1990_Siemens_Discrete_Semiconductors_for_Surface_Mounting 1990 Siemens Discrete Semiconductors For Surface Mounting
User Manual: 1990_Siemens_Discrete_Semiconductors_for_Surface_Mounting
Open the PDF directly: View PDF .
Page Count: 952
Download | |
Open PDF In Browser | View PDF |
'"-m s:m SIEMENS Z '" aD .., 05 " (f)0 C CD &-$ o(f) (1) (1) g~3o· ::J 0 ...... ::J - ::J 0.. C COo oen Discrete Semiconductors for Surface Mounting • Data Book Discrete Semiconductors for Surface Mounting Data Book Preface At present the conventional through-hole mounting technology used for printed circuit assemblies is increasingly superseded by surface mounting. Instead of inserting leaded components, special miniaturized components are directly attached and soldered to the PC board. These new surface mounted devices (SMDs) and their packing are particularly suitable for automatic assembly. The major advantages of surface mounting are rationalized production, reduced board size and increased reliability. Compared to the through-hole mounting technology, surface mounting requires more careful planning of the overall design and production process. The better the components, PC board layout, automatic placement, soldering method, testing and repair are attuned to each other, the more efficiently surface mounting can be applied. For many years diodes and transistors have been offered as part of the family of "miniature semiconductors" or "semiconductors for film circuits". The SOT 23, which was introduced to the market in the early sixties, is the most common package type. During the mid seventies, the SOT 89 was added. Additional package types are the SOT 143, SOT 223 and SOD 123. An outstanding design feature of these Siemens package versions is the closely tolerated clearance between device and PC board (0.1 mm), which is essential for good glueing conditions. The available range of products is considerable. Practically all standard devices provided with leads are now available in miniature package as well. Owing to the allround experience Siemens has gained in this field, components in conventional package types can be easily converted into components in miniature package. Thus, a quick adaption to market demands is possible. It should be especially mentioned here that LEDs are available in SOT 23 package as well. SMD - Surface Mounted Device Literature Selector Further literature concerning e. g. SMD technology is listed in the following survey and can be obtained from: Siemens Components, Inc., 186 Wood Avenue South, Iselin, NJ 08830, 1-800-888-7730, Fax (908) 632-2830 Title Ordering code Tuner Semiconductor Devices, Data 800k Transistors for Amplifier and Switching Applications, Data 800k Discrete Semiconductors for Surface Mounting SMD, Data 800k An Introduction to Surface Mounting, Product Information SOT-23 Semiconductors, Off-Print . SMD Components, Short Form Catalog Recommendation for PC8 Layouts, Product Information Components Library, Product Information Soldering in SMD Technology, Product Information SIPMOS Small-Signal Transistors 83-83587 -X-X-7600 83-83789-X-X-7600 83-83497 -X-X-7600 83-83289-X-X-7600 83-83342-X-X-7600 83-83907 -X-X-7400 83-83580-X-X-7600 89-83695-X-X-7600 89-83741-X-X- 7600 8352-86155-XX-7400 4 Siemens Table of Contents Page Summary of types ......................................................................7 Technical information ................................................................ .19 Type designation in accordance with Pro Electron ..............................................19 Terms and symbols (DIN 41785) .............................................................20 Standards .................................................................................21 Maximum ratings ...........................................................................22 Characteristics ............................................................................22 Thermal resistances ........................................................................22 Quality specifications ................................................................25 Definition of defects ........................................................................25 AQL values ................................................................................25 Sampling plan for normal inspection ..........................................................26 Package outlines ......................................................................28 Mounting instructions ................................................................29 Mode of delivery (packing) ..................................................................29 Blister tape ............................. '...................................................30 PCB layout ................................................................................35 Glueing ...................................................................................36 Connecting methods .......................................................................36 Evaluation of solder joints ...................................................................38 Diodes ..................................................................................39 Transistors .. ..........................................................................189 GaAsFETS ............................................................................916 GaASMMICS ..........................................................................934 Sensors ........................................... , .................................. .946 Siemens 5 Summary of Types Switching diodes lYpe BAL 74 BAL99 BAR 74 BAR 99 BAS 16 BAS 19 BAS 20 BAS 21 BAS 28 (Dual) BAS78A BAS78B BAS78C BAS 78 D BAS 79 A (Dual) BAS 79 B (Dual) BAS 79 C (Dual) BAS 79 D (Dual) BAS 116 BAV 70 (Dual) BAV 74 (Dual) BAV 99 (Dual) BAV 170 (Dual) BAV 199 (Dual) BAW 56 (Dual) BAW78 A BAW78B BAW78C BAW78D BAW 79 A (Dual) BAW 79 B (Dual) BAW 79 C (Dual) BAW 79 D (Dual) BAW 100 (Dual) BAW 101 (Dual) BAW 156 (Dual) BGX50A (Bridge) 5MBD 914 Maximum Ratings Characteristics (Tamb=2S0C) V,atl, VRII IF trr (V) (mA) (V) (mA) (ns) s4 s1.0 50 250 100 s1.0 s6 70 50 250 s4 s1.0 50 250 100 s1.0 s6 70 250 50 s1.0 s6 250 50 85 120 s1.0 100 s50 200 s1.0 s50 200 200 100 s1.0 s50 250 200 100 s1.0 s6 85 .250 50 s1.6 1000 1000 50 1fJ.S 100 1000 1000 ,s,.6 1fJ.S s1.6 200 1000 1000 1fJ.S s1.p 1000 400 1000 1fJ.S s1.6 1000 50 1000 1fJ.S s1.6 100 1000 1000 1fJ.s s1.6 1000 200 1000 1fJ.s s1.6 400 1000 1000 1fJ.s s1.0 10 85 s3fJ.s 250 s6 s1.0 70 250 50 s1.0 s4 100 50 250 s1.0 s6 70 250 50 s1.0 70 250 10 s3fJ.s s1.0 70 250 10 s3fJ.s s6 s1.0 70 250 50 s1.6 50 1000 1000 1fJ.s s1.6 100 1000 1000 1fJ.s s1.6 200 1000 1000 1fJ.s 400 s1.6 1000 1000 1fJ.s . 1000 s1.6 1000 50 1fJ.s s1.6 1000 100 1000 1fJ.s s1.6 200 1000 1000 1fJ.s s1.6 400 1000 1000 1fJ.s s6 s1.0 70 250 50 s1.3 300 200 100 1fJ.s s1.0 70 250 10 s3fJ.s s2.6 s6 70 140 100 s1.0 s4 100 250 10 Siemens Package Page SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-143 SOT 223 SOT 223 SOT 223 SOT 223 SOT 223 SOT 223 SOT 223 SOT 223 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-89 SOT-89 SOT-89 SOT-89 SOT-89 SOT-89 SOT-89 SOT-89 SOT-143 SOT-143 SOT-23 SOT-143 SOT-23 47 51 65 69 73 77 77 77 81 91 91 91 91 94 94 94 94 97 106 110 114 118 122 126 130 130 130 130 133 133 133 133 136 139 160 164 7 Summary of Types Switching diodes Maximum Ratings Characteristics (Tamb=25°C) V,atl, VRM IF trr (mA) (ns) (V) (mA) (V) ::;6 ::;1.0 75 250 50 ::;6 ::;1.0 75 250 50 ::;6 ::;1.0 75 250 50 ::;6 ;;;1.0 50 75 250 ::;10 ::;1.1 70 250 100 ::;15 ::;1.1 100 70 250 ::;15 ::;1.1 100 100 250 Type 5MBD 5MBD 5MBD 5MBD 5MBD 5MBD 5MBD 2835 2836 2837 2838 6050 6100 7000 (Dual) (Dual) (Dual) (Dual) (Dual) (Dual) Package SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 Page 168 168 172 172 176 180 184 MOSFET tetrodes Type Vos V BF989 20 BF993 20 BF994 S 20 BF995 20 BF996 S 20 BF997 20 BF 998 12 10 Tch rnA 30 50 30 30 30 30 30 °C 150 150 150 150 150 150 150 g.. PIo' rnW 200 200 200 200 200 200 200 Gpo rnS dB 12 16,5 25 25 18 25 17 23 18 18 18 25 24 20 F dB 2,8 1,5 1 1,8 1,8 1 1 Vos 10 f Package Page V 15 15 15 15 15 15 8 rnA 7 10 10 10 10 10 10 MHz 800 200 200 200 800 200 800 SOT-143 SOT-143 SOT-143 SOT-143 SOT-143 SOT-143 SOT-143 362 370 376 382 392 399 405 Schottky Diodes for General Purposes Type BAS 40 BAS 40-04 BAS 40-05 BAS 40-06 BAS 40-07 BAS 70 BAS 70-04 BAS 70-05 BAS 70-06 BAS 70-07 BAT 17 BAT 17-04 BAT 17-05 BAT 17-06 BAT 64 8 Max. ratings Characteristics at TA = 25°C VR IF VBR VF V 40 rnA 80 V 40 rnV 380 70 4 30 40 30 200 70 4 - 410 350 1000 CT pF 5 2 1 6 IR ILA 1.0 0.1 0.25 200 Siemens I. ps 100 100 - - Package SOT-23 SOT-23 SOT-23 SOT-23 SOT-143 SOT-23 SOT-23 SOT-23 SOT-23 SOT-143 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 Page 85 88 101 104 Summary of Types Switching transistors Maximum Ratings TYpe CPN=:) PNP=P VCEO BSS63 P BSS64 N BSS79 N BSS80 P BSS81 N BSS82 P PZT2222 N PZT2222A N PZT2907 P PZT2907A P PZT3904 N PZT3906 P 5MBT2222 N SBMT2222A N 5MBT2907 P 5MBT2907A P 5MBT3904 N 5MBT3906 P 5MBTA70 P SXT2222A N SXT2907A P SXT3904 N SXT3906 P 100 80 40 40 35 60 30 40 40 60 40 40 30 40 40 60 40 40 40 40 60 40 40 (V) Ic (rnA) 800 800 800 800 800 800 600 600 600 600 200 200 600 600 600 600 200 200 200 600 600 200 200 P. (mW) 330 330 330 330 330 330 1500 1500 1500 1500 1500 1500 330 330 330 330 330 330 330 1000 1000 1000 1000 IT (MHz) 150 100 250 250 250 250 200 200 200 200 300 250 250 300 200 200 300 250 125 300 200 300 250 Characteristics (Tamb = 25°C) Ic at VCE VCE("') (rnA) (V) (V) ;::,30 10 5 ",;0.25 80 10 1 ",;0.7 40 - 300' 150 10 "';1.3 40 - 300' 150 10 ",;1.6 40 - 300' 150 10 ",;1.3 40 - 300' 150 10 "';1.6 100 - 300 150 10 ",;0.4 100 - 300 150 10 ",;0.3 100 - 300 150 10 ",;0.4 100 - 300 150 10 ",;0.4 100 - 300 10 1 ",;0.3 100 - 300 10 1 ",;0.4 100 - 300 150 10 ",;0.4 100 - 300 150 10 "';0.3 100 - 300 150 10 ",;0.4 100 - 300 150 10 ",;0.4 100 - 300 10 1 "';0.3 10 1 ",;0.4 100 - 300 40 - 400 5 10 ",;0.25 100- 300 150 10 "';0.3 100 - 300 150 10 "';0.4 10 1 "';0.3 100 - 300 100 - 300 10 1 ",;0.4 Package Page hFE SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-89 SOT-89 SOT-89 SOT-89 279 275 701 706 701 706 758 758 763 763 768 773 794 794 800 800 806 812 863 883 888 894 900 MOSFET triodes TYpe BF543 BF999 Vos V 20 20 10 rnA 30 30 Tch Ptot 9" rnW rnS 150 200 12 150 200 16 °C Gpo dB 22 25 F dB 1 1 Siemens Vos V 10 10 f Package Page rnA MHz 4 200 SOT-23 302 10 200 SOT-23 413 10 9 Summary of Types High voltage transistors Maximum Ratings Type rpN=~ PNP=P BF622 BF623 BF720 BF721 BF722 BF723 BFN16 BFN17 BFN18 BFN19 BFN20 BFN21 BFN22 BFN23 BFN24 BFN25 BFN26 BFN27 BFN36 BFN37 BFN38 BFN39 PZTA42 PZTA43 PZTA92 PZTA93 5MBTA42 5MBTA43 5MBTA92 5MBTA93 SXTA42 SXTA43 SXTA92 SXTA93 10 VCEO Ic p, (V) (mA) 100 100 100 100 100 100 500 500 500 500 100 100 100 100 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 (mW) 1000 1000 1500 1500 1500 1500 1000 1000 1000 1000 1000 1000 360 360 360 360 360 360 1500 1500 1500 1500 1500 1500 1500 1500 360 360 360 360 1000 1000 1000 1000 N 250 p 250 N 300 P 300 N 250 P 250 N 250 P 250 N 300 p 300 N 300 p 300 N 250 P 250 N 250 p 250 N 300 P 300 N 250 P 250 N 300 P 300 N 300 N 200 P 300 P 200 N 300 N 200 P 300 P 200 N 300 N 200 P 300 P 200 fT (MHz) 100 100 100 100 100 100 70 100 70 100 100 100 100 100 70 100 70 100 70 100 70 100 50 50 50 50 50 50 50 50 50 50 50 50 Characteristics (Tamb = 25°C) Package Page Ie at VCE VCE("') (mA) (V) (V) hFE ;0:50 ;0:50 ;0:40 ;0:40 ;0:50 ;0:50 ;0:40 ;0:40 ;0:30 2:30 ;0:40 ;0:40 ;0:50 ;0:50 ;0:40 ;0:40 ;0:30 ;0:30 ;0:40 ;0:40 ;0:30 ;0:30 ;0:40 ;0:40 ;0:25 ;0:25 ;0:40 ;0:40 ;0:25 ;0:25 ;0:40 ;0:40 ;0:25 ;0:25 Siemens 25 25 25 25 25 25 30 30 30 30 25 25 25 25 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 20 20 20 20 20 20 10 10 10 10 20 20 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 :50.5 SOT-89 :50.5 SOT-89 :50.5 SOT-223 :50.5 SOT-223 :50.5 SOT-223 :50.5 SOT-223 :50.4 SOT-89 :50.4 SOT-89 :50.5 SOT-89 :50.5 SOT-89 :50.5 SOT-89 :50.5 SOT-89 :50.5 SOT-23 :50.5 SOT-23 :50.4 SOT-23 :50.4 SOT-23 :50.5 SOT-23 :50.5 SOT-23 :50.4 SOT-223 :50.4 SOT-223 :50.5 SOT-223 :50.5 SOT-223 :50.5 SOT-223 :50.4 SOT-223 :50.5 SOT-223 :50.4 SOT-223 :50.5 SOT-23 :50.4 SOT-23 :50.5 SOT-23 :50.4 SOT-23 :50.5 SOT-89 :50.4 SOT-89 :50.5 SOT-89 :50.4 SOT-89 326 330 337 341 337 341 418 422 418 422 426 430 434 438 442 446 442 446 450 454 450 454 782 782 790 790 851 851 867 867 906 906 910 910 Summary of Types AF transistors Maximum Ratings p, fT (NPN=N) VCEO Ic PNP=P (V) (rnA) (mW) (MHz) BC807 P 45 1000 330 220 BC808 P 25 1000 330 200 BC817 N 45 1000 330 170 BC818 N 25 1000 330 170 N 65 200 330 200 BC846 BC847 N 45 200 330 200 BC848 N 30 200 330 200 BC849 N 30 200 330 200 BC850 N 45 200 330 200 P 65 200 330 250 BC856 P 45 200 330 250 BC857 BC858 P 30 200 330 250 BC859 P 30 200 330 250 P 45 200 330 250 BC860 BCW60 N 32 200 330 200 BCW61 P 32 200 330 250 BCW65 N 32 1000 330 170 N 45 1000 330 170 BCW66 BCW67 P 32 1000 330 200 BCW68 P 45 1000 330 200 P 45 1500 1500 125 BCP51 BCP52 P 60 1500 1500 125 BCP53 P 80 1500 1500 125 BCP54 N 45 1500 1500 100 N 60 1500 1500 100 BCP55 BCP56 N 80 1500 1500 100 BCP68 N 20 2000 1500 100 BCP69 P 20 2000 1500 100 'TYpe -Available in hFE sub groups. Characteristics (T.mb = 25°C) at Ic VCE VCEI ••') (rnA) (V) (V) 100 - 630' 100 1 :s0.7 100 - 630' 100 1 :s0.7 100 - 630' 100 1 :s0.7 100 - 630' 100 1 :s0.7 100 - 450' 2 5 :s0.6 110 - 800' 2 5 :s0.6 2 110 - 800' 5 :s0.6 200 - 800' 2 5 :s0.6 200 - 800' 2 5 :s0.6 125 - 475' 2 5 :s0.6 125 - 800' 2 5 :s0.6 125 - 800' 2 5 :s0.6 220 - 900' 2 5 :s0.6 2 220 - 800' 5 :s0.6 120 - 630' 2 5 :s0.25 120 - 630' 2 5 :s0.25 100 - 630' 100 5 :s0.7 100 - 630' 100 5 :s0.7 100 - 630' 100 5 :s0.7 100 - 630~ 100 5 :s0.7 40 - 250' 150 2 :s0.5 40 - 250' 150 2 :s0.5 40 - 250' 150 2 :s0.5 40 - 250' 150 2 :s0.5 40 - 250' 150 2 :s0.5 40 - 250' 150 2 :s0.5 63 - 400 500 1 :s0.5 63 - 400 500 1 :s0.5 Package Page hFE Siemens SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 191 191 195 195 199 199 199 199 199 206 206 206 206 206 253 260 267 267 271 271 221 221 221 225 225 225 229 233 11 Summary of Types AF transistors Type =25°C) Maximum Ratings CPN=:) PNP=P BCX41 BCX42 BCX51 BCX52 BCX53 BCX54 BCX55 BCX56 BCX68 BCX69 BCX70 BCX71 5MBT4124 5MBT4126 5MBT5086 5MBT5087 5MBT6428 5MBT6429 5MBTA05 5MBTA06 5MBTA20 5MBTA55 5MBTA56 12 *Available in hFE sub groups. VCEO (V) N 125 P 125 p 45 P 60 P 80 N 45 N 60 N 80 N 20 P 20 N 45 P 45 N 25 p 25 P 50 p 50 N 50 N 45 N 60 N 80 N 40 P 60 P 80 Ic (mA) 1000 1000 1500 1500 1500 1500 1500 1500 2000 2000 200 200 200 200 50 50 200 200 500 500 200 500 500 Characteristics (Tamb at Ic VCE (mW) (MHz) (mA) (V) 100 1 330 100 ~63 100 1 330 150 ~63 1000 125 40 - 250' 150 2 150 2 1000 125 40 - 250' 150 2 1000 125 40 - 250' 1000 100 40 - 250' 150 2 150 1000 100 40 - 250' 2 1000 100 40 - 250' 150 2 1000 100 63 - 400' 500 1 1000 100 63 - 400' 500 1 330 200 120 - 630' 2 5 330 250 120 - 630' 2 5 2 1 330 300 120 - 360 2 1 330 250 120-360 40 ~150 330 10 5 40 ~250 10 330 5 10 330 100 ~250 5 10 5 330 100 ~500 330 100 ~50 10 1.0 10 1.0 330 100 ~50 5 10 330 125 40 - 400 330 50 ~50 10 1.0 330 50 ~50 10 1.0 P. fT hFE Siemens Package Page VCE("') (V) ::;;0.9 ::;;0.9 ::;;0.5 ::;;0.5 ::;;0.5 ::;;0.5 ::;;0.5 ::;;0.5 ::;;0.5 ::;;0.5 ::;;0.25 ::;;0.25 ::;;0.3 ::;;0.4 ::;;0.3 ::;;0.3 ::;;0.6 ::;;0.6 ::;;0.25 ::;;0.25 ::;;0.25 SOT-23 SOT-23 SOT-89 SOT-89 SOT-89 SOT-89 SOT-89 SOT-89 SOT-89 SOT-89 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 ~0.25 SOT-23 ::;;0.25 SOT-23 275 279 283 283 283 287 287 287 291 295 253 260 818 821 824 824 834 834 839 839 847 855 855 Summary of Types Darlington Transistors Maximum Ratings Type (NPN=N) VCEO Ic P. fr PNP=P (V) (mA) (mW) (MHz) BCP28 BCP29 BCP48 BCP49 BCV26 BCV27 BCV28 BCV29 BCV46 BCV47 BCV48 BCV49 BSP50 BSP51 BSP52 BSP60 BSP61 BSP62 PZTA13 PZTA14 PZTA63 PZTA64 5MBT6427 5MBTA13 5MBTA14 5MBTA63 5MBTA64 P 30 N 30 P N P N P N P N P N N N N P P P N N P P N N N P P 60 60 30 30 30 30 60 60 60 60 45 60 80 45 60 80 30 30 30 30 40 30 30 30 30 800 800 800 800 800 800 800 800 800 800 800 800 2000 2000 2000 2000 2000 2000 500 500 500 500 500 500 500 500 500 1500 1500 1500 1500 360 360 1000 1000 360 360 1000 1000 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 360 330 330 330 330 200 150 200 150 200 170 200 150 200 170 200 150 200 200 200 200 200 200 125 125 125 125 130 125 125 125 125 Characteristics (Tamb = 25°C) at Ic VCE VCE(Sa') (mA) (V) (V) :s1.0 ?:20,OOO 100 5 :s1.0 ?:20,OOO 100 5 ?:10,OOO :s1.0 100 5 :s1.0 ?:10,OOO 100 5 ?:20,OOO :s1.0 100 5 2:20,000 :s1.0 100 5 2:20,000 :s1.0 100 5 :s1.0 2:20,000 100 5 :s1.0 2:10,000 100 5 2:10,000 :s1.0 100 5 2:10,000 100 :s1.0 5 :s1.0 ?:10,OOO 100 5 2:2,000 500 10 :s1.8 2:2,000 500 10 :s1.8 ?:2,OOO 500 10 :s1.8 2:2,000 500 10 :s1.8 2:2,000 500 10 :s1.8 2:2,000 500 10 :s1.8 :s1.5 2:10,000 100 5 :s1.5 2:20,000 100 5 :s1.5 2:10,000 100 5 :s1.5 2:20,000 100 5 :s1.5 ?:20,OOO 100 5 2:10,000 :s1.5 100 5 :s1.5 2:20,000 100 5 :s1.5 ?:10,OOO 100 5 2:20,000 :s1.5 5 100 Package Page hFE Siemens SOT-223 SOT-223 SOT-223 SOT-223 SOT-23 SOT-23 SOT-89 SOT-89 SOT-23 SOT-23 SOT-89 SOT-89 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-223 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 213 217 213 217 237 241 245 249 237 241 245 249 648 648 648 653 653 653 778 778 786 786 830 843 843 859 859 13 Summary of Types SIPMOS'" small-signal transistors Type (" channel =N) pchannel=P BSP88 N BSP89 N BSP92 P BSP125 N B8P129* N BSP135* N BSP149* N B8P295 N B8P296 N BSP297 N B8P315 P B8S84 P B8887 N BSS119 N B8S123 N BSS131 N BSS138 N B8S139* N B88192 P SN7002 N SP0610T P Maximum Ratings P, VOS 10 Page (V) 240 240 240 600 240 600 200 50 100 200 50 50 240 100 100 240 50 250 240 60 60 Characteristics (T8mb = 25'C) at Vos RoS{on) VGS{Ih) (V) (il) (V) (""A) Package loss $20.0 $60 $60 $0.1 $0.1 $0.1 $0.2 $1.0 $1.0 $1.0 $1.0 $15 $60 $0.5 $1.0 $15 0.5 $0.1 $60 $1.0 $1.0 80T-223 80T-223 SOT-223 80T-223 80T-223 80T-223 80T-223 80T-223 80T-223 SOT-223 80T-223 80T-23 80T-89 SOT-23 SOT-23 80T-23 SOT-23 SOT-23 80T-89 80T-23 SOT-23 658 663 668 673 678 680 682 684 689 694 699 712 716 724 730 736 742 748 752 871 877 (rnA) 260 340 180 110 190 100 440 1700 1000 600 1000 130 290 170 170 100 200 40 150 190 130 (mW) 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 360 1000 360 360 360 360 360 1000 360 360 240 240 240 600 240 600 240 50 100 200 50 50 240 100 100 240 50 250 240 60 60 *Depletlon mode 14 Siemens $6.0 $6.0 $20.0 $45.0 $20.0 $60.0 $3.5 sO.3 $0.8 $2.0 sO.95 $10.0 $6.0 $6.0 $6.0 $16 $3.5 $100 $20 $5.0 $10 s 1.2 $ 2.0 $ 2.0 $ 2.5 $-0.7 $-0.7 $-0:7 $ 2.0 $ 2.0 $ 2.0 s 2.0 $ 2.0 $ 2.0 $ 2.6 $ 2.0 $ 2.0 $ 1.6 $-0.7 $ 2.0 $ 2.0 $ 2.0 Summary of Types RF transistors Type Characteristics (Tamb = 25°C) leBo hFE at Ie VeE (mW) (MHz) (nA) (rnA) (V) Maximum Ratings (NPN=N) VeEo Ie PNP=P (V) (rnA) BF517 N 15 25 BF550 P 40 150 BF554 N 20 30 BF569 P 35 30 BF579 P 20 30 BF599 N 25 25 BF660 P 30 25 BF770A N 15 50 BF771 N 12 80 BF772 N 12 80 BF775 N 12 30 BF799 N 20 50 BFP81 N 16 30 BFP93A N 12 50 BFP193 N 12 80 BFQ17P N 25 300 BFQ19P N 15 150 BFQ19S N 15 150 BF029P N 15 30 BFQ64 N 20 250 BFQ81 N 16 30 BFR35AP P 12 30 BFR92P N 15 30 BFR93A N 12 50 BFR93P N 15 50 BFR106 N 15 100 BFR193 N 12 80 BFS17P N 15 50 BFT92 P 15 35 BFT93 P 12 50 P. fr 280 330 280 280 280 280 280 280 300 300 280 280 300 250 300 1000 1000 1000 280 1000 280 280 280 250 280 350 300 280 200 200 2000 350 250 925 1600 550 700 4500 7000 7000 3500 1100 5800 5500 7000 1200 5100 5100 5000 3000 5800 4900 5000 5500 5000 3700 7000 2500 5000 5000 :s50 :s50 :s100 :s100 :s100 :s100 :s50 :s50 :s50 :s50 :s50 :s100 :s100 :s50 :s50 :s100 :s100 :s100 :s50 :s200 :s100 :s50 :s50 :s50 :s50 :s100 :s50 :s50 :s50 :s50 2:25 2:50 2:60 2:20 2:20 2:38 2:30 2:30 100 100 2:25 2:40 2:50 2:40 100 2:25 2:25 2:25 2:50 2:25 2:50 2:40 2:40 2:40 2:30 2:25 100 2:20 2:20 2:20 Siemens 5 1 1 3 10 7 3 25 30 30 5 20 15 30 30 150 50 50 10 120 15 5-20 14 30 25 30 30 25 14 30 10 10 10 10 10 10 10 8 8 8 6 10 10 5 8 5 10 10 6 5 10 6 10 5 5 6 8 1 10 5 Package Page SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-143 SOT-23 SOT-23 SOT-143 SOT-143 SOT-89 SOT-89 SOT-89 SOT-89 SOT-23 SOT-80 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 299 307 312 316 319 322 334 345 348 352 356 359 458 479 495 512 516 520 526 536 540 560 577 594 602 611 614 631 640 644 15 Summary of Types PIN diodes 'tYpe BA582 BA585 BA885 BAR 14-1 BAR 15-1 BAR 16-1 BAR 17 BAR 60 BAR 61 Maximum Ratings VR IF (V) (rnA) 100 35 50 50 50 50 100 100 100 100 100 100 100 100 100 100 100 100 Characteristics (T.."b = 25°C) VF R, IR at Co (pF) (V) (n) (nA) :s1.1 :51.0 :50.5 20 :s0.6 :s1.1 :57.0 50 :s0.6 :s1.1 :57.0 50 :51.0 :50.5 100 9 :s1.0 :s0.5 100 9 :s0.5 :51.0 100 9 :51.0 :s0.55 100 9 0.2-0.3 :51.1 100 9 0.2-0.3 :s1.1 100 9 Package Page VR (V) 20 30 30 50 50 50 50 50 50 SOO-123 SOO-123 SOT-23 SOT-23 SOT-23 SOT-23 SOT-23 SOT-143 SOT-143 41 43 45 55 55 55 58 61 61 Tuning diodes Type Maximum Ratings VRM (V) BB419 BB512 BB515 BB619 BB620 BB804 BB811 BB814 16 30 12 30 30 30 20 30 20 IF (rnA) 20 50 20 20 20 50 20 50 = Characteristics (Tomb 25°C) CD at VR CD at VR (pF) (V) (pF) (V) 26-32 4.3-6 25 3 440-520 1 16.5-29 8.5 17.7 1.8-2.4 28 1 37.5-39 2.5-3.2 28 1 1 3.15 28 69 42-47.5 2 25 8 9.8 1 28 1 45 2 20 8 Siemens Package Page SOO-123 SOO-123 SOO-123 SOO-123 SOO-123 SOT-23 SOO-123 SOT-23 143 145 147 149 151 153 156 158 Summary of Types GaAs FETs Type Characteristics at TA 25°C -VG,s -VG2S ID VOS CF739 = Max. ratings V 10 V 6 rnA 80 V 6 loss F rnA 10 dB 1.8 1~8 IGHz atf 117 11.75 Package Page SOT-143 917 GaAs FETs Type Max. ratings CFY30 V 5 = Package Page dB IGo IGHz at f 111.5 14 SOT-143 Characteristics at T A 25°C ID rnA 80 -VGS Vos V -4 ... +0.5 gm F dB 1.4 rnS 30 923 GaAs MMICs Type Characteristics at TA CGY50 =25°C VOS 10 f V 5.5 ... 7.5 rnA 60 MHz 200 ... 1800 G dB 8.5 F IP3 dBrn 31 dB 3.0 Package Page SOT-143 935 Temperature sensors R25 Type R25-Tol. (typ) 'N= 1 rnA n KTY KTY KTY KTY 13 A 13 B 13 C 13 D % ±1 ±2 ±5 ±10 2000 2000 2000 2000 I t=10 rns rnA 7 7 7 7 1: Air s 7 7 7 7 Oil s 1 1 1 1 TA Package Page °C -50 ... +150 -50 ... +150 -50 ... +150 -50 ... +150 SOT-23 SOT-23 SOT-23 SOT-23 949 949 949 949 R,o Package Page 900 ... 1200 SOT-143 947 Position sensor Type KSY 13 V20 VR. rnV 95 ... 145 rnV :s±30 "N rnA 5 Siemens n 17 Technical Information Type designation in accordance with Pro Electron This type designation applies to small-signal semiconductor components - in contrast to integrated circuits - multiples of these components and semiconductor chips. The number of the basic type consists of: Two letters and a three-digit code First letter gives information about the material. A. B. C. R. Germanium or other material with a band gap of 0.6 .. ·1.0 eV Silicon or other material with a band gap of 1.0·· ·1.3 eV Gallium-arsenide or other material with a band gap of 1.3 eV Compound material (e.g. cadmium-sulfide) Second letter indicates the function for which the device is primarily designed. A. B. C. D. E. F. G. H. L. N. P. a. R. S. T. U. X. Y. Z. Diode: signal, low power Diode: variable capacitance Transistor: low power, audio frequency Transistor: power, audio frequency Diode: tunnel Transistor: low power, high frequency Multiple of dissimilar devices; miscellaneous devices (e.g. oscillator) Diode: magnetic sensitive Transistor: power, high frequency Optocoupler Radiation-sensitive semiconductor component Radiation-emitting semiconductor component Control or switching device: low power (e.g. thyristor) Transistor: low power, switching Control or switching device: power (e.g. thyristor) Transistor: power switching Diode: multiplier, e.g. varactor, step recovery Diode: rectifier, booster Diode: voltage reference or regulator; transient voltage suppressor diode The three-digit code of the type designation consists of: - a three-digit number, running from 100 to 999, for devices primarily intended for consumer equipment etc. - one letter and a two-digit number for devices primarily intended for industrial/professional equipment. This letter has no fixed meaning. . Siemens 19 Technical Information Terms and symbols (DIN 41785) The notation of currents, voltages, powers (alternate, continuous and mean values) and types of resistance (alternate or continuous) is represented by small or capital lettering of the symbols. Symbols Letter symbols for currents, voltages and powers Small letters are used for the representation of instantaneous values which vary with time. Examples: i, v, P Capital letters are used for the representation of continuous (dc), average (mean), root-me ansquare and periodic peak (maximum) values, i.e. time-constant values of current, voltage and power. Examples: [, V; P Subscripts The following subscripts are used: E, e B, b C, c F, f R, r M, m av emitter base collector forward direction (diode in forward direction) reverse direction (diode in reverse direction) peak (maximum) value average (mean) value Subscripts representing peak or mean values can be omitted if there is no possibility of confusion. Subscripts with capital letters are used for total values counted from zero, e.g. for instantaneous, continuous (dc), mean (average), root-me an-square and peak (maximum) values. Examples: ic, Ic, VSE, VSE, Pc, Pc Subscripts with small letters are used for values of varying components, e.g. instantaneous values, peak (maximum) and root-mean-square values counted from the mean value. Examples: ie, Ie, Vbe, Vbe, Pc, Pc In order to distinguish peak, mean and root-mean-square values, further subscripts can be added. The recommended abbreviations are: Peak values Mean values (average values) M,m Av, av Examples: [CM, [CAV, [em, [cav Sign" - " can also be used over the symbol for peak values: Examples: 20 i c, ie Siemens Technical Information I: --I Ic --Time No Signal 1--- - -- ---- With Signal-------------- ICAV DC value, no signal (Arithmetic) mean value of total current (referred to zero) I CM, i c Peak value of total current (referred to zero) IcRMS Root-mean-square value of total current (referred to zero) (Arithmetic) mean of the varying component which is superimposed on the closedcircuit direct current I c (referred to the DC no-signal value I c) Ieav I c, I ems I em, i c ic ie Root-mean-square value of the varying component (referred to the mean value I CAV) Peak value of the varying component (referred to the arithmetic mean I CAV) Instantaneous total value (referred to zero) Instantaneous value of the varying component (referred to the arithmetic mean ICAV) The following equations correspond to the given values in the above diagram: Ic + Ieav Ic = ICAV + Iem IcRMS = vi 12 cAV + [2erms Ic ~ICAV+ic ICAV = iCM = Standards For detailed information please refer to the following DIN literature: DIN DIN DIN DIN DIN DIN 41782: 41785: 41791: 41852: 41853: 41854: Diodes Maximum Ratings General Instructions Semiconductor Technology Terms Relating to Diodes Terms Relating to Bipolar Transistors Siemens 21 Technical Information Maximum ratings The maximum ratings specified are absolute ratings which, if exceeded, may result in the destruction or permanent functional impairment of the component. When testing the component, as for example in respect to breakdown voltages, or during application, protection is to be provided in order to reliably ensure that maximum ratings are not exceeded. Characteristics Typical characteristics describe the component behavior at defined operating conditions. The numerical values and diagrams pertain to the component type and shall not be considered as characteristics of an individual component. The minimum and maximum ratings stated for reasons of essential quality and application requirements describe the actual spread of the characteristics, whereas spread curves in diagrams usually specify the spread range which is to be expected. Electrical values are grouped into "static" DC values and "dynamic" AC values. The thermal resistance is closely related to the maximum ratings and, constituting the upper spread value, comes immediately after the maximum ratings. The component's case data is defined by reference to standard sheets and dimensional drawings. Thermal resistance The heat dissipation of SMOs depends on material and thickness of the PC board and of the conductor paths (inherent heating). as well as on the packing density (external heating). Hence, inherent and external heating determine the junction temperature, and thus the permissible thermal stress of SMOs. The values for thermal resistance given in the data sheets should only be used for rough estimations of the junction temperature 1i, since they were measured under certain laboratory conditions, where no regard was paid to specific applications. The thermal resistance can be calculated by: R thJL = Thermal resistance between junction RthJA = RthJL + RthLS + RthSA and terminals of the component Environment 22 RthLS = Thermal resistance between terminals and solder pads of the substrate RthSA = Thermal resistance between substrate and enVironment, e.g. air or cooling area The Internal thermal resistance RthJL is determined by the design of the component and can therefore be exactly specified, whereas the external thermal resistance, being the sum of RthLS + RthSA, depends on the individual application. Siemens Technical Information Groups according to total power dissipation SMDs are grouped according to their max. permissible power dissipation Ptot : Group Package: SOT 23, SOT 143 II III Diodes, RF transistors, MOSFET tetrodes, sensors AF and switching transistors Darlington and high-voltage transistors, SIPMOS small-signal transistors Group Package: SOT 89 RF and AF transistors, SIPMOS small-signal transistors Group Package: SOT 223 Diodes; AF, Darlington and high-voltage transistors; SIPMOS small-signal transistors Package Thermal Resistance Group R 1hJL R1hLS R thsA RthJA 1) SOT 23 I 355 K/W 30K/W SOT 143 II 280 K/W 30K/W 65K/W 65K/W 375 K/W III 255 K/W 30K/W 65K/W 350 K/W SOT 89 I 20K/W 15K/W 90K/W 125K/W SOT 223 I 73.3 K/W 83.3 K/W 10K/W 450 K/W 1) The data represents a typical value for the various component groups, which relates to a uniform alumina substrate, 15 mm x 16.7 mm x 0.7 mm in size. Siemens 23 Technicallnformatioh In order to obtain a reduced thermal resistance, the PCB pad for the connection of the collector is enlarged. This is particularly effective when epoxy PCBs with low heat conductivity are used. Package sg;r 89 Package SOT 23, SOT 143 Iii Iii 200 600 ~ \ SOOt! \ \ \ 170 160 'U ... "" 1.11' ....." JA t 180 irt. "- lfJ-- ......... 150 \ .il"'" :4 I\, 130 ...... r-. ~ \ 140 ..... -~ r.-.-- PC board I-- - - PC board - - - Ceramic substrate 110 100 b IL RthJA 190 120 ~ K K o 1 1 I I 20 40 I--- i-- 1 I J 200 60 o I I 2 I 4 - Generally, these specifications sltffi The determination of the junct" ~ path is more exact, however, If it becomes nevertheless ne sa perature TL of the component conn _ - - - Ceramic substrate 6 8mm 2 Collector area termine the junction temperature 7j. ure via the temperature dependence of the diode ely complicated. xactly determine the junction temperature 7j, the temons has to be measured. Then 7j can be calculated by: 7j = TL + RthJL x Ptot Methods for measuring the temperature at component connections • Measuring with thermocouple element (e.g. Thermocoax) For this method a miniature coated thermocouple element with low thermal capacitance is used. The element, which is coated with a heat-conducting paste. is pressed against the connection with the collector. There is hardly any influence on the device under measurement and deviations do not exceed a few percent. • Measuring with temperature indicators (e.g. thermopaper) Temperature indicators do not cause heat dissipation and thus allow an almost exact determination of temperature. A certain degree of deviations can only result from the rough grade indication of the temperature indicators. This method is quite easy and provides sufficient accuracy. It is particularly suitable for measurement on PC boards. 24 Siemens Quality Specifications AQL values and definitions of defectives Explanations AQL (acceptable quality level) agreements specify the sampling conditions for the incoming inspection of consignments (conformance test). AQL values in conjunction with the standard sampling inspection plans determine the acceptance or rejection of delivery lots. The size and maximum permissible number of defects of the samples is based on DIN 40080 (identical with MIL Standard 105 D and lEG 410), single sampling plan for normal inspection, inspection level II. The sampling instructions of this standard are such that a delivery lot will most probably be accepted (> 90 0/0) if the defect percentage is equal or less than the specified AQL value. Generally, the average defect percentage of the products we deliver is far below the AQL value. Definitions of defectives A component is considered defective if it does not comply with the characteristics specified in the data sheet or in an agreed upon delivery specification. Defectives can be divided into inoperatives, which generally exclude a functional application of the component, and defectives of less significance. Inoperatives are: - open or short circuit, broken component, package, terminals or encapsulation, missing or incorrect marking, . incorrect identification of terminals, intermixing with other component types, alternating orientation in a packaging tube or tape. The remaining defectives can be divided into: - electrical defectives (maximum ratings exceeded), - mechanical defectives, e.g. dimensions not adhered to, package damaged, illegible marking, bent leads. Grouping into major defects and minor defects according to DIN 40080 has been purposely avoided here because these terms are defined primarily on the basis of applications and not specifications. In contrast to this the defective classes that we use - for which AQL values are given below - are clearly outlined by the specification and the mentioned inoperatives. AQL values The AQL values valid for the different product families are comprised in the following table: Type of defectives AQL values Inoperatives (mechanical and electrical) I: static defectives (dc) I: dynamic defectives (ac) I: mechanical defectives (package and connections) 0.1 0.4 1.5 0.4 for switching times and noise measurements an AQL of 1.5 applies. Siemens 25 Quality Specifications Incoming inspection If the user wants to carry out an incoming inspection, the use of a sampling inspection plan is recommended. The test method that is applied must be agreed upon between the user and the supplier. The following information is necessary for judging any claims that may arise: test circuit, sample size, number of defective items found, sample of evidence, packing list. Sampling plan for normal inspection in accordance with DIN 40080 or ABC-Std 1050, inspection level II AQL value Sample 0,065 0,10 0,15 0,25 0,40 0,65 1,0 1,5 2,5 4,0 6,5 size A R A R AR A R A R A R A R A R AR AR A R Lot size 2 to 8 2 9 to 15 3 16 to 25 5 26 to 50 8 51 to 90 13 91 to 150 20 151 to 280 32 281 to 500 50 501 to 1200 80 1201 to 3200 125 3201 to 10000 200 10001 to 35000 315 35001 to 150000 500 150001 to 500000 800 500001 and more 1250 1 1 i 01 01 12 + I ~ 01 01 01 I I 12 23 12 23 34 12 23 34 56 12 23 34 56 78 12 23 34 56 78 1011 12 23 34 56 78 12 23 34 56 78 12 23 34 56 78 12 23 34 56 78 12 23 34 56 78 23 34 56 78 01 I i I 01 01 01 I I 01 01 • I ~ ~ 10 11 1415 10 11 1415 2122 1011 1415 2122 10 11 1415 2122 1011 1415 2122 1011 1415 2122 i ir A = Acceptance number, i. e. maximum number of defectives in a sample up to which a lot is accepted. R = Rejection number, i. e. the number of defectives which must be found in a sample as a minimum for rejection of the lot. 26 Siemens Quality Specifications Other conditions As the combination "Acceptance O/Rejection 1" is not particularly clear, the next largest sample should be taken. Additional information Stating AQL values is no assurance of characteristics in a legal sense. The agreement of sampling inspections and AQL values does not prevent the customer from carrying out more extensive tests in incoming inspection and claiming replacements for individual defective components under the terms of sale. Any further liability, especially as regards the consequences of component defects, cannot be recognized. Note Siemens has made preparations for and is interested in making agreements on ppm values with large-scale customers. Siemens 27 Dimensional outlines SOT 23 (TO 236) rf~ DIM. A B C .Ii ~. I-N L 0 F G H K L SOT 23 N MILLIMETERS MIN . MAX. 2.60 3.0 2.30 2.60 1.10 1.0 1.40 1.20 0.09 0.15 0.38 0.48 INCHES MIN. MAX. 0.118 0.110 0.091 0.102 0.039 0.043 0.047 0.055 0.0035 0.0059 0.015 0.019 - - - 0 1.84 0.92 0.10 1.98 0.98 0 0.072 0.038 0.0039 o.on 0.039 SOT 143 (TO 253) f1 ,B ~ N DIM. A F B ~I '~~! C 0 F G H K L N -Ie A-J SOT 143 MILLIMETERS MIN. MAX. 2.80 3.0 2.30 2.60 1.0 1.10 1.20 1.40 0.09 0.15 0.38 0.48 0.78 0.88 0.10 0 1.84 1.96 1.60 1.60 SOT 89 (TO 243) ~A_ icr ---jHJ- k r-i 1-11 ~ lIB G rf[t--;~ II --l - ~ NI-- r 0 F I-F '~~r G ~~ ~eJ ~~:~ ~LF SOD 123 r1~J IT! lJ ~ ! ~. G~~L~ K~~ l Ffr C ,DB I P Siemens MILLIMETERS INCHES MIN. MAX. MIN. MAX. 4.40 0.173 0.181 4.60 4.25 0.167 1.40 1.60 0.55 0.63 2.60 0.102 0.25 0.39 0.0098 0.015 0.40 0.65 0.016 0.026 1.50 1.70 0.059 0.067 2.60 2.85 0.91 0.112 2.90 3.10 0.114 0.122 1.40 1.60 0.55 0.63 SOD 123 DIM. A B C 0 F G H K L N MILLIMETERS MIN. MAX. 2.55 2.85 0.95 1.40 0.45 0.26 0 3.55 - 1.35 1.70 0.15 0.65 INCHES MIN. MAX. 0.100 0.112 0.037 0.055 - 0.10 3.85 O.01n 0.0098 0 0.140 - - - 0.053 0.067 0.0059 0.0256 0.0039 0.152 - SOT 223 DIM. A B C 0 F G H K L N SOT 223 28 B G H K l N SOT 89 I DIM. A C I--l- INCHES MIN. MAX. 0.110 0.118 0.091 0.102 0.039 0.043 0.047 0.055 0.0035 0.0059 . 0.Q15 0.019 0.031 0.035 0.0039 0 0.072 0.077 0.063 0.071 MILLIMETERS MIN. MAX. 6.30 6.70 6.80 7.20 1.50 1.70 3.30 3.70 0.32 0.60 0.80 2.90 3.10 0 0.10 4.60 Typ 2.30 Typ. INCHES MIN. MAX. 0.248 0.264 0.268 0.283 0.059 0.067 0.130 0.146 0.013 0.024 0.032 0.114 0.122 0 0.0039 0.182 Typ. 0.091 Typ. - Mounting Instructions Supply for automatic assembly In contrast to components with wire leads, practically all SMDs can be supplied in two package forms: • Bulk • Tape Bulk The most straightforward and low-cost mode of SMD d\il!Jyery is in bulk, in either antistatic or plastic containers. Contrary to components with wire I~~ds, SMDs can be supplied in this type of packaging for automatic assembly as no bending orlriterlocking of terminals can occur. At the placement machine the components are suitably,. pgsitioned. If required, a large quantity of components can thus be supplied in line, i.e. without interrupting the placement procedure. ,(ih:' ,.'",,' Bulk packaging units Component Packing Diodes Transistors LEDs Sensors Plastic container MOSFETs, SIPMOS Antistatic contaiper f.'F' l~~ 'J",~':CI ~ (} Tape (in acc. with IEC 286-3) Tape packaging is a frequently useif9r":l 0t;;upplying surface mounted devices. The major benefit of the tape method is that it Rreventji':\'Onfusion of different components and meets the requirements of most placement ,~!,hin?~$'Cardboard and blister tapes are available tape forms. The blister tape has preforme,it ? ents corresponding to the component sizE;!, which are nsist either of plastic material or of plastic-clad alumicovered with fixing tape. 8Iist~i'<'4ap num foil. rv. rom ., The tapes are internationally standardized in accordance with DIN IEC 286·3. This ensures that the tapes are accepted by all machines designed for this kind of assembly. The tape width is generally between 8 mm and 12 mm but additional tape widths are at present being manufactured. 8mmtape For packages SOT 23, SOT 143 and SOD 123 12 mmtape For package SOT 89 and SOT 223 Tape packaging units Size of reels Packages SOT 23 SOT 143 SOT 89/S0T 223 SOD 123 18cm 33cm 3000 pieces 10000 pieces 3000 pieces 10000 pieces 1000 pieces 2500 pieces 3000 pieces 10000 pieces Siemens 29 Mounting Instructions Blister tape Ko T T, Direction of unreeling 30 Siemens Mounting Instructions TAPE PACKAGE SYMBOL 8mm SOT 23, SOT 143, SOD 123 12mm SOT 89, SOT 223 AO • BO ') 3). KO '). Do D1 1.5 + 0.1 1 1.5 + 0.2 + 0.1 1.5mm E 1.75 ± 0.1 1.75 ± 0.1 F 3.5 ± 0.05 5.5 ± 0.05 G 0.75 mm 4) 0.75mm Po 4 ± 0.1 4 ± 0.1 P1 4 8 P2 2 ± 0.05 2 ± 0.05 T 0.3 max 0.3 max T1 0.1 max 0.1 max T2 1) 2) 2.5 max 4.5 max W B±0.3 12 ± 0.3 W3 5.5 9.5 S , ) The nominal dimension for component compartment shall be derived from the relevant component specification. . 2). The actual dimension Is given by the component height and the condition that the component cannot be tumed. 3) Component has to tall out of the carrier tape compartment when the stili opened carrier tape Is upside down. The maximum clearance Is 0.5 mm or given by the maximal rotation angle allowed. 4) On long devices like 500.123. G could be smaller than 0.75 mm. Siemens 31 Mounting Instructions Polarity and orientation of taped components All polarized components are oriented in one direction. The mounting side is oriented to the bottom side of the component compartment. The bottom side is defined as the invisible side of the tape during unreeling. SOT 23 000000000 [lj]1j] IIR RlRJ[jIR 000000000 SOT 89 000000000 SOT143 IIlIllIlMIIIIIIII SOT 223 32 Siemens Mounting Instructions Fixing of components Components are prevented from falling out of the device compartment by a transparent fixing tape. -S Storage of tapes A storage temperature of 40 + 5 °C at a relative humidity of ~ 950/0 is permissible up to a maximum of 240 h. q; Break force of tape ;;:: The minimum break force of the tape in the direction of unreeling ;?:10 N. " ,,~ Peel force of fixing tape 11"1. During peel-off the angle between the fixing tape and the direction of unreeling is 180°. The peel force of the fixing tape ranges from 0.2 N to 1.0 N. V.;P l) Break force of fixing tape The minimum break force of the fixing tape iS~ N. It::: CfJ .....::f If! 0 .~s-force meter..... / os "" Peel speed of fixing tape Reel packaging Component tapes are wound onto r for automatic assembly. as shown in the illustration below and are then suitable Currently available: - Tape width=8 mm (SOT 23, SOT 143, SOD 80) and 12 mm (SOT 89) - Reel size=18 cm and 33 cm. The reels are delivered in a protective wrapping. Cross section Reel dimensions DI· SOT 23 SOT 89 men- SOT 143 SOT 223 slon SOD 123 (mm) 80T23 80T89 80T143 80T223 SOD 123 a b c d 8.4+ 1.5 330 max. 100 min. 14.4 max. 8.4+ 1.5 180 max. SO min. 14.4 max. 12.4+ 1.5 180 max. SO min. 18.4 max. 12.4+1.5 330 max. 100 min. 18.4 max. Siemens a 33 Mounting Instructions Reel Labelling Each reel is labelled with manufacturer, type, series number, and date. Missing components A maximum of two consecutive components may be missin by six components. The number of empty places shall not e components per reel. Upon request, other agreements o ~~ovided that this gap is followed ed 0.25% of the total number of Leader and trailer Carrier tape with fixing tape, without components Tape leader T min. 400 mm (100 pitches) (75 pitches) DDD[][]DODDDBBB ESD SMDs can also be supplied on tapes protected against electrostatic charges. During processing, the reel has therefore to be electrically connected with the placement machine, which must be grounded. This method of taping complies with IECIT 640. ESD ;;; Electrostatically Sensitive Devices 34 Siemens Mounting Instructions PCB layout When using surface mounted devices, the PCB layout has to be accommodated to . this new technology. This demand should be fulfilled not only to better utilize 'the packing density, but also to meet the requirements resulting from the new placement am;! processing system. Some factors influencing the PCB design are: • • • • Distance between conductor paths Component tolerances Distance between components Misalignment of component and conductor path Recommended minimum solder pad dimensions (mm) S00123 SOT 89 SOT 23 SOT 143 SOT 223 Siemens 35 Mounting Instructions Glueing Prior to soldering, SMDs must be fixed to the PCB by means of an adhesive. The adhesive has to fulfil the following conditions. • • • • • • • Adequate adhesive strength Short curing time at a low temperature Uniform viscosity to ensure easy coating No chemical reactions upon curing in order not to impai Straightforward exchange of components in case of r As non-toxic, odorless and solvent-free as possible (/) Good thermal conductivity 4; :t mponent and PC board Connecting methods The connecting method is particularly important well as for inhibiting short circuits. The choice sign of the PC boards (components on upper plied components and on the production fa In addition to manual soldering, which is onl dering methods: flow soldering, which incl ing. ng good electrical connections as method largely depends on the desides, multilayer board), on the sup- (b for repairs, there are two automated soldrag and dip soldering, and reflow solder- Wave soldering Wave soldering is the most widely u ated solder method in the manufacture of PCB assemblies. With a maximum bath temperature the soldering time should not exceed 8 s. Prior to the wave the flux is applied by a Max. perm. temperature stress on the Solder bridges and solder sh cur if the components ar SMD (soldering without preheating) O( erepacked on the wave soldering Sl 300 fore, with respect to soldering, the compoI I nent arrangement has to be considered in the PCB layout. T I/'" \ I Dual wave soldering equipment will in general I- Soldering\ Cooling be better suited to SMD methods. The first I 200 turbulent wave of solder ensures good wet.1 \ Ts ting of all metallization areas, while the second more laminar wave removes the excess solder (solder accumUlation and solder bridges). 100 t o o 10 20 -f Ts = Melting point of the solder 36 Siemens 30 s Mounting Instructions Reflow soldering For reflow soldering a specific amount of solder, e.g. in the form of solder paste, is applied to the mounting pads. After the SMD has been placed the connection is established by one of the following methods: • • • • Vapor phase soldering Hot gas soldering Heated collet ~oldering Infrared soldering '~'v ,.,:;~~J \~",;, The most recent reflow soldering method is vapor Pha!i!;I'l~Oldering, where the entire assembly is uniformly heated to a specific temperature. This form"'Of soldering is a very gentle process, since it prevents overheating. At present, it is the b ., Idering method for densely positioned components of different thermal capacity. Max. perm. temperature stress on the SMD (soldering with preheating) °C 300 ~~~~~~~~~~~ T t200 1-+-l-+-+-II...f-.jI-+-l-+-+-¥-+-l100 I-I+-l-+-+--l-+-+-I-+-+-I-+-,j~ Preheating o o ~-L~~-L~~-L~~_~ m ~ ~s -t Iron soldering Soldering with a temperature-controlled miniature iron should be used only in exceptional cases (e.g. repairs), since as well as being uneconomical there is the risk of damage to the components and to the PCB. Soldering flux • The soldering flux used for wave soldering is not subject to changes, i.e. use of collophony (F-SW 32 in acc. with DIN 8511). • On the other hand, the majority of soldering pastes necessary for reflow soldering contains aggressive soldering flux, the residues of which must always be removed by cleaning. Siemens 37 .... - Mounting Instructions PCB cleaning • Cleaning in solvents is permitted at approx. 70°C to 80 °C for about 15 seconds, Detailed Information is available upon request. • Ultrasonic cleaning (double half-wave operation) Ultrasonic cleaning is less advisable; should it, however,1i used, the following has to be ~ taken into account: Cleaning agent: Isopropanol, Freor-/!! 8ath temperature: approx.30°C Duration of cleaning: max. 30 s 4; Ultrasonic frequency: 40 kHz Ultrasonic changing pressure: approx, 0.5 b~ 0 0 0 Evaluation of solder joints View of the concave tin area ~ Defective solder JOints ·s (j 1~~'§ lO I~~~~~~~ Height of tin surface L1 .:;1 ~ 2 X L2 ~~~~~~ -'"j Height of tin surface L1 SO,S L2 SMD Unwetted pad area S > 50/0 38 Siemens Diodes Siemens 39 SA 582 Silicon RF Switching Diode • Low-loss VHF band switch for TVNTR tuners c.t~ Type Marking Ordering code (taped) Package BA582 bluetS Q62702-A829 SOD-123 Maximum Ratings Parameter Symbol Value Unit Reverse voltage VR 35 V Forward current, TA :s 60 ° C IF 100 mA Operation temperature range Top -55... + 125 °C Storage temperature range Tstg -55 ... + 150 °C Thermal Resistance Junction - ambient I RthJAtyP·1 Siemens 600 IKIW 41 BA 582 Electrical Characteristics at TA = 25°C, unless otherwise specified. Parameter Symbol Ratings Forward voltage IF= 100 mA VF Reverse current VR=20 V ~R Diode capacitance f= 1 MHz VR=1 V VR=3 V Cr Forward resistance f= 100 MHz IF=3 mA 'F = 10 mA min. typo max. - - 1 - - 20 0.6 nA 0.92 0.85 1.4 1.1 n 'f 11gp Series inductance Ls Siemens v pF - Reverse resistance f= 100 MHz VR=1 V 42 Unit - 0.55 0.36 - 100 - - 2.8 - 0.7 0.5 kn nH Silicon PIN Diode BA 585 • Current-controlled RF resistor for RF attenuators • Frequency range 1 MHz ...2 GHz c.t~ Type Marking Ordering code (taped) Package BA 585 white/R. Q62702-A859 SOO-123 Maximum Ratings Parameter Symbol Value Unit Reverse voltage VR 50 V Forward current IF 50 mA Operation temperature range Top -55 ... + 125 ·C Storage temperature range T stg -55 ... +150 ·C Thermal Resistance Junction - ambient I RthJA Siemens I S 450 IKIW 43 BAS8S Electrical Characteristics at TA =25 ·C, unless otherwise specified. Parameter Symbol Ratings Forward voltage IF=50 rnA VF Reverse current VR=30 V IR Diode capacitance f= 1 MHz, VR = 10 V f= 100 MHz, VR =0 V CT min. typo max. - - 1.1 50 - 0.28 0.23 0.6 0.4 n gp Series inductance Ls Diode capacitance CT = f (VR) f=1 MHzlf=100 MHz - 22 5 40 7 - 70 - 2.8 - Forward resistance 'f = f (IF) f= 100 MHz 1,0 pF 0,8 r\. L 0,4 \ \ 5 \.. ' [\ f = 1 MHz- .... r--. .... 0,2 f o 10 20 I I 1 i 1,00, MrZ 5 - V 30 - - - - IF 44 nA 'f Zero bias conductance f= 100 MHz, VR =0 V [T V pF - Forward resistance f=100 MHz IF=1.5 rnA IF= 10 rnA Unit Siemens pS nH BA 885 Silicon PIN Diode c{J. • Current-controlled RF resistor for RF attenuators • Frequency range: 1 MHz ... 2 GHz • Especially useful as antenna switch in TV-sat tuners Type BA 885 Ordering code bulk: Q62702-A742 Marking PA taped: Q62702-A608 Maximum ratings Reverse voltage Forward current Operating temperature range Storage temperature range Thermal resistance Junction - ambient I) VR IF Top Tstg RthJA 50 50 -55 ... +125 -55 ... +150 I :5450 V mA °C °C I KIWI) Package mounted on alumina 16.7 mm x 15 mm x 0.7 mm. Siemens 45 BASS5 Characteristics (TA = 25°C) typ min max Forward voltage /F= 50 rnA VF 1.1 V Reverse current VR = 30V IR 50 nA Diode capacitance VR = 10V,f= 1 MHz OV, 100 MHz CT 0.28 0.23 0.6 0.4 pF pF Forward resistance, f = 100 MHz /F= 1.5 rnA 10 rnA rf 22 5 40 Q Q Zero bias conductance VR = 0, f= 100 MHz gp 70 (.IS Series inductance Ls 2 nH Diode capacitance CT = f (VRI f= 1 MHz/100 MHz Forward resistance f=100 MHz rf Q pF 1.0 103 i 5 f\. '~ 0.6 5 0.4 '\. \ r\ r-- .... f=lMHz- ~r-.. 5 f=llfilt 0.2 o 46 10' 10 lOV Siemens 7 = f (hI BAL74 Silicon Switching Diode • For high-speed switching Type o SAL 74 Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package JC Q62702-A614 Q62702-A718 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 1 !is Total power dissipation TA= 25°C Junction temperature Storage temperature range VR V V hs 50 50 250 250 4,5 Ptot 330 mW Tj Tstg 175 -65···+150 °C °C RthJA :0; Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VRM h hM 450 mA mA A K/W o Preferred type Siemens 47 BAL 74 Electrical characteristics at TA = 25°C, unless otherwise specified Symbol min typ max Unit Breakdown voltage I(BR) = 100 I-1A V(BR) 50 - - V Forward voltage IF = 100 mA VF - - 1 V Reverse current IR - - 0,1 100 I-1A I-1A DC characteristics VR = 50V VR=50V, TA=150°C - AC characteristics Symbol min typ max Unit Diode capacitance VR=OV,f=1 MHz Co - - 2 pF Reverse recovery time IF = 10 mA, IR = 10 mA, trr - - 4 ns RL= 100n, measured at I R = 1 mA Test circuit for reverse recovery time OUT Oscilloscope: R = 50 n Pulse generator: tp = 100 ns, D = 0,05 t, = 0,6 ns, Ri = son t, = 0,35 ns C:5 1 pF 48 Siemens BAL74 Total power dissipation Ptot = Reverse current fA f (TA) = f( TA) nA 105 rnW 400 VR~70V 1'\ V ~ max. 70~// 200 5 1,\ 25V I'. :\. 100 5 typo 1/ o o so 100 150 200 °c 10t [I o 50 100 -7;. Forward current IF TA = 25°C = 0( 10° 5 Peak forward current lFM = f(t) TA =25°C f (VF) rnA 150 I I/D~0005 5 0.01 0.02 V~05 i/rll 0.2 II I 100 150 -li, I max. typo ~ i ; 50 1 i Ii o o T V 0,5 f~ T D=.J... 1,5 V 10-2 10-6 II 10-5 11111 I 1111 I I 10-4 10- 3 10-1 10-1 -f Siemens 49 BAL74 Forward voltage VF = f (TA) V 1,0 -HJ IF =100 rnA I-r-. I I f -1-1- W 10 rnA ............ I'-r-. in} . . . 0,5 - ~ 0,1 rnA 1'-...... 1'- r- I'I'- i'r"r--, ..... o o 50 50 100 "'" 150 0( Siemens Silicon Switching Diode • BAL99 For high-speed switching Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BAL99 JF Q62702-A611 Q62702-A687 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 111s Total power dissipation TA = 25°C Junction temperature Storage temperature range VR V V IF IFM IFs 70 70 250 250 4,5 Ptot 330 mW Tj Tstg 175 -65···+150 °C °C RthJA 5450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VRM Siemens mA mA A 51 BAL99 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Breakdown voltage I(BA) = 100 f!A V(BA) 70 - - V Forward voltage IF= 1 mA IF= 10mA IF= 50mA IF=150mA VF - - 715 855 1 1,25 mV mV V V Reverse current VA = 70V VA = 25 V, TA = 150°C VA = 70 V, TA = 150°C IA - - 2,5 30 50 f!A f!A f!A AC characteristics Symbol min typ max Unit Diode capacitance VA = 0 V, f = 1 MHz CD - - 1,5 pF Reverse recovery time IF = 10 mA, IA = 10 mA, trr - - 6 ns - - RL=100n, measured at I A = 1 mA Test circuit for reverse recovery time OUT Oscilloscope: R = 50 n tr = 0,35 ns C :5 1 pF Pulse generator: tp = 100 ns, D = 0,05 tr = 0,6 ns, Ri = 50 n 52 Siemens BAL99 Total power dissipation P'o' Reverse current I R = f (TA) ((TA) = nA mW 400 105 VR =70V V V max. 70~/J 200 25V I' r\ 100 typo o o 10' 100 50 200 'C 150 IlL J o 50 Peak forward current I FM TA = 25°C Forward current IF = ((V F) TA= 25°C mA 150 I 0.1 0.2 I Ij max. typo 10° S f (t) V~05 / 100 O( 0=0.005 0.01 0.02 IF I = 150 :=1= .... ,.::)( Ii ~ Ii 50 , 1 t~ i o o i..-' 0,5 0=-.2.. T ./ 1,0 1,5 V 10-1 10-6 Illil 1111 10-5 10- 4 T I lULL! 10-1 10-1 W-l -t -VF Siemens 53 BAL99 Forward voltage VF = {(TAl V 1,0 ill I F = 100mA r- r-r-r- I I W. 10 mA L _1 ~, 0,5 rr- I i'-k 0,1 mA I 54 r--, I 'r--. , r--. . . . . r--r-., I o o r--. 50 150 .( Siemens Silicon PIN Diodes BAR 14-1 ... BAR 16-1 • RF switch, RF attenuator • Low-distortion factor • Long-term stability of electrical characteristics Type Marking Ordering code (tape and reel) Pin configuration BAR 14-1 L7 Q 62702 - A772 3 10 BAR 15-1 La Q 62702-A731 L9 SOT-23 3 10 BAR 16-1 ~I I ~I 02 Package Q 62702-A773 ~ I I~ 02 3 10 ~ I ~ 02 Maximum Ratings per Diode Parameter Symbol Values Unit Reverse voltage VR 100 V Forward current IF 100 rnA Total power dissipation, TA = 25 °C2) Ptot 140 mW Junction temperature 7j 150 Operating temperature range Top -55 ... +150 Storage temperature range Tstg -55 ... +150 °c °c °c Thermal Resistance I Junction - ambient 1 RthJA I 5450 IKIW 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. Siemens 55 BAR 14-1 ... BAR 16-1 Electrical Characteristics per Diode at TA = 25°C, unless otherwise specified. Parameter Symbol min Reverse current VR = 50V VR = 100V IR Forward voltage 100 mA VF Diode capacitance VR =50V, f= 1 MHz VR = 0, f= 100 MHz Or Forward resistance f= 100 MHz, IF = 0.01 rnA IF = 0.10 rnA I F = 1 rnA I F = 10 rnA Ii Zero bias conductance VR = 0, f= 100 MHz gp - 'L 0.7 Values typ Unit max - - - 100 1 J,tA - 1.05 1.25 V - 0.25 0.2 0.5 nA I F= pF - Q - 2800 380 45 7 - Charge carrier life time I F =10mA,IR =6mA - - 50 - IlS 1 - Ils Forward resistance rf = f (IF) f= 100 MHz rf 1,/ I r,. =lS00( 85°( '§ 25°( ;= _400( i= t '\ ./ ltV III 5 10'1 II J I W 5 S II I 0.5 1.0 1.5 V 0.1 -~ 56 '\. Siemens 1.0 10 SOmA BAR 14-1 ... BAR 16-1 Diode capacitance Cr = f (VR) pF 1.0 0.5 \ ....... o o - r- QMHf f=11 00JH; l""- I""- 10 20 30 40 -VR SOY Siemens 57 Silicon PIN Diodes. BAR 17 • Current-controlled RF resistor for RF attenuation • Switching applications above 1 MHz Type Marking Ordering code (tape and reel) Pin configuration BAR 17 L6 Q 62702 - A785 10 ~ 03 Package SOT-23 Maximum Ratings Parameter Symbol Values Unit Reverse voltage VR 100 V Forward current IF 100 mA Total power dissipation, TA = 25 °C2) P tot 140 mW Junction temperature 7j 150 °c Operating temperature range Top -55 ... +150 °c Storage temperature range Tstg -55 ... +150 °c Thermal Resistance I Junction - ambient I 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 58 Siemens RthJA I :5450 IKIW BAR 17 Electrical Characteristics at TA = 25°C, unless otherwise specified. DC/AC Characteristics Symbol Parameter Reverse current VR = 50V VR =100V IR Forward voltage I F= 100 mA VF Diode capacitance VR = 50 V, f = 1 MHz VR = 0., f= 100 MHz Or Charge carrier life time IF = 10 mA, IR = 6 mA 'lL Forward resistance f= 100 MHz, IF = 0.01 mA IF=0.1 mA I F= 1.0mA I F= 10mA Ii Values Unit min typ max - - 50 1 I!A - 0.91 1 V - 0.32 0.37 0.55 - - 4 - - 1150 160 23 3.5 - nA pF ~s n - Forward resistance rf = f (IF) f= 100 MHz Forward currentlF =f (VF) II T,.=-400( 25°( 85°( === 1500 ( == = W- I I I\. 1\ I II I I II 0.5 1.0 10° 10- 2 1.5 V -Vf Siemens 5 10-' 5 10° 5 10' -IF 59 BAR 17 Diode capacitance Cr = f (VR) pF 2 1\ I':: 1"-.. t--... f = 1MHz 100Mr 1 o o 60 10 20 30 40 -VR sov Siemens BAR 60 BAR 61 Silicon PIN Diodes 3i~2 • For RF attenuation • Switching applications for frequencies above 10 MHz 4tlJ) 1 Type Marking Ordering code (tape and reel) BAR 60 60 Q 62702 - A786 Pin configuration Package ,+, SOT-143 1 2 BAR 61 61 Q 62702-A120 01 1>1 30 * * 4 2 Maximum Ratings per Diode Symbol Values Unit Reverse voltage VR 100 V Forward current IF 100 mA Ptot 140 mW 7j 150 Operating temperature range Top -55 ... +150 Storage temperature range Tstg -55 ... +150 °c °C °C Parameter Total power dissipation, TA = 25 °C 2) Junction temperature Thermal Resistance RthJA Junction - ambient 1. 1::0;450 KIW 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. Siemens 61 BAR 60 BAR 61 Electrical Characteristics per Diode at TA = 25°C, unless otherwise specified. DC/AC Characteristics Parameter Symbol Reverse current VR = 50V VR = 100V IR Forward voltage VF Values Unit min typ max - - - 100 1 nA ~ - - 1.25 V - 0.25 0.2 0.5 - 2800 380 45 I F = 100 mA Diode capacitance VR =50V, f= 1 MHz VR = 0, f= 100 MHz Or Differential forward resistance f= 100 MHz, IF = 0.01 mA IF=0.1 mA I F = 1.0 mA I F = 10mA 'f Zero bias conductance VR = 0, f= 100 MHz gp Charge carrier life time !L pF - n - 7 - - 50 - J.lS - 1 - J.ls - I F =10mA,IR =6mA Forward current h = f (VF) Forward resistance f= 100MHz 'f = f (IF) 5 I ~;.1500[ II 1 85°[ E 25°[ f= _400[ 1= " 1/ II I 0 10 5 5 I I 1 W 5 2 IJ I I 0.5 1.0 0.1 1.SV -~ 62 Siemens 1.0 10 SOmA BAR 60 BAR 61 Diode capacitance Cr = f (VR) pF 1.0 0.5 1\ r--... o o - I - QMH 10 r f~1100JHZ l -I -i-- 20 40 30 50 V Circuit example for attenuation networks with diode BAR 60 I 1kn I 1nF 1nF 1kn 1nF Input >--1t--.--o.---+cI7l--t---lE++--<>---<"'--+---I'K Output I I 5.6kn IL __ r I __-.1 4.7kn 1nF 50kn Siemens 63 BAR 60 BAR 61 Circuit example for attenuation networks with diode BAR 61 SOk!! f--I:z:l------.-o+12V lnF I H 1nF BC 236 lk!! BAR 61 r------~ I 1k!! 1nF lnF I Input )-U-....-<>-+-+--lE'I--........-+-o--+-.......--~I---+---{ Output I lnF I I L 1.6k!! 2.2kn 64 Siemens BAR 74 Silicon Switching Diode • For high-speed switching c{ff: Type o BAR 74 Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package JB Q62702-A615 Q62702-A704 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 1 ~s Total power dissipation TA = 25°C Junction temperature Storage temperature range VR VRM /P /PM /Ps 50 50 250 250 4,5 V V Ptot 330 mW Tj Tstg 175 -65···+150 °C °C RthJA ::; 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm mA mA A o Preferred type Siemens 65 BAR 74 Electrical characteristics at TA = 25°C, unless otherwise specified Symbol min typ max Unit Breakdown voltage I(BR) = 100 itA DC characteristics V(BR) 50 - - V Forward voltage IF = 100 rnA VF - - 1 V Reverse current VR = 50V VR = 50 V, TA = 150°C IR - - - 0,1 100 ItA ItA AC characteristics Symbol min typ Co - - max 2 Unit Oiode capacitance VR = OV, f=1 MHz Reverse recovery time IF = 10 rnA, IR = 10 rnA, RL= 1000, measured at I R = 1 rnA trr - - 4 ns Test circuit for reverse recovery time OUT Pulse generator: tp tr 66 = 100 ns, 0 = 0,05 = 0,6 ns, Ri = 500 Oscilloscope: R = 500 tr = 0,35 ns C::;; 1 pF Siemens pF BAR 74 Total power dissipation P'o' = f (TA) Reverse current I R rnW 400 nA 101 = f ( TA) VR =70V V // 1\ max. 70~1/ 200 25V r-.. 100 typo /1/ o o 10' 100 50 200 ·C 150 IJ o 100 50 150 O( 10° 5 -T" Forward current iF = f (VF) TA = 25'C Peak forward current lFM = f (t) TA = 25'C rnA 150 I 0=0005 0.01 0.02 5 V~05 0.1 / 0.2 I 100 j max. typo )( Ii 50 , J t~ T i o o V 0,5 O=-L T / 1,5 V 10- 2 10- 6 111111111 I IIII I I 10-5 10- 4 10- 3 10- 2 10-' -t Siemens 67 BAR 74 Forward voltage VF V 1,0 ill IF=10~~A f = f ( TA) lI- CI 10 mA ~r-- 0,5 1-1- "'N:: O.1mA " "r-- . . . r--" I'-t--..r-- t-... j-.. j-..~ o o 68 50 150 ·C Siemens BAR 99 Silicon Switching Diode • For high-speed switching Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BAR 99 JG Q62702-A610 Q62702-A388 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 1 its Total power dissipation C TA = 25 D Junction temperature Storage temperature range VR VRM iF iFM iFs 70 70 250 250 4,5 V V mA mA A Ptot 330 mW Tj Tstg 175 -65··· + 150 DC DC RthJA ::5 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Siemens 69 BAR 99 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Breakdown voltage I(BR) = 100!lA Forward voltage IF= 1 mA IF= 10mA IF= 50mA IF=150mA V(BR) 70 - - V - 715 855 1000 1250 mV mV mV mV VF - - - - - - - - 2,5 30 50 ).LA ).LA ).LA Reverse current VR = 70V VR = 25 V, TA = 150°C VR = 70 V, TA = 150°C IR AC characteristics Symbol min typ max Unit Diode capacitance VR=OV,f=1MHz Co - - 1,5 pF Reverse recovery time IF = 10 mA, IR = 10 mA, RL= 100n, measured at I R = 1 mA trr - - 6 ns - Test circuit for reverse recovery time OUT Pulse generator: tp = 100 ns, 0 = Oscilloscope: R = 50 n tr = 0,35 ns C:5 1 pF 0,05 tr = 0,6 ns, Ri = 50n 70 Siemens BAR 99 Total power dissipation P tot = f (TA) Reverse current I R = f (TA) mIN 400 nA 105 VR =70V V V max. i-' /1/ 7OV/ 200 5 25V 1\ 100 1\ typo o o 11/ I 10' 50 a 200 ·C 150 100 50 150 .( 100 -TA Forward current IF = f (VF) TA = 25°C Peak forward current IFM TA = 25°C mA 150 I = f (t) 1/0= 0005 0.01 0.02 5 V~05 100 rl0.21 I I max. typo tl= I"'> ii ii 50 1 I i o T , l/ o 0,5 t~ T D=~ 101,0 -V, 1,5 V 10-6 1IJIII11LIlIlili 10-5 10- 4 10- 3 10-' 10-' 10° s -t Siemens 71 BAR 99 Forward voltage VF = f (TA) V 1,0 W r--t- I-~ I F=10~~A U 10 mA t--r-- r--t-1'--1'--1'-- 1;j;-" 0,5 1-1- 't-l O,lmA -I--. ""-I'--I'-I'-- 1'--" 1'01'0 o o 50 100 150 0( -TA 72 .Siemens Silicon Switching Diode • BAS 16 ell. For high-speed switching Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BAS 16 A6 Q62702-A726 Q62702-A739 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 1 ~s Total power dissipation TA = 25°C Junction temperature Storage temperature range VR VRM h hM hs 75 85 250 250 4,5 V V Ptot 330 mW Tj Tstg 175 -65··· +150 °C °C RthJA ~450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Siemens mA mA A 73 BAS 16 Electrical characteristics at TA = 25 ce, unless otherwise specified DC characteristics Symbol min typ max Unit Breakdown voltage f (BR) = 100 J.lA V(BR) 75 - - V Forward voltage iF= 1 mA iF= 10 mA if = 50 mA if =150 mA VF - 715 855 1000 1250 mV mV mV mV Reverse current VR = 75 V VR = 25 V, TA = 150 c VR = 75 V, TA = 150 c fR 1 30 50 1,75 J.l.A J.l.A J.l.A V - - - - Forward recovery voltage if = 10 mA, tp = 20 ns VI, - AC characteristics e e - - Symbol min typ max Unit Diode capacitance VR = 0 V, f= 1 MHz Co - - 2 pF Reverse recovery time if = 10 mA, fR = 10 mA, RL = 100n, measured at f R = 1 mA t" - - 6 ns Test circuit for reverse recovery time OUT Pulse generator: tp = 100 ns, 0 = 0,05 t, = 0,6 ns, Ri = 50 n Oscilloscope: R = 50 n t, = 0,35 ns C 51 pF 74 Siemens BAS 16 Total power dissipation Ptot = Reverse current I R = f ( TA) f( TA) nA 105 mW 400 VR =70V ~ ,/ ~ max. r-' 70~J / 200 5 25V 1\ 100 1\ 5 typo 1/ o o lot 50 100 200 ·C 150 Forward current if = f(VF) TA = 25°C 11.1 o 150 DC 50 Peak forward current iFM TA =25°C = fIt) mA 150 I I/ D=0005 5 0.01 0.02 IFH 100 t J 5 II max. typo [!~05 rl0.21 10' ... [") ~ i ~ 50 , I t~ i o o i..-' 0,5 D=.J.. T , 1/ 10- 1,5 V 10-6 IIIIII 10- 5 10- 4 T 1111 I 1111 I I 10- 3 10-' 10-' 100 5 -t Siemens 75 BAS 16 Forward voltage VF = f ( TA) V 1,0 1TI I-I-r-. IF=10~~A I- . ..1 ~ m,A 1-... 1-1- t-.r-. ;;}I- 0,5 r:( f-f- O,1mA I- 1--.1- ... !'.ro-. . . . 1- o o 76 50 150 O( Siemens BAS 19 ... BAS 21 Silicon Switching Diodes • High-speed, high-voltage switch Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BAS 19 BAS 20 BAS 21 JP JR JS Q62702-A242 Q62702-A707 Q62702-A708 Q62702-A95 Q62702-A 113 Q62702-A79 SOT 23 SOT 23 SOT 23 Maximum ratings Parameter Symbol BAS 19 BAS 20 BAS 21 Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Total power dissipation TA = 25°C Junction temperature Storage temperature range VR VRM IF IFM 150 200 200 625 280 200 250 V V mA mA mW Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 100 120 Ptot 150 -65 .. ·+150 Tj T stg :5 450 RthJA Siemens °C °C K/W 77 BAS 19 ... BAS 21 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Breakdown voltage ') I(SR) = 100 IlA V(SR) BAS 19 BAS 20 BAS 21 Forward voltage IF =100 mA IF =200 mA VF Reverse current IR VR = VR = typ max Unit 120 200 250 - - V V V - - 1 1,25 V V - 100 100 nA IlA - VRmax VRmax; min - Tj = 150°C - AC characteristics Symbol min typ max Unit Diode capacitance VR=OV,f=1 MHz Co - - 5 pF Reverse recovery time IF = 30 mA, IR = 30 mA, trr - - 50 ns RL= 100n, measured at IR = 3 mA Test circuit for reverse recovery time OUT Pulse generator: tp = 100 ns, D = 0,05 tr = 0,6 ns, Ri = 50 n Oscilloscope: R = 50 n tr = 0,35 ns C:5 1 pF ') Pulse test: tp :5 300 Ils, D = 20/0. 78 Siemens BAS 19 ... BAS 21 Total power dissipation Ptot = f (TA) Raverse current I R = f ( TA) rnW 400 )JA 10 2 5 ~ot I V 300 1/ Ityp. / 200 1I max. "\ 1'\ / I\. IJ IJ 100 \ 1"\ o I 1"\ o 150 100 50 50 O( -TA Forward current IF = f ( VFl Forward voltage VF = f(TA) rnA 800 V 1,5 r: I - v" I, II f 1,0 500 I 400 I 300 I ........ I . 250mA -- ~ ~A r- I I k 10mA r-... 0,5 I 200 ....... I 100 o o /, --.... I IF =625mA 0.5 1.0 -VF 1.5 V o o Siemens 100 200°C -TA 79 BAS 19 ... BAS 21 Forward current IF = Reverse voltage VR f ( TA) rnA V 300 300 200 200 = f( TA) IF "- f'\ BAS 21 . . .+- ~ I\. B~s12 , 1\ 100 '\ \ 1\ 150 0 ( 100 50 o Peak forward current lFM = f (t) D= 0.005: VO.0 1 VO.0 2 1:/,0.05 0.1 >0.2 I"- 1 Ii .. D =--E. 10-2 10-6 10-5 ~~ .. I i t"T -_ 1:f1fpl-- 1m I ~~ 10-' 1I11 10-3 II 10-2 10- 1 10° S -f 80 o 50 100 -1A -TA 10° , 1\ [\ 1\ °° BA519 100 t\. Siemens , BAS 28 Silicon Switching Diode Array • • For high-speed switching Electrically isolated diodes A2~C2 A1~C1 Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BAS 28 JT Q62702-A 163 Q62702-A77 SOT 143 Maximum ratings Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current f=1lls Total power dissipation TA = 25°C Junction temperature Storage temperature range VR V V lFM lFs 75 85 250 250 4,5 Ptot 330 mW Tj Tstg 175 -65···+150 °C °C RthJA :::;450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VRM IF Siemens mA mA A 81 BAS 28 Electrical characteristics at TA = 25°C, unless otherwise specified Symbol min typ max Unit Breakdown voltage I(BA) = 100 llA DC characteristics V(BA) 85 - - V Forward voltage h= 1 mA h= 10 mA h= 50mA h =150 mA VF - - - 715 855 1000 1250 mV mV mV mV Reverse current VA = 75V VA = 25 V, TA = 150°C VA = 75 V, TA = 150°C IA - - - - - 1 30 50 l1A l1A AC characteristics Symbol min typ max Unit Diode capacitance Co - - 2 pF trr - - 6 ns VA=OV,f=1MHz Reverse recovery time h = 10 mA, IA = 10 mA, RL= 100n, measured at IA = 1 mA Test circuit for reverse recovery time OUT Pulse generator: tp = 100 ns, D = 0,05 tr = 0,6 ns, Ri = 50 n 82 Oscilloscope: R = 50 n tr = 0,35 ns C:s 1 pF Siemens llA BAS 28 Total power dissipation Ptot = f (TA) Reverse current I R = f ( TA) mW nA 105 400 5 j"3oo VR =70V ~ V I" max. f-" 1/ 70~/1/ 200 5 25V V 100 1\ 1\ o o typo /1/ so 100 50 200 'C 150 Forward current IF = f (VF) Peak forward current iFM TA = 25°C TA= 25°C rnA 150 A 10 2 I 10° S f (t) 0.01 0.02 5 rl0 0.1 0.2 I If max. typo 0( 0=0.005 5 / 100 = 150 r..,.'/0 i Ii 50 1 J t~ i o o 0=....1'.T Vl/ 0,5 1,5 V 10-2 10-6 IIII T I IIII I 1111 I 10- 5 10- 4 10- 3 L 10- 2 10-1 -t Siemens 83 BAS 28 Forward voltage VF = '(TAl V 1,0 ill I F=100 mA 1-1- I I f ~~ 10 mA l"'- I'-- ~I"'- 0,5 .~ -r- ~ 1-1-.... 1'-- .... t'-- O,lmA .... t'--r--, ..... r--. o o 84 50 150 °C Siemens BAS 40 ... Silicon Schottky Diodes • • • • General-purpose diodes for high-speed switching Circuit protection Voltage clamping High-level detecting and mixing :5 - available with CECC quality assessment ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) :5 BAS 40 43 Q 62702 - 0339 Pin configuration SOT-23 10 :5 BAS 40-04 44 Q 62702 - 0980 • • • • Q 62702 - 0978 03 ~I~ 02 3 Q 62702 - 0979 10 :5 BAS 40-06 46 ~ 3 10 :5 BAS 40-05 45 Package ~ I I~ 02 3 101E;JI~ 02 3/7h2 General-purpose diodes for high-speed switching Circuit protection Voltage clamping High-level detecting and mixing 4t$J1 :5 - available with CECC quality assessment ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) :5 BAS 40-07 47 Q 62702 - A697 Pin configuration 40 [>1 01 30 ~ 02 Siemens Package SOT-143 85 BAS 40 ••• Maximum Ratings per Diode Parameter Symbol Value Unit Reverse voltage VR 40 V Forward current IF 40 mA Peak forward current IFRM 80 mA Surge forward current, t ~1 0 ms I FSM 200 mA Junction temperature Ii 150 °C Operating temperature range Top -55 ... +150 °C Storage temperature range Tstg -55 ... +150 °C Thermal Resistance I Junction - ambient1) Electrical Characteristics at TA = 25°C, unless otherwise specified. I Parameter RthJA I ~450 IKIW Values Symbol I typ I max I Unit DC characteristics Breakdown voltage "'I 01 30 E>I 02 Siemens Package1) SOT-143 BAS 70 ... Maximum Ratings per Diode Parameter Symbol Value Unit Reverse voltage VR 70 V Forward current IF 15 mA Peak forward current IFRM 40 mA Surge forward current, t s1 0 ms I FSM 100 mA Junction temperature 7j 150 °C Operating temperature range Top -55 ... +150 °C Storage temperature range Tstg -55 ... +150 °C RthJA s450 Thermal Resistance Junction - ambient1) IKIW Electrical Characteristics per Diode at TA = 25°C, unless otherwise specified. Parameter Unit DC characteristics 70 - - - - 0.1 10 - 380 690 780 410 750 1000 Or - 1.6 2 pF Charge carrier life time I F =25mA '! - - 100 ps Differential forward resistance IF = 10 mA, f= 10 kHz Ij - 30 - n Breakdown voltage IR = 10 IlA V(SR) Reverse current VR =50V VR =70V IR Forward voltage I F= 1 mA I F= 10mA I F= 15 mA VF Diode capacitance VR=O, f= 1 MHz V IlA mV 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. Siemens 89 BAS 70 ... Characteristics per Diode at TA = 25 °C, unless otherwise specified. rnA Forward currentIF = f (VF) ~A 102 102 5 5 IF AI II~ tW ~ Ii ':' Reverse currentIR ... - 7;.=150,,\ - 5 I-- II II 100 =f (VR) I-- 1A=-400 ( 25 0 ( -I-85°( _I-"""150 0 (-1-- 5 85°( = 10- 1 ~ 1/ -25°( 5 10- 2 0 0.5 1.5 V 1.0 20 -VF Diode capacitance f= 1 MHz c;. =f (VR) 80 V 40 Differential forward resistance rf = f (IF) f= 10 kHz pF 2.0 5 5 ~ 1.0 \ , "\ 0.5 o o 90 I"".. 10 -- 10 1 5 - 20 30 40 50 60 70 -VR 1\ 10 0 0.1 80 V Siemens 0.5 1 5 10 5 100mA Silicon Switching Diodes BAS 78A ... BAS 78D • Switching applications • High breakdown voltage Type Marking Ordering code (12-mm tape) Package' BAS 78A BAS 78A 062702 - A910 SOT -223 BAS 78B BAS 78B 062702 - A911 SOT-223 BAS 78C BAS 78C 062702 - A912 SOT-223 BAS 78D BAS78D 062702 - A913 SOT-223 Maximum Ratings Parameter BAS BAS BAS BAS Symbol 78A 78 B 78C 780 Reverse voltage Peak reverse voltage VR VRM Forward current IF 1 A Peak forward current IFM 1 A Surge forward current t=ll1 S Unit 50 100 200 400 V 50 100 200 400 V I FS 10 A Total power dissipation, TA :525°C 1) PIOI 1.5 W Junction temperature Tj Storage temperature range T"lg 150 -65 to + 150 ·C ·C Thermal Resistance Junction - ambient 1) :583.3 IKIW I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.5mm. Mounting pad for the collector lead min 6 cm 2. •) For detailed dimensions see chapter Package Outlines. Siemens 91 BAS 78A ... BAS 780 Characteristics at TA =25 ·C, unless otherwise specified. Parameter Unit DC Characteristics Breakdown voltage Ic = 10mA, Is = 0 Forward voltage IF = lA IF =2A BAS BAS BAS BAS VISR) 78A 78B 78C 780 VF 1) Reverse current VR = VA max VA = VA max, TA = 150 ·C IR 50 100 200 400 -- - - - 1.6 2 - - 1 50 - 10 - - 1 - V V ~A AC Characteristics Diode capacitance VA =0, f= 1 MHz Co Reverse recovery time IF = 200mA, IR = 200mA, RL = lOOn measured at IA = 20mA trr Test circuit for reverse recovery time I ~ III Oscilloscope 90% I Pulse generator: tp = 100ns,D = 0.05 t, " 0.6ns.R; " SOQ Vp = VR + /pR, Oscilloscope: R" C:S IpF 1)Pulse test conditioRs:t;?; 300~s;D = 2% 92 son t, = 0.3Sns. Siemens pF ~s BAS 78 A ... BAS 78 0 = ((TAl Total power dissipation P IOI 2.0 '-,- -'-"-T-r-'-~-'-'~-' ----i-f--I--I-- - - - W ~-I-'H-r-~~-+-14-4-'-I -1---1---- 1------1-- I-- -I--H-t--t-j-I- -- - Forward current IF A TA=2S"C 10' 5 ,/.V I-- hl·-'- - - - -1--- -.-- -1-1\ 1--+- - - - - - --1-1\1-- H--t--H-I-l\-,\-.--~-· 1= _ ~ ,:::..~ 1.0 I-- I-- -~ - .- - 0.5 1\ - - _ 10- , I 1- - - - r-r-- 1--1-1----\_._--- =_ =~~I~-=:~ .- 5 . --1--- - -f--j-f-j--+·H-t-'H-I--II-I-f\ - = ((VFI - =~~-=~~ I c-- I - - -. - -- - - - --. -. - '\ -i- --'- . - -- -1\'-: .:. _'l~ __ L-\ -_.- 100 O( 10- 3 I o 150 2 V ----v, Reverse currant fR = ((TAl nA VeE = 10 V 10 5 5 :- - .- I- -- .. ~ I. ! . 17- ,- m' 5 1-' - ",,"" ~. l typ. max ...... 10 3 - 10 1 5 -- Z.:.. - ~-/- 5 . - I -1- -- 1= -T,. Siemens 93 BAS 79A ... BAS 790 Silicon Switching Diodes • Switching applications • High breakdown voltage • Common cathode A2 Type Marking Ordering code (12-mm tape) Package· BAS 79A BAS79A 062702 - A914 SOT-223 BAS 79B BAS 79B 062702 - A915 SOT-223 BAS 79C BAS 79C 062702 - A916 SOT-223 BAS 790 BAS790 062702 - A917 SOT-223 Maximum Ratings Parameter BAS BAS BAS Symbol BAS 79'B 79C 790 79A Peak reverse voltage VR VRM Forward current Reverse voltage Unit 50 100 200 400 V 50 100 200 400 V IF 1 A Peak forward current IFM 1 A Surge forward current t=l\ls IFS 10 A Total power dissipation, TA S 25 ° C 1) P tot 1.5 W Junction temperature Tj 150 °C Storage temperature range Tstg -65 to Thermal Resistance s83.3 Junction - ambient 1) 1) Package mounted on an epoKy printed circuit board 40mm x 40mm x I.Smm Mounting pad for the collector lead min 6cm2 Of For detailed dimensions see chapter Package Outlines. 94 Siemens + 150 °C '.....,...-- BAS 79A ... BAS 790 Characteristics at TA =25°C. unless otherwise specified. I Parameter Symbol Values min. Ityp. Imax. IUnit DC Characteristics Breakdown voltage Ic 10mA. 18 =0 VISA) = Forward voltage IF =1A IF =2A BAS BAS BAS BAS 79A 79B 79C 79D VF 1) Reverse current VA =VA max VA VA max. TA =150°C IA = 50 100 200 400 - - - - 1.6 2 - - 1 50 - 10 - - 1 - V V V 1-1 A AC Characteristics Diode capacitance VA =O. f =1 MHz Co Reverse recovery time IF =200mA. IA =200mA. trr Rl = lOOn measured at IA pF I-IS =20mA Test circuit for reverse recovery time OUT I ~ III Osci II oscope 90% -*-_ _ _ _--' 1, _ _ _ Pulse generator: tp =100m,D = 0.05 t, = 0.6m.R, = 50n Vp = V R + IfXR, Oscilloscope: R = 50n Ir = O.35ns. C :s 1pF 1}Pulse test conditions:t:2 3001-ls;0 = 2% Siemens 95 BAS 79 A ... BAS 79 0 Forward current IF = f(VF) Total power dissipation Plot = f(TA ) A TA = 2S"C 2.0 ,,-.,-,,'-Y- ~ W 10' -I-~-- ~ 5 - .. c-- -. -. '- .- -t--j-l--j-j 1--1- -. - - -. -,,1~h'" r'l- /' --'I-i-J--t-l-+-+-j -- -f\.---- \ -'-1---1-1- -- s 1-1-+-1---1 rr- 'S-r-- __ _~-.IH-+-t-\- H-+-i 1.0 , 10" r-- - -- --1\ --t--lH---t-+-H f\- -r-- 0- \ -- -1-0-1- - ~ .. - -- 0.5 I . S . - 1-:--1-- - - - .. -. -- ~ \-"'\-+-+--I-l 2 I\. - - 1-1-- - - - -1--+'<1-1--1 I---f------.- .. -1- f\~ OLL~LL_L_LL~LL~l_L~I\J 100 ·C 150 o 50 10"l -Ti. Reverse current lR = ((TA ) nA VeE = 10 V lOS 5 max ..... Ityp, lO l S V 10' o so 100 ISO °c -~ 96 Siemens a 2 V Silicon Low Leakage Diode BAS116 • Low Leakage applications • Medium speed switching times • Single diode c(J. Type Marking Ordering code B-mm tape Package BAS116 JVs Q62702-A919 SOT 23 Maximum Ratings Description Symbol Reverse voltage Peak reverse voltage VR VRM Forward current IF 250 mA mA Surge forward current ,t = 1ps IFM IFs 250 Total power dissipation, TA=25·C P IOI 330 mW Junction temperature 1j 150 ·C Storage temperature range Tsig Peak forward current BAS116 75 V 85 V 4.5 -65 Unit to + 150 A ·C Thermal Resistance IRIhJA Junction-ambient 1) :$450 IKIW 1) Package mounted on alumina 15mm x 16.7mm x O.7mm Siemens 97 BAS116 Silicon Low Leakage Diode Characteristics at TA = 25°C, unless otherwise specified. Description max. IUnit DC Characteristics breakdown voltage I(SR) =100 vA V(SR) Forward voltage IF = 1mA IF= 10mA IF = 50mA IF= 150mA VF Reverse current VR=75V VR=75V, TA=150°C IR 75 · . V · · · · · · · 900 1000 1100 1250 mV mV mV mV · 5 80 nA nA . pF 3 lIs · · · · · ,. 2 AC Characteristics Diode capacitance VR=OV, f=1 MHz Co Reverse recovery time IF = 10mA, IR = 10mA, RL = 100Q measured at IR = 1mA t" · Test circuit for reverse recovery time OUT Oscilloscope Pulse generator: tp= 100ns,O= 0.05 t, 0.6ns,Rj = son = 98 Oscilloscope: R = 50Q t, = 0.35ns. C:s 1pF Siemens 0.5 Silicon Low Leakage Diode BAS116 Total powar dissipation p.o. = f( TA ) Rever.e current I. mW 400 ,.,-,.,-,.,-,.,-rnrnrn;-r"1;-r"1'" = f( TA ) 10' VA -7 V ox. /' v ,/ 10' /.. / typo '" 1/ 100 1+1+1+H-f-Hf-Hr+I'-H'-H-t-! / O~LLLLLLUUUUUUUW~~ o 50 100 150 200 °c 100 00 - - - TA -T. 'c tao --'A Forward current I, = fIV,) TA = 25 "C Peak forward current I'M = f(t) T. = 25 "C ,, ,.0 mA ,p. , ,, , 100 m• • 5 ! ~ l~O_1I I .0 J lO-'mmll3:~~!31m I 1 o=+~ 5 / .. / . 1O-1L...L-L.LJ1...L..LJ. 111.u.....1.L..J 11Iu.JJIIUL...J,I...LIIULIIU....... IJ..LI1...IL..J..LU 1 -VF V 1.' 10-6 10-5 10- 4 10- 3 10-1 10-' 100 s -t Siemens 99 Silicon Low Leakage Diode BAS116 = Forward voltage VF f (TA) 1.2 -I'- I'-I'-r-. -I ---1.0 v. -t- ." 100 l"- I"- -r-. r-. t- -- &0 l"- i- IF ., Om Om i- i- tt- t- r-. r-. r-. :-r-. I'- r-. Om 1m O 1m -- - t- --T. 100 C· r-- 1&0 Siemens Silicon Schottky Diodes BAT 17 ... • For mixer applications in the VHF/UHF range • For high-speed switching ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) BAT 17 53 Q 62702 - A504 Pin configuration SOT-23 ~ 10 BAT 17-04 54 55 ~I~ Q 62702 - A776 56 02 3 10 ~ BAT 17-06 03 3 Q 62702 - A775 1a BAT 17-05 Package I ItEI 02 3 Q 62702 - A777 10 !tEl I~ 02 Maximum Ratings per Diode Parameter Symbol Value Unit Reverse voltage VR 4 V Forward current IF 30 rnA Junction temperature 1j 150 Operating temperature range Top -55 ... +150 Storage temperature range Tstg -55 ... +150 °C °C °C Thermal Resistance I Junction - ambient1 RthJA I :5450 IKIW 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. Siemens 101 BAT 17 ... Electrical Characteristics per Diode at TA = 25°C, unless otherwise specified. Unit Parameter DC characteristics Breakdown voltage V(SR) 4 - - - - 0.25 1.25 10 200 350 275 340 425 350 450 600 V IR = 10 J.tA J.tA Reverse current VR =3V VR = 3 V, TA = 60°C VR=4V IR Forward voltage IF=0.1mA IF = 1 mA h= 10mA VF Diode capacitance VR=O, f=1 MHz Cr - 0.75 1 pF Differential forward resistance Ii - 8 15 n F - 5.8 7 dB mV - IF = 5 mA, f= 10 kHz Noise figure h=2 mA, f=900 MHz IF noise figure: F= 1.5 dB, f= 35 MHz 102 Siemens BAT 17 ... Reverse current IR =f (VAl 5 i:: f-- 25°( 85°( 1500 ( I/' / ~TA= ~-400( f'Z I'" TA =150 0( V IT ~ J ~ f-.. ] 850( 7 IT II 25°( J I 10-2 o 0.1 0.2 I 0.3 0.4 0.5 0.6 V 1.0 2.0 3.0 4.0 V -If = Diode capacitance Or f (VR) f= 1 MHz Differential forward resistance f=10kHz 'f =f (4) pF 1.0 5 \ [T ~ -..;; 1 [\ 1"...... 0.5 I\, 1 10 5 o o 1.0 2.0 3.0 '" !'.... 4.0 V . Siemens 103 Silicon Schottky Diode BAT 64 • For low-loss, fast-recovery rectifiers, meter protection, bias isolation and clamping applications • Integrated diffused guard ring • Low forward voltage Type Marking Ordering code (tape and reeQ BAT 64 64 Q 62702 - A879 Pin configuration ~ 10 03 Package SOT-23 Maximum Ratings Parameter Symbol Value Unit Reverse voltage VR 30 V Forward current IF 200 rnA Average forward current (50/60 Hz, sinus) I FAV 100 rnA Surge forward current (t $10 ms) I FSM 800 rnA Ptot 230 mW °c °c » Total power dissipation (TA $ 25 °C2 Junction temperature 7j 125 Storage temperature range Tstg -55 ... +150 Thermal Resistance I RthJA Junction - ambient1 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 104 Siemens 1$430 IKIW BAT 64 Electrical Characteristics at TA = 25°C, unless otherwise specified. Parameter Unit DC characteristics Reverse current VR=25V VR = 25 V, TA = 125°C fR Forward voltage fF= 1 mA fF= 10mA fF= 30mA fF= 100 mA VF Diode capacitance VR = 1 V, f = 1 MHz Or Reverse recovery time fF:fRl:fR2=10:10:1 mA trr - - 2 200 - - - 320 375 420 550 - 4 6 - - 5 mV - Siemens J.IA 1000 pF ns 105 BAV70 Silicon Switching Diode Array • • For high-speed switching Common cathode Type (3 BAV70 Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package A4 Q6800O-A3574 Q68000-A6622 SOT 23 Maximum ratings per diode Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 1 ~s Total power dissipation TA= 25°C Junction temperature Storage temperature range VR IFM IFs 70 70 250 250 4,5 V V mA mA A Ptot 330 mW Tj 175 Tstg -65 .. ·+150 °C °C RthJA ::::;450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VRM IF (3 Preferred type 106 Siemens BAV70 Electrical characteristics per diode at TA = 25°C, unless otherwise specified DC characteristics Breakdown voltage I(BR) = 100 IlA Forward voltage iF= 1 rnA IF= 10mA iF= 50mA iF=150mA Reverse current VR = 70V VR = 25 V, TA = 150°C VR = 70 V, TA = 150°C Symbol min typ max Unit V(BR) 70 - - V - - 715 855 1000 1250 mV mV mV mV - - 2,5 30 50 IlA IlA IlA VF - - IR - - AC characteristics Symbol min typ max Unit Diode capacitance VR=OV,f=1MHz Reverse recovery time if = 10 rnA, IR = 10 mA, RL = 100n, measured at IR = 1 mA Co - - 1,5 pF trr - - 6 ns Test circuit for reverse recovery time OUT Oscilloscope: R = 50 n tr = 0,35 ns C:5 1 pF Pulse generator: tp = 100 ns, D = 0,05 tr = 0,6 ns, Ri = 50 n Siemens 107 BAV70 Total power dissipation Ptot = Reverse current I R = f (TA) f( TA) nA 105 mW 400 5 VR =70V V -" max. i--" 1/ 7OV/ 200 5 25V 100 1\ 5 typo / o o 10' 100 50 200 ·C 150 /,/ o 50 Forward current iF = Peak forward current IFM = f(t) TA= 25°C A 10 1 /D=0.005 5 0.01 F02 'lOS f (VF) rnA I II 100 I I max. typo O( -7i. TA = 25°C 150 150 100 -1A .... 'll0.2 ~ ~ ~t2< i 50 o i lO- Ii S 0,5 t~ D=i T T l/ o , 1,5 V 10-1 10-6 1111 I 1111 I 1111 I I 10- 5 10- 4 10- 3 10-1 10-' -t 108 Siemens 100 s BAV70 Forward voltage VF = f (TA) V 1,0 ill I F = 100 mA I I f r- t-t-_ r.... ~w. r--r-ij;--r-10 mA t--- J 0,5 -I- - 'r-l O,1mA 't---r-- r--r-- ...... 1"', ,,~ r-., 'i' o o 50 100 150 °c -TA Siemens 109 BAV74 Silicon Switching Diode Array • • For high-speed switching Common cathode C~A1 ~A2 Type Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package BAV74 JA Q62702-A498 Q62702-A695 SOT 23 Maximum ratings per diode Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 1 I-Ls Total power dissipation TA = 25°C Junction temperature Storage temperature range VR VRM IF IFM IFs 50 50 250 250 4,5 V V rnA rnA A Ptot 330 mW Ti Tstg 175 -65 .. · +150 °C °C Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm RthJA ~450 K/W 110 Siemens BAV74 Electrical characteristics per diode at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Breakdown voltage V(BR) 50 - - V VF - - 1 V - 0,1 100 j.!A j.!A I(BR) = 100 j.!A Forward voltage IF = 100 rnA Reverse current IR VR = 50V VR = 50 V, TA = 150°C - - - AC characteristics Symbol min typ max Unit Diode capacitance VR = 0 V, f= 1 MHz Co - - 2 pF Reverse recovery time trr - - 4 ns IF = 10 rnA, IR = 10 rnA, RL= 1000, measured at I R = 1 rnA Test circuit for reverse recovery time OUT = 100 ns, 0 = 0,05 tr = 0,6 ns, Ri = 50 0 Oscilloscope: R = 50 0 Pulse generator: tp tr = 0,35 ns C::; 1 pF Siemens 111 BAV74 Total power dissipation P tot = f ( TA) Reverse current IR mW 400 nA = f(TA) 105 5 YR =70V / / max. 1-"' 7O~1/ 200 I' 25V 1'1 1\ 100 1\ typo III o o j 100 50 150 °C 50 200 ·C 150 Forward current IF = f(VF) Peak forward current I FM TA = 25°C TA=25°C mA 150 10 f (t) A I 100 5 I II max. typo :~:~5 / 10' ~O.2 5 "l' "I>< 10° i 5 ~ 50 10-' I Ii o o = 0,5 "'" 5 I tt\{L D=--.F... T T [/ 1,5 V IV 111111111 11111 I I 10-6 10-5 10-4 10- 3 10-1 -t 112 Siemens 10-' 10° 5 BAV74 Forward voltage VF = f ( TA) V 1,0 ill r-_ I F = 100 rnA I I hl 10 mA ~ '}.k 0,5 l- I- O,1mA r-r-r- .......... r--- ..... . . . . . . r-1' .... r--r-.. r-. . . . I'1'1'- ..... o o 50 100 "" 150 0( Siemens 113 BAV99 Silicon Switching Diode Array • • For high-speed switching Connected in series C2,Al Type Iil BAV99 f;jfo A2 Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package A7 Q68000-A 1185 Q68000-A549 SOT 23 Maximum ratings per diode Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 1 ~s Total power dissipation TA= 25°C Junction temperature Storage temperature range VR VRM IF IFM IFs 70 70 250 250 4,5 V V mA mA A Ptot 330 mW Tj Tstg 175 -65···+150 °C °C RthJA :5 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm mPreferred type 114 ~Cl Siemens BAV99 Electrical characteristics per diode at TA = 25°C, unless otherwise specified Symbol DC characteristics min typ max Unit 70 - - V - - 715 855 1000 1250 mV mV mV mV - - 2,5 30 50 !LA min typ max Unit - - 1,5 pF - 6 ns Breakdown voltage I(BR) = 100 !LA V(BR) Forward voltage h= 1 rnA h= 10 mA h= 50mA h =150 mA VF Reverse current VR = 70V VR = 25 V, TA = 150°C VR = 70 V, TA = 150°C IR AC characteristics Symbol Diode capacitance VR = 0 V, f= 1 MHz Co Reverse recovery time h = 10 mA, IR = 10 mA RL= 100n, measured at I R = 1 mA trr - !LA !LA Test circuit for reverse recovery time OUT Oscilloscope: R = 50 n tr = 0,35 ns C::; 1 pF Pulse generator: tp = 100 ns, 0 = 0,05 tr = 0,6 ns, Ri = 50 n Siemens 115 BAV99 Total power dissipation Ptot = '( TA) Reverse current I R = '( TA) mW 400 nA 101 5 V.=70V ,/ 1\ V max. t-. II 70V 200 'j 5 \ 25V \ 100 5 typo 1/ o I o 50 100 Forward current IF TA = 25°C = 50 200 ·C 150 150°C Peak forward current I FM TA = 25°C '(VF) = '(t) mA 150 I ;0-0.005 5 0.01 F02 l'oS / I'll 0.2 I 100 Ii max. typo ~ 100 i 5 50 1 f~ Ii o o 0=+ T V 0,5 2 1111111111 I 1111 I I 1,5 V -f 116 Siemens BAV99 Forward voltage VF = f (TAl V 1,0 ill IF=10~~A w.. 10 mA 0,5 r- i:} . . . X r- O,1mA r-r- -r--r-- . . . r--.. . r--r-. ..... "' ..... ..... ~, r--..... ~~ o o 50 100 150 ·C Siemens 117 Silicon Low Leakage Diode Array BAV170 • Low Leakage applications • Medium speed switching times • Common cathode Type Marking Ordering code B-mm tape Package BAV170 JXs Q62702-A920 SOT 23 Maximum Ratings Description Symbol Reverse voltage Peak reverse voltage VR VRM Forward current BAV170 Unit 70 V 70 V IF 250 rnA Peak forward current IFM 250 mA Surge forward current ,t = 1115 IFs 4.5 Total power dissipation, TA = 25· C PlOt 330 mW 150 ·C Junction temperature Tj Storage temperature range Ts,g -65 to +150 A ·C Thermal Resistance Junction-ambient 1) :;;450 1) Package mounted on alumina 15mm x 16.7mm x O.7mm 118 Siemens IKIW BAV170 Silicon Low Leakage Diode Array Characteristics at TA = 25 • C, unless otherwise specified. I Description DC I Symbol Ratings min. Ityp. Imax. IUnit Characterl~tlcs breakdown voltage 'IBR) = 100 llA VIBR) Forward voltage IF= 1mA IF= 10mA IF = 50mA IF= 150mA VF Reverse current VR=70V VR = 70V, TA = 150·C IR 70 - - V - - 900 1000 1100 1250 mV mV mV mV - - 5 80 nA nA - 2 - pF - 0.5 3 lIS AC Characteristics Diode capacitance VR=OV, f=1 MHz Co Reverse recovery time IF = 1OmA, IR = 10mA, RL = 100Q measured at IR = 1mA trr Test circuit for reverse recovery time DUT Oscilloscope Pulse generator: tp= 100ns,D= 0.05 t, = 0.6ns,Ri = son Oscilloscope: R = son t, = O.35ns, C:s 1pF Siemens 119 Silicon Low Leakage Diode Array BAV170 Total pow.r diaaipation Po.. = fl TA) Rav.,.. curr.nt I. '" fl TAl ..w 10' 400 r. v._ x. r..;' 1/ V 10' 200 Yo. 10' I' ~ 100 II °° 100 .0 150 tOO - TA ,, "'" ,0=0.005 f 0.01 ,0.02 /~.OS '/~·1 :: 0.2 / m. yo. 100 s I I ,: ... ~ .,.: ~ II .0 I I to- 1 I I o 120 .. 110 P..k forward current 10M '" fIt) TA - 25 "C 110 o ·c --'A -1A Forward currant I, = fW,) TA = 25 "C " 1 10' so S II ~ ... ~' -v. 1 V t.' Siemens I tiQ-L 0=-;- nm T 111111111111 to-2 to-6 10-S to'" tool to-2 to-' -t v:/' s Silicon Low Leakage Diode Array BAV170 Forward voltage VF =f (TA) 1.2 r- -l1.0 IIF ~- v. I .. -----r---r--I- 1-1--0 80 ·1 Om -I- l0m - 1"""_ t- 1-- r- l-I-Om 1m r---_ o 1m r-- r--_ I""" I- --r-. - -- - --T. 100 C· .... 150 Siemens 121 BAV199 Silicon Low Leakage Diode Array J7Jw • Low Leakage applications • Medium speed switching times • Connected in series fifo C2,A1 Type Marking Ordering code B-mm tape Package BAV199 JYs Q62702-A921 SOT23 C1 A2 Maximum Ratings Description Symbol Reverse voltage VR VRM 70 V Peak reverse voltage 70 V Forward current IF 250 mA Peak forward current IFM 250 mA BAV199 Surge forward current ,t = 1lIS IFS 4.5 Total power dissipation, TA = 25 ° C P IOI 330 Junction temperature Tj Storage temperature range TSl9 150 -65 to + 150 Unit A mW °C ·C Thermal Resistance Junction-ambient! ) 'l IRiJlJA Package mounted on alumina 15mm x 1S.7mm x O.7mm 122 Siemens S450 IKM' Silicon Low Leakage Diode Array BAV199 Characteristics at TA = 25 • C, unless otherwise specified. Description Imax. Unit DC Characteristics breakdown voltage I(BR) = 100 pA V(BR) Forward voltage IF = 1mA IF= 10mA IF = 50mA IF= 150mA VF Reverse current VR=70V VR=70V, TA=150·C IR 70 - - V --- - --- 900 1000 1100 1250 mV mV mV mV - - - 5 80 nA nA - 2 - pF - 0.5 3 ps AC Characteristics Diode capacitance VR=OV,f=1 MHz Co Reverse recovery time IF = 10mA, IR = 10mA, RL =100Q measured at IR = 1mA tf( Test circuit for reverse recovery time OUT Oscilloscope Pulse generator: tp= 100ns,D= 0.05 t, == 0.6ns,Rj = son Oscilloscope: R = 50n t, = 0.35n5, C s 1pF Siemens 123 Silicon low leakage Diode Array BAV199 Total power dissipation p••• = f( TA) Rever.e current I. mW = f( TA ) '0' 400 VA =7 V ox. r- ./ :/ V '0' ~ 200 typo '0' " \ 100 . / '0' o o '0' 50 100 200 150 IF = f(VF) Peak forward current TA = 25 OC ·C 100 IFM = fIt) ' A '.0 mA I, 10 2 I 5 " I 1/ 0 =0005 0.D1 IF M r , , , yp. ma. '00 II 10' 0.02 [;~.05 rl'0.2 5 10° I: ! tl' 5 I .0 , , II 10- I 5 I} .. 124 100 --'A -J,i Forward current TA = 25 OC --T. '0 ec ,/ = I tl};r- O=-f T .... ~' -v. 1 Y 1.8 1111 I I III I 1111 I I 10-2 10-6 10-5 10"' 10- 3 10- 2 1(r' -t Siemens 10° s Silicon Low Leakage Diode Array BAV199 Forward voltage VF = f (TA) 1.' ~:- 1.0 --r-'F -1 Om ~- v. I --- - r- r--r-. --- Om :-I-Om -- -- --- -- - -- -I-r1m .. --f- o 1m SO -.-. - 100 C' 180 --TA Siemens 125 BAW56 Silicon Switching Diode Array • • For high-speed switching applications Common anode Type !:"IBAW56 Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package A1 Q62702-A471 Q62702-A688 SOT 23 Maximum ratings per diode Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t = 1 !!s Total power dissipation TA = 25 DC Junction temperature Storage temperature range VR VRM V V hM hs 70 70 250 250 4,5 Ptot 330 mW Tj Tstg 175 -65···+150 DC DC RthJA :5 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm h !:"I Preferred type 126 Siemens mA mA A BAW56 Electrical characteristics per diode at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Breakdown voltage I(BR) = 100 (.LA V(BR) 70 - - V Forward voltage IF= 1 rnA IF= 10mA IF= 50mA IF =150 rnA VF - - 715 855 1000 1250 mV mV mV mV Reverse current VR = 70V VR = 25 V, TA = 150°C VR = 70 V, TA = 150°C IR - 2,5 30 50 (.LA (.LA (.LA AC characteristics Symbol Diode capacitance VR = OV, f=1 MHz Co Reverse recovery time IF = 10 rnA, IR = 10 rnA, RL= 1000, measured at I R = 1 rnA trr - - - min typ max Unit - - 2 pF - 6 ns Test circuit for reverse recovery time OUT Oscilloscope: R = 50 0 tr = 0,35 ns CS 1 pF Pulse generator: tp = 100 ns, 0 = 0,05 tr = 0,6 ns, RI = 50 0 Siemens 127 BAW56 Total power dissipation Ptot = f (TA) Reverse current I R = f (TA) mY! 400 105 nA 5 \-R=70V r-. V ,;' max. /1/ 7OY/II 200 5 25V 1\ 1\ 100 1\ 5 o o typo J/ /J 50 100 100 50 200 ·C 150 150 O( 10° S -/A Forward current IF = f(VF) Peak forward current I FM = f (t) TA= 25°C TA= 25°C mA A 150 10 1 I 1/0= 0.005 5 II I 100 0.01 0.02 [;~.05 I/ r 0.2 ll Ii max. typo ~ i 50 1 I Ii o o i,..o' 0,5 O=J... t T tQ-tT 1/ 1,5 V 10-1 10-6 I 1111 I 1111 I 1111 I I 10-5 10-4 10- 3 10-1 -t 128 Siemens 10-1 BAW56 Forward voltage VF = f (TA) V 1,0 ill 1--- I F= 10~ ~A f ~ 10 mA r-. .... 1:}-~ 0,5 - "'N... O,1mA r-... I-- r-.r-. .... r-. ..... I"-. ..... I"-.r-. 1"-. ..... o o 50 100 150 DC -TA Siemens 129 BAW78 A ···BAW78 D Silicon Switching Diodes • • Switching applications High breakdown voltage Type BAW78 BAW78 BAW78 BAW78 A B C 0 Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package GA GB GC GO Q62702-A675 Q62702-A676 Q62702-A677 Q62702-A678 Q62702-A778 Q62702-A779 Q62702-A784 Q62702-A 109 SOT 89 SOT 89 SOT 89 SOT 89 Maximum ratings Parameter Symbol BAW78 A BAW78B BAW78 C BAW7S D Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current f=1ll s Total power dissipation TA = 25°C Junction temperature Storage temperature range VR VRM 50 50 Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 130 100 100 h hM hs 200 200 1 1 10 400 400 V V A A A W P tot 150 -65 ... +150 Tj Tstg :5125 RthJA Siemens °C °C K/W BAW78 A .. ·BAW78D Electrical characteristics at TA = 25 cC, unless otherwise specified DC characteristics Symbol Breakdown voltage I(BRI = 100!lA V(BRI BAW78A BAW78B BAW78C BAW78D Forward voltage') IF= 1 A 1F=2A Reverse current VR = VRmax VR = VRmax, TA = 150 cC VF IR min typ max Unit 50 100 200 400 - - - V V V V - - 1,6 2 V V - - - 1 50 !lA !lA AC characteristics Symbol min typ max Diode capacitance VR = 0, f=1 MHz Reverse recovery time IF = 200 rnA, IR = 200 rnA, RL= 1000, measured at IR = 20 rnA Co - 10 - Unit pF trr - 1 - I1s Test circuit for reverse recovery time OUT Pulse generator: t p = 100 ns, D = 0,05 t r = 0,6 ns, RI = 50 Oscilloscope: R = 50 0 tr = 0,35 ns CS 1 pF ') Pulse test: tp S 300 1lS, D = 20/0. Siemens 131 BAW78 A ···BAW78D Total power dIssIpatIon Ptot = '(TA) Forward current IF = f (VF) TA=25°C A 10 1 W 1,2 r 5 1.0 /' '\. \ 0,8 "., 5 1\ 1\ I 1 0,6 1\ 1\ 0,4 1\ 2 1(1 1\ 5 0,2 o 1\ o 100 50 150 10-3 o 0( 2 V -T. Peak forward current I FM = '(t) Reverse current I R = f ( TA) VR = VRrnax TA= 25°C 0=0.005 5 V?·OI ~0.02 V~·05 0.1 /02 " 5 100 V ~~ I'- max .... Ityp 5 lO-1 5 fpl-- fp - S O=T _r-~ I--T IIII 10-2 m-6 V 10 2 10-5 'I" I Illl I 1111 I I 10- 4 10- 3 10- 2 101 10-1 100 5 o 132 SO 100 -T. -f Siemens 150 0( BAW79 A ···BAW79 D Silicon Switching Diodes • • • A2 For high-speed switching High breakdown voltage Common cathode Type Marking Ordering code for versions in bulk Ordering code for versions on 12 mm-tape Package BAW79 A BAW79B BAW79 C BAW79 0 GE GF GG GH Q62702-A679 Q62702-A680 Q62702-A681 Q62702-A682 Q62702-A7B1 Q62702-A782 Q62702-A771 Q62702-A733 SOTB9 SOT 89 SOT 89 SOT 89 Maximum ratings per diode Parameter Symbol BAW 79 A BAW 79 B BAW 79 C BAW 79 0 Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 1 its Total power dissipation TA = 25°C Junction temperature Storage temperature range VR 50 50 V Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VRM 100 100 h ~ hs 200 200 1 1 10 400 400 V A A A W Ptot n 150 -65···+150 Tstg :5125 RthJA Siemens °C °C K/W 133 BAW79 A ···BAW79D Electrical characteristics per diode at TA = 25°C, unless otherwise specified DC characteristics Symbol Breakdown voltage I(BR) = 100!lA V(BR) BAW79 A BAW79B BAW79C BAW79 D min typ max Unit 50 100 200 400 - - V V V V - - - 1,6 2 V V - - 1 50 IlA - Forward voltage') IF = 1 A IF=2A VF Reverse current VR = VRmax VR = VRmax, TA = 150°C IR AC characteristics Symbol min typ max Unit Diode capacitance VR = OV, f=1 MHz Co - 10 - pF Reverse recovery time IF = 200 mA, IR = 200 mA, trr - 1 - Ils RL= 1000, measured at I R = 20 mA Test circuit for reverse recovery time OUT Pulse generator: tp = 100 ns, D = tr = 0,6 ns, R; = Oscilloscope: R = 500 tr = 0,35 ns C:::; 1 pF 0,05 50 ') Pulse test: tp:::; 300 Ils, D = 20/0. 134 Siemens !lA BAW79A ",BAW79 D Total power dissipation Ptot = f( TA) Forward current IF = f (VF) TA = 25°C W 1,2 A 10' 5 1"1,0 ./ \. 1\ 0,8 "" 1\ \. , 0,6 I 1\ 0,4 1\ 2 \. 0,2 1\ o \ o 50 150·( 100 10-3 o 2 V --~ Peak forward current TA = 25°C lFM = f (t) Reverse current I R = f ( TA) VR = VRrnax D=0.005 V~·Ol :%~.02 :/:,~05 ~' 0.1 /02 / ~ V Vtyp. max~ 100 5 V , t ' - fplT _ I-'-~ D=--'£' 10-2 10-6 II 10-5 I--T V I IIII I IIII I I 10- 4 10- 3 10- 2 10-' 10° s 50 100 150 0( -t Siemens 135 Silicon Switching Diode Array • BAW101 Electrically isolated high-voltage medium-speed diodes A2/lkC2 A1~C1 Type Marking Ordering code for versions In bulk SAW 101 JP Q62702-A3444 Ordering code for Package versions on 8 mm-tape ----!.-4----SOT 143 Q62702-A71" Maximum ratings Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 1 LlS Total power dissipation TA = 25°C Junction temperature Storage temperature range VR V V IFS 300 300 200 500 4,5 Ptot 280 mW Tj Tstg 150 -65 ... +150 °C °C RthJA ::5450 KIW Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 136 VRM IF IFM Siemens mA mA A SAW 101 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Breakdown voltage I (BR) = 100 f.lA V(BR) 300 - - V Forward voltage IF= 100 rnA VF - - 1,3 V Reverse current VR = 250 V VR = 250 V, TA = 150°C IR - - - 150 50 nA /!A AC characteristics Symbol min typ max Unit Diode capacitance VR = 0, f= 1 MHz Co - 6 - pF Reverse recovery time IF = 10 rnA, IR = 10 rnA, RL= 100n, measured at IR = 1 rnA trr - 1 - /!s Total power dissipation Ptot f ( TAl = mW 400 ~ot t 300 I-I-h,. 1\: 200 1\: i\ 1\ r-... l\. 1\: 100 1\: \ l\. l\. o o 50 100 K 150 °C -7;. Siemens 137 BAW101 Forward current IF = f (VF) TA = 25°C Reverse current I R = f ( TA) A 10° lL , 1/ I 5 1/ 1/ typo m.x. 1/ 2 ~. ,,' IJ 5 10-l o 10' 1,0 2,0 V o -Ii 138 Siemens so 100 150 'C Silicon Low Leakage Diode Array BAW156 A~Cl [;jfo • Low Leakage applications • Medium speed switching times • Common anode C2 Type Marking Ordering code 8-mm tape Package BAW156 JZs Q62702-A922 SOT 23 Maximum Ratings Description Symbol Reverse voltage VR VRM Peak reverse voltage Forward current IF Peak forward current IFM Surge forward current ,t =l11S =25· C BAW156 70 70 250 250 4.5 330 150 IFS Total power dissipation, TA PID1 Junction temperature Ii Storage temperature range Tstg Thermal Resistance I Junction-ambient 1) RlhJA -65 to + 150 :;;450 Unit V V mA mA A mW ·C ·C IKIW 1) Package mounted on alumina 15mm x 16.7mm x O.7mm Siemens 139 Silicon Low Leakage Diode Array BAW156 Characteristics at TA =25°C, unless otherwise specified. Description Unit DC Characteristics breakdown voitage I(BR) 100 pA V(BR) Forward voltage IF= 1mA IF= 10mA VF = - V - -- 900 1000 1100 1250 mV mV mV mV - - 5 80 nA nA - 2 - pF - 0.5 3 }1s 70 IF=50mA IF=150mA Reverse current VR=70V VR=70V, TA=150°C IR AC Characteristics Diode capacitance VR=OV, f= 1 MHz Co Reverse recovery time IF = 10mA, IR = 10mA, t" RL =100Q measured at IR = 1mA Test circuit for reverse recovery time OUT Oscilloscope Pulse generator: tp= 100ns,O= 0.05 t, = 0.6ns,Rj = son 140 Oscilloscope: R = son t, = 0.3Sns, C:s lpF Siemens Silicon Low Leakage Diode Array Total power dissipation BAW156 p,., = f( TAl Rever.e current I. = f( TAl mW 400 I.' r. V. -7 a •• ,; V I.' 200 , V I.' I,p. \ 100 . I.' o o I.' so 100 200 ·C lS0 I. 100 'C 150 -TA --'A -~ Forward current I, = fW,1 TA = 25 "C Peak forward current I'M = fit) TA = 25 "C 15. 'F / I, .... I I , , ,! rp· I •• ma. S I I. II II I I J ~ .. I.1 , V 1.1 -VF -I Siemens 141 BAW156 Silicon Low Leakage Diode Array Forward voltage VF =f (TA) '.2 .1- I'.0 .1.1- l- .- 1-1- ... IF ., Om I-- - I- 1-1-- 1-- :--Om ------ ..... ~ ~Om -r-.. r--r-.. r-_ r-~ 'm .. 'm ...... 60 ~ ............ 100 C' 150 --TA 142 Siemens Silicon Tuning Diode BB 419 • For VHF tuned circuit applications calh~ Type Marking Ordering code (taped) Package BB 419 white/2 062702-B499 SOD-123 Maximum Ratings Parameter Symbol Value Reverse voltage VA 28 V Peak reverse voltage VAM 30 V Unit Forward current, TA :5 60 °C IF 20 mA Operating temperature range Top -55 ... +125 °C Storage temperature range Tstg -55 ... + 150 °C Siemens 143 BB 419 Characeristics at TA=25 °C, unless otherwise specified. Parameter Symbol Reverse current VR=28 V VR =28 V, TA =60 °C fR Diode capacitance f = 1 MHz VR = 3V VR = 25 V CT Capacitance ratio VR=3 V/25 V CT3V/CT25V Series resistance = 100 MHz, CT = 12 pF rs Figure of merit (=50 MHz, VR =3 V (=200 MHz, VR =25 V Q Diode capacitance CT = ( (VR) pF 60 l"40 \. r\ 30 \ 20 10 o 0,3 144 "' 10 -VR 30 V Siemens Unit Value min. typo max. - - 20 200 nA pF 26 4.3 - 32 6 5 - 6.5 - 0.35 0.5 - 280 600 - n - Silicon Tuning Diode BB 512 cal~ • For AM tuning applications • Specified tuning range 1... 8 V Type Marking Ordering code (taped) Package BB 512 white/M Q62702-A479 SOD-123 Maximum Ratings Parameter Symbol Value Unit Reverse voltage VR 12 V Forward current, TAS60 ·C IF 50 mA Operating temperature range Top -55 .. : + 125 Storage temperature range T stg -55 ... + 150 ·C ·C Siemens 145 BB 512 Electrical Characteristics at TA = 25 ° C, unless otherwise specified. Parameter Reverse current VR= 10 V VR=10V, TA=60 °C fR Diode capacitance f= 1 MHz VR=1 V VR=8 V CT Capacitance ratio VR = 1 V/8 V Cn/CTS Series resistance f=0.5 MHz, VR=1 V rs Figure of merit f=0.5 MHz, VR=1 V Q Temperature coefficient of diode capacitance f= 1 MHz, VR = 1 V TCe Capacitance matching VR= 1... 8 V ACT/CT 146 Unit Symbol Value Siemens min. typo max. - - 20 200 nA pF 440 17.5 470 - 520 34 15 - - - 1.4 - - 480 - - 500 - - 3 Q ppm/K 0/0 Silicon Tuning Diode 88515 cal~ • For UHF and VHF TV/VTR tuners Type BB515 Ordering code Q62702-B398 Marking white/S Maximum ratings 30 20 Reverse voltage Forward current V rnA TA ::;;60oC -55 ... +125 -55 ... +150 Operating temperature range Storage temperature range Siemens 147 BB 515 Characteristics (TA = 25°C) min Reverse current VR 30 V 30 V, TA 85°C IR Diode capacitance, f= 1 MHz 1V VR 28V CT Capacitance ratio VR 1 V, 28 V; f= 1 MHz CT1 CT28 Capacitance matching VR 0.5 V... 28 V ~CT Series resistance CT 9 pF, f= 470 MHz r. Series inductance L. = = = 16 1.85 = = Diode capacitance CT = f(VR) f= 1 MHz pF 24 f\ \ ~ 1\ ~ 8 4 "-" o 0.3 148 3 - 8 max 10 200 nA nA 19.5 2.25 pF pF 9.6 3 % CT = 12 typ 10 30V Siemens 0.5 0 2.8 nH Silicon Tuning Diode 88619 ca'h~ • For VHF/CATV TV/VTR tuners with extended frequency band Type 88619 Ordering code Q62702-8401 Marking yellow/S Maximum ratings Reverse voltage Forward current Operating temperature range Storage temperature range 30 20 -55 ... +125 -55 ... +150 Siemens V mA 149 BB 619 Characteristics (TA = 25°C) min typ max· Reverse current VR = 30 V 30 V, TA = 85°C IR Diode capacitance, f= 1 MHz VR = 1 V 28 V CT Capacitance ratio VR = 1 V, 28 V; f= 1 MHz CT l CT28 Capacitance matching VR = 1 v. .. 28 V, f = 1 MHz ..1CT CT Series resistance CT = 30 pF; f= 100 MHz rs 0.7 Q Series inductance Ls 2.8 nH Diode capacitance CT = f (VR ) f= 1 MHz pF 60 " 40 i\. '\ 30 \ r\ 20 " 10 '\. o 0,3 10 - 30V -VR 150 Siemens 33.5 2.4 - 12.5 14 10 200 nA nA 41 2.9 pF pF 2.5 % Silicon Tuning Diode 88620 Cath~ • For Hyperband TV/VTR tuners, 8d I Type 88620 Ordering code Q62702-8403 Marking red/S Maximum ratings Reverse voltage Forward current Operating temperature range Storage temperature range Siemens 30 20 V -55 ... +125 -55 ... +150 °C °C mA 151 88620 Characteristics (TA = 25°C) min Reverse current VR = 30 V 30 V, TA = 85°C Diode capacitance, f VR = 1 V 28V typ max IR = 1 MHz 10 200 nA nA 76 3.4 pF pF CT 62 2.9 - Capacitance ratio VR = 1 V. 28 V; f = 1 MHz CT 1 CT28 Capacitance matching VR = 1 V... 28 V, f = 1 MHz LlCT CT Series resistance CT = 30 pF; f= 100 MHz '. 1.3 Q Series inductance los 2.8 nH Diode capacitance CT = f (VR) f= 1 MHz pF 100 " I\. 60 so \.. "I" \ 40 30 20 '\.. 10 o 0,3 152 ...... 3 10 30V Siemens 19.5 25 2.5 % 88804 Silicon Dual Tuning Diode • • • • • IJ Application in FM tuners Monolithic chip with common cathode for perfect tracking of both diodes Uniform "square law" C-V characteristics Ideal hifi tuning device when used in low distortion back-to-back configuration Available in capacitance subgroups') for convenient tuner alignment C A1 A2 Type Marking 88804 SF') Ordering code for versions In bulk Q62702-8328 Ordering code for versions on 8 mm-tape Q62702-8356 Package SOT 23 Maximum ratings Parameter Symbol Reverse voltage Peak reverse voltage Forward current VR TA:5 IF Ratings 18 20 50 Unit V V mA Top Tstg 100 -65···+150 °c °c VRM 60°C Operating temperature Storage temperature range ') For group coding refer to page 154. Siemens 153 88804 Electrical characteristics per diode at TA = 25 ac, unless otherwise specified Characteristics Symbol Reverse current VR = 16V VR= 16V, TA=60 a C Diode capacitance VR=2V,f=1MHz Capacitance ratio VR =2V/8V, f=1 MHz Series resistance CD = 38 pF, f= 100 MHz fR min typ max Unit - 20 200 nA nA 47,5 pF Co 42 - C02v/C08V 1,65 1,7 - - rs - 0,25 - n Quality factor CD = 38 pF, f=100 MHz Q - 170 - - Temperature coefficient of diode capacitance VR = 2 V, f= 1 MHz TCe - 330 - ppm/K Capacitance groups') VR=2V,f=1MHz CD 42 43 44 45 46 - 43,5 44,5 45,5 46,5 47,5 pF pF pF pF pF Group- no. 0 Group- no. 1 Group- no. 2 Group - no. 3 Group-no.4 - ') The capacitance group number is marked on the component and the package labels. One packaging unit (e.g. 8 mm-tape) contains diodes of one group only. Delivery of discrete capacitance groups requires special contract. 154 Siemens 88804 Diode capacitance per diode Co = f (VR) f=1 MHz pF 60 Capacitance deviation per diode Co(vN)fCo(VR) = ((VR) VN = 1 V, 2 V, (= 1 MHz 3 UI VN=1V r-. ~ =2V V I\. 50 '\ 40 V- ~ \ 30 II \ 1/ III rJ I'-.. 20 10 o 0.3 to 10 -VR 20 V o o 2 4 6 8 10 a • ~ m mv -I'll Temperature coefficient of diode capacitance TCe = f(VR) f=1 MHz , K 10-3 "'"' ':--. 4 "- 5 5 30 V Siemens 155 BB 811 Silicon Tuning Diode cat~ • Frequency range up to 2 GHz; special design for use in TV-sat indoor units Type Marking Ordering code (taped) Package BB 811 whiterr. Q62702-B478 SOO-123 Maximum Ratings Parameter Symbol Value Unit Reverse voltage VA 30 V Forward current, TA:S 60 ° C IF 20 mA Operating temperature range Top -55 ... + 125 °C Storage temperature range Tstg -55 ... + 150 °C 156 Siemens BB 811 Electrical Characteristics at TA = 25 ° C, unless otherwise specified. Symbol Ratings min. typo Parameter Reverse current VR=30 V VR=30 V, TA =85 °C IR Diode capacitance f= 1 MHz VR=1 V R=28 V CT Capacitance ratio f= 1 MHz, VR = 1 V/28 V CT1 /CT28 Series resistance f= 100 MHz, CT = 9 pF rs Case capacitance f=1 MHz Cc Capacitance matching f= 1 MHz, VR = 0.5 ... 28 V ACT/CT Series inductance Ls - - Unit max. nA 20 500 pF 7.8 0.85 8.8 1.02 9.8 1.2 7.8 8.6 9.5 - 1 - - 0.1 - - - 3 2.8 Q pF % nH Diode capacitance CT = f (VR) f= 1 MHz 12 pF [T 1 10 8 1\ \. \ 1\ 6 ~ 4 I\. 2 o 0,3 "- r-... 1,0 10 V 30 Siemens 157 Silicon Dual Tuning Diode 88814 Preliminary data c • For FM radio tuners with extended frequency band • High tuning ratio at low supply voltage (car radio) J7Jw ~A2 • Monolithic chip (common cathode) for perfect dual diode tracking • Coded capacitance groups and group matching available Ordering code BB 814 Q62702-B404 Marking SH Tvpe Maximum ratings per diode Reverse voltage Peak reverse voltage Forward current 18 20 50 V V mA -55 ...+125 -55 ... +150 °C °C TA :::; 60°C Operating temperature range Storage temperature range 158 Siemens A1 88814 Characteristics per diode (TA = 25°C) min Reverse current VA = 16 V 16 V, TA = 60°C fA Diode capacitance, f= 1 MHz1) VR = 2V SV CT Capacitance ratio VR = 2 V, S V; f= 1 MHz CT2 CTS Capacitance matching .dCT CT VA = 2V, SV typ max 20 200 nA nA 43 1S.2 44.75 46.5 20.S 24 pF pF 1.95 2.15 2.35 - 3 % Diode capacitance CT = f (VA) per diode, f= 1 MHz pF 100 BO 70 1'0. 60 '\. 50 '\. 40 30 20 ........ 10 o 0,3 1) 10 3 20V Capacitance groups, coded 1, 2 Code 1 2 CT (2V) CT 43 -45 44.5 - 46.5 18.2-23.2pF 18.8 - 24 pF (BV) Siemens 159 BGX50A Silicon Diode Array • • Bridge configuration High-speed switch diode chip Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BGX50A U1 Q62702-G35 Q62702-G38 SOT 143 Maximum ratings per diode Parameter Symbol Ratings Unit Surge reverse voltage Peak reverse voltage Forward current Total power dissipation TA = 25°C Junction temperature Storage temperature range VRS V V Ptot 50 70 140 280 Tj Tstg 150 -65···+150 °C °C RthJA :5 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 160 VRM IF Siemens mA mW BGX50A Electrical characteristics at TA = 25 DC, unless otherwise specified DC characteristics Symbol min typ max Unit Forward voltage (two diodes connected in series) IF=100mA VF - - 2,6 V Reverse current VR = 50V VR = 50 V, TA = 150°C IR - - - 0,2 100 flA AC characteristics Symbol min typ max Unit Diode capacitance VR = 0, f= 1 MHz Co - - 1,5 pF Reverse recovery time IF = 10 mA, IR = 10 mA, RL = 100 n measured at IR = 1 mA t rr - - 6 ns t-tA Test circuit for reverse recovery time OUT Oscilloscope: R = 50 n tr = 0,35 ns C:5 1 pF Pulse generator: tp = 100 ns, D = 0,05 tr = 0,6 ns, Ri = 50 n Siemens 161 BGXSOA Total power dissipation Ptot = (( TA) Reverse current fR = ((TA) mW nA 400 105 5 VR =70V V' '/ max. r\ 1"\ 200 I\. 7O~A/ , 5 1\ 25V 100 typo II 1,\ o o 50 100 -lj. 1'\ 150 °c Forward current IF = ((V F) TA = 25°C 10 ' I)il o 50 150 0 C Pesk forward current f FM = ((t) TA = 25°C mA 150 I/D= 0.005 0.01 ;/°.02 rl0 5 II r1?1 II 0.2 100 [1 max. typo t> II j 50 11 lO- 1 J II o o 7/ 0,5 S T 10-2 1,0 1,5 V TIIIIIIIIIIIIIIII 10-6 10-5 10-4 10- 3 10-2 -t -\of 162 tt£r- D=+ 7 Siemens 10-1 10° 5 BGX50A Forward voltaga VF = ((TA) V 1,0 ill \of I F = 100 rnA I I t ~~ r--_ I- 10 rnA I'r-. ~I' 0,5 l- 'r-..r-. Ir-k I- 0.1 rnA r-.. t'--r--- 1', t'-- r---r-. " o o 50 150 O( Siemens 163 Silicon Switching Diode • 5MBD 914 c{J. For high-speed switching applications Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package 5MBD 914 S5D Q68000-A6418 Q68000-A625 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Reverse voltage Peak reverse voltage Forward current Peak forward current Surge forward current t= 111S Total power dissipation TA = 25°C Junction temperature Storage temperature range VR VRM V V hM hs 70 100 250 250 4,5 Ptot 330 mW Tj Tstg 175 -65···+150 °C °C RthJA :s; 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 164 h Siemens mA mA A 5MBD 914 Electrical characteristics at TA = 25°e, unless otherwise specified DC characteristics Symbol min typ max Unit Breakdown voltage I(BR) = 100!lA Forward voltage IF = 10 mA V(BR) 100 - - V VF - - 1 V Reverse current VR = 20V VR = 75 V VR = 20 V; TA = 150 0 e VR = 75 V; TA = 150 0 e IR - - 25 5 30 50 nA flA flA flA AC characteristics Symbol min typ max Unit Diode capacitance VR = 0, f = 1 MHz CD - - 2 pF Reverse recovery time IF = 10 mA, IR = 10 mA VR = 1 V, RL= 100n measured at IR = 1 mA trr - - 4 ns - - - Test circuit for reverse recovery time OUT Pulse generator: tp = 100 ns, D = 0,05 Oscilloscope: R = 50 n tr = 0,35 ns tr = 0,6 ns, Ri = 50 n C Siemens ~ 1 pF 165 5MBD914 Total power dissipation Ptot = f (TA) Reverse current I R = f ( TA) mW 400 105 nA 5 VR =70V 1/ r\ 1/ max. ~. 7O~J'/ 200 5 25V r\ 100 r\ typo 1/ a a 50 100 200 150 ec 10' J o 50 150 0 C 100 -T" Forward current TA= IF = f(vd Peak forward current 25°C TA= IFM = f(t) 25°C mA 150 I !/D=OOOS 0.01 5 ~/?02 II 100 J I max. typo i r/~05 ll Ir 0.2 5 i 50 , I i o 1/ o a,s D=i& ./ 1,5 V 10- 2 10-6 IIIIII III1 11111 I I 10-5 10-4 10- 3 10- 2 -t 166 Siemens 10-' 10° s 5MBD 914 Forward voltage VF = !(TA) V 1,0 ill I- IF= 10~ iA f r-t- W. 10 mA I ............. r--- I ij--, 0,5 - r-t. O,1mA r-.... " , I'-.~ 'I'-. o o 50 100 150 O( Siemens 167 5MBD 2835/36 Silicon Switching Diode Array • For high-speed switching applications • Common anode A f7JwCl ~C2 Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package 5MBD 2835 5MBD 2836 SA3 SA2 upon request upon request upon request upon request SOT 23 SOT 23 Maximum ratings Parameter Symbol 5MBD2835 5MBD2836 Unit Reverse voltage 30 50 V 75 V Peak reverse voltage VR VRM Forward current IF 250 Peak forward current IFM 250 mA I FS 4.5 A Ptot 330 mW 7j 175 °C - 65 ... +150 °C Surge forward current t= 1 fls Total power dissipation ]A = 25°C Junction temperature Storage temperature range r.tg 75 mA Thermal resistance junction - ambient package mounted on alumina 15mm x 16.7mm x 0.7mm 168 RthJA Siemens :S; 450 K/W 5MBD 2835/36 Characteristics at T,. = 25 ce, unless otherwise specified DC characteristics Symbol Breakdown voltage = 100 jJA min. typo max. Unit 75 75 - - V V - - - - 1000 1000 1200 mV mV mV - - - 100 100 nA nA VIBR ) 5MBD 2835 5MBD 2836 IIBR) Forward voltage = 10 rnA I F = 50 rnA I F = 100 mA - VF IF Reverse current VR = 30 V VR = 50 V IR SMSD 2835 5MBD 2836 AC characteristics Symbol min. typo max. Unit Diode capacitance V R = 0, f= 1 MHz Co - - 4 pF Reverse recovery time IF = 10 rnA. IR = 10 rnA, RL = 100 Q measured at IR = 1 mA trr - - 6 ns Test circuit for reverse recovery time " Lt7.t /JmA Speci men IF Pulse generator: = 100 ns, D = 0.05 t, = 0.6 ns, R; = 50 Q tp I Oscillograph: R= 50 Q t, = 0.35 ns Cs. 1 pF Siemens 169 5MBD 2835/36 Total power dissipation Ptot = f I TA ) Reverse current IR = f I TA ) nA mW 400 lOs 5 i.. \.'R=70V ~ ~ max. 7O~)rJ 200 5 r\ 100 2SV r\ 5 typo 1/ o o 50 100 I 10' 200 ·C 150 o 50 150°C 100 -7A Peak forward current IFM = fIt) TA = 25°C Forward current IF = f I ~) TA = 25°C mA A 150 102 I © /0=0.005 0.01 0.02 5 II 100 I typo /?os 'll 0.2 5 Imax. ~ ~ i 50 lO- J Ii o o S 1/ 0,5 , = tl£rL O=-f 10-2 11111111/1111111 10-6 10-5 10-4 1,5 V 10-3 10-2 -t 170 Siemens 10-' 100 5 5MBD 2835/36 Forward voltage VF = f (TAl V m 1,0 I F= 10~ ~A r-_ 1-1-1-1- .~ 10 rnA t-t-.. .. r-l .... ~ 0,5 - I- O,1rnA 1' ............ t-t-.. t- ....... ..... t-..... o o 50 100 150 ·c Siemens 171 5MBD 2837/38 Silicon Switching Diode Array • For high-speed switching applications • Common cathode Type Marking OrC\ering code for versions in bulk Ordering code for versions on 8-mm tape Package 5MBD 2837 5MBD 2838 SA5 SA4 upon request upon request upon request upon request SOT 23 SOT 23 Maximum ratings Parameter Symbol 5MBD 2837 5MBD 2838 Unit Reverse voltage VR 30 50 V 75 75 V Peak reverse voltage VRM Forward current IF 250 mA Peak forward current IFM 250 rnA Surge forward current I FS 4.5 A Total power dissipation ~ = 25°C Junction temperature Ptot 330 mW 175 °C Storage temperature range T.tg - 65 ... +150 °C t= 11.1s 7j Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 172 RthJA Siemens :::;;450 KjW SMSD 2837/38 Characteristics at ~ = 25 cC, unless otherwise specified DC characteristics Symbol Breakdown voltage = 100 iJA min. typo max. Unit 75 75 - - V V - - 1000 1000 1200 mV mV mV - - 100 100 nA nA V(BA) 5MBD 2837 5MBD 2838 I(BA) Forward voltage IF = 10 rnA I F= 50 rnA IF = 100 rnA VF Reverse current VA= 30 V VA = 50 V IA 5MBD 2835 5MBD 2836 AC characteristics Symbol min. typo max. Unit Diode capacitance CD - - 4 pF t" - - 6 ns VA = 0, f= 1 MHz Reverse recovery time IF = 10 rnA. IA = 10 rnA. RL = 100 Q measured at IA = 1 rnA Test circuit for reverse recovery time rt?t" Specimen IF t ;jmA Pulse generator: = 100 ns, D = 0.05 t, = 0.6 ns, Rj = 50 Q tp Oscillograph: R= 50 Q t,= 0.35 ns C::;;; 1 pF Siemens 173 5MBD 2837/38 Total power dissipation P'o' = f ( TA ) Reverse current IR = f (h) mW 400 P.o, VR =70V / V 1300 max. /,/ ~. 70~/J 200 \ \ 100 25V \ typo /1/ o J o 50 100 Forward current IF = f ( l'F) Peak forward current TA =25°C TA = 25°C mA 150 150 0 C 100 50 200 ·C 150 IFM = f(t) A 10 1 I © /D=0.005 5 0.01 ;0-02 'lOS l'l1 0.2 I 100 jmax. typo ~ Ii Ii 50 , i t~ L o o L.-' 0,5 D=..1.. T V 10-z 10-6 1,5 V 11111111/1111111 10-5 10-4 10- 3 10-1 -t 174 Siemens 10-1 10° 5 5MBD 2837/38 Forward voltage VF = f ( TA ) V 1,0 t.U I- h= 100 rnA -- I I f .J 10 rnA .......... ~ ..... 0,5 i-f- r.k 0,1 rnA r-.r-. ..... ..... r-. ..... ..... i' t'-..t'-.. ............ o o 50 100 150 0( Siemens 175 Silicon Switching Diode 5MBD6050 • For high-speed switching applications cr(} Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package SMSD 6050 S5A upon request upon request SOT 23 Maximum ratings Parameter Symbol Ratings Unit Reverse voltage VR 70 V Peak reverse voltage VRM 70 V Forward current IF 250 rnA Peak forward current IFM 250 mA Surge forward current I Fs 4.5 A Ptot 330 mW 175 °C -65 ... +150 °C t= 1 iJs Total power dissipation 1A = 25°C Junction temperature Storage temperature range 7j T.tg Thermal resistance junction - ambient package mounted on alumina 15rnm x 16.7rnm x 0.7mm 176 RthJA Siemens :5 450 K/W 5MBD6050 Characteristics at ]A = 25 °C, unless otherwise specified DC characteristics Symbol min. typo max. Unit Breakdown voltage = 100 IJA VIBR ) 70 - - V Forward voltage IF = 1 rnA I F= 100 rnA VF 550 850 - 700 1100 mV mV Reverse current VR= 50 V IR - - 100 nA AC characteristics Symbol min. typo max. Unit Diode capacitance VR= 0, f= 1 MHz Co - - 2.5 pF Reverse recovery time IF = 10 rnA, IR = 10 rnA, RL = 100 Q measured at IR = 1 rnA trr - - 10 ns IIBR) Test circuit for reverse recovery time Specimen 90% Pulse generator: tp = 100 ns, D = 0.05 t,= 0.6 ns, R = 50 Q j Oscillograph: R= 50 Q t,= 0.35 ns C~l pF Siemens 177 5MBD 6050 Total power dissipation Pl0l = '( TA ) Reverse current IR = '(TA ) nA mW 400 105 5 If.t VR =70V f-. \300 V r\ '" max. L..- -I-' I 1/ 7°~A/ 200 5 25V 1'\ 1\ 100 typo o o l)iJ II so 100 50 200 ·C 150 I Forward current h = '( ~) Peak forward current TA =25°C TA =25°C mA 150 hM = f(t) A 10 2 II © 1/ 0 =0.005 5 0.01 ;F02 II J 100 150 ·C 100 r;~'OS I/rll 0.2 rT max. typo ""~ Ii Ii so o o t...,.. 0,5 ; lO- 1 7 S T II [Ii j/ 1,0 T 11111 11111 I 10- 2 10-6 10- 5 10- 4 10- 3 10- 2 1,5 V ---\If 178 tt£r- O=...l I ---f Siemens 10-1 10° S 5MBD6050 Forward voltage VF = f (TAl V 1,0 W i t--t-- t--I- IF= 100 rnA I I W. 10 rnA I-r-. .... 1- ~r--. 0,5 ~ r-r- r- 0,1 rnA I-r-- .... i"--r-.. !-.. .... ..... r-.. r--. ..... o o 50 100 150 DC Siemens 179 5MBD 6100 Silicon Switching Diode Array • For high-speed switching applications • Common cathode Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package 5MBD 6100 S5B upon request upon request SOT 23 Maximum ratings Ratings Parameter Symbol Unit Reverse voltage VR 70 Peak reverse voltage VRM 70 Forward current IF 250 rnA Peak forward current IFM V V Surge forward current t= 11.1s Total power dissipation 1A = 25°C Junction temperature I Fs 250 4.5 A Ptot 330 mW Storage temperature range T.tg 7j rnA 175 °C - 65 ... +150 °C Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 180 RthJA Siemens :5 450 K/W SMSD 6100 Characteristics at ~ = 25°C, unless otherwise specified DC characteristics Symbol min. typo max. Unit Breakdown voltage = 100 I1A V(SRI 70 - - V Forward voltage = 1 rnA = 100 rnA VF 550 850 - 700 1100 mV mV Reverse current VR = 50 V IR - - 100 nA AC characteristics Symbol min. typo max. Unit Diode capacitance VR = 0, f= 1 MHz CD - - 2.5 pF Reverse recovery time = 10 rnA. fR = 10 rnA. RL = 100 Q measured at IR = 1 rnA trr - - 15 ns I(SRI IF IF IF Test circuit for reverse recovery time Specimen Pulse generator: = 100 ns, D = 0.05 t, = 0.6 ns, Rj = 50 Q tp Oscillograph: R= 50 Q t,= 0.35 ns CS; 1 pF Siemens 181 5MBD 6100 Total power dissipation Ptot = f ITA) Reverse current IR = f I TA ) nA mW 400 105 5 ~.I VR =70V V "'" 1300 max. iii) 7O'{ifl 200 5 I' 25V 1\ 100 5 "-iyp. If o o AI 50 100 150 100 50 200 ·C 150 0( -7A Peak forward current IFM = fIt) Forward current h = f I lip) TA = 25°C TA =25°C mA 150 © A 10 2 I 1/ 0 =0.005 5 0.01 0.02 05 rl rl' : II 100 0.2 I II max. typo EE 5 ~ Ii II 50 10-1 Ii o o 5 Iiii l/ 0,5 1,0 11111 TI 1111 I I 10-2 10.6 10-5 10-4 1,5 V -Vf 182 0=+t~ 10- 3 10-2 -t Siemens 10-1 100 S 5MBD 6100 Forward voltage VF = f (h) V 1,0 -WJ ..J. 10 rnA -- t- I f = 100 rnA I I r-. . . . t-r-. ir} 0,5 -- ~ 0,1 rnA ...... 1"'- r-. . . . ...... ~r--. I""'-r-. '~ o o 50 100 150 O( Siemens 183 Silicon Switching Diode Array 5MBD 7000 • For high-speed switching applications • Connected in series C2,A1 ~C1 f;jfo A2 Type Marking Ordering code for versions in bulk Ordering code for versions on a-mm tape Package 5MBD 7000 S5C upon request upon request SOT 23 Maximum ratings Parameter Symbol Reverse voltage VR 100 Peak reverse voltage VRM IF 100 V rnA IFM 250 250 IFS 4.5 A Ptot 330 mW 175 °C °C Forward current Peak forward current Surge forward current t= 1I.Js Total power dissipation 1A = 25°C Junction temperature Storage temperature range Thermal resistance junction - ambient package mounted on alumina 15mm x 16.7mm x 0.7mm 184 7j T.tg RthJA Siemens Ratings - 65 ... +150 :S450 Unit V rnA K/W 5MBD7000 Characteristics at ~ = 25 °C, unless otherwise specified DC characteristics Symbol min. typo max. Unit Breakdown voltage VIBR ) 100 - - V Forward voltage VF 550 670 750 - 700 820 1100 mV mV mV - - 300 500 100 nA nA IJA IF = 1 rnA IF = 10 rnA IF = 100 rnA - Reverse current VR = 50 V VR = 100 V VR = 50 V, TA = 125 °C IR AC characteristics Symbol min. typo max. Unit Diode capacitance = 1 MHz Co - - 2 pF trr - - 15 ns - VR = 0, f Reverse recovery time IR = 10 rnA, RL IF = 10 rnA, = 100 Q - Test circuit for reverse recovery time Speci men rr ~ /JmA h 90"!. Pulse generator: = 100 ns, D = 0.05 t, = 0.6 ns, Rj = 50 Q tp t Oscillograph: R = 50 Q t, = 0.35 ns C:::; 1 pF Siemens 185 5MBD7000 Total power dissipation Ptot = 'I TA ) Reverse current IR = 'I TA ) nA mW 400 105 5 Ifot VR =70V 1300 '/ 1\ I--' max. 1/ 7O~AJ 200 5 1'\ 1\ 100 25V ~ typo I 1/ o o AI so 100 so 200 O( 150 100 150 0( -~ Forward current TA = 25°C IF = 'I ~) rnA 150 Peak forward current TA = 25°C © A 10 2 I 5 II 100 . typo Ii 5 = 1 t~ r, L..o- 1/f;~.1 ~ so 0,5 ./0=0.005 0,01 0.02 1I?·05 0.2 IJ II max . 1QO o o = 'It) IFM 0=+ 1/ 1111111/1111111 10-2 10-6 10- 5 10-4 10- 3 10-2 10-1 1,5 V -t 186 Siemens 10° 5 5MBD7000 Forward voltage VF = f (TAl V 1,0 ill .w. I F= 100 rnA I-r-. I I f 10 rnA 0,5 i;}, [)-k 0,1 rnA --- l- "r-. 1', , r-.. r"1' " o o 50 100 150 .( Siemens 187 Transistors Siemens 189 PNP Silicon AF Transistors • • • • • BC807 BC808 For general AF applications High collector current High current gain Low collector-emitter saturation voltage Complementary types: BC 817, BC 818 (NPN) Type BC 807-16 11) BC 807-25 11) BC 807-40 11) Marking 5A 5B 5C Type I1)BC 808-16 I1)BC 808-25 11) BC 808-40 Marking Ordering code Package 5E 5F Refer to index SOT 23 5G Maximum ratings Parameter Symbol BC807 Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25 DC Junction temperature Storage temperature range VCEO VCBO VEBO Ic ICM 45 50 5 Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm RthJA 11) IB IBM Ptot Tj Tstg BCaOa Unit 25 30 5 500 1 100 200 330 V V V 150 -65···+150 DC DC :5 375 mA A mA mA mW K/W Preferred type Siemens 191 BC807 BC808 Electrical characteristics at TA = 25°C, unless otherwise specified min typ max Unit 45 25 - - V V 50 30 - - V V 5 - - V - - 100 5 IlA - - 100 nA BC 808-16 BC 808-25 BC 808-40 100 160 250 160 250 350 250 400 630 - BC 808-16 BC 808-25 BC 808-40 60 100 170 - DC characteristics Symbol Collector-emitter breakdown voltage Ic = 10 rnA BC807 BC808 V(BR) CEO Collector-base breakdown voltage Ic = 100 IlA BC807 BC808 V(BR)CBO Emitter-base breakdown voltage IE = 10 IlA Collector cutoff current VCB = 25 V VCB = 25 V, TA = 150°C V(BR)EBO Emitter cutoff current VEB = 4 V DC current gain') Ic = 100 rnA, VCE = 1 V BC 807-16, BC 807-25, BC 807-40, I c = 300 rnA, VCE = 1 V BC 807-16, BC 807-25, BC 807-40, ICBo lEBO - - nA hFE - - Collector-emitter saturation voltage ') I C = 500 rnA, I B = 50 rnA VCEsat - - Base-emitter saturation voltage') I C = 500 rnA, I B = 50 rnA VBEsat - - AC characteristics - - - 0,7 V 2 V Symbol min typ max Unit Transition frequency Ic = 50 rnA, VCE = 5 V, f= 20 MHz fT - 200 - MHz Output capacitance VCB = 10V, f= 1 MHz Cob - 10 - pF Input capacitance VEB = 0,5 V, f= 1 MHz Cib - 60 - pF ') Pulse test: t:5, 300 Ils, D = 20/0. 192 Siemens Bca07 Bcaoa Total power dissipation Ptot = f (TA) Transition frequency fT = f (I cl VCE = 5V mW MHz 10l 400 f\ot t r-~ 300 I\, ./ \ 200 \. 5 100 I\, \. °° I 2 \ 150 0 ( 100 50 Pulse handling capability (standardized) rth = 5 10' Collector cutoff current leBO = f (TA) VCBo=60V f(t) K W 10° Ii, r III ~ 1 0,5 0,2 0,1 0,05 0,Q2 0,01 0,005 0=0 1 .- I I V max. Vtyp. v' 1111 10 ' ~ 0=; T 10- 3 '" ' " 10-6 10- 5 10- 4 10- 3 10- 1 10- 1 10° 10' s 50 100 150 O( -f Siemens 193 BC807 BC808 Base-emitter saturation voltage Ie = '( VBE sat) hFE = Collector-emitter saturation voltage Ie 10 = '(VCEsar) hFE = 10 rnA 103 rnA 1Ql 150 0 : " f-_ 25°( /-50 0 [ 5 -- -- 150 0 ( -/h "" "25°( ,"-<50 0 ( ._ ... -- "r! ~ f---- 10' 10' -- I - - f---- - -Ii - f---- r -- , , --f--- j 4 V 2 VeE .. j 200 - -f- -1.] - 400 sot -f---- -- - - f---- 600 BOO mV --liEsat DC current gain h FE = '(l cl VCE = 1 V 10 3 5 l00 0 ( r r-t 5 iI( f- .... -:SO ° 5 101 5 100 10-' 194 Siemens 5 100 5 1Q1 5 10 2 -Ie 5 103 rnA BC817 BC818 NPN Silicon AF Transistors • • • • • For general AF applications High collector current High current gain Low collector-emitter saturation voltage Complementary types: BC 807, BC 808 (PNP) Type m BC 817-16 m BC 817-25 m BC817-40 Marking 6A 6B 6C Type mBC 818-16 mBC 818-25 m BC 818-40 Marking Ordering code Package 6E 6F 6G Refer to index SOT 23 Maximum ratings Parameter Symbol BC817 Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO 45 50 5 Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm BC818 Ptot 25 30 5 500 1 100 200 330 Tj Tstg 150 -65 .. · + 150 VEBO Ie ICM Ie IeM :5 375 RthJA Siemens Unit V V V rnA A rnA rnA mW °C °C K/W 195 BC 817 BC818 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 10 mA BC 817 BC 818 V(BR) CEO min typ max Unit 45 25 - - V V Collector-base breakdown voltage Ic = 100 !-LA BC 817 BC 818 V(BR) CBO 50 30 - - V V V Emitter-base breakdown voltage le= 1O !-LA Collector cutoff current VCB = 25 V VCB = 25 V, TA = 150°C V(BR) EBO - - 100 5 BC 818-16 BC 818-25 BC 818-40 100 160 250 160 250 350 250 400 630 - BC 818-16 BC 818-25 BC 818-40 60 100 170 - ICBo Emitter cutoff current VEB = 4 V leBO DC current gain') Ic = 100 mA, VCE = 1 V BC 817-16, BC 817-25, BC 817-40, I C = 300 mA, VCE = 1 V BC 817-16, BC 817-25, BC 817-40, hFE 5 - - 100 nA !-LA nA - - 0,7 V 2 V Collector-emitter saturation voltage ') I c = 500 mA, I B = 50 mA VCEsat - - Base-emitter saturation voltage ') Ic = 500 mA, IB = 50 mA VBEsat - - - AC characteristics Symbol min typ max Unit Transition frequency Ic = 50 mA, VCE = 5 V, f= 20 MHz fr - 170 - MHz Output capacitance VCB = 10V, f= 1 MHz Gob - 6 - pF Input capacitance VEB = 0,5 V, f= 1 MHz Gib - 60 - pF ') Pulse test: t:'5 300 !-Ls, D = 20f0. 196 Siemens BC817 BC 818 Transition frequency fT Total power dissipation Ptot = f (TA) VCE = f (/ cl MHz 103 rnW 400 ":ot r = 5V fr "'\ 5 f 300 \ \. v 1\ 200 \ 5 100 I\, 2 a a 1\ 100 50 5 1Q3 rnA -7",. Collector cutoff current I cso = f ( TA) Vcso = 60V Pulse handling capability rth = f (t) (standardized) K Vi 10° • 'ih t .M'J'\l 1 5 '0,5 0,2 0,1 0,05 , 0,02 0,01 0,005 0=0 2 / max. / /typ. 1111 5 0= r 10- 3 1tr-L t-- r-J !i "" 10- 6 10- 5 10- 4 10- 3 10- 2 10- 1 10° 10' 50 S -t 100 150 °C -T,. Siemens 197 BC817 BC818 Base-emitter saturation voltage Ie hFE = 10 = f (VBE sad mA 10 3 150·(" 1-,25·( -50·( Ie 1 10 2 5 10-1 L...L--"-L.L--'L--"---'----'L-~__' o 3 4 V --VBEsat --VcEsat DC current gain hFE = f( Ie) VeE = 1 V 5 100 L-L...LLLw"----'--'...LLUliL--'-'-'.Lllill'----'--'-'-CUlli 10-1 5 10° 5 W 5 10 2 5 103 mA -Ie 198 Siemens NPN Silicon AF Transistors • • • • • BC846 ... BC 850 For AF input stages and driver applications High current gain Low collector-emitter saturation voltage Low noise between 30 Hz and 15 kHz Complementary types: BC 856, BC 857, BC 859, BC 860 (PNP) Type BC 846 BC 846 BC 847 BC 847 BC 847 BC 848 Marking A B A B C A 1A 1B 1E 1F 1G 1J Type (:'3 BC 848 B (:'3 BC 848 C BC849 BC849 BC 850 BC 850 B C B C Marking Ordering code Package 1K 1L 2B 2C 2F 2G Refer to index SOT 23 Maximum ratings Parameter Collector-emitter voltage Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Peak collector current Peak base current Peak emitter current Total power dissipation TA = 25°C Junction temperature Storage temperature range Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Symbol BC846 BC847, BC850 BC 848, BC849 Unit VCEO 65 80 80 6 45 50 50 6 30 30 30 5 V V V V VCBO VCES VEBO Ic 100 200 200 200 330 ICM IBM !eM Ptot 150 -65···+150 Tj Tstg ~375 RthJA mA mA mA mA mW °C °C K/W (:'3 Preferred type Siemens 199 BC846 ... BC 850 Electrical characteristics at TA = 25 cC, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic=10mA BC846 BC 847, BC 850 BC 848, BC 849 V(BR) CEO Collector-base breakdown voltage V(aR) caD min typ max Unit 65 45 30 - - V V V 80 50 30 - - - - - V V V 80 50 30 - - V V V 6 5 - - - V V - 15 5 nA - 140 250 480 - - 110 200 420 180 290 520 220 450 800 - - 90 200 250 600 mV mV - 700 900 - mV mV 580 660 - - 700 770 mV mV Ic=10~A BC846 BC 847, BC 850 BC 848, BC 849 Collector-emitter breakdown voltage Ic = 10 ~A, VaE = 0 BC846 BC 847, BC 850 BC 848, BC 849 V(BR)CES Emitter-base breakdown voltage lE= 1 ~ BC 846, BC 847 BC 848, BC 849, BC 850 V(BR)EBO Collector cutoff current VCB = 30 V VCB = 30 V, TA = 150 cC ICBo DC current gain /c= 10~A, VCE=5V BC 846 A, BC 847 A, BC 848 A BC 846 B ... BC 850 B BC 847 C, BC 848 C, BC 849 C, BC 850 C Ic=2mA, VCE=5V BC 846 A, BC 847 A, BC 848 A BC 846 B ... BC 850 B BC 847 C, BC 848 C, BC 849 C, BC 850 C hFE Collector-emitter saturation voltage ') Ic = 10 mA, IB = 0,5 mA Ic = 100 mA, Ia = 5 mA VCEsat Base-emitter saturation voltage ') Ic = 10 mA, Ia = 0,5 mA Ic= 100mA, /a=5 mA VBEsat Base-emitter voltage Ic= 2mA, VCE=5V Ic=10mA, VCE=5V VaE (on) - - - ') Pulse test: (:5 300 ~s, D = 2%. 200 Siemens - - - ~A - BC846 ... BC 850 AC characferistics Symbol min typ max Unit Transition frequency Ic = 20 rnA, VCE = 5 V, f= 100 MHz fT - 250 - MHz Output capacitance Vce = 10V, f=1 MHz Cob - 3 - pF Input capacitance Vce = 0,5 V, f= 1 MHz Cib - 8 - pF Short-circuit input impedance Ic = 2 rnA, VCE = 5 V, f= 1 kHz BC 846 A ... BC 848 A BC B46 B ... BC B50 B BC B47 C ... BC B50 C h11e - 2,7 4,5 B,7 - kQ kQ kQ Open-circuit reverse voltage transfer ratio Ic = 2 rnA, VCE = 5 V, f= 1 kHz BC B46 A ... BC 84B A BC B46 B ... BC B50 B BC B47 C··· BC B50 C h12e - - 10- 4 - 1,5 2,0 3,0 Short-circuit forward current transfer ratio Ic = 2 rnA, VCE = 5 V, f= 1 kHz BC B46 A ... BC 84B A BC B46 B ... BC 850 B BC B47 C ... BC 850 C h21e - 200 330 600 - Open-circuit output admittance Ic = 2 rnA, VCE = 5 V, f= 1 kHz BC B46 A .. BC 84B A BC B46 B .. BC 850 B BC B47 C .. BC 850 C h22e - 1B 30 60 - o- IlS IlS ilS Noise figure Ie = 0,2 rnA, VCE = 5 V, Rs = 2 kQ f= 30 Hz .. ·15 kHz BCB49 BCB50 f= 1 kHz, M= 200 Hz BCB49 BCB50 F - 1,4 1,4 1,2 1,0 4 3 4 4 dB dB dB dB Equivalent noise voltage Ie = 0,2 rnA, VeE = 5 V, Rs = 2 kQ f=10Hz .. ·50Hz BCB50 Vn - 0,135 IlV 0 0 0 - Siemens - - - - 10- 4 10- 4 - 201 BC846 ... BC 850 Total power dissipation Ptot = f (TA) Collector-base capacitance CeBo = f(VeBo) Emitter-base capacitance CEBO = t(VEBO) mW 400 pF 12 ( (SO ~ot t ('T ~h. ~ l lo '~ 300 '\ 8 I'\: ~ 200 " 4 r-.. I}(SO f': '""'- ~ ./ ....... 1-- 'ESO 100 1'\ 2 r\ o o 50 100 o 10·t 150 ·C -7;. Pulse handling capability rth = fIt) Transition frequency tT = VeE =5V (standardized) t (lo) K Iii 10° 1111 tth 5 t fy t oI!fAtJ(I 0,5 0,2 0,1 0,05 0,02 0,01 0,005 D:O 1111 10' t 5 2 5 I-t-- I/V 5 5 ~T ~ tp D=f .. ; 10-3 10-6 10-5 10- 4 10-3 10- 2 10" 10° , 10' s 5 10 2 mA -f 202 Siemens BC 846 ... BC 850 Base-emitter saturation voltage Ie hFE = 20 = f (VBE sat) rnA W2 DC current gain hFE VCE = 1 V = f (I e) ~ - r-l000( l'/ 12S 2S 0 ( 0( _SOO( I ~ - I- 2S 0( ~ 5 5 L I 5 10- 1 10° o 0,2 0,4 0,6 0,8 1,0 10- 2 1,2 V 5 10- 1 5 10° 5 10' 5 10 2 rnA -Ie -VBEsat Collector cutoff current I CBO = f ( TA) VCB = 30V Collector-emitter saturation voltage Ie = f(VCE,,') hFE = 20 rnA 10 2 I / II I ./ max. ~... / 102 t-Il; 10' _SOO( 25°( %1000( 5 5 ,. typo lr!' 5 , 10- o , / 50 100 1500( 0,1 -7; 0,2 0,3 0,4 a,s V - - - - VCEsaf Siemens 203 BC846 ... BC 850 h parameter he VeE = 5V = f(Ie) h parameter he Ie = 2 mA 10 2 = f(VeE) 2,0 I Ic:1 mA,I h, I ~11' l' VcE =5V ~ \\ ,\ f-- .... 1,..- ..... '\ ~h'2. =h21 h~,. 1,5 1,0 .... ~ .// 1\1,.0t-1'\ h'le ;;:;; h2~ ..... 7 r-.. 0,5 ....-:-: h22 • o o 10 NOise figure F = f ( VeE) Ie = 0,2 mA, Rs = 2 kQ, f= 1 kHz Noise figure F = f (f) Ie = 0,2 mA, Rs = 2 kQ dB 20 r--"TnTITr-'--rTTTTm--.TTnnn dB 20 F I 20 --VcE -Ie 15 1-t-+++tfttt---++H+tt++-t-++t+H+1 10 5 O'--'-'-J-LllilL--L-L1..LllllL.-LLLJLlillJ 10·' 5 10' 5 10 2 V ---VcE 204 Siemens _\ 30 V BC846 ... BC 850 Noise figure F = f (I cl Noise figure F = f (I e) VCE=5V, f= 120Hz VCE =5V, f= 1 kHz dB 20 dB 20 r- !?s=lMfl 100kfl J II I 10kfl/ Rs =lMQ 100 k II 10kQ I / \ / \ 10 10 \ J sOOQ lkQ I 5 J '" r10- 2 IJ 5 L 1\ '\. lkQ 11111 11111 11111 10' mA o- 10-3 II 1 II' SOOfl I III I'- ", ".I. 11111 10- 2 -Ie Noise figure F= f(Ie) VCE = 5 V, f= 10 kHz dB 20 - Rs=lMQ 1100k I I I II II II / 10 II II OOQ 10kQ I\, 5 lkQ\. J 111111 J IIiU o 10-3 JaIl".. ,..:; 10- 1 -Ie Siemens 205 PNP Silicon AF Transistors • • • • • BC856 ... BC 860 For AF input stages and driver applications High current gain Low collector-emitter saturation voltage Low noise between 30 Hz and 15 kHz Complementary types: BC 846, BC 847, BC 849, BC 850 (NPN) Type BC 856 BC 856 BC 857 BC 857 BC 857 BC 858 BC 858 Marking A B A B C A B 3A 3B 3E 3F 3G 3J 3K Type rn BC 858 C BC BC BC BC BC 859A 859 B 859 C 860 B 860C Marking Ordering code Package 3L 4A 4B 4C 4F 4G Refer to index SOT 23 Maximum ratings Parameter Symbol Be 856 Be 857, BC860 Collector-emitter voltage Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Peak collector current Peak base current Peak emitter current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VCES VEBO Ic ICM IBM IEM 65 80 80 5 45 50 50 5 Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm RthJA Unit Ptot 100 200 200 200 330 V V V V mA mA mA mA mW Ti Tstg 150 -65·.·+150 °C °C :S 375 rn Preferred type 206 Be 858, BC859 30 30 30 5 Siemens K/W BC 856 ... BC 860 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 10 mA BC856 BC 857, BC 860 BC 858, BC 859 V(SR) CEO Collector-base breakdown voltage Ic= 10 !lA BC856 BC 857, BC 860 BC 858, BC 859 V(SR) cso Collector-emitter breakdown voltage Ic=10!lA,VsE=0 BC856 BC 857, BC 860 BC 858, BC 859 V(SR) CES Emitter-base breakdown voltage h=1!lA V(SR) ESO Collector cutoff current Vcs = 30V Vcs = 30 V, TA = 150°C Icso DC current gain Ic = 10 !lA, VCE = 5 V BC 856 BC 856 BC 857 Ic=2mA, VCE=5V BC 856 BC 856 BC 857 hFE min typ max Unit 65 45 30 - - - V V V - - - V V V V V V 80 50 30 - - - - 80 50 30 - - - 5 - - - V - - 1 15 4 nA !lA A ... BC 859 A B ... BC 860 B C ... BC 860 C - 140 250 480 - - A ... BC 859 A B ... BC 860 B C ... BC 860 C 125 220 420 180 290 520 250 475 800 - - 75 250 300 650 mV mV - 700 850 - mV mV 600 650 - - 750 820 mV mV Collector-emitter saturation voltage ') Ic= 10 mA, Is = 0,5 mA Ic = 100 mA, Is = 5 mA VCEsat Base-emitter saturation voltage ') Ic = 10 mA, Is = 0,5 mA Ic = 100 mA, Is = 5 mA VSEsat Base-emitter voltage Ic = 2mA, VCE=5V I c = 10 mA, VCE = 5 V VSE(on) ') Pulse test: t::5, 300 !ls, D = 20/0. Siemens 207 BC856 ... BC 860 AC characteristics Symbol min typ max Unit Transition frequency Ic = 20 rnA, VCE = 5 V, f= 100 MHz fT - 250 - MHz Output capacitance VCB = 10V, f=1 MHz Cob - 3 - pF Input capacitance VCB = 0,5 V, f= 1 MHz Cib - 8 - pF Short-circuit input impedance Ic = 2 rnA, VCE = 5 V, f= 1 kHz BC 856 A .. · BC 859 A BC 856 B ... BC 860 B BC 857 C ... BC 860 C h11e - - - 2,7 4,5 8,7 - kO kO kO Open-circuit reverse voltage transfer ratio Ic = 2 rnA, VCE = 5 V, f= 1 kHz BC 856 A··· BC 859 A BC 856 B .. · BC 860 B BC 857 C ... BC 860 C h12e - 1,5 2,0 3,0 - Short-circuit forward current transfer ratio I c = 2 rnA, VCE = 5 V, f = 1 kHz BC 856 A ... BC 859 A BC 856 B ... BC 860 B BC 857 C ... BC 860 C h21e - 200 330 600 - - - Open-circuit output admittance Ic = 2 rnA, VCE = 5 V, f= 1 kHz BC 856 A ... BC 859 A BC 856 B ... BC 860 B BC 857 C ... BC 860 C h22e - 18 30 60 - ~S ~S ~S Noise figure Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kO f=30Hz .. ·15kHz BC859 BC860 f= 1 kHz, M= 200 Hz BC859 BC860 F - - 1,2 1,0 1,0 1,0 4 3 4 4 dB dB dB dB Equivalent noise voltage Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kO f = 10Hz ... 50 Hz BC860 Vn - - 0,110 ~V 208 - - - Siemens - - 10-- 10-10-- BC856 '" BC 860 Total power dissipation Ptot = f (TA) Collector-base capacitance CCBO = f(VCBO) Emitter-base capacitance CEBO = f (VEBO) pF mW 400 ~ot t 12 '\. I-~ I\. 300 "- 200 }CBO ""- I"- 1\ ~ \ \ "" 4 100 o o ..... [E~O 1""--..... 1\ 1\ 50 150 0 ( 100 --T, Transition frequency fT = f (l c) VeE = 5V Pulse handling capability rth = f (t) (standardized) K W 100 , 10- 2 • I '0,5 0,2 0,1 0,05 , 0,02 0,01 0,005 0:0 1111 ,;' - / ~ ---J tp I--- o:1-ILJL T I--- T-i 10- 3 '" 10- 6 10- 5 10- 4 10,3 10'2 10" 10° 10' s -t Siemens 209 BC856 , .. BC 860 Base-emitter saturation voltage Ie = '(VBE sat) hFE = 20 Collector-emitter saturation voltage rnA rnA W1 W1 ~ ~ 12soe 2Soe -sone r Ie = '(VcEsat) hFE = 20 '1 / 5 IV / t {:;~ 5 / II V VV ./ -sooe 25°( 100 0 e - r- 5 II 5 lO- , , II a 0,2 0,4 0,6 0,8 1,0 1.2 V 0) 0,2 0,3 01+ 0,5 V ~\.hsat ---VBE sat Collector cutoff current I CBO = '( TA) DC current gain hFE = VCB=30V VCE = 1 V '(lei 100 0 e _25· ~ 0/ max. " 10 2 = - 5 5 .. ~ w' typ; 5 5 lif' = = r- 5 , !-- ./ 50 100 150 0( 100 '-:c 10-2 -JA 210 5 10-' 5 10° 5 10' -Ie Siemens 5 102 mA BC856 ... BC 860 h parameter he = f (I e) VeE = 5V h parameter he 10 2 2,0 = f (VeE) Ie = 2 rnA I I Je=12~A h. h l1 - 1 h". i.- n liE =5V t..V 1\ '( V 1,0 I\. h12 • " 5 """"'r-. I' ~ I/ V y~ vi i"'I ......h ._+-22 0,5 ~h2'. , 1\ h2o/ o o 10 20 30 V - - liE -Ie Noise figure F = f(VeE) Ie =0,2mA, Rs = 2kn, f= 1 kHz Noise figure F = f (f) Ie = 0,2 rnA, Rs = 2 kn, VeE = 5 V dB 20 dB 20 ~~TTnmr---.-,-,-,crrrr'--"TT; F ! 15 ~+4+H~-+++Htt~~+#~ 1\ 10 5 OL-L.L-liLWL--L-LLUWL-LlJ....llillJ 10-' 5 10' 5 10 2 V o 10-2 --liE Siemens 211 BC8S6 ···BC860 Noise figure F = f (I oj VCE=5V, f= 120Hz Noise figure F = f (Io) VCE = 5 V, f= 1 kHz dB 20 dB 20 r- ~s=lMQ 100kQ / 10kQ/ I / Rs =lMQ lOOk 110kQ I \ II II 10 10 \ , 500Q 1kQ I II 5 .I '" o 10-3 - I 1/ " 1kQ 11111 11111 101 mA o- '" 1 i I' IIIII I 500 I I I [".ol 10-3 1Q1 mA Noise figure F = f (Io) VCE = 5 V, f= 10 kHz dB 20 Rs=lHQ I [lOOk [ !I 10 OQ lkQ\. lUll IIIU o 10- 3 212 Siemens uaw~ III 10kQ \. 5 / I II III / PNP Silicon Darlington Transistors • • • • BCP 28; BCP 48 For general AF applications High collector current High current gain Complementary types: BCP 29/49 (NPN) E Type Marking Ordering code (12-mm tape) Package" BCP 28 BCP 28 Q62702 - C1234 SOT-223 BCP 48 BCP 48 Q62702 - C1235 SOT-223 Maximum Ratings Unit Parameter Symbol BCP28 BCP48 Collector-emitter voltage VCEO 30 60 V Collector-base voltage Vcso 40 80 V 10 10 V Emitter-base voltage VESO Collector current Ic 500 mA Peak collector current ICM 800 mA Ie 100 mA ISM 200 mA P'O' 1.5 W T, T519 150 ·C Base current Peak base current Total power dissipation, TA $ 25°C 1) Junction temperature Storage temperature range -65 to + 150 ·C Thermal Resistance s83.3 Junction - ambient 1) ') Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm Mounting pad for the collector lead min 6cm 2 .) For detailed dimensions see chapter Package Outlines Siemens 213 BCP 28, BCP 48 Characteristics at TA = 25°C, unless otherwise specified. Parameter Unit DC Characteristics Collector-emitter I;>reakdown voltage Ic = 1mA, Ie = 0 BCP 28 BCP 48 VCBRlCEO Collector-base breakdown voltage 1) Ic = 100 jlA, Ie = 0 BCP 28 BCP 48 VceRlCBo Emitter-base breakdown voltage IE = 10 jlA, Ic = 0 VCeR)EeO Collector-base cutoff current Vce=30 V,/E=O Vce=60 V,/E=O Vce = 30 V, IE = 0, TA = 150°C Vce = 60 V, IE = 0, TA = 150°C BCP 28 BCP 48 BCP 28 BCP48 Emitter-base cutoff current VEe =4 V, Ic =0 DC current gain 1) Ic=100jlA, VCE=lV Ic =10mA,VCE =5V Ic =100mA, VCE=5V Ic = 500 mA,VCE = 5 V Iceo 'EBO 30 60 - - V V 40 80 - - V V 10 - - V - - 100 100 10 10 nA nA \1 A \1 A - - 100 nA 4000 2000 10000 4000 20000 10000 4000 2000 - - - - -- - - 1.0 V - - 1.5 V - 200 - MHz - 8 - pF hFE BCP BCP BCP BCP BCP BCP BCP BCP 28 48 28 48 28 48 28 48 Collector-emitter saturation voltage Ie = 1OOmA.lB = 0.1 mA VCEsal Base-emitter saturation voltage Ie = 100mA,/e = O.lmA VBEsal AC Characteristics Transition frequency Ic=50 mA, VCE = 5V,f=100MHz fT Output capacitance VCB = 10 V,f= 1 MHz Cob 1) Pulse test conditions: t ~ 300\1s; D = 2% 214 Siemens BCP 28; BCP 48 Total power dissipation P101 = '(TA) Collector cutoff current ICBO = '(TA ) VCB = VCE max nA 2.0 W 10' f1--l- I-- -- - 1-;- r= ...-.1- I- 1-1./ h I-t\ II- . - 1--' -- - 0.5 - - 1- - - - - -- o ?~ r\:- -- -- - - - I- 1-.I- -- ~~ I- --!- '1 1 - Vtyp. H- so - rs: -1-1\. -- .- -- . -- - -- - -- -- -- - r=-- 1-1- K - I- - -I- \ 100 ·C 50 lS0 --r. 100 150 'C --T,. 'T = '(I~) ,-- -- .-- -- 1--' r- I-1--- S - - --+- 1-- - r - o 5 Transition frequency MHz VCE = 5 V 10 1 I-I- \ -I- - I- ,/ max. - -- 1.0 -1- -- ,- r-. ,/ ~ 7 1~ 101 , - - I- - I-- '- -- Siemens 215 BCP 28; BOP 48 DC current gain Vce=5V 10' F F- ~ I-- ~ ~ r 5 = ((Ie) I-- - I-- IIi=== ~ ~ -55"( ~ ~ ~ 5 hFE - '-- 10' S 1111111 10" 5 100 5 10' ~ ==1 ~ I-~ __ •.~ _ _ 0.5 100'-'"--'-~- 5 101 o 5 10 1 mA -- ,-- -1-1- - - -- - -+-1- I-- 1- - - - 1111111 11111111 101 ==~-~:-:1:1j~J~ c.= -- - ::::: . :: .-- : : I~--+---1-+-1 10' 1= C:$$==j- --- I1tII11I 5 _ ._L- _ _ ' '_0 V 1.') - --- \'cE.o' - /c B•••·.mltt.r .aturatlon voltage Ie Collector-base capacitance Cob = (Vca) pF Emitter-base capacitance C'b = (VEa) hFE" 1000 10 CUD IC (801 t "'"~ I"- .... ~80 5 ~ C EBO '-- , '" 10' -- s - -- o 10" 5 10° 5 - 216 10' V F3===t::J=lI=:f= ~ ~J;~- =fr- -- ~ -~- ~ =- -_.- -. -- - - I-- lI- ~ I- 10 0 L-L ......"--'---'.->-."-L J_'-L_J._LJ...J o V 3 Vnol Vclol - Veho' Siemens = ((VaE sat) NPN Silicon Darlington Transistors • • • • BCP 29; BCP 49 For general AF applications High collector current High current gain Complementary types: BCP 28/48 (PNP) E c C B Type Marking Ordering code (12-mm tape ) Package" BCP 29 BCP 29 Q62702 - C1236 SOT-223 BCP49 BCP49 Q62702 - C1237 SOT-223 Maximum Ratings Parameter Symbol Collector-emitter voltage BCP49 BCP 29 Unit Emitter-base voltage VCEO VCBO VESO Collector current Ic 500 rnA Peak collector current ICM 800 rnA Base current Is 100 rnA ISM 200 rnA Collector-base voltage Peak base current Total power dissipation, TA:s 25°C 30 60 V 40 80 V 10 10 V P IOI 1.5 W Junction temperature T. 150 °C Storage temperature range T. lg Thermal Resistance Junction - ambient 1) 1) -65 I RU>JA to :s 83.3 + 150 °C IKIW I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.5mm Mounting pad for the collector lead min 6cm2 ') For detailed dimensions see chapter Package Outfines. Siemens 217 BCP 29, BCP 49 Characteristics at TA = 25 ·C, unless otherwise specified. Parameter Values min. !typ. max. IUiilt DC Characteristics Collector-emitter breakdown voltage Ic = 1mA, IB = 0 BCP 29 BCP 49 V(BR)CEO Collector-base breakdown voltage Ic = 100 pA, Ie = 0 BCP 29 BCP 49 V(SR)CBO Emitter-base breakdown voltage IE = 10 pA, Ic = 0 V(BR)EeO Collector-base cutoff current Vce=30 V, IE=O Vce=60 V, IE=O Vce=30 V,/E=O, TA = 150'C Vcs =60 V'/E =0, TA = 150'C BCP BCP BCP BCP ICBO 29 49 29 49 Emitter-base cutoff current VEe = 4 V, Ic = 0 DC current gain 1) Ic = 100 IlA , VCE = 1V Ic = 10 mA, VCE = 5 V Ic = 100 rnA, VCE = 5 V Ic = 500 rnA,VCE = 5 V lEBo 29 49 29 49 29 49 29 49 VCE•AI Base-emitter saturation voltage Ic 1OOrnA'/e 0.1 rnA VSEsal = - - V V 40 80 - - V V 10 - - V - - - 100 100 10 10 nA nA 11A 11A - - 100 nA 4000 2000 10000 4000 20000 10000 4000 2000 - - - - - 1.0 V - - 1.5 V - 200 - MHz - 6.5 - pF hFE BCP BCP BCP BCP BCP BCP BCP BCP Collector-emitter saturation voltage Ic 1OOrnA'/e 0.1 rnA = 30 60 = = AC Characteristics Transition frequency Ic = 50 rnA, VCE =5 V, f= 100 MHz fr Output capacitance Vcs=10V,f=1 MHz Cob 1) Pulse test conditions: t :;;;; 30011S; D = 2% 218 Siemens BCP 29; BCP 49 Total power dissipation PIOI = ({TAl Collector cutoff current Iceo Vce = VCEmax = ({TA) nA 2.0 - r --,-,-,- - - --- -,-'--1-'-, W r--~ 1-- Ii.. t - re- '-r -1-0-- 1.5 ~'~~§~f~F-f-3I~~--!~~-I-~~-~;t'~ ~ lceo IIO J 5 =-='='::"'~~:'.~~I= -=:::'={; H-' .- ~~~~I_-~~+1~-+1-r~'~ r~ ·~-+-t+-H-! 1.0 H-~-+++--l' 1--- 0.5 \ -I-H--H-H --I---i:-I\----f1-1- - -1-'i.--1I-1--+-1 ,:. -'-r ~:--T.: -~ o 50 Transition frequency VCE = 5 V 100·C 100 150 L-L-L-.L..J.-L...L...JL-L-L--'--l-'--...L...JL...J o SO 100 --r. 150 °c 'T = ((lel MHz 10 1 := -- '1 1 5 5 10' 5 10'mA Siemens 219 BCP 29; BCP 49 DC current gain hFE = ((Ie) Collector-emitter saturation voltage Ie ((VCE sal) = VcE =10V hFE = 1000 10' t= lIf- ~ ~ 5 1~ = I-1'T -55°( ,~ - po :::- I=- - '-- _. -- r=~ -. --- -. --- 10l = 5 10° 5 10' 5 10 1 -- - --f- ---- - . o 5 IO l mA = = "FE 10 I ~..::~.-= = --- -: --. .. -- --- . - ---j-r= :: --:.:--- -1= I- - -, -~·;f:il-r·: ---'-liY- -- - -- - f- t =~ ~~ ~~~f; ~i :~~ _~ :-- t 5 c Jr.- J~Jr-=-150;c -.. II 10 2 S ~BO t"'-- 1.5 Vr:Esol = 1000 mA -. - .. - l "t--. V 1- Base-emitter saturation voltage Ie l t--. 1.0 _._ ..... - Collector-base capacitance Cob ((Vca) ;Emilter-base capacitance C'b ((VES ) pF 10 ''"" -1-1-- f- --- - -Ie 1 -- I- -1- . -100 _ '-- ___I ___ __ 0,5 '- 10-' - - -- -I- -- -I·-H-'I---~1-- - .-- -- _il- 2S0 ( f- I_ ~~ -~I::SOO( - ~ =~-- ft ~- =I~ _-- , ~__I--- +_f__I t'!'- ~ r[E80 ~ .-- --- - - I- --_.- 5 100 5 - 220 VEBO 10' V I - 10 0 L_..L_L....--'_ o VcBol -- f- .-. -- -- --1-+-1-+-1 _',-'l-'_'--'-~_..L-''--'--'. V - - - VBEsol Siemens I- = !(VBE sal) BCP 51 ... BCP 53 PNP Silicon AF Transistors • • • • For AF driver and output stages High collector current Low collector -emitter saturation voltage Complementary types: BCP 54 ... BCP 56 (NPN) E ~ Type Marking Ordering code (12-mm tape) Package" BCP 51 BCP 51 062702 - C2 107 SOT-223 BCP 51-10 BCP 51-10 062702-C2109 SOT-223 BCP 51-16 BCP 51-16 062702-C2110 SOT-223 BCP 52 BCP 52 062702 - C2 146 50T-223 BCP 52-10 BCP52-10 062702 - C2 1 12 SOT-223 BCP 52-16 BCP 52-16 062702 - C21 13 SOT-223 BCP 53 BCP 53 062702 - C2 147 50T-223 BCP 53- 10 BCP 53-10 062702-C2115 50T-223 BCP 53-16 BCP 53-16 062702 - C21 16 50T-223 Maximum Ratings Symbol BCP51 BCP52 BCP53 Unit Parameter Collector-emitter voltage Roe:S 1kn Collector-base voltage Vceo VCeR 45 45 60 60 80 100 V V Vcoo 45 60 100 V Emitter-base voltage Veoo Collector current Ic Peak collector current Base current Peak base current Total power dissipation, TA:s 25'C I) Storage temperature range V 1 A ICM 1.5 A 18 100 mA IBM 200 mA P IOI 1.5 W r. Junction temperature 5 TSI\I 150 -65 to + 150 'c 'c Thermal Resistance Junction - ambient I) :S 83.3 IKJW I) Package mounted on an epoxy printed circuit board 40mm x 40rnrn x 1.5mm Mounting pad for the collector lead min 6cm 2 .) For detailed dirnensions see chapter Pack ago Outlines Siemens 221 BCP 51 ... BCP 53 Characteristics at TA = 25 ° C, unless otherwise specified. Parameter 1 Symbol 1 V~lues min. Ityp. Imax. Unit 1 DC Characteristics Collector-emitter breakdown voltage Ic = 10mA'/B = 0 Collector-base breakdown voltage Ic = 1OOpA,/B = 0 V1BR)CEO BCP 51 BCP 52 BCP 53 45 60 80 - - V V V 45 60 100 - - V V V 5 - - V - - 100 20 nA pA - - 10 pA 25 - - V1BR)CBO BCP 51 BCP 52 BCP 53 Emitter-base breakdown voltage IE = 10pA.Ic = 0 V1BR)EBO Collector-base cutoff current VcB =30VA=0 VCB = 30 V'/E = O,TA = 150 °C ICBO Emitter-base cutoff current VEs =5V,/c =0 lEBO DC current gain 1) hFE Ic = 5 rnA, VCE = 2 V Ic= 150 rnA, VCE=2 V BCP 51/BCP 52/BCP 53 BCP 51/BCP 52/BCP 53-10 BCP 51/BCP 52/BPC 53-16 Ic = 500 rnA, VCE = 2 V 40 63 100 25 Collector-emitler voltage Ic = 500 rnA, 18 = 50 rnA Base-emitler voltage Ic = 500 rnA, VCE = 2 V 1) VCEsat VBE 1) - - - - - 0.5 V - - 1 V 100 160 250 160 250 AC Characteristics Transition frequency Ic = 50 rnA, VCE = 10 V, f= 100 MHz 1- 1) Pulse test conditions: t ;;,; 300ps; D = 2% 222 Siemens MHz BCP 51 ... BOP 53 Total power dissipation Ptot = '(TA) 2.0..-- - W I- I-- f 1.5 -- -I-f- --. - ~ l- - -1- -I--I-I--I-j -. -- " -+-I--I--l-lf·- l- - - - - \ - - -1--1- 1-- 5 1-+++-H1fH1--+-~Hl#---t-+-l+H1lI f 1\ I- '1 = '(Icl 101EEml33~ -r-'~-'-'-'--'--"-r--'-' -- I- -- .-- - - l'1ot Trlnlltlon frequency HHz VCE = 10 V ~-=~:.~~y= -~=-;~:--1.01- - ~ -1--1- -1--1-+-1--1 -- I- - - - - - - -\l-I-j--+-l--t--l-l I-- ----~~44-+-l-+ I-- -- - - - - - - - \ -1-1-1-1-1 ====~ : : _-"~I.- 1--- - -- ---- 0.5 1= =- I:::: =- -1-__-1-1--1 I- -- -- - - - - I-- \. - -- - -1\ - - ---H\ - - - - -- -.~ - -. - - - --1- oo 100 50 .( lO'~~~WL-L~~lli~-U~ 10° 150 ---IA 5 10' 5 10 1 -Ie 5 10 J mA DC current gain hFE = '(/ c) VCE =2 V 10 J 1= E- f= l- f::: l- I- - - '= -- I-- - I- 100·( t- III F2S' ~ 5 I--SO'(. 10 "" , F= - r= f:::- 5 - - ~- 10° 10° 5 10' 5 10 1 5 10 J -Ie 5 10~ mA ------r. Siemens 223 BCP 51 ... BCP 53 Base-emitter saturation voltage Ie hFE =10 = f(VBE .al) mA Collector-emitter saturation voltage le=f(VCEsal) mA hFE 10 = 5 100 O( 25°(, '/./ SOO( "I') 10 1 h / 10 1 ./ '11,// v--:: 'K -5 O( 5 5 I 10' 10' 5 5 'K)O o 0,2 0,4 0,6 0,8 1,0 0,2 1.2 V 224 0,4 0,6 -\'cEsat - - VeE sal Siemens 0,8 V NPN Silicon AF Transistors • • • • BCP 54 ..• BCP 56 For AF driver and output stages High collector current Low coll~ctor -emitter saturation voltage Complementary types: BCP51...BCP53 (PNP) Type BCP 54 BCP 54-10 BCP 54-16 BCP 55 Marking E Ordering code (12-mm tape) Package' BCP 54 062702 - C2117 SOT-223 BCP54-10 062702 - C2119 SOT-223 BCP 54-16 062702 - C2120 SOT-223 BCP 55 062702 - C2148 SOT-223 BCP 55-10 BCP 5S-1O 062702 - C2122 SOT-223 BCP 55-16 BCP 55-16 062702 - C2123 SOT-223 BCP 56 BCP 56 062702 - C2149 SOT-223 BCP 56-10 BCP56-10 062702 - C2125 SOT-223 BCP 56-16 BCP 56-16 062702 - C21 06 SOT-223 Maximum Ratings Parameter Symbol BCP54 BCP55 BCP56 Unit VCEO VCER 45 Collector-base voltage Vceo Emitter-base voltage Veso 45 5 Collector current Collector-emitter voltage Rees lk!1 45 60 60 80 100 V V 60 100 V 5 5 V Ic 1 A Peak collector current ICM 1.5 A Base current Is 100 mA Peak base current ISM P 'o' 200 mA 1.5 W Total power dissipation, TA s25°C II Junction temperature Tj Storage temperature range Tslg ·C 150 -65 to + 150 ·C Thermal Resistance Junction - ambient 1) IR 1hJA s83.3 I) Package mounled on an epoxy prinled circuil board 40mm x 40mm. x 1.5mm Mounting pad lor Ihe colleclor lead min 6cm 2 .) For delailed dimensions see chapler Package Outlines Siemens 225 BCP 54 ... BCP 56 Characteristics at TA = 25 ·C, unless otherwise specified. Parameter Imax. IUnit DC Characteristics Collector-emitter breakdown voltage Ic = 1OmA.IB = 0 V\BRICEO BCP 54 BCP 55 BCP 56 Collector-base breakdown voltage 1} Ic = 1OOpA.lB = 0 BCP 54 BCP 55 BCP 56 V\BnICBO Emitter-base breakdown voltage IE = 1OpA.lc = 0 V\BRIEBO Collector-base cutoff current VeB =30 V.lE =0 VCB =30 V.IE =0. TA = 150 ·C ICBO Emitter -base cutoff current VEB =5V lEBO DC current gain Ic = 5 mAo VCE = 2 V Ic = 150 mAo VCE = 2 V BCP 54/BCP 55/BCP 56 BCP 54/BCP 55/BCP 56-10 BCP 54/BCP 55/BCP 56-16 Ie = 500 mAo VCE = 2 V hFE Collector-emitter voltage Ic = 500 mAo IB = 50 mA Base-emitter voltage Ic = 500 mAo VCE = 2 V 1) VBE AC Characteristics Transition frequency . Ie =50 mAo VCE = 10V. f= 100 MHz 1) Pulse test conditions: t ::.; 300ps; D = 2% 226 Siemens - - - V V V 45 60 100 - . . V V V 5 - . V -. . - 100 20 nA pA - - 10 pA 25 - - - 100 160 250 160 250 - - - - 0.5 V - - 1 V 40 63 100 25 VCEsat 1) 45 60 80 BCP 54 .. . BCP 56 Total power dissipation Plol = f (TAl 2.0 = 101~mIIfE!_ r- W I-I-f1-- ~o, t Transition frequency fT = f(lel MHz VeE 10 V --- -- - - - .- .- f-..- "-'- - h - i- :-1-~ 1-1- -fi[Sf- -- 1.5 -'" I - -. I- -- I-' - -I- 1-1- -~- 1.0 " - f·- -1- -.1- - .\ - K 5 2 l- ~+++H11~-+-H~It~+;~+ffl 1- - 1--·1--I- -1-1- :-·K~-- -1--- - - - - - .._- -- - ._. - ..- -- -- ... ~.- 0.5 - - - --1---- 1- --1-.-11--._. o o 100 O( -TA 50 150 DC current gain hFE = f(1e) VeE =2 V IO J -- -:: hI[ S 1-. t= i- f-- 10' I--.L-L.LJ..1.WL-L..L..Lll.WIL-.L.J...ll.1.lJJ1 100 S 10' 5 10 1 5 10' mA --II Collector cutoff current leBO = f(TAI VeE =30 V nA _.- r,oo· f 101 S III 1=15° _50 0 ( l- .- - f--- \" f- f- 1- 10' 10' - - - -- - -.f- V1ypl- ~:o:::= = =. ==.1= =1~l1.-:~Et§:§ I-I-f-- 1-11 5 F'---:E=i==:::;l'f::+-'=: i= 1= S ~. I- .- - - . -. ~*~~~~*~~~~ I=I=:..~ i- ---- -- 1=1= 5 FF-: 10° I-f-V- 10° 10- 1 S 10° 5 10' I- 10-' S 10 1 o S 10 1 mA I-t- -I- -t-t--I--t-,H--t-t-l 1/ 50 100 150°C --/A -II Siemens 227 BCP 54 . .. BCP 56 Base-emitter saturation voltage Ie hFe = 10 = {(VBe sa') mA 10' - - i-=- ~ 1= =-r= F - r= 1-= 1= =r= .:= f--- r= r= ~ f-: 1= == i== -= = -::-50·(~ Y- ~ 1-=1== Y V- l -iI -. 101 == -- c-.= l00·~-~ = 2S·C 1= 1-' ~ " rt rl- ~ iF.. -- 10' - 5 F r= F l- I--I- o 0.2 ~~ ~ f-- 1= f~ ~ ~ o. 0,4 0,6, = '10' i- 5 r::=-~ cc7 L 100 "C ·C ~ l/2S -SO ·c 5 10' f-- f-- -:""1- f--- f--- 0,8 i- .. 1-- I - f--- 1.0 1.2 V 0,2 0,4 0,6 -\'cE .., - - VO£ut 228 - 5 f= 1= .1 I-- 1-- '10 0 ~ Collector-emitter saturation voltage Ie = ((VeE.a,) mA h Fe 10 Siemens 0,8 V Bep 68 NPN Silicon AF Transis\ors • • • • • For general AF application High collector current High collector gain Low collector -emitter saturation voltage Complementary type: BCP 69 (PNP) E Type Marking Ordering code (12-mm tape) Package" BCP 68 BCP 68 Q62702-C2126 SOT-223 - Maximum Ratings Parameter Symbol Collector-emitter voltage V CEO VCES 20 25 V V Collector-base voltage V CBO 25 V Emitter-base voltage VEBO 5 V Collector current Ic 1 A Peak collector current ICM 2 A Base current IB 100 rnA IBM 200 rnA Peak base current BCP 68 Unit PIOI 1.5 W Junction temperature TI 150 °C Storage temperature range T~lg -65 to + 150 °C IR'hJA :s83.3 Total power dissipation. TA:s 25°C 1) Thermal Resistance Junction - ambient 1) I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm Mounting pad lor the collector tead min 6cm 2 ·1 For detailed dimensions see chapter Package Oullines Siemens 229 BCP 68 Characteristics at TA = 25 DC, unless otherwise specified. Parameter I I Unit Symbol /max. DC Characteristics Collector-emitter breakdown voltage Ic = 30mA, IB = 0 V(BR)CeO Collector-emitter breakdown voltage Ic = lOIlA, VBE 0 V1BR)CES Collector-base breakdown voltage Ic = lOIlA, '13 = 0 V'BR)CBO Emitter-base breakdown voltage IE = lOIlA, IB = 0 V(BR)EBO Collector-base cutoff current VeB =25V VC:B = 25 V, TA = 150 DC ICBO Emitter-base cutoff current VEI3=5V./c=0 lEBO DC current gain 1) Ic = 5 mA, Vee = 10 V Ie = 500 mA, VeE = 1 V le=lA,VeE=lV hFE Collector-emitter voltage 1) Ie 1 A, IB = 100 mA VCEsal Base-emitter voltage Ic =5mA, VcE =10 V Ie = 1A, VCE = 1V VBE = = 1) 20 - - V 25 - - V 25 - - V 5 - - V · · - 100 10 nA llA - · 10 Il A 50 63 60 - 400 · . .- · - 0.5 V 0.6 - V · · - · - - 1 AC Characteristics I· Transition frequency Ie = 100 mA, VeE = 5 V, f= 100 MHz 1) Pulse test conditions: t 3; 30011S; D = 2% 230 Siemens MHz BCP68 Total power dissipation PIOI 2.0 W "101 ~ - - -j---t-t-t---t---l --1- ---- -- r-- - - r--- --- -- - 1- -j----I-f---+--t---l - f--- -+-- 1-- - -1- h - --1-1--1-\ l- - - -- - o - -I-I- - - ~- \, fe:- -- f:=;k' 1-- 10' 10° 150 5 10 1 -~ Collector cutoff current/CBO VCE = 30 V - I-r- _L-'--'------'---'---'--'-------'---"----'_, 100°C _. V- I--2 50 -f= r-- 5 I--- -/-- - - - - - -- - --IV---I--------i- --1-1\ '--L_ ,- I--- -- -- -- -. -t---t-'l-t---j - -- - 1---- - I - -"--1-1--1--1 - - --- -- - - - -- f-- 10 1 -- := := =~- =~~~K++-I--'-I 0.5 = ((l cl I--1---- ! I~ .-j--t-I-j---I-iH---t---l 1-1-[:\ --t-t-t--t-I-j--f---i --1-1- 1- I-- f, _ 1.0 fT 10 3 - 1- - r- o Transition frequency MHz VCE = 5 V r-r-,.---,-r-r-,.---,-r-r-r--,-r-r--.-, 1.5 - f = f(TAl = ((TAl 5 10 1 --Ie 5 10 3 mA DC current gain hFE = ((lcl VCE = 1 V hI[ 5 I 100° 10 1 5 2S o f-?'50-o-c I- F- I- '-:- ~ - r-- nln~~'=H1111l. ~ 1- 5r10' I--- 1---·- .100 '---'---'---'---'-'----'--J ----'---'---,----'---'-'-'--. o 50 100 150°C 10' Siemens 5 10 1 5 10 3 ---Ie 5 10' mA 231 BCP68 Collector-emitter saturation voltage Ie = f(VCEsal ) mA hFE = 10 10· 5 -- l=: := '= - f--- ~ - - ~100 °c ~b rL ~.::::/ V25 °C ~ mA - - -SO °c i= r== - 10 I = ((VBE sal) -- ----- I - - - f71 V rJ / ' Base-emitter saturation voltage Ie hFE = 10 5 C=f-.:- 5 f- -- -1- 1--l-l--I--4--f-.:-I-l-....-l--1- 10' = 5 = == - -- i=:f=f,-. f-- 5 1---'.1'-'1--'- J_-t -- f- fI-t-- _. _- -I--~I'-'I= 10' I-- ~4-1~1-I-+- I'-' 1'-'1'-' - 10a o 0,2 0,4 0,6 0.6 V I'-' -1/- -If -- - - - 1 - 100 L.l--L_l_.L.L-lIL.1.L.L-L..J.....L-l o 0,2 0,4 0,6 0,6 1,0 1,2 V ....:..- "Esa' - - - - \'r.Esat 232 I'-' Siemens PNP Silicon AF Transistors • • • • • BOP 69 For general AF application High collector current High collector gain Low collector -emitter saturation voltage Complementary type: BCP 68 (NPN) E ~: Type Marking Ordering code (12-mm tape) Package" BCP 69 BCP 69 Q62702 - C2130 SOT-223 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO VCES VC80 VE80 Collector-base voltage Emitter-base voltage Collector current Ic Peak collector current ICM Base current Peak base current Total power dissipation. TA ::; 25· C BCP 69 Unit 20 25 V V 25 V 5 V 1 A 2 A 18 100 mA IBM 200 mA Ptot 1.5 W Junction temperature Tj 150 ·C Storage temperature range T stg -65 to + 150 ·C ::;83.3 IIVW 1) Ther.mal Resistance Junction - ambient 1) IR thJA t) Package mounled on an epoxy prinled circuil board 40mm x 40mm x 1.5rnm Mounling pad for the collector lead min 6cm2 .) For delailed dimensions see chapler Package Oullines Siemens 233 BCP 69 Characteristics at TA = 25 • C, unless otherwise specified. Parameter I I Symbol Values min. Ityp. Imax. I Unit _ DC Characteristics Collector-emitter breakdown voltage Ic =30mA, Ie = 0 V(BR)CEO Collector-emitter breakdown voltage Ie =10\-1 A, veE = 0 V(BR)CES Collector-base breakdown voltage Ie = 10\-lA, IB = 0 V(BR)CBO Emitter-base breakdown voltage IE = 10\-lA, IB = 0 V(BR)EBO Collector-base cutoff current VCB =25 V VcB =25 V, TA =150·C leBo Emitter-base culort current VEe = 5 V, Ie = 0 IEeo DC current gain 1) le=5mA, VcE =10V Ic = 500 mA, VeE = 1 V le=1A,VeE=1V hFE Collector-emitter voltage 1) Ie = 1 A, Ie = 100 mA VeEsal Base-emitter voltage Ie = SmA, VCE = 1U V le=1A, VeE=1V VeE 20 25 25 5 1) - - - V - - V - V - V - - - 100 10 nA \-I A - - 10 \-I A 50 63 60 -400 - - -- - 0.6 - - - 0.5 V - V 1 AC CharacterIstics Transition frequency le= 100 mA, VcE =5 V, f= 100 MHz MHz 1) Pulse test conditions: t ~ 300\-ls; D = 2% 234 Siemens BCP 69 Transition frequency MHz VCE = 5 V Total power dissipation PIOI = ((TA ) 2.0,,· - .. ---:- , - - - - , - , (T = ((I c) lOll-- W - - -- .- - -. -.- -- .- - -- - ·-11-1-'------ i1-1- - -- - - -- - -/--I-t-t-t--t--i I- - - . I1.5 r- , - - - - - - 1 - - - - 1 - - l I- - _t--ot-t--t--trf-t- f 5 t--t-t-t+IHttt-t-t-HttHt--t-++t+ttH i\.- ~==I=~S= == c=~=~ 10 i-- - . 1-1-.- --1---[\- - -I--t-H--j I-I- ~ - -I- - f\t--t--t--t--t--I-i 1-1-_.-1- -I- - -I- '\ I- - - - - - - -.··1-1-I- - - -- -I- .. - ~ - I- OS - I-I-----------~- 1-1-- -.- -I- -/--f-t-i-t-+'IJ-t-t --_ .. 1 - - _ . _ . _ - - - - - \ - --. -. -- .- - -. -- -- _. - -- -1\ o . -. - '---. o .L- 50 100 10' _ _ L..: <--..L-J...LJJUliL--.<.....L...U.llUL..--'.....L.LU.llU 5 10 1 5 la' 10° 150 O( nA Collector cutoff current . VCE = 30 V 10~ ICBO = ((TA ) DC current gain hFE = ((I c) VCE = 1 V II - 5 1-1-1I eao I --- -. -- l- I- 100 O( - .' 10' .- - - i--- 1-- maxi/ 10l I-I- - 25°( 1/ -50 O( V -- 5 5 - I- r- -,/ 10 1 ~ - - - ii- - - Vlyp - la' .- 5 10' 5 ro - - - 5 10° sIal mA ---Ie -7",. 50 -T. 100 150 10° 10° O( 5 10' = -== .- 5 10 1 5 IO J 5 10' mA ---Ie Siemens 235 BCP69 Base-emitter saturation voltage Ie = ((VOE .n') Collector-emitter saturation voltage hFE Ie = ((VeE sa') mA hFE = 10 10' 5 I-- 1-- - - - - - -I- == = 10 5 -I-- - - =t. rt L4 '/'- - 100 °c ~ fL r ' 25 °C ~ ,-50 o C 100 °C '\. 25°C _ -50 0 C -- - ~ / II 1/ I / I 10' 5 0,2 -I- 5 -I=:::: _ -- I - - 10' 0,4 0,6 - I I 5 0,8 V 10° o 0,2 0,4 01> 0,8 1,0 - VOEgt 236 Siemens 1,2 V PNP Silicon Darlington Transistors • • • • BCV26 BCV46 For general AF applications High collector current High current gain Complementary types: BCV 27, BCV 47 (NPN) Type (;] BCV 26 (;] BCV46 Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package FD Q62702-C 1151 Q62702-C 1153 Q62702-C1493 Q62702-C1475 SOT 23 SOT 23 FE Maximum ratings Parameter Symbol BCV26 Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO 30 40 10 Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VEBO Ic ICM IB IBM Ptot 7j Tstg BCV46 V V V mA mA mA mA mW 150 -65··· + 150 °C °C ::::; 350 RthJA Unit 60 80 10 500 800 100 200 360 K/W (;] Preferred type Siemens 237 BCV26 BCV46 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 10 rnA BCV26 BCV46 V(BR) CEO Collector-base breakdown voltage V(BR)CBO min typ max Unit 30 60 - - V V 40 80 - - V V - V - - - 100 100 10 10 nA nA IlA - - 100 nA 4000 2000 10000 4000 20000 10000 4000 2000 - - - - - - - - - - - - Ic=1001lA BCV26 BCV46 Emitter-base breakdown voltage h = 10 IlA Collector-cutoff current BCV26 VCB = 30V BCV46 VCB = 60V Vce = 30 V, TA = 150°C BCV26 BCV46 Vce = 60 V, TA = 150°C Emitter cutoff current VEe = 4 V DC current gain') Ic = 100 IlA, VCE = 1 V Ic = 10 rnA, VCE = 5V Ic = 100 rnA, VCE = 5 V Ic = 0,5 A, VCE = 5 V V(BR) EBO ICBo 10 - hBo J.lA hFE BCV26 BCV46 BCV26 BCV46 BCV26 BCV46 BCV26 BCV46 - - Collector-emitter saturation voltage ') Ic = 100 rnA, Ie = 0,1 rnA VCEsat - - 1 V Base-emitter saturation voltage') Ic = 100 rnA, IB = 0,1 rnA VBEsat - - 1,5 V AC characteristics Symbol min typ max Unit Transition frequency Ic=50mA, VCE=5V, f= 20 MHz fr - 200 - MHz Output capacitance VCB = 10V, f= 1 MHz Cob - 4,5 - pF ') Pulse test: t 5 300 Ils, D = 20/0 238 Siemens BCV26 BCV46 Total power dissipation P'o' = f (TA) Collector-base capacitance CCBO = f( VCBO) Emitter-base capacitance CEBO = f (VEBO) pF 10 mW 400 CE BO IC eBo) ~ot I \ '" 300 i'--- "r--. 1\ \ 200 r--. ~BO jt-.... '-. ..... 1\ CEBO \ \ 100 '\ o 1\ o 50 100 150 0 ( 10 0 ------- ~ Pulse handling capability (standardized) r'h 5 - Transition frequency VCE = 5 V = f (t) fT = f 10' V VEBO I Veso ) (l cl K lih Iii MHz 10 0 10 3 III 5 I , '0.5 0,2 0,1 0,05 , 0,02 0,01 0,005 0:0 IIII 5 2 D~ I-.. V 5 ~J!tn- .l. T f-- T-i 10- 3 10-6 10- 5 10- 4 10- 3 10- 2 10-' 10 0 10' s 5 10' -f Siemens 239 BCV26 BCV46 Base-emitter saturation voltage Ie = f ( VeE sat) hFE = 1000 Collector-emitter saturation voltage Ie = ((VcEsad hFE = 1000 mA 10l 150 0 C rnA ~ Base-emitter saturation voltage Ie hFE = 1000 = t( VBEsat) rnA ~ 150 °c+l. 25 OC I U VI II -50°C / I/ 5 I125°C -25°C -55°C F= 5 II 100 o 10-' 0,2 0,4 0,6 0,8 1.2 V 1,0 --Vcr - o 3 V 2 VeE SIt sat Collector-base capacitance GeBo = t(VeBo) Emitter-base capacitance GEBO = t (VEBO) DC current gain h FE = f (I cl VeE = 5V pF 10 [E BO I[ eBO 1 5 """ 125°C "t'r--.. ° ~BO -55°( ............ ':r-.... ......... [EBO 10' ./ 10l 10 0 5 - 252 VEBO 10' V I 10-' VeBol 5 100 5 10' 5 10 2 -Ie Siemens 5 10 J rnA NPN Silicon AF Transistors • • • • • BCW60 BCX70 For AF input stages and driver applications High current gain Low collector-emitter saturation voltage Low noise between 30 Hz and 15 kHz Complementary types: SCW 61, SCX 71 (PNP) c{!j: Type Marking Type Marking Ordering code Package SCW60A BCW60 B SCW60 C SCW60 D BCW60 FF AA AS AC AD AF SCW60 FN SCX70 G SCX70 H SCX 70 J SCX 70 K AN AG AH AJ AK Refer to index SOT 23 rn rn rn rn Maximum ratings Symbol BCW60 BCW60 FF BCX70 Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VEBO Ic ICM IBM P tot 32 32 5 32 32 5 45 45 5 100 200 200 330 V V V mA mA mA mW 150 -65···+150 °C °C Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm RthJA Parameter Tj Tstg :s; 375 K/W rn Preferred type Siemens 253 BCW60 BCX70 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 10 mA BCW 60, BCW 60 FF BCX70 V(BR) CEO Collector-base breakdown voltage BCW 60, BCW 60 FF Ie = 10 !lA BCX70 V(BR)CSO Emitter-base breakdown voltage le=1!lA V(SR) ESO Collector cutoff current VCB=32V VCB = 45 V Vcs = 32 V, TA = 150°C VCB = 45 V, TA = 150 0 e Icso typ max Unit 32 45 - - V V - - V V - V - - 20 20 20 20 nA nA !lA !lA 20 nA 20 20 40 100 140 200 300 460 - - 120 180 250 380 170 250 350 500 220 310 460 630 - 50 70 90 100 - - - - 32 45 5 - BCW 60, BCW 60 FF BCX70 BCW 60, BCW 60 FF BeX 70 - Emitter cutoff current VEB = 4 V leBO DC current gain') Ic = 10 !lA, VCE = 5 V BCW 60 A, BCX 70 G BCW 60 B, BeX 70 H BCW 60 FF, BeW 60 e, BeX 70 J BCW 60 FN, BeW 60 D, BCX 70 K Ic=2mA, VCE=5V BCW 60 A, BCX 70 G BeW 60 B, BeX 70 H BCW 60 FF, BCW 60 e, BCX 70 J BCW 60 FN, BeW 60 D, BCX 70 K Ic = 50 mA, VCE = 1 V BCW 60 A, BeX 70 G BCW 60 B, BeX 70 H BCW 60 FF, BeW 60 C, BeX 70 J BCW 60 FN, BeW 60 D, BeX 70 K hFE Collector-emitter saturation voltage ') Ic = 10 mA, Is = 0,25 mA Ic = 50 mA, Is = 1,25 mA VCEsat Base-emitter saturation voltage ') Ic = 10 mA, Is = 0,25 mA Ic = 50 mA, Is = 1,25 mA VSEsat Base-emitter voltage I c = 10 !lA. VCE = 5 V Ic = 2 mA, VCE = 5 V Ic = 50 mA, VCE = 1 V') VBE(on) - - - - - 0,12 0,20 0,25 0,55 V V - 0,70 0,83 0,85 1,05 V V - 0,52 0,65 0,78 - V V V - Siemens - - 0,55 ') Puls~ test: t:$ 300 !ls, D = 20/0. 254 min 0,75 - BCW60 BCX70 AC characteristics Symbol min typ max Unit Transition frequency Ic = 20 rnA, VCE = 5 V, f= 100 MHz fr - 250 - MHz Output capacitance VCB = 10V, f=1 MHz Cob - 3 - pF Input capacitance VCB = 0,5 V, f= 1 MHz Cib - 8 - pF Short-circuit input impedance Ic = 2 rnA, VCE = 5 V, f= 1 MHz sew 60 A, sex 70 G sew 60 s, sex 70 H sew 60 FF, sew 60 e, sex 70 J sew 60 FN, sew 60 D, sex 70 K h11e - 2,7 3,6 4,5 7,5 - kQ kQ kQ kQ Open-circuit reverse voltage transfer ratio Ic = 2 rnA, VCE = 5 V, f= 1 kHz sew 60 A, sex 70 G sew 60 s, sex 70 H sew 60 FF, sew 60 e, sex 70 J sew 60 FN, sew 60 D, sex 70 K h12e - 1,5 2,0 2,0 3,0 Short-circuit forward current transfer ratio Ic = 2 rnA, VCE = 5 V, f= 1 kHz sew 60 A, sex 70 G sew 60 s, sex 70 H sew 60 FF, sew 60 e, sex 70 J sew 60 FN, sew 60 D, sex 70 K h21e Open-circuit output admittance Ic = 2 rnA, VCE = 5 V, f= 1 kHz sew 60 A, sex 70 G sew 60 s, sex 70 H sew 60 FF, sew 60 e, sex 70 J sew 60 FN, sew 60 D, sex 70 K h22e Noise figure Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kQ f= 1 kHz, M= 200 Hz sew 60 A to sex 70 K F - - - - - Equivalent noise voltage Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kQ f=10Hz···50Hz sew 60 FF, sew 60 FN Siemens - - 10- 4 10- 4 - 10- 4 10- 4 - - - - - - - J.!s J.!s J.!s J.!s - 2 - dS - 1 2 dS - - 0,135 J.!V - Vn - 18 24 30 50 - Noise figure Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kQ f= 1 kHz, M= 200 Hz sew 60 FF, sew 60 FN 200 260 330 520 - - 255 BCW60 BCX70 Total power dissipation Ptot ,.; f ( TA) Collector-base capacitance CCBO = f( VCBO) Emitter-base capacitance CEBO = f(VEBO) mW 400 pF 12 "lot t \. 1-1- ... ~ 300 200 l\ , '" 8 \. """\ 1'\ iJCBO i'- f' ~ 4 .100 . . . . r-. \. 2 , o o CE~O r-. 1'\ 50 100 150 DC 5 10' V -7.4 Pulse handling capability rth = fIt) (standardized) K Transition frequency fT = f (Ie) VCE = 5V Vi MHz 10° 103 , III ~ 5 fy t TT 0,5 0,2 0,1 0,05 0,02 0,01 0,005 1--1"- 10 2 0=0 1111 10- 2 5 l/ i.I 5 5 ~T-,,; ~ tp O=y 10-3 10-6 10- 5 10-4 10- 3 10- 2 10-' 10° , 10' s 10 10-' -f 256 5 10' -Ie Siemens 5 10 2 rnA BCW60 BCX70 Base-emitter saturation voltage Ie hFE = = f (Vae sail Collector-emitter saturation voltage Ie 40 = {(VeEsa') hFE = 40 mA 10 2 Ie ./ Ie ! r- - 100°C - 25O~~ I I I - 50 oC I I II II / / VI d V V -50°C 25°( l00 0 ( 5 5 10-1 ° 0,2 0,4 0,6 0,6 1,0 1,2 V 10-1 ° VSE sat Collector current Ie = 0,1 0,2 0,3 0,4 0,5 V ----VcEsat DC current gain hFE = f (le) {(VaE) VeE = 1 V VeE = 1 V II / l00°C I rl00 0 ( I r- 25 °( ~ - II 25°C _50 0 ( 10' 5 10- 2 o I 0,5 1.0 V 10° 10- 1 5 10- 1 5 10° 5 10' 5 10 1 mA -Ie Siemens 257 BCW60 BCX70 Collector cutoff current I csc = f ( TA) h parameter he = f(Ie) VCE=5V nA 104 5 101 5 j' ~". 10' V max. 5 ::h'1. 1/ 10' 5 =h1, typo VcE=5V ~ jV 5 ~ h11• , V 100 50 150°C 5 h parameter he = f (VCE) Ie = 2 mA 10' mA Noise figure F = f ( VCE) Ie = 0,2 mA, Rs = 2 kO, f= 1 kHz dB 20 2,0 r-rrTITmr-rTn~r-rTTn"m 1 I I j' Ic=2mA "1- c- 1,5 .H ........ \\ 1\ .... ",. t- h ll • t;;; h111, P ~ ;;;;p. 1 15 ~~~~-r~~r-+++*~ ~ '\ 1,0 h 1" F ~ "\ 0,5 o OL-~LUillL~~Uill~~~= o 258 10 20 -VcE 30 V 10·' Siemens BCW60 BCX70 Noise figure F ~ f(f) Ie ~ 0,2 mA, Rs ~ 2 kQ, VCE Noise figure F ~ VCE~5V, f~ 5V ~ f (/ c) 120Hz dB 20 dB 20 Rs=1 Mil i- 1/ 1\ 10kll/ I I 10 100kll II I 10 J 50011 II 1\ , .I V\- I I 1kll 11111 11111 r10° IIIII 10 ' mA 10 ' --f Noise figure F ~ f (l cl VCE ~ 5 V, f~ 1 kHz Noise figure F ~ f (/ c) VCE ~ 5V, f~ 10 kHz dB 20 dB 20 I Rs=~11 Rs=1MIl 100k I 10 kll I \ I /100k 10 1\ II 10 \ 1kll I I II III ill 10kll 0011 / (\ II / ...... ",- o r- \. 1kll ...... " 50011 1000' 10- 3 I III I III IIIII / 111111 IIIU 10 ' mA o 10- 3 --Ie 1aIII~ " 10' mA --Ie Siemens 259 BCW61 BCX71 PNP Silicon AF Transistors • • • • • For AF input stages and driver applications High current gain Low collector-emitter saturation voltage Low noise between 30 Hz and 15 kHz Complementary types: BCW 60, BCX 70 (NPN) Type BCW61 BCW61 BCW61 BCW61 BCW61 A B C 0 FF Marking Type BA BB BC BO BF BCX61 BCX 71 BCX71 BCX71 BCX 71 ~ ~ ~ ~ FN G H J K Marking Ordering code Package BN BG BH BJ BK Refer to index SOT 23 Maximum ratings Parameter Symbol BCW61 BCW61 FF BCX71 Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO 32 32 5 32 32 5 45 45 5 V V V Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm ~ VCBO VEBO Ic ICM IBM PlOt Tj Tstg mA mA mA mW 150 -65···+150 °C °C :<:; 375 RthJA Preferred type 260 100 200 200 330 Siemens K/W BCW61 BCX71 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage BCW 61, BCW 61 FF Ic = 10 rnA BCX 71 V(BR) CEO Collector-base breakdown voltage BCW 61, BCW 61 FF Ie = 10 flA BCX71 V(BR) CBO Emitter-base breakdown voltage lE=1flA V(BR) EBO Collector cutoff current VCB=32V VCB = 45 V VCB = 32 V, TA = 150°C VCB = 45 V, TA = 150°C ICBo BCW 61, BCW 61 FF BCX71 BCW 61, BCW 61 FF BCX71 Emitter cutoff current VEB = 4 V lEBo DC current gain') Ic = 10 flA, VCE = 5 V BCW 61 A, BCX 71 G BCW 61 B, SCX 71 H BCW 61 FF, BCW 61 C, SCX 71 BCW 61 FN, BCW 61 D, BCX 71 Ic=2mA, VCE=5V BCW 61 A, BCX 71 G BCW 61 B, BCX 71 H BCW 61 FF, BCW 61 C, BCX 71 BCW 61 FN, BCW 61 D, BCX 71 Ic = 50 mA, VCE = 1 V BCW 61 A, BCX 71 G BCW 61 B, BCX 71 H BCW 61 FF, BCW 61 C, BCX 71 BCW 61 FN, BCW 61 D, BCX 71 hFE J K J K J K Collector-emitter saturation voltage') Ic = 10 mA, IB = 0,25 mA Ic = 50 rnA, IB = 1,25 mA VCEsat Base-emitter saturation voltage') Ic = 10 mA, IB = 0,25 mA Ic = 50 mA, IB = 1,25 mA VBEsat Base-emitter voltage') Ic = 10 flA, VCE = 5 V Ic = 2 mA, VCE = 5 V I c = 50 mA, VCE = 1 V VBE (on) min typ max Unit 32 45 - - V V - V V - - 32 45 - 5 - - - 20 20 20 20 nA nA flA flA - - 20 nA 20 30 40 100 140 200 300 460 - - 120 180 250 380 170 250 350 500 220 310 460 630 60 80 100 110 - - - - - 0,12 0,20 0,25 0,55 V V - 0,70 0,83 0,85 1,05 V V - 0,52 0,65 0,72 - V V V 0,55 - - - 0,75 - V - - - - ') Pulse test: t:5 300 fls, D = 20/0. Siemens 261 BCW61 BCX71 AC characteristics Symbol min typ max Unit Transition frequency Ic = 20 mA, VCE = 5 V, f= 100 MHz Output capacitance VCB = 10V, f=1 MHz Input capacitance VCB = 0,5 V, f= 1 MHz Short-circuit input impedance Ic = 2 mA, VCE = 5 V, f= 1 MHz sew 61 A, SeX.71 G sew 61 s, sex 71 H sew 61 FF, sew 61 e, sex 71 J sew 61 FN, sew 61 D, sex 71 K fT - 250 - MHz Gob - 3 - pF Gib - 8 - pF - 2,7 3,6 4,5 7,5 - kn kn kn kn h11e - - Open-circuit reverse voltage transfer ratio Ic = 2 mA, VCE = 5 V, f= 1 kHz sew 61 A, sex 71 G sew 61 s, sex 71 H sew 61 FF, BeW 61 e, sex 71 J sew 61 FN, Bew 61 D, sex 71 K Short-circuit forward current transfer ratio Ic = 2 mA, VCE = 5 V, f= 1 kHz sew 61 A, sex 71 G sew 61 s, sex 71 H sew 61 FF, sew 61 e, sex 71 J sew 61 FN, sew 61 D, sex 71 K h12e Open-circuit output admittance Ic = 2 mA, VCE = 5 V, f= 1 kHz sew 61 A, sex 71 G sew 61 S, BeX 71 H sew 61 FF, sew 61 e, sex 71 J sew 61 FN, sew 61 D, sex 71 K Noise figure Ic = 0,2 mA, VCE = 5 V, Rs = 2 kn f= 1 kHz, M= 200 Hz sew 61 A to sex 71 K Noise figure Ic = 0,2 mA, VCE = 5 V, Rs = 2 kn f= 1 kHz, M= 200 Hz sew 61 FF, sew 61 FN h22e Equivalent noise voltage Ic = 0,2 mA, VCE = 5 V, Rs = 2 kn f= 10 Hz ... 50 Hz sew 61 FF, sew 61 FN Vn 262 - - 10- 4 10- 4 10- 4 10- 4 200 260 330 520 - - - - - 18 24 30 50 - I1S I1 s I1 s I1s - 2 - dS - 1 2 dS - - 0,11 I1V - 1,5 2,0 2,0 3,0 - - - h21e - - - - F Siemens BCW61 BCX71 Total power dissipation Ptot = f (TA) Collector-base capacitance GCBO = f(VCBO) Emitter-base capacitance GEBO = f (VEBo) pF rnW 400 12 CC60 (CT) 10 .c;ot i I-~ 300 " "- '\. 200 \. 4 I\.. "}C60 '" "-" / [£60 100 ...... " ...... \. 1\ o o 50 100 150°C - -T. Pulse handling capability (standardized) (th VC60 (V [BO ) Transition frequency fT = f (I cl VCE = 5V = f (t) K W MHz 103 10° 'ih 5 I , ~ j,...1"..- ~ 10- t ~ 2 III I 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0=0 ~ 2 V V ~ o=~ 1(r3 10-6 10-5 '" 10- 4 T 10- 3 10- 2 10-' 10° 5 5 10 3 rnA 5 10' -t -IC Siemens 263 BCW61 BCX71 Base-emitter saturation voltage VBE sat = = 40 hFE f (I c) Collector-emitter saturation voltage VCEsat = f(Iel hFE = mA mA ~ ~ l000e l -I f-- j 771 1 250~f:: _ 50 0[1 40 I I I 1/ II 77 1/, A ~ V -SOO( 2S 0 [ lODO( 5 5 5 10-1 o 0.2 0.4 0.6 0.8 1,0 1.2 V xr1 o 0,1 0,3 0,2 0,4 0,5 V ---VcEsat Collector current I C = f (VBE) VeE = 1 V DC current gain h FE = f (l c) VCE = 1 V 100 0( rT / J 1- 250 ~( fT l00°Cf 2S 0 [ 5 _50 0 [ 10° 5 10 1 1 5 2 I 0.5 1.0 V ° 10 ,0-2 5 10-1 5 100 5 101 -Ie 264 Siemens 5 101 mA BCW61 BCX71 h parameter he = ((l cl VeE = 5V Collector cutoff current I eBO = (( TA) nA 10 2 10 4 5 h, 5 1 h ll • \'h=5V V ma~/ 5 ,h,2 • 1/ 10' 5 " ........ typo , "'- VII' IoCh 21, h2y 1/ 50 150 ·C 100 -Ie h parameter he = ((VeE) Ie = 2 mA Noise figure F = f (VeE) Ie = 0,2 mA, Rs = 2 kn, f= 1 kHz 2,0 dB 20 r-rTTITmr-,Tnmnr-"Tnrn I I }e =12~A F h,,-~ f-- \ .... " 1,0 ~ 1 15 ~~+H~-+-H~m-~~~ ,,- I\. h'y~ " "., 10 I-H++ttHl--t-H-tttHt--+++1-ttffl l/' ..-+'" hn-r- 0,5 o o 0L--.L--'.-Ll..!.J.llL----'.-L'-"-ll=----'--.L.L~ 10 30 V 10-' Siemens 265 BCW61 BCX71 Noise figure F = f (l cl Noise figure F = f (f) Ie = 0,2 rnA, Rs = 2 kn, VCE = 5 V VCE=5V,f=120Hz dB 20 dB 20 I- ~s=1MQ I \ 10 100kl1 10kl1f I II 10 J 500Q I 5 o 10- 2 10° .I " - o 10-3 10' --f L II 11111 11111 11111 10' mA Noise figure F = f (l c) VCE =5V, f= 1 kHz Noise figure F = f (l cl VCE =5V, f= 10kHz dB 20 dB 20 "TTI=r"Tmm-rnn=-'Trr~ 1kl1 F ! 15 r++m~++#ffi~**~/#+~ f\+++tflfll-~Rs=1MI1 100k \ 10 Rs= 1MI1 I 10kl1 I f100k ~~ct+Httttt---+-+++~-++t*ll1t-+--tl+tttII I 10 1kl1 II / I I\, 266 1kQI\' 11111 11111 11111 Jllll lUll 010- 2 I 1111 IIIII IIIII 10kQ OOQ II 50011 10- 3 f 10° --Ie o 10' mA ..ws:J+1c::: / ...-: ~ 10- 3 10' mA --Ie Siemens BCW65 BCW66 NPN Silicon AF Transistors • • • • For general AF applications High current gain Low collector-emitter saturation voltage Complementary types: SCW 67, SCW 68 (PNP) Type 0SCW65A o SCW 65 S 0BCW65C Marking EA EB EC Type o BCW66 F 0BCW66G o BCW 66 H Marking Ordering code Package EF EG EH Refer to index SOT 23 Maximum ratings Parameter Symbol BCW65 Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO 32 60 5 Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VEBO Ic ICM IB IBM Ptot Tj Tstg BCW66 V V V mA A mA mA mW 150 -65···+150 °C °C ~375 RthJA Unit 45 75 5 800 1 100 200 330 K/W o Preferred type Siemens 267 BCW65 BCW66 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage BCW65 Ic = 10 rnA BCW66 Collector-base breakdown voltage BCW65 Ie = 10 !-LA BCW66 Emitter-base breakdown voltage le=1O!-LA Collector cutoff current BCW65 VCB = 32V BCW66 VCB = 45V VCB = 32 V, TA = 150°C BCW65 BCW66 VCB = 45 V, TA = 150°C Emitter-base cutoff current VEB = 4 V DC current gain ') V(BR) CEO min typ max Unit 32 45 - - V V 60 75 5 - - - V V V - - - - 20 20 20 20 20 nA nA !-LA V(BR) CBO V(BR) EBO ICBo - leBO - - AC characteristics Transition frequency Ic = 50 rnA, VCE = 5 V, f= 20 MHz Output capacitance VCB = 10V, f= 1 MHz Input capacitance VEB = 0,5 V, f= 1 MHz ') Pulse test: t:5, 300 !-Ls, D = 20/0. 268 !-LA nA hFE Ic=100!-LA, VCE=10V BCW 65 A, BCW 66 F BCW 65 B, BCW 66 G BCW 65 C, BCW 66 H Ic = 10 rnA, VCE = 1 V BCW 65 A, BCW 66 F BCW 65 B, BCW 66 G BCW 65 C, BCW 66 H Ic = 100 rnA, VCE = 1 V BCW 65 A, BCW 66 F BCW 65 S, SCW 66 G BCW 65 C, BCW 66 H Ic = 500 mAo VCE = 2V SCW 65 A, BCW 66 F SCW 65 S, BCW 66 G BCW 65 C, SCW 66 H Collector-emitter saturation voltage ') Ic = 100 rnA, IB = 10 rnA Ic = 500 rnA, IB = 50 rnA Base-emitter saturation voltage ') Ic = 100 rnA, IB = 10 rnA I c = 500 rnA, I B = 50 rnA - VCEsat VBEsat 35 50 80 - 75 110 180 - - - - 100 160 250 160 250 350 250 400 630 - 35 60 100 - - - - - - - - - - - - - - - - - 0,3 0,7 V V - - - 1,25 2,00 V V Symbol fT min typ max Unit - 170 - MHz Gob - 6 - pF Gib - 60 - pF Siemens BCW65 BCW66 Total power dissipation Ptot = f (TA) Transition frequency fT = f (/ c) VCE =5V MHz 103 rnW 400 ":01 i f--", 300 \. v 200 1\ \. 5 100 1\ 2 o o I\, 50 100 150 DC 5 W 5 103 rnA -~ Pulse handling capability rth = f (t) (standardized) K Collector cutoff current I cso = f ( TA) VCBO = SOV Iii 10 0 , II • 1/ / I '0,5 0,2 0,1 0,05 , 0,02 0,01 0,005 max. ~. / I'typ 0:0 1111 2 V 5 1G--L -7;! O:f I-- T 10-3 10-6 10- 5 10- 0 10- 3 10- 2 10-' 100 10' s 50 100 150 D( -r. -t Siemens 269 BCW65 BCW66 Base-emitter saturation voltage Ie = f (VBE sat) hFE = 10 mA Collector-emitter saturation voltage Ie = f(VCEsat) hFE = 10 rnA 10l 10 l 5 150 0 ( 5 If:.. 25°( V- 5OO ( 150 0 [ 25°[ -~500[ 10' , t 200 2 400 600 800 rnV -~fEsat -VaEso.t DC current gain hFE = f(Ie) VCE = 1 V 10l91l~• • 100 0 nBI 1o' • • 100 L...L..liJ.lilJJ..-'--.lJ.lJ.illL-Ll-Lll1llL.J..LWilll 10-' 5 100 5 10' 5 10 1 5 10l rnA -Ie 270 Siemens BCW67 BCW68 PNP Silicon AF Transistors • • • • For general AF applications High current gain Low collector-emitter saturation voltage Complementary types: SCW 65, SCW 66 (NPN) Type Marking I'!l SCW67 A I'!l SCW67 S I'!lSCW67 C DA DS DC Type I'!l SCW 68 F I'!l BCW 68 G I'!l SCW 68 H Marking Ordering code Package DF DG Refer to index SOT 23 DH Maximum ratings Parameter Symbol BCW67 Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation VCEO 32 45 5 BCW68 Unit V V V Ptot 45 60 5 800 1 100 200 330 Junction temperature Storage temperature range Ti Tstg 150 -65 .. · + 150 DC DC Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm RthJA TA = 25 DC VCBO VEBO Ic ICM IB IBM ::5 375 mA A mA mA mW K/W I'!l Preferred type Siemens 271 BCW67 BCW68 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 10 mA BCW67 BCW68 Collector-base breakdown voltage BCW67 Ic=10~A BCW68 Emitter-base breakdown voltage IE = 10 ~ Collector cutoff current VCB = 32V BCW67 VCB =45V BCW68 VCB = 32 V, TA = 150°C BCW67 VCB = 45 V, TA = 150°C BCW68 Emitter-base cutoff current VEB = 4V DC current gain') Ic = 100 !LA, VCE = 10 V BCW 67 A, BCW 68 F BCW 67 B, BCW 68 G BCW 67 C, BCW 68 H Ic = 10 mA, VCE = 1 V BCW 67 A, BCW 68 F BCW 67 B, BCW 68 G BCW 67 C, BCW 68 H Ic = 100 mA, VCE = 1 V BCW 67 A, BCW 68 F BCW 67 B, BCW 68 G BCW 67 C, BCW 68 H Ic = 500 mA, VCE = 2V BCW 67 A, BCW 68 F BCW 67 B, BCW 68 G BCW 67 C, BCW 68 H Collector-emitter saturation voltage') Ic = 100 mA, IB = 10 mA Ic = 500 mA, IB = 50 mA Base-emitter saturation voltage') Ic = 100 mA, IB = 10 mA Ic = 500 mA, IB = 50 mA V(BR) CEO AC characteristics Transition frequency Ic= 50 rnA, VCE = 5V, f= 20 MHz Output capacitance VCB = 10 V, f= 1 MHz Input capacitance VEB = 0,5 V, f= 1 MHz ') Pulse test: t ~ 300 !Ls, D = 20/0. 272 min typ max Unit 32 45 - - V V 45 - - - V V V - - 20 20 20 20 20 nA nA ~ ~ nA 35 50 40 - - - 75 120 180 - - 100 160 250 160 250 350 250 400 630 - 35 60 100 - - - - - - 0,3 0,7 V V -- - 1,25 2 V V V(BR)CBO V(BR) EBO ICBo 60 5 - - - - leBO - - hFE VCEsat - VBEsat - - - -- - Symbol fT min typ max Unit - 200 - MHz Gob - 6 pF Gib - 60 - Siemens pF BCW67 BCW68 Total power dissipation Ptot = f ( TAl Transition frequency fr VCE = 5V mW MHz 103 400 flo! t = f (I cl ~h. 300 .., I\, \ 200 " 5 100 1/ 1'\ I'i a 1'\ a 50 150 °C 100 5 10' -~ Pulse handling capability fth = f(t) Collector cutoff current I CBO = f ( TA) (standardized) K VCB = VCEmax iii 10° 'ih 5 t , II '-, II 0,5 0,2 0,1 0,05 0,02 0,01 0,005 5 max. v' 1/ typo 0=0 '"' I 5 ~ fp D=r 10-1 T7,! ~~ ~ ~ WI ~ ~ ~s 50 100 150 0 C -t Siemens 273 BCW67 BCW68 Base-emitter saturation voltage VBE sa' = f (I cl hFE = 10 Collector-emitter saturation voltage VCEsa' = f(Ie) hFE = 10 mA 103 mA 103 150' Ie iI"_ 25'C i-"-50 ·c 5 lS0'C /h ~ "Z5 .( l~ 110 2 , 10-' L-L...JL.L...l._-'----"---''---'---'----' o 2 3 4 V - i"-SO'( _._- zoo 400 600 800 mV VaEso.t DC current gain hFE = f(Ie) VCE = 1 V 5 r lDO'C 1-~51' ..... r-::50' 5 - 5 10° 10-' 5 10° 5 10' 5 10 1 -Ie 274 Siemens 5 10 3 rnA BCX41 BSS64 NPN Silicon AF and Switching Transistors • • • High breakdown voltage Low collector-emitter saturation voltage Complementary types: BCX 42, BSS 63 (PNP) Type Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package iii BCX 41 EK BSS64 AM Q62702-C946 Q62702-5394 Q62702-C1659 Q62702-5535 SOT 23 SOT 23 Maximum ratings Parameter Symbol BSS64 Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collect-or current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VEBO Ic ICM IB IBM 80 120 5 Thermal resistance RthJA Ptot BCX41' 125 125 5 800 1 100 200 330 150 -65· .. +150 Tj Tstg S375 Unit V V V mA A mA mA mW °C °C K/W junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm iii Preferred type Siemens 275 BCX41 BSS64 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 10 mA BSS64 BCX41 Collector-base breakdown voltage ') BSS64 Ic = 100 !LA BCX41 Emitter-base breakdown voltage Ie = 10 !LA Collector cutoff current BSS64 Vcs= BOV BCX41 Vcs = 100V BSS64 Vcs= BOV, TA= 150°C Vcs = 100V, TA = 150°C BCX41 Collector cutoff current VCE = 100 V, VSE = 0,2 V BSS64 TA= 85°C TA = 125°C BCX41 Emitter cutoff current VES = 4 V DC current gain') BCX41 Ic = 100 !LA, VCE = 1 V BSS64 Ic = 1 mA, VCE = 1 V BSS64 Ic= 4 mA, VCE = 1 V BSS64 Ic = 10 mA, VCE = 1 V BSS64 Ic = 20 mA, VCE = 1 V Ic = 100 mA, VCE = 1 V BCX41 BCX41 Ic = 200 mA, VCE = 1 V V(SR) CEO typ max Unit BO 125 - - V V 120 125 - - V V - - 100 100 20 20 nA nA !LA !LA - - - - 10 75 100 !LA !LA nA 25 - - - - V(SR) cso V(SR) ESO Icso 5 - - V ICEO leBO hFE - 20 - - Collector-emitter saturation voltage') Ic = 300 mA, Is = 30 mA BCX41 BSS64 Ic = 4 mA, Is = 0,4 mA BSS64 Ic= 50mA,Is=15mA Base-emitter saturation voltage') I c = 300 mA, Is = 30 mA BCX41 VCEsat AC characteristics Transition frequency Ic = 20 mA, VCE = 5 V, f= 20 MHz Output capacitance Vcs = 10V, f= 1 MHz - 60 80 80 55 63 40 - - - - - - - - V V V V - - 0,9 0,7 3,0 - - 1,4 Symbol min typ max Unit fr - 100 - MHz Cob - 12 - pF VSEsat ') Pulse test: t 5, 300 !Ls, D = 2010. 276 min Siemens - BCX41 BSS64 Total power dissipation Ptot = f (TA) Collector current I c = f (VBE) VCE = 1 V mW 400 mA 103 5 ~ot i TA =l?OoC Ir -"" 300 \ ~ 5 \. 200 I 7i. =25 O( =_ CO( 10' I\, 5 1\ 100 \ 5 \ a \ o 50 . 100 , 2 150 0 ( 3 V -VBE -~ Transition frequency fT = f (/cl VCE = 5V Pulse handling capability rth = f(t) (standardized) K W 10° , If I 1'0,5 0,2 0,1 0,05 0,Q2 0,01 0,005 ·0:0 1111 1 ;I V 5 ~ 2 tp 0:T T 10-3 '" 6 4 10- 10- 5 10- 10- 3 10- 1 10-' 10° 10' s 5 1Q1 5 10 3 rnA -t Siemens 277 BCX41 BSS64 Base-emitter saturation voltage Ie = f( VeE sat) Collector-emitter saturation voltage Ie = '(VCEsat) hFE = 10 hFE 10 103 ~ 150·C4i 25 "( Ie r = mA mA 103 ;oO( l///f" /I 10 2 Atr25 '( -SO ·C ~ lS0'( lot 10' 5 5 10° 5 , lO-t 10· 2 0 3 V o 1\ 200 400 600 800 mV 5 10 2 5 10 3 mA VeE sat Collector cutoff current I ceo = '( TA) DC current gain hFE = '(/e) VCE = 1 V Vce = VCEmax max. ,/ 150 0 ( f .... V ~ 2S .( I- -SO'( typ. 10 ' S 5 1 1/ 10' 50 100 150 .( 1/ 10·' 5 10' --Ie -TA 278 5 10° Siemens PNP Silicon AF and Switching Transistors • • • • BCX42 BSS63 For general AF applications High breakdown voltage Low collector-emitter saturation voltage Complementary types: BCX 41, BSS 64 (NPN) Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package o BCX42 DK BSS63 BM 062702-C945 062702-S401 062702-C1485 062702-S534 SOT 23 SOT 23 Type Maximum ratings Parameter Symbol BSS63 Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VEBO Ic ICM 100 110 5 Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm RthJA IB IBM Ptot BCX42 125 125 5 800 1 100 200 330 150 -65···+150 Tj Tstg :5 375 Unit V V V rnA A rnA rnA mW °C °C K/W o Preferred type Siemens 279 BCX42 BSS63 Electrical characteristics at TA = 25 cC, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage BCX42 Ic=10mA BSS63 V(BR) CEO Collector-base breakdown voltage') BCX42 Ic=100~A BSS63 V(BR) CBO Emitter-base breakdown voltage IE = 10~A V(BR) EBO Collector cutoff current VCB = 80V VCB=100V VCB = 80 V, TA = 150°C VCB = 100 V, TA = 150°C ICBo Collector cutoff current VCE = 100 V, VBE = 0,2 V TA = 85°C TA=125°C BSS63 BCX42 BSS63 BCX42 typ max Unit 125 100 - - V V 125 110 - - - V V 5 - - V - - - 100 100 20 20 nA nA - - 10 75 ~A ~A 100 nA - - - ~A ~A ICEO BCX42 BCX42 Emitter cutoff current VEB = 4 V DC current gain') Ic = 100 ~A, VCE = 1 V Ic= 10mA, VCE=5V Ic= 20 mA, VCE = 5V Ic = 100 mA, VCE = 1 V Ic = 200 mA, VCE = 1 V min lEBO hFE BCX42 BSS63 BSS63 BCX42 BCX42 25 30 30 63 40 Collector-emitter saturation voltage ') Ic = 300 mA, IB = 30 mA BCX42 BSS63 Ic = 25 mA, IB = 2,5 mA BSS63 Ic = 75 mA, IB = 7,5 mA VCEsat Base-emitter saturation voltage ') I c = 300 mA, I B = 30 mA BCX42 VBEsat - - - - - - - 0,9 0,25 0,9 V V V 1,4 V - - - - AC characteristics Symbol min typ max Unit Transition frequency Ic = 20 mA, VCE = 5 V, f= 20 MHz fT - 150 - MHz Output capacitance VCB = 10V, f= 1 MHz Cob - 12 - pF ') Pulse test: t 5, 300 ~s, D = 20/0. 280 Siemens BCX42 BSS63 Total power dissipation P'ot = f (TA) Collector current VCE = 1 V mW 400 mA Ie = f (VBE) 103 T, =150 0 ( -,;" t r-h. r,. = 25 O( 300 r;.. = - 5 ~O( I\, 200 10' I\, 5 \ 100 \. I\. o o 5 , 1\ 50 150 100 3 V 0 ( -~ Pulse handling capability (standardized) rth = f (t) Transition frequency fT = f (lo) VCE = 5V K Vi 10° 'ih t , JI ~ 5 1 '0,5 0,2 0,1 0,05 , 0,02 0,01 0,005 2 ./ 0=0 1111 1 \ 5 / 5 ~ tpl-- o=1.YLn- T i--- T _-j III III "I 10-3 10- 6 10- 5 10- 4 10- 3 10- 1 10-' 10° 10' 5 lOt 5 -t Siemens 281 BCX42 BSS63 Base-emitter saturation voltage Ie hFE = 10 = '( VeE sat) COllector-emitter saturation voltage Ie = '(VCEsat> hFE = 10 mA 103 1soo C-+i 25 OC = iOO( I /I 1///1' ~25°C -50°C 150°C 5 5 10-' , o 1\ 200 3 V 2 600 800 mV 5 10 2 5 10 3 mA 400 DC current gain hFE = '(1 e) VCE = 1 V Collector cutoff current I ceo = '( TA) Vce = VCEmax max .• / ..- -- / 150 0 ( 25°C _50 0 ( typo 10' 5 5 , 1/ 10' 50 100 150 D( 10-' -TA 282 5 10° 5 10' -Ie Siemens BCX51 ... BCX 53 PNP AF Transistors • • • • For AF driver and output stages High collector current Low collector-emitter saturation voltage Complementary types: SCX 54··. SCX 56 (NPN) Type SCX BCX SCX SCX BCX 51-6 51-10 51-16 52-6 52-10 Marking Type AS AC AD AF AG BCX BCX BCX SCX 52-16 53-6 53-10 53-16 E Marking Ordering code Package AM AJ AK AL Refer to index SOT 89 Maximum ratings Parameter Symbol BCX 51 BCX52 BCX53 Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25 DC Junction temperature Storage temperature range VCEO Vcso 45 45 5 60 60 5 80 100 5 1 1,5 100 200 1 V V V A A mA mA W 150 -65 .. ·+150 DC DC Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VESO Ic ICM Is ISM Ptot 7j Tstg :5125 RthJA Siemens K/W 283 BCX51 ·.·BCX53 Electrical characteristics at TA = 25 DC, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 10 mA BCX51 BCX52 BCX53 V(BR) CEO Collector-base breakdown voltage Ic = 100 J.lA BCX 51 BCX52 BCX53 V(BR)CBO Emitter-base breakdown voltage h = 10 J.lA V(BR)EBO Collector cutoff current VCB = 30V VCB = 30 V, TA = 150 DC ICBo Emitter cutoff current VEB = 4V hBO DC current gain') Ic = 5 mA. VCE = 2V Ic = 150 mA. VCE = 2 V BCX 51, BCX 52, BCX 53-6 BCX 51, BCX 52:BCX 5~10 BCX 51-16, BCX 52-16, BCX 53-16 Ic = 500 mA, VCE=2V hFE Collector-emitter saturation voltage') I c = 500 mA, I B = 50 mA VCEsat Base-emitter voltage ') I C = 500 mA, VCE = 2 V VSE AC characteristics Transition frequency Ic = 50 mA, VCE = 10 V, f= 20 MHz ') Pulse test: 284 (5, min typ max Unit 45 60 80 - - V V V 45 60 100 - - V V V - V - 100 20 J.lA 20 nA - - - 63 100 160 100 160 250 - - - - - 0,5 V - - 1 V Symbol min typ max Unit fr - 125 - MHz 5 - 25 , 300 J.ls, D = 2010. Siemens 40 63 100 25 - - nA - - BCX51 ... BCX 53 Total power dissipation P'o' = f (TA) Collector current I C = f (VSE) VCE = 2V W rnA 1,2 10" 1"1,0 '\ 100 0 ( 25°( -50 0 ( [\ 0,8 [\ "JI 1,\ / /7 0,6 \. 1\ 0,4 I I 1\ J 10' 1'\ I 0,2 '\ 1\ ° 50 ° 150 100 10° 0( o 0.2 0.4 --T, Pulse handling capability (standardized) r'h 0,6 0,8 1.0 1.2 V -VBE Transition frequency fT VCE = 10V = f (t) = f (I c) K iii 10° 'ih I , ~, , ;;;; 5 0.5 0.2 0.1 0.05 0.02 0.01 0.005 2 r- t'-D=O 2 5 ~ D=f T 10-3 10-6 10-5 10- 4 10- 3 10- 2 10-' 10° s 5 10' -t 5 10 2 -Ie Siemens 285 BCX51 ···BCX53 DC current gain h FE = f (l cl VeE = 2V Collector-emitter saturation voltage Ie = f(VeEsa') hFE = 10 rnA 104 5 - 1- 100 O( II I-- 25 ° 5 " ~ ~SOo ~ - ,/ 'Iv / - -5 O( 5 - 10' 5 5 10° 10° 5 101 5 101 5 103 10° 5 10'rnA o 0.4 0.2 0.8 V 0.6 -~hsat -Ie Base-emitter saturation voltage Ie = f(VBEsa') Collector cutoff current leBo = f ( TA) VeB = 30V hFE = 10 5 max L/ 1/ Ie f ..... ~ .... 100 O( 25°( V SOO( l-l "'J typo 10' 5 J 1 10' 5 II 1 1/ so 100 150 10° 0( -TA 286 II o 0.2 0.4 0.6 0.8 1.0 - - - - VSEsat Siemens 1.2 V NPN Silicon AF Transistors • • • • BCX54 ... BCX 56 For AF driver and output stages High collector current Low collector-emitter saturation voltage Complementary types: BCX 51.·. BCX 53 (PNP) Type BCX BCX BCX BCX BCX 54-6 54-10 54-16 55-6 55-10 E Marking Type Marking Ordering code Package BB BC BO BF BG BCX 55-16 BCX 56-6 BCX 56-10 BCX 56-16 BM BJ BK BL Refer to index SOT 89 Maximum ratings Parameter Symbol BCX54 BCX55 BCX56 Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO Vcso VESO Ic ICM Is 45 45 5 60 60 5 80 100 5 V V V A A mA mA Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm ISM Ptot 1 1,5 100 200 1 W Tj Tstg 150 -65···+150 °C °C :'> 125 RthJA Siemens K/W 287 BCX54 ···BCX56 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage V(BR) CEO min typ max Unit 45 60 80 - - V V V 45 60 100 - - V V V - 100 20 nA 20 nA - - - 63 100 160 100 160 250 - Ic=10mA BCX54 BCX55 BCX56 Collector-base breakdown voltage Ic = 100 J.lA BCX54 BCX55 BCX56 V(BR)CBO Emitter-base breakdown voltage IE = 10 J.lA V(BR)EBO Collector cutoff current VCB = 30V I(CB = 30 V, TA = 150°C ICBo Emitter cutoff current VEB = 4V lEBO DC current gain') Ic=5mA, VCE=2V Ic = 150 rnA, VCE =2V BCX 54, BCX 55, BCX 56-6 BCX 54, BCX 55, BCX 56-10 BCX 54-16, BCX 55-16, BCX 56-16 Ic = 500 rnA, VCE=2V hFE Collector-emitter saturation voltage') Ic = 500 rnA, IB = 50 rnA VCEsat Base-emitter voltage') Ic = 500 rnA, VCE = 2V VBE AC characteristics Transition frequency Ic = 50 rnA, VCE = 10 V, f= 20 MHz - 25 40 63 100 25 - V J.lA - - - - - 0,5 V - - 1 V Symbol min typ max Unit fT - 100 - MHz ') Pulse test: t:5, 300 its, D = 20/0. 288 5 - Siemens BCX54 ···BCX56 Total power dIssIpatIon P,o' = f( TA) TransItion frequency fT = f (l cl W 1,2 MHz VCE = 10 V 10'~m~m~_ 1"',0 \. 1\ 0,8 2 1\ 1\ 0,6 \. \ 0,4 \ 1\ 0,2 \. \ o o 100 50 150 0 ( -~ Pulse handling capability (standardized) r'h = f(t) 10' '--.J....-L-.U.JL.LW.---L-'-L.1.J.J.J..IJ...---L-L..Ll..Ujlj 100 5 10' 5 10 2 5 10' mA -Ie Collector cutoff current I CBO = f ( TA) VCB = K iii nA 10° 10' 5 I 'ih 5 I I<:: , ro;; 5 I-- max. I" I 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=O , ~ I 2 30V V I.' .... V typo 10' 5 5 / ~ D=~ , 10-6 T 10-' 10- 2 10-' HJ 10- 10-5 10- 4 1 10° s ./ 50 -t 100 150 0 ( -T.. Siemens 289 BCX54 ···BCX56 Collector current JC = f (VSE) VCE = 2V Collector-emitter saturation voltage Ie = f(VCEsa') hFE = 10 mA rnA 104 '0 4 5 5 Ie Ie 1 1 l00 0( 25°( -SO 0\1:: 5 Jr'i j 103 'I 10 2 If;v 100 0 ( 25 °( r== -SO O( 5 II 10 1 5 IT 100 11 o 0.2 0.4 0.6 100 0.8 1.0 0,2 0 1.2 V 0,4 -\'sE 0.6 0.8 V - - - - VcESit Base-emitter saturation voltage J e = f (VBE sad hFE = 10 DC current gain hFE = f (Ie) VCE = 2V rnA 10' l00 0 ( 25°( -50 0 ( : \ 100° 10 2 Nil -SO O( II rA 10 2 TTT e-:25 ° 5 101 5 T 10a o 0.2 0.4 0,6 II 100 0,8 1,0 1.2 V 10- 1 5 101 5 10 2 -Ie --VBEsat 290 5 100 Siemens 5 10 3 rnA BCX68 NPN Silicon AF Transistors • • • • • For general AF applications High collector current High current gain Low collector-emitter saturation voltage Complementary type: BCX 69 (PNP) E Type Marking Ordering code for versions In bulk Ordering code for versions on 12 mm-tape Package BCX68-10 BCX68-16 BCX68-25 CB CC CD Q62702-C1077 Q62702-C1078 Q62702-C1079 Q62702-C1864 Q62702-C1865 Q62702-C1866 SOT 89 SOT 89 SOT 89 Maximum ratings Parameter Symbol Ratings Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO Vcso 20 25 5 1 2 100 200 1 A A mA mA W Tstg 150 -65···+150 °C °C RthJA :5125 K/W Thermal resistance VESO Ic ICM Is ISM P tot Tj Unit V V V junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Siemens 291 BCX68 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 30 mA V(BR) CEO 20 - - V Collector-base breakdown voltage V(BR) CBO 25 - - V V(BR) EBO· 5 - - V - - 100 10 nA - 10 ~A Ic=10~A Emitter-base breakdown voltage lE=1~A Collector cutoff current VCB = 25 V VCB = 25 V, TA = 150°C ICBo Emitter cutoff current VEB = 5 V lEBO DC current gain') Ic = 5 mA, VCE = 10 V Ic = 500 mA, VCE = 1 V hFE 50 BCX 68-10 BCX 68-16 BCX 68-25 Ic = 1 A, VCE = 1 V Collector-emitter saturation voltage') I C = 1 A, I B = 100 mA VCEsat Base-emitter voltage') Ic=5mA, VCE=10V Ic = 1 A, VCE = 1 V VBE AC characteristics Transition frequency Ic = 100 mA, VCE = 5 V, f= 20 MHz ~A - - - 100 160 250 160 250 400 63 100 160 60 - - - - - 0,5 V - 0,6 - - - 1 V V Symbol min typ max Unit fT - 100 - MHz ') Pulse test: t:5, 300 ~s, D = 20f0. 292 - Siemens BCX68 Collector current I c = f (VBE) VeE = 1 V Total power dissipation Ptot = f (TA) W 1,2 5 1"1,0 -SOo( \ 0,8 q, '/ 100 oS", 25°( 1\ \ I I \. II/II 0,6 I\, 1\ 0,4 1\ I \. 0,2 5 \. a 1\ a 100 50 150 DC 100 o 0,2 0.4 0.6 --T" 0,8 1,0 1.2 V -VBE Transition frequency fT = f (I cl VCE = 5V Pulse handling capability rth = fIt) (standardized) K 'th W MHz 100 10 3 5 1': t "'-.:I t P' 0.5 0.2 0.1 0.05 0.02 0.01 0.005 5 V ~ D=O 2 / 5 ~ D=? 10-3 10-6 r 10-5 10- 4 10-3 10- 2 10- 1 100 S -t Siemens 293 BCX68 DC current gain h FE VCE = = '(le) Collector-emitter saturation voltage 1V Ie = '(VcEsad 10 rnA 10 4 hFE = 5 v~ ,/ 100° 25° ~50oe /" 5 100 °e 25 °e -SO °C 5 10° 10° 10° 5 1Q1 5 1Q1 5 10 3 5 104 rnA o 0,2 0,4 ~/( 0,6 0,8 V --~hsat Collector cutoff current I CBO = '( TA) Base-emitter saturation voltage Ie = '( VBE sad VCB=25V hFE = 10 nA 105 5 5 1/ ICBO ! ~; 104 5 1/ rnaxl/ 103 5 V II 'i III 1/- 102 5 1/ ' /. ~ 100°C 25°C -50'oe Vtyp. 5 50 100 150°C 10° o -TA 294 0,2 0,4 0,6 0,8 1,0 -"Esat Siemens 1,2 V BCX69 PNP Silicon AF Transistors • • • • • For general AF applications High collector current High current gain Low collector-emitter saturation voltage Complementary type: BCX 68 (NPN) E Type Marking Ordering code for versions in bulk Ordering code for versions on 12 mm·tape Package BCX69-10 BCX 69-16 BCX69-25 CF CG CH Q62702-C1080 Q62702-C1081 Q62702-C1082 Q62702-C1867 Q62702-C1868 Q62702-C1869 SOT 89 SOT 89 SOT 89 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO Vcso VESO 20 25 5 1 2 100 200 1 V V V A A mA mA W T stg 150 -65 .. ·+150 °C °C RthJA 5125 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Ic ICM Is ISM Ptot Tj Siemens 295 BCX69 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Collector-emitter breakdown voltage Symbol min typ max Unit V(BR) CEO 20 - - V V(BR)CBO 25 - - V - - V - - 100 10 nA - - 10 Ic=30mA Collector-base breakdown voltage Ic=101lA Emitter-base breakdown voltage le=11lA Collector cutoff current VCB = 25V VCB = 25 V, TA = 150°C Emitter cutoff current VES = 5V DC current gain') 5 mA, VCE = 10 V Ic = Ic = 500 mA, VCE = 1V BCX69-10 BCX69-16 BCX69-25 Ic = 1 A, VCE = 1 V Collector-emitter saturation voltage ') Ic = 1 A, IB = 100 mA Base-emitter voltage ') Ic=5mA, VCE= 10V Ic = 1 A, VCE = 1 V hFE AC characteristics Transition frequency Ic = 100 mA, VCE = 5 V, f= 20 MHz ICBo leBO 50 63 100 160 60 VCEsat - IlA IlA - - - 100 160 250 160 250 400 - - - 0,5 V 0,6 1 V V VSE - - - Symbol min typ max Unit fT - 100 - MHz ') Pulse test; t 5, 300 Ils, D = 20/0. 296 5 V(BR)ESO Siemens BCX69 Total power dissipation Ptot Transition frequency fT = f (I cl VCE = 5V = f (TA) W MHz 1,2 10 3 r 1,O ~ 1\ 0,8 1\ - \ 0,6 r\. \ 0,4 \ 1\ 0,2 '\ \ o o 50 100 150 5 10 2 -Ie 0( -7,; Pulse handling capability rth = f(t) (standardized) K Collector cutoff current ICBO = f(TA) VCB=25V 100 nA 105 W 5 ~II! 'ih :/ kf> ~.rt r- r 1 ,. ~ 5 2 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=O max,/ ,,' 5 1(r3 10-6 10-5 10- 4 1/ /typ. V 10' 1!:r- D=~ / 5 T 10- 3 10- 2 10- 1 100 S 100 o -t 50 100 150 O( -li Siemens 297 BCX69 Base-emitter saturation voltage Ie c= f( VeEsatl Collector-emitter saturation voltage hFE Ie = f(VCEsat) hFE = 10 rnA 10 4 = 10 rnA 10' 5 ~~ l/. ~ 100 °C "25°C -SOO( 100 .( 25°C -50 .( fl I I I 10 2 5 I 10' I 10' 5 S 10° o 0,2 0,4 O~ 0,2 0,8 1,0 1,2 V - VeEso! 0,6 0,4 Collector current I C = f ( VeE) DC current gain hFE = f (I cl VCE = 1 V VCE rnA 10' 103 5 hFE I ~7 l000( "2S0( -SOOC I I /I 0,8 V --VCEsat 5 = 1V I l00 0 ( 25°C 10 2 -SO·( 5 I I II I I 10' S 10° I I o 0,2 0,4 0,6 I 0,8 1,0 -VeE 290 1,2 V 100 L...l.lJJl.WL...LllliillL...L.L.ilU.llL..LLJ..LJill 10° 5 1Q1 5 10 2 S 103 S 10 4 rnA -Ie ,...~------ vit:::I I 1t::1I", BF517 NPN Silicon RF Transistor • Broadband amplifier and oscillator applications up to 1 GHz Type Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package BF517 LR Q62702-F988 Q62702-F78 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO Vceo VEeo 15 20 25 5 280 V V V mA mA mW Tstg 150 -65···+150 °C °C RthJA :S 450 K/W Thermal resistance Ic Ie Ptot Tj 3 junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Siemens 299 BF 517 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit V(SR) CEO 15 - - V Icso - - 50 nA hFE 25 - 250 - Collector-emitter saturation voltage I c = 10 rnA, Is = 1 rnA VCEsat - 0,1 0,5 V Base-emitter saturation voltage Ic = 10 rnA, Is = 1 rnA VSEsat - - 0,95 V Collector-emitter breakdown voltage Ic = 1 rnA, Is = Collector cutoff current Vcs = 15 V, Is = DC current gain Ic = 5 rnA, VCE = 10 V ° ° AC characteristics Symbol min typ max Unit Transition frequency Ie = 5 rnA, VCE = 10 V, f= 200 MHz fT 1 2 - GHz Collector-base capacitance Vcs = 10V, VSE = 0, f= 1 MHz Geb 0,3 0,5 0,75 pF Collector-emitter capacitance Vcs = 10V, VSE = 0, f= 1 MHz Gee - 0,26 0,4 pF Noise figure Ic = 5 rnA, VCE = 10 V, f= 100 MHz Ic = 5 rnA, VCE = 10 V, f= 800 MHz F - 2,5 5,0 - dB dB 300 - Siemens SF 517 Total power dissipation Ptot = f( TAl Transition frequency fT = f (I cl VeE = 10 V. f= 100 MHz mW GHz 400 3 i l300 v .... II \ 200 i"'- I\. I\. 100 1\ o o 50 1,\ 150 100 o 0( o -Ti. 10 20 -Ie 30 mA Collector-base capacitance Ccb = f(Veel f=l MHz pF 1.0 ~ t 0.8 1\ [eb \ 1\ 0,6 "- t'- -... -... 01+ - ~~ 0.2 o o 20V 10 -'ie Siemens 301 Si-N Channel MOS FET Triode BF 543 Preliminary Data • For RF stages up to 300 MHz preferably in FM applications • loss 4 mA, gfs 12 mS = = ESD:Electrostatic discharge sensitive device, observe handling precaution! Type Marking Ordering code (taped) Package SF 543 LD Q62702-F1230 SOT-23 Maximum Ratings Parameter Symbol Value Drain-source voltage VOS 20 V Drain current 10 30 rnA Gate-source peak current Unit ±/GSM 10 mA Ptot 200 mW Storage temperature range T stg -55 ... + 150 ·C Channel temperature Tch 150 ·C -55 ... + 150 ·C Total power dissipation, TA :s 60 ·C Ambient temperature range TA Thermal Resistance I RthJA l:s 450 Junction - ambient 1 ) 1) Package mounted on alumina t6.7 mm x 15 mm x 0.7 mm 302 Siemens IKIW BF 543 Electrical Characteristics at TA = 25 DC, unless otherwise specified. Parameter ISymbol Imin. Value Itypo Imax. IUnit DC characteristics Drain-source breakdown voltage V(BR)DS ID= 10 llA, -VGS =4 V Gate-source bread own voltage ± IGS = 10 rnA, VDS = 0 ± V(BR)GSS Gate cutoff current ± VGS = 6 V, VDS = 0 ± IGSS Drain current VDS = 10 V, VGS = 0 IDSS Gate-source pinch-off voltage VDS = 10 V, ID = 20 llA -VGS(p) 20 - - 7 - 12 - - 50 1.5 4 6.5 - 0.7 1.5 9.5 12 - - 2.7 - - 25 - - 0.9 - - 22 - - 1 - V V nA rnA V AC characteristics Forward transconductance gfs VDs=10V,/D=4mA,f=1 kHz Gate-1 input capacitance VDS= 10 V, ID=4 rnA, f= 1 MHz Cgss Reverse transfer capacitance Cdg VDs=10V,/D=4mA,f=1 MHz Output capacitance VDS = 10 V, ID = 4 rnA, f = 1 MHz Cdss Power gain (test circuit) VDS= 10 V, ID=4 rnA, f=200 MHz GG =2 mS, GL =0.5 mS Gps Noise figure (test circuit) VDS= 10 V, ID=4 rnA, f=200 MHz GG =2 mS, GL =0.5 mS F Siemens mS pF fF pF dB dB 303 SF 543 Characteristics at Tj =25 °G, unless otherwise specified. Power dissipation Ptot = f (TA) rnW 300 Typ. output characteristics field 10 = f (Vos) rnA 10 ! 8 I 200 \ 1 r\ , I 6 1 1 I I I i I 4 100 \1 o ", 50 150 100 ~ -- l..- ~ 0,2V ...- OV I -0,2V \t1 If ~ o I -- J -OtV o o 0( -T,.. Gate transconductance gls = f (VGs) Vos = 10 V, loss =4 m A, f= 1kHz rnA 15 10 gfs 10 20V -Vos Drain current 10 = f (VGs) Vos = 10 V rnS I 10 r-. r I 10 / "'- I 304 4 \ I -0,1 / I \ I ° / / \ I o 8 \ I 5 t \ I Vg:O,4V ..... 0,1V / 2 o -0,1 J l/ o 0,1V -\{;s Siemens BF 543 Gate Input capacitance Cgss = f (VGs) Vos = 10 V, loss =4 rnA, f= 1 MHz Output capacitance Cdss = f (Vos) VGs=O,/oss=4 rnA, f=1 MHz pF 5 pF 5 T' 4 3 , V f..- 3 - 2 1\1'-- o o -0,1 o o O,1V 10 5 15V -Its -Vos Reverse transfer capacitance Cdg =f (Vos) Gate 1 Input admittance Y11s VGs=O,/oss=4 rnA, f=1 MHz Vos=10 V,/oss=4 rnA, VGs=O (source circuit) fF mS 15 50 b"s t \ 30 \ f=800MHz V 10 /600MHz \ 20 ~OMH~ 1\ - 1'-- JJ 1/ rOO~HZ ~400;MH~ 5- 3010MHz f,1200~HZ 1 I 10 100MHz I o o 5 10 o o 15V -Vos I 50lMH f 0,1 0,2 0,3 0,4 Q5ms ---g11s Siemens 305 BF 543 Output admittance Y22s Vos = 10 V, loss = 10 rnA, VGS =0 (source circuit) Gate 1 transconductance Y21S Vos = 10 V, loss = 4 rnA, VGS = 0 (source circuit) mS mS o S ~+u SrIZ~ 4 10~MHZ ,,I, j'I00MHz-- 1/600MHz I I lliOOMHZ rO?MHZ -S 1100~HZ J.I. 1/ 1300~H~ yrHj 4~OMHV SOOM~z I I- -10 if 600~H~ f=800MmMHZ o 10 S o o 1SmS "20~M1 I I 100 M~i S07 HZ 0,1 0,2 0,3 Test circuit for power gain Gp and noise figure F '=200 MHz Input 60Q 1nF 1 kQ 15pF 1SpF ;;---1270 1nF I BBS15 ! ;~ fS i Iot"n 306 0,4 -9zz, -9Z1S Siemens Output 60Q 1nF ~ O ' t D.} O,SmS BF550 PNP Silicon RF Transistor • • • • For amplifiers in common emitter configuration up to 300 MHz Specially suitable for mixer applications in AM/FM radios and VHF/TV tuners Low collector-base capacitance due to shield diffusion Controlled low output admittance Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BF 550 LA Q62702-F547 Q62702-F944 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation TA = 25 DC Junction temperature Storage temperature range VCEO VCBO 40 40 4 25 5 280 V V V mA mA mW Tstg 150 -65···+150 DC DC RthJA ::; 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VEBO Ic IB Ptot Ti Siemens 307 BF550 Electrical characteristics at TA = 25 DC, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 1 rnA, IB = 0 V(BR) CEO 40 - - V Collector-base breakdown voltage Ic= 1°ftA,h=0 V(BR)CBO 40 - - V Emitter-base breakdown voltage h=10ftA,Ic=0 V(BR) EBO 4 - - V Collector cutoff current VCB = 30 V, h = 0 ICBo - - 100 nA DC current gain I c = 1 rnA, VCE = 10 V hFE 50 - 250 - Base-emitter voltage Ic = 1 rnA, VCE = 10 V VBE - 0,72 - V AC characteristics Symbol min typ max Unit Transition frequency Ic = 1 rnA, VCE = 10 V, f= 100 MHz fT - 350 - MHz Collector-base capacitance VCB = 10V, VBE = 0, f= 1 MHz Ceb - 0,33 - pF Collector-emitter capacitance VCB = 10V, VBE = 0, f= 1 MHz Cee - 0,67 - pF Noise figure Ic = 1 rnA, VCE = 10 V, f= 100 kHz, Rs=300O Ic = 2 rnA, VCE = 10 V, f= 100 MHz, Rs = 600 F - 2 - dB - 3,4 - dB - 550 17 35 1,3 5 5 - fts pF mS pF fts fts Four-pole characteristics, common-emitter configuration Ic=1mA,VcE=10V f= 0,45 ... 10 MHz glle Clle IY2lei f= 450 kHz f= 10 MHz 308 C22e g22e g22e Siemens - - - - 8 10 BF 550 Total power dissipation P'o' = f (TA) Current gain hFE VeE = 10V mW = f (l e) :3 _ _ 400 r f!ot 1 300 2 10 _ _ 1,\ 200 1,\ '\ 100 o '\ o 150 100 50 100 L...C...l..J..l-UW--L-LLllillL-'-'--'..LU.UL--L.UU-Cllll 10-2 5 10- 1 5 10° 5 10' 5 10 2 rnA o( -T,. -Ie ColIsctor-emltter saturation voltage Ie = f(VeEsatl hFE = 10 Collector current VeE = 10V Ie = f (VBE) rnA 102 Ie ! 5 Ie '/ 10' ! - / 10' / I 1 , 10- o 0,1 0,2 0,3 0,4 0,5 V 10-2 0,5 0,6 0,7 0,8 0,9 1,0 V --~hsat Siemens 309 BF550 Collector cutoff current I caD = f ( TA) Vca = 30V Transition frequency tT = t (l c) t=100MHz nA 10 4 5 MHz 600 f, f '/max. ... ~ '-'" SOO .... ~ 400 V 1-1- ~ I,... i"i" r-- r"-, i"- V 5'\ 1\ 300 f;s-I'-..... 10 VeE = 2V Vtyp. 200 100 o o 10-1 o 100 50 150 0( 10 5 15 mA -1A Collector-base capacitance CCb t=1 MHz Output conductance g22e = t(l cl VeE = 10 V, t= 500 kHz = t(Vca) pF 1,0 mS 20 gzz. 18 I 16 t 0,5 14 - I 10 ~ i""'-- ........ -- o /11 I 4 'J " I o -\'cB 310 typo ; I 6 20 V If7J IL I 8 o 10 II i J 2 o -max J J i 12 1\ I 1/ I Siemens 2 3 4 5 mA BF550 Forward transfer admittance IY21el f= 10,7 MHz = f(I c) Forward transfer admittance Y21 e VCE= 10V rnS 400 15 ~ 250 / 200 150 / 100 50 / o o ~~ VCE =5V- V / 10 15 rnA 90' 75' 60' -Ie Siemens 311 BF554 NPN Silicon RF Transistor • General RF small-signal applications up to 300 MHz, amplifier, mixer and oscillator in circuits Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BF 554 CC Q62702-F551 Q62702-F1042 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VEBO 20 30 5 30 280 V V V rnA mW Tstg 150 -65···+150 °C °C RthJA :$ 450 K/W Thermal resistance Ic Ptot 7j junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 312 Siemens BF554 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic= 1 mA, IB =0 V(BR)CEO 20 - - V Collector cutoff current VCB=20V, /e=0 ICBo - - 100 nA DC current gain Ic = 1 mA, VCE = 10V hFE 60 - 250 - Base-emitter voltage Ic=1mA,VCE=10V VBE - 0,7 - V AC characteristics Symbol min typ max Unit Transition frequency Ic = 1 mA, VCE = 10 V, f= 100 MHz fT - 250 - MHz Noise figure VCE = 10 V, Ic = 1 mA f= 200 kHz, gs =2 mS f= 1 MHz, gs =1,5 mS f= 100 MHz, gs = 10 mS F - 1,5 1,2 - - dB dB dB Collector-base capacitance VCE = 10 V, VBE = 0, f= 1 MHz Output conductance Ic= 1 mA, VCE= 10V, f=O,5···10MHz Ccb - 0,6 - g22e - 4 - Siemens 3 pF IlS 313 BF554 Total power dissipation Ptot DC current gain h FE = f (I cl VCE = 10 V = f(TA) rnW 400 10 _111 3 f' 'r" 1 300 1"- 200 1,\ '\ 1 0 1 l 1 l i. . 100 '\ o 1\ o 150 DC 100 50 -~ Collector-emitter saturation voltage Ie = f(VcE.at) hFE = 10 rnA Collector current I C = f (VBE) VCE = 10V 10 1 Ie 5 Ie t t I 1Q1 / 101 J , / I 1 5 10-1 o 0,1 0,2 0,3 0,4 0,5 V 10-1 0,5 -VCEsat 314 Siemens 0,6 0,7 0,8 0,9 1,0 V BF554 Collector cutoff current I CBO = f ( TAl VCB = 20V nA 10· Transition frequency fr = f (l c) VCE = 10V f=100 MHz MHz 500 S , .... l/max. r- ..... / ~ 1/ / .... "' I typo , 200 100 , 1..1 o 150 0( 100 50 o 20 mA 10 -r,. Noise figure F = f(f) VCE = 10 V, Ic = 1 rnA, Collector-base capacitance Ccb f=1 MHz Rs=60n dB S pF 1,5 = f(VeB) F 4 I r '/ 1,0 10-' \ '" " 1\ o \ r- 0,5 S 10° 5 10' 5 101 -f 5 103 MHz o o 20 V 10 -\'cB Siemens 315 BF569 PNP Silicon RF Transistor • Suitable for oscillators, mixers and self-oscillating mixer stages in UHF TV tuners . Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BF 569 LH Q62702-F548 Q62702-F869 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO Ic IB Ptot 35 40 3 30 5 280 V V V mA mA mW Tj Tstg 150 -55···+150 °C °C RthJA ::; 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 316 VEBO Siemens BF569 Electrical characteristics at TA = 25 ac, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage I c = 1 rnA, I B = 0 V(BR) CEO 35 - - V Collector cutoff current VCB = 20 V, IE = 0 DC current gain Ic=3mA,VCE=10V ICBo - - 100 nA hFE 20 50 - - AC characteristics Symbol min typ max Unit Transition frequency Ic = 3 rnA, VCE = 10 V, f= 100 MHz fr - 950 - MHz Collector-base capacitance Vce = 10V, VeE = 0, f= 1 MHz Gcb - 0,32 - pF Collector-emitter capacitance VCE = 10 V, VeE = 0, f= 1 MHz G ce - 0,15 - pF Power gain, common base Ic = 3 rnA, Vce = 10 V, f= 800 MHz RL = soon Gp - 14,8 - dB Noise figure Ic = 3 rnA, Vce = 10 V, f= 800 MHz Rs = 60n F - 4,5 - dB Siemens 317 BF569 Total power dissipation Ptot Transition frequency fT = f (I cl f= 100 MHz, VCE = 10 V = f (TA) MHz 1200 rnW 400 f, !fat ( 1000 ......... 1 300 "- V 800 "- 200 600 "- I\. \ / \ \ I I\. "00 100 200 1\ o 1\ o 100 50 150 .( o o -T" --Ie Collector capacitance Ccb = f(VCB) f=1 MHz pF 1,0 feb ! ~. 0,5 \ I\. o o 318 ........ --10 10 rnA 5 r- 20 V Siemens BF 579 PNP Silicon RF Transistor • • Suitable for low distortion, low noise VHF/UHF amplifier and UHF oscillator applications in TV tuners High transition frequency of 1.6 GHz at typical operating current of 10 mA Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BF 579 LJ Q62702-F552 Q62702-F971 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VEBO 20 25 3 30 5 280 V V V mA mA mW Tstg 150 -55···+150 °C °C RthJA :5 450 K/W Thermal resistance Ic IB Ptot Ti junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Siemens 319 BF579 Electrical characteristics at TA = 25 ac, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 1 rnA, IB = 0 V(BR) CEO 20 - - V Collector cutoff current ICBO - - 100 nA DC current gain Ic = 10 rnA, VCE = 10 V hFE 20 - - - VCB = 20V, IE = 0 AC characteristics Symbol min typ max Unit Transition frequency Ic = 10 rnA, VCE = 10 V, f= 100 MHz fr - 1,6 - GHz Collector-base capacitance VCB = 10V, VBE = 0, f= 1 MHz Ceb .- 0,41 - pF Collector-emitter capacitance VCE = 10 V, VBE = 0, f= 1 MHz C ee - 0,16 - pF Power gain, common base Ic = 10 rnA, VCB = 10 V, f= 800 MHz RL = soon Gp - 16 - dB Noise figure Ic = 10 rnA, Rs =60n Ic = 10 rnA, Rs =60n F - 4 - dB - 2,9 - dB 320 VCB = 10 V, f= 800 MHz VCB = 10 V, f= 200 MHz Siemens BF 579 Total power dissipation Ptat = f( TA) Collector-base capacitance Ccb = f(Vea) f=l MHz pF 1.0 mW 400 'tot \\ 1 300 "200 I"I\. o,s I\. \ 'r--.. r--.. - I-- I-- 100 1,\ o 1'\ o 150 100 50 0( -T,. o o 10 lOV Transition frequency fT = f (le) f= 100 MHz, VeE = 10 V MHz 2000 'r l/ 1 ,..... ..... f7 t-.... r-.... I'" 1000 o o 10 20 mA -Ie Siemens 321 NPN Silicon RF Transistor • • BF599 Suitable for common emitter RF, IF amplifiers Low collector-base capacitance due to contact shield diffusion Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BF599 NB Q62702-F550 Q62702-F979 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation TA = 25°C Junction temperature Storage temperature range Vceo Vceo Veeo V V V Ptot 25 40 4 25 5 280 Tj Tstg 150 -65···+150 °C °C RthJA ::;;450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 322 Ic Ie Siemens mA mA mW BF 599 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 1 mA, IB = 0 V(BR) CEO 25 - - V Collector cutoff current VCB=20V, Ie=O ICBo - - 100 nA DC current gain Ic=7mA, VCE=10V hFE 38 70 - - Collector-emitter saturation voltage Ic = 10 mA, IB = 1 mA VCEsat - 0,15 - V Base-emitter voltage I c = 7 mA, VCE = 10 V VBE - 0,78 - V AC characteristics Symbol min typ max Unit Transition frequency Ic = 5 mA, VCE = 10 V, f= 100 MHz fr - 550 - MHz Collector-base capacitance VCB = 10V, VBE = 0, f= 1 MHz Cob - 0,35 - pF Collector-emitter capacitance VCE = 10V, VBE = 0, f= 1 MHz C oe - 0,68 - pF Optimum power gain') Ic = 7 mA, VCE = 10 V, f= 35 MHz Gp - 43 - dB Forward transfer admittance Ic = 7 mA, VCE = 10 V, f= 35 MHz IY21el - 175 - mS Siemens 323 BF599 Total power dissipation Ptot = ((TA) DC current gain hFE = ((I e) VCE = 10 V mW 400 l300 200 \ 1'\ I\. ...... 100 \ o 1'\ o 50 100 150 100~~~-LUWillL~~lli-LLllllW °c 10-1 5 10- 1 5 100 -J;, Collector current Ie = ((VSE) VCE = 10V 5 10' -Ie 5 101 rnA Collector-emitter saturation voltage, Ie = ((VCEsat) hFE = 10 rnA rnA 1)1 101 5 Ie V 10' 5 t 5 If 10' I 5 / I I 1 5 10-1 0,5 1 0,6 0.7 0,8 0,9 1.0 V 0,1 0,2 0,3 0,4 --I;hsat 324 Siemens 0,5 V BF599 Collector cutoff current leBO = f (TA) Transition frequency fT = f(l c), f = 100 MHz VCB=20V nA MHz 104 600 5 leBO V 10 3 5 1/ 1""- J=I= .... ,1-" 400 V ......., V V- max. ..- ........ \ \ \ \ V VcE =2V 5 !\ 1\ \ \ 300 10' ~ \ r-~ l~V- I - 200 typo 100 , 50 100 o o 150·[ 10 Collector-base capacitance Ccb = f (V CB) f = 1 MHz Forward transfer admittance IY21e I= f(l cl f= 35 MHz pF mS 1.0 300 ~ I( 1\ r 1\ ................. --- I / 100 1\ \ 15_ 1 1\ "b-. /.. "\ ~h 200 \\ 0.5 20 mA --Ie ~TA 5 10,_ - " VeE~2V II / o 1/ o 10 20 V 10 20 24mA -Ie --VcB Siemens 325 BF622 NPN Silicon High Voltage Transistor • • • • • Suitable for video output stages in TV sets High breakdown voltage Low collector-emitter saturation voltage Low capacitance Complementary type: SF 623 (PNP) E Type Marking Ordering code for versions in bulk Ordering code for versions on 12 mm-tape Package SF 622 DA Q62702-F568 Q62702-F1052 SOT 89 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Collector-emitter voltage (RBE = 2,7 kn) Emitter-base voltage Collector current Peak collector current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO 250 250 V V VCER VEBO Ic ICM 250 5 50 100 1 V V mA mA W Tstg 150 -65···+150 °C °C RthJA :5125 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 326 Ptot Tj Siemens BF622 Electrical characteristics at TA = 25 cC, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 1 mA Ic = 10 !-lA, RBE = 2,7 kQ V(BR) CEO 250 250 - - V(BR)CER V V Collector-base breakdown voltage Ic=10!-lA Emitter-base breakdown voltage Ie = 10 !-lA V(BR)CBO 250 - - V(BR) EBO 5 - - V Collector cutoff current VCB = 200 V VCB = 200 V, TA = 150°C ICBo - - 100 20 nA llA Collector cutoff current VCE = 200 V, RBE = 2,7 kQ VCE = 200 V, RBE = 2,7 kQ, ICER - - - V - 1 50 llA llA IeBO - 10 llA hFE 50 - - - Collector-emitter saturation voltage ') Ic=10mA,IB=1mA VCEsat - - 0,5 V Base-emitter saturation voltage ') Ic = 10 mA, IB = 1 mA VB Esat - - 1 V AC characteristics typ max Unit - TA = 150°C Emitter cutoff current VEB = 5V DC current gain') I c = 25 mA, V CE = 20 V Symbol min Transition frequency Ic = 10 mA, VCE = 10 V, f= 20 MHz fT - 100 - MHz Output capacitance VCB = 30V, f= 1 MHz Cob - 0,8 - pF ') Pulse test: t:5, 300 lls, D = 20/0. Siemens 327 BF622 Total power dissipation Ptot = (( TA) Output capacitance f= 1 MHz W pF 4 1,2 r 1,0 1\ 3 f\ 0,8 Cob = ((VCE) 1\ 1\ 1\ 0,6 1 2 1\ 1\ 0,4 "" r\ 1\ ~ 0,2 1\ o o r\ 100 -1,;. 50 150 ·C Pulse handling capability rth = ((t) (standardized) K o o 10 Transition frequency fT = (( I c) VCE = 10V, (= 20 MHz 'iii 10° r J 5 1 1.-1 III I 1 5 • ..-t- I lO-2 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 2 t-O=O 5 S D=ft~ T 10""3 10-6 10-5 10- 4 10-3 10- 2 10- 1 1QO 2 5 -t 328 20 Siemens 17 30V BF622 DC current gain h FE VCE = 20V = f (l c) Collector current I C VCE = 20V = f (VBE) rnA 102 5 I I I 100 '--'....u.u=-'-.w..LUllL.--'-'~.w-.LJ..ll.llW 10.2 10·' 10° 10' 10 2 rnA -Ie Collector cutoff current I CBO VCB = 200 V 0,5 1V = f ( TA) 1/ max ~/ f .... V typ. , , / 50 100 150 O( -1A Siemens 329 BF623 PNP Silicon High Voltage Transistor • • • • • E Suitable for video output stages in TV sets High breakdown voltage Low collector-emitter saturation voltage Low capacitance Complementary type: BF 622 (NPN) Type Marking Ordering code for versions in bulk Ordering code for versions on 12 mm-tape Package BF 623 DB Q62702-F567 Q62702-F1053 SOT 89 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Collector-emitter voltage (RBE = 2,7 kQ) Emitter-base voltage Collector current Peak collector current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO 250 250 V V 250 5 50 100 1 V V Tstg 150 -65···+150 °C °C RthJA :0; Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 330 VCBO VCER VEBO Ic ICM Ptot Tj 125 Siemens mA mA W K/W BF623 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 1 mA Ic = 10 /lA, RBE = 2,7 kQ V(BR) CEO V(BR) CER 250 250 V(BR) CBO 250 - V V Collector-base breakdown voltage Ic=10/lA - Emitter-base breakdown voltage lE=10/lA V(BR) EBO 5 - - V Collector cutoff current VCB=200V VCB = 200 V, TA = 150°C ICBo - - 100 20 nA /lA Collector cutoff current VCE = 200 V, RBE = 2,7 kQ VCE = 200 V, RBE = 2,7 kQ, TA = 150°C ICER /lA /lA lEBO - 1 50 Emitter cutoff current VEB = 5 V - 10 /lA DC current gain') Ic=25mA, VCE=20V hFE 50 - - - Collector-emitter saturation voltage ') I c = 10 mA, I B = 1 mA VCEsat - - 0,5 V Base-emitter saturation voltage ') Ic = 10 mA, IB = 1 mA VBEsat - - 1 V V AC characteristics Symbol min typ max Unit Transition frequency Ic = 10 mA, VCE = 10 V, f= 20 MHz fT - 100 - MHz Output capacitance VCB = 30V, f= 1 MHz Cob - 1,2 - pF ') Pulse test: t:$ 300 /ls, D = 2010. Siemens 331 BF623 Total power dissipation Ptot = f (TA) Output capacitance f= 1 MHz Cob = f(VCE) pF 4 W 1,2 1"1,0 1\ 3 1\ 0,8 \ \ 2 \ \ 0,6 ~ \ 0,4 r-... \ .... \ 0,2 1\ o \ o 100 50 150 o 0 ( o 10 --T" Transition frequency fT VCE = 10 V, f= 20 MHz Pulse handling capability rth = f (t) (standardized) K 'ih W MHz 10° 10 3 5 --~ , ~ 5 5 1,...1""'" ~III t , 0.5 0.2 0.1 0.05 0.02 0.01 0.005 2 0=0 2 5 v 5 ~ o-!I -r 10-3 10-6 10-5 10- 4 2 T 10-3 10- 2 10-' 10° s 5 10' -t 332 20 -\0(, Siemens = f (l cl 30 V BF623 Collector current I c VCE = 20 V = f (VSE) DC current gain hFE VCE = 20V = f (I c) mA 10 2 5 I / I II L 0,5 100 '----'---'-'"Will-'-LL'-'.illL..--'--'-LLililL--L.L-LLlliU 10-2 10-' 10° 10' 102mA 1V -Ie Collector cutoff current I cso = f ( TA) Vcs = 200 V nA 10' 5 leBO max ,/ ,.,. -'" typ_ 10' 5 , 1/ 50 100 150 °c -7;, Siemens 333 BF660 PNP Silicon RF Transistor • Particularly suitable for application in VHF tuner oscillators Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BF660 LE Q62702-F549 Q62702-F982 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Emitter current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VEBO Ic IE Ptot 30 40 4 25 30 280 V V V mA mA mW Tj Tstg 150 -65·.·+150 °C °C RthJA :5 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 334 Siemens BF660 Electrical characteristics at TA = 25 DC, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage V(BR) CEO 30 - - V V(BR) CBO 40 - - V V(BR) EBO 4 - - V Collector cutoff current VCB=20V, h=O ICBo - - 50 nA DC current gain lc=3mA, VCE=10V hFE 30 - - - ~C Ic=1mA,h=0 Collector-base breakdown voltage Ic= 10 11A,h=0 Emitter-base breakdown voltage h= 10 11A, I c=0 Symbol min typ max Unit Transition frequency Ic = 5 mA, VCE = 10V, f= 100 MHz characteristics fT - 700 - MHz Collector-base capacitance VCB = 10 V, VBE = 0, f = 1 MHz Gcb - 0,6 - pF Collector-emitter capacitance VCE = 10 V, VBE = 0, f= 1 MHz G ce - 0,28 - pF Siemens 335 BF660 Total power dissipation P tot = f (TA) Transition frequency fT = f (I c) VCE = 10 V, f= 100 MHz mW 400 MHz 1200 f f.. ?'ot 1000 1 300 600 1\ 1\ 200 '\. 400 r-.... /'" 600 '\. If , 1 100 200 \ o 1\ o 100 50 150 .( o o -T,. Collector-base capacitance Ccb = f(Vcs) f=1MHz pF 1.5 1.0 \ I'\. -- r- 0.5 ,0 i"'-- o 10 20 V -\'cB 336 Siemens 10 20 mA NPN Silicon High-Voltage Transistors • • • • • BF 720; BF 722 Suitable lor video output stages in TV sets and switching power supplies High breakdown voltage Low collector -emitter saturation voltage Low capacitance Complementary types: SF 721/723 (PNP) E Type Marking Ordering code (12-mm tape) Package* SF 720 SF 720 Q62702 - F1238 SOT-223 SF 722 SF 722 Q62702 - F1306 SOT-223 Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO VCER VCBO VEBO Collector-base voltage Emitter-base voltage Collector current Peak collector current Total power dissipation, TA ::5 25°C 11 Storage temperature range Thermal Resistance Junction - ambient 1) BF722 - 250 300 - V V 300 250 V 5 V 5 ICM 100 mA Pl01 1.5 W Tsig " mA Ic 50 150 Tj Junction temperature Unit BF720 -65 I RlhJA to ::583.3 + 150 °C °C IKIW 1) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm Mounting pad lor the collector lead min 6cm 2 .) For detailed dimensions see chapter Package Outlines. Siemens 337 BF 720; BF 722 Characteristics at TA = 25°C, unless otherwise specified. Parameter Unit DC Characteristics Collector-emitter oreakdown voltage Ic = 1 mA, IB = 0 BF 722 V(BR)CEO Collector-emitter breakdown voltage Ic = 10 llA, Rse = 2. 7kn BF 720 V(BR)CER Collector-base breakdown voltage BF 720 Ic = 10 llA, Is = 0 BF 722 V(BR)CSO Emitter-base breakdown voltage Ie = 10 llA, Ic = 0 V(BR)eBO Collector-base cutoff current Vcs = 200 V, Ie = 0 leBo Collector-emitter cutoff current Vee = 200 V, Rse = 2.7kn Vce = 200 V, Rse = 2.7kn,TA = 150°C leeR Emitter-base cutoff current VEB = 5 V, Ie = 0 leso DC current gain 1) IC=25 mA, Vce=20 V hFE Collector-emitter saturation voltage Ie = 30 rnA, Is = 5 rnA 1) VOe,al 250 - - V 300 - - V 300 250 - - V V 5 - - V - - 10 nA - - 50 10 nA llA - - 10 llA 50 - - - - - 0.6 V - 100 - MHz - 0.8 - pF AC Characteristics Transition frequency Ic = 10 mA, VCE = 10 V, ,= 100 MHz 'T Collector-base capacitance VCB =30 V, Ie =0. f= 1 MHz Cob 1) Pulse test conditions: t ~ 30011S; D = 2% 338 Siemens BF 720; BF 722 Collector cutoff current Iceo = '(TA ) Total power dissipation Plol = '(TA) nA Vce = 200 V 2.0 ,-- --,- .-- - - -.,--,--", W , - . - - --1-1- -- - -I--HI-I-+-I 5 1- P.o' t IO J I- - _. -- -- -- -- I- m xV --1- -I- - - .- - - - -I- 1.5:= --[\ - I- --- - - / 1--1-1I-- 1--- ---.~ I- I- f\- to II- os \'-1-- --- 1\- - - _.- - ---- I- -- ,,- ........ la' 5 1/ / '\ 1-1- --- 1-11--I- .-. o '-'-- 0 t p. -f\- -_. -. --- --- - -- -l- 100 °C - - TA 50 Collector current Ie \; 1 150 50 100 150 'C -Ii = '(VeE) rnA VCE = 20 V 101 5 II I - I - 10'1 o I 1 V 0.5 --Vat Siemens 339 BF 720; BF 722 DC current gain hFE VeE = 20 V 1: 3 hFE = ((I c) Transition frequency (T = ((Ic) MHz VCE = 10 V, (=100 MHz 1116111 1 10 EEmlEIEtII I,:,. . . . --Ie Collector-base capacitance Cob = ((Vce) pF'/C = 0, (= 1 MHz 4 II 2 1\ - t-I- o o 10 20 30V ---VcB 340 Siemens PNP Silicon High-Voltage Transistors • • • • • BF 721; BF 723 Suitable for video output stages in TV sets and switching power supplies High breakdown voltage Low collector -emitter saturation voltage Low capacitance Complementary types: SF 720/722 (NPN) Type E Marking Ordering code (12-mm tape) Package" BF 721 BF 721 Q62702 - F1239 SOT-223 BF 723 BF723 Q62702 - F1309 SOT-223 Maximum Ratings Parameter Symbol Collector-emitter voltage Emitter-base voltage VCEO VCER VCBO VEBO Collector current Ic 50 ICM 100 mA P IOI 1.5 W Collector-base voltage Peak collector current Total power dissipation, TA:s 25°C \) Junction temperature Ii Storage temperature range TSlg BF721 BF723 Unit - 250 - V 300 300 250 V 5 5 V mA 150 -65 to + 150 °C °C Thermal Resistance Junction - ambient :s 83.3 1) IKiW I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm Mounting pad for the collector lead min 6cm 2 .) For detailed dimensions see chapter Package Outlines Siemens 341 BF 721; BF 723 Characteristics at TA = 25°C, unless otherwise specified. Parameter I I Symbol Value. min. Ityp. Imax. .I Ul1lt DC Characteristics Collector-emitter .breakdown voltage Ic = 1 mA, IB = 0 SF 723 V(BR)CEO Collector-emitter breakdown voltage Ic = 10 pA, RBE = 2.7kn SF 721 V(BR)CER Collector-base breakdown voltage Ie = 10 pA, Is = 0 8F 721 SF 723 V(BR)CBO Emitter-base breakdown voltage IE = 10 pA, Ic = 0 V(BR)EBO Collector-base cutoff current VcB =200 V, IE=O ICBO Collector-emitter cutoff current VcE =200 V, RBE=2.7kn VcE =200 V, R sE =2.7kn,TA =150°C ICER Emitter-base cutoff current VEB = 5 V,Ic = 0 lEBO DC current gain 1) Ic = 25 rnA, VCE = 20 V hFE Collector-emitter saturation voltage Ic=30 mA,/B =5 rnA VCEssl 250 - - V 300 - - V 300 250 - - - V V 5 - - V - - 10 nA - - 50 10 nA l1 A - - 10 Il A 50 - - - - - 0.6 V -. 100 - MHz 0.8 - pF AC Characteristics Transition frequency Ic= 10 rnA, VCE = 10 V, f= 100 MHz fT Collector-base capacitance VcB =30 V, Ic=O, f= 1 MHz Cob 1) Pulse test conditions: t ;;; 300ps; D = 2% 342 Siemens BF 721; BF 723 Total power dissipation Plol 2,0 "" r(TAI r-r-..-,--.-r-r- Collector cutoff current I CBO = r(TAI nA' VCB = 200 V 10 1 W rt-r'j~~-~'rt~+4-4-~~ -,-_. ":.. I- S _.- - -- - _.- -t--I-H-j-I-I- t I.S ~.__ ~ m x,,1 -1- __ 1I --I- -+-f-f-f-+--l I- - - . - \ := \-:- - ~ -t--I-+-l-l- 1,0 1 - - --I-l--+-t'U- -I- f\ -t-t-+-+-I-l f-- -- -- ~_:- __ 1/ t p, 5 \1--l-+4--H . - _00 O,S 1-++1--+_-1__-1:- i--'k 10' oo 1I , r= : - -= _-f-J_\~-+_~~ ------ - --1- - ------- :--1--t-1-.,•...-. Ol-L~-J--~--L-~-~'-L-'~_J~Li_~\J 100 DC ISO o so 10-1 o SO 100 150 DC -/A -1i. Collector current Ie"" r(VBEI mA VCE = 20 V 101 5 I I I - lO- I S 10-1 o l0.5 f-- I-- 1 V Siemens 343 BF 721; BF 723 DC current gain hFe VCE = 20 V = '(lc) Transition frequency 'r = f (I cl MHz VCE = 10 V, f= 20 MHz 10l IO l 5 10 1 10 , f- 5 17 0 5 'lJ1 10' rnA 10 1 Collector-base capacitance pF Ic = 0, f = 1 MHz COb = ,(VCB) 4 IT f\ - o 344 o 10 20 -\(6 30 V Siemens BF 770 A NPN Silicon RF Transistor • • Low-noise broadband transistor for frequencies up to 2 GHz at collector currents up to 30 mA Specially suitable for IF amplifiers in TV-sat tuners as well as for VCR modulators Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BF770 A LS Q62702-F 1068 Q62702-F 1080 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector. current Base current Total power dissipation TA = 25 DC Junction temperature Storage temperature range VCEO VCBO 12 15 2 50 10 280 V V V mA mA mW Tstg 150 -65 .. ·+150 DC DC RthJA :5 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VEBO Ic IB Ptot Tj Siemens 345 BF 770 A Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic=1mA,IB=0 V(BR) CEO 12 - - V Collector cutoff current VCB = 5 V, Ie = 0 ICBo - - 50 nA DC current gain Ic=30mA, VCE=5V hFE 40 90 - - Collector-emitter saturation voltage ,- __ A Ie - OU 1111-\,18 -- \) 1111"\ VCEsat - 0,13 0,5 V T ,-" ___ A T AC characteristics Symbol min typ max Unit Transition frequency Ic = 30 mA, VCE = 5 V, f= 200 MHz fT - 5,5 - GHz Collector-base capacitance VCB = 5 V, VBE = 0, f= 1 MHz Gcb - 0,6 - pF Collector-emitter capacitance VCB = 5 V, VBE = 0, f= 1 MHz G ce - 0,3 - pF Noise factor Ic = 10 mA, VCE F - 2 - dB = 5 V, f= 800 MHz Power gain Ic = 30 mA, VCB Gp - 13 - dB = 5 V, f= 800 MHz 346 Siemens BF770A Total power dissipation P tot = {( TA) Transition frequency I cl {T = {( VCE = 5 V, {= 200 MHz GHz 6 mW 400 ~ I-- 1 1 1/ trot 1 300 II I 4 ~ ./ / / II 1\ 200 [\.. ,,\ / i I 100 \ I a a '\ - '\ 150 100 50 a O( o 10 20 30 50 rnA 40 -7;. Collector-base capacitance Ccb = {(VeB) Noise figure F = f (/ cl f= 1 MHz VCE = 8 V pF dB 1,0 6 Rs =50n .... F \ t 4 - \ 0,6 f--~d-+-+---i-+---t--+-+-I ..... --..., -II~--- f=2GHz \. 0,41 I 0.2 . a , I 1-: 1 I! i I i ± ! 3 i .I-+-+--L--+--Ir-1 t-n-t-I r '--+-H-_'f---.;'f--lf--l Il +--t. II 2 10 20 V f=O,8G~ \~ ;::;..., .... 1-1- o o --Vcs 11.l,..--_ s 50Q .... kbP :::rsJ;, - ~;~;;::: :;:;; ~ ::::::F==F'" f=10HHz 1'1- kn I L ~JJ~t1-rl fj a \ - ~ Zr'l 10 20 3l rnA -Ie Siemens 347 BF 771 NPN Silicon RF Transistor • For low noise, high gain amplifiers up to 2GHz • For linear broadband amplifiers • For modulators and amplifiers in VCR-tuners Type Marking Ordering code for versions on 8 mm-tape Package BF 771 RB Q62702-F990 SOT 23 Maximum Ratings Parameter Collector-emitter voltate Collector-emitter vOltage ( VBE =O) Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation ( TA ", 60°C ')} Junction temperature Storage temperature range Ambient operating temperature range Symbol Ratings Unit 18 p,.t Tj T.tg TA 12 20 20 2 80 10 300 150 -65 to +150 -65 to +150 V V V V mA mA mW ·C ·C °C RthJA ",300 KfIN VCEO VCE. VCBO VEBO Ie Thermal resistance Junction-ambient '} '} Package mounted on alumina 15mm x 16.7mm x 0.7mm 348 Siemens BF 771 min typ V(BR)CEO 12 - - V VBE = 0 ICES - - 100 pA Ie = 0 ICBO - - 50 nA Ic=O lEBO - - 1 pA Ic = SmA, VCE = BV hFE - 90 - - - 100 - - - 0.4 DC characteristics (TA = 25°C) Collector-emitter breakdown voltage Ic= 1 rnA, IB = 0 Collector-emitter cutoff current VCE = 20V, Collector-base cutoff current VCB=10V, Emitter-base cutoff current VEB = lV, DC current gain IC = 30mA, VCE = B V Collector-emitter saturation voltage Ic = SOmA, IB = SmA VCEsat Siemens max V 349 BF 771 min AC characteristics (TA = 25°C) Transition frequency Ic= SmA,VCE = 8V,f= 200MHz - 3.5 GHz 7 - Ceb - 0.68 - pF Cee - 0.24 - pF Cibo - 2.2 - pF Cobs - 0.95 - pF 0.8 - dB 1,7 - - 2 - Gpe - 13.5 - dB iS21ei2 - 11.5 - dB Vo' = Vo2 - 250 - mV 1P3 - 31 - dBm fr Ic = 30mA, VCE = 8V,f= 200MHz Collector-base capacitance VCB = 10V,VBE = Vb. = O,f= IMHz Collector-emitter capacitance VCE= 10V, VBE= Vb. = O,f= lMHz Input capacitance VEB = 0.5 V, Ic = it = 0, f= lMHz max typ . Output capacitance ,VCE = 10V,VBE= Vbe= O,f=lMHz c Noise figure Ic= SmA,VCE= 8V,f= 10MHz, zs= 750 Ic = 30mA, VCE = 8V,f = 800M Hz, Zs=ZSopt I GHz, Ic = 30mA, VCE = 8V,f= Zs= F son Power gain Ic = 30 mA,vCE = 8V,f = 800M Hz, zs= 500 ZL=ZLOpt Transducer gain Ic = 30mA,vCE = 8V,f= zo= 1 GHz, son - Linear output voltage two tone intermodulation test Ic=40mA,VCE= SV,d'M = 60dB, f, = 806MHz,f2 = 810MHz, ZS=ZL= son Third order intercept point Ic = 40mA, VCE = SV,f=800MHz 350 Siemens BF 771 Common emitter S - parameters 5".522 = f (f) • Z-plane Ie = 30mA. VeE = 8V. Zo = son ... j50 Ie = 30mA, VeE ., = 8V. Zo = son _-'r-_ 90· GR. -- - 90· - jsO Siemens 351 NPN Silicon RF Transistor BF772 • For low noise, high gain amplifiers up to 2GHz • For linear broadband amplifiers • For modulators and amplifiers in VCR-tuners sfilwE E~C Type Marking Ordering code for versions on 8 mm-tape Package BF772 RA QS2702-F1192 SOT 143 Maximum Ratings Symbol Ratings Unit VCES 12 20 V V Collector-base voltage VCBO 20 V Emitter-base voltage VEBO 2 V Collector current Base current Total power dissipation ( TA :5 SO·C ')) Junction temperature Storage temperature rangE: Ambient operating temperature range Ic IB mA mA mW ·C T.t. TA 80 10 300 150 -S5to +150 -S5to +150 RthJA :5300 K!W Parameter Collector-emitter voltate Collector-emitter voltage ( VCEO VeE =0) fI.t 7j ·C ·C Thermal resistance Junction-ambient ') ') Package mounted on alumina 15mm x 1S.7mm x 0.7mm 352 Siemens BF772 DC characteristics (TA = 25°C) min typ max Collector-emitter breakdown voltage le=1 mA, Is=O V(SR)eEO 12 - - V Collector-emitter cutoff current veE = 20V, VSE=O ICES - - 100 lI A Collector-base cutoff current Vcs=10V, IE=O leBO - - 50 nA Emitter-base cutoff current VEa = lV, le=O lEBO - - . 1 lI A Ic = SmA, VCE = 8V hFE - 90 - - - 100 - - - 0.4 DC current gain IC=30mA, VCE= 8V Collector-emitter saturation voltage Ic = SOmA, la = SmA VCEsat Siemens V 353 BF772 min AC characteristics (TA = 25°C) Transition frequency Ic= SmAYCE = GHz 7 - 0.6 - pF Cce - 0.33 - pF Cibo - 2.3 - pF Cobs - 0.95 - pF - 0.8 dB 1.9 - - 15 - dB - 13.5 - dB - 250 - mV - 31 - dBm - 3.5 Ccb fr Ic = 30mA, VCE = 8V.f= 200M Hz Collector-base capacitance Collector-emitter capacitance VCE= 10V, VBE=Vbe=O,f= lMHz Input capacitance VEB=O.SV,/c=;,=O, f= lMHz Output capacitance veE = 10V, VBE = Vbe = o,f= lMHz Noise figure F Ic= SmA,vcE = 8V,f= 10MHz, 7sn Zs= le= 30mAYeE = 8V.f= 800M Hz, Zs = ZSopt 1 GHz. Ic = 30mA, VCE = 8V.f= Zs= son Power gain Ie = 30 mA, VeE = 8V,f=800MHz. zs= son ZL=ZLopt Gpe Transducer gain Ic = 30mA, VCE = aV.f= zo= son 1 GHz, max - av J = 200M Hz VCB = 10VYBE = Vbe = oJ= lMHz typ 5 1 21el 2 1,6 Linear output voltage two tone intermodulation test Ic=40mA,VCE= SV.d'M = 60dB, f, =806MHz.f2=810MHz. Zs= ZL= VOl = V0 2 son Third order intercept point Ie = 40mA, VCE = SV. f= 800MHz 354 1P3 Siemens BF772 Common emitter 5 - parameters 5".522 = f (f), Z-plane Ie = 30mA, VeE = 8. Zo = son Ie = 30mA, VeE +j50 90· - j50 - 90· Siemens = 8V, Zo =son 355 BF775 NPN Silicon RF Transistor • • Broadband amplifier, mixer, oscillator, and switching applications up to 2 GHz Specially suited for use in TV-sat and UHF TV tuners Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BF 775 LO Q62702-F991 Q62702-F102 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VEBO Ptot 12 20 2,5 30 4 280 V V V mA mA mW Tj T stg 150 -65···+150 °C °C RthJA :5450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 356 Ic IB Siemens BF775 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 1 rnA, Is = 0 V(SR) CEO 12 - - V Collector cutoff current Vcs = 10 V, IE = 0 Icso - - 50 nA DC current gain Ic = 5 rnA, VCE I c = 20 rnA, VCE hFE 40 40 90 100 250 - - = 6V = 6V Collector-emitter saturation voltage Ic = 20 rnA, Is = 2 rnA VCEsat - 0,16 0,5 V AC characteristics Symbol min typ max Unit Transition frequency Ic = 5 rnA, VCE = 6 V, f= 200 MHz Ic = 20 rnA, VCE = 6 V, f= 200 MHz fT 3,5 4,5 - GHz GHz Collector-base capacitance VCE = 6V, VSE = OV, f= 1 MHz Ceb - 0,58 - pF Collector-emitter capacitance VCE = 10 V, VSE = 0 V, f = 1 MHz C ee - 0,27 - pF Noise figure Ic = 2 rnA, VCE F - 2,1 - dB = 6 V, f= 800 MHz Siemens 357 BF775 Total power dissipation Ptot = Transition frequency fT VCE = 6 V. f = 200 MHz f(TAl = f (l cl GHz 5 mW 400 / r I 1/ 3 1"\ I '\ 200 '\ I\. 2 I\. I I 100 1'\ o o 50 100 I\150 0( o o Collector-base capacitance Ccb = f(VcBl f= 1 MHz pF 1,0 Ceb f 0,6 \ \ \ 0,4 ' ......... -- - - - 0.2 o o 20V -i'cB 358 Siemens 10 20 mA NPN Silicon RF Transistor • • BF799 Suitable for broadband RF amplifiers up to 500 MHz in the high tuning range Particularly suitable for SAW filter driver application in TV tuners Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package SF 799 LK Q62702-F788 Q62702-F935 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Collector-emitter voltage Emitter-base voltage Collector current Peak collector current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VCER VEBO Ic ICM IBM P tot 20 30 30 3 35 50 15 280 V V V V mA mA mA mW Tj Tstg 150 -65···+150 °C °C Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm RthJA ::; 450 K/W Siemens 359 BF799 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 1 rnA, Is = 0 V(BR) CEO 20 - - V Collector-base breakdown voltage Ic = 10 I1A, IE = 0 V(BR) CBO 30 - - V Emitter-base breakdown voltage IE = 10 I1A V(BR) ESO 3 - - V Collector cutoff current VCB = 20V ICBo - - 100 nA DC current gain Ic = 5 rnA, VCE = 10V Ic = 20 rnA, VCE = 10V hFE 35 40 95 100 250 - Collector-emitter saturation voltage Ic=20mA,/B=2mA VCEsat - 0,15 0,5 V Base-emitter saturation voltage I c = 20 rnA, I B = 2 rnA VBEsat - - 0,95 V min typ max Unit - - 800 1100 - AC characteristics Symbol Transition frequency Ic = 5 rnA, VCE = 10 V, f= 100 MHz Ic=20mA, VCE= 8 V, f= 100 MHz fr Output capacitance Vcs = 10 V, f= 1 MHz, Cob - 0,96 - Collector-base capacitance Vcs = 10 V, VBE = 0, f= 1 MHz Ccb - 0,7 - pF Collector-emitter capacitance VCE= 10V, VSE=O, f= 1 MHz C ce - 0,28 - pF Noise figure Ic = 5 rnA, VCE = 10 V, f= 100 MHz Rs =50n F - 3 - dB Output conductance Ic = 20 rnA, VCE = 10 V, f= 35 MHz g22e - 60 - I1S 360 IE = - MHz MHz pF 0 Siemens BF799 Total power dissipation Ptot = Transition frequency fr = f (/ cl f (TA) f= 100 MHz mW MHz 400 1200 f f, 'i'ot I / ~ 1000 300 200 1'\ , \.h=2\ I 800 1'\ I-""" ......... 1\ \ \ I 600 5V I 1\ 400 100 200 \ a 1\ a 100 50 150 O( a o 10 20 -1,;. 40 50 rnA -Ie Collector-base capacitance C cb = f ( Vce) Forward transfer admittance !Y21e! = f(/ cl f= 1 MHz f=35 MHz pF mS 500 1,5 1\ 1\ \ \ \ 1,0 \ '" ....... r-..... -r- 0,5 a 10 V =5V / 1h 200 100 a ",- 300 20 V / / II o o Siemens / 10 20 30 40 -Ie 50 rnA 361 BF989 Silicon N Channel MOSFET Tetrode • • For amplifier and mixer stages in UHF and VHF TV tuners Low input and output capacitance G2 G1 ~D ~s Type Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package SF 989 MA Q62702-F874 Q62702-F969 SOT 143 Maximum ratings Parameter Symbol Ratings Unit Drain-source voltage Drain current Gate 1/Gate 2 source peak current Total power dissipation TA = 60°C Storage temperature range Channel temperature Vos 20 30 V mA 10 200 mA mW Tch -55···+150 150 °C °C RthJA :;;450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 362 10 ± IG1/2sM Ptot Tstg Siemens BF989 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Drain-source breakdown voltage 10 = 10 fJ.A, - VG1S = - VG2S = 4 V Gate 1 source breakdown voltage ± IG1s = 10 rnA, VG2S = Vos = 0 Gate 2 source breakdown voltage ± IG2s = 10 rnA, VG1S = Vos = 0 Gate 1 source leakage current ± VG1S = 5 V, VG2S = Vos = 0 Gate 2 source leakage current ± VG2S = 5 V, VG1S = Vos =0 Drain current Vos = 15 V, VG1S = 0, VG2S = 4 V Gate 1 source pinch-off voltage Vos = 15 V, VG2S = 4 V, 10 = 20 fJ.A Gate 2 source pinch-off voltage Vos = 15 V, VG1S = 0,10 = 20 fJ.A Symbol V(BR) os min 20 typ max - - Unit V ± V(BR)G1SS 8,5 - 17 V ± V(BR)G2SS 8,5 - 17 V ± IG1sS - - 50 nA ± IG2sS - - 50 nA loss 2 - 20 rnA - VG1S(P) - - 2,7 V - VG2S(P) - - 2,7 V AC characteristics Forward transconductance Vos = 15V, 10 = 7mA, VG2S = 4V, f= 1 kHz Gate 1 input capacitance Vos = 15V, 10 = 7 rnA, VG2S = 4V, f= 1 MHz Gate 2 input capacitance Vos = 15V, 10 = 7 rnA, VG2S = 4V, f= 1 MHz Reverse transfer capacitance ') Vos = 15 V, 10 = 7 rnA, VG2S = 4 V, f= 1 MHz Output capacitance Vos = 15 V, Jo = 7 rnA, VG2S = 4 V, f= 1 MHz Power gain (test circuits 1, 2) Vos = 15 V, 10 = 7 rnA, f= 200 MHz, GG = 2 mS, GL = 0,5 mS f= 800 MHz, GG = 3,3 mS, GL = 1 mS Noise figure (test circuits 1, 2) Vos = 15 V, 10 = 7 rnA f= 200 MHz, GG = 2 mS, GL = 0,5 mS f= 800 MHz, GG = 3,3 mS, GL = 1 mS Control range (test circuit 2) Vos = 15 V, VG2S = 4··· -2V, f= 800 MHz Mixer gain (test circuit 3) Vos = 15 V, VG2S = 4 V, f= 800 MHz, flF = 36 MHz, 2 ~flF = 5 MHz, VOse = 800 mV ') G2 and S on screen potential. Symbol min 9,5 typ 12 max gfs - Unit mS C g 1ss - 1,8 - pF 1 - pF Cdg1 - 25 - fF Cdss - 0,8 - pF - 23 16,5 - dB dB - 1,6 2,8 - ~Gp 40 - - dB dB dB Gpse - 16 - dB C g 2ss Gp - F Siemens - 363 BF989 Total power dissipation Output characteristics 10 = f(Vos) VG2s=4V Ptot = f(TA) mA mW 300 ~~~~~~~I~Tr~ r,B'\ ~ot i 200 1\ 1\ 1 1\ 10 HII-++±.Iool-l-H-IH-+-+6.2~ o 100 5~~~~~HH~*=~.?~ I' 1\ ~+b~4+~~~~g~ \ \ o o 50 100 150 0 C o ~~8;e;~~ti~V~Gll~s=~-o~.BBv o 5 10 15 20V -~ -Vos Gate 1 forward transconductance gls1 = f(VG1S) Vos = 15V loss = 7 rnA, f= 1 kHz mS 15 ~!2! ~~ tJI n -. o -2 -1 10 J rl , ~c.s~1\ I/HIV 1\ IINIII ~ .UI1 1/ ~1V OM rl.v 5 lOY 1\ I...... o VG1s =-O,5V ~I-'" I I VI-'" II It- 5 L...- V' .... 1\ ,.... . . J......... I 1\ I HI. ~:* OV V I- 1\ YIJ 15 ~!3' Vjll 1)'(1 10 Gate 1 forward transconductance gls1 = f(VG2S) Vos=15V loss = 7 rnA, f= 1 kHz mS 1\ V, J III -:-~ 5V 1V o ljV -1 0 2 4 - VG2S 364 Siemens 5V BF989 Gate 1 input capacitance C g 1SS = f(VG1S) VG2S =4V, Vos = 15V loss = 7 mA, f= 1 MHz pF Gate 2 input capacitance C g2ss = f(VG·2S) VG1S = 0 V, Vos = 15 V loss = 7 mA, f= 1 MHz pF 2,0 2,0 ~ ~ C g 1ss i V 1,5 ~ Cg2ss i ./ 1,5 v r-. f--- ~ 1,0 '-. ....... 1,0 0,5 0,5 ~ o o -1 1V o 5V Drain current 10 = f(VG1S) Vos=15V Output capacitance Cdss = f(Vos) VG1S = 0 V, VG2S = 4 V loss = 7 mA, f= 1 MHz pF 2,0 -1 rnA 30 I V~2S=4V I i J =3V II I VII V VG2S -4V 1,5 =2V t' 20 ~ \ \ 1,0 -- ~ - II IJ, 10 r;, =1V i-' W 0,5 By i-' o o 20 V 10 o IoIjrffl -1 o =ov 3 V -VOS Siemens 365 BF989 Gate 1 input admittance Y11s Vos = 15 V, VG2S = 4 V (common-source) mS 10 1 _I 10PlIO= 15mA - I-- 8 Z 3, f-800 MHz r- ~1 - - I I---; 15 600MHz f .!1 ~5 I 400MHz 4 & ~ 20~M~z ~100MHZ o I I o 5mS 4 Gate 1 forward transfer admittance Y21s Vos = 15V, VG2S = 4V (common-source) Output admittance Y 22s Vos = 15V, VG2S =4V (common-source) mS mS 5 o -5 IllIo=lmA -f=100MHz 200MHzp.... 1 1 "UU':MZ 6Oo~l 7 r-i'-_ "'r--. J 1 10=1 3 7 15 Ie ! 15mf f=800MHz 1"0'\, I\. r\ I\. 3 15 '" I"'~ 6~OMHZ 1~ 1 2 ~ ~ 15 1 """,- 11.. '" 800MHz -10 10~ l?mAI 13 400MHz I I\, 1~ 15 1 --tr200MHZ I I 1 rr 15 10 -15 o 10 15 mS o o 366 0,1 0,2 0,3 0,4 - 9 225 -9215 Siemens 0,5 mS BF989 Power gain G p = f(VG2S) Vos = 15 V, VG1S = 0; loss = 7 rnA, f= 200 MHz Noise figure F = f ( VG2S) VOS = 15 V, VG1S = 0; loss = 7 rnA, f= 200 MHz dB dB (test circuit 1) 40 (test circuit 1) 10 F -, I 10 1\ 8 7 6 \ o 9 5 4 ~o 3 f- - - I -20 2 -30 ~ ~ -40 4 3 o 2 -1 o -2V 5 4 3 2 0 -1 V VG2S - VG2S Power gain G p = f(VG2S) Vos = 15 V, VG1S = 0; loss = 7 rnA, f= BOO MHz; Rs = 0 Noise figure F = f(VG2S) Vos = 15 V; VG1S = 0; loss = 7 rnA; f= 800 MHz; Rs = 0 - dB 10 (test circuit 2) dB ._- 40 F r '\. 10 (test circuit 2) 9 , 8 7 6 o \ 5 1\ \ -'0 I II 4 3 -20 2 II -30 1\ I -40 4 o -, -2V o 5 4 3 2 o -, V - VG2S Siemens 367 BF989 Interference voltage lor 1010 cross modulation Vint(I%) = f(fin,)'); mint = 15 V; VG2S = 4 V, VG1S = 1 V; Rs = 150 n mV = 1000/0; Vint (1%) = f(Ll.G ps)'); fo = 800 fint = 700 MHz; mint = 1000/0; Vos 103 r- Interference voltage lor 1010 cross modulation Vos (test circuit 2) mV = 15 V; VG1S = 1 V; Rs MHz; = 150 n (test circuit 2) 103 "'\ - :/ V r--. f- 1~ 700 800 900 MHz -20 -10 -30 dB - - <1G ps Mixer gain G pse = fIRs) fo = 800 MHz; fose = 836 MHz Vose = 800 mV; Vos = 15 V VG2S = 4 V; loss = 7 mA dB (test circuit 3) 20 ,,-,~,,-,.-,,~.-,,~ Mixer gain G pse = f ( Vose) 15 K-I-+-t-+-+-+-+-+-+-+-+-+-+--1 15 fo = 800 MHz; fose = 836 MHz Vos = 15 V; VG2S = 4 V; loss = 7 mA; Rs = 150 n dB 20 (test circuit 3) Gpsc r0- " t II 10 H-+-H++----1-+-+-H++----1-l 10 5 O'-'--'---L-"---,---'----'--'--L---'--'---'-"---,-J o 100 200 300 Q o o --Rs 0,5 1,0 1,5V --Vose. ') Vint(l%) is the rms value of half the EMC (terminal voltage at matching) of a 1000/0 sine modulated TV carrier at an internal generator resistance of 60 n, causing 10/0 amplitude modulation on the active carrier. 368 Siemens BF989 Test circuit 1, power gain and noise figure f = 200 MHz; GG = 2 mS, GL = 0,5 mS VCi2S HI ~"';l----~ lnF ~ 15p£[ ,nputl~nF FB5~ lnF 27~ I 60\1 Ii 270k I-J Test circuit 2, power gain, noise figure and cross modulation f= 800 MHz, GG = 3,3 mS, GL = 1 mS vGZS lnF ~270k lnF H~I---------~--1lklO~~~t lnF ,:g~'rL~I vG1S '.. H 0, Vos Test circuit 3, mixer gain f= 800/36 MHz Output Input 6011 f=36MHz I ~t--.-_ _ lnF_ oscillator l ' 836 MHz J..0~pF Input 60ll ~r 800MH~ VDS Siemens 369 BF993 Silicon N Channel MOSFET Tetrode • • High gain, low distortion For VHF 1V and FM mixer and input stages G2/lAO G1~S Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BF993 ME Q62702-F899 Q62702-F1018 SOT 143 Maximum ratings Parameter Symbol Ratings Unit Drain-source voltage Drain current Gate 1/Gate 2 source peak current Total power dissipation TA = 60°C Storage temperature range Channel temperature Vos 20 50 V mA 10 200 mA mW Tch -55···+150 150 °C °C RthJA ~450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 370 10 ± IG1f2SM Ptot Tstg Siemens BF993 Electrical characteristics at TA = 25°e, unless otherwise specified DC characteristics Drain-source breakdown voltage ID = 10 !lA, - VGIS = - VG2S = 4 V Gate 1 source breakdown voltage ± !GIS = 10 mA, VG2S = VDS = 0 Gate 2 source breakdown voltage ± IG2s = 10 mA, VGIS = VDS = 0 Gate 1 source leakage current ± VGIS = 5 V, VG2S = VDS = 0 Gate 2 source leakage current ± VG2S = 5 V, VGIS = VDS =0 Drain current VDS = 15 V, VGIS = 0, VG2S = 4 V Gate 1 source pinch-off voltage VDS = 15 V, VG2S = 4 V, ID = 2O!lA Gate 2 source pinch-off voltage VDS = 15 V, VGIS = 0, ID = 20 !lA Symbol min 20 typ max V(BR) DS - - Unit V ± V(BR)GISS a,5 - 17 V ± V(BR)G2SS a,5 - 17 V ± IGISS - - 50 nA ± IG2sS - - 50 nA IDss 6 - 40 mA - VGIS(p) - - 3,5 V - VG2S (p) - - 3,0 V AC characteristics Forward transconductance VDS = 15 V, ID = 10 mA, VG2S = 4 V, f= 1 kHz Gate 1 input capacitance VDS = 15 V, ID = 10 mA, VG2S = 4 V, f= 1 MHz Gate 2 input capacitance VDS = 15 V, ID = 10 mA, VG2S = 4 V, f= 1 MHz Reverse transfer capacitance') VDS = 15 V, ID = 10 mA, VG2S = 4 V, f= 1 MHz Output capacitance VDS = 15 V, 10 = 10 mA, VG2S =.4 V, f= 1 MHz Power gain (see test circuit) VDS = 15 V, ID = 10 mA, f= 200 MHz, GG = 2 mS, GL = 0,5 mS 2M=12MHz Noise figure (see test circuit) VDS = 15 V, ID = 10 mA f= 200 MHz, GG = 2 mS, GL =0,5 mS ') G2 and S on screen potential. Symbol min 16 typ 25 max gls - Unit mS CglSS - 6 - pF Cg2ss - 2,5 - pF Cdgl - 50 - fF Cdss - 2,5 - pF Gp - 25 - dB F - 1,5 - dB Siemens 371 BF993 Total power dissipation Ptot = Output characteristics J D = f (VDS) VG2s=4V f (TA) rnA 25 mW 300 IIG1S= 0.4V ~ot I ~.2V I I 200 1\ 15 i\ OV 1\ 10 100 -0.2V 5 \ 1\ o -0.4V \ o 100 50 150 0 ( -0.6V o o 10 20V 15 -TA Gate 1 forward transconductance VDS = 15V JDSS = 10 mA, f= 1 kHz mS 40 Gate 1 forward transconductance g1s1 = f(VG2S) VDS = 15V JDSS = 10 mA, f= 1 kHz rnS 40 30 30 g1s1 = f(VG1S) I I VG1S=~H- V ~G2s=4V- '\ 1'\ I III V 20 II \ 20 II I II 1\ \ --- OV V I 1\ 1\ ~ V V -0.5V 3V VI\ 1\ 10 1\ 1\ o r:.f/JA -1 372 /' 1\ OV r- o i' 10 2~ l1 / /' V r-1J0.5V II o 2V -1 Siemens ,/ ~'r'" 0 2 4 5 6V BF993 Gate 1 input capacitance C g 1ss = f(VG1S) VG2s=4V, Vos=15V loss = 10 rnA, f= 1 MHz Gate 2 Input capacitance C g 2SS = f(VG2S) VG1S = 0 V, Vos = 15 V loss = 10 rnA, f= 1 MHz pF 8 pF 5 I- ,/ 6 ,/ 1/ 4 l' ,..- 1\ ./ \ \ I'.. / o o -1 Output capacitance Cdss VG1S = 0 V, VG2S = 4 V loss = 10 rnA, f= 1 MHz 1V = o -1 o 5V 4 3 Drain current 10 = f(VG1S) Vos = 15V f(Vos) rnA pF 10 SO VG2S =4V II =3V I =12~ 40 8 iI' V 6 4 30 \ f'.. ....... IIV, 2 o o 10 10 II. 20 20V o -1 Siemens ... =1V ~ ~II ~~ ~~ o =OV II 3 V 373 BF993 Gate 1 forward transfer admittance Y21S Vos = 15 V, VG2S = 4 V (common-source) Gate 1 input admittance Ylls Vos = 15 V, VG2S = 4 V (common-source) mS mS 30 ~J =1mA~5 710 i~mtt.'=800 MHz 25 1 20 15 7 o 15 I 1 10 Sf7 3 600MHz 3 -20 ~\O 5 15 10 {tit I 200 MHz -30 100~IHZ 10 n~~~z 15 20 25 30mS -40 1111111 -30 -20 -10 -g"5 Output admittance Y22s Vos = 15 V, VG2S = 4 V (common-source) mS 20 b ZZ5 JD=1m~ 15 I I 110f=800MHz - 10 r-r- 5 1 10 5 15600MHz r=ITsttio 5 151 1 I MH~ t~5_12do~Hi ~5l100MHz o o I 0,1 0,2 0,3 mS -gZ15 374 -1~ 15 1 Siemens 5710 I~ 3~ 7:1+ \10 1\J15 400MHz 5 7 o o I 5 400MHz ti '115 1,*0 5 3 200MHz 5] II 3 11 10 111 1 -10 15 10 ?fit ~ir=1?°Wiit 10 =1mA 7 10 I 15 600MHz 111111 0 10 20 30 mS BF993 Power gain G p = f(VG2S) Vos=15V, VG1S=0 loss = 10 rnA, f= 200 MHz Noise figure F= f(VG2S) Vos = 15 V, VG1S = 0 loss = 10 rnA, f= 200 MHz dB 30 dB 10 (test circuit) Gp I" 20 t f..- - F t J 10 (test circuit) 8 I I -10 4 I '- -20 o -30 -1 4V - o -1 4V - - VG2S Test circuit for power gain and noise figure f = 200 MHz; GG = 2 mS, GL = 0,5 mS 1nF 1nF lSpF 1SpF l~t~t 60\1 1nF '"'"[ 60\1 I IDr 270k I ~ VG1S Vtun Vtun Siemens Vos 375 BF994 S Silicon N Channel MOSFET-Tetrode • For VHF applications, especially for input and mixer stages with wide tuning range, e.g. in CATV tuners G2~D G1 ~s Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package SF 994S MG Q62702-F963 Q62702-F1020 SOT 143 Maximum ratings Parameter Symbol Ratings Unit Drain-source voltage Drain current Gate 1/Gate 2 source peak current Total power dissipation TA = BODC Storage temperature range Channel temperature Vos 20 30 V mA 10 200 mA mW Tch -55···+150 150 DC DC RthJA :S 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 1B.7 mm x 0.7 mm 376 10 ± IG1/2sM Ptot T stg Siemens BF 994 S Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Drain-source breakdown voltage 10 = 10 1-lA. - VG1S = - VG2S = 4 V Gate 1 source breakdown voltage ± IG1s = 10 rnA, VG2S = Vos = 0 Gate 2 source breakdown voltage ± IG2s = 10 rnA, VG1S = Vos = 0 Gate 1 source leakage current ± VG1S = 5 V, VG2S = Vos = 0 Gate 2 source leakage current ± VG2S = 5 V, VG1S = Vos =0 Drain current Vos= 15V, VG1S=0, VG2s=4V Gate 1 source pinch-off voltage Vos = 15 V, VG2S = 4 V, 10 = 20 I-lA Gate 2 source pinch-off voltage Vos = 15 V, VG1S = 0, 10 = 20 I-lA V(BR) os 20 - - V ± V(BR)G1SS 8,5 - 17 V ± V(BR)G2SS 8,5 - 17 V ± IG1sS - - 50 nA ± IG2sS - - 50 nA loss 2 - 20 rnA - VG1S(P) - - 2,5 V (p) - - 2,0 V - VG2S AC characteristics Symbol min typ max Unit Forward transconductance Vos = 15 V, 10 = 10 rnA, VG2S = 4 V, f= 1 kHz Gate 1 input capacitance Vos = 15 V, 10 = 10 rnA. VG2S = 4 V, f= 1 MHz Gate 2 input capacitance Vos = 15 V, 10 = 10 rnA, VG2S = 4 V, f= 1 MHz Reverse transfer capacitance Vos = 15 V, 10 = 10 rnA, VG2S = 4 V, f= 1 MHz Output capacitance Vos = 15 V, 10 = 10 rnA, VG2S = 4 V, f= 1 MHz Power gain (see test circuit) Vos = 15 V, 10 = 10 rnA, f= 200 MHz, GG = 2 rnS, GL = 0,5 rnS Noise figure (see test circuit) Vos = 15 V, 10 = 10 rnA, f= 200 MHz, GG = 2 rnS, GL =0,5 rnS Control range (see test circuit) Vos= 15V, VG2s=4··· -2V, f= 200 MHz gfs 15 18 - rnS Cg1ss - 2,5 - pF Cg2ss - 1,2 - pF Cdg1 - 25 - fF Cdss - 1 - pF Gp - 25 - dB F - 1 - dB ~Gp 50 - - dB Siemens 377 SF 994 S Total power dissipation Ptot = t (TA) Output characteristics 10 = t(Vos) VG2s=4V mA mW 300 25 10 VGtS=0,6V ~ot i t 200 \ 20 0,4V O,2V 15 \ O~ \. 10 -O;lV 100 -0,4~ \ 5 i\ -O,6V \ 1\ o o 100 50 150°C -O,BV o o 5 10 -1i. 20V 15 -VOS Gate 1 forward transconductance Gate 1 forward transconductance gfst = t(VGts) gfst = t(VG2S) Vos=15V loss = 10 rnA, Vos = 15V loss = 10 rnA, t= 1 kHz mS t= 1 kHz mS 20 20 III I Yf,zs=4V VGts=OV15 15 VT/ If' i\ / \ 1\ 10 1\ 1,V 1\ 12V o -2 378 I, 5 -1 ~~ OV o 2V o,~V ./ / 11111 v.: / 10 1\ 5 I / /", '-0,5V V / I "1 V 1/ olL ~ ~ -2 Siemens -1 o 3 4V BF 994 S Gate 1 Input capacitance C g 1SS = f(VG1S) VG2S = 4 V, Vos = 15 V loss = 10 mA. f= 1 MHz Gate 2 Input capacitance C g 2ss VG1S =0, Vos = 15V loss = 10 mA, f= 1 MHz pF 2,5 pF 2,0 [g1ss t .,2,0 -- V y /' 1,5 = f( VG2S) ..1\ 1,5 1,0 1,0 0,5 0,5 o-1 o Output capacitance Cdss VG1S=OV, VG2s=4V loss = 10 mA, f= 1 MHz 1V = f (Vos) pF 5rr"""~"",,,,-'~ o -1 o 4 2 Drain current Vos = 15V mA 30 5V lo = f(VG1S) VG1s =4V II =3V =2V I-' rl II V 20 V =1V i;' W u rl 10 =OV o WI! -1 Siemens '" o 3 V 379 BF 994 S Gate 1 Input admittance Y115 Vos = 15 V, VG2S = 4 V (common-source) Gate 1 forward transfer admittance Y 215 Vos = 15 V, VG2S = 4 V (common-source) mS mS o 14 f=100 MHz 1 b11 • I -'71~p1~ 12 -2 1 ~ 10 r-~;1 8 - f--3 5 f 15 2 " Il ........ 3 ~ I~I-15- 60~HZ I"-? ~ 15 r- - 8~OMIHZ - -18 -20 o -9"s Output admittance Y 225 Vos = 15 V, VG2S = 4 V (common-source) mS 3 5 7110 115 f=tOOMHZ llo. ,..:015 600MHzI 3 1bo1~ 400 MHz 2 cJ? 200 MHz J51100~HZI 380 400 MHz '5 -16 2 mS o o I~~- N -14 15 1 100MHz 10=lmA 2fM~Z- 3 '\ -12 15 1 200 MHz 5 ........ 1~t15 I -0. ........ ~ i'\. -10 15 400MHz 4 -f--k. -6 10 =1mA -8 1~ 600MHz 6 J, -4 o=1mA f=800MHz- - - 1 b 21s 0,1 O,2mS Siemens 10 20mS BF 994 S Power gain G p = f (VG2S) Vos=15V.VG1S=OV loss = 10 rnA. f= 200 MHz Noise figure F = f (VG2S) Vos = 15 V. VG1S = 0 V loss = 10 rnA. f= 200 MHz dB 30 dB 10 (test circuit) F Up I (test circuit) ~- 20 9 r I 10 6 7 6 o 5 -10 4 3 -20 \ 2 -30 \ I -40 -1 2 3 I"'---. 4 2 3 4V Test circuit for power gain and noise figure f=200MHz; GG=2mS. GL=0.5mS lnF l Input H 60Q 15pF 1 nF kloutput 60Q I lOr 270k I Vos Siemens 381 BF995 Silicon N Channel MOSFET Tetrode • For FM and VHF TV input and mixer stages G2 i/)wo G1~S Type Marking BF995 MB Ordering code for versions in bulk Q62702-F872 Ordering code for versions on 8 mm-tape Q62702-F936 Maximum ratings Parameter Drain-source voltage Drain current Gate 1/Gate 2 source peak current Total power dissipation TA = 60°C Storage temperature range Channel temperature Symbol Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 382 Ratings 20 30 Unit V mA Ptot 10 200 mA mW Tstg Tch -55 .. ·+150 150 °C °C RthJA :5 450 K/W Vos 10 ± IG1/2sM Siemens Package SOT 143 BF995 Electrical characteristics at TA = 25 cC, unless otherwise specified Symbol min typ max Unit Drain-source breakdown voltage 10 = 10 !lA, - VG1S = - VG2S = 4 V DC characteristics V(BR) os 20 - - V Gate 1 source breakdown voltage ± IG1s = 10 mA, VG2S = Vos = 0 ± V(BR)G1SS 8,5 - 17 V Gate 2 source breakdown voltage ± iG2S = 10 mA, VG1S = Vos = 0 ± V(BR)G2SS 8,5 - 17 V Gate 1 source leakage current ± VG1S = 5 V, VG2S = Vos = 0 ± IG1sS - - 50 nA Gate 2 source leakage current ± VG2S = 5 V, VG1S = Vos =0 ± IG2sS - - 50 nA loss 4 - 20 mA Gate 1 source pinch-off voltage Vos = 15 V, VG2S = 4 V, 10 = 20 flA - VG1S(p) - - 3,5 V Gate 2 source pinch-off voltage Vos = 15 V, VG1S = 0,10 = 20 flA - VG2S (p) - - 3,5 V Drain current Vos = 15 V, VG1S = 0, VG2S = 4V Siemens 383 BF995 AC characteristics Symbol min typ max Unit Forward transconductance Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 kHz gfs 12 17 - mS Gate 1 input capacitance Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz C g 1ss - 3,6 - pF Gate 2 input capacitance Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz C g2ss - 1,6 - pF Reverse transfer capacitance') Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz Cdg1 - 25 - fF Output capacitance Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz Cdss - 1,6 - pF Power gain (test circuit 1) Vos = 15V, 10 = 10 mA, f= 200 MHz, GG = 2 mS, GL = 0,5 mS 2M= 12MHz Gp - 23 - dB Noise figure (test circuit 1) Vos = 15 V, 10 = 10 mA f= 200 MHz, GG = 2 mS, GL =0,5 mS F - 1,8 - dB Control range (test circuit 1) Vos = 15V, VG2S =4 ... -2V, f= 200 MHz ~Gp - 50 - dB Mixer gain (additive test circuit 2) Vos = 15V, VG2S = 6V, Rs = 220n f= 200 MHz, flF = 36 MHz 2 ~flF = 5 MHz, VOse = 0,5 V G pse - 16 - dB Mixer gain (multiplicative test circuit 3) Vos = 15V, VG1S = 1,7V, VG2S= 2,5V Rs = 220 n, f= 200 MHz, flF = 36 MHz 2 ~flF = 5 MHz, VOse = 2 V G pse - 18 - dB ') G2 and S on screen potential. 384 Siemens BF995 Total power dissipation Ptot = f (TA) Output characteristics I D = f (VDS) mW 300 mA VG2S = 4 V 20 ~.t I VG1S = 0,6 V -I- _. tt - °L4.'1. . -- -200 0,2 \ -- / \. ·1 10 '·mrv tv / II 100 ~ - 7' .. v \ -06V! 1\ 50 o o 150 0 ( 100 10 5 -TA = f(VG1S) 1 " i-- - (VG2S) 1 .1. 1 1/ 1---1-- -+ . f--- f--- .. 1--- I-- I-- '-1--- VG 2~::';_Y 9 15 1 15 (I I 5 , VI 1\ -1V I - 1/ L/ vTI ...... i........ : -O,5'v r---- I II I \ I 5 ~1V 1 I ~lf1V .J-- I-- r---- J I I II I'- O,5V N -0,5V I II 2 V\,. 1\ A '\ -1 10 \ 1\ 1\ i-""'"OV // l- 'I ....... ~ I 10 .I VG1S=O,5V~ ~ r-~1 ./1/ -~ 3V 1/ I-I-- -2 Gate 1 forward transconductance g1s1 = f VDS = 15V loss = 10 mA. f= 1 kHz 20 - c-+- o 20 V mS mS I-- 15 -Vos Gate 1 forward transconductance g1s1 VDs=15V IDss = 10 mA, f= 1 kHz 20 - -O~BV± - 1\ o o .. - -- J/ o~V -1 Siemens o -- I 1 5V 385 BF995 Gate 1 Input capacitance C 9 1 ss VG2S =4V, Vos = 15V Joss = 10 rnA, f= 1 MHz = f (VG 1s) Gate 2 input capacitance C g 2ss VG1S = OV, Vos = 15V Joss = 10 rnA, f= 1 MHz PF pF 5 5 = f(VG2S) [g2ss g1ss 4 ....... VV l- ~ t j...- j...- ~ 4 I- p- I"" o o -1 ~ -1 = f(Vos) 3 Drain current Jo Vos = 15V pF mA 5 30 10 , =1 V \I 1'--- t- t-i-. 20V 10 1/ 10 o -1 - - Vos 386 =2V II \ o o = f( VG1S) IPff 20 I\.. 5V IN t 2 4 VG2 s=4V I I/dv 4 3 ~ +-. o 1V Output capacitance Cdss VG1S = 0 V, VG2S = 4 V Joss = 10 rnA, f= 1 MHz " Siemens =ov I r; T T o 2 -\(;,s 3 V BF995 Gate 1 input admittance Ylls Vas = 15V, VG2s=4V (common-source) Gate 1 forward transfer admittance Vas = 15 V, VG2S = 4 V (common-source) mS mS 20 Io~ 10 5 t } Zi=60bM~z1 15 15 T lin-I' o rrr-rTTTrTT1"'IITlnII"' 1n-ITTTl I 11 1-H-+++l-HIo-1mA IIII I 1 31 5 171015 1 1 f.l00MHz -5 1 IIII H-fI-++mrH-H+-f'l'-I.a:~:fl1 j11 15 I" jY 1-+I1-+M--H-l'-++++++-1?n0 MH z 600 MHz 35 -1/ - - 15/1 10 -10 I 1-H-H-H-t-HHI---P\;r,(tH-t-t-t-H-t-t-H ;t 400 MH 400MHz 10 5+r1-ti;+-ril~i'-H'''i.15 3 -1 {op ~ 5 -15 1200 MHz 1 Y21 s I z 0t-HHr~o++-HH++t-H-++-H 1-H~~~~~1~5t-H++t-H++~ 600 MHz 1~ t-1~0 M,Hz o I o -2 0 10 mS 5 III IIIII L.L.L..L.L.O..LI~ 11u.1J...L< I--LWLLLLLL.L.L.L-'-J -5 -911. 0 10 15 20 mS -911' Output admittance Y 22s Vas = 15 V, VG2S = 4 V (common-source) mS + 10 t f-- I b 225 6 - f- '--- 10= lmA 5 10 f=R(IO 15mA ~IH7 51 1 6 .-~ 00 MHz '- 1 5 lp 15 4 - -c- .. --- 4 OMHz 1- 3 2 - 15 110 5 120 1M iz 115 100MHz o o 0,1 0,2 0,3 0,4 0,5 0,6 mS -9115 Siemens 387 BF995 Noise figure F= f(VG2S) Vos = 15 V, VG1S = 0 V loss = 10 rnA, f= 200 MHz Power gain G p = f(VG2S) Vos= 15 V, VG1S = 0 V loss = 10 rnA, f= 200 MHz dB (test circuit 1) dB 40 Gps 30 t (test circuit 1) 10 20 II 10 / --- F \ \ 5 388 - --.- .. _. . - \ - -- - - 1-- . . - - - \ 4 - .-- --- - - - r- _ .. r - \ I -1 _. -- 1\ 1\ 3 -40 -2 ~- -- 6 ~ .. f-- - -20 ,I r-- - - r.. -- I -30 ~I--- - --- I -10 \ i r- II 0 1 -- ---- - r.- - o 4V o -1 Siemens o - ---- SV BF995 Mixer gain (additive) G psc = f( Vos c); Vo = 15 V; VG1S = 0; VG2S = 6 V; Rs = 2200; loss = 10 mA; f= 200 MHz; flF = 36 MHz; 2 LlflF = 5 MHz dB (test circuit 2) dB 20 20 ..... / i ~ I-- Mixer gain (additive) G psc = f(VG2S); Vo = 15 V; VG1S = 0; Rs = 220 0; Vosc = 0,5 V; loss = 10 mA; f= 200 MHz; flF = 36 MHz; 2 LlflF = 5 MHz (test circuit 2) 10 /' _. -- II 1/ --- t- r / 10 t- I . 11 II o o -10 ~ t- t- t- I-- 1--+-- t- f- f- .. - -20 -10 -20 o 0,5 1,5 V 1,0 -2 4 -1 ~VOS(. Mixer gain (additive) G psc = f(Rs); Vo = 15 V; VG1S = 0; VG2S = 6 V; Vosc = 0,5 V; f= 200 MHz; flF = 36 MHz; 2 LlflF = 5 MHz (test circuit 2) dB 20 I--IOSS - i 15 SmA ~ J. 1umflt' ~mA - II I::::: I V I 2,OV 1/ _. / 10 / -- / o V 1/ II -5 5 ~ Vose;' 2,5V I) 10 6V II I Gps< 20 1-""/ 5 VG2S Mixer gain (multiplicative) G psc = f(VG2S); Vo = 15 V; VG1S = 1,7 V; Rs = 2000; loss = 10 mA; f= 200 MHz; flF = 36 MHz; 2 LlflF = 5 MHz dB (test circuit 3) 25 I II II ~ -- Gpsc / / If 1,5 V tov II / lJ -10 j/ -15 -20 -3 -2 -Rs -1 0 2 3 4 5 6V _VG2S Siemens 389 BF995 Interference voltage for 1% cross modulation Vint (t%) = f(fint)'); mint = 1000/0; fe = 200 MHZ; Vos = 15 V; VG2S = 4 V, VG1S = 0; loss = 10 mA Interference voltage for 1% cross modulation Vint (1%) = f(LlG p)'); fe = 200 MHz; fint = 221 MHz; mint = '1000/0; Vos = 15 V; VG1S = 0; loss = 10 mA (test circuit 1) mV (test circuit 1) 3 rn=liOOaWt-tlE~ ,10 f- 17 1'\1\. 1/ \ 1/ 7 II \ .. f- 1\11 f- f- f- f- 10' 200 180 220 UJ...Ll...Ll...LL.LL.LLLU...Ll...Ll..LL.LL..LJ o 240 MHz 10 15 20 25 dB ------.. L1 Gp Test circuit 1, power gain, noise figure and cross modulation f= 200 MHz; GG = 2 mS, GL = 0,5 mS lnF ISpF kloutput 60\1 BB5.QL 1nFI I 270 k 270k lOr I 270!" Vos ') Vint (1%) is the rms value of half the EMF (terminal voltage at matching) of a 1000/0 sine modulated TV carrier at an internal generator resistance of 60 n, causing 1% amplitude modulation on the active carrier. 390 Siemens BF995 Test circuit 2, mixer gain (additive) f= 200 MHz; fosc = 236 MHz; 2 .MIF = 5 MHz VG2S ~~cQinput ~'00.' rb H~ 'Q I 'oF 3,3pF l .. 6pF'\, Input 60Q Ir---1 'nlFoutput 60Q 1nF ~ 10nF I I I IDr I Vos Test circuit 3, mixer gain (multiplicative) f= 200 MHz; fosc = 236 MHz; 2 LlflF = 5 MHz VG2 s 68Q Osc.input 60Q Input 60Q 100k I 1... 6pF\ I \nlF 60Qoutput \ 10nF I 100k 12 k 100k Vos Siemens 391 Silicon N Channel MOSFET Tetrode • • • BF 996 S For input stages in UHF TV tuners High transconductance Low noise figure G2 /7}yo Gl9;s Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package BF 996 S MH Q62702-F964 Q62702-F1021 SOT 143 Maximum ratings Parameter Symbol Ratings Unit Drain-source voltage Drain current Gate 1/Gate 2 source peak current Total power dissipation TA = 60 DC Storage temperature range Channel temperature Vos 20 30 V mA 10 200 mA mW Tch -55···+150 150 DC DC RthJA ::; 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 392 10 ± IG1/2SM Ptot Tstg Siemens BF 996 S Electrical characteristics at TA = 25 ac, unless otherwise specified DC characteristics Symbol min typ max Unit Drain-source breakdown voltage 10 = 10 !lA, - VG1S = - VG2S = 4 V V(BR) os 20 - - V Gate 1 source breakdown voltage ± IG1s = 10 mA, VG2S = Vos = 0 ± V(BRI G1SS 8,5 - 17 V Gate 2 source breakdown voltage ± IG2S = 10 mA, VG1S = Vos = 0 ± V(BRIG2SS 8,5 - 17 V Gate 1 source leakage current ± VG1S = 5 V, VG2S = Vos = 0 ± IG1sS - - 50 nA Gate 2 source leakage current ± VG2S = 5 V, VG1S = Vos =0 ± IG2SS - - 50 nA Drain current Vos = 15 V, VG1S = 0, VG2S = 4 V loss 2 - 20 mA Gate 1 source pinch-off voltage Vos = 15 V, VG2S = 4 V, 10 = 2O!lA - VG1S (p) - - 2,5 V Gate 2 source pinch-off voltage Vos = 15 V, VG1S = 0,10 = 2O!lA - VG2S (p) - - 2,0 V AC characteristics Symbol min typ max Unit Forward transconductance Vos = 15V, 10= 10mA, VG2S =4V, f= 1 kHz gfs 15 18 - mS Gate 1 input capacitance Cg1SS Vos = 15V, 10 = 10mA, VG2S =4 V, f= 1 MHz - 2,3 - pF Gate 2 input capacitance Cg2ss Vos = 15V, 10 = 10mA, VG2S = 4V, f= 1 MHz - 1,1 - pF Reverse transfer capacitance ') Cdg1 Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz - 25 - fF Output capacitance Cdss Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz - 0,8 - pF - 25 18 - dB dB - 1 1,8 - dB dB 40 - Power gain (test circuits 1, 2) Vos = 15 V, 10 = 10 mA, f= 200 MHz, GG = 2 mS, GL = 0,5 mS f= 800 MHz, GG = 3,3 mS, GL = 1 mS Gp Noise figure (test circuits 1, 2) Vos = 15 V, 10 = 10 mA f= 200 MHz, GG = 2 mS, GL = 0,5 mS f= 800 MHz, GG = 3,3 mS, GL = 1 mS F Control range (test circuit 1) Vos = 15 V, VG2S = 4··· -2 V, f= 800 MHz ~Gp - - - dB ') G2 and S on screen potential. Siemens 393 BF996 S Total power dissipation = Ptot Output characteristics 10 = t(Vos) VG2s=4V mA 25 t(TA) mW 300 10 VG1s =0.6V ~ot t r 200 r\ 20 0.4V 15 1\ 0.2V r-.. O~ 10 -OJ.V 100 -0,4~ \ 5 \ -0.6V \ o o 100 -7; 50 o o 150 0 ( 5 10 15 20V -Vos Gate 1 forward transconductance Gate 1 forward transconductance gfs1 = t(VG1S) gfs1 Vos = 15V loss = 10 mA, mS 20 Vos = 15V loss = 10 mA, t= 1 kHz = t(VG2S) t= 1 kHz mS I 20 II Vuzs=4V gl.1 f -O.BV 1\ gf.1 r 15 1\ II VG1S =OV15 Vf/ If' v.: / 10.5V \ \ 10 III III o -2 394 Isv -1 1\ I / j.V /7 2V I / I I 1V ~~ OV 2V V o .L .L. V -2 Siemens -1 I Y ..., V_ ........-0.5V II I o II / 10 1\ fII0r .11/1 1\ \ 5 3V / 1/ / / o 4V BF 996 S Gate 1 Input capacitance Gate 2 Input capacitance C g 2ss = f(VG2S) VG1S = 0, Vos = 15 V loss = 10 rnA, f= 1 MHz C g 1ss = f(VG1S) VG2S = 4 V, loss = Vos = 15 V 10 rnA, f= 1 MHz pF 2,5 'r 2,0 /' .... pF 2,0 - v r 1\ 1,5 ~ 1,0 1,0 0,5 0,5 o-1 o o lV -1 o 3 Output capacitance Cdss = f (Vos) VG1S=0, VG2s=4V loss = 10 rnA, f= 1 MHz Drain current 10 = f(VG1S) Vos= 15V pF mA 30 5rrTT"".-rrTT""'-~ VG2s =4V 5V 4 =3V =2V i;' 10 V II, If f 20 ,N lJ.rl =lV i-' rJ, IJI} V 10 =OV i-' OLLLLLLLLLLLLLLLLLL~ o 10 15 20V o .. ~ -1 Siemens o '3 V 395 BF 996 S Power gain G p = f(VG2S) Vos = 15 V, VG1S = 0 loss = 10 mA, f= 200 MHz dB 30 I (test circuit 1) dB -- 10 - Ip Noise figure F = f (VG2S) VOS = 15 V, VG1S = 0 loss = 10 mA, f= 200 MHz -r~ ! V"'" 20 / 10 (test circuit 1) 8 7 6 o -10 4 II -20 3 \ \. -30 I -40 -1 o 4 -2 3 4V - VG2S Noise figure F = f(VG2S) Vos = 15 V, VG1S = 0 loss = 10 mA, f= 800 MHz Power gain G p = f(VG2S) Vos = 15 V, VG1S = 0 loss = 10 mA, f= 800 MHz (test circuit 2) dB 20 }p I / 10 -- (test circuit 2) dB 10 --. ~r-- F I I / o I -10 / II -20 4 '\ \ \ \i ....... -30 -- I / -40 -1 396 4V o o Siemens 3 4V BF 996 S Gate 1 Input admittance y 11 s VDs=15V, VG2s=4V (common-source) Gate 1 forward transfer admittance Y21s Vos=15V, VG2s=4V (common-source) mS mS o 14 b 11s I 12 ~0=1mA 10 8 f=800MHz~ I r-;}( 5 ), -4 -f-,1 -6 10 =1m~o::. '\. -8 - f-3 1J'"600MHz '\. -10 ~:5 15 400MHz -12 15 1 200 MHz -16 1~t---'"00 r-. i'.. 3 ....... ~ N 15 200MHz _ I I 7~:_ 400MHz "'-5 f"..: ~-f- 3 .""- 151- I'\.? 7 tl., -14 4 2 1 b21s O~? - f~100' MHz 1 -2 -'71],1'1 60~Hz{l 15- f- 8foMIHZ -18 15 1 100MHz o o 2 mS -20 o r20mS 10 ~g2's --------- g, 1s Output admittance Y22s VDS = 15 V, VG2S = 4 V (common-source) mS 5 10=1mA 11.0- 3 5 7110 115 f=1800 MHz P]600MH~ 3 ,1,.,~ 400MHz o.!?200MHz J51100~HZI o o 0,1 O,2mS Siemens 397 BF 996S Test circuit 1, power gain and noise figure f= 200 MHz, GG = 2 mS, GL = 0,5 mS 1nF 1nF l~'P"' 60Q 1nF ,"p~r 60Q I lOr 270k I H vG1S VI un v'un Vos Test circuit 2, power gain, noise figure and cross modulation f= 800 MHz, GG = 3,3 mS, GL = 1,0 mS 1 1nF 0utput 60Q 1nF ';lo' rh----J--~ Dr Vos 398 Siemens BF997 Silicon N Channel MOSFET Tetrode • • For VHF applications especially in TV tuners with extended VHF band Integrated suppression network against spurious VHF oscillations G2 G1 ~D g;s Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package SF 997 MK QS2702-F993 QS2702-F1055 SOT 143 Maximum ratings Parameter Symbol Ratings Unit Drain-source voltage Drain current Gate 1/Gate 2 source peak current Total power dissipation TA = SO°C Storage temperature range Channel temperature Vos 20 30 V mA Ptot 10 200 mA mW Tstg Tch -55 .. ·+150 150 °C °C RthJA ::5 450 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 1S.7 mm x 0.7 mm 10 ± IG1/2sM Siemens 399 BF997 Electrical characteristics at TA = 25 cC, unless otherwise specified DC characteristics Drain-source breakdown voltage 10 = 10 !-lA, - VG1S = - VG2S = 4 V Gate 1 source breakdown voltage ± IG1s = 10 mA, VG2S = Vos = 0 Gate 2 source breakdown voltage ± IG2s = 10 mA, VG1S = Vos = 0 Gate 1 source leakage current ± VG1S = 5 V, VG2S = Vos = 0 Gate 2 source leakage current + VG2S = 5 V, VG1S = Vos =0 Drain current Vos = 15 V, VG1S = 0, VG2S = 4 V Gate 1 source pinch-off voltage Vos = 15 V, VG2S = 4 V, 10 = 20!-lA Gate 2 source pinch-off voltage Vos = 15 V, VG1S = 0, 10 = 2O!-lA Symbol V(BR)os min 20 typ max - - Unit V ± V(BR) G1SS 8,5 - 17 V ± V(BR)G2SS 8,5 - 17 V ± IG1sS - - 50 nA ± IG2sS - - 50 nA loss 2 - 20 mA - VG1S(p) - - 2,5 V - VG2S(p) - - 2,0 V AC characteristics Forward conductance Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 kHz Gate 1 input capacitance Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz Gate 2 input capacitance Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz Reverse transfer capacitance ') Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz Output capacitance Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz Power gain (see test circuit) Vos = 15 V, 10 = 10 mA, f= 200 MHz, GG = 2 mS, GL = 0,5 mS Noise figure (see test circuit) Vos = 15 V, 10 = 10 mA, f= 200 MHz, GG = 2 mS, GL =0,5 mS Control range (see test circuit) Vos = 15 V, VG2S = 4··· -2V, f= 200 MHz ') G2 and S on screen potential. Symbol gls min 15 typ 18 max - Unit mS Cg1SS - 2,5 - pF Cg2ss - 1,2 - pF Cdg1 - 25 - fF Cdss - 1 - pF Gp - 25 - dB F - 1 - dB l>.G p 50 - - dB 400 Siemens BF997 Total power dissipation = Ptot Output characteristics 10 = t(Vos) VG2s=4V t(TA) mA mW 25 300 10 VG1S=0,6V ~.t r t 200 1\ 20 0,4V 15 1\ O,2Y 1\ o~ 10 -0,2Y 100 \ -O,4V 5 1\ -~,~J 1\ o 1\ o 50 100 150 ·C -/A Gate 1 forward transconductance g'st = t(VGts) Vas = 15V loss = 10 mA, t= 1 kHz mS - O,BY °° 5 10 15 20V -Vos Gate 1 forward transconductance g'st = t(VG2S) Vas = 15V loss = 10 mA, t= 1 kHz mS 25 25 \f;2S= 4V 0,5;£... OV 20 v iA V(;t =-O,SV lS 15 3V II 10 10 2V ·i~ 5 o -2 I -1 ~ ~~y o o -1 2V 0 4 7V - VGtS Siemens 401 BF997 'i Gate 1 Input capacitance C g 1ss = f(VG1S) VG2S =4V, Vos = 15V Joss = 10 mA, f= 1 MHz Gate 2 Input capacitance C g 2ss = f (VG2S) VG1S = 0, Vos = 15 V Joss = 10 mA, f= 1 MHz pF 2,5 pF 2,0 - ./ 2.0 ~ l 1,5 ..1\ 1,5 ..... 1,0 1,0 0,5 0,5 o-1 o o 1V -1 o 3 2 Output capacitance Cdss = f (Vos) VG1S = 0, VG2S = 4 V Joss = 10 mA, f= 1 MHz Drain current 10 = f(VG1S) Vos= 15V pF rnA 30 5rrrrTT~,,-.rrTT~"~ VG2s =4V =3V 5V 4 =2V II /0 V 1/ t 20 =1V I'" 10 ~ "~ rJ. =OV ~ OLLLL~~-LLLLL~~-LLW o 5 10 15 20V o -1 o 2 -\t,s 402 Siemens 3 V BF997 Gate 1 Input admittance Gate 1 forward transfer admittance Y115 15 V, VG2S = 4 V Vos = Vos = VG1S = 0, Joss = 10 rnA (common-source) mS VG1S =' 0, Joss = 10 rnA (common-source) mS 14 80 10 MHlz_ I o f=100 MHz <; /" b 1\, 12 / / 10 P 400 M~Z--' I- -10 f--- ~400MHZ I 1/ J 1 / /200I M~zI - V ,/ -20 a VG2S 20 mS 15 -gl\, -gIl, Output admittance V -c;:; r- 800 MHz 10 4 mS = 15Y, /600MHz - -15 ~ f -100 MHz Vos !--- I / o M~z 200 I L 600MHz I 4 Y215 15 Y, VG2S = 4 V Y 225 =4 Y VG1S = 0, JDDS = 10 rnA (common-source) mS 6 800M Hz n V /1' 4 / 600MHz V II 400J MHz 2 I 1200 MHi c! f =100 MHz °° 0,2 0,4 0,6 0,8 1.0 mS -gll. Siemens 403 BF997 Power gain G p = f (VG2S) VOS = 15 V, VG1S = 0 V loss = 10 rnA, f= 200 MHz Noise figure F = f (VG2S) Vos= 15V, VG1S =OV loss = 10 rnA, f= 200 MHz dB dB 10 (test circuit) 30 20 f v (test circuit) F I 10- 10 8 7 6 o 5 -10 4 3 -20 -30 -40 -1 \. I o 2 3 i'- 4 3 Test circuit for power gain and noise figure f = 200 MHz; GG = 2 mS, GL = 0,5 mS 1nF 1nF 1~ 1 nF '""[ 60Q 60Q I BB5~ 270k 1nFI IDr I 27OS:- ~ VG1S 404 270k Vt"n H Vt"n Siemens VDS 4V Silicon N-Channel MOSFET Tetrode • Short-channel transistor with high SIC quality factor • For low-noise, gain-controlled input stages up to 1 GHz BF998 G2 G1 ~D ~s Type Marking Ordering cod~ for versions in bulk Ordering code for versions on tape BF 998 MO Q62702-F37 Q62702-Fl129 Maximum ratings Symbol Ratings Unit Drain-source voltage VDS 12 V Drain current ID 30 Gate l/Gate 2 source peak current ±h1l2SM 10 rnA rnA Total power dissipation T A :5 60 °C P tot 200 mW Storage temperature range T stg -55 ... +150 °C Channel temperature Tch 150 °C I RthJA I :5 450 I K/W Thermal resistance Channel - ambient') I) Package mounted on alumina 16.7 mm x 15 mm x 0.7 mm Siemens 405 BF998 Electrical characteristics at TA = 25 °e, unless otherwise specified DC characteristics Symbol min. typo max. Unit Drain-source breakdown voltage ID = 10 J.lA, -VG1S = -VG2S = 4 V Gate l-source breakdown voltage ±hlS = 10 rnA, VG2S = VDS = 0 Gate 2-source breakdown voltage ±h2S = 10 rnA, VG1S = VDS = 0 Gate l-source leakage current ± VG1S = 5 V, VG2S = VDS = 0 Gate 2~source leakage current ±VG2S = 5 V, VG1S = VDS = 0 Drair, current VDS = 8 V, VG1S = 0, VG2S = 4 V Gate l-source pinch-off voltage VDS = 8 V, VG2S = 4 V, ID = 20 J.lA Gate 2-source pinch-off voltage v:DS = 8 V, V.G1S = 0 , I D = 20 A V(BR)DS 12 - - V ± V(BR)G1SS 8 - 14 V ± V(BR)G2SS 8 - 14 V ±/G1SS - - 50 nA ±/G2SS - - 50 nA IDSS 2 - 18 rnA -VG1S (P) - - 2.5 V -VG2S (p) - - 2 V Symbol min. typo max. Unit 9fs - 24 - rnS Cg lss - 2.1 2.5 pF Cg 2ss - 1.2 - pF Cdgl - 25 - fF Cdss - 1.05 - pF - 28 - dB - 20 - dB AC characteristics Forward transconductance VDS = 8 V, 10 = 10 rnA, VG2S f= 1 kHz =4V Gate 1 input capacitance VDS = 8 V, 10 = 10 rnA, VG2S f= 1 MHz =4 V Gate 2 input capacitance VDS = 8 V, ID = 10 rnA. VG2S f= 1 MHz =4 V Reverse transfer capacitance VDS = 8 V, ID = 10 rnA, VG2S = 4 V f= 1 MHz Output capacitance VDs =8V,/ o = lOrnA. VG2s=4V f= 1 MHz Power gain (test circuit 1) VDS = 8 V, ID = 10 rnA, f= 200 MHz, GG = 2 rnS, GL = 0.5 rnS, VG2S = 4 V (test circuit 2) VDS = 8 V, ID = 10 rnA, f= 800 MHz, GG = 3.3 rnS, GL = 1 rnS, VG2S = 4 V 406 Gps Siemens BF998 AC characteristics Symbol Noise figure (test circuit 1) Vos = 8 V, 10 = 10 mA, f= 200 MHz, GG = 2 mS, G L = 0.5 mS, VG25 = 4 V (test circuit 2) Vos = 8 V, 10 = 10 mA, f= 800 MHz, GG = 3.3 mS, G L = 1 mS, VG2S = 4 V F Control range (test circuit 2) Vos = 8 V, VG2S f= 800 MHz dG ps min. typo max. Unit - 0.6 - dB - 1 - dB 40 - - dB = 4 ... -2 V Total power dissipation p.o. = f (TA ) rnA 25 rnW 300 Output characteristics 10 = f (Vos) VG2 • = 4 V \{;ls =O,5V O'rVI200 ~ 15 \ O,2Vl- 1/ Or 10 100 ":0,2 V "1\ o o 50 100 ~.4~ ~ o o 150 0 ( -7i. -U.bV 5 10 15 V -Yes Siemens 407 BF 998 Gate 1 forward transconductance = f (VOls) Vos = 8 V, loss = 10 rnA. f= 1 kHz Gate 1 forward transconductance g", g", = f (V Vos =8 G2S ) V, loss = 10 rnA, f = 1 kHz mS mS 30 171- 9'sl /7 \3V \ ~ \" 20 \ It\ I 10 V IJ "- liN t;P o -1 2 V o 2 --~IS Vos =8 V, loss = 10 rnA. 3 4 V -\1;25 Gate 1 input capacitance c g' " = f (VOls) VG2S = 4 V, Vos = 8 V, loss = 10 rnA f = 1 MHz Gate 1 forward transconductance g", = f (10 ) V I'll "'- o -1 V I ov ~r-I- -O,25J!. flA- 1\ ["\[ o II 1\ .- e::: ) \ \ v .... // 1\ 10 V V 1\ l\lV rI V 1 1\ "' 2V rtJl_ rl 9'sl 1\ ffJrr 20 VG15 =O,2SV ~ I f 30 .... \(;2S=!+V /' f= 1 kHz mS pF 30 2.5 VG25 =4V ~y 9'sl I!:: t Cgl ss 2V t ~r;. 20 ~ 11 2 / """ "-'\ II / 1,5 II' " 1\1V 10 f'\ 0,5 0,5 OV YT o 408 1;;[ o 5 10 15 -10 o 20 mA -3 -2 -1 o -\{;'5 Siemens 1V BF 998 Gate 2 input capacitance VG1S ; O. V DS ; 8 V loss; 10 rnA. f ; 1 MHz C U2 .. ; f Output capacitance Cd" VGlS ; O. V G2S ; 4 V loss ~ 10 rnA. f ; 1 MHz (VG2S ) pF 2 ; f (VDS ) pF 3 r~1.5 ~ oJ , ~ 2 \ , ~ 0.5 o -2 o -1 3 2 o o 4 V 5 Drain current 10 ; f VDS ; 8 V -\fos Power gain Gp , = f (VG2S ) (VG1S ) V Ds ;8V. VGls= 0 loss = 10 rnA. f = 200 MHz (5. test circuit 1) mA 30 dB 30 I ~2s=4V' 3V, 2 ~ J t 1V 20 15 V 10 -\IG2s ~ G~ 20 t 10 o II I I II -10 II 10 -20 r- r- r- ~_ o L-L-1 OV -30 "... o -40 -1 2 V o 2 3 4 V -l.'r;2S -~IS Siemens 409 BF998 Noise figure F = t (VG2S ) VDS = 8 V, VOIS = 0, loss = 10 rnA. t = 200 MHz, (5. test circuit 1) Power gain Gp , = t (VG2S ) VDS = 8 V, VOIS = 0, loss = 10 rnA, = 800 MHz, (5. test circuit 2) t dB dB 30 5 F 4 t 20 t 10 - v I I I -10 2 1 i'- o Gps -20 - -30 -40 o 2 3 4 V o -1 2 4 V 3 -\tzs Noise figure F = t (VG2S ) VDS = 8 V, VOIS = 0, loss = 10 rnA, = 800 MHz, (s. test circuit 2) Gate 1 input admittance Yll, VDS = 8 V, VG2S = 4 V, VGlS = 0, loss = 10 rnA, (common-source) dB f 5 14 1200lMHZ mS 4 t 3 900lMHzI-- I-- ~BOOMHz , "- ./J,1000MHZ / 8 \ 2 r j100~HZ -1/ ], t - - l: F /700MHz 1600MHz 6 I/sOOMHz r- r- '--- t:~"~ I I 1 o 4 ~ I 300MHz 20~MH, 100 HZ o o 2 3 o 4 V -\tzs 410 2 3 mS -g11s Siemens 4 BF998 Gate 1 forward transfer admittance Y2" VDS ~ 8 V, V02S ~ 4 V, Vo,s ~ 0 i DSS ~ 10 mA, (common-source) Output admittance Y22, ' VDS ~ 8 V, V02S ~ 4 V, Vo,s ~ 0 i DSS ~ 10 rnA, (common-source) o 8 mS I bZT. ·10~M~z -5 l- t-. 31001M~Z 400MHz I I I 500MHz I I If 600MHz 1100 lMHz -10 \100~Hi~ I r- ~OO~HV' 800MHz/ 4 t- 10()~Hz _ -25 10 700MH~ , I i-500MHz.,r 1f400MHz 2 ,r 1300MHz fJ .. L 1200MHz H_120,0~H~. t- ~lobM~Z 20 15 - t- 60pM1i' -JOOOMHzX -20 / 1000MHz If' I I apOr Hz 900MHz -15 12~OM~~ - ldo~H~' o o 25 m5 -gzl. TT 0,1 0,2 0,3 0,4 mS 0,5 -gzz. Test circuit 1, power gain and noise figure f= 200 MHz, GG = 2 mS, GL = 0.5 mS lnF lnF ·~n 6Ml BB5.Qi. lnF .~~ I 14 I-:l , VGIS , 1' : ' " fI 270k Vtun :, 5 nF iCh H Vtun VDS Siemens 411 BF 998 Test circuit 2. power gain and noise figure f= 800 MHz. GG = 3.3 mS, GL = 1 mS 412 Siemens Silicon N-Channel MOSFET Triode • BF999 For high-frequency stages up to 300 MHz, preferably in FM applications Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm tape BF 999 LB Q62702-F38 Q62702-F1132 Maximum ratings Symbol Ratings Unit Drain-source voltage Vos 20 V Drain current 10 30 rnA Gate-source peak current ±hSM 10 rnA Total power dissipation TA~ 60°C Ptot 200 mW Storage temperature range T stg -55 ... +150 °C Channel temperature Tch 150 °C Thermal resistance junction - ambient11 RthJA I S; 450 K/W 1) Package mounted on alumina 16.7 mm x 15 mm x 0.7 mm. Siemens 413 BF 999 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min. typo max. Unit Drain-source breakdown voltage 10 = 10 iJA, - VGS = 4 V V[BR)DS 20 - - V Gate-source breakdown voltage ±hs = 10 mA Vos = 0 Gate-source leakage current ± VGS = 5 V, VDS = 0 Drain current VDS = 10 V. VGS = 0 ± V[BR)GSS 6.5 - 17 V ±hss - - 50 nA loss 5 - 18 mA Gate-source pinch-off voltage Vos = 10 V. 10 = 20 iJA -VGS(P) - - 2.5 V AC characteristics Symbol min. typo max. Unit gfs 14 16 - mS C gss - 2.7 - pF Reverse transfer capacitance Vos = 10 V, I D = 10 mA, f = 1 MHz Crss - 25 - fF Output capacitance Vos =10 V, 10 = 10 mA, f= 1 MHz C dss - 1 - pF Power gain (test circuit) Vos = 10 V, 10 = 10 mA, f = 200 MHz, GG = 2 mS, GL = 0.5 mS Gp - 25 - dB Noise figure (test circuit) Vos = 10 V, 10 = 10 mA, f = 200 MHz, GG = 2 mS, GL = 0.5 mS F - 1 - dB Forward transconductance VDS = 10 V, I D = 10 mA f = 1 kHz Gate 1 input capacitance VDS = 10 V, 10 = 10 mA f = 1 MHz 414 Siemens BF999 Total power dissipation Ptot = f(TA ) Output characteristics 10 = f(Vos) mA mW 300 25 \'c;=O,BV 10 0,6 1 20 O,4V 200 \. 15 r-.. O,2V !\ ov 10 100 :6,1\ "1\ 5 -P.4V -,v '\ o ~ o 50 o o 150_0 ( 100 10 5 15 20 V -lifls Drain current 10 = f(Vos) Gate transconductance 9,. = f(Vos) Vos = 10 V,Ioss = 10 rnA, f= 1 kHz Vos = 10 V mS mA 20 30 1/ II 10 II 20 II II I 1/ 10 5 " 1\ o -1 o 2 / o 3 V -1 / II o 2 V -\6s Siemens 415 BF 999 Gate input capacitance C,,, = f(VGs) VDS = 10 V, loss = 10 rnA, f= 1 MHz Output capacitance Cd" = f( VDS ) VGS = 0, loss = 10 rnA, f= 1 MHz pF 3 , pF 2,0 \ i-'r'"'" t II 1'\ , Cds, ,.,I \ 1,5 "- ~ 1,0 >0,5 o -2 -1 o o o 1 V 10 -Vos 5 -\1;s Reverse transfer capacitance C", = 10 rnA, f= 1 MHz, VGS = 0 = f(VDS) loss pF 0,2 mS Crss t Gate 1 input admittance Yll, VDS = 10 V, VGS = 0, loss = 10 rnA. (common-source) 14 r-T---'-...---r-T---'-'---'----'---'-'-"-'--'--' b"s 15 V f=800MHz~ / 12 /700MHz t 0,15 f-+-t--Hf-+-t-+-i-+-t-+-If-+-H /1 /6IOOMHz 10 /0 7 I iOOMHZ 0,1 6 /400MHz /1 ---. / 4 0,05 f-+--l-t-f\++-I-+-t-+-+-++-H 300 MHz l 1200M8z I If 109MHz o "-,--'--'-L-L-'--'-'------'--'--'-L.J.....J.-J o 5 10 15 J-sor Hz o o V -Vos 416 Siemens 4mS SF 999 Gate 1 forward transfer admittance Y21, VDS = 10 V, VGS = 0, loss = 10 rnA, (common-source) Output admittance Y22 , VDS = 10 V, VGS = 0, loss = 10 rnA, (common-source) mS mS o 5 f=~OO~Hz ~ SJMHlzt 100MHzl1 4 ar::~ Y I- -5 210 - H I- 1 ~I- - 300MHZ 1 I 4010M~/ -10 i--400MHz II j I SOOMHT.JI 600MHz °i i f=18 M z 8 6 " 30~MHz J 100[MH~ rr- .J. 4 I l/200M~Z 17 700M~ -15 ~ 706MH~ JI' V 600MHz / .I V 500MH V 10 12 14 o o 16mS I 50~HZ 0,1 0,2 0,3 0,4 O,SmS -gl15 -g115 Test circuit: Power gain and noise figure 200 MHz t= Input 6011 --1-1SP-F--1 lnF ~~I kl1 Output '-1 lnF I 'oF 6011 rl~ BBSOS 270 kl1 Siemens 417 BFN 16 BFN 18 NPN Silicon High-Voltage Transistors • • • • Suitable for video output stages in TV sets and switching power supplies High breakdown voltage Low collector-emitter saturation voltage Complementary types: BFN 17, BFN 19 (PNP) E Type Marking Ordering code for versions in bulk Ordering code for versions on 12 mm-tape Package BFN 16 BFN18 DO DE Q62702-F694 Q62702-F696 Q62702-F885 Q62702-F1056 SOT 89 SOT 89 Maximum ratings Parameter Symbol BFN 16 BFN 18 Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO 250 250 300 300 V V V Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 418 VCBO 5 200 500 100 200 1 VEBO Ic ICM IB IBM Ptot 150 -65···+150 Tj Tstg ::; 125 RthJA Siemens mA mA mA mA W °C °C K/W BFN 16 BFN 18 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 1 rnA BFN 16 BFN 18 V(BR) CEO Collector-base breakdown voltage Ic = 100 IJA BFN16 BFN 18 V(BR)CBO Emitter-base breakdown voltage IE = 100 I1A V(BR) EBO Collector cutoff current VCB = 200 V VCB = 250 V VCB = 200 V, TA = 150°C VCB = 250 V, TA = 150°C typ max Unit 250 300 - - V V 250 300 - - - V V 5 ICBo BFN BFN BFN BFN - 16 18 16 18 Emitter cutoff current VEB = 3V lEBO DC current gain Ic = 1 rnA, VCE Ic = 10 rnA, VCE Ic = 30 rnA, VCE hFE = = = min 10V 10 V1) 10 V1) BFN 16 BFN 18 Collector-emitter saturation voltage 1) - V - 100 100 20 20 - 100 nA 25 40 40 30 - - - - 0,4 0,5 V V 0,9 V - - - nA nA IJA I1A - VCEsat Ic=20mA,IB=2mA Base-emitter saturation voltage 1) Ic = 20 rnA, IB = 2 rnA VBEsat - AC characteristics BFN 16 BFN 18 Symbol min typ max Unit Transition frequency Ic = 20 rnA, VCE = 10 V, f= 20 MHz fT - 70 - MHz Output capacitance VCB = 30 V, f= 1 MHz Cob - 1,5 - pF 1) Pulse test: t =:; 300 I1s, D = 20/0. Siemens 419 BFN 16 BFN 18 Operating range Ie = (VeEO) Total power dissipation Ptot = f ( TA) TA = 25°C, 0= 0 mA W 1,2 103 5 1"',0 '\ 1\ 10~~ \ 0,8 1\ 100~ lmSITI 1\ 1111 0,6 lOOms 10' \ 0,4 DC 1\ \ 0,2 , 1\ ° 50 ° 100 150 0( 5 10 ' --7;, -VCEO Collector current Ie = (VSE) Pulse handling capability rth = (t) VCE = 10 V mA 103 5 'ih 5 1 , , I ~. ~ 5 0.5 0.2 0.1 0.05 0.02 0.01 0.005 5 10' 5 0=0 1 5 5 ~ O=f 10-3 10-6 10-5 420 T 10- 4 10- 3 10- 1 10-' --f 1 10° s 0,5 Siemens 1,5 V BFN 16 BFN 18 Transition frequency fT = f (I c) VCE = 10 V Collector cutoff current J CBO VCB = 200 V MHz 10 3 nA = f ( TA) 10' 5 fr l(BO max ~/ 1 ..... V typo 10' 5 V / , 5 10' / 50 100 150 O( ~r" DC current gain hFE = f(Iel VCE = 10V 10' 10° 10-' 5 10° 5 10' 5 10 2 -Ie 5 103 mA Siemens 421 PNP Silicon High-Voltage Transistors • • • • BFN 17 BFN 19 Suitable for video output stages in 1V sets and switching power supplies High breakdown voltage Low collector-emitter saturation voltage Complementary types: BFN 16, BFN 18 (NPN) E Type Marking Ordering code for versions in bulk Ordering code for versions on 12 mm-tape Package BFN 17 BFN 19 DG Q62702-F695 Q62702-F697 Q62702-F884 Q62702-F1057 SOT 89 SOT 89 DH Maximum ratings Parameter Symbol BFN 17 BFN19 Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VEBO Ic ICM IB IBM 250 250 300 300 V V V Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm RthJA 422 Ptot 5 200 500 100 200 1 Tj Tstg 150 -65 .. ·+150 ~ Siemens 125 rnA rnA rnA rnA W °C °C K/W BFN 17 BFN 19 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 1 mA BFN 17 BFN 19 V(BR) CEO Collector-base breakdown voltage Ic = 100 j.LA BFN 17 BFN 19 V(BR) CBO Emitter-base breakdown voltage lE= 100j.LA V(BR) EBO Collector cutoff current VCB=200V VCB = 250 V VCB = 200 V, TA = 150°C VCB = 250 V, TA = 150°C min typ max Unit 250 300 - - - V V 250 300 - - - V V 5 - - V - - 100 100 20 20 nA nA j.LA j.LA 100 nA - - ICBO BFN BFN BFN BFN 17 19 17 19 - Emitter cutoff current VEB = 3 V lEBO DC current gain Ic= 1 mA, VCE = 10 V Ic = 10 mA, VCE = 10 V') Ic = 30 mA, VCE = 10 V') hFE - 25 40 40 30 BFN17 BFN 19 Collector-emitter saturation voltage') I C = 20 mA, I B = 2 mA BFN 17 BFN19 VCEsat Base-emitter saturation voltage') Ic = 20 mA, IB = 2 mA VBEsat - - - - - - - 0,4 0,5 V V - - 0,9 V AC characteristics Symbol min typ max Unit Transition frequency Ic = 20 mA, VCE = 10 V, f= 20 MHz fT - 100 - MHz Output capacitance VCB = 30V, f= 1 MHz Cob - 2,5 - pF ') Pulse test: t:-:; 300 j.Ls, D = 20f0. Siemens 423 BFN 17 BFN 19 rnA Operating range Ie =f(VCEO) TA = 25°C, 0 = 0 Total power dissipation Ptot = f( TA) W 1,2 Ie \",1,0 \. tI \ 0,8 \ 1: 3 m••n. 2 E 105 10~5 '11~1'\1111\!1 .\1\ II \1\ 100fl5 1\ ~.n.g1rnls~ 100ms DC 0,6 \. 1Q1 \ 0,4 \ 1\ 0,2 r-.. \ °° 100 50 150 0 ( --7,; ------VCEO Collector current Ie = f(VBE) Pulse handling capability rth = f (t) (standardized) VCE = 10 V K W mA 103 10° 5 iIt lih 5 t 1 5 • I 0.5 5 0.2 0.1 0.05 0.Q2 0.01 0.005 5 D~O 2 5 ~ D=~ 10-3 10-6 424 T 10-3 10- 2 10- 1 -f II>. 10-5 10-' 1()""t 10° 5 o I 0,5 1,0 -i1lE Siemens 1,5 V BFN 17 BFN 19 Transition frequency fT = f (I cl Collector cutoff current I CBO VCE=lOV· VCB MHz nA 10 3 104 5 = f (TA) = 200V max. /' /' k typ 10' 5 / V 2 10 ' 1 10° 5 10 1 5 10 ' 5 10 3 mA 1/ 50 100 150 O( -/A --Ie DC current gain hFE = f (I cl VCE = lOV 10 3 hf[ r 10 2 5 2 10 ' 5 2 10° 10-1 5 10° 5 10 ' 5 10 1 5 10 3 A -Ie Siemens 425 BFN20 NPN Silicon High-Voltage Transistor • • • • • Suitable for video output stages in TV sets and switching power supplies High breakdown voltage Low collector-emitter saturation voltage Low capacitance Complementary type: BFN 21 (PNP) E Type Marking Ordering code for versions In bulk Ordering code for versions on 12 mm-tape Package BFN 20 DC Q62702-F584 Q62702-F1058 SOT 89 Maximum ratings Parameter Collector-emitter voltage Collector-base voltage Collector-emitter voltage RBE = 2,7 kQ Emitter-base voltage Collector current Peak collector current Total power dissipation TA = 25°C Junction temperature Storage temperature range Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 426 Symbol Ratings Unit VCEO 300 300 300 V V V 5 50 100 1 V mA mA W Tstg 150 -65···+150 °C °C RthJA :5125 K/W VCBO VCER VEBO Ic ICM Ptot Tj Siemens BFN20 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Cc.Jlector-emitter breakdown voltage Ic = 1 mA V(BR) CEO 300 - - V Collector-base breakdown voltage le = 10 IlA V(BR) CBO 300 - - V Collector-emitter breakdown voltage Ic = 10 IlA, RBE = 2,7 kQ V(BR) CER 300 - - V Emitter-base breakdown voltage lE= 1O IlA Collector cutoff current VCB = 250 V VCB = 2,50 V, TA = 150°C V(BR) EBO 5 - - V - - - 100' 20 nA IlA - - 1 50 IlA IlA - 10 IlA Collector cutoff current VCE = 300 V, RBE = 2,7 kQ VCE = 300 V, TA = 150°C, RBE leBo ICER Emitter cutoff current VEB = 5 V lEBO - DC current gain') le = 25 mA, V CE = 20 V hFE 40 - - - Collector-emitter-saturation voltage ') I C = 10 mA, I B = 1 mA VCEsat - - 0,5 V Base-emitter saturation voltage ') Ic = 10 mA, IB = 1 mA VBEsat - - 1 V = 2,7 kQ AC characteristics Symbol min typ max Unit Transition frequency Ic = 10 mA, VCE = 10V, f= 20 MHz fT - 100 - MHz Output capacitance VCB = 30V, f= 1 MHz Cob - 0,8 - pF ') Pulse test: t:::; 300 Ils, D = 2%. Siemens 427 BFN20 Total power dissipation Ptot = f (TA) Output capaCitance f=lMHz W 1,2 pF Cob = f(Vce) 4 1"1,0 i\. r\ 0,8 3 r\ 1\ \ 2 \ 0,6 1\ ~ 1\ 0,4 ,\ ~ \ r-,... 0,2 ['.,. o \ o 150 .( 100 50 o o 10 --T" Pulse handling capability rth = f(t) (standardized) K Transition frequency fT Vce=lOV iii MHz 100 10 3 ~ ,10':' III 1 ~ 5 xr2 1 0. 5 0.2 0.1 0.05 0.02 0.01 0.005 1'-0=0 2 5 / 5 ~ 2 O=f 1 ~ o 50 100 150 DC -r,. Siemens 457 BFP81 NPN Silicon RF Transistor • For low-noise amplifiers up to 2 GHz at collector currents from 0.5 to 25 mA. ~ BIlAE CECC-type in preparation: CECC 50002/... E~C ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFP81 FA Q 62702 - F1122 SOT-143 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 16 V Collector-base voltage Vcso 25 V Emitter-base voltage VESO 2 V Collector current Ic 30 mA Base current Is 4 mA Total power dissipation, TA :5 25 °C2 ) Ptot 280 mW Junction temperature 1j 150 °c Ambient temperature range TA -65 ... +150 °c Storage temperature range Ts1g -65 ... +150 °c Thermal Resistance I Junction - ambient 1) 1} Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 458 Siemens RthJA I :5450 KIW BFP81 Electrical Characteristics at TA = 25 cC, unless otherwise specified. DC characteristics Parameter Symbol Values Unit min typ max Collector-emitter breakdown voltage Ic = 1 rnA, IB = 0 \l(BR)CEO 16 - - V Collector-base cutoff current VcB =15\f,IE=0 ICBo - - 100 nA Emitter-base cutoff current VEB = 2 \f, Ic = 0 lEBo - - 10 !IA DC current gain lc= 5 rnA, VCE = 10V Ic=15mA, VcE =10V Iq,E 50 50 - 250 - - 0.2 0.4 Collector-emitter saturation voltage Ic =30 rnA, IB=3mA VCEsat Siemens V 459 BFP81 AC characteristics Symbol Parameter min Values typ max Unit - 4.2 5.8 - Transition frequency Ic= 5 mA, VCE = 10 V,f= 200 MHz Ic = 15 rnA, VCE = 10V,f= 200 MHz f-r Collector-base capacitance VcB =10V, VBE =Vbe=0,f=1 MHz Ceb - 0.34 - pF Collector-emitter capacitance VcE =10V, VBE = Vbe=O,f= 1 MHz Gee - 0.32 - pF Input capacitance VEB = 0.5 V, Ic = ie = 0, f= 1 MHz Gibo - 1.2 - pF Output capacitance VCE = 10V, VBE = Vbe=O, f= 1 MHz Cobs - 0.65 - pF Noise figure Ic=3mA, VcE =10V,f= 10 MHz, Zs = 75Q Ic = 5 mA, VCE = 10 V, f= 800 MHz, Zs = ZSopt Ic=5mA, VcE =10V,f= 2 GHz, Zs = Zsopt F - 0.9 1.25 2.25 - Power gain Ic = 5 rnA, VCE = 10V, f= 800 MHz, Zs = 50 Q, ZL = ZLopt Ic = 10 rnA, VCE = 10 V, f= 800 MHz, Zs = 50 Q, ZL = ZLoPt Gpe Transducer gain Ic = 20 rnA, VCE = 10 V, f= 1 GHz, Zo = 50 Q GHz dB - - dB - 15.5 - - 16.5 - l~lel2 - 15 - dB Linear output voltage two-tone intermodulation test Ic = 25 rnA, VCE = 10 V, diM = 60 dB fl = 806 MHz, f2 = 81 0 MHz, Zs = ZL = 50 Q Vol = Vo2 - 160 - mV Third order intercept point Ic = 25 rnA, VCE = 10V, f= 800 MHz IP3 - 27 - dBm 460 Siemens BFP81 Transition frequency fT = f {lei f=200MHz Total power dissipation Ptot = f {T,J Package mounted on alumina GHz rnW 400 6 +4- V Plot V,V t 300 1\ 1\ 3 \ I i\ Ih 4 200 Ih=5V t-r-, 1V rt I \ \ 2 100 \ a 1'\ a 50 10 150 0 ( 100 ----T,. Collector-base capacitance VBE = Vbe=O. f= 1 MHz Ccb 20 30 rnA -Ie = f (VeB) pF 1 1\ 0.5 \ "- I--..... r- -- 10 20 V ----\I[B Siemens 461 BFP81 Common Emitter Noise Parameters Ie = 5 rnA, VeE = 10 V, Zo = 50 0 f Fmin Gp GHz dB dB MAG 0.01 0.8 2.0 0.8 1.25 2.25 - (Zs 0.26 0.32 Ie = 10 rnA, VeE (Fmin) 16 10 = 10 V, Zo = RN N Fson Gp (Fso.,) lANG 0 - dB dB 1200) 177 178 - 0.151 0.334 1.1 1.4 2.7 - 9.6 8.6 RN N ropt = 15.5 8.5 50 0 f Fmin Gp Fson Gp (Fso.,) GHz dB dB MAG lANG 0 - dB dB 0.01 0.8 2.0 1.05 1.4 2.5 - (Zs = 75 0) 0.21 193 0.33 -167 - 0.155 0.413 1.2 1.5 2.9 - 8.3 10.8 (Fmin) 17 11 ropt Noise figure F = f (IcI VeE = 10V, f= 10 MHz dB 3 F t 2 Zs=1S0Q L SOQ ,/ 7SQ" );( f-" f-" ~~ r- - \""-. k ~ ......::: ~ f-" 10 462 - 20 rnA Siemens 16.5 9.5 BFP81 = Noise figure F = f (IcI VCE = 10V, f= 800 MHz, ZLoP,(G) Circles of constant noise figure F f (ZS> and available power gain Gav = f (ZS> Ic = 5 rnA, VCE = 10\1, f= 800 MHz dB 5 3 2 \ I-.. rr-- ~~ r::: ~ -7s1 pt -j50 20 rnA 10 -Ie = Circles of constant noise figure F f (ZS> and available power gain Gav f (Zs) Ic=10mA, VcE =10\l, f=800MHz = +j50 -j50 Siemens 463 BFP81 Circles of constant noise figure F = f (Zs) and available power gain Gav f (Zs) Ic=5mA, VcE =10V,f=2GHz Noise figure F= f (/d VCE = 10 V, f= 2 GHz, ZLopt (G) = dB 5 +j50 Zs=50S V V ....... r'-- '-- ~ V V ..-- \- -j50 - - vV ~ Zsopt 20 mA 10 -Ie Circles of constant noise figure F= f (Zs) and available power gain Gav = f (Zs) Ic = 10 mA, VCE = 10V, f= 2 GHz +j50 -j50 464 Siemens V BFP81 Common Emitter Power Gain Power gain Gms , 15:".1 2 = f (lei VeE = 10 V, f= 500 MHz, Zo = 50 n Power gain Gm .. 15:".1 2 = f (lei VeE = 10 V, f= 200 MHz, Zo = 50 n dB 30 i.-6 m• ,,/ V / / - r-- r- dB 30 ..... .......... 1-"'" - 6~ ........... I-- 15 21.1 2 I- I-- / I V - 10 /"- II -'521 .1 2 10 _1 52"1 \m'i 5t li rr- 6 52 "1 20 mA 10 mi-_1 512",jJ-~ 20 mA 10 ---Ie -Ie Power gain Gms , 15:".1 2 =f (lei Power gain Gma , 15:".12 = f (lei VeE = 10 V, f= 1 GHz, Zo = 50 n VeE = 10V, f=2 GHz, Zo= 50n dB 30 dB 30 6m• / V r- rV / ...... I 15 21.1 2 10 10 52 "1 6 m, = 1 512. r- o - 521 6m o o 20 rnA 10 ;- i .1_12 /"" I 1 I o 6.. I -Ie .= 15'2. 5 2"1"( k-h 2-1') I I [ [ I I 20 rnA 10 ---Ie Siemens 465 BFP81 Ic = 5 rnA, VCE = 10\1, Zo =500 dB 30 dB 30 6ma 6ma 6ms 1521,1 2 t " 20 - '" ........, t ~ms 10 "'- " "'"6m~ '" " 2 o 3 GHz \ 521 '1 '(k- .[k2:1 k -1) 6 ma --1 S 12, 0.1 2 0.5 Power gain Gma• Gms• 18.!'el' = f (f) VCE = 10\1, Zo= 50 0 Ic = 20 rnA, Ic=10mA, VCE=10\l,Zo=500 ." "" t '" dB 30 , 6 ma 6ms 1521,1 2 \ t ...... 6ms IS21.12"\ 20 ""'- I I 1 t'-- 1"- " II "'\ "2' - IS21.1 6mls I \ 20 ~ 6ma _ _\ \6ffia \ 10 I- o I-- 0.1 \ \ I\. 10 I \ 6ms = S21'j 512, i- 6ma 21 '1 =15512, f- 6 ma =1521e1'(k -,fk2:1) f512, =15 21 '1'(k_Jk 2_1') I' S12, I I I I I II 2 0.5 I\. \ I- 6ms 3 GHz o 0.1 I I Siemens "- \ I 11111 0.5 235Hz -f -f 466 3 GHz -f Power gain Gma• Gms• 18.!,.I' = f (f) ""'- \ '\ -f dB 30 \ 6ma i\. "-\ 10 '\ 0.5 '" " r--l s21l 20 6ms I" 6 ms = IS21'I 512, 6 ma = 1521 '1'(k - [k2:1) S12, 0.1 r--- \. ""- 6 ms = jS21'j S12, o ............. 6ms 15210 12 _ 1521.1 2 I'-- 6ma 6ms 15 21,1 2 =f (f) Power gain Gma• Gms• 18.!'e12 Power gain Gma• Gms• 18.!'e1 2 = f (f) Ic = 2mA, VCE = 10\1, Zo = 50 0 BFP81 Common Emitter 5 Parameters Ic = 1 rnA, VCE = 1 V, Zo = 50 n f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 0.959 0.948 0.934 0.916 0.896 0.868 0.832 0.802 0.773 0.758 0.754 0.741 0.721 0.706 0.701 0.699 0.707 0.711 - 18.9 - 28.1 - 37.1 - 45.8 - 54.0 - 69.1 - 83.2 - 95.6 -107.0 -116.5 -126.0 -135.0 -150.2 -162.6 -168.3 -173.8 176.0 167.0 3.63 3.57 3.49 3.39 3.26 3.01 2.78 2.54 2.34 2.15 2.00 1.86 1.61 1.42 1.34 1.27 1.16 1.05 166.5 159.9 153.6 147.3 141.4 131.2 121.7 113.2 105.4 98.6 92.3 86.2 75.4 66.3 62.0 57.7 49.6 42.1 0.040 0.058 0.076 0.092 0.106 0.130 0.148 0.161 0.171 0.180 0.186 0.188 0.189 0.188 0.186 0.184 0.178 0.170 78.6 72.9 67.6 62.6 57.8 49.0 41.4 35.0 29.4 24.6 19.5 15.2 8.5 2.7 0.2 -1.9 -6.1 -9.9 0.985 0.971 0.953 0.931 0.907 0.861 0.814 0.773 0.736 0.709 0.681 0.655 0.618 0.595 0.587 0.582 0.572 0.563 - 7.9 -11.7 -15.3 -18.6 -21.7 -27.3 -32.0 -35.8 -39.2 -41.9 -44.9 -47.3 -51.9 -56.7 -59.0 -61.3 -65.6 -69.9 5.11 Siemens 5.12 467 BFP81 f 8 11 GHz MAG ANG 0.921 0.904 0.880 0.854 0.827 0.798 0.761 0.733 0.712 0.699 0.697 0.694 0.681 0.682 0.681 0.679 0.685 0.691 - 25.8 - 38.1 - 49.6 - 60.4 - 70.0 - 87.7 -102.9 -115.5 -126.4 -135.2 -143.1 -151.3 -164.8 -175.6 179.9 174.9 166.5 158.7 . 468 50 n VCE = 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00· 1.20 1.40 1.50 1.60 1.80 2.00 1 V, ~ = Ic = 2 rnA, ~1 MAG 6.99 6.76 6.44 6.11 5.71 5.09 4.50 3.99 3.58 3.21 2.95 2.70 2.30 2.00 1.89 1.78 1.60 1.45 ~2 812 ANG 162.9 154.8 147.2 140.1 133.8 123.5 114.1 106.4 99.5 93.6 88.5 83.2 74.1 66.4 62.9 59.1 52.0 45.5 Siemens MAG 0.038 0.055 0.070 0.083 0.094 0.111 0.122 0.129 0.134 0.139 0.142 0.142 0.142 0.142 0.140 0.139 0.137 0.133 ANG 75.5 68.6 62.3 56.5 51.5 42.5 35.6 30.2 26.0 22.4 18.7 15.7 11.5 8.0 6.6 5.7 3.9 2.3 MAG ANG 0.968 0.938 0.901 0.861 0.820 0.747 0.681 0.630 0.589 0.559 0.532 0.507 0.474 0.455 0.447 0.444 0.438 0.432 -12.0 -17.4 -22.4 -26.8 -30.5 -37.1 -41.8 -45.5 -48.3 -50.6 -53.3 -55.5 -59.3 -63.4 -65.4 -67.3 -71.0 -75.0 BFP81 Ic = 2 mA, VCE = 3 V, Zo = 50 n f 5 11 GHz MAG 5 12 ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.930 0.914 0.896 0.873 0.848 0.821 0.781 0.752 0.725 0.709 0.705 0.698 0.679 0.677 0.675 0.673 0.675 0.680 0.717 0.728 - 22.1 - 32.8 - 43.0 - 52.6 - 61.4 - 78.0 - 92.8 -105.5 -116.7 -125.7 -134.0 -142.8 -157.3 -169.1 -174.1 -179.3 171.7 163.2 146.0 130.5 7.00 6.83 6.59 6.32 5.98 5.44 4.91 4.41 4.00 3.61 3.34 3.08 2.64 2.31 2.17 2.06 1.84 1.67 1.33 1.10 165.2 158.0 151.2 144.7 138.8 129.0 119.8 112.0 105.1 99.2 94.0 88.6 79.4 71.5 68.1 64.3 57.2 50.7 36.3 22.6 0.027 0.039 0.050 0.060 0.068 0.083 0.092 0.099 0.104 0.108 0.111 0.112 0.113 0.113 0.112 0.111 0.109 0.106 0.100 0.097 77.8 71.7 66.1 60.9 56.3 47.9 41.0 35.7 31.3 27.8 24.0 20.9 16.7 13.4 11.9 11.2 9.8 8.6 10.1 14.3 0.979 0.959 0.933 0.905 0.876 0.819 0.765 0.721 0.685 0.659 0.633 0.610 0.578 0.559 0.551 0.547 0.540 0.532 0.523 0.533 - 8.6 -12.5 -16.2 -19.5 -22.4 -27.5 -31.3 -34.3 -36.6 -38.5 -40.6 -42.5 -45.5 -49.0 -50.6 -52.2 -55.5 -58.9 -70.2 -80.1 8.21 Siemens 8.22 469 BFP81 Ic = 5 mA, VCE = 3 V, Zo = 50 Q f S" ~Hz MAG ANG 8.2, MAG ANG MAG ANG 8.22 MAG. ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.844 0.814 0.780 0.747 0.717 0.706 0.670 0.650 0.635 0.626 0.637 0.638 0.631 0.639 0.639 0.639 0.644 0.651 0.692 0.704 - 35.5 - 51.6 - 66.0 - 78.6 - 88:9 -107.8 -123.0 -134.7 -144.3 -151.6 -158.1 -165.5 -177.2 173.6 169.7 165.3 157.9 151.1 137.3 123.8 15.15 14.18 13.04 11.92 10.78 9.23 7.86 6.79 5.97 5.28 4.81 4.38 3.68 3.18 2.99 2.82 2.51 2.26 1.80 1.49 157.5 147.7 139.0 131.4 125.3 115.8 107.3 100.6 95.0 90.4 86.3 81.9 74.5 68.2 65.2 62.0 55.9 50.3 37.9 25.5 0.025 0.035 0.043 0.049 0.054 0.061 0.065 0.068 0.071 0.074 0.076 0.076 0.079 0.082 0.083 0.084 0.087 0.090 0.098 0.109 71.7 64.0 57.5 52.2 48.3 40.3 36.1 33.5 32.1 31.0 28.7 27.9 28.0 27.3 27.8 28.3 28.9 29.5 31.5 32.5 0.938 0.885 0.825 0.767 0.717 0.633 0.565 0.519 0.487 0.466 0.444 0.424 0.400 0.386 0.381 0.379 0.376 0.371 0.365 0.377 -15.4 -21.6 -26.8 -30.8 -33.8 -39.3 -41.8 -43.5 -44.7 -45.9 -47.8 -48.8 -50.9 -54.0 -55.3 -56.8 -59.7 -63.0 -74.6 -84.3 470 S'2 Siemens BFP81 Ic = 2 rnA, VCE = 6 V. 2D = 50 n ~, ~2 f 8" GHz MAG ANG MAG ANG MAG 8 ,2 ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.935 0.922 0.903 0.881 0.857 0.830 0.790 0.759 0.731 0.712 0.706 0.700 0.679 0.673 0.670 0.668 0.670 0.674 0.709 0.719 - 20.7 - 30.7 - 40.3 - 49.5 - 57.9 - 74.0 - 88.5 -101.1 -112.2 -121.6 -129.9 -138.8 -153.7 -166.0 -171.0 -176.4 174.2 165.4 147.6 131.6 6.91 6.77 6.56 6.33 6.02 5.53 5.01 4.53 4.13 3.74 3.47 3.21 2.76 2.41 2.27 2.15 1.93 1.75 1.40 1.16 166.0 159.3 152.7 146.5 140.7 131.1 122.1 114.3 107.4 101.4 96.2 90.8 81.4 73.6 70.0 66.2 59.1 52.7 38.2 24.4 0.022 0.032 0.042 0.050 0.058 0.070 0.079 0.085 0.090 0.094 0.097 0.098 0.099 0.099 0.098 0.097 0.096 0.093 0.088 0.086 78.6 72.7 67.7 62.8 58.3 50.1 43.4 38.1 33.8 30.2 26.6 23.4 19.2 16.0 14.6 14.0 12.9 12.0 14.3 19.9 0.983 0.967 0.945 0.922 0.897 0.849 0.802 0.763 0.731 0.707 0.684 0.662 0.632 0.614 0.607 0.603 0.596 0.589 0.577 0.585 - 7.2 -10.6 -13.7 -16.6 -19.0 -23.5 -26.8 -29.4 -31.6 -33.3 -35.3 -36.9 -39.8 -43.0 -44.5 -46.0 -49.0 -52.2 -62.6 -72.0 5", Sz, = f (f) St2. $", = f (f) Ic = 2 mA, VCE = 6 V, Zo = 50 n Ic =2 mA, VCE = 6 V, Zo = 50 n +j50 90· 160· -j50 0 -90· Siemens 471 BFP81 = 6 V, Zo = 50 n Ic = 5 rnA, VCE f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.859 0.829 0.794 0.762 0.728 0.713 0.672 0.647 0.628 0.618 0.626 0.626 0.618 0.626 0.623 0.626 0.629 0.636 0.676 0.689 - 32.4 - 47.4 - 60.8 - 72.9 - 82.9 -101.8 -117.2 -129.2 -139.1 -146.6 -153.7 -161.3 -173.6 176.6 172.6 168.1 160.3 153.3 139.0 125.1 14.96 14.12 13.11 12.08 11.00 9.53 8.18 7.11 6.26 5.55 5.07 4.62 3.89 3.38 3.17 2.99 2.66 2.40 1.91 1.58 159.0 149.7 141.3 133.9 127.7 118.2 109.5 102.7 96.9 92.3 88.1 83.6 76.0 69.6 66.6 63.4 57.3 51.8 39.1 26.5 0.021 0.029 0.036 0.042 0.047 0.054 0.057 0.060 0.063 0.066 0.068 0.068 0.070 0.073 0.073 0.074 0.078 0.080 0.088 0.099 73.3 65.9 59.8 54.5 50.6 42.8 38.4 35.7 34.3 32.9 30.6 29.8 30.0 29.4 29.8 30.5 31.4 32.2 35.0 36.5 0.951 0.907 0.855 0.806 0.761 0.685 0.624 0.581 0.551 0.532 0.511 0.492 0.469 0.456 0.451 0.448 0.445 0.441 0.431 0.440 -12.6 -17.9 -22.3 -25.7 -28.1 -32.8 -34.8 -36.3 -37.3 -38.3 -39.9 -40.7 -42.6 -45.4 -46.5 -47.9 -50.6 -53.6 -63.9 -73.1 ~2 5.!1 5.!2 = S". s", = f (f) Ic=SrnA, VcE =6V,Zo=Son S,2, 8" f (f) Ic= S rnA, VCE = 6 V, Zo= son o 1800 -j50 472 _90· Siemens BFP 81 Ic = 10 rnA, VCE = 20 = 50 Q 6 V, ~2 f 8 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.764 0.724 0.685 0.653 0.626 0.638 0.607 0.594 0.584 0.578 0.595 0.600 0.598 0.610 0.610 0.611 0.615 0.623 0.668 0.680 - 47.7 - 67.5 - 84.0 - 97.2 -107.2 -125.6 -139.8 -150.0 -157.9 -163.4 -168.9 -175.4 174.5 166.6 163.2 159.1 152.5 146.5 134.2 121.5 24.13 21.53 18.95 16.67 14.62 12.14 10.06 8.55 7.42 6.52 5.92 5.36 4.48 3.88 3.63 3.42 3.03 2.73 2.17 1.80 150.6 139.2 129.9 122.5 116.8 108.4 100.8 95.1 90.3 86.6 83.0 79.1 72.7 67.1 64.3 61.4 55.8 50.7 39.2 27.3 0.019 0.025 0.030 0.033 0.036 0.040 0.042 0.045 0.048 0.051 0.053 0.054 0.059 0.064 0.066 0.069 0.074 0.079 0.093 0.107 67.6 59.2 53.4 49.6 47.1 40.6 39.7 40.0 40.7 40.7 39.1 40.0 42.2 41.9 42.8 43.7 44.3 44.4 44.8 43.6 0.893 0.812 0.736 0.670 0.622 0.542 0.486 0.455 0.434 0.423 0.406 0.391 0.376 0.366 0.364 0.363 0.363 0.360 0.352 0.362 -18.9 -25.3 -29.8 -32.5 -34.1 -38.0 -38.1 -38.3 -38.4 -39.2 -40.7 -41.2 -42.8 -45.6 -46.6 -48.0 -50.9 -54.0 -64.9 -74.3 ~, " 8 '2 5, .. 5z2 = f (f) Ie = 10 mA, VeE = 6 V, Zo = 50 n 5,2, $." = f (f) Ie = 10 mA, VeE = 6 V, Zo = 50 n +j50 180· _90· -j50 Siemens 473 BFP81 Ic = 20 rnA, VCE = 6 V. Zo = 50 f 8" GHz MAG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.660 0.626 0.599 0.582 0.565 0.606 0.586 0.578 0.571 0.568 0.588 0.595 0.597 0.612 0.612 0.612 0.617 0.624 0.670 0.683 Q ANG 8:1, MAG ANG MAG ANG MAG ANG - 69.0 - 92.6 -109.8 -122.2 -130.5 -146.0 -157.5 -165.4 -171.4 -175.4 -179.5 175.1 166.7 160.0 156.9 153.4 147.4 142.0 131.1 119.0 33.24 27.53 22.90 19.35 16.52 13.34 10.84 9.10 7.84 6.86 6.20 5.59 4.66 4.03 3.77 3.55 3.14 2.83 2.25 1.86 140.5 127.9 118.9 112.3 107.7 100.5 94.1 89.4 85.4 82.3 79.2 75.6 69.8 64.8 62.1 59.3 54.0 49.2 38.1 26.4 0.016 0.020 0.023 0.025 0.028 0.030 0.033 0.036 0.039 0.043 0.046 0.047 0.054 0.060 0.063 0.066 0.073 0.080 0.096 0.112 61.4 53.9 49.7 48.1 47.8 43.4 46.0 48.0 49.9 49.9 48.5 50.4 52.4 51.7 52.4 53.0 52.8 52.2 50.6 47.9 0.803 0.690 0.604 0.543 0.505 0.436 0.398 0.379 0.369 0.365 0.351 0.341 0.333 0.326 0.325 0.326 0.328 0.327 0.320 0.331 -25.2 -31.0 -34.0 -35.0 -35.2 -37.6 -35.9 -35.3 -35.2 -36.2 -37.8 -38.1 -39.9 -43.0 -44.2 -45.7 -48.9 -52.3 -63.9 -73.7 = s", s"" f (f) Ie = 20 mA, VeE = 6 V, 8 '2 8:12 S,2, 5" = f (f) Ie = 20 mA, VeE = 6 V, Zo = Za = son son 90· o 180· _90· -j50 474 Siemens BFP81 Ic = 2 mA, VCE = 10 V, Zo = 50 n ~, ~2 f S" GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.940 0.927 0.910 0.889 0.864 0.838 0.797 0.764 0.735 0.714 0.710 0.699 0.676 0.671 0.666 0.663 0.664 0.668 0.701 0.715 - 19.8 - 29.5 - 38.7 - 47.5 - 55.8 - 71.5 - 85.8 - 98.2 -109.3 -118.6 -127.2 -136.3 -151.3 -163.8 -168.9 -174.5 175.9 166.8 148.8 132.6 6.80 6.66 6.47 6.27 5.97 5.51 5.01 4.55 4.16 3.77 3.51 3.25 2.80 2.46 2.31 2.19 1.97 1.79 1.43 1.18 166.5 159.9 153.6 147.5 141.8 132.4 123.3 115.6 108.6 102.7 97.5 92.0 82.6 74.7 71.1 67.3 60.1 53.7 39.0 25.3 0.020 0.029 0.038 0.046 0.053 0.065 0.073 0.080 0.084 0.088 0.091 0.092 0.093 0.094 0.092 0.091 0.090 0.088 0.083 0.082 79.0 73.5 68.4 63.7 59.4 51.4 44.7 39.4 35.0 31.5 27.9 24.8 20.6 17.3 16.0 15.4 14.2 13.4 16.1 21.8 0.985 0.971 0.952 0.930 0.908 0.864 0.820 0.785 0.754 0.731 0.709 0.689 0.659 0.642 0.634 0.630 0.624 0.616 0.604 0.611 - 6.6 - 9.7 -12.5 -15.2 -17.4 -21.6 -24.8 -27.3 -29.3 -31.0 -32.8 -34.3 -37.1 -40.2 -41.7 -43.1 -45.9 -49.0 -58.9 -67.9 S'2 5'2. 5", = f (f) Ic =2 mA, VCE = 10V, Zo=50 511 , 522 = f (f) Ic=2 mA, VCE = 10V, Zo = 50[1 +j50 90 0 - j 50 -900 Siemens [1 475 BFP81 Ic = 5 mAo VCE = 10 V, Zo = 50 Q ~1 ~2 8 12 f 5.1 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.873 0.844 0.809 0.775 0.742 0.720 0.675 0.647 0.626 0.613 0.621 0.619 0.608 0.615 0.613 0.613 0.617 0.623 0.665 0.679 - 30.5 - 44.7 - 57.6 - 69.2 - 79.1 - 97.6 -113.0 -125.3 -135.3 -143.2 -150.4 -158.4 -171.1 179.0 174.7 170.0 162.1 154.9 140.1 126.1 14.61 13.87 12.94 11.99 10.97 9.57 8.27 7.20 6.36 5.65 5.17 4.72 3.98 3.45 3.24 3.06 2.72 2.46 1.96 1.62 159.9 150.9 142.7 135.4 129.3 119.8 111.0 104.1 98.3 93.5 89.3 84.6 77.0 70.5 67.5 64.2 58.1 52.5 39.8 27.1 0.019 0.027 0.034 0.039 0.044 0.051 0.055 0.058 0.060 0.063 0.065 0.065 0.067 0.070 0.071 0.071 0.074 0.077 0.084 0.094 74.1 67.1 61.0 56.0 52.0 44.3 39.7 36.8 35.2 33.9 31.6 30.7 30.6 30.0 30.3 31.2 32.0 32.7 35.9 37.6 0.956 0.917 0.871 0.825 0.785 0.714 0.654 0.613 0.584 0.565 0.545 0.526 0.504 0.490 0.485 0.483 0.480 0.474 0.463 0.472 -11.4 -16.1 -20.2 -23.3 -25.6 -30.0 -32.0 -33.3 -34.3 -35.3 -36.7 -37.5 -39.4 -42.0 -43.1 -44.4 -47.0 -49.8 -59.5 --68.2 S,2. 5.>, = f (f) s". 5.>2 = f (f) Ie = 5 rnA, VeE = 1011, Zo= 50 Q Ie = 5 rnA, VeE = 1011, Zo=50Q 90· o 160· -90· -j50 476 Siemens BFP 81 Ic=10mA, VCE=10V,Zo=50Q ~, ~2 f S" GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.794 0.750 0.707 0.670 0.637 0.640 0.606 0.586 0.574 0.567 0.584 0.585 0.583 0.594 0.594 0.594 0.598 0.607 0.652 0.665 - 43.8 - 62.4 - 78.1 - 91.2 -101.2 -120.1 -134.5 -145.2 -153.6 -159.5 -165.2 -172.2 177.3 168.9 165.3 161.1 154.4 148.0 135.2 122.4 23.34 21.08 18.73 16.61 14.65 12.26 10.22 8.70 7.56 6.66 6.05 5.48 4.58 3.97 3.72 3.50 3.11 2.80 2.23 1.85 152.3 141.1 132.0 124.5 118.7 110.1 102.3 96.4 91.5 87.7 84.1 80.1 73.5 67.8 65.0 62.1 56.4 51.3 39.7 27.7 0.018 0.024 0.029 0.032 0.035 0.039 0.042 0.044 0,046 0.050 0.052 0.053 0.057 0.062 0.064 0.066 0.072 0.076 0.089 0.103 69.0 60.8 55.0 50.9 48.3 41.9 40.5 40.2 40.8 40.8 39.3 40.0 41.9 41.8 42.6 43.6 44.3 44.5 45.0 44.2 0.907 0.835 0.764 0.703 0.657 0.579 0.526 0.493 0.472 0.461 0.445 0.430 0.415 0.405 0.402 0.401 0.401 0.397 0.387 0.396 -16.8 -22.6 -26.8 -29.4 -31.0 -34.5 -34.8 -34.9 -35.0 -35.8 -37.2 -37.7 -39.1 -41.7 -42.7 -44.0 -46.7 -49.7 . -59.7 -68.7 S'2 5 ,2• 5", = f (f) Ic = 10 mA, VCE = 10V,Zo=50n 5 11 , Sz, = f (f) Ic=10mA, VcE=10v,Zo=50n 1800 -j50 -90 0 Siemens 477 BFP81 Ic = 20 mA, VCE = 10 V, Zo = 50 n ~2 f 5 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.707 0.658 0.619 0.592 0.570 0.597 0.572 0.562 0.553 0.549 0.570 0.575 0.575 0.591 0.590 0.591 0.596 0.604 0.649 0.665 - 61.6 - 84.0 -101.2 -113.9 -122.7 -139.7 -152.0 -160.7 -167.1 -171.5 -176.2 178.1 169.2 162.1 158.8 155.2 149.1 143.7 132.2 120.1 31.92 26.93 22.66 19.30 16.56 13.46 10.96 9.22 7.95 6.97 6.31 5.70 4.75 4.11 3.84 3.61 3.21 2.88 2.29 1.89 142.9 130.5 121.3 114.4 109.6 102.1 95.4 90.5 86.5 83.2 80.0 . 76.3 70.4 65.2 62.6 59.7 54.4 49.5 38.3 26.5 0.016 0.020 0.023 0.025 0.028 0.030 0.033 0.036 0.039 0.043 0.045 0.047 0.053 0.059 0.061 0.065 0.071 0.077 0.092 0.107 63.1 55~ 1 50.7 48.6 47.9 43.4 45.3 47.1 48.9 49.0 47.7 49.3 51.4 50.9 51.6 52.2 52.0 51.5 50.4 47.8 0.830 0.728 0.646 0.587 0.549 0.480 0.442 0.423 0.413 0.408 0.394 0.384 0.376 0.369 0.368 0.368 0.370 0.368 0.358 0.369 -22.1 -27.6 -30.4 -31.6 -31.8 -34.0 -32.5 -32.0 -31.9 -32.9 -34.3 -34.6 -36.2 -39.2 -40.3 -41.7 -44.7 -47.8 -58.5 -67.8 8.21 8.22 S,2' 5", =f If) Ic = 20 mA, VCE = lOll, Zo=50 0 5 11 , 5,,2 = f If) Ic =20 mA, VCE = 10V, Zo = 500 +j50 0.1-~~~ o 1800 -j50 478 -90 0 Siemens NPN Silicon RF Transistor BFP93A • For broadband amplifiers and oscillators up to 2 GHz at collector currents from 5 to 30 mA. ~ BIlME CECC-type in preparation: CECC 50002/ ... E~C ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFP93A FE Q 62702 - F1144 SOT-143 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 12 V Collector-base voltage Vceo 15 V Emitter-base voltage VEeo 2 V Col/ector current Ic 50 rnA Ie 6 rnA Ptot 280 rnW 7j 150 °C Ambient temperature range TA -65 ... +150 °C Storage temperature range Tstg -65 ... +150 °C Base current Total power dissipation, TA $ 25 °C2 ) Junction temperature Thermal Resistance RthJA Junction - ambient 1) 1$450 KIW 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. Siemens 479 BFP93A Electrical Characteristics at TA = 25 cC, unless otherwise specified. DC characteristics Parameter Unit min Values typ max Symbol Collector-emitter breakdown voltage Ic=1 mA,/B=O \l(BR)CEO 12 - - V Collector-base cutoff current VCB = 5 \I, IE = 0 ICBO - - 50 nA Emitter-base cutoff current lEBO - - 10 IIA DC current gain Ic = 30 mA, VCE = 5 V hroE 40 90 250 - Collector-emitter saturation voltage Ic= 50 mA, I B =5mA VCEsat - 0.13 0.4 V VEB=2\1,/c=0 480 Siemens BFP93A AC characteristics Symbol Parameter min Values typ max Unit Transition frequency Ic = 30 rnA, VCE = 5 V, f= 200 MHz fT - 5.5 - GHz Collector-base capacitance Vcs = 10V, VSE = Voe = 0, f= 1 MHz Ceo - 0.47 - pF Collector-emitter capacitance VCE = 10V, VSE = Voe = 0,(= 1 MHz Cce - 0.34 - pF Input capacitance VES = 0.5 v,/c = ic = 0, f= 1 MHz c'oo - 2.2 - pF Output capacitance VCE = 10 V, VSE = Voe = 0, f= 1 MHz Coos - 0.8 - pF Noise figure Ic= 5 rnA, VCE = 8V, f= 10 MHz, Zs = 50 Q le= 5 rnA, VeE = 8 V, f= 800 MHz, Zs = Zsopt Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = ZSopt F - 1.1 1.7 2.6 Power gain Ie = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt. ZL = ZLOPt Gpe - 16.5 - dB Transducer gain Ic=30mA, VcE =8V, f= 1 GHz,ZQ=50Q l~lel2 - 13.4 - dB Linear output voltage two-tone intermodulation test Ic = 30 rnA, VCE =8 V, oiM = 60 dB fl = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 Q Vol = V02 - 280 - mV Third order intercept point Ic = 30 rnA, VCE = 8 V, f= 800 MHz IP3 - 32 - dBm Siemens dB 481 BFP93A Total power dissipation p.o. = f (TAl Package mounted on alumina Transition frequency fT = f (Ic) VCE = 5 V, f= 200 MHz rnW 400 GHz 6 I -' Plot 1 300 / 4 \ 1\ 200 I\. 1\ 2 - / 3 \ V ./ ", I I 100 \ 1\ 1'\ 100 50 Is0 10 0( 20 30 40 -Ie Collector-base capacitance Ceb = f (Vca) VSE = Vbe=O, f=1 MHz pF 1 \ \ 0.5 "- -:--- r- 10 20 V -liB 482 Siemens 50 rnA BFP93A Common Emitter Noise Parameters Ie = 5 rnA, VeE = 8 V. Zo = 50 il f Fmin Gp GHz dB dB 0.01 0.8 0.8 1.7 - T opt (Fmin) MAG (Zs = 150 il) 1124 0.26 13.5 Ie = 30 rnA, VeE = 8 V. JANG RN N FSOQ Gp (Fson> il dB dB - - 1.1 - 8.3 0.199 1.8 13 Zo = 50 il f Fmin Gp GHz dB dB MAG 0.01 0.8 2.0 2.6 - (Zs = 100 il) 0.2 1156 Topt (Fmin) 15.5 lANG RN N FSOQ Gp (Fson> il - dB dB - 0.31 2.15 2.85 - 10.9 15 Noise figure F= f (lei VCE=8\1, f= 10 MHz dB 3 F t 1;'1--' 2 ?s=SOQ\ ';I;'r-" ~ , I:::: I/t/ ~ 1\ Zsopt V ./ 10 20 30 mA -Ie Siemens 483 BFP93A Noise figure F = f (Iel VCE = 8 V, f= 800 MHz, ZLopt (G) Circles of constant noise figure F = f (Zs) and available power gain Gav = f (Zs) Ie = 5 rnA, VeE = 8 V, f= 800 MHz dB 3 +jSO Zs=SOQ F 0 t r;::v Y V vi-'" ~/ Zs opt "I:: . . . -jSO o o 10 20 -Ie Circles of constant noise figure F = f (Zs) and available power gain Gav = f (Zs) Ie = 30 rnA, VCE = 8 V, f= 800 MHz -jSO 484 Siemens 30 rnA BFP93A Common Emitter Power Gain Power gain Gms• 15",.1 2 = f (Iel VCE = 8V, f= 200 MHz, Zo = 50 Q Power gain Gms• 15",.1 2 =f (lc) VCE = 8 V, f= 500 MHz, Zo = 50 Q dB 30 dB 30 I--- 6ms 1/ V ./ i--' ~~ I S21.1 2 , 6ms --- ~ V 7 7 IS21_1 2 J-,k::: --7 I 10 10 o -ls IsUi 1-- 6 ms = S210 21'1m'-I SUjl_ (j o 10 20 I 40 rnA 30 10 Power gain Gma• Gms• 15",.1 2 = f (Iel 20 40 rnA 30 Power gain Gma • 15",.12 = f (Iel VCE = 8 V, f = 1.5 GHz, Zo = 50 Q VCE = 8 V, f=800 MHz, 20 =50 Q dB 30 dB 30 6m• 6ms ~~ ·=I 6m S21-I·[k_ S12_ A2_1') - IS2101 2 t 6 ms 20 I--- .;>i-- 6 ma I--- I I 6 m• ~ V ..... IS2101 2 7 I I 10 -[ I--- I-- 10 I I -I 21-1 I---I--- (jms- -S S12_ I--- - ~ - - S120 20 ,. IS21_1 / 6 m• ~IS21_1'[k -Jk 2-1') 10 / ' I-- - - 30 40 rnA Siemens 10 20 30 40 rnA 485 BFP93A Power gain Gma , Gms , 1~1e12 = f (f) Ie = 10mA, VeE=8V,~=500 Power gain Gma , Gms, 1~1e12 = f (f) Ic = 5 mA, VcE =8V, ~ = 50 0 dB dB 30 30 f'.-. ~ "- ~ms I--.. ........ I'.. f---IS21,1 2 _I S21.1 2 , ... 10 \ -I 6 ms- -S21', S12, \ , '\. \ '\ \6ma 10 ~ '\ \. \ 2 0.5 \ IS12. f- 6ms = S21', _ 0.1 ..... ~ma 6m'=I~I'(k-Jk2 -1') o " " ""- ........ ~ I ~ms I- o 3 GHz . "\ 6ma = IS21·I·(k-!k2_1') S12e 0.1 -f Power gain Gma , Gms , 1~1eI2=f(f) Ie =30 mA, VCE = 8 V, Zo= 50 0 Power gain Gma , Gms , 1~1.12 = f (f) Ic= 20 mA, VCE = 8 V, Zo= 500 dB 30 dB ,,,,- 30 II "\.. "\.. ,,6ms I 6ma 6ms IS21l '\. - ls21i t 1"\. . . . '\. I " 6ms IS21.\2 '\. "- ,; 20 '\ \ \ 6ma - \ 10 I 12. I I- I I I I II 2 0.5 3 GHz o0.1 Siemens \ 6ma=I~I'(k-N-l') I S12. , II 0.5 2 -f -f 486 . f- 6ms = IS21·1 IS12. '\ lI- 6m'=1~21'1'(k_&:1) 6ma - \\ \ \ '\ 10 \ '\ I- 6ms =IS21'I S12, o0.1 3 GHz 2 0.5 -f 3 GHz BFP93A Common Emitter S Parameters Ic = 10 rnA, VCE = 3 V. Zo = 50 n ~2 512 ~1 f 5 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.669 0.638 0.619 0.606 0.613 0.636 0.619 0.609 0.602 0.604 0.627 0.631 0.632 0.641 0.641 0.647 0.653 0.664 0.708 0.721 - 66.5 - 89.6 -106.6 -118.7 -127.6 -145.7 -157.9 -166.3 -172.9 -177.0 177.4 171.4 162.5 155.3 151.4 148.3 141.4 136.0 123.4 111.6 21.87 18.34 15.41 13.08 11.38 9.21 7.51 6.31 5.43 4.78 4.31 3.89 3.24 2.80 2.62 2.47 2.20 1.97 1.57 1.29 142.0 129.5 120.3 113.8 109.3 100.5 93.5 88.1 83.6 80.1 76.4 72.4 65.9 60.2 57.3 54.2 48.4 42.9 31.1 18.7 0.027 0.034 0.039 0.043 0.047 0.050 0.051 0.054 0.059 0.065 0.066 0.067 0.075 0.082 0.085 0.089 0.097 0.105 0.124 0.144 61.1 52.6 47.7 44.6 41.5 36.3 37.3 39.0 40.8 40.3 38.2 40.3 43.1 42.7 43.8 44.2 44.2 43.9 42.9 40.4 0.820 0.705 0.612 0.546 0.502 0.412 0.359 0.330 0.314 0.308 0.292 0.278 0.268 0.262 0.261 0.264 0.267 0.267 0.275 0.301 - 28.4 - 36.3 - 41.2 - 44.3 - 47.1 - 51.8 - 52.1 - 52.2 - 52.5 - 54.1 - 57.0 - 57.7 - 60.6 - 65.8 - 67.4 - 69.6 - 73.9 - 78.7 - 95.3 -107.7 Siemens 487 BFP93A Ic = 30 mA, VCE = 3 V, Zo = 50 n f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.527 0.536 0.543 0.548 0.570 0.616 0.603 0.596 0.590 0.592 0.620 0.625 0.626 0.637 0.637 0.645 0.647 0.658 0.706 0.717 -104.9 -126.7 -139.7 -147.4 -152.2 -165.9 -174.8 179.3 175.0 172.6 168.4 163.1 155.9 149.7 146.3 143.4 137.3 132.7 121.1 109.8 32.22 24.42 19.32 15.85 13.55 10.71 8.60 7.16 6.14 5.38 4.85 4.37 3.62 3.13 2.93 2.75 2.45 2.19 1.75 1.44 127.4 115.7 108.3 103.6 100.5 93.4 87.8 83.5 79.9 77.1 73.8 70.3 64.6 59.5 56.7 54.0 48.5 43.4 32.3 20.5 0.019 0.023 0.027 0.030 0.034 0.035 0.039 0.044 0.051 0.058 0.059 0.062 0.074 0.083 0.088 0.093 0.103 0.112 0.134 0.155 55.0 50.7 50.1 49.5 47.2 46.0 51.1 54.4 55.8 53.6 52.0 54.6 55.7 53.7 54.2 53.9 52.4 50.6 47.0 42.5 0.636 0.498 0.412 0.362 0.333 0.255 0.214 0.196 0.189 0.190 0.178 0.165 0.161 0.160 0.160 0.164 0.170 0.174 0.193 0.222 - 43.7 - 51.3 - 55.1 - 57.4 - 60.9 - 67.8 - 66.9 - 66.2 - 66.1 - 68.6 - 74.0 - 74.7 - 77.8 - 84.9 - 86.3 - 88.3 - 92.6 - 98.0 -116.0 -126.6 488 8 12 5.21 Siemens 5.22 BFP93A Ic = 10 rnA, VCE = Zo = 50 Q 5 V, f Bt1 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.686 0.649 0.624 0.606 0.611 0.628 0.608 0.597 0.588 0.591 0.614 0.617 0.618 0.627 0.628 0.635 0.638 0.650 0.698 0.710 - 62.1 - 84.6 -101.6 -113.9 -123.2 -142.1 -154.7 -163.6 -170.5 -174.8 179.4 173.0 163.9 156.4 152.4 149.4 142.4 136.8 124.2 112.0 21.91 18.59 15.74 13.44 11.73 9.54 7.80 6.56 5.65 4.97 4.50 4.06 3.38 2.92 2.73 2.57 2.29 2.06 1.63 1.35 143.6 131.2 121.9 115.3 110.7 101.8 94.6 89.2 84.6 81.0 77.3 73.3 66.8 61.0 58.1 55.1 49.3 43.7 31.8 19.4 0.025 0.032 0.037 0.041 0.045 0.048 0.050 0.053 0.057 0.063 0.064 0.065 0.072 0.079 0.082 0.086 0.094 0.100 0.120 0.139 62.5 54.0 49.1 45.7 42.6 37.3 37.9 39.5 41.1 40.7 38.7 40.6 43.4 43.1 44.3 44.7 44.9 44.6 43.8 41.6 0.838 0.730 0.641 0.577 0.533 0.443 0.390 0.362 0.346 0.339 0.322 0.308 0.298 0.291 0.290 0.292 0.294 0.294 0.295 0.317 -25.8 -33.1 -37.6 -40.4 -43.0 -47.1 -47.2 -47.1 -47.2 -48.7 -51.3 -51.7 -54.3 -59.0 -£0.6 -£2.6 -£6.8 -71.2 -86.9 -99.3 $12 S:!1 S:!2 = S,2, S:!, f (f) le=10mA, VeE=5V,Zo=50n S",~=f(f) le= 10 rnA, VeE = 5 V, 20= 50 n 90· o 180· -j50 -900 Siemens 489 BFP93A Ic = 30 rnA, VCE = 5 V, Zo = 50 Q 8,2 f $11 GHz MAG ANG Szl MAG ANG MAG ANG Sz2 MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.544 0.536 0.533 0.534 0.554 0.596 0.581 0.573 0.566 0.570 0.598 0.603 0.603 0.615 0.616 0.622 0.625 0.640 0.687 0.700 - 95.7 -118.5 -132.7 -141.3 -147.0 -162.1 -171.7 -178.1 177.2 174.8 170.2 164.8 157.3 151.0 147.4 144.6 138.5 133.5 121.8 110.4 32.88 25.24 20.09 16.54 14.17 11.25 9.04 7.53 6.45 5.66 5.11 4.61 3.82 3.30 3.08 2.90 2.58 2.31 1.84 1.52 129.4 117.5 109.9 105.0 101.8 94.5 88.7 84.3 80.7 77.8 74.5 71.0 65.2 60.2 57.4 54.7 49.3 44.1 32.9 21.1 0.019 0.023 0.026 0.030 0.033 0.035 0.038 0.043 0.050 0.057 0.058 0.061 0.072 0.081 0.085 0.090 0.100 0.109 0.130 0.150 56.3 51.3 50.3 49.7 47.3 45.8 50.4 53.7 55.2 53.3 51.7 54.1 55.4 53.5 54.1 53.8 52.3 50.8 47.3 43.0 0.667 0.532 0.445 0.394 0.363 0.283 0.242 0.225 0.218 0.218 0.203 0.191 0.186 0.182 0.182 0.185 0.19Q 0.191 0.200 0.225 - 39.4 - 46.3 - 49.4 - 51.3 - 54.1 - 59.1 - 57.3 - 56.1 - 55.7 - 58.2 - 62.4 - 62.4 - 64.9 - 71.1 - 72.4 - 74.6 - 79.0 - 84.1 -102.2 -113.9 ~,,~=f(f) ~2' Ic =30 rnA, VCE = 5 V, Zo = 50 n S:!, = f (f) Ic = 30 rnA, VCE = 5 V, Zo = 50 n o 180· -90· 490 Siemens BFP93A Ic = 5 mAo VCE = f 8 11 GHz MAG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.811 0.771 0.735 0.703 0.691 0.679 0.649 0.631 0.618 0.617 0.633 0.633 0.631 0.636 0.637 0.644 0.647 0.658 0.704 0.720 8 V. Zo = 50 n ~, ~2 8 '2 ANG MAG ANG MAG ANG MAG ANG - 43.1 - 61.5 - 77.3 - 90.2 -100.7 -121.1 -135.9 -147.1 -156.0 -162.2 -169.4 -176.7 172.4 163.5 159.0 155.4 147.7 141.2 127.1 114.2 13.94 12.68 11.34 10.09 9.03 7.58 6.35 5.41 4.71 4.17 3.78 3.43 2.86 2.48 2.32 2.19 1.95 1.75 1.39 1.14 152.9 141.8 132.5 125.2 119.6 109.4 101.0 94.5 89.0 84.6 80.3 75.8 68.3 61.9 58.6 55.4 49.1 43.2 30.3 17.6 0.027 0.037 0.045 0.051 0.056 0.061 0.063 0.066 0.068 0.072 0.073 0.073 0.076 0.080 0.081 0.083 0.088 0.092 0.106 0.123 68.3 59.7 53.4 48.5 44.2 36.6 33.5 32.2 32.1 31.4 28.8 29.4 31.4 31.6 32.9 33.9 35.3 36.5 39.5 40.2 0.922 0.856 0.789 0.733 0.689 0.605 0.550 0.515 0.494 0.483 0.465 0.451 0.438 0.428 0.426 0.427 0.428 0.426 0.423 0.442 -16.4 -22.3 -26.7 -29.8 -32.3 -36.2 -37.4 -38.3 -39.2 -40.4 -42.5 -43.4 -46.3 -50.5 -52.2 -54.3 -58.3 --62.5 -76.8 -89.3 5 ,2• 5.!, = f (f) 5 11 .502=f(f) Ie = 5 mA, VeE = 8 V,zo= 50 Q Ie = 5 mA, VeE = 8 V, Zo = 50 Q 900 o 1800 _90 0 Siemens 491 BFP93A Ic = 10 mA, VCE = 8 V, Zo = 50 Q f S" GHz MAG ANG MAG ANG MAG ANG $,2 MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.709 0.668 0.635 0.605 0.584 0.612 0.588 0.574 0.566 0.566 0.593 0.591 0.594 0.601 0.602 0.605 0.614 0.626 0.675 0.690 - 58.1 - 80.0 - 97.3 -110.8 -120.3 -137.3 -150.5 -159.8 -167.3 -171.8 -177.7 175.9 166.9 159.3 155.3 151.8 145.1 139.4 126.7 114.1 21.68 18.62 15.93 13.65 11.81 9.62 7.90 6.66 5.74 5.06 4.58 4.13 3.44 2.98 2.79 2.62 2.33 2.09 1.67 1.38 145.0 132.6 123.3 116.0 110.6 102.9 95.5 90.0 85.4 81.8 78.0 73.9 67.5 61.7 58.8 55.7 49.9 44.5 32.2 20.3 0.024 0.031 0.036 0.040 0.043 0.047 0.050 0.053 0.057 0.062 0.063 0.065 0.072 0.079 0.082 0.086 0.094 0.100 0.120 0.139 63.4 54.8 49.6 46.4 44.7 38.7 39.4 40.6 42.0 41.7 39.9 41.7 44.0 43.9 44.7 45.3 45.5 45.3 44.6 42.3 0.853 0.750 0.662 0.593 0.546 0.471 0.418 0.390 0.374 0.368 0.349 0.336 0.324 0.315 0.314 0.315 0.316 0.314 0.310 0.327 -23.8 -30.9 -35.3 -37.8 -39.0 -43.1 -43.1 -43.0 -43.3 -44.8 -46.8 -47.3 -49.6 -54.0 -55.7 -57.7 -61.7 -66.1 -81.5 -94.0 $" S'2 S,2, 5" = f (tl Ic=10mA, VCE=BV,Zo=50Q s",~=f(tl Ic=10mA, VCE=8V,Zo=50Q 90· o -90· - j50 492 Siemens BFP93A Ic = 20 rnA, VCE = 8 V, 20 = 50 f.l ~, ~2 f 8" GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.617 0.582 0.560 0.550 0.562 0.591 0.571 0.562 0.553 0.557 0.583 0.588 0.587 0.601 0.600 0.605 0.610 0.623 0.674 0.688 - 76.1 - 99.6 -115.8 -126.6 -134.2 -151.9 -163.2 -170.8 -176.6 -179.8 175.0 169.0 160.6 153.8 150.0 147.0 140.5 135.3 123.1 111.5 29.26 23.50 19.20 16.03 13.84 11.11 8.99 7.51 6.44 5.66 5.12 4.61 3.83 3.31 3.09 2.91 2.59 2.32 1.85 1.53 136.3 123.8 115.3 109.6 105.9 97.8 91.4 86.6 82.6 79.5 76.0 72.3 66.3 61.1 58.2 55.4 49.9 44.6 33.3 21.3 0.021 0.026 0.030 0.034 0.037 0.039 0.042 0.046 0.051 0.058 0.059 0.062 0.071 0.080 0.083 0.088 0.097 0.105 0.126 0.145 59.2 52.2 49.3 47.9 45.2 41.9 45.4 48.1 50.0 48.8 47.0 49.4 51.3 49.9 50.8 50.7 49.7 48.5 46.0 42.3 0.755 0.627 0.536 0.478 0.440 0.353 0.307 0.286 0.275 0.272 0.255 0.243 0.235 0.229 0.228 0.230 0.233 0.232 0.234 0.255 - 32.3 - 39.6 - 43.3 - 45.4 - 47.9 - 52.1 - 50.8 - 49.9 - 49.7 - 51.5 - 54.6 - 54.6 - 56.8 - 61.9 - 63.2 - 65.2 - 69.3 - 74.0 - 90.4 -102.7 8'2 S,2, 5", = f (f) Ic = 20 rnA. VCE 5 11 , 5,,2 = f (f) Ic=20mA, VCE=BV.Zo=50n = B V. Zo = 50 n 90 0 +jSO 0.1 1800 . _90 0 -jSO Siemens 493 BFP93A. Ic = 30 rnA, VCE = Zo = 50 n 8 V, f 5 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.578 0.548 0.533 0.528 0.545 0.579 0.561 0.552 0.543 0.548 0.576 0.580 0.580 0.592 0.595 0.601 0.605 0.619 0.669 0.684 - 86.6 -110.0 -125.2 -134.6 -141.3 -157.7 -168.2 -174.9 -180.0 177.4 172.4 166.7 158.9 152.3 148.6 145.8 139.6 134.5 122.7 111.0 32.52 25.24 20.22 16.71 14.35 11.43 9.19 7.66 6.56 5.76 5.21 4.69 3.89 3.36 3.14 2.96 2.63 2.36 1.88 1.55 131.3 119.2 111.3 106.2 103.0 95.4 89.4 84.9 81.2 78.4 75.0 71.4 65.6 60.4 57.7 54.9 49.5 44.3 33.1 21.1 0.019 0.024 0.027 0.031 0.034 0.035 0.039 0.044 0.050 0.057 0.058 0.061 0.072 0.081 0.085 0.090 0.099 0.108 0.128 0.148 56.9 51.6 50.1 49.3 47.0 45.1 49.5 52.5 53.9 52.2 50.5 53.1 54.3 52.6 53.0 52.7 51.3 49.9 46.6 42.4 0.693 0.561 0.473 0.422 0.389 0.307 0.267 0.250 0.243 0.242 0.226 0.214 0.208 0.203 0.202 0.205 0.209 0.209 0.212 0.235 - 36.4 - 43.0 - 45.9 - 47.5 - 50.1 - 54.0 - 52.0 - 50.7 - 50.3 - 52.6 - 56.0 - 55.8 - 58.1 - 63.7 - 65.0 - 67.0 - 71.4 - 76.2 - 93.5 -105.7 512 5:21 s", Sz. =f (f) S,2. S:z, = f (f) Ie =30 rnA, VeE = 8\1, Zo = 50 n Ie =30 rnA, VeE = 8\1, Q o 180· -j50 494 Zo = 50 n 90· +j50 o 5:22 -90· Siemens NPN Silicon RF Transistor BFP 193 • For low-noise, high-gain amplifiers up to 2 GHz. • For linear broadband amplifiers. • fT = 8 GHz. F= 1.2 dB at 800 MHz. B~E E~C ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFP 193 RC Q 62702 - F1217 SOT-143 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 12 V Collector-emitter voltage, VSE = 0 VeEs 20 V Collector-base voltage Veso 20 V Emitter-base voltage VESO 2 V Collector current Ie 80 mA Base current Is 10 mA Total power dissipation, TA ::; 50 °C2) Ptot 400 mW Junction temperature 7j 150 °c Ambient temperature range TA -65 ... +150 °c Storage temperature range Tstg -65 ... +150 °c Thermal Resistance Junction - ambient 1) RthJA \ ::;250 \KIW 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. Siemens 495 BFP 193 Electrical Characteristics at TA = 25 °C, unless otherwise specified. DC characteristics Parameter Values Symbol Unit min typ max Collector-emitter breakdown voltage Ic=1 mA,ls=O II(SR)CEO 12 - - V Collector-emitter cutoff current VcE =20V; VSE=O ICEs - - 100 J.lA Collector-base cutoff current Icso - - 50 nA Emitter-base cutoff current VES = 1 V; Ic = 0 I Eso - - 1 J.lA DC current gain flroE - 90 100 - - 0.4 Vcs=10V,IE=0 lc= 5mA, VCE=8V Ic=30mA, VcE =8V Collector-emitter saturation voltage Ic = 50 rnA, Is = 5 rnA 496 VCEsat Siemens V BFP 193 AC characteristics Parameter Symbol Values Unit min typ max - 3.5 8 - Transition frequency Ic= 5 mA, VCE = 8 V, f= 500 MHz Ic = 30 mA, VCE = 8 V, f= 500 MHz fr Collector-base capacitance VcB =10V, VBE =Vbe=0,f=1 MHz Geb - 0.6 - pF Collector-emitter capacitance VCE = 10 V, VBE = vbe = 0, f= 1 MHz Gee - 0.33 - pF Input capacitance VEB = 0.5 V, Ic = ie = O,f= 1 MHz Gibo - 2.3 - pF Output capacitance VcE =10V, VBE =Vbe=0,f=1 MHz Gobs - 0.95 - pF - - - O.B 1.6 1.9 - 15 - - 13.5 - Noise figure Ic= 5mA, VcE=BV, f= 10 MHz, Zs = 75 Ic = 30 mA, VCE = 8 V, f= BOO MHz, Zs = Zsopt 1 GHz,Zs=50Q Ic = 30 mA, VCE = 8 V, f= F Power gain Ic = 30 mA, VCE = 8 V, f= BOO MHz, Zs = 50 Q, ZL = ZLOPt Gpe Transducer gain Ic = 30 mA, VCE = B V, f= 1 GHz, Zo = 50 Q l~lel2 Linear output voltage two-tone intermodulation test Ic = 40 mA, VCE = 5 V, diM =60 dB fl = B06 MHz, f2 = 810 MHz, Zs = ZL = 50 Q VOl = Vo2 Third order intercept point Ic = 40 mA, VCE = 5 V, f= BOO MHz IP3 n. GHz dB - Siemens dB dB mV - 250 - - 31 - dBm 497 BFP 193 = Total power dissipation P,ot f ITAI Package mounted on"alumina Transition frequency fT = f (Ie) VCE = 8 V, f= 500 MHz mW GHz 500 r-r-rr-r--,-,,.,.,-,--r-TO-rTO 10 III ~E=~ I-- 400 1-+-+-+-+++-+++-+++-+-+--1 6 flot ~ V' '" 6 / 4 100 H-+--H-+--H-+--H-+-N---t-1 2 =f (Vea) pF 1.0 1\ \ 1 0.5 o o 498 "'I'-- r--. 20V Siemens 3V -- , I I o o Collector-base capacitance Ccb VSE=Vbe=0,f=1 MHz , ~ ~ rs'1 10 30 40 ----<--lc 20 SOmA BFP 193 Common Emitter Noise Parameters Ie = 10 mA, VeE = 8 V, Zo = 50 Q f Fmin Gp GHz dB 1 1.2 2.3 dB - MAG 0.01 0.8 2.0 15.4 9 - Ie = 30 mA, VeE = 8 V, Fmin f (Fmin) GHz dB dB 0.01 0.8 2.0 1.65 1.6 2.6 - lANG 50 RN N Fson Gp (Fson) Q - dB dB - RN N Fson Q - dB dB - - 1.65 1.95 3.3 - - (Zs = 75 Q) Zo = Gp rapt 1= - 14.4 7 Q (Fmin) rapt MAG lANG (Zs = 50 Q) - 16.7 9.5 1= Noise figure F = f (Iel VCE = 8 V, f= 10 MHz Gp (Fson) 15.4 7.5 Noise figure F = f (Iel Power gain G = f (Iel VCE = 8 V, f= 800 MHz, ZLopt (G) dB 3 dB dB 4 V F V 2 11 II I I ~;... """1.1 b 10 - / F 7S1l v( ,. ..- m I I I I i~(- e::= 1/ Zs=1S01l o o 1.05 1.35 2.8 3 1- 6 Lo--r-L--r-- I Zs=S01l,_ 15 6 f-- ". I ". 2 ~~ ~\ Zs =SOil,;;: p~::::: F 10 ,.... ~I J....H""" Zsopt 20 o o 30mA 10 - - - I.... Siemens o 20 30mA Ie 499 BFP 193 Common Emitter Power Gain Power gain Gms• 1S:!1.12 =f (Ie) VcE =8V, dB 30 .1 - Power gain Gm •• 1S:!1.12 =f (Ie) f=200MHz,~=50Q um~ ZV / VCE = 8 V, f= 500 MHz, ~ = 50 Q dB 30 l-t- I, A- IS 21.1 2 /' ,.,. / 20 ums - I---'" 1 u ms I =S2Ie,- IS21el2 l"- t-- SI2e 10 10 ums =,S21e o o o 10 20 30 40 - - - - <.... ~ = 8 V, f = 800 MHz, 10 20 Ie 30 40 Power gain Gms• 1S:!1.12 = 50 Q VCE dB 30 = 8 V, f= 1.5 GHz, =f (Ic) ~ = 50 Q Um. " 1 " IS21eI 2 I SlZe'l 20 30 1~21~IZ ", / S2Ie,lims = _ 10 10 I 10 40 I - I .= ISZlellk_hz_11 - t-- t- um I i o o SOmA 10 20 Siemens '-- J ,SIZt 30 .. Ie 500 SOmA Ie dB 20 Ums o o r ----<.... =f (Ie) Power gain G...•• 1S:!1.12 VCE o o SOmA SI2e -1- 40 50 rnA BFP 193 Power gain Gma • Gms • 15",.1 2 = f (f) Ic=5mA, VcE =8V,Zo=50Q Power gain Gm .. Gms• 15",.1 2 = f (tl Ic=10mA, VcE =8\1,Zo=50Q dB 30 dB 30 " "- ....................... "" r--... I'-.. I'\. ~ 1 I ms !5,5212 ••1 I-- I--- 6 = "" dB 30 6ma \6ma \. '\. \. '\ ISzl.I Z 10 - 6ms =!SZ1. 1 S12. C- " : 6ma ~ I~~~: 1~ kl~~WI '\ o 235Hz 0.5 0.1 ms 1'\ "\.\. "\ ~6ma~I~~~: 1(lk-Jr~111)1 o 6 i'. 1\ " IS 21.1 2 10 \. f"I\, 6ms ~~ ~ 2 0,5 0.1 3 GHz ---- f ---- f Power gain Gma • Gms • 15",.1 2 = f (f) Ic = 20 mA, VeE = 8 V, Zo = 50 Q Power gain Gma • Gms• 15",.1 2 = f (tl Ic = 40 mA, VCE = 8 V, Zo = 50 Q ~" '\ .""-. r\: 1'\ I\. dB 30 r-..,. 11'\. 1\. l\. \ ,. , 6ms 1\ " l\ 1521.1 2 1\. f\ l' 6ms 1\ r-.. ISZll \. 6ma _ \. 6ma _ I\, \ \. I\. I\. \. \. I\. 10 10 '\ f- 6m ,=15 z1 .1 f\. I - - - 5,2 • \ I- 6 =15 z1 •!(k-.fK2=1) s ' 1----1 '~. I III o Z1·1 6ms=I S I-S12. f-6rna =IS 5Z1·I(k-h 2-1l 1--1'21.1 11111 o f-- rna 0.1 0.5 \ \. 'I 235Hz 0.1 -f 0.5 235Hz -f Siemens 501 BFP 193 Common Emitter S Parameters = 10 rnA, VCE = 3 V, Zo = 50 n Ic ~2 f 5 11 GHz MAG ANG 5.!1 MAG ANG MAG ANG 5.!2 MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.673 0.665 0.660 0.650 0.645 0.666 0.669 0.663 0.658 0.657 0.676 0.684 0.687 0.692 0.692 0.696 0.703 0.714 0.758 0.763 - 68.6 - 92.3 -109.9 -123.2 -132.9 -146.1 -158.2 -166.6 -173.4 -178.1 177.6 172.2 163.7 156.8 153.2 149.9 143.4 138.0 126.1 113.6 22.95 19.44 16.49 14.07 12.18 9.65 7.98 6.74 5.81 5.11 4.59 4.15 3.45 2.98 2.79 2.62 2.34 2.09 1.66 1.38 143.4 130.9 121.6 114.5 109.1 101.8 94.9 89.6 85.1 81.2 77.9 74.1 68.0 62.7 59.8 56.8 51.1 45.9 34.4 23.1 0.029 0.037 0.042 0.046 0.049 0.054 0.055 0.058 0.061 0.066 0.069 0.069 0.075 0.081 0.084 0.087 0.095 0.101 0.118 0.136 60.3 51.4 45.5 41.9 39.8 35.3 34.2 35.3 36.6 36.9 34.9 35.8 38.6 38.6 39.5 40.2 40.6 40.5 40.5 38.6 0.820 0.701 0.602 0.524 0.465 0.392 0.329 0.291 0.268 0.257 0.246 0.229 0.213 0.210 0.210 0.212 0.216 0.219 0.240 0.269 - 32.7 - 43.2 - 50.6 - 55.9 - 59.5 - 66.5 - 71.0 - 73.1 - 75.0 - 76.8 - 81.2 - 83.8 - 87.6 - 93.7 - 95.6 - 97.8 -101.4 -106.2 -122.1 -131.3 502 Siemens BFP 193 Ic = 30 mA, VCE = 3 V, 4J = 50 n ~1 ~2 f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.545 0.585 0.605 0.611 0.613 0.648 0.658 0.653 0.649 0.647 0.668 0.676 0.680 0.687 0.686 0.691 0.697 0.707 0.748 0.754 -113.4 -133.8 -146.4 -154.9 -160.5 -167.4 -176.1 178.1 173.6 170.4 167.6 163.1 156.3 150.5 147.1 144.3 138.6 133.8 123.0 111.2 35.23 26.85 21.33 17.49 14.77 11.44 9.32 7.79 6.67 5.85 5.24 4.73 3.93 3.39 3.18 2.98 2.66 2.37 1.89 1.57 128.3 116.3 108.7 103.3 99.5 94.5 89.0 84.8 81.2 78.1 75.5 72.2 67.0 62.4 59.7 57.1 51.9 47.1 36.8 25.9 0.020 0.023 0.026 0.029 0.032 0.037 0.039 0.044 0.050 0.057 0.060 0.063 0.073 0.082 0.087 0.092 0.102 0.111 0.132 0.153 53.9 48.8 47.8 48.1 49.0 46.4 50.2 53.4 54.9 54.2 51.6 53.5 54.9 53.2 53.3 53.3 51.8 50.2 46.5 41.9 0.631 0.488 0.396 0.336 0.294 0.259 0.215 0.191 0.179 0.178 0.181 0.172 0.165 0.172 0.173 0.176 0.181 0.189 0.222 0.246 - 54.0 - 66.8 - 75.5 - 81.9 - 86.3 - 96.9 -105.7 -109.5 -112.5 -114.4 -120.8 -126.1 -131.4 -137.3 -138.6 -139.8 -142.0 -145.9 -157.1 -162.1 Siemens 503 BFP 193 Ic = 5 rnA, VCE = 5 V, Zo = 50 Q f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.796 0.772 0.751 0.727 0.708 0.717 0.699 0.690 0.682 0.681 0.695 0.700 0.699 0.707 0.707 0.713 0.715 0.726 0.764 0.776 - 46.6 - 66.3 - 82.9 - 96.7 -107.6 -125.9 -140.1 -150.6 -159.2 -165.1 -171.5 -178.1 171.6 163.5 159.4 155.8 148.4 142.1 128.7 116.2 14.63 13.32 11.95 10.64 9.46 7.86 6.58 5.61 4.89 4.32 3.91 3.54 2.96 2.56 2.39 2.26 2.01 1.80 1.43 1.17 153.0 141.9 132.5 124.8 118.7 109.3 101.3 94.9 89.5 85.2 81.0 76.7 69.5 63.4 60.4 57.2 51.1 45.2 33.2 21.0 0.033 0.044 0.053 0.060 0.065 0.071 0.074 0.076 0.078 0.082 0.082 0.082 0.084 0.086 0.086 0.087 0.090 0.093 0.103 0.117 67.0 58.1 51.0 45.5 41.5 33.7 30.2 28.1 27.2 26.3 23.8 23.7 24.8 24.3 25.7 26.6 28.0 29.3 33.9 36.5 0.911 0.837 0.759 0.692 0.636 0.547 0.483 0.440 0.411 0.394 0.375 0.359 0.342 0.333 0.332 0.332 0.335 0.336 0.349 0.376 - 20.5 - 28.4 - 34.6 - 39.2 - 42.4 - 48.5 - 51.4 - 53.4 - 55.0 - 56.8 - 59.3 - 60.7 - 64.2 - 68.8 - 70.7 - 72.7 - 76.9 - 81.1 - 95.9 -106.7 8.!1 8.!2 = 5,1. Sn = f (f) Ie = 5 rnA, VeE = 5 V. Zo =50n 5,2.5,,1 f (f) Ie = 5 mA, VeE = 5 V. 2'0= 50 n 90 0 o -j50 504 -90 0 Siemens BFP 193 Ic = 10 mA, f VCE = 5 V. Zo = 50 Q 8 11 8 12 8.21 8.22 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.690 0.675 0.664 0.651 0.639 0.674 0.661 0.656 0.650 0.649 0.670 0.675 0.677 0.688 0.688 0.695 0.696 0.705 0.747 0.755 - 65.1 - 88.5 -106.2 -119.4 -128.8 -144.6 -156.5 -165.1 -171.7 -176.1 178.8 173.2 164.3 157.3 153.6 150.5 143.6 138.1 125.8 114.1 22.92 19.63 16.74 14.33 12.39 9.99 8.19 6.90 5.96 5.24 4.73 4.27 3.55 3.07 2.87 2.71 2.41 2.16 1.71 1.41 144.7 132.3 122.8 115.7 110.5 102.6 95.7 90.4 86.0 82.4 78.9 75.0 68.8 63.5 60.7 57.8 52.3 46.9 35.9 24.3 0.028 0.037 0.042 0.046 0.049 0.053 0.055 0.058 0.062 0.067 0.068 0.069 0.075 0.081 0.084 0.087 0.094 0.100 0.117 0.134 61.6 52.4 46.6 43.0 40.8 35.1 35.0 35.9 36.9 36.7 35.1 36.5 38.8 38.5 39.9 40.4 40.9 40.8 41.0 39.5 0.833 0.719 0.619 0.544 0.488 0.403 0.343 0.307 0.284 0.274 0.258 0.242 0.231 0.225 0.224 0.226 0.231 0.233 0.253 0.280 - 30.9 -41.1 - 48.4 - 53.4 - 56.7 - 64.5 - 67.5 - 69.6 - 71.2 - 73.4 - 77.3 - 79.0 - 82.9 - 88.4 - 90.1 - 92.1 - 95.8 -100.2 -114.9 -123.8 S",~=f(f) S,2. $." = f If) Ic=10mA, VcE =5V,Zo=50n Ic= 10 mA, VCE = 5 V. Zo = 50n 90° +j50 o -j 50 Siemens 505 BFP 193 Ic = 30 mA, VCE = 5 V. Zo = 50 n Sz, f S11 GHz MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.556 0.581 0.595 0.597 0.595 0.651 0.640 0.636 0.633 0.630 0.655 0.662 0.664 0.676 0.676 0.682 0.683 0.693 0.733 0.744 -106.4 -128.5 -142.1 -151.0 -156.4 -166.5 -174.8 179.5 174.9 172.4 168.6 163.9 156.8 150.9 147.6 144.7 138.8 133.8 122.8 111.6 Sz2 S'2 MAG ANG MAG ANG MAG ANG 36.18 27.79 22.15 18.19 15.32 12.09 9.73 ~ 8.11 6.97 6.10 5.50 4.95 4.11 3.54 3.32 3.12 2.78 2.49 1.97 1.63 129.6 117.6 109.7 104.3 100.6 94.8 89.5 85.5 82.0 79.2 76.3 73.0 67.7 63.3 60.8 58.1 53.1 48.1 38.2 27.4 0.020 0.024 0.027 0.029 0.033 0.035 0.039 0.045 0.051 0.057 0.059 0.063 0.074 0.082 0.087 0.092 0.102 0.111 0.132 0.152 54.6 49.1 47.9 48.3 48.9 46.2 50.7 53.4 54.7 53.3 51.9 53.9 54.8 53.1 53.6 53.3 51.8 50.1 46.8 42.5 0.648 0.506 0.411 0.349 0.312 0.260 0.217 0.195 0.184 0.185 0.182 0.172 0.169 0.174 0.174 0.177 0.184 0.189 0.221 0.244 - 51.6 - 64.3 - 72.7 - 78.3 - 81.9 - 95.6 -100.6 -104.4 -106.9 -109.5 -116.4 -120.0 -124.6 -130.9 -132.0 -133.4 -135.5 -139.3 -150.2 -155.3 5,2, So, = f (f) Ie = 30 rnA, VeE = 5 V, Zo = 50 n S11,~=f(f) Ie =30 rnA, VeE = 5 V. Zo = 50 n 90 0 +j50 o -90 0 -j50 506 Siemens BFP 193 Ic = 50 rnA, VCE = 5 V. Zo = 50 n ~, ~2 f Sl1 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.544 0.580 0.599 0.602 0.598 0.657 0.647 0.643 0.638 0.635 0.661 0.666 0.670 0.682 0.681 0.686 0.688 0.698 0.737 0.746 -124.1 -142.5 -153.3 -160.4 -164.3 -172.5 -179.8 175.4 171.4 169.3 165.9 161.6 154.8 149.3 146.0 143.3 137.5 132.6 121.9 111.0 39.07 28.97 22.68 18.45 15.46 12.13 9.73 8.10 6.95 6.08 5.47 4.93 4.08 3.53 3.30 3.11 2.77 2.47 1.96 1.63 123.8 112.6 105.5 100.8 97.7 92.5 87.6 83.9 80.6 78.0 75.2 72.1 66.9 62.6 60.1 57.6 52.6 47.7 38.1 27.2 0.017 0.020 0.023 0.026 0.029 0.032 0.036 0.043 0.049 0.056 0.058 0.062 0.074 0.083 0.088 0.093 0.104 0.113 0.135 0.155 53.8 50.5 51.3 52.9 53.7 51.8 56.9 59.3 60.1 57.7 56.6 58.5 58.3 56.5 56.6 56.2 54.3 52.3 48.2 43.5 0.560 0.425 0.341 0.290 0.262 0.225 0.190 0.174 0.166 0.171 0.172 0.164 0.165 0.172 0.173 0.176 0.184 0.190 0.224 0.246 - 59.8 - 72.7 - 81.3 - 87.0 - 90.5 -106.1 -111.6 -115.5 -117.8 -119.8 -126.8 -130.6 -134.6 -139.9 -141.1 -142.2 -143.7 -147.1 -156.6 -160.9 S'2 5,2,5.!, =f If) Ie = 50 rnA, VeE = 5 V, Zo = 500 5". Sz, = f If) Ie =50 rnA, VeE = 5 V, Zo = 50 0 +j50 o -j50 Siemens 507 BFP 193 Ic = f 5 rnA, VCE = 8 V, Zo = 50 n ~, $" ~2 $'2 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.808 0.782 0.758 0.733 0.712 0.718 0.698 0.687 0.678 0.676 0.691 0.694 0.694 0.702 0.700 0.709 0.708 0.721 0.759 0.772 - 44.9 - 64.1 - 80.6 - 94.1 -105.1 -123.7 -138.0 -148.9 -157.6 -163.7 -170.2 -176.8 172.7 164.3 160.3 156.6 149.0 142.8 129.4 116.6 14.57 13.32 12.01 10.74 9.56 7.96 6.68 5.71 4.98 4.41 3.99 3.62 3.02 2.61 2.44 2.30 2.06 1.84 1.46 1.19 153.6 142.7 133.4 125.8 119.5 110.2 102.1 95.7 90.3 85.8 81.7 77.3 70.0 64.0 60.9 57.7 51.7 45.8 33.7 21.6 0.032 0.044 0.053 0.059 0.064 0.071 0.074 0.076 0.078 0.082 0.083 0.082 0.084 0.086 0.086 0.087 0.090 0.092 0.102 0.116 67.7 58.9 51.7 46.2 42.2 34.4 30.7 28.6 27.4 26.5 24.0 23.8 24.7 24.4 25.6 26.4 27.8 29.0 33.5 36.1 0.914 0.843 0.768 0.703 0.647 0.558 0.493 0.449 0.420 0.403 0.383 0.366 0.348 0.338 0.337 0.337 0.340 0.339 0.351 0.376 - 19.8 - 27.5 - 33.6 - 38.2 - 41.5 - 47.6 - 50.5 - 52.6 - 54.1 - 55.8 - 58.3 - 59.7 - 63.1 - 67.6 - 69.4 - 71.4 - 75.5 - 79.7 - 94.2 -105.0 S11,~=f(f) 5,2, 5:2, = f (f) Ic = 5 rnA, VCE = 8 V, Zo = 50 Q Ic = 5 mA, VCE = 8 V, Zo = 50 Q 90° +j50 o -90 0 -j50 508 Siemens BFP 193 Ic = 10 rnA, VCE = 8 V, Zo = 50 n f 8 11 8 12 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.707 0.686 0.669 0.653 0.639 0.670 0.656 0.648 0.643 0.642 0.662 0.669 0.669 0.679 0.679 0.685 0.687 0.698 0.739 0.748 - 62.3 - 85.3 -103.0 -116.4 -126.0 -142.3 -154.4 -163.3 -170.3 -174.7 180.0 174.3 165.2 158.2 154.3 151.1 144.3 138.7 126.2 114.3 23.03 19.82 16.98 14.59 12.63 10.22 8.39 7.08 6.12 5.38 4.85 4.39 3.65 3.15 2.95 2.78 2.47 2.22 1.76 1.45 145.5 133.2 123.8 116.6 111.3 103.3 96.3 91.0 86.5 83.0 79.4 75.6 69.3 64.0 61.2 58.4 52.9 47.4 36.5 24.9 0.028 0.036 0.042 0.046 0.049 0.054 0.056 0.058 0.062 0.067 0.068 0.069 0.076 0.081 0.084 0.087 0.094 0.100 0.117 0.134 62.2 53.2 47.3 43.5 41.3 35.5 35.3 35.9 36.9 36.7 34.8 36.3 38.6 38.1 39.6 40.0 40.5 40.4 40.6 39.2 0.838 0.729 0.631 0.554 0.498 0.412 0.351 0.313 0.290 0.279 0.262 0.246 0.233 0.226 0.225 0.226 0.231 0.232 0.250 0.276 - 30.0 - 40.1 - 47.4 - 52.4 - 55.7 - 63.6 - 66.6 - 68.7 - 70.3 - 72.5 - 76.4 - 78.0 - 81.8 - 87.2 - 88.9 - 90.8 - 94.6 - 98.8 -113.6 -122.5 &.!, &.!2 = 5,2, 5", f If) Ie = 10 mA. VeE = 8 V, Zo =50 Q 5, .. s"" = f If) Ie = 10 mA. VeE = 8 V, Zo = 50 Q 90 0 o -j50 -900 Siemens 509 BFP 193 Ic = 20 rnA, VCE = 8 V, 2Q = 50 Q ~, ~2 f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.607 0.607 0.609 0.604 0.600 0.630 0.637 0.630 0.624 0.622 0.645 0.654 0.657 0.663 0.664 0.666 0.675 0.684 0.731 0.735 - 85.2 -109.4 -125.7 -137.3 -145.4 -155.3 -166.5 -173.8 -179.5 176.6 173.3 168.0 160.2 153.9 150.4 147.3 141.2 136.1 124.7 112.7 32.08 25.79 21.10 17.60 15.00 11.73 9.64 8.08 6.94 6.09 5.46 4.94 4.10 3.54 3.31 3.11 2.77 2.48 1.97 1.64 136.1 123.6 114.9 108.7 104.2 98.4 92.2 87.6 83.6 80.3 77.6 74.0 68.5 63.7 61.1 58.4 53.1 48.2 37.7 26.7 0.023 0.029 0.032 0.035 0.038 0.043 0.044 0.048 0.053 0.059 0.062 0.064 0.074 0.081 0.085 0.090 0.099 0.107 0.127 0.146 57.0 49.5 46.1 44.7 44.4 41.3 42.9 45.6 47.5 47.6 45.1 46.7 49.0 47.8 48.3 48.6 47.8 46.6 44.1 40.4 0.731 0.592 0.492 0.419 0.367 0.315 0.256 0.225 0.207 0.201 0.197 0.182 0.169 0.170 0.170 0.173 0.176 0.181 0.207 0.232 - 42.7 - 54.6 - 62.7 - 68.5 - 72.3 - 81.2 - 88.1 - 91.0 . - 93.4 - 95.5 -101.7 -106.2 -111.1 -117.9 -119.5 -121.4 -124.2 -128.9 -143.0 -149.6 8'2 S,,,~=f(f) 5'2, ~, = f (f) Ie = 20 rnA, VeE = 8 V, Zo = 50 Q Ie = 20 rnA, VeE = 8 V, Zo = 50 Q 90 0 - jSO 510 -90 0 Siemens BFP 193 Ic = 40 rnA, VCE f' 5 11 GHz MAG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 = 8 V. 0.558 0.578 0.590 0.589 0.589 0.624 0.633 0.625 0.620 0.616 0.642 0.650 0.654 0.661 0.661 0.665 0.671 0.681 0.725 0.732 ~ = 50 Q 5 12 5.!1 ANG -108.0 -129.8 -143.1 -152.1 -158.1 -165.3 -174.6 179.3 174.6 171.6 168.7 163.9 156.9 151.1 147.7 144.7 139.1 134.3 123.3 111.4 MAG 38.69 29.36 23.28 19.06 16.07 12.46 10.16 8.49 7.26 6.36 5.71 5.16 4.27 3.70 3.46 3.25 2.89 2.58 2.05 1.71 ANG 127.7 115.9 108.3 103.1 99.4 94.6 89.1 85.0 81.5 78.6 76.1 72.8 67.7 63.2 60.6 58.0 52.9 48.2 38.1 27.4 MAG 0.019 0.023 0.025 0.028 0.031 0.036 0.039 0.044 0.050 0.057 0.060 0.063 0.074 0.083 0.088 0.093 0.103 0.112 0.133 0.154 5.!2 ANG 53.5 49.3 48.9 49.3 50.1 47.6 51.4 54.6 56.1 55.2 52.4 54.3 55.5 53.6 53.7 53.5 51.8 50.2 46.2 41.4 MAG ANG 0.614 0.473 0.383 0.324 0.284 0.254 0.208 0.184 0.173 0.173 0.176 0.167 0.159 0.166 0.166 0.169 0.174 0.180 0.212 0.234 - 54.7 - 67.6 - 76.2 - 82.5 - 86.9 - 97.8 -107.0 -110.8 -113.6 -115.4 -122.4 -128.0 -133.3 -139.5 -140.8 -142.0 -144.1 -148.0 -159.4 -164.2 S,2, Sz, = f (f) Ie = 40 mA, VeE = 8V, Zo = 50 0 S,h~=f(f) Ie = 40 rnA, VeE =8\1, Zo= 500 90 0 o -j 50 -900 Siemens 511 NPN Silicon RF Transistor BFQ 17P • For low-distortion broadband amplifiers up to 900 MHz at collector currents from 20 to 150 mA. E Type Marking Ordering code (tape and reel) Package BFQ 17P FD Q 62702 - F983 SOT-89 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 25 V Collector-base voltage VCBO 40 V Emitter-base voltage VEBO 2 V Collector current Ic 150 mA Peak collector current, f?:. 1 MHz ICM 300 mA Total power dissipation, TA :5 25 DC2 ) Ptot 1 W Junction temperature 7j 150 DC Ambient temperature range TA -65 ... +150 DC Tstg -65 ... +150 DC RthJA :5125 KJW Storage temperature range Thermal Resistance Junction - ambient 1) 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 512 Siemens BFQ 17P Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter Collector-emitter breakdown voltage Ic = 10 rnA, Is = 0 V(SR)CEO Collector-base cutoff current Vcs = 20 V. IE = 0 Vcs = 20 V. IE = 0, TA = 125°C Icso Emitter-base cutoff current VES = 1 V. Ic = 0 I ESO DC current gain Ic= 50 rnA, VcE =5V Ic = 150 rnA, VCE = 5 V hFE Collector-emitter saturation voltage Ic= 100 mA, Is= 10 rnA VCEsat Siemens Unit min Values typ max 25 - - - - 0.1 20 - 100 25 25 - - - 0.2 0.5 Symbol V pA nA V 513 BFQ 17P AC characteristics Parameter Symbol Values Unit min typ max - - - 1.4 1.2 Transition frequency Ic= 70 rnA, VCE = 5 V, f= 200 MHz Ic= 150 rnA, VcE =5V, f=200MHz fr Collector-base capacitance Vce=10V, VeE =Vbe=0,f=1 MHz C cb - 1.9 - pF Input capacitance VEe = 0.5 V, Ic = ic = 0, f= 1 MHz C,bo - 13 - pF Output capacitance VCE = 10 V, VeE = vbe = 0, f= 1 MHz Cobs - 2.5 4 pF Power gain Ic = 60 rnA, VCE = 15 V, f=500 MHz, Zs = ZSOPh ZL = ZLOPt Gpe - 11.5 - dB Linear output voltage two-tone interrnodulation test Ic = 60 rnA, VCE = 15 V, aiM =60 dB fl = 206 MHz, f2 = 210 MHz, Zs = ZL = 50 Q Vol = Vo2 - 480 - rnV Third order intercept point Ic = 60 rnA, VCE = 15 V, f= 200 MHz IP3 - 36.5 - dBrn 514 Siemens GHz - BFQ 17P = Transition frequency f.r = f (lei VeE = 5 V, f= 200 MHz Total power dissipation P'o' f (TiJ Package mounted on alumina mW GHz r 1.5 1.2 1.0 1/ 1\ II ~ 0.8 i", " to i\ I 1\ 0.6 1\ ~ 0.4 0.5 i\ \ 0.2 1\ \ o o o 150·( 100 50 -7,; COllector-base capacitance Ccb VBE = Vbe=O, f= 1 MHz o 50 100 159 mA -Ie =f (VeB) pF 5 4 , \ 3 2 o o \ "- r-.... r--. r--. I- -20V 10 -liB Siemens 515 NPN Silicon RF Transistor BFQ 19P • For low-distortion broadband amplifiers in antenna and telecommunications systems at collector currents from 10 to 70 mA. E For new design refer to BFQ 19S Type Marking Ordering code (tape and reel) Package BFQ19P FE Q 62702 - F1 060 SOT-89 ~Y1a;dmum Ratings Parameter Symbol Value Unit Collector-emitter voltage Collector-base voltage VCEO 15 V VCBO 20 Emitter-base voltage V VEBO 3 V Collector current Ic 75 mA Peak collector current, f2:. 1 MHz ICM 150 mA Total power dissipation, TA Ptot 1 W Junction temperature Ii 150 °c Ambient temperature range TA -65 ... +150 °c Storage temperature range Tstg -65 ... +150 °c :::; 25 °C 2) Thermal Resistance Junction - ambient ') j 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 516 Siemens RthJA j :::;125 jKIW BFQ 19P Electrical Characteristics at TA = 25 cC, unless otherwise specified. DC characteristics Parameter Symbol Unit Values min typ max "1eR)CEO 15 - - V Iceo - - 100 nA Emitter-base cutoff current VEe = 2 \I, Ic = 0 I Eeo - - 10 ~ DC current gain hFE 25 70 - - VCEsat - 0.2 0.5 V Collector-emitter breakdown voltage Ic= 1 mA,Ie=O Collector-base cutoff current Vce= 10\l,IE =0 Ic = 50 mA, VCE = 10 V Collector-emitter saturation voltage Ie = 75 mA, Ie = 7.5 mA Siemens 517 BFQ 19P AC characteristics Symbol Parameter Values Unit min typ max 4 4.4 4.B 5.1 - Transition frequency Ic=50mA, VCE=10V; f=200MHz Ic = 75 rnA, VCE = 10 V; f= 200 MHz fir Collector-base capacitance VCB=10V; VBE =Vbe=0,f=1 MHz CCb - 1.1 1.5 pF Collector-emitter capacitance VCE=10V; VBE = Vbe=O,f= 1 MHz Cee - 0.4 - pF Output capacitance VCE = 10 V; VBE = Vbe = O,f= 1 MHz Cobs - 1.5 - pF Noise figure Ic = 50 rnA, VCE = 10 V; f = BOO MHz, Zs = ZSopt F - 3.B - dB Power gain Ic = 70 mA, VCE = 10 V; f= BOO MHz, Zs = ZsoPt, ZL = ZLOPt Gpe - 11.5 - dB Linear output voltage two-tone intermodulation test Ic = 70 mA, VCE = 10V; ~M = 60dB f, = B06 MHz, f2 = B10 MHz, Zs = ZL = 50 n Vo1 = Vo2 - 500 - mV Third order intercept point Ic = 70 mA, VCE = 10 V; f= BOO MHz IPs - 37 - dBm 51B Siemens GHz BFQ 19P Total power dissipation Pto. = f ITAl Transition frequency fT = f (Iel VCE = 10 V, f= 200 MHz Package mounted on alumina GHz W 1.2 6 Po f1.0 ,/' I\. V 1\ 0.8 ", 4 \ V \ 0.6 / 3 I 1\ 1\ 0.4 2 1\ I 1 I .\ 0.2 \. 1\ o o 100 50 o 150 0 ( o 100 mA 50 -Ic Collector-base capacitance Ceb = f (Vee) VSE = Vb. = 0, f= 1 MHz pF 3 \ \ i'\. o0 20 V 10 -\I(e Siemens 519 NPN Silicon RF Transistor BFQ 19S • For low-noise, low-distortion broadband amplifiers in antenna and telecommunications systems up to 1.5 GHz at collector currents from 10 to 70 mA. E Ii CECC-type available: CECC 500021259. Type Marking Ordering code (tape and reel) Package BFQ 19S FG Q 62702 - F1 088 SOT-89 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 15 V Collector-base voltage VC60 20 V Emitter-base voltage VE60 3 V Collector current Ic 75 mA ICM 150 mA Base current 16 10 mA Total power dissipation, TA $ 25 °C~ Ptot 1 W Junction temperature 7j 150 °c Ambient temperature range TA -65 ... +150 °c Storage temperature range Tstg -65 ... +150 °c Peak collector current, ' 2: 1 MHz Thermal Resistance I Junction - ambient1 ) 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 520 Siemens RthJA 1$125 IKIW BFQ 195 Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics min Values typ max \t(SR)CEO 15 - - V Collector-base cutoff current Vcs = 10 V. IE = 0 Icso - - 100 nA Emitter-base cutoff current VES = 2 V. Ic = 0 I ESO - - 10 JlA DC current gain Ic = 50 rnA, VCE = 10 V hFE 25 70 - - VCEsat - 0.2 0.5 V Parameter Collector-emitter breakdown voltage Ic= 1 mA,Is=O Collector-emitter saturation voltage Ic =75 rnA, Is=7.5mA Symbol Siemens Unit 521 BFQ 195 AC characteristics Symbol Parameter Transition frequency fr Ie = SO rnA, VeE = 10 \I, f= 200 MHz Ie = 70 rnA, VeE = 10\1, f=200 MHz Values Unit min typ max - - GHz - 5 5.1 Col/ector-base capacitance Vce = 10\1, VeE = vbe= 0, f= 1 MHz Ccb - 1 - pF Col/ector-emitter capacitance VeE = 10\1, VeE = vbe = 0, f= 1 MHz Cee - 0.4 - pF Input capacitance VEe = O.S \I, Ie = ic = 0, f= 1 MHz Gibe - 4.S - pF Output capacitance VCE = 10\1, VeE = Vbe = 0, f= 1 MHz Cobs - 1.4S - pF Noise figure F - 0.9 2.B Gpe - 11.B - dB Linear output.voltage two-tone intermodulation test Ic = 70 rnA, VCE = 10\1, diM = 60dB ~ = B06 MHz, f2 =810 MHz, Zs=ZL =50 n Vol = Vo2 - 520 - mV Third order intercept point I c =70mA, VeE = 10\1, f=800MHz IP3 - 37.5 - dBm Ic= 5 rnA, VCE = 10V. f= 10 MHz,Zs=Son Ic = 50 rnA, VCE = 10 V. f= BOO MHz, Zs = Zsopt Power gain dB Ic = 70 rnA, VeE = 10 V. f= BOO MHz, Zs = SO n, ZL = ZLopt 522 Siemens BFQ 19S Total power dissipation Ptot = f (T,J Package mounted on alumina Transition frequency fT = f (Iel VcE =10V, f=200MHz W 1.2 ~ot GHz 6 1.0 5 / \. t I\. 0.6 / 4 1\ I \ 0.6 3 " I I\. 1\ 0.4 I I I\. I \ 0.2 I\. 1\ o o 150 0 ( 100 50 20 40 60 BO 100 rnA -T, Collector-base capacitance VBE = Vb. = 0, f= 1 MHz Cob = f (VCB) pF 3 Ceb 1 2 \ \ , ....... o o ~ 10 20 V -ifcB Siemens 523 BFQ 198 Common Emitter Noise Parameters Ie = 5 rnA, VeE = 10 V, Zo = 50 Q f Fmin Gp (Fmin) GHz dB dB 0.01 0.9 - Ie ropt MAG lANG RN N Fson Gp (Fsonl Q - dB dB 0.9 - Fson dB dB 2.2 3.5 - - (Zs = 50 Q) = 50 rnA, VeE = 10 V, 20 = 50 Q Fmin dB RN N GHz dB MAG ANG Q 0.01 0.8 2.2 2.8 - - - - - f Gp (Fmin) ropt Noise figure F = f (Ie! VCE = 10\1, f= 10 MHz Gp (Fsonl Noise figure F = f (Ie! VCE = 10\1, f= 800 MHz, ZLoPt (G) dB 4 dB 4 I I Z,=50Q F F "1"- II \ t r 3 3 \ V 2 V V ..... - ./ '-IZ,'Sop! 2 /' "- ./ V V \ o 524 o I-' V 10 /' Zs='SOQ 20 30 40 50 rnA Siemens o o 10 20 30 40 50 rnA BFQ 19S linear output voltage Vo = f (lei VeE = 10V, diM = 60 dB,', = 806 MHz '2 = 810 MHz, Zs =ZL = 50 n mY 600 1~ -I- / 400 / / I 300 V 200 II / 100 a o 20 40 60 BO mA -Ie Siemens 525 BFQ29P NPN Silicon RF Transistor • For low-noise IF and broadband amplifiers up to 1 GHz at collector currents from 1 to 20 mA. € CECC-type available: CECC 50002/258. ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFQ29P KC Q 62702 - F659 SOT-23 Maximum Ratings Value Parameter Symbol Collector-emitter voltage VCEO 15 V Collector-base voltage VCBO 20 V Unit Emitter-base voltage VEBO 3 V Collector current Ic 30 mA Base current IB 4 mA Total power dissipation, TA :5 25 °C2 ) Ptot 280 mW Junction temperature Ii 150 °C Ambient temperature range TA -65 ... +150 °C Storage temperature range Tstg -65 ... +150 °C Thermal Resistance I Junction - ambient1 ) 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 526 Siemens RthJA I :5450 IKIW BFQ 29P Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter Collector-emitter breakdown voltage Symbol \t(BR)CEO Values Unit min typ max 15 - - - - 0.05 10 - 100 V Ic=1 mA,Is=O Collector-base cutoff current VCB = 10 V. h = 0 VCB = 20 V. IE = 0 leBo Emitter-base cutoff current VEB = 3 V. Ic = 0 lEBO DC current gain hFE ~ - Ic= 3 rnA, VcE =6V Ic=10mA, VcE =6V 50 50 - 250 140 - Collector-emitter saturation voltage Ic = 20 rnA, IB = 1 rnA - 0.1 0.4 VCEsat Siemens ~ V 527 BFQ 29P AC characteristics Parameter Symbol Values Unit min typ max - - 3.6 2.7 5 Transition frequency Ic= 3 rnA, VCE = 6 V, f= 200 MHz Ic = 20 rnA, VCE = 6 V, f= 200 MHz fr GHz Collector-base capacitance Ceb - 0.5 0.65 pF Gee - 0.28 - pF C,bo - 1.35 - pF Gobs - 0.8 - pF - 0.9 1.5 1.2 - Vcs=10V, VSE=Vbe=0,f=1 MHz Collector-emitter capacitance VCE = 10 V, VSE = Vbe = 0, f= 1 MHz Input capacitance VES = 0.5 V, Ic = ie = 0, f= 1 MHz Output capacitance VCE = 10 V, VSE = Vbe = 0, f= 1 MHz Noise figure Ic=3mA, VcE =6V, f= 10MHz,Zs=75n Ic=4mA, VcE =6V, f=800MHz,Zs=50n F Power gain Ic = 20 rnA, VCE = 6 V, f= 800 MHz, Zs = 50 n, ZL = ZLOPt Gpe - 14 - dB Transducer gain Ic = 20 rnA, VCE =6 V, f= 1 GHz, Zo = 50n lS:!lel 2 - 11 - dB Linear output voltage two-tone intermodulation test Ic = 20 rnA, VCE = 6 V, ~M = 60dB fl = 806 MHz, f2 = 810 MHz, Zs =ZL =50 n Vol = Vo2 - 180 - mV Third order intercept point Ic = 20 rnA, VCE = 6 V, f= 800 MHz IP3 - 28 - dBm 528 Siemens dB BFQ29P Transition frequency f.r '" f (lei VeE = 6 V. f= 200 MHz GHz Total power dissipation p.o. '" f IT,J Package mounted on alumina mW 400 6 - Plot t k"'~ 300 V I 1,\ 1'\ 200 3 I\. I ~ 100 '\ '\ o o 100 50 ~~ "' o 150 0 ( o 10 20 30 rnA -Ie Collector-base capacitance Cob'" f (VCB) VBE = Vbe = 0, f= 1 MHz pF 1.2 r to \ 0.8 \ ~ \ 0.6 0.4 r"- -- 0.2 o o 20 V 10 -VcB Siemens 529 BFQ29P Common Emitter Noise Parameters Ie = 3 rnA, VeE = 6 V, Zo = 50 n f Fmin Gp (Fminl GHz dB dB 0.01 0.85 - Ie = 5 rnA, VeE = 6 V, RN N Fson lANG n - dB Gp (Fson> dB (Zs=130n) - - 1.2 - RN N Fson - dB Gp (Fson> dB ToP! MAG Zo = 50 n f Fmin Gp (Fmin) GHz dB dB MAG lANG n 0.01 0.8 0.85 1.25 - (Zs=100n) 0.25 93.5 - Top! I 13 Noise figure F= f (4) VeE =6 V. f= 10 MHz , dB 3 / Ic=30mA / F / / t II \ 2 / II \ II / 1.1 ~i"" V V t'-~ l ~ 20 \ ~ .... _:I< ~ '" .......... "'" o o ~f' J-f' 1 100 200 300Q -Zs 530 Siemens 11.1 0.20 1.1 1.45 - 14 BFQ29P Circles of constant noise figure F = f (ZS> in Zs-plane,lc = 5 rnA, VCE = 6 V, f= 800 MHz Noise figure F = f (Ie) VeE = 6 V. f= 800 MHz, ZLopt (G) dB 3 F t , I. \ """- r-j50 o o -- ,.. .....-:: Zs=50Q .....I-:;:::: ~ 'lSDpt 20 rnA 10 -Ie Siemens 531 BFQ29P Common Emitter S Parameters = 2 mA, VCE = 6 V, Zo = 50 Q Ic f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.2 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.93 0.86 0.79 0.66 0.50 0.47 0.45 0.43 0.45 0.46 - 20 - 45 - 62 - 93 -129 -147 -161 179 159 149 6.76 6.42 5.16 4.19 2.99 2.48 2.11 1.78 1.51 1.42 158 144 133 113 92 82 74 63 54 48 0.03 0.06 0.08 0.11 0.11 0.12 0.13 0.14 0.16 0.17 76 65 57 47 41 41 42 47 52 56 0.97 0.89 0.85 0.73 0.62 0.59 0.57 0.55 0.54 0.52 - 7 -17 -23 -29 -33 -35 -37 -40 -46 -48 ~1 ~2 8 12 5,2, 5". = f (f) Ie = 2 mA, VeE = 6 V, Zo = 50 Q S11,~=f(f) Ie = 2 mA, VeE = 6 V, Zo = 50 Q 90 0 +j50 o -j50 532 -90 0 Siemens BFQ29P Ic = 5 mA, = 6 V. Zo = 50 n VCE f 5 11 GHz MAG ANG MAG ANG 5 12 MAG ANG MAG ANG 0.1 0.2 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.80 0.69 0.57 0.46 0.35 0.34 0.34 0.34 0.36 0.37 - 31 - 66 - 84 -118 -152 -167 -180 164 148 139 13.96 11.55 8.56 6.06 4.00 3.25 2.74 2.28 1.94 1.80 147 129 119 102 85 0.03 0.05 0.06 0.08 0.10 0.12 0.13 0.16 0.19 0.20 72 60 55 53 55 57 58 59 60 60 0.89 0.76 0.68 0.54 0.46 0.45 0.43 0.42 0.41 0.39 -13 -28 -31 -34 -33 -35 -36 -39 -44 -44 5.!1 77 71 61 54 49 = S,1, S:zz f If) Ie =5 rnA, VcE =6V, ~=50n S,2, Sz1 5.!2 =f If) Ic=5mA, VCE=6\t,~=50n 90· o -j50 -90· Siemens 533 BFQ29P Ic = 10 rnA, VCE = 6 V, ZO = 50 n ~, ~2 f S" GHz MAG ANG MAG ANG MAG ANG 0.1 0.2 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.65 0.53 0.42 0.35 0.29 0.30 0.30 0.30 0.33 0.35 - 46 - 87 -104 -137 -169 179 169 155 141 133 20.65 14.88 10.41 6.92 4.47 3.59 3.04 2.50 2.11 1.97 135 117 108 94 80 74 69 60 53 49 0.03 0.04 0.05 0.07 0.10 0.12 0.14 0.17 0.20 0.22 69 58 59 61 63 65 64 63 62 62 S'2 = 10 mA, VCE = 6 V, Zo = 50 n Q -18 -32 -33 -33 -30 -32 -34 -36 -41 -42 o 1800 -j50 534 0.79 0.61 0.54 0.43 0.39 0.38 0.36 0.36 0.35 0.33 90 0 +j50 o ANG S,2, 5", = f If) Ic=10mA, VcE =6V,Zo=50n s". 5,,2 = f If) Ic . MAG -90 0 Siemens BFQ29P Ic = 20 rnA, VCE = 6 V, 20 = 50 Q f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.1 0.2 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.47 0.40 0.33 0.31 0.28 0.29 0.30 0.30 0.33 0.35 - 64 -108 -125 -154 178 169 161 148 135 128 25.26 16.60 11.22 7.16 4.57 3.65 3.09 2.54 2.15 2.00 126 109 102 89 0.02 0.03 0.04 0.06 0.09 0.12 0.14 0.17 0.21 0.22 67 62 65 68 68 69 68 66 64 63 0.69 0.50 0.46 0.39 0.36 0.36 0.35 0.34 0.34 0.32 -21 -32 -30 -28 -26 -28 -30 -33 -39 -39 5.21 77 72 67 59 52 48 5.22 = S.1,~=f(f) S.2, 8.!1 f (f) Ie = 20 rnA, VeE = 6\1,.zo =500 Ie = 20 rnA, VeE =6 \I,.zo =500 90 0 o - j50 -90 0 Siemens 535 NPN Silicon RF Transistor BFQ64 • For low-distortion broadband amplifiers in antenna and telecommunications systems at collector currents from 70 to 150 mA. E Type Marking Ordering code (tape and reel) Package BFQ64 FC Q 62702-F1061 SOT-89 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 20 V Collector-base voltage Vcso 30 V Emitter-base voltage VESO 3 V Collector current Ic 200 mA ICM 250 mA Base current Is 25 mA Total power dissipation, TA ~ 25 °C2) Ptot 1 W °c Peak collector current, f~ 1 MHz Junction temperature 7j 150 Ambient temperature range TA -65 ... +150 °c Storage temperature range Tstg -65 ... +150 °c Thermal Resistance I Junction - ambient 1) 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 536 Siemens RthJA I ~125 IKIW BFQ64 Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter Symbol Unit Values min typ max Collector-emitter cutoff current VCE = 30 V. VBE = 0 ICES - - 1 mA Collector-base cutoff current VCB = 15 V. IE = 0 ICBO - - 200 nA Emitter-base cutoff current VEB = 2 V. Ic = 0 lEBO - - 10 !lA DC current gain Ic=120mA, VcE =5V hFE 25 - - - Siemens 537 BFQ64 AC characteristics Parameter Symbol Values Unit min typ max Transition frequency Ie = 100 rnA, VeE = 5 V; f= 200 MHz fT - 3 - GHz Collector-base capacitance VCB = 10 V; VBE = vbe = 0, f= 1 MHz Ccb - 1 - pF Input capacitance VEB = 0.5 V; Ie = ic = 0'(= 1 MHz C,bo - 11.5 - pF Power gain Gpe - 10 - dB Linear output voltage two-tone intermodulation test Ie = 100 rnA, VeE = 10 V; diM = 60 dB f1 = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 n Vo1 = Vo2 - 600 - mV Third order intercept point Ie = 100 rnA, VeE = 10V; f= 800 MHz IP3 - 38.5 - dBm Ie = 100 rnA, VeE = 10V; f= 800 MHz, Zs = ZSopt> ZL = ZLopt 538 Siemens BFQ64 Total power dissipation P tot = f IT,.) Package mounted on alumina W 1.2 P. fl.0 O.B \. \ [\ \ 0.6 \ 0.4 \ 1\ 0.2 \. o o \ 50 100 150 "C Siemens 539 NPN Silicon RF Transistor BFQ81 • For low-noise amplifiers up to 2 GHz and broadband analog and digital applications in telecommunications systems at col/ector currents from 0.5 to 20 mA. ~ CECC-type available: CECC 50002/257. ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFO 81 RA o 62702 - SOT-23 F1 049 Maximum Ratings Parameter Symbol Value Unit Col/ector-emitter voltage Col/ector-base voltage VCEO 16 V VCBO 25 V Emitter-base voltage VEBO 2 V Collector current Ic 30 mA Total power dissipation, TA ~ 25 °C2) PIOI 280 mW Junction temperature 7j 150 °c Ambient temperature range TA -65 ... +150 °c Storage temperature range Tslg -65 ... +150 °c RthJA ~450 Thermal Resistance Junction - ambient 1 ) 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 540 Siemens IKIW BFQ81 Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter Symbol Values Unit min typ max V(BR)CEO 16 - - V Collector-base cutoff current VCB = 15 V, IE = 0 ICBO - - 100 nA Emitter-base cutoff current VES = 2 V, Ic = 0 lEBO - - 10 J.LA DC current gain hFE 50 50 - 250 - Collector-emitter breakdown voltage Ic=1 mA,Is=O Ic= 5 mA, VCE = 10V Ic=15mA, VcE =10V - Collector-emitter saturation voltage Ic = 30 mA, Is = 3 mA VCEsat - 0.2 0.4 V Base-emitter voltage Ic = 10 mA, VCE = 10 V VBE - 0.78 - V Siemens 541 BFQ81 AC characteristics Parameter Symbol Values Unit min typ max - 4.2 5.8 - Transition frequency Ic= 5 rnA, VCE = 10 V, f= 200 MHz Ic = 15 rnA, VCE = 10V, f= 200 MHz fr Collector-base capacitance VCB = 10 V, VBE = Vbe = 0, f= 1 MHz Gcb - Collector-emitter capacitance VCE = 10 V, VBE = Vbe = 0, f= 1 MHz Gce Input capacitance. VEB = 0.5 V,Ic = ic = 0, f= 1 MHz GHz 0.38 - pF - 0.22 - pF C,bo - 1.27 - pF Output capacitance VcE =10V, VBE =Vbe=0,f=1 MHz Gobs - 0.6 - pF Noise figure Ic= 3 rnA, VCE = 10V, f= 10MHz,Zs=75n Ic= 5 rnA, VCE = 10 V,f= 800 MHz, Zs = 50 n Ic=10mA, VcE =10V,f= 2 GHz, Zs = Zsopt F 0.9 1.4 2.5 Power gain Ic= SmA, VcE =10V,f=800MHz, Zs = 50 n, ZL = ZLOPt Gpe - 15 - dB Transducer gain Ic = 20 rnA, VCE = 10V, f= 1 GHz, 2{. = 50 n 1~1e12 - 12.4 - dB Linear output voltage two-tone intermodulation test Ic = 25 rnA, VCE = 10V, diM =60dB r, =806 MHz, f2 =810MHz,Zs=ZL=50n Vo1 = Vo2 - 160 - mV Third order intercept point Ic = 25 rnA, VCE = 10 V, f= 800 MHz 1P3 - 27 - dBm 542 Siemens dB BFQ81 Total power dissipation P'ot = f IT,J Package mounted on alumina Transition frequency fT = f (Icl f=200MHz mW 6Hz 6 400 i--l 1/ VCE=~V 1I 1---1-1'-- 1// , "200 , 3 " , IA 4 I"1'\ \ 1V II \ 1\ 2 100 1'\ o o 50 1'\ 150 DC 100 o o 10 20 30 mA --Ie -TA Collector-base capacitance COb VBE = Vbe=O, (=1 MHz =f (Vca) pF 1.0 r\\ 0.5 o i'-- I-.... o -. t- t - 10 t-- 20 V -\'cs Siemens 543 BFQ81 Common Emitter Noise Parameters Ie = 3 rnA, VeE = 10 V. Zo = 50 Q f Fmin Topt Gp (Fmin) GHz dB dB 0.01 0.7 - MAG 1 ANG (Zs = 150 Q) Ie = 5 rnA, VeE = 10 V. 2Q =50 Topt Fmin Gp (Fmin) GHz dB dB MAG 0.01 0.8 0.8 1.3 - (Zs = 150 Q) 0.22 71.5 1 ANG I 14.2 Ie = 10 rnA, VeE = 10 V, 2Q = 50 f Fmin Gp (Fmin) dB dB MAG 2.0 2.5 8.5 0.27 Topt 1ANG 1-139 Noise figure F=f(lcl VeE = 10V, f= 10 MHz dB 3 F \ Zs=1S0~\ - rsoQ 7SQ, ~ ,... I ,'-. ~ r' -~ i--"'"" K:: ./ I>i--"'"" ~ I-" .......:: i:---' '- o o 10 20 mA -Ie 544 F 50n Q - dB dB - 1.2 - RN ·N F50n Gp Q dB dB - 0.19 1.15 1.4 - 11.7 Gp (F50nl (F50nl 14 Q GHz 2 N Q f t RN Siemens RN N F 50n Gp Q - dB dB 14.2 0.39 2.8 - (F50nl BFQ81 Noise figure F = f (Iel VCE = 10 V, f= 800 MHz, ZLopt (G) Circles of constant noise figure F= f (Zs) and available power gain Gav = f (Zs) Ic=5mA, VcE =10Y, f=800MHz + dB 3 j50 F t I \ is=5011~ V \f\.. f- ~ ~ - j SO o Circles of constant noise figure F = f (Zs) and available power gain Gav = f (Zs) Ic= 10 mA, VCE = 10V, f= 2 GHz + j 50 - ....-:: -::..-- i--""" :lsopt o 20 rnA 10 Noise figure F= f (Iel VCE = 10V, f= 2 GHz, ZLoPt (G) dB 4 I I _I I r 2s=5011 :;;;; ~ /' I V ..,- \ \ ....--r I "- - \\. /' 2 I I 7 ]7 ./ "'Zsopt 6.,=10.3,10,9,8,7 dB - j 50 o o 20 rnA 10 -Ie Siemens 545 BFQ81 Common Emitter Power Gain dB 30 Power gain Gms, 15;,1.12 = f (lei VCE = 10V, f= 200 MHz,.20 = 50n Um. / 1/ 7 / dB 30 -- Power gain Gma, 15;,1.12 =f (lei VCE = lOll, f= 500 MHz,.20= 50n I- l.--" l - I - I- Um. 7 IS21.12 1/ ~./ 10 - l- II IS21.1 I- ams- 2 10 -l I >-- I- U s21. >-- I- I m· l- ~12. 'I 10 -I -S 2"1 S12. 10 20 mA -Ie 20 mA -Ie Power gain Gm., Gms, 15;,1.12 =f (leI VCE = 10 II, f= 1 GHz,.20 = 50 n Power gain Gma, 15;,1.12 =f(lel VCE = 1011, f= 2 GHz,.20 = 50n dB 20 dB 20 1 I u"" Um. l- I- V d .1 I I I =Is21·I·(k -/kG') - I I um. 112 • I Um. V IS21.1 2 10 10 ~ I- II I- Um• = S21. I- um. S12. I V - - =l s21·1·(k_Jk 2_1',- ~12"1 I I I I 10 20 mA 10 20 mA -Ie -Ie 546 IS21.1 2 Siemens BFQ81 Power gain Gma , Gmso 1$",.1 2 = f (fl Ic Power gain Gma , Gms• 1$",.1 2 = f (fl = 2 mA, VCE = 10 V, Zo = 50 n Ie = 5 mA, VeE = 10 V, Zo dB 30 Oma Oms 1521 i 1 15 "'- r--.. 0 ms 20 15 21,1 I------ 2,i t ......... 20 "" " 1521,1 2 " i'l'. \. Oma 10 r'\. o ms-_\5 - 21 , 1 5'2, o I Oms -.... I'-.. I- Oma -"'"""," " Oma Oms ~ "'-\ "1~2"'2. I· (k -Jk2J J 0.5 0.1 "'"\. 10 2 52 ", _Oms= 15'2, o ma -_1 -52 "1 ·(k- k -1) 5'2. I o 3 GHz 0.1 0.5 dB 30 .1 Oma Oms Oms 1 20 15 '\. I------ 1521,1 2 '\ ~ ~ 2,i I I-- Oms = 152', 1 =1~21'1·(k_./kG') f- Om, I 1'2 • i 20 I------ '\ I\. &1 ms I\. r\ 1\ 15 2,,1 2 "' '\ Oma - I-- "'-""" 10 "'- _1 5'2, I I5'2, I· Oma = 52', (k 2 "fm - " o ms- 52 I I I I II 0.5 3 GHz '\. "\ 5'2, I-- 1"'- 1 2 -f f-- "'-" "\ ~ 10 ~ ~ r'\. "' '\ 1\ Oma 'fm Power gain Gma • Gms • 1$",.1 2 = f (tl le=20mA, VcE =10Il,Zo=50n dB 30 I5 21 i "'-\ .Jk21 Power gain Gma , Gms .I$",.1 2 = f (fl le=10mA, VeE =10V,Zo=50n "'"" " '" " "' _'\. oma- I' 1"'1 1\ -f Oma Oms = 50 n dB 30 3 GHz -f o0.1 "\ -IkG\ 0.5 2 3 GHz -f Siemens 547 BFQ81 Common Emitter S Parameters Ic = 1 rnA, VCE = 1 V, ~ = 50 n GHz 5 11 MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 0.950 0.931 0.910 0.882 0.854 0.797 0.743 0.700 0.659 0.636 0.612 0.590 0.566 0.551 0.546 0.547 0.548 0.559 - 18.8 - 28.0 - 36.9 - 45.5 - 53.6 - 68.8 - 82.4 - 94.9 -106.5 -116.6 -126.7 -136.0 -152.5 -167.0 -173.7 -179.7 168.9 158.6 3.58 3.51 3.42 3.30 3.17 2.90 2.64 2.41 2.21 2.04 1.90 1.76 1.54 1.37 1.31 1.25 1.15 1.06 165.3 158.2 151.3 144.8 138.6 127.5 117.9 109.3 101.8 94.9 88.6 82.7 72.7 64.2 60.6 56.7 49.8 43.5 0.046 0.067 0.087 0.105 0.120 0.145 0.163 0.175 0.184 0.190 0.192 0.192 0.190 0.185 0.182 0.181 0.179 0.180 78.6 73.2 68.1 63.2 58.7 50.9 44.6 39.5 35.3 31.7 28.9 26.9 24.5 24.1 24.9 26.0 29.1 33.3 0.980 0.962 0.939 0.913 0.885 0.827 0.775 0.729 0.690 0.657 0.628 0.603 0.567 0.544 0.535 0.529 0.518 0.506 - 8.6 -12.5 -16.3 -19.8 -22.9 -28.3 -32.7 -36.2 -39.1 -41.4 -43.6 -45.5 -49.0 -52.7 -54.6 -56.6 -60.8 -65.5 f 548 ~2 5.21 Siemens 5.22 BFQ81 1 V, Zo = 50 n Ic = 2 rnA, VCE = f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 0.904 0.869 0.829 0.784 0.742 0.668 0.611 0.569 0.535 0.518 0.501 0.488 0.476 0.472 0.468 0.473 0.477 0.493 - 25.9 - 38.1 - 49.5 - 60.0 - 69.7 - 86.8 -101.3 -114.0 -125.4 -135.0 -144.8 -153.4 -168.4 178.6 172.8 167.8 157.8 149.4 6.71 6.42 6.06 5.67 5.27 4.57 3.99 3.51 3.14 2.83 2.59 2.37 2.04 1.79 1.69 1.62 1.48 1.36 160.4 151.4 143.2 135.9 129.2 118.2 109.1 101.5 95.0 89.1 83.8 78.9 70.6 63.3 60.0 56.6 50.5 44.7 0.045 0.064 0.081 0.094 0.106 0.122 0.133 0.141 0.147 0.152 0.156 0.159 0.166 0.173 0.178 0.183 0.195 0.209 75.4 68.8 63.1 58.1 53.9 47.5 43.1 40.2 38.3 37.0 36.4 36.3 37.3 38.9 40.1 41.1 43.0 44.7 0.955 0.917 0.870 0.823 0.776 0.692 0.627 0.575 0.535 0.503 0.476 0.454 0.422 0.401 0.395 0.390 0.380 0.367 -13.1 -18.8 -23.8 -28.1 -31.7 -37.2 -41.0 -43.8 -46.0 -47.6 -49.2 -50.4 -53.0 -56.0 -57.6 -59.4 -63.2 -67.8 ~2 8 12 ~1 Siemens 549 BFQ81 = 3 V. zo = 50 n Ic = 2 rnA, VCE f ~1 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.916 0.886 0.851 0.810 0.770 0.695 0.629 0.580 0.534 0.511 0.486 0.466 0.444 0.431 0.424 0.427 0.426 0.440 0.491 0.518 - 21.7 - 32.2 - 42.0 - 51.2 - 59.9 - 75.5 - 89.2 -101.6 -112.8 -122.7 -132.7 -141.9 -158.1 -172.8 -179.2 175.2 164.1 154.8 133.9 117.9 6.74 6.52 6.25 5.92 5.58 4.94 4.37 3.90 3.51 3.18 2.91 2.68 2.30 2.03 1.91 1.82 1.66 1.52 1.26 1.10 163.0 155.0 147.6 140.8 134.5 123.8 114.9 107.3 100.7 94.8 89.5 84.6 76.2 68.9 65.6 62.3 56.3 50.5 38.6 28.4 0.032 0.046 0.058 0.069 0.078 0.093 0.102 0.110 0.115 0.120 0.123 0.126 0.132 0.139 0.143 0.148 0.159 0.172 0.216 0.273 77.8 72.3 67.2 62.8 58.9 52.8 48.4 45.6 43.8 42.5 42.0 42.1 43.2 45.4 46.9 48.3 50.9 53.1 57.5 57.9 0.970 0.943 0.911 0.875 0.840 0.773 0.718 0.673 0.639 0.611 0.586 0.567 0.538 0.520 0.515 0.511 0.503 0.491 0.465 0.457 - 9.3 -13.4 -17.1 -20.3 -23.1 -27.2 -30.2 -32.4 -34.0 -35.2 -36.3 -37.2 -39.1 -41.3 -42.5 -43.9 -46.8 -50.2 --60.6 -71.6 550 8 12 5:11 Siemens 5:12 BFQ81 Ic = 5 mA, VCE = 3 V. Zo = 50 !1 f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.807 0.741 0.673 0.611 0.558 0.479 0.425 0.389 0.363 0.351 0.340 0.335 0.331 0.333 0.329 0.335 0.341 0.359 0.413 0.444 - 34.6 - 49.5 - 62.5 - 73.9 - 84.1 -101.1 -115.1 -127.2 -138.1 -146.9 -156.1 -164.3 -178.1 168.8 163.5 159.1 150.4 143.3 126.8 114.2 14.10 12.83 11.53 10.31 9.23 7.55 6.33 5.44 4.77 4.24 3.82 3.47 2.95 2.57 2.41 2.29 2.07 1.89 1.57 1.37 153.1 142.1 132.9 125.4 119.2 109.4 102.1 96.1 90.9 86.5 82.3 78.5 72.0 66.0 63.3 60.5 55.3 50.4 39.6 29.7 0.029 0.040 0.049 0.055 0.061 0.070 0.078 0.085 0.093 0.101 0.108 0.116 0.132 0.149 0.158 0.168 0.186 0.205 0.255 0.308 72.7 66.2 61.7 58.6 56.4 54.3 54.0 54.4 55.2 55.8 56.6 57.5 58.6 59.3 59.6 59.7 59.5 59.0 57.2 54.0 0.912 0.842 0.773 0.711 0.659 0.579 0.527 0.491 0.465 0.447 0.431 0.418 0.399 0.388 0.386 0.383 0.378 0.366 0.336 0.326 -16.5 -22.4 -26.7 -29.8 -31.8 -34.0 -35.1 -35.4 -35.9 -36.1 -36.6 -36.9 -38.1 -39.8 -40.9 -42.2 -45.3 -48.6 -58.4 -69.1 5.11 Siemens 5.12 551 BFQ81 Ic = 2 mA, VCE 6 V, = ZO = 50 n 5.z1 GHz 8 11 MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.924 0.896 0.863 0.824 0.785 0.709 0.642 0.588 0.539 0.511 0.481 0.457 0.427 0.410 0.402 0.403 0.402 0.415 0.465 0.492 - 20.0 - 29.6 - 38.8 - 47.5 - 55.6 - 70.5 - 83.6 - 95.6 -106.7 -116.4 -126.5 -135.8 -152.6 -167.9 -174.6 179.4 167.6 157.7 135.6 119.2 6.69 6.50 6.25 5.96 5.64 5.04 4.49 4.03 3.64 3.31 3.04 2.80 2.41 2.12 2.00 1.90 1.72 1.58 1.31 1.14 164.0 156.5 149.4 142.8 136.7 126.2 117.4 109.8 103.2 97.3 92.0 87.1 78.7 71.3 68.0 64.7 58.7 53.1 41.0 30.7 0.026 0.038 0.048 0.058 0.066 0.079 0.088 0.094 0.099 0.104 0.107 0.110 0.115 0.121 0.125 0.129 0.139 0.151 0.193 0.248 78.8 73.5 69.0 64.8 61.1 55.1 51.0 48.2 46.4 45.2 44.7 44.9 46.3 48.7 50.5 52.0 55.1 57.8 63.0 64.1 0.976 0.954 0.927 0.898 0.868 0.811 0.763 0.723 0.692 0.667 0.645 0.627 0.602 0.586 0.582 0.579 0.573 0.563 0.540 0.535 - 7.7 -11.2 -14.2 -16.9 -19.2 -22.8 -25.4 -27.2 -28.6 -29.7 -30.6 -31.4 -33.1 -35.0 -36.1 -37.2 -39.8 -42.7 -51.7 -61.2 f ~,. s.,. = f (f) Ic=2 mA, 5.z2 8 12 ~2. VCE=6V,~=50Q s", = f (f) Ic=2 mA, +j50 VCE=6V,~=50Q 90· o 180· -j50 552 -90· Siemens BFQ81 Ic = f 5 rnA, VCE = 6 V. Zo = 50 n 511 MAG ANG 5 12 MAG ANG MAG ANG 13.95 12.83 11.65 10.51 9.48 7.83 6.60 5.69 4.99 4.45 4.02 3.66 3.10 2.70 2.53 2.40 2.17 1.98 1.65 1.43 154.8 144.3 135.4 127.9 121.7 111.8 104.3 98.2 93.0 88.5 84.3 80.5 74.0 68.0 65.2 62.6 57.4 52.6 41.8 31.9 0.024 0.034 0.041 0.048 0.053 0.061 0.068 0.075 0.081 0.088 0.095 0.102 0.116 0.131 0.139 0.147 0.164 0.181 0.228 0.278 74.1 68.3 63.9 60.7 58.5 56.2 55.7 56.2 57.0 57.7 58.6 59.4 61.0 61.9 62.5 62.7 63.0 62.8 61.8 59.4 0.929 0.872 0.813 0.759 0.713 0.641 0.594 0.561 0.538 0.521 0.507 0.497 0.480 0.470 0.469 0.467 0.463 0.453 0.426 0.419 -13.4 -18.3 -21.9 -24.4 -26.1 -27.8 -28.6 -29.0 -29.2 -29.5 -29.9 -30.2 -31.3 -32.9 -33.8 -35.0 -37.6 -40.4 -48.6 -57.5 5.?1 GHz MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.827 0.764 0.698 0.634 0.577 0.490 0.426 0.385 0.352 0.332 0.318 0.308 0.300 0.297 0.294 0.298 0.303 0.321 0.379 0.408 - 31.1 - 44.7 - 56.7 - 67.4 - 76.8 - 93.0 -106.3 -118.4 -129.1 -138.4 -147.9 -156.8 -171.9 173.9 168.2 162.9 153.6 146.0 128.4 115.3 5", s.:. = f If) 5.?2 5,2. 5", = f If) Ie =5 rnA, VeE = 6\1, Zo = 50 Q Ie =5 rnA, VeE = 6\1, Zo = 50 Q 90' o 180' _135' -90' -j50 Siemens 553 BFQ81 Ic = 10 mA, VCE = 6 V, Zo = 50 Q S:e, f 8" 8 '2 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.704 0.610 0.529 0.465 0.415 0.348 0.304 0.278 0.261 0.254 0.248 0.248 0.250 0.256 0.255 0.260 0.266 0.286 0.346 0.377 - 43.8 - 60.5 - 74.2 - 85.5 - 95.3 -111.8 -125.2 -137.0 -147.1 -156.0 -164.7 -172.2 174.1 161.4 156.4 152.1 144.3 138.5 123.8 112.9 21.34 18.27 15.62 13.44 11.72 9.26 7.62 6.46 5.61 4.96 4.45 4.04 3.41 2.96 2.78 2.63 2.37 2.16 1.79 1.55 144.8 132.6 123.4 116.4 110.9 102.7 96.6 91.6 87.4 83.7 80.3 77.0 71.4 66.0 63.6 61.2 56.5 52.2 41.9 32.4 0.022 0.029 0.035 0.039 0.044 0.052 0.060 0.068 0.077 0.086 0.094 0.103 0.121 0.139 0.148 0.158 0.177 0.195 0.244 0.293 70.4 65.1 62.6 61.7 61.3 62.1 63.3 64.6 65.6 66.1 66.6 67.0 67.2 66.9 66.8 66.4 65.6 64.4 61.5 57.8 0.855 0.763 0.687 0.629 0.586 0.528 0.496 0.474 0.461 0.451 0.442 0.436 0.424 0.418 0.418 0.417 0.413 0.403 0.375 0.366 -19.0 -23.8 -26.4 -27.5 -27.8 -27.5 -27.1 -26.7 -26.8 -26.9 -27.2 -27.5 -28.8 -30.5 -31.6 -32.8 -35.7 -38.6 -46.7 -55.6 5", s." = f (f) 5,2, ~, = f (f) Ic = 10 mA, VCE = 6 V, Zo = 50 n Ic=10mA, VcE =6\1,Zo=50n _90 0 -j50 554 S:e2 Siemens BFQ81 Ic = 20 rnA, VCE = 6 V, ~ = 50 Q ~1 ~2 f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.566 0.464 0.394 0.345 0.311 0.271 0.247 0.236 0.229 0.228 0.231 0.232 0.242 0.253 0.253 0.258 0.266 0.284 0.345 0.374 - 59.2 - 78.4 - 93.3 -105.1 -115.2 -131.9 -144.7 -155.3 -164.1 -171.4 -178.8 174.7 163.6 152.6 148.5 144.9 138.1 133.9 121.1 110.8 27.49 21.82 17.76 14.82 12.67 9.78 7.93 6.68 5.78 5.09 4.56 4.13 3.48 3.02 2.83 2.68 2.41 2.19 1.82 1.58 134.2 121.9 113.6 107.7 103.1 96.4 91.4 87.2 83.6 80.4 77.3 74.4 69.3 64.3 62.0 59.7 55.2 51.0 41.0 31.7 0.019 0.024 0.029 0.034 0.038 0.047 0.056 0.065 0.075 0.084 0.094 0.103 0.122 0.141 0.151 0.161 0.180 0.200 0.249 0.297 67.5 64.6 64.7 65.3 66.3 68.2 69.6 70.6 71.1 71.2 71.3 71.2 70.6 69.7 69.3 68.6 67.3 65.8 62.2 58.1 0.760 0.655 0.584 0.538 0.507 0.469 0.451 0.439 0.431 0.426 0.421 0.417 0.409 0.404 0.405 0.404 0.401 0.391 0.363 0.353 -22.9 -25.9 -26.3 -25.9 -25.1 -23.6 -22.9 -22.6 -22.8 -23.2 -23.8 -24.3 -25.9 -27.9 -29.1 -30.5 -33.6 -36.7 -44.8 -53.9 S,2, ~, = f If) Ie =20 rnA, VeE = 611,.2{,= 500 S",~=flf) Ie = 20 rnA, VeE = 611,.2{, = 500 +j50 o 1800 _90 0 -j50 Siemens 555 BFQ81 = 10 V, Zo = 50 Q Ic = 2 rnA, VCE f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.931 0.905 0.874 0.836 0.796 0.722 0.654 0.597 0.544 0.513 0.481 0.455 0.421 0.399 0.390 0.390 0.385 0.398 0.447 0.478 - 18.9 - 28.2 - 36.9 - 45.2 - 53.0 - 67.4 - 80.2 - 91.9 -102.7 -112.3 -122.3 -131.7 -148.7 -164.4 -171.2 -177.8 170.4 160.0 136.9 119.7 6.59 6.41 6.19 5.92 5.62 5.05 4.52 4.06 3.68 3.35 3.09 2.85 2.45 2.16 2.03 1.93 1.76 1.61 1.33 1.15 164.6 157.4 150.4 144.1 138.0 127.7 118.9 111.3 104.7 98.9 93.5 88.5 80.0 72.6 69.4 66.1 60.1 54.4 42.3 31.8 0.023 0.034 0.043 0.052 0.059 0.071 0.079 0.085 0.090 0.094 0.097 0.100 0.105 0.110 0.114· 0.118 0.127 0.138 0.177 0.229 79.4 74.4 70.0 65.9 62.5 56.5 52.4 49.7 47.9 46.6 46.2 46.5 47.9 50.5 52.4 54.0 57.3 60.2 66.0 67.7 0.978 0.960 0.937 0.911 0.884 0.833 0.789 0.753 0.725 0.702 0.681 0.666 0.642 0.628 0.625 0.622 0.617 0.609 0.589 0.587 - 6.7 - 9.8 -12.5 -14.9 -17.0 -20.1 -22.4 -24.1 -25.4 -26.3 -27.2 -27.9 -29.5 -31.2 -32.2 -33.3 -35.6 -38.2 -46.2 -54.8 ~, ~2 8 '2 5,1 ,5,2 = f If) Ie = 2 rnA, VeE = 10V, Zo = 50 n 5,2,5" = f If) Ie = 2 rnA, VeE = 10V, Zo = 50 n +j50 o 1800 _90 0 -j50 556 Siemens BFQ81 Ic = 5 rnA, VCE = 10 V. Zo = 50 Q ~1 ~2 f $11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.847 0.786 0.721 0.657 0.599 0.506 0.437 0.389 0.351 0.329 0.310 0.296 0.283 0.278 0.273 0.278 0.280 0.298 0.357 0.390 - 28.9 - 41.7 - 53.1 - 63.1 - 72.1 - 87.6 -100,4 -112.2 -122.8 -132.0 -141.8 -150.7 -166.8 178.1 171.8 166.1 156.3 148.3 129.4 116.1 13.60 12.60 11.53 10.46 9.48 7.89 6.68 5.77 5.08 4.53 4.10 3.73 3.17 2.76 2.58 2.45 2.21 2.02 1.67 1.45 156.0 145.9 137.1 129.7 123.4 113.5 105.9 99.6 94.4 89.8 85.6 81.7 75.2 69.1 66.4 63.7 58.7 53.8 42.9 33.1 0.022 0.030 0.038 0.043 0.048 0.056 0.062 0.069 0.075 0.081 0.087 0.093 0.106 0.120 0.127 0.134 0.150 0.166 0.209 0.257 75.1 69.5 65.1 61.9 59.7 57.2 56.7 57.0 57.8 58.5 59.4 60.4 61.9 63.1 63.9 64.2 64.8 64.9 64.6 62.8 0.939 0.889 0.837 0.790 0.747 0.682 0.639 0.607 0.586 0.570 0.557 0.548 0.532 0.524 0.523 0.522 0.518 0.510 0.487 0.482 -11.5 -15.8 -19.0 -21.2 -22.7 -24.3 -25.0 -25.3 -25.6 -25.9 -26.2 -26.5 -27.6 -29.0 -29.9 -31.0 -33.3 -35.9 -43.1 -51.1 $12 5,2. 5", = f If) 5". Sn = f If) Ic=5mA, VcE =10\/'Zo=50Q Ic = 5 rnA, VCE = 10\/, Zo =50 Q 90· o 180· _90· -jSO Siemens 557 BFQ81 Ie = 10 rnA, VeE = 10 V. Zo = 50 Q ~1 ~2 f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.744 0.650 0.566 0.497 0.441 0.362 0.310 0.277 0.254 0.242 0.234 0.229 0.227 0.232 0.231 0.237 0.242 0.261 0.324 0.355 - 39.7 - 55.4 - 68.1 - 78.7 - 88.0 -103.8 -116.5 -128.3 -138.5 -147.7 -157.0 -165.8 179.4 165.5 159.6 155.1 146.5 140.5 124.8 113.5 20.56 17.86 15.44 13.39 11.74 9.33 7.70 6.54 5.70 5.04 4.52 4.10 3.46 3.01 2.82 2.67 2.40 2.19 1.82 1.57 146.8 134.8 125.6 118.5 112.8 104.4 98.1 93.0 88.6 84.9 81.4 78.1 72.4 67.1 64.6 62.2 57.6 53.2 42.9 33.4 0.020 0.027 0.032 0.037 0.041 0.048 0.055 0.063 0.071 0.079 0.086 0.094 0.111 0.127 0.135 0.144 0.161 0.179 0.224 0.270 71.5 66.3 63.4 62.1 61.7 62.2 63.3 64.6 65.7 66.3 67.0 67.5 67.9 67.8 68.0 67.7 67.2 66.3 64.0 61.0 0.877 0.798 0.729 0.675 0.635 0.580 0.549 0.529 0.516 0.507 0.499 0.493 0.483 0.477 0.477 0.476 0.474 0.465 0.440 0.433 -16.2 -20.4 -22.7 -23.8 -24.1 -23.9 -23.6 -23.3 -23.4 -23.6 -23.9 -24.2 -25.4 -27.0 -28.0 -29.1 -31.7 -34.3 -41.4 -49.3 5 ,2, 5", = f (f) Ie = 10 mA, VCE = 10V, Zo = 50 n 5 11 ,5,,2 = f (f) le=10mA, VcE =10V,Zo=50n o 558 Siemens BFQ81 Ic = 20 rnA, VCE = 10 V, Zo = 50 Q ~, ~2 f 8" GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.628 0.517 0.435 0.376 0.332 0.277 0.243 0.227 0.215 0.211 0.210 0.210 0.218 0.227 0.228 0.234 0.241 0.260 0.324 0.355 - 52.7 - 70.3 - 84.1 - 95.1 -104.6 -121.1 -133.6 -145.2 -155.2 -163.0 -171.5 -179.1 168.5 156.3 151.2 147.5 140.0 135.5 122.0 111.7 26.24 21.27 17.51 14.71 12.62 9.79 7.97 6.72 5.82 5.13 4.59 4.16 3.50 3.04 2.84 2.69 2.42 2.21 1.83 1.58 137.1 124.7 116.0 109.8 105.0 98.0 92.7 88.4 84.7 81.4 78.3 75.4 70.1 65.0 62.7 60.4 56.0 51.7 41.7 32.3 0.018 0.023 0.028 0.032 0.036 0.044 0.052 0.060 0.069 0.078 0.086 0.095 0.112 0.130 0.139 0.147 0.165 0.183 0.229 0.275 68.5 65.1 64.3 64.8 65.6 67.3 68.9 70.0 70.7 71.0 71.2 71.3 71.1 70.4 70.2 69.7 68.7 67.5 64.5 61.1 0.800 0.705 0.639 0.595 0.565 0.528 0.510 0.498 0.492 0.486 0.481 0.477 0.470 0.466 0.467 0.467 0.465 0.456 0.431 0.424 -19.4 -22.1 -22.7 -22.4 -21.8 -20.6 -20.1 -19.9 -20.1 -20.5 -21.0 -21.6 -23.0 -24.9 -26.0 -27.3 -30.0 -32.8 -40.0 -48.1 8'2 S,2, 5:., =f (f) le= 20 mA, VeE = 10V, Zo= 50 0 s". 5z! = f (f) Ie = 20 mA, VeE = 10 V, Zo=500 -jSO -90 0 Siemens 559 BFR35AP NPN Silicon RF Transistor • For broadband amplifiers up to 2 GHz and fast nonsaturated switches at collector currents from 0.5 to 20 mA. ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFR35AP GE Q 62702 - F 938 SOT-23 Maximum Ratings Parameter Symbol Collector-emitter voltage Collector-emitter voltage, VSE = 0 Values Unit VCEO 12 V VCES 20 V Emitter-base voltage VESO 2.5 V Collector current Ic 30 mA Base current Is 4 mA Total power dissipation, TA ~ 25 °C 2) Ptot 280 mW Junction temperature 7j 150 °c Ambient temperature range TA -65 ... +150 °c Storage temperature range Tstg -65 ... +150 °c Thermal Resistance Junction - ambient 1) RthJA 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 560 Siemens I ~450 IKIW BFR35AP Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter Symbol Values Unit min typ max Collector-emitter breakdown voltage Ic = 1 mA,ls= 0 \l(sR)CEO 12 - - V Collector-emitter cutoff current VcE =20V, VSE=O ICES - - 100 ~ Collector-base cutoff current Vcs =10V,IE =0 Icso - - 50 nA Emitter-base cutoff current VES = 2.5 V, Ic = 0 I Eso - - 100 ~ DC current gain Ic= 5mA, VcE =6V Ic=20mA, VcE =6V !Jr,E 40 40 85 90 - Collector-emitter saturation voltage Ie =30 mA, Is =3 mA VCEsat - 0.16 0.4 Siemens V 561 BFR35AP AC characteristics Symbol Parameter min Values typ max - Unit GHz Transition frequency Ic= 5mA, VcE =6V, f=200MHz Ic = 20 mA, VCE = 6 V, f= 200 MHz fT 3.6 3.8 4.9 Collector-base capacitance VCB = 6 V, VBE = vbe = 0, f= 1 MHz C eb - 0.56 0.7 pF Collector-emitter capacitance VCE = 6 V, VBE = Vbe = 0, f= 1 MHz C ee - 0.27 - pF Input capacitance VEB = 0.5 V, Ic = ie = 0, f= 1 MHz C,bo - 0.9 - pF Output capacitance VCE = 6 V, VBE = Vbe = 0, f= 1 MHz Cobs - 0.85 - pF Noise figure Ic=5mA, VCE = 6V, f= 10 MHz, Zs = 75 n Ic=2mA, VCE = 6V, f=800MHz,Zs=Zsopt Ic = 3 mA, VCE = 10V, f= 2 GHz, Zs = Zsopt F - - 1.5 1.5 3.9 Power gain Ic = 15 mA, VCE = 6 V, f= 800 MHz Zs = 50 n, ZL = ZLOPt Gpe - 14 - dB Transducer gain Ic=15mA, VcE =6V, f=1 GHz,Zo=50n 15.11e1 2 - 11 - dB Linear output voltage two-tone intermodulation test Ic = 15 mA, VCE = 10V, ~M = 60dS fl = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 n Vol = Vo2 - 110 - mV Third order intercept point Ic = 15 mA, VCE = 10V, f= 800 MHz IP3 - 23.5 - dBm 562 Siemens - dB BFR35AP Total power dissipation Ptot = f (Till Transition frequency fT = f (Id VeE = 6 V,f= 200 MHz Package mounted on alumina GHz rnW 400 6 flot t 300 V ~ v ,.. / \ 1,\ 200 f 3 1\ I I\. 2 100 I I \ i\ I\. o o o o 150 0 ( 100 50 10 20 rnA -T,. Collector-base capacitance Ccb VSE = Vbe = O. f= 1 MHz =f (Vee) pF 1.0 1\ 1\ \ 1\ ...... O.S o o ........ r-..... ---- 10 I-- 20 V -lis Siemens 563 BFR 35AP Common Emitter Noise Parameters = 2 rnA, VeE = 6 V. Zo = 50 n Ie f Fmin Gp GHz dB dB 0.01 1.05 - Ie = 5 rnA, VeE = 6 V. Zo f Fmin GHz dB dB 0.01 0.8 1.3 1.7 - Gp r opt RN N Fson Gp (Fson) lANG n dB (Zs= 150n) - - 3 dB - RN N Fson Gp (Fsonl lANG n dB - - dB (Zs = 100n) - 16.9 0.24 1.6 1.9 (Fmin) MAG = 50 n r opt (Fmin) MAG 14.3 I 58.5 0.25 = Noise figure F f (Zs) VcE =6 V. f= 10 MHz dB 4 IA AI ~=~O~~ lF 3 V V :l I....V lOrnA I J...1'" 2 W~ \.. ". -"SmA2m~ lmA - o o 564 100 200 300Sl Siemens 14 BFR35AP Circles of constant noise figure F =f (Zs) lc= 5 rnA, VCE = 6 V, f= 800 MHz Noise figure F=f(Icl VCE = 6 V, f= 800 MHz, ZLopt (G) dB 5 F l 4 3 2 -j 50 o \ - z~~ ~ ~ ~ ;...-" \ ~ ~oPt o 10 20 rnA -Ie Siemens 565 BFR35AP Common Emitter S Parameters Ie = 0.5 rnA, VeE = 1 V, .20 = 50 n ~1 ~2 ~2 f $11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.967 0.956 0.941 0.923 0.903 0.859 0.812 0.765 0.717 0.686 0.645 0.610 - 12.3 - 18.4 - 24.3 - 30.2 - 35.9 - 47.0 - 57.2 - 67.2 - 76.5 - 85.5 - 94.5 -103.1 1.83 1.82 1.81 1.78 1.75 1.68 1.59 1.51 1.44 1.36 1.31 1.25 168.2 162.3 156.4 150.8 145.2 134.7 125.1 116.1 108.0 100.3 93.3 86.6 0.050 0.075 0.098 0.120 0.141 0.177 0.207 0.231 0.249 0.265 0.275 0.281 81.5 77.4 73.2 69.3 65.4 58.2 51.8 46.2 41.2 36.3 32.3 28.6 0.990 0.982 0.970 0.955 0.939 0.902 0.864 0.826 0.790 0.757 0.725 0.695 - 6.7 -10.0 -13.0 -16.2 -19.1 -24.5 -29.4 -33.6 -37.4 -40.7 -43.8 -46.4 Ie = 1 rnA, VeE = 1 V, .20 = 50 n ~1 ~2 f $11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.938 0.917 0.892 0.862 0.829 0.763 0.699 0.643 0.591 0.557 0.521 0.490 - 16.4 - 24.5 - 32.2 - 39.7 - 46.7 - 60.1 - 72.0 - 83.2 - 93.4 -103.0 -112.6 -121.7 3.51 3.45 3.37 3.26 3.13 2.88 2.64 2.41 2.22 2.05 1.92 1.79 165.6 158.7 151.9 145.5 139.4 128.5 118.9 110.4 102.9 96.1 89.8 84.0 0.050 0.073 0.095 0.114 0.132 0.160 0.182 0.198 0.209 0.219 0.225 0.229 79.4 74.4 69.6 65.1 60.8 53.5 47.6 42.8 38.9 35.5 32.9 30.8 0.981 0.962 0.938 0.910 0.881 0.819 0.761 0.709 0.665 0.626 0.591 0.559 . - 9.4 -13.8 -17.9 -21.9 -25.5 -31.7 -37.0 -41.2 -44.7 -47.5 -50.2 -52.4 566 $12 Siemens BFR35AP Ic = 2 rnA, VCE = 6 V, Zo = 50 Q ~, ~2 f 8" 8 ,2 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.91 0.79 0.66 0.46 0.40 0.36 0.31 0.29 0.29 - 15 - 46 - 71 -102 '-119 -134 -156 -178 168 6.49 5.25 4.49 3.29 2.80 2.43 2.03 1.77 1.66 161 139 120 98 88 80 69 60 54 0.03 0.08 0.11 0.13 0.15 0.15 0.17 0.19 0.20 79 64 55 47 46 45 48 49 51 0.97 0.88 0.77 0.64 0.60 0.56 0.53 0.51 0.49 - 6 -22 -30 -35 -38 -40 -43 -48 -49 s... 5'2, 5:.. = f (f) Ic=2mA, VcE =6v,2 = 50 Q ANG 5.2, MAG ANG 8'2 MAG ANG 5.22 MAG ANG - 14 - 43 - 65 - 95 -111 -125 -146 -170 175 6.46 5.28 4.54 3.35 2.87 2.45 2.07 1.81 1.68 161 140 122 99 90 83 71 62 56 0.03 0.07 0.10 0.12 0.14 0.15 0.16 0.18 0.19 80 66 57 49 48 47 49 50 52 0.98 0.90 0.80 0.68 0.64 0.61 0.58 0.56 0.54 -6 -19 -27 -33 -35 -38 -40 -45 -46 5,2' 5.., = f (f) Ic =2 rnA, VCE = 10V, Zo= son Sz. = f (f) Ic=2mA, VcE =10v,Zo=50n 90 0 +j50 o 1800 -135 0 -90 0 - j50 572 -45 0 Siemens BFR 35AP 10 V, Zo Ic = 5 mA, VCE = f Sl1 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.83 0.65 0.49 0.31 0.27 0.24 0.21 0.21 0.22 - 19 - 57 - 84 -112 -129 -144 -167 170 155 12.74 8.56 6.35 4.29 3.53 2.97 2.45 2.13 1.96 152 125 107 89 82 0.03 0.06 0.08 0.10 0.13 0.14 0.16 0.19 0.21 78 63 58 55 57 57 58 58 58 0.95 0.80 0.67 0.56 0.54 0.51 0.50 0.48 0.47 - 9 -25 -31 -33 -35 -36 -38 -43 -43 = 50 Q ~, ~2 S'2 77 67 59 54 5", s", = f (f) Ie = 5 mA, VeE = 10V, Zo = 50 n 5'2, $;" = f (f) Ie = 5 mA, VeE = 10 V, Zo = 50 n 90 0 ____-r-_____ 2GHz o 1800 -j50 -90 0 Siemens 573 BFR35AP Ic = 10 rnA, VCE = 10 V, Zo = 50 n f 5 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.75 0.52 0.37 0.23 0.21 0.20 0.18 0.19 0.20 - 28 - 71 - 99 -129 -146 -163 177 157 143 18.20 10.23 7.00 4.57 3.72 3.11 2.56 2.19 2.03 142 114 99 84 78 74 64 57 53 0.02 0.05 0.07 0.09 0.12 0.13 0.16 0.19 0.21 74 63 63 63 65 65 64 63 62 0.88 0.67 0.56 0.50 0.48 0.47 0.46 0.46 0.44 -13 -27 -29 -28 -29 -31 -34 -39 -39 5,2 8.!1 5 ,2 ,5.., =1(f) Ic = 10 rnA, VCE = 10V, Zo=50 0 Sl1,~=f(f) Ic = 10 rnA, VCE 8.!2 = 10V, 2'0=500 90 0 --~ -------;--~ o 180 0 -j50 574 -90 0 Siemens BFR35AP Ic = 15 rnA, VCE = 10 V, Zo = 50 Q ~, ~2 f $" GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.64 0.38 0.28 0.19 0.19 0.19 0.19 0.21 0.22 - 37 - 87 -117 -151 -166 180 162 145 134 19.16 10.29 7.00 4.49 3.65 3.09 2.53 2.15 2.01 140 112 96 81 76 71 62 55 51 0.02 0.04 0.06 0.09 0.11 0.13 0.16 0.19 0.21 72 64 66 67 68 67 66 65 64 0.85 0.63 0.53 0.49 0.49 0.47 0.47 0.47 0.45 -14 -26 -26 -25 -27 -29 -32 -37 -38 $'2 5'2, 5", = f If) Ic=15mA, VcE =10V,Zo=50n ~" 5,,2 = f If) Ic = 15 mA, VCE = 10V, -4J = 50 n o 180 0 - j50 -90 0 Siemens 575 BFR35AP Ic = 20 rnA, VCE = 10 V, Zo = 50 Q f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.58 0.34 0.27 0.20 0.20 0.21 0.21 0.23 0.25 - 45 - 98 -129 -163 -176 173 156 140 20.30 10.12 6.72 4.32 3.47 2.93 2.41 2.05 1.92 135 108 94 79 74 69 60 53 49 0.02 0.04 0.06 0.09 0.11 0.13 0.16 0.19 0.21 71 65 68 69 70 69 68 67 65 0.82 0.61 0.54 0.49 0.50 0.50 0.49 0.49 0.47 -14 -23 -23 -49 -25 -27 -30 -36 -37 S:z1 131 S:z2 5,2, 5" = f If) Ie = 20 rnA, VeE = 10V, Zo = 50n 5",~=flf) Ie =20 rnA, VeE = 10V, Zo= 50n +j50 ZGHz o -j50 576 -90· Siemens BFR92P NPN Silicon RF Transistor • For broadband amplifiers up to 2 GHz and fast non-saturated switches at collector currents from 0.5 to 20 mA. € CECC-type available: CECC 50002/254. ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFR92P GF Q 62702 - F1 050 SOT-23 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage V 20 V Emitter-base voltage VCEO VCBO VEBO 15 2.5 V Collector current Ic 30 mA Base current Is 4 mA Collector-base voltage Total power dissipation, TA ::; 25 DC2 ) Ptot 280 mW Junction temperature 7j 150 DC Ambient temperature range TA -65 ... +150 DC Storage temperature range Tstg -65 ... +150 DC RthJA ::;450 Thermal Resistance Junction - ambient1) IKIW 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Siemens 577 BFR92P Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter Collector-emitter breakdown voltage Symbol V(SR)CEO min Values typ max Unit 15 - - - 0.05 10 - 100 !-lA V Ic= 1 mA,Is=O Collector-base cutoff current Vcs = 10 V, IE = 0 Vcs = 20 V, IE = 0 Icso Emitter-base cutoff current VES = 2.5 V, Ic = 0 I ESO - DC current gain hFE 40 100 - - VCEsat - - 0.4 V !-lA Ic=14mA, VcE =10V Collector-emitter saturation voltage Ic= 30 mA, Is =3 mA 578 Siemens BFR92P AC characteristics Parameter Symbol Values Unit min typ max - 3.B Transition frequency Ic= 5 mA, VCE = 10 V, f= 200 MHz Ic=14mA, VcE =10V,f=200MHz fr 5 Collector-base capacitance V CB = 10 V, VBE = Vbe = 0, f= 1 MHz Geb - - 0.5 0.7 pF Collector-emitter capacitance VCE = 10 V, VBE = Vbe = O,f= 1 MHz Gee - 0.27 - pF Input capacitance VEB = 0.5 V, Ic = ie = 0, f= 1 MHz G.bo - 0.9 - pF Output capacitance VCE = 10 V, VBE = vbe = 0, f= 1 MHz Gobs - 0.77 - pF Noise figure F - - - 1.5 1.5 3.9 - GHz dB Ic=5mA, VCE = 6 V, f= 10 MHz, Zs=75Q Ic = 2 mA, VCE = 6 V, f= BOO MHz, Zs = Zsopt Ic = 3 mA, V CE = 10 V, f= 2 GHz, Zs = Zsopt - Power gain Ic = 15 rnA, VCE = 6 V, f= BOO MHz, Zs = 50 Q, ZL = ZLOPt Gpe - 14 - dB Transducer gain Ic = 15 mA, VCE = 6 V, f= 1 GHz, Zo= 50Q 1s.z1e1 2 - 11 - dB Linear output voltage two-tone intermodulation test Ic = 15 mA, VCE = 10 V, diM =60 dB f1 = B06 MHz, f2 = B10 MHz, Zs = ZL = 50 Q V01 - 110 - mV Third order intercept point Ic=15mA, VcE =10V,f=BOOMHz 1P3 - 23.5 - dBm Siemens = Vo2 579 BFR 92P Transition frequency fT = f (Jcl VeE = 6 V, f= 200 MHz Total power dissipation Ptot = f (TAl Package mounted on alumina rnW 400 6Hz 6 '1ot f \300 1'\ 200 1'\ V 4 V I 3 1'\ v ..- I '\ 2 100 I I I 1,\ o \. o 50 Collector-base capacitance VSE ~ Vbe = 0, f= 1 MHz o 150 0 ( 100 CCb = f (VcBl pF 1,0 ~ \ \ 0.5 o 580 o ....... I"-... 10 r-- r- r- 20 V Siemens o 10 20 rnA BFR 92P Common Emitter Noise Parameters Ie = 2 rnA, VeE = 6 V, 2{, = 50 Q f Fmin Gp (Fmin) GHz dB 0.01 1.05 dB - Ie = 5 rnA, VeE = 6 V, rept MAG lANG (Zs = 150 Q) RN N F50n Q dB dB - - 3 - RN N F50n Gp (F5onl Q - dB - dB - 16.9 0.24 Gp (F5onl Zo = 50 Q f Fmin Gp (Fmin) GHz dB 0.01 0.8 1.3 1.7 dB - rept MAG lANG (Zs'" 100Q) 0.25 58.5 I 14.3 1.6 1.9 14 Noise figure F =f (Zsl VeE = 6 V. f= 10 MHz dB 4 IA IAl lLf_~O I ~_ r'cF 1 m r- 3 ~ V '\-- 1/ V 10mA \~-.l,1--- I\.. ~~ I I '" 2 I J....1"" i-'" .." VsmA- ?~ 1mA - o o 100 200 300Sl Siemens 581 BFR 92P Noise figure F= f (lei VeE = 6 V. f= 800 MHz, ZLopt (G) Circles of constant noise figure F= f (Zsl Ie = 5 rnA, VeE = 6 V, f= 800 MHz dB 5 F t 4 3 \ 2 \ -j 50 o o Z~OQ ~ V I'- ~ Zpt ~ -;:::::. ~ 20 rnA 10 -Ie 582 Siemens BFR92P Common Emitter S Parameters Ie = 0.5 rnA, VeE = 1 V, ZO = 50 Q f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.967 0.956 0.941 0.923 0.903 0.859 0.812 0.765 0.717 0.686 0.645 0.610 - 12.3 - 18.4 - 24.3 - 30.2 - 35.9 - 47.0 - 57.2 - 67.2 - 76.5 - 85.5 - 94.5 -103.1 1.83 1.82 1.81 1.78 1.75 1.68 1.59 1.51 1.44 1.36 1.31 1.25 168.2 162.3 156.4 150.8 145.2 134.7 125.1 116.1 108.0 100.3 93.3 86.6 0.050 0.075 0.098 0.120 0.141 0.177 0.207 0.231 0.249 0.265 0.275 0.281 81.5 77.4 73.2 69.3 65.4 58.2 51.8 46.2 41.2 36.3 32.3 28.6 0.990 0.982 0.970 0.955 0.939 0.902 0.864 0.826 0.790 0.757 0.725 0.695 - 6.7 -10.0 -13.0 -16.2 -19.1 -24.5 -29.4 -33.6 -37.4 -40.7 -43.8 -46.4 Ie = 1 rnA, VeE = 1 V, f 8 11 GHz MAG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 0.938 0.917 0.892 0.862 0.829 0.763 0.699 0.643 0.591 0.557 0.521 0.490 8.11 8.12 ZO = 50 Q 8 12 8.11 8.12 ANG MAG ANG MAG ANG MAG ANG - 16.4 - 24.5 - 32.2 - 39.7 - 46.7 - 60.1 - 72.0 - 83.2 - 93.4 -103.0 -112.6 -121.7 3.51 3.45 3.37 3.26 3.13 2.88 2.64 2.41 2.22 2.05 1.92 1.79 165.6 158.7 151.9 145.5 139.4 128.5 118.9 110.4 102.9 96.1 89.8 84.0 0.050 0.073 0.095 0.114 0.132 0.160 0.182 0.198 0.209 0.219 0.225 0.229 79.4 74.4 69.6 65.1 60.8 53.5 47.6 42.8 38.9 35.5 32.9 30.8 0.981 0.962 0.938 0.910 0.881 0.819 0.761 0.709 0.665 0.626 0.591 0.559 - 9.4 -13.8 -17.9 -21.9 -25.5 -31.7 -37.0. -41.2 -44.7 -47.5 -50.2 -52.4 Siemens 583 BFR92P Ic = 2 rnA, VCE = 6 V. .2iJ = 50 Q ~2 f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.91 0.79 0.66 0.46 0.40 0.36 0.31 0.29 0.29 - 15 - 46 - 71 -102 -119 -134 -156 -178 168 6.49 5.25 4.49 3.29 2.80 2.43 2.03 1.77 1.66 161 139 120 98 88 80 69 60 54 0.03 0.08 0.11 0.13 0.15 0.15 0.17 0.19 0.20 79 64 55 47 46 45 48 49 51 0.97 0.88 0.77 0.64 0.60 0.56 0.53 0.51 0.49 -6 -22 -30 -35 -38 -40 -43 -48 -49 8.11 8.12 = St2, ~1 f (f) Ic =2 mA, VCE = 6 V, 4,=50n St1,~=f(f) Ic=2mA, VcE =6v,4,=50n 90· o 180· -j50 584 -90· Siemens BFR92P Ic = 5 rnA, VCE = 6 V. Zo = 50 Q f 5 11 GHz MAG ANG MAG ANG 5 12 MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.80 0.58 0.44 0.28 0.26 0.24 0.22 0.23 0.25 - 24 - 66 - 97 -128 -144 -160 179 159 146 12.96 8.56 6.27 4.19 3.45 2.93 2.43 2.08 1.93 150 123 106 88 81 74 65 57 52 0.03 0.06 0.08 0.11 0.13 0.14 0.17 0.20 0.22 75 61 58 57 59 58 59 59 58 0.92 0.74 0.59 0.49 0.49 0.45 0.44 0.43 0.40 -11 -29 -35 -35 -36 -38 -40 -45 -46 5.!1 5.!2 St2. 5.z1 = f (f) Ic=5 mA, VcE =6V, Za = 500 St1,~=f(f) Ic=5mA, VcE=6V,Zo=500 900 +j50 o -j50 -90 0 Siemens 585 BFR 92P Ic = 10 rnA, VCE = 6 V, 20 = 50 n ~, ~2 f 8 11 8 '2 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.66 0.42 0.32 0.22 0.21 0.21 0.21 0.22 0.24 - 35 - 85 -116 -149 -164 -178 164 147 136 18.62 10.32 6.92 4.49 3.65 3.09 2.54 2.18 2.02 140 113 98 83 0.03 0.05 0.07 0.10 0.12 0.14 0.17 0.21 0.22 73 62 63 64 65 64 63 62 61 0.85 0.62 0.50 0.44 0.43 0.41 0.41 0.40 0.38 -15 -31 -33 -31 -32 -34 -36 -41 -42 77 71 63 55 51 S,2. 5", = 1 (f) S".5",,=1(f) Ic = 10 rnA, VCE = 6 \I, 20= 50 Q Ic = 10 rnA, VCE = 6\1, Zo = 50 Q 90 0 +j50 o -j50 586 -90 0 Siemens BFR92P Ic = 15 mA, VCE = 6 V, Zo = 50 n f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.57 0.35 0.27 0.21 0.21 0.21 0.22 0.24 0.26 - 43 - 95 -127 -162 -174 174 158 142 133 20.30 10.53 7.00 4.49 3.65 3.09 2.54 2.15 2.00 137 109 95 80 75 70 61 54 50 0.02 0.05 0.07 0.10 0.12 0.14 0.17 0.21 0.23 71 54 66 67 68 66 65 64 63 0.81 0.58 0.48 0.43 0.43 0.41 0.41 0.41 0.39 -16 -29 -29 -27 -29 -31 -34 -40 -40 8.11 8.12 = S,1,~=flf) S,2, 5,,1 f If) le= 15 rnA, VeE = 6 V, Zo = 50 n Ie = 15 rnA, VeE = 6 II, Zo= 50 n o -j50 -90 0 Siemens 587 BFR92P Ic = 20 rnA, VCE = 6 V. Zo = 50 Q f 8 11 GHz MAG ANG MAG ANG 8 12 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.51 0.32 0.27 0.22 0.22 0.23 0.24 0.26 0.28 - 49 -106 -138 -171 179 169 153 139 131 21.13 10.35 6.76 4.34 3.49 2.97 2.43 2.07 1.93 133 106 92 78 74 68 60 53 48 s;'1 511,5,2 = f (f) Ie = 20 mA, VeE = 6 V, Zo = 50 Q s;'2 MAG ANG MAG ANG 0.02 0.05 0.07 0.09 0.12 0.14 0.17 0.21 0.22 70 65 67 68 69 68 66 65 64 0.79 0.56 0.48 0.45 0.44 0.43 0.43 0.42 0.40 -16 -27 -27 -25 -28 -30 -33 -39 -39 5,2, 5" = f (f) Ie = 20 mA, VeE = 6V, Zo = 50 Q 90 0 o 180 0 -.i,?0 588 -90 0 Siemens BFR 92P 10 V, Za Ic = 2 rnA, VCE = f 3" GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.92 0.81 0.69 0.48 0.42 0.36 0.30 0.28 0.27 - 14 - 43 - 65 - 95 -111 -125 -146 -170 175 6.46 5.28 4.54 3.35 2.87 2.45 2.07 1.81 1.68 161 140 122 99 90 83 71 62 56 0.03 0.07 0.10 0.12 0.14 0.15 0.16 0.18 0.19 80 66 57 49 48 47 49 50 52 0.98 0.90 0.80 0.68 0.64 0.61 0.58 0.56 0.54 - 6 -19 -27 -33 -35 -38 -40 -45 -46 = 50 Q ~, ~2 3 '2 5 ,2 .5" =f(f} 5". Sz:, = f (f) Ie = 2 rnA, VeE = 10V, Zo = 50 n Ie = 2 rnA, VeE = 10V, Zo = 50 n 90 0 +j50 o 180 0 - j50 -90 0 Siemens 589 BFR92P Ic = 5 rnA, VCE = 10 V, Zo = 50 n ~2 f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.83 0.65 0.49 0.31 0.27 0.24 0.21 0.21 0.22 - 19 - 57 - 84 -112 -129 -144 -167 170 155 12.74 8.56 6.35 4.29 3.53 2.97 2.45 2.13 1.96 152 125 107 89 82 0.03 0.06 0.08 0.10 0.13 0.14 0.16 0.19 0.21 78 63 58 55 57 57 58 58 58 0.95 0.80 0.67 0.56 0.54 0.51 0.50 0.48 0.47 -9 -25 -31 -33 -35 -36 -38 -43 -43 &.11 77 67 59 54 &.12 ~2. $,1 =f (f) Ie = 5 rnA, VeE = 10Y, 2Q = 500 5 11 • $,2 = f (f) Ie = 5 rnA, VeE = 10V, 2Q = 500 90 0 o -j50 590 -90 0 Siemens BFR 92P Ic = 10 rnA, VCE = 10 V. Zo = 50 Q ~1 ~2 f $11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.75 0.52 0.37 0.23 0.21 0.20 0.18 0.19 0.20 - 28 - 71 - 99 -129 -146 -163 177 157 143 18.20 10.23 7.00 4.57 3.72 3.11 2.56 2.19 2.03 142 114 99 84 78 74 64 57 53 0.02 0.05 0.07 0.09 0.12 0.13 0.16 0.19 0.21 74 63 63 63 65 65 64 63 62 0.88 0.67 0.56 0.50 0.48 0.47 0.46 0.46 0.44 -13 -27 -29 -28 -29 -31 -34 -39 -39 $12 s,,, s". = f (f) Ic=10mA, VcE=10v,Zo=50n S,2, 50, = f (f) Ic = 10mA, VCE = 10V, Zo = 50 n 90 0 o 180 0 -j50 -90 0 Siemens 591 BFR92P Ic = 15 rnA, VCE = 10 V, Zo = 50 n GHz 511 MAG ANG 5.!, MAG ANG 5'2 MAG ANG 5.!2 MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.64 0.38 0.28 0.19 0.19 0.19 0.19 0.21 0.22 - 37 - 87 -117 -151 -166 180 162 145 134 19.16 10.29 7.00 4.49 3.65 3.09 2.53 2.15 2.01 140 112 96 81 76 71 62 55 51 0.02 0.04 0.06 0.09 0.11 0.13 0.16 0.19 0.21 72 64 66 67 68 67 66 65 64 0.85 0.63 0.53 0.49 0.49 0.47 0.47 0.47 0.45 -14 -26 -26 -25 -27 -29 -32 -37 -38 f = 5,2. 5", f (f) Ie = 15 mA, VeE = 10V, Zo = 50n 5". ~ =f (f) Ie = 15 mA, VeE = 10V, Zo= 50n 90 0 ~--r--~ 2GHz o -j50 592 -90 0 Siemens BFR92P Ic = 20 rnA, VCE = 10 V, Zo = 50 n ~1 ~2 f S11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.58 0.34 0.27 0.20 0.20 0.21 0.21 0.23 0.25 - 45 - 98 -129 -163 -176 173 156 140 131 20.30 10.12 6.72 4.32 3.47 2.93 2.41 2.05 1.92 135 108 94 79 74 69 60 53 49 0.02 0.04 0.06 0.09 0.11 0.13 0.16 0.19 0.21 71 65 68 69 70 69 68 67 65 0.82 0.61 0.54 0.49 0.50 0.50 0.49 0.49 0.47 -14 -23 -23 -49 -25 -27 -30 -36 -37 S12 5,1, s.", = f (f) Ic = 20 rnA. VCE = 10V, Zo = 50n 5,2, 5;,1 = f (f) Ic =20 rnA. VCE = 10V, Zo = 50 n 90 0 -j50 - 90 0 Siemens 593 NPN Silicon RF Transistor BFR93A • For low-distortion broadband amplifiers and oscillators up to 2 GHz at operating currents from 5 to 30 mA. € CECC-type available: CECC 50002/256. ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFR93A R2 Q 62702 - F1 086 SOT-23 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 12 V Collector-base voltage VCBO 15 V Emitter-base voltage VEBO 2 V Collector current Ic 50 mA Total power dissipation, TA:S 25 OC2) Ptat 280 mW Junction temperature 1j 150 Ambient temperature range TA -65 ... +150 Storage temperature range Tstg -65 ... +150 °c °c °c Thermal Resistance I Junction - ambient 1) 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 594 Siemens RthJA I:s450 IKIW BFR 93A Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter Symbol Values Unit min typ max \.I(BR)CEO 12 - - V Collector-base cutoff current VeB = 5 \I, IE = 0 ICBO - - 50 nA Emitter-base cutoff current lEBO - - 10 ~ hFE 40 90 - - VeEsat - 0.13 0.4 V Collector-emitter breakdown voltage Ie=1 mA,IB=O VEB=2\1,Ie=0 DC current gain Ie = 30 mA, VeE = 5 V Collector-emitter saturation voltage Ie = 50 mA, IB = 5 mA Siemens 595 BFR93A AC characteristics Symbol Parameter Values Unit min typ max Transition frequency Ic = 30 rnA, VCE = 5 V, f= 200 MHz fr - 5.5 - GHz Collector-base capacitance VCB = 5 V, VBE = Vbe = 0, f= 1 MHz Ceb - 0.55 - pF Collector-emitter capacitance VCE = 5 V, VBE = vbe = 0, f= 1 MHz Gee - 0.28 - pF Input capacitance VEB = 0.5 V, Ic = ic = 0, f= 1 MHz C,bO - 2.1 - pF Output capacitance VcE =10V, VBE = Vbe=O, f=1 MHz Cobs - 0.8 - pF Noise figure Ic= 5 rnA, VcE =8V, f= 10MHz,Zs=50n Ic= 5 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt F - 1.1 1.7 2.6 - Power gain Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = ZSOph ZL = ZLopt Gpe - 13.5 - dB Transducer gain Ic = 30 rnA, VCE = 8 V, f= 1 GHz, Zo = 50n 1~1e12 - 11.5 - dB Linear output voltage two-tone intermodulation test Ic= 30 rnA, VCE = 8 V, diM = 60 dB f1 = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 n V o1 - 280 - mV Third order intercept point Ic = 30 rnA, V CE = 8 V, f= 800 MHz IP3 - 32 - dBm 596 Siemens dB = V o2 BFR93A Total power dissipation p.o. = f (T,J Transition frequency Package mounted on alumina VeE ~ot ./ 300 / 1"- 200 "- 2 100 '\ o V f..- - I-- / / 1,\ '\ o = f (Ic) GHz 6 rnW 400 t fT = 5 V, f= 200 MHz 50 100 '\. 150 o 0[ -TA / I o 10 20 40 30 -Ie 50 rnA Collector-base capacitance Ceb = f (VCB) VSE = Vbe = 0, f= 1 MHz pF 1.0 \ '\.. ......... 0.5 o o ........ '- r- 20 V 10 -li(B Siemens 597 BFR93A Common Emitter Noise Parameters Ie = 4 rnA, VeE = 8 V, Zo = 50 Q f Fmin Gp (Fmin) GHz dB dB 0.01 0.8 - Ie = 30 rnA, VeE = 8 V. Zo r opt MAG lANG (Zs= 150Q) = Fmin GHz dB dB MAG 0.01 0.8 2.0 2.6 - (Zs = 100 Q) 0.13 1108 Topt Gp (Fmin) 13.5 lANG Noise figure F = f (Iel VeE =8 V. f= 10 MHz dB 3 F t 1,; ..... Z. =50Q" ..... VV ~ "" ..... ZSopt ~ 1'1-- / \ o o 1/ 10 20 30 mA -Ie 598 N Fson Q - dB dB - - 1.1 - RN N Fson Gp (Fson) Gp (Fson) 50 Q f , RN Siemens Q - dB dB - - - 19.3 0.41 2.15 2.85 13 BFR93A Circles of constant noise figure F= f (Zs) inZs-pJane,lc=30mA, VCE=BV, f=BOOMHz Noise figure F=f(leJi VCE = B V, f= BOO MHz,.ZLopt (G) dB 3 Zs=50Q F V 'Y vV M :;::v Zs·opt· 1 v;::: "f:1--' -j 50 o o 10 20 30 rnA -Ie Noise figure F = f (Icl VeE = B V, f= 2 GHz, ZLopt (G) dB 6 Zs=5011~ F 1\ t 4 J..--~ I'.r-_ 1\ Zs opt J..--I- I\. 1-1-1-"" 2 o o 10 20 30 rnA -Ie Siemens 599 BFR93A Common Emitter 5 Parameters Ic = 5 rnA, VCE = 8 V, Zo = 50 Q ~, ~2 f 8 11 GHz MAG ANG MAG ANG 8 '2 MAG ANG MAG ANG 0.1 0.2 0.5 0.8 1.0 1.2 1.5 2.0 0.74 0.64 0.49 0.45 0.44 0.43 0.41 0.40 - 45 - 81 -132 -158 -169 -179 169 160 13.5 10.5 5.6 3.7 3.0 2.6 2.1 1.7 150 129 101 86 79 73 65 54 0.033 0.052 0.078 0.097 0.113 0.127 0.145 0.194 69 57 53 57 61 64 66 71 0.93 0.73 0.50 0.41 0.39 0.38 0.42 0.44 -21 -30 -56 -37 -39 -40 -45 -48 St2, 5:., = 1 (f) St" 5:.2 =1 (f), Z-plane Ic = 5 mA, VCE = 8 V. Zo = 50n Ic = 5 mA, VCE = 8V, Zo=50n 90· o -j50 600 -90· Siemens BFR93A Ic = 30 rnA, VCE = 8 V. Zo = 50 Q ~1 ~2 f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.1 0.2 0.5 0.8 1.0 1.2 1.5 2.0 0.38 0.37 0.36 0.36 0.35 0.34 0.31 0.30 -105 -138 -170 -178 177 173 157 152 27.6 16.5 7.2 4.6 3.8 3.2 2.6 2.1 125 107 90 80 75 71 65 55 0.021 0.032 0.066 0.101 0.125 0.147 0.169 0.228 64 66 73 74 73 72 70 69 0.69 0.41 0.26 0.21 0.20 0.20 0.23 0.28 -41 -44 -39 -32 -40 -41 -43 -46 s", 5.z:, = f (f), Z-plane Ie = 30 mA, VeE = 8 V, Zo = 50 Q S,2. 5", = f (f) Ie = 30 mA, VeE = 8 V, 2Q = 50 Q 90 0 +j50 o -j50 -90 0 Siemens 601 BFR93P NPN Silicon RF Transistor • For low--distortion'broadband amplifiers up to 1 GHz at collector currents from .2 to 30 mA. ESO: Electrostatic discharge sensitive device, observe handling precautions! Type ·Marking Ordering code (tape and reel) Package BFR93P GG Q 62702-F1051 SOT-23 Maximum Ratings Symbol Value Unit Collector-emitterNoltage VCEO 15 V Collector-base voltage Vcso 20 V Emitter-base voltage VESO 2.5 V Collector current Ic 50 mA Base current Is 10 mA Parameter Ptot 280 mW Junction temperature 7j 150 °c Ambient temperature range TA -65 ... +150 °c Storage temperature range Tstg -65 ... +150 °c Total power dissipation, TA :0;25 °C2) Thermal Resistance Junction - ambient1 ) RthJA For detailed dimensions see chapter Package Outlines. 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 602 Siemens I :0;450 K/W BFR93P Electrical Characteristics at TA = 25 DC, unless otherwise specified. DC characteristics Parameter Collector-emitter breakdown voltage Symbol \t(SR)CEO Values Unit min typ max 15 - - - - 0.05 10 V Ic= 1 mA,Is=O Collector-base cutoff current lJA Icso Vcs=10\/,IE=0 Vcs = 20 \/, IE = 0 Emitter-base cutoff current VES = 2.5 V, Ic = 0 I ESO - - 100 lJA DC current gain hFE 30 100 - - VCEsat - 0.2 0.5 V Ic = 25 mA, VCE = 5 V Collector-emitter saturation voltage Ic = 50 mA, 1s = 5 mA Siemens 603 BFR 93P AC characteristics Symbol Parameter Values typ max - 5 4.7 - 0.6 0.75 pF min Transition frequency Ic = 30 rnA, VCE = 5 V, f= 200 MHz Ic = 50 mA, VCE = 5 V, f= 200 MHz Unit GHz fT - Collector-base capacitance VcB =10V, VBE =Vbe=0,f=1 MHz Geb - Collector-emitter capacitance VCE = 10 V, VBE = Vbe = 0, f= 1 MHz Gee - 0.28 - pF Input capacitance VEB =0.5V,Ic =ie =0, f=1 MHz Gibo - 2.1 - pF Output capacitance VCE = 10 V, VBE = Vbe = 0, f = 1 MHz Gobs - 0.9 - pF Noise figure Ic=10mA, VcE =8V,f= 10 MHz, Zs = 75 Q Ic= 5 mA, VCE = 8 V, f= 500 MHz, Zs = Zsopt Ic = 10 mA, VCE = 8 V, f= 800 MHz, Zs = 50 Q F - - Power gain Ic = 25 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt, ZL = ZLopt Gpe - 1.7 1.9 2.4 13 - dB Transducer gain Ic = 25 rnA, VCE = 8 V, f= 500 MHz, Zo = 50 Q 1~1e12 - 15.8 - dB Linear output voltage two-tone intermodulation test Ic = 25 rnA, VCE = 8 V, diM = 60 dB f1 = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 Q Vo1 = Vo2 - 240 - mV Third order intercept point Ic = 25 rnA, VCE = 8 V, f= 800 MHz IP3 - 30.5 - dBm 604 Siemens dB - BFR93P Transition frequency fT = f (IcI VCE = 5 V. f= 200 MHz Total power dissipation p.o. = f (TAl Package mounted on alumina rnW GHz 400 6 ~ot 5 f / 300 V i'- I 4 / 1'\ 200 II 3 '\ ........ I I 100 '\ o '\ o 50 100 150°C o o 10 20 30 40 50 rnA -TA Collector-base capacitance VBE = vbe=0,f=1 MHz Ccb = f (VcBI pF 1.5 1.0 \ \ \ "- t'--- 0.5 o o 10 20 V -Vca Siemens 605 BFR 93P Common Emitter Noise Parameters Ie = 2 rnA, VeE = 8 V, Zo = SO 0. f Fmin Gp (Fmin) GHz dB dB 0.01 1.0 - Ie = 10 rnA, VeE = 8 V, MAG lANG Zo = RN N Fson Gp (Fson) 0. - dB dB 1.6 - - (Zs= 1S0Q) SO 0. f Fmin Gp (Fmin) GHz dB 0.01 0.8 2.3 dB - 1.S T opt Topt MAG lANG (Zs =900.) (Zs =Zsopt) RN N Fson Gp (Fsonl 0. - dB - - 2.4 dB - Noise figure F= f (Id VCE = 8 V, f= BOO MHz, ZLopt (G) Noise figure F = f (Zs) VCE=BV,f=10MHz dB dB 4 1 1 Ic=30rnA 1/ F r / 3 4 1/ 20/ V / F / / 1\ t / r- / ,/ 3 ..-:V 10 ", r~~ ~ 2 ., ~I-""" ... ,... r--- 100 200 2 o 300Q -Zs 606 Zs=50Q I--~:::; .A:::: V I--: "Zs opt I-~ I--f-- V r-!-""' I' o o 1.7 Siemens o 10 20 -Ie 30 rnA BFR93P Common Emitter 5 Parameters = 5 rnA, VCE = 8 V, ZO = 50 !l Ic f 8 11 8 12 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.74 0.51 0.40 0.32 0.31 0.31 0.31 0.32 0.33 0.35 - 34 - 92 -125 -157 -171 177 166 156 146 137 12.96 7.50 5.13 3.35 2.71 2.32 2.05 1.84 1.64 1.52 143 113 97 78 72 65 59 52 47 42 0.03 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 70 55 55 57 59 60 62 61 61 61 0.87 0.65 0.54 0.48 0.48 0.46 0.45 0.45 0.45 0.44 -14 -31 -33 -32 -35 -38 -41 -46 -49 -52 5.!1 5,10 ~ =f(f) Ie =5 rnA, VeE =8 If, Zo= 500 5.!2 5,2. ~1 = f (f) Ie =5 mAo VeE = 8 If, Zo = 50 0 90 0 o n o 180 0 -j50 -90 0 Siemens 607 BFR93P VCE = 8 V. Zo = 50 Q GHz 8" MAG ANG S:!, MAG ANG 8'2 MAG ANG S:!2 MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.58 0.37 0.30 0.25 0.25 0.26 0.26 0.28 0.29 0.31 - 49 -108 -139 -170 180 169 160 151 142 133 18.73 9.17 5.92 3.85 3.09 2.63 2.33 2.07 1.84 1.72 133 105 90 76 70 64 58 52 48 43 0.03 0.05 0.07 0.10 0.13 0.15 0.17 0.20 0.22 0.24 68 60 63 65 65 64 64 62 61 60 0.77 0.53 0.45 0.41 0.40 0.39 0.38 0.38 0.38 0.36 -19 -32 -32 -31 -34 -37 -40 -44 -47 -49 Ic = 10 mA, f -, 5,1, 5z! = f If) Ie = 10 rnA, VeE = 8 \I, 4> = 50 Q 5,2, 5.21 = f If) Ie = 10 rnA, VeE = 8 \I, 20=50 Q o -j50 608 -90 0 Siemens BFR93P Ic = 20 rnA, VCE = 8 V. Zo = f ~1 GHz MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.41 0.28 0.25 0.23 0.23 0.25 0.25 0.27 0.28 0.30 - 64 -123 -151 -179 172 164 155 147 139 131 50 n ~1 MAG 22.91 9.89 6.24 4.03 3.22 2.74 2.41 2.14 1.92 1.79 5 12 ~2 ANG MAG ANG 123 98 86 74 69 63 57 51 47 42 0.02 0.05 0.07 0.11 0.13 0.16 0.18 0.20 0.23 0.25 67 66 68 68 68 66 66 63 61 60 MAG ANG 0.67 0.46 0.40 0.37 0.37 0.35 0.35 0.35 0.35 0.33 -22 -30 -30 -28 -32 -35 -38 -43 -46 -48 =f (f) ~"Sa=f(f) ~2' S:z, Ic = 20 mA, VCE=S V, Zo =500 Ic = 20 mA, VCE=SII, Zo= 500 90· o -jSO -90· Siemens 609 BFR 93P Ic = 25 rnA, VCE = 8 V. Zo = 50 Q f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.37 0.26 0.24 0.22 0.23 0.24 0.25 0.27 0.28 0.30 - 68 -127 -154 179 170 162 153 146 138 130 23.71 9.89 6.20 3.98 3.18 2.71 2.37 2.11 1.89 1.77 120 97 85 73 68 62 57 51 47 42 0.02 0.05 0.07 0.11 0.13 0.16 0.18 0.20 0.23 0.25 67 67 70 69 68 66 66 63 62 60 0.64 0.44 0.39 0.37 0.37 0.36 0.36 0.35 0.35 0.34 -22 -29 -28 -27 -31 -35 -37 -42 -46 -48 8 12 8..!1 8..!2 S,2, 5:>, = f (f) Ie = 25 rnA, VeE = 8 V, Zo =50 n S",~=f(f) Ie = 25 rnA, VeE = 8 V, Zo = 50 n o -j50 610 -90 0 Siemens BFR 106 NPN Silicon RF Transistor • For low-noise, high-gain amplifiers • For linearbrdadband amplifiers • Special application: antenna amplifiers ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFR 106 R7 Q 62702 - F1219 SOT-23 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage 15 V Emitter-base voltage VCEO VCBO VEBO Collector current Total power dissipation, TA :5 45 °C2 ) Collector-base voltage 20 V 3 V Ic 100 mA Ptot 350 mW Junction temperature Ii 150 °c Ambient temperature range TA -65 ... +150 °c Storage temperature range Tstg -65 ... +150 °c Thermal Resistance IR Junction - ambient 1) thJA I :5300 IKIW 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. Siemens 611 BFR 106 Electrical Characteristics at TA = 25 °C, unless otherwise specified. DC characteristics Parameter Symbol Values Unit min typ max Collector-emitter breakdown voltage Ic=1 mA,Is=O \l(SR)CEO 15 - - V Collector-base cutoff current Vcs = 10 V, IE = 0 Icso - - 100 nA Emitter-base cutoff current VEs=2V, Ic=0 I Eso - - 10 ~ DC current gain Ic= 5mA, VcE =6V Ic=30mA, VcE =6V hFE 25 25 90 - Collector-emitter saturation voltage Ic = 50 mA, Is = 5 mA VCEsat - - 0.4 612 Siemens V BFR 106 AC characteristics Symbol Parameter Values Unit min typ max Transition frequency Ic = 30 rnA, VCE = 6 V, f= 200 MHz fT - 3.7 - GHz Collector-base capacitance Vcs=10V, VSE=Vbe=0,f=1 MHz Ccb - 1 - pF Collector-emitter capacitance VCE = 10 V, VSE = Vbe = 0, f= 1 MHz Cce - 0.3 - pF Input capacitance VEB = 0.5 V, Ie = ic = 0, f= 1 MHz C,bo - 4.5 - pF Output capacitance VeE = 10 V, VSE = Vbe = 0, f= 1 MHz Cobs - 1.3 - pF Noise figure Ie = 30 rnA, VeE = 6 V, f= 800 MHz, Zs = Zsopt F - 3.6 - dB Power gain Gpe - 11.5 - dB Vol = Vo2 - 250 - mV Ie = 30 rnA, VeE = 6 V, f= 800 MHz, Zs = 50 n, ZL = ZLopt Unear output voltage two-tone intermodulation test Ie =30 rnA, VeE = 6V, = 60 dB fl =806 MHz, f2 =810MHz,Zs=ZL=50n "'M Siemens 613 NPN Silicon RF Transistor BFR 193 • For low-noise, high-gain amplifiers up to 2 GHz. • For linear broadband amplifiers. • fT = 8 GHz. F= 1.2 dB at 800 MHz. ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFR 193 RC Q 62702- F1218 SOT-23 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 12 V Collector-emitter voltage, VBE = 0 VCES 20 V Collector-base voltage VCBO 20 V Emitter-base voltage VEBO 2 V Collector current Ic 80 mA Base current IB 10 mA Total power dissipation, TA ~ 50 °C2} Ptot 400 mW Junction temperature 7j 150 °c Ambient temperature range TA Tstg -65 ... +150 °c -65 ... +150 °c Storage temperature range Thermal Resistance I Junction - ambient 1) 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 614 Siemens RthJA I ~250 IKIW BFR 193 Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter Symbol Values Unit min typ max Collector-emitter breakdown voltage Ic = 1 mA, IB = 0 V(BR)CEO 12 - - V Collector-emitter cutoff current VCE = 20 V, VBE = 0 ICES - - 100 I1A Collector-base cutoff current VCB = 10 V, IE = 0 IcBo - - 50 nA Emitter-base cutoff current VEB = 1 V, Ic = 0 lEBO - - 1 I1A DC current gain Ic= 5mA, VcE =8V Ic=30mA, VcE =8V hFE - 90 100 - Collector-emitter saturation voltage Ic = 50 mA, IB = 5 mA VCEsat - - 0.4 Siemens V 615 BFR 193 AC characteristics Parameter Symbol Values Unit min typ max - 3.S 7 - Transition frequency Ic= SmA, VCE = 8 V, f= 200 MHz Ic = 30 rnA, VCE = 8 V, f= 200 MHz fT Collector-base capacitance Vce = 10 V, VeE = vbe = 0, f= 1 MHz Ccb - Collector-emitter capacitance VcE =10V, VeE =Vbe=0,f=1 MHz Cce Input capacitance VEe = O.S V, Ic = ic = 0, f= 1 MHz GHz 0.66 - pF - 0.24 - pF C,bo - 2.2 - pF Output capacitance VCE = 10 V, VeE = Vbe = 0, f= 1 MHz Cobs - 0.9 - pF Noise figure Ic= SmA, VcE =8V,f= 10MHz,Zs=7Sn Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt Ic =30 rnA, VCE = 8 V, f= 1 GHz,Zs=Son F 0.8 1.7 2 - Power gain Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = SO n, ZL = ZLOPt Gpe - Transducer gain Ic = 30 rnA, VCE = 8 V, f= 1 GHz, Zo = SO n 15.21e1 2 Linear output voltage two-tone intermodulation test Ic =40 rnA, VCE = S V, diM = 60 dB fl = 806 MHz, f2 = 810 MHz, Zs = ZL = SO n Third order intercept point Ic = 40 rnA, VCE = S V, f= 800 MHz 616 dB 13.S - dB - 11.S - dB Vol = Vo2 - 2S0 - IP3 - 31 - Siemens , mV dBm BFR 193 Total power dissipation p.o. = f (T,J Package mounted on alumina Transition frequency VeE = 8 V, f= 200 MHz mW 500rT'-"-''-"-''-",,,, fT = f (Ie) GHz 10 I I VeE =8V l - Ptot I 400~4-~~+4~~~4-~~ ,,-I---I ~ '/ I 4 'I ~V V ..... 5V 3V '" / II 50 150 0 [ 100 10 20 30 40 50 rnA ~/r Collector-base capacitance VBE =vbe=0,f=1MHz CCb = f (VCB) pF 1.0 \ "'- -r- 0.5 10 20 V Siemens 617 BFR 193 Common Emitter Noise Parameters Ie = 10 rnA, VeE = 8 V, 4J = 50 Q f Fmin Gp GHz dB dB 0.01 0.8 2.0 1 1.25 2.4 - Ie = 30 rnA, VeE r opt (Fmin) MAG lANG - N FSOQ Gp (Fson> - dB dB 1.05 1.35 - - - - (Zs = 75 Q) 13.5 7 RN Q 1= = 8 V, Zo = 50 Q f Fmin Gp GHz dB dB 0.01 0.8 2.0 1.65 1.7 2.7 - r opt (Fmin) MAG (Zs - 14.2 7.5 = RN N FSOQ Gp (Fson> lANG Q - dB dB 50 Q) - - 1.65 1.95 - - - 1= - = Noise figure F = f (Iel Power gain G = f (Iel VCE = B V, f= BOO MHz, Noise figure F f (Iel VcE=BV, f= 10 MHz 13.3 ZLopt (G) dB dB dB 3 4 W / Zs=1S0Q F / 2 7SQ ~ ~-- - o o / F /" " /'" ...." .... 3 ,. 1 2 ,/ 1 10 - - - - i.... Ie --'-1 S Zs= SOQ -- 1 'I -I *'" 1 I \ o o 30mA 20 Zs opt (F) - - -(j / ~rsOQ I 618 12.4 - Zs=SOQ.... ;;>~ i-F .....r--r _-tTl Zs opt ~ S o 10 20 --_ .. Ie Siemens .... 1o 30mA (j 1 BFR 193 Common Emitter Power Gain Power gain Gms. 15,'e1 2 = 1 (Ie! VeE = 8 V, f= 200 MHz, Zo = 50 n Power gain Gms. 15,'e1 2 = 1 (Ie) VeE = 8 V, f= 500 MHz, Zo = 50 n dB dB 30 30 I. 6 ms / ,/ "-!""z 15 21,1 V 10 - - 6 ms 15 21,1 2 10 5Z1 , 1 s;:- 6 ms = 1 I o o 10 20 6ms =1521 51Z,' 1 40 30 SOmA a a 10 I I 1 20 30 ---1,,-' Power gain Gma• Gms• 15,'eI2 =1(Ie! VeE = 8 V, f= 800 MHz, Zo = 50 n 40 SOmA Ie Power gain Gma• 15,'e1 2 =1 (Ie! VeE = 8 V, f= 1.5 GHz, Zo = 50 n dB 20 20 I 6 ms ! 6 mu /~ r- 15z1,1 2 6 mu 10 10 1521 ,1 2 / - - o o -1 5 Z1'1 - /KC1 lOla -I 51r :K- K 1 6 10 20 I I ms- -521 - G _1 512 '1 , I-I 1- )1- 30 40 SOmA a a I 6 ma = 1521 '1 IK-hZ-1) 1 '[ 512 , 1 1 1 10 20 30 - 4iJ I-- SOmA -Fc - - - I. . Siemens 619 BFR 193 Power gain Gma• Gms.I5,'eI 2 =f(f) Ie = 5 rnA, VeE = 8 V, Zo = 50 n Power gain Gma• Gmso 15,'e1 2 = f (f) Ie = 10 rnA, VeE = 8 V, Zo= son dB dB 30 30 "- " ~ r-...." ......... "-" 6 ms "- " - ~ma r-10 '\. f- 6 ms = 1521 .1 512• I- 6 ma '" 1521 .1 (K-fk2=1, I1 5,2 • I ·1 I 1111 o "' " 0.5 .. f \. \ I5521 .1 = I~~~:I ~K,~,2111 6 ms = " 2 1\ 6 ma f-'\ '\' 6 ms .'\ '\ 10 6 ms 6 ma o l\. 12 • 2 0.5 0.1 3 GHz 3 GHz .. f Power gain Gma• Gms• 15,'e1 2 =f (f) Ie = 40 rnA, VeE = 8 V, ZO =50 n Power gain Gma• Gms• 15,'e1 2 = f (f) Ie =20 rnA, VeE = 8 V, Zo= son dB dB 30 :::--... 30 '\."\ 6 ms \ 1\ 1521.1 2 \ - "- 1----1521.12 0.1 "- '\ 6 ma 1'\.'\ '\ 6 ms \ '\ 1521.1 2 1 '\ 6ms ,\\ 20 r-- 1521.1~ \ 6ma \. "" 10 '\" 6ms .'\ 6ms = 155,2• ~ . I t-- 6ma = 1521 .1 (K_II<-2_1l- ~ r-oI - I 151~. 111111f-- 0.1 0.5 2 .. f 620 Siemens 3GHz BFR 193 Common Emitter S Parameters Ic = 10 mA, VCE = 3 V, Zo = 50 Q ~1 ~2 f S11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.594 0.530 0.484 0.451 0.431 0.409 0.397 0.388 0.386 0.388 0.390 0.392 0.400 0.399 0.398 0.401 0.405 0.420 0.461 0.473 - 64.8 - 87.0 -103.6 -116.9 -127.0 -142.4 -153.2 -161.6 -168.7 -174.1 -179.3 176.2 167.6 159.6 156.0 153.3 147.6 143.1 131.3 120.0 20.60 16.80 13.87 11.67 10.04 7.80 6.38 5.38 4.66 4.13 3.70 3.35 2.83 2.47 2.33 2.20 1.99 1.82 1.53 1.34 137.8 125.1 116.4 109.8 104.9 97.5 91.9 87.3 83.4 79.7 76.4 73.3 67.9 62.7 60.2 57.7 52.8 48.6 39.0 30.0 0.031 0.039 0.046 0.051 0.056 0.066 0.077 0.087 0.098 0.109 0.120 0.132 0.155 0.179 0.191 0.203 0.228 0.252 0.313 0.376 64.3 59.3 57.5 57.1 57.5 59.4 61.2 62.7 63.8 64.5 65.1 65.4 65.5 65.2 64.8 64.4 63.1 61.6 57.9 53.0 0.770 0.643 0.547 0.478 0.428 0.363 0.326 0.302 0.285 0.275 0.264 0.256 0.241 0.235 0.236 0.236 0.234 0.225 0.206 0.208 - 31.2 - 38.6 - 42.7 - 44.9 - 45.8 - 46.2 - 46.3 - 46.3 - 46.7 - 47.2 - 48.0 - 48.8 - 50.9 - 53.7 - 55.6 - 57.8 - 62.7 - 68.2 - 85.0 -100.0 S12 Siemens 621 BFR 193 Ic = 30 rnA, VCE = 3 V, Zo = 50 Q ~1 ~2 f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.375 0.355 0.346 0.340 0.338 0.338 0.336 0.334 0.336 0.338 0.344 0.347 0.358 0.359 0.359 0.361 0.362 0.380 0.419 0.431 -101.9 -124.1 -138.3 -148.1 -155.1 -165.5 -172.6 -178.1 177.0 173.5 169.7 166.4 159.7 152.7 149.4 147.5 142.8 139.3 128.7 118.8 29.20 21.58 16.90 13.80 11.65 8.88 7.19 6.03 5.20 4.60 4.11 3.71 3.13 2.73 2.57 2.43 2.20 2.01 1.68 1.47 122.8 111.8 105.0 100.3 96.7 91.3 87.2 83.6 80.4 77.3 74.6 72.0 67.2 62.5 60.2 58.0 53.5 49.5 40.5 31.6 0.023 0.030 0.036 0.043 0.049 0.063 0.077 0.091 0.104 0.118 0.132 0.146 0.173 0.200 0.213 0.227 0.253 0.278 0.340 0.398 65.8 66.1 67.9 69.3 70.5 72.0 72.7 72.8 72.5 72.1 71.5 70.7 69.1 67.2 66.3 65.2 62.9 60.6 55.1 49.3 0.564 0.429 0.348 0.297 0.261 0.219 0.196 0.182 0.172 0.166 0.159 0.153 0.141 0.136 0.138 0.139 0.138 0.131 0.117 0.125 - 46.0 - 51.8 - 54.0 - 54.8 - 54.6 - 53.8 - 53.3 - 53.1 - 53.7 - 54.6 - 55.6 - 56.9 - 59.5 - 62.5 - 64.8 - 67.5 - 74.1 - 81.9 -105.4 -122.4 622 8 12 Siemens BFR 193 Ic = 5 mA, VCE = 5 V, Zo = 50 n f $11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.762 0.698 0.643 0.597 0.560 0.515 0.485 0.470 0.460 0.456 0.454 0.454 0.458 0.461 0.458 0.461 0.466 0.479 0.519 0.539 - 45.7 - 64.3 - 80.1 - 93.2 -104.4 -122.1 -135.6 -146.3 -155.3 -162.4 -169.4 -175.5 174.0 164.5 160.4 156.9 149.9 143.8 129.6 117.5 13.63 12.06 10.57 9.26 8.18 6.56 5.44 4.65 4.06 3.60 3.24 2.94 2.50 2.18 2.05 1.95 1.77 1.62 1.35 1.18 148.8 136.9 127.4 119.9 113.8 104.5 97.5 91.7 86.8 82.5 78.4 74.7 68.2 62.4 59.7 56.9 51.8 46.9 36.9 27.5 0.036 0.048 0.056 0.063 0.068 0.076 0.083 0.090 0.097 0.104 0.112 0.120 0.137 0.155 0.166 0.176 0.199 0.221 0.284 0.353 68.4 61.1 56.1 53.0 51.1 49.6 50.0 51.3 52.7 54.1 55.6 57.0 59.4 61.1 61.9 62.3 62.7 62.4 61.0 57.1 0.885 0.798 0.716 0.649 0.594 0.516 0.468 0.436 0.415 0.399 0.386 0.375 0.360 0.351 0.350 0.351 0.349 0.341 0.320 0.324 ~20.5 $12 5.<1 5.<2 -27.3 -32.0 -35.1 -37.0 -39.0 -40.0 -40.7 -41.4 -42.0 -43.0 -43.9 -46.3 -49.4 -51.1 -53.1 -57.4 -62.4 -77.1 -91.7 5,2, 5.>, =f If) Ie = 5 rnA, VeE = 5 V. Zo = 50 n 5", Sz. =f If} Ie = 5 rnA, VeE = 5 V. Zo =50 n 900 +j50 o -j50 -90 0 Siemens 623 BFR 193 Ic = 10 rnA, VCE = 5 V. Zo = 50 n ~2 5 12 ~1 f 5.1 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40' 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.620 0.547 0.497 0.459 0.434 0.407 0.390 0.384 0.379 0.379 0.382 0.385 0.391 0.393 0.392 0.395 0.402 0.415 0.457 0.477 - 61.0 - 82.5 - 99.3 -112.3 -122.8 -138.9 -150.4 -159.4 -166.9 -172.8 -178.6 176.2 167.2 158.5 154.9 152.0 145.9 140.9 128.0 117.6 20.54 16.91 14.07 11.90 10.25 7.99 6.53 5.52 4.79 4.23 3.79 3.44 2.91 2.53 2.38 2.26 2.05 1.87 1.56 1.37 139.2 126.6 117.6 111.0 105.9 98.3 92.6 87.9 83.9 80.2 76.7 73.5 67.9 62.7 60.2 57.6 52.9 48.4 38.6 29.3 0.031 0.040 0.046 0.051 0.057 0.066 0.076 0.087 0.098 0.109 0.120 0.131 0.154 0.177 0.189 0.201 0.226 0.249 0.310 ·0.370 65.2 60.0 57.7 57.0 57.3 58.8 60.5 62.0 63.1 63.7 64.4 64.7 64.7 64.4 64.1 63.6 62.3 60.8 57.0 52.1 0.787 0.664 0.568 0.498 0.446 0.379 0.339 0.315 0.299 0.286 0.276 0.267 0.253 0.245 0.246 0.246 0.244 0.236 0.213 0.217 -29.7 -37.2 -41.4 -43.6 -44.7 -45.4 -45.4 -45.4 -45.7 -46.1 -46.8 -47.4 -49.5 -52.3 -53.9 -55.9 -60.5 -65.8 -81.2 -96.3 8", s..:. =f (f) 8,2' 8.2, =f (f) Ic =10 rnA, VCE = SV; Zo=son Ic =10 rnA, VCE =S V; Zo= son o -j50 624 -900 Siemens BFR 193 Ic = 30 rnA, VCE = 5 V. zo = 50 n f 8" GHz MAG ANG 8;;, MAG ANG MAG ANG 8;;2 MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.403 0.363 0.346 0.335 0.327 0.324 0.319 0.320 0.321 0.323 0.327 0.332 0.340 0.346 0.344 0.347 0.351 0.367 0.408 0.431 - 93.0 -115.9 -131.4 -142.0 -150.2 -161.7 -169.8 -176.2 178.8 174.5 170.2 166.2 158.8 151.3 148.5 146.0 141.1 137.1 125.9 116.6 29.73 22.16 17.44 14.29 12.07 9.21 7.44 6.25 5.40 4.76 4.25 3.85 3.25 2.83 2.66 2.52 2.28 2.08 1.74 1.52 124.4 113.1 106.0 101.2 97.5 92.0 87.7 84.1 80.8 77.8 74.9 72.2 67.3 62.6 60.4 58.1 53.7 49.4 40.4 31.1 0.023 0.030 0.036 0.043 0.049 0.063 0.076 0.090 0.104 0.117 0.131 0.144 0.171 0.197 0.211 0.224 0.250 0.275 0.335 0.392 65.7 65.3 66.8 68.3 69.5 70.9 71.7 72.0 71.8 71.3 70.7 70.0 68.4 66.5 65.6 64.4 62.1 59.8 54.3 48.5 0.588 0.452 0.368 0.314 0.277 0.232 0.208 0.194 0.184 0.176 0.170 0.163 0.152 0.145 0.147 0.148 0.147 0.140 0.120 0.129 - 44.1 - 50.1 - 52.4 - 53.1 - 53.0 - 52.1 - 51.4 - 51.2 - 51.6 - 52.1 - 53.0 - 53.9 - 56.4 - 59.5 - 61.2 - 63.6 - 69.5 - 77.0 - 98.2 -115.6 8 '2 = s", s", = f (f) Ie = 30 rnA, VeE = 5 V, Zo = 50 n S,2' s", f (f) Ie = 30 rnA, VeE = 5 V, Zo = 50 n o -j 50 -90 0 Siemens 625 BFR 193 Ic = 50 rnA, VCE = 5 V, Zo = 50 Q 512 f ~1 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.358 0.337 0.330 0.325 0.322 0.322 0.318 0.321 0.322 0.325 0.330 0.335 0.344 0.348 0.346 0.349 0.355 0.368 0.411 0.432 -106.3 -128.1 -141.8 -151.1 -158.2 -167.9 -174.8 179.8 175.0 171.4 167.4 163.9 156.8 149.6 146.7 144.6 140.0 135.9 125.0 116.2 31.26 22.75 17.72 14.43 12.16 9.25 7.46 6.25 5.40 4.76 4.25 3.84 3.24 2.82 2.65 2.51 2.27 2.08 1.73 1.52 120.1 109.7 103.3 98.9 95.5 90.5 86.4 83.0 79.9 77.0 74.2 71.5 66.8 62.1 59.9 57.6 53.3 49.1 40.0 31.0 0.022 0.028 0.035 0.042 0.049 0.063 0.077 0.091 0.106 0.120 0.134 0.148 0.175 0.202 0.216 0.230 0.256 0.281 0.341 0.398 66.9 67.9 69.9 71.4 72.4 73.5 73.7 73.7 73.2 72.4 71.7 70.8 68.9 66.8 65.7 64.4 62.0 59.5 53.8 47.7 0.518 0.390 0.314 0.268 0.236 0.198 0.178 0.166 0.158 0.152 0.146 0.140 0.130 0.124 0.125 0.127 0.128 0.121 0.105 0.117 - 48.1 - 53.3 - 54.9 - 55.2 - 54.8 - 53.8 - 53.0 - 52.9 - 53.6 - 54.2 - 55.4 - 56.6 - 59.5 - 63.0 - 64.8 - 67.4 - 73.9 - 82.5 -107.0 -124.8 5.11 $", Sn =f (f) Ic =50 mA, VCE = 5 V. Zo= 50n 5.12 $,2' ~, =f (f) I c =50mA, VcE =5V,Zo=50n +j50 o -j50 626 -90 0 Siemens BFR 193 Ic = 5 mA, VCE = 8 V, Zo = 50 Q ~, ~2 f 8 11 GHz MAG ANG MAG ANG 8 '2 MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.774 0.709 0.652 0.602 0.565 0.515 0.482 0.465 0.454 0.448 0.447 0.447 0.449 0.450 0.448 0.453 0.458 0.468 0.512 0.529 - 44.4 - 62.6 - 78.1 - 91.0 -102.0 -119.9 -133.3 -144.3 -153.5 -160.9 -167.9 -174.3 175.0 165.4 161.3 157.5 150.5 144.4 130.1 117.9 13.63 12.11 10.64 9.35 8.26 6.65 5.52 4.72 4.12 3.66 3.29 2.99 2.54 2.22 2.08 1.98 1.80 1.64 1.37 1.20 149.3 137.5 128.1 120.6 114.5 105.1 98.0 92.3 87.4 83.0 78.9 75.2 68.7 62.9 60.2 57.4 52.3 47.4 37.3 28.0 0.035 0.047 0.056 0.062 0.067 0.075 0.082 0.089 0.096 0.103 0.111 0.119 0.135 0.154 0.164 0.174 0.196 0.219 0.281 0.348 68.7 61.5 56.6 53.3 51.3 49.9 50.1 51.3 52.8 54.1 55.6 57.0 59.3 61.0 61.9 62.3 62.8 62.5 61.2 57.5 0.889 0.804 0.724 0.657 0.602 0.525 0.476 0.444 0.422 0.407 0.394 0.382 0.367 0.358 0.357 0.357 0.356 0.347 0.326 0.329 -20.0 -26.7 -31.3 -34.4 -36.3 -38.4 -39.4 -40.0 -40.7 -41.3 -42.2 -43.0 -45.3 -48.3 -50.0 -51.8 -56.1 -60.9 -75.2 -89.5 5,2. S:!, = f If) Tc = 5 rnA, VCE = 8 V, Zo= 50n 5",5.z:,=flf) Ic = 5 rnA, VCE = 8 V, Zo = 50 n +j50 900 o -j50 -90 0 Siemens 627 BFR 193 Ic = 10 rnA, VCE = 8 V, Zo = 50 n f 811 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.642 0.564 0.507 0.466 0.437 0.405 0.384 0.375 0.371 0.369 0.371 0.372 0.378 0.383 0.381 0.385 0.390 0.404 0.446 0.466 - 58.2 - 79.1 - 95.6 -108.4 -119.1 -135.6 -147.3 -156.9 -164.5 -170.7 -176.8 177.7 168.5 159.6 156.1 152.9 146.8 141.7 128.8 117.9 20.47 16.98 14.19 12.03 10.39 8.11 6.63 5.61 4.87 4.30 3.86 3.50 2.96 2.58 2.42 2.30 2.08 1.90 1.59 1.39 140.2 127.6 118.5 111.9 106.7 99.0 93.2 88.5 84.4 80.7 77.3 74.0 68.4 63.2 60.7 58.2 53.5 48.9 39.1 29.8 0.031 0.040 0.046 0.052 0.057 0.066 0.076 0.087 0.097 0.108 0.119 0.130 0.152 0.175 0.187 0.199 0.223 0.246 0.306 0.366 65.6 60.3 57.9 57.1 57.3 58.5 60.1 61.7 62.8 63.5 64.0 64.4 64.6 64.2 63.9 63.4 62.3 60.8 57.1 52.4 0.796 0.676 0.580 0.510 0.457 0.389 0.349 0.324 0.307 0.295 0.284 0.275 0.261 0.252 0.252 0.253 0.251 0.242 0.218 0.220 -28.8 -36.2 -40.4 -42.7 -43.8 -44.5 -44.6 -44.5 -44.8 -45.2 -45.8 -46.5 -48.4 -51.0 -52.6 -54.4 -58.9 --64.0 -78.8 -93.4 S:!, S:!2 8'2 5,2,50, = f (f) Ic = 10 mA, VCE = 8 I/, Zo = 50 n 5 11 , Sz, = f (f) Ic=10mA, VCE=8I/,Zo=50n 90 0 -j50 628 Siemens BFR 193 Ic = 20 rnA, VCE = 8 V, Zo = 50 Q ~, ~2 f 8 11 8 '2 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.491 0.426 0.386 0.358 0.343 0.329 0.321 0.314 0.314 0.316 0.320 0.322 0.330 0.330 0.330 0.333 0.336 0.353 0.394 0.408 - 75.9 - 98.2 -114.3 -126.7 -136.0 -149.9 -159.5 -167.1 -173.5 -178.2 176.9 173.0 165.1 157.0 153.6 151.2 146.0 142.4 130.9 120.7 27.10 20.95 16.78 13.87 11.79 9.06 7.35 6.18 5.34 4.72 4.22 3.82 3.22 2.81 2.64 2.50 2.26 2.06 1.73 1.51 130.2 118.2 110.4 104.8 100.7 94.4 89.8 85.9 82.5 79.3 76.4 73.6 68.7 64.0 61.7 59.4 55.0 50.9 41.6 32.9 0.026 0.033 0.039 0.045 0.051 0.063 0.075 0.088 0.100 0.113 0.126 0.139 0.164 0.189 0.202 0.215 0.241 0.265 0.324 0.382 64.7 62.5 63.0 64.0 65.2 67.3 68.5 69.3 69.6 69.5 69.3 69.0 67.9 66.5 65.8 65.0 63.0 61.0 56.2 50.8 0.669 0.531 0.440 0.379 0.336 0.284 0.255 0.237 0.224 0.215 0.206 0.199 0.186 0.180 0.181 0.181 0.179 0.170 0.147 0.149 - 38.2 - 44.9 - 47.8 - 49.1 - 49.3 - 48.6 - 48.1 - 47.7 - 47.9 - 48.5 - 49.1 - 49.9 - 51.6 - 53.9 - 55.9 - 58.2 - 63.5 - 69.4 - 87.5 -102.8 5,2, ~, = f (f) Ic =20 rnA, VCE = 8 V, Zo = 50 n S",~=f(f) Ic =20 rnA, VCE = 8 V, Zo = 50 n +j50 -j50 -90 0 Siemens 629 BFR 193 Ic = 40 rnA, VCE = 8 V, Zo = 50 n ~1 ~2 f 8 11 GHz MAG ANG MAG ANG 8 12 MAG ANG MAG ANG 0.10 0.15 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.20 1.40 1.50 1.60 1.80 2.00 2.50 3.00 0.395 0.351 0.327 0.313 0.306 0.300 0.297 0.293 0.295 0.296 0.302 0.306 0.314 0.318 0.315 0.317 0.321 0.337 0.378 0.392 - 92.9 -115.2 -130.1 -141.2 -149.0 -160.6 -168.5 -174.7 179.9 176.0 172.1 168.5 161.3 153.8 150.5 148.7 143.9 140.9 129.8 120.2 31.23 23.03 18.02 14.70 12.41 9.46 7.65 6.42 5.54 4.89 4.37 3.95 3.33 2.90 2.73 2.58 2.33 2.13 1.78 1.56 122.5 111.6 105.0 100.3 96.8 91.6 87.5 84.1 81.0 78.1 75.3 72.8 68.3 63.7 61.5 59.3 54.9 51.0 42.0 33.3 0.023 0.029 0.036 0.042 0.049 0.062 0.076 0.090 0.104 0.117 0.131 0.145 0.172 0.198 0.211 0.225 0.251 0.275 0.335 0.392 65.6 66.2 68.1 69.6 70.6 72.3 72.7 72.9 72.6 72.1 71.4 70.8 69.1 67.2 66.2 65.2 62.9 60.6 55.2 49.4 0.553 0.422 0.343 0.293 0.259 0.219 0.198 0.184 0.175 0.169 0.161 0.155 0.143 0.139 0.140 0.141 0.139 0.131 0.112 0.117 - 45.3 - 50.5 - 52.3 - 52.7 - 52.2 - 50.9 - 50.1 - 49.7 - 50.1 - 50.9 - 51.7 - 52.8 - 54.8 - 57.5 - 59.6 - 62.3 - 68.5 - 75.8 - 98.3 -115.1 S.2, 5..1 = f (f) Ic=40rnA, VCE=8\1,Zo=50n $11' 5..2 = f (f) Ic =40 rnA, VCE=8V, Zo= 50n +j 90 0 50 o -j50 630 Siemens NPN Silicon RF Transistor BFS 17P • For broadband amplifiers up to 1 GHz at collector currents from 1 to 20 mA. € CECC-type available: CECC 50002/262. ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFS 17P MC Q 62702 - F940 SOT-23 Maximum Ratings Parameter Symbol Collector-emitter voltage Collector-base voltage Value Unit VCEO 15 V VCBO 25 V Emitter-base voltage VEBO 2.5 V Collector current Ic 25 mA mA Peak collector current, 10 MHz ICM 50 Total power dissipation, TA:s 25 °C 2) Ptot 280 mW Junction temperature °C fO? 7j 150 Ambient temperature range TA -65 ... +150 °C Storage temperature range Tstg -65 ... +150 °C Thermal Resistance IR Junction - ambient 1) thJA I :s450 IKIW 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. Siemens 631 BFS 17P Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter Collector-emitter breakdown voltage Values Symbol \t(BR)CEO Unit min typ max 15 - - - - 0.05 10 - 100 20 20 - 150 70 - - 0.1 0.4 V Ic=1 mA,IB=O Collector-base cutoff current VcB =15V,IE=0 VCB = 25 V, h = 0 ICBo Emitter-base cutoff current VEB = 2.5 V, Ic = 0 lEBO DC current gain fl.,E lc= 2 mA, VCE = 1 V, Ic=25mA, VCE=1 V Collector-emitter saturation voltage Ic=10mA,IB=1 mA 632 VCEsat Siemens I!A I!A - V BFS 17P AC characteristics Parameter Symbol Values Unit min typ max 1 1.3 1.4 2.5 - Transition frequency Ic= 2 rnA, VCE = 5 V, f= 200 MHz Ic = 25 rnA, VCE = 5 V, f= 200 MHz fT Collector-base capacitance Vce = 5 V, VeE = vbe = 0, f= 1 MHz G eb - 0.55 0.8 pF Collector-emitter capacitance VcE =5V, VeE = Vbe=O, f=1 MHz Gee - 0.28 - pF Input capacitance VEe = 0.5 V, Ic = ie = 0, f= 1.MHz Gibo - 1.2 - pF Output capacitance VcE =10V, VeE = Vbe = O,f= 1 MHz Gobs - - 1.5 pF Noise figure Ic = 2 rnA, VCE = 5 V, f= 800 MHz, Zs = 50n F - 3.5 5 dB Transducer gain Ic = 20 rnA, VCE = 5 V, f= 500 MHz, Zo = 50n 1~1e12 - 12.7 - dB Linear output voltage two-tone intermodulation test Ic = 14 rnA, VCE = 5 V, diM = 60 dB f, = 806 MHz, f2 = 810 MHz, Zs =ZL = 50 n Vo1 = Vo2 - 100 - mV Third order intercept point Ic = 14 rnA, VCE = 5 V, f= 800 MHz IP3 - 23 - dBm Siemens GHz - 633 BFS 17P Total power dissipation Ptot = f (TAl Package mounted on alumina Transition frequency fT VCE ~ 5 V, t~ 200 MHz GHz rnW 400 3 Prot r =f (Icl f 300 ,... V 2 / 1"\ " 200 I\. r\. I 100 " o +o 100 50 ~"150 o 0( -~ Collector-base capacitance VBE~ Vbe~O. f~1 MHz CCb = f (VCB) pF to 1 \. 0.5 o o ~ i'-. -- -r- 10 20 V -VcB' 634 Siemens o 10 20 -Ie 30 rnA BFS17P Common Emitter S Parameters Ic = 2 rnA, VCE =; 5 V, Zo = 50 Q ~1 ~2 f 8 11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.83 0.58 0.45 0.35 ·0.34 0.34 0.36 0.37 0.41 - 30 ....: 76 -106 -142 -160 -175 165 147 137 5.96 3.69 2.69 1.84 1.53 1.33 1.13 0.97 0.91 147 118 100 79 71 64 52 44 39 0.03 0.07 0.08 0.10 0.11 0.12 0.14 0.17 0.19 73 53 49 51 54 57 62 66 68 0.95 0.82 0.74 0.71 0.70 0.69 0.67 0.67 0.67 - 7 -19 -21 -27 -31 -35 -43 -50 -54 8 12 5 11 • 5z! = f (f) ~2. 5,,1 = f If) Ie =2 rnA, VeE = 5 V, Zo = 50 n Ie = 2 rnA, VeE = 5 V. Zo = 50 n 90 0 +j50 o -j50 -90 0 Siemens 635 BFS 17P Ic = 5 mA, VCE = 5 V, Zo = 50 Q 8.2, f 8" GHz MAG ANG MAG ANG 8 '2 MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.63 0.38 0.32 0.28 0.29 0.30 0.33 0.35 0.39 - 44 - 98 -130 -161 -177 170 155 140 132 10.78 5.37 3.59 2.39 1.94 1.67 1.40 1.18 1.11 134 107 92 74 68 61 50 43 38 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.19 0.21 69 57 60 63 65 66 67 69 69 0.87 0.70 0.64 0.62 0.62 0.60 0.59 0.60 0.59 -11 -20 -21 -25 -29 -33 -41 -47 -51 5", $,,2 = f (f) Ie 8.22 5'2, $", = f (f) = 5 mA, VeE = 5 \/, 20 = 50 Q Ie = 5 mA, VeE = 5 \/, Zo = 50 Q 90 0 o -j50 636 -90 0 Siemens BFS 17P Ic = 10 rnA, VCE = 5 V. Zo = 50 Q f 8 11 8 12 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.44 0.29 0.27 0.26 0.28 0.30 0.32 0.35 0.38 - 60 -117 -148 -176 173 163 150 136 128 14.21 6.35 4.10 2.69 2.18 1.86 1.55 1.30 1.22 125 100 88 72 66 60 49 42 37 0.02 0.04 0.06 0.09 0.12 0.13 0.16 0.20 0.22 69 64 68 69 70 70 69 69 69 0.79 0.63 0.58 0.57 0.57 0.56 0.55 0.56 0.56 -14 -19 -19 -23 -27 -31 -38 -45 -49 5.!1 5.!2 5,2, 8,,1 =f (f) Ic = 10 rnA, VCE =S \I, Zo = son 5,1. s.", =f (f) Ic=10mA, VCE=s\l,Zo=son 90 0 -j50 -90 0 Siemens 637 BFS 17P Ic = 15 mA, VCE = f S11 GHz MAG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.34 0.26 0.26 0.26 0.28 0.30 0.33 0.36 0.39 5 V, Zo = 50 Q ANG 8.21 MAG ANG MAG ANG 8.22 MAG ANG - 69 -130 -156 179 169 160 147 135 128 15.94 6.76 4.29 2.80 2.25 1.92 1.58 1.34 1.25 120 98 86 70 65 59 49 41 36 0.02 0.04 0.06 0.09 0.12 0.14 0.16 0.20 0.22 69 68 71 71 71 71 70 70 69 0.75 0.60 0.56 0.55 0.55 0.55 0.54 0.54 0.54 -15 -19 -19 -22 -27 -31 -38 -44 -48 S12 S.2, S:!1 =f (f) S.h~=f(f) Ic = 15 mA, VcE =5 V. Zo= son Ic = 15 mA, VCE = 5 V. Zo = son o -jSO 638 -90 0 Siemens BFS 17P Ic = 20 mA, VCE = 5 V. Zo = 50 Q ~1 ~2 f S11 GHz MAG ANG MAG ANG MAG ANG MAG ANG 0.1 0.3 0.5 0.8 1.0 1.2 1.5 1.8 2.0 0.27 0.25 0.26 0.27 0.29 0.31 0.34 0.36 0.40 -77 16.69 6.88 4.34 2.82 2.26 1.93 1.59 1.34 1.26 117 96 84 69 64 58 48 40 35 0.02 0.04 0.06 0.09 0.12 0.14 0.16 0.20 0.22 70 69 72 71 72 71 70 70 70 0.72 0.58 0.54 0.54 0.54 0.53 0.53 0.54 0.53 -14 -17 -18 -22 -26 -29 -37 -44 -47 -138 -161 175 166 157 146 133 125 S12 5". ~=f(f) 5,2. ~, = f (f) Ie = 20 mA, VeE = 5 V, Zo = 50n Ie = 20 mA, VeE = 5 V, Zo = 50n Siemens 639 BFT92 PNP Silicon RF Transistor • For broadband amplifiers up to 2 GHz at collector currents up to 20 mA. • Complementary type: BFR 92P (NPN). ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package BFT92 W1 Q 62702 - F1 062 SOT-23 Maximum Ratings Parameter Symbol Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current, f~ 10 MHz Total power dissipation, TA :5 60 °C2 ) Value Unit VCEO 15 V VCBO 20 V VEBO 2 V Ic 25 mA ICM 35 mA Ptat 200 mW Junction temperature 7j 150 °c Ambient temperature range TA -65 ... +150 °c Storage temperature range Tstg -65 ... +150 °c Thermal Resistance I Junction - ambient 1) 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 640 Siemens RthJA I :5440 IKIW BFT92 Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter min Values typ max V(eR)CEO 15 - - V Collector-base cutoff current Vce = 10 V. IE = 0 Iceo - - 50 nA DC current gain Ic = 14 rnA, VCE = 10 V ~E 20 50 - - Collector-emitter breakdown voltage Ic = 1 rnA, Ie = 0 Symbol Siemens Unit 641 BFT92 AC characteristics Parameter Symbol Values Unit min typ max Transition frequency Ic = 14 rnA, VCE = 10V, f= 500 MHz ~ - 5 - GHz Collector-base capacitance VcB =10V, VBE=Vbe=0,f=1 MHz Ccb - 0.6 - pF Input capacitance VEB = 0.5 V,Ic = ic = 0, f= 1 MHz C,bo - 0.8 - pF Noise figure Ic = 2 rnA, VCE = 10 V, f= 500 MHz F - 2.4 - dB Power gain Ic = 14 rnA, VCE = 10 V, f= 500 MHz Gpe - 18 - dB 642 Siemens BFT92 Total power dissipation p.o. = f (TtJ Package mounted on alumina Transition frequency fT = f VeE = 10V, f= 500 MHz (Iel GHz mW 300 6 I- 5 r--., / 200 4 1\ i\ 3 \ 100 II 2 \ \ \ 1\ o o 50 o o 150 0 ( 100 10 20 30mA -Ic Collector-base capacitance VBE = vbe=0,f=1 MHz Cob = f (VcBI pF 1.5 1.0 \ ~ 0.5 o o ......... 10 20 V -VCB Siemens 643 BFT93 PNP Silicon RF Transistor • For low-distortion broadband amplifiers up to 1 GHz at collector currents from 2 to 30 rnA. • Complementary type: BFR 93P (NPN). ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reeQ Package BFT93 X1 Q 62702 - F1 063 SOT-23 Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCEO 12 V Collector-base voltage VCBO 15 V Emitter-base voltage VEBO 2 V Collector current Ic 35 mA Peak collector current, f?:: 10 MHz [CM 50 mA Total power dissipation, TA :5 60 Dc;2) Ptot 200 mW Junction temperature 7j 150 DC Ambient temperature range TA -65 ... +150 DC Storage temperature range Tstg -65 ... +150 DC Thermal Resistance I Junction - ambient1) 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. 644 Siemens RthJA I :5440 IKIW BFT93 Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Parameter Symbol min Values typ max V(SR)CEO 12 - - V Collector-base cutoff current Vcs= 5\1, IE=O Icso - - 50 nA DC current gain hFE 20 50 - - Collector-emitter breakdown voltage Unit Ic = 1 mA, Is = 0 Ic=30mA, VcE =5V Siemens 645 BFT93 AC characteristics Values Symbol Parameter Unit min typ max Transition frequency Ic = 30 mA, VCE = 5 V, f= 500 MHz fr - 5 - GHz Collector-base capacitance VCB = 5 V, VBE = vbe = 0, f= 1 MHz Ccb - 1 - pF Input capacitance VEB = 0.5 v,/c = ic = 0, f= 1 MHz C,bo - 1.8 - pF F - 2.4 - dB Gpe - 16.5 - dB Noise figure Ic = 2 rnA, VCE = 5 V, f= 500 MHz, Zs = Power gain Ic = 30 rnA, VCE = 5 V, f= 500 MHz, ZSopt Zs = ZSOPb ZL = ZLopt 646 Siemens BFT93 Transition frequency fT = f (lei VCE = 5 V, f= 500 MHz Total power dissipation p.o. = f IT,.) Package mounted on alumina GHz 6 mW 300 / 200 4 1\ r\ V ....... V / / \ 100 \ \ \ o o o o 100 50 10 20 30 40 mA -Ic Collector-base capacitance VSE = Vbe=O, f= 1 MHz COb = f (VCB) pF 1.5 \ !\. 1.0 "- .......... ........ --- 0.5 o o 20 V 10 -VCB Siemens 647 NPN Silicon Darlington Transistors BSP 50 ••• BSP 52 • High collector current • Low collector -emitter saturation voltage • Complementary types: SSP 60... SSP 62 (PNP) E c B Type Marking Ordering code (12-mm tape) Package' BSP 50 BSP 50 062702 - Pl163 SOT-223 BSP 51 BSP 51 062702 - Pl164 SOT-223 BSP 52 BSP 52 062702 - Pl165 SOT-223 Maximum Ratings Parameter Symbol BSPSO BSPSl BSPS2 Unit Collector-emitter voltage Emitter-base voltage VCER VCBO VEBO Collector current Ic Collector-base voltage Peak collector current ICM Sase current IB Total power disSipation, TA ~ 25·C I, 45 60 80 V 60 80 100 V 5 5 5 V 1 A 2 A 0.1 A Plo1 1.5 W Junction temperature TI 150 ·C Storage temperature range T" g -65 to + 150 ·C Thermal Resistance ~83.3 Junction - ambient 1) .) Package mounted on an epoxy printed circuit board 40mm x 40mm x I.Smm Mounting pad lor the collector lead min 6cm2 1 For detailed dimensions see chapter Package Outlines 648 Siemens IKMI BSP 50 ... BSP 52 Characteristics at TA = 25 'C, unless otherwise specified. Parameter Unit DC Characteristics Collector-emitter breakdown voltage Ic = 10mA, RBE = 4.5Mn Collector-base breakdown voltage Ic = 1OOIlA, 18 = 0 1) SSP 50 SSP 51 SSP 52 V(BR)CER V(BR)EBO Collector-emiller cutoff current VCE = VCERmax,VBE = 0 ICES Emiller-base cutoff current VEB =4 V, Ie =0 lEBO DC current gain 1) Ic=150mA, VcE =10V Ie = 500 m~, VCE = 10 V hFE Base-emiller saturation voltage Ic =500 rnA, 18 =0.5 rnA Ic = 1 A'/B = 1 rnA - - V V V 60 80 100 - - V V V 5 - - V - - 10 llA - - 10 Il A 1000 2000 - - - - - 1.3 1.8 V V - - 1.9 2.2 V V 200 - MHz 400 1500 - ns ns V(BR)CBO SSP 50 SSP 51 SSP 52 Emiller-base breakdown voltage IE = 100IlA, IB = 0 Collector-emitter saturation voltage Ic = 500 rnA, Ie =0.5 rnA Ic = 1 A'/B =1 rnA 45 60 80 2) VCEsal VBEsal 2) AC Characteristics Transition frequency Ie = 100 rnA, VCE = 5 V, f= 100 MHz 'T - Switching times Ic = 500 mA,IBI = 182 = 0.5 rnA (see Fig. 2 and 3) ton . toll - 1) Compare RBE for thermal stability 2) Pulse test conditions: t ~ 300115; D = 2% Siemens 649 BSP 50 ... BSP 52 -2.2V +10V 18n ljlS D.U.T. 9kn -1r- 1S38~1 tr GR ID I Dpul. V•• PD Ratings Unit 240 240 0.29 1.16 ±20 1.5 V V ~s =20kO A A TA =29°C TA =25°C V W aperiodic TA =25°C 7j T.t. -55... +150 55... 150... 56 ·C :583.3 KJIN DIN IEC 68 part 1 Thermal resistance Chip - air Chip - substrate rear side 658 Conditions RthJA Siemens BSP88 Electrical Characteristics Condition Static characteristics Drain-source breakdown vottage V(BA)DSS 240 Gate threshold vottage VaS(th) 0.6 Zero gate vottage drain current IDSS - - 0.8 1.2 1.0 20.0 V Vas =OV ID =0.25 rnA V VDS = Vas; ID =lmA JlA 1j =25°C; VDS =240V Vas =OV IDSS - 10.0 200 JlA 1j =125°C;VDS =240V Vas =OV IDSS Gate-source leakage current Drain-source on-state resistance I ass RDS(on) - 10.0 100 nA 1j =25°C; VDS =100V Vas =OV 100 nA Vas =20V, VDS =0V Vas =4.5V I D =0.29A Vas =10V I D =O.29A 8.0 0 6.0 0 0.32 - S VDS 2:2" I D * R DSon max ID =0.29A 90 140 pF Vas =OV VDS =25V f =lMHz 6.0 - RDS(on) Dynamic characteristics Forward transconductance gl. 0.14 Input capacitance CI •• - Output capacitance Co •• 20 30 Reverse transfer capacitance Cr •• 6 9 t d(on) - 5 8 10 15 30 40 25 30 Turn-on time ton (t on =t d(on) +t,) t, Turn-off time t off (t off =t d(ofl) +t I) tl - Continuous aource current Is - - 0.29 A Pulsed source current ISM - - 1.16 A Diode forward on-vottage VSD - 1.3 V t d(olf) ns Vee =30V Vas =10V I D =0.28A Ras =500 Reverse diode 1.0 Vas =OV '/ F =0.58A Reverse recovery time trr - - Reverse recovery charge Orr - - Siemens - ns VA =l00V, IF = 'D A dl F Idt = 100A/Jls JlC VA =100v, 'F = 'D A dl F Idt = l00A/Jls 659 BSP88 Permissible power dissipation PIOI == I(TA) aSP88 1.6 W f-I- h 14 P.o. 12 1--- 1-1- 10 0.50 1-1- f----- H- I- -I- 1\ 02 -·3V f-tt-!t-!- ~~~ -.-r-- '--1-·- 1\--~~= ]\ 0.35 f- t-- l- t- t-. o' - ' - o 20 ---+1--- Li-~~~ _~-=_L 40 60 60 -- .--. --.- 2.5V - - -----._-:-+ 0.30 0.25 0.6 f0.4 f-~'---l 0.55 t-t_ - 1.0 0.8 A - -- -- -- I-t- IS B5P88 0.65~~ .'-- -- - I -I - - - - I - -- -f\ .- -I;- Typ. output characteristics 10 == I (Vos) '- --- -f- 0.20 '\ -:.;;.oIf--t--t---t- 2V -1\ t- f-!- --- -'- -._-+ 0.10 i~t± :b=f==l==-+~+----=4~ 1.5 V 0100...-'-.--"'--'-- - - - - o 100 120 140·( 160 23456V8 -TA - - - V05 Typ. transfer characteristic To == f (VGs) parameter: Vos == 25 V, tp == 80 lIS, TJ == 25 ·C Permissible operating area fo == f (Vos) parameter: 0 == 0.01, Tc == 25·C 0.60 r-- - .---,- A I-- ~- I o .!l..~!' .~~-- - ... -- - -.--~ - - - - --- . - 0.50 1-- t- .-- -.-.1-- - --- - - -- --I - 1--1- -1-1------- - --- t 0.40 ;--1---+-+1--+--1---1-- ----1--1-0.301--1-- -j-I-- -.- -- -- - ·-i- 1-+--+-1-1--1-- --1-1--- - - - 0.201-1--" -1-1-- -f- f--I---/---ii-I--I-- --1--1---- 0.10 I/ 1--[7-- --.--- - - 1 - ... - - o'---"--'-_-'__.'-_ o 4 660 Siemens - _.. .. _-- _.... ---- _____ L_ L_ 6 8 V 10 _VGs· BSP88 Typ. drain-source on-state resistance ROS(on) = ((10) parameter: VGS , TI = 25°C Drain-source on-state resistance ROS(on) = ((TI) parameter: VGS 26r-r-r-r-r-T_BrS~P66 = ~.5 V, 10 = 0.29 A, (spread) BSP 88 20 (l ROSlon) 22 ROSlon) 16 I-- - 20 - V I- I 16 1/ 16 14 - 12 \- - 1 - -98%;- p- ~ 6r_~~~l 4- I...... po o o o '--- ----" 8 4 0.10 0.20 0.30 0.40 0.50 -10 Typ. transconductance gls = ((10) parameter: Vos = 25 V, Ip = 80 liS, Tj 0.45 - - - 88 -- ---asp ._-- -- - ... - ---- --7 30 S 1--1---1--1--1-1- --- -- gr ::: - VG S (I h) f -40 ~~ -]f o 40 / I-- - 80 -- -- '--- 120°C 160 SP'-'8:6;:- -----y-T---,----r--, .---,---.----.---r_;Br: V 1---+-4--1-- ---1-+--1---+--+--1 2.6 t-+-+--l-+-+---+-t--t-t-t-i 2.4 I--+--+---j--t--jl----t---I--t---t--jl---t 2.0 1---1-+-- t --\----+-'I---+---I--t---t--1 1.8 I----+-+-+_+_+_ I--+--I-+-t----I ------ ----- -- --7--1--- - -- .---. --- 0.15- - - - - 1 - - - - 1 - - ...... V 1- / 2.21--1--1f--11---:1---t--t--I-+--t---t---I --VJ:~ 0.25 0.20 ~I-!=~V~=_~--·~ - / Gate threshold voltage VGS(lh) = ((Tj) parameter: VGS = Vos, 10 = 1 rnA (spread) = 25°C -V-r-: // ~ -80 A 0.65 1.1 ~/ v- 8 10 II ._- 12 ----- 0.10 1--/--1+-+-11---1-+---1-- - ! - - - ---- o 05 H--+-+- t-+-+--j-- -- -- .- - o '--- _l_-'---'--'__ L--'-_---.J'_-'-----'---' o 0.10 0.20 0.30 0_40 A 0.55 o 20 40 60 80 100 120°C 160 ~ 10 Siemens 661 BSP88 Continuous drain current 10 = f(TA) 0.30 1 0 r---;-_.,-_.,--:B::..:S.:,P_;c:88--,-_-,-_-y--, A ==~.- 0.26 '" . ~:~ 020 o18 0.16 Drain-source breakdown voltage VIBR)OSS (T,) = b X VIBR)OSS (25°C) --t--t---l--t--l ---j---+-~--t--l A 1.16 '\K---r--- b 1.14 1.12 --1--"\ ~- - - r - -.- -.-.-'\- asp 88 1.20 t -1- '0 . 1.10 108 -1--1-----1 0.14 1---1----1--1--1---1,·- , - f - 0.12 f - --+--+--+-_. r - - \ I 010 1--1--+--+--\--1-·-1--\ r--- 0.08 1---1---+--.1--1-.-1--1-----1\--\-1 1 0061---I--+--~·-~---t~-I--+\·--t 004 0.02 f- -- - o o ---1---1--+---+-\11-1 ---. --- ---t---t-H L....._. _ _ _ _ .. _ _ . ._._._ 20 40 60 . ___ • . __ ._. _ 80 100 120 -TA ._l 160 O( 0.90 - -- - - - ----- - 60 -40 -20 0 20 40 60 80 100 120 _ Forward characteristics of reverse diode Typ. capacitance C = f(Vos) parameter: VGS = 0, f = 1 MHz IF = f(Vso) parameter: Ip = 80 US, ~~ ~ 5 . _ _. _ --- - - 10--+---1---·-- - A 5 110 2 5 E~~'\gEE~~~~·---~·--~C~s ~ t-- -+---+--1 f- f - - 5 ~:--1--->t----f--t-===y--t--4-.-;;;!-Coss 10 1 f--'-... - f- C'55 r>E ... ~!:.-I--I--- ~:: -1-11-- -... 25°( typo - I - 150 0 ( typo ,lP -is. --~ L1J--. FF ~~ ~ r.!25°((98%J - --;:-- ._-1- :/ ~Cc __ 1-1--- ~~ - -- -c- -~ - -e- ---- 5 I---I---r--t--~-+--- _ u --- - .. - T, (spread) r- r- ~~-'lr-t--+----ir--- -.+--t--I.-- C 160 o( T( 5 f-f- c-"< ~ J If- -1- -~-~- ~~om - -- = .-= -- I l- -- I -1- =r= - - - I- c--I- - 10° L--'--_'----'-_-'- _-'-__'---'_..J o 10 20 30 --662 V 40 VOS --- Siemens V 3 2 V~o SIPMOS N Channel MOSFET BSP89 Preliminary Data • 81PM08 - enhancement mode • Drain-source voltage Vos = 240V 10 = 0.34A • Continuous drain current ROS(on) = 6.00 • Drain-source on-resistance Po = 1.5W • Total power dissipation s Type Marking Ordering code for versions on 12 mm-tt:pe Package SSP 89 SSP 89 Q67002-8652 80T223 Maximum Ratings Parameter Drain-source vOltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vcs I4>GR 10 lopu,. V•• Pc 7j T.ta Ratings Unit 240 240 0.34 1.36 :!:20 1.5 V V A A V W -55 ... +150 55 ... 150 ... 56 °C :583.3 K/W Conditions Ros =20 kO TA =25°e TA =25°e aperiodic TA =25°e DIN lEe 68 part 1 Thermal resistance Chip - air Chip - substrate rear side RthJA Siemens 663 BSP89 Electrlcsl Characteristics Condition Static characteristics - Drain-source breakdown voltage VIBA)DSS Gate threshold voltage VGSlth) 0.8 1.5 2.0 V VDI= Val; ID -1mA Zero gate voltage drain current 'DSS - 4.0 60.0 fAA 1j =25°C; 240 V Vas =OV 'D =0.25mA v VDS =240 Vas =OV 'DSS - 8.0 200 /oI A 1j = 12SOC; VDS v =240 VGS =OV 'DSS - 200 nA 1j =25°C; VDS =60V VGS =OV Gate-source leakage current I ass Drain-source on-state resistance RDSlo.) RDSlo.) - 10.0 100 nA Vas =20V, VDS =OV 5.5 6.0 Q I D =O.34A 9.0 10.0 Q Vas=10V Val =4.5V I D =0.34A Oynamlc characteristics Forward transconductance gl. Input capacHance C ••• Output capacitance Co •• Reverse transfer capacitance Cr •• 0.14 - - t dlo.) 0.29 - 90 140 20 30 6 9 S VD...2*/D * RDSo. max ID =O.34A pF VG' =OV VD• =25V f =IMHz 5 8 8 12 Val =1OV 25 30 I D =0.28A 22 28 Vcc =3OV Tum-on time to. =t dlo.) +t.) (t t. Tum-off time toll (t 011 =t d(oll) +t I) tl - Continuous source current Is - - 0.34 A Pulsed source current ISM - - 1.36 A Diode forward on-voltage VSD - 1.4 V VGS =OV =0.68A Reverse recovery time t •• - - - ns VA =100v, IF = 'D A di F /dt = 100A//oII Reverse recovery charge Or. - - - /oIC VR =100v, IF = ID R di F /dt = 100A//ols 0. t d(oll) - ns Rat =500 Reverse diode 664 1.1 Siemens 'F BSP89 Permissible power dissipation 16 W l-I14 Ptot ! B~P 1\ 13 f--- ' - "-~ Pial = t(TA ) 89 0.75 r-,--._-=-~:--:-::.:BS,PT.:.:69-'--r_-r--,-l f--'-_I\~OI =15W___ --j-+--t Its = .~ --1- I 10 --i.- -- .._--- 12 11 I- - i 1.0 09 0.8 f-- I - i-. \ -f07 --- -1-- - i 0.6 r\ 05 -i- -- .-- -~ - - -I0.4 .. --- - I 03 l - I- i - ---- \I - - i 02 l-I- -I- -1- -1-- -- - - I \ - i 01 i- I- -- -- - -- _. - - 1--- - - ,\1- ~ Typ. output characteristics 10 = t(Vos) "- S A 10V-0.60 - 9V ---1---.--1---~"I 8V- . 7V0.50 - 6V 5V=040 t---t--+ ,I" --= 030 0.20 -- o o 20 40 60. 80 100 1.--:j:::::::j::::::J==I==l==I==l= 25 V 0~±=±=±=~~=c=t=t=2V o 120 140°(160 3 4 5 6 7 8 V 10 -Vas --~TA Typ. transfer characteristic 1D = f (VGs ) parameter: Vos = 25 V, Ip = 80 jls, Tj = 25°C Permissible operating area 10 = t(Vos) parameter: 0 = 0_01, Tc = 25 DC BSP 69 0.70 - - --- A ------i---------~ 10 0.60 - - - - ---- -- t 4 --- -- -- - - r - - c--I-- - -r--- ----- --- --. ---I- --- --- - I 050 I - - ! - - I - - - - - - -- -- I- --- 0.40~~ ~~~~-_~~_-===-__ 030 - - - - -- - - - - - - -- - - - - - . - -- - - 020 1----1---1-- - - - -------·-1--+-+---1 - - -1-- --------+---- 0.10 f--+--l-/H--t---l-l- o '--_'-L..L.---,_-,----,_-'--'_J o Siemens 2 3 4 5 6 7 '-- V 10 665 BSP89 Drain-source on-state rl!slstllnce f(TI) parameter: VGS = 10 V,lo = 0.34 A, (spread) Typ. drain-source on-state resistance ROSlon} = ((10) ROSlon} = parameter: VGS' TJ = 25°C 16 .--..--,-.,- ,-- .~~':-!!- R ~- c - r" ~--- --~--- -/~~ Q R OSloo} 16 1 14 -+-- Q --l--l-I~~-l 10 - - - - 1- - -~;%./.V 12 8~ 6 - .- .... -.- .. ~:LI--f-- .,~ _ .. -- -- .. - ~ . typ.- - ::~~~ ~~ :~i-- ~ 4 o o 0.1 0.2 OJ Q4 0.5 0.6 A 0.75 -fA g,. = Typ. transconductance ((10) parameter: Vos = 25 V, tp = 80 liS, TJ = 25 °C I-I- -1- ~~--.~ - -- j -._1_L-J~ o L-I_.L~ - 80 -60 -40 -20 0 20 40 60 80 100 120 ---r. O( 160 Gate threshold voltage VaSl/h} '" f(1j) parameter: Vas Vos, 10 '" 1 mA (spread) = 5 r-~-.--"'_'r_8~~9 g~ --,- - - .-- -- -- S - - - - - - - 1 - - - l.......-+--l--l--l--l / t OJO - // / L __ 025 -- - -- -. . 020 '-- -- / 0.15 010 -- --. - 1-1--4-+-.-- ---- .-- .-- --- - -J-J--lf-I--l--l - - - .. --! ------- ---- -I-l-f--J r7----- -- -. ---- - - -- 0.051/- -.- - - - --- --1-- - - o '- '- -. --- .- -- __ '--.1_ o 0.1 0.2 03 04 05 -I- A 0.65 - /0 666 Siemens o -60 -40 -20 0 20 40 60 80 100 120 -r. O( 160 BSP89 Continuous drain current 10 = f(TA) Drain-source breakdown voltage V1BR)OSS 036r--r--r-~-_BS~P_69__r _ - r _ . - - ' A f--~ . 10 0.3Z ~:---.j--+--t--j---I---l I ~ OZ8 A 10 - ---- f- - -- f-- 0.94 --.- --+_.- --_.- - - r-- .L- 160 .L /- V- ~ V- I- V- I - I-- r-- I-.-- ' - - V- . - -- --.- -- - 1--- - ' - 1-- f-- c- ~ 090 ---- - - ' - -60 - 40 -ZO 0 ZO 40 60 80 100 lZ0 • ( 160 -T( Typ. capacitance C = ((Vos) parameter: VGS = 0, (= 1 MHz Forward characteristics of reverse diode IF = f(Vso) parameter: tp B5P89 11 I- BSP89 ~ I- 1-1- ~ A I- I-- = 80 liS, 1j (spread) 101 f=: f-- pF I--r- I-- ----- --- V- V- - ---- ,/ ,- I-- - I-- \ o -_. -- . ---- ---- --- .-----o ZO 40 60 80 100 lZ0 .( ---Ii. [ I -I - - 1.06 0.98 10 I -I-- 1.0Z ::: == -~-~ -~~= ~-==~ --- - I- - f-- \ - - - r - - -- r--- f-- -- - I l -I--I -I - - -- -- f-- f - - - - ----1---1\-- O.IZ 1 - - - - - - - - 1 - - (25°C) BSP89 t 1.10 I - - OZO~-+__~'---~-I~I __ ~~4-~ o16 X V(BR)OSS 1.Z0 114 OZ4 f---r---1- ---+~~.--1--1--+---1 f--+---+--ji- -~ .---I~---j (1j) = b !-=:= - - II- - 11 f - 1i-- f - I- 1= -l- I-f- t 10 2 5 ~\ ----~~: --- TJ ~I- I-- - , - - - --j---,I---t--;---{ f-- = 25'(1 yp~ 1= IS00C t -- f--. 5 ~ .....::::::::-+-:---11--1--+--1--1 1-1-1-1--- 1-1-1-: I- 5 100 __ ~~ t-- r/~ =f:: -I- .--.. P-:= -- c ~ V-r=- ----=.;= -:~ ~ ::,.., r--I- T.J = 1-:: =- __._-- - -- ~~_ 2SoC (98%) 150°C (98%) - --- - -lI- == --- L - - - L _ - ' - - - ' _ - L _ . L - - - L .__- ' - - - ' o 5 10 15 ZO Z5 30 V 40 2 V 3 ----Vos Siemens 667 BSP92 SIPMOS P Channel MOSFET Preliminary Data • 81PM08 - enhancement mode • Drain-source voltage Vos = -240V • Continuous drain current 10 = -0.18A Ros(on) = 200 • Drain-source on-resistance Po = 1.5W • Total power dissipation s Type Marking Ordering code for versions on 12 mm-tepe Package SSP 92 S8P 92 062702-8653 80T223 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos \i>GR 10 I Cpuls V•• Po 7j T••• Ratings Unit -240 -240 -0.18 -0.72 ±20 1.5 V V A A V W -55... +150 55 ... 150... 56 °G 668 R.hJA ~83.3 K/W Siemens Ros =20 kO TA =33"G TA =25°G aperiodic TA =25°G DIN lEG 68 part 1 Thermal resistance Chip - air Chip - substrate rear side Conditions BSP92 Electrical Characterlatlcs Condition Static characterlatlcs Drain-source breakdown vo~age V(BR)OSS Gate threshold vo~age VGS(th) Zero gate vottage drain current loss -240 - V VGs=OV 10 =-0.25 rnA -0.8 -1.5 -2.0 V Vos= VGS; 10 =-lmA -4.0 -60.0 J.iA 1j =25°C; Vos =-24 OV VGS =OV loss - -8.0 -200 J.iA 1j = 125°C; Vos =-24 OV VGS =OV - loss -200 nA 1j =25°C; Vos =-60v VGS =OV Gate-source leakage current I GSS Drain-source on-state resistance Ros(on) Dynamic characterlatlcs - v -10.0 -100 nA VGS =-20V, Vos =0 12.0 20.0 0 10=-0.18A 0.13 - S Vos .,,2* I 0 * R OSon max 10 =-0.18A pF VGS =OV Vos =-25V f =IMHz ns Vcc =-30V VGS =-10V I D =-0.25A RGS =500 VGS =-10V Forward transconductance g,. Input capacitance CI.. 70 105 Output capacitance Co •• 20 30 Reverse trensfer capacitance Cr •• 8 12 0.06 - 8 12 30 45 I d(off) 15 20 If 30 40 I d(on) Turn-on time Ion (Ion =1 d(on) +t r) Ir Turn-off time loff (1011 =1 d(off) +1,) Reverae diode Continuous source current Is -0.18 A Pulsed source current ISM -0.72 A -1_2 V Diode forward on-vo~age VSD -0.9 Siemens VGS =OV IF =-0.36A 669 BSP92 Permissible power dissipation PIOI = ((TA) Typ. output characteristics 10 BSP92 1.6 W = f(Vos) BSP 91 -0.40 f- f- 1.4 A 1\01 10 \ 12 ~ 1.0 -5V 1- 0.30 I .--- -- --4.5V ""1\ I -0.20 0.8 1 - -1--- 06 '\ 04 ---4-- ~ J..--I--I--t--t--t-- 3.5 V -0.10 "" o 2 1--- .- - o' o ·-'-0 - - -- ---~. 20 40 _. -- -. 80 ~-+~--~+-+--r-3V -f\ f- f- ~. 60 I___+-+-~-t-- 4V 1\ --- -- .- - --- -- .--- ---1-- "..-!--1r--t-+-+--t--t--t-- 2.5 V r-- o~+--t--t--t--+~~r-+-~-2V ---- -- ° 100 120 1400 ( 160 -1 -2 -3 -4 -5 -6 -7 -6 -9 _TA - Permissible operating area 10 = ((vos) parameter: 0 = 0.01, Tc = 25°C V-ll Vos Typ. transfer characteristic 10 = ((VGs ) parameter: Vos 25 V, Ip 80 lIS, 7j 25 °C = A - ItO--Oo:: - = --- ----. --- - -.. - --. = ..- --- ==- ==:1----: ~~--~~--~ =~ , -1--.- --- -- - -- 1 -- - --. -.-- --- -- I-----I----l-- - - 0.20 I---- 1-. - - - - -.-- --.- - - -- .-- -0.161-1--- - -0.12 1-1--1--- ---- ----1-- 1-- ----~. =~ =~ II ----1---- - 0.08 1--+--+-I/--1--j--- - - --I---- - I---l----l--I.-j--t-t---t--i-- - - - - - O. 04 I----t----l-/I-+--t.-t--+--t----t-- - I--+--bf-t-+--t--I---t--j·-- - O~~/'~_~J--L_~~ __ ' _ _ _ o 670 Siemens -2 -4 -6 -8 V -10 'ssp 92 Typ. drain-source on-state resistance ROS(on) = f (10) parameter: VGS , T, = 25 DC Drain-source on-state resistance RoS(on) BSP 91 65 55 50 r-f = 10 V, 10 = 0.18 A, (spread) BSP 91 50 ~J"JI_ I I o -2.5V-3V -3.5V-::W--4.5V - 5 V - - ROSlonl =f(~) parameter: VGS ROSlonl 40 '--- 45 40 30 1---1--1---1 I 35 - - - f--. / 30 25 - / :/ - 20 ...L ::::;;;:;;; ~ 15 .- -- f 1- -/- V- -/- - --6V ---: ~ V 20 --- -.,.- ~ 10 -7V -6V-9V-l0V- - - f - 10 5o- o -i----i----tj--- -- I -- ._._- - - - ' ---- -- -_.. - 0.10 -0.20 - 0.30 o - 60 A -040 ____ .... 1-- -1.0 o 40 120 0 ( 160 rJ -10 Typ. transconductance g,s = f(/o) parameter: Vos = 25 V, tp = 80 liS, Tj = 25 DC Gate thre.hold voltege VGS(lh) = f(7j) parameter: VGS = Vos, 10 = 1 mA (spread) SP,..:.9.:.2- , - - - , - - - , 0.20 ,---_,--__ r-_B:.::c -5 v .... s VGSllhl 9 Is 0.16 t 1- 80 BSP oZ 8 - - ----1-- -4 0.12 -3 0.08 -2 . t- -1 o --- - ----- - o -005 -010 -0.15 -0.20 o A -0.30 -60 -40-20 0 20 40 60 80 100120·( f60 -~ - - - 10 Siemens 671 BSP92 Continuous drain current 10 - 004 - ~--~~-. ------~ I 10 ~ 104 L 60 80 100 120 O( --_to . _. TA 160 asp 92 11 ~==l==~=r==f~ pF 1.00 0.96 0.92 o ----- - - -- - 60 -40-20 0 20 40 60 80 100120 O( 160 -T( Typ. capacitance C = I(Vos ) parameter: VGS = 0, 1= 1 MHz 10J -~- f-- -I- 40 --- ---, --- . --- --- 108 1] 20 - 112 8-.]Jt:c:~-,--~1\- o o ~-t---! Forward characteristics of reverse diode IF = l(Vso) parameter: tp = 80 liS, 1j (spread) 100 asp 92 12 = --: : ==-- - - A ~ =.}~::: ~-~~ t:: ~r25°(1 yp. -izlT-~1i2 --.- . - - - 1 - - ---115 1500 ( '-1= tYr;/lI-v~~ c I r 92 b i 5 asp 1 20 1.16 ""- c--- 008 = A A f -012 Drain-source breakdown voltage VIBRIOSS (1j) b X VIBR/OSS (25 Oe) aSP91 -0.20 10 -0.16 = l(rA) '" ",1= -c -- ~ '25°((98%) = cO: , 150.~,"'J " ·-1-_=, ~ ----- - - - , . -- I-- - - 1-:- I- - --1-:------ -- -- -.- --I- - --- c- -r- . - - I-I---r- 5 r---- 5 __. . --- - - ~ -~~ T; - -1------:-- 1-'- -:-1:-= . 1 ~ -_. JJ--- =- ==1=::: o . :=+-1- --:-i=1= I-:F-I-i==l= 5 1-1-- 1--I- - _. J -20 -30· V -40 - - - - <... Vos 672 Siemens -1 ~- -2 V -3 SIPMOS N Channel MOSFET BSP 125 Preliminary Data • SIPMOS - enhancement mode VOS = 600V • Drain-source voltage /0 = .110A • Continuous drain current Ros(Dn) = 450 • Drain-source on-resistance Po = 1.5W • Total power dissipation s Type Marking Ordering code for versions on 12 mm-tepe Package SSP 125 SSP 125 062702-S654 SOT 223 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range . Climatic category Symbol VDS \.DOR /0 IOpuls V.s Po 7j Tat. Ratings Unit 600 600 0.110 0.44 :t20 1.5 V V A A V W -55... +150 55... 150... 56 DC ::;83.3 K/W Conditions RGS =20 kO TA =39DC TA =25°C aperiodic TA =25DC DIN lEG 68 part 1 Thermal resistance Chip - air Chip - substrate rear side RthJ' Siemens 673 BSP 125 Electrical Characteristics Condition Static characteristics Drain-source breakdown vo~age VeBR)OSS 600 Gate threshold vo~age VGSeth) 1.5 Zero gate vo~age drain current 2.0 V Vas =OV 10 =0.25mA 2.5 V Vos= Vas; 10 =lmA TJ =25OC; Vos =600V 1j =125°C;Vos loss 10.0 100 nA loss 8.0 50.0 JlA Vas =OV =600V Vas =OV Gate-source leakage current Drain-source on-state resistance I GSS 10.0 100 nA V GS =2OV, Vos =0V V GS =10V 30.0 AOSeon) 45.0 0 10=0.11A S VDS ",2*/0 • A DSo. max 10 =O.llA pF Vas =OV Vos =25V f =lMHz Dynamic characteristics Forward transconductance g'l 0.06 0.15 Input capacftance CII. 110 170 Output capacftance Co •• 10 15 Reverse transfer capacftance Cr •• B 10 Turn-on time 10 • (Ion =1 dCo.) +t r) Ideo.) Turn-off time loll (loll =1 dColI) +t f) 5 8 10 15 I deolll 18 25 I, 20 25 Ir ns =30V =10V 10 =0.21A Aas =500 Vee VGS Reverse diode Continuous source current Is Pulsed source current ISM Diode forward 674 on-vo~age Vso - 1.0 Siemens 0.11 A 0.44 A 1.4 V VGS =OV IF =0.22A BSP125 Permissible power dissipation P'ol = ((TA ) Typ. output characteristics 10 85P115 1.6 -r-r W 1-- t"\-I-I- -~o, 1.4 f - I-- -[S~ -1.2 1-- f - - 1-\ - I -l- ~ f "\ 1.0 -" f-I- 0.1. - -I - - 1-- 1 - -1 - - -- - l - I - - _. ---- w 4~~: 'l'V-~I-V--I).--I-\-+--+--+- 35V I- 0.06 -J WI7 - Z: "I - ~~~ ~, --t--i-il-"";;:;Ir--.--t-.-t--l I-- ....... 3{ - -- I V -- _.1-- o r_-,---,-_. o 2 4 6 '-- ~ ~- V- ,/ 0.04 002 1---- -'I [S ,- ~ 00 IV7'l--I--+-'I--+--I-4 rJ''-),-~""",l---lI-t--+-+-+--1 5.5V 0.08 I-- "\. '-- - - -\ - l - I - ~ 7V-- 0.10 I-- - ~ 0.2 f - - 1 - - - o w I-- 6V - - 0.12 1\ 0.6 I- -- f - - _.- - - I- o :~ 0.18 0.14 - --1\ = V-V ~LD-k::::'---il--t---I-+--l 0.20 0.16 1--1- 0.8 I- R lo,=l5W ;tv=+_--J'~-"..,~--r;~~~-~;:;-4tt-._-l ItO 0;2 - l -I - 85P125 I 0.26 = t(Vos) I-- --I- 2 5V 1--- 8 j 10 12 14 16 18 V 22 - - - TA Typ. transfer characteristic 10 = {(VOS) parameter: Vos = 25 V, tp = 80 jJS, ~ = 25 °C Permissible operating area 10 = ((VOS) parameter: 0 0.01, Tc 25°C = = 85P125 l- I- I- =r~~~- - ~~~ r\. - - - =1- 5 - -. q.f\ -- - -- 5 ~~~-: ~~=-~-.- 1- -' 1- -- - - _. -- - - . 'p It - T ,_ -, - ~- .~ '=::. -- 0.16 .U ~- I ms \ II 10 ms - --- \IS 1100 ?C ~ ,- rO.~ 0.01 . \IS i~ms A - - 1--1- . - -- 0.12 0.08 .... 0.04 - LillJJllll I II o ---Vos 85P 115 -- 014 III 'p= - ~ -I-.f-- D-!L~ --T_ -11U .. - ~-:- -- 1---' I-- ~ -.\<>~ - o I 2 I 3 4 5 6 7 8 V -VGS Siemens 675 10 BSP 125 Typ. drain-source on-state resistance Drain-source on-state resistance = ((f0) ROSlon) ROSlon) parameter: VGS , TI = 25°C 140 ~r::: - GS r f- -_.- '- 1- - I-- -c 80 7 / 20 1- ._. l- - - -./ / tI ~ ,...--: ~ __ 4SViL .- - !- - ~ - I- J .? V ./ ~ ssv 6V I- f-- I - I - 7v'~V ~V 008 012 016 020 I- ./ 10V 20 t -/ V-- L - 40 ~ / 98%/ 60 ~ -.- / - J L JL 004 - - . - 0-_- -- - -- - - ==J=r±i±+ o o - -I-- - 80 ,..- 40 - f-- / 1- - 60 4V , - r-- -·1- - 1-- f-- A, (spread) -8SPl15 r-l SV -- " - -_. !.- - - = 10 V,lo = 0.11 B~P II~ V. =3V l- \l I-- = (Tj) parameter: VGS V / 7'V ,/ ./ ,;- typo i- V V I- - o -80 -60 -40 -20 0 20 40 60 80 100 120·C 160 A 0.26 -~ g,. = Typ. transconductance parameter: Vos = 25 V, Ip Gate threshold voltage VGSllh) = f(TI) parameter: VGS = Vos, 10 = 1 mA (spread) ((/0) = 80 IlS, 1j = 25°C BSP11~ ssP liS 9" S I-~ -- 1 016 - --- --- - -- - - ~V'L~ Vr-+--~-r-+--l-~I-t---I----~ r-!.--V- - _. - 4t-+-~-r-+~-jl-+-~--j--r-1 1 r- -1/1---- 0 0 4 / - --- - I--I--+--+-+-I---I---I---/-3 --I---j-+-+---1 1-1~i== ~I::::: 1-- --I---!-+-+--t--I--!--j---j =:2;<-8°",,1'°+--+-_1-_1_+-_1 1--1--+--+- .~ -- I-- - - -I--t br-- --- - 2 _ - ::-- r-;;,,_ 1--1-) -- -- --j-I-t---!--+--j 0.08 I--!--I---+--I--I--!--t---I- - 1 - \{;SlIhl ~~ - - ; ; ; r-~I-I--j--i I-I----~--I---!012 S.-r--r-.--.---i-"-r--r---,--,r-r--l ,/ ---- '{!:.. ---t--t-I-I-I- -;:;,f--t;::::~-..j.,~= .:.:...~ %+-+--+=~-I:;:-i .--1=.- I--!--I-- - - - --- I--+--.f-. 1 - - - - ---..-- I I - r - - r - ' - - - - r - --1-1-j--t-+-+--j--f---I---+-t-I- I-o L - - L - _ _ L...- _ _ _ _ _ _-1--1-1--1-________ .•. 1--- -- ---·--I--!--I--+--1 ~ 004 0.08 0.12 0.16 A 0.22 -~ -/0 676 -60 -40 -20 0 20 40 60 80 100 120·C 160 Siemens BSP125 Continuous drain current /0 = ((TA ) 012 --- --- - Drain-source breakdown voltage V(BAIDSS (7j) = b X V(BAIDSS (25°C) asp 115 --- -- A A 10 r 10 120 b 010 009 1"4 006 110 007 106 - -- --. 006 005 102 004 098 003 002 -1-- -- ---- 094 001 o --- o 20 1.0 60 80 -- ---- - 100 120 O( - 090 - --- --. ---60 -40 -20 0 20 40 60 80 100 120 DC 160 160 -----r., Typ. capacitance C = ((Vos) parameter: VGS = 0, (= 1 MHz o II OSP 125 10 nF B,P 115 ~-=EE == .='1- ==___ I ---- -l./t-Zs. ~ I, ~=±=l It::±=-±::-::-l=- lS0 D C 10 ' Hjl S 5 -V~p ---- .- _. -- v: ,,==:.:-: . 20 25 30 V 40 Siemens ----_=e:=- ___ __ ~_-=--=~~,= .- --- -1- - --r- =-== - ~~~~ ~~~ ~:=.= -=1::::= = _. _. - _. 15 'I---:- = 2S D C (98%)·-=:' - - -== lS00e (96%) :~~+::--= == - -- -- - -- =-:t=t=*=F=l=t=l - 100 ~_L_ o 5 10 t~~ ~ fl----I-~l""~+-·+--1.-+--4---1 S =~-:I/ - --. - _. 5 II '-r--t=t:::-- - -- . '25~(t p :-= :.....f:-.:.t=- =;=1= T A [ 1,., Forward characteristics of reverse diode IF = ((Vso) parameter: tp = 60 liS, 7j (spread) --r- -- -r- -.- - .. r---- -- _. --- _._. - -- _. .._--_.-:.- --.-. -.- -- -. -- - - 1 - - - - V 3 -Vso 677 SIPMOS N Channel MOSFET SSP 129 Preliminary Data • • • • • 81PM08 - depletion mode Drain-source voltage Continuous drain current Drain-source on-resistance Total power dissipation S Ves = 240V Ie = 0.19A ReS(on) = 200 Pc =1.5W Type Marking Ordering code for versions on 12 mm-u:pe Package B8P 129 B8P 129 062702-8510 80T223 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Ves \,bGR Ie I Dpuls V.' Pc 7j T.t. Ratings Unit Conditions 240 240 0.19 0.57 ±20 1.5 V V A A V W =20 kO TA =29°C TA =25°C aperiodic TA =25°C -55 ... +150 55 ... 150... 56 °C $83.3 K/W DIN IEC 68 part 1 Thermal resistance Chip - air Chip - substrate rear side 678 RthJA Siemens RGS asp 129 Electrical Characterlatlca Condition Description Static characterlstlca Drain-source breakdown voRage V(BR)DSI Gate threshold voRage VaS(th) Zero gate voRage drain current I Dss 240 - - V Vas =-3V ID =0.25 rnA -1.8 - -0.7 V VDS= 3V; ID =1mA 100 nA 1j =25'C; VDS =240V Ves =-3V I Dss 200 IlA 1j = 125'C; VDS =240V Ves =-3V Gata-source leakage current Drain-source on-state resistance I ass - RDS(on) 10.0 100 nA Vas =20V, Vos =OV Ves =OV I D =.014A 9.5 20 0 S VDS .. 2* I D * R DSon max I D =0.25A pF Ves =OV VDS =25V f =1MHz Dynamic characterlstlca Forward transconductance g'l 0.14 0.2 - Input capac Hance ClIO - 110 - Output capacRance Co •• 20 Reverse transfer capacHance Cr•• 5 Tum-on time ton (t on =t d(Gn) +t ,) Turn-off time t olf (t olf =t d(G'" +t I) t d(on) - 10 t, 15 t dColf) 80 tI - Continuous source current Is - Pulsed source current ISM - Diode forward on-voRage VSD - Reverse recovery time trr Reverse recovery charge Or, ns - VCC =30V Ves =-2V... +5V I D =0.25A Ras =500 150 Reverse diode 0.7 - Siemens 0.15 A 0.45 A 1.4 V Vas =OV IF =O.3A - ns VR =100v, IF = 10 R d/ F Idt = 100A/lls - IlC VR =100V, IF = ID R dlF Idt = 100A/IlS 679 SIPMOS N Channel MOSFET SSP 135 Preliminary Data • SIPMOS - depletion mode • Drain-source voltage • Continuous drain current S Vos = 600V • Drain-source on-resistance • Total power dissipation 10 = 0.100A RDS(Dn) = 600 Po = 1.5W Type Marking Ordering code for versions on 12 mm-tepe Package SSP 135 SSP 135 062702-S655 SOT 223 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vo• YbGR 10 J Opul. V.a Po 7j Tatg Ratings Unit Conditions 600 600 0.100 V V A A V W =20 kO =27"C TA =25 D C aperiodic TA =25"C 0.30 ±20 1.5 -55 ... +150 55 ... 150... 56 Thermal resistance Chip - air Chip - substrate rear side 680 RthJA ::;83.3 Siemens RGS TA DC DIN IEC 68 part 1 SSP 135 Electrical Characterlstlca Condition Static characteristics Drain-source breakdown voHage V(BR)DaV 600 Gate threshold voHage VaS(lh) -1.8 Zero gate voHage dreln current I DSV - Drain-source on-state resistance - Vas =-3V ID =0.25 rnA -0.7 V VD.= 3V; ID =lrnA 100 nA 1j =2S'C; VDS =600V 200 /lA Vas =-3V ' DSV Gate-source leakage current -1.2 V I ass - 1j = 12S'C; VDS =600V Vas =-3V - 10.0 45.0 RDS(on) 100 60.0 nA Vas =20V, VDS =0V Cl Vas =OV I D =10rnA Dynamic characteristics Forward transconductance 9," 0.01 S 0.04 VDS ",2* I D * R DSon max ID =10mA Input capacnance CII I - 110 Output capacHance Co •• - 20 Reverse transfer capacnance Cr •• Turn-on time ton (t on =t d(on) +t,) Turn-off time t off (t off =t d(olf) +t ,) 5 t d(on) 10 t, 10 t dColf) t, - - 15 25 - - pF ns - - Vas =-3V VDS =2&1 f =lMHz Vee =30V Vas =-3V... +5V I D =0.2A Ras =500 Revense diode Continuous source current Is Pulsed source current ISM - Diode forward on-voHage VSD - Reverse recovery time trr - - Reverse recovery charge Qrr - - 0.90 Siemens 0.100 A 0.300 A 1.30 V Vas =ov IF =0.2A - /ls VR =l00V, 'F = IDR dl F Idl = l00A//ls - /lC VR =l00v,/ F = I DR d/F Idl = 100A//ls 681 SSP 149 SIPMOS N Channel MOSFET Preliminary Data • SIPMOS - depletion mode • Drain-source voltage • Continuous drain current S Vos = 200V • Drain-source on-resistance • Total power dissipation 10 = .44A Ros(on) = 3.50 Po = 1.5W Type Marking Ordering code for versions on 12 mm-tape Package BSP 149 BSP 149 Q67000-S071 SOT 223 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos \.bGR 10 J Dpuls VB. Po 7j T.I. Ratings Unit 200 200 0.44 1.32 ±20 1.5 V V -55 ... +150 55 ... 150... 56 Thermal resistance Chip - air Chip - substrate rear side 682 RlhJA ::;83.3 Siemens A A V W Conditions =20 kO TA =28"C TA =25°C aperiodic TA =25°C RGS °C DIN IEC 68 part 1 BSP 149 electrical Characterlatlcs CondItIon StatIc characterIstIcs Drain-source breakdown vo~age V(BR)DSV 200 Gate threshold vo~age Vas(th) -1.8 Zero gate vo~age drain current I DSV - - - V -0.7 V VD.= 3V; ID =1mA 0.2 pA 1j =25'C; VDS =200V Vas =-3V ID =0.25mA Vas =-3V IDSV - 200 pA 1j = 125'C; VDS =200 v Vas =-3V Gate-source leakage current Drain-source on-stste resistance I ass 10.0 3.0 RDS(on) 100 3.5 v nA Vas =20V, Vos =0 n Vas =OV I D =30mA DynamIc characteristics Forward transconductance gl. 0.4 1.0 Input capac~ance C ... - 400 Output capac~ance Co •• Reverse transfer Cr •• capac~ance Turn-on time ton (Ion =1 d(on) +t r) 50 - t d(on) 15 Ir 10 II - Continuous source current Is - Pulsed source current ISM - Diode forward on-voHage VSD Reverse recovery time I rr Reverse recovery charge Q,.r Turn-off time I off (I off =1 d(off) +t I) 15 I d(off) 100 - S VOl :.:2' I D * R DSon max 10 =O.44A pF Vas =OV VDI =25V f =1MHz ns - 40 Vee =30V Vas =-2V... +SV 10 =O.29A Ras =500 Reverse dIode 0.9 Siemens 0.44 A 1.32 A. 1.2 V Vas =OV IF =0.88A ps VA =100v, IF = ID R dlF Idt = 100Nps pC VA =100v, IF = I DR dl" Idt = 100Nps 683 SSP 295 SIPMOS N Channel MOSFET Preliminary Data • 81PMOS - enhancement mode VOS = 50V • Drain-source voltage 10 = 1.7A • Continuous drain current Ros(on) = .30 • Drain-source on-resistance Po = 1.5W • Total power dissipation s Type Marking Ordering code for versions on 12 mm-tape Package SSP 295 S8P 295 067000-8066 80T223 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos ItbGR 10 I Cpula V•• Po Ratings Unit 50 50 1.7 6.8 ±20 1.5 V V 684 A V W =20 kO TA =25°C TA =25°C ,aperiodic TA =25°C RGS 7j T.,. -55 ... +150 55 ... 150 ... 56 Thermal resistance Chip - air Chip - substrate rear side A Conditions R'hJA ~83.3 Siemens °C DIN lEG 68 part 1 BSP295 Electrical Characterlstlca Condition Static characteristics . Drsln-source breskdown voHage V(BR)OSS 50 Gale threshold voHage VGS(th) 0.8 1.2 Zero gate voHage drain current loss · 1058 I GSS Gate-source leakage current Drain-source on-state resistance Dynamic characteristics ROS(on) V VGS =OV 10 =0.25 rnA 2.0 V Vos= VGS; 10 =1mA 0.1 1.0 pA TI =25'C; Vos =50V VGS =OV · 8.0 50.0 pA TI =125'C;Vos =50V VGS =OV · 10.0 100 nA · ROS(on) 0.2 0.3 0 0.4 0.5 0 Forward transconductance g,. Input capacHance CI.. 370 550 Output capac Hance Co •• 110 170 Reverse transfer capacHance Cr •• 40 60 Turn-on time Ion (Ion =1 d(on) +t r) Turn-off time loll (1011 =1 d(off) +t,) 0.5 1 d(on) Ir 1 d(olt) I, 1.4 8 12 15 25 100 150 75 110 VGS =20V, Vos =0V VGS =10V 10 =1.7A VGS =4.5V 10 =1.7A S Vos ",2* I 0 * R OSon max 10 =1.7A pF VGS =OV Vos =25V f =1MHz ns Vce =30V VGS =10V 10 =O.29A Ros =500 Reverse diode Continuous source current Is Pulsed source current ISM Diode forward on-voHage Reversa recovery time · 1.7 A · 6.8 A Vso 1.0 1.5 V Irr · ps VGS =OV IF =3.4A VR =100V, IF = 10 R diF /dt = lOONps Reverse recovery charge Orr · . pC VR =1oov, IF = I OR diF /dt = looNps Siemens 685 BSP 295 Permissible power dissipation PIOI =f(TA ) Typ. output characteristics 10 = fIVes) 16 40 -- W 14 Fi'o; = i.~w - 12 19,) ri - -: =i~ A -- \ - P.o. a~r \{;s=10V (/-I--I---I--I--j.-I- 4 S V 30 - "I/_-'5SV 'II .--- -~::::: 2.5 ---- 10 ~y --4V 0.8 2.0 t-- ~- 06 1.5 - rl--~- __________ .__ ._3~::' 04 1.0 --I- - -~ 1 0 ,:::: -. -.-- ----r--.. 1/ 02 -0 _._-- -_. 0.5 20 40 60 80 100 o 120 140 0 ( 160 .. -- 3V --- ._._- --r- _____~1!v '/ o 4 3 -- TA 2W V 5 - - - Vos Permissible operating area /0 = fIVos) parameter: 0 0.01. Tc 25 °c = ---- --- ----- Typ. transfer characteristic Ie = fIVGs) parameter: Ves = 25 V. Ip = 80 115. Tl = 25 OC = A 10 -- 4.5 --._-1---- :: ~~ ~- ---~~~j~{~~~--:~~~-~~- ~= 30 ----- ---~-I1-~ --- -- ----- - _.--- -- 2.5 -- ---1--.1-- - - - - - .--- -.- ---I-2.0 1-1-- - ~fl-- IS ----------- :: ----/----~~= - - - - --~= o~ o - - -.. - 686 Vos Siemens 1 2 3 4 5 6 1 8 V 10 l3SP 295 Typ. drain-source on-state resistance ROS(onl = f (10) parameter: VGS , 7j = 25 °C 3~t·.,i.v Vus =25V- jv--- 09 Drain-source on-state resistance . ROS(onl = f{T,) parameter: VGS = 10 V,lo = 1.7 A, (spread) Rc"r7q~, 4.5V 055 5V" R~,.", 0"=/== .=- ~=- 11 Rn ... tofll 045 040 06 0.35 030 025 5.5V _., 01 6V BV 9V 0.10 lOV --- ·-·~I 005 o 0 A 0 4 -80 -60 -40 -20 0 20 40 60 80 100 120 -------10 ------ 9,. = f(lo) Typ. transconductance . parameter: Vos = 25 V, Ip 160 Gata threshold voltage VGS(thl = f{T,) parameter: VGS = Vos, 10 = 1 rnA (spread) = 80 \1S, T, = 25 OC BSP 195 22 S 9" " O( v 18 16 14 1.2 lO oB 0.6 04 02 0 0 4 A 5 o- -60 -40 -20 0 20 40 60 80 100 120 °c 160 -r, Siemens 687 BSP 295 Continuous drain current 10 = f(TA) Drain-source breakdown voltage VIBR)OSS (7j) = b X VIBR)OSS (25 °C) 1 8 r---"---r---'!~ l~~_-r--r--r---' r-i"-.. A I - - I-- 1.16 I-- - 10 A 10 "'" 1 4 I----+.---f---f--'"< +-+--+-+-j '\ 1.12 r----~--- .---I---i 12 I - - ----.-- - - 1.0 t------+---1---+-+-.1\ o 102 100 I--I-0.98 I-0.94 ____ ._______._1 o 20 40 60 80 100 120 °( - i-- e--- 0.96 I-- --- I-- - ,.- I-- - I - / -- :-.- '-- -- /- - 106 rt- -- - .- - 104 1----+--.. - - - - - - -- - '-- ---- - -. r-I-- --- 1 1.08 r\:= o2 I----+----f---f---- --- - - - - 110 I-- :: I--r-------~_= _____ ----1--1\04 114 --10 BSP19S 1.20 --- "/V- V V- 2 VI-- --- I - -- I-- ~- : - -- - -- I-- I- - 1---- -- - / f-- I-- 092 L I-- - I -I-- -- 1---0.90 -- -- - - --'- ._- '---- , -60 -40 -20 0 20 40 60 80 100 120 O( 160 __ l - . 160 -----.---. - TA Typ. capacitance C = fWos) parameter: VGS = 0, f = 1 MHz 10 1 o-:c_: -_::::c: .:-0 .. --- -_. -.. - j 'I .-~ . -.-- -. - ._- asp 29') --::_-= :-::-:-._ =-= .:::: __ .___"_ -----. ----- - - -~---i . 11"--!-"'--+__..:._--_.+-_-_-'_4_-__~c.,,- __ c .. ~" ~~L:': _=-=- 150°(198%) 25°( (98%) t 10' _. 10- 2 5101~202530V 40 --.--..--- Vos 688 -- ... -- - L-'C_Jl---'ILL...L..LJ-..L_L-JLJ--L-----L...L..J o 2 ----VSO Siemens V BSP 296 SIPMOS N Channel MOSFET • SIPMOS - enhancement mode • Drain-source voltage VDS = 100V • Continuous drain current ID = 1.0A • Drain-source on-resistance • Total power dissipation S Ros(onl = 0.80 PD = 1.5W Type Marking Ordering code for versions on 12 mm-tepe Package SSP 296 SSP 296 Q67000-S067 SOT 223 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos VDGR ID I Dpuis Vg. PD 7j Totg Ratings Unit 100 100 1.0 4.0 :!:20 1.5 V V A A V -55 ... +150 55 ... 150 ... 56 Conditions RGS =20 kO TA =25°C TA =25°C aperiodic TA =25°C W °C I DIN IEC 68 part 1 Thermal resistance Chip - air Chip - substrate rear side RthJA :583.3 Siemens 689 BSP296 Electrical Characteristics Condldo" StatIc characteristics Drain-source breakdown voltage V(BA)DSS Gate threshold voltage Vas(th) Zero gate voltage drain current 100 0.8 ' DSI I DIS - - V Val=OV 'D =0.25 rnA 1.2 2.0 V 0.1 1.0 /JA VDI = Val; ID =1rnA 7j =25"C; VDI =100V Val =OV - 8.0 SO.O /JA 7j = 12SOC;VD1 =100V Val =OV RDS(on) - Forward transconductance g," Input capacHance C," Output capac Hance COli Reverse transfer capacitance C rol Gate-source leakage current Drain-source on-state resistance I ass RDI(on) 10.0 100 nA Val =2OV, VDS =0V Val =1OV I D =1.OA Val =4.5V I D =1.OA 0.55 0.8 0 0.95 1.4 0 0.5 1.1 - S VDI ~2· ID ID=1.0A - 400 600 pF 65 100 Val =OV VDI =25V f =1MHz 20 30 ns VCC =3OV Val =1OV ID =0.29A Ral =500 Dynamic characteristics Turn-on time ton (t on =t d(on) +t ,) Turn-off time t off (t off =t d(ofl) +t,) t d(on) t, t d(off) t, - Continuous source current 'I - Pulsed source current ISM - Diode forward on-voltage VSD - Reverse recovery time trr Reverse recovery charge Or, 7 10 10 15 100 1SO 50 75 * RDSon max Reverse diode 690 - 0.9 1.0 A 4.0 A 1.3 V Val =OV I, =2.OA - - /Js VII =100v, I, = IDII dl, /dt = 100A//J. - - /JC IDII VII =100v, I, dl, /dt = 100A//J. Siemens = asp 296 Permissible power dissipation P iol = ((TA ) Typ. output characteristics 10 = ((Vos) P -'296 1.6 ,---,---,---,_-,--,--,,--iB:,:Si-1 :,-,---"---,,,-; 2.4 W ~-+,~+-+4-+-1--~+-~-~~4~ 1.4 r-t-t--t'\. - - H---t--t-I\-' - 1.2 10 - -I--I---~+__I---I - --f- - -- -. ,-- - --- - \. - - -- --- ----:--~- r-:-----~. --------.. - :\ - - '-1--- - . - f--:-r---r-\--r-----~ 0.8 -r-:-i- -- -1- - , 0.6 0.4 A - -- - --I- := ::::r:=~I::::==:::: -~ -~ \ - ~....~. - -I-I--~------~-I---I- 0.8 f--+-+-t- -. --. -- -- - -....-\ - -.. - - H-I'--I--t- - . - - - 0.2 -- - - - --_. -- a- . a 20 --- --- 40 . -- t\1--- ---f\- _.- 60 0.4 .\--- 80 100 120 .( a a 160 Permissible operating area 10 = ((Vos ) parameter: 0 = 0.01, Tc = 25 DC BSP 296 -=tI-7'='" == ,\'" -- V "-, - ,,-- -t - 10)Jsr - ~-- - =:1. -~-=- --- :::::::' ~- ~~ '\ -- - -- t== ;~. p O=!!:.. T T f _UWlllLilL 5 . -- .. : . 16 10ms.~- . ------ -- . --I - ---.-~ . =:--~-l-- ~-~ -~ ~~ ~-=- -- - -- 1--+--+--+-- . - 100)Js . ___ BSP~ ________ 10 28 - - - - 1ms - - - ~ .;~..:.. 5 I-- A 32 001)Js - - -1--=__ -1' -I.....," \.- .'\ 36 ~-: .. // -«-"''X - . ,-\",'" - 5 - -- :-.- t=-- - j' Typ. transfer characteristic 10 ", f(VGs ) parameter: Vos = 25 V, tp - 80 IlS, ~ = 25 DC 12 j~ ~~:: ----0--- -- -- --- ~ --- -- - --- -- ..... -1--- -- . - I-+-+--I~-+--I-- . -- - .... -- .- --. -- . . . - 100ms" - - -i1 .. - I-...L--J-..J.-I-.-I--I-- - -- --I-~-+--- DC 5 10 1 Siemens - .. - --.. - --- --"-V 691 10 BSP 296 Typ. drain-source on-state resistance ROSlon) = ((10) parameter: VGs • TI = 25 "C Drain-source on-state resistance ROSlon) n n = 10 V. 10 = 1.0 A. (spread) -- - - - - - ~SP!.2.6 - - - r _ 1.8 - 2.6 .--..-..--.---.----,"-"--r'-'--,------,-.--.-..,--', 1--1--1--1--1--- -.- ---- -- h~+-+- 22 R ost ~: I = ((TI) parameter: VGS ROSlon) 1.41-+---'1-1-1-- - -- t 1.4 r--1'-T"-r---,1.2 r-"C.:..o--l 1.0 0.81~~~ 0.6~ -...! --J--If-l / ---I--~I-/-1f-l ---17 /--- - f--t-l-I 1.6 -- 1 . 2 - - - - - --- - V--7~ O.S ~-r- -V----0.6 ~I-l-..,..g..'/.- - t~/ ~I-- - - - 10 . -f------'-=- - / - - - 98% ....................... - - - - - _.. --- r.... 0.4 _\S5V 6V 8V 9Vl0V ~: ~-1-j_-1-- -+-~t~j a 0.4 1.2 08 0.21-+-+-+ 1-+-+--1--1---------t--t--+--I g,. = Typ. transconductance parameter: Vos = 25 V. Ip 1.4 ../'" 12 I1 1.0 V V i 08 0.6 rl- Ir t -fII I 0.4 02 a a 692 - ! i I I i , iI 1 i l- I f-+-+--I-- I-- - --- - -- ---1- - - - 1 - - - - - - - 1 - - '-14 ----.-- - - - f - - - I - - -- --:- ---1- - - - - 1 - - - --1--- - 3 -- "-+-1- -- -- --- - I V 1--1-- --c-- 1 - - - - - - - ----I-- ..... ~ -,- - - - 1- - -- ._--- -- .~ ---11----- ~f..--;-I-- 1-1-- ---- - -- ---I- - ==,= --+-- - --:-- %-= f-+--+--+---l---+-I::::j::::; :::::- f-f-I- -- - - .•:.::+-- !~6 2 .- - l - - -- - - -- - 2 - f-+--+---I--+---1--I--+---1-- ---I-f-+-+--+--I--I--I-I- r - - f-+-+--+--+--I--I---II- -- - - f-+-'+--I--1--'-\- ---t-- -- -.--.- --1-- -- 8 -'--r-- I-- - 1 - - - - ""V -- f--I- - - BSP 296 5 Vk -- Gate threshold voltage VGS(lh) = ((1j) parameter: VGS = Vos. 10 = 1 mA (spread) ((10) 1-- --- 7 L S - . 1 - . - - -... -80 -60-40 -20 0 20 40 60 60 100120 O( 160 _T) = 80 IlS. 1j = 25 °C BSP 296 1.8 q" o '-- ___ .._ .__ 2.0 A 2.4 10 1.6 1- -r--.. ~ ___ typ.- - - ":~i'-- __ ':;'--I---~~,:::,- ~ - -11-~--+--"'-'f-'-=r-'--/-_==--j--j I--f-t---t-- I--I--I---t-----C- -=-1-f--f--I--~-- - --I-f---!--I- '--'-- 3 A 3.4 Siemens o , - 60-40·20 a 20 40 60 80 100 120 0 ( 160 BSP 296 Continuous drain current /0 = f(TA ) Drain-source breakdown voltage V{BR)OSS SSP 296 1.1 (T)) =b x V{BR)OSS (25°C) SSP 296 10 1.20 ,-,-,---,----- ---- -A A 1.16 [0 0.9 b 1.14 0.8 1.12 1.10 0.7 1.08 0.6 1.06 1.04 0.5 0.4 100 0.98 f--~-j"'--- -1- . i 0.2 0.96 -~- 0.1 0.92 0 20 40 60 80 100 120 O( 160 I ' -~ i . . j. -_. - 1--i --- -- --..-J ~ Fj I--V-t-_I I 1-1- i-I 0.90 - 60 - 40 -20 0 0 -1---- .. -.... 0.3 0.94 -I-- I 1.02 20 40 60 80 100 120 "C 160 _T~ Typ. capacitance C = f(Vos) parameter: Vos = 0, f = 1 MHz Forward characteristics of rever•• diode lr = f(Vso) parameter: tp = 80 115, T, (spread) 103 BSP 296 11 ~==-==_--.-:=~~ pF 5 ~\:::, - - - - - - - - - - - - - [",~- - [ -1-----.----- -1 1\ r-..... 10 2 5 =-:::::=:-- f-- 5 r&~i~;~'!~rm " 1=!==::::II=rt~~ 25°((98%)= :,- f=f= -- ~- t= ~~5?1~(9:~%) . ·---'-~--r--4---- ~_r--.t--... 105 10 ~~-~ ---r--t---t--- --i~ ~ 1 1, ':: - ['SS_ 1-1- ~~~!~~I~t~~t~ 1-- i----f-- f--.-t--+--- - - ~~ -- 5 ~f= - '--- - - - - --- ---1--- 1--1--+---1-- - - I - -- .... - .. 1 10- 1 l=!==j:lItlll==l=i= t=-=j.=- __ ~-= 1--- -- - 1-1-- ---- - - 1 , - ~I- -- 1-'-= --~ -:.: :::" =-- 1- - - - _. - - -- I - -- - -- --- .. --- H-II-Hf-t-+--f- -. -- -- --._--100 ' - - - - ' - - - " - - - ' - - o 10 ---- - ' - ' - - - - . _.._-- 20 30 V 40 2 v ---Vos Siemens 693 SIPMOS N Channel MOSFET BSP 297 • SIPMOS - enhancement mode Vos =,200V • Drain-source voltage 10 = 0.6A • Continuous drain current RoS(on) = 2.00 • Drain-source on-resistance Po = 1.5W • Total power dissipation S Type Marking Ordering code for versions on 12 mm-tepe Package BSP 297 BSP 297 067000-S068 SOT 223 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos \-bGR 10 I Dpuis V•• Po 7j Tot. Ratings Unit 200 200 0.6 2.4 ±20 1.5 V V A A V -55 ... +150 55 ... 150 ... 56 Thermal resistance Chip - air Chip - substrate rear side 694 RthJA :583.3 Siemens W Conditions Ros =20 kO TA =25°C h =25°C aperiodic TA =25°C °C DIN IEC 68 part 1 BSP 297 Electrical Characteristics Condition Static characteristics 200 - - Drain-source breakdown vottage V(BR)DSS Gate threshold vottage VaS(th) 0.8 1.2 2.0 V VDS = Vas; ID =lrnA Zero gate vottage drain current IDSS - 0.1 1.0 J.lA 1j =2SoC; V Vas =OV I D =0.25 rnA VDS =200V Vas =OV 8.0 IDSS 50.0 J.lA 1j =12SoC;VDS =130V Vas =OV Gate-source leakage current I ass - 10.0 100 nA Vas =20V, Drain-source on-state resistance RDS(on) - 1.6 2.0 0 I D =0.6A 2.0 3.3 0 RDS(on) VDS =0V Vas =10V Vas =4.SV I D =0.6A Dynamic characteristics Forward transconductance g,. input cepecttance ClIO Output capacHance Reverse transfer capacHance 0.5 0.9 420 630 Co •• 40 60 Or .. 10 15 t d(on) Turn-on time ton (t on =t d(on) +t,) t, Turn-off time t olf (t olf =t d(olf) +t,) t, t dColf) 8 15 10 15 100 150 40 60 S VDS ;,,2* I D * RDSon max I D =0.6A pF Vas =OV VDS =2SV f =lMHz ns Vee =30V Vas =10V I D =0.29A Ras =500 Reverse diode Continuous source current Is 0.6 A Pulsed source current ISM 2.4 A Diode forward on-vottage VSD 1.1 V Reverse recovery lime trr - 0.85 J.ls Vas =OV IF =1.2A VR =100V, IF = ID R Idt = 100NJ.ls diF Reverse recovery charge Qrr J.lC Siemens VR =lOOV, IF = I DR d/ F Idt = 100NJ.ls 695 BSP297 Permissible power dissipation Ptot = (TA ) SSP /97 1.6 W ...... 14 ~.t Typ. output characteristics J0 = (Vos) - "' ,-,- - \ 1\ .r\. 1.2 i\ 1.0 -'- '-'0.8 '- .- f---,- ~-- '-'- i\ \ 06 :-.. ~ 0.4 1-"-1-- -e-- 1- - 1-- -- -02 1-1- _._. H- -1- 1-1-- '-'- 1-'- --'- - -'- ---- 1 - - o 'o .. 20 -- _-,- - 40 60 80 1\ 100 120 140 °C 160 - - - - TA ---Vos Permissible operating area 10 = t(Vos) parameter: 0 = 0.01, Tc = 25·C Typ. transfer characteristic 10 = (VGs ) parameter: Vos = 25 V, tp = 80 liS, TI = 25 OC SSP /97 2.6 ,-.- A 2.2 10 I--1-- 2.0 j 1.8 I 1.6 I II 14 12 1.0 I-- I--- 0.8 I I 0.6 0.4 1/ 02 o -Vos 696 Siemens .J o 2 3 4 5 6 7 8 V 10 BSP297 Typ. draill-source on-state resistance f.!reln-Iource on-Itete reliallhCe ROSlon) ,,;, ([D) ROSIOn) - (T) parameter: VGs • 1j = 25°C 6.5 Q I I I - - ROSfonl 50 4.5 - li 7 :/ l- I- r- - - - - 3.0 - .;.;;.. i..- ~ I---" i/ - 1.5 1.0 - --. ---- ~I.::;:~ -EI-t= -=_. o 0.2 0.4 0.6 ~ 35V It v -- =1=1= - r- S - l-i- --I - 1.3 g" 1.2 1.1 -- -. _. ,-- - -- 0.9 0.7 1-0.6 I 0.5 OJ 02 0.1 ~ - t os ~- L-. 1 _ 1.2 A 1.4 V -- -- / "'/ /" /" V / {yp ...- .' .....V o -80 -60 -40 -20 0 20 40 60 80 100 120 °C 160 Gate threshold voltage VaS(lh) = f(1j1 parameter: Vas = Vos. 10 = 1 rnA (spread) 5 BSP 291 I- - v I - f-- /7 - 1- - 1- - V-- I - :- - "," / - V V ,/ 1.5 t-- t-- 7 - l- / '.- r- 0.8 0.4 V Z I r- - r- - 98% -- I - 2.0 1.0 -- ---- / ~ 1.0 ~- 4V -I- _- V 2.5 I - 5V4.~V 1.0 191 ,- SSP -,--- . - 4.0 Typ. transconductance gr, = f(lo) parameter: Vos = 25 V. tp = 80 liS. TJ = 25°C 1.5 -. --- .. - .. .--- -- -_. _ . .. -/ 1- 30 .- - I- 0.8 I - -- - _.- 3S - -- I- ~ ROSlonl ._. --I- 10V 9V 8V 6V 55V - 05 ,- o - /- 2.0 -. --_. .. --I p...- ~ 1-= l- I- -- 2.5 - I- 4.0 Q .- - 1-- l- - 3V- --- - - BSP 297 --- -_. _. 5.0 r - - I -- -Vijs=2.5V -- 5.5 - 3.5 parameter: Vas - 10 V./o "" 0.6 A. (spread) BSP 197 - l- -~ - o ,- .- _.- ' - - .-- - -04 0.8 12 o p,. .- - _L- 1.6 I- -. ,...- ____ 20 A 2.4 98% - -~ ~- -'" tr- - -- --- - - . r- r ;;;;:- -- - - -- I- - -- I ._- -- l- I- o - -60 -40 -20 r- typ ~ - 2% '- r--,. r-. - '- - 0 20 40 60 80 100 120·C 160 -----10 Siemens 697 SSP 297 Continuous drain current to = '(TA ) Drain-source breakdown voltage V(BRIOSS BSP 297 065 0.55 10 0.50 I 0.45 040 10 A """"" - - - - f-~ --- b K \ 1. 04 '--- 1.00 e-- -- 0.05 80 100 0.96 0.94 -- .-l ------ , -. - - 120 O( l2 0.98 I--- :\ 010 60 i- 160 - I--- 0.92 v- _. V- I--/ - -- / --;/ / - --I -I - 102 ~f - 0.20 015 I---I--- / 106 1\ 40 - I---I--- 1 08 025 20 '-- 1.10 c- .- 1 - - "" - 1.14 1.12 0.30 1---- -- c - I-- 1.16 035 oo (25°C) X V'BRIOSS SSP 191 120 - A (7j) = b / V- i-- - -- I - 1c_ /- -I--i-- - 0.90 -60 -40 -20 0 _. - - - - - - ' - 20 40 60 80. 100 120 O( 160 -----r,. Typ. capacitance C = f(Vos) parameter: VGS = O. 1 MHz Forward characteristics of reverse diode ,= tT- c pF ,\-\. parameter: tp -1--- - -=:\ -- = --I- s .......... 10 ' -.; = =--. 5 [ oss ---- .- -I--. 1---- e-- .. 7 £( ~= === === - i. ~ = == =-=--- I- I- 10 0 698 .- -. L-LJ _ o 5 10 15 20 25 30 V 40 Siemens - -- -- _. = == --=c = = = --~ -- ""-150 0 ( typo - 10" - 5 __- .- - - ---- - f -/>- 2S 0 ( typo -Crss 11 .-. A [ISS :-= - - --- - - -.....; = 80 Ils. 7j (spread) sSP lq7 10 ' \1 I h= f(Vso) 11 SSP 197 - ~Jl-ll . .::. I . - --,--- . -::--25°((98%) _'::150 O( (98%) I-- f-~~ i - -. f--I-c-- '-- L_ L._ 2 V 3 ssp 315 SIPMOS N Channel MOSFET • SIPMOS - enhancement mode Vos = -50V • Drain-source voltage 10 = -1.0A • Continuous drain current ROSCon) = .950 • Drain-source on-resistance p.o. = 1.5W • Total power dissipation s Type Marking Ordering code for versions on 12 mm-tr.pe Package BSP 315 B8P 315 067000-8027 SOT 223 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Ratings Unit -50 -50 -1.0 -4.0 RGS =20 kO TA =25°C TA =25°C TA =25°C V.c ~20 V V A A V p.o. 7j T.t. 1.5 W -55 ... +150 55 ... 150... 56 °C :$83.3 :$10 KNJ Vos I.ilGR 10 IOPuIs Conditions aperiodic DIN IEC 68 part 1 , Thermal resistance Chip - air Chip - substrate rear side R.hJA R.h JSR Siemens 699 BSP 315 ElectrIcal CharacterIstIcs at TJ =25'C, unless otherwise specified. Condition Parameter Static characteristics Drain-source breakdown voHage V(BR)OSS -50 Gate threshold voHage VaS(th) -0.8 -1.2 -2.0 V Vas = Vos 10 =1 rnA Zero gate voHage drain current loss - -0.1 -8 -1 -50 Jl.A Jl.A 1j 1j V Vas =0 10 =0.25 rnA =25'C =125'C Vas =0 Vos =-5OV Gate-source leakage current I ass Drain-source on-state resistance ROSeon) - Forward transconductance g,. 0.25 Input capacHance CI•• Output capacHance Co•• Reverse transfer capac Hance Co•• 15 Turn-on time Ion (Ion =1 dCon) +t,) 1 deon) 15 20 I, 10 15 Turn-off time loll (loll =1 deolf) +t f) I dColf) -10 -100 nA VGS =-20V, Vos =0 .95 0 Vas =-10V 10 =-1.0A .5 S Vos =-25V 10 =-1.0A 400 pF DynamIc characterIstics - - 50 ns 100 130 If 40 55 Continuous reverse drain current Is -1.0 A Pulsed reverse drain current ISM - -4.0 A Diode forward on-voHage Vso - -1 Vas =0 Vos =25V f =lMHz Vec =-3OV VGS =-lOV 10 =..().29A Ras =500 Reverse dIode 700 Siemens -1.5 V Te =25'C TJ IF =25'C, VGS =0 =-2.0A NPN Silicon Switching Transistors • • • BSS79 BSS81 High DC current gain Low collector-emitter saturation voltage Complementary types: BSS 80, BSS 82 (PNP) Type BSS BSS BSS BSS 79 79 81 81 B C B C Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package CE CF CD CG Q62702-S403 Q62702-S402 Q62702-S420 Q62702-S419 Q62702-S503 Q62702-S501 Q62702-S555 Q62702-S559 SOT 23 SOT 23 SOT 23 SOT 23 Maximum ratings Parameter Symbol BSS79 Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25 DC Junction temperature Storage temperature range VCEO Vcso VESO 40 Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm BSS81 Unit V V V rnA A rnA rnA Ptot 35 75 6 800 1 100 200 330 Tj Tstg 150 -65···+150 DC DC Ic ICM Is ISM :::; 375 RthJA Siemens mW K/W 701 BSS79 BSS81 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 10 mA BSS79 BSS 81 V(BR) CEO min typ max Unit 40 35 - V V V(BR)CBO 75 - - Collector-base breakdown voltage Ic=10fiA Emitter-base breakdown voltage IE = 10 fiA V(BR) EBO 6 - - V Collector cutoff current VCB=60V VCB =60V, TA= 150°C ICBo - 10 10 Emitter cutoff current VEB = 3 V lEBO - nA fiA nA DC current gain Ic=100fiA, VCE=10V BSS 79 B/81 BSS 79 C/81 Ic = 1mA,VCE=10V BSS 79 B/81 BSS 79 C/81 Ic= 10mA, VCE=10V') BSS 79 B/81 BSS 79 C/81 Ic = 150 mA, VCE = 10 V') BSS 79 B/81 BSS 79 C/81 Ic = 500 mA, VCE = 10 V') BSS 79 B/81 BSS 79 C/81 hFE 10 B C 20 35 - - - - - B C 25 50 - - - B C 35 75 - - - - - B C 40 100 - 120 300 - B C 25 40 - - - - - 0,3 1,3 V V - - 1,2 2,0 V V Collector-emitter saturation voltage') Ic = 150 mA, IB = 15 mA I c = 500 mA, I B = 50 mA VCEsat Base-emitter saturation voltage ') Ic = 150 mA, IB = 15 mA I c = 500 mA, I B = 50 mA VBEsat - ') Pulse test: t::s; 300 fis, D = 20;0. 702 - V Siemens - - - BSS79 BSS81 AC chararacterlstics Symbol min typ max Unit Transition frequency Ic = 20 rnA, VCE = 20 V, f= 100 MHz fr - 250 - MHz Open-circuit output capacitance Vcs = 10V, f=1 MHz Cob - 6 - pF - - 10 25 250 60 ns ns ns ns Vcc = 30V, Ic = 150 rnA, IS1 = IS2 = 15 rnA, VSE = 0,5 V Delay time Rise time Storage time Fall time td tr tstg tf - - - - Test circuits Delay and rise time Storage and fall time 30V 30V "'100~s 200n Osz. > 100 kn < 12 pF tr < 5 ns Oscilloscope: R C Siemens 703 BSS79 BSS81 Total power dissipation P tot = f (TA) Collector-base capacitance Ccb = f(VeB) f= 1 MHz pF mW 400 "iO\ t 10' 5 r300 \. -r-. 10' 200 I\, r.... 5 \ 100 \. \. o o .\ so 100 5 -7",. Pulse handling capability rth (standardized) K 10' -VC8 = fIt) Transition frequency fT = f (I e) VeE = 20V 'Vi 10 0 , II " 1 '0.5 0,2 0,1 0,05 , 0,02 0,01 0,005 000 1111 2 / .... '\ / --' tpl-t. 0= .E. J-Ln.. T I-- T-i 10- 3 10- 6 10,5 10- 4 10- 3 10- 2 10- 1 10 0 10' s 5 10' -t 704 Siemens BSS79 BSS81 Saturation voltage VeE sat hFE = 10 VCEsat = f (I el = f(Iel DC current gain hFE f (I el = VCE = 10V mA 103 5 V /VCE I / VeE 175°C - I ~ 2~.lcl \ -55°C 5 'If 5 10-1 o 0.2 0,4 0.6 0.8 - 1.0 1.2 V VIE ••"Vce ••, Storage time tstg = f (I e) Fall time tf = f (1 e) Delay time td = f(Ie) Rise time t, = f(Iel -- \ \ 5 '\ stg \r-- bc.h FE-1O 1\ tf '-> I 5 Siemens -20 ~ h FE -l0 -Ic hFE 5 -Ic 705 PNP Silicon Switching Transistors • • • BSS80 BSS82 High DC current gain Low collector-emitter saturation voltage Complementary types: BSS 79, BSS 81 (NPN) Type BSS BSS BSS BSS 80 80 82 82 B C B C Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package CH CJ CL CM Q62702-S398 Q62702-S399 Q62702-S409 Q62702-S408 Q62702-S557 Q62702-S492 Q62702-S560 Q62702-S482 SOT 23 SOT 23 SOT 23 SOT 23 Maximum ratings Parameter Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 706 Symbol BSS80 VCEO 40 VCBO VEBO Ic ICM IB IBM Ptot Tj Tstg BSS82 V V V mA A mA mA mW 150 -65···+150 DC °C ~375 RthJA Siemens Unit 60 60 5 800 1 100 200 330 K/W BSS80 BSS82 Electrical characteristics at TA = 25 DC, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic= 10 mA BSS80 BSS82 V(eR) CEO Collector-base breakdown voltage V(eR) ceo Emitter-base breakdown voltage lE = 10 itA VIeR) Eeo Collector cutoff current Vee = 50V Vee = 50 V, TA = 150 DC IceD Emitter cutoff current VEe = 3V lEeo DC current gain Ie = 100 itA, VeE = 10 V BSS 80 B/82 B BSS80 C/82 C Ie= 1 mA, VCE =10V BSS 80 B/82 B BSS 80 C/82 C Ic= 10 mA, VeE = 10 V') BSS 80 B/82 B BSS 80C/82 C Ic = 150 mA, VeE = 10 V') BSS 80B/82 B BSS80 C/82 C Ie = 500 mA, VCE = 10 V') BSS80 B/82 B BSS80 C/82 C hFE Collector-emitter saturation voltage') Ie = 150 rnA, Ie = 15 mA Ie = 500 rnA, Ie = 50 rnA VCEsat Base-emitter saturation voltage') Ie = 150 rnA, Ie = 15 rnA Ie = 500 rnA, Ie = 50 rnA VeEsat min typ max Unit 40 60 - - V V 60 - 6 - - V - - 10 10 llA 10 nA 40 75 - - - 40 100 - - - V Ic=10llA ') Pulse test: ts; 300 Its, - - - nA - - 40 100 - - - - 40 100 - 120 300 - 40 50 - - - - - 0,4 1,6 V V - - 1,3 2,6 V - - - V D = 20/0. Siemens 707 BSS80 BSS82 Symbol min typ max Unit Transition frequency Ic = 20 mA, VCE = 20 V, f= 100 MHz AC characteristics fr - 250 - MHz Open-circuit output capacitance Vcs = 10V, f=1 MHz Cob - 6 - pF td tr - - - 10 40 ns ns tSlg - - tf - - 80 30 ns ns Vcc = 30 V, Ic = 150 mA, IS1 = 150 mA Delay time Rise time Vcc = 6 V, Ic = 150 mA, IS1 = IS2 = 15 mA Storage time Fall time Test circuits Delay and rise time Storage and fall time -6V -30V +15V Eingang Zo=5011 tr < 2ns -~0-[ Eingang Zo=5011 tr <: 2ns <>-.,.-{=:J----i-l -~0-[ 200ns 708 200ns Siemens 3711 OSlo 1k 501/ BSS80 BSS82 Total power dissipation Ptot = f( TA) COllector-base capacitance C cb = f ( Vce) f= 1 MHz rnW 400 pF 5 -':'1 r 10 2 r-h 300 - \. i".. 200 I\, 5 100 " \. r-.. o o '\ 50 100 150 'C -lice -7;. Transition frequency fT = f (/c) Vce=20V Pulse handling capability rth = f(t) (standardized) K W 10° 1 '" M' I '0,5 0,2 0,1 0,05 , 0,Q2 0,01 0,005 v~ 2 V 0=0 IIII 10- 2 ~ 2 tp 0=- T f--- T---r 10-3 '" '" "' 6 5 4 3 10- 10- 10- 10- 10- 2 10- 1 10° 10' s 5 10 ' -t 5 10 2 5 10 3 rnA -Ie Siemens 709 BSS80 BSS82 Saturation voltage Ie = f(VeEsat. VeEsat! hFE = 10 Delay time td = f(le) Rise time t, = f(le) '" 103 ns 5 111111 ~ .... i.I' VeE VI!( / f-- VBE-OV, Vee·l0V ~ r- ~-- VBE -20V,Vcc -30V f-- ~ II 111 f-- ~ td ~. 5 \ 5 ,\ 1\ 1)' \ 5 i\ 1)'" o 0,6 0.& 1.0 11 lit 1.6 V 01 0.4 - VSEmt' tst9 5 10' -Ic veE lOt Storage time t stg = f (l cl Fall time tf = f (I e) 5 r ""'~- Vcc ·30V \{7fE=20 I " hFE 5 :-- FE- 1 y 5 10' 710 .\\ ... ~ jI' iIlFE= =1 20 r, "1'-0 '5 10' 5 10 1 5 103 mA -Ie Siemens BSS80 BSS82 DC current gain hFE VeE = 10V = f (l c) 10 3 175 ·C ;' - ]J " 25 ·C -5 ·C -Ie Siemens 711 BSS84 SIPMOS P Channel MOSFET • SIPMOS - enhancement mode • Drain-source voltage I.b. = -50V • Continuous drain current 10 -0.13A RoSConl = 10.00 • Drain-source on-resistance Po 0.36W • Total power dissipation = = Type Marking Ordering code for versions on 8 mm-tape Package BSS84 SP Q62702-5568 SOT 23 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos IoiIOR ID 1Dpul. V•• Po 1j T.I. Ratings Unit -50 -50 -0.13 -0.52 :!:20 0.36 V V A A V W -55... +150 55... 150... 56 °C s350 s285 KfIN Conditions Ros =20kO TA =30"C TA =2SOC aperiodic TA =25°C DIN IEC 68 part 1 Thermal resistance Chip - air Chip - substrate rear side 712 RlhJA RlhJSR Siemens Mounted on Ceramic substrate 2.5cm2 BSS84 Electrical Characteristics at TJ =25°C, unless otherwise specHied. DescrIption I Characteristics Symbol min. I typo I Unit Condition max. Static characterlattca ·50 Draln·source breakdown vottage V(BR)DSS Gate threshold vottage VGS(lh) ·0.8 ·1.5 I DSS . Zero gate vottage drain current ' Dss V VGS =OV ID =·0.25 rnA ·2.0 V VDS = VGS;/D =·lmA ·1.0 ·15.0 JiA TJ =25°C; VDS =·50V VGS =OV ·2.0 ·60.0 JiA 7j =125°C;VDS 0.1 JiA 7j =25°C; VDS =·25V VGS =OV ·1.0 ·10.0 nA VGS =·20V, VDS =OV 5.0 10.0 0 I DSS Gate-source leakage current I GSS Draln·source on·state resistance RDS(on) =·50V VGS =OV V GS =·10V ' D =0.13A Dynamic characteristics Forward transconductance 9,. Input capac~ance CI.. 30 45 Output capacHance Co .. 17 25 Reverse transfer capacHance Cr •• 8 12 8 12 35 50 t d(on) Turn·on time Ion (Ion =1 d(on) +t,) I, Turn·off time I off (I off =1 d(off) +1,) I, I d(off) 0.05 0.08 8 10 20 25 S VDS =·25V ID =·0.13A pF VGS =OV VDS =·25V f =1MHz ns Vec =-30V VGS =·10V I D =-0.27A RGS =500 Reverse diode Continuous source current Is ·0.13 A Pulsed source current ISM -0.52 A Diode forward on-vottage VSD ·1.2 V VGS =OV IF =·0.26A Reverse recovery time trr ns VR =-30V, = ID R diF Idt = ·100NJis Reverse recovery charge Or, JiC VR =-30V, IF = ID R diF Idt = -100NJis ·0.9 - Siemens 'F 713 BSS84 Switching Time Measurement Test circuit Switching tim•• Vee V I Typical output characteristic ID =fVD1 X Axis: VDS IV YAxls: 1 D IA .. p. , -,0 ::~~ [\ -1V , if!IJ II rtII [\ 1(/ f/ 1\ f\ 5V '\ -, f\ -4 , 'J 1\ , p. 0.36 "VV IOV I- 2 90% Vas Permissible power dissipation versus temperatura PD =fTA X Axis: TA I'e YAxis: P D IW VDS 90% v 0 'j ..... -3~V- / 1\ V \ -2 !IV 1\ 0 0 --TA 714 v -, 2V -2 -3 -4 -& - - - - " Vos Siemens BSS84 Safe operatIng area 10 =fVOS X Axis: Vos I V Y Axis: 10 I A Parameter: D = 0.01, D =t pIT; Rcs(on)'" VDs/lo 'I-Frf1_ __ D T TypIcal transfer characteristIc ID =fVGS X Axis: VGS IV YAxis: lolA Parameter: Vos = -25V; t p = BOps; 1j = 25'C Tc = 25'C II t 'p' 20ps i, r' I. L, " , 1.-< 1m. / / 10ms -5 I r-: " 1/ 100m. f', II J -5 / V _10 V _'0 2 1 ----vas - - - v. s TypIcal transconductance DraIn to source on resIstance (spread) g,.= flo Roso.= fTj X Axis: T j I'C X Axis: ID IA Y Axis: g,. IS Parameter: Y Axis: Vos = -25V; t p = BOiLs; T j V 17 Roso. I0 Parameter: VGS = 25'C = -10V; 10 = -0.13A P V i.) RCS(on ) V 1 1/ / 17 /v J 1/ "" V rJ ",. / V -- D -0.6 ---_i, Siemens V / . . . . v i-"" V yp. ---_T, C 160 715 BSS84 Typical capacitances C=fV DS X Axis: VDs/V YAxls: C IpF Parameter: VGS =0; f = 1MHz c ~ .. ~ I-- " ""'-'" "'" "'" , - I- Go .. - - - VDS Drain currant Gate thrashhold voltage (spread) VGSlh =fT1 X Axis: TJ I'C I D = fTA X Axis: TA I'C Y Axis: I D I A 'D Y Axis: VGSlh I V Parameter: VGs= VDS ; I D = -1mA V A , · · V GSUb ) " '\ [- 4 r'\: \ - .-- - - ." - I- , \ " t-- r-. i-- \ · 0 100 - - TJ --TA 716 c· Siemens - BSS84 Typical drain-source on-stale resistance RDSO" = fI D X Axis: I D I A Y Axis: R DSo" I 0 Parametar: VGS ; 1j = 2SoC Vc. == 'JV -2SV .v _35 ,v " n ·W Rcs(on ) V V v V I; t.-- V 1---'" 1/ / ,/ I.....:' ,-- I- I-f.- '-f.- ~ -8\1 _9V ·lQV A '0 Typical ravarse diode forward voltage (spread) IF=fVSD X Axis: VSD IV Y Axis: I F I A Parameter: t p =BD!Is; TI ,,' " . 2S , : p. F 'C typo " 7r7 IA II 1ft O-C 98 25 :9 % I I J -, ---v" Siemens 717 BSS87 SIPMOS N Channel MOSFET • SIPMOS - enhancement mode • Drain-source voltage Vos = 240V 10 = 0.29A • Continuous drain current ROS(on) = 6.00 • Drain-source on-resistance • Total power dissipation Po 1.0W s = Type Marking Ordering code for versions on 12 mm-tape Package BSS87 KA Q62702-S506 SOT 89 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos \!baR 10 IDpUIS V•• Po 7j T.t. Ratings Unit 240 240 0.29 1.16 ±20 1.0 V V A A V -55 ... +150 55 ... 150... 56 W 718 $125 RthJA Siemens RGS TA TA =20 kO =25°C =2SoC aperiodic TA =2SoC °C DIN IEC 68 part 1 Thermal resistance Chip - air Conditions K/VV BSS87 Electrical Characteristics Condition Static chsracterlstlcs Drsln-source breskdown vonage V(BR)DSS 240 Gate threshold vonage Vas(th) O.B Zero gate vottage drain current loss V Vas =OV ID =0.25mA 1.5 2.0 V Vos = Vas;/o =1mA 4.0 60.0 }.IA 1j =25'C; Vos =240V Vas =OV B.O IDSS 200 }.IA 1j =125'C;Vos =240V Vas =OV 200 nA 1j = 25'C; Vos =60V Vas =OV 10.0 100 nA Vas =20V, Vos =OV 4.0 6.0 0 I D =0.29A 5.7 10.0 0 IDSS Gate-source leakage current I ass Drain-source on-state resistance ROS(on) Vas =10V Vas =4.5V 10 =0.29A Dynamic characteristics Forward transconductance g,. 0.14 S 0.29 Vos =25V 10 =0.29A Input capacitance C, •• 90 140 Output capacitance Co •• 20 30 Reverse transfer capacitance Cr •• 6.0 9.0 pF Vas =OV Vos =25V f =IMHz ns Vee =3QV Vas =10V 10 =0.2BA Ras =500 Turn-on time ton (t on =t d(on) +t,) t d(on) 5 B I, B 12 Turn-off time t off (I off =1 d(olf) +t ,) I dlo'!) I, 25 30 22 2B - 0.29 A 1.16 A 1.4 V Reverse diode Continuous source current Is Pulsed source current ISM Diode forward on-vonage Vso Reverse recovery lime Irr 0.B5 - ns Vas =OV IF =0.5BA VR =30V, IF = 10 R Idt = 100N}.Is diF Reverse recovery charge Orr - }.IC VR =3OV, IF = 10 R Idt = 100N}.Is diF Siemens 719 BSS87 Switching Time Measurement Switching times Test circuit Vcc Permissible power dissipation versus temperature PD = fTA X Axis: YAxis: Typical output characteristic =fVDS X Axis: VDS IV YAxls: tD fA tD TAloe PD IW ... p "f'i /4.8 rt!J ,v, '1/, I I 1"'- ,/1 "., v v, i\ 10 l' \ 1\ \ Ix [II rl .. 1\ fj \ 1\ 'I '1 \ 1/1 o 720 I~ 1\ o Ii I-'" V -- v ., l -I - •. v r-. ...., . V . •. v V 8.5 --T. ---~Vo. Siemens BSS87 Safe operating area 10 =tVos X Axis: vos f V Y Axis: 10 I A Parameter: 0 = 0.01, 0 =tp IT; It_~-y = VDI /lp ROS(on) 10' TypIcal transfer characterIstic 10 =tVas X Axis: Vas IV YAxls: 10 fA Parameter: VDS = 2SV; t p TC = 25°e = SO/ls; 1j = 25°e P-t' I A r: I. I N ~ I I !I I" I I I II J a '0' 10' 5 10 2 " 5 V10 l - - V•• ----VG. Typical transconductance g,. = flo DraIn to source on resIstance (spread) RDson = tTl X Axis: lolA YAxls: VDS = 2SV; Parameter: TI loe RDSon I 0 X Axis: Y Axis: g,./S t p = SO/Is; TJ = 25°e VV Parameter: Vas = 10V; 1D = O.29A v~ n VV ) 17 1/ I) V II I ,. 1 V ./ V V ...- V 1/ 1/ V .. 1/ l/ V typo .... f-'" 0 C· ---_T, ----'. Siemens 1&0 721 BSS87 Typical capacitances C = fV DS VDS I V X Axis: y Axis: C IpF Parameter: VGs=O; f =lMHz ,,' pF c ~ I~\ "- r- r- "'- Co•• u r•• -Vos Gate threshhold voltage (spread) Drain current f D = fTA X Axis: T A I"C Y Axis: f D I A I- '. r--. VGSlh = fT J TJ I"C Y Axis: VGSlh I V Parameter: VGs= VDS X Axis: "- ; f D = lmA VGS(th ) I\. "\ '\ \ \ \ \ - \ r- - ..... r- -_T, o 100 --TA 722 .;,:,::" -- ."-- 1\ o .." - Siemens c· 180 BSS87 Typical drain-source on-state resistance RDson =fl D X Axis: ID fA Y Axis: R DSon f n 1j = 25"C Parameter: VelS ; Va - v v I--"Y I-- I-- -- '" I --'. .< Typical reverse diode forward voHage (spread) IF=fVSD X Axis: VsD/V YAxls: IF fA Paramater: t p = BOps; TJ 150 ~P' "'~~m ~ 25: ;111 !SO fj Ii ".'~/~m , --~Vs. Siemens 723 BSS 119 SIPMOS N Channel MOSFET • SIPMOS - enhancement mode • Drain-source voltage ~S = 100V • Continuous drain current 10 = 0.17A • Drain-source on-resistance • Total power dissipation = 6.00 Po = 0.36W RoS(on) Type Marking Ordering code for versions on 8 mm-tape Package BSS 119 SH Q62702-8631 SOT 23 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos \obGR /0 I Opul. V•• Po Ratings Unit 100 100 0.17 0.68 V V A A V W :t20 0.36 724 Ra. =20kO TA =28"C Tc =25°C aperiodic TA =25°C 7j T.t. -55 ... +150 55 ... 150... 56 Thermal resistance Chip - air Chip - substrate rear side Ceramic substrate 15mm x 16.7mm x 0.7mm Conditions RthJA Rth JSR 0$350 0$285 Siemens °C DIN IEC 68 part 1 BSS 119 Electrical Characteristics Condition Static characteristics Drain-source breakdown vottage V(BR)D.S Gate threshold vottage VeSUh) Zero gate vottage drain current - 100 1.6 loss V Ves =OV 'D =0.2SmA 2.0 2.6 V Vos = VeB;/D =lmA - O.S tJ A 1j =2S·C; VDS =100V Ves =OV - loss S.O tJA 1j = 12S·C;VDS =100V Ves =OV 'DSS - 100 nA 1j =2S·C; VDS =60V Ves =OV Gate-source leakage current Drain-source on-state resistance DynamiC characteristics less 10.0 RDS(on) - Forward transconductance g,. 0.10 Input capacttance C ••• - 100 3.2 6.0 0 4.7 10.0 0 0.20 - 40 60 IS 6.0 Output capacitance Co •• 10 Reverse transfer capacitance Cr•• 4.0 Turn-on time ton (t on =t d(on) +t r) t d(on) - S 8 tr - 8 12 Turn-oft time t off (t off =t d(off) +t ,) t, t cl(off) - nA 12 16 17 22 Ves =20V, VDS =OV Vas =10V 10 =0.17A Vas =4.5V I D =0.17A S VDS =25V ID =0.17A pF Vas =OV VDS =25V f =IMHz ns Vcc =30V Vas =10V I D =0.2BA Ras =SOO Reverse diode Continuous source current Is Puised source current ISM Diode forward on-yottage Vso Reverse recovery time t rr Reverse recovery charge Orr 0.8S - Siemens 0.17 A 0.68 A 1.4 V Vas =OV IF =O.34A - ns VR =30V, 'F = 10 R diF Idt = looAltJs - tJC VR =30V, 'F = 10 R dl F Idt = 100AltJs 725 ass 119 Switching Time Measurement Switching times Test circuit Vcc VDS 90% 90% VGS 90% Permissible power dissipation versus temperature PD =fTA X Axis: TA lOG Typical output characteristic ID =fVDS X Axis: VDS I V YAxis: 1 D IA Y Axis: P D IW I. .4 '0 I '" (., "'~ ~ ~ \ OV 8V 7V 3 '""'- \ \ , rl/1 / .ov 0 4V / \ r/J/ \ \ VI/' \ .1 I 7 1\ 0 C -_T, \ \ " .ov "- ..... ........ ,'v 1\ 726 PD 0.36 8V f 1\ o HIO .ov o ----Vos Siemens BSS 119 Safe operating area ID =fVDS X Axis: VDs/V V Axis: ID IA Parameter: D = 0.01, D =tp IT;· Tc = 25'C ROB' ..)- VOB/lo / Typical transfer characteristic ID =fV as X Axis: Vas IV V Axis: I D IA Parameter: VDS = 2SV; t p = 80jls; 7j = 25'C t-~-n -T ... I-t '0' A I. 'p- 20111 1.. /0 '\ 1,0" 'm. I I 10m. \ I 100mi '\ / II o a '0' 10 J 5 V10' -VDS Drain to source on resistance (lipread) Typical transconductance Rglon = fT) X Axis: T) I'C V Axis: RDSon 10 Parameter: Vas = 10V; I D k = O.17A n /' I 10 Va, g,"=f/ D X Axis: ID IA V Axis: g,"IS Parameter: VDS = 25V; t p = 80jls; TJ = 25'C g" V o ./ / V / 0.' I / V II / V .. V .// -,..,., A -eo 0.5 ----10 / ./,/ L I I V .. V typo c· '80 ---_.TI Siemens 727 BSS 119 Typical capacltancaa O=IV DS X Axis: VDI/V YAxls: O/pF Parameter: Val =0; I = 1MHz 1.' pF G 1.' \\ Jl CIII \ \" --- ~ - _ c,.. 1.' •• v ---v.s Drain current ID Gate threshhold voltage (spread) =ITA =IT J VOlth X Axis: TA I'C Y Axis: I D I A X Axis: YAxis: TJ I'C VeSth IV Parameter: Vos= VDS ; I D = 1mA .11 '. A r-- t""""'\ V Va'Uh ) "\ '\ \ -'- -- - -,...,... ... - ... \ ..., \ ... '" . .. • 728 100 c· 1110 100 c· - TJ --TA Siemens ... BSS 119 Typical drain-source on-state resistance RDlo" =f'D 'D X Axis: fA Y Axis: R Dlo" f 0 Parameter: Vas; 1j = 2S0C .. Vas"" n RDS(on , , . ., . 1 / / ...... V ::t::: - V V 1--''"' / - I-'v =.'" .i. I), , '" --'. •3 A Typical reverse diode forward voltage (spread) 'F=fVSD X Axis: VsDfV YAxis: , F fA Parameter: t p =80J,rs; TJ ,., ., . ,,~. '01 P" c--" "" . "" " Ij I 'II 10" ---v,. 2 Siemens 729 SIPMOS N Channel MOSFET BSS 123 • SIPMOS - enhancement mode • Drain-source voltage lIba = 100V 10 = 0.17A • Continuous drain current • Drain-source on-resistance • Total power dissipation RoSlon) = 6.00 PD = 0.36W Type Marking Ordering code for versions on 8 mm-tape Package BSS 123 SA Q62702-S512 SOT 23 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos \ V " •• A --I, Typical reverse diode forward voltage (spread) IF=fVSD X Axis: VsDfV YAxls: I F fA Parameter: t p =8D1Js; TJ 1SO !9 : ~ 'rJ II 'CI~II '0"." -,,,,,, "" 1!J'r 2 ---v,o Siemens 735 BSS 131 SIPMOS N Channel MOSFET • SIPMOS - enhancement mode • Drain-source voltage ~s = 240V Ic = 0.10A • Continuous drain current Ro8(on) = 16.00 • Drain-source on-resistance Pc = 0.36W • Total power dissipation Type Marking Ordering code for versions on 8 mm-tape Package BSS 131 SR Q62702-8565 SOT 23 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vcs \,bGR Ic I Cpul. Va. Pc 7j T.ta Ratings Unit Conditions 240 240 0.10 0.40 :!:20 0.36 V V A A V W ROI =20kO TA =26"C TA =25"C aperiodic TA =25°C -55 ... +150 55 ... 150... 56 °C Thermal resistance Chip - air Chip - substrate rear side Ceramic substrate 25mm x 25mm x 0.7mm 736 RthJA RthJSR :s350 :s285 Siemens DIN IEC 68 part 1 BSS 131 Electrical Characteristics Condition Static characterlatlcs Drain-source breakdown vottage V(BR)OSS 240 Gate threshold vottage Va8(th) 0.8 Zero gate vottage drain current 'DSS V Va8 =OV 10 =0.25mA 1.4 2.0 V VOl = Val;lo =1mA 1.0 15.0 flA 1j =25°C; VOl =240V Val =OV 2.0 'DSS 60.0 flA 1j = 125°C; VDS =240V Val =OV 30.0 'DSS nA 1j -25°C; VDS =130V Vas =OV Gate-source leakage current Drain-source on-state resistance Dynamic characteristics Forward transconductance I ass 1.0 RDS(on) g,. 0.06 10_0 12.0 16.0 15.0 26.0 nA Vas =20V. VDS =OV n n Val =10V I D =0.1A Val =4.5V 10 =0.1A S 0.14 VOl =25V ID =0.1A Input capacHance C,.. 60 90 Output capacHanee Co•• 8 12 Reverse transfer capacHance Cr •• 2.5 5.0 Turn-on time ton (Ion =1 d(on) +t,) t d(o.) 5 8 I, 8 12 Turn-off time lolf (1 0 " =1 d(ofl) +1,) t d(o") t, . . 12 16 15 20 pF Val =OV VOl =25V f =1MHz ns Vec =3OV Val =IOV 10 =0.2BA Raa =500 Reverse diode Continuous source current Is 0.10 A Pulsed source current ISM 0.40 A Diode forward on-vottage Vso 1.2 V Va. =OV I, =0.2A Reverse recovery time trr ns VR =3OV. IF = 10R dl, Idt = 100A/fl8 Reverse recovery charge Orr flC VR =3OV. IF = 10R dl F Idt = 100A/fls 0.8 Siemens 737 BSS 131 Switching Time Measurement Switching tl_ Test circuit Vee Pulse Generator V.ut f·····························l Permissible power dissipation versus temperature Typical output characteristic Pc =fTA XAxis: TA I'e V Axis: Pc IW Ie =fVes X Axis: Ves IV V Axis: I c I A .Z4 p - p. 1\ , 4.' . Y/II t'\ 8Vf-: f\ rA 1\ r~ f\ 1 ". 1\ , j ,II 100 1--'1- "- ~ 1 \ 1/ y 3V IW,II f\ 1\ I) 4V v 1-1- 1\ ., .. V 7.6 ----1'00 --TA 738 3 \ 'v I.v. TYrJ, Siemens BSS 131 Typical transfer characteristic Safe operating range /0 =fVos X Axis: Vos I V YAxis: /o/A Perameter: D = 0.01. D = t pIT; Tc = 2S'C /0 = fV GS X Axis: VGS IV Y Axis: /0 I A Psrameter: Vos = 2SV; t p = BOils; 1j = 2S'C Ros"., ~vostlo It_~- 0 1_, -T ,,' A 10 'p. 2 0 11' I' I, , 1 ~ 110' 1\ \ :\ I I II \1 n (> 10' 5 10' I (> 10 V 10' V" V" Drain to source on resistance (spread) Typical transconductance Ros."= fTI X Axis: TI I'C gh = flo X Axis: /0 I A Y Axis: gh IS Parameter: Vos = 2SV; Y Axis: Ros." I 0 Parameter: VGS 10V; /0 = t p = BOils; TI = 2S'C n v~ g" ROs(on) VV j" = 0.1 A L V V / V . / / / V / V ./ ::: ........ ,., / V "L V V / typo VV V C ---_I, 160 ---_Tj Siemens 739 BSS 131 Typical capacitances C = (V es X Axis: Ves I V Y Axis: C IpF Parameter: VGS =0; f = 1MHz ,,' pF c to' \ ", ....... ' - r-- -"""k, - - Cns - - - VDS Drain currant Gata threshhold voltage (spread) = (TI Ie = (TA VGllh X Axis: Y Axis: TA 1°C X Axis: TI 1°C Ie IA Y Alds: VGllh I V Parameter: VGs= Ves; Ie = 1mA 'D • V " V CSUh ) ~ 1 r\. "- 4 \ \ \ r- \ 740 r- typo - .. '- - ,-- 1\ 0 .... ... -_T. - - -k, tr- -_T, 100 Siemens C BSS 131 Typical draln-sourca on-atata raslstanca RDlon = fI D X Axis; Ip fA Y Axis; R Dlon f 0 Paramater: VGS ; 1j = 25"C "I v., I", R.",~) ,.. I·v I .. J I'" II J ....... /' -- .. L..-- V I- r.,,, Ir Ifll~rev~ " r;ov~--.v7V " . .1 .2 --'. 1"" A.24 Typical ravarsa dloda forward voItaga (apraad) IF=fVSD X Axis; VIDfV YAxis; I F fA Parameter; t p =80/1s; T, ", , ,~ , l' f2i 10 "' ; 11 % ]) t- h Fc .. "" "' . --v,. Siemens 741 SIPMOS N Channel MOSFET BSS 138 • 51PM05 - enhancement mode • Drain-source voltage "bs = SOV • Continuous drain current 10 = 0.22A • Drain-source on-resistance • Total power dissipation ~S(onl = 3.50 fb = 0.36W Type Marking Ordering code for versions on 8 mm-tape Package B55138 55 Q62702-S566 50T23 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Ratings Unit Conditions 50 50 0.22 0.88 ±20 0.36 V V A A V W Rcs =20kO TA =31°C TA =25°C aperiodic TA =25°C -55 ... +150 55 ... 150... 56 °C RthJA ~3S0 K/W Rth JSR ~285 Vos IobGR 10 I Dpul. Vg• PD 1j T.tg DIN IEC 68 part 1 Thermal resistance Chip - air Chip - substrate rear side Ceramic substrate 2Smm x 25mm x 0.7mm 742 Siemens BSS 138 Electrical Characteristics Condition Static characteristics Drain-source breakdown vo~age V (BR)DSS 50 Gate threshold vo~age VaS(th) 0.8 Zero gate vo~age drain current loss 1.2 V Vas =OV ID =0.25 rnA 1.6 V VDS = Vas JD =lrnA 0.5 J1A TI =25'C; Vos =50V 5.0 J1A Vas =OV - loss ~ =125'C;VD8 =50V Vas =QV IDSS Gate-source leakage current Drain-source on-state resistance I ass 10.0 RDS(on) 100 nA 100 nA 1.8 3.5 0 2.8 5.8 0 ~ =25'C; Vos =30V Vas =OV Vas =20V. VDS =OV Vas=10V I D =0.22A Vas =4.5V I D =0.22A Dynamic characteristics Forward transconductance gr. 0.12 0.20 - S VDI =25V ID =D.22A Input capacitance CI •• 40 60 Output capacitance Co .. 15 25 Reverse transfer capacitance Cr •• 5 10 I d(on) 5 8 I, 8 12 Turn-on time ton (Ion =1 d(on) +1,) Turn-off time tOil (/011 =1 d(olll +t r) I dColI) 12 16 If 17 22 pF ns Val =DV VDI =25V f =lMHz Vce =3OV Vas =10V I D =D.29A Ras =500 Reverse diode Continuous source current Is 0.22 A Pulsed source current ISM 0.88 A 1.4 V Vas =OV IF =O.44A Diode forward on-vo~age VSD 0.9 Reverse recovery time Irr ns VR =30V. IF = ID R diF Idt = lDOA/J18 Reverse recovery charge Orr J1C VR =3OV. IF = ID R dl F Idt = 100A/J1s Siemens 743 ass 138 SwItchIng TIme Measurement Switching times Test circuit Vec Typical output characteristic Permissible power dissipation versus temperature PD =fTA X Axis: TA I'C YAxls: P D IW ID =fVDS X Axis: VDS IV YAxis: ID IA , .8 .4 I 1DV P, ~ 'l 8V 'v ev \ P,~ 0.36 4.8V j1 \ 4V '/,\ .3 \ Ii .. 1// \ ,\ \ Y \ ., \ / \ , 3.8V ., ..... -3V 2.6V 1\ o o \J ,, 2V 4 V • v,s 744 Siemens ess 138 Safe operating area Typical tranafer characteristic 'D 'D =fVas X Axis: Vas IV =fVDS X Axis: vDs/V 'D YAxis: IA Parameter: D = 0.01, D =t pIT; D_~ t T Tc 'D YAxis: IA Parameter: VDS = 2S'C = 2SV; tp = 80jJs; = 2S'C TI 0 '1-~-I-t __ T '0' 'D Ip' 30". 100". 'D " 1·· ,,., " I " I 10m. "'- 100m. ~ I II / 10' 5 V 10 2 ----vas ---VDS Typical transconductance Drain to source on resistance (spread) g,.="D X Axis: Y Axis: 'D RDSon = fT J X Axis: TJ I'C Y Axis: RDSon I Q IA g,. IS Parameter: VDS = 2SV; t p = 80jJs; TJ = 25'C gf, 'D = 0.22A n i--"'" [ Parameter: Vas = 10V; [, ROS(on) /1-" V / / / / "" V / II I ,; / -- I II ----'. V ..,. ..,. i--"'" // V ,/ ,/ typ_ ----TJ Siemens 745 BSS 138 Typical capacitances C = fV DS X Axis: Vos I V Y Axis: C I pF Parameter: VGS =0; f = lMHz 10' ,F c CI.. 1\ \ \ r--... - Co .. n' ---v" Drain current Gate threshhold voltage (spread) VGSlh = fT J X Axis: T J I'C 10 = fTA X Axis: TA I'C Y Axis: 10 I A Y Axis: VGSlh I V Parameter: VGs= Vos; 10 = lmA ... I '. A .2 ""'I'.. VCS(th ) ""'\ .~ , ..... 98% "'-\ t--.. \ \ , r---~ '\ ..... , , , '" typo ...... -I- .... ........ , ...... '- . c - - TJ 746 Siemens BSS 138 Typical drain-source on-state resistance ROSon = f1 0 XAxis: lolA Y Axis: R OSon I 0 Parameter: VGS ; 1j = 2S'C ., 11 "'" .,$V n .35V ~5V ~, , / J. / :: ./ -",.- .....- ..... V V ./ V f-""'" I--' I--" L--' J --~ " .$V ., 7V l --10 Typical reversa diode forward voltage (spread) IF =fVso X Axis: VSD IV Y Axis: I F I A Parameter: t p =8~s; TI ,,' IF' 150 ; ''C:~. rJ XI '-"1-- " : " r-- .,. re: " I , - - - vso Siemens 747 SIPMOS N Channel MOSFET • 51PMOS - depletion mode • Drain-source voltage • Continuous drain current 'i.bs SSS 139 = 250V 10 = 0.04A • Drain-source on-resistance • Total power dissipation ~S(on) = 1000 Po = 0.36W Type Marking Ordering code for versions on 8 mm-tape Package B55139 5T Q62702-5612 SOT 23 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos 'i.bGR 10 10Pul. V•• Po 7j T.,s Ratings Unit 250 250 0.04 0.12 ±20 0.36 V V -55... +150 55 ... 150 ... 56 Thermal resistance Chip - air Chip - substrate rear side Ceramic substrate 25mm x 25mm x 0.7mm 748 RlhJA RthJSR ::;350 ::;285 Siemens A A V W Conditions RGS =20 kO TA =25°C TA =25°C aperiodic TA =25"C °C DIN IEC 68 part 1 BSS 139 Electrical Characteristics CondHlon Static characteristics Drain-source breakdown vottege Gate threshold vo~age Zero gate vo~age drain current V(BR)OSV 2S0 - - V '0 VaS(th) -1.B -1.0 -0.7 V VOl = 3V; 100 nA - 'osv Vas =-3V =0.2SmA 7j =2SoC; '0 =lmA Vos =2S0v Val =-3V 200 'osv jJA 7j =12SoC;Vos =2S0V Vas =-3V 'osv r, =2SoC; - Vos =-V Vas =OV Gate-source leakage current , ass - Drain-source on-state resistance ROS(on) - gt. O.OS 10.0 - 100 nA Vas =±20V,VDS =0V 100 0 '0 - S Vas =OV =14mA Dynamic characteristics Forward transconductance Input capac~ance Output capac~ance 0.07 C ••• SO Co •• 10 pF - - 3 10 - tr - 20 - t d(olf) - Reverse transfer capacitance Cr •• Turn-on time ton (t on =t d(on) +t r J t d(on) Turn-off time t olf (tolf =t d(olf) +t tJ =O.04A Val =OV Vos =2SV f =IMHz Vee =30V Vas =-2V... +5V =O.ISA Ras = SOD '0 70 120 If ns VOl =25V '0 - Reverse diode Continuous source current 's Pulsed source current ISM Diode forward on-vo~age 0.9 Vso Reverse recovery time Irr Reverse recovery charge Orr 0.04 A 0.12 A 1.2 V Vas =OV =O.OBA ns VR =100V, 10 R d/ F Idt = 100A/jJs jJC VA =looV, IF = 10 A dl F Idt = 100A/jJs 'F - Siemens 'F = 749 BSS 139 Switching Time Measurement Switching times Test circuit Vec v I 90% VGS 90% Safe operating area Permissible power dissipation versus temperature Po =fTA X Axis: TA loe V Axis: PD IW VOS 90% '0 =fVDS X Axis: VDs/V V Axis: 'D Parameter: IA 0 = 0.01. ROS(on) :: 0 = t pIT; Te = 25°e vos 110 ,,' A \ 10 \ -I" lr 110" [\ \ \ 1\ \ \ ,o·~ \ 1\ I o 750 o ~ ", Siemens 5 10' - - v.. 5 V10 3 BSS 139 Drain to source on resistance (spread) Drain current = fT J TJ I·e RDso • X Axis: Y Axis: RDso • I (l Parameter: Vas =0; I I D = fTA X Axis: TA I·e Y Axis: I D I A D = 14rnA 240 n '. A ""1"'- \ ) .03 / / ..., // 100 \ .02 1\ V I/' C .. 180 ---_.T) Typical reverse diode forward voltage (spread) Gate threshhold voltage (spread) VaSlh = fT J X Axis: YAxis: IF =fVSD X Axis: V.D/V T j I·e VaSlh IV Parameter: Vas --TA = 3V; I D YAxls: IF IA Parameter: t p =8Ops; Tj = 1rnA ", " VCSUh ) I -- - - . "" ....... r-. r--... .... r- , '-- T = I'" ; 1_" typo j-li "C;98 l[r-- ''''1''' ". ........ ........, ~~ " -... _T, 100 C 180 2 ---Vso Siemens 751 BSS 192 SIPMOS P Channel MOSFET • SIPMOS - enhancement mode • Drain-source voltage Vos = -240V • Continuous drain current 10 = -0.15A Ros(o.) = 20.00 • Drain-source on-resistance Po =1.0W • Total power dissipation S Type Marking Ordering code for versions on 8 mm-tape Package BSS 192 KB Q62702-8602 80T89 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage 9ontinuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol Vos ~GR 10 I Dpuls V., Po 7j T,t. Ratings Unit Conditions -240 -240 -0.15 -.6 ±20 1.0 V V A A V Rca =20 kO TA =23"C TA =25°C -55 ... +150 55 ... 150... 56 W °C DIN IEC 68 part 1 Thermal resistance Chip - air 752 RthJA :;;125 Siemens aperiodic TA =25"C K!W BSS 192 Electrical Charllcterlatlc. Condltlon Static characteristics Drain-source breakdown vobage V (BR)DSI -240 - Gate threshold vobage Val(th) -0.8 -1.5 -2.0 Zero gate vobage drain current I DSI - -4.0 -60.0 V Vas =OV ID =-0.25 rnA V VDI = Val;lD =-1 rnA IlA 7j =2S·C; VDS =-24OV Val =OV -8.0 IDBI -200 IlA 7j =125"C; VDI =-24OV Val =OV I DSS - - -0.2 IlA 7j =2S·C; VDS =-60V Vas =OV Gate-source leakage current I GSI Drain-source on-state resistance RDS(on) Dynamic characteristics Forward transconductance -10.0 -100 nA 10.0 20.0 0 Vas =-2OV, VD• =OV Val =-1OV I D =-O.15A g,. 0.06 0.12 - S VDI =-2~ ID =-0.15A - Input capacitance C. oo Output capacitance Ca •• Reverse transfer capacitance C roo - 1d(on) - Tum-on time 1on (Ion =1 d(on) +t ,) I, Tum-off time 1off (t orr =t d(o'!) +t ,) t c[~f!) t, - 70 10S 20 30 8.0 12.0 8 12 30 4S 15 20 30 45 pF ns Va. =OV VDI =-2~ f =1MHz Vcc =..3(N Val =-1OV I D =-O.25A Ral =500 Reverse diode Continuous source current Is - - -0.15 A Pulsed source current ISM - - -0.60 A Diode forward on-voltage VSD - -0.85 -1.2 V Reverse recovery time t rr - 130 Reverse recovery charge Orr 300 - ns - nC Val =OV IF =-O.3A VR =-100v,1, =0. 5A dl F Idt = -100A/lls VR =-100V,/ F =0. 5A dl" Idt = -100A/lls Siemens 753 ass 192 Switching Time Measurement Switching tlmea Teat circuit Vcc v Vos Permissible power dissipation versus temperature Typical output characteristic 'D PD =fTA X Axis: TA loe V Axis: Po IW =fVD1 X Axis: VDI IV V Axis: 'D IA t.t p. -.-. w -.3 '. -to I 1\ r\ \ p ~1fv lh -, I"'.W V IlI.'111 1/ W V U r .: 1. 0 1-f--I--I--I-I-+'>.I-t-+-iH--t-H-l 101 =tIL - l-~ '-- 5 -_. \ 05 . r-r-f- -.- o - f-+-t-H-I-+-+-I-+-I~'I.-IH--I-I ....- o ·-t--IH-+-+-I~I-~-++-I - '- .-.. - ,,-.- - 50 - 21-1-1-1-+-It -, 100 °C -TA - 10' L-.L-l..l..LLlllL._ 100 ISO Saturation voltage Ie - (VBES.t. VeE ..,) -- -=t= ':" 5 / VV Ii VI(= '= C( - - ~ t- . - f- zJJCI ~ II 10' ~ .... .. ... --- ~:= ..::. -f-. !-- - -- - 1 - " --. _. - f - ' -. -f- 1f- : - 'L 5 .=-c .-- r! -55'C 5 - 5 f-+- , 10' o , 0.2 0.4 0,6 OJ - 762 5 10' DC current gain hFE - f (/ e) VeE - 10V .• hFE - 10 mA IO J 1--' to 10' 1l V -/c VR.lt,VCl.ot Siemens PZT 2907;PZT 2907A PNP Silicon Switching Transistors • High DC current gain: 0.1 to 500 mA • Low collector -emitter saturation voltage • Complementary types: PZT 2222 (NPN) PZT 2222A (NPN) E c Type Marking Ordering code (12-mm tape) Package" PZT 2907 ZT 2907 Q62702 - Z2028 SOT-223 PZT 2907A ZT2907A Q62702 - Z2025 SOT-223 Maximum Ratings Parameter Collector-emitter voltage Collector-base voltage Symbol PZT 2907 PZT 2907A Unit VCEO 40 60 V VCBO 60 60 V 5 5 V Emitter-base voltage VEBO Collector current Ie Total power dissipation, TA:525'Cl) P IOI Junction temperature Tj Storage temperature range Ts1g -65 to 600 mA 1.5 W 150 'c 'c + 150 Thermal Resistance Junction - ambient 1) IR tl1JA :5 83.3 IKtW 1) Package mounted on an epoKy printed circuit board 40mm K 40mm K 1,5mm Mounting pad for the collector lead min 6cm 2 0) For detailed dimensions see chapter Package Outlines Siemens 763 PZT 2907;PZT 2907 A Characteristics at TA = 25 ·C, unless otherwise specified. Parameter Unit DC Characteristics Collector-emitter breakdown voltage Ic = 10 rnA, IB = 0 PZT 2907 PZT 2907A V(SR)CEO Collector-base breakdown voltage Ic = 10 pA, Is = 0 PZT 2907 PZT 2907A V(SR)CSO Emitter-base breakdown voltage IE = 10 pA, Ie = 0 V(SR)ESO Collector-base cutoff current VCS = 50 V, IE = 0 Vcs=50 V, Ie =0, TA = 150°C PZT PZT PZT PZT 2907 2907A 2907 2907A 'CBO leBo Collector-emitter cutoff current VcE =30 V,+VBE=0.5 V ,cEv Collector-base cutoff current Vce =30 V, +VBE =0.5 V lesv Ic= 1 rnA, VcE =10V Ic= 10 rnA, Vce=10V PZT 2907 PZT 2907A PZT 2907 PZT 2907A PZT 2907 PZT 2907A PZT 2907 PZT 2907A PZT 2907 PZT 2907A Ic=150mA, VcE =10V Ic=500 rnA, VcE =10V hFE Collector-emitter saturation voltage 1) Ie = 150 rnA, Is = 15 mA Ic 500 mA,/s = 50 rnA VCEsat Base-emitter saturation voltage 1) Ie = 150 rnA, Is = 15 mA Ie 500 mA,Is = 50 rnA VSEsat = = 1) Pulse test conditions: 764 t ~ 30°115; D - - V V - - V V 5 - - V - - 20 10 20 10 nA nA llA pA - - 10 nA - - 50 nA - - 50 nA 35 75 50 100 75 100 100 100 30 50 -- --- - - - -- 60 60 Emitter-base cutoff current VEs =3 V, Ic=O DC current gain 1) Ic=0.1 rnA, VcE =10V - 40 60 =2% Siemens. - - - 300 300 - - - - 0.4 1.6 V V - - 1.3 2.6 V V PZT 2907;PZT 2907A AC Characteristics Transition frequency Ic=20mA, VcE =20V, f=100 MHz fT Collector-base capacitance VCB = 10 V,f= 1 MHz Cob Input capacitance VEB = 0.5 V,f = 1 MHz C,b Vcc =30 V, Ic = 150 mA, IBI = 15 mA (see Fig.2) Delay time Rise time Vcc = 6 V, Ic = 150 mA, IBI =/ B2 = 15 mA (see Fig.3) Storage time Fall time 200 - - MHz - - 8 pF - - 30 pF td t, - - 10 40 ns ns tsig tf - - 80 30 ns ns Siemens 765 PZT 2907;PZT 2907 A Turn-on time (see Fig.2) when switched to-Icon =150mA;-/Bon =15mA -30V ...---( I Va Fig.2 Input waveform and test circuit for determining delay,rise and turn-on time Turn-off time (see Fig.3) when switched to-Icon = 150mA;-/Bon = 15mA to cut-off with + IBoff = 15mA +15V -6V Fig.3 Input waveform and test circuit for determining storage,fall and turn-offtime Pulse generator (see Fig.2 and 3) Oscilloscope (see Fig.2 and 3) frequency pulse duration rise time output impedance rise time output impedance 766 f=150Hz tp=200ns tr~2ns Zo=50Q Siemens tr~ 5ns Zj: 10MQ PZT 2907; PZT 2907A Total power dissipation PIOI = I (TA ) Transition frequency IT = I (l c) = 20 V. 1= 100 MHz HHz'VCE 2.0 Wf- ~ot fr -f- t . 1- 1-1-- 1-- 1 f-f\ I-f-- V 2 1'\ f'\ 10 1 ~- II- P\--1\ r- l"\_ 1.0 I- ~ r- H - -- --.- - --1\ - ~- ,:::- - f-.- . 5 1--- - f-~ 1-1- 0.5 t---- -f- - -- 1f- - --- - - - -- -!\,-H- - 2 t-!-+- -t-I\'I-f1-1-+--1-1--1-+-1-1--1-1-+-+-+....1-1 o f-- f--- 1.5 -1-- 10 1 ,-- - . 1-- t-- 1-5 t-- - -1- -1-1-I-+1--f--jH-I-i-f\ 1-'._-'-..L...I--L...l_L..J..-L..L1-1_-'-LJI o 100 50 ·C 10' 150 10° Saturallon voltaga Ie = ((VBE,al. VCE.a,) hFE = 10 la' 5 5 10 1 ----Ie 5 10 1 rnA DC current gain hFE = l(lel VCE 10 V = W - 5 -- - --1- . Ic 1=- I- t- 1~ 1.1 r- 1.1 VII[ Vcr 5 175°( rII 10' 10 21= I.-1-- 5 5 lt- I- 1U 25°C ~~, DC t'\ r-: ~ 1- 'I)' 5 10-1 1-- o 01 0.4 0,6 O.~ 1.0 11 1/. 1.6 V _ Vir",,' VcrIGt -/c Siemens 767 PZT 3904 NPN Silicon SWitching Transistor • High DC current gain 0.1 to 100 mA • Low collector -emitter saturation voltage • Complementary type: PZT 3906 (PNP) E Type Marking Ordering code (12-mm tape) Package" PZT 3904 ZT 3904 Q62702 - Z2029 SOT-223 Maximum Ratings Parameter Symbol Collector-emitter voltage 40 V 60 V Emitter-base voltage VCEO VCBO VEBO 6 V Collector current Ic 200 mA Total power dissipation, TA:s 25°C I) Collector-base voltage PZT 3904 Unit P 101 1.5 W Junction temperature Ti 150 °C Storage temperature range TSIg -65 to + 150 °C :s83.3 IKIW Thermal Resistance Junction - ambient 1) .) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm Mounting pad for the colleclor lead min 6cm 2 'J For detailed dimensions see chapter Package Outlines 768 Siemens PZT 3904 Characteristics at TA = 25 °C, unless otherwise specified. I Parameter I Symbol Values min. Ityp. Imax. .I Unit DC Characteristics Collector-emitter breakdown voltage Ic 1 rnA, IB 0 V(BR)CEO Collector-base breakdown voltage Ic = 10 pA, IB = 0 V(BR)CBO Emitter-base breakdown voltage IE = 10 pA, Ic = 0 V(BR)EBO Collector-base cutoff current VcB =30 V,/E=O ICB~ Collector -emitter cutoff current VCE = 30 V,-VBE = 0,5 V ,CEV = = Base-emitter cutoff current VCE 30 V,-VBE = 0,5 V = ' DC current gain 1) Ic = 0.1 rnA, Vce = 1 V le= 1 rnA, VCE = 1 V Ic = 10 rnA, VCE 1 V Ic=50 rnA, VCE = 1 V Ic = 100 rnA, VCE 1 V BEV hFE = = Collector-emitter saturation voltage Ie = 10 rnA, IB 1 rnA le=50 mA,IB=5 rnA = Base-emitter saturation voltage Ie = 10 rnA, Ic 1 rnA le=50 mA,le=5 rnA = 1) Pulse test conditions: t ;;; 300ps; D VeEsat 1) 1) VBEsat 40 - - V 60 - - V 6 - - V - - 50 nA - - 50 nA - - 50 nA 40 70 100 60 30 -- 300 - -- - - - 0.2 0.3 V V - - 0.85 0.95 V V - - - - =2% Siemens 769 PZT 3904 AC Characteristics Transition frequency Ic = 10 rnA, VCE =20 V, f= 100 MHz fr Collector-base cpacitance VCB = 5 V,f= 1 MHz Cob Input capacitance VEB = 0.5 V,f = 1 MHz C,b Noise figure Ic = 100 lIA,vCE = 5 V,Rs = 1kn, f= 10 Hz to 15.7 kHz F Input impedance Ic = 1 rnA, VCE = 10 V, f = 1 kHz h lle Open-circuit reverse voltage transfer ratio Ic = 1 mA,VCE = 10 V, f= 1 kHz h '2a Short-circuit forward current transfer ratio Ie = 1 mA,vCE = 10 V, f= 1 kHz h 21e Open circuit output admittance Ic = 1 mA,VeE = 10 V, f= 1 kHz h 22e Vcc=3 V, Ie = 10 rnA, IBI = 1 rnA VBEIOIf) = 0.5 V Delay time Rise time Vce =3 V,/c = 10 rnA, 'B' = 'B2 = 1 rnA Storage time Fall time 770 300 - - MHz - - 4 pF - - 8 pF - - 5 dB 1 - 10 kn 0.5 - 8 10-4 100 - 400 - 1 - 40 \lS - - 35 t, 35 ns ns t. ,g t, - - 200 50 ns ns td Siemens PZT 3904 Switching times Turn-on time (see Figs 2 and 3 ) when switched from -VSEoft=0.5Vto ICon = 10mA;/s on = 1mA Vi (V) + 10.6 +3V --"""-~Vo I I =t=Cs I I Ol--~+-~----------~r-~ I I -0.5 Fig.2 Input waveform;tr < 1ns;tp = 300ns Ii = 0.02 Fig.3 Delay and rise time test circuit;total shunt capacitance of test jig and connectors Cs <4pF; scope impedance ~ 10MCl Turn-off time (see Figs 4 and 5 ) ICon =1OmA; Ison =-/soft =1mA Vi (V) +3V + 10.91----,...------... .C ",-......-vVo I I O~~------~--------~~ I I I I s -.. -9. 11--~------t--+'-----../ Fig.4lnput waveform; tr< 1ns; lOjls 100 kQ C < 12 pF tr < 5 ns Siemens 797 5MBT2222 5MBT 2222 A Total power dissipation Ptot = f (TA) Collactor-base capacitance Cob = f(Vce) f= 1 MHz pF mW 102 400 "lot t r-b i 300 5 I\, 200 -I"- \ \. r-... 5 100 o o 1\ \ 100 50 150°C -~ Transition frequency VCE = 20V Pulse handling capability 'th = fIt) (standardized) fT = f (1 0 ) K W 10° , 10- II "~,5 5 10- 2 0,2 0,1 0,05 0,02 0,01 0,005 2 0=0 1111 5 v ... '\ I II 5 ~ '" tp D=r 10-3 T '" 10-6 10-5 10- 4 10- 3 10- 2 10-' 10° 10' s 5 10' -t 798 Siemens 5MBT 2222 5MBT 2222 A Saturation voltage Ie = f(VBEsat, VCEsatl DC current gain h FE = f (Ie) hFE = 10 VCE = 10V rnA 103 5 IL VVeE / VBE l?E:£ r- I 2~.lcl 1\ II 10' 5 -55°C 5 vi 5 10-' o 0.2 0.4 0,6 0.8 - Delay time t d = If (I e) Risetime tr= f(Iel 1.0 '-:- 1.2 V VeE sat- VeE sat Storage time tst9 = f(Ie) tf = f (l e) Fall time -- ~ \ 5 '" s, \ ...,hFE -l0 i\ tl r hFEI- 1 I 5 hFE -20 I'" r'-.... ). 5 -Ie Siemens 799 5MBT2907 5MBT 2907 A PNP Silicon Switching Transistors • • • High DC current gain: 0.1 to 500 mA Low collector-emitter saturation voltage Complementary types: 5MBT 2222, 5MBT 2222 A (NPN) Type 5MBT 2907 5MBT 2907 A . Marking S2B S2F Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package Q68000-A4336 Q68000-A4337 Q68000-A6501 Q68000-A6474 SOT 23 SOT 23 Maximum ratings Parameter Symbol 5MBT 2907 Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO 40 Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 800 VCBO VEBO Ic P tot 5MBT2907 A 60 60 5 600 330 150 -65 .. ·+150 Ti Tstg ~ RthJA Siemens 375 Unit V V V mA mW °C °C K/W 5MBT2907 5MBT2907 A Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage 5MBT2907 Ic = 10 rnA 5MBT2907 A V(BR) CEO Collector-base breakdown voltage 5MBT2907 Ic=10~A 5MBT2907 A V(BR) CBO Emitter-base breakdown voltage Ie = 10 ~A V(BR)EBO Collector cutoff current VCB = 50V VCB = 50V VCB = 50 V, TA = 150°C VCB = 50 V, TA = 150°C ICBo 5MBT2907 5MBT 2907 A 5MBT 2907 5MBT2907 A Emitter .::utoff current VEB = 3V leBO DC current gain Ic=100~A, VCE=10V hFE Ic= 1 rnA, VCE Ic= 10 rnA, VCE Ic = 150 rnA, VCE Ic = 500 rnA, VCE 5MBT2907 5MBT2907 A = 10V 5MBT2907 5MBT2907 A = 10 V') 5MBT2907 5MBT2907 A = 10 V') 5MBT 2907 5MBT2907 A = 10 V') 5MBT2907 5MBT2907 A Collector-emitter saturation voltage ') Ic = 150 rnA, IB = 15 rnA Ic = 500 rnA, IB = 50 rnA VCEsat Base-emitter saturation voltage ') Ic= 150 rnA, IB= 15mA Ic = 500 rnA, IB = 50 rnA VB Esat 1) Pulse test: t:5 300 ~s, min typ max Unit 40 60 - - - V V 60 60 - - V V 5 - - V - - 20 10 20 10 nA nA - - 10 nA 35 75 50 100 75 100 100 100 30 50 - - - 300 300 - - ~A ~A - - - - - - 0,4 1,6 V V - - 1,3 2,6 V V - D = 20/0. Siemens 801 5MBT 2907 5MBT2907 A AC characteristics Symbol min typ max Unit Transition frequency Ic = 20 mA, VCE = 20 V, f= 100 MHz fT 200 - - MHz Output capacitance Vcs = 10V, f=1 MHz Cob - - 8 pF Input capacitance VES = 0,5 V, f= 1 MHz Cib - - 30 pF td tr - - 10 40 ns ns t519 tl - - - 80 30 ns ns Vcc = 30 V, Ie = 150 mA, IS1 Delay time Rise time Vcc = 6 V, Ie = 150 mA, IS1 = IS2 = 15 mA Storage time Fall time = 15 mA - Test circuits Delay and rise time Storage and fall time -6V -30V .1SV 200n Osz. Eingang zo=son tr < 2ns Eingang Zo =50 n 1k -~0-[ o--rlso=n=:J-+I t, -~0-{ 200ns 802 < 2ns 200ns Siemens 37n Osz. 1k son 5MBT2907 5MBT2907 A Total power dissipation P tot = f (TA) Collector-base capacltanca Ccb = f(Vcs) f= 1 MHz pF mW 400 ~.t t 102 5 '-~~ 300 \. 1- .. ~ 200 I\. 5 100 "" \. I\, o o 50 100 5 1~ 150 ·C -~ Pulse handling capability 'th = f(t) Transition frequency Vce=20V (standardized) fT = f (Ic) K iii 100 lih 5 f , 10· l1li ut 5 '0,5 0,2 0,1 0,05 0,02 0,01 0,005 0:0 10·2 vi--- 2 '\ II 17 1111 5 5 1tn.. D=~ T 2 ~T7.! 10" 3 10.6 10. 5 10. 4 10.3 10. 2 10·' 10° 10' s 10 I 0 10 5 10' 5 10 3 mA -t Siemens 803 5MBT2907 5MBT2907 A Saturation voltage Ie = f ( VeE sat, V CE sat) hFE = 10 Delay time td = f(Ie) Rise time tr = f(Ie) hFE = 10 ns 'II 103 5 f~ VCE ~ I-- VI[ TIlT H -lovl VBE ;;ov,Vcc - - - VBE -20V,Vcc -30V II f- rl " I-- I~ If td ~. 5 5 \ 5 o \1\ 1\ " 1f' 1\ 'I r" 01 0.4 0.6 0.& 1.0 1.2 1/+ 1.6 V - -Ic VaEsaI' VCEIGt Fall time tl = f (I cl Storage time tstg = f(Ie) ns 103 tstg 5 .. i Vcc -30V ~fFE=20 " hFE. =1 ~ \ 5 f- FE- 1 lY' 1]/ ~ " fhFE= 20 '- 5 10' -Ic 804 -Ic Siemens 5MBT 2907 5MBT2907 A DC current gain h FE = f (I c) 175°C , ]J t'\ 25 ·C -55 ·C --Ie Siemens 805 NPN Silicon Switching Transistor • • • 5MBT3904 High DC current gain: 0.1 to 100 mA Low collector-emitter saturation voltage Complementary type: 5MBT 3906 (PNP) Type Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package 5MBT3904 S1A Q68000-A4340 Q68000-A4416 SOT 23 Maximum ratings Parameter Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Total power dissipation TA"= 25°C Junction temperature Storage temperature range Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 806 Symbol V V V PIOI Ratings 40 60 6 200 330 Tj Tstg 150 -65 ... +150 °C °C RthJA ~375 K/W VCEO VCBO VEBO Ic Siemens Unit mA mW 5MBT3904 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 1 mA V(BR) CEO 40 - - V Collector-base breakdown voltage Ie = 10 !lA V(BR)CBO 60 - - V Emitter-base breakdown voltage h= 1O !lA Collector cutoff current VCB = 30V V(BR)EBO 6 - - V ICBo - - 50 nA 40 70 100 60 30 - - - - - 300 - - 0,2 0,3 V 0,85 0,95 V V DC current gain Ic = 100 !lA, VCE = Ic = 1 mA, VCE = Ic = 10 mA, VCE = Ic = 50 mA, VCE = Ic = 100 mA, VCE = hFE 1V 1V 1 V') 1 V') 1 V') Collector-emitter saturation voltage') I C = 10 mA, Ie = 1 mA I C = 50 mA, Ie = 5 mA VCEsat Base-emitter saturation voltage') I C = 10 mA, I B = 1 mA I C = 50 mA, I B = 5 mA VeEsat ') Pulse test: t::;:; 300 !ls, D = - - - - 0,65 - - - V 20/0. Siemens 807 5MBT3904 AC characteristics Symbol max fT min 300 typ Transition frequency Ic = 10 rnA, VCE = 20 V, f= 100 MHz Output capacitance VCB=5V,f=1 MHz Input capacitance VEB = 0,5 V, f= 1 MHz - - Unit MHz Gob - - 4 pF Gib - - 8 pF Input impedance Ic = 1 rnA, VCE = 10V, f= 1 kHz h11e 1 - 10 kQ Open-circuit reverse voltage transfer ratio Ic = 1 rnA, VCE = 10V, f=1 kHz h12e 0,5 - 8 10- 4 Short-circuit forward current transfer ratio Ic = 1 rnA, VCE = 10V, f=1 kHz h21e 100 - 400 - Open-circuit output admittance Ic = 1 rnA, VCE = 10V, f=1 kHz h22e 1 - 40 /lS Noise figure Ic = 100 /lA, VCE = 5 V, Rs = 1 kQ f= 1 kHz F - - 5 dB td t, - - - 35 35 ns ns tstg - - 200 50 ns ns Vcc = 3V, Ic = 10mA, IB1 = 1 rnA VBE (off) = 0,5 V Delay time Rise time Vcc=3V,Ic=10mA, IB1 = IB2 = 1 rnA Storage time Fall time - tf - Test circuits :g Delay and rise time OOns Storage and fall time +3.0V 0=2% -+10.9 V 275!l 10 k!l o cr-C::J-H -0.5V <1.0ns I J£ T<4.0pF lI I -~ < tOns 808 Siemens 5MBT3904 Total power dissipation P'o' = f (TA) Saturation voltage rnW 400 / // ~ot 300 = f (VeE sa', VeE sa') V rnA r Ie "" I I I 1\ I VeE 200 1'\ VBE 5 100 \ '\ o o 50 100 10 0 150·( o I 0,2 0,4 --~ 0,6 0,8 1,0 V 1,2 --VSfsat Input impedance hll. = f(Ie) VeE = 10V, f= 1 kHz Open-circuit reverse voltage transfer ratio h = f (I e) VeE = 10V, f= 1 kHz 10 2 10' I VCEsat ,2. kfl h". 5 1", " "\. 5 \. r'-.. r'\ 5 ......... ....- V"'" " i"'., 5 5 , -Ie Siemens 809 5MBT3904 Short-circuit forward current transfer ratio h21e = f(Iel VCE = 10V, f= 1 MHz Open-circuit output admittance h22e = f (I e) VCE = 10V, f= 1 MHz 10 3 5 -- f- / 5 5 V /' -Ie Storage time tstg = f(Ie) Delay time td = f(Ie) Rise time tr = f(Ie) 3 C:::=!=!=fffi:m=~ffi~R 10 f.ns 5 ~f= ~~ - - td-=f= = hFE= 10 - - I ; --t--t--m"tttt---1 5 - -. -. 2S 0 ( 125°( I-- hFE = 20 v 10 I'\'[\ ::= F"' 5 ---== :""..:f:: ~~ hFE=2 1 5 102 rnA -Ie 810 Siemens 5MBT 3904 Fall time If = Rise time I, f (l c) no 25°( --125°( t=:: =. 1--~ = I'ce= 40V = = f(Ie) ns t, 5 \ICe =40V hFE =10 "- .~ " " ~ '\ ~ 1250( r= hFE= 20 ~ 5 I'\.~ 5 ~ ~ ,I" ~ hFE=10 f-~ ~ ~ I-~ 25°( '"'\. ~ ;1 I-- 5 102 mA 5 102 mA -Ie -Ie DC current gain h FE = f (l c) VeE = 10 V 5 lJfflC 25°C ~ _55°( v 5 1/ 10- 1 10-1 ~ 111111 5 10 0 III~ 5 101 rnA 10 2 _Ie Siemens 811 PNP Silicon Switching Transistor • • • 5MBT3906 High DC current gain: 0.1 to 100 mA Low collector-emitter saturation voltage Complementary type: 5MBT 3904 (NPN) Type Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package 5MBT3906 S2A Q68000-A4341 Q68000-A4417 SOT 23 Maximum ratings Parameter Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Total power dissipation TA = 25 DC Junction temperature Storage temperature range Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 812 Symbol Ratings Unit VCEO VCBO VEBO 40 40 5 200 330 V V V mA mW Tstg 150 -65···+150 DC DC RthJA ::5 375 K/W Ic Ptot Tj Siemens 5MBT 3906 Electrical characteristics at TA = 25 DC, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 1 rnA V(BR) CEO 40 - - V Collector-base breakdown voltage Ic=10[.lA V(BR)CBO 40 - - V Emitter-base breakdown voltage lE=10[.lA V(BR) EBO 5 - - V Collector cutoff current VCB = 30V ICBo - - 50 nA DC current gain I C = 100 [.lA, VCE = Ic = 1 mA, VCE = Ic = 10 rnA, VCE = Ic = 50 mA, VCE = Ic = 100 mA, VCE = hFE 60 80 100 60 30 - - - - - - 0,25 0,4 V V 0,65 - 0,85 0,95 V V 1V 1V 1 V') 1 V') 1 V') Collector-emitter saturation voltage') Ic=10mA,IB=1mA I C = 50 mA, I B = 5 mA VCEsat Base-emitter saturation voltage') Ic=10mA,IB=1mA I C = 50 mA, I B = 5 mA VBEsat - 300 - ') Pulse test: t:5 300 I1s, D = 20/0. Siemens 813 5MBT3906 AC characteristics Symbol min typ max Unit Transition frequency Ic = 10 rnA, VCE = 20 V, f= 100 MHz fT 250 - - MHz Output capacitance VCB = 5V, f=1 MHz Gob - - 4,5 pF Input capacitance VEB = 0,5 V, f= 1 MHz Gib - - 10 pF Short-circuit input impedance I c = 1 rnA, V CE = 10 V, f = 1 kHz h11e 2 - 12 kO Open-circuit reverse voltage transfer ratio Ic = 1 rnA, VCE = 10V, f=1 kHz h12e 0,1 - 10 10-' Short-circuit forward current transfer ratio Ic = 1 rnA, VCE= 10V, f=1 kHz h21e 100 - 400 - Open-circuit output admittance Ic = 1 rnA, VCE = 10V, f=1 kHz h22e 3 - 60 !lS Noise figure Ic = 100 !lA, VCE = 5 V, Rs = 1 kO f=1 kHz F - - 4 dB td tr - Vcc = 3 V, VBE (off) = Ic = 10 rnA, IB1 = 1 rnA 0,5 Vdc Delay time Rise time Vcc = 3 V, Ic = 10 rnA, IB1 = IB2 = 1 rnA Storage time Fall time fstg tf - - - 35 35 ns ns - - 225 75 ns ns - Test circuits Delay and rise time Storage and fall time -lOV <1.0ns <1.0ns ~_~::()ov-[10=k:JQ-+-[ 275Q 275Q ~----hf----O -1d=O:2% 814 Siemens O---£::::J--_+-r 5MBT 3906 Total power dissipation Ptot = (( TA) Saturation voltage I c = (( VSEsat, mW 400 i :; ,/" // ~ot 300 VCEsat) 5 II I\, 200 Y(E {VBE I\, 5 100 L I\, \. o o 50 100 0,2 150 0 ( --T;, Short-circuit input impedance h11. = ((le) VCE = 10V, (= 1 kHz 0,4 0,6 - 0,8 V 1,0 VSEsat IVCEsat Open-circuit reverse voltage = ((l c) transfer ratio h '2. 102 kQ hI,. -" 5 ", "" 5 '\.. '\ '\ " 5 1- .... 5 1 -Ie -Ie Siemens 815 5MBT3906 Open-circuit output admittance h22e = f (I e) VCE"; 10V, f= 1 MHz Short-circuit forward current transfer ratio h 21 e = f (I el VCE = 10V, f= 1 MHz 103 h 22e 5 / / - / / 5 5 -Ie -Ie Fall time tf = f(le) Delay time td = f(le) Rise time tr = f(lel 3 ns 10 ~~~~~~~ijml~ = td _ _" _ td.tr 5 ~-- tr --hFE=10 - ~\~~~ttm~~ttm~ r 10 2 \ ,-- - 5 25°( ~ --125°( - Vee=40V - "\ , \. ,~ ~AhFE=20 5 5 ,.. -" h FE =10 - ~ " ~ ..... t::: 5 ~~~~llL-J-L~WW~ 10° 816 5 10' 5 10 2 mA -Ie Siemens 5MBT3906 DC current gain hFE = f(lel Siemens 817 5MBT 4124 NPN Silicon Switching Transistor • High current gain: 0.1 to 100 mA • Low collector-emitter saturation voltage Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package 5MBT 4124 SCZ upon request upon request SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage VCEO 25 Collector-base voltage VCBO 30 Emitter-base voltage VEBO 5 V V V Collector current Ie 200 mA Total power dissipation TA = 25°C Ptot 330 mW Junction temperature 7j Tstg 150 °C -65 ... +150 °C RthJA :5 Storage temperature range Thermal resistance Junction-ambient Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 818 375 K/W , " Siemens 5MBT 4124 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Collector-emitter breakdown voltage min typ max Unit V(BRICEO 25 - - V V(BRICBO 30 - - V V(BRIEBO 5 - - V IeBO - - 50 nA lEBO - - 50 nA 120 60 360 - 0.3 V Ie = 1 mA Collector-base breakdown voltage Ie = 10 fJA Emitter-base breakdown voltage IE = 10 fJA Collector cutoff current V CB = 20 V, IE = 0 Emitter cutoff current VEe = 3 V. Ie = 0 DC current gain hFE Ie = 2 mA, VCE = 1 V Ie = 50 mA, VCE = 1 V Collector-emitter saturation voltage 1) mA; I B = 5 mA Ie = 50 Base-emitter saturation voltage 1) Ie = 50 mA; I B = 5 rnA AC characteristics VCEsat - - VBEsat - - 0.95 V min typ max Unit fr 300 - - MHz Cobo - - 4 pF C ibo - - 8 pF hIe 120 - 480 - NF - - 5 dB Symbol Transition frequency Ic = 10 mA, VCE = 20 V, f= 100 MHz Output capacitance V CB = 5 V, f = 1 MHz Input capacitance V EB = 0.5 V, f = 1 MHz Small-signal current gain V CE = 5 V, f = 1 kHz Ie = 1 rnA; Noise figure Ie = 0.1 rnA, Rs = 1 kG VCE = 5 V, 1) Pulse test: t:S 300 IJs, f= 10 Hz to 15 kHz D :S 2 % Siemens 819 5MBT 4124 Total power dissipation Plot = f( TA ) Ie = f(V."", Ve",,) Saturation voltage mW 400 i II // ~ot r-I"\. 300 I I \. I I 200 II I \t(E I \ VeE 1,\ r\ 5 100 1,\ 1\ o o 50 100 I --- ~ 150 DC 100 o I 0,2 0,4 -~ Small-signal current gain hr. VeE = 10 V, f = 1 MHz 0,6 0,6 1,0 V 1,2 --VBEsat , VCEsat = f(Id DC current gain hFE = f(Id VeE = 10 V (standardized) 5 f.-- - 125°( ~ 1'\ -55°( 5 5 V ! V \\ ~ 5 10' mA 10 2 -Ie 820 Siemens 5MBT 4126 PNP Silicon Switching Transistor • High current gain: 0.1 to 100 rnA • Low collector-emitter saturation voltage Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package 5MBT 4126 SC3 upon request upon request SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage VCEO 25 V Collector-base voltage VCBO 25 V Emitter-base voltage V EBO 4 V Collector current Ie 200 rnA P'o' 330 mW Tj Ts,g 150 °C -65 ... +150 °C R'hJA :::; 375 K/W Total power dissipation TA = 25°C Junction temperature Storage temperature range Thermal resistance Junction-ambient Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Siemens 821 5MBT 4126 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics min typ max Unit V(BR)CEO 25 - - V V(BR)CBO 25 - - V V(BR)EBO 4 - - V I cBo - - 50 nA hBO - - 50 nA 360 - Symbol Collector-emitter breakdown voltage Ie = 1 mA Collector-base breakdown voltage I c =10iJA Emitter-base breakdown voltage = 10 iJA IE Collector cutoff current VCB = 20 V, h = 0 Emitter cutoff current VEB = 3 V, Ie = 0 DC current gain 2 mA, VCE = 1 V 50 mA, VCE = 1 V hFE Collector-emitter saturation voltage 1 ) Ic = 50 mA; IB = 5 mA VCEsat - - 0.4 V VBEsat - - 0.95 V Ie = Ie = 120 60 Base-emitter saturation voltage 1) 50 mA; IB = 5 mA Ie = AC characteristics Symbol min typ max Unit Transition frequency Ie = 10 mA, VCE = 20 V, f= 100 MHz fT 250 - - MHz Output capacitance VCB = 5 V, f = 1 MHz Cobo - - 4.5 pF Input capacitance VEB = 0.5 V, f= 1 MHz Cibo - - 10 pF hIe 120 - 480 - NF - - 4 dB Small-signal current gain 5 V, f = 1 kHz Ie = 1 mA; VCE = Noise figure Ic=0.1 mA, VcE =5 V. f=10 Hz to 15 kHz Rs = 1 kQ 1) Pulse test: t';; 300 I-is, D';; 2 % 822 Siemens 5MBT 4126 Saturation voltage Total power dissipation PIo ' = f(TA ) mW 400 2 / ~ot t Ie = f( VBE ,,,. VeE ",) vV V I-f- '" I 300 I I \. 200 IV VcE SE \. 5 100 I\, o o '\ 50 100 0,2 --~ Small-signal currant gain VeE = 10 V, f = 1 MHz 0,4 0,6 - h,. = f(le! 0,8 V 1,0 ~Es.t ,vCE .., DC current gain hFE = f(le! (standardized), VeE = 1 V SH-H-t-tWIt-t-HI+tt1-tt-+-t-t+ffi1tt----1 5 10-1 L--L..Lu.wW--'-l..LW-LW--L-L.LL'-"'-'-~-,," 10-1 -Ie Siemens 5 100 5 101 rnA 102 -Ie 823 5MBT 5086 5MBT 5087 PNP Silicon Transistors • For AF input stages and driver applications • • High current gain Low collector-emitter saturation voltage • Low noise between 30 Hz and 15 kHz Type Marking Ordering code for versions in bulk Ordering code for versions on a-mm tape Package 5MBT 5086 5MBT 5087 S2P S20 upon request upon request upon request upon request SOT 23 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage VCEO 50 V Collector-base voltage VCBO 50 V Emitter-base voltage VEBO V Collector current Total power dissipation TA = 25°C Ie 3 50 330 Junction temperature Tj 150 °C Storage temperature range T stg -65 ... +150 °C R thJA :5 375 K/W Ptot mA mW Thermal resistance Junction-ambient Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 824 Siemens 5MBT 5086 5MBT 5087 Electrical characteristics at TA = 25 DC, unless otherwise specified DC characteristics Collector-base breakdown voltage Ic = 100 IlA Emitter-base breakdown voltage IE = 10 IlA Collector cutoff current VCB = 10 V, h = 0 VCB = 35 V, h = 0 VCB = 35 V, h = 0, TA = 150 DC DC current gain Ie = 1 00 1lA, VCE = 5 V Ic = 1 mA, VCE = 5 V Ie = 10 mA, VCE = 5 V min typ max Unit VIBRICEO 50 - - V VIBRICBO 50 - - V VIBRIEBO 3 - - V - - 10 50 20 nA nA IlA 500 800 - - - 0.3 V Symbol Collector-emitter breakdown voltage Ie = 1 mA I CBO - hFE 5MBT 5MBT 5MBT 5MBT 5MBT 5MBT VCEsat - - VBEsat - - 0.85 V 5086 5087 5086 5087 5086 5087 Collector-emitter saturation voltage 1) I C = 10 mA; I B = 1 mA Base-emitter saturation voltage.) = 10 mA; IB = 1 mA 150 250 150 250 150 250 Ie - AC characteristics Symbol min typ max Unit Transition frequency Ie = 0.5 mA, VCE = 5 V, f= 100 MHz fT 40 - - MHz Output capacitance VCB = 5 V, f = 1 MHz Cabo - - 4 pF 150 250 - 600 900 - - - 3 2 dB dB - - 3 2 dB dB Small-signal current gain Ic = 1 mA; VCE = 5 V, f= 1 kHz 5MBT 5086 I C = 1 mA; VCE = 5 V, f = 1 kHz 5MBT 5087 Noise figure = 100 IlA, VCE = 5 V, f= 1 kHz, Rs = 3 kO 5MBT 5086 5MBl' 5087 Ic = 2 mA, VCE = 5 V, f = 10 Hz to 15 kHz, Rs = 10 kO 5MBT 5086 5MBT 5087 hfe NF Ie 1) Pulse test: t $;300 j.Js, D $;2 % Siemens 825 5MBT 5086 5MBT 5087 Total power dissipation P'o' = f(TA ) mW pF 400 12 ~.t i Collector-base capacitance CeBo = f(VeBo) Emitter-base capacitance CEBO = f( VEBO) I\. ~~ I\. 300 ~ 8 I\. , '" ~ I/CCBO 200 6 I\. ~ i' ~ 4 ./ f"".r-, C EBO 100 1\ 2 o o 100 50 I\. 150·( -~ Pulse handling capability r'h = fIt) K (standardized) W MHz 10° 103 r 5 -u.o fr ~ !:;; 1 ITll 1'-0.5 0.2 0.1 0.05 0.02 0.01 0.005 III 5 2 fT = f(Id 5 t I j...~ Transition frequency VeE = 5 V l2 t,.. V 1'-0=0 5 5 t~ T T O=.l. 1 3 10"" 10-6 10-5 10-4 10-3 10-2 10- 1 10° 10 10-1 S -t 826 5 10' -Ie Siemens 5MBT 5086 5MBT 5087 Collector-emitter saturation voltage Base-emitter saturation voltage Ie ; f( VB' ",) hFE = 40 Ie = t(Ve, ",) rnA 10 2 Ie 5 Ie 100 0( 2so~8 r 1/ I I II _50°(1 25°( If, V V l00 5 5 5 10-1 0,2 0,4 0,6 - Collector current Ie Ve, = 1 V 1,0 0,8 -SOO( // t 1/ = 40 5 5 o hFE 0( '" 11)"1 o 1,2 V 0,1 0,2 0,3 0,4 0,5 V -VcEsa' VBfsat = f(VB') DC current gain hFE = f(lel Ve, = 1 V I l00 0 ( 1QD 5 I _50 0 ( 25°( , I lO- 1 S I 0.5 100 l-L...llLLWL.--'-'--'-lllllL..L.LlJ..WlJL.....L.J.J.J.J.JJlJ 10-2 5 10-1 5 100 5 101 5 10 2 rnA I,O-V -Ie Siemens 827 5MBT 5086 5MBT 5087 Collector cutoff current IeBO Noise figure NF = fWe,) rnA, Rs = 2 kO, f = f( TA ) Ie = 0.2 dB 20 = 1 kHz ~"nTIm-.-~n=-'~T'= NF 1 15 ~~~~~H+Hm-4-H~ V max. i7 1/ typo , 1.1 1.1 OL-LLLUlliL-L~Ull~~~~ 150 DC 50 5 100 10-' 5 102 V 5 10' -VcE Noise figure NF = f(f) = 0.2 rnA. Rs = 2 kO, VeE Ie Noise figure NF = f(Iel VeE = 5V,f= 120Hz =5 V dB 20 dB 20 II' m IIII I' Ii! I , ~ IRs=1Mn 100kn !I , 10 II , 1\ 10 I ~ 5 10kn/ 111I I~ ! i , i i'! 5 i I , l j 5oon I il I IY\ n---;; ~ ·i!l! lkQ 11111 11111 11111 101 rnA 828 Siemens 5MBT 5086 5MBT 5087 Noise figure NF = f(lel VeE = 5 V, f=10 kHz Noise figure NF = f(lel VeE = 5 V, f = 1 kHz dB 20 dB 20 I NF I Rs=lMIl Rs =lMIl 100 k if 10k11, I IV \ fl00k II I I I 10 1\ I 10 lkll , II II 0011 i 10kll 17 5 1\ '\. o - ,/ II / I\, , 5 11'50011 ~ III III lkll\. I III I III 11111 III~ I III o 10-3 10-3 jJ5j.,.. I / V- '" --Ie -Ie Siemens 829 5MBT 6427 NPN Silicon Darlington Transistor • For general amplifier applications • High collector current • High current gain Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package 5MBT 6427 S1V upon request upon request SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Total power dissipation .TA = 25°C Junction temperature Storage temperature range VCEO VCBO VEBO 40 40 12 500 800 360 V V V rnA rnA mW Tst9 150 -65 ... +150 °C °C RthJA =::; 350 K/W Thermal resistance Junction-ambient Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 830 Ie ICM Ptot 7j Siemens 5MBT 6427 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Collector-emitter breakdown voltage min typ max Unit V(BR)CEO 40 - - V V(BR)CBO . 40 - - V V(BR)EBO 12 - - V - 50 10 nA I1A ICED - - 1 I1A hBO - - 50 nA Symbol 1e=10mA Collector-base breakdown voltage Ic = 100 I1A Emitter-base breakdown voltage IE = 10 I1A Collector cutoff current VeB = 30 V, h = 0 VeB = 30 V, h = 0, TA = 150°C Collector cutoff current VCE = 30 V, IB = 0 Emitter cutoff current V EB = 10 V. Ic = 0 DC current gain = 10 mA, VeE = 5 V Ic = 100 mA, VeE = 5 V Ie = 500 mA, VeE = 5 V leBO hFE Ie Collector-emitter saturation voltage 1) = 50 mA; IB = 0.5 mA = 500 mA; IB = 0.5 mA VCEsat Base-emitter saturation voltage 1) = 500 mA; IB = 0.5 mA Ie Ie Ie Base-emitter voltage I C = 50 mA; VeE = 5 V 100000 200000 140000 10000 20000 14000 - - 1.2 1.5 .V V VB Esat - - 2.0 V VBE(on) - - 1.75 V AC characteristics Symbol min typ max Unit Transition frequency Ic = 50 mA, VCE = 5V, f = 100 MHz fT 130 - - MHz Output capacitance VeB = 10 V, f = 1 MHz Cobo - - 7 pF Input capacitance V EB =0.5V,f= 1 MHz Cibo - - 25 pF Noise figure NF - - 10 dB 1e=1 mA, VcE =5 V, Rs=100 kQ f = 1 kHz to 15kHz 1) Pulse test: t'; 300 fls. D'; 2 % Siemens 831 5MBT 6427 Total power dissipation p.o. = f(TA ) COllector-base capacitance CeBo = f(VeBo) Emitter-base capacitance CEBO = f(VEBO) pF 10 mW 400 CEBO ICcBo) , ~Dt 1 , 1 300 "'" 1\ " 200 5 r\ " ..... ~BO ..... . . . . r11' -.... I"EB ....... , 100 I'\. o o 100 50 -~ .K W 10° 150 DC 5 Pulse handling capability r'h = f(t) (standardized) MHz fr 0,2 0,1 0,05 0,02 5 10- , V I 5 5 ~ 2 D:1 T T '"' 'III III' 10-3 10-6 10-5 10-4 10- 3 10- 2 10- 1 10° 1 ° 10 10 101 S -f 832 101 V I 102 0,005 D:O 1111 , 5 VEBO (VCBO ) 5 2 0.01 2 ~ Transition frequency fT = f(Iel VeE = 5 V t f',1 I' 0,5 1 10° 10 3 II M 5 r " Siemens 5 101 5MBT 6427 Base-emitter saturation voltage Ie = f( VB' ,,,) h" = 1000 mA 103 Ie Collector-emitter saturation voltage Ie = f We",,) h" = 1 000 5 '/ 1/11 t I /7 5 I IL. 125°C t---2~oC 1= -55°C 5 100 3 V 2 o 0,2 0,4 0,6 Collector cutoff current leBO VeB = 0,8 = f(TA ) DC current gain h" VeE = 5 V VeE max 1,2 V 1,0 --VcE VeE sat sat = f(lel 5 r '" l. . 5 max. i III 1~OC .... 25°C ~ -55°C i I I I II ., I V f7 Vtyp. ! I..- 5 5 ! 50 100 -7;. 103 10-1 150 DC i 5 100 5 10 1 5 10 2 5 103 mA -Ie Siemens 833 5MBT6428 5MBT 6429 NPN Silicon Transistors • For AF input stages and driver applications • • High current gain Low collector-emitter saturation voltage Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package 5MBT 6428 5MBT 6429 S1 K S1 L upon request upon request upon request upon request SOT 23 SOT 23 Maximum ratings Parameter Symbol 5MBT 6428 5MBT6429 Unit Collector-emitter voltage Collector-base voltage Emitter-b~se voltage Collector current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO 50 60 45 V Thermal resistance Junction-ambient Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 834 VEBO Ic 55 V V Ptot 6 200 330 7j Tstg 150 -65 ... +150 °C °C RthJA :s; 375 Siemens mA mW K/W 5MBT 6428 5MBT 6429 Electrical characteristics at TA = 25°C, unless otherwise specified Symbol DC characteristics Collector-emitter breakdown voltage 5MBT 6428 = 1 mA 5MBT 6429 min typ max Unit 50 45 - - V V 60 55 - - V V 6 - - V - - 10 10 ~A leED - - 100 nA lEBo - - 10 nA VIBRICED le Collector-base breakdown voltage 5MBT 6428 = 10 fJA 5MBT 6429 VIBRICBO le Emitter-base breakdown voltage = 1 fJA VIBRIEBO IE Collector cutoff current VCB = 30 V, IE = 0 VCB = 30 V, h = 0, TA = 150 °C leBO Collector cutoff current nA VcE =30V,I B =0 Emitter cutoff current VEB = 5 V, Ic = 0 DC current gain = 10 fJA, VCE = 5 V le IC = 100 fJA, le = 1 mA, le = 1 0 mA, VCE VCE = 5 V = 5 V VCE = 5 V hFE 5MBT 5MBT 5MBT 5MBT 5MBT 5MBT 5MBT 5MBT 6428 6429 6428 6429 6428 6429 6428 6429 Collector-emitter saturation voltage 1} = 10 mA; IB = 0.5 mA = 1 00 mA; I B = 5 mA 250 500 250 500 250 500 250 500 VCEs,t le IC Base-emitter voltage = 1 rnA; VCE = 5 V 650 1250 - VBElonl - - 0.2 0.6 V V 0.56 - 0.66 V IC AC characteristics Symbol min typ max Unit Transition frequency = 5 rnA, VCE = 5 V. f = 100 MHz fT 100 - 700 MHz Output capacitance VCB = 10 V, f = 1 MHz Cobo - - 3 pF Input capacitance VEB = 0.5 V, f= 1 MHz Cibo - - 15 pF le I) Pulse test: t:5 300 fjs, D:5 2 % Siemens 835 5MBT 6428 5MBT 6429 Total power dissipation p.o. = f( TA ) PF mW 400 12 -':01 I Collector-base capacitance CeBo = f(VeBo) Emitter-base capacitance CEBO = f(VEBO) ~b. "" ...... 300 8 1\ 200 6 \ ""- "- /CCBO """ "'- 1'0 1\ 1\ 4 , / 1' .... C EBO \ 100 .... \ 1\ o o 2 1\ 50 100 150°C 5 -~ Pulse handling capability r'h = f(t) 10 0 - Transition frequency fT VeE = 5 V K (standardized) 5 10' V VCBO (VEBO) = f(lel Iii 100 1 11 tR 5 10-2 t'O,5 0,2 0,1 0,05 0,Q2 0,01 0,005 0=0 1111 ~r- /V' I Ii 5 5 1t::f1- 0=1 T T ,to, 10-3 10-6 10- 5 10- 4 10- 3 10- 2 10-1 100 10' s 5 10' -I( ~f 836 Siemens 5MBT 6428 5MBT 6429 Base-emitter saturation voltage Collector-emitter saturation voltage Ie= fW"",) h" = 40 [e = fWeE "tl h" = 40 mA 10 2 Ie Ie ) >->- 100·( >- 25.~8J IT 77 - 50 .(1 II t II I 5 II I A VV -SO·C 2S·C l00·C 0,2 0,3 5 , 10- o , 0,2 0,4 0,6 1,0 0,8 VeE 10- 1,2 V VeE 7 J = 0,5 V 1 V f-l00 .( f- 7 I 0,4 DC current gain h" = f(Iel VeE = 1 V 100·C 0,1 -VcEsat Collector current Ie = f(VB ,) lO- o sat ~ -50·( a 1= 1= I- II 2S·C -so·c 5 , 5 S 2 I 0,5 10° 1,0 V 10-2 5 10-' 5 10° 5 10' 5 10 2 mA -Ie Siemens 837 5MBT 6428 5MBT 6429 Collector cutoff current leBO = f( TA ) 1/ ma~I' 1.1 10' 5 typo , / 50 100 150 0 ( -7A 838 Siemens NPN Silicon AF Transistors • • • 5MBTA 05 5MBTA06 High break down voltage Low collector-emitter saturation voltage Complementary types: 5MBTA 55, 5MBTA 56 (PNP) Type Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package 5MBTA05 5MBTA06 S1H S1G Q68000-A6402 Q68000-A6403 Q68000-A3430 Q68000-A3428 SOT 23 SOT 23 Maximum ratings Parameter Symbol 5MBTA05 5MBTA06 Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature VCEO VCBO VEBO Ic ICM 60 60 80 80 Ptot 4 500 1 100 200 330 V V V mA A mA mA mW Tj Tstg 150 -65 .. ·+150 °C °C Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm RthJA IB IBM :5 375 Siemens K/W 839 5MBTA05 5MBTA06 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage 5MBTA05 Ic = 1 rnA 5MBTA06 V(BR) CEO Collector-base breakdown voltage 5MBTA05 Ic = 100 IJ.A 5MBTA06 V(BR)CBO Emitter-base breakdown voltage IE = 10 IJ.A Collector cutoff current 5MBTA05 VCB = 60V 5MBTA06 VCB = 80V 5MBTA05 VCB = 60 V, TA = 150°C 5MBTA06 VCB = 80 V, TA = 150°C V(BR)EBO min typ max Unit 60 80 - - - - V V 60 80 - - - V V 4 - - V - - 100 100 20 20 nA nA IJ.A IJ.A nA ICBo Collector cutoff current VCE = 60V ICEO DC current gain') Ic = 10 rnA, VCE = 1 V Ic = 100 rnA, VCE = 1 V Collector-emitter saturation voltage ') Ic = 100 rnA, IB = 10 rnA Base-emitter saturation voltage ') Ic = 100 rnA, VCE = 1 V hFE AC characteristics - - - VCEsat - - VBEsat - - 50 50 100 - - 0,25 V 1,2 V - Symbol min typ max Unit Transition frequency Ic = 20 rnA, VCE = 5 V, f= 20 MHz fT - 100 - MHz Output capacitance VCB = 10V, f= 1 MHz Cob - 12 - pF 840 Siemens 5MBTA05 5MBTA06 Total power dissipation P,o' = ((TA) Collector current mW rnA 400 10 J ~ot t Ie = f (VeE sat) 1-"- I-l00 0 ( 1---1--- I--- 25°(, -50 O( '1.'1 300 \. 200 II 10' I\, o o I \ 100 i". I\, 50 , II a 0,5 lO- 150 O( 100 -7;. Pulse handling capability (standardized) r'h = 1,0 1,5 V -Val Transition frequency fT = f (l c) VeE = 5V f (t) K Iii 10° lih 5 f , 5 R - I "0,5 0,2 0,1 0,05 0,02 0,01 0,005 0=0 IIII 2 5 / V 5 ~ tp O=y I--- T 10- J "' 10-6 10- 5 10- 4 10- J 10- 2 10-' 10° 10' 5 101 S -t Siemens 841 5MBTAOS 5MBTA 06 Base-emitter saturation voltage I c hFE = = f (VBE sad 10 Collector-emitter saturation voltage Ie = f( VeE sat) 10 hFE = mA 10 3 Ie 100 °c' H- 25 o~" _ 50 °c, I- 1 ./ il/I/ // //~ ~ II I 10' / :::: 100 "C /,25 °c -50 o C 5 II 5 , 0,5 1,0 0,2 1.5 V 0,4 -~VBEsat Collector cutoff current I CBO = 0,6 0,8 V -~VcEsat DC current gain h FE = f (l c) VCE = 1 V f ( TA) VCB = VCEmax nA 10 4 5 1/ max ~/ -100 °c i""- 125 °c / f..... =50 0 5 ;;; - typ, 10' 5 10' 5 , / 50 100 150 °c 10° 10-1 -TA 842 5 1fP 5 10' 5 10 2 -Ie Siemens 5 103 mA 5MBTA 13 5MBTA 14 NPN Silicon Darlington Transistors • • • High DC current gain High collector current Collector-emitter saturation voltage Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package 5MBTA 13 5MBTA 14 S1M S1N Q68000--A4331 Q68000--A4332 Q68000--A6475 Q68000--A6476 SOT 23 SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25 DC Junction temperature Storage temperature range VCEO Ptot 30 30 10 300 500 100 200 330 V V V mA mA mA mA mW Ti Tstg 150 -65···+150 DC DC RthJA ::; 375 K/W Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VCBO VEBO Ic ICM IB IBM Siemens 843 5MBTA 13 5MBTA 14 Electrical characteristics at TA = 25 cC, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ie = 10 flA V(BR) CEO 30 - - V Collector-base breakdown voltage Ic=10flA V(BR) CBO 30 - - V Emitter-base breakdown voltage Ie = 10 flA V(BR) EBO 10 - - V Collector cutoff current VCB = 30V ICBO - - 100 nA Emitter cutoff current VEB = 10V leBO - - 100 nA DC current gain Ic = 10 mA, VCE hFE 5MBTA 13 5MBTA 14 5000 10000 - - - - 5MBTA 13 5MBTA 14 10000 20000 - - - Ic = = 5V') 100 mA, VCE = 5 V') Collector-emitter saturation voltage') Ic = 100 mA, IB = 0,1 mA VCEsat - - 1,5 V Base-emitter saturation voltage ') Ic = 100 mA, IB = 0,1 mA VBEsat - - 2 V AC characteristics Symbol min typ max Unit Transition frequency Ic = 50 mA, VCE = 5 V, f= 20 MHz fr 125 - - MHz 844 Siemens 5MBTA 13 5MBTA 14 Total power dissipation P tot = f( TA) Capacitance Gcso = f(Vcso) Geso = f (Veso) f= 1 MHz mW 400 pF 10 [ EBO ~ot t I[ CBO) - t 300 '" "'- ",, \. 200 . ~BO 5 h'-.... I'-.... .... I\, [EBO \ 100 o o \ I\, 50 150 0 ( 100 10 0 5 5 10 ' V - - - VEBO ( VcBol -7;, Transition frequency fr = f (I cl VCE = 5 V, f= 20 MHz Pulse handling capability rth = f(f) (standardized) K W 10 0 , 10- l1li ~ 5 I '0,5 0,2 0,1 0,05 , 0,02 0,01 0,005 /' D=O 1111 I 5 5 o=f1tn10-1 ~~ , i--- r-i w· '" ~ WI ''''~ ~ ~s 5 10' -t Siemens 845 5MBTA 13 5MBTA 14 Base-emitter saturation voltage VSE sa' hFE = 1000 '(l el Collector-emitter saturation voltage VCEsa, = f(Iel hFE = 1000 mA mA 1Ql 10l 5 150°C4i 25 OC Ie r = I /I 10 2 /1/ -50°C L11 5 5 I IL 125°C 1--25°C -55°C 10' 10-' L-JLJL...L---'-_-'--_--'-_...L...----' o 2 10° 3 V o 0.2 0,4 0,6 0,8 1,0 -VCE Collector cutoff current I cso = '( TA) DC current gain hFE Vcs=30V VCE == 1.2 V sat = '(Ic) = 5V ;' 125°( ~~ ~.1 _55°( ..... r- 1/ Vtyp. 10' 5 50 100 150°C 103 10-' --7;. 846 ° 5 max. 5 10° 5 10' 5 10 2 -Ie Siemens 5 10 l rnA NPN Silicon AF Transistor • • 5MBTA20 High DC current gain Low coliector-emitter saturation voltage Type Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package 5MBTA20 S1C 068000-A4333 068000-A6477 SOT 23 Maximum ratings Parameter Coliector-emitter voltage Emitter-base voltage Coliector current Peak coliector current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Symbol Ratings Unit VCEO VEBO 40 4 100 200 200 330 V V mA mA mA mW Tstg 150 -65··· + 150 °C °C RthJA ::5 375 K/W Ic ICM IBM Ptot Tj Siemens 847 5MBTA20 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage Ic = 1 mA V(BR) CEO 40 - - V Emitter-base breakdown voltage le = 100 ~A V(BR) EBO 4 - - V Collector cutoff current VCB=30V VCB = 30 V, TA = 150°C ICBo - 100 20 ~A Emitter cutoff current VEB = 4 V leBO - - 20 nA DC current gain hFE 40 - 400 - Collector-emitter saturation voltage') I C = 10 mA, I B = 1 mA VCEsat - - 0,25 V - nA Ic=5mA, VCE= 10V AC characteristics Symbol min typ max Unit Transition frequency Ic = 20 mA, VCE = 5 V, f= 100 MHz fT 125 - - MHz Output capacitance VCB = 10V, f= 1 MHz Cob - - 4 pF 848 Siemens 5MBTA20 Collector-base capacltence CeBo = t(VeBo) Emitter-base capacitance CEBO = t(VEBO) t= 1 MHz Total power dissipation Ptot = t( TA) mW pF 400 12 ~ot t T) "- ( eso (C 10 r-I-\. 300 8 \. 6 200 " "'- r"- '\ jeso "'" r-. I\, .......... 4 CE-;;: 1'- .... \ 100 .... 1\ 1\ o o 50 ~ 150 0 ( 100 --7;. Transition frequency tT = f (I c) VeE = 5 V, f= 100 MHz Pulse handling capability rth = t (t) (standardized) K 'Vi MHz 10° 101 III ~ 10-1 10-I 'r 5 t 1'0,5 0,2 0,1 0,05 0,02 0,01 0,005 0=0 IIII V / - 5 5 ~ tp D=r 10-1 ~~ ~ I-- T- '" '" W1 Wi ~ ~ ~s 10' 10-' -t 5 10 ' 5 10 1 rnA -Ie Siemens 849 5MBTA20 Base-emitter saturation Yoltage Ie = f (VBE sat) hFE = 20 Collector-emitter saturation Yoltage ~ ~ 10 2 10 2 f 125°( 25°( 'f _50°(, t;~ Ie = f(VeE5.t) hFE = 20 " -50 II I / f [r 0( 25°( /100 0 ( 5 II 5 10- 5 , , II o 0,2 0,4 0,6 0,8 1,0 ----- VBE 0,1 1,2 V 0,3 0,2 0,4 0,5 V , - - - VCEsat sat Collector cutoff current leBO = f (TA) VeB = 30V DC current gain hFE VeE = 1 V = f (l c) nA 10· - r-100 O( 1/ max. V ~ _50 0( IL k typ. 10' 5 10' 5 , / 50 100 150 10° O( 10- 2 -JA 850 5 10-' 5 10° 5 10' -Ie Siemens 5 10 2 mA NPN Silicon Transistors for High Voltages • • • 5MBTA42 5MBTA43 High breakdown voltage Low collector-emitter saturation voltage Complementary types: 5MBTA 92. 5MBTA 93 (PNP) Type Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package 5MBTA42 5MBTA43 SlO S1E 068000-A4329 068000-A4330 068000-A6478 068000-A6482 SOT 23 SOT 23 Maximum ratings Parameter Symbol 5MBTA42 5MBTA43 Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation TA= 25°C Junction temperature Storage temperature range VCEO 300 300 200 200 Ptot 6 500 100 360 V V V mA mA mW Tj Tstg 150 -65 .. ·+150 °C °C Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm VCBO VEBO Ic IB :S; RthJA Siemens 350 K/W 851 5MBTA42 5MBTA43 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 1 rnA 5MBTA42 5MBTA43 VCBR) CEO Collector-base breakdown voltage Ic = 100 ~A 5MBTA42 5MBTA43 VCBR)CBO Emitter-base breakdown voltage iE = 100 ~A Collector cutoff current 5MBTA42 VCB = 200 V 5MBTA43 VCB = 160V VCB = 200 V, TA = 150°C 5MBTA42 VCB = 160 V, TA = 150°C 5MBTA43 VCBR) EBO min typ max Unit 300 200 - - V V - - V V nA nA 300 200 6 - V ICBo - Emitter cutoff current VEB = 3 V iEBo DC current gain Ic = 1 rnA, VCE = 10V Ic = 10 rnA, VCE = 10 V') Ic = 30 rnA, VCE = 10 V') hFE 5MBTA42 5MBTA43 Collector-emitter saturation voltage ') Ic = 20 rnA, IB = 2 rnA 5MBTA42 5MBTA43 VCEsat Base-emitter saturation voltage') I c = 20 rnA, I B = 2 rnA VBEsat - - - 100 100 20 20 ~A ~A - - 100 nA 25 40 40 40 - - - - - - - - 0,5 0,4 V V - - 0,9 V - AC characteristics Symbol min typ max Unit Transition frequency Ic = 10 rnA, VCE = 20 V, f= 100 MHz fr 50 - - MHz Output capacitance VCB =20V, f= 1 MHz Cob - - 3 4 pF pF 5MBTA42 5MBTA43 - ') Pulse test: t ~ 300 ~s, D = 20/0. 852 Siemens - 5MBTA42 5MBTA43 Total power dissipation P tot = t(TA) Transition frequency tT = t (l e) VCE = 10 V, t= 100 MHz mW MHz 400 103 Ptot fr 1\ 1 300 I \ 5 1\ 1\ 200 \ 5 \. 100 V I\. o / \ o 50 150°C 100 5 10' -~ Pulse handling capability rth = t(t) (standardized) K 10° 'i. 5 I' 10~s '0,5 0,2 0,1 0,05 , 0,02 0,01 0,005 0=0 1111 5 2 = tWCEO) rnA 103 IIIJ , Ie TA=25°C,D=0 .. iii I Operating range \\ 10' 100 ~s 1m s lOOms 5 SOOms DC T 10- 3 fp I-- .fi.:.-rL. --i 0=.1 i-- T-, tiL , UH 10- 6 10- 5 10- 4 10- 3 10- 2 10-' 10° 10' s 5 10' -t Siemens 853 5MBTA42 5MBTA43 Collector cutoff current I ceo = '( TA) Vce = 160V Collector current Ic = '(VeE) VCE = 10V nA 10 4 5 mA 10 3 5 max. ." 1"- je 5 / k 10 2 10 1 typo 101 5 f- 5 5 / 1 1 50 100 150 0,5 0( hFE = '(le) F 1= i=! ,--' '-; -- 5 ~ 2 i 10 1 5 , -! , -- 100 10- 1 5' 100 5 10 1 5 10 2 5 10 3 mA -Ie 854 1,0 -VaE -TA DC current gain VCE = 10V , Siemens 1,5 V 5MBTA 55 5MBTA 56 PNP Silicon AF Transistors • • • High breakdown voltage Low collector-emitter saturation voltage Complementary types: 5MBTA 05, 5MBTA 06 (NPN) Type Marking Ordering code for versions In bulk Ordering code for versions on 8 mm-tape Package 5MBTA55 5MBTA56 S2H S2G Q68000-A7420 Q68000-A7421 Q68000-A3386 Q68000-A2882 SOT 23 SOT 23 Maximum ratings Parameter Symbol 5MBTA55 5MBTA56 Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO, VEBO Ic ICM 60 60 80 80 V V V Thermal resistance Junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm RthJA Ptot 4 500 1 100 200 330 Tj Tstg 150 -65···+150 IB IBM :5 375 Siemens mA A mA mA mW °C °C K/W 855 5MBTA55 5MBTA56 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage Ic = 1 mA 5MBTA55 5MBTA56 V(eR) CEO Collector-base breakdown voltage Ic = 100 itA 5MBTA55 5MBTA56 V(eR) ceo Emitter-base breakdown voltage IE = 10 ItA V(BR)EBO Collector cutoff current Vce = 60V Vce = 80V VCB=60V, TA= 150°C Vce = 80 V, TA = 150°C ICBo 5MBTA55 5MBTA56 5MBTA55 5MBTA56 min typ max Unit 60 80 - - V V 60 80 - - V V - 100 100 20 20 nA nA itA ItA 100 nA - - - 0,25 V 1,2 V 4 - - - Collector cutoff current VCE = 60V ICEO DC current gain') Ic= 10 mA, VCE = 1 V Ic = 100 mA, VCE = 1 V hFE Collector-emitter saturation voltage ') Ic = 100 mA, IB = 10 mA VCE(sat) - - Base-emitter saturation voltage ') Ic = 100 mA, VCE = 1 V VBE(sat) - - 50 50 V AC characteristics Symbol min typ max Unit Transition frequency Ic = 20mA, VCE = 5V, f= 20 MHz fT - 100 - MHz Output capacitance Vce = 10V, f= 1 MHz Cob - 12 - pF ') Pulse test: t~ 300 its, D = 20/0. 856 Siemens 5MBTA55 5MBTA 56 Total power dissipation Ptot = f (TA) Collector current Ie = f (VBE sat) VCE = 1 V rnW 400 rnA 10 3 5 ;:;,1 t r-_ 1OOO( 1-- 25 'C bL "'\ J -50 o~'J Ii 300 1\ 200 I 101 \ .'\ 100 o o I 1\ \ 50 100 10-1 o 150 ·C 0,5 1,0 1,5 V -VBE Pulse handling capability rth (standardized) Transition frequency fT = f (l cl VCE = 5V = f (t) K W MHz • 10° 10 3 1111 ~Rll I I 0,5 0,2 0,1 0,05 , 0,02 0,01 0,005 0=0 1111 1 2 v ~ ..... 5 l"- 5 D= 1trr !£. T 10- 3 1--- T _-j '" 10-' 10- 5 10- 4 10- 3 10- 2 10-' 10° 10' s 5 101 -t Siemens 857 5MBTA55 5MBTA 56 Collector-emitter saturation voltage Base-emitter saturation voltage VBE sat = '(l e) hFE = 10 VCE,at = '(le) hFE = 10 mA 10 3 100°C f- 25 o~" -S( °C '= Ie f'll 5 './ I' t I { ,.,'" ~ V 100·C 25 ·C -SO·C 5 I 5 , 0.5 1.0 1.0 V 0.5 1.5 V ~VcEsClt ----- VBE sat DC current gain hFE = '(l cl VCE = 1 V Collector cutoff current I cao = '( TA) VCB = VCEmax If max. V '100° 25°C ..... ..... -50° 5 typo 5 , / 50 100 150°C 10° '10-' -7i.. 858 Siemens 5 10° 5 10' 5 10 2 -Ie 5 103 mA 5MBTA63 5MBTA64 PNP Silicon Darlington transistors • • High collector current High DC current gain Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package 5MBTA 63 5MBTA 64 S2U S2V Q6800Q-A6419 Q6800Q-A6420 Q6800Q-A2625 Q6800Q-A2485 SOT 23 SOT 23 Maximum ratings Parameter Symbol 5MBTA63 Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Peak collector current Base current Peak base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO Vcso VESO 30 30 10 Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Ic ICM Is ISM Ptot Tj Tstg 5MBTA64 V V V mA mA mA mA mW 150 -65···+150 °C °C :S 350 RthJA Siemens Unit 30 30 10 500 800 100 200 360 K/W 859 5MBTA63 5MBTA64 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol min typ max Unit Collector-emitter breakdown voltage V(BR) CEO 30 - - V Collector-base breakdown voltage Ic=101lA Emitter-base breakdown voltage IE = 1O!lA V(BR)CBO 30 - V V(BR) EBO 10 - - Collector cutoff current VCB = 30V ICBo - - 100 nA Emitter cutoff current VEB=10V lEBO - - 100 nA DC current gain') Ic= 10mA, VCE=5V hFE 5MBTA63 5MBTA64 5000 10000 - - - - - 5MBTA63 5MBTA64 10000 20000 - - - 1,5 V 2 V Ic=10!lA Ic= 100mA, VCE=5V V - Collector-emitter saturation voltage') Ic = 100 mA, IB = 0,1 mA VCEsat - - Base-emitter saturation voltage') Ic = 100 mA, IB = 0,1 mA VBEsat - - AC characteristics Symbol min typ max Unit Transition frequency Ic = 50 mA, VCE = 5 V, f= 20 MHz fT 125 - - MHz ') Pulse test: t:5, 300 !ls, D = 20/0. 860 Siemens 5MBTA 63 5MBTA64 Total power dissipation Ptot = f (TA) Collector-base capacitance C CBO = f ( V CBO) Emitter-base capacitance CEBO = f (VEBO) f= 1 MHz pF 10 mW 400 [ EBO I[ (BO) Ptot i \ I'" "I'- 300 1\ ~ I'- \ 200 5 *BO 't-~ ..... [EBO \ l"100 \. o [\ o 100 50 150°C 10 0 Pulse handling capability rth ( standardized) = 5 -- -~ VEBO 10' V I V(BO) Transition frequency IT = f (I c) f (t) VeE = 5V K W MHz 10 0 10 3 'in 1 , It I '0,5 0,2 0,1 0,05 , 0,02 0,01 0,005 5 I-" D=O 1111 1 tp 5 ~ D=y f-- T ---J 10- 3 "" 10- 6 10- 5 10- 4 10- 3 10- 1 10- 1 10 0 101 5 10 1 S -f Siemens 861 5MBTA63 5MBTA64 Base-emitter saturation voltage Ie = ((VeE satl hFE = 1000 Collector-emitter saturation voltage Ie = ((VeEsatl hFE = 1000 mA 10l Ie 5 III t I // 5 I125°C -25°C -55°C 101 ~ 5 II 10-1 L..L.JL..I.---L_-.L_...L_-'-----1 o 2 3 V 10° o 0,2 0,1, 0,6 0,8 1,0 1,2 V --\thSit Collector cutoff current I ceo = ( TAl Vce = VCEmax DC current gain hFE = f (I cl VCE = 5 V nA 106 10' V 125°C ·7<;0 l ... max. -55°C 5 1.1 10' I...... Dtyp. 5 10l 50 100 150°C 10-' --7;.. 862 5 10° 5 10' 5 10 2 -Ie Siemens 5 10l mA 5MBT A 70 PNP Silicon Transistor • For AF input stages and driver applications • • High current gain Low collector-emitter saturation voltage Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package 5MBT A 70 S2C upon request upon request SOT 23 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage VCEO 40 V Emitter-base voltage V EBO 4 V Collector current Ie 100 rnA Peak collector current IeM 200 rnA Peak base current IBM 100 rnA Total power dissipation TA = 25°C Ptot 330 mW Junction temperature 7j 150 °C Storage temperature range T stg -65 ... +150 °C RthJA :5 375 K/W Thermal resistance Junction-ambient Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Siemens 863 5MBTA 70 Electrical Characteristics at TA = 25°C, unless otherwise specified DC characteristics Collector-emitter breakdown voltage Symbol min typ max Unit V(BR)CEO 40 - - V V(BR)EBO 4 - - V - 100 20 nA iJA hBo - 20 nA hFE 40 - 400 - VCEsat - - 0.25 V Ie = 1 mA Emitter-base breakdown voltage = 100 iJ A h Collector cutoff current V CB = 30 V, IE = 0 VCB = 30 V. h = 0, TA = 1 50°C Emitter cutoff current V EB = 4 V, Ie = 0 DC current gain mA, VCE = 10 V I CBO Ie = 5 Collector-emitter saturation voltage 1 ) Ie = 10 mA; IB = 1 mA AC characteristics Symbol min typ max Unit Transition frequency Ie = 5 mA, VCE = 10 V, f= 100 MHz fT 125 - - MHz Output capacitance V eB = 10 V, f = 1 MHz Cobo - - 4 pF 864 Siemens 5MBTA 70 Total power dissipation PIo1 = f( TA) Saturation voltage rnW 400 ~o, t 2 Ie = f( VB' "I, VC",') 1/ V v / 1--" , 300 I I L i/ \. , 200 lVBE VcE \. , 100 5 1\ o o 1\ 50 0,2 150 D( 100 0,4 0,6 0,6 V 1,0 --T;, Small-signal current gain VCE = 10 V, f = 1 MHz h,. = f(lel DC current gain hFE = f(lel (standardized), Vc, = 1 V 101 5 1 125°( - ....... 1--' ~Jl~~ _55°( l- 5 5 I ,\ ~ 1 5 101 5 rnA 101 rnA 102 • Jc -Ie Siemens 865 5MBT A 70 Total power dissipation P'o' = f(TA ) Saturation voltage Ie rnW 2 rnA 400 / ~ol t-- 300 '/ = f(V. E ,,,, VeE",) V if rI J il \. 200 /V 1'cE eE \. 5 \ 100 1\ o o \ 50 0,2 100 0,4 --~ Small·signal current gain h'e VeE = 10 V, f = 1 MHz 0,6 - 0,6 V 1,0 VeE.al ,VeE.al DC current gain h" = f(lel (standardized), VeE = 1 V = f(lel 5~f-+H++HI-+-t+ttttll--t-t-t+ttttt---1 5 L-LLllllllL..Ll.LLlillL:-'-LLLWlL~.,w 10·' 10·' -Ie 866 Siemens 5 100 5 10' rnA 102 -Ie 5MBTA92 5MBTA93 PNP Silicon Transistors for High Voltages • • • High breakdown voltage Low collector-emitter saturation voltage Complementary types: 5MBTA 42, 5MBTA 43 (NPN) Type Marking Ordering code for versions in bulk Ordering code for versions on 8 mm-tape Package 5MBTA92 5MBTA93 S2D S2E Q6800Q-A4338 Q6800Q-A4339 Q6800Q-A6479 Q6800Q-A6483 SOT 23 SOT 23 Maximum ratings Parameter Symbol 5MBTA92 5MBTA93 Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Base current Total power dissipation TA = 25°C Junction temperature Storage temperature range VCEO VCBO VEBO Ic IB 300 300 200 200 Ptot 5 500 100 360 V V V mA mA mW Tj Tstg 150 -65···+150 °C °C Thermal resistance junction - ambient package mounted on alumina 15 mm x 16.7 mm x 0.7 mm :5 350 RthJA Siemens K/W 867 5MBTA 92 5MBTA 93 Electrical characteristics at TA = 25°C, unless otherwise specified DC characterl~tlcs Collector-emitter breakdown voltage Ic = 1 mA 5MBTA92 5MBTA93 Symbol Collector-base breakdown voltage Ic = 100 f.IA 5MBTA92 5MBTA93 V(BR)CBO Emitter-base breakdown voltage Ie = 100 f.IA V(BR) EBO Collector cutoff current VCB = 200 V VCB=160V VCB = 200 V, TA = 150°C VCB = 160V, TA = 150°C ICBo min typ max Unit 300 200 - - V V 300 200 - - - - V V V(BR) CEO 5 - 5MBTA92 5MBTA93 5MBTA92 5MBTA93 IeBO DC current gain Ic = 1 mA, VCE = 10V Ic = 10 mA, VCE = 10V') Ic = 30 mA, VCE = 10V') hFE 5MBTA92 5MBTA93 - V 250 250 20 20 nA nA JlA - - , 100 nA 25 40 25 25 - - - - - 0,5 0,4 V V - 0,9 V - Emitter cutoff current VEB = 3V - - Collector-emitter saturation voltage ') I C = 20 mA, I B = 2 mA 5MBTA92 5MBTA93 VCE,at Base-emitter saturation voltage ') Ic = 20 mA, IB = 2 mA VBE,at - f.IA AC characteristics Symbol min typ max Unit Transition frequency Ic = 10 mA, VCE = 20 V, f= 100 MHz fr 50 - - MHz Output capacitance VCB = 20 V, f= 1 MHz Cob - - 6 pF pF 5MBTA92 S~BTA93 ') Pulse test: t:5. 300 Jls, D = 20/0. 868 Siemens - 8 5MBTA92 5MBTA93 Total power dissipation Ptot = t (TA) Transition frequency tT = t (I cl VCE = 20 V, t= 100 MHz MHz 10 3 mW 400 Ptot r 1\ 300 \ 1\ \ 200 1\ I\. 100 / II\. o v 1\ o 50 150°C 100 5 10' -~ Pulse handling capability (standardized) K rth = 5 10 2 -Ie t (t) Operating range Ie TA = 25°C, D = 0 = t(VCEO) W 10° lih 5 r , II 5 I". 10~s 1'-,1 I 0,5 0,2 0,1 0,05 0,02 0,01 0,005 000 1111 5 2 ~ \ 10' \ 100 ~s 1ms 10ums 5 500ms DC 5 lLn- ~ D=..E.. ~ T fpf--- , I- T-i 10-3 '" "" 10-6 10- 5 10-' 10- 3 10- 2 10-' 100 10' s 5 10' ~f Siemens 869 5MBTA 92 5MBTA 93 Collector cutoff current I CBO = Collector current I C = f (VBE) f ( TA) VCB = 160V VeE = 10V nA rnA 104 10 3 5 1/ rnax;..'~ V 10' typo 10' 5 , , 1/ 10· 50 100 -J.;. 150 .( l 10 = 10 V gUE• • w. . . . 100 L....L...L.U.llllL.....L.L.Lll.ll!L--'...J.-'..LU.llL-.L..LJLlllllJ 10·' 5 10° 5 10' 5 10 2 5 10 3 rnA -Ie 870 I 0,5 1,0 -----VSE DC current gain hFE = f (I c) VCE a Siemens 1,5 V SIPMOS N Channel MOSFET SN 7002 • SIPMOS - enhancement mode • Drain-source voltage '-bs = 60V • Continuous drain current 10 = 0.19A • Drain-source on-resistance • Total power dissipation = 5.00 Po = 0.36W ReS Po 7j T.t. Ratings Unit 60 60 0.19 0.76 ±20 0.36 V V A A V W -55 ... +150 55 ... 150 ... 56 °C :5350 :5285 KNV Conditions RGS =20 kO TA =25°C TA =25°C aperiodic TA =25°C DIN IEC 68 part 1 Thermal resistance Chip - air Chip - substrate rear side RthJA Rth JSR Siemens Mounted on Ceramic substrate 2.5cm2 871 SN 7002 Electrical Characteristics CondlUon Static characteristics Drain-source breakdown vottage V(BA)DSS Gate threshold vottage Vas(th) Zero gate voHage drain current ' 0.8 Dsa Gate-source leakage current I ass Drain-source on-state resistance RDS(on) - V 1.4 2.0 V 0.1 1.0 jlA 60 Val =0 'D =0.25 rnA Val = VDI 'D =1 rnA 1j =25"C Vas =0 VDI =60V - 1.0 10 nA 2.0 5.0 0 3.0 7.5 0 Val =2OV, VDS = OV Vas =10V I D =O.SA Vas =4.5V I D =O.OSA Dynamic characterlBtlcs Forward transconductance g,. Input capacitance C,•• Output capacitance Co •• Reverse transfer capacitance Cn • 0.1 - t d(on) Tum-on time ton (ton =td(on) +t,) t, Tum~off time t off (t off =t d(off) +t ,) t d(off) t, - S 0.18 40 60 15 25 5 10 5 8 8 12 12 16 17 22 pF ns VDI .,,2*/D * RDS(on)max ID =0.2A Vas =OV VDI =25V f =1MHz Vee =3OV Val =1OV I D =-O.29A ROl =500 Reverse diode Continuous source current Is - - 0.19 A Pulsed source current ISM - - 0.76 A Diode forward on-voHage VSD 0.85 1.2 V Val =OV IF =0.2BA Reverse recovery time - trr - ns VA diF Reverse recovery charge 872 Orr - - Siemens jlC =100V, 'F = 'D A 100A!jls /dt = VA =100v, 'F = ID A dlF /dt = 100A!jl8 SN 7002 Switching Time Measurement Switching times Test circuit Vee V 90% r Pulse Generator Vas 90% r····························1 Permissible power dissipation versus tempersture Typical output characteristic 'D PD = fTA =fVD8 X AxIs: VD• / V V Alds: , D /A X AxIs: TA /'C V AxIs: PD /W 4 p. \ lOV k '. \ 3 1.. \ p. 0.36 e ~ IV .V '-'v r eV 7V 4V ){ \ , f \ ~ II \ V 1 1\ o 100 ••V \ "- 3V r-- \ o \ C '/ \ 150 2.5V 'v . ----110. --TA Siemens 873 SN 7002 Typical transfer characteristic Safe operating area X Axis: VDS I V 1 D = fV ClI X Axis: VClS V Axis: 'D V Axis: 'D =fVD1 IA Parameter: D = 0.01, D =tp IT; Tc = 25"C 'D IV IA Paramater: VDS = 25V; t p = 80jJs; II-~-n ...-1 1=, D_2 T , I. v 1"'- 1,0' , , I. I l'.. 'm. II I 10ml '" 10'~ = 25"C I '0' 'p' 3051' 100111 1j I I 100ml 1"'- J V I o 10 1 5 V 10 z o - - - Vos Drain to source on resistance (spread) Typical transconductance g,. R DS_n = fT J = tiD X Axis: V Axis: 'D X Axis: V Axis: g,. IIS A VDI .. 2· 1 D • R Da_n mox ; t p Parameter: = 80jJs; T J 1°C RDs _n I () Paramater: V CIS = 10V; 1D = O.SA TJ =25"C ,.. g,. V 1 .>~ / RDS(on ) / 1 / V I 0.' / I VI/' 1 -~ o o A "....- '-' '-' ....... "....- typo C 0.7 ---_I. 874 / .,,' ----TJ Siemens 180 SN 7002 Typical capacitances C = fV DS X Axis: vDS I V Y Axis: C I nF Parameter: VGS =0; f = lMHz ,,' c \\ , \\ Gial \ I'-- ,,' Co .. v, .. ---vos Drain current Gate threshhold voltage (spread) f D = fTA X Axis: TAl 'C Y Axis: I D I A 10 A VGSlh = fTI Tj I 'C X Axis: Y Axis: VGSlh I V Parameter: VGs= VDS ; I D '''' .... = 1rnA - ""'" '" VaS(th ) 4 '\ \ \ r\ \ r-.. 1\ o r- ~.". - -- ,%-- .... .... - ---- -_T, o 100 Siemens C 875 SN 7002 Typical drain-source on-state resistance RDSon = "D X Axis: 'D fA Y Axis: R DSon f Q Parameter: VGS ; 1j = 2S'C VG• . ,.., '" '" ) "V '" I ./ ; V / :::::: ~ -- V ", ~ 9~ 10V ;:;... V 'v i--" .... 7V 'v '0 Typical reverse diode forward voltage (spread) , F =fVSD X Axis: VsDfV YAxis: , F fA Parameter: t p =8~s; TJ ", 'F 15< , 25 ; p. : W "" % ,"" J r- ~ 1/ 2 - - - Vso 876 Siemens SIPMOS P Channel MOSFET SP Q610T • SIPMOS - enhancement mode • Drain-source voltage Vos = -60V • Continuous drain current /0 = -0.13A • Drain-source on-resistance • Total power dissipation ROS(on) = 10.00 Po = 0.36W Type Marking Ordering code for versions on 12 mm-tape Package SP 0610T SF 067000-S065 SOT 23 Maximum Ratings Parameter Drain-source voltage Drain-gate voltage Continuous drain current Pulsed drain current Peak gate-source voltage Power dissipation Operating and storage temperature range Climatic category Symbol VDS ~GR /0 J Opul. V.s Po Tj Tst. Ratings Unit -60 -60 -0.13 -0.52 ±20 0.36 V V A A V W -55 ... +150 55 ... 150... 56 °C :5350 :5285 K/W Conditions RGS =20 kO TA =36"C TA =25°C aperiodic TA =25°C DIN IEC 68 part 1 Thermal resistance Chip - air Chip - substrate rear side RthJA Rth JSR Siemens Mounted on Ceramic substrate 2.5cm2 877 SP 0610T Electrical Characteristics Condition Static characteristics Drain-source breakdown vottage V(BR)DSS -60 Gate threshold vottage Vas(th) -1.0 Zero gate vottage drain current V Vas =0 ID =0.25 rnA VDS = Vas -1.5 -2.0 V ID =1 mA IDSS -0.1 -1.0 IlA TJ =25°C VDS = -6OV Vas = OV Gate-source leakage current I ass -1.0 -10 nA Vas =-20V, VDS =0V Drain-source on-state resistance RDS(on) 6.0 10.0 0 Vas = -10V I D = -0.2A 9.0 12.5 0 Vas = -4.5V I D = 0.025A Dynamic characteristics 0.075 - S CI.. 30 45 pF Output capacitance Co .. 17 25 Reverse transfer capacitance Cr •• a 12 Forward transconductance gt. Input capacitance 0.06 Turn-on time ton (t on =t d(on) +t,) t ~(on) 8 12 t, 35 50 Turn-off time toll (t oil =t d(olt) +t t) t d(oll) a 10 I, 20 25 ns VDS :<2*/D * RDS(on) max ID=-O.5A Vas =OV VDS = -25V f =IMHz Vcc =-SOV Vas =-10V I D =-0.27A Ras =500 Reverse diode Continuous source current Is Pulsed source current ISM Diode forwerd on-vottage VSD Reverse recovery time Reverse recovery charge 878 -0.12 A - -0.48 A -0.B5 -1.2 V Vas =OV IF = -O.IBA Irr ns VR = -SOV, IF = ID R diF /dt = -100NIlS Orr Il C VR = -SOV, IF = ID R di F /dt = -100NIlS Siemens SP 0610T Switching Time Measurement Switching times Test circuit Vcc v Vos I Permissible power dissipation versus temperature Typical output characteristic 'D Po =fTA X Axis: TA I"e YAxis: Po IW =fVos Vos IV X Axis: YAxis: '0 IA -3' Po l-- , I -.v 1\ -BV -7V Po 0.36 'j. Tj II tR 'J II 1/ J I (fj IV /I (f v, V 1111 'J V fIJI II 1/ "", [\ 2 1\ 1\ -1 1\ • 'fill rJ r~ 1 .\ 1\ \ • lP' ~ Iv / (If V 1\ . I 10V 1..-,""" -4 " V 4V .... -3r-V'" ./ rl -1 5V V 3V -25V V -3 -4 ~---. Vos Siemens 879 SP 0610T Safe operating area Typical transfer characteristic 'D 'o=fVOS X Axis: Vos I V '0 Y Axis: IA Parameter: 0 = 0.01, 0 =t piT; RDS(on)"VDSIID t D ... -.!. T =fVas X Axis: Vas IV Y Axis: IA Parameter: Vos = -25V; t p = 80j.ls; '0 Tc = 2S'C 1j 10' tp= II 10 3011S 10 = 2S'C It_~- 0 ..... T 1_ t 10°11_ , 1/ 1··· ,,,,. " I / r 10ms '\. / 100ml 1'\ II / V 10 1 5 V / 10 1 ' - ' - ' - - Vos Typical transconductance Drain to source on resistance (spread) g,.=fi o '0 X Axis: Y Axis: IA g,. / Parameter: RoS.n= fT, X Axis: T, I'C s Vos "" 2· I 0 • R OS.n max ; t p = 80IlS; Y Axis: Ros.n / 0 Parameter: Vas = -10V; 10 = 0.2A T, = 2S'C g t. .1' 11 " 1.-1- 2 · ·/ 1/ V 1/ 1 0 · II RaSCon ) V V 17 / '"'' / 0 V I ,,/ V V V 1/ typo ---- ---- ---- 2 0 A ~O.EI ---_T) ----I, 880 Siemens SP 0610T Typical capacitances C = fV DS X Axis: VDs/V y Axis: C InF Parameter: VGS =0; f = 1MHz ,,' c ,,' ...... "'- tt--, j"-. "- '\ ...... c... r-- Co .. ,,' ---v,s Drain curren1 Gate threshhold voltage (spread) VGSlh = fT, . X Axis: T, I·e Y Axis: VGSlh I v J D = fTA X Axis: TA I·e Y Axis: J D I A Parameter: VGs= VDS ; J D = -1mA v~+-~-+--~+--r-1--+-~-+-1 v GS(th)~+-~-+--~+--r-1--+-~-+-1 1 '\ -4 "'- '\. f--+--+-+-+---+-+---+-+--t--H \ \ - \ !\ \ o o I -r- typ. -- ---.. -100 C' - - TJ Siemens BB1 SP 0610T TVplcal draln-source on-state resistance RDSon = fI D X Axis: I D fA Y Axis: R DSon f 0 Parameter: VGS ; 1j = 25"C Q ., V 4V -3V -35 ·5V >V ) II II / / 1/ Vv V . o 5 -Ie 887 SXT 2907 A PNP Silicon Switching Transistor • High current gain: 0.1 to 500 rnA • Low collector-emitter saturation voltage E Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package SXT 2907 A S2F upon request upon request SOT 89 Maximum ratings Pa~ameter Symbol Ratings Unit Collector-emitter voltage VCEO 60 V Collector-base voltage VCBO 60 V Emitter-base voltage VEBO 5 V Collector current Ie 600 rnA Total power dissipation TA = 25°C Ptot 1 W Junction temperature Tj Tstg 150 °C -65 ... +150 °C RthJA ::; 125 K/W Storage temperature range Thermal resistance Junction-ambient Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 888 Siemens SXT 2907 A Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Collector-emitter breakdown voltage min typ max Unit V{BR)CEO 60 - - V V{BR)CBO 60 - - V V{BR)EBO 5 - - V - - 10 10 nA IJA IeEX - - 50 nA hBO - - 10 nA I BL - - 50 nA 75 100 100 100 50 - - - Symbol Ie=10mA Collector-base breakdown voltage Ie = 10 IJA Emitter-base breakdown voltage = 10 IJA h Collector cutoff current VCB = 60 V, IE = VCB = 60 V, IE = 0, TA = 125°C ° Collector cutoff current VCE = 30 V, V BE = 0.5 V Emitter cutoff current V EB = 3 V, I C = 0 Base cutoff current VCE = 30 V, V BE = 3 V DC current gain I cBo hFE Ie = 100 IJA, VCE = 10 V IC = 1 mA, VCE = 10 V Ie = 10 mA, VCE = 10 V Ie = 150 mA, VCE = 10 V Ic = 500 mA, VCE = 10 V Collector-emitter saturation voltage 1) Ie = 150 mA; IB = 15 mA Ie = 500 mA; IB = 50 mA Base-emitter saturation voltage 1 ) 15 mA 50 mA - - - 300 VCE,at - - 0.4 1.6 V V - - 1.3 2.0 V V VBE,at Ie = 150 mA; IB = Ie = 500 mA; I B = 1) Pulse test: t:5 300 f.ls. D:5 2 % Siemens 889 SXT 2907 A AC characteristics Symbol min typ max Unit Transition frequency Ie = 50 mA, VeE = 20 V, f= 100 MHz fr 200 - - MHz Output capacitance VeB = 10 V, f = 1 MHz Cobo - - 8 pF Input capacitance VEB = 2 V, f = 1 MHz Cibo - - 30 pF Switching times Vee = 30 V, VBE = 0.5 V, Ie = 150 mA, IB1 = 15 mA td tr - - ns ns t, - 10 40 Switching times Vee = 6 V, Ie = 150 mA, IB1=/B2 =15 mA - 80 30 ns ns ts Test circuits Storage and fall time Delay and rise time -6V -30V Input Zo=5011 tr < 2ns -~0-{ Input Zo =50 11 tr <2ns 200ns 200ns 890 1k -~0-{FOI1 <>--1r-C::J---H Siemens SXT 2907 A Total power dissipation Ptot ~ f( TA ) Collector-base capacitance Co. ~ f(VeB) f ~ 1 MHz W 1,2 r 10 . 1\ f\ 0,8 f\ 1\ 0,6 1\ I 1\ 0,4 1\ 1\ 0,2 \ i\ o o 150 100 50 0( -lice --~ Pulse handling capability K (standardized) rth ~ fIt) Transition frequency fT VeE iii 5 t ~ f(lel 20 V MHz 100 'ih ~ , II II 10 3 ~,50,2 0=0 2 V 2 0,1 0,05 0,02 0,01 0,005 5 "- 1/ 1111 5 5 ~ tp O=r 2 T ,,: 10-3 10-6 10-5 10-4 10- 3 10- 2 10-' 100 10' s -t Siemens 891 SXT 2907 A Delay time t, = f(lel Rise time t, = f (Iel hFE = 10 Saturation voltage Ie = f(V.E,'" VeE"t) hFE = 10 ns 103 / ~ ,,- VCE 1/ VBE 1111 II - ~-- VBE-OV;Vcc-l0V~ - - - - VBE -2.0VYcc=30V - N i.~ r---- 1\ td ,\ .- \ 5 \1\ 1\ r\ \ 1\ 101 o 0.2 0.4 to 0.6 O.B r"1- 11 11+ 1.6 V VBE,a!' VCEsa! - - - - Ic Storage time t, = f(lel Fall time tf = f (Iel .~ ts 5 c-- I ,+1J.t ~ Vcc=30V ! I [\~FE=20 \ c- ! I I 5 r---- hFE =1 1 FE- 1 ~ Iy' IhFE= 20 ~ \ --- 5 ~ f---- ~ . 1--- 1"\ r---- - ~, r--... -Ic ---Ic 892 - Siemens SXT 2907 A DC current gain h" = f(lel 175°C ,.. III ~ 2S °C 5 -5 °C Siemens 893 NPN Silicon Switching Transistor • High current gain: 0.1 to 100 mA • Low collector-emitter saturation voltage SXT 3904 E Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package SXT 3904 S 1A upon request upon request SOT 89 Maximum ratings Parameter Symbol Ratings Unit Collector-emitter voltage Collector-base voltage Emitter-base voltage Collector current Total power dissipation TA = 25°C Junction temperature Storage temperature range Vceo VCBO VeBo 40 V 60 6 200 1 V mA W T stg 150 -65 ... +150 °C °C RthJA :s; 125 KjW Ie Ptot 7i V Thermal resistance Junction-ambient Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 894 Siemens SXT 3904 Electrical characteristics at TA = 25°C, unless otherwise specified min typ max Unit V1BR)CEO 40 - - V V1BR)CBO 60 - - V V1BR)EBO 6 - - V Base cutoff current VCE = 30 V, V BE = - 3 V IBL - - 50 nA Collector cutoff current VCE = 30 V, V BE = 3 V I cEx - - 50 nA DC current gain = 1 00 J.lA, VCE = 1 V = 1 mA. VCE = 1 V = 10 mA. VCE = 1 V = 50 mA. VCE = 1 V I C = 100 mA, VCE = 1 V hFE DC characteristics Symbol Collector-emitter breakdown voltage Ic = 1 mA Collector-base breakdown voltage = 10 J.lA Ie Emitter-base breakdown voltage I E =10J.lA Ie Ie Ie Ie Collector-emitter saturation voltage 1 ) Ie = 1 0 mA; I B = 1 mA Ic = 50 mA; IB = 5 mA Base-emitter saturation voltage 1) I C = 1a mA; I B = 1 mA Ie = 50 mA; IB = 5 mA 1) Pulse test: t $; 300 f./s, D $; - - - - - - 300 - - - - 0.2 0.3 V V 0.65 - - - 0.85 0.95 V V 40 70 100 60 30 - VCEsst VBEsst 2% Siemens 895 SXT 3904 AC characteristics Symbol min typ max Unit Transition frequency Ic = 10 rnA, VCE = 20 V, f= 100 MHz fT 300 - - MHz Output capacitance Vcs = 5 V, f = 1 MHz Cabo - - 4 pF Input capacitance VES = 0.5 V, f= 1 MHz C ibo - - 8 pF hie 1 - 10 kO h re 0.5 - 8 Xl0-4 Sma"-signal current gain = 1 rnA; VCE = 10 V, f = 1 kHz h fe 100 - 400 - Output admittance hoe 1 - 40 ~S NF - - 5 dB td tr - - 35 35 ns ns 200 50 ns ns Input impedance IcE = 1 rnA; VCE = 10 V, f Voltage feedback ratio I C = 1 rnA; VCE = 10 V, f = 1 kHz = 1 kHz Ic Ic = 1 rnA; VCE = 10 V, f = 1 kHz Noise figure rnA, VCE = 5 V, f= 10 Hz to 15 kHz Rs = 1 kO Ic = 0.1 Switching times Vcc = 3 V, VSE = 0.5 V, lSI = 1 rnA Ic = lOrnA. Switching times Vee = 3 V, Ie = lOrnA. lSI = lB2 = 1 rnA Test circuits Delay and rise time 1I 0ons Storage and fall time 275S'! 10 kS'! o--c.:::J-+-l -O.5V ~~II~ :::::.. ~.~~ 10' 5 10° 5 10' 5 10 2 rnA 5 904 10' 5 102 rnA ---Ie -Ie Siemens SXT 3906~ DC current gain h" = f(le! VeE = 1 V (standardized) Siemens 905 SXT A42 SXT A43 NPN Silicon High Voltage Transistors • High breakdown voltage • Low collector-emitter saturation voltage E Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package SXT A 42 SXT A 43 SlD SlE upon request upon request upon request upon request SOT 89 SOT 89 Maximum ratings Parameter Symbol SXT A42 SXT A43 Unit Collector-emitter voltage VCEO V CBO 200 200 V Collector-base voltage 300 300 Emitter-bas~ VEBO voltage Collector current Ie Total power dissipation TA = 25 DC P tot Junction temperature Tj Storage temperature range T stg V 6 500 V 1 W 150 -65 ... +150 DC mA DC Thermal resistance Junction-ambient Package mounted on alumina 15 mm X 16.7 mm X 0.7 mm 906 RthJA Siemens ::; 1 25 KjW SXT A42 SXT A43 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage SXT A 42 Ie = 1 rnA SXT A43 V{BR)CEO Collector-base breakdown voltage SXT A 42 = 100 IlA SXT A 43 V{BR)CBO Emitter-base breakdown voltage le = 100 IlA V{BR)EBO Ie Collector cutoff current VCB = 200V,le= 0 VCB = 1 60 V. le = 0 VcB =200V,lE=0. TA = 125°C VCB = 160V,lE=0. TA = 125°C typ max Unit 300 200 - - - - V V 300 200 - V V 6 - - - - 100 100 10 10 nA nA Il A Il A - 100 nA - - - IeBO SXT SXT SXT SXT A A A A 42 43 42 43 Emitter cutoff current VEB = 6 V. Ie = 0 leBO DC current gain hFE Ie = 1 rnA. VCE = 10 V Ie = lOrnA. VCE = 10 V Ie = 30 rnA. VeE = 10 V min 25 40 40 40 SXT A 42 SXT A 43 Collector-emitter saturation voltage 1) SXT A 42 Ie = 20 rnA; I B = 2 rnA SXT A 43 VeEsat Base-emitter saturation voltage 1) = 20 rnA; IB = 2 rnA VBEsat Ie - - - V - - - - - 0.5 0.4 V V - - 0.9 V AC characteristics Symbol min typ max Unit Transition frequency Ie = 10 rnA. VCE = 20 V. f= 100 MHz fT 50 - - MHz Output capacitance VeB = 20 V. f = 1 MHz Cobo - - 3 4 pF pF SXT A 42 SXT A 43 - I) Pulse test: t:5 300 lis, D:5 2 % Siemens 907 SXT A42 SXT A43 Total power dissipation P", = f(TA ) Transition frequency fT = f(lel VeE = 10 V, f = 100 MHz W 1,2 MHz 103 5 1"1,0 I\. f\ 0,8 I. 1\ 1\ 0,6 I\. I 1\ 0,4 5 ~ 1\ \I 0,2 V t\. 1\ o o 150°C 100 50 5 10 3 rnA 5 10' -~ Pulse handling capability K (standardized) 'th = fIt) 'iii rnA 10° 10 3 r I,.. , ~ , 5 5 ~ 5 Operating range Ie = f(VeEQ) TA = 25 °C, D = 0 1\. r\ I' ~,I 10~s 0.5 0.2 0.1 0.05 0.02 0.01 0.005 ~ & '\ 10' 1111 \~ 1001lS 1rnsj lOOms 5 1'0=0 2 SOOrns DC 5 llr ~ o=~ 10-3 10-6 '" 10-5 10-4 -, ;" r 10-3 10-2 10-' 10° s -VcEO -f 908 Siemens SXT A42 SXT A43 Collector cutoff current VeB = 160 V nA le.o = f( TA ) rnA 10 3 104 5 Collector current VeE = 10 V le = f(VBE) 5 I max.•'" ..-. je 5 V k' 10 2 10' typo 5 / , , 1/ 50 100 I 0,5 150 °C 1,0 1,5 V -VeE -TA DC current gain hFE = f(lol VeE = 10 V 100 L...J....u.J..llUl.....L.L.J..U.1ill......J....l..J..llJ.I.II-.L..l.UilllJ 10-' 5 10° 5 10' 5 10 2 5 10 3rnA -Ie Siemens 909 SXT A 92 SXT A 93 PNP Silicon High-Voltage Transistors • High breakdown voltage • Low collector-emitter saturation voltage E Type Marking Ordering code for versions in bulk Ordering code for versions on 8-mm tape Package SXT A 92 SXT A 93 S2D S2E upon request upon request upon request upon request SOT 89 SOT 89 Maximum ratings Parameter Symbol SXT A 92 SXT A93 Unit Collector-emitter voltage VCEO 300 200 Collector-base voltage V CBO 300 200 V V V Emitter-base voltage V EBO Collector current Ie Total power dissipation TA = 25°C Ptot 5 500 1 mA W Junction temperature 7j 150 °C Storage temperature range Tstg -65 ... +150 °C RthJA :s; 125 Thermal resistance Junction-ambient Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm 910 Siemens K/W SXTA92 SXTA93 Electrical characteristics at TA = 25°C, unless otherwise specified DC characteristics Symbol Collector-emitter breakdown voltage SXT A 92 Ie = 1 rnA SXT A 93 V(BR)CEO Collector-base breakdown voltage SXT A 92 SXT A 93 V(BR)CBO Emitter-base breakdown voltage h=1001JA V(BR)EBO Ie = 100 IJA Collector cutoff current VeB = 200V,IE=0 VCB = 1 60 V, h = 0 VeB = 200V,h =0, TA = 125°C VCB = 160V,h=O, TA = 25°C IeBO SXT A SXT A SXT A SXT A 92 93 92 93 Emitter cutoff current VEB = 4 V, Ie = 0 lEBO DC current gain Ic = 1 'rnA, VeE = 10 V Ie = 10 rnA, VeE = 10 V Ie = 30 rnA, VeE = 10 V hFE SXT A 92 SXT A 93 min typ max Unit 300 200 - - V V 300 200 - - - V V - V nA nA IJA IJA 5 - - 250 250 20 20 - 100 nA 25 40 25 25 - - - - - 0.5 0.4 V V - 0.9 V Collector-emitter saturation voltage') Ie = 20 rnA; IB = 2 rnA SXT A 92 SXT A 93 VeE,at Base-emitter saturation voltage') VBE,at - Ie = 20 rnA; IB = 2 rnA - - AC characteristics Symbol min typ max Unit Transition frequency Ie = 10 rnA, VeE = 20 V, f= 100 MHz fT 50 - - MHz Output capacitance VeB = 20 V, f = 1 MHz CObO - 6 - 8 pF pF 1) SXT A 92 SXT A 93 - - Pulse test: t:5, 300 lis, D:5, 2 % Siemens 911 SXT A 92 SXT A 93 Transition frequency fT = f(Id VeE = 20 V, f= 100 MHz Total power dissipation p.o. = f( TA) W 1,2 r 1,O I\. 1\ 0,8 \ \ 0,6 1\ I 1\ 0,4 5 1\ \ 0,2 / 2 l v 1\ o o 50 150 100 0( -~ Pulse handling capability K (standardized) Operating range Ie TA = 25 0 C, D = 0 r'h = fIt) = f(VeEO) W 10° r 5 p 1 , ~. kl 5 5 ~ \ III II I I' '\' ~ 1\ III ~ O=f 10-5 10- 4 T 10-3 10- 2 10- 1 1 10° s ----t 912 1msj L' 500 msl DC 5 10-3 10-6 100 ps lOOms 5 t'O=O 2 1\ lOps 0.5 0.2 0.1 0.05 0.02 0.01 0.005 Siemens SXT A92 SXTA93 Collector cutoff current leBo = f( TA) VeB = 160 V Collector current VeE = 10 V Ie = f(VBE) II ma~:.-17 17 1/ typo 10° 5 1 1.1 1 so 100 1SO °c I 0,5 1,5 V -~ DC current gain VcE =10V hFE = f(le) 1:3§1111(11~11 rZH--l+I-UllI-----l-1--I-l1llIl--!-++I-I+llI--+-I-+I+Hl :2 _ _ 10- 10° 10 10 10 100 Ll...lJJWJJJ.---.LLllJUllL-Ll..l.U.JWL..LLillJJJJ 1 5 5 1 5 2 -Ie 5 3 mA Siemens 913 GaAs FETs GaAs-FET Siemens 915 GaAs FET CF739 • N-channel dual-gate GaAs MES FET • Depletion mode transistor for tuned small-signal applications up to 2 GHz, e. g. VHF, UHF, Sat-TV tuners • Low noise • High gain • Low input capacitance G2 G1 ~D ~S ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package CF739 MS Q 62702 - F1215 SOT-143 Maximum Ratings Parameter Symbol Value Unit Drain-source voltage VDS 10 V Gate 1-source voltage -VG1S 6 V Gate 2-source voltage -VG2S 6 V Drain current lD 80 mA Gate 1-source peak current +lG1SM 1 mA Gate 2-source peak current +lG2SM 1 mA Total power dissipation, TA:s 42 °C2 ) Ptot 240 mW Channel temperature Tch 150 °c Storage temperature range TSl9 -55 ... +125 °c Thermal Resistance IR Junction - ambient 1) thJA I :s450 KJW 1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm. Siemens 917 CF739 Electrical Characteristics at TA = 25°C, unless otherwise specified. DC characteristics Values Parameter Symbol min typ max Unit Drain-source breakdown voltage Ii(BR)OS 10 - - V Gate 1 leakage current -VG1S = 5\/, VG2S = Vos=O -IG1sS - - 20 J.LA Gate 2 leakage current -IG2sS - - 20 J.LA Drain current VG1S = 0, VG2S = 0, Vos = 3 V loss 10 - 80 rnA Gate 1-source pinch-off voltage VG2S = 0, Vos = 5 \/, 10 = 200 J.LA -VG1S (P) - - 4.5 V Gate 2-source pinch-off voltage VG1S = 0, Vos = 5 \/, 10 = 200 J.LA -VG2S(P) - - 4.5 V Forward transconductance Vos = 5 \/, VG2S = 2 V, 10 = 10 rnA, f= 1 kHz flts - 25 - rnS Gate 1 input capacitance VG2s =2V, Vos=5V,Io= 10 rnA, f=1 MHz Cg1ss - 0.95 - pF Output capacitance VG2S = 2 V, Vos = 5 V, 10= 10 mA, f= 1 MHz Cdss - 0.5 - pF Noise figure VG2S = 2 V, Vos = 5 \/, 10 = 10 rnA, f= 1.75 GHz F - 1.8 - dB Power gain VG2S =2V, Vos = 5 \/, 10 = 10 rnA, f= 1.75 GHz Gps - 17 - dB 10 = 100 J.LA, -VG1S = -VG2S = 4 V -VG2S = 5 \/, VG1S = Vos = 0 AC characteristics 918 Siemens CF739 Total power dissipation Ptot = f (T,.] package mounted on alumina Output characteristics Io = f (Vos) VG2S = 2 V mW rnA 300 50 VG1S =OV 1111 i+H+ 40 1\ -I I 1\ O.2SV 1\ 30 II -O.SOV 20 100 - I I -0.7SV 1\ 10 -1.0V o o 50 o o 100 - - - - I.. ~ 2 6 4 BV ----I-~VDS TA Gate 1 forward transconductance 91., = f (Vl;1S) rnS Vas = 5 V, f= 1 kHz Gate 1 forward transconductance 9ts1 = f (VG2s) mS Vas = 5 V, f= 1 kHz 50 50 I l- I I I VG2S =2.0 Vi~ I- 1.. ~J-- 1-11-1--- f1 O.25V t1 ~1S=OV T II 30 1-, - 30 , O.SV 1---1--- OV +---1- I'I.. 10 I~ -10V" ~-O.5V""" w -2 r- ,--\- -. l/o1'sv 20 20 o I 10 1-1- ~ 141 -1 o o -2 1V Siemens -1 2V 919 CF739 Drain current Io =f (VG1S) Vos=5V rnA 80 Drain current Io Vos=5V rnA 80 TT 1 , IT 60 .11 ff- 'r/- Ib= 2V =f (VG2S) If 7 'i 60 w- 1/ I 40 OV,...F II} ,I. I-' 40 } if ov1,.-10- -o.SV III 20 20 II. III -1.0V -1V_ I -2 1-1' I I~ ~ o li VG1S =O..5V -1 o 1V = Gate 1 input capacitance Cg1 •• f IIo) VG2S = 2 \I, Vos=5 \I, f=0.1 -1 GHz 2V -1 -2 Output capacitance CdS" = f (Vos) VG2S =2 V, 10= 10 rnA, f= 0.1 -1 GHz pF 3 pF 1.5 , \ )... [g1 •• I l-- V 2 1.0 17 0,5 \ \ I\.... o o 10 20 30 rnA - -........ 10 920 Siemens o o 2 4 6 8 10V CF739 Common Source Admittance Parameters, G2 RF grounded Gate 1 input admittance Yl1s Gate 1 forward transfer admittance Y21s Vos= 5V, VG2s =2V, 10= 10 rnA Vos = 5 V, VG2S = 2 V;Io = 10 rnA mS mS 14 f=2000MHz o IP f=100 MHz 200 MHz I I I I I 400MHz I I I I I 600MHz 1BOOMHz,..,V TT-:;pr 12 160~MI'%r 10 !A'1400MHz BOOMHz 8'1200MHz . IT B l- 6 IP l~O~MHz l~OIO~~z -20 1F~0~Hz I) 800MHz 4 2 1406 ~~z I II 600JHz ~ 111.1 -30 I I I «400MHz 1600MHz If lBO~~82: 200M Hz o o 100MHz 2 1/ 3 4 5 -40 B mS 6 200~~~zl o 10 tf 20 30 40 mS -g"s Output admittance Y22s Vos = 5 V, VG2S = 2 V.Io= 10 rnA mS 7 mmDI fl=m~7~z 6 ~ 5 1600MHz " " III 1400MHz 4 l;m~~~ I11II1 1000MHz 3 I I r " I BOOMHz 2 600MHz 400MHz o o 1200 MHz T100MHz 0.1 0.2 OJ - - - - - <.. - 0.4 0.5 mS gl2< Siemens 921 CF739 Common Source S Parameters, G2 RF grounded s" = S,2=f(f} Vos = 5 V, VG2S =2\1, 10 = 10 rnA, Zo= 50 n f (f), Z-plane Vos =5 \I, VG2s=2\1, 10= 10 rnA, Zo= son 180 0 1--I--I--I--I...ll,!-4.'~- -j50 -90 0 5.2, =f (f) Vos =5\1, VG2S =2 V,lo = 10 rnA, Zo = son 90 5.z2 =f (f), Z-plane Vos = 5 \I, VG2S= 2\1, 10= 10 rnA, Zo= son 0 180 0 -j 50 -900 922 Siemens o GaAs FET • • • • • • • CFY30 Low noise (Fmin = 1.4 dB at 4 GHz) High gain (11.5 dB typo at 4 GHz) For oscillators up to 12 GHz For amplifiers up to 6 GHz Ion-implanted planar structure Chip all gold metallization Chip nitride passivation S~D G~s ESO: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code (tape and reel) Package CFY30 A2 Q 62703-F97 SOT-143 Maximum Ratings Parameter Symbol Value Unit Drain voltage Vos 5 V Drain-gate voltage VOG 7 V Gate-source voltage VGS -4 ... +0.5 V Drain current 10 80 mA Total power dissipation, Tc :::::90 DC Ptot 250 mW Channel temperature Tch 150 DC Storage temperature range Tstg -40 ... +150 °C RthchC :::::240 K/W Thermal Resistance I Channel - case Siemens 923 CFY30 Electrical Characteristics at TA = 25°C. Parameter Symbol Values Unit min typ max Drain-source saturation current Vos = 3.5 V, VGS = 0 loss 20 50 80 mA Pinch-off voltage 10 = 1 mA, Vos =3.5 V Vp -0.5 -1.3 -4.0 V Transconductance 10 = 15 mA, Vos = 3.5 V gm 20 30 - mS Gate leakage current 10 = 15 mA, Vos = 3.5 V IG - 0.1 2.0 !LA Noise figure 10 = 15 mA, Vos = 3.5 V, f= 4 GHz f=6GHz F - 1.4 2.0 1.6 Associated gain 10 = 15 mA, Vos = 3.5 V, f= 4 GHz f=6GHz Ga Maximum available gain 10 = 15 mA, Vos = 3.5 V, f= 6 GHz MAG Maximum stable gain fo = 15 mA, Vos = 3.5 V, f= 4 GHz Power output at 1 dB compression 10 = 30 mA, Vos =4 V, f=6 GHz dB - dB 10 - - 11.5 8.9 - - 11.2 - dB MSG - 14.4 - dB PldB - 16 - dBm Common Source Noise Parameters 10 = 15 mA, Vos = 3.5 V, Zo = 50 Q f F min Ga r opt RN N FSOfl G(FSOfl) GHz dB dB MAG ANG Q - dB dB 2 4 6 8 10 12 1.0 1.4 2.0 2.5 3.0 3.5 15.5 11.5 8.9 7.1 5.8 5.0 0.72 0.64 0.46 0.31 0.34 0.41 27 61 101 153 -133 - 93 49 29 19 9 14 28 0.17 0.17 0.30 0.31 0.38 0.42 2.9 2.7 2.8 2.8 3.4 4.1 10.0 9.3 7.5 6.4 4.2 2.9 924 Siemens CFY30 Source impedance for min. noise figure ID=15mA, VDs =3.5V +j25 Of---- -j25 -j50 Circles of constant noise figure ID = 15 mA, VDS = 3.5 V, f= 6 GHz Circles of constant noise figure ID = 15 mA, VDS = 3.5 V, f= 4 GHz +j50 +j50 -j50 -j50 of---__\_-\ Siemens 925 CFY30 Characteristics at TA = 25°C mA Output characteristics 10 =f (Vos) 50 VGS .. OV - f--- / 1 -0.2V :;;;;; -0.4V- f- 7 30 c;;;;o 7 ~ f- c;;;:;; 20 1/ 17 _-.... - I..--' 1/ 10 -0.8V f- ~-~ l.- I-- -1.1ii ]:...;... I - 2 4 5 V -Vos = dB Minimum noise figure Fmin f (f) Associated gain Ga = f (f) 10 = 15 rnA, Vos = 3.5 V. ZSopt 9 1 II 1 11 \: --{j. 14 0; 1\ 6 {j. Fmin t t - Pmin 1'TTl 1/ 1"" V 2 I II 10 5 _I- 6GHz 6 6 8 10 o OL--L-LLLLLJJ.l.---L-L.L.LJ..J..LLJ 20 GHz -f Siemens 1 2 ! (j" 12 2 4 14 F=III 4 2 dB 6 1 - - - - (j.++1+f+-/---+C~4IGI~1 8 3 926 I,...." 1."...-...,..--,...,1...11 . . . . - - - r - T. . . 10 r. 4 01 7 12 \ 5 dB 18 16 -Fmin Minimum noise figure Fmin = f (10) Associated gain G. = f (10 ) dB Vos = 3.5 V. ZSopt CFY30 Common Source S Parameters ID = 15 mA, VDS f S11 GHz MAG 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.95 0.93 0.92 0.90 0.88 0.87 0.85 0.83 0.82 0.80 0.79 0.77 0.76 0.74 0.72 0.70 0.68 0.66 0.65 0.63 0.62 0.60 0.59 0.57 0.56 0.55 0.54 0.54 0.53 0.53 0.54 0.54 0.55 0.55 = 3.5 V, Zo ANG - 1 - 3 - 6 - 10 - 14 - 17 - 21 - 25 - 28 - 32 - 36 - 38 - 44 - 49 - 53 - 58 - 62 - 67 - 72 -77 - 82 - 87 - 92 - 98 -104 -110 -115 -121 -127 -133 -139 -144 -150 -156 -162 -168 -174 179 172 166 160 153 147 141 135 = 50 Q Sz1 MAG ANG MAG ANG Sz2 MAG 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.44 2.44 2.45 2.45 2.46 2.47 2.48 2.49 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.51 2.50 2.49 2.47 2.45 2.43 2.41 2.39 2.36 2.33 2.30 2.27 2.24 2.21 2.19 2.16 2.14 2.11 2.08 2.04 2.00 1.96 1.92 178 176 171 167 162 158 154 150 145 141 137 133 129 124 120 116 111 107 102 98 93 88 83 78 73 68 64 59 54 50 45 41 37 32 27 22 17 12 8 3 - 2 - 7 -11 -16 -21 0.003 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 0.054 0.058 0.062 0.066 0.070 0.074 0.078 0.082 0.086 0.090 0.094 0.097 0.100 0.103 0.106 0.108 0.110 0.112 0.113 0.114 0.114 0.115 0.115 0.116 0.116 0.116 0.116 0.116 0.116 0.115 0.114 0.113 0.112 0.111 87 86 23 81 78 75 72 69 66 63 60 58 55 53 50 48 45 42 39 36 32 29 25 22 18 15 12 9 6 3 0 - 3 - 6 - 9 -11 -14 -17 -20 -22 -25 -27 -30 -32 -34 -37 0.70 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.66 0.66 0.65 0.64 0.64 0.63 0.62 0.61 0.60 0.59 0.57 0.55 0.54 0.52 0.50 0.48 0.46 0.45 0.43 0.42 0.40 0.38 0.36 0.33 0.31 0.29 0.27 0.25 0.24 0.23 0.21 0.20 0.19 0.18 0.18 0.17 0.18 S12 Siemens ANG - 1 - 3 - 5 - 8 - 11 - 13 - 15 - 18 - 20 - 23 - 26 - 28 - 30 - 32 - 35 - 38 - 41 - 44 - 47 - 51 - 54 - 58 - 61 - 64 - 67 - 70 - 73 - 76 - 80 - 84 - 88 - 93 - 98 -104 -110 -116 -122 -129 -137 -145 -154 -163 ~173 179 171 927 CFY30 10 = 15 rnA, Vos = 3.5 V, f S.1 GHz MAG 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 928 0.55 0.56 0.56 0.57 0.57 0.58 0.58 0.59 0.59 0.60 0.60 0.61 0.61 0.62 0.62 0.62 Zo = 50 n 8 12 &.!1 ANG 129 124 119 114 110 106 102 98 94 91 88 85 82 79 77 74 &.!2 MAG ANG MAG ANG MAG ANG 1.88 1.83 1.78 1.72 1.66 1.61 1.56 1.51 1.46 1.42 1.38 1.35 1.32 1.30 1.27 1.25 -25 -30 -35 -40 -44 -48 -52 -56 -59 -62 -65 -69 -72 -75 -78 -81 0.110 0.109 0.108 0.107 0.105 0.104 0.103 0.102 0.101 0.101 0.100 0.099 0.099 0.098 0.097 0.096 -39 -42 -44 -46 -48 -50 -51 -53 -54 -56 -57 -58 59 -60 -62 -63 0.18 0.19 0.20 0.21 0.22 0.23 0.25 0.26 0.28 0.29 0.30 0.32 0.33 0.34 0.35 0.36 163 155 148 141 134 128 123 118 113 108 104 100 96 93 89 85 Siemens CFY30 10 = 15 rnA, Vos = 3.5 V. 20= 50 n St1 "f (f) 90 0 5.!1 "f (f) ~"f(f) -90 0 Siemens 929 CFY30 Common Source S Parameters JD = 30 rnA, VDS = 3.5 V. Zo = 50 Q f 5 11 GHz MAG 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0 8.2 8.4 8.6 8.8 1.00 1.00 1.00 0.99 0.99 0.98 0.97 0.96 0.95 0.94 0.92 0.91 0.90 0.89 0.87 0.85 0.83 0.81 0.79 0.77 0.75 0.73 0.71 0.69 0.67 0.65 0.63 0.62 0.60 0.59 0.57 0.56 0.54 0.53 0.52 0.51 0.51 0.51 0.50 0.50 0.50 0.51 0.51 0.52 0.52 930 ~1 ANG - 2 - 4 - 8 - 12 - 16 - 20 - 24 - 28 - 32 - 38 - 40 - 44 - 48 - 53 - 58 - 63 - 68 - 73 - 79 - 85 - 91 - 96 -102 -108 -114 -120 -126 -132 -138 -144 -150 -156 -162 -168 -174 179 173 166 160 153 147 141 135 130 125 ~2 5 12 MAG ANG MAG ANG MAG ANG 3.23 3.22 3.21 3.20 3.19 3.18 3.18 3.18 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.17 3.16 3.14 3.12 3.10 3.08 3.06 3.04 3.02 3.00 2.98 2.95 2.91 2.87 2.82 2.77 2.73 2.68 2.63 2.58 2.54 2.50 2.46 2.43 2.40 2.36 2.31 2.26 2.21 2.15 178 176 171 167 162 157 153 148 143 139 135 131 127 123 119 114 109 104 99 94 88 83 78 73 68 63 58 54 49 44 40 35 31 27 22 18 14 9 5 0 - 4 - 8 -13 -17 -22 0.002 0.004 0.009 0.013 0.017 0.021 0.025 0.030 0.034 0.038 0.042 0.046 0.051 0.055 0.059 0.063 0.067 0.070 0.073 0.076 0.079 0.082 0.084 0.087 0.089 0.091 0.092 0.093 0.094 0.095 0.096 0.097 0.097 0.098 0.098 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 0.099 85 82 79 76 73 73 70 67 65 63 61 58 56 53 50 48 45 42 40 37 34 31 28 24 21 18 15 12 10 7 4 2 - 1 -4 - 6 - 9 -11 -13 -16 -18 -20 -22 -24 -27 -29 0.71 0.71 0.70 0.69 0.69 0.68 0.67 0.67 0.66 0.66 0.65 0.64 0.63 0.62 0.61 0.60 0.58 0.56 0.55 0.54 0.52 0.51 0.50 0.48 0.47 0.45 0.43 0.41 0.38 0.36 0.34 0.32 0.30 0.29 0.27 0.26 0.24 0.22 0.21 0.19 0.18 0.17 0.16 0.16 0.16 - Siemens 1 3 6 - 9 - 11 - 14 - 16 - 19 - 21 - 24 - 26 - 28 - 31 - 33 - 36 - 39 - 42 ...: 45 - 48 - 51 - 54 - 57 '- 60 - 63 - 66 - 70 - 73 -77 - 81 - 85 - 89 - 94 - 99 -104 -109 -115 -121 -127 -134 -141 -148 -156 -164 -174 176 - CFY30 10 = 30 mA, Vos = 3.5 V, 4J = 50 .Q ~2 f 8 11 GHz MAG ANG MAG ANG MAG 8 12 ANG MAG ANG 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.2 11.4 11.6 11.8 12.0 0.53 0.54 0.55 0.55 0.56 0.57 0.58 0.59 0.60 0.60 0.61 0.61 0.61 0.62 0.62 0.62 120 115 111 107 103 99 95 91 88 85 82 79 76 73 71 68 2.09 2.04 1.98 1.93 1.87 1.82 1.76 1.71 1.65 1.60 1.55 1.51 1.47 1.44 1.41 1.38 -26 -30 -35 -39 -43 -47 -51 -54 -58 -62 -65 -69 -72 -75 -78 -82 0.099 0.099 0.099 0.099 0.099 0.099 0.100 0.100 0.100 0.101 0.101 0.102 0.102 0.103 0.103 0.104 -31 -33 -35 -37 -39 -41 -42 -44 -45 -47 -48 -49 -51 -52 -53 -55 0.16 0.17 0.18 0.19 0.21 0.22 0.23 0.25 0.26 0.27 0.29 0.30 0.31 0.32 0.33 0.34 167 158 150 142 135 128 123 118 114 109 104 100 96 92 89 85 ~1 Siemens 931 CFY30 10 = 30 mA, Vos = 3.5 V, Zo = 50 5" Q =f(f) 5'2=f(f) 90° 90° 4 1BOo I---f--I-+-+-:--f--+-I--+-f-':';:"'--l 00 1BOo f--Lf--f--+-:--f--+---if---t--lt-;;--t---I 0° -900 -90° 1BOO I---+-l--+-t--I---"'t=--'II-'-t--'-'F----j 0° 1BOo I---+-l--t---t+--+-l--r-h-r----j 0° - 90° 932 Siemens GaAs MMICs GaAs-MMIC Siemens 933 CGY50 GaAs MMIC • • • • • • • • • • Single-stage, monolithic microwave IC (MMIC amplifier) Cascadable 50 n gain block Application range: 100 MHz to 3 GHz Third order intercept point 30 dBm typical at 1.8 GHz Gain: 8.5 dB typical at 1.8 GHz Low noise figure: 3.0 dB typical at 1.8 GHz Gain control dynamic range 20 dB Ion-implanted planar structure Chip all gold metallization Chip nitride passivation 317~2 4!Ig/;J 1 ESD: Electrostatic discharge sensitive device, observe handling precautions! Type Marking Ordering code CGY50 G2 Q 68000 - A8370 Package Circuit diagram " ...r-1.. ~ II 4 (IN!G) ) 2 lOUT! D) SOT-143 Ity~kQ ~ 1.3 (5) Maximum Ratings Parameter Symbol Value Unit Drain voltage (DC) Vo 5.5 V Peak drain voltage (DC + RF) Vop 7.5 V VG -3 ... 0 V Drain gate voltage VOG 7.5 V Input power . PIN 16 dBm Total power dissipation, Tc:51 00 °C Ptot 400 mW Channel temperature Tch Tstg 150 °C -40 ... +150 °C Current control gate voltage Storage temperature range Thermal Resistance Channel- case I) I RthchC I :5125 IKIW Note: exceeding any of the maximum ratings may cause permanent damage to the device. Appropriate handling is required to protect the electrostatic-sensitive MMIC against degradation due to excess voltage or excess current spikes. Proper ground connection of leads 1 and 3 (with minimum inductance) is required to achieve the guaranteed RF performance, stable operating conditions and adequate cooling. I) For application circuit see page 937. Siemens 935 CGY50 DC Characteristics at TA = 25°C, VG = 0 V, VD = 4.5 V, Rs (for application circuit see next page). Parameter = RL = 50 n, unless otherwise specified, Symbol Drain current ID Power gain f= 200 MHz f= 1800 MHz G Gain flatness f= 200 to 1000 MHz f= 800 to 1800 MHz L1G Noise figure f= 200 to 1800 MHz Values Unit min typ max - 60 80 - 10.0 8.5 - mA dB 7.5 dB 0.4 1.1 - F - 3.0 4.0 dB Input return loss f= 200 to 1800 MHz RLJN 9.5 12 - dB Output return loss f= 200 to 1800 MHz RLouT 9.5 12 - dB Third order intercept point, two-tone intermodulation test f, = 806 MHz, f2 = 810 MHz, Po = 10 dBm (both carriers) IP3 29 31 - dBm 1 dB gain compression f= 200 to 1800 MHz P'dB - 16 - dBm Gain control dynamic range f= 200 to 1800 MHz L1G - 20 - dB 936 Siemens 2 CGY50 Application Circuit f= 800 to 1800 MHz r------------------, ~ H VG1 H I I I ~ VD I I 0, I L, I L2 I '••"' soo I 1: !i'"'."' soo '--___________________ J ~ SOQ Microstripline Summary of components c1 , ~ Cs, C4 Chip capacitors 100 pF Chip capacitors 1 nF L1 , L2 Discrete inductor 1 f.lH or printed microstripline inductor Dl Z diode 5.6 V (type BZW 22 C5V6) Note: Operating conditions for AN max: RG = RL = 50 11. C, max = 220 pF, Siemens Vo = 4.5 V; VG current limited <2 rnA. 937 CGY50 Total power dissipation Ptot =f (Tel 0.5 ~ot W t 0.4 i\ \ 0.3 :\ 0.2 \ 1\ 0.1 1\ o o 100 50 O( 150 -7( Drain currentlo = f (Vo) VG=OV Drain current 10 = f (VG) Vo=4.5 V 100 100 60 I 40 V ..--I--- 1 - 20 o ~~~ ~~~~ 40 I 20 o i~ 60 2 4 6 V o -1.5 8 ~~ ~~Y' I~ ~~ ~1' ~§ ~~ ~~ ~~ §~ ~;>:> -1.0 -0.5 V -VG 938 Siemens 0 CGY50 Noise figure F =f (f) Vo = 4.5 V. VG = 0 V. Rs = RL = 50 n Noise figure F=f(VG)1) Vo = 4.5 V. Rs = RL = 50 n f= 200 to 1800 MHz -10 10 10 20 30 I I I 40 mA 60 I I I 10 F dB t 8 \ 6 6 max 4 ... typo -' ......... ,. ,;',;' \ \ 4 \ "', r--.. 2 2 2 " 3 GHz 4 ~1.0 -0.8 - -0.6 -0.4 -0.2 V 0 -f 1) See next page. Siemens 939 CGY50 G Power gain G= f (f) Power gain G=f(Poutl Vo=4.5 V. VG = 0 V. Rs= RL = 50 n Vo = 4.5 V. VG = 0 (=800 MHz 12 12 dB dB 10 V. Rs = RL = 50 n r-..... ......... t min 8 '\ f'. ~ typo ..... , 8 " t', 6 6 4 4 2 2 2 \ --Pout = Power gain G f (VG)') Power gain G=f(VG)') VO = 4.5 V. Rs = RL = 50 n -10 o 1 3 20 mA60 Vo = 4.5 V, Rs = RL = 50 n -10 10 20 30 40 mA 60 3 I I I I I I I 15 dB 6 t I I I I I I 6 5 jf=0.26Hz o I 1 -5 -10 12 dB 10 / 1l J~ r/.,;' t I Ij I I B6HZ I 1.66Hz ;4.0 6Hz f =0.2 6Hz,,- 10 - 8 b 6 v -4 "- ....... ...... J -1.0 0 -' ,J I -1 ./' 0/ -2 -2 ./ - -:: .....: ~r II o -20 "'. IX !IJ JlI ./ 2 , "- A'/, 4 ,,~ -3 0.8 6Hz~ 1.8 6Hz.",,4.0 6Hz _ I I I I /~ -15 -25 dB 20 10 36Hz 4 -f -0.8 -0.6 -0.4 -0.2 V 0 1) The gate voltage VG refers to a typical drain current loss of 60 rnA with the supplementaoy information of the 10 values. 940 Siemens CGY50 Third order intercept point 1P3 = f (Vol f= 800 MHz, VG = a V. Rs = RL = 50 n 34 r: dB V V 26 I 26 24 22 -The intermodulation ratio d,M can easily be determined. d,M = 2 (IP3 - Po) I I J II 2 3 4 IP3 = diM = Intermodulation ratio Po = Power level of each carrier in dBm Intercept point 5 V 6 Siemens 941 CGY50 S Parameters Vo = 4.5 V, VG = 0 v, Zo = 50 Q f 8 11 GHz MAG ANG 5.!1 MAG 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 0.25 0.27 0.21 0.20 0.19 0.18 0.18 0.17 0.17 0.17 0.18 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.26 0.28 - 31 - 34 - 44 - 54 - 65 - 77 - 93 -103 -119 -130 -141 -152 -163 -172 179 172 162 153 148 142 3.30 3.20 3.17 3.09 3.00 2.90 2.81 2.70 2.60 2.50 2.42 2.33 2.24 2.16 2.07 2.01 1.94 1.87 1.81 1.75 942 ~2 ANG MAG ANG 5.!2 MAG ANG 164 158 150 142 134 126 118 111 103 96 94 83 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.14 0.14 0.15 5.0 0.0 -2.0 -3.0 -4.0 -5.0 -5.0 -6.0 -5.0 -5.0 '-4.0 -4.0 -3.0 -3.0 -2.0 -2.0 -2.0 -1.0 -1.0 -1.0 0.05 0.05 0.08 0.01 0.12 0.14 0.16 0.17 0.18 0.19 0.20 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.20 -144 -133 105 91 81 74 68 62 56 51 46 42 39 36 33 30 29 28 27 27 77 71 65 60 54 49 43 38 Siemens CGY50 S Parameters VD = 4.5 V, VG = 0 V, Zo = 50 n ~, ~2 ~. ~ 8:., 90· 180· 1---+--+----+-+--+-+----+-+----+---1 0 180· I---f--+----+-+----tl--+--+-+---l.----l 0 -90· -90· Siemens 943 Sensors Siemens 945 Position Sensor KSY13 GaAs Hall Sensor • • • • For digital speed and position measurement High sensitivity and operating temperature Low offset voltage Low TC of sensitivity and internal resistance Type o KSY 13 Marking Ordering code for versions in bulk S13 Q62705-K 142 -CGNDi1j Hall Voltage Hall Voltage Ordering code for versions on 8 mm-tape +V Package SOT 143 Maximum ratings Parameter Symbol Ratings Unit Control current Operating temperature range Storage temperature range 11max TA 7 -40···+150 mA °C Tstg -50···+160 °C Thermal resistance package mounted on alumina 15 mm x 16.7 mm x 0.7 mm Rth "" 375 K/W o Preferred type Siemens 947 KSY13 Electrical characteristics at TA = 25°C, unless otherwise specified Characteristics Rated control current Symbol Open-circuit Hall voltage hN=5mA,B=0,1T Ohmic offset voltage ') 11N = 5 mA, B = 0 Internal resistance at the control side at the Hall side V20 I1N Ratings 5 Unit mA mV 95···145 VRO :5 ±30 mV Rl0 R20 n O/o/K Temperature coefficient of V20 hN = 5 mA, B = 0,2 T TCV20 900 ···1200 900.··1200 ~ -0,05 Temperature coefficient of Rl0, R20 11 = 1 mA, B = 0,2 T TCR10fR20 ~0,08 n %/K Open-circuit Hall voltage V20(TA) = f(TA) Max. control current 11 = f ( TA) V20(25 'C) mA 1.2 r-.,.-,--,-....-.--r--r---,,.-,--, 8 V20(TA) V20(25 'C) I--+-+--t---+-+-+--t---lf-t--f I 1-1r-IIT'f::i:::~::j::j 1.0 \ 0.8 I--+-+-+--+-+-+--t-f-t--f 4 0.6 f-f-t-t--t--+-++--+-+---1 2 0,4 1.--'---'----'-----'---'----'---'---'_'--' -40 o 40 80 120 160 o 0( -40 -JA ') Grouping upon request. 948 Siemens o 40 80 120 160 0( KTY13 Temperature Sensors NPN silicon planar epitaxial sensors • • • Suitable for measuring, controlling and regulating air, non-aggressive gases and liquids To be used as element for temperature compensation High reliability due to multilayer gold contacts Type [lKTY13A KTY 13 B KTY 13 C KTY 13 D Marking TA TB TC TD Subst. (J Elec. Contact Elec. Contact Package SOT 23 Q62705-K13 Q62705-K14 Q62705-K15 Q62705-K16 Maximum ratings Parameter Max. DC control current Peak current t= 10 ms Ambient temperature range Storage temperature range Symbol I i TA Tstg Ratings 3 7 Unit -50 .. · + 150 -50 .. ·+160 °C °C rnA mA Electrical characteristics at TA = 25°C, unless otherwise specified Symbol Basic resistance ') IN = 1 mA min typ max Unit 1980 1960 1900 1800 2000 2000 2000 2000 2020 2040 2100 2200 0 0 0 0 - - - a/a - ± 1 ± 2 ± 5 ±10 - ::; 0,3 ::; 0,1 - a/a - 7 1 - s s R25 KTY KTY KTY KTY Tolerance of basic resistance R25 KTY R25 = 20000, IN = 1 mA KTY KTY KTY Resistance unbalance at polarity change IN = 3 mA IN = 1 mA Thermal time constant 630/0 value in still medium in air in oil 13 A 13 B 13 C 13 D R25·!ol 13 A 13 B 13 C 13 D - - 0/0 a/a a/a M TAir TOil - 0/0 ') An operating current of 0.1 mA is recommended for precision measurements, as the inherent temperature rise is negligible and the unbalance decreases. [I Preferred type Siemens 949 KTY13 Limited charging current versus ambient temperature j = '( TA) Parameter: air, Temperature coefficient versus ambient temperature a. t s 10 ms = '( TA) mA 10 I 1 i t i\ 6 Rr 1,0 "-['.. \. '\ 4 \ dR dT a=-x- a 8 ....... ~ - r-..... r-.... 0,5 1\ 2 o o -50 so o 150 0 ( 100 -50 o 50 dR Sensor resistance RT Sensor resistance R25 = '(IN) TA n = 25 ... 100°C, IN = 100 =, 150 ·C (l N) 1 mA % 20 2200 dR RZ5 Rr i II II 2100 v 10 / l/ ,,2000 1900 ..... 1-'" V ~ fo-'i""" o 1-1-1- o 3 rnA -10 r- o -IN 950 3 rnA -IN Siemens KTY13 Analytic expression of the regression parabola for the median temperature factor (l N = 1 mAl kT = RRT 25 = [1 + a,(L'lT) + ~(L'lT)'l Analytic expression for calculating the sensor temperature T(OC) = 25 a, = ~ = R25 = RT = TA = L'l T = T = + fa,' - 4~ ~;~ . kT -a, 7,64 . 10- 3 (K-') 1,66 . 10- 5 (K-') resistance value at TA = 25°C (e. g. 2000 0) resistance value at temperature T (OC) ambient temperature temperature difference between T25 and T temperature ~ sensor package temperature ~ ambient temperature Tolerance of the temperature factor Temperature T Temperature factor kT +150°C +125°C +100°C + 75°C + 50°C + 25°C O°C - 25°C - 50°C 2,214 1,93 1,666 1,423 1,201 1,000 0,819 0,659 0,52 Siemens 951 KTY13 Sensor resistance Temperature lactor RT= ((TAl IN = 1 rnA kT kQ 5 =.!!:!... = ((TAl R25 2,5 ~ 3 / V V ./ / i kT I -SO / 1,5 / 1,0 0,5 o I~ / 1/" o j 2,0 SO 100 150 V o 0 ( -SO -7;. 952 ,/ ,/ o V / 50 100 -7;. Siemens 150 0 ( The information contained here has been carefully reviewed and is believed to be accurate . However, due to the possibility of unseen inaccuracies, no responsibility is assumed . This literature does not convey to the purchaser of electronic devices any license under the patent rights of the manufacturer. Siemens Components , Inc . Special Products Division 186 Wood Avenue South Iselin , New Jersey 08830 Telephone (800) 888-7730 Fax (908) 632-2830 Telex 844891 Order Number B123-B6253-X-X-7600 • CP4 20M 5/90 Printed in U.S A
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:12 17:48:40-08:00 Modify Date : 2017:07:12 18:16:05-07:00 Metadata Date : 2017:07:12 18:16:05-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:df344631-cb24-654f-a89c-6e95c067cb9f Instance ID : uuid:f0345cc3-f7e8-4749-861a-3647eadc1c19 Page Layout : SinglePage Page Mode : UseNone Page Count : 952EXIF Metadata provided by EXIF.tools