1990_Siemens_Discrete_Semiconductors_for_Surface_Mounting 1990 Siemens Discrete Semiconductors For Surface Mounting

User Manual: 1990_Siemens_Discrete_Semiconductors_for_Surface_Mounting

Open the PDF directly: View PDF PDF.
Page Count: 952

Download1990_Siemens_Discrete_Semiconductors_for_Surface_Mounting 1990 Siemens Discrete Semiconductors For Surface Mounting
Open PDF In BrowserView PDF
'"-m

s:m

SIEMENS

Z

'"

aD
.., 05 "
(f)0

C

CD

&-$
o(f)
(1) (1)

g~3o·
::J 0
...... ::J

-

::J

0..
C

COo

oen

Discrete Semiconductors
for Surface Mounting

•

Data Book

Discrete Semiconductors
for Surface Mounting
Data Book

Preface
At present the conventional through-hole mounting technology used for printed circuit assemblies is increasingly superseded by surface mounting. Instead of inserting leaded components,
special miniaturized components are directly attached and soldered to the PC board. These
new surface mounted devices (SMDs) and their packing are particularly suitable for automatic
assembly. The major advantages of surface mounting are rationalized production, reduced
board size and increased reliability.
Compared to the through-hole mounting technology, surface mounting requires more careful
planning of the overall design and production process. The better the components, PC board
layout, automatic placement, soldering method, testing and repair are attuned to each other, the
more efficiently surface mounting can be applied.
For many years diodes and transistors have been offered as part of the family of "miniature
semiconductors" or "semiconductors for film circuits". The SOT 23, which was introduced to
the market in the early sixties, is the most common package type. During the mid seventies,
the SOT 89 was added. Additional package types are the SOT 143, SOT 223 and SOD 123.
An outstanding design feature of these Siemens package versions is the closely tolerated
clearance between device and PC board (0.1 mm), which is essential for good glueing
conditions.
The available range of products is considerable. Practically all standard devices provided with
leads are now available in miniature package as well.
Owing to the allround experience Siemens has gained in this field, components in conventional
package types can be easily converted into components in miniature package. Thus, a quick
adaption to market demands is possible. It should be especially mentioned here that LEDs are
available in SOT 23 package as well.
SMD - Surface Mounted Device

Literature Selector

Further literature concerning e. g. SMD technology is listed in the following survey and can be
obtained from:
Siemens Components, Inc.,
186 Wood Avenue South, Iselin, NJ 08830,
1-800-888-7730, Fax (908) 632-2830
Title

Ordering code

Tuner Semiconductor Devices, Data 800k
Transistors for Amplifier and Switching Applications, Data 800k
Discrete Semiconductors for Surface Mounting SMD, Data 800k
An Introduction to Surface Mounting, Product Information
SOT-23 Semiconductors, Off-Print
.
SMD Components, Short Form Catalog
Recommendation for PC8 Layouts, Product Information
Components Library, Product Information
Soldering in SMD Technology, Product Information
SIPMOS Small-Signal Transistors

83-83587 -X-X-7600
83-83789-X-X-7600
83-83497 -X-X-7600
83-83289-X-X-7600
83-83342-X-X-7600
83-83907 -X-X-7400
83-83580-X-X-7600
89-83695-X-X-7600
89-83741-X-X- 7600
8352-86155-XX-7400

4

Siemens

Table of Contents

Page
Summary of types ......................................................................7

Technical information ................................................................ .19
Type designation in accordance with Pro Electron ..............................................19
Terms and symbols (DIN 41785) .............................................................20
Standards .................................................................................21
Maximum ratings ...........................................................................22
Characteristics ............................................................................22
Thermal resistances ........................................................................22

Quality specifications ................................................................25
Definition of defects ........................................................................25
AQL values ................................................................................25
Sampling plan for normal inspection ..........................................................26

Package outlines ......................................................................28
Mounting instructions ................................................................29
Mode of delivery (packing) ..................................................................29
Blister tape ............................. '...................................................30
PCB layout ................................................................................35
Glueing ...................................................................................36
Connecting methods .......................................................................36
Evaluation of solder joints ...................................................................38

Diodes ..................................................................................39

Transistors .. ..........................................................................189
GaAsFETS ............................................................................916
GaASMMICS ..........................................................................934
Sensors ........................................... , .................................. .946

Siemens

5

Summary of Types

Switching diodes
lYpe

BAL 74
BAL99
BAR 74
BAR 99
BAS 16
BAS 19
BAS 20
BAS 21
BAS 28 (Dual)
BAS78A
BAS78B
BAS78C
BAS 78 D
BAS 79 A (Dual)
BAS 79 B (Dual)
BAS 79 C (Dual)
BAS 79 D (Dual)
BAS 116
BAV 70 (Dual)
BAV 74 (Dual)
BAV 99 (Dual)
BAV 170 (Dual)
BAV 199 (Dual)
BAW 56 (Dual)
BAW78 A
BAW78B
BAW78C
BAW78D
BAW 79 A (Dual)
BAW 79 B (Dual)
BAW 79 C (Dual)
BAW 79 D (Dual)
BAW 100 (Dual)
BAW 101 (Dual)
BAW 156 (Dual)
BGX50A (Bridge)
5MBD 914

Maximum Ratings Characteristics
(Tamb=2S0C)
V,atl,
VRII
IF
trr
(V)
(mA)
(V)
(mA)
(ns)
s4
s1.0
50
250
100
s1.0
s6
70
50
250
s4
s1.0
50
250
100
s1.0
s6
70
250
50
s1.0
s6
250
50
85
120
s1.0
100
s50
200
s1.0
s50
200
200
100
s1.0
s50
250
200
100
s1.0
s6
85
.250
50
s1.6
1000
1000
50
1fJ.S
100
1000
1000 ,s,.6
1fJ.S
s1.6
200
1000
1000
1fJ.S
s1.p
1000
400
1000
1fJ.S
s1.6
1000
50
1000
1fJ.S
s1.6
100
1000
1000
1fJ.s
s1.6
1000
200
1000
1fJ.s
s1.6
400
1000
1000
1fJ.s
s1.0
10
85
s3fJ.s
250
s6
s1.0
70
250
50
s1.0
s4
100
50
250
s1.0
s6
70
250
50
s1.0
70
250
10
s3fJ.s
s1.0
70
250
10
s3fJ.s
s6
s1.0
70
250
50
s1.6
50
1000
1000
1fJ.s
s1.6
100
1000
1000
1fJ.s
s1.6
200
1000
1000
1fJ.s
400
s1.6
1000
1000
1fJ.s
. 1000
s1.6
1000
50
1fJ.s
s1.6
1000
100
1000
1fJ.s
s1.6
200
1000
1000
1fJ.s
s1.6
400
1000
1000
1fJ.s
s6
s1.0
70
250
50
s1.3
300
200
100
1fJ.s
s1.0
70
250
10
s3fJ.s
s2.6
s6
70
140
100
s1.0
s4
100
250
10

Siemens

Package

Page

SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-143
SOT 223
SOT 223
SOT 223
SOT 223
SOT 223
SOT 223
SOT 223
SOT 223
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-143
SOT-143
SOT-23
SOT-143
SOT-23

47
51
65
69
73

77
77

77
81
91
91
91
91
94
94
94
94
97
106
110
114
118
122
126
130
130
130
130
133
133
133
133

136
139
160
164

7

Summary of Types

Switching diodes
Maximum Ratings Characteristics
(Tamb=25°C)
V,atl,
VRM
IF
trr
(mA)
(ns)
(V)
(mA)
(V)
::;6
::;1.0
75
250
50
::;6
::;1.0
75
250
50
::;6
::;1.0
75
250
50
::;6
;;;1.0
50
75
250
::;10
::;1.1
70
250
100
::;15
::;1.1
100
70
250
::;15
::;1.1
100
100
250

Type

5MBD
5MBD
5MBD
5MBD
5MBD
5MBD
5MBD

2835
2836
2837
2838
6050
6100
7000

(Dual)
(Dual)
(Dual)
(Dual)
(Dual)
(Dual)

Package

SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23

Page

168
168
172
172
176
180
184

MOSFET tetrodes
Type

Vos

V
BF989
20
BF993
20
BF994 S 20
BF995
20
BF996 S 20
BF997
20
BF 998
12

10

Tch

rnA
30
50
30
30
30
30
30

°C
150
150
150
150
150
150
150

g..

PIo'

rnW
200
200
200
200
200
200
200

Gpo

rnS dB
12 16,5
25 25
18 25
17 23
18 18
18 25
24 20

F
dB
2,8
1,5
1
1,8
1,8
1
1

Vos

10

f

Package Page

V
15
15
15
15
15
15
8

rnA
7
10
10
10
10
10
10

MHz
800
200
200
200
800
200
800

SOT-143
SOT-143
SOT-143
SOT-143
SOT-143
SOT-143
SOT-143

362
370
376
382
392
399
405

Schottky Diodes for General Purposes
Type

BAS 40
BAS 40-04
BAS 40-05
BAS 40-06
BAS 40-07
BAS 70
BAS 70-04
BAS 70-05
BAS 70-06
BAS 70-07
BAT 17
BAT 17-04
BAT 17-05
BAT 17-06
BAT 64

8

Max.
ratings

Characteristics at TA = 25°C

VR

IF

VBR

VF

V
40

rnA
80

V
40

rnV
380

70

4

30

40

30

200

70

4

-

410

350

1000

CT
pF
5

2

1

6

IR
ILA
1.0

0.1

0.25

200

Siemens

I.

ps
100

100

-

-

Package

SOT-23
SOT-23
SOT-23
SOT-23
SOT-143
SOT-23
SOT-23
SOT-23
SOT-23
SOT-143
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23

Page

85

88

101
104

Summary of Types

Switching transistors
Maximum Ratings

TYpe

CPN=:)
PNP=P

VCEO

BSS63
P
BSS64
N
BSS79
N
BSS80
P
BSS81
N
BSS82
P
PZT2222
N
PZT2222A N
PZT2907
P
PZT2907A P
PZT3904
N
PZT3906
P
5MBT2222 N
SBMT2222A N
5MBT2907 P
5MBT2907A P
5MBT3904 N
5MBT3906 P
5MBTA70 P
SXT2222A N
SXT2907A P
SXT3904
N
SXT3906
P

100
80
40
40
35
60
30
40
40
60
40
40
30
40
40
60
40
40
40
40
60
40
40

(V)

Ic

(rnA)
800
800
800
800
800
800
600
600
600
600
200
200
600
600
600
600
200
200
200
600
600
200
200

P.

(mW)
330
330
330
330
330
330
1500
1500
1500
1500
1500
1500
330
330
330
330
330
330
330
1000
1000
1000
1000

IT
(MHz)
150
100
250
250
250
250
200
200
200
200
300
250
250
300
200
200
300
250
125
300
200
300
250

Characteristics (Tamb = 25°C)
Ic
at
VCE VCE("')
(rnA) (V) (V)
;::,30
10 5 ",;0.25
80
10 1 ",;0.7
40 - 300' 150 10 "';1.3
40 - 300' 150 10 ",;1.6
40 - 300' 150 10 ",;1.3
40 - 300' 150 10 "';1.6
100 - 300 150 10 ",;0.4
100 - 300 150 10 ",;0.3
100 - 300 150 10 ",;0.4
100 - 300 150 10 ",;0.4
100 - 300
10 1 ",;0.3
100 - 300
10 1 ",;0.4
100 - 300 150 10 ",;0.4
100 - 300 150 10 "';0.3
100 - 300 150 10 ",;0.4
100 - 300 150 10 ",;0.4
100 - 300
10 1 "';0.3
10 1 ",;0.4
100 - 300
40 - 400
5 10 ",;0.25
100- 300 150 10 "';0.3
100 - 300 150 10 "';0.4
10 1 "';0.3
100 - 300
100 - 300
10 1 ",;0.4

Package Page

hFE

SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-89
SOT-89
SOT-89
SOT-89

279
275
701
706
701
706
758
758
763
763
768
773
794
794
800
800
806
812
863
883
888
894
900

MOSFET triodes
TYpe
BF543
BF999

Vos
V

20
20

10

rnA
30
30

Tch

Ptot

9"
rnW rnS
150 200 12
150 200 16

°C

Gpo

dB
22
25

F

dB
1
1

Siemens

Vos
V

10
10

f
Package Page
rnA MHz
4 200 SOT-23
302
10 200 SOT-23
413

10

9

Summary of Types

High voltage transistors
Maximum Ratings

Type

rpN=~
PNP=P

BF622
BF623
BF720
BF721
BF722
BF723
BFN16
BFN17
BFN18
BFN19
BFN20
BFN21
BFN22
BFN23
BFN24
BFN25
BFN26
BFN27
BFN36
BFN37
BFN38
BFN39
PZTA42
PZTA43
PZTA92
PZTA93
5MBTA42
5MBTA43
5MBTA92
5MBTA93
SXTA42
SXTA43
SXTA92
SXTA93

10

VCEO

Ic

p,

(V)

(mA)
100
100
100
100
100
100
500
500
500
500
100
100
100
100
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500
500

(mW)
1000
1000
1500
1500
1500
1500
1000
1000
1000
1000
1000
1000
360
360
360
360
360
360
1500
1500
1500
1500
1500
1500
1500
1500
360
360
360
360
1000
1000
1000
1000

N 250
p 250
N 300
P 300
N 250
P 250
N 250
P 250
N 300
p 300
N 300
p 300
N 250
P 250
N 250
p 250
N 300
P 300
N 250
P 250
N 300
P 300
N 300
N 200
P 300
P 200
N 300
N 200
P 300
P 200
N 300
N 200
P 300
P 200

fT
(MHz)
100
100
100
100
100
100
70
100
70
100
100
100
100
100
70
100
70
100
70
100
70
100
50
50
50
50
50
50
50
50
50
50
50
50

Characteristics (Tamb = 25°C) Package Page
Ie
at
VCE VCE("')
(mA) (V) (V)

hFE

;0:50
;0:50
;0:40
;0:40
;0:50
;0:50
;0:40
;0:40
;0:30
2:30
;0:40
;0:40
;0:50
;0:50
;0:40
;0:40
;0:30
;0:30
;0:40
;0:40
;0:30
;0:30
;0:40
;0:40
;0:25
;0:25
;0:40
;0:40
;0:25
;0:25
;0:40
;0:40
;0:25
;0:25

Siemens

25
25
25
25
25
25
30
30
30
30
25
25
25
25
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30

20
20
20
20
20
20
10
10
10
10
20
20
20
20
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10

:50.5 SOT-89
:50.5 SOT-89
:50.5 SOT-223
:50.5 SOT-223
:50.5 SOT-223
:50.5 SOT-223
:50.4 SOT-89
:50.4 SOT-89
:50.5 SOT-89
:50.5 SOT-89
:50.5 SOT-89
:50.5 SOT-89
:50.5 SOT-23
:50.5 SOT-23
:50.4 SOT-23
:50.4 SOT-23
:50.5 SOT-23
:50.5 SOT-23
:50.4 SOT-223
:50.4 SOT-223
:50.5 SOT-223
:50.5 SOT-223
:50.5 SOT-223
:50.4 SOT-223
:50.5 SOT-223
:50.4 SOT-223
:50.5 SOT-23
:50.4 SOT-23
:50.5 SOT-23
:50.4 SOT-23
:50.5 SOT-89
:50.4 SOT-89
:50.5 SOT-89
:50.4 SOT-89

326
330
337
341
337
341
418
422
418
422
426
430
434
438
442
446
442
446
450
454
450
454
782
782
790
790
851
851
867
867
906
906
910
910

Summary of Types

AF transistors
Maximum Ratings
p,
fT
(NPN=N) VCEO Ic
PNP=P
(V) (rnA) (mW) (MHz)
BC807
P 45 1000 330 220
BC808
P 25 1000 330 200
BC817
N 45 1000 330 170
BC818
N 25 1000 330 170
N 65 200 330 200
BC846
BC847
N 45 200 330 200
BC848
N 30 200 330 200
BC849
N 30 200 330 200
BC850
N 45 200 330 200
P 65 200 330 250
BC856
P 45 200 330 250
BC857
BC858
P 30 200 330 250
BC859
P 30 200 330 250
P 45 200 330 250
BC860
BCW60
N 32 200 330 200
BCW61
P 32 200 330 250
BCW65
N 32 1000 330 170
N 45 1000 330 170
BCW66
BCW67
P 32 1000 330 200
BCW68
P 45 1000 330 200
P 45 1500 1500 125
BCP51
BCP52
P 60 1500 1500 125
BCP53
P 80 1500 1500 125
BCP54
N 45 1500 1500 100
N 60 1500 1500 100
BCP55
BCP56
N 80 1500 1500 100
BCP68
N 20 2000 1500 100
BCP69
P 20 2000 1500 100
'TYpe

-Available in hFE sub groups.

Characteristics (T.mb = 25°C)
at
Ic
VCE VCEI ••')
(rnA) (V)
(V)
100 - 630' 100
1 :s0.7
100 - 630' 100
1 :s0.7
100 - 630' 100
1 :s0.7
100 - 630' 100
1 :s0.7
100 - 450'
2
5 :s0.6
110 - 800'
2
5 :s0.6
2
110 - 800'
5 :s0.6
200 - 800'
2
5 :s0.6
200 - 800'
2
5 :s0.6
125 - 475'
2
5 :s0.6
125 - 800'
2
5 :s0.6
125 - 800'
2
5 :s0.6
220 - 900'
2
5 :s0.6
2
220 - 800'
5 :s0.6
120 - 630'
2
5 :s0.25
120 - 630'
2
5 :s0.25
100 - 630' 100
5 :s0.7
100 - 630' 100
5 :s0.7
100 - 630' 100
5 :s0.7
100 - 630~ 100
5 :s0.7
40 - 250'
150
2 :s0.5
40 - 250'
150
2 :s0.5
40 - 250'
150
2 :s0.5
40 - 250'
150
2 :s0.5
40 - 250'
150
2 :s0.5
40 - 250'
150
2 :s0.5
63 - 400
500
1 :s0.5
63 - 400
500
1 :s0.5

Package Page

hFE

Siemens

SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223

191
191
195
195
199
199
199
199
199
206
206
206
206
206
253
260
267
267
271
271
221
221
221
225
225
225
229
233

11

Summary of Types

AF transistors
Type

=25°C)

Maximum Ratings

CPN=:)
PNP=P
BCX41
BCX42
BCX51
BCX52
BCX53
BCX54
BCX55
BCX56
BCX68
BCX69
BCX70
BCX71
5MBT4124
5MBT4126
5MBT5086
5MBT5087
5MBT6428
5MBT6429
5MBTA05
5MBTA06
5MBTA20
5MBTA55
5MBTA56

12

*Available in hFE sub groups.

VCEO

(V)
N 125
P 125
p 45
P 60
P 80
N 45
N 60
N 80
N 20
P 20
N 45
P 45
N 25
p 25
P 50
p 50
N 50
N 45
N 60
N 80
N 40
P 60
P 80

Ic
(mA)
1000
1000
1500
1500
1500
1500
1500
1500
2000
2000
200
200
200
200
50
50
200
200
500
500
200
500
500

Characteristics (Tamb
at
Ic
VCE
(mW) (MHz)
(mA) (V)
100
1
330 100 ~63
100
1
330 150 ~63
1000 125 40 - 250'
150
2
150
2
1000 125 40 - 250'
150
2
1000 125 40 - 250'
1000 100 40 - 250'
150
2
150
1000 100 40 - 250'
2
1000 100 40 - 250'
150
2
1000 100 63 - 400'
500
1
1000 100 63 - 400'
500
1
330 200 120 - 630'
2
5
330 250 120 - 630'
2
5
2
1
330 300 120 - 360
2
1
330 250 120-360
40 ~150
330
10
5
40 ~250
10
330
5
10
330 100 ~250
5
10
5
330 100 ~500
330 100 ~50
10 1.0
10 1.0
330 100 ~50
5 10
330 125 40 - 400
330
50 ~50
10 1.0
330
50 ~50
10 1.0

P.

fT

hFE

Siemens

Package Page

VCE("')

(V)
::;;0.9
::;;0.9
::;;0.5
::;;0.5
::;;0.5
::;;0.5
::;;0.5
::;;0.5
::;;0.5
::;;0.5
::;;0.25
::;;0.25
::;;0.3
::;;0.4
::;;0.3
::;;0.3
::;;0.6
::;;0.6
::;;0.25
::;;0.25
::;;0.25

SOT-23
SOT-23
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-89
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
~0.25 SOT-23
::;;0.25 SOT-23

275
279
283
283
283
287
287
287
291
295
253
260
818
821
824
824
834
834
839
839
847
855
855

Summary of Types

Darlington Transistors
Maximum Ratings

Type

(NPN=N) VCEO Ic
P.
fr
PNP=P (V) (mA) (mW) (MHz)
BCP28
BCP29
BCP48
BCP49
BCV26
BCV27
BCV28
BCV29
BCV46
BCV47
BCV48
BCV49
BSP50
BSP51
BSP52
BSP60
BSP61
BSP62
PZTA13
PZTA14
PZTA63
PZTA64
5MBT6427
5MBTA13
5MBTA14
5MBTA63
5MBTA64

P

30

N 30
P

N
P

N
P

N
P

N
P

N
N
N
N
P
P
P

N
N
P
P

N
N
N
P
P

60
60
30
30
30
30
60
60
60
60
45
60
80
45
60
80
30
30
30
30
40
30
30
30
30

800
800
800
800
800
800
800
800
800
800
800
800
2000
2000
2000
2000
2000
2000
500
500
500
500
500
500
500
500
500

1500
1500
1500
1500
360
360
1000
1000
360
360
1000
1000
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
360
330
330
330
330

200
150
200
150
200
170
200
150
200
170
200
150
200
200
200
200
200
200
125
125
125
125
130
125
125
125
125

Characteristics (Tamb = 25°C)
at
Ic
VCE VCE(Sa')
(mA) (V)
(V)
:s1.0
?:20,OOO
100 5
:s1.0
?:20,OOO
100 5
?:10,OOO
:s1.0
100 5
:s1.0
?:10,OOO
100 5
?:20,OOO
:s1.0
100 5
2:20,000
:s1.0
100 5
2:20,000
:s1.0
100 5
:s1.0
2:20,000
100 5
:s1.0
2:10,000
100
5
2:10,000
:s1.0
100 5
2:10,000
100
:s1.0
5
:s1.0
?:10,OOO
100 5
2:2,000
500 10 :s1.8
2:2,000
500 10 :s1.8
?:2,OOO
500 10 :s1.8
2:2,000
500 10 :s1.8
2:2,000
500 10 :s1.8
2:2,000
500 10 :s1.8
:s1.5
2:10,000
100
5
:s1.5
2:20,000
100 5
:s1.5
2:10,000
100 5
:s1.5
2:20,000
100
5
:s1.5
?:20,OOO
100
5
2:10,000
:s1.5
100 5
:s1.5
2:20,000
100
5
:s1.5
?:10,OOO
100 5
2:20,000
:s1.5
5
100

Package Page

hFE

Siemens

SOT-223
SOT-223
SOT-223
SOT-223
SOT-23
SOT-23
SOT-89
SOT-89
SOT-23
SOT-23
SOT-89
SOT-89
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-223
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23

213
217
213
217
237
241
245
249
237
241
245
249
648
648
648
653
653
653
778
778
786
786
830
843
843
859
859

13

Summary of Types

SIPMOS'" small-signal transistors
Type
(" channel =N)
pchannel=P

BSP88
N
BSP89 N
BSP92
P
BSP125 N
B8P129* N
BSP135* N
BSP149* N
B8P295 N
B8P296 N
BSP297 N
B8P315 P
B8S84
P
B8887
N
BSS119 N
B8S123 N
BSS131 N
BSS138 N
B8S139* N
B88192 P
SN7002 N
SP0610T P

Maximum Ratings
P,
VOS
10

Page

(V)
240
240
240
600
240
600
200
50
100
200
50
50
240
100
100
240
50
250
240
60
60

Characteristics (T8mb = 25'C)
at Vos RoS{on) VGS{Ih)
(V)
(il)
(V)
(""A)

Package

loss

$20.0
$60
$60
$0.1
$0.1
$0.1
$0.2
$1.0
$1.0
$1.0
$1.0
$15
$60
$0.5
$1.0
$15
0.5
$0.1
$60
$1.0
$1.0

80T-223
80T-223
SOT-223
80T-223
80T-223
80T-223
80T-223
80T-223
80T-223
SOT-223
80T-223
80T-23
80T-89
SOT-23
SOT-23
80T-23
SOT-23
SOT-23
80T-89
80T-23
SOT-23

658
663
668
673
678
680
682
684
689
694
699
712
716
724
730
736
742
748
752
871
877

(rnA)
260
340
180
110
190
100
440
1700
1000
600
1000
130
290
170
170
100
200
40
150
190
130

(mW)
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
1500
360
1000
360
360
360
360
360
1000
360
360

240
240
240
600
240
600
240
50
100
200
50
50
240
100
100
240
50
250
240
60
60

*Depletlon mode

14

Siemens

$6.0
$6.0
$20.0
$45.0
$20.0
$60.0
$3.5
sO.3
$0.8
$2.0
sO.95
$10.0
$6.0
$6.0
$6.0
$16
$3.5
$100
$20
$5.0
$10

s 1.2
$ 2.0
$ 2.0
$ 2.5
$-0.7
$-0.7
$-0:7
$ 2.0
$ 2.0
$ 2.0
s 2.0
$ 2.0
$ 2.0
$ 2.6
$ 2.0
$ 2.0
$ 1.6
$-0.7
$ 2.0
$ 2.0
$ 2.0

Summary of Types

RF transistors
Type

Characteristics (Tamb = 25°C)
leBo
hFE
at Ie
VeE
(mW) (MHz) (nA)
(rnA) (V)

Maximum Ratings

(NPN=N) VeEo Ie
PNP=P (V) (rnA)
BF517
N 15
25
BF550
P 40 150
BF554
N 20
30
BF569
P 35
30
BF579
P 20
30
BF599
N 25
25
BF660
P 30
25
BF770A
N 15
50
BF771
N 12
80
BF772
N 12
80
BF775
N 12
30
BF799
N 20
50
BFP81
N 16
30
BFP93A
N 12
50
BFP193
N 12
80
BFQ17P
N 25 300
BFQ19P
N 15 150
BFQ19S
N 15 150
BF029P
N 15
30
BFQ64
N 20 250
BFQ81
N 16
30
BFR35AP P 12
30
BFR92P
N 15
30
BFR93A
N 12
50
BFR93P
N 15
50
BFR106
N 15 100
BFR193
N 12
80
BFS17P
N 15
50
BFT92
P 15
35
BFT93
P 12
50

P.

fr

280
330
280
280
280
280
280
280
300
300
280
280
300
250
300
1000
1000
1000
280
1000
280
280
280
250
280
350
300
280
200
200

2000
350
250
925
1600
550
700
4500
7000
7000
3500
1100
5800
5500
7000
1200
5100
5100
5000
3000
5800
4900
5000
5500
5000
3700
7000
2500
5000
5000

:s50
:s50
:s100
:s100
:s100
:s100
:s50
:s50
:s50
:s50
:s50
:s100
:s100
:s50
:s50
:s100
:s100
:s100
:s50
:s200
:s100
:s50
:s50
:s50
:s50
:s100
:s50
:s50
:s50
:s50

2:25
2:50
2:60
2:20
2:20
2:38
2:30
2:30
100
100
2:25
2:40
2:50
2:40
100
2:25
2:25
2:25
2:50
2:25
2:50
2:40
2:40
2:40
2:30
2:25
100
2:20
2:20
2:20

Siemens

5
1
1
3
10
7
3
25
30
30
5
20
15
30
30
150
50
50
10
120
15
5-20
14
30
25
30
30
25
14
30

10
10
10
10
10
10
10
8
8
8
6
10
10
5
8
5
10
10
6
5
10
6
10
5
5
6
8
1
10
5

Package Page

SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-143
SOT-23
SOT-23
SOT-143
SOT-143
SOT-89
SOT-89
SOT-89
SOT-89
SOT-23
SOT-80
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23

299
307
312
316
319
322
334
345
348
352
356
359
458
479
495
512
516
520
526
536
540
560
577
594
602
611
614
631
640
644

15

Summary of Types

PIN diodes
'tYpe

BA582
BA585
BA885
BAR 14-1
BAR 15-1
BAR 16-1
BAR 17
BAR 60
BAR 61

Maximum Ratings
VR
IF
(V)
(rnA)
100
35
50
50
50
50
100
100
100
100
100
100
100
100
100
100
100
100

Characteristics (T.."b = 25°C)
VF
R,
IR at
Co
(pF)
(V)
(n)
(nA)
:s1.1
:51.0
:50.5
20
:s0.6
:s1.1
:57.0
50
:s0.6
:s1.1
:57.0
50
:51.0
:50.5
100
9
:s1.0
:s0.5
100
9
:s0.5
:51.0
100
9
:51.0
:s0.55
100
9
0.2-0.3 :51.1
100
9
0.2-0.3 :s1.1
100
9

Package

Page

VR

(V)
20
30
30
50
50
50
50
50
50

SOO-123
SOO-123
SOT-23
SOT-23
SOT-23
SOT-23
SOT-23
SOT-143
SOT-143

41
43
45
55
55
55
58
61
61

Tuning diodes
Type

Maximum Ratings

VRM
(V)

BB419
BB512
BB515
BB619
BB620
BB804
BB811
BB814

16

30
12
30
30
30
20
30
20

IF

(rnA)
20
50
20
20
20
50
20
50

=

Characteristics (Tomb 25°C)
CD at VR
CD at VR
(pF)
(V)
(pF)
(V)
26-32
4.3-6
25
3
440-520
1
16.5-29
8.5
17.7
1.8-2.4 28
1
37.5-39
2.5-3.2 28
1
1
3.15
28
69
42-47.5
2
25
8
9.8
1
28
1
45
2
20
8

Siemens

Package

Page

SOO-123
SOO-123
SOO-123
SOO-123
SOO-123
SOT-23
SOO-123
SOT-23

143
145
147
149
151
153
156
158

Summary of Types

GaAs FETs
Type

Characteristics at TA 25°C

-VG,s -VG2S ID

VOS

CF739

=

Max. ratings
V
10

V
6

rnA
80

V
6

loss

F

rnA
10

dB
1.8

1~8

IGHz
atf

117

11.75

Package Page

SOT-143

917

GaAs FETs
Type

Max. ratings

CFY30

V
5

=

Package Page

dB
IGo

IGHz
at f

111.5

14

SOT-143

Characteristics at T A 25°C
ID
rnA
80

-VGS

Vos

V
-4 ... +0.5

gm

F
dB
1.4

rnS
30

923

GaAs MMICs
Type

Characteristics at TA

CGY50

=25°C

VOS

10

f

V
5.5 ... 7.5

rnA
60

MHz
200 ... 1800

G
dB
8.5

F

IP3
dBrn
31

dB
3.0

Package

Page

SOT-143

935

Temperature sensors
R25

Type

R25-Tol.

(typ)

'N= 1 rnA

n

KTY
KTY
KTY
KTY

13 A
13 B
13 C
13 D

%
±1
±2
±5
±10

2000
2000
2000
2000

I
t=10 rns
rnA
7
7
7
7

1:

Air
s
7

7
7

7

Oil
s
1
1
1
1

TA

Package Page

°C
-50 ... +150
-50 ... +150
-50 ... +150
-50 ... +150

SOT-23
SOT-23
SOT-23
SOT-23

949
949
949
949

R,o

Package

Page

900 ... 1200

SOT-143

947

Position sensor
Type
KSY 13

V20

VR.

rnV
95 ... 145

rnV
:s±30

"N

rnA
5

Siemens

n

17

Technical Information

Type designation in accordance with Pro Electron
This type designation applies to small-signal semiconductor components - in contrast to integrated circuits - multiples of these components and semiconductor chips.
The number of the basic type consists of:
Two letters and a three-digit code

First letter
gives information about the material.
A.
B.
C.
R.

Germanium or other material with a band gap of 0.6 .. ·1.0 eV
Silicon or other material with a band gap of 1.0·· ·1.3 eV
Gallium-arsenide or other material with a band gap of 1.3 eV
Compound material (e.g. cadmium-sulfide)

Second letter
indicates the function for which the device is primarily designed.
A.
B.
C.
D.
E.
F.
G.
H.
L.
N.
P.

a.

R.
S.
T.
U.
X.
Y.
Z.

Diode: signal, low power
Diode: variable capacitance
Transistor: low power, audio frequency
Transistor: power, audio frequency
Diode: tunnel
Transistor: low power, high frequency
Multiple of dissimilar devices; miscellaneous devices (e.g. oscillator)
Diode: magnetic sensitive
Transistor: power, high frequency
Optocoupler
Radiation-sensitive semiconductor component
Radiation-emitting semiconductor component
Control or switching device: low power (e.g. thyristor)
Transistor: low power, switching
Control or switching device: power (e.g. thyristor)
Transistor: power switching
Diode: multiplier, e.g. varactor, step recovery
Diode: rectifier, booster
Diode: voltage reference or regulator; transient voltage suppressor diode

The three-digit code of the type designation consists of:
- a three-digit number, running from 100 to 999, for devices primarily intended for consumer
equipment etc.
- one letter and a two-digit number for devices primarily intended for industrial/professional
equipment. This letter has no fixed meaning.
.

Siemens

19

Technical Information

Terms and symbols (DIN 41785)
The notation of currents, voltages, powers (alternate, continuous and mean values) and types
of resistance (alternate or continuous) is represented by small or capital lettering of the symbols.

Symbols
Letter symbols for currents, voltages and powers
Small letters are used for the representation of instantaneous values which vary with time.
Examples: i, v, P
Capital letters are used for the representation of continuous (dc), average (mean), root-me ansquare and periodic peak (maximum) values, i.e. time-constant values of current, voltage and
power.
Examples: [, V; P
Subscripts
The following subscripts are used:
E, e
B, b

C, c
F, f

R, r
M, m
av

emitter
base
collector
forward direction (diode in forward direction)
reverse direction (diode in reverse direction)
peak (maximum) value
average (mean) value

Subscripts representing peak or mean values can be omitted if there is no possibility of confusion.
Subscripts with capital letters are used for total values counted from zero, e.g. for instantaneous, continuous (dc), mean (average), root-me an-square and peak (maximum) values.
Examples: ic, Ic,

VSE, VSE,

Pc, Pc

Subscripts with small letters are used for values of varying components, e.g. instantaneous
values, peak (maximum) and root-mean-square values counted from the mean value.
Examples: ie, Ie, Vbe, Vbe, Pc, Pc
In order to distinguish peak, mean and root-mean-square values, further subscripts can be
added. The recommended abbreviations are:
Peak values
Mean values (average values)

M,m
Av, av

Examples: [CM, [CAV, [em, [cav
Sign" - " can also be used over the symbol for peak values:
Examples:

20

i c, ie
Siemens

Technical Information

I:

--I

Ic

--Time
No Signal 1--- - -- ---- With Signal--------------

ICAV

DC value, no signal
(Arithmetic) mean value of total current (referred to zero)

I CM, i c

Peak value of total current (referred to zero)

IcRMS

Root-mean-square value of total current (referred to zero)
(Arithmetic) mean of the varying component which is superimposed on the closedcircuit direct current I c (referred to the DC no-signal value I c)

Ieav
I c, I ems
I em, i c
ic
ie

Root-mean-square value of the varying component (referred to the mean value I CAV)
Peak value of the varying component (referred to the arithmetic mean I CAV)
Instantaneous total value (referred to zero)
Instantaneous value of the varying component (referred to the arithmetic mean ICAV)
The following equations correspond to the given values in the above diagram:

Ic + Ieav
Ic = ICAV + Iem
IcRMS = vi 12 cAV + [2erms
Ic
~ICAV+ic
ICAV

=

iCM

=

Standards
For detailed information please refer to the following DIN literature:
DIN
DIN
DIN
DIN
DIN
DIN

41782:
41785:
41791:
41852:
41853:
41854:

Diodes
Maximum Ratings
General Instructions
Semiconductor Technology
Terms Relating to Diodes
Terms Relating to Bipolar Transistors

Siemens

21

Technical Information

Maximum ratings
The maximum ratings specified are absolute ratings which, if exceeded, may result in the destruction or permanent functional impairment of the component. When testing the component,
as for example in respect to breakdown voltages, or during application, protection is to be provided in order to reliably ensure that maximum ratings are not exceeded.

Characteristics
Typical characteristics describe the component behavior at defined operating conditions. The
numerical values and diagrams pertain to the component type and shall not be considered as
characteristics of an individual component. The minimum and maximum ratings stated for reasons of essential quality and application requirements describe the actual spread of the characteristics, whereas spread curves in diagrams usually specify the spread range which is to be expected. Electrical values are grouped into "static" DC values and "dynamic" AC values. The
thermal resistance is closely related to the maximum ratings and, constituting the upper spread
value, comes immediately after the maximum ratings. The component's case data is defined by
reference to standard sheets and dimensional drawings.

Thermal resistance
The heat dissipation of SMOs depends on material and thickness of the PC board and of the
conductor paths (inherent heating). as well as on the packing density (external heating). Hence,
inherent and external heating determine the junction temperature, and thus the permissible
thermal stress of SMOs.
The values for thermal resistance given in the data sheets should only be used for rough estimations of the junction temperature 1i, since they were measured under certain laboratory conditions, where no regard was paid to specific applications.
The thermal resistance can be calculated by:
R thJL = Thermal resistance between junction
RthJA = RthJL

+ RthLS + RthSA

and terminals of the component

Environment

22

RthLS =

Thermal resistance between terminals
and solder pads of the substrate

RthSA =

Thermal resistance between substrate
and enVironment, e.g. air or cooling
area

The Internal thermal resistance RthJL is
determined by the design of the component and can therefore be exactly specified, whereas the external thermal resistance, being the sum of RthLS + RthSA,
depends on the individual application.

Siemens

Technical Information

Groups according to total power dissipation
SMDs are grouped according to their max. permissible power dissipation Ptot :
Group

Package: SOT 23, SOT 143

II

III

Diodes, RF transistors, MOSFET tetrodes, sensors
AF and switching transistors
Darlington and high-voltage transistors, SIPMOS small-signal transistors

Group

Package: SOT 89
RF and AF transistors, SIPMOS small-signal transistors

Group

Package: SOT 223
Diodes; AF, Darlington and high-voltage transistors; SIPMOS small-signal
transistors

Package

Thermal Resistance

Group

R 1hJL

R1hLS

R thsA

RthJA 1)

SOT 23

I

355 K/W

30K/W

SOT 143

II

280 K/W

30K/W

65K/W
65K/W

375 K/W

III

255 K/W

30K/W

65K/W

350 K/W

SOT 89

I

20K/W

15K/W

90K/W

125K/W

SOT 223

I

73.3 K/W

83.3 K/W

10K/W

450 K/W

1) The data represents a typical value for the various component groups, which
relates to a uniform alumina substrate, 15 mm x 16.7 mm x 0.7 mm in size.

Siemens

23

Technicallnformatioh

In order to obtain a reduced thermal resistance, the PCB pad for the connection of the collector
is enlarged. This is particularly effective when epoxy PCBs with low heat conductivity are used.
Package sg;r 89

Package SOT 23, SOT 143

Iii

Iii

200

600

~

\

SOOt!

\
\
\

170
160

'U

... ""
1.11'
....."

JA

t 180

irt.

"-

lfJ-- .........

150

\

.il"'"

:4

I\,

130

...... r-.

~

\

140

.....

-~

r.-.-- PC board

I-- - - PC board

- - - Ceramic substrate

110
100

b

IL

RthJA 190

120

~

K

K

o

1

1

I

I

20

40

I---

i--

1 I

J

200

60

o

I
I
2

I
4
-

Generally, these specifications sltffi
The determination of the junct" ~
path is more exact, however,
If it becomes nevertheless ne
sa
perature TL of the component conn

_

- - - Ceramic substrate

6
8mm 2
Collector area

termine the junction temperature 7j.
ure via the temperature dependence of the diode
ely complicated.
xactly determine the junction temperature 7j, the temons has to be measured. Then 7j can be calculated by:

7j =

TL

+ RthJL x

Ptot

Methods for measuring the temperature at component connections
•

Measuring with thermocouple element (e.g. Thermocoax)
For this method a miniature coated thermocouple element with low thermal capacitance is
used. The element, which is coated with a heat-conducting paste. is pressed against the
connection with the collector. There is hardly any influence on the device under measurement and deviations do not exceed a few percent.

•

Measuring with temperature indicators (e.g. thermopaper)
Temperature indicators do not cause heat dissipation and thus allow an almost exact determination of temperature. A certain degree of deviations can only result from the rough grade
indication of the temperature indicators. This method is quite easy and provides sufficient
accuracy. It is particularly suitable for measurement on PC boards.

24

Siemens

Quality Specifications

AQL values and definitions of defectives
Explanations

AQL (acceptable quality level) agreements specify the sampling conditions for the incoming inspection of consignments (conformance test). AQL values in conjunction with the standard
sampling inspection plans determine the acceptance or rejection of delivery lots. The size and
maximum permissible number of defects of the samples is based on DIN 40080 (identical with
MIL Standard 105 D and lEG 410), single sampling plan for normal inspection, inspection level II.
The sampling instructions of this standard are such that a delivery lot will most probably be accepted (> 90 0/0) if the defect percentage is equal or less than the specified AQL value. Generally, the average defect percentage of the products we deliver is far below the AQL value.
Definitions of defectives

A component is considered defective if it does not comply with the characteristics specified in
the data sheet or in an agreed upon delivery specification. Defectives can be divided into inoperatives, which generally exclude a functional application of the component, and defectives of
less significance.
Inoperatives are:

-

open or short circuit,
broken component, package, terminals or encapsulation,
missing or incorrect marking,
.
incorrect identification of terminals,
intermixing with other component types,
alternating orientation in a packaging tube or tape.

The remaining defectives can be divided into:

- electrical defectives
(maximum ratings exceeded),
- mechanical defectives, e.g. dimensions not adhered to, package damaged, illegible marking,
bent leads.
Grouping into major defects and minor defects according to DIN 40080 has been purposely
avoided here because these terms are defined primarily on the basis of applications and not
specifications. In contrast to this the defective classes that we use - for which AQL values are
given below - are clearly outlined by the specification and the mentioned inoperatives.
AQL values

The AQL values valid for the different product families are comprised in the following table:
Type of defectives

AQL values

Inoperatives (mechanical and electrical)
I: static defectives (dc)
I: dynamic defectives (ac)
I: mechanical defectives (package and connections)

0.1
0.4

1.5
0.4

for switching times and noise measurements an AQL of 1.5 applies.

Siemens

25

Quality Specifications

Incoming inspection
If the user wants to carry out an incoming inspection, the use of a sampling inspection plan is
recommended. The test method that is applied must be agreed upon between the user and the
supplier.
The following information is necessary for judging any claims that may arise: test circuit, sample
size, number of defective items found, sample of evidence, packing list.

Sampling plan for normal inspection
in accordance with DIN 40080 or ABC-Std 1050, inspection level II
AQL value
Sample 0,065 0,10 0,15 0,25 0,40 0,65 1,0
1,5 2,5
4,0
6,5
size
A R A R AR A R A R A R A R A R AR AR A R

Lot size

2 to

8

2

9 to

15

3

16 to

25

5

26 to

50

8

51 to

90

13

91 to

150

20

151 to

280

32

281 to

500

50

501 to

1200

80

1201 to

3200

125

3201 to 10000

200

10001 to 35000

315

35001 to 150000

500

150001 to 500000

800

500001 and more

1250

1
1 i

01

01

12

+

I
~

01

01

01

I
I

12

23

12

23

34

12

23

34

56

12

23

34

56

78

12

23

34

56

78

1011

12

23

34

56

78

12

23

34

56

78

12

23

34

56

78

12

23

34

56

78

12

23

34

56

78

23

34

56

78

01

I
i I
01

01
01

I
I

01
01

•
I

~

~

10 11 1415

10 11 1415 2122

1011 1415 2122

10 11 1415 2122

1011 1415 2122

1011 1415 2122

i

ir

A = Acceptance number, i. e. maximum number of defectives in a sample up to which a lot is accepted.
R = Rejection number, i. e. the number of defectives which must be found in a sample as a minimum for rejection of the lot.
26

Siemens

Quality Specifications

Other conditions

As the combination "Acceptance O/Rejection 1" is not particularly clear, the next largest sample should be taken.

Additional information

Stating AQL values is no assurance of characteristics in a legal sense. The agreement of sampling inspections and AQL values does not prevent the customer from carrying out more extensive tests in incoming inspection and claiming replacements for individual defective components under the terms of sale. Any further liability, especially as regards the consequences of
component defects, cannot be recognized.

Note

Siemens has made preparations for and is interested in making agreements on ppm values with
large-scale customers.

Siemens

27

Dimensional outlines

SOT 23 (TO 236)

rf~

DIM.
A
B
C

.Ii

~.

I-N

L

0
F
G
H

K
L

SOT 23

N

MILLIMETERS
MIN .
MAX.
2.60
3.0
2.30
2.60
1.10
1.0
1.40
1.20
0.09
0.15
0.38
0.48

INCHES
MIN.
MAX.
0.118
0.110
0.091
0.102
0.039
0.043
0.047
0.055
0.0035 0.0059
0.015
0.019

-

-

-

0
1.84
0.92

0.10
1.98
0.98

0
0.072
0.038

0.0039

o.on

0.039

SOT 143 (TO 253)

f1 ,B
~

N

DIM.
A

F

B

~I '~~!

C
0

F
G
H
K
L
N

-Ie

A-J

SOT 143

MILLIMETERS
MIN.
MAX.
2.80
3.0
2.30
2.60
1.0
1.10
1.20
1.40
0.09
0.15
0.38
0.48
0.78
0.88
0.10
0
1.84
1.96
1.60
1.60

SOT 89 (TO 243)

~A_

icr

---jHJ-

k

r-i

1-11

~

lIB
G

rf[t--;~
II

--l

-

~

NI--

r

0

F

I-F

'~~r

G

~~
~eJ
~~:~
~LF

SOD 123

r1~J IT!
lJ
~
!
~.
G~~L~
K~~

l

Ffr C

,DB

I

P
Siemens

MILLIMETERS
INCHES
MIN.
MAX.
MIN.
MAX.
4.40
0.173
0.181
4.60
4.25
0.167
1.40
1.60
0.55
0.63
2.60
0.102
0.25
0.39
0.0098 0.015
0.40
0.65
0.016
0.026
1.50
1.70
0.059
0.067
2.60
2.85
0.91
0.112
2.90
3.10
0.114
0.122
1.40
1.60
0.55
0.63

SOD 123
DIM.
A
B
C

0
F
G
H

K
L
N

MILLIMETERS
MIN.
MAX.
2.55
2.85

0.95
1.40

0.45
0.26
0
3.55

-

1.35
1.70
0.15
0.65

INCHES
MIN.
MAX.
0.100
0.112

0.037
0.055

-

0.10
3.85

O.01n
0.0098
0
0.140

-

-

-

0.053
0.067
0.0059
0.0256

0.0039
0.152

-

SOT 223
DIM.
A
B

C
0
F

G
H

K
L

N

SOT 223

28

B

G
H
K
l
N

SOT 89

I

DIM.
A

C

I--l-

INCHES
MIN.
MAX.
0.110
0.118
0.091
0.102
0.039
0.043
0.047
0.055
0.0035 0.0059 .
0.Q15
0.019
0.031
0.035
0.0039
0
0.072
0.077
0.063
0.071

MILLIMETERS
MIN.
MAX.
6.30
6.70
6.80
7.20
1.50
1.70
3.30
3.70
0.32
0.60
0.80
2.90
3.10
0
0.10
4.60 Typ
2.30 Typ.

INCHES
MIN.
MAX.
0.248 0.264
0.268 0.283
0.059 0.067
0.130 0.146
0.013
0.024 0.032
0.114 0.122
0
0.0039
0.182 Typ.
0.091 Typ.

-

Mounting Instructions

Supply for automatic assembly
In contrast to components with wire leads, practically all SMDs can be supplied in two package
forms:
• Bulk
• Tape
Bulk
The most straightforward and low-cost mode of SMD d\il!Jyery is in bulk, in either antistatic or
plastic containers. Contrary to components with wire I~~ds, SMDs can be supplied in this type
of packaging for automatic assembly as no bending orlriterlocking of terminals can occur. At
the placement machine the components are suitably,. pgsitioned. If required, a large quantity of
components can thus be supplied in line, i.e. without interrupting the placement procedure.
,(ih:'

,.'",,'

Bulk packaging units
Component

Packing

Diodes
Transistors
LEDs
Sensors

Plastic container

MOSFETs, SIPMOS

Antistatic contaiper
f.'F' l~~
'J",~':CI

~ (}

Tape (in acc. with IEC 286-3)

Tape packaging is a frequently useif9r":l 0t;;upplying surface mounted devices. The major benefit of the tape method is that it Rreventji':\'Onfusion of different components and meets the requirements of most placement ,~!,hin?~$'Cardboard and blister tapes are available tape forms.
The blister tape has preforme,it
? ents corresponding to the component sizE;!, which are
nsist either of plastic material or of plastic-clad alumicovered with fixing tape. 8Iist~i'<'4ap
num foil.
rv.

rom .,

The tapes are internationally standardized in accordance with DIN IEC 286·3. This ensures that the
tapes are accepted by all machines designed for this kind of assembly. The tape width is generally
between 8 mm and 12 mm but additional tape widths are at present being manufactured.

8mmtape
For packages SOT 23, SOT 143 and SOD 123
12 mmtape
For package SOT 89 and SOT 223
Tape packaging units
Size of reels

Packages
SOT 23

SOT 143

SOT 89/S0T 223

SOD 123

18cm
33cm

3000 pieces
10000 pieces

3000 pieces
10000 pieces

1000 pieces
2500 pieces

3000 pieces
10000 pieces

Siemens

29

Mounting Instructions

Blister tape

Ko

T

T,

Direction of unreeling

30

Siemens

Mounting Instructions

TAPE PACKAGE
SYMBOL

8mm
SOT 23, SOT 143, SOD 123

12mm
SOT 89, SOT 223

AO • BO ') 3). KO ').

Do
D1

1.5 + 0.1
1

1.5

+ 0.2

+ 0.1

1.5mm

E

1.75 ± 0.1

1.75 ± 0.1

F

3.5 ± 0.05

5.5 ± 0.05

G

0.75 mm 4)

0.75mm

Po

4 ± 0.1

4 ± 0.1

P1

4

8

P2

2 ± 0.05

2 ± 0.05

T

0.3 max

0.3 max

T1

0.1 max

0.1 max

T2 1) 2)

2.5 max

4.5 max

W

B±0.3

12 ± 0.3

W3

5.5

9.5

S

, ) The nominal dimension for component compartment shall be derived
from the relevant component specification.
. 2). The actual dimension Is given by the component height and the condition that the
component cannot be tumed.

3) Component has to tall out of the carrier tape compartment when the stili opened
carrier tape Is upside down. The maximum clearance Is 0.5 mm or given by the
maximal rotation angle allowed.
4) On long devices like 500.123. G could be smaller than 0.75 mm.

Siemens

31

Mounting Instructions

Polarity and orientation of taped components
All polarized components are oriented in one direction. The mounting side is
oriented to the bottom side of the component compartment. The bottom side is
defined as the invisible side of the tape during unreeling.

SOT 23

000000000

[lj]1j] IIR RlRJ[jIR

000000000
SOT 89

000000000
SOT143

IIlIllIlMIIIIIIII

SOT 223

32

Siemens

Mounting Instructions

Fixing of components
Components are prevented from falling out of the device compartment by a transparent fixing
tape.

-S

Storage of tapes

A storage temperature of 40 + 5 °C at a relative humidity of ~ 950/0 is permissible up to a maximum of 240 h.

q;

Break force of tape

;;::

The minimum break force of the tape in the direction of unreeling ;?:10 N.

"

,,~

Peel force of fixing tape

11"1.

During peel-off the angle between the fixing tape and the direction of unreeling is 180°. The peel
force of the fixing tape ranges from 0.2 N to 1.0 N.
V.;P

l)

Break force of fixing tape

The minimum break force of the fixing tape iS~ N.

It:::
CfJ

.....::f

If!

0

.~s-force meter.....

/

os ""

Peel speed of fixing tape

Reel packaging
Component tapes are wound onto r
for automatic assembly.

as shown in the illustration below and are then suitable

Currently available:
- Tape width=8 mm (SOT 23, SOT 143,
SOD 80) and 12 mm (SOT 89)
- Reel size=18 cm and 33 cm.
The reels are delivered in a protective wrapping.

Cross section

Reel dimensions
DI·
SOT 23 SOT 89
men- SOT 143 SOT 223
slon SOD 123
(mm)

80T23
80T89
80T143 80T223
SOD 123

a
b
c
d

8.4+ 1.5
330 max.
100 min.
14.4 max.

8.4+ 1.5
180 max.
SO min.
14.4 max.

12.4+ 1.5
180 max.
SO min.
18.4 max.

12.4+1.5
330 max.
100 min.
18.4 max.

Siemens

a

33

Mounting Instructions

Reel Labelling

Each reel is labelled with manufacturer, type, series number, and date.
Missing components

A maximum of two consecutive components may be missin
by six components. The number of empty places shall not e
components per reel. Upon request, other agreements

o

~~ovided that this gap is followed
ed 0.25% of the total number of

Leader and trailer

Carrier tape with fixing tape, without components
Tape leader

T

min. 400 mm (100 pitches)

(75 pitches)

DDD[][]DODDDBBB

ESD

SMDs can also be supplied on tapes protected against electrostatic charges. During processing, the reel has therefore to be electrically connected with the placement machine, which must
be grounded. This method of taping complies with IECIT 640.
ESD ;;; Electrostatically Sensitive Devices

34

Siemens

Mounting Instructions

PCB layout
When using surface mounted devices, the PCB layout has to be accommodated to
. this new technology. This demand should be fulfilled not only to better utilize
'the packing density, but also to meet the requirements resulting from the new
placement am;! processing system. Some factors influencing the PCB design are:
•
•
•
•

Distance between conductor paths
Component tolerances
Distance between components
Misalignment of component and conductor path

Recommended minimum solder pad dimensions (mm)

S00123

SOT 89

SOT 23

SOT 143

SOT 223

Siemens

35

Mounting Instructions

Glueing
Prior to soldering, SMDs must be fixed to the PCB by means of an adhesive. The adhesive has
to fulfil the following conditions.
•
•
•
•
•
•
•

Adequate adhesive strength
Short curing time at a low temperature
Uniform viscosity to ensure easy coating
No chemical reactions upon curing in order not to impai
Straightforward exchange of components in case of r
As non-toxic, odorless and solvent-free as possible (/)
Good thermal conductivity
4;

:t

mponent and PC board

Connecting methods
The connecting method is particularly important
well as for inhibiting short circuits. The choice
sign of the PC boards (components on upper
plied components and on the production fa
In addition to manual soldering, which is onl
dering methods: flow soldering, which incl
ing.

ng good electrical connections as
method largely depends on the desides, multilayer board), on the sup-

(b

for repairs, there are two automated soldrag and dip soldering, and reflow solder-

Wave soldering
Wave soldering is the most widely u
ated solder method in the manufacture of PCB
assemblies.
With a maximum bath temperature
the soldering time should not exceed 8 s. Prior to
the wave the flux is applied by a
Max. perm. temperature stress on the
Solder bridges and solder sh
cur if the components ar
SMD (soldering without preheating)
O(
erepacked on the wave soldering Sl
300
fore, with respect to soldering, the compoI I
nent arrangement has to be considered in the
PCB layout.
T
I/'"
\
I
Dual wave soldering equipment will in general
I- Soldering\ Cooling
be better suited to SMD methods. The first
I
200
turbulent wave of solder ensures good wet.1
\ Ts
ting of all metallization areas, while the second more laminar wave removes the excess
solder (solder accumUlation and solder
bridges).
100

t

o

o

10

20

-f
Ts = Melting point of the solder

36

Siemens

30 s

Mounting Instructions

Reflow soldering
For reflow soldering a specific amount of solder, e.g. in the form of solder paste, is applied to
the mounting pads. After the SMD has been placed the connection is established by one of the
following methods:
•
•
•
•

Vapor phase soldering
Hot gas soldering
Heated collet ~oldering
Infrared soldering

'~'v
,.,:;~~J
\~",;,

The most recent reflow soldering method is vapor Pha!i!;I'l~Oldering, where the entire assembly
is uniformly heated to a specific temperature. This form"'Of soldering is a very gentle process,
since it prevents overheating. At present, it is the b ., Idering method for densely positioned
components of different thermal capacity.

Max. perm. temperature stress on the SMD
(soldering with preheating)
°C
300

~~~~~~~~~~~

T

t200 1-+-l-+-+-II...f-.jI-+-l-+-+-¥-+-l100

I-I+-l-+-+--l-+-+-I-+-+-I-+-,j~

Preheating

o
o

~-L~~-L~~-L~~_~

m

~

~s

-t
Iron soldering
Soldering with a temperature-controlled miniature iron should be used only in exceptional
cases (e.g. repairs), since as well as being uneconomical there is the risk of damage to the
components and to the PCB.

Soldering flux
•

The soldering flux used for wave soldering is not subject to changes, i.e. use of collophony
(F-SW 32 in acc. with DIN 8511).

•

On the other hand, the majority of soldering pastes necessary for reflow soldering contains
aggressive soldering flux, the residues of which must always be removed by cleaning.

Siemens

37

....

-

Mounting Instructions

PCB cleaning
• Cleaning in solvents is permitted at approx. 70°C to 80 °C for about 15 seconds, Detailed Information is available upon request.
• Ultrasonic cleaning (double half-wave operation)
Ultrasonic cleaning is less advisable; should it, however,1i used, the following has to be
~
taken into account:
Cleaning agent:
Isopropanol, Freor-/!!
8ath temperature:
approx.30°C
Duration of cleaning:
max. 30 s
4;
Ultrasonic frequency:
40 kHz
Ultrasonic changing pressure:
approx, 0.5 b~

0

0

0

Evaluation of solder joints

View of the concave tin area

~

Defective solder JOints

·s
(j

1~~'§ lO I~~~~~~~
Height of tin surface L1

.:;1

~

2 X L2

~~~~~~ -'"j

Height of tin surface L1 SO,S L2
SMD

Unwetted pad area S > 50/0

38

Siemens

Diodes

Siemens

39

SA 582

Silicon RF Switching Diode

• Low-loss VHF band switch for TVNTR tuners

c.t~

Type

Marking

Ordering code
(taped)

Package

BA582

bluetS

Q62702-A829

SOD-123

Maximum Ratings
Parameter

Symbol Value

Unit

Reverse voltage

VR

35

V

Forward current, TA :s 60 ° C

IF

100

mA

Operation temperature range

Top

-55... + 125

°C

Storage temperature range

Tstg

-55 ... + 150

°C

Thermal Resistance
Junction - ambient

I

RthJAtyP·1

Siemens

600

IKIW

41

BA 582

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
Parameter

Symbol Ratings

Forward voltage
IF= 100 mA

VF

Reverse current
VR=20 V

~R

Diode capacitance
f= 1 MHz
VR=1 V
VR=3 V

Cr

Forward resistance
f= 100 MHz
IF=3 mA
'F = 10 mA

min.

typo

max.

-

-

1

-

-

20

0.6

nA

0.92
0.85

1.4
1.1

n

'f

11gp

Series inductance

Ls

Siemens

v

pF

-

Reverse resistance
f= 100 MHz
VR=1 V

42

Unit

-

0.55
0.36

-

100

-

-

2.8

-

0.7
0.5

kn
nH

Silicon PIN Diode

BA 585

• Current-controlled RF resistor for RF attenuators
• Frequency range 1 MHz ...2 GHz

c.t~

Type

Marking

Ordering code
(taped)

Package

BA 585

white/R.

Q62702-A859

SOO-123

Maximum Ratings
Parameter

Symbol Value

Unit

Reverse voltage

VR

50

V

Forward current

IF

50

mA

Operation temperature range

Top

-55 ... + 125

·C

Storage temperature range

T stg

-55 ... +150

·C

Thermal Resistance
Junction - ambient

I

RthJA

Siemens

I

S

450

IKIW

43

BAS8S

Electrical Characteristics
at TA =25 ·C, unless otherwise specified.
Parameter

Symbol Ratings

Forward voltage
IF=50 rnA

VF

Reverse current
VR=30 V

IR

Diode capacitance
f= 1 MHz, VR = 10 V
f= 100 MHz, VR =0 V

CT

min.

typo

max.

-

-

1.1
50

-

0.28
0.23

0.6
0.4

n

gp

Series inductance

Ls

Diode capacitance CT = f (VR)
f=1 MHzlf=100 MHz

-

22
5

40
7

-

70

-

2.8

-

Forward resistance 'f = f (IF)
f= 100 MHz

1,0
pF

0,8

r\.

L
0,4

\

\
5

\..

'

[\
f = 1 MHz-

....

r--. ....

0,2
f

o

10

20

I I

1

i 1,00,

MrZ

5

-

V 30

- - - - IF

44

nA

'f

Zero bias conductance
f= 100 MHz, VR =0 V

[T

V

pF

-

Forward resistance
f=100 MHz
IF=1.5 rnA
IF= 10 rnA

Unit

Siemens

pS
nH

BA 885

Silicon PIN Diode

c{J.

• Current-controlled RF resistor
for RF attenuators
• Frequency range:
1 MHz ... 2 GHz
• Especially useful
as antenna switch
in TV-sat tuners

Type

BA 885

Ordering code

bulk: Q62702-A742

Marking

PA

taped: Q62702-A608

Maximum ratings
Reverse voltage
Forward current
Operating temperature range
Storage temperature range
Thermal resistance
Junction - ambient

I)

VR
IF
Top

Tstg
RthJA

50
50
-55 ... +125
-55 ... +150

I :5450

V
mA
°C
°C

I KIWI)

Package mounted on alumina 16.7 mm x 15 mm x 0.7 mm.

Siemens

45

BASS5

Characteristics (TA = 25°C)
typ

min

max

Forward voltage
/F= 50 rnA

VF

1.1

V

Reverse current
VR = 30V

IR

50

nA

Diode capacitance
VR = 10V,f=
1 MHz
OV,
100 MHz

CT

0.28
0.23

0.6
0.4

pF
pF

Forward resistance, f = 100 MHz
/F= 1.5 rnA
10 rnA

rf

22
5

40

Q
Q

Zero bias conductance
VR = 0, f= 100 MHz

gp

70

(.IS

Series inductance

Ls

2

nH

Diode capacitance CT = f (VRI
f= 1 MHz/100 MHz

Forward resistance
f=100 MHz

rf

Q

pF
1.0

103

i

5

f\.

'~

0.6

5
0.4

'\.

\

r\
r-- ....

f=lMHz-

~r-..

5

f=llfilt

0.2

o

46

10'

10

lOV

Siemens

7

= f (hI

BAL74

Silicon Switching Diode

•

For high-speed switching

Type

o SAL 74

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

JC

Q62702-A614

Q62702-A718

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 !is
Total power dissipation
TA= 25°C
Junction temperature
Storage temperature range

VR

V
V

hs

50
50
250
250
4,5

Ptot

330

mW

Tj
Tstg

175
-65···+150

°C
°C

RthJA

:0;

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VRM

h
hM

450

mA
mA
A

K/W

o Preferred type
Siemens

47

BAL 74

Electrical characteristics
at TA = 25°C, unless otherwise specified

Symbol

min

typ

max

Unit

Breakdown voltage
I(BR) = 100 I-1A

V(BR)

50

-

-

V

Forward voltage
IF = 100 mA

VF

-

-

1

V

Reverse current

IR

-

-

0,1
100

I-1A
I-1A

DC characteristics

VR = 50V
VR=50V, TA=150°C

-

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance
VR=OV,f=1 MHz

Co

-

-

2

pF

Reverse recovery time
IF = 10 mA, IR = 10 mA,

trr

-

-

4

ns

RL= 100n,
measured at I R = 1 mA

Test circuit for reverse recovery time

OUT

Oscilloscope: R = 50 n

Pulse generator: tp = 100 ns, D = 0,05
t, = 0,6 ns, Ri = son

t, = 0,35 ns
C:5 1 pF

48

Siemens

BAL74

Total power dissipation Ptot

=

Reverse current fA

f (TA)

= f(

TA)

nA
105

rnW

400

VR~70V

1'\

V

~

max.

70~//

200
5

1,\

25V

I'.

:\.

100

5

typo
1/

o
o

so

100

150

200

°c

10t

[I
o

50

100

-7;.

Forward current IF
TA = 25°C

=

0(

10°

5

Peak forward current lFM = f(t)
TA =25°C

f (VF)

rnA
150

I

I/D~0005

5

0.01
0.02

V~05
i/rll
0.2

II

I

100

150

-li,

I max.

typo

~

i

;
50

1

i

Ii
o
o

T

V
0,5

f~
T

D=.J...

1,5 V

10-2
10-6

II
10-5

11111 I 1111 I I

10-4

10- 3 10-1

10-1

-f

Siemens

49

BAL74

Forward voltage VF = f (TA)

V
1,0

-HJ
IF =100 rnA

I-r-.

I I

f

-1-1-

W

10 rnA ............

I'-r-.

in} . . .

0,5

-

~
0,1 rnA

1'-...... 1'-

r-

I'I'-

i'r"r--,
.....

o
o

50

50

100

"'"
150

0(

Siemens

Silicon Switching Diode

•

BAL99

For high-speed switching

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BAL99

JF

Q62702-A611

Q62702-A687

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 111s
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VR

V
V

IF
IFM
IFs

70
70
250
250
4,5

Ptot

330

mW

Tj
Tstg

175

-65···+150

°C
°C

RthJA

5450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VRM

Siemens

mA
mA
A

51

BAL99

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Breakdown voltage
I(BA) = 100 f!A

V(BA)

70

-

-

V

Forward voltage
IF= 1 mA
IF= 10mA
IF= 50mA
IF=150mA

VF

-

-

715
855
1
1,25

mV
mV
V
V

Reverse current
VA = 70V
VA = 25 V, TA = 150°C
VA = 70 V, TA = 150°C

IA

-

-

2,5
30
50

f!A
f!A
f!A

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance
VA = 0 V, f = 1 MHz

CD

-

-

1,5

pF

Reverse recovery time
IF = 10 mA, IA = 10 mA,

trr

-

-

6

ns

-

-

RL=100n,
measured at I A = 1 mA

Test circuit for reverse recovery time

OUT

Oscilloscope: R = 50 n
tr = 0,35 ns
C :5 1 pF

Pulse generator: tp = 100 ns, D = 0,05
tr = 0,6 ns, Ri = 50 n

52

Siemens

BAL99

Total power dissipation P'o'

Reverse current I R = f (TA)

((TA)

=

nA

mW
400

105

VR =70V

V

V

max.

70~/J

200

25V

I' r\

100

typo

o
o

10'
100

50

200 'C

150

IlL
J

o

50

Peak forward current I FM
TA = 25°C

Forward current IF = ((V F)
TA= 25°C

mA
150

I

0.1
0.2

I

Ij max.

typo

10°

S

f (t)

V~05

/
100

O(

0=0.005
0.01
0.02

IF

I

=

150

:=1=

....
,.::)(

Ii

~

Ii

50

,
1

t~

i

o
o

i..-'
0,5

0=-.2..
T

./
1,0

1,5 V

10-1
10-6

Illil 1111
10-5

10- 4

T

I lULL!
10-1 10-1

W-l

-t

-VF

Siemens

53

BAL99

Forward voltage VF = {(TAl
V
1,0

ill
I F = 100mA

r-

r-r-r-

I I

W.
10 mA
L _1

~,

0,5

rr-

I

i'-k
0,1 mA

I

54

r--,

I

'r--.

,

r--. . . . .
r--r-.,

I

o
o

r--.

50

150 .(

Siemens

Silicon PIN Diodes

BAR 14-1
... BAR 16-1

• RF switch, RF attenuator
• Low-distortion factor
• Long-term stability of electrical characteristics

Type

Marking

Ordering code
(tape and reel)

Pin configuration

BAR 14-1

L7

Q 62702 - A772

3

10

BAR 15-1

La

Q 62702-A731

L9

SOT-23

3

10

BAR 16-1

~I I ~I 02

Package

Q 62702-A773

~ I I~

02

3

10

~ I ~ 02

Maximum Ratings per Diode
Parameter

Symbol

Values

Unit

Reverse voltage

VR

100

V

Forward current

IF

100

rnA

Total power dissipation, TA = 25 °C2)

Ptot

140

mW

Junction temperature

7j

150

Operating temperature range

Top

-55 ... +150

Storage temperature range

Tstg

-55 ... +150

°c
°c
°c

Thermal Resistance

I

Junction - ambient 1

RthJA

I 5450

IKIW

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

Siemens

55

BAR 14-1
... BAR 16-1

Electrical Characteristics per Diode
at TA = 25°C, unless otherwise specified.
Parameter

Symbol
min

Reverse current
VR = 50V
VR = 100V

IR

Forward voltage
100 mA

VF

Diode capacitance
VR =50V, f= 1 MHz
VR = 0, f= 100 MHz

Or

Forward resistance
f= 100 MHz, IF = 0.01 rnA
IF = 0.10 rnA
I F = 1 rnA
I F = 10 rnA

Ii

Zero bias conductance
VR = 0, f= 100 MHz

gp

-

'L

0.7

Values
typ

Unit
max

-

-

-

100
1

J,tA

-

1.05

1.25

V

-

0.25
0.2

0.5

nA

I F=

pF

-

Q

-

2800
380
45
7

-

Charge carrier life time
I F =10mA,IR =6mA

-

-

50

-

IlS

1

-

Ils

Forward resistance rf = f (IF)

f= 100 MHz

rf

1,/ I r,. =lS00(
85°( '§

25°( ;=
_400( i=

t
'\

./

ltV III
5

10'1

II

J

I

W
5

S

II

I
0.5

1.0

1.5 V

0.1

-~
56

'\.

Siemens

1.0

10

SOmA

BAR 14-1
... BAR 16-1

Diode capacitance

Cr = f

(VR)

pF
1.0

0.5

\ .......

o
o

-

r- QMHf
f=11
00JH; l""- I""-

10

20

30
40
-VR

SOY

Siemens

57

Silicon PIN Diodes.

BAR 17

• Current-controlled RF resistor for RF attenuation
• Switching applications above 1 MHz

Type

Marking

Ordering code
(tape and reel)

Pin configuration

BAR 17

L6

Q 62702 - A785

10

~

03

Package
SOT-23

Maximum Ratings
Parameter

Symbol

Values

Unit

Reverse voltage

VR

100

V

Forward current

IF

100

mA

Total power dissipation, TA = 25 °C2)

P tot

140

mW

Junction temperature

7j

150

°c

Operating temperature range

Top

-55 ... +150

°c

Storage temperature range

Tstg

-55 ... +150

°c

Thermal Resistance

I

Junction - ambient I

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

58

Siemens

RthJA

I :5450

IKIW

BAR 17

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC/AC Characteristics

Symbol

Parameter
Reverse current
VR = 50V
VR =100V

IR

Forward voltage
I F= 100 mA

VF

Diode capacitance
VR = 50 V, f = 1 MHz
VR = 0., f= 100 MHz

Or

Charge carrier life time
IF = 10 mA, IR = 6 mA

'lL

Forward resistance
f= 100 MHz, IF = 0.01 mA
IF=0.1 mA
I F= 1.0mA
I F= 10mA

Ii

Values

Unit

min

typ

max

-

-

50
1

I!A

-

0.91

1

V

-

0.32
0.37

0.55

-

-

4

-

-

1150
160
23
3.5

-

nA

pF

~s

n
-

Forward resistance rf = f (IF)
f= 100 MHz

Forward currentlF =f (VF)

II

T,.=-400(
25°(
85°( ===
1500 (

==
=

W-

I
I

I\.

1\

I

II

I

I II
0.5

1.0

10°
10- 2

1.5 V

-Vf
Siemens

5 10-'

5 10°

5 10'
-IF

59

BAR 17

Diode capacitance

Cr =

f (VR)

pF

2

1\
I'::

1"-.. t--...

f = 1MHz

100Mr
1

o
o

60

10

20

30
40
-VR

sov

Siemens

BAR 60
BAR 61

Silicon PIN Diodes

3i~2

• For RF attenuation
• Switching applications for frequencies above 10 MHz

4tlJ) 1
Type

Marking

Ordering code
(tape and reel)

BAR 60

60

Q 62702 - A786

Pin configuration

Package

,+,

SOT-143

1

2

BAR 61

61

Q 62702-A120

01

1>1

30

* *
4

2

Maximum Ratings per Diode

Symbol

Values

Unit

Reverse voltage

VR

100

V

Forward current

IF

100

mA

Ptot

140

mW

7j

150

Operating temperature range

Top

-55 ... +150

Storage temperature range

Tstg

-55 ... +150

°c
°C
°C

Parameter

Total power dissipation, TA = 25

°C

2)

Junction temperature

Thermal Resistance

RthJA

Junction - ambient 1.

1::0;450

KIW

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

Siemens

61

BAR 60
BAR 61

Electrical Characteristics per Diode
at TA = 25°C, unless otherwise specified.
DC/AC Characteristics
Parameter

Symbol

Reverse current
VR = 50V
VR = 100V

IR

Forward voltage

VF

Values

Unit

min

typ

max

-

-

-

100
1

nA
~

-

-

1.25

V

-

0.25
0.2

0.5

-

2800
380
45

I F = 100 mA

Diode capacitance
VR =50V, f= 1 MHz
VR = 0, f= 100 MHz

Or

Differential forward resistance
f= 100 MHz, IF = 0.01 mA
IF=0.1 mA
I F = 1.0 mA
I F = 10mA

'f

Zero bias conductance
VR = 0, f= 100 MHz

gp

Charge carrier life time

!L

pF

-

n
-

7

-

-

50

-

J.lS

-

1

-

J.ls

-

I F =10mA,IR =6mA
Forward current h = f (VF)

Forward resistance
f= 100MHz

'f = f (IF)

5

I ~;.1500[

II

1

85°[ E
25°[ f=
_400[ 1=

"

1/ II I

0

10

5

5

I

I

1

W
5

2

IJ

I

I
0.5

1.0

0.1

1.SV

-~
62

Siemens

1.0

10

SOmA

BAR 60
BAR 61

Diode capacitance

Cr = f

(VR)

pF
1.0

0.5

1\ r--...

o
o

-

I - QMH

10

r

f~1100JHZ l -I -i--

20

40

30

50 V

Circuit example for attenuation networks with diode BAR 60

I
1kn

I

1nF

1nF

1kn

1nF

Input >--1t--.--o.---+cI7l--t---lE++--<>---<"'--+---I'K Output
I
I
5.6kn IL __

r

I

__-.1 4.7kn

1nF

50kn

Siemens

63

BAR 60
BAR 61

Circuit example for attenuation networks with diode BAR 61

SOk!!
f--I:z:l------.-o+12V

lnF

I

H
1nF
BC 236

lk!!

BAR 61

r------~

I

1k!!

1nF

lnF
I
Input )-U-....-<>-+-+--lE'I--........-+-o--+-.......--~I---+---{ Output

I

lnF

I
I

L

1.6k!!
2.2kn

64

Siemens

BAR 74

Silicon Switching Diode

•

For high-speed switching

c{ff:
Type

o BAR 74

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

JB

Q62702-A615

Q62702-A704

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 ~s
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VR
VRM
/P
/PM
/Ps

50
50
250
250
4,5

V
V

Ptot

330

mW

Tj
Tstg

175
-65···+150

°C
°C

RthJA

::; 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

mA
mA
A

o Preferred type
Siemens

65

BAR 74

Electrical characteristics
at TA = 25°C, unless otherwise specified

Symbol

min

typ

max

Unit

Breakdown voltage
I(BR) = 100 itA

DC characteristics

V(BR)

50

-

-

V

Forward voltage
IF = 100 rnA

VF

-

-

1

V

Reverse current
VR = 50V
VR = 50 V, TA = 150°C

IR

-

-

-

0,1
100

ItA
ItA

AC characteristics

Symbol

min

typ

Co

-

-

max
2

Unit

Oiode capacitance
VR = OV, f=1 MHz
Reverse recovery time
IF = 10 rnA, IR = 10 rnA,
RL= 1000,
measured at I R = 1 rnA

trr

-

-

4

ns

Test circuit for reverse recovery time

OUT

Pulse generator: tp
tr

66

= 100 ns, 0 = 0,05
= 0,6 ns, Ri = 500

Oscilloscope: R = 500
tr = 0,35 ns
C::;; 1 pF

Siemens

pF

BAR 74

Total power dissipation P'o' = f (TA)

Reverse current I R

rnW
400

nA
101

=

f ( TA)

VR =70V

V

//

1\
max.

70~1/

200

25V

r-..
100
typo

/1/

o
o

10'

100

50

200 ·C

150

IJ
o

100

50

150

O(

10°

5

-T"

Forward current iF = f (VF)
TA = 25'C

Peak forward current lFM = f (t)
TA = 25'C

rnA
150

I

0=0005
0.01
0.02

5

V~05
0.1

/

0.2

I

100

j max.

typo

)(

Ii
50

,

J

t~
T

i
o
o

V
0,5

O=-L

T

/
1,5 V

10- 2
10- 6

111111111 I IIII I I

10-5

10- 4

10- 3

10- 2

10-'

-t

Siemens

67

BAR 74

Forward voltage VF

V
1,0

ill
IF=10~~A

f

=

f ( TA)

lI-

CI
10 mA

~r--

0,5

1-1-

"'N::
O.1mA

"

"r-- . . .

r--" I'-t--..r-- t-...

j-..

j-..~

o

o

68

50

150 ·C

Siemens

BAR 99

Silicon Switching Diode

•

For high-speed switching

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BAR 99

JG

Q62702-A610

Q62702-A388

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 its
Total power dissipation
C
TA = 25 D
Junction temperature
Storage temperature range

VR
VRM
iF
iFM
iFs

70
70
250
250
4,5

V
V
mA
mA
A

Ptot

330

mW

Tj
Tstg

175
-65··· + 150

DC
DC

RthJA

::5 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

Siemens

69

BAR 99

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Breakdown voltage
I(BR) = 100!lA
Forward voltage
IF= 1 mA
IF= 10mA
IF= 50mA
IF=150mA

V(BR)

70

-

-

V

-

715
855
1000
1250

mV
mV
mV
mV

VF

-

-

-

-

-

-

-

-

2,5
30
50

).LA
).LA
).LA

Reverse current
VR = 70V
VR = 25 V, TA = 150°C
VR = 70 V, TA = 150°C

IR

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance
VR=OV,f=1MHz

Co

-

-

1,5

pF

Reverse recovery time
IF = 10 mA, IR = 10 mA,
RL= 100n,
measured at I R = 1 mA

trr

-

-

6

ns

-

Test circuit for reverse recovery time

OUT

Pulse generator: tp

=

100 ns, 0

=

Oscilloscope: R = 50 n
tr = 0,35 ns
C:5 1 pF

0,05

tr = 0,6 ns, Ri = 50n

70

Siemens

BAR 99

Total power dissipation P tot = f (TA)

Reverse current I R = f (TA)

mIN
400

nA
105

VR =70V

V

V

max.

i-'

/1/
7OV/

200
5

25V

1\

100

1\
typo

o
o

11/
I

10'

50

a

200 ·C

150

100

50

150 .(

100

-TA

Forward current IF = f (VF)
TA = 25°C

Peak forward current IFM
TA = 25°C

mA
150

I

=

f (t)

1/0= 0005
0.01
0.02

5

V~05

100

rl0.21

I

I max.

typo

tl=

I"'>

ii
ii

50

1

I

i
o

T

,

l/

o

0,5

t~
T

D=~

101,0

-V,

1,5 V

10-6

1IJIII11LIlIlili
10-5 10- 4 10- 3 10-' 10-'

10° s

-t

Siemens

71

BAR 99

Forward voltage VF = f (TA)

V

1,0

W

r--t- I-~

I F=10~~A

U
10 mA

t--r--

r--t-1'--1'--1'--

1;j;-"

0,5
1-1-

't-l
O,lmA

-I--.

""-I'--I'-I'--

1'--"
1'01'0

o

o

50

100

150

0(

-TA

72

.Siemens

Silicon Switching Diode

•

BAS 16

ell.

For high-speed switching

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BAS 16

A6

Q62702-A726

Q62702-A739

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 ~s
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VR
VRM
h
hM
hs

75
85
250
250
4,5

V
V

Ptot

330

mW

Tj
Tstg

175
-65··· +150

°C
°C

RthJA

~450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

Siemens

mA
mA
A

73

BAS 16

Electrical characteristics
at TA = 25 ce, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Breakdown voltage
f (BR) = 100 J.lA

V(BR)

75

-

-

V

Forward voltage
iF= 1 mA
iF= 10 mA
if = 50 mA
if =150 mA

VF

-

715
855
1000
1250

mV
mV
mV
mV

Reverse current
VR = 75 V
VR = 25 V, TA = 150 c
VR = 75 V, TA = 150 c

fR

1
30
50
1,75

J.l.A
J.l.A
J.l.A
V

-

-

-

-

Forward recovery voltage
if = 10 mA, tp = 20 ns

VI,

-

AC characteristics

e
e

-

-

Symbol

min

typ

max

Unit

Diode capacitance
VR = 0 V, f= 1 MHz

Co

-

-

2

pF

Reverse recovery time
if = 10 mA, fR = 10 mA,
RL = 100n,
measured at f R = 1 mA

t"

-

-

6

ns

Test circuit for reverse recovery time

OUT

Pulse generator: tp = 100 ns, 0 = 0,05
t, = 0,6 ns, Ri = 50 n

Oscilloscope: R = 50 n

t, = 0,35 ns
C 51 pF

74

Siemens

BAS 16

Total power dissipation Ptot

=

Reverse current I R = f ( TA)

f( TA)

nA
105

mW

400

VR =70V

~

,/

~

max.

r-'
70~J /

200

5
25V

1\

100

1\
5

typo
1/

o
o

lot

50

100

200 ·C

150

Forward current if = f(VF)
TA = 25°C

11.1

o

150 DC

50

Peak forward current iFM
TA =25°C

=

fIt)

mA
150

I

I/ D=0005

5

0.01
0.02

IFH

100

t

J

5

II max.

typo

[!~05

rl0.21

10'

...

[")
~

i

~

50

,
I

t~

i
o
o

i..-'

0,5

D=.J..
T

,

1/

10-

1,5 V

10-6

IIIIII
10- 5

10- 4

T

1111 I 1111 I I

10- 3

10-'

10-'

100 5

-t

Siemens

75

BAS 16

Forward voltage VF = f ( TA)
V
1,0

1TI

I-I-r-.

IF=10~~A

I-

. ..1
~ m,A

1-...

1-1-

t-.r-.

;;}I-

0,5

r:(
f-f-

O,1mA

I-

1--.1-

...

!'.ro-.

. . . 1-

o
o

76

50

150

O(

Siemens

BAS 19
... BAS 21

Silicon Switching Diodes

•

High-speed, high-voltage switch

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BAS 19
BAS 20
BAS 21

JP
JR
JS

Q62702-A242
Q62702-A707
Q62702-A708

Q62702-A95
Q62702-A 113
Q62702-A79

SOT 23
SOT 23
SOT 23

Maximum ratings
Parameter

Symbol BAS 19

BAS 20

BAS 21

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VR
VRM
IF
IFM

150
200
200
625
280

200
250

V
V
mA
mA
mW

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

100
120

Ptot

150
-65 .. ·+150

Tj
T stg

:5 450

RthJA

Siemens

°C
°C

K/W

77

BAS 19
... BAS 21

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Breakdown voltage ')
I(SR) = 100 IlA

V(SR)

BAS 19
BAS 20
BAS 21
Forward voltage
IF =100 mA
IF =200 mA

VF

Reverse current

IR

VR =
VR =

typ

max

Unit

120
200
250

-

-

V
V
V

-

-

1
1,25

V
V

-

100
100

nA
IlA

-

VRmax
VRmax;

min

-

Tj = 150°C

-

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance
VR=OV,f=1 MHz

Co

-

-

5

pF

Reverse recovery time
IF = 30 mA, IR = 30 mA,

trr

-

-

50

ns

RL= 100n,
measured at IR = 3 mA

Test circuit for reverse recovery time

OUT

Pulse generator: tp = 100 ns, D = 0,05
tr = 0,6 ns, Ri = 50 n

Oscilloscope: R

=

50 n

tr = 0,35 ns
C:5 1 pF

') Pulse test: tp :5 300 Ils, D = 20/0.

78

Siemens

BAS 19
... BAS 21

Total power dissipation Ptot = f (TA)

Raverse current I R = f ( TA)

rnW
400

)JA
10 2
5

~ot

I

V

300

1/
Ityp.

/
200

1I

max.

"\

1'\

/

I\.

IJ

IJ

100

\

1"\

o

I

1"\

o

150

100

50

50

O(

-TA

Forward current IF

=

f ( VFl

Forward voltage VF = f(TA)

rnA
800

V
1,5

r:

I

-

v"
I,

II

f

1,0

500

I

400

I

300

I

........

I

.

250mA

--

~

~A

r-

I I

k

10mA

r-...

0,5

I

200

.......

I

100

o
o

/,

--....

I

IF =625mA

0.5

1.0
-VF

1.5 V

o
o

Siemens

100

200°C

-TA

79

BAS 19
... BAS 21

Forward current IF

=

Reverse voltage VR

f ( TA)

rnA

V

300

300

200

200

=

f( TA)

IF

"- f'\

BAS 21

. . .+-

~

I\.

B~s12

,

1\
100

'\

\

1\
150 0 (

100

50

o

Peak forward current lFM = f (t)

D= 0.005:
VO.0 1
VO.0 2
1:/,0.05
0.1
>0.2

I"-

1

Ii

..

D =--E.
10-2

10-6 10-5

~~

..

I i
t"T -_

1:f1fpl--

1m I ~~
10-'

1I11

10-3

II

10-2

10- 1

10°

S

-f

80

o

50

100

-1A

-TA

10°

,
1\

[\

1\

°°

BA519

100

t\.

Siemens

,

BAS 28

Silicon Switching Diode Array

•
•

For high-speed switching
Electrically isolated diodes

A2~C2

A1~C1
Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BAS 28

JT

Q62702-A 163

Q62702-A77

SOT 143

Maximum ratings
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
f=1lls
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VR

V
V

lFM
lFs

75
85
250
250
4,5

Ptot

330

mW

Tj
Tstg

175
-65···+150

°C
°C

RthJA

:::;450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VRM

IF

Siemens

mA
mA
A

81

BAS 28

Electrical characteristics
at TA = 25°C, unless otherwise specified

Symbol

min

typ

max

Unit

Breakdown voltage
I(BA) = 100 llA

DC characteristics

V(BA)

85

-

-

V

Forward voltage
h= 1 mA
h= 10 mA
h= 50mA
h =150 mA

VF

-

-

-

715
855
1000
1250

mV
mV
mV
mV

Reverse current
VA = 75V
VA = 25 V, TA = 150°C
VA = 75 V, TA = 150°C

IA

-

-

-

-

-

1
30
50

l1A
l1A

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance

Co

-

-

2

pF

trr

-

-

6

ns

VA=OV,f=1MHz
Reverse recovery time
h = 10 mA, IA = 10 mA,
RL= 100n,
measured at IA = 1 mA

Test circuit for reverse recovery time

OUT

Pulse generator: tp = 100 ns, D = 0,05
tr = 0,6 ns, Ri = 50 n

82

Oscilloscope: R = 50 n
tr = 0,35 ns
C:s 1 pF

Siemens

llA

BAS 28

Total power dissipation Ptot = f (TA)

Reverse current I R = f ( TA)

mW

nA
105

400

5

j"3oo

VR =70V

~

V

I"

max.

f-"

1/

70~/1/

200
5

25V

V
100

1\
1\

o
o

typo

/1/
so

100

50

200 'C

150

Forward current IF = f (VF)

Peak forward current iFM

TA = 25°C

TA= 25°C

rnA
150

A
10 2

I

10°

S

f (t)

0.01
0.02
5
rl0
0.1
0.2

I

If max.

typo

0(

0=0.005

5

/
100

=

150

r..,.'/0

i

Ii

50

1

J

t~

i
o
o

0=....1'.T

Vl/
0,5

1,5 V

10-2
10-6

IIII

T

I IIII I 1111 I

10- 5 10- 4

10- 3

L

10- 2

10-1

-t

Siemens

83

BAS 28

Forward voltage VF = '(TAl
V
1,0

ill

I F=100 mA

1-1-

I I

f

~~
10 mA

l"'-

I'--

~I"'-

0,5

.~

-r- ~

1-1-....
1'-- ....
t'--

O,lmA

....

t'--r--,

..... r--.

o
o

84

50

150 °C

Siemens

BAS 40 ...

Silicon Schottky Diodes

•
•
•
•

General-purpose diodes for high-speed switching
Circuit protection
Voltage clamping
High-level detecting and mixing

:5 - available with CECC quality assessment
ESO: Electrostatic discharge sensitive device, observe handling precautions!

Type

Marking

Ordering code
(tape and reel)

:5 BAS 40

43

Q 62702 - 0339

Pin configuration

SOT-23

10
:5 BAS 40-04

44

Q 62702 - 0980

•
•
•
•

Q 62702 - 0978

03

~I~

02

3

Q 62702 - 0979

10
:5 BAS 40-06 46

~
3

10
:5 BAS 40-05 45

Package

~ I I~

02

3

101E;JI~

02

3/7h2

General-purpose diodes for high-speed switching
Circuit protection
Voltage clamping
High-level detecting and mixing

4t$J1

:5 - available with CECC quality assessment

ESO: Electrostatic discharge sensitive device, observe handling precautions!

Type

Marking

Ordering code
(tape and reel)

:5 BAS 40-07

47

Q 62702 - A697

Pin configuration

40

[>1

01

30

~

02

Siemens

Package
SOT-143

85

BAS 40 •••

Maximum Ratings per Diode
Parameter

Symbol

Value

Unit

Reverse voltage

VR

40

V

Forward current

IF

40

mA

Peak forward current

IFRM

80

mA

Surge forward current, t ~1 0 ms

I FSM

200

mA

Junction temperature

Ii

150

°C

Operating temperature range

Top

-55 ... +150

°C

Storage temperature range

Tstg

-55 ... +150

°C

Thermal Resistance

I

Junction - ambient1)
Electrical Characteristics
at TA = 25°C, unless otherwise specified.

I

Parameter

RthJA

I ~450

IKIW
Values

Symbol

I typ

I max

I

Unit

DC characteristics

Breakdown voltage

"'I

01

30

E>I

02

Siemens

Package1)

SOT-143

BAS 70 ...

Maximum Ratings per Diode
Parameter

Symbol

Value

Unit

Reverse voltage

VR

70

V

Forward current

IF

15

mA

Peak forward current

IFRM

40

mA

Surge forward current, t s1 0 ms

I FSM

100

mA

Junction temperature

7j

150

°C

Operating temperature range

Top

-55 ... +150

°C

Storage temperature range

Tstg

-55 ... +150

°C

RthJA

s450

Thermal Resistance
Junction - ambient1)

IKIW

Electrical Characteristics per Diode
at TA = 25°C, unless otherwise specified.
Parameter

Unit

DC characteristics
70

-

-

-

-

0.1
10

-

380
690
780

410
750
1000

Or

-

1.6

2

pF

Charge carrier life time
I F =25mA

'!

-

-

100

ps

Differential forward resistance
IF = 10 mA, f= 10 kHz

Ij

-

30

-

n

Breakdown voltage
IR = 10 IlA

V(SR)

Reverse current
VR =50V
VR =70V

IR

Forward voltage
I F= 1 mA
I F= 10mA
I F= 15 mA

VF

Diode capacitance
VR=O, f= 1 MHz

V

IlA
mV

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

Siemens

89

BAS 70 ...

Characteristics per Diode
at TA = 25 °C, unless otherwise specified.
rnA Forward currentIF = f (VF)

~A
102

102

5

5

IF

AI II~

tW

~

Ii ':'

Reverse currentIR

...

-

7;.=150,,\

-

5

I--

II

II

100

=f (VR)

I-- 1A=-400 (

25 0 ( -I-85°( _I-"""150 0 (-1--

5

85°(

=

10- 1
~

1/

-25°(

5

10- 2
0

0.5

1.5 V

1.0

20

-VF
Diode capacitance
f= 1 MHz

c;. =f (VR)

80 V

40

Differential forward resistance rf = f (IF)
f= 10 kHz

pF

2.0

5

5
~

1.0

\

,

"\
0.5

o
o
90

I""..

10

--

10 1
5

-

20 30 40 50 60 70
-VR

1\

10 0
0.1

80 V

Siemens

0.5 1

5 10

5 100mA

Silicon Switching Diodes

BAS 78A ... BAS 78D

• Switching applications
• High breakdown voltage

Type

Marking

Ordering code (12-mm tape)

Package'

BAS 78A

BAS 78A

062702 - A910

SOT -223

BAS 78B

BAS 78B

062702 - A911

SOT-223

BAS 78C

BAS 78C

062702 - A912

SOT-223

BAS 78D

BAS78D

062702 - A913

SOT-223

Maximum Ratings
Parameter

BAS BAS BAS BAS
Symbol 78A 78 B 78C 780

Reverse voltage
Peak reverse voltage

VR
VRM

Forward current

IF

1

A

Peak forward current

IFM

1

A

Surge forward current t=ll1 S

Unit

50

100

200

400

V

50

100

200

400

V

I FS

10

A

Total power dissipation, TA :525°C 1)

PIOI

1.5

W

Junction temperature

Tj

Storage temperature range

T"lg

150
-65

to

+ 150

·C
·C

Thermal Resistance
Junction - ambient 1)

:583.3

IKIW

I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.5mm.
Mounting pad for the collector lead min 6 cm 2.
•) For detailed dimensions see chapter Package Outlines.

Siemens

91

BAS 78A ... BAS 780

Characteristics
at TA =25 ·C, unless otherwise specified.
Parameter

Unit

DC Characteristics
Breakdown voltage
Ic = 10mA, Is = 0

Forward voltage
IF = lA
IF =2A

BAS
BAS
BAS
BAS

VISR)

78A
78B
78C
780

VF

1)

Reverse current
VR = VA max
VA = VA max, TA = 150 ·C

IR

50
100
200
400

--

-

-

-

1.6
2

-

-

1

50

-

10

-

-

1

-

V

V

~A

AC Characteristics
Diode capacitance
VA =0, f= 1 MHz

Co

Reverse recovery time
IF = 200mA, IR = 200mA,
RL = lOOn
measured at IA = 20mA

trr

Test circuit for reverse recovery time

I ~ III

Oscilloscope
90%

I
Pulse generator:

tp = 100ns,D = 0.05
t, " 0.6ns.R; " SOQ
Vp = VR + /pR,

Oscilloscope: R"

C:S IpF

1)Pulse test conditioRs:t;?; 300~s;D = 2%

92

son

t, = 0.3Sns.

Siemens

pF
~s

BAS 78 A ... BAS 78 0

= ((TAl

Total power dissipation P IOI

2.0

'-,-

-'-"-T-r-'-~-'-'~-'

----i-f--I--I-- - - -

W

~-I-'H-r-~~-+-14-4-'-I­
-1---1---- 1------1-- I--

-I--H-t--t-j-I- -- -

Forward current IF
A TA=2S"C

10'

5

,/.V

I--

hl·-'- - - - -1--- -.--

-1-1\

1--+- - - - - -

--1-1\1--

H--t--H-I-l\-,\-.--~-· 1= _ ~ ,:::..~
1.0

I--

I--

-~

- .-

-

0.5

1\ - -

_

10-

,

I

1- - - - r-r--

1--1-1----\_._---

=_ =~~I~-=:~
.-

5

. --1---

- -f--j-f-j--+·H-t-'H-I--II-I-f\ -

= ((VFI

-

=~~-=~~

I

c-- I -

- -. - -- - - - --. -. - '\ -i-

--'-

. - -- -1\'-: .:. _'l~ __ L-\

-_.-

100

O(

10- 3

I

o

150

2 V

----v,

Reverse currant fR = ((TAl

nA VeE

= 10 V

10 5
5

:-

-

.-

I-

-- ..

~

I.

!

. 17-

,-

m'
5
1-'

-

",,""
~.

l typ.

max ......

10 3

-

10 1
5

--

Z.:.. - ~-/-

5

.

-

I
-1- --

1=

-T,.

Siemens

93

BAS 79A ... BAS 790

Silicon Switching Diodes

• Switching applications
• High breakdown voltage
• Common cathode

A2

Type

Marking

Ordering code (12-mm tape)

Package·

BAS 79A

BAS79A

062702 - A914

SOT-223

BAS 79B

BAS 79B

062702 - A915

SOT-223

BAS 79C

BAS 79C

062702 - A916

SOT-223

BAS 790

BAS790

062702 - A917

SOT-223

Maximum Ratings
Parameter

BAS BAS BAS
Symbol BAS 79'B
79C 790
79A

Peak reverse voltage

VR
VRM

Forward current

Reverse voltage

Unit

50

100

200

400

V

50

100

200

400

V

IF

1

A

Peak forward current

IFM

1

A

Surge forward current t=l\ls

IFS

10

A

Total power dissipation, TA S 25 ° C 1)

P tot

1.5

W

Junction temperature

Tj

150

°C

Storage temperature range

Tstg

-65

to

Thermal Resistance

s83.3

Junction - ambient 1)
1) Package mounted on an epoKy printed circuit board 40mm x 40mm x I.Smm
Mounting pad for the collector lead min 6cm2
Of For detailed dimensions see chapter Package Outlines.

94

Siemens

+ 150

°C

'.....,...--

BAS 79A ... BAS 790

Characteristics
at TA =25°C. unless otherwise specified.

I

Parameter

Symbol Values
min. Ityp.

Imax.

IUnit

DC Characteristics
Breakdown voltage
Ic 10mA. 18 =0

VISA)

=

Forward voltage
IF =1A
IF =2A

BAS
BAS
BAS
BAS

79A
79B
79C
79D

VF

1)

Reverse current
VA =VA max
VA VA max. TA =150°C

IA

=

50
100
200
400

-

-

-

-

1.6

2

-

-

1
50

-

10

-

-

1

-

V

V
V

1-1

A

AC Characteristics
Diode capacitance
VA =O. f =1 MHz

Co

Reverse recovery time
IF =200mA. IA =200mA.

trr

Rl

= lOOn

measured at IA

pF
I-IS

=20mA

Test circuit for reverse recovery time
OUT

I ~ III

Osci II oscope
90%

-*-_ _ _ _--'

1, _ _ _

Pulse generator: tp =100m,D = 0.05
t, = 0.6m.R, = 50n
Vp = V R + IfXR,

Oscilloscope: R = 50n
Ir = O.35ns.
C :s 1pF

1}Pulse test conditions:t:2 3001-ls;0 = 2%

Siemens

95

BAS 79 A ... BAS 79 0

Forward current IF = f(VF)

Total power dissipation Plot = f(TA )

A TA = 2S"C

2.0 ,,-.,-,,'-Y- ~
W

10'

-I-~-- ~

5

- .. c-- -. -. '- .- -t--j-l--j-j
1--1- -. - - -. -,,1~h'"

r'l-

/'

--'I-i-J--t-l-+-+-j

-- -f\.---- \

-'-1---1-1-

--

s

1-1-+-1---1

rr- 'S-r-- __ _~-.IH-+-t-\- H-+-i

1.0

,

10"

r-- - -- --1\ --t--lH---t-+-H
f\- -r-- 0- \ -- -1-0-1-

- ~ ..

- --

0.5

I .

S

. - 1-:--1-- -

- - .. -. --

~

\-"'\-+-+--I-l

2

I\.
- - 1-1-- - - - -1--+'<1-1--1
I---f------.- .. -1-

f\~

OLL~LL_L_LL~LL~l_L~I\J
100 ·C
150
o
50

10"l

-Ti.

Reverse current lR = ((TA )
nA VeE = 10 V
lOS

5

max .....

Ityp,

lO l

S

V

10'

o

so

100

ISO

°c

-~

96

Siemens

a

2 V

Silicon Low Leakage Diode

BAS116

• Low Leakage applications
• Medium speed switching times
• Single diode

c(J.

Type

Marking

Ordering code B-mm tape

Package

BAS116

JVs

Q62702-A919

SOT 23

Maximum Ratings
Description

Symbol

Reverse voltage
Peak reverse voltage

VR
VRM

Forward current

IF

250

mA
mA

Surge forward current ,t = 1ps

IFM
IFs

250

Total power dissipation, TA=25·C

P IOI

330

mW

Junction temperature

1j

150

·C

Storage temperature range

Tsig

Peak forward current

BAS116
75

V

85

V

4.5

-65

Unit

to + 150

A

·C

Thermal Resistance

IRIhJA

Junction-ambient 1)

:$450

IKIW

1) Package mounted on alumina 15mm x 16.7mm x O.7mm

Siemens

97

BAS116

Silicon Low Leakage Diode

Characteristics
at TA = 25°C, unless otherwise specified.
Description
max.

IUnit

DC Characteristics
breakdown voltage
I(SR) =100 vA

V(SR)

Forward voltage
IF = 1mA
IF= 10mA
IF = 50mA
IF= 150mA

VF

Reverse current
VR=75V
VR=75V, TA=150°C

IR

75

·

.

V

·
·
·

·

·
·
·

900
1000
1100
1250

mV
mV
mV
mV

·

5
80

nA
nA

.

pF

3

lIs

·
·

·

·

·

,. 2

AC Characteristics
Diode capacitance
VR=OV, f=1 MHz

Co

Reverse recovery time
IF = 10mA, IR = 10mA,
RL = 100Q
measured at IR = 1mA

t"

·

Test circuit for reverse recovery time
OUT

Oscilloscope

Pulse generator: tp= 100ns,O= 0.05
t, 0.6ns,Rj = son

=

98

Oscilloscope: R = 50Q
t, = 0.35ns.
C:s 1pF

Siemens

0.5

Silicon Low Leakage Diode

BAS116

Total powar dissipation p.o. = f( TA )

Rever.e current I.

mW
400 ,.,-,.,-,.,-,.,-rnrnrn;-r"1;-r"1'"

= f(

TA )

10'

VA -7 V
ox.

/'

v

,/
10'

/..

/

typo

'"
1/

100 1+1+1+H-f-Hf-Hr+I'-H'-H-t-!

/

O~LLLLLLUUUUUUUW~~

o

50

100

150

200

°c

100

00

- - - TA

-T.

'c

tao

--'A

Forward current I, = fIV,)
TA = 25 "C

Peak forward current I'M = f(t)
T. = 25 "C

,,

,.0
mA

,p.

,
,,
,

100

m• •

5
!

~

l~O_1I

I

.0

J

lO-'mmll3:~~!31m

I
1

o=+~

5

/

..

/

.

1O-1L...L-L.LJ1...L..LJ.
111.u.....1.L..J
11Iu.JJIIUL...J,I...LIIULIIU.......
IJ..LI1...IL..J..LU
1

-VF

V

1.'

10-6

10-5 10- 4

10- 3

10-1

10-'

100 s

-t

Siemens

99

Silicon Low Leakage Diode

BAS116

=

Forward voltage VF f (TA)
1.2

-I'- I'-I'-r-.

-I ---1.0

v.

-t-

."

100

l"- I"-

-r-. r-. t-

--

&0

l"- i-

IF ., Om

Om
i- i- tt- t- r-.

r-. r-. :-r-. I'- r-.
Om

1m

O 1m

-- -

t-

--T.
100

C·

r--

1&0

Siemens

Silicon Schottky Diodes

BAT 17 ...

• For mixer applications in the VHF/UHF range
• For high-speed switching

ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

BAT 17

53

Q 62702 - A504

Pin configuration

SOT-23

~

10

BAT 17-04

54

55

~I~

Q 62702 - A776

56

02

3

10 ~

BAT 17-06

03

3

Q 62702 - A775

1a

BAT 17-05

Package

I ItEI

02

3

Q 62702 - A777

10

!tEl

I~

02

Maximum Ratings per Diode
Parameter

Symbol

Value

Unit

Reverse voltage

VR

4

V

Forward current

IF

30

rnA

Junction temperature

1j

150

Operating temperature range

Top

-55 ... +150

Storage temperature range

Tstg

-55 ... +150

°C
°C
°C

Thermal Resistance

I

Junction - ambient1

RthJA

I :5450

IKIW

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

Siemens

101

BAT 17 ...

Electrical Characteristics per Diode
at TA = 25°C, unless otherwise specified.
Unit

Parameter

DC characteristics
Breakdown voltage

V(SR)

4

-

-

-

-

0.25
1.25
10

200
350

275
340
425

350
450
600

V

IR = 10 J.tA

J.tA

Reverse current
VR =3V
VR = 3 V, TA = 60°C
VR=4V

IR

Forward voltage
IF=0.1mA
IF = 1 mA
h= 10mA

VF

Diode capacitance
VR=O, f=1 MHz

Cr

-

0.75

1

pF

Differential forward resistance

Ii

-

8

15

n

F

-

5.8

7

dB

mV

-

IF = 5 mA, f= 10 kHz
Noise figure
h=2 mA, f=900 MHz
IF noise figure:
F= 1.5 dB, f= 35 MHz

102

Siemens

BAT 17 ...

Reverse current IR

=f (VAl

5

i::
f--

25°(
85°(
1500 (

I/'

/

~TA=
~-400(
f'Z I'"

TA =150 0(

V

IT

~ J ~ f-.. ]

850(

7 IT

II

25°(

J I

10-2

o

0.1

0.2

I
0.3

0.4

0.5

0.6 V

1.0

2.0

3.0

4.0 V

-If

=

Diode capacitance Or f (VR)
f= 1 MHz

Differential forward resistance
f=10kHz

'f =f (4)

pF

1.0

5

\

[T

~

-..;;

1

[\
1"......

0.5

I\,
1

10

5

o
o

1.0

2.0

3.0

'"
!'....

4.0 V .

Siemens

103

Silicon Schottky Diode

BAT 64

• For low-loss, fast-recovery rectifiers, meter protection,
bias isolation and clamping applications
• Integrated diffused guard ring
• Low forward voltage

Type

Marking

Ordering code
(tape and reeQ

BAT 64

64

Q 62702 - A879

Pin configuration

~

10

03

Package
SOT-23

Maximum Ratings
Parameter

Symbol

Value

Unit

Reverse voltage

VR

30

V

Forward current

IF

200

rnA

Average forward current (50/60 Hz, sinus)

I FAV

100

rnA

Surge forward current (t $10 ms)

I FSM

800

rnA

Ptot

230

mW

°c
°c

»

Total power dissipation (TA $ 25 °C2
Junction temperature

7j

125

Storage temperature range

Tstg

-55 ... +150

Thermal Resistance

I RthJA

Junction - ambient1

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

104

Siemens

1$430

IKIW

BAT 64

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
Parameter

Unit

DC characteristics

Reverse current
VR=25V
VR = 25 V, TA = 125°C

fR

Forward voltage
fF= 1 mA
fF= 10mA
fF= 30mA
fF= 100 mA

VF

Diode capacitance
VR = 1 V, f = 1 MHz

Or

Reverse recovery time
fF:fRl:fR2=10:10:1 mA

trr

-

-

2
200

-

-

-

320
375
420
550

-

4

6

-

-

5

mV

-

Siemens

J.IA

1000
pF
ns

105

BAV70

Silicon Switching Diode Array

•
•

For high-speed switching
Common cathode

Type
(3 BAV70

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

A4

Q6800O-A3574

Q68000-A6622

SOT 23

Maximum ratings per diode
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 ~s
Total power dissipation
TA= 25°C
Junction temperature
Storage temperature range

VR
IFM
IFs

70
70
250
250
4,5

V
V
mA
mA
A

Ptot

330

mW

Tj

175

Tstg

-65 .. ·+150

°C
°C

RthJA

::::;450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VRM

IF

(3 Preferred type

106

Siemens

BAV70

Electrical characteristics per diode
at TA = 25°C, unless otherwise specified

DC characteristics

Breakdown voltage
I(BR) = 100 IlA
Forward voltage
iF= 1 rnA
IF= 10mA
iF= 50mA
iF=150mA
Reverse current
VR = 70V
VR = 25 V, TA = 150°C
VR = 70 V, TA = 150°C

Symbol

min

typ

max

Unit

V(BR)

70

-

-

V

-

-

715
855
1000
1250

mV
mV
mV
mV

-

-

2,5
30
50

IlA
IlA
IlA

VF

-

-

IR

-

-

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance
VR=OV,f=1MHz
Reverse recovery time
if = 10 rnA, IR = 10 mA,
RL = 100n,
measured at IR = 1 mA

Co

-

-

1,5

pF

trr

-

-

6

ns

Test circuit for reverse recovery time

OUT

Oscilloscope: R = 50 n
tr = 0,35 ns
C:5 1 pF

Pulse generator: tp = 100 ns, D = 0,05
tr = 0,6 ns, Ri = 50 n

Siemens

107

BAV70

Total power dissipation Ptot

=

Reverse current I R = f (TA)

f( TA)

nA
105

mW
400

5
VR =70V

V

-"

max.
i--"

1/

7OV/

200
5

25V

100

1\
5

typo

/

o
o

10'
100

50

200 ·C

150

/,/

o

50

Forward current iF

=

Peak forward current IFM = f(t)
TA= 25°C
A
10 1
/D=0.005
5
0.01
F02
'lOS

f (VF)

rnA

I

II

100

I

I max.

typo

O(

-7i.

TA = 25°C

150

150

100

-1A

....

'll0.2

~

~

~t2<

i
50

o

i

lO-

Ii

S

0,5

t~

D=i
T

T

l/

o

,

1,5 V

10-1
10-6

1111 I 1111 I 1111 I I
10- 5 10- 4 10- 3 10-1 10-'

-t

108

Siemens

100 s

BAV70

Forward voltage VF = f (TA)

V
1,0

ill
I F = 100 mA
I I

f

r-

t-t-_

r....

~w.

r--r-ij;--r-10 mA

t---

J

0,5
-I- -

'r-l
O,1mA

't---r--

r--r-- ......

1"',

,,~

r-.,
'i'

o

o

50

100

150

°c

-TA

Siemens

109

BAV74

Silicon Switching Diode Array

•
•

For high-speed switching
Common cathode

C~A1
~A2

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

BAV74

JA

Q62702-A498

Q62702-A695

SOT 23

Maximum ratings per diode
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 I-Ls
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VR
VRM
IF
IFM
IFs

50
50
250
250
4,5

V
V
rnA
rnA
A

Ptot

330

mW

Ti
Tstg

175
-65 .. · +150

°C
°C

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

RthJA

~450

K/W

110

Siemens

BAV74

Electrical characteristics per diode
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Breakdown voltage

V(BR)

50

-

-

V

VF

-

-

1

V

-

0,1
100

j.!A
j.!A

I(BR) = 100 j.!A

Forward voltage

IF =

100 rnA

Reverse current

IR

VR = 50V
VR = 50 V, TA = 150°C

-

-

-

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance
VR = 0 V, f= 1 MHz

Co

-

-

2

pF

Reverse recovery time

trr

-

-

4

ns

IF =

10 rnA, IR = 10 rnA,

RL= 1000,
measured at I R = 1 rnA

Test circuit for reverse recovery time

OUT

= 100 ns, 0 = 0,05
tr = 0,6 ns, Ri = 50 0

Oscilloscope: R = 50 0

Pulse generator: tp

tr = 0,35 ns
C::; 1 pF

Siemens

111

BAV74

Total power dissipation P tot = f ( TA)

Reverse current IR

mW
400

nA

= f(TA)

105

5
YR =70V

/

/

max.

1-"'

7O~1/

200

I'

25V

1'1
1\

100

1\
typo

III

o
o

j
100

50

150 °C

50

200 ·C

150

Forward current IF = f(VF)

Peak forward current I FM

TA = 25°C

TA=25°C

mA
150

10

f (t)

A

I

100

5

I
II max.

typo

:~:~5

/

10'

~O.2

5

"l'

"I><

10°

i

5

~

50
10-'

I

Ii
o
o

=

0,5

"'"

5

I

tt\{L

D=--.F...
T

T

[/

1,5 V

IV

111111111 11111 I I

10-6

10-5 10-4

10- 3 10-1

-t
112

Siemens

10-'

10°

5

BAV74

Forward voltage VF = f ( TA)
V
1,0

ill

r-_

I F = 100 rnA
I I

hl
10 mA

~
'}.k

0,5
l-

I- O,1mA

r-r-r-

..........
r--- .....

. . . . . . r-1' ....

r--r-..

r-. . . .

I'1'1'-

.....

o
o

50

100

""
150

0(

Siemens

113

BAV99

Silicon Switching Diode Array

•
•

For high-speed switching
Connected in series

C2,Al

Type

Iil BAV99

f;jfo

A2

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

A7

Q68000-A 1185

Q68000-A549

SOT 23

Maximum ratings per diode
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 ~s
Total power dissipation
TA= 25°C
Junction temperature
Storage temperature range

VR
VRM
IF
IFM
IFs

70
70
250
250
4,5

V
V
mA
mA
A

Ptot

330

mW

Tj
Tstg

175
-65···+150

°C
°C

RthJA

:5 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

mPreferred type
114

~Cl

Siemens

BAV99

Electrical characteristics per diode
at TA = 25°C, unless otherwise specified

Symbol

DC characteristics

min

typ

max

Unit

70

-

-

V

-

-

715
855
1000
1250

mV
mV
mV
mV

-

-

2,5
30
50

!LA

min

typ

max

Unit

-

-

1,5

pF

-

6

ns

Breakdown voltage
I(BR) = 100 !LA

V(BR)

Forward voltage
h= 1 rnA
h= 10 mA
h= 50mA
h =150 mA

VF

Reverse current
VR = 70V
VR = 25 V, TA = 150°C
VR = 70 V, TA = 150°C

IR

AC characteristics

Symbol

Diode capacitance
VR = 0 V, f= 1 MHz

Co

Reverse recovery time
h = 10 mA, IR = 10 mA
RL= 100n,
measured at I R = 1 mA

trr

-

!LA
!LA

Test circuit for reverse recovery time

OUT

Oscilloscope: R = 50 n
tr = 0,35 ns
C::; 1 pF

Pulse generator: tp = 100 ns, 0 = 0,05
tr = 0,6 ns, Ri = 50 n

Siemens

115

BAV99

Total power dissipation Ptot = '( TA)

Reverse current I R = '( TA)

mW
400

nA
101
5
V.=70V
,/

1\

V

max.

t-.

II
70V

200

'j

5

\

25V

\
100
5

typo
1/

o

I

o

50

100

Forward current IF
TA = 25°C

=

50

200 ·C

150

150°C

Peak forward current I FM
TA = 25°C

'(VF)

=

'(t)

mA
150

I

;0-0.005

5

0.01
F02

l'oS

/

I'll

0.2

I

100

Ii max.

typo

~

100

i

5

50
1

f~

Ii
o
o

0=+

T

V
0,5

2

1111111111 I 1111 I I

1,5 V
-f

116

Siemens

BAV99

Forward voltage VF = f (TAl
V
1,0

ill
IF=10~~A

w..
10 mA

0,5

r-

i:} . . .
X
r- O,1mA

r-r-

-r--r--

. . . r--.. .
r--r-. .....

"' ..... .....
~,

r--.....
~~

o

o

50

100

150 ·C

Siemens

117

Silicon Low Leakage Diode Array

BAV170

• Low Leakage applications
• Medium speed switching times
• Common cathode

Type

Marking

Ordering code B-mm tape

Package

BAV170

JXs

Q62702-A920

SOT 23

Maximum Ratings
Description

Symbol

Reverse voltage
Peak reverse voltage

VR
VRM

Forward current

BAV170

Unit

70

V

70

V

IF

250

rnA

Peak forward current

IFM

250

mA

Surge forward current ,t = 1115

IFs

4.5

Total power dissipation, TA = 25· C

PlOt

330

mW

150

·C

Junction temperature

Tj

Storage temperature range

Ts,g

-65

to +150

A

·C

Thermal Resistance
Junction-ambient 1)

:;;450

1) Package mounted on alumina 15mm x 16.7mm x O.7mm

118

Siemens

IKIW

BAV170

Silicon Low Leakage Diode Array

Characteristics
at TA = 25 • C, unless otherwise specified.

I

Description

DC

I

Symbol Ratings
min. Ityp.

Imax.

IUnit

Characterl~tlcs

breakdown voltage
'IBR) = 100 llA

VIBR)

Forward voltage
IF= 1mA
IF= 10mA
IF = 50mA
IF= 150mA

VF

Reverse current
VR=70V
VR = 70V, TA = 150·C

IR

70

-

-

V

-

-

900
1000
1100
1250

mV
mV
mV
mV

-

-

5
80

nA
nA

-

2

-

pF

-

0.5

3

lIS

AC Characteristics
Diode capacitance
VR=OV, f=1 MHz

Co

Reverse recovery time
IF = 1OmA, IR = 10mA,
RL = 100Q
measured at IR = 1mA

trr

Test circuit for reverse recovery time
DUT

Oscilloscope

Pulse generator: tp= 100ns,D= 0.05

t,

= 0.6ns,Ri = son

Oscilloscope: R =

son

t, = O.35ns,
C:s 1pF

Siemens

119

Silicon Low Leakage Diode Array

BAV170

Total pow.r diaaipation Po.. = fl TA)

Rav.,.. curr.nt I. '" fl TAl

..w

10'

400

r.

v._
x.

r..;'

1/

V

10'

200
Yo.

10'

I' ~
100

II

°°

100

.0

150

tOO

- TA

,,

"'"

,0=0.005

f

0.01
,0.02
/~.OS
'/~·1 ::
0.2

/

m.

yo.

100

s

I
I

,:

...

~

.,.:

~
II

.0

I

I

to- 1

I
I

o

120

..

110

P..k forward current 10M '" fIt)
TA - 25 "C

110

o

·c

--'A

-1A

Forward currant I, = fW,)
TA = 25 "C

"

1

10'

so

S

II
~ ... ~'

-v.
1

V

t.'

Siemens

I

tiQ-L

0=-;-

nm

T

111111111111
to-2
to-6 10-S to'" tool to-2 to-'
-t

v:/' s

Silicon Low Leakage Diode Array

BAV170

Forward voltage VF =f (TA)
1.2

r- -l1.0

IIF

~-

v.

I
..

-----r---r--I-

1-1--0

80

·1 Om

-I- l0m

-

1"""_

t- 1--

r- l-I-Om

1m

r---_

o 1m

r-- r--_

I""" I-

--r-.

-

--

-

--T.
100

C·

....

150

Siemens

121

BAV199

Silicon Low Leakage Diode Array

J7Jw

• Low Leakage applications
• Medium speed switching times
• Connected in series

fifo

C2,A1

Type

Marking

Ordering code B-mm tape

Package

BAV199

JYs

Q62702-A921

SOT23

C1

A2

Maximum Ratings
Description

Symbol

Reverse voltage

VR
VRM

70

V

Peak reverse voltage

70

V

Forward current

IF

250

mA

Peak forward current

IFM

250

mA

BAV199

Surge forward current ,t = 1lIS

IFS

4.5

Total power dissipation, TA = 25 ° C

P IOI

330

Junction temperature

Tj

Storage temperature range

TSl9

150
-65

to + 150

Unit

A
mW
°C
·C

Thermal Resistance
Junction-ambient! )

'l

IRiJlJA

Package mounted on alumina 15mm x 1S.7mm x O.7mm

122

Siemens

S450

IKM'

Silicon Low Leakage Diode Array

BAV199

Characteristics
at TA = 25 • C, unless otherwise specified.
Description

Imax.

Unit

DC Characteristics
breakdown voltage
I(BR) = 100 pA

V(BR)

Forward voltage
IF = 1mA
IF= 10mA
IF = 50mA
IF= 150mA

VF

Reverse current
VR=70V
VR=70V, TA=150·C

IR

70

-

-

V

---

-

---

900
1000
1100
1250

mV
mV
mV
mV

-

-

-

5
80

nA
nA

-

2

-

pF

-

0.5

3

ps

AC Characteristics
Diode capacitance
VR=OV,f=1 MHz

Co

Reverse recovery time
IF = 10mA, IR = 10mA,
RL =100Q
measured at IR = 1mA

tf(

Test circuit for reverse recovery time

OUT

Oscilloscope

Pulse generator: tp= 100ns,D= 0.05
t, == 0.6ns,Rj = son

Oscilloscope: R = 50n
t, = 0.35n5,
C s 1pF

Siemens

123

Silicon low leakage Diode Array

BAV199

Total power dissipation p••• = f( TA)

Rever.e current I.

mW

= f( TA )

'0'

400
VA =7 V
ox.

r-

./

:/

V

'0'
~

200

typo

'0'

"
\

100

.

/

'0'

o
o

'0'

50

100

200

150

IF

= f(VF)

Peak forward current
TA = 25 OC

·C

100

IFM

= fIt)
'

A

'.0
mA

I,

10 2

I

5

"

I

1/ 0 =0005
0.D1

IF M

r

,
,
,

yp.

ma.

'00

II

10'

0.02
[;~.05

rl'0.2

5

10°

I:

!

tl'

5

I

.0

,

,

II

10-

I

5

I}

..
124

100

--'A

-J,i

Forward current
TA = 25 OC

--T.

'0

ec

,/

=

I

tl};r-

O=-f

T

.... ~'

-v.
1

Y

1.8

1111 I I III I 1111 I I
10-2
10-6 10-5 10"' 10- 3 10- 2 1(r'

-t

Siemens

10° s

Silicon Low Leakage Diode Array

BAV199

Forward voltage VF = f (TA)
1.'
~:-

1.0

--r-'F -1 Om

~-

v.

I

--- -

r- r--r-.

---

Om :-I-Om

--

-- --- -- -

-- -I-r1m

..

--f-

o 1m

SO

-.-.

-

100

C'

180

--TA

Siemens

125

BAW56

Silicon Switching Diode Array

•
•

For high-speed switching applications
Common anode

Type

!:"IBAW56

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

A1

Q62702-A471

Q62702-A688

SOT 23

Maximum ratings per diode
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t = 1 !!s
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range

VR
VRM

V
V

hM
hs

70
70
250
250
4,5

Ptot

330

mW

Tj
Tstg

175
-65···+150

DC
DC

RthJA

:5 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

h

!:"I Preferred type

126

Siemens

mA
mA
A

BAW56

Electrical characteristics per diode
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Breakdown voltage
I(BR) = 100 (.LA

V(BR)

70

-

-

V

Forward voltage
IF= 1 rnA
IF= 10mA
IF= 50mA
IF =150 rnA

VF

-

-

715
855
1000
1250

mV
mV
mV
mV

Reverse current
VR = 70V
VR = 25 V, TA = 150°C
VR = 70 V, TA = 150°C

IR

-

2,5
30
50

(.LA
(.LA
(.LA

AC characteristics

Symbol

Diode capacitance
VR = OV, f=1 MHz

Co

Reverse recovery time
IF = 10 rnA, IR = 10 rnA,
RL= 1000,
measured at I R = 1 rnA

trr

-

-

-

min

typ

max

Unit

-

-

2

pF

-

6

ns

Test circuit for reverse recovery time

OUT

Oscilloscope: R = 50 0
tr = 0,35 ns
CS 1 pF

Pulse generator: tp = 100 ns, 0 = 0,05
tr = 0,6 ns, RI = 50 0

Siemens

127

BAW56

Total power dissipation Ptot = f (TA)

Reverse current I R = f (TA)

mY!
400

105

nA
5
\-R=70V

r-.

V

,;'

max.

/1/

7OY/II

200

5
25V

1\
1\

100

1\
5

o
o

typo

J/
/J
50

100

100

50

200 ·C

150

150

O(

10°

S

-/A

Forward current

IF = f(VF)

Peak forward current I FM = f (t)

TA= 25°C

TA= 25°C

mA

A

150

10 1

I

1/0= 0.005

5

II

I

100

0.01
0.02
[;~.05
I/ r
0.2

ll

Ii max.

typo

~

i
50
1

I

Ii
o
o

i,..o'

0,5

O=J...
t
T

tQ-tT

1/
1,5 V

10-1
10-6

I 1111 I 1111 I 1111 I I
10-5

10-4

10- 3

10-1

-t
128

Siemens

10-1

BAW56

Forward voltage VF = f (TA)

V
1,0

ill

1---

I F= 10~ ~A

f

~
10 mA

r-. ....

1:}-~

0,5

-

"'N...
O,1mA

r-...

I--

r-.r-. ....
r-. .....

I"-.

.....

I"-.r-.
1"-. .....

o
o

50

100

150 DC

-TA

Siemens

129

BAW78 A
···BAW78 D

Silicon Switching Diodes

•
•

Switching applications
High breakdown voltage

Type
BAW78
BAW78
BAW78
BAW78

A
B
C
0

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

GA
GB
GC
GO

Q62702-A675
Q62702-A676
Q62702-A677
Q62702-A678

Q62702-A778
Q62702-A779
Q62702-A784
Q62702-A 109

SOT 89
SOT 89
SOT 89
SOT 89

Maximum ratings
Parameter

Symbol

BAW78 A BAW78B BAW78 C BAW7S D Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
f=1ll s
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VR
VRM

50
50

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

130

100
100

h

hM
hs

200
200
1
1
10

400
400

V
V
A
A
A
W

P tot

150
-65 ... +150

Tj
Tstg

:5125

RthJA

Siemens

°C
°C

K/W

BAW78 A
.. ·BAW78D

Electrical characteristics
at TA = 25 cC, unless otherwise specified

DC characteristics

Symbol

Breakdown voltage
I(BRI = 100!lA

V(BRI

BAW78A
BAW78B
BAW78C
BAW78D
Forward voltage')
IF= 1 A
1F=2A
Reverse current
VR = VRmax
VR = VRmax, TA = 150 cC

VF

IR

min

typ

max

Unit

50
100
200
400

-

-

-

V
V
V
V

-

-

1,6
2

V
V

-

-

-

1
50

!lA
!lA

AC characteristics

Symbol

min

typ

max

Diode capacitance
VR = 0, f=1 MHz
Reverse recovery time
IF = 200 rnA, IR = 200 rnA,
RL= 1000,
measured at IR = 20 rnA

Co

-

10

-

Unit
pF

trr

-

1

-

I1s

Test circuit for reverse recovery time

OUT

Pulse generator:

t p = 100 ns, D = 0,05
t r = 0,6 ns, RI = 50

Oscilloscope: R = 50 0
tr = 0,35 ns
CS 1 pF

') Pulse test: tp S 300 1lS, D = 20/0.

Siemens

131

BAW78 A
···BAW78D

Total power dIssIpatIon Ptot = '(TA)

Forward current

IF =

f (VF)

TA=25°C

A
10 1

W
1,2

r

5

1.0

/'

'\.

\

0,8

".,

5

1\
1\

I

1

0,6

1\

1\

0,4

1\

2

1(1

1\

5

0,2

o

1\

o

100

50

150

10-3

o

0(

2 V

-T.
Peak forward current I FM = '(t)

Reverse current I R = f ( TA)
VR = VRrnax

TA= 25°C

0=0.005

5

V?·OI
~0.02

V~·05
0.1
/02

"

5

100

V

~~

I'-

max ....

Ityp

5

lO-1

5

fpl--

fp -

S

O=T _r-~
I--T

IIII

10-2
m-6

V

10 2

10-5

'I"

I Illl I 1111 I I

10- 4

10- 3

10- 2

101
10-1

100

5

o

132

SO

100

-T.

-f

Siemens

150

0(

BAW79 A
···BAW79 D

Silicon Switching Diodes

•
•
•

A2

For high-speed switching
High breakdown voltage
Common cathode

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 12 mm-tape

Package

BAW79 A
BAW79B
BAW79 C
BAW79 0

GE
GF
GG
GH

Q62702-A679
Q62702-A680
Q62702-A681
Q62702-A682

Q62702-A7B1
Q62702-A782
Q62702-A771
Q62702-A733

SOTB9
SOT 89
SOT 89
SOT 89

Maximum ratings per diode
Parameter

Symbol

BAW 79 A BAW 79 B BAW 79 C BAW 79 0

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 its
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VR

50
50

V

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VRM

100
100

h
~

hs

200
200
1
1
10

400
400

V
A
A

A
W

Ptot

n

150
-65···+150

Tstg

:5125

RthJA

Siemens

°C
°C

K/W

133

BAW79 A
···BAW79D

Electrical characteristics per diode
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Breakdown voltage
I(BR) = 100!lA

V(BR)

BAW79 A
BAW79B
BAW79C
BAW79 D

min

typ

max

Unit

50
100
200
400

-

-

V
V
V
V

-

-

-

1,6
2

V
V

-

-

1
50

IlA

-

Forward voltage')
IF = 1 A
IF=2A

VF

Reverse current
VR = VRmax
VR = VRmax, TA = 150°C

IR

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance
VR = OV, f=1 MHz

Co

-

10

-

pF

Reverse recovery time
IF = 200 mA, IR = 200 mA,

trr

-

1

-

Ils

RL= 1000,
measured at I R = 20 mA

Test circuit for reverse recovery time

OUT

Pulse generator: tp

= 100 ns, D =

tr = 0,6 ns, R; =

Oscilloscope: R = 500
tr = 0,35 ns
C:::; 1 pF

0,05
50

') Pulse test: tp:::; 300 Ils, D = 20/0.
134

Siemens

!lA

BAW79A
",BAW79 D

Total power dissipation Ptot = f( TA)

Forward current IF = f (VF)
TA = 25°C

W
1,2

A
10'
5

1"1,0

./

\.

1\

0,8

""

1\
\.

,

0,6

I

1\

0,4

1\

2

\.
0,2

1\

o

\
o

50

150·(

100

10-3

o

2 V

--~

Peak forward current
TA = 25°C

lFM = f (t)

Reverse current I R = f ( TA)
VR = VRrnax

D=0.005

V~·Ol

:%~.02

:/:,~05

~'

0.1
/02

/

~

V
Vtyp.

max~

100
5

V

,
t ' - fplT _ I-'-~
D=--'£'

10-2
10-6

II
10-5

I--T

V

I IIII I IIII I I

10- 4

10- 3

10- 2

10-'

10° s

50

100

150

0(

-t

Siemens

135

Silicon Switching Diode Array

•

BAW101

Electrically isolated high-voltage medium-speed diodes

A2/lkC2

A1~C1
Type

Marking

Ordering code
for versions In bulk

SAW 101

JP

Q62702-A3444

Ordering code for
Package
versions on 8 mm-tape
----!.-4----SOT 143
Q62702-A71"

Maximum ratings
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 1 LlS
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VR

V
V

IFS

300
300
200
500
4,5

Ptot

280

mW

Tj
Tstg

150
-65 ... +150

°C
°C

RthJA

::5450

KIW

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

136

VRM

IF
IFM

Siemens

mA
mA
A

SAW 101

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Breakdown voltage
I (BR) = 100 f.lA

V(BR)

300

-

-

V

Forward voltage
IF= 100 rnA

VF

-

-

1,3

V

Reverse current
VR = 250 V
VR = 250 V, TA = 150°C

IR

-

-

-

150
50

nA
/!A

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance
VR = 0, f= 1 MHz

Co

-

6

-

pF

Reverse recovery time
IF = 10 rnA, IR = 10 rnA,
RL= 100n,
measured at IR = 1 rnA

trr

-

1

-

/!s

Total power dissipation Ptot

f ( TAl

=

mW

400

~ot

t 300
I-I-h,.

1\:
200

1\:

i\

1\
r-...

l\.

1\:

100

1\:
\
l\.
l\.

o

o

50

100

K
150 °C

-7;.

Siemens

137

BAW101

Forward current IF = f (VF)
TA = 25°C

Reverse current I R = f ( TA)

A
10°
lL

,

1/

I

5

1/

1/ typo

m.x. 1/
2

~.

,,'

IJ

5

10-l

o

10'
1,0

2,0 V

o

-Ii

138

Siemens

so

100

150 'C

Silicon Low Leakage Diode Array

BAW156

A~Cl
[;jfo

• Low Leakage applications
• Medium speed switching times
• Common anode

C2

Type

Marking

Ordering code 8-mm tape

Package

BAW156

JZs

Q62702-A922

SOT 23

Maximum Ratings
Description

Symbol

Reverse voltage

VR
VRM

Peak reverse voltage
Forward current

IF

Peak forward current

IFM

Surge forward current ,t

=l11S
=25· C

BAW156

70
70
250
250
4.5
330
150

IFS

Total power dissipation, TA

PID1

Junction temperature

Ii

Storage temperature range

Tstg

Thermal Resistance

I

Junction-ambient 1)

RlhJA

-65

to + 150

:;;450

Unit

V
V
mA
mA
A
mW
·C
·C

IKIW

1) Package mounted on alumina 15mm x 16.7mm x O.7mm

Siemens

139

Silicon Low Leakage Diode Array

BAW156

Characteristics
at TA =25°C, unless otherwise specified.
Description

Unit

DC Characteristics
breakdown voitage
I(BR) 100 pA

V(BR)

Forward voltage
IF= 1mA
IF= 10mA

VF

=

-

V

-

--

900
1000
1100
1250

mV
mV
mV
mV

-

-

5
80

nA
nA

-

2

-

pF

-

0.5

3

}1s

70

IF=50mA
IF=150mA

Reverse current
VR=70V
VR=70V, TA=150°C

IR

AC Characteristics
Diode capacitance
VR=OV, f= 1 MHz

Co

Reverse recovery time
IF = 10mA, IR = 10mA,

t"

RL =100Q

measured at IR = 1mA
Test circuit for reverse recovery time
OUT

Oscilloscope

Pulse generator: tp= 100ns,O= 0.05
t, = 0.6ns,Rj = son

140

Oscilloscope: R = son
t, = 0.3Sns,
C:s lpF

Siemens

Silicon Low Leakage Diode Array

Total power dissipation

BAW156

p,., = f( TAl

Rever.e current I. = f( TAl

mW
400

I.'

r.

V. -7
a ••

,;

V

I.'
200

,

V

I.'

I,p.

\
100

.

I.'

o
o

I.'

so

100

200 ·C

lS0

I.

100

'C

150

-TA

--'A

-~

Forward current I, = fW,1
TA = 25 "C

Peak forward current I'M = fit)
TA = 25 "C

15.

'F

/

I,

....

I

I

,
,
,!

rp·

I ••

ma.

S

I

I.

II
II

I
I

J
~ .. I.1

,

V

1.1

-VF

-I

Siemens

141

BAW156

Silicon Low Leakage Diode Array

Forward voltage VF =f (TA)
'.2

.1- I'.0

.1.1- l-

.-

1-1-

...

IF ., Om

I--

-

I- 1-1--

1-- :--Om

------

..... ~
~Om

-r-.. r--r-.. r-_
r-~
'm

..

'm ......

60

~

............

100

C'

150

--TA

142

Siemens

Silicon Tuning Diode

BB 419

• For VHF tuned circuit applications

calh~

Type

Marking

Ordering code
(taped)

Package

BB 419

white/2

062702-B499

SOD-123

Maximum Ratings
Parameter

Symbol Value

Reverse voltage

VA

28

V

Peak reverse voltage

VAM

30

V

Unit

Forward current, TA :5 60 °C

IF

20

mA

Operating temperature range

Top

-55 ... +125

°C

Storage temperature range

Tstg

-55 ... + 150

°C

Siemens

143

BB 419

Characeristics
at TA=25 °C, unless otherwise specified.
Parameter

Symbol

Reverse current
VR=28 V
VR =28 V, TA =60 °C

fR

Diode capacitance
f = 1 MHz
VR = 3V
VR = 25 V

CT

Capacitance ratio
VR=3 V/25 V

CT3V/CT25V

Series resistance
= 100 MHz, CT = 12 pF

rs

Figure of merit
(=50 MHz, VR =3 V
(=200 MHz, VR =25 V

Q

Diode capacitance CT = ( (VR)
pF

60

l"40

\.
r\

30

\
20

10

o

0,3

144

"'

10
-VR

30 V

Siemens

Unit

Value
min.

typo

max.

-

-

20
200

nA

pF
26
4.3

-

32
6

5

-

6.5

-

0.35

0.5

-

280
600

-

n

-

Silicon Tuning Diode

BB 512

cal~

• For AM tuning applications
• Specified tuning range 1... 8 V

Type

Marking

Ordering code
(taped)

Package

BB 512

white/M

Q62702-A479

SOD-123

Maximum Ratings
Parameter

Symbol Value

Unit

Reverse voltage

VR

12

V

Forward current, TAS60 ·C

IF

50

mA

Operating temperature range

Top

-55 .. : + 125

Storage temperature range

T stg

-55 ... + 150

·C
·C

Siemens

145

BB 512

Electrical Characteristics
at TA = 25 ° C, unless otherwise specified.
Parameter

Reverse current
VR= 10 V
VR=10V, TA=60 °C

fR

Diode capacitance
f= 1 MHz
VR=1 V
VR=8 V

CT

Capacitance ratio
VR = 1 V/8 V

Cn/CTS

Series resistance
f=0.5 MHz, VR=1 V

rs

Figure of merit
f=0.5 MHz, VR=1 V

Q

Temperature coefficient of diode capacitance
f= 1 MHz, VR = 1 V

TCe

Capacitance matching
VR= 1... 8 V

ACT/CT

146

Unit

Symbol Value

Siemens

min.

typo

max.

-

-

20
200

nA

pF
440
17.5

470

-

520
34

15

-

-

-

1.4

-

-

480

-

-

500

-

-

3

Q

ppm/K
0/0

Silicon Tuning Diode

88515

cal~

• For UHF and VHF TV/VTR tuners

Type

BB515

Ordering code

Q62702-B398

Marking

white/S

Maximum ratings

30
20

Reverse voltage
Forward current

V
rnA

TA ::;;60oC

-55 ... +125
-55 ... +150

Operating temperature range
Storage temperature range

Siemens

147

BB 515

Characteristics (TA

= 25°C)
min

Reverse current
VR 30 V
30 V, TA 85°C

IR

Diode capacitance, f= 1 MHz
1V
VR
28V

CT

Capacitance ratio
VR 1 V, 28 V; f= 1 MHz

CT1
CT28

Capacitance matching
VR 0.5 V... 28 V

~CT

Series resistance
CT 9 pF, f= 470 MHz

r.

Series inductance

L.

=

=

=

16
1.85

=
=

Diode capacitance CT = f(VR)
f= 1 MHz

pF
24

f\

\
~

1\

~

8

4

"-"
o

0.3

148

3

-

8

max
10
200

nA
nA

19.5
2.25

pF
pF

9.6
3

%

CT

=

12

typ

10

30V

Siemens

0.5

0

2.8

nH

Silicon Tuning Diode

88619

ca'h~

• For VHF/CATV TV/VTR tuners
with extended frequency band

Type

88619

Ordering code

Q62702-8401

Marking

yellow/S

Maximum ratings
Reverse voltage
Forward current
Operating temperature range
Storage temperature range

30
20
-55 ... +125
-55 ... +150

Siemens

V
mA

149

BB 619

Characteristics (TA = 25°C)
min

typ

max·

Reverse current
VR = 30 V
30 V, TA = 85°C

IR

Diode capacitance, f= 1 MHz
VR = 1 V
28 V

CT

Capacitance ratio
VR = 1 V, 28 V; f= 1 MHz

CT l
CT28

Capacitance matching
VR = 1 v. .. 28 V, f = 1 MHz

..1CT
CT

Series resistance
CT = 30 pF; f= 100 MHz

rs

0.7

Q

Series inductance

Ls

2.8

nH

Diode capacitance CT = f (VR )
f= 1 MHz

pF
60

"

40

i\.

'\

30

\
r\

20

"

10

'\.
o

0,3

10

-

30V

-VR

150

Siemens

33.5
2.4

-

12.5

14

10
200

nA
nA

41
2.9

pF
pF

2.5

%

Silicon Tuning Diode

88620

Cath~

• For Hyperband TV/VTR tuners, 8d I

Type

88620

Ordering code

Q62702-8403

Marking

red/S

Maximum ratings

Reverse voltage
Forward current
Operating temperature range
Storage temperature range

Siemens

30
20

V

-55 ... +125
-55 ... +150

°C
°C

mA

151

88620

Characteristics (TA = 25°C)
min
Reverse current
VR = 30 V
30 V, TA = 85°C
Diode capacitance, f
VR = 1 V
28V

typ

max

IR

= 1 MHz

10
200

nA
nA

76
3.4

pF
pF

CT

62
2.9

-

Capacitance ratio
VR = 1 V. 28 V; f = 1 MHz

CT 1
CT28

Capacitance matching
VR = 1 V... 28 V, f = 1 MHz

LlCT
CT

Series resistance
CT = 30 pF; f= 100 MHz

'.

1.3

Q

Series inductance

los

2.8

nH

Diode capacitance CT = f (VR)
f= 1 MHz

pF
100

"
I\.
60

so

\..

"I"
\

40
30
20

'\..

10

o

0,3

152

......

3

10

30V

Siemens

19.5

25
2.5

%

88804

Silicon Dual Tuning Diode

•
•
•
•
•

IJ

Application in FM tuners
Monolithic chip with common cathode for perfect tracking of both diodes
Uniform "square law" C-V characteristics
Ideal hifi tuning device when used in low distortion back-to-back configuration
Available in capacitance subgroups') for convenient tuner alignment

C

A1

A2
Type

Marking

88804

SF')

Ordering code
for versions In bulk
Q62702-8328

Ordering code for
versions on 8 mm-tape
Q62702-8356

Package
SOT 23

Maximum ratings
Parameter

Symbol

Reverse voltage
Peak reverse voltage
Forward current

VR

TA:5

IF

Ratings
18
20
50

Unit
V
V
mA

Top
Tstg

100
-65···+150

°c
°c

VRM

60°C

Operating temperature
Storage temperature range

') For group coding refer to page 154.

Siemens

153

88804

Electrical characteristics per diode
at TA = 25 ac, unless otherwise specified

Characteristics

Symbol

Reverse current
VR = 16V
VR= 16V, TA=60 a C
Diode capacitance
VR=2V,f=1MHz
Capacitance ratio
VR =2V/8V, f=1 MHz
Series resistance
CD = 38 pF, f= 100 MHz

fR

min

typ

max

Unit

-

20
200

nA
nA

47,5

pF

Co

42

-

C02v/C08V

1,65

1,7

-

-

rs

-

0,25

-

n

Quality factor
CD = 38 pF, f=100 MHz

Q

-

170

-

-

Temperature coefficient
of diode capacitance
VR = 2 V, f= 1 MHz

TCe

-

330

-

ppm/K

Capacitance groups')
VR=2V,f=1MHz

CD
42
43
44
45
46

-

43,5
44,5
45,5
46,5
47,5

pF
pF
pF
pF
pF

Group- no. 0
Group- no. 1
Group- no. 2
Group - no. 3
Group-no.4

-

') The capacitance group number is marked on the component and the package labels. One
packaging unit (e.g. 8 mm-tape) contains diodes of one group only. Delivery of discrete capacitance groups requires special contract.
154

Siemens

88804

Diode capacitance per diode Co = f (VR)
f=1 MHz
pF
60

Capacitance deviation per diode
Co(vN)fCo(VR) = ((VR)
VN = 1 V, 2 V, (= 1 MHz

3

UI
VN=1V

r-.

~ =2V

V

I\.

50

'\

40

V-

~

\

30

II

\

1/

III
rJ

I'-..

20
10

o

0.3

to

10
-VR

20 V

o
o

2 4 6

8 10

a •

~

m mv

-I'll

Temperature coefficient of diode capacitance
TCe = f(VR)
f=1 MHz

,

K
10-3

"'"' ':--.
4

"-

5

5

30 V

Siemens

155

BB 811

Silicon Tuning Diode

cat~

• Frequency range up to 2 GHz;
special design for use in TV-sat indoor units

Type

Marking

Ordering code
(taped)

Package

BB 811

whiterr.

Q62702-B478

SOO-123

Maximum Ratings
Parameter

Symbol Value

Unit

Reverse voltage

VA

30

V

Forward current, TA:S 60 ° C

IF

20

mA

Operating temperature range

Top

-55 ... + 125

°C

Storage temperature range

Tstg

-55 ... + 150

°C

156

Siemens

BB 811

Electrical Characteristics
at TA = 25 ° C, unless otherwise specified.
Symbol Ratings
min.
typo

Parameter
Reverse current
VR=30 V
VR=30 V, TA =85 °C

IR

Diode capacitance
f= 1 MHz
VR=1 V
R=28 V

CT

Capacitance ratio
f= 1 MHz, VR = 1 V/28 V

CT1 /CT28

Series resistance
f= 100 MHz, CT = 9 pF

rs

Case capacitance
f=1 MHz

Cc

Capacitance matching
f= 1 MHz, VR = 0.5 ... 28 V

ACT/CT

Series inductance

Ls

-

-

Unit
max.
nA
20
500

pF
7.8
0.85

8.8
1.02

9.8
1.2

7.8

8.6

9.5

-

1

-

-

0.1

-

-

-

3

2.8

Q

pF

%
nH

Diode capacitance CT = f (VR)
f= 1 MHz
12

pF
[T

1

10

8

1\

\.

\

1\

6

~

4

I\.

2

o

0,3

"- r-...

1,0

10

V 30

Siemens

157

Silicon Dual Tuning Diode

88814

Preliminary data

c

• For FM radio tuners with
extended frequency band
• High tuning ratio at low
supply voltage (car radio)

J7Jw

~A2

• Monolithic chip (common
cathode) for perfect dual
diode tracking
• Coded capacitance groups and
group matching available

Ordering code

BB 814
Q62702-B404

Marking

SH

Tvpe

Maximum ratings per diode
Reverse voltage
Peak reverse voltage
Forward current

18
20
50

V
V
mA

-55 ...+125
-55 ... +150

°C
°C

TA :::; 60°C
Operating temperature range
Storage temperature range

158

Siemens

A1

88814

Characteristics per diode (TA = 25°C)

min
Reverse current
VA = 16 V
16 V, TA = 60°C

fA

Diode capacitance, f= 1 MHz1)
VR = 2V
SV

CT

Capacitance ratio
VR = 2 V, S V; f= 1 MHz

CT2
CTS

Capacitance matching

.dCT
CT

VA = 2V, SV

typ

max
20
200

nA
nA

43
1S.2

44.75 46.5
20.S 24

pF
pF

1.95

2.15

2.35

-

3

%

Diode capacitance CT = f (VA)
per diode, f= 1 MHz
pF
100

BO
70 1'0.
60

'\.

50

'\.

40
30

20

........

10

o

0,3

1)

10

3

20V

Capacitance groups, coded 1, 2
Code

1
2

CT (2V)

CT

43 -45
44.5 - 46.5

18.2-23.2pF
18.8 - 24 pF

(BV)

Siemens

159

BGX50A

Silicon Diode Array

•
•

Bridge configuration
High-speed switch diode chip

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BGX50A

U1

Q62702-G35

Q62702-G38

SOT 143

Maximum ratings per diode
Parameter

Symbol

Ratings

Unit

Surge reverse voltage
Peak reverse voltage
Forward current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VRS

V
V

Ptot

50
70
140
280

Tj
Tstg

150
-65···+150

°C
°C

RthJA

:5 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

160

VRM

IF

Siemens

mA
mW

BGX50A

Electrical characteristics
at TA = 25 DC, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Forward voltage
(two diodes connected in series)
IF=100mA

VF

-

-

2,6

V

Reverse current
VR = 50V
VR = 50 V, TA = 150°C

IR

-

-

-

0,2
100

flA

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance
VR = 0, f= 1 MHz

Co

-

-

1,5

pF

Reverse recovery time
IF = 10 mA, IR = 10 mA, RL = 100 n
measured at IR = 1 mA

t rr

-

-

6

ns

t-tA

Test circuit for reverse recovery time

OUT

Oscilloscope: R = 50 n
tr = 0,35 ns
C:5 1 pF

Pulse generator: tp = 100 ns, D = 0,05
tr = 0,6 ns, Ri = 50 n

Siemens

161

BGXSOA

Total power dissipation Ptot = (( TA)

Reverse current fR = ((TA)

mW

nA

400

105

5
VR =70V

V'

'/

max.

r\
1"\

200

I\.

7O~A/

,

5

1\

25V

100

typo
II

1,\

o

o

50

100
-lj.

1'\
150

°c

Forward current IF = ((V F)
TA = 25°C

10 '

I)il

o

50

150 0 C

Pesk forward current f FM = ((t)
TA = 25°C

mA
150

I/D= 0.005
0.01

;/°.02

rl0 5

II r1?1

II

0.2

100

[1 max.

typo

t>

II
j

50

11
lO- 1

J

II
o
o

7/
0,5

S

T

10-2
1,0

1,5 V

TIIIIIIIIIIIIIIII

10-6 10-5 10-4

10- 3 10-2

-t

-\of
162

tt£r-

D=+

7

Siemens

10-1

10°

5

BGX50A

Forward voltaga VF = ((TA)

V
1,0

ill

\of

I F = 100 rnA
I I

t

~~

r--_
I-

10 rnA I'r-.

~I'

0,5
l-

'r-..r-.

Ir-k

I- 0.1 rnA

r-..
t'--r---

1',

t'--

r---r-.

"
o

o

50

150 O(

Siemens

163

Silicon Switching Diode

•

5MBD 914

c{J.

For high-speed switching applications

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

5MBD 914

S5D

Q68000-A6418

Q68000-A625

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Reverse voltage
Peak reverse voltage
Forward current
Peak forward current
Surge forward current
t= 111S
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VR
VRM

V
V

hM
hs

70
100
250
250
4,5

Ptot

330

mW

Tj
Tstg

175
-65···+150

°C
°C

RthJA

:s; 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

164

h

Siemens

mA
mA
A

5MBD 914

Electrical characteristics
at TA

=

25°e, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Breakdown voltage
I(BR) = 100!lA
Forward voltage
IF = 10 mA

V(BR)

100

-

-

V

VF

-

-

1

V

Reverse current
VR = 20V
VR = 75 V
VR = 20 V; TA = 150 0 e
VR = 75 V; TA = 150 0 e

IR

-

-

25
5
30
50

nA
flA
flA
flA

AC characteristics

Symbol

min

typ

max

Unit

Diode capacitance
VR = 0, f = 1 MHz

CD

-

-

2

pF

Reverse recovery time
IF = 10 mA, IR = 10 mA
VR = 1 V, RL= 100n
measured at IR = 1 mA

trr

-

-

4

ns

-

-

-

Test circuit for reverse recovery time

OUT

Pulse generator: tp

=

100 ns, D = 0,05

Oscilloscope: R

=

50 n

tr = 0,35 ns

tr = 0,6 ns, Ri = 50 n

C

Siemens

~

1 pF

165

5MBD914

Total power dissipation Ptot = f (TA)

Reverse current I R = f ( TA)

mW
400

105

nA

5
VR =70V

1/

r\

1/

max.
~.

7O~J'/

200
5

25V

r\

100

r\
typo
1/

a

a

50

100

200

150

ec

10'

J

o

50

150 0 C

100

-T"

Forward current
TA=

IF = f(vd

Peak forward current

25°C

TA=

IFM = f(t)

25°C

mA
150

I

!/D=OOOS
0.01

5

~/?02

II
100

J
I max.

typo

i

r/~05

ll

Ir
0.2

5

i

50

,
I

i
o

1/

o

a,s

D=i&

./
1,5 V

10- 2
10-6

IIIIII III1 11111 I I

10-5

10-4

10- 3

10- 2

-t
166

Siemens

10-'

10° s

5MBD 914

Forward voltage VF = !(TA)

V

1,0

ill

I-

IF= 10~ iA

f

r-t-

W.
10 mA
I

............. r---

I

ij--,

0,5

-

r-t.
O,1mA

r-....

"

,

I'-.~
'I'-.

o
o

50

100

150

O(

Siemens

167

5MBD 2835/36

Silicon Switching Diode Array

• For high-speed switching applications
• Common anode

A

f7JwCl

~C2

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

5MBD 2835
5MBD 2836

SA3
SA2

upon request
upon request

upon request
upon request

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

5MBD2835

5MBD2836

Unit

Reverse voltage

30

50

V

75

V

Peak reverse voltage

VR
VRM

Forward current

IF

250

Peak forward current

IFM

250

mA

I FS

4.5

A

Ptot

330

mW

7j

175

°C

- 65 ... +150

°C

Surge forward current
t= 1 fls
Total power dissipation
]A = 25°C
Junction temperature
Storage temperature range

r.tg

75

mA

Thermal resistance
junction - ambient
package mounted on alumina
15mm x 16.7mm x 0.7mm

168

RthJA

Siemens

:S;

450

K/W

5MBD 2835/36

Characteristics
at T,. = 25 ce, unless otherwise specified
DC characteristics

Symbol

Breakdown voltage
= 100 jJA

min.

typo

max.

Unit

75
75

-

-

V
V

-

-

-

-

1000
1000
1200

mV
mV
mV

-

-

-

100
100

nA
nA

VIBR )

5MBD 2835
5MBD 2836

IIBR)

Forward voltage
= 10 rnA
I F = 50 rnA
I F = 100 mA

-

VF

IF

Reverse current
VR = 30 V
VR = 50 V

IR

SMSD 2835
5MBD 2836

AC characteristics

Symbol

min.

typo

max.

Unit

Diode capacitance
V R = 0, f= 1 MHz

Co

-

-

4

pF

Reverse recovery time
IF = 10 rnA. IR = 10 rnA, RL = 100 Q
measured at IR = 1 mA

trr

-

-

6

ns

Test circuit for reverse recovery time

"
Lt7.t
/JmA

Speci men

IF

Pulse generator:
= 100 ns, D = 0.05
t, = 0.6 ns, R; = 50 Q
tp

I

Oscillograph: R= 50 Q
t, = 0.35 ns
Cs. 1 pF

Siemens

169

5MBD 2835/36

Total power dissipation Ptot = f I TA )

Reverse current IR = f I TA )

nA

mW
400

lOs

5

i..

\.'R=70V
~

~

max.
7O~)rJ

200
5

r\
100

2SV

r\
5

typo

1/
o
o

50

100

I

10'

200 ·C

150

o

50

150°C

100

-7A

Peak forward current IFM = fIt)
TA = 25°C

Forward current IF = f I ~)
TA = 25°C

mA

A

150

102

I

©
/0=0.005
0.01
0.02

5

II
100

I

typo

/?os

'll
0.2

5

Imax.

~
~

i
50
lO-

J

Ii
o
o

S

1/
0,5

,

=

tl£rL

O=-f

10-2

11111111/1111111

10-6 10-5 10-4

1,5 V

10-3 10-2

-t
170

Siemens

10-'

100 5

5MBD 2835/36

Forward voltage VF = f (TAl
V

m

1,0

I F= 10~ ~A

r-_

1-1-1-1-

.~
10 rnA

t-t-..

..
r-l ....
~

0,5

-

I- O,1rnA

1' ............

t-t-..

t-

....... .....

t-.....

o

o

50

100

150

·c

Siemens

171

5MBD 2837/38

Silicon Switching Diode Array

• For high-speed switching applications
• Common cathode

Type

Marking

OrC\ering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

5MBD 2837
5MBD 2838

SA5
SA4

upon request
upon request

upon request
upon request

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

5MBD 2837

5MBD 2838

Unit

Reverse voltage

VR

30

50

V

75

75

V

Peak reverse voltage

VRM

Forward current

IF

250

mA

Peak forward current

IFM

250

rnA

Surge forward current

I FS

4.5

A

Total power dissipation
~ = 25°C
Junction temperature

Ptot

330

mW

175

°C

Storage temperature range

T.tg

- 65 ... +150

°C

t= 11.1s

7j

Thermal resistance
junction - ambient
package mounted on alumina
15 mm x 16.7 mm x 0.7 mm

172

RthJA

Siemens

:::;;450

KjW

SMSD 2837/38

Characteristics
at ~ = 25 cC, unless otherwise specified
DC characteristics

Symbol

Breakdown voltage
= 100 iJA

min.

typo

max.

Unit

75
75

-

-

V
V

-

-

1000
1000
1200

mV
mV
mV

-

-

100
100

nA
nA

V(BA)

5MBD 2837
5MBD 2838

I(BA)

Forward voltage
IF = 10 rnA
I F= 50 rnA
IF = 100 rnA

VF

Reverse current
VA= 30 V
VA = 50 V

IA
5MBD 2835
5MBD 2836

AC characteristics

Symbol

min.

typo

max.

Unit

Diode capacitance

CD

-

-

4

pF

t"

-

-

6

ns

VA = 0, f= 1 MHz
Reverse recovery time

IF = 10 rnA. IA = 10 rnA. RL = 100 Q
measured at IA = 1 rnA

Test circuit for reverse recovery time

rt?t"

Specimen

IF

t

;jmA

Pulse generator:
= 100 ns, D = 0.05
t, = 0.6 ns, Rj = 50 Q
tp

Oscillograph: R= 50 Q
t,= 0.35 ns
C::;;; 1 pF

Siemens

173

5MBD 2837/38

Total power dissipation P'o'

= f ( TA )

Reverse current IR

= f (h)

mW

400

P.o,

VR =70V

/

V

1300

max.
/,/

~.

70~/J

200

\

\
100

25V

\
typo

/1/

o

J

o

50

100

Forward current IF = f ( l'F)

Peak forward current

TA =25°C

TA = 25°C

mA
150

150 0 C

100

50

200 ·C

150

IFM

= f(t)

A
10 1

I

©
/D=0.005

5

0.01
;0-02
'lOS

l'l1

0.2

I

100

jmax.

typo

~

Ii
Ii

50

,

i

t~

L
o
o

L.-'

0,5

D=..1..
T

V

10-z
10-6

1,5 V

11111111/1111111
10-5

10-4

10- 3

10-1

-t
174

Siemens

10-1

10°

5

5MBD 2837/38

Forward voltage VF = f ( TA )
V
1,0

t.U

I-

h= 100 rnA

--

I I

f

.J
10 rnA

..........

~ .....

0,5
i-f-

r.k
0,1 rnA

r-.r-.
..... .....

r-. ..... .....
i'

t'-..t'-..
............

o
o

50

100

150

0(

Siemens

175

Silicon Switching Diode

5MBD6050

• For high-speed switching applications

cr(}

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

SMSD 6050

S5A

upon request

upon request

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Reverse voltage

VR

70

V

Peak reverse voltage

VRM

70

V

Forward current

IF

250

rnA

Peak forward current

IFM

250

mA

Surge forward current

I Fs

4.5

A

Ptot

330

mW

175

°C

-65 ... +150

°C

t= 1 iJs

Total power dissipation
1A = 25°C
Junction temperature
Storage temperature range

7j
T.tg

Thermal resistance
junction - ambient
package mounted on alumina
15rnm x 16.7rnm x 0.7mm

176

RthJA

Siemens

:5 450

K/W

5MBD6050

Characteristics
at ]A = 25 °C, unless otherwise specified
DC characteristics

Symbol

min.

typo

max.

Unit

Breakdown voltage
= 100 IJA

VIBR )

70

-

-

V

Forward voltage
IF = 1 rnA
I F= 100 rnA

VF

550
850

-

700
1100

mV
mV

Reverse current
VR= 50 V

IR

-

-

100

nA

AC characteristics

Symbol

min.

typo

max.

Unit

Diode capacitance
VR= 0, f= 1 MHz

Co

-

-

2.5

pF

Reverse recovery time
IF = 10 rnA, IR = 10 rnA, RL = 100 Q
measured at IR = 1 rnA

trr

-

-

10

ns

IIBR)

Test circuit for reverse recovery time
Specimen

90%

Pulse generator:
tp = 100 ns, D = 0.05

t,= 0.6 ns, R = 50 Q
j

Oscillograph: R= 50 Q

t,= 0.35 ns
C~l

pF

Siemens

177

5MBD 6050

Total power dissipation

Pl0l

= '( TA )

Reverse current IR = '(TA )

nA

mW
400

105

5

If.t

VR =70V

f-.

\300

V

r\

'"

max.
L..-

-I-'

I

1/

7°~A/

200

5
25V

1'\

1\

100

typo

o
o

l)iJ
II

so

100

50

200 ·C

150

I

Forward current h = '( ~)

Peak forward current

TA =25°C

TA =25°C

mA
150

hM =

f(t)

A
10 2

II

©
1/ 0 =0.005

5

0.01
;F02

II
J

100

150 ·C

100

r;~'OS
I/rll
0.2

rT max.

typo

""~

Ii
Ii

so

o
o

t...,..

0,5

;

lO- 1

7

S

T

II [Ii

j/
1,0

T

11111 11111 I
10- 2
10-6 10- 5 10- 4 10- 3 10- 2

1,5 V

---\If
178

tt£r-

O=...l

I

---f

Siemens

10-1

10°

S

5MBD6050

Forward voltage VF = f (TAl
V
1,0

W

i

t--t-- t--I-

IF= 100 rnA
I I

W.
10 rnA

I-r-.

.... 1-

~r--.

0,5

~

r-r- r- 0,1 rnA

I-r-- ....
i"--r-.. !-..

....

..... r-..

r--. .....
o

o

50

100

150 DC

Siemens

179

5MBD 6100

Silicon Switching Diode Array

• For high-speed switching applications
• Common cathode

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

5MBD 6100

S5B

upon request

upon request

SOT 23

Maximum ratings
Ratings

Parameter

Symbol

Unit

Reverse voltage

VR

70

Peak reverse voltage

VRM

70

Forward current

IF

250

rnA

Peak forward current

IFM

V
V

Surge forward current
t= 11.1s
Total power dissipation
1A = 25°C
Junction temperature

I Fs

250
4.5

A

Ptot

330

mW

Storage temperature range

T.tg

7j

rnA

175

°C

- 65 ... +150

°C

Thermal resistance
junction - ambient
package mounted on alumina
15 mm x 16.7 mm x 0.7 mm

180

RthJA

Siemens

:5 450

K/W

SMSD 6100

Characteristics
at ~ = 25°C, unless otherwise specified
DC characteristics

Symbol

min.

typo

max.

Unit

Breakdown voltage
= 100 I1A

V(SRI

70

-

-

V

Forward voltage
= 1 rnA
= 100 rnA

VF
550
850

-

700
1100

mV
mV

Reverse current
VR = 50 V

IR

-

-

100

nA

AC characteristics

Symbol

min.

typo

max.

Unit

Diode capacitance
VR = 0, f= 1 MHz

CD

-

-

2.5

pF

Reverse recovery time
= 10 rnA. fR = 10 rnA. RL = 100 Q
measured at IR = 1 rnA

trr

-

-

15

ns

I(SRI

IF
IF

IF

Test circuit for reverse recovery time
Specimen

Pulse generator:
= 100 ns, D = 0.05
t, = 0.6 ns, Rj = 50 Q

tp

Oscillograph: R= 50 Q
t,= 0.35 ns
CS; 1 pF

Siemens

181

5MBD 6100

Total power dissipation Ptot = f ITA)

Reverse current

IR

= f I TA )

nA

mW
400

105
5

~.I

VR =70V

V

"'"

1300

max.

iii)

7O'{ifl

200
5

I'

25V

1\

100

5

"-iyp.
If

o
o

AI
50

100

150

100

50

200 ·C

150

0(

-7A
Peak forward current IFM = fIt)

Forward current h = f I lip)
TA = 25°C

TA =25°C

mA
150

©

A

10 2

I

1/ 0 =0.005

5

0.01
0.02

05
rl
rl' :

II
100

0.2

I
II max.

typo

EE

5

~

Ii

II
50

10-1

Ii
o
o

5

Iiii

l/
0,5

1,0

11111 TI 1111 I I

10-2
10.6 10-5 10-4

1,5 V

-Vf
182

0=+t~
10- 3 10-2

-t

Siemens

10-1

100 S

5MBD 6100

Forward voltage VF = f (h)
V
1,0

-WJ
..J.
10 rnA

--

t-

I f = 100 rnA
I I

r-. . . .

t-r-.

ir}

0,5

--

~
0,1 rnA

...... 1"'-

r-. . . . ......
~r--.

I""'-r-.

'~

o
o

50

100

150

O(

Siemens

183

Silicon Switching Diode Array

5MBD 7000

• For high-speed switching applications
• Connected in series

C2,A1

~C1

f;jfo

A2

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on a-mm tape

Package

5MBD 7000

S5C

upon request

upon request

SOT 23

Maximum ratings
Parameter

Symbol

Reverse voltage

VR

100

Peak reverse voltage

VRM
IF

100

V
rnA

IFM

250
250

IFS

4.5

A

Ptot

330

mW

175

°C
°C

Forward current
Peak forward current
Surge forward current
t= 1I.Js
Total power dissipation
1A = 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted on alumina
15mm x 16.7mm x 0.7mm

184

7j
T.tg

RthJA

Siemens

Ratings

- 65 ... +150

:S450

Unit
V

rnA

K/W

5MBD7000

Characteristics
at ~ = 25 °C, unless otherwise specified
DC characteristics

Symbol

min.

typo

max.

Unit

Breakdown voltage

VIBR )

100

-

-

V

Forward voltage

VF

550
670
750

-

700
820
1100

mV
mV
mV

-

-

300
500
100

nA
nA
IJA

IF = 1 rnA
IF = 10 rnA
IF = 100 rnA

-

Reverse current
VR = 50 V
VR = 100 V
VR = 50 V, TA = 125 °C

IR

AC characteristics

Symbol

min.

typo

max.

Unit

Diode capacitance
= 1 MHz

Co

-

-

2

pF

trr

-

-

15

ns

-

VR = 0, f

Reverse recovery time
IR = 10 rnA, RL

IF = 10 rnA,

= 100 Q

-

Test circuit for reverse recovery time
Speci men
rr

~
/JmA

h
90"!.

Pulse generator:
= 100 ns, D = 0.05
t, = 0.6 ns, Rj = 50 Q
tp

t

Oscillograph: R = 50 Q
t, = 0.35 ns
C:::; 1 pF

Siemens

185

5MBD7000

Total power dissipation Ptot

= 'I TA )

Reverse current

IR

= 'I TA )

nA

mW
400

105

5

Ifot

VR =70V

1300

'/

1\

I--'

max.
1/

7O~AJ

200
5

1'\

1\
100

25V
~

typo

I

1/

o
o

AI
so

100

so

200 O(

150

100

150

0(

-~

Forward current

TA = 25°C

IF

= 'I ~)

rnA
150

Peak forward current
TA = 25°C

©

A

10 2

I

5

II
100

. typo

Ii

5

=

1

t~

r,
L..o-

1/f;~.1

~

so

0,5

./0=0.005
0,01
0.02
1I?·05
0.2

IJ
II max .
1QO

o
o

= 'It)

IFM

0=+

1/

1111111/1111111
10-2
10-6 10- 5 10-4 10- 3 10-2 10-1

1,5 V

-t
186

Siemens

10°

5

5MBD7000

Forward voltage VF = f (TAl
V
1,0

ill
.w.

I F= 100 rnA

I-r-.

I I

f

10 rnA

0,5

i;},
[)-k
0,1 rnA

---

l-

"r-.
1', ,

r-..

r"1'

"
o
o

50

100

150 .(

Siemens

187

Transistors

Siemens

189

PNP Silicon AF Transistors

•
•
•
•
•

BC807
BC808

For general AF applications
High collector current
High current gain
Low collector-emitter saturation voltage
Complementary types: BC 817, BC 818 (NPN)

Type
BC 807-16
11) BC 807-25
11) BC 807-40
11)

Marking
5A
5B
5C

Type
I1)BC 808-16
I1)BC 808-25
11) BC 808-40

Marking

Ordering code

Package

5E
5F

Refer to index

SOT 23

5G

Maximum ratings
Parameter

Symbol

BC807

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO
Ic
ICM

45
50
5

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

RthJA

11)

IB
IBM
Ptot

Tj
Tstg

BCaOa

Unit

25
30
5
500
1
100
200
330

V
V
V

150
-65···+150

DC
DC

:5 375

mA
A
mA
mA
mW

K/W

Preferred type

Siemens

191

BC807
BC808

Electrical characteristics
at

TA =

25°C, unless otherwise specified

min

typ

max

Unit

45
25

-

-

V
V

50
30

-

-

V
V

5

-

-

V

-

-

100
5

IlA

-

-

100

nA

BC 808-16
BC 808-25
BC 808-40

100
160
250

160
250
350

250
400
630

-

BC 808-16
BC 808-25
BC 808-40

60
100
170

-

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 10 rnA
BC807
BC808

V(BR) CEO

Collector-base breakdown voltage
Ic = 100 IlA
BC807
BC808

V(BR)CBO

Emitter-base breakdown voltage
IE = 10 IlA
Collector cutoff current
VCB = 25 V
VCB = 25 V, TA = 150°C

V(BR)EBO

Emitter cutoff current
VEB = 4 V
DC current gain')
Ic = 100 rnA, VCE = 1 V
BC 807-16,
BC 807-25,
BC 807-40,
I c = 300 rnA, VCE = 1 V
BC 807-16,
BC 807-25,
BC 807-40,

ICBo

lEBO

-

-

nA

hFE

-

-

Collector-emitter saturation voltage ')
I C = 500 rnA, I B = 50 rnA

VCEsat

-

-

Base-emitter saturation voltage')
I C = 500 rnA, I B = 50 rnA

VBEsat

-

-

AC characteristics

-

-

-

0,7

V

2

V

Symbol

min

typ

max

Unit

Transition frequency
Ic = 50 rnA, VCE = 5 V, f= 20 MHz

fT

-

200

-

MHz

Output capacitance
VCB = 10V, f= 1 MHz

Cob

-

10

-

pF

Input capacitance
VEB = 0,5 V, f= 1 MHz

Cib

-

60

-

pF

') Pulse test: t:5, 300 Ils, D = 20/0.
192

Siemens

Bca07
Bcaoa
Total power dissipation Ptot = f (TA)

Transition frequency fT = f (I cl
VCE = 5V

mW

MHz
10l

400

f\ot

t

r-~

300

I\,

./

\

200

\.
5

100

I\,
\.

°°

I

2

\
150 0 (

100

50

Pulse handling capability
(standardized)

rth =

5 10'

Collector cutoff current leBO = f (TA)
VCBo=60V

f(t)

K

W
10°

Ii,

r

III

~
1

0,5
0,2
0,1
0,05
0,Q2
0,01
0,005

0=0

1

.-

I I

V

max.

Vtyp.

v'

1111

10 '

~

0=;

T
10- 3
'"
'
"
10-6 10- 5 10- 4 10- 3 10- 1 10- 1 10°

10' s

50

100

150

O(

-f

Siemens

193

BC807
BC808

Base-emitter saturation voltage Ie = '( VBE sat)

hFE

=

Collector-emitter saturation voltage

Ie

10

= '(VCEsar)

hFE = 10
rnA
103

rnA
1Ql

150 0 : " f-_ 25°(
/-50 0 [

5

--

--

150 0 ( -/h "" "25°(
,"-<50 0 (
._ ...

--

"r!

~

f----

10'

10'
--

I

- - f----

- -Ii - f----

r

--

,

,

--f---

j

4 V

2
VeE

.. j

200

-

-f-

-1.]

-

400

sot

-f----

-- - - f----

600

BOO mV

--liEsat

DC current gain h FE

= '(l cl

VCE = 1 V

10 3
5

l00 0 (

r r-t

5 iI(

f-

....

-:SO °

5

101
5

100
10-'

194

Siemens

5 100

5 1Q1

5 10 2
-Ie

5 103 rnA

BC817
BC818

NPN Silicon AF Transistors

•
•
•
•
•

For general AF applications
High collector current
High current gain
Low collector-emitter saturation voltage
Complementary types: BC 807, BC 808 (PNP)

Type

m BC 817-16
m BC 817-25
m BC817-40

Marking

6A
6B
6C

Type

mBC 818-16
mBC 818-25
m BC 818-40

Marking

Ordering code

Package

6E
6F
6G

Refer to index

SOT 23

Maximum ratings
Parameter

Symbol

BC817

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO

45
50
5

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

BC818

Ptot

25
30
5
500
1
100
200
330

Tj
Tstg

150
-65 .. · + 150

VEBO

Ie
ICM
Ie
IeM

:5 375

RthJA

Siemens

Unit
V
V
V
rnA
A
rnA
rnA
mW

°C
°C

K/W

195

BC 817
BC818

Electrical characteristics
at

TA =

25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 10 mA
BC 817
BC 818

V(BR) CEO

min

typ

max

Unit

45
25

-

-

V
V

Collector-base breakdown voltage
Ic = 100 !-LA
BC 817
BC 818

V(BR) CBO

50
30

-

-

V
V
V

Emitter-base breakdown voltage
le= 1O !-LA
Collector cutoff current
VCB = 25 V
VCB = 25 V, TA = 150°C

V(BR) EBO

-

-

100
5

BC 818-16
BC 818-25
BC 818-40

100
160
250

160
250
350

250
400
630

-

BC 818-16
BC 818-25
BC 818-40

60
100
170

-

ICBo

Emitter cutoff current
VEB = 4 V

leBO

DC current gain')
Ic = 100 mA, VCE = 1 V
BC 817-16,
BC 817-25,
BC 817-40,
I C = 300 mA, VCE = 1 V
BC 817-16,
BC 817-25,
BC 817-40,

hFE

5

-

-

100

nA
!-LA
nA

-

-

0,7

V

2

V

Collector-emitter saturation voltage ')
I c = 500 mA, I B = 50 mA

VCEsat

-

-

Base-emitter saturation voltage ')
Ic = 500 mA, IB = 50 mA

VBEsat

-

-

-

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 50 mA, VCE = 5 V, f= 20 MHz

fr

-

170

-

MHz

Output capacitance
VCB = 10V, f= 1 MHz

Gob

-

6

-

pF

Input capacitance
VEB = 0,5 V, f= 1 MHz

Gib

-

60

-

pF

') Pulse test: t:'5 300 !-Ls, D = 20f0.
196

Siemens

BC817
BC 818

Transition frequency fT

Total power dissipation Ptot = f (TA)

VCE =

f (/ cl

MHz
103

rnW
400

":ot

r

=

5V

fr

"'\

5

f

300

\

\.

v

1\

200

\
5

100

I\,
2

a
a

1\
100

50

5 1Q3 rnA

-7",.
Collector cutoff current I cso = f ( TA)
Vcso = 60V

Pulse handling capability rth = f (t)
(standardized)

K

Vi

10°

•

'ih

t

.M'J'\l
1

5

'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005

0=0

2

/

max.

/

/typ.

1111

5
0=

r
10- 3

1tr-L
t-- r-J

!i

""

10- 6 10- 5 10- 4 10- 3 10- 2 10- 1 10°

10'

50

S

-t

100

150 °C

-T,.

Siemens

197

BC817
BC818

Base-emitter saturation voltage Ie
hFE = 10

= f (VBE sad

mA
10 3

150·(" 1-,25·(
-50·(

Ie

1 10 2
5

10-1

L...L--"-L.L--'L--"---'----'L-~__'

o

3

4 V

--VBEsat

--VcEsat

DC current gain hFE = f( Ie)
VeE = 1 V

5

100 L-L...LLLw"----'--'...LLUliL--'-'-'.Lllill'----'--'-'-CUlli
10-1 5 10°
5 W
5 10 2
5 103 mA
-Ie

198

Siemens

NPN Silicon AF Transistors

•
•
•
•
•

BC846
... BC 850

For AF input stages and driver applications
High current gain
Low collector-emitter saturation voltage
Low noise between 30 Hz and 15 kHz
Complementary types: BC 856, BC 857,
BC 859, BC 860 (PNP)

Type
BC 846
BC 846
BC 847
BC 847
BC 847
BC 848

Marking
A
B
A
B
C
A

1A
1B
1E
1F
1G
1J

Type
(:'3 BC 848 B
(:'3 BC 848 C

BC849
BC849
BC 850
BC 850

B
C
B
C

Marking

Ordering code

Package

1K
1L
2B
2C
2F
2G

Refer to index

SOT 23

Maximum ratings
Parameter
Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Peak collector current
Peak base current
Peak emitter current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

Symbol

BC846

BC847,
BC850

BC 848,
BC849

Unit

VCEO

65
80
80
6

45
50
50
6

30
30
30
5

V
V
V
V

VCBO
VCES

VEBO

Ic

100
200
200
200
330

ICM
IBM
!eM

Ptot

150
-65···+150

Tj

Tstg

~375

RthJA

mA
mA
mA
mA
mW
°C
°C
K/W

(:'3 Preferred type

Siemens

199

BC846
... BC 850

Electrical characteristics
at TA = 25 cC, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic=10mA
BC846
BC 847, BC 850
BC 848, BC 849

V(BR) CEO

Collector-base breakdown voltage

V(aR) caD

min

typ

max

Unit

65
45
30

-

-

V
V
V

80
50
30

-

-

-

-

-

V
V
V

80
50
30

-

-

V
V
V

6
5

-

-

-

V
V

-

15
5

nA

-

140
250
480

-

-

110
200
420

180
290
520

220
450
800

-

-

90
200

250
600

mV
mV

-

700
900

-

mV
mV

580

660

-

-

700
770

mV
mV

Ic=10~A

BC846
BC 847, BC 850
BC 848, BC 849
Collector-emitter breakdown voltage
Ic = 10 ~A, VaE = 0
BC846
BC 847, BC 850
BC 848, BC 849

V(BR)CES

Emitter-base breakdown voltage
lE= 1 ~
BC 846, BC 847
BC 848, BC 849, BC 850

V(BR)EBO

Collector cutoff current
VCB = 30 V
VCB = 30 V, TA = 150 cC

ICBo

DC current gain
/c= 10~A, VCE=5V
BC 846 A, BC 847 A, BC 848 A
BC 846 B ... BC 850 B
BC 847 C, BC 848 C, BC 849 C, BC 850 C
Ic=2mA, VCE=5V
BC 846 A, BC 847 A, BC 848 A
BC 846 B ... BC 850 B
BC 847 C, BC 848 C, BC 849 C, BC 850 C

hFE

Collector-emitter saturation voltage ')
Ic = 10 mA, IB = 0,5 mA
Ic = 100 mA, Ia = 5 mA

VCEsat

Base-emitter saturation voltage ')
Ic = 10 mA, Ia = 0,5 mA
Ic= 100mA, /a=5 mA

VBEsat

Base-emitter voltage
Ic= 2mA, VCE=5V
Ic=10mA, VCE=5V

VaE (on)

-

-

-

') Pulse test: (:5 300 ~s, D = 2%.
200

Siemens

-

-

-

~A

-

BC846
... BC 850

AC characferistics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 rnA, VCE = 5 V, f= 100 MHz

fT

-

250

-

MHz

Output capacitance
Vce = 10V, f=1 MHz

Cob

-

3

-

pF

Input capacitance
Vce = 0,5 V, f= 1 MHz

Cib

-

8

-

pF

Short-circuit input impedance
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC 846 A ... BC 848 A
BC B46 B ... BC B50 B
BC B47 C ... BC B50 C

h11e

-

2,7
4,5
B,7

-

kQ
kQ
kQ

Open-circuit reverse voltage transfer ratio
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC B46 A ... BC 84B A
BC B46 B ... BC B50 B
BC B47 C··· BC B50 C

h12e

-

-

10- 4

-

1,5
2,0
3,0

Short-circuit forward current transfer ratio
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC B46 A ... BC 84B A
BC B46 B ... BC 850 B
BC B47 C ... BC 850 C

h21e

-

200
330
600

-

Open-circuit output admittance
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC B46 A .. BC 84B A
BC B46 B .. BC 850 B
BC B47 C .. BC 850 C

h22e

-

1B
30
60

-

o-

IlS
IlS
ilS

Noise figure
Ie = 0,2 rnA, VCE = 5 V, Rs = 2 kQ
f= 30 Hz .. ·15 kHz
BCB49
BCB50
f= 1 kHz, M= 200 Hz
BCB49
BCB50

F

-

1,4
1,4
1,2
1,0

4
3
4
4

dB
dB
dB
dB

Equivalent noise voltage
Ie = 0,2 rnA, VeE = 5 V, Rs = 2 kQ
f=10Hz .. ·50Hz
BCB50

Vn

-

0,135

IlV

0

0

0

-

Siemens

-

-

-

-

10- 4
10- 4

-

201

BC846
... BC 850

Total power dissipation Ptot = f (TA)

Collector-base capacitance CeBo = f(VeBo)
Emitter-base capacitance CEBO = t(VEBO)

mW
400

pF
12
( (SO

~ot

t

('T

~h.

~

l lo

'~

300

'\

8

I'\:

~

200

"

4

r-..
I}(SO

f':

'""'-

~

./ ....... 1--

'ESO

100

1'\
2

r\

o
o

50

100

o

10·t

150 ·C

-7;.
Pulse handling capability

rth

= fIt)

Transition frequency tT =
VeE =5V

(standardized)

t (lo)

K

Iii
10°

1111

tth 5

t

fy

t

oI!fAtJ(I

0,5
0,2
0,1
0,05
0,02
0,01
0,005
D:O 1111

10' t
5

2

5

I-t--

I/V
5

5

~T
~

tp

D=f

.. ;

10-3
10-6 10-5 10- 4 10-3 10- 2 10"

10°

,
10' s

5 10 2 mA

-f

202

Siemens

BC 846
... BC 850

Base-emitter saturation voltage Ie
hFE = 20

= f (VBE sat)

rnA
W2

DC current gain hFE
VCE = 1 V

= f (I e)

~

-

r-l000(

l'/

12S
2S 0 (
0(

_SOO(

I

~ -

I- 2S 0(

~

5

5
L

I

5

10- 1

10°

o

0,2

0,4

0,6

0,8

1,0

10- 2

1,2 V

5 10- 1

5 10°

5 10'

5 10 2 rnA

-Ie

-VBEsat

Collector cutoff current I CBO = f ( TA)
VCB = 30V

Collector-emitter saturation voltage
Ie = f(VCE,,')
hFE = 20

rnA
10 2
I

/

II

I
./

max. ~...

/

102

t-Il;

10'

_SOO(
25°(
%1000(

5

5

,.

typo

lr!'
5

,

10-

o

,

/
50

100

1500(

0,1

-7;

0,2

0,3

0,4

a,s

V

- - - - VCEsaf

Siemens

203

BC846
... BC 850

h parameter he
VeE = 5V

= f(Ie)

h parameter he
Ie = 2 mA

10 2

= f(VeE)

2,0

I
Ic:1 mA,I

h,

I

~11'

l'

VcE =5V

~

\\
,\

f--

....

1,..- .....

'\

~h'2.

=h21

h~,.

1,5

1,0

....

~ .//

1\1,.0t-1'\

h'le

;;:;;

h2~ ..... 7

r-..
0,5

....-:-:
h22 •
o

o

10

NOise figure F = f ( VeE)
Ie = 0,2 mA, Rs = 2 kQ, f= 1 kHz

Noise figure F = f (f)
Ie = 0,2 mA, Rs = 2 kQ

dB
20 r--"TnTITr-'--rTTTTm--.TTnnn

dB
20

F

I

20

--VcE

-Ie

15 1-t-+++tfttt---++H+tt++-t-++t+H+1

10

5

O'--'-'-J-LllilL--L-L1..LllllL.-LLLJLlillJ

10·'

5

10'

5 10 2 V

---VcE
204

Siemens

_\

30 V

BC846
... BC 850

Noise figure F = f (I cl

Noise figure F = f (I e)

VCE=5V, f= 120Hz

VCE =5V, f= 1 kHz

dB
20

dB
20

r- !?s=lMfl 100kfl

J

II

I

10kfl/

Rs =lMQ 100 k II 10kQ

I

/

\

/

\

10

10

\

J sOOQ

lkQ

I
5

J

'"
r10- 2

IJ
5

L

1\
'\.

lkQ
11111
11111
11111

10' mA

o-

10-3

II

1

II' SOOfl

I III

I'-

",

".I.

11111

10- 2
-Ie

Noise figure F= f(Ie)
VCE = 5 V, f= 10 kHz
dB
20

-

Rs=lMQ

1100k

I I I II

II II

/

10

II II

OOQ

10kQ

I\,

5

lkQ\.

J

111111

J IIiU

o

10-3

JaIl"..

,..:;

10- 1
-Ie

Siemens

205

PNP Silicon AF Transistors

•
•
•
•
•

BC856
... BC 860

For AF input stages and driver applications
High current gain
Low collector-emitter saturation voltage
Low noise between 30 Hz and 15 kHz
Complementary types: BC 846, BC 847,
BC 849, BC 850 (NPN)

Type

BC 856
BC 856
BC 857
BC 857
BC 857
BC 858
BC 858

Marking

A
B
A
B
C
A
B

3A
3B
3E
3F
3G
3J
3K

Type

rn BC 858 C
BC
BC
BC
BC
BC

859A
859 B
859 C
860 B
860C

Marking

Ordering code

Package

3L
4A
4B
4C
4F
4G

Refer to index

SOT 23

Maximum ratings
Parameter

Symbol

Be 856

Be 857,
BC860

Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Peak collector current
Peak base current
Peak emitter current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VCES
VEBO
Ic
ICM
IBM
IEM

65
80
80
5

45
50
50
5

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

RthJA

Unit

Ptot

100
200
200
200
330

V
V
V
V
mA
mA
mA
mA
mW

Ti
Tstg

150
-65·.·+150

°C
°C

:S 375

rn Preferred type
206

Be 858,
BC859
30
30
30
5

Siemens

K/W

BC 856
... BC 860

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 10 mA
BC856
BC 857, BC 860
BC 858, BC 859

V(SR) CEO

Collector-base breakdown voltage
Ic= 10 !lA
BC856
BC 857, BC 860
BC 858, BC 859

V(SR) cso

Collector-emitter breakdown voltage
Ic=10!lA,VsE=0
BC856
BC 857, BC 860
BC 858, BC 859

V(SR) CES

Emitter-base breakdown voltage
h=1!lA

V(SR) ESO

Collector cutoff current
Vcs = 30V
Vcs = 30 V, TA = 150°C

Icso

DC current gain
Ic = 10 !lA, VCE = 5 V
BC 856
BC 856
BC 857
Ic=2mA, VCE=5V
BC 856
BC 856
BC 857

hFE

min

typ

max

Unit

65
45
30

-

-

-

V
V
V

-

-

-

V
V
V

V
V
V

80
50
30

-

-

-

-

80
50
30

-

-

-

5

-

-

-

V

-

-

1

15
4

nA
!lA

A ... BC 859 A
B ... BC 860 B
C ... BC 860 C

-

140
250
480

-

-

A ... BC 859 A
B ... BC 860 B
C ... BC 860 C

125
220
420

180
290
520

250
475
800

-

-

75
250

300
650

mV
mV

-

700
850

-

mV
mV

600

650

-

-

750
820

mV
mV

Collector-emitter saturation voltage ')
Ic= 10 mA, Is = 0,5 mA
Ic = 100 mA, Is = 5 mA

VCEsat

Base-emitter saturation voltage ')
Ic = 10 mA, Is = 0,5 mA
Ic = 100 mA, Is = 5 mA

VSEsat

Base-emitter voltage
Ic = 2mA, VCE=5V
I c = 10 mA, VCE = 5 V

VSE(on)

') Pulse test: t::5, 300 !ls, D = 20/0.

Siemens

207

BC856
... BC 860

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 rnA, VCE = 5 V, f= 100 MHz

fT

-

250

-

MHz

Output capacitance
VCB = 10V, f=1 MHz

Cob

-

3

-

pF

Input capacitance
VCB = 0,5 V, f= 1 MHz

Cib

-

8

-

pF

Short-circuit input impedance
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC 856 A .. · BC 859 A
BC 856 B ... BC 860 B
BC 857 C ... BC 860 C

h11e

-

-

-

2,7
4,5
8,7

-

kO
kO
kO

Open-circuit reverse voltage transfer ratio
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC 856 A··· BC 859 A
BC 856 B .. · BC 860 B
BC 857 C ... BC 860 C

h12e

-

1,5
2,0
3,0

-

Short-circuit forward current transfer ratio
I c = 2 rnA, VCE = 5 V, f = 1 kHz
BC 856 A ... BC 859 A
BC 856 B ... BC 860 B
BC 857 C ... BC 860 C

h21e

-

200
330
600

-

-

-

Open-circuit output admittance
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
BC 856 A ... BC 859 A
BC 856 B ... BC 860 B
BC 857 C ... BC 860 C

h22e

-

18
30
60

-

~S
~S
~S

Noise figure
Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kO
f=30Hz .. ·15kHz
BC859
BC860
f= 1 kHz, M= 200 Hz
BC859
BC860

F

-

-

1,2
1,0
1,0
1,0

4
3
4
4

dB
dB
dB
dB

Equivalent noise voltage
Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kO
f = 10Hz ... 50 Hz
BC860

Vn

-

-

0,110

~V

208

-

-

-

Siemens

-

-

10--

10-10--

BC856
'" BC 860

Total power dissipation Ptot

= f (TA)

Collector-base capacitance CCBO = f(VCBO)
Emitter-base capacitance CEBO = f (VEBO)

pF

mW
400

~ot

t

12

'\.

I-~

I\.

300

"-

200

}CBO

""- I"-

1\

~

\

\

""

4
100

o
o

.....

[E~O 1""--.....

1\

1\
50

150 0 (

100

--T,
Transition frequency fT = f (l c)
VeE = 5V

Pulse handling capability rth = f (t)
(standardized)

K

W
100

,

10- 2

•

I

'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
0:0 1111

,;'

-

/

~ ---J tp I---

o:1-ILJL

T I--- T-i
10- 3
'"
10- 6 10- 5 10- 4 10,3 10'2 10"

10°

10' s

-t

Siemens

209

BC856
, .. BC 860

Base-emitter saturation voltage Ie = '(VBE sat)
hFE = 20

Collector-emitter saturation voltage

rnA

rnA

W1

W1

~

~

12soe
2Soe
-sone

r

Ie = '(VcEsat)
hFE = 20

'1

/

5

IV /

t

{:;~

5

/

II

V

VV
./

-sooe
25°(
100 0 e

-

r-

5

II

5

lO-

,

,

II

a

0,2

0,4

0,6

0,8

1,0

1.2 V

0)

0,2

0,3

01+

0,5 V

~\.hsat

---VBE sat

Collector cutoff current I CBO = '( TA)

DC current gain hFE =

VCB=30V

VCE = 1 V

'(lei

100 0 e

_25·

~

0/

max. "

10 2

=
-

5

5

..

~

w'

typ;

5
5

lif'

=
=
r-

5

,

!--

./
50

100

150

0(

100 '-:c
10-2

-JA
210

5 10-'

5 10°

5 10'
-Ie

Siemens

5 102 mA

BC856
... BC 860

h parameter he = f (I e)
VeE = 5V

h parameter he

10 2

2,0

= f (VeE)

Ie = 2 rnA

I
I

Je=12~A

h.

h l1 -

1

h".

i.-

n

liE =5V

t..V

1\

'(

V
1,0

I\. h12 •

"
5

""""'r-.

I'

~ I/ V

y~
vi

i"'I

......h ._+-22

0,5

~h2'.

,

1\

h2o/

o
o

10

20

30 V

- - liE

-Ie

Noise figure F = f(VeE)
Ie =0,2mA, Rs = 2kn, f= 1 kHz

Noise figure F = f (f)
Ie = 0,2 rnA, Rs = 2 kn, VeE = 5 V

dB
20

dB
20

~~TTnmr---.-,-,-,crrrr'--"TT;

F

!

15

~+4+H~-+++Htt~~+#~
1\

10

5

OL-L.L-liLWL--L-LLUWL-LlJ....llillJ

10-'

5

10'

5 10 2 V

o

10-2

--liE
Siemens

211

BC8S6

···BC860

Noise figure F = f (I oj
VCE=5V, f= 120Hz

Noise figure F = f (Io)
VCE = 5 V, f= 1 kHz

dB
20

dB
20

r-

~s=lMQ

100kQ

/

10kQ/

I

/

Rs =lMQ lOOk 110kQ

I

\

II
II

10

10

\

, 500Q

1kQ

I
II

5

.I

'"

o

10-3

-

I
1/

"

1kQ
11111
11111

101 mA

o-

'"

1

i

I'

IIIII

I

500

I
I
I

[".ol

10-3

1Q1 mA

Noise figure F = f (Io)
VCE = 5 V, f= 10 kHz

dB
20

Rs=lHQ

I
[lOOk
[

!I

10
OQ

lkQ\.

lUll

IIIU

o

10- 3

212

Siemens

uaw~

III

10kQ

\.

5

/ I II
III

/

PNP Silicon Darlington Transistors

•
•
•
•

BCP 28; BCP 48

For general AF applications
High collector current
High current gain
Complementary types: BCP 29/49 (NPN)

E

Type

Marking

Ordering code (12-mm tape)

Package"

BCP 28

BCP 28

Q62702 - C1234

SOT-223

BCP 48

BCP 48

Q62702 - C1235

SOT-223

Maximum Ratings
Unit

Parameter

Symbol

BCP28

BCP48

Collector-emitter voltage

VCEO

30

60

V

Collector-base voltage

Vcso

40

80

V

10

10

V

Emitter-base voltage

VESO

Collector current

Ic

500

mA

Peak collector current

ICM

800

mA

Ie

100

mA

ISM

200

mA

P'O'

1.5

W

T,
T519

150

·C

Base current
Peak base current
Total power dissipation, TA $ 25°C

1)

Junction temperature
Storage temperature range

-65

to

+ 150

·C

Thermal Resistance
s83.3

Junction - ambient 1)
') Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm
Mounting pad for the collector lead min 6cm 2
.) For detailed dimensions see chapter Package Outlines

Siemens

213

BCP 28, BCP 48

Characteristics
at TA = 25°C, unless otherwise specified.

Parameter

Unit

DC Characteristics
Collector-emitter I;>reakdown voltage
Ic = 1mA, Ie = 0
BCP 28
BCP 48

VCBRlCEO

Collector-base breakdown voltage 1)
Ic = 100 jlA, Ie = 0
BCP 28
BCP 48

VceRlCBo

Emitter-base breakdown voltage
IE = 10 jlA, Ic = 0

VCeR)EeO

Collector-base cutoff current
Vce=30 V,/E=O
Vce=60 V,/E=O
Vce = 30 V, IE = 0, TA = 150°C
Vce = 60 V, IE = 0, TA = 150°C

BCP 28
BCP 48
BCP 28
BCP48

Emitter-base cutoff current
VEe =4 V, Ic =0
DC current gain 1)
Ic=100jlA, VCE=lV
Ic =10mA,VCE =5V
Ic =100mA, VCE=5V

Ic = 500 mA,VCE = 5 V

Iceo

'EBO

30
60

-

-

V
V

40
80

-

-

V
V

10

-

-

V

-

-

100
100
10
10

nA
nA
\1 A
\1 A

-

-

100

nA

4000
2000
10000
4000
20000
10000
4000
2000

-

-

-

-

--

-

-

1.0

V

-

-

1.5

V

-

200

-

MHz

-

8

-

pF

hFE
BCP
BCP
BCP
BCP
BCP
BCP
BCP
BCP

28
48
28
48
28
48
28
48

Collector-emitter saturation voltage
Ie = 1OOmA.lB = 0.1 mA

VCEsal

Base-emitter saturation voltage
Ie = 100mA,/e = O.lmA

VBEsal

AC Characteristics
Transition frequency
Ic=50 mA, VCE = 5V,f=100MHz

fT

Output capacitance
VCB = 10 V,f= 1 MHz

Cob

1) Pulse test conditions: t ~ 300\1s; D = 2%

214

Siemens

BCP 28; BCP 48

Total power dissipation P101

= '(TA)

Collector cutoff current ICBO = '(TA )
VCB = VCE max

nA
2.0
W

10'

f1--l- I--

-- -

1-;-

r=

...-.1-

I-

1-1./

h
I-t\
II- .

-

1--' --

-

0.5

-

-

1-

-

-

-

- --

o

?~ r\:- --

--

- - - I-

1-.I- -- ~~
I-

--!-

'1
1

-

Vtyp.
H-

so

-

rs: -1-1\.

-- .- -- . -- - -- - -- -- -- -

r=--

1-1-

K

-

I- -

-I-

\

100

·C

50

lS0

--r.

100

150 'C

--T,.

'T = '(I~)
,--

-- .-- --

1--'

r-

I-1---

S

-

-

--+- 1-- - r -

o

5

Transition frequency
MHz VCE = 5 V
10 1

I-I-

\

-I- -

I-

,/ max.

-

--

1.0

-1- --

,-

r-.
,/
~

7

1~

101 , -

-

I-

-

I--

'-

--

Siemens

215

BCP 28; BOP 48

DC current gain
Vce=5V
10'

F

F-

~

I--

~

~

r

5

= ((Ie)

I--

-

I--

IIi===

~

~

-55"(

~

~
~

5

hFE

-

'--

10'

S
1111111

10"

5 100

5 10'

~

==1 ~

I-~

__ •.~ _ _
0.5

100'-'"--'-~-

5 101

o

5 10 1 mA

-- ,-- -1-1-

- - -- - -+-1-

I-- 1- - - -

1111111

11111111

101

==~-~:-:1:1j~J~
c.= -- - :::::
. :: .-- : : I~--+---1-+-1

10' 1=
C:$$==j-

--- I1tII11I

5

_ ._L- _ _ ' '_0
V
1.')

- --- \'cE.o'

- /c

B•••·.mltt.r .aturatlon voltage Ie

Collector-base capacitance Cob = (Vca)
pF Emitter-base capacitance C'b = (VEa)

hFE" 1000

10
CUD

IC (801

t "'"~
I"-

....

~80

5

~
C
EBO

'--

,

'"
10'

--

s

- --

o
10"

5

10°

5
-

216

10' V

F3===t::J=lI=:f=

~ ~J;~-

=fr-

-- ~ -~- ~ =- -_.- -. -- -

-

I--

lI-

~

I-

10 0 L-L ......"--'---'.->-."-L J_'-L_J._LJ...J
o
V
3

Vnol Vclol

- Veho'

Siemens

= ((VaE sat)

NPN Silicon Darlington Transistors

•
•
•
•

BCP 29; BCP 49

For general AF applications
High collector current
High current gain
Complementary types: BCP 28/48 (PNP)

E

c
C

B

Type

Marking

Ordering code (12-mm tape ) Package"

BCP 29

BCP 29

Q62702 - C1236

SOT-223

BCP49

BCP49

Q62702 - C1237

SOT-223

Maximum Ratings
Parameter

Symbol

Collector-emitter voltage

BCP49

BCP 29

Unit

Emitter-base voltage

VCEO
VCBO
VESO

Collector current

Ic

500

rnA

Peak collector current

ICM

800

rnA

Base current

Is

100

rnA

ISM

200

rnA

Collector-base voltage

Peak base current
Total power dissipation, TA:s 25°C

30

60

V

40

80

V

10

10

V

P IOI

1.5

W

Junction temperature

T.

150

°C

Storage temperature range

T. lg

Thermal Resistance
Junction - ambient 1)

1)

-65

I

RU>JA

to

:s 83.3

+ 150

°C

IKIW

I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.5mm
Mounting pad for the collector lead min 6cm2
') For detailed dimensions see chapter Package Outfines.

Siemens

217

BCP 29, BCP 49

Characteristics
at TA = 25 ·C, unless otherwise specified.

Parameter

Values
min.

!typ.

max.

IUiilt

DC Characteristics
Collector-emitter breakdown voltage
Ic = 1mA, IB = 0
BCP 29
BCP 49

V(BR)CEO

Collector-base breakdown voltage
Ic = 100 pA, Ie = 0
BCP 29
BCP 49

V(SR)CBO

Emitter-base breakdown voltage
IE = 10 pA, Ic = 0

V(BR)EeO

Collector-base cutoff current
Vce=30 V, IE=O
Vce=60 V, IE=O
Vce=30 V,/E=O, TA = 150'C
Vcs =60 V'/E =0, TA = 150'C

BCP
BCP
BCP
BCP

ICBO

29
49
29
49

Emitter-base cutoff current
VEe = 4 V, Ic = 0
DC current gain 1)
Ic = 100 IlA , VCE = 1V

Ic = 10 mA, VCE = 5 V
Ic = 100 rnA, VCE = 5 V
Ic = 500 rnA,VCE = 5 V

lEBo

29
49
29
49
29
49
29
49
VCE•AI

Base-emitter saturation voltage
Ic 1OOrnA'/e 0.1 rnA

VSEsal

=

-

-

V
V

40
80

-

-

V
V

10

-

-

V

-

-

-

100
100
10
10

nA
nA
11A
11A

-

-

100

nA

4000
2000
10000
4000
20000
10000
4000
2000

-

-

-

-

-

1.0

V

-

-

1.5

V

-

200

-

MHz

-

6.5

-

pF

hFE
BCP
BCP
BCP
BCP
BCP
BCP
BCP
BCP

Collector-emitter saturation voltage
Ic 1OOrnA'/e 0.1 rnA

=

30
60

=
=

AC Characteristics
Transition frequency
Ic = 50 rnA, VCE =5 V, f= 100 MHz

fr

Output capacitance
Vcs=10V,f=1 MHz

Cob

1) Pulse test conditions: t :;;;; 30011S; D = 2%

218

Siemens

BCP 29; BCP 49

Total power dissipation PIOI

= ({TAl

Collector cutoff current Iceo
Vce = VCEmax

= ({TA)

nA
2.0 -

r

--,-,-,- - - --- -,-'--1-'-,

W

r--~

1--

Ii..

t

-

re-

'-r -1-0--

1.5

~'~~§~f~F-f-3I~~--!~~-I-~~-~;t'~
~

lceo

IIO J
5

=-='='::"'~~:'.~~I= -=:::'={;
H-'

.-

~~~~I_-~~+1~-+1-r~'~

r~ ·~-+-t+-H-!

1.0

H-~-+++--l'

1---

0.5

\ -I-H--H-H

--I---i:-I\----f1-1-

-

-1-'i.--1I-1--+-1

,:. -'-r ~:--T.: -~
o

50

Transition frequency
VCE = 5 V

100·C

100

150

L-L-L-.L..J.-L...L...JL-L-L--'--l-'--...L...JL...J

o

SO

100

--r.

150

°c

'T = ((lel

MHz

10 1

:= --

'1

1

5

5 10'

5 10'mA

Siemens

219

BCP 29; BCP 49

DC current gain hFE

= ((Ie)

Collector-emitter saturation voltage
Ie ((VCE sal)

=

VcE =10V

hFE

= 1000

10'

t=

lIf-

~

~

5

1~

=

I-1'T
-55°(

,~

-

po

:::-

I=- -

'--

_.

--

r=~
-.

---

-.

---

10l

=

5 10°

5 10'

5 10 1

-- - --f-

----

- .

o

5 IO l mA

=

=

"FE

10 I

~..::~.-=

=

--- -: --.

.. -- --- . - ---j-r=
:: --:.:--- -1=

I-

- -,

-~·;f:il-r·:

---'-liY- -- - -- - f-

t =~ ~~ ~~~f; ~i :~~ _~ :-- t

5

c

Jr.- J~Jr-=-150;c -..

II

10 2

S

~BO
t"'--

1.5

Vr:Esol

= 1000

mA -. - .. -

l

"t--.

V

1-

Base-emitter saturation voltage Ie

l

t--.

1.0
_._ ..... -

Collector-base capacitance Cob ((Vca)
;Emilter-base capacitance C'b ((VES )
pF
10

''""

-1-1--

f- --- -

-Ie

1

--

I- -1- . -100 _ '-- ___I ___ __
0,5

'-

10-'

-

- -- -I- -- -I·-H-'I---~1-- - .--

--

_il-

2S0 (

f-

I_

~~ -~I::SOO( - ~

=~-- ft ~- =I~ _-- , ~__I---

+_f__I

t'!'- ~ r[E80

~ .--

---

-

-

I-

--_.-

5

100

5
-

220

VEBO

10' V

I

-

10 0 L_..L_L....--'_

o

VcBol

--

f-

.-. -- -- --1-+-1-+-1
_',-'l-'_'--'-~_..L-''--'--'.

V
- - - VBEsol

Siemens

I-

= !(VBE sal)

BCP 51 ... BCP 53

PNP Silicon AF Transistors

•
•
•
•

For AF driver and output stages
High collector current
Low collector -emitter saturation voltage
Complementary types: BCP 54 ... BCP 56
(NPN)

E

~
Type

Marking

Ordering code (12-mm tape)

Package"

BCP 51

BCP 51

062702 - C2 107

SOT-223

BCP 51-10

BCP 51-10

062702-C2109

SOT-223

BCP 51-16

BCP 51-16

062702-C2110

SOT-223

BCP 52

BCP 52

062702 - C2 146

50T-223

BCP 52-10

BCP52-10

062702 - C2 1 12

SOT-223

BCP 52-16

BCP 52-16

062702 - C21 13

SOT-223

BCP 53

BCP 53

062702 - C2 147

50T-223

BCP 53- 10

BCP 53-10

062702-C2115

50T-223

BCP 53-16

BCP 53-16

062702 - C21 16

50T-223

Maximum Ratings
Symbol BCP51 BCP52 BCP53 Unit

Parameter
Collector-emitter voltage
Roe:S 1kn
Collector-base voltage

Vceo
VCeR

45
45

60
60

80
100

V
V

Vcoo

45

60

100

V

Emitter-base voltage

Veoo

Collector current

Ic

Peak collector current
Base current
Peak base current
Total power dissipation, TA:s 25'C

I)

Storage temperature range

V

1

A

ICM

1.5

A

18

100

mA

IBM

200

mA

P IOI

1.5

W

r.

Junction temperature

5

TSI\I

150
-65

to

+ 150

'c
'c

Thermal Resistance
Junction - ambient I)

:S 83.3

IKJW

I) Package mounted on an epoxy printed circuit board 40mm x 40rnrn x 1.5mm
Mounting pad for the collector lead min 6cm 2

.) For detailed dirnensions see chapter Pack ago Outlines

Siemens

221

BCP 51 ... BCP 53

Characteristics
at TA = 25 ° C, unless otherwise specified.
Parameter
1

Symbol 1 V~lues
min. Ityp.

Imax.

Unit
1

DC Characteristics
Collector-emitter breakdown voltage
Ic = 10mA'/B = 0

Collector-base breakdown voltage
Ic = 1OOpA,/B = 0

V1BR)CEO
BCP 51
BCP 52
BCP 53

45
60
80

-

-

V
V
V

45
60
100

-

-

V
V
V

5

-

-

V

-

-

100
20

nA
pA

-

-

10

pA

25

-

-

V1BR)CBO
BCP 51
BCP 52
BCP 53

Emitter-base breakdown voltage
IE = 10pA.Ic = 0

V1BR)EBO

Collector-base cutoff current
VcB =30VA=0
VCB = 30 V'/E = O,TA = 150 °C

ICBO

Emitter-base cutoff current
VEs =5V,/c =0

lEBO

DC current gain 1)
hFE
Ic = 5 rnA, VCE = 2 V
Ic= 150 rnA, VCE=2 V
BCP 51/BCP 52/BCP 53
BCP 51/BCP 52/BCP 53-10
BCP 51/BCP 52/BPC 53-16
Ic = 500 rnA, VCE = 2 V

40
63
100
25

Collector-emitler voltage
Ic = 500 rnA, 18 = 50 rnA
Base-emitler voltage
Ic = 500 rnA, VCE = 2 V

1)

VCEsat
VBE

1)

-

-

-

-

-

0.5

V

-

-

1

V

100
160

250
160
250

AC Characteristics
Transition frequency
Ic = 50 rnA, VCE = 10 V, f= 100 MHz

1-

1) Pulse test conditions: t ;;,; 300ps; D = 2%

222

Siemens

MHz

BCP 51 ... BOP 53

Total power dissipation Ptot = '(TA)

2.0..-- - W I- I--

f

1.5

-- -I-f-

--. -

~

l-

- -1- -I--I-I--I-j
-. --

"

-+-I--I--l-lf·-

l-

- - - - \ - - -1--1-

1--

5

1-+++-H1fH1--+-~Hl#---t-+-l+H1lI

f

1\

I-

'1 = '(Icl

101EEml33~

-r-'~-'-'-'--'--"-r--'-'

--

I- -- .-- - -

l'1ot

Trlnlltlon frequency
HHz VCE = 10 V

~-=~:.~~y= -~=-;~:--1.01-

-

~ -1--1- -1--1-+-1--1

--

I- - - - -

- -

-\l-I-j--+-l--t--l-l

I-- ----~~44-+-l-+
I-- -- - - - - - - - \ -1-1-1-1-1

====~ : : _-"~I.-

1--- - -- ---- 0.5

1= =- I:::: =-

-1-__-1-1--1

I- -- -- - - - -

I--

\.

- --

-

-1\ - -

---H\
- - - - -- -.~

- -. - - - --1-

oo

100

50

.(

lO'~~~WL-L~~lli~-U~

10°

150

---IA

5 10'

5 10 1
-Ie

5 10 J mA

DC current gain hFE = '(/ c)
VCE =2 V

10 J 1=

E-

f=

l-

f:::
l-

I-

-

-

'= --

I--

-

I-

100·(
t-

III
F2S'

~

5 I--SO'(.

10

""

,

F= -

r=
f:::-

5

-

-

~-

10°
10°

5 10'

5 10 1

5 10 J
-Ie

5 10~ mA

------r.
Siemens

223

BCP 51 ... BCP 53

Base-emitter saturation voltage Ie
hFE =10

= f(VBE .al)

mA

Collector-emitter saturation voltage
le=f(VCEsal)
mA hFE 10

=

5

100 O(
25°(,
'/./

SOO(

"I')

10 1

h /

10 1

./

'11,// v--::

'K

-5

O(

5

5

I

10'

10'
5

5

'K)O

o

0,2

0,4

0,6

0,8

1,0

0,2

1.2 V

224

0,4

0,6
-\'cEsat

- - VeE sal

Siemens

0,8 V

NPN Silicon AF Transistors

•
•
•
•

BCP 54 ..• BCP 56

For AF driver and output stages
High collector current
Low coll~ctor -emitter saturation voltage
Complementary types: BCP51...BCP53 (PNP)

Type
BCP 54
BCP 54-10
BCP 54-16
BCP 55

Marking

E

Ordering code (12-mm tape)

Package'

BCP 54

062702 - C2117

SOT-223

BCP54-10

062702 - C2119

SOT-223

BCP 54-16

062702 - C2120

SOT-223

BCP 55

062702 - C2148

SOT-223

BCP 55-10

BCP 5S-1O

062702 - C2122

SOT-223

BCP 55-16

BCP 55-16

062702 - C2123

SOT-223

BCP 56

BCP 56

062702 - C2149

SOT-223

BCP 56-10

BCP56-10

062702 - C2125

SOT-223

BCP 56-16

BCP 56-16

062702 - C21 06

SOT-223

Maximum Ratings
Parameter

Symbol BCP54 BCP55 BCP56 Unit

VCEO
VCER

45

Collector-base voltage

Vceo

Emitter-base voltage

Veso

45
5

Collector current

Collector-emitter voltage

Rees lk!1

45

60
60

80
100

V
V

60

100

V

5

5

V

Ic

1

A

Peak collector current

ICM

1.5

A

Base current

Is

100

mA

Peak base current

ISM
P 'o'

200

mA

1.5

W

Total power dissipation, TA s25°C

II

Junction temperature

Tj

Storage temperature range

Tslg

·C

150
-65

to

+ 150

·C

Thermal Resistance
Junction - ambient 1)

IR

1hJA

s83.3

I) Package mounled on an epoxy prinled circuil board 40mm x 40mm. x 1.5mm
Mounting pad lor Ihe colleclor lead min 6cm 2
.) For delailed dimensions see chapler Package Outlines

Siemens

225

BCP 54 ... BCP 56

Characteristics
at TA = 25 ·C, unless otherwise specified.
Parameter

Imax.

IUnit

DC Characteristics
Collector-emitter breakdown voltage
Ic = 1OmA.IB = 0

V\BRICEO

BCP 54
BCP 55
BCP 56

Collector-base breakdown voltage 1}
Ic = 1OOpA.lB = 0
BCP 54
BCP 55
BCP 56

V\BnICBO

Emitter-base breakdown voltage
IE = 1OpA.lc = 0

V\BRIEBO

Collector-base cutoff current
VeB =30 V.lE =0
VCB =30 V.IE =0. TA = 150 ·C

ICBO

Emitter -base cutoff current
VEB =5V

lEBO

DC current gain
Ic = 5 mAo VCE = 2 V
Ic = 150 mAo VCE = 2 V
BCP 54/BCP 55/BCP 56
BCP 54/BCP 55/BCP 56-10
BCP 54/BCP 55/BCP 56-16
Ie = 500 mAo VCE = 2 V

hFE

Collector-emitter voltage
Ic = 500 mAo IB = 50 mA
Base-emitter voltage
Ic = 500 mAo VCE = 2 V

1)

VBE

AC Characteristics
Transition frequency .
Ie =50 mAo VCE = 10V. f= 100 MHz

1) Pulse test conditions: t ::.; 300ps; D = 2%

226

Siemens

-

-

-

V
V
V

45
60
100

-

.

.

V
V
V

5

-

.

V

-.

.

-

100
20

nA
pA

-

-

10

pA

25

-

-

-

100
160

250
160
250

-

-

-

-

0.5

V

-

-

1

V

40
63
100
25
VCEsat

1)

45
60
80

BCP 54 .. . BCP 56

Total power dissipation Plol = f (TAl

2.0

=

101~mIIfE!_

r-

W

I-I-f1--

~o,

t

Transition frequency fT = f(lel
MHz VeE 10 V

--- -- - - -

.- .- f-..- "-'- - h - i- :-1-~
1-1- -fi[Sf- --

1.5

-'"

I
-

-.

I- -- I-' - -I- 1-1- -~-

1.0

"

-

f·- -1- -.1- - .\ -

K

5

2

l-

~+++H11~-+-H~It~+;~+ffl

1- -

1--·1--I- -1-1- :-·K~-- -1--- - - - - - .._- -- - ._. - ..- -- -- ...
~.-

0.5

-

-

- --1---- 1- --1-.-11--._.

o

o

100 O(
-TA

50

150

DC current gain hFE = f(1e)
VeE =2 V
IO J

--

-::

hI[ S

1-.

t=

i-

f--

10' I--.L-L.LJ..1.WL-L..L..Lll.WIL-.L.J...ll.1.lJJ1
100
S 10'
5 10 1
5 10' mA
--II

Collector cutoff current leBO = f(TAI
VeE =30 V

nA

_.-

r,oo·

f
101

S

III

1=15°
_50 0 (
l-

.-

-

f---

\"

f-

f-

1-

10'
10'

-

- - -- - -.f- V1ypl-

~:o:::= = =.

==.1= =1~l1.-:~Et§:§

I-I-f--

1-11

5 F'---:E=i==:::;l'f::+-'=:

i=

1=

S ~.
I-

.-

-

-

.

-.

~*~~~~*~~~~
I=I=:..~ i- ---- -- 1=1=

5 FF-:
10°
I-f-V-

10°
10- 1

S 10°

5 10'

I-

10-'

S 10 1

o

S 10 1 mA

I-t-

-I- -t-t--I--t-,H--t-t-l

1/
50

100

150°C

--/A

-II

Siemens

227

BCP 54 . .. BCP 56

Base-emitter saturation voltage Ie
hFe = 10

= {(VBe sa')

mA
10'

-

- i-=-

~ 1= =-r=

F

- r= 1-= 1=
=r= .:=
f--- r= r=

~ f-:
1=
== i== -= =
-::-50·(~ Y- ~ 1-=1==
Y
V- l -iI
-.

101

== --

c-.=

l00·~-~ =
2S·C

1=
1-' ~

"

rt
rl- ~ iF..

--

10'

-

5 F r= F
l- I--I-

o

0.2

~~ ~

f--

1=

f~ ~ ~
o.

0,4

0,6,

=

'10'

i-

5 r::=-~ cc7

L

100 "C

·C
~ l/2S
-SO ·c

5

10'

f-- f--

-:""1- f--- f---

0,8

i-

.. 1-- I - f---

1.0

1.2 V

0,2

0,4

0,6

-\'cE ..,

- - VO£ut

228

-

5

f=

1=

.1

I-- 1--

'10 0

~

Collector-emitter saturation voltage
Ie = ((VeE.a,)
mA h Fe 10

Siemens

0,8 V

Bep 68

NPN Silicon AF Transis\ors

•
•
•
•
•

For general AF application
High collector current
High collector gain
Low collector -emitter saturation voltage
Complementary type: BCP 69 (PNP)

E

Type

Marking

Ordering code (12-mm tape)

Package"

BCP 68

BCP 68

Q62702-C2126

SOT-223

-

Maximum Ratings
Parameter

Symbol

Collector-emitter voltage

V CEO

VCES

20
25

V
V

Collector-base voltage

V CBO

25

V

Emitter-base voltage

VEBO

5

V

Collector current

Ic

1

A

Peak collector current

ICM

2

A

Base current

IB

100

rnA

IBM

200

rnA

Peak base current

BCP 68

Unit

PIOI

1.5

W

Junction temperature

TI

150

°C

Storage temperature range

T~lg

-65 to + 150

°C

IR'hJA

:s83.3

Total power dissipation. TA:s 25°C

1)

Thermal Resistance
Junction - ambient

1)

I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm

Mounting pad lor the collector tead min 6cm 2
·1 For detailed dimensions see chapter Package Oullines

Siemens

229

BCP 68

Characteristics
at TA = 25 DC, unless otherwise specified.
Parameter

I

I

Unit

Symbol
/max.

DC Characteristics
Collector-emitter breakdown voltage
Ic = 30mA, IB = 0

V(BR)CeO

Collector-emitter breakdown voltage
Ic = lOIlA, VBE 0

V1BR)CES

Collector-base breakdown voltage
Ic = lOIlA, '13 = 0

V'BR)CBO

Emitter-base breakdown voltage
IE = lOIlA, IB = 0

V(BR)EBO

Collector-base cutoff current
VeB =25V
VC:B = 25 V, TA = 150 DC

ICBO

Emitter-base cutoff current
VEI3=5V./c=0

lEBO

DC current gain 1)
Ic = 5 mA, Vee = 10 V
Ie = 500 mA, VeE = 1 V
le=lA,VeE=lV

hFE

Collector-emitter voltage 1)
Ie 1 A, IB = 100 mA

VCEsal

Base-emitter voltage
Ic =5mA, VcE =10 V
Ie = 1A, VCE = 1V

VBE

=

=

1)

20

-

-

V

25

-

-

V

25

-

-

V

5

-

-

V

·

·

-

100
10

nA
llA

-

·

10

Il A

50
63
60

-

400

·

.

.-

·

-

0.5

V

0.6

-

V

·

·

-

·

-

-

1

AC Characteristics

I·

Transition frequency
Ie = 100 mA, VeE = 5 V, f= 100 MHz

1) Pulse test conditions: t 3; 30011S; D = 2%

230

Siemens

MHz

BCP68

Total power dissipation PIOI

2.0
W

"101

~

- - -j---t-t-t---t---l
--1- ---- -- r-- - - r--- --- -- - 1- -j----I-f---+--t---l

-

f---

-+--

1--

-

-1-

h - --1-1--1-\

l-

- -

--

-

o

- -I-I-

-

-

~-

\,

fe:-

--

f:=;k'

1--

10'
10°

150

5 10 1

-~

Collector cutoff current/CBO
VCE = 30 V

-

I-r-

_L-'--'------'---'---'--'-------'---"----'_,

100°C

_.

V-

I--2

50

-f=
r--

5 I---

-/-- - - - - - -- - --IV---I--------i- --1-1\
'--L_

,-

I---

-- -- -- -. -t---t-'l-t---j

- -- -

1----

- I - -"--1-1--1--1

- - --- -- - - -

--

f--

10 1

-- := := =~- =~~~K++-I--'-I

0.5

= ((l cl

I--1----

!

I~ .-j--t-I-j---I-iH---t---l
1-1-[:\ --t-t-t--t-I-j--f---i

--1-1-

1-

I--

f,

_

1.0

fT

10 3

- 1- -

r-

o

Transition frequency
MHz VCE = 5 V

r-r-,.---,-r-r-,.---,-r-r-r--,-r-r--.-,

1.5 -

f

= f(TAl

= ((TAl

5 10 1
--Ie

5 10 3 mA

DC current gain hFE = ((lcl
VCE = 1 V

hI[ 5

I

100°
10 1

5

2S o

f-?'50-o-c
I-

F-

I-

'-:- ~

-

r--

nln~~'=H1111l.
~

1-

5r10'
I---

1---·-

.100 '---'---'---'---'-'----'--J ----'---'---,----'---'-'-'--.
o
50
100
150°C

10'

Siemens

5 10 1

5 10 3
---Ie

5 10' mA

231

BCP68

Collector-emitter saturation voltage
Ie = f(VCEsal )
mA hFE = 10

10·
5

-- l=: :=
'=
- f--- ~

-

-

~100 °c
~b rL
~.::::/ V25 °C ~

mA

-

-

-SO °c

i=

r==

-

10 I

= ((VBE sal)

-- ----- I - - -

f71 V

rJ / '

Base-emitter saturation voltage Ie
hFE = 10

5 C=f-.:-

5

f-

--

-1-

1--l-l--I--4--f-.:-I-l-....-l--1- 10'

=

5

=

==

- --

i=:f=f,-.

f--

5 1---'.1'-'1--'-

J_-t
-- f- fI-t-- _. _- -I--~I'-'I=

10'
I--

~4-1~1-I-+- I'-'

1'-'1'-' -

10a

o

0,2

0,4

0,6

0.6 V

I'-'

-1/- -If -- - - - 1 -

100 L.l--L_l_.L.L-lIL.1.L.L-L..J.....L-l
o 0,2 0,4 0,6 0,6 1,0 1,2 V

....:..- "Esa'

- - - - \'r.Esat

232

I'-'

Siemens

PNP Silicon AF Transistors

•
•
•
•
•

BOP 69

For general AF application
High collector current
High collector gain
Low collector -emitter saturation voltage
Complementary type: BCP 68 (NPN)

E

~:
Type

Marking

Ordering code (12-mm tape)

Package"

BCP 69

BCP 69

Q62702 - C2130

SOT-223

Maximum Ratings
Parameter

Symbol

Collector-emitter voltage

VCEO
VCES
VC80
VE80

Collector-base voltage
Emitter-base voltage
Collector current

Ic

Peak collector current

ICM

Base current
Peak base current
Total power dissipation. TA ::; 25· C

BCP 69

Unit

20
25

V
V

25

V

5

V

1

A

2

A

18

100

mA

IBM

200

mA

Ptot

1.5

W

Junction temperature

Tj

150

·C

Storage temperature range

T stg

-65 to + 150

·C

::;83.3

IIVW

1)

Ther.mal Resistance
Junction - ambient

1)

IR

thJA

t) Package mounled on an epoxy prinled circuil board 40mm x 40mm x 1.5rnm
Mounling pad for the collector lead min 6cm2
.) For delailed dimensions see chapler Package Oullines

Siemens

233

BCP 69

Characteristics
at TA = 25 • C, unless otherwise specified.
Parameter

I

I

Symbol Values
min. Ityp.

Imax.

I

Unit

_

DC Characteristics
Collector-emitter breakdown voltage
Ic =30mA, Ie = 0

V(BR)CEO

Collector-emitter breakdown voltage
Ie =10\-1 A, veE = 0

V(BR)CES

Collector-base breakdown voltage
Ie = 10\-lA, IB = 0

V(BR)CBO

Emitter-base breakdown voltage
IE = 10\-lA, IB = 0

V(BR)EBO

Collector-base cutoff current
VCB =25 V
VcB =25 V, TA =150·C

leBo

Emitter-base culort current
VEe = 5 V, Ie = 0

IEeo

DC current gain 1)
le=5mA, VcE =10V
Ic = 500 mA, VeE = 1 V
le=1A,VeE=1V

hFE

Collector-emitter voltage 1)
Ie = 1 A, Ie = 100 mA

VeEsal

Base-emitter voltage
Ie = SmA, VCE = 1U V
le=1A, VeE=1V

VeE

20
25
25
5

1)

-

-

-

V

-

-

V

-

V

-

V

-

-

-

100
10

nA
\-I A

-

-

10

\-I A

50
63
60

-400

-

-

--

-

0.6

-

-

-

0.5

V

-

V

1

AC CharacterIstics
Transition frequency
le= 100 mA, VcE =5 V, f= 100 MHz

MHz

1) Pulse test conditions: t ~ 300\-ls; D = 2%

234

Siemens

BCP 69

Transition frequency
MHz VCE = 5 V

Total power dissipation PIOI = ((TA )

2.0,,· - .. ---:- , - - - - , - ,

(T

= ((I c)

lOll--

W - - -- .- - -. -.- -- .- - -- - ·-11-1-'------ i1-1- - -- - - -- - -/--I-t-t-t--t--i
I- - - . I1.5 r- , - - - - - - 1 - - - - 1 - - l I- - _t--ot-t--t--trf-t-

f

5 t--t-t-t+IHttt-t-t-HttHt--t-++t+ttH

i\.-

~==I=~S= == c=~=~

10

i--

-

. 1-1-.- --1---[\- - -I--t-H--j
I-I- ~ - -I- -

f\t--t--t--t--t--I-i

1-1-_.-1- -I- - -I- '\
I- - - - - - - -.··1-1-I- - - -- -I- .. - ~ - I-

OS

-

I-I-----------~-

1-1-- -.- -I- -/--f-t-i-t-+'IJ-t-t
--_ .. 1 - - _ . _ . _ - - - - - \

- --. -. -- .- - -. -- -- _. - -- -1\

o . -. - '---.
o

.L-

50

100

10'

_ _ L..:

<--..L-J...LJJUliL--.<.....L...U.llUL..--'.....L.LU.llU

5 10 1

5 la'

10°

150

O(

nA

Collector cutoff current
. VCE = 30 V

10~

ICBO

= ((TA )

DC current gain hFE = ((I c)
VCE = 1 V

II

-

5 1-1-1I eao

I

--- -.
--

l-

I-

100 O( -

.'

10'

.-

-

-

i---

1--

maxi/

10l

I-I-

-

25°(

1/

-50 O(

V

--

5

5 -

I-

r-

-,/

10 1

~

-

-

-

ii-

- -

Vlyp

-

la'

.-

5
10'
5

ro

-

-

-

5

10°

sIal mA

---Ie

-7",.

50

-T.
100

150

10°
10°

O(

5 10'

=
-==

.-

5 10 1

5 IO J

5 10' mA

---Ie

Siemens

235

BCP69

Base-emitter saturation voltage Ie = ((VOE .n')

Collector-emitter saturation voltage

hFE

Ie = ((VeE sa')
mA hFE = 10
10'

5 I--

1-- - - - - -

-I-

==

= 10

5

-I-- -

-

=t.
rt

L4 '/'-

- 100 °c
~
fL r ' 25 °C
~ ,-50 o C

100 °C '\.
25°C _
-50 0 C

-- -

~

/ II

1/

I / I

10'

5

0,2

-I-

5

-I=:::: _ -- I - -

10'

0,4

0,6

-

I I

5

0,8 V

10°

o

0,2

0,4

01>

0,8

1,0

- VOEgt

236

Siemens

1,2 V

PNP Silicon Darlington Transistors

•
•
•
•

BCV26
BCV46

For general AF applications
High collector current
High current gain
Complementary types: BCV 27, BCV 47 (NPN)

Type
(;] BCV 26
(;] BCV46

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

FD

Q62702-C 1151
Q62702-C 1153

Q62702-C1493
Q62702-C1475

SOT 23
SOT 23

FE

Maximum ratings
Parameter

Symbol

BCV26

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO

30
40
10

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VEBO

Ic
ICM
IB
IBM
Ptot

7j
Tstg

BCV46

V
V
V
mA
mA
mA
mA
mW

150
-65··· + 150

°C
°C

::::; 350

RthJA

Unit

60
80
10
500
800
100
200
360

K/W

(;] Preferred type

Siemens

237

BCV26
BCV46

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 10 rnA
BCV26
BCV46

V(BR) CEO

Collector-base breakdown voltage

V(BR)CBO

min

typ

max

Unit

30
60

-

-

V
V

40
80

-

-

V
V

-

V

-

-

-

100
100
10
10

nA
nA
IlA

-

-

100

nA

4000
2000
10000
4000
20000
10000
4000
2000

-

-

-

-

-

-

-

-

-

-

-

-

Ic=1001lA
BCV26
BCV46
Emitter-base breakdown voltage
h = 10 IlA
Collector-cutoff current
BCV26
VCB = 30V
BCV46
VCB = 60V
Vce = 30 V, TA = 150°C
BCV26
BCV46
Vce = 60 V, TA = 150°C
Emitter cutoff current
VEe = 4 V
DC current gain')
Ic = 100 IlA, VCE = 1 V

Ic = 10 rnA, VCE = 5V
Ic = 100 rnA, VCE = 5 V
Ic = 0,5 A, VCE = 5 V

V(BR) EBO
ICBo

10

-

hBo

J.lA

hFE
BCV26
BCV46
BCV26
BCV46
BCV26
BCV46
BCV26
BCV46

-

-

Collector-emitter saturation voltage ')
Ic = 100 rnA, Ie = 0,1 rnA

VCEsat

-

-

1

V

Base-emitter saturation voltage')
Ic = 100 rnA, IB = 0,1 rnA

VBEsat

-

-

1,5

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic=50mA, VCE=5V, f= 20 MHz

fr

-

200

-

MHz

Output capacitance
VCB = 10V, f= 1 MHz

Cob

-

4,5

-

pF

') Pulse test: t 5 300 Ils, D = 20/0
238

Siemens

BCV26
BCV46

Total power dissipation P'o' = f (TA)

Collector-base capacitance CCBO = f( VCBO)
Emitter-base capacitance CEBO = f (VEBO)

pF
10

mW
400

CE BO

IC eBo)

~ot

I

\

'"

300

i'--- "r--.

1\
\

200

r--.

~BO

jt-.... '-. .....

1\

CEBO

\

\
100

'\

o

1\

o

50

100

150 0 (

10 0

------- ~

Pulse handling capability
(standardized)

r'h

5

-

Transition frequency
VCE = 5 V

= f (t)

fT = f

10' V

VEBO I Veso )

(l cl

K

lih

Iii

MHz

10 0

10 3

III

5

I

,

'0.5
0,2
0,1
0,05
, 0,02
0,01
0,005
0:0 IIII

5

2

D~

I-..

V

5

~J!tn-

.l.
T

f-- T-i
10- 3
10-6 10- 5 10- 4 10- 3 10- 2 10-' 10 0

10' s

5 10'

-f

Siemens

239

BCV26
BCV46

Base-emitter saturation voltage Ie = f ( VeE sat)
hFE = 1000

Collector-emitter saturation voltage
Ie = ((VcEsad
hFE = 1000

mA
10l
150 0 C

rnA
~

Base-emitter saturation voltage Ie
hFE = 1000

=

t( VBEsat)

rnA
~

150 °c+l. 25 OC

I

U

VI

II

-50°C

/ I/
5

I125°C
-25°C
-55°C

F=

5

II
100

o

10-'
0,2

0,4

0,6

0,8

1.2 V

1,0

--Vcr

-

o

3 V

2

VeE SIt

sat

Collector-base capacitance GeBo = t(VeBo)
Emitter-base capacitance GEBO = t (VEBO)

DC current gain h FE = f (I cl
VeE = 5V

pF
10
[E BO

I[ eBO 1

5

"""

125°C

"t'r--..

°

~BO

-55°(

............

':r-.... .........
[EBO

10'

./

10l
10 0

5
-

252

VEBO

10' V

I

10-'

VeBol

5 100

5 10'

5 10 2

-Ie

Siemens

5 10 J rnA

NPN Silicon AF Transistors

•
•
•
•
•

BCW60
BCX70

For AF input stages and driver applications
High current gain
Low collector-emitter saturation voltage
Low noise between 30 Hz and 15 kHz
Complementary types: SCW 61, SCX 71 (PNP)

c{!j:

Type

Marking

Type

Marking

Ordering code

Package

SCW60A
BCW60 B
SCW60 C
SCW60 D
BCW60 FF

AA
AS
AC
AD
AF

SCW60 FN
SCX70 G
SCX70 H
SCX 70 J
SCX 70 K

AN
AG
AH
AJ
AK

Refer to index

SOT 23

rn
rn
rn
rn

Maximum ratings
Symbol

BCW60

BCW60 FF

BCX70

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO
Ic
ICM
IBM
P tot

32
32
5

32
32
5

45
45
5
100
200
200
330

V
V
V
mA
mA
mA
mW

150
-65···+150

°C
°C

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

RthJA

Parameter

Tj
Tstg

:s; 375

K/W

rn Preferred type
Siemens

253

BCW60
BCX70

Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 10 mA
BCW 60, BCW 60 FF
BCX70

V(BR) CEO

Collector-base breakdown voltage
BCW 60, BCW 60 FF
Ie = 10 !lA
BCX70

V(BR)CSO

Emitter-base breakdown voltage
le=1!lA

V(SR) ESO

Collector cutoff current
VCB=32V
VCB = 45 V
Vcs = 32 V, TA = 150°C
VCB = 45 V, TA = 150 0 e

Icso

typ

max

Unit

32
45

-

-

V
V

-

-

V
V

-

V

-

-

20
20
20
20

nA
nA
!lA
!lA

20

nA

20
20
40
100

140
200
300
460

-

-

120
180
250
380

170
250
350
500

220
310
460
630

-

50
70
90
100

-

-

-

-

32
45
5

-

BCW 60, BCW 60 FF
BCX70
BCW 60, BCW 60 FF
BeX 70

-

Emitter cutoff current
VEB = 4 V

leBO

DC current gain')
Ic = 10 !lA, VCE = 5 V
BCW 60 A, BCX 70 G
BCW 60 B, BeX 70 H
BCW 60 FF, BeW 60 e, BeX 70 J
BCW 60 FN, BeW 60 D, BCX 70 K
Ic=2mA, VCE=5V
BCW 60 A, BCX 70 G
BeW 60 B, BeX 70 H
BCW 60 FF, BCW 60 e, BCX 70 J
BCW 60 FN, BeW 60 D, BCX 70 K
Ic = 50 mA, VCE = 1 V
BCW 60 A, BeX 70 G
BCW 60 B, BeX 70 H
BCW 60 FF, BeW 60 C, BeX 70 J
BCW 60 FN, BeW 60 D, BeX 70 K

hFE

Collector-emitter saturation voltage ')
Ic = 10 mA, Is = 0,25 mA
Ic = 50 mA, Is = 1,25 mA

VCEsat

Base-emitter saturation voltage ')
Ic = 10 mA, Is = 0,25 mA
Ic = 50 mA, Is = 1,25 mA

VSEsat

Base-emitter voltage
I c = 10 !lA. VCE = 5 V
Ic = 2 mA, VCE = 5 V
Ic = 50 mA, VCE = 1 V')

VBE(on)

-

-

-

-

-

0,12
0,20

0,25
0,55

V
V

-

0,70
0,83

0,85
1,05

V
V

-

0,52
0,65
0,78

-

V
V
V

-

Siemens

-

-

0,55

') Puls~ test: t:$ 300 !ls, D = 20/0.

254

min

0,75

-

BCW60
BCX70

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 rnA, VCE = 5 V, f= 100 MHz

fr

-

250

-

MHz

Output capacitance
VCB = 10V, f=1 MHz

Cob

-

3

-

pF

Input capacitance
VCB = 0,5 V, f= 1 MHz

Cib

-

8

-

pF

Short-circuit input impedance
Ic = 2 rnA, VCE = 5 V, f= 1 MHz
sew 60 A, sex 70 G
sew 60 s, sex 70 H
sew 60 FF, sew 60 e, sex 70 J
sew 60 FN, sew 60 D, sex 70 K

h11e

-

2,7
3,6
4,5
7,5

-

kQ
kQ
kQ
kQ

Open-circuit reverse voltage transfer ratio
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
sew 60 A, sex 70 G
sew 60 s, sex 70 H
sew 60 FF, sew 60 e, sex 70 J
sew 60 FN, sew 60 D, sex 70 K

h12e

-

1,5
2,0
2,0
3,0

Short-circuit forward current transfer ratio
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
sew 60 A, sex 70 G
sew 60 s, sex 70 H
sew 60 FF, sew 60 e, sex 70 J
sew 60 FN, sew 60 D, sex 70 K

h21e

Open-circuit output admittance
Ic = 2 rnA, VCE = 5 V, f= 1 kHz
sew 60 A, sex 70 G
sew 60 s, sex 70 H
sew 60 FF, sew 60 e, sex 70 J
sew 60 FN, sew 60 D, sex 70 K

h22e

Noise figure
Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kQ
f= 1 kHz, M= 200 Hz
sew 60 A to sex 70 K

F

-

-

-

-

-

Equivalent noise voltage
Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kQ
f=10Hz···50Hz
sew 60 FF, sew 60 FN

Siemens

-

-

10- 4
10- 4

-

10- 4
10- 4

-

-

-

-

-

-

-

J.!s
J.!s
J.!s
J.!s

-

2

-

dS

-

1

2

dS

-

-

0,135

J.!V

-

Vn

-

18
24
30
50

-

Noise figure
Ic = 0,2 rnA, VCE = 5 V, Rs = 2 kQ
f= 1 kHz, M= 200 Hz
sew 60 FF, sew 60 FN

200
260
330
520

-

-

255

BCW60
BCX70

Total power dissipation Ptot ,.; f ( TA)

Collector-base capacitance CCBO = f( VCBO)
Emitter-base capacitance CEBO = f(VEBO)

mW
400

pF
12

"lot

t

\.

1-1- ...

~

300

200

l\

,
'"

8

\.
"""\

1'\

iJCBO

i'-

f'

~

4

.100

. . . . r-.

\.
2

,
o
o

CE~O

r-.

1'\
50

100

150 DC

5

10' V

-7.4
Pulse handling capability rth = fIt)
(standardized)
K

Transition frequency fT = f (Ie)
VCE = 5V

Vi

MHz

10°

103

,

III

~

5

fy

t

TT
0,5
0,2
0,1
0,05
0,02
0,01
0,005

1--1"-

10 2

0=0 1111

10- 2

5

l/

i.I

5

5

~T-,,;
~

tp

O=y

10-3

10-6 10- 5 10-4 10- 3 10- 2 10-' 10°

,

10' s

10

10-'

-f

256

5 10'

-Ie

Siemens

5 10 2 rnA

BCW60
BCX70

Base-emitter saturation voltage Ie

hFE

=

= f (Vae sail

Collector-emitter saturation voltage

Ie

40

= {(VeEsa')

hFE = 40

mA
10 2
Ie

./

Ie

!

r- -

100°C
-

25O~~

I I I

- 50 oC I

I

II

II

/ /
VI d V V

-50°C
25°(
l00 0 (

5

5

10-1

°

0,2

0,4

0,6

0,6

1,0

1,2 V

10-1

°

VSE sat

Collector current Ie

=

0,1

0,2

0,3

0,4

0,5 V

----VcEsat

DC current gain hFE = f (le)

{(VaE)

VeE = 1 V

VeE = 1 V

II

/
l00°C

I

rl00 0 (

I

r- 25 °(

~

-

II
25°C

_50 0 (

10'
5

10- 2

o

I
0,5

1.0 V

10°
10- 1

5 10- 1

5 10°

5 10'

5 10 1 mA

-Ie

Siemens

257

BCW60
BCX70

Collector cutoff current I csc = f ( TA)

h parameter he = f(Ie)
VCE=5V

nA
104
5

101
5

j'

~".

10'

V

max.

5

::h'1.

1/

10'
5

=h1,
typo

VcE=5V

~ jV

5
~

h11•

,

V
100

50

150°C

5

h parameter he = f (VCE)
Ie = 2 mA

10' mA

Noise figure F = f ( VCE)
Ie = 0,2 mA, Rs = 2 kO, f= 1 kHz

dB
20

2,0

r-rrTITmr-rTn~r-rTTn"m

1

I

I

j'

Ic=2mA
"1- c-

1,5

.H

........

\\

1\ ....
",.

t-

h ll •

t;;;

h111,

P

~ ;;;;p.

1 15

~~~~-r~~r-+++*~

~

'\
1,0

h 1"

F

~

"\

0,5

o

OL-~LUillL~~Uill~~~=

o

258

10

20
-VcE

30 V

10·'

Siemens

BCW60
BCX70

Noise figure F ~ f(f)
Ie ~ 0,2 mA, Rs ~ 2 kQ, VCE

Noise figure F
~

VCE~5V, f~

5V

~ f (/ c)
120Hz

dB
20

dB
20

Rs=1 Mil

i-

1/

1\

10kll/

I

I
10

100kll

II

I

10

J 50011
II

1\

,

.I

V\-

I

I
1kll
11111
11111

r10°

IIIII
10 ' mA

10 '
--f

Noise figure F ~ f (l cl
VCE ~ 5 V, f~ 1 kHz

Noise figure F ~ f (/ c)
VCE ~ 5V, f~ 10 kHz

dB
20

dB
20

I

Rs=~11

Rs=1MIl 100k I 10 kll

I

\

I
/100k

10 1\

II

10

\
1kll

I I II

III
ill

10kll

0011

/
(\

II

/

......
",-

o r-

\.
1kll ......

" 50011
1000'

10- 3

I III
I III
IIIII

/

111111

IIIU

10 ' mA

o

10- 3

--Ie

1aIII~

"

10' mA
--Ie

Siemens

259

BCW61
BCX71

PNP Silicon AF Transistors

•
•
•
•
•

For AF input stages and driver applications
High current gain
Low collector-emitter saturation voltage
Low noise between 30 Hz and 15 kHz
Complementary types: BCW 60, BCX 70 (NPN)

Type

BCW61
BCW61
BCW61
BCW61
BCW61

A
B
C
0
FF

Marking

Type

BA
BB
BC
BO
BF

BCX61
BCX 71
BCX71
BCX71
BCX 71

~
~
~
~

FN
G
H
J
K

Marking

Ordering code

Package

BN
BG
BH
BJ
BK

Refer to index

SOT 23

Maximum ratings
Parameter

Symbol

BCW61

BCW61 FF

BCX71

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO

32
32
5

32
32
5

45
45
5

V
V
V

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

~

VCBO

VEBO

Ic
ICM
IBM

PlOt
Tj

Tstg

mA
mA
mA
mW

150
-65···+150

°C
°C

:<:; 375

RthJA

Preferred type

260

100
200
200
330

Siemens

K/W

BCW61
BCX71

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
BCW 61, BCW 61 FF
Ic = 10 rnA
BCX 71

V(BR) CEO

Collector-base breakdown voltage
BCW 61, BCW 61 FF
Ie = 10 flA
BCX71

V(BR) CBO

Emitter-base breakdown voltage
lE=1flA

V(BR) EBO

Collector cutoff current
VCB=32V
VCB = 45 V
VCB = 32 V, TA = 150°C
VCB = 45 V, TA = 150°C

ICBo
BCW 61, BCW 61 FF
BCX71
BCW 61, BCW 61 FF
BCX71

Emitter cutoff current
VEB = 4 V

lEBo

DC current gain')
Ic = 10 flA, VCE = 5 V
BCW 61 A, BCX 71 G
BCW 61 B, SCX 71 H
BCW 61 FF, BCW 61 C, SCX 71
BCW 61 FN, BCW 61 D, BCX 71
Ic=2mA, VCE=5V
BCW 61 A, BCX 71 G
BCW 61 B, BCX 71 H
BCW 61 FF, BCW 61 C, BCX 71
BCW 61 FN, BCW 61 D, BCX 71
Ic = 50 mA, VCE = 1 V
BCW 61 A, BCX 71 G
BCW 61 B, BCX 71 H
BCW 61 FF, BCW 61 C, BCX 71
BCW 61 FN, BCW 61 D, BCX 71

hFE

J
K

J
K

J
K

Collector-emitter saturation voltage')
Ic = 10 mA, IB = 0,25 mA
Ic = 50 rnA, IB = 1,25 mA

VCEsat

Base-emitter saturation voltage')
Ic = 10 mA, IB = 0,25 mA
Ic = 50 mA, IB = 1,25 mA

VBEsat

Base-emitter voltage')
Ic = 10 flA, VCE = 5 V
Ic = 2 mA, VCE = 5 V
I c = 50 mA, VCE = 1 V

VBE (on)

min

typ

max

Unit

32
45

-

-

V
V

-

V
V

-

-

32
45

-

5

-

-

-

20
20
20
20

nA
nA
flA
flA

-

-

20

nA

20
30
40
100

140
200
300
460

-

-

120
180
250
380

170
250
350
500

220
310
460
630

60
80
100
110

-

-

-

-

-

0,12
0,20

0,25
0,55

V
V

-

0,70
0,83

0,85
1,05

V
V

-

0,52
0,65
0,72

-

V
V
V

0,55

-

-

-

0,75

-

V

-

-

-

-

') Pulse test: t:5 300 fls, D = 20/0.

Siemens

261

BCW61
BCX71

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 mA, VCE = 5 V, f= 100 MHz
Output capacitance
VCB = 10V, f=1 MHz
Input capacitance
VCB = 0,5 V, f= 1 MHz
Short-circuit input impedance
Ic = 2 mA, VCE = 5 V, f= 1 MHz
sew 61 A, SeX.71 G
sew 61 s, sex 71 H
sew 61 FF, sew 61 e, sex 71 J
sew 61 FN, sew 61 D, sex 71 K

fT

-

250

-

MHz

Gob

-

3

-

pF

Gib

-

8

-

pF

-

2,7
3,6
4,5
7,5

-

kn
kn
kn
kn

h11e

-

-

Open-circuit reverse voltage transfer ratio
Ic = 2 mA, VCE = 5 V, f= 1 kHz
sew 61 A, sex 71 G
sew 61 s, sex 71 H
sew 61 FF, BeW 61 e, sex 71 J
sew 61 FN, Bew 61 D, sex 71 K
Short-circuit forward current transfer ratio
Ic = 2 mA, VCE = 5 V, f= 1 kHz
sew 61 A, sex 71 G
sew 61 s, sex 71 H
sew 61 FF, sew 61 e, sex 71 J
sew 61 FN, sew 61 D, sex 71 K

h12e

Open-circuit output admittance
Ic = 2 mA, VCE = 5 V, f= 1 kHz
sew 61 A, sex 71 G
sew 61 S, BeX 71 H
sew 61 FF, sew 61 e, sex 71 J
sew 61 FN, sew 61 D, sex 71 K
Noise figure
Ic = 0,2 mA, VCE = 5 V, Rs = 2 kn
f= 1 kHz, M= 200 Hz
sew 61 A to sex 71 K
Noise figure
Ic = 0,2 mA, VCE = 5 V, Rs = 2 kn
f= 1 kHz, M= 200 Hz
sew 61 FF, sew 61 FN

h22e

Equivalent noise voltage
Ic = 0,2 mA, VCE = 5 V, Rs = 2 kn
f= 10 Hz ... 50 Hz
sew 61 FF, sew 61 FN

Vn

262

-

-

10- 4
10- 4
10- 4
10- 4

200
260
330
520

-

-

-

-

-

18
24
30
50

-

I1S
I1 s
I1 s
I1s

-

2

-

dS

-

1

2

dS

-

-

0,11

I1V

-

1,5
2,0
2,0
3,0

-

-

-

h21e

-

-

-

-

F

Siemens

BCW61
BCX71

Total power dissipation Ptot

= f (TA)

Collector-base capacitance GCBO = f(VCBO)
Emitter-base capacitance GEBO = f (VEBo)

pF

rnW
400

12
CC60

(CT) 10

.c;ot

i

I-~

300

"
"-

'\.
200

\.
4

I\..

"}C60

'" "-"
/

[£60

100

......

"

......

\.

1\

o
o

50

100

150°C

-

-T.
Pulse handling capability
(standardized)

(th

VC60 (V [BO

)

Transition frequency fT = f (I cl
VCE = 5V

= f (t)

K

W

MHz
103

10°

'ih 5

I

,

~

j,...1"..-

~

10- t

~

2

III

I

0.5
0.2
0.1
0.05
0.02
0.01
0.005
0=0

~

2

V

V

~

o=~
1(r3
10-6

10-5

'"
10- 4

T
10- 3 10- 2

10-'

10°

5

5 10 3 rnA

5 10'

-t

-IC

Siemens

263

BCW61
BCX71

Base-emitter saturation voltage VBE sat

=

= 40

hFE

f (I c)

Collector-emitter saturation voltage
VCEsat = f(Iel
hFE =

mA

mA

~

~

l000e

l -I f--

j

771

1

250~f::

_ 50 0[1

40

I I I
1/ II

77

1/, A ~ V

-SOO(
2S 0 [
lODO(

5

5

5

10-1

o

0.2

0.4

0.6

0.8

1,0

1.2 V

xr1

o

0,1

0,3

0,2

0,4

0,5 V

---VcEsat

Collector current I C = f (VBE)
VeE = 1 V

DC current gain h FE = f (l c)
VCE = 1 V

100 0(

rT

/

J

1- 250

~(

fT
l00°Cf

2S 0 [

5

_50 0 [

10°
5

10 1
1

5

2

I
0.5

1.0 V

°

10 ,0-2

5 10-1

5

100

5 101
-Ie

264

Siemens

5 101 mA

BCW61
BCX71

h parameter he = ((l cl
VeE = 5V

Collector cutoff current I eBO = (( TA)

nA

10 2

10 4
5
h,

5

1

h ll •

\'h=5V

V

ma~/

5

,h,2 •

1/

10'
5

" ........
typo

,

"'-

VII'

IoCh 21,
h2y

1/
50

150 ·C

100

-Ie

h parameter he = ((VeE)
Ie = 2 mA

Noise figure F = f (VeE)
Ie = 0,2 mA, Rs = 2 kn, f= 1 kHz

2,0

dB
20 r-rTTITmr-,Tnmnr-"Tnrn

I

I
}e =12~A

F
h,,-~

f--

\

....

"
1,0

~

1 15 ~~+H~-+-H~m-~~~

,,-

I\.

h'y~

"

".,

10 I-H++ttHl--t-H-tttHt--+++1-ttffl

l/'

..-+'"

hn-r-

0,5

o
o

0L--.L--'.-Ll..!.J.llL----'.-L'-"-ll=----'--.L.L~

10

30 V

10-'

Siemens

265

BCW61
BCX71

Noise figure F = f (l cl

Noise figure F = f (f)

Ie = 0,2 rnA,

Rs = 2 kn, VCE = 5 V

VCE=5V,f=120Hz

dB
20

dB
20

I- ~s=1MQ

I

\

10

100kl1

10kl1f

I

II

10

J 500Q
I
5

o

10- 2

10°

.I

"
-

o

10-3

10'
--f

L

II

11111
11111
11111

10' mA

Noise figure F = f (l c)
VCE =5V, f= 1 kHz

Noise figure F = f (l cl
VCE =5V, f= 10kHz

dB
20

dB
20

"TTI=r"Tmm-rnn=-'Trr~

1kl1

F

!

15

r++m~++#ffi~**~/#+~
f\+++tflfll-~Rs=1MI1 100k

\
10

Rs= 1MI1

I 10kl1

I

f100k

~~ct+Httttt---+-+++~-++t*ll1t-+--tl+tttII

I

10

1kl1

II

/

I
I\,

266

1kQI\'

11111

11111

11111

Jllll

lUll

010- 2

I 1111

IIIII
IIIII
10kQ

OOQ

II 50011

10- 3

f

10°
--Ie

o
10' mA

..ws:J+1c:::

/

...-:

~

10- 3

10' mA
--Ie

Siemens

BCW65
BCW66

NPN Silicon AF Transistors

•
•
•
•

For general AF applications
High current gain
Low collector-emitter saturation voltage
Complementary types: SCW 67, SCW 68 (PNP)

Type

0SCW65A
o SCW 65 S
0BCW65C

Marking

EA
EB
EC

Type

o BCW66 F
0BCW66G

o BCW 66 H

Marking

Ordering code

Package

EF
EG
EH

Refer to index

SOT 23

Maximum ratings
Parameter

Symbol

BCW65

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO

32
60
5

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VEBO

Ic
ICM
IB
IBM

Ptot
Tj
Tstg

BCW66

V
V
V
mA
A
mA
mA
mW

150
-65···+150

°C
°C

~375

RthJA

Unit

45
75
5
800
1
100
200
330

K/W

o Preferred type
Siemens

267

BCW65
BCW66

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
BCW65
Ic = 10 rnA
BCW66
Collector-base breakdown voltage
BCW65
Ie = 10 !-LA
BCW66
Emitter-base breakdown voltage
le=1O!-LA
Collector cutoff current
BCW65
VCB = 32V
BCW66
VCB = 45V
VCB = 32 V, TA = 150°C
BCW65
BCW66
VCB = 45 V, TA = 150°C
Emitter-base cutoff current
VEB = 4 V
DC current gain ')

V(BR) CEO

min

typ

max

Unit

32
45

-

-

V
V

60
75
5

-

-

-

V
V
V

-

-

-

-

20
20
20
20
20

nA
nA
!-LA

V(BR) CBO

V(BR) EBO

ICBo

-

leBO

-

-

AC characteristics
Transition frequency
Ic = 50 rnA, VCE = 5 V, f= 20 MHz
Output capacitance
VCB = 10V, f= 1 MHz
Input capacitance
VEB = 0,5 V, f= 1 MHz
') Pulse test: t:5, 300 !-Ls, D = 20/0.

268

!-LA
nA

hFE

Ic=100!-LA, VCE=10V
BCW 65 A, BCW 66 F
BCW 65 B, BCW 66 G
BCW 65 C, BCW 66 H
Ic = 10 rnA, VCE = 1 V
BCW 65 A, BCW 66 F
BCW 65 B, BCW 66 G
BCW 65 C, BCW 66 H
Ic = 100 rnA, VCE = 1 V
BCW 65 A, BCW 66 F
BCW 65 S, SCW 66 G
BCW 65 C, BCW 66 H
Ic = 500 mAo VCE = 2V
SCW 65 A, BCW 66 F
SCW 65 S, BCW 66 G
BCW 65 C, SCW 66 H
Collector-emitter saturation voltage ')
Ic = 100 rnA, IB = 10 rnA
Ic = 500 rnA, IB = 50 rnA
Base-emitter saturation voltage ')
Ic = 100 rnA, IB = 10 rnA
I c = 500 rnA, I B = 50 rnA

-

VCEsat

VBEsat

35
50
80

-

75
110
180

-

-

-

-

100
160
250

160
250
350

250
400
630

-

35
60
100

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

0,3
0,7

V
V

-

-

-

1,25
2,00

V
V

Symbol
fT

min

typ

max

Unit

-

170

-

MHz

Gob

-

6

-

pF

Gib

-

60

-

pF

Siemens

BCW65
BCW66

Total power dissipation Ptot = f (TA)

Transition frequency

fT = f (/ c)

VCE =5V
MHz
103

rnW
400

":01

i

f--",

300

\.

v

200

1\

\.
5

100

1\
2

o
o

I\,
50

100

150 DC

5

W

5 103 rnA

-~
Pulse handling capability rth = f (t)
(standardized)
K

Collector cutoff current I cso = f ( TA)

VCBO = SOV

Iii

10 0

,

II
•

1/

/

I

'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005

max.

~.

/

I'typ

0:0 1111

2

V

5

1G--L
-7;!

O:f

I-- T

10-3
10-6 10- 5 10- 0 10- 3 10- 2 10-' 100

10' s

50

100

150

D(

-r.

-t

Siemens

269

BCW65
BCW66

Base-emitter saturation voltage Ie = f (VBE sat)
hFE = 10

mA

Collector-emitter saturation voltage
Ie = f(VCEsat)
hFE = 10
rnA

10l

10 l
5 150 0 (

5

If:.. 25°(

V- 5OO (

150 0 [
25°[

-~500[

10'

,

t

200

2

400

600

800 rnV

-~fEsat

-VaEso.t

DC current gain hFE = f(Ie)
VCE = 1 V

10l91l~• •
100 0

nBI

1o' • •

100 L...L..liJ.lilJJ..-'--.lJ.lJ.illL-Ll-Lll1llL.J..LWilll
10-'
5 100
5 10'
5 10 1
5 10l rnA
-Ie

270

Siemens

BCW67
BCW68

PNP Silicon AF Transistors

•
•
•
•

For general AF applications
High current gain
Low collector-emitter saturation voltage
Complementary types: SCW 65, SCW 66 (NPN)

Type

Marking

I'!l SCW67 A
I'!l SCW67 S
I'!lSCW67 C

DA

DS
DC

Type
I'!l SCW 68 F
I'!l BCW 68 G
I'!l SCW 68 H

Marking

Ordering code

Package

DF
DG

Refer to index

SOT 23

DH

Maximum ratings
Parameter

Symbol

BCW67

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation

VCEO

32
45
5

BCW68

Unit

V
V
V

Ptot

45
60
5
800
1
100
200
330

Junction temperature
Storage temperature range

Ti
Tstg

150
-65 .. · + 150

DC
DC

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

RthJA

TA

=

25 DC

VCBO
VEBO

Ic
ICM
IB
IBM

::5 375

mA
A
mA
mA
mW

K/W

I'!l Preferred type

Siemens

271

BCW67
BCW68

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 10 mA
BCW67
BCW68
Collector-base breakdown voltage
BCW67
Ic=10~A
BCW68
Emitter-base breakdown voltage
IE = 10 ~
Collector cutoff current
VCB = 32V
BCW67
VCB =45V
BCW68
VCB = 32 V, TA = 150°C
BCW67
VCB = 45 V, TA = 150°C
BCW68
Emitter-base cutoff current
VEB = 4V
DC current gain')
Ic = 100 !LA, VCE = 10 V
BCW 67 A, BCW 68 F
BCW 67 B, BCW 68 G
BCW 67 C, BCW 68 H
Ic = 10 mA, VCE = 1 V
BCW 67 A, BCW 68 F
BCW 67 B, BCW 68 G
BCW 67 C, BCW 68 H
Ic = 100 mA, VCE = 1 V
BCW 67 A, BCW 68 F
BCW 67 B, BCW 68 G
BCW 67 C, BCW 68 H
Ic = 500 mA, VCE = 2V
BCW 67 A, BCW 68 F
BCW 67 B, BCW 68 G
BCW 67 C, BCW 68 H
Collector-emitter saturation voltage')
Ic = 100 mA, IB = 10 mA
Ic = 500 mA, IB = 50 mA
Base-emitter saturation voltage')
Ic = 100 mA, IB = 10 mA
Ic = 500 mA, IB = 50 mA

V(BR) CEO

AC characteristics
Transition frequency
Ic= 50 rnA, VCE = 5V, f= 20 MHz
Output capacitance
VCB = 10 V, f= 1 MHz
Input capacitance
VEB = 0,5 V, f= 1 MHz
') Pulse test: t ~ 300 !Ls, D = 20/0.
272

min

typ

max

Unit

32
45

-

-

V
V

45

-

-

-

V
V
V

-

-

20
20
20
20
20

nA
nA
~
~
nA

35
50
40

-

-

-

75
120
180

-

-

100
160
250

160
250
350

250
400
630

-

35
60
100

-

-

-

-

-

-

0,3
0,7

V
V

--

-

1,25
2

V
V

V(BR)CBO

V(BR) EBO
ICBo

60
5

-

-

-

-

leBO

-

-

hFE

VCEsat

-

VBEsat

-

-

-

--

-

Symbol
fT

min

typ

max

Unit

-

200

-

MHz

Gob

-

6

pF

Gib

-

60

-

Siemens

pF

BCW67
BCW68

Total power dissipation Ptot = f ( TAl

Transition frequency fr
VCE = 5V

mW

MHz
103

400

flo!

t

=

f (I cl

~h.

300

..,

I\,

\

200

"

5

100

1/

1'\
I'i

a

1'\

a

50

150 °C

100

5 10'

-~
Pulse handling capability fth = f(t)

Collector cutoff current I CBO = f ( TA)

(standardized)
K

VCB = VCEmax

iii

10°

'ih

5

t ,

II

'-,

II

0,5

0,2
0,1
0,05
0,02
0,01
0,005

5

max.

v'

1/

typo

0=0 '"'

I

5

~

fp
D=r

10-1

T7,!

~~ ~ ~ WI

~

~

~s

50

100

150 0 C

-t

Siemens

273

BCW67
BCW68

Base-emitter saturation voltage VBE sa' = f (I cl
hFE = 10

Collector-emitter saturation voltage
VCEsa' = f(Ie)
hFE = 10

mA
103

mA
103
150'

Ie

iI"_ 25'C
i-"-50 ·c

5

lS0'C

/h ~ "Z5 .(

l~

110 2

,

10-' L-L...JL.L...l._-'----"---''---'---'----'
o
2
3
4 V
-

i"-SO'(

_._-

zoo

400

600

800 mV

VaEso.t

DC current gain hFE = f(Ie)
VCE = 1 V

5

r

lDO'C

1-~51'

.....

r-::50'

5
-

5

10°
10-'

5 10°

5 10'

5 10 1
-Ie

274

Siemens

5 10 3 rnA

BCX41
BSS64

NPN Silicon AF and Switching Transistors

•
•
•

High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: BCX 42, BSS 63 (PNP)

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

iii BCX 41

EK

BSS64

AM

Q62702-C946
Q62702-5394

Q62702-C1659
Q62702-5535

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

BSS64

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collect-or current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO
Ic
ICM
IB
IBM

80
120
5

Thermal resistance

RthJA

Ptot

BCX41'
125
125
5
800
1
100
200
330
150
-65· .. +150

Tj
Tstg

S375

Unit
V
V
V
mA
A
mA
mA
mW
°C
°C

K/W

junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

iii Preferred type

Siemens

275

BCX41
BSS64

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 10 mA
BSS64
BCX41
Collector-base breakdown voltage ')
BSS64
Ic = 100 !LA
BCX41
Emitter-base breakdown voltage
Ie = 10 !LA
Collector cutoff current
BSS64
Vcs= BOV
BCX41
Vcs = 100V
BSS64
Vcs= BOV, TA= 150°C
Vcs = 100V, TA = 150°C
BCX41
Collector cutoff current
VCE = 100 V, VSE = 0,2 V
BSS64
TA= 85°C
TA = 125°C
BCX41
Emitter cutoff current
VES = 4 V
DC current gain')
BCX41
Ic = 100 !LA, VCE = 1 V
BSS64
Ic = 1 mA, VCE = 1 V
BSS64
Ic= 4 mA, VCE = 1 V
BSS64
Ic = 10 mA, VCE = 1 V
BSS64
Ic = 20 mA, VCE = 1 V
Ic = 100 mA, VCE = 1 V
BCX41
BCX41
Ic = 200 mA, VCE = 1 V

V(SR) CEO

typ

max

Unit

BO
125

-

-

V
V

120
125

-

-

V
V

-

-

100
100
20
20

nA
nA
!LA
!LA

-

-

-

-

10
75
100

!LA
!LA
nA

25

-

-

-

-

V(SR) cso

V(SR) ESO
Icso

5

-

-

V

ICEO

leBO
hFE

-

20

-

-

Collector-emitter saturation voltage')
Ic = 300 mA, Is = 30 mA
BCX41
BSS64
Ic = 4 mA, Is = 0,4 mA
BSS64
Ic= 50mA,Is=15mA
Base-emitter saturation voltage')
I c = 300 mA, Is = 30 mA
BCX41

VCEsat

AC characteristics

Transition frequency
Ic = 20 mA, VCE = 5 V, f= 20 MHz
Output capacitance
Vcs = 10V, f= 1 MHz

-

60
80
80
55

63
40

-

-

-

-

-

-

-

-

V
V
V
V

-

-

0,9
0,7
3,0

-

-

1,4

Symbol

min

typ

max

Unit

fr

-

100

-

MHz

Cob

-

12

-

pF

VSEsat

') Pulse test: t 5, 300 !Ls, D = 2010.

276

min

Siemens

-

BCX41
BSS64

Total power dissipation Ptot = f (TA)

Collector current I c = f (VBE)
VCE = 1 V

mW
400

mA
103
5

~ot

i

TA =l?OoC

Ir

-""
300

\

~

5

\.
200

I
7i. =25 O(
=_

CO(

10'

I\,

5

1\
100

\
5
\

a

\

o

50

. 100

,
2

150 0 (

3 V

-VBE

-~

Transition frequency fT = f (/cl
VCE = 5V

Pulse handling capability rth = f(t)
(standardized)

K

W
10°

,

If
I

1'0,5
0,2
0,1
0,05
0,Q2
0,01
0,005
·0:0 1111

1

;I

V

5

~

2

tp

0:T

T
10-3
'"
6
4
10- 10- 5 10- 10- 3 10- 1 10-' 10°

10' s

5 1Q1

5 10 3 rnA

-t

Siemens

277

BCX41
BSS64

Base-emitter saturation voltage Ie = f( VeE sat)

Collector-emitter saturation voltage

Ie = '(VCEsat)

hFE = 10

hFE

10

103

~

150·C4i 25 "(

Ie

r

=

mA

mA
103

;oO(

l///f"

/I

10 2

Atr25 '(

-SO ·C

~ lS0'(

lot

10'

5

5

10°
5

,

lO-t

10·

2

0

3 V

o

1\
200

400

600

800 mV

5 10 2

5 10 3 mA

VeE sat
Collector cutoff current I ceo = '( TA)

DC current gain hFE = '(/e)
VCE = 1 V

Vce = VCEmax

max. ,/

150 0 (
f ....

V

~

2S .(

I-

-SO'(

typ.

10 '

S

5

1

1/

10'
50

100

150 .(

1/

10·'

5 10'

--Ie

-TA

278

5 10°

Siemens

PNP Silicon AF and Switching Transistors

•
•
•
•

BCX42
BSS63

For general AF applications
High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: BCX 41, BSS 64 (NPN)

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

o BCX42

DK

BSS63

BM

062702-C945
062702-S401

062702-C1485
062702-S534

SOT 23
SOT 23

Type

Maximum ratings
Parameter

Symbol

BSS63

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO
Ic
ICM

100
110
5

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

RthJA

IB
IBM
Ptot

BCX42
125
125
5
800
1
100
200
330
150
-65···+150

Tj
Tstg

:5 375

Unit

V
V
V
rnA
A
rnA
rnA
mW
°C
°C

K/W

o Preferred type
Siemens

279

BCX42
BSS63

Electrical characteristics
at TA = 25 cC, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
BCX42
Ic=10mA
BSS63

V(BR) CEO

Collector-base breakdown voltage')
BCX42
Ic=100~A
BSS63

V(BR) CBO

Emitter-base breakdown voltage
IE = 10~A

V(BR) EBO

Collector cutoff current
VCB = 80V
VCB=100V
VCB = 80 V, TA = 150°C
VCB = 100 V, TA = 150°C

ICBo

Collector cutoff current
VCE = 100 V, VBE = 0,2 V
TA = 85°C

TA=125°C

BSS63
BCX42
BSS63
BCX42

typ

max

Unit

125
100

-

-

V
V

125
110

-

-

-

V
V

5

-

-

V

-

-

-

100
100
20
20

nA
nA

-

-

10
75

~A
~A

100

nA

-

-

-

~A
~A

ICEO
BCX42
BCX42

Emitter cutoff current
VEB = 4 V
DC current gain')
Ic = 100 ~A, VCE = 1 V
Ic= 10mA, VCE=5V
Ic= 20 mA, VCE = 5V
Ic = 100 mA, VCE = 1 V
Ic = 200 mA, VCE = 1 V

min

lEBO
hFE
BCX42
BSS63
BSS63
BCX42
BCX42

25
30
30
63
40

Collector-emitter saturation voltage ')
Ic = 300 mA, IB = 30 mA
BCX42
BSS63
Ic = 25 mA, IB = 2,5 mA
BSS63
Ic = 75 mA, IB = 7,5 mA

VCEsat

Base-emitter saturation voltage ')
I c = 300 mA, I B = 30 mA
BCX42

VBEsat

-

-

-

-

-

-

-

0,9
0,25
0,9

V
V
V

1,4

V

-

-

-

-

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 mA, VCE = 5 V, f= 20 MHz

fT

-

150

-

MHz

Output capacitance
VCB = 10V, f= 1 MHz

Cob

-

12

-

pF

') Pulse test: t 5, 300 ~s, D = 20/0.
280

Siemens

BCX42
BSS63

Total power dissipation P'ot = f (TA)

Collector current
VCE = 1 V

mW
400

mA

Ie

=

f (VBE)

103
T, =150 0 (

-,;"

t

r-h.

r,. = 25 O(

300

r;.. = -

5

~O(

I\,
200

10'

I\,

5

\

100

\.
I\.

o
o

5

,

1\
50

150

100

3 V

0 (

-~
Pulse handling capability
(standardized)

rth

= f (t)

Transition frequency fT = f (lo)
VCE = 5V

K

Vi

10°

'ih

t ,

JI

~

5

1

'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005

2

./

0=0 1111

1

\

5

/

5
~

tpl--

o=1.YLn-

T i--- T _-j
III
III
"I
10-3
10- 6 10- 5 10- 4 10- 3 10- 1 10-' 10°

10'

5 lOt

5

-t

Siemens

281

BCX42
BSS63

Base-emitter saturation voltage Ie
hFE = 10

= '( VeE sat)

COllector-emitter saturation voltage
Ie = '(VCEsat>
hFE = 10

mA
103

1soo C-+i 25 OC

=

iOO(

I

/I

1///1'
~25°C

-50°C

150°C
5

5

10-'

,
o

1\
200

3 V

2

600

800 mV

5 10 2

5 10 3 mA

400

DC current gain hFE = '(1 e)
VCE = 1 V

Collector cutoff current I ceo = '( TA)
Vce = VCEmax

max .• /

..-

--

/

150 0 (
25°C
_50 0 (

typo

10'

5

5

,

1/

10'
50

100

150

D(

10-'

-TA

282

5 10°

5 10'

-Ie

Siemens

BCX51
... BCX 53

PNP AF Transistors

•
•
•
•

For AF driver and output stages
High collector current
Low collector-emitter saturation voltage
Complementary types: SCX 54··. SCX 56 (NPN)

Type

SCX
BCX
SCX
SCX
BCX

51-6
51-10
51-16
52-6
52-10

Marking

Type

AS
AC
AD
AF
AG

BCX
BCX
BCX
SCX

52-16
53-6
53-10
53-16

E

Marking

Ordering code

Package

AM
AJ
AK
AL

Refer to index

SOT 89

Maximum ratings
Parameter

Symbol

BCX 51

BCX52

BCX53

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range

VCEO
Vcso

45
45
5

60
60
5

80
100
5
1
1,5
100
200
1

V
V
V
A
A
mA
mA
W

150
-65 .. ·+150

DC
DC

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VESO

Ic
ICM
Is
ISM
Ptot

7j
Tstg

:5125

RthJA

Siemens

K/W

283

BCX51
·.·BCX53

Electrical characteristics
at TA = 25 DC, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 10 mA
BCX51
BCX52
BCX53

V(BR) CEO

Collector-base breakdown voltage
Ic = 100 J.lA
BCX 51
BCX52
BCX53

V(BR)CBO

Emitter-base breakdown voltage
h = 10 J.lA

V(BR)EBO

Collector cutoff current
VCB = 30V
VCB = 30 V, TA = 150 DC

ICBo

Emitter cutoff current
VEB = 4V

hBO

DC current gain')
Ic = 5 mA. VCE = 2V
Ic = 150 mA. VCE = 2 V
BCX 51, BCX 52, BCX 53-6
BCX 51, BCX 52:BCX 5~10
BCX 51-16, BCX 52-16, BCX 53-16
Ic = 500 mA, VCE=2V

hFE

Collector-emitter saturation voltage')
I c = 500 mA, I B = 50 mA

VCEsat

Base-emitter voltage ')
I C = 500 mA, VCE = 2 V

VSE

AC characteristics

Transition frequency
Ic = 50 mA, VCE = 10 V, f= 20 MHz

') Pulse test:
284

(5,

min

typ

max

Unit

45
60
80

-

-

V
V
V

45
60
100

-

-

V
V
V

-

V

-

100
20

J.lA

20

nA

-

-

-

63
100
160

100
160
250

-

-

-

-

-

0,5

V

-

-

1

V

Symbol

min

typ

max

Unit

fr

-

125

-

MHz

5

-

25

,

300 J.ls, D = 2010.

Siemens

40
63
100
25

-

-

nA

-

-

BCX51
... BCX 53

Total power dissipation P'o' = f (TA)

Collector current I C = f (VSE)
VCE = 2V

W

rnA

1,2

10"

1"1,0

'\
100 0 (
25°(
-50 0 (

[\

0,8

[\

"JI

1,\

/ /7

0,6

\.

1\

0,4

I I

1\

J

10'

1'\

I

0,2

'\

1\

°

50

°

150

100

10°
0(

o

0.2

0.4

--T,

Pulse handling capability
(standardized)

r'h

0,6

0,8

1.0

1.2 V

-VBE

Transition frequency fT
VCE = 10V

= f (t)

= f (I c)

K

iii

10°

'ih

I

,

~,

,

;;;;

5

0.5
0.2
0.1
0.05
0.02
0.01
0.005

2

r-

t'-D=O

2

5

~

D=f

T

10-3

10-6

10-5

10- 4

10- 3

10- 2 10-'

10° s

5 10'

-t

5 10 2
-Ie

Siemens

285

BCX51
···BCX53

DC current gain h FE = f (l cl
VeE = 2V

Collector-emitter saturation voltage
Ie = f(VeEsa')
hFE =

10

rnA
104
5

-

1- 100 O(

II
I-- 25

°

5

"

~

~SOo

~

-

,/

'Iv /

-

-5

O(

5

-

10'

5

5

10°
10°

5 101

5 101

5 103

10°

5 10'rnA

o

0.4

0.2

0.8 V

0.6
-~hsat

-Ie

Base-emitter saturation voltage Ie = f(VBEsa')

Collector cutoff current leBo = f ( TA)
VeB = 30V

hFE

= 10

5
max L/

1/

Ie

f
..... ~ ....

100 O(
25°(

V

SOO(

l-l

"'J
typo

10'

5

J 1

10'
5

II
1

1/
so

100

150

10°
0(

-TA
286

II

o

0.2

0.4

0.6

0.8

1.0

- - - - VSEsat

Siemens

1.2 V

NPN Silicon AF Transistors

•
•
•
•

BCX54
... BCX 56

For AF driver and output stages
High collector current
Low collector-emitter saturation voltage
Complementary types: BCX 51.·. BCX 53 (PNP)

Type

BCX
BCX
BCX
BCX
BCX

54-6
54-10
54-16
55-6
55-10

E

Marking

Type

Marking

Ordering code

Package

BB
BC
BO
BF
BG

BCX 55-16
BCX 56-6
BCX 56-10
BCX 56-16

BM
BJ
BK
BL

Refer to index

SOT 89

Maximum ratings
Parameter

Symbol

BCX54

BCX55

BCX56

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
Vcso
VESO
Ic
ICM
Is

45
45
5

60
60
5

80
100
5

V
V
V
A
A
mA
mA

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

ISM
Ptot

1
1,5
100
200
1

W

Tj
Tstg

150
-65···+150

°C
°C

:'> 125

RthJA

Siemens

K/W

287

BCX54
···BCX56

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage

V(BR) CEO

min

typ

max

Unit

45
60
80

-

-

V
V
V

45
60
100

-

-

V
V
V

-

100
20

nA

20

nA

-

-

-

63
100
160

100
160
250

-

Ic=10mA
BCX54
BCX55
BCX56
Collector-base breakdown voltage
Ic = 100 J.lA
BCX54
BCX55
BCX56

V(BR)CBO

Emitter-base breakdown voltage
IE = 10 J.lA

V(BR)EBO

Collector cutoff current
VCB = 30V
I(CB = 30 V, TA = 150°C

ICBo

Emitter cutoff current
VEB = 4V

lEBO

DC current gain')
Ic=5mA, VCE=2V
Ic = 150 rnA, VCE =2V
BCX 54, BCX 55, BCX 56-6
BCX 54, BCX 55, BCX 56-10
BCX 54-16, BCX 55-16, BCX 56-16
Ic = 500 rnA, VCE=2V

hFE

Collector-emitter saturation voltage')
Ic = 500 rnA, IB = 50 rnA

VCEsat

Base-emitter voltage')
Ic = 500 rnA, VCE = 2V

VBE

AC characteristics
Transition frequency
Ic = 50 rnA, VCE = 10 V, f= 20 MHz

-

25
40
63
100
25

-

V

J.lA

-

-

-

-

-

0,5

V

-

-

1

V

Symbol

min

typ

max

Unit

fT

-

100

-

MHz

') Pulse test: t:5, 300 its, D = 20/0.

288

5

-

Siemens

BCX54
···BCX56

Total power dIssIpatIon P,o' = f( TA)

TransItion frequency fT = f (l cl

W
1,2

MHz

VCE =

10 V

10'~m~m~_

1"',0

\.

1\

0,8

2

1\
1\

0,6

\.

\

0,4

\
1\

0,2

\.

\

o
o

100

50

150 0 (

-~

Pulse handling capability
(standardized)

r'h = f(t)

10' '--.J....-L-.U.JL.LW.---L-'-L.1.J.J.J..IJ...---L-L..Ll..Ujlj
100
5 10'
5 10 2
5 10' mA
-Ie

Collector cutoff current I CBO = f ( TA)
VCB =

K

iii

nA

10°

10'
5

I

'ih 5

I

I<::

,
ro;;

5

I--

max.

I" I
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=O

,

~

I

2

30V

V

I.'

....

V

typo

10'
5

5

/

~

D=~

,
10-6

T
10-' 10- 2 10-'

HJ

10-

10-5

10- 4

1

10° s

./
50

-t

100

150

0 (

-T..
Siemens

289

BCX54
···BCX56

Collector current JC = f (VSE)
VCE = 2V

Collector-emitter saturation voltage
Ie = f(VCEsa')
hFE = 10

mA

rnA
104

'0 4

5

5
Ie

Ie

1

1

l00 0(
25°(
-SO 0\1::

5

Jr'i

j

103

'I
10 2

If;v

100 0 (

25 °(
r== -SO O(

5

II

10 1
5

IT
100

11

o

0.2

0.4

0.6

100
0.8

1.0

0,2

0

1.2 V

0,4

-\'sE

0.6

0.8 V

- - - - VcESit

Base-emitter saturation voltage J e = f (VBE sad
hFE = 10

DC current gain hFE = f (Ie)
VCE = 2V

rnA
10'

l00 0 (
25°(
-50 0 ( : \

100°
10 2

Nil

-SO O(

II rA

10 2

TTT
e-:25 °

5

101

5

T
10a

o

0.2

0.4

0,6

II

100
0,8

1,0

1.2 V

10- 1

5 101

5 10 2
-Ie

--VBEsat

290

5 100

Siemens

5 10 3 rnA

BCX68

NPN Silicon AF Transistors

•
•
•
•
•

For general AF applications
High collector current
High current gain
Low collector-emitter saturation voltage
Complementary type: BCX 69 (PNP)

E

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 12 mm-tape

Package

BCX68-10
BCX68-16
BCX68-25

CB
CC
CD

Q62702-C1077
Q62702-C1078
Q62702-C1079

Q62702-C1864
Q62702-C1865
Q62702-C1866

SOT 89
SOT 89
SOT 89

Maximum ratings
Parameter

Symbol

Ratings

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
Vcso

20
25
5
1
2
100
200
1

A
A
mA
mA
W

Tstg

150
-65···+150

°C
°C

RthJA

:5125

K/W

Thermal resistance

VESO

Ic
ICM
Is
ISM

P tot

Tj

Unit
V
V
V

junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

Siemens

291

BCX68

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 30 mA

V(BR) CEO

20

-

-

V

Collector-base breakdown voltage

V(BR) CBO

25

-

-

V

V(BR) EBO·

5

-

-

V

-

-

100
10

nA

-

10

~A

Ic=10~A

Emitter-base breakdown voltage
lE=1~A

Collector cutoff current
VCB = 25 V
VCB = 25 V, TA = 150°C

ICBo

Emitter cutoff current
VEB = 5 V

lEBO

DC current gain')
Ic = 5 mA, VCE = 10 V
Ic = 500 mA, VCE = 1 V

hFE
50
BCX 68-10
BCX 68-16
BCX 68-25

Ic = 1 A, VCE = 1 V
Collector-emitter saturation voltage')
I C = 1 A, I B = 100 mA

VCEsat

Base-emitter voltage')
Ic=5mA, VCE=10V
Ic = 1 A, VCE = 1 V

VBE

AC characteristics

Transition frequency
Ic = 100 mA, VCE = 5 V, f= 20 MHz

~A

-

-

-

100
160
250

160
250
400

63
100
160
60

-

-

-

-

-

0,5

V

-

0,6

-

-

-

1

V
V

Symbol

min

typ

max

Unit

fT

-

100

-

MHz

') Pulse test: t:5, 300 ~s, D = 20f0.

292

-

Siemens

BCX68

Collector current I c = f (VBE)
VeE = 1 V

Total power dissipation Ptot = f (TA)

W
1,2

5
1"1,0

-SOo(

\

0,8

q, '/

100 oS",
25°(

1\

\

I I

\.

II/II

0,6

I\,

1\

0,4

1\

I

\.
0,2

5

\.

a

1\
a

100

50

150 DC

100

o

0,2

0.4

0.6

--T"

0,8

1,0

1.2 V

-VBE

Transition frequency fT = f (I cl
VCE = 5V

Pulse handling capability rth = fIt)
(standardized)

K

'th

W

MHz

100

10 3

5

1':

t

"'-.:I

t

P'

0.5
0.2
0.1
0.05
0.02
0.01
0.005

5

V

~

D=O

2

/

5

~

D=?

10-3
10-6

r

10-5

10- 4

10-3

10- 2 10- 1

100 S

-t

Siemens

293

BCX68

DC current gain h FE

VCE

=

= '(le)

Collector-emitter saturation voltage

1V

Ie = '(VcEsad
10
rnA
10 4
hFE =

5

v~ ,/

100°
25°
~50oe

/"

5

100 °e
25 °e
-SO °C

5

10°
10°

10°
5 1Q1

5 1Q1

5 10 3

5 104 rnA

o

0,2

0,4

~/(

0,6

0,8 V

--~hsat

Collector cutoff current I CBO = '( TA)

Base-emitter saturation voltage Ie = '( VBE sad

VCB=25V

hFE

= 10

nA
105

5

5
1/

ICBO

!

~;

104
5
1/

rnaxl/

103
5

V

II 'i

III

1/-

102
5

1/ '

/. ~

100°C
25°C
-50'oe

Vtyp.

5

50

100

150°C

10°

o

-TA
294

0,2

0,4

0,6

0,8

1,0

-"Esat

Siemens

1,2 V

BCX69

PNP Silicon AF Transistors

•
•
•
•
•

For general AF applications
High collector current
High current gain
Low collector-emitter saturation voltage
Complementary type: BCX 68 (NPN)

E

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 12 mm·tape

Package

BCX69-10
BCX 69-16
BCX69-25

CF
CG
CH

Q62702-C1080
Q62702-C1081
Q62702-C1082

Q62702-C1867
Q62702-C1868
Q62702-C1869

SOT 89
SOT 89
SOT 89

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
Vcso
VESO

20
25
5
1
2
100
200
1

V
V
V
A
A
mA
mA
W

T stg

150
-65 .. ·+150

°C
°C

RthJA

5125

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

Ic
ICM

Is
ISM
Ptot

Tj

Siemens

295

BCX69

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Collector-emitter breakdown voltage

Symbol

min

typ

max

Unit

V(BR) CEO

20

-

-

V

V(BR)CBO

25

-

-

V

-

-

V

-

-

100
10

nA

-

-

10

Ic=30mA
Collector-base breakdown voltage
Ic=101lA
Emitter-base breakdown voltage
le=11lA
Collector cutoff current
VCB = 25V
VCB = 25 V, TA = 150°C
Emitter cutoff current
VES = 5V
DC current gain')
5 mA, VCE = 10 V
Ic =
Ic = 500 mA, VCE = 1V
BCX69-10
BCX69-16
BCX69-25
Ic = 1 A, VCE = 1 V
Collector-emitter saturation voltage ')
Ic = 1 A, IB = 100 mA
Base-emitter voltage ')
Ic=5mA, VCE= 10V
Ic = 1 A, VCE = 1 V

hFE

AC characteristics

Transition frequency
Ic = 100 mA, VCE = 5 V, f= 20 MHz

ICBo

leBO

50
63
100
160
60
VCEsat

-

IlA
IlA

-

-

-

100
160
250

160
250
400

-

-

-

0,5

V

0,6

1

V
V

VSE

-

-

-

Symbol

min

typ

max

Unit

fT

-

100

-

MHz

') Pulse test; t 5, 300 Ils, D = 20/0.
296

5

V(BR)ESO

Siemens

BCX69

Total power dissipation Ptot

Transition frequency fT = f (I cl
VCE = 5V

= f (TA)

W

MHz

1,2

10 3

r

1,O

~

1\

0,8

1\

-

\
0,6

r\.

\

0,4

\
1\

0,2

'\

\

o
o

50

100

150

5 10 2
-Ie

0(

-7,;

Pulse handling capability rth = f(t)
(standardized)

K

Collector cutoff current
ICBO = f(TA)
VCB=25V

100

nA
105

W

5
~II!

'ih

:/

kf> ~.rt

r-

r
1

,.

~

5

2

0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=O

max,/

,,'

5

1(r3
10-6

10-5 10- 4

1/

/typ.

V

10'

1!:r-

D=~

/

5

T

10- 3

10- 2 10- 1

100 S

100

o

-t

50

100

150

O(

-li
Siemens

297

BCX69

Base-emitter saturation voltage Ie c= f( VeEsatl

Collector-emitter saturation voltage

hFE

Ie = f(VCEsat)
hFE = 10
rnA
10 4

=

10

rnA
10'
5

~~

l/. ~

100 °C "25°C
-SOO(

100 .(
25°C
-50 .(

fl

I I

I

10 2
5

I

10'

I

10'
5

S

10°

o

0,2

0,4

O~

0,2

0,8
1,0
1,2 V
- VeEso!

0,6

0,4

Collector current I C = f ( VeE)

DC current gain hFE = f (I cl

VCE = 1 V

VCE

rnA
10'

103

5
hFE

I

~7

l000( "2S0(
-SOOC

I I

/I

0,8 V

--VCEsat

5

=

1V

I

l00 0 (
25°C

10 2

-SO·(

5

I

I

II I I

10'

S

10°

I I
o

0,2

0,4

0,6

I
0,8

1,0

-VeE

290

1,2 V

100 L...l.lJJl.WL...LllliillL...L.L.ilU.llL..LLJ..LJill
10°
5 1Q1
5 10 2
S 103
S 10 4 rnA
-Ie

,...~------

vit:::I I 1t::1I",

BF517

NPN Silicon RF Transistor

•

Broadband amplifier and oscillator applications
up to 1 GHz

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

BF517

LR

Q62702-F988

Q62702-F78

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
Vceo
VEeo

15
20
25
5
280

V
V
V
mA
mA
mW

Tstg

150
-65···+150

°C
°C

RthJA

:S 450

K/W

Thermal resistance

Ic
Ie
Ptot

Tj

3

junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

Siemens

299

BF 517

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

V(SR) CEO

15

-

-

V

Icso

-

-

50

nA

hFE

25

-

250

-

Collector-emitter saturation voltage
I c = 10 rnA, Is = 1 rnA

VCEsat

-

0,1

0,5

V

Base-emitter saturation voltage
Ic = 10 rnA, Is = 1 rnA

VSEsat

-

-

0,95

V

Collector-emitter breakdown voltage
Ic = 1 rnA, Is =
Collector cutoff current
Vcs = 15 V, Is =
DC current gain
Ic = 5 rnA, VCE = 10 V

°
°

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ie = 5 rnA, VCE = 10 V, f= 200 MHz

fT

1

2

-

GHz

Collector-base capacitance
Vcs = 10V, VSE = 0, f= 1 MHz

Geb

0,3

0,5

0,75

pF

Collector-emitter capacitance
Vcs = 10V, VSE = 0, f= 1 MHz

Gee

-

0,26

0,4

pF

Noise figure
Ic = 5 rnA, VCE = 10 V, f= 100 MHz
Ic = 5 rnA, VCE = 10 V, f= 800 MHz

F

-

2,5
5,0

-

dB
dB

300

-

Siemens

SF 517

Total power dissipation Ptot = f( TAl

Transition frequency fT = f (I cl
VeE = 10 V. f= 100 MHz

mW

GHz

400

3

i

l300

v ....
II

\

200

i"'-

I\.

I\.

100

1\

o

o

50

1,\
150

100

o
0(

o

-Ti.

10

20
-Ie

30 mA

Collector-base capacitance Ccb = f(Veel
f=l MHz

pF

1.0

~

t 0.8 1\

[eb

\
1\

0,6

"- t'-

-... -...

01+

-

~~

0.2

o

o

20V

10

-'ie
Siemens

301

Si-N Channel MOS FET Triode

BF 543

Preliminary Data
• For RF stages up to 300 MHz
preferably in FM applications
• loss 4 mA, gfs 12 mS

=

=

ESD:Electrostatic discharge sensitive device, observe handling precaution!
Type

Marking

Ordering code
(taped)

Package

SF 543

LD

Q62702-F1230

SOT-23

Maximum Ratings
Parameter

Symbol Value

Drain-source voltage

VOS

20

V

Drain current

10

30

rnA

Gate-source peak current

Unit

±/GSM

10

mA

Ptot

200

mW

Storage temperature range

T stg

-55 ... + 150

·C

Channel temperature

Tch

150

·C

-55 ... + 150

·C

Total power dissipation, TA

:s 60 ·C

Ambient temperature range

TA

Thermal Resistance

I RthJA l:s 450

Junction - ambient 1 )

1) Package mounted on alumina t6.7 mm x 15 mm x 0.7 mm

302

Siemens

IKIW

BF 543

Electrical Characteristics
at TA = 25 DC, unless otherwise specified.
Parameter

ISymbol Imin.

Value

Itypo Imax.

IUnit

DC characteristics
Drain-source breakdown voltage

V(BR)DS

ID= 10 llA, -VGS =4 V

Gate-source bread own voltage
± IGS = 10 rnA, VDS = 0

± V(BR)GSS

Gate cutoff current
± VGS = 6 V, VDS = 0

± IGSS

Drain current
VDS = 10 V, VGS = 0

IDSS

Gate-source pinch-off voltage
VDS = 10 V, ID = 20 llA

-VGS(p)

20

-

-

7

-

12

-

-

50

1.5

4

6.5

-

0.7

1.5

9.5

12

-

-

2.7

-

-

25

-

-

0.9

-

-

22

-

-

1

-

V
V
nA
rnA
V

AC characteristics
Forward transconductance

gfs

VDs=10V,/D=4mA,f=1 kHz

Gate-1 input capacitance
VDS= 10 V, ID=4 rnA, f= 1 MHz

Cgss

Reverse transfer capacitance

Cdg

VDs=10V,/D=4mA,f=1 MHz

Output capacitance
VDS = 10 V, ID = 4 rnA, f = 1 MHz

Cdss

Power gain (test circuit)
VDS= 10 V, ID=4 rnA, f=200 MHz
GG =2 mS, GL =0.5 mS

Gps

Noise figure (test circuit)
VDS= 10 V, ID=4 rnA, f=200 MHz
GG =2 mS, GL =0.5 mS

F

Siemens

mS
pF
fF
pF
dB

dB

303

SF 543

Characteristics
at Tj =25 °G, unless otherwise specified.
Power dissipation Ptot = f (TA)
rnW
300

Typ. output characteristics field
10 = f (Vos)
rnA

10

!

8

I

200

\

1

r\ ,

I

6

1
1

I

I

I

i

I

4

100
\1

o

",

50

150

100

~

--

l..- ~ 0,2V

...-

OV

I
-0,2V

\t1

If

~

o

I

--

J

-OtV

o
o

0(

-T,..
Gate transconductance gls = f (VGs)
Vos = 10 V, loss =4 m A, f= 1kHz

rnA

15

10

gfs

10

20V

-Vos
Drain current 10 = f (VGs)
Vos = 10 V

rnS

I

10

r-.

r

I

10

/
"'-

I

304

4

\

I

-0,1

/

I

\

I

°

/

/

\

I

o

8

\

I

5

t

\

I

Vg:O,4V

.....

0,1V

/

2

o

-0,1

J
l/
o

0,1V

-\{;s

Siemens

BF 543

Gate Input capacitance Cgss = f (VGs)
Vos = 10 V, loss =4 rnA, f= 1 MHz

Output capacitance Cdss = f (Vos)
VGs=O,/oss=4 rnA, f=1 MHz
pF
5

pF
5

T'

4

3

,

V

f..-

3

-

2

1\1'--

o

o

-0,1

o
o

O,1V

10

5

15V

-Its
-Vos
Reverse transfer capacitance Cdg =f (Vos) Gate 1 Input admittance Y11s
VGs=O,/oss=4 rnA, f=1 MHz
Vos=10 V,/oss=4 rnA, VGs=O
(source circuit)
fF

mS
15

50

b"s

t

\
30

\

f=800MHz

V

10

/600MHz

\
20

~OMH~

1\

-

1'--

JJ
1/ rOO~HZ
~400;MH~

5-

3010MHz

f,1200~HZ
1 I

10

100MHz
I

o
o

5

10

o
o

15V

-Vos

I

50lMH

f

0,1

0,2

0,3

0,4

Q5ms

---g11s

Siemens

305

BF 543

Output admittance Y22s
Vos = 10 V, loss = 10 rnA, VGS =0
(source circuit)

Gate 1 transconductance Y21S
Vos = 10 V, loss = 4 rnA, VGS = 0
(source circuit)

mS

mS

o

S

~+u

SrIZ~
4

10~MHZ

,,I,

j'I00MHz--

1/600MHz

I

I

lliOOMHZ

rO?MHZ

-S

1100~HZ

J.I. 1/

1300~H~

yrHj

4~OMHV

SOOM~z I

I-

-10

if

600~H~

f=800MmMHZ

o

10

S

o
o

1SmS

"20~M1
I

I

100 M~i
S07 HZ
0,1

0,2

0,3

Test circuit for power gain Gp and noise figure F
'=200 MHz

Input
60Q

1nF

1

kQ

15pF

1SpF

;;---1270
1nF

I

BBS15

!

;~ fS i
Iot"n

306

0,4

-9zz,

-9Z1S

Siemens

Output
60Q

1nF

~
O
'

t

D.}

O,SmS

BF550

PNP Silicon RF Transistor

•
•
•
•

For amplifiers in common emitter configuration up to 300 MHz
Specially suitable for mixer applications in AM/FM radios and
VHF/TV tuners
Low collector-base capacitance due to shield diffusion
Controlled low output admittance

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BF 550

LA

Q62702-F547

Q62702-F944

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range

VCEO
VCBO

40
40
4
25
5
280

V
V
V
mA
mA
mW

Tstg

150
-65···+150

DC
DC

RthJA

::; 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VEBO

Ic
IB
Ptot

Ti

Siemens

307

BF550

Electrical characteristics
at TA = 25 DC, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 1 rnA, IB = 0

V(BR) CEO

40

-

-

V

Collector-base breakdown voltage
Ic= 1°ftA,h=0

V(BR)CBO

40

-

-

V

Emitter-base breakdown voltage
h=10ftA,Ic=0

V(BR) EBO

4

-

-

V

Collector cutoff current
VCB = 30 V, h = 0

ICBo

-

-

100

nA

DC current gain
I c = 1 rnA, VCE = 10 V

hFE

50

-

250

-

Base-emitter voltage
Ic = 1 rnA, VCE = 10 V

VBE

-

0,72

-

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 1 rnA, VCE = 10 V, f= 100 MHz

fT

-

350

-

MHz

Collector-base capacitance
VCB = 10V, VBE = 0, f= 1 MHz

Ceb

-

0,33

-

pF

Collector-emitter capacitance
VCB = 10V, VBE = 0, f= 1 MHz

Cee

-

0,67

-

pF

Noise figure
Ic = 1 rnA, VCE = 10 V, f= 100 kHz,
Rs=300O
Ic = 2 rnA, VCE = 10 V, f= 100 MHz,
Rs = 600

F

-

2

-

dB

-

3,4

-

dB

-

550
17
35
1,3
5
5

-

fts
pF
mS
pF
fts
fts

Four-pole characteristics,
common-emitter configuration
Ic=1mA,VcE=10V
f= 0,45 ... 10 MHz

glle
Clle

IY2lei
f= 450 kHz
f= 10 MHz

308

C22e
g22e
g22e

Siemens

-

-

-

-

8
10

BF 550

Total power dissipation P'o' = f (TA)

Current gain hFE
VeE = 10V

mW

= f (l e)

:3 _ _

400

r

f!ot

1 300

2

10 _ _

1,\

200

1,\

'\

100

o

'\

o

150

100

50

100 L...C...l..J..l-UW--L-LLllillL-'-'--'..LU.UL--L.UU-Cllll
10-2
5 10- 1 5 10°
5 10'
5 10 2 rnA

o(

-T,.

-Ie

ColIsctor-emltter saturation voltage
Ie = f(VeEsatl
hFE = 10

Collector current
VeE = 10V

Ie = f (VBE)

rnA

102
Ie

!

5

Ie

'/

10'

!

-

/

10'

/

I

1

,

10-

o

0,1

0,2

0,3

0,4

0,5 V

10-2
0,5

0,6

0,7

0,8

0,9

1,0 V

--~hsat

Siemens

309

BF550

Collector cutoff current I caD = f ( TA)
Vca = 30V

Transition frequency tT = t (l c)
t=100MHz

nA
10 4
5

MHz

600
f,

f

'/max.

...

~

'-'"

SOO

....

~

400

V

1-1-

~

I,...

i"i"

r--

r"-,

i"-

V

5'\

1\

300

f;s-I'-.....
10

VeE = 2V

Vtyp.

200

100

o
o

10-1

o

100

50

150

0(

10

5

15 mA

-1A
Collector-base capacitance CCb
t=1 MHz

Output conductance g22e = t(l cl
VeE = 10 V, t= 500 kHz

= t(Vca)

pF
1,0

mS

20

gzz.

18

I

16

t
0,5

14

-

I

10

~

i""'-- ........

--

o

/11
I

4

'J

"

I

o

-\'cB
310

typo

; I

6

20 V

If7J

IL I

8

o
10

II

i J

2

o

-max

J

J

i

12

1\

I

1/

I

Siemens

2

3

4

5 mA

BF550

Forward transfer admittance IY21el
f= 10,7 MHz

= f(I c)

Forward transfer admittance Y21 e
VCE= 10V

rnS

400

15

~

250

/

200

150

/

100
50

/

o

o

~~

VCE =5V-

V

/
10

15 rnA

90'

75'

60'

-Ie

Siemens

311

BF554

NPN Silicon RF Transistor

•

General RF small-signal applications up to 300 MHz,
amplifier, mixer and oscillator in circuits

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BF 554

CC

Q62702-F551

Q62702-F1042

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO

20
30
5
30
280

V
V
V
rnA
mW

Tstg

150
-65···+150

°C
°C

RthJA

:$ 450

K/W

Thermal resistance

Ic
Ptot

7j

junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

312

Siemens

BF554

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic= 1 mA, IB =0

V(BR)CEO

20

-

-

V

Collector cutoff current
VCB=20V, /e=0

ICBo

-

-

100

nA

DC current gain
Ic = 1 mA, VCE = 10V

hFE

60

-

250

-

Base-emitter voltage
Ic=1mA,VCE=10V

VBE

-

0,7

-

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 1 mA, VCE = 10 V, f= 100 MHz

fT

-

250

-

MHz

Noise figure
VCE = 10 V, Ic = 1 mA
f= 200 kHz, gs =2 mS
f= 1 MHz, gs =1,5 mS
f= 100 MHz, gs = 10 mS

F

-

1,5
1,2

-

-

dB
dB
dB

Collector-base capacitance
VCE = 10 V, VBE = 0, f= 1 MHz
Output conductance
Ic= 1 mA, VCE= 10V, f=O,5···10MHz

Ccb

-

0,6

-

g22e

-

4

-

Siemens

3

pF
IlS

313

BF554

Total power dissipation Ptot

DC current gain h FE = f (I cl
VCE = 10 V

= f(TA)

rnW

400
10

_111

3

f'

'r"

1 300
1"-

200

1,\

'\
1 0 1 l 1 l i. .

100

'\

o

1\
o

150 DC

100

50

-~

Collector-emitter saturation voltage
Ie = f(VcE.at)
hFE = 10
rnA

Collector current I C = f (VBE)
VCE = 10V

10 1

Ie

5

Ie

t

t

I

1Q1

/

101

J

,

/

I

1

5

10-1

o

0,1

0,2

0,3

0,4

0,5 V

10-1
0,5

-VCEsat

314

Siemens

0,6

0,7

0,8

0,9

1,0 V

BF554

Collector cutoff current I CBO = f ( TAl
VCB = 20V

nA
10·

Transition frequency fr = f (l c)
VCE = 10V
f=100 MHz
MHz

500

S

,

....

l/max.

r- .....

/
~

1/

/

....

"'

I
typo

,

200

100

,

1..1

o

150 0(

100

50

o

20 mA

10

-r,.
Noise figure F = f(f)
VCE = 10 V, Ic = 1 rnA,

Collector-base capacitance Ccb
f=1 MHz

Rs=60n
dB
S

pF
1,5

=

f(VeB)

F

4

I

r

'/

1,0

10-'

\

'" "

1\

o

\

r-

0,5

S 10°

5 10'

5 101
-f

5 103 MHz

o
o

20 V

10

-\'cB
Siemens

315

BF569

PNP Silicon RF Transistor

•

Suitable for oscillators, mixers and self-oscillating
mixer stages in UHF TV tuners
.

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BF 569

LH

Q62702-F548

Q62702-F869

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
Ic
IB
Ptot

35
40
3
30
5
280

V
V
V
mA
mA
mW

Tj
Tstg

150
-55···+150

°C
°C

RthJA

::; 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

316

VEBO

Siemens

BF569

Electrical characteristics
at TA

=

25 ac, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
I c = 1 rnA, I B = 0

V(BR) CEO

35

-

-

V

Collector cutoff current
VCB = 20 V, IE = 0
DC current gain
Ic=3mA,VCE=10V

ICBo

-

-

100

nA

hFE

20

50

-

-

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 3 rnA, VCE = 10 V, f= 100 MHz

fr

-

950

-

MHz

Collector-base capacitance
Vce = 10V, VeE = 0, f= 1 MHz

Gcb

-

0,32

-

pF

Collector-emitter capacitance
VCE = 10 V, VeE = 0, f= 1 MHz

G ce

-

0,15

-

pF

Power gain, common base
Ic = 3 rnA, Vce = 10 V, f= 800 MHz
RL = soon

Gp

-

14,8

-

dB

Noise figure
Ic = 3 rnA, Vce = 10 V, f= 800 MHz
Rs = 60n

F

-

4,5

-

dB

Siemens

317

BF569

Total power dissipation Ptot

Transition frequency fT = f (I cl
f= 100 MHz, VCE = 10 V

= f (TA)

MHz
1200

rnW
400
f,

!fat

( 1000

.........

1 300

"-

V
800

"-

200

600

"- I\.

\

/

\

\

I

I\.
"00
100
200

1\

o

1\

o

100

50

150 .(

o

o

-T"

--Ie

Collector capacitance
Ccb = f(VCB)
f=1 MHz

pF
1,0

feb

!
~.
0,5

\
I\.

o
o

318

........

--10

10 rnA

5

r-

20 V

Siemens

BF 579

PNP Silicon RF Transistor

•

•

Suitable for low distortion, low noise
VHF/UHF amplifier and UHF oscillator
applications in TV tuners
High transition frequency of 1.6 GHz
at typical operating current of 10 mA

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BF 579

LJ

Q62702-F552

Q62702-F971

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO

20
25
3
30
5
280

V
V
V
mA
mA
mW

Tstg

150
-55···+150

°C
°C

RthJA

:5 450

K/W

Thermal resistance

Ic
IB
Ptot

Ti

junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

Siemens

319

BF579

Electrical characteristics
at TA

=

25 ac, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 1 rnA, IB = 0

V(BR) CEO

20

-

-

V

Collector cutoff current

ICBO

-

-

100

nA

DC current gain
Ic = 10 rnA, VCE = 10 V

hFE

20

-

-

-

VCB

= 20V, IE = 0

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 10 rnA, VCE = 10 V, f= 100 MHz

fr

-

1,6

-

GHz

Collector-base capacitance
VCB = 10V, VBE = 0, f= 1 MHz

Ceb

.-

0,41

-

pF

Collector-emitter capacitance
VCE = 10 V, VBE = 0, f= 1 MHz

C ee

-

0,16

-

pF

Power gain, common base
Ic = 10 rnA, VCB = 10 V, f= 800 MHz
RL = soon

Gp

-

16

-

dB

Noise figure
Ic = 10 rnA,
Rs =60n
Ic = 10 rnA,
Rs =60n

F

-

4

-

dB

-

2,9

-

dB

320

VCB

= 10 V, f= 800 MHz

VCB

= 10 V, f= 200 MHz

Siemens

BF 579

Total power dissipation Ptat = f( TA)

Collector-base capacitance
Ccb = f(Vea)

f=l MHz
pF
1.0

mW

400

'tot

\\

1 300
"200

I"I\.

o,s
I\.

\

'r--.. r--..

-

I-- I--

100

1,\

o

1'\

o

150

100

50

0(

-T,.

o
o

10

lOV

Transition frequency fT = f (le)

f= 100 MHz, VeE

=

10 V

MHz

2000

'r

l/

1

,.....

.....

f7

t-.... r-....

I'"

1000

o
o

10

20 mA

-Ie

Siemens

321

NPN Silicon RF Transistor

•
•

BF599

Suitable for common emitter RF, IF amplifiers
Low collector-base capacitance due to contact
shield diffusion

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BF599

NB

Q62702-F550

Q62702-F979

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

Vceo
Vceo
Veeo

V
V
V

Ptot

25
40
4
25
5
280

Tj
Tstg

150
-65···+150

°C
°C

RthJA

::;;450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

322

Ic
Ie

Siemens

mA
mA
mW

BF 599

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 1 mA, IB = 0

V(BR) CEO

25

-

-

V

Collector cutoff current
VCB=20V, Ie=O

ICBo

-

-

100

nA

DC current gain
Ic=7mA, VCE=10V

hFE

38

70

-

-

Collector-emitter saturation voltage
Ic = 10 mA, IB = 1 mA

VCEsat

-

0,15

-

V

Base-emitter voltage
I c = 7 mA, VCE = 10 V

VBE

-

0,78

-

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 5 mA, VCE = 10 V, f= 100 MHz

fr

-

550

-

MHz

Collector-base capacitance
VCB = 10V, VBE = 0, f= 1 MHz

Cob

-

0,35

-

pF

Collector-emitter capacitance
VCE = 10V, VBE = 0, f= 1 MHz

C oe

-

0,68

-

pF

Optimum power gain')
Ic = 7 mA, VCE = 10 V, f= 35 MHz

Gp

-

43

-

dB

Forward transfer admittance
Ic = 7 mA, VCE = 10 V, f= 35 MHz

IY21el

-

175

-

mS

Siemens

323

BF599

Total power dissipation Ptot = ((TA)

DC current gain hFE = ((I e)
VCE = 10 V

mW
400

l300
200

\

1'\

I\.
......

100

\

o

1'\

o

50

100

150

100~~~-LUWillL~~lli-LLllllW

°c

10-1

5 10- 1

5 100

-J;,

Collector current Ie = ((VSE)
VCE = 10V

5 10'
-Ie

5 101 rnA

Collector-emitter saturation voltage,
Ie = ((VCEsat)
hFE = 10
rnA

rnA
1)1

101

5
Ie

V

10'

5

t

5

If

10'

I

5

/
I

I

1

5

10-1

0,5

1

0,6

0.7

0,8

0,9

1.0 V

0,1

0,2

0,3

0,4

--I;hsat

324

Siemens

0,5 V

BF599

Collector cutoff current leBO = f (TA)

Transition frequency fT

=

f(l c), f = 100 MHz

VCB=20V

nA

MHz

104

600

5
leBO

V

10 3
5

1/

1""-

J=I=

.... ,1-"

400

V

.......,

V

V-

max.

..- ........

\

\

\

\

V

VcE =2V

5

!\

1\ \

\

300
10'

~

\

r-~ l~V- I -

200

typo
100

,
50

100

o
o

150·[

10

Collector-base capacitance Ccb = f (V CB)
f = 1 MHz

Forward transfer admittance IY21e I= f(l cl
f= 35 MHz

pF

mS

1.0

300

~

I(

1\

r 1\

.................

---

I

/

100

1\

\
15_

1

1\

"b-.

/.. "\

~h

200

\\
0.5

20 mA
--Ie

~TA

5

10,_ -

"

VeE~2V

II

/

o

1/

o

10

20 V

10

20

24mA

-Ie

--VcB

Siemens

325

BF622

NPN Silicon High Voltage Transistor

•
•
•
•
•

Suitable for video output stages in TV sets
High breakdown voltage
Low collector-emitter saturation voltage
Low capacitance
Complementary type: SF 623 (PNP)

E

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 12 mm-tape

Package

SF 622

DA

Q62702-F568

Q62702-F1052

SOT 89

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
(RBE = 2,7 kn)
Emitter-base voltage
Collector current
Peak collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO

250
250

V
V

VCER
VEBO
Ic
ICM

250
5
50
100
1

V
V
mA
mA
W

Tstg

150
-65···+150

°C
°C

RthJA

:5125

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

326

Ptot
Tj

Siemens

BF622

Electrical characteristics
at

TA =

25 cC, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 1 mA
Ic = 10 !-lA, RBE = 2,7 kQ

V(BR) CEO

250
250

-

-

V(BR)CER

V
V

Collector-base breakdown voltage
Ic=10!-lA
Emitter-base breakdown voltage
Ie = 10 !-lA

V(BR)CBO

250

-

-

V(BR) EBO

5

-

-

V

Collector cutoff current
VCB = 200 V
VCB = 200 V, TA = 150°C

ICBo

-

-

100
20

nA
llA

Collector cutoff current
VCE = 200 V, RBE = 2,7 kQ
VCE = 200 V, RBE = 2,7 kQ,

ICER

-

-

-

V

-

1
50

llA
llA

IeBO

-

10

llA

hFE

50

-

-

-

Collector-emitter saturation voltage ')
Ic=10mA,IB=1mA

VCEsat

-

-

0,5

V

Base-emitter saturation voltage ')
Ic = 10 mA, IB = 1 mA

VB Esat

-

-

1

V

AC characteristics

typ

max

Unit

-

TA

= 150°C

Emitter cutoff current
VEB = 5V
DC current gain')
I c = 25 mA, V CE = 20 V

Symbol

min

Transition frequency
Ic = 10 mA, VCE = 10 V, f= 20 MHz

fT

-

100

-

MHz

Output capacitance
VCB = 30V, f= 1 MHz

Cob

-

0,8

-

pF

') Pulse test: t:5, 300 lls, D = 20/0.

Siemens

327

BF622

Total power dissipation Ptot = (( TA)

Output capacitance
f= 1 MHz

W

pF
4

1,2

r

1,0

1\

3

f\

0,8

Cob = ((VCE)

1\
1\

1\

0,6

1

2

1\

1\

0,4

""

r\
1\

~

0,2

1\

o
o

r\
100
-1,;.

50

150 ·C

Pulse handling capability rth = ((t)
(standardized)
K

o
o

10

Transition frequency fT = (( I c)
VCE = 10V, (= 20 MHz

'iii

10°

r

J

5

1

1.-1 III I

1

5

•

..-t-

I

lO-2

1
0.5
0.2
0.1
0.05
0.02
0.01
0.005

2

t-O=O

5

S

D=ft~
T
10""3

10-6 10-5 10- 4

10-3

10- 2 10- 1 1QO

2

5

-t
328

20

Siemens

17

30V

BF622

DC current gain h FE
VCE = 20V

= f (l c)

Collector current I C
VCE = 20V

= f (VBE)

rnA
102
5

I

I

I

100 '--'....u.u=-'-.w..LUllL.--'-'~.w-.LJ..ll.llW
10.2
10·'
10°
10'
10 2 rnA
-Ie

Collector cutoff current I CBO
VCB = 200 V

0,5

1V

= f ( TA)

1/

max

~/

f ....

V

typ. ,

,

/
50

100

150

O(

-1A
Siemens

329

BF623

PNP Silicon High Voltage Transistor

•
•
•
•
•

E

Suitable for video output stages in TV sets
High breakdown voltage
Low collector-emitter saturation voltage
Low capacitance
Complementary type: BF 622 (NPN)

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 12 mm-tape

Package

BF 623

DB

Q62702-F567

Q62702-F1053

SOT 89

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
(RBE = 2,7 kQ)
Emitter-base voltage
Collector current
Peak collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO

250
250

V
V

250
5
50
100
1

V
V

Tstg

150
-65···+150

°C
°C

RthJA

:0;

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

330

VCBO
VCER
VEBO

Ic
ICM
Ptot
Tj

125

Siemens

mA
mA
W

K/W

BF623

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 1 mA
Ic = 10 /lA, RBE = 2,7 kQ

V(BR) CEO
V(BR) CER

250
250

V(BR) CBO

250

-

V
V

Collector-base breakdown voltage
Ic=10/lA

-

Emitter-base breakdown voltage
lE=10/lA

V(BR) EBO

5

-

-

V

Collector cutoff current
VCB=200V
VCB = 200 V, TA = 150°C

ICBo

-

-

100
20

nA
/lA

Collector cutoff current
VCE = 200 V, RBE = 2,7 kQ
VCE = 200 V, RBE = 2,7 kQ, TA = 150°C

ICER
/lA
/lA

lEBO

-

1
50

Emitter cutoff current
VEB = 5 V

-

10

/lA

DC current gain')
Ic=25mA, VCE=20V

hFE

50

-

-

-

Collector-emitter saturation voltage ')
I c = 10 mA, I B = 1 mA

VCEsat

-

-

0,5

V

Base-emitter saturation voltage ')
Ic = 10 mA, IB = 1 mA

VBEsat

-

-

1

V

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 10 mA, VCE = 10 V, f= 20 MHz

fT

-

100

-

MHz

Output capacitance
VCB = 30V, f= 1 MHz

Cob

-

1,2

-

pF

') Pulse test: t:$ 300 /ls, D = 2010.

Siemens

331

BF623

Total power dissipation Ptot

=

f (TA)

Output capacitance
f= 1 MHz

Cob = f(VCE)

pF
4

W
1,2

1"1,0

1\

3

1\

0,8

\
\
2 \

\
0,6
~

\

0,4

r-...

\

....

\
0,2

1\

o

\
o

100

50

150

o
0 (

o

10

--T"

Transition frequency fT
VCE = 10 V, f= 20 MHz

Pulse handling capability rth = f (t)
(standardized)
K

'ih

W

MHz

10°

10 3

5

--~

,

~

5

5

1,...1""'"
~III

t ,

0.5
0.2
0.1
0.05
0.02
0.01
0.005

2

0=0

2

5

v

5

~

o-!I
-r
10-3
10-6

10-5

10- 4

2

T

10-3

10- 2 10-'

10° s

5 10'

-t

332

20
-\0(,

Siemens

=

f (l cl

30 V

BF623

Collector current I c
VCE = 20 V

= f (VSE)

DC current gain hFE
VCE = 20V

= f (I c)

mA
10 2
5

I

/
I
II

L
0,5

100 '----'---'-'"Will-'-LL'-'.illL..--'--'-LLililL--L.L-LLlliU
10-2
10-'
10°
10'
102mA

1V

-Ie

Collector cutoff current I cso = f ( TA)
Vcs = 200 V

nA
10'
5
leBO
max ,/

,.,.

-'"

typ_

10'
5

,

1/
50

100

150

°c

-7;,

Siemens

333

BF660

PNP Silicon RF Transistor

•

Particularly suitable for application in VHF tuner
oscillators

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BF660

LE

Q62702-F549

Q62702-F982

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Emitter current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO
Ic
IE
Ptot

30
40
4
25
30
280

V
V
V
mA
mA
mW

Tj
Tstg

150
-65·.·+150

°C
°C

RthJA

:5 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

334

Siemens

BF660

Electrical characteristics
at TA = 25 DC, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage

V(BR) CEO

30

-

-

V

V(BR) CBO

40

-

-

V

V(BR) EBO

4

-

-

V

Collector cutoff current
VCB=20V, h=O

ICBo

-

-

50

nA

DC current gain
lc=3mA, VCE=10V

hFE

30

-

-

-

~C

Ic=1mA,h=0
Collector-base breakdown voltage

Ic= 10 11A,h=0
Emitter-base breakdown voltage

h= 10 11A, I c=0

Symbol

min

typ

max

Unit

Transition frequency
Ic = 5 mA, VCE = 10V, f= 100 MHz

characteristics

fT

-

700

-

MHz

Collector-base capacitance
VCB = 10 V, VBE = 0, f = 1 MHz

Gcb

-

0,6

-

pF

Collector-emitter capacitance
VCE = 10 V, VBE = 0, f= 1 MHz

G ce

-

0,28

-

pF

Siemens

335

BF660

Total power dissipation P tot = f (TA)

Transition frequency fT = f (I c)
VCE = 10 V, f= 100 MHz

mW
400

MHz
1200

f
f..

?'ot

1000

1 300

600

1\

1\

200

'\.
400

r-....

/'"

600

'\.

If

,

1

100

200

\

o

1\

o

100

50

150 .(

o
o

-T,.

Collector-base capacitance Ccb = f(Vcs)

f=1MHz

pF
1.5

1.0

\
I'\.

-- r-

0.5

,0

i"'--

o

10

20 V

-\'cB
336

Siemens

10

20 mA

NPN Silicon High-Voltage Transistors

•
•
•
•
•

BF 720; BF 722

Suitable lor video output stages in TV sets
and switching power supplies
High breakdown voltage
Low collector -emitter saturation voltage
Low capacitance
Complementary types: SF 721/723 (PNP)

E

Type

Marking

Ordering code (12-mm tape)

Package*

SF 720

SF 720

Q62702 - F1238

SOT-223

SF 722

SF 722

Q62702 - F1306

SOT-223

Maximum Ratings
Parameter

Symbol

Collector-emitter voltage

VCEO
VCER
VCBO
VEBO

Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Total power dissipation, TA ::5 25°C

11

Storage temperature range
Thermal Resistance
Junction - ambient 1)

BF722

-

250

300

-

V
V

300

250

V

5

V

5

ICM

100

mA

Pl01

1.5

W

Tsig

"

mA

Ic

50

150

Tj

Junction temperature

Unit

BF720

-65

I

RlhJA

to

::583.3

+ 150

°C
°C

IKIW

1) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm
Mounting pad lor the collector lead min 6cm 2
.) For detailed dimensions see chapter Package Outlines.

Siemens

337

BF 720; BF 722

Characteristics
at TA = 25°C, unless otherwise specified.

Parameter

Unit

DC Characteristics
Collector-emitter oreakdown voltage
Ic = 1 mA, IB = 0
BF 722

V(BR)CEO

Collector-emitter breakdown voltage
Ic = 10 llA, Rse = 2. 7kn
BF 720

V(BR)CER

Collector-base breakdown voltage
BF 720
Ic = 10 llA, Is = 0
BF 722

V(BR)CSO

Emitter-base breakdown voltage
Ie = 10 llA, Ic = 0

V(BR)eBO

Collector-base cutoff current
Vcs = 200 V, Ie = 0

leBo

Collector-emitter cutoff current
Vee = 200 V, Rse = 2.7kn
Vce = 200 V, Rse = 2.7kn,TA = 150°C

leeR

Emitter-base cutoff current
VEB = 5 V, Ie = 0

leso

DC current gain 1)
IC=25 mA, Vce=20 V

hFE

Collector-emitter saturation voltage
Ie = 30 rnA, Is = 5 rnA

1)

VOe,al

250

-

-

V

300

-

-

V

300
250

-

-

V
V

5

-

-

V

-

-

10

nA

-

-

50
10

nA
llA

-

-

10

llA

50

-

-

-

-

-

0.6

V

-

100

-

MHz

-

0.8

-

pF

AC Characteristics
Transition frequency
Ic = 10 mA, VCE = 10 V, ,= 100 MHz

'T

Collector-base capacitance
VCB =30 V, Ie =0. f= 1 MHz

Cob

1) Pulse test conditions: t ~ 30011S; D = 2%

338

Siemens

BF 720; BF 722

Collector cutoff current Iceo = '(TA )

Total power dissipation Plol = '(TA)

nA Vce = 200 V

2.0
,-- --,- .-- - - -.,--,--",
W , - . - - --1-1- -- - -I--HI-I-+-I

5

1-

P.o'

t

IO J

I- - _. -- -- -- --

I-

m xV

--1- -I- - - .- - - - -I-

1.5:=

--[\ - I- --- - -

/

1--1-1I--

1---

---.~ I-

I-

f\-

to
II-

os

\'-1--

---

1\-

- -

_.- -

----

I-

--

,,-

........

la'
5

1/

/

'\

1-1- ---

1-11--I-

.-.

o '-'-- 0

t p.

-f\-

-_. -.
--- ---

- --

-l-

100 °C
- - TA

50

Collector current Ie

\;

1

150

50

100

150 'C

-Ii

= '(VeE)

rnA VCE = 20 V

101
5

II

I

-

I

-

10'1

o

I
1 V

0.5
--Vat

Siemens

339

BF 720; BF 722

DC current gain hFE
VeE = 20 V

1:

3

hFE

= ((I c)

Transition frequency (T = ((Ic)
MHz VCE = 10 V, (=100 MHz

1116111

1

10

EEmlEIEtII

I,:,. . . .

--Ie

Collector-base capacitance Cob = ((Vce)
pF'/C = 0, (= 1 MHz
4

II

2

1\

-

t-I-

o

o

10

20

30V

---VcB
340

Siemens

PNP Silicon High-Voltage Transistors

•
•
•
•
•

BF 721; BF 723

Suitable for video output stages in TV sets
and switching power supplies
High breakdown voltage
Low collector -emitter saturation voltage
Low capacitance
Complementary types: SF 720/722 (NPN)

Type

E

Marking

Ordering code (12-mm tape)

Package"

BF 721

BF 721

Q62702 - F1239

SOT-223

BF 723

BF723

Q62702 - F1309

SOT-223

Maximum Ratings
Parameter

Symbol

Collector-emitter voltage

Emitter-base voltage

VCEO
VCER
VCBO
VEBO

Collector current

Ic

50

ICM

100

mA

P IOI

1.5

W

Collector-base voltage

Peak collector current
Total power dissipation, TA:s 25°C

\)

Junction temperature

Ii

Storage temperature range

TSlg

BF721

BF723

Unit

-

250

-

V

300
300

250

V

5

5

V
mA

150
-65

to

+ 150

°C
°C

Thermal Resistance
Junction - ambient

:s 83.3

1)

IKiW

I) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm
Mounting pad for the collector lead min 6cm 2

.) For detailed dimensions see chapter Package Outlines

Siemens

341

BF 721; BF 723

Characteristics
at TA = 25°C, unless otherwise specified.
Parameter

I

I

Symbol Value.
min. Ityp.

Imax. .I

Ul1lt

DC Characteristics
Collector-emitter .breakdown voltage
Ic = 1 mA, IB = 0
SF 723

V(BR)CEO

Collector-emitter breakdown voltage
Ic = 10 pA, RBE = 2.7kn
SF 721

V(BR)CER

Collector-base breakdown voltage
Ie = 10 pA, Is = 0
8F 721
SF 723

V(BR)CBO

Emitter-base breakdown voltage
IE = 10 pA, Ic = 0

V(BR)EBO

Collector-base cutoff current
VcB =200 V, IE=O

ICBO

Collector-emitter cutoff current
VcE =200 V, RBE=2.7kn
VcE =200 V, R sE =2.7kn,TA =150°C

ICER

Emitter-base cutoff current
VEB = 5 V,Ic = 0

lEBO

DC current gain 1)
Ic = 25 rnA, VCE = 20 V

hFE

Collector-emitter saturation voltage
Ic=30 mA,/B =5 rnA

VCEssl

250

-

-

V

300

-

-

V

300
250

-

-

-

V
V

5

-

-

V

-

-

10

nA

-

-

50
10

nA
l1 A

-

-

10

Il A

50

-

-

-

-

-

0.6

V

-.

100

-

MHz

0.8

-

pF

AC Characteristics
Transition frequency
Ic= 10 rnA, VCE = 10 V, f= 100 MHz

fT

Collector-base capacitance
VcB =30 V, Ic=O, f= 1 MHz

Cob

1) Pulse test conditions: t ;;; 300ps; D = 2%

342

Siemens

BF 721; BF 723

Total power dissipation Plol

2,0

""

r(TAI

r-r-..-,--.-r-r-

Collector cutoff current I CBO = r(TAI
nA' VCB = 200 V
10 1

W rt-r'j~~-~'rt~+4-4-~~
-,-_.

":..

I-

S

_.- - -- - _.-

-t--I-H-j-I-I-

t I.S ~.__ ~

m x,,1

-1-

__

1I

--I- -+-f-f-f-+--l

I- - - . - \

:=

\-:-

- ~ -t--I-+-l-l-

1,0

1 - - --I-l--+-t'U-

-I-

f\ -t-t-+-+-I-l

f-- -- -- ~_:-

__

1/

t p,

5

\1--l-+4--H

. - _00

O,S 1-++1--+_-1__-1:-

i--'k

10'

oo

1I

,

r= : - -= _-f-J_\~-+_~~

------ - --1- - -------

:--1--t-1-.,•...-.

Ol-L~-J--~--L-~-~'-L-'~_J~Li_~\J
100 DC
ISO
o
so

10-1

o

SO

100

150 DC

-/A

-1i.

Collector current Ie"" r(VBEI
mA VCE = 20 V
101

5
I

I

I
-

lO- I
S

10-1

o

l0.5

f-- I--

1 V

Siemens

343

BF 721; BF 723

DC current gain hFe
VCE = 20 V

= '(lc)

Transition frequency 'r = f (I cl
MHz VCE = 10 V, f= 20 MHz

10l

IO l

5

10 1

10

,

f-

5

17

0

5 'lJ1

10' rnA 10 1

Collector-base capacitance

pF Ic = 0, f = 1 MHz

COb

= ,(VCB)

4

IT
f\

-

o

344

o

10

20
-\(6

30 V

Siemens

BF 770 A

NPN Silicon RF Transistor

•
•

Low-noise broadband transistor for frequencies
up to 2 GHz at collector currents up to 30 mA
Specially suitable for IF amplifiers in TV-sat tuners
as well as for VCR modulators

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BF770 A

LS

Q62702-F 1068

Q62702-F 1080

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector. current
Base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range

VCEO
VCBO

12
15
2
50
10
280

V
V
V
mA
mA
mW

Tstg

150
-65 .. ·+150

DC
DC

RthJA

:5 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VEBO

Ic
IB
Ptot

Tj

Siemens

345

BF 770 A

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic=1mA,IB=0

V(BR) CEO

12

-

-

V

Collector cutoff current
VCB = 5 V, Ie = 0

ICBo

-

-

50

nA

DC current gain
Ic=30mA, VCE=5V

hFE

40

90

-

-

Collector-emitter saturation voltage
,- __ A
Ie - OU 1111-\,18 -- \) 1111"\

VCEsat

-

0,13

0,5

V

T

,-"

___

A

T

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 30 mA, VCE = 5 V, f= 200 MHz

fT

-

5,5

-

GHz

Collector-base capacitance
VCB = 5 V, VBE = 0, f= 1 MHz

Gcb

-

0,6

-

pF

Collector-emitter capacitance
VCB = 5 V, VBE = 0, f= 1 MHz

G ce

-

0,3

-

pF

Noise factor
Ic = 10 mA, VCE

F

-

2

-

dB

= 5 V,

f= 800 MHz

Power gain
Ic = 30 mA, VCB

Gp

-

13

-

dB

= 5 V,

f= 800 MHz

346

Siemens

BF770A

Total power dissipation P tot = {( TA)

Transition frequency

I cl

{T = {(

VCE = 5 V, {= 200 MHz

GHz
6

mW

400

~ I--

1

1

1/

trot

1 300

II

I

4

~

./

/

/

II

1\

200

[\..
,,\

/

i

I

100

\
I

a

a

'\

-

'\
150

100

50

a
O(

o

10

20

30

50 rnA

40

-7;.

Collector-base capacitance Ccb = {(VeB)

Noise figure F = f (/ cl

f= 1 MHz

VCE = 8 V

pF

dB

1,0

6

Rs =50n ....

F

\

t
4

-

\

0,6 f--~d-+-+---i-+---t--+-+-I

.....

--..., -II~---

f=2GHz

\.

0,41

I
0.2 .

a

,

I

1-:

1

I!

i

I

i

±
!

3

i
.I-+-+--L--+--Ir-1

t-n-t-I r
'--+-H-_'f---.;'f--lf--l

Il

+--t.

II

2

10

20 V

f=O,8G~

\~ ;::;...,

....

1-1-

o

o

--Vcs

11.l,..--_
s 50Q ....

kbP :::rsJ;, -

~;~;;::: :;:;;

~ ::::::F==F'"

f=10HHz

1'1- kn

I

L ~JJ~t1-rl fj
a

\

-

~

Zr'l
10

20

3l rnA

-Ie
Siemens

347

BF 771

NPN Silicon RF Transistor

• For low noise, high gain amplifiers up to 2GHz
• For linear broadband amplifiers
• For modulators and amplifiers in VCR-tuners

Type

Marking

Ordering code for
versions on 8 mm-tape

Package

BF 771

RB

Q62702-F990

SOT 23

Maximum Ratings
Parameter
Collector-emitter voltate
Collector-emitter vOltage ( VBE =O)
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation ( TA ", 60°C ')}
Junction temperature
Storage temperature range
Ambient operating temperature range

Symbol

Ratings

Unit

18
p,.t
Tj
T.tg
TA

12
20
20
2
80
10
300
150
-65 to +150
-65 to +150

V
V
V
V
mA
mA
mW
·C
·C
°C

RthJA

",300

KfIN

VCEO
VCE.
VCBO
VEBO

Ie

Thermal resistance
Junction-ambient '}

'} Package mounted on alumina 15mm x 16.7mm x 0.7mm

348

Siemens

BF 771

min

typ

V(BR)CEO

12

-

-

V

VBE = 0

ICES

-

-

100

pA

Ie = 0

ICBO

-

-

50

nA

Ic=O

lEBO

-

-

1

pA

Ic = SmA, VCE = BV

hFE

-

90

-

-

-

100

-

-

-

0.4

DC characteristics (TA = 25°C)
Collector-emitter breakdown voltage
Ic= 1 rnA,

IB = 0

Collector-emitter cutoff current
VCE

= 20V,

Collector-base cutoff current
VCB=10V,

Emitter-base cutoff current
VEB = lV,

DC current gain
IC = 30mA, VCE = B V

Collector-emitter saturation voltage
Ic = SOmA, IB = SmA

VCEsat

Siemens

max

V

349

BF 771

min

AC characteristics (TA = 25°C)
Transition frequency
Ic= SmA,VCE = 8V,f= 200MHz

-

3.5

GHz

7

-

Ceb

-

0.68

-

pF

Cee

-

0.24

-

pF

Cibo

-

2.2

-

pF

Cobs

-

0.95

-

pF

0.8

-

dB

1,7

-

-

2

-

Gpe

-

13.5

-

dB

iS21ei2

-

11.5

-

dB

Vo' = Vo2

-

250

-

mV

1P3

-

31

-

dBm

fr

Ic = 30mA, VCE = 8V,f= 200MHz

Collector-base capacitance
VCB = 10V,VBE = Vb. = O,f= IMHz

Collector-emitter capacitance
VCE= 10V, VBE= Vb. = O,f= lMHz

Input capacitance
VEB = 0.5 V, Ic = it = 0, f= lMHz

max

typ

.

Output capacitance

,VCE = 10V,VBE= Vbe= O,f=lMHz

c

Noise figure
Ic= SmA,VCE= 8V,f= 10MHz,
zs= 750
Ic = 30mA, VCE = 8V,f = 800M Hz,
Zs=ZSopt
I GHz,
Ic = 30mA, VCE = 8V,f=
Zs=

F

son

Power gain
Ic = 30 mA,vCE = 8V,f = 800M Hz,
zs= 500
ZL=ZLOpt

Transducer gain
Ic = 30mA,vCE = 8V,f=
zo=

1 GHz,

son

-

Linear output voltage
two tone intermodulation test
Ic=40mA,VCE= SV,d'M = 60dB,
f, = 806MHz,f2 = 810MHz,
ZS=ZL=

son

Third order intercept point
Ic = 40mA, VCE = SV,f=800MHz

350

Siemens

BF 771

Common emitter S - parameters

5".522 = f (f) • Z-plane
Ie = 30mA. VeE = 8V. Zo = son

... j50

Ie = 30mA, VeE

.,

= 8V. Zo = son

_-'r-_
90·

GR.

--

- 90·

- jsO

Siemens

351

NPN Silicon RF Transistor

BF772

• For low noise, high gain amplifiers up to 2GHz
• For linear broadband amplifiers
• For modulators and amplifiers in VCR-tuners

sfilwE

E~C
Type

Marking

Ordering code for
versions on 8 mm-tape

Package

BF772

RA

QS2702-F1192

SOT 143

Maximum Ratings
Symbol

Ratings

Unit

VCES

12
20

V
V

Collector-base voltage

VCBO

20

V

Emitter-base voltage

VEBO

2

V

Collector current
Base current
Total power dissipation ( TA :5 SO·C '))
Junction temperature
Storage temperature rangE:
Ambient operating temperature range

Ic
IB

mA
mA
mW
·C

T.t.
TA

80
10
300
150
-S5to +150
-S5to +150

RthJA

:5300

K!W

Parameter
Collector-emitter voltate
Collector-emitter voltage (

VCEO
VeE

=0)

fI.t

7j

·C
·C

Thermal resistance
Junction-ambient ')

') Package mounted on alumina 15mm x 1S.7mm x 0.7mm

352

Siemens

BF772

DC characteristics

(TA

= 25°C)

min

typ

max

Collector-emitter breakdown voltage
le=1 mA,
Is=O

V(SR)eEO

12

-

-

V

Collector-emitter cutoff current
veE = 20V,
VSE=O

ICES

-

-

100

lI A

Collector-base cutoff current
Vcs=10V,

IE=O

leBO

-

-

50

nA

Emitter-base cutoff current
VEa = lV,

le=O

lEBO

-

-

.

1

lI A

Ic = SmA, VCE = 8V

hFE

-

90

-

-

-

100

-

-

-

0.4

DC current gain
IC=30mA, VCE= 8V

Collector-emitter saturation voltage
Ic = SOmA, la = SmA

VCEsat

Siemens

V

353

BF772

min

AC characteristics (TA = 25°C)
Transition frequency
Ic= SmAYCE =

GHz

7

-

0.6

-

pF

Cce

-

0.33

-

pF

Cibo

-

2.3

-

pF

Cobs

-

0.95

-

pF

-

0.8

dB

1.9

-

-

15

-

dB

-

13.5

-

dB

-

250

-

mV

-

31

-

dBm

-

3.5

Ccb

fr

Ic = 30mA, VCE = 8V.f= 200M Hz

Collector-base capacitance

Collector-emitter capacitance
VCE= 10V, VBE=Vbe=O,f= lMHz

Input capacitance
VEB=O.SV,/c=;,=O, f= lMHz

Output capacitance
veE = 10V, VBE = Vbe = o,f= lMHz

Noise figure

F

Ic= SmA,vcE = 8V,f= 10MHz,

7sn

Zs=
le= 30mAYeE = 8V.f= 800M Hz,
Zs = ZSopt
1 GHz.
Ic = 30mA, VCE = 8V.f=

Zs=

son

Power gain
Ie = 30 mA, VeE = 8V,f=800MHz.
zs= son
ZL=ZLopt

Gpe

Transducer gain
Ic = 30mA, VCE = aV.f=
zo= son

1 GHz,

max

-

av J = 200M Hz

VCB = 10VYBE = Vbe = oJ= lMHz

typ

5

1 21el 2

1,6

Linear output voltage
two tone intermodulation test
Ic=40mA,VCE= SV.d'M = 60dB,
f, =806MHz.f2=810MHz.

Zs= ZL=

VOl

= V0 2

son

Third order intercept point
Ie = 40mA, VCE = SV. f= 800MHz

354

1P3

Siemens

BF772

Common emitter 5 - parameters

5".522 = f (f), Z-plane

Ie = 30mA, VeE = 8. Zo = son

Ie = 30mA, VeE

+j50

90·

- j50

- 90·

Siemens

= 8V, Zo =son

355

BF775

NPN Silicon RF Transistor

•
•

Broadband amplifier, mixer, oscillator,
and switching applications up to 2 GHz
Specially suited for use in TV-sat and UHF TV tuners

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BF 775

LO

Q62702-F991

Q62702-F102

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO

Ptot

12
20
2,5
30
4
280

V
V
V
mA
mA
mW

Tj
T stg

150
-65···+150

°C
°C

RthJA

:5450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

356

Ic
IB

Siemens

BF775

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 1 rnA, Is = 0

V(SR) CEO

12

-

-

V

Collector cutoff current
Vcs = 10 V, IE = 0

Icso

-

-

50

nA

DC current gain
Ic = 5 rnA, VCE
I c = 20 rnA, VCE

hFE
40
40

90
100

250

-

-

= 6V
= 6V

Collector-emitter saturation voltage
Ic = 20 rnA, Is = 2 rnA

VCEsat

-

0,16

0,5

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 5 rnA, VCE = 6 V, f= 200 MHz
Ic = 20 rnA, VCE = 6 V, f= 200 MHz

fT
3,5
4,5

-

GHz
GHz

Collector-base capacitance
VCE = 6V, VSE = OV, f= 1 MHz

Ceb

-

0,58

-

pF

Collector-emitter capacitance
VCE = 10 V, VSE = 0 V, f = 1 MHz

C ee

-

0,27

-

pF

Noise figure
Ic = 2 rnA, VCE

F

-

2,1

-

dB

= 6 V,

f= 800 MHz

Siemens

357

BF775

Total power dissipation Ptot

=

Transition frequency fT
VCE = 6 V. f = 200 MHz

f(TAl

=

f (l cl

GHz
5

mW
400

/

r

I

1/
3

1"\

I

'\

200

'\

I\.

2

I\.

I
I

100

1'\
o

o

50

100

I\150

0(

o

o

Collector-base capacitance Ccb = f(VcBl
f= 1 MHz

pF
1,0
Ceb

f

0,6

\

\
\

0,4

'

.........

-- - - -

0.2

o

o

20V

-i'cB
358

Siemens

10

20 mA

NPN Silicon RF Transistor

•
•

BF799

Suitable for broadband RF amplifiers
up to 500 MHz in the high tuning range
Particularly suitable for SAW filter driver application
in TV tuners

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

SF 799

LK

Q62702-F788

Q62702-F935

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Peak collector current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VCER
VEBO
Ic
ICM
IBM
P tot

20
30
30
3
35
50
15
280

V
V
V
V
mA
mA
mA
mW

Tj
Tstg

150
-65···+150

°C
°C

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

RthJA

::; 450

K/W

Siemens

359

BF799

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 1 rnA, Is = 0

V(BR) CEO

20

-

-

V

Collector-base breakdown voltage
Ic = 10 I1A, IE = 0

V(BR) CBO

30

-

-

V

Emitter-base breakdown voltage
IE = 10 I1A

V(BR) ESO

3

-

-

V

Collector cutoff current
VCB = 20V

ICBo

-

-

100

nA

DC current gain
Ic = 5 rnA, VCE = 10V
Ic = 20 rnA, VCE = 10V

hFE
35
40

95
100

250

-

Collector-emitter saturation voltage
Ic=20mA,/B=2mA

VCEsat

-

0,15

0,5

V

Base-emitter saturation voltage
I c = 20 rnA, I B = 2 rnA

VBEsat

-

-

0,95

V

min

typ

max

Unit

-

-

800
1100

-

AC characteristics

Symbol

Transition frequency
Ic = 5 rnA, VCE = 10 V, f= 100 MHz
Ic=20mA, VCE= 8 V, f= 100 MHz

fr

Output capacitance
Vcs = 10 V, f= 1 MHz,

Cob

-

0,96

-

Collector-base capacitance
Vcs = 10 V, VBE = 0, f= 1 MHz

Ccb

-

0,7

-

pF

Collector-emitter capacitance
VCE= 10V, VSE=O, f= 1 MHz

C ce

-

0,28

-

pF

Noise figure
Ic = 5 rnA, VCE = 10 V, f= 100 MHz
Rs =50n

F

-

3

-

dB

Output conductance
Ic = 20 rnA, VCE = 10 V, f= 35 MHz

g22e

-

60

-

I1S

360

IE =

-

MHz
MHz
pF

0

Siemens

BF799

Total power dissipation Ptot

=

Transition frequency fr = f (/ cl

f (TA)

f= 100 MHz

mW

MHz

400

1200

f
f,

'i'ot

I

/

~

1000

300

200

1'\

,

\.h=2\

I

800

1'\

I-"""

.........

1\
\

\

I

600

5V

I

1\

400
100
200

\

a

1\

a

100

50

150

O(

a

o

10

20

-1,;.

40

50 rnA

-Ie

Collector-base capacitance C cb = f ( Vce)

Forward transfer admittance !Y21e! = f(/ cl

f= 1 MHz

f=35 MHz

pF

mS
500

1,5

1\

1\

\

\
\

1,0

\

'"

.......

r-.....

-r-

0,5

a

10

V =5V
/ 1h

200

100

a

",-

300

20 V

/

/
II

o
o

Siemens

/

10

20

30
40
-Ie

50 rnA

361

BF989

Silicon N Channel MOSFET Tetrode

•
•

For amplifier and mixer stages in UHF
and VHF TV tuners
Low input and output capacitance

G2
G1

~D

~s

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

SF 989

MA

Q62702-F874

Q62702-F969

SOT 143

Maximum ratings
Parameter

Symbol

Ratings

Unit

Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = 60°C
Storage temperature range
Channel temperature

Vos

20
30

V
mA

10
200

mA
mW

Tch

-55···+150
150

°C
°C

RthJA

:;;450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

362

10
±

IG1/2sM

Ptot
Tstg

Siemens

BF989

Electrical characteristics
at TA

=

25°C, unless otherwise specified

DC characteristics
Drain-source breakdown voltage
10 = 10 fJ.A, - VG1S = - VG2S = 4 V
Gate 1 source breakdown voltage
± IG1s = 10 rnA, VG2S = Vos = 0
Gate 2 source breakdown voltage
± IG2s = 10 rnA, VG1S = Vos = 0
Gate 1 source leakage current
± VG1S = 5 V, VG2S = Vos = 0
Gate 2 source leakage current
± VG2S = 5 V, VG1S = Vos =0
Drain current
Vos = 15 V, VG1S = 0, VG2S = 4 V
Gate 1 source pinch-off voltage
Vos = 15 V, VG2S = 4 V, 10 = 20 fJ.A
Gate 2 source pinch-off voltage
Vos = 15 V, VG1S = 0,10 = 20 fJ.A

Symbol
V(BR) os

min
20

typ

max

-

-

Unit
V

± V(BR)G1SS

8,5

-

17

V

± V(BR)G2SS

8,5

-

17

V

± IG1sS

-

-

50

nA

± IG2sS

-

-

50

nA

loss

2

-

20

rnA

- VG1S(P)

-

-

2,7

V

- VG2S(P)

-

-

2,7

V

AC characteristics
Forward transconductance
Vos = 15V, 10 = 7mA, VG2S = 4V, f= 1 kHz
Gate 1 input capacitance
Vos = 15V, 10 = 7 rnA, VG2S = 4V, f= 1 MHz
Gate 2 input capacitance
Vos = 15V, 10 = 7 rnA, VG2S = 4V, f= 1 MHz
Reverse transfer capacitance ')
Vos = 15 V, 10 = 7 rnA, VG2S = 4 V, f= 1 MHz
Output capacitance
Vos = 15 V, Jo = 7 rnA, VG2S = 4 V, f= 1 MHz
Power gain (test circuits 1, 2)
Vos = 15 V, 10 = 7 rnA,
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
f= 800 MHz, GG = 3,3 mS, GL = 1 mS
Noise figure (test circuits 1, 2)
Vos = 15 V, 10 = 7 rnA
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
f= 800 MHz, GG = 3,3 mS, GL = 1 mS
Control range (test circuit 2)
Vos = 15 V, VG2S = 4··· -2V, f= 800 MHz
Mixer gain (test circuit 3)
Vos = 15 V, VG2S = 4 V, f= 800 MHz,
flF = 36 MHz, 2 ~flF = 5 MHz, VOse = 800 mV
') G2 and S on screen potential.

Symbol

min
9,5

typ
12

max

gfs

-

Unit
mS

C g 1ss

-

1,8

-

pF

1

-

pF

Cdg1

-

25

-

fF

Cdss

-

0,8

-

pF

-

23
16,5

-

dB
dB

-

1,6
2,8

-

~Gp

40

-

-

dB
dB
dB

Gpse

-

16

-

dB

C g 2ss

Gp

-

F

Siemens

-

363

BF989

Total power dissipation

Output characteristics
10 = f(Vos)
VG2s=4V

Ptot = f(TA)

mA

mW
300

~~~~~~~I~Tr~

r,B'\

~ot

i

200

1\
1\

1

1\

10

HII-++±.Iool-l-H-IH-+-+6.2~
o

100

5~~~~~HH~*=~.?~

I'
1\

~+b~4+~~~~g~

\

\

o
o

50

100

150 0 C

o ~~8;e;~~ti~V~Gll~s=~-o~.BBv
o
5
10
15
20V

-~

-Vos

Gate 1 forward transconductance gls1 = f(VG1S)
Vos = 15V
loss = 7 rnA, f= 1 kHz
mS
15

~!2! ~~
tJI

n

-.

o

-2

-1

10

J

rl

,

~c.s~1\

I/HIV 1\

IINIII ~
.UI1

1/

~1V

OM
rl.v

5

lOY
1\
I......

o

VG1s =-O,5V

~I-'"

I I VI-'"
II It-

5

L...- V'

....

1\

,....

. . J.........

I

1\

I HI.

~:*
OV

V

I-

1\

YIJ

15

~!3'

Vjll
1)'(1

10

Gate 1 forward transconductance gls1 = f(VG2S)
Vos=15V
loss = 7 rnA, f= 1 kHz
mS

1\

V, J

III

-:-~ 5V
1V

o ljV
-1

0

2

4

- VG2S

364

Siemens

5V

BF989

Gate 1 input capacitance
C g 1SS = f(VG1S)
VG2S =4V, Vos = 15V
loss = 7 mA, f= 1 MHz
pF

Gate 2 input capacitance
C g2ss = f(VG·2S)
VG1S = 0 V, Vos = 15 V
loss = 7 mA, f= 1 MHz
pF

2,0

2,0

~

~
C g 1ss

i

V
1,5

~

Cg2ss

i

./

1,5

v r-.
f---

~

1,0

'-.
.......

1,0

0,5

0,5

~

o

o

-1

1V

o

5V

Drain current 10 = f(VG1S)
Vos=15V

Output capacitance
Cdss = f(Vos)
VG1S = 0 V, VG2S = 4 V
loss = 7 mA, f= 1 MHz
pF

2,0

-1

rnA
30

I

V~2S=4V

I

i

J =3V

II

I

VII
V

VG2S -4V

1,5

=2V

t'

20

~

\

\

1,0

--

~

-

II
IJ,
10

r;,

=1V

i-'

W

0,5

By i-'

o
o

20 V

10

o IoIjrffl
-1
o

=ov
3 V

-VOS

Siemens

365

BF989

Gate 1 input admittance Y11s
Vos = 15 V, VG2S = 4 V
(common-source)
mS
10
1 _I

10PlIO= 15mA

-

I--

8

Z

3, f-800 MHz

r- ~1

-

-

I

I---; 15

600MHz

f
.!1
~5

I
400MHz

4

&

~

20~M~z

~100MHZ
o I I
o

5mS

4

Gate 1 forward transfer admittance Y21s
Vos = 15V, VG2S = 4V
(common-source)

Output admittance Y 22s
Vos = 15V, VG2S =4V
(common-source)

mS

mS
5

o

-5

IllIo=lmA
-f=100MHz
200MHzp....
1
1
"UU':MZ

6Oo~l

7

r-i'-_

"'r--.

J

1

10=1 3 7

15

Ie

!

15mf

f=800MHz

1"0'\,

I\.

r\

I\.

3

15

'"

I"'~

6~OMHZ

1~

1

2

~

~

15

1

""",-

11.. '"
800MHz

-10

10~
l?mAI

13

400MHz
I

I\,

1~

15

1
--tr200MHZ

I I

1 rr
15

10

-15

o

10

15 mS

o
o

366

0,1

0,2

0,3

0,4

- 9 225

-9215

Siemens

0,5 mS

BF989

Power gain G p = f(VG2S)
Vos = 15 V, VG1S = 0;
loss = 7 rnA, f= 200 MHz

Noise figure F = f ( VG2S)
VOS = 15 V, VG1S = 0;
loss = 7 rnA, f= 200 MHz

dB

dB

(test circuit 1)

40

(test circuit 1)

10

F

-,

I

10

1\

8

7
6

\

o

9

5
4

~o

3 f- - -

I

-20

2
-30

~

~

-40
4

3

o

2

-1

o

-2V

5

4

3

2

0

-1 V

VG2S

- VG2S

Power gain G p = f(VG2S)
Vos = 15 V, VG1S = 0;
loss = 7 rnA, f= BOO MHz; Rs = 0

Noise figure F = f(VG2S)
Vos = 15 V; VG1S = 0;
loss = 7 rnA; f= 800 MHz; Rs = 0

-

dB
10

(test circuit 2)

dB

._-

40

F

r
'\.

10

(test circuit 2)

9

,

8
7

6

o

\

5

1\
\

-'0

I
II

4
3

-20

2

II

-30

1\

I

-40
4

o

-,

-2V

o

5

4

3

2

o -,

V

- VG2S

Siemens

367

BF989

Interference voltage lor 1010 cross modulation
Vint(I%)

=

f(fin,)'); mint

= 15 V; VG2S = 4 V,
VG1S = 1 V; Rs = 150 n
mV

= 1000/0;

Vint (1%) = f(Ll.G ps)'); fo = 800
fint = 700 MHz; mint = 1000/0;

Vos

103

r-

Interference voltage lor 1010 cross modulation

Vos

(test circuit 2)

mV

= 15 V;

VG1S

= 1 V;

Rs

MHz;

= 150 n

(test circuit 2)

103

"'\

-

:/

V

r--.

f-

1~

700

800

900 MHz

-20

-10

-30 dB

- - <1G ps
Mixer gain G pse = fIRs)
fo = 800 MHz; fose = 836 MHz
Vose = 800 mV; Vos = 15 V
VG2S = 4 V; loss = 7 mA
dB
(test circuit 3)
20 ,,-,~,,-,.-,,~.-,,~

Mixer gain G pse = f ( Vose)

15 K-I-+-t-+-+-+-+-+-+-+-+-+-+--1

15

fo

= 800 MHz; fose = 836 MHz

Vos = 15 V; VG2S = 4 V;
loss = 7 mA; Rs = 150 n

dB
20

(test circuit 3)

Gpsc
r0-

"
t
II

10

H-+-H++----1-+-+-H++----1-l

10

5

O'-'--'---L-"---,---'----'--'--L---'--'---'-"---,-J
o
100
200
300 Q

o
o

--Rs

0,5

1,0

1,5V

--Vose.

') Vint(l%) is the rms value of half the EMC (terminal voltage at matching) of a 1000/0 sine modulated TV carrier at an internal
generator resistance of 60 n, causing 10/0 amplitude modulation on the active carrier.

368

Siemens

BF989

Test circuit 1, power gain and noise figure
f = 200 MHz; GG = 2 mS, GL = 0,5 mS
VCi2S

HI

~"';l----~

lnF

~ 15p£[

,nputl~nF
FB5~
lnF

27~ I

60\1

Ii

270k

I-J

Test circuit 2, power gain, noise figure and cross modulation
f= 800 MHz, GG = 3,3 mS, GL = 1 mS

vGZS
lnF

~270k

lnF

H~I---------~--1lklO~~~t

lnF

,:g~'rL~I
vG1S

'.. H

0,

Vos

Test circuit 3, mixer gain
f= 800/36 MHz

Output
Input

6011
f=36MHz

I

~t--.-_ _
lnF_

oscillator l '
836 MHz J..0~pF

Input
60ll ~r

800MH~

VDS

Siemens

369

BF993

Silicon N Channel MOSFET Tetrode

•
•

High gain, low distortion
For VHF 1V and FM mixer
and input stages

G2/lAO

G1~S
Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BF993

ME

Q62702-F899

Q62702-F1018

SOT 143

Maximum ratings
Parameter

Symbol

Ratings

Unit

Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = 60°C
Storage temperature range
Channel temperature

Vos

20
50

V
mA

10
200

mA
mW

Tch

-55···+150
150

°C
°C

RthJA

~450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

370

10

± IG1f2SM
Ptot

Tstg

Siemens

BF993

Electrical characteristics
at TA = 25°e, unless otherwise specified

DC characteristics
Drain-source breakdown voltage
ID = 10 !lA, - VGIS = - VG2S = 4 V
Gate 1 source breakdown voltage
± !GIS = 10 mA, VG2S = VDS = 0
Gate 2 source breakdown voltage
± IG2s = 10 mA, VGIS = VDS = 0
Gate 1 source leakage current
± VGIS = 5 V, VG2S = VDS = 0
Gate 2 source leakage current
± VG2S = 5 V, VGIS = VDS =0
Drain current
VDS = 15 V, VGIS = 0, VG2S = 4 V
Gate 1 source pinch-off voltage
VDS = 15 V, VG2S = 4 V, ID = 2O!lA
Gate 2 source pinch-off voltage
VDS = 15 V, VGIS = 0, ID = 20 !lA

Symbol

min
20

typ

max

V(BR) DS

-

-

Unit
V

± V(BR)GISS

a,5

-

17

V

± V(BR)G2SS

a,5

-

17

V

± IGISS

-

-

50

nA

± IG2sS

-

-

50

nA

IDss

6

-

40

mA

- VGIS(p)

-

-

3,5

V

- VG2S (p)

-

-

3,0

V

AC characteristics
Forward transconductance
VDS = 15 V, ID = 10 mA, VG2S = 4 V,
f= 1 kHz
Gate 1 input capacitance
VDS = 15 V, ID = 10 mA, VG2S = 4 V,
f= 1 MHz
Gate 2 input capacitance
VDS = 15 V, ID = 10 mA, VG2S = 4 V,
f= 1 MHz
Reverse transfer capacitance')
VDS = 15 V, ID = 10 mA, VG2S = 4 V,
f= 1 MHz
Output capacitance
VDS = 15 V, 10 = 10 mA, VG2S =.4 V,
f= 1 MHz
Power gain (see test circuit)
VDS = 15 V, ID = 10 mA,
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
2M=12MHz
Noise figure (see test circuit)
VDS = 15 V, ID = 10 mA
f= 200 MHz, GG = 2 mS, GL =0,5 mS
') G2 and S on screen potential.

Symbol

min
16

typ
25

max

gls

-

Unit
mS

CglSS

-

6

-

pF

Cg2ss

-

2,5

-

pF

Cdgl

-

50

-

fF

Cdss

-

2,5

-

pF

Gp

-

25

-

dB

F

-

1,5

-

dB

Siemens

371

BF993

Total power dissipation Ptot

=

Output characteristics J D = f (VDS)
VG2s=4V

f (TA)

rnA
25

mW
300

IIG1S= 0.4V

~ot

I

~.2V
I I

200

1\

15

i\

OV

1\
10
100

-0.2V
5

\

1\
o

-0.4V

\
o

100

50

150 0 (

-0.6V

o
o

10

20V

15

-TA
Gate 1 forward transconductance
VDS = 15V
JDSS = 10 mA, f= 1 kHz
mS
40

Gate 1 forward transconductance
g1s1 = f(VG2S)
VDS = 15V
JDSS = 10 mA, f= 1 kHz
rnS
40

30

30

g1s1 = f(VG1S)

I
I
VG1S=~H-

V
~G2s=4V-

'\ 1'\

I
III V
20

II

\

20

II I
II

1\

\

--- OV

V

I

1\

1\

~

V

V

-0.5V

3V

VI\ 1\
10

1\

1\

o

r:.f/JA

-1

372

/'

1\

OV r-

o

i'

10

2~

l1

/

/'
V

r-1J0.5V

II

o
2V

-1

Siemens

,/

~'r'"

0

2

4

5

6V

BF993

Gate 1 input capacitance
C g 1ss = f(VG1S)
VG2s=4V, Vos=15V
loss = 10 rnA, f= 1 MHz

Gate 2 Input capacitance
C g 2SS = f(VG2S)
VG1S = 0 V, Vos = 15 V
loss = 10 rnA, f= 1 MHz

pF
8

pF
5

I-

,/

6

,/

1/
4

l'

,..-

1\
./

\

\
I'..

/

o

o

-1

Output capacitance Cdss
VG1S = 0 V, VG2S = 4 V
loss = 10 rnA, f= 1 MHz

1V

=

o

-1

o

5V

4

3

Drain current 10 = f(VG1S)
Vos = 15V

f(Vos)

rnA

pF
10

SO

VG2S =4V

II

=3V

I

=12~
40

8

iI'

V
6

4

30

\

f'.. .......

IIV,

2

o
o

10

10

II.

20

20V

o

-1

Siemens

...

=1V

~

~II

~~
~~
o

=OV

II
3 V

373

BF993

Gate 1 forward transfer admittance Y21S
Vos = 15 V, VG2S = 4 V
(common-source)

Gate 1 input admittance Ylls
Vos = 15 V, VG2S = 4 V
(common-source)

mS

mS

30

~J =1mA~5 710
i~mtt.'=800 MHz

25
1

20

15

7

o

15

I

1

10
Sf7
3 600MHz

3
-20

~\O

5 15 10

{tit

I
200 MHz

-30

100~IHZ

10

n~~~z
15

20

25

30mS

-40 1111111
-30 -20 -10

-g"5

Output admittance Y22s
Vos = 15 V, VG2S = 4 V
(common-source)

mS
20
b ZZ5
JD=1m~

15

I I 110f=800MHz -

10 r-r-

5

1 10
5 15600MHz

r=ITsttio
5 151
1 I

MH~

t~5_12do~Hi
~5l100MHz

o
o

I
0,1

0,2

0,3 mS

-gZ15

374

-1~
15 1

Siemens

5710

I~

3~

7:1+
\10
1\J15
400MHz

5
7

o
o

I

5

400MHz

ti

'115
1,*0 5
3 200MHz
5] II

3

11

10

111
1

-10

15
10

?fit

~ir=1?°Wiit

10 =1mA

7
10

I
15
600MHz
111111
0
10

20

30 mS

BF993

Power gain G p = f(VG2S)
Vos=15V, VG1S=0
loss = 10 rnA, f= 200 MHz

Noise figure F= f(VG2S)
Vos = 15 V, VG1S = 0
loss = 10 rnA, f= 200 MHz

dB
30

dB
10

(test circuit)

Gp

I"

20

t

f..-

-

F

t

J

10

(test circuit)

8

I

I

-10

4

I

'-

-20

o

-30

-1

4V

-

o

-1

4V

- - VG2S

Test circuit for power gain and noise figure
f = 200 MHz; GG = 2 mS, GL = 0,5 mS

1nF

1nF
lSpF

1SpF

l~t~t
60\1

1nF

'"'"[
60\1

I

IDr

270k

I

~
VG1S

Vtun

Vtun

Siemens

Vos

375

BF994 S

Silicon N Channel MOSFET-Tetrode

•

For VHF applications, especially for
input and mixer stages with wide tuning
range, e.g. in CATV tuners

G2~D
G1

~s

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

SF 994S

MG

Q62702-F963

Q62702-F1020

SOT 143

Maximum ratings
Parameter

Symbol

Ratings

Unit

Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = BODC
Storage temperature range
Channel temperature

Vos

20
30

V
mA

10
200

mA
mW

Tch

-55···+150
150

DC
DC

RthJA

:S 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 1B.7 mm x 0.7 mm

376

10
±

IG1/2sM

Ptot
T stg

Siemens

BF 994 S

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Drain-source breakdown voltage
10 = 10 1-lA. - VG1S = - VG2S = 4 V
Gate 1 source breakdown voltage
± IG1s = 10 rnA, VG2S = Vos = 0
Gate 2 source breakdown voltage
± IG2s = 10 rnA, VG1S = Vos = 0
Gate 1 source leakage current
± VG1S = 5 V, VG2S = Vos = 0
Gate 2 source leakage current
± VG2S = 5 V, VG1S = Vos =0
Drain current
Vos= 15V, VG1S=0, VG2s=4V
Gate 1 source pinch-off voltage
Vos = 15 V, VG2S = 4 V, 10 = 20 I-lA
Gate 2 source pinch-off voltage
Vos = 15 V, VG1S = 0, 10 = 20 I-lA

V(BR) os

20

-

-

V

± V(BR)G1SS

8,5

-

17

V

± V(BR)G2SS

8,5

-

17

V

± IG1sS

-

-

50

nA

± IG2sS

-

-

50

nA

loss

2

-

20

rnA

- VG1S(P)

-

-

2,5

V

(p)

-

-

2,0

V

- VG2S

AC characteristics

Symbol

min

typ

max

Unit

Forward transconductance
Vos = 15 V, 10 = 10 rnA, VG2S = 4 V,
f= 1 kHz
Gate 1 input capacitance
Vos = 15 V, 10 = 10 rnA. VG2S = 4 V,
f= 1 MHz
Gate 2 input capacitance
Vos = 15 V, 10 = 10 rnA, VG2S = 4 V,
f= 1 MHz
Reverse transfer capacitance
Vos = 15 V, 10 = 10 rnA, VG2S = 4 V,
f= 1 MHz
Output capacitance
Vos = 15 V, 10 = 10 rnA, VG2S = 4 V,
f= 1 MHz
Power gain (see test circuit)
Vos = 15 V, 10 = 10 rnA,
f= 200 MHz, GG = 2 rnS, GL = 0,5 rnS
Noise figure (see test circuit)
Vos = 15 V, 10 = 10 rnA,
f= 200 MHz, GG = 2 rnS, GL =0,5 rnS
Control range (see test circuit)
Vos= 15V, VG2s=4··· -2V,
f= 200 MHz

gfs

15

18

-

rnS

Cg1ss

-

2,5

-

pF

Cg2ss

-

1,2

-

pF

Cdg1

-

25

-

fF

Cdss

-

1

-

pF

Gp

-

25

-

dB

F

-

1

-

dB

~Gp

50

-

-

dB

Siemens

377

SF 994 S

Total power dissipation Ptot =

t (TA)

Output characteristics
10 = t(Vos)
VG2s=4V

mA

mW
300

25

10

VGtS=0,6V

~ot

i

t
200

\

20
0,4V
O,2V

15

\

O~

\.
10

-O;lV

100

-0,4~

\

5

i\

-O,6V

\

1\

o

o

100

50

150°C

-O,BV

o
o

5

10

-1i.

20V

15
-VOS

Gate 1 forward transconductance

Gate 1 forward transconductance

gfst = t(VGts)

gfst = t(VG2S)

Vos=15V
loss = 10 rnA,

Vos = 15V
loss = 10 rnA,

t= 1 kHz

mS

t= 1 kHz

mS

20

20

III I
Yf,zs=4V

VGts=OV15

15

VT/

If'

i\
/

\

1\

10

1\

1,V

1\
12V

o

-2

378

I,

5

-1

~~
OV

o

2V

o,~V
./

/

11111

v.:

/

10

1\

5

I

/

/",

'-0,5V

V

/

I

"1

V

1/

olL ~ ~
-2

Siemens

-1

o

3

4V

BF 994 S

Gate 1 Input capacitance C g 1SS = f(VG1S)
VG2S = 4 V, Vos = 15 V
loss = 10 mA. f= 1 MHz

Gate 2 Input capacitance C g 2ss
VG1S =0, Vos = 15V
loss = 10 mA, f= 1 MHz

pF
2,5

pF
2,0

[g1ss

t

.,2,0

--

V

y

/'

1,5

= f( VG2S)

..1\

1,5
1,0
1,0

0,5
0,5

o-1

o

Output capacitance Cdss
VG1S=OV, VG2s=4V
loss = 10 mA, f= 1 MHz

1V

= f (Vos)

pF
5rr"""~"",,,,-'~

o

-1

o

4

2

Drain current
Vos = 15V

mA
30

5V

lo = f(VG1S)

VG1s =4V

II

=3V

=2V
I-'

rl

II
V

20

V

=1V

i;'

W

u
rl

10

=OV

o WI!
-1

Siemens

'"
o

3 V

379

BF 994 S

Gate 1 Input admittance Y115
Vos = 15 V, VG2S = 4 V
(common-source)

Gate 1 forward transfer admittance Y 215
Vos = 15 V, VG2S = 4 V
(common-source)

mS

mS

o

14

f=100 MHz 1

b11 •

I

-'71~p1~

12

-2

1 ~

10

r-~;1
8 - f--3 5

f

15

2

"

Il

........

3

~

I~I-15-

60~HZ

I"-?

~

15

r-

-

8~OMIHZ -

-18
-20

o

-9"s
Output admittance Y 225
Vos = 15 V, VG2S = 4 V
(common-source)

mS
3 5 7110 115
f=tOOMHZ

llo. ,..:015 600MHzI
3
1bo1~ 400 MHz

2

cJ? 200 MHz
J51100~HZI

380

400 MHz
'5

-16

2 mS

o
o

I~~-

N

-14

15
1 100MHz

10=lmA

2fM~Z-

3

'\

-12

15
1 200 MHz

5

........

1~t15 I

-0.

........ ~

i'\.

-10

15 400MHz

4

-f--k.
-6 10 =1mA
-8

1~ 600MHz

6

J,

-4

o=1mA f=800MHz-

-

-

1

b 21s

0,1

O,2mS

Siemens

10

20mS

BF 994 S

Power gain G p = f (VG2S)
Vos=15V.VG1S=OV
loss = 10 rnA. f= 200 MHz

Noise figure F = f (VG2S)
Vos = 15 V. VG1S = 0 V
loss = 10 rnA. f= 200 MHz

dB
30

dB
10

(test circuit)

F

Up

I

(test circuit)

~-

20

9

r

I

10

6
7
6

o

5
-10

4
3

-20

\

2
-30

\

I

-40
-1

2

3

I"'---.

4

2

3

4V

Test circuit for power gain and noise figure
f=200MHz; GG=2mS. GL=0.5mS

lnF

l

Input H

60Q

15pF

1 nF

kloutput
60Q
I

lOr

270k

I

Vos

Siemens

381

BF995

Silicon N Channel MOSFET Tetrode

•

For FM and VHF TV input and mixer stages

G2

i/)wo

G1~S
Type

Marking

BF995

MB

Ordering code
for versions in bulk
Q62702-F872

Ordering code for
versions on 8 mm-tape
Q62702-F936

Maximum ratings
Parameter
Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = 60°C
Storage temperature range
Channel temperature

Symbol

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

382

Ratings
20
30

Unit
V
mA

Ptot

10
200

mA
mW

Tstg
Tch

-55 .. ·+150
150

°C
°C

RthJA

:5 450

K/W

Vos

10
± IG1/2sM

Siemens

Package
SOT 143

BF995

Electrical characteristics
at TA = 25 cC, unless otherwise specified

Symbol

min

typ

max

Unit

Drain-source breakdown voltage
10 = 10 !lA, - VG1S = - VG2S = 4 V

DC characteristics

V(BR) os

20

-

-

V

Gate 1 source breakdown voltage
± IG1s = 10 mA, VG2S = Vos = 0

± V(BR)G1SS

8,5

-

17

V

Gate 2 source breakdown voltage
± iG2S = 10 mA, VG1S = Vos = 0

± V(BR)G2SS

8,5

-

17

V

Gate 1 source leakage current
± VG1S = 5 V, VG2S = Vos = 0

± IG1sS

-

-

50

nA

Gate 2 source leakage current
± VG2S = 5 V, VG1S = Vos =0

± IG2sS

-

-

50

nA

loss

4

-

20

mA

Gate 1 source pinch-off voltage
Vos = 15 V, VG2S = 4 V, 10 = 20 flA

- VG1S(p)

-

-

3,5

V

Gate 2 source pinch-off voltage
Vos = 15 V, VG1S = 0,10 = 20 flA

- VG2S (p)

-

-

3,5

V

Drain current
Vos = 15 V, VG1S = 0, VG2S

=

4V

Siemens

383

BF995

AC characteristics

Symbol

min

typ

max

Unit

Forward transconductance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 kHz

gfs

12

17

-

mS

Gate 1 input capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz

C g 1ss

-

3,6

-

pF

Gate 2 input capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz

C g2ss

-

1,6

-

pF

Reverse transfer capacitance')
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz

Cdg1

-

25

-

fF

Output capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz

Cdss

-

1,6

-

pF

Power gain (test circuit 1)
Vos = 15V, 10 = 10 mA,
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
2M= 12MHz

Gp

-

23

-

dB

Noise figure (test circuit 1)
Vos = 15 V, 10 = 10 mA
f= 200 MHz, GG = 2 mS, GL =0,5 mS

F

-

1,8

-

dB

Control range (test circuit 1)
Vos = 15V, VG2S =4 ... -2V,
f= 200 MHz

~Gp

-

50

-

dB

Mixer gain (additive test circuit 2)
Vos = 15V, VG2S = 6V, Rs = 220n
f= 200 MHz, flF = 36 MHz
2 ~flF = 5 MHz, VOse = 0,5 V

G pse

-

16

-

dB

Mixer gain (multiplicative test circuit 3)
Vos = 15V, VG1S = 1,7V, VG2S= 2,5V
Rs = 220 n, f= 200 MHz, flF = 36 MHz
2 ~flF = 5 MHz, VOse = 2 V

G pse

-

18

-

dB

') G2 and S on screen potential.
384

Siemens

BF995

Total power dissipation Ptot = f (TA)

Output characteristics I D = f (VDS)

mW
300

mA

VG2S = 4 V

20

~.t

I

VG1S = 0,6 V

-I-

_. tt

-

°L4.'1. . -- -200

0,2

\

--

/

\.

·1

10

'·mrv
tv

/

II

100

~

-

7'
..

v

\

-06V!

1\
50

o
o

150 0 (

100

10

5

-TA
= f(VG1S)

1
"

i-- -

(VG2S)

1

.1.

1

1/

1---1--

-+ .

f--- f--- .. 1--- I-- I-- '-1---

VG 2~::';_Y

9 15 1

15

(I

I

5

,

VI

1\

-1V I -

1/ L/
vTI

...... i........ : -O,5'v r----

I II I

\

I

5
~1V

1

I

~lf1V

.J-- I-- r----

J
I I II

I'- O,5V N

-0,5V

I

II

2 V\,.

1\

A '\
-1

10

\

1\
1\

i-""'"OV

//

l-

'I

.......

~

I

10

.I

VG1S=O,5V~ ~

r-~1

./1/ -~
3V
1/

I-I--

-2

Gate 1 forward transconductance g1s1 = f
VDS = 15V
loss = 10 mA. f= 1 kHz

20

-

c-+-

o

20 V

mS

mS

I--

15

-Vos

Gate 1 forward transconductance g1s1
VDs=15V
IDss = 10 mA, f= 1 kHz

20 -

-O~BV±

-

1\

o
o

..

-

--

J/
o~V
-1

Siemens

o

--

I
1

5V

385

BF995

Gate 1 Input capacitance C 9 1 ss
VG2S =4V, Vos = 15V
Joss = 10 rnA, f= 1 MHz

= f (VG 1s)

Gate 2 input capacitance C g 2ss
VG1S = OV, Vos = 15V
Joss = 10 rnA, f= 1 MHz

PF

pF

5

5

= f(VG2S)

[g2ss

g1ss

4

.......
VV

l- ~

t

j...- j...- ~

4

I-

p- I""

o

o

-1

~

-1

= f(Vos)

3

Drain current Jo
Vos = 15V

pF

mA

5

30
10

,

=1 V

\I

1'--- t-

t-i-.

20V

10

1/

10

o
-1

- - Vos

386

=2V

II

\

o
o

= f( VG1S)

IPff

20

I\..

5V

IN

t

2

4

VG2 s=4V I I/dv

4

3

~ +-.

o

1V

Output capacitance Cdss
VG1S = 0 V, VG2S = 4 V
Joss = 10 rnA, f= 1 MHz

"

Siemens

=ov

I
r;

T
T

o

2
-\(;,s

3 V

BF995

Gate 1 input admittance Ylls
Vas = 15V, VG2s=4V
(common-source)

Gate 1 forward transfer admittance
Vas = 15 V, VG2S = 4 V
(common-source)

mS

mS

20

Io~
10
5

t

} Zi=60bM~z1

15
15

T lin-I'
o rrr-rTTTrTT1"'IITlnII"'
1n-ITTTl
I

11

1-H-+++l-HIo-1mA
IIII I
1
31 5 171015
1
1
f.l00MHz
-5
1
IIII

H-fI-++mrH-H+-f'l'-I.a:~:fl1
j11 15

I"

jY

1-+I1-+M--H-l'-++++++-1?n0 MH z

600 MHz

35

-1/

-

- 15/1

10

-10

I
1-H-H-H-t-HHI---P\;r,(tH-t-t-t-H-t-t-H

;t 400 MH

400MHz 10

5+r1-ti;+-ril~i'-H'''i.15

3
-1

{op

~

5

-15

1200 MHz
1

Y21 s

I

z

0t-HHr~o++-HH++t-H-++-H
1-H~~~~~1~5t-H++t-H++~
600 MHz
1~

t-1~0 M,Hz

o I
o

-2 0

10 mS

5

III

IIIII
L.L.L..L.L.O..LI~
11u.1J...L<
I--LWLLLLLL.L.L.L-'-J

-5

-911.

0

10

15

20 mS

-911'

Output admittance Y 22s
Vas = 15 V, VG2S = 4 V
(common-source)

mS

+

10

t

f--

I

b 225

6 -

f- '---

10= lmA

5

10

f=R(IO

15mA
~IH7

51

1

6

.-~

00 MHz
'-

1 5 lp 15

4

- -c-

..

---

4 OMHz
1-

3
2

-

15

110 5

120 1M iz
115

100MHz

o

o

0,1

0,2

0,3

0,4

0,5

0,6 mS

-9115

Siemens

387

BF995

Noise figure F= f(VG2S)
Vos = 15 V, VG1S = 0 V
loss = 10 rnA, f= 200 MHz

Power gain G p

= f(VG2S)
Vos= 15 V, VG1S = 0 V
loss = 10 rnA, f= 200 MHz

dB

(test circuit 1)

dB

40

Gps 30

t

(test circuit 1)

10

20

II

10

/

---

F

\
\

5

388

-

--.-

..

_.

.

-

\

-

-- - - 1-- . . - - -

\

4

-

.--

---

-

-

- r- _

..

r

-

\

I

-1

_.

--

1\
1\

3

-40
-2

~-

--

6

~

..

f-- -

-20

,I

r-- - - r..

--

I

-30

~I--- -

---

I

-10

\

i

r-

II

0

1

--

---- -

r.- -

o

4V

o

-1

Siemens

o

-

----

SV

BF995

Mixer gain (additive)
G psc = f( Vos c); Vo = 15 V; VG1S = 0;
VG2S = 6 V; Rs = 2200; loss = 10 mA;
f= 200 MHz; flF = 36 MHz;
2 LlflF = 5 MHz
dB
(test circuit 2)

dB

20

20

.....

/

i

~

I--

Mixer gain (additive)
G psc = f(VG2S); Vo = 15 V; VG1S = 0;
Rs = 220 0; Vosc = 0,5 V;
loss = 10 mA; f= 200 MHz;
flF = 36 MHz;
2 LlflF = 5 MHz
(test circuit 2)

10

/'
_. --

II
1/

--- t-

r

/

10

t-

I

.

11
II

o

o

-10

~

t-

t-

t-

I--

1--+--

t-

f-

f-

.. -

-20

-10

-20

o

0,5

1,5 V

1,0

-2

4

-1

~VOS(.

Mixer gain (additive)
G psc = f(Rs); Vo = 15 V; VG1S = 0;
VG2S = 6 V; Vosc = 0,5 V; f= 200 MHz;
flF = 36 MHz; 2 LlflF = 5 MHz

(test circuit 2)

dB

20

I--IOSS -

i

15

SmA

~

J.

1umflt'

~mA

-

II

I:::::

I

V

I

2,OV

1/ _.

/

10

/

--

/

o

V

1/
II

-5

5

~

Vose;' 2,5V

I)

10

6V

II

I

Gps< 20

1-""/

5

VG2S

Mixer gain (multiplicative)
G psc = f(VG2S); Vo = 15 V; VG1S = 1,7 V;
Rs = 2000; loss = 10 mA;
f= 200 MHz; flF = 36 MHz;
2 LlflF = 5 MHz
dB
(test circuit 3)

25

I II
II
~

--

Gpsc

/

/

If 1,5 V

tov

II
/

lJ

-10

j/

-15
-20

-3 -2

-Rs

-1

0

2

3

4

5

6V

_VG2S

Siemens

389

BF995

Interference voltage for 1% cross modulation
Vint (t%) = f(fint)'); mint = 1000/0;
fe = 200 MHZ; Vos = 15 V; VG2S = 4 V,
VG1S = 0; loss = 10 mA

Interference voltage for 1% cross modulation
Vint (1%) = f(LlG p)'); fe = 200 MHz;
fint = 221 MHz; mint = '1000/0;
Vos = 15 V; VG1S = 0; loss = 10 mA

(test circuit 1)

mV

(test circuit 1)

3

rn=liOOaWt-tlE~

,10
f-

17

1'\1\.

1/

\

1/ 7

II

\

.. f-

1\11

f-

f-

f-

f-

10'
200

180

220

UJ...Ll...Ll...LL.LL.LLLU...Ll...Ll..LL.LL..LJ

o

240 MHz

10

15

20

25 dB

------.. L1 Gp
Test circuit 1, power gain, noise figure and cross modulation
f= 200 MHz; GG = 2 mS, GL = 0,5 mS

lnF
ISpF

kloutput
60\1

BB5.QL
1nFI

I
270 k

270k

lOr
I

270!"

Vos
') Vint (1%) is the rms value of half the EMF (terminal voltage at matching) of a 1000/0 sine modulated TV carrier at an internal generator resistance of 60 n, causing 1% amplitude modulation on the active carrier.

390

Siemens

BF995

Test circuit 2, mixer gain (additive)
f= 200 MHz; fosc = 236 MHz; 2 .MIF = 5 MHz

VG2S

~~cQinput

~'00.'

rb H~
'Q

I

'oF

3,3pF

l .. 6pF'\,

Input
60Q

Ir---1

'nlFoutput
60Q

1nF

~

10nF I
I
I
IDr
I

Vos

Test circuit 3, mixer gain (multiplicative)
f= 200 MHz; fosc = 236 MHz; 2 LlflF = 5 MHz

VG2 s

68Q
Osc.input
60Q

Input
60Q

100k

I
1... 6pF\

I

\nlF
60Qoutput
\

10nF I
100k
12 k

100k
Vos

Siemens

391

Silicon N Channel MOSFET Tetrode

•
•
•

BF 996 S

For input stages in UHF TV tuners
High transconductance
Low noise figure

G2

/7}yo

Gl9;s
Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

BF 996 S

MH

Q62702-F964

Q62702-F1021

SOT 143

Maximum ratings
Parameter

Symbol

Ratings

Unit

Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = 60 DC
Storage temperature range
Channel temperature

Vos

20
30

V
mA

10
200

mA
mW

Tch

-55···+150
150

DC
DC

RthJA

::; 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

392

10
±

IG1/2SM

Ptot
Tstg

Siemens

BF 996 S

Electrical characteristics
at TA = 25 ac, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Drain-source breakdown voltage
10 = 10 !lA, - VG1S = - VG2S = 4 V

V(BR) os

20

-

-

V

Gate 1 source breakdown voltage
± IG1s = 10 mA, VG2S = Vos = 0

± V(BRI G1SS 8,5

-

17

V

Gate 2 source breakdown voltage
± IG2S = 10 mA, VG1S = Vos = 0

± V(BRIG2SS 8,5

-

17

V

Gate 1 source leakage current
± VG1S = 5 V, VG2S = Vos = 0

±

IG1sS

-

-

50

nA

Gate 2 source leakage current
± VG2S = 5 V, VG1S = Vos =0

±

IG2SS

-

-

50

nA

Drain current
Vos = 15 V, VG1S = 0, VG2S = 4 V

loss

2

-

20

mA

Gate 1 source pinch-off voltage
Vos = 15 V, VG2S = 4 V, 10 = 2O!lA

- VG1S (p)

-

-

2,5

V

Gate 2 source pinch-off voltage
Vos = 15 V, VG1S = 0,10 = 2O!lA

- VG2S (p)

-

-

2,0

V

AC characteristics

Symbol

min

typ

max

Unit

Forward transconductance
Vos = 15V, 10= 10mA, VG2S =4V, f= 1 kHz

gfs

15

18

-

mS

Gate 1 input capacitance
Cg1SS
Vos = 15V, 10 = 10mA, VG2S =4 V, f= 1 MHz

-

2,3

-

pF

Gate 2 input capacitance
Cg2ss
Vos = 15V, 10 = 10mA, VG2S = 4V, f= 1 MHz

-

1,1

-

pF

Reverse transfer capacitance ')
Cdg1
Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz

-

25

-

fF

Output capacitance
Cdss
Vos = 15 V, 10 = 10 mA, VG2S = 4 V, f= 1 MHz

-

0,8

-

pF

-

25
18

-

dB
dB

-

1
1,8

-

dB
dB

40

-

Power gain (test circuits 1, 2)
Vos = 15 V, 10 = 10 mA,
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
f= 800 MHz, GG = 3,3 mS, GL = 1 mS

Gp

Noise figure (test circuits 1, 2)
Vos = 15 V, 10 = 10 mA
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
f= 800 MHz, GG = 3,3 mS, GL = 1 mS

F

Control range (test circuit 1)
Vos = 15 V, VG2S = 4··· -2 V, f= 800 MHz

~Gp

-

-

-

dB

') G2 and S on screen potential.

Siemens

393

BF996 S

Total power dissipation

=

Ptot

Output characteristics
10 = t(Vos)
VG2s=4V
mA
25

t(TA)

mW
300

10

VG1s =0.6V

~ot

t

r 200

r\

20
0.4V

15

1\

0.2V

r-..

O~
10

-OJ.V

100

-0,4~

\
5

\

-0.6V

\
o

o

100
-7;

50

o
o

150 0 (

5

10

15

20V

-Vos

Gate 1 forward transconductance

Gate 1 forward transconductance

gfs1 = t(VG1S)

gfs1

Vos = 15V
loss = 10 mA,
mS
20

Vos = 15V
loss = 10 mA,

t=

1 kHz

=

t(VG2S)

t=

1 kHz

mS

I

20

II

Vuzs=4V

gl.1

f

-O.BV

1\

gf.1

r

15

1\

II

VG1S =OV15

Vf/

If'
v.:

/

10.5V

\

\

10

III
III

o

-2

394

Isv
-1

1\

I

/

j.V

/7

2V

I

/

I

I

1V

~~
OV

2V

V
o .L .L. V
-2

Siemens

-1

I

Y

..., V_ ........-0.5V

II

I

o

II

/

10

1\

fII0r
.11/1 1\ \

5

3V

/
1/

/
/

o

4V

BF 996 S

Gate 1 Input capacitance

Gate 2 Input capacitance
C g 2ss = f(VG2S)
VG1S = 0, Vos = 15 V
loss = 10 rnA, f= 1 MHz

C g 1ss = f(VG1S)
VG2S

= 4 V,

loss

=

Vos = 15 V
10 rnA, f= 1 MHz

pF
2,5

'r

2,0

/'

....

pF
2,0

-

v

r
1\

1,5

~

1,0
1,0

0,5
0,5

o-1

o

o

lV

-1

o

3

Output capacitance
Cdss = f (Vos)
VG1S=0, VG2s=4V
loss = 10 rnA, f= 1 MHz

Drain current 10 = f(VG1S)
Vos= 15V

pF

mA
30

5rrTT"".-rrTT""'-~

VG2s =4V

5V

4

=3V

=2V
i;'

10

V

II,
If

f
20

,N
lJ.rl

=lV
i-'

rJ,

IJI}

V

10

=OV
i-'
OLLLLLLLLLLLLLLLLLL~

o

10

15

20V

o .. ~
-1

Siemens

o

'3 V

395

BF 996 S

Power gain G p = f(VG2S)
Vos = 15 V, VG1S = 0
loss = 10 mA, f= 200 MHz

dB
30

I

(test circuit 1)

dB

--

10

-

Ip

Noise figure F = f (VG2S)
VOS = 15 V, VG1S = 0
loss = 10 mA, f= 200 MHz

-r~

!

V"'"

20

/

10

(test circuit 1)

8
7
6

o
-10

4

II

-20

3

\

\.

-30

I

-40
-1

o

4

-2

3

4V

- VG2S

Noise figure F = f(VG2S)
Vos = 15 V, VG1S = 0
loss = 10 mA, f= 800 MHz

Power gain G p = f(VG2S)
Vos = 15 V, VG1S = 0
loss = 10 mA, f= 800 MHz
(test circuit 2)

dB

20
}p

I

/

10

--

(test circuit 2)

dB

10

--.

~r--

F

I

I

/

o
I

-10

/
II

-20

4

'\
\
\

\i
.......

-30

--

I

/

-40
-1

396

4V

o
o
Siemens

3

4V

BF 996 S

Gate 1 Input admittance y 11 s
VDs=15V, VG2s=4V
(common-source)

Gate 1 forward transfer admittance Y21s
Vos=15V, VG2s=4V
(common-source)

mS

mS

o

14
b 11s

I

12
~0=1mA

10
8

f=800MHz~

I

r-;}(
5

),

-4

-f-,1
-6 10 =1m~o::.

'\.

-8

- f-3

1J'"600MHz

'\.

-10

~:5
15 400MHz

-12

15
1 200 MHz

-16

1~t---'"00

r-.
i'..

3

....... ~

N

15
200MHz _
I I

7~:_
400MHz

"'-5

f"..: ~-f-

3

.""-

151-

I'\.?
7
tl.,

-14

4

2

1

b21s

O~?

-

f~100' MHz 1

-2

-'71],1'1

60~Hz{l

15- f-

8foMIHZ
-18

15
1 100MHz

o
o

2 mS

-20

o

r20mS

10
~g2's

--------- g, 1s
Output admittance Y22s
VDS = 15 V, VG2S = 4 V
(common-source)

mS
5

10=1mA

11.0-

3 5 7110 115
f=1800 MHz

P]600MH~

3

,1,.,~ 400MHz

o.!?200MHz

J51100~HZI
o
o

0,1

O,2mS

Siemens

397

BF 996S

Test circuit 1, power gain and noise figure
f= 200 MHz, GG = 2 mS, GL = 0,5 mS

1nF

1nF

l~'P"'
60Q

1nF

,"p~r

60Q

I

lOr

270k

I

H
vG1S

VI un

v'un

Vos

Test circuit 2, power gain, noise figure and cross modulation
f= 800 MHz, GG

= 3,3 mS,

GL

= 1,0 mS

1

1nF

0utput
60Q

1nF

';lo' rh----J--~

Dr

Vos

398

Siemens

BF997

Silicon N Channel MOSFET Tetrode

•
•

For VHF applications especially in TV tuners
with extended VHF band
Integrated suppression network against
spurious VHF oscillations

G2
G1

~D

g;s

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

SF 997

MK

QS2702-F993

QS2702-F1055

SOT 143

Maximum ratings
Parameter

Symbol

Ratings

Unit

Drain-source voltage
Drain current
Gate 1/Gate 2 source
peak current
Total power dissipation
TA = SO°C
Storage temperature range
Channel temperature

Vos

20
30

V
mA

Ptot

10
200

mA
mW

Tstg
Tch

-55 .. ·+150
150

°C
°C

RthJA

::5 450

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 1S.7 mm x 0.7 mm

10
±

IG1/2sM

Siemens

399

BF997

Electrical characteristics
at TA = 25 cC, unless otherwise specified

DC characteristics
Drain-source breakdown voltage
10 = 10 !-lA, - VG1S = - VG2S = 4 V
Gate 1 source breakdown voltage
± IG1s = 10 mA, VG2S = Vos = 0
Gate 2 source breakdown voltage
± IG2s = 10 mA, VG1S = Vos = 0
Gate 1 source leakage current
± VG1S = 5 V, VG2S = Vos = 0
Gate 2 source leakage current
+ VG2S = 5 V, VG1S = Vos =0
Drain current
Vos = 15 V, VG1S = 0, VG2S = 4 V
Gate 1 source pinch-off voltage
Vos = 15 V, VG2S = 4 V, 10 = 20!-lA
Gate 2 source pinch-off voltage
Vos = 15 V, VG1S = 0, 10 = 2O!-lA

Symbol
V(BR)os

min
20

typ

max

-

-

Unit
V

± V(BR) G1SS

8,5

-

17

V

± V(BR)G2SS

8,5

-

17

V

± IG1sS

-

-

50

nA

± IG2sS

-

-

50

nA

loss

2

-

20

mA

- VG1S(p)

-

-

2,5

V

- VG2S(p)

-

-

2,0

V

AC characteristics
Forward conductance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 kHz
Gate 1 input capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
Gate 2 input capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
Reverse transfer capacitance ')
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
Output capacitance
Vos = 15 V, 10 = 10 mA, VG2S = 4 V,
f= 1 MHz
Power gain (see test circuit)
Vos = 15 V, 10 = 10 mA,
f= 200 MHz, GG = 2 mS, GL = 0,5 mS
Noise figure (see test circuit)
Vos = 15 V, 10 = 10 mA,
f= 200 MHz, GG = 2 mS, GL =0,5 mS
Control range (see test circuit)
Vos = 15 V, VG2S = 4··· -2V,
f= 200 MHz
') G2 and S on screen potential.

Symbol
gls

min
15

typ
18

max

-

Unit
mS

Cg1SS

-

2,5

-

pF

Cg2ss

-

1,2

-

pF

Cdg1

-

25

-

fF

Cdss

-

1

-

pF

Gp

-

25

-

dB

F

-

1

-

dB

l>.G p

50

-

-

dB

400

Siemens

BF997

Total power dissipation

=

Ptot

Output characteristics
10 = t(Vos)
VG2s=4V

t(TA)

mA

mW

25

300

10

VG1S=0,6V

~.t

r

t
200

1\

20
0,4V

15

1\

O,2Y

1\

o~
10

-0,2Y

100

\

-O,4V

5

1\

-~,~J

1\
o

1\
o

50

100

150 ·C

-/A
Gate 1 forward transconductance
g'st = t(VGts)
Vas = 15V
loss = 10 mA, t= 1 kHz
mS

- O,BY

°°

5

10

15

20V

-Vos

Gate 1 forward transconductance
g'st = t(VG2S)
Vas = 15V
loss = 10 mA, t= 1 kHz

mS

25

25

\f;2S= 4V

0,5;£...
OV
20

v

iA

V(;t =-O,SV

lS

15

3V

II

10

10
2V

·i~

5

o

-2

I

-1

~

~~y

o

o

-1

2V

0

4

7V

- VGtS

Siemens

401

BF997

'i

Gate 1 Input capacitance
C g 1ss = f(VG1S)
VG2S =4V, Vos = 15V
Joss = 10 mA, f= 1 MHz

Gate 2 Input capacitance
C g 2ss = f (VG2S)
VG1S = 0, Vos = 15 V
Joss = 10 mA, f= 1 MHz

pF
2,5

pF
2,0

-

./

2.0

~

l

1,5

..1\

1,5

.....
1,0

1,0

0,5
0,5

o-1

o

o

1V

-1

o

3

2

Output capacitance
Cdss = f (Vos)
VG1S = 0, VG2S = 4 V
Joss = 10 mA, f= 1 MHz

Drain current 10 = f(VG1S)
Vos= 15V

pF

rnA
30

5rrrrTT~,,-.rrTT~"~

VG2s =4V

=3V

5V

4

=2V

II

/0

V
1/

t
20

=1V

I'"
10

~

"~

rJ.
=OV
~

OLLLL~~-LLLLL~~-LLW

o

5

10

15

20V

o

-1

o

2

-\t,s
402

Siemens

3 V

BF997

Gate 1 Input admittance

Gate 1 forward transfer admittance

Y115

15 V, VG2S = 4 V

Vos =

Vos =

VG1S = 0, Joss = 10 rnA
(common-source)
mS

VG1S =' 0, Joss = 10 rnA
(common-source)
mS

14
80 10 MHlz_

I

o

f=100 MHz <;

/"

b 1\, 12

/

/

10

P

400 M~Z--' I-

-10

f--- ~400MHZ

I

1/

J

1

/

/200I M~zI

-

V
,/

-20

a

VG2S

20 mS

15
-gl\,

-gIl,

Output admittance

V

-c;:; r- 800 MHz
10

4 mS

= 15Y,

/600MHz -

-15

~ f -100 MHz

Vos

!---

I

/

o

M~z

200

I
L

600MHz

I

4

Y215

15 Y, VG2S = 4 V

Y 225

=4 Y

VG1S = 0, JDDS = 10 rnA
(common-source)
mS

6
800M Hz n

V

/1'

4

/

600MHz

V

II 400J MHz

2

I
1200 MHi

c! f =100 MHz

°°

0,2

0,4

0,6

0,8

1.0 mS

-gll.

Siemens

403

BF997

Power gain G p = f (VG2S)
VOS = 15 V, VG1S = 0 V
loss = 10 rnA, f= 200 MHz

Noise figure F = f (VG2S)
Vos= 15V, VG1S =OV
loss = 10 rnA, f= 200 MHz

dB

dB
10

(test circuit)

30
20

f

v

(test circuit)

F

I

10-

10

8

7
6

o

5
-10

4
3

-20

-30
-40
-1

\.

I
o

2

3

i'-

4

3

Test circuit for power gain and noise figure
f = 200 MHz; GG = 2 mS, GL = 0,5 mS

1nF

1nF

1~

1 nF

'""[

60Q

60Q

I

BB5~

270k

1nFI

IDr

I

27OS:-

~
VG1S

404

270k

Vt"n

H
Vt"n

Siemens

VDS

4V

Silicon N-Channel MOSFET Tetrode

•

Short-channel transistor
with high SIC quality factor

•

For low-noise, gain-controlled
input stages up to 1 GHz

BF998

G2
G1

~D

~s

Type

Marking

Ordering cod~
for versions in bulk

Ordering code
for versions on tape

BF 998

MO

Q62702-F37

Q62702-Fl129

Maximum ratings

Symbol

Ratings

Unit

Drain-source voltage

VDS

12

V

Drain current

ID

30

Gate l/Gate 2 source peak current

±h1l2SM

10

rnA
rnA

Total power dissipation
T A :5 60 °C

P tot

200

mW

Storage temperature range

T stg

-55 ... +150

°C

Channel temperature

Tch

150

°C

I RthJA

I :5 450

I K/W

Thermal resistance
Channel - ambient')

I) Package mounted on alumina 16.7 mm x 15 mm x 0.7 mm

Siemens

405

BF998

Electrical characteristics
at TA = 25 °e, unless otherwise specified
DC characteristics

Symbol

min.

typo

max.

Unit

Drain-source breakdown voltage
ID = 10 J.lA, -VG1S = -VG2S = 4 V
Gate l-source breakdown voltage
±hlS = 10 rnA, VG2S = VDS = 0
Gate 2-source breakdown voltage
±h2S = 10 rnA, VG1S = VDS = 0
Gate l-source leakage current
± VG1S = 5 V, VG2S = VDS = 0
Gate 2~source leakage current
±VG2S = 5 V, VG1S = VDS = 0
Drair, current
VDS = 8 V, VG1S = 0, VG2S = 4 V
Gate l-source pinch-off voltage
VDS = 8 V, VG2S = 4 V, ID = 20 J.lA
Gate 2-source pinch-off voltage
v:DS = 8 V, V.G1S = 0 , I D = 20 A

V(BR)DS

12

-

-

V

± V(BR)G1SS

8

-

14

V

± V(BR)G2SS

8

-

14

V

±/G1SS

-

-

50

nA

±/G2SS

-

-

50

nA

IDSS

2

-

18

rnA

-VG1S (P)

-

-

2.5

V

-VG2S (p)

-

-

2

V

Symbol

min.

typo

max.

Unit

9fs

-

24

-

rnS

Cg lss

-

2.1

2.5

pF

Cg 2ss

-

1.2

-

pF

Cdgl

-

25

-

fF

Cdss

-

1.05

-

pF

-

28

-

dB

-

20

-

dB

AC characteristics
Forward transconductance
VDS = 8 V, 10 = 10 rnA, VG2S
f= 1 kHz

=4V

Gate 1 input capacitance
VDS = 8 V, 10 = 10 rnA, VG2S
f= 1 MHz

=4 V

Gate 2 input capacitance
VDS = 8 V, ID = 10 rnA. VG2S
f= 1 MHz

=4

V

Reverse transfer capacitance
VDS = 8 V, ID = 10 rnA, VG2S = 4 V
f= 1 MHz
Output capacitance
VDs =8V,/ o = lOrnA. VG2s=4V
f= 1 MHz
Power gain
(test circuit 1)
VDS = 8 V, ID = 10 rnA, f= 200 MHz,
GG = 2 rnS, GL = 0.5 rnS, VG2S = 4 V
(test circuit 2)
VDS = 8 V, ID = 10 rnA, f= 800 MHz,
GG = 3.3 rnS, GL = 1 rnS, VG2S = 4 V

406

Gps

Siemens

BF998

AC characteristics

Symbol

Noise figure
(test circuit 1)
Vos = 8 V, 10 = 10 mA, f= 200 MHz,
GG = 2 mS, G L = 0.5 mS, VG25 = 4 V
(test circuit 2)
Vos = 8 V, 10 = 10 mA, f= 800 MHz,
GG = 3.3 mS, G L = 1 mS, VG2S = 4 V

F

Control range
(test circuit 2)
Vos = 8 V, VG2S
f= 800 MHz

dG ps

min.

typo

max.

Unit

-

0.6

-

dB

-

1

-

dB

40

-

-

dB

= 4 ... -2 V

Total power dissipation p.o. = f (TA )

rnA
25

rnW
300

Output characteristics 10 = f (Vos)
VG2 • = 4 V

\{;ls =O,5V
O'rVI200

~

15

\

O,2Vl-

1/

Or

10

100

":0,2 V

"1\
o

o

50

100

~.4~

~

o
o

150 0 (

-7i.

-U.bV

5

10

15 V

-Yes
Siemens

407

BF 998

Gate 1 forward transconductance
= f (VOls)
Vos = 8 V, loss = 10 rnA. f= 1 kHz

Gate 1 forward transconductance

g",

g", = f (V
Vos

=8

G2S )

V, loss

= 10 rnA, f = 1 kHz

mS

mS

30

171-

9'sl

/7

\3V

\
~

\"

20

\

It\

I
10

V

IJ

"-

liN
t;P

o

-1

2 V

o

2

--~IS

Vos

=8

V, loss

= 10 rnA.

3
4 V
-\1;25

Gate 1 input capacitance c g' " = f (VOls)
VG2S = 4 V, Vos = 8 V, loss = 10 rnA
f = 1 MHz

Gate 1 forward transconductance

g", = f (10 )

V

I'll

"'-

o

-1

V

I

ov
~r-I-

-O,25J!.

flA-

1\

["\[

o

II
1\

.- e:::

)

\

\

v ....

//

1\

10

V

V

1\

l\lV

rI

V

1

1\

"' 2V

rtJl_

rl

9'sl

1\

ffJrr

20

VG15 =O,2SV

~

I

f

30

.... \(;2S=!+V

/'

f= 1 kHz

mS

pF

30

2.5

VG25 =4V

~y

9'sl

I!::

t

Cgl ss

2V

t

~r;.

20

~
11

2

/

""" "-'\

II
/

1,5

II'

"

1\1V

10

f'\ 0,5

0,5

OV

YT
o

408

1;;[

o

5

10

15
-10

o

20 mA

-3

-2

-1

o
-\{;'5

Siemens

1V

BF 998

Gate 2 input capacitance
VG1S ; O. V DS ; 8 V
loss; 10 rnA. f ; 1 MHz

C U2 .. ;

f

Output capacitance Cd"
VGlS ; O. V G2S ; 4 V
loss ~ 10 rnA. f ; 1 MHz

(VG2S )

pF
2

;

f (VDS )

pF

3

r~1.5

~

oJ

,

~

2

\

,
~

0.5

o

-2

o

-1

3

2

o
o

4 V

5

Drain current 10 ; f
VDS ; 8 V

-\fos
Power gain Gp , = f (VG2S )

(VG1S )

V Ds ;8V. VGls= 0
loss = 10 rnA. f = 200 MHz
(5. test circuit 1)

mA
30

dB
30

I

~2s=4V'

3V,
2

~

J

t

1V

20

15 V

10

-\IG2s

~

G~

20

t

10

o

II
I

I

II
-10

II

10

-20

r-

r-

r-

~_

o L-L-1

OV

-30

"...

o

-40
-1

2 V

o

2

3

4 V

-l.'r;2S

-~IS

Siemens

409

BF998

Noise figure F = t (VG2S )
VDS = 8 V, VOIS = 0, loss = 10 rnA.
t = 200 MHz, (5. test circuit 1)

Power gain Gp , = t (VG2S )
VDS = 8 V, VOIS = 0, loss = 10 rnA,
= 800 MHz, (5. test circuit 2)

t

dB

dB
30

5
F
4

t

20

t

10

-

v
I
I
I

-10

2

1

i'-

o

Gps

-20

-

-30

-40

o

2

3

4 V

o

-1

2

4 V

3

-\tzs
Noise figure F = t (VG2S )
VDS = 8 V, VOIS = 0, loss = 10 rnA,
= 800 MHz, (s. test circuit 2)

Gate 1 input admittance Yll,
VDS = 8 V, VG2S = 4 V, VGlS = 0,
loss = 10 rnA, (common-source)

dB f
5

14
1200lMHZ

mS
4

t
3

900lMHzI-- I--

~BOOMHz

,
"-

./J,1000MHZ

/

8

\
2

r

j100~HZ -1/
], t - -

l:

F

/700MHz
1600MHz

6

I/sOOMHz

r- r- '---

t:~"~
I I
1
o

4
~

I
300MHz

20~MH,

100 HZ

o

o

2

3

o

4 V

-\tzs
410

2

3

mS

-g11s

Siemens

4

BF998

Gate 1 forward transfer admittance Y2"
VDS ~ 8 V, V02S ~ 4 V, Vo,s ~ 0
i DSS ~ 10 mA, (common-source)

Output admittance Y22, '
VDS ~ 8 V, V02S ~ 4 V, Vo,s ~ 0
i DSS ~ 10 rnA, (common-source)

o

8

mS

I

bZT.

·10~M~z
-5

l-

t-.

31001M~Z
400MHz
I I I
500MHz
I I If
600MHz
1100 lMHz

-10

\100~Hi~ I

r-

~OO~HV'
800MHz/

4 t-

10()~Hz

_
-25
10

700MH~ ,
I

i-500MHz.,r
1f400MHz

2

,r

1300MHz

fJ .. L

1200MHz

H_120,0~H~.

t- ~lobM~Z
20

15

-

t- 60pM1i'

-JOOOMHzX
-20

/

1000MHz If'
I I

apOr Hz
900MHz

-15

12~OM~~

-

ldo~H~'

o
o

25

m5

-gzl.

TT

0,1

0,2

0,3

0,4 mS 0,5

-gzz.

Test circuit 1, power gain and noise figure
f= 200 MHz, GG = 2 mS, GL = 0.5 mS

lnF

lnF

·~n

6Ml

BB5.Qi.
lnF

.~~ I
14
I-:l
, VGIS ,

1'
:
'
"
fI

270k

Vtun :,

5

nF

iCh

H
Vtun

VDS

Siemens

411

BF 998

Test circuit 2. power gain and noise figure
f= 800 MHz. GG = 3.3 mS, GL = 1 mS

412

Siemens

Silicon N-Channel MOSFET Triode

•

BF999

For high-frequency stages up to 300 MHz,
preferably in FM applications

Type

Marking

Ordering code
for versions in bulk

Ordering code
for versions on 8 mm tape

BF 999

LB

Q62702-F38

Q62702-F1132

Maximum ratings

Symbol

Ratings

Unit

Drain-source voltage

Vos

20

V

Drain current

10

30

rnA

Gate-source peak current

±hSM

10

rnA

Total power dissipation
TA~ 60°C

Ptot

200

mW

Storage temperature range

T stg

-55 ... +150

°C

Channel temperature

Tch

150

°C

Thermal resistance
junction - ambient11

RthJA

I S; 450

K/W

1) Package mounted on alumina 16.7 mm x 15 mm x 0.7 mm.

Siemens

413

BF 999

Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics

Symbol

min.

typo

max.

Unit

Drain-source breakdown voltage
10 = 10 iJA, - VGS = 4 V

V[BR)DS

20

-

-

V

Gate-source breakdown voltage
±hs = 10 mA Vos = 0
Gate-source leakage current
± VGS = 5 V, VDS = 0
Drain current
VDS = 10 V. VGS = 0

± V[BR)GSS

6.5

-

17

V

±hss

-

-

50

nA

loss

5

-

18

mA

Gate-source pinch-off voltage
Vos = 10 V. 10 = 20 iJA

-VGS(P)

-

-

2.5

V

AC characteristics

Symbol

min.

typo

max.

Unit

gfs

14

16

-

mS

C gss

-

2.7

-

pF

Reverse transfer capacitance
Vos = 10 V, I D = 10 mA, f = 1 MHz

Crss

-

25

-

fF

Output capacitance
Vos =10 V, 10 = 10 mA, f= 1 MHz

C dss

-

1

-

pF

Power gain
(test circuit)
Vos = 10 V, 10 = 10 mA, f = 200 MHz,
GG = 2 mS, GL = 0.5 mS

Gp

-

25

-

dB

Noise figure (test circuit)
Vos = 10 V, 10 = 10 mA, f = 200 MHz,
GG = 2 mS, GL = 0.5 mS

F

-

1

-

dB

Forward transconductance
VDS = 10 V, I D = 10 mA f = 1 kHz
Gate 1 input capacitance
VDS = 10 V, 10 = 10 mA f = 1 MHz

414

Siemens

BF999

Total power dissipation Ptot = f(TA )

Output characteristics 10 = f(Vos)

mA

mW
300

25
\'c;=O,BV
10

0,6

1 20

O,4V

200

\.

15

r-..

O,2V

!\

ov

10
100

:6,1\

"1\

5

-P.4V

-,v

'\

o

~

o

50

o
o

150_0 (

100

10

5

15

20 V

-lifls

Drain current 10 = f(Vos)

Gate transconductance 9,. = f(Vos)
Vos

= 10 V,Ioss = 10 rnA, f= 1 kHz

Vos = 10 V

mS

mA

20

30

1/
II

10

II

20

II
II

I

1/

10

5

"

1\

o

-1

o

2

/

o

3 V

-1

/

II

o

2 V

-\6s
Siemens

415

BF 999

Gate input capacitance C,,, = f(VGs)
VDS = 10 V, loss = 10 rnA, f= 1 MHz

Output capacitance Cd" = f( VDS )
VGS = 0, loss = 10 rnA, f= 1 MHz

pF
3

,

pF

2,0

\

i-'r'"'"

t

II
1'\

,

Cds,

,.,I

\

1,5

"-

~

1,0

>0,5

o

-2

-1

o

o
o

1 V

10
-Vos

5

-\1;s

Reverse transfer capacitance C",
= 10 rnA, f= 1 MHz, VGS = 0

= f(VDS)

loss

pF

0,2

mS

Crss

t

Gate 1 input admittance Yll,
VDS = 10 V, VGS = 0,
loss = 10 rnA. (common-source)

14

r-T---'-...---r-T---'-'---'----'---'-'-"-'--'--'

b"s

15 V

f=800MHz~

/

12

/700MHz

t

0,15 f-+-t--Hf-+-t-+-i-+-t-+-If-+-H

/1

/6IOOMHz

10

/0

7

I

iOOMHZ

0,1
6

/400MHz

/1
---.

/

4

0,05 f-+--l-t-f\++-I-+-t-+-+-++-H

300 MHz
l

1200M8z

I
If 109MHz
o "-,--'--'-L-L-'--'-'------'--'--'-L.J.....J.-J
o
5
10
15

J-sor Hz

o
o

V

-Vos

416

Siemens

4mS

SF 999

Gate 1 forward transfer admittance Y21,
VDS = 10 V, VGS = 0,
loss = 10 rnA, (common-source)

Output admittance Y22 ,
VDS = 10 V, VGS = 0,
loss = 10 rnA, (common-source)

mS

mS

o

5

f=~OO~Hz ~

SJMHlzt
100MHzl1

4

ar::~
Y

I-

-5

210

-

H

I-

1 ~I- - 300MHZ
1
I

4010M~/
-10

i--400MHz

II

j

I

SOOMHT.JI
600MHz

°i i

f=18 M z
8

6

"

30~MHz

J 100[MH~

rr- .J.
4

I

l/200M~Z

17

700M~

-15

~

706MH~ JI' V
600MHz /
.I V
500MH V

10

12

14

o
o

16mS

I 50~HZ
0,1

0,2

0,3

0,4

O,SmS

-gl15

-g115

Test circuit: Power gain and noise figure
200 MHz

t=

Input
6011

--1-1SP-F--1
lnF

~~I
kl1

Output

'-1

lnF

I

'oF

6011

rl~

BBSOS
270
kl1

Siemens

417

BFN 16
BFN 18

NPN Silicon High-Voltage Transistors

•
•
•
•

Suitable for video output stages in TV sets
and switching power supplies
High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: BFN 17, BFN 19 (PNP)

E

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 12 mm-tape

Package

BFN 16
BFN18

DO
DE

Q62702-F694
Q62702-F696

Q62702-F885
Q62702-F1056

SOT 89
SOT 89

Maximum ratings
Parameter

Symbol

BFN 16

BFN 18

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO

250
250

300
300

V
V
V

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

418

VCBO

5
200
500
100
200
1

VEBO

Ic
ICM
IB
IBM

Ptot

150
-65···+150

Tj
Tstg

::; 125

RthJA

Siemens

mA
mA
mA
mA
W

°C
°C
K/W

BFN 16
BFN 18

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 1 rnA
BFN 16
BFN 18

V(BR) CEO

Collector-base breakdown voltage
Ic = 100 IJA
BFN16
BFN 18

V(BR)CBO

Emitter-base breakdown voltage
IE = 100 I1A

V(BR) EBO

Collector cutoff current
VCB = 200 V
VCB = 250 V
VCB = 200 V, TA = 150°C
VCB = 250 V, TA = 150°C

typ

max

Unit

250
300

-

-

V
V

250
300

-

-

-

V
V

5

ICBo
BFN
BFN
BFN
BFN

-

16
18
16
18

Emitter cutoff current
VEB = 3V

lEBO

DC current gain
Ic = 1 rnA, VCE
Ic = 10 rnA, VCE
Ic = 30 rnA, VCE

hFE

=
=
=

min

10V
10 V1)
10 V1)

BFN 16
BFN 18
Collector-emitter saturation voltage 1)

-

V

-

100
100
20
20

-

100

nA

25
40
40
30

-

-

-

-

0,4
0,5

V
V

0,9

V

-

-

-

nA
nA

IJA
I1A

-

VCEsat

Ic=20mA,IB=2mA

Base-emitter saturation voltage 1)
Ic = 20 rnA, IB = 2 rnA

VBEsat

-

AC characteristics

BFN 16
BFN 18

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 rnA, VCE = 10 V, f= 20 MHz

fT

-

70

-

MHz

Output capacitance
VCB = 30 V, f= 1 MHz

Cob

-

1,5

-

pF

1) Pulse test: t =:; 300 I1s, D = 20/0.

Siemens

419

BFN 16
BFN 18

Operating range Ie = (VeEO)

Total power dissipation Ptot = f ( TA)

TA = 25°C, 0= 0

mA

W
1,2

103
5

1"',0

'\

1\

10~~

\

0,8

1\

100~

lmSITI

1\

1111

0,6

lOOms

10'

\

0,4

DC

1\
\

0,2

,

1\

°

50

°

100

150

0(

5 10 '

--7;,

-VCEO

Collector current Ie = (VSE)

Pulse handling capability rth = (t)

VCE =

10 V

mA
103
5

'ih 5

1 ,

,

I

~.

~

5

0.5
0.2
0.1
0.05
0.02
0.01
0.005

5

10'

5

0=0

1

5

5

~

O=f
10-3
10-6 10-5

420

T

10- 4

10- 3 10- 1 10-'
--f

1

10° s

0,5

Siemens

1,5 V

BFN 16
BFN 18

Transition frequency fT = f (I c)
VCE = 10 V

Collector cutoff current J CBO
VCB = 200 V

MHz
10 3

nA

=

f ( TA)

10'
5

fr

l(BO

max ~/

1
.....

V

typo

10'

5

V
/

,
5 10'

/
50

100

150

O(

~r"

DC current gain hFE = f(Iel
VCE = 10V

10'

10°
10-'

5 10°

5 10'

5 10 2
-Ie

5 103 mA

Siemens

421

PNP Silicon High-Voltage Transistors

•
•
•
•

BFN 17
BFN 19

Suitable for video output stages in 1V sets
and switching power supplies
High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: BFN 16, BFN 18 (NPN)

E

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 12 mm-tape

Package

BFN 17
BFN 19

DG

Q62702-F695
Q62702-F697

Q62702-F884
Q62702-F1057

SOT 89
SOT 89

DH

Maximum ratings
Parameter

Symbol

BFN 17

BFN19

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO
Ic
ICM
IB
IBM

250
250

300
300

V
V
V

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

RthJA

422

Ptot

5
200
500
100
200
1

Tj
Tstg

150
-65 .. ·+150
~

Siemens

125

rnA
rnA
rnA
rnA

W
°C
°C

K/W

BFN 17
BFN 19

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 1 mA
BFN 17
BFN 19

V(BR) CEO

Collector-base breakdown voltage
Ic = 100 j.LA
BFN 17
BFN 19

V(BR) CBO

Emitter-base breakdown voltage
lE= 100j.LA

V(BR) EBO

Collector cutoff current
VCB=200V
VCB = 250 V
VCB = 200 V, TA = 150°C
VCB = 250 V, TA = 150°C

min

typ

max

Unit

250
300

-

-

-

V
V

250
300

-

-

-

V
V

5

-

-

V

-

-

100
100
20
20

nA
nA
j.LA
j.LA

100

nA

-

-

ICBO
BFN
BFN
BFN
BFN

17
19
17
19

-

Emitter cutoff current
VEB = 3 V

lEBO

DC current gain
Ic= 1 mA, VCE = 10 V
Ic = 10 mA, VCE = 10 V')
Ic = 30 mA, VCE = 10 V')

hFE

-

25
40
40
30

BFN17
BFN 19

Collector-emitter saturation voltage')
I C = 20 mA, I B = 2 mA
BFN 17
BFN19

VCEsat

Base-emitter saturation voltage')
Ic = 20 mA, IB = 2 mA

VBEsat

-

-

-

-

-

-

-

0,4
0,5

V
V

-

-

0,9

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 mA, VCE = 10 V, f= 20 MHz

fT

-

100

-

MHz

Output capacitance
VCB = 30V, f= 1 MHz

Cob

-

2,5

-

pF

') Pulse test: t:-:; 300 j.Ls, D = 20f0.

Siemens

423

BFN 17
BFN 19

rnA

Operating range Ie =f(VCEO)
TA = 25°C, 0 = 0

Total power dissipation Ptot = f( TA)

W
1,2

Ie
\",1,0

\.

tI

\

0,8

\

1:

3

m••n.

2

E

105

10~5
'11~1'\1111\!1
.\1\
II

\1\ 100fl5

1\

~.n.g1rnls~
100ms
DC

0,6

\.

1Q1

\

0,4

\
1\

0,2

r-..
\

°°

100

50

150

0 (

--7,;

------VCEO
Collector current Ie = f(VBE)

Pulse handling capability rth = f (t)
(standardized)

VCE = 10 V

K

W

mA
103

10°

5

iIt

lih 5

t
1

5

•

I

0.5

5

0.2
0.1
0.05
0.Q2
0.01
0.005

5

D~O

2

5

~

D=~
10-3
10-6

424

T
10-3 10- 2 10- 1
-f

II>.

10-5

10-'

1()""t

10°

5

o

I
0,5

1,0

-i1lE
Siemens

1,5 V

BFN 17
BFN 19

Transition frequency fT

= f (I cl

Collector cutoff current I CBO

VCE=lOV·

VCB

MHz

nA

10 3

104
5

= f (TA)

= 200V

max. /'

/'

k

typ

10'

5

/

V

2

10 '

1

10°

5 10 1

5 10 '

5 10 3 mA

1/
50

100

150

O(

-/A

--Ie

DC current gain hFE = f (I cl
VCE

= lOV

10 3

hf[

r
10 2
5

2
10 '
5

2
10°
10-1

5 10°

5 10 '

5 10 1

5 10 3 A

-Ie

Siemens

425

BFN20

NPN Silicon High-Voltage Transistor

•
•
•
•
•

Suitable for video output stages in TV sets
and switching power supplies
High breakdown voltage
Low collector-emitter saturation voltage
Low capacitance
Complementary type: BFN 21 (PNP)

E

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 12 mm-tape

Package

BFN 20

DC

Q62702-F584

Q62702-F1058

SOT 89

Maximum ratings
Parameter

Collector-emitter voltage
Collector-base voltage
Collector-emitter voltage
RBE = 2,7 kQ
Emitter-base voltage
Collector current
Peak collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

426

Symbol

Ratings

Unit

VCEO

300
300
300

V
V
V

5
50
100
1

V
mA
mA
W

Tstg

150
-65···+150

°C
°C

RthJA

:5125

K/W

VCBO
VCER
VEBO

Ic
ICM
Ptot
Tj

Siemens

BFN20

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Cc.Jlector-emitter breakdown voltage
Ic = 1 mA

V(BR) CEO

300

-

-

V

Collector-base breakdown voltage
le = 10 IlA

V(BR) CBO

300

-

-

V

Collector-emitter breakdown voltage
Ic = 10 IlA, RBE = 2,7 kQ

V(BR) CER

300

-

-

V

Emitter-base breakdown voltage
lE= 1O IlA
Collector cutoff current
VCB = 250 V
VCB = 2,50 V, TA = 150°C

V(BR) EBO

5

-

-

V

-

-

-

100'
20

nA
IlA

-

-

1
50

IlA
IlA

-

10

IlA

Collector cutoff current
VCE = 300 V, RBE = 2,7 kQ
VCE = 300 V, TA = 150°C, RBE

leBo

ICER

Emitter cutoff current
VEB = 5 V

lEBO

-

DC current gain')
le = 25 mA, V CE = 20 V

hFE

40

-

-

-

Collector-emitter-saturation voltage ')
I C = 10 mA, I B = 1 mA

VCEsat

-

-

0,5

V

Base-emitter saturation voltage ')
Ic = 10 mA, IB = 1 mA

VBEsat

-

-

1

V

=

2,7 kQ

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 10 mA, VCE = 10V, f= 20 MHz

fT

-

100

-

MHz

Output capacitance
VCB = 30V, f= 1 MHz

Cob

-

0,8

-

pF

') Pulse test: t:::; 300 Ils, D = 2%.

Siemens

427

BFN20

Total power dissipation Ptot = f (TA)

Output capaCitance
f=lMHz

W
1,2

pF

Cob = f(Vce)

4

1"1,0

i\.

r\

0,8

3

r\

1\

\

2 \

0,6

1\

~

1\

0,4

,\

~

\

r-,...

0,2

['.,.

o

\
o

150 .(

100

50

o

o

10

--T"
Pulse handling capability rth = f(t)
(standardized)
K

Transition frequency fT
Vce=lOV

iii

MHz

100

10 3

~

,10':' III
1

~

5

xr2

1

0. 5
0.2
0.1
0.05
0.02
0.01
0.005
1'-0=0

2

5

/

5

~

2

O=f
1~

o

50

100

150 DC

-r,.

Siemens

457

BFP81

NPN Silicon RF Transistor

• For low-noise amplifiers up to 2 GHz at collector
currents from 0.5 to 25 mA.
~

BIlAE

CECC-type in preparation: CECC 50002/...

E~C

ESO: Electrostatic discharge sensitive device, observe handling precautions!

Type

Marking

Ordering code
(tape and reel)

Package

BFP81

FA

Q 62702 - F1122

SOT-143

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

VCEO

16

V

Collector-base voltage

Vcso

25

V

Emitter-base voltage

VESO

2

V

Collector current

Ic

30

mA

Base current

Is

4

mA

Total power dissipation, TA :5 25 °C2 )

Ptot

280

mW

Junction temperature

1j

150

°c

Ambient temperature range

TA

-65 ... +150

°c

Storage temperature range

Ts1g

-65 ... +150

°c

Thermal Resistance

I

Junction - ambient 1)

1} Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

458

Siemens

RthJA

I :5450

KIW

BFP81

Electrical Characteristics
at TA = 25 cC, unless otherwise specified.
DC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

Collector-emitter breakdown voltage
Ic = 1 rnA, IB = 0

\l(BR)CEO

16

-

-

V

Collector-base cutoff current
VcB =15\f,IE=0

ICBo

-

-

100

nA

Emitter-base cutoff current
VEB = 2 \f, Ic = 0

lEBo

-

-

10

!IA

DC current gain
lc= 5 rnA, VCE = 10V
Ic=15mA, VcE =10V

Iq,E

50
50

-

250

-

-

0.2

0.4

Collector-emitter saturation voltage
Ic =30 rnA, IB=3mA

VCEsat

Siemens

V

459

BFP81

AC characteristics
Symbol

Parameter

min

Values
typ

max

Unit

-

4.2
5.8

-

Transition frequency
Ic= 5 mA, VCE = 10 V,f= 200 MHz
Ic = 15 rnA, VCE = 10V,f= 200 MHz

f-r

Collector-base capacitance
VcB =10V, VBE =Vbe=0,f=1 MHz

Ceb

-

0.34

-

pF

Collector-emitter capacitance
VcE =10V, VBE = Vbe=O,f= 1 MHz

Gee

-

0.32

-

pF

Input capacitance
VEB = 0.5 V, Ic = ie = 0, f= 1 MHz

Gibo

-

1.2

-

pF

Output capacitance
VCE = 10V, VBE = Vbe=O, f= 1 MHz

Cobs

-

0.65

-

pF

Noise figure
Ic=3mA, VcE =10V,f= 10 MHz, Zs = 75Q
Ic = 5 mA, VCE = 10 V, f= 800 MHz, Zs = ZSopt
Ic=5mA, VcE =10V,f=
2 GHz, Zs = Zsopt

F

-

0.9
1.25
2.25

-

Power gain
Ic = 5 rnA, VCE = 10V, f= 800 MHz,
Zs = 50 Q, ZL = ZLopt
Ic = 10 rnA, VCE = 10 V, f= 800 MHz,
Zs = 50 Q, ZL = ZLoPt

Gpe

Transducer gain
Ic = 20 rnA, VCE = 10 V, f= 1 GHz, Zo = 50 Q

GHz

dB

-

-

dB

-

15.5

-

-

16.5

-

l~lel2

-

15

-

dB

Linear output voltage
two-tone intermodulation test
Ic = 25 rnA, VCE = 10 V, diM = 60 dB
fl = 806 MHz, f2 = 81 0 MHz, Zs = ZL = 50 Q

Vol = Vo2

-

160

-

mV

Third order intercept point
Ic = 25 rnA, VCE = 10V, f= 800 MHz

IP3

-

27

-

dBm

460

Siemens

BFP81

Transition frequency fT = f {lei
f=200MHz

Total power dissipation Ptot = f {T,J
Package mounted on alumina

GHz

rnW
400

6

+4-

V

Plot

V,V

t 300
1\
1\

3

\

I

i\

Ih

4

200

Ih=5V

t-r-,

1V

rt

I

\

\

2
100

\

a

1'\

a

50

10

150 0 (

100

----T,.

Collector-base capacitance
VBE = Vbe=O. f= 1 MHz

Ccb

20

30 rnA

-Ie

= f (VeB)

pF
1

1\
0.5

\

"-

I--.....

r-

--

10

20 V
----\I[B

Siemens

461

BFP81

Common Emitter Noise Parameters
Ie = 5 rnA, VeE = 10 V, Zo = 50 0

f

Fmin

Gp

GHz

dB

dB

MAG

0.01
0.8
2.0

0.8
1.25
2.25

-

(Zs
0.26
0.32

Ie

=

10 rnA, VeE

(Fmin)

16
10
=

10 V,

Zo =

RN

N

Fson

Gp (Fso.,)

lANG

0

-

dB

dB

1200)
177
178

-

0.151
0.334

1.1
1.4
2.7

-

9.6
8.6

RN

N

ropt

=

15.5
8.5

50 0

f

Fmin

Gp

Fson

Gp (Fso.,)

GHz

dB

dB

MAG

lANG

0

-

dB

dB

0.01
0.8
2.0

1.05
1.4
2.5

-

(Zs = 75 0)
0.21
193
0.33
-167

-

0.155
0.413

1.2
1.5
2.9

-

8.3
10.8

(Fmin)

17
11

ropt

Noise figure F = f (IcI
VeE = 10V, f= 10 MHz

dB
3
F

t
2
Zs=1S0Q
L
SOQ
,/
7SQ" );(
f-"
f-"
~~

r-

-

\""-. k

~

......::: ~ f-"

10

462

-

20 rnA

Siemens

16.5
9.5

BFP81

=

Noise figure F = f (IcI
VCE = 10V, f= 800 MHz, ZLoP,(G)

Circles of constant noise figure F f (ZS>
and available power gain Gav = f (ZS>
Ic = 5 rnA, VCE = 10\1, f= 800 MHz

dB

5

3

2

\
I-..

rr--

~~ r::: ~

-7s1

pt

-j50

20 rnA

10
-Ie

=

Circles of constant noise figure F f (ZS>
and available power gain Gav f (Zs)
Ic=10mA, VcE =10\l, f=800MHz

=

+j50

-j50

Siemens

463

BFP81

Circles of constant noise figure F = f (Zs)
and available power gain Gav f (Zs)
Ic=5mA, VcE =10V,f=2GHz

Noise figure F= f (/d
VCE = 10 V, f= 2 GHz, ZLopt (G)

=

dB
5

+j50

Zs=50S V

V
.......
r'-- '-- ~ V V
..--

\-

-j50

-

-

vV
~

Zsopt

20 mA

10

-Ie

Circles of constant noise figure F= f (Zs)
and available power gain Gav = f (Zs)
Ic = 10 mA, VCE = 10V, f= 2 GHz

+j50

-j50

464

Siemens

V

BFP81

Common Emitter Power Gain
Power gain Gms , 15:".1 2 = f (lei
VeE = 10 V, f= 500 MHz, Zo = 50 n

Power gain Gm .. 15:".1 2 = f (lei
VeE = 10 V, f= 200 MHz, Zo = 50 n

dB
30

i.-6 m• ,,/

V
/

/

-

r--

r-

dB
30

.....

.......... 1-"'"

-

6~ ...........

I--

15 21.1 2

I-

I--

/

I

V

-

10

/"-

II

-'521 .1 2

10

_1 52"1

\m'i 5t

li

rr-

6

52

"1

20 mA

10

mi-_1 512",jJ-~
20 mA

10

---Ie

-Ie

Power gain Gms , 15:".1 2 =f (lei

Power gain Gma , 15:".12 = f (lei

VeE = 10 V, f= 1 GHz, Zo = 50 n

VeE = 10V, f=2 GHz, Zo= 50n

dB
30

dB
30

6m•

/

V

r- rV

/

......

I

15 21.1 2

10

10

52 "1
6 m, = 1
512.

r-

o

-

521

6m

o
o

20 rnA

10

;- i .1_12
/""

I 1 I

o

6..
I

-Ie

.= 15'2.
5 2"1"( k-h 2-1')

I I [ [ I I

20 rnA

10

---Ie

Siemens

465

BFP81

Ic = 5 rnA, VCE = 10\1, Zo =500

dB
30

dB
30
6ma

6ma

6ms
1521,1 2

t

"

20

-

'"

........,

t

~ms

10

"'-

"

"'"6m~

'"

"

2

o

3 GHz

\

521 '1 '(k- .[k2:1
k -1)
6 ma --1 S
12,
0.1

2

0.5

Power gain Gma• Gms• 18.!'el' = f (f)
VCE = 10\1, Zo= 50 0

Ic = 20 rnA,

Ic=10mA, VCE=10\l,Zo=500

." ""

t

'"

dB
30

,

6 ma
6ms
1521,1 2

\

t

...... 6ms

IS21.12"\

20

""'-

I
I 1

t'--

1"-

"

II

"'\

"2'

- IS21.1

6mls I

\

20

~ 6ma _

_\

\6ffia

\
10
I-

o

I--

0.1

\

\

I\.
10

I

\

6ms = S21'j
512,

i- 6ma

21 '1
=15512,
f- 6 ma =1521e1'(k -,fk2:1)
f512,

=15 21 '1'(k_Jk 2_1')
I' S12, I I I I I II

2

0.5

I\.

\

I- 6ms

3 GHz

o

0.1

I

I

Siemens

"-

\

I 11111

0.5

235Hz

-f

-f

466

3 GHz

-f

Power gain Gma• Gms• 18.!,.I' = f (f)

""'-

\
'\

-f

dB
30

\ 6ma
i\.

"-\

10

'\

0.5

'"

"
r--l s21l

20

6ms

I"

6 ms = IS21'I
512,

6 ma = 1521 '1'(k - [k2:1)
S12,

0.1

r---

\.

""-

6 ms = jS21'j
S12,

o

.............

6ms
15210 12

_ 1521.1 2 I'--

6ma
6ms
15 21,1 2

=f (f)

Power gain Gma• Gms• 18.!'e12

Power gain Gma• Gms• 18.!'e1 2 = f (f)

Ic = 2mA, VCE = 10\1, Zo = 50 0

BFP81

Common Emitter 5 Parameters

Ic

=

1 rnA,

VCE

=

1 V,

Zo =

50 n

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00

0.959
0.948
0.934
0.916
0.896
0.868
0.832
0.802
0.773
0.758
0.754
0.741
0.721
0.706
0.701
0.699
0.707
0.711

- 18.9
- 28.1
- 37.1
- 45.8
- 54.0
- 69.1
- 83.2
- 95.6
-107.0
-116.5
-126.0
-135.0
-150.2
-162.6
-168.3
-173.8
176.0
167.0

3.63
3.57
3.49
3.39
3.26
3.01
2.78
2.54
2.34
2.15
2.00
1.86
1.61
1.42
1.34
1.27
1.16
1.05

166.5
159.9
153.6
147.3
141.4
131.2
121.7
113.2
105.4
98.6
92.3
86.2
75.4
66.3
62.0
57.7
49.6
42.1

0.040
0.058
0.076
0.092
0.106
0.130
0.148
0.161
0.171
0.180
0.186
0.188
0.189
0.188
0.186
0.184
0.178
0.170

78.6
72.9
67.6
62.6
57.8
49.0
41.4
35.0
29.4
24.6
19.5
15.2
8.5
2.7
0.2
-1.9
-6.1
-9.9

0.985
0.971
0.953
0.931
0.907
0.861
0.814
0.773
0.736
0.709
0.681
0.655
0.618
0.595
0.587
0.582
0.572
0.563

- 7.9
-11.7
-15.3
-18.6
-21.7
-27.3
-32.0
-35.8
-39.2
-41.9
-44.9
-47.3
-51.9
-56.7
-59.0
-61.3
-65.6
-69.9

5.11

Siemens

5.12

467

BFP81

f

8 11

GHz

MAG

ANG

0.921
0.904
0.880
0.854
0.827
0.798
0.761
0.733
0.712
0.699
0.697
0.694
0.681
0.682
0.681
0.679
0.685
0.691

- 25.8
- 38.1
- 49.6
- 60.4
- 70.0
- 87.7
-102.9
-115.5
-126.4
-135.2
-143.1
-151.3
-164.8
-175.6
179.9
174.9
166.5
158.7 .

468

50

n

VCE =

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00·
1.20
1.40
1.50
1.60
1.80
2.00

1 V,

~ =

Ic = 2 rnA,

~1

MAG
6.99
6.76
6.44
6.11
5.71
5.09
4.50
3.99
3.58
3.21
2.95
2.70
2.30
2.00
1.89
1.78
1.60
1.45

~2

812

ANG
162.9
154.8
147.2
140.1
133.8
123.5
114.1
106.4
99.5
93.6
88.5
83.2
74.1
66.4
62.9
59.1
52.0
45.5

Siemens

MAG
0.038
0.055
0.070
0.083
0.094
0.111
0.122
0.129
0.134
0.139
0.142
0.142
0.142
0.142
0.140
0.139
0.137
0.133

ANG
75.5
68.6
62.3
56.5
51.5
42.5
35.6
30.2
26.0
22.4
18.7
15.7
11.5
8.0
6.6
5.7
3.9
2.3

MAG

ANG

0.968
0.938
0.901
0.861
0.820
0.747
0.681
0.630
0.589
0.559
0.532
0.507
0.474
0.455
0.447
0.444
0.438
0.432

-12.0
-17.4
-22.4
-26.8
-30.5
-37.1
-41.8
-45.5
-48.3
-50.6
-53.3
-55.5
-59.3
-63.4
-65.4
-67.3
-71.0
-75.0

BFP81

Ic

=

2 mA, VCE

=

3 V,

Zo =

50

n

f

5 11

GHz

MAG

5 12

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.930
0.914
0.896
0.873
0.848
0.821
0.781
0.752
0.725
0.709
0.705
0.698
0.679
0.677
0.675
0.673
0.675
0.680
0.717
0.728

- 22.1
- 32.8
- 43.0
- 52.6
- 61.4
- 78.0
- 92.8
-105.5
-116.7
-125.7
-134.0
-142.8
-157.3
-169.1
-174.1
-179.3
171.7
163.2
146.0
130.5

7.00
6.83
6.59
6.32
5.98
5.44
4.91
4.41
4.00
3.61
3.34
3.08
2.64
2.31
2.17
2.06
1.84
1.67
1.33
1.10

165.2
158.0
151.2
144.7
138.8
129.0
119.8
112.0
105.1
99.2
94.0
88.6
79.4
71.5
68.1
64.3
57.2
50.7
36.3
22.6

0.027
0.039
0.050
0.060
0.068
0.083
0.092
0.099
0.104
0.108
0.111
0.112
0.113
0.113
0.112
0.111
0.109
0.106
0.100
0.097

77.8
71.7
66.1
60.9
56.3
47.9
41.0
35.7
31.3
27.8
24.0
20.9
16.7
13.4
11.9
11.2
9.8
8.6
10.1
14.3

0.979
0.959
0.933
0.905
0.876
0.819
0.765
0.721
0.685
0.659
0.633
0.610
0.578
0.559
0.551
0.547
0.540
0.532
0.523
0.533

- 8.6
-12.5
-16.2
-19.5
-22.4
-27.5
-31.3
-34.3
-36.6
-38.5
-40.6
-42.5
-45.5
-49.0
-50.6
-52.2
-55.5
-58.9
-70.2
-80.1

8.21

Siemens

8.22

469

BFP81

Ic = 5 mA,

VCE

= 3 V, Zo = 50 Q

f

S"

~Hz

MAG

ANG

8.2,
MAG

ANG

MAG

ANG

8.22
MAG.

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.844
0.814
0.780
0.747
0.717
0.706
0.670
0.650
0.635
0.626
0.637
0.638
0.631
0.639
0.639
0.639
0.644
0.651
0.692
0.704

- 35.5
- 51.6
- 66.0
- 78.6
- 88:9
-107.8
-123.0
-134.7
-144.3
-151.6
-158.1
-165.5
-177.2
173.6
169.7
165.3
157.9
151.1
137.3
123.8

15.15
14.18
13.04
11.92
10.78
9.23
7.86
6.79
5.97
5.28
4.81
4.38
3.68
3.18
2.99
2.82
2.51
2.26
1.80
1.49

157.5
147.7
139.0
131.4
125.3
115.8
107.3
100.6
95.0
90.4
86.3
81.9
74.5
68.2
65.2
62.0
55.9
50.3
37.9
25.5

0.025
0.035
0.043
0.049
0.054
0.061
0.065
0.068
0.071
0.074
0.076
0.076
0.079
0.082
0.083
0.084
0.087
0.090
0.098
0.109

71.7
64.0
57.5
52.2
48.3
40.3
36.1
33.5
32.1
31.0
28.7
27.9
28.0
27.3
27.8
28.3
28.9
29.5
31.5
32.5

0.938
0.885
0.825
0.767
0.717
0.633
0.565
0.519
0.487
0.466
0.444
0.424
0.400
0.386
0.381
0.379
0.376
0.371
0.365
0.377

-15.4
-21.6
-26.8
-30.8
-33.8
-39.3
-41.8
-43.5
-44.7
-45.9
-47.8
-48.8
-50.9
-54.0
-55.3
-56.8
-59.7
-63.0
-74.6
-84.3

470

S'2

Siemens

BFP81

Ic

=

2 rnA, VCE = 6 V.

2D =

50

n
~,

~2

f

8"

GHz

MAG

ANG

MAG

ANG

MAG

8 ,2

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.935
0.922
0.903
0.881
0.857
0.830
0.790
0.759
0.731
0.712
0.706
0.700
0.679
0.673
0.670
0.668
0.670
0.674
0.709
0.719

- 20.7
- 30.7
- 40.3
- 49.5
- 57.9
- 74.0
- 88.5
-101.1
-112.2
-121.6
-129.9
-138.8
-153.7
-166.0
-171.0
-176.4
174.2
165.4
147.6
131.6

6.91
6.77
6.56
6.33
6.02
5.53
5.01
4.53
4.13
3.74
3.47
3.21
2.76
2.41
2.27
2.15
1.93
1.75
1.40
1.16

166.0
159.3
152.7
146.5
140.7
131.1
122.1
114.3
107.4
101.4
96.2
90.8
81.4
73.6
70.0
66.2
59.1
52.7
38.2
24.4

0.022
0.032
0.042
0.050
0.058
0.070
0.079
0.085
0.090
0.094
0.097
0.098
0.099
0.099
0.098
0.097
0.096
0.093
0.088
0.086

78.6
72.7
67.7
62.8
58.3
50.1
43.4
38.1
33.8
30.2
26.6
23.4
19.2
16.0
14.6
14.0
12.9
12.0
14.3
19.9

0.983
0.967
0.945
0.922
0.897
0.849
0.802
0.763
0.731
0.707
0.684
0.662
0.632
0.614
0.607
0.603
0.596
0.589
0.577
0.585

- 7.2
-10.6
-13.7
-16.6
-19.0
-23.5
-26.8
-29.4
-31.6
-33.3
-35.3
-36.9
-39.8
-43.0
-44.5
-46.0
-49.0
-52.2
-62.6
-72.0

5", Sz, = f (f)

St2. $", = f (f)

Ic = 2 mA, VCE = 6 V, Zo = 50 n

Ic =2 mA, VCE = 6 V, Zo = 50 n

+j50

90·

160·

-j50

0

-90·

Siemens

471

BFP81

= 6 V, Zo = 50 n

Ic = 5 rnA,

VCE

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.859
0.829
0.794
0.762
0.728
0.713
0.672
0.647
0.628
0.618
0.626
0.626
0.618
0.626
0.623
0.626
0.629
0.636
0.676
0.689

- 32.4
- 47.4
- 60.8
- 72.9
- 82.9
-101.8
-117.2
-129.2
-139.1
-146.6
-153.7
-161.3
-173.6
176.6
172.6
168.1
160.3
153.3
139.0
125.1

14.96
14.12
13.11
12.08
11.00
9.53
8.18
7.11
6.26
5.55
5.07
4.62
3.89
3.38
3.17
2.99
2.66
2.40
1.91
1.58

159.0
149.7
141.3
133.9
127.7
118.2
109.5
102.7
96.9
92.3
88.1
83.6
76.0
69.6
66.6
63.4
57.3
51.8
39.1
26.5

0.021
0.029
0.036
0.042
0.047
0.054
0.057
0.060
0.063
0.066
0.068
0.068
0.070
0.073
0.073
0.074
0.078
0.080
0.088
0.099

73.3
65.9
59.8
54.5
50.6
42.8
38.4
35.7
34.3
32.9
30.6
29.8
30.0
29.4
29.8
30.5
31.4
32.2
35.0
36.5

0.951
0.907
0.855
0.806
0.761
0.685
0.624
0.581
0.551
0.532
0.511
0.492
0.469
0.456
0.451
0.448
0.445
0.441
0.431
0.440

-12.6
-17.9
-22.3
-25.7
-28.1
-32.8
-34.8
-36.3
-37.3
-38.3
-39.9
-40.7
-42.6
-45.4
-46.5
-47.9
-50.6
-53.6
-63.9
-73.1

~2

5.!1

5.!2

=

S". s", = f (f)
Ic=SrnA, VcE =6V,Zo=Son

S,2, 8" f (f)
Ic= S rnA, VCE = 6 V, Zo= son

o

1800

-j50

472

_90·

Siemens

BFP 81

Ic

=

10 rnA,

VCE =

20 = 50 Q

6 V,

~2

f

8

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.764
0.724
0.685
0.653
0.626
0.638
0.607
0.594
0.584
0.578
0.595
0.600
0.598
0.610
0.610
0.611
0.615
0.623
0.668
0.680

- 47.7
- 67.5
- 84.0
- 97.2
-107.2
-125.6
-139.8
-150.0
-157.9
-163.4
-168.9
-175.4
174.5
166.6
163.2
159.1
152.5
146.5
134.2
121.5

24.13
21.53
18.95
16.67
14.62
12.14
10.06
8.55
7.42
6.52
5.92
5.36
4.48
3.88
3.63
3.42
3.03
2.73
2.17
1.80

150.6
139.2
129.9
122.5
116.8
108.4
100.8
95.1
90.3
86.6
83.0
79.1
72.7
67.1
64.3
61.4
55.8
50.7
39.2
27.3

0.019
0.025
0.030
0.033
0.036
0.040
0.042
0.045
0.048
0.051
0.053
0.054
0.059
0.064
0.066
0.069
0.074
0.079
0.093
0.107

67.6
59.2
53.4
49.6
47.1
40.6
39.7
40.0
40.7
40.7
39.1
40.0
42.2
41.9
42.8
43.7
44.3
44.4
44.8
43.6

0.893
0.812
0.736
0.670
0.622
0.542
0.486
0.455
0.434
0.423
0.406
0.391
0.376
0.366
0.364
0.363
0.363
0.360
0.352
0.362

-18.9
-25.3
-29.8
-32.5
-34.1
-38.0
-38.1
-38.3
-38.4
-39.2
-40.7
-41.2
-42.8
-45.6
-46.6
-48.0
-50.9
-54.0
-64.9
-74.3

~,

"

8 '2

5, .. 5z2 = f (f)
Ie = 10 mA, VeE = 6 V, Zo = 50 n

5,2, $." = f (f)
Ie = 10 mA, VeE = 6 V, Zo = 50 n

+j50

180·

_90·

-j50

Siemens

473

BFP81

Ic = 20 rnA,

VCE

= 6 V. Zo = 50

f

8"

GHz

MAG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.660
0.626
0.599
0.582
0.565
0.606
0.586
0.578
0.571
0.568
0.588
0.595
0.597
0.612
0.612
0.612
0.617
0.624
0.670
0.683

Q

ANG

8:1,
MAG

ANG

MAG

ANG

MAG

ANG

- 69.0
- 92.6
-109.8
-122.2
-130.5
-146.0
-157.5
-165.4
-171.4
-175.4
-179.5
175.1
166.7
160.0
156.9
153.4
147.4
142.0
131.1
119.0

33.24
27.53
22.90
19.35
16.52
13.34
10.84
9.10
7.84
6.86
6.20
5.59
4.66
4.03
3.77
3.55
3.14
2.83
2.25
1.86

140.5
127.9
118.9
112.3
107.7
100.5
94.1
89.4
85.4
82.3
79.2
75.6
69.8
64.8
62.1
59.3
54.0
49.2
38.1
26.4

0.016
0.020
0.023
0.025
0.028
0.030
0.033
0.036
0.039
0.043
0.046
0.047
0.054
0.060
0.063
0.066
0.073
0.080
0.096
0.112

61.4
53.9
49.7
48.1
47.8
43.4
46.0
48.0
49.9
49.9
48.5
50.4
52.4
51.7
52.4
53.0
52.8
52.2
50.6
47.9

0.803
0.690
0.604
0.543
0.505
0.436
0.398
0.379
0.369
0.365
0.351
0.341
0.333
0.326
0.325
0.326
0.328
0.327
0.320
0.331

-25.2
-31.0
-34.0
-35.0
-35.2
-37.6
-35.9
-35.3
-35.2
-36.2
-37.8
-38.1
-39.9
-43.0
-44.2
-45.7
-48.9
-52.3
-63.9
-73.7

=

s", s"" f (f)
Ie = 20 mA, VeE = 6 V,

8 '2

8:12

S,2, 5" = f (f)
Ie = 20 mA, VeE = 6 V, Zo =

Za = son

son

90·

o

180·

_90·

-j50

474

Siemens

BFP81

Ic = 2 mA,

VCE =

10 V, Zo

=

50

n
~,

~2

f

S"

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.940
0.927
0.910
0.889
0.864
0.838
0.797
0.764
0.735
0.714
0.710
0.699
0.676
0.671
0.666
0.663
0.664
0.668
0.701
0.715

- 19.8
- 29.5
- 38.7
- 47.5
- 55.8
- 71.5
- 85.8
- 98.2
-109.3
-118.6
-127.2
-136.3
-151.3
-163.8
-168.9
-174.5
175.9
166.8
148.8
132.6

6.80
6.66
6.47
6.27
5.97
5.51
5.01
4.55
4.16
3.77
3.51
3.25
2.80
2.46
2.31
2.19
1.97
1.79
1.43
1.18

166.5
159.9
153.6
147.5
141.8
132.4
123.3
115.6
108.6
102.7
97.5
92.0
82.6
74.7
71.1
67.3
60.1
53.7
39.0
25.3

0.020
0.029
0.038
0.046
0.053
0.065
0.073
0.080
0.084
0.088
0.091
0.092
0.093
0.094
0.092
0.091
0.090
0.088
0.083
0.082

79.0
73.5
68.4
63.7
59.4
51.4
44.7
39.4
35.0
31.5
27.9
24.8
20.6
17.3
16.0
15.4
14.2
13.4
16.1
21.8

0.985
0.971
0.952
0.930
0.908
0.864
0.820
0.785
0.754
0.731
0.709
0.689
0.659
0.642
0.634
0.630
0.624
0.616
0.604
0.611

- 6.6
- 9.7
-12.5
-15.2
-17.4
-21.6
-24.8
-27.3
-29.3
-31.0
-32.8
-34.3
-37.1
-40.2
-41.7
-43.1
-45.9
-49.0
-58.9
-67.9

S'2

5'2. 5", = f (f)
Ic =2 mA, VCE = 10V, Zo=50

511 , 522 = f (f)
Ic=2 mA, VCE = 10V, Zo = 50[1
+j50

90 0

- j 50

-900

Siemens

[1

475

BFP81

Ic = 5 mAo VCE = 10 V,

Zo = 50 Q
~1

~2

8 12

f

5.1

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.873
0.844
0.809
0.775
0.742
0.720
0.675
0.647
0.626
0.613
0.621
0.619
0.608
0.615
0.613
0.613
0.617
0.623
0.665
0.679

- 30.5
- 44.7
- 57.6
- 69.2
- 79.1
- 97.6
-113.0
-125.3
-135.3
-143.2
-150.4
-158.4
-171.1
179.0
174.7
170.0
162.1
154.9
140.1
126.1

14.61
13.87
12.94
11.99
10.97
9.57
8.27
7.20
6.36
5.65
5.17
4.72
3.98
3.45
3.24
3.06
2.72
2.46
1.96
1.62

159.9
150.9
142.7
135.4
129.3
119.8
111.0
104.1
98.3
93.5
89.3
84.6
77.0
70.5
67.5
64.2
58.1
52.5
39.8
27.1

0.019
0.027
0.034
0.039
0.044
0.051
0.055
0.058
0.060
0.063
0.065
0.065
0.067
0.070
0.071
0.071
0.074
0.077
0.084
0.094

74.1
67.1
61.0
56.0
52.0
44.3
39.7
36.8
35.2
33.9
31.6
30.7
30.6
30.0
30.3
31.2
32.0
32.7
35.9
37.6

0.956
0.917
0.871
0.825
0.785
0.714
0.654
0.613
0.584
0.565
0.545
0.526
0.504
0.490
0.485
0.483
0.480
0.474
0.463
0.472

-11.4
-16.1
-20.2
-23.3
-25.6
-30.0
-32.0
-33.3
-34.3
-35.3
-36.7
-37.5
-39.4
-42.0
-43.1
-44.4
-47.0
-49.8
-59.5
--68.2

S,2. 5.>, = f (f)

s". 5.>2 = f (f)

Ie = 5 rnA, VeE = 1011, Zo= 50 Q

Ie = 5 rnA, VeE = 1011, Zo=50Q

90·

o

160·

-90·

-j50

476

Siemens

BFP 81

Ic=10mA, VCE=10V,Zo=50Q
~,

~2

f

S"

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.794
0.750
0.707
0.670
0.637
0.640
0.606
0.586
0.574
0.567
0.584
0.585
0.583
0.594
0.594
0.594
0.598
0.607
0.652
0.665

- 43.8
- 62.4
- 78.1
- 91.2
-101.2
-120.1
-134.5
-145.2
-153.6
-159.5
-165.2
-172.2
177.3
168.9
165.3
161.1
154.4
148.0
135.2
122.4

23.34
21.08
18.73
16.61
14.65
12.26
10.22
8.70
7.56
6.66
6.05
5.48
4.58
3.97
3.72
3.50
3.11
2.80
2.23
1.85

152.3
141.1
132.0
124.5
118.7
110.1
102.3
96.4
91.5
87.7
84.1
80.1
73.5
67.8
65.0
62.1
56.4
51.3
39.7
27.7

0.018
0.024
0.029
0.032
0.035
0.039
0.042
0.044
0,046
0.050
0.052
0.053
0.057
0.062
0.064
0.066
0.072
0.076
0.089
0.103

69.0
60.8
55.0
50.9
48.3
41.9
40.5
40.2
40.8
40.8
39.3
40.0
41.9
41.8
42.6
43.6
44.3
44.5
45.0
44.2

0.907
0.835
0.764
0.703
0.657
0.579
0.526
0.493
0.472
0.461
0.445
0.430
0.415
0.405
0.402
0.401
0.401
0.397
0.387
0.396

-16.8
-22.6
-26.8
-29.4
-31.0
-34.5
-34.8
-34.9
-35.0
-35.8
-37.2
-37.7
-39.1
-41.7
-42.7
-44.0
-46.7
-49.7
. -59.7
-68.7

S'2

5 ,2• 5", = f (f)
Ic = 10 mA, VCE = 10V,Zo=50n

5 11 , Sz, = f (f)
Ic=10mA, VcE=10v,Zo=50n

1800

-j50

-90 0

Siemens

477

BFP81

Ic = 20 mA,

VCE

= 10 V, Zo = 50 n
~2

f

5 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.707
0.658
0.619
0.592
0.570
0.597
0.572
0.562
0.553
0.549
0.570
0.575
0.575
0.591
0.590
0.591
0.596
0.604
0.649
0.665

- 61.6
- 84.0
-101.2
-113.9
-122.7
-139.7
-152.0
-160.7
-167.1
-171.5
-176.2
178.1
169.2
162.1
158.8
155.2
149.1
143.7
132.2
120.1

31.92
26.93
22.66
19.30
16.56
13.46
10.96
9.22
7.95
6.97
6.31
5.70
4.75
4.11
3.84
3.61
3.21
2.88
2.29
1.89

142.9
130.5
121.3
114.4
109.6
102.1
95.4
90.5
86.5
83.2
80.0
. 76.3
70.4
65.2
62.6
59.7
54.4
49.5
38.3
26.5

0.016
0.020
0.023
0.025
0.028
0.030
0.033
0.036
0.039
0.043
0.045
0.047
0.053
0.059
0.061
0.065
0.071
0.077
0.092
0.107

63.1
55~ 1
50.7
48.6
47.9
43.4
45.3
47.1
48.9
49.0
47.7
49.3
51.4
50.9
51.6
52.2
52.0
51.5
50.4
47.8

0.830
0.728
0.646
0.587
0.549
0.480
0.442
0.423
0.413
0.408
0.394
0.384
0.376
0.369
0.368
0.368
0.370
0.368
0.358
0.369

-22.1
-27.6
-30.4
-31.6
-31.8
-34.0
-32.5
-32.0
-31.9
-32.9
-34.3
-34.6
-36.2
-39.2
-40.3
-41.7
-44.7
-47.8
-58.5
-67.8

8.21

8.22

S,2' 5", =f If)
Ic = 20 mA, VCE = lOll, Zo=50 0

5 11 , 5,,2 = f If)
Ic =20 mA, VCE = 10V, Zo = 500
+j50

0.1-~~~

o

1800

-j50

478

-90 0

Siemens

NPN Silicon RF Transistor

BFP93A

• For broadband amplifiers and oscillators up to 2 GHz at
collector currents from 5 to 30 mA.
~

BIlME

CECC-type in preparation: CECC 50002/ ...

E~C

ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

BFP93A

FE

Q 62702 - F1144

SOT-143

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

VCEO

12

V

Collector-base voltage

Vceo

15

V

Emitter-base voltage

VEeo

2

V

Col/ector current

Ic

50

rnA

Ie

6

rnA

Ptot

280

rnW

7j

150

°C

Ambient temperature range

TA

-65 ... +150

°C

Storage temperature range

Tstg

-65 ... +150

°C

Base current
Total power dissipation, TA $ 25

°C2 )

Junction temperature

Thermal Resistance

RthJA

Junction - ambient 1)

1$450

KIW

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

Siemens

479

BFP93A

Electrical Characteristics
at TA = 25 cC, unless otherwise specified.
DC characteristics
Parameter

Unit

min

Values
typ

max

Symbol

Collector-emitter breakdown voltage
Ic=1 mA,/B=O

\l(BR)CEO

12

-

-

V

Collector-base cutoff current
VCB = 5 \I, IE = 0

ICBO

-

-

50

nA

Emitter-base cutoff current

lEBO

-

-

10

IIA

DC current gain
Ic = 30 mA, VCE = 5 V

hroE

40

90

250

-

Collector-emitter saturation voltage
Ic= 50 mA, I B =5mA

VCEsat

-

0.13

0.4

V

VEB=2\1,/c=0

480

Siemens

BFP93A

AC characteristics
Symbol

Parameter

min

Values
typ

max

Unit

Transition frequency
Ic = 30 rnA, VCE = 5 V, f= 200 MHz

fT

-

5.5

-

GHz

Collector-base capacitance
Vcs = 10V, VSE = Voe = 0, f= 1 MHz

Ceo

-

0.47

-

pF

Collector-emitter capacitance
VCE = 10V, VSE = Voe = 0,(= 1 MHz

Cce

-

0.34

-

pF

Input capacitance
VES = 0.5 v,/c = ic = 0, f= 1 MHz

c'oo

-

2.2

-

pF

Output capacitance
VCE = 10 V, VSE = Voe = 0, f= 1 MHz

Coos

-

0.8

-

pF

Noise figure
Ic= 5 rnA, VCE = 8V, f= 10 MHz, Zs = 50 Q
le= 5 rnA, VeE = 8 V, f= 800 MHz, Zs = Zsopt
Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = ZSopt

F

-

1.1
1.7
2.6

Power gain
Ie = 30 rnA, VCE = 8 V, f= 800 MHz,
Zs = Zsopt. ZL = ZLOPt

Gpe

-

16.5

-

dB

Transducer gain
Ic=30mA, VcE =8V, f= 1 GHz,ZQ=50Q

l~lel2

-

13.4

-

dB

Linear output voltage
two-tone intermodulation test
Ic = 30 rnA, VCE =8 V, oiM = 60 dB
fl = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 Q

Vol = V02

-

280

-

mV

Third order intercept point
Ic = 30 rnA, VCE = 8 V, f= 800 MHz

IP3

-

32

-

dBm

Siemens

dB

481

BFP93A

Total power dissipation p.o. = f (TAl
Package mounted on alumina

Transition frequency fT = f (Ic)
VCE = 5 V, f= 200 MHz

rnW
400

GHz
6

I -' Plot

1 300

/

4

\

1\

200

I\.
1\

2

-

/

3

\

V

./

",

I

I

100

\

1\

1'\
100

50

Is0

10

0(

20

30

40

-Ie

Collector-base capacitance Ceb = f (Vca)
VSE = Vbe=O, f=1 MHz

pF

1

\

\

0.5

"-

-:---

r-

10

20 V

-liB
482

Siemens

50 rnA

BFP93A

Common Emitter Noise Parameters
Ie = 5 rnA, VeE = 8 V. Zo = 50 il
f

Fmin

Gp

GHz

dB

dB

0.01
0.8

0.8
1.7

-

T opt

(Fmin)

MAG

(Zs = 150 il)
1124
0.26

13.5

Ie = 30 rnA, VeE = 8 V.

JANG

RN

N

FSOQ

Gp (Fson>

il

dB

dB

-

-

1.1

-

8.3

0.199

1.8

13

Zo = 50 il

f

Fmin

Gp

GHz

dB

dB

MAG

0.01
0.8

2.0
2.6

-

(Zs = 100 il)
0.2
1156

Topt

(Fmin)

15.5

lANG

RN

N

FSOQ

Gp (Fson>

il

-

dB

dB

-

0.31

2.15
2.85

-

10.9

15

Noise figure F= f (lei
VCE=8\1, f= 10 MHz

dB

3
F

t

1;'1--'

2

?s=SOQ\ ';I;'r-"
~

,

I::::

I/t/

~

1\

Zsopt

V
./

10

20

30 mA

-Ie

Siemens

483

BFP93A

Noise figure F = f (Iel
VCE = 8 V, f= 800 MHz, ZLopt (G)

Circles of constant noise figure F = f (Zs)
and available power gain Gav = f (Zs)
Ie = 5 rnA, VeE = 8 V, f= 800 MHz

dB
3

+jSO

Zs=SOQ
F

0

t
r;::v

Y

V

vi-'"

~/ Zs opt

"I:: . . .

-jSO

o

o

10

20
-Ie

Circles of constant noise figure F = f (Zs)
and available power gain Gav = f (Zs)
Ie = 30 rnA, VCE = 8 V, f= 800 MHz

-jSO

484

Siemens

30 rnA

BFP93A

Common Emitter Power Gain
Power gain Gms• 15",.1 2 = f (Iel
VCE = 8V, f= 200 MHz, Zo = 50 Q

Power gain Gms• 15",.1 2 =f (lc)
VCE = 8 V, f= 500 MHz, Zo = 50 Q
dB
30

dB
30
I--- 6ms

1/

V
./

i--'

~~ I

S21.1 2

,

6ms ---

~

V

7

7
IS21_1 2
J-,k::: --7
I

10

10

o

-ls

IsUi 1--

6 ms = S210

21'1m'-I SUjl_

(j

o

10

20

I

40 rnA

30

10

Power gain Gma• Gms• 15",.1 2 = f (Iel

20

40 rnA

30

Power gain Gma • 15",.12 = f (Iel
VCE = 8 V, f = 1.5 GHz, Zo = 50 Q

VCE = 8 V, f=800 MHz, 20 =50 Q

dB
30

dB
30
6m•
6ms

~~

·=I

6m

S21-I·[k_
S12_

A2_1')

-

IS2101 2

t

6 ms
20 I--- .;>i--

6 ma I---

I

I

6 m•

~

V

.....

IS2101 2

7

I

I

10 -[

I--- I--

10

I

I

-I

21-1
I---I--- (jms- -S
S12_
I---

-

~

-

-

S120

20

,.
IS21_1

/

6 m• ~IS21_1'[k -Jk 2-1') 10

/ ' I--

-

-

30

40 rnA

Siemens

10

20

30

40 rnA

485

BFP93A

Power gain Gma , Gms , 1~1e12 = f (f)
Ie = 10mA, VeE=8V,~=500

Power gain Gma , Gms, 1~1e12 = f (f)
Ic = 5 mA, VcE =8V, ~ = 50 0

dB

dB

30

30

f'.-.

~

"- ~ms

I--..

........

I'..

f---IS21,1 2

_I S21.1 2

,
...

10

\

-I

6 ms- -S21',
S12,

\

,
'\.

\

'\ \6ma
10

~

'\ \.

\
2

0.5

\

IS12.

f- 6ms = S21',

_

0.1

.....

~ma

6m'=I~I'(k-Jk2 -1')
o

"

" ""-

........

~

I

~ms

I-

o

3 GHz

.

"\

6ma = IS21·I·(k-!k2_1')
S12e

0.1

-f

Power gain Gma , Gms , 1~1eI2=f(f)
Ie =30 mA, VCE = 8 V, Zo= 50 0

Power gain Gma , Gms , 1~1.12 = f (f)
Ic= 20 mA, VCE = 8 V, Zo= 500

dB
30

dB

,,,,-

30

II

"\.. "\.. ,,6ms
I

6ma
6ms
IS21l

'\.

- ls21i

t

1"\. . . .
'\.

I

"

6ms

IS21.\2 '\. "-

,;

20

'\

\ \ 6ma -

\

10

I

12.

I

I-

I I I I II

2

0.5

3 GHz

o0.1

Siemens

\

6ma=I~I'(k-N-l')
I

S12. ,

II

0.5

2
-f

-f

486

.

f- 6ms = IS21·1
IS12.

'\

lI- 6m'=1~21'1'(k_&:1)

6ma -

\\
\
\ '\

10

\ '\

I- 6ms =IS21'I
S12,

o0.1

3 GHz

2

0.5

-f

3 GHz

BFP93A

Common Emitter S Parameters
Ic = 10 rnA, VCE = 3 V. Zo = 50 n
~2

512

~1

f

5 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.669
0.638
0.619
0.606
0.613
0.636
0.619
0.609
0.602
0.604
0.627
0.631
0.632
0.641
0.641
0.647
0.653
0.664
0.708
0.721

- 66.5
- 89.6
-106.6
-118.7
-127.6
-145.7
-157.9
-166.3
-172.9
-177.0
177.4
171.4
162.5
155.3
151.4
148.3
141.4
136.0
123.4
111.6

21.87
18.34
15.41
13.08
11.38
9.21
7.51
6.31
5.43
4.78
4.31
3.89
3.24
2.80
2.62
2.47
2.20
1.97
1.57
1.29

142.0
129.5
120.3
113.8
109.3
100.5
93.5
88.1
83.6
80.1
76.4
72.4
65.9
60.2
57.3
54.2
48.4
42.9
31.1
18.7

0.027
0.034
0.039
0.043
0.047
0.050
0.051
0.054
0.059
0.065
0.066
0.067
0.075
0.082
0.085
0.089
0.097
0.105
0.124
0.144

61.1
52.6
47.7
44.6
41.5
36.3
37.3
39.0
40.8
40.3
38.2
40.3
43.1
42.7
43.8
44.2
44.2
43.9
42.9
40.4

0.820
0.705
0.612
0.546
0.502
0.412
0.359
0.330
0.314
0.308
0.292
0.278
0.268
0.262
0.261
0.264
0.267
0.267
0.275
0.301

- 28.4
- 36.3
- 41.2
- 44.3
- 47.1
- 51.8
- 52.1
- 52.2
- 52.5
- 54.1
- 57.0
- 57.7
- 60.6
- 65.8
- 67.4
- 69.6
- 73.9
- 78.7
- 95.3
-107.7

Siemens

487

BFP93A

Ic = 30 mA,

VCE =

3 V,

Zo

=

50

n

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.527
0.536
0.543
0.548
0.570
0.616
0.603
0.596
0.590
0.592
0.620
0.625
0.626
0.637
0.637
0.645
0.647
0.658
0.706
0.717

-104.9
-126.7
-139.7
-147.4
-152.2
-165.9
-174.8
179.3
175.0
172.6
168.4
163.1
155.9
149.7
146.3
143.4
137.3
132.7
121.1
109.8

32.22
24.42
19.32
15.85
13.55
10.71
8.60
7.16
6.14
5.38
4.85
4.37
3.62
3.13
2.93
2.75
2.45
2.19
1.75
1.44

127.4
115.7
108.3
103.6
100.5
93.4
87.8
83.5
79.9
77.1
73.8
70.3
64.6
59.5
56.7
54.0
48.5
43.4
32.3
20.5

0.019
0.023
0.027
0.030
0.034
0.035
0.039
0.044
0.051
0.058
0.059
0.062
0.074
0.083
0.088
0.093
0.103
0.112
0.134
0.155

55.0
50.7
50.1
49.5
47.2
46.0
51.1
54.4
55.8
53.6
52.0
54.6
55.7
53.7
54.2
53.9
52.4
50.6
47.0
42.5

0.636
0.498
0.412
0.362
0.333
0.255
0.214
0.196
0.189
0.190
0.178
0.165
0.161
0.160
0.160
0.164
0.170
0.174
0.193
0.222

- 43.7
- 51.3
- 55.1
- 57.4
- 60.9
- 67.8
- 66.9
- 66.2
- 66.1
- 68.6
- 74.0
- 74.7
- 77.8
- 84.9
- 86.3
- 88.3
- 92.6
- 98.0
-116.0
-126.6

488

8 12

5.21

Siemens

5.22

BFP93A

Ic = 10 rnA,

VCE =

Zo = 50 Q

5 V,

f

Bt1

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.686
0.649
0.624
0.606
0.611
0.628
0.608
0.597
0.588
0.591
0.614
0.617
0.618
0.627
0.628
0.635
0.638
0.650
0.698
0.710

- 62.1
- 84.6
-101.6
-113.9
-123.2
-142.1
-154.7
-163.6
-170.5
-174.8
179.4
173.0
163.9
156.4
152.4
149.4
142.4
136.8
124.2
112.0

21.91
18.59
15.74
13.44
11.73
9.54
7.80
6.56
5.65
4.97
4.50
4.06
3.38
2.92
2.73
2.57
2.29
2.06
1.63
1.35

143.6
131.2
121.9
115.3
110.7
101.8
94.6
89.2
84.6
81.0
77.3
73.3
66.8
61.0
58.1
55.1
49.3
43.7
31.8
19.4

0.025
0.032
0.037
0.041
0.045
0.048
0.050
0.053
0.057
0.063
0.064
0.065
0.072
0.079
0.082
0.086
0.094
0.100
0.120
0.139

62.5
54.0
49.1
45.7
42.6
37.3
37.9
39.5
41.1
40.7
38.7
40.6
43.4
43.1
44.3
44.7
44.9
44.6
43.8
41.6

0.838
0.730
0.641
0.577
0.533
0.443
0.390
0.362
0.346
0.339
0.322
0.308
0.298
0.291
0.290
0.292
0.294
0.294
0.295
0.317

-25.8
-33.1
-37.6
-40.4
-43.0
-47.1
-47.2
-47.1
-47.2
-48.7
-51.3
-51.7
-54.3
-59.0
-£0.6
-£2.6
-£6.8
-71.2
-86.9
-99.3

$12

S:!1

S:!2

=

S,2, S:!, f (f)
le=10mA, VeE=5V,Zo=50n

S",~=f(f)

le= 10 rnA, VeE = 5 V, 20= 50 n

90·

o

180·

-j50

-900

Siemens

489

BFP93A

Ic = 30 rnA,

VCE =

5 V, Zo = 50 Q

8,2

f

$11

GHz

MAG

ANG

Szl
MAG

ANG

MAG

ANG

Sz2
MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.544
0.536
0.533
0.534
0.554
0.596
0.581
0.573
0.566
0.570
0.598
0.603
0.603
0.615
0.616
0.622
0.625
0.640
0.687
0.700

- 95.7
-118.5
-132.7
-141.3
-147.0
-162.1
-171.7
-178.1
177.2
174.8
170.2
164.8
157.3
151.0
147.4
144.6
138.5
133.5
121.8
110.4

32.88
25.24
20.09
16.54
14.17
11.25
9.04
7.53
6.45
5.66
5.11
4.61
3.82
3.30
3.08
2.90
2.58
2.31
1.84
1.52

129.4
117.5
109.9
105.0
101.8
94.5
88.7
84.3
80.7
77.8
74.5
71.0
65.2
60.2
57.4
54.7
49.3
44.1
32.9
21.1

0.019
0.023
0.026
0.030
0.033
0.035
0.038
0.043
0.050
0.057
0.058
0.061
0.072
0.081
0.085
0.090
0.100
0.109
0.130
0.150

56.3
51.3
50.3
49.7
47.3
45.8
50.4
53.7
55.2
53.3
51.7
54.1
55.4
53.5
54.1
53.8
52.3
50.8
47.3
43.0

0.667
0.532
0.445
0.394
0.363
0.283
0.242
0.225
0.218
0.218
0.203
0.191
0.186
0.182
0.182
0.185
0.19Q
0.191
0.200
0.225

- 39.4
- 46.3
- 49.4
- 51.3
- 54.1
- 59.1
- 57.3
- 56.1
- 55.7
- 58.2
- 62.4
- 62.4
- 64.9
- 71.1
- 72.4
- 74.6
- 79.0
- 84.1
-102.2
-113.9

~,,~=f(f)

~2'

Ic =30 rnA, VCE = 5 V, Zo = 50 n

S:!, = f (f)

Ic = 30 rnA,

VCE

= 5 V, Zo = 50 n

o

180·

-90·

490

Siemens

BFP93A

Ic = 5 mAo

VCE =

f

8 11

GHz

MAG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.811
0.771
0.735
0.703
0.691
0.679
0.649
0.631
0.618
0.617
0.633
0.633
0.631
0.636
0.637
0.644
0.647
0.658
0.704
0.720

8 V.

Zo =

50

n
~,

~2

8 '2

ANG

MAG

ANG

MAG

ANG

MAG

ANG

- 43.1
- 61.5
- 77.3
- 90.2
-100.7
-121.1
-135.9
-147.1
-156.0
-162.2
-169.4
-176.7
172.4
163.5
159.0
155.4
147.7
141.2
127.1
114.2

13.94
12.68
11.34
10.09
9.03
7.58
6.35
5.41
4.71
4.17
3.78
3.43
2.86
2.48
2.32
2.19
1.95
1.75
1.39
1.14

152.9
141.8
132.5
125.2
119.6
109.4
101.0
94.5
89.0
84.6
80.3
75.8
68.3
61.9
58.6
55.4
49.1
43.2
30.3
17.6

0.027
0.037
0.045
0.051
0.056
0.061
0.063
0.066
0.068
0.072
0.073
0.073
0.076
0.080
0.081
0.083
0.088
0.092
0.106
0.123

68.3
59.7
53.4
48.5
44.2
36.6
33.5
32.2
32.1
31.4
28.8
29.4
31.4
31.6
32.9
33.9
35.3
36.5
39.5
40.2

0.922
0.856
0.789
0.733
0.689
0.605
0.550
0.515
0.494
0.483
0.465
0.451
0.438
0.428
0.426
0.427
0.428
0.426
0.423
0.442

-16.4
-22.3
-26.7
-29.8
-32.3
-36.2
-37.4
-38.3
-39.2
-40.4
-42.5
-43.4
-46.3
-50.5
-52.2
-54.3
-58.3
--62.5
-76.8
-89.3

5 ,2• 5.!, = f (f)

5 11 .502=f(f)
Ie = 5 mA, VeE = 8 V,zo= 50 Q

Ie = 5 mA, VeE = 8 V,

Zo =

50 Q

900

o

1800

_90 0

Siemens

491

BFP93A

Ic = 10 mA,

VCE =

8 V, Zo

=

50 Q

f

S"

GHz

MAG

ANG

MAG

ANG

MAG

ANG

$,2
MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.709
0.668
0.635
0.605
0.584
0.612
0.588
0.574
0.566
0.566
0.593
0.591
0.594
0.601
0.602
0.605
0.614
0.626
0.675
0.690

- 58.1
- 80.0
- 97.3
-110.8
-120.3
-137.3
-150.5
-159.8
-167.3
-171.8
-177.7
175.9
166.9
159.3
155.3
151.8
145.1
139.4
126.7
114.1

21.68
18.62
15.93
13.65
11.81
9.62
7.90
6.66
5.74
5.06
4.58
4.13
3.44
2.98
2.79
2.62
2.33
2.09
1.67
1.38

145.0
132.6
123.3
116.0
110.6
102.9
95.5
90.0
85.4
81.8
78.0
73.9
67.5
61.7
58.8
55.7
49.9
44.5
32.2
20.3

0.024
0.031
0.036
0.040
0.043
0.047
0.050
0.053
0.057
0.062
0.063
0.065
0.072
0.079
0.082
0.086
0.094
0.100
0.120
0.139

63.4
54.8
49.6
46.4
44.7
38.7
39.4
40.6
42.0
41.7
39.9
41.7
44.0
43.9
44.7
45.3
45.5
45.3
44.6
42.3

0.853
0.750
0.662
0.593
0.546
0.471
0.418
0.390
0.374
0.368
0.349
0.336
0.324
0.315
0.314
0.315
0.316
0.314
0.310
0.327

-23.8
-30.9
-35.3
-37.8
-39.0
-43.1
-43.1
-43.0
-43.3
-44.8
-46.8
-47.3
-49.6
-54.0
-55.7
-57.7
-61.7
-66.1
-81.5
-94.0

$"

S'2

S,2, 5" = f (tl
Ic=10mA, VCE=BV,Zo=50Q

s",~=f(tl

Ic=10mA, VCE=8V,Zo=50Q

90·

o

-90·

- j50

492

Siemens

BFP93A

Ic = 20 rnA,

VCE =

8 V, 20

=

50 f.l
~,

~2

f

8"

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.617
0.582
0.560
0.550
0.562
0.591
0.571
0.562
0.553
0.557
0.583
0.588
0.587
0.601
0.600
0.605
0.610
0.623
0.674
0.688

- 76.1
- 99.6
-115.8
-126.6
-134.2
-151.9
-163.2
-170.8
-176.6
-179.8
175.0
169.0
160.6
153.8
150.0
147.0
140.5
135.3
123.1
111.5

29.26
23.50
19.20
16.03
13.84
11.11
8.99
7.51
6.44
5.66
5.12
4.61
3.83
3.31
3.09
2.91
2.59
2.32
1.85
1.53

136.3
123.8
115.3
109.6
105.9
97.8
91.4
86.6
82.6
79.5
76.0
72.3
66.3
61.1
58.2
55.4
49.9
44.6
33.3
21.3

0.021
0.026
0.030
0.034
0.037
0.039
0.042
0.046
0.051
0.058
0.059
0.062
0.071
0.080
0.083
0.088
0.097
0.105
0.126
0.145

59.2
52.2
49.3
47.9
45.2
41.9
45.4
48.1
50.0
48.8
47.0
49.4
51.3
49.9
50.8
50.7
49.7
48.5
46.0
42.3

0.755
0.627
0.536
0.478
0.440
0.353
0.307
0.286
0.275
0.272
0.255
0.243
0.235
0.229
0.228
0.230
0.233
0.232
0.234
0.255

- 32.3
- 39.6
- 43.3
- 45.4
- 47.9
- 52.1
- 50.8
- 49.9
- 49.7
- 51.5
- 54.6
- 54.6
- 56.8
- 61.9
- 63.2
- 65.2
- 69.3
- 74.0
- 90.4
-102.7

8'2

S,2, 5", = f (f)
Ic = 20 rnA. VCE

5 11 , 5,,2 = f (f)
Ic=20mA, VCE=BV.Zo=50n

= B V. Zo = 50 n
90 0

+jSO
0.1

1800

.
_90 0

-jSO

Siemens

493

BFP93A.

Ic = 30 rnA,

VCE =

Zo = 50 n

8 V,

f

5 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.578
0.548
0.533
0.528
0.545
0.579
0.561
0.552
0.543
0.548
0.576
0.580
0.580
0.592
0.595
0.601
0.605
0.619
0.669
0.684

- 86.6
-110.0
-125.2
-134.6
-141.3
-157.7
-168.2
-174.9
-180.0
177.4
172.4
166.7
158.9
152.3
148.6
145.8
139.6
134.5
122.7
111.0

32.52
25.24
20.22
16.71
14.35
11.43
9.19
7.66
6.56
5.76
5.21
4.69
3.89
3.36
3.14
2.96
2.63
2.36
1.88
1.55

131.3
119.2
111.3
106.2
103.0
95.4
89.4
84.9
81.2
78.4
75.0
71.4
65.6
60.4
57.7
54.9
49.5
44.3
33.1
21.1

0.019
0.024
0.027
0.031
0.034
0.035
0.039
0.044
0.050
0.057
0.058
0.061
0.072
0.081
0.085
0.090
0.099
0.108
0.128
0.148

56.9
51.6
50.1
49.3
47.0
45.1
49.5
52.5
53.9
52.2
50.5
53.1
54.3
52.6
53.0
52.7
51.3
49.9
46.6
42.4

0.693
0.561
0.473
0.422
0.389
0.307
0.267
0.250
0.243
0.242
0.226
0.214
0.208
0.203
0.202
0.205
0.209
0.209
0.212
0.235

- 36.4
- 43.0
- 45.9
- 47.5
- 50.1
- 54.0
- 52.0
- 50.7
- 50.3
- 52.6
- 56.0
- 55.8
- 58.1
- 63.7
- 65.0
- 67.0
- 71.4
- 76.2
- 93.5
-105.7

512

5:21

s", Sz. =f (f)

S,2. S:z, = f (f)

Ie =30 rnA, VeE = 8\1, Zo = 50 n

Ie =30 rnA, VeE = 8\1,

Q

o

180·

-j50

494

Zo = 50 n

90·

+j50

o

5:22

-90·

Siemens

NPN Silicon RF Transistor

BFP 193

• For low-noise, high-gain amplifiers up to 2 GHz.
• For linear broadband amplifiers.
• fT = 8 GHz.
F= 1.2 dB at 800 MHz.

B~E

E~C

ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

BFP 193

RC

Q 62702 - F1217

SOT-143

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

VCEO

12

V

Collector-emitter voltage, VSE = 0

VeEs

20

V

Collector-base voltage

Veso

20

V

Emitter-base voltage

VESO

2

V

Collector current

Ie

80

mA

Base current

Is

10

mA

Total power dissipation, TA ::; 50 °C2)

Ptot

400

mW

Junction temperature

7j

150

°c

Ambient temperature range

TA

-65 ... +150

°c

Storage temperature range

Tstg

-65 ... +150

°c

Thermal Resistance
Junction - ambient 1)

RthJA

\ ::;250

\KIW

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

Siemens

495

BFP 193

Electrical Characteristics
at TA = 25 °C, unless otherwise specified.
DC characteristics
Parameter

Values

Symbol

Unit

min

typ

max

Collector-emitter breakdown voltage
Ic=1 mA,ls=O

II(SR)CEO

12

-

-

V

Collector-emitter cutoff current
VcE =20V; VSE=O

ICEs

-

-

100

J.lA

Collector-base cutoff current

Icso

-

-

50

nA

Emitter-base cutoff current
VES = 1 V; Ic = 0

I Eso

-

-

1

J.lA

DC current gain

flroE

-

90
100

-

-

0.4

Vcs=10V,IE=0

lc= 5mA, VCE=8V
Ic=30mA, VcE =8V
Collector-emitter saturation voltage
Ic = 50 rnA, Is = 5 rnA

496

VCEsat

Siemens

V

BFP 193

AC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

-

3.5
8

-

Transition frequency
Ic= 5 mA, VCE = 8 V, f= 500 MHz
Ic = 30 mA, VCE = 8 V, f= 500 MHz

fr

Collector-base capacitance
VcB =10V, VBE =Vbe=0,f=1 MHz

Geb

-

0.6

-

pF

Collector-emitter capacitance
VCE = 10 V, VBE = vbe = 0, f= 1 MHz

Gee

-

0.33

-

pF

Input capacitance
VEB = 0.5 V, Ic = ie = O,f= 1 MHz

Gibo

-

2.3

-

pF

Output capacitance
VcE =10V, VBE =Vbe=0,f=1 MHz

Gobs

-

0.95

-

pF

-

-

-

O.B
1.6
1.9

-

15

-

-

13.5

-

Noise figure
Ic= 5mA, VcE=BV, f= 10 MHz, Zs = 75
Ic = 30 mA, VCE = 8 V, f= BOO MHz, Zs = Zsopt
1 GHz,Zs=50Q
Ic = 30 mA, VCE = 8 V, f=

F

Power gain
Ic = 30 mA, VCE = 8 V, f= BOO MHz,
Zs = 50 Q, ZL = ZLOPt

Gpe

Transducer gain
Ic = 30 mA, VCE = B V, f= 1 GHz, Zo = 50 Q

l~lel2

Linear output voltage
two-tone intermodulation test
Ic = 40 mA, VCE = 5 V, diM =60 dB
fl = B06 MHz, f2 = 810 MHz, Zs = ZL = 50 Q

VOl = Vo2

Third order intercept point
Ic = 40 mA, VCE = 5 V, f= BOO MHz

IP3

n.

GHz

dB

-

Siemens

dB

dB
mV

-

250

-

-

31

-

dBm

497

BFP 193

=

Total power dissipation P,ot f ITAI
Package mounted on"alumina

Transition frequency fT = f (Ie)
VCE = 8 V, f= 500 MHz

mW

GHz

500 r-r-rr-r--,-,,.,.,-,--r-TO-rTO

10

III

~E=~ I--

400 1-+-+-+-+++-+++-+++-+-+--1

6

flot

~ V' '"

6

/

4

100 H-+--H-+--H-+--H-+-N---t-1

2

=f (Vea)

pF
1.0

1\

\

1

0.5

o
o
498

"'I'-- r--.

20V

Siemens

3V

--

,

I

I

o
o

Collector-base capacitance Ccb
VSE=Vbe=0,f=1 MHz

,

~ ~ rs'1

10

30
40
----<--lc

20

SOmA

BFP 193

Common Emitter Noise Parameters

Ie = 10 mA, VeE = 8 V,

Zo = 50 Q

f

Fmin

Gp

GHz

dB
1
1.2
2.3

dB
-

MAG

0.01
0.8
2.0

15.4
9

-

Ie

=

30 mA, VeE

=

8 V,

Fmin

f

(Fmin)

GHz

dB

dB

0.01
0.8
2.0

1.65
1.6
2.6

-

lANG

50

RN

N

Fson

Gp (Fson)

Q

-

dB

dB
-

RN

N

Fson

Q

-

dB

dB

-

-

1.65
1.95
3.3

-

-

(Zs = 75 Q)

Zo =
Gp

rapt

1=

-

14.4
7

Q

(Fmin)

rapt

MAG

lANG

(Zs = 50 Q)

-

16.7
9.5

1=

Noise figure F = f (Iel
VCE = 8 V, f= 10 MHz

Gp (Fson)

15.4
7.5

Noise figure F = f (Iel
Power gain G = f (Iel
VCE = 8 V, f= 800 MHz, ZLopt (G)

dB
3

dB

dB

4

V
F

V

2

11
II
I
I

~;... """1.1

b

10

-

/

F

7S1l

v(

,.
..-

m

I I

I I
i~(- e::=

1/

Zs=1S01l

o
o

1.05
1.35
2.8

3

1-

6

Lo--r-L--r--

I

Zs=S01l,_

15

6

f--

".

I

".

2

~~

~\

Zs =SOil,;;: p~:::::

F

10

,....

~I

J....H"""
Zsopt

20

o
o

30mA

10

- - - I....

Siemens

o

20

30mA

Ie

499

BFP 193

Common Emitter Power Gain
Power gain Gms• 1S:!1.12 =f (Ie)
VcE =8V,

dB
30

.1

-

Power gain Gm •• 1S:!1.12 =f (Ie)

f=200MHz,~=50Q

um~

ZV

/

VCE

= 8 V, f= 500 MHz, ~ = 50 Q

dB
30

l-t-

I,

A-

IS 21.1 2
/'

,.,.

/

20

ums

-

I---'"

1

u ms

I

=S2Ie,-

IS21el2

l"- t--

SI2e

10

10

ums =,S21e
o

o
o

10

20

30

40

- - - - <....

~

= 8 V, f = 800 MHz,

10

20

Ie

30

40

Power gain Gms• 1S:!1.12

= 50 Q

VCE

dB
30

= 8 V, f= 1.5 GHz,

=f (Ic)

~

= 50 Q

Um.

"

1

"

IS21eI 2

I

SlZe'l

20

30

1~21~IZ

",

/

S2Ie,lims = _

10

10

I

10

40

I

-

I

.= ISZlellk_hz_11

-

t-- t- um

I i

o
o

SOmA

10

20

Siemens

'--

J

,SIZt

30

.. Ie
500

SOmA

Ie

dB
20

Ums

o
o

r

----<....

=f (Ie)

Power gain G...•• 1S:!1.12
VCE

o
o

SOmA

SI2e
-1-

40

50 rnA

BFP 193

Power gain Gma • Gms • 15",.1 2 = f (f)
Ic=5mA, VcE =8V,Zo=50Q

Power gain Gm .. Gms• 15",.1 2 = f (tl
Ic=10mA, VcE =8\1,Zo=50Q

dB
30

dB
30

" "-

.......................

""

r--...

I'-..

I'\.

~

1

I

ms !5,5212 ••1
I--

I--- 6

=

""

dB
30

6ma

\6ma
\. '\.
\. '\

ISzl.I Z
10

- 6ms =!SZ1. 1
S12.

C-

"

: 6ma ~ I~~~: 1~ kl~~WI

'\

o

235Hz

0.5

0.1

ms

1'\

"\.\. "\

~6ma~I~~~: 1(lk-Jr~111)1

o

6

i'.

1\

"

IS 21.1 2
10

\. f"I\,

6ms

~~

~

2

0,5

0.1

3 GHz

---- f

---- f

Power gain Gma • Gms • 15",.1 2 = f (f)
Ic = 20 mA, VeE = 8 V, Zo = 50 Q

Power gain Gma • Gms• 15",.1 2 = f (tl
Ic = 40 mA, VCE = 8 V, Zo = 50 Q

~"
'\ .""-.
r\: 1'\
I\.

dB
30

r-..,. 11'\.
1\. l\.
\

,. , 6ms

1\

"

l\

1521.1 2

1\.

f\

l' 6ms
1\

r-..

ISZll

\. 6ma _

\. 6ma _
I\, \
\. I\.

I\. \.

\. I\.

10

10

'\
f- 6m
,=15 z1 .1
f\.
I - - - 5,2 •
\
I- 6 =15 z1 •!(k-.fK2=1)
s
'
1----1 '~. I III
o

Z1·1
6ms=I S
I-S12.
f-6rna =IS
5Z1·I(k-h 2-1l
1--1'21.1 11111
o
f--

rna

0.1

0.5

\

\.

'I

235Hz

0.1

-f

0.5

235Hz

-f

Siemens

501

BFP 193

Common Emitter S Parameters
= 10 rnA, VCE = 3 V, Zo = 50 n

Ic

~2

f

5 11

GHz

MAG

ANG

5.!1
MAG

ANG

MAG

ANG

5.!2
MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.673
0.665
0.660
0.650
0.645
0.666
0.669
0.663
0.658
0.657
0.676
0.684
0.687
0.692
0.692
0.696
0.703
0.714
0.758
0.763

- 68.6
- 92.3
-109.9
-123.2
-132.9
-146.1
-158.2
-166.6
-173.4
-178.1
177.6
172.2
163.7
156.8
153.2
149.9
143.4
138.0
126.1
113.6

22.95
19.44
16.49
14.07
12.18
9.65
7.98
6.74
5.81
5.11
4.59
4.15
3.45
2.98
2.79
2.62
2.34
2.09
1.66
1.38

143.4
130.9
121.6
114.5
109.1
101.8
94.9
89.6
85.1
81.2
77.9
74.1
68.0
62.7
59.8
56.8
51.1
45.9
34.4
23.1

0.029
0.037
0.042
0.046
0.049
0.054
0.055
0.058
0.061
0.066
0.069
0.069
0.075
0.081
0.084
0.087
0.095
0.101
0.118
0.136

60.3
51.4
45.5
41.9
39.8
35.3
34.2
35.3
36.6
36.9
34.9
35.8
38.6
38.6
39.5
40.2
40.6
40.5
40.5
38.6

0.820
0.701
0.602
0.524
0.465
0.392
0.329
0.291
0.268
0.257
0.246
0.229
0.213
0.210
0.210
0.212
0.216
0.219
0.240
0.269

- 32.7
- 43.2
- 50.6
- 55.9
- 59.5
- 66.5
- 71.0
- 73.1
- 75.0
- 76.8
- 81.2
- 83.8
- 87.6
- 93.7
- 95.6
- 97.8
-101.4
-106.2
-122.1
-131.3

502

Siemens

BFP 193

Ic

=

30 mA,

VCE =

3 V,

4J

=

50

n
~1

~2

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.545
0.585
0.605
0.611
0.613
0.648
0.658
0.653
0.649
0.647
0.668
0.676
0.680
0.687
0.686
0.691
0.697
0.707
0.748
0.754

-113.4
-133.8
-146.4
-154.9
-160.5
-167.4
-176.1
178.1
173.6
170.4
167.6
163.1
156.3
150.5
147.1
144.3
138.6
133.8
123.0
111.2

35.23
26.85
21.33
17.49
14.77
11.44
9.32
7.79
6.67
5.85
5.24
4.73
3.93
3.39
3.18
2.98
2.66
2.37
1.89
1.57

128.3
116.3
108.7
103.3
99.5
94.5
89.0
84.8
81.2
78.1
75.5
72.2
67.0
62.4
59.7
57.1
51.9
47.1
36.8
25.9

0.020
0.023
0.026
0.029
0.032
0.037
0.039
0.044
0.050
0.057
0.060
0.063
0.073
0.082
0.087
0.092
0.102
0.111
0.132
0.153

53.9
48.8
47.8
48.1
49.0
46.4
50.2
53.4
54.9
54.2
51.6
53.5
54.9
53.2
53.3
53.3
51.8
50.2
46.5
41.9

0.631
0.488
0.396
0.336
0.294
0.259
0.215
0.191
0.179
0.178
0.181
0.172
0.165
0.172
0.173
0.176
0.181
0.189
0.222
0.246

- 54.0
- 66.8
- 75.5
- 81.9
- 86.3
- 96.9
-105.7
-109.5
-112.5
-114.4
-120.8
-126.1
-131.4
-137.3
-138.6
-139.8
-142.0
-145.9
-157.1
-162.1

Siemens

503

BFP 193

Ic = 5 rnA,

VCE

= 5 V, Zo = 50 Q

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.796
0.772
0.751
0.727
0.708
0.717
0.699
0.690
0.682
0.681
0.695
0.700
0.699
0.707
0.707
0.713
0.715
0.726
0.764
0.776

- 46.6
- 66.3
- 82.9
- 96.7
-107.6
-125.9
-140.1
-150.6
-159.2
-165.1
-171.5
-178.1
171.6
163.5
159.4
155.8
148.4
142.1
128.7
116.2

14.63
13.32
11.95
10.64
9.46
7.86
6.58
5.61
4.89
4.32
3.91
3.54
2.96
2.56
2.39
2.26
2.01
1.80
1.43
1.17

153.0
141.9
132.5
124.8
118.7
109.3
101.3
94.9
89.5
85.2
81.0
76.7
69.5
63.4
60.4
57.2
51.1
45.2
33.2
21.0

0.033
0.044
0.053
0.060
0.065
0.071
0.074
0.076
0.078
0.082
0.082
0.082
0.084
0.086
0.086
0.087
0.090
0.093
0.103
0.117

67.0
58.1
51.0
45.5
41.5
33.7
30.2
28.1
27.2
26.3
23.8
23.7
24.8
24.3
25.7
26.6
28.0
29.3
33.9
36.5

0.911
0.837
0.759
0.692
0.636
0.547
0.483
0.440
0.411
0.394
0.375
0.359
0.342
0.333
0.332
0.332
0.335
0.336
0.349
0.376

- 20.5
- 28.4
- 34.6
- 39.2
- 42.4
- 48.5
- 51.4
- 53.4
- 55.0
- 56.8
- 59.3
- 60.7
- 64.2
- 68.8
- 70.7
- 72.7
- 76.9
- 81.1
- 95.9
-106.7

8.!1

8.!2

=

5,1. Sn = f (f)
Ie = 5 rnA, VeE = 5 V. Zo =50n

5,2.5,,1 f (f)
Ie = 5 mA, VeE = 5 V. 2'0= 50 n

90 0

o

-j50

504

-90 0

Siemens

BFP 193

Ic = 10 mA,
f

VCE

= 5 V.

Zo = 50 Q

8 11

8 12

8.21

8.22

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.690
0.675
0.664
0.651
0.639
0.674
0.661
0.656
0.650
0.649
0.670
0.675
0.677
0.688
0.688
0.695
0.696
0.705
0.747
0.755

- 65.1
- 88.5
-106.2
-119.4
-128.8
-144.6
-156.5
-165.1
-171.7
-176.1
178.8
173.2
164.3
157.3
153.6
150.5
143.6
138.1
125.8
114.1

22.92
19.63
16.74
14.33
12.39
9.99
8.19
6.90
5.96
5.24
4.73
4.27
3.55
3.07
2.87
2.71
2.41
2.16
1.71
1.41

144.7
132.3
122.8
115.7
110.5
102.6
95.7
90.4
86.0
82.4
78.9
75.0
68.8
63.5
60.7
57.8
52.3
46.9
35.9
24.3

0.028
0.037
0.042
0.046
0.049
0.053
0.055
0.058
0.062
0.067
0.068
0.069
0.075
0.081
0.084
0.087
0.094
0.100
0.117
0.134

61.6
52.4
46.6
43.0
40.8
35.1
35.0
35.9
36.9
36.7
35.1
36.5
38.8
38.5
39.9
40.4
40.9
40.8
41.0
39.5

0.833
0.719
0.619
0.544
0.488
0.403
0.343
0.307
0.284
0.274
0.258
0.242
0.231
0.225
0.224
0.226
0.231
0.233
0.253
0.280

- 30.9
-41.1
- 48.4
- 53.4
- 56.7
- 64.5
- 67.5
- 69.6
- 71.2
- 73.4
- 77.3
- 79.0
- 82.9
- 88.4
- 90.1
- 92.1
- 95.8
-100.2
-114.9
-123.8

S",~=f(f)

S,2. $." = f If)
Ic=10mA, VcE =5V,Zo=50n

Ic= 10 mA, VCE = 5 V. Zo = 50n

90°

+j50

o

-j 50

Siemens

505

BFP 193

Ic = 30 mA,

VCE

= 5 V. Zo = 50 n

Sz,

f

S11

GHz

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.556
0.581
0.595
0.597
0.595
0.651
0.640
0.636
0.633
0.630
0.655
0.662
0.664
0.676
0.676
0.682
0.683
0.693
0.733
0.744

-106.4
-128.5
-142.1
-151.0
-156.4
-166.5
-174.8
179.5
174.9
172.4
168.6
163.9
156.8
150.9
147.6
144.7
138.8
133.8
122.8
111.6

Sz2

S'2

MAG

ANG

MAG

ANG

MAG

ANG

36.18
27.79
22.15
18.19
15.32
12.09
9.73
~ 8.11
6.97
6.10
5.50
4.95
4.11
3.54
3.32
3.12
2.78
2.49
1.97
1.63

129.6
117.6
109.7
104.3
100.6
94.8
89.5
85.5
82.0
79.2
76.3
73.0
67.7
63.3
60.8
58.1
53.1
48.1
38.2
27.4

0.020
0.024
0.027
0.029
0.033
0.035
0.039
0.045
0.051
0.057
0.059
0.063
0.074
0.082
0.087
0.092
0.102
0.111
0.132
0.152

54.6
49.1
47.9
48.3
48.9
46.2
50.7
53.4
54.7
53.3
51.9
53.9
54.8
53.1
53.6
53.3
51.8
50.1
46.8
42.5

0.648
0.506
0.411
0.349
0.312
0.260
0.217
0.195
0.184
0.185
0.182
0.172
0.169
0.174
0.174
0.177
0.184
0.189
0.221
0.244

- 51.6
- 64.3
- 72.7
- 78.3
- 81.9
- 95.6
-100.6
-104.4
-106.9
-109.5
-116.4
-120.0
-124.6
-130.9
-132.0
-133.4
-135.5
-139.3
-150.2
-155.3

5,2, So, = f (f)
Ie = 30 rnA, VeE = 5 V, Zo = 50 n

S11,~=f(f)

Ie =30 rnA, VeE = 5 V. Zo = 50 n

90 0

+j50

o

-90 0

-j50

506

Siemens

BFP 193

Ic

=

50 rnA,

VCE =

5 V.

Zo =

50

n
~,

~2

f

Sl1

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.544
0.580
0.599
0.602
0.598
0.657
0.647
0.643
0.638
0.635
0.661
0.666
0.670
0.682
0.681
0.686
0.688
0.698
0.737
0.746

-124.1
-142.5
-153.3
-160.4
-164.3
-172.5
-179.8
175.4
171.4
169.3
165.9
161.6
154.8
149.3
146.0
143.3
137.5
132.6
121.9
111.0

39.07
28.97
22.68
18.45
15.46
12.13
9.73
8.10
6.95
6.08
5.47
4.93
4.08
3.53
3.30
3.11
2.77
2.47
1.96
1.63

123.8
112.6
105.5
100.8
97.7
92.5
87.6
83.9
80.6
78.0
75.2
72.1
66.9
62.6
60.1
57.6
52.6
47.7
38.1
27.2

0.017
0.020
0.023
0.026
0.029
0.032
0.036
0.043
0.049
0.056
0.058
0.062
0.074
0.083
0.088
0.093
0.104
0.113
0.135
0.155

53.8
50.5
51.3
52.9
53.7
51.8
56.9
59.3
60.1
57.7
56.6
58.5
58.3
56.5
56.6
56.2
54.3
52.3
48.2
43.5

0.560
0.425
0.341
0.290
0.262
0.225
0.190
0.174
0.166
0.171
0.172
0.164
0.165
0.172
0.173
0.176
0.184
0.190
0.224
0.246

- 59.8
- 72.7
- 81.3
- 87.0
- 90.5
-106.1
-111.6
-115.5
-117.8
-119.8
-126.8
-130.6
-134.6
-139.9
-141.1
-142.2
-143.7
-147.1
-156.6
-160.9

S'2

5,2,5.!, =f If)
Ie = 50 rnA, VeE = 5 V, Zo = 500

5". Sz, = f If)
Ie =50 rnA, VeE = 5 V, Zo = 50 0
+j50

o

-j50

Siemens

507

BFP 193

Ic

=

f

5 rnA,

VCE =

8 V,

Zo =

50

n
~,

$"

~2

$'2

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.808
0.782
0.758
0.733
0.712
0.718
0.698
0.687
0.678
0.676
0.691
0.694
0.694
0.702
0.700
0.709
0.708
0.721
0.759
0.772

- 44.9
- 64.1
- 80.6
- 94.1
-105.1
-123.7
-138.0
-148.9
-157.6
-163.7
-170.2
-176.8
172.7
164.3
160.3
156.6
149.0
142.8
129.4
116.6

14.57
13.32
12.01
10.74
9.56
7.96
6.68
5.71
4.98
4.41
3.99
3.62
3.02
2.61
2.44
2.30
2.06
1.84
1.46
1.19

153.6
142.7
133.4
125.8
119.5
110.2
102.1
95.7
90.3
85.8
81.7
77.3
70.0
64.0
60.9
57.7
51.7
45.8
33.7
21.6

0.032
0.044
0.053
0.059
0.064
0.071
0.074
0.076
0.078
0.082
0.083
0.082
0.084
0.086
0.086
0.087
0.090
0.092
0.102
0.116

67.7
58.9
51.7
46.2
42.2
34.4
30.7
28.6
27.4
26.5
24.0
23.8
24.7
24.4
25.6
26.4
27.8
29.0
33.5
36.1

0.914
0.843
0.768
0.703
0.647
0.558
0.493
0.449
0.420
0.403
0.383
0.366
0.348
0.338
0.337
0.337
0.340
0.339
0.351
0.376

- 19.8
- 27.5
- 33.6
- 38.2
- 41.5
- 47.6
- 50.5
- 52.6
- 54.1
- 55.8
- 58.3
- 59.7
- 63.1
- 67.6
- 69.4
- 71.4
- 75.5
- 79.7
- 94.2
-105.0

S11,~=f(f)

5,2, 5:2, = f (f)

Ic = 5 rnA, VCE = 8 V, Zo = 50 Q

Ic = 5 mA,

VCE =

8 V, Zo = 50 Q

90°

+j50

o

-90 0

-j50

508

Siemens

BFP 193

Ic = 10 rnA,

VCE

= 8 V, Zo = 50 n

f

8 11

8 12

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.707
0.686
0.669
0.653
0.639
0.670
0.656
0.648
0.643
0.642
0.662
0.669
0.669
0.679
0.679
0.685
0.687
0.698
0.739
0.748

- 62.3
- 85.3
-103.0
-116.4
-126.0
-142.3
-154.4
-163.3
-170.3
-174.7
180.0
174.3
165.2
158.2
154.3
151.1
144.3
138.7
126.2
114.3

23.03
19.82
16.98
14.59
12.63
10.22
8.39
7.08
6.12
5.38
4.85
4.39
3.65
3.15
2.95
2.78
2.47
2.22
1.76
1.45

145.5
133.2
123.8
116.6
111.3
103.3
96.3
91.0
86.5
83.0
79.4
75.6
69.3
64.0
61.2
58.4
52.9
47.4
36.5
24.9

0.028
0.036
0.042
0.046
0.049
0.054
0.056
0.058
0.062
0.067
0.068
0.069
0.076
0.081
0.084
0.087
0.094
0.100
0.117
0.134

62.2
53.2
47.3
43.5
41.3
35.5
35.3
35.9
36.9
36.7
34.8
36.3
38.6
38.1
39.6
40.0
40.5
40.4
40.6
39.2

0.838
0.729
0.631
0.554
0.498
0.412
0.351
0.313
0.290
0.279
0.262
0.246
0.233
0.226
0.225
0.226
0.231
0.232
0.250
0.276

- 30.0
- 40.1
- 47.4
- 52.4
- 55.7
- 63.6
- 66.6
- 68.7
- 70.3
- 72.5
- 76.4
- 78.0
- 81.8
- 87.2
- 88.9
- 90.8
- 94.6
- 98.8
-113.6
-122.5

&.!,

&.!2

=

5,2, 5", f If)
Ie = 10 mA. VeE = 8 V, Zo =50 Q

5, .. s"" = f If)
Ie = 10 mA. VeE = 8 V, Zo = 50 Q

90 0

o

-j50

-900

Siemens

509

BFP 193

Ic

=

20 rnA,

VCE =

8 V, 2Q

=

50 Q
~,

~2

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.607
0.607
0.609
0.604
0.600
0.630
0.637
0.630
0.624
0.622
0.645
0.654
0.657
0.663
0.664
0.666
0.675
0.684
0.731
0.735

- 85.2
-109.4
-125.7
-137.3
-145.4
-155.3
-166.5
-173.8
-179.5
176.6
173.3
168.0
160.2
153.9
150.4
147.3
141.2
136.1
124.7
112.7

32.08
25.79
21.10
17.60
15.00
11.73
9.64
8.08
6.94
6.09
5.46
4.94
4.10
3.54
3.31
3.11
2.77
2.48
1.97
1.64

136.1
123.6
114.9
108.7
104.2
98.4
92.2
87.6
83.6
80.3
77.6
74.0
68.5
63.7
61.1
58.4
53.1
48.2
37.7
26.7

0.023
0.029
0.032
0.035
0.038
0.043
0.044
0.048
0.053
0.059
0.062
0.064
0.074
0.081
0.085
0.090
0.099
0.107
0.127
0.146

57.0
49.5
46.1
44.7
44.4
41.3
42.9
45.6
47.5
47.6
45.1
46.7
49.0
47.8
48.3
48.6
47.8
46.6
44.1
40.4

0.731
0.592
0.492
0.419
0.367
0.315
0.256
0.225
0.207
0.201
0.197
0.182
0.169
0.170
0.170
0.173
0.176
0.181
0.207
0.232

- 42.7
- 54.6
- 62.7
- 68.5
- 72.3
- 81.2
- 88.1
- 91.0
. - 93.4
- 95.5
-101.7
-106.2
-111.1
-117.9
-119.5
-121.4
-124.2
-128.9
-143.0
-149.6

8'2

S,,,~=f(f)

5'2, ~, = f (f)

Ie = 20 rnA, VeE = 8 V, Zo = 50 Q

Ie = 20 rnA, VeE = 8 V, Zo = 50 Q

90 0

- jSO

510

-90 0

Siemens

BFP 193

Ic = 40 rnA,

VCE

f'

5 11

GHz

MAG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

= 8 V.

0.558
0.578
0.590
0.589
0.589
0.624
0.633
0.625
0.620
0.616
0.642
0.650
0.654
0.661
0.661
0.665
0.671
0.681
0.725
0.732

~

= 50 Q
5 12

5.!1

ANG
-108.0
-129.8
-143.1
-152.1
-158.1
-165.3
-174.6
179.3
174.6
171.6
168.7
163.9
156.9
151.1
147.7
144.7
139.1
134.3
123.3
111.4

MAG
38.69
29.36
23.28
19.06
16.07
12.46
10.16
8.49
7.26
6.36
5.71
5.16
4.27
3.70
3.46
3.25
2.89
2.58
2.05
1.71

ANG
127.7
115.9
108.3
103.1
99.4
94.6
89.1
85.0
81.5
78.6
76.1
72.8
67.7
63.2
60.6
58.0
52.9
48.2
38.1
27.4

MAG
0.019
0.023
0.025
0.028
0.031
0.036
0.039
0.044
0.050
0.057
0.060
0.063
0.074
0.083
0.088
0.093
0.103
0.112
0.133
0.154

5.!2

ANG
53.5
49.3
48.9
49.3
50.1
47.6
51.4
54.6
56.1
55.2
52.4
54.3
55.5
53.6
53.7
53.5
51.8
50.2
46.2
41.4

MAG

ANG

0.614
0.473
0.383
0.324
0.284
0.254
0.208
0.184
0.173
0.173
0.176
0.167
0.159
0.166
0.166
0.169
0.174
0.180
0.212
0.234

- 54.7
- 67.6
- 76.2
- 82.5
- 86.9
- 97.8
-107.0
-110.8
-113.6
-115.4
-122.4
-128.0
-133.3
-139.5
-140.8
-142.0
-144.1
-148.0
-159.4
-164.2

S,2, Sz, = f (f)
Ie = 40 mA, VeE = 8V, Zo = 50 0

S,h~=f(f)

Ie = 40 rnA, VeE =8\1, Zo= 500

90 0

o

-j 50

-900

Siemens

511

NPN Silicon RF Transistor

BFQ 17P

• For low-distortion broadband amplifiers up to 900 MHz
at collector currents from 20 to 150 mA.

E

Type

Marking

Ordering code
(tape and reel)

Package

BFQ 17P

FD

Q 62702 - F983

SOT-89

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

VCEO

25

V

Collector-base voltage

VCBO

40

V

Emitter-base voltage

VEBO

2

V

Collector current

Ic

150

mA

Peak collector current, f?:. 1 MHz

ICM

300

mA

Total power dissipation, TA :5 25 DC2 )

Ptot

1

W

Junction temperature

7j

150

DC

Ambient temperature range

TA

-65 ... +150

DC

Tstg

-65 ... +150

DC

RthJA

:5125

KJW

Storage temperature range
Thermal Resistance
Junction - ambient 1)

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

512

Siemens

BFQ 17P

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Collector-emitter breakdown voltage
Ic = 10 rnA, Is = 0

V(SR)CEO

Collector-base cutoff current
Vcs = 20 V. IE = 0
Vcs = 20 V. IE = 0, TA = 125°C

Icso

Emitter-base cutoff current
VES = 1 V. Ic = 0

I ESO

DC current gain
Ic= 50 rnA, VcE =5V
Ic = 150 rnA, VCE = 5 V

hFE

Collector-emitter saturation voltage
Ic= 100 mA, Is= 10 rnA

VCEsat

Siemens

Unit

min

Values
typ

max

25

-

-

-

-

0.1
20

-

100

25
25

-

-

-

0.2

0.5

Symbol

V
pA

nA

V

513

BFQ 17P

AC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

-

-

-

1.4
1.2

Transition frequency
Ic= 70 rnA, VCE = 5 V, f= 200 MHz
Ic= 150 rnA, VcE =5V, f=200MHz

fr

Collector-base capacitance
Vce=10V, VeE =Vbe=0,f=1 MHz

C cb

-

1.9

-

pF

Input capacitance
VEe = 0.5 V, Ic = ic = 0, f= 1 MHz

C,bo

-

13

-

pF

Output capacitance
VCE = 10 V, VeE = vbe = 0, f= 1 MHz

Cobs

-

2.5

4

pF

Power gain
Ic = 60 rnA, VCE = 15 V, f=500 MHz,
Zs = ZSOPh ZL = ZLOPt

Gpe

-

11.5

-

dB

Linear output voltage
two-tone interrnodulation test
Ic = 60 rnA, VCE = 15 V, aiM =60 dB
fl = 206 MHz, f2 = 210 MHz, Zs = ZL = 50 Q

Vol = Vo2

-

480

-

rnV

Third order intercept point
Ic = 60 rnA, VCE = 15 V, f= 200 MHz

IP3

-

36.5

-

dBrn

514

Siemens

GHz

-

BFQ 17P

=

Transition frequency f.r = f (lei
VeE = 5 V, f= 200 MHz

Total power dissipation P'o' f (TiJ
Package mounted on alumina

mW

GHz

r

1.5

1.2

1.0

1/

1\

II

~

0.8

i",

"

to

i\

I

1\
0.6

1\

~

0.4

0.5

i\
\

0.2

1\

\

o
o

o

150·(

100

50

-7,;

COllector-base capacitance Ccb
VBE = Vbe=O, f= 1 MHz

o

50

100

159 mA

-Ie

=f (VeB)

pF
5

4

,

\
3

2

o
o

\

"- r-....

r--. r--. I-

-20V

10

-liB
Siemens

515

NPN Silicon RF Transistor

BFQ 19P

• For low-distortion broadband amplifiers in antenna and
telecommunications systems at collector currents from
10 to 70 mA.

E

For new design refer to BFQ 19S
Type

Marking

Ordering code
(tape and reel)

Package

BFQ19P

FE

Q 62702 - F1 060

SOT-89

~Y1a;dmum

Ratings

Parameter

Symbol

Value

Unit

Collector-emitter voltage
Collector-base voltage

VCEO

15

V

VCBO

20

Emitter-base voltage

V

VEBO

3

V

Collector current

Ic

75

mA

Peak collector current, f2:. 1 MHz

ICM

150

mA

Total power dissipation, TA

Ptot

1

W

Junction temperature

Ii

150

°c

Ambient temperature range

TA

-65 ... +150

°c

Storage temperature range

Tstg

-65 ... +150

°c

:::;

25

°C 2)

Thermal Resistance
Junction - ambient ')

j

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

516

Siemens

RthJA

j :::;125

jKIW

BFQ 19P

Electrical Characteristics
at TA = 25 cC, unless otherwise specified.
DC characteristics
Parameter

Symbol

Unit

Values
min

typ

max

"1eR)CEO

15

-

-

V

Iceo

-

-

100

nA

Emitter-base cutoff current
VEe = 2 \I, Ic = 0

I Eeo

-

-

10

~

DC current gain

hFE

25

70

-

-

VCEsat

-

0.2

0.5

V

Collector-emitter breakdown voltage

Ic= 1 mA,Ie=O
Collector-base cutoff current

Vce= 10\l,IE =0

Ic = 50 mA, VCE = 10 V
Collector-emitter saturation voltage
Ie = 75 mA, Ie = 7.5 mA

Siemens

517

BFQ 19P

AC characteristics
Symbol

Parameter

Values

Unit

min

typ

max

4
4.4

4.B
5.1

-

Transition frequency
Ic=50mA, VCE=10V; f=200MHz
Ic = 75 rnA, VCE = 10 V; f= 200 MHz

fir

Collector-base capacitance
VCB=10V; VBE =Vbe=0,f=1 MHz

CCb

-

1.1

1.5

pF

Collector-emitter capacitance
VCE=10V; VBE = Vbe=O,f= 1 MHz

Cee

-

0.4

-

pF

Output capacitance
VCE = 10 V; VBE = Vbe = O,f= 1 MHz

Cobs

-

1.5

-

pF

Noise figure
Ic = 50 rnA, VCE = 10 V; f = BOO MHz, Zs = ZSopt

F

-

3.B

-

dB

Power gain
Ic = 70 mA, VCE = 10 V; f= BOO MHz,
Zs = ZsoPt, ZL = ZLOPt

Gpe

-

11.5

-

dB

Linear output voltage
two-tone intermodulation test
Ic = 70 mA, VCE = 10V; ~M = 60dB
f, = B06 MHz, f2 = B10 MHz, Zs = ZL = 50 n

Vo1 = Vo2

-

500

-

mV

Third order intercept point
Ic = 70 mA, VCE = 10 V; f= BOO MHz

IPs

-

37

-

dBm

51B

Siemens

GHz

BFQ 19P

Total power dissipation Pto. = f ITAl

Transition frequency fT = f (Iel
VCE = 10 V, f= 200 MHz

Package mounted on alumina

GHz

W
1.2

6

Po

f1.0

,/'

I\.

V

1\

0.8

",

4

\

V

\
0.6

/

3

I

1\

1\

0.4

2

1\

I

1
I

.\
0.2

\.

1\

o

o

100

50

o

150 0 (

o

100 mA

50

-Ic

Collector-base capacitance Ceb = f (Vee)
VSE = Vb. = 0, f= 1 MHz

pF
3

\

\

i'\.

o0

20 V

10
-\I(e

Siemens

519

NPN Silicon RF Transistor

BFQ 19S

• For low-noise, low-distortion broadband amplifiers in
antenna and telecommunications systems up to
1.5 GHz at collector currents from 10 to 70 mA.

E

Ii CECC-type available: CECC 500021259.

Type

Marking

Ordering code
(tape and reel)

Package

BFQ 19S

FG

Q 62702 - F1 088

SOT-89

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

VCEO

15

V

Collector-base voltage

VC60

20

V

Emitter-base voltage

VE60

3

V

Collector current

Ic

75

mA

ICM

150

mA

Base current

16

10

mA

Total power dissipation, TA $ 25 °C~

Ptot

1

W

Junction temperature

7j

150

°c

Ambient temperature range

TA

-65 ... +150

°c

Storage temperature range

Tstg

-65 ... +150

°c

Peak collector current,

' 2: 1 MHz

Thermal Resistance

I

Junction - ambient1 )

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

520

Siemens

RthJA

1$125

IKIW

BFQ 195

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
min

Values
typ

max

\t(SR)CEO

15

-

-

V

Collector-base cutoff current
Vcs = 10 V. IE = 0

Icso

-

-

100

nA

Emitter-base cutoff current
VES = 2 V. Ic = 0

I ESO

-

-

10

JlA

DC current gain
Ic = 50 rnA, VCE = 10 V

hFE

25

70

-

-

VCEsat

-

0.2

0.5

V

Parameter
Collector-emitter breakdown voltage
Ic= 1 mA,Is=O

Collector-emitter saturation voltage
Ic =75 rnA, Is=7.5mA

Symbol

Siemens

Unit

521

BFQ 195

AC characteristics
Symbol

Parameter
Transition frequency

fr

Ie = SO rnA, VeE = 10 \I, f= 200 MHz
Ie = 70 rnA, VeE = 10\1, f=200 MHz

Values

Unit

min

typ

max

-

-

GHz

-

5
5.1

Col/ector-base capacitance
Vce = 10\1, VeE = vbe= 0, f= 1 MHz

Ccb

-

1

-

pF

Col/ector-emitter capacitance
VeE = 10\1, VeE = vbe = 0, f= 1 MHz

Cee

-

0.4

-

pF

Input capacitance
VEe = O.S \I, Ie = ic = 0, f= 1 MHz

Gibe

-

4.S

-

pF

Output capacitance
VCE = 10\1, VeE = Vbe = 0, f= 1 MHz

Cobs

-

1.4S

-

pF

Noise figure

F

-

0.9
2.B

Gpe

-

11.B

-

dB

Linear output.voltage
two-tone intermodulation test
Ic = 70 rnA, VCE = 10\1, diM = 60dB
~ = B06 MHz, f2 =810 MHz, Zs=ZL =50 n

Vol = Vo2

-

520

-

mV

Third order intercept point
I c =70mA, VeE = 10\1, f=800MHz

IP3

-

37.5

-

dBm

Ic= 5 rnA, VCE = 10V. f= 10 MHz,Zs=Son
Ic = 50 rnA, VCE = 10 V. f= BOO MHz, Zs = Zsopt

Power gain

dB

Ic = 70 rnA, VeE = 10 V. f= BOO MHz,

Zs = SO n, ZL = ZLopt

522

Siemens

BFQ 19S

Total power dissipation Ptot = f (T,J
Package mounted on alumina

Transition frequency fT = f (Iel
VcE =10V, f=200MHz

W
1.2

~ot

GHz
6

1.0

5

/

\.

t

I\.

0.6

/

4

1\

I

\
0.6

3

"

I

I\.

1\

0.4

I

I

I\.

I

\
0.2

I\.

1\

o
o

150 0 (

100

50

20

40

60

BO

100 rnA

-T,

Collector-base capacitance
VBE = Vb. = 0, f= 1 MHz

Cob

= f (VCB)

pF

3
Ceb

1
2

\

\

,
.......

o

o

~

10

20 V

-ifcB
Siemens

523

BFQ 198

Common Emitter Noise Parameters
Ie = 5 rnA, VeE = 10 V, Zo = 50 Q
f

Fmin

Gp (Fmin)

GHz

dB

dB

0.01

0.9

-

Ie

ropt

MAG

lANG

RN

N

Fson

Gp (Fsonl

Q

-

dB

dB

0.9

-

Fson
dB

dB

2.2
3.5

-

-

(Zs = 50 Q)

= 50 rnA, VeE = 10 V, 20 = 50 Q
Fmin
dB

RN

N

GHz

dB

MAG

ANG

Q

0.01
0.8

2.2
2.8

-

-

-

-

-

f

Gp (Fmin)

ropt

Noise figure F = f (Ie!
VCE = 10\1, f= 10 MHz

Gp (Fsonl

Noise figure F = f (Ie!
VCE = 10\1, f= 800 MHz, ZLoPt (G)

dB
4

dB
4

I

I

Z,=50Q

F

F

"1"-

II \

t

r

3

3

\
V

2

V

V

.....

-

./

'-IZ,'Sop!

2

/'

"-

./

V

V

\

o

524

o

I-'

V

10

/'
Zs='SOQ

20

30

40

50 rnA

Siemens

o

o

10

20

30

40

50 rnA

BFQ 19S

linear output voltage Vo = f (lei
VeE

= 10V, diM = 60 dB,', = 806 MHz

'2 = 810 MHz, Zs =ZL = 50 n
mY
600

1~

-I-

/

400

/

/

I

300

V

200

II

/

100

a

o

20

40

60

BO mA

-Ie

Siemens

525

BFQ29P

NPN Silicon RF Transistor

• For low-noise IF and broadband amplifiers up to 1 GHz
at collector currents from 1 to 20 mA.

€ CECC-type available: CECC 50002/258.

ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

BFQ29P

KC

Q 62702 - F659

SOT-23

Maximum Ratings
Value

Parameter

Symbol

Collector-emitter voltage

VCEO

15

V

Collector-base voltage

VCBO

20

V

Unit

Emitter-base voltage

VEBO

3

V

Collector current

Ic

30

mA

Base current

IB

4

mA

Total power dissipation, TA :5 25 °C2 )

Ptot

280

mW

Junction temperature

Ii

150

°C

Ambient temperature range

TA

-65 ... +150

°C

Storage temperature range

Tstg

-65 ... +150

°C

Thermal Resistance

I

Junction - ambient1 )

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

526

Siemens

RthJA

I :5450

IKIW

BFQ 29P

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Collector-emitter breakdown voltage

Symbol
\t(BR)CEO

Values

Unit

min

typ

max

15

-

-

-

-

0.05
10

-

100

V

Ic=1 mA,Is=O
Collector-base cutoff current
VCB = 10 V. h = 0
VCB = 20 V. IE = 0

leBo

Emitter-base cutoff current
VEB = 3 V. Ic = 0

lEBO

DC current gain

hFE

~

-

Ic= 3 rnA, VcE =6V
Ic=10mA, VcE =6V

50
50

-

250

140

-

Collector-emitter saturation voltage
Ic = 20 rnA, IB = 1 rnA

-

0.1

0.4

VCEsat

Siemens

~

V

527

BFQ 29P

AC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

-

-

3.6

2.7
5

Transition frequency
Ic= 3 rnA, VCE = 6 V, f= 200 MHz
Ic = 20 rnA, VCE = 6 V, f= 200 MHz

fr

GHz

Collector-base capacitance

Ceb

-

0.5

0.65

pF

Gee

-

0.28

-

pF

C,bo

-

1.35

-

pF

Gobs

-

0.8

-

pF

-

0.9
1.5

1.2

-

Vcs=10V, VSE=Vbe=0,f=1 MHz
Collector-emitter capacitance
VCE = 10 V, VSE = Vbe = 0, f= 1 MHz
Input capacitance
VES = 0.5 V, Ic = ie = 0, f= 1 MHz
Output capacitance
VCE = 10 V, VSE = Vbe = 0, f= 1 MHz
Noise figure
Ic=3mA, VcE =6V, f= 10MHz,Zs=75n
Ic=4mA, VcE =6V, f=800MHz,Zs=50n

F

Power gain
Ic = 20 rnA, VCE = 6 V, f= 800 MHz,
Zs = 50 n, ZL = ZLOPt

Gpe

-

14

-

dB

Transducer gain
Ic = 20 rnA, VCE =6 V, f= 1 GHz, Zo = 50n

lS:!lel 2

-

11

-

dB

Linear output voltage
two-tone intermodulation test
Ic = 20 rnA, VCE = 6 V, ~M = 60dB
fl = 806 MHz, f2 = 810 MHz, Zs =ZL =50 n

Vol = Vo2

-

180

-

mV

Third order intercept point
Ic = 20 rnA, VCE = 6 V, f= 800 MHz

IP3

-

28

-

dBm

528

Siemens

dB

BFQ29P

Transition frequency f.r '" f (lei
VeE = 6 V. f= 200 MHz
GHz

Total power dissipation p.o. '" f IT,J
Package mounted on alumina

mW
400

6

-

Plot

t

k"'~

300

V
I

1,\

1'\

200

3

I\.

I

~

100
'\
'\

o

o

100

50

~~

"'

o

150 0 (

o

10

20

30 rnA

-Ie

Collector-base capacitance Cob'" f (VCB)
VBE = Vbe = 0, f= 1 MHz

pF
1.2

r

to

\

0.8

\
~

\
0.6

0.4

r"-

--

0.2

o
o

20 V

10

-VcB
Siemens

529

BFQ29P

Common Emitter Noise Parameters

Ie = 3 rnA, VeE = 6 V, Zo = 50 n
f

Fmin

Gp (Fminl

GHz

dB

dB

0.01

0.85

-

Ie = 5 rnA, VeE = 6 V,

RN

N

Fson

lANG

n

-

dB

Gp (Fson>
dB

(Zs=130n)

-

-

1.2

-

RN

N

Fson

-

dB

Gp (Fson>
dB

ToP!

MAG

Zo = 50 n

f

Fmin

Gp (Fmin)

GHz

dB

dB

MAG

lANG

n

0.01
0.8

0.85
1.25

-

(Zs=100n)
0.25
93.5

-

Top!

I

13

Noise figure F= f (4)
VeE =6 V. f= 10 MHz

,

dB

3

/
Ic=30mA /

F

/
/

t

II

\

2

/ II

\

II
/

1.1

~i""

V

V

t'-~

l

~

20

\

~ .... _:I<

~

'" ..........

"'"
o

o

~f'
J-f'
1

100

200

300Q

-Zs

530

Siemens

11.1

0.20

1.1
1.45

-

14

BFQ29P

Circles of constant noise figure F = f (ZS>
in Zs-plane,lc = 5 rnA, VCE = 6 V, f= 800 MHz

Noise figure F = f (Ie)
VeE = 6 V. f= 800 MHz, ZLopt (G)

dB

3
F

t

,
I.

\

"""- r-j50

o
o

--

,.. .....-::

Zs=50Q

.....I-:;::::

~

'lSDpt

20 rnA

10
-Ie

Siemens

531

BFQ29P

Common Emitter S Parameters
= 2 mA, VCE = 6 V, Zo = 50 Q

Ic
f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.2
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.93
0.86
0.79
0.66
0.50
0.47
0.45
0.43
0.45
0.46

- 20
- 45
- 62
- 93
-129
-147
-161
179
159
149

6.76
6.42
5.16
4.19
2.99
2.48
2.11
1.78
1.51
1.42

158
144
133
113
92
82
74
63
54
48

0.03
0.06
0.08
0.11
0.11
0.12
0.13
0.14
0.16
0.17

76
65
57
47
41
41
42
47
52
56

0.97
0.89
0.85
0.73
0.62
0.59
0.57
0.55
0.54
0.52

- 7
-17
-23
-29
-33
-35
-37
-40
-46
-48

~1

~2

8 12

5,2, 5". = f (f)
Ie = 2 mA, VeE = 6 V, Zo = 50 Q

S11,~=f(f)

Ie = 2 mA, VeE = 6 V, Zo = 50 Q

90 0

+j50

o

-j50

532

-90 0

Siemens

BFQ29P

Ic

= 5 mA,

= 6 V. Zo = 50 n

VCE

f

5 11

GHz

MAG

ANG

MAG

ANG

5 12

MAG

ANG

MAG

ANG

0.1
0.2
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.80
0.69
0.57
0.46
0.35
0.34
0.34
0.34
0.36
0.37

- 31
- 66
- 84
-118
-152
-167
-180
164
148
139

13.96
11.55
8.56
6.06
4.00
3.25
2.74
2.28
1.94
1.80

147
129
119
102
85

0.03
0.05
0.06
0.08
0.10
0.12
0.13
0.16
0.19
0.20

72
60
55
53
55
57
58
59
60
60

0.89
0.76
0.68
0.54
0.46
0.45
0.43
0.42
0.41
0.39

-13
-28
-31
-34
-33
-35
-36
-39
-44
-44

5.!1

77

71
61
54
49

=

S,1, S:zz f If)
Ie =5 rnA, VcE =6V, ~=50n

S,2, Sz1

5.!2

=f If)

Ic=5mA, VCE=6\t,~=50n

90·

o

-j50

-90·

Siemens

533

BFQ29P

Ic = 10 rnA, VCE = 6 V,

ZO = 50 n
~,

~2

f

S"

GHz

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.2
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.65
0.53
0.42
0.35
0.29
0.30
0.30
0.30
0.33
0.35

- 46
- 87
-104
-137
-169
179
169
155
141
133

20.65
14.88
10.41
6.92
4.47
3.59
3.04
2.50
2.11
1.97

135
117
108
94
80
74
69
60
53
49

0.03
0.04
0.05
0.07
0.10
0.12
0.14
0.17
0.20
0.22

69
58
59
61
63
65
64
63
62
62

S'2

= 10 mA,

VCE

= 6 V, Zo = 50 n

Q

-18
-32
-33
-33
-30
-32
-34
-36
-41
-42

o

1800

-j50

534

0.79
0.61
0.54
0.43
0.39
0.38
0.36
0.36
0.35
0.33

90 0

+j50

o

ANG

S,2, 5", = f If)
Ic=10mA, VcE =6V,Zo=50n

s". 5,,2 = f If)
Ic

. MAG

-90 0

Siemens

BFQ29P

Ic = 20 rnA,

VCE

=

6 V,

20 = 50 Q

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.1
0.2
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.47
0.40
0.33
0.31
0.28
0.29
0.30
0.30
0.33
0.35

- 64
-108
-125
-154
178
169
161
148
135
128

25.26
16.60
11.22
7.16
4.57
3.65
3.09
2.54
2.15
2.00

126
109
102
89

0.02
0.03
0.04
0.06
0.09
0.12
0.14
0.17
0.21
0.22

67
62
65
68
68
69
68
66
64
63

0.69
0.50
0.46
0.39
0.36
0.36
0.35
0.34
0.34
0.32

-21
-32
-30
-28
-26
-28
-30
-33
-39
-39

5.21

77

72
67
59
52
48

5.22

=

S.1,~=f(f)

S.2, 8.!1 f (f)
Ie = 20 rnA, VeE = 6\1,.zo =500

Ie = 20 rnA, VeE =6 \I,.zo =500

90 0

o

- j50

-90 0

Siemens

535

NPN Silicon RF Transistor

BFQ64

• For low-distortion broadband amplifiers in antenna and
telecommunications systems at collector currents from
70 to 150 mA.

E

Type

Marking

Ordering code
(tape and reel)

Package

BFQ64

FC

Q 62702-F1061

SOT-89

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

VCEO

20

V

Collector-base voltage

Vcso

30

V

Emitter-base voltage

VESO

3

V

Collector current

Ic

200

mA

ICM

250

mA

Base current

Is

25

mA

Total power dissipation, TA ~ 25 °C2)

Ptot

1

W
°c

Peak collector current,

f~

1 MHz

Junction temperature

7j

150

Ambient temperature range

TA

-65 ... +150

°c

Storage temperature range

Tstg

-65 ... +150

°c

Thermal Resistance

I

Junction - ambient 1)

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

536

Siemens

RthJA

I ~125

IKIW

BFQ64

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter

Symbol

Unit

Values
min

typ

max

Collector-emitter cutoff current
VCE = 30 V. VBE = 0

ICES

-

-

1

mA

Collector-base cutoff current
VCB = 15 V. IE = 0

ICBO

-

-

200

nA

Emitter-base cutoff current
VEB = 2 V. Ic = 0

lEBO

-

-

10

!lA

DC current gain
Ic=120mA, VcE =5V

hFE

25

-

-

-

Siemens

537

BFQ64

AC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

Transition frequency
Ie = 100 rnA, VeE = 5 V; f= 200 MHz

fT

-

3

-

GHz

Collector-base capacitance
VCB = 10 V; VBE = vbe = 0, f= 1 MHz

Ccb

-

1

-

pF

Input capacitance
VEB = 0.5 V; Ie = ic = 0'(= 1 MHz

C,bo

-

11.5

-

pF

Power gain

Gpe

-

10

-

dB

Linear output voltage
two-tone intermodulation test
Ie = 100 rnA, VeE = 10 V; diM = 60 dB
f1 = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 n

Vo1 = Vo2

-

600

-

mV

Third order intercept point
Ie = 100 rnA, VeE = 10V; f= 800 MHz

IP3

-

38.5

-

dBm

Ie = 100 rnA, VeE = 10V; f= 800 MHz,
Zs = ZSopt> ZL = ZLopt

538

Siemens

BFQ64

Total power dissipation P tot = f IT,.)
Package mounted on alumina

W
1.2
P.

fl.0
O.B

\.

\
[\
\

0.6

\

0.4

\
1\

0.2

\.

o
o

\
50

100

150 "C

Siemens

539

NPN Silicon RF Transistor

BFQ81

• For low-noise amplifiers up to 2 GHz and broadband
analog and digital applications in telecommunications
systems at col/ector currents from 0.5 to 20 mA.
~

CECC-type available: CECC 50002/257.

ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

BFO 81

RA

o 62702 -

SOT-23

F1 049

Maximum Ratings
Parameter

Symbol

Value

Unit

Col/ector-emitter voltage
Col/ector-base voltage

VCEO

16

V

VCBO

25

V

Emitter-base voltage

VEBO

2

V

Collector current

Ic

30

mA

Total power dissipation, TA ~ 25 °C2)

PIOI

280

mW

Junction temperature

7j

150

°c

Ambient temperature range

TA

-65 ... +150

°c

Storage temperature range

Tslg

-65 ... +150

°c

RthJA

~450

Thermal Resistance
Junction - ambient 1 )

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

540

Siemens

IKIW

BFQ81

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

V(BR)CEO

16

-

-

V

Collector-base cutoff current
VCB = 15 V, IE = 0

ICBO

-

-

100

nA

Emitter-base cutoff current
VES = 2 V, Ic = 0

lEBO

-

-

10

J.LA

DC current gain

hFE
50
50

-

250

-

Collector-emitter breakdown voltage

Ic=1 mA,Is=O

Ic= 5 mA, VCE = 10V
Ic=15mA, VcE =10V

-

Collector-emitter saturation voltage
Ic = 30 mA, Is = 3 mA

VCEsat

-

0.2

0.4

V

Base-emitter voltage
Ic = 10 mA, VCE = 10 V

VBE

-

0.78

-

V

Siemens

541

BFQ81

AC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

-

4.2
5.8

-

Transition frequency
Ic= 5 rnA, VCE = 10 V, f= 200 MHz
Ic = 15 rnA, VCE = 10V, f= 200 MHz

fr

Collector-base capacitance
VCB = 10 V, VBE = Vbe = 0, f= 1 MHz

Gcb

-

Collector-emitter capacitance
VCE = 10 V, VBE = Vbe = 0, f= 1 MHz

Gce

Input capacitance.
VEB = 0.5 V,Ic = ic = 0, f= 1 MHz

GHz

0.38

-

pF

-

0.22

-

pF

C,bo

-

1.27

-

pF

Output capacitance
VcE =10V, VBE =Vbe=0,f=1 MHz

Gobs

-

0.6

-

pF

Noise figure
Ic= 3 rnA, VCE = 10V, f= 10MHz,Zs=75n
Ic= 5 rnA, VCE = 10 V,f= 800 MHz, Zs = 50 n
Ic=10mA, VcE =10V,f= 2 GHz, Zs = Zsopt

F
0.9
1.4
2.5

Power gain
Ic= SmA, VcE =10V,f=800MHz,
Zs = 50 n, ZL = ZLOPt

Gpe

-

15

-

dB

Transducer gain
Ic = 20 rnA, VCE = 10V, f= 1 GHz, 2{. = 50 n

1~1e12

-

12.4

-

dB

Linear output voltage
two-tone intermodulation test
Ic = 25 rnA, VCE = 10V, diM =60dB
r, =806 MHz, f2 =810MHz,Zs=ZL=50n

Vo1 = Vo2

-

160

-

mV

Third order intercept point
Ic = 25 rnA, VCE = 10 V, f= 800 MHz

1P3

-

27

-

dBm

542

Siemens

dB

BFQ81

Total power dissipation P'ot = f IT,J
Package mounted on alumina

Transition frequency fT = f (Icl
f=200MHz

mW

6Hz
6

400

i--l

1/

VCE=~V

1I 1---1-1'--

1//

,
"200

,

3

"

,

IA

4

I"1'\

\
1V

II

\

1\

2

100

1'\

o

o

50

1'\
150 DC

100

o
o

10

20

30 mA

--Ie

-TA

Collector-base capacitance COb
VBE = Vbe=O, (=1 MHz

=f (Vca)

pF
1.0

r\\
0.5

o

i'-- I-....

o

-. t- t -

10

t--

20 V

-\'cs
Siemens

543

BFQ81

Common Emitter Noise Parameters
Ie = 3 rnA, VeE = 10 V. Zo = 50 Q
f

Fmin

Topt

Gp (Fmin)

GHz

dB

dB

0.01

0.7

-

MAG

1 ANG

(Zs = 150 Q)

Ie = 5 rnA, VeE = 10 V. 2Q =50

Topt

Fmin

Gp (Fmin)

GHz

dB

dB

MAG

0.01
0.8

0.8
1.3

-

(Zs = 150 Q)
0.22
71.5

1 ANG

I

14.2

Ie = 10 rnA, VeE = 10 V, 2Q = 50
f

Fmin

Gp (Fmin)

dB

dB

MAG

2.0

2.5

8.5

0.27

Topt

1ANG
1-139

Noise figure F=f(lcl
VeE = 10V, f= 10 MHz

dB

3
F

\

Zs=1S0~\ - rsoQ
7SQ, ~

,...

I
,'-. ~ r'

-~
i--"'""

K::

./
I>i--"'"" ~ I-"

.......:: i:---'

'-

o
o

10

20 mA

-Ie
544

F 50n

Q

-

dB

dB

-

1.2

-

RN

·N

F50n

Gp

Q

dB

dB

-

0.19

1.15
1.4

-

11.7

Gp

(F50nl

(F50nl

14

Q

GHz

2

N

Q

f

t

RN

Siemens

RN

N

F 50n

Gp

Q

-

dB

dB

14.2

0.39

2.8

-

(F50nl

BFQ81

Noise figure F = f (Iel
VCE = 10 V, f= 800 MHz, ZLopt (G)

Circles of constant noise figure F= f (Zs)
and available power gain Gav = f (Zs)
Ic=5mA, VcE =10Y, f=800MHz
+

dB
3

j50

F

t

I

\

is=5011~ V

\f\.. f- ~
~

- j SO

o

Circles of constant noise figure F = f (Zs)
and available power gain Gav = f (Zs)
Ic= 10 mA, VCE = 10V, f= 2 GHz
+ j 50

-

....-::

-::..--

i--""" :lsopt

o

20 rnA

10

Noise figure F= f (Iel
VCE = 10V, f= 2 GHz, ZLoPt (G)

dB
4

I
I
_I

I

r

2s=5011 :;;;; ~
/'
I V
..,-

\
\

....--r

I

"- -

\\.

/'

2

I
I

7

]7

./

"'Zsopt

6.,=10.3,10,9,8,7 dB

- j 50

o

o

20 rnA

10

-Ie

Siemens

545

BFQ81

Common Emitter Power Gain
dB
30

Power gain Gms, 15;,1.12 = f (lei
VCE = 10V, f= 200 MHz,.20 = 50n

Um.

/
1/

7

/

dB
30

--

Power gain Gma, 15;,1.12 =f (lei
VCE = lOll, f= 500 MHz,.20= 50n

I-

l.--"

l - I - I- Um.

7 IS21.12

1/

~./

10

-

l-

II IS21.1

I-

ams-

2

10

-l I

>-- I- U s21.
>-- I- I m· l- ~12. 'I

10

-I

-S

2"1
S12.
10

20 mA

-Ie

20 mA

-Ie

Power gain Gm., Gms, 15;,1.12 =f (leI
VCE = 10 II, f= 1 GHz,.20 = 50 n

Power gain Gma, 15;,1.12 =f(lel
VCE = 1011, f= 2 GHz,.20 = 50n

dB
20

dB
20

1

I

u""

Um.

l- I-

V

d .1 I I I
=Is21·I·(k -/kG') -

I I
um.

112 •

I

Um.

V

IS21.1 2

10

10

~

I-

II

I-

Um• = S21.

I-

um.

S12.

I

V

- -

=l s21·1·(k_Jk 2_1',- ~12"1 I I I

I

10

20 mA

10

20 mA

-Ie

-Ie

546

IS21.1 2

Siemens

BFQ81

Power gain Gma , Gmso 1$",.1 2 = f (fl
Ic

Power gain Gma , Gms• 1$",.1 2 = f (fl

= 2 mA, VCE = 10 V, Zo = 50 n

Ie = 5 mA, VeE = 10 V, Zo

dB
30
Oma
Oms

1521 i

1

15

"'- r--.. 0 ms

20

15 21,1

I------

2,i

t

.........

20

"" "

1521,1 2

"

i'l'.

\. Oma

10

r'\.
o ms-_\5
- 21 , 1

5'2,

o

I
Oms

-.... I'-..

I-

Oma

-"'"""," "

Oma
Oms

~

"'-\

"1~2"'2. I· (k -Jk2J J
0.5

0.1

"'"\.

10

2

52 ",
_Oms= 15'2,
o ma -_1 -52 "1 ·(k- k -1)
5'2.
I

o

3 GHz

0.1

0.5

dB
30

.1

Oma
Oms

Oms

1 20

15

'\.

I------ 1521,1 2

'\

~

~

2,i

I

I-- Oms = 152', 1

=1~21'1·(k_./kG')

f- Om,

I

1'2 • i

20
I------

'\

I\.

&1
ms

I\.

r\

1\
15 2,,1 2

"'
'\

Oma - I--

"'-"""

10

"'-

_1 5'2, I

I5'2, I·

Oma = 52', (k
2

"fm

- "
o ms- 52

I I I I II

0.5

3 GHz

'\.

"\

5'2,

I--

1"'-

1
2
-f

f--

"'-"
"\ ~

10

~
~ r'\.

"'

'\
1\ Oma

'fm

Power gain Gma • Gms • 1$",.1 2 = f (tl
le=20mA, VcE =10Il,Zo=50n

dB
30

I5 21 i

"'-\

.Jk21

Power gain Gma , Gms .I$",.1 2 = f (fl
le=10mA, VeE =10V,Zo=50n

"'"" "
'" " "'

_'\. oma-

I'

1"'1

1\

-f

Oma
Oms

= 50 n

dB
30

3 GHz

-f

o0.1

"\

-IkG\
0.5

2

3 GHz

-f

Siemens

547

BFQ81

Common Emitter S Parameters
Ic = 1 rnA, VCE = 1 V, ~ = 50 n

GHz

5 11
MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00

0.950
0.931
0.910
0.882
0.854
0.797
0.743
0.700
0.659
0.636
0.612
0.590
0.566
0.551
0.546
0.547
0.548
0.559

- 18.8
- 28.0
- 36.9
- 45.5
- 53.6
- 68.8
- 82.4
- 94.9
-106.5
-116.6
-126.7
-136.0
-152.5
-167.0
-173.7
-179.7
168.9
158.6

3.58
3.51
3.42
3.30
3.17
2.90
2.64
2.41
2.21
2.04
1.90
1.76
1.54
1.37
1.31
1.25
1.15
1.06

165.3
158.2
151.3
144.8
138.6
127.5
117.9
109.3
101.8
94.9
88.6
82.7
72.7
64.2
60.6
56.7
49.8
43.5

0.046
0.067
0.087
0.105
0.120
0.145
0.163
0.175
0.184
0.190
0.192
0.192
0.190
0.185
0.182
0.181
0.179
0.180

78.6
73.2
68.1
63.2
58.7
50.9
44.6
39.5
35.3
31.7
28.9
26.9
24.5
24.1
24.9
26.0
29.1
33.3

0.980
0.962
0.939
0.913
0.885
0.827
0.775
0.729
0.690
0.657
0.628
0.603
0.567
0.544
0.535
0.529
0.518
0.506

- 8.6
-12.5
-16.3
-19.8
-22.9
-28.3
-32.7
-36.2
-39.1
-41.4
-43.6
-45.5
-49.0
-52.7
-54.6
-56.6
-60.8
-65.5

f

548

~2

5.21

Siemens

5.22

BFQ81

1 V,

Zo =

50

n

Ic = 2 rnA,

VCE =

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00

0.904
0.869
0.829
0.784
0.742
0.668
0.611
0.569
0.535
0.518
0.501
0.488
0.476
0.472
0.468
0.473
0.477
0.493

- 25.9
- 38.1
- 49.5
- 60.0
- 69.7
- 86.8
-101.3
-114.0
-125.4
-135.0
-144.8
-153.4
-168.4
178.6
172.8
167.8
157.8
149.4

6.71
6.42
6.06
5.67
5.27
4.57
3.99
3.51
3.14
2.83
2.59
2.37
2.04
1.79
1.69
1.62
1.48
1.36

160.4
151.4
143.2
135.9
129.2
118.2
109.1
101.5
95.0
89.1
83.8
78.9
70.6
63.3
60.0
56.6
50.5
44.7

0.045
0.064
0.081
0.094
0.106
0.122
0.133
0.141
0.147
0.152
0.156
0.159
0.166
0.173
0.178
0.183
0.195
0.209

75.4
68.8
63.1
58.1
53.9
47.5
43.1
40.2
38.3
37.0
36.4
36.3
37.3
38.9
40.1
41.1
43.0
44.7

0.955
0.917
0.870
0.823
0.776
0.692
0.627
0.575
0.535
0.503
0.476
0.454
0.422
0.401
0.395
0.390
0.380
0.367

-13.1
-18.8
-23.8
-28.1
-31.7
-37.2
-41.0
-43.8
-46.0
-47.6
-49.2
-50.4
-53.0
-56.0
-57.6
-59.4
-63.2
-67.8

~2

8 12

~1

Siemens

549

BFQ81

= 3 V.

zo = 50 n

Ic = 2 rnA,

VCE

f

~1

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.916
0.886
0.851
0.810
0.770
0.695
0.629
0.580
0.534
0.511
0.486
0.466
0.444
0.431
0.424
0.427
0.426
0.440
0.491
0.518

- 21.7
- 32.2
- 42.0
- 51.2
- 59.9
- 75.5
- 89.2
-101.6
-112.8
-122.7
-132.7
-141.9
-158.1
-172.8
-179.2
175.2
164.1
154.8
133.9
117.9

6.74
6.52
6.25
5.92
5.58
4.94
4.37
3.90
3.51
3.18
2.91
2.68
2.30
2.03
1.91
1.82
1.66
1.52
1.26
1.10

163.0
155.0
147.6
140.8
134.5
123.8
114.9
107.3
100.7
94.8
89.5
84.6
76.2
68.9
65.6
62.3
56.3
50.5
38.6
28.4

0.032
0.046
0.058
0.069
0.078
0.093
0.102
0.110
0.115
0.120
0.123
0.126
0.132
0.139
0.143
0.148
0.159
0.172
0.216
0.273

77.8
72.3
67.2
62.8
58.9
52.8
48.4
45.6
43.8
42.5
42.0
42.1
43.2
45.4
46.9
48.3
50.9
53.1
57.5
57.9

0.970
0.943
0.911
0.875
0.840
0.773
0.718
0.673
0.639
0.611
0.586
0.567
0.538
0.520
0.515
0.511
0.503
0.491
0.465
0.457

- 9.3
-13.4
-17.1
-20.3
-23.1
-27.2
-30.2
-32.4
-34.0
-35.2
-36.3
-37.2
-39.1
-41.3
-42.5
-43.9
-46.8
-50.2
--60.6
-71.6

550

8 12

5:11

Siemens

5:12

BFQ81

Ic

=

5 mA,

VCE =

3 V.

Zo =

50 !1

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.807
0.741
0.673
0.611
0.558
0.479
0.425
0.389
0.363
0.351
0.340
0.335
0.331
0.333
0.329
0.335
0.341
0.359
0.413
0.444

- 34.6
- 49.5
- 62.5
- 73.9
- 84.1
-101.1
-115.1
-127.2
-138.1
-146.9
-156.1
-164.3
-178.1
168.8
163.5
159.1
150.4
143.3
126.8
114.2

14.10
12.83
11.53
10.31
9.23
7.55
6.33
5.44
4.77
4.24
3.82
3.47
2.95
2.57
2.41
2.29
2.07
1.89
1.57
1.37

153.1
142.1
132.9
125.4
119.2
109.4
102.1
96.1
90.9
86.5
82.3
78.5
72.0
66.0
63.3
60.5
55.3
50.4
39.6
29.7

0.029
0.040
0.049
0.055
0.061
0.070
0.078
0.085
0.093
0.101
0.108
0.116
0.132
0.149
0.158
0.168
0.186
0.205
0.255
0.308

72.7
66.2
61.7
58.6
56.4
54.3
54.0
54.4
55.2
55.8
56.6
57.5
58.6
59.3
59.6
59.7
59.5
59.0
57.2
54.0

0.912
0.842
0.773
0.711
0.659
0.579
0.527
0.491
0.465
0.447
0.431
0.418
0.399
0.388
0.386
0.383
0.378
0.366
0.336
0.326

-16.5
-22.4
-26.7
-29.8
-31.8
-34.0
-35.1
-35.4
-35.9
-36.1
-36.6
-36.9
-38.1
-39.8
-40.9
-42.2
-45.3
-48.6
-58.4
-69.1

5.11

Siemens

5.12

551

BFQ81

Ic

=

2 mA, VCE

6 V,

=

ZO

=

50 n

5.z1

GHz

8 11
MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.924
0.896
0.863
0.824
0.785
0.709
0.642
0.588
0.539
0.511
0.481
0.457
0.427
0.410
0.402
0.403
0.402
0.415
0.465
0.492

- 20.0
- 29.6
- 38.8
- 47.5
- 55.6
- 70.5
- 83.6
- 95.6
-106.7
-116.4
-126.5
-135.8
-152.6
-167.9
-174.6
179.4
167.6
157.7
135.6
119.2

6.69
6.50
6.25
5.96
5.64
5.04
4.49
4.03
3.64
3.31
3.04
2.80
2.41
2.12
2.00
1.90
1.72
1.58
1.31
1.14

164.0
156.5
149.4
142.8
136.7
126.2
117.4
109.8
103.2
97.3
92.0
87.1
78.7
71.3
68.0
64.7
58.7
53.1
41.0
30.7

0.026
0.038
0.048
0.058
0.066
0.079
0.088
0.094
0.099
0.104
0.107
0.110
0.115
0.121
0.125
0.129
0.139
0.151
0.193
0.248

78.8
73.5
69.0
64.8
61.1
55.1
51.0
48.2
46.4
45.2
44.7
44.9
46.3
48.7
50.5
52.0
55.1
57.8
63.0
64.1

0.976
0.954
0.927
0.898
0.868
0.811
0.763
0.723
0.692
0.667
0.645
0.627
0.602
0.586
0.582
0.579
0.573
0.563
0.540
0.535

- 7.7
-11.2
-14.2
-16.9
-19.2
-22.8
-25.4
-27.2
-28.6
-29.7
-30.6
-31.4
-33.1
-35.0
-36.1
-37.2
-39.8
-42.7
-51.7
-61.2

f

~,.

s.,. = f (f)

Ic=2 mA,

5.z2

8 12

~2.

VCE=6V,~=50Q

s", = f (f)

Ic=2 mA,

+j50

VCE=6V,~=50Q

90·

o

180·

-j50

552

-90·

Siemens

BFQ81

Ic

=

f

5 rnA, VCE

=

6 V.

Zo =

50

n

511

MAG

ANG

5 12
MAG

ANG

MAG

ANG

13.95
12.83
11.65
10.51
9.48
7.83
6.60
5.69
4.99
4.45
4.02
3.66
3.10
2.70
2.53
2.40
2.17
1.98
1.65
1.43

154.8
144.3
135.4
127.9
121.7
111.8
104.3
98.2
93.0
88.5
84.3
80.5
74.0
68.0
65.2
62.6
57.4
52.6
41.8
31.9

0.024
0.034
0.041
0.048
0.053
0.061
0.068
0.075
0.081
0.088
0.095
0.102
0.116
0.131
0.139
0.147
0.164
0.181
0.228
0.278

74.1
68.3
63.9
60.7
58.5
56.2
55.7
56.2
57.0
57.7
58.6
59.4
61.0
61.9
62.5
62.7
63.0
62.8
61.8
59.4

0.929
0.872
0.813
0.759
0.713
0.641
0.594
0.561
0.538
0.521
0.507
0.497
0.480
0.470
0.469
0.467
0.463
0.453
0.426
0.419

-13.4
-18.3
-21.9
-24.4
-26.1
-27.8
-28.6
-29.0
-29.2
-29.5
-29.9
-30.2
-31.3
-32.9
-33.8
-35.0
-37.6
-40.4
-48.6
-57.5

5.?1

GHz

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.827
0.764
0.698
0.634
0.577
0.490
0.426
0.385
0.352
0.332
0.318
0.308
0.300
0.297
0.294
0.298
0.303
0.321
0.379
0.408

- 31.1
- 44.7
- 56.7
- 67.4
- 76.8
- 93.0
-106.3
-118.4
-129.1
-138.4
-147.9
-156.8
-171.9
173.9
168.2
162.9
153.6
146.0
128.4
115.3

5", s.:. = f If)

5.?2

5,2. 5", = f If)

Ie =5 rnA, VeE = 6\1, Zo = 50 Q

Ie =5 rnA, VeE = 6\1, Zo = 50 Q

90'

o

180'

_135'

-90'

-j50

Siemens

553

BFQ81

Ic

=

10 mA,

VCE =

6 V,

Zo =

50 Q

S:e,

f

8"

8 '2

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.704
0.610
0.529
0.465
0.415
0.348
0.304
0.278
0.261
0.254
0.248
0.248
0.250
0.256
0.255
0.260
0.266
0.286
0.346
0.377

- 43.8
- 60.5
- 74.2
- 85.5
- 95.3
-111.8
-125.2
-137.0
-147.1
-156.0
-164.7
-172.2
174.1
161.4
156.4
152.1
144.3
138.5
123.8
112.9

21.34
18.27
15.62
13.44
11.72
9.26
7.62
6.46
5.61
4.96
4.45
4.04
3.41
2.96
2.78
2.63
2.37
2.16
1.79
1.55

144.8
132.6
123.4
116.4
110.9
102.7
96.6
91.6
87.4
83.7
80.3
77.0
71.4
66.0
63.6
61.2
56.5
52.2
41.9
32.4

0.022
0.029
0.035
0.039
0.044
0.052
0.060
0.068
0.077
0.086
0.094
0.103
0.121
0.139
0.148
0.158
0.177
0.195
0.244
0.293

70.4
65.1
62.6
61.7
61.3
62.1
63.3
64.6
65.6
66.1
66.6
67.0
67.2
66.9
66.8
66.4
65.6
64.4
61.5
57.8

0.855
0.763
0.687
0.629
0.586
0.528
0.496
0.474
0.461
0.451
0.442
0.436
0.424
0.418
0.418
0.417
0.413
0.403
0.375
0.366

-19.0
-23.8
-26.4
-27.5
-27.8
-27.5
-27.1
-26.7
-26.8
-26.9
-27.2
-27.5
-28.8
-30.5
-31.6
-32.8
-35.7
-38.6
-46.7
-55.6

5", s." = f (f)

5,2, ~, = f (f)
Ic = 10 mA, VCE = 6 V, Zo = 50 n

Ic=10mA, VcE =6\1,Zo=50n

_90 0

-j50

554

S:e2

Siemens

BFQ81

Ic = 20 rnA, VCE = 6 V,

~

= 50

Q

~1

~2

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.566
0.464
0.394
0.345
0.311
0.271
0.247
0.236
0.229
0.228
0.231
0.232
0.242
0.253
0.253
0.258
0.266
0.284
0.345
0.374

- 59.2
- 78.4
- 93.3
-105.1
-115.2
-131.9
-144.7
-155.3
-164.1
-171.4
-178.8
174.7
163.6
152.6
148.5
144.9
138.1
133.9
121.1
110.8

27.49
21.82
17.76
14.82
12.67
9.78
7.93
6.68
5.78
5.09
4.56
4.13
3.48
3.02
2.83
2.68
2.41
2.19
1.82
1.58

134.2
121.9
113.6
107.7
103.1
96.4
91.4
87.2
83.6
80.4
77.3
74.4
69.3
64.3
62.0
59.7
55.2
51.0
41.0
31.7

0.019
0.024
0.029
0.034
0.038
0.047
0.056
0.065
0.075
0.084
0.094
0.103
0.122
0.141
0.151
0.161
0.180
0.200
0.249
0.297

67.5
64.6
64.7
65.3
66.3
68.2
69.6
70.6
71.1
71.2
71.3
71.2
70.6
69.7
69.3
68.6
67.3
65.8
62.2
58.1

0.760
0.655
0.584
0.538
0.507
0.469
0.451
0.439
0.431
0.426
0.421
0.417
0.409
0.404
0.405
0.404
0.401
0.391
0.363
0.353

-22.9
-25.9
-26.3
-25.9
-25.1
-23.6
-22.9
-22.6
-22.8
-23.2
-23.8
-24.3
-25.9
-27.9
-29.1
-30.5
-33.6
-36.7
-44.8
-53.9

S,2, ~, = f If)
Ie =20 rnA, VeE = 611,.2{,= 500

S",~=flf)

Ie = 20 rnA, VeE = 611,.2{, = 500

+j50

o

1800

_90 0

-j50

Siemens

555

BFQ81

= 10 V, Zo = 50 Q

Ic = 2 rnA,

VCE

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.931
0.905
0.874
0.836
0.796
0.722
0.654
0.597
0.544
0.513
0.481
0.455
0.421
0.399
0.390
0.390
0.385
0.398
0.447
0.478

- 18.9
- 28.2
- 36.9
- 45.2
- 53.0
- 67.4
- 80.2
- 91.9
-102.7
-112.3
-122.3
-131.7
-148.7
-164.4
-171.2
-177.8
170.4
160.0
136.9
119.7

6.59
6.41
6.19
5.92
5.62
5.05
4.52
4.06
3.68
3.35
3.09
2.85
2.45
2.16
2.03
1.93
1.76
1.61
1.33
1.15

164.6
157.4
150.4
144.1
138.0
127.7
118.9
111.3
104.7
98.9
93.5
88.5
80.0
72.6
69.4
66.1
60.1
54.4
42.3
31.8

0.023
0.034
0.043
0.052
0.059
0.071
0.079
0.085
0.090
0.094
0.097
0.100
0.105
0.110
0.114·
0.118
0.127
0.138
0.177
0.229

79.4
74.4
70.0
65.9
62.5
56.5
52.4
49.7
47.9
46.6
46.2
46.5
47.9
50.5
52.4
54.0
57.3
60.2
66.0
67.7

0.978
0.960
0.937
0.911
0.884
0.833
0.789
0.753
0.725
0.702
0.681
0.666
0.642
0.628
0.625
0.622
0.617
0.609
0.589
0.587

- 6.7
- 9.8
-12.5
-14.9
-17.0
-20.1
-22.4
-24.1
-25.4
-26.3
-27.2
-27.9
-29.5
-31.2
-32.2
-33.3
-35.6
-38.2
-46.2
-54.8

~,

~2

8 '2

5,1 ,5,2 = f If)
Ie = 2 rnA, VeE = 10V, Zo = 50 n

5,2,5" = f If)
Ie = 2 rnA, VeE = 10V, Zo = 50 n

+j50

o

1800

_90 0

-j50

556

Siemens

BFQ81

Ic = 5 rnA, VCE = 10 V.

Zo = 50 Q
~1

~2

f

$11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.847
0.786
0.721
0.657
0.599
0.506
0.437
0.389
0.351
0.329
0.310
0.296
0.283
0.278
0.273
0.278
0.280
0.298
0.357
0.390

- 28.9
- 41.7
- 53.1
- 63.1
- 72.1
- 87.6
-100,4
-112.2
-122.8
-132.0
-141.8
-150.7
-166.8
178.1
171.8
166.1
156.3
148.3
129.4
116.1

13.60
12.60
11.53
10.46
9.48
7.89
6.68
5.77
5.08
4.53
4.10
3.73
3.17
2.76
2.58
2.45
2.21
2.02
1.67
1.45

156.0
145.9
137.1
129.7
123.4
113.5
105.9
99.6
94.4
89.8
85.6
81.7
75.2
69.1
66.4
63.7
58.7
53.8
42.9
33.1

0.022
0.030
0.038
0.043
0.048
0.056
0.062
0.069
0.075
0.081
0.087
0.093
0.106
0.120
0.127
0.134
0.150
0.166
0.209
0.257

75.1
69.5
65.1
61.9
59.7
57.2
56.7
57.0
57.8
58.5
59.4
60.4
61.9
63.1
63.9
64.2
64.8
64.9
64.6
62.8

0.939
0.889
0.837
0.790
0.747
0.682
0.639
0.607
0.586
0.570
0.557
0.548
0.532
0.524
0.523
0.522
0.518
0.510
0.487
0.482

-11.5
-15.8
-19.0
-21.2
-22.7
-24.3
-25.0
-25.3
-25.6
-25.9
-26.2
-26.5
-27.6
-29.0
-29.9
-31.0
-33.3
-35.9
-43.1
-51.1

$12

5,2. 5", = f If)

5". Sn = f If)
Ic=5mA, VcE =10\/'Zo=50Q

Ic = 5 rnA, VCE = 10\/, Zo =50 Q

90·

o

180·

_90·

-jSO

Siemens

557

BFQ81

Ie = 10 rnA, VeE = 10

V. Zo

=

50

Q

~1

~2

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.744
0.650
0.566
0.497
0.441
0.362
0.310
0.277
0.254
0.242
0.234
0.229
0.227
0.232
0.231
0.237
0.242
0.261
0.324
0.355

- 39.7
- 55.4
- 68.1
- 78.7
- 88.0
-103.8
-116.5
-128.3
-138.5
-147.7
-157.0
-165.8
179.4
165.5
159.6
155.1
146.5
140.5
124.8
113.5

20.56
17.86
15.44
13.39
11.74
9.33
7.70
6.54
5.70
5.04
4.52
4.10
3.46
3.01
2.82
2.67
2.40
2.19
1.82
1.57

146.8
134.8
125.6
118.5
112.8
104.4
98.1
93.0
88.6
84.9
81.4
78.1
72.4
67.1
64.6
62.2
57.6
53.2
42.9
33.4

0.020
0.027
0.032
0.037
0.041
0.048
0.055
0.063
0.071
0.079
0.086
0.094
0.111
0.127
0.135
0.144
0.161
0.179
0.224
0.270

71.5
66.3
63.4
62.1
61.7
62.2
63.3
64.6
65.7
66.3
67.0
67.5
67.9
67.8
68.0
67.7
67.2
66.3
64.0
61.0

0.877
0.798
0.729
0.675
0.635
0.580
0.549
0.529
0.516
0.507
0.499
0.493
0.483
0.477
0.477
0.476
0.474
0.465
0.440
0.433

-16.2
-20.4
-22.7
-23.8
-24.1
-23.9
-23.6
-23.3
-23.4
-23.6
-23.9
-24.2
-25.4
-27.0
-28.0
-29.1
-31.7
-34.3
-41.4
-49.3

5 ,2, 5", = f (f)
Ie = 10 mA, VCE = 10V, Zo = 50 n

5 11 ,5,,2 = f (f)
le=10mA, VcE =10V,Zo=50n

o

558

Siemens

BFQ81

Ic = 20 rnA,

VCE

= 10 V, Zo = 50 Q
~,

~2

f

8"

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.628
0.517
0.435
0.376
0.332
0.277
0.243
0.227
0.215
0.211
0.210
0.210
0.218
0.227
0.228
0.234
0.241
0.260
0.324
0.355

- 52.7
- 70.3
- 84.1
- 95.1
-104.6
-121.1
-133.6
-145.2
-155.2
-163.0
-171.5
-179.1
168.5
156.3
151.2
147.5
140.0
135.5
122.0
111.7

26.24
21.27
17.51
14.71
12.62
9.79
7.97
6.72
5.82
5.13
4.59
4.16
3.50
3.04
2.84
2.69
2.42
2.21
1.83
1.58

137.1
124.7
116.0
109.8
105.0
98.0
92.7
88.4
84.7
81.4
78.3
75.4
70.1
65.0
62.7
60.4
56.0
51.7
41.7
32.3

0.018
0.023
0.028
0.032
0.036
0.044
0.052
0.060
0.069
0.078
0.086
0.095
0.112
0.130
0.139
0.147
0.165
0.183
0.229
0.275

68.5
65.1
64.3
64.8
65.6
67.3
68.9
70.0
70.7
71.0
71.2
71.3
71.1
70.4
70.2
69.7
68.7
67.5
64.5
61.1

0.800
0.705
0.639
0.595
0.565
0.528
0.510
0.498
0.492
0.486
0.481
0.477
0.470
0.466
0.467
0.467
0.465
0.456
0.431
0.424

-19.4
-22.1
-22.7
-22.4
-21.8
-20.6
-20.1
-19.9
-20.1
-20.5
-21.0
-21.6
-23.0
-24.9
-26.0
-27.3
-30.0
-32.8
-40.0
-48.1

8'2

S,2, 5:., =f (f)
le= 20 mA, VeE = 10V, Zo= 50 0

s". 5z! = f (f)
Ie = 20 mA, VeE = 10 V, Zo=500

-jSO

-90 0

Siemens

559

BFR35AP

NPN Silicon RF Transistor

• For broadband amplifiers up to 2 GHz and fast nonsaturated switches at collector currents from 0.5 to
20 mA.

ESD: Electrostatic discharge sensitive device, observe handling precautions!

Type

Marking

Ordering code
(tape and reel)

Package

BFR35AP

GE

Q 62702 - F 938

SOT-23

Maximum Ratings
Parameter

Symbol

Collector-emitter voltage
Collector-emitter voltage, VSE = 0

Values

Unit

VCEO

12

V

VCES

20

V

Emitter-base voltage

VESO

2.5

V

Collector current

Ic

30

mA

Base current

Is

4

mA

Total power dissipation, TA ~ 25 °C 2)

Ptot

280

mW

Junction temperature

7j

150

°c

Ambient temperature range

TA

-65 ... +150

°c

Storage temperature range

Tstg

-65 ... +150

°c

Thermal Resistance
Junction - ambient 1)

RthJA

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

560

Siemens

I ~450

IKIW

BFR35AP

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

Collector-emitter breakdown voltage
Ic = 1 mA,ls= 0

\l(sR)CEO

12

-

-

V

Collector-emitter cutoff current
VcE =20V, VSE=O

ICES

-

-

100

~

Collector-base cutoff current
Vcs =10V,IE =0

Icso

-

-

50

nA

Emitter-base cutoff current
VES = 2.5 V, Ic = 0

I Eso

-

-

100

~

DC current gain
Ic= 5mA, VcE =6V
Ic=20mA, VcE =6V

!Jr,E
40
40

85
90

-

Collector-emitter saturation voltage
Ie =30 mA, Is =3 mA

VCEsat

-

0.16

0.4

Siemens

V

561

BFR35AP

AC characteristics
Symbol

Parameter

min

Values
typ

max

-

Unit
GHz

Transition frequency
Ic= 5mA, VcE =6V, f=200MHz
Ic = 20 mA, VCE = 6 V, f= 200 MHz

fT

3.6

3.8
4.9

Collector-base capacitance
VCB = 6 V, VBE = vbe = 0, f= 1 MHz

C eb

-

0.56

0.7

pF

Collector-emitter capacitance
VCE = 6 V, VBE = Vbe = 0, f= 1 MHz

C ee

-

0.27

-

pF

Input capacitance
VEB = 0.5 V, Ic = ie = 0, f= 1 MHz

C,bo

-

0.9

-

pF

Output capacitance
VCE = 6 V, VBE = Vbe = 0, f= 1 MHz

Cobs

-

0.85

-

pF

Noise figure
Ic=5mA, VCE = 6V, f= 10 MHz, Zs = 75 n
Ic=2mA, VCE = 6V, f=800MHz,Zs=Zsopt
Ic = 3 mA, VCE = 10V, f= 2 GHz, Zs = Zsopt

F

-

-

1.5
1.5
3.9

Power gain
Ic = 15 mA, VCE = 6 V, f= 800 MHz
Zs = 50 n, ZL = ZLOPt

Gpe

-

14

-

dB

Transducer gain
Ic=15mA, VcE =6V, f=1 GHz,Zo=50n

15.11e1 2

-

11

-

dB

Linear output voltage
two-tone intermodulation test
Ic = 15 mA, VCE = 10V, ~M = 60dS
fl = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 n

Vol = Vo2

-

110

-

mV

Third order intercept point
Ic = 15 mA, VCE = 10V, f= 800 MHz

IP3

-

23.5

-

dBm

562

Siemens

-

dB

BFR35AP

Total power dissipation Ptot = f (Till

Transition frequency fT = f (Id
VeE = 6 V,f= 200 MHz

Package mounted on alumina

GHz

rnW
400

6

flot

t 300

V

~

v

,..

/
\

1,\

200

f

3

1\

I

I\.
2
100

I

I
\
i\

I\.

o
o

o
o

150 0 (

100

50

10

20 rnA

-T,.

Collector-base capacitance Ccb
VSE = Vbe = O. f= 1 MHz

=f (Vee)

pF
1.0

1\

1\

\

1\ ......
O.S

o
o

........ r-.....

----

10

I--

20 V

-lis
Siemens

563

BFR 35AP

Common Emitter Noise Parameters
= 2 rnA, VeE = 6 V. Zo = 50 n

Ie

f

Fmin

Gp

GHz

dB

dB

0.01

1.05

-

Ie

= 5 rnA,

VeE

= 6 V.

Zo

f

Fmin

GHz

dB

dB

0.01
0.8

1.3
1.7

-

Gp

r opt

RN

N

Fson

Gp (Fson)

lANG

n

dB

(Zs= 150n)

-

-

3

dB
-

RN

N

Fson

Gp (Fsonl

lANG

n

dB

-

-

dB

(Zs = 100n)

-

16.9

0.24

1.6
1.9

(Fmin)

MAG

= 50 n
r opt

(Fmin)

MAG

14.3

I 58.5

0.25

=

Noise figure F f (Zs)
VcE =6 V. f= 10 MHz

dB
4

IA

AI

~=~O~~
lF

3

V
V

:l

I....V lOrnA
I
J...1'"

2
W~

\..

".

-"SmA2m~

lmA -

o
o
564

100

200

300Sl

Siemens

14

BFR35AP

Circles of constant noise figure F =f (Zs)
lc= 5 rnA, VCE = 6 V, f= 800 MHz

Noise figure F=f(Icl
VCE = 6 V, f= 800 MHz, ZLopt (G)

dB
5

F

l

4

3

2

-j 50

o

\

-

z~~ ~

~

~

;...-"

\ ~ ~oPt

o

10

20 rnA
-Ie

Siemens

565

BFR35AP

Common Emitter S Parameters

Ie = 0.5 rnA, VeE = 1 V,

.20 =

50 n
~1

~2

~2

f

$11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.967
0.956
0.941
0.923
0.903
0.859
0.812
0.765
0.717
0.686
0.645
0.610

- 12.3
- 18.4
- 24.3
- 30.2
- 35.9
- 47.0
- 57.2
- 67.2
- 76.5
- 85.5
- 94.5
-103.1

1.83
1.82
1.81
1.78
1.75
1.68
1.59
1.51
1.44
1.36
1.31
1.25

168.2
162.3
156.4
150.8
145.2
134.7
125.1
116.1
108.0
100.3
93.3
86.6

0.050
0.075
0.098
0.120
0.141
0.177
0.207
0.231
0.249
0.265
0.275
0.281

81.5
77.4
73.2
69.3
65.4
58.2
51.8
46.2
41.2
36.3
32.3
28.6

0.990
0.982
0.970
0.955
0.939
0.902
0.864
0.826
0.790
0.757
0.725
0.695

- 6.7
-10.0
-13.0
-16.2
-19.1
-24.5
-29.4
-33.6
-37.4
-40.7
-43.8
-46.4

Ie = 1 rnA, VeE = 1 V,

.20 =

50 n
~1

~2

f

$11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.938
0.917
0.892
0.862
0.829
0.763
0.699
0.643
0.591
0.557
0.521
0.490

- 16.4
- 24.5
- 32.2
- 39.7
- 46.7
- 60.1
- 72.0
- 83.2
- 93.4
-103.0
-112.6
-121.7

3.51
3.45
3.37
3.26
3.13
2.88
2.64
2.41
2.22
2.05
1.92
1.79

165.6
158.7
151.9
145.5
139.4
128.5
118.9
110.4
102.9
96.1
89.8
84.0

0.050
0.073
0.095
0.114
0.132
0.160
0.182
0.198
0.209
0.219
0.225
0.229

79.4
74.4
69.6
65.1
60.8
53.5
47.6
42.8
38.9
35.5
32.9
30.8

0.981
0.962
0.938
0.910
0.881
0.819
0.761
0.709
0.665
0.626
0.591
0.559

. - 9.4
-13.8
-17.9
-21.9
-25.5
-31.7
-37.0
-41.2
-44.7
-47.5
-50.2
-52.4

566

$12

Siemens

BFR35AP

Ic

=

2 rnA, VCE

= 6 V,

Zo

= 50 Q
~,

~2

f

8"

8 ,2

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.91
0.79
0.66
0.46
0.40
0.36
0.31
0.29
0.29

- 15
- 46
- 71
-102
'-119
-134
-156
-178
168

6.49
5.25
4.49
3.29
2.80
2.43
2.03
1.77
1.66

161
139
120
98
88
80
69
60
54

0.03
0.08
0.11
0.13
0.15
0.15
0.17
0.19
0.20

79
64
55
47
46
45
48
49
51

0.97
0.88
0.77
0.64
0.60
0.56
0.53
0.51
0.49

- 6
-22
-30
-35
-38
-40
-43
-48
-49

s...

5'2, 5:.. = f (f)
Ic=2mA, VcE =6v,2

=

50

Q

ANG

5.2,
MAG

ANG

8'2
MAG

ANG

5.22
MAG

ANG

- 14
- 43
- 65
- 95
-111
-125
-146
-170
175

6.46
5.28
4.54
3.35
2.87
2.45
2.07
1.81
1.68

161
140
122
99
90
83
71
62
56

0.03
0.07
0.10
0.12
0.14
0.15
0.16
0.18
0.19

80
66
57
49
48
47
49
50
52

0.98
0.90
0.80
0.68
0.64
0.61
0.58
0.56
0.54

-6
-19
-27
-33
-35
-38
-40
-45
-46

5,2' 5.., = f (f)
Ic =2 rnA, VCE = 10V, Zo= son

Sz. = f (f)

Ic=2mA, VcE =10v,Zo=50n

90 0

+j50

o

1800

-135 0

-90 0

- j50

572

-45 0

Siemens

BFR 35AP

10 V, Zo

Ic = 5 mA,

VCE =

f

Sl1

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.83
0.65
0.49
0.31
0.27
0.24
0.21
0.21
0.22

- 19
- 57
- 84
-112
-129
-144
-167
170
155

12.74
8.56
6.35
4.29
3.53
2.97
2.45
2.13
1.96

152
125
107
89
82

0.03
0.06
0.08
0.10
0.13
0.14
0.16
0.19
0.21

78
63
58
55
57
57
58
58
58

0.95
0.80
0.67
0.56
0.54
0.51
0.50
0.48
0.47

- 9
-25
-31
-33
-35
-36
-38
-43
-43

=

50 Q
~,

~2

S'2

77

67
59
54

5", s", = f (f)
Ie = 5 mA, VeE = 10V, Zo = 50 n

5'2, $;" = f (f)
Ie

= 5 mA,

VeE

= 10 V, Zo = 50 n
90 0

____-r-_____ 2GHz

o

1800

-j50

-90 0

Siemens

573

BFR35AP

Ic

=

10 rnA,

VCE =

10 V,

Zo =

50 n

f

5 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.75
0.52
0.37
0.23
0.21
0.20
0.18
0.19
0.20

- 28
- 71
- 99
-129
-146
-163
177
157
143

18.20
10.23
7.00
4.57
3.72
3.11
2.56
2.19
2.03

142
114
99
84
78
74
64
57
53

0.02
0.05
0.07
0.09
0.12
0.13
0.16
0.19
0.21

74
63
63
63
65
65
64
63
62

0.88
0.67
0.56
0.50
0.48
0.47
0.46
0.46
0.44

-13
-27
-29
-28
-29
-31
-34
-39
-39

5,2

8.!1

5 ,2 ,5.., =1(f)
Ic = 10 rnA, VCE = 10V, Zo=50 0

Sl1,~=f(f)

Ic = 10 rnA,

VCE

8.!2

= 10V, 2'0=500

90 0
--~
-------;--~

o

180 0

-j50

574

-90 0

Siemens

BFR35AP

Ic

= 15 rnA,

VCE

= 10 V, Zo = 50

Q
~,

~2

f

$"

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.64
0.38
0.28
0.19
0.19
0.19
0.19
0.21
0.22

- 37
- 87
-117
-151
-166
180
162
145
134

19.16
10.29
7.00
4.49
3.65
3.09
2.53
2.15
2.01

140
112
96
81
76
71
62
55
51

0.02
0.04
0.06
0.09
0.11
0.13
0.16
0.19
0.21

72
64
66
67
68
67
66
65
64

0.85
0.63
0.53
0.49
0.49
0.47
0.47
0.47
0.45

-14
-26
-26
-25
-27
-29
-32
-37
-38

$'2

5'2, 5", = f If)
Ic=15mA, VcE =10V,Zo=50n

~"

5,,2 = f If)
Ic = 15 mA, VCE = 10V, -4J = 50 n

o

180 0

- j50

-90 0

Siemens

575

BFR35AP

Ic

= 20 rnA,

VCE

= 10 V, Zo =

50 Q

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.58
0.34
0.27
0.20
0.20
0.21
0.21
0.23
0.25

- 45
- 98
-129
-163
-176
173
156
140

20.30
10.12
6.72
4.32
3.47
2.93
2.41
2.05
1.92

135
108
94
79
74
69
60
53
49

0.02
0.04
0.06
0.09
0.11
0.13
0.16
0.19
0.21

71
65
68
69
70
69
68
67
65

0.82
0.61
0.54
0.49
0.50
0.50
0.49
0.49
0.47

-14
-23
-23
-49
-25
-27
-30
-36
-37

S:z1

131

S:z2

5,2, 5" = f If)
Ie = 20 rnA, VeE = 10V, Zo = 50n

5",~=flf)

Ie =20 rnA, VeE = 10V, Zo= 50n
+j50

ZGHz

o

-j50

576

-90·

Siemens

BFR92P

NPN Silicon RF Transistor

• For broadband amplifiers up to 2 GHz and fast
non-saturated switches at collector currents from 0.5 to
20 mA.

€ CECC-type available: CECC 50002/254.

ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

BFR92P

GF

Q 62702 - F1 050

SOT-23

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

V

20

V

Emitter-base voltage

VCEO
VCBO
VEBO

15

2.5

V

Collector current

Ic

30

mA

Base current

Is

4

mA

Collector-base voltage

Total power dissipation, TA ::; 25

DC2 )

Ptot

280

mW

Junction temperature

7j

150

DC

Ambient temperature range

TA

-65 ... +150

DC

Storage temperature range

Tstg

-65 ... +150

DC

RthJA

::;450

Thermal Resistance
Junction - ambient1)

IKIW

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm

Siemens

577

BFR92P

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Collector-emitter breakdown voltage

Symbol
V(SR)CEO

min

Values
typ

max

Unit

15

-

-

-

0.05
10

-

100

!-lA

V

Ic= 1 mA,Is=O
Collector-base cutoff current
Vcs = 10 V, IE = 0
Vcs = 20 V, IE = 0

Icso

Emitter-base cutoff current
VES = 2.5 V, Ic = 0

I ESO

-

DC current gain

hFE

40

100

-

-

VCEsat

-

-

0.4

V

!-lA

Ic=14mA, VcE =10V
Collector-emitter saturation voltage

Ic= 30 mA, Is =3 mA

578

Siemens

BFR92P

AC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

-

3.B

Transition frequency
Ic= 5 mA, VCE = 10 V, f= 200 MHz
Ic=14mA, VcE =10V,f=200MHz

fr

5

Collector-base capacitance
V CB = 10 V, VBE = Vbe = 0, f= 1 MHz

Geb

-

-

0.5

0.7

pF

Collector-emitter capacitance
VCE = 10 V, VBE = Vbe = O,f= 1 MHz

Gee

-

0.27

-

pF

Input capacitance
VEB = 0.5 V, Ic = ie = 0, f= 1 MHz

G.bo

-

0.9

-

pF

Output capacitance
VCE = 10 V, VBE = vbe = 0, f= 1 MHz

Gobs

-

0.77

-

pF

Noise figure

F

-

-

-

1.5
1.5
3.9

-

GHz

dB

Ic=5mA, VCE = 6 V, f= 10 MHz, Zs=75Q
Ic = 2 mA, VCE = 6 V, f= BOO MHz, Zs = Zsopt
Ic = 3 mA, V CE = 10 V, f=
2 GHz, Zs = Zsopt

-

Power gain
Ic = 15 rnA, VCE = 6 V, f= BOO MHz,
Zs = 50 Q, ZL = ZLOPt

Gpe

-

14

-

dB

Transducer gain
Ic = 15 mA, VCE = 6 V, f= 1 GHz, Zo= 50Q

1s.z1e1 2

-

11

-

dB

Linear output voltage
two-tone intermodulation test
Ic = 15 mA, VCE = 10 V, diM =60 dB
f1 = B06 MHz, f2 = B10 MHz, Zs = ZL = 50 Q

V01

-

110

-

mV

Third order intercept point
Ic=15mA, VcE =10V,f=BOOMHz

1P3

-

23.5

-

dBm

Siemens

=

Vo2

579

BFR 92P

Transition frequency fT = f (Jcl
VeE = 6 V, f= 200 MHz

Total power dissipation Ptot = f (TAl
Package mounted on alumina

rnW
400

6Hz

6

'1ot

f

\300

1'\
200

1'\

V
4

V

I

3

1'\

v ..-

I

'\
2
100

I

I

I
1,\

o

\.

o

50

Collector-base capacitance
VSE ~ Vbe = 0, f= 1 MHz

o

150 0 (

100

CCb

= f (VcBl

pF
1,0

~

\

\
0.5

o

580

o

.......

I"-...

10

r-- r- r-

20 V

Siemens

o

10

20 rnA

BFR 92P

Common Emitter Noise Parameters
Ie = 2 rnA, VeE = 6 V, 2{, = 50 Q
f

Fmin

Gp (Fmin)

GHz

dB

0.01

1.05

dB
-

Ie = 5 rnA, VeE = 6 V,

rept

MAG

lANG

(Zs

= 150 Q)

RN

N

F50n

Q

dB

dB

-

-

3

-

RN

N

F50n

Gp (F5onl

Q

-

dB

-

dB
-

16.9

0.24

Gp (F5onl

Zo = 50 Q

f

Fmin

Gp (Fmin)

GHz

dB

0.01
0.8

1.3
1.7

dB
-

rept

MAG

lANG

(Zs'" 100Q)
0.25
58.5

I

14.3

1.6
1.9

14

Noise figure F =f (Zsl
VeE = 6 V. f= 10 MHz

dB
4

IA
IAl

lLf_~O I ~_

r'cF

1

m r-

3

~

V

'\--

1/
V 10mA

\~-.l,1---

I\..

~~

I I

'"

2

I J....1""

i-'"
.."

VsmA-

?~
1mA -

o
o

100

200

300Sl

Siemens

581

BFR 92P

Noise figure F= f (lei
VeE = 6 V. f= 800 MHz, ZLopt (G)

Circles of constant noise figure F= f (Zsl
Ie = 5 rnA, VeE = 6 V, f= 800 MHz

dB
5

F

t

4

3

\

2

\

-j 50

o

o

Z~OQ ~ V

I'-

~ Zpt

~ -;:::::.

~

20 rnA

10
-Ie

582

Siemens

BFR92P

Common Emitter S Parameters
Ie = 0.5 rnA, VeE = 1 V, ZO = 50 Q
f

8 11

GHz

MAG

ANG

MAG

ANG

8 12
MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.967
0.956
0.941
0.923
0.903
0.859
0.812
0.765
0.717
0.686
0.645
0.610

- 12.3
- 18.4
- 24.3
- 30.2
- 35.9
- 47.0
- 57.2
- 67.2
- 76.5
- 85.5
- 94.5
-103.1

1.83
1.82
1.81
1.78
1.75
1.68
1.59
1.51
1.44
1.36
1.31
1.25

168.2
162.3
156.4
150.8
145.2
134.7
125.1
116.1
108.0
100.3
93.3
86.6

0.050
0.075
0.098
0.120
0.141
0.177
0.207
0.231
0.249
0.265
0.275
0.281

81.5
77.4
73.2
69.3
65.4
58.2
51.8
46.2
41.2
36.3
32.3
28.6

0.990
0.982
0.970
0.955
0.939
0.902
0.864
0.826
0.790
0.757
0.725
0.695

- 6.7
-10.0
-13.0
-16.2
-19.1
-24.5
-29.4
-33.6
-37.4
-40.7
-43.8
-46.4

Ie = 1 rnA, VeE = 1 V,

f

8 11

GHz

MAG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.938
0.917
0.892
0.862
0.829
0.763
0.699
0.643
0.591
0.557
0.521
0.490

8.11

8.12

ZO = 50 Q
8 12

8.11

8.12

ANG

MAG

ANG

MAG

ANG

MAG

ANG

- 16.4
- 24.5
- 32.2
- 39.7
- 46.7
- 60.1
- 72.0
- 83.2
- 93.4
-103.0
-112.6
-121.7

3.51
3.45
3.37
3.26
3.13
2.88
2.64
2.41
2.22
2.05
1.92
1.79

165.6
158.7
151.9
145.5
139.4
128.5
118.9
110.4
102.9
96.1
89.8
84.0

0.050
0.073
0.095
0.114
0.132
0.160
0.182
0.198
0.209
0.219
0.225
0.229

79.4
74.4
69.6
65.1
60.8
53.5
47.6
42.8
38.9
35.5
32.9
30.8

0.981
0.962
0.938
0.910
0.881
0.819
0.761
0.709
0.665
0.626
0.591
0.559

- 9.4
-13.8
-17.9
-21.9
-25.5
-31.7
-37.0.
-41.2
-44.7
-47.5
-50.2
-52.4

Siemens

583

BFR92P

Ic

= 2 rnA,

VCE

= 6 V. .2iJ = 50 Q
~2

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.91
0.79
0.66
0.46
0.40
0.36
0.31
0.29
0.29

- 15
- 46
- 71
-102
-119
-134
-156
-178
168

6.49
5.25
4.49
3.29
2.80
2.43
2.03
1.77
1.66

161
139
120
98
88
80
69
60
54

0.03
0.08
0.11
0.13
0.15
0.15
0.17
0.19
0.20

79
64
55
47
46
45
48
49
51

0.97
0.88
0.77
0.64
0.60
0.56
0.53
0.51
0.49

-6
-22
-30
-35
-38
-40
-43
-48
-49

8.11

8.12

=

St2, ~1 f (f)
Ic =2 mA, VCE = 6 V, 4,=50n

St1,~=f(f)

Ic=2mA, VcE =6v,4,=50n

90·

o

180·

-j50

584

-90·

Siemens

BFR92P

Ic = 5 rnA, VCE = 6

V. Zo

=

50 Q

f

5 11

GHz

MAG

ANG

MAG

ANG

5 12

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.80
0.58
0.44
0.28
0.26
0.24
0.22
0.23
0.25

- 24
- 66
- 97
-128
-144
-160
179
159
146

12.96
8.56
6.27
4.19
3.45
2.93
2.43
2.08
1.93

150
123
106
88
81
74
65
57
52

0.03
0.06
0.08
0.11
0.13
0.14
0.17
0.20
0.22

75
61
58
57
59
58
59
59
58

0.92
0.74
0.59
0.49
0.49
0.45
0.44
0.43
0.40

-11
-29
-35
-35
-36
-38
-40
-45
-46

5.!1

5.!2

St2. 5.z1 = f (f)
Ic=5 mA, VcE =6V, Za = 500

St1,~=f(f)

Ic=5mA, VcE=6V,Zo=500

900

+j50

o

-j50

-90 0

Siemens

585

BFR 92P

Ic = 10 rnA,

VCE

= 6 V, 20 = 50 n
~,

~2

f

8 11

8 '2

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.66
0.42
0.32
0.22
0.21
0.21
0.21
0.22
0.24

- 35
- 85
-116
-149
-164
-178
164
147
136

18.62
10.32
6.92
4.49
3.65
3.09
2.54
2.18
2.02

140
113
98
83

0.03
0.05
0.07
0.10
0.12
0.14
0.17
0.21
0.22

73
62
63
64
65
64
63
62
61

0.85
0.62
0.50
0.44
0.43
0.41
0.41
0.40
0.38

-15
-31
-33
-31
-32
-34
-36
-41
-42

77

71
63
55
51

S,2. 5", = 1 (f)

S".5",,=1(f)

Ic = 10 rnA,

VCE

= 6 \I, 20= 50 Q

Ic

= 10 rnA,

VCE = 6\1, Zo = 50 Q
90 0

+j50

o

-j50

586

-90 0

Siemens

BFR92P

Ic = 15 mA,

VCE =

6 V, Zo = 50

n

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.57
0.35
0.27
0.21
0.21
0.21
0.22
0.24
0.26

- 43
- 95
-127
-162
-174
174
158
142
133

20.30
10.53
7.00
4.49
3.65
3.09
2.54
2.15
2.00

137
109
95
80
75
70
61
54
50

0.02
0.05
0.07
0.10
0.12
0.14
0.17
0.21
0.23

71
54
66
67
68
66
65
64
63

0.81
0.58
0.48
0.43
0.43
0.41
0.41
0.41
0.39

-16
-29
-29
-27
-29
-31
-34
-40
-40

8.11

8.12

=

S,1,~=flf)

S,2, 5,,1 f If)
le= 15 rnA, VeE = 6 V, Zo = 50 n

Ie = 15 rnA, VeE = 6 II, Zo= 50 n

o

-j50

-90 0

Siemens

587

BFR92P

Ic

=

20 rnA,

VCE =

6 V. Zo

=

50

Q

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.51
0.32
0.27
0.22
0.22
0.23
0.24
0.26
0.28

- 49
-106
-138
-171
179
169
153
139
131

21.13
10.35
6.76
4.34
3.49
2.97
2.43
2.07
1.93

133
106
92
78
74
68
60
53
48

s;'1

511,5,2 = f (f)
Ie = 20 mA, VeE = 6 V, Zo = 50 Q

s;'2

MAG

ANG

MAG

ANG

0.02
0.05
0.07
0.09
0.12
0.14
0.17
0.21
0.22

70
65
67
68
69
68
66
65
64

0.79
0.56
0.48
0.45
0.44
0.43
0.43
0.42
0.40

-16
-27
-27
-25
-28
-30
-33
-39
-39

5,2, 5" = f (f)
Ie = 20 mA, VeE = 6V, Zo = 50 Q
90 0

o

180 0

-.i,?0

588

-90 0

Siemens

BFR 92P

10 V,

Za

Ic = 2 rnA,

VCE =

f

3"

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.92
0.81
0.69
0.48
0.42
0.36
0.30
0.28
0.27

- 14
- 43
- 65
- 95
-111
-125
-146
-170
175

6.46
5.28
4.54
3.35
2.87
2.45
2.07
1.81
1.68

161
140
122
99
90
83
71
62
56

0.03
0.07
0.10
0.12
0.14
0.15
0.16
0.18
0.19

80
66
57
49
48
47
49
50
52

0.98
0.90
0.80
0.68
0.64
0.61
0.58
0.56
0.54

- 6
-19
-27
-33
-35
-38
-40
-45
-46

=

50

Q
~,

~2

3 '2

5 ,2 .5" =f(f}

5". Sz:, = f (f)
Ie = 2 rnA, VeE = 10V, Zo = 50 n

Ie = 2 rnA, VeE = 10V, Zo = 50 n

90 0

+j50

o

180 0

- j50

-90 0

Siemens

589

BFR92P

Ic = 5 rnA, VCE = 10 V,

Zo = 50 n
~2

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.83
0.65
0.49
0.31
0.27
0.24
0.21
0.21
0.22

- 19
- 57
- 84
-112
-129
-144
-167
170
155

12.74
8.56
6.35
4.29
3.53
2.97
2.45
2.13
1.96

152
125
107
89
82

0.03
0.06
0.08
0.10
0.13
0.14
0.16
0.19
0.21

78
63
58
55
57
57
58
58
58

0.95
0.80
0.67
0.56
0.54
0.51
0.50
0.48
0.47

-9
-25
-31
-33
-35
-36
-38
-43
-43

&.11

77

67
59
54

&.12

~2. $,1 =f (f)
Ie = 5 rnA, VeE = 10Y, 2Q = 500

5 11 • $,2 = f (f)
Ie = 5 rnA, VeE = 10V, 2Q = 500

90 0

o

-j50

590

-90 0

Siemens

BFR 92P

Ic

=

10 rnA,

VCE =

10 V. Zo

=

50

Q

~1

~2

f

$11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.75
0.52
0.37
0.23
0.21
0.20
0.18
0.19
0.20

- 28
- 71
- 99
-129
-146
-163
177
157
143

18.20
10.23
7.00
4.57
3.72
3.11
2.56
2.19
2.03

142
114
99
84
78
74
64
57
53

0.02
0.05
0.07
0.09
0.12
0.13
0.16
0.19
0.21

74
63
63
63
65
65
64
63
62

0.88
0.67
0.56
0.50
0.48
0.47
0.46
0.46
0.44

-13
-27
-29
-28
-29
-31
-34
-39
-39

$12

s,,, s". = f (f)
Ic=10mA, VcE=10v,Zo=50n

S,2, 50, = f (f)
Ic = 10mA, VCE = 10V, Zo = 50 n

90 0

o

180 0

-j50

-90 0

Siemens

591

BFR92P

Ic = 15 rnA, VCE = 10 V, Zo = 50

n

GHz

511
MAG

ANG

5.!,
MAG

ANG

5'2
MAG

ANG

5.!2
MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.64
0.38
0.28
0.19
0.19
0.19
0.19
0.21
0.22

- 37
- 87
-117
-151
-166
180
162
145
134

19.16
10.29
7.00
4.49
3.65
3.09
2.53
2.15
2.01

140
112
96
81
76
71
62
55
51

0.02
0.04
0.06
0.09
0.11
0.13
0.16
0.19
0.21

72
64
66
67
68
67
66
65
64

0.85
0.63
0.53
0.49
0.49
0.47
0.47
0.47
0.45

-14
-26
-26
-25
-27
-29
-32
-37
-38

f

=

5,2. 5", f (f)
Ie = 15 mA, VeE = 10V, Zo = 50n

5". ~ =f (f)
Ie = 15 mA, VeE = 10V, Zo= 50n

90 0
~--r--~

2GHz

o

-j50

592

-90 0

Siemens

BFR92P

Ic = 20 rnA,

VCE =

10 V,

Zo =

50

n
~1

~2

f

S11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.58
0.34
0.27
0.20
0.20
0.21
0.21
0.23
0.25

- 45
- 98
-129
-163
-176
173
156
140
131

20.30
10.12
6.72
4.32
3.47
2.93
2.41
2.05
1.92

135
108
94
79
74
69
60
53
49

0.02
0.04
0.06
0.09
0.11
0.13
0.16
0.19
0.21

71
65
68
69
70
69
68
67
65

0.82
0.61
0.54
0.49
0.50
0.50
0.49
0.49
0.47

-14
-23
-23
-49
-25
-27
-30
-36
-37

S12

5,1, s.", = f (f)
Ic = 20 rnA. VCE = 10V, Zo = 50n

5,2, 5;,1 = f (f)
Ic =20 rnA. VCE = 10V, Zo = 50 n

90 0

-j50

- 90 0

Siemens

593

NPN Silicon RF Transistor

BFR93A

• For low-distortion broadband amplifiers and oscillators
up to 2 GHz at operating currents from 5 to 30 mA.

€ CECC-type available: CECC 50002/256.

ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

BFR93A

R2

Q 62702 - F1 086

SOT-23

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

VCEO

12

V

Collector-base voltage

VCBO

15

V

Emitter-base voltage

VEBO

2

V

Collector current

Ic

50

mA

Total power dissipation, TA:S 25 OC2)

Ptat

280

mW

Junction temperature

1j

150

Ambient temperature range

TA

-65 ... +150

Storage temperature range

Tstg

-65 ... +150

°c
°c
°c

Thermal Resistance

I

Junction - ambient 1)

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

594

Siemens

RthJA

I:s450

IKIW

BFR 93A

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

\.I(BR)CEO

12

-

-

V

Collector-base cutoff current
VeB = 5 \I, IE = 0

ICBO

-

-

50

nA

Emitter-base cutoff current

lEBO

-

-

10

~

hFE

40

90

-

-

VeEsat

-

0.13

0.4

V

Collector-emitter breakdown voltage

Ie=1 mA,IB=O

VEB=2\1,Ie=0
DC current gain

Ie = 30 mA, VeE = 5 V
Collector-emitter saturation voltage
Ie = 50 mA, IB = 5 mA

Siemens

595

BFR93A

AC characteristics
Symbol

Parameter

Values

Unit

min

typ

max

Transition frequency
Ic = 30 rnA, VCE = 5 V, f= 200 MHz

fr

-

5.5

-

GHz

Collector-base capacitance
VCB = 5 V, VBE = Vbe = 0, f= 1 MHz

Ceb

-

0.55

-

pF

Collector-emitter capacitance
VCE = 5 V, VBE = vbe = 0, f= 1 MHz

Gee

-

0.28

-

pF

Input capacitance
VEB = 0.5 V, Ic = ic = 0, f= 1 MHz

C,bO

-

2.1

-

pF

Output capacitance
VcE =10V, VBE = Vbe=O, f=1 MHz

Cobs

-

0.8

-

pF

Noise figure
Ic= 5 rnA, VcE =8V, f= 10MHz,Zs=50n
Ic= 5 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt
Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt

F

-

1.1
1.7
2.6

-

Power gain
Ic = 30 rnA, VCE = 8 V, f= 800 MHz,
Zs = ZSOph ZL = ZLopt

Gpe

-

13.5

-

dB

Transducer gain
Ic = 30 rnA, VCE = 8 V, f= 1 GHz, Zo = 50n

1~1e12

-

11.5

-

dB

Linear output voltage
two-tone intermodulation test
Ic= 30 rnA, VCE = 8 V, diM = 60 dB
f1 = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 n

V o1

-

280

-

mV

Third order intercept point
Ic = 30 rnA, V CE = 8 V, f= 800 MHz

IP3

-

32

-

dBm

596

Siemens

dB

=

V o2

BFR93A

Total power dissipation p.o. = f (T,J

Transition frequency

Package mounted on alumina

VeE

~ot

./
300

/
1"-

200

"-

2

100

'\

o

V

f..-

-

I--

/

/

1,\
'\

o

= f (Ic)

GHz
6

rnW
400

t

fT

= 5 V, f= 200 MHz

50

100

'\.
150

o

0[

-TA

/
I
o

10

20

40
30
-Ie

50 rnA

Collector-base capacitance Ceb = f (VCB)
VSE = Vbe = 0, f= 1 MHz

pF
1.0

\
'\..
.........

0.5

o

o

........

'-

r-

20 V

10
-li(B

Siemens

597

BFR93A

Common Emitter Noise Parameters
Ie = 4 rnA, VeE = 8 V, Zo = 50 Q
f

Fmin

Gp (Fmin)

GHz

dB

dB

0.01

0.8

-

Ie

=

30 rnA, VeE

=

8

V. Zo

r opt
MAG

lANG

(Zs= 150Q)
=

Fmin

GHz

dB

dB

MAG

0.01
0.8

2.0
2.6

-

(Zs = 100 Q)
0.13
1108

Topt

Gp (Fmin)

13.5

lANG

Noise figure F = f (Iel
VeE =8 V. f= 10 MHz

dB
3
F

t

1,; .....

Z. =50Q" ..... VV
~

"" .....

ZSopt

~

1'1-- /

\

o
o

1/

10

20

30 mA

-Ie

598

N

Fson

Q

-

dB

dB

-

-

1.1

-

RN

N

Fson

Gp (Fson)

Gp (Fson)

50 Q

f

,

RN

Siemens

Q

-

dB

dB

-

-

-

19.3

0.41

2.15
2.85

13

BFR93A

Circles of constant noise figure F= f (Zs)
inZs-pJane,lc=30mA, VCE=BV, f=BOOMHz

Noise figure F=f(leJi
VCE = B V, f= BOO MHz,.ZLopt (G)
dB
3

Zs=50Q

F

V

'Y vV

M
:;::v Zs·opt·

1

v;:::
"f:1--'

-j 50

o

o

10

20

30 rnA

-Ie

Noise figure F = f (Icl
VeE = B V, f= 2 GHz, ZLopt (G)
dB
6
Zs=5011~

F

1\

t
4

J..--~

I'.r-_

1\

Zs opt J..--I-

I\.

1-1-1-""

2

o

o

10

20

30 rnA

-Ie

Siemens

599

BFR93A

Common Emitter 5 Parameters
Ic = 5 rnA, VCE = 8 V, Zo = 50 Q
~,

~2

f

8 11

GHz

MAG

ANG

MAG

ANG

8 '2

MAG

ANG

MAG

ANG

0.1
0.2
0.5
0.8
1.0
1.2
1.5
2.0

0.74
0.64
0.49
0.45
0.44
0.43
0.41
0.40

- 45
- 81
-132
-158
-169
-179
169
160

13.5
10.5
5.6
3.7
3.0
2.6
2.1
1.7

150
129
101
86
79
73
65
54

0.033
0.052
0.078
0.097
0.113
0.127
0.145
0.194

69
57
53
57
61
64
66
71

0.93
0.73
0.50
0.41
0.39
0.38
0.42
0.44

-21
-30
-56
-37
-39
-40
-45
-48

St2, 5:., = 1 (f)

St" 5:.2 =1 (f), Z-plane
Ic = 5 mA, VCE = 8 V. Zo = 50n

Ic = 5 mA,

VCE

= 8V, Zo=50n

90·

o

-j50

600

-90·

Siemens

BFR93A

Ic

=

30 rnA, VCE

=

8 V. Zo

=

50 Q
~1

~2

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.1
0.2
0.5
0.8
1.0
1.2
1.5
2.0

0.38
0.37
0.36
0.36
0.35
0.34
0.31
0.30

-105
-138
-170
-178
177
173
157
152

27.6
16.5
7.2
4.6
3.8
3.2
2.6
2.1

125
107
90
80
75
71
65
55

0.021
0.032
0.066
0.101
0.125
0.147
0.169
0.228

64
66
73
74
73
72
70
69

0.69
0.41
0.26
0.21
0.20
0.20
0.23
0.28

-41
-44
-39
-32
-40
-41
-43
-46

s", 5.z:, = f (f), Z-plane
Ie = 30 mA, VeE = 8 V, Zo = 50 Q

S,2. 5", = f (f)
Ie = 30 mA, VeE

= 8 V, 2Q = 50 Q
90 0

+j50

o

-j50

-90 0

Siemens

601

BFR93P

NPN Silicon RF Transistor

• For low--distortion'broadband amplifiers up to 1 GHz at
collector currents from .2 to 30 mA.

ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type

·Marking

Ordering code
(tape and reel)

Package

BFR93P

GG

Q 62702-F1051

SOT-23

Maximum Ratings
Symbol

Value

Unit

Collector-emitterNoltage

VCEO

15

V

Collector-base voltage

Vcso

20

V

Emitter-base voltage

VESO

2.5

V

Collector current

Ic

50

mA

Base current

Is

10

mA

Parameter

Ptot

280

mW

Junction temperature

7j

150

°c

Ambient temperature range

TA

-65 ... +150

°c

Storage temperature range

Tstg

-65 ... +150

°c

Total power dissipation, TA :0;25

°C2)

Thermal Resistance

Junction - ambient1 )

RthJA

For detailed dimensions see chapter Package Outlines.
1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

602

Siemens

I :0;450

K/W

BFR93P

Electrical Characteristics
at TA = 25 DC, unless otherwise specified.
DC characteristics
Parameter
Collector-emitter breakdown voltage

Symbol
\t(SR)CEO

Values

Unit

min

typ

max

15

-

-

-

-

0.05
10

V

Ic= 1 mA,Is=O
Collector-base cutoff current

lJA

Icso

Vcs=10\/,IE=0
Vcs = 20 \/, IE = 0
Emitter-base cutoff current
VES = 2.5 V, Ic = 0

I ESO

-

-

100

lJA

DC current gain

hFE

30

100

-

-

VCEsat

-

0.2

0.5

V

Ic = 25 mA, VCE = 5 V
Collector-emitter saturation voltage
Ic = 50 mA, 1s = 5 mA

Siemens

603

BFR 93P

AC characteristics
Symbol

Parameter

Values
typ

max

-

5
4.7

-

0.6

0.75

pF

min
Transition frequency
Ic = 30 rnA, VCE = 5 V, f= 200 MHz
Ic = 50 mA, VCE = 5 V, f= 200 MHz

Unit
GHz

fT

-

Collector-base capacitance
VcB =10V, VBE =Vbe=0,f=1 MHz

Geb

-

Collector-emitter capacitance
VCE = 10 V, VBE = Vbe = 0, f= 1 MHz

Gee

-

0.28

-

pF

Input capacitance
VEB =0.5V,Ic =ie =0, f=1 MHz

Gibo

-

2.1

-

pF

Output capacitance
VCE = 10 V, VBE = Vbe = 0, f = 1 MHz

Gobs

-

0.9

-

pF

Noise figure
Ic=10mA, VcE =8V,f= 10 MHz, Zs = 75 Q
Ic= 5 mA, VCE = 8 V, f= 500 MHz, Zs = Zsopt
Ic = 10 mA, VCE = 8 V, f= 800 MHz, Zs = 50 Q

F

-

-

Power gain
Ic = 25 rnA, VCE = 8 V, f= 800 MHz,
Zs = Zsopt, ZL = ZLopt

Gpe

-

1.7
1.9
2.4
13

-

dB

Transducer gain
Ic = 25 rnA, VCE = 8 V, f= 500 MHz, Zo = 50 Q

1~1e12

-

15.8

-

dB

Linear output voltage
two-tone intermodulation test
Ic = 25 rnA, VCE = 8 V, diM = 60 dB
f1 = 806 MHz, f2 = 810 MHz, Zs = ZL = 50 Q

Vo1 = Vo2

-

240

-

mV

Third order intercept point
Ic = 25 rnA, VCE = 8 V, f= 800 MHz

IP3

-

30.5

-

dBm

604

Siemens

dB

-

BFR93P

Transition frequency fT = f (IcI
VCE = 5 V. f= 200 MHz

Total power dissipation p.o. = f (TAl
Package mounted on alumina

rnW

GHz

400

6

~ot
5

f

/

300

V

i'-

I

4

/

1'\

200

II

3

'\
........

I
I

100

'\

o

'\

o

50

100

150°C

o

o

10

20

30

40

50 rnA

-TA

Collector-base capacitance
VBE = vbe=0,f=1 MHz

Ccb =

f (VcBI

pF
1.5

1.0

\

\

\
"-

t'---

0.5

o
o

10

20 V

-Vca
Siemens

605

BFR 93P

Common Emitter Noise Parameters
Ie = 2 rnA, VeE = 8 V, Zo = SO 0.

f

Fmin

Gp (Fmin)

GHz

dB

dB

0.01

1.0

-

Ie = 10 rnA, VeE = 8 V,

MAG

lANG

Zo =

RN

N

Fson

Gp (Fson)

0.

-

dB

dB

1.6

-

-

(Zs= 1S0Q)
SO 0.

f

Fmin

Gp (Fmin)

GHz

dB

0.01
0.8

2.3

dB
-

1.S

T opt

Topt
MAG

lANG

(Zs =900.)
(Zs =Zsopt)

RN

N

Fson

Gp (Fsonl

0.

-

dB

-

-

2.4

dB
-

Noise figure F= f (Id
VCE = 8 V, f= BOO MHz, ZLopt (G)

Noise figure F = f (Zs)
VCE=BV,f=10MHz

dB

dB
4

1

1

Ic=30rnA 1/
F

r

/
3

4

1/
20/

V

/

F

/

/

1\

t

/

r-

/
,/

3

..-:V

10
",

r~~
~

2

.,
~I-"""

...

,...

r---

100

200

2

o

300Q

-Zs
606

Zs=50Q I--~:::;
.A:::: V
I--: "Zs opt I-~

I--f--

V

r-!-""'
I'

o
o

1.7

Siemens

o

10

20
-Ie

30 rnA

BFR93P

Common Emitter 5 Parameters
= 5 rnA, VCE = 8 V, ZO = 50 !l

Ic
f

8 11

8 12

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.74
0.51
0.40
0.32
0.31
0.31
0.31
0.32
0.33
0.35

- 34
- 92
-125
-157
-171
177
166
156
146
137

12.96
7.50
5.13
3.35
2.71
2.32
2.05
1.84
1.64
1.52

143
113
97
78
72
65
59
52
47
42

0.03
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22

70
55
55
57
59
60
62
61
61
61

0.87
0.65
0.54
0.48
0.48
0.46
0.45
0.45
0.45
0.44

-14
-31
-33
-32
-35
-38
-41
-46
-49
-52

5.!1

5,10 ~ =f(f)
Ie =5 rnA, VeE =8 If, Zo= 500

5.!2

5,2. ~1 = f (f)
Ie =5 mAo VeE = 8 If, Zo = 50 0

90 0

o

n

o

180 0

-j50

-90 0

Siemens

607

BFR93P

VCE

= 8 V. Zo = 50 Q

GHz

8"
MAG

ANG

S:!,
MAG

ANG

8'2
MAG

ANG

S:!2
MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.58
0.37
0.30
0.25
0.25
0.26
0.26
0.28
0.29
0.31

- 49
-108
-139
-170
180
169
160
151
142
133

18.73
9.17
5.92
3.85
3.09
2.63
2.33
2.07
1.84
1.72

133
105
90
76
70
64
58
52
48
43

0.03
0.05
0.07
0.10
0.13
0.15
0.17
0.20
0.22
0.24

68
60
63
65
65
64
64
62
61
60

0.77
0.53
0.45
0.41
0.40
0.39
0.38
0.38
0.38
0.36

-19
-32
-32
-31
-34
-37
-40
-44
-47
-49

Ic = 10 mA,
f

-,

5,1, 5z! = f If)
Ie = 10 rnA, VeE = 8 \I, 4> = 50 Q

5,2, 5.21 = f If)
Ie = 10 rnA, VeE = 8 \I, 20=50 Q

o

-j50

608

-90 0

Siemens

BFR93P

Ic = 20 rnA,

VCE =

8 V.

Zo =

f

~1

GHz

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.41
0.28
0.25
0.23
0.23
0.25
0.25
0.27
0.28
0.30

- 64
-123
-151
-179
172
164
155
147
139
131

50

n
~1

MAG
22.91
9.89
6.24
4.03
3.22
2.74
2.41
2.14
1.92
1.79

5 12

~2

ANG

MAG

ANG

123
98
86
74
69
63
57
51
47
42

0.02
0.05
0.07
0.11
0.13
0.16
0.18
0.20
0.23
0.25

67
66
68
68
68
66
66
63
61
60

MAG

ANG

0.67
0.46
0.40
0.37
0.37
0.35
0.35
0.35
0.35
0.33

-22
-30
-30
-28
-32
-35
-38
-43
-46
-48

=f (f)

~"Sa=f(f)

~2' S:z,

Ic = 20 mA, VCE=S V, Zo =500

Ic = 20 mA, VCE=SII, Zo= 500

90·

o

-jSO

-90·

Siemens

609

BFR 93P

Ic = 25 rnA,

VCE =

8 V.

Zo

= 50 Q

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0.37
0.26
0.24
0.22
0.23
0.24
0.25
0.27
0.28
0.30

- 68
-127
-154
179
170
162
153
146
138
130

23.71
9.89
6.20
3.98
3.18
2.71
2.37
2.11
1.89
1.77

120
97
85
73
68
62
57
51
47
42

0.02
0.05
0.07
0.11
0.13
0.16
0.18
0.20
0.23
0.25

67
67
70
69
68
66
66
63
62
60

0.64
0.44
0.39
0.37
0.37
0.36
0.36
0.35
0.35
0.34

-22
-29
-28
-27
-31
-35
-37
-42
-46
-48

8 12

8..!1

8..!2

S,2, 5:>, = f (f)
Ie = 25 rnA, VeE = 8 V, Zo =50 n

S",~=f(f)

Ie = 25 rnA, VeE = 8 V, Zo = 50 n

o

-j50

610

-90 0

Siemens

BFR 106

NPN Silicon RF Transistor

• For low-noise, high-gain amplifiers
• For linearbrdadband amplifiers
• Special application: antenna amplifiers

ESO: Electrostatic discharge sensitive device, observe handling precautions!

Type

Marking

Ordering code
(tape and reel)

Package

BFR 106

R7

Q 62702 - F1219

SOT-23

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

15

V

Emitter-base voltage

VCEO
VCBO
VEBO

Collector current
Total power dissipation, TA :5 45 °C2 )

Collector-base voltage

20

V

3

V

Ic

100

mA

Ptot

350

mW

Junction temperature

Ii

150

°c

Ambient temperature range

TA

-65 ... +150

°c

Storage temperature range

Tstg

-65 ... +150

°c

Thermal Resistance

IR

Junction - ambient 1)

thJA

I :5300

IKIW

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

Siemens

611

BFR 106

Electrical Characteristics
at TA = 25 °C, unless otherwise specified.
DC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

Collector-emitter breakdown voltage
Ic=1 mA,Is=O

\l(SR)CEO

15

-

-

V

Collector-base cutoff current
Vcs = 10 V, IE = 0

Icso

-

-

100

nA

Emitter-base cutoff current
VEs=2V, Ic=0

I Eso

-

-

10

~

DC current gain
Ic= 5mA, VcE =6V
Ic=30mA, VcE =6V

hFE
25
25

90

-

Collector-emitter saturation voltage
Ic = 50 mA, Is = 5 mA

VCEsat

-

-

0.4

612

Siemens

V

BFR 106

AC characteristics
Symbol

Parameter

Values

Unit

min

typ

max

Transition frequency
Ic = 30 rnA, VCE = 6 V, f= 200 MHz

fT

-

3.7

-

GHz

Collector-base capacitance
Vcs=10V, VSE=Vbe=0,f=1 MHz

Ccb

-

1

-

pF

Collector-emitter capacitance
VCE = 10 V, VSE = Vbe = 0, f= 1 MHz

Cce

-

0.3

-

pF

Input capacitance
VEB = 0.5 V, Ie = ic = 0, f= 1 MHz

C,bo

-

4.5

-

pF

Output capacitance
VeE = 10 V, VSE = Vbe = 0, f= 1 MHz

Cobs

-

1.3

-

pF

Noise figure
Ie = 30 rnA, VeE = 6 V, f= 800 MHz, Zs = Zsopt

F

-

3.6

-

dB

Power gain

Gpe

-

11.5

-

dB

Vol = Vo2

-

250

-

mV

Ie = 30 rnA, VeE = 6 V, f= 800 MHz,
Zs = 50 n, ZL = ZLopt
Unear output voltage
two-tone intermodulation test
Ie =30 rnA, VeE = 6V,
= 60 dB
fl =806 MHz, f2 =810MHz,Zs=ZL=50n

"'M

Siemens

613

NPN Silicon RF Transistor

BFR 193

• For low-noise, high-gain amplifiers up to 2 GHz.
• For linear broadband amplifiers.
• fT = 8 GHz.
F= 1.2 dB at 800 MHz.

ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

BFR 193

RC

Q 62702- F1218

SOT-23

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

VCEO

12

V

Collector-emitter voltage, VBE = 0

VCES

20

V

Collector-base voltage

VCBO

20

V

Emitter-base voltage

VEBO

2

V

Collector current

Ic

80

mA

Base current

IB

10

mA

Total power dissipation, TA ~ 50 °C2}

Ptot

400

mW

Junction temperature

7j

150

°c

Ambient temperature range

TA
Tstg

-65 ... +150

°c

-65 ... +150

°c

Storage temperature range
Thermal Resistance

I

Junction - ambient 1)

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

614

Siemens

RthJA

I ~250

IKIW

BFR 193

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

Collector-emitter breakdown voltage
Ic = 1 mA, IB = 0

V(BR)CEO

12

-

-

V

Collector-emitter cutoff current
VCE = 20 V, VBE = 0

ICES

-

-

100

I1A

Collector-base cutoff current
VCB = 10 V, IE = 0

IcBo

-

-

50

nA

Emitter-base cutoff current
VEB = 1 V, Ic = 0

lEBO

-

-

1

I1A

DC current gain
Ic= 5mA, VcE =8V
Ic=30mA, VcE =8V

hFE

-

90
100

-

Collector-emitter saturation voltage
Ic = 50 mA, IB = 5 mA

VCEsat

-

-

0.4

Siemens

V

615

BFR 193

AC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

-

3.S
7

-

Transition frequency
Ic= SmA, VCE = 8 V, f= 200 MHz
Ic = 30 rnA, VCE = 8 V, f= 200 MHz

fT

Collector-base capacitance
Vce = 10 V, VeE = vbe = 0, f= 1 MHz

Ccb

-

Collector-emitter capacitance
VcE =10V, VeE =Vbe=0,f=1 MHz

Cce

Input capacitance
VEe = O.S V, Ic = ic = 0, f= 1 MHz

GHz

0.66

-

pF

-

0.24

-

pF

C,bo

-

2.2

-

pF

Output capacitance
VCE = 10 V, VeE = Vbe = 0, f= 1 MHz

Cobs

-

0.9

-

pF

Noise figure
Ic= SmA, VcE =8V,f= 10MHz,Zs=7Sn
Ic = 30 rnA, VCE = 8 V, f= 800 MHz, Zs = Zsopt
Ic =30 rnA, VCE = 8 V, f=
1 GHz,Zs=Son

F
0.8
1.7
2

-

Power gain
Ic = 30 rnA, VCE = 8 V, f= 800 MHz,
Zs = SO n, ZL = ZLOPt

Gpe

-

Transducer gain
Ic = 30 rnA, VCE = 8 V, f= 1 GHz, Zo = SO n

15.21e1 2

Linear output voltage
two-tone intermodulation test
Ic =40 rnA, VCE = S V, diM = 60 dB
fl = 806 MHz, f2 = 810 MHz, Zs = ZL = SO n
Third order intercept point
Ic = 40 rnA, VCE = S V, f= 800 MHz

616

dB

13.S

-

dB

-

11.S

-

dB

Vol = Vo2

-

2S0

-

IP3

-

31

-

Siemens

,

mV

dBm

BFR 193

Total power dissipation p.o. = f (T,J
Package mounted on alumina

Transition frequency
VeE = 8 V, f= 200 MHz

mW
500rT'-"-''-"-''-",,,,

fT

= f (Ie)

GHz
10

I I
VeE =8V l -

Ptot

I 400~4-~~+4~~~4-~~

,,-I---I ~ '/

I

4

'I

~V

V

.....

5V

3V

'"

/

II
50

150 0 [

100

10

20

30

40

50 rnA

~/r

Collector-base capacitance
VBE =vbe=0,f=1MHz

CCb

= f (VCB)

pF

1.0

\
"'-

-r-

0.5

10

20 V

Siemens

617

BFR 193

Common Emitter Noise Parameters
Ie = 10 rnA, VeE = 8 V, 4J = 50 Q
f

Fmin

Gp

GHz

dB

dB

0.01
0.8
2.0

1
1.25
2.4

-

Ie

= 30 rnA,

VeE

r opt

(Fmin)

MAG

lANG

-

N

FSOQ

Gp (Fson>

-

dB

dB

1.05
1.35

-

-

-

-

(Zs = 75 Q)

13.5
7

RN
Q

1=

= 8 V, Zo = 50 Q

f

Fmin

Gp

GHz

dB

dB

0.01
0.8
2.0

1.65
1.7
2.7

-

r opt

(Fmin)

MAG
(Zs

-

14.2
7.5

=

RN

N

FSOQ

Gp (Fson>

lANG

Q

-

dB

dB

50 Q)

-

-

1.65
1.95

-

-

-

1=

-

=

Noise figure F = f (Iel
Power gain G = f (Iel
VCE = B V, f= BOO MHz,

Noise figure F f (Iel
VcE=BV, f= 10 MHz

13.3

ZLopt

(G)

dB

dB

dB

3

4

W

/

Zs=1S0Q

F

/

2

7SQ

~

~--

-

o
o

/

F

/" "

/'" ...."
....

3

,.

1

2

,/
1

10

- - - - i....

Ie

--'-1 S

Zs= SOQ

--

1 'I -I

*'"

1

I

\

o
o

30mA

20

Zs opt (F)

- - -(j

/

~rsOQ

I

618

12.4

-

Zs=SOQ.... ;;>~

i-F

.....r--r

_-tTl
Zs opt

~

S

o
10

20

--_
.. Ie

Siemens

.... 1o

30mA

(j

1

BFR 193

Common Emitter Power Gain
Power gain Gms. 15,'e1 2 = 1 (Ie!
VeE = 8 V, f= 200 MHz, Zo = 50 n

Power gain Gms. 15,'e1 2 = 1 (Ie)
VeE = 8 V, f= 500 MHz, Zo = 50 n

dB

dB

30

30

I.
6 ms

/
,/

"-!""z
15 21,1

V

10

-

-

6 ms

15 21,1 2

10

5Z1 , 1

s;:-

6 ms = 1

I

o
o

10

20

6ms =1521
51Z,' 1

40

30

SOmA

a
a

10

I I

1

20

30

---1,,-'

Power gain Gma• Gms• 15,'eI2 =1(Ie!
VeE = 8 V, f= 800 MHz, Zo = 50 n

40

SOmA

Ie

Power gain Gma• 15,'e1 2 =1 (Ie!
VeE = 8 V, f= 1.5 GHz, Zo = 50 n

dB
20

20

I
6 ms

!

6 mu

/~

r-

15z1,1 2
6 mu

10

10

1521 ,1 2

/
-

-

o
o

-1

5 Z1'1

-

/KC1
lOla -I 51r :K- K 1

6

10

20

I

I

ms- -521
- G _1 512 '1
,

I-I 1- )1-

30

40

SOmA

a
a

I

6 ma = 1521 '1 IK-hZ-1)
1 '[ 512 , 1 1 1

10

20

30

-

4iJ

I--

SOmA

-Fc

- - - I. .

Siemens

619

BFR 193

Power gain Gma• Gms.I5,'eI 2 =f(f)
Ie = 5 rnA, VeE = 8 V, Zo = 50 n

Power gain Gma• Gmso 15,'e1 2 = f (f)
Ie = 10 rnA, VeE = 8 V, Zo= son

dB

dB

30

30

"-

"

~

r-...."
.........

"-"

6 ms

"-

"

-

~ma r-10

'\.
f- 6 ms = 1521 .1

512•
I- 6 ma '" 1521 .1 (K-fk2=1,
I1 5,2 • I ·1 I 1111
o

"'

"

0.5

.. f

\.

\

I5521 .1
= I~~~:I ~K,~,2111

6 ms =

"

2

1\ 6 ma f-'\
'\' 6 ms
.'\ '\

10

6 ms

6 ma

o

l\.

12 •

2

0.5

0.1

3 GHz

3 GHz

.. f

Power gain Gma• Gms• 15,'e1 2 =f (f)
Ie = 40 rnA, VeE = 8 V, ZO =50 n

Power gain Gma• Gms• 15,'e1 2 = f (f)
Ie =20 rnA, VeE = 8 V, Zo= son

dB

dB

30 :::--...

30

'\."\

6 ms

\ 1\
1521.1 2 \

-

"-

1----1521.12

0.1

"-

'\

6 ma

1'\.'\
'\

6 ms

\ '\

1521.1 2

1

'\ 6ms
,\\

20

r-- 1521.1~ \

6ma
\.

""

10

'\"

6ms

.'\
6ms = 155,2•
~
.
I
t-- 6ma = 1521 .1 (K_II<-2_1l- ~
r-oI - I 151~. 111111f--

0.1

0.5

2

.. f

620

Siemens

3GHz

BFR 193

Common Emitter S Parameters
Ic = 10 mA, VCE = 3 V, Zo = 50 Q
~1

~2

f

S11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.594
0.530
0.484
0.451
0.431
0.409
0.397
0.388
0.386
0.388
0.390
0.392
0.400
0.399
0.398
0.401
0.405
0.420
0.461
0.473

- 64.8
- 87.0
-103.6
-116.9
-127.0
-142.4
-153.2
-161.6
-168.7
-174.1
-179.3
176.2
167.6
159.6
156.0
153.3
147.6
143.1
131.3
120.0

20.60
16.80
13.87
11.67
10.04
7.80
6.38
5.38
4.66
4.13
3.70
3.35
2.83
2.47
2.33
2.20
1.99
1.82
1.53
1.34

137.8
125.1
116.4
109.8
104.9
97.5
91.9
87.3
83.4
79.7
76.4
73.3
67.9
62.7
60.2
57.7
52.8
48.6
39.0
30.0

0.031
0.039
0.046
0.051
0.056
0.066
0.077
0.087
0.098
0.109
0.120
0.132
0.155
0.179
0.191
0.203
0.228
0.252
0.313
0.376

64.3
59.3
57.5
57.1
57.5
59.4
61.2
62.7
63.8
64.5
65.1
65.4
65.5
65.2
64.8
64.4
63.1
61.6
57.9
53.0

0.770
0.643
0.547
0.478
0.428
0.363
0.326
0.302
0.285
0.275
0.264
0.256
0.241
0.235
0.236
0.236
0.234
0.225
0.206
0.208

- 31.2
- 38.6
- 42.7
- 44.9
- 45.8
- 46.2
- 46.3
- 46.3
- 46.7
- 47.2
- 48.0
- 48.8
- 50.9
- 53.7
- 55.6
- 57.8
- 62.7
- 68.2
- 85.0
-100.0

S12

Siemens

621

BFR 193

Ic = 30 rnA, VCE = 3 V, Zo = 50

Q

~1

~2

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.375
0.355
0.346
0.340
0.338
0.338
0.336
0.334
0.336
0.338
0.344
0.347
0.358
0.359
0.359
0.361
0.362
0.380
0.419
0.431

-101.9
-124.1
-138.3
-148.1
-155.1
-165.5
-172.6
-178.1
177.0
173.5
169.7
166.4
159.7
152.7
149.4
147.5
142.8
139.3
128.7
118.8

29.20
21.58
16.90
13.80
11.65
8.88
7.19
6.03
5.20
4.60
4.11
3.71
3.13
2.73
2.57
2.43
2.20
2.01
1.68
1.47

122.8
111.8
105.0
100.3
96.7
91.3
87.2
83.6
80.4
77.3
74.6
72.0
67.2
62.5
60.2
58.0
53.5
49.5
40.5
31.6

0.023
0.030
0.036
0.043
0.049
0.063
0.077
0.091
0.104
0.118
0.132
0.146
0.173
0.200
0.213
0.227
0.253
0.278
0.340
0.398

65.8
66.1
67.9
69.3
70.5
72.0
72.7
72.8
72.5
72.1
71.5
70.7
69.1
67.2
66.3
65.2
62.9
60.6
55.1
49.3

0.564
0.429
0.348
0.297
0.261
0.219
0.196
0.182
0.172
0.166
0.159
0.153
0.141
0.136
0.138
0.139
0.138
0.131
0.117
0.125

- 46.0
- 51.8
- 54.0
- 54.8
- 54.6
- 53.8
- 53.3
- 53.1
- 53.7
- 54.6
- 55.6
- 56.9
- 59.5
- 62.5
- 64.8
- 67.5
- 74.1
- 81.9
-105.4
-122.4

622

8 12

Siemens

BFR 193

Ic

= 5 mA,

VCE

= 5 V, Zo = 50 n

f

$11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.762
0.698
0.643
0.597
0.560
0.515
0.485
0.470
0.460
0.456
0.454
0.454
0.458
0.461
0.458
0.461
0.466
0.479
0.519
0.539

- 45.7
- 64.3
- 80.1
- 93.2
-104.4
-122.1
-135.6
-146.3
-155.3
-162.4
-169.4
-175.5
174.0
164.5
160.4
156.9
149.9
143.8
129.6
117.5

13.63
12.06
10.57
9.26
8.18
6.56
5.44
4.65
4.06
3.60
3.24
2.94
2.50
2.18
2.05
1.95
1.77
1.62
1.35
1.18

148.8
136.9
127.4
119.9
113.8
104.5
97.5
91.7
86.8
82.5
78.4
74.7
68.2
62.4
59.7
56.9
51.8
46.9
36.9
27.5

0.036
0.048
0.056
0.063
0.068
0.076
0.083
0.090
0.097
0.104
0.112
0.120
0.137
0.155
0.166
0.176
0.199
0.221
0.284
0.353

68.4
61.1
56.1
53.0
51.1
49.6
50.0
51.3
52.7
54.1
55.6
57.0
59.4
61.1
61.9
62.3
62.7
62.4
61.0
57.1

0.885
0.798
0.716
0.649
0.594
0.516
0.468
0.436
0.415
0.399
0.386
0.375
0.360
0.351
0.350
0.351
0.349
0.341
0.320
0.324

~20.5

$12

5.<1

5.<2

-27.3
-32.0
-35.1
-37.0
-39.0
-40.0
-40.7
-41.4
-42.0
-43.0
-43.9
-46.3
-49.4
-51.1
-53.1
-57.4
-62.4
-77.1
-91.7

5,2, 5.>, =f If)
Ie = 5 rnA, VeE = 5 V. Zo = 50 n

5", Sz. =f If}

Ie = 5 rnA, VeE = 5 V. Zo =50 n

900

+j50

o

-j50

-90 0

Siemens

623

BFR 193

Ic = 10 rnA,

VCE

= 5 V. Zo = 50 n
~2

5 12

~1

f

5.1

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40'
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.620
0.547
0.497
0.459
0.434
0.407
0.390
0.384
0.379
0.379
0.382
0.385
0.391
0.393
0.392
0.395
0.402
0.415
0.457
0.477

- 61.0
- 82.5
- 99.3
-112.3
-122.8
-138.9
-150.4
-159.4
-166.9
-172.8
-178.6
176.2
167.2
158.5
154.9
152.0
145.9
140.9
128.0
117.6

20.54
16.91
14.07
11.90
10.25
7.99
6.53
5.52
4.79
4.23
3.79
3.44
2.91
2.53
2.38
2.26
2.05
1.87
1.56
1.37

139.2
126.6
117.6
111.0
105.9
98.3
92.6
87.9
83.9
80.2
76.7
73.5
67.9
62.7
60.2
57.6
52.9
48.4
38.6
29.3

0.031
0.040
0.046
0.051
0.057
0.066
0.076
0.087
0.098
0.109
0.120
0.131
0.154
0.177
0.189
0.201
0.226
0.249
0.310
·0.370

65.2
60.0
57.7
57.0
57.3
58.8
60.5
62.0
63.1
63.7
64.4
64.7
64.7
64.4
64.1
63.6
62.3
60.8
57.0
52.1

0.787
0.664
0.568
0.498
0.446
0.379
0.339
0.315
0.299
0.286
0.276
0.267
0.253
0.245
0.246
0.246
0.244
0.236
0.213
0.217

-29.7
-37.2
-41.4
-43.6
-44.7
-45.4
-45.4
-45.4
-45.7
-46.1
-46.8
-47.4
-49.5
-52.3
-53.9
-55.9
-60.5
-65.8
-81.2
-96.3

8", s..:. =f (f)

8,2' 8.2, =f (f)
Ic =10 rnA, VCE = SV; Zo=son

Ic =10 rnA, VCE =S V; Zo= son

o

-j50

624

-900

Siemens

BFR 193

Ic = 30 rnA,

VCE

= 5 V.

zo = 50 n

f

8"

GHz

MAG

ANG

8;;,
MAG

ANG

MAG

ANG

8;;2
MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.403
0.363
0.346
0.335
0.327
0.324
0.319
0.320
0.321
0.323
0.327
0.332
0.340
0.346
0.344
0.347
0.351
0.367
0.408
0.431

- 93.0
-115.9
-131.4
-142.0
-150.2
-161.7
-169.8
-176.2
178.8
174.5
170.2
166.2
158.8
151.3
148.5
146.0
141.1
137.1
125.9
116.6

29.73
22.16
17.44
14.29
12.07
9.21
7.44
6.25
5.40
4.76
4.25
3.85
3.25
2.83
2.66
2.52
2.28
2.08
1.74
1.52

124.4
113.1
106.0
101.2
97.5
92.0
87.7
84.1
80.8
77.8
74.9
72.2
67.3
62.6
60.4
58.1
53.7
49.4
40.4
31.1

0.023
0.030
0.036
0.043
0.049
0.063
0.076
0.090
0.104
0.117
0.131
0.144
0.171
0.197
0.211
0.224
0.250
0.275
0.335
0.392

65.7
65.3
66.8
68.3
69.5
70.9
71.7
72.0
71.8
71.3
70.7
70.0
68.4
66.5
65.6
64.4
62.1
59.8
54.3
48.5

0.588
0.452
0.368
0.314
0.277
0.232
0.208
0.194
0.184
0.176
0.170
0.163
0.152
0.145
0.147
0.148
0.147
0.140
0.120
0.129

- 44.1
- 50.1
- 52.4
- 53.1
- 53.0
- 52.1
- 51.4
- 51.2
- 51.6
- 52.1
- 53.0
- 53.9
- 56.4
- 59.5
- 61.2
- 63.6
- 69.5
- 77.0
- 98.2
-115.6

8 '2

=

s", s", = f (f)
Ie = 30 rnA, VeE = 5 V, Zo = 50 n

S,2' s", f (f)
Ie = 30 rnA, VeE = 5 V, Zo = 50 n

o

-j 50

-90 0

Siemens

625

BFR 193

Ic = 50 rnA,

VCE

= 5 V,

Zo = 50 Q
512

f

~1

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.358
0.337
0.330
0.325
0.322
0.322
0.318
0.321
0.322
0.325
0.330
0.335
0.344
0.348
0.346
0.349
0.355
0.368
0.411
0.432

-106.3
-128.1
-141.8
-151.1
-158.2
-167.9
-174.8
179.8
175.0
171.4
167.4
163.9
156.8
149.6
146.7
144.6
140.0
135.9
125.0
116.2

31.26
22.75
17.72
14.43
12.16
9.25
7.46
6.25
5.40
4.76
4.25
3.84
3.24
2.82
2.65
2.51
2.27
2.08
1.73
1.52

120.1
109.7
103.3
98.9
95.5
90.5
86.4
83.0
79.9
77.0
74.2
71.5
66.8
62.1
59.9
57.6
53.3
49.1
40.0
31.0

0.022
0.028
0.035
0.042
0.049
0.063
0.077
0.091
0.106
0.120
0.134
0.148
0.175
0.202
0.216
0.230
0.256
0.281
0.341
0.398

66.9
67.9
69.9
71.4
72.4
73.5
73.7
73.7
73.2
72.4
71.7
70.8
68.9
66.8
65.7
64.4
62.0
59.5
53.8
47.7

0.518
0.390
0.314
0.268
0.236
0.198
0.178
0.166
0.158
0.152
0.146
0.140
0.130
0.124
0.125
0.127
0.128
0.121
0.105
0.117

- 48.1
- 53.3
- 54.9
- 55.2
- 54.8
- 53.8
- 53.0
- 52.9
- 53.6
- 54.2
- 55.4
- 56.6
- 59.5
- 63.0
- 64.8
- 67.4
- 73.9
- 82.5
-107.0
-124.8

5.11

$", Sn =f (f)
Ic =50 mA, VCE = 5 V. Zo= 50n

5.12

$,2' ~, =f (f)
I c =50mA, VcE =5V,Zo=50n

+j50

o

-j50

626

-90 0

Siemens

BFR 193

Ic = 5 mA,

VCE

= 8 V, Zo = 50 Q
~,

~2

f

8 11

GHz

MAG

ANG

MAG

ANG

8 '2

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.774
0.709
0.652
0.602
0.565
0.515
0.482
0.465
0.454
0.448
0.447
0.447
0.449
0.450
0.448
0.453
0.458
0.468
0.512
0.529

- 44.4
- 62.6
- 78.1
- 91.0
-102.0
-119.9
-133.3
-144.3
-153.5
-160.9
-167.9
-174.3
175.0
165.4
161.3
157.5
150.5
144.4
130.1
117.9

13.63
12.11
10.64
9.35
8.26
6.65
5.52
4.72
4.12
3.66
3.29
2.99
2.54
2.22
2.08
1.98
1.80
1.64
1.37
1.20

149.3
137.5
128.1
120.6
114.5
105.1
98.0
92.3
87.4
83.0
78.9
75.2
68.7
62.9
60.2
57.4
52.3
47.4
37.3
28.0

0.035
0.047
0.056
0.062
0.067
0.075
0.082
0.089
0.096
0.103
0.111
0.119
0.135
0.154
0.164
0.174
0.196
0.219
0.281
0.348

68.7
61.5
56.6
53.3
51.3
49.9
50.1
51.3
52.8
54.1
55.6
57.0
59.3
61.0
61.9
62.3
62.8
62.5
61.2
57.5

0.889
0.804
0.724
0.657
0.602
0.525
0.476
0.444
0.422
0.407
0.394
0.382
0.367
0.358
0.357
0.357
0.356
0.347
0.326
0.329

-20.0
-26.7
-31.3
-34.4
-36.3
-38.4
-39.4
-40.0
-40.7
-41.3
-42.2
-43.0
-45.3
-48.3
-50.0
-51.8
-56.1
-60.9
-75.2
-89.5

5,2. S:!, = f If)
Tc = 5 rnA, VCE = 8 V, Zo= 50n

5",5.z:,=flf)
Ic = 5 rnA, VCE = 8 V, Zo = 50 n
+j50

900

o

-j50

-90 0

Siemens

627

BFR 193

Ic = 10 rnA,

VCE

= 8 V, Zo = 50 n

f

811

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.642
0.564
0.507
0.466
0.437
0.405
0.384
0.375
0.371
0.369
0.371
0.372
0.378
0.383
0.381
0.385
0.390
0.404
0.446
0.466

- 58.2
- 79.1
- 95.6
-108.4
-119.1
-135.6
-147.3
-156.9
-164.5
-170.7
-176.8
177.7
168.5
159.6
156.1
152.9
146.8
141.7
128.8
117.9

20.47
16.98
14.19
12.03
10.39
8.11
6.63
5.61
4.87
4.30
3.86
3.50
2.96
2.58
2.42
2.30
2.08
1.90
1.59
1.39

140.2
127.6
118.5
111.9
106.7
99.0
93.2
88.5
84.4
80.7
77.3
74.0
68.4
63.2
60.7
58.2
53.5
48.9
39.1
29.8

0.031
0.040
0.046
0.052
0.057
0.066
0.076
0.087
0.097
0.108
0.119
0.130
0.152
0.175
0.187
0.199
0.223
0.246
0.306
0.366

65.6
60.3
57.9
57.1
57.3
58.5
60.1
61.7
62.8
63.5
64.0
64.4
64.6
64.2
63.9
63.4
62.3
60.8
57.1
52.4

0.796
0.676
0.580
0.510
0.457
0.389
0.349
0.324
0.307
0.295
0.284
0.275
0.261
0.252
0.252
0.253
0.251
0.242
0.218
0.220

-28.8
-36.2
-40.4
-42.7
-43.8
-44.5
-44.6
-44.5
-44.8
-45.2
-45.8
-46.5
-48.4
-51.0
-52.6
-54.4
-58.9
--64.0
-78.8
-93.4

S:!,

S:!2

8'2

5,2,50, = f (f)
Ic = 10 mA, VCE = 8 I/, Zo = 50 n

5 11 , Sz, = f (f)
Ic=10mA, VCE=8I/,Zo=50n

90 0

-j50

628

Siemens

BFR 193

Ic = 20 rnA, VCE = 8 V, Zo = 50

Q
~,

~2

f

8 11

8 '2

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.491
0.426
0.386
0.358
0.343
0.329
0.321
0.314
0.314
0.316
0.320
0.322
0.330
0.330
0.330
0.333
0.336
0.353
0.394
0.408

- 75.9
- 98.2
-114.3
-126.7
-136.0
-149.9
-159.5
-167.1
-173.5
-178.2
176.9
173.0
165.1
157.0
153.6
151.2
146.0
142.4
130.9
120.7

27.10
20.95
16.78
13.87
11.79
9.06
7.35
6.18
5.34
4.72
4.22
3.82
3.22
2.81
2.64
2.50
2.26
2.06
1.73
1.51

130.2
118.2
110.4
104.8
100.7
94.4
89.8
85.9
82.5
79.3
76.4
73.6
68.7
64.0
61.7
59.4
55.0
50.9
41.6
32.9

0.026
0.033
0.039
0.045
0.051
0.063
0.075
0.088
0.100
0.113
0.126
0.139
0.164
0.189
0.202
0.215
0.241
0.265
0.324
0.382

64.7
62.5
63.0
64.0
65.2
67.3
68.5
69.3
69.6
69.5
69.3
69.0
67.9
66.5
65.8
65.0
63.0
61.0
56.2
50.8

0.669
0.531
0.440
0.379
0.336
0.284
0.255
0.237
0.224
0.215
0.206
0.199
0.186
0.180
0.181
0.181
0.179
0.170
0.147
0.149

- 38.2
- 44.9
- 47.8
- 49.1
- 49.3
- 48.6
- 48.1
- 47.7
- 47.9
- 48.5
- 49.1
- 49.9
- 51.6
- 53.9
- 55.9
- 58.2
- 63.5
- 69.4
- 87.5
-102.8

5,2, ~, = f (f)
Ic =20 rnA, VCE = 8 V, Zo = 50 n

S",~=f(f)

Ic =20 rnA, VCE = 8 V, Zo = 50 n

+j50

-j50

-90 0

Siemens

629

BFR 193

Ic

=

40 rnA, VCE

=

8 V, Zo

=

50

n
~1

~2

f

8 11

GHz

MAG

ANG

MAG

ANG

8 12

MAG

ANG

MAG

ANG

0.10
0.15
0.20
0.25
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.20
1.40
1.50
1.60
1.80
2.00
2.50
3.00

0.395
0.351
0.327
0.313
0.306
0.300
0.297
0.293
0.295
0.296
0.302
0.306
0.314
0.318
0.315
0.317
0.321
0.337
0.378
0.392

- 92.9
-115.2
-130.1
-141.2
-149.0
-160.6
-168.5
-174.7
179.9
176.0
172.1
168.5
161.3
153.8
150.5
148.7
143.9
140.9
129.8
120.2

31.23
23.03
18.02
14.70
12.41
9.46
7.65
6.42
5.54
4.89
4.37
3.95
3.33
2.90
2.73
2.58
2.33
2.13
1.78
1.56

122.5
111.6
105.0
100.3
96.8
91.6
87.5
84.1
81.0
78.1
75.3
72.8
68.3
63.7
61.5
59.3
54.9
51.0
42.0
33.3

0.023
0.029
0.036
0.042
0.049
0.062
0.076
0.090
0.104
0.117
0.131
0.145
0.172
0.198
0.211
0.225
0.251
0.275
0.335
0.392

65.6
66.2
68.1
69.6
70.6
72.3
72.7
72.9
72.6
72.1
71.4
70.8
69.1
67.2
66.2
65.2
62.9
60.6
55.2
49.4

0.553
0.422
0.343
0.293
0.259
0.219
0.198
0.184
0.175
0.169
0.161
0.155
0.143
0.139
0.140
0.141
0.139
0.131
0.112
0.117

- 45.3
- 50.5
- 52.3
- 52.7
- 52.2
- 50.9
- 50.1
- 49.7
- 50.1
- 50.9
- 51.7
- 52.8
- 54.8
- 57.5
- 59.6
- 62.3
- 68.5
- 75.8
- 98.3
-115.1

S.2, 5..1 = f (f)
Ic=40rnA, VCE=8\1,Zo=50n

$11' 5..2 = f (f)
Ic =40 rnA, VCE=8V, Zo= 50n
+j

90 0

50

o

-j50

630

Siemens

NPN Silicon RF Transistor

BFS 17P

• For broadband amplifiers up to 1 GHz at collector
currents from 1 to 20 mA.

€ CECC-type available: CECC 50002/262.

ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

BFS 17P

MC

Q 62702 - F940

SOT-23

Maximum Ratings
Parameter

Symbol

Collector-emitter voltage
Collector-base voltage

Value

Unit

VCEO

15

V

VCBO

25

V

Emitter-base voltage

VEBO

2.5

V

Collector current

Ic

25

mA
mA

Peak collector current,

10 MHz

ICM

50

Total power dissipation, TA:s 25 °C 2)

Ptot

280

mW

Junction temperature

°C

fO?

7j

150

Ambient temperature range

TA

-65 ... +150

°C

Storage temperature range

Tstg

-65 ... +150

°C

Thermal Resistance

IR

Junction - ambient 1)

thJA

I :s450

IKIW

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

Siemens

631

BFS 17P

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter
Collector-emitter breakdown voltage

Values

Symbol
\t(BR)CEO

Unit

min

typ

max

15

-

-

-

-

0.05
10

-

100

20
20

-

150

70

-

-

0.1

0.4

V

Ic=1 mA,IB=O
Collector-base cutoff current
VcB =15V,IE=0
VCB = 25 V, h = 0

ICBo

Emitter-base cutoff current
VEB = 2.5 V, Ic = 0

lEBO

DC current gain

fl.,E

lc= 2 mA, VCE = 1 V,
Ic=25mA, VCE=1 V
Collector-emitter saturation voltage
Ic=10mA,IB=1 mA

632

VCEsat

Siemens

I!A
I!A
-

V

BFS 17P

AC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

1
1.3

1.4
2.5

-

Transition frequency
Ic= 2 rnA, VCE = 5 V, f= 200 MHz
Ic = 25 rnA, VCE = 5 V, f= 200 MHz

fT

Collector-base capacitance
Vce = 5 V, VeE = vbe = 0, f= 1 MHz

G eb

-

0.55

0.8

pF

Collector-emitter capacitance
VcE =5V, VeE = Vbe=O, f=1 MHz

Gee

-

0.28

-

pF

Input capacitance
VEe = 0.5 V, Ic = ie = 0, f= 1.MHz

Gibo

-

1.2

-

pF

Output capacitance
VcE =10V, VeE = Vbe = O,f= 1 MHz

Gobs

-

-

1.5

pF

Noise figure
Ic = 2 rnA, VCE = 5 V, f= 800 MHz, Zs = 50n

F

-

3.5

5

dB

Transducer gain
Ic = 20 rnA, VCE = 5 V, f= 500 MHz, Zo = 50n

1~1e12

-

12.7

-

dB

Linear output voltage
two-tone intermodulation test
Ic = 14 rnA, VCE = 5 V, diM = 60 dB
f, = 806 MHz, f2 = 810 MHz, Zs =ZL = 50 n

Vo1 = Vo2

-

100

-

mV

Third order intercept point
Ic = 14 rnA, VCE = 5 V, f= 800 MHz

IP3

-

23

-

dBm

Siemens

GHz

-

633

BFS 17P

Total power dissipation Ptot = f (TAl
Package mounted on alumina

Transition frequency fT
VCE ~ 5 V, t~ 200 MHz

GHz

rnW
400

3

Prot

r

=f (Icl

f

300

,...
V
2

/

1"\

"

200

I\.
r\.
I

100

"

o

+o

100

50

~"150

o
0(

-~

Collector-base capacitance
VBE~ Vbe~O. f~1 MHz

CCb

= f (VCB)

pF

to

1
\.
0.5

o
o

~ i'-.

-- -r-

10

20 V

-VcB'
634

Siemens

o

10

20
-Ie

30 rnA

BFS17P

Common Emitter S Parameters
Ic = 2 rnA, VCE =; 5 V, Zo = 50 Q
~1

~2

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.83
0.58
0.45
0.35
·0.34
0.34
0.36
0.37
0.41

- 30
....: 76
-106
-142
-160
-175
165
147
137

5.96
3.69
2.69
1.84
1.53
1.33
1.13
0.97
0.91

147
118
100
79
71
64
52
44
39

0.03
0.07
0.08
0.10
0.11
0.12
0.14
0.17
0.19

73
53
49
51
54
57
62
66
68

0.95
0.82
0.74
0.71
0.70
0.69
0.67
0.67
0.67

- 7
-19
-21
-27
-31
-35
-43
-50
-54

8 12

5 11 • 5z! = f (f)

~2. 5,,1 = f If)
Ie =2 rnA, VeE = 5 V, Zo = 50 n

Ie = 2 rnA, VeE = 5 V. Zo = 50 n

90 0

+j50

o

-j50

-90 0

Siemens

635

BFS 17P

Ic

=

5 mA,

VCE =

5 V, Zo

=

50

Q

8.2,

f

8"

GHz

MAG

ANG

MAG

ANG

8 '2

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.63
0.38
0.32
0.28
0.29
0.30
0.33
0.35
0.39

- 44
- 98
-130
-161
-177
170
155
140
132

10.78
5.37
3.59
2.39
1.94
1.67
1.40
1.18
1.11

134
107
92
74
68
61
50
43
38

0.03
0.05
0.07
0.09
0.11
0.13
0.15
0.19
0.21

69
57
60
63
65
66
67
69
69

0.87
0.70
0.64
0.62
0.62
0.60
0.59
0.60
0.59

-11
-20
-21
-25
-29
-33
-41
-47
-51

5", $,,2 = f (f)
Ie

8.22

5'2, $", = f (f)

= 5 mA, VeE = 5 \/, 20 = 50 Q

Ie = 5 mA, VeE

= 5 \/, Zo = 50 Q
90 0

o

-j50

636

-90 0

Siemens

BFS 17P

Ic

= 10 rnA,

VCE

= 5 V. Zo = 50 Q

f

8 11

8 12

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.44
0.29
0.27
0.26
0.28
0.30
0.32
0.35
0.38

- 60
-117
-148
-176
173
163
150
136
128

14.21
6.35
4.10
2.69
2.18
1.86
1.55
1.30
1.22

125
100
88
72
66
60
49
42
37

0.02
0.04
0.06
0.09
0.12
0.13
0.16
0.20
0.22

69
64
68
69
70
70
69
69
69

0.79
0.63
0.58
0.57
0.57
0.56
0.55
0.56
0.56

-14
-19
-19
-23
-27
-31
-38
-45
-49

5.!1

5.!2

5,2, 8,,1 =f (f)
Ic = 10 rnA, VCE =S \I, Zo = son

5,1. s.", =f (f)
Ic=10mA, VCE=s\l,Zo=son

90 0

-j50

-90 0

Siemens

637

BFS 17P

Ic

=

15 mA,

VCE =

f

S11

GHz

MAG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.34
0.26
0.26
0.26
0.28
0.30
0.33
0.36
0.39

5 V, Zo

=

50

Q

ANG

8.21
MAG

ANG

MAG

ANG

8.22
MAG

ANG

- 69
-130
-156
179
169
160
147
135
128

15.94
6.76
4.29
2.80
2.25
1.92
1.58
1.34
1.25

120
98
86
70
65
59
49
41
36

0.02
0.04
0.06
0.09
0.12
0.14
0.16
0.20
0.22

69
68
71
71
71
71
70
70
69

0.75
0.60
0.56
0.55
0.55
0.55
0.54
0.54
0.54

-15
-19
-19
-22
-27
-31
-38
-44
-48

S12

S.2, S:!1 =f (f)

S.h~=f(f)

Ic = 15 mA, VcE =5 V. Zo= son

Ic = 15 mA, VCE = 5 V. Zo = son

o

-jSO

638

-90 0

Siemens

BFS 17P

Ic = 20 mA,

VCE =

5 V. Zo = 50

Q

~1

~2

f

S11

GHz

MAG

ANG

MAG

ANG

MAG

ANG

MAG

ANG

0.1
0.3
0.5
0.8
1.0
1.2
1.5
1.8
2.0

0.27
0.25
0.26
0.27
0.29
0.31
0.34
0.36
0.40

-77

16.69
6.88
4.34
2.82
2.26
1.93
1.59
1.34
1.26

117
96
84
69
64
58
48
40
35

0.02
0.04
0.06
0.09
0.12
0.14
0.16
0.20
0.22

70
69
72
71
72
71
70
70
70

0.72
0.58
0.54
0.54
0.54
0.53
0.53
0.54
0.53

-14
-17
-18
-22
-26
-29
-37
-44
-47

-138
-161
175
166
157
146
133
125

S12

5". ~=f(f)

5,2. ~, = f (f)
Ie = 20 mA, VeE = 5 V, Zo = 50n

Ie = 20 mA, VeE = 5 V, Zo = 50n

Siemens

639

BFT92

PNP Silicon RF Transistor

• For broadband amplifiers up to 2 GHz at collector
currents up to 20 mA.
• Complementary type: BFR 92P (NPN).

ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

BFT92

W1

Q 62702 - F1 062

SOT-23

Maximum Ratings
Parameter

Symbol

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current,

f~

10 MHz

Total power dissipation, TA :5 60

°C2 )

Value

Unit

VCEO

15

V

VCBO

20

V

VEBO

2

V

Ic

25

mA

ICM

35

mA

Ptat

200

mW

Junction temperature

7j

150

°c

Ambient temperature range

TA

-65 ... +150

°c

Storage temperature range

Tstg

-65 ... +150

°c

Thermal Resistance

I

Junction - ambient 1)

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

640

Siemens

RthJA

I :5440

IKIW

BFT92

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter

min

Values
typ

max

V(eR)CEO

15

-

-

V

Collector-base cutoff current
Vce = 10 V. IE = 0

Iceo

-

-

50

nA

DC current gain
Ic = 14 rnA, VCE = 10 V

~E

20

50

-

-

Collector-emitter breakdown voltage
Ic = 1 rnA, Ie = 0

Symbol

Siemens

Unit

641

BFT92

AC characteristics
Parameter

Symbol

Values

Unit

min

typ

max

Transition frequency
Ic = 14 rnA, VCE = 10V, f= 500 MHz

~

-

5

-

GHz

Collector-base capacitance
VcB =10V, VBE=Vbe=0,f=1 MHz

Ccb

-

0.6

-

pF

Input capacitance
VEB = 0.5 V,Ic = ic = 0, f= 1 MHz

C,bo

-

0.8

-

pF

Noise figure
Ic = 2 rnA, VCE = 10 V, f= 500 MHz

F

-

2.4

-

dB

Power gain
Ic = 14 rnA, VCE = 10 V, f= 500 MHz

Gpe

-

18

-

dB

642

Siemens

BFT92

Total power dissipation p.o. = f (TtJ
Package mounted on alumina

Transition frequency fT = f
VeE = 10V, f= 500 MHz

(Iel

GHz

mW
300

6
I-

5

r--.,

/
200

4

1\
i\

3

\
100

II

2

\

\

\

1\

o
o

50

o
o

150 0 (

100

10

20

30mA

-Ic

Collector-base capacitance
VBE = vbe=0,f=1 MHz

Cob

= f (VcBI

pF
1.5

1.0

\
~
0.5

o
o

.........

10

20 V
-VCB

Siemens

643

BFT93

PNP Silicon RF Transistor

• For low-distortion broadband amplifiers up to 1 GHz at
collector currents from 2 to 30 rnA.
• Complementary type: BFR 93P (NPN).

ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reeQ

Package

BFT93

X1

Q 62702 - F1 063

SOT-23

Maximum Ratings
Parameter

Symbol

Value

Unit

Collector-emitter voltage

VCEO

12

V

Collector-base voltage

VCBO

15

V

Emitter-base voltage

VEBO

2

V

Collector current

Ic

35

mA

Peak collector current, f?:: 10 MHz

[CM

50

mA

Total power dissipation, TA :5 60 Dc;2)

Ptot

200

mW

Junction temperature

7j

150

DC

Ambient temperature range

TA

-65 ... +150

DC

Storage temperature range

Tstg

-65 ... +150

DC

Thermal Resistance

I

Junction - ambient1)

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

644

Siemens

RthJA

I :5440

IKIW

BFT93

Electrical Characteristics
at TA = 25°C, unless otherwise specified.
DC characteristics
Parameter

Symbol
min

Values
typ

max

V(SR)CEO

12

-

-

V

Collector-base cutoff current
Vcs= 5\1, IE=O

Icso

-

-

50

nA

DC current gain

hFE

20

50

-

-

Collector-emitter breakdown voltage

Unit

Ic = 1 mA, Is = 0

Ic=30mA, VcE =5V

Siemens

645

BFT93

AC characteristics
Values

Symbol

Parameter

Unit

min

typ

max

Transition frequency
Ic = 30 mA, VCE = 5 V, f= 500 MHz

fr

-

5

-

GHz

Collector-base capacitance
VCB = 5 V, VBE = vbe = 0, f= 1 MHz

Ccb

-

1

-

pF

Input capacitance
VEB = 0.5 v,/c = ic = 0, f= 1 MHz

C,bo

-

1.8

-

pF

F

-

2.4

-

dB

Gpe

-

16.5

-

dB

Noise figure
Ic = 2 rnA, VCE = 5 V, f= 500 MHz, Zs =
Power gain
Ic = 30 rnA, VCE = 5 V, f= 500 MHz,

ZSopt

Zs = ZSOPb ZL = ZLopt

646

Siemens

BFT93

Transition frequency fT = f (lei
VCE = 5 V, f= 500 MHz

Total power dissipation p.o. = f IT,.)
Package mounted on alumina

GHz
6

mW

300

/
200

4

1\
r\

V

.......

V

/

/

\
100

\

\

\

o
o

o
o

100

50

10

20

30

40 mA

-Ic

Collector-base capacitance
VSE = Vbe=O, f= 1 MHz

COb

= f (VCB)

pF

1.5

\
!\.
1.0

"- ..........

........

---

0.5

o
o

20 V

10
-VCB

Siemens

647

NPN Silicon Darlington Transistors

BSP 50 ••• BSP 52

• High collector current
• Low collector -emitter saturation voltage
• Complementary types: SSP 60... SSP 62 (PNP)

E

c

B

Type

Marking

Ordering code (12-mm tape) Package'

BSP 50

BSP 50

062702 - Pl163

SOT-223

BSP 51

BSP 51

062702 - Pl164

SOT-223

BSP 52

BSP 52

062702 - Pl165

SOT-223

Maximum Ratings
Parameter

Symbol BSPSO BSPSl BSPS2 Unit

Collector-emitter voltage
Emitter-base voltage

VCER
VCBO
VEBO

Collector current

Ic

Collector-base voltage

Peak collector current

ICM

Sase current

IB

Total power disSipation, TA ~ 25·C

I,

45

60

80

V

60

80

100

V

5

5

5

V

1

A

2

A

0.1

A

Plo1

1.5

W

Junction temperature

TI

150

·C

Storage temperature range

T" g

-65

to

+ 150 ·C

Thermal Resistance
~83.3

Junction - ambient 1)
.) Package mounted on an epoxy printed circuit board 40mm x 40mm x I.Smm
Mounting pad lor the collector lead min 6cm2
1 For detailed dimensions see chapter Package Outlines

648

Siemens

IKMI

BSP 50 ... BSP 52

Characteristics
at TA = 25 'C, unless otherwise specified.

Parameter

Unit

DC Characteristics
Collector-emitter breakdown voltage
Ic = 10mA, RBE = 4.5Mn

Collector-base breakdown voltage
Ic = 1OOIlA, 18 = 0

1)
SSP 50
SSP 51
SSP 52

V(BR)CER

V(BR)EBO

Collector-emiller cutoff current
VCE = VCERmax,VBE = 0

ICES

Emiller-base cutoff current
VEB =4 V, Ie =0

lEBO

DC current gain 1)
Ic=150mA, VcE =10V
Ie = 500 m~, VCE = 10 V

hFE

Base-emiller saturation voltage
Ic =500 rnA, 18 =0.5 rnA
Ic = 1 A'/B = 1 rnA

-

-

V
V
V

60
80
100

-

-

V
V
V

5

-

-

V

-

-

10

llA

-

-

10

Il A

1000
2000

-

-

-

-

-

1.3
1.8

V
V

-

-

1.9
2.2

V
V

200

-

MHz

400
1500

-

ns
ns

V(BR)CBO
SSP 50
SSP 51
SSP 52

Emiller-base breakdown voltage
IE = 100IlA, IB = 0

Collector-emitter saturation voltage
Ic = 500 rnA, Ie =0.5 rnA
Ic = 1 A'/B =1 rnA

45
60
80

2)

VCEsal

VBEsal

2)

AC Characteristics
Transition frequency
Ie = 100 rnA, VCE = 5 V, f= 100 MHz

'T

-

Switching times
Ic = 500 mA,IBI = 182 = 0.5 rnA
(see Fig. 2 and 3)

ton

.

toll

-

1) Compare RBE for thermal stability
2) Pulse test conditions: t ~ 300115; D = 2%

Siemens

649

BSP 50 ... BSP 52

-2.2V

+10V

18n
ljlS

D.U.T.

9kn

-1r-

1S38~1

trGR
ID
I Dpul.

V••
PD

Ratings

Unit

240
240
0.29
1.16
±20
1.5

V
V

~s =20kO

A
A

TA =29°C
TA =25°C

V
W

aperiodic
TA =25°C

7j

T.t.

-55... +150
55... 150... 56

·C

:583.3

KJIN

DIN IEC 68 part 1

Thermal resistance
Chip - air
Chip - substrate rear side

658

Conditions

RthJA

Siemens

BSP88

Electrical Characteristics
Condition
Static characteristics
Drain-source
breakdown vottage

V(BA)DSS

240

Gate threshold vottage

VaS(th)

0.6

Zero gate vottage
drain current

IDSS

-

-

0.8

1.2

1.0

20.0

V

Vas =OV
ID =0.25 rnA

V

VDS = Vas; ID =lmA

JlA

1j =25°C;

VDS =240V

Vas =OV
IDSS

-

10.0

200

JlA

1j =125°C;VDS

=240V

Vas =OV
IDSS

Gate-source leakage current
Drain-source on-state
resistance

I ass
RDS(on)

-

10.0

100

nA

1j =25°C;

VDS =100V

Vas =OV
100

nA

Vas =20V, VDS =0V
Vas =4.5V
I D =0.29A
Vas =10V
I D =O.29A

8.0

0

6.0

0

0.32

-

S

VDS 2:2" I D * R DSon max
ID =0.29A

90

140

pF

Vas =OV
VDS =25V
f =lMHz

6.0

-

RDS(on)

Dynamic characteristics
Forward transconductance

gl.

0.14

Input capacitance

CI ••

-

Output capacitance

Co ••

20

30

Reverse transfer
capacitance

Cr ••

6

9

t d(on)

-

5

8

10

15

30

40

25

30

Turn-on time ton
(t on =t d(on) +t,)

t,

Turn-off time t off
(t off =t d(ofl) +t I)

tl

-

Continuous aource
current

Is

-

-

0.29

A

Pulsed source current

ISM

-

-

1.16

A

Diode forward on-vottage

VSD

-

1.3

V

t d(olf)

ns

Vee =30V
Vas =10V
I D =0.28A
Ras =500

Reverse diode

1.0

Vas =OV
'/ F =0.58A

Reverse recovery time

trr

-

-

Reverse recovery charge

Orr

-

-

Siemens

-

ns

VA =l00V, IF = 'D A
dl F Idt = 100A/Jls

JlC

VA =100v, 'F = 'D A
dl F Idt = l00A/Jls

659

BSP88

Permissible power dissipation PIOI == I(TA)

aSP88

1.6
W f-I- h

14

P.o.

12

1---

1-1-

10 0.50

1-1- f----- H- I- -I-

1\

02

-·3V

f-tt-!t-!- ~~~
-.-r-- '--1-·- 1\--~~= ]\

0.35

f- t--

l- t- t-.

o' - ' - o

20

---+1---

Li-~~~
_~-=_L
40

60

60

--

.--. --.- 2.5V

- - -----._-:-+

0.30
0.25

0.6 f0.4

f-~'---l

0.55

t-t_ -

1.0
0.8

A

- -- -- -- I-t-

IS

B5P88

0.65~~­

.'--

-- - I -I - - - - I - --

-f\ .-

-I;-

Typ. output characteristics 10 == I (Vos)

'-

---

-f-

0.20

'\

-:.;;.oIf--t--t---t- 2V

-1\ t- f-!-

---

-'-

-._-+

0.10

i~t±

:b=f==l==-+~+----=4~ 1.5 V

0100...-'-.--"'--'-- - - - -

o

100 120 140·( 160

23456V8

-TA

- - - V05

Typ. transfer characteristic To == f (VGs)
parameter: Vos == 25 V, tp == 80 lIS, TJ == 25 ·C

Permissible operating area fo == f (Vos)
parameter: 0 == 0.01, Tc == 25·C
0.60

r-- -

.---,-

A I-- ~- I

o

.!l..~!' .~~-- - ... -- - -.--~

- - - - --- . -

0.50 1-- t-

.-- -.-.1--

- --- - - -- --I -

1--1- -1-1------- -

---

t 0.40 ;--1---+-+1--+--1---1-- ----1--1-0.301--1--

-j-I-- -.- -- -- -

·-i-

1-+--+-1-1--1-- --1-1--- - - -

0.201-1--"

-1-1--

-f-

f--I---/---ii-I--I-- --1--1----

0.10

I/
1--[7--

--.--- - - 1 -

... -

-

o'---"--'-_-'__.'-_
o
4
660

Siemens

-

_..

.. _--

_....

----

_____ L_

L_

6
8 V 10
_VGs·

BSP88

Typ. drain-source on-state resistance
ROS(on) = ((10)
parameter: VGS , TI = 25°C

Drain-source on-state resistance
ROS(on)

= ((TI)

parameter: VGS

26r-r-r-r-r-T_BrS~P66

= ~.5 V, 10 = 0.29 A, (spread)
BSP 88

20

(l

ROSlon) 22

ROSlon) 16 I-- -

20

-

V

I-

I

16

1/

16

14

-

12

\- -

1 - -98%;-

p- ~

6r_~~~l

4-

I......
po

o
o

o

'--- ----"

8
4

0.10

0.20 0.30 0.40 0.50
-10

Typ. transconductance gls = ((10)
parameter: Vos = 25 V, Ip = 80 liS, Tj

0.45 - - -

88
-- ---asp
._-- -- -

... -

---- --7

30

S 1--1---1--1--1-1- --- --

gr ::: -

VG S (I h)

f

-40

~~

-]f

o

40

/

I--

-

80

-- -- '---

120°C 160

SP'-'8:6;:- -----y-T---,----r--,
.---,---.----.---r_;Br:

V 1---+-4--1-- ---1-+--1---+--+--1
2.6 t-+-+--l-+-+---+-t--t-t-t-i
2.4 I--+--+---j--t--jl----t---I--t---t--jl---t

2.0 1---1-+-- t --\----+-'I---+---I--t---t--1
1.8 I----+-+-+_+_+_ I--+--I-+-t----I

------ ----- -- --7--1--- - -- .---. ---

0.15- - - - - 1 - - - - 1 - -

...... V
1-

/

2.21--1--1f--11---:1---t--t--I-+--t---t---I

--VJ:~

0.25 0.20

~I-!=~V~=_~--·~

-

/

Gate threshold voltage VGS(lh) = ((Tj)
parameter: VGS = Vos, 10 = 1 rnA
(spread)

= 25°C

-V-r-:
//

~

-80

A 0.65

1.1

~/ v-

8

10

II

._-

12

-----

0.10 1--/--1+-+-11---1-+---1-- - ! - - -

----

o 05 H--+-+- t-+-+--j-- -- -- .- -

o '--- _l_-'---'--'__ L--'-_---.J'_-'-----'---'
o 0.10 0.20 0.30 0_40 A 0.55

o

20 40 60 80 100 120°C 160

~

10

Siemens

661

BSP88

Continuous drain current 10 = f(TA)

0.30

1
0

r---;-_.,-_.,--:B::..:S.:,P_;c:88--,-_-,-_-y--,

A

==~.-

0.26

'" .

~:~
020
o18
0.16

Drain-source breakdown voltage
VIBR)OSS (T,) = b X VIBR)OSS (25°C)

--t--t---l--t--l

---j---+-~--t--l

A
1.16

'\K---r---

b 1.14
1.12

--1--"\
~-

- - r - -.- -.-.-'\-

asp 88

1.20

t

-1-

'0

.

1.10
108

-1--1-----1

0.14 1---1----1--1--1---1,·- , - f -

0.12 f - --+--+--+-_. r - - \ I 010 1--1--+--+--\--1-·-1--\

r---

0.08 1---1---+--.1--1-.-1--1-----1\--\-1
1
0061---I--+--~·-~---t~-I--+\·--t

004
0.02

f- -- -

o
o

---1---1--+---+-\11-1

---. --- ---t---t-H

L....._. _ _ _ _ .. _ _ . ._._._

20

40

60

. ___ • . __ ._. _

80 100 120
-TA

._l

160

O(

0.90

-

-- - - - -----

- 60 -40 -20 0 20 40 60 80 100 120
_

Forward characteristics of reverse diode

Typ. capacitance C = f(Vos)
parameter: VGS = 0, f = 1 MHz

IF =

f(Vso)

parameter: Ip = 80

US,
~~

~

5

. _ _. _
--- - -

10--+---1---·-- -

A
5

110

2

5

E~~'\gEE~~~~·---~·--~C~s
~

t--

-+---+--1

f- f - -

5

~:--1--->t----f--t-===y--t--4-.-;;;!-Coss
10 1 f--'-...

- f-

C'55

r>E
... ~!:.-I--I---

~:: -1-11-- -...
25°( typo
- I - 150 0 ( typo

,lP -is.
--~

L1J--.
FF ~~ ~ r.!25°((98%J
-

--;:--

._-1-

:/ ~Cc __ 1-1--- ~~

- -- -c- -~
- -e-

----

5 I---I---r--t--~-+--- _

u

--- -

..

-

T, (spread)

r- r-

~~-'lr-t--+----ir--- -.+--t--I.--

C

160

o(

T(

5

f-f-

c-"< ~ J

If-

-1-

-~-~-

~~om

- --

=
.-=
-- I l-

-- I -1-

=r=

-

- - I- c--I-

-

10° L--'--_'----'-_-'- _-'-__'---'_..J
o

10

20

30

--662

V

40

VOS

---

Siemens

V 3

2

V~o

SIPMOS N Channel MOSFET

BSP89

Preliminary Data
• 81PM08 - enhancement mode
• Drain-source voltage
Vos = 240V
10 = 0.34A
• Continuous drain current
ROS(on) = 6.00
• Drain-source on-resistance
Po = 1.5W
• Total power dissipation

s

Type

Marking

Ordering code for
versions on 12 mm-tt:pe

Package

SSP 89

SSP 89

Q67002-8652

80T223

Maximum Ratings
Parameter
Drain-source vOltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Vcs
I4>GR

10
lopu,.
V••

Pc
7j
T.ta

Ratings

Unit

240
240
0.34
1.36
:!:20
1.5

V
V
A
A
V
W

-55 ... +150
55 ... 150 ... 56

°C

:583.3

K/W

Conditions

Ros =20 kO
TA =25°e
TA =25°e
aperiodic
TA =25°e

DIN lEe 68 part 1

Thermal resistance
Chip - air
Chip - substrate rear side

RthJA

Siemens

663

BSP89

Electrlcsl Characteristics
Condition
Static characteristics

-

Drain-source
breakdown voltage

VIBA)DSS

Gate threshold voltage

VGSlth)

0.8

1.5

2.0

V

VDI= Val; ID -1mA

Zero gate voltage
drain current

'DSS

-

4.0

60.0

fAA

1j =25°C;

240

V

Vas =OV

'D =0.25mA

v

VDS =240

Vas =OV
'DSS

-

8.0

200

/oI A

1j = 12SOC; VDS

v

=240

VGS =OV
'DSS

-

200

nA

1j =25°C;

VDS =60V

VGS =OV
Gate-source leakage current

I ass

Drain-source on-state
resistance

RDSlo.)
RDSlo.)

-

10.0

100

nA

Vas =20V, VDS =OV

5.5

6.0

Q

I D =O.34A

9.0

10.0

Q

Vas=10V
Val =4.5V

I D =0.34A
Oynamlc characteristics
Forward transconductance

gl.

Input capacHance

C •••

Output capacitance

Co ••

Reverse transfer
capacitance

Cr ••

0.14

-

-

t dlo.)

0.29

-

90

140

20

30

6

9

S

VD...2*/D

* RDSo. max

ID =O.34A
pF

VG' =OV
VD• =25V
f

=IMHz

5

8

8

12

Val =1OV

25

30

I D =0.28A

22

28

Vcc =3OV

Tum-on time to.
=t dlo.) +t.)
(t

t.

Tum-off time toll
(t 011 =t d(oll) +t I)

tl

-

Continuous source
current

Is

-

-

0.34

A

Pulsed source current

ISM

-

-

1.36

A

Diode forward on-voltage

VSD

-

1.4

V

VGS =OV
=0.68A

Reverse recovery time

t ••

-

-

-

ns

VA =100v, IF = 'D A
di F /dt = 100A//oII

Reverse recovery charge

Or.

-

-

-

/oIC

VR =100v, IF = ID R
di F /dt = 100A//ols

0.

t d(oll)

-

ns

Rat =500

Reverse diode

664

1.1

Siemens

'F

BSP89

Permissible power dissipation

16
W l-I14
Ptot

!

B~P

1\

13

f--- ' -

"-~

Pial

= t(TA )

89

0.75 r-,--._-=-~:--:-::.:BS,PT.:.:69-'--r_-r--,-l

f--'-_I\~OI =15W___ --j-+--t
Its = .~

--1-

I

10

--i.- -- .._---

12
11 I- - i 1.0
09
0.8 f-- I - i-. \ -f07
--- -1-- - i 0.6
r\
05
-i- -- .-- -~ - - -I0.4
.. --- - I 03 l - I- i - ---- \I - - i 02 l-I- -I- -1- -1-- -- - - I \ - i 01 i- I- -- -- - -- _. - - 1--- - - ,\1-

~

Typ. output characteristics 10 = t(Vos)

"-

S

A

10V-0.60 - 9V ---1---.--1---~"I
8V- .
7V0.50 - 6V
5V=040 t---t--+ ,I"

--=

030
0.20

--

o

o

20

40

60.

80

100

1.--:j:::::::j::::::J==I==l==I==l= 25 V
0~±=±=±=~~=c=t=t=2V

o

120 140°(160

3

4

5

6

7

8

V

10

-Vas

--~TA

Typ. transfer characteristic 1D = f (VGs )
parameter: Vos = 25 V, Ip = 80 jls, Tj = 25°C

Permissible operating area 10 = t(Vos)
parameter: 0 = 0_01, Tc = 25 DC

BSP 69

0.70 - - --- A

------i---------~

10 0.60 - - - - ---- --

t

4

--- -- -- - - r - -

c--I--

-

-r--- ----- ---

--. ---I- --- --- -

I 050 I - - ! - - I - - - -

- - -- --

I-

---

0.40~~ ~~~~-_~~_-===-__

030 - - - - --

- - - - - - -- - - - -

-

. - --

-

-

020 1----1---1-- - - -

-------·-1--+-+---1

- - -1-- --------+----

0.10 f--+--l-/H--t---l-l-

o '--_'-L..L.---,_-,----,_-'--'_J o

Siemens

2

3

4

5

6

7

'--

V

10

665

BSP89

Drain-source on-state rl!slstllnce
f(TI)
parameter: VGS = 10 V,lo = 0.34 A, (spread)

Typ. drain-source on-state resistance
ROSlon}

= ((10)

ROSlon} =

parameter: VGS' TJ = 25°C

16 .--..--,-.,- ,-- .~~':-!!-

R

~- c -

r" ~--- --~--- -/~~

Q

R

OSloo}

16

1 14

-+--

Q

--l--l-I~~-l

10 - - - - 1- - -~;%./.V

12

8~

6

-

.- .... -.- ..

~:LI--f--

.,~

_ .. -- -- .. - ~ . typ.- -

::~~~ ~~ :~i-- ~

4

o
o

0.1

0.2

OJ

Q4

0.5 0.6
A 0.75
-fA

g,. =

Typ. transconductance
((10)
parameter: Vos = 25 V, tp = 80 liS, TJ = 25 °C

I-I-

-1-

~~--.~ - -- j -._1_L-J~

o

L-I_.L~

- 80 -60 -40 -20 0 20 40 60 80 100 120

---r.

O(

160

Gate threshold voltage VaSl/h} '" f(1j)
parameter: Vas Vos, 10 '" 1 mA
(spread)

=

5 r-~-.--"'_'r_8~~9
g~

--,- -

-

.-- --

--

S - - - - - - - 1 - - - l.......-+--l--l--l--l
/

t OJO -

//

/ L __

025 -- - -- -.
.

020 '-- -- /
0.15

010

-- --. -

1-1--4-+-.-- ---- .-- .-- --- -

-J-J--lf-I--l--l

- - - ..

--! ------- ----

-I-l-f--J

r7----- -- -. ---- - - --

0.051/- -.- - - - --- --1--

- -

o '- '- -. --- .- -- __ '--.1_
o 0.1 0.2 03 04

05

-I-

A 0.65

- /0

666

Siemens

o

-60 -40 -20 0 20 40 60 80 100 120

-r.

O(

160

BSP89

Continuous drain current 10

= f(TA)

Drain-source breakdown voltage
V1BR)OSS

036r--r--r-~-_BS~P_69__r _ - r _ . - - '

A f--~
.
10 0.3Z
~:---.j--+--t--j---I---l

I

~

OZ8

A

10

- ----

f-

-

--

f--

0.94

--.- --+_.- --_.- - -

r-- .L-

160

.L

/-

V-

~

V-

I-

V-

I - I--

r-- I-.-- ' - -

V- . -

--

--.-

--

-

1--- -

' - 1--

f--

c-

~

090 ---- - - ' - -60 - 40 -ZO 0 ZO 40 60 80 100 lZ0 • ( 160
-T(

Typ. capacitance C = ((Vos)
parameter: VGS = 0, (= 1 MHz

Forward characteristics of reverse diode

IF = f(Vso)

parameter: tp

B5P89

11

I-

BSP89

~ I- 1-1- ~

A I-

I--

= 80 liS, 1j (spread)

101

f=:

f--

pF I--r-

I--

----- ---

V-

V-

- ---- ,/ ,- I--

-

I--

\

o -_. -- . ---- ---- --- .-----o ZO 40 60 80 100 lZ0 .(
---Ii.

[

I -I - -

1.06

0.98

10

I -I--

1.0Z

::: == -~-~ -~~= ~-==~
--- -

I- -

f--

\

-

- - r - - -- r--- f-- -- - I l -I--I -I - - -- -- f-- f -

- - -

----1---1\--

O.IZ 1 - - - - - - - - 1 - -

(25°C)

BSP89

t 1.10 I - -

OZO~-+__~'---~-I~I __ ~~4-~

o16

X V(BR)OSS

1.Z0

114

OZ4 f---r---1- ---+~~.--1--1--+---1
f--+---+--ji- -~ .---I~---j

(1j) = b

!-=:= - - II-

- 11
f - 1i-- f - I-

1=

-l-

I-f-

t

10 2

5

~\

----~~: ---

TJ

~I-

I-- - , - - - --j---,I---t--;---{
f--

=

25'(1 yp~
1= IS00C t

-- f--.

5

~ .....::::::::-+-:---11--1--+--1--1

1-1-1-1---

1-1-1-:
I-

5

100

__

~~
t--

r/~

=f::
-I-

.--.. P-:= -- c

~ V-r=- ----=.;= -:~

~
::,..,

r--I-

T.J =

1-::
=- __._--

- --

~~_

2SoC (98%)
150°C (98%)

-

---

- -lI-

==
---

L - - - L _ - ' - - - ' _ - L _ . L - - - L .__- ' - - - '

o

5

10

15

ZO

Z5

30

V

40

2

V

3

----Vos

Siemens

667

BSP92

SIPMOS P Channel MOSFET

Preliminary Data
• 81PM08 - enhancement mode
• Drain-source voltage
Vos = -240V
• Continuous drain current
10 = -0.18A
Ros(on) = 200
• Drain-source on-resistance
Po = 1.5W
• Total power dissipation

s

Type

Marking

Ordering code for
versions on 12 mm-tepe

Package

SSP 92

S8P 92

062702-8653

80T223

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Vos
\i>GR

10
I Cpuls
V••

Po
7j
T•••

Ratings

Unit

-240
-240
-0.18
-0.72
±20
1.5

V
V
A
A
V
W

-55... +150
55 ... 150... 56

°G

668

R.hJA

~83.3

K/W

Siemens

Ros =20 kO
TA =33"G
TA =25°G
aperiodic
TA =25°G

DIN lEG 68 part 1

Thermal resistance
Chip - air
Chip - substrate rear side

Conditions

BSP92

Electrical Characterlatlcs
Condition
Static characterlatlcs
Drain-source
breakdown vo~age

V(BR)OSS

Gate threshold vo~age

VGS(th)

Zero gate vottage
drain current

loss

-240

-

V

VGs=OV

10 =-0.25 rnA
-0.8

-1.5

-2.0

V

Vos= VGS; 10 =-lmA

-4.0

-60.0

J.iA

1j =25°C;

Vos =-24 OV

VGS =OV
loss

-

-8.0

-200

J.iA

1j = 125°C; Vos

=-24 OV

VGS =OV

-

loss

-200

nA

1j =25°C;

Vos =-60v

VGS =OV
Gate-source leakage current

I GSS

Drain-source on-state
resistance

Ros(on)

Dynamic characterlatlcs

-

v

-10.0

-100

nA

VGS =-20V, Vos =0

12.0

20.0

0

10=-0.18A

0.13

-

S

Vos .,,2* I 0 * R OSon max
10 =-0.18A

pF

VGS =OV
Vos =-25V
f =IMHz

ns

Vcc =-30V
VGS =-10V
I D =-0.25A
RGS =500

VGS =-10V

Forward transconductance

g,.

Input capacitance

CI..

70

105

Output capacitance

Co ••

20

30

Reverse trensfer
capacitance

Cr ••

8

12

0.06

-

8

12

30

45

I d(off)

15

20

If

30

40

I d(on)

Turn-on time Ion
(Ion =1 d(on) +t r)

Ir

Turn-off time loff
(1011 =1 d(off) +1,)
Reverae diode
Continuous source
current

Is

-0.18

A

Pulsed source current

ISM

-0.72

A

-1_2

V

Diode forward

on-vo~age

VSD

-0.9

Siemens

VGS =OV
IF =-0.36A

669

BSP92

Permissible power dissipation PIOI = ((TA)

Typ. output characteristics 10

BSP92

1.6
W

= f(Vos)

BSP 91

-0.40
f- f-

1.4

A

1\01

10

\

12

~

1.0

-5V

1- 0.30

I

.--- -- --4.5V

""1\

I

-0.20

0.8
1 - -1---

06

'\

04

---4--

~

J..--I--I--t--t--t-- 3.5 V
-0.10

""

o 2 1--- .- -

o' o

·-'-0

-

-

--

---~.

20

40

_.

-- -.

80

~-+~--~+-+--r-3V

-f\ f- f-

~.

60

I___+-+-~-t-- 4V

1\

--- -- .- -

--- -- .--- ---1--

"..-!--1r--t-+-+--t--t--t-- 2.5 V

r--

o~+--t--t--t--+~~r-+-~-2V
---- --

°

100 120 1400 ( 160

-1 -2 -3 -4 -5 -6 -7 -6 -9

_TA

-

Permissible operating area 10 = ((vos)
parameter: 0 = 0.01, Tc = 25°C

V-ll

Vos

Typ. transfer characteristic 10 = ((VGs )
parameter: Vos 25 V, Ip 80 lIS, 7j 25 °C

=

A -

ItO--Oo::

-

=

--- ----. --- - -.. - --.

=

..- ---

==- ==:1----: ~~--~~--~ =~

, -1--.- --- -- - -- 1 -- - --. -.-- --- --

I-----I----l-- -

- 0.20
I---- 1-. -

- - - -.-- --.- - - -- .--

-0.161-1--- -

-0.12 1-1--1---

---- ----1--

1-- ----~. =~ =~

II

----1----

- 0.08 1--+--+-I/--1--j--- - -

--I---- -

I---l----l--I.-j--t-t---t--i-- - - - -

- O. 04 I----t----l-/I-+--t.-t--+--t----t-- - I--+--bf-t-+--t--I---t--j·-- - O~~/'~_~J--L_~~ __ ' _ _ _

o

670

Siemens

-2

-4

-6

-8

V -10

'ssp 92

Typ. drain-source on-state resistance
ROS(on) = f (10)
parameter: VGS , T, = 25 DC

Drain-source on-state resistance
RoS(on)

BSP 91

65

55
50

r-f

= 10 V, 10 = 0.18 A,

(spread)

BSP 91

50

~J"JI_
I I
o -2.5V-3V
-3.5V-::W--4.5V - 5 V - -

ROSlonl

=f(~)

parameter: VGS

ROSlonl

40

'---

45
40

30 1---1--1---1

I

35

- - - f--.

/

30
25 -

/

:/

-

20 ...L ::::;;;:;;; ~
15

.-

-- f 1-

-/- V- -/- - --6V

---: ~ V

20

--- -.,.-

~

10

-7V -6V-9V-l0V- - - f -

10

5o-

o

-i----i----tj---

-- I -- ._._- - - - '

---- -- -_..
- 0.10

-0.20

- 0.30

o

- 60

A -040

____ .... 1--

-1.0

o

40

120 0 ( 160

rJ

-10

Typ. transconductance g,s = f(/o)
parameter: Vos = 25 V, tp = 80 liS, Tj = 25 DC

Gate thre.hold voltege VGS(lh) = f(7j)
parameter: VGS = Vos, 10 = 1 mA
(spread)

SP,..:.9.:.2- , - - - , - - - ,
0.20 ,---_,--__ r-_B:.::c

-5

v ....

s
VGSllhl

9 Is 0.16

t

1-

80

BSP oZ

8

-

-

----1--

-4

0.12

-3

0.08

-2

. t-

-1

o --- - ----- - o -005 -010 -0.15 -0.20

o

A

-0.30

-60 -40-20 0

20 40 60 80 100120·( f60

-~

- - - 10

Siemens

671

BSP92

Continuous drain current 10

- 004

-

~--~~-.
------~
I

10

~

104

L

60

80

100 120 O(
--_to
. _.
TA

160

asp 92

11

~==l==~=r==f~

pF

1.00
0.96
0.92

o

----- - - --

- 60 -40-20 0 20 40 60 80 100120 O( 160
-T(

Typ. capacitance C = I(Vos )
parameter: VGS = 0, 1= 1 MHz

10J

-~-

f--

-I-

40

--- ---, --- . --- ---

108

1]

20

-

112

8-.]Jt:c:~-,--~1\-

o
o

~-t---!

Forward characteristics of reverse diode
IF = l(Vso)
parameter: tp = 80 liS, 1j (spread)
100
asp 92
12

= --: : ==-- - -

A ~ =.}~:::
~-~~ t:: ~r25°(1 yp. -izlT-~1i2
--.- . - - - 1 - - ---115
1500 (

'-1=

tYr;/lI-v~~

c

I

r

92

b

i

5

asp

1 20
1.16

""-

c--- 008

=

A

A

f -012

Drain-source breakdown voltage
VIBRIOSS (1j)
b X VIBR/OSS (25 Oe)

aSP91

-0.20

10 -0.16

= l(rA)

'" ",1= -c

--

~ '25°((98%)

=

cO: , 150.~,"'J
" ·-1-_=, ~
-----

- - - , . -- I-- - -

1-:-

I- - --1-:------ -- -- -.- --I- - --- c-

-r-

. - - I-I---r-

5 r----

5

__. . --- - - ~

-~~ T; - -1------:--

1-'-

-:-1:-=

.

1

~

-_.

JJ--- =- ==1=:::
o

. :=+-1- --:-i=1=

I-:F-I-i==l=

5

1-1--

1--I- -

_.

J

-20

-30· V -40
- - - - <...
Vos

672

Siemens

-1

~-

-2

V -3

SIPMOS N Channel MOSFET

BSP 125

Preliminary Data
• SIPMOS - enhancement mode
VOS = 600V
• Drain-source voltage
/0 = .110A
• Continuous drain current
Ros(Dn) = 450
• Drain-source on-resistance
Po = 1.5W
• Total power dissipation

s

Type

Marking

Ordering code for
versions on 12 mm-tepe

Package

SSP 125

SSP 125

062702-S654

SOT 223

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
. Climatic category

Symbol

VDS
\.DOR

/0
IOpuls

V.s

Po
7j
Tat.

Ratings

Unit

600
600
0.110
0.44
:t20
1.5

V
V
A
A
V
W

-55... +150
55... 150... 56

DC

::;83.3

K/W

Conditions

RGS =20 kO
TA =39DC
TA =25°C
aperiodic
TA =25DC

DIN lEG 68 part 1

Thermal resistance
Chip - air
Chip - substrate rear side

RthJ'

Siemens

673

BSP 125

Electrical Characteristics
Condition
Static characteristics
Drain-source
breakdown vo~age

VeBR)OSS

600

Gate threshold vo~age

VGSeth)

1.5

Zero gate vo~age
drain current

2.0

V

Vas =OV
10 =0.25mA

2.5

V

Vos= Vas; 10 =lmA

TJ =25OC; Vos =600V

1j =125°C;Vos

loss

10.0

100

nA

loss

8.0

50.0

JlA

Vas =OV
=600V

Vas =OV
Gate-source leakage current
Drain-source on-state
resistance

I GSS

10.0

100

nA

V GS =2OV, Vos =0V

V GS =10V
30.0

AOSeon)

45.0

0

10=0.11A

S

VDS ",2*/0 • A DSo. max
10 =O.llA

pF

Vas =OV
Vos =25V
f =lMHz

Dynamic characteristics
Forward transconductance

g'l

0.06

0.15

Input capacftance

CII.

110

170

Output capacftance

Co ••

10

15

Reverse transfer
capacftance

Cr ••

B

10

Turn-on time 10 •
(Ion =1 dCo.) +t r)

Ideo.)

Turn-off time loll
(loll =1 dColI) +t f)

5

8

10

15

I deolll

18

25

I,

20

25

Ir

ns

=30V
=10V
10 =0.21A
Aas =500

Vee
VGS

Reverse diode
Continuous source
current

Is

Pulsed source current

ISM

Diode forward

674

on-vo~age

Vso

-

1.0

Siemens

0.11

A

0.44

A

1.4

V

VGS =OV
IF =0.22A

BSP125

Permissible power dissipation P'ol

= ((TA )

Typ. output characteristics 10

85P115

1.6
-r-r
W 1-- t"\-I-I- -~o, 1.4 f - I-- -[S~ -1.2 1-- f - -

1-\

- I -l-

~

f

"\

1.0

-"

f-I-

0.1.

- -I - -

1-- 1 - -1 - - -- - l - I - - _.
----

w

4~~: 'l'V-~I-V--I).--I-\-+--+--+- 35V

I-

0.06

-J WI7 -

Z:
"I -

~~~

~,

--t--i-il-"";;:;Ir--.--t-.-t--l
I--

.......

3{ -

--

I

V
--

_.1--

o r_-,---,-_.
o 2 4 6

'--

~

~- V- ,/

0.04
002

1---- -'I [S ,-

~

00

IV7'l--I--+-'I--+--I-4

rJ''-),-~""",l---lI-t--+-+-+--1

5.5V

0.08 I--

"\.

'-- - - -\ - l - I -

~

7V--

0.10 I-- - ~

0.2 f - - 1 - - -

o w

I-- 6V - -

0.12

1\
0.6 I- -- f - - _.- - - I-

o

:~

0.18

0.14 -

--1\

= V-V
~LD-k::::'---il--t---I-+--l

0.20
0.16

1--1-

0.8 I-

R
lo,=l5W

;tv=+_--J'~-"..,~--r;~~~-~;:;-4tt-._-l

ItO 0;2

- l -I -

85P125

I

0.26

= t(Vos)

I-- --I- 2 5V

1---

8

j

10 12 14 16 18 V 22

- - - TA

Typ. transfer characteristic 10 = {(VOS)
parameter: Vos = 25 V, tp = 80 jJS, ~ = 25 °C

Permissible operating area 10 = ((VOS)
parameter: 0
0.01, Tc 25°C

=

=

85P125

l-

I-

I-

=r~~~-

-

~~~

r\.

-

-

-

=1-

5

-

-.

q.f\
--

- --

5

~~~-:

~~=-~-.-

1- -'
1- --

-

- _.

-- - -

. 'p

It

-

T

,_

-,

-

~-

.~ '=::.

--

0.16

.U

~-

I
ms

\

II
10
ms

-

---

\IS

1100

?C ~

,-

rO.~

0.01
. \IS

i~ms

A

-

-

1--1- . -

--

0.12

0.08

....

0.04

-

LillJJllll I II

o
---Vos

85P 115

--

014

III

'p=

-

~

-I-.f--

D-!L~

--T_

-11U

..

-

~-:-

-- 1---'

I--

~

-.\<>~

-

o

I
2

I
3

4

5

6

7

8

V

-VGS

Siemens

675

10

BSP 125

Typ. drain-source on-state resistance

Drain-source on-state resistance

= ((f0)

ROSlon)

ROSlon)

parameter: VGS , TI = 25°C

140

~r:::

- GS

r

f- -_.- '-

1- -

I-- -c
80

7

/

20

1- ._.

l-

- - -./

/

tI

~

,...--:

~ __ 4SViL

.- - !- -

~

-

I-

J

.?

V
./

~

ssv 6V

I-

f-- I - I -

7v'~V ~V

008

012

016

020

I-

./

10V

20

t

-/

V-- L -

40

~

/

98%/

60

~

-.-

/
-

J L JL

004

- - . - 0-_-

--

- -- - - ==J=r±i±+

o
o

-

-I-- -

80

,..-

40

-

f--

/

1- -

60

4V

, - r-- -·1- -

1-- f--

A, (spread)

-8SPl15

r-l SV

-- " - -_. !.- -

-

= 10 V,lo = 0.11

B~P II~

V. =3V l-

\l I--

= (Tj)

parameter: VGS

V

/ 7'V ,/
./
,;- typo

i-

V V
I- -

o

-80 -60 -40 -20 0 20 40 60 80 100 120·C 160

A 0.26

-~

g,. =

Typ. transconductance
parameter: Vos = 25 V, Ip

Gate threshold voltage VGSllh) = f(TI)
parameter: VGS = Vos, 10 = 1 mA
(spread)

((/0)

= 80 IlS, 1j = 25°C

BSP11~

ssP liS

9"

S

I-~ --

1 016 -

--- ---

-

-- -

-

~V'L~

Vr-+--~-r-+--l-~I-t---I----~

r-!.--V- -

_. -

4t-+-~-r-+~-jl-+-~--j--r-1

1

r-

-1/1----

0 0 4 / - --- -

I--I--+--+-+-I---I---I---/-3

--I---j-+-+---1

1-1~i== ~I:::::

1--

--I---!-+-+--t--I--!--j---j

=:2;<-8°",,1'°+--+-_1-_1_+-_1
1--1--+--+- .~ -- I-- - - -I--t
br-- --- - 2 _ - ::-- r-;;,,_

1--1-) -- -- --j-I-t---!--+--j
0.08

I--!--I---+--I--I--!--t---I- - 1 -

\{;SlIhl

~~ - - ; ; ; r-~I-I--j--i

I-I----~--I---!012

S.-r--r-.--.---i-"-r--r---,--,r-r--l

,/

----

'{!:..

---t--t-I-I-I-

-;:;,f--t;::::~-..j.,~=
.:.:...~ %+-+--+=~-I:;:-i

.--1=.-

I--!--I-- - - - --- I--+--.f-. 1 - - - - ---..-- I I - r - - r - ' - - - - r - --1-1-j--t-+-+--j--f---I---+-t-I- I-o L - - L - _ _ L...- _ _ _ _ _ _-1--1-1--1-________ .•. 1---

-- ---·--I--!--I--+--1

~

004

0.08

0.12

0.16

A 0.22

-~

-/0

676

-60 -40 -20 0 20 40 60 80 100 120·C 160

Siemens

BSP125

Continuous drain current /0 = ((TA )

012

--- --- -

Drain-source breakdown voltage
V(BAIDSS (7j) = b X V(BAIDSS (25°C)

asp 115

---

--

A

A

10

r

10

120
b

010
009

1"4

006

110

007
106 -

-- --.

006
005

102

004
098

003
002

-1-- -- ----

094
001

o

---

o

20

1.0

60

80

-- ---- -

100

120

O(

-

090
- --- --. ---60 -40 -20 0 20 40 60 80 100 120 DC 160

160

-----r.,
Typ. capacitance C = ((Vos)
parameter: VGS = 0, (= 1 MHz

o

II

OSP 125

10

nF

B,P 115

~-=EE == .='1-

==___

I ---- -l./t-Zs. ~

I,

~=±=l

It::±=-±::-::-l=-

lS0 D C

10 '

Hjl

S

5

-V~p

----

.- _. -- v: ,,==:.:-: .

20

25

30

V

40

Siemens

----_=e:=- ___

__ ~_-=--=~~,=

.- --- -1-

- --r-

=-== - ~~~~ ~~~ ~:=.= -=1::::=
=
_. _.
-

_.

15

'I---:-

=

2S D C (98%)·-=:' - - -==
lS00e (96%) :~~+::--=

== - -- -- - -- =-:t=t=*=F=l=t=l
-

100 ~_L_
o 5 10

t~~ ~ fl----I-~l""~+-·+--1.-+--4---1

S =~-:I/
- --.
- _.

5

II

'-r--t=t:::-- - -- . '25~(t p :-=
:.....f:-.:.t=- =;=1=

T

A

[

1,.,

Forward characteristics of reverse diode
IF = ((Vso)
parameter: tp = 60 liS, 7j (spread)

--r- -- -r- -.- - .. r----

-- _. --- _._. - -- _.
.._--_.-:.- --.-. -.- -- -. -- - - 1 - - - -

V 3
-Vso
677

SIPMOS N Channel MOSFET

SSP 129

Preliminary Data
•
•
•
•
•

81PM08 - depletion mode
Drain-source voltage
Continuous drain current
Drain-source on-resistance
Total power dissipation

S

Ves = 240V
Ie = 0.19A
ReS(on) = 200
Pc =1.5W

Type

Marking

Ordering code for
versions on 12 mm-u:pe

Package

B8P 129

B8P 129

062702-8510

80T223

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Ves
\,bGR

Ie
I Dpuls

V.'
Pc
7j
T.t.

Ratings

Unit

Conditions

240
240
0.19
0.57
±20
1.5

V
V
A
A
V
W

=20 kO
TA =29°C
TA =25°C
aperiodic
TA =25°C

-55 ... +150
55 ... 150... 56

°C

$83.3

K/W

DIN IEC 68 part 1

Thermal resistance
Chip - air
Chip - substrate rear side

678

RthJA

Siemens

RGS

asp 129

Electrical Characterlatlca
Condition

Description
Static characterlstlca
Drain-source
breakdown voRage

V(BR)DSI

Gate threshold voRage

VaS(th)

Zero gate voRage
drain current

I Dss

240

-

-

V

Vas =-3V

ID =0.25 rnA
-1.8

-

-0.7

V

VDS= 3V;

ID =1mA

100

nA

1j =25'C;

VDS =240V

Ves =-3V
I Dss

200

IlA

1j = 125'C; VDS

=240V

Ves =-3V
Gata-source leakage current
Drain-source on-state
resistance

I ass

-

RDS(on)

10.0

100

nA

Vas =20V, Vos =OV
Ves =OV
I D =.014A

9.5

20

0

S

VDS .. 2* I D * R DSon max
I D =0.25A

pF

Ves =OV
VDS =25V
f =1MHz

Dynamic characterlstlca
Forward transconductance

g'l

0.14

0.2

-

Input capac Hance

ClIO

-

110

-

Output capacRance

Co ••

20

Reverse transfer
capacHance

Cr••

5

Tum-on time ton
(t on =t d(Gn) +t ,)
Turn-off time t olf
(t olf =t d(G'" +t I)

t d(on)

-

10

t,

15

t dColf)

80

tI

-

Continuous source
current

Is

-

Pulsed source current

ISM

-

Diode forward on-voRage

VSD

-

Reverse recovery time

trr

Reverse recovery charge

Or,

ns

-

VCC =30V
Ves =-2V... +5V

I D =0.25A
Ras =500

150

Reverse diode

0.7

-

Siemens

0.15

A

0.45

A

1.4

V

Vas =OV
IF =O.3A

-

ns

VR =100v, IF = 10 R
d/ F Idt = 100A/lls

-

IlC

VR =100V, IF = ID R
dlF Idt = 100A/IlS

679

SIPMOS N Channel MOSFET

SSP 135

Preliminary Data
• SIPMOS - depletion mode
• Drain-source voltage
• Continuous drain current

S

Vos = 600V

• Drain-source on-resistance
• Total power dissipation

10 = 0.100A
RDS(Dn) = 600
Po = 1.5W

Type

Marking

Ordering code for
versions on 12 mm-tepe

Package

SSP 135

SSP 135

062702-S655

SOT 223

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol

Vo•
YbGR

10
J Opul.

V.a
Po
7j
Tatg

Ratings

Unit

Conditions

600
600
0.100

V
V
A
A
V
W

=20 kO
=27"C
TA =25 D C
aperiodic
TA =25"C

0.30
±20
1.5
-55 ... +150
55 ... 150... 56

Thermal resistance
Chip - air
Chip - substrate rear side

680

RthJA

::;83.3

Siemens

RGS
TA

DC
DIN IEC 68 part 1

SSP 135

Electrical Characterlstlca
Condition
Static characteristics
Drain-source
breakdown voHage

V(BR)DaV

600

Gate threshold voHage

VaS(lh)

-1.8

Zero gate voHage
dreln current

I DSV

-

Drain-source on-state
resistance

-

Vas =-3V
ID =0.25 rnA

-0.7

V

VD.= 3V;

ID =lrnA

100

nA

1j =2S'C;

VDS =600V

200

/lA

Vas =-3V
' DSV

Gate-source leakage current

-1.2

V

I ass

-

1j = 12S'C; VDS

=600V

Vas =-3V

-

10.0
45.0

RDS(on)

100
60.0

nA

Vas =20V, VDS =0V

Cl

Vas =OV
I D =10rnA

Dynamic characteristics
Forward transconductance

9,"

0.01

S

0.04

VDS ",2* I D * R DSon max

ID =10mA
Input capacnance

CII I

-

110

Output capacHance

Co ••

-

20

Reverse transfer
capacnance

Cr ••

Turn-on time ton
(t on =t d(on) +t,)
Turn-off time t off
(t off =t d(olf) +t ,)

5

t d(on)

10

t,

10

t dColf)
t,

-

-

15
25

-

-

pF

ns

-

-

Vas =-3V
VDS =2&1
f =lMHz

Vee =30V
Vas =-3V... +5V
I D =0.2A
Ras =500

Revense diode
Continuous source
current

Is

Pulsed source current

ISM

-

Diode forward on-voHage

VSD

-

Reverse recovery time

trr

-

-

Reverse recovery charge

Qrr

-

-

0.90

Siemens

0.100

A

0.300

A

1.30

V

Vas =ov
IF =0.2A

-

/ls

VR =l00V, 'F = IDR
dl F Idl = l00A//ls

-

/lC

VR =l00v,/ F = I DR
d/F Idl = 100A//ls

681

SSP 149

SIPMOS N Channel MOSFET

Preliminary Data
• SIPMOS - depletion mode
• Drain-source voltage
• Continuous drain current

S

Vos = 200V

• Drain-source on-resistance
• Total power dissipation

10 = .44A
Ros(on) = 3.50
Po = 1.5W

Type

Marking

Ordering code for
versions on 12 mm-tape

Package

BSP 149

BSP 149

Q67000-S071

SOT 223

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Vos
\.bGR

10
J Dpuls

VB.

Po
7j
T.I.

Ratings

Unit

200
200
0.44
1.32
±20
1.5

V
V

-55 ... +150
55 ... 150... 56

Thermal resistance
Chip - air
Chip - substrate rear side

682

RlhJA

::;83.3

Siemens

A
A
V
W

Conditions

=20 kO
TA =28"C
TA =25°C
aperiodic
TA =25°C
RGS

°C
DIN IEC 68 part 1

BSP 149

electrical Characterlatlcs
CondItIon
StatIc characterIstIcs
Drain-source
breakdown vo~age

V(BR)DSV

200

Gate threshold vo~age

Vas(th)

-1.8

Zero gate vo~age
drain current

I DSV

-

-

-

V

-0.7

V

VD.= 3V;

ID =1mA

0.2

pA

1j =25'C;

VDS =200V

Vas =-3V
ID =0.25mA

Vas =-3V
IDSV

-

200

pA

1j = 125'C; VDS

=200

v

Vas =-3V
Gate-source leakage current
Drain-source on-stste
resistance

I ass

10.0
3.0

RDS(on)

100
3.5

v

nA

Vas =20V, Vos =0

n

Vas =OV
I D =30mA

DynamIc characteristics
Forward transconductance

gl.

0.4

1.0

Input capac~ance

C ...

-

400

Output capac~ance

Co ••

Reverse transfer

Cr ••

capac~ance

Turn-on time ton
(Ion =1 d(on) +t r)

50

-

t d(on)

15

Ir

10

II

-

Continuous source
current

Is

-

Pulsed source current

ISM

-

Diode forward on-voHage

VSD

Reverse recovery time

I rr

Reverse recovery charge

Q,.r

Turn-off time I off
(I off =1 d(off) +t I)

15

I d(off)

100

-

S

VOl :.:2' I D * R DSon max
10 =O.44A

pF

Vas =OV
VDI =25V
f =1MHz

ns

-

40

Vee =30V
Vas =-2V... +SV
10 =O.29A
Ras =500

Reverse dIode

0.9

Siemens

0.44

A

1.32

A.

1.2

V

Vas =OV
IF =0.88A

ps

VA =100v, IF = ID R
dlF Idt = 100Nps

pC

VA =100v, IF = I DR
dl" Idt = 100Nps

683

SSP 295

SIPMOS N Channel MOSFET

Preliminary Data
• 81PMOS - enhancement mode
VOS = 50V
• Drain-source voltage
10 = 1.7A
• Continuous drain current
Ros(on) = .30
• Drain-source on-resistance
Po = 1.5W
• Total power dissipation

s

Type

Marking

Ordering code for
versions on 12 mm-tape

Package

SSP 295

S8P 295

067000-8066

80T223

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Vos
ItbGR

10
I Cpula

V••
Po

Ratings

Unit

50
50
1.7
6.8
±20
1.5

V
V

684

A

V

W

=20 kO
TA =25°C
TA =25°C
,aperiodic
TA =25°C
RGS

7j
T.,.

-55 ... +150
55 ... 150 ... 56

Thermal resistance
Chip - air
Chip - substrate rear side

A

Conditions

R'hJA

~83.3

Siemens

°C
DIN lEG 68 part 1

BSP295

Electrical Characterlstlca
Condition
Static characteristics

.

Drsln-source
breskdown voHage

V(BR)OSS

50

Gale threshold voHage

VGS(th)

0.8

1.2

Zero gate voHage
drain current

loss

·

1058

I GSS

Gate-source leakage current
Drain-source on-state
resistance

Dynamic characteristics

ROS(on)

V

VGS =OV
10 =0.25 rnA

2.0

V

Vos= VGS; 10 =1mA

0.1

1.0

pA

TI =25'C; Vos =50V
VGS =OV

·

8.0

50.0

pA

TI =125'C;Vos =50V
VGS =OV

·

10.0

100

nA

·

ROS(on)

0.2

0.3

0

0.4

0.5

0

Forward transconductance

g,.

Input capacHance

CI..

370

550

Output capac Hance

Co ••

110

170

Reverse transfer
capacHance

Cr ••

40

60

Turn-on time Ion
(Ion =1 d(on) +t r)
Turn-off time loll
(1011 =1 d(off) +t,)

0.5

1 d(on)
Ir
1 d(olt)
I,

1.4

8

12

15

25

100

150

75

110

VGS =20V, Vos =0V
VGS =10V
10 =1.7A
VGS =4.5V
10 =1.7A

S

Vos ",2* I 0 * R OSon max
10 =1.7A

pF

VGS =OV
Vos =25V
f =1MHz

ns

Vce =30V
VGS =10V
10 =O.29A
Ros =500

Reverse diode
Continuous source
current

Is

Pulsed source current

ISM

Diode forward on-voHage
Reversa recovery time

·

1.7

A

·

6.8

A

Vso

1.0

1.5

V

Irr

·

ps

VGS =OV
IF =3.4A
VR =100V, IF = 10 R

diF /dt = lOONps
Reverse recovery charge

Orr

·

.

pC

VR =1oov, IF = I OR

diF /dt = looNps

Siemens

685

BSP 295

Permissible power dissipation PIOI

=f(TA )

Typ. output characteristics 10 = fIVes)

16

40 --

W
14

Fi'o; = i.~w -

12

19,)

ri - -: =i~

A -- \ -

P.o.

a~r

\{;s=10V

(/-I--I---I--I--j.-I- 4 S V

30 -

"I/_-'5SV

'II .--- -~:::::

2.5 ----

10

~y

--4V

0.8

2.0 t--

~-

06

1.5 -

rl--~- __________ .__ ._3~::'

04

1.0

--I- -

-~

1

0

,:::: -. -.-- ----r--..

1/

02 -0

_._-- -_.

0.5
20

40

60

80

100

o

120 140 0 ( 160

.. --

3V

--- ._._-

--r-

_____~1!v

'/

o

4

3

-- TA

2W

V

5

- - - Vos

Permissible operating area /0 = fIVos)
parameter: 0 0.01. Tc 25 °c

=

---- --- -----

Typ. transfer characteristic Ie = fIVGs)
parameter: Ves = 25 V. Ip = 80 115. Tl = 25 OC

=

A

10

--

4.5 --._-1----

:: ~~ ~- ---~~~j~{~~~--:~~~-~~- ~=
30 -----

---~-I1-~ --- -- -----

- _.--- --

2.5 -- ---1--.1-- - - - - - .--- -.- ---I-2.0 1-1-- -

~fl--

IS

-----------

:: ----/----~~= - - - - --~=
o~

o

- - -.. -

686

Vos

Siemens

1

2

3

4

5

6

1

8

V

10

l3SP 295

Typ. drain-source on-state resistance
ROS(onl = f (10)
parameter: VGS , 7j = 25 °C

3~t·.,i.v

Vus =25V- jv---

09

Drain-source on-state resistance
. ROS(onl

= f{T,)

parameter: VGS = 10 V,lo = 1.7 A, (spread)
Rc"r7q~,

4.5V

055

5V"

R~,.", 0"=/== .=- ~=-

11

Rn ... tofll 045
040

06

0.35
030
025

5.5V

_.,

01

6V

BV 9V

0.10

lOV

---

·-·~I

005

o

0

A

0

4

-80 -60 -40 -20 0 20 40 60 80 100 120

-------10

------

9,. = f(lo)

Typ. transconductance
. parameter: Vos = 25 V, Ip

160

Gata threshold voltage VGS(thl = f{T,)
parameter: VGS = Vos, 10 = 1 rnA
(spread)

= 80 \1S, T, = 25 OC

BSP 195

22

S

9"

"

O(

v

18
16
14

1.2
lO

oB
0.6
04
02
0
0

4

A

5

o-

-60 -40 -20

0

20 40 60 80 100 120

°c

160

-r,
Siemens

687

BSP 295

Continuous drain current 10 = f(TA)

Drain-source breakdown voltage
VIBR)OSS (7j) = b X VIBR)OSS (25 °C)

1 8 r---"---r---'!~ l~~_-r--r--r---'

r-i"-..

A I - - I-- 1.16 I-- -

10

A

10

"'"

1 4 I----+.---f---f--'"< +-+--+-+-j

'\

1.12

r----~--- .---I---i

12

I - - ----.-- - -

1.0

t------+---1---+-+-.1\

o

102
100 I--I-0.98 I-0.94

____ ._______._1

o

20

40

60

80

100

120

°(

-

i-- e---

0.96 I--

--- I-- - ,.- I-- - I -

/
-- :-.- '-- -- /- -

106

rt-

-- -

.- -

104

1----+--.. - - - - -

- --

-

'-- ----

- -. r-I-- ---

1 1.08

r\:=

o2 I----+----f---f---- --- - - -

-

110 I--

:: I--r-------~_= _____
----1--1\04

114

--10

BSP19S

1.20

---

"/V-

V

V-

2

VI--

--- I -

-- I--

~- : - -- - -- I--

I-

-

1----

-- -

/

f-- I--

092 L I-- - I -I-- -- 1---0.90 -- -- - - --'- ._- '---- , -60 -40 -20 0 20 40 60 80 100 120 O( 160
__ l - .

160

-----.---. - TA

Typ. capacitance C = fWos)
parameter: VGS = 0, f = 1 MHz
10

1

o-:c_: -_::::c:

.:-0 ..

--- -_. -.. - j
'I
.-~
. -.-- -. - ._-

asp 29')
--::_-=
:-::-:-._ =-= .:::: __ .___"_
-----. ----- - - -~---i

.

11"--!-"'--+__..:._--_.+-_-_-'_4_-__~c.,,-

__

c

..

~" ~~L:': _=-=-

150°(198%)
25°( (98%)

t
10'

_.

10- 2
5101~202530V

40

--.--..--- Vos

688

-- ... --

-

L-'C_Jl---'ILL...L..LJ-..L_L-JLJ--L-----L...L..J

o

2
----VSO

Siemens

V

BSP 296

SIPMOS N Channel MOSFET

• SIPMOS - enhancement mode
• Drain-source voltage
VDS = 100V
• Continuous drain current
ID = 1.0A
• Drain-source on-resistance
• Total power dissipation

S

Ros(onl = 0.80

PD = 1.5W

Type

Marking

Ordering code for
versions on 12 mm-tepe

Package

SSP 296

SSP 296

Q67000-S067

SOT 223

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Vos
VDGR

ID
I Dpuis
Vg.

PD
7j
Totg

Ratings

Unit

100
100
1.0
4.0
:!:20
1.5

V
V
A
A
V

-55 ... +150
55 ... 150 ... 56

Conditions

RGS

=20 kO

TA =25°C
TA =25°C
aperiodic
TA =25°C

W
°C
I

DIN IEC 68 part 1

Thermal resistance
Chip - air
Chip - substrate rear side

RthJA

:583.3

Siemens

689

BSP296

Electrical Characteristics
Condldo"
StatIc characteristics
Drain-source
breakdown voltage

V(BA)DSS

Gate threshold voltage

Vas(th)

Zero gate voltage
drain current

100

0.8

' DSI

I DIS

-

-

V

Val=OV

'D =0.25 rnA

1.2

2.0

V

0.1

1.0

/JA

VDI = Val; ID =1rnA

7j =25"C;

VDI =100V

Val =OV

-

8.0

SO.O

/JA

7j = 12SOC;VD1

=100V

Val =OV

RDS(on)

-

Forward transconductance

g,"

Input capacHance

C,"

Output capac Hance

COli

Reverse transfer
capacitance

C rol

Gate-source leakage current
Drain-source on-state
resistance

I ass
RDI(on)

10.0

100

nA

Val =2OV, VDS =0V
Val =1OV
I D =1.OA
Val =4.5V
I D =1.OA

0.55

0.8

0

0.95

1.4

0

0.5

1.1

-

S

VDI ~2· ID
ID=1.0A

-

400

600

pF

65

100

Val =OV
VDI =25V
f =1MHz

20

30

ns

VCC =3OV
Val =1OV
ID =0.29A
Ral =500

Dynamic characteristics

Turn-on time ton
(t on =t d(on) +t ,)
Turn-off time t off
(t off =t d(ofl) +t,)

t d(on)
t,
t d(off)
t,

-

Continuous source
current

'I

-

Pulsed source current

ISM

-

Diode forward on-voltage

VSD

-

Reverse recovery time

trr

Reverse recovery charge

Or,

7

10

10

15

100

1SO

50

75

* RDSon max

Reverse diode

690

-

0.9

1.0

A

4.0

A

1.3

V

Val =OV
I, =2.OA

-

-

/Js

VII =100v, I, = IDII
dl, /dt = 100A//J.

-

-

/JC

IDII
VII =100v, I,
dl, /dt = 100A//J.

Siemens

=

asp 296

Permissible power dissipation P iol

= ((TA )

Typ. output characteristics 10 = ((Vos)

P -'296
1.6 ,---,---,---,_-,--,--,,--iB:,:Si-1 :,-,---"---,,,-;

2.4

W ~-+,~+-+4-+-1--~+-~-~~4~
1.4

r-t-t--t'\. -

-

H---t--t-I\-' -

1.2

10

-

-I--I---~+__I---I

- --f- -

-- -. ,-- - ---

-

\.

- -

-- ---

----:--~-

r-:-----~. --------.. - :\ - - '-1--- - . - f--:-r---r-\--r-----~

0.8 -r-:-i- -- -1- - ,
0.6

0.4

A

- -- - --I-

:=

::::r:=~I::::==:::: -~ -~ \ - ~....~. - -I-I--~------~-I---I-

0.8

f--+-+-t- -. --. -- -- - -....-\ - -.. - -

H-I'--I--t- - . - - - 0.2 -- - - - --_.

--

a- .
a 20

--- ---

40

. --

t\1---

---f\-

_.-

60

0.4

.\---

80

100

120

.(

a
a

160

Permissible operating area 10 = ((Vos )
parameter: 0 = 0.01, Tc = 25 DC
BSP 296

-=tI-7'='"
== ,\'"

--

V

"-, -

,,--

-t -

10)Jsr

-

~--

-

=:1. -~-=- ---

:::::::' ~-

~~

'\

-- -

--

t==

;~.
p

O=!!:..
T

T

f

_UWlllLilL
5

.

--

..

:

.

16

10ms.~-

.

------ --

.

--I -

---.-~

.

=:--~-l-- ~-~ -~ ~~ ~-=- --

-

--

1--+--+--+-- . -

100)Js

.

___ BSP~ ________

10 28 - - - -

1ms - - -

~ .;~..:.. 5 I--

A
32

001)Js - -

-1--=__
-1'
-I.....,"

\.-

.'\

36

~-:

..

//

-«-"''X
-

.

,-\",'"

-

5

-

--

:-.- t=-- -

j'

Typ. transfer characteristic 10 ", f(VGs )
parameter: Vos = 25 V, tp - 80 IlS, ~ = 25 DC

12

j~ ~~::
----0--- --

--

---

~

--- -- - --- --

.....

-1--- --

. -

I-+-+--I~-+--I--

.

-- -

.... --

.-

--.
-- . . . -

100ms" -

-

-i1
..

-

I-...L--J-..J.-I-.-I--I-- -

--

--I-~-+---

DC

5

10 1

Siemens

- .. - --.. -

--- --"-V

691

10

BSP 296

Typ. drain-source on-state resistance
ROSlon) = ((10)
parameter: VGs • TI = 25 "C

Drain-source on-state resistance
ROSlon)

n

n

= 10 V. 10 = 1.0 A. (spread)

-- - - - - - ~SP!.2.6 - - - r _

1.8 -

2.6 .--..-..--.---.----,"-"--r'-'--,------,-.--.-..,--',

1--1--1--1--1--- -.- ---- --

h~+-+-

22
R

ost ~:
I

= ((TI)

parameter: VGS

ROSlon) 1.41-+---'1-1-1-- - --

t

1.4 r--1'-T"-r---,1.2 r-"C.:..o--l

1.0

0.81~~~
0.6~

-...!

--J--If-l

/
---I--~I-/-1f-l

---17 /--- -

f--t-l-I

1.6

--

1 . 2 - - - - - --- -

V--7~
O.S
~-r- -V----0.6 ~I-l-..,..g..'/.- - t~/ ~I-- - - - 10
.

-f------'-=- - / - - -

98%

....................... - - - - - _.. ---

r....

0.4

_\S5V 6V 8V 9Vl0V

~: ~-1-j_-1-- -+-~t~j
a

0.4

1.2

08

0.21-+-+-+ 1-+-+--1--1---------t--t--+--I

g,. =

Typ. transconductance
parameter: Vos = 25 V. Ip

1.4

../'"

12

I1

1.0

V

V

i

08
0.6

rl- Ir

t -fII
I

0.4
02

a
a
692

-

!

i

I

I

i

,

iI

1

i

l-

I

f-+-+--I-- I-- - --- - -- ---1- - - - 1 - - - - - - - 1 - - '-14
----.-- - - - f - - - I - - -- --:- ---1- - - - - 1 - - - --1--- -

3

--

"-+-1-

-- -- --- - I V 1--1-- --c-- 1 - - - - - - - ----I--

..... ~

-,-

-

-

- 1- -

--

._--- -- .~

---11-----

~f..--;-I--

1-1--

---- -

-- ---I-

-

==,=

--+-- - --:--

%-=

f-+--+--+---l---+-I::::j::::; :::::-

f-f-I-

-- - -

.•:.::+-- !~6

2

.- - l -

- -- -

- -- -

2

-

f-+--+---I--+---1--I--+---1-- ---I-f-+-+--+--I--I--I-I- r - - f-+-+--+--+--I--I---II- -- - - f-+-'+--I--1--'-\- ---t-- -- -.--.-

--1-- --

8

-'--r--

I-- - 1 - - - -

""V

-- f--I-

- -

BSP 296

5

Vk

--

Gate threshold voltage VGS(lh) = ((1j)
parameter: VGS = Vos. 10 = 1 mA
(spread)

((10)

1-- --- 7 L

S

- . 1 - . - - -...

-80 -60-40 -20 0 20 40 60 60 100120 O( 160
_T)

= 80 IlS. 1j = 25 °C

BSP 296

1.8

q"

o '-- ___ .._ .__

2.0 A 2.4
10

1.6

1-

-r--..

~

___ typ.- - - ":~i'--

__ ':;'--I---~~,:::,-­

~ - -11-~--+--"'-'f-'-=r-'--/-_==--j--j
I--f-t---t-- I--I--I---t-----C- -=-1-f--f--I--~-- - --I-f---!--I-

'--'--

3 A 3.4

Siemens

o

,

- 60-40·20

a

20 40 60 80 100 120 0 ( 160

BSP 296

Continuous drain current /0

= f(TA )

Drain-source breakdown voltage
V{BR)OSS

SSP 296

1.1

(T))

=b

x

V{BR)OSS

(25°C)

SSP 296

10

1.20 ,-,-,---,----- ---- -A

A

1.16
[0

0.9

b 1.14

0.8

1.12
1.10

0.7

1.08

0.6

1.06
1.04

0.5
0.4

100
0.98

f--~-j"'--- -1- . i

0.2

0.96

-~-

0.1

0.92
0

20

40

60

80

100

120

O(

160

I

'

-~ i

. . j. -_. -

1--i

--- -- --..-J

~

Fj

I--V-t-_I I 1-1- i-I

0.90
- 60 - 40 -20 0

0

-1----

.. -....

0.3

0.94

-I--

I

1.02

20 40 60 80 100 120 "C 160

_T~

Typ. capacitance C = f(Vos)
parameter: Vos = 0, f = 1 MHz

Forward characteristics of rever•• diode

lr = f(Vso)
parameter: tp = 80 115, T, (spread)

103

BSP 296

11

~==-==_--.-:=~~

pF
5 ~\:::, - - - - - - - - - - - - - [",~- -

[

-1-----.-----

-1 1\

r-.....

10 2

5

=-:::::=:--

f--

5

r&~i~;~'!~rm "
1=!==::::II=rt~~ 25°((98%)= :,-

f=f= -- ~-

t= ~~5?1~(9:~%)

.

·---'-~--r--4----

~_r--.t--...

105

10

~~-~ ---r--t---t--- --i~
~

1

1, '::

-

['SS_

1-1-

~~~!~~I~t~~t~
1--

i----f--

f--.-t--+--- - -

~~

--

5 ~f=

- '--- - - - - --- ---1---

1--1--+---1-- -

- I - -- .... - ..

1

10- 1 l=!==j:lItlll==l=i= t=-=j.=-

__ ~-=

1--- --

-

1-1--

---- - - 1 , -

~I- --

1-'-= --~ -:.: :::"

=--

1- - - - _. - - --

I - -- -

-- --- .. ---

H-II-Hf-t-+--f- -. -- --

--._--100 ' - - - - ' - - - " - - - ' - -

o

10

---- -

' - ' - - - - . _.._--

20

30

V

40

2

v

---Vos

Siemens

693

SIPMOS N Channel MOSFET

BSP 297

• SIPMOS - enhancement mode
Vos =,200V
• Drain-source voltage
10 = 0.6A
• Continuous drain current
RoS(on) = 2.00
• Drain-source on-resistance
Po = 1.5W
• Total power dissipation

S

Type

Marking

Ordering code for
versions on 12 mm-tepe

Package

BSP 297

BSP 297

067000-S068

SOT 223

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Vos
\-bGR

10
I Dpuis
V••
Po
7j
Tot.

Ratings

Unit

200
200
0.6
2.4
±20
1.5

V
V
A
A
V

-55 ... +150
55 ... 150 ... 56

Thermal resistance
Chip - air
Chip - substrate rear side

694

RthJA

:583.3

Siemens

W

Conditions

Ros =20 kO
TA =25°C
h =25°C
aperiodic
TA =25°C

°C
DIN IEC 68 part 1

BSP 297

Electrical Characteristics
Condition
Static characteristics
200

-

-

Drain-source
breakdown vottage

V(BR)DSS

Gate threshold vottage

VaS(th)

0.8

1.2

2.0

V

VDS = Vas; ID =lrnA

Zero gate vottage
drain current

IDSS

-

0.1

1.0

J.lA

1j =2SoC;

V

Vas =OV

I D =0.25 rnA

VDS =200V

Vas =OV
8.0

IDSS

50.0

J.lA

1j =12SoC;VDS

=130V

Vas =OV
Gate-source leakage current

I ass

-

10.0

100

nA

Vas =20V,

Drain-source on-state
resistance

RDS(on)

-

1.6

2.0

0

I D =0.6A

2.0

3.3

0

RDS(on)

VDS =0V

Vas =10V
Vas =4.SV

I D =0.6A

Dynamic characteristics
Forward transconductance

g,.

input cepecttance

ClIO

Output capacHance
Reverse transfer
capacHance

0.5

0.9

420

630

Co ••

40

60

Or ..

10

15

t d(on)

Turn-on time ton
(t on =t d(on) +t,)

t,

Turn-off time t olf
(t olf =t d(olf) +t,)

t,

t dColf)

8

15

10

15

100

150

40

60

S

VDS ;,,2* I D * RDSon max
I D =0.6A

pF

Vas =OV
VDS =2SV
f =lMHz

ns

Vee =30V
Vas =10V

I D =0.29A
Ras =500

Reverse diode
Continuous source
current

Is

0.6

A

Pulsed source current

ISM

2.4

A

Diode forward on-vottage

VSD

1.1

V

Reverse recovery lime

trr

-

0.85

J.ls

Vas =OV
IF =1.2A
VR =100V, IF = ID R
Idt = 100NJ.ls

diF
Reverse recovery charge

Qrr

J.lC

Siemens

VR =lOOV, IF = I DR
d/ F Idt = 100NJ.ls

695

BSP297

Permissible power dissipation Ptot = (TA )

SSP /97

1.6

W ......
14

~.t

Typ. output characteristics J0 = (Vos)

-

"'

,-,- - \

1\

.r\.

1.2

i\

1.0

-'-

'-'0.8 '- .- f---,- ~-- '-'-

i\

\

06

:-..
~

0.4 1-"-1-- -e-- 1- -

1-- -- -02 1-1-

_._. H-

-1- 1-1--

'-'-

1-'- --'- - -'- ---- 1 - -

o 'o

..
20

--

_-,- -

40

60

80

1\

100 120 140 °C 160
- - - - TA

---Vos

Permissible operating area 10 = t(Vos)
parameter: 0 = 0.01, Tc = 25·C

Typ. transfer characteristic 10 = (VGs )
parameter: Vos = 25 V, tp = 80 liS, TI = 25 OC
SSP /97

2.6

,-.-

A
2.2

10

I--1--

2.0

j

1.8

I

1.6

I
II

14
12
1.0

I-- I---

0.8

I
I

0.6
0.4

1/

02

o
-Vos

696

Siemens

.J
o

2

3

4

5

6

7

8

V

10

BSP297

Typ. draill-source on-state resistance

f.!reln-Iource on-Itete reliallhCe

ROSlon) ,,;, ([D)

ROSIOn) - (T)

parameter: VGs • 1j = 25°C

6.5
Q

I I I

- -

ROSfonl

50 4.5 -

li

7

:/

l- I-

r- - -

-

-

3.0 - .;.;;.. i..- ~

I---" i/

-

1.5
1.0

-

--. ----

~I.::;:~

-EI-t=
-=_.

o

0.2

0.4

0.6

~

35V

It

v

--

=1=1=

- r-

S

-

l-i-

--I -

1.3

g"

1.2
1.1

-- -. _.
,-- - --

0.9

0.7 1-0.6 I 0.5

OJ
02
0.1

~
-

t

os

~-

L-. 1 _

1.2 A 1.4

V

-- --

/

"'/

/"

/"

V

/

{yp

...- .' .....V

o

-80 -60 -40 -20 0 20 40 60 80 100 120 °C 160

Gate threshold voltage VaS(lh) = f(1j1
parameter: Vas = Vos. 10 = 1 rnA
(spread)

5

BSP 291

I- -

v I - f--

/7

- 1- -

1- -

V-- I -

:- -

","

/

-

V

V
,/

1.5

t-- t--

7

-

l-

/

'.-

r-

0.8

0.4

V

Z
I

r-

- r- -

98%

-- I -

2.0

1.0

-- ----

/

~

1.0

~-

4V

-I-

_-

V

2.5 I -

5V4.~V

1.0

191
,- SSP
-,---

.

-

4.0

Typ. transconductance gr, = f(lo)
parameter: Vos = 25 V. tp = 80 liS. TJ = 25°C
1.5

-. ---

.. - ..

.--- -- -_. _ . .. -/
1-

30

.- - I-

0.8

I - -- -

_.-

3S

- --

I-

~

ROSlonl

._. --I-

10V 9V 8V 6V 55V

-

05 ,-

o

-

/-

2.0 -.

--_.

..

--I

p...- ~

1-= l- I-

--

2.5

-

I-

4.0

Q

.- -

1--

l-

- 3V- --- - -

BSP 297

--- -_. _.

5.0 r - -

I

-- -Vijs=2.5V

--

5.5 -

3.5

parameter: Vas - 10 V./o "" 0.6 A. (spread)

BSP 197

- l-

-~

-

o ,- .- _.- ' - - .-- - -04
0.8
12
o

p,.

.- -

_L-

1.6

I-

-. ,...-

____

20 A 2.4

98%

- -~

~- -'" tr- -

--

--- - -

.

r- r ;;;;:-

-- - -

-- I- - -- I ._- --

l-

I-

o

-

-60 -40 -20

r-

typ
~

- 2%

'-

r--,.

r-.

- '- -

0 20 40 60 80 100 120·C 160

-----10

Siemens

697

SSP 297

Continuous drain current to = '(TA )

Drain-source breakdown voltage
V(BRIOSS

BSP 297

065

0.55

10

0.50

I

0.45
040

10

A

"""""
- - - - f-~
---

b

K
\

1. 04 '---

1.00 e-- --

0.05
80

100

0.96
0.94

-- .-l

------ , -. - -

120 O(

l2

0.98 I---

:\

010

60

i-

160

-

I---

0.92

v-

_. V- I--/

- -- /

--;/

/

- --I -I -

102

~f -

0.20
015

I---I---

/

106

1\

40

-

I---I---

1 08

025

20

'--

1.10 c- .- 1 - -

""

-

1.14
1.12

0.30

1---- -- c -

I--

1.16

035

oo

(25°C)

X V'BRIOSS
SSP 191

120

-

A

(7j) = b

/

V-

i-- -

-- I -

1c_

/-

-I--i--

-

0.90
-60 -40 -20

0

_. - - - - - - ' -

20 40 60 80. 100 120 O( 160

-----r,.
Typ. capacitance C = f(Vos)
parameter: VGS = O.
1 MHz

Forward characteristics of reverse diode

,=

tT-

c

pF

,\-\.

parameter: tp

-1---

-

-=:\ -- =
--I-

s

..........
10 '

-.;

=

=--.

5
[ oss

----

.- -I--. 1---- e--

..

7
£(
~=
===
=== - i. ~ =

==
=-=---

I- I- 10 0

698

.-

-.

L-LJ _

o

5

10

15

20

25

30

V

40

Siemens

-

-- --

_.

= == --=c = = =

--~

--

""-150 0 ( typo -

10" - 5

__- .- - -

---- - f -/>- 2S 0 ( typo

-Crss

11

.-.

A

[ISS

:-= - - --- - -

-.....;

= 80 Ils. 7j (spread)
sSP lq7

10 '

\1

I

h= f(Vso)
11

SSP 197

- ~Jl-ll

. .::. I

.

- --,---

. -::--25°((98%)
_'::150 O( (98%)

I--

f-~~

i - -.

f--I-c--

'-- L_

L._

2

V

3

ssp 315

SIPMOS N Channel MOSFET

• SIPMOS - enhancement mode
Vos = -50V
• Drain-source voltage
10 = -1.0A
• Continuous drain current
ROSCon) = .950
• Drain-source on-resistance
p.o. = 1.5W
• Total power dissipation

s

Type

Marking

Ordering code for
versions on 12 mm-tr.pe

Package

BSP 315

B8P 315

067000-8027

SOT 223

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol

Ratings

Unit

-50
-50
-1.0
-4.0

RGS =20 kO
TA =25°C
TA =25°C

TA =25°C

V.c

~20

V
V
A
A
V

p.o.
7j
T.t.

1.5

W

-55 ... +150
55 ... 150... 56

°C

:$83.3
:$10

KNJ

Vos
I.ilGR

10
IOPuIs

Conditions

aperiodic

DIN IEC 68 part 1 ,

Thermal resistance
Chip - air
Chip - substrate rear side

R.hJA

R.h JSR

Siemens

699

BSP 315

ElectrIcal CharacterIstIcs
at TJ =25'C, unless otherwise specified.
Condition

Parameter

Static characteristics
Drain-source
breakdown voHage

V(BR)OSS

-50

Gate threshold voHage

VaS(th)

-0.8

-1.2

-2.0

V

Vas = Vos
10 =1 rnA

Zero gate voHage
drain current

loss

-

-0.1
-8

-1
-50

Jl.A
Jl.A

1j
1j

V

Vas =0
10 =0.25 rnA

=25'C
=125'C

Vas =0
Vos =-5OV
Gate-source leakage
current

I ass

Drain-source on-state
resistance

ROSeon)

-

Forward transconductance

g,.

0.25

Input capacHance

CI••

Output capacHance

Co••

Reverse transfer
capac Hance

Co••

15

Turn-on time Ion
(Ion =1 dCon) +t,)

1 deon)

15

20

I,

10

15

Turn-off time loll
(loll =1 deolf) +t f)

I dColf)

-10

-100

nA

VGS =-20V, Vos =0

.95

0

Vas =-10V
10 =-1.0A

.5

S

Vos =-25V
10 =-1.0A

400

pF

DynamIc characterIstics

-

-

50

ns

100

130

If

40

55

Continuous reverse drain
current

Is

-1.0

A

Pulsed reverse drain
current

ISM

-

-4.0

A

Diode forward on-voHage

Vso

-

-1

Vas =0
Vos =25V
f =lMHz

Vec =-3OV
VGS =-lOV
10 =..().29A
Ras =500

Reverse dIode

700

Siemens

-1.5

V

Te =25'C

TJ
IF

=25'C, VGS =0
=-2.0A

NPN Silicon Switching Transistors

•
•
•

BSS79
BSS81

High DC current gain
Low collector-emitter saturation voltage
Complementary types: BSS 80, BSS 82 (PNP)

Type

BSS
BSS
BSS
BSS

79
79
81
81

B
C
B
C

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8-mm tape

Package

CE
CF
CD
CG

Q62702-S403
Q62702-S402
Q62702-S420
Q62702-S419

Q62702-S503
Q62702-S501
Q62702-S555
Q62702-S559

SOT 23
SOT 23
SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

BSS79

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range

VCEO
Vcso
VESO

40

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

BSS81

Unit
V
V
V
rnA
A
rnA
rnA

Ptot

35
75
6
800
1
100
200
330

Tj
Tstg

150
-65···+150

DC
DC

Ic
ICM
Is
ISM

:::; 375

RthJA

Siemens

mW

K/W

701

BSS79
BSS81

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 10 mA
BSS79
BSS 81

V(BR) CEO

min

typ

max

Unit

40
35

-

V
V

V(BR)CBO

75

-

-

Collector-base breakdown voltage
Ic=10fiA
Emitter-base breakdown voltage
IE = 10 fiA

V(BR) EBO

6

-

-

V

Collector cutoff current
VCB=60V
VCB =60V, TA= 150°C

ICBo

-

10
10

Emitter cutoff current
VEB = 3 V

lEBO

-

nA
fiA
nA

DC current gain
Ic=100fiA, VCE=10V
BSS 79 B/81
BSS 79 C/81
Ic = 1mA,VCE=10V
BSS 79 B/81
BSS 79 C/81
Ic= 10mA, VCE=10V')
BSS 79 B/81
BSS 79 C/81
Ic = 150 mA, VCE = 10 V')
BSS 79 B/81
BSS 79 C/81
Ic = 500 mA, VCE = 10 V')
BSS 79 B/81
BSS 79 C/81

hFE

10

B
C

20
35

-

-

-

-

-

B
C

25
50

-

-

-

B
C

35
75

-

-

-

-

-

B
C

40
100

-

120
300

-

B
C

25
40

-

-

-

-

-

0,3
1,3

V
V

-

-

1,2
2,0

V
V

Collector-emitter saturation voltage')
Ic = 150 mA, IB = 15 mA
I c = 500 mA, I B = 50 mA

VCEsat

Base-emitter saturation voltage ')
Ic = 150 mA, IB = 15 mA
I c = 500 mA, I B = 50 mA

VBEsat

-

') Pulse test: t::s; 300 fis, D = 20;0.
702

-

V

Siemens

-

-

-

BSS79
BSS81

AC chararacterlstics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 rnA, VCE = 20 V, f= 100 MHz

fr

-

250

-

MHz

Open-circuit output capacitance
Vcs = 10V, f=1 MHz

Cob

-

6

-

pF

-

-

10
25
250
60

ns
ns
ns
ns

Vcc = 30V, Ic = 150 rnA,
IS1 = IS2 = 15 rnA, VSE = 0,5 V
Delay time
Rise time
Storage time
Fall time

td
tr
tstg
tf

-

-

-

-

Test circuits
Delay and rise time

Storage and fall time

30V

30V
"'100~s

200n
Osz.

> 100 kn
< 12 pF
tr < 5 ns

Oscilloscope: R
C

Siemens

703

BSS79
BSS81

Total power dissipation P tot = f (TA)

Collector-base capacitance Ccb = f(VeB)
f= 1 MHz

pF

mW
400

"iO\

t

10'

5

r300

\.

-r-.
10'

200

I\,
r....

5

\

100

\.
\.

o
o

.\
so

100

5

-7",.
Pulse handling capability rth
(standardized)
K

10'

-VC8

= fIt)

Transition frequency fT = f (I e)

VeE = 20V

'Vi
10 0

,

II

"
1

'0.5
0,2
0,1
0,05
, 0,02
0,01
0,005
000 1111

2

/ ....
'\
/

--' tpl-t.
0= .E.

J-Ln..

T

I--

T-i

10- 3
10- 6 10,5 10- 4 10- 3 10- 2 10- 1 10 0

10' s

5 10'

-t

704

Siemens

BSS79
BSS81

Saturation voltage VeE sat
hFE

= 10

VCEsat

= f (I el
= f(Iel

DC current gain hFE

f (I el

=

VCE = 10V

mA
103
5
V
/VCE

I

/

VeE

175°C

-

I

~

2~.lcl \
-55°C

5

'If
5
10-1

o

0.2

0,4

0.6

0.8

-

1.0

1.2 V

VIE ••"Vce ••,

Storage time tstg = f (I e)
Fall time
tf = f (1 e)

Delay time td = f(Ie)
Rise time t, = f(Iel

--

\
\
5

'\

stg

\r--

bc.h FE-1O

1\ tf

'->

I
5

Siemens

-20

~

h FE -l0

-Ic

hFE

5
-Ic

705

PNP Silicon Switching Transistors

•
•
•

BSS80
BSS82

High DC current gain
Low collector-emitter saturation voltage
Complementary types: BSS 79, BSS 81 (NPN)

Type

BSS
BSS
BSS
BSS

80
80
82
82

B
C
B
C

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8-mm tape

Package

CH
CJ
CL
CM

Q62702-S398
Q62702-S399
Q62702-S409
Q62702-S408

Q62702-S557
Q62702-S492
Q62702-S560
Q62702-S482

SOT 23
SOT 23
SOT 23
SOT 23

Maximum ratings
Parameter

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

706

Symbol

BSS80

VCEO

40

VCBO
VEBO

Ic
ICM
IB
IBM
Ptot

Tj
Tstg

BSS82

V
V
V
mA
A
mA
mA
mW

150
-65···+150

DC
°C

~375

RthJA

Siemens

Unit

60
60
5
800
1
100
200
330

K/W

BSS80
BSS82

Electrical characteristics
at TA = 25 DC, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic= 10 mA
BSS80
BSS82

V(eR) CEO

Collector-base breakdown voltage

V(eR) ceo

Emitter-base breakdown voltage
lE = 10 itA

VIeR) Eeo

Collector cutoff current
Vee = 50V
Vee = 50 V, TA = 150 DC

IceD

Emitter cutoff current
VEe = 3V

lEeo

DC current gain
Ie = 100 itA, VeE = 10 V
BSS 80 B/82 B
BSS80 C/82 C
Ie= 1 mA, VCE =10V
BSS 80 B/82 B
BSS 80 C/82 C
Ic= 10 mA, VeE = 10 V')
BSS 80 B/82 B
BSS 80C/82 C
Ic = 150 mA, VeE = 10 V')
BSS 80B/82 B
BSS80 C/82 C
Ie = 500 mA, VCE = 10 V')
BSS80 B/82 B
BSS80 C/82 C

hFE

Collector-emitter saturation voltage')
Ie = 150 rnA, Ie = 15 mA
Ie = 500 rnA, Ie = 50 rnA

VCEsat

Base-emitter saturation voltage')
Ie = 150 rnA, Ie = 15 rnA
Ie = 500 rnA, Ie = 50 rnA

VeEsat

min

typ

max

Unit

40
60

-

-

V
V

60

-

6

-

-

V

-

-

10
10

llA

10

nA

40
75

-

-

-

40
100

-

-

-

V

Ic=10llA

') Pulse test:

ts; 300 Its,

-

-

-

nA

-

-

40
100

-

-

-

-

40
100

-

120
300

-

40
50

-

-

-

-

-

0,4
1,6

V
V

-

-

1,3
2,6

V

-

-

-

V

D = 20/0.

Siemens

707

BSS80
BSS82

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 mA, VCE = 20 V, f= 100 MHz

AC characteristics

fr

-

250

-

MHz

Open-circuit output capacitance
Vcs = 10V, f=1 MHz

Cob

-

6

-

pF

td
tr

-

-

-

10
40

ns
ns

tSlg

-

-

tf

-

-

80
30

ns
ns

Vcc = 30 V, Ic = 150 mA, IS1 = 150 mA
Delay time
Rise time
Vcc = 6 V, Ic = 150 mA,
IS1 = IS2 = 15 mA
Storage time
Fall time

Test circuits
Delay and rise time

Storage and fall time

-6V

-30V
+15V
Eingang
Zo=5011
tr < 2ns

-~0-[

Eingang
Zo=5011
tr <: 2ns
<>-.,.-{=:J----i-l

-~0-[

200ns

708

200ns

Siemens

3711
OSlo

1k

501/

BSS80
BSS82

Total power dissipation Ptot = f( TA)

COllector-base capacitance C cb = f ( Vce)
f= 1 MHz

rnW
400

pF

5

-':'1

r

10 2

r-h
300

-

\.

i"..

200

I\,
5
100

"

\.

r-..

o
o

'\
50

100

150 'C

-lice

-7;.

Transition frequency fT = f (/c)
Vce=20V

Pulse handling capability rth = f(t)
(standardized)
K

W
10°

1

'"

M'

I

'0,5
0,2
0,1
0,05
, 0,Q2
0,01
0,005

v~

2

V

0=0 IIII

10- 2

~

2

tp
0=-

T

f--- T---r
10-3
'"
'" "'
6
5
4
3
10- 10- 10- 10- 10- 2 10- 1 10°

10' s

5 10 '

-t

5 10 2

5 10 3 rnA

-Ie

Siemens

709

BSS80
BSS82

Saturation voltage Ie = f(VeEsat. VeEsat!
hFE = 10

Delay time td = f(le)
Rise time t, = f(le)

'"

103

ns
5

111111
~

....

i.I' VeE

VI!(

/

f--

VBE-OV, Vee·l0V ~

r-

~-- VBE -20V,Vcc -30V

f--

~

II

111

f--

~

td

~.

5
\

5

,\

1\

1)'

\

5

i\
1)'"

o

0,6 0.& 1.0 11 lit 1.6 V

01 0.4

-

VSEmt'

tst9

5 10'

-Ic

veE lOt

Storage time t stg = f (l cl

Fall time tf = f (I e)

5

r

""'~-

Vcc ·30V
\{7fE=20

I

"

hFE

5 :--

FE- 1

y

5 10'

710

.\\
...

~

jI'

iIlFE=

=1

20

r,

"1'-0

'5 10'

5 10 1
5 103 mA
-Ie

Siemens

BSS80
BSS82

DC current gain hFE
VeE = 10V

=

f (l c)

10 3

175 ·C
;'

-

]J "

25 ·C
-5 ·C

-Ie

Siemens

711

BSS84

SIPMOS P Channel MOSFET

• SIPMOS - enhancement mode
• Drain-source voltage
I.b. = -50V
• Continuous drain current
10 -0.13A
RoSConl = 10.00
• Drain-source on-resistance
Po 0.36W
• Total power dissipation

=

=

Type

Marking

Ordering code for
versions on 8 mm-tape

Package

BSS84

SP

Q62702-5568

SOT 23

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol

Vos
IoiIOR

ID
1Dpul.
V••

Po
1j
T.I.

Ratings

Unit

-50
-50
-0.13
-0.52
:!:20
0.36

V
V
A
A
V
W

-55... +150
55... 150... 56

°C

s350
s285

KfIN

Conditions

Ros =20kO
TA =30"C
TA =2SOC
aperiodic

TA =25°C

DIN IEC 68 part 1

Thermal resistance
Chip - air
Chip - substrate
rear side

712

RlhJA
RlhJSR

Siemens

Mounted on
Ceramic substrate
2.5cm2

BSS84

Electrical Characteristics

at TJ =25°C, unless otherwise specHied.
DescrIption

I

Characteristics

Symbol
min.

I

typo

I

Unit

Condition

max.

Static characterlattca
·50

Draln·source
breakdown vottage

V(BR)DSS

Gate threshold vottage

VGS(lh)

·0.8

·1.5

I DSS

.

Zero gate vottage
drain current

'

Dss

V

VGS =OV
ID =·0.25 rnA

·2.0

V

VDS = VGS;/D =·lmA

·1.0

·15.0

JiA

TJ =25°C; VDS =·50V
VGS =OV

·2.0

·60.0

JiA

7j =125°C;VDS

0.1

JiA

7j =25°C; VDS =·25V
VGS =OV

·1.0

·10.0

nA

VGS =·20V, VDS =OV

5.0

10.0

0

I DSS

Gate-source leakage current

I GSS

Draln·source on·state
resistance

RDS(on)

=·50V

VGS =OV

V GS =·10V
' D =0.13A

Dynamic characteristics
Forward transconductance

9,.

Input capac~ance

CI..

30

45

Output capacHance

Co ..

17

25

Reverse transfer
capacHance

Cr ••

8

12

8

12

35

50

t d(on)

Turn·on time Ion
(Ion =1 d(on) +t,)

I,

Turn·off time I off
(I off =1 d(off) +1,)

I,

I d(off)

0.05

0.08

8

10

20

25

S

VDS =·25V
ID =·0.13A

pF

VGS =OV
VDS =·25V
f =1MHz

ns

Vec =-30V
VGS =·10V
I D =-0.27A
RGS =500

Reverse diode
Continuous source
current

Is

·0.13

A

Pulsed source current

ISM

-0.52

A

Diode forward on-vottage

VSD

·1.2

V

VGS =OV
IF =·0.26A

Reverse recovery time

trr

ns

VR =-30V,
= ID R
diF Idt = ·100NJis

Reverse recovery charge

Or,

JiC

VR =-30V, IF = ID R
diF Idt = -100NJis

·0.9

-

Siemens

'F

713

BSS84

Switching Time Measurement
Test circuit

Switching tim••

Vee
V

I

Typical output characteristic

ID =fVD1
X Axis: VDS IV
YAxls: 1 D IA

..
p.

,

-,0

::~~

[\

-1V

,

if!IJ II

rtII

[\

1(/

f/

1\

f\

5V

'\

-,

f\

-4

,

'J

1\

,

p. 0.36

"VV

IOV

I-

2

90%

Vas

Permissible power dissipation versus temperatura

PD =fTA
X Axis: TA I'e
YAxis: P D IW

VDS

90%

v
0

'j

.....
-3~V-

/

1\

V

\

-2 !IV

1\

0

0

--TA

714

v

-,

2V

-2

-3

-4

-&

- - - - " Vos

Siemens

BSS84

Safe operatIng area

10 =fVOS
X Axis: Vos I V
Y Axis: 10 I A
Parameter: D = 0.01, D =t pIT;
Rcs(on)'" VDs/lo

'I-Frf1_
__

D

T

TypIcal transfer characteristIc
ID =fVGS
X Axis: VGS IV
YAxis: lolA
Parameter: Vos = -25V; t p = BOps; 1j = 25'C

Tc = 25'C

II

t

'p'
20ps

i,

r'

I.

L,

"

,

1.-<

1m.

/

/

10ms

-5

I

r-:

"

1/

100m.

f',

II
J

-5

/

V
_10

V _'0 2

1

----vas

- - - v. s
TypIcal transconductance

DraIn to source on resIstance (spread)

g,.= flo

Roso.= fTj
X Axis: T j I'C

X Axis: ID IA
Y Axis:

g,. IS

Parameter:

Y Axis:

Vos = -25V; t

p

= BOiLs; T j

V
17

Roso.

I0

Parameter: VGS

= 25'C

= -10V;

10

= -0.13A

P
V i.)

RCS(on )

V

1

1/

/

17

/v

J

1/ ""

V

rJ
",.

/

V

--

D

-0.6

---_i,

Siemens

V
/

. . . . v i-""

V

yp.

---_T,
C

160

715

BSS84

Typical capacitances
C=fV DS

X Axis: VDs/V
YAxls: C IpF
Parameter: VGS =0; f = 1MHz

c

~

..

~ I--

" ""'-'" "'"

"'"

,

-

I-

Go ..

- - - VDS

Drain currant

Gate thrashhold voltage (spread)
VGSlh =fT1
X Axis: TJ I'C

I D = fTA
X Axis: TA I'C
Y Axis: I D I A

'D

Y Axis: VGSlh I V
Parameter: VGs= VDS ; I D = -1mA

V

A

,

·
·

V GSUb )

" '\

[-

4

r'\:
\

- .-- - - ." -

I-

,

\

"

t--

r-.

i--

\

·
0

100

- - TJ

--TA

716

c·

Siemens

-

BSS84
Typical drain-source on-stale resistance
RDSO" = fI D
X Axis: I D I A

Y Axis: R DSo" I 0
Parametar: VGS ; 1j = 2SoC
Vc. ==
'JV

-2SV

.v

_35

,v

"

n

·W

Rcs(on )

V
V

v

V

I;
t.-- V 1---'"

1/

/
,/

I.....:'

,--

I- I-f.- '-f.- ~

-8\1

_9V ·lQV

A

'0

Typical ravarse diode forward voltage (spread)
IF=fVSD
X Axis: VSD IV

Y Axis: I F I A
Parameter: t p =BD!Is; TI

,,'
"

.

2S

,

:

p.

F
'C

typo

"

7r7 IA

II

1ft
O-C 98

25

:9 %

I
I

J

-,

---v"

Siemens

717

BSS87

SIPMOS N Channel MOSFET

• SIPMOS - enhancement mode
• Drain-source voltage
Vos = 240V
10 = 0.29A
• Continuous drain current
ROS(on) = 6.00
• Drain-source on-resistance
• Total power dissipation
Po
1.0W

s

=

Type

Marking

Ordering code for
versions on 12 mm-tape

Package

BSS87

KA

Q62702-S506

SOT 89

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Vos
\!baR

10
IDpUIS

V••
Po

7j
T.t.

Ratings

Unit

240
240
0.29
1.16
±20
1.0

V
V
A
A
V

-55 ... +150
55 ... 150... 56

W

718

$125

RthJA

Siemens

RGS
TA
TA

=20 kO
=25°C
=2SoC

aperiodic
TA =2SoC

°C
DIN IEC 68 part 1

Thermal resistance
Chip - air

Conditions

K/VV

BSS87

Electrical Characteristics
Condition
Static chsracterlstlcs
Drsln-source
breskdown vonage

V(BR)DSS

240

Gate threshold vonage

Vas(th)

O.B

Zero gate vottage
drain current

loss

V

Vas =OV
ID =0.25mA

1.5

2.0

V

Vos = Vas;/o =1mA

4.0

60.0

}.IA

1j =25'C;

Vos =240V

Vas =OV
B.O

IDSS

200

}.IA

1j =125'C;Vos

=240V

Vas =OV
200

nA

1j = 25'C; Vos =60V
Vas =OV

10.0

100

nA

Vas =20V, Vos =OV

4.0

6.0

0

I D =0.29A

5.7

10.0

0

IDSS

Gate-source leakage current

I ass

Drain-source on-state
resistance

ROS(on)

Vas =10V
Vas =4.5V
10 =0.29A

Dynamic characteristics
Forward transconductance

g,.

0.14

S

0.29

Vos =25V
10 =0.29A

Input capacitance

C, ••

90

140

Output capacitance

Co ••

20

30

Reverse transfer
capacitance

Cr ••

6.0

9.0

pF

Vas =OV
Vos =25V
f =IMHz

ns

Vee =3QV
Vas =10V
10 =0.2BA
Ras =500

Turn-on time ton
(t on =t d(on) +t,)

t d(on)

5

B

I,

B

12

Turn-off time t off
(I off =1 d(olf) +t ,)

I dlo'!)
I,

25

30

22

2B

-

0.29

A

1.16

A

1.4

V

Reverse diode
Continuous source
current

Is

Pulsed source current

ISM

Diode forward on-vonage

Vso

Reverse recovery lime

Irr

0.B5

-

ns

Vas =OV
IF =0.5BA
VR =30V, IF = 10 R
Idt = 100N}.Is

diF

Reverse recovery charge

Orr

-

}.IC

VR =3OV, IF = 10 R
Idt = 100N}.Is

diF

Siemens

719

BSS87

Switching Time Measurement
Switching times

Test circuit

Vcc

Permissible power dissipation versus temperature
PD

= fTA

X Axis:
YAxis:

Typical output characteristic
=fVDS
X Axis: VDS IV
YAxls: tD fA

tD

TAloe
PD IW

...

p

"f'i

/4.8
rt!J
,v, '1/, I I
1"'- ,/1 "., v
v,

i\

10

l'

\

1\
\

Ix

[II

rl

..

1\

fj

\

1\

'I

'1

\

1/1

o

720

I~

1\
o

Ii

I-'"

V

--

v

., l -I -

•. v

r-. ....,

.

V

.

•. v

V 8.5

--T.

---~Vo.

Siemens

BSS87

Safe operating area
10 =tVos
X Axis: vos f V
Y Axis: 10 I A
Parameter: 0 = 0.01, 0 =tp IT;

It_~-y

= VDI /lp

ROS(on)

10'

TypIcal transfer characterIstic
10 =tVas
X Axis: Vas IV
YAxls: 10 fA
Parameter: VDS = 2SV; t p

TC = 25°e

= SO/ls; 1j

= 25°e

P-t'
I

A

r:

I.

I

N

~

I
I
!I

I" I

I

I

II
J
a

'0'

10'

5

10 2

"

5 V10 l

- - V••

----VG.

Typical transconductance

g,. = flo

DraIn to source on resIstance (spread)

RDson = tTl

X Axis: lolA
YAxls:

VDS = 2SV;

Parameter:

TI loe
RDSon I 0

X Axis:
Y Axis:

g,./S
t p = SO/Is; TJ = 25°e

VV

Parameter: Vas = 10V; 1D = O.29A

v~

n

VV

)

17

1/

I)
V

II
I

,.

1

V
./

V

V

...-

V
1/
1/
V .. 1/
l/

V

typo

.... f-'"

0

C·

---_T,

----'.
Siemens

1&0

721

BSS87

Typical capacitances
C = fV DS

VDS I V

X Axis:
y Axis:

C IpF

Parameter: VGs=O; f =lMHz

,,'
pF

c

~

I~\
"-

r- r-

"'-

Co••

u r••

-Vos

Gate threshhold voltage (spread)

Drain current
f D = fTA
X Axis: T A I"C
Y Axis: f D I A

I-

'.

r--.

VGSlh

= fT J

TJ I"C
Y Axis: VGSlh I V
Parameter: VGs= VDS
X Axis:

"-

;

f

D

= lmA

VGS(th )

I\.

"\

'\

\

\

\

\

-

\

r-

- .....

r-

-_T,

o

100

--TA

722

.;,:,::"

-- ."--

1\
o

.." -

Siemens

c·

180

BSS87

Typical drain-source on-state resistance

RDson =fl D
X Axis: ID fA
Y Axis: R DSon f n

1j = 25"C

Parameter: VelS ;
Va -

v
v

I--"Y
I--

I--

--

'"

I

--'.
.<

Typical reverse diode forward voHage (spread)

IF=fVSD
X Axis: VsD/V
YAxls: IF fA
Paramater: t p = BOps; TJ

150 ~P'

"'~~m
~

25:

;111

!SO

fj

Ii

".'~/~m
,
--~Vs.

Siemens

723

BSS 119

SIPMOS N Channel MOSFET

• SIPMOS - enhancement mode
• Drain-source voltage
~S = 100V
• Continuous drain current
10 = 0.17A
• Drain-source on-resistance
• Total power dissipation

= 6.00
Po = 0.36W

RoS(on)

Type

Marking

Ordering code for
versions on 8 mm-tape

Package

BSS 119

SH

Q62702-8631

SOT 23

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Vos
\obGR

/0

I Opul.
V••
Po

Ratings

Unit

100
100
0.17
0.68

V
V
A
A
V
W

:t20
0.36

724

Ra. =20kO
TA =28"C
Tc =25°C

aperiodic
TA =25°C

7j
T.t.

-55 ... +150
55 ... 150... 56

Thermal resistance
Chip - air
Chip - substrate rear side
Ceramic substrate
15mm x 16.7mm x 0.7mm

Conditions

RthJA
Rth JSR

0$350
0$285

Siemens

°C
DIN IEC 68 part 1

BSS 119

Electrical Characteristics
Condition
Static characteristics
Drain-source
breakdown vottage

V(BR)D.S

Gate threshold vottage

VeSUh)

Zero gate vottage
drain current

-

100

1.6

loss

V

Ves =OV

'D =0.2SmA

2.0

2.6

V

Vos = VeB;/D =lmA

-

O.S

tJ A

1j =2S·C;

VDS =100V

Ves =OV

-

loss

S.O

tJA

1j = 12S·C;VDS

=100V

Ves =OV
'DSS

-

100

nA

1j

=2S·C; VDS =60V

Ves =OV
Gate-source leakage current
Drain-source on-state
resistance

DynamiC characteristics

less

10.0

RDS(on)

-

Forward transconductance

g,.

0.10

Input capacttance

C •••

-

100

3.2

6.0

0

4.7

10.0

0

0.20

-

40

60
IS
6.0

Output capacitance

Co ••

10

Reverse transfer
capacitance

Cr••

4.0

Turn-on time ton
(t on =t d(on) +t r)

t d(on)

-

S

8

tr

-

8

12

Turn-oft time t off
(t off =t d(off) +t ,)

t,

t

cl(off)

-

nA

12

16

17

22

Ves =20V, VDS =OV
Vas =10V
10 =0.17A
Vas =4.5V
I D =0.17A

S

VDS =25V
ID =0.17A

pF

Vas =OV
VDS =25V
f =IMHz

ns

Vcc =30V
Vas =10V
I D =0.2BA
Ras =SOO

Reverse diode
Continuous source
current

Is

Puised source current

ISM

Diode forward on-yottage

Vso

Reverse recovery time

t rr

Reverse recovery charge

Orr

0.8S

-

Siemens

0.17

A

0.68

A

1.4

V

Vas =OV
IF =O.34A

-

ns

VR =30V, 'F = 10 R
diF Idt = looAltJs

-

tJC

VR =30V, 'F = 10 R
dl F Idt = 100AltJs

725

ass 119

Switching Time Measurement
Switching times

Test circuit

Vcc
VDS

90%

90%
VGS

90%

Permissible power dissipation versus temperature

PD =fTA
X Axis: TA lOG

Typical output characteristic

ID =fVDS
X Axis: VDS I V
YAxis: 1 D IA

Y Axis: P D IW

I.

.4

'0

I

'"

(., "'~ ~ ~

\

OV

8V

7V

3

'""'-

\
\

,

rl/1 /

.ov
0

4V

/

\

r/J/

\
\

VI/'

\
.1

I

7

1\
0
C

-_T,

\
\
"

.ov

"- .....

........ ,'v

1\

726

PD 0.36
8V

f

1\

o

HIO

.ov

o
----Vos

Siemens

BSS 119

Safe operating area
ID =fVDS
X Axis: VDs/V
V Axis: ID IA
Parameter: D = 0.01, D =tp IT;· Tc = 25'C
ROB' ..)- VOB/lo /

Typical transfer characteristic
ID =fV as
X Axis: Vas IV
V Axis: I D IA
Parameter: VDS = 2SV; t p = 80jls; 7j = 25'C

t-~-n
-T

...

I-t

'0'
A

I.

'p-

20111

1..

/0

'\

1,0"

'm.

I
I

10m.

\

I

100mi

'\

/

II
o

a

'0'

10 J
5 V10'
-VDS

Drain to source on resistance (lipread)

Typical transconductance

Rglon = fT)
X Axis: T) I'C
V Axis: RDSon 10
Parameter: Vas = 10V; I D

k

= O.17A

n

/'

I

10

Va,

g,"=f/ D
X Axis: ID IA
V Axis: g,"IS
Parameter: VDS = 25V; t p = 80jls; TJ = 25'C

g"

V

o

./

/

V

/

0.'

I
/

V
II

/

V

..

V

.//

-,..,.,
A

-eo

0.5

----10

/
./,/

L

I
I

V ..

V

typo

c·

'80

---_.TI

Siemens

727

BSS 119

Typical capacltancaa
O=IV DS
X Axis: VDI/V
YAxls: O/pF
Parameter: Val =0; I = 1MHz
1.'
pF

G

1.'

\\

Jl

CIII

\

\"

---

~

-

_

c,..

1.'
••

v

---v.s
Drain current

ID

Gate threshhold voltage (spread)

=ITA

=IT J

VOlth

X Axis: TA I'C
Y Axis: I D I A

X Axis:
YAxis:

TJ I'C
VeSth

IV

Parameter: Vos= VDS

;

I

D

= 1mA

.11

'.

A

r-- t""""'\

V

Va'Uh )

"\
'\
\

-'- -- - -,...,... ...
- ...

\

...,

\

...

'"

. ..

•
728

100

c·

1110

100

c·

- TJ

--TA

Siemens

...

BSS 119

Typical drain-source on-state resistance

RDlo" =f'D

'D

X Axis:
fA
Y Axis: R Dlo" f 0
Parameter: Vas; 1j = 2S0C

..

Vas""

n
RDS(on

,

,

.

.,

.

1

/
/
...... V

::t:::

-

V

V

1--''"'

/

-

I-'v
=.'"

.i. I), ,

'"

--'.
•3

A

Typical reverse diode forward voltage (spread)
'F=fVSD
X Axis: VsDfV
YAxis: , F fA
Parameter: t p =80J,rs; TJ

,.,

.,
.

,,~.

'01

P"
c--" ""

.

"" "

Ij

I

'II

10"

---v,.
2

Siemens

729

SIPMOS N Channel MOSFET

BSS 123

• SIPMOS - enhancement mode
• Drain-source voltage
lIba = 100V
10 = 0.17A
• Continuous drain current
• Drain-source on-resistance
• Total power dissipation

RoSlon) = 6.00
PD = 0.36W

Type

Marking

Ordering code for
versions on 8 mm-tape

Package

BSS 123

SA

Q62702-S512

SOT 23

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol

Vos
\V

"

••

A

--I,

Typical reverse diode forward voltage (spread)

IF=fVSD
X Axis: VsDfV
YAxls: I F fA
Parameter: t p =8D1Js; TJ

1SO

!9

:

~

'rJ II

'CI~II

'0"."

-,,,,,, ""

1!J'r

2

---v,o

Siemens

735

BSS 131

SIPMOS N Channel MOSFET

• SIPMOS - enhancement mode
• Drain-source voltage
~s = 240V
Ic = 0.10A
• Continuous drain current
Ro8(on) = 16.00
• Drain-source on-resistance
Pc = 0.36W
• Total power dissipation

Type

Marking

Ordering code for
versions on 8 mm-tape

Package

BSS 131

SR

Q62702-8565

SOT 23

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Vcs
\,bGR

Ic
I Cpul.
Va.

Pc
7j
T.ta

Ratings

Unit

Conditions

240
240
0.10
0.40
:!:20
0.36

V
V
A
A
V
W

ROI =20kO
TA =26"C
TA =25"C
aperiodic
TA =25°C

-55 ... +150
55 ... 150... 56

°C

Thermal resistance
Chip - air
Chip - substrate rear side
Ceramic substrate
25mm x 25mm x 0.7mm

736

RthJA
RthJSR

:s350
:s285

Siemens

DIN IEC 68 part 1

BSS 131

Electrical Characteristics
Condition
Static characterlatlcs
Drain-source
breakdown vottage

V(BR)OSS

240

Gate threshold vottage

Va8(th)

0.8

Zero gate vottage
drain current

'DSS

V

Va8 =OV
10 =0.25mA

1.4

2.0

V

VOl = Val;lo =1mA

1.0

15.0

flA

1j =25°C;

VOl =240V

Val =OV
2.0

'DSS

60.0

flA

1j = 125°C; VDS

=240V

Val =OV
30.0

'DSS

nA

1j -25°C;

VDS =130V

Vas =OV
Gate-source leakage current
Drain-source on-state
resistance

Dynamic characteristics
Forward transconductance

I ass

1.0

RDS(on)

g,.

0.06

10_0

12.0

16.0

15.0

26.0

nA

Vas =20V. VDS =OV

n
n

Val =10V
I D =0.1A
Val =4.5V
10 =0.1A

S

0.14

VOl =25V

ID =0.1A
Input capacHance

C,..

60

90

Output capacHanee

Co••

8

12

Reverse transfer
capacHance

Cr ••

2.5

5.0

Turn-on time ton
(Ion =1 d(on) +t,)

t d(o.)

5

8

I,

8

12

Turn-off time lolf
(1 0 " =1 d(ofl) +1,)

t d(o")
t,

.
.

12

16

15

20

pF

Val =OV
VOl =25V
f =1MHz

ns

Vec =3OV
Val =IOV
10 =0.2BA
Raa =500

Reverse diode
Continuous source
current

Is

0.10

A

Pulsed source current

ISM

0.40

A

Diode forward on-vottage

Vso

1.2

V

Va. =OV
I, =0.2A

Reverse recovery time

trr

ns

VR =3OV. IF = 10R
dl, Idt = 100A/fl8

Reverse recovery charge

Orr

flC

VR =3OV. IF = 10R
dl F Idt = 100A/fls

0.8

Siemens

737

BSS 131

Switching Time Measurement
Switching tl_

Test circuit

Vee

Pulse
Generator

V.ut

f·····························l

Permissible power dissipation versus temperature

Typical output characteristic

Pc =fTA
XAxis: TA I'e
V Axis: Pc IW

Ie =fVes
X Axis: Ves IV
V Axis: I c I A

.Z4

p -

p.

1\

,

4.'

.

Y/II t'\

8Vf-:

f\

rA

1\

r~

f\
1

".

1\
,

j

,II

100

1--'1-

"-

~

1

\

1/

y

3V

IW,II

f\
1\

I)

4V

v

1-1-

1\

.,

..
V 7.6

----1'00

--TA

738

3

\ 'v

I.v.
TYrJ,

Siemens

BSS 131

Typical transfer characteristic

Safe operating range

/0 =fVos
X Axis: Vos I V
YAxis: /o/A
Perameter: D = 0.01. D = t pIT;

Tc = 2S'C

/0 = fV GS
X Axis: VGS IV
Y Axis: /0 I A
Psrameter: Vos = 2SV; t p = BOils;

1j

= 2S'C

Ros"., ~vostlo It_~- 0

1_,

-T

,,'
A

10

'p.
2 0 11'

I'

I,

,

1
~

110'
1\

\

:\

I

I
II

\1

n
(>

10'

5

10'

I
(>

10

V 10'

V"

V"

Drain to source on resistance (spread)

Typical transconductance

Ros."= fTI
X Axis: TI I'C

gh = flo
X Axis:

/0 I A

Y Axis:

gh IS

Parameter:

Vos = 2SV;

Y Axis: Ros." I 0
Parameter: VGS 10V; /0

=

t p = BOils; TI = 2S'C

n

v~

g"

ROs(on)

VV

j"

= 0.1 A

L

V

V

/

V

.

/

/

/

V

/
V

./

::: ........
,.,

/
V "L

V V

/

typo

VV V

C

---_I,

160

---_Tj

Siemens

739

BSS 131

Typical capacitances
C = (V es
X Axis: Ves I V
Y Axis: C IpF
Parameter: VGS =0;

f = 1MHz

,,'
pF

c

to'

\

",

....... ' -

r--

-"""k,

- -

Cns

- - - VDS

Drain currant

Gata threshhold voltage (spread)

= (TI

Ie = (TA

VGllh

X Axis:
Y Axis:

TA 1°C

X Axis:

TI 1°C

Ie IA

Y Alds:

VGllh I V

Parameter: VGs= Ves; Ie = 1mA

'D •

V

"

V CSUh )

~

1

r\.

"-

4

\

\
\

r-

\

740

r-

typo

-

..
'- - ,--

1\
0

.... ...

-_T.

- -

-k,

tr-

-_T,
100

Siemens

C

BSS 131

Typical draln-sourca on-atata raslstanca

RDlon = fI D
X Axis; Ip fA
Y Axis; R Dlon f 0
Paramater: VGS ; 1j = 25"C

"I v.,

I",

R.",~)

,..

I·v

I

..

J

I'"

II

J
....... /'

--

..

L..-- V

I- r.,,,
Ir

Ifll~rev~

"

r;ov~--.v7V

"

.

.1

.2

--'.

1""

A.24

Typical ravarsa dloda forward voItaga (apraad)

IF=fVSD
X Axis; VIDfV
YAxis; I F fA
Parameter; t p =80/1s; T,

",
,

,~

,

l'
f2i
10

"'

;

11

%

])
t- h Fc ..

""

"'

.

--v,.
Siemens

741

SIPMOS N Channel MOSFET

BSS 138

• 51PM05 - enhancement mode
• Drain-source voltage
"bs = SOV
• Continuous drain current
10 = 0.22A
• Drain-source on-resistance
• Total power dissipation

~S(onl

= 3.50

fb = 0.36W

Type

Marking

Ordering code for
versions on 8 mm-tape

Package

B55138

55

Q62702-S566

50T23

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol

Ratings

Unit

Conditions

50
50
0.22
0.88
±20
0.36

V
V
A
A
V
W

Rcs =20kO
TA =31°C
TA =25°C
aperiodic
TA =25°C

-55 ... +150
55 ... 150... 56

°C

RthJA

~3S0

K/W

Rth JSR

~285

Vos
IobGR

10
I Dpul.
Vg•

PD
1j
T.tg

DIN IEC 68 part 1

Thermal resistance
Chip - air
Chip - substrate rear side
Ceramic substrate
2Smm x 25mm x 0.7mm

742

Siemens

BSS 138

Electrical Characteristics
Condition
Static characteristics
Drain-source
breakdown vo~age

V (BR)DSS

50

Gate threshold vo~age

VaS(th)

0.8

Zero gate vo~age
drain current

loss

1.2

V

Vas =OV
ID =0.25 rnA

1.6

V

VDS = Vas JD =lrnA

0.5

J1A

TI =25'C; Vos =50V

5.0

J1A

Vas =OV

-

loss

~ =125'C;VD8 =50V

Vas =QV
IDSS

Gate-source leakage current
Drain-source on-state
resistance

I ass

10.0

RDS(on)

100

nA

100

nA

1.8

3.5

0

2.8

5.8

0

~ =25'C; Vos =30V
Vas =OV

Vas =20V. VDS =OV
Vas=10V
I D =0.22A
Vas =4.5V
I D =0.22A

Dynamic characteristics
Forward transconductance

gr.

0.12

0.20

-

S

VDI =25V

ID =D.22A
Input capacitance

CI ••

40

60

Output capacitance

Co ..

15

25

Reverse transfer
capacitance

Cr ••

5

10

I d(on)

5

8

I,

8

12

Turn-on time ton
(Ion =1 d(on) +1,)
Turn-off time tOil
(/011 =1 d(olll +t r)

I dColI)

12

16

If

17

22

pF

ns

Val =DV
VDI =25V
f =lMHz

Vce

=3OV

Vas =10V
I D =D.29A
Ras =500

Reverse diode
Continuous source
current

Is

0.22

A

Pulsed source current

ISM

0.88

A

1.4

V

Vas =OV
IF =O.44A

Diode forward

on-vo~age

VSD

0.9

Reverse recovery time

Irr

ns

VR =30V. IF = ID R
diF Idt = lDOA/J18

Reverse recovery charge

Orr

J1C

VR =3OV. IF = ID R
dl F Idt = 100A/J1s

Siemens

743

ass 138

SwItchIng TIme Measurement
Switching times

Test circuit

Vec

Typical output characteristic

Permissible power dissipation versus temperature
PD =fTA
X Axis: TA I'C
YAxls: P D IW

ID =fVDS
X Axis: VDS IV
YAxis: ID IA

,

.8

.4

I
1DV

P,

~ 'l

8V

'v
ev

\

P,~

0.36

4.8V

j1

\

4V

'/,\
.3

\

Ii
.. 1//

\
,\
\

Y

\
.,

\

/

\

,

3.8V

., .....

-3V

2.6V

1\
o

o

\J

,,

2V
4

V

•

v,s

744

Siemens

ess 138

Safe operating area

Typical tranafer characteristic

'D

'D

=fVas
X Axis: Vas IV

=fVDS
X Axis: vDs/V

'D

YAxis:
IA
Parameter: D = 0.01, D

=t pIT;

D_~
t
T

Tc

'D

YAxis:
IA
Parameter: VDS

= 2S'C

= 2SV;

tp

= 80jJs;

= 2S'C

TI

0
'1-~-I-t
__

T

'0'

'D

Ip'
30".

100".

'D

"

1··

,,.,

"

I

"

I

10m.

"'-

100m.

~

I
II
/

10'

5 V 10 2

----vas

---VDS

Typical transconductance

Drain to source on resistance (spread)

g,.="D
X Axis:
Y Axis:

'D

RDSon = fT J
X Axis: TJ I'C
Y Axis: RDSon I Q

IA

g,. IS

Parameter:

VDS

= 2SV; t p = 80jJs;

TJ

= 25'C

gf,

'D = 0.22A

n

i--"'"

[

Parameter: Vas = 10V;

[,

ROS(on)

/1-"

V

/
/
/

/

""

V

/

II
I

,;

/

--

I
II

----'.

V

..,. ..,. i--"'"

//

V

,/

,/

typ_

----TJ

Siemens

745

BSS 138

Typical capacitances
C = fV DS
X Axis: Vos I V
Y Axis: C I pF
Parameter: VGS =0; f = lMHz
10'
,F

c

CI..

1\

\

\

r--...

-

Co ..

n'

---v"
Drain current

Gate threshhold voltage (spread)
VGSlh = fT J
X Axis: T J I'C

10 = fTA
X Axis: TA I'C
Y Axis: 10 I A

Y Axis: VGSlh I V
Parameter: VGs= Vos; 10 = lmA

...

I

'.

A

.2

""'I'..

VCS(th )

""'\
.~

,
..... 98%

"'-\

t--..

\

\

,
r---~

'\

.....

,

, ,
'"

typo

......

-I-

....
........

,
......

'-

.

c
- - TJ

746

Siemens

BSS 138

Typical drain-source on-state resistance

ROSon = f1 0
XAxis: lolA
Y Axis: R OSon I 0
Parameter: VGS ;

1j = 2S'C

.,

11

"'"

.,$V

n

.35V

~5V

~,

,
/
J.

/

::

./

-",.-

.....- ..... V

V

./

V

f-""'" I--' I--"

L--'

J

--~

"

.$V

.,
7V

l

--10

Typical reversa diode forward voltage (spread)

IF =fVso
X Axis: VSD IV
Y Axis: I F I A
Parameter: t p =8~s; TI

,,'
IF'

150

;

''C:~.

rJ

XI

'-"1-- " : "

r-- .,. re: "

I

,

- - - vso

Siemens

747

SIPMOS N Channel MOSFET

• 51PMOS - depletion mode
• Drain-source voltage
• Continuous drain current

'i.bs

SSS 139

= 250V

10 = 0.04A

• Drain-source on-resistance
• Total power dissipation

~S(on) = 1000

Po = 0.36W

Type

Marking

Ordering code for
versions on 8 mm-tape

Package

B55139

5T

Q62702-5612

SOT 23

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol

Vos
'i.bGR

10
10Pul.

V••
Po
7j
T.,s

Ratings

Unit

250
250
0.04
0.12
±20
0.36

V
V

-55... +150
55 ... 150 ... 56

Thermal resistance
Chip - air
Chip - substrate rear side
Ceramic substrate
25mm x 25mm x 0.7mm

748

RlhJA
RthJSR

::;350
::;285

Siemens

A
A
V
W

Conditions

RGS

=20 kO

TA =25°C
TA =25°C
aperiodic

TA =25"C

°C
DIN IEC 68 part 1

BSS 139

Electrical Characteristics
CondHlon
Static characteristics
Drain-source
breakdown vottege
Gate threshold

vo~age

Zero gate vo~age
drain current

V(BR)OSV

2S0

-

-

V

'0

VaS(th)

-1.B

-1.0

-0.7

V

VOl = 3V;

100

nA

-

'osv

Vas =-3V
=0.2SmA

7j =2SoC;

'0

=lmA

Vos =2S0v

Val =-3V
200

'osv

jJA

7j =12SoC;Vos

=2S0V

Vas =-3V
'osv

r, =2SoC;

-

Vos =-V

Vas =OV
Gate-source leakage current

, ass

-

Drain-source on-state
resistance

ROS(on)

-

gt.

O.OS

10.0

-

100

nA

Vas =±20V,VDS =0V

100

0

'0

-

S

Vas =OV
=14mA

Dynamic characteristics
Forward transconductance

Input capac~ance
Output

capac~ance

0.07

C •••

SO

Co ••

10

pF

-

-

3
10

-

tr

-

20

-

t d(olf)

-

Reverse transfer
capacitance

Cr ••

Turn-on time ton
(t on =t d(on) +t r J

t d(on)

Turn-off time t olf
(tolf =t d(olf) +t tJ

=O.04A

Val =OV
Vos =2SV
f =IMHz

Vee

=30V

Vas =-2V... +5V
=O.ISA
Ras = SOD

'0

70
120

If

ns

VOl =25V

'0

-

Reverse diode
Continuous source
current

's

Pulsed source current

ISM

Diode forward

on-vo~age

0.9

Vso

Reverse recovery time

Irr

Reverse recovery charge

Orr

0.04

A

0.12

A

1.2

V

Vas =OV
=O.OBA

ns

VR =100V,
10 R
d/ F Idt = 100A/jJs

jJC

VA =looV, IF = 10 A
dl F Idt = 100A/jJs

'F

-

Siemens

'F =

749

BSS 139

Switching Time Measurement
Switching times

Test circuit

Vec

v

I

90%
VGS

90%

Safe operating area

Permissible power dissipation versus temperature

Po =fTA
X Axis: TA loe
V Axis: PD IW

VOS

90%

'0 =fVDS
X Axis: VDs/V

V Axis:

'D

Parameter:

IA
0

= 0.01.

ROS(on) ::

0

= t pIT;

Te

= 25°e

vos 110

,,'
A

\
10

\

-I"

lr

110"
[\

\

\

1\

\

\

,o·~

\
1\ I
o

750

o

~

",

Siemens

5

10'

- - v..

5 V10 3

BSS 139

Drain to source on resistance (spread)

Drain current

= fT J
TJ I·e

RDso •

X Axis:
Y Axis: RDso • I (l
Parameter: Vas =0; I

I D = fTA
X Axis: TA I·e
Y Axis: I D I A
D

= 14rnA

240

n

'.

A

""1"'- \

)

.03

/

/

...,

//

100

\

.02

1\

V
I/'

C

..

180

---_.T)

Typical reverse diode forward voltage (spread)

Gate threshhold voltage (spread)

VaSlh = fT J
X Axis:
YAxis:

IF =fVSD
X Axis: V.D/V

T j I·e
VaSlh IV

Parameter: Vas

--TA

= 3V;

I

D

YAxls: IF IA
Parameter: t p =8Ops; Tj

= 1rnA

",

"

VCSUh )

I

-- - -

.

""

.......

r-.

r--...

.... r-

,

'--

T

=

I'"

;

1_"

typo

j-li

"C;98

l[r-- ''''1'''

".

........

........,

~~

"

-...

_T,
100

C

180

2

---Vso

Siemens

751

BSS 192

SIPMOS P Channel MOSFET

• SIPMOS - enhancement mode
• Drain-source voltage
Vos = -240V
• Continuous drain current
10 = -0.15A
Ros(o.) = 20.00
• Drain-source on-resistance
Po =1.0W
• Total power dissipation

S

Type

Marking

Ordering code for
versions on 8 mm-tape

Package

BSS 192

KB

Q62702-8602

80T89

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
9ontinuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol
Vos
~GR

10
I Dpuls
V.,

Po
7j
T,t.

Ratings

Unit

Conditions

-240
-240
-0.15
-.6
±20
1.0

V
V
A
A
V

Rca =20 kO
TA =23"C
TA =25°C

-55 ... +150
55 ... 150... 56

W
°C

DIN IEC 68 part 1

Thermal resistance
Chip - air

752

RthJA

:;;125

Siemens

aperiodic
TA =25"C

K!W

BSS 192

Electrical Charllcterlatlc.
Condltlon
Static characteristics
Drain-source
breakdown vobage

V (BR)DSI

-240

-

Gate threshold vobage

Val(th)

-0.8

-1.5

-2.0

Zero gate vobage
drain current

I DSI

-

-4.0

-60.0

V

Vas =OV
ID =-0.25 rnA

V

VDI = Val;lD =-1 rnA

IlA

7j =2S·C;

VDS =-24OV

Val =OV
-8.0

IDBI

-200

IlA

7j =125"C; VDI

=-24OV

Val =OV
I DSS

-

-

-0.2

IlA

7j =2S·C;

VDS =-60V

Vas =OV
Gate-source leakage current

I GSI

Drain-source on-state
resistance

RDS(on)

Dynamic characteristics
Forward transconductance

-10.0

-100

nA

10.0

20.0

0

Vas =-2OV, VD• =OV
Val =-1OV

I D =-O.15A

g,.

0.06

0.12

-

S

VDI =-2~

ID =-0.15A

-

Input capacitance

C. oo

Output capacitance

Ca ••

Reverse transfer
capacitance

C roo

-

1d(on)

-

Tum-on time 1on
(Ion =1 d(on) +t ,)

I,

Tum-off time 1off
(t orr =t d(o'!) +t ,)

t c[~f!)
t,

-

70

10S

20

30

8.0

12.0

8

12

30

4S

15

20

30

45

pF

ns

Va.

=OV
VDI =-2~
f =1MHz

Vcc =..3(N
Val =-1OV
I D =-O.25A
Ral =500

Reverse diode
Continuous source
current

Is

-

-

-0.15

A

Pulsed source current

ISM

-

-

-0.60

A

Diode forward on-voltage

VSD

-

-0.85

-1.2

V

Reverse recovery time

t rr

-

130

Reverse recovery charge

Orr

300

-

ns

-

nC

Val =OV
IF =-O.3A
VR =-100v,1, =0. 5A

dl F Idt = -100A/lls
VR =-100V,/ F =0. 5A

dl" Idt = -100A/lls

Siemens

753

ass 192

Switching Time Measurement
Switching tlmea

Teat circuit

Vcc

v

Vos

Permissible power dissipation versus temperature

Typical output characteristic

'D

PD =fTA
X Axis: TA loe
V Axis: Po IW

=fVD1
X Axis: VDI

IV

V Axis: 'D IA

t.t

p.

-.-.

w
-.3

'.

-to

I

1\

r\
\

p ~1fv

lh -,
I"'.W V

IlI.'111 1/

W

V

U r.:

1. 0 1-f--I--I--I-I-+'>.I-t-+-iH--t-H-l

101

=tIL

-

l-~
'--

5 -_.

\

05

. r-r-f- -.-

o

-

f-+-t-H-I-+-+-I-+-I~'I.-IH--I-I
....-

o

·-t--IH-+-+-I~I-~-++-I
-

'-

.-.. - ,,-.- -

50

-

21-1-1-1-+-It

-,

100 °C
-TA

-

10' L-.L-l..l..LLlllL._
100

ISO

Saturation voltage Ie - (VBES.t. VeE ..,)

--

-=t= ':"

5

/

VV

Ii VI(= '=

C(

-

-

~

t-

. - f-

zJJCI ~

II

10'

~ ....

.. ... --- ~:= ..::.
-f-.
!-- - -- - 1 - " --. _. - f - ' -. -f- 1f- : -

'L

5

.=-c .--

r!

-55'C
5

-

5

f-+-

,

10'

o

,
0.2

0.4

0,6

OJ
-

762

5 10'

DC current gain hFE - f (/ e)
VeE - 10V
.•

hFE - 10

mA
IO J

1--'

to

10'

1l V

-/c

VR.lt,VCl.ot

Siemens

PZT 2907;PZT 2907A

PNP Silicon Switching Transistors

• High DC current gain: 0.1 to 500 mA
• Low collector -emitter saturation voltage
• Complementary types: PZT 2222 (NPN)
PZT 2222A (NPN)

E

c

Type

Marking

Ordering code (12-mm tape) Package"

PZT 2907

ZT 2907

Q62702 - Z2028

SOT-223

PZT 2907A

ZT2907A

Q62702 - Z2025

SOT-223

Maximum Ratings
Parameter
Collector-emitter voltage
Collector-base voltage

Symbol

PZT 2907

PZT 2907A Unit

VCEO

40

60

V

VCBO

60

60

V

5

5

V

Emitter-base voltage

VEBO

Collector current

Ie

Total power dissipation, TA:525'Cl)

P IOI

Junction temperature

Tj

Storage temperature range

Ts1g

-65

to

600

mA

1.5

W

150

'c
'c

+ 150

Thermal Resistance
Junction - ambient 1)

IR

tl1JA

:5 83.3

IKtW

1) Package mounted on an epoKy printed circuit board 40mm K 40mm K 1,5mm
Mounting pad for the collector lead min 6cm 2
0) For detailed dimensions see chapter Package Outlines

Siemens

763

PZT 2907;PZT 2907 A

Characteristics
at TA = 25 ·C, unless otherwise specified.
Parameter

Unit

DC Characteristics
Collector-emitter breakdown voltage
Ic = 10 rnA, IB = 0
PZT 2907
PZT 2907A

V(SR)CEO

Collector-base breakdown voltage
Ic = 10 pA, Is = 0
PZT 2907
PZT 2907A

V(SR)CSO

Emitter-base breakdown voltage
IE = 10 pA, Ie = 0

V(SR)ESO

Collector-base cutoff current
VCS = 50 V, IE = 0
Vcs=50 V, Ie =0, TA = 150°C

PZT
PZT
PZT
PZT

2907
2907A
2907
2907A

'CBO

leBo

Collector-emitter cutoff current
VcE =30 V,+VBE=0.5 V

,cEv

Collector-base cutoff current
Vce =30 V, +VBE =0.5 V

lesv

Ic= 1 rnA,

VcE =10V

Ic= 10 rnA,

Vce=10V

PZT 2907
PZT 2907A
PZT 2907
PZT 2907A
PZT 2907
PZT 2907A
PZT 2907
PZT 2907A
PZT 2907
PZT 2907A

Ic=150mA, VcE =10V
Ic=500 rnA, VcE =10V

hFE

Collector-emitter saturation voltage 1)
Ie = 150 rnA, Is = 15 mA
Ic 500 mA,/s = 50 rnA

VCEsat

Base-emitter saturation voltage 1)
Ie = 150 rnA, Is = 15 mA
Ie 500 mA,Is = 50 rnA

VSEsat

=
=

1) Pulse test conditions:

764

t

~ 30°115; D

-

-

V
V

-

-

V
V

5

-

-

V

-

-

20
10
20
10

nA
nA
llA
pA

-

-

10

nA

-

-

50

nA

-

-

50

nA

35
75
50
100
75
100
100
100
30
50

--

---

-

-

-

--

60
60

Emitter-base cutoff current
VEs =3 V, Ic=O

DC current gain 1)
Ic=0.1 rnA, VcE =10V

-

40
60

=2%
Siemens.

-

-

-

300
300

-

-

-

-

0.4
1.6

V
V

-

-

1.3
2.6

V
V

PZT 2907;PZT 2907A

AC Characteristics
Transition frequency
Ic=20mA, VcE =20V, f=100 MHz

fT

Collector-base capacitance
VCB = 10 V,f= 1 MHz

Cob

Input capacitance
VEB = 0.5 V,f = 1 MHz

C,b

Vcc =30 V, Ic = 150 mA, IBI = 15 mA
(see Fig.2)
Delay time
Rise time
Vcc = 6 V, Ic = 150 mA, IBI =/ B2 = 15 mA
(see Fig.3)
Storage time
Fall time

200

-

-

MHz

-

-

8

pF

-

-

30

pF

td

t,

-

-

10
40

ns
ns

tsig
tf

-

-

80
30

ns
ns

Siemens

765

PZT 2907;PZT 2907 A

Turn-on time (see Fig.2)
when switched to-Icon

=150mA;-/Bon =15mA

-30V

...---( I

Va

Fig.2 Input waveform and test circuit for
determining delay,rise and turn-on time
Turn-off time (see Fig.3)
when switched to-Icon = 150mA;-/Bon = 15mA
to cut-off with + IBoff = 15mA

+15V

-6V

Fig.3 Input waveform and test circuit for
determining storage,fall and turn-offtime
Pulse generator (see Fig.2 and 3)

Oscilloscope (see Fig.2 and 3)

frequency
pulse duration
rise time
output impedance

rise time
output impedance

766

f=150Hz
tp=200ns
tr~2ns

Zo=50Q

Siemens

tr~ 5ns
Zj: 10MQ

PZT 2907; PZT 2907A

Total power dissipation PIOI

= I (TA )

Transition frequency IT = I (l c)
= 20 V. 1= 100 MHz

HHz'VCE

2.0
Wf-

~ot

fr

-f-

t

. 1- 1-1--

1--

1

f-f\ I-f--

V

2

1'\
f'\

10 1

~-

II-

P\--1\

r-

l"\_

1.0 I-

~

r-

H - -- --.- -

--1\ -

~-

,:::- -

f-.-

.

5 1--- -

f-~

1-1-

0.5

t---- -f- - -- 1f- - --- - - - --

-!\,-H-

-

2 t-!-+-

-t-I\'I-f1-1-+--1-1--1-+-1-1--1-1-+-+-+....1-1

o

f--

f---

1.5

-1--

10 1 ,-- - .
1-- t-- 1-5 t--

- -1- -1-1-I-+1--f--jH-I-i-f\
1-'._-'-..L...I--L...l_L..J..-L..L1-1_-'-LJI

o

100

50

·C

10'

150

10°

Saturallon voltaga Ie = ((VBE,al. VCE.a,)
hFE = 10

la'

5

5 10 1
----Ie

5 10 1 rnA

DC current gain hFE = l(lel
VCE 10 V

=

W

-

5

-- -

--1- .

Ic

1=-

I-

t-

1~

1.1

r-

1.1 VII[

Vcr

5

175°(

rII

10'

10

21=

I.-1--

5
5

lt-

I-

1U

25°C
~~, DC

t'\
r-:
~
1-

'I)'

5

10-1

1--

o

01 0.4 0,6

O.~

1.0 11 1/. 1.6 V
_

Vir",,' VcrIGt

-/c
Siemens

767

PZT 3904

NPN Silicon SWitching Transistor

• High DC current gain 0.1 to 100 mA
• Low collector -emitter saturation voltage
• Complementary type: PZT 3906 (PNP)

E

Type

Marking

Ordering code (12-mm tape) Package"

PZT 3904

ZT 3904

Q62702 - Z2029

SOT-223

Maximum Ratings
Parameter

Symbol

Collector-emitter voltage

40

V

60

V

Emitter-base voltage

VCEO
VCBO
VEBO

6

V

Collector current

Ic

200

mA

Total power dissipation, TA:s 25°C I)

Collector-base voltage

PZT 3904

Unit

P 101

1.5

W

Junction temperature

Ti

150

°C

Storage temperature range

TSIg

-65 to + 150

°C

:s83.3

IKIW

Thermal Resistance
Junction - ambient 1)
.) Package mounted on an epoxy printed circuit board 40mm x 40mm x 1.Smm
Mounting pad for the colleclor lead min 6cm 2
'J For detailed dimensions see chapter Package Outlines

768

Siemens

PZT 3904

Characteristics
at TA = 25 °C, unless otherwise specified.

I

Parameter

I

Symbol Values
min. Ityp.

Imax. .I

Unit

DC Characteristics
Collector-emitter breakdown voltage
Ic 1 rnA, IB 0

V(BR)CEO

Collector-base breakdown voltage
Ic = 10 pA, IB = 0

V(BR)CBO

Emitter-base breakdown voltage
IE = 10 pA, Ic = 0

V(BR)EBO

Collector-base cutoff current
VcB =30 V,/E=O

ICB~

Collector -emitter cutoff current
VCE = 30 V,-VBE = 0,5 V

,CEV

=

=

Base-emitter cutoff current
VCE 30 V,-VBE = 0,5 V

=

'

DC current gain 1)
Ic = 0.1 rnA, Vce = 1 V
le= 1 rnA,
VCE = 1 V
Ic = 10 rnA, VCE 1 V
Ic=50 rnA, VCE = 1 V
Ic = 100 rnA, VCE 1 V

BEV

hFE

=
=

Collector-emitter saturation voltage
Ie = 10 rnA, IB 1 rnA
le=50 mA,IB=5 rnA

=

Base-emitter saturation voltage
Ie = 10 rnA, Ic 1 rnA
le=50 mA,le=5 rnA

=

1) Pulse test conditions: t ;;; 300ps; D

VeEsat

1)

1)

VBEsat

40

-

-

V

60

-

-

V

6

-

-

V

-

-

50

nA

-

-

50

nA

-

-

50

nA

40
70
100
60
30

--

300
-

--

-

-

-

0.2
0.3

V
V

-

-

0.85
0.95

V
V

-

-

-

-

=2%

Siemens

769

PZT 3904

AC Characteristics
Transition frequency
Ic = 10 rnA, VCE =20 V, f= 100 MHz

fr

Collector-base cpacitance
VCB = 5 V,f= 1 MHz

Cob

Input capacitance
VEB = 0.5 V,f = 1 MHz

C,b

Noise figure
Ic = 100 lIA,vCE = 5 V,Rs = 1kn,
f= 10 Hz to 15.7 kHz

F

Input impedance
Ic = 1 rnA, VCE = 10 V, f = 1 kHz

h lle

Open-circuit reverse voltage transfer ratio
Ic = 1 mA,VCE = 10 V, f= 1 kHz

h '2a

Short-circuit forward current transfer ratio
Ie = 1 mA,vCE = 10 V, f= 1 kHz

h 21e

Open circuit output admittance
Ic = 1 mA,VeE = 10 V, f= 1 kHz

h 22e

Vcc=3 V, Ie = 10 rnA, IBI = 1 rnA
VBEIOIf) = 0.5 V
Delay time
Rise time
Vce =3 V,/c = 10 rnA,
'B' = 'B2 = 1 rnA
Storage time
Fall time

770

300

-

-

MHz

-

-

4

pF

-

-

8

pF

-

-

5

dB

1

-

10

kn

0.5

-

8

10-4

100

-

400

-

1

-

40

\lS

-

-

35

t,

35

ns
ns

t. ,g
t,

-

-

200
50

ns
ns

td

Siemens

PZT 3904

Switching times
Turn-on time (see Figs 2 and 3 ) when switched from
-VSEoft=0.5Vto ICon = 10mA;/s on = 1mA
Vi (V)

+ 10.6

+3V

--"""-~Vo
I
I

=t=Cs
I

I

Ol--~+-~----------~r-~

I
I

-0.5
Fig.2 Input waveform;tr < 1ns;tp = 300ns
Ii = 0.02

Fig.3 Delay and rise time test circuit;total
shunt capacitance of test jig and
connectors Cs <4pF;
scope impedance ~ 10MCl

Turn-off time (see Figs 4 and 5 )
ICon =1OmA; Ison =-/soft =1mA
Vi (V)

+3V

+ 10.91----,...------...

.C

",-......-vVo
I

I

O~~------~--------~~

I
I
I
I

s

-..
-9. 11--~------t--+'-----../

Fig.4lnput waveform; tr< 1ns;
lOjls 100 kQ
C < 12 pF
tr < 5 ns

Siemens

797

5MBT2222
5MBT 2222 A

Total power dissipation Ptot = f (TA)

Collactor-base capacitance
Cob = f(Vce)
f= 1 MHz
pF

mW

102

400

"lot

t

r-b

i

300

5

I\,
200

-I"-

\
\.

r-...

5
100

o
o

1\

\
100

50

150°C

-~
Transition frequency
VCE = 20V

Pulse handling capability 'th = fIt)
(standardized)

fT = f

(1 0 )

K

W
10°

,

10-

II
"~,5

5

10- 2

0,2
0,1
0,05
0,02
0,01
0,005

2

0=0 1111

5

v ...
'\

I
II

5

~
'"

tp
D=r

10-3

T

'"

10-6 10-5 10- 4 10- 3 10- 2 10-' 10°

10' s

5 10'

-t

798

Siemens

5MBT 2222
5MBT 2222 A

Saturation voltage Ie = f(VBEsat, VCEsatl

DC current gain h FE = f (Ie)

hFE = 10

VCE = 10V

rnA

103

5

IL

VVeE

/ VBE

l?E:£
r-

I

2~.lcl 1\

II

10'
5

-55°C
5

vi
5

10-'

o

0.2

0.4

0,6

0.8
-

Delay time t d = If (I e)
Risetime tr= f(Iel

1.0

'-:-

1.2 V

VeE sat- VeE sat

Storage time tst9 = f(Ie)
tf = f (l e)

Fall time

--

~

\
5

'"

s,

\

...,hFE -l0

i\ tl

r

hFEI- 1

I
5

hFE -20

I'"
r'-.... ).
5

-Ie

Siemens

799

5MBT2907
5MBT 2907 A

PNP Silicon Switching Transistors

•
•
•

High DC current gain: 0.1 to 500 mA
Low collector-emitter saturation voltage
Complementary types: 5MBT 2222, 5MBT 2222 A (NPN)

Type
5MBT 2907
5MBT 2907 A

. Marking
S2B
S2F

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

Q68000-A4336
Q68000-A4337

Q68000-A6501
Q68000-A6474

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

5MBT 2907

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO

40

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

800

VCBO
VEBO

Ic
P tot

5MBT2907 A
60
60
5
600
330

150
-65 .. ·+150

Ti
Tstg

~

RthJA

Siemens

375

Unit
V
V
V

mA
mW
°C
°C
K/W

5MBT2907
5MBT2907 A

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
5MBT2907
Ic = 10 rnA
5MBT2907 A

V(BR) CEO

Collector-base breakdown voltage
5MBT2907
Ic=10~A
5MBT2907 A

V(BR) CBO

Emitter-base breakdown voltage
Ie = 10 ~A

V(BR)EBO

Collector cutoff current
VCB = 50V
VCB = 50V
VCB = 50 V, TA = 150°C
VCB = 50 V, TA = 150°C

ICBo
5MBT2907
5MBT 2907 A
5MBT 2907
5MBT2907 A

Emitter .::utoff current
VEB = 3V

leBO

DC current gain
Ic=100~A, VCE=10V

hFE

Ic=

1 rnA, VCE

Ic= 10 rnA, VCE
Ic = 150 rnA, VCE
Ic = 500 rnA, VCE

5MBT2907
5MBT2907 A
= 10V 5MBT2907
5MBT2907 A
= 10 V') 5MBT2907
5MBT2907 A
= 10 V') 5MBT 2907
5MBT2907 A
= 10 V') 5MBT2907
5MBT2907 A

Collector-emitter saturation voltage ')
Ic = 150 rnA, IB = 15 rnA
Ic = 500 rnA, IB = 50 rnA

VCEsat

Base-emitter saturation voltage ')
Ic= 150 rnA, IB= 15mA
Ic = 500 rnA, IB = 50 rnA

VB Esat

1) Pulse test: t:5 300

~s,

min

typ

max

Unit

40
60

-

-

-

V
V

60
60

-

-

V
V

5

-

-

V

-

-

20
10
20
10

nA
nA

-

-

10

nA

35
75
50
100
75
100
100
100
30
50

-

-

-

300
300

-

-

~A
~A

-

-

-

-

-

-

0,4
1,6

V
V

-

-

1,3
2,6

V
V

-

D = 20/0.

Siemens

801

5MBT 2907
5MBT2907 A

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 mA, VCE = 20 V, f= 100 MHz

fT

200

-

-

MHz

Output capacitance
Vcs = 10V, f=1 MHz

Cob

-

-

8

pF

Input capacitance
VES = 0,5 V, f= 1 MHz

Cib

-

-

30

pF

td
tr

-

-

10
40

ns
ns

t519
tl

-

-

-

80
30

ns
ns

Vcc = 30 V, Ie = 150 mA, IS1
Delay time
Rise time
Vcc = 6 V, Ie = 150 mA,
IS1 = IS2 = 15 mA
Storage time
Fall time

= 15 mA

-

Test circuits
Delay and rise time

Storage and fall time

-6V

-30V

.1SV

200n
Osz.

Eingang

zo=son
tr < 2ns

Eingang

Zo =50 n
1k

-~0-[ o--rlso=n=:J-+I

t,

-~0-{

200ns

802

< 2ns

200ns

Siemens

37n
Osz.

1k

son

5MBT2907
5MBT2907 A

Total power dissipation P tot = f (TA)

Collector-base capacltanca
Ccb = f(Vcs)
f= 1 MHz

pF

mW
400

~.t

t

102

5
'-~~

300

\.

1- ..
~

200

I\.

5
100

""

\.

I\,

o
o

50

100

5 1~

150 ·C

-~
Pulse handling capability 'th = f(t)

Transition frequency
Vce=20V

(standardized)

fT = f (Ic)

K

iii
100

lih

5

f

,

10·

l1li

ut

5

'0,5
0,2
0,1
0,05
0,02
0,01
0,005

0:0

10·2

vi---

2

'\

II
17

1111

5

5

1tn..

D=~
T

2

~T7.!

10" 3
10.6 10. 5 10. 4 10.3 10. 2 10·' 10°

10' s

10

I

0

10

5 10'

5 10 3 mA

-t

Siemens

803

5MBT2907
5MBT2907 A

Saturation voltage Ie = f ( VeE sat, V CE sat)

hFE = 10

Delay time td = f(Ie)
Rise time tr = f(Ie)

hFE = 10
ns

'II

103

5
f~

VCE

~

I--

VI[

TIlT

H

-lovl

VBE ;;ov,Vcc
- - - VBE -20V,Vcc -30V

II
f-

rl

"

I--

I~

If
td

~.

5

5

\

5

o

\1\

1\

"
1f'

1\

'I

r"

01 0.4 0.6 0.& 1.0 1.2 1/+ 1.6 V

-

-Ic

VaEsaI' VCEIGt
Fall time tl = f (I cl

Storage time tstg = f(Ie)
ns

103
tstg

5

..

i

Vcc -30V

~fFE=20
"

hFE. =1 ~ \

5 f-

FE- 1

lY'
1]/

~
"

fhFE= 20

'-

5 10'

-Ic

804

-Ic

Siemens

5MBT 2907
5MBT2907 A

DC current gain h FE

=

f (I c)

175°C

,

]J

t'\

25 ·C
-55 ·C

--Ie

Siemens

805

NPN Silicon Switching Transistor

•
•
•

5MBT3904

High DC current gain: 0.1 to 100 mA
Low collector-emitter saturation voltage
Complementary type: 5MBT 3906 (PNP)

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

5MBT3904

S1A

Q68000-A4340

Q68000-A4416

SOT 23

Maximum ratings
Parameter

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Total power dissipation
TA"= 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

806

Symbol

V
V
V

PIOI

Ratings
40
60
6
200
330

Tj
Tstg

150
-65 ... +150

°C
°C

RthJA

~375

K/W

VCEO
VCBO
VEBO

Ic

Siemens

Unit

mA
mW

5MBT3904

Electrical characteristics
at TA

=

25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 1 mA

V(BR) CEO

40

-

-

V

Collector-base breakdown voltage
Ie = 10 !lA

V(BR)CBO

60

-

-

V

Emitter-base breakdown voltage
h= 1O !lA
Collector cutoff current
VCB = 30V

V(BR)EBO

6

-

-

V

ICBo

-

-

50

nA

40
70
100
60
30

-

-

-

-

-

300

-

-

0,2
0,3

V

0,85
0,95

V
V

DC current gain
Ic = 100 !lA, VCE =
Ic =
1 mA, VCE =
Ic = 10 mA, VCE =
Ic = 50 mA, VCE =
Ic = 100 mA, VCE =

hFE

1V
1V
1 V')
1 V')
1 V')

Collector-emitter saturation voltage')
I C = 10 mA, Ie = 1 mA
I C = 50 mA, Ie = 5 mA

VCEsat

Base-emitter saturation voltage')
I C = 10 mA, I B = 1 mA
I C = 50 mA, I B = 5 mA

VeEsat

') Pulse test: t::;:; 300 !ls, D

=

-

-

-

-

0,65

-

-

-

V

20/0.

Siemens

807

5MBT3904

AC characteristics

Symbol

max

fT

min
300

typ

Transition frequency
Ic = 10 rnA, VCE = 20 V, f= 100 MHz
Output capacitance
VCB=5V,f=1 MHz
Input capacitance
VEB = 0,5 V, f= 1 MHz

-

-

Unit
MHz

Gob

-

-

4

pF

Gib

-

-

8

pF

Input impedance
Ic = 1 rnA, VCE = 10V, f= 1 kHz

h11e

1

-

10

kQ

Open-circuit reverse voltage transfer ratio
Ic = 1 rnA, VCE = 10V, f=1 kHz

h12e

0,5

-

8

10- 4

Short-circuit forward current transfer ratio
Ic = 1 rnA, VCE = 10V, f=1 kHz

h21e

100

-

400

-

Open-circuit output admittance
Ic = 1 rnA, VCE = 10V, f=1 kHz

h22e

1

-

40

/lS

Noise figure
Ic = 100 /lA, VCE = 5 V, Rs = 1 kQ
f= 1 kHz

F

-

-

5

dB

td
t,

-

-

-

35
35

ns
ns

tstg

-

-

200
50

ns
ns

Vcc = 3V, Ic = 10mA, IB1 = 1 rnA
VBE (off) = 0,5 V
Delay time
Rise time
Vcc=3V,Ic=10mA,
IB1 = IB2 = 1 rnA
Storage time
Fall time

-

tf

-

Test circuits

:g

Delay and rise time

OOns

Storage and fall time

+3.0V

0=2%
-+10.9 V

275!l
10 k!l

o cr-C::J-H

-0.5V
<1.0ns

I

J£

T<4.0pF lI
I

-~

< tOns

808

Siemens

5MBT3904

Total power dissipation P'o' = f (TA)

Saturation voltage

rnW
400

/

//

~ot
300

= f (VeE sa', VeE sa')

V

rnA

r

Ie

""
I

I
I

1\

I

VeE

200

1'\

VBE

5
100

\
'\

o
o

50

100

10 0

150·(

o

I
0,2

0,4

--~

0,6

0,8

1,0 V 1,2

--VSfsat

Input impedance
hll. = f(Ie)
VeE = 10V, f= 1 kHz

Open-circuit reverse voltage
transfer ratio h
= f (I e)
VeE = 10V, f= 1 kHz

10 2

10'

I

VCEsat

,2.

kfl

h".

5

1", "

"\.

5

\.

r'-..

r'\

5

......... ....- V"'"

"

i"'.,

5

5

,
-Ie

Siemens

809

5MBT3904

Short-circuit forward current
transfer ratio h21e = f(Iel
VCE = 10V, f= 1 MHz

Open-circuit output admittance h22e = f (I e)
VCE = 10V, f= 1 MHz

10 3

5

--

f-

/
5

5

V

/'

-Ie
Storage time tstg = f(Ie)

Delay time td = f(Ie)
Rise time tr = f(Ie)
3

C:::=!=!=fffi:m=~ffi~R

10 f.ns

5

~f=
~~

- - td-=f=

=

hFE= 10
- - I ; --t--t--m"tttt---1

5

-

-.
-.

2S 0 (
125°(

I--

hFE = 20
v 10

I'\'[\
::= F"'

5

---== :""..:f::

~~

hFE=2
1

5 102 rnA
-Ie

810

Siemens

5MBT 3904

Fall time If

=

Rise time I,

f (l c)

no
25°(
--125°(

t=:: =.

1--~

=

I'ce= 40V

=

=

f(Ie)

ns

t,

5

\ICe =40V
hFE =10

"-

.~

" "

~

'\

~

1250(

r=

hFE= 20
~

5

I'\.~

5

~

~ ,I"

~

hFE=10

f-~

~

~

I-~

25°(

'"'\.

~

;1

I--

5

102 mA

5 102 mA
-Ie

-Ie

DC current gain h FE = f (l c)
VeE = 10 V

5

lJfflC
25°C

~

_55°(

v

5

1/
10- 1
10-1

~
111111

5 10 0

III~

5 101 rnA 10 2
_Ie

Siemens

811

PNP Silicon Switching Transistor

•
•
•

5MBT3906

High DC current gain: 0.1 to 100 mA
Low collector-emitter saturation voltage
Complementary type: 5MBT 3904 (NPN)

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

5MBT3906

S2A

Q68000-A4341

Q68000-A4417

SOT 23

Maximum ratings
Parameter

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

812

Symbol

Ratings

Unit

VCEO
VCBO
VEBO

40
40
5
200
330

V
V
V
mA
mW

Tstg

150
-65···+150

DC
DC

RthJA

::5 375

K/W

Ic
Ptot
Tj

Siemens

5MBT 3906

Electrical characteristics
at TA = 25 DC, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 1 rnA

V(BR) CEO

40

-

-

V

Collector-base breakdown voltage
Ic=10[.lA

V(BR)CBO

40

-

-

V

Emitter-base breakdown voltage
lE=10[.lA

V(BR) EBO

5

-

-

V

Collector cutoff current
VCB = 30V

ICBo

-

-

50

nA

DC current gain
I C = 100 [.lA, VCE =
Ic = 1 mA, VCE =
Ic = 10 rnA, VCE =
Ic = 50 mA, VCE =
Ic = 100 mA, VCE =

hFE

60
80
100
60
30

-

-

-

-

-

-

0,25
0,4

V
V

0,65

-

0,85
0,95

V
V

1V
1V
1 V')
1 V')
1 V')

Collector-emitter saturation voltage')
Ic=10mA,IB=1mA
I C = 50 mA, I B = 5 mA

VCEsat

Base-emitter saturation voltage')
Ic=10mA,IB=1mA
I C = 50 mA, I B = 5 mA

VBEsat

-

300

-

') Pulse test: t:5 300 I1s, D = 20/0.

Siemens

813

5MBT3906

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 10 rnA, VCE = 20 V, f= 100 MHz

fT

250

-

-

MHz

Output capacitance
VCB = 5V, f=1 MHz

Gob

-

-

4,5

pF

Input capacitance
VEB = 0,5 V, f= 1 MHz

Gib

-

-

10

pF

Short-circuit input impedance
I c = 1 rnA, V CE = 10 V, f = 1 kHz

h11e

2

-

12

kO

Open-circuit reverse voltage transfer ratio
Ic = 1 rnA, VCE = 10V, f=1 kHz

h12e

0,1

-

10

10-'

Short-circuit forward current transfer ratio
Ic = 1 rnA, VCE= 10V, f=1 kHz

h21e

100

-

400

-

Open-circuit output admittance
Ic = 1 rnA, VCE = 10V, f=1 kHz

h22e

3

-

60

!lS

Noise figure
Ic = 100 !lA, VCE = 5 V, Rs = 1 kO
f=1 kHz

F

-

-

4

dB

td
tr

-

Vcc

= 3 V,

VBE (off) =

Ic = 10 rnA, IB1 = 1 rnA
0,5 Vdc

Delay time
Rise time
Vcc = 3 V, Ic = 10 rnA,
IB1 = IB2 = 1 rnA
Storage time
Fall time

fstg
tf

-

-

-

35
35

ns
ns

-

-

225
75

ns
ns

-

Test circuits
Delay and rise time

Storage and fall time

-lOV

<1.0ns
<1.0ns

~_~::()ov-[10=k:JQ-+-[

275Q

275Q

~----hf----O

-1d=O:2%
814

Siemens

O---£::::J--_+-r

5MBT 3906

Total power dissipation Ptot = (( TA)

Saturation voltage I c = (( VSEsat,

mW
400

i

:;

,/"

//

~ot

300

VCEsat)

5

II

I\,
200

Y(E

{VBE

I\,
5
100

L

I\,

\.

o
o

50

100

0,2

150 0 (

--T;,

Short-circuit input impedance h11. = ((le)
VCE = 10V, (= 1 kHz

0,4

0,6
-

0,8 V 1,0
VSEsat IVCEsat

Open-circuit reverse voltage
= ((l c)
transfer ratio h

'2.

102

kQ
hI,.

-"

5

",

""

5
'\..

'\
'\

"

5

1- ....

5

1

-Ie

-Ie

Siemens

815

5MBT3906

Open-circuit output admittance h22e = f (I e)
VCE"; 10V, f= 1 MHz

Short-circuit forward current
transfer ratio h 21 e = f (I el
VCE = 10V, f= 1 MHz
103
h 22e

5

/

/

-

/

/

5

5

-Ie

-Ie

Fall time tf = f(le)

Delay time td = f(le)
Rise time tr = f(lel
3

ns
10

~~~~~~~ijml~
=

td _ _"
_
td.tr 5 ~-- tr --hFE=10 -

~\~~~ttm~~ttm~

r

10 2 \

,-- -

5

25°(

~ --125°( -

Vee=40V -

"\ ,
\.

,~

~AhFE=20

5

5

,..
-"
h FE =10

-

~

"

~

.....

t:::
5

~~~~llL-J-L~WW~

10°

816

5

10'

5
10 2 mA
-Ie

Siemens

5MBT3906

DC current gain hFE = f(lel

Siemens

817

5MBT 4124

NPN Silicon Switching Transistor

•

High current gain: 0.1 to 100 mA

•

Low collector-emitter saturation voltage

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

5MBT 4124

SCZ

upon request

upon request

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage

VCEO

25

Collector-base voltage

VCBO

30

Emitter-base voltage

VEBO

5

V
V
V

Collector current

Ie

200

mA

Total power dissipation
TA = 25°C

Ptot

330

mW

Junction temperature

7j
Tstg

150

°C

-65 ... +150

°C

RthJA

:5

Storage temperature range

Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm

818

375

K/W
,

"

Siemens

5MBT 4124

Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Collector-emitter breakdown voltage

min

typ

max

Unit

V(BRICEO

25

-

-

V

V(BRICBO

30

-

-

V

V(BRIEBO

5

-

-

V

IeBO

-

-

50

nA

lEBO

-

-

50

nA

120
60

360

-

0.3

V

Ie = 1 mA
Collector-base breakdown voltage

Ie = 10 fJA
Emitter-base breakdown voltage
IE = 10 fJA
Collector cutoff current
V CB = 20 V, IE = 0
Emitter cutoff current
VEe

= 3 V. Ie = 0

DC current gain

hFE

Ie = 2 mA, VCE = 1 V
Ie = 50 mA, VCE = 1 V
Collector-emitter saturation voltage 1)
mA; I B = 5 mA

Ie = 50

Base-emitter saturation voltage 1)

Ie = 50 mA; I B = 5 rnA
AC characteristics

VCEsat

-

-

VBEsat

-

-

0.95

V

min

typ

max

Unit

fr

300

-

-

MHz

Cobo

-

-

4

pF

C ibo

-

-

8

pF

hIe

120

-

480

-

NF

-

-

5

dB

Symbol

Transition frequency
Ic = 10 mA, VCE = 20 V,

f=

100 MHz

Output capacitance
V CB = 5 V, f = 1 MHz
Input capacitance
V EB = 0.5 V, f = 1 MHz
Small-signal current gain
V CE = 5 V, f = 1 kHz

Ie = 1 rnA;

Noise figure

Ie = 0.1 rnA,
Rs = 1 kG

VCE

= 5 V,

1) Pulse test: t:S 300 IJs,

f=

10 Hz to 15 kHz

D :S 2 %

Siemens

819

5MBT 4124

Total power dissipation Plot

= f( TA )

Ie = f(V."", Ve",,)

Saturation voltage

mW
400

i

II

//

~ot

r-I"\.
300

I

I

\.

I

I

200

II

I

\t(E

I

\

VeE

1,\
r\
5
100

1,\
1\

o
o

50

100

I

---

~
150 DC

100

o

I
0,2

0,4

-~

Small-signal current gain hr.
VeE = 10 V, f = 1 MHz

0,6

0,6

1,0 V 1,2

--VBEsat , VCEsat

= f(Id

DC current gain hFE = f(Id
VeE = 10 V (standardized)

5

f.--

-

125°(

~ 1'\
-55°(

5

5

V

!

V

\\

~

5 10'

mA

10 2

-Ie

820

Siemens

5MBT 4126

PNP Silicon Switching Transistor

•

High current gain: 0.1 to 100 rnA

•

Low collector-emitter saturation voltage

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

5MBT 4126

SC3

upon request

upon request

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage

VCEO

25

V

Collector-base voltage

VCBO

25

V

Emitter-base voltage

V EBO

4

V

Collector current

Ie

200

rnA

P'o'

330

mW

Tj
Ts,g

150

°C

-65 ... +150

°C

R'hJA

:::; 375

K/W

Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm

Siemens

821

5MBT 4126

Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics

min

typ

max

Unit

V(BR)CEO

25

-

-

V

V(BR)CBO

25

-

-

V

V(BR)EBO

4

-

-

V

I cBo

-

-

50

nA

hBO

-

-

50

nA

360

-

Symbol

Collector-emitter breakdown voltage
Ie = 1 mA
Collector-base breakdown voltage
I c =10iJA
Emitter-base breakdown voltage
= 10 iJA

IE

Collector cutoff current
VCB = 20 V, h = 0
Emitter cutoff current
VEB = 3 V, Ie = 0
DC current gain
2 mA, VCE = 1 V
50 mA, VCE = 1 V

hFE

Collector-emitter saturation voltage 1 )
Ic = 50 mA; IB = 5 mA

VCEsat

-

-

0.4

V

VBEsat

-

-

0.95

V

Ie =
Ie =

120
60

Base-emitter saturation voltage 1)
50 mA; IB = 5 mA

Ie =

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ie = 10 mA, VCE = 20 V, f= 100 MHz

fT

250

-

-

MHz

Output capacitance
VCB = 5 V, f = 1 MHz

Cobo

-

-

4.5

pF

Input capacitance
VEB = 0.5 V, f= 1 MHz

Cibo

-

-

10

pF

hIe

120

-

480

-

NF

-

-

4

dB

Small-signal current gain
5 V, f = 1 kHz

Ie = 1 mA; VCE =

Noise figure
Ic=0.1 mA, VcE =5 V. f=10 Hz to 15 kHz
Rs = 1 kQ

1) Pulse test: t';; 300 I-is, D';; 2 %

822

Siemens

5MBT 4126

Saturation voltage

Total power dissipation PIo ' = f(TA )

mW
400

2

/

~ot

t

Ie

= f( VBE ,,,. VeE ",)

vV

V

I-f- '"
I

300

I

I

\.
200

IV

VcE

SE

\.
5

100

I\,

o
o

'\
50

100

0,2

--~

Small-signal currant gain
VeE = 10 V, f = 1 MHz

0,4

0,6
-

h,. = f(le!

0,8 V 1,0
~Es.t ,vCE ..,

DC current gain hFE = f(le!
(standardized), VeE = 1 V

SH-H-t-tWIt-t-HI+tt1-tt-+-t-t+ffi1tt----1

5

10-1

L--L..Lu.wW--'-l..LW-LW--L-L.LL'-"'-'-~-,,"

10-1

-Ie

Siemens

5 100

5 101
rnA 102
-Ie

823

5MBT 5086
5MBT 5087

PNP Silicon Transistors

•

For AF input stages and driver applications

•
•

High current gain
Low collector-emitter saturation voltage

•

Low noise between 30 Hz and 15 kHz

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on a-mm tape

Package

5MBT 5086
5MBT 5087

S2P
S20

upon request
upon request

upon request
upon request

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage

VCEO

50

V

Collector-base voltage

VCBO

50

V

Emitter-base voltage

VEBO

V

Collector current
Total power dissipation
TA = 25°C

Ie

3
50
330

Junction temperature

Tj

150

°C

Storage temperature range

T stg

-65 ... +150

°C

R thJA

:5 375

K/W

Ptot

mA
mW

Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm

824

Siemens

5MBT 5086
5MBT 5087

Electrical characteristics
at TA = 25 DC, unless otherwise specified
DC characteristics

Collector-base breakdown voltage
Ic = 100 IlA
Emitter-base breakdown voltage
IE = 10 IlA
Collector cutoff current
VCB = 10 V, h = 0
VCB = 35 V, h = 0
VCB = 35 V, h = 0, TA = 150 DC
DC current gain
Ie = 1 00 1lA, VCE = 5 V

Ic = 1 mA, VCE = 5 V

Ie

= 10 mA, VCE = 5 V

min

typ

max

Unit

VIBRICEO

50

-

-

V

VIBRICBO

50

-

-

V

VIBRIEBO

3

-

-

V

-

-

10
50
20

nA
nA
IlA

500
800

-

-

-

0.3

V

Symbol

Collector-emitter breakdown voltage
Ie = 1 mA

I CBO

-

hFE

5MBT
5MBT
5MBT
5MBT
5MBT
5MBT

VCEsat

-

-

VBEsat

-

-

0.85

V

5086
5087
5086
5087
5086
5087

Collector-emitter saturation voltage 1)
I C = 10 mA; I B = 1 mA
Base-emitter saturation voltage.)
= 10 mA; IB = 1 mA

150
250
150
250
150
250

Ie

-

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ie = 0.5 mA, VCE = 5 V, f= 100 MHz

fT

40

-

-

MHz

Output capacitance
VCB = 5 V, f = 1 MHz

Cabo

-

-

4

pF

150
250

-

600
900

-

-

-

3
2

dB
dB

-

-

3
2

dB
dB

Small-signal current gain
Ic = 1 mA; VCE = 5 V, f= 1 kHz 5MBT 5086
I C = 1 mA; VCE = 5 V, f = 1 kHz 5MBT 5087
Noise figure
= 100 IlA, VCE = 5 V, f= 1 kHz,
Rs = 3 kO
5MBT 5086
5MBl' 5087
Ic = 2 mA, VCE = 5 V, f = 10 Hz to 15 kHz,
Rs = 10 kO
5MBT 5086
5MBT 5087

hfe

NF

Ie

1) Pulse test: t $;300 j.Js, D $;2 %

Siemens

825

5MBT 5086
5MBT 5087

Total power dissipation P'o' = f(TA )

mW

pF

400

12

~.t

i

Collector-base capacitance CeBo = f(VeBo)
Emitter-base capacitance CEBO = f( VEBO)

I\.

~~

I\.

300
~

8

I\.

,
'"
~

I/CCBO

200

6

I\.

~

i'

~

4

./ f"".r-,

C EBO

100

1\

2

o
o

100

50

I\.
150·(

-~

Pulse handling capability r'h = fIt)

K (standardized)

W

MHz

10°

103

r

5

-u.o

fr

~

!:;;
1

ITll
1'-0.5
0.2
0.1
0.05
0.02
0.01
0.005

III

5

2

fT

= f(Id

5

t

I

j...~

Transition frequency
VeE = 5 V

l2

t,..

V

1'-0=0

5

5

t~
T
T

O=.l.

1

3

10""

10-6 10-5 10-4 10-3

10-2 10- 1 10°

10 10-1

S

-t
826

5 10'
-Ie

Siemens

5MBT 5086
5MBT 5087

Collector-emitter saturation voltage

Base-emitter saturation voltage Ie ; f( VB' ",)
hFE = 40

Ie = t(Ve, ",)

rnA
10 2
Ie 5

Ie

100

0(

2so~8

r

1/ I I

II

_50°(1

25°(
If, V V l00
5

5

5

10-1

0,2

0,4

0,6
-

Collector current Ie
Ve, = 1 V

1,0

0,8

-SOO(

//

t

1/

= 40

5

5

o

hFE

0(

'"

11)"1

o

1,2 V

0,1

0,2

0,3

0,4

0,5 V

-VcEsa'

VBfsat

= f(VB')

DC current gain hFE = f(lel
Ve, = 1 V

I
l00 0 (

1QD

5

I

_50 0 (

25°(

,
I

lO- 1

S

I
0.5

100 l-L...llLLWL.--'-'--'-lllllL..L.LlJ..WlJL.....L.J.J.J.J.JJlJ
10-2 5 10-1 5 100
5 101
5 10 2 rnA

I,O-V

-Ie

Siemens

827

5MBT 5086
5MBT 5087

Collector cutoff current

IeBO

Noise figure NF = fWe,)
rnA, Rs = 2 kO, f

= f( TA )

Ie = 0.2
dB
20

= 1 kHz

~"nTIm-.-~n=-'~T'=

NF

1 15 ~~~~~H+Hm-4-H~
V

max.

i7

1/
typo

,

1.1
1.1

OL-LLLUlliL-L~Ull~~~~

150 DC

50

5 100

10-'

5 102 V

5 10'

-VcE

Noise figure NF = f(f)
= 0.2 rnA. Rs = 2 kO, VeE

Ie

Noise figure NF = f(Iel
VeE = 5V,f= 120Hz

=5 V

dB
20

dB
20

II'

m
IIII
I'
Ii!

I
,

~

IRs=1Mn

100kn

!I

,

10

II

,

1\

10
I

~

5

10kn/
111I
I~

!

i

,

i

i'!

5

i

I

,

l
j 5oon
I

il

I

IY\
n---;;

~

·i!l!
lkQ
11111
11111
11111

101 rnA

828

Siemens

5MBT 5086
5MBT 5087

Noise figure NF = f(lel
VeE = 5 V, f=10 kHz

Noise figure NF = f(lel
VeE = 5 V, f = 1 kHz

dB
20

dB
20
I

NF

I

Rs=lMIl

Rs =lMIl 100 k if 10k11,

I
IV

\

fl00k

II I I

I

10 1\

I

10
lkll ,

II
II

0011

i

10kll

17
5

1\
'\.

o

-

,/

II

/

I\,
,

5

11'50011
~

III
III

lkll\.

I III
I III

11111
III~

I III

o

10-3

10-3

jJ5j.,..

I

/

V-

'"
--Ie

-Ie

Siemens

829

5MBT 6427

NPN Silicon Darlington Transistor

•

For general amplifier applications

•

High collector current

•

High current gain

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

5MBT 6427

S1V

upon request

upon request

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Total power dissipation
.TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO

40
40
12
500
800
360

V
V
V
rnA
rnA
mW

Tst9

150
-65 ... +150

°C
°C

RthJA

=::; 350

K/W

Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm

830

Ie
ICM

Ptot

7j

Siemens

5MBT 6427

Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Collector-emitter breakdown voltage

min

typ

max

Unit

V(BR)CEO

40

-

-

V

V(BR)CBO .

40

-

-

V

V(BR)EBO

12

-

-

V

-

50
10

nA
I1A

ICED

-

-

1

I1A

hBO

-

-

50

nA

Symbol

1e=10mA
Collector-base breakdown voltage
Ic = 100 I1A
Emitter-base breakdown voltage
IE = 10 I1A
Collector cutoff current
VeB = 30 V, h = 0
VeB = 30 V, h = 0, TA = 150°C
Collector cutoff current
VCE = 30 V, IB = 0
Emitter cutoff current
V EB = 10 V. Ic = 0
DC current gain
= 10 mA, VeE = 5 V
Ic = 100 mA, VeE = 5 V
Ie = 500 mA, VeE = 5 V

leBO

hFE

Ie

Collector-emitter saturation voltage 1)
= 50 mA; IB = 0.5 mA
= 500 mA; IB = 0.5 mA

VCEsat

Base-emitter saturation voltage 1)
= 500 mA; IB = 0.5 mA

Ie
Ie
Ie

Base-emitter voltage
I C = 50 mA; VeE = 5 V

100000 200000 140000

10000
20000
14000

-

-

1.2
1.5

.V
V

VB Esat

-

-

2.0

V

VBE(on)

-

-

1.75

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 50 mA, VCE = 5V, f = 100 MHz

fT

130

-

-

MHz

Output capacitance
VeB = 10 V, f = 1 MHz

Cobo

-

-

7

pF

Input capacitance
V EB =0.5V,f= 1 MHz

Cibo

-

-

25

pF

Noise figure

NF

-

-

10

dB

1e=1 mA, VcE =5 V, Rs=100 kQ
f

= 1 kHz to 15kHz

1) Pulse test: t'; 300 fls. D'; 2 %

Siemens

831

5MBT 6427

Total power dissipation p.o. = f(TA )

COllector-base capacitance CeBo = f(VeBo)
Emitter-base capacitance CEBO = f(VEBO)

pF
10

mW
400

CEBO
ICcBo)

,

~Dt

1

,

1

300

"'"

1\

"

200

5

r\

" .....
~BO

.....

. . . . r11'
-....
I"EB .......

,

100

I'\.

o
o

100

50

-~

.K

W
10°

150 DC

5

Pulse handling capability r'h = f(t)
(standardized)

MHz

fr

0,2
0,1
0,05
0,02

5

10-

,

V
I

5

5

~

2

D:1

T

T

'"'
'III
III'
10-3
10-6 10-5 10-4 10- 3 10- 2 10- 1 10°

1

°

10 10

101 S

-f

832

101 V

I

102

0,005
D:O 1111

,

5

VEBO (VCBO )

5

2

0.01

2

~

Transition frequency fT = f(Iel
VeE = 5 V

t

f',1

I' 0,5

1

10°

10 3

II
M

5

r

"

Siemens

5 101

5MBT 6427

Base-emitter saturation voltage Ie = f( VB' ,,,)
h" = 1000

mA
103
Ie

Collector-emitter saturation voltage
Ie = f We",,)
h" = 1 000

5

'/

1/11

t

I

/7

5
I

IL.
125°C
t---2~oC

1=

-55°C
5

100

3 V

2

o

0,2

0,4

0,6

Collector cutoff current leBO

VeB

=

0,8

= f(TA )

DC current gain h"
VeE = 5 V

VeE max

1,2 V

1,0

--VcE

VeE sat

sat

= f(lel

5

r

'"
l. .

5

max.

i
III

1~OC

....

25°C

~

-55°C

i
I
I

I

II

.,

I

V

f7
Vtyp.

!

I..-

5

5
!

50

100
-7;.

103
10-1

150 DC

i
5 100

5 10 1

5 10 2

5 103 mA

-Ie

Siemens

833

5MBT6428
5MBT 6429

NPN Silicon Transistors

•

For AF input stages and driver applications

•
•

High current gain
Low collector-emitter saturation voltage

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

5MBT 6428
5MBT 6429

S1 K
S1 L

upon request
upon request

upon request
upon request

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

5MBT 6428

5MBT6429

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-b~se voltage
Collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO

50
60

45

V

Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm

834

VEBO
Ic

55

V
V

Ptot

6
200
330

7j
Tstg

150
-65 ... +150

°C
°C

RthJA

:s; 375

Siemens

mA
mW

K/W

5MBT 6428
5MBT 6429

Electrical characteristics
at TA = 25°C, unless otherwise specified
Symbol

DC characteristics
Collector-emitter breakdown voltage
5MBT 6428
= 1 mA
5MBT 6429

min

typ

max

Unit

50
45

-

-

V
V

60
55

-

-

V
V

6

-

-

V

-

-

10
10

~A

leED

-

-

100

nA

lEBo

-

-

10

nA

VIBRICED

le

Collector-base breakdown voltage
5MBT 6428
= 10 fJA
5MBT 6429

VIBRICBO

le

Emitter-base breakdown voltage
= 1 fJA

VIBRIEBO

IE

Collector cutoff current
VCB = 30 V, IE = 0
VCB = 30 V, h = 0, TA = 150 °C

leBO

Collector cutoff current

nA

VcE =30V,I B =0
Emitter cutoff current
VEB = 5 V, Ic = 0
DC current gain
= 10 fJA, VCE = 5 V

le

IC

= 100 fJA,

le

= 1 mA,

le

= 1 0 mA,

VCE

VCE

= 5 V

= 5 V

VCE

= 5 V

hFE

5MBT
5MBT
5MBT
5MBT
5MBT
5MBT
5MBT
5MBT

6428
6429
6428
6429
6428
6429
6428
6429

Collector-emitter saturation voltage 1}
= 10 mA; IB = 0.5 mA
= 1 00 mA; I B = 5 mA

250
500
250
500
250
500
250
500
VCEs,t

le
IC

Base-emitter voltage
= 1 rnA; VCE = 5 V

650
1250

-

VBElonl

-

-

0.2
0.6

V
V

0.56

-

0.66

V

IC

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
= 5 rnA, VCE = 5 V. f = 100 MHz

fT

100

-

700

MHz

Output capacitance
VCB = 10 V, f = 1 MHz

Cobo

-

-

3

pF

Input capacitance
VEB = 0.5 V, f= 1 MHz

Cibo

-

-

15

pF

le

I) Pulse test: t:5 300 fjs, D:5 2 %

Siemens

835

5MBT 6428
5MBT 6429

Total power dissipation p.o. = f( TA )

PF

mW
400

12

-':01

I

Collector-base capacitance CeBo = f(VeBo)
Emitter-base capacitance CEBO = f(VEBO)

~b.

""
......

300
8

1\
200

6

\

""- "-

/CCBO

"""
"'-

1'0

1\
1\

4

, / 1' ....

C EBO

\

100

....

\
1\

o
o

2

1\
50

100

150°C

5

-~

Pulse handling capability r'h = f(t)

10 0
-

Transition frequency fT
VeE = 5 V

K (standardized)

5
10' V
VCBO (VEBO)

= f(lel

Iii
100

1

11

tR

5

10-2

t'O,5
0,2
0,1
0,05
0,Q2
0,01
0,005
0=0 1111

~r-

/V'

I

Ii
5

5

1t::f1-

0=1

T

T

,to,
10-3
10-6 10- 5 10- 4 10- 3 10- 2 10-1 100

10' s

5 10'
-I(

~f

836

Siemens

5MBT 6428
5MBT 6429

Base-emitter saturation voltage

Collector-emitter saturation voltage

Ie= fW"",)
h" = 40

[e = fWeE "tl
h" = 40

mA
10 2
Ie

Ie

)

>->-

100·(

>- 25.~8J

IT 77

- 50 .(1

II

t

II

I

5

II

I

A

VV

-SO·C
2S·C
l00·C

0,2

0,3

5

,

10-

o

,

0,2

0,4

0,6

1,0

0,8

VeE

10-

1,2 V

VeE

7
J

=

0,5 V

1 V

f-l00 .( f-

7

I

0,4

DC current gain h" = f(Iel

VeE = 1 V

100·C

0,1

-VcEsat

Collector current Ie = f(VB ,)

lO-

o

sat

~
-50·(

a

1=

1=

I-

II
2S·C

-so·c

5

,
5

S

2

I
0,5

10°

1,0 V

10-2

5 10-'

5 10°

5 10'

5 10 2 mA

-Ie

Siemens

837

5MBT 6428
5MBT 6429

Collector cutoff current

leBO

= f( TA )

1/

ma~I'

1.1

10'
5

typo

,

/
50

100

150 0 (

-7A

838

Siemens

NPN Silicon AF Transistors

•
•
•

5MBTA 05
5MBTA06

High break down voltage
Low collector-emitter saturation voltage
Complementary types: 5MBTA 55, 5MBTA 56 (PNP)

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

5MBTA05
5MBTA06

S1H
S1G

Q68000-A6402
Q68000-A6403

Q68000-A3430
Q68000-A3428

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

5MBTA05

5MBTA06

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature

VCEO
VCBO
VEBO
Ic
ICM

60
60

80
80

Ptot

4
500
1
100
200
330

V
V
V
mA
A
mA
mA
mW

Tj
Tstg

150
-65 .. ·+150

°C
°C

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

RthJA

IB
IBM

:5 375

Siemens

K/W

839

5MBTA05
5MBTA06

Electrical characteristics
at

TA =

25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
5MBTA05
Ic = 1 rnA
5MBTA06

V(BR) CEO

Collector-base breakdown voltage
5MBTA05
Ic = 100 IJ.A
5MBTA06

V(BR)CBO

Emitter-base breakdown voltage
IE = 10 IJ.A
Collector cutoff current
5MBTA05
VCB = 60V
5MBTA06
VCB = 80V
5MBTA05
VCB = 60 V, TA = 150°C
5MBTA06
VCB = 80 V, TA = 150°C

V(BR)EBO

min

typ

max

Unit

60
80

-

-

-

-

V
V

60
80

-

-

-

V
V

4

-

-

V

-

-

100
100
20
20

nA
nA
IJ.A
IJ.A
nA

ICBo

Collector cutoff current
VCE = 60V

ICEO

DC current gain')
Ic = 10 rnA, VCE = 1 V
Ic = 100 rnA, VCE = 1 V
Collector-emitter saturation voltage ')
Ic = 100 rnA, IB = 10 rnA
Base-emitter saturation voltage ')
Ic = 100 rnA, VCE = 1 V

hFE

AC characteristics

-

-

-

VCEsat

-

-

VBEsat

-

-

50
50

100

-

-

0,25

V

1,2

V

-

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 rnA, VCE = 5 V, f= 20 MHz

fT

-

100

-

MHz

Output capacitance
VCB = 10V, f= 1 MHz

Cob

-

12

-

pF

840

Siemens

5MBTA05
5MBTA06

Total power dissipation P,o' = ((TA)

Collector current

mW

rnA

400

10 J

~ot

t

Ie

= f (VeE sat)

1-"- I-l00 0 (
1---1---

I--- 25°(,

-50 O( '1.'1

300

\.
200

II

10'

I\,

o
o

I

\

100

i".
I\,
50

,

II

a

0,5

lO-

150 O(

100

-7;.

Pulse handling capability
(standardized)

r'h =

1,0

1,5 V

-Val

Transition frequency fT = f (l c)
VeE = 5V

f (t)

K

Iii

10°

lih 5

f

,
5

R

-

I

"0,5
0,2
0,1
0,05
0,02
0,01
0,005

0=0 IIII

2

5

/
V

5

~

tp

O=y

I--- T

10- J
"'
10-6 10- 5 10- 4 10- J 10- 2 10-' 10°

10'

5 101

S

-t

Siemens

841

5MBTAOS
5MBTA 06

Base-emitter saturation voltage I c
hFE =

=

f

(VBE sad

10

Collector-emitter saturation voltage
Ie = f( VeE sat)

10

hFE =

mA
10 3

Ie

100 °c'

H- 25 o~"
_ 50 °c,

I-

1

./

il/I/

//

//~ ~

II

I

10'

/

::::

100 "C
/,25 °c
-50 o C

5

II

5

,
0,5

1,0

0,2

1.5 V

0,4

-~VBEsat

Collector cutoff current I CBO

=

0,6

0,8 V

-~VcEsat

DC current gain h FE = f (l c)
VCE = 1 V

f ( TA)

VCB = VCEmax

nA
10 4
5
1/

max ~/

-100 °c

i""-

125 °c
/

f.....

=50

0

5 ;;;

-

typ,

10'
5

10'
5

,

/
50

100

150

°c

10°
10-1

-TA
842

5 1fP

5 10'

5 10 2
-Ie

Siemens

5 103 mA

5MBTA 13
5MBTA 14

NPN Silicon Darlington Transistors

•
•
•

High DC current gain
High collector current
Collector-emitter saturation voltage

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

5MBTA 13
5MBTA 14

S1M
S1N

Q68000--A4331
Q68000--A4332

Q68000--A6475
Q68000--A6476

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25 DC
Junction temperature
Storage temperature range

VCEO

Ptot

30
30
10
300
500
100
200
330

V
V
V
mA
mA
mA
mA
mW

Ti
Tstg

150
-65···+150

DC
DC

RthJA

::; 375

K/W

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VCBO
VEBO

Ic
ICM
IB
IBM

Siemens

843

5MBTA 13
5MBTA 14

Electrical characteristics
at TA

=

25 cC, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ie = 10 flA

V(BR) CEO

30

-

-

V

Collector-base breakdown voltage
Ic=10flA

V(BR) CBO

30

-

-

V

Emitter-base breakdown voltage
Ie = 10 flA

V(BR) EBO

10

-

-

V

Collector cutoff current
VCB = 30V

ICBO

-

-

100

nA

Emitter cutoff current
VEB = 10V

leBO

-

-

100

nA

DC current gain
Ic = 10 mA, VCE

hFE

5MBTA 13
5MBTA 14

5000
10000

-

-

-

-

5MBTA 13
5MBTA 14

10000
20000

-

-

-

Ic

=

=

5V')

100 mA, VCE = 5 V')

Collector-emitter saturation voltage')
Ic = 100 mA, IB = 0,1 mA

VCEsat

-

-

1,5

V

Base-emitter saturation voltage ')
Ic = 100 mA, IB = 0,1 mA

VBEsat

-

-

2

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 50 mA, VCE = 5 V, f= 20 MHz

fr

125

-

-

MHz

844

Siemens

5MBTA 13
5MBTA 14

Total power dissipation P tot = f( TA)

Capacitance Gcso = f(Vcso)
Geso = f (Veso)
f= 1 MHz

mW
400

pF
10
[ EBO

~ot

t

I[ CBO)

-

t

300

'"

"'- ",,

\.
200

.

~BO

5

h'-.... I'-.... ....

I\,

[EBO

\

100

o
o

\

I\,
50

150 0 (

100

10 0

5

5

10 ' V

- - - VEBO ( VcBol

-7;,

Transition frequency fr = f (I cl
VCE = 5 V, f= 20 MHz

Pulse handling capability rth = f(f)
(standardized)

K

W
10 0

,
10-

l1li

~

5

I

'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005

/'

D=O 1111

I

5

5

o=f1tn10-1

~~

,

i--- r-i

w·

'"

~ WI

''''~

~

~s

5 10'

-t

Siemens

845

5MBTA 13
5MBTA 14

Base-emitter saturation voltage VSE sa'
hFE = 1000

'(l el

Collector-emitter saturation voltage
VCEsa, = f(Iel
hFE = 1000

mA

mA

1Ql

10l

5

150°C4i 25 OC

Ie

r

=

I

/I

10 2

/1/

-50°C

L11

5
5

I

IL
125°C
1--25°C
-55°C

10'

10-'

L-JLJL...L---'-_-'--_--'-_...L...----'

o

2

10°

3 V

o

0.2

0,4

0,6

0,8

1,0

-VCE
Collector cutoff current I cso = '( TA)

DC current gain hFE

Vcs=30V

VCE

==

1.2 V

sat

= '(Ic)

= 5V

;'

125°(
~~
~.1

_55°(

..... r-

1/

Vtyp.

10'

5

50

100

150°C

103
10-'

--7;.

846

°

5

max.

5 10°

5 10'

5 10 2

-Ie

Siemens

5 10 l rnA

NPN Silicon AF Transistor

•
•

5MBTA20

High DC current gain
Low coliector-emitter saturation voltage

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

5MBTA20

S1C

068000-A4333

068000-A6477

SOT 23

Maximum ratings
Parameter

Coliector-emitter voltage
Emitter-base voltage
Coliector current
Peak coliector current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range
Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

Symbol

Ratings

Unit

VCEO
VEBO

40
4
100
200
200
330

V
V
mA
mA
mA
mW

Tstg

150
-65··· + 150

°C
°C

RthJA

::5 375

K/W

Ic
ICM
IBM
Ptot
Tj

Siemens

847

5MBTA20

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage
Ic = 1 mA

V(BR) CEO

40

-

-

V

Emitter-base breakdown voltage
le = 100 ~A

V(BR) EBO

4

-

-

V

Collector cutoff current
VCB=30V
VCB = 30 V, TA = 150°C

ICBo

-

100
20

~A

Emitter cutoff current
VEB = 4 V

leBO

-

-

20

nA

DC current gain

hFE

40

-

400

-

Collector-emitter saturation voltage')
I C = 10 mA, I B = 1 mA

VCEsat

-

-

0,25

V

-

nA

Ic=5mA, VCE= 10V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20 mA, VCE = 5 V, f= 100 MHz

fT

125

-

-

MHz

Output capacitance
VCB = 10V, f= 1 MHz

Cob

-

-

4

pF

848

Siemens

5MBTA20

Collector-base capacltence CeBo = t(VeBo)
Emitter-base capacitance CEBO = t(VEBO)
t= 1 MHz

Total power dissipation Ptot = t( TA)

mW

pF

400

12

~ot

t

T) "-

( eso
(C
10

r-I-\.
300

8

\.
6

200

"

"'- r"-

'\
jeso

"'"

r-.

I\,

..........

4

CE-;;: 1'- ....

\

100

....

1\
1\

o
o

50

~
150 0 (

100

--7;.
Transition frequency tT = f (I c)
VeE = 5 V, f= 100 MHz

Pulse handling capability rth = t (t)
(standardized)
K

'Vi

MHz

10°

101

III

~

10-1

10-I

'r

5

t

1'0,5
0,2
0,1
0,05
0,02
0,01
0,005
0=0 IIII

V

/

-

5

5

~

tp

D=r

10-1

~~ ~

I-- T-

'" '"
W1 Wi ~

~

~s

10'
10-'

-t

5 10 '

5 10 1 rnA

-Ie

Siemens

849

5MBTA20

Base-emitter saturation Yoltage Ie = f (VBE sat)
hFE = 20

Collector-emitter saturation Yoltage

~

~

10 2

10 2

f

125°(
25°(

'f

_50°(,

t;~

Ie = f(VeE5.t)
hFE = 20

" -50

II

I /

f

[r

0(

25°(
/100 0 (

5

II

5

10-

5

,

,

II

o

0,2

0,4

0,6

0,8

1,0

----- VBE

0,1

1,2 V

0,3

0,2

0,4

0,5 V

, - - - VCEsat

sat

Collector cutoff current leBO = f (TA)
VeB = 30V

DC current gain hFE
VeE = 1 V

=

f (l c)

nA
10·

-

r-100 O(

1/

max.

V

~
_50
0(

IL

k

typ.

10'

5

10'

5

,

/
50

100

150

10°
O(

10- 2

-JA
850

5 10-'

5 10°

5 10'
-Ie

Siemens

5 10 2 mA

NPN Silicon Transistors for High Voltages

•
•
•

5MBTA42
5MBTA43

High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: 5MBTA 92. 5MBTA 93 (PNP)

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

5MBTA42
5MBTA43

SlO
S1E

068000-A4329
068000-A4330

068000-A6478
068000-A6482

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

5MBTA42

5MBTA43

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA= 25°C
Junction temperature
Storage temperature range

VCEO

300
300

200
200

Ptot

6
500
100
360

V
V
V
mA
mA
mW

Tj
Tstg

150
-65 .. ·+150

°C
°C

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

VCBO
VEBO

Ic
IB

:S;

RthJA

Siemens

350

K/W

851

5MBTA42
5MBTA43

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 1 rnA
5MBTA42
5MBTA43

VCBR) CEO

Collector-base breakdown voltage
Ic = 100 ~A
5MBTA42
5MBTA43

VCBR)CBO

Emitter-base breakdown voltage
iE = 100 ~A
Collector cutoff current
5MBTA42
VCB = 200 V
5MBTA43
VCB = 160V
VCB = 200 V, TA = 150°C
5MBTA42
VCB = 160 V, TA = 150°C
5MBTA43

VCBR) EBO

min

typ

max

Unit

300
200

-

-

V
V

-

-

V
V

nA
nA

300
200
6

-

V

ICBo

-

Emitter cutoff current
VEB = 3 V

iEBo

DC current gain
Ic = 1 rnA, VCE = 10V
Ic = 10 rnA, VCE = 10 V')
Ic = 30 rnA, VCE = 10 V')

hFE

5MBTA42
5MBTA43

Collector-emitter saturation voltage ')
Ic = 20 rnA, IB = 2 rnA
5MBTA42
5MBTA43

VCEsat

Base-emitter saturation voltage')
I c = 20 rnA, I B = 2 rnA

VBEsat

-

-

-

100
100
20
20

~A
~A

-

-

100

nA

25
40
40
40

-

-

-

-

-

-

-

-

0,5
0,4

V
V

-

-

0,9

V

-

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 10 rnA, VCE = 20 V, f= 100 MHz

fr

50

-

-

MHz

Output capacitance
VCB =20V, f= 1 MHz

Cob

-

-

3
4

pF
pF

5MBTA42
5MBTA43

-

') Pulse test: t ~ 300 ~s, D = 20/0.
852

Siemens

-

5MBTA42
5MBTA43

Total power dissipation P tot = t(TA)

Transition frequency tT = t (l e)
VCE = 10 V, t= 100 MHz

mW

MHz

400

103

Ptot

fr

1\

1

300

I

\

5

1\

1\

200

\

5

\.
100

V

I\.

o

/
\

o

50

150°C

100

5 10'

-~
Pulse handling capability rth = t(t)
(standardized)
K

10°

'i.

5

I'
10~s

'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
0=0 1111

5

2

= tWCEO)

rnA
103

IIIJ

,

Ie

TA=25°C,D=0

..

iii

I

Operating range

\\

10'

100 ~s
1m s
lOOms

5

SOOms

DC

T

10- 3

fp I--

.fi.:.-rL.

--i

0=.1

i-- T-,
tiL

,

UH

10- 6 10- 5 10- 4 10- 3 10- 2 10-'

10°

10' s

5 10'

-t

Siemens

853

5MBTA42
5MBTA43

Collector cutoff current I ceo = '( TA)
Vce = 160V

Collector current Ic = '(VeE)
VCE = 10V

nA
10 4
5

mA

10 3
5
max.

."

1"-

je

5

/

k

10 2

10 1

typo

101
5

f-

5

5

/

1

1

50

100

150

0,5

0(

hFE =

'(le)

F

1=

i=!

,--'
'-;

--

5

~

2
i

10 1
5

,
-!

,
--

100
10- 1

5' 100

5 10 1

5 10 2

5 10 3 mA

-Ie

854

1,0

-VaE

-TA
DC current gain
VCE = 10V

,

Siemens

1,5 V

5MBTA 55
5MBTA 56

PNP Silicon AF Transistors

•
•
•

High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: 5MBTA 05, 5MBTA 06 (NPN)

Type

Marking

Ordering code
for versions In bulk

Ordering code for
versions on 8 mm-tape

Package

5MBTA55
5MBTA56

S2H
S2G

Q68000-A7420
Q68000-A7421

Q68000-A3386
Q68000-A2882

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

5MBTA55

5MBTA56

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO,
VEBO
Ic
ICM

60
60

80
80

V
V
V

Thermal resistance
Junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

RthJA

Ptot

4
500
1
100
200
330

Tj
Tstg

150
-65···+150

IB
IBM

:5 375

Siemens

mA
A
mA
mA
mW
°C
°C

K/W

855

5MBTA55
5MBTA56

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 1 mA
5MBTA55
5MBTA56

V(eR) CEO

Collector-base breakdown voltage
Ic = 100 itA
5MBTA55
5MBTA56

V(eR) ceo

Emitter-base breakdown voltage
IE = 10 ItA

V(BR)EBO

Collector cutoff current
Vce = 60V
Vce = 80V
VCB=60V, TA= 150°C
Vce = 80 V, TA = 150°C

ICBo
5MBTA55
5MBTA56
5MBTA55
5MBTA56

min

typ

max

Unit

60
80

-

-

V
V

60
80

-

-

V
V

-

100
100
20
20

nA
nA
itA

ItA

100

nA

-

-

-

0,25

V

1,2

V

4

-

-

-

Collector cutoff current
VCE = 60V

ICEO

DC current gain')
Ic= 10 mA, VCE = 1 V
Ic = 100 mA, VCE = 1 V

hFE

Collector-emitter saturation voltage ')
Ic = 100 mA, IB = 10 mA

VCE(sat)

-

-

Base-emitter saturation voltage ')
Ic = 100 mA, VCE = 1 V

VBE(sat)

-

-

50
50

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 20mA, VCE = 5V, f= 20 MHz

fT

-

100

-

MHz

Output capacitance
Vce = 10V, f= 1 MHz

Cob

-

12

-

pF

') Pulse test: t~ 300 its, D = 20/0.

856

Siemens

5MBTA55
5MBTA 56

Total power dissipation Ptot = f (TA)

Collector current Ie = f (VBE sat)
VCE = 1 V

rnW
400

rnA

10 3

5

;:;,1

t

r-_ 1OOO(
1-- 25 'C bL

"'\

J

-50 o~'J Ii

300

1\
200

I

101

\

.'\
100

o
o

I

1\

\
50

100

10-1

o

150 ·C

0,5

1,0

1,5 V

-VBE

Pulse handling capability rth
(standardized)

Transition frequency fT = f (l cl
VCE = 5V

= f (t)

K

W

MHz

•

10°

10 3

1111

~Rll

I I

0,5
0,2
0,1
0,05
, 0,02
0,01
0,005
0=0 1111

1

2

v

~ .....

5

l"-

5
D=

1trr

!£.
T

10-

3

1--- T _-j

'"

10-' 10- 5 10- 4 10- 3 10- 2 10-' 10°

10' s

5 101

-t

Siemens

857

5MBTA55
5MBTA 56

Collector-emitter saturation voltage

Base-emitter saturation voltage VBE sat = '(l e)
hFE = 10

VCE,at = '(le)

hFE = 10
mA

10 3
100°C
f- 25 o~"
-S( °C

'=

Ie

f'll

5

'./

I'

t

I

{

,.,'"

~

V

100·C
25 ·C
-SO·C

5

I

5

,
0.5

1.0

1.0 V

0.5

1.5 V

~VcEsClt

----- VBE sat

DC current gain hFE = '(l cl
VCE = 1 V

Collector cutoff current I cao = '( TA)
VCB = VCEmax

If

max.

V
'100°
25°C

.....

.....

-50°

5
typo

5

,

/
50

100

150°C

10°

'10-'

-7i..
858

Siemens

5 10°

5 10'

5 10 2
-Ie

5 103 mA

5MBTA63
5MBTA64

PNP Silicon Darlington transistors

•
•

High collector current
High DC current gain

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

5MBTA 63
5MBTA 64

S2U
S2V

Q6800Q-A6419
Q6800Q-A6420

Q6800Q-A2625
Q6800Q-A2485

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

5MBTA63

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Peak collector current
Base current
Peak base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
Vcso
VESO

30
30
10

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

Ic
ICM
Is
ISM
Ptot
Tj
Tstg

5MBTA64

V
V
V
mA
mA
mA
mA
mW

150
-65···+150

°C
°C

:S 350

RthJA

Siemens

Unit

30
30
10
500
800
100
200
360

K/W

859

5MBTA63
5MBTA64

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characteristics

Symbol

min

typ

max

Unit

Collector-emitter breakdown voltage

V(BR) CEO

30

-

-

V

Collector-base breakdown voltage
Ic=101lA
Emitter-base breakdown voltage
IE = 1O!lA

V(BR)CBO

30

-

V

V(BR) EBO

10

-

-

Collector cutoff current
VCB = 30V

ICBo

-

-

100

nA

Emitter cutoff current
VEB=10V

lEBO

-

-

100

nA

DC current gain')
Ic= 10mA, VCE=5V

hFE
5MBTA63
5MBTA64

5000
10000

-

-

-

-

-

5MBTA63
5MBTA64

10000
20000

-

-

-

1,5

V

2

V

Ic=10!lA

Ic= 100mA, VCE=5V

V

-

Collector-emitter saturation voltage')
Ic = 100 mA, IB = 0,1 mA

VCEsat

-

-

Base-emitter saturation voltage')
Ic = 100 mA, IB = 0,1 mA

VBEsat

-

-

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 50 mA, VCE = 5 V, f= 20 MHz

fT

125

-

-

MHz

') Pulse test: t:5, 300 !ls, D = 20/0.
860

Siemens

5MBTA 63
5MBTA64

Total power dissipation Ptot

= f

(TA)

Collector-base capacitance C CBO = f ( V CBO)
Emitter-base capacitance CEBO = f (VEBO)
f= 1 MHz

pF
10

mW
400
[ EBO

I[ (BO)

Ptot

i

\

I'" "I'-

300

1\

~

I'-

\

200

5

*BO

't-~ .....
[EBO

\

l"100

\.

o

[\

o

100

50

150°C

10 0

Pulse handling capability rth
( standardized)

=

5
--

-~

VEBO

10' V

I

V(BO)

Transition frequency IT = f (I c)

f (t)

VeE =

5V

K

W

MHz

10 0

10 3

'in

1 ,

It
I

'0,5
0,2
0,1
0,05
, 0,02
0,01
0,005

5

I-"

D=O 1111

1

tp

5

~

D=y

f-- T ---J
10- 3
""
10- 6 10- 5 10- 4 10- 3 10- 1 10- 1 10 0

101

5 10 1

S

-f

Siemens

861

5MBTA63
5MBTA64

Base-emitter saturation voltage Ie = ((VeE satl
hFE = 1000

Collector-emitter saturation voltage

Ie = ((VeEsatl
hFE = 1000
mA

10l

Ie

5

III

t

I //
5

I125°C
-25°C
-55°C

101

~

5

II
10-1 L..L.JL..I.---L_-.L_...L_-'-----1
o
2
3 V

10°

o

0,2

0,1,

0,6

0,8

1,0

1,2 V

--\thSit

Collector cutoff current I ceo = ( TAl
Vce = VCEmax

DC current gain hFE = f (I cl
VCE = 5 V

nA
106

10'

V
125°C
·7<;0

l ...

max.

-55°C

5

1.1

10'

I......

Dtyp.
5

10l

50

100

150°C

10-'

--7;..

862

5 10°

5 10'

5 10 2

-Ie

Siemens

5 10l mA

5MBT A 70

PNP Silicon Transistor

•

For AF input stages and driver applications

•
•

High current gain
Low collector-emitter saturation voltage

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

5MBT A 70

S2C

upon request

upon request

SOT 23

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage

VCEO

40

V

Emitter-base voltage

V EBO

4

V

Collector current

Ie

100

rnA

Peak collector current

IeM

200

rnA

Peak base current

IBM

100

rnA

Total power dissipation
TA = 25°C

Ptot

330

mW

Junction temperature

7j

150

°C

Storage temperature range

T stg

-65 ... +150

°C

RthJA

:5 375

K/W

Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm

Siemens

863

5MBTA 70

Electrical Characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Collector-emitter breakdown voltage

Symbol

min

typ

max

Unit

V(BR)CEO

40

-

-

V

V(BR)EBO

4

-

-

V

-

100
20

nA
iJA

hBo

-

20

nA

hFE

40

-

400

-

VCEsat

-

-

0.25

V

Ie = 1 mA
Emitter-base breakdown voltage
= 100 iJ A

h

Collector cutoff current
V CB = 30 V, IE = 0
VCB = 30 V. h = 0, TA = 1 50°C
Emitter cutoff current
V EB = 4 V, Ie = 0
DC current gain
mA, VCE = 10 V

I CBO

Ie = 5

Collector-emitter saturation voltage 1 )

Ie = 10 mA; IB = 1 mA
AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ie = 5 mA, VCE = 10 V, f= 100 MHz

fT

125

-

-

MHz

Output capacitance
V eB = 10 V, f = 1 MHz

Cobo

-

-

4

pF

864

Siemens

5MBTA 70

Total power dissipation PIo1

= f( TA)

Saturation voltage

rnW
400

~o,

t

2

Ie =

f( VB' "I, VC",')

1/

V
v
/

1--"

,

300

I

I

L

i/

\.

,

200

lVBE

VcE

\.

,

100

5

1\

o
o

1\
50

0,2

150 D(

100

0,4

0,6

0,6 V 1,0

--T;,

Small-signal current gain
VCE = 10 V, f = 1 MHz

h,. = f(lel

DC current gain hFE = f(lel
(standardized), Vc, = 1 V

101

5

1

125°(

-

....... 1--'

~Jl~~
_55°(

l-

5

5

I

,\

~

1

5 101

5 rnA 101

rnA 102

• Jc

-Ie

Siemens

865

5MBT A 70

Total power dissipation P'o'

= f(TA )

Saturation voltage Ie

rnW

2
rnA

400

/

~ol

t-- 300

'/

= f(V. E ,,,, VeE",)

V

if

rI

J

il

\.
200

/V

1'cE

eE

\.
5

\

100

1\

o
o

\
50

0,2

100

0,4

--~

Small·signal current gain h'e
VeE = 10 V, f = 1 MHz

0,6
-

0,6 V 1,0
VeE.al

,VeE.al

DC current gain h" = f(lel
(standardized), VeE = 1 V

= f(lel

5~f-+H++HI-+-t+ttttll--t-t-t+ttttt---1

5

L-LLllllllL..Ll.LLlillL:-'-LLLWlL~.,w

10·'
10·'

-Ie
866

Siemens

5 100

5 10'
rnA 102
-Ie

5MBTA92
5MBTA93

PNP Silicon Transistors for High Voltages

•
•
•

High breakdown voltage
Low collector-emitter saturation voltage
Complementary types: 5MBTA 42, 5MBTA 43 (NPN)

Type

Marking

Ordering code
for versions in bulk

Ordering code for
versions on 8 mm-tape

Package

5MBTA92
5MBTA93

S2D
S2E

Q6800Q-A4338
Q6800Q-A4339

Q6800Q-A6479
Q6800Q-A6483

SOT 23
SOT 23

Maximum ratings
Parameter

Symbol

5MBTA92

5MBTA93

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Base current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

VCEO
VCBO
VEBO
Ic
IB

300
300

200
200

Ptot

5
500
100
360

V
V
V
mA
mA
mW

Tj
Tstg

150
-65···+150

°C
°C

Thermal resistance
junction - ambient
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

:5 350

RthJA

Siemens

K/W

867

5MBTA 92
5MBTA 93

Electrical characteristics
at TA = 25°C, unless otherwise specified

DC characterl~tlcs
Collector-emitter breakdown voltage
Ic = 1 mA
5MBTA92
5MBTA93

Symbol

Collector-base breakdown voltage
Ic = 100 f.IA
5MBTA92
5MBTA93

V(BR)CBO

Emitter-base breakdown voltage
Ie = 100 f.IA

V(BR) EBO

Collector cutoff current
VCB = 200 V
VCB=160V
VCB = 200 V, TA = 150°C
VCB = 160V, TA = 150°C

ICBo

min

typ

max

Unit

300
200

-

-

V
V

300
200

-

-

-

-

V
V

V(BR) CEO

5

-

5MBTA92
5MBTA93
5MBTA92
5MBTA93

IeBO

DC current gain
Ic = 1 mA, VCE = 10V
Ic = 10 mA, VCE = 10V')
Ic = 30 mA, VCE = 10V')

hFE

5MBTA92
5MBTA93

-

V

250
250
20
20

nA
nA
JlA

-

-

,

100

nA

25
40
25
25

-

-

-

-

-

0,5
0,4

V
V

-

0,9

V

-

Emitter cutoff current
VEB = 3V

-

-

Collector-emitter saturation voltage ')
I C = 20 mA, I B = 2 mA
5MBTA92
5MBTA93

VCE,at

Base-emitter saturation voltage ')
Ic = 20 mA, IB = 2 mA

VBE,at

-

f.IA

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 10 mA, VCE = 20 V, f= 100 MHz

fr

50

-

-

MHz

Output capacitance
VCB = 20 V, f= 1 MHz

Cob

-

-

6

pF
pF

5MBTA92
S~BTA93

') Pulse test: t:5. 300 Jls, D = 20/0.

868

Siemens

-

8

5MBTA92
5MBTA93

Total power dissipation Ptot =

t (TA)

Transition frequency tT = t (I cl
VCE = 20 V, t= 100 MHz

MHz
10 3

mW
400

Ptot

r

1\
300

\

1\
\

200

1\
I\.

100

/

II\.

o

v

1\

o

50

150°C

100

5 10'

-~
Pulse handling capability
(standardized)
K

rth =

5 10 2
-Ie

t (t)

Operating range Ie
TA = 25°C, D = 0

= t(VCEO)

W
10°

lih 5

r

,

II

5

I".
10~s

1'-,1 I

0,5
0,2
0,1
0,05
0,02
0,01
0,005
000 1111

5

2

~

\

10'

\ 100 ~s
1ms
10ums

5

500ms

DC
5

lLn-

~

D=..E..
~
T

fpf---

,

I- T-i

10-3
'"
""
10-6 10- 5 10-' 10- 3 10- 2 10-' 100

10' s

5 10'

~f

Siemens

869

5MBTA 92
5MBTA 93

Collector cutoff current I CBO

=

Collector current I C = f (VBE)

f ( TA)

VCB = 160V

VeE = 10V

nA

rnA

104

10 3

5
1/

rnax;..'~

V
10'

typo

10'

5

,

,

1/

10·

50

100
-J.;.

150 .(

l

10

= 10 V

gUE• •

w. . . .

100 L....L...L.U.llllL.....L.L.Lll.ll!L--'...J.-'..LU.llL-.L..LJLlllllJ
10·'
5 10°
5 10'
5 10 2
5 10 3 rnA

-Ie

870

I
0,5

1,0

-----VSE

DC current gain hFE = f (I c)
VCE

a

Siemens

1,5 V

SIPMOS N Channel MOSFET

SN 7002

• SIPMOS - enhancement mode
• Drain-source voltage
'-bs = 60V
• Continuous drain current
10 = 0.19A
• Drain-source on-resistance
• Total power dissipation

= 5.00
Po = 0.36W

ReS

Po
7j
T.t.

Ratings

Unit

60
60
0.19
0.76
±20
0.36

V
V
A
A
V
W

-55 ... +150
55 ... 150 ... 56

°C

:5350
:5285

KNV

Conditions

RGS

=20 kO

TA =25°C
TA =25°C
aperiodic

TA =25°C

DIN IEC 68 part 1

Thermal resistance
Chip - air
Chip - substrate rear side

RthJA
Rth JSR

Siemens

Mounted on
Ceramic substrate
2.5cm2

871

SN 7002

Electrical Characteristics
CondlUon
Static characteristics
Drain-source
breakdown vottage

V(BA)DSS

Gate threshold vottage

Vas(th)

Zero gate voHage
drain current

'

0.8

Dsa

Gate-source leakage
current

I ass

Drain-source on-state
resistance

RDS(on)

-

V

1.4

2.0

V

0.1

1.0

jlA

60

Val =0

'D =0.25 rnA
Val = VDI

'D =1 rnA
1j

=25"C

Vas =0
VDI =60V

-

1.0

10

nA

2.0

5.0

0

3.0

7.5

0

Val =2OV, VDS = OV
Vas =10V
I D =O.SA
Vas =4.5V
I D =O.OSA

Dynamic characterlBtlcs
Forward transconductance

g,.

Input capacitance

C,••

Output capacitance

Co ••

Reverse transfer
capacitance

Cn •

0.1

-

t d(on)

Tum-on time ton
(ton =td(on) +t,)

t,

Tum~off time t off
(t off =t d(off) +t ,)

t d(off)
t,

-

S

0.18

40

60

15

25

5

10

5

8

8

12

12

16

17

22

pF

ns

VDI .,,2*/D * RDS(on)max
ID =0.2A
Vas =OV
VDI =25V
f =1MHz

Vee

=3OV

Val =1OV
I D =-O.29A
ROl =500

Reverse diode
Continuous source
current

Is

-

-

0.19

A

Pulsed source current

ISM

-

-

0.76

A

Diode forward on-voHage

VSD

0.85

1.2

V

Val =OV

IF =0.2BA
Reverse recovery time

-

trr

-

ns

VA

diF
Reverse recovery charge

872

Orr

-

-

Siemens

jlC

=100V, 'F = 'D A
100A!jls

/dt =

VA

=100v, 'F = ID A

dlF

/dt = 100A!jl8

SN 7002

Switching Time Measurement
Switching times

Test circuit

Vee
V

90%

r

Pulse
Generator

Vas
90%

r····························1

Permissible power dissipation versus tempersture

Typical output characteristic

'D

PD = fTA

=fVD8
X AxIs: VD• / V
V Alds: , D /A

X AxIs: TA /'C
V AxIs: PD /W
4

p.

\

lOV

k

'.

\
3

1..

\

p. 0.36

e

~

IV

.V

'-'v

r

eV
7V

4V

){

\

,

f

\
~

II
\

V

1

1\
o

100

••V

\

"-

3V

r--

\
o

\

C

'/

\

150

2.5V

'v

.

----110.

--TA

Siemens

873

SN 7002

Typical transfer characteristic

Safe operating area
X Axis:

VDS I V

1 D = fV ClI
X Axis: VClS

V Axis:

'D

V Axis:

'D =fVD1

IA

Parameter: D = 0.01, D =tp IT;

Tc = 25"C

'D

IV
IA

Paramater: VDS = 25V; t p = 80jJs;

II-~-n
...-1
1=,

D_2
T

,

I.

v

1"'-

1,0'

, ,

I.

I

l'..

'm.

II
I

10ml

'"

10'~

= 25"C

I

'0'
'p'
3051'
100111

1j

I
I

100ml

1"'-

J

V

I
o
10 1

5

V 10 z

o

- - - Vos

Drain to source on resistance (spread)

Typical transconductance

g,.

R DS_n = fT J

= tiD
X Axis:
V Axis:

'D

X Axis:
V Axis:

g,. IIS
A

VDI .. 2· 1 D • R Da_n mox ; t p

Parameter:

= 80jJs;

T J 1°C
RDs _n I

()

Paramater: V CIS = 10V; 1D

= O.SA

TJ =25"C

,..

g,.
V

1

.>~
/

RDS(on )

/

1
/

V
I

0.'

/

I

VI/'

1

-~
o

o

A

"....-

'-' '-'

.......

"....-

typo

C

0.7

---_I.

874

/
.,,'

----TJ

Siemens

180

SN 7002

Typical capacitances
C = fV DS
X Axis: vDS I V
Y Axis: C I nF
Parameter: VGS =0; f = lMHz

,,'
c

\\

,

\\

Gial

\ I'--

,,'

Co ..

v, ..

---vos
Drain current

Gate threshhold voltage (spread)

f D = fTA
X Axis: TAl 'C
Y Axis: I D I A

10

A

VGSlh = fTI

Tj I 'C

X Axis:

Y Axis: VGSlh I V
Parameter: VGs= VDS

;

I D

''''

....

= 1rnA

-

""'"

'"

VaS(th )

4

'\

\

\
r\

\

r-..

1\

o

r-

~.".

-

-- ,%--

....

....

-

----

-_T,

o

100

Siemens

C

875

SN 7002

Typical drain-source on-state resistance
RDSon = "D
X Axis: 'D fA
Y Axis: R DSon f Q
Parameter: VGS ; 1j = 2S'C
VG•
.

,..,

'"

'"

)

"V

'"

I
./

;

V

/

:::::: ~

--

V

",

~

9~

10V

;:;...

V

'v

i--" ....

7V

'v

'0
Typical reverse diode forward voltage (spread)
, F =fVSD

X Axis: VsDfV
YAxis: , F fA
Parameter: t p =8~s; TJ

",

'F

15<

,
25

;

p.

:

W

""

%

,""

J r-

~

1/

2

- - - Vso

876

Siemens

SIPMOS P Channel MOSFET

SP Q610T

• SIPMOS - enhancement mode
• Drain-source voltage
Vos = -60V
• Continuous drain current
/0 = -0.13A
• Drain-source on-resistance
• Total power dissipation

ROS(on)

= 10.00

Po = 0.36W

Type

Marking

Ordering code for
versions on 12 mm-tape

Package

SP 0610T

SF

067000-S065

SOT 23

Maximum Ratings
Parameter
Drain-source voltage
Drain-gate voltage
Continuous drain current
Pulsed drain current
Peak gate-source voltage
Power dissipation
Operating and storage
temperature range
Climatic category

Symbol

VDS
~GR

/0
J Opul.

V.s
Po
Tj
Tst.

Ratings

Unit

-60
-60
-0.13
-0.52
±20
0.36

V
V
A
A
V
W

-55 ... +150
55 ... 150... 56

°C

:5350
:5285

K/W

Conditions

RGS =20 kO
TA =36"C
TA =25°C
aperiodic

TA =25°C

DIN IEC 68 part 1

Thermal resistance
Chip - air
Chip - substrate rear side

RthJA

Rth JSR

Siemens

Mounted on
Ceramic substrate
2.5cm2

877

SP 0610T

Electrical Characteristics
Condition
Static characteristics
Drain-source
breakdown vottage

V(BR)DSS

-60

Gate threshold vottage

Vas(th)

-1.0

Zero gate vottage
drain current

V

Vas =0
ID =0.25 rnA
VDS = Vas

-1.5

-2.0

V

ID =1 mA

IDSS

-0.1

-1.0

IlA

TJ =25°C
VDS = -6OV
Vas = OV

Gate-source leakage
current

I ass

-1.0

-10

nA

Vas =-20V, VDS =0V

Drain-source on-state
resistance

RDS(on)

6.0

10.0

0

Vas = -10V
I D = -0.2A

9.0

12.5

0

Vas = -4.5V

I D = 0.025A
Dynamic characteristics
0.075

-

S

CI..

30

45

pF

Output capacitance

Co ..

17

25

Reverse transfer
capacitance

Cr ••

a

12

Forward transconductance

gt.

Input capacitance

0.06

Turn-on time ton
(t on =t d(on) +t,)

t ~(on)

8

12

t,

35

50

Turn-off time toll
(t oil =t d(olt) +t t)

t d(oll)

a

10

I,

20

25

ns

VDS :<2*/D * RDS(on) max
ID=-O.5A

Vas =OV
VDS = -25V
f =IMHz

Vcc =-SOV

Vas =-10V
I D =-0.27A
Ras =500

Reverse diode
Continuous source
current

Is

Pulsed source current

ISM

Diode forwerd on-vottage

VSD

Reverse recovery time

Reverse recovery charge

878

-0.12

A

-

-0.48

A

-0.B5

-1.2

V

Vas =OV
IF = -O.IBA

Irr

ns

VR = -SOV, IF = ID R
diF /dt = -100NIlS

Orr

Il C

VR = -SOV, IF = ID R
di F /dt = -100NIlS

Siemens

SP 0610T

Switching Time Measurement
Switching times

Test circuit

Vcc

v

Vos

I

Permissible power dissipation versus temperature

Typical output characteristic

'D

Po =fTA
X Axis: TA I"e
YAxis: Po IW

=fVos
Vos IV

X Axis:
YAxis:

'0 IA

-3'
Po

l--

,

I

-.v

1\

-BV
-7V

Po

0.36

'j. Tj II

tR 'J

II

1/
J

I (fj IV
/I (f v, V
1111 'J V
fIJI II 1/ "",

[\
2

1\
1\
-1

1\

•

'fill

rJ

r~

1

.\
1\

\

•

lP'

~

Iv

/

(If V

1\

.

I
10V

1..-,"""

-4

"

V

4V

....
-3r-V'"

./

rl
-1

5V

V

3V

-25V
V

-3

-4

~---. Vos

Siemens

879

SP 0610T

Safe operating area

Typical transfer characteristic

'D

'o=fVOS
X Axis: Vos I V

'0

Y Axis:
IA
Parameter: 0 = 0.01, 0 =t piT;
RDS(on)"VDSIID

t
D ... -.!.
T

=fVas
X Axis: Vas IV
Y Axis:
IA
Parameter: Vos = -25V; t p = 80j.ls;

'0

Tc = 2S'C

1j

10'
tp=

II

10

3011S

10

= 2S'C

It_~- 0
..... T
1_ t
10°11_

,
1/

1···

,,,,.

"

I

/

r
10ms

'\.

/

100ml

1'\

II
/

V
10 1

5

V

/

10 1

' - ' - ' - - Vos

Typical transconductance

Drain to source on resistance (spread)

g,.=fi o

'0

X Axis:
Y Axis:

IA

g,. /

Parameter:

RoS.n= fT,
X Axis: T, I'C

s

Vos "" 2· I

0 •

R OS.n max ; t p = 80IlS;

Y Axis: Ros.n / 0
Parameter: Vas = -10V; 10 = 0.2A

T, = 2S'C

g t. .1'

11

"

1.-1-

2

·
·/

1/

V

1/

1

0

·

II

RaSCon )

V

V

17

/ '"''
/

0

V

I
,,/

V

V

V
1/
typo

---- ---- ----

2

0
A

~O.EI

---_T)

----I,

880

Siemens

SP 0610T

Typical capacitances

C = fV DS
X Axis: VDs/V
y Axis: C InF
Parameter: VGS =0; f = 1MHz

,,'
c

,,'

......

"'-

tt--,

j"-.

"-

'\

......

c...

r--

Co ..

,,'
---v,s
Drain curren1

Gate threshhold voltage (spread)

VGSlh = fT, .
X Axis: T, I·e
Y Axis: VGSlh I v

J D = fTA

X Axis: TA I·e
Y Axis: J D I A

Parameter: VGs= VDS

;

J D = -1mA

v~+-~-+--~+--r-1--+-~-+-1

v GS(th)~+-~-+--~+--r-1--+-~-+-1

1

'\

-4

"'- '\.

f--+--+-+-+---+-+---+-+--t--H

\

\

-

\
!\

\
o

o

I

-r-

typ.

-- ---..

-100

C'

- - TJ

Siemens

BB1

SP 0610T

TVplcal draln-source on-state resistance

RDSon = fI D
X Axis: I D fA
Y Axis: R DSon f 0
Parameter: VGS ; 1j = 25"C
Q

., V

4V

-3V -35

·5V

>V

)

II

II

/

/
1/

Vv

V

.o
5
-Ie

887

SXT 2907 A

PNP Silicon Switching Transistor

•

High current gain: 0.1 to 500 rnA

•

Low collector-emitter saturation voltage

E

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

SXT 2907 A

S2F

upon request

upon request

SOT 89

Maximum ratings
Pa~ameter

Symbol

Ratings

Unit

Collector-emitter voltage

VCEO

60

V

Collector-base voltage

VCBO

60

V

Emitter-base voltage

VEBO

5

V

Collector current

Ie

600

rnA

Total power dissipation
TA = 25°C

Ptot

1

W

Junction temperature

Tj
Tstg

150

°C

-65 ... +150

°C

RthJA

::; 125

K/W

Storage temperature range
Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm

888

Siemens

SXT 2907 A

Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics
Collector-emitter breakdown voltage

min

typ

max

Unit

V{BR)CEO

60

-

-

V

V{BR)CBO

60

-

-

V

V{BR)EBO

5

-

-

V

-

-

10
10

nA
IJA

IeEX

-

-

50

nA

hBO

-

-

10

nA

I BL

-

-

50

nA

75
100
100
100
50

-

-

-

Symbol

Ie=10mA
Collector-base breakdown voltage

Ie = 10 IJA
Emitter-base breakdown voltage
= 10 IJA

h

Collector cutoff current
VCB = 60 V, IE =
VCB = 60 V, IE = 0, TA = 125°C

°

Collector cutoff current
VCE = 30 V, V BE = 0.5 V
Emitter cutoff current
V EB = 3 V, I C = 0
Base cutoff current
VCE = 30 V, V BE = 3 V
DC current gain

I cBo

hFE

Ie = 100 IJA, VCE = 10 V
IC = 1 mA, VCE = 10 V
Ie = 10 mA, VCE = 10 V
Ie = 150 mA, VCE = 10 V
Ic = 500 mA, VCE = 10 V
Collector-emitter saturation voltage 1)
Ie = 150 mA; IB = 15 mA
Ie = 500 mA; IB = 50 mA
Base-emitter saturation voltage 1 )
15 mA
50 mA

-

-

-

300

VCE,at

-

-

0.4
1.6

V
V

-

-

1.3
2.0

V
V

VBE,at

Ie = 150 mA; IB =
Ie = 500 mA; I B =

1) Pulse test: t:5 300 f.ls. D:5 2 %

Siemens

889

SXT 2907 A

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ie = 50 mA, VeE = 20 V, f= 100 MHz

fr

200

-

-

MHz

Output capacitance
VeB = 10 V, f = 1 MHz

Cobo

-

-

8

pF

Input capacitance
VEB = 2 V, f = 1 MHz

Cibo

-

-

30

pF

Switching times
Vee = 30 V, VBE = 0.5 V, Ie = 150 mA,
IB1 = 15 mA

td
tr

-

-

ns
ns

t,

-

10
40

Switching times
Vee = 6 V, Ie = 150 mA, IB1=/B2 =15 mA

-

80
30

ns
ns

ts

Test circuits
Storage and fall time

Delay and rise time

-6V

-30V

Input
Zo=5011
tr < 2ns

-~0-{

Input

Zo =50 11
tr <2ns

200ns

200ns

890

1k

-~0-{FOI1

<>--1r-C::J---H

Siemens

SXT 2907 A

Total power dissipation Ptot

~

f( TA )

Collector-base capacitance
Co. ~ f(VeB)
f ~ 1 MHz

W
1,2

r

10
.

1\

f\

0,8

f\
1\

0,6

1\

I

1\

0,4

1\
1\

0,2

\
i\

o
o

150

100

50

0(

-lice

--~

Pulse handling capability
K (standardized)

rth ~

fIt)

Transition frequency fT

VeE

iii
5

t

~

f(lel

20 V

MHz

100

'ih

~

,

II
II

10 3

~,50,2

0=0

2

V

2

0,1
0,05
0,02
0,01
0,005

5

"-

1/

1111

5

5

~

tp
O=r

2

T

,,:

10-3
10-6 10-5 10-4 10- 3 10- 2 10-' 100

10' s

-t

Siemens

891

SXT 2907 A

Delay time t, = f(lel
Rise time t, = f (Iel
hFE = 10

Saturation voltage Ie = f(V.E,'" VeE"t)
hFE = 10
ns

103

/

~

,,-

VCE

1/ VBE

1111

II

-

~-- VBE-OV;Vcc-l0V~

-

- - - VBE -2.0VYcc=30V

-

N

i.~

r----

1\

td

,\

.-

\

5

\1\

1\ r\
\

1\
101

o

0.2 0.4

to

0.6 O.B

r"1-

11 11+ 1.6 V
VBE,a!' VCEsa!

-

- - - Ic

Storage time t, = f(lel

Fall time

tf

= f (Iel

.~

ts

5

c--

I

,+1J.t

~

Vcc=30V

!

I

[\~FE=20
\

c-

!

I

I

5

r----

hFE =1

1

FE- 1

~

Iy'
IhFE= 20

~ \
---

5

~

f----

~

.

1---

1"\

r----

-

~,

r--...

-Ic

---Ic

892

-

Siemens

SXT 2907 A

DC current gain h" = f(lel

175°C

,..

III

~

2S °C
5

-5 °C

Siemens

893

NPN Silicon Switching Transistor

•

High current gain: 0.1 to 100 mA

•

Low collector-emitter saturation voltage

SXT 3904

E

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

SXT 3904

S 1A

upon request

upon request

SOT 89

Maximum ratings
Parameter

Symbol

Ratings

Unit

Collector-emitter voltage
Collector-base voltage
Emitter-base voltage
Collector current
Total power dissipation
TA = 25°C
Junction temperature
Storage temperature range

Vceo
VCBO
VeBo

40

V

60
6
200
1

V

mA
W

T stg

150
-65 ... +150

°C
°C

RthJA

:s; 125

KjW

Ie
Ptot

7i

V

Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm

894

Siemens

SXT 3904

Electrical characteristics
at TA = 25°C, unless otherwise specified
min

typ

max

Unit

V1BR)CEO

40

-

-

V

V1BR)CBO

60

-

-

V

V1BR)EBO

6

-

-

V

Base cutoff current
VCE = 30 V, V BE = - 3 V

IBL

-

-

50

nA

Collector cutoff current
VCE = 30 V, V BE = 3 V

I cEx

-

-

50

nA

DC current gain
= 1 00 J.lA, VCE = 1 V
= 1 mA. VCE = 1 V
= 10 mA. VCE = 1 V
= 50 mA. VCE = 1 V
I C = 100 mA, VCE = 1 V

hFE

DC characteristics

Symbol

Collector-emitter breakdown voltage
Ic = 1 mA
Collector-base breakdown voltage
= 10 J.lA

Ie

Emitter-base breakdown voltage
I E =10J.lA

Ie
Ie
Ie
Ie

Collector-emitter saturation voltage 1 )
Ie = 1 0 mA; I B = 1 mA
Ic = 50 mA; IB = 5 mA
Base-emitter saturation voltage 1)

I C = 1a mA; I B = 1 mA
Ie = 50 mA; IB = 5 mA

1) Pulse test: t

$;

300 f./s, D

$;

-

-

-

-

-

-

300

-

-

-

-

0.2
0.3

V
V

0.65

-

-

-

0.85
0.95

V
V

40
70
100
60
30

-

VCEsst

VBEsst

2%

Siemens

895

SXT 3904

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ic = 10 rnA, VCE = 20 V, f= 100 MHz

fT

300

-

-

MHz

Output capacitance
Vcs = 5 V, f = 1 MHz

Cabo

-

-

4

pF

Input capacitance
VES = 0.5 V, f= 1 MHz

C ibo

-

-

8

pF

hie

1

-

10

kO

h re

0.5

-

8

Xl0-4

Sma"-signal current gain
= 1 rnA; VCE = 10 V, f = 1 kHz

h fe

100

-

400

-

Output admittance

hoe

1

-

40

~S

NF

-

-

5

dB

td
tr

-

-

35
35

ns
ns

200
50

ns
ns

Input impedance
IcE = 1 rnA; VCE = 10 V, f
Voltage feedback ratio
I C = 1 rnA; VCE = 10 V, f

= 1 kHz
= 1 kHz

Ic

Ic = 1 rnA; VCE = 10 V, f = 1 kHz
Noise figure
rnA, VCE = 5 V, f= 10 Hz to 15 kHz
Rs = 1 kO

Ic = 0.1

Switching times
Vcc = 3 V, VSE = 0.5 V,
lSI = 1 rnA

Ic = lOrnA.

Switching times
Vee = 3 V, Ie = lOrnA. lSI = lB2

= 1 rnA

Test circuits
Delay and rise time

1I
0ons

Storage and fall time

275S'!
10 kS'!

o--c.:::J-+-l

-O.5V

~~II~

:::::..

~.~~

10'

5
10°

5

10'

5

10 2 rnA

5

904

10'

5

102 rnA

---Ie

-Ie

Siemens

SXT

3906~

DC current gain h" = f(le!
VeE = 1 V (standardized)

Siemens

905

SXT A42
SXT A43

NPN Silicon High Voltage Transistors

•

High breakdown voltage

•

Low collector-emitter saturation voltage

E

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

SXT A 42
SXT A 43

SlD
SlE

upon request
upon request

upon request
upon request

SOT 89
SOT 89

Maximum ratings
Parameter

Symbol

SXT A42

SXT A43

Unit

Collector-emitter voltage

VCEO
V CBO

200
200

V

Collector-base voltage

300
300

Emitter-bas~

VEBO

voltage

Collector current

Ie

Total power dissipation
TA = 25 DC

P tot

Junction temperature

Tj

Storage temperature range

T stg

V

6
500

V

1

W

150
-65 ... +150

DC

mA

DC

Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm X 16.7 mm X 0.7 mm

906

RthJA

Siemens

::; 1 25

KjW

SXT A42
SXT A43

Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics

Symbol

Collector-emitter breakdown voltage
SXT A 42
Ie = 1 rnA
SXT A43

V{BR)CEO

Collector-base breakdown voltage
SXT A 42
= 100 IlA
SXT A 43

V{BR)CBO

Emitter-base breakdown voltage
le = 100 IlA

V{BR)EBO

Ie

Collector cutoff current
VCB = 200V,le= 0
VCB = 1 60 V. le = 0
VcB =200V,lE=0. TA = 125°C
VCB = 160V,lE=0. TA = 125°C

typ

max

Unit

300
200

-

-

-

-

V
V

300
200

-

V
V

6

-

-

-

-

100
100
10
10

nA
nA
Il A
Il A

-

100

nA

-

-

-

IeBO
SXT
SXT
SXT
SXT

A
A
A
A

42
43
42
43

Emitter cutoff current
VEB = 6 V. Ie = 0

leBO

DC current gain

hFE

Ie = 1 rnA. VCE = 10 V
Ie = lOrnA. VCE = 10 V
Ie = 30 rnA. VeE = 10 V

min

25
40
40
40

SXT A 42
SXT A 43

Collector-emitter saturation voltage 1)
SXT A 42
Ie = 20 rnA; I B = 2 rnA
SXT A 43

VeEsat

Base-emitter saturation voltage 1)
= 20 rnA; IB = 2 rnA

VBEsat

Ie

-

-

-

V

-

-

-

-

-

0.5
0.4

V
V

-

-

0.9

V

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ie = 10 rnA. VCE = 20 V. f= 100 MHz

fT

50

-

-

MHz

Output capacitance
VeB = 20 V. f = 1 MHz

Cobo

-

-

3
4

pF
pF

SXT A 42
SXT A 43

-

I) Pulse test: t:5 300 lis, D:5 2 %

Siemens

907

SXT A42
SXT A43

Total power dissipation P", = f(TA )

Transition frequency fT = f(lel
VeE = 10 V, f = 100 MHz

W
1,2

MHz

103

5
1"1,0

I\.

f\

0,8

I.

1\
1\

0,6

I\.

I

1\

0,4

5

~

1\

\I

0,2

V

t\.

1\

o
o

150°C

100

50

5 10 3 rnA

5 10'

-~

Pulse handling capability
K (standardized)

'th = fIt)

'iii

rnA

10°

10 3

r

I,..
,
~

,
5

5

~

5

Operating range Ie = f(VeEQ)
TA = 25 °C, D = 0

1\. r\
I'

~,I

10~s

0.5
0.2
0.1
0.05
0.02
0.01
0.005

~
&

'\

10'

1111

\~ 1001lS
1rnsj

lOOms

5

1'0=0

2

SOOrns

DC
5

llr

~

o=~
10-3
10-6

'"
10-5

10-4

-,

;" r
10-3

10-2 10-'

10° s

-VcEO

-f

908

Siemens

SXT A42
SXT A43

Collector cutoff current
VeB = 160 V

nA

le.o =

f( TA )

rnA
10 3

104
5

Collector current
VeE = 10 V

le = f(VBE)

5

I

max.•'"

..-.

je

5

V

k'

10 2

10'

typo

5

/

,

,

1/
50

100

I
0,5

150 °C

1,0

1,5 V

-VeE

-TA

DC current gain hFE = f(lol
VeE

=

10 V

100 L...J....u.J..llUl.....L.L.J..U.1ill......J....l..J..llJ.I.II-.L..l.UilllJ
10-' 5 10°
5 10'
5 10 2
5 10 3rnA
-Ie

Siemens

909

SXT A 92
SXT A 93

PNP Silicon High-Voltage Transistors

•

High breakdown voltage

•

Low collector-emitter saturation voltage

E

Type

Marking

Ordering code for
versions in bulk

Ordering code for
versions on 8-mm tape

Package

SXT A 92
SXT A 93

S2D
S2E

upon request
upon request

upon request
upon request

SOT 89
SOT 89

Maximum ratings
Parameter

Symbol

SXT A 92

SXT A93

Unit

Collector-emitter voltage

VCEO

300

200

Collector-base voltage

V CBO

300

200

V
V
V

Emitter-base voltage

V EBO

Collector current

Ie

Total power dissipation
TA = 25°C

Ptot

5
500
1

mA
W

Junction temperature

7j

150

°C

Storage temperature range

Tstg

-65 ... +150

°C

RthJA

:s; 125

Thermal resistance
Junction-ambient
Package mounted on
alumina
15 mm x 16.7 mm x 0.7 mm

910

Siemens

K/W

SXTA92
SXTA93

Electrical characteristics
at TA = 25°C, unless otherwise specified
DC characteristics

Symbol

Collector-emitter breakdown voltage
SXT A 92
Ie = 1 rnA
SXT A 93

V(BR)CEO

Collector-base breakdown voltage
SXT A 92
SXT A 93

V(BR)CBO

Emitter-base breakdown voltage
h=1001JA

V(BR)EBO

Ie = 100 IJA

Collector cutoff current
VeB = 200V,IE=0
VCB = 1 60 V, h = 0
VeB = 200V,h =0, TA = 125°C
VCB = 160V,h=O, TA = 25°C

IeBO
SXT A
SXT A
SXT A
SXT A

92
93
92
93

Emitter cutoff current
VEB = 4 V, Ie = 0

lEBO

DC current gain
Ic = 1 'rnA, VeE = 10 V
Ie = 10 rnA, VeE = 10 V
Ie = 30 rnA, VeE = 10 V

hFE
SXT A 92
SXT A 93

min

typ

max

Unit

300
200

-

-

V
V

300
200

-

-

-

V
V

-

V

nA
nA
IJA
IJA

5

-

-

250
250
20
20

-

100

nA

25
40
25
25

-

-

-

-

-

0.5
0.4

V
V

-

0.9

V

Collector-emitter saturation voltage')
Ie = 20 rnA; IB = 2 rnA
SXT A 92
SXT A 93

VeE,at

Base-emitter saturation voltage')

VBE,at

-

Ie = 20 rnA; IB = 2 rnA

-

-

AC characteristics

Symbol

min

typ

max

Unit

Transition frequency
Ie = 10 rnA, VeE = 20 V, f= 100 MHz

fT

50

-

-

MHz

Output capacitance
VeB = 20 V, f = 1 MHz

CObO

-

6

-

8

pF
pF

1)

SXT A 92
SXT A 93

-

-

Pulse test: t:5, 300 lis, D:5, 2 %

Siemens

911

SXT A 92
SXT A 93

Transition frequency fT = f(Id
VeE = 20 V, f= 100 MHz

Total power dissipation p.o. = f( TA)

W
1,2

r

1,O

I\.

1\

0,8

\
\

0,6

1\

I

1\

0,4

5

1\
\

0,2

/

2

l

v

1\

o
o

50

150

100

0(

-~

Pulse handling capability
K (standardized)

Operating range Ie
TA = 25 0 C, D = 0

r'h = fIt)

= f(VeEO)

W
10°

r

5

p
1

,

~.

kl

5

5

~

\

III
II I

I'

'\'

~ 1\

III

~

O=f
10-5

10- 4

T

10-3

10- 2

10- 1

1

10° s

----t
912

1msj

L' 500
msl
DC

5

10-3
10-6

100 ps
lOOms

5

t'O=O

2

1\
lOps

0.5
0.2
0.1
0.05
0.02
0.01
0.005

Siemens

SXT A92
SXTA93

Collector cutoff current leBo = f( TA)
VeB = 160 V

Collector current
VeE = 10 V

Ie =

f(VBE)

II

ma~:.-17

17

1/

typo

10°
5

1

1.1

1

so

100

1SO

°c

I
0,5

1,5 V

-~

DC current gain
VcE =10V

hFE

= f(le)

1:3§1111(11~11
rZH--l+I-UllI-----l-1--I-l1llIl--!-++I-I+llI--+-I-+I+Hl

:2 _ _

10- 10° 10 10 10

100

Ll...lJJWJJJ.---.LLllJUllL-Ll..l.U.JWL..LLillJJJJ

1

5

5

1

5 2
-Ie

5

3 mA

Siemens

913

GaAs FETs

GaAs-FET

Siemens

915

GaAs FET

CF739

• N-channel dual-gate GaAs MES FET
• Depletion mode transistor for tuned small-signal
applications up to 2 GHz, e. g. VHF, UHF, Sat-TV
tuners
• Low noise
• High gain
• Low input capacitance

G2
G1

~D

~S

ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

CF739

MS

Q 62702 - F1215

SOT-143

Maximum Ratings
Parameter

Symbol

Value

Unit

Drain-source voltage

VDS

10

V

Gate 1-source voltage

-VG1S

6

V

Gate 2-source voltage

-VG2S

6

V

Drain current

lD

80

mA

Gate 1-source peak current

+lG1SM

1

mA

Gate 2-source peak current

+lG2SM

1

mA

Total power dissipation, TA:s 42 °C2 )

Ptot

240

mW

Channel temperature

Tch

150

°c

Storage temperature range

TSl9

-55 ... +125

°c

Thermal Resistance

IR

Junction - ambient 1)

thJA

I :s450

KJW

1) Package mounted on alumina 15 mm x 16.7 mm x 0.7 mm.

Siemens

917

CF739

Electrical Characteristics

at TA = 25°C, unless otherwise specified.
DC characteristics
Values
Parameter

Symbol

min

typ

max

Unit

Drain-source breakdown voltage

Ii(BR)OS

10

-

-

V

Gate 1 leakage current
-VG1S = 5\/, VG2S = Vos=O

-IG1sS

-

-

20

J.LA

Gate 2 leakage current

-IG2sS

-

-

20

J.LA

Drain current
VG1S = 0, VG2S = 0, Vos = 3 V

loss

10

-

80

rnA

Gate 1-source pinch-off voltage
VG2S = 0, Vos = 5 \/, 10 = 200 J.LA

-VG1S (P)

-

-

4.5

V

Gate 2-source pinch-off voltage
VG1S = 0, Vos = 5 \/, 10 = 200 J.LA

-VG2S(P)

-

-

4.5

V

Forward transconductance
Vos = 5 \/, VG2S = 2 V, 10 = 10 rnA, f= 1 kHz

flts

-

25

-

rnS

Gate 1 input capacitance
VG2s =2V, Vos=5V,Io= 10 rnA, f=1 MHz

Cg1ss

-

0.95

-

pF

Output capacitance
VG2S = 2 V, Vos = 5 V, 10= 10 mA, f= 1 MHz

Cdss

-

0.5

-

pF

Noise figure
VG2S = 2 V, Vos = 5 \/, 10 = 10 rnA, f= 1.75 GHz

F

-

1.8

-

dB

Power gain
VG2S =2V, Vos = 5 \/, 10 = 10 rnA, f= 1.75 GHz

Gps

-

17

-

dB

10 = 100 J.LA, -VG1S = -VG2S = 4 V

-VG2S = 5 \/, VG1S = Vos = 0

AC characteristics

918

Siemens

CF739

Total power dissipation Ptot = f (T,.]
package mounted on alumina

Output characteristics Io = f (Vos)
VG2S = 2 V

mW

rnA

300

50
VG1S =OV
1111

i+H+

40

1\

-I I

1\

O.2SV

1\

30

II
-O.SOV
20
100

-

I I

-0.7SV

1\

10
-1.0V

o
o

50

o
o

100
- - - - I..
~

2

6

4

BV

----I-~VDS

TA

Gate 1 forward transconductance
91., = f (Vl;1S)
rnS Vas = 5 V, f= 1 kHz

Gate 1 forward transconductance
9ts1 = f (VG2s)
mS Vas = 5 V, f= 1 kHz

50

50

I

l-

I I I

VG2S =2.0 Vi~

I-

1..
~J-- 1-11-1---

f1
O.25V

t1 ~1S=OV
T
II

30 1-,

-

30

,

O.SV 1---1---

OV +---1- I'I..

10
I~

-10V" ~-O.5V"""

w

-2

r-

,--\-

-.

l/o1'sv

20

20

o

I

10

1-1-

~

141
-1

o

o

-2

1V

Siemens

-1

2V

919

CF739

Drain current Io =f (VG1S)
Vos=5V

rnA
80

Drain current Io
Vos=5V

rnA
80

TT 1 ,
IT

60

.11

ff-

'r/-

Ib= 2V

=f (VG2S)

If

7

'i

60

w-

1/

I
40

OV,...F

II}
,I.

I-'

40

}

if

ov1,.-10-

-o.SV

III

20

20

II.

III

-1.0V

-1V_
I

-2

1-1'
I

I~

~

o

li

VG1S =O..5V

-1

o

1V

=

Gate 1 input capacitance Cg1 •• f IIo)
VG2S = 2 \I, Vos=5 \I, f=0.1 -1 GHz

2V

-1

-2

Output capacitance CdS" = f (Vos)
VG2S =2 V, 10= 10 rnA, f= 0.1 -1 GHz

pF
3

pF
1.5

,

\
)...

[g1 ••

I

l--

V

2

1.0

17
0,5

\
\

I\....

o
o

10

20

30 rnA

- -........ 10

920

Siemens

o
o

2

4

6

8

10V

CF739

Common Source Admittance Parameters, G2 RF grounded
Gate 1 input admittance Yl1s

Gate 1 forward transfer admittance Y21s
Vos= 5V, VG2s =2V, 10= 10 rnA

Vos = 5 V, VG2S = 2 V;Io = 10 rnA
mS

mS
14

f=2000MHz

o

IP

f=100 MHz
200 MHz
I I I I I
400MHz
I I I I I
600MHz

1BOOMHz,..,V

TT-:;pr

12

160~MI'%r
10

!A'1400MHz

BOOMHz

8'1200MHz

. IT

B

l-

6

IP l~O~MHz

l~OIO~~z

-20

1F~0~Hz

I) 800MHz
4

2

1406 ~~z I II

600JHz

~

111.1

-30

I I I
«400MHz

1600MHz If

lBO~~82:

200M Hz

o
o

100MHz
2

1/

3

4

5

-40

B mS

6

200~~~zl
o

10

tf
20

30

40 mS

-g"s
Output admittance Y22s
Vos = 5 V, VG2S = 2 V.Io= 10 rnA

mS
7

mmDI

fl=m~7~z

6

~

5

1600MHz

" " III
1400MHz

4

l;m~~~
I11II1
1000MHz

3

I I r "

I

BOOMHz

2

600MHz
400MHz

o
o

1200 MHz
T100MHz
0.1

0.2

OJ

- - - - - <..
-

0.4

0.5 mS

gl2<

Siemens

921

CF739

Common Source S Parameters, G2 RF grounded

s"

=

S,2=f(f}
Vos = 5 V, VG2S =2\1, 10 = 10 rnA, Zo= 50 n

f (f), Z-plane
Vos =5 \I, VG2s=2\1, 10= 10 rnA, Zo= son

180 0

1--I--I--I--I...ll,!-4.'~-

-j50

-90 0

5.2, =f (f)

Vos =5\1, VG2S =2 V,lo = 10 rnA, Zo = son

90

5.z2 =f (f), Z-plane

Vos = 5 \I, VG2S= 2\1, 10= 10 rnA, Zo= son

0

180 0

-j 50

-900

922

Siemens

o

GaAs FET

•
•
•
•
•
•
•

CFY30

Low noise (Fmin = 1.4 dB at 4 GHz)
High gain (11.5 dB typo at 4 GHz)
For oscillators up to 12 GHz
For amplifiers up to 6 GHz
Ion-implanted planar structure
Chip all gold metallization
Chip nitride passivation

S~D

G~s

ESO: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code
(tape and reel)

Package

CFY30

A2

Q 62703-F97

SOT-143

Maximum Ratings
Parameter

Symbol

Value

Unit

Drain voltage

Vos

5

V

Drain-gate voltage

VOG

7

V

Gate-source voltage

VGS

-4 ... +0.5

V

Drain current

10

80

mA

Total power dissipation, Tc :::::90 DC

Ptot

250

mW

Channel temperature

Tch

150

DC

Storage temperature range

Tstg

-40 ... +150

°C

RthchC

:::::240

K/W

Thermal Resistance

I

Channel - case

Siemens

923

CFY30

Electrical Characteristics
at TA = 25°C.
Parameter

Symbol

Values

Unit

min

typ

max

Drain-source saturation current
Vos = 3.5 V, VGS = 0

loss

20

50

80

mA

Pinch-off voltage
10 = 1 mA, Vos =3.5 V

Vp

-0.5

-1.3

-4.0

V

Transconductance
10 = 15 mA, Vos = 3.5 V

gm

20

30

-

mS

Gate leakage current
10 = 15 mA, Vos = 3.5 V

IG

-

0.1

2.0

!LA

Noise figure
10 = 15 mA, Vos = 3.5 V, f= 4 GHz
f=6GHz

F

-

1.4
2.0

1.6

Associated gain
10 = 15 mA, Vos = 3.5 V, f= 4 GHz
f=6GHz

Ga

Maximum available gain
10 = 15 mA, Vos = 3.5 V, f= 6 GHz

MAG

Maximum stable gain
fo = 15 mA, Vos = 3.5 V, f= 4 GHz
Power output at 1 dB compression
10 = 30 mA, Vos =4 V, f=6 GHz

dB

-

dB

10

-

-

11.5
8.9

-

-

11.2

-

dB

MSG

-

14.4

-

dB

PldB

-

16

-

dBm

Common Source Noise Parameters
10 = 15 mA, Vos = 3.5 V, Zo = 50 Q

f

F min

Ga

r opt

RN

N

FSOfl

G(FSOfl)

GHz

dB

dB

MAG

ANG

Q

-

dB

dB

2
4
6
8
10
12

1.0
1.4
2.0
2.5
3.0
3.5

15.5
11.5
8.9
7.1
5.8
5.0

0.72
0.64
0.46
0.31
0.34
0.41

27
61
101
153
-133
- 93

49
29
19
9
14
28

0.17
0.17
0.30
0.31
0.38
0.42

2.9
2.7
2.8
2.8
3.4
4.1

10.0
9.3
7.5
6.4
4.2
2.9

924

Siemens

CFY30

Source impedance for min. noise figure
ID=15mA, VDs =3.5V

+j25

Of----

-j25
-j50

Circles of constant noise figure
ID = 15 mA, VDS = 3.5 V, f= 6 GHz

Circles of constant noise figure
ID = 15 mA, VDS = 3.5 V, f= 4 GHz
+j50

+j50

-j50

-j50

of---__\_-\

Siemens

925

CFY30

Characteristics at TA = 25°C

mA

Output characteristics 10

=f (Vos)

50
VGS .. OV

-

f---

/

1

-0.2V
:;;;;;

-0.4V- f-

7

30

c;;;;o
7

~ f-

c;;;:;;

20

1/

17

_-....

-

I..--'
1/

10

-0.8V f-

~-~

l.- I--

-1.1ii

]:...;... I -

2

4

5 V

-Vos

=

dB

Minimum noise figure Fmin f (f)
Associated gain Ga = f (f)
10 = 15 rnA, Vos = 3.5 V. ZSopt

9

1 II
1 11

\:

--{j.

14

0;

1\

6

{j.

Fmin

t

t

-

Pmin

1'TTl

1/
1""

V
2

I II

10

5

_I- 6GHz

6

6 8 10

o

OL--L-LLLLLJJ.l.---L-L.L.LJ..J..LLJ

20 GHz

-f

Siemens

1

2

!

(j"

12

2
4

14

F=III

4

2

dB

6 1 - - - - (j.++1+f+-/---+C~4IGI~1

8

3

926

I,...."
1."...-...,..--,...,1...11

. . . . - - - r - T. . .

10

r.

4

01

7

12

\

5

dB
18

16

-Fmin

Minimum noise figure Fmin = f (10)
Associated gain G. = f (10 )
dB Vos = 3.5 V. ZSopt

CFY30

Common Source S Parameters

ID

=

15 mA, VDS

f

S11

GHz

MAG

0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8

1.00
1.00
1.00
1.00
0.99
0.99
0.98
0.98
0.97
0.97
0.96
0.95
0.93
0.92
0.90
0.88
0.87
0.85
0.83
0.82
0.80
0.79
0.77
0.76
0.74
0.72
0.70
0.68
0.66
0.65
0.63
0.62
0.60
0.59
0.57
0.56
0.55
0.54
0.54
0.53
0.53
0.54
0.54
0.55
0.55

=

3.5 V, Zo

ANG
- 1
- 3
- 6
- 10
- 14
- 17
- 21
- 25
- 28
- 32
- 36
- 38
- 44
- 49
- 53
- 58
- 62
- 67
- 72
-77
- 82
- 87
- 92
- 98
-104
-110
-115
-121
-127
-133
-139
-144
-150
-156
-162
-168
-174
179
172
166
160
153
147
141
135

=

50

Q

Sz1
MAG

ANG

MAG

ANG

Sz2
MAG

2.43
2.43
2.43
2.43
2.43
2.43
2.43
2.44
2.44
2.45
2.45
2.46
2.47
2.48
2.49
2.50
2.50
2.50
2.50
2.50
2.50
2.50
2.51
2.50
2.49
2.47
2.45
2.43
2.41
2.39
2.36
2.33
2.30
2.27
2.24
2.21
2.19
2.16
2.14
2.11
2.08
2.04
2.00
1.96
1.92

178
176
171
167
162
158
154
150
145
141
137
133
129
124
120
116
111
107
102
98
93
88
83
78
73
68
64
59
54
50
45
41
37
32
27
22
17
12
8
3
- 2
- 7
-11
-16
-21

0.003
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045
0.050
0.054
0.058
0.062
0.066
0.070
0.074
0.078
0.082
0.086
0.090
0.094
0.097
0.100
0.103
0.106
0.108
0.110
0.112
0.113
0.114
0.114
0.115
0.115
0.116
0.116
0.116
0.116
0.116
0.116
0.115
0.114
0.113
0.112
0.111

87
86
23
81
78
75
72
69
66
63
60
58
55
53
50
48
45
42
39
36
32
29
25
22
18
15
12
9
6
3
0
- 3
- 6
- 9
-11
-14
-17
-20
-22
-25
-27
-30
-32
-34
-37

0.70
0.70
0.69
0.69
0.68
0.68
0.67
0.67
0.66
0.66
0.65
0.64
0.64
0.63
0.62
0.61
0.60
0.59
0.57
0.55
0.54
0.52
0.50
0.48
0.46
0.45
0.43
0.42
0.40
0.38
0.36
0.33
0.31
0.29
0.27
0.25
0.24
0.23
0.21
0.20
0.19
0.18
0.18
0.17
0.18

S12

Siemens

ANG
- 1
- 3
- 5
- 8
- 11
- 13
- 15
- 18
- 20
- 23
- 26
- 28
- 30
- 32
- 35
- 38
- 41
- 44
- 47
- 51
- 54
- 58
- 61
- 64
- 67
- 70
- 73
- 76
- 80
- 84
- 88
- 93
- 98
-104
-110
-116
-122
-129
-137
-145
-154
-163
~173

179
171

927

CFY30

10 = 15 rnA, Vos = 3.5 V,
f

S.1

GHz

MAG

9.0
9.2
9.4
9.6
9.8
10.0
10.2
10.4
10.6
10.8
11.0
11.2
11.4
11.6
11.8
12.0

928

0.55
0.56
0.56
0.57
0.57
0.58
0.58
0.59
0.59
0.60
0.60
0.61
0.61
0.62
0.62
0.62

Zo =

50 n
8 12

&.!1

ANG
129
124
119
114
110
106
102
98
94
91
88
85
82
79
77

74

&.!2

MAG

ANG

MAG

ANG

MAG

ANG

1.88
1.83
1.78
1.72
1.66
1.61
1.56
1.51
1.46
1.42
1.38
1.35
1.32
1.30
1.27
1.25

-25
-30
-35
-40
-44
-48
-52
-56
-59
-62
-65
-69
-72
-75
-78
-81

0.110
0.109
0.108
0.107
0.105
0.104
0.103
0.102
0.101
0.101
0.100
0.099
0.099
0.098
0.097
0.096

-39
-42
-44
-46
-48
-50
-51
-53
-54
-56
-57
-58
59
-60
-62
-63

0.18
0.19
0.20
0.21
0.22
0.23
0.25
0.26
0.28
0.29
0.30
0.32
0.33
0.34
0.35
0.36

163
155
148
141
134
128
123
118
113
108
104
100
96
93
89
85

Siemens

CFY30

10 = 15 rnA, Vos = 3.5 V. 20= 50 n

St1 "f (f)
90 0

5.!1 "f (f)

~"f(f)

-90 0

Siemens

929

CFY30

Common Source S Parameters
JD = 30 rnA, VDS = 3.5 V. Zo = 50 Q
f

5 11

GHz

MAG

0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
7.0
7.2
7.4
7.6
7.8
8.0
8.2
8.4
8.6
8.8

1.00
1.00
1.00
0.99
0.99
0.98
0.97
0.96
0.95
0.94
0.92
0.91
0.90
0.89
0.87
0.85
0.83
0.81
0.79
0.77
0.75
0.73
0.71
0.69
0.67
0.65
0.63
0.62
0.60
0.59
0.57
0.56
0.54
0.53
0.52
0.51
0.51
0.51
0.50
0.50
0.50
0.51
0.51
0.52
0.52

930

~1

ANG
- 2
- 4

-

8
- 12
- 16
- 20
- 24
- 28
- 32
- 38
- 40
- 44
- 48
- 53
- 58
- 63
- 68
- 73
- 79
- 85
- 91
- 96
-102
-108
-114
-120
-126
-132
-138
-144
-150
-156
-162
-168
-174
179
173
166
160
153
147
141
135
130
125

~2

5 12

MAG

ANG

MAG

ANG

MAG

ANG

3.23
3.22
3.21
3.20
3.19
3.18
3.18
3.18
3.17
3.17
3.17
3.17
3.17
3.17
3.17
3.17
3.16
3.14
3.12
3.10
3.08
3.06
3.04
3.02
3.00
2.98
2.95
2.91
2.87
2.82
2.77
2.73
2.68
2.63
2.58
2.54
2.50
2.46
2.43
2.40
2.36
2.31
2.26
2.21
2.15

178
176
171
167
162
157
153
148
143
139
135
131
127
123
119
114
109
104
99
94
88
83
78
73
68
63
58
54
49
44
40
35
31
27
22
18
14
9
5
0
- 4
- 8
-13
-17
-22

0.002
0.004
0.009
0.013
0.017
0.021
0.025
0.030
0.034
0.038
0.042
0.046
0.051
0.055
0.059
0.063
0.067
0.070
0.073
0.076
0.079
0.082
0.084
0.087
0.089
0.091
0.092
0.093
0.094
0.095
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.099
0.099
0.099
0.099
0.099
0.099
0.099
0.099

85
82
79
76
73
73
70
67
65
63
61
58
56
53
50
48
45
42
40
37
34
31
28
24
21
18
15
12
10
7
4
2
- 1
-4
- 6
- 9
-11
-13
-16
-18
-20
-22
-24
-27
-29

0.71
0.71
0.70
0.69
0.69
0.68
0.67
0.67
0.66
0.66
0.65
0.64
0.63
0.62
0.61
0.60
0.58
0.56
0.55
0.54
0.52
0.51
0.50
0.48
0.47
0.45
0.43
0.41
0.38
0.36
0.34
0.32
0.30
0.29
0.27
0.26
0.24
0.22
0.21
0.19
0.18
0.17
0.16
0.16
0.16

-

Siemens

1
3
6
- 9
- 11
- 14
- 16
- 19
- 21
- 24
- 26
- 28
- 31
- 33
- 36
- 39
- 42
...: 45
- 48
- 51
- 54
- 57
'- 60
- 63
- 66
- 70
- 73
-77
- 81
- 85
- 89
- 94
- 99
-104
-109
-115
-121
-127
-134
-141
-148
-156
-164
-174
176

-

CFY30

10 = 30 mA, Vos = 3.5 V,

4J = 50 .Q
~2

f

8 11

GHz

MAG

ANG

MAG

ANG

MAG

8 12

ANG

MAG

ANG

9.0
9.2
9.4
9.6
9.8
10.0
10.2
10.4
10.6
10.8
11.0
11.2
11.4
11.6
11.8
12.0

0.53
0.54
0.55
0.55
0.56
0.57
0.58
0.59
0.60
0.60
0.61
0.61
0.61
0.62
0.62
0.62

120
115
111
107
103
99
95
91
88
85
82
79
76
73
71
68

2.09
2.04
1.98
1.93
1.87
1.82
1.76
1.71
1.65
1.60
1.55
1.51
1.47
1.44
1.41
1.38

-26
-30
-35
-39
-43
-47
-51
-54
-58
-62
-65
-69
-72
-75
-78
-82

0.099
0.099
0.099
0.099
0.099
0.099
0.100
0.100
0.100
0.101
0.101
0.102
0.102
0.103
0.103
0.104

-31
-33
-35
-37
-39
-41
-42
-44
-45
-47
-48
-49
-51
-52
-53
-55

0.16
0.17
0.18
0.19
0.21
0.22
0.23
0.25
0.26
0.27
0.29
0.30
0.31
0.32
0.33
0.34

167
158
150
142
135
128
123
118
114
109
104
100
96
92
89
85

~1

Siemens

931

CFY30

10 = 30 mA, Vos = 3.5 V, Zo = 50

5"

Q

=f(f)

5'2=f(f)

90°

90°
4

1BOo I---f--I-+-+-:--f--+-I--+-f-':';:"'--l 00 1BOo f--Lf--f--+-:--f--+---if---t--lt-;;--t---I 0°

-900

-90°

1BOO I---+-l--+-t--I---"'t=--'II-'-t--'-'F----j 0° 1BOo I---+-l--t---t+--+-l--r-h-r----j 0°

- 90°

932

Siemens

GaAs MMICs

GaAs-MMIC

Siemens

933

CGY50

GaAs MMIC

•
•
•
•
•
•
•
•
•
•

Single-stage, monolithic microwave IC (MMIC amplifier)
Cascadable 50 n gain block
Application range: 100 MHz to 3 GHz
Third order intercept point 30 dBm typical at 1.8 GHz
Gain: 8.5 dB typical at 1.8 GHz
Low noise figure: 3.0 dB typical at 1.8 GHz
Gain control dynamic range 20 dB
Ion-implanted planar structure
Chip all gold metallization
Chip nitride passivation

317~2

4!Ig/;J

1

ESD: Electrostatic discharge sensitive device, observe handling precautions!
Type

Marking

Ordering code

CGY50

G2

Q 68000 - A8370

Package

Circuit diagram

"

...r-1..
~

II

4
(IN!G)

)

2
lOUT! D)

SOT-143

Ity~kQ
~

1.3
(5)

Maximum Ratings
Parameter

Symbol

Value

Unit

Drain voltage (DC)

Vo

5.5

V

Peak drain voltage (DC + RF)

Vop

7.5

V

VG

-3 ... 0

V

Drain gate voltage

VOG

7.5

V

Input power .

PIN

16

dBm

Total power dissipation, Tc:51 00 °C

Ptot

400

mW

Channel temperature

Tch
Tstg

150

°C

-40 ... +150

°C

Current control gate voltage

Storage temperature range
Thermal Resistance
Channel- case I)

I

RthchC

I :5125

IKIW

Note: exceeding any of the maximum ratings may cause permanent damage to the device. Appropriate handling is required to
protect the electrostatic-sensitive MMIC against degradation due to excess voltage or excess current spikes. Proper ground
connection of leads 1 and 3 (with minimum inductance) is required to achieve the guaranteed RF performance, stable operating
conditions and adequate cooling.

I) For application circuit see page 937.

Siemens

935

CGY50

DC Characteristics
at TA = 25°C, VG = 0 V, VD = 4.5 V, Rs
(for application circuit see next page).
Parameter

= RL = 50 n, unless otherwise specified,
Symbol

Drain current

ID

Power gain
f= 200 MHz
f= 1800 MHz

G

Gain flatness
f= 200 to 1000 MHz
f= 800 to 1800 MHz

L1G

Noise figure
f= 200 to 1800 MHz

Values

Unit

min

typ

max

-

60

80

-

10.0
8.5

-

mA
dB

7.5

dB
0.4
1.1

-

F

-

3.0

4.0

dB

Input return loss
f= 200 to 1800 MHz

RLJN

9.5

12

-

dB

Output return loss
f= 200 to 1800 MHz

RLouT

9.5

12

-

dB

Third order intercept point,
two-tone intermodulation test
f, = 806 MHz, f2 = 810 MHz,
Po = 10 dBm (both carriers)

IP3

29

31

-

dBm

1 dB gain compression
f= 200 to 1800 MHz

P'dB

-

16

-

dBm

Gain control dynamic range
f= 200 to 1800 MHz

L1G

-

20

-

dB

936

Siemens

2

CGY50

Application Circuit
f= 800 to 1800 MHz

r------------------,
~

H

VG1

H

I
I

I

~

VD

I
I

0,

I

L,

I

L2

I

'••"' soo

I

1:

!i'"'."'

soo

'--___________________ J
~ SOQ

Microstripline

Summary of components

c1 , ~
Cs, C4

Chip capacitors 100 pF
Chip capacitors 1 nF

L1 , L2

Discrete inductor 1 f.lH or printed microstripline inductor

Dl

Z diode 5.6 V (type BZW 22 C5V6)

Note: Operating conditions for

AN max:

RG

= RL = 50 11.

C, max

= 220 pF,

Siemens

Vo

= 4.5 V;

VG current limited <2 rnA.

937

CGY50

Total power dissipation Ptot

=f (Tel

0.5

~ot

W

t

0.4

i\
\

0.3

:\

0.2

\

1\

0.1

1\

o
o

100

50

O(

150

-7(

Drain currentlo = f (Vo)
VG=OV

Drain current 10 = f (VG)
Vo=4.5 V

100

100

60

I

40

V

..--I---

1

-

20

o

~~~

~~~~

40

I

20

o

i~

60

2

4

6

V

o

-1.5

8

~~ ~~Y'

I~ ~~ ~1'
~§ ~~ ~~
~~ §~ ~;>:>
-1.0

-0.5

V

-VG

938

Siemens

0

CGY50

Noise figure F =f (f)
Vo = 4.5 V. VG = 0 V. Rs = RL = 50 n

Noise figure F=f(VG)1)
Vo = 4.5 V. Rs = RL = 50 n
f= 200 to 1800 MHz

-10
10

10

20

30

I

I

I

40 mA 60

I

I

I

10

F

dB

t

8

\
6

6

max

4

...

typo

-'

.........

,.

,;',;'

\

\

4

\

"', r--..

2

2

2

"

3 GHz 4

~1.0

-0.8

-

-0.6

-0.4

-0.2 V 0

-f

1) See next page.

Siemens

939

CGY50

G

Power gain G= f (f)

Power gain G=f(Poutl

Vo=4.5 V. VG = 0 V. Rs= RL = 50 n

Vo = 4.5 V. VG = 0
(=800 MHz

12

12

dB

dB

10

V. Rs = RL = 50 n

r-..... .........

t

min

8

'\

f'.

~

typo

.....

,

8

" t',

6

6

4

4

2

2

2

\

--Pout

=

Power gain G f (VG)')

Power gain G=f(VG)')

VO = 4.5 V. Rs = RL = 50 n
-10
o
1 3
20 mA60

Vo = 4.5 V, Rs = RL = 50 n
-10
10
20 30 40 mA 60
3
I
I
I I I I
I

15
dB
6

t

I

I

I

I I I

6

5

jf=0.26Hz

o

I

1

-5
-10

12
dB

10

/

1l

J~
r/.,;'

t

I Ij
I I

B6HZ I
1.66Hz
;4.0 6Hz

f =0.2 6Hz,,-

10 -

8

b

6

v

-4

"-

....... ......

J

-1.0

0

-'

,J
I

-1

./'

0/

-2
-2

./

-

-:: .....:

~r

II

o

-20

"'.

IX

!IJ
JlI ./

2

,

"-

A'/,

4

,,~

-3

0.8 6Hz~
1.8 6Hz.",,4.0 6Hz

_

I I I I

/~

-15

-25

dB 20

10

36Hz 4

-f

-0.8

-0.6

-0.4

-0.2 V 0

1) The gate voltage VG refers to a typical drain current loss of 60 rnA with the supplementaoy information of the 10 values.

940

Siemens

CGY50

Third order intercept point 1P3 = f (Vol
f= 800 MHz, VG = a V. Rs = RL = 50 n

34

r:

dB

V

V

26

I

26
24

22

-The intermodulation ratio d,M can easily be
determined.
d,M = 2 (IP3 - Po)

I
I

J

II
2

3

4

IP3

=

diM

= Intermodulation ratio

Po

= Power level of each carrier in dBm

Intercept point

5 V 6

Siemens

941

CGY50

S Parameters

Vo = 4.5 V, VG = 0 v,

Zo = 50 Q

f

8 11

GHz

MAG

ANG

5.!1
MAG

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

0.25
0.27
0.21
0.20
0.19
0.18
0.18
0.17
0.17
0.17
0.18
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.26
0.28

- 31
- 34
- 44
- 54
- 65
- 77
- 93
-103
-119
-130
-141
-152
-163
-172
179
172
162
153
148
142

3.30
3.20
3.17
3.09
3.00
2.90
2.81
2.70
2.60
2.50
2.42
2.33
2.24
2.16
2.07
2.01
1.94
1.87
1.81
1.75

942

~2

ANG

MAG

ANG

5.!2
MAG

ANG

164
158
150
142
134
126
118
111
103
96
94
83

0.14
0.14
0.13
0.13
0.13
0.13
0.13
0.13
0.13
0.12
0.12
0.12
0.12
0.13
0.13
0.13
0.13
0.14
0.14
0.15

5.0
0.0
-2.0
-3.0
-4.0
-5.0
-5.0
-6.0
-5.0
-5.0
'-4.0
-4.0
-3.0
-3.0
-2.0
-2.0
-2.0
-1.0
-1.0
-1.0

0.05
0.05
0.08
0.01
0.12
0.14
0.16
0.17
0.18
0.19
0.20
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.21
0.20

-144
-133
105
91
81
74
68
62
56
51
46
42
39
36
33
30
29
28
27
27

77

71
65
60
54
49
43
38

Siemens

CGY50

S Parameters
VD = 4.5 V, VG = 0 V, Zo

= 50 n

~,

~2
~.

~

8:.,
90·

180·

1---+--+----+-+--+-+----+-+----+---1 0

180· I---f--+----+-+----tl--+--+-+---l.----l 0

-90·

-90·

Siemens

943

Sensors

Siemens

945

Position Sensor

KSY13

GaAs Hall Sensor
•
•
•
•

For digital speed and position measurement
High sensitivity and operating temperature
Low offset voltage
Low TC of sensitivity and internal resistance

Type

o KSY 13

Marking

Ordering code
for versions in bulk

S13

Q62705-K 142

-CGNDi1j Hall
Voltage
Hall

Voltage

Ordering code for
versions on 8 mm-tape

+V

Package

SOT 143

Maximum ratings
Parameter

Symbol

Ratings

Unit

Control current
Operating temperature
range
Storage temperature range

11max

TA

7
-40···+150

mA
°C

Tstg

-50···+160

°C

Thermal resistance
package mounted
on alumina
15 mm x 16.7 mm x 0.7 mm

Rth

"" 375

K/W

o Preferred type
Siemens

947

KSY13

Electrical characteristics
at TA = 25°C, unless otherwise specified

Characteristics
Rated control current

Symbol

Open-circuit Hall voltage
hN=5mA,B=0,1T
Ohmic offset voltage ')
11N = 5 mA, B = 0
Internal resistance
at the control side
at the Hall side

V20

I1N

Ratings
5

Unit
mA
mV

95···145

VRO

:5 ±30

mV

Rl0
R20

n

O/o/K

Temperature coefficient of V20
hN = 5 mA, B = 0,2 T

TCV20

900 ···1200
900.··1200
~ -0,05

Temperature coefficient of Rl0, R20
11 = 1 mA, B = 0,2 T

TCR10fR20

~0,08

n
%/K

Open-circuit Hall voltage
V20(TA) = f(TA)

Max. control current 11 = f ( TA)

V20(25 'C)

mA

1.2 r-.,.-,--,-....-.--r--r---,,.-,--,

8

V20(TA)

V20(25 'C)

I--+-+--t---+-+-+--t---lf-t--f

I

1-1r-IIT'f::i:::~::j::j

1.0

\

0.8

I--+-+-+--+-+-+--t-f-t--f

4

0.6

f-f-t-t--t--+-++--+-+---1

2

0,4 1.--'---'----'-----'---'----'---'---'_'--'
-40
o 40 80 120 160

o
0(

-40

-JA

') Grouping upon request.
948

Siemens

o

40

80

120

160

0(

KTY13

Temperature Sensors

NPN silicon planar epitaxial sensors
•
•
•

Suitable for measuring, controlling and regulating air,
non-aggressive gases and liquids
To be used as element for temperature compensation
High reliability due to multilayer gold contacts

Type
[lKTY13A
KTY 13 B
KTY 13 C
KTY 13 D

Marking
TA
TB
TC
TD

Subst.

(J

Elec.
Contact

Elec.
Contact

Package
SOT 23

Q62705-K13
Q62705-K14
Q62705-K15
Q62705-K16

Maximum ratings
Parameter
Max. DC control current
Peak current
t= 10 ms
Ambient temperature range
Storage temperature range

Symbol
I

i
TA
Tstg

Ratings
3
7

Unit

-50 .. · + 150
-50 .. ·+160

°C
°C

rnA
mA

Electrical characteristics
at TA = 25°C, unless otherwise specified
Symbol

Basic resistance ')
IN = 1 mA

min

typ

max

Unit

1980
1960
1900
1800

2000
2000
2000
2000

2020
2040
2100
2200

0
0
0
0

-

-

-

a/a

-

± 1
± 2
± 5
±10

-

::; 0,3
::; 0,1

-

a/a

-

7
1

-

s
s

R25

KTY
KTY
KTY
KTY

Tolerance of basic resistance R25
KTY
R25 = 20000, IN = 1 mA
KTY
KTY
KTY
Resistance unbalance
at polarity change
IN = 3 mA
IN = 1 mA
Thermal time constant 630/0 value
in still medium
in air
in oil

13 A
13 B
13 C
13 D
R25·!ol

13 A
13 B
13 C
13 D

-

-

0/0

a/a
a/a

M

TAir
TOil

-

0/0

') An operating current of 0.1 mA is recommended for precision measurements, as the inherent temperature
rise is negligible and the unbalance decreases.
[I

Preferred type

Siemens

949

KTY13

Limited charging current
versus ambient temperature j = '( TA)
Parameter: air,

Temperature coefficient
versus ambient temperature a.

t s 10 ms

= '( TA)

mA
10
I

1

i

t
i\

6

Rr

1,0

"-['..

\.

'\

4

\

dR
dT

a=-x-

a
8

....... ~

-

r-.....

r-....

0,5

1\

2

o

o

-50

so

o

150 0 (

100

-50

o

50

dR
Sensor resistance RT

Sensor resistance
R25 = '(IN)

TA

n

= 25 ... 100°C, IN =

100

=,

150 ·C

(l N)

1 mA

%

20

2200

dR
RZ5

Rr

i

II
II

2100

v

10

/

l/

,,2000

1900

..... 1-'"

V

~
fo-'i"""

o

1-1-1-

o

3 rnA

-10

r-

o

-IN

950

3 rnA
-IN

Siemens

KTY13

Analytic expression of the regression parabola for the median temperature factor (l N = 1 mAl

kT

=

RRT
25

=

[1

+ a,(L'lT) + ~(L'lT)'l

Analytic expression for calculating the sensor temperature

T(OC) = 25

a,

=

~

=

R25 =
RT =
TA =
L'l T =
T =

+ fa,' - 4~ ~;~

. kT -a,

7,64 . 10- 3 (K-')
1,66 . 10- 5 (K-')
resistance value at TA = 25°C (e. g. 2000 0)
resistance value at temperature T (OC)
ambient temperature
temperature difference between T25 and T
temperature ~ sensor package temperature

~

ambient temperature

Tolerance of the temperature factor

Temperature T

Temperature factor kT

+150°C
+125°C
+100°C
+ 75°C
+ 50°C
+ 25°C
O°C
- 25°C
- 50°C

2,214
1,93
1,666
1,423
1,201
1,000
0,819
0,659
0,52

Siemens

951

KTY13

Sensor resistance

Temperature lactor

RT= ((TAl
IN = 1 rnA

kT

kQ
5

=.!!:!...
= ((TAl
R25

2,5

~

3

/

V

V

./

/

i

kT

I

-SO

/

1,5

/

1,0

0,5

o

I~

/

1/"
o

j
2,0

SO

100

150

V

o
0 (

-SO

-7;.

952

,/

,/

o

V

/

50

100

-7;.

Siemens

150

0 (

The information contained here has been carefully
reviewed and is believed to be accurate . However,
due to the possibility of unseen inaccuracies, no
responsibility is assumed .
This literature does not convey to the purchaser of
electronic devices any license under the patent
rights of the manufacturer.

Siemens Components , Inc .
Special Products Division
186 Wood Avenue South
Iselin , New Jersey 08830
Telephone (800) 888-7730
Fax (908) 632-2830
Telex 844891
Order Number B123-B6253-X-X-7600

•

CP4 20M 5/90 Printed in U.S A



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:12 17:48:40-08:00
Modify Date                     : 2017:07:12 18:16:05-07:00
Metadata Date                   : 2017:07:12 18:16:05-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:df344631-cb24-654f-a89c-6e95c067cb9f
Instance ID                     : uuid:f0345cc3-f7e8-4749-861a-3647eadc1c19
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 952
EXIF Metadata provided by EXIF.tools

Navigation menu