff current
VCE = 30 V, V BE = - 3 V
IBL
-
-
50
nA
Collector cutoff current
VCE = 30 V, V BE = 3 V
I cEx
-
-
50
nA
DC current gain
= 1 00 J.lA, VCE = 1 V
= 1 mA. VCE = 1 V
= 10 mA. VCE = 1 V
= 50 mA. VCE = 1 V
I C = 100 mA, VCE = 1 V
hFE
DC characteristics
Symbol
Collector-emitter breakdown voltage
Ic = 1 mA
Collector-base breakdown voltage
= 10 J.lA
Ie
Emitter-base breakdown voltage
I E =10J.lA
Ie
Ie
Ie
Ie
Collector-emitter saturation voltage 1 )
Ie = 1 0 mA; I B = 1 mA
Ic = 50 mA; IB = 5 mA
Base-emitter saturation voltage 1)
I C = 1a mA; I B = 1 mA
Ie = 50 mA; IB = 5 mA
1) Pulse test: t
$;
300 f./s, D
$;
-
-
-
-
-
-
300
-
-
-
-
0.2
0.3
V
V
0.65
-
-
-
0.85
0.95
V
V
40
70
100
60
30
-
VCEsst
VBEsst
2%
Siemens
895
SXT 3904
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ic = 10 rnA, VCE = 20 V, f= 100 MHz
fT
300
-
-
MHz
Output capacitance
Vcs = 5 V, f = 1 MHz
Cabo
-
-
4
pF
Input capacitance
VES = 0.5 V, f= 1 MHz
C ibo
-
-
8
pF
hie
1
-
10
kO
h re
0.5
-
8
Xl0-4
Sma"-signal current gain
= 1 rnA; VCE = 10 V, f = 1 kHz
h fe
100
-
400
-
Output admittance
hoe
1
-
40
~S
NF
-
-
5
dB
td
tr
-
-
35
35
ns
ns
200
50
ns
ns
Input impedance
IcE = 1 rnA; VCE = 10 V, f
Voltage feedback ratio
I C = 1 rnA; VCE = 10 V, f
= 1 kHz
= 1 kHz
Ic
Ic = 1 rnA; VCE = 10 V, f = 1 kHz
Noise figure
rnA, VCE = 5 V, f= 10 Hz to 15 kHz
Rs = 1 kO
Ic = 0.1
Switching times
Vcc = 3 V, VSE = 0.5 V,
lSI = 1 rnA
Ic = lOrnA.
Switching times
Vee = 3 V, Ie = lOrnA. lSI = lB2
= 1 rnA
Test circuits
Delay and rise time
1I
0ons
Storage and fall time
275S'!
10 kS'!
o--c.:::J-+-l
-O.5V
~~II~
:::::..
~.~~
10'
5
10°
5
10'
5
10 2 rnA
5
904
10'
5
102 rnA
---Ie
-Ie
Siemens
SXT
3906~
DC current gain h" = f(le!
VeE = 1 V (standardized)
Siemens
905
SXT A42
SXT A43
NPN Silicon High Voltage Transistors
•
High breakdown voltage
•
Low collector-emitter saturation voltage
E
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
SXT A 42
SXT A 43
SlD
SlE
upon request
upon request
upon request
upon request
SOT 89
SOT 89
Maximum ratings
Parameter
Symbol
SXT A42
SXT A43
Unit
Collector-emitter voltage
VCEO
V CBO
200
200
V
Collector-base voltage
300
300
Emitter-bas~
VEBO
voltage
Collector current
Ie
Total power dissipation
TA = 25 DC
P tot
Junction temperature
Tj
Storage temperature range
T stg
V
6
500
V
1
W
150
-65 ... +150
DC
mA
DC
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm X 16.7 mm X 0.7 mm
906
RthJA
Siemens
::; 1 25
KjW
SXT A42
SXT A43
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
SXT A 42
Ie = 1 rnA
SXT A43
V{BR)CEO
Collector-base breakdown voltage
SXT A 42
= 100 IlA
SXT A 43
V{BR)CBO
Emitter-base breakdown voltage
le = 100 IlA
V{BR)EBO
Ie
Collector cutoff current
VCB = 200V,le= 0
VCB = 1 60 V. le = 0
VcB =200V,lE=0. TA = 125°C
VCB = 160V,lE=0. TA = 125°C
typ
max
Unit
300
200
-
-
-
-
V
V
300
200
-
V
V
6
-
-
-
-
100
100
10
10
nA
nA
Il A
Il A
-
100
nA
-
-
-
IeBO
SXT
SXT
SXT
SXT
A
A
A
A
42
43
42
43
Emitter cutoff current
VEB = 6 V. Ie = 0
leBO
DC current gain
hFE
Ie = 1 rnA. VCE = 10 V
Ie = lOrnA. VCE = 10 V
Ie = 30 rnA. VeE = 10 V
min
25
40
40
40
SXT A 42
SXT A 43
Collector-emitter saturation voltage 1)
SXT A 42
Ie = 20 rnA; I B = 2 rnA
SXT A 43
VeEsat
Base-emitter saturation voltage 1)
= 20 rnA; IB = 2 rnA
VBEsat
Ie
-
-
-
V
-
-
-
-
-
0.5
0.4
V
V
-
-
0.9
V
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ie = 10 rnA. VCE = 20 V. f= 100 MHz
fT
50
-
-
MHz
Output capacitance
VeB = 20 V. f = 1 MHz
Cobo
-
-
3
4
pF
pF
SXT A 42
SXT A 43
-
I) Pulse test: t:5 300 lis, D:5 2 %
Siemens
907
SXT A42
SXT A43
Total power dissipation P", = f(TA )
Transition frequency fT = f(lel
VeE = 10 V, f = 100 MHz
W
1,2
MHz
103
5
1"1,0
I\.
f\
0,8
I.
1\
1\
0,6
I\.
I
1\
0,4
5
~
1\
\I
0,2
V
t\.
1\
o
o
150°C
100
50
5 10 3 rnA
5 10'
-~
Pulse handling capability
K (standardized)
'th = fIt)
'iii
rnA
10°
10 3
r
I,..
,
~
,
5
5
~
5
Operating range Ie = f(VeEQ)
TA = 25 °C, D = 0
1\. r\
I'
~,I
10~s
0.5
0.2
0.1
0.05
0.02
0.01
0.005
~
&
'\
10'
1111
\~ 1001lS
1rnsj
lOOms
5
1'0=0
2
SOOrns
DC
5
llr
~
o=~
10-3
10-6
'"
10-5
10-4
-,
;" r
10-3
10-2 10-'
10° s
-VcEO
-f
908
Siemens
SXT A42
SXT A43
Collector cutoff current
VeB = 160 V
nA
le.o =
f( TA )
rnA
10 3
104
5
Collector current
VeE = 10 V
le = f(VBE)
5
I
max.•'"
..-.
je
5
V
k'
10 2
10'
typo
5
/
,
,
1/
50
100
I
0,5
150 °C
1,0
1,5 V
-VeE
-TA
DC current gain hFE = f(lol
VeE
=
10 V
100 L...J....u.J..llUl.....L.L.J..U.1ill......J....l..J..llJ.I.II-.L..l.UilllJ
10-' 5 10°
5 10'
5 10 2
5 10 3rnA
-Ie
Siemens
909
SXT A 92
SXT A 93
PNP Silicon High-Voltage Transistors
•
High breakdown voltage
•
Low collector-emitter saturation voltage
E
Type
Marking
Ordering code for
versions in bulk
Ordering code for
versions on 8-mm tape
Package
SXT A 92
SXT A 93
S2D
S2E
upon request
upon request
upon request
upon request
SOT 89
SOT 89
Maximum ratings
Parameter
Symbol
SXT A 92
SXT A93
Unit
Collector-emitter voltage
VCEO
300
200
Collector-base voltage
V CBO
300
200
V
V
V
Emitter-base voltage
V EBO
Collector current
Ie
Total power dissipation
TA = 25°C
Ptot
5
500
1
mA
W
Junction temperature
7j
150
°C
Storage temperature range
Tstg
-65 ... +150
°C
RthJA
:s; 125
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm
910
Siemens
K/W
SXTA92
SXTA93
Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Symbol
Collector-emitter breakdown voltage
SXT A 92
Ie = 1 rnA
SXT A 93
V(BR)CEO
Collector-base breakdown voltage
SXT A 92
SXT A 93
V(BR)CBO
Emitter-base breakdown voltage
h=1001JA
V(BR)EBO
Ie = 100 IJA
Collector cutoff current
VeB = 200V,IE=0
VCB = 1 60 V, h = 0
VeB = 200V,h =0, TA = 125°C
VCB = 160V,h=O, TA = 25°C
IeBO
SXT A
SXT A
SXT A
SXT A
92
93
92
93
Emitter cutoff current
VEB = 4 V, Ie = 0
lEBO
DC current gain
Ic = 1 'rnA, VeE = 10 V
Ie = 10 rnA, VeE = 10 V
Ie = 30 rnA, VeE = 10 V
hFE
SXT A 92
SXT A 93
min
typ
max
Unit
300
200
-
-
V
V
300
200
-
-
-
V
V
-
V
nA
nA
IJA
IJA
5
-
-
250
250
20
20
-
100
nA
25
40
25
25
-
-
-
-
-
0.5
0.4
V
V
-
0.9
V
Collector-emitter saturation voltage')
Ie = 20 rnA; IB = 2 rnA
SXT A 92
SXT A 93
VeE,at
Base-emitter saturation voltage')
VBE,at
-
Ie = 20 rnA; IB = 2 rnA
-
-
AC characteristics
Symbol
min
typ
max
Unit
Transition frequency
Ie = 10 rnA, VeE = 20 V, f= 100 MHz
fT
50
-
-
MHz
Output capacitance
VeB = 20 V, f = 1 MHz
CObO
-
6
-
8
pF
pF
1)
SXT A 92
SXT A 93
-
-
Pulse test: t:5, 300 lis, D:5, 2 %
Siemens
911
SXT A 92
SXT A 93
Transition frequency fT = f(Id
VeE = 20 V, f= 100 MHz
Total power dissipation p.o. = f( TA)
W
1,2
r
1,O
I\.
1\
0,8
\
\
0,6
1\
I
1\
0,4
5
1\
\
0,2
/
2
l
v
1\
o
o
50
150
100
0(
-~
Pulse handling capability
K (standardized)
Operating range Ie
TA = 25 0 C, D = 0
r'h = fIt)
= f(VeEO)
W
10°
r
5
p
1
,
~.
kl
5
5
~
\
III
II I
I'
'\'
~ 1\
III
~
O=f
10-5
10- 4
T
10-3
10- 2
10- 1
1
10° s
----t
912
1msj
L' 500
msl
DC
5
10-3
10-6
100 ps
lOOms
5
t'O=O
2
1\
lOps
0.5
0.2
0.1
0.05
0.02
0.01
0.005
Siemens
SXT A92
SXTA93
Collector cutoff current leBo = f( TA)
VeB = 160 V
Collector current
VeE = 10 V
Ie =
f(VBE)
II
ma~:.-17
17
1/
typo
10°
5
1
1.1
1
so
100
1SO
°c
I
0,5
1,5 V
-~
DC current gain
VcE =10V
hFE
= f(le)
1:3§1111(11~11
rZH--l+I-UllI-----l-1--I-l1llIl--!-++I-I+llI--+-I-+I+Hl
:2 _ _
10- 10° 10 10 10
100
Ll...lJJWJJJ.---.LLllJUllL-Ll..l.U.JWL..LLillJJJJ
1
5
5
1
5 2
-Ie
5
3 mA
Siemens
913
GaAs FETs
GaAs-FET
Siemens
915
GaAs FET
CF739
• N-channel dual-gate GaAs MES FET
• Depletion mode transistor for tuned small-signal
applications up to 2 GHz, e. g. VHF, UHF, Sat-TV
tuners
• Low noise
• High gain
• Low input capacitance
G2
G1
~D
~S
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
CF739
MS
Q 62702 - F1215
SOT-143
Maximum Ratings
Parameter
Symbol
Value
Unit
Drain-source voltage
VDS
10
V
Gate 1-source voltage
-VG1S
6
V
Gate 2-source voltage
-VG2S
6
V
Drain current
lD
80
mA
Gate 1-source peak current
+lG1SM
1
mA
Gate 2-source peak current
+lG2SM
1
mA
Total power dissipation, TA:s 42 °C2 )
Ptot
240
mW
Channel temperature
Tch
150
°c
Storage temperature range
TSl9
-55 ... +125
°c
Thermal Resistance
IR
Junction - ambient 1)
thJA
I :s450
KJW
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.
Siemens
917
CF739
Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Values
Parameter
Symbol
min
typ
max
Unit
Drain-source breakdown voltage
Ii(BR)OS
10
-
-
V
Gate 1 leakage current
-VG1S = 5\/, VG2S = Vos=O
-IG1sS
-
-
20
J.LA
Gate 2 leakage current
-IG2sS
-
-
20
J.LA
Drain current
VG1S = 0, VG2S = 0, Vos = 3 V
loss
10
-
80
rnA
Gate 1-source pinch-off voltage
VG2S = 0, Vos = 5 \/, 10 = 200 J.LA
-VG1S (P)
-
-
4.5
V
Gate 2-source pinch-off voltage
VG1S = 0, Vos = 5 \/, 10 = 200 J.LA
-VG2S(P)
-
-
4.5
V
Forward transconductance
Vos = 5 \/, VG2S = 2 V, 10 = 10 rnA, f= 1 kHz
flts
-
25
-
rnS
Gate 1 input capacitance
VG2s =2V, Vos=5V,Io= 10 rnA, f=1 MHz
Cg1ss
-
0.95
-
pF
Output capacitance
VG2S = 2 V, Vos = 5 V, 10= 10 mA, f= 1 MHz
Cdss
-
0.5
-
pF
Noise figure
VG2S = 2 V, Vos = 5 \/, 10 = 10 rnA, f= 1.75 GHz
F
-
1.8
-
dB
Power gain
VG2S =2V, Vos = 5 \/, 10 = 10 rnA, f= 1.75 GHz
Gps
-
17
-
dB
10 = 100 J.LA, -VG1S = -VG2S = 4 V
-VG2S = 5 \/, VG1S = Vos = 0
AC characteristics
918
Siemens
CF739
Total power dissipation Ptot = f (T,.]
package mounted on alumina
Output characteristics Io = f (Vos)
VG2S = 2 V
mW
rnA
300
50
VG1S =OV
1111
i+H+
40
1\
-I I
1\
O.2SV
1\
30
II
-O.SOV
20
100
-
I I
-0.7SV
1\
10
-1.0V
o
o
50
o
o
100
- - - - I..
~
2
6
4
BV
----I-~VDS
TA
Gate 1 forward transconductance
91., = f (Vl;1S)
rnS Vas = 5 V, f= 1 kHz
Gate 1 forward transconductance
9ts1 = f (VG2s)
mS Vas = 5 V, f= 1 kHz
50
50
I
l-
I I I
VG2S =2.0 Vi~
I-
1..
~J-- 1-11-1---
f1
O.25V
t1 ~1S=OV
T
II
30 1-,
-
30
,
O.SV 1---1---
OV +---1- I'I..
10
I~
-10V" ~-O.5V"""
w
-2
r-
,--\-
-.
l/o1'sv
20
20
o
I
10
1-1-
~
141
-1
o
o
-2
1V
Siemens
-1
2V
919
CF739
Drain current Io =f (VG1S)
Vos=5V
rnA
80
Drain current Io
Vos=5V
rnA
80
TT 1 ,
IT
60
.11
ff-
'r/-
Ib= 2V
=f (VG2S)
If
7
'i
60
w-
1/
I
40
OV,...F
II}
,I.
I-'
40
}
if
ov1,.-10-
-o.SV
III
20
20
II.
III
-1.0V
-1V_
I
-2
1-1'
I
I~
~
o
li
VG1S =O..5V
-1
o
1V
=
Gate 1 input capacitance Cg1 •• f IIo)
VG2S = 2 \I, Vos=5 \I, f=0.1 -1 GHz
2V
-1
-2
Output capacitance CdS" = f (Vos)
VG2S =2 V, 10= 10 rnA, f= 0.1 -1 GHz
pF
3
pF
1.5
,
\
)...
[g1 ••
I
l--
V
2
1.0
17
0,5
\
\
I\....
o
o
10
20
30 rnA
- -........ 10
920
Siemens
o
o
2
4
6
8
10V
CF739
Common Source Admittance Parameters, G2 RF grounded
Gate 1 input admittance Yl1s
Gate 1 forward transfer admittance Y21s
Vos= 5V, VG2s =2V, 10= 10 rnA
Vos = 5 V, VG2S = 2 V;Io = 10 rnA
mS
mS
14
f=2000MHz
o
IP
f=100 MHz
200 MHz
I I I I I
400MHz
I I I I I
600MHz
1BOOMHz,..,V
TT-:;pr
12
160~MI'%r
10
!A'1400MHz
BOOMHz
8'1200MHz
. IT
B
l-
6
IP l~O~MHz
l~OIO~~z
-20
1F~0~Hz
I) 800MHz
4
2
1406 ~~z I II
600JHz
~
111.1
-30
I I I
«400MHz
1600MHz If
lBO~~82:
200M Hz
o
o
100MHz
2
1/
3
4
5
-40
B mS
6
200~~~zl
o
10
tf
20
30
40 mS
-g"s
Output admittance Y22s
Vos = 5 V, VG2S = 2 V.Io= 10 rnA
mS
7
mmDI
fl=m~7~z
6
~
5
1600MHz
" " III
1400MHz
4
l;m~~~
I11II1
1000MHz
3
I I r "
I
BOOMHz
2
600MHz
400MHz
o
o
1200 MHz
T100MHz
0.1
0.2
OJ
- - - - - <..
-
0.4
0.5 mS
gl2<
Siemens
921
CF739
Common Source S Parameters, G2 RF grounded
s"
=
S,2=f(f}
Vos = 5 V, VG2S =2\1, 10 = 10 rnA, Zo= 50 n
f (f), Z-plane
Vos =5 \I, VG2s=2\1, 10= 10 rnA, Zo= son
180 0
1--I--I--I--I...ll,!-4.'~-
-j50
-90 0
5.2, =f (f)
Vos =5\1, VG2S =2 V,lo = 10 rnA, Zo = son
90
5.z2 =f (f), Z-plane
Vos = 5 \I, VG2S= 2\1, 10= 10 rnA, Zo= son
0
180 0
-j 50
-900
922
Siemens
o
GaAs FET
•
•
•
•
•
•
•
CFY30
Low noise (Fmin = 1.4 dB at 4 GHz)
High gain (11.5 dB typo at 4 GHz)
For oscillators up to 12 GHz
For amplifiers up to 6 GHz
Ion-implanted planar structure
Chip all gold metallization
Chip nitride passivation
S~D
G~s
ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
(tape and reel)
Package
CFY30
A2
Q 62703-F97
SOT-143
Maximum Ratings
Parameter
Symbol
Value
Unit
Drain voltage
Vos
5
V
Drain-gate voltage
VOG
7
V
Gate-source voltage
VGS
-4 ... +0.5
V
Drain current
10
80
mA
Total power dissipation, Tc :::::90 DC
Ptot
250
mW
Channel temperature
Tch
150
DC
Storage temperature range
Tstg
-40 ... +150
°C
RthchC
:::::240
K/W
Thermal Resistance
I
Channel - case
Siemens
923
CFY30
Electrical Characteristics
at TA = 25°C.
Parameter
Symbol
Values
Unit
min
typ
max
Drain-source saturation current
Vos = 3.5 V, VGS = 0
loss
20
50
80
mA
Pinch-off voltage
10 = 1 mA, Vos =3.5 V
Vp
-0.5
-1.3
-4.0
V
Transconductance
10 = 15 mA, Vos = 3.5 V
gm
20
30
-
mS
Gate leakage current
10 = 15 mA, Vos = 3.5 V
IG
-
0.1
2.0
!LA
Noise figure
10 = 15 mA, Vos = 3.5 V, f= 4 GHz
f=6GHz
F
-
1.4
2.0
1.6
Associated gain
10 = 15 mA, Vos = 3.5 V, f= 4 GHz
f=6GHz
Ga
Maximum available gain
10 = 15 mA, Vos = 3.5 V, f= 6 GHz
MAG
Maximum stable gain
fo = 15 mA, Vos = 3.5 V, f= 4 GHz
Power output at 1 dB compression
10 = 30 mA, Vos =4 V, f=6 GHz
dB
-
dB
10
-
-
11.5
8.9
-
-
11.2
-
dB
MSG
-
14.4
-
dB
PldB
-
16
-
dBm
Common Source Noise Parameters
10 = 15 mA, Vos = 3.5 V, Zo = 50 Q
f
F min
Ga
r opt
RN
N
FSOfl
G(FSOfl)
GHz
dB
dB
MAG
ANG
Q
-
dB
dB
2
4
6
8
10
12
1.0
1.4
2.0
2.5
3.0
3.5
15.5
11.5
8.9
7.1
5.8
5.0
0.72
0.64
0.46
0.31
0.34
0.41
27
61
101
153
-133
- 93
49
29
19
9
14
28
0.17
0.17
0.30
0.31
0.38
0.42
2.9
2.7
2.8
2.8
3.4
4.1
10.0
9.3
7.5
6.4
4.2
2.9
924
Siemens
CFY30
Source impedance for min. noise figure
ID=15mA, VDs =3.5V
+j25
Of----
-j25
-j50
Circles of constant noise figure
ID = 15 mA, VDS = 3.5 V, f= 6 GHz
Circles of constant noise figure
ID = 15 mA, VDS = 3.5 V, f= 4 GHz
+j50
+j50
-j50
-j50
of---__\_-\
Siemens
925
CFY30
Characteristics at TA = 25°C
mA
Output characteristics 10
=f (Vos)
50
VGS .. OV
-
f---
/
1
-0.2V
:;;;;;
-0.4V- f-
7
30
c;;;;o
7
~ f-
c;;;:;;
20
1/
17
_-....
-
I..--'
1/
10
-0.8V f-
~-~
l.- I--
-1.1ii
]:...;... I -
2
4
5 V
-Vos
=
dB
Minimum noise figure Fmin f (f)
Associated gain Ga = f (f)
10 = 15 rnA, Vos = 3.5 V. ZSopt
9
1 II
1 11
\:
--{j.
14
0;
1\
6
{j.
Fmin
t
t
-
Pmin
1'TTl
1/
1""
V
2
I II
10
5
_I- 6GHz
6
6 8 10
o
OL--L-LLLLLJJ.l.---L-L.L.LJ..J..LLJ
20 GHz
-f
Siemens
1
2
!
(j"
12
2
4
14
F=III
4
2
dB
6 1 - - - - (j.++1+f+-/---+C~4IGI~1
8
3
926
I,...."
1."...-...,..--,...,1...11
. . . . - - - r - T. . .
10
r.
4
01
7
12
\
5
dB
18
16
-Fmin
Minimum noise figure Fmin = f (10)
Associated gain G. = f (10 )
dB Vos = 3.5 V. ZSopt
CFY30
Common Source S Parameters
ID
=
15 mA, VDS
f
S11
GHz
MAG
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
1.00
1.00
1.00
1.00
0.99
0.99
0.98
0.98
0.97
0.97
0.96
0.95
0.93
0.92
0.90
0.88
0.87
0.85
0.83
0.82
0.80
0.79
0.77
0.76
0.74
0.72
0.70
0.68
0.66
0.65
0.63
0.62
0.60
0.59
0.57
0.56
0.55
0.54
0.54
0.53
0.53
0.54
0.54
0.55
0.55
=
3.5 V, Zo
ANG
- 1
- 3
- 6
- 10
- 14
- 17
- 21
- 25
- 28
- 32
- 36
- 38
- 44
- 49
- 53
- 58
- 62
- 67
- 72
-77
- 82
- 87
- 92
- 98
-104
-110
-115
-121
-127
-133
-139
-144
-150
-156
-162
-168
-174
179
172
166
160
153
147
141
135
=
50
Q
Sz1
MAG
ANG
MAG
ANG
Sz2
MAG
2.43
2.43
2.43
2.43
2.43
2.43
2.43
2.44
2.44
2.45
2.45
2.46
2.47
2.48
2.49
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.51
2.50
2.49
2.47
2.45
2.43
2.41
2.39
2.36
2.33
2.30
2.27
2.24
2.21
2.19
2.16
2.14
2.11
2.08
2.04
2.00
1.96
1.92
178
176
171
167
162
158
154
150
145
141
137
133
129
124
120
116
111
107
102
98
93
88
83
78
73
68
64
59
54
50
45
41
37
32
27
22
17
12
8
3
- 2
- 7
-11
-16
-21
0.003
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.054
0.058
0.062
0.066
0.070
0.074
0.078
0.082
0.086
0.090
0.094
0.097
0.100
0.103
0.106
0.108
0.110
0.112
0.113
0.114
0.114
0.115
0.115
0.116
0.116
0.116
0.116
0.116
0.116
0.115
0.114
0.113
0.112
0.111
87
86
23
81
78
75
72
69
66
63
60
58
55
53
50
48
45
42
39
36
32
29
25
22
18
15
12
9
6
3
0
- 3
- 6
- 9
-11
-14
-17
-20
-22
-25
-27
-30
-32
-34
-37
0.70
0.70
0.69
0.69
0.68
0.68
0.67
0.67
0.66
0.66
0.65
0.64
0.64
0.63
0.62
0.61
0.60
0.59
0.57
0.55
0.54
0.52
0.50
0.48
0.46
0.45
0.43
0.42
0.40
0.38
0.36
0.33
0.31
0.29
0.27
0.25
0.24
0.23
0.21
0.20
0.19
0.18
0.18
0.17
0.18
S12
Siemens
ANG
- 1
- 3
- 5
- 8
- 11
- 13
- 15
- 18
- 20
- 23
- 26
- 28
- 30
- 32
- 35
- 38
- 41
- 44
- 47
- 51
- 54
- 58
- 61
- 64
- 67
- 70
- 73
- 76
- 80
- 84
- 88
- 93
- 98
-104
-110
-116
-122
-129
-137
-145
-154
-163
~173
179
171
927
CFY30
10 = 15 rnA, Vos = 3.5 V,
f
S.1
GHz
MAG
9.0
9.2
9.4
9.6
9.8
10.0
10.2
10.4
10.6
10.8
11.0
11.2
11.4
11.6
11.8
12.0
928
0.55
0.56
0.56
0.57
0.57
0.58
0.58
0.59
0.59
0.60
0.60
0.61
0.61
0.62
0.62
0.62
Zo =
50 n
8 12
&.!1
ANG
129
124
119
114
110
106
102
98
94
91
88
85
82
79
77
74
&.!2
MAG
ANG
MAG
ANG
MAG
ANG
1.88
1.83
1.78
1.72
1.66
1.61
1.56
1.51
1.46
1.42
1.38
1.35
1.32
1.30
1.27
1.25
-25
-30
-35
-40
-44
-48
-52
-56
-59
-62
-65
-69
-72
-75
-78
-81
0.110
0.109
0.108
0.107
0.105
0.104
0.103
0.102
0.101
0.101
0.100
0.099
0.099
0.098
0.097
0.096
-39
-42
-44
-46
-48
-50
-51
-53
-54
-56
-57
-58
59
-60
-62
-63
0.18
0.19
0.20
0.21
0.22
0.23
0.25
0.26
0.28
0.29
0.30
0.32
0.33
0.34
0.35
0.36
163
155
148
141
134
128
123
118
113
108
104
100
96
93
89
85
Siemens
CFY30
10 = 15 rnA, Vos = 3.5 V. 20= 50 n
St1 "f (f)
90 0
5.!1 "f (f)
~"f(f)
-90 0
Siemens
929
CFY30
Common Source S Parameters
JD = 30 rnA, VDS = 3.5 V. Zo = 50 Q
f
5 11
GHz
MAG
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8
1.00
1.00
1.00
0.99
0.99
0.98
0.97
0.96
0.95
0.94
0.92
0.91
0.90
0.89
0.87
0.85
0.83
0.81
0.79
0.77
0.75
0.73
0.71
0.69
0.67
0.65
0.63
0.62
0.60
0.59
0.57
0.56
0.54
0.53
0.52
0.51
0.51
0.51
0.50
0.50
0.50
0.51
0.51
0.52
0.52
930
~1
ANG
- 2
- 4
-
8
- 12
- 16
- 20
- 24
- 28
- 32
- 38
- 40
- 44
- 48
- 53
- 58
- 63
- 68
- 73
- 79
- 85
- 91
- 96
-102
-108
-114
-120
-126
-132
-138
-144
-150
-156
-162
-168
-174
179
173
166
160
153
147
141
135
130
125
~2
5 12
MAG
ANG
MAG
ANG
MAG
ANG
3.23
3.22
3.21
3.20
3.19
3.18
3.18
3.18
3.17
3.17
3.17
3.17
3.17
3.17
3.17
3.17
3.16
3.14
3.12
3.10
3.08
3.06
3.04
3.02
3.00
2.98
2.95
2.91
2.87
2.82
2.77
2.73
2.68
2.63
2.58
2.54
2.50
2.46
2.43
2.40
2.36
2.31
2.26
2.21
2.15
178
176
171
167
162
157
153
148
143
139
135
131
127
123
119
114
109
104
99
94
88
83
78
73
68
63
58
54
49
44
40
35
31
27
22
18
14
9
5
0
- 4
- 8
-13
-17
-22
0.002
0.004
0.009
0.013
0.017
0.021
0.025
0.030
0.034
0.038
0.042
0.046
0.051
0.055
0.059
0.063
0.067
0.070
0.073
0.076
0.079
0.082
0.084
0.087
0.089
0.091
0.092
0.093
0.094
0.095
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.099
0.099
0.099
0.099
0.099
0.099
0.099
0.099
85
82
79
76
73
73
70
67
65
63
61
58
56
53
50
48
45
42
40
37
34
31
28
24
21
18
15
12
10
7
4
2
- 1
-4
- 6
- 9
-11
-13
-16
-18
-20
-22
-24
-27
-29
0.71
0.71
0.70
0.69
0.69
0.68
0.67
0.67
0.66
0.66
0.65
0.64
0.63
0.62
0.61
0.60
0.58
0.56
0.55
0.54
0.52
0.51
0.50
0.48
0.47
0.45
0.43
0.41
0.38
0.36
0.34
0.32
0.30
0.29
0.27
0.26
0.24
0.22
0.21
0.19
0.18
0.17
0.16
0.16
0.16
-
Siemens
1
3
6
- 9
- 11
- 14
- 16
- 19
- 21
- 24
- 26
- 28
- 31
- 33
- 36
- 39
- 42
...: 45
- 48
- 51
- 54
- 57
'- 60
- 63
- 66
- 70
- 73
-77
- 81
- 85
- 89
- 94
- 99
-104
-109
-115
-121
-127
-134
-141
-148
-156
-164
-174
176
-
CFY30
10 = 30 mA, Vos = 3.5 V,
4J = 50 .Q
~2
f
8 11
GHz
MAG
ANG
MAG
ANG
MAG
8 12
ANG
MAG
ANG
9.0
9.2
9.4
9.6
9.8
10.0
10.2
10.4
10.6
10.8
11.0
11.2
11.4
11.6
11.8
12.0
0.53
0.54
0.55
0.55
0.56
0.57
0.58
0.59
0.60
0.60
0.61
0.61
0.61
0.62
0.62
0.62
120
115
111
107
103
99
95
91
88
85
82
79
76
73
71
68
2.09
2.04
1.98
1.93
1.87
1.82
1.76
1.71
1.65
1.60
1.55
1.51
1.47
1.44
1.41
1.38
-26
-30
-35
-39
-43
-47
-51
-54
-58
-62
-65
-69
-72
-75
-78
-82
0.099
0.099
0.099
0.099
0.099
0.099
0.100
0.100
0.100
0.101
0.101
0.102
0.102
0.103
0.103
0.104
-31
-33
-35
-37
-39
-41
-42
-44
-45
-47
-48
-49
-51
-52
-53
-55
0.16
0.17
0.18
0.19
0.21
0.22
0.23
0.25
0.26
0.27
0.29
0.30
0.31
0.32
0.33
0.34
167
158
150
142
135
128
123
118
114
109
104
100
96
92
89
85
~1
Siemens
931
CFY30
10 = 30 mA, Vos = 3.5 V, Zo = 50
5"
Q
=f(f)
5'2=f(f)
90°
90°
4
1BOo I---f--I-+-+-:--f--+-I--+-f-':';:"'--l 00 1BOo f--Lf--f--+-:--f--+---if---t--lt-;;--t---I 0°
-900
-90°
1BOO I---+-l--+-t--I---"'t=--'II-'-t--'-'F----j 0° 1BOo I---+-l--t---t+--+-l--r-h-r----j 0°
- 90°
932
Siemens
GaAs MMICs
GaAs-MMIC
Siemens
933
CGY50
GaAs MMIC
•
•
•
•
•
•
•
•
•
•
Single-stage, monolithic microwave IC (MMIC amplifier)
Cascadable 50 n gain block
Application range: 100 MHz to 3 GHz
Third order intercept point 30 dBm typical at 1.8 GHz
Gain: 8.5 dB typical at 1.8 GHz
Low noise figure: 3.0 dB typical at 1.8 GHz
Gain control dynamic range 20 dB
Ion-implanted planar structure
Chip all gold metallization
Chip nitride passivation
317~2
4!Ig/;J
1
ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type
Marking
Ordering code
CGY50
G2
Q 68000 - A8370
Package
Circuit diagram
"
...r-1..
~
II
4
(IN!G)
)
2
lOUT! D)
SOT-143
Ity~kQ
~
1.3
(5)
Maximum Ratings
Parameter
Symbol
Value
Unit
Drain voltage (DC)
Vo
5.5
V
Peak drain voltage (DC + RF)
Vop
7.5
V
VG
-3 ... 0
V
Drain gate voltage
VOG
7.5
V
Input power .
PIN
16
dBm
Total power dissipation, Tc:51 00 °C
Ptot
400
mW
Channel temperature
Tch
Tstg
150
°C
-40 ... +150
°C
Current control gate voltage
Storage temperature range
Thermal Resistance
Channel- case I)
I
RthchC
I :5125
IKIW
Note: exceeding any of the maximum ratings may cause permanent damage to the device. Appropriate handling is required to
protect the electrostatic-sensitive MMIC against degradation due to excess voltage or excess current spikes. Proper ground
connection of leads 1 and 3 (with minimum inductance) is required to achieve the guaranteed RF performance, stable operating
conditions and adequate cooling.
I) For application circuit see page 937.
Siemens
935
CGY50
DC Characteristics
at TA = 25°C, VG = 0 V, VD = 4.5 V, Rs
(for application circuit see next page).
Parameter
= RL = 50 n, unless otherwise specified,
Symbol
Drain current
ID
Power gain
f= 200 MHz
f= 1800 MHz
G
Gain flatness
f= 200 to 1000 MHz
f= 800 to 1800 MHz
L1G
Noise figure
f= 200 to 1800 MHz
Values
Unit
min
typ
max
-
60
80
-
10.0
8.5
-
mA
dB
7.5
dB
0.4
1.1
-
F
-
3.0
4.0
dB
Input return loss
f= 200 to 1800 MHz
RLJN
9.5
12
-
dB
Output return loss
f= 200 to 1800 MHz
RLouT
9.5
12
-
dB
Third order intercept point,
two-tone intermodulation test
f, = 806 MHz, f2 = 810 MHz,
Po = 10 dBm (both carriers)
IP3
29
31
-
dBm
1 dB gain compression
f= 200 to 1800 MHz
P'dB
-
16
-
dBm
Gain control dynamic range
f= 200 to 1800 MHz
L1G
-
20
-
dB
936
Siemens
2
CGY50
Application Circuit
f= 800 to 1800 MHz
r------------------,
~
H
VG1
H
I
I
I
~
VD
I
I
0,
I
L,
I
L2
I
'••"' soo
I
1:
!i'"'."'
soo
'--___________________ J
~ SOQ
Microstripline
Summary of components
c1 , ~
Cs, C4
Chip capacitors 100 pF
Chip capacitors 1 nF
L1 , L2
Discrete inductor 1 f.lH or printed microstripline inductor
Dl
Z diode 5.6 V (type BZW 22 C5V6)
Note: Operating conditions for
AN max:
RG
= RL = 50 11.
C, max
= 220 pF,
Siemens
Vo
= 4.5 V;
VG current limited <2 rnA.
937
CGY50
Total power dissipation Ptot
=f (Tel
0.5
~ot
W
t
0.4
i\
\
0.3
:\
0.2
\
1\
0.1
1\
o
o
100
50
O(
150
-7(
Drain currentlo = f (Vo)
VG=OV
Drain current 10 = f (VG)
Vo=4.5 V
100
100
60
I
40
V
..--I---
1
-
20
o
~~~
~~~~
40
I
20
o
i~
60
2
4
6
V
o
-1.5
8
~~ ~~Y'
I~ ~~ ~1'
~§ ~~ ~~
~~ §~ ~;>:>
-1.0
-0.5
V
-VG
938
Siemens
0
CGY50
Noise figure F =f (f)
Vo = 4.5 V. VG = 0 V. Rs = RL = 50 n
Noise figure F=f(VG)1)
Vo = 4.5 V. Rs = RL = 50 n
f= 200 to 1800 MHz
-10
10
10
20
30
I
I
I
40 mA 60
I
I
I
10
F
dB
t
8
\
6
6
max
4
...
typo
-'
.........
,.
,;',;'
\
\
4
\
"', r--..
2
2
2
"
3 GHz 4
~1.0
-0.8
-
-0.6
-0.4
-0.2 V 0
-f
1) See next page.
Siemens
939
CGY50
G
Power gain G= f (f)
Power gain G=f(Poutl
Vo=4.5 V. VG = 0 V. Rs= RL = 50 n
Vo = 4.5 V. VG = 0
(=800 MHz
12
12
dB
dB
10
V. Rs = RL = 50 n
r-..... .........
t
min
8
'\
f'.
~
typo
.....
,
8
" t',
6
6
4
4
2
2
2
\
--Pout
=
Power gain G f (VG)')
Power gain G=f(VG)')
VO = 4.5 V. Rs = RL = 50 n
-10
o
1 3
20 mA60
Vo = 4.5 V, Rs = RL = 50 n
-10
10
20 30 40 mA 60
3
I
I
I I I I
I
15
dB
6
t
I
I
I
I I I
6
5
jf=0.26Hz
o
I
1
-5
-10
12
dB
10
/
1l
J~
r/.,;'
t
I Ij
I I
B6HZ I
1.66Hz
;4.0 6Hz
f =0.2 6Hz,,-
10 -
8
b
6
v
-4
"-
....... ......
J
-1.0
0
-'
,J
I
-1
./'
0/
-2
-2
./
-
-:: .....:
~r
II
o
-20
"'.
IX
!IJ
JlI ./
2
,
"-
A'/,
4
,,~
-3
0.8 6Hz~
1.8 6Hz.",,4.0 6Hz
_
I I I I
/~
-15
-25
dB 20
10
36Hz 4
-f
-0.8
-0.6
-0.4
-0.2 V 0
1) The gate voltage VG refers to a typical drain current loss of 60 rnA with the supplementaoy information of the 10 values.
940
Siemens
CGY50
Third order intercept point 1P3 = f (Vol
f= 800 MHz, VG = a V. Rs = RL = 50 n
34
r:
dB
V
V
26
I
26
24
22
-The intermodulation ratio d,M can easily be
determined.
d,M = 2 (IP3 - Po)
I
I
J
II
2
3
4
IP3
=
diM
= Intermodulation ratio
Po
= Power level of each carrier in dBm
Intercept point
5 V 6
Siemens
941
CGY50
S Parameters
Vo = 4.5 V, VG = 0 v,
Zo = 50 Q
f
8 11
GHz
MAG
ANG
5.!1
MAG
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.25
0.27
0.21
0.20
0.19
0.18
0.18
0.17
0.17
0.17
0.18
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.26
0.28
- 31
- 34
- 44
- 54
- 65
- 77
- 93
-103
-119
-130
-141
-152
-163
-172
179
172
162
153
148
142
3.30
3.20
3.17
3.09
3.00
2.90
2.81
2.70
2.60
2.50
2.42
2.33
2.24
2.16
2.07
2.01
1.94
1.87
1.81
1.75
942
~2
ANG
MAG
ANG
5.!2
MAG
ANG
164
158
150
142
134
126
118
111
103
96
94
83
0.14
0.14
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.12
0.12
0.12
0.12
0.13
0.13
0.13
0.13
0.14
0.14
0.15
5.0
0.0
-2.0
-3.0
-4.0
-5.0
-5.0
-6.0
-5.0
-5.0
'-4.0
-4.0
-3.0
-3.0
-2.0
-2.0
-2.0
-1.0
-1.0
-1.0
0.05
0.05
0.08
0.01
0.12
0.14
0.16
0.17
0.18
0.19
0.20
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.20
-144
-133
105
91
81
74
68
62
56
51
46
42
39
36
33
30
29
28
27
27
77
71
65
60
54
49
43
38
Siemens
CGY50
S Parameters
VD = 4.5 V, VG = 0 V, Zo
= 50 n
~,
~2
~.
~
8:.,
90·
180·
1---+--+----+-+--+-+----+-+----+---1 0
180· I---f--+----+-+----tl--+--+-+---l.----l 0
-90·
-90·
Siemens
943
Sensors
Siemens
945
Position Sensor
KSY13
GaAs Hall Sensor
•
•
•
•
For digital speed and position measurement
High sensitivity and operating temperature
Low offset voltage
Low TC of sensitivity and internal resistance
Type
o KSY 13
Marking
Ordering code
for versions in bulk
S13
Q62705-K 142
-CGNDi1j Hall
Voltage
Hall
Voltage
Ordering code for
versions on 8 mm-tape
+V
Package
SOT 143
Maximum ratings
Parameter
Symbol
Ratings
Unit
Control current
Operating temperature
range
Storage temperature range
11max
TA
7
-40···+150
mA
°C
Tstg
-50···+160
°C
Thermal resistance
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm
Rth
"" 375
K/W
o Preferred type
Siemens
947
KSY13
Electrical characteristics
at TA = 25°C, unless otherwise specified
Characteristics
Rated control current
Symbol
Open-circuit Hall voltage
hN=5mA,B=0,1T
Ohmic offset voltage ')
11N = 5 mA, B = 0
Internal resistance
at the control side
at the Hall side
V20
I1N
Ratings
5
Unit
mA
mV
95···145
VRO
:5 ±30
mV
Rl0
R20
n
O/o/K
Temperature coefficient of V20
hN = 5 mA, B = 0,2 T
TCV20
900 ···1200
900.··1200
~ -0,05
Temperature coefficient of Rl0, R20
11 = 1 mA, B = 0,2 T
TCR10fR20
~0,08
n
%/K
Open-circuit Hall voltage
V20(TA) = f(TA)
Max. control current 11 = f ( TA)
V20(25 'C)
mA
1.2 r-.,.-,--,-....-.--r--r---,,.-,--,
8
V20(TA)
V20(25 'C)
I--+-+--t---+-+-+--t---lf-t--f
I
1-1r-IIT'f::i:::~::j::j
1.0
\
0.8
I--+-+-+--+-+-+--t-f-t--f
4
0.6
f-f-t-t--t--+-++--+-+---1
2
0,4 1.--'---'----'-----'---'----'---'---'_'--'
-40
o 40 80 120 160
o
0(
-40
-JA
') Grouping upon request.
948
Siemens
o
40
80
120
160
0(
KTY13
Temperature Sensors
NPN silicon planar epitaxial sensors
•
•
•
Suitable for measuring, controlling and regulating air,
non-aggressive gases and liquids
To be used as element for temperature compensation
High reliability due to multilayer gold contacts
Type
[lKTY13A
KTY 13 B
KTY 13 C
KTY 13 D
Marking
TA
TB
TC
TD
Subst.
(J
Elec.
Contact
Elec.
Contact
Package
SOT 23
Q62705-K13
Q62705-K14
Q62705-K15
Q62705-K16
Maximum ratings
Parameter
Max. DC control current
Peak current
t= 10 ms
Ambient temperature range
Storage temperature range
Symbol
I
i
TA
Tstg
Ratings
3
7
Unit
-50 .. · + 150
-50 .. ·+160
°C
°C
rnA
mA
Electrical characteristics
at TA = 25°C, unless otherwise specified
Symbol
Basic resistance ')
IN = 1 mA
min
typ
max
Unit
1980
1960
1900
1800
2000
2000
2000
2000
2020
2040
2100
2200
0
0
0
0
-
-
-
a/a
-
± 1
± 2
± 5
±10
-
::; 0,3
::; 0,1
-
a/a
-
7
1
-
s
s
R25
KTY
KTY
KTY
KTY
Tolerance of basic resistance R25
KTY
R25 = 20000, IN = 1 mA
KTY
KTY
KTY
Resistance unbalance
at polarity change
IN = 3 mA
IN = 1 mA
Thermal time constant 630/0 value
in still medium
in air
in oil
13 A
13 B
13 C
13 D
R25·!ol
13 A
13 B
13 C
13 D
-
-
0/0
a/a
a/a
M
TAir
TOil
-
0/0
') An operating current of 0.1 mA is recommended for precision measurements, as the inherent temperature
rise is negligible and the unbalance decreases.
[I
Preferred type
Siemens
949
KTY13
Limited charging current
versus ambient temperature j = '( TA)
Parameter: air,
Temperature coefficient
versus ambient temperature a.
t s 10 ms
= '( TA)
mA
10
I
1
i
t
i\
6
Rr
1,0
"-['..
\.
'\
4
\
dR
dT
a=-x-
a
8
....... ~
-
r-.....
r-....
0,5
1\
2
o
o
-50
so
o
150 0 (
100
-50
o
50
dR
Sensor resistance RT
Sensor resistance
R25 = '(IN)
TA
n
= 25 ... 100°C, IN =
100
=,
150 ·C
(l N)
1 mA
%
20
2200
dR
RZ5
Rr
i
II
II
2100
v
10
/
l/
,,2000
1900
..... 1-'"
V
~
fo-'i"""
o
1-1-1-
o
3 rnA
-10
r-
o
-IN
950
3 rnA
-IN
Siemens
KTY13
Analytic expression of the regression parabola for the median temperature factor (l N = 1 mAl
kT
=
RRT
25
=
[1
+ a,(L'lT) + ~(L'lT)'l
Analytic expression for calculating the sensor temperature
T(OC) = 25
a,
=
~
=
R25 =
RT =
TA =
L'l T =
T =
+ fa,' - 4~ ~;~
. kT -a,
7,64 . 10- 3 (K-')
1,66 . 10- 5 (K-')
resistance value at TA = 25°C (e. g. 2000 0)
resistance value at temperature T (OC)
ambient temperature
temperature difference between T25 and T
temperature ~ sensor package temperature
~
ambient temperature
Tolerance of the temperature factor
Temperature T
Temperature factor kT
+150°C
+125°C
+100°C
+ 75°C
+ 50°C
+ 25°C
O°C
- 25°C
- 50°C
2,214
1,93
1,666
1,423
1,201
1,000
0,819
0,659
0,52
Siemens
951
KTY13
Sensor resistance
Temperature lactor
RT= ((TAl
IN = 1 rnA
kT
kQ
5
=.!!:!...
= ((TAl
R25
2,5
~
3
/
V
V
./
/
i
kT
I
-SO
/
1,5
/
1,0
0,5
o
I~
/
1/"
o
j
2,0
SO
100
150
V
o
0 (
-SO
-7;.
952
,/
,/
o
V
/
50
100
-7;.
Siemens
150
0 (
The information contained here has been carefully
reviewed and is believed to be accurate . However,
due to the possibility of unseen inaccuracies, no
responsibility is assumed .
This literature does not convey to the purchaser of
electronic devices any license under the patent
rights of the manufacturer.
Siemens Components , Inc .
Special Products Division
186 Wood Avenue South
Iselin , New Jersey 08830
Telephone (800) 888-7730
Fax (908) 632-2830
Telex 844891
Order Number B123-B6253-X-X-7600
•
CP4 20M 5/90 Printed in U.S A
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:12 17:48:40-08:00 Modify Date : 2017:07:12 18:16:05-07:00 Metadata Date : 2017:07:12 18:16:05-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:df344631-cb24-654f-a89c-6e95c067cb9f Instance ID : uuid:f0345cc3-f7e8-4749-861a-3647eadc1c19 Page Layout : SinglePage Page Mode : UseNone Page Count : 952EXIF Metadata provided by EXIF.tools