1990_Siemens_Optoelectronics_Data_Book 1990 Siemens Optoelectronics Data Book

User Manual: 1990_Siemens_Optoelectronics_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 770

Download1990_Siemens_Optoelectronics_Data_Book 1990 Siemens Optoelectronics Data Book
Open PDF In BrowserView PDF
-

m

SIEMENS

~

m
Z

en

Optoelectronics
Data Book 1990

o

"...o
n
.....
o
_.
::s
CD
CD

n
en

CTRON.es, 'NC.®
Serving Wisconsin

....

CD
CD

C

1-800-323-1270

SIEMENS
Optoelectronics
Data Book

Siemens Components, Inc., Optoelectronics Division
Company Overview
Siemens Components, Inc.,Optoelectronics Division is headquartered in .
Cupertino, California - in the heart of
Silicon Valley. Siemens is a world
leader in light emitting diode (LED)
technology, sophisticated CMOS IC
design, optics, and packaging. Our
product line includes:
• Small Alphanumeric Displays
• Programmable DisplayTM
Devices
• Intelligent Display ® Devices
• Military Displays
.
• Numeric Displays
• Bar Graphs, Light Bars
• LED Lamps
• Optocouplers
• Infrared Emitting Diodes &
Photodetectors
• Custom Optoelectronic products

operating companies, Siemens
affiliates and joint ventures. The six
operating companies are Siemens
Communications Systems, Siemens
Components, Siemens Energy and
Automation, Siemens Information
Systems, Siemens KWU, and
Siemens Medical Systems.
Siemens U.S.A. is a member of the
worldwide Siemens organization
which has sales of $34 billion,
353,000 employees, and 172 production facilities in 35 countries.

Technology Strengths

Our strengths are in the following
areas:
• Continual process development /
improvement in LED material
• In-house design of complex
CMOS integrated circuits using
Our materials technology includes:
the latest CAD/CAM and CAE
visible and IR LEDs (GaAsP, GaP or
equipment
combinations of these~ GaAlAs, and
• . Sophisticated optics and
Silicon Carbide) and photodetectors.
packaging capabilities
Assembly of final products is done
• State-of-the-art system knowhow
offshore in Malaysia. Our Malaysia
for complex IC/LED hybrids
plant is a show case of automation
• Leading supplier of custom
and efficiency, featuring the latest
optoelectronic products
automated assembly and test
• A history of innovation:
equipment - resulting in high yields
• Invented Intelligent Display
and high quality products.
devices, 1977
• Invented Programmable
History
Display devices, 1984
Both feature built-in CMOS IC
Siemens Optoelectronics Division
control circuits for easy
began in 1969 as Litronix to manufacinterface with microprocessors
ture LED lamps, numeric displays,
Second sourced by our
and optocouplers for the OEM market, .
competitors because of market
as well as calculators and watches for
acceptance
the consumer market. In 1977
.
Siemens acquired Litronix and
refocused priorities toward the basic
Quality and Reliability
business of producing and marketing
Every aspect of day-to-day producLED materials and components.
tion is closely monitored and verified
to ensure that all materials, proSiemens Optoelectronics is a division
cesses, manufacturing, and testing
of Siemens Components, Inc., which
meet precise engineering standards.
is part of Siemens U.S.A. with sales
Rigorous quality control checks are
of $3.1 billion and over 27,000 embuilt into each stage of production.
ployees. Siemens U.S.A. includes
The finished product undergoes
Siemens Corporation, six U.S.
thorough electrical, optical, dimen-

sional, and visual inspections
resulting in products of superior
quality. Our overall product quality
average is 50 PPM. Our worldwide
quality system including PPM and
SOC programs, and our flexible
manufacturing capabilities, allows us
to produce the industry's highest
quality products with Just-ln-TIme
deliveries at competitive prices.

Product Applications
Siemens optoelectronic products are
used in a broad range of electronic/
commercial/industrial/militarymarket
segments, such as: test instrumentation, medical equipment, computers
and computer peripherals, telecommunications, process/industrial
controls, terminals, and power
supplies.

Conclusion
Siemens is strategically positioned to
concentrate efforts on innovative
products and systems offering valueadded and cost-effective features to
our customers. All our resources and
capabilities in the production of LED
materials (visible and infrared), R&D
engineering, IC design, optics/
packaging, automated assembly, and
a strong focus on reliability keep
Siemens at the leading edge of oplO
technology.

TABLE OF CONTENTS
Page Number(s)

Alphanumeric Index ...............................................................................................................................................iv - ix
Quality and Reliability Information
Quality at Siemens Optoelectronics ............................................................................................................................1
Optoelectronics, Quality and Reliability ......................................................................................................................2
High Reliability and Military Optoelectronic Devices ..................................................................................................6
Reliability Report, Monolithic Intelligent Display® Devices ........................................................................................ 7
Optocoupler Manufacturing and Reliability ................................................................................................................8
Reliability Report, Small Outline Surface Mount Couplers .......................................................................................... 12

Custom Optoelectronic Products
Custom Optoelectronic Products ...........................................................................................................................1 - 2
Custom Optoelectronic Materials and Die ............................................................................................................. 1 - 5
LED Die ...................................................................................................................................................................1-8

LED Intelligent Display® & Programmable DisplayTM Devices, Military Displays,
Small Alphanumeric Displays
Selector Guide .......................................................................................................................................................2 - 2
LED Intelligent Display & Programmable Display Devices, Military Displays, Small Alphanumeric Displays ...... 2 - 7
Selector Guide: Intelligent Display Assemblies .....................................................................................................2 -184
Intelligent Display Assemblies ...............................................................................................................................2 - 185

.LED Numeric Displays, LED Bar Graphs and Light Bars
Selector Guide .......................................................................................................................................................3 Numeric Displays ...................................................................................................................................................3 Light Bars ...............................................................................................................................................................3 Bar Graphs .............................................................................................................................................................3 Graphs for Displays ...............................................................................................................................................3 -

2
4
12
18
22

LED Lamps
Selector Guide .......................................................................................................................................................4 .,- 2
Packaging of LEDs on Continuous Tapes .............................................................................................................4 - 5
Lamps ......................................................... :..........................................................................................................4 - 6
Lamp Accessories .................................................................................................................................................4 - 25
Graphs for Lamps ..................................................................................................................................................4 :.. 27

Optocouplers (Optolsolators)
Selector Guide .......................................................................................................................................................5 Tape & Reel Packaging for SOlC8 Optocouplers ..................................................................................................5 Surface Mount Lead Bend Options ........................................................................................................................5 Optocouplers ........................................................................................,......... :......................................................5 -

2
7
8
9

Fiber Optic Devices
Selector Guide .......................................................................................................................................................6 - 2
Fiber Optic Devices ...............................................................................................................................................6 - 3

Infrared Emitters
Selector Guide .......................................................................................................................................................7-1
Infrared Emitters .........................................................................................................:........................................... 7 - 5

Photodiodes
Selector Guide ........................................................................................................................................................8 - 1
Photodiodes ................................................•..........................................................................................................8 - 4

Phototransistors
Selector Guide .......................................................................................................................................................9 - 1
Phototransistors ......................................................................................................................................................9 - 4

Photovoltaic Cells
Selector Guide .......................................................................................................................................................10 - 1
Photovoltaic Cells ...................................................................................................................................................10 - 2

Application Notes
List of Application Notes .......................................................................................................................................;11 - 1
Application Notes .................................................................................................................................................:.11 - 2

Siemens Components/Semiconductor Group Sales Offices

iii

ALPHANUMERIC INDEX
PART NO.

DESCRIPTION

7500V. 5-11
7500V. 5-11
7500V.5-12
7500V.5-12
7500V.5-12

BPX81-3
BPX81-4
BPX82
BPX63
BPX84
BPX85
BPX86
BPX87
BPX88
BPX89

Photoxtr, Mini, 18 Deg, 1.6mA ....................... 9-12
Photoxtr, Mini, 18 Deg, 2.5mA ....................... 9-12 .
Photoxtr Plastic, 2 Element Array .................. 9-12
Photoxtr Plastic, 3 Element Array •................. 9-12
Photoxtr Plastic, 4 Element Array .................. 9-12
Photoxtr Plastic, 5 Element Array ................... 9-12
Photoxtr Plastic, 6 Element Array .................. 9-12
Photoxtr Plastic, 7 Element Array .................. 9-12
Photoxtr Plastic, 8 Element Array .................. 9-12
Photoxtr Plastic, 9 Element Array .....,............ 9-12

Optocoupler,8 Pin 5ngl, 300% CTR, 600DV,
Low Input Current .......................................... 5-14
Optocoupler,8 Pin 5ngl, 400% CTR, 6000V,
Low Input Current .......................................... 5-14

BPX90
BPX90K
BPX91B
BPX92

Photodiode,
Photodiode,
Photodiode,
Photodiode,

2004-9002
2004-9003
2004-9015
2004·9016
2004-9019
2004-9020
2004-9053

Clip & Collar, Tl 3/4, Black ............................. 4-25
Clip & Collar, Tl 3/4, Clear .......................... ,.4-25
Clip & Collar, Tl, Clear •................................. 4-25
Clip & Collar, Tl, Black .................................. 4-25
Mount, Right Angle, Tl 3/4, Black ................. 4-25
Reflector, T1 3/4, Polished .•........•.................... 4-25
Disc, 5lotted, for 5FH910 .............................. 7-54

BPY11P-4
BPYllP-5

Photovoltaic, .08'x.15', 47nNLX .................... 10-4
Photovoltaic, .08'x.15', 56nA/LX ......•............. 10-4

BPY62-2
BPY62-3
BPY62-4
BPY62-5
BPY62-6

Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,

2600-7048
2600-7048
2600-7048

Wafer, Epitaxial, 655nm, D-5haped GaAsP/
GaAs •...............................•..................•.......... 1-8
Wafer, Epitaxial, 655nm, 3' GaAsP/GaAs ..... 1-9 .
Wafer, Epitaxial, 655nm, 2' GaAsP/GaAs ..... 1-10

BP103-2
BP103-3
BP103-4
BP103-5
BP103-6

Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,

PART NO.

PAGE

DESCRIPTION

4N25
4N26
4N27
·4N28

Optocoupler, 6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,

20% CTR,
20% CTR,
10% CTR,
10% CTR,

4N32
4N33
4N35
4N36
4N37

Optocoupler, 6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,

500% CTR,
500% CTR,
100% CTR,
100% CTR,
100% CTR,

6Nl38
6N139

BP103B-2
BP103B-3
BP103B-4

Photoxtr, Tl
Photoxtr, Tl
'Photoxtr, Tl

7500V ... 5-9
7500V ... 5-9
7500V ... 5-9
7500V ... 5-9

BPY63P
BPY64P

Plastic Lens, 55· ................. 9-4
Plastic Lens, 55 •................ 9-4
Plastic Lens, 55 • ................ 9-4
Plastic Lens, 55· ................. 9-4
Plastic Lens, 55· ................. 9-4

Plastic, 25· .......................... 9-6
Plastic, 25 •...... :.................... 9-6
3/4, Plastic, 25· ........................... 9-6
3/4 ,
3/4 ,

BP104
BP104B5

Photodiode, Plastic w/Filter, 60·, PIN ......... ,.. 8-4
Photodiode, Plastic w/Filter, SMD .................. !Hl.

BPW21
BPW32
BPW33
BPW34
BPW34B
BPW34F

Photodiode, TO-5, Hermetic, 60· .................. 8-8
Photodiode, Clear Plastic, 60· ....................... 8-10
Photodiode, Clear Plastic, 60· ....................... 8-12
Photodiode, Clear Plastic, 60·, PIN ............... 8-14
Photodiode, Plastic, so· ................................ 8-16
Photodiode, Plastic w/Filter, 60·, PIN ............ 8-18

BPX38-2
BPX38-3
BPX38-4
BPX38-5
BPX38-6

Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,

BPX43-2
BPX43-3
BPX43-4
BPX43-5
BPX43-6

Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,

BPX48
BPX60
BPX61
BPX63
BPX65

Photodiode, Plastic, Differential, 60· ............. 8-20
Photodiode, TO-5, Flat Glass Lens, 50· ........ 8-22
Photodiode, T0-5, Flat Glass Lens, 50·, PIN 8-24
Photodiode, TO-18, Rnd Plastic Lens, 75· .... 8-26
Photodiode, TO-18, Flat Plas. Lens,
Hermetic, PIN ...................................•........... 8-28
Photodiode, TO-18, Flat Glass Lens,
Hermetic, PIN ............................................... 8-30

TO-18,
TO-18,
TO-18,
TO-18,
TO-18,

Hermetic, 40·
Hermetic, 40·
Hermetic, 40·
Hermetic, 40·
Hermetic, 40·
Hermetic,
Hermetic,
Hermetic,
Hermetic,
Hermetic,

TO-18,
TO-18,
TO-18,
TO-18,
TO-18,

20· ..................... 9-10
20· ..................... 9-10
20· ..................... 9-10
20· ..................... 9-10
20·' ................... 9-10

8· ........................................ 9-14
8· ........................................ 9-14
8· ........•..•............................ 9-14
8· ........................................ 9-14
8· ........................................ 9-14

Photovoltaic Cell, 650nNLX .......................... 10--6
. Photovoltaic Cell, 250nNL. ............................ 10-8

CNY17-1
CNY17-2
CNY17-3
CNY17-4

Optocoupler,6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,

40% CTR, 5300V ... 5-16
63% CTR, 5300V ... 5-16
100% CTR, 5300V.5-16
160% CTR, 5300V.5-16

CNY17F-l
CNY17F-2
CNY17F-3
CNY17G-F-l
CNY17G-F-2
CNY17G-F-3

Optocoupler,6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
Optocoupler,6 Pin 5n91,
Optocoupler, 6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,

40%CTR,5300V ... 5-20
63% cm, 5300V ... 5-2O
100% CTR, 5300V.5-20
40% CTR, S300V ... 5-20
63% CTR, 5300V ... 5-20
100% CTR, 5300V.5-20

Dl330M
DL340M
DL430M
DL440M

Display, .11',
Display, .11',
Display; .15',
Display, .15',

DL1414T
DL1416B
DL1416T

Int. Display, 4 Char, .112', Red ..................... 2-7
Int. Display, 4 Char, .160', Red ..................... 2-11
Int. Display, 4 Char, .160', Red ..................... 2-16

DL1814
DL2416T
DL3416

Int. Display, 4 Char, .112', Red ..................... 2-21
Int. Display, 4 Char, .160', Red ..................... 2-25
Int. Display, 4 Char; .225', Red ..........•........•. 2-31

DLG1414
DLG2416
DLG3416
DLG4137

Int.
Int.
Int.
Int.

DLG573S

Display, .68', Grn, Sx7 Dot Matrix, Com. Row
Cathode ................................•........................ 2-61
Display, .68', Grn, 5x7 Dot Matrix, Com. Row
Anode .......................................:.................... 2-61

DLG5736

BPX66

Plastic, SO· •............................... 8-32
Plastic w/Filter, 60· .................... 8-32
Plastic, SO· ................................ 8-34
Plastic, 60· ........... :..................... 8-36

Red,
Red,
Red,
Red,
.

..................... 9-8
..................... 9-8
..................... 9-8
..................... 9-8
..................... 9-8

PAGE

Display,
Display,
Display,
Display,

.

CC MPX, 3 Digit .............. 3-4
CC MPX, 4 Digit .............. 3-4
CC MPX, 3 Digit .............. 3-4
CC MPX, 2 Digit .. :........... 3-4

.

4 Char, .145', Grn, 5x7 Dot Mtrx 2-44
4 Char, .200', Grn, 5x7 Dot Mtrx 2-49
4 Char, .270',Grn, 5x7 Dot Mtrx 2-55
5ngl, .43', Grn, 5x7 Dot Matrix .. 2-36

DLG7137

Int. Display, 5ngl, .68', Grn, 5x7 Dot Matrix .. 2-40

DL01414
DL02416
DL03416

Int. Display, 4 Char, .145', HER,5x7 Dot Mtrx2-44
Int. Display, 4 Char, .200', HER,5x7 Dot Mtrx2-49
Int. Display, 4 Char, .270', HER,5x7 Dot Mtrx2-55

BPX79

Photovoltaic Cell, .18'x.18', 135nNLX .......... 10-2

DL04135
DL07135

Int. Display, 5ngl, .43', HER, 5x7 Dot Matrix. 2-36
Int. Display, 5ngl, .68', HER, Sx7 Dot Matrix .2-40

BPXBO
BPX81-2

Photoxtr, Plastic, 10 Element Array ............... 9-12
Photoxtr, Mini, 18 Deg, 1.0mA ........•.............. 9-12

DLR1414
DLR2416

Int. Display, 4 Char, .14S', Red, 5x7 Dot Mtn< 2-44
Int. Display, 4 Char, .200', Red, 5x7 Dot Mtn< 2-49

iv

ALPHANUMERIC INDEX
PAGE

PART NO,

DESCRIPTION

PART NO,

DESCRIPTION

DLR3416

Inl. Display, 4 Char, .270', Red, 5x7 Dot Mtrx 2-SS

IDA2416-32

Int. Display Asmbly, 32 Char ......................... 2-193

DLRS73S

Display, .68', RedSx7 Dot Matrix, Com. Row
Cathode ......................................................... 2-61
Display, .68', Red Sx7 Dot Matrix, Com. Row
Anode ............................................................ 2-61

IDA3416-16
IDA3416-2O
IDA3416-32

Int. Display Asmbly, 16 Char ......................... 2-197
Inl. Display Asmbly, 20 Char ......................... 2-197
Int. Display Asmbly, 32 Char ......................... 2-197

GBG1000
GBG48S0

Bar Graph, Green, 10 Element ...................... 3-18
Bar Graph, Green, 10 Element ...................... 3-20

IDA7135-16
IDA7135-2O
IDA7137-16
IDA7137-2O

Int.
Inl.
Inl.
Inl.

ILl
1L2
ILS

Optocoupler, 6 Pin Sngl, 20% CTR, 7S00V ... S-32
Optocoupler, 6 Pin Sngl, 100% CTA, 7S00V. S-32
Optocoupler, 6 Pin Sngl, 50% CTR, 7500V ... 5-32

DLRS736

PAGE

GLS6

Lamp, Axial, Green, 1.0 mcd/l0mA, 40· ....... 4-23

GLB2Soo
GLB2SS0
GLB2800
GLB2820
GLB2855
GLB2885

Light Bar,
Light Bar,
Light Bar,
Light Bar,
Light Bar,
Light Bar,

HllAl
HllA2
HllA3
HllA4
Hl1A5
HIlMI

Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,

Hl1Bl
Hl1B2
Hl1B3

Optocoupler, 6 Pin Sngl. 500% CTR, 75OOV. 5-28
Optocoupler, 6 Pin Sngl. 200% CTR, 75OOV. 5-28
OptocoLipler, 6 Pin Sngl, 100% CTR, 7SOOV. S-28

Hl1C4
HllCS
HllC6

Optocoupler, 6 Pin Sngl, Photo SCR, 7500V. S-30
Optocoupler, 6 Pin Sngl, Photo SCR, 7500V. S-30
Optocoupler,6 Pin Sngl, Photo SCR, 7500V. S-30

HD1075G
HD10750
HD107SR
HD1075Y
HD1077G
HDlO770
HD1077R
HD1077Y

Display,
Display,
Display,
Display,
Display,
Display,
Display,
Display,

.28', Grn, CA, DP Right.. .................. 3-6
.28', HER, CA, DP Right .................. 3-6
.28', Red, CA, DP Right ................... 3-6
.28', Yel, CA, DP Right ..................... 3-6
.28', Grn, CC, DP Right ................... 3-6
.28', HER, CC, DP Right .................. 3-6
.28', Red, CC, DP Right.. ................. 3-6
.28', Yel, CC, DP Right .................... 3-6

HDll05G
HDll050
HD1105R
HD1105Y
HD1107G
HDll070
HDll07R
HDll07Y

Display,
Display,
Display,
Display,
Display,
Display,
Display,
Display,

.39',
.39',
.39',
.39',
.39',
.39',
.39',
.39',

HD1131G
HD11310
HD1131R
HD1131Y
HD1133G
HD11330
HD1133R
HD1133Y

Display,
Display,
Display,
Display,
Display,
Display,
Display,
. Display,

. HDSP2000LP
HDSP2001LP
HDSP2002LP
HDSP2003LP

Green,
Green,
Green,
Green,
Green,
Green,

.IS'x.3S'
.IS'x,75'
.3S'x.1S'
.3S'x.1S'
.3S'x.3S'
.3S'x.7S'

6 Pin Sngl,
6 Pin Sngl,
6 Pin Sngl,
6 Pin Sngl,
6 Pin Sngl,
6 Pin Sngl,

Emitting Area ...... 3-12
Emitting Area ...... 3-13
Emitting Areas .... 3-14
Emitting Areas .... 3-1S
Emitting Area ...... 3-16
Emitting Area ...... 3-17

50% CTA,
20% CTR,
20% CTR,
10% CTR,
30% CTR,
20% CTR,

ILB
IL9

7S00V ... 5-24
7500V ... 5-24
7500V ... 5-24
7S00V ... 5-24
7S00V ... 5-24
7S00V ... 5-26

ILIO
ILll

Grn, CA, DP Right.. .................. 3-8
HER, CA, DP Right .................. 3-8
Red, CA, DP Right ................... 3-8
Yel, CA, DP Right.. ................... 3-8
Grn, CC, DP Right ................... 3-8
HER, CC, DP Right .................. 3-8
Red, CC, DP Right.. ................. 3-8
Yel, CC, DP Right .................... 3-8

IDAI414-16-1
IDAI414-16-2

Inl. Display Asmbly, 16 Char w/Buffer ........... 2-185
Inl. Display Asmbly, 16 Char w/o Buffer ........ 2-18S

IDA1416-32
IDA2416-16

Inl. Display Asmbly, 32 Char ......................... 2-189
Inl. Display Asmbly, 16 Char ......................... 2-193

Optocoupler, 6 Pin Sngl, 20% CTR, 8KV
w/Base lead ....... :.......................................... S-38
Optocoupler, 4 pin Sngl, SO% CTR, 8KV
w/o Base lead ............................................... S-39
Optocoupler, 6 Pin Sngl, SO% CTR, 8KV
w/Base lead ................................................. S-39
100% CTR, 7500V .5-40
200% CTR, 7S00V . S-40
100%.CTR, 7S00V.5-40
12.5% CTR, 7SOOV S-42

ILlO1B
IL201
1L202
1L203

Optocoupler, 8 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler,6 Pin Sngl,

Hi-Spd 100nS,SmAS-4S
10% CTA, 7S00V ... S-47
30% CTR, 7S00V ... 5-47
50% CTR, 7S00V ... 5-47

1L205
1L206
1L207

Optocoupler, SMD, Pxtr, 40% CTR, 2S00V ... S-49
Optocoupler, SMD, Pxtr, 63% CTR, 2S00V ... S-49
Optocoupler, SMD, Pxtr, 100% CTR, 2S00V .5-49

IL211
1L212
1L213

Optocoupler, SMD, Pxtr, 20% CTR, 2S00V ... 5-51
Optocoupler, SMD, Pxtr, 50% CTR, 2S00V ... 5-51
Optocoupler, SMD, Pxtr, 100% CTA, 2S00V.5-51

IL215
1L216
1L217

Optocoupler, SMD, Pxtr, 20% CTA, 2S00V ... 5-53
Optocoupler, SMD, Pxtr, 50% CTR, 2S00V ... 5-S3
Optocoupler, SMD, Pxtr, 100% CTA, 2500V.S-53

Il221

Optocoupler, SMD, Photodarl, 100% CTA,
25OOV ............................................................. 5-SS
Optocoupler, SMD, Photodarl, 200% CTR,
2SooV ............................................................. 5-S5
Optocoupler, SMD, Photodarl, SOO% CTR,
2S00V ............................................................. 5-SS

Il250
Il251
1L252
1L256

Optocoupler,6 Pin Sngl, 20% CTR, 7500V,
AC Input ........................................................ 5-58
Optocoupler, 6 Pin Sngl, 20% CTR, 7S00V,
AC Input ......................................................... 5-S8
Optocoupler, 6 Pin Sngl. 100% CTR,
7500V, AC Input ............................................ S-S8
Optocoupler, SMD, 20% CTR, 2S00V,
AC Inpilt ........................................................ S-60

Il410
Il420

OptoCoupler, 6 Pin Sngl, Photo SCR,
7S00V ............................ ,................................ S-63
Optocoupler, 6 Pin Sngl, Triac, 7500V .......... S-64
Optocoupler, 6 Pin Sngl. Triac. 7500V .......... S-68

IlCT6
ILOl
IlD2
IlDS

Optocoupler. 8 Pin
Optocoupler. 8 Pin
Optocoupler. 8 Pin
Optocoupler.8 Pin

IlD30
IlD31
IlD32

Optocoupler. 8 Pin Dual. 100% CTA. 7500V.S-40
Optocoupler. 8 Pin Dual. 200% CTA. 7500V.S-40
Optocoupler,8 Pin Dual. SOO% CTR. 7500V.5-80

Il400

II

Optocoupler,4 Pin Sngl, 20% CTA, 8KV

w/o Base lead ............................................... S-38

Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,

Il223

Small Alphanumeric Comm. Disply, 4 Char,
.IS' Dot Matrix Red ........................................ 2-63
Small Alphanumeric Comm. Disply, 4 Char,
.15' Dot Matrix Yel ......................................... 2-63
Small Alphanumeric Comm. Disply, 4 Char,
.IS' Dot Matrix HER ....................................... 2-63
Small Alphanumeric Comm. Disply, 4 Char,
.
.IS' Dot Matrix Grn ........................................ 2-63

16 Char ......................... 2-201
20 Char ......................... 2-201
16 Char ......................... 2-201
20 Char ......................... 2-201

IL30
IL31
ILS5
IL74

Il222

.53', Grn, CA, DP Right.. .................. 3.,-10
.53', HER, CA, DP Right .................. 3-10
.53', Red, CA, DP Right ................... 3-10
.53', Yel, CA, DP Right.. ................... 3-10
.53', Grn, CC, DP Right ................... 3-10
.53', HER, CC, DP Right .................. 3-10
.53', Red, CC, DP Right ................... 3-10
.53', Yel, CC, DP Right .................... 3-10

Display Asmbly,
Display Asmbly,
Display Asmbly,
Display Asmbly,

Dual.
Dual.
Dual.
Dual.

20% CTR. 7SOOV ... 5-72
20% CTA. 7SOOV ... 5-74
100% CTR. 7500V.5-74
SO% CTR. 7SOOV ... 5-74

ALPHANUMERIC INDEX
PART NO.

DESCRIPTION

LD273
LD274-1
LD274-2
LD274-3

Emitter, IR,
Emitter, IR,
Emitter, IR,
Emitter, IR,

LD275-1
LD275-2
LD275-3

Emitter, IR, Tl 3/4, Plastic, 18° ....................... 7-18
Emitter, IR, Tl 3/4, Plastic, 18°........................ 7-18
Emitter, IR, Tl 3/4, Plastic, 18° ....................... 7-18

LD1005
LD1006
LD1007

Lamp. Red/Grn. Tl 3/4• 2.S mcd/20mA, 100° 4..£
Lamp, Red/Grn. n 3/4• 4.0 mcd/20mA, 100° 4..£
Lamp, Red/Grn. 1:1 3/4, 6.3 mcd/20mA, 100° 4..£

LDll03
LDll04
LDll05

Lamp. Red/Grn. Rect. 1.0 mcd/20mA, 100° .. 4-7
Lamp. Red/Grn, Rect. 1.6 mcd/20mA, 100· .. 4-7
Lamp. Red/Grn. Rect. 2.S mcd/20mA,1 00° .. 4-7

LDB5410

Lamp. Blue. Tl 3/4, 2,S mcd/20mA. 16· ....... ..4-8

Ouad,100%CTR,7500V 5-40
Quad, 200%CTR,75OOV5-40
Quad. 500%CTR,7500V5-a0
Ouad,100%CTR,75OOV 5-40
Quad,12.5%CTR,7500V5-42

LDGl151
LDGl152
LDGll53
LDG2330,

Lamp, Grn .. Tl. 2.S mcdl20mA. 70· .............. 4-9
Lamp, Grn. Tl. 6.0 mcd/20mA, 70· .............. 4-9
Lamp, Grn.
10 mcd/20mA, 70· ............... 4-9
Lamp, Grn. Replaced by LG S26o..DO
E7502 ........................... ,................................. 4-18

IP-16A

LED Die, Masked Diffused GaAsP ................ 1-11

IRL80A
IRL81A

Emitter, IR, Side Facing, GaAs ...................... 7-5
Emitter, IR, Side Facing, GaAIAs ................... 7..£

LDG3901
LDG3902
LDG3903

Lamp. Grn. Rect.l.0 mcd/20mA, 100· ......... 4-10
Lamp, Gm. Rect. 1.6 mcd/20mA. 100· ......... 4-10
Lamp. Gm. Rect, 2.5 mcd/20mA, 100· ......... 4-10

ISD2010

Small Alphanumeric Indus. Disply, 4 Char,
.15' Dot Matrix Red ........................................ 2-71
Small Alphanumeric Indus. Disply, 4 Char,
.15' Dot Matrix Yel ......................................... 2-71
Small Alphanumeric Indus. Disply, 4 Char,
.15' Dot Matrix HER ....................................... 2-71
Small Alphanumeric Indus. Disply, 4 Char,
.15' Dot Matrix Grn ........................................ 2-71

LDG5071
LDG5072
LDG5171
LDG5172

Lamp.
Lamp.
Lamp.
Lamp,

LDG5591
LDG5592

Lamp, Grn. Tl 3/4, 40 rricd/20mA. 24· ........... 4-12
Lamp, Grn. Tl 3/4, 80 mcdl20mA. 24· ........... 4-12

LDHllll
LDH1112
LDH1113
LDH2310

Lamp, HER. Tl. 2.5mcdI10mA. 70· ............. 4-9
Lamp, HER. Tl. 4.0 mcdl10mA. 70· ............. 4-9
Lamp, HER, Tl, 6.0 mcdl10mA, 70· ............. 4-9
Lamp, HER, Replaced by LS S260-DO
E7502 ............................................................. 4-18

LDH3601
LDH3602
LDH3603

Lamp, HER, Rect, 1.6 mcdl10mA, 100· ........ 4-10
Lamp, HER, Rect, 2.S mcdl1OmA, 100° ........ 4-10
Lamp, HER, Rect, 4.0 mcd/l0mA, 100° ........ 4-10

LDH5021
LDH5022
LDH5023

Lamp, HER, T1
Lamp, HER,T1
Lamp, HER, T1

LDH5121
LDH5122
LDH5123

Lamp, HER, n 3/4, 2.0 mcd/l0mA, 70" ......... 4-13
Lamp, HER, Tl.~4, 4.0 mcd/l0mA, 70· ......... 4-13
Lamp, HER, Tl /4,6.0 mcd/l0mA, 70· ......... 4-13

LDH5191
LDH5192
LDH5193

Lamp, HER, T1 3/4, 10mcd/l0mA, 24° .......... 4-12
Lamp, HER, T1 3/4, 20 mcd/l0mA, 24° .......... 4-12
Lamp, HER, Tl 3/4,30 mcd/l0mA. 24· .......... 4-12

LDRll0l
LDRll02
LDRll03

Lamp, Red, Tl, 1.0 mcd/20mA,70" .............. 4-9
Lamp, Red, n, 2.0 mcd/20mA, 70" ............... 4-9
Lamp, Red, Tl, 4.0 mcd/20mA, 70· .............. 4-9

LDR3701
LDR3702

Lamp, Red, Rect, 0.4 mcd/20mA. 100" .... :... 4-10
Lamp, Red, Rect, 0.63 mcd/20mA, 100· ...... 4-10

LDR5001
LDRS002
LDRS003

Lamp, Red, Tl 3/4 , 1.0mcdl20mA, 70· .......... 4-11
Lamp, Red, Tl 3/4 , 2.5mCd120mA, 70· .......... 4-11
Lamp, Red, Tl 3/4 , 4.0mCd/20mA, 70° ........ ..4-11

LDRS091
LDRS092
LDRS093

Lamp, Red, Tl 3/4, 2.S mcd/20mA, 24° ......... 4-12
Lamp, Red, n 3/4, 4.0 mcd/20mA, 24° ......... 4-12
Lamp, Red, T1 3/4, 10 mCd/20mA. 24° .......... 4-12

PART NO.

DESCRIPTION

ILOSS
ILD74

Optocoupler. 8 Pin Dual. 100% CTR. 7500V.5-40
Optocoupler, 8 Pin Dual, 12.5% CTR, 7500V 5-42

ILD250

Optocoupler,8 Pin Dual, 50% CTR, 7500V,
AC Input ......................................................... 5-58
Optocoupler, 8 Pin Dual, 20% CTR, 7500V,
AC Input ......................................................... 5-58
Op\ocoupler, 8 Pin Dual, 100% CTR, 7500V,
AC Input ......................................................... 5-58

ILD251
ILD252
ILD61o..l
ILD61o..2
ILD61o..3
ILD61o..4

Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,

ILOl
IL02
IL05

Optocoupler, 16 Pin Quad, 2O%CTR, 7500V 5-74
Optocoupler, 16 Pin Ouad,100%CTR,7500V 5-74
Optocoupler, 16 Pin Quad, 50%CTR, 7500V 5-74

IL030
IL031
IL032
ILOSS
IL074

Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,

ISD2011
ISD2012
ISD2013
ISD2310
ISD2311
ISD2312
ISD2313
ISD2351
ISD2352
ISD2353

8 Pin
8 Pin
8 Pin
8 Pin

PAGE

Dual,
Dual,
Dual,
Dual,

16 Pin
16 Pin
16 Pin
16 Pin
16 Pin

40% CTR, 7500V ... 5-a2
63% CTR, 7500V ... 5-82
100% CTR, 7500V.5-a2
160% CTR, 7500V. 5-a2

Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix Red ........................................ 2-79
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix Yel ......................................... 2-79
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix HER ....................................... 2-79
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix Grn ........................................ 2-79
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix Yel, Sunlight View .................. 2-87
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix HER, Sunlight View ............... 2-87
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix Grn, Sunlight View ................. 2-87

LD242-2
LD242-3

Emitter, IR, TO-18, 40°:'........ :......................... 7-8
Emitter, IR, TO-18, 40° ................................... 7-8

LD260
LD261·4
LD261-5
LD262
LD263
LD264
LD265
LD266
LD267
LD268
LD269

Emitter,
Emitter,
Emitter,
Emitter,
Emitter,
Emitter,
Emitter,

LD271
LD271H
LD271L
LD271LH

Emitter, IR,
Emitter, IR,
Emitter, IR,
Emitter, IR,

IR, 10 Element Array ........................ 7-10
IR, Mini, Plastic, 30° .......................... 7-10
IR, Mini, Plastic, 30° .......................... 7-10
IR, 2 Element Array ........................... 7-10
IR, 3 Element Array ........................... 7-10
IR, 4 Element Array ........................... 7-10
IR, 5 Element Array ........................... 7-10
Em~ter, IR, 6 Element Array ........................... 7-10
Emitter, IR, 7 Element Array ........................... 7-10
Emitter, IR, 8 Element Array ........................... 7-10
Emitter, IR, 9 Element Array ........................... 7-10
Tl 3/4, Plastic, 25° ....................... 7-12
Tl 3/4 , Plastic, 25° ....................... 7-12
T1 3/4, Plastic, 25°,1' Leads ........ 7-12
Tl 3/4 , Plastic, 25°, l' Leads ........ 7-12

vi

PAGE

Tl 3/4, Plastic,
Tl 3/4, Plastic,
Tl 3/4, Plastic,
H3/4, Plastic,

25°, Oval .............. 7-14
10° ....................... 7-16
10° ....................... 7-16
10° ....................... 7-16

n.

Grn. n 3/4• 2.S mcd/20mA. 70· ......... .4-11
Grn, n 3/4 , 6.0 mcd/20mA. 70· .......... 4-11
Grn, Tl :/4. 2.5 mc.d/20mA. 70· .......... 4-13
Grn. Tl /4,6.0 mcd/20mA. 70· .......... 4-13

3 /4,
3/4,

2.0 mcd/l0mA, 70· ......... 4-11
4.0 mcd/l0mA, 70· ......... 4-11

3/4, 6.0 mcd/l0mA, 70° ......... 4-11

ALPHANUMERIC INDEX
PART NO.

DESCRIPTION

LDR5101
LDR5102
LDR5103
LDRG2340

Lamp, Red, T1 3/4 , 1.0 mcd/20mA, 70" ......... 4-13
Lamp, Red, T1 3/4 ,2.5 mcd/20mA, 70· ......... 4-13
Lamp, Red, T1 3/4 , 4.0 mcd/20mA, 70· ......... 4-13
Lamp, Red/Grn, Replaced by LU S26O-DO
E7502 ......................................; ...................... 4-18

LDY1131
LDY1132
LDY1133
LDY2320

Lamp, Yel, T1, 1.0 mcd/lOmA. 70· ............... 4-9
Lamp, Yel, T1, 2.0 mcd/10mA, 70· ............... 4-9
Lamp, Yel, T1, 4.0 mcd/10mA, 70· ............... 4-9
Lamp, Yel, Replaced by LY S260·DO
E750 ............................................................... 4-18

LDY3801
LDY3802
LDY3803

Lamp, Yel, Rect, 1.0 mcd/20mA, 100· ......... .4-10
Lamp, Yel, Rect, 1.6 mcd/20mA. 100· .......... 4-10
Lamp, Yel, Rect, 2.5 mcd/20mA, 100· .......... 4-10

LDY5061
LDY5062

Lamp, Yel, T1 3/4 1.0 mcd/10mA, 70· ............ 4-11
Lamp, Yel, T1 3/4 2.5 mcd/10mA, 70· ............ 4-11

LDY5161
LDY5162
LDY5163

Lamp, Yel, T1 3/4 1.0 mcd/10mA, 70· ............ 4-13
Lamp, Yel, T1 3/4 2.5 mcd/10mA, 70· ............ 4-13
Lamp, Yel, T1 3/4 4.0 mcd/10mA, 70· ............ 4-13

LDY5391
LDY5392
LDY5393

Lamp, Yel, T1 3/4 10 mcd/10mA, 24· ............. 4-12
Lamp, Yel, T1 3/4 20 mcd/10mA, 24· ............. 4-12
Lamp, Yel, T1 3/4 30 mcd/10mA, 24· ............. 4-12

LG3389·EO
LG3389·FO

Lamp, Grn, T1, Low Curr, 0.63 mcd/2mA ..... 4-14
Lamp, Grn, T1, Low Curr, 1 mcd/2mA .......... 4-14

LG5411·LO
LG5411·NO
LG5411-PO

Lamp, Grn, T1 3/4, Superbrt, 10 mcd/10mA .. 4-15
Lamp, Grn, T1 3/4 , Superbrt, 25 mcd/10mA .. 4-15
Lamp, Grn, T1 3/4, Superbrt, 40 mcd/10mA .. 4-15

LG5469-EO
LG5469-FO

Lamp, Grn, T1 3/4 , Low Curr, 0.63 mcd/2mA. 4-16
Lamp, Grn, T1 3/4, LowCurr.1 mcd/2mA ...... 4-16

LG K380
LGS26O·DO

Lamp, Grn, T1, Argus .................................... 4-17
Lamp, Grn, T1 3/4, SOT·23 SMD,Replaces
LDG2330·Z42 ................................................ 4-18

LPDBOA
LPT80A
LPT85A

Photodrlgtn, NPN, Side Facing, Plastic, 40· .9-16
Photoxtr, NPN, Side Facing, Plastic, 40· ....... 9-17
Photoxtr, NPN, Side Facing, Plastic, 40· ....... 9-19

LPT100
LPT100A
LPT100B
LPT110
LPT110A
LPT110B

Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,

LS3369-EO
LS3369·FO

Lamp, HER, T1. Low Curr, 0.63 mcd/2mA .... 4-14
Lamp, HER, T1, Low Curro 1 mcd/2mA ......... 4-14

LS5421-MO
LS5421-PO
LS5421·QO

. Lamp, HER, T1 3/4, Superbrt, 16 mcd/10mA .4-15
Lamp, HER, T1 3/4 , Superbrt, 40 mcd/10mA .4-15
Lamp, HER, T1 3/4, Superbrt, 63 mcd/10mA .4-15

LS5469-EO
LS5469·FO

Lamp, HER, T1 3/4, Low Curr, 0.63 mcd/2mA 4-16
Lamp. HER, T1 3/4, Low Curr, 1 mcd/2mA .... 4-16

LS K380
LSS260-DO

Lamp, HER, T1, Argus ................................... 4-17
Lamp, HER, SOT-23 SMD. Replaces
LDH2310-Z42 ................................................ 4-18
Lamp, Red/Grn, SOT-23 SMD, Replaces
LDRG2340-Z42 .............................................. 4-18

LUS250-DO

Ceramic,
Ceramic,
Ceramic,
Ceramic,
Ceramic,
Ceramic,

PAGE

T0-18,
TO-18,
TO-18,
T0-18,
TO-18,
T0-18,

25·
25·
25·
25·
25·
25·

Lamp, Yel, T1, Low Current, 0.63 mcd/2mA .4-14
Lamp, Yel, T1, Low Current, 1 mcd/2mA ...... 4-14

LY5421-MO
LY5421-PO
LY5421-QO

Lamp, Yel, T1 3/4, Superbrt, 16 mcd/10mA ... 4-15
Lamp. Yel, T1 3/4 , Superbr!. 40 mcd/10mA ... 4-15
Lamp, Yel, T1 3/4 , Superbrt, 63 mcd/10mA ... 4-15

DESCRIPTION

LY5469-EO
LY5469-FO

Lamp, Yel, T1 3/4 , Low Curr, .63 mcd/2mA .... 4-16
Lamp, Yel, T1 3/4 , Low Curr, 1 mcd/2mA ....... 4-16

LYK380
LYS260·DO

Lamp, Yel, Tl, Argus ..................................... 4-17
Lamp, Yel, SOT-23 SMD, Replaces
LDY2320-Z42 ................................................. 4-18

MCA230
MCA231
MCA255

Optocoupler, 6 Pin Sngl. 100% CTR, 75OOV. 5-85
Optocoupler. 6 Pin Sngl. 200% CTR, 75OOV. 5-85
Optocoupler, 6 Pin Sngl, 100% CTR, 75OOV. 5-85

MCT2
MCT2E
MCT6

Optocoupler,6 Pin Sngl, 20% CTR, 7500V ... 5-87
Optocoupler, 6 Pin Sngl, 20% CTR, 7500V ... 5-87
Optocoupler, 6 Pin Sngl. 20% CTR. 7500V ... 5-89

MCT270
MCT271
MCT272
MCT273
MCT274
MCT275
MCT276
MCT277

Optocoupler, 6 Pin Sn91,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sn91,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sn91,
Optocoupler,6 Pin Sngl,

MDL2416C
MDL2416TXV
MDL2416TXVB

Int. Display, 4 Char, .15', Red, Hi-Rei ........... 2-95
Int. Display, 4 Char, .15', Red, Military .......... 2-95
Int. Display, 4 Char, .15', Red, Military .......... 2-95

MPD2545

Prog. Display. 4 Char, .25', Dot Matrix HER,
Hi-Rel ............................................................. 2-103
Prog. Display, 4 Char, .25', Dot Matrix Grn,
Hi-Rel ............................................................. 2-103
Prog. Display, 4 Char, .25', Dot Matrix Yel,
Hi-Rel ............................................................. 2-103

MPD2547
MPD2548

PAGE

50% CTR, 7500V ... 5-91
45% CTR, 7500V ... 5-91
75% CTR, 7500V ... 5-91
125% CTR, 7500V.5-91
225% CTR, 7500V.5-91
70% CTR, 7500V ... 5-91
15% CTR, 7500V ... 5-91
100% CTR, 7500V.5-91

MSD2010 TXV

Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix Red ....................................... 2-113
MSD2010 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix Red ....................................... 2-113
MSD2011 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix Yel ........................................ 2-113
MSD2011 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix Yel ........................................ 2-113
MSD2012 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix HER ............. :........................ 2-113
MSD2012 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix HER ...................................... 2-113
MSD2013 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix Grn ....................................... 2-113
MSD2013 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
15' Dot Matrix Grn ....................................... 2-113

...................... 9-21
...................... 9-21
...................... 9-21
...................... 9-21
...................... 9-21
...................... 9-21

LY3369-EO
LY3369-FO

PART NO.

MSD2310 TXV

Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Red ....................................... 2-124
MSD2310 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Red ....................................... 2-124
MSD2311 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Yel ........................................ 2-124
MSD2311 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Yel ........................................ 2-124
MSD2312 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix HER ...................................... 2-124
MSD2312 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix HER ...................................... 2-124
MSD2313 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Grn ....................................... 2-124
MSD2313 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Grn ....................................... 2-124
MSD2351 TXV

Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Yel, Sunlight View ................. 2-135
MSD2351TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Yel, Sunlight View ................. 2-135
MSD2352 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix HER, Sunlight View .............. 2-135

vii

ALPHANUMERIC INDEX
PAGE

PAGE
PART NO,
DESCRIPTION
MSD2352 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix HER, Sunlight View .............. 2-135
MSD2353 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Grn, Sunlight View ................ 2-135
MSD2353 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Oot Matrix Grn, Sunlight View ................ 2-135

PART NO,

DESCRIPTION

SFH225
SFH248
SFH248F

Photodiode, Black Plastic, PIN, 60· ............... 8-54
Photodiode, Plastic, SO· ................................ 8-56
Photodiode, Plastic w/Filtei, 60· .................... 8-56

SFH250
SFH250F

OBG1000
OBG4B30
OLB2300
OLB2350
OLB2600

Bar Graph, HER, 10 Elemenl.. ....................... 3-18
Bar Graph, HER, 10 Element .....•................... 3-20
Light, Bar, HER, .15'x.35' Emitting Area ....... 3-12
Light, Bar, HER, .15'x.75' Emitting Area ....... 3-13
Light, Bar, HER, .35'x.15' Emitting Areas ...... 3-14

SFH250V

Photodiode Detector, Plastic, Fiber Optic ..... 6-3
Photodiode Detector, Plastic w/Filter,
Fiber Optic ..................................................... 6-3
Photodiode Detector, Plastic Connector
Housing, Fiber Optic ..................................... 6-5

OLB262O
OLB2655
OLB2685

Light, Bar, HER, .25'x.15' Emitting Areas ...... 3-15
Light, Bar, HER, .35'x.35' Emitting Area ....... 3-16
Light, Bar, HER, .35'x.75' Emitting Area ....... 3-17

SFH303-2
SFH303-3
SFH303-4
SFH303F-2
SFH303F-3
SFH303F-4

Photoxtr, n 3/4 , Plastic, 20· .......................... 9-23
Photoxtr, n 3/4 , Plastic, 20· .......................... 9-23
Photoxtr, n 3/4, Plastic, 20· ......................... 9-23
Photoxtr, n 3/4, Plastic w/Filter, 20· ............... 9-23
Photoxtr, Tl 3/4, Plastic w/Filter, 20· ............... 9-23
Photoxtr, Tl 3/4, Plastic w/Filter, 20· ............... 9-23

PDl165
PDf167

Prog. Display, 1,16' Sq. 8x8 Dot Matrix HER 2-146
Prog. Display, 1.16' Sq. 8x8 Dot Matrix Grn .2-146

SFH305-2
SFH305-3

Photoxtr, Mini, Plastic, 16· •............................ 9-25
Photoxtr, Mini, Plastic, 16· ........•..•................. 9-25

PD2435

Prog. Display, 4 Char, .200', 5x7 Dot Matrix
HER ................................................................ 2-154
Prog. Display, 4 Char, .200', 5x7 Dot Matrix .
Red .•..••.......................................................... 2-154
Prog. Display, 4 Char, .200', 5x7 Oot Matrix
Grn ............ :......•............................................. 2-154

SFH309-2
SFH309-3
SFH309-4
SFH309-5
SFH309F-2
SFH309F-3
SFH309F-4
SFH309F-5

Photoxtr, Ti, Plastic, 20· ................................. 9-27
Photoxtr, Tl, Plastic, 20" ................................ 9-27
Photoxtr, n, Plastic, 20" ................................ 9-27
Photoxtr, n, Plastic, 20 •.......•....................... 9-27
Photoxtr, n, Plastic w/Filter, 20· ................... 9-27
Photoxtr, n, Plastic w/Filter, 20· ................... 9-27
Photoxtr, n, Plastic w/Filter, 20· ................... 9-27
Photoxtr, Tl, Plastic w/Filter, 20· ................... 9-27

SFH317-2
SFH317-3
SFH317-4
SFH317F-2
SFH317F-3
SFH317F-4

Photoxtr, Tl
Photoxtr, Tl
Photoxtr, Tl
Photoxtr, Tl
Photoxtr, Tl
Photoxtr, n

SFH350
SFH350F

Photoxtr Detector, Plastic, Fiber Optic ........•. 6-7
Photoxtr Detector, Plastic, w/Filter Fiber
Optic .............................................................. 6-7
Photoxtr Detector, Plastic Connector
Housing, Fiber Optic ..................................... 6-9

PD2436
PD2437
PD3535

PD3536
PD3537
PD4435
P04436
PD4437

Prog. Display, 4 Char, .270', 5x7 Dot Mattix
HER ................................................................ 2-164
Prog. Display, 4 Char, .270', 5x7 Dot Matrix
Red ......•......................................................... 2-164
Prog. Display, 4 Char, .270', 5x7 Dot Matrix
Grn ..•.............................................................. 2-164
Prog. Display, 4 Char, .45', 5x7 Oot Matrix
HER ......................................................•......... 2-174
Prog. Display, 4 Char, .45', 5x7 Dot Matrix
Red ................................................................ 2-174
Prog. Display, 4 Char, .45', 5x7 Oot Matrix
Grn ................................................................. 2-174

PFOK-l

Kit, Plastic Fiber Optic ................................... 6-15

RB-42B
RM-14A

LEO Die, Mask-Diffused GaAsP .................... 1-12
LEO Die, Mask-Diffused GaAsP, Monolithic
w/Cursor .........•............................................. 1-13
LEO Die, Mask-Diffused GaAsP, Monolithic .. 1':'14
LEO Die, Mask-Diffused GaAsP, Monolithic .. 1-15
LEO Die, Mask-Diffused GaAsP, Monolithic .. 1-16
LEODie, Mask-Diffused GaASP, Monolithic .. 1-17
LED Die, Mask-Diffused GaAsP, Monolithic .. 1-18
LEO Die, Mask-Diffused GaAsP, Monolithic .. 1-19
LEO Die, Mask-Diffused GaAsP, Monolithic .. 1-20
LEO Die, Mask-Diffused GaAsP .................... 1-21
LED Die, Mask-Diffused GaAsP, Point
Source ................................................:..........:.1-22

RM-15B
RM-62A
RM-64A
RM-73A
RM-81B
RM-85D
RM-86A
RP-12C
RP-13CB
RBG1000
RBG4820

Bar Graph, Red, 10 Element ......................... 3-18
Bar Graph, Red, 10 Element .. :...................... 3-20

RL50
RL54
RL55

Lamp, Axial, Red, 0.5 mcd/l0mA, 90· .......... 4-21
Lamp, Axial, Red, 0.4 mcd/l0mA, 90· .......... 4-21
Lamp, Axial, Red, 2.0 mcd/l0mA, 90· .......... 4-23

SFH100
SFH200
SFH204
SFH205
SFH205-Q2
SFH206
SFH206K

Photodiode, Plastic, so· .......................... ,..... 8-38
Photodiode, Plastic, so· ................................ 8-40
Photodiode, 4 Quadrant, Plastic, 70· ............ ~2
Photodiode, Black, TO-92, PIN, 70" .............. 8-44
Photodiode, Black, TO-92, PIN, 70" .............. 8-46
Photodiode, Black, TO-92, PIN, 60" .............. 8-48
Photodiode, Clear Plastic, T0-92, PIN, 60· ... 8-50

SFH217
SFH217F

Photodiode, Tl 3/4, Plastic, Flat Top, PIN ...... 8-52
Photodiode; Tl 3/4, Plastic w/Filter, Flat Top,
PIN ................................................................. 8-52

SFH350V

3/4 ,

SFH400-2
SFH400-3
SFH401-2
SFH401-3
SFH401-4
SFH402-2
SFH402-3

Emitter, IR, TO-18, 60 , 20mW/SR ................... 7-20
Emitter, IR, TO-18, 6·, 32mW/SR ................... 7-20
Emitter,lR, TO-18, 15·, 10mW/SR ................. 7-22
Emitter,lR, TO-18, 15·, 16mW/SR .....•........... 7-22
Emitter,lR, TO-18, 15·, 25mW/SR ................. 7-22
Emitter, IR, TO-18, 40·, 2.5mW/SR ................ 7-24
Emitter,lR, TO-18, 40·, 4.OmW/SR ................ 7-24

SFH405-2
SFH405-3

Emitter, IR, Mini, 16· ...................................... 7-26
Emitter, IR, Mini, 16· ...................................... 7-26

SFH409-1
SFH409-2
SFH409-3

Emitter,lR, Tl, Plastic, 20·, 6.3-12.5mW/Sr .. 7-28
Emitter, IR, n, Plastic, 20·, 10-20mW/Sr ...... 7-2S
Emitter, IR, Tl, Plastic, 20·, >l6mW/Sr ..•...... 7-28

SFH431-1
SFH431-2
SFH431-3
SFH435

Emitter, IR, TO-18, 18·, 10-20mW/Sr ............. 7-30
Emitter,lR, TO-18, 18·, 16-32mW/Sr ............. 7-30
Emitter, IR, TO-1S, lS·, >25mW/Sr ................ 7-30
Emitter, IR, S·, GaAs .....•................................ 7-31

SFH450
SFH450V

Emiller, IR, GaAs, Plastic Fiber Optic ............ 6-11
Emitter, IR, GaAs, Plastic Connector
Housing, Fiber Optic ... :................................. 6-13
Emitter, IR, GaAlAs, Plastic Connector
Housing, Fiber Optic ..................................... 6-13
Emiller, IR, GaAlAs, Plastic Connector
Housing, Fiber Optic ..................................... 6-13

SFH451V
SFH452V

viii

Plastic, 60· ........................... 9-29
Plastic, SO· ........................... 9-29
Plastic, 60· .........•................. 9-29
3/4, Plastic w/Filter, SO· ............... 9-29
3/4, Plastic w/Filter, SO· ............... 9-29
3/4, Plastic w/Filter, SO" ............... 9-29
3/4 ,

3/4,

SFH480-1
SFH480-2
SFH480-3

Emitter,lR, TO-18, GaAlAs, 6· ....................... 7-34
Emiller, IR, TO-1S, GaAlAs, 6· ....................•.. 7-34
Emitter, IR, TO-1S, GaAlAs, 6· ....................... 7-34

SFH481-1

Emitter, IR, TO-18, GaAlAs, 15· ..................... 7-36

ALPHANUMERIC INDEX
PART NO,

DESCRIPTION

SFH481-2
SFH481-3
SFH482-1
SFH482-2
SFH482-3

Emitter,
Emitter,
Emitter,
Emitter,
Emitter,

SFH484-1
SFH484-2
SFH484-3

Emitter, IR: Tl 3/4, GaAIAs, 8', 50-100mW/Sr 7-40
Emitter, IR, Tl 3/4, GaAIAs, 8', 8D-160mW/Sr 7-40
Emitter, IR, Tl 3/4 , GaAlAs, 8', >125mW/Sr ... 7-40

SFH485-1
SFH485-2
SFH485-3
SFH485P-l
SFH485P-2

Emilter,
Emitter,
Emitter,
Emitter,
Emitter,

IR,
IR,
IR,
IR,
IR,

Tl
Tl
Tl
Tl
Tl

GaAlAs, 20', 16-32mW/Sr 7-42
GaAIAs, 20', 25-50mW/Sr 7-42
3/4, GaAIAs, 20'g, >40mW/Sr. 7-42
3/4,40', FlatTop, GaAIAs ....... 7-44
3/4,40', FlatTop, GaAIAs ....... 7-44

SFH487-1
SFH487-2
SFH487-3
SFH487P-l
SFH487P-2

Emitter,
Emitter,
Emitter,
Emitter,
Emitter,

IR,
IR,
IR,
IR,
IR,

Tl,
Tl,
Tl,
Tl,
Tl,

GaAIAs, 20', 12.5-25mW/Sr .. 7-46
GaAIAs, 20', 20-40mW/Sr ..... 7-46
GaAIAs, 20', >32mW/Sr ....... 7-46
Flat Top, 65', 2-4mW/Sr ........ 7-48
Flat Top, 65', >3.15mW/Sr .... 7-48

SFH600-0
SFH600-1
SFH600-2
SFH600-3

Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,

6
6
6
6

Pin
Pin
Pin
Pin

Sngl,
Sngl,
Sngl,
Sngl,

40% CTR, 5300V ... 5-93
63% CTR, 5300V ... 5-93
100% CTR, 5300V. 5-93
160% CTR, 5300V. 5-93

SFH601-1
SFH601-2
SFH601-3
SFH601-4

Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,

6
6
6
6

Pin 8ngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,

40% GTR, 5300V ... 5-97
63% GTR, 5300V ... 5-97
100% CTR, 5300V. 5-97
160% CTR, 5300V. 5-97

SFH601G-l
SFH601G-2
SFH601G-3
SFH601G-4

Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,

6
6
6
6

Pin
Pin
Pin
Pin

40% CTR, 5300V ... 5-101
63% CTR, 5300V ... 5-101
100% CTR, 5300V.5-101
160% CTR, 5300V.5-101

SFH606

Optocoupler, 6 Pin Sngl, 63-125% CTR,

SFH609-1
SFH609-2
SFH609-3

Optocoupler, 6 Pin Sngl, 40% CTR, 5300V ... 5-109
Optocoupler, 6 Pin Sngl, 63% CTR, 5300V ... 5-109
Optocoupler, 6 Pin Sngl, 100% CTR, 5300V. 5-109

SFH617G-l
SFH617G-2
SFH617G-3

Optocoupler, 4 Pin Sngl, 40% CTR, 5300V ... 5-113
Optocoupler, 4 Pin Sngl, 63% CTR, 5300V ... 5-113
Optocoupler, 4 Pin Sngl, 100% GTR, 5300V.5-113

SFH750

Emitter, Vis. Red, GaAsP, Plas. Fiber Optic .. 6-11
Emitter, Vis. Red, GaAsP, Plas. Connector
Housing, Fiber Optic ..................................... 6-13
Emitter, Vis. Grn, GaP, Plas. Rber Optics ..... 6-11
Emitter, Vis. Red, GaAsP, Plas. Connector
Housing, Fiber Optics .................................... 6-13

IR,
IR,
IR,
IR,
IR,

PAGE

TO-18,
TO-18,
TO-18,
TO-18,
TO-18,

GaAIAs,
GaAIAs,
GaAIAs,
GaAIAs,
GaAIAs,

15'
15'
30'
30'
30'

.................... 7-36
.................... 7-36
.................... 7-38
.................... 7-38
.................... 7-38

3/4,
3/4,

Sngl,
Sngl,
Sngl,
Sngl,

5300V ............................................................. 5-105

SFH750V
SFH751
SFH752V
SFH900-1

SFH910

Reflector Sensor, Mini. Plas. Emitter
Detector Pair .................................................. 7-50
Reflector Sensor, Mini. Plas. Emitter
Detector Pair .................................................. 7-50
Reflector Sensor, Mini, Plas. Emitter
Detector Pair .................................................. 7-50
Reflector Sensor, Mini, Plas. Emitter
Detector Pair .................................................. 7-50
Reflector Sensor, Mini, Plas. Emitter
Detector Pair .................................................. 7-50
Reflector Sensor, Mini, Plas. Emitter
Detector Pair .................................................. 7-50
Interrupter, Differential Photo ........................ 7-54

SFH2030
SFH2030F

Photodiode, PIN. T1 3/4, 20' ........................... 8-58
Photodiode, PIN, Tl 3/4 , 20' ........................... 8-58

SFH900-2
SFH900-3
SFH900-4
SFH905-1
SFH905-2

SFH6011

Optocoupler, 6 Pin Sngl, 63-200% CTR,

5300V ............................................................. 5-117

ix

PART NO,

DESCRfPTION

SFK610-1
SFK610-2
SFK61 0-3
SFK610-4
SFK611-1
SFK611-2
SFK611-3
SFK611-4

Optocoupler,4
Optocoupler. 4
Optocoupler, 4
Optocoupler. 4
Optocoupler. 4
Optocoupler, 4
Optocoupler, 4
Optocoupler, 4

TP60P
TP61P

Photovoltaic Cell, Rnd, luNLX ...................... 10-10
Photovoltaic Cell, Hex, 1uNLX ...................... 10-10

YBG1000
YBG4840

Bar Graph, Yellow, 10 Element ...................... 3-18
Bar Graph, Yellow, 10 Element... ................... 3-20

YL56

Lamp, Yel, Axial, 20mcd/10mA, 40' .............. 4-23

YLB2400
YLB2450
YLB2700
YLB2720
YLB2755
YLB2785

Light
Light
Light
Light
Light
Light

Bar,
Bar,
Bar,
Bar,
Bar,
Bar,

Yel,
Yel,
Yel,
Yel,
Yel,
Yel,

PAGE
Pin Sngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,

.15'x.35'
. 15'x. 75'
.35'x.15'
.35')(.15'
.35'x.25'
.35'x.75'

40% CTR, 7500V ... 5-121
63% CTR, 7500V ... 5-121
100% CTR, 7500V.5-121
160% CTR, 7500V.5-121
40% CTR, 7500V ... 5-121
63% CTR, 7500V ... 5-121
100% CTR, 7500V.5-121
160% CTR, 7500V.5-121

Emitting
Emitting
Emilting
Emitting
Emitting
Emitting

Area ........... 3-12
Area ........... 3-13
Areas ......... 3-14
Areas ......... 3-15
Area ........... 3-16
Area ........... 3-17

SIEMENS

Quality at Siemens Optoelectronics
At Siemens Optoelectronics, quality means more than
today's satisfied customer. It means measuring up to
our customer's plans for tomorrow.

delivery. And it means measurable results. During the past
decade, we've continually reduced the cost of quality while
increasing our productivity and reducing ppm.

It means a sophisticated process: Quality manu-facturing
and assurance programs, ongoing training and statistical
quality control. It means continuously using customer feedback to build in improvements, ensuring just-in-time

In short, quality has become our way of life, permeating
everything we do. It's become the art and science of
exceeding our customer's expectations.

At Siemens Optoelectronics - Quality Means
Measurable Results

.•

70

n

II
II
II

;; A
: I n PPM (xl 00)

60

PI GOBI/1990

\

II "
II II
II II
II II
II II

50

I

I,_

II II

I

I'll
1_
••

I

I.

I:..

: ~: ;:\
\: H :; \

\

40

..., V :; \
~; \
"~ ~

.•

30

•

,~

20

COQ-1987
COQ GOBII1990

10

82

83

84

85

PPM (x 100)
PI - Productivity Index
COQ - Cost of QUBlily (%)

86

87

88

89

90

SIEMENS

Optoelectronics
Quality and Reliability

Introduction

Parts Per Million (PPM) Program

In the technological community as a whole, the terms
''quality'' and "reliability" are frequently reduced to little more
than advertising platitudes-heavily promised, but seldom
delivered in the form of highly reliable, precision-made
products. At Siemens Optoelectronics Division, however, we
strive for continually increasing product excellence through
increased quality and reliability reflecting a company-wide
commitment of the highest priority.

The intensive, quality-oriented efforts of every group have
enabled us to achieve one of the lowest defect percentages
in the industry. Our Parts Per Million (PPM) program meets
all industry expectations and is at a level sufficient to supply
high-caliber OEM customers including IBM, DELCO, DEC,
and SPERRY (UNISYS).

Our ability to produce quality optoelectronic products
offering longterm reliabiliiy is directly related to intensive
research and development, advan~d manufacturing, a
quality-oriented work force, and a company wide philosophy
attuned to the changing needs of a technologically
sophisticated customer base.
Another important facet of our total commitment to manufacturing excellence is a program of quality control and reliability testing, under the Reliability and Quality Assurance
(R&QA) Department. R&QA's responsibility is to interface
directly with the customers, not only to determine their
present satisfaction level, but to assess their future needs as
well. In this way, R&QA makes certain that we will
successfully meet all current and future quality/reliability
requirements of our customers.
Similarly, it is also R&QA's responsibility to maintain open
communication with customers, keeping them informed of
our latest capabilities and achievements in the areas of
product quality and reliability through detailed reports.
Although the concepts of quality and reliability are closely
related, they are somewhat divergent, specialized activities.
Simply put, Quality Assurance makes certain that products
are "made right': ranging from rigid inspection and monitoring of all materials used in production processes, to monitoring the actual production processes themselves. Reliability,
on the other hand, ensures that products ''work right" after
assembly. At Siemens, component reliability results from an
extensive program of routine monitoring and special testing
activities which will be detailed later.

2

The annual improvement of the PPM level is vital to our
ability to remain a cost-effective, on-time supplier of highquality components to the industry. Our PPM program is at
the heart of the quality/reliability "revolution" which has
occured in the semiconductor industry during the last few
years.
Designed to control and monitor every step of the manufacturing process, as well as to assist in predictability studies,
our PPM program represents the key to our long-term success in a highly competitive industry. To this end, we are
heavily committed to:
• Maximum automation of processes to obtain consistent,
reproducible results.
• A system of stringent process controls to ensure the
achievement of expected results.
• Effective quality systems to continuously audit the PPM
level actually being achieved.
Customer benefits of the PPM system are numerous:
• A low PPM defect rate enabling you to eliminate incoming
QA testing.
• Dependable on-time delivery for a ':JUST IN TIME"
inventory system, Significantly reducing inventory costs.
• Efficient, highly automated manufacturing to keep
long term price increases as low as possible.
• Fewer production line failures; lower assembly costs;
increased profit margin.
• Fewer field failures on end products; lower warranty and
service costs.
The 1988/89 PPM goal for Siemens Optoelectronics is
50 PPM.

Customer Quality Return Performance
September 1987 - August 1988
1.0%
0.8%
~

~

0.6%

?=

:::;

g

0.4%

;/!

~

~

1987

~

~

~

~

~

m

~

~

_

~

1988
CUSTOMER QUALllY RETURN

Statistical Quality Control (SQC)

Quality Assurance

To achieve our PPM goals efficiently, we have implemented
a sophisticated program of Statistical Quality Control
(SQC). In effect, SQC ensures highly-reproducible, controlled
manufacturing processes and '1ust-in-time" delivery. It
enables us to meet our PPM goals without resorting to a
"brute force" approach. SQC is consistent with William E.
Deming's principal theory that productivity improves as a
product's variability rate decreases.

At Siemens the Quality Assurance Group serves the
vital function of maintaining constant product quality
standards. Quality Assurance activities begin with the careful
assessment of raw materials, continues through in-process
monitoring, and concludes with outgoing audits as outlined
below:

• Raw Material
-

We recognize the necessity of meeting our customers' ever
increasing quality requirements through a carefully
developed, well·implemented program of Statistical Quality
Control. After considerable research and careful planning,
our SQC program was developed using the following
6-point plan for Statistical Process Control:
• Establishment of goals and objectives for company-wide
implementation of Quality program
• Assessment of SQC technical capability and quantification
of training aids
• Provision for training managers, engineers, supervisors,
and analysts in methods and practices of SQC, as needed
• Managerial involvement in gaining statistical evidence
pertaining to specific processes
• Identification of examples of successful SQC implementation ...to be used as models for emulation
• Monitoring progress toward established goals through a
program of periodic self-audits

Vendor surveys
Vendor qualifications
Incoming inspections
Vendor rating systems

• In-process Monitors
-

Die attach monitors
Lead bond monitors
Encapsulation monitors
Finishing operations monitors

• Outgoing Audits
- Outgoing audits (all lots)
- Finished goods monitor (random)
The flowchart on the right shows the basic quality control
procedures employed by Siemens Opto in the production
of LEOs.

3

LED Quality Assurance Flowchart

Reliability
The fundamental objective of our reliability program is to
ensure that all our products meet or exceed, quantitatively
and qualitatively, the performance requirements of our
customers and our Engineering Group. To achieve this goal,
the Reliability Group constantly monitors products by generiC
groups. This monitoring provides continuous updated measurement of product reliability in specific operating
environments.

QUALITY CONTROL
RECEIVING
INSPECTION

WAFER
FABRICATION

r-

QUALITY CONTROL
MONITORS
&

The following are typical Reliability Tests performed for the
monitoring program:
• Temperature Cycle: 100 Cycles from -40°C to 100°C'
• Thermal Shock: 30 Cycles from DoC to 100°C'
• Ambient Life Test: Max rated power for tODD hours
• Elevated Life Test: Max rated power at 70°C
for 1000 hours
• High Temperature Storage: Max storage temperature,
1000 hours
• Low Temperature Storage: Minimum storage
temperature, 1000 hours
• Temperature Humidity: 85°C - 85% RH, 500 hours
• Solder Heat Test: 260°C, 5 seconds

PROCESS AUDITS

QUALITY CONTROL
ACCEPTANCE OF
FINISHED WAFERS
DIE
PREP

DIEATIACH

LEAD BOND

~

QUALITY CONTROL
MONITORS
&

'Typical temp cycle and thermal shock condition. Exact conditions vary with
product family.

PROCESS AUDITS

Reliability Test Data (1982-1988 Monitoring
Data)

4th ELECT/TEST 1
QUALITY CONTROL
PRE-SEAL
VISUAL

ENCAPSULATION

I----J

Intelligent
Dispaly~

Displays

Devices

Optocouplers

10,024
1002K
0
. 0.0%

6421
642K
0
O.O'A>

7473
747%
2
0.03%

18,981
1898K
2
0.01%

8,475
254K
2
0.02%

4490
134K
1
0.02%

4629
138K
0
0.0%

13,269
398K
2
0.02%

Burn-In (1000 Hrs)
Sample Size
Total Hours
Total Reject
FR'(%)

3652
3652K
0
.0%

1372
1372K
0
0.0%

3422
3421K
1
0.03%

4620
4620K
0
0.0%

High Temperature
Burn-In (1000 Hrs)
Sample Size
Tota! Hours
Total Reject
FR'(%)

3838
3838K
0
0.0%

1048
1048K
0
0.0%

1088
1088K
0
0.0%

4620
4619K
1
0.02%

2730
2
0.0%

2244
0
0.0%

2203
0
0.0%

10,023
3
0.03%

Temperature Cycle
(100 Cy)
Sample Size
Total Cycles
Total Reject
Percent Reject

QUALITY CONTROL
PROCESS AUDIT

Thermal Shock (30 Cy)
Sample Size
Total Cycles
Total Reject
Percent Reiect

FINAL TEST
AND MATCHING

MARK & PACK

Room

QUALITY
ASSURANCE
ACCEPTANCE OF
FINISHED PRODUCT

I
FINISHED GOODS
STORES

CUSTOMER

Standard

Type 01 Test

J

QUALITY
ASSURANCE
FINAL SHIPPING
INSPECTION

Lamps

Temperatu~e

Solder Heat Test
(260°C, 5 sec.)
Sample Size
Total Reject
Percent Reject

'FR = Failure Rate, % per 1000 hours.

4

Description of Tests • Reliability Monitor Program
Military
Standard

PreTest
Reedings

Temp Cycle (TIC)

MIL STD 883B,
Method 1010.2

GO/NOGO

10 cycles per sub group. 15 min. dwell, 5 sec. Iransler time.
max. storage temp. ranges vary by product

GO/NOGO

Thermal Shock
(TIS)

MIL STD 8838,
Method 1011.1

GO/NOGO

30 cycles: boiling water; then Ice water with 5 min. dwell time
at each extreme

GO/NOGO

Life Test (UT)

MIL STD 833B,
Method 1005.2

Read/Record

Room temperature burn·in at max. rated conditions,
1000 hours duration

Read/Record at
168,500 and
1000 hours

High lemp Burn In
(HISI)

MIL STD 883B,
Method 1005.2

ReadlRecord

Maximum rated operating temp. delermined Irom product spec. Read/Record at
and derated current as compensation for thermal dissipation,
168,500 and
1000 hours
1000 hours duration

1WJe of Teet

Solder Heat Test

-

GO/NOGO

Test

Temp = 260 "C, dwell time

=5 seconds

Post Test
Reedings

GO/NOGO

Conclusion

Reliability test equipment ranges from multiple burn-in racks
and table testers to a scanning electron-beam microscope.
Weve even designed and produced our own automatic
microprocessor-based read/record tester.

Siemens is firmly committed to the design, development and
production of innovative optoelectronic components and
assemblies of the highest quality and reliability. Working to
achieve this goal, every group within the DivisionManagement, Engineering, Reliability and Quality
Assurance, Manufacturing, and Marketing-provides a vital
service, enabling us to achieve and maintain the consistent
product quality and the high levels of reliability required by
our customers in the electronics industry.

Special testing covers a broad spectrum of environmental
'and life-stress tests. How well a sample performs under
these highly-accelerated conditions indicates its reliability
potential under service-life conditions.
Special testing affords us vital information in many important
areas:
• New product performance
• New processes
• New manufacturing technique
• New material quality
• Special customer specifications
• Long-term reliability prediction

Due in large part to the efforts of the Reliability and Quality
Assurance Department and to our successful PPM and
SQC efforts, we will continue to maintain our leadership
position in a highly competitive future-oriented industry.

Reliability is also concerned with failure analysis. To determine the cause of failures, we selectively test and section
products to localize and identify their failure mechanism .
.Selective isolation enables us to gauge the precise effects of"
stresses induced during reliability testing.

5

SIEMENS

High Reliability and Military
Optoelectronic Devices
Capabilities
High reliability products must function under severe
environmental, mechanical, and electrical stress. To meet
this challenge Siemens Optoelectronics has established
closely monitored product designs and process control
techniques, insuring long product life.

the requirements of MIL-S-19500G. Electrical, environmental, and mechanical testing is done per MIL-STD-750
and MIL-STD-883 test methods and procedures. Our
military lines are staffed by highly trained and experienced
people who are certified on a periodic basis as required
byDESC.

High Reliability Custom Optoelectronic Products

Testing

In addition to our standard displays, Siemens has the
cap,mility to design,' manufacture and test custom
optoelectronic devices-ranging from components to
assemblies.

We maintain a well equipped high reliability lab for electrical, mechanical, and environmental tests. All testing for
JAN and Hi-rei products is done in Cupertino, California
and for Industrial products, in Penang, Malaysia.

High Reliability Displays

Calibration and Quality Control Systems

Our Hi-rei, Intelligent Display devices are qualified to
quality level A of MIL-D-87157 test levels.

For,calibration systems Siemens complies with the,
requirements of MIL-S-45662, and for quality control
systems, MIL-Q-9858.

Military Specifications
Ceniflcatlon
Siemens is a QPL supplier and approved by DESC to
supply qualified MIL-D-87157/3 devices in accordance with

Siemens Hi-rei and military optoelectronic devices conform
to the following Military Specifications:

Military Specifications
MIL-D-87157

General specification for display, light emitting diode, and solid state devices

MIL-S-19500

General specification for semiconductor devices

MIL-Q-9858

Quality program requirements

MIL-STD-105

Standard for sampling procedures and tables for tables for inspection by attributes

MIL-STD-202

Standard for test methods for electronics and electrical components

MIL-STD-750

Standard for test methods for semiconductor devices

MIL-STD-883

Standard for test methods and procedures for microelectronics

MIL-STD-45662

Standard for calibration system requirements

DOD-STD-1686

Electrostatic discharge control program

MIL-HDBK-52A

Evaluation of contractor calibration system handbook

DOD-HDBK-263

Electrostatic discharge control handbook

6

SIEMENS

RELIABILITY REPORT
DL 1414T, DL 14168
DL1814,DL2416T, DL3416

Monolithic Intelligent Display® Devices with
CMOS Drivers, Multiplexers, ASCII ROM, Character RAM
and Pin Driven Display Attributes
The following summary documents the capability
of the above Intelligent Display devices to meet or
exceed the reliability standards for the highest
level of commercial types of these devices.
I. LIFE TESTS

Test

Test Condition

High Temp Storage

# of Tests

Total Units
Tested

Total Device
Hours

Total Fall

Calculated
Failure Rate
(per 1000 hours)

11

334

334,000

0

13
14

382
412

382,000
412,000

0
0

25°C, Vcc =5.5 V
Sequencing Char.

11

268

268,000

0

3.73x 10- 3

Elevated Operating Life

55°C, Vcc =5.5 V
Sequencing Char.

13

372

372,000

0

2.69x 10- 3

High Temp
Operating Life

85°C, Vcc =5.5 V
Sequencing Char.

5

130

130,000

0

7.69x 10- 3

High Temp/High Humidity
Operating Life

85°C/85% RH,

5

70

70,000

0

14.29x 10- 3

85°C, Non-operating
-40°C, Non-operating

Low Temp Storage
High Temp/High Humidity
Storage
Ambient Operating Life

85°C/85% RH
Non·operating

2.99xl0- 3
2.62x 10- 3
2.43 x 10- 3

Vcc =5.5 V
Sequencing Char.

Note: Assumed one failure on all calculations.

II. ENVIRONMENTAL TESTS
Test

MIL-sTD·883·
Reference

Test Condition

Solder Coverage
Solder Heat Resistance

2003

260°C, 5 sec.

Temperature Cycling

1010

-40 to +85°C, 15 min. dwell,
5 min. transfer, 200 cycles.

Temperature Cycling

1010

Thermal Shock

1011

-40 to + 100°C, 15 min. dwell,
5 min. transfer, 100 cycles.
to + 100°C, 5 min. dwell, 3 sec. transfer,
liquid to liquid, 50 cycles.

# of Tests
4
4

Total Units
Tested Total Failed
130
140

0

8

240

0

8

493

0

o

9

75

0

260°C, 5 sec.

0

Moisture Resistance

1004

10 days, 90-96% RH, -10 to +65°C, non-operating

1

38

0

Shock

2002

0

2005

1
1

22

Vibration Fatigue

38

0

Constant Acceleration
Terminal Strength

2001
2004

5 blows each X Y Z, axis, 1500 G, 0.5 ms
" "
32±B hrs. each X Y Y2 , 96 hrs. total, 60 Hz, 20 G
" "
1 min. each axis, X, Y, Z, 5 kg

1

38

0

1 lb. for 30 sec., then 8 oz., 3 bends 15 °

Salt Atmosphere

1009

1
1

38
39

0
0

Electrostatic Discharge

Solvent Resistance

3015.2

35°C fog, 24 hours
1.5 kG, 100 pF, 5 positive and
5 negative voltage discharges, Vz,
applied to all pins vs. GND

Vz =1.5 kV
10
0
Vz =2.0 kV
10
0
Vz =3.0 kV
10
0
Immersed at 25°C in solvent for 10 minutes, 5 unit samples, or boiling solvents for 3 minutes, 2 unit samples.
Passed: Freon TF, Acetone, TA, 111 Trichloroethane
Failed: Isopropanol, Methanol, Methylene Chloride, TE-35, TP-35, TCM, TMC, TMS + Ethanol, and Carboxylic
Acid, TE, and TES.

Note: Failures are defined as 9Ither mechamcal or functional failures.

7

SIEMENS
OPTOCOUPLER
'MANUFACTURING and RELIABILITY
Single, Pual, and Quad Channel Optocouplers

THE CONCERN FOR OPTOCOUPLER RELIABILITY

OPTOCOUPLERINPUT

Because of the widespread use of optocouplers as an interface device, optocoupler reliability has been a major
concern to circuit designers and components engineers.
Published studies of comparative tests have indicated a lack
of manufacturing consistency with individual manufacturers
as well as from manufacturer to manufacturer. This has
resulted in user uncertainty about designing in optocouplers
despite the fact that these devices often offer the better
solution in the circuit

The area of greatest concern in optocoupler reliability has
been the IR LED, The decrease in LED light output power
over current flow time has been the object of considerable
attention in order to reduce its effects, (Circuit designs which
have not included allowances for parametric changes with
temperature, input current, phototransistor bias, etc. have
been attributed to LED degradation, To insure reliable
system operation over time, the variation of circuit from data
sheet conditions must be considered.)

This report is intended to demonstrate Siemens' concern,
efforts, and results in addressing these manufacturing issues
to assure users of the quality (out-going) and reliability (long
term) of our opto-isolated products. First, aspects of
optocoupler characteristics are discussed along with the
measures Siemens has taken to assure their quality and
reliability, Secondly, the reliability tests used to approximate
worst case conditions and the latest results of these tests are
described.

Siemens has focused on the infrared LED to improve CTR
degradation, and consequently achieved a significant
improvement in coupler reliability, The improvements have
included die geometry to improve coupling efficiency,
metalization techniques to increase die shear strength and
to increase yields while reducing user cost, and junction
coating techniques to protect against mechanical stresses,
thus stabilizing long term output

OPTOCOUPLER OUTPUT

The Current Transfer Ratio (CRT) is the amount of output
current derived from the amount of input current CTR is
normally expressed as a percent For example, if 10 mA of
input current is applied to the input (LED) and 10 mA of
collector current is obtained, then the CTR is 100 or 100%.
CTR is affected by a variety of influences: LED output power.
Hfe of the transistor. temperature, diode current, and device
geometry. If all these factors remaiT) constant, the principle
cause of CIA dE1gradation is the degradation of the input
LEO, As mentioned earlier. Siemens .has made tremendous
progress in manufacturing techniques to reduce CTR
degradation. Figure 1 graphs the CTR degradation of
Siemens' optocouplers. The data is presented under two
contlitions. Both conditions apply a constant stress over the
4'OOQ-hour period. This is unlikely to occur in actual
apptk:ation, and therefore can be considered as a worst
case condition. The first condition (IF = 10 mAl is a typical
operating pOint for actual application. The second condition
(IF = 60 mAl stresses the LED at an extremely high, forward
current to demonstrate worst case conditions, and magnifies
CTR degradation. Siemens' manufacturing techniques maximize coupling efficiency which realize high transfer ratios
and low input current requirements. Additionally this allows a
large variety of standard CTRvalues, and the capability of
special selection in produCtion volumes.

CURRENT TRANSFER RATIO
There are a variety of outputs available in optocouplers. A
standard bipolar phototransistor is the most common. They
are available with different ratings to fit most applications,
including versions without access to the base of the
transistor to reduce noise transmission. Darlington transistor
outputs offer high gain with reduced input current
requirements, but typically trade-off speed. Logic
optocouplers provide speed but trade-off working voltage
range, Logic couplers are normally only used in data
transmission applications. Silicon Controlled Rectifier (SCR)
devices allow control of much higher voltages and typically
are applied to control AC loads, They are also offered in
inverse-parallel (anti-parallel) SCR (triac) configurations that
both cycles of an AC sinusoid can be switched, In the
Siemens manufacturing flow, all these devices are 100%
monitored at a high temperature hot rail (see Figure 4) to
eliminate potential failures due to marginal die attaches and
lead bends, resulting in a more reliable product Siemens
offers all the above types of products.
In optocouplers, especially the transistor, the slow change
over several days in the electrical parameters when voltage
is applied, is termed the field effect This process is extreme
particularly at high temperatures (100°C) and with a high
DC voltage (1kV), Changes in the electrical parameters of
the silicon phototransistor can occur due to the release of
charge carriers, In this way, a similar effect as takes place in
a MOS transistor (inversion at the surface) is caused by the
strong electrical field. This may result in changes in the
gain, the reverse current, and the reverse voltage. In this
case, the direction of the electrical field is a decisive factor.
In Siemens' opl()couplers, the pn junctions of.the silicon
phototransistor are protected by a TRIOS (transparent ion
screen) from influences of the electrical field, In this way,
changes of electrical parameters by the electrical field are
limited to an extremely low value or do not occur at all.

8

ISOLATION BREAKDOWN VOLTAGE
Isolation voltage is the maximum voltage which may be
applied across the input and output of the device without
breaking down. This breakdown will not normally occur
inside the package between the LED and the transistor, but
rather on the boundary surfaces across which partial
discharges can occur. Siemens uses a double mold
manufacturing technique where the LED and transistor are
encapsulated in an infrared transparent inner mold. The
next step in the process is an epoxy over mold. The double
mold technique lengthens the leakage path for high voltage

Figure 2: Reliability Requirements for
Optocouplers

discharges appreciably, allowing the deviceto achieve very
high isolation voltages. All of Siemens optocouplers are built
using U.L. approved process. A standard line of V.D.E.
approved optocouplers is also available.

MECHANICAL/ENVIRONMENTAL TESTS

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE
Collector to emitter breakdown voltage (BVCEO) can be
thought of as a transislor's working voltage. When considering the application, the selection should be made to
include a safety margin to insure the device is off when it is
supposed to be off. Siemens transistor technology in wafer
processing offers a variety of BVCEO devices. Each is
parametrically (see Figure 4) tested to insure proper
operation.

Test

MIL·STD·883
Reference

Temperature Cycle

1010

-55°C to +150 0 C,
100 Cycles

Thermal Shock

1011

DoC to + 100°C, 50 Cycles

Solder Heat
Solderability

260 °C, 10 Seconds
260°C, 5 Seconds

2003

Pressure Pot

BLOCKING VOLTAGE
Blocking voltage (VDRM, expressed in peak value) is used
when describing the working voltage for SCR or triac type
devices. Siemens offers products through 600 volts of
blocking capability.
DWDT RATING
DV/DT, an important safety specification, describes a triac
type device's capability to withstand a rapidly rising voltage
without turning on or false firing. Siemens triac type devices
have the highest available DV/DT rating offered on the
market. Siemens manufacturing process yields a 10,000
VIpS DViDT rating. This rating eliminates the need for
snubber (RC) networks which negatively affect loads sensitive to leakage currents, while reducing component count
for circuit implementation and cost. An example of such a
load would be heon indicator lamps. Siemens' triac type
devices also carry a load current rating three times the
industry standard. This 300 mA current capability allows the
device to drive most AC loads without the need for a followon triac or interposing an electromechanical relay. Siemens
manufactures this device with or without zero croSSing
detector logic.

Test Condition

15 PSIG ±1, 121°C, Steam
96 Hours

Solvent Resistance

2015

Moisture
Resistance'

1004

10 Days, 90-98% RH,
-10°C to +65°C,
Non-Operating

Shock'

2002
Condition B

5 Blows each X" Y" Z"
Axis 1500G, 0.5 ms

Vibration Fatigue'

2005
Condition A

32 ±8 Hrs., each X" Y" Z"
96 Hours, 60 Hz, 20G

Constant
Acceleration'

2001
Condition A

1 Min. each Axis X,Y,Z,
5KG

Terminal Strength'

1 lb. lor 30 Seconds, then
8 oz., 3 Bends 15°

2004

'Monitored periodically.
LIFE TESTS
Test Conditions
Temp
(OC)

RH
(%)

Bias

Hours

Ambient Lile Test

25

,s60%

Max
Rating

1000

Elevated Lile Test

70

,s60%

Derated
Max
Rating

1000

High Temp Lile Test
Low Temp Lile Test
Temp/Humidity Lile
Intermittent Operating Lile

150
-55
85
25

,s60%
,s60%
850/0
,s60%

0
0
0
Max
Rating

1000
1000
1000
1000

High Temperature
Reverse Bias

125

,s60%

80%01
Max
Voltage
Rating

1000

Tests

Figure 1. CTR Degradation vs. Time

QUALITY AND RELIABILITY TESTS
The tests in Figure 2 were performed on Siemens optocouplers. The tests allow early detection of weak points, and
provide information. regarding the reliability characteristics of
the component.
From the Life Test information assumptions of useful life
expectancy can be obtained. All quality and reliability tests
are performed in conditions that either exceed or are
equiv!j.lent to the limits defined in our data sheets. International standards are also considered. Assuming that no new
additional failure mechanisms are created by the stress
conditions, the results of the stress test will correlate to
conditions fn the field and can be used to estimate useful
lifetime. The environmental stress tests ensure Siemens
manufacturing capabilities will provide package integrity in
the most rigorous conditions. The Life Test results highlight
our ability in packaging and electrical performance to
achieve MTBF hours which meet and exceed the highest
expectations for the semiconductor industry.

5D~D--------'OOD'--------200D~------~3000~------4D~OO
Ule TISI HOld

Relative degradation in current-transfer ratio (CTR) over a
period of time with the coupler diode forward-biased.
----. Life Test Condition: Coupler diode forward-biased
at IF = 10 mA, Tamb = 25°C
---- Life Test Condition: Coupler diode forward-biased
at IF = 60 mA, Tamb = 25°C

9

Figure 3. Environmental and Life Test Results
Single Channel Optocouplers
ENVIRONMENTAL TESTS
Test
Temperature Cycle

Sample Size

Good

Reject

. %Reject

-55°C to + 150°C, 100 Cycles

6056

.6056

0

.0.00%

Thermal Shock

o°C to

4596

4595

1

0.02%

Solder Heat Test

+ 100°C, 30 Cycles
260 DC, 10 Seconds

3392

3392

0

0.00%

High Temp Storage

150°C, 1000 Hours

1442

1441

1

0.07%

Low Temp Storage

- 55°C, 1000 Hours

1442

1442

0

0.00%

Temp Humidity

+85°C/85% RH, 1000 Hours

454

454

0

0.00%

Test Condition

LIFE TESTS
Test
Ambient Life Test

Test Condition

Reject

MTBF·
(Unit Hours)

1442

Good
1442

0

2,030,000

1442

1442

0

2,030,000

Sample
Size
1442

Unit
Hours (k)

1442

Elevated Life Test

60 mA, 25°C, Po -255 mW Max.
40 mA, 70°C, Po -l04 mW

Intermittent
Op Test

On=3 Minutes, Off-2 Minutes 60 mA, 25°C,
Po =235 mW Max.

1442

1442

1442

0

2,030,000

Total

4326

4326

4326

0

6,200,000

,.. Based on the life test result sp resente d,. an overall MTBF of 6,00,000
2
unit hau rs can be d em0 nstratedo nail Beststaebas
E im t" si .

Dual Channel Optocouplers
ENVIRONMENTAL TESTS
Test

Test Condition

Temperature Cycle

-55°C to + 150°C, 100 Cycles

Thermal Shock

O°C to + 100°C, 30 Cycles

Solder Heat Test·

260°C, 5 Seconds

High Temp Storage

150°C, 1000 Hours

Low Temp Storage

-55°C, 1000 Hours

Temp Humidity

+85°C/85% RH, 1000 Hours

Sample Size
6160
3969
2840
1442
1442
402

Reject

%Reject

1

0.020/0

3968

·1

0.03%

2838

2

0.07%

1442

0

0.00%

1442

0

0.00%

402

0

0.00%

Good
6159

LIFE TESTS
Test

Test Condition

Sample
Size

Unit
Hours (k)

Reject

MTBF·
(Unit Hours)

Ambient Life Test

37.5 mA/Channel, Po=388 mW Max., 25°C

1442

1442

Good
1442

0

2,030,000

Elevated Life Test

19.6 mA/Channel, Po=138 mW Max., 70°C

1442

1442

1442

0

2,030,000

Intermittent
Op Life

On=3 Minutes, Off=2 Minutes 37.5 mA/Channel,
Po =388 mW Max., 25°C

1338

1338

1338

0

1,940,000

Total

4222

4222

4222

0

6,000,000

Based on the hfe test. results presented, an overall MTBF of 6,000,000 unit hours can be demonstrated on a " Best Estimate " basiS.

Quad Channel Optocoupler
ENVIRONMENTAL TESTS
Good

Relect

%Reject

6055

1

0.02%

4296

0

0.00%

3405

1

0.03%

IS0°C, 1000 Hours

Sample Size
6056
4296
3406
1442

1442

0

0.00%

Low Temp Storage

-55°C, 1000 Houts

1442

1442

0

Temp Humidity

+85°C/85% RH, 1000 Hours

402

402

0

0.00%
O.OooAl

Test
Temperature Cycle

Test Condition
-55°C to +150°C, 100 Cycles

Thermal Shock

OOC to + 100 o C, 30 Cycles

Solder Heat Test

260°C, 10 Seconds

High Temp Storage

LIFE TESTS
Test

Test Condition

Ambient Life Test

37.5 mA/Channel, Po=388 mW Max., 25°C

Elevated Life Test

19.6 mA/Channel, Po =138 mW Max., ?GoC
On=3 Minutes, Off = 2 Minutes 37.5 mA/Channel,
Po= 138 mW Max., 25°C

Intermittent
Life Test

.

Total

Sample
Size
1442
1442

Unit.
Hours (k) . Good

Reject

MTBF·
(Unit Hours)
2,030,000

1442

1442

0

1441

1440

2

530,000

1442

1442

1442

0

2,030,000

4326

4325

4324

2

1,600,000

Based on the life test results presented (at m8XImum rated conditions), an overall MTBF of 1,600,000 Unit hours can be demonstrated on a
"Best Estimate" basis.
10

PACKAGE INTEGRITY

ASSEMBLY QA INSPECTIONS

Although packaged in standard IC configurations, optocouplers have some unique package considerations. The
use of two chip and internal light transfer medium require
careful selection of materials to insure compatibility under a
variety of operating conditions. In addition to the high
isolation voltages achieved by Siemens optocouplers, our
devices are tested to assure high levels of mechanical
integrity and moisture resistance. For example, a ninety-six
hour pressure pot test has been recently implemented to
more stringently verify moisture resistance. As meaningful
test results are accumulated, they will be included in future
reports.

1. Die Attach and Lead Bond Inspection - Random
sampling of die bonding integrity by a shear strength test
and wire attach integrity by a wire pull test.
2. Visual QC Monitor - Microscopic inspection of die placement, die and wire bonds, wire loops, damaged die and
wire and emitter junction coat coverage.
3. Encapsulation Inspection - Sample lot inspection for
molding defects.
4. Temperature Cycle Test - Sample lot temperature cycling
from -55°C to + 150°C for 10 cycles subjecting the parts
to thermal stresses in order to eliminate marginal die
attach, wire bonds and misalignments.

PACKAGE DENSITY

5. Hot Rail Test - 100% electrical continuity testing at 100°C
to insure removal of thermal intermittent parts.

Board space has become increasingly more important in
the electronic industry. Siemens uses a plate molding
technique to achieve reduction in cost, allowing us to offer a
wide selection of packages. These consist of single channel
optocouplers in 4,6,8, and 16 pin DIP packages, dual
channel devices in 8 pin DIP packages, and quad channel
devices in 16 pin DIP packages. All of the above devices
are available in three surface mount lead configurations, as
well as the standard through-the-hole lead. Siemens has
also introduced a standard single channel optocoupler in a
SOIC-S footprint package. All of these packages have been
designed and tested to meet the highest quality and reliability expectation of the semiconductor industry.

6. HiPot Test - 100% testing of isolation voltage parameter
per ULNDE requirements.
7. Parametric Tests - 100% electrical tests to data book or
customer-selection parameters.
S. QA Final' Tests - Lot audits to assure conformance to all
product requirements.

Figure 4. Coupler Process Flow & Inspections
Thermocompresslonl
Tbermosonic Wire
Bonding

D-Operation
O-Inspection or Test

11

SIEMENS

RELIABILITY REPORT
IL205-207, IL211-213
IL215-217, IL221-223
Small Outline Surface Mount Optocoupler

The following summary documents the capability
of the small outline surface mount optocoupler
series to meet and exceed reliability standards
for the highest level semiconductor products.
ENVIRONMENTAL
Test

Conditions

Duration

lbtal
Devices Tested

Falluras

Thermal Shock

-55°C to
OOC to +100°C

200 Cycles
100 Cycles

226

0

Solder Heat Test

260°C

10 Seconds. 3 Times
30 Seconds

912
76

0

8 oz. Tension
215°C

60 Seconds

76

0

Conditions

Duration

Total
Device Hours

Failures

121 °C/15 PSIG Steam.

288 Hours

44.640

0

85°C/85% RH

1000 Hours

240.000

·0

High Temperature Storage

150°C

1000 Hours

342.000

0

Low Temperature Storage

-55°C

1000 Hours

208.000

0

Conditions

Duration

Total
Device Houra

Falluras

Ambient Ufe

25°C. IF=60 mA

1000 Hours

352.000

0

Ambient Ufe

25°C.IF=40mA

1000 Hours

57.000.

0

High Temperature Ufe

70°C. IF=40 mA

1000 Hours

240.000

0

Temperature Cycling

Lead Integrity Test
Vapor Phase Zone Test

+150 oC

350

0

0

ENVIRONMENTAL LIFE
Test
Pressure Pot Test
Temperaturel Humidity

OPERATING LIFE

Test

GENERAL
Isolation Breakdown 3KVACRMS for 1 sec: No Failures
Average Change in CTR Over Pressure Pot Test: 3.6%

12

Custom Optoelectronic Products
Materials and Die

1-1

SIEMENS

CUSTOM OPTOELECTRONIC PRODUCTS

::~~:It!--I_DATA

>Q

CUSTOM SIGNAL
PROCESSING ICs



1-8

SIEMENS

655 nm
3" GaAsP/GaAs
EPITAXIAL WAFER
PART NO. 2600-7056

DESCRIPTION

PHYSICAL PROPERTIES

Siemens epitaxial layers are grown by Hydride
Vapor-Phase Epitaxy (HVPE). High quantum
efficiencies and uniformity make these wafers
ideal for visible displays and solid-state.
near-monochromatic light sources.

EPITAXIAL LAYER
Material:
Conductivity:

GaAS1.X PX: Te
n-type

Carrier
Concentration:

0.5-5.0 x 1017cm-3

Peak PL
Wavelength:(1)
Brightness:

Size:

Grown on 3" diameter SEMI spec substrate

Thickness:

500 ±50 lAm

Bow:
Pits:(2)

-50 ±100 lAm

Voids:(2)

3 per wafer maximum larger than
1 mm diameter

15 per sq. inch max.

Projections:(2)

3 per sq. inch maximum higher than 15 jAm

Scratches:(2)

3 per wafer max.; none longer than 10 mm

Chips:

None penetrating further than 2 mm

Cracks:

None

655 ±5 nm

Polycrystal:(2)

None

0.8 mCd min. at 15 A/cm 2

Broken Lattice:(2)

None

Twin Lines:(2)

None

Graded Layer
Thickness:

15 jAm min.

Constant Layer
Thickness:

10 jAm min.

SUBSTRATE
Material:

GaAs

Growth Type:

Czochralski or Boat-Grown

Conductivity:

n-type

Orientation:

(100). off 3 ±0.5° toward the
nearest <110>

Notes:
1. Other wavelengths also available.
2. Excludes outer 2 mm perimeter .of wafer.

1-9

655 nm
2" GaAsP/GaAs
EPITAXIAL WAFER

SIEMENS

PART NO. 2600-7057

DESCRIPTION

PHYSICAL PROPERTIES

Siemens epitaxial layers are grown by Hydride
Vapor-Phase Epitaxy (HVPE). High quantum
efficiencies and uniformity make these wafers
ideal for visible displays and solid-state,
near-monochromatic light sources.

Size:

Grown on 2" diameter SEMI spec substrate

Thickness:

455 ±50 I'm
-50 ±100 I'm
15 per sq. inch max.

EPITAXIAL LAYER

Bow:
Pits:(2)
Voids:(2)

3 per wafer maximum larger than
1 mm diameter

Material:

GaAs1_~P/re

Projections:(2)

Conductivity:

n-type

Scratches:(2)

Carrier
Concentration:

0.5-5.0 Xl 0 17cm- 3

Peak PL
Wavelength:(1)
Brightness:

Chips:

3 per sq. inch maximum higher than 15 Jim
3 per wafer max.i none longer than 10 mm
None penetrating further than 2 mm

Cracks:

None

655 ±5 nm

Polycrystal:(2)

None

0.8 mCd min. at 15 A/cm 2

Broken Lattice:(2)

None

Twin Lines:(2)

None

Graded Layer
Thickness:

15 I'm min.

Constant Layer
Thickness:

10 I'm min.

SUBSTRATE
Material:

GaAs

Growth Type:

Czochralski or Boat-Grown

Conductivity:

n-type

Orientation:

(100), off 3 ±0.5° toward the
nearest <110>

Notes:
1. Other wavelengths also available.
2. Excludes outer 2 mm perimeter of wafer.

1-10

IP-16A
Mask-Diffused GaAsP LED

SIEMENS

PART NO. 2600-7070

~iiii~~~

P-metal
(anode)
AR
Coating
Diffusion Barrier
Epitaxial Layer

Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens IP-16A is a mask-diffused GaAsP lightemitting diode. With a bright and uniform 700 nm
light-emitting area, this device is ideal for optocoupler applications.

Forward I-V Characteristics

VF3
VF2
VF1

Reverse I-V Characteristics

VR1

-10.0 V

@ -10

MATERIAL

Peak EL Wavelength

A-

700 nm

@20mA

Spectral Half-Width

FWHM

40 nm

@20mA

Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs, .,Px : Te
GaAs : Si or GaAs: Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

570 Jlm
300 Jlm
200 Jlm

Radiant Intensity

1-11

RI

1.60V
1.55 V
1.40 V

@20mA
@10mA
@ 100 J.LA

J.LA

35 JlW/ster @10mA

SIEMENS

RB-42B
Mask-Diffused GaAsP LED
PART NO. 2680-0016

r..,...----- ARP-metal
Coating
(anode)
Diffusion Barrier

Substrate

N-metal (calhode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RB-42B is a mask-diffused GaAsP
light-emitting diode. With a bright and uniform
655 nm emission, this device is ideal for display
applications.

Forward I~V Characteristics

VF3
VF2
VF,

Reverse I-V Characteristics

MATERIAL
, Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs, .•p. : Te
GaAs: Si orGaAs: Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

0.020"
0.065"
0.010"

1.64V
1.59V
1.42V

@20mA
@10mA
@ 100jJA

VR,

-25.0 V

@-10jJA

Peak EL Wavelength

A.

655nm

@20mA

Spectral Half-Width

FWHM

40 nin

@20mA

Luminous Intensity

LI

500 !lCd

@10mA

1-12

SIEMENS

RM-14A
Mask-Diffused GaAsP
Monolithic LED with Cursor
PART NO. 2680-0117

P-metal (anode)
Diffusion Barrier

Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RM-14A is a mask-diffused GaAsP
monolithic light-emitting diode with cursor. With a
bright and uniform 655 nm light-emitting area, this
device is ideal for display applications.

Forward I-V Characteristics

VF3
VF2
VF,

Reverse I-V Characteristics

VR,

-23.0 V

@ -1O!lA

MATERIAL

Peak EL Wavelength

i..

655nm

@20mA

Spectral Half-Width

FWHM

40 nm

@20mA

LI

240~Cd

@10mA

Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs,.'p. : Te
GaAs: Si or GaAs : Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

0.144"
0.105"
0.010"

Luminous Intensity
(Device has no AR coating)

1-13

1.59V
1.57V
1.40V

@20mA
@10mA
@ 100!lA

SIEMENS

RM-15B
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0008

r-,....- - - - - AR Coating

P-metal (anode)
Diffusion Barrier

1.·• •.• •.• • •.• •.• • • •·• •.• • •

·~IIII;~IIII-4-

Epitaxial Layer

Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RM-15B is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.

Forward I-V Characteristics

VF3
VF2
VFl

Reverse I-V Characteristics

VRl

-23.0 V

@-10pA

MATERIAL

Peak EL Wavelength

A.

655 nm

@20mA

Spectral Half-Width

FWHM

40nm

@20mA

Luminous Intensity

LI

Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs, .'p. : Te
GaAs : Si or GaAs : Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

0.159"
0.133"
0.010"

1-14

1.58V
1.56V
1.39V

@20mA
@10mA
@ 100 pA

350 IlCd "@ 10 mA

SIEMENS

RM-62A
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0031

P-metal (anode)
g'.I~q:;::: Diffusion
Barrier
Epitaxial Layer

Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RM-62A is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.

Forward I-V Characteristics

VF3
VF2
VF1

Reverse I-V Characteristics

MATERIAL

Peak EL Wavelength
Spectral Half-Width

Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs,.'px : Te
GaAs : Si or GaAs : Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

0.107"
0.079"
0.010"

Luminous Intensity
(Device does not have
AR coating)

1-15

1.62V
1.60V
1.41 V

@20mA
@10mA
@ 100 J.iA

VR1

-23.0 V

@ -10 J.iA

A.

655 nm

@20mA

FWHM

40 nm

@20mA

LI

440~Cd

@10mA

SIEMENS

RM-64A
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0038

P-metal (anode)
Diffusion Barrier
Epitaxial Layer

Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RM-64A is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.

Forward I-V Characteristics

VF3
VF2
VF1

1.62V
1.60V
1.42V

Reverse I-V Characteristics

VR1

-24.0 V

@-10~

MATERIAL

Peak EL Wavelength

A.

655 nm

@20mA

Spectral Half-Width

FWHM

40 nm

@20mA

LI

350J.l.Cd

@10mA

Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs, .,P. : Te
GaAs : Si or GaAs : Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

0.105"
0.095"
0.010"

Luminous Intensity
(Device does not have
AR coating)

1-16

@20mA
@10mA
@100~

SIEMENS

RM-73A
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0003

P-metal (anode)
Diffusion Barrier
Epitaxial Layer

Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RM-73A is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.

Forward I-V Characteristics

VF3
VF2
VFl

Reverse I-V Characteristics

MATERIAL

Peak EL Wavelength
Spectral Half-Width

Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs, .'p. : Te
GaAs: Si or GaAs: Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

0.07aH
0.059H
0.010 H

Luminous Intensity
(Device does not have
AR coating)

1-17

1.64 V
1.60V
1.42 V

@20mA
@10mA
@ 100!IA

VRl

-23.0 V

@-10!IA

A.

655 nm

@20mA

FWHM

40nm

@20mA

LI

400 flCd

@10mA

SIEMENS

RM-81B
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0056

P-metal (anode)
Diffusion Barrier

1·. ·. . . . . . . . . . .~iI_Riilj........................... I.. Epitaxial Layer
Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RM-81B is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.

Forward I-V Characteristics

VF3
VF2
VF ,

Reverse I-V Characteristics

VR,

-23.0 V

@ -10 IIA

MATERIAL

Peak EL Wavelength

A.

655 nm

@20mA

Spectral Half-Width

FWHM

40nm

@20mA

LI

220 !lCd

@10mA

Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs, ..P. : Te
GaAs: Si or GaAs: Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

0.135"
0.112"
0.010"

Luminous Intensity
(Device does not have
ARcoating)

1-18

1.59V
1.57V
1.40V

@20mA
@10mA
@10011A

SIEMENS

RM-85D
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0030

P-metal (anode)
Diffusion Barrier
Epitaxial Layer

Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RM-85D is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission. this device is ideal for
display applications.

Forward I-V Characteristics

VF3
VF2
VF,

Reverse I-V Characteristics

VA'

-23.0 V

@-1011A

MATERIAL

Peak EL Wavelength

A.

655nm

@20mA

Spectral Half-Width

FWHM

40 nm

@20mA

Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs,.,P. : Te
GaAs : Si or GaAs : Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

0.087"
0.074"
0.010"

Luminous Intensity
(Device does not have
ARcoating)

1-19

LI

1.63V
1.59V
1.42V

320

~Cd

@20mA
@10mA
@ 100 IIA

@10mA

SIEMENS

RM-86A
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0114

P-metal (anode)
Diffusion Barrier
Epitaxial Layer

Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RM-86A is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.

Forward I-V Characteristics

VF3
VF2
VF1

1.63 V
1.60V
1.42V

Reverse I-V Characteristics

VR1

-23.0 V

@-10~

Peak EL Wavelength

i..

655 nm

@20mA

FWHM

40nm

@20mA

LI

280~Cd

@10mA

MATERIAL
Epitaxial Layer:

GaAs, .,p, : Te

Spectral Half-Width

Substrate:

GaAs : Si or GaAs : Te

Metalizations:

Anode
Cathode

Aluminum
Gold-Germanium

Luminous Intensity
(Device does not have
ARcoating)

Height
Width
Thickness

0.089"
0.069"
0.010"

Dimensions
(center to center):

1-20

@20mA
@10mA
@100~

SIEMENS

RP-12C
Mask-Diffused GaAsP LED
PART NO. 2680-7075

P-metal (anode)
Diffusion Barrier

. . . . . . . i . . . ·. . .·.·. . ·.·. . . . .·. . ·.

i . . .·. .·. · i I

J- Epitaxial Layer
Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RP-12C is a mask-diffused GaAsP Iightemitting diode. With a bright and uniform 655 nm
emission, this device is ideal for lamp and display
applications.

Forward I-V Characteristics

VF3
VF2
VF ,

Reverse I-V Characteristics

VR,

-25.0 V

@-101JA

MATERIAL

Peak EL Wavelength

A

655nm

@20mA

Spectral Half-Width

FWHM

40nm

@20mA

Luminous Intensity

LI

500J.LCd

@10mA

Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs,.,p, : Te
GaAs: Si orGaAs: Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

0.012"
0.012"
0.010"

1-21

1.70V
1.64V
1.45 V

@20mA
@10mA
@ 100 IJA

SIEMENS

RP-13B
Mask-Diffused GaAsP
Point Source LED
PART NO. 2600-7074

P-metal (anode)
.Diffusion Barrier

! • • • • • • • ~• • ~IIIII~. ;':1 .~I4-

Epitaxial Layer
Substrate
N-metal (cathode)

DESCRIPTION

TYPICAL DEVICE PARAMETERS

Siemens RP-13B is a mask-diffused GaAsP point
source light-emitting diode. With a bright and
uniform 655 nm emission. this device is ideal for
lamps or dot-matrix displays.

Forward I-V Characteristics

VF3
VF2
VF,

Reverse I-V Characteristics

VR,

-25.0 V

@ -10!lA

MATERIAL

Peak EL Wavelength

A.

655 nm.

@20mA

Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):

GaAs,_'p. : Te
GaAs : Si or GaAs : Te
Anode
Cathode

Aluminum
Gold-Germanium

Height
Width
Thickness

0.015"
0.015"
0.010"

Spectral Half-Width
Luminous Intensity
(Device does not have
ARcoating)

1-22

1.64V
1.59V
1.42V

@20mA
@10mA
@100!lA

FWHM

40nm

@20mA

LI

450 !LCd

@10mA

Intelligent Display@Devices
Programmable DisplayTMDevices
Military Displays
Small Alphanumeric Displays
Intelligent Display Assemblies

2-1

Intelligent Display® Devices - Segmented
No. of

PartNoJ
Color

Package Outline

Charaet_
Charaet..
Height

4
DL1414T
Red

e~
~J'WI'1~

ell! iZlSIlZlSI

.112'

~
... ...

...

~
..

~f0~
e® !219
~

e~

I--~-

.112'

4

.160'

4
DL2416T
Red

4
~I

_.

X Axis
±3QO

.160'

_. I£!SJ
~

VAxis
±S5°

Both Axes
±40°

DL1814
Red

DL1416T*
Red

'

X Axis
±40°

8

DL1416B
Red

. .....
_-_

Viewing
Angle

Dl3416
Red
.225'

V Axis
±S00

X Axis
±450

VAxis
±SSO

X Axis
±45°

V Axis
±S5°

II>lntelligent Display Is a registered trademerk of Siemens
* Not recomended·for new designs.

2-2

Description

Page

17 segment. 4 character display with built-in
CMOS ASCII decoder. multiplexer. memory and
driver.
Access time: 280 ns.
Low power consumption.
Portable applications; telecommunications
equipment.

2-7

17 segment, 8 character display with built-in
CMOS ASCII decoder, multiplexer, memory and
driver.
Access time: 525 ns.
Low power consumption, dimming capability.
Hand held equipment; portable applications;
telephone and telecommunications equipment.

16 segment, 4 character display with built-in
CMOS ASCII decoder, multiplexer, memory and
driver.
Access time: 350 ns (DL1416B)
Independent cursor function.
Bench equipment.

17 segment, 4 character display with built-in
CMOS ASCII decoder, multiplexer, memory and
driver.
Access time: 300 ns
Characters readable up to 8 feet; memory clear
function; independent cursor function.
Two chip enables for easy syslem expansion .
Medical equipment; instrumentation; table top
equipment:
17 segment, 4 character dlspiay with built-in
CMOS ASCII decoder, multiplexer, memory
and driver.
Access .time: 300 ns
Characters readable up to 12 feet; memory
clear function; Independent cursor function .
Two chip enables for easy system expansion.
Telecommunications equipment; instrumentation; table top equipment.

2-21

2-11

2-16

2-25

2-31

Intelligent Display® Devices - Dot Matrix
No. 01

Part NoJ
Color

Package Outline

DLR1414
Red

114141

DL01.414
HER

Characters
Character
Height
4

Viewing
Angle

X Axis
±500

.145'

YAxls
±75°

4

X Axis
±SOO

DLG1414
Green
DLR2416
Red

2416

1

DL02416
HER

1

~
00000
00000
00000
00000

00000
00000
00000

.200'

YAxis
±75°

DLG2416
Green
DLR3416
Red

4

DL03416
HER
.270'

X Axis
±S00
Y Axis
±75°

DLG3416
Green

DL04135
HER

1
±75°

DLG4137
Green

.43'

00000
00000
00000
00000
00000
00000
00000

DL07135
HER
DLG7137
Green

1
±75°
.66'

2-3

Description

Page

Dot matrix drop·in replacement for DL1414T.
Four 5x7 dot matrix characters.
126 ASCII characters (English plus 5 other
languages).
. Access time: 110 ns .
For portable applications; telecommunications
equipment.

2-44

Dot matrix drop-in replacement for DL2416T.
Four 5x7 dot matrix characters.
126 ASCII characters (English plus 5 other
languages).
Access time: 110 ns.
For bench equipment, Instrumentation.

2-49

Dot matrix drop-in replacement for DL3416T.
Four 5x7 dot matrix characters.
126 ASCII characters (English plus 5 other
languages).
Access time: 110 ns .
For bench equipment, Instrumentation.

2-55

Single 5x7 dot matrix character.
Readable to 20 feet plus; wide viewing angle;
lamp test; brightness control.
One chip-enable for easy. system expansion.
96 ASCII character format.
Access time: 150 ns .
Telecommunications equipment, table top
equipment, instrumentation.

2-36

Single 5x7 dot matrix character.
Readable up to 30 feet plus; wide viewing angle;
lamp test; brightness control.
One chip-enable for easy system expansion.
96 ASCII character format.
Access time: 150 ns .
Ideal for scales, POS terminals, instrumentation.
mainframe peripherals.

2-40

Programmable DisplayTM Devices - Dot Matrix
Package Outline

~
..... ::.::...
: ....:
:....
...........

~
..: ....:- ..: .. ............... :

. .... ......· ....
.... . .....
....·

Part No.1
Color

PD2435
HER

PD2437
Green

PD3535
HER

4

.200'

4

PD3536
Red
PD3537
Green

PD4435
HER

.270'

4

PD4436
Red
PD4437
Green

PD1165
HER

000 00

PD1167
Green

~@fO
8~00000~
a

Character
Height

PD2436
Red

Y911!~~
000 000
2900~i
~~~OO

No. of
Characters

.45'

Display
size
1.16'
square

Viewing
Angle

X Axis
±55'
YAxis
±65'

X Axis
±55'
YAxis
±65'

X Axis
±55'
YAxis
±65'

±75'

2-4

Description

Four 5x7 dot matrix characters.
Built·in.CMOS ASCII decoder, multiplexer,
memory and driver. Software driven-true
microprocessor peripherals. Additional features
over Intelligent Display devices include: control
and display memory read/Write, dimming (3
levels) and blanking, blinking cursor/character
and lamp test.
128 ASCII character format.
Extended operating temperature range: ·40'C to
+85'C.
Four 5x7 dot matrix characters.
Built·in CMOS ASCII decoder, multiplexer,
memory and driver. Software driven-true
microprocessor peripherals. Additional features
over Intelligent Display devices include: control
and display memory read/Write, dimming (3
levels) and blanking, blinking cursor/character
and lamp test.
128 ASCII character format.
Extended operating temperature range: ·40'C to
+85'C.
Four 5x7 dot matrix characters.
Built·in CMOS ASCII decoder, multiplexer,
memory and driver. Software driven-true
microprocessor peripherals. Additional features
over Intelligent Display devices include: control
and display memory read/Write, dimming (3
levels) and blanking, blinking cursor/character
and lamp test.
128 ASCII character format.
Extended operating temperature range: -40'C to
+85'C.
Single BxB dot matrix display module with CMOS
circuits, and logic interfaces.
Each dot is addressable over a TTL compatible,
B bit bus.
Can be alternately programmed to display text or
graphics.
Software controllable features: 9 intensity levels,
memory clear, blanking or blinking, lamp test.
Interlocking X-Y stackable package.

Page

2-154

2-164

2-174

2-146

Military Alphanumeric Displays
Part NoJ
Color

Package Oulllne

No. of

Characters
Character
HeIght

Temperature
Range

DescrIption

Page

Intelligent DIsplay DevIce

iSI2I

ICI~

~Zt

){I~

.....

.........I

,'" "

I ••••••••

ISIZt

I<:I~

ISQI

1tJ~

..

..-! ,:....~(
···1- ..,,,

MDL2416C
MDL2416
TXV/TXVB
Red

MPD2545
HER

4

.15'

Four 17 segment characters.
Built-in CMOS circuitry - TIL and microprocessor compatible.
Rugged ceramic package, hermetically sealed
flat glass lens. Low profile package .
Conforms to Quality Level A.

Operating
temperature
range:
-55'Cto
+l00'C.

Four 5x7 dot matrix characters.
Built-In CMOS ASCII decoder, multiplexer,
memory, and driver.
96 character ASCII font.
Rugged ceramic package, hermetically sealed
flat glass lens.
Conforms to Quality Level A.

2-95

Programmable Display DevIce
4

MPD2547
Green
MPD2548
Yellow

Operating
temperature
range:
-55'Cto
+l00'C.

.250'

2-103

Military Small Alphanumeric Displays
No. of

Part NoJ
Color

Package Outline

Characters
Character
HeIght

Temperature
Range

Description

Page

Operating
temperature
range:
-55'Cto
+l00'C.

Four 5x7 dot matrix characters.
Available In TXV arid TXVB screened versions.
Rugged ceramic package, hermetically sealed
flat glass lens.
Serial input/parallel output. Easily cascaded for
multiple displays. Low power on-board CMOS
shift registers and constant current LED row
drivers .
External column strobing allows use of full
ASCII and customized fonts.
Conforms to Quality Level A.

2-113

Operating
temperature
range:
-55'C to
+l00'C.

Four 5x7 dot matrix characters.
Available in TXV and TxvB screened versions.
Rugged ceramic package, hermetically
sealed flat glass lens.
Serial Input/parallel output. Easily cascaded
for multiple displays. Low power on-board
CMOS shift registers and constant current
LED row drivers.
External column strobing allows use of full
ASCII and customized fonts.
Conforms to QuaUty Level A.

2-124

Operating
temperature
range:
-55'C to
+l00'C .

SunUght viewable.
Four 5x7dot matrix characters.
Available in TXV and TXVB screened versions.
Rugged ceramic package, hermetically sealed
flat glass lens.
Serial Input/parallel output. Easily cascaded for
multiple displays. Low power on-board CMOS
sMt registers and constant current LED row
drivers.
External column strobing allows use of full ASCII
and customized fonts.

2-135

MSD2010
Red

...,...,...,...,...,...,

...
....: ...
I .11

I:::: ...

I- II

.;

.I.

I··::
I.· II

.....

MSD2011
Yellow

4

MSD2012
HER
MSD2013
High
Efficiency
Green

.150'

MSD2310
Red

.....· ... .......·
·.......
.....·
...:

I •••••_.-

E
• 1.

MSD2311
Yellow
MSD2312
HER
MSD2313
High
Efficiency
Green

.....:.....·:
·i.......•••5·..•.......·: ..........
... ...

4

.200'

MSD2351
Yellow
4
MSD2352
HER
MSD2353
High
Efficiency
Green

.200'

2-5

Hi Rei/Industrial & Commercial Small Alphanurneric Displays
No. of

ISD2010
Red

,..,,..,,..,,..,,..,,..,
....I II .= .;

...
1.·-1

...

Characters

Part NoJ
Color

Package Outline

.....
I •••• E::.! .1. .....

Character
Haight

Temperature
Range

Description

Operating
temperature
range:
·55'C to
+1OO'C .

Hi Relllndustrial Displays
Four 5x7 dot matrix characters.
Rugged ceramic package, hermetically sealed
flat glass lens.
Serial input/parallel output. Easily cascaded for
multiple displays. Low power ol1'board CMOS
sMt registers, constant current LED row drivers.
External column strobing allows use of full ASCII
and customized fonts.

2-71

Operating
temperature
range:
-55'Cto
+100'C.

Hi Relnndustrlal Displays
Four 5x7 dot matrix characters.
Rugged ceramic package, hermetically sealed
flat glass lens.
Serial input/parallel output. Easily cascaded for
multiple displays. Low power on· board CMOS
shift registers, constant current LED row· drivers.
External column strobing allows use of full ASCII
and customized fonts.

2-79

..

ISD2011
Yellow

4

ISD2012
HER

.150'

~~~~~~

ISD2013
High
Efficiency
Green
IS02310
Red

··...•••E••••...·· ..J.. ...........··
I ••••••••

ISD2311
Yellow

4

IS02312
HER
.200'
ISD2313
High
Efficiency
Green

.... ..... ...
•••5·•••= : ....=
·5...••••••••
· .........·
I •••

§

IS02351
Yellow
4

IS02352
HER
IS02353
High
Efficiency
Green

.200'

HDSP2000LP
Red
HDSP2001LP
Yellow
HDSP2OO2LP
HER
HDSP2003LP
High
Efficiency
Green

4

.150'

Operating
temperature
range:
-55'C to
+100'C .

Operating
temperature
range:
-40'C to
+85'C .

Page

HI ReI/Industrial Displays
Sunlight viewable.
Four 5x7 dot matrix characters.
Rugged ceramic package, hermetically sealed
flat glass lens .
Serial input/parallel output. Easily cascacjed for
multiple displays. Low power on-board CMOS
shWt registers, constant current LED row drivers.
External column strobing allows use of full ASCII
and customized fOhtS.

Commercial Displays
Four 5x7 dot matrix characters.
Plastic package.
Serial Input/parallel output. Easily cascaded for
multiple displays. Low power on-board CMOS
sMt registers, constant current LED row drivers.
External column strobing allows use of full ASCII
and customized fonts.

2-87

2-63

Alphanumeric Display
No. of

Package Outline

Part NoJ
Color

Characters
Character
Height

DLR5735
Red
DLG5735
Green

.69'

DLR5736
Red
DLG5736
Green

.69'

Polarity

Common
.Cathode
Row

Common
Anode
Row

2-6

luminous Intensity
Per Segment
@mA
Typ,(Jlcd)

200

650

Description

Page

Single 5x7 dot
matrix character.
No built-In .CMOS
drive circuitry.

2-61

20

10

DL 1414T

SIEMENS

.112" Red, 4-Digit 17-Segm'ent
ALPHANUMERIC Intelligent Display®
With Memory/Decoder/Driver
Package Dimensions in Inches (mm)
.OI2·.0021YP

('30S)'('OS~

[~,
Tolerance:·.XXt.Ol (.254).
.XXX'.OOS (.127)

FEATURES
• 0.112" High, Magnified Monolithic Character
• Wide Viewing Angle, X Axis ±40o,
Y Axis ±55°
• Close Vertical Row Spacing, .800"
• Rugged Solid Plastic Encapsulated Package
• Fast Access Time, 280 ns
• Compact Size for Hand Held Equipment
• Built-In Memory
• BUilt-in Character Generator
• Built-In Multiplex and LED Drive Circuitry
• Direct Access to Each Digit Independently &
Asynchronously
• TTL Compatible,S Volt Power
• 17th Segment for Improved Punctuation Marks
• Low Power Consumption, 1\tpically 10 mA per
Character
• IntenSity Coded for Display Uniformity
• Extended Operating Temperature Range:
-40°C to +85°C
• End-Stackable, 4-Character Package
• 100% Burned In and Tested
• Superior ESD Immunity

DESCRIPTION
The DL 1414T is a four digit display module having 16 bar
segments plus a decimal and a built-in CMOS integrated circuit.
The integrated circuit contains memory, ASCII character
generator, and LED multiplexing and drive circuitry. Inputs are
TIL compatible. A single 5-volt power supply is required. Data
entry is asynchronous and random access. A display system can
be built using any number cif DL 1414Ts since each character in
any DL 1414T can be addressed independently and will
continue to display the character last written until it is replaced
by another.
Loading data into the DL 1414T is straightforward. The desired
data code (00-06) and digit address (Ao, A1) is presented in
parallel and held stable during a write cycle. Data entry may be
asynchronous and in random order. (Digit 0 is defined as right
hand digit with A1 =Ao =0 =low).
System interconnection is also straightforward. The least significant two address bits (Ao, A1)are normally connected to the like
named inputs of all DL 1414Ts in the system. Data lines are
connected to all DL 1414Ts directly and in parallel. Multiple
DL 1414T systems usually use an external one-of-N decoder
chip. The ''write'' pulse is connected to the CE of the decoder. A
3-to-Sline decoder multiplexer (74138) or a 4-t0-16 line
decoder/multiplexer (74154) are possible choices. All higherorder address bits (above A1) become inputs to the decoder.
All products are 100% burned-in and tested, then subjected to
.out-going AQL's of .25% for brightness matching, visual alignment and dimensions, .065% for electrical and functional.
Important: Refer to Appnote 1S, "Using and Handling
Intelligent Displays" . Since this is a CMOS device, normal precautions should be taken to avoid static damage.

See Appnote 15 for applications information.

2-7

TOP VIEW

Maximum Ratings

121110987

~

Supply Voltage, Vee ................. - 0.5 to + 6.0 Vde
Voltage, Any Pin Respect to GND . ~0.5 to (Vee +0.5) Vdc
Operaiing Temperature ............... - 40°C to + 85 °C
Storage Temperature ............... - 40°C to + 100°C
Maximum Solder Temperature, 1.59 mm (0.063")
below Seating Plane, t< 5 sec ................. 260°C
Relative Humidity (non condensing) @85°C ......... 85%

~
123456

Optical Characteristics @2SoC
Spectral Peak Wavelength. . . . . . . . . . . . . . . .. 660 nm typo
Magnified digit size ................... 0.112" xO.OB5"
Time Averaged Luminous Intensity
(100% brightness, ............... 0.40 mcd/digit min.
8 segments/digit, Vee=5 V) ...•.... 0.75 mcd/digit typo
LED to LED Intensity Matching ............. 1.8:1.0 max.
Device to Device Intensity Matching (one bin) . 1.5:1.0 max.
Bin to Bin Intensity Matching ............... 1.9:1.0 max.
Viewing Angle (off normal axis)
Horizontal ................................. ±400
Vertical ................................... ± 55°

Pin

Function

Pin

1
2
3
4

5

05 Data Input
04 Data Input
WR Write
A 1 Digit Select
ACI Digit Select

6

Vee

7
8
9
10
11
12.

Function
Gnd
OQ
01
02
03
06

Data Input (LSS)

Data
Data
Data
Data

Input
Input
Input
Input (MSB)

TIMING CHARACTERISTICS
WRITE

eye

A". AI

LE

W"YEFORMS

::x.
c==

i

TAS -

x:::

_ _ TAH:.J

~

J t.::: .-J
__ X'--+-i-~>.C
TWo

00-06.

Tw

::J

Tos

-

ToH:=:J

TIMING MEASUREMENT
VOLTAGE LEVELS

DC CHARACTERISTICS
Parameter
lee 4 Digits on
10 segments/digit

Min.

-40°C
Typ. Max.
60
75

Min.

+2S0C
Typ. Max.
50
65

Min.

+8S oC
Typ.
40

M~.

55

Units
mA

Conditions
Vec=5 V

lee Blank

1.5

3.5

1.0

2.7

0.5

2.0

mA

Vee =WR=5 V,
VIN=OV

IlL (all inputs)

BO

1BO

60

160

45

90

p.A

VIN=0.8 V,
Vcc=5 V

Vlri
VIL

2.0

2.0

2.0
0.8

O.B·

0.8

V

Vee =5 V±0.5 V

V

Vee =5 V±0.5 V

AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @4.5 VSVeeS5.5 V
Symbol

-40°C (ns)

+2SoC (ns)

Address Set Up Time

Parameter

TAS

175

250

325

Address Hold Time

TAH

30

30

30

Write Delay Time

Two

25

25

25

Write Time

Tw

150

225

300

Data Set Up Time

Tos

125

175

250

Data Hold Time

TOH

30

30

30

Access Time(2)

TAee

205

280

355

Notes: 1. ACCess time TACe =TAS +TDH
2. Oigit multiplex frequency may vary from 200 Hz to 1.3 KHz.

DL 1414T

2-8

CHARACTER SET

DL 1414T BLOCK DIAGRAM

"-

"-

DD
D1
'-,D2

L
L
L

H
L
L

L
H
L

H
H
L

L
L
H

L
H
H

H
H
H

~

I

H
L
H

06D50403"
L H L L

L H L H

L H H L

L H H H

H L L L

I

9j 96

" ±J
, I , iI T,
I

I

n
'-'

*
J

I

I

-

Il

I

--

I

,

u

J

_I

(y

C
J

I
I

C

U

,

1

- I- LI -- \ -:.,
-- -~
J~
,--, _0-,-, r- -,-, C--, r-,
,C LJrCu
'-- JJ '-- +-,
-,- ,
1-( ,-- ,1\11, ,,\I" []
H .L LJ --------- - T, , , J I
J J
:::, lY'-1 r,,-1 _Jc: --.-V\I
V
U

8

0 I

~

H L L H

~

H L H L

H L H H

LOADING DATA STATE TABLE

\I

1\

,

\I

-.---

7
{-

r

-_.-- c - f--

\

'-

1

-'

\
---_. ---

1\

--

----.-~

All Other Input Codes Display uBlank"
DIGIT

WR

A1

L
L

l
l

L
H

L

H

L

L
L

H

H
H

L
L

06 05 D4 03 02 01

DO

PREVIOUSLY LOADED DISPLAY

H

X

AO

L
L
X

L
X

H

L

l

H
H

L
L

H
L

H
H
H

L
L
H

H
H·
H

L
L

H

L

H
L

3

2

1

0

G

R

E

G
G

R

E
U

Y
E

G

L
L
L
L
H
L
L
L
H
L
L
H
L
H
L
H
H
H
SEE CHARACTER CODE

B
B

R
L
L

U
U

E
E
E

E
E
L
W
B
L
E
SEE CHARACTER
SET

=DON'T CARE

TYPICAL INTERCONNECTION FOR 32 DIGITS

v+

0"

0,.021

~.

0:13

020 0 "

DI,i Dli

11 1 1 11 1 1 1 1 1 1 1 1
1>0-1\"0'"
DATA

°0-..06

7

ADORESS

"0 A,

"

012 DII

" ,
1 1 1 1 1 1 1 I 1'"
D·I~

Wi

1J It'1 ItI I1I I1I I1I I1I

11

-,~
ADORESS A l _ A
~

,,

1. 3 - & 7 4 1 3 1 4

A._C
WI IT'~ G

,

L-....!

DL.1414T

2-9

DESIGN CONSIDERATIONS

For further information refer to Appnotes 18 and .19 in the
.
current Siemens Optoelectronic Data Book_

For details on design and applications of the DL 1414T utilizing standard bus configurations in multiple display systems,
or parallel I/O devices, such as the 8255 with an 8080 or
memory mapped addressing on processors such as the
8080, zao, 6502, or 6800 refer to Appnote 15 in the current
Siemens Optoelectronic Data Book.

An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 12 pin DIP sockets .600" wide
with .100" centers work well for single displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN_

ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
It is highly recommended that the display and the components that interface with the display be powered by the
same supply to avoid logic inputs higher than Vcc. Additionally, the LEDs may cause -transients in the power supply
line while they change display states. The common practice
is to place .01 p.F capacitors close to the displays across
Vcc and GND, one for each display, and one 10 p.F
capacitor for every second display.

For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
OPTICAL CONSIDERATIONS
The .112" high characters of the DL 1414T allow readability
up to 6 feet. Proper filter selection will allow the user to build
a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first considering the ambient lighting environment.

ESD PROTECTION
The metal Gate CMOS IC of the DL 1414T is extremely
immune to ESD damage. However, users of the~e devices
are encouraged to take all the standard precautions, normal
for CMOS components. These include properly grounding
personnel, tools, tables, and transport carriers that come in
contact with unshielded parts. If these conditions are not, or
cannot be met, keep the leads of the device shorted
together or the parts in anti-static packaging.

Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DL 1414T is a
standard red display and should be matched with a long
wavelength pass filter in the 600 nm to 620 nm range. For
display systems of multiple colors (using other Siemens
displays), neutral density grey filters offer the best
compromise.

SOLDERING CONSIDERATIONS
The DL 1414T can be hand soldered with SN63 solder using a grounded iron set to 260°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol can be used.

Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastiC filters by
allowing for proper air flow.

Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.
.

Optimal filter enhancements for any condition can be gain. ed through the use of circular polarized, anti-reflective,
band-pass filters. Circular polarizing further enhances contrast by reducing the light that travels through the filter and
reflects back off the display to less than 1%.

POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot D.l.water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.

Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. PaUl, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.

For faster cleaning, solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.(1)

One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA;

Unacceptable solvents contain alcohol, methanol, methylene
chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES.
Since many commercial mixtures exist, you should contact
your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied
Chemical Corporation, Specialty Chemical Division, Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical,
Midland, MI; E.I. DuPont de Nemours & Co., Wilmington,
DE.

Refer to Siemens Appnote 23 for further information.
Note: 1. Acceptable commercial solvents are: Basic TF, Arklone P,
Genesolve D. Genesolve DA. Blaco-Tron IF, Slaco-Tron TA and,
Freon TA.
.. DL 1414T

2-10

SIEMENS

DL 14168
.160" Red, 4-Digit 16-Segment Plus Decimal
ALPHANUMERIC Intelligent Display®
With Memory/Decoder/Driver

Package Dimensions in Inches (mm)

TOlERANCE:

A,

FEATURES
•
•
•
•

0.16" ~0.125·, Magnified Monolithic Character
Viewing Angle, X Axis ±30o, Y Axis ±50°
Rugged, Solid Plastic Encapsulated Package
Top Lens Rail for Display Protection

• Fast Access Time, 350 ns
• Fun Size Display for Stationary Equipment
•
•
•
•

Built-in Memory
Built-in Character Generator
Built-In Multiplex and LE.D Drive Circuitry
Direct Access to Each Digit Independently &
Asynchronously

• TTL Compatible, 5 Volt Power
• 17th Segment (Decimal POint) for Improved
Punctuation Marks
• Independent Cursor Function
•
•
•
•

End Stackable, 4 Character Package
IntenSity Coded for Display Uniformity
100% Burned In and Tested
Extended Operating Temperature Range: -40°C
to +85°C

.xx ...01 (.25)
.xxx .. .005 (.127)

C1M.ATSEATINGP(.AN(

DESCRIPTION
The DL 14168 is a four digit display module having
16 segments plus decimal and a built in CMOS integrated
circuit.
The integrated circuit contains memory, ASCII ROM decoder,
multiplexing circuitry, and .drivers. Data entry is asynchronous
and can be random. A display system can be built using any
·number of DL 14168s since each digit of each DL 14168
can be addressed independently. Each digit will continue to
display the character last ''written'' until replaced by another.
System interconnection is very straightforward. The least
significant two address bits (Ao, A,) are connected to the like
inputs of all DL 14168s in a system. In small systems having
16 digits (four DL 14168s), the enable (CE) inputs of the four
devices could simply be used directly to select each
DL 14168. In larger display systems, the CE inputs would
come from a 1 of N decoder integrated .circuit. In this case,
address lines A2 ".A n would go to the decoder inputs. Data
lines (Do-D6) would be connected to all' DW168s directly
and in parallel. The cursor (CU) and write (WR) lines would
also be connected directly and in parallel. The display will
then behave as a "write only memory" .
The cursor function causes all segments of a digit position to
illuminate. The cursor is NOT a character, however, and
upon removal, the previously displayed character will
reappear.

Important: Refer to Appnote 18, "Using and Handling
Intelligent Displays" . Since this is a CMOS device, normal
precautions should be taken to avoid static damage.
Specifications are subject to change without notice.

2-11

Maximum Ratings

Optical Characteristics

Supply Voltage Vcc ............... - 0.5 V to + 6.0. Vdc
Voltage, Any Pin Respect to GND . .-: 0.5 to IYcc + 0.5) VOc
Operating Temperature ............... -40°C to +85°C
Storage Temperature ...........".... - 40°C to + 100 °C
Maximum Solder Temperature, 1.59 mm (0.063")
below Seating Plane, t < 5 sec ................. 260°C
Relative Humidity (non condensing) @85OC ......... 85%

Time Averaged wminous Intensity
per digit (8 segments) ................ 0.25 mcd min.
@25°C ............................ 0.75 mcd typ.Off Axis Viewing Angle:
Horizontal ................................. ±30 o
Vertical ................................... ± 50 0
Digit size ........................... 0.160" xO.125"
Spectral Peak Wavelength .................... 660 nm
lED to lED Intensity Matching ............. 1.8:1.0 max.
Average Display Intensity Matching (one bin) .. 1.5:1.0 max.
Bin to Bin Intensity Matching (adjacent bins) . . 1.9:1.0 max.

TIMING CHARACTERISTICS
WRITE

CYCLE

ITI

cu

A0. A r

WR

00- 06

WAVEFORMS

~

=x.
t::===

-'

!

TCES

TAS

C

X

_I
TIMING MEASUREMENT
VOl. TAGE lEVELS

-

Tw

Tos

y

Pin
1 05
2 04

2"oi9i"ai,i6fsi4i3iiil

~
,

I F
--~

~
TWo

1-

TeE"

3

'2(9 IZ,SI IZ,SI ,z'S'

TAH - .

DIGIT

DIGIT
2

DIGIT
1

DIGIT
0

I

>.c:

i
-

Oil)

4 01
5 02
6 03
7 ~
8 WR
9 CU
10 All)

TOP VIEW

~~~!~!!!~12

Function

Oata'lnput
Data Input
Data Input
Data Input
Data Input
Data Input
Chip Enable
Write'

Cursor Input
Digit Select

Pin
11
12
13
14
15
16
17
18
19
20

Function

Digit Select

A1
Unused

Unused
Unused
Unused
Unused

Unused

v+
v-

Data Input

06

TOH=:.J·

=><==X
-

4 VOLTS
2 VOLTS
o VOL 15

DC CHARACTERISTICS
-40°C
Parameter

·Min.

Min.

+25'C
Typ. Max.

+85°C

Max.

Icc 4 Digits on
10 segments/digit

115

140

80

125

65

100

mA

Vcc=5 V

Icc Blank

2.5

4.0

2.0

3.5

1.5

2.5

mA

Vcc =WR=5 V,
Bl= o.a V

100

120

75

90

60

75

p.A

Vcc=5 V, VIN= 0.8 V

IlL
VIH
VIL

2.0

2.0

Min.

Max. Units

lYP·

lYP·

2.0

0.8

0.8

AC CHARACTERISTICS Minimum at Vcc =4.5 V in nanoseconds
.,
Parameter
Symbol

0.8

Conditions

V

Vcc=5 V±O.5 V

V

Vcc=5 V±0.5 V

+85°C

-40'C

+25°C

TAS

225

300

400

Cursor Set Up Time

Tcus

225

300

400

Chip Enable Set Up Time

TCES

225

300

400

Data Set Up Time

Tos

100

175

300

Write Time

Tw

150

250

350

TAH

30

50

80

TOH

30

50

80

Two

30

50

80

TCEH

30

50

80

TCUH

30

50

80

TAcc

255

350

480

Address Set Up Time

Address Hold Time
Data Hold Time
Write Delay Time
Chip Enable Hold
Cursor Hold Time
Access Time

DL 1416B

2-12

LOADING DATA

LOADING CURSOR

The chip enable (CE) held low and cursor (CU) held
high will enable data loading. The desired data code
(00.06) and selected digit address (Ao·A,) should be
held stable while write (W) is low for storing new data.
The timing parameters in the AC characteristics
table are minimum and should be observed. There are
no maximum timing requirements. Data entry may be
asynchronous and in random order. All undefined
data codes (see character set) loaded as data will dis·
playa blan k.

The chip enable (CE) and Cursor (CU) are held low.
A write (W) signal will now load a cursor into any
digit position addressed by (AD· A,.); as defined in
data entry. A cursor will be stored if DO = Hand
removed if DO = L. The (CU) pulse width should
not be less than write (WR) pulse or erroneous data
may appear in the display.

Digit 0 is defined as the right hand digit with A, = Ao
= 0 =(\owl.

TYPICAL LOADING CURSOR STATE TABLE

TYPICAL LOADING DATA STATE TABLE
ADDRESS

Co CUw

l
L

H

L

H

L

H

~I ~

A,

...

DATA INPUT

OS

05 04 03 02

DO

01

3

2

1

0

"

'0

'0

'"
'0

'0

'0

'0

x x x x xix xlx!x x

CHAfoIGE CHAnGE CHANGE CHAfIIGE

L

L

L

H

L

L
H

H

H

L

H

L

L
L

L
L
L

H

H

CHANGE Cll41'1GE t":HATOGE
CHAIIIGE CHANGE

H

l

L

L

H

CHAfoIOE

H

H

IH

L

L ILL

H

L

L

·0

L
L

H
H

- - -

x = DON'T CARE

'0

~ ~ ~'~I~
L

~ l ~J ~ l~J~

'0

-

C

'"

U

""OR

A

X
X

X
X

A

L
L

L
L

H
H
L

L

A

C
B
A
0
C
B
E
0
K
B
E
SEE CHARACTER SET

H
H

B
B

., .

OISPLAY
DIGIT

ADDRESS![

DIGIT DIGIT DIGIT DIGIT

D6D5D4D3D2D1DQ

PREVIOUSLY lOADED DISPLAY
DISPLAY PREVIOUSLY STORED CUASOfIS
L
L
X H
L
H
X
X
H L
X H
x x x x X L

II

. x = DON'T CARE

~

x x x x

x x x x

..
.

, ,,
, mmm
mm ..
.. m
, ....
III ..

..

CHARACTER SET

DO

L

H·

01
02

L
L

H

D6D504 D3

" ±:

L H L L

l

H L H

l

H H L

I
\

+

\
I

n

'-'

o

L H H H

B

H L L l

iJ FI

H L L H

H .J..-,-

"D '-.
_u
L.

u

,

I-{

LY
\I

/\

\I
I

7

t_

r

'.

I

I

I

I

, 5 6 ,
-J
,
l.
.l

u

"}

\

I

I

,-,

H L H L

H L H H

-'

2 -':r

\I
(y

-,-,
.JJ

C

,c

lJ

1\/1

L

r·

t.

I ,

r1
LJ

-,-,

,,
.,

J\'
,\I

l-'

/I
V

I I
V\I

-'

1\

I

\
\

NOTE: All undefined data codes that are loaded or occur on power-up will cause a blank display state_

DL 1416B

2-13

i

DATA

SELECT/ENABLE

CI

I

AOAI~Weu

D6DSD4D3P201Dti

INTERNAL SCHEMATIC

011

DATA BUS

Dig

Dt

DB

01

D&

.,

DS

D4

DO

mmmm

m m III

III

m m III m

........

...... WVI uCo!

•

I ........ '""

0,-0-

I

"

.ru"

III

D•

u

Typical Interconnect
lor small systems. 12dlgils

D31--- D 2 7 - - - - - - - - - - - - - - -

-DB

----------

mm m m m m m m
-to. WA,A1CU- o....o.ii
DATA
BUS

>

......

0.",0-

11

W

mm m m

-

.....0, WI

",croCi

'\

I

All
Ai

A2
A3
A4

DISAaLE

r--"7
A
6
B

5
4
3
2
74C421

C
D

DISPLAYS
1106

c...-.!!
Typical schematic
lor 32 digit systems

DL 14168

2-14

DESIGN CONSIDERATIONS

Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI;
E.I. DuPont de Nemours & Co., Wilmington, DE.

For details on design and applications of the DL 1416B
utilizing standard bus configurations in multiple display
systems, or Parallel 1/0 devices, such as the 8255 with an
8080 or memory mapped addressing on processors such
as the 8080, Z80, or 6800, or non-microprocessor based
systems, please refer to Appnote 9A and 13 in our current
Optoelectronic Data Book.

Further information is available in Siemens Appnotes 18 and
19 in our current Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 20 pin DIP sockets 1.10" wide
with .100" centers work well for single displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.

ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
It is highly recommended that the display and the components that interface with the display be powered by the
same supply to avoid logic inputs higher than Vee. Additionally, the LEOs may cause transients on the power supply
line while they change display states. Common practice is to
place .01 J.lF capacitors close to the displays across Vee and
GND, one for each display, and one 10 J.lF capacitor for
every second display.

Further information is available in Siemens Appnote 22 in
our current Optoelectronic Data Book.

OPTICAL CONSIDERATIONS
The .16" high characters of the DL 1416B allow readability
up to 8 feet. Proper filter selection will allow the user to build
a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized by first considering the ambient
lighting environment.

ESD PROTECTION
The metal gate CMOS IC of the DL 1416B is extremely immune to ESD damage. It is capable of withstanding
discharges greater than 3KV. However, users of these
devices are encouraged to take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers
that come in contact with un-shielded parts. Where these
conditions are not, or cannot be met, keep the leads of the
device shorted together or the parts in anti-static packaging.

Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DL 1416B is a red
display and should be matched with a long wavelength
pass filter in the 600 nm to 620 nm range. For display
systems of multiple colors (using other Siemens displays),
neutral density grey filters offer the best compromise.

SOLDERING CONSIDERATIONS
The DL 1416B can be hand soldered with SN63 solder
using a grounded iron set to 260°C.

Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is '1uzzy" characters,
but mounting the filters close to the display reduces this
effect. Care should be taken not to overheat the plastic
filters by allowing for proper air flow.

Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol can be used.
Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.

Optimal filter enhancements for any condition can be
gained through the use of circular polarized, anti-reflective,
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%;

POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.

Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.

For faster cleaning, solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.

One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.

Unacceptable solvents contain alcohol, methanol, methylene
chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES.
Since many commercial mixtures exist, you should contact
your solvent vendor for chemical composition information.
Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ;

Please refer to Siemens Appnote 23 for further information.
DL 1416B

2-15

SIEMENS

DL 1416T
.160" RED, 4·DIGIT 16·SEGMENT
ALPHANUMERIC Intelligent Display@
WITH MEMORY/DECODER/DRIVER
Package Dimensions in Inches (mm)

DIGIT

~~t-.~======--~~~

•

JllllIIP.
(.!III)

.045 REf'
{1.141

:
.10"(211)
101 GIURNE

...,

OJll)

tDllrla: lXl,DI (.at), .IIIt,DOS (.II7)

NOT FOR NEW DESIGNS
(Refer to the Improved Extended Performance of DL 14168 for Similar Applications.)
FEATURES
•

End-stackable; 4·Character Package

•

High Contrast, 160 mil High, Magnified Monolithic
Characten

A cursor is defined as all segments of a digit position
to be lit. The cursor is not a character, however, and
upon removal leaves the previously displayed character
unchanged. Normally, the cursor would be loaded
and unloaded (flash) under software control. This can
be used as a pointer in a line of DL 1416T displays or'
a "lamp test" function is realized by simply storing
a cursor in all four digit positions of a display.

• Viewing Angle ± 20°
•
•

64-Character ASCII Format
Built·in Memory, Decoder, Multiplexer and Driven

•

Direct Access to Each Digit Independently and
Asynchronously

•

5 Volt Logic, TTL Compatible

•

5 Volt Power Supply Only

•

Independent Cunor Function

•

Intensity .Coded For Display Uniformity

System interconnection is very straight forward. The
least significant two address bits (AD, A, ) are
connected to the like inputs of all DL 1416Ts in
system. In small systems having 16 digits
14-DL 1416Ts), the enable ICE) inputs of the four
devices could simply be used directly to select each
DL 1416T. In larger displays, the CE inputs would
come from A l-of-N decoder integrated circuit In
this case, address lines A2 .•• An would go to the
decoder inputs. Data lines 100-D6) would be connected to all DL 1416Ts directly and in parallel. The
cursor (CU) and write (W) lines would also be connected directly directly and in parallel. The display
will then behave as a "write-only memory."

a

DESCRIPTION
The DL 1416T Intelligent Display is a four-digit LED
display module having a 16-segment font and an
on-board CMOS integrated circuit driver.
The CMOS chip includes memory for four digits and
cursor, 64 ASCII character generator ROM, and
segr.;,ent/digit drivers with associated multiplexing circuitry. Inputs are TTL compatible as is the power
supply requirement. Data entry is asynchronous and
random access. A display system can be built using
any number of DL 1416Ts since each digit of each
DL 1416T can be addressed independently. Each digit
will continue to display the character last "written"
until replaced by another.
2-16

All products are 100% burned-in and tested, then
subjected to out-going AQL's of ,25% for brightness matching, visual alignment and dimensions,
,065% for electrical and functional.
Important: Refer to Appnote 18, "Using and Handling
Intelligent Displays", Since this is a CMOS device, normal
precautions should be taken to avoid static damage,

Pin
1
2
3
4
5
6
7
8
9
10

Function
Data Input
Data Input
Data Input
Data Input
Data Input
Data Input
Chip Enable
'C'E
W"
Write
Cursor Input
~
Digit Select
A0
05
04
00
01
02
03

Pin
11
12
13
14
15
16
17
18
19
20

Function
Al
Digit Select
Unused
Unused
Unused
Unused
Unused
Unused
V+
V06
Data Input

20 i9 i. i7 i& i5 14 i3

iz i

~
DIGIT
3

DIGIT
2

DI IT
1

DIGIT
0

TOP VIEW

!!!~!!!!!~

OPTO·ELECTRONIC CHARACTERISTICS @ 25't
MAXIMUM RATINGS-

OPTICAL CHARACTERISTICS (TYPICALI
Luminous Intensity per
digit'8 segments @5V,. . . . • . . . . . . . .
.8 mcd
Viewing Angle ....................... ± 20 0
Digit Size . . . . . . . . . . . . . . . . . . . . 0.16" xO.12S"
Spectral Peak Wavelength .............. 660nm
LED to LED intensity matching ....... 1.8: 1.0 max.
Display to Display intensity matching .. 1.5:1.0 max.
Bin to bin intensity matching ........ 1.9: 1.0 max.

Vee················· . -0.5 V to 6.0 V
Voltage, Any Pin
Reipect to GND (V-I .. -0.5 to Vee +0.5 VDC
Operating Temperature . . . . . . . -20 to +SS·C
Storage Temperautre. . . . . . . . . -20 to +70· C
Relative Humidity
85%
In on condensing) @l6S·C

...........

DC CHARACTERISTICS
-200 CTyp

Parameter

Icc 4 digits on (10 seg/digit)
Icc Cursor2

+ii5°CTyp

+25°c4

Conditions

80 mA max'

Vee = 5.0 V

105 rnA max'

Vee = 5.0 V

Icc Blank

VIN = 0
7mA

max

2.0mA

Vee = 5.0 V
w= 5.0 V

IlL

10pA

160pA max

201lA

VIN =.BV
Vee = 5.0 V

VIL

.BV Max

Vee =4.5V

VIH 3

2.7 V Min
3.3V Min

Vee =4.5V
Vee = 5.5 V

1. Measured at S seconds.
2. 60 sac. max. duration.

3. Vee" VIH .. 0.6 Vee
4. Vcc = +5.0 VDC tlO%
TIMING CHARACTERISTICS

AC CHARACTERISTICS. 25°C

WRITE

MINIMUM TIMING PARAMETERS 0 4.5 V (nanoseconds)
TAS
Two
Tw
TDS
TDH
TAH
TeEH
TeES
TAce4

1000
500
500
1000
400
400
400
1000

C't'Cl E

WAVE FORMS

ITI

~ TeES

en "121. AI
iV

=xL:::.==:=
J

TWo

00- De,

VOLTAGE LEVELS

TCEH

i

y

TAS - - - - TAH

"C

Tw

~

TIMING MEASUREMENT

1400

---.t

.

Tos

1_

F

I

i-TOH~'>C

==>eX.

4 VOLTS

- 2 VOLTS
o VOL 18

Note 1: This display conteins a eMOS integrated circuit. Normal CMOS handling precautions shllUld be taken to
avoid damage dua to high static volteges or electric fields.
Note 2: Unusad inputs must be tied to an appropriate logic voltage level (eigher V+ or V-I.
Note 3: Waming- Do not use solvents conteining alcohol.
Note 4: Access time Is defined al TAS + TDH (sum of eddress set up and data hold tillles).
DL 1416T

2-17

LOADING CURSOR

LOADING DATA
The chip enable (CE) held low and cursor (CU) held
high will enable data loading. The desired data code
(00-06) and selected digit address (Ao-Al ) should be
held stable while write (W) is low for storing new data.
The timing parameters in the AC characteristics
table are minimum and should be observed. There are
no maximum timing requirements. Data entry may be
asynchronous and in random order. All undefined
data codes (see character set) loaded as data will displaya blank.

The chip enable (CE) and Cursor (CU) are held low.
A write (W) signal will now load a cursor into any
digit position for which the respective first four data
lines (Do, 01, 02, 03) individually or together are
held high. If previously stored, the cursors can only
be removed if their respective data lines are held
. low while CE, CU are low and write (W) occurs.
The cursor- (CU) should not be hardwired high (off).
During the power-up of 0 L 1416s the cursor memory
will be in a random state. Therefore, it is recommended for the processor-based system to initialize
or write out possible cursors during. the system initializing portion of the software.

Digit 0 is defined as the right hand digit with Al = Ao
= 0= low.

The cursor display will be over ridden by a blank
from an undefined code in that digit position.

TYPICAL LOADING DATA STATE TABLE
:

ADORES

DATA INPUT

~r.~~~I~D6D5D4D3D2D100

i

~! ~

x

~x

x

I~!~ ~ ~ ~

I.

LL!HH

LL

HH

HL

I

DIGIT DIGIT DIGIT DIGIT
3210

I Xi [X I X X:l~ II 'H:~'
'H:~' ,":~, 'H:~"
::~~::::~~::r,H;NGE :

~;~ ~ ~i~ ~

HH

i.

L L L LIH HIII CHANGE C B
L _ :-; L

1l
HI L

,Li H
L l
H LlliL
- L
H
H
L
H l
L
L
8_H-.LL..JL_-J._--'--L_--.L--'-_-.L
1-

I IH

H

-

L

H
H

DeB

II

Ii
-_~

A
A

DeB
E
D
I(
B
E
SEE CHARACTER SET

X" DON'T CARE

CHARACTER SET

"-

DD
DI
,D'

D6D5D4 D3

~

L H L L

L H L H

L H

"

L

L H H H

H L L L

H L L H

,
I

*

\

I

n

;)

8

0

-1

CI
I -,

I

;)

uI

~

I

J

, , ...,--,
J..
,-,

+
-'

'-

II

Cu

'J

" iI % % Cy

r-

]
-.-

'-,

I

I

[

H

I
I_-

I ..I

H L

\I
1\

\I

,

t_

r
'O~

\

I

...I
-J
I

C- r-

L_

F? 5 T,

NOTE: All I.lI'Idefined data codes that are loaded

-~

11
.J.J

lY

6
\

I

F'

-7

cJ

L

H L H L

H "

I

I

" '"
'"

,,

U

, -,
_I

1/

v

LJ
r1

LJ

I I

V"

1\

occur on power-up will cause a blank display state.

DL 1416T

2-18

DATA
S(l(CT/ENAUE

.. :

.!!'..

1

=>151
.!IS:;.

.

AD AI

«iii

en

D6 DS Dt Dl D2 DI ~

INTERNAL SCHEMATIC

011

011

01

07

1M!

Dt

05

O.

.

0302D1D

III

11/ 11/ 11/ 11/

11/ 11/ 11/ 11/

11/

1\0.1\0;;........

0,"0. W l,CuCE

0.... 0. WV,cUCE

OATA BUS a.~o.

I

W

A,

t.!

11/ 11/

III

Typical Interconnect
for small systems. 12dlglts

----------

D31--- D 2 7 - - - - - - - - - - - - - - 11/ 11/ 11/ 11/

00-'0. if

DATA
BUS

>

"" ... 0.

A.", cu CE a. ...o. W",,,,CUCE

11

ii

11/ 11/ 11/ III

A3
A4
DI5ABlE

11/ 11/ 11/ 11/

-

0,"0. W"fA,CuCE

'II

II

AD
AI
A2

-D8

---::
A
B
C
D

6
5
4
3
2

DISPLAYS

ltoG

74C421

---!
Typical schematic
for 32 digit systems

DL141Err

2-19

town, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical,
Midland, MI; E.1. DuPont de Nemaurs & Co., Wilmington,
DE.

DESIGN CONSIDERATIONS
For details on design and applications of the DL 1416T utilizing standard bus configurations in multiple display systems,
ar parallel 1/0 devices, such as the 8255 with an 8080 or
memory mapped addressing on processors such as the
8080, Z80, 6800, ar nan-micro processar based systems,
please refer to. Appnate 9A and 13 in the current Siemens
Optoelectronic Data Book.

For further information refer to Appnotes 18 and 19 in the
current Siemens Optoelectronic Data Baok.
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 20 pin DIP sockets 1.10" wide
with .100" centers work well far single displays. Multiple
display assemblies are best handled by langer SIP sackets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.

ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
It is highly recommended that the display and the components that interface with the display be pawered by the
same supply to. avaid lagic inputs higher than Vee. Additianally, the LEOs may cause transients on the pawer supply
line while they change display states. The cammon practice
is to. place .01 t.tF capacitors clase to. the displays acrass
Vee and GND, one far each display, and ane 10 p.F
capacitar far every secand display.

For further informatian refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS
The 0.16" high characters of the DL 1416T allow readability
up to six feet. Proper filter selection will allow the user to
build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The anly limitation is cost. The cosUbenefit ratio
for filters can be maximized to the user's benefit by first considering the ambient lighting environment.

ESD PROTECTION
The metal gate CMOS IC af the DL 1416T is extremely immune to ESD damage. It is capable of withstanding
discharges greater than 3KV. Hawever, users of these
devices are encauraged to. take all the standard precautians, normal for CMOS components. These include praperIy grounding persannel, toals, tables, and transpart carriers
that came in cantact with unshielded parts .. Where these
canditions are not, or cannot be met, keep the leads of the
device sharted tagether ar the parts in anti-static packaging.

Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DL 1416T is a red
display and should be matched with a long wavelength
pass filter in the 600 nm to 620 nm range. For display
systems of multiple colars (using other Siemens displays),
neutral density grey filters offer the best campromise.

SOLDERING CONSIDERATIONS
The DL 1416T can be hand soldered with SN63 salder using a grounded iran set to 260°C.

Additional cantrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is '1uzzy". characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.

Wave soldering is also. possible following these conditians:
Preheat that does not exceed 93°C on the salder side of
the PC board or package surface temperature af 70°C.
Water soluble organic acid flux or (except carboxylic acid)
resin-based' RMA flux without alcohol can be used.

a

Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.

Optimal filter enhancements for any conditian can be gained through the use of circular polarized, anti-reflective,
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back 011 the display to less than·1%.

POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.

Several filter manufacturers supply quality filter materials.
Some of them are: Panel graphic Corporatian, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, SI. Paul, MN; Polaroid Carporatian,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.

For faster cleaning, solvents may be used. Care should be
exercised in choasing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.

One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to. provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Praducts, Batavia, IL; Nabex
Components, Griffith Plastic Carp., Burlingame, CA; Photo
Chemical Products af California, Santa Manica, CA; I.E.E.Atlas, Van Nuys, CA.

Unacceptable solvents contain alcohol, methanol, methylene
chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES.
Since many commercial mixtures exist, you should contact
your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied
Chemical Corporation, Specialty Chemical Division, Morris-

Refer to Siemens Appnote 23 for further infarmation.
Dl1416T

2-20

SIEMENS

DL 1814
.112" Red, a-Digit 17-Segment
ALPHANUMERIC Intelligent Display®
With Memory/Decoder/Driver

Package Dimensions in Inches (mm)

FEATURES

TOLERANCf:

.0.112" x 0.088" Magnified Monolithic Character
•
•
•
•

•
•
•
•
•
•
•
•
•

Rugged Solid Plastic Encapsulated Package
Wide Viewing Angle ±40o, Both Axis
Compact Size for Hand Held Equipment
Fast Access Time, 525 ns
Full Integrated CMOS Drive Electronics
Direct Access to each Digit Independently &
Asynchronously
TTL Compatible, 5 Volt Power
17th Segment for Improved Punctuation Marks
Low Power Consumption, l}tpicaliy 10 mA per
Character
Display Blank Function
End·Stackable, Eight Character Package
Intensity Coded for Display Uniformity
100% Burned In and Tested

.xx ...Ol(.25)
.XXX_.Ol0(.254)

Maximum Ratings
Supply Voltage Vee ............... -0.5 V to +6.0 Vdc
Voltage, Any Pin Respect
to GND .................. -0.5 V to (Vee +0.5) Vdc
Operating Temperature ....... " ...... -40°C to +85°C
Storage Temperature ............... -40°C to + 100°C
Relative Humidity (non condensing) @85°C ......... 85%
Maximum Solder Temperature, 1.59 mm (0.063")
below Seating Plane, t<5 sec ................. 260°C
ESD (MIL-STD-883, method 3015) ............. Vz =3 KV

Optical Characteristics

• Extended Operating Temperature Range:
-40°C to +85°C

DESCRIPTION
The DL 1814 is an 8-digit module. Each digit has 16
segments plus a decimal segment and a built-in CMOS
integrated circuit.
The integrated circuit contains memory, ASCII character
generator, and LED multiplexing and drive circuitry. Inputs
are TIL compatible. A single 5 volt power supply is required. Data entry is asynchronous and random access. A
display system can be built using any number of DL 1814's
since each character in any DL 1814 can be addressed
independently and will continue to display the character
last written until it is replaced by another.
All products are 100% burned-in and tested, then
subjected to out-going AQL's of .25% for brightness
matching, visual alignment and dimensions, .065% for
electrical and functional.
2-21

Spectral Peak Wavelength. . . . . . . . . . . . . . . . . 660 nm typo
Magnified digit size ................... 0.112" x 0.088"
Time Averaged Luminous Intensity ...... 0.2 mcdJdigit min.
(100% brightness,
8 segments/digit, Vcc=5 V) ........ 0.5 mcd/digit typo
. LED to LED Intensity Matching ............. 1.8:1.0 max.
Device to Device Intensity Matching (one bin) . 1.5:1.0 max.
Bin to Bin IntenSity Matching ............... 1.9:1.0 max.
Viewing Angle (off normal axis)
Horizontal ................................. ±40o
Vertical ................................... ±40o

TOP VIEW
26

Pin

14

1
2
3
4
5
6

~--,-....,-....,-....,-....

~~ ~'U~'nt;:'!iJ:i;:'UfU:"'~
Il'" I!I>I "'''' "''' "'" 1[1"

I!JlI "'''

- - - --

1 2 3 4

DO
D1
D2
D3
D4
D5
D6
GND
AD
A1
A2

7
8

5 6 7 8. 9 10 II 12 13

9
10
11
12
13

I

WR

Function

Pin

Function

Data
Data
Data
Data
Data
Data
Data

14
15
16

BL
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO

input
input
input
input
input
input
input

17
18
19
20
21
22
23
24
25
26

Address
Address
Address
Write

VCC

(Blank I
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
(Chip Enable)

CE

DC CHARACTERISTICS
Parameter

Min.

-40°C
Typ. Max.

+25°C
Min.

'tYP.

Max.

Min.

+85°C
Typ. Max. Units

Conditions

Icd1) 8 Digits on
10 segments/digit

130

156

100

120

85

102

mA

Vcc=5 V

Icc Blank(1)

2.5

5.0

2.0

3.5

1.5

2.0

mA

Vcc=5 V,
BL=0.8 V

IlL (all inputs)

75

110

55

80

40

55

p.A

VIN=0.8 V,
Vcc=5 V

V IH

2.7

VIL

2.7

2.7

0.8

0.8

.0.8

V

Vcc=5 V±0.5 V

V

Vcc=5 V±O.5 V

Notes: 1. Measured at 5 sec.

AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @Vcc=4.5 V
-40·C (ns)
Parameter
Symbol

+25°C (ns)

+85°C (ns)

TCES

300

450

550

TAS

300

450

575

Chip Enable Hold Time

TCEH

50

75

100

Address Hold Time

TAH

50

75

100

Write Delay Time

Two

100

150

200

Write Time

Tw

200

300

450

Data Set Up Time

Tos

150

250

350

Chip Enable Set Up Time
Address Set Up Time

Data Hold Time

TOH

50

75

100

Access Time

TACC

350

525

675

Notes:
1. "Off Axis Viewing Angle" is here defined as: "the minimum angle in any
direction Irom the normal to the display surface at which any part of any
segment in the display is not visible.
2. This display contains a CMOS integrated circuit. Normal CMOS handling

TIMING CHARACTERISTICS
WRIT£ CYCLE WAVEFORMS

IT

precautions should be taken to avoid damage due to high static voltages

~
~TCES
I.-----... TCEH

or electric fields. See Appnote 18.

A", AI

3. Unused inputs must be tied to an appropriate logic voltage level (either

V+ or V-).

....

4. Warning: 00 not use solvents containing alcohol.

5. Vcc~5.0 VOC ± 10%.
6. Access time is defined as TAS + TOH (sum of address set up and data
hold time).
7. Vcc~4.5 V, worst case for all timing parameters.

~.
l
~
~

x::=
~

011-06

TAS

I

X

.=:1
TIMING MEASUREMdm
VOLTAGE LEVELS

TDS

:

YAH

:'J

>.C

_ _ TDH=:.!

=><==X: o~ :~~~!

VOLTS

DL 1814

2-22

DISPLAY BLANKING

CHARACTER SET

Blanking the display may be accomplished by loading a
blank or space into each digit of the display or by using
the (BL) display blank input.

DO

D2

, H ,

FIGURE 1. FLASHING CIRCUIT FOR DL 1814
USING A 555

OUTPUT

.-i

~

\

H H ,

11
U

,

H H H

B

,,

\

I

I

jj

*

,,

J

L

-

D
J

-

OJ

,0 ,

_"0
u

H

T
.J..

LJ

H L H ,

P

LY

H L H H

\I
1\

V

2- N.c.
6

H
H
L

"

-

,

H L

J.:.

3

Q

H

H L ,

555

L
H
L

L

L H L L

A flashing circuit can easily be constructed using a 555
astable multivibrator. Figure 1 illustrates a circuit in
which varying R1 (100K-10K) will have a flash rate
of 1 Hz-10 Hz.

~10PF1~

H

,

L

H
L
H

H

,

H
H

H
H

--"--

D6DSD4 D3

Setting the (BL) input low does not affect the contents of
either data. A flashing display can be realized by pulsing
(BL).

1

,

L
L
L

D'

H

-1

,-1

,

,

[[

\I

% [y

_u

-- 1
U,
cJ 6 "1,
:'
-- -~ -J,
--,-, C C r
l]
L
JJ L _ ,
--_. - - -In
,
,
,
I-{ '-,v lJ
,,
-,-, , ,
VII

+
I.

I

I

I
f_

I

\

(-

._,,1/
1\'

F? 5
7
1._

I

r

'-

LJ

-,

\

-'

\

/I

V

--

1\

BLOCK DIAGRAM
Al

~o

1----

~- 1 - - - - ,
~N

~ :2~~
:Z~~
@~

@~
@~

LOADING DATA

DlGITDRIVERS

DlSPlAV

Loading data into the 0L1814 is straightforward. The desired
data and chip enable should be present and stable during
a write pulse. No synchronization is necessary, and each
character will continue to be displayed until it is replaced
with another. Multiple displays will require an external
decoder IC connected to the chip enable input.

17 LINES

IlAIA
SELECrfENABLE
68LfNES
DO

Setting the chip enables CE to its true state will enable data
loading. The desired data code (00·06) and digit address
(Ao, AI, A2) must be held stable during the write cycle for
storing new data. Data entry may be asynchronous and
random. {Digit 0 is defined as right hand digit with

ROM

01
02
D3
D4
OS
06

•

WFi

.,

A2

f

(A2 =Al =Ao =0.)
TYPICAL LOADING DATA STATE TABLE
"8[

H
H
H

Cl: Wfi

A2

A1

AO

D6

X
H

H
X

X
X

X
X

X
X

H
H
H
H
H
H

L
L
L
L
L
L
L
L

L
L
L
L

L
L
H

L
H
L

H

H

X
H
H
H
H

H
H

L
L

L

H

H

H

H

H
H

L

X
L
L

H
H
X
H
X

L
H

H
H

L
L
L
L
L
L
L
L
H
L
L

X
H
X

H

H

H
X
L

X

D5 D4 D3 02
01
DO
PREVIOUSLY LOADED DISPLAY

I

X

X

X

L
L
L
L
L
L
L
L

L

L
L

H
L
L
L

H

X
H
H
H
L
H
H

I

2-23

H
L
L

S
S
S
S
S
S
S
S
S
B

6
I
I
I
I
I
I
I
I
L
L

H

B

L

X

X

L
L
L

H
H
L
L

L
H
L
L
H
L
L
L
H
H
L
H
L
L
L
BLANK DISPLAY
L
L I L I H I H
SEE CHARACTER CODE

H

I

7

5
E
E
E
E
E
E
E
U
U
U

DIGIT
4
3
M
E
M
E
M
E
M
E
M
E
B
M
E
B
B
E
E
B
E
B

2
N
N
N
N
L
L
L
L
L
L

L
U
E
G
SEE CHARACTER SET

1
S
S
S
U
U
U
U
U
U
U

0

U

E

E
E
E
E
E
E
E
E

DL 1814

ELECTRICAL AND MECHANICAL
CONSIDERATIONS

An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 26 pin DIP sockets .960" wid~
with .100" centers work well for single ·displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.

VOLTAGE TRANSIENT SUPPRESSION
It is highly recommended that the display and the
components that interface with the display be powered by
the same supply to avoid logic inputs higher than Vee.
Additionally, the LEOs may cause transients in the power
supply line while they change display states. Common practice is to place .01 pF capacitors close to the displays across
Vee and GND, orie for each display, and one 10 /LF
capacitor for every second display.

For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
OPTICAL CONSIDERATIONS
The .112" high characters of the DL 1814 allow readability
up to six feet. Proper filter selection will allow the user to
build a display that can be utilized over this distance.

ESD PROTECTION
The metal gate CMOS IC of the DL 1814 is extremely
immune to ESD damage. It is capable of withstanding
discharges greater than 3 KV. However, users of these
devices are encouraged to take all the standard precautions, normal for CMOS components. These include
properly grounding personnel, tools, tables, and transport
carriers that come in contact with un-shielded parts. Where
these conditions are not, or cannot be met, keep the leads
of the device shorted together or the parts in anti-static
packaging.

Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first
considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescen! (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
eflective in optimizing contrast ratios. The DL 1814 is a
standard red display and should be matched with a long
wavelength pass filter in the 600 nm to 620 nm range. For
display systems of multiple colors (using other Siemens'
displays), neutral density grey filters offer the best
compromise.

SOLDERING CONSIDERATIONS
The DL 1814 can be hand soldered with SN63 solder using
a grounded iron set to 260°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the. solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol can be used.

Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this eflect.
Care should be taken not to overheat the plastic filters by
allowing for proper airflow.

Wave temperature of 245°C ± 5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minLites. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.

Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective,
band-pass filters. The circular polarizing further enhances
. contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%.

For faster cleaning, solvents may be. used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.

Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.

Unacceptable solvents contain alcohol, methanol, methylene
chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES.
Since many commercial mixtures exist, you should contact
your solvent vendor for chemical composition information.
Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ;
Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI;
E.I. DuPont de Nemours & Co., Wilmington, DE.

One last note on mounting filters: receSSing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.

For further information refer to Appnotes 18 and 19 in the
current Siemens Optoelectronic Data Book.

Refer to Siemens Appnote 23 for further information.

DL 1814

2-24

DL 2416T

SIEMENS

.160" Red, 4-Digit 16-Segment Plus Decimal
ALPHANUMERIC Intelligent Display®
With Memory/Decoder/Driver

....
15.11
=,..
,5!'c:I

-eo!!

Package Dimensions in Inches (mm)

-.ft
c:I
.012 :t .002 TYP

[

(.~)(;

.60±'o2

~I51)

FEATURES

Tolerance:.Xh.OI(.254)
XXX±.OOS (.127)

.0.16" x 0.125" Magnified Character
• Wide Viewing Angle, X Axis ±45°, Y Axis ±55°
• Close Multi-line Spacing, O.S" Centers
• Rugged Solid Plastic Encapsulated Package
• Fast Access Time, 300 ns @25°C
• Full Size Display for Stationary Equipment
• Built-in Memory
• Built-in Character Generator
• Built-in Multiplex and LED Drive Circuitry
• Direct Access to Each Digit Independently &
Asynchronously
• Independent Cursor Function
• 17th Segment for Improved Punctuation Marks
• Memory Function that Clears Character and
Cursor Memory Simultaneously
• li'ue Blanking for Intensity Dimming Applications
• End-Stackable, 4-Character Package
• IntenSity Coded for Display Uniformity
• Extended Operating Temperature Range: - 40°C
to +S5°C
• 100% Burned In and Tested
• Wave Solderable
• TTL Compatible over Operating Temperature
Range

DESCRIPTION
The DL 2416T is a four digit display module having 16
segments plus decimal and a built-in CMOS integrated
circuit.
The integrated circuit contains memory, ASCII ROM .
decoder, multiplexing circuitry, and drivers. Data entry is
asynchronous and can be random. A display system can be
built using any number of DL 2416Ts since each digit of
any DL 2416T can be addressed independently and will
continue to display the character last stored until replaced
by another.
System interconnection is very straightforward. The least
significant two address bits (Ao, Aj) are normally connected
to the like named ilJ.E!!ts of alLQL 2416Tsin the system. With
two chip enables (CE1, and CE2) four DL 2416Ts (16
characters) can easily be interconnected without a decoder.
Data lines are connected to~DL 2416Ts directly and in
parallel, as is the write line (WR). The display will then
behave as a write-only memory.
The cursor function causes all segments of a digit position
to illuminate. The cursor is not a character, however, and
upon removal the previously displayed character will
reappear.
The DL 2416T has several features superior to competitive
devices. The superior ESD immunity afforded by the metal
gate CMOS construction and 100% pre-burned in processing assures users of the DL 2416T that the devices will function in more stressful assembly and use environments. The
full width character ':,)" affords better readability under
adverse conditions and the 'true blanking" allows the
designer to dim the display for more flexibility of display
presentation. Finally, the CLR clear function will clear the
cursor RAM and the ASCII character RAM, simultaneously.

• Superior ESD Immunity

-Continued

2-25

DESCRIPTION (Continued)

Maximum Ratings

All products are 100% burned-in and tested, then subjected to out-going AQL's of .25% for brightness matching.
visual alignment and dimensions, .065% for electrical and
functional.

Supply Voltage Vee ............... - 0.5 V to + 6.0 Vdc
Voltage, Any Pin Respect
to GND .................. -0.5 V to (Vee +0.5) Vdc
Operating Temperature ............... -40°C to +85°C
Storage Temperature ............... -40°C to + 100°C
Relative Humidity (non condensing) @85°C ......... 85%
Maximum Solder Temperature, 1.59 mm (0.063")
.
below Seating Plane, t<5 sec ................. 260°C

See Appnote 14 for applications information.

TOP VIEW
18 17 16 15 14 13 12 11 10

•••••••• •

r:xxx=

Optical Characterlatlcs
Spectral Peak Wavelengih . . . . . . . . . . . . . . . .. 660 nm typo
Magnified digit size .................... : .160" x .125"
.Time Averaged Luminous Intensity
(100% brightness, ................ 0.5 mcd/digit min.
8 segments/digit. Vee=5 V) ........ 1.0 mcd/digit typo
LED to LED Intensity Matching ............. 1.8: 1.0 max.
Device to Device Intensity Matching (one bin) . 1.5:1.0 max.
Bin to Bin Intensity Matching ............... 1.9:1.0 max.
Viewing Angle (off normal axiS)
Horizontal ................................. ± 45 °
Vertical ............... : ... ; ............... ±55°

•••••••••
1 2 3

Pin

1
2
3
4

5
6
7
8
9

4

5

6

7

Function
~ Chip Enable
l!n Chip Enable

8 9

Function
Gnd
Of' Data Input
01 Data Input

Pin
10
11
12
13
14
15
16
17
18

~Claar

CUE· Cursor Enable

eo Cursor Select
Wl'l Wrlta

A 1 Digit Select
Alii Digit Select
Vec

D2 Data I"put
D3 Dat8 Input
06 Data Input

06 Data Input.
04 08ta Input'

In:: Olsplav Blank

DC CHARACTERISTICS
-40°C

+25°C

Max.

led' ) 4 Digits on
10segmentsldigit

100

130

85

Max.
115

Icc Cursei'll, 2)

140

185

120

165

100

145

mA

Vee=5 V

Icc Blank'"

Eiis

Vee increases.

TIMING CHARACTERISTICS
WRITE CYCLE WAVEFORMS

LOADING DATA
Setting the chip enable (CE1, CE2) to their true state will
enable data loading. The desired data. code (00-06) and
digit address (Ao, AI) must be held stable during the write
cycle for storing new data.
Data entry may be asynchronous and random. (Digit 0 is
defined as a right hand digit with AI =A2=0.)

TIMING MEASUREMENT
VOLTAGE LEVELS

Clearing of the entire internal four-digit memory can be accomplished by holding the clear (CLR) low for one complete
display multiplex cycle, 15 mS minimum. The clear function
will clear both the ASCI.! RAM and the cursor RAM. Loading
an illegal data code will display a blank.

~4VOLTS
~2VOLTS

o vOLTS

TYPICAL LOADING DATA STATE TABLE
CONTROL
I![ ~=CUE
H
H

X
H

X

H

X
L
L
L
L
X
L

H

H
H
H
H

L
H
H
H

X

L

X

L
L
L
L
X
L
X

L

L
L
L

L
L
L
L
X
L
L
L

CO' WI! COl
X

X

H
X. H

X

X

H
H
H

L
L
L
L

H
X

H

H
X

L

H

H

L

H

DATA

AI AO

06 05 D4 03 02 01 DO

H

H
H
H
H
H
H

L

H

DISPLAY

ADDRESS

X
X

L
L
H
H

X
H
X

X

PREVIOUSLY LOADED DISPLAY
X
X X X X X
X
X
X
X
X
X
X
X
L
H L
L
L H L
H L
H
H L H L
L
H L
L H H L
H
H L
L
L
L
H
BLANK DISPLAY
X
H
H
L
L
L
H H

X
X

DIGIT

X
X

H
H
L
L

H
CLEARS CHARACTER DISPLAYS
SEE CHARACTER CODE

3

2

1

0

G

R

E

Q

G
B

R· E
R E
R
E
R U
L U
L U

Y
Y
Y

G

L

G
G
G

U

E
E

E
E
E

seE CHARACTER
SET

x = DON'T CARE

DL.416T

2-27

LOADING CURSOR
Setting the chip enables (CE1. CE2) and cursor selec.!J9U)
to their true state will enable cursor loading. A write (WR)
pulse will now store or remove a cursor into the digit loca~
tion addressed by Ao. AI; as defined in data entry. A cursor
will be stored if 00=1; and will be removed if 00=0. The
c.!:!Lsor (CU) pulse width should not be less than the write
(WR) pulse or erroneous data may appear in the display.
For those users not requiring the cursor, the cursor enable
signal (CUE) may be tied low to disable the display of the
cursor function. A flashing cursor can be realized by simply
pulsing CUE. If the cursor has been loaded to any or all
positions in the display. then CUE will control whether the
cursor(s) or the characters appear. CUE does not affect the
cOntents of cursor memory.

LOADING CURSOR STATE TABLE
CONTROL

It cn-mCUE
H
H
H
H
H
H
H
H
H
H

X
X
L
L

X
X
L
L

L
L
L

L
L
L

X,X

m

\'VI(

ct:If

L X
H X
H L
H L
H L
H 'L
H L
L
X

H ,H
H H
L H
L H
L H
L ,H
L H'

L
H

L

L

L

L

X

X

H

X

H

H
H

ADDRESS

OATA

AI Nl

D6D5 D4D3D2 01 DO

3

PREVI0U3LV LOADED DISPLAV
DISPLAV PREVIOUSLV STORED CURSORS
L

L
H

H

L

L

!I

X

H
H
H
H

H

X

L

H

DISABLE CURSOR DISPLAV
x x x X
H II X x
DISPLAV STORED CURSOR

L

H

H

X
X
X
X

X
X
X
X

L

X

X

X
X

X
X

X
X

X
X

X
X
X

X

X
X
X

X

X
X

DISPLAV
DIGIT
2
0
I

B
B
B
B
B

E
E
E
E

A
A
A

R
R

IliI
IliIIliI
IliI IliIIliI
I!III I!IIIm IliI
IliI E IliI IliI
'B
B
B

E ,A R
E A R
E IliIIliI

x • DON"T CARE

DISPLAY BLANKING
Blanking the display may be accomplished by loading a
blank or space into each digit of the display or by using the
(Bl) display blank input.
Setting the (Bl) input low does not affect the contents of
either data or cursor memory. A flashing display can be
realized by pulsing (Bl).
A flashing circuit can easily be constructed using a 555
astable multivibrator. Figure 1 illustrates a circuit in'which
varying R1 (100K -10K) will have a flash rate of
1 Hz .... 10 Hz.
FIGURE 1. FLASHING CIRCUIT FOR DL 2416T
USING A 555

An example of a simple dimming circuit using a 556 is
illustrated in Figure 2. Adjusting potentiometer R2 will dim
the display through frequency modulation (2.5 KHz to
4.4 KHz). Adjusting potentiometer R3 will dim the display by
increasing the negative pulse width (10 0/0 to 50%).

FIGURE 2. DIMMING CIRCUIT FOR DL 2416T
USING A 556

Q

1

~10~Fl

The display can be dimmed by pulse width modulating the
(SC) at a frequency sufficiently fast to not interfere with the
internal clock. This clock frequency may vary from 200 Hz
to 1.3 KHz. The dimming signal frequency should be
2.5 KHz or higher. Dimming the display also reduces power
consumption.

8'

2

Vee
R2
1101(0 ..

7
-Nt.

~

555
OUTPUT

3

6

4

5

Rl
101(0
Rl

vee

-...-1
'"'

14

~

13

3

12

...

tfc
4

Vee

5

el
6

ttc
~

vee

556

1

R3
';50 1(0

C3

f-vee

11
10

-Vee
9

~

J..~C2
Tom:
on DL·2416f

C1=4.7 pf
&2=10 pF
C3=1 pF

DL241ST

2-28

CHARACTER SET

~~-+060

02
03

L
L

H
L
L
L

D4HEI

0

I

H L L

4

H L H 5

•

H

L
L
H

H
L
H

L
H
H

3

L
4

L
5

L
6

L
L

" :H
, J
l
3
r, _u-0 L_

I

L H L 2

L H H 3

L
H
L
L
2

,-,
I_I

I

--,

OJ

CI
I

.-, F(
P LY

C_J

9)

96

uI

cJ Uc

H
H
H
L

C:y

I

I

-,
I

H
L
L

8

H
9

•

7

Q

L
L
L

I
\

\

/

8

0
I T

!
! , ,

J

JJ

L_

C

r

lJ I

,--,

T

I I

II,

I J
VII

Vi

-,-,
I

LJ

V

r-

i

/\

L
H
L
H

H
H
L
H

A

8

•

H
C

*-- T

I

,

7

i_

'.

I

L

1\11

\

l

••

H

H
H
H
H

E

F

L

--

/

---,
H '-- J J
-,
r
I

.1.

H
L
H
0

I

J
lJ

v

L
L

\

_I

I
\
-}

1\1
I "
/\

I

-J
I

n

LJ

--

All other input codes dispiay "blank"

ROM

Internal Block Diagram

00-06
CLR----~¥_~----_4~--~----~---L----44--~

WR

AoA,

CEf

CEi
eEl'

Typical Schematic for 16 Digit System
DL 2416T

2-29

Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI;
E.1. DuPont de Nemours & Co., Wilmington, DE.

DESIGN CONSIDERATIONS
For details on design and applications of the DL 2416T utilizing standard bus configurations in multiple display systems,
or parallel I/O devices, such as the 8255 with an 8080 or
memory mapped addressing on processors such as the
8080, Z80, 6502, 8748, or 6800 refer to Appnote 14, and 20,
in the current Siemens Optoelectronic Data Book.

For further information refer to Appnotes 18 and 19 in the
current Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 18 pin DIP sockets .600/1 wide
with .100/1 centers wOrk well for single displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New BrunswiCk, NJ;
RObinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.

ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
It is highly recommended that the display and the
components that interface with the display be powered by
the same supply to avoid logic inputs higher than Vee.
Additionally, the LEOs may cause transients in the power
supply line while they change display states. Common practice is to place' .01 I'F capacitors close to the displays across
Vee and GND, one for each display, and one 10 "F
capacitor for every second display.

For further information refer to Appnote 22 in the current
.
Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS
The .160/1 high characters of the DL 2416T allow readability
up to eight feet. Proper filter selection will allow the user to
build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first
considering the ambient lighting environment.

ESD PROTECTION
The metal gate CMOS IC of the DL 2416T is extremely
immune to ESD damage. However, users of these devices
are encouraged to take all the standard precautions normal
for CMOS components. These include properly grounding
personnel, tools, tables, and transport carriers that come in
contact with unshielded parts. Where these conditions are
not, or cannot be met, keep the leads of the device shorted
together or the parts in anti-static packaging.

Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DL 2416T is a
standard red display and should be matched with a long
wavelength pass filter in the 600 nm to 620 nm range. For
display systems of multiple colors (using other Siemens'
displays), neutral density grey filters offer the best
compromise.

SOLDERING CONSIDERATIONS
The DL 2416T can be hand soldered with SN63 solder using a grounded iron set to 260°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol can be used.

Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.

Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063/1 below
the seating plane. The packages should not be immersed in
the wave.

The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of. mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.

Optimal filter enhancements for any condition can be
gained through the use of circular polarized, anti-reflective,
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%.

For faster cleaning; solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.(1)

Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. PaUl, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.

Unacceptable solvents contain alcohol, methanol, methylene
chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES.
Since many commercial mixtures exist, you should contact
your solvent vendor for chemical composition information.
Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ;

One last note on mounting filters. Recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; IEE.Atlas, Van Nuys, CA.

POST SOLDER CLEANING PROCEDURES

Refer to Siemens Appnote 23 for further information.
(1}Some commercial names for acceptable compounds are: Basic TF. Arklone P, Genesolve D. Blaeo·tron TF. Freon TA. Genesolve DA. and Blaeo·tron TA.
DL2416T

2-30

SIEMENS

DL 3416
.225" Red, 4-Digit 16-Segment Plus Decimal
ALPHANUMERIC Intelligent Display®
With Memory/Decoder/Driver

Package Dimensions in Inches (mm).

FEATURES

ltURANCE:

.0.225" x 0.192" Magnified Monolithic Character
• Wide Viewing Angle, X Axis ±45°, Y Axis ±55°
• Close Vertical Row Spacing, 0.8" centers
• Rugged Solid Plastic Encapsulated Package
• Fast Access Time, 300 ns
• Full Size Display for Stationary Equipment
• Built-in Memory
• Built-In Charscter Generstor
• Built-In Multiplex and LED Drive Circuitry
• Each Digit Independently Addressed
• Independent Cursor Function
• 17th Segment for Improved Punctuation Marks
• Memory Clear Function
• Display Blank Function, for Blinking and Dimming
• End-8tackable, 4-Character Package
• Intensity Coded for Display Uniformity
• Extended Operstlng Tempersture Range:
-40°C to +85°C
• Wave Solderable
• 100% Burned In and Tested
• Superior ESD Immunity

.xx •.01(.25)
.xxx·.0051.127)

DESCRIPTION
The DL 3416 is a four digit display module having 16
segments plus decimal and a built-in CMOS integrated
circuit.
The integrated circuit contains memory, ASCII ROM
decoder, multiplexing circuitry, and drivers. Data entry is
asynchronous and can be random. A display system can be
built using any number of DL 3416s since each digit of any
DL 3416 can be addressed independently and will continue
to display the character last stored until replaced by another.
System interconnection is very straightforward. The least
significant two address bits (Ao, A1) are normally connected
to the like named inputs of all DL 3416s in the system. With
four chip enables four DL 3416s (16 characters) can easily
be interconnected without a decoder.
Alternatively, one-of-n decoder IC's can be used to extend
the address for large displays.
Data lines are connected to all DL 3416s directly and in
parallel, as is the write line (WR). The display will then
behave as a write-only memory.
The cursor function causes all segments of a digit position
to illuminate. The cursor is not a character, however, and
upon removal the previously displayed character will
reappear.
All products are 100% burned-in and tested, then subjected to out-going AQL's of .25% for brightness matching,
visual alignment and dimensions, .065% for electrical and
functional.

2-31

Maximum Ratings

TOP VIEW

Supply Voltage Vcc ............... - 0.5 V to + 6.0 Vdc
Voltage, Any pin Respect
.
to GND .................. -0.5 V to (Vcc +0.5) Vdc
Operating 'Temperature .. : ............ -40°C to +85°C
Storage Temperature ............... -40°C to + 100°C
Relative Humidity (non condensing) @85°C ......... 85%
Maximum Solder Temperature, 1.59 mm (0.063")
below Seating Plane, t<5 sec ................. 260°C

tttt=
I

Pin
1
2
3
4
5

Optical Characteristics
Spectral Peak Wavelength. . . . . . . . . . . .. . . . . 660 nm typo
Magnified digit size ......................225" X .192"
Time Averaged Luminous Intensity
(100% brightness,
8 segments/digit,Vcc =5 V) ......... 0.5 mcd/digit min.
......... 1.0 mcd/digit typo
LED to LED Intensity Matching ............. 1.8: 1.0 max.
Device to Device Intensity Matching (one bin) . 1.5:1.0 max.
Bin to Bin Intensity Matching ............ , .. 1.9:1.0 max.
Viewing Angle (off normal axis)
Horizontal ................................. ±40o
Vertical ........... :: ...................... ±55°

2'3

'"

5

b

1

8

9

1011

Function

Pin

CEl Chip Enable
CE2 Chip Enable
CE3 Chip Enable
CE4 Chip Enable
CLR Clear
.

12
13
14
15
16
17
·18
19
20
21
22

vec

6
7
8
9
10
11

AO Digit Select
A 1 Digit Select
WRWrite
CU Cursor Select
CUE Cursor Enables

Function

l

GND
N/C
B[ Blanking
N/C
DO Data Input
.01 Data Input
02 Data Input
03 Data Input
04 Data Input
05 Data Input
06 Data Input

TIMING CHARACTERISTICS
WRITE

CYCLE

WAVEFORMS

CEI,CE2
C'E3. CE4

CD

I - - T C E •. - - , TCEH'I-

=x1.:::==

Af/J, AI

J

TWoC= TW
:J

TIMING MEASUREMENT
VOLTAGE

_ _ TAH:J

3.

X'i

D0-06.

x=

.1

TAS -'-

To.

>c

TOH~

-'

=x=x:
-

LEVELS

4 VOLTS
2 VOtTS
o VOL T8

DC CHARACTERISTICS

-40°C
Parameter

.Min.

+25°C

Typ.
100

Max.
130

Icc Cursor(1. 2)

140

Icc Bhink(1)

2.0

IlL (all inputs)

80

Icd1~.4. Digits on

Min •

+85°C
Min.

Typ.
70

Max. Units
100
mA

Conditions

Typ.
85

Max.
115

170

120

150

100

130

mA

Vcc=5 V

5.0

1.5

4.0

1.0

2.7

mA

Vcc=5 V, BL=0.8 V

180

60

160

45

90

p.A

VIN=0.8 V, Vcc=
5.0 V

V

Vcc=5 V±0.5 V

0.6

V

Vcc=5 V±0.5 V

Vcc=5 V

10 segments/digit

2.7

2.7

2.7
0.6

0.6
Notes:- 1. Measured "at 5 sec.

2. 60 sec. max. duration.

DL 3416

2-32

AC CHARACTERISTICS Guaranteed Minimum TIming Parameters @4.5 V::sVcc::s5.5 V
Symbol

-40°C (ns)

+25°C (ns)

+85°C (ns)

Chip Enable Set Up TIme

Parameter

TCES

175

275

375

Address Set Up Time

TAS

175

275

375

Cursor Set Up Time

Tcus

175

275

375

Chip Enable Hold Time

TCEH

25

25

75

Address Hold Time

TAH

25

25

75

TCUH

25

25

75
75

Cursor Hold Time
Write Delay Time

Two

50

50

Write Time

Tw

125

225

300

Data Set Up Time

Tos

100

150

225

25

75

TOH

25

Clear(3)

TClA

15 ms

15 ms

16 ms

Access TIme(2)

TACC

200

300

450

Data Hold Time

Notes: 1. VcC=4.S V is worst case, all timing parameters improve as Vee increases.
2. Access lime Tpec=TAS+TDH
3. Clear timing in miliseconds.

LOADING DATA

For those users not requiring the cursor, the cursor enable
Signal (CUE) may be tied low to disable display of the
cursor function. A flashing cursor can be realized by simply
pulsing CUE. If the cursor has' been loaded to any or all
positions in the display, then CUE will control whether the
cursor(s) or the characters appear. CUE does not affect the
contents of cursor memory.

Setting the chip enable (CE1, CE2, CE3, CE4) to their true
state will enable loading. The desired data code (00-06)
and digit address (Ao, A 1) should be held stable during the
write cycle for storing new data.
Data entry may be asynchronous and random. (Digit 0 is
defined as a right hand digit with A1 =Ao=O.)

LOADING CURSOR STATE TABLE

Clearing of the entire internal four-digit memory can be accomplished by holding the clear (CLR) low for one complete
display multiplex cycle, 15 mS minimum. The clear function
will clear both the ASCII RAM and the cursor RAM. Loading
an illegal data code will display a blank.

I [ ce1CE2ffifficUE

""
""
"
"
"
"
H

TYPICAL LOADING DATA STATE TABLE
Br'ce1 Cf2ffiffi CUE W WR" ear

Al AD

H

D6 D5 D4 D3 02 D1 DO

3

DIGIT
2 1

G

R

,,
,,
.x x x x x x x
,
x x x x x x
,, , ,, , ,, ,
, ,
"
"
," ,, ,, ,, ,"" ,, ,,"" ,,
"" "" "" ,, , , " ,
"
•
"
, , " " ""I ,I ,I ,I "I "I
I, I uI
" , , ,
" "
"
x
"""
H

H
H
H

, ,
X

X
X
X
X

H
H
X
H
X

X
X
X

X
X
X
H
X
X

X
X
X
X
H
X

X
X

X
X

H
X
X
X
X
H

H
H
H
H
H
H

H

PREVIOUSLY LOADED DISPLAY
X
X

X
X. X
X X

H

H
X

H
H

X

H

X

X
X

X

X
X

X

X
X

X

X
X

X

H

X
X
X
X
X

R
R

G
G
G
G
G
G

H

R
R

R
R
R

E
E
E
E
E
E
E

U

0

X
X

X
X

""
""
x"

""
"
"x
H

" "
X

X

X
X

,,
,,
,
,
X

X

X-OON'TCARE

V

X
X

,

W WR" eur
X
X

,, " ,, ,"," ""
,, "" ,, ,, "
, ,"" , , ""
, ," , ," "
"
H

X

X

H

X

"

X

H

"

., AD

06 05 04 03 02 Df DO

3

DIGIT
1
2

·· .
WI ~1~1~1~1~lm
PREVIOUSLY LOADED DISPLAY

DISPLAY PREVIOUSLY STORED CURSORS

DISABLE CURSOR DISPLAY

".1" II xlxlxlxlxlxl'
DISPLAY STORED CURSORS

••
• /ill
/ill. III
III
••
•
E
E
E
E

E
E
E
E

0

A
A

R
R

III
III
/ill
/ill

III
/ill
III
III
III

A
A

R
R

III III

DISPLAY BLANKING

V
V
V

Blanking the display may be accomplished by loading a
blank or space into each digit of the display or by using the
(BL) display blank input.

E

E

X-DON'T CARE

Setting the (BL) input low does not affect the contents of
either data or cursor memory. A flashing display can be
realized by pulsing (BL). A flashing circuit can be constructed using a 555 astable multivibrator.

LOADING CURSOR

Figure 1 illustrates a circuit in which varying R1 (100K-10K)
will have a flash rate of 1 Hz-10 Hz.

X

X

X

X

X

H
X

X

X
H

BLANK DISPLAY

CLEARS CHARACTER DISPLAV
SEe CHARACTER CODE

X

G

E

SEE CH:E;ACTU

The display can be dimmed by pulsing the (BL) line at a
frequency sufficiently fast to not interfere with the internal
clock. This clock frequency may vary from 200 Hz to 1.3 Hz.
The dimming signal frequency should be 2.5 Hz or higher.
Dimming the display also reduces power consumption.

Setting the chip enables (CE1, CE2, CE3, CE4) and cursor
selec~) to their true state will enable cursor loading. A
write (WR) pulse will now store or remove a cursor into the
digit location addressed by Ao, A 1; as defined in data entry.
A cursor will be stored if 00=1; and will be removed if
00=0. Cursor will not be cleared by the CLR signal. The
cursor J9J) pulse width should not be less than the write
pulse (WR) width or erroneous data may appear in the
display.

An example of a simple dimming circuit using a 556 is
illustrated in Figure 2. Adjusting potentiometer R2 will dim
the display through frequency modulation (2.5 KHz to
4.4 KHz). Adjusting potentiometer R3 will dim the display by
increasing the negative pulse width (10% to 50%).

OL 3416

2-33

FIGURE 1. FLASHING CIRCUIT FOR DL 3416
USING A 555

FIGURE 2. DIMMING CIRCUIT FOR DL 3416
USING A 556
Vee

1st

1

*10~F!

-2

vee

R3
750 KII

Rl
10 KO

7
r-N.G.

13

555
6

3

DUTPUT

vee

R2
110 KII

12
Ne

55&

5

,-i

Rl

11

Vee

10

Vee ~G2

el
To jj[
on DL-3416 ..

Ne
·7

C1='-1 pF
C2=10 pF
C3=1 pF

Typical Schematic for 16 Digits.

Internal Block Diagram

ii
DO-DL

eEl

fill

en
I[

...

CEi
Ci4
a;

cu£

m

.

Cli

00

""

.

CUI
A,

>

~ ~

~

~

..
»

~

A,
A,

1111

Typical Schematic 10. 16 Digits

CHARACTER SET

00
D1

02
D6

os D4

D.

L
L
L
L
0

L H L 2

L H H •

n

1I

H
L
L
L

,

1

L
H
L
L
2

"
,,

H L L 4

OJ ,CJ,

H L H 5

,0

.-,

LY

t

--0
_u

3

L
L
H
L
4

jj

9j

"'J

U

H
H
L
L

J
r-

L_

F? 5

L
H
H
L
6

H
H

7

L
L
L
H
8

~y

/

/

H
L
H

L

5

s:s

H
L

\

H

L
L
H
9

\
/

L
H

H
H
L
H

L
H

•

A

*

+

L
L
H
H
C

H
L
H
H

L
H
H
H

H
H
H
H

D

E

F

..

/

, 5 uc , B JD -- - !- ----n
,C- G ,--,' , .L,- LJ H L_, ,V,,
J.J f
")

/

/

I

,
, LJ, , " vv

T

I

V

\/

/\

,

V

-7

1._

I

r

L

\

-,

\

-'

/
\

.l

/

,

-J

1\,
n
,v
lJ
/\

--

ALL OTHER CODES DISPLAY BLANK

OL3416

2-34

DESIGN CONSIDERATIONS
For further information refer to Appnotes 18 and 19 in the
current Siemens Optoelectronic Data Book.

For ideas on design and applications of the DL 3416 utilizing
standard bus configurations in multiple display systems. or
parallel 1/0 devices. such as the 8255 with an 8080 or
memory mapped addressing on processors such as the
8080. Z80. 6502. 8748. or 6800 refer to Appnote 14. and 20.
in the current Siemens Optoelectronic Data Book.

An alternative to soldering and cleaning the display modules
is to use sockets. Naturally. 22-pin DIP sockets .600" wide
with .100" centers work well for single displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package align·
ment. Socket manufacturers are Aries Electronics. Inc..
Frenchtown, NJ; Garry Manufacturing. New Brunswick. NJ;
Robinson-Nugent. New Albany. IN; and Samtec Electronic
Hardware. New Albany. IN.

ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION

For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.

It is highly recommended that the display and the
components that interface with the display be powered by
the same supply to avoid logic inputs higher than Vee.
Additionally. the LEOs may cause transients in the power
supply line while they change display states. Common practice is to place .01 "F capacitors close to the displays across
Vee and GND. one for each display. and one 10 "F
capacitor for every second display.

OPTICAL CONSIDERATIONS
The .225" high characters of the DL 3416 allow readability
up to twelve feet. Proper filter selection will allow the user to
build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first
considering the ambient lighting environment.

ESD PROTECTION
The metal Gate CMOS IC of the DL 3416 is extremely
immune to ESD damage. However, users of these devices
are encouraged to take all the standard precautions. normal
for CMOS components. These include properly grounding
personnel, tools. tables. and transport carriers that come in
contact with unshielded parts. If these conditions are not. or
cannot be met. keep the leads of the device shorted
together or the parts in anti-static packaging.

Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DL3416 is a
standard red display and should be matched with a long
wavelength pass filter in the 600 nm to 620 nm range. For
display systems of multiple colors (using other Siemens'
displays). neutral density grey filters offer the best
compromise.

SOLDERING CONSIDERATIONS
The DL 3416 can be hand soldered with SN63 solder using
a grounded iron set to 260°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin· based RMA flux without alcohol can be used.

Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.

Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C. for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.

Optimal filter enhancements for any condition can be gained through the use of circular polarized. anti·reflective.
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%.

POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.

Several filter manufacturers 9upply quality filter materials.
Some of them are: Panelgraphic Corporation. W. Caldwell.
NJ; SGL Homalite, Wilmington. DE; 3M Company. Visual
Products Division. St. Paul. MN; Polaroid Corporation,
Polarizer Division. Cambridge, MA; Marks Polarized Corporation. Deer Park. NY; Hoya Optics. Inc .• Fremont. CA.

For faster cleaning. solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed.
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane). TA. 111 Trichloroethane. and
unheated acetone.

One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products. Batavia, IL; Nobex
Components. Griffith Plastic Corp.• Burlingame, CA; Photo
Chemical Products of California. Santa Monica. CA; I.E.E.Atlas. Van Nuys. CA.

Unacceptable solvents contain alcohol. methanol. methylene
chloride. ethanol. TP35, TCM. TMC. TMS+. TE. and TES.
Since many commercial mixtures exist. you should contact
your solvent vendor for chemical composition information.
Some major solvent manufacturers are: Allied Chemical Cor·
poration. Specialty Chemical Division. Morristown. NJ;
Baron·Blakeslee. Chicago. IL; Dow Chemical. Midland. MI;
E.I. DuPont de Nemours & Co.• Wilmington. DE.

Refer to Siemens Appnote 23 for further information.

DL3416

2-35

..

"Eo!!

"I

~
~c

-""
~i
is

SIEMENS

HIGH EFFICIENCY REDDLO
'. GREEN DLG

4135
4137

.43" SINGLE CHARACTER
5 X 7 DOT MATRIX Intelligent Display®
WITH MEMORY/DECODER/DRIVER

Package Dimension in Inches (mm)
.14

MIN.
(3.56)

J

.looTYR
(2.54)

r-

' - -_ _ "DEVICE
MARKING
BEGINS
OVER PIN 1

.235

(5f!
.430

0.18 ± .02
1~.571

~O.92)

1.511

.loo

1.00
MAX.

1

~L~H-_......I

L

~.54)

f8AOOE
CODE
WMINOUS
INTENSITY
CODE

.065 lYP
(.165)

.012
(.30)
TOLERANCE:

FEATURES

.XXX. - .010 (.254)

• 0.43" High, Dot Matrix Character
• Wide Viewing Angle, ±7S·
• 96 Character ASCII Format - Both Upper Case and
Lower Case Characters
• Fully Encapsulated, Rugged Solid Plastic Package
• Built-In Memory
• Built-In Character Generator
• Built-In Multiplex and LED Drive Circuitry
• Built-In Lamp Test
• Intensity Control (4 levels)
• Microprocessor Bus Compatible
• Intensity Coded for Display Uniformity
• Single S-volt Power Supply Required
• X/Y Stackable
• Available in High Efficiency Red and Green

DESCRIPTION
TheDLO 4135/DLG 4137 are single digit 5 x 7 dot matrix
Intelligent Display devices with 0.43" character height.
The built·in CMOS integrated circuit contains memory,
ASCII character generator, LED multiplexing and drive
circuitry; thereby eliminating the need for additional
circuitry. They will display the 96 ASCII characters.
These devices are TTL and microprocessor compatible and
offer the possibility of cascading the displays, allowing for
multi·character messages. These displays were designed
for viewing distances of up to 20 feet. They require a single
5-volt power supply and parallel ASCII input.
All products are 100% burned-in and tested, then sub·
jected to out-going AQL's of .25% for brightness matching,
visual alignment and dimensions, .065% for electrical and
functional.

Important: Refer to Appnote 1e, "Using and Handling
Intelligent Displays". Since this is a CMOS device, normal
precautions should be taken to avoid static damage.'

2-36

TIMING PARAMETERS @25°C, Vcc =5.0 V ±0.5 V

Maximum Ratings

Vee Range (max.) .................. . . .. -0.5 to 7.0 V
Voltage, Any Pin
Respect to GND .............. - 0.5 to Vcc + 0.5 Vdc
Operating Temperature. . . . . . . . . . . . . . . -40°C to + 85°C
Storage Temperature ................ -40 0 C to + 100°C
Maximum Solder Temperature 0.063"
above Seating Plane, t<5 sec ................ 260°C
Relative Humidity @85°C (non-condensing) ......... 85%

Symbol

Parameter

TCES
Tos

Data Set-Up

100

Tw

Write Pulse

120

TOH

Data Hold

20

TCEH

Chip Enable Hold

TACC

Access Time

Optical Characteristics (Typical) @25·C

Time Average Luminous Intensity/Dot @5 V
DLO 4135 .............................. 1500 "cd
DLG 4137 .............................. 1500 "cd
Digit Size .................................... 0.43"
Viewing Angle (Note 1) ........................ ± 75°
Spectral Peak Wavelength
DLO 4135 ............................. , . 630 nm
DLG 4137 ............................... 565 nm
Dot to Dot Intensity Ratio ...................... 1.8: 1.0

Units (n5)

Chip Enable Set·Up

,

CE

10

20
150

rACC

I{

~

-

,

J
TCE.

~Tw_

WE

-

t

DATA

f-

I

~

J

TeES l+rDS

,,---'~
:'-TD. __

DC CHARACTERISTICS
-40·C
Parameter

Min.

+25·C
Max.

Typ.

Max.

Units

180

100

140

85

115

mA

Vcc=5 V
BLO=BL1 =5 V

5.5

1.5

4.0

0.8

3.5

mA

Vcc=WR=5.0 V
BLO=BL1 =0 V

50

100

JlA

VIN =0.8 V
Vcc=5.0 V ±0.5 V

Max.

Icc (20 dots on)

135

Icc Blank

2.0

IlL (all inputs)
VIH

Min.

25
2.0
5.0

5.5

0.8
4.5

5.0

5.5

4.5

5.0

Conditions

V

Vcc=5.0 V ±0.5 V

0.8

V

Vcc =5.0 V ±0.5 V

5.5

V

2.0

0.8
4.5

Min.

2.0

VIL
Vcc

+85·C

Typ.

Typ.

Notes:

1. "Off Axis Viewing Angle" is here defined as: "the minimum angle in any direction from the normal to the

display suriace at which any part of any dot in the display is not visible."
2. This display contains. CMOS Integrated circuit. Normal CMOS handling precautions should be
taken to avoid damage due to high static voltages or electric Ileids. See Appnote 18.

Unused inputs must be tied to an appropriate logic voltage level (either V+ or GNO).
Vcc~5.0 VOC ±10%.
5. Clean only in water, isopropyl alcohol, freon TF, or TE (or equivalent).

3.
4.

2-37

OLO 4135/0LG 4137

LOADING DATA

LAMP TEST

loading data into the OlO 4135/0lG 4137 is straightforward. Chip enable (CE)should be present and
stable during a write pulse (WR). Parallel data information should be stable for the minimum time (fW) and
held for TOH after ,write has gone high. No synchronization is necessary and each character will continue to
be displayed until it is replaced with another. Multiple
displays may be stacked together with only an additional decoder IC for chip enable decoding.

The lamp test (lT) when activated causes all dots on
the display to be illuminated at 'h brightness. The
lamp test function is independent of write~) and
the settings of the blanking inputs (BlO • Bll ).
This convenient test gives a visual indication that all
dots are functioning properly. lamp test may also be
used as a cursor function or pointer which does not
destroy previously displayed characters.

Note 6: Either BlO or BL1 should be held high for display to light up.

DIMMING AND BLANKING THE DISPLAY
Brightness
level
Blank
'h Brightness
V, Brightness

-BlI
a
a
1
1

Full Brightness

DATA LOADING EXAMPLE

WR

BLO

Bll

H

X

H

X

X

X

X

CE

Bla

a
I
a
I

,
D6

X

H

X

X

X

X

L

L

H

X

X

X

X

X

X

L

X

X

X

X

H

H

H

L

L

L

L

L

H

D5

D4

DATA INPUT
D2
D3

LT

Dl

DO

X

X

X

X

X

X

BLANK

X

X

X

LMP TEST

L

L

H

A

Ne

L

L

H

H

H

H

H

H

L

L

H

L

r

L

L

H

H

H

L

H

H

L

L

H

H

3

L

L

H

H

H

L

H

L

H

L

H

H

+

x = Don't Care
NC = No Change

OLO 413510lG 4137

2-38

TOP VIEW

PIN FUNCTIONS

.

·00000"

16
15
14

DOOOOOD

13

00000 "

2
3
4

5
6

7·
8·

00000
00000·
00000.
00000

PIN
LT

12
11

• 10
• 9

FUNCTION

PIN

LAMP TEST

9

DO

DATA LSB

FUNCTION

WR

WRITE

10

D1

DATA

BL1

BRIGHTNESS

11

D2

DATA

BLO BRIGHTNESS

12

D3

DATA

NO PIN

13

D4

DATA

NO PIN

14

D5

DATA

CE

15

D6

DATA MSB

16

+ VCC

L
H
L
H

H
H

H

H
L
L
H

8

9

A

B

CHIP ENABLE

GND

C'~I
-.

.~c:a
""
=,.,
.so!!

c ...

is

CHARACTER SET

D0

L

D1
D2
D3
D695D4HEX

L L L

L
L
L

H
L
L
L

L
H
L
L

H
H
L
L

0

1

2

3

H
L
H

L
L

H

L
5

L

4

L
H
H
L

6

H
H
H
L
7

L
L
L

L

H

L
L
H

H
C

H
L
H
H
D

L
H
H
H

E

H

H
H
H
F

0
THESE CODES DISPLAY BLANK

t

L H 1

L H L

2

L H H 3
H L L

4

H L H 5

HH L

6

HHH

7

.. ·:5:-. :.:.... :.:. ..:: .. .. ·...... ..
.
: : -e-e.
.....
.....
..
·
.....
..
.
....
.
.
·
..
....
....
.
..
.
.: .-!. !:::-........... ...:: :·.....: :...: ·-:-.::. ..: .-: .... ...·...
.... as. ..•....: .........
.i.·-!
. .... :.- .....
..... ...-..: .... .. .··· ......
.... ··.· ·.
..... .... :..... ....: ...:-.:::
.
...
.
..
·
····.....·..
. .. ... ... ·..··....·· . . ..
......::. ... : .....:•••..:.........: :...:..........
.:•• . :.....~:....
·
·
..
.. . r:·~ .....· .....
:.:.: i-··: .i..: :.....i..: i.... : .....i··:!. ...·· ·..·. ·........
... ...
i::::
f··:
i::::
:
:::.
··r
i
!:
..
:
:!.:.~:. :::.::: :e.:._: .:••••:.:.: · .··. ·· .··..
: :.:.: : e••••••: i :...: _:e
.... .......... ... ... ..: ... :-.. ......·· . ..· ..· ···... ..·· ......· ... ...
:!. ::
......
........ ... i... :...:! I:::: -i·· ....
...: .I· I. ...·· ·..·. i·::. .··.. .I..! ..
. ...:
·
..
.........
....
.. ....
.... ·1.··. i....! i...: !.:.! .:.:. :···i .:::. ··
.......
...
·
~ •••• .....
·
.. .....
· . ... ..... ··. .·· :::::
e

·

16 Digits Interconnection
+5

I

GND

I I I

I I I

A0- A3

I Ij Ij

j

I I I

I I I

16
CE

OLD 413510LG 4137

2-39

SIEMENS

HIGH EFFICIENCY RED
GREEN

OLO 7135
DLG 7137

.68" SINGLE CHARACTER
5 X 7 DOT MATRIX Intelligent Display ®
WITH MEMORY/DECODER/DRIVER
Package Dimensions in Inches (mm)

DLO 7135

IDLERANCE:

FEATURES

.XX = ±.02 (.51)
.XXX = ± .010 (.254)

.050

(1.27)

I
.50 RE

J~-.l0)
Z

600

i-(i5.24r-i

DESCRIPTION

• 0.6S" High, Dot Matrix Character
The DLO 7135/DLG 7137 are single digit 5 x 7 dot matrix
Intelligent Display devices with 0.68" character height.
The built-in CMOS integrated circuit contains memory,
ASCII character generator, LED multiplexing and drive
circuitry; thereby eliminating the need for additional
circuitry. They will display the 96 ASCII characters.

• Wide Viewing Angle, ±75°
• 96 Character ASCII Format - Both Upper Case and
Lower Case Characters
• Fully Encapsulated, Rugged Solid Plastic Package
• Built-In Memory
• Built-In Character Generator
• Built-In Multiplex and LED Drive Circuitry

.These devices are TIL and microprocessor compatible and
offer the possibility of cascading the displays, allowing for
multi-character messages. These displays were designed
for viewing of up to 30 feet. They require a single 5-volt
power supply and parallel ASCII input.

• Built-In Lamp Test
• Intensity Control (4 levels)

All products are 100% burned-in and tested, then subjected to out-going AQL's of .25% for brightness matching,
visual alignment and dimensions, .065% for electrical and
functional.

• Microprocessor Bus Compatible
• Intensity Coded for Display Uniformity
• Single S-volt Power Supply Required
• XIV Stackable
• Available in High Efficiency Red and Green

Important: Refer to Appnote 18, "Using and Handling

Intelligent Displays". Since this is a CMOS device, normal
precautions should be taken to avoid static damage.

2-40

TIMING PARAMETERS @25°C, Vcc~5.0 V ±0.5 V

Maximum Ratings
Vec Range (max.) ...................... -0.5 to 7.0 V
Voltage, Any Pin
Respect to GND .............. -0.5 to Vcc +0.5 Vdc
Operating Temperature ............... - 40°C to + 85 °C
Storage Temperature ............... -40°C to + 100°C
Maximum Solder Temperature 0.063"
below Seating Plane, 1<5 sec ................. 260°C
Relative Humidity @85°C (non-condensing) ......... 85%

Symbol

Parameter

TCEs

Chip Enable Set-Up

Units (ns)

TDs

Data Set-Up

100

Tw

Write Pulse

120

TDH

Data Hold

20

TCEH

Chip Enable Hold

TACC

Access Time

10

20
150

Optical Characteristics (Typical) @25"C
Time Average Luminous IntensitylDot @5 V
DLO 7135 .............................. 1500 !-Icd
DLG 7137 .............................. 1500 !-Icd
Digit Size .................................... 0.68"
Viewing Angle (Note 1) ........................ ± 75°
Spectral Peak Wavelength
DLO 7135 ............................... 630 nm
DLG 7137 ............................... 565 nm
Datto Dot Intensity Ratio ...................... 1.8: 1.0

,

CE

TAa:

I

- -

~

J

,

TeEH

!-TWR-

WE

-

TefS

f.Tos

~

DATA

I(

I

~

,'rI~

_TOH ......

DC CHARACTERISTICS
-40"C
Parameter

Min_

+25"C

Typ.

Max.

Icc (20 dots on)

155

Icc Blank

2.0

Min.

+85"C
Min.

Conditions

Typ.

Max.

Typ.

Max.

Units

200

125

160

105

135

mA

Vcc~5 V

5.5

1.5

4.5

0.8

3.5

mA

Vcc~WR~5.0 V
BLO~BLl ~O V

50

100

~

VIN=0.8 V
VcC~5.0 V ±0.5 V

BLO=BL1=5V

IlL (all inputs)
VIH

25
2.0

2.0

VCC

4.5

5.0

5.5

0.8
4.5

V

Vcc~5.0 V ±0.5 V

0.8

V

Vcc~5.0 V ±0.5 V

5.5

V

2.0

0.8

VIL

5.0

5.5

4.5

5.0

Notes:
1. "Off Axis Viewing Angle" is here defined as: "the minimum angle in any direction from the normal to the

display surlaee at which any part of any dot in the display is not visible."
2. This display contains a CMOS Integrated circuit. Normal CMOS handling precautions should be
taken to avoid damage due to high static voltages or electric lIelds. See Appnote 18.
3. Unused inputs must be tied to an appropriate logic voltage level (either V+ or GND).
4. Vcc =5.0VDC ±10DAl.
5. Clean only in water. isopropyl alcohol. freon TF. or TE (or equivalent).

_ OLO 1135/0LG 1131

2-41

LOADING DATA

LAMP TeST

Loading data into the OLO 7135/0LG 7137 is straightforward. Chip enable (CE) should be present and
stable during a write pulse (WR). Parallel data information should be stable for the minimum time (TW) and
held for TOH after write has gone high. No synchronization is necessary and each character will continue to
be displayed until it is replaced with another. Multiple
displays may be stacked together with only an additional decoder IC for chip enable decoding.

The lamp test (LT) when activated causes all dots on
the display to be illuminated at 'h brightness. The
lamp test function is'independent of write~) and
the settings of the blanking inputs (BLO • BL 1 ).
This convenient test gives a visual indication that all
dots are functioning properly. Lamp test may also be
used as a cursor function or pointer which does not
destroy previously displayed characters.

Note 6: Either Bla or Bl1 should be held high for display to light up,

DIMMING AND BLANKING THE DISPLAY
Brightness
Level

-BLO

BLl

0
0
1
1

Blank

V, Brightness
'12 Brightness
Full Brightness

0
1
0
1

DATA LOADING EXAMPLE'

CE

WR

BLO

Bll

H

X

H

LT

D6

D5

D4

X

H

X

X

DATA INPUT
D2
D3

01

DO

X

X

X

X

Ne

X

X

L

L

H

X

X
j

X

X

X

X

X

BLANK

X

X

X

X

L

X

X

X

X

X

X

X

LMP TEST

L

L

H

H

H

H

L

L

L

L

L

H

A

L

L

H

H

H

H

H

H

L

L

H

L

r

L

L

H

H

H

L

H

H

L

L

H

H

3

L

L

H

H

H

L

H

L

H

L

H

H

+

= Don't Care
NC = No Change
x

OLO 7135iDLG 7137

2-42

TOP VIEW

Pin

PIN 1 INDICATOR

Function

2
3

1 000000014
2 000000013
3 000000 0 12
4 000000011
5 000000010
60000000 9
7 0 00000 0 B

Pin

VCC
IT lamp test
CE Chip enable
WR Write
Bll Brightness
BlO Brightness
GND

1
4

5
6
7

Function

14
13
12
11
10
9
8

D6
D5
D4
D3
D2
Dl
DO

Data
Data
Data
Data
Data
Data
Data

input MSB
input
input
input
input
input
input lSB

CHARACTER SET

L L L

D0 L

H

01
02
03
HEX

L

L
L
L
Ii)

L
H
L

L
L
1

L
2

H
H
L
L
3

L

H

L

H

L

H

H

H

L
H

H

H

L

L

L

L

4

5

6

7

L
L
L

H

L

H

L

-H

H

L

L

L

H
8

H

H

H-

9

A

B

L
L
H

H
L
H

H
C

H

H
H

H
H
H
H

o

E

F

L
H

0
THESE CODES DISPLAY BLANK

L L H 1
L H L

2

L HH 3
H L L

4

HLH 5

.: .: .....
... .... ...:
...... ..............
...
. . .

. .

:w- ... ... .
-i!!- ••!..
.....
..
.
....
.
..
..
....
....
.
.
..
• :. •
.
.
.
....
..
.
: ._! ::::- •••• •••:: :w.w: :•• W: :: ..
.:.-1.... -:.. ·••••...: •.••....
. .... . ..
... ..... .. ..::
....
..... .i. I •••• • ••••. .....
: •••••••••• :
••••••••••

::.e

......
....

::

.....

....
·.. ..... .....
... ......
........
...
.
.
.......
...
·
..
. J .... ....... ...... ....
:...: i i···: :.... ··i .! :: !!. i :...: :....: -.-:::
=.... ...
.... . • ::: :...:.... . • : .... ...
"i .
..... :.:.
: ....... : ..... : .......... ...
..:: ......·. ... ... .... ... ..... ....... . . . · . .. .................
....
....::.. ..: ...:! i····:
... -i.·' ....
...!:.: :: :i. ..:; ::.... J. .I:::
..........
.::..
...:
......
.
.
.
.
.. .. .. . ..... ··
..
.:. . ...
.... ··.
.:.:.
.:... ...::.. ........ =.. I....::..... ::::
...:.:. ····1
... ....
-i··: :.... -i··:
i····
..:::.::_ :.....
•••: : ••• :
: : :..

. ........... ....... ........ ..
... .. .. ....
=:..::.. : .... :

:

: ••: : •••:

w

W
•• :

'.

=

HH L 6
H H H

=... :

7 :••••••••: :•••••••••

16 Digits Interconnection
+5
GND

BL0-BN~
Df/J-D6 '--tT-i 11
WR~
AIIl- A3

II

Dl5

I

I I I

I I I I

I I I

J J 1

I I I I

00

111

16
CE

OLO 7135/0LG 7137

2-43

SIEMENS

OLR 1414
HIGH EFFICIENCY RED OLO 1414
GREEN DLG 1414
RED

.145" 4-Digit, Dot Matrix
ALPHANUMERIC Intelligent Display@)
With Memory/Decoder/Driver

Package Dimensions in Inches (mm)
0920
(234)

,0220
(,56)

i

'I (62~~1 I

012(30) ± 002(05)

REF

ir~~
800

12P

""

I

'(Y

210L

(5,33)

, TOLERANCE

J(J(J( a

±,02 (.51)

FEATURES

DESCRIPTION

• Dot Matrix Replacement for DL 1414T
• 0.145" High Dot Matrix Character
• 128 Special ASCII Characters for English,
German, Italian, Swedish, Danish, and
Norwegian Languages
• Wide Viewing Angle, X Axis ±SO·,
Y Axis ±7S·
• Close Vertical Row Spacing, 0.800 n
• Fast Access Time, 110 ns at 2S·C
• Compact Size for Hand Held Equipment
• BUilt-in Memory
• Built-in Character Generator
• Built-in Multiplex and LED Drive Circuitry
• Direct Access to Each Digit Independently and
Asynchronously
• TTL Compatible, S-Volt Power
• Low Power Consumption, Typically 20 mA
per Character
'
• Intensity Coded for Display Uniformity
• Extended Operating Temperature
Range: -40·C to +8S·C
• End-Stackable, 4-Character Package
• 100% Burned In and Tested

The DLRIDLO/DLG 1414 is a four digit, 5x7 dot matrix display
module with a built-in CMOS integrated circuit. This display is a
drop-in dot matrix replacement for the segmented DL 1414T.
The integrated circuit contains memory, ASCII ROM decoder,
multiplex circuitry and drivers. Data entry is asynchronous and
can be random. A display system can be built using any
number of DLRIDLO/DLG 1414s since each digit can be
addressed iridependently and will continue to display the
character last stored until replaced by another. System interconnection is very straightforward. The least significant two
address bits (Ao, A,) are normally connected to the like-named
inputs of all displays in the system. Data lines are connected to
all DLRIDLD/DLG 1414s directly and in parallel, as is the write
line (WR). The display then will behave as a write-only memory.
The DLR/DLD/DLG 1414 has several features superior to
competitive devices. 100% burn-in processing insures that the
DLRIDLOIDLG 1414 will function in more stressful assembly
and use environments.
The character set consists of 128 special ASCII characters for
English, German, Italian, Swedish, Danish, and Norwegian.
All products are 100% burned-in and tested, then subjected to
out-going AQL.:s of .25% for brightness matching, visual alignment and dimensions, .065% for electrical and functional.
See Appnotes 18, 19, 22, and 23 for additional information.

2-44

TOP VIEW

Maximum Ratings
DC Supply Voltage ................. -0.5 V to + 7.0 Vdc
Input Voltage Levels Relative
to GND (all inputs) ............ -0.5 V to Vee + 0.5 Vdc
Operating Temperature ............... -40°C to +85°C
Storage Temperature ................ -40°C to + 100°C
Maximum Solder Temperature, .063" (1.59 mm)
below Seating Plane, t<5 sec ................. 260°C
Relative Humidity @ 85°C ....................... 85%

12

11 10 9

8

7

Pin

~
1 2

3 4

5

Function
05 Data tnput
04 Data Input
WRWnte
A 1 Digit Select
AO Digit Select

4
6

Vee
GND
DO Data
01 Data
02 Data
03 Data
06 Data

7
8
9
10

6

11
12

Optical Characteristics
Spectral Peak Wavelength ............. Red 660 nm typo
HER 630 nm typo
Green 565 nm typo
Display Multiplex Rate .................... 200 Hz min.
.
Viewing Angle (off normal axis)
horizontal ................................. ±50o
vertical ................................... ± 75°
Digit Height .............................. 0.145 inch
Time Averaged Luminous Intensity(1)
(100% brightness, Vee~5 Vdc)
Red .............................. 50 !,cd/LED typo
HER . . . . . . . .
. ..... 60 !,cd/LED typo
Green ............................ 70 !,cd/LED typo
LED to LED Intensity Matching ............ 1.8:1.0 max.
LED to LED Hue Matching @Vee~5 V
(Green only) . . . . . . . . . . . . . . . . . . . . . . . .. ± 2 nm max.

TIMING CHARACTERISTICS (Vee

AO. Al

-

Input (LSB)
Input
Input
Input
Input (MSB)

=4.5 V)

"'-TAS-'

...-TAH .....

I

X

00-06

K

2.0 V
0.8V

-

2.0 V

K

I-TD5-

0.8 V

.... TOH ....

2.0V

~

0.8 V

t----Tw-

•

lAce

Note: These waveforms are not edge triggered.

Note: 1. Peak luminous [ntenslty values can be calculated by multiplying
these values by 7.

DC CHARACTERISTICS
-40°C
Parameter

Min.

+25°C

Typ.

Max.

Icc 4 Digits on
20 dots/digit

90

Icc Blank
IlL (all inputs)

30

VIH

2.0

Max.

Typ.

Max.

Units

120

80

105

70

95

mA

Vee~5

2.8

4.0

2.3

3.0

2.0

2.5

mA

Vee~WR~5
VIN~O V

60

120

50

100

40

80

!,A

VIN~0.8 V
Vee~5.0 V

25
2.0

5.0

5.5

Min.

20

4.5

5.0

5.5

4.5

5.0

Conditions
V
V

V

Vee~5.0

V±0.5 V

0.8

V

Vec~5.0

V±0.5 V

5.5

V

2.0
0.8

0.8
4.5

+85°C

Typ.

VIL
Vec

Min.

DLR/DLOIDLG 1414

2-45

AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @Vcc=5 0 V ±O 5 V
Parameter

-40°C (ns)

Symbol

+25°C (ns)

+ 85°C (ns)

Address Set Up Time

TAs

10

10

.10

Data Set Up Time

Tos

20

30

50

Write Pulse Time

Tw

60

70

90

Address Hold Time

TAH

20

30

40

Data Hold Time

TOH

20

30

40

TAcc")

90

110

140

Total Access Time
Note: 1. TAcc~Set Up Time + Write Time+Hold Time.

LOADING DATA STATE TABLE

DIGIT

WR

A1

H
L
L
L
L
L
L
L

L
L
H
H
L
L
X

AO

D6 05 04 03 02 01

PREVIOUSLY LOADED DISPLAY
L
H
L
L
L
H
L
H
H
L
H L
H
L
L
H
L
L
H
H
L
H
H
L
L
L
L
H
H
H
L
L
L
H
L
L
H
L
H L
H H
SEE CHARACTER CODE
X

DO

3

2

1

H
H
L
L
H
H

G
G
G
G
B
B
B
SEE

R
E
Y
R
E
E
U
E
R
U
E
L
U
E
L
E
L
E
E W
L
CHARACTER
SET

0

X = DON'T CARE

TYPICAL INTERCONNECTION FOR 32 DIGITS
v+

.., ... ""
"'-%'0',

°0-.°6

DAT~

A1

,
-,

r

AO

ADORES SA

2_ A :

01601$

DIZ 011

I
J.I

I
I I
00"

....

I

..

Wi

1

ADDRESS

,..""

02(1019

If1 If1 I I I I I I II

II

r--;I--

" ' 3 - 11• 138 ,

A,_C

RITE_G

,,,

~

DLR/DLO/DLG 1414

2-46

BL.OCK DIAGRAM

COLUMNS 0 TO 19

TIMING AND CONTROL LOGIC

ROW DECODER

06
05
D4
D3
02
01
DO

7 BIT ASCII COOE

'"
§

ROM

!l! ~
~ z
'"~

COLUMN ENABLE
LATCHES
AND
COLUMN DRIVERS

COLUMN DATA

128.35 BIT
ASCII
CHARACTER
DECODE
44BO BITS

CHARACTER SET
DO
01
02
03
D6 05 04 H.x

IoSCil

CODE

o

0

0

0
0
0
0
0

0
t

1

I

1

o
o

0
0

2

3

•••• ....-=.:. ......_. ._..

0

J.

o
o
1
o
4

1
0
1

o

0
5

I

I

1

o

0
7

6

o
o

o

I

o

o
o

I

I

I
1

I

o

o

I

I

0
0

o

I

o

I

I

1

o

... .. ... .. ... .. ... ..
8

8

9

C

....::. '. ••••• ..... I:: H::' .::
•.....::! iL.: i::.: :...: :...: : ''; .:r' =::' ::::. =::'
::.:ME

0::':::
••••:

···"r '::=' •

I

1

... ..r:" .....:.: :......: ..... ... .... ...... ... ...... . .....
I.

001

o

1
0
0

.-:"

......:.:......::::

I::''': ...:: :: :: : : : :

1 : ...:

••••

• ••• I I "

:..:: ':' •.:.•

.... ::....:..: I·...:: : ....: ........................ : :'• .:... :

:. :::: .:.. r: •••.

010

•

2

•
I

...

o
I

I

I

I

0 0

0

I

1 0

I

I

1

3
4

5

6

•

•• 'M'·':. .... '.'

'r:' ..:.' ,'.-: : ','
• •

......

•

...

I"

::

,I

.':

I •• :..

: .:::...I.. I. .....

I,• •
,I •
.-:', :

...................

I:
•

••

o·

,I

-',

••
••

••••

•

....

! "i Ii ....:. HI,,'! I.••• ::.. ,,- : ...: : ...!:: ;; ,I ..... D:.' ,,:
::...' J. i........I ...r ....:I •••: i :,..: .... ::
....
: ...... I": :.... "':
r'" !.... :.... : :,. ·i.' i...·· =. :.·1-=. i.·••:. :.-:.
.... .....
• ................ .
:::r·-::::.::::
:::::,::'.: I : : : : :
,
.....

II

•

..... ........................ ,......................
....... .......
.. .. ......1..
... ..•. ...,
': .... ...

:•_1:, ::
I: • : : :: :: :'••••••••
. . . . . . . . . . . ': ••••
•
•
!

: :.:.' i" ....= i :...: " I.'':",: : ::.•• :..
:: ••,!.. M'"!''' :-..... :.. • .: i . ,

.i

._.

.... ..... .......
.........
.... ....... .... .I... •• •• •• •• •......:1 ! .· .....
3'" ..,: .=.
-1 •••••
=: .: . .· .......

7'

• ...
...:r::
: -::...:':" •••....
.::.:
.: 1'..' .... ' ..': ....:
::
.,

... ••

"oL'

• • • • • • • •••

I.:.: •••••

=•• :..

:

:.'

:

....:...:.

•

•

I. :

h

....

...

I::: II :
"

Notes: 1. High = 1 level.
2. Low = 0 leveL
3. Upon power up, the device will initialize in a random state.

DLR/DLO/DLG 1414

2-47

PESIGN CONSIDERATIONS
For details on design and applications of the DLR/DLO/
. DLG 1414 utilizing standard bus configurations in multiple
display systems, or parallel I/O devices, such as the 8255
with an 8080 or memory mapped addressing on processors
such as the 8080, Z80, 6502, or 6800 refer to Appnote 15
in the current Siemens Optoelectronic Data Book.

ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
For best results power the display and the components that
interface with the display with the same supply to avoid
logic inputs higher than Vcc. Additionally, the LEOs may
cause transients in the power supply line while they change
display states. The common practice is to place .01 I'F
capacitors close to the displays across Vcc and GND, one
for each display, and one 10 I'F capacitor for every second
display.
ESD PROTECTION
The silicon Gate CMOS IC of the DLRIDLOIDLG 1414 is
very strong against ESD damage. It is capable of withstanding discharges greater than 2 KV.·However, take all
the standard precautions, normal for CMOS components.
These include properly grounding personnel, tools, tables,
and transport carriers that come in contact with unshielded
parts. If these conditions are not, or cannot be met, keep
the leads of the device shorted together or the parts in antistatic packaging.
SOLDERING CONSIDERATION
The DLRIDLOIDLG 1414 can be hand soldered with SN63
solder using a grounded iron set to 260°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board ora package surfa:ce temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol cim be. used.'
Wave temperature of 245°C ±5°C with a dwell between
1.5 sec. to 3.0 sec. Exposure to the wave should not
exceed temperatures above 260°C, for 5 seconds at
0.063" below the seating plane. The packages should not
be immersed in the wave.
.
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0:1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
ceptable. Do not use commercial dishwasher detergents.

ac-

For faster cleaning, solvents may be used. Carefully select
any solvent as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at
elevated temperatures. Acceptable solvents are TF(trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated
acetone.(l)·
,
Unacceptable solvents contain alcohol, methanol; methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and
TES. Since many commercial mixtures exist, you should
contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are:
Allied Chemical Corporation, Specialty Chemical Division,
Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow
Chemical, Midland, MI; E.1. DuPont de Nemours & Co.,
Wilmington, DE.

For further information refer to Appnote 18 and 19 in the
current Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display
modules is to use sockets. Standard pin DIP sockets
.600" wide with .100" centers work well for single displays.
Multiple display assemblies are best handled by longer SIP
sockets or DIP sockets when available for uniform package
alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New.Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
OPTICAL CONSIDERATIONS
The .145" high characters of the DLRIDLO/DLG 1414 are
readable up to six feet. To build a display readable from six
feet, give careful consideration to proper filter selection.
Filters enhance the contrast ratio between a lit LED and the
character background, intensifying discrimination of different
characters. The only limitation is cost. To maximize the
cost/benefit ratio for filters first consider the ambient lighting
environment.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DLR 1414 is a
standard red display and should be matched with a long
wavelength p"ss filter in the 600 nm to 620 nm range.
The DLO 1414 is a high efficiency red display and should
be matched with a long wavelength pass filter in the 570 nm
to 590 nm range. The DLG 1414 should be matched with a
yellow-green band-pass filter that peaks at 565 nm. :for
displays of multiple colors, neutral density grey filters offer
the gest compromise.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer ttie "next step 'up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
· coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this
effect, however to avoid overheating the plastic filters allow
for proper air·flow.
· Optimal filter enhancements for any condition can be
gained through the use of circular polarized, anti-reflective,
band-pass filters. Circular polarizing further enhances contrast by reducing the light that travels through the filter and
· reflects back off
. the display to less .than 1%.
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; 'Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are R.M.F. Products, B'atavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California , Santa Monica, CA; I.E.E.Atlas, Van NUYS, CA.
Refer to Siemens Appnote 23 for further information.
Note: 1. Acceptable commercial solvents are Basic TF, Arklone P,
Genesalve D, .Genesalve DA. Blaea-Tran TF, Blaee-Tran TA,.
and Freon TA.
DLR/DLO/DLG 1414

SIEMENS

OLR 2416
HIGH EFFICIENCY RED OLO 2416
GREEN OLG 2416
RED

.200" 4-Digit 5 x7 Dot Matrix
ALPHANUMERIC Intelligent Display® With Memory/Decoder/Driver

'E,;I
.,iIl
.2' ..
= ....

:iiis
Package Dimensions in Inches (mm)

TOLERANCE

FEATURES
• Dot Matrix Replacement for DL 2416T

• 0.200n 5 x 7 Dot Matrix Character
• 128 Special ASCII Characters for English,
German, Italian, Swedish, Danish, and
Norwegian Languages
• Wide Viewing Angle, X Axis ±SO· Max.,
Y Axis t7S· Max.
• Close Multi-line Spacing, 0.8 n Centers
• Fast Access Time, 110 ns at 2S·C
• Full Size Display for Stationary Equipment
• Built-in Memory
• Built-in Character Generator
• Built-In Multiplex and LED Drive Circuitry
•. Direct Access to Each Digit Independently
and Asynchronously
• Independent Cursor Function
• Memory Function that Clears Character and
Cursor Memory Simultaneously
• True Blanking for Intensity Dimming
Applications
• End-Stackable, 4-Character Package
• Intensity Coded for Display Uniformity
• Extended Operating Temperature Range: -:40·C
to +8S"C
• Superior ESD Immunity
• 100% Burned In and Tested
• Wave Solderable
• TTL Compatible over Operating Temperature
Range

.xxx. 1.02 (.51)

DESCRIPTION
The DLRIDLOIDLG 2416 is a four digit, 5x7 dot matrix display
module with a built·in CMOS integrated circuit. This display is a
"drop·in" dot matrix replacement for the DL 24161
The integrated circuit contains memory, ASCII ROM decoder,
multiplexing circuitry, and drivers. Data entry is asynchronous
and can be random. A display system can be built using any
number of DLR/DLO/DLG 2416 since each digit can be
addressed independently and will continue to display the
character last stored until replaced by another.
System interconnection is very straightforward. The least signi·
ficant two address bits (Ao, A l ) are normally connected to the
like-named inputs of all displays in the system. With two chip
enables (CE1, and CE2) four displays (16 characters) can
easily be interconnected without a decoder.
Data lines are connected to all DLR/DLO/DLG 2416s directly
and in parallel, as is the write line (WR). The display will then
behave as a write-only memory.
The cursor function causes all dots of a digit position to
illuminate at half brightness. The cursor is not a character,
however, and upon removal the previously displayed character
will reappear.
The DLRIDLOIDLG 2416 has several features superior to
competitive devices. 100% burn-in processing insures that the
DLR/DLO/DLG 2416 will function in more stressful assembly
and use environments. The "true blanking" allows the designer
to dim the display for more flexibility of display presentation.
Finally, the CLR clear function will clear the cursor RAM and'
the ASCII character RAM, simultaneously.
-Continued

See Appnotes 18, 19, 22, and 23 for additional information.

• Interdlgit blanking
2-49

TOP VIEW

DESCRIPTION (Continued)

18 17 16 15 14 13 12 11 10

The character set consists of 128 special ASCII characters for
English, German, Italian, Swedish, .Danish, and Norwegian.

,"

AI

All products are 100% burned-in and tested, then subjected to out-goingAQL:s of .25% for brightness matching,
visual align!Tlent and dimensions, .065% for electrical and
functional.'

:1. ~:::

"'j'

123456789

Maximum Ratings
DC Supply Voltage ................. -0.5 V to + 7.0 Vdc
Input Voltage, Respect to GND
(all inputs) .................. -0,5 V to Vcc +0.5 Vdc
Operating Temperature ............... -400C to +85°C
Storage Temperature .......... , ..... -40°C to + 100°C
Relative Humidity @ 85°C ....................... 85%
Maximum Solder Temperature, 1.59 mm (0.063")
below Seating Plane, t<5 sec ................. 260°C

Pin

Function

Pin

function

1
2
3
4
5
6
7
8

CEl Chip Enable
CE2 Chip Enable
CLR Clear
CUE Cursor Enable
CU Cursor Select
WRWrite
A1 Digit Select
AO Digit Select

10

9

Vee

GND
DO Data Input
01 Data Input
02 Data Input
03 Data Input
06 Dala Input
05 Data Input
~Data Input
BL Display Blank

11
12
13
14
15
16
17
18

Optical Characteristics
Spectral Peak Wavelength ...... , . . . . . . Red 660 nm typo
HER 630 nm typo
Green 565 nm typo
Digit Height. . . . . . . . . . . . . . . . . . . . . .. 0.200" (5.08 mm)
Time Averaged Luminous Intensity<')
@Vcc=5V
Red. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 60 ,",cd/LED typo
HER ............................ 100 ,",cd/LED typo
Green ........................... 120 ,",cd/LED typo
LED to LED IntenSity Matching
@Vcc=5 V .......................... 1.8:1.0 max.
LED to LED Hue Matching (Green only)
@Vcc=5V .... '... , ......... ,., .. , ... ±2nmmax.
Viewing Angle (off normal axis)
Horizontal ...... , , . , . , , ........ , . , , .... ±,500 max.
Vertical. , .... , . , , . , . , , , ..... , . , . , , .... ± 75° max.

TIMING CHARACTERISTICS
WRITE CYCLE WAVEFORMS

m.m ---J~"'---+-----+-~r
l!U.crn _

.-.TeEH- _

f4- ~:....

2,OV
0,8V

- Teu;;-

TCLRD

X

DIJ..I6

!\.

2,OV
0,8 V

j.-Tos_ ~TDIi"

(

\VIi

2.0 V
0,8 V

~TW_

TACe

Note: 1, Peak luminous intensity values can be calculated by multiplying
these values by 7:

Note: These waveforms are not edge triggered,

DC CHARACTERISTICS
Parameter

Min.

-40°C
Typ. Max.
135

Icc 80 dots on

160

+25°C
Typ. Max.
110

Icc Blank
IlL (all inputs)

30

VIH (all inputs)

2:0

2.B

4.0

60

120

4.5

130

25

2.3

3.0

50

100

2.0

5.0

5.5

Typ.
95

20

115

mA

Vcc=5 V

100

mA

Vcc=5 V

2.0

2.5

mA

Vcc=5.0 V
BL=0.8 V

40

BO

,..A

VIN=O.B V
Vcc=5.0 V

O.B
4.5

Max. Units Conditions

2.0

O.B

VIL (all inputs)

+8SoC
Min.

110

135

Icc Cursor
all dots@50%

Vcc

Min.

5.0

5.5

4.5

5.0

V

Vcc=5.0 V.±0.5 V

O.B

V

Vcc=5.0 V ±0.5 V

5.5

V

DLR/DlO/DLG 2416

2-50

FIGURE 1. FLASHING CIRCUIT FOR
DLR/DLO/DLG 2416
USING A 555

FIGURE 2. DIMMING CIRCUIT FOR
DLR/DLO/DLG 2416
USING A 556

~

1

~lO"FL

Vee

Vee

.2

Vee

110KIl

••

7
i-N.C.

10 Kn

555
3

OUTPU T

6
NO

556

.-±

5
t-

11

Vee:--+-..,

R1

to

Vee

C1
6

'*

C2

To i[
OIlDLRfOfG2416

NO

C1=4.7 pF
C2=10 pF
C3=1 pF

BLOCK DIAGRAM

ill
COLUMNS DTO 19

TIMING AND CONTROL LOGIC

COLUMN ENABLE
LATCHES
AND
COLUMN DRIVERS

ROW DECODER

~ _L...Jr---=---tt-....",===::-" .... 12;
~

03

~~

00

~-

:5

Z

~

128:: BIT

~

COLUMN DATA

CHARACTER
DECODE

........_...._4480=.;B,;ITS;.......
CURSOR MEMORY BITS DTO 3

WR __.r---,
AD
A1

en
CE2
CU

CUE

OLRIOLOIOLG 2416

2-51

AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @Vcc=5.0 V

Parameter

Symbol

±0.5 V

-40·C (n8)

+SSoC (n8)

+2S 0 C(il8),

o· .

Chip Enable Set Up Time

TCES

0

Address Set Up Time

TAS

10

10

10

0

10

Cursor Set Up Time

Teus

10

10

Chip Enable Hold Time

TCEH

0

0

0

Address Hold Time

TAH

20

30

40

Cursor Hold Time

TcuH

20

30

40

Clear Disable Time

TClRo

1 I's

1 I's

1 I's

Write Time

Tw

60

70

90

Data Set Up Time

Tos

20

30

50

Data Hold Time

TOH

20

30

40

TClR
TACC

a 15 1~
c

z

"

1

L

1

DO

04 03

D7

,

u

: 15 I~

u

J

·

>

c

z

"

a 15

I~

..

> >

DLR/DLO/DLG 3416

2-59

DESIGN CONSIDERATIONS

For further information refer to Appnote 18 and 19 in the
current Siemens Optoelectronic Data Book.

For details on design and applications offhe DLR/DLOI
DLG 3416 utilizing standard bus configurations in multiple
display systems, or parallel 110 devices, such as the 8255
with an 8080 or memory mapped addressing on processors
such as the 8080, Z80, 6502, 8748, or 6800, refer to
Appnote 14 and 20"in thl:! current Siemens Optoelectronic
Data Book.
'

An alternative to soldering and cleaning the display
modules is to use sockets. Standard pin DIp sockets
.600" wide with .100" centers work well for single displays.
Multiple display assemblies are best handled by longer SIP
sockets or DIP sockets when available for uniform package
alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.

ELECTRICAL AND MECHANICAL
CONSIDERATIONS

For 'further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.

VOLTAGE TRANSIENT SUPPRESSION
For best results power the display and the components that
interface with the display with the same supply to avoid
logic inputs higher than Vee. Additionally, the LEDs may
cause transients in the power supply line while they change
.display states. The common practice is to place .01 /AF
capacitors close to the displays across Vee and GND, one
for each display, and one 10 /AF capacitor for every second
display.

OPTICAL CONSIDERATIONS
The :270" high characters of the DLR/DLO/DLG 3416 are
readable up to twelve feet. To build a display readable from
twelve feet,' carefully select the proper filter. Filters enhance
the contrast ratio between a lit LED and the character
background, intensifying discrimination between different
characters. The only limitation is cost. To maximize the
cost/benefit ratio for filters, first consider the ambient lighting
environment.

ESD PROTECTION
The silicon Gate CMOS IC olthe DLRIDLO/DLG 3416 is
very strong against ESD damage. It is capable of withstanding discharges greater than 2 KV. However, take all
the standard precautions normal for CMOS components.
These include properly grounding personnel, tools, tables,
and transport carriers that come in contact with unshielded
parts. If these conditions are not, or cannot be met, keep
the leads of the device shorted together or the parts in antistatic packaging.

Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. TheDLR 3416 is a
standard red display and should be matched with a long
wavelength pass filter in the 600 nm to 620 nm range.
The DLO 3416 is a high efficiency red display and should
be matched with a long wavelength pass filter in the 570 nm
to 590 nm range. The DLG 3416 should be matched with a
yellow-green band-pass filter that peaks at 565 nm. For
displays of multiple colors, neutral density grey filters offer
the best compromise.

SOLDERING CONSIDERATION
The DLR/DLO/DLG 3416 can be hand soldered with SN63
solder using a grounded iron set to 260°C.

Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast impr9vement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this
effect; however to avoid overheating the plastic filters, allow
for airflow.

Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol can be used.
Wave temperature of 245°C ±5°C with a dwell between
1.5 sec. to 3.0 sec. Exposure to the wave should not
exceed temperatures above 260°C, for 5 seconds at
0.063" below the seating plane. The packages should not
be immersed in the wave.

Optimal filter enhancements for any condition can be
gained through the use of circular polarized, anti-reflective,
band-pass filters. Circular polarizing further enhances contrast by reducing the light that travels through the filter and
reflects back off the display to less than 1%.

POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot D.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.

Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; ,3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya OptiCS, Inc., Fremont, CA.

For faster cleaning, solvents may be used. Carefully select
any solvent as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at
elevated temperatures. Acceptable solvents are TF(trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated
acetone.!l)

One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.

Unacceptable solvents contain alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and
TES. Since many commercial mixtures exist, contact a
solvent vendor for chemical composition information. Some
major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical DiviSion, Morristown, NJ; BaronBlakeslee, Chicago, IL; Dow Chemical, Midland, MI;
E.1. DuPont de Nemours & Co., Wilmington, DE.

Refer to Siemens Appnote 23 for further information.
Note: 1. Acceptable commercial solvents are Basic TF, Arklone P,
Genesolve D, Genesolve DA, Blace-Tron TF, Blaco·Tron TA,
and Freon TA.
DLRIDLO/DLG 3418

2-60

RED DLR5735
RED DLR 5736
GREEN DLG 5735
GREENDLG 5736

SIEMENS

.69" (17.5 mm) 5 x 7 ALPHANUMERIC DISPLAY
(No Built-In CMOS DriveCfrcuitry) .
Package Dimensions in Inches (mm)
.OB/2.0l DIA. MAX.

HUE
CODE

TYPICAL

ROW 1
ROW 2

ROW 3

LUMINOUS
INTENSITY
CODE

ROW 4

ROW

~

DATE
CODE

ROW 6
ROW 7

PART
NUMBER

f
25~u,:r-_""""N
• 170 (4.32) MIN

....l.....012(.30) ~~

NOTE: RECOMMENDED
MOUNTING BOARD HOLE SIZE

,040 (1.02)

~:~~~::~~~: QIA.

FEATURES

Maximum Ratings

• DLR IDLG 5735 Common Row Cathode
DLR IDLG 5736 Common Row Anode
• 5 x 7 Matrix Array with Row-Column

Power Dissipation (Package) ................................. 750 mW
Derate Unearly from 25·C ............................... 11.5 mW/·C
Storage Temperature ....... , ..... , ................. - 20°C to + 70°C
Operating Temperature ............................. - 20·C to + 70·C
Continuous Forward Current
Per Segment. .......................... < • • • • • • • • • • • • • • • • • 20 mA
Pulse Peak Current/Segment
20 % Duty Cycle ......................................... 100 mA

Select
• End & Side Stackable
• Rugged Encapsulation (Filled Reflector
Construction)
• Compatible with ASCII and EBCDIC
Format
• Standard 12 pin, 0.3" pin spacing,
Dual-Inline Package
• Good "OFF" Segment Contrast
Grey Face with Clear Segments

Reverse Voltage
DLR 5735, 5736 ............................................. 3 V
DLG 5735, 5736 ............................................ 5 V

Solder Temperature
1116'" below seating plane for 5 seconds ....................... 260°C

Electrical/Optical Characteristics '(famb
Parameter
Luminous Intensity
Digit Average (Per Dot)
DLR 5735/5736
DLG 5735/5736
Forward Voltage
DLR 5735/5736
DLG 5735/5736
Reverse CUrrent
DLR 5735/5736
DLG 5735/5736
Peak Emission Wavelength
DLR 5735/5736
DLG 5735/5736
Spectral Line Half·Width
DLR 5735/5736
DLG 5735/5736

DESCRIPTION
The DLR 5735/5736 Series (gallium arsenide phosphide) and the DLG 5735/5736 Series (gallium phosphide) are 5 x 7 dot matrix light emitting diode
alphanumeric displays.
Compatible with ASCII and EBCDIC formats, these
displays are well suited for use in keyboard verfiers,
computer peripheral equipment, and other applications requiring an alphanumeric display. They are
stackable both horizontally and vertically to generate
large alphanumeric or even graphic displays.
2-61

Min

Typ

100
320

200
650
1.7
2.3

=25°C)

Max

Unit

I'cd

Test
Condition

"cd

1,=20 mA
1,=10 mA

2.0
3.0

V
V

1,=20 mA
1,=20mA

100
100

,.A
,.A

VR =3V
VR =5V

650
565

nm
nm

40
30

nm
nm

PIN CONFIGURATIONS
DLR5735
DLG5735

DLR5736
DLG5736

SCHEMATIC

-t......-Hf--+-4--t!:::='--L 12

PIN
1
2
3
4
5
6

7
8
9
10
11
12

FUNCTION
ROW 1 CATHODE
ROW 2 CATHODE

12

COLUMN 2 ANODE

+-"";;;;""R='-f-l0

COLUMN 1 ANODE
ROW 6 CATHODE
ROW 7 CATHODE
COLUMN 3 ANODE
ROW 5 CATHODE
COLUMN 4 ANODE
ROW 4 CATHODE
ROW 3 CATHODE
COLUMN 5 ANODE

PIN
1
2
3
4

5
6
7
8
9
10
11
12

TOP VIEW

FUNCTION
COLUMN 1 CATHODE
ROW 3 ANODE
COLUMN 2 CATHODE
ROWS ANODE
ROW 6 ANODE
ROW 7 ANODE
COWMN 4 CATHODE
COLUMN 5 CATHODE
AOW4ANODE
COLUMN 3 CATHODE
ROW 2 ANODE
ROW 1 ANODE

TOP VIEW

TYPICAL VERTICAL SCAN DISPLAY SYSTEM
VERTICAL STROBl NG - BLOCK DIAGRAM

7 LINE ASCII

DIGIT SELECT
7 BIT INPUT
STORAGE BUFFERS

2

1

t1

3

[

MASTER
CLOCK
TIMING
CIRCUITRY
CHARACTER
ROM

5 BIT OUTPUT
STORAGE
BUFFERS
COLUMN
DRIVERS
ROW
DRIVERS

==
==
==
~

III
1

2

3

1

2

3

LED
DISPLAY

==
==
-===

LED
DISPLAY

==
==
==
-

LED
DISPLAY

=
=
-=
DLR 5735

2-62

SIEMENS

HDSP2000LP
YELLOW HDSP2001 LP
HIGH EFFICIENCY RED HDSP2002LP
BRIGHT GREEN HDSP2003LP
RED

.150" 4·Character 5x7 Dot Matrix
Serial Input Alphanumeric Display
Package Dimensions in Inches (mm)
.012 (.3)±
.002(.05)

.200
1-(5.08)1

REL

----*

.1 '

.300 (7.62)±
O1Y25)

--l
LUMINOUS
INTENSITY
COOE (AND
COLOR CODE
FOR YELLOW)

t'· J
(2.54)

.270
(6.86)

Pin

Function
Column 1

2
3
4
5
6
7

FEATURES
• Four 0.150" Dot Matrix Characters
• Four Colors: Red, Yellow, High Efficiency
Red,. Bright Green
• Wide Viewing Angle: X Axis ± 50 0
Y Axis ±7So
• Built-in CMOS Shift Registers with
Constant Current LED Row Drivers'
• Shift Registers Allow Custom Fonts
• Easily Cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Extended Operating Temperature Range:
_40 0 to + 8S"C
• Categorized for Luminous Intensity
• All Displays Color Matched
• Compact Plastic Package
• 100% Burned In and Tested

12

11

10

9

TOLERANCE: •• 015 (.38)

8
9
10
11
12

Column 2

Column 3
Column 4
Column 5
No Connection
Oata Out
VB
Vee
Clock
Ground
Data In

DESCRIPTION
The HDSP200XLP are four digit 5x7 dot matrix serial input alpha. numeric displays. The displays are available in red, yellow, high
efficiency red, or bright green. The package is a standard twelve-pin
DIP with a flat plastic lens. The display can be stacked horizontally
or vertically to form messages of any length. The HDSP200XLP has
two fourteen-bit CMOS shift registers with built-in row drivers. These
shift registers drive twenty-eight rows and enable the design of
customized fonts. Cascading multiple displays is possible because of
the Data In and Data Out pins. Data In and Out are easily input with
the clock signal and displayed in parallel on the row drivers. Data
Out represents the output of the 7th bit of digit number four shift
register. The shift register is level triggered. The like columns of each
character in a display cluster are tied to a single pin. (See Block
Diagram). High true data in the shift register enables the output
current mirror driver stage associated with each row of LEOs in the
5x7 diode array.
The TIL compatible VB input may either be tied to VCC for maximum
display intensity or pulse width modulated to achieve intensity control
and reduce power consumption.
-Continued

See Appnote 44 for application information.

2-63

FIGURE 2. MAX. ALLOWABLE POWER DISSIPATION
VS.TEMPERATURE

DESCRIPTION (Continued)
In the normal mode of operation, input data for digit four,
column one is loaded into the seven on-board shift register
locations one through seven. Column one data for digits 3,
2, and 1 is shifted into the display shift register locations so
that column one input is enabled for an appropriate period
of time, T. A similar process is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time into the shift
register is t, then with five columns, each column of the
display is operating at a duty factor of:

1.0 r---r--r--r---r--r--r---r--r---.

DF=_T_
5(T+t)
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the
display should be refreshed (turned on) at a minimum rate
of 100 times per second.

0.0 ......--'-----'-""-.......--'-........-'-.............-'-......-'-.........
~
~
~
0
~
~
00 00 ~ 1~

Tamb Ambient Temperature ·C
0

With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1/[5x(100))=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.

AC ELECTRICAL CHARACTERISTICS
(Vec=4.75 to 5.25 V, Tamb =-40°C to 85°C)

Maximum Ratings
Supply Voltage Vee to GND ........... -0.5 V to + 7.0 V
Inputs, Data Out and VB ........... -0.5 V to Vee + 0.5 V
Column Input Voltage, VeOL ........... -0.5 V to + 6.0 V
Operating Temperature Range ......... -40oC to +85°C
Storage Temperature Range .......... -55°C to +100°C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5 sec ... " ............ 260°C
Maximum Allowable Power Dissipation
at Tamb= 25°C(1) .. _........................ 0.86 W
Note:

1. Maximum allowable dissipation is derived from Vcc =5.25 V. V.=2.4 V.

VCOl =3.5 V 20

0

LEOs on per character, 20% OF.

Symbol

Description Min. Typo Maxl1) Units Fig.

TSETUP

Setup Time

50

ns

1

THoLO

Hold Time

25

ns

1

TWL

Clock Width
Low

75

ns

1

TWH

Clock Width
High

75

ns

1

F(CLK)

Clock
Frequency

MHz

1

TTHL,
TTLH

Clock Transition Time

200

ns

1

TpHL,
TpLH

Propagation
Delay Clock
to Data Out

125

ns

1

0

5

Note:

1. V. Pulse Width Modulation Frequency - 50 KHz (max).

FIGURE 1. TIMING CHARACTERISTICS
CLEANING THE DISPLAYS
IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive

uv

cleaning solution is hot 0.1. water (60°C) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do
not use commercial dishwasher detergents.

ClOCK

0.4 V

For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning processing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.

2.0V

DATA IN

'--+------0.6V
2.4 V

DATA OUT

0.4 V

HDSP2000LPI2OO1 LP/2002LP/2003LP

2-64

RECOMMENDED OPERATING CONDITIONS
Symbol

Min.

Nom.

Max.

Supply Voltage

Vcc

4.75

5.0

5.25

V

Data Out Current, Low State

IOl

1.6

mA

Parameter

Data Out Current, High State

Units

IOH

-0.5

Column Input Voltage, Column On HDSP2000LP(1)

VCOl

2.4

3.5

V

Column Input Voltage, Column On, HDSP2001 LP/2002LP/2003LP11)

VCOl

2.75

3.5

V

Setup Time

TSETUP

70

ns

Hold Time

THolD

30

ns

Width of Clock

TW(ClK)

75

mA

ns

Clock Frequency

TClK

5

MHz

Clock Transition Time

TTHl

200

ns

Note:

1. See Figure 3 - Peak Column Current vs. Column Voltage.

OPTICAL CHARACTERISTICS
Red HDSP2000LP
Symbol

Min.

Typ.(4)

Peak Luminous Intensity per LED(1.3)
(Character Average)

IVPEAK

105

200

Peak Wavelength

ApEAK

655

nm

AD

639

nm

Description

Dominant Wavelength(2)

Max.

Units

/lcd

Test Conditions

Vcc=5.0 V, VCOl =3.5 V
Tamb =25°C, VB =2.4 V

Yellow HDSP2001LP
Symbol

Min.

Typ.<4)

Peak Luminous IntenSity per LED(1· 3)
(Character Average)

IVPEAK

400

1140

Peak Wavelength

ApEAK

583

nm

AD

585

nm

Description

Dominant Wavelength(2)

Max.

Units

/lcd

Test Conditions

Vcc =5.0 V, VCOl =3.5 V
Tam b=25°C, VB =2.4 V

High Efficiency Red HDSP2002LP
Symbol

Min.

Typ.(4)

Peak Luminous Intensity per LED(1.3)
(Character Average)

IVPEAK

400

1430

/lcd

Peak Wavelength

ApEAK

635

nm

AD

626

nm

Description

Dominant Wavelength(')

Max.

Units

Test Conditions

Vcc=5.0 V, VCOl =3.5 V
Tamb =25°C, VB =2.4 V

Bright Green HDSP2003LP
Symbol

Min.

Typ.(4/

Peak Luminous IntenSity per LED(1. 3)
(Character Average)

IVPEAK

570

1550

/lcd

Peak Wavelength

ApEAK

565

nm

AD

569

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vcc =5.0 V, VCOl =3.5 V
Tam b=25°C, VB =2.4 V

Notes:

1. The displays are categorized for luminous intensity with the intensity
category designated by a letter code on the bottom of the package.
2. Dominant wavelength Ao. is derived from the CIE chromatiCity diagram.
and represents the single wavelenglh which defines Ihe color of
the device.

3. The luminous Slerance of the lED may be calculated using the following

relationships:
lv (cdlm2) = Iv (Candela)/A (Meter)'
lv (Fooliamberts)=nlv (Candela)/A (Foot)'
HDSP2000LP A=S.S8x 10-8 m'=6x 10-7 ft.'
HDSP2001l2/3lP A=7.8xl0-s m'=8.4x 10-7 ft.'
4. All typical values specilied at Vcc=5.0 V and Tsmb=25°C unless
otherwise noted.

HDSP2QOOlPI2001LP/2002LP/2003LP

2-65

+ 85°C) (unless otherwise specified)

ELECTRICAL CHARACTERISTICS (-40°C to
Description

Symbol

Supply Current (quiescent)

Min.

Typ..D02 05)

(4.88)

(8t

U J = = - . : r 0 (.25)

Pin

FunctIon

1
2
3
4

Column 1
Column 2
Column 3
Column 4
ColumnS
No Connecllon

5
6
7

8
9

FEATURES
• Four .200" Dot Matrix Charactera
• Four Colora: Red, Yellow, High Efficiency
.Red, High Efflclancy Graen
• Wide Viewing Angle
• Bullt·ln CMOS Shift Reglstera with
Constant Current LED Row Drlvera
• Shift Registers Allow Custom Fonts
• Easily Cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Operating Temperature Range:
-55· to +100·C
• categorized for Luminous Intensity
• caramlc Packag" Hermetically Sealed
Fist Glasa Window

dol~~k":=~ ),l".-=C.....C,...,=-=-=''=
C
c c ......

.......ldeal poclllgo

Vea,
WorkWlelc
IIIIlchCodo

i
!

X~£(;aSIS

c

c

c c

c

DalIO",
Va
Vee

10

Clock

11

Ground
Cal. In

12

H.. ClcIo
LumlnDul
InIe..IlyCoclo

c

Part Numbe, 81.....
TOLERANCE: ••015 (....pllo.. nDled)

DESCRIPTION
The IS02310 through IS02313 are four digit 5x7 dot matrix serial
input alphanumeric displays. The displays are available in red, yellow,
high efficiency red, or high efficiency green. The package is a standard
twelve-pin hermetic DIP package with glass lens. The display can be
stacked horizontally or vertically to form messages of any length. The
IS0231X has two fourteen-bit CMOS shift registers with built-in row
drivers. These shift registers drive twenty-eight rows and enable the
design of customized fonts. Cascading multiple displays is possible
because of the Data In and Data Out pins. Data In and Out are
easily input with the clock signal and displayed in parallel on the row
drivers. Data Out represents the output of the 7th bit of digit number
four shift register. The shift register is level triggered. The like columns
of each character in a display cluster are tied to a single pin. (See
Block Diagram). High true' data in the shift register enables the output current mirror driver stage associated with each row of LEOs in
the 5x7 diode array.
The TIL compatible VB input may either be tied to Vcc for maximum
display intensity or pulse width modulated to achieve intensity control
and reduce power consumption.
-ConUnued

See Appnote 44 for application information, and Appnotes 18, 19, 22,
and 23 for additional information.

2-79

DESCRIPTION (Continued)
In the normal mode of operation, input data for digit four,
column:one is loaded into the seven on-board shift register
locations one through seven. Column one data for digits 3,
2, and 1 is shifted into the display shift register locations.
Then column one input is enabled for an appropriate period
of time; T. A similar process is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time into the shift
register is t, then with five columns, each column of the
display is operating at a duty factor ·of:

FIGURE 2. MAX. ALLOWABLE POWER DISSIPATION
VS.TEMPERATURE
1.2
~ 1,0

.! ~

i.2J!..g 0,8

Rth JA)

is 0,6

:> ..

E ;

DF=_T_
5(T+t)
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary t6 achieve a flicker free display.
For most strobed display systems, each column of the
display should be refreshed (turned on) at a minimum rate
of 100 times per second.
.

11 0
:::iD.

0.4

i

0,2

-'-

!

i.l

~

J clw- ~
clw- ~~1\
\
350

1j(M~ = 125°C

0.0
-60

With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1/[5x(100)]=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.

.1

Rlh(JA) } 55O

C :I
E

i

i

..
!
!

-40

-20· 0
20 40
60 80
.Ta • Ambient Temperaiilre • 'C

100 120

AC ELECTRICAL CHARACTERISTICS
(VCC=4.75 to 5.25 V, Tamb =-55°C to +100°C)
Symbol Description Min. TypS1) MaxS2) Units Fig.

Maximum Ratings

Supply Voltage Vcc to GND ........... -0.5 V to + 7.0 V
Inputs, Data Out and VB' .......... -0.5 V to Vcc +0.5 V
Column Input Voltage, VCOl ........... ...:0.5 V to +6.0 V
Operating Temperature Range ........ -55°C to + 100°C
Storage Temperature Range .......... -65°C to + 125°C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5 sec ................. 260°C
Maximum Power Dissipation·
at Tamb =25°C(2) ............................ 1.1 W
Notes:

1. Operation above + 100°C ambient is possible provided the following
condition are met. The iuncton should not exceed TJ =125°C.and the
case temperature (as measured at pin 1 or the back of the display) should
not exceed Tc=100°C.
2. Maximum di"'1ipation is derived from Vcc =5.25 V, VB=2.4 V, VCOl =}.5 V
20 LEOs on per character, 20% OF.
.

TSETUP

Setup Time

50

10

ns

1

THolO

Hold Time

25

20

ns

1

TWl

Clock Width
Low

75

45

ns.

1

TWH

Clock Width
High

75

45

ns

1

F(ClK)

Clock
Frequericy .

6

5

MHz

1

TTHl,
TTlH

Clock Transition Time

75

200

ns

1

TpHl,
TplH

Propagation
Delay Clock
to Data Out

50

125 I·· ns

1

Notes:
1. All typical

values specified at Vcc =5.0 V and T,mb=25°C unless
otherwise noted.
2. VB Pulse Width Modulation .Frequency - 50 KHz (max).

FIGURE 1. TIMING CHARACTERISTICS

CLEANING THE DISPLAYS
2.4V

IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
cleaning solution is hot D,1. water (60°C) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do
not use commercial dishwasher detergents.

CLOC1<
0.4 V

2.0V

DATA IN
0.8 V

For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning processing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.

2.,4 V
DATA OUT

0:4 v

\

.'
1802310 Ihru 1802313

2-80

RECOMMENDED OPERATING CONDITIONS (Guaranteed over operating temperature range)
Symbol

Min.

Nom.

Max.

Supply Voltage

Parameter

Vcc

4.75

5.0

5.25

V

Data Out Current, Low State

IOl

1.6

rnA

-0.5

rnA

Data Out Current, High State

IOH

Column Input Voltage, Column On(1)

VCOl

2.75
70

Hold Time

TSETUP
THOlD

30

Width of Clock

TW(ClK)

75

Setup Time

Clock Frequency

TClK

Clock Transition Time

TTHl

Free Air Operating Temperature Range

Tamb

Units

3.5

V

45

ns
ns
ns
5

-55

MHz

200

ns

+100

°C

Note:

1. See Figure 3 - Peak Column Current vs. Column Voltage.

OPTICAL CHARACTERISTICS

Red ISD231 0
Symbol

Min.

Typ.l4)

Peak Luminous Intensity per LED(1. 3)
(Character Average)

IVPEAK

220

370

,",cd

Peak Wavelength

ApEAK

655

nm

AD

639

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vcc=5.0 V, VCOl =3.5 V
TJ5)=25°C, Vs=2.4 V

Yellow ISD2311
Symbol

Min.

Typ.l4)

Peak Luminous Intensity per LED(1. 3)
(Character Average)

IVPEAK

650

1140

,",cd

Peak Wavelength

ApEAK

583

nm

AD

585

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vcc = 5.0 V, VCOl = 3.5 V
TJ(5) = 25°C, Vs=2.4 V

High Efficiency Red ISD2312
Symbol

Min.

Typ.l4)

Peak Luminous Intensity per LED(1.3)
(Character Average)

IVPEAK

650

1430

,",cd

Peak Wavelength

ApEAK

635

nm

AD

626

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vcc=5.0 V, VCOl =3.5 V
TJ(5)=25°C, Vs=2.4 V

High Efficiency Green ISD2313
Symbol

Min.

Typ.(4)

Peak Luminous Intensity per LED(1. 3)
(Character Average)

IVPEAK

1280

2410

,",cd

Peak Wavelength

ApEAK

568

nm

AD

574

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vcc=5.0 V, VCOl=3.5 V
TJ(5)=25°C, Vs=2.4 V

Notes:

1. The displays are categorized for luminous intensity with the intensity
category designated by a letter code on the bottom of the package.
2. Dominant wavelength 10. is derived from the CIE chromaticity diagram. and
represents the single wavelength which defines the color of the device.
3. The luminous sterance of the lED may be calculated using the following
relationships: lv (cd/m,) = Iv (Candela)IA (Meter)2
lv (Foollamberts) =nlv (Candela)/A (Foot)2
A=5.3xl0·' M2=5.8x 10-7 (Foot)2

4.

All typical values specified at Vcc=5.0 V and Tamb=25°C unless
otherwise noted.

5. The luminous intensity;s measured at Tamb=TJ=25°C. No time is
allowed for the device to warm up prior to measurement.

IS02310 thru ISD2313

2-81

ELECTRICAL CHARACTERISTICS (-55°C to + 100°C) (unless otherwise specified)
Description

Symbol

Supply Current (quiescent)

Min.

Icc

Supply Current (operating)

Icc

Column Current at any
Column Input(2)

Typ,(1)

Max.

Units

2

5.0

mA

VB=O.4 V

Vcc=5.25 V

2.5

5.0

mA

VB=2.4 V

VCLK=VOATA=2.4 V
All SR Stages = Logical 1

3

10.0

mA

ICOL
(All)
380

·ICOL
VB, Clock or Data Input
Threshold Low

VIL

Va, Clock or Data Input
Threshold High

VIH

2.0

Data Out Voltage

VOH

2.4

JAA

Va=O.4 V

520

mA

VB=2.4 V

0.8

V

3.6

-30

IlL

FCLK=5 MHz

10

Vc c=5.25 V
VcoL=3.5 V

All SR Stages = Logical 1

Vcc=4.75 V - 5.25 V

V

VOL

Input Current Logical 0

Test Conditions

V

IOH=-0.5mA

0.2

0.4

V

IOL=1.6 mA

-'110

-300

JAA

-1

-10

jAA

VB only

Input Current Logical 0
Data, Clock

IlL

Input Current Logical 1
Data, Clock

IIH

10

jAA

Input Current Logical 1

IIH

200

jAA

Vcc';5.25 V

IcoL=O mA

Vcc=4.75 V - 5.25 V, VIL =0.8 V

Vcc=4.75 V - 5.25 V, VIH=2.4 V

VB

Power Dissipation per
Package

Po

0;52

W

Thermal Resistance IC
Junction-to-Pin

R9J_PIN

25

°CIWI
Device

Vcc=5.0 V, VCOL =3.5 V, 17.5% OF
15 LEOs on per character, Va = 2.4 V

Not..:

1. All typical values specified at Vcc=S.O V and Tamb= 2SOC unless
otherwise noted.
2. See Figure 3 - Peak Column Current VS. Column Vo~age.

FIGURE 3. PEAK COLUMN CURRENT
VS. COLUMN VOLTAGE
600

500
.

ili
~

400

,

1802310-11

f- 18023111231212313
300

B

iB 200.
'ii

- 100

o0.0

J

.J!

1.0

2.0

3.0

4.0

5.0

6.0

V.DI- Column Voltage - Volts

ISD2310 thr. 1802313

2-82

FIGURE 4. BLOCK DIAGRAM
Column Drive Inputs
Column
1 2 3 4 5

I

"""l.'r
..l!:

~ r-:J

LED
Matrix
2

"""l.'r
r)

LED
Matrix
3

~r
~

rv

LED
Matrix
4

~

;11.;11.¥.;.;

Blanking
Control. VB

-

Serial
Data
Input

-

I

J

1 234 5 6 7
Rows

I

1 2 3 4 567

1

I

Rows 1-7
Rows 1-7
Constant Current Sinking LED Drivers

Rows 1-7

~~ ~~ ~~
Rows 8-14

Rows 15-21

Rows 22-28

28-Bit SIPD Shift Register

1

-

Serial
Data
Output

Clock

CONTRAST ENHANCEMENT FILTERS FOR SUNLIGHT READABILITY
Display Color
Part No.

Filter Color

Marks Polarized Corp.'
Filter Series

Optical Characteristics of Filter

Red, HER
1802310,2312

Red

MPC 20-15C

25%@635nm

Yellow
1802311

.

Amber

MPC 30-25C

25%@583 nm

.E!

II

as

'0

Green
1802313

Yellow/Green

Multiple Colors
High Ambient Light

Neutral Gray

MPC 80-10C

10% Neutral

Multiple Colors

Neutral Gray

MPC 80-37C

37% Neutral

MPC 50-22C

22%@568 nm

.

D.

.!!!
::I

e

U

• Marks Polarized Corp.
25-B Jefryn Blvd. W.
Deer Park, NY 11729
516·242·1300
FAX (516) 242-1347
Marks Polarized Corp. manufactures to MIL·I·45208 inspection system.

1802310 1hru 1802313

2-83

THERMAL CONSIDERATIONS
The small alphanumeric displays are hybrid LEO and
CMOS assemblies that are designed for reliable operation
in commercial, industrial, and military environments. Optimum reliability and optical performance will result when the
junction temperature of the LEOs and CM05 ICs are kept
as low as possible.
THERMAL MODELING

150231X displays corisist of two driver ICs and four 5 x 7
LEO matrixes. A thermal model of the di~play is shown in
Figure 5. It illustrates that the junction temperature of the
semiconductor = 'junction self heating + the case temperature
rise + the ambient temperature. Equation 1 shows this"
relationship.
FIGURE 5, THERMAL MODEL

Equation 1.
. TJ(LED)= PLED ZBJC+ PCASE (R8JC+ R8CAl+ TA
TJ(LED)= [(IcoJ28) VF(LED) Z8Jcl

+ [(n/35) ICOL OF (5 VcoU

+ Vcc Icel • [R8JC + RecAI + TA

The junction rise within the LEO is the product of the
thermal impedance of an individual LEO (37°CIW,
OF = 20%, F = 200 Hz), times the forward voltage, VF(LED),
and forward current, IF(LED), of 13 - 14.5 mAo This rise
.
averaQes TJ(LEP).= 1.oC. The table below shows the VF(LED)
for the respective displays.

VF

Part Number
Min.

Typ.

1502310

1.S

1.7

2.0

150231112/3

1.9

2.2

3.0

Max.

The junction rise within the LEO driver IC is the combination
of the power dissipated by thelC quiescent current and the
28 row driver current sinks. The IC junction rise is given in" '
. ,
Equation 2.
A thermal resistance of 28°CIW results in a typical junction
rise of SoC.

Equation 2.
TJ(IC) = PCOL (R8JC + RecA) + TA
TJ(IC) = [5 (VCOL-VF(LED» • (ICOL/2) • (n/35) OF+Vcc' Icel • [RBJc+R8cAl+TA

1502310 thru 1802313

2-84

THERMAL MODELING (Cont.)
For ease of calculations the maximum allowable electrical
operating condition is dependent upon the aggregate
thermal resistance of the LED matrixes and the two driver
ICs. All of the thermal management calculations are based
upon the parallel combination of these two networks which
is 15°CIW. Maximum allowable power dissipation is given
in Equation 3.
Equation 3.
PDISPLAY

TJ(MAX)-TA
ReJc+ RecA

PDISPLAY = 5 VCOL ICOL (n/35)

OF + VCC Icc

For further reference see Figures 2, 7, 8, 9, 10 and 11.

KEY TO EQUATION SYMBOLS
OF
Icc
ICOL

n
PCASE
PCOL
PDISPLAY
PLED
RecA
ReJc
TA
TJ(IC)
TJ(LED)
TJ(MAX)
VCC
VCOL
VF(LED)
ZeJC

DUly factor
Quiescent IC current
Column current
Number of LEOs on in a 5 x 7 array
Package power dissipation excluding LED under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of an LED
Thermal resistance case to ambient
Thermal resistance junction to case
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal impedance junction to case

IS02310 lhru IS02313

2-85

OPTICAL CONSIDERATIONS
The light output of the LEDs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For
optimum light output, keep the thermal resistance of the
socket or PC board as low as possible.
FIGURE 6. NORMALIZED LUMINOUS INTENSITY
VS. JUNCTION TEMPERATURE

FIGURE 9. PACKAGE POWER DISSIPATION
1.5 r--r----r--r--,--,---r--"!'"'""--,

,

5
I.
1

1.0

is

E..§.....~...§.....~...§.....§.. §.....§... E....§....E...§....~...§....~...§....~
...§....3
...

10E
...§
.....

J
•

0.51--1--I-:i'4-+-+--!---t--I

f
5

10

15

20

25

30

35

40

LEOa per Character

FIGURE 10. MAX. CHARACTER POWER DISSIPATION

.1

. . . .--~~~~~
~
00 00 l00mm

~~~~~~--

~

~

4

0

~

i!If

0.50 ~-"'-"'"T.":"--::o:::::~~=-:--..,...."";"'r-...,

...!lc

o.~ E-....,.<~d",.,....-l--+-+-::-liF-~t--I

o

Tj. LED Junction Temperatura • "C

When mounted in a 10°CfW socket and operated at
Absolute Maximum Electrical conditions, the ISD231X will
show an LED junction rise of 17°C. IfTA =40oC, then the
LED's TJ will be 57°C. Under these conditions Figure 7
shows that the Iv will be 75% of its 25°C value.

1
is

i

0.30

I

o.~

Ii.

FIGURE 7. MAX. LED JUNCTION TEMPERATURE
VS. SOCKET THERMAL RESISTANCE

B 0.10 ~-+~oq..-,::oo~-i--:t:=-""'~F--I

~ 0.00 t...I.&.a.J:........I.I.a........I.w.......................................................
o

5

10

15

20

40

25

LEOa per Character

J

FIGURE 11. CHARACTER POWER DISSIPATION

;=

0.5

5

0.4 ..........

'

I

i

!

I

FIGURES. MAX. PACKAGE POWER DISSIPATION
2.0
c
VCC!5.25~,lcc=10mA

J

0

I

I

J•

J
i

V~I- 3.6, Ieol ='520mA

1.5

O(:.2O%,Ta-2s"C

y

1.0

/

0.5

5

/
i

I
15

I

J

0.2

.+ 1!~

~/

./

t-t-60'"""!i"u'*"'t-+--:D~./'--t--+--t---t

5

10

15

20

25

30

35

~

LEOa per Character

:

10

"':>01

0.3

o

i:

o

I

I ,o.oU4;;±;;t~U
. ~ ~::: --.-' >::::

Y1

V

~

0.0

V

I

O~ty Factor

1

~

Vee -SV, Icc - 5mA

1........................y.~!. -:.~:~~, !~.::: ~~~ ..........

20

25

30

:
:

J
35

40

LEOa per Character
1802310 thru 1802313

2-86

IS02351
HIGH EFFICIENCY RED IS02352
HIGH EFFICIENCY GREEN IS02353

SIEMENS

YELLOW

Sunlight Viewable .200" 4·Character 5x7 Dot Matrix
Serial Input Alphanumeric Hi ReI/Industrial Display
r---~--~~~~~~~~~~~~

112
(2.S4)

1>.:::::=F.=:*~~:::;;:=:;:=::d

.010 (.25)
•.002f5)

W~(6.35)
(4.8S) (Sr

~O (.25)
Pin

Function

1
2
3

Column 1
Cofumn2

5
6

ColumnS
No ConnecliOn

9

VB
Vee
Clock

Column 3
Column 4

Data Out

12 PL
•.1lIl3 (.08)

FEATURES

Pin 1 marked by
dol and by notch on
underside of pacicago

• Four .200" Dot Matrix Characters

li:.......I:J=;-;::;-;=;-r=;-;=;-;=;--,
I:J I:J I:J I:J I:J

Year

• Three Colors: Yellow, High Efficiency
Red, High Efficiency Green
• Sunlight Viewable

WorkWeek

Batch Code

:::t: 4 ' -

i

XSEZaSIS

~

10
11
12

Ground
Data In

Hue Code
Luminous

Inl,,..Hy COd'

c

C

c:::J t::J CJ t::I

Part Number Siemens
TOLERANCE: •• 015 (exceplions noted)

• Wide Viewing Angle
• Built-in CMOS Shift Registers with
Constant Current LED Row Drivers
• Shift Registers Allow Custom Fonts
• Easily Cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Operating Temperature Range:
-55· to + 100·C
• Categorized for Luminous Intensity
• Ceramic Package, Hermetically Sealed
Flat Glass Window

DESCRIPTION
The 1502351 through 1502353 are four digit 5x7 dot matrix serial
input alphanumeric displays. The displays are available in yellow,
high efficiency red, or high efficiency green. The package is a standard
twelve-pin hermetic package with glass lens. The display can be
stacked horizontally or vertically to form messages of any length. The
ISD235X has two fourteen-bit CMOS shift registers with built-in row
drivers. These shift registers drive twenty-eight rows and enable the
design of customized fonts. Cascading multiple displays is possible
because of the Data In and Data Out pins. Data In and Out are
easily input with the clock signal and displayed in parallel on the row
drivers. Data Out represents the output of the 7th bit of digit number
four shift register. The shift register is level triggered. The like columns
of each character in a display cluster are tied to a single pin. (See
Block Diagram). High true data in the shift register enables the output current mirror driver stage associated with each row of LEOs in
the 5x7 diode array.
The TIL compatible VB input may either be tied to Vee for maximum
display intensity or pulse width modulated to achieve intensity control
and reduce power consumption.
-Continued

See Appnote 44 for application information, and Appnotes 18. 19. 22,
and 23 for additional information.

2-87

DESCRIPTION (Continued)

FIGURE 2. MAX. ALLOWABLE POWER DISSIPATION
VS,TEMPERATURE

In the normal mode of operation, input data for digit four,
column one is loaded into the seven on-board shift register
locations one through seven. Column one data for digits 3,
2, and 1 is shifted into the display shift register locations.
Then column one input is enabled for an appropriate period
of time, T. A similar process is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time ioto the shift
register is t, then with five columns, each column of the .
display is operating at a duty factor of:

1.5

...

==

:a 6

\ 1\

1.0

Is
o ...

Rth JA)

~1

EiS
::s iii
.§~ 0.5
.. 0
~ ...

DF=_T_
5(T+t)
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the
display should be refreshed (turned on) at a minimum rate
of 100 times per second.

...0

With columns to be addressed, this refresh rate then gives a
value for the time T+I of: 1/[5x(100))=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.

RthlJA)

Tj(M
0.0
·60

-40

~

35::C;

~! 55°

~\

1'\

\X) = J25°C
! I .

40 60 BO 100 120
-20
0
20
Ta - Ambient Temperatu,. - °C

AC ELECTRICAL CHARACTERISTICS
(Vce=4.75 to 5.25 V, Tamb =-55°C to +100DC)
Symbol Description Min. Typ!l) Max!2) Units Fig.

Maximum Ratings

TSETUP

Setup Time

50

10

ns

1

Supply Voltage Vee to GND ........... -0.5 V to + 7.0 V
Inputs, Data Out and VB ........... ~0.5 V to Vee + 0.5 V
Column Input Voltage, Veol ........... -0.5 V to +6.0 V
Operating Temperature Range(1. 2) ..... -55 DC to + 100 DC
Storage Temperature Range .......... -65 DC to + 125 DC
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5 sec ................. 260 DC
Maximum Power Dissipation
at Tam b=25 DC(2) ....... .' ................... 1.35 W

THolO

Hold Time

25

20

ns

1

TWl

Clock Width
Low

75

45

ns

1

TWH

Clock Width
High

75

45

ns

1

F(ClK)

Clock
Frequency

MHz

1

TTHl,
TTlH
TpHl,
TplH

Notes:

1. Operation above + 100°C ambient is possible provided the following
condition are met. The iunction should not exceed TJ ~ 125 °e and the .
case temperature (as measured at pin 1 or the back of the display) should

not exceed Tc~ 100 °C.
2. Maximum dissipation .is derived from Vcc~5.25 V,
20 LEOs on per character, 20% OF.

Ve~2.4

V, VCOl ~3.5 V

6

5

Clock Transition Time

75

200

ns

1

Propagation
Delay Clock
to Data Out

50

125

ns

1

Notes:

1. All typical values specified at Vcc~5.0 V and Tamb~25°C unless
otherwise noted.

2. VB Pulse Width Modulation Frequency - 50 KHz (max).
FIGURE 1. TIMING CHARACTERISTICS
CLEANING THE DISPLAYS
2.4 V

IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
cleaning solution is hot D.I. water (60 DC) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do
not use commercial dishwasher detergents.

CUJa(

0.4 V
2.0 V
DATA IN
O.BV

For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning processing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.

2.4 V
DATA

our
0.4 V

16D2351 thru 15D2353

.2-88

RECOMMENDED OPERATING CONDITIONS (Guaranteed over operating temperature range)
Parameter

Symbol

Min.

Nom.

Max.

Supply Voltage

VCC

4.75

5.0

5.25

V

Data Out Current, Low State

IOl

1.6

mA

-0.5

mA

Data Out Current, High State

IOH

Column Input Voltage, Column On(1)

VCOl

2.75

TSETUP

70

Hold Time

THOlD

30

Width of Clock

TW(ClK)

75

Setup Time

Clock Frequency

TClK

Clock Transition Time

TTHl

Free Air Operating Temperature Range

Tamb

Units

3.5

V

45

ns
ns
ns
5

-55

MHz

200

ns

+100

°C

NOle:

1. See Figure 3 - Peak Column Current

VS.

Column Voltage.

OPTICAL CHARACTERISTICS
Yellow ISD2351
Symbol

Min.

Typ.(')

Peak Luminous Intensity per LED(t. 3)
(Character Average)

IVPEAK

2400

3400

,",cd

Peak Wavelength

APEAK

583

nm

AD

585

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vc c=5.0 V, VCOl =3.5 V
T}5) = 25°C, Vs=2.4 V

High Efficiency Red ISD2352
Symbol

Min.

Typ.(')

Peak Luminous Intensity per LED(t. 3)
(Character Average)

IVPEAK

1920

2850

,",cd

Peak Wavelength

ApEAK

635

nm

AD

626

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vc c=5.0 V, VCOl =3.5 V
T}5)=25°C, Vs=2.4 V

High Efficiency Green ISD2353
Symbol

Min.

Typ.(')

Peak Luminous Intensity per LED(t. 3)
(Character Average)

IVPEAK

2400

3000

,",cd

Peak Wavelength

ApEAK

568

nm

AD

574

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vc c=5.0 V, VCOl =3.5 V
T}5) = 25°C, Vs=2.4 V

Notes:

1. The displays are categorized for luminous intensity with the intensity

4.

category designated by a letter code on the bottom of the package.

All typical values specified at Vcc=5.0 V and T,mb=25°C unless

otherwise noted.
5. The luminous intensity is measured at Tamb =TJ=2SoC. No time is
allowed for the device to warm up prior to measurement.

2. Dominant wavelength A.D, is derived from the CIE chromaticity diagram,

and represents the single wavelength which defines the color of

the device.

3. The luminous sterance of the lED may be calculated using the following
relationships: lv (cd/m') = Iv (Candela)/A (Meter)'
lv (Footlamberts) =.Iv (Candela)/A (Foot)'
A=5.3x 10·' M2=5.Bx 10.7 (Foot)'

180235t thru 1802353

2-89

ELECTRICAL CHARACTERISTICS (-55°C to
Symbol

Description
Supply Current (quiescent)

+ 100°C) (unless otherwise specified)

Min.

Typ.(!)

Max.

Units

2

5.0

mA

VB=0.4 V

2.5

5.0

mA

VB =2.4 V

3

10.0

mA

10

fAA

VB =0.4 V

650

mA

VB=2.4 V

0.8

V

Icc

Supply Current (operating)

Icc

Column Current at any
Column Input(21

ICOl
(All)
550

ICOl
VB, Clock or Data Input
Threshold Low

Vil

VB, Clock or Data Input
Threshold High

VIH

2.0

Data Out Voltage

VOH

2.4

Test Conditions
Vcc=5.25 V
VClK = VDATA = 2.4 V
All SR Stages = Logical 1

FclK =5 MHz
Vc c=5.25 V
Vcol=3.5 V
All SR Stages = Logical 1

Vcc=4.75 V - 5.25 V

V
V

IOH=-0.5 mA

0.2

0.4

V

IOl=1.6 mA

-110

-300

fAA

-1

-10

~

3.6

VOL
-30

Input Current Logical 0
VB only

III

Input Current Logical 0
Data, Clock

III

Input Current Logical 1
Data, Clock

IIH

10

~

Input Current Logical 1
VB

IIH

200

~

Power Dissipation per
Package

PD

0.74

Thermal Resistance IC
Junction·to·Pin

R9J c PIN

25

W

Vc c=5.25 V
ICOl =0 mA

Vcc=4.75 V - 5.25 V, Vil =0.8 V

Vcc=4.75 V - 5.25 V, VIH=2.4 V

Vcc=5.0 V, VCOl =3.5 V, 17.5% OF
15 LEOs on per character, VB = 2.4 V

°CfW!
Device

Notes:
1. All typical values specified at Vcc=S.O V and Tamb =25°C unless

otherwise noted.
2. See Figure 3 - Peak Column Current VS. Column Voltage.

FIGURE 3. PEAK COLUMN CURRENT
VS. COLUMN VOLTAGE
600

,

500

(

~

• 400

-

iG

~ 300

B
i... 200
'ii

-

100

o0.0

1.0

.J

2.0

3.0

4.0

5.0

6.0

Vcol - Column Voltage - Voila

1502351 thru 1502353

2-90

FIGURE 4. BLOCK DIAGRAM
Column Drive Inputs
Column
1 234 5

{'r

'-~:r

~r::>

II :~
Blanking
Control, VB

Serial
Data
Input

--1
-

~

II

~

2

LED
Matrix
3

~

LED
Matrix
4

::>r:Ii!

I

1 2 345 6 7
Rows

1 234 567

LED
Matrix

'-l.>

I

Rows 1-7
Rows 1-7
Constant Current Sinking LED Drivers

I
Rows 1-7

2~ ~~ ~
Rows 8-14

Rows 15-21

Rows 22-28

f--

28·Bit SIPO Shift Register

Serial
Data
Output

1

Clock

CONTRAST ENHANCEMENT FILTERS FOR SUNLIGHT READABILITY
Display Color
Part No.

Filter Color

Marks Polarized Corp.·
Filter Series

Optical Characteristics of Filter

HER

Red

MPC 20·15C

25%@ 635 nm

Amber

MPC 30·25C

25%@ 583 nm

'C

22%@568 nm

IL

IS02352
Yellow
IS02351
Green
IS02353

.
.

fl

CD

'0

Yellow/Green

MPC 50·22C

CII

Multiple Colors
High Ambient Light

Neutral Gray

MPC 80·10C

10% Neutral

Multiple Colors

Neutral Gray

MPC 80·37C

37% Neutral

'S
I:!

U

• Marks Polarized Corp.
25·B Jefryn Blvd. W.
Deer Park, NY 11729
516·242·1300
FAX (516) 242·1347
Marks Polarized Corp. manulactures to MIL·I·45206 inspection system.

1502351 thru 1502353

2-91

THERMAL CONSIDERATIONS
The small alphanumeric displays are hybrid LED and
CMOS assemblies that are designed for reliable operation
in commercial, industrial, and military environments. Optimum reliability and optical performance will result when the
junction temperature of the LEOs and CMOS ICs are kept
as low as possible.
.
THERMAL MODELING

IS0235X displays consist of two driver ICs and four 5 x 7
LED matrixes. A thermall110del of the display is shown in
Figure 5. It illustrates that the junction temperature of the
semiconductor = junction self heating + the case temperature
rise+the ambient temperature. Equation 1 shows this
relationship.
FIGURE 5. THERMAL MODEL

Equation 1.

TJ(lED)= PLED Z8JC+PCASE (R8JC + R8CA) + TA
TJ(lED) = [(ICOl!28) VF(lED) Z8Jel + [(0135) ICOl OF (5 Vcou + VCC Icel • [R8JC + R8cAl + TA
The junction rise within the LED is the product of the
thermal impedance of an individual LED (37°CfW,
OF = 20%, F = 200 Hz), times the forward voltage, VF(lED),
and forward current, IF(lED), of 13 - 14.5 mA. This rise
averages TJ(lED)= 1 °C. The table below shows the VF(lED)
for the respective displays.

VF

Part Number
Min.

IS02351 12/3

1.9

I Typ. I Max~
12.2 I 3.0

The junction rise within the LED driver IC is the combination
of the power dissipated by the IC quiescent current and the
28 row driver current sinks. The IC junction rise is given in
Equation 2.

A thermal resistance of 28°CfW results in a typical junction
rise of 6°C.
Equation 2.

TJ(IC) = PCOl (R8JC+ R8CAl+ TA
TJ(IC) = [5 (VCOl-VF(lED)) • (ICOl/2) • (0135) OF+ Vcc • Icel • [R8JC+ R8cAl + TA

1802351 .hru 1802353

2-92

THERMAL MODELING (Cont.)

For ease of calculations the maximum allowable electrical
operating condition is dependent upon the aggregate
thermal resistance of the LED matrixes and the two driver
ICs. All of the thermal management calculations are based
upon the parallel combination of these two networks which
is 15°CIW. Maximum allowable power dissipation is given
in Equation 3.
Equation 3.

PDISPLAY = TJ(MAX)-TA
RflJC+ ROCA
PDISPLAy=5 VCOL ICOL (n/35) DF+ VCC Icc
For further reference see Figures 2. 7. 8. 9. 10 and 11.
KEY TO EQUATION SYMBOLS

DF
Icc
ICOL
n
PCASE
PCOL
PDISPLAY
PLED
ROCA
R9JC
TA
TJ(IC)
TJ(LED)
TJ(MAX)
VCC
VCOL
VF(LED)
ZflJC

Duty factor
Quiescent IC current
Column current
Number of LEDs on in a 5 x 7 array
Package power dissipation excluding LED under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of an LED
Thermal resistance case to ambient
Thermal resistance junction to case
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal iiTIpedance junction to case

ISD2351 thru ISD2353

2-93

OPTICAL CONSIDERATIONS.

FIGURE 9. PACKAGE POWER DISSIPATION
2.0

The light output of the LEDs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For
optimum light output, keep the thermal resistance of the
socket or PC board as low as possible.

VCC..'5V,Icl:-5~

==,

c .1.5

OF = 20%

0

iI

FIGURE 6. NORMALIZED LUMINOUS INTENSITY
VS. JUNCTION TEMPERATURE

I

10m~~
....................................................................................

i
'D

.,,;

Normalized ~: -

......... i

c

I

r--

~

.1

~

~

4

./

0.5

0.0

~

/

",

--"

/

/
o

5

10

15
20
25
30
LED. per Character

35

40

FIGURE 10. MAX. CHARACTER POWER DISSIPATION
0.5 c---,----r--r--r-..---r--.----,

L.......:.........J...........J....o...-L-'-.l....a....L..........E.....&....I-.o.-I~
~

L

1.0

Ta=25OC

t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
1!1~~~~!"~'~!~~~~~

&

,1

.. I
I
lcol = 45OmA, Vcol = 3.5V;

i

_
0 ~ ~ 00 00 l00l~~
TI- LED Juncdon Temperature - DC

==,

When mounted in a 10°CIW socket and operated at
Absolute Maximum Electrical conditions, the ISD235X will
show an LED junction rise of 17°C. If TA=40°C, then the
LED's TJ will be 57°C. Under these conditions Figure 7
shows that the Iv will be 75% of its 25 °C value:

is

I
J

FIGURE 7. MAX. LED JUNCTION TEMPERATURE
VS. SOCKET THERMAL RESISTANCE

0.4
0.3

0.1

J:-~~9'IIf+_-+-+--:P>''"_::;,-c.'--t--t

E--t~~~..........o::r-+-±::::......~-I

o.oc...r......,,;:;............,........&J,..o...............a.a.J.......~.......1.L.a........
o 5 . 10 15 20 25 30 35 40
LEDa per Charactar

FIGURE 11. CHARACTER POWER DISSIPATION

s:

c
.S!

i
Ii
.!!
Q

•...

FIGURE 8. MAX. PACKAGE POWER DISSIPATION
3.0

-

J

i

Duty Factor

!

OA

:.

0.3

I!

0.2

U

iii

I

Vcol =3.5 ,Icol =600m
OF = 20%:Ta =25"C

Vcol':'I 3.5V:lcol = 600mA
!
,--1"71'""+--1
..

0.5

.c

'- vcct5.25J. Icc Jl0mA

I

Vcc = 5.25V, Icc = 10mA

0.6

........... · · ·. · · . ·. · · · . ·········7 ~

!-'

:2

--"

...........

0.1
0.0

0

5

10

15

20

25

30

35

~

LED. per Charactar

./

V
./
0.0

o

5

10

15

20

25

30

35

~

LED. per Character
1502351 thru 1502353

2-94

SIEMENS

MOL 2416C
MOL 2416TXV
MOL 2416TXVB
.15" Red, 4-Digit, 16 Segment plus Decimal
HI-REL/Military Alphanumeric Intelligent Display@)
with Memory/Decoder/Driver

'&.!!

=1

.;ai
= ...

.!I"

.Ei'
C>

Package Dimensions in Inches (mm)

PART
NUMBER

E~

DATE
CODE

Notes:
Part Number, Dais Coda, U Code
marked on face In shaded area.

lOlERANCE: .XX.. .01 (.25)
.XXX ...010(.250)

FEATURES

DESCRIPTION

• 150 Mil High, Non-Magnified Monolithic Character
• Rugged Ceramic Package, Hermetically Sealed
Flat Glass Window
• Low Profile Package
• Dual In Line Configuration
• Close Vertical Row Spacing, .600 Inches
• 100 Mil Pin Spacing
• Wide Viewing Angle
• Wide Temperature Operating Range, -55°C
to +1CJO°C
• Fully Integrated CMOS Drive Electronics
• Direct Access to Each Digit Independently and
Asynchronously
• TTL Compatible, 5 Volt Power Supply
• Independent Cursor Function
• 17th Segment for Improved Punctuation Marks
• Two Chip Enables
• Interdlglt Blanking
• Display Blank Function
• Memory Clear Function
• End-Stackable, Four Character Package
• Intensity Coded for Display Uniformity
• TXVB Process Conforms to MIL-D-87157 Quality
Level A Test and Tables I, II, ilia and IV
• TXV Process Conforms to a Modified MIL-D-B7157
Quality Level A Test and Table I

The MDL 2416 is a military alphanumeric four digit display
having a 17 segment font and built·in CMOS drive circuitry
that is TTL and microprocessor compatible. The integrated
circuit contains memory. ASCII ROM decoder, multiplexing
circuitry. and drivers. The MDL 2416 is designed for use in
extremely harsh environments where only the most reliable
product is acceptable.

2-95

Data entry is asynchronous and can be random. A display
system can be built using any number of MDL 2416s Since
each digit of any MDL 2416 can be addressed independently and will continue to display the character last stored
until replaced by another.
System interconnection is straightfoward. The least significant two address bits (Ao. Al ) are normally connected to the
like named inputs of all MOL 2416s in the system. With two
chips enables. (CE1. CE2). four MDL 2416s (16 characters)
can easily be interconnected without an external decoder.
Important: Since this is a CMOS device. normal precautions should be taken to avoid static damage.

OPTOELECTRONIC CHARACTERISTICS

-0.5 to + 6.0 VDe
-0.5 to Vee +0.5 VDe

Operating temperature
Storage temperature

-55 to + 100°C
-65 to + 125°C

DC CHARACTERISTICS @2SoC
Min.
Parameter
4.5
Vcc

25°C

OPTICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS
DC Supply
Input Voltage Relative to Gnd
(all inputs)
.

@

660 nm typo
40 nm typo
±·50·

Spectral Peak Wavelength
Spectral Line Half·Width
Viewing Angle (Note 1)
Digit Size
Luminous Intensity (Typ.)
Intensity matching, Seg. to Seg.

l\tp.

.15 in.

0.1 mcd/seg @ Vcc=5V
1.8:1 @ Vcc=5V

Conditions
25°C

5.0

Max.
5.5

Units
V

0.10

1.5

4.0

mA

Vcc=5 V. WR=Vcc,
VIN = 0 V All other pins

Icc (10 segments/char.
4 digits on)

65

85

115

mA

Vcc=5 V

Icc (all segments on cursor
in 4 digits) (1, 2)

85

120

165

mA

Vec = 5 V Measured at
5 sec, 60 sec max.

0.8

V

Vec=5 V ±0.5 V

V

Vcc=5 V ±0.5 V

Icc (Blank) (1)

Vil (all inputs)
2.0

VIH (all inputs)

160

60

III (all inputs)

,..Po

Vcc=5 V. VIN=0.8 V

1. Measured at 5 sec.
2. 60 sec. max. duration.

AC CHARACTERISTICS
Parameter
Chip Enable Set Up Time
Address Set Up Time

Symbol
TeES

-55°C (ns)
190

+2SoC (ns)
275

+100oC (ns)
410

190

275

410

Cursor Set Up Time

Teus

,190

275

410

Chip Enable Hold Time

TCEH

25

25

25

Address Hold Time

TAH

25

25

25

TAS

'.

,.

Cursor Hold Time

TcuH

25

25

25

Write Delay Time

Two

40

50

60

Write Pulse

Tw

150

225

350

Data Set Up Time

Tos

100

150

300

Data Hold Time

TOH

25

25

25

Clear

TClA

12 ms

15ms

17.5 ms

TIMING CHARACTERISTICS
WRITE CYCLE WAVEFORMS
TIMING MEASUREMENT
\KllTAGE LEVELS

::x=:x:

'VOlTS
-2WlTS
0 VOlTS

(for tester calibration onlY) ,

Notes: 1. "OffAxis Viewing Angle" is here defined as: '1he minimum angle in any direction from the normal to the display suitace at which any part of
any segment in the display is not visible."
".
2. This display contains a CMOS integrated circuil. Normal CMOS handling precautions should Pe taken to avoid damage due to high static
voltages or electric fields. SEE APPNOTE 18.
3. Unused inputs must be tied to an appropriate logic voltage level (either V+ or V-).
2-96

MOL 2416

TOP VIEW

Pin

18

10

r:s0

~,~
DIGIT 3

r:sl21

It'~

DIGIT 2

~'Z1

IL'~

l{'~

DIGIT 0

DIGITI

9

•

Pin

ro

Chip Enable
C01Clear
CUE Cursor Enable
CD Cursor Select
WR Write
AI Digit Select
AO Digit Select

3
4
5
6
7
8
9

/S"21

1

Function
CE'i Chip Enable

1
2

Vee

18
17
16
15
14
13
12
11
10

Function

m:

.Display Blank
D4 Data input
D5 Data input
D6 Data input
D3 Data input
D2 Data input
Dl Data input
DO Data input
GND

PIN DEFINITIONS
Vee

Positive power supply.

Al

Next to least significant address bit.

Gnd

Negative power supply.

CU

Cursor load control which must be held high to store

DO Ihru 06

Data inputs, DO is the least signilicant dala inpul and
06 is the most significant data input.

WR

data in the RAM and low to store data in the cursor
memory.
CUE

Write input which must be held low to write data into

Cursor function control, displays the cursor in any positions having an "on" in cursor memory.

memory.
CE1, CE2

Two chip enable inputs which must be held low to enable
the chip.

AO

Least significant address bit.

An input which clears the RAM when held low for 15ms.
Blanking input. Turns off all segments when held low.

Does nat affect RAM or cursOT memory contents.

CHARACTER SET

......

DD
DI
D2
D3

"

L
L
L
L
D

L H L 2

L H H 3

H L L.

H L H •

n

U

-,
CU

P

H
L
L
L

1

L
H
L
L
2

I

II

,
I

CJ

I I

,-,

L~

2

H
H
L
L
3

L
L
H
L

H
L
H
L

L
H
H
L

• • •

H
H
H
L

7

±J

9j % ~y

J

uI 5 6 I
n
c rJ.J [
• t.J

_I

-0 r_u
l_

F? 5

I

"l

T
I

I I

W

II
V

,,

VII

L
L
L
H

H
L
L
H

H
H
L
H

L
H

L
H

• ,• • •

,
...

8

...

D
.J

:....:

T
..l

\I

V

,

/,

*

+

- -,

L
L
H
H

C

...

H
L
H
H
D

H
H
H
H

,

E

,
-, -J
---- -~
I

I

I

t_
I

LJ

~(

7
l_

i
l

I

l_

,,

\

"l
J

,

L
H
H
H

1\,/1

1\'
IV

r1

lJ

" --

All other Input codes display "blank"

MOL 2416

FUNcnONAL DESCRIPTION
Referring to the block diagram:
Display Memory-consists of a 4 by 7-bit RAM block.
Each 7-bit location holds the 7-bit ASCII data for the
four displays.
Cursor Memory-holds the cursor data for all the
displays.
ROM-has a look-up table for the 64 characters.

Oscillator Logic-provides all the necessary timing.
Display Drivers-17 segment drivers and 4 digit drivers.
LED Displays-each display is comprised of 16
segments and one decimal point which make up the
alphanumeric characters.

BLOCK DIAGRAM

ROM

TYPICAL SCHEMAnC FOR 16 DIGIT SYSTEM

+5

I
LL

J

GNO

I

11
D4

015
8[

DO-D6
CLR

WR

CU
CUE
AoAl

'

----..
?L

,

--

,

14...

t

r

t

I
03

DO

f

*
CE2

~
... CE2

4>

CE1
CE1

MOL 2418

2-98

LOADING DATA

For those users not requiring the cursor, the cursor enable
signal (CUE) may be tied low to disable the display of the
cursor function. A flashing cursor can be realized by simply
pulsing CUE. If the cursor has been loaded to any or all
positions in the display, then CUE will control whether the
cursor(s) or the characters appear. CUE does not affect the
contents of cursor memory.

Setting the chip enable (CE1, CE2) to their true state will
enable data loading. The desired data code (00-06) and
digit address (Ao, A,) must be held stable during the write
cycle for storing new data.
Data entry may be asynchronous and random. (Digit 0 is
defined as a right hand digit. with A, =Ao =0.)
Clearing of the entire internal four~t memory can be accomplished by holding the clear (CLR) low for one complete
display multiplex cycle, 15 mS minimum. The clear function
will clear both the ASCII RAM and the cursor RAM. Loading
an illegal data code will display a blank.

DISPLAY BLANKING
Blanking the display may be accomplished by loading a
blank or space into each digit of the display or by using the
(BL) display blank input.
Setting the (BL) input low does not affect the contents of
either data or cursor memory. A flashing display can be
realized by pulsing (BL).

LOADING CURSOR
Setting the chip enables (CE1, CE2) and cursor selec.!..(gU)
to their true state will enable cursor loading. A write (WR)
pulse will now store or remove a cursor into the digit location addressed by Ao, A,; as defined in data entry. A cursor
will be stored if 00=1; and will be removed if 00=0. The
cursor (eU) pulse width should not be less than the write
(WR) pulse or erroneous data may appear in the display.

The display can be dimmed by pulse width modulating the
(BL) at a frequency sufficiently fast to not interfere with the
internal clock. Experimentation is encouraged, although
4.5 KHz square wave on the (BL) pin will have no affect on
display brightness. As the low state duty factor is increased,
the display will dim, not affecting other device functions.

TYPICAL LOADING DATA STATE TABLE
CONTROL
IlL CIT W

CUE

CD'

ADDRESS

Vm f[jj

AI

AO

H
H
H
H
H
H
H
L
H
H

X
H
X
L
L
L
L
X
L
X

X
X
H
L
L
L
L
X
L
X

L
L
L
L
L
L
L
X
L
L

X
X
X
H
H
H
H
X
H
X

H
X
X
L
L
L
L
H
L
H

H
H
H
H
H
H
H
H
H
L

X
X
L
L
H
H
X
H
X

X
X
L
H
L
H
X
H
X

H

L

L

L

H

L

H

X

X

DISPLAY
DIGIT

DATA
D6 D5 04 D3 D2 DI

DO

PREVIOUSLY LOADED DISPLAY
X X
X X
X
X
X
X X
X
X X
X
X
H L
L
L
H L
H
H L
H L
H L
H
H L
L
H H· L
L
H L
L
L
L
H
L
BLANK DISPLAY
H L
L
L
H H H
CLEARS CHARACTER DISPLAYS
SEE CHARACTER CODE

3

2

I

0

G
G
G
G
G
G
B

R
R
R
R
R
L
L

E
E
E
E
U
U
U

Y

E
E
·E
E

G

L

U

E

Y
Y

SEE CHARACTER
SET

x =DON'T CARE
LOADING CURSOR STATE TABLE
CONTROL
IlL l:ftWCUE

H
H
H
H
H
H
H
H
H
H
X

a

X
X
L
L
L
L
L

X
X
L
L
L
L
L

x x
L
X

L
X

L
H
H
H
H
H
H
L
L
H

ADDRESS

CD'

WR

CIJi

X
X
L
L
L
L
L
X
L
X

H
H
L
L
L
L
L
H
L
H

H
H
H
H
H
H
H
H
H

Ii

AI AO

DATA
D6

os

D4 03 D2 DI DO

PREVIOUSLY LOADED DISPLAY
DISPLAY PREVIOUSLY STOREO CURSORS
L
L
X X
X
X X X
H
L
H
X X
X X
H
X X
H L
X X
X X
H
X X
H H
X
X X X
X X
H
H L
X
X X X
X X
L
DISABLE CURSOR DISPLAY
H H II x x x
x X L
DISPLAY STORED CURSOR

x

3

DISPLAY
DIGIT
2
0
I

B
B
B
B
B

E
E
E
E

B
B
B

E
E
E

A
A
A

R
R

A
A

R
R

Il!l
Il!lll!l
Il!l Il!lll!l
Ii'! Ii'! Ii'! Ii'!
Ii'! E iiiii'!
Il!l Il!l

DON'T CARE

MDL2416

2-99

QUALITY ASSURANCE LEVELS
The MOL 2416TXVBs are tested in conformance with
Quality Level A of MIL'D-87157 for hermetically sealed LED"
displays with 100% screening. The product is tested to
Tables I, II, ilia and IVa.

The MOL 2416TXVs are tested in conformance with Quality
Level A, Table I and Group A, Table II. "
The MOL 2416Cs are tested in conformance with Quality
Table I & II, Group A, except delta determinantsin Table I.

Table I. Quality Level A of MIL-D~87157
" Test Screen

Method

Conditions

1. Precap Visual

2072
MIL-STO-750 .

2. High Temperature Storage

1032
MIL-STO-750

3. Temperature Cycling

1051
MIL-STO-750

ConditionS, 10 Cycles, 15 min. Dwell
Tamb =-65°C to +125°C

4. Constant Acceleration

2006
MIL-STD-750

5,000 G's at Y1 Orientation

5. Fine Leak

1071
MIL-STO-750

Condition H, Leak Rate ~5x10-7 cc/s

6. Gross Leak

1071
MIL-STO-750

Condition C

1015
MIL-STO-883

Condition B at Vcc=5.5 V, Tamb = 100°C, t= 160 hours

7. Interim Electrical/Optical Tests(2)
8. Surn-ln{l)
9. Final Electrical Test

-

Tamb =125°C, Time = 24 hours

Icc, Iv at Vcc=5.0 V, Tamb =25°C.

Same as Step 7.

(2)

Alv= -20%, Alcc= ± 10%, Tamb =25°C

10. Delta Determinants
11. External Visual

2009
MIL-STO-883

Notes:
1. MIL·STD·SS3 test method applies.
2. Limits and conditions are per the Electrical/Optical Characteristics. The
10H and 10L tests are the inversa of VOH and
. Electrical Characteristics.

VOL

specified in the

"MOL 2416C1TXVITXVB

2-100

Table II. Group A Electrical Tests - MIL-D-87157
Subgroup/Test

Parameters

Subgroup 1
DC Electrical Tests at 25°C(1)

LTPD

Icc ($), Icc(CU), IcC 4.5
4. RST
volts. Reset is used only to synchronize
blinking and will not clear the display.
Chip enable (active high).
5. CE1
6.' CEO
Chip enable (active low).
Address input (MSB).
7. A2
Address input.
8. A1
Address input (LSB).
9. AO
Ground.
10. GND
Write. Active Low. If the device is
11. WR
selected, a Iowan the write input loads·
. the data into memory.
Data Bus bit f{MSB).
12. 07
13. 06
Data Bus bit 6.
14. 05
Data Bus bit 5:
Data Bus bit 4.
15. 04
Data Bus bit 3.
16. 03
Data Bus bit 2.
17. 02
18. 01
Data Bus bit 1.
.
Data Bus bit 0 (LSB).
19. DO
Plus 5 volts power pin.
20. Vee

DATA "READ" CYCLE
I

TIMING MEASUREMENT LEVELS
--~~---5V

0V _ _

..J*

2.0 V

TOP VIEW
20

11

..... ..... .....
........
... ........• ..
.....
..
·..... ... . ....
•••• ••
DIGIT 3

DIGIT 2

DIGIT 1 DIGIT 0

r--------l'O

PIN 1

MPD 254517/8
2-105

DATA INPUT COMMANDS
CEO

CE1

RD

WR

1
0
0
0
0
0
0

0
1
1
1
1
1

X
0
1
1
1

X
1
0
0
0
0
0

1

1
1

A2 A1

AD D7 D6 D5 D4 D3 D2 D1

X
1
1
1
1
1
1

X
0
0
1
0

X
0
0
0
1
1
0

1

0

X
X
X
X
X
X
1

X
X
0
1
1
0
X

X
X
1
0
1
1

X

X
X
0
1
0
1
X

CEl

RD

WR

0

1
X
0
X

0
X
X
1

0
X
X

1
X
X

1

OPERATION

4x8

No Change
Read Digit 0 Data To Bus
($) Written To Digit 0
(W) Written to Digit 1
(I) Written To Digit 2
(3) Written to Digit 3
Char. Written To Digit 0
And Cursor Enabled

1
X

The Display MuHlplexer controls all display output to the
digit drivers so no additional logic is required for a display
system.

r: - - - - - - - - - -,
DISPlAY MEMORY
(RAM)

X

OPERATION

X
X
0
1
0

.The Clock Source can originate either from the internal
oscillator clock or from an external source-usually from the
output of another MPD 2545/7/8 in a multiple module
display.

BLOCK DIAGRAM

8 I

1
1

DO

The Character Generator converts the 7-bit ASCII data into
the proper dot pattern for the 96 characters shown in the
character set chart.

Illegal
No Change
No Change
No Change

NOTE: 0 = Low Logic Level. 1= High logic Level, X =- Don't ~re.

IJO..07

1
1
0
X

X
X
0
1

The Control logic dictates all of the features of the display
device and is discussed in the Control Word section of this
data sheet.

MODE SELECTION
CEO

X
X
1

X
X
0
0
0
0
X

en. h-~1...
4 -tH
REG
1x8

The Column Drivers are connected directly to the display. .

r,:-------:;-,

I

The Display has four digits. Each of the four digits is comprised of 35 LEOs in a 5x7 dot array which makes up the
alphanumeric characters.

I
I
I
I
I

96;:'"
48)(80

I

The intensity of the display can be varied by the Control
Word in steps of 0% (Blank), 250lb, 50 0lb, and full
brightness.

l!: ________ 1

---,

15

MICROPROCESSOR INTERFACE
The interface to the microprocessor is through the address
lines (AO-A2), the data bus (DO-07)! two chip select lines
(CEO, CE1), and read (RD) and write (WR) lines.
ClKSEL

To derive the appropriate enable signal, the WR and RD
lines should be "NANDEO" into the CE1 input. The CEO
should be held low when executing a read, or write
operation.

~

,------------:;,

The read and write lines are both active low. During a valid
read the data input lines (00-07) become outputs. A valid
write will enable the data as input lines.

:0000
I
t11~~-tL---.J
DISPlAY
1...: _ _ _ _ _ _ _ _ _ _ _ _ -'

INPUT BUFFERING

FUNCTIONAL DESCRIPTION
The MPD 2545/7/8 block diagram includes 5 major blocks
and internal registers (indicated by dotted lines).

Display Memory consists of a 5x8 bit. RAM block. Each of
the four 8-bit words holds the 7-bit ASCII data (bits 00-06).
The fifth 8-bit memory word ,is used as a control word
register. A detailed description olthe control register and its
functions can be found under the heading Control Word.
Each 8-bit word is addressable and can be read from or
written to.

If a cable length of 6 inches or more is used, all inpliis to
the display should be buffered with a tri-state non-inverting
buffer mounted as close to the display as conveniently
possible. Recommended buffers are: 74LS245 for the data
lines and 74LS244 for the control lines.

MPD 25461718

2-106

PROGRAMMING THE MPD 2545/7/8
There are five registers within the MPD 2545/7/8. Four of
these registers are used to hold the ASCIl code of the four
display characters. The fifth register is the Control Word,
which is used to blink, blank, clear or dim the entire display,
or to change the presentation (attributes) of individual
characters.
ADDRESSING
The addresses within the display device are shown below.
Digit 0 is the rightmost digit of the display, while digit 3 is on
the left. Although there is only one Control Word, it is
duplicated at the four address locations 0-3. Data can be
read from any of these locations. When one of these locations is written to, all of them will change together.
Address
0
1
2
3
4
5
6
7

character will be displayed using the attribute. If bit 07 is
cleared, the character will display normally.
CONTROL WORD
When address bit A2 is taken low, the Control Word is
accessed. The same Control Word appears in all four of the
lower address spaces of the display. Through the Control
Word, the display can be cleared, the lamps can be tested,
display brightness can be selected, and attributes can be
set for any characters which have been loaded with their
most significant bit (07) set high.

Brightness (DO, 01): The state of the lower two bits of the
Control Word are used to set the brightness of the entire
display, from 0% to 100%. The table below shows the correspondence of these bits to the brightness.

Contents
Control Word
Control Word (Duplicate)
Control Word (Duplicate)
Control Word (Duplicate)
Digit 0 (rightmost)
Digit 1
Digit 2
Digit 3 (leftmost)

D7

D6

D5

D4

D3

D2

D1

DO

0
0
0
0

0
0

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

0
0
1
1

0
1
0
1

0
0

Operation
Blank
25% brightness
50% brightness
Full brightness

x = donl care

Bit 07 of any of the display digit locations is used to allow
an attribute to be assigned to that digit. The attributes are
discussed in the next section. If bit 07 is set to a one, that

Attributes (02-04): Bits 02, 03, and 04 control the visual
attributes (i.e., blinking, alternate) of those display digits
which have been written with bit 07 set high. In order to use
any of the four attributes, the Cursor Enable bit (04 in the
Control Word) must be set. When the Cursor Enable bit is

CONTROL WORD FORMAT

07

06

05

03

04

02

01

DO

01

DO BRIGHTNESS

1
1

0
0% (Blank)
1 25%
0 50%
1100%

o
o

03 02 ATTRIBUTE
o 0 Display Cursor instead
Of Character
o 1 Blink Character
1 0 Display Blinking Cursor Instead
Of Character
Alternate Character
With Cursor
04 ATTRIBUTE ENABLE

o

Disable Above Attributes
1 Enable Above Attributes

05 BLINK
o Blink-Attribute Disabled
1 Blink Entire. Display

06 LAMP TEST
o Standard Operation
1 Display All Dots At 50% Brightness
D7 CLEAR
o Standard Operation
1 ·Clear Entire Display
MPD 2545/7/B

2-107

set, and bit D7 in a character location is set, the character
will take on one of the following display attributes.
D7 06 05 04 03 02 01

DO

0

0

0

0

X

X

B

B

0

0

0

1

0

0

B

B

0
0

0
0

0
0

1
1

0 '1
1
0

B
B

B
B

0

0

0

1

1

1

B

B

Operation
Disable highlight
attribute
Display cursor· instead
of character
Blink single character
Display blinking
cursor· instead of
character
Alternate character
with cursor·' '

*"Cursor" refers to a condition when all dots in a single character space are
lit to half brightness.
X = don' care
B ~ depends on the selected brightness

Attributes are non-destructive. If a character with bit D7 set
is replaced by a cursor (Control Word bit D4 is set, and
D3=D2=0) the character will remain in memory and can be
revealed again by clearing D4 in the Control Word.
'
Blink (05): The entire display can be caused to blink at a
rate of approximately 2Hz by setting bit D5 in the Control
Word. This blinking is independent of the state of D7 in all
character locations.

In order to synchronize the blink rate in a bank of these
devices, it is necessary to tie all devices' clocks and resets
together as described in a later section of this data sheet.
07 06 05 D4 03 02 01

o

0

X

X

X

B

DO
B

Operation
Blinking display

Lamp Test (06): When the Lamp Test bit is set, all dots in
the entire display are lit at half brightness. When this bit is
cleared, the display returns to the characters that were
showing before the lamp test.
'
07 06 05 04 03 02 01

o

0

X

X

X

X

Operation

DO

X

Clear Data (7): When D7 is set in the Control Word all
character and Control Word memory bits are reset to zero.
This causes total erasure of the display, and returns all digits
to a non-blink, the preset brightness, non-cursor status.
' Operation

07 06 05 04 03 02 01 DO
00

OX

X

%

%

Clear

CASCADING
Cascading the MPD 2545/7/8 is a simple operation. The
requirements for cascading are: 1) decoding the correct
address to determine the chip select for each additional
device, 2) assuring that all devices are reset simultaneOUSly, and 3) selecting one display as the clock source
and setting all others to accept clock input (the reason for
cascading the clock is to synchronize the flashing of multiple displays). One display as a source is capable of driving
six other MPD 2545/7/8s. If more displays are required, a
buffer will be necessary. The source display must have
pin 3 tied high to output clock signals. All other displays
must have pin 3 tied low.
VOLTAGE TRANSIENTS
It has become common practice to provide 0.01 pi bypass
capacitors liberally in digital systems. Like other CMOS
circuitry, the Intelligent Display controller chip has very low
power consumption and the usual 0.01 pi Would be adequate
were it not for the LEDs. The module itself can, in some
conditions, use up to 100 mA (multiplexed). In order to
prevent power supply transients, capacitors with low inductance and high capacitance' at high frequencies are required. This suggests a solid tantalum or ceramic disc for
high frequency bypass. For larger displays, distribute the
bypass capacitors evenly, keeping capaCitors as close to the
power pins as possible. We recommend a 10 ,..f and 0.01 pi
for every Intelligent Display to decouple the displays
themselves, at the display.

Lamp test

CASCADING THE MPD 2545ma

AO-~

Wii
iiii
Vee

,

Vee

"

12
t3

A3
A4
Mj

14

15

• .5

3

74LS13b

~:-108

MPD 254517/8

HOW TO LOAD INFORMATION INTO THE
MPD 2545/7/8

ELECTRICAL AND MECHANICAL
CONSIDERATIONS

Information loaded into the MPo 2545/7/8 can be either
ASCII data or Control Word data. The following procedure
(see also typical loading sequence) will demonstrate a
typical loading sequence and the resulting visual display.
The word STOP is used in all of the following examples.

The CMOS IC of the MPo 2545/7/8 is designed to provide
resistance to both Electrostatic and Discharge Damage and
Latch Up due to voltage or current surges. Several precautions are strongly recommended for the user, to avoid
overstressing these built-in safeguards.

Step 1

Step
Step
Step
Step

2
3
4
5

Step 6

Step 7

Step 8

Step 9

Step 10

SET BRIGHTNESS
Set the brightness level of the entire display to
your preference (example: 100%)

ESD PROTECTION
Users of the MPo 2545/7/8 should be careful to handle
the devices consistent with Standard ESo protection
procedures. Operators should wear appropriate wrist, ankle
or feet ground straps and avoid clothing that collects static
charges. Work surfaces, tools and transport carriers that
come into contract with unshielded devices or assemblies
should also be appropriately grounded.

LOAD FOUR CHARACTERS
Load an "s" in the left-hand digit.
Load a ''T'' in the next digit.
Load an "0" in the next digit.
Load a "P" in the right-hand digit.
If you loaded the information correctly, the
MPo 2545 should now show the word "STOP. "

LATCH UP PROTECTION
Latch up is a condition that occurs in CMOS ICs after the
input protection diodes have been broken down. These
diodes can be reversed through several means:

BLINK A SINGLE CHARACTER
Into the digit, second from the right, load the hex
code "CF," which is the code for an "0" with the
07 bit added as a control bit.
NOTE: the "0" is the only digit which has the
control bit (07) added to normal ASCII data.
Load enable blinking character into the control
word register.
The MPo 2545 should now display "STOP" with a
flashing "0. "

VIN < GNo, VIN > Vcc +0.5 V, or through excessive currents begin forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin
conducting as much as one amp through the Vcc pin. This
destructive condition will persist (latched) until device failure
or the device is turned off.
The Voltage Transient Suppression Techniques and buffer
interfaces for longer cable runs help considerably to prevent
latch conditions from occuring. Additionally, the following
Power Up and Power Down sequence should be observed.

ADD ANOTHER BLINKING CHARACTER
Into the left hand digit, load the hex code "03"
which is for an "s" with the 07 bit added as a
control bit.
The MPo 2545 should display "STOP" with a
flashing "0" and a flashing "S."

POWER UP SEQUENCE
1. Float all active signals by tri:stating the inputs to the
displays.

2. Apply Vcc and GNo to the display.
3. Apply active signals to the displays by enabling all input
signals per application.

ALTERNATE CHARACTER/CURSOR ENABLE
Load enable alternate character/cursor into the
control word register.
The MPo 2545 should now display "STOP" with
the "0" and the ''S'' alternating between the letter
and a cursor (all dots lit).

POWER DOWN SEQUENCE
1. Float all active signals by tri-stating the inputs to the
display.

INITIATE FOUR-CHARACTER BLINKING
(Regardless of Control Bit setting)
Load enable display blinking.
The MPo 2545 should now display the entire
word "STOP" blinking.

2. Turn off the power to the display.

TYPICAL LOADING SEQUENCE

I~ ~I:ill~ ~ ::c
1.
2.
3.
4.

5.
6.
7.
8.
9.
10.

L
L
L
L
L
L
L
L
L
L

H
H
H
H
H
H
H
H
H
H

H L
H L
H L
H L
H L
H L
H'L
H L
H L
H L

L
H
H
H
H
H
L
H
L
L

X
H
H
L
L
L
X
H
X
X

~
X
H
L
H
L
H
X
H
X
X

,..

... ......

a
a

0 0
1 0
1 0
1 0
1 0
1 0
0 0
1 0
0 a
0 1

"'.,..cc cc c c c
0
0
0
1
0
1

0
0

0 0
1 0
1 0
0 1
1 0
0 1
1 0
1 0
1

C>

C

0 1 1
0 1 1
1 0 0
1 1 1
0 0 0
1 1 i
1 1 1

a

1 1

0 0 0

1 1
1 1
1 1

DISPLAY

S
ST
STO
STOP
STOP
STOoP
S"TO"P
StTOtp
S"T"O"P"

"Blinking Character
tCharacter alternating with cursor (all dots lit)
MPD 2545/7/B

2-109

CHARACTER SET

L

H

L

L
L

H

H

L
L

H

L
L

H
H

L
L
L

L

L

H
H
H

H

H

L
L

L

L
L
L

H
H

H

D1 L
D2 L
D3 L
HEX iii

L

L

L

L

H

H

2

3

4

5

6

7

8

9

D0

H
H

L
L

H

L

L

L

L

H
A

H
B

H
H

H
H

H
H
H

H
H
H
H

C

0

E

F

L L L 0
THESE CODES DISPLAY BLANK

L LH 1
L H L 2
L HH 3

. .: . ..!.. ::
'ii!'
~~; i::_: !! i. .: -:...i.i -! ........: ...., s··.. ::..M ...,. ... ......:: .. ::: ..'.'
". :::1- :::::
r:..: .1. 100M .....
I i:::; :.. :: :i ..
:i

..
·
...·...
.

.:.:. ::j::
-I-!-

n

:

: ••• 1

r- '. .. .··1.! ...

i..

...
I···. .:.i ff! .i··-;.... .....
.:.:.

: :

H H H 7

I:::' '::i j"" :::::

t i,..! i.) i.:,! ::< ::::i :;:::

:

. ....
· . ·.....

:

:
:

Notes: 1. A2 must be held high for ASCII data.
.
2. Bit 07 ~ 1 enables attributes for the assigned digit.

GENERAL QUALITY ASSURANCE LEVELS
The parts are tested in conformance with Quality Level A of
MIL-D-87157 for hermetically sealed LED displays with
100% screening. The product is tested.to Tables I, II, lila
and IVa.
.

Table I. Quality Level A of MIL-D-87157
Test Screen
1. Precap Visual
2. High Temperature Storage

Method

Conditions

2072
MIL-STD-750
1032

Tamb =125°C, Time=24 hours

MIL-STD~750

3. Temperature Cycling

1051
MIL-STD-750

Condition B, 10 Cycles, 15 min. Dwell

4. Constant Acceleration

2006
MIL-STD-750

5,000 G's at V1 Orientation

5. Fine Leak
6. Gross Leak

1071

MIL~STD-750
1071
MIL-STD-750

7. Interim Electrical/Optical Tests

8. Burn-ln(1)

Condition C
Limits and conditions are per the Electrical/Optical Characteristics. The IOH and IOL tests are the inverse of VO H and VOL
specified in the Electrical Characteristics. Tamb = 25°C.

1015
MIL-STD-883

9. Final Electrical Test
10. External Visual

Condition G or H

Condition B at Vcc=5.5 V, Tamb= 100°C. t= 160 hours.
Same as Step 7.

2009
MIL-STD-883

Not.:
1. MIL·STO-883 test method applies.

MPD 2S4517/8

2-110

Table II. Group A Electrical Tests - MIL-D-87157
SubgrouplTest

Parameters

Subgroup 1
DC Electrical Tests at 25°C

LTPD

Limits and conditions are per the Electrical/Optical Characteristics. The IOH and IOL tests are the inverse of VOH and VOL
specified in the Electrical Characteristics.

5

Subgroup 2
Selected DC Electrical Tests at High
Temperatures

7

Subgroup 3
Selected DC Electricai Tests at Low
Temperatures

7

Subgroup 4, 5 and 6 Not Applicable
Subgroup 7
Optical and Functional Tests at 25°C

Satisfied by Subgroup 1

5

Subgroup 8
External Visual

7

Table ilia. Group B, Class A and B of MIL-D-87157
SubgrouplTest
Subgroup 1
Resistance to Solvents
Internal Visual and Mechanical(3)
Subgroup 2(1· 2)
Solderability
Subgroup 3
Thermal Shock (Temp Cycle)

MIL-STD-750
Method

Conditions

1022

4 Devices/O Failures

2014

1 Device/O Failures

2026

Tamb =245°C for 5 seconds

LTPD= 15

1051

Condition B, 10 Cycles, 15 min. Dwell

LTPD=15

Moisture Resistance

1021

Fine Leak

1071

Condition G or H

Gross Leak

1071

Condition C

Electrical/Optical Endpoints

Subgroup 4(1)
Operating Life Test (340 hours)

Limits and conditions are per the
Electrical/Optical Characteristics. The
IOH and IOL tests are the inverse of
VOH and VOL specified in the Electrical
Characteristics. Tamb = 25°C.
1027

Tamb =100oC @Vcc=5.5V

LTPD= 10

Same as Subgroup 3

Electrical/Optical Endpoints
Subgroup 5
Non-Operating (Storage)
Life Test (340 hours)

Sample
Size

1032

Electrical/Optical Endpoints

Tamb = +125°C

LTPD= 10

Same as Subgroup 3

Notes:
1. Whenever electrical/optical tests are not required as endpoints, electrical
rejects may be used.

3. MIL·STD·883 test methods apply.
4. Visual requirements shall be as specified in MIL-STD-883.
Methods 1010 or 1011.

2. The LTPO applies to the number of leads inspected except in no

case shall less than 3 displays be used to provide the number of
leads required.

MPD 25451718

2-111

Table IVa. Group C, Class A and B of MIL·D·87157
SubgrouplTest

MIL·STD·750
Method

Conditions

Subgroup 1
Physical Dimensions

2066

Subgroup 2(2.6)
Lead Integrity

2004

Condition B2

Fine Leak

1071

Condition G or H

Gross Leak

1071

Condition C

2016

1500G, Time=0.5 ms, 5 Blows in
Each Orientation X1, Y1, Y2

Subgroup 3
Shock
Vibration, Variable Frequency
Constant Acceleration
External Visual(4)

External Visual(4)

2 DeviceslO Failures

LTPD=15

2006

5,000G at Y1 Orientation

1001 or 1011
Limits and conditions are per the
ElectricallOptical Characteristics. The
IOH and IOL tests are the inverse of
VOH and VOL specified in the Electrical
Characteristics. Tamb = 25 DC.
1041

LTPD=15

1010 or 1011
LTPD=20 (C=O)

Subgroup 5
Bond Strength(S)

2037

Subgroup 6
Operating Life Test{7)

1026

Tamb=100DC@Vcc=5.5V

1026

Same as Subgroup 3

ElectricallOptical Endpoints(?)

LTPD=:15

2056

ElectricallOptical Endpoints

Subgroup 4(1.3)
Salt Atmosphere

Sample
Size

Condition A
).=10

Noles:
1. Whenever electrical/optical-tests are not required as endpoints, electrical
rejects may be used,
2. The LTPD applies to the number of leads inspected except in no case
shall less than three displays be used to provide Ihe number of

4. Visual requirements shall be as specified in MIL-STD-883,
Methods 1010 or 1011.
5. Displays may be selected prior to seaf.
6. MIL-STD-883 test method applies.

leads required.

7. Test method or conditions in accordance with detail specification.

3. Solderability samples shall not be used.

MPD 2545/7/8

2-112

SIEMENS

MSD2010TXV/TXVB
YELLOW MSD2011 TXVITXVB
HIGH EFF. RED MSD2012TXVITXVB
HIGH EFF. GREEN MSD2013TXVITXVB
RED

.150" 4-Character 5x7 Dot Matrix
Serial Input Alphanumeric Military Display
FIn

Column 1
Column 2
Column 3
Column 4
Column 5
No Connection
DalaOu!
V.
Vee
Clock
Ground

5
6
7

8
10
II

12

~.100

~1(2.54)

CII
(Bf!

Funcdon

I

2
3
4

U
Dalaln

_
.010(.25)
.100(2.54)
•.OO2(05)Ti+..005 (.13) Typ.
Typ.
Non Accum. 10PL
.300

FEATURES
• Four .150" Dot Matrix Charactera
• Four Colors: Red, Yellow, High Efficiency
Red, High Efficiency Green
• Wide Viewing Angle
• Bullt·ln CMOS Shift Registers with
Constant Current LED Row Drivers
• Shift Registers Allow Custom Fonts
• Easily cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Military Operating Temperature Range:
-55 0 to +100·C
• Categorized for Luminous Intensity
• Ceramic Package, Hermetically Sealed
Flat Glass Window
• TXVB Process Conforms to MIL·D·87157
Quality Level A Test and Tables I, II, ilia
and IVa
• TXV Process Conforms to a Modified
MIL·D·87157 Quality Level A Test and
Table I

(7.62)

PIn 1 (ndicator ~::I...CI..c:J....c:I...cL...C:1..-,
Year
== 4 - Hua Codl
Werle Week
Luml""us
Balch
Int,nsHy Code
COO·~~cr~~~~~
TOLERANCE: •.015 (."".pllons noted)

DESCRIPTION
The MSD2010 through MSD2013TXV/TXVB are four digit 5x7 dot
matrix serial input alphanumeric displays. The displays are available in
red, yellow, high efficiency red, or high efficiency green. The package
is a standard twelve-pin hermetic DIP package with glass lens. The
display can be stacked horizontally or vertically to form messages of
any length. The MSD201X has two fourteen-bit CMOS shift registers
with built-in row drivers. These shift registers drive twenty-eight rows
and enable the design of customized fonts. Cascading multiple displays is possible because of the Data In and Data Out pins. Data In
and Out are easily input with the clock signal and displayed in
parallel on the row drivers. Data Out represents the output of the 7th
bit of digit number four shift register. The shift register is level triggered. The like columns of each character in a display cluster are
tied to a single pin. (See Block Diagram). High true data in the shift
register enables the output current mirror driver stage associated with
each row of LEDs in the 5x7 diode array.
The TIL compatible Va input may either be tied to Vee for maximum
display intensity or pulse width modulated to achieve intensity control
and reduce power consumption.
-Continued

See Appnote 44 for application information. and Appnotes 18, 19. 22,
and 23 for additional information.

2-113

DESCRIPTION (Continued)

FIGURE 2. MAX. ALLOWABLE POWER DISSIPATION
VS.TEMPERATURE

In the normal mode of operation,input data for digit four,
column one is loaded into the seven on-board shift register
locations one through seven. Cblumn one data for digits 3,
2, and 1 is shifted into the display shift register locations.
Then column one input is enabled for an appropriate period
of time, T. A similar process. is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time into the shift
register is t, then with five columns, each column of the
display is operating at a duty factor of:

1.0

'\.

3i: 0.8

~g

0.6

~=
E Ci

0.4

:!III.

0.2

o[
=> ..

DF=_T_
5(T+t)

]i;
.. 0

T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the
display should be refreshed (turned on) at a minimum rate
of 100 times per second.

R (JA) =35° fIN'

; ..,

~th(JAI = 55lCfIN

With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1/[5x(100)]=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.

~

/

"

1j(MAX) = 125°C

Q

II.

\
~

0.0
-60

I

-40

:

j

-20
0
20 40 60
80 100 120
Ta - Ambient Temperature - °C

AC ELECTRICAL CHARACTERISTICS
(Vee =4.75 to 5.25 V, Tamb =-55°C to +100°C)
Symbol Description Min. TypJl) MaxJ2) Units Fig.

Maximum Ratings

TSETUP

Setup Time

50

10

ns

Supply Voltage Vee to GND ........... -0.5 Vto + 7.0 V
Inputs, Data Out and VB . .......... -0.5 V to Vee +0.5 V
Column Input Voltage, VeOl ........... -0.5 V to +6.0 V
Operating Temperature Range(!' 2) ..... -55°C to + 100°C
Storage Temperature Range .......... -65°C to + 125 °C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5 sec .................. 260°C
Maximum Power Dissipation
at T amb =25°C(2)
Red ..................................... 0.91 W
Yellow, HER, High Elf. Green ................. 0.86 W

THOlD

Hold Time

25

20

ns

1

TWl

Clock Width
Low

75

45

ns

1

TWH

Clock Width
High

75

45

ns

1

F(ClK)

Clock
Frequency

MHz

1

TTHl,
TTlH
TpHl'
TplH

Notes:

aooc

1. Operation above + 1
ambient is possible provided the following
condition are met. The junction should not exceed TJ = 125 Q C and the

1

6

5

Clock Transition Time

75

200

ns

1

Propagation
Delay Clock
to D.ata Out

50

125

ns

1

case temperature (as measured at pin 1 or the back of the display)
should not exceed Tc =1000e.
.
2. Maximum dissipation is derived from Vcc =5.25 V. VB =2.4 V.
VCOl =3.5 V 20 LEOs on per character, 20oA> OF.

,1. All typical values specified at Vcc =5.0 V and T,mb= 25°C unless

FIGURE 1. TIMING CHARACTERISTICS

CLEANING THE DISPLAYS

Notes:
otherwise noted.

2. VB Pulse Width Modulation Frequency - 50 KHz (max).

IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
cleaning solution is hot 0.1. water (60°C) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do
not use commercial dishwasher detergents.

2.4V
CLOCK
0.4 V

For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning processing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.

2.0 V
DATArN

a.BV

2.4 V
DATA OUT
0.4 V

MSD2010

2-114

thru MSD2013TXVITXVB

RECOMMENDED OPERATING CONDITIONS
Symbol

Min.

Nom.

Max.

Supply Voltage

Vcc

4.75

5.0

5.25

V

Data Out Current, Low State

IOl

1.6

mA

-0.5

mA

Parameter

Data Out Current, High State

IOH

Column Input Voltage, Column On(')

Units

VCOl

2.75

TSETUP

70

Hold Time

THOLD

30

ns

Width of Clock

TW(ClK)

75

ns

Setup Time

3.5

V

45

ns

Clock Frequency

TClK

5

Clock Transition Time

TTHl

200

ns

Free Air Operating Temperature Range

Tamb

+100

°C

Nate:
1. See

-55

MHz

Figure 3 - Peak Column Current vs. Column Voltage.

OPTICAL CHARACTERISTICS
Red MSD2010
Symbol

Min.

Typ.c4)

Peak Luminous Intensity per LED('·3)
(Character Average)

IVPEAK

105

200

!,cd

Peak Wavelength

ApEAK

655

nm

AD

639

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vcc = 5.0 V, VCOl = 3.5 V
Ti5)=25°C, Vs=2A V

Yellow MSD2011
Symbol

Min.

Typ.c4)

Peak Luminous Intensity per LED('· 3)
(Character Average)

IVPEAK

400

750

!,cd

Peak Wavelength

ApEAK

583

nm

AD

585

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vcc=5.0 V, VCOl =3.5 V
TJ(5) = 25°C, Vs =2A V

High Efficiency Red MSD2012
Symbol

Min.

Typ.(4)

Peak Luminous Intensity per LED('· 3)
(Character Average)

IVPEAK

400

1430

!,cd

Peak Wavelength

ApEAK

635

nm

AD

626

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vcc=5:0 V, VCOl =3.5 V
Ti5)=25°C, Vs=2A V

High Efficiency Green MSD2013
Symbol

Min.

Typ.c4)

Peak Luminous Intensity per LED('· 3)
(Character Average)

IVPEAK

850

1550

!,cd

Peak Wavelength

ApEAK

568

nm

AD

574

nm

Description

Dominant Wavelength(2)
Nates:
1. The displays are categorized

for luminous intensity with the intensity
category designated by a letter code on the bottom of the package.
2. Dominant wavelength Ao, is derived from the CIE chromaticity diagram, and
represents the single wavelength which defines the color of the device.
3. The luminous sterance of the lED may be calculated using the following
relationships: lv (cd/m') -Iv (Candela)IA (Meter)'
lv (Footiamberts)-nlv (Candela)IA (Foot)'
A-5.3x 10-8 M'-5.8x 10-7 (Foot)'

4.

Max.

Units

Test Conditions

Vcc=5.0 'v, VCOl =3.5 V
TJ(5) = 25°C, Vs =2.4 V

All typical values specified at Vee-5.O V and T.mb-25°C unless

otherwise noted.
5. The luminous intensity is measured at Tamb=TJ=25°C. No time is
allowed for the device to warm up prior to measurement.

MSD20'O thru MSD20'3TXVITXVB

2-115

ELECTRICAL CHARACTERISTICS (-55°C to
Symbol

Description
Supply Current (quiescent)

+ 100°C) (unless otherwise specified)

Min.

Icc

Typ.<1)

Max.

Units

2

5.0

mA

VB =O.4 V

5.0

mA

VB =2.4 V

10.0

mA

10

JJA

350

435

mA

335

410

mA

0.8

V

2.5.
Supply Current (operating)

3

Icc

Test Conditions

FCL K=5 MHz

Column Current at any
Column Input(2)
All

ICOL

Red

ICOL
'I COL

Yellow. HER. Green
VB. Clock or Data Input
Threshold Low

VIL

VB. Clock or Data Input
Threshold High

VIH

2.0

Data Out Voltage

VOH

2.4

VOL
-30

Vcc =5.25 V
VCLK = VOATA = 2.4 V
All SR Stages = Logical 1

VB=O.4 V

Vcc =5.25 V
VCOL=3.5 V
All SR Stages = Logical 1

VB=2.4 V
Vcc=4.75 V - 5.25 V

V
3.6

V

IOH=-0.5 mA

0.2

0.4

V

IOL = 1.6 mA

-110

-300

JJA

-1

-10

JJA

Input Current Logical 0
VB only

IlL

Input Current Logical 0
Data. Clock

IlL

Input CurrentLdgical1
Data. Clock

IIH

10

,.A

Input Current Logical 1
VB

IIH

200

,.A

Power Dissipation per
Package

Po

0.44

Thermal Resistance IC
Junction-to-Pin

RaJ-PIN

30

W

Vcc=5.25 V
ICOL =0 mA

Vcc=4.75 V - 5.25 V. VIL =0.8 V

Vcc=4.75 V - 5.25 V. VIH=2.4 V

Vcc =5.0 V. VCOL=3.5 V. 17.5% DF
15 LEDs on per character. VB =2.4 V

°C/WI
Device

Noles:
1. All typical values specified at Vcc~5.0 V and Tamb~25°C unless

otherwise noted.
2. See Figure 3 - Peak Column Current vs. Column Voltage.

FIGURE 3. PEAK COLUMN CURRENT
.
. VS. COLUMN VOLTAGE
600

--

500

~ 400
i-MSD201

!...
~

300

~

200

I

C ~2011/2012/2013

B
,f

'ii

-

100

o0.0

~y
1.0

2.0

3.0

4.0

5.0

6.0

V00' -Column Voltago . Volts

MSD2010 thru MSD2013TXVlTXVB

2-116

FIGURE 4. BLOCK DIAGRAM
Column Drive Inputs
Column

1 2 3 4 5

~
)l!.

J<

-J!.

~

~ rv'

II

Serial
Data
Input

:Ii!'

-

II

1 2 3 4 5 6 7

LED
Matrix
2

~

LED
Matrix
3

r:)

LED
Matrix
4

A

I

1 2 345 6 7
Rows

Blanking
Control, Va

~

"('~

I

Rows 1-7
Rows 1-7
Constant Current Sinking LED Drivers

~~ ~~
Rows 8-14

Rows 15-21

I
Rows 1-7

~~.
Rows 22-28

Serial

~ Data

28·Bit SIPD Shift Register

Output

1

Clock

CONTRAST ENHANCEMENT FILTERS FOR SUNLIGHT READABILITY
Display Color
Part No.

Filter Color

Marks Polarized Corp.'
Filter Series

Optical Characteristics of Filter

Red, HER
MSD2010, 2012

Red

MPC 20·15C

25%@ 635 nm

Yellow
MSD2011

Amber

MPC 30·25C

25%@ 583 nm

Green
MSD2013

Yellow/Green

MPC 50·22C

22%@568nm

.

i

01

.

'0
a.

01

'3

Multiple Colors
High Ambient light

Neutral Gray

MPC 80·10C

10% Neutral

Multiple Colors

Neutral Gray

MPC 80·37C

37% Neutral

2

U

'Marks Polarized Corp.
25·B Jefryn Blvd. W.
Deer Park, NY 11729
516·242·1300
FAX (516) 242·1347
Marks Polarized Corp. manufactures to MIL·'·45208 inspection system.

MSD2010 lhru MSD2013TXVITXVB

2-117

GENERAL QUALITY ASSURANCE LEVELS

The parts are tested in conformance with Quality Level A of
MIL-D-87157 for hermetically sealed LED displays with
100% screening. The product is tested to Tables I, II, lila
and IVa.
Table I. Quality Level A of MIL·D-87157
Test Screen

Method

Conditions

1. Precap Visual

2072
MIL-STO-750

2. High Temperature Storage

1032
MIL-STO-750

Tamb = 125°C: Time=24 hours

3. Temperature Cycling

1051
MIL-STO-750

4. Constant Acceleration

2006
MIL-STO-750

ConditionB, 10 Cycles, 15 min. Dwell
Tamb =-65°C to + 125°C
10,000 G's at Y1 Orientation

5. Fine Leak

1071
MIL-STO-750

Condition H, Leak Rate :0;;5 x 10-7 cc/s

6. Gross Leak

1071
MIL-STO-750

Condition C

7. Interim Electrical/Optical Tesl5<2)

8. Burn-ln(1)

Icc (at VB=O.4 V and 2.4 V), ICOl (at VB =0.4 V and 2.4 V), IIH
(VB, Clock and Data In), III (VB, Clock and Data In),
IOH' IOl' Visual Function and Iv Peak. VIH and Vil inputs
are guaranteed by the electronic shift register test.
Tamb =25°C.
1015
MIL-STO-883

9. Final Electrical Test (2)

Same as Step 7.

10. Delta Determinants
11. External Visual

Condition Bat Vcc=VB=5.25 V, VCOl =3.5 V, Tamb =100°C.
LED On-Time Duty Factor = 5%, t = 160 hours
Alcc= + /-1 mA, AIIH= + /-10 mA (Clock and Data In),
Al oH = +/-10% of initial value, Al v =-20%

2009
MIL-STO-883

Table II. Group A Electrical Tests - MIL·D-87157
Subgroup/Test

Subgroup 1
DC Electrical Tests at 25°C

LTPD

Parameters

Icc (at VB=O.4 V and 2.4 V), ICOl (at VB=O.4 V and 2.4 V),
IIH (VB, Clock and Data In), III (VB, Clock and Data In), IOH' IOl'
Visual Function and Iv Peak. VIH and Vil inputs are guaranteed
by the electronic shift register test.

5

Subgroup 2
Selected DC Electrical Tests at High
Temperatures(2)

Same as Subgroup 1, except delete Iv and Visual Function,
Tamb ";100°C

7

Subgroup 3
Selected DC Electrical Tests at Low
Temperatures(2)

Same as Subgroup 1, except delete Iv and Visual Function,
Tamb =-55°C

7

Subgroup 7
Optical and Functional Tests at 25°C

Satisfied by Subgroup 1

5

Subgroup 8
External Visual

MIL-STO-883, Method 2009

7

Subgroup 4, 5 and 6 Not Tested

Notes:

1. Mll-STO·BB3 test method applies.
2.

Limits and conditions are per the Electrical/Optical Characteristics. The
10H and 10L tests are the inverse of VOH and VOL specified in the
Electrical Characteristics.
MSD2010 thru MSD2013TXVITXVB

2-118

Table ilia. Group B, Classes A and B of MIL·D·87157
SubgrouplTest
Subgroup 1
Resistance to Solvents
Internal Visual and Mechanical

Subgroup 2(1,2)
Solderability
Subgroup 3
Thermal Shock (Temp Cycle)
Moisture Resistance(3)
Visual Inspection Endpoints

MIL·STD·750
Method

Conditions

4 Devices/O Failures

1022
2075

Inspection may be performed through
glass cover, includes front and back
cavities

1 Device/O Failures

2026

Tamb =245°C for 5 seconds

LTPD=15

1051

Condition 81,15 min. Dwell

LTPD= 15

1021

Within 24 hours after completion of
moisture resistance test

Hermetic Seal

107·1

Fine Leak

1071

Condition G or H

Gross Leak

1071

Condition C

Electrical/Opticai Endpoints(4)

Subgroup 4
Operating Life Test (340 Hours)

Icc (at Vs=0.4 V and 2.4 V),
ICOl (at VB = 0.4 V and 2.4 V),
IIH (VB, Clock and Data In),
III (VB, Clock and Data In),
IOH' IOl' Visual Function and Iv Peak.
VIH and Vil inputs are guaranteed by
the electronic shift register test.
Tamb =25°C.
1027

Electrical/Optical Endpoints(4)
Subgroup 5
Non-Operating (Storage)
Life Test (340 hours)

Sample
Size

Tamb= + 100°C at VCC= Vs =5.25 V,
VCOl =3.5 V, LED on time DF=5%

LTPD= 10

Same as Subgroup 3
1032

Electrical/Optical Endpoints(4)

Tamb = +125°C

LTPD=10

Same as Subgroup 3

Not••:
1. Whenever electrical/optical tests are not required as endpoints, electricel
rejects may be used.
2. The l TPD applies to the number of leads inspected except in no
case shall less than 3 displays be used to provide the number of
leads required.

3. Inilial conditioning shall be a 15 degree inward bend and back to original
position, one cycle.
4. Limits and conditions are per the Electrical/Optical Characteristics. The
10H and 10L tests are the inverse of VOH and VOL specified in the
Electrical Characteristics.

MSD2010 thru MSD2013TXVITXVB

2-119

Table IVa. Group C, Classes A and B of MIL-D-871S7
SubgrouplTest

MIL-STD-7S0
Method

Conditions

Subgroup 11')
Physical Dimensions

2066

Subgroup 2(1, 2)
Lead Integrity

2004

Hermetic Seal

1071

Fine Leak

1071

Condition G or H

Gross Leak

1071

Condition C

2016

1500G's, Time=0.5 ms, 5 Blows in
Each Orientation Xl, Yl, Y2

Subgroup 3
Shock
Vibration, Variable Frequency
Constant Acceleration
External Visual(3)

External Visual(3)
Subgroup 5
Bond Strength(7)
Subgroup 6
Operating life Test + Vcc Icel . [RoJC + RecAl + TA
The junction rise within the LED is the product of the
thermal impedance of an individual LED (37°CIW,
OF = 200f0, F=200 Hz), times the forward voltage, VF(LED),
and forward current, IF(LED), of 13 - 14.5 mA. This rise
averages TJ(LED)= 1°C. The table below shows the VF(LED)
for the respective displays.

Part Number

VF
Min.

Typ.

MS02010

1.6

1.7

2.0

MS02011/2/3

1.9

2.2

3.0

Max.

The junction rise within the LED driver IC is the combination
of the power dissipated by the IC quiescent current and the
28 row driver current sinks. The IC junction rise is given in
Equation 2.

A thermal resistance of 28°CIW results in a typical junction
rise of 6°C.
Equation 2.

TJ(IC) = PCOL (ReJC + RecA) + TA
TJ(IC) = [5 (VCOL-VF(LED) • (lcoL/2)' (n/35)OF+Vcc' Icel' [Rruc+RecAl+TA

MSD2010 thru MSD2013TXVITXVB

2-121

THERMAL MODELING (Cont.)
For ease of calculations the maximum allowable electrical
operating condition is dependent upon the aggregate
thermal resistance of the LED matrixes and the two driver
ICs. All of the thermal management calculations are based
upon the parallel combination of these two networks which
is 15°CIW. Maximum allowable power dissipation is given
in Equation 3.
Equation 3.

PDISPLAY = 5 VCOl ICOl (n/35) OF + Vcc Icc

For further reference see. Figures 2,7,8,9,10 and 11.

KEY TO EQUATION SYMBOLS
OF
Icc
ICOl

n
PCASE
PCOl
PD1SPLAY
PLED

RSCA
R6JC
TA
TJ(IC}
TJ(lED}
TJ(MAX}
VCC
VCOl
VF(lED)
Z6JC

Duty factor
Quiescent IC current
Column current
Number of LEOs on in a 5 x 7 array
Package power dissipation excluding LED under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of an LED
Thermal resistance case to ambient
Thermal resistance junction to case
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal impedance junction to case

MSD2010 thru MSD2013TXVITXVB

2-122

OPTICAL CONSIDERATIONS

FIGURE 9. PACKAGE POWER DISSIPATION

The light output of the LEOs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For
optimum light output, keep the thermal resistance of the
socket or PC board as low as possible.

i5

~

.
0

......... '

j

...........

Z'E

1

Ta=25OC

.

........j................

j..;........... ,

/'

""~u

~ ~g ~~~~~~!~
..~. .~~!
. . . ~~~~~*~
f................
o

0.5

g'

;;.::....

j

'1:1

1.0

=
a.

i

Ve~1 = 3.5", leol'= 335~
O~ = 20·)', Ta = ks·c i

m
a.

~.~
._>o_10~.
~ 4.................;.....~o~::!!;~.~..!?:.:::=
_5i

•:1.1_

Vee =5V, )cc = 5mA

c:
.2

FIGURE 6. NORMALIZED LUMINOUS INTENSITY
VS. JUNCTION TEMPERATURE

OJ

1.5

.

==

0.0

o

5

V

10

......................

vr
V

/

....
-e.!

.5!'c

.sit
Ci

15
20
5303540
LEOs per Character

!. . . . . . . . t. . . . . . . . .!........................ ~;:::. .

.9

........

FIGURE 10. MAX. CHARACTER POWER DISSIPATION

.1

~~~~~~~~~~~~~~

~

~

~
0 ~ ~ M 00 1001~m
1] - LEO Junction Temperature _·C

When mounted in a 10 °CfW socket and operated at
Absolute Maximum Electrical conditions, the MS0201X will
show an LED junction rise of 17°C. If TA = 40°C, then the
LED's TJ will be 57°C. Under these conditions Figure 7
shows that the Iv will be 75% of its 25°C value.
FIGURE 7. MAX. LED JUNCTION TEMPERATURE
VS. SOCKET THERMAL RESISTANCE

~
a.

0.30

S
u

0.20

..

0.10

i!
co

.r;

50~-r--~-r--~~--~~~,-~r-~

0

~

45~-r--r-~~r-1-~--~-1--;--;

6 40~-r--+--+--+--t--~~--~~~~
uo
y
5 •. 35 ~-r--+--+--+--t---f",.."..-F--l,.....+-I

0.00

0

5

10

15
20
25
30
LEOs per Character

35

40

~ ~ 30 ~-r--+--+--+--4:."e.::.j-~--+.......;~~
~~25
./.
!I a.

•

iiE20
~ 15

:

I:'

I='
= ?5.C

0.0
-60

With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1/[5x(100)]=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.

35iCNI

Rlh(JA) = 55l CIW

..

E ..

DF=_T_
5(T+t)

\

-40

-20 0
20 40 60 80
Ta - Ambient Temperatura - ·C

100 120

AC ELECTRICAL CHARACTERISTICS

(Vee =4.75 to 5.25 V, Tamb =-55°C to + 100°C)
Symbol Description Min. TypSI/ MaxS2/ Units Fig.

Maximum Ratings

Supply Voltage Vee to GND ..... , ..... -0.5 V to + 7.0 V
Inputs, Data Out and VB . .......... -0.5 V to Vee +0.5 V
Column Input Voltage, VeOl ........... -0.5 V to +6.0 V
Operating Temperature Range!1. 2) ..... -55°C to + 100°C .
Storage Temperature Range .......... -65°C to + 125°C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t < 5 sec ................. 260 °C
Maximum Power Dissipation
at Tamb= 25°C(2) ........................... 1.1 W
Notes:
1. Operation above + 100·e ambient is possible provided the following

condition are met. The junction should not exceed TJ =125·e and the
case temperature (as measured at pin 1 or the back of the display)
should not exceed Tc= 100·e.
2. Maximum dissipation is derived from Vco =5.25 V. V.=2,4 V.
VCOL =3.5 V 20 LEOs on per character. 20% OF.

TSETUP

Setup Time

50

10

ns

1

THOlO

Hold Time

25

20

ns

1

TWl

Clock Width
Low

75

45

ns

1

TWH

Clock Width
High

75

45

ns

1

F(elK)

Clock
Frequency

MHz

1

TTHl,
TTlH
TpHl,
TplH

6

5

Clock Transition Time

75

200

ns

1

Propagation
Delay Clock
to Data Out

50

125

ns

1

Nots.:
1. All typical values specified at Vcc =5.0 V and Tamb = 25·e unless
otherwise noted.

2. Ve Pulse Width Modulation Frequency - 50 KHz (max).
FIGURE 1. TIMING CHARACTERISTICS
CLEANING THE DISPLAYS
2.4 V

IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
cleaning solution is hot D.1. water (60°C) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do"
not use commercial dishwasher detergents.
.

~.v

2.0 V
DATA IN
O.SY

For post solder cleaning use water or non-alcohol mixtures
formulilted for vapor cleaning processing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.

2.4 V

OATA OUT
0.4"

. MSD2310 thr. MSD2313TXVITXVB

2-125

RECOMMENDED OPERATING CONDITIONS (Guaranteed over operating temperature range)

Parameter
Supply Voltage
Data Out Current, Low State

Symbol

Min.

Nom.

Max.

Vce

4.75

5.0

5.25

Data Out Current, High State

..

Hold Time
Width of Clock

mA

-0.5

IOH

Setup Time

V

1.6 .

IOl

Column Input Voltage, Column On(1)

Units

mA
V

VCOl

2.75

3.5

TSETUP

70

THOlD

30

ns

TW(ClK)

75

ns

45

ns

Clock Frequency'

TClK

5

Clock. Transition Time

TTI-il

200

ns

Free Air Operating Temperature Range

Tamb

+100

°C

-55

MHz

Note:

1. See Figure 3 - Peak Column Current vs. Column Voltage.

OPTICAL CHARACTERISTICS
Red MSD2310
Description
Peak Luminous Intensity per
(Character Average) .

LED(1,~)

Peak Wavelength
Dominant Wavelength(2)

Symbol

Min.

Typ.(4)

IVPEAK

220

370

/lcd

ApEAK

655

nm

AD

639

nm

Max.

Units

Test Conditions
Vcc=5.0 V, VCOl =3.5 V .
TP)=25°C, Vs=2.4 V

Yellow MSD2311
Symbol'

Min.

Typ,!4)

Peak Luminous Intensity per LED(1, 3)
(Character Average)

IVPEAK

650

1140

/lcd

Peak Wavelength

ApEAK

583

nm

AD

585

nm·

Description

Dominant Wavelength

Max.

Units

Test Conditions
Vcc =5.0 V, VCOl =.3.5 V
T}5)=25°C, Vs=2.4 V

High Efficiency Red MSD2312
Symbol

Min.

Typ.(4)

Peak Luminous Intensity per LED(1. 3)
(Character Average)

IVPEAK

650

1430

/lcd

Peak Wavelength

ApEAK

635

nm'

AD

626

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions
Vcc=5.0 V, VCOl =3.5 V
TJ(5) = 25°C, Vs=2.4 V
,

High Efficiency Green MSD2313
Description
Peak Luminous Intensity per LED(1. 3)
(Character Average)
Peak Wavelength

..
Symbol

Mln~

Typ.(4)

IVPEAK

1280

2410

/lcd

568

nm

574

nm

ApEAK
Dominant Wavelenglh(2)
AD
.
Notes:
.
1. The displays are categorized for luminous intenSity with the intens~y
category designated by a letter code on the :bottom of·the package.
2. Dominant wavelength AD. is derived from the CIE chromaticity diagram. and
represents the single wavelength which defines the color of the device.
3. The luminous sterance of the lED may be calculated using the following
relationships: lv (cd/m') -Iv (Candela)/A (Meter)'
lv (Footlamberts) =.Iv (Candela)/A (Foot)'
A=5.3x 10-' M'=5.8x 10- 7 (Foot)'

Max.

Units

Test Conditions
Vcc=5.0 V, VCOl:=3.5 V
T}5) = 25°C, Vs=2.4 V

\

4. All typical values specified at Vce=5.0 V and T,mb=25°C unless
otherwise noted.
5. The luminous intensity is measured at Tamb""TJ=25°C. No time is
allowed for the device to warm up prior to measurement.

MSD23'O

2':'126

thru MSD23'3TXV/TXVB

ELECTRICAL CHARACTERISTICS (-55°C to
Description

Symbol

Supply Current'(quiescent)

Icc

Supply Current (operating)

Icc

Column Current at any
Column Input(2)

ICOL
(All)

+ 100°C) (unless otherwise specified)

Min.

Typ.(1)

Max.

Units

2

5.0

mA

Vs=O.4 V

2.5

5.0

mA

Vs=2.4 V

3

10.0

mA

10

~

Vs=O.4 V

520

mA

Vs =2.4 V

O.B

V

3BO

ICOL
Vs. Clock or Data Input
Threshold Low

VIL

Vs. Clock or Data Input
Threshold High

VIH

2.0

Data Out Voltage

VOH

2.4

Test Conditions
Vcc =5.25 V
VCLK = VOATA = 2.4 V
All SR Stages = Logical 1

FCLK=5 MHz
Vcc=5.25 V
VCOL =3.5 V
All SR Stages = Logical 1

Vcc=4.75 V - 5.25 V

V
3;6

VOL
-30

V

IOH=-0.5 mA

0.2

0.4

V

IOL=1.6 mA

-110

-300

~

-1

-10

~

Input Current Logical 0
Vs only

IlL

Input Current Logical 0
Data. Clock

IlL

Input Current Logical 1
Data. Clock

IIH

10

~

Input Current Logical 1
Vs

I)H

200

~

Power Dissipation per
Package

Po

0.52

Thermal Resistance IC
Junction-to-Pin

RBJ_PIN

25

W

Vcc=5.25 V
ICOL=O mA

Vcc=4.75 V - 5.25 V. VIL=O.B V.

Vcc=4.75 V - 5.25 V. VIH =2.4 V

Vcc=5.0 V. VCOL =3.5 V. 17.5% OF
15 LEOs on per character. Vs=2.4 V

°CIWI
Device

Notes:
1. All typical values specified at

Vcc~5.0 V and Tamb=25°C unless
otherwise noted.
2. See Figure 3 - Peak Column Current vs. Column Voltage.

FIGURE 3. PEAK COLUMN CURRENT
VS. COLUMN VOLTAGE
600
500

t

!...

400

MSD2310-1l

f- MSD23111231212313
300

~ 200

8
ii

-100

o0.0

J

.JI

1.0

2.0

3.0

4.0

5.0

6.0

V,.I - ColulM Voltage· VolIl

MSD2310 lhru MS02313TXV/TXVB

2-127

FIGURE 4. BLOCK DIAGRAM
Column Drive Inputs
Column
12345

{'>

{'j-J
~

-1'\

rv'

LED
Matrix
2

~

LED
Matrix
3

~>
~

LED
Matrix
4

*

:.~*

II

Serial
Data
Input

I

1 2 345 6 7
Rows

Blanking
Control, VB

--

11

1 234 567

I
Rows 1-7

Rows 1-7

I
Rows 1-7

. Constant Current Sinking LED Drivers

~ ~ ~
Rows 8-14

Rows 15-21

Rows 22-28

28·Bit SIPO Shift Register

---

Serial
Data
Output

1

Clock

CONTRAST ENHANCEMENT FILTERS FOR SUNLIGHT READABILITY
Display Color
Part No.

Filter Color

Marks Polarized Corp.·
Filter Series

Optical Characteristics of Finer

Red, HER
MSD2310, 2312

Red

MPC 20·15C

25%@ 635 nm

Yellow
MSD2311

Amber

MPC 30·25C

25%@ 583 nm

Green
MSD2313

Yellow/Green

MPC 50·22C

22%@ 568 nm

Multiple Colors
High Ambient Light

Neutral Gray

MPC aO·10C

10% Neutral

Multiple Colors

Neutral Gray

MPC aO·37C

37% Neutral

.
.

l!l
·c
III
'0

IL

.!!!
:::II

I:!
U

• Marks Polarized Corp.
25·B Jefryn Blvd.
Deer Park, NY 11729
516·242·1300
FAX (516) 242·1347
Marks Polarized Corp. manufactures to MIL·I·4520B inspection system.

w.

MSD2310 Ihru MSD2313TXVITXVB

2-128

GENERAL QUALITY ASSURANCE LEVELS

The parts are tested in conformance with Quality Level A of
MIL-D-87157 for hermetically sealed LED displays with
100% screening. The product is tested to Tables I, II, lila
and IVa.
Table 1_ Quality Level A of MIL-D-87157
Test Screen

Method

Conditions

1. Precap Visual

2072
MIL-STD-750

2. High Temperature Storage

1032
MIL-STD-750

Tamb =125°C, Time=24 hours

3. Temperature Cycling

1051
MIL-STD-750

4. Constant Acceleration

2006
MIL-STD-750

Condition B, 10 Cycles, 15 min. Dwell
Tamb =-65°C to + 125°C
10,000 G's at YI Orientation

5. Fine Leak

1071
MIL-STD-750

Condition H, Leak Rate :s5x 10-7 ccls

6. Gross Leak

1071
MIL-STD-750

Condition C

7. Interim Electrical/Optical Tests(2)

8. Burn-In(t)
9. Final Electrical Test

Icc (at VB=O.4 V and 2.4 V), ICOL (at VB=O.4 V and 2.4 V), IIH
(VB, Clock and Data In), IlL (VB, Clock and Data In),
IOH' IOL' Visual Function and Iv Peak. VIH and VIL inputs
are guaranteed by the electronic shift register test.
Tamb =25°C.
1015
MIL-STD-883

Same as Step 7.

(2)

Alcc= + 1-1 mA, AIIH= + 1-10 mA (Clock and Data In),
AIOH = + 1-10% of initial value, AIv = -20%

10. Delta Determinants
. 11. External Visual

Condition Bat Vcc=VB=5.25 V, VCOL =3.5 V, Tamb =100°C.
LED On-Time Duty Factor = 5%, t=160 hours

2009
MIL-STD-883

Table II. Group A Electrical Tests - MIL-D-87157
SubgrouplTest

Subgroup 1
DC Electrical Tests at 25°C

Parameters

LTPD

Icc (at VB =0.4 V and 2.4 V), ICOL (at VB=O.4 V and 2.4 V),
IIH (VB, Clock and Data In), IlL (VB, Clock and Data In), IOH' IOL'
Visual Function and Iv Peak. VIH and VIL inputs are guaranteed
by the electronic shift register test.

5

Subgroup 2
Selected DC Electrical Tests at High
Temperatures(2)

Same as Subgroup 1, except delete Iv and Visual Function,
Tamb = 100°C

7

Subgroup 3
Selected DC Electrical Tests at Low
Temperatures(2)

Same as Subgroup 1, except delete Iv and Visual Function,
Tamb =-55°C

7

Subgroup 7
Optical and Functional Tests at 25°C

Satisfied by Subgroup 1

5

Subgroup 8
External Visual

MIL-STD-883, Method 2009

7

Subgroup 4, 5 and 6 Not Tested

Notes:
I. MIL-STO-883 test method applies.
2. Limits and conditions are per the Electrical/Optical

Characteristics. The
10H and 10L tests are the inverse of VOH and VOL specified in the
Electrical Characteristics.
MSD23tO thru MSD2313TXVfTXVB

2-129

.

Table lila Group B Classes A and B of MIL-O-871S7
Subgroup/Test

Subgroup 1
Resistance to Solvents
Internal Visual and Mechanical

MIL-STD-7S0
Method

Sample
Size

Conditions

1022

4 Devices/O Failures

2075

Inspection may be performed through
glass cover. includes front and back
cavities

1 Device/O Failures

Subgroup 2(1,2)
Solderability

2026

Tamb = 245°C for 5 seconds

LTPD=15

Subgroup 3
Thermal Shock (Temp Cycle)

1051

Condition 81.

1021

Within 24 hours after completion of
moisture resistance test

I
I

Moisture Resistance<3)
Visual Inspection Endpoints

H5. min.

Hermetic Seal

1071

Fine Leak

1071

Condition G or H

Gross Leak

1071

Condition C

Electrical/Optical Endpoints(4)

. Subgroup 4
Operating Life Test (340 Hours)

LTPD=15

Icc (at VB=0.4 V and 2.4 V).
ICOl (at VB = 0.4 V and 2.4 V).
IIH (VB. Clock and Data In).
III (VB. Clock and Data In).
IOH. IOl. Visual Function and Iv Peak.
VIH and Vil inputs are guaranteed by
the electronic shift register test.
Tamb =25°C .
1027

Electrical/Optical Endpoints(4)
Subgroup 5
Non-Operating (Storage)
Life Test (340 hours)

Dwell

Tamb= + 100°C atVcc= VB =5.25 V.
Vco l =3.5 V.LED on time DF=5%

LTPD=10

Same. as Subgroup 3
1032

Electrical/Optical EndpointS(4)
Notee:
1. Whenever electrical/optical tests are not required as endpoints. electrical
rejects may be used.
2. The lTPD applies to the number of leads inspected except in no
case shall less than 3 displays be used to provide the number of
leads required.

Tamb = + 125°C

LTPD=10

Same as Subgroup 3
3. Initial condnioning shall be a 15 degree inward bend and back to original
position. one cycle.
4. Limits and conditions are per the Electrical/Optical Characteristics. The
IOH and IOL tests are the inverse of VOH and VOL specified in the··
Electrical Characteristics.

MSD23101hru MSD2313TXVITXVB

2-130

Table IVa. Group C, Classes A and B of MIL·D·87157
Subgroup/Test

MIL·STD·750
Method

Conditions

Subgroup 1(1)
Physical Dimensions

2066

Subgroup 2(1.2)
Lead Integrity

2004

Hermetic Seal

1071

Fine Leak

1071

Condition G or H

Gross Leak

1071

Condition C

2016

1500G·s. Time = 0.5 ms. 5 Blows in
Each Orientation Xl. Yl. Y2

Subgroup 3
Shock
Vibration. Variable Frequency
Constant Acceleration
External Visual(3)

External Visual(3)
Subgroup 5
Bond Strength(?)
Subgroup 6
Operating Life Tes~8)

2 Devices/O Failures
Condition B2

LTPD= 15

LTPD=15

2056
2006

10.000G·s at Yl Orientation

1010 or 1011

Electrical/Optical Endpoints

Subgroup 4(5.6)
Salt Atmosphere

Sample
Size

Icc (at VB = 0.4 V and 2.4 V).
ICOL (at VB =0.4 V and 2.4.V).
I)H (VB. Clock and Data In).
IOL (VB. Clock and Data In).
IOH. IOL. Visual Function and Iv Peak.
VIH and VIL inputs are guaranteed by
the electronic shift register test.
Tamb =25°C.
1041

LTPD= 15

1010 or 1011
2037

Condition A

LTPD=20 (C=O)

1026

Tamb = + 100°C at Vcc=Vs=5.25 V.
VCOL =3.5 V. LED on time DF=5%

).=10

Electrical/Optical Endpoints(4)

Same as Subgroup 3

Notes:

1. The LTPD applies to the number of leads inspected except in no case
shaliless than three displays be used to provide the number of
leads required.
2. MIL·STD·BB3 test method applies.
3. Visual requirements shall be as specified in MIL·STD·BB3.
Methods 1010 or 1011.

6. Solderabilily samples shall not be used.
7. Displays may be selected prior to seal.
B. If any given inspection lot undergoing Group 8 inspection has been
selected to satiSfy Group C inspection requirements, the 340·hour life

tests may be continued on test to 1000 hours in order to salisfy the

Group C life Test requirements. In such cases, either the 340·hour endpoint measurement shall be made a basis for Group B lot acceptance or

4. Limits and conditions are per the electrical/optical characteristics. The
IOH and tOl tests are the inverse of VOH and VOL specified in the

Ihe 1000·hour endpoint measurement shall be used as the basis for both
Group S and Group C acceptance.

Electrical Characleristics.

5. Whenever electrical/optical tests are not required as endpoints. electrical

reiecls may be used.

MSD2310 Ihru MSD2313TXV/TXVB
2-131

THERMAL CONSIDERATIONS
The small alphanumeric displays are hybrid LED and
CMOS assemblies that are designed for reliable operation
in commercial, industrial, and military environments. Optimum reliability and optical performance will result when the
·junction temperature of the LEDs and CMOS ICs are kept
as low as possible.
· THERMAL MODELING
MSD231 X displays consist of two driver ICs and four 5 x 7
LED matrixes. A thermal model of the display is shown in
Figure 5. It illustrates that the junction temperature of the
semiconductor = junction self heating + the case temperature
rise +the ambient temperature. Equation 1 shows this
relationship.
.
FIGURE 5. THERMAL MODEL

· Equation 1.

TJ(LED)= PLED Z8JC+ PCASE (R8JC+ R8CAl+ TA
TJ(LED)= [(ICOL/28) VF(LED) Zrucl + [(n/35) ICOL DF (5 Veou + Vcc Icel • [R8JC + R8CAl + TA
The junction rise within the LED is the product of the
thermal impedance of an individual LED (37°CfW,
·DF = 20%, F = 200 Hz), times the forward voltage, VF(LED),
and forward current, IF(LED), of 13 - 14.5 mAo This rise
averages TJ(LED)= 1°C. The table below shows the VF(LED)
for the respective displays.

Part Number

VF
Min.

Typ.

MSD2310

1.6

1.7

2.0

MSD2311i2/3

1.9

2.2

3.0

Max.

The junction rise within the LED driver IC is the combination
of the power diSSipated by the IC quiescent current and the
28 row driver current sinks. The IC junction rise is given in
Equation 2.
A thermal resistance of 28°CfW results in a typical junction
rise of 6°C.
Equation 2.

TJ(IC) = PCOL (R8JC+ R8CAl+ TA
TJ(IC) = [5 (VCOL-VF(LED» • (ICOL /2) • (n/35) DF+ Vce • Icel • [Rruc + R8CAl + TA

MSD2310 lhru MSD2313TXVITXVB

2':132

THERMAL MODELING (Cont.)
For ease of calculations the maximum allowable electrical
operating condition is dependent upon the aggregate
thermal resistance of the LED matrixes and the two driver
ICs. All of the thermal management calculations are based
upon the parallel combination of these two networks which
is 15°C/W. Maximum allowable power dissipation is given
in Equation 3.
Equation 3.

PDISPLAY = 5 VCOL ICOL

(n/35) DF + Vcc Icc

For further reference see Figures 2, 7, 8, 9, 10 and 11.

KEY TO EQUATION SYMBOLS
DF
Icc
ICOL

n
PCASE
PCOL
PD1SPLAY
PLED
ReCA
ReJC
TA
TJ(IC)
TJ(LED)
TJ(MAX)
VCC
VCOL
VF(LED)
ZeJC

Duty factor
Quiescent IC current
Column current
Number of LEDs on in a 5 x 7 array
Package power dissipation excluding LED under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of an LED
Thermal resistance case to ambient
Thermal resistance junction to case
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal impedance junction to case

MSD2310 thru MSD2313TXVITXVB

2-133

OPTICAL CONSIDERATIONS

FIGURE 9. PACKAGE POWER DISSIPATION

The light output of the LEDs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For
optimum light output, keep the thermal resistance of the
socket or PC board as low as possible.

......... !

3.~,

...8.
0

1.0

1
is

I..
'"

;0 ~"~"'~' '!~ ~' '~' 'i'.~. .~. .~.:..~.~. .~. ~"·~·"~"·§"·~·~ :~ .~ "~ ·; ze.f.~·:~. ~!·:~-·"~"'i~ "'~"
I!

vel: - 5V,! Icc = SmAoJ
vchllcol ='380
OF = 20%, Ta - !!s·c

c

FIGURE 6. NORMALIZED LUMINOUS INTENSITY
VS. JUNCTION TEMPERATURE

"1:J

Y

1.5
~,

Do

./

0.5

/' ""

l!
0

Tam25"C

:.

ii ~" '~"'I"~' ~' ' ~' ~' ~' ~ ' ~' ~' ~"'~"'~"!~"'~ "~ '~"'I"~ '~"'I"~ '~"'* ~"'; '

0.0

V

,/

o

5

10

15
20
25
30
LEOs per Chsracter

35

40

1

FIGURE 10. MAX. CHARACTER POWER DISSIPATION

'--"""":--"':'7:=:-.,...........,."....,:--...,....--...----.

~ 0.50 ~__
TJ· LED Junction Temperature ··C

5

I 0.40 ~-.';!:::':'E~~'-';'+--I--7P~:.*---I
~

When mounted in a lO°C/W socket and operated at
Absolute Maximum Electrical conditions, the MSD231X will
show an LED junction rise of 17°C. If TA = 40°C, then the
LED's TJ will be 57°C. Under these conditions Figure 7
shows that the Iv will be 75% of its 25°C value.

~0.3O~~F-~~~-~~~~~--+-~

!
a 0.20 r-t:t:~~~I-=P~'-11

FIGURE 7. MAX. LED JUNCTION TEMPERATURE
VS. SOCKET THERMAL RESISTANCE

J

+. . . . . . . I. . . . . . . .+. . . . . . +. . . . . . . I. . . .

0.10

50~~--~~--~~~~~~~~~

5

:~

i

.......

O.OO ....................o..a..I.................................o...I..&........1.&.<......J......I.o..&.J

o

i

0
! "'"
§ 0, 35 r-+-+--+-+-ie-+~F"""'-~I--+--I

~ ~

~

D

i

o~~~~~~~~~~~~~~

5

10 15 20 25 30 35 40 45
Socket Thermal Resistance· OCIW

50

...

.

..

1.0

:.

0.5

i

0.0 o

35

40

Vee =5V, Icc =5mA
:

I

I

I

Veol':' 3.5V. lcol = 380mA
0.40

J

y

0.20

I

0.10

E--+~.;.e:;.+-::::oit"""=+-+--J~-I

B 0.00 lE~.Jti~E::3E::J:::j:::l=::I~~

V

V

--r-,.--r-.......

~--r--r-"T""-"!".

is 0.30 1'-;"'F-TI'lI:+-lr---!e--;--:::.dI"c;..-:.k,..--I

FIGURE 8. MAX. PACKAGE POWER DISSIPATION
2.0
c
a
Vcc
Icc
11
Veol = 3.~, leol =,520
'ii
1.5
OF = 20%, Ta = 25°C V
is

~ 5.25~. =~o::l

0.50

,
c

5r-+_+--+_+-~P_=_0~~_nN~!~+_~--i
o

15
20
25
30
LEOa per Character

FIGURE 11. CHARACTER POWER DISSIPATION

c;' ... 15 1io--"'fJ......--~+--+!_+-;V,;;;CC~=5~.2=5V~,;.;ICC=-1'":1:-:0~mA;.:·--I
~ 10 r-+_+--+_+-~n:-=-;2O:1:L:":'E0:'1S~,_OF_t-2O%_r:--I

l!'"
0

10

A"

+~-.-.~.;....~
.....
~~...~..~~.~~..-!~~.,3-.~-.y~.;~~~-.~-;~~-2~-..~~:..-...~
...

..-...-...

3..

5

30 r-+-+--+-+--j.......
..",~-+-I--!---I

!Wii ::~..-...-...+~~

i

r--:~"""!-::::;;ooI!I"'--!--:-:.I=~-'9'--l

o

V

5

10

15
20
25
30
LEOs per Character

35

40

,/
5

10

15
20
25
30
LEOs per Character

35

40
MSD2310 lhru MSD2313TXVITXVS

2-134

SIEMENS

YELLOW
HIGH EFF. RED
HIGH EFF. GREEN

MSD2351 TXVITXVB
MSD2352TXVITXVB
MSD2353TXVITXVB

Sunlight Viewable .200" 4·Character 5x7 Dot Matrix
Serial Input Alphanumeric Military Display
112
(2.84)

.010(.25)
•.002 (.05)

.1

T.:1 ~2tO(635)
(4.88) (8.43)

•

~=E=::=I=::4~::::;::=:::=~ ~

.

•.010 (.25)

PIn

1

Funcdon
Column 1
Column 2
Column 3
Column 4
ColumnS
No Connection

Data Out

12 PL.
10
11
12

•.003 (.08)
Pin 1 marked by

FEATURES
• Four .200n Dot Matrix Characters
• Three Colors: Yellow, High Efficiency
Red, High Efficiency Green
• Sunlight Viewable
• Wide Viewing Angle
• Bullt·in CMOS Shift Registers with
Constant Current LED Row Drivers
• Shift Registers Allow Custom Fonts
• Easily Cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Military Operating Temperature Range:
_55· to + 100·C
• Categorized for Luminous Intensity
• Ceramic Package, Hermetically Sealed
Flat Glass Window
• TXVB Process Conforms to MIL·D·B7157
Quality Level A Test and Tables I, II, ilia

and IV
• TXV Process Conforms to a Modified
MIL·0·B7157 Quality Level A Test and
Table I

dot and by notch on
underside of package

Year
WorkWeek
Ba1chCod.

VB
Vee
Clock
Ground
Data In

<=I r::J r::J r::J

i

Hue Code
Luminous
IntensityCode
<=I r::J r::J

Part Number Siemens
TOLERANCE: •.015 (ex"ptions noled)

DESCRIPTION
The MSD2351 through MSD2353TXV ITXVB are four digit 5x7 dot
matrix serial input alphanumeric displays. The displays are available in
yellow, high efficiency red, or high efficiency green. The package is a
standard twelve-pin hermetic package with glass lens. The display
can be stacked horizontally or vertically to form messages of any
length. The MSD235X has two fourteen-bit CMOS shift registers with
built-in row drivers. These shifi registers drive twenty-eight rows and
enable the design of customized fonts. Cascading multiple displays is
possible because of the Data In and Data Out pins. Data In and Out
are easily input with the clock signal and displayed in parallel on the
row drivers. Data Out represents the output of the 7th bit of digit
number four shift register. The shift register is level triggered. The like
columns of each character in a display cluster are tied to a single
pin. (See Block Diagram). High true data in the shift register enables
the output current mirror driver stage associated with each row of
LEOs in the 5x7 diode array.
The TTL compatible VB input may either be tied to Vee for maximum
display intensity or pulse width modulated to achieve intensity control
and reduce power consumption.
.
-Continued

See Appnote 44 for application information, and Appnotes 18, 19, 22,
and 23 for additional information.

2-135

DESCRIPTION (Continued)
In the normal mode of operation, input data for digit four,
column one is loaded into the seven on-board shift register
locations one through seven. Column one data for digits 3,
. 2, and 1 is shifted into the display shift register locations.
Then column one input is enabled for an appropriate period
of time, I A similar process is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time into the shift
register is t, then with five columns, each column of the
display is operating ata duty factor of:

FIGURE 2. MAX. ALLOWABLE. POWER DISSIPATION
VS.TEMPERATURE
1.5

:as==
;o .""Ii
II

Rth(JA) = 3SdC/W"

R~(JA)I = sslClW'

EO
~
E ; 0.5

"
0
:!!a.
'lC

1j(MI

a.
Q

With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1/[5x(100))=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.

0.0
-60

-40

~ '\

\

~+

-20 0
20 40 60 80 100 120
Ta - Ambient Temperatura - °C

AC ELECTRICAL CHARACTERISTICS
(Vee=4.75 to 5.25 V, Tamb =-55°C to +100°C)
Symbol Description Min. Typ!l) Max!2) Units Fig.

Maximum Ratings
Supply Voltage Vee to GND ........... -0.5 V to + 7.0 V
Inputs, Data Out and VB ........... -0.5 V to Vee + 0.5 V
Column Input Voltage, Veol ........... -0.5 V to + 6.0 V
Operating Temperature Range ........ -55°C to + 100°C
Storage Temperature Range .......... -65°C to + 125°C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5 sec ................. 260°C
Maximum Power Dissipation.
at Tamb =25°C ............................ 1.35 W
Notes:

1. Operation above + 100°C ambient is possible provided the following
condition are met The iunction should not exceed TJ = 125°C and the
case temperature (as measured at pin 1 or the back of the display)
should not exceed Tc = 100

\. \

1.0

~1

DF=_T_
5(T+t)
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the
display should be refreshed (turned on) at a minimum rate
of 100 times per second.

2.

'

ce.

TSETUP

Setup Time

50

10

ns

1

THolO

Hold Time

25

20

ns

1

TWl

Clock Width
Low

75

45

ns

1

TWH

Clock Width
High

75

45

ns

1

F(elK)

Clock
Frequency

MHz

1

TTHl,
TTlH
TpHl,
TplH

6

5

Clock Transition Time

75

200

ns

1

Propagation
Delay Clock
to Data Out

50

125

ns

1

Notes:

Maximum dissipation is derived from Vcc =5.25 V. VB=2.4 V.
LEOs on per character. 20% OF.

1. All typical values specified at Vee =5.0 V and Tamb =25°e unless
otherwise noted.
2. VB Pulse Width Modulation Frequency - 50 KHz (max).

Veal =3.5 V 20

FIGURE 1. TIMING CHARACTERISTICS
CLEANING THE DISPLAYS
IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
cleaning solution is hot 0.1. water (60°C) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do
not use commercial dishwasher detergents.

2.4V

ClOCK
O.4V

2.0 V

For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning proceSSing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.

DATA IN

O.BV
2.4V
DATA OUT
O.4V

MSD2351

2-136

thr" MSD2353TXVrrxVB

RECOMMENDED OPERATING CONDITIONS
Parameter

Symbol

Min.

Nom.

Max.

Supply Voltage

VCC

4.75

5.0

5.25

V

Data Out Current, Low State

IOl

1.6

mA

-0.5

mA

Data Out Current, High State

IOH

Column Input Voltage, Column anI')
Setup Time

VCOl

2.75

TSETUP

70

Hold Time

THolD

30

Width of Clock

TW(ClK)

75

Clock Frequency

TClK

Clock Transition Time

TTHl

Free Air Operating Temperature Range

Tamb

Units

3.5
45

V
ns
ns
ns

5
-55

MHz

200

ns

+100

°C

Note:

1. See Figure 3 - Peak Column Current vs. Column Voltage.

OPTICAL CHARACTERISTICS
Yellow MSD2351
Symbol

Min.

Typ.<4)

Peak Luminous Intensity per LED(1. 3)
(Character Average)

IVPEAK

2400

3400

!,cd

Peak Wavelength

APEAK

583

nm

AD

585

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vcc=5.0 V, VCOl =3.5 V
T}5)=25°C, VB=2.4 V

High Efficiency Red MSD2352
Symbol

Min.

Typ.<4)

Peak Luminous Intensity per LED(1, 3)
(Character Average)

IVPEAK

1920

2850

!,cd

Peak Wavelength

APEAK

635

nm

AD

626

nm

Description

Dominant Wavelength(2)

Max.

Units

Test Conditions

Vcc=5.0 V, VCOl =3.5 V
T}5)=25°C, VB=2.4 V

High Efficiency Green MSD2353
Symbol

Min.

Typ.<4)

Peak Luminous Intensity per LED(1. 3)
(Character Average)

IVPEAK

2400

3000

!,cd

Peak Wavelength

ApEAK

568

nm

AD

574

nm

Description

Dominant Wavelength(2)

Notes:
1. The displays are categorized for luminous intensity with the intensity
category designated by a letter code on the bottom of the package.
2. Dominant wavelength 1o. is derived from the CIE chromaticity diagram, and
represents the single wavelength which defines the color of the device.

3. The luminous sterance of the lED may be calculated using the following
relationships: lv (cd/m') = Iv (Candela)/A (Meter)'
lv (Footlamberts) =.Iv (Candela)/A (Foot)'
A=5.3x 10·' M'=5.8x 10·' (Foot)'

4.

Max.

Units

Test Conditions

Vcc=5.0 V, VCOL.:=3.5 V
T}5)=25°C, VB=2.4 V

All typical values specified at Vcc=5.0 V and Tamb =25°C unless

otherwise noted.
5. The luminous intensity is measured at Tamb= TJ= 25°C. No time is
allowed for the device to warm up prior to measurement.

MSD2351 thr. MSD2353TXVITXVB

2-137

ELECTRICAL CHARACTERISTICS (-55°C to

Description

Symbol

Supply Current (quiescent)

+ 100°C) (unless otherwise specified)

Min.

Typ.

Icc

Max.

Units

5.0.

mA

VB=O.4 V

Test Conditions

5.0

mA

VB=2.4 V

Supply Current (operating)

Icc

10.0

mA

Column Current at any
Column Input(l)

ICOl
(All)

10

#J.A

VB=O.4V··

650

mA

VB=2.4 V

0.8

V

550

ICOl
VB, Clock or Data Input
Threshold Low

Vil

VB, Clock or Data Input
Threshold High

VIH

2.0

Data Out Voltage

VOH

2.4

Vcc=5.25 V
VClK=VDATA = 2.4 V
All SR Stages = Logical 1

FClK =5 MHz
Vcc=5.25 V
VCOl =3.5 V
All SR Stages = Logical 1

Vcc=4.75 V - 5.25 V

V

Val
-30

-110

V

IOH=0.2 mA

0.4

V

IOl = 1.6 mA

-300

#J.A

Input Current Logical 0
VB only

III

Input Current Logical 0
Data, Clock

III

-10

#J.A

Input Current Logical 1
Data, Clock

IIH

10

#J.A

Input Current Logical 1
VB

IIH

200

#J.A

Power Dissipation per
Package

PD

0.74

W

Thermal Resistance IC
Junction-to-Pin

R8J _ PIN

25

°CIW!
Device

Vcc=4.75 V
ICOl =0 mA

Vcc=4.75 V - 5.25 V, Vil =0.8 V

Vcc=4.75 V - 5.25 V, VIH =2.4 V

Vc c =5.0 V, VCOl =3.5 V, 17.5% DF
15 LEDs on per character, VB=2.4 V

Nole:
1. See Figure 3 - Peak Column Current

VS.

Column Voltage,

FIGURE 3. PEAK COLUMN CURRENT
VS. COLUMN VOLTAGE

/

600

".

500

r

~.

:.. 400

~

Co>

c

§

300

'0
Co>

~ 200

If

'li

-100

o0.01.0

)
2.0

3.0

4.0

5.0

6.0

Vcol- Column Voltage - Volls

MSD2351 thru MSD2353TXVITXVB

2-138

FIGURE 4. BLOCK DIAGRAM
Column Drive Inpuls
Column
1 234 5

~
~
*,..-J\
~ rV

~

''Ii'

Blanking
Control, Va

Serial
Data
Input

---

LED
Matrix
2

II
II

~

LED
Matrix
3

~r
,....

.....J\,

LED
Matrix
4

~
I

1 2 3 4 567
Rows

1 234 567

~

..

1

Rows 1-7
Rows 1-7
Constant Current Sinking LED Drivers

I
Rows 1-7

r'~ r'~ ~
Rows 8-14

Rows 15-21

-

Rows 22-28

28·Bit SIPO Shift Register

Serial
Data
Output

I

Clock

CONTRAST ENHANCEMENT FILTERS FOR SUNLIGHT READABILITY
Display Color
Part No.

Filter Color

Marks Polarized Corp.·
Filter Series

Optical Characteristics of Filter

HER

Red

MPC 20·15C

25%@635nm

Yellow
MSD2351

.

Amber

MPC 30·25C

25%@583nm

;:

Green
MSD2353

Yellow/Green

MSD2352

II
N

III

'0
MPC 50·22C

22%@568nm

.

Do

III

'S

Multiple Colors
High Ambient Light

Neutral Gray

MPC 80·1 DC

10% Neutral

Multiple Colors

Neutral Gray

MPC 80·37C

37% Neutral

e

U

• Marks Polarized Corp.
25-B Jefryn Blvd. W.
Deer Park, NY 11729
516·242·1300
FAX (516) 242·1347
Marks Polarized Corp. manufactures to Mll·I·4520B inspection system.

MSD2351 thru MSD2353TXVITXVB

2-139

GENERAL QUALITY ASSURANCE LEVELS

The parts are tested in conformance with Quality Level A of
MIL-D-87157 for hermetically sealed LED displays with
100% screening. The product is tested to Tables I. II. lila
and IVa.
Table 1_ Quality Level A of MIL·D·87157
Test Screen

,

Method

Conditions

1. Precap Visual

2072
MIL-STD-750

2. High Temperature Storage

1032
MIL-STD-750

Tamb =125°C. Time=24 hours

3. Temperature Cycling

1051
MIL-STD-750

4. Constant Acceleration

2006
MIL-STD-750

Condition B. 10 Cycles. 15 min. Dwell
Tam b=-65°Cto +125°C
10.000 G's at Y1 Orientation

5. Fine Leak

1071
MIL-STD-750

Condition H. Leak Rate S5 x 10-7 eels

6. Gross Leak

1071
MIL-STD-750

Condition C

7. Interim Electrical/Optical Tests(2)

8. Burn-ln(l)

Icc (at VB=O.4 V and 2.4 V). ICOl (at VB =0.4 V and 2.4 V). IIH
(VB. Clock and Data In). III (VB. Clock and Data In).
IOH. IOl. Visual Function and Iv Peak. VIH and Vil inputs
are guaranteed by the electronic shift register test.
Tam b=25°C.
1015
MIL-STD-883

9. Final Electrical Test (2)

Same as Step 7.

10. Delta Determinants
11. External Visual

Condition B at Vcc = VB = 5.25 V. VCOl = 3.5 V. Tamb = 100°C.
LED On-Time Duty Factor = 5%. t = 160 hours
4lcc= + /-1 mAo 41 1H = + /-10 mA (Clock and Data In).
410H = + /-10 0/0 of initial value. 4Iv=-20%

2009
MIL-STD-883

Table 11_ Group A Electrical Tests - MIL·D-87157
Subgroup/Test

Subgroup 1
DC Electrical Tests at 25°C

Parameters

LTPD

Icc (at VB=O.4 V and 2.4 V). ICOl (at VB=O.4 V and 2.4 V).
IIH (VB. Clock and Data In). III (VB. Clock and Data In). IOH. IOl.
Visual Function and Iv Peak. VIH and Vil inputs are guaranteed
by the electronic shift register test.

5

Subgroup 2
Selected DC Electrical Tests at High
Temperatures(2)

Same as Subgroup 1. except delete Iv and Visual Function.
Tam b=100oC

7

Subgroup 3
Selected DC Electrical Tests at Low
Temperatures(2)

Same as Subgroup 1. except delete Iv and Visual Function.
Tamb =-55°C

7

Subgroup 7
Optical and Functional Tests at 25°C

Satisfied by Subgroup 1

5

Subgroup 8
External Visual

MIL-STD-883. Method 2009

7

Subgroup 4. 5 and 6 Not Tested

Notes:
1. Mll·STD·883 test method applies.
2. limits and conditions are per the Electrical/Optical Characteristics. The
10H and 10L tests are the inverse of VOH and VOL specified in the

Electrical Characteristics.
MSD2351 thru MSD2353TXVITXVB

2-140

Table ilia. Group B, Classes A and B of MIL-D-87157
SubgrouplTest

Subgroup 1
Resistance to Solvents

MIL-STD-750
Method

Conditions

Sample
Size

4 Devices/O Failures

1022
2075

Inspection may be performed through
glass cover, includes front and back
cavities

1 Device/O Failures

Subgroup 2(1.2)
Solderability

2026

Tamb = 245°C for 5 seconds

LTPD=15

Subgroup 3
Thermal Shock (Temp Cycle)

LTPD= 15

Internal Visual and Mechanical

1051

Condition 81,15 min. Dwell

Moisture Resistance(3)
Visual Inspection Endpoints

1021

Within 24 hours after completion of
moisture resistance test

Hermetic Seal

1071

Fine Leak

1071

Condition G or H

Gross Leak

1071

Condition C

Electrical/Optical EndpointS(4)

Subgroup 4
Operating Life Test (340 Hours)

Icc (at VB = 0.4 V and 2.4 V),
ICOl (at VB = 0.4 V and 2.4 V),
IIH (VB, Clock and Data In),
III (VB, Clock and Data In),
IOH' IOl' Visual Function and Iv Peak.
VIH and Vil inputs are guaranteed by
the electronic shift register test.
Tamb =25°C.
1027

Electrical/Optical Endpoints(4)
Subgroup 5
Non-Operating (Storage)
Life Test (340 hours)

Tamb = +100°C at Vcc=V8=5.25 V,
VCOl = 3.5 V, LED on time DF = 5%

LTPD=10

Same as Subgroup 3 .
1032

Electrical/Optical EndpointS(4)

Tamb = + 125°C

LTPD=10

Same as Subgroup 3

Notea:
1. Whenever electrical/optical tests are not required as endpoints, electrical

3. Initial conditioning shall be a 15 degree inward bend and back to origipal

rejects may be used.
2. The lTPD applies to the number of leads inspected except in no
case shall less than 3 displays be used to provide the number of
leads required.

position, one cycle.

4.

limits and conditions are per the Electrical/Optical Characteristics. The
IOH and IOL tests are the inverse of VOH and VOL specified in the
Electrical Characteristics.

MSD2351 'hru MSD2353TXVITXVB

2-141

Table IVa. Group C, Classes A and B of MIL-D-87157
MIL-STD-750
Method

SubgrouplTest

Conditions

Subgroup 1(1)
Physical Dimensions

2066

Subgroup 2{1, 2) .
Lead Integrity

2004

Hermetic Seal

1071

Fine Leak

1071

Condition G or H

Gross Leak

1071

Condition C

2016

·1500G·s. Time = 0.5 ms. 5 Blows in
Each Orientation X1. Y1. Y2

Subgroup 3
Shock
Vibration. Variable Frequency

2006

External Visual(3)

.'

Subgroup 5
Bond Strength(7)
Subgroup 6
Operating Life TesllB)

Condition B2

LTPD=15

LTPD=15

10.000G·s at Y1 Orientation

1010 or 1011

Electrical/Optical Endpoints

External Visual(3)

2 Devices/O Failures

2056

Constant Acceleration

Subgroup 4(5, 6)
Salt Atmosphere

Sample
Size

Icc (at VB=O.4 V and 2.4 V).
ICOl (at VB = 0.4 V and 2.4 V).
I'H (VB. Clock and Data In).
IOl (VB. Clock and Data In).
IOH. IOl. Visual Function and Iv Peak,
V,H and V,l inputs are guaranteed by
the electronic shift register test.
Tamb =25°C.

,

1041

LTPD=15

1010 or 1011
2037

Condition' A

LTPD=20 (C=O)

1026

Tamb = + 100°C at Vcc =VB=5.25 V.
VCOl =3.5 V. LED on time DF=5%

A=10

Electrical/Optical Endpoints(4)
Notes:

1. The lTPD applies to the number of leads inspected except in no case
shall less than three displays .be used to provide the number of
leads required.

2. Mll-STD-883 test method applies.
3. Visual requirements shall be as specified in Mll-STD-883.
Methods 1010 or 1011.
4. Limits and conditions are per the electrical/optical characteristics.

Same as Subgroup 3
6. Solderability samples shall not be used.
7. Displays may be selected prior to seal.
8. If any given inspection lot undergoing Group B inspection has been

selected to satisfy Group C inspection requirements. the 340-hour life
tests may be continued on test to 1000 hours in order to satisfy the
Group C Life Test requirements. In such cases, either the 340-hour endpoint measurement shall be made a basis for Group B lot acceptance .or
the 1ODD-hour endpoint measurement shall be used as the basis for both
Group B and Group Cacceptance.
.

5. Whenever electrical/optical tests are not required as endpoints. electrical

rejects may be used.

MSD2351

2-142

thru MSD2353TXV/TXVB

THERMAL CONSIDERATIONS
The small alphanumeric displays are hybrid LED and
CMOS assemblies that are designed for reliable operation
in commercial, industrial, and military environments. Optimum reliability and optical performance will result when the
junction temperature of the LEDs and CMOS ICs are kept
as low as possible.

THERMAL MODELING
MSD235X displays consist of two driver ICs and four 5 x 7
LED matrixes. A thermal model of the display is shown in
Figure 5. It illustrates that the junction temperature of the
semiconductor = junction self heating + the case temperature
rise+the ambient temperature. Equation 1 shows this
relationship.
FIGURE 5. THERMAL MODEL

Equation 1.
TJ(LED) = PLED ZeJC + PCASE (ReJc + RecA) + TA
TJ(LED) = [(IcoL/28) VF(LED) ZeJcl + [(n/35) ICOL DF (5 Vcou + Vcc Icel . [ReJc + RecAl + TA
The junction rise within the LED is the product of the
thermal impedance of an individual LED (37°C/W,
DF=200f0, F =200 Hz), times the forward voltage, VF(LED),
and forward current, IF(LED), of 13 - 14.5 mA. This rise
averages TJ(LED) = 1°C. The table below shows the VF(LED)
for the respective displays.

VF

Part Number
Min.
MSD2351 12/3

1.9

I Typ. I Max.
I 2.2 I 3.0

The junction rise within the LED driver IC is the combination
of the power dissipated by the IC quiescent current and the
28 row driver current sinks. The IC junction rise is given in
Equation 2.

A thermal resistance of 28°C/W results in a typical junction
rise of 6°e.

Equation 2.
TJ(IC) = PCOL (ReJc + RecA) + TA
TJ(IC) = [5 (VCOL-VF(LED»)' (ICOL/2) . (n/35) DF+Vcc' Icel . [ReJc+ReCAl+TA

MSD2351 thru MSD2353TXVITXVB

2-143

THERMAL MODELING (Cont.)

For.ease of calculations the maximum allowable electrical
operating condition is dependent upon the aggregate
thermal resistance of the LED matrixes and the two driver
ICs. All of the thermal management calculations are based
upon the parallel combination of these two networks which
is 15°CIW. Maximum allowable power dissipation is given
in Equation 3.
Equation 3.

PDISPLAY

TJ(MAX)-TA
ReJc+RecA

PDISPLAy=5 Vcol Icol (n/35) DF+Vcc Icc
For further reference see Figures 2.7. 8. 9. 10 and 11.
KEY TO EQUATION SYMBOLS

OF
Icc
ICOl

n
PCASE
PCOl
PDISPLAY
PLED
ReCA
ReJC
TA
TJ(IC)
TJ(lED)
TJ(MAX)
VCC
VCOl
VF(lED)
ZeJC

Duty factor
Quiescent IC current
Column current
Number of LEOs on in a 5 x 7 array
Package power dissipation excluding LED under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of an LED
Thermal resistance case to ambient
Thermal resistance junction to case _
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal impedance junction to case

MSD2351 thru MSD2353TXVfTXVB

2-144

OPTICAL CONSIDERATIONS

FIGURE 9. PACKAGE POWER DISSIPATION

The light output of the LEOs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For
optimum light output, keep the thermal resistance of the
socket or PC board as low as possible.

2.0

==c,

..
.

""
.e-

~o ~"§"'~"'!~ "'~' ' i' ~' '~' '~+~' '~' '~' ~·"~" ~· §"·~·~§·~ ~ "~ ·; Z~·~ ·.~ ¥.~:.-~'~"'i~ "'~' '
.~

..........

,~_~

1

i5

J

Ta=25"C

1.5

~

~

E'

.

./'
./

1.0

./

0.5

0.0

~

,;'

OF =20%

/

/

i.........:

~o gg 1~~~~~1~
~~"~~1~~~~~~~
........ ................:................
.. .................................

Z

,I

smA

leol ='450mA, Veol ~ 3.5V:

0

FIGURE 6. NORMALIZED LUMINOUS INTENSITY
VS. JUNCTION TEMPERATURE

'D

Vcc ~ 5V, lei: =

o

5

10

15
20
25
30
LEOs per Character

35

40

.3
FIGURE 10. MAX. CHARACTER POWER DISSIPATION
.1

~~~~~~~~~~~~~~

~

~
0 ~ ~ 00 00 l00I~~
TJ - LEO Junction Temperature _·C

4

==c,

0.6

...

.

0.5

i5
Ii

0.4

~
0

0.3

I!

0.2

0

ii

When mounted in a 10 cCIW socket and operated at
Absolute Maximum Electrical conditions, the MS0235X will
show an LED junction rise of 17 cC. If TA = 40 cC, then the
LED's TJ will be 57°C. Under these conditions Figure 7
shows that the Iv will be 75% of its 25°C value.

Vcc = 5.25V, Icc = 10mA
Vcol':' 3.5V,'lcol = 600mA'._ _h,l:...l--l

I

Outy Factor

Oi

...

0..

FIGURE 7. MAX. LED JUNCTION TEMPERATURE
VS. SOCKET THERMAL RESISTANCE

.c
(J

. . . . I. ·. . ·. ·. . ·1...............+. . . . . . .+. . . . . . . .I·......·

50.-;r-,--~~--~-r~~,-~--,

iii

0.1

::;;
0.0

0

5

10

15
2
25
30
LEOs per Character

35

40

FIGURE 11. CHARACTER POWER DISSIPATION

--r--.,.--.----.

0.5 .,-.....,,............- - - . . -......

==c,

o~~~~~~~~~~~~~~

o

5

10 15 '20 25 30 35 40 45
Socket Thennal Resistance - ·CIW

.t 25VI

VCCr5 .

,;

Veol _ 3.5J, leol 600m
DF _ 20"10, Ta _ 25"C

~ 2.0

./
~

0.2
0.1
0.0

~1.5""·"""""""""""""·"·""""7~·""""""·"·"·"

11.0

0.3

~
!(J

,ICC=,10mA!--!--t--t
D

is

JS

I.

!2.5 -:--

0.4

1

50

FIGURE 8. MAX. PACKAGE POWER DISSIPATION

~ 3.0

i...

0

5

10

15
20
25
30
LEOs per Character

35

40

/

t.
."./'
iii 0.5 I:--t""'~-+-+-"""i--+-+-I
=s
0.0

...r.................L.L.<........I..o..o.......J

L&.I.o...o.J~..,.J.............&..I........................

o

5

10

15
20
25
30
LEOs per Character

35

40
MSD23511hru MSD2353TXVITXVB

2-145

SIEMENS

PD1165
VERY BRIGHT GREEN PD1167

HIGH EFFICIENCY RED

1.16" Square 8x8 Dot Matrix Programmable Display™Module
With On Board Drivers, Built-In RAM
and Software Controllable Features

Package Dimensions in Inches (mm)

LUMINOUS

......,~.,,:+_L_:JN

INTENSITY

COIl'

.02'{.1I6j
TVP•

.08 --l.wl---....:::1!F----=;iF

t~,
Tolerance 1;.0101.25)

. FEATURES

DESCRIPTION

•
•
•
•
•
•
•

Active Display Size 1.16" Square
0.11" Dlam. Dots on 0.15~.Centers
Very Bright Green or High Efficiency Red
Intensity Matched and Binned
Readable from 35 Feet
Viewing Angle ±75°
Interlocking XJ( Steckable Packages for Larger
Displays
• On board CMOS Circuits with Complete Drive
Circuits and logic Interfaces
• Each Dot Addressable Over TTL Compatible, 8 Bit
BUS
.
• Alternate Language & Graphics Programming
Capability
• Cascadable·Synchronlzable logic for Expanded
Display Systems
• Software Controlled Attributes:
9 Levels of Intensity Settings
Memory Clear
Blanking or Blinking
BulH·ln Lamp lest
• 100% Burned In Prior to Final Test
• 20 Pin DIP Package: 0.6" Wide Rows, 0.1" Pin
Spacing
• Wave Solderable
• -20°C to +70°C Operating Range

The high efficiency red PO 1165 and very bright green
PO 1167 are modular axa dot matrix Programmable
Displays. They are constructed with highly efficient IIIN
material LEOs, packaged in a reflector package for maximum dot illumination. Further optimizing light output are
built-in CMOS drive circuits. These circuits strobe the LEOs
at peak currents that give the best time averaged luminous
intensity for the power required. The user has complete control. of the display through further built-in CMOS circuitry.
The display appearance can be set by programming an
a bit RAM.
Features such as blinking, synchronizing, blanking, one of
nine intensity levelS or lamp tests are easily programmed
through a control word. Additional external connections are
available for clock inputs, clock outputs and total intensity
control through. an external resistor.
All products are 100% burned-in and tested, then subjectedto out-going AQL's of .25% for brightness matching,
visual alignment and dimensions, .065% for electrical and
functional.
The display is constructed of epoxy filled polycarbonate with

two interconnected pcbs. A heat sink is attached to cool.the
device with its 20 pin dip lead construction. The package is
wave solderable and has been fully qualified for operation
and storage over a temperature range from -20°C to
+70 oC.

2-146

Maximum Ratings

Optical Characteristics @25°C

Vcc, DC Supply Voltage ............. -0.5 to +6.0 Vdc
VIN , Input Voltage Levels Relative
to GND (all inputs) ........... -0.5 to (Vce +0.5) Vdc
Operating Temperature ............... - 20°C to + 70 °C
Storage Temperature ................ - 20°C to + 70 °C
Relative Humidity (non condensing) @65°C ......... 90%
Power Dissipation @Vcc=5.0 V,
TA= -20°C ............. : ................. 1.6 W
Junction Temperature
@70°C (8 JA =25°C/W) ....................... 95°C
Maximum Solder Temperature .063" (1.59 mm)
below the Seating Plane, t<5 sec .............. 260°C

Spectral Peak Wavelength. . . . . . . . . . .. (HER) 630 nm typo
........... (Green) 565 nm typo
Viewing Angle, both axis
(off normal axis) ............................ ± 75°
Active Display Size ............... : ...... 1:16" square
Dot Size ............................... 0.11" diam.
Pitch (center to center dot spacing) ............... 0.15"
Time Averaged Luminous Intensity
(100% bright) . . . . .. . . . . . . . . . . . . . .. 0.5 med/dot min.
1.7 mcd/dot typo
Dot to Dot Intensity Matching Ratio .......... 1.8:1.0 max.
Display Average Intensity Matching
Ratio (per bin) ........................ 1.5:1.0 max.
Bin to Bin Matching Ratio
(adjacent bin) ......................... 1.9:1.0 max.

Recommended Operating Conditions - 20°C to + 70 °C
Parameter

Min.

Vec, Supply Voltage

4.5

VIH , Input Voltage High

2.7

Nom. Max.
5.0

Units

5.5

V
V

VIL, Input Voltage Low
Clock Fan Out
==>

_Teat-o

I--TAS ____

_TNI-O
JAOUT

1JO.D6

a.BV

2.av.

(

a.BV

(

O.4V

~

a.sv

2.4 V •

:=i:,=:

_Too~

--1

2.av.

(
I--T"......

~Tws .....

2.0V.

I--TWH-o

2.0V.

J

O.BV

~T.----t

T....

TWAIT_
T"",

PO 2435/617

2-155

SWITCHING SPECIFICATIONS (Vcc=4.5 V)
READ CYCLE TIMING
Specification Minimum
Parameter

Description

TAs

Address Setup

TCES

Chip Enable

Tws

Write Enable Setup

Too

-40°C

Units

25°C

85°C

a
a

a
a

a
a

ns

20

30

40

ns

Data Delay Time

100

150

175

ns

TR

Read Pulse

150

175

200

ns

TAH

Address Hold
Data Hold

a
a

a
a

ns

TOH

a
a

TTRI

Time to Tristate (Max time)

30

40

50

ns

TCEH

Chip Enable Hold

a

a

a

ns

TWH

Write Enable Hold

30.

40

50

ns

TACC

Total Access Time = Setup· Time + Write Time +
Time to Tristate

200

245

290

ns

TWAIT(1)

Wait Time between Reads

TCYCLE

Read Cycle Time = TRACC + TWAIT

Notes:
1. Wait 1 ~s between any Reads or Wriies after writing a Control Word with

ns

ns

a

a

a

ns

200

245

290

ns

2. All input voltages are (V'L =0.8 V. V'H=2.0 V).
3. Data out voltages are measured with 100 pF on the data bus and the
ability to source = -40 ~ and sink = 1.6 rnA. The rise and fall times are
60 ns. VOL =0.4 V. VOH = 2.4 V.

a Clear (07~ 1). Wait l~s between any Reads or Writes after Clearing a
Control Word with a Clear (07 = 0). All other Reads and Writes can be
back to back.

SWITCHING SPECIFICATIONS (Vcc=4.5 V)
WRITE CYCLE TIMING
Specification Minimum

.

Parameter

TCLR

TCLRO

.

Description

-40°C

25°C

85°C

Units

Clear RAM

1

1

1

,..s

Clear RAM Disable

1

1

1

fAs

10

10

10

ns

TAs

Address Setup

TCES

Chip Enable Setup

a

0

a

ns

TRs

Read Enable Setup

10

10

10

ns

Tos

Data Setup

20

30

50

ns

Tw

Write Pulse

60

70

90

ns

TAH

Address Hold

20

30

40

ns

TOH

Data Hold

20

30

40

ns

TCEH

Chip Enable Hold

a

a

0

ns

TRH

Read Enable Hold

20

30

40

ns

TACC

Total Access Time = Setup Time + Write Time +
Hold Time

90

110

140

ns

• Wait 1 ~s between any Reads or Writes after writing a Control Word with a Clear (07 = 1). Wait 1~s between any Reads or Writes after Clearing a Control Word
with a Clear (07=0). All other Reads and Writes can be back to bsck.

PO 2435/6/7

2-156

DC CHARACTERISTICS @25°C

Limits
Min.

Typ.

Max.

Units

Conditions

4.5

5.0

5.5

Volts

Nominal

Icc Blank (All Inputs low)

2.5

3.5

mA

Vcc=5 V, All inputs=O.B V

Icc BO lEOs/unit (100% Bright)

115

130

mA

Vcc=5V

Volts

Vcc=4.5 V to 5.5 V

Volts

Vcc=4.5 V to 5.5 V

Parameter
Vcc

VIL (All Inputs)

-0.5

V1H (All Inputs)

2.0

IlL (All Inputs)

25

O.B

VOL (00-07)

100

IJA

0.4

Volts

Vcc = 4.5 V to 5.5 V, VIN = O.B V
Vc c =4.5 V to 5.5 V

VO H (00-07)

2.4

Volts

Vcc=4.5 V to 5.5 V

10H (00-07)

-B.9

mA

Vcc=4.5 V, Vo H=2.4 V

10L (00-07)

1.6

mA

Vcc = 4.5 V, VOL = 0.4 V

Oata 1/0 Bus loading

100

pF

Clock 110 Bus loading

240

pF

Note: 1. Typical average LED drive current is 1.9 rnA. Peak current at 1/7 duty cycle is 13.1 rnA.

TOP VIEW

PIN DEFINITIONS
Pin

11

20

1. RD
2. ClKl/O

·....... :::5.. ......: .......
.....
:
.....
·DIGIT
.....
· DIGIT2 DIGIT DIGIT....
1

3

3. ClKSEl

0

4. RST

10

PIN ASSIGNMENTS
Pin

Function

1 RD
READ
2 CLK 1/0 CLOCK 110
3 CLKSELCLOCK SELECT
4 RST
RESET
5 CE1
CHIP ENABLE
6 CEO
CHIP ENABLE
7A2
ADDRESS MSB
8 A1
ADDRESS
ADDRESS LSB
9 AIl
10 GND

Pin
11
12
13
14
15
16
17
18
19
20

5.
6.
7.
B.
9.
10.
11.

CEI
CEO
A2
AI
AO
GND
WR

12.
13.
14.
15.
16.
17.
lB.
19.
20.

D7
D6
D5
D4
D3
D2

Function
WR
07
06
05
04
03
02
01
DO
Vee

WRITE
DATAMSB
DATA
DATA
DATA
DATA
DATA
DATA
DATA LSB

2-157

Dl
DO
Vee

Active low, will enable a processor to read
all registers in the PO 2435/6/7
If ClK SEl (pin 3) is low, then expect an
external clock source into this pin. If ClK
SEl is high, then this pin will be the
master or source for all other devices
which have ClK SEl low.
ClocK SElect, determines the action of
pin 2. ClK 1/0. see the section on
Cascading for an example.
Reset. Must be held low until Vcc > 4.5
volts. Reset is used only to synchronize
blinking, and will not clear the display.
Chip enable (active high).
Chip enable (active low).
Address input (MSB).
Address input.
Address input (lSB).
Ground.
Write. Active low. If the device is
selected, a low on the write input loads
the data into the PO 2435/6/7's rnernory.
Data Bus bit 7 (MSB).
Data Bus bit 6.
Data Bus bit 5.
Data Bus bit 4.
Data Bus bit 3.
Data Bus bit 2.
Data Bus bit 1.
Data Bus bit 0 (lSB).
Plus 5 volts power pin.

PO 2435/6/7

DATA INPUT COMMANDS"
CEO CEl
1
0
0
0
0
0
0

0
1
1
1
1
1
1

RD

WR

A2

A1

AO

D7

D6

D5

D2

D1

DO

X

X

X

X

X

0
1
1
1
1

1
0
0
0
0
0

1
1
1
1
1
1

0
0
0
1
1
0

0
0
1
0

X
X

X
X

X
X

X
X

X
X

X
X

X
X

0
1
1
0

1
0
1
1

0
1
0

1

X
X
X
X
X
X

0
0
0
0

1
1
1
0

0
1
1
1

0
1
0
1

0

1

X

X

X

X

X

X

1

D4 D3

1
X

The Control logic dictates all of the feafures of the display
device and is discussed in the Control Word section of this
data sheet.

MODE SELECTION
CEO

CEl

RD

WR

0

1

0

0

1
X
X

X

X
X
1

X
X
1

0

X

OPERATION

The Character Generator converts the 7-bit ASCII data into
the proper dot pattern for the 128 characters shown in the
character set chart.

Illegal
No Change
No Change
No Change

The Clock Source can originate either from the internal
oscillator clock or from an external source-usually from the
output of another PO 2435/6/7 in a multiple module display.

NOTE: 0:;; Low Logic level, 1 :;; High Logic Level, X:;; Don't Care.

The Display Multiplexer controls all display output to the
digit drivers so no additional logic is required for a display
system.

BLOCK DIAGRAM
r. - - - - - - - - - -,
IlO-Il1

I
8'

I
DISPlAY MEMORY
(flAM)

'x8

CTL
REG

Ix8

OPERATION
No Change
Read Digit 0 Data To Bus
($) Written To Digit 0
01'1) Written to Digit 1
(I) Written To Digit 2
(3) Written to Digit 3
Char. Written To Digit 0
And Cursor Enabled

The Column Drivers are connected directly to the display.

14

I

The Display has four digits. Each of the four digits is comprised of 35 LEOs in a 5x7 dot array which makes up the
alphanumeric characters.

128 CHAR.

ROM
128)(5

The intensity of the display can be varied by the Control
Word in steps of 0% (Blank). 25%. 50%. and full
brightness.

MICROPROCESSOR INTERFACE
The interface to the microprocessor is through the address
lines (AO-A2). the data bus (00-07). two chip select lines
(CEO. CE1). and read (RO) and write (WR) lines.
ClK SEL

The CEO should be held low when executing a read. or
write operation.

XCLK

1m

The read and write lines are both active low. During a valid
read the data input lines (00-07) become outputs. A valid
write will enable the data as input lines.

INPUT BUFFERING
If a cable length of 6 inches of more is used. all inputs to
the display should be buffered with a tri-state non-inverting
buffer mounted as close to the display as conveniently
possible. Recommended buffers are: 74LS245 for the data
lines and 74LS244 for the control lines.

FUNCTIONAL DESCRIPTION
The PO 2435/6/7 block diagram includes the major blocks
and internal registers.

Display Memory consists of a 5x8 bit RAM block. Each of
the four a-bit words holds the 7-bit ASCII data (bits 00-06).
The fifth a-bit memory word "is used as a control word
register. A detailed description of the control register and its
functions can be found under the heading Control Word.
Each 8-bit word is addressable and can be read from or
."
written to.

PO 2435/6/7 "

2-158

PROGRAMMING THE PO 2435/617
There are five registers within the PD 24351617. Four of
these registers are used to hold the ASCII code of the four
display characters. The fifth register is the Control Word,
which is used to blink, blank, clear or dim the entire display,
or to change the presentation (attributes) of individw.il
characters.

ADDRESSING
The addresses within the display device are shown below.
Digit 0 is the rightmost digit of the display, while digit 3 is on
the left. Although there is only one Control Word, it is
duplicated at the four address locations 0-3. Data can be
read from any of these locations. When one of these locations is written to, all of them will change together.
Address

0
1
2

3
4

5
6
7

Contents
Control Word
Control Word (Duplicate)
Control Word (Duplicate)
Control Word (Duplicate)
Digit 0 (rightmost)
Digit 1
Digit 2
Digit 3 (leftmost)

Bit D7 of any of the display digit locations is used to allow
an attribute to be assigned to that digit. The attributes are
discussed in the next section. If bit D7 is set to a one, that
character will be displayed using the attribute. If bit D7 is
cleared, the character will display normally.

CONTROL WORD
When address bit A2 is taken low, the Control Word is
accessed: The same Control Word appears in all four of the
lower address spaces of the display. Through the Control
Word, the display can be cleared, the lamps can be tested,
display brightness can be selected, and attributes can be
set for any characters which have been loaded with their
most significant bit (D7) set high.
Brightness (DO, 01): The state of the lower two bits of the
Control Word are used to set the brightness of the entire
display, from 0% to 100%. The table below shows the correspondence of these bits to the brightness.

07 06 05 04 03 02 01
0
0
0
0
0 ·0
0
0

x=

X
X
X
X

X
X
X
X

X
X
X
X

X
X
X
X

0
0

1
1

DO
0

1
0
1

Operation
Blank
25% brightness
50% brightness
Full brightness

don't care

CONTROL WORD FORMAT

07

06

05

04

03

02

01

Tn

DO

BRIGHTNESS
0% (Blank)
25%
50%
100%

03 02 ATTRIBUTE
o 0 Display Cursor Instead
Of Character
o 1 Blink Character
1 0 Display Blinking Cursor Instead
Of Character
Alternate Character
With Cursor

04 ATTRIBUTE ENABLE
o Disable Above Attributes
1 Enable Above Attributes
05 BLINK
o Blink-Attribute Disabled
1 Blink Entire Display

06 LAMP TEST
o Standard Operation
1 Display All Dots At 50% Brightness
07 CLEAR
o Standard Operation
1 Clear Entire Display
PO 2435/617

2-159

Attributes (02-04): Bits 02, 03, and 04 control the visual
attributes (i.e., blinking) of those display digits which have
been written with bit 07 set high. In order to use any of the
four attributes, the Cursor Enable bit (04 in the Control
Word) must be set. When the Cursor Enable bit is set, and
bit 07 in a character location is set, the character will take
on one of the following display attributes.
D7 06 05 04 03 02 01

Operation
Disable highlight
attribute
Display cursor' instead
of character
Blink single character
Display blinking
cursor' instead 01
character
Alternate character
with cursor'

0

0

0

X

X

B

B

0

0

0

1

0

0

B

B

0
0

0

0
0

1

b

1

0
1

1
0

B
B

B
B

0

0

0

1

1

1

B

B

07 D6 05 D4 03 02 01

o

DO

0

Lamp Test (06): When the Lamp Test bit is set, all dots in
the entire display are lit at half brightness; When this bit Is
cleared, the display returns to the characters that were
shOWing before the lamp test. The lamp test will remain if
implemented simultaneously with a clear instruction.

,1

X

DO
X

Operation
Lamp test

0

X

X

X

X

X

DO
X

Operation
Clear

CASCADING
The SMC-4740 oscillator is designed to drive up to 16
PO 2435/6/7s with input loading of 15 pF each.
The general requirements for cascading 16 displays
together are:
1. Determine the correct address for each display.
2. Tie' CEO to ground and use CE1 from an address
decoder to select the correct display,

rate of approximately 2Hz by setting bit 05 in the Control
Word. This blinking is independent of the state of 07 in all
character locations.

3. Select one of the Displays to, provide the Clock for the
other displays.

In order to synchronize the blink rate in a bank of these
devices, it is necessary to tie all devices' clocks and resets
together as described in a later section of this data sheet.

4. Tie ClK SEl to ground on other displays.
5. Use RST to synchronize the blinking between
the displays.

Operation

DO

B

X

07 06 0504 03 02 01

Blink (05): The entire display can be caused to blink at a'

X X X B

X

character and Control Word memory bits are reset to zero.
This causes total erasure of the display, and returns all digits
to a non·blink, full brighiness, non·cursor status.

Attributes are non·destructive. If a character with bit 07 set
is replaced by a cursor (Control Word bit 04 is set, and
03=02=0) the character will remain in memory andean be
revealed again by clearing 04 in the Control Word ..

o 0

X

Clear Data (07): When 07 is set in the Control Word, all

*''Cursor'' refers to a condition when all dots in a single character space are
lit to half brightness.
X = donl care
B = depends on the selected brightness

D7 06 D5 D4 D3 D2 D1

0

Blinking display

CASCADING DIAGRAM

RST
RD
WR

l

WR

vee

T
RD

RST

ClKl10

ClKSEl

P02435/617
0ll-D7

I

ftDATA 110

I ADDRESS
A4-

0

M - ADDRESS
DECODER

PB-

AIl-A2

•

CEO

CEl

-b

j

V

~

4 MORE DISPLAYS
IN BETWEEN

11 If

'~J.'

J!iL

l

~~

>

J

WR

RD

RST

ClK 110

f

ClKSEl

P024351617
DD-07

~

AD-A2

CEO

J

;F

CEl
j

ADDRESS DECODE CHIP 1 TO 4
S

PO 2435/617

2-160

VOLTAGE TRANSIENT SUPPRESSION

Step 5

It has become common practice to provide 0.Q1 Ilf bypass
capacitors liberally in digital systems. Like other CMOS
circuitry, the Intelligent Display controller chip has very low
power consumption and the usual 0.Q1 Ilf would be adequate
were it not for the LEOs. The module itself can, in some
conditions, use up to 100 mAo In order to prevent power
supply transients, capacitors with low inductance and high
capacitance at high frequencies are required. This suggests
a solid tantalum or ceramic disc for high frequency bypass.
For multiple display module systems, distribute the bypass
capacitors evenly, keeping capacitors as close to the power
pins as possible. Use a 0.01 pF capacitor for each display
module and a 22 IlF for every third display module.

Step 6

Step 7

Load a "P" in the right·hand digit.
If you loaded the information correctly, the
PD 2435/6/7 would now show the word "STOP."
BLINK A SINGLE CHARACTER
Into the digit, second from the right, load the hex
code "CF," which is the code for an "0" with
the 07 bit added as a control bit.
NOTE: The "0" is the only digit which has the
control bit (07) added to normal ASCII data.
Load enable blinking character into the control
word register.
The PO 2435/6/7 should now display "STOP"
with a flashing "0".

ADD ANOTHER BLINKING CHARACTER
Into the left hand digit, load the hex code "03"
which is for an "S" with the 07 bit added as a
control bit.
The PO 2435/6/7 should now display "STOP"
with a flashing "0" and a flashing "S."
ALTERNATE CHARACTERI
CURSOR ENABLE
Step 9
Load enable alternate characterlcursor into the
control word register.
The PO 2435/6/7 should now display "STOP"
with "0" and the "S" alternating between the
letter and a cursor (which is all dots lit).
INITIATE FOUR-CHARACTER BLINKING
Regardless of Control Bit setting)
Step 10 Load enable display blinl Vee +0.5 V, or through excessive currents begin forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin
conducting as much as one amp through the Vee pin. This
destructive condition will persist (latched) until device failure
or the device is turned off.

Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.

The Voltage Transient Suppression Techniques and buffer
interfaces for longer cable runs help considerably to prevent
latch conditions from occuring. Additionally, the following
Power Up and Power Down sequence should be observed,

PO 2435/617

2-162

POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot D.I. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is .
acceptable. Do not use commercial dishwasher detergents.

for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The PD 2435 is a high
efficiency red display and should be matched with a long
wavelength pass filter in the 570 nm to 590 nm range. The
PD 2436 is a standard red display and should be matched
with a long wavelength pass filter in the 600 nm to 620 nm
range. The PD 2437 should be matched with a yellow-green
band-pass filter that peaks at 565 nm. For displays of multiple
colors, neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.

For faster cleaning, solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.(1l
Note: 1. Acceptable commercial solvents are: Basic TF, Arklon. P, Genesolv
0, Genesolv DA, Blaco"'ron TF. Blaco"'ron TA and, Freon TA.

Do not use solvents containing alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and
TES. Since many commercial mixtures exist, you should
contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are:
Allied Chemical Corporation, Specialty Chemical Division,
Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow
Chemical, Midland, MI; E.!. DuPont de Nemours & Co.,
Wilmington, DE.
For further information refer to Appnotes 18 and 19 ill the
current Siemens OptoelectrQr)ic Data Book.
An alternative to soldering and cleaning the display 1110dules .
is to use sockets. Naturally, 20 pin DIP sockets .600" wide
with .100" centers work well for single displays, Multiple'
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.

Optimal iilter enhancements for any condition can be gained through the use of circular polarized, anti-reflective,'
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%. Proper
intensity selection of the displays will allow 10,000 foot
candle sunlight viewability.
Several filter manufacturers supply quality filter materials.
Some of them are: Panel graphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting Situations, Several .Bezel
manufacturers are: R.M;!:. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.

OPTICAL CONSIDERATIONS
The .200" high character of the PD 2435/6/7 allows readability up to eight feet. Proper filter selection will allow the
user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a IiI. LED and the character background. This will maximize
discrimination of different characters as perceived by the .
display user. The only limitation is cost. The cost/benefit ratio

See Siemens Appnote 23 for further information.

PO 2435/617

2-163

SIEMENS

PD3535
RED PD3536
BRIGHT GREEN PD3537

HIGH EFFICIENCY RED

.270" 4-Character, 5x7 Dot Matrix Alphanumeric
Programmable DisplayTM with Built-In CMOS Control Functions
Package Dimensions in Inches (mm)

+j--.:r
.055

t- Jl~,

l

T[JTY'.1

.450
(11.43)

(15.24)
AT SEAnNG

1

PlANE

--I

i-

.160 ±.020
WMtNOUS
INTENSITY

(4.06)

CATEGORY

ALL TOLERANCES ±O.OlD UNLESS MAX.

FEATURES
• Four 0.270" Dot Matrix Characters In High
Efficiency Red, Red, or Bright Green
• Built-in Memory, Decoders, Multiplexer
and· Drivers
• Wide Viewing Angle, X Axis ±55·, Y Axis ±65·
• Categorized for Luminous Intensity
• 128-Character ASCII Format (Both Upper and
Lower Case Characters)
• 8-Bit Bidirectional Data BUS
• READ/WRITE Capability
• 100% Burned In and Tested
• Dual In-Line Package Configuration, .600" Wide,
.100" Pin Centers
• End-Stackable Package
• Internal or External Clock
• Built-in Character Generator ROM
• TTL Compatible
• Easily Cascaded for Multidisplay Operation
• Less CPU Time Required
• Software Controlled Features:
Programmable Highlight Attribute
(Blinking, Non-Blinking)
Asynchronous Memory Clear Function
Lamp Test
Display Blank Function
Single or Multiple Character Blinking Function
Programmable Intensity,
Three Brightness Levels
• Extended Operating Temperature Range:
-40·C to +85OC

DESCRIPTION
The PD 3535/6/7 are four digit display system modules. The
digits are 0.27" by 0.20" 5 x 7 dot matrix arrays constructed
with the latest solid state technology in light emitting diodes.
Driving and controlling the LED arrays is a silicon gate CMOS
integrated circuit. This integrated circuit provides all necessary
LED drivers and complete multiplexing control logic.
Additionally, the IC has the necessary ROM to decode 128
ASCII alphanumeric characters and enough RAM to store the
display's complete four digit ASCII message with special attributes. These attributes, all software programmable at the
user's discretion, include a lamp test, brightness control,
displaying cursors, alternating cursors and characters, and
flashing cursors or characters. The CMOS IC also incorporates
special interface control circuitry to allow the user to control the
module as a fully supported microprocessor peripheral. The
module, under internal or external clock control, has asynchronous read, write, and memory clear over an eight bit
parallel, TIL compatible, bi-directional data bus. Each module
is fully encapsulated within a package 1.4" x 0.72" x 0.295".
The standard 20 pin DIP construction with two 0.6" rows on
0.1" centers is wave solderable and has been fully tested with
over one million total device hours to operate over a temperature range from -40°C to +85°C.
All products are 100% burned-in and tested, then subjected to
out·going AQL's of .25% for brightness matching, visual alignment and dimensions, .065% for electrical and functional. All
the devices are intensity binned to allow users to construct a
uniform display of any length.
See the end of this data sheet or refer to Appnotes 18, 19, 22,
and 23 for further details on handling and assembling Siemens
Programmable Displays.

2-164

Maximum Ratings

TIMING CHARACTERISTICS
(@Vee =4.5 V, Temp=25°C)

DC Supply Voltage . ................ -0.5 V to + 7.0 Vdc
Input Voltage Levels Relative
to GND (all inputs) ............ -0.5 V to Vee +0.5 Vdc
Operating Temperature ............... -40°C to +85°C
Storage Temperature ................ -40°C to + 100°C
Maximum Solder Temperature, .063" (1.59 mm)
below Seating Plane, t<5 sec ................. 260°C

Data WRITE Cycle

en. eEt
AD. At

Optical Characteristics @25°C
Spectral Peak Wavelength ............ (HER) 630 nm typo
. . . . . . . . . . . . (Red) 660 nm typo
. . . . . . . . .. (Green) 565 nm typo
Viewing Angle
horizontal ....... , ......................... ± 55 °
(off normal axis) vertical ...................... ±65°
Digit Height ..................... 0.270 inch (6.86 mm)
Time Averaged Luminous Intensity(!)
Red ............................. 30 !,cd/LED min.
HER/Green ....................... 90 !,cd/LED min.
LED to LED Intensity Matching ............ 1.8:1.0 max.
Device to Device (one bin) ................ 1.5:1.0 max.
Bin to Bin (adjacent bin) .................. 1.9:1.0 max.
Note: 1. Peak luminous intensity values can be calculated by multiplying
these values by 7.

DO·D6

_-+_~I-----J

1 0 - - - - - - T..,.-------I

·Notes: 1. All input voltage are (V ll = O.B V, VIH = 2.0 V.l
2. These waveforms are not edge triggered.

Data READ Cycle

CEO. CEt ~

~

AD·A3

;::'T".-...

I""-TCEH- 4.5
volts. Reset is used only to synchronize
blinking, and will not clear the display.
Chip enable (active high).
Chip enable (active low).
Address input (MSB).
Address input.
Address input (LSB).
Ground.
Write. Active Low. If the device is
selected, a Iowan the write input loads
the data into the PO 3535/6/7's memory.
Data Bus bit 7 (MSB).
Data Bus bit 6.
Data Bus bit 5.
Data Bus bit 4.
Data Bus bit 3.
Data Bus bit 2.
Data Bus bit 1.
Data Bus bit 0 (LSB).
Plus 5 volts power pin.

PO 3535/6/7

2-167

DATA INPUT COMMANDS
CEO

CE1

RO

WR

A2

A1

AD

07

06

05

04

1
0
0
0
0
0
0

0
1
1
1
1
1

X

X

X

X

X

1
0
0
0
0
0

1
1
1
1
1
1

0
0
0
1
1
0

0
0
1
0
1
0

X
X

X
X

X
X

X

0
1
1
1
1
1

X
X

X
X
X
X

0
1
1
0

1
0
1
1

0
1
0
1

1

X

X

X

1

CEI

RD

WR

0
1
X
X

1
X
0
X

0
X
X
1

0
X
X
1

OPERATION

81

DISPLAY MEMORY
(RAM)

CIl

4x8

'"

REG

14

h--+---I
I

X
0
0
0
0

1
1
1
0

0
1
1
1

X

X

X

0
1
0
1
X

No Change
Read Oigit 0 Data To Bus
($) Written To Digit 0
rN) Written to Digit 1
(f) Written To Digtt 2
(3) Written to Digit 3
Char. Written To Digit 0
And Cursor Enabled

The Display Multiplexer controls all display output to the
digit drivers so no additional logic is required for a display
system.

r. - - - - - - - - - -,
00-07

OPERATION

X
X

The' Clock Source can originate either from the internal
oscillator clock or from an external source-usually from the
output of another PO 3535/6/7 in a multiple module display.

BLOCK DIAGRAM
I

00

X
X

The Character Generator converts the 7-bit ASCII data into
the proper dot pattern for the 128 characters shown in the
character set chart.

Illegal
No Change
No Change
No Change

I

01

X
X

The Control Logic dictates all of the features of the display
device and is discussed in the Control Word section of this
data sheet.

MODE SELECTION
CEO

03 02

128 CHAR.

The Column Drivers are connected directly to the display.

ROM
128 Ie 5

The Display has four digits. Each of the four digits is comprised of 35 LEOs in a 5x7 dot array which makes up the
alphanumeric characters.
The intensity of the display can be varied by the Control
Word in steps of 0% (Blank), 25%, 50%, and full
brightness.

MICROPROCESSOR INTERFACE
The interface to the microprocessor is through the address
lines (AO-A2), the data bus (00-07), two chip select lines
(CEO, CE1), and read (RO) and write (WR) lines.

eLK SEl
XCLK

RS'i'

The CEO should be held low when executing a read, or
write operation..
.
The read and write lines are both active low. During a valid
read the data input lines (00-07) become outputs. A valid
write will enable the data as input lines.

INPUT BUFFERING
If a cable length of 6 inches of more is used, all inputs to
the display should be buffered with a tri-state non-inverting
buffer mounted as close to the display as conveniently
possible. Recommended buffers are: 74LS245 for the data
lines and 74LS244 for the control lines.

FUNCTIONAL DESCRIPTION
The PO 3535/6/7 block diagram includes the major blocks
and internal registers.

Display MemorY consists of a 5x8 bit RAM block. Each of
the four 8-bit words holds the 7-bit ASCII data (bits 00-06).
The fifth 8-bit memory word is used as a control word
register. A detailed description of the control register and its
functions can be found under the heading Control Word.
Each 8-bit word is addressable and can be read from or
written to.

PO 3535J8n

2-168

PROGRAMMING THE PD 3535/6/7
There are five registers within the PO 35351617. Four of
these registers are used to hold the ASCII code of the four
display characters. The fifth register is the Control Word,
which is used to blink, blank, clear or dim the entire display,
or to change the presentation (attributes) of individual
characters.
ADDRESSING

The addresses within the display device are shown below.
Digit 0 is the rightmost digit of the display, while digit 3 is on
the left. Although there is only one Control Word, it is
duplicated at the four address locations 0-3. Data can be
read from any of these locations. When one of these locations is written to, all of them will change together.

0
1
2
3

4
5
6
7

CONTROL WORD

When address bit A2 is taken low, the Control Word is
accessed. The same Control Word appears in all four of the
lower address spaces of the display. Through the Control
Word, the display can be cleared, the lamps can be tested
display brightness can be selected, and attributes can be '
set for any characters which have been loaded with their
most Significant bit (07) set high.
Brightness (DO, 01): The state of the lower two bits of the

Control Word are used to set the brightness of the entire
display, from 0% to 100%. The table below shows the correspondence of these bits to the brightness.

.Contents

Address

Bit 07 of any of the display digit locations is used to allow
an attribute to be assigned to that digit. The attributes are
discussed in the next section. If bit 07 is set to a one, that
character will be displayed using the attribute. If bit 07 is
cleared, the character will display normally.

Control Word
Control Word (Duplicate)
Control Word (Duplicate)
Control Word (Duplicate)
Digit 0 (rightmost)
Digit 1
Digit 2
Digit 3 (leftmost)

07
0
0
0
0

06 05
0
0
0
0

X
X
X
X

04 03 02 01 DO
X
X
X
X

X
X
X
X

X 0
X 0
X ·1
X 1

0
1
0
1

Operation
Blank
25% brightness
50% brightness
Full brightness

X - dontcare

CONTROL WORD FORMAT

D7

06

05

Trr

BRIGHTNESS
0% (Bialik)
25%
50%
100%

03 02 ATTRIBUTE
o 0 Display Cursor Instead
Of Character
o 1 Blink Character
1 0 Display Blinking Cursor Instead
Of Character
Alternate Character
With Cursor
D4 ATTRIBUTE ENABLE
o ·Disable Above Attributes
1 Enable Above Attributes

05' BLINK

o
1

Blink-Attribute Disabled
Blink Entire Display

06 LAMP TEST
o Standard Operation
1 Display All Dots At 50% Brightness

07 CLEAR

o

Standard Operation
1 Clear Entire Display

PO 3535/617

2-169

Lamp Test (06): When the Lamp Test bit is set, all dots in
the entire display are lit at half brightness. When this bit is
cleared, the display returns to the characters that were
showing before the lamp test. The lamp test will remain if
implemented silmutaneously with a clear instruction.

Attributes (02-04): Bits 02, 03, and 04 control the visual
attributes (i.e., blinking) of those display digits which have
been written with bit 07 set high. In order to use any of the
four attributes, the Cursor Enable bit (04 in the Control
Word) must be set. When the Cursor Enable bit is set, and
bit 07 in a character location is set, the character will take
on one of the following display attributes.

D7 06 05 04 03 02 01 DO
0

0

0

0

X

X

,B

B

0

0

0

1

0

0

B

B

0
0

0
0

0
0

1

O' 1

1

1

0

B
B

B
B

0

0

0

1

I

1

B

B

'07 06 05 D4 D3 02' 01
,010 X X X X

Operation
.Disable highlight
attribute
Display cursor" instead
of character
Blink single character
Dispiay blinking
cursor" instead of
, character
Alternate character
with cursor"

I

DO

Operation

.,

X,Lamptes1

,

Clear Data (07): When 07 is set in the Control Word, all
character and Control Word memory bits are reset to zero.
This causes total erasure of the display, and returns all digits
to a non-blink, full brightness; non-cursor status.
07 06 05 D4 0302 01 00

Operation

OXXXXXXClear

..

·"Cursor" refers to a condition when all dots In a Single character space are
lit to half brightness.
X ~ don' care
B = depends on the selected brightness

CASCADING
The SMC-4740 oscillator is designed to drive up to 16
PO 3636/6/7s with input loading of 16 pF each.

Attributes are non-destructive. If a character with bit 07 set
is replaced by a cursor (Control Word bit 04 is set, and
03=02=0) the character will remain in memory and can be
revealed again by clearing 04 in the Control Word.

The general requirements for cascading 16 displays
together are:
1. Determine the correct address for each display.
2. Tie CEO to ground and use CEI from an address
decoder to select the correct display.
3. Select one of the Displays to provide the Clock for the
other displays.
4. Tie ClK SEl to ground on other displays.
6. Use RST to synchronize the blinking between
the displays.

Blink (05): The entire display can be caused to blink at a
rate of approximately 2Hz by setting bit 06 in the Control
Word. This blinking is independent of the state of 07 in all
character locations.
In order to synchronize the blink rate in a bank of these
devices, it is necessary to tie all devices' clocks and resets
together as described in a later, section of this data sheet.
07 06 05 04 03 02 01

o

0

X

X

X

DO

B' B

Operation
Blinking display

CASCADING DIAGRAM
RST

Iili
R

vee

L
WR

,f
RST

RD

ClKliO

ClKSEl

P03535/6n

... • .

DO-D7
DATAliO

AO-A2

CEO

CEI

f

~
~

._.. .... :)
"

IN BETWEEN

ttl1
;::

m

Oil

ADDRESS

ADDRESS
ASi -

RST

.I

ClK I/O

r

CLKSEl

P0353516n

DO-D7

AO-A2

.

CEO

CE1

ADDRESS DECODE CHIP I TO 4

DECODER

A6i -

?

RD

....

I

0

A4, -

~:

!
WR

S

PO 35351817

2-170

Step 5

VOLTAGE TRANSIENT SUPPRESSION

It has become common practice to provide 0.01 pi bypass
capacitors liberally in digital systems. Like other CMOS
circuitry, the Intelligent Display controller chip has very low
power consumption and the usual 0.01 I-'f would be adequate
were it not for the LEDs. The module itself can, in some
conditions, use up to 100 mA. In order to prevent power
supply transients, capacitors with low inductance and high
capacitance at high frequencies are required. This suggests
a solid tantalum or ceramic disc for high frequency bypass.
For multiple display module systems, distribute the bypass
capacitors evenly, keeping capacitors as close to the power
pins as possible. Use a 0.01 tJF capacitor for each display
module and a 22 I-'F capacitor for every third display
module.

Step

Step

Step
HOW TO LOAD INFORMATION INTO THE PD 3535/6/7

Information loaded into the PD 3535/6/7 can be either
ASCII data or Control Word data. The following procedure
(see also typical loading sequence) will demonstrate a
typical loading sequence and the resulting visual display.
The word STOP is used in all of the following examples.

Step 1

Step 2
Step 3
Step 4

Step

SET BRIGHTNESS
Set the brightness level of the entire display to
your preference (example: 100%)
LOAD FOUR CHARACTERS
Load an "S" in the left-hand digit.

Step

Load a "T" in the next digit.
Load an "0" in the next digit.

Load a "P" in the right-hand digit.
If you loaded the information correctly, the
PD 3535/6/7 would now show the word "STOP."
BLINK A SINGLE CHARACTER
6
Into the digit, second from the right, load the hex
code "CF," which is the code for an "0" with
the 07 bit added as a control bit.
NOTE: The "0" is the only digit which has the
control bit (07) added to normal ASCII data.
7
Load enable blinking character into the control
word register.
The PD 3535/6/7 should now display "STOP"
with a flashing "0"
ADD ANOTHER BLINKING CHARACTER
8
Into the left hand digit, load the hex code "03"
which is for an "S" with the 07 bit added as a
control bit.
The PD 3535/6/7 should now display "STOP"
with a flashing "0" and a flashing "S."
ALTERNATE CHARACTERI
CURSOR ENABLE'
9
Load enable alternate character/cursor into the
control word register.
The PD 3535/6/7 should now display "STOP"
with "0" and the "S" alternating between the
letter and a cursor (which is all dots lit).
INITIATE FOUR-CHARACTER BLINKING
Regardless of Control Bit setting)
10 Load enable display blinking.
The PO 3535/6/7 should now display the entire
word "STO~" blinking.

TYPICAL LOADING SEQUENCE

I~ ~ I~ I~ ~ c ~
1.
2.
3.
4.

5.
6.
7.
S.
9.

10.

L
L
L
L
L
L
L
L
L
L

H
H
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H
H

L
L
L
L
L
L
L
L
L
L

L
H
H
H
H
H
L
H
L
L

X
H
H
L
L
L
X
H
X
X

X
H
L
H
L
H
X
H
X
X

""u.Ift"l:tCf)N __

0

QQQQQQQ Q

0
0
0
0
0
1
0

0 0 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 1 0
1 0 0 1
0 0 1 0
1 1 0 1 0
0 0 0 1 1
0 0 1 0 0

0 1 1
0 1 1
1 0 0
1 1 1
0 0 0
1 1 1
1 1 1
0 1 1
1 1 1
0 1 1

DISPLAY

S
ST
STO
STOP
STOP
STOoP
S"TO"P
StTOtp
S"r-O"P"

"Slinking Character
tCharacter alternating with curs~r (all dots lit)

PO 3535/617

2-171

CHARACTER SET·
DO
ASCII

COOt

0
0
·0
0
0

01

03

06 D

o
o

0

0

0

0

1
0
0
0
I

0
1
0

1
1
0
0
3

1
0

0
0

0
1
1
0

,1

1

0
0
0

0
7

8

I

0
0
1
9

0

1

0
0

I

0

0

I
I
I

I
I
I
I

.... ..
• . ...= .. ..... .-.
r:!. .::
ap.
ir .m. .. o::! . L:.'
:,..
e
"- :~: if- -:::s I:: == A::: !:.:! ::.:.!. o!:" .: ~- I:::: P: ~~. ::t:
02

I

":

o.

2

0

1

I

0

0
5

•

•

:_0

6

I

I

I

0

0

I
A

8

I

·0
" 0i=~.1 1"'1 =...1::e.-:I

I
I
C

I
I·

0

[

r

:0"

I"':

.... ::....:..: I·...:. 1·...:·...••................. : : .. .:... :

I

0 0

•

;j) ~i ]:! C: Ii t~ F·13 t1 I .J t< L.t11 r·i Ci
.............. , . . . . . . . I' I: I ..... I"

1 0

I

:5

i...1I
e

I

I 0

1 1

1

6

=
"

... "'

J i I.:: I. : •••• ',' ", I ••••• E'" "
: '0"
0 ~~ J ~...: -." :"-i" ': ! ::... :..
:
M.
I
:".:"
i'.
-:
:-•••
:.
...
1
...
:
::: ie"l I'" :-:'.:': :::::
i''': ': -:

i larll..:

+ .:::

•...::-.. ... ........ : .... :: J. '..:
:.......,:......... J.. : I' ': :', ,': :"'1"
7:... ..-: : ....! I .sI,.I::: ,', "'1,'

.

........ ................

r:. .L :II!· I·...·
,,:••

Notes: 1. High =1 level.
2. Low = 0 level.
·3. Upon power up. the device will initialize in a random state.

ELECTRICAL AND MECHANICAL
CONSIDERATIONS
POWER UP SEQUENCE
1. Float all active Signals by tri-stating the inputs to the
displays.
2. Apply Vee and GND to the display.
3. Apply active Signals to the displays by enabling all input
signals per application.

The CMOS IC of the PD 3535/6/7 is designed to provide
resistance to both Electrostatic Discharge Damage and
Latch Up due to voltage or current surges. Several precautions are strongly recommended for the user, to avoid
overstressing these built-in safeguards.

ESD PROTECTION
Users of the PD 3535/6/7 should be careful to handle the
devices consistent with Standard ESD protection procedures. Operators should wear appropriate wrist, ankle or .
feet ground straps and avoid clothing that collects static
charges. Work surfaces, tools and transport carriers that
come into contact with unshielded devices or assemblies
should also be appropriately grounded.

POWER DOWN SEQUENCE
1. Float all active signals by td-stating the inputs to the
display.
2. Turn off the power to the display.
SOLDERING CONSIDERATIONS
PD 3535/6/7scan be hand soldered with SN63 solder
using a grounded iron set to 160°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of B5°C.
Water soluble organic acid flux (except Carboxylic acid) or
resin-based RMA flux without alcohol can be used.

LATCH UP PROTECTION
Latch up is a condition that occurs in CMOS ICs after the
input protection diodes have been broken down. These
diodes can be reversed through several means:
VIN < GND, VIN > Vee +0.5 V, or through excessive currents begin forced on the inputs. When these situations exist, the Ie may develop the response of an SCR and begin
conducting as much as one amp through the Vee pin. This
destructive condition will persist (latched) until device failure
or the device is turned off.

Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for five seconds at 0.063"
below the seating plane. The packages should not be immersed in the wave.

The Voltage Transient Suppression Techniques and buffer
interfaces for longer cable runs help considerably to prevent
latch conditions from occuring. Additionally, the following
Power Up and Power Down sequence should be observed.

PO 35351817

2-172

POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.(l)
Note: 1. Acceptable commercial solvents are: Basic TF, Arklone P, Genesolv
D, Genesolv DA, Blaco:rron TF, Blaco:rron TA and, Freon TA.

Do not use solvents containing alcohol, methanol, methy·
lene chloride, ethanol, TP35, TCM, TMC, TMS +, TE, and
TES, Since many commercial mixtures exist, you should
contact your preferred solvent vendor for chemical compo·
sition information. Some major solvent manufacturers are:
Allied Chemical Corporation, Specialty Chemical Division,
Morristown, NJ; Baron·Blakeslee, Chicago, IL; Dow
Chemical, Midland, MI; E.1. DuPont de Nemours & Co.,
Wilmington, DE.
For further information refer to Appnotes 18 and 19 in the
current Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 20 pin DIP sockets .600" wide
with .100" centers work well for single displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.

OPTICAL CONSIDERATIONS
The .270" high character of the PO 3535/6/7 allows read·
ability up to eight feet. Proper filter selection. will allow the
user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only I.imitation is cost. The cost/benefit ratio

for filters can be maximized to the user's benefit by first con·
sidering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The PO 3535 is a high
efficiency r.ed display and should be matched with a long
wavelength pass filter in the 570 nm to 590 nm range. The
PO 3536 is a standard red display and should be matched
with a long wavelength pass filter in the 600 nm to 620 nm
range. The PO 3537 should be matched with a yellow-green
band·pass filter that peaks at 565 nm. For displays of multiple
colors, neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.
Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective,
band· pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%. Proper
intensity selection of the displays will allow 10,000 foot
candle sunlight viewability.
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgiaphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoy~ Optics, Inc., Fremont, CA.
One last note on mounting filters: receSSing display and
bezel assemblies is an inexpensive way io provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica,CA; I.E.E.Atlas, Van Nuys, CA.
.
See Siemens Appnote 23 for further information.

PO 3535/617

2-173

SIEMENS

PD4435
RED PD4436
BRIGHT GREEN PD4437

HIGH EFFICIENCY RED

.45" 4-Character, 5 x7 Dot Matrix Alphanumeric
Programmable Display'" with Built-In CMOS Control Functions
Package Dimensions in Inches (mm)

UMINOUS
INTENSITY CODE

--.l

rl~;;:;;----l------,h 0'.285

Lr--TiiTiriiTirr-.l

.., ,..
.10 TYP.

12.54)

f

17.24)

.020 ± .DOh .010 ±.002 TVP
1.508 •.254)
TOLERANCE .lIlOI. t 0.020

FEATURES
• Four 0.45" Dot Matrix Characters In High
Efficiency Red, Red, or Bright Green
• Built-in Memory, Decoders, Multiplexer
and Drivers
• Wide Viewing Angle, X Axis ±55 0, Y Axis ±65 0
• Categorized for Luminous Intensity
• 128-Character ASCII Format (Both Upper and
Lower Case Characters)
.
• 8-Bit Bidirectional Data BUS
• READIWRITE capability
• 100% Burned In and Tested
• Dual In-Line Package Configuration, Pin Rows
.600· Wide, .100· Pin Centers
• End-Stackable Package
• Internal or External Clock
• Built-In Character Generator ROM
• TTL Compatible
• Easily Cascaded for Multidlsplay Operation
• Less CPU Time Required
• Software Controlled Features:
Programmable Highlight Attribute
(Blinking, Non-Blinking)
Asynchronous Memory Clear Function
Lamp Test

Display Blank Function
Single or Multiple Character Blinking Function
Programmable Intensity,
Three Brightness Levels
• Extended Operating Temperature Range:
-40OC to +85OC

DESCRIPTION
The PO 4435. PO 4436, and PO 4437 are four digit display
system modules. The digits are 0.45" by 0.27" 5x7 dot
matrix arrays constructed with the latest solid state technology
in light emitting diodes. Driving and controlling the LED arrays
is a silicon gate CMOS integrated circuit. This integrated circuit
provides all necessary LED drivers and complete multiplexing
control logic.
Additionally, the IC has the necessary ROM to decode 128
ASCII alphanumeric characters and enough RAM to store the
display's complete four digit ASCII message with special attributes. These attributes, all software programmable at the
user's di,scretion, include a lamp test, brightness control,
displaying cursors, alternating cursors and characters, and
flashing cursors or characters. The CMOS IC also incorporates
special interface control circuitry to allow the user to control the
module as a fully supported microprocessor peripheral. The
module, under internal or external clock control, has asynchronous read, write, and memory clear over an eight bit
parallel, TTL compatible, bi-directional data bus. Each module
is fully encapsulated within a package 1.5" x 0.8" x 0.285".
The standard 20 pin DIP construction with two 0.6" rows on
0.1" centers is wave solderable and has been fully tested with
over one million total device hours to operate over a temperature range from -40°C to +85°C.
All products are 100% burned-in and tested, then subjected to
out-going AQL's of .25% for brightness matching, visual alignment and dimensions, .065% for electrical and functional. All
the devices are intensity binned to allow users to construct a
uniform display of any length.

See the end of this data sheet or refer to Appnotes 18. 19, 22,
and 23 for further details on handling and assembling Siemens
Programmable Displays.

2-174

Maximum Ratings

TIMING CHARACTERISTICS
(@Vee=4.5 V, Temp = 25°C)

De Supply Voltage ................. -0.5 V to + 7.0 Vdc
Input Voltage Levels Relative
to GND (all inputs) ............ -0.5 V to Vee + 0.5 Vdc
Operating Temperature ............... -40oC to +85°C
Storage Temperature ................ -40°C to + 100°C
Maximum Solder Temperature, .063" (1.59 mm)
below Seating Plane, t< 5 sec ................. 260°C

Data WRITE Cycle

Optical Characteristics @25°c
Spectral Peak Wavelength. . . . . . . . . .. (4435) 630 nm typo
. . . . . . . . . .. (4436) 660 nm typo
. . . . . . . . . .. (4437) 565 nm typo
Viewing Angle
horizontal ................................. ± 55 °
(off normal axis) vertical ...................... ±65°
Digit Height ..................... 0.420 inch (10.6 mm)
Time Averaged Luminous Intensity(l)
Red ............................. 75 licd/LED min.
HER/Green ...................... 100 licd/LED min.
LED to LED Intensity Matching ............ 1.8:1.0 max.
Device to Device (one bin) ................ 1.5:1.0 max.
Bin to Bin (adjacent bin) .................. 1.9:1.0 max.
Note: 1. Peak luminous intensity values can be calculated by multiplying
these values by 7.

1 - - - - - - T""-------t
'Notes: 1. All Input voltage are (Vll = 0.8 V, VIH = 2.0 V.l
2. These waveforms are not edge triggered.

Data READ Cycle
2.0 V•

CEo. CEI

DIJ-I18

a.lv

UV.

____~----~~~J~--t-~~'-----fO~.4~V

- - - -.....- TwAIT

PO 443518/7

2-175

SWITCHING SPECIFICATIONS (Vcc = 4.5 V)
READ CYCLE TIMING
Specification Minimum
Parameter

Description

TAS

Address Setup

ci

0

.0

ns

TCES

Chip Enable

0

0

0

ns

Tws

Write Enable Setup

20

30

40

ns

Too

Data Delay Time

100

150

175

ns

TR

Read Pulse

150

175

200

ns

TAH

Address Hold

0

0

0

ns

TOH

Data Hold

TTRI

Time to Tristate (Max time)

TCEH

-40°C

25°C

85°C

Units

0

0

0

ns

30

40

50

ns

Chip Enable Hold

0

0

0

ns

TWH

Write Enable Hold

30

40

50

ns

TACC

Total Access Time=Setup Time + Write Time+
Time to Tristate

200

245

290

ns

TWAIT(l)

Wait Time between Reads

TCYClE

Read Cycle Time = T RAcc + TWAIT

Notes:
1. Wait 1 "" between any Reads or Writes after wr~ing a Control Word with
a Clear (07 =1). Wait l~s between any Reads or Writes after Clearing a
Control Word with a Clear (07 = 0). All other Reads and Writes can be
back to back.

0

0

0

ns

200

245

290

ns

2. All input voltages are (V,L = 0.8 V, V,H = 2.0 V).
3. Data out voltages are measured with 100 pF on the data bus and the
ability to source=-40 ~ and sink= 1.6 rnA. The rise and rail times are
60 ns. VOL =0.4 V, VoH =2.4 V.

SWITCHING SflECIFICATIONS (Vcc=4.5 V)
WRITE CYCLE TIMING
Specification Minimum
Parameter
TClR'
TClRO

.

-40°C

Description
Clear RAM
. Clear RAM Disable

25°C

85°C

Units

1

1

1

Il s

1

1

1

Ils

TAS

Address Setup

10

10

10

ns

TCES

Chip Enable Setup

0

0

0

ns

TRS

Read Enable Setup

10

10

10

ns

Tos

Data Setup

20

30

50

ns

Tw

Write Pulse

60

70

90

ns

TAH

Address Hold

20

30

40

ns

TOH

Data Hold

20

30

40

ns

TCEH

Chip Enable Hold

0

0

0

ns

TRH

Read Enable Hold

20

30

40

ns

TACC

Total Access Time=Setup Time + Write Time +
Hold Time

90

110

140

ns

• Wait 1 "" between any Reads or Writes after writing a Control Word with a Clear (07 = 1). Wait 1 ~s between any Reads or Writes after Clearing a Control Word
with a Clear (07 = 0). All other Reads and Writes can be back to back.

PO 4435/617

2-176

DC CHARACTERISTICS @25°C
Limits
Parameter
Vcc

Min.

Typ.

Max.

Units

4.5

5.0

5.5

Volts

2.5

5

mA

150(1)

170(2)

mA

0.8

Volts

Vcc=4.5 V to 5.5 V

Volts

Vcc=4.5 V to 5.5 V

Icc Blank (All Inputs low)
Icc 80 lEOslunit (100% Bright)

130

VIL (All Inputs)

-0.5

VIH (All Inputs)

2.0

IlL (All Inputs)

25

VOL (00-07)

Conditions
Nominal
Vcc=5 V. All inputs = 0.8 V
Vcc=5 V

100

,..Po

0.4

Volts

Vcc=4.5 V to 5.5 V

Vcc =4.5 V to 5.5 V. VIN = 0.8 V

VOH (00-07)

2.4

Volts

Vcc=4.5 V to 5.5 V

10H (00-07)

-8.9

mA

Vcc=4.5 V. VO H = 2.4 V

10L (00-07)

1.6

mA

Vcc=4.5 V. VOL =0.4 V

Data 110 Bus loading

100

pF

Clock 110 Bus loading

240

pF

Notes: 1. Typical average LED drive current is 1.9 mA. Peak current at 117 duty cycle is 13.1 mAo
2. Characterization data indicates max Icc will vary from 200 mA at -40°C to 130 mA at 85°C.

TOP VIEW

PIN DEFINITIONS
Pin

•••• ••••• •••• ••
•
•
• • •• ••••
••
•••••
••
•• •••• ••

1. RO

•••••

•
•• •
•

•

2. ClKl/O

3. ClKSEL

4. RST

PIN ASSIGNMENTS
PD 4435/8nPINOUT
Pin

Function

1 RD
READ
2 CLK 1/0 CLOCK 1/0
3 CLKSELCLOCK SELECT
4 FiST
RESET
5 CEI
CHIP ENABLE
6 CEo
CHIP ENABLE
7A2
ADDRESS MSB
8 Al
ADDRESS
ADDRESS LSB
9AO
10 GND

Pin
11
12
13
14
15
16
17
18
19
20

Function
WR
D7
D6
D5
D4
D3
D2
Dl
DO
Voc

WRITE
DATAMSB
DATA
DATA
DATA
DATA
DATA
DATA
DATA LSB

5.
6.
7.
8.
9.
10.
11.

CEl
CEO

12.
13.
14.
15.
16.
17.
18.
19.
20.

07
06
05
04
03
02
01
DO
Vee

A2
Al
AO
GNO
WR

Active low, will enable a processor to read
all registers in the PO 4435/617 .
If ClK SEl (pin 3) is low, then expect an
external clock source into this pin. If ClK
SEl is high, then this pin will be the
master or source for all other devices
which have ClK SEl low.
ClocK SElect, determines the action of
pin 2. ClK 110, see the section on
Cascading for an example.
Reset. Must be held low until Vcc > 4.5
volts. Reset is used only to synchronize
blinking, and will not clear the display.
Chip enable (active high).
Chip enable (active low).
Address input (MSB).
Address input.
Address input (lSB).
Ground.
Write. Active Low. If the device is
selected, a Iowan the write input loads
the data into the PO 4435/6/7s.
memory.
Data Bus bit 7 (MSB).
Data Bus bit 6.
Data Bus bit 5.
Data Bus bit 4.
Data Bus bit 3.
Data Bus bit 2.
Data Bus bit 1.
Data Bus bit 0 (LSB).
Plus 5 volts power pin.

PO 44351617

2-177

DATA INPUT COMMANDS

•

CEO

CEl

1
0
0
0
0
0
0

0
.. 1
1
1
1
1
1

RD

WR

X

X

0
1
1
1
1
1

1
0
0
0
0
0

A2 A1
X
1
1
1
1
1
1

AO 07 06 05 04 03 02 01

X

X

0
0
0
1
1
0

0
0
1
0
1
0

DO

OPERATION

X
X
X
X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

0
'1
1
0

0

0
0
0
0

0
1
0
1

X

1
1
1
0
X

0
1
1
1

1

1
0
1
1
X

X

X

No Change
Read Digit 0 Data To Bus
($) Written To Digit 0
(W) Written to Digit 1
(I) Written To Digit 2
(3) Written to Digit 3
Char. Written To Digit 0
And Cursor Enabled

CEl

RD

WR

0
1

1

0

0

X

0

X
X

X
X

X

1

1

X
X

OPERATION

The Clock Source can originate either from the internal
oscillator clock or froni an external source-usually from the
output of another PO 4435/617 in a multiple module
display.

r----------,
I

00-07

DISPLAY MEMORY

CI'l

(RAM)

REG
be8

4x8

14

!-r--+-'--!
I

X

The Character Generator converts the 7-bit ASCII data into
the proper dot pattern for the 128 characters shown in the
character set chart.

Illegal
No Change
No Change
No Change

BLOCK DIAGRAM
8 I

0
1
X

The Control logic dictates all of the features of the display
device and is discussed in the Control Word section of this
data sheet

MODE SELECTION

CEO

1.

128 CHAR.
ROM
128)(5

The Display Multiplexer controls all display output to the
digit drivers so no additional logic is required for a display
system.
The Column Drivers are connected directly to the display.
The Display has four digits. Each of the four digits is comprised of 35 LEOs in a 5x7 dot array which makes up the
alphanumeri? characters.
The intensity of the display can be varied by the Control
Word at settings of 0% (Blank), 25%, 50%, and full
brightness.

MICROPROCESSOR INTERFACE
ClKSEl
XClK

liST

The interface to the microprocessor is through the address
lines (AO-A2), the data bus (00-07), two chip select lines
(CEO, CE1), and read (RO) and write (WR) lines. .
The read and write lines are both active low. During a valid
read the data input lines (00-07) become outputs. A valid
write will enable the data as input lines.

INPUT BUFFERING

FUNCTIONAL DESCRIPTION
The PO 4435/617 block diagram includes the major blocks
and internal registers.

If a cable length of 6 inches of more is used, all inputs to
the display should be buffered with a tri-state non-inverting
buffer mounted as close to the display as conveniently
possible. Recommended buffers are: 74LS245 for the data
lines and 74LS244 for the control lines.

Display Memory consists of a 5x8 bit RAM block. Each of
the four 8-bit words holds the 7-bit ASCII data (bits 00-06).
The fifth 8-bit memory word is .used as a control word
register. A detailed description of the control register and its
functions can be found under the heading Control Word.
Each B-bit word is addressable and can be read from or
written to.

PD 4435/6n

2-178

Load a "P" in the right-hand digit.
If you loaded the information correctly, the
PD 4435/6/7 should now show the word
"STOP"

Step 5

VOLTAGE TRANSIENT SUPPRESSION

It has become common practice to provide 0.01 Ilf bypass
capacitors liberally in digital systems. like other CMOS
circuitry, the Programmable Display controller chip has a
very low power consumption and the usual 0.01 Ilf would
be adequate were it not for the LEOs. The module itself
can, in some conditions, use up to 100 mA. In order to
prevent power supply transients, capacitors with low
inductance and high capacitance at high frequencies are
required. This suggests a solid tantalum or ceramic disc
for high frequency bypass. For multiple display module
systems, distribute the bypass capacitors evenly, keeping
capacitors as close to the power pins as possible. Use a
0.01 "F capacitor for each display module and a 22 "F
capacitor for every third display module.

BLINK A SINGLE CHARACTER
Into the digit, second from the right, load
the hex code "CF," which is the code for an
"0" with the 07 bit added as a control bit.
NOTE: the "0" is the only digit which has
the control bit (07) added to normal ASCII
data.
Load enable blinking character into the
control word register.
The PO 4435/6/7 should now display
"STOP" with a flashing "0."

Step 6

Step 7

ADD ANOTHER BLINKING CHARACTER
Into the left hand digit, load the hex code
"03" which is for an "s" with the 07 bit
added as a control bit.
The PO 4435/6/7 should display "STOP" with a
flashing "0" and a flashing "S."

Step 8
HOW TO LOAD INFORMATION INTO THE
PO 44351617

Information loaded into the PO 4435/6/7 can be
either ASCII data or Control Word data. The following procedure (see also typical loading sequence)
will demonstrate a typical loading sequence and the
resulting visual display. The word STOP is used in
all of the following examples.
Step 1

Step 2
Step 3
Step 4

ALTERNATE CHARACTERI
CURSOR ENABLE
Load enable alternate characterlcursor into
the control word register.
The PO 4435/6/7 should now display
"STOP" with the "0" and the "s" alternating between the letter and a cursor
(which is all dots lit).

Step 9

SET BRIGHTNESS
Set the brightness level of the entire display
to your preference (example: 100%)
LOAD FOUR CHARACTERS
Load an "s" in the left-hand digit.
Load a "T" in the next digit.
Load an "0" in the next digit.

INITIATE FOUR·CHARACTER BLINKING
(Regardless of Control Bit setting)
Load enable display blinking.
The PO 4435/6/7 should now display the
entire word "STOP" blinking.

Step 10

TYPICAL LOADING SEQUENCE

I~ SI~I~ ~ ::;:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.

L
L
L
L
L
L
L

H
H
H
H
H
H
H
L H
L H
L H

H
H
H
H
H
H
H
H
H
H

~

L L X X
L H H H
L H H L
L H L H
L H L L
L H L H

L L X X
L H H H
L L X X
L L X X

-

"" Vee +0.5 V, or through excessive currents begin forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin
conducting as much as one amp through the Vee pin. This
destructive condition will persist (latched) until device failure
or the device is turned off.

Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec, Exposure to the wave should not exceed
temperatures above 260°C, for five seconds at 0.063"
below the seating plane. The packages should not be immersed in the wave.

The Voltage Transient Suppression Techniques and buffer
interfaces for longer cable runs help considerably to prevent
latch conditions from occuring. Additionally, the following
Power Up and Power Down sequence should be observed.

, PO 4435J6I7

2-182

POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.

Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The PO 4435 is a high
efficiency red display and should be matched with a long
wavelength pass filter in the 570 nm to 590 nm range. The
PO 4436 is a standard red display and should be matched
with a long wavelength pass filter in the 600 nm to 620 nm
range. The PO 4437 should be matched with a yellow-green
band-pass filter that peaks at 565 nm. For displays of multiple
colors, neutral density grey filters offer the best compromise.

For faster cleaning, solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane,
and unheated acetone.(1)
Do not use solvents containing alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, or
TES. Since many commercial mixtures exist, you should
contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are:
Allied Chemical Corporation, Specialty Chemical Division,
Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow
Chemical, Midland, MI; E.1. DuPont de Nemours & Co.,
Wilmington, DE.

Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.

For further information refer to Appnote 18 and 19 in the
current Siemens Optoelectronic Data Book.

Optimal filter enhancements for any condition can be
gained through the use of circular polarized, anti-reflective,
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%. Proper
intensity selection of the displays will allow 10,000 foot
candle sunlight viewability.

An alternative to soldering and cleaning the display
modules is to use sockets. Naturally, 20 pin DIP sockets
.600" wide with .100" centers work well for single displays.
Multiple display assemblies are best handled by longer SIP
sockets or DIP sockets when available for uniform package
alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.

Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.

For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.

One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.

OPTICAL CONSIDERATIONS
The .450" high character of the PO 4435/6/7 allows readability up to eight feet. Proper filter selection will allow the
user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first
considering the ambient lighting environment.

See Siemens Appnote 23 for further information.
Note: 1. Acceptable commercial solvents are: Basic TF, Arklone P,
Genesolva D. Genesolva DA. Blaco-Tron TF. Blaco-Tron TA.
and Freon TA.

PO 44351Bn

2-183

Intelligent Display Assemblies
No. of

Part NoJ
Color

Package Outline

OD~:D

~l~
J!I~~

Characters
Character
HeIght

16
IDA1414-16-1
IDA1414-16-2
Red

.112"

32
IDA1416-32
Red
.160'

IDA2416-16
Red

IDA2416-32
Red

16
.160"

32
.160"

,
16
IDA3416-16
Red

DD~

IDA3416-20
Red

IDA3416-32
Red

IDA7135-16
HER

~IIIITilllillllllllllll~I~I~I~I~1U;~1~111
c:::::Ic::J

c::Jc:::::I

IDA7137-16
Green
IDA7135-20
HER
IDA7137-20
Green

For non·standard requirements, see Custom Optoelectronic Products on page 1-2.

2.:.184

.225"
20
.225"
32
.225"

16
.68"

Description

Page

Intelligent Display assembly with
four segmented DL1414 displays,.
decoder, and interface buffer on a
single circuit board.
IDA141-16-1 buffered input data
lines. IDA1414-16-2 Non-buffered
input data lines.

2-185

Intelligent Display assembly with
four segmented DL1416 displays,
decoder. and interface buffer on a
single circuit board ..

2-189

Intelligent Display assembly with
four segmented DL2416 displays,
decoder, and interface buffer on a
single circuit board ..
2-193
Intelligent Display assembly with
eight segmented DL2416 displays,
decoder, and interface buffer on a
single circuit board ..
Intelligent Display assembly with
four segmented DL3416 displays,
decoder, and interface buffer on a
single circuit board ..
Intelligent Display assembly with
five segmented DL3416 displays,
decoder, and interface buffer on a
single circuit board ..

2-197

Intelligent Display assembly with
eight segmented DL3416 displays,
decoder, and interface buffer on a
single circuit board ..
Intelligent Display assembly with
sixteen dot matrix DL07135 or
DLG7137 displays, decoder, and
interface buffer on a single circuit
board ..
2-201

20
.68"

Intelligent Display assembly with
twenty dot matrix DL07135 or
DLG7137 displays, decoder, and
interface buffer on a single circuit
board ..

SIEMENS

IDA 1414-16
.112" Red, 17 Segment, 16 Character
DL 1414 Intelligent Display®ASSEMBLY
IDA·1414-16-1 Buffered Input Data Lines
IDA 1416-16-2 Non-buffered Input Data Lines

FEATURES

DESCRIPTION

•

112 Mil High, Magnified Monolithic Character

•

Wide Viewing Angle, ± 40·

•

Complete Alphanumeric Display Assembly Utilizing
the DL 1414
• Buill-in Multiplex and LED Drive Circuitry
• Built-In Memory
• Buill-in Character Generator

The IDA 1414-16 Assembly is an extension of the very
easy-to-use DL 1414 Intelligent Display. This product
provides the designer with circuitry for display
maintenance. It also minimizes interaction and
interface normally required between the user's system
and a multiplexed alphanumeric display.

•

Displays 64 Character ASCII Set

•

Direct Access to Each Digit Independently

•

Single 5.0 Volt Power Supply

•

TTL Compatible

•

Easily Interfaced to a Microprocessor

•

IDA 1414-16-1 Input Data Lines Are Buffered

•

IDA 1414-16-2 Input Lines Are Not Buffered

The assembly consists of four DL 1414's in a single
row, together with decoder and interface buffer on a
single printed circuit board. Each DL 1414 provides its
own memory, ASCII ROM character decoder,
multiplexing circuitry, and drivers for its four
17- segment LED's.
Intelligent Display Assemblies.can be used for applications such as data terminals, controllers, instruments,
and other products which require an easy to use
alpha-numeric display.

2-185

IDA 1414-16
Maximum Ratings
vee ................................................................................ 6.0 V
Voltage applied to any input .......•......•••.••••.••••..••..•••••••... -0.5 to Vee+0.5 VDC
Operating Temperature .•.•..••.....•..•........•..•...•........•••..•.•..••.... 0 to +65° C
Storage Temperature ..............•.....•.•.•••••••.....•..••..••.•..••...•.• -20 to +70° C
Relative Humidity (non-condensing) @ 65° C .•.•..•.•.....•..•..••.•....•••..........•... 85%

Optoelectronic Characteristics @ 25° C
Parameler

Symbol

Min

Supply Voltage

Vee

4.75

Supply Current (Total)
Supply Current -1
Supply Current -2

Icc

Typ

-1 (Do-Os, A,z.
-1 (Ao, A, )
-2 (Do-Os,

-2 (A,z,

Units
V

400
380

mA
mA

75
25

,mA
mA

Tesl Condlllons
Vee =5.0 V (10 Segments/Digit)

Supply Current (Display Blank) leeBLANK
Supply Current -1
Supply Current -2
Input Voltage - High

Max
5.25

Vee =5.0V

VIN=O

VIH

A:J, WR)

Ao, A, )

2.0
2.7
3.5
2,7
3.5
2.0

VIH

A:J, WR)

Input Voltage - Low
All inputs

VIL

Input Current - High
Any iripui

IIH

Input Current
Any input

IlL

0,8 ..

Low

Luminous Intensity
Average Per Digit
Peak Emission Wavelength

V
V
V
V
V
V

Vcc =4.5 V
Vee =5,5 V
Vee =4.5 V
Vee =5,5 V

V

Vee =4.5 V

20

.A

Vee =5.5 V, Vr;=2.7 V

400

.A

Vee =5,5 V, ",=0.4 V

Iv

0.5

mcd

lpk

660

nm

:0:40

Deg

Viewing Angle

Switching Characteristics @ 5 V
Parameter

ITy,r.)

Symbol

Write Pulse
Address/DE Setup Time
Data Setup Time
Write setup
Data Hold Time
Address/DE Hold Time

Tw
TAS
Tos
Two
TOH
TAH

(Min)

Vee =5.0 V (8 Segments/Digit)

ITVp)

@OC

@25"C

@I65"C

300
350
350
50
50.
50

325
400
400
75
75
75

350
450
450
100
100
100

Units
nS
nS
nS
nS
nS
nS

Timing Characteristics

+',"~,t=
l \
~ Two f.= Tw

J

j.:.-: Tos

f

Timing Measuremenl
Yoll.p lev, Is

)C
-

hOItS
2 II
vo •
OlUlt.

==.j

!e

--I TOHI--

IDA 1414-16

2-186

System Overview
The Intelligent Display Assembly offers the designer
16 alphanumeric characters and operates from just a
5V supply. Based on the DL 1414 four character
Intelligent Display, the IDA 1414-16 adds all the
support logic required for direct connection to most
microprocessor buses. The system interface takes
place through a 14 hole dual in line pattern. The user
may solder wires directly into these holes or use a
ribbon cable and connectors.

System Power Requirements
Operating from a single +5V power supply, the
IDA 1414-16 requires a maximum operating current of
400 mA with ten of the segments lit on each character. With the display blanked, the board circuitry
draws 75 mA maximum.

tion-supply the data, address and proper control
signals and the characters appear, with each character
location independently addressable. The basic signal
flow sequence to load a character would start with
the address lines going to the desired address. After
the address has stabilized, the data can change to the
desired values. After the data have stabilized, the
WR pulse is started, and must remain low for at least
325 ns. Signals must be held stable for 75 ns,
minimum, after the rising edge of the WR pulse to
ensure correct loading, while the addresses must be
stable for 400 ns preceding the same rising edge of
the WR pulse. See the timing diagram for a pictorial
explanation.

System Design Considerations
It is often necessary, because of the nature of
displays, to use ribbon cable from the CPU board. We
have provided a 14 pin dual-in-line hole pattern for
this purpose. In those circumstances for cables over
12 inches, use IDA 1414-16-1 (buffered version)
instead of IDA 1414-16-2 (non-buffered version).
Voltage transients from noisy systems may couple
through the cables into the Intelligent Display and can
cause serious damage.

Display Interface
The display interface available on the 14 pin dual in
line hola pattern consists of seven data lines (DO to
06), four address lines (AO to A3), write pulse, Vee,
and GND.
WR (Write, active low): To store a character in the
display memory, this line must be pulsed low for a
minimum of 325 ns. See timing diagram for timing
and relationships to other signals.
Address lines AO to A3 are set up so that the rightmost character is the lowest address. The left-most
character is the highest address. Data lines are set up
so that DO is the least significant bit and 06 is the
most significant bit.

Avoid handling the assembly other than by the edges
of the PCB. Static damage can still be a problem, so
take the necessary precautions. Keep in conductive
material, grounded work areas, etc.
The IDA 1414 assemblies should need minimal
cleaning. A gentle wiping with a soft damp cloth
should be its only requirement. The solvent that
cannot be used on any Intelligent Display product is
alcohol. Therefore, if a solvent is. used, first check
chemical composition before application.

Using the Display Interface
Through the use of memory-mapped 1/0 techniques,
the IDA can be treated almost like a memory loca-

CHARACTER SET
DO
01
02
03

DID

04HU

L H L

2

L H H 3

H L

L •

H L H 5

L

H
L
L
L

0

1

L
L
L

,

L
H
L
L

H
H
L
L

2

3

L
L
H

H
L
H

L
4

L

L

L

L
L
L
H

5

6

7

8

L
H
H

H
H
H

H
L
L
H

L
H

H
H

L
H

L
H

L
L
H
H

H
L
H
H

L
H
H
H

H
H
H
H

9

A

8

C

0

E

F

+
" ±J JJ % ~y
- - t_
r. ,, :r J u, C
1,
0
L
J
B -' 6
-'
'.-,'
, ,
rr1",
T
C"D
0
C_u
L_
L...J H '-OJ
J.J l. ,
lJ H
, , VV
, "7 Lr
FJ ,-, F? 5 -r, LJ
0:

/

I

\

I ,
L~

\
I

*

I

I

I

..l.

/I

V

I I

\I
1\

\I

\

(,.

-----

\

----1\11

I I

-,

J

/
\

-~
,\I

/

-J
I

n

I "

LJ

1\

--

ALL OTHER INPUT CODES DISPLAY BLANKS
IDA 1414-16

2-187

Physical Dimensions (in inches)

an

I

C1

I.

4.50

-----+ib'l~
_

PIN

FUNCTION

1

AO DIGIT SELECT
.A.1 D!G!T SELECT
D4 DATA INPUT
DO DATA INPUT (LSBI
D3 DATA INPUT
D2 DATA INPUT
GND
A3 DIGIT SELECT
WRWRITE
A2 DIGIT SELECT
D6 DATA INPUT (MSBI
D1 DATA INPUT
D5 DATA INPUT

2
3
4
5

"

Wires may be soldered direct to
14 hole dual in line position or
contact clm" be made with
ribbon cable and connector
such as Berg 65493-006 or
Amp 86838-1/86838-2.

6

7
8
9
10
11
12
13
14

1211';39 I

1
1

7.:11'211~~;

DL 1414
2

3

.30

4

+ vee

8

DL 1414
5

1

2

3

4

5

9 - - - - - - - !.....-:~
.[
1'"7_ _ _ _ _ _ _-'

12
13
I.

,·Wi
lO-A2

1-"3

l
f
L

1"5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---'

r.------------------------~
L--

~~~
>----------'
IDA 1414-16

2-188

SIEMENS

IDA 1416·32
.160", Red, 16 Segment, 32 Character
DL 1416 Intelligent Display®ASSEMBLY
with Memory IDecoderIDriver

"~I'

.;~
=»

-.....is.
.!!.!!

FEATURES

DESCRIPTION

• 160 MIL High Magnified Monolithic Character
• Complete Alphanumeric Display Assembly Utilizing
the DL 1416
• Built·ln Multiplex and LED Drive Circuitry
• Bullt·ln Memory
• Bullt·ln Character Generator
• Displays 64 Character ASCII Set
• Direct Access to Each Digit Independently
• All Inputs are Buffered
• Cursor Function
• Single 5.0 Volt Power Supply
• TTL·Compatlble
• Easily Interfaced to a Microprocessor
2-189

The IDA 1416-32 Assembly is an extension of the very
easy-to-use DL 1416 Intelligent Display, This product
provides the designer with circuitry for display
maintenance. It also minimizes interaction and interface
normally required between the user's system and a
multiplexed alphanumeric display.
The assembly consists of eight DL 1416's in a single row
together with decoder and interface buffers on a single
printed circuit board. Each DL 1416 provides its own
memory, ASCII ROM character decoder, multiplexing circuitry, and drivers for its four 16-segment LED's.
Intelligent Display Assemblies can be used for applications such as data terminals, controllers, instruments, and
other products which require an easy to use
alphanumeric display.

System Overview

Using the Display Assembly

The IDA 1416-32 Intelligent Display Assembly offers the
designer 32 alphanumeric characters and operates from
just a + 5 volt supply. Based on the previously introduced
DL 1416 four characler Intelligent Display. The
IDA 1416-32 adds all the support logic required for direct
connection to a host system.

Through the use of memory·mapped I/O techniques, the
IDA can be treated almost like a memory location-supply the data, address, proper control Signals and the
characters appear, with each character location in·
dependently addressable. The basic signal flow sequence
to load a character would start with the address lines go·
ing to the desired address. Data can change to the
desired values (including cursor). After the data has
stabilized, the write (WR) pulse Is started. See specifica·
tions and timing diagram for times and pictorial
explanation.

System Power Requirements

Operating from a single + 5 volt power supply, the
IDA 1416-32 requires a typical operating current of
390mA with ten segments lit for each digit. The maximum
operating current with all segments lit for al.1 digits will be
900mA maximum.,

System Design Considerations

it is often necessary, because of the nature of displays,
to use cables. Avoid excessively long cables; try to keep
them short. Because of current steps due to internal
multiplexing, wire length and size will affect load regula·
tion which may cause an incorrect display.

Display Interface Signals

The system interface takes place through a 16 hole dual·
in-line pattern. The user may solder wires directly into
these holes or use a ribbon cable connector. The inter·
face signals available at the 16 holes consist of seven
data lines (DqJ to 06), five address (A~A4), write and cur·
sor input.

Avoid handling the assembly other than by the edges of
the PCB. Static damage can still be a problem, so take
the necessary precautions. Keep in conductive material,
grounded work areas, etc.

WR

(Write, active low): To store a character in the
display memory must meet minimum write cycle
waveform.

CU

(Cursor select, active low): This input must be
held high during a write cycle to load ASCII data
into memory; and held low during a write cycle
to load cursor data into memory. The cursor
(CU) should not be hardwired high (off). DlJring
the power·up of the DL 1416's the cursor
memory wili be in a random state. Therefore, it
is recommended for the host system to initialize
or write out ali possible cursors during system ini·
tialization. Also, the cursor display will be overrid·
den by a blank from an undefined code in that
digit poSition.

The IDA 1416-32 requires minimal cleaning. A gentle
wiping with a soft damp cloth should be its only requirement. The solvent that cannot be used on any Intelligent
Display product is alcohol, therefore, if a solvent is used,
first check chemical composition before application.
CHARAlJTER SET

"-

DO

"-

D1
,D'

L
L
L

H
L
L

L

"
L

D6D5D4 D3

L H l

L

l H l

H

L H H l

L H H H

Address lines AIj to A4 are set up so that the right·most
character is the lowest address location. The left·most
character is the highest address. Data lines are set up so
that 00 is the least significant bit and 06 is the most
significant bit.

H l

L L

H L L H

H
H

"

L
L

"
:H 9)
L

L
H

L

H

"

"

H

H

% ~y
+ -- - ,
*
,
n , ( j u,
5 6 ,
u
-)
B DJ -- - l_ ---- -~ ,
,-OJ ,(""I-, _u-0 L JJ.." [ r G
n
' , T LJ, ~{ t_ II\AI 1\, lJ
,--,
-'"

I
\

1/

\

I

I

I

/

\

I

I

I

.1.

H L H L

P

H L H H

\I
1\

,-,

lY

,

V

F? 5
7

i_

r

t

T
\

I

I I

,

I

LJ

\

-'

'"
v/I

1\

I I

v."

--

NOTE: All ", .. dtl,ned dill cDdlllhll' In Iaclid o. OCC\Ir on p_·"pw,U ......... bI.nk lilptty rtIIH.

IDA 1416-32

2-190

IDA 1416-32
Maximum Ratings
Vee ............................. ............................................ . 6.0V
Voltage applied to any input .......................................... - 0.5 V to Vee + 0.5V
Operating Temperature ................................................... OOto +65°C
Storage Temperature ................................................... - 20° to + 70°C

Optoelectronic Characteristic @ 25 °C
Symbol

Min

Supply Voltage

Parameter

Vee

4.75

Supply Current
Cursor

lee

Typ

Blank (Total)
Typical/Digit

Max

Units

5.25

V

1250

rnA

Vee = 5V·AII segments on.

100

rnA

Vee = 5V Inputs low.

rnA

Vee = 5V ( 10 segments/digit)

390

Input Voltage High

VIH

Input Voltage Low

VIL

Input Current High

Tast Conditions

2

V

Vee=5V

0.8

V

Vee=5V

IIH

40

Input Current Low

IlL

-1.6

"A
mA

Vee = 5.25 VI = O.4V

Luminous Intensity
Average per digit

Iv
Vee = 5V (8 segment digit)

Vee = 5.25 VI = 2.4V

0.5

mcd

Peak Emission Wavelength

660

mm

Viewing Angle

±20

Deg

Switching Characteristics
Parameters'

Symbol

Write Pulse
Data Setup time
Data hold time
Address setup time
Address hold time
Write delay time

Tw
Tos
TOH
TAS
TAH
Two

OOC (TYD)

475
. 950
400
950
400
475

25°C (Min)

65°C (Typ)

Units

560
1100
500
1100
500
540

675
1300
600
1300
600
625

nS
nS
nS
nS
nS
nS

TIMING CHARACTERISTICS

IDA 1416-32

2-191

Physical Dimensions (In inches)

,-

.301

8.80

~

-

~.25 Typ.

..

I

I

~
.

I

I

,.75 ReI.

rr~I~l0

T'L~~~c;r;r;:::
" U~L."".
~~L. ....

.t

----J

.154 Oi •.
Typ .

8.50

PIN

FUNCTION

1
2
3
4
5

Wires may be soldered directly to 16 hole dual in-line position or contact can be made with ribbon cable ·and connector such as Berg
65493-008 or Amp 86839-1/86839-2.

01 DATA INPUT
A1 CHARACTER ADDRESS
DIi DATA INPUT
A_ CHARACTER ADDRESS
D4 DATA INPUT
6 02 DATA INPUT
7 A3 CHARACTER ADDRESS
8GND
9 A2 CHARACTER ADDRESS
10 A4 CHARACTER ADDRESS
11 05 DATA INPUT
12 CU CURSORINPUT
13 03 DATA INPUT
14 WWRITE
15 oil> DATA INPUT

16

7

vec

6

2- A'

>-----------------~Ul~--------------~----------~------~~--r_--.

3- 06

>--------...,---!Iy----.~4

RE=;ttt::::;t=::;rtt:F

5

201918

107

OL. 1416.
MC-'40SOB(2J
,,- 05

5- 04

1234-56789

11

201918

106

OL 1416
123456789

11

201918

11

10-5

OL 14.16
23456789

>---+-----+~~~~~6---~~++trHH--~HH~++++--~++++HHH_-~

>-_-+____-+~5.~4~~~---~++~HH---~~++++---4++++HHH_-~

'51- 0_
01 >:::=+::::::::=+4?'~~'4~~'5~::::::::tttt~::::::~~+++t:::::::t+t~~:::::
>
3U 2
6-- 0302 >>:::=+::::::::~~~3~~2::~::::::::tt~::::::::~+++t:::::::::t~~:::::
13
"
14-WR
~:::t::::::::=+~~9~~'0~:::::::::::t~::::::::::t:tt::::::::::~~:::::
12- CD >
10
4 _ A_ >-_-+____-+..::....--'-'1"1jj>-12

10- A4
7 - A3
9- A2

>-__-+_~_':"I~ 7~~2 It::=:;;;:;:_::;~-;;~;;:~;-;~;------------------'
14

10-'2 PIN 7

...... _

IO-~PIN7

L.---J!1li..5L....._.J-l----:ID-1

PIN 7

10A'4'6-{!2

2-192

IDA 2416 Series

SIEMENS

.160", RED 17 SEGMENT
DL-2416 Intelligent Display ASSEMBLY

FEATURES
•
•

•
•
•
•

160 Mil High Magnified Monolithic Character
Wide Viewing Angle ± 400
Complete Alphanumeric Display Assembly Utilizing
the DL 2416
• Built-in MUltiplex and LED Drive Circuitry
• Built-in Memory
• Built-in Character Generator
Displays 64 Character ASCII Set
Direct Access to Each Digit Independently
Display Blank Function
Memory Clear Function

• Cursor Function
• Choice of 16 or 32 Character Display Length
(Other lengths optional)
• Single 5_0 Volt Power Supply
•
•
•
•

The IDA 2416 Series Assembly is an extension of the
very easy-to-use DL 2416 Intelligent Display_ This.
product provides the designer with circuitry for
display maintenance_ It also minimizes interaction
and interface normally required between the. user's
system and· a multiplexed alphanumeric display_
The assembly consists of DL 2416's in a single row
together with decoder and interface buffers on a single
printed circuit board_ Each DL 2416 provides its
own memory, ASCII ROM character decoder, multiplexing circuitry,and drivers for its four 17-segment
LED's_
Intelligent Display Assemblies can be used for applications such as data terminals, controllers, instruments,
and other products which require an easy to use alphanumeric display_

TTL Compatible
Easily Interfaced to a Microprocessor
Tri~State or Open-Collector Input Circuitry
Schmitt Trigger Inputs on Control Lines
Description

Part Number
IDA 2416-16

Single Line 16 Character Alphanumeric Display Utilizing the DL 2416

IDA 2416-32

Single Line 32 Character Alphanumeric Display Utilizing the DL 2416
For custom lengths in increments of four characters, consult factory

2-193

SystenI avervilW

writes the cursor. A "(I" on 0(1 removes the cursor.
The change occurs during the next write pulse per
the timing diagram.

The Intelligent Display Assembly offers the
designer e choice of either 16 or 32 alphanumeric
characters (the IDA 2416-16 end IDA 2416-32,
respectively), end operates from just a + 5V supply.
Based on the DL 2416 four-character Intelligent
Display, the IDA 2416 adds all the support logic
required for direct connection to most microprocessor buses. The system interface takes place
through a 26-pin connector, which has available on
it the data end addrass lines as well as the control
signals needed. Two additional connectors are
liiCludvd on the IDA 2415-cna of them;: u:ed fer
the power and ground, connections, and the otner
is used to implement display enable selection.

fiJi (Clear, active low): When held low for one display multiplex cycle (see DL 2416 data sheet for
more information) of 15 ms, this line will cause all
stored characters in the display. except for the cursor,
to be cleared. CIlf is active regardless of address or
display enable lines. The CLR input drives a schmitt·
trigger.

Dn to DE4 (Display Enable, active low): There are
four jumper selecteble lines, anyone of which can be
seiecteo to provide one oT TOUi' wira, addrisses tnit
can be used when multiple IDAs are built into a sys·
tem. When low, this line enables the selected display
to permit date loading. The display enable input
drives a schmitt-trigger.
Address lines Alii to A4 are set up so that the rightmost character is the lowest address. The left-most
character is the highest address. Data lines are set up
so that Dii is the ieast significant iJit and 06 is the
most significant bit.

System Power Requirements
Operating from a single +5-V power supply, the
IDA 2416-16 requires a typical operating current of
450 mA with eight of the segments lit on each
character. For the 32 character display, the current
increases to B50 mA, typical. For the worst-case
condition with all segments lit, the 16 character
display draws 650 mA and 1he 32 character display
requires'1250 mAo With the display blanked, the
board circuitry draws about 70 mAo

U.ing the Display Interface
Through the use of memory-mapped 1/0 techniques,
the IDA can be treated almost like a memory loca·
tion - supply the data, address and proper control
signals and the characters appear, with each character
location independently addressable. The basic signal
flow sequence to load a character would start with
tha address lines going to the desired address while
the CLR and BL lines are high to permit the data to
be loaded in and displayed. After the address has
stabilized, the data can change to the desired values
(including the cursor). After the data has stabilized,
the WR pulse is started, and must remain low for at
least 350 ns. Signals must be held stable for 75 ns,
minimum, after the riSing edge of the WR pulse to
ensure correct loading, while the addressas must be
stable for 650 ns preceding the same rising edge of
the WR pulse. See the timing diagram for a pictorial
explanation.

Di.play Interfllce
The display interface available on the 26·pin connector consists of seven data lines (00 to 06), five
address lines (A0 to A4), four display-enable lines
(D'Elto OE4(.), several' unused pins, and various con'
trol signals. All address, data, and control lines have'
either pull-up or pull-down 1 K ohm resistors.
Bt (Blanking, active low): When this line is pulled
low, it causes the entire IDA display to go blank
without affecting the contents of the display memory on the DL 2416s. 8[ is active regardless of
address or display enable lines. A flashing display can
be realized by pulsing this line.
WR (Write, active low): To store a character in the
display memory, this line must be pulsed low for a
minimum of 36() ns. See timing diagram for timing &
relationships to other signals. The WR input drives a
schmitt-trigger.

Enable Selection
For board enable (the ~ through I5Eiflines) the
user can choose anyone of the four enable signals he
has provided on the cable. This signal will be used to
provide a master 'enable to each IDA. All that need be
done is to insert the shorting plug in the appropriate
position on the pins provided. This allows the user to
make the system display the same information on
two or more different IDAs or display different
information on each of up to four groups of IDA's.

CUE (Cursor Enable, active high): When high, this
line permits the cursor to be displayed, and when
brought low, it disables the cursor function without
affecting the stored value. CUE is active regardless of
address or display enable lines. A flashing cursor can
be created by pulSing the CUE line low.

1m' (Cursor Select~ 'active low): The cursor function
(character with all segments lit) is loaded by selecting
the digit address and holding Im'true. A "1" on 0(1

IDA 2418

2-194

IDA 2416 Series
Maximum Ratings

Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0 V
Voltage applied to any input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to Vcc +0.5 VDC
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to +6S·C
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • .. 0 to +70°C
Relative Humidity (non condensing) @ 65°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85%

Optoelectronic Characteristics @ 25°C
Parameter

Symbol

Supply Current/Digit

Min

Typ

Max

Units

25

Icc

Test Conditions

mA

Vee = 5.0 V (8 Segmenu/Digitl

Total (lDA·2416·16)

leo

650

mA

Vee = 5.0 V (All Segments/Digit)

Total (lDA·2416-32)

ICC

1250

mA

Vee = 5.0 V (All Segments/Digiti

5.25

V

Supply Voltage

Vee

4.75

Input Voltage - High
(All inputs)

V IH

3.3

Input Voltage - Low
(All inputs)

V IL

Input Current - High
(All inputs)
Input Current - Low
(All inputs)

5.00

V

Vee = 5.0 V ± .25 V

0.8

V

Vee=5

IIH

40

"A

Vee = 5.5 V, VI = 2.4 V

IlL

2.2

mA

Vee = 5.5 V, VI = 0.4 V

Vee = 5.0 V (8 Segments/Digit)

Luminous Intensity

Average Per Digit
Peak Wavelength

Iv

0.5

mcd

Apeak

660

nm

±45

Deg

Viewing Angle

Venical & Horizontal From
Normal To Display Plane

Switching Characteristics @ 5 V
Parameter @ 25° C

Symbol

Min

Units

Tw
TAS
TOS
Two
TOH
TAH
TeLR

350
550
550
200
75
75
15

nS
nS
nS
nS
nS
nS
mS

Write Pulse
Address/DE Setup Time
Data Setup Time
Write Setup
Data Hold Time
Address/DE Hold Tim(
Clear Time

TIMING CHARACTERISTICS
WRITE CYCLE WAVEFORMS

m,m
6E3, ffi

culA~ A4

I
t-I --------~--~~
I

=>t~---+--~*==
.I. :::J
I

TAH

TAS

I

%
I

WR

"
~TWO~

I
011-06

=t
TIMING MEASUREMENT
VOLTAGE LEVELS

Tw

J.
=x=x:

Tos

----0/+-

x=

TOH

-

=:!

4 VOLTS
2 VOLTS
o VOLTS

IDA 2416

2-195

Physical

4.80 (IDA 2416-16) _ _ _ _ _+1
8.80 (IDA 2416-32)
.250
TYP

I....t------r

.154DIA
TYP

lOLERANCE: ±.02
±.010

RECOMMENDED MATING CONNECTOR
Connector
&J2
,&.J3

Function

Type

ControllData
Power

26-Pin Ribbon
AMP

Suggested Mfg_

BERG PIN 65484-011
PIN PIN 87026-2
HOUSING PIN 1-87025-3

PIN

.)'11'
H
:.

.

Z6
25

..
' ..
'.

14u

'

FUNCTION

FUNCTION

A2 ADDRESS LINE
DE4 DISPLAY ENABLE
A3 ADDRESS LINE
i5E3 DISPLAY ENABLE
A4 ADDRESS LINE
DEl DISPLAY ENABLE
NO CONNECTION
DE2 DISPLAY ENABLE
Dill DATA LINE
NO CONNECTION
01 DATA LINE
NO CONNECTION
02 DATA LINE

J2-14
J2-15
J2-16
J2-17
J2-18
J2-19
J2-20
J2-21
J2-22
J2-23
J2-24
J2-2S
J2-26

NO CPNNECTlDN
06 DATA LINE
NO CONNECTION
04 DATA LINE
CUE CURSOR ENABLE
OS DATA LINE
CU CURSOR SELECT
Alil ADDRESS LINE
CLR CLEAR
Al ADDRESS LINE
WR WRITE
03 'DATA LINE
BL BLANKING

J3-1
J3-2

GND
VCC

J3-3
J3-4

VCC
GND

15

IIU

PIN

J2-1
J2-2
J2-3
J2-4
J2-S
J2-6
J2-7
J2-8
J2-9
J2-10
J2-11
J2-12
J2-13

12

'

..

'

Note:

m
(i
[I
5:

RESISTQR ..... RTOFPACltltlfIItJ
JlESISTORPART OfPII.Clt 112 Ult)
RlSISTORI'II.R1OF ..... CIIR3(J1t1
UIIUSEDP".SOFJZARE.
7. 10. IZ. 14 AMI 16

IDA 2416

2-196

IDA 3416 Series

SIEMENS

.225" Red 17 Segment
DL 3416 Intelligent Display@ASSEMBLY

FEATURES
• 225 Mil High Magnified Monolithic Character
• Wide Viewing Angle ± 40·
• Complete Alphanumeric Display Assembly Utilizing
the DL 3416
• Built-in MUltiplex and LED Drive Circuitry
• Built-in Memory
• Built-in Character Generator
• Displays 64 Character ASCII Set
• Direct Access to Each Digit Independently
• Display Blank Function
o Memory Clear Function
• Cursor Function
• Choice of 16, 20 or 32 Character Display Length
(Other lengths optional)

The IDA 3416 Series Assembly is an extension·. of the
very easy-to-use D L 3416 Intelligent Display. This
product provides the designer with circuitry for
display maintenance. It also minimizes interaction
and interface normaliy required between the user's
system and a multiplexed alphanumeric display.
The assembly consists of DL 3416's in a single row
. together with decoder and interface buffers on a single
printed circuit board. Each D L 3416 provides its
own memory, ASCII ROM character decoder, multiplexing circuitry, and drivers for its four 17-segment
LED's.
Intelligent Display Assemblies can be used for applications such as data terminals, contr~Hers, instruments,
and other products which require an easy to use alphanumeric display.

• Single 5.0 Volt Power Supply
• TTL Compatible
• Easily Interfaced to a Microprocessor
• Schmitt Trigger Inputs on Data and Write Lines

Specifications are subject to change without notice.

Part Number

Description

IDA 3416-.16

Single Line 16 Character Alphanumeric Display Utilizing the DL 3416

IDA 3416-20

Single Line 20 CharaCter Alphanumeric Display Utilizing the DL 3416
Single Line 32 Charaeter Alphanumeric Display Utilizing the DL 3416

IDA 3416-32

For Custom Lengths, on Increments of 4 Characters, Consult the Factory.

2-197

IDA 3416 Series
Maximum Ratings
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0V
Voltage applied to any input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to Vcc +0.5 VDC
Operating Temperature . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . .
0 to +65°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -20 to +70°C

Optoelectronic Characteristics @ 25°C
Paramater

Symbol

Supply Current/Digit
Supply Current/Digit

Min

Typ

Max

Units

6

mA
mA,

860

mA

25

lee
lee

Test Conditions
Vee = 6.0 V (8 Segments/Olgltl
Vee = 6.0 V

"

Total (10.0.,.3416-16),

lee

Total (lOA-3416-20)

lee

1050

Total (lOA-3416-32)

lee

1680

Supply Voltage

Vee

4.75

Input Voltage - High
(All inputs)

VIH

3.5

Input Voltage - Low
(All inputs)

V IL

Input Current - High
(All inputs)
I nput Current - Low

5.00

U::~P!·6:'1~~~

5V

Vee" 6.0 V (All Segments/Digit)
(See Note 2)
Vee = 6.0 V (All Segments/Digit)
(Sea Note 2)
Vee = 5.0 V (All Segments/Oigltl
(See Note 2)
,

mA
V

5.25 '

V

Vee = 5.0 V ± .25 V

0.8

V

Vee

IIH

40

I'A

Vee = 5.5 V, V I = 2.4 V

IlL

6.4

mA

Vee = 5.5 V, VI = 0.4 V

Vee = 5.0 V (8 Segments/Digit)

=

5

I

(All inputs)
Luminous Intensity

Average Per Digit
Peak Wavelength

Iv

0.8

mcd

Apeak

660

nm

±40

Deg

Viewing Angle

Vertical & Horizontal From
Normal To Display PIi..;.

Switching Characteristics @ 5 V
Parameter @ 25° C

Symbol

Min

Units

Tw
TAS
Tos
Two
TOH
TAH
TeLR

350
550
550
200
75
75
15

nS
nS
liS'
nS
nS
'nS
,mS

Write Pulse
'Address/DE Setup Time
Data Setup Time
Write Setup
Data Hold Time
Address/DE Hold Time
Clear Time

TIMING CHARACTERISTICS
WRITE CYCL,E WAVEFORMS

I

~
, 1"--------<11-------~
I

!

1

I,'

=>t,-~-- ,-_.*'1-0- F
;,"
X'---TAS

TAH

I-TWO-C-T-w-~-JI

0;-06

=l~~--TDS -~=~=i-+I

..o--

TIMING MEASUREMENT
VOLTAGE LEVELS

~4VOLTS

~2YOLTS

o YOLTS
IDA 3416

2-198

System Overview

CIT (Cursor Select, active low): The cursor function

The Intelligent Display Assembly offers the designer
a choice of either 16, 20 or 32 alphanumeric
characters and operates from just a + 5V supply.
Based on theDL 3416 four-character Intelligent
Display, the IDA 3416 adds all the support logic
required for direct connection to most microprocessor buses. The system interface takes place
through a 20 or 26-pin connector, which has
available on it the data and address lines as well as
the control signals needed. One additional connector is used for the power and ground connections.

(character with all segments lit) is loaded by selecting
the digit addresS'and holding CU true. A "1" on 00
inserts the cursor. A "0" on 00 removes the cursor.
The change occurs during a write pulse per the
timing diagram.

CLR (Clear, active low): When held low for one display multiplex cycle (see DL 3416 data sheet for
more information) of 15 ms, this line will cause all
stored characters in the display, except for the cursor,
to be cleared. CLR is active regard hiss of address or
display enable lines.

System Power Requirements

CE2 (Chip Enable, Active Low): To store a character
in the display memory, this line must be held low
at least 550 nanoseconds preceding the leading
edge of the WR pulse.
Address lines A0 to A4 are set up so that the rightmost character is the lowest address. The left-most
character is the highest address. Data lines are set up
so that 00 is the least significant bit and 06 is the
most significant bit.

Operating from a single +5-V power supply, the
IDA 3416 Series Assembly requires a typical operating.
current of 30 mA per digit with eight of the segments
lit on each character. For the worst case condition
with all segments lit, the current is 52 mA per digit
and with the display blank the current is 6 mA
per digit.
Display Interface
The display interface available on the 20 or 26·pin
connector consists of seven data lines (00 to 06), five
address lines (A0to A4), and various control signals.
All address, data, and control lines have either pull·up
or pull-down 1K ohm resistors. BL (Blanking, active
low): When this line is pulled low, it causes the entire
IDA display to go blank without affecting the contents of the display memory on the 0 L 3416s.. BL is
active regardless of address or display enable lines.
A flashing display can be realized by pulsing this line.
WI'! (Write, active low): To store a character in the
display memory, this line must be pulsed low for a
minimum write time. See timing diagram for timing
& relationships to other signals.

Using the Display Interface
Through the use of memory-mapped I/O techniques,
the IDA can be treated almost like a memory location - supply the data, address and proper control
signals and the characters appear, with each character
location independently addressable. The basic signal
flow sequence to load a character would start with
the address lines going to the desired address while
the CLR and BL lines are high to permit the data to
be loaded in and displayed. After the address has·
stabilized, the data can change to the desired values
(including the cursor). After the data have stabilized,
the WR pulse is started, and must remain low for at
least 350 ns. Signals must be held stable for 75 ns,
minimum, after the rising edge of the WR pulse to
ensure correct loading, while the addresses must be
stable for 550 ns preceding the same rising edge of
the WR pulse. See the timing diagram for a pictorial
explanation.

CUE (Cursor Enable, active high): When high, this
line permits the cursor to be displayed (see Note 2),
and when brought low, it disables the cursor function
without affecting the stored value. CUE is active
regardless of address or display enable lines. A flashing cursor can be created by pulsing the CU E line low.

Notes:

1) CMOS Handling precaution - App Note 18
2) Cursor should not be on longer than 60 sec.
3) Cleaning solvents - use NO alcohol
IDA 3416

2-199

IDA3416 Physical Dimensions

'8

PRODUCT

A

IDA 3416·16

3.00

6.00

6.95

(76.20)
3.65
(92.71)

(152.40)
7.30

(176.58)
8.25
(209.55)

IDA 3416·20

C

(185A2)

PIN
J:::.~

"

)'
,.
"
:.

20

J2·2'
J2·3
J2·4
J2·5
J2·6
J2·7 .
J~·8

J2·9
J2·10

J3·'
J3·2

.48
(1~~[g7

;bl~

( 5OCO)1

I-

11 .00
(279.40)

~

I

FUNCTION

PIN

CC CAT;' LINt
BL BLANKING
05 DATA LINE
UNUSED
04 DATA LINE
A1 ADDRESS LINE
03 DATA LINE
AIADORESS LINE
02 DATA liNE
elR CLEAR

J:."

GND

vee

r

CAT;'

L.I~":C

i l l CHIP

J2-13

01 DATA LINE
CU CURSOR SELECT

J2-14

ENABLE

J2·15

WAWFlITE

J2-16
J2-18
J2-19
J2·2D

CUE CUSOR ENABLE
A3 ADDRESS LINE
UNUSED
A4 ADDRESS LINE
A2 ADDRESS LINE

J3·3
J3-4

GND

J2·17

vee

~

"- ,

r::::J
to:!
.1 5~
(3.81) -1o:i.~0)
(3.81)

FUNCTION

or

J2-12

,L
1. f°

.75
-REF
(19.05)

2.3 2)
(5l
.22 REF
(5.59)

r::::J c:::J r::::J

.12 Dia

'-T,p
(3.05)

4.50

. (114.3)

10.50
(266.70

PIN

l
'b

J2·'
J2·2
J2-3
J2-4
J2·5
J2-6
J2-7
J2-8
J2-9
J2-10
J2-11
J2-12
J2-13

•

!!

26

••

J3-'
J3'2

FUNCTION
A2 ADDRESS LINE
5E4 DISPLAY ENABLE

A3 ADDRESS LINE
DE3 DISPLAY ENABLE
A4 ADDRESS LINE

DEi" DISPLAY ENABLE

NO CONNECTION
OE2 DISPLAY ENABLE
01 DATA LINE
NO CONNECTION
01 DATA LINE
NO CONNECTION
02 DATA LINE

PIN.

J3-3
J3-4

GND

vee

FUNCTION

J2-14 NO CONNECTION
J2-15 D6 DATA LINE
J2-16 NO CONNECTION
J2-17 04 DATA LINE
J2-18 CUE CURSOR ENABLE
J2-19 D5 DATA LINE
J2-20 CO CURSOR SELECT
J2-21 AI ADDRESS LINE
J2-22 CLR CLEAR
J2-23 " A1 ADDRESS LINE
J2-24 WR WRITE
J2-25 03 DATA LINE
J2-26 B[ BL~NKING

vec
GNO

RECOMMENDED MATING CONNECTOR
Connector
&J2
&,.J2
&J3

Function
Control/Data
Control Data
Power

Type
20 Pin Ribbon
26 Pin Ribbon
AMP

Suggested Mfg.
BERG PIN 65496-007
BERG PIN 65484-011
PIN PIN 87026-2
HOUSING PIN 1-87025-3

IDA 3416

2-200

SIEMENS

IDA 7135 Series
Green IDA 7137 Series

HIGH EFFICIENCY RED

.68" HIGH, 5 x 7 DOT MATRIX
Intelligent Oisplay® ASSEMBLY

FEATURES

DESCRIPTION

• A Complete Alphanumeric Display Assembly Utilizing
the DLX713X Series 5 x 7 Dot Matrix Display
• Built·in Multiplex and LED Drive Circuitry
• Built·in Memory
• Built·in Character Generator
• Displays 96 Character ASCII Set, Including Both UPi>er
and Lower Case Characters
• Direct Access to Each Digit Independently
• Three Brightness Levels
• Display Blank Function
e Lamp Test Function
• Wide Viewing Angle, :!: 50°
• Readable in High Ambient Lighting
• Available in High Effi.clency Red and Green
• Choice 0116 or 20 Character Display Lengths
• Single 5.0 Volt Power Supply Requirement
• Easily Interlaced to a Microprocessor
• TTL Compatible
• Fully Buffered Inputs

The IDA 713X Series Assembly is an extension of the
single character DLX 713X, 5 x 7 fully intelligent dot
matrix display. This display assembly provides the
designer with circuitry for display maintenance, while
minimizing the interaction and interface normally
required between the user's system and a multiplexed
alphanumeric display.
The assembly consists of DLX 713X's in a single row,
together with the necessary address decoders and inter·
face buffers, on a single printed circuit board. Each
DLX 713X provides its own memory, ASCII ROM char·
acter generator, multiplexing circuitry, and drivers for
the 35 LED dots.
Intelligent Display Assemblies can be used for
applications such as P.O.S. terminals, message systems,
industrial equipment, instrumentation, and any other
products requiring a large, easily readable, "user
friendly", alphanumeric display.

~

For additional information refer to Appnote 25.
For cleaning we recommend De-ionized water, Isopropyl Alcohol,
Freon TE or Freon TF.

Important: Refer to Appnote 18, "Using and Handling Intelligent
Displays." Since this is a CMOS device, normal precautions
should be taken to avoid static damage.
Specifications are subject to change without notice.

Part NumbGr
IDA7135-16
IDA 7137-16
IDA 7135-20
IDA 7137-20

COLOR
Hi. Elfi. Red
Green
Hi. Eltl. Red
Green

Description
Single Line, 16 Character Alphanumeric Display Utilizing the DLO 7135
Single Line, 16 Character Alphanumeric Display Utilizing the DLG 7137
Single Line, 20 Character Alphanumeric Display Utilizing the DLO 7135
Single Line, 20 Character Alphanumeric Display Utilizing the DLG 7137
2-201

MAXIMUM RATINGS

SWITCHING CHARACTERISTICS @ 5V

... 6.0V
VCC·
Voltage applied to
any input,
. - 0.5 to Vcc + 0.5VDC
Operating Temperature
.. , .. O'C to + 65'C
Storage Temperature ., ...... , .. -20'Cto +65'C
Relative Humidity
(non condensing) @ 65'C
, ... , ...... 85%

Parameter

11"\0'1 ? ..

170
5
85
42

!CG
ICC
ICC
ICC
Vee
VIH
VIL
III
IV

25"C

4.75
2.7

Max

Viewing Angle

Units

Tw
Tos
TOH
TAS

200
230
100
30

ns
ns
ns
ns

Test Conditions

rnA
rnA
rnA

5.25

vbc

VCC=S.O V, BLO=BL1:= 1
VCC=5.0 V, BlO=BU =0
VCC=5.0 V, BlO=O, BU = 1
Vcc = 5.0 V, BlO = 1, BU = 0

1.0
160

VDC
VDC
uA
"CD

VCC=5.0V ±.25V
VCC=5.0V
VCC=5.0V
VCC=5.0V

220
10

565 (Green)
640 (Hi.. Effi. Red)

.,r:-

Minimum

Units

250

lun,lo,).)

Symbol

Write Pulse
Data Setup Time
Hold Time
Address Setup

OPTOELECTRONIC CHARACTERISTICS AT 25°C
Typ
Symbol
Parameter
Min
Supply Current/Digit
Supply Current/Digit (Blank)
Supply Current/Digit
Supply Current/Digit
Supply Voltage
Input Voltage·High (All Inputs)
Input Voltage·low (All inputs)
Input Current
luminous Intensity/Dot Average
Peak Wave Length
IDA 7137

@

±50'1

rr...."

nm
.nm
Deg

TIMING CHARACTERISTICS
DISPLAY INTERFACE
WRITE CYCLE WAVEFORMS

A0-A4

00-06

)<

C >.C

~Tos-FTOH~

TIMING MEASUREMENT
VOLTAGE LEVELS

=x=:x:

4 VOLTS
- 2 VOLTS
a VOLTS

SYSTEM OVERVIEW
The Intelligent Display Assembly offers the designer a choice of
either 16 (IDA 713X·16) or 20 (IDA 713X·20) alphanumeric charac·
ters. Based on the DLX713X intelligent dot matrix display, the IDA
713X adds all the support logic required for direct connection to
most microprocessor-buses. The system interface takes place
through a 26 pin connector, which has the data and address
lines as well as the control signals available on it. One additional
connector is used for the power and ground connections.

The display interface available on the 26 pin conhector consists
of seven data lines (DO to D6):J!ye address lines (AOjg A4, see
Not. 3), t~ brightness inputs (BlO to BU), lamp test (IT), the Chip
Enable (CE), and the Write line (WR). All address and data lines
have 1K ohl!!.E.ull up resistors.
BlO and BU (Brightness, active low): When both of these are
pulled 10\0\\ it causes the entire IDA display to go blank without
!!flecting the contents of the display memory on the DLX713X's.
BL is active regardless of address or display enable lines. These
two lines are used to vary the intensity of the display to one of
four levels.
WR (Write, active low): To store a character in the display memo
ory, this line must be pulsed low for a minimum of 200 ns.
See timing diagram for timing and relationships to other signals.
IT (Lamp test, active low): This line can be activated to light
all display dots.
·For IDA 713X·16 only.
Four address bits are used.

DIMMING AND BLANKING THE DISPLAY
Brightness
Level

SYSTEM POWER REQUIREMENTS
Oparating from a single + 5V power supply, the IDA 713X·16
requires a typical operating current of 2720 rnA at brightest level.
For the 20 character assembly, typical operating current is 3400
rnA. For worst case conditions, the 16 character assembly draws
3520 rnA, while the 20 character assembly draws 4400 rnA.
With the display blanked, the board circuitry for the 16 character
assembly draws 60 rnA, and the 20 character assembly 'draws
100 rnA.

BU

BLO

Blank

0

0

'A Brightness

0

1

Y2 Brightness

1

0

Full Brightness

1

1

IDA 7135

2-202

USING THE DISPLAY INTERFACE

IDA 713X XX· DIGIT ADDRESSING TRUTH TABLE

Through the use of memory-mapped 110 techniques, the IDA
can be treated almost like a memory location-supply the data,
address and proper control signals and the characters appear,
with each character location independently addressable_ The basic
signal flow sequence to load a character would start with the
address lines going to the desired address_ After the address has
stabilized, the data can change to the desired values. After the
data has stabilized, the WR pulse is started and must remain low
for at least 200 ns to ensure correct loading. See the timing diagram for a pictorial explanation. Either BLO or Bll should be held
high for displays to light up.

0
0
0

Address Bit
A3 A2 AI
a 0 0
0
0
0
0
0
1
0
0
1
0
1
0
0
1
a
0
1
1
0
1
1
1
0
0
1
0
a
1
0
1
0
1
1
a
1
1
1
0
1
1
1
1
1
1
1

1
1
1
1

0
0
0
0

A4

a
0
0
0
0
0
0
0
0
0
0
0
0

LAMP TEST
The lamp test (IT) when activated causes all dots on the display
to be illuminated at half brightness. The lamp test function is independent of write (WR) and the settings of the blanking inputs (BlO),
Bll).
This convenient test gives a visual indication that all dots are
functioning properly. Lamp test may also be used as a cursor function or painter which does not destroy previously displayed characters.

a

Device Addressed
AO

0
0
1
1

0
0
0

0
1
2
3
4
5
6
7

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

9
10
11
12
13
14
15

a

16

1
0
1

18
19

iI

17

*Entire area is for 20 characters, smaller portion is for 16 characters.

Rightmost character is digit O.

CHARACTER SET
D0
01
02
03

bE

ID~ HEX

L L L

0

L L H

1

L
L
L
L

H
L
L
L

0

L
H
L
L

H
H
L
L

L
L
H
L

H
L
H
L

L
H
H
L

H
H
H
L

L
L
L
H

H
L
L
H

H
L
H

2

3

4

5

6

7

8

9

A

H
H
L
H
B

L
L
H
H

H
L
H
H

C

0

L
H
H
H
E

H
H
H
H

F

THESE CODES DISPLAY BLANK

..

-I-i- .;.- ::;~ :::.
.......

:: ·:'i- ~.

L H L 2

:: i . ..i 'i' ··1·· :i
·-i-· .
.1.1.

I:

::

H H L 6

H H H

7

.'.

&I

.

....
.....
:

. ....

::.
:
'..".'.:.':: ..:...............•........! ......:......: :.... *: -:
:..-!::::- i :::::: .i. -••:

F

':::i

r" ::::: t i...i !.) i.:J >:: ::::i :;:::

:

IDA 7135

2-203

.500

.300

.530 REF-I
(13.48) I

.

I--

I .

u"u~~,~
(8.26)

(Tolerance ± .01)

Pin

Function

Pin

Function

J2·1
J2·2
J2·3
J2-4
J2·5
J2·6
J2·7
J2·8
J2·9
J2·10
J2·11
J2·12
J2·13

A2 Address Line
No Connection
A3 Address Line
No Connection
A4 Address Line
No Connection
No Connection
No Connection
DO Data Line
No Connection
01 Data Line
No Connection
02 Data Line

J2·14
J2·15
J2·16
J2·17
J2·18
J2·19
J2·20
J2·21
J2·22
J2·23
J2·24
J2·25
J2·26

No Connection
06 Data Line
No Connection
04 Data Line
BL1 Brightness
05 Data Line
No Connection
AO Address Line
BLO Brightness
Al Address Line
WR Write
03 Data Line
ct Lamp Test

J3·1
J3·2

GND Ground

J3·3
J3·4

Vce

Vee

II

Product

A

B

c

D

IDA 7135·16
IDA 7137·16

3.80 Typ.
(96.52)

11.90
(302.26)

12.20
(309.88)

.120 Typ 10 piaces
(3.05)

IDA 7135·20
IDA 7137·20

3.55 Typ
(90.17)

14.70
(373.38)

15.00
(381.00)

.155 Typ 12 places
(3.94)

RECOMMENDED MATING CONNECTOR
I!>. ____ a ..... _
.....-FuiictlQn
uutJ".... n ..".
'J""

....'WVIliltnilUI
_---_... _ho J2
& J3

Control/Data

26·Pin Ribbon

BERG PIN 65948·011

Power

AMP

PIN PIN 87026·2
HOUSING PIN 1·87025·3

GND Ground

===

r-'

~~;::~T~

------------

AO-JI-21

A1-JZ -23
Aa-JI-1
A3-JZ-3

11
"""'Ill.

A4-JZ-5

NOTE: III Part of Resistor Pack RPI (IK SIp)
121 Part of Resistor Pack RP2 (IK SIp)
W Address bits AO-M are decoded by ICB, U3-U5 t~nableJQ.O-IDI9.
00 All like lines on all displays are tied together; e.g.;lT. WR, Bll, BLO, etc.

lOA 7135

2-204

Numeric Displays
Bar Graphs
Light Bars

3-1

LED Numeric Displays
Package
Type

Multi-digit
magnified
monolithic

Package Outline

~
[8JBJl::"D

Compact
single digit
encapsulated (Iilled
reflector)

..

Part
Number
"---~

[81818}8]
..............

DL-330M
DL-340M

Character
Height

.11"
(2.Bmm)

Description

Polarity

CJ

[8J

,_

DL-430M
DL-440M

.15'
(3.Bmm)

7 seg. 4 dig~

C.C.

HD10750

CA
7 segment,
D.P. right

C.C.

Red

800

High
Eft.Red

1000

HD.OiiY

C.C.

HD1075G

C.A.

HD1077G

C.C.

HDll05R

C.A

HDll07R

C.C.

HDll050

CA

[8.]

HDll070

Yellow

7 segment,
D.P. right

C.C.

HDll05Y

CA

HDll07Y

C.C.

HDll05G

CA

HDll07G

C.C.

HDl131R

C.A

HDl133R

C.C.

HDl1310

CA

3-6

900

1000

25

Red
1000

.39"
(10mm)

3-4

20

15
C.A.

Green

Compact
single digit
encapsulated (filled
reflector)

5

2500
per digit

7 seg. 3 digit

HD1077R

.2B"
(7mm)

Red

7 seg. 2 digit
C.A

HD1075Y

Page

7 seg. 3 digit

HD1075R

HD10770

Luminous
Intensity per
Segment
IlClJ1lYP~ ---.nJ(

C.C.
Multiplex

@@

Color

I--

High
Eft. Red
15
Yellow

900

Green

1000

3-6

35
Red

Compact
single digit
encapsulated (filled
reflector)

[8.]

HDl1330
HDl131Y

.53"
(13.5mm)

7 segment,
D.P. right

C.C .

1400

3-10
20

CA
Yellow

HDl133Y

C.C.

HDl131G

CA

HDl133G

C.C.

Green

3-2

-

High
Eft. Red

1300

1400

Bar Graphs
Package
Type

Part
Number

Package Outline

10 0000000001

10
Element
Encapsulated
(filled
reflector

Color

RBG-10oo

Red

Light
Emitting
Area

Luminous Intensity
Per Segment

Polarity

flcd (typ.)

500

OBG-10oo

High Eff.Red

.YBG-1000

Yellow

GBG-1000

Green

addressable anode

RBG-4820

Red

and

500

OBG-4B30

High Eff.Red

cathode

2500

YBG-4B40

Yellow

GBG-4B50

Green

2500

.04 x .15'

DIP)

/0000000000/

Page

mA

Separately

.06 x .20"

3-18

2000
20

3-20

2000

Light Bars
Package
Type

Small rectangular.
Rugged
encapsulated.
Large rectangular.
Rugged
encapsulated.
Square.
Rugged
encapsulated.

Square.
Rugged
encapsulaled.

Large rectangular.
Rugged
encapsulated.
Large rectangular,4
section
Rugged
encapsulated.

Part
Number

Package Outline

U=:JI

II

II

0

m
11=1
[[I[[]

Color

Light
Emitting
Area

Description

.15 x .35"

Two die light bar.

Luminous
Intensity

OLB-2300

High Elf. Red

YLB-2400

Yellow

GLB-2500

Green

10

OLB-2350

High Eff. Red

20

YLB-2450

Yellow

GLB-2550

Green

20

OLB-2655

High Elf. Red

20

YLB-2755

Yellow

GLB-2B55

Green

OLB-2600

High Elf. Red

YLB-2700

Yellow

GLB-2BOO

Green

OLB-26B5

High Eff. Red

YLB-27B5

Yellow

GLB-2BB5

Green

OLB-2620

High Elf. Red

YLB-2720

Yellow

GLB-2B20

Green

3-3

10

.15x .75'

.35 x .35"

Page

mcd (typ.) mA

Four die light bar
(1x4).

Four die light bar.

6

12

12

20
per
each
die

3-12

20
per
each
die

3-13

20

3-16

20

.15 x .35"

Four die light bar
with mechanical
barrier creating 2
isolated rectangular
light emitting areas
(2x2).

10
6
10

20
per
each
die

3-14

.40
.35 x .75'

Eight die light bar.

24

20

3-17

40

.15x .35'

Eight die light bar
with mechanical
barrier creating 4
isolated rectangular light emitting
areas (2x4).

10
6
10

20
per
each
die

3-15

SIEMENS

.11" 3 DIGIT
.11" 4 DIGIT
.15" 3 DIGIT
.15" 2 DIGIT

DL-330M
DL..340M
DL-430M
DL-440M

RED SEVEN SEGMENT MAGNIFIED MONOLITHIC NUMERIC DISPLAY
Package Dimensions in Inches (mm)

DL-43OM

DL-33OM

+9'
I~([t~·
.~.
1 - -.... ---1

DL-44OM

DL-340M

FEATURES
•

Rugged Encapsulated Package

•

I ntegrated Magnifier Lens

•

Monolithic Construction for Maximum
Brightness at Minimum Power

•

Common Cathode for Simplicity of
Multiplexing

•

Standard Dual·ln-Line Package

•

Categorized for Brightness Uniformity

DESCRIPTION
The DL·330M/340M and DL·430M/440M
are red numeric LED displays. Low cost is
.achieved through minimum use of mono·
lithic GaAsP material and magnification to
full height using a simple integrated lens
construction. A red plexiglass or circularly
poladzed filter is recommended to enhance
visibility and to eliminate glare from the
surface of the package.
These displays are designed for multiplex
operation, the desired digit being displayed
by selecting the appropriate cathode. A
right hand decimal point is provided.

rUt" (t#"

.'''88
t::I t::I.
.i
. .........

n

.

3D
--..1

1----"5--1

Maximum Ratings: "

Incf:cates

FEATURES
• Large Rectangular Package
• Mechanical barrier creating four isolated
rectangular light emitting areas
• Uniform Light Emitting Area
• Excellent ONIOFF Contrast
• Choice of Three Colors
• Categorized for Light Output
• Yellow and Green Categorized for
Dominant Wavelength
• Panel or Legend Mountable
• Can be Mounted on P.C. Boards
or DIP Sockets
.X-Y Stackable
• Suitable for Multiplexing
• IC Compatible

APPLICATIONS
These devices are ideally suited for:
• Message Annunciators
• Positions/Status Indicators
• Telecommunications Indicators
• Bar Graphs

DESCRIPTION
The OLB 2620IYLB·2720/GLB 2820 series
light bars are rectangular displays. They are
configured in a dual in·line package with a
mechanical barrier creating four isolated rec·
tangular light emitting areas. The OLB 2620
and YLB 2720 devices utilize eight LED chips
which are made from GaAsP on a transparent
GaP substrate. The GLB 2820 device utilizes
eight chips made from GaP on a transparent
GaP substrate.

1

2

34

S

6

7

8

Maximum Ratings
alB 2620 & GlB 2820

YlB 2720

t3SmW
90mA

8SmW
. SOmA

2SmA

20mA

30mA

2SmA

Average Power Dissipation per LED chip
Peak Forward Current per LED chip
Ta = SO·C (max pulse width = 2ms)
Average Forward Current per LED
Pulsed conditions (Ta = SO·C)
DC Forward Current Per LED
(Ta = SO·C)
Reverse Voltage per LED chip
Operating Temperature
Storage Temperature
Lead Soldering Temperature,
1/16 inch below seating plane
Junction Temperature

6V
- 40·C to + 8S·C
- 40·C to + 8S·C
2SO·C for 3 sec.

6V

100·C

Electrical/Optical Characteristics (@ 25°C)
Parameters

Min.

Typ.

Luminous Intensity (per light emitting area)
OLB2620
10
4.5
YLB2720
4
6
GLB2820
3.7
10
Peak Wavelength
635
OLB2620
S83
YLB2720
565
GLB2820
Dominant Wavelength
626
OLB2620
585
YLB2720
572
GLB2820
Forward Voltage
2.1
OLB2620
2.2
YLB2720
2.2
GLB2820
Reverse Voltage
6
15
OLB2620
6
15
YLB2720
6
15
GLB2B20

3-15

Max.

Units

Test
Conditions

mcd
mcd
mcd

20mADC
20mADC
20mADC

nm
nm
nm
nm
nm
nm
2.6
2.6
2.6

V
V
V

V
V
V

IF=20mA
1,=20mA
1,=20mA
IR =1001JA
IR =1001JA
iR =1001JA

SIEMENS

OLB, 2655
YLB 2755
GLB 2855

HIGH EFFICIENCY RED
YELLOW
GREEN

LIGHT BARS
Package Dimensions in Inches (mm)
.40 SQ.

PIN" PIN F!JNCTION

1--<10.16>--/

I

MAX.

I

D~
~:r

.35 SQ.

[l

l'

2
3

-:To

(7.62)

-.1~

Calnodea
Anooea
Anodeb
. Cathode b
Cathodec
Anodec
Anoded
Cathoded

~---PART

IDENTIFICATION
LOCATION

FEATURES
• Square Package
• . Uniform Light emitting Area
• Excellent ON/OFF Contrast
• Choice of Three Colors
• Categorized for Light Output
• Yellow and Green Categorized for
Dominant Wavelength
• Panel or Legend Mountable
• Can be Mounted on P.C. Boards or DIP Sockets
• X-Y Stackable
• Suitable for Multiplexing
• IC Compatible

APPLICATIONS
These devices are Ideally suited for:
•
•
•
•

Message Annunciators
PositionslStatus Indicators
Telecommunications Indicators
BarGraphs

DESCRIPTION
The OLB 2655IYLB 2755/GLB 2855 series light
bars are square displays deSigned for application requiring a large light emitting area. They
are configured in a dual in-line package and
contain a single light emitting area. The OLB
2655 and YLB 2755 devices utilize four LED
chips which are made from GaAsP on a transparent GaP substrate. The GLB 2855 device
utilizes four chips made from GaP on a transparent GaP substrate.

Maximum Ratings
Average Power DiSSipation per LED chip
Peak Forward Current per LED chip.
Ta = 50·C (max pulse width = 2ms)
Average Forward Current per LED
Pulsed conditions (fa = 50·C)
DC Forward Current Per LED
(fa = SO·C)
Reverse Voltage per LED chip
Operating Temperature
Storage Temperature
Lead Soldering Temperature,
1116 inch below seating plane

OLB 2655 & GLB 2855
I 35mW
90mA

20mA

30mA

·25mA

6V
- 4O·C to +85·C
- 4O·C to + 85·C
260·C for 3 sec.
lOO·C.

Electrical/Optical Characteristics (@

Luminous Intensity
OLB2655
YLB2755
GLB2855
Peak Wavelength
OLB2655
YLB2755
GLB2855
Dominant Wavelength
OLB2655
YLB2755
GLB2855
Forward Voltage
OLB2655
YLB2755
GLB2855
Reverse Voltage
OLB2655
YLB2755
GLB2855

3-16

SOmA

25mA

Junction Temperature

Parameters

VLB 2755
··85mW

UnHs

Test
Conditione

20
12
20

mcd
mcd
mcd

20mADC
20mADC
20mADC

635
583
565

nm
nm
nm

626
585
572

nm
nm
nm

Min.

Typ.

9
8
7.5

2.1
2.2
2.2
6
6
6

25°C)

15
15
15

Max.

2.6
2.6
2.6

V
V
V

IF =2OmA
IF=2OmA
IF = 20mA

V
V
V

IR=IOOIlA
.. IR.=IOOIIA
IR=I0011A

SIEMENS

OLB 2685
YLB 2785
GLB 2885

HIGH EFFICIENCY RED
YELLOW
GREEN

LIGHT BARS
Package Dimensions in Inches (mm)
.80

I - - (20.32)

--I

(ltD])
I

MAX.

I

- - ( 1 9.75
.05)--

........
l~r!1
..

,

,,
,,,
,,

I
. •30 TYP.
[[
(1,62)
PART

=-=-=-:=-::r::;::;;::;:;:::::;:-- IDENTIFICATION
LOCATION

r-:

e
........
110·-

Z

"
"""
""

.--.1

I

sci;
.-

~

MM
1 2

FEATURES
•
•
•
•
•
•

Large Rectangular Package
Uniform Light Emitting Area
Excellent ON/OFF Contrast
Choice of Three Colors
Categorized for Light Output
Yellow and Green Categorized for
Dominant Wavelength

• Panel or Legend Mountable
• Can be Mounted on P.C. Boards
or DIP Sockets

34

5

6 7.8

Maximum Ratings
OLB 2685 & GLB 2885
Average Power Dissipation per LED chip
Peak Forward Current per LED chip
Ta = 50'C (max pulse width = 2ms)

.

Average Forward Current per LED
Pulsed conditions (Ta = 50'C)
DC Forward Current Per LED
(Ta=50'C)
Reverse Voltage per LED chip

YLB 2785

135mW
90mA

85mW
60mA

25mA

20mA

30mA

25mA

Lead Soldering Temperature,

6V
- 40'C to + 85'C
- 40'C to + 85'C
260'C for 3 sec.

1/16 inch below seating plane
Junction Temperature

100'C

Operating Temperature
Storage Temperature

• X-Y Stackable
• Suitable for Multiplexing

Electrical/Optical Characteristics

• IC Compatible

Parameters

(Tamb

6V

=25°C)
Units

Test
Conditions

40
24
40

mcd
mcd
mcd

20mADC
20mADC
20mADC

635
583
565

nm
nm
nm

626
585
572

nm
nm
nm

Min.

Typ.

18
16
15

Max.

LUminous Intensity

APPLICATIONS
These devices are ideally suited for:
• Message Annunciators
• Positions/Status Indicators
• Telecommunications Indicators
• Bar Graphs

DESCRIPTION
The OlB 26851YlB 2785/GlB 2885 series
light bars are rectangular displays designed
for applications requiring a large light emitting
. area. They are configured in a dual in·line pack·
age and contain a single light emitting area.
The OlB 2685 and YLB 2785 devices utilize
eight lED chips which are made from GaAsP
on a transparent GaP substrate. The GlB 2885
device utilizes eight chips made from GaP on a
transparent GaP substrate.

OLB2685
YLB2785
GLB2885
Peak Wavelength
OLB2685
YLB2785
GLB2885

Dominant Wavelength
OLB2685
YLB2785
GLB2885
Forward Voltage
OLB2685
YLB2785
GLB2885

2.1
2.2
2.2

2.6
2.6
2.6

V

V

.v

i F =20mA
i F =20mA
IF = 20mA

Reverse Voltage
OLB2685
YLB2785
GLB2885

3-17

6
6
6

15
15
15

V
V
V

IR=100~

IR=I00~
iR=I00~

SIEMENS

RBG-1 000
HIGH EFFICIENCY RED OBG~ 1000
YELLOW YBG-1000
GREEN GBG-1000
RED

10 ELEMENT

BA~GRAPH

Package Dimensions in Inches
.010
TVPJ

IT:]
.<

-1.20 ~

Maximum Ratings
Storage Temperature .................... -200to +85°C
Operating Temperature ................... :'-20° to +85"C
Power Dissipation @25°C ................... : ... 450 mW
Derating Factor from 25"C ............ : ....... 7.5 mW/oC
Contlnous Forward Current
. ,"
RBG-1ooo per display ...... ; ..... ;: :: ...... ;·,'.·200 mA
per element ........ '; . . . . . . . . . . .. . . . .. 20 mA
OBG-10oo
' ,
,
YBG.1ooo
per display .... , ....... ; ...... ' .... 156 mA
GBG.1ooo
per element: ........... '; ..... : .... 20 mA
FEATURES

Peak Inverse Voltage per Element ...... , .............. 3 V

•

10 Element Display

Opta-Electronic Characteristics (@25 ·C)

•

End Stackable Module

•

Individual Addressable Anode and
Cathode

Parameter
Luminous Intensityl Element
(Display Average)

10

Intensity Coded for Display
Uniformity

RBG·1OOo

.5

mcd IF = 20 mAl
Segment

•

Rugged Encapsulation

OBG·1ooo

2.5

•

Choice of Colors

YBG·1ooo

2.0

GBG·10oo

2.0

mcd IF = 20mAi
Segment
mcd fF=2o mAl
Segment
m'cd IF = 20 mAl
Segment

DESCRIPTION
The Red RBG-1000, Hi-e'fficiency Red
OBG-1000, Yellow YBG-1000, and
Green GBG-1000 are 10 individual
element bar graphs. They are contained in
a 1 inch long, 20 pin dual-in-line package
that can be end stacked as bar-graph
displays of various lengths. Applications
include: bar graph, solid-state meter
movement, position indicator, etc.

Forward Voltage
RBG-1ooo
OBG·1ooo
YBG-1000
GBG-10oo
Reverse Leakage .
Emission Peak Wavelength
RBG·10oo
OBG·1000
YBG·1ooo
GBG·1OOo

3-18

Test
Typ Max Unit Condition

1.7
2.2
2.4
2.4
0.1
660
630
585
565

2.0
2.8
3.0
3.0
100

V
V
V
V
p.A

IF =2o mA
I F =2o mA
I F =2o mA
IF =2o mA
VR =3V

nm
nm ..
nm
nm

RBG-1000, OBG-1000, YBG-1000 AND GBG-1000
TOP VIEW

PIN

20 19 18 17 16 15 I. 13 12

II

000000000
7

8

9

10

ELEMENT #10
PRODUCT IDENTIFICATION
MARKING

FUNCTION

1

ANODE 1

FUNCTION

11

CATHODE 10

2

ANODE 2

12

CATHODE 9

3

ANODE 3

13

CATHODE 8

4

ANODE 4

14

CATHODE 7

5

ANODE 5

15

CATHODE 6

6

ANODE 6

16

CATHODE 5

7

ANODE 7

17

CATHODE 4

8

ANODE 8

18

CATHODE 3

9

ANODE 9

19

CATHODE 2

ANODE 10

20

CATHODE 1

10

TYPICAL

PIN

APPLICATIONS

+12V

10

VIN~VV_""'""",

LIGHT SPOT DISPLAY
>12Y

I

J JJJJ ru==i

lliih..1
LINEAR DISPLAY
DRIVERS
Siemens UAA 170
Siemens UAA180
National LM3914
National LM3915
Sharp I R2406

III '-'-!ll DDDJ

11

~
t----!!

~.,"

1~le

III

1

111111 ~I--

I
UAAllO

~
VIN

17

i

l!
LIGHT BAND DISPLAY

No endorsement or warranty of other manufacture,-, prOducts Is Intended

3-19

SIEMENS

RBG-4820
HIGH EFFICIENCY RED OBG-4830
YELLOW YBG-4840
GREEN GBG-4850
RED

10 ELEMENT LINEAR DISPLAY
PaCkage Dimensions in Inches (mm)

i .

1.A1luntoierilT1ceddjme~onsto'

re1erenceonly

2.YllG·4840andGBG~0!1Iy

PIN 1 MARKING

Maximum Ratings
Storage Temperature
Operating Temperature

FEATURES

·20·C to +85·C
-20·C to +85·C
450mW

Power Dissipation @ 25°C

• 10 Element Array
• End Stackable With Package
Interlock to Assure Alignment

7.5mW/·C

Derating Factor from 25° C
Lead Soldering Temperature
(1/16 below seating plane)
Peak Aeverse Voltage Per Led

260·C tor 3 sec.
3V

Continuous Forward Current

• Matched LED's for Uniform Display
• Individually Addressable Anode and
Cathode
• Intensity Coded for Display Uniformity

30mA
30mA
20mA
30mA

ABG-4820
OBG-4830
YBG-4840
GBG-4850

•
•
•
•

Wide Viewing Angle
Rugged Encapsulated Construction
Standard Dual-In-Une Package
High On-Off Contrast, Segment to Segment
Hue Coded For Uniformity
• Choice of Colors

Optoelectronic Characteristics (@ 25°C)
Parameters

Min.

Units

Test
Conditions

500
2500
2000
2000

Ilcd
Ilcd
Iled
Ilcd

1,=20mA
t,=20mA
t,=20mA
1,=20mA

655
635
583
566

nm
nm
nm
nm

645
626
585
571

nm
nm
nm
nm

Typ.

Max.

Luminous Intensity
Per Element
ABG-4820
OBG-4830
YBG-4840
GBG-4850
Peak Wavelength
ABG-4820
OBG-4830
YBG-4840
GBG-4850
Dominant Wavelength
ABG-4820
OBG-4830
·YBG-4840
GBG-4850
Forward Voltage
Per LED
ABG-4820
OBG-4830
YBG-4840
GBG-4850
Aeverse Voltage
Per LED
ABG-4820
OBG-4830
YBG-4840
GBG-4850

DESCRIPTION
The Red RBG-4820, Hi-efficiency Red, OB<34830, YellowYBG-4840 and Green GBG-4850
are 10 individual element linear bar displays and
are designed to display information in easily
recognizable bar graph form. They are end
stackable for expanded display lengths. The
package interlock ensures that each bargraph
will align accurately and correctly with the next
one. Applications include solid state meters,
position indicators, and instrumentation.

3-20

1.6
2.1
2.2
2.1

3
3

3
3

12
30
50
50

2.0
2.5
2.6
2.5

V
V
V
V

1,=20mA
1,=20mA
1,=20mA
1,=10mA

V
V
V
V

IR=100uA
IR=100uA
IR=100uA
IR=100uA

RBG·4820 OBG·4830 YBG·4840 and GBG·4850

TOP VIEW
20 19 18 17 16 .15

PIN

14 13 12

~GBBGGBBG8
5

PIN

FUNCTION

ANODE 1

FUNCTION

11

CATHODE 10

2

ANODE 2

12

CATHODE 9

3

ANODE 3

13

CATHODES

4

ANODE 4

14

CATHODE 7

5

ANODE 5

15

CATHODE 6

6

ANODE 6

16

CATHODE 5

7.

ANODE 7

17

CATHODE 4

8

ANODE 8

18

CATHODE 3

ANODE 9

19

CATHODE 2

ANODE 10

20

CATHODE 1

1

II

6

PRODUCT IDENTIFICATION
MARKING

9
10

TYPICAL

APPLICATIONS

+12V

10

13

UAAI70
12

LIGHT SPOT DISPLAY
+12V

I
>

LINEAR DISPLAY
DRIVERS

liih aI 71
18

···'l!xg ooo I

~

Siemens UAA 170
Siemens UAA180
National LM3914
National LM3915
Sharp I R2406

......--...!

~12j13l"le

I

~ UAAllO

...
YIN

J J J Jd==1

7
17

i

..I!
LIGHT BAND DISPLAY

No endorsement or warranty of other manufacturer's products is intended

3-21

GRAPHS FOR DISPLAYS
2-

1.
.
..
Relative spaCtral emission veraus wavelength
V.= standard eye rasponse curve

%

e

100

y

Ifr-.

Ifl\
1\ I

I

1\

\

40

i\

20

-~y

-+

..._-- 7 -

_

0400

.-

- ~

.. --

\

550

3B.

10'

mA

5

1=

I

1.4

a"up8Mad
-g.....

Yell~~E
g~~

1.0

•

!/ i's..paH8d

•

I

-.

I

10

,
tB

2,2

2.6

~
3.0 V 3.4

10

to

-v,

pF~-H*ffi~~~~++~ffi

f

v

10

-1,

10"~mDG.
n.AI=+

o=tM

30~4+~~4+~~~~
f-++tttIIIIttl-IIt+tIffill'o~itHttI

---v,

0=0.05

10'

IrWI

1318

-VA

8B.
Permissible pul.. handUng capabUlty
pars.gment
Forwsrd currant veraus pul.. wldth
Duty cycle D ss parameter (T.=700c)

Permissible pul.. handUng capabUlty
par.egment
Forward currant versus pulse width
Duty.cycla D 88 parameter (T.=45"C)

40~-H*ffi~~~~++~ffi

20

_ ~225
2,0

eA.

6.
Capacitance veraus raverae voltage

,

4.
Relative luminous Intanslty
veraus forward current
( ...for pulse operation)

Forward currant veraus
forward voltage
mA

to'

100nm

600
650
--A

to'

I8CI

\\
\~

II

1;1
soo

450

..

3A.
Forward currant versus
forward voltage
( ...for pulse operation)

to-

nod

1\

rod

60

I
I
I

;"row ~pe

graen

VA

Radiation characteristic
Relative spectral emission yeraus half angle

IIr'

10-2

10-'

-I,
3-22

5

10'

10'

GRAPHS FOR DISPLAYS (Cont.)
6C.
Permlsslbla pulse handling capability
parsegmant
Forward currant versus pulsa width
Duty cycla D as parametar (T.=45°C)
10'

7.
Lumlnouslntanslty versus
ambient tamperatura
12

I.

mA

T

I

1,

I

[t

120

o~

%

~

t;;: 10 0

t'~

o=T

,Q

o
'10-1,

10'3

'10-'

S

I I
I I

I I i

i
80

I

I

60

f'

25

o
o

50
75°C 100
-TA

1()0

I

I
I

!

!' yellow
s~per-red
I green:

' :?::::!

, !:red~
,
,,
I·

I
I

I

40

1304

o

10-2

f

!

I

,I
I

i ,I

i
I

20

0

1O-!i

VF2S- 100

""

I

0,5

III

%

green

I

0

Vf

supoNed
.../~ellow- f-- I--

'\J'-.
reI? '\.

0

10' 10.1

10

~

0

0,2

8.
Forward vOltage versus
ambient temparatura

;

:
i

!

I

i

i

i

I I I
I i I

. 25

50

i

~303

75°C 100

- - TA

--i,
10.
Permlsslbla continuous powar dissipation
and pulsa currant per sagment varsus
amblant temparatura

9.
Wavalength at peak.emlsslon varsus
ambient tamperatura
690

nm
Aplllk

f

i.---"

670

red
6&0
f-"'"
65 0 ......

-

640
630

f-

125

.....

i

-

supeH8d

1--'-'-

j
75

620
610

600
590
580
570

- -yellow

-

560
550

o

--

f- green

~

I I
25

50

I

i

I

I

~

IE

,

I

I

o

p

i
I

60

P

1

!
45

1\

,

i

Z5

"w

!

1\

i

50

75°C 100

-T,

i

i

f-

,I

,

t

0'

75

1

50

30

1\

15

·c

100

o

GRAPHSIDISPLAY

3-23

LED Lamps

4-1

LED Lamps
Package
Type

Package Outline

Part
Number

COlor

Lens

Viewing
Angle

LDR5091
LDR5092
LDH5191
LDH5192

Red
Clear

4.0

Ig
Efficiency
Red

24·

Yellow
Clear

LDH5121
LDH5122
LDH5123

40

Blue

Water
Clear

16·

LS5421-PO
LS5421-QO

LY5421-PO

High
Efficiency
Red

70·

LY5469-EO
LY5469-FO
LGS469-EO

6.0

4-13
10

1.0
Yellow

Yellow
Diffused

2.5

Green

Green
Diffused

2.5

High
Efficiency
Red

Orange
Tinted

60

4.0
20

16
40
63
16

Yellow

Yellow
Tinted

20·

40

10

45

4-15

2

7.5

4-16

63
10
Green

LGS411-PO

LS5469-FO

100

2.0

LG5411-LO

LSS469-EO

20

4.0

LY5421-QO

LG5411-NO

4-8

4.0

Red
Diffused

LY5421-MO
T1 3/4
5mm
l'leads
100 mil
lead
spacing
with
standoffs

25

1.0

LDG5172
LS5421-MO

20

2.5

2.5

Red

LDY5163
LDG5171

60

80

LDY5161
LDY5162

4-12

10

30

Green

LDR5103

;0

20

20

LDR5101

T1 3/4
5mm
l'leads
100mi!
lead
spacing,
no
standoffs

100

30

LDG5591

LDR5102

20

Page

10
Yellow

LDY5393

LDB541 0

mA

10
Orange
Clear

LDY5391

LDG5592

Fwd.

10

LDH5193

LDY5392

mcd

Max.
Current
(mA)

2.5
Red

LDR5093

T1 3/4
5rrm
l'leads
100 mil
lead
spacing,
no
standoffs

Luminous
Intensity (min.)

Water
Clear

25
40

High
Efficiency
Red

0.63
1.0
0.63

Yellow
Green

Diffused

50·

1.0
0.63
1.0

LGS469-FO

4-2

LED Lamps
Package
Type

Package Outline

Part
Number

Color

Lens

Viewing
Angle

T1 3/4
5mm
l'leads
100mii
lead
spacing
with
standoffs

LDH5021

D

=

=

LDH5023
LDY5061

LDG5072
LS3369-EO
LS3369-FO

High
Efficiency
Red

LG3369-EO
T15mm
l"leads
100mil
lead
spacing.
no
standoffs

"'::

Yellow
Diffused

2.5

Green

Green
Diffused

6.0

2.5

High
Efficiency
Red
Diffused

60°

2.0

Red

LDY1132

Red
Diffused

70°
Yellow

Rectangular
5mm
1" leads

~,

==0

Green

LYK380

Yellow

LGK380

Green

LDH3603

Yellow
Diffused

2.0

Green
Diffused

6.0

20

10

Tinted
Transparent

Not
applicable

32 (10)

15m/m

45

4-17

20

60

4-10

0.4

Red

0.63
High
Efficiency
Red

Red
Diffused

1.6
2.5
1000

4.0
1.0

Yellow

LDY3803
LDG3901
LDG3902

60

Luminous Flux

LDY3801
LDY3802

4-9

10

2.5

High Eff.
Red

LDH3602

6.0

4.0

LSK380

LDH3601

100

1.0

LDGl153

LDR3701

20

4-14

2.5

LDGl151

LDR3702

75

4.0

LDYl133

LDG1152

2

4.0

LDYl131

~~

1.0

1.0

LDH1112

20

0.63

LDH1113

Flattop.
T13mm.
1" leads
100mil
lead
spacing.
no
standoffs.

0.63

1.0

High
Efficiency
Red

60

1.0

Green

LDRll03

100

0.63

LDRll0l

LDH1111

Page

4-11
10

1.0

Yellow

Yellow

20

4.0
6.0

LG3369-FO

LDRll02

[:J

Ir~~ent

2.0
70°

LY3369-EO
LY3369-FO

rnA

4.0

Red
Diffused

LDY5062
LDG5071

2.5

Red

LDR5003

LDH5022

mcd

Max.
Fwd.

1.0

LDR5001
LDR5002

Luminous
Intensity (min.)

Green

LDG3903

Yellow
Diffused
Green
Diffused

1.6
2.5
1.0
1.6
2.5

4-3

LED Lamps
. Package
Type

Package Outline

Miniature
Axial
,Lead

8

Part
Number

RL-50
Red

Lens

Water
Clear

Viewing
Angle

Red

Red
·Diffused

Luminous
Intensity (min.)
mcd

mA

Max.
Fwd.
Current
(mA)

Page

40

4-21

0.5
900

10

Red
Diffused

RL-54

RL-55

Miniature
Axial
Lead,
High
dome
lens.

Color

0,4

500

40
2.0

-----Q-----

SOT23
Subminiature
1.3mmby
3mmby
lmmhigh

t;Jp

YL-56

Yellow

Yellow
Diffused

GL-56

Green

LSS260-DO

High
Efficiency
Red

Water
Clear

LYS260-DO

High
Efficiency
Yellow

Red
Diffused

LGS260-DO

Green

Green
Diffused

LUS250-DO

Red and
Green

Colorless
Diffused

10
400

4-23
25

1,0

Green
Diffused

1400

1,0

20

12,5
(30 on
ceramic
substrate)

4-18

Multicolor LED Lamps
Package
Type

Package Outline

Part
Number

Color

Lens

Viewing
Angle

LD1005
T13/4
5mm
l'Leads

~~

Clear
Diffused

LD1007

T13/4
5mm
l'Leads

~~

mcd

mA

Max.
Fwd.
Curren
(mA)

Page

2,5

LD1006

LDll03

Luminous
Intensity (min.)

1000

Red and
Green

6.3

20

60

1.0
Colorless
Diffused

LDll04

4-6

4,0

1,6

4-7

2.5

LDll05

Lamp Accessories (pgs.25-26)

m
i

Mounting Clip and ColiarforT13/4 LEDs
Part Number: 2004-9002 - Black
2004-9003 - Clear

~.

Right Angie Mount
Part Number: 2004-9019 - Biack

g
4-4

Mounting Clip and Collar for T1 LEDs
Part Number: 2004-9015 - Black
2004-9016 - Clear

Reflector
Part Number: 2004-9020 - Polished

Packaging of LEOs on continuous tapes
Light emitting diodes are available now in taped
form. Packaging of unidirectional LEOs on
continuous tapes is based on the lEe
publication 40 (secretariat) 451.
The component tapes are wound on reels and
supplied in boxes containing two reels each. One
reel comprises 1000 items of the 5 mm types or
2000 items of the 3 mm types.
The ordering codes for taped components with
unidirectional leads packaged on reels are as
follows:
For components with 2.54 mm lead spacing
(version A, B, and 0), "E7500" is added to the
last position of the type number.
Example: LOR1101 E7500

Direction of unreeling.

1 "" Cathode
2 "" Anode

For components with 5.08 mm spacing (version C
and E) "E7501" is added to the last position of
the type number.
Example: LOG5171 E7501

Dimensional table for radial tape
Description

Symbol

Dimensions in inches (mm)

Overall Tape Width

W

.709 + .039 (18 + 1 )
- .020 . - 0.5

Hold Down Tape Width

Wo

.236 ± .012 (6 ± 0.3)

Feed Hole Location

W,

.354 + .030 (9 + 0.75)
- .020
- 0.5

Hold Down Tape Position

W2

"S .118 ("S 3)

Overall Taped Package Thickness

t

.035 max. (0.9)

Tape Feed Hole Diameter

Do

.157 ± .008 (4 ± 0.2)

Feed Hole to Bottom of Component

H

.709 + .079 (18 + 2)

Height of Seating Plane

Ho

.630 ± .020 (16 ± 0.5)

Feed Hole to Overall Component Height

H,

1.268 max. (32.2)

Feed Hole Pitch

Po

.500 ± .012 (12.7 ± 0.3)

Feed Hole-Component Center Distance

P2

.250 ± .028 (6.35 ± 0.7)

Component Lead Pitch

F

.100} + .024
+ 0.6)
.200 - .004 5.08 - 0.1

Component Lead Pitch

F" F2

+.016(
+0.4)
ea..100. _ .004 2.54 _ 0.1

Deflection Left or Right

Llp

± .040 (± 1)

Deflection Front or Rear

Llh

± .079 (± 2)

4-5

e.54

LD 1005/1006/1007

SIEMENS

TWO·COLOR, RED AND GREEN
T1% LED LAMP

Package Dimensions in Inches (mm)

.024
(0.6)
.016
(0.4)

FEATURES

Maximum Ratings

• T1 % Package Size

Reverse Voltage (V R) .
.. 5 V
. . . . . . .. .. . . ..
60 mA
Forward Current" (IF) . . . . . . .. . .. . ... . . . .
Surge Current" (iFs), t s 10"s . . . . . . . . . . . . . . . . . . . . . . . .
1A
Storage Temperature (T5Ig ) ...
-55 to +100°C
Junction Temperature (Tj) . . . .. . . . . .
. .....•. 100°C

•

Colorless Lens

•

Two-Color Operation,
Red and Green

•

Three Leads, One of Which
Is Common Cathode

•

Minimum Lead Length 1 "

• _05" Lead Spacing
DESCRIPTION
The LD 100X series has a colorless round,
5 mm case with diffuser layer. Two chips
(GaP-green and TSN-red) allow use as
optical indicator with two functions.
Because of its very low current consumption and hence low inherent heating as well
as high vibration resistance and long service life, this LED is suitable for applications where signal lamps are not or only
inadequately useful. Moreover, the LED
can be driven by TIL ICs.

Power Dissipation (P,O') Tamb~25°C ..

200 mW

Thermal Resistance (R ,hJA) Junction·to·Air. .

375 KlW

Characteristics (Tamb = 25°C)
Parameter
Symbol
Wavelength of the Emitted
Apeak
Light
Dominant Wavelength
\Jom
Half Angle
(Limits for 50% of Luminous
Intensity Iv)

TSN·red GaP·green Unit
645 ± 15 560± 15
nm
638

Forward Voltage

(IF~20

mAl

Reverse Current (VR ~ 5 V)

561
50

'"

VF

2.4 (s3.0)

IR

om (sI0)

nm
Deg.

V

Rise Time

t~

100

50

"A
ns

Fall Time

tf

100

50

ns

Co

12

45

pF

CapaCitance
(VR~O

V,

f~

1 MHz)

Luminous Intensity
Part Number
lO 1005

Min

Unit

Test
Condition

2.5

mcd
mcd
mcd

lOrnA
lOrnA

LD 1006

4.0

lO 1007

6.3

10mA

·The ratings indicated for the forward current IF or the surge current iFS ,
respectively, are maximum ratings of the component. If both chips are
operated simultaneously, the sum of the forward current ratings is not
allowed to exceed the indicated maximum value.
See graph numbers lA, 2A, 3A (HER), 38 (green), 4A, SA, 6A, 7A, SA, 9A,
lOA on pages 4-27 - 4-34.

4-6

LD 1103/110411105

SIEMENS

TWO·COLOR RED AND GREEN
RECTANGULAR LED LAMP

Package Dimension in Inches (mm)
.354
(9.0)
.323
(8.2)
]

201'
(5.1)

.189
(4.8)

""'--1

~ C==~3;;::=:::+3 ~~iJ
.024 (0.6)
t (2.4)
-1.094

.016(0.4)

FEATURES
• Rectangular Shape
• Colorless Lens
• Two-Color Operation, Red and Green
• Three Leads, One of Which Is
Common Cathode
• Minimum Lead Length 1 "

Maximum Ratings
Reverse Voltage (VA) ........................................ 5 V
Forward Current· (IF) ..................................... 60 rnA
Surge Current (iFsl. t ~ 10 JIS· .. . . . . . . . . . . . . . . • . . . . . . . . . . . . . . .. 1 A
Storage Temperature (T5Ig ) . .. .. ... ... .. .. ..... .. .. -55 to + lOOGe
Junction Temperature (Tjl ............ , ................... l00"C
Power Dissipation (Ptcl), lamb = 25°C.. . ...
.. 200 mW
Thermal Resistance Junction·Air (R1hJAI ' . .
. ............ 375 KJW

Characteristics (Tamb = 25 ·C)

• .05" Lead Spacing
DESCRIPTION
The LD 1103 series has a colorless case
with rectangular, luminous area and dif·
fuser layer. Two chips (Gap·green and
TSN·red) enable the use as optical
indicator with two functions.
Because of its very low current consump·
tion and hence low inherent heating as well
as high vibration resistance and long ser·
vice life, this LED is suitable for applica·
tions where signal lamps are not or only
inadequately useful. Moreover, the LED
can be driven by TTL ICs.

Symbol

TSN·,ed GaP·green Unit

Wavelength of the Emitted
Lighl

>.peak

645± 15 560± 15

Dominant Wavelength
Aperture Cone (Half Angle)
(Limits for 50% of luminous
Intensity 'v)
Lateral Emission of
Light Screened
Forward Voltage (IF = 20 mAl
Reverse Current (VA =5 V)
Rise Time

,,"om

638

Parameter

Fall Time

Capacitance (VA = 0 V.
1=1 MHz)

561

nm

Dog.

50

VF

2.41~3.0)

IR

0.011~

100
100
12

I,
If
Co

nm

V
I,A

10)

ns

50
50
45

ns

pF

Luminous Intensity
Test
Type

Min

Unit

Condition

LO 1103
LD 1104
LO 1105

1.0

mM
mcd
mcd

20mA

1.6
25

20mA
20mA

-The ratings indicated for the forward current 'F or the surge currenl iFS'
respectively. are maximum ratings of the component. If both chips are
operated simultaneously. the sum 01 the forward current ratings is not
allowed to exceed the indicated maximum value.

See graph numbers lA, 2B, 3A (HER), 3B (green), 4A, SA, SA, 7A,
SA, 9A, lOA on pages 4·27 - 4-34.

4-7

SIEMENS

LDB5410
BLUE T1% LED LAMP

Preliminary Data Sheet
Package Dimensions in Inches (mm)
iif64
(0:4!
.016

L

-1

Surtace not flat
~

.307
(7.8)
(7.5)
.295

-

~

tL

(2~)~-~ ~~:r&if~
.059

(1.5)

~ .354

(0.8)

(0.5)

1.141

i~~l~
1.063
~13~i

1 ---'
±

i~~l

,.323

.217

I
I

\

,

\

I

I

~Anode
.024
(0.6)
(0.4)
.016

FEATURES
•
•
•
•
•

Maximum Ratings

Pure Blue Light (480 nm)
ClearT·13f.o Plastic Package
1" Min. Lead Length
High Brightness
TTL Compatible

Reverse voltage
Forward current
Storage temperature range
Junction temperature
Total power dissipation
(Tamb = 25°C)
Thermal resistance
Junction to Air

V

1j

1
25
-5510 +100
100

Plot

150

mW

R'hJamb

500

KlW

VA
IF

Tslor

=25°C)

DESCRIPTION

Characteristics (Tamb

The LDB5410 is a Silicon Carbide (SiC) LED,
emitting a pure blue light from a clear T·1 %
plastic package. The LDB5410 is ideal for such
applications as: spectroscopy, calibration, and
light sources in medical equipment.

Wavelength at peak emission
Dominant wavelength

Min.

Typ.

Unit

~peak

480
480
16

nm
nm
Oeg.

dam

Viewing angle

Forward voltage
(I F=20 mAl
Reverse current
(VA = IV)
Capacitance
(VA=OV;f=1 MHz)
Luminous intensity
(I F=20 mAl

VF

4(;;;8)

IA 0.01(;;;10)

V
~A

Co

160

pF

2.5

6.0

mcd

CAUTION: Because of low reverse voltage, the
polarity of the LDB5410 should be checked
before inserting into a circuit.

See Appnote 31 for further information.
See graph numbers 1C, 2C, 3C, 48, 68 on pages 4·27 - 4-34.

4-8

mA

'C
'C

SIEMENS

HIGH EFFICIENCY YELLOW

LOR 1101/1102/1103
LOH 1111/1112/1113
LOY 1131/1132/1133

HIGH EFFICIENCY GREEN

LDG 1151/1152/1153

RED
HIGH EFFICIENCY RED

T1 LED LAMP

Package Dimension in Inches (mm)
.19(4.8)

. :·- ·
fir

.17(4.4)

.10

.02810.7)
.016(0.4)

,

.,J~: ==::::::gA

- Fa

;~ :~:----f-+-

.05(1.2)

Cathode

FEATURES
• High Light Output
• Diffused Lens
• Wide Viewing Angle 70 0
·T1Size
• 1" Lead Length
• Front Panel Mounting
Snap-in Mounting Clips Available
Clip/Collar #2004-9016 Clear
#2004-9015 Black
• IIC Compatible

~

--

i~6~

.016

"'-:""'11(0.4)
.13.1
13.4)

.114
12.9)
.106
12.7)

.12
(3.1)

Maximum Ratings
LOR 110X

Reverse voltage

VA
IF

Forward current

Surge current (::;:101-'-5)
Storage temperature range

V
100
2

iFS
TSlg
1]

Junction temperature
Total power dissipation
(Tamb =25"C)
Thermal resistance junction to air

LOH lllX
LOY 113X
LOG 115X
SO

rnA
A

100

100

"C

200·
375

200
375

mW
K/W

"c

-55 to +100

Ptot
RlhJA

Characteristics (Tamb=25°)
LOR 110X LOH.lllX LOY 113X LOG 115X

DESCRIPTION
The LDR 11 OX Series is a standard red gallium arsenide
phosphide (GaAsP) LED lamp. The LDH111 X high
efficiency red and LDY13X yellow are premium high
efficiency light emitting diode lamps fabricated with TSN
(transparent substrate nitrogen) technology. The LDG
115X green Series is a gallium phosphide (GaP) lamp.
All have a diffused plastic lens which emits a full flooded
intense light.

Wavelength at peak emission
Dominant wavelength

Apeak 665±15
Adom 645

Viewing angle
(Limits for 50% of luminous
intensity Iv)
Forward voltage (IF = 20mA)
Reverse current (VR = 5 V)
Rise time
Fall lime
Capacitance
(VR=OV;f=l MHz)

"

70

VF

1.6(:52.0)

645±15

590±10

560±15

638
70

592
70

561
70

nm
nm
Oog.

40

Co

4-9

pA

100
100

200
200

50
50

ns
ns

12

10

45

pF

Luminous Intensity

See graph numbers on pages 4-27 - 4-34.
Red: 10,20,30, 5B, SC, 7B, 8B, 9B, lOB
HER: lA, 2E, 3A, SA, 6A, 7A, 6A, 9A, lOA
Yellow: lA, 2E, 3A, SA, 6A, 7A, 6A, 9B, lOA
Green: lA, 2F, 3B, SA, SA, 7C, SA, 9A, lOA

V

2.4(:53.0)

0.01 ($10)

'A

Ir
II

PIN

mcd(MIN)

Test conditions

LOR nOl
LOR 1102
LOR 1103

1.0
2.0
4.0

20mA
20mA
20mA

LOH 1111
LOH 1112
LOH 1113

2.5
4.0
6.0

10mA
lOrnA
10mA

LOY 1131
LOY 1132
LOY 1133

1.0
2.0·
4.0

lOmA
10mA
10mA

LOGl151
LOG 1152
LOG 1153

2.5
S.O
10

20mA
20mA
20mA

SIEMENS

RED

LOR 3701/3702

LOH 3601/3602/3603
LOY 3801/3802/3803
LOG 3901/3902/3903

HIGH EFFICIENCY RED
YELLOW
GREEN

RECTANGULAR LED LAMP
Package Dimensions in Inches (mm)

.100

L-F*=!I.,'i~=~ij--~

.197
(5.0)
.189

(2.54) rt1::::::::::~"\===:::!:~-~~
(9.0)
TL·354
I'
1.142 (29.0)
.323 __

(4.8)

-\~

1.063 (27.0)

.

(8.2)

....i-.~=~i~EE==3+-1
~
r-

~\)
.016 (0.4)
FEATURES
• Red Diffused Lens, LOR 370X
Red Diffused Lens, LDH 360X
Yellow Diffused Lens, LOY 380X
Green Diffused Lens, LOG 390X
• T1 3A Size Rectangular Shape
• Minimum Lead Length 1 n
• 1110" Lead Spacing
• IIC Compatible

DESCRIPTION

t(22)

Maximum Ratings
Reverse voltage
Forward current
Surge current (t" 10 s)
Storage temperature
Junction temperature
Power dissipation (Tamb
25 ·C)
Thermal resistance junction to air

=

Characteristics

Tamb

= 25·C)

Wave length of emitted light
Dominant wave length
Viewing Angle
(limits for 50% of luminous
intensity Iv) shielded against
lateral emission of light
Forward voltage (IF
20'mA)
Reverse current (VA
5 V)
Rise time
Fal/time
Capacitance (VA ~ 0 VI

=
=

The LOR 370X is a standard red GaAsP LEO
lamp. The LOH 360X high efficiency red and
LDY 380X yellow are light emitting diode
lamps fabricated with lSN (transparent substrate nitrogen) technology. The LOG 390X
green is a gallium phosphide LEO lamp. All
these lamps have a diffused lens which
forms an evenly dispersed rectangular
head-on light. They can be used singly as
indicators or stacked together to form arrays.

Luminous Intensity

See graph numbers on pages 4-27 - 4-34.
Red: 10, 2B, 3D, 5B, 6C, 7B, SB, 9B, lOB
HER: lA, 2B, 3A, SA, SA, 7A, SA, 9A, lOA
Yellow: lAo 2B, 3E, SA, SA, 7A, SA, SA, lOA
Green: lA, 2B, 3A, SA, 60, 7C, SA, 9A, lOA

Apeak
A. dom

cp

VA
IF
i FS

Ts
Tj

Ptot
RlhJamb

If
Co

mW

K/W

LDH 360X
645 ± 15
638
100

LDY 380X
590 ± 10
592
100

5
5
40

1.6("2.0)
0.01 ("10)
5
5
40

100
100
10

PIN

Min.

Unit

Test Condition

LDR 3701
LDR 3702

.4
.63

mcd
mcd

20mA
20 mA

LDH 3601
LDH 3602
LDH 3603

1.6
2.5
4.0

mcd
mcd
mcd

20mA
20mA
20mA

LDY 3801
LOY 3802
LDY 3803

1.0
1.6
2.5

mcd
mcd
mcd

20mA
20mA
20mA

LOG 3901
LOG 3902
LOG 3903

1.0
1.6
2.5

mcd
mcd
mcd

20mA
20mA
20mA

4-10

V
mAo
A
·C
·C

LDR 370X
665 ± 15
645
100

VF
IA

t,

5
60
1
-55to +100
100
200
375

LDG 390X
560 ± 15 nm
561
nm
100
Deg.

2.4("3.0)
0.01 ("10)
50
50
45

V
~A

ns
ns
pF

SIEMENS

LOR 500115002/5003
HIGH EFFICIENCY RED LOH 5021/5022/5023
HIGH EFFICIENCY YELLOW LOY 5061/5062
HIGH EFFICIENCY GREEN LOG 5071/5072
RED

T1% LED LAMP

,

Package Dimensions in Inches (mm)

.10
(2.54)

Lp:=:=~~~~~~~1:::

;)

.024
(0.6)
(0.4)
.016

FEATURES

Maximum Ratings

•
•
•
•
•
•
•

Reverse voltage
Forward current
Surge current (T ~ 10"s)
Storage temperature range
Junction temperature
Total power dissipation
(Tamb= 25°0)
Thermal resistance junction to air

High Light Output
Diffused Lens
Wide Viewing Angle 70·
With Standoffs
T1~ Package Size
1" Lead Length
Front Panel Mounting
Snap.ln Mounting Clips Available
Clip/Collar #2004·9002 Black
#2004·9003 Clear
• IIC Compatible

DESCRIPTION
The LOR 500X is a standard red gallium
arsenide phosphide (GaAsP) LED lamp. The
LOH 502X high efficiency red and LOY 506X
yellow are premium high efficiency light
emitting diode lamps fabricated with TSN
(transparent substrate nitrogen) technology.
The LOG 507X green is a gallium phosphide
(GaP) lamp. All have a diffused plastic lens
which emits a full flooded intense light.
See graph numbers on pages 4-27 - 4-34.
Red: 10, 2G, 3D, 5B, SC, 7B, SB, 9A, lOB
HER: lA, 2G, 3A, SA, SA, 7A, SA, 9A, lOA
Yellow: lA, 2G, 3E, SA, SA, 7A, SA, 9A, lOA
Green: lA, 2G, 3B, 5A, SD, 70, SA, gA, lOA

lOR 500X LDH 502X
LDY 506X
LDG 507X

VR
IF
i FS
Tstg

Tj
Ptot

RthJA

V

5

5
100
60
1
2
-55 to +100
100
100

mA
A

°C
°C
mW

200
375

200
375

KIW

Characteristics (Tamb = 25°C)

LOR 500X LOH 502X LOY 506X LOG 507X

Wavelength at peak emission
Dominant wavelength
Half angle
(Limits fOf 50% of luminous
intensity Iv
Forward voltage (IF = 2OmA)
Reverse current (VA::: 5 V)

665±15
645

645.t15
638

35

35

Apeak

Adorn

,-

Rise time
Fall time

VF
IR
I,
If

Capacitance
(VR= OV: f= lMHz)

Co

Luminous Intensity Grouping
PIN
LOR SOOl
LOR S002
LOR S003

mcd(Min)
1.0
2.S
4.0

Test conditions
20mA
20mA
'ZOmA

LOH S021
LOH S022
LOH 5023

2.0
4.0
6.0

lOrnA
lOrnA
lOrnA

LOY 5061
LOY S062

1.0
2.S

lOrnA
lOrnA

LOG S071
LOG S072

2.S
6.0

20mA
20mA

4-11

1.6(",2.0)

590'±:10
592
35

560±15
561

nm
nm

35

Deg.

2.41~·0)

V

0.01 (' .. 10)
100
200
100
200

50
50

"A
ns
ns

12

45

pF

10

SIEMENS

RED
HIGH EFFICIENCY RED
YELLOW

LOR 509115092/5093
LOH 5191/5192/5193
LOY 5391/5392/5393
GREEN LOG 5591/5592
T1 3A LED LAMP

Package Dimensions in Inches (mm)

J

.10

(2.54)

.071(1.8)
.047(1.2)

.024(0.6)
.016 (0.4)

I----~:~i~ :~~~:

FEATURES
•
•
•
•
•
•

High Light Output
Lightly Tinted Clear Lens
Wide Viewing Angle, 24 0
T13Jo Package Size
1" Lead Length
Front Panel Mounting
Snap-In Mounting Clips Available
CliplColiar #2004-9002 Black
#2004-9003 Clear
• IIC Compatible

DESCRIPTION
The LDR 509X is a standard red GaAsP light
emitting diode lamp. The LDH 519X high efficiency red and LDY 539X yellow lamps are
fabricated with TSN (transparent substrate
nitrogen) technology. The LDG 559X is a gallium phosphide LED lamp. All four have a
lightly tinted clear lens with a narrow viewing
angle for the concentration of intense brightness in a head-on position. This is particularly
desirable for legend back lighting applications.

See graph numbers on pages 4-27 - 4-34.

Red: 10, 2H, 3D, 5B, 6C, 7B, 8B, 9B, lOA
HER: lA, 21, 3A, SA, 6A, 7A, 8A, 9A, lOG
Yellow: lA, 21, 3E, SA, 6A, 7A, 8A, 9A, 10C
Green: lA, 21, 3B, SA, 6D, 7C, 8A, 9A, lOA

Maximum Ratings
LOR 509X

LDH 519X
LOY 539X
LOG 559X

Reverse voltage

VA

5

5

V

Forward current

IF

iFS

100
2

60
1

mA
A

Storage temperature range

Tstg

-55to +100

°C

Junction temperature
Total power dissipation (Tamb :;;;: 25°C)
Thermal resistance, junction to air

Pto !
R1hJA

100
200

mW

375

K/W

Surge current (T

~

10 ~s)

Characteristics (Tamb =

T)

'C

25 'c)
lOR 509X LOH 519X LOY 539X LOG 559X

Wavelength at peak
emmislon

Apeak
Adam

Dominant wavelength
Viewing angle
(limits for 50% of
luminous intensity Iv)
'i'
Forward voltage (IF = 20mA) VF
Reverse current (VR :;::; 5 V) IA
Rise time
FaU time
Capacitance
(V, = 0 V; f = 1 MHz)
Co

"
"

66S±lS
645

645± 15

24
1.6(<;2.0)

24

5
5

100
100

40

12

638

Luminous Intensity Grouping
Min
Mcd

Test Current

LOR 5091
LOR 5092
LOR 5093

2.5
4.0
10

20 mA
20 mA
20 mA

LOH 5191
LOH 5192
LOH 5193

10
20
30

10mA
10mA
10 mA

LOY 5391
LOY 5392
LOY 5393

10
20
30

10mA
10 mA
10mA

LOG 5591
LOG 5592

40
80

20 mA
20 mA

PIN

4-12

590± 10
592

24
2.4(<;3.0)
0.01(<;10)
100
100
10

560± 15
561

nm
nm

24

Deg.
V

50
50
45

/'A
ns
ns
pF

SIEMENS

LOR 5101/5102/5103
LOH 5121/5122/5123
HIGH EFFICIENCY YELLOW LOY 5161/5162/5163
HIGH EFFICIENCY GREEN LOG 5171/5172
RED

HIGH EFFICIENCY RED

T1 3.4 LED LAMP
Package Dimensions in Inches (mm)

.10
(2.54)

.024(0.6)

.016 (0.4)

FEATURES
•
•
•
•
•
•
•

High Light Output
Diffused Lens
Wide Viewing Angle 70°
With Standoffs
T1 % Package Size
1" Lead Length
Front Panel Mounting
Snap-in Mounting Clips Available
Clip/Collar #2004-9002 Black
#2004-9003 Clear
• I/C Compatible

DESCRIPTION
The LDR 510X Series is a standard red
gallium arsenide phosphide (GaAsP) LED
lamp. The LDH 512X high efficiency red and
LDY 516X yellow are premium high efficiency
light emitting diode lamps fabricated with
TSN (transparent substrate nitrogen)
technology. The LDG 517X green is a gallium
phosphide (GaP) lamp. All have a diffused
plastic lens which emits a full flooded
intense light.
See graph numbers on pages 4-27 - 4-34.
Red: 1A, 2G, 3D, 58, 6C, 78, 88, 98, 108
HER: 1A, 2G, 3A, SA, 6A, 7A, SA, 9A, 10A
Yellow: 1A, 2G, 3E, 5A, 6A, 7A, SA, 9A, 10A
Green: lA, 2G, 38, 5A, 6D, 7C, SA, 9A, lOA

Maximum Ratings

LDR 510X LDH 512X
LDY 516X
LDG 517X

VR

Reverse voltage
Forward current
Surge current (T"; lOlLS)
Storage temperature range
Junction temperature
Total power dissipation
(Tamb= 25DC)
Thermal resistance junction to air

Characteristics (Tamb

= 25°)

Wavelength at peak emission

Apeak

Dominant wavelength

Adorn

Viewing angle
{limits for 50% of luminous
intensity Iv
Forward voltage (IF = 2OmA)
Rave"", current (VR = 5 V)

'"

Rise time
Fall time

capacitance
(VR =0 V; f= IMHz)

IF
i FS

TS ' 9

Ti

5
100
2
-55 to +100
100
200
375

Ptot

R.hJA

VF

1.6(0;;2.0)

IR
I,
If

Co

mcd (Min)

LOR 5101
LOR 5102
LOR 5103
LOH 5121
LOH 5122
LOH 5123
LDY5161
LOY 5162
LOY 5163
LOG 5171
LOG 5172

4-13

1.0
2.5
4.0
2.0
4.0
6.0
1.0
2.5
4.0
2.5
6.0

mA
A

100

DC
DC

200
375

mW
KIW

LOR 510X LOH 512X LOY 516X LOG 517X
560±15
645±15
59O±10
665±15
592
561
645
638
70
70
70
70

40

nm
nm
Oeg.

V

24(0;;;3.0)

0.01 (0;;;10)
100
200
100
200

50
50

,..A
ns
ns

12

45

pF

luminous Intensity Grouping
PIN

V

5
60
1

Test Conditions
20mA
20mA
20mA
lamA
lamA
lamA
lamA
lamA
lamA
20mA
20mA

10

SIEMENS

LS3369-EO/-FO
YELLOW LY3369-EO/-FO
GREEN LG3369-EO/-FO

HIGH EFFICIENCY RED

LOW CURRENT T1 LED LAMP
Package Dimensions in Inches (mm)
.1914.8)
.17(4.4)
.10

.02810.n
.016(0.4)

.,,4 ~:

_!~

=====+=;;'0

.0511.2)

FEATURES

Power

Low
Requirement
o 60° Viewing Angle
o Diffused Lens
o 1" Lead Length
o IIC Compatible
o

~
I

•

- •
.114
(2.9)

~:~ l~--Ca-1hod+'+-

.1116
(2.7)

.024
(0.&)

-- .01&

-,-:/
.13

(0.4)
.

(3.4)

.12
(3.1)

Maximum Ratings
Reverse Voltage (VAl ......................................................5 V
Forward Current (IF) ......•............................................. 7.5 mA
Surge Current «SI0 ,.sJDS .005)(IFs! ....................•............... 100 mA
Storage Temperature Range (T• .> .................................. -55 to +100·C
Junction Temperature (T~ ................................................ 100·C
Total Power Dissipation (Tam. = 25 ·C)(PtoJ ................................. 20 mW
Thermal Resistance Junction-air (Ru",A)' ........•...........•......•....... 500 KIW
(Tamb = 25°C)
Typ
Max
Unit

Electrlca.,Optlcal Characteristics
Min

DESCRIPTION
The 3369 series are low current LED lamps
that have been designed to optimize light
output at very low currents_ These parts are
ideally suited. for applications where power is
at a premium, such as portable equipment.

See graph numbers 2J, 3F and 4C (HER). 3G and 40
(yellow), 3H and 4E (green). 6F on pages 4-27 - 4-34.

Luminous Intensity
HER. Yellow. Grn (-EO)
HER. Yellow. Grn (-FO)
Peak W8vetength
HER
Yellow
Green
Dominant Wavelength
HER
Yellow
Green
Hell Angle
Forward Voltage VF
HER
Yellow. Green
Reverse Current IR
Response Time
(Rise Time) t,
Iv lrom 10% to 90%
HER. Yellow
Green

0.63
1

Test Condition

2
2

moo
mcd·

IF =2mA
IF = 2 mA

635
590
565

nm
nm
nm

IF - 2mA
IF - 2mA
IF.-2mA

625
592
564
60

nm
nm
nm
Deg.

IF - 2mA
IF=2mA
IF =2mA

V
V

IF - 2 mA
IF = 2 mA
VR = 5V

1.8
1.9
.010

2.5
2.7
10

p.A

200

ns

IF- 25 mA

450

ns

'F- 25mA

T - 1 ,.sec

T-ll'sec

Response Time
(Fall Ttme) t,
Iv lrom 90% to 10%
HER. Yellow
Green
Capacitanca Co
HER. Yellow

150

ns

200

ns

3

pF

12

pF

IF- 25 mA
T = 1 ,.sec
IF -25mA
T=ll'sec

VR = OV
1= 1 MHz

Green

VR

-

OV

I -1 MHz
Spectral Line Helfwidth
HER
Yellow
Green

4-14

45
50
25

nm
nm
nm

IF - 2mA
IF - 2mA
IF =2mA

SIEMENS
LS5421-MO/-PO/-QO
YELLOW LY5421-MO/-PO/-QO
GREEN LG5411-LO/-NO/-PO

HIGH EFFICIENCY RED

SUPERBRIGHT T1 3A LED LAMPS
Package Dimensions in Inches (mm)
.34

O.30~18.641

(7.621
li'.:'.l

.020

.022

1511

D::.'I

III~~~:, ..~

.094 R
(2.39RI sUF~;e

(2667)

(cathode)
TOLERANCE: ',XXX •.010

FEATURES

Maximum Ratings

• High Light Output
• New Lens to Optimize Output
• 20° Viewing Angle

Power Dissipation amb = 25 ·C) ........................................ 150 mW
Storage and Operating Temperature ................................ -55 to + 100·C
Continuous Forward Current. ............................................. 45 rnA
Reverse Voltage .......................................................... 5 V
Surge Current (7S10 I's) . . ... . . . . . . . . .. . . . . .. . .
. .................. 1 A

• HER Lamp, Orange Tinted Lens
Yellow Lamp, Yellow Tinted Lens
Green Lamp, Water Clear Lehs
• 1" Lead Length

DESCRIPTION
The 5421/5411 series are superbright T1%
LED lamps. Improvements in materials and
optimization of lens and reflectors have
resulted in a dramatic increase in luminous
intenSity.

rr

Electrical/Optical Characteristics
Luminous Intensity
HER, Yellow (-MO)
HER, Yellow. Green (-PO)
HER, Yellow (-00)
Green (-1.O)
Green (-NO)
Peak Wavelength
HER
Yellow
Green
Half Angle
Forward Voltage
Reverse Current IR

(lamb

= 25°C)

Min

Typ

Max

16
40
63
10
25

40
60
100
40
40

mcd
mcd
mcd
mcd
mcd

IF
IF
IF
IF
IF

635
590
560
20
2.2
0.1

nm
nm
nm
Deg.
V
p.A

IF = 10 rnA
IF = 10 rnA
IF = 10 rnA

3.0
100

Unit

See graph numbers 1B, 2N, 31, 4F, 5C, 6E, 7E, SA, 9A, lOB on pages
4-27-4-34.

4-15

Test Condition
=
=
=
=
=

lOrnA
10 rnA
lOrnA
lOrnA
10 rnA

IF= lOrnA
IR = 5V

SIEMENS

HIGH EFFICIENCY RED

LS5469~E01-FO

LY5469-EO/-FO
GREEN LG5469-EO/-FO

YELLOW

LOW CURRENT T1 3A LED LAMP
Package Dimensions in Inches (mm)

.10
1254)

I II=~

.020
(51)

:,. ~;=1

.094 A
12.39 A)

1266n

mLERANCE: .xxx _ .010

FEATURES

Maximum Ratings

• Low Power Requirement
.50· Viewing Angle
• Diffused Lens
• 1 n Lead Length
• IIC Compatible

Reverse Vottage (V,,) . . . . . . . .
. ................................ 5 V
Forward Current (IF) . . . . . . . . . . . . . . . . . .
. ........................... 7.5 mA
Surge Current (7,;10 p.S/D,; .005) (IF'> ..................... ' ................ 100 mA
Storage Temperature Range (T.'> .....
. ........... -55 to +100 oC
Junction Temperature (T) .............................
.' ........ tOOOC
Total Power Dissipstion (Tamb = 25°C) (P"J ..... " .•................., .... : ..... 20 mW
Thermal Resistance Junction·air (Ru,JA) . . . . . . . . . . . . . . . • . .
. •.....•... 500 KNI

Electrical/Optical Characterllltii:~(Tamb

DESCRIPTION
The 5469 series are low current LED lamps
that have been designed to optimize light
output at very low currents. These parts are
ideally suited for applications where power is
at a premium, such as portable equipment.
Both the HER and yellow lamps utilize
GaAsP on GaP semiconductor materials
while the green lamps utilize GaP on GaP.

LUminous Intensity
HER. Yellow. Grn (-EO)
HER, Yellow, Grn (-FO)
P~ak Wavelength
HER
Yellow

Green
Dominant Wavelength
HER
Yellow
Green
Half Angle
Forward Voltage VF
HER
Yellow, Green
Reverse Current IA

= 25 DC)
Max

'Unit

Test GondRion

Min

Typ

0.63
1

2
2

mcd
mcd

IF = 2 mA
IF = 2 mA

635
590
565

nm
nm
nm

IF = 2 mA
IF = 2 mA
IF = 2 mA

625
592
564
50

nm
nm
nm
Deg.

IF = 2 mA
IF = 2 mA
IF = 2mA

V
V
~

IF = 2 mA
IF = 2mA
VA = 5V

1.8
1.9
010

Response Time

2.5
2.7
10 .

(Rise TIme) t,
Iv from 10% to 90%
HER, Yellow

200

ns

Green

450

ns

IF= 25 mA
T=l~sec

See graph numbers 2K, 3F and 4C (HER), 3G and 4D
(yellow), 3H and 4E (green), 6F on pages 4-27 - 4-34.

IF = 25 mA
T=l~sec

Response Time
(Fall Time) ~
Iv from 90% to 10%
HER, Yellow

150

ns

Green

200

ns

Capacitance Co
HER, Yellow
Green
Spectral Line Halfwidth
HER
Yellow

Green

4-16

3

pF

12

pF

45
50
25

nm
nm
nm

IF= 25 mA
T=1psec
IF = 25mA
T=1psec
VA = OV
f = 1 MHz
VA = OV
f = 1 MHz
IF = 2 mA
IF = 2mA
IF = 2mA

SIEMENS

LS K380
YELLOW LV' K380
GREEN LG K380

HIGH EFFICIENCY RED

T1 ARGUS LED LAMP

Package Dimensions in Inches (mm)
Budactnolftll

apr-I
.100

.112.

j

'-.-

(2.54)

.1 4 .1 0(2.8)

ir5~

D.6

~16!••1::(I~7))

rI2.9)1.,22(3.I)

==r

~71C1liodJ ;].D93(2'35)

11.8)

~~

,081(2.05)

1.142(2•.0)

.IS.,'

1.D63(27.O)

.173 (H)

~2'IO.6)

.D16(OA)

Diffuser ~r=:t3:::=:i~-.
Reflector

Chip

Position1~~~~~~~J

•
•
•
•
•
•
•

Colors: HER, Yellow, Green
Lens: Tinted Transparent
Low Power Dissipation
Low Self-Heating
Rugged Design
Optimal for Backlighting Applications
Cathode: Shorter Solder Tab

Diode with reflector and diffuser

ARGUS LED

FEATURES

Maximum Ratings
Reverse Voltage N.) ............................................................................................................5 V
Forward Current (I,) ......................................................................................................... 45 mA
Surge Current t" = 10!'S' (I",) .............................................................................................. 1 A
Operating Temperature Range (T....) ............................................................. -55·C to +loo'C
Storage Temperature Range (TITO) ......................... ,....................................... -55'C to + loo'C
Junction Temperature (T) ............................................................................................. + 100'C
Total Power Dissipation (PTOr) T....=25·C ..................................................................... 150 mW
Thermal Resistance Junction to Air (R"."J .................................................................. 500 K/W

DESCRIPTION
The LS/LY/LG K380 are T1 (3 mm) ARGUS
LED lamps. ARGUS lamps can be used enly
.with an additional, custom-built reflector
(Le., white plastic, such as Pocan 87375).
The front end of the reflector is covered by a
diffuser (see illustration). Uniform illumination
can be enhanced by the reflector design
tailored to the LED and/or by the use of
appropriate diffuser material. if the diffuser
is tinted, the spectral transmission must
be adjusted to the wavelength emitted by
the LED.
Applications include backlighting of display
panels, e.g. front panels, graphic control
and display boards, sealed keyboards,
large-scale displays, dot matrix displays.

Characteristics (T~mb=25'C)
LSK380
Parameter
Wavelength at Peak
Emission (1,=20 mAl
Dominant Wavelength
Spectral Bandwidth
at 60% +v (1,=20 mAl
Forward Voltage (1,=10 mAl
Reverse Current N.=5 V)
Capacitance
N.=OV, 1=1 MHz)
Switching Times
(1,=100 mA, t,,=10!'S)
Rise Time from 10% to 90%
Fall Time from 90% to 10%
Luminous Rux (1.=15 mAl

Symbol

HER

LYK380
Yellow

LG K380
Gnoan

Unit

~

635 (typ.)
628

586 (typ.)
590

565 (typ.)
567

nm
nm

V,
I.

<\

46
2.0 (S2.6)
O.ot (:S10)

45
2.0 (S2.6)
0.01 (:s10)

25
2.0 (S2.6)
0.01 (:S10)

nm
V

C.

12

10

15

pF

t"
t"

300
150
32(2:10)

300

300
450
32(2:10)

"-

+v
.

150
32(2:10)

""

• Lwninous flux factor of ~ In one packagang unit ~ ....
MIM S 2.

See graph numbers lB, 2L, 31, 5C, SE, 7E, SA, 9C, lOB on pages 4-27-4-34.

4-17

fIA

ns
ns
mlm

SIEMENS

HIGH EFFICIENCY RED LS
HIGH EFFICIENCY YELLOW LV
HIGH EFFICIENCY GREEN LG
HIGH EFFICIENCY RED/GREEN LU

S260.;00
S260-00
S260-00
S250-00

SOT23
SURFACE MOUNT LED LAMP
Package Dimensions in Inches (mm)

.041 (1.05)
.037 (0.95)

'''Cn-t-+---r-n_-+-:: !~:~

.055 (1.4)
.047 (1.2)

Pinouts (top view)
Pin Function
LsiLY/LG S26CJ..DO

FEATURES
• Available In:
High Efficiency Red, LS S260-DO
High Efficiency Yellow, L Y S260-DO
High Efficiency Green, LG S260-DO
High Efficiency Red and Green
(Two Chip), LU S2S0-DO
• Colored Diffused Plastic Package
(Except for LU S2S0-DO which is
Colorless Diffused)
• Rectangular Package, 1.3 mm by 3 mm
by 1mm Thick
• Wide Viewing Angle,. 140 0
• Ideal for Use as Failure Indicators
Mounted on Printed Circuit Boards
• Ie Compatible

DESCRIPTION
These surface mount LED lamps (SOT23)
are available in high efficiency red, yellow,
green, and red/green combination. The
lamps are supplied in bulk or on 8 mm wide
tape on standard 18 cm diameter reels with
3000 components per reel: The packaging
conforms to IEC standards and can be used
on all commercial automatic surface mount
insertion equipment. Add E7502 at the end
of the part number, i.e., LS S260-DO E7502,
to order the lamps on tape and reel.
Special 38 cm reels with 10,000 components
per reel are available. Contact the factory for
ordering information on 10,000 units per reel.
See Appnote 38 for surface mount information.

LU S250-DO

1

NC

Red

2
3

Anode
Cathode

Green

Common Anode

Maximum Ratings (All Devices)
Note: For the LU S250-DO the following operating conditions apply when one diode is on
while the other diode is off.
Reverse Voltage (VR ) •..•......•...•••....•.••...••....•....•••.•...•••..••. 5 V
Forward Current (IF) ................................................... 12.5mA
Ceramic Substrate' (IF) ................................................. 30 mA
SurgeCurrent(T=10,.s)(I FS) ................................................ 1 A
Ceramic Substrate' (T= 10,.s)(IFSl .......................................... 1 A
Junction Temperature (T.,) ................................................ 100ac
StorageTemperature(Ts) ......................................... -55 to + l00 aC
Power DiSSipation (PTOT) ....•..•............•.••. , ..•.........•.••...•... 70 mW
Ceramic Substrate' (PTOT) ...... : ..•.....••.....•....•...•..••....•...• 200 mW
Thermal ResistanceJunction to Air (RTHJV) ................ '. . . . .
. ..... 1050 KIW
Thermal Resistance Junction to Ceramic (RTHJSR ) ........................... 375 KIW

Electrical/Optical Characteristics (Tamb =25°C)
Wavelength of Em~ted Light
LSS260-DO
LYS260·DO
LGS260-DO
Dominant Wavelength
LSS260·DO
LYS260-DO
LGS260·DO
Aperture Cone (V, <)
(Limits for 50% of luminous
intensity (IV) shielded against
lateral emission of light)
Forward Voltage (IF= 10 mAl
Reverse Current IYR= 5 V)
Luminous Intensity (IF = 10 mAl

635 ±15
590 ±10
565 ±15

nm
nm
nm

AooM

628
592
564

nm
nm
nm

rp

70

VF
IR
Iv

2.0 (:s2.6)
0.1 (:sIC)

A.PEAK
ApEAK
ApEAK
AOOM

AOOM

0.75(~0.4)Typ.

1. Ceramic substrate 2.5 cm' surface area, 0.7 mm thick.

See graph numbers lA, 2M, 3A (HER), 3E (yellow), 38 (green), 4G, SA, 7F,
SC,9A, 10Aon pages 4-27-4-34.
4-18

Dag.

V

"Po

mcd

PACKAGING OF SURFACE MOUNT LED.
LEOs in SOT23 packages are available on continuous
tapes, In this case, the IEC publication 40 (secretariat)
458 applies,
The 8 mm broad tape is wound on an 18 em or 33 em film
reel and is equipped with 3000 or 10,000 components,

r

Top of
component
Cross section

~

Section AlA

reference level

~

'-

t-AI

• i'<+j't--!-...;--+.t-r-.

Compon,n'
_

Direction of unreeling

Bliller,..

'I

Dimensional table for blister tape
Dellgnallon

Symbol

Dlmen810nl In Inch.. (mm)

Tape width

W

SOf23
.315 ± .012 (8 ± 0.3)

Carrier tape thickness

t

.012 max. (0.3)

Pitch of sprocket holes

P,

.157 ± .004 (4 ± 0.1)

Diameter of sprocket holes

0,

.039 + .008 (1 + 0.2)

Distance of sprocket holes

E

.069 ± .Q04

F

.138 ± .002 (3.5 ± 0.05)

P,

.079 ± .002 (2 ± 0.05)

Distance of components
Distance compartment
10 compartment

~.7S

Note8

Cumulative pitch error
+ 0.2 mmllO pitches

± 0.1)
Center hole to center
compartment

P,

.157 (4)

K

.098 max. (2.5)

a

15° max.

R" R2

D12 max. (0.3)

H,

.012

I>U 3,0 12l4¥ ¥ V
-VF
3D.
Forward currant va. forward voltage

3C.

Forward currantl,=I(V,)
High efficiency grean

Forward currant va. forward voltage
mA

30
mA

10'

if'

/ 1/'

I

I
1/
II
'0

er

I

10'

I
I

0

4

_v,

V 5

iii'

1,1 \2 U 1,4 \5 \6 \7 1,8 1,9 1.0 V

-VF

GRAPHSIlAMP

4-29

GRAPHS FOR LAMPS (Cont.)
3E.

3F.
Forward currant VB. forward vollaga I,=I(V,)
HER

Forward currant IF=I(VF)
High efficiency yellow
mA
10'

rnA

1,

i

,

10"~~~

,

li'r£'~~/~~

10'

\41,6 1117.D 7.2

10E·'~-_-_--_--I--_--_-_--I
1.4
1.6
1.8
2.2
2.4
2.6
1.2

S-

I

10·'

Z4Z67.8~l2lq6

-V,

--VF

3.Il V

3H.
Forward currant versus forward vollage I,=I(V,)
Graen

3G.
Forward currant versus forward voltage I,=I(VF)
Yellow
rnA
10EI

rnA

HIE'

I.----

I

I
/

10EO

,

10E-

10E-l

1.5

1

2

2.5

I
1.5

3.5

3

--VF

31.
Forward currant versus forward vOllage
10'
rnA

2.5

2

--VF

4B.

4A.
Luminous Intensity 1,,=1(1,)

Relative luminous Intensity
versus forward current
120

~~~I:~

-led

IF

I.

HER

,

/

10

blue

I,

Vi-""

I

t

%

1/

TAl '::

V

V

60

I
0

10

40

20

,

,,~

lO-

U

"

U

U U

U

o

I

o

~ UVU
-VF

-IF

12

16

20mA 24

--I,
GRAPHSILAMP

4-30

GRAPHS FOR LAMPS (Cont.)
40.

4C.

Reletlve luminous Intensity versus forward
Yellow

~~:tlve luminous Intanslty versus forward currentl~.=f(I,)

10£

,

IDE

V

10E'
IVrel =

,
./

10EO
IVrel'"

Iv
IV@2mA

IV
IV@2mA

I

f

1OE-'

10E-

,

.

10E-

rnA

10E-'
0.1

currentl~.=f(I,)

rnA

10

0.1

10

--IF

II
~

4F.

4E.

Relative luminous Intensity
versus forward currant

Relative luminous Intensity versus forward currentl~.=f(l,)
Green

,

IDE

./

llJEO

Ivrel

Q

_

lv_

IV@2mA

1

,

lOE-

IDE""'
0.1

V

mA
10

1
--IF

5A.
Capacitance C=f(VR)

4G.
Luminous Intensity I.=f(l,)

pF
0

t

pF

T

r-..

[

58.
Capacitance versus
reverse voltage
50

gr~n

0

0

l\.

r-..

t\
r

0

0

0

fHER

0

~
10·'

10'
-VA

~
~

yello~l1

1~73

-I,

0

0

10

10'y

GRAPHSIl.AMP

4-31

GRAPHS FOR LAMPS (Cont.)
5C.
Capacitance C=f(V.)

SB.

SA.
Forward current versus
..... ambient temperature

Forward currant versus
ambient temperature

0

30

80

rnA

pF

C

40

f

30

f-- I -h

50

f\

red
40

11m

20

'"

~~~
ill

yelt~!n

~jlllrERI I

I-011)",

R'~.Mo·375 KfW

\

1\

30

r-r--.

10

J\.

20

1\

\.

",-

10

J\.

20

,

1\

10

I\,

f\

TTl

20

40

60

80

o

o

100 at

40

20

80

--T,,,,,

-T'mb

&C.

so.

6E.

Forward current versus
ambient temperature

Maximum permissible forward current
1,=f(T)

Maximum permissible forward currant
versus ambient temperature

mA

mA
OJ

120

80

If

r 100

~

mA

1,
~-,-,

I- -

80

I-

1---

60,

1---

1----

40

\

N.. JU ·375K/W

\

-.

--

zo

1--

~~-

-1---

f
'\

I

f\

-, .. _.

40

1-'

30

r--...

'\

20

20

-- 1--1'\

60

80

100'(

Maximum permissible forward current
versus ambient temperatura

15

50

75

OJ
----1

1

1'\
r-... . . . . 1\

10'_

,~
20

40

60

80 '( 100

-lj,.

7B.

7A.

Permlsslbla pulss handling capability
Forward current versus cycle duration
Duly cycle 0 = parameter (T...=25"C)

Permissible pulse handling capability
l,=f(T). Duly cycle 0 = parameter (T~.=25·C)

t

1

'1\
J!!~ h,

o
o

1l5't

mA

8
rnA
7

HER

~~.n

10

--......,.T.mb

SF.

red

40

~.._.l5Ol/W

-

'1'-

60

50

60

\.'

20

f----

-t~ ~f-~K -+-j

IF

60 '(

A

10'

IF

t

ftltlllEI3iE!I§]!!rn~

O=f~

Hli

0= 0.005 -lill-l-+m-l--Iill-l-+liI

OPI
OP2

10'~0•

~
~
o I~
o

20

40

60

8O'C 100

--T,

_t'

GRAPHS/LAMP,

4-32

GRAPHS FOR LAMPS (Cont.)
7C.

70.

7E.

Permissible pulse handling capability
Forward currant versus cycle duration
Duty cycle D = parameter (T••=25'C)

Permissible pulse handling capability
I,=fm, V = parameter (T....=25'C)

Permissible pulse handling capability
Forward currant versus pulse width
Duty cycle D = parameter (1••=25'C)
mA

A
10'

4

10

I-'/M""""'~

4

Ir

t

"'r

t

I

I,

I,

1O'!IIIIO~'O~'11111

....J -tltHHitJ--Httt-+tffI--t-ttt1

UI

0,02
0,05

Ell

~
~:2

11'11:'

102~~

~~~~~Kffi++~itH

m

• •

~

,,~I,L.f-_-f"--:~L..f'''''';!-'''.
Il~ II:' 10' II' 'IJ' 10'

If'

,,-s

_T

H--I-ttt+°-H'lttt-t~
0.0,005

T'

II

~~:j§ll!jj~'l~§!tfn

I

5

-I

7F.

BA.

88.

Permissible pulse handling capability
I,=fm, Duty cycle D = parameter, (T••=25'C)

Forward voltage versus
ambient temperatura

Forward voltage versus
ambient temperatura

%

mA

,o,~.

ffi!ml

120

V,

HER
yellow
green

VF2S•

t

0.0,005

g..~H44H-Hl!,¥I,'O,O'

1;t~~lPI',,*H;g~~

100

rl

i

:J.j:: 1='
i--=

V,

V""'~

Lo Fi--=F1'4"9-!-l--+-1;;;;J;.;±:l

60

"",!:HI'N'l9d''!l!I''l-fg,1

',4

""",,,,,,,,,,,%,0,5

'0' _ _

60

H-l-+-H--++-+-H-j

0,6
40

0,4 HH--t-++-t-t--HH---i
20

o

o

25

75

50

100'e

ro 20 30 III 50 60 10 BO 'C

3D 10 10

-lamb

-I,;

--I

Be.

SA.

S8,

Forward voHage versus amblenttemparatura

Luminous Intensity versus
amblanttemperatura

Luminous flux versus
amblenttamparatura

~=f(T",,>
VF1ll

%
12

o~

%

VF IZO

0

VF25

r

0,1

\1~

100

!.t....%

~
~

0

HER
../yellow

,- -'-

green

"-~

I

~ 1""'-

80

~

60
60

40

4>r

......"

"- ~

40

100

e-

Z5

50

100"C

75

-

o
o

~~
25

50

75

-T"

100"1:

!

:,tJfS-:
40

f-+-

I

20

ZO

+

,I

20

11
00

!

25

h--t--L
,

-ftli
-T,
50

75'C 100

lamb
GRAPHSIlAMP

4-33

GRAPHS FOR LAMPS (Cont.)
10A.
Wavelength of emIssIon '-....=1 (T"".)

nm

--

660
650

ATk

640

I

630

Il1O

I-

~

l-

~peak ...
150

1

610

......
1100

O~ellOw

I-- I-" I-

SIlO

580

sao

570
56

O~en

550 0

25

I- ~ l50

75

e

L

~ po ~

P JL

L

HER

I-

::::::: :: "Yoij

...55. i'""" f:::: IG,;;.-1

51D

100'(

-----........ i"

l..,...- i-'

..0

630

600

~

!IO
070

620

59

10B.
Wavalength of peak amlsslon
veraus ambIent temperature

-

k-- l-

•

15

1000C

GRAPHSILAMP

4-34

Optocouplers

5-1

Optocouplers
Package
and
Type

8 Pin
SOIC-8
DIP.
phototransis!er

Miniature
4 Pin DIP
single
channel.
phototransister

Part
Number

Package Outline

_.-,

W ....

,.

,,,.~

a

~

WA

ANO""~''''TTER

SFK610

CAJ~£2

SFK611

•

•

4 Pin DIP
single
channel,
phototransis!er

0

____;;,I .

3 EMmER.

I

A

6jf
~_
-B~'

CAlIIJIEl

IEMrtlER

U -~'CATHODE l

~. ~ COllECTOfI

NCl

• EMITTER,

mA
I

6 Pin DIP
single
channel,
phototransister

This vlew!or
SFH601G
se~esonly.

This diagram
!orCNY17F
series only.

A
-~l

CATHODE z
NC ~

~

Small outline surface
mount SOIC-8 footprint.
.05" standard lead
spacing.

40-80
63-125
100- 200
20 Min.
50 Min.
100 Min.
20 Min.
50Min.
100 Min.

Available on tape and
reel.

SFK610-1

40-80

SFK610-2

63-125

SFK61 0-3

100- 200

SFK610-4
SFK611-1

BVCEO

Page

70

5-49

2500 VRMS

5-51

30

I~
1I~

160- 320

CTR groupings.
100% burn-in.

(Vo )'
Isofatlon
Breakdown
Voltage

r-5-53

7500"

70

5-121

530O"

70

5-113

40- 80

Srou.ECroR

CATHOOE'@'CIlU.ECTOR
....
ANODE 2

IL205
IL206
IL207
IL211
IL212
1L213
IL215
IL216
IL217

Current
Transfer
RBtlo(%)
IF= 10 mA

Features

~

COLLECTOR

• EMITTER

SFK611-2

63-125

SFK611-3

100- 200

SFK611-4

160 - 320

SFH617G-l

40 -80

SFH617G-2

TRIOS (Transparent
Ion Shield)..
VDE #0884 and #0883
applied for.

63 -125

SFH617G-3

8 mm lead spacing; input
to output.

100- 200

CNY17-'
CNY17-2
CNY17-3
CNY17-4
SFH6OQ-0
SFH6OQ-l
SFH6OQ-2
SFH6oo-3
SFH601-1
SFHSOI-2
SFH601-3
SFH601-4
SFH601G-l
SFH601G-2
SFH601G-3
SFHS01G-4
SFH609-1
SFH609-2
SFH609-3
CNY17F/GF-l
CNY17F/GF-2
CNY17F/GF-3

40-80
63-125
100 - 200
160 - 320
40-80
CTR groupings. VDE
63 - 125
approved #0883.
100- 200
100% burn-in.
. (VDE 0884 optional with
160- 320
option 1) ,
40- 80
63 - 125
100- 200
160 - 320
40 -80
CTR grOUPln~. VDE
approved #0 3, #0805,
63 -125
#0806. 100% burn-In.
100- 200
(VDE 0884 optional with
option 1)
160- 320
40 -80
CTR groupings. High
BVcB% VDE approved
63-125
#08 .100% burn-in.
100 - 200
No base pin connection.
. 140 - 80
CTR groupings. 100% burn-In. 63 _ 125
VDE approved #OBB3. (VDE
0884 optional w/QIlIion
100 - 200

li

1. 1 sec. unless otherwise speCIfied.
2. UL qualified voltage.
3. According to VDE #0883.

5-2

I
I

5-16

70

---5-93

r--53OO"

5-97

r--5-101

90

5-109

70

5-20

Optocouplers
Package
and
Type

6 pin DIP
single
channel,
phototransistor

Part
Number

Package Outline

U

-'~'-

CATHODE Z:t
NC

l

~

COLLECTOR

•

EMITTER

ffi A

III
IL2
IL5
IL74
4N25
4N26
4N27
4N28
4N35
4N36
4N37
Hl1Al
HllA2
HllA3
HllA4
HllA5
MCT2
MCT2E
MCT270
MCT271
MCT272
MCT273
MCT274
MCT275
MCT276
MCT277
IL201
IL202
IL203
SFH606
SFH6011

16 pin
DIP
package,
single
channel,
phototransistor

8 pin DIP
dual
channel,
phototransistor

0
A

ll~

~L11L11 OOI.Y)

P1'COLl~ID

LED ANODE '16

W
~.

'"

-,

i

IL10 (4 pin)

W

_'~'~'M'
ClInt

~

VDE approved #0883
and #0804.

20 Min.
100 Min.
50 Min.
12.5 Min.

BV"",

-

6CGi1e&IOr

iii:

5

EmI~1J

Wff A

Page

50
70
20

~2

5-42

20 Min.
5-9
10 Min.
Low cost industry
standard.
VDE approved #0883
and #0804.

100 Min.

5-12

SO Min.
20 Min.
20 Min.
10 Min.
30 Min.'
20 Min.
20 Min.
SO Min.,
45 Min.
75 Min:
125 Min.
225 Min.
70 Min.
15 Min.
100 Min.
10 Min.

30

7500'
5300"

5-24

5-a7

5-91

I---

«

Low input forward
current.
VDE approved #0883
and #0804.

30 Min.

~

SO Min.

!:!:

TRIOS (TRansparent
IOn Shield).
High reliability.

63 Min.

Very high isolation
breakdown voltage.

20 Min.

E
5-47

"
70

5300"

5-105
I 5-117

VDE approved #0700,
#0883, #0804, #0860.
IEC#601NDE#0750,
IEC#380NDE#0806,
IEC#435NDE#0805.

SO Min.

5-38
8 KVRuf
(1 Min.)
7 KVRMS'
10 KVoc

30

I--5-39

ILll (6 pin)
30

ILCT6

5-72

20 Min.

lCo\1td1t1'

~n3

AI'GdI

(V. )'
Isofatlon
Breakdown
Voltage

'F=

IL9 (6 pin)

It[DCAnIlOE

~

Current
Transfer
Ratio(%)
10 mA

IL8 (4 pin)

7"F'fEM/Trol

I

Features

ILDl

SO

VDE approved #0883
and #0804.
100 Min.

ILD2

7500'
5300"

5-74
70

ILD5

SO Min.

ILD74

12.5 Min.

1. 1 sec. unless otherwise specified.
2. ULquaJlfledvoltage.
3. According to VDE #0883.

5-3

20

5-42

Optocouplers
Package
and

Part
Number

Package OUtline

Type

MOTS

8 pin DIP
dual
channel,
phOtotransistor

0

_"~.~m",

.

cmmz

'IIIITT(II'

~

5

CATIIOOE ,

,~

ANODE'!

~~K "

'1

CATIIOOE '
CATIIOOE '

ANODE •

~rdlng to VDe 110883.

5-6

5-8

Tape and Reel Packaging for sOles Optocouplers
All SOICB optocouplers are available in tape and reel
. format To order any surface mount IL2XX optocoupler
on tape and reel, add a suffix "T" to the part number.

--.11--1

The tape is 12mm and is wound on a 33 em reel. There
are 2000 parts per reel. Taped and reeled SOICB optocouplers conform to EIA-4B1.
10 Pitches Cumulative
- [ Tolerance on Tape
±O.2 (±O.008)

Pin 1 and Top
of Component

iiT

Top
Cover

1"'

K.

j'
--11.... d

F

I

l-_-_-~
: :1

W

~
---.l

t) Ii
I

t

- .

"

,~:::lJ

~~'------~-.~~----------~--~~----~~r-~
Direction of Feed

Description

Symbol

Dimensions In
Inches (mm)
SOICS

Tape width

W

.472±.012 (12 ±.3)

Carrier tape thickness

t

.012 (0.3) max.

Pitch of sprocket holes

Po

.157±.004 (4±0.1)

Diameter of sprocket holes

Do

.059 (1.5) min.

Distance of sprocket holes

E

.069±.004
(1.75±0.1)

Distance of compartment

F

.217 ± .002 (5.5 ± .005)

P2

.079 ±.002 (2 ±0.05)

Distance compartment to
compartment

P3

.157 (4)

Compartment

Ko
Ao
Bo

.140 (3.5)
.252 (6.4)
.205 (5.2)

Hole in compartment

0,

.054(1.5)

Width of fixing tage

W,

.325 (B.3) tape

d

.004 (0.1) max.

Device tilt in the compartment

15° max.

Minimum bending radius

1.1B (30)

5-7

Notes

Cummulative pitch error .'
+0.2mm/10 pitches

Center hole to center
compartment

The fixing tape shall not cover
the sprocket holes, nor
protrude beyond the carrier
tape so not to exceed max .
tape width

.

.

'SIEMENS·

SURFACE MOUNT
LEAD BEND OPTIONS
-004
-009
Dimensions in inches (mm)
Standard Packages (0.1" lead spacing)

a-pln

4-pln

0
U

0
i

- ..
"

&-pIn

The entire optocoupler line is available with a
lead bend for surface mounting.

0

16-pln

FEATURES
• Surface Mountable
• Available for all 4, 6, 8 & 16 Pin Plastic
Packages with 0.1" Lead Spacing
• All Electrical Parameters Remain
Unchanged from Standard Packages
• 1INo Stand-off Heights
(.004" and .009")

ORDERING INFORMATION
To order any standard optocoupler with a
surface mount lead bend, add: ~004 or
-009 to the standard part number.
.
Example:
Standard part number: ILD1
Surface Mount:
ILD1-004 or
ILD1-009

:::;:

Min.

Max.

Min.

MD.

A

(9.47)
.373

(9.98)
.393

(9.53)
.375

(10.03)
.395

B

(.013)
.0005

(.102)
.0040

(.102)
.0040

(.249)
.0098

Dimension.

-009

-004

All other package dimensions remain unchanged:

5-8

SIEMENS

4N25/4N26
4N27/4N28
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
~,

-"'~~

1::j

'"
1660)

CATHODE (-)

2

NC

3

~

5

COLLECTtJR

4

EMITTER

161(1)

".

~
01'

n 781

i20Ji

'"
r-

'80

!L!.!!

048

[8381 11221...(

f

I~

• I/O Compatible with Integrated Circuits
• 0.5 pF Coupling Capacitance
• Underwriters Lab Approval #E52744
VDE Approvals 0883/6.80, 080411.83

• (f9

DESCRIPTION
The 4N25. 4N26. 4N27. and 4N28 are
optically coupled isolated pairs. each consisting of a Gallium Arsenide infrared LED
and a silicon NPN phototransistor. Signal
information. including a DC level. can be
transmitted by the device while maintaining a high degree of electrical isolation
between input and output. They can be
used to replace relays and transformers in
many digital interface applications. They
have excellent frequency response when
used in analog applications.
Maximum Ratings
Gallium Arsenide LED
Power Dissipation at2S0C ...................... 150 mW
Derate Linearly from 2SoC .................... 2.0 mW/·C
Continuous Forward Current ...................... 80 mA
Forward Current Peak (I"" pulse, 300 pps) ........... 3.0 A
Peak Reverse Voltage ...........................• 3.0 V
Detector (Silicon Phototransistor)
Power Dissipation at 2S·C ...................... 150 mW
Derate Linearly from 2S·C .................... 2.0 mW/oC
Coliector·Emitter Breakdown Voltage (BVCEa! .......... 30 V
Emitter·Coliector Breakdown Voltage (BVECO) .......... 7.0 V
Collector·Base Breakdown Voltage (BVcsol ............ 70 V
Package
Total Package Dissipation at2S·C Ambient
(equal power in each element) ................... 250 mW
Derate Linearly from 25°C .................... 3.3 mW/·C
Isolation Test Voltage
in Accordance with DINS7883/6.80 ... 3750 VAC/5300 VDC
Creepage Path ............................. 8 mm min.
Clearance Path ............................. 7 mm min.
Tracking Index According to VDE 0303 ........... KBlOO/A
Storage Temperature ...................... -55 to +150°C
Operating Temperature .................... -55 to +1OO·C
Lead Soldering Time at 260 ·C .... : ................ 10 sec

I-

d",~1

m

1~~i.JJ.!

1~::I~1-

FEATURES

n"

13301

I

I.JO~I

"'".20

'12

I~::

~

I!>·

Min

*BVeco
'BVCBO.
'I CEO (dark)
4N25,
4N26,4N27
4N28
'ICBO (dark)

Unit

Test Condition

1.3
0.1
lOa

1.5
lOa

V
pA
pF

IF = SOmA
VR = 3.0 V
VR = 0

V
V
V

VCE = 5.0 V
Ic = I mA
IE = lOa pA
Ic - 100 pA

5
10
2

Coliector·Emitter Capecitance
Coupled Characteristics
'DC Current Transfer Ratio
4N25,4N26

50
lOa
20

0.2

0.5

0.1

0.3

pF

2500
1500
500
7500

'Indicates JEDEC registered values

VCE = 10 V
(base open)
VcB =10V
(emitter open)
VCE = a

IF = 10mA,
VcE =10V
IF = 10mA,
VCE = 10 V

0.5

'Coliector·Emitter
Saturation Voltage

nA
nA
nA
pF

2

4N27,4N28

5-9

Max

30
7
70

*BVCEO

Capacnance. Input to
Output
Breakdown Voltage
'4N25
'4N26,4N27
'4N28
UL Qualified for
'Resistance, Input to
Output
Rise and Fall TImes

Typ

ISO

HFE

V
V
V
VDC

100

GD
ps

2

0.5

....·~I
81

.!!s

Electrlcal'Characterlstlcs (Tamb = 25°C)
Parameter
Gallium Arsenide LED
'Forward Voltage
• Reverse Current
Capacitance
Phototransistor Detector

V

Peak, 60 Hz
Peak, 60 Hz
Peak, 60 Hz

IF = lamA,
VCE = 10 V
IF = 50 mA,
Ic = 2.0 mA

!i

1Yplcal switching characteristics
versus ba.e resistance

~

l

!!?tIo

Input:
IF .10mA
50 Pulse width .100 m5
Outy~e .. 50%
(seesv.uctJng time test
schematic 1 and

500

'--

,
.0

Input:
IF .. 10 mA
Pulsewidlh,., lOOmS

Normalized 10:

SDK

schemalic 2 and
.....1Ilns

/ :--.....

10

/"

r""

lOOK

500K

1M

'.1

lYplcallorward voltage
versus forward current

0.5

1

5

RL (Kn)

13r-------1-------1---,,..-"''--I

50

/
f-----::;I..L'-----+-----i

'.8!C'.I:=-----!-----~IO:-----::,00

'V

IF .120mA

-

."mA

----..

1-----..

-25

1000

J

soo

~
/II

0

Vce" ..'sov":"-

Vc:a .tOV
lamb _ 25 D C

~~~::~~

50

10

i

1

100

W

III

5

Normalized to:

I

-55

lYplcal leakage current
versus ambient temperature

-20

~

20
40
60
80
Ambrent temperalure (OC)

100

Collector current versus
diode forward current

0
25
SO
AmbientterJljlerature(oC)

5 IF_l0mA
VeE _10V
lamb _ 25°C

,
5

.1

,

"'''''rnA.

.01

VCEtvJ

/

0

IF .I'OmA

1

if" 1.0mA

01!-,----'---5~-----!1O'

50100

Jnputcurrent.IF(mA]

I
I,

L'I-~---+------1

0

,

Output current
versus temperature

IF _ S.OmA.

" .051(

10

1

ForwardCL/fI1!nt.IF(mA)

IF" lOmA

~V

//

/

IF" zomA

...--

~" ;;---

lYplcal output current (Ice)
versus Input current
100

I

~10

rON

load resistance.

--+--------1

VCE .10V
lamb'" 25°C

1

8i1SHmitterfesistan~.RBE(0)

Normalized to:
IF .10mA
VCE .... tOV
lamb. 250(:

V

V

5 IF .. 10 rnA

V

.--/"

14,-------,------,-----',

D.•

~

(see Switching lime test

.-/'

"------- r-

"I<

10,-----,---------,

DUty cycle .. 50%

/

V

-mol

Collector current versus
collector voltage

'lYplcal switching times
versus load resistance

(Saturated operation)

100

/' ----

---

~
.01

75

100

,

10
-FofwanI currenl. If (mA)

20

Switching time lest schematic and waveforms

Vee = 10 V

'INPUT] tf.3 K
VOUT

RBE

Vee

=10 V

.PU~~

,"PUI

,.Jr------il~
I

I

I-:~-I
i I I
I

VOUT

I

1--"'-1

t-'... ...l

r-"~I

I

I I

I
I

.'0["':'.

OUIPUI 10% - -

... -.--

I

I

t-"~

t-'-t

I I
II
I

I

90% - - - - -

Switching time test schematic 1

Switching time lest schematic 2

4N25/4N26

5-10

SIEMENS

4N32/4N33
PHOTODARLINGTON
OPTOCOUPLER
Package Dimensions in Inches (mm).

ANOOE'~

CATHODE

.BASE

·
,
n
2

5

NC 3

..

.

COLLECTOR

4 EMITTER

roo,
""

. . Q'.

~~-I~

I~

0"15"

Maximum Ratings

FEATURES
• Very High Current Transfer Ratio
(500% Min.)
• High Isolation Resistance (1011 n
Typical)
• Low Coupling Capacitance
• Standard Plastic Dip Package
• Underwriters Lab Approval #E52744
•

~ VDE Approvals 0883/6.80,

Gallium Arsenide LED (Drive Circuit)
Power Dissipation at 25°C. .
. ................................. 150 mW
Derate Linearly from 55°C ........................................... 2 mW/oC
Continuous Forward Current ............................................ 80 rnA
Peak Reverse Voltage ................................................... 3 V
Photodarlington Sensor (Load Circuit)
Power Dissipation at 25°C Ambient .................................... 150 mW
Derate Linearly from 25°C .......... , .............................. 2.0 mW/oC
Collector (load) Current ............................................... 125 rnA
Collector-Emitter Breakdown Voltage (BVcEO) ................................ 30 V
Collector Base Breakdown Vollage (BVcao) ................................. 50 V
Emitter-Base Breakdown Voltage (BVEBol .................................... 8 V
Emitter-Collector Breakdown Voltage (BVEco) ................................. 5 V
Package
Total Dissipation at 25°C ........' ..................................... 250 mW
Derate Linearly from 25°C' ........................................ 3.3 mW/oC
Isolation Test Voltage
in Accordance with DIN57883/6.80 ........................ 3750 VAC/5300 VDC
Creepage Path ...................... :' ............................ 8 mm min.
Clearance Path ................................................... 7 mm min.
Tracking Index According to VDE 0303 ................................. KB100/A
Storage Temperature ............................................ -55 to +150°C
Operating Temperature ..................................... , .... -55 to +100 oC
Lead Soldering Time at 260°C. . . . . . . . . . . . . . . .. . ........................ 10 sec

Electrical Characteristics (Tamb =25°C)

080411.83
DESCRIPTION
The 4N32 and 4N33 are optically coupled
isolators employing a gall ium arsenide
infrared emitter and a silicon photo
darlington sensor. Switching can be
accomplished while maintaining a high
degree of isolation between driving and
load circuits. They can be used to replace
reed and mercury relavs with advantages
Of long life, high speed switching and
elimination of magnetic fields.

Min
GaAS Emitter
Forward Voltage'
Reverse Current·
CapaCitance

Typ

Max

Unit

Conditions

1.25
0.1
100

1.5
100

V
JIA.
pF

IF=50 rnA
VR=3.0 V
VR=O V

V
V
V
V
V
nA

VcE =5 V. Ic=0.5 rnA
Ic=1ooJlA..IF=0
Ic=1oo JIA.. IF=O
Ic =1ooJlA..I F=0
IE=100JIA.
VcE =10 V. IF-O

%

IF-10 rnA. VcE =10 V
Ic=2 rnA. IF-8 rnA
V,0 -500 V

Sensor
13K

HFE
BVcEO
BVCBO '

30
50

BVEBO "
BVEco

8
5
1.0

'CEO·

Coupled Characteristics
Current Transfer Ratio·
VCEISAl)

1.0
10"
1.5

Isolation Resistance"

Isolation Capacitance

Turn-on Time
Turn-off Time
Isolation Voltage
4N32'
4N33'
4N32/33 UL Qualified for

'Indicates JEDEC registered data.

5-11

100

500

V

II
pF

5
100
1500
6000
7500

I'll
I'll
V
V
VDC

VCC= 10 V. Ic -50 rnA
IF=200 rnA. RL =180 II
Pulse Width = 8ms
Peak. 60 Hz
Peak. 60 Hz

SIEMENS

4N35/4N36/4N37
PHOTOTRANSISTOR
OPTOCOUPLER

.B'

Package Dimensions in Inches (mm)

,1~.360~"

TOPVtEW

'~'

6

240

V

U,

"6111

ANODE
CATHODE 2

1J

ct~'

...

BASE

~ COllECT~R

_EMmER

.

LED CHIP ON PIN 2
PT CHIP ON PIN 5

.130

.oJ1I

I ~~

~

NeJ

IlO

.210

I

0.111

,m

~l!'

I

I

~~
~t:\.II.

FEATURES
•. High Current-Transfer-Ratio (100% Min)
• Standard Dual-In-Line
• 0.5 pF Coupling Capacitence
• Underwriters Lab Approval #E52744

• ~ VDE Approvals 0883/6.80.
080411.83
DES~RIPTION

4N35, 4N36, 4N37 are optically coupled
pairs employing a Gallium Arsenide infrared
LED and a silicon NPN phototransistor.
Signal information, including a DC level,
can be transmitted by the device while
maintaining a high degree of electrical
isolation between input and output. The
4N35, 4N36, 4N37 can be used to replace
relays and transformers in many digital
interface applications, as well as analog
applications such as CRT modulation.

Maximum Ratings
Gallium Arsenide LED
Power Dissipation at 25"C , , ' . , , . , , , , , , , , , tOO mW
Derate Linearly from 55"C ", .. """,1,33 mW/"C
Continuous Forward Current, , , , , , , , , , ,
, ,60 mA
Peak Aeverse Voltage ........ , , , , , , , , , , , ... 6,0 V
Detector (Silicon Phototransistor)
Power Dissipation at 25"C ' , ,. , , , , , ... , , , ,300 mW
Derate Linearly from 25"C " " " " " , . ,4,0 mW/"C
Collector-Emitter Breakdown Voltage (BVCEol ,. , ,30 V
Emitter-Collector Breakdown Voltage (BVECO) , , , , ,7 V
Collector-Base Breakdown Vo~age (BVCBol, , , , , ,70 V
Package
,
Isolation Test Voltage in Accordance
w~h DIN57883/6,80 ' , , , ' , , , ,3750 VAC/5300 VDC
,Creepage Path, ' , , , .. , , .. , , , , , , .. , , .. 8 mm min.
Clearance Path"",.""""""",. ,7 mm min.
Tracking Index According to VDE 0303 ' '" ,KB100lA
Storage Temperature' " ' . " " " " " ,-55 to +150"C
Operating Temperature' " " " " " " ,-55 to +100"C
Lead Soldering Time at 260 "C'
, , ' , , , ,10 sec
Aelative Humidity at 85"C ' , , ,. ,
'" , , , ,,85%

Electrical Characterlatlcs (T8mb = 25 DC)
Min
Gallium Arsenide LED
Forward Voltage"

Typ

Mu

Unlt

Conditions

1.3

1.5
1.7
1.4
10

V
V
V
"A
pF

iF -l0 mA

0,9
0,7

Reverse Current*
Capacitance
Phototransistor Detector
HFE
BVCEO "
BVCEO '
ICEO (dark)
leEO (dark)'

,1
100
100
30

150

7
5

BVceo"
Collector-Emitter Capachance
Coupled Charecteristics
DC Current Transfer Aatio'

100

DC Current Transfer Aatio'

40

50
SOO

V
pF

70
2

Capachance. Input to Output"
Aesistanee, Input to Output"
TON' ToF'
Coliector·Emitter Saturation
Voltage VCE(sat)"
Input to Output Isolation
Current (Pulse Width =

V
V
nA
"A

%

IF =10 mAo TA =-5S"C
IF-l0mA,TA-l00OC
VR-6.0V
VR=O, 1=1 MHz
VCE -S.OV,lc -l00"A
·Ie . l mA
IE=100"A
VCE -l0 V.IF=O
VCE -30 V, IF-O
TA=l00OC
Ic .l00"A

VCE-O
IF-l0mA,TA -2SOC

VCE -l0 V
%
2.5
10"

pF
Q

10

,.s

0,3

V

100
100
100

"A
"A
"A
VDC

IF=10mA,VCE =10V
TA -55· to l00·C
1-1.0 MHz
VIO=5OO V
Ic-2 mA, AE= 100 Q
Vee -l0 V
IF=10mA.ie -0,5mA

8 m. sec)"
4N35
4N36
4N37
4N35/36137 UL Qualified lor 7500

"Indicates JEDEC registered daIB.

5-12

V,O - 2S00 YAMS
V,O -17SO YAMS
V,0=10SOVAMS

.1YPlcal switching characteristics
versus base resistance

l\'plcal switching times
versus load resistance

(Saturated operation)
'00

~

l

''''

Inpul
IF .. tOmA
o PulseWldlfl .. l00mS
Duty~e .. 50%

'00

V

lseeSWilthinlltime test

V
-

schematictand
waveforms)

'~

,

"-----I---

,

_'00

:3
~

SDK

f
soaK

,,.,

tM

1\tplcal forward voltage
versus forward current

..........

~ 1.21-_ _ _ _+,_<"! •..",,:;oC""'-_I-_--,.£--j
g

; 1.11-=----\----7"1'--7"'-,~ .. .pGt.
~ .1.O/-----?l-"""'----7"I'------

i

J

It,

I

~.<

,>'ll'

, .• /------:;;1.-<"----+-----\

V

I

.J.

500

j,VI
/II

Vcs _tOV
Tamb .. 25°C

~~:~~=A

50

20

'00

.!!s

11
i~

.IlL

,
10
Inputcurrentlf(mA)

t!i"1

.....

W

Vce .. SOV-

I,,

20

~

!1

40

60

80

100

AmbienttemperaturelGC)

Normalized to:
5 IF .. IOmA
VCE _10V
T~mb .. 2SoC

--

IF ..12DmA.

r-

- r-.:.

I

-25

'000

Collector current versus
diode forward current

" .I'mA

-55

lYplcalleakage current
versus ambient temperature

,

IF" IOmA

.,,

VCfM

V

'V
,

Output current
versus temperatura

I" .,

"!-,-----5~---..".

50100

,

Forward current, If(mA)

I

/

IF" S.OmA

"17~---t_="'=·='=·'=mA4

,

'.8,".,::.....----',------,L,,----~,oo

I,

rON

/v

"

If" 10mA

,.,It-----j-------I

:-

1
5
to
Load resistance. RL (Kn)

0,5

.------

V

'00

1.3f-----i-----i----:;;,.-""----l

2

"

" ;:;;----

lYplcal output current (Ica)
versus Input current

,.• r - - - - - , - - - - - , - - - - - - ,

ramb _ 25 G C

lamb" 25°C

/

/

V

~

5 ~C; !Ot~~--t-----i

/

~

lOOK

Normalized to:

Normalizelito.

V

"

rON

Base-emitterresistance, RB£ (Il)

IF _10mA
4 VCE I ; tOV

collector voltage

so

.

,OJ(

Collector current versus

1O,------r-----,

Input:
IF.-IOmA
Pulse width -tOO mS
Duty cycle", 50%
(seeSwilChing dmetest
schemalic2 and
wavelorms

"f

r-- J---..-

25
so
Ambient temperature Iae)

75

,
I'

,

B

t .,

"" ,.,

-----

~

/

,

,.

tOO

"

20

Forward current, If (rnA)

Switching time test schematic and waveforms

Vee = 10 V

INPUT] Ff_3 K
VOUT

INPUT:J

,--1r----'---II~

= 10 V

L

-

RaE

r

Vee

'2.

'
5LII
I '

1--'"-,

~".,

, 1 -....,

1-'--1
I~ I
I

VOUT
OUTPUr,

11)% - -

.,.c ___

':

I

I

,.."",-1,

'I I

r"~',
I

I
'

9tl% - - - - -

SwHchlng time test schematic 1

Swttchlng time test schematic 2

4N35/4N3614N37

5-13

6N138
6N139

SIEMENS

LOW INPUT CURRENT, HIGH GAIN
OPTOCOUPLER
Package Dimensions in Inches (mm)

NC~8

ANODE

v"",
VB

2

7

CATHODE 3

6

Vo

•

GND

NC

•

FEATURES
• 6000 Volt Isolation Voltage
• High Current Transfer RatIo 800%
• Low Input Current Requirement O.5mA
• TIL Compatible Output - O.1V VOL
• High Common Mode Rejection 500Vlllsec.
• High Output Current - 60mA
• DC to 1 Megabit I Sec. Operation
• Adjustable Bandwidth - Access to
Base
• Standard Molded Dip PlastIc Package
• UL Approval # E52744

DESCRIPTION
High common mode transient immunity and
very high current transfer ratio together with
6000 volts DC insulation are achieved by
coupling an LED with an integrated high gain
photon detector in an 8 pin dual in line
package. Separate pins for the photodiode
and output stage enable TIL compatible
saturation vOltafles with high speed operation.
Photo Darlington operation is achieved by ty·
ing the Vcc and Vo terminals together. Access
to the base terminal allows adjustment to the
gain bandwidth.
The 6N138 is ideal for TIL applications since
the 300% minimum current transfer ratio with
an LED current of 1.6mA enables operation
with 1 unit load in and 1 unit load out with a
2.2K Q pull-up resistor.
The 6N139 is best suited for low power logic
applications involving CMOS and low power
TIL. A 400% current transfer ratio with only
O.5mA of LED current is guaranteed from DoC
to 70°C.

APPLICATIONS
• Logic ground isolation - TIlffTL,
TIUCMOS, CMOS/CMOS, CMOSJTTL
• EIA RS 232C Line Receiver
• Low Input Current Line Receiver - Long
Lines, Party Lines
• Telephone Ring Detector
• 117 VAC Line Voltage Status Indication-Low Input Power Dissipation
• Low Power Systems - Ground Isolation

Maximum Raiings
Maximum Temperatures
Storage Temperatures
- 55° to + 125°C
Operating Temperatures
O·Cto +70OC
Lead Temperature (soldering, 10 sec.)
260·C
Average Input Current (IF)
20mA
Peak Input Current (IF)
(50% Duty Cycle - 1ms pulse width)
40mA
Reverse Input Voltage (VAl
5v
Input Power Dissipation
35mW
(Derate linearly above 50% in free air temperature at

0.7mW/OC)
Output Current - 10 (Pin 6)
60mA
(Derate linearly above 25°C in free ai.r temperature at
0.7mA1°C)
Emitter-Base Reverse Voltage (Pin 5-7)
0.5V
Supply and Outage Voltage - Vee (Pin 8-5), Vo (Pin 6-5)
6N138
.
-0.5 to 7V
6N139
- 0.5 to 18V
Output Power Dissipation
100mW
(Derate Linearly Above 25°C in Free Air Temperature at 2.0mW/OC)
Caution:
Due to the small geometries of this device it should be handled with
Electrostatic Discharge (ESD) precautions. Proper grounding would
further prevent damage and/or degradation which may be induced
by ESD.

5-14

Electro-Optical Characteristics (TA = OOC to 70°C, Unless Otherwise Specified)
Parameter
Current Transfer Ratio
(CTR)
Logic Low
Output Voltage (VOL)

Device

Min

Typ Max

6Nt39

400
500

800
900

6N138

300

600

6N139
6N139
6N139

0.1
0.1
0.2

004
004

Test Conditions

Units
%

'F=0.5mA, Vo =0.4V, Vee=4.5V
I F =1.6mA, Vo=0.4V, Vee =4.5V

%

IF=1.6mA, Vo=OAV, Vee =4.5V
IF = 1.6mA, 10 = 6AmA, Vee = 4.5V
'F=5mA, 10= 15mA, Vee =4.5V
IF= 12mA, 10= 24mA, Vee =4.5V
IF = 1.6mA, 10 = 4.8mA, Vee = 4.5V

V

0.4

Note
5,6

6

6N138

0.1

004

V

Logic High

6N139

0.05

100

IlA

IF=OmA, Vo - Vee = 18V

Output Current (I0H)

6N138

0.1

250

!lA

IF=OmA, Vo=Vee=7V

Logic Low Suppty
Current (ICCL)

0.2

mA

'F = 1.6mA, Vo = OPEN, Vee = 5v

6

Logic High Supply
Current (ICCH)

10

mA

IF=OmA, Vo=OPEN, Vee=5v

6

104

Input Forward Voltage (VF)
Input Reverse Breakdown
Voltage (BVR)

1.7

5

Temperature Coefficient of
Forward Voltage

I F =1.6mA, TA =25'C

IR= 10uA, TA =25'C

mV/'c

-1.8

Input Capacitance (CIN )

V
V

60

pF

Input·Output Insulation
Leakage Current (I,.,)

1.0

IlA

6
6

IF= 1.6mA
f= 1MHz, VF=O
45% Relative Humidity, TA =25'C
t = 5., V,., = 3000VDC

7

Resistance Input-Output)
(R,.,)

10"

Q

V,., = 500Voc

7

Capacitance (Input-Output)
(C,.,)

0.6

pF

f=lMH z

7

Switching Specifications (TA =25°C)
Parameter

Typ

Max

5
0.2

25
1

lAS

IF = 0.5mA, RL =4.7k2
IF= 12mA, RL=27D2

6N138

1

10

lAS

'F = 1.6mA, RL = 2.2k2

6N139

5
1

60
7

lAS

' F=0.5mA, RL=4.7k2
'F=12mA, R.L=270mAQ

4

35

lAS

IF = 1.6mA, RL = 2.2k2

Device

Min

Propagation
Delay Time

6N139

-

To Logic Low
at Output tPHL
Propagation
Delay Time
To Logic High
at Output tPLH

6N138

Units

Test Conditions

Note
6,8

6,8

Common Mode Transient
Immunity at Logic
High Level (CMH) Output

v/"s

IF = OmA, RL = 2.2k2
Ree = O,lVeml = 10Vo-o

9,10

500

Common Mode Transient
Immunity at Logic
Low Level (CML) Output

v/"s

'F = 1.6mA, ~L = 2.2k2
Ree=O,IVcM/= 10~

9,10

-500

Notes
1. Derale linearly above 50'C free·air temperature at a rate of O.4mAl'C.

2. Derate linearly above 50 0 e free-air temperature at a rate of O.7mW/oC.
3. Derate linearly above 25°C free-air temperature at a rate of O.7mAJoC.
4. Derate linearly above 25 DC free-air temperature

at a rBte of 2.0mW/oC.

5. DC current transfer ratio is defined as the ratio of output collector current, ' 0 , to the forward LED Input current, 'Ftimes 100%
6. Pin 7 open.
7. Device considered a two·terminal device: pins 1,2,3 and 4 shorted together and pins 5,6,7, and 8 shorted together.

a. Use of a resistor between pin 5 and 7 will decrease gain and delay time.

9. Common mode transienl immunity in logic high level is lhe maximum tolerable (positive) dNcm/dt on the leading edge of the com·
man mode pulse, Vem , 10 assure thaI the output will remain in a logic high state (I.e. Vo > 2.0V) common mode transient immunity in
logic low level is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common mode pulse Signal, Vcm ' to assure thaI
the output will remain in a logic low state (i.e. Vp < O.8V).

;0. In applicaiions where dvldt may exceed 50,OOo.lus (such as state discharge) a series resistor, Ree should be Included to protect Ie
from destructively high surge currents. The recommended value us Rce ..,~
kQ.
0.15 IF (rnA)

5-15

SIEMENS

CNV17 SERIES
SINGLE. CHANNEL
PHOTOTRANSISTOR OPTOCOUPLER

Package Dimensions in Inches (mm)

I', ~~2 'I

6·
O
2

•

•

•

-~.....

CATHDIlE· 2

~

• c:ournoR

NC 3

4 EMITTER

Maximum Ratings
Emitter CGaAs infrared emitting diodel
Reverse voltage

FEATURES

• 5300 Volt Breakdown Voltage
• I:ligh Current Transfer Ratio, 4 Groups
CNY 17-1, 40.to 80%
CNY 1.7-2, 63 to 125%
CNY 17-3, 100 to 200%
CNY 17-4, 160 to 320%
•

Long Term Stability

• Industry Standard Dual-in-Line
• Underwriters Lab Approval #E52744

·@
DVE

VDE Approval #0883
VDE Approval #0884 (Optional
with Option 1, add -X001 suffix)

DESCRIPTION
The CNY 17 is an optically coupled pair
employing a gallium arsenide infrared LED
and a silicon NPN phototransistor. Signal
information, including a DC level, can be
transmitted by the device while maintaining
a high degree of electrical isolation between
input and output. The CNY 17 can be used
to replace relays and transformers in many
digital interface applications, as well as
analog applications such as CRT modulation.

VA
I,

Forward current
Surge current It 110; 10 ~s)
Power dissipation

iFS
Plot

Detector lSi phototran.istarl
Collector·emitter reverse voltage
Emitter-base reverse voltage

VCEO
VEBO

Collector current

Ic

Collector current h< 1 msJ
Power dissipation

lCSM
P IOI

Coupler
Storage temperature
Operating temperature
Junction temperature
Soldering temperature in a 2 mm distance

T.tor

T.mb
1j

r It
60
2.5
100

7
70
50
100
150

1

I~A

mA
mW

-4010 +150
to +100
100

-~O

from the case bottom Ie =E; 3 5)
260
T,
Isolation voltage
5300
v
iii.
(between emitter and detector referred to
standard climat. 23/50 DIN 50014;
leakage path. OIN 57883, 6.80
8.2 MIN.
mm
7.3 MIN.
mm
air path. VDE 0883. 6.80
Tracking resistance: Group III IKC:;> 600 in accordance with VOE 110 § 6. table 3 and
DIN 53 480/VDE 0330. part 1.
Isolation yoltage @ Vis = 500 V
10"

Characteristics (Tamb = 25°C)
Emitter (GsAs infrared emitting diode)
Forward voltage IIF = 60 mAl
Breakdown voltage IIR = 10 ~A)
Reverse current (VR = 6 VI
Capacitance (VA = 0 V; , = 1 MHz)
Thermal Resistance

Detector lSi phototransistor)
Capacitance (VeE = 5 V; f = 1 MHzr
(Vee
5 V; f
1 ~Hzl
(Vee = 5 V; f = 1 ~Hz)

=

=

Thermal ReSistance

Coupler
ColI~ctor-emitter

V,

1.25 (,.; 1.65)

V ••
I.

30 (;>6)
0.01 (,.; 10)
40
750

Co
R'hJamb

cc,
Cc.

C,.

RthJamb

11
500

saturation voltage

(I, " 10 mA; Ic = 2.5 mAl

VCEsal

Coupling capacitance

C.

5-16

6.8

1 8.5

(,.; .4)
1 .25
.55

I

v

V

"A

pF
K/W

I

pF
pF

pF
KIW

The optocouplers are grouped according to their current transfer
ratio Icll,at VcE=5 V, marked by dash numbers.
-1

-2

Switching Operation (with saturation)
IF

-4

-3

1./1, (1,= 10 mAl

40-80

63-125

100-200

160-320

%

1./1, (1,=1 mAl

30(>13)

45(>22)

70(>34)

90 (>56)

%

Collector-Emitter
Leakage Current
(Vce=10 V) (ICEO)

2(550)

2 (S50)

5 (s1OO)

5 (S100)

nA

.

V,o

1kQ

-=-=---;;:::r-J7----;~;,,<~
:g

,--t"t-+......~_~ ,

5V

rf:
S

+

TTL levels are
observed but
no TTL
switching times

Linear Operation (without saturation)
IF

=

Group

-1
(1,=2OmA)

Tum-On Time
Rise Time
Turn-Off Time

F\
t".

75

n

3.0 (S5.6)

JlS

\,

2.0 (S4.0)

JlS

\..
\.

2.3 (S4.1)

JlS

FaflTime

2.0 (s3.5)

JlS

Cut-Off Frequency

Fco

250

kHz

Load Resistance
Turn-On Time
Rise Time
Turn-Off Time

Minimum current
transfer ratio as a function
of diode current
VeE

TTL

V"=SV

4711

=25 ·C,

:'7kQ

RL=7SQ

1,~

( T.....

=

or 2 TTL inputs
with a 2.7 kO
pull-up resistor

FaflTime

(T....b

3.0 (S5.5)

4.2 (S8.0)

6.0 (S10.5)

JlS

\,

2.0 (S4.0)

3.0 (s6.0)

4.6 (S8.0)

JlS

\..
\.

18 (s34)

23 (s39)

25 (S43)

JlS

11 (s2O)

14 (s24)

15 (S26)

JlS

0.25 (SO.4)

VCESAT

= -25 ·C.

VeE =5 V)

(T.mb =O·C; VeE =5V)

,
Ie 10

Ie
,

10'

4

5

~

P-2

/

r-

,
10

¥.¥.=/(I.)

is.

200

V

Current transfer ratio as a
func;tion of diode current

%1.=/(1.)

300

-4
(1,=5mA)

t".

Current transfer
ratio as a function
of diode current

=5V)

'1.-¥,=/(I F)

-2and-3
(1,=10 mAl

i-!-

P-2

,/

,

10

1

1

100

/

3

/

~
F-'
10 0

r--l
10'

--I,

/

./

r...2
10'mA

VI
,VI
10
10-'

./

J

,/
5

100

5

10' 2 mA
--IF

10 10-' 2

S fi'

5

10' 2 mA

--1,

CNY17

5-17

Current transfer
ratio as a function
of diode current
Vc~=5V)

(T...b ",,25 ·C.

Current transfer
ratio as a function
of diode current

Current transfer ratio as a
function of diode current
(Tomb

=50 'C;

VeE

. (T....b

=5V)

10 3 '

103 '

r

103

r~
~

V

,

10

.,..i.

2

.l-

VI-'

10'

VI

,

5100 2

II

10-' 2

5

10' 2

--1,

10' 2 mA

(l,=10mA.

le=!( VeE)

4

2

10-'2

20

5 1D' 2

( T....b =2S·C)

1~=f( VeE)

mA
30

IIII
Ir~
I~

tm

1."30~

IIII

1,- 8~

I." 2O.J!.A

1

10

I," 6~

10

IIII
l.-lOllA

,

1,- 4mA

/0" SIlIA
10'

-25

I
25

50

75"C

10

Collector-emitter
off-state current

Vf=>f.(I,}

I1A

',2

Ii'h

Jill

lCEO

SO'C
75'(

V

10'

'O'.~
VCE=40V

1(r'1B.

II

J

(T.mb =25 'C; 1, =0)
leEc=/(T}

1 ,0"II,lti",,-,-;-;,oiviiiii

'/

1,0

0,9 ,o~

ISV

--Vee

Forward voltage

J

2m~

10

lSV

'--Vee

I,'

1,-

IF- 1mA

111' 21lA

--T

5 10' 2mA

--I,

Output characteristics

IIII
lJU
).-14cill~
II I I

5

I

,I

(Current gain B=5501

mA
30

'3

10

(T.....,:::2S"C; 1,:::0)

'" ¥.=/(T)

10'

5

Transistor characteristics

=5V)

/

vv

Current transfer ratio as
a function of temperature

I

2
1

'Iv

10'

510' 2mA

Ie 103

If

I-'

10

/

~-!,

VeE

.J-

1

I
10-'2

4

,

2

1

10

=7S·C; vcE =5V)

",*=/(/,)

'It?;='(!')

'" ¥-=I(1,)

'0'

--1,

1~~~~LU~2~5~~50~~~~~m~

lOZ IIA

--T

CNY17

5-18

Saturation voltage as a
function of collector current
and modulation depth for CNY17·1

Handling same except for CNY17·2

(T.....tI =2S'C)

(1.... b =25 'c)

V VCEU! =f(lcJ
\0

1.0

I

Q9

I

VCEsat

II Vel ""I =1(IcJ

1.0

0.9

VCEsat 0.9

OB

OB

I

VcEsal

O.B
0.7

IF"ii/e
/' I I
1/ i II
I

U6

0.5
0.4
OJ

CNY17·3

( T.... b =25 'C)

V VChu=l(1cJ

O.7

0.7

0.6

ns

O.5

0.2

Q2

. O.1

O. 1
10'

OA

/

,

0.3

1

11111
./ 1," 3x/e

10'

5

~III.II

Tnf

e

O.1

III

10'mA

IF"2x/~

O.3

02

III

--Ie

I
I
V

O.5

r,"2xIe

0.4

1,1. ~~

II

lO'mA

10'

Permissible loss
transistor and diode

CNY17·4
(T....b ==2S'C)

mW

V VChu=l(1cl

W

5

lo'mA

--Ie

--Ie

Permissible loss diode

P~1(T_.)

mA IF=/(T.",,}

200

120

VCEsat...D.9

I

O.B
0.7

'\1rQnSistor

a6
Q4

O.3

100

/

/

-

\

IF "Ie

as

"- \
Diode

50

IF- 2x/c

Q2

60

\

- --

"

"- ~

IF" 3xIe

1

1111
10'

rnA

5
-Ie

lO'mA

50

25

Diode capacitance

(0 =Parameter; TIIIIII =2S'C)
1,=f(r)

(T""b =25'C; /::.1 MHz)

lO'E!IIB!!~~

pF
50

I
I

t

1

10-3

10-1

10"

_T

100

10's

o

100

O(

Transistor capacitances
(r_" =25'C; 1=1 MHz)
C=/(

!

.....

v.l

I

'\

I

~

20

lB
16

14

CEO
Cca
CCE

12

10

~

10

10"

"

15

24

20

10- 5

50

-Tamb

C 22

r-

10' L.lJJllIILL.WD1L.illla..JL.WJWLli1JWLJ.llWI

25

O(

I"

pF

I

30
I·

~

C~/(V")

I,

~

30

75
100
-TII/T\b

Permissible pulse load

r-r- ~.

~,

0'

10'

--VA

--v.

lo'V

CNY 17

5-19

SIEMENS

CNY17F SERIES
VDE LEAD BEND CNY17G F SERIES
SINGLE CHANNEL
PHOTOTRANSISTOR OPTOCOUPLER
NO BASE CONNECTION
Package Dimensions in Inches (mm)
CNY17F

CNY17G-F

-t~r
~

CATIIODE 2

5 COllECTOR

NC 3

CNY17F

FEATURES

Maximum Ratings:

• CNY17F G Lead Bend in Accordance
with VDE 0805/0806

Emitter (GsAs infrared emitter)
Reverse voltage
DC forward current
Surge forward current It:S 10 !-Is)
Total power dissipation

V,
IF
I FSM

Detector (silicon phototransistor)
Collector-emitter reverse voltage
Collector current
Collector current It S 1 ms)
Totsl power dissipation

Ie

• 5300 Volt Breakdown Voltage
• Base Terminal not connected for
Improved Common Mode
Interface Immunity
• High Current Transfer Ratio, 3 Groups
CNY17F/GF-1, 40 to 80%
CNY17F/GF-2, 63 to 125%
CNY17F/G F-3, 100 to 200%
• Low CTR Degradation
• High Collector-emitter Voltage VCEO = 70V
• 100% Burn-in
• ~ VDE Approval #0883
• o VDE Approval #0884 (Optional
with Option 1, add -X001 suffix)

Optocoupler
Storage temperature range
Ambient temperature range
Junction temperature
Soldering temperature (max. 105)11
Isolati~n

p..,
VCEO
lcsM
Plot

Tstg
T,mb

T,
T,

4 EMmER

6
60
2.5
100

V
mA
A
mW

70
50
100
150

V
mA
mA
mW

-40 ...
-40 ...
100
260

+ 150
+ 100

'C
'C
'C
'C

test Yoltage lU

between emitter and detector referred to
standard climate 23/50 DIN 50014
Leakage path
Air Path
CNY17F
CNY17G-F

11,.

5300
>8.0

Vdc
mm

>7.3
>8.0

mm
mm

2:100
(group 3)
1011

Q

Tracking resistance

DESCRIPTION
The CNY17F/G F is an optocoupler that
employs a GaAs infrared emitting diode
optically coupled to a silicon planar phototransistor detector. The component is incorporated in a plastic plug-in DIP-6 package.
The coupling device is suitable for signal
transmission between two electrically separated circuits. The potential difference
between the circuits to be coupled is not
allowed to exceed the maximum permissible reference voltages.
In contrast to the CNY17 Series, the base
terminal of the F/G·F type is not connected.
This results in a substantially improved
common-mode interference immunity.

in acc. with VOE 01'0 § 6, table 3
and DIN 53480/VDE 0303, part 1.
Isolation "resistance (V;o = 500 V)

KB

R,.

Characteristics (Tamb = 25°C)
Emitter (GaAs infrared emitter)
Forwar~ voltage (I, = 60 mAl
Breakdown voltage (I, = 10 ~A)
Reverse current (VR = 6 V)
Capacitance (V, = 0 V; f = 1 MHz)
Thermal resistance')
Detector (silicon phototransistor)
Capacitance (Ve. = 5 V; f = 1 MHz)
Thermal resistance')

VF
BV
I,

V
V

RthJA

1.25 ('" 1.65)
30 (2: 6)
0.01 ("'10)
40
750

Ce•
R1hJA

6.8
500

pF
K/W

VCEU1

0.25 ('" 0.4)
0.5

V
pF

Co

~A

pF
K/W

OptocQupler
Collector-emitter saturation voltage
(IF = 10 mA; Ie = 2.5 mAl
Coupling capacitance

5-20

C,

The optocouplers are grouped according to their current transfer ratio
and marked bV Arabic numerals.

-1

Group

lcllF

at

VCE = 5 V,

-3

-2

Idl, (I, = 10 mAl

40 ... 80

63 ... 125

100 ... 200

%

lell,(J, =1 mAl

30 (>131

45 (> 221

70 (> 341

%

21s 501

2 (S 501

5 (S 100)

nA

Collector-emitter
leakage current

(VeE

= 10 VI

/CEO

Linear operation (without saturation)

~ -K ff:v. ."
I,

o

load resistance

R,

75

Turn-on time

'0.

3.0 (:;;; 5.6)

~u

Fall time

2.3(:54.1)
2.0 (5 3.5)

"0

Cut-off frequency

Yo.

"'
"'
"'
"'

2.0 (54.0)

Rise time
Tum-off time

I,

250

1amb

:10mA
=5V
= 25°C

"1

kH,

,~

gj
....

Switching operation (with saturation)
I,

IkO

•s.

V,p-5V

,+-~I',",~<"",~"
:g
_

0I2TTlinpuis
b:L..:'wilha2.7kO
pull·upresislOf

1

Group

If

'0.

If =10mA

3.0 IS 5.51

4.2 (s8.0)

2.0 (S4.0)

3.0 (Sa.O)

Turn-off time

18 (S34)

23 IS 39)

11 IS 20)

14 (S24)

toff

Fall time

~

TTl

2 and 3

= 20 rnA

Rise time

Turn-on time

"'
"'
"'
"'

0.25 (:;;;0.41

VeE..1

V

Current transfer ratio (typ.)
versus diode forward current
' 8mb"" OOC; VCE '" 6 V

Current transfer ratio (typ.)
versus diode forward current
' 8mb = _25°C, VCE: 5 V

Minimum curr.nt tran.f.r ratio
v .... u. dlod. forward current
' 8m b = 26°C, VCE : 5 V

%
300

TTL levds are
observedbul
no TTL
SWIlchinglimes

ali.

OS!.

,

,

%

%

10

10

lt min

If
200

P-

P
2

10 I

2

10 I

1

1

100

3
2

~
~
10'

1

10'

/

./

II

J

,rJ

,lIiI
5

10° 2

S· 10'

-1,

-1,

5-21

2 rnA

10 10

I

2

10'

5

-I,

10'

2 rnA

Currant tranlfer ratio (tYP.1
yarSUI dioda forward current
T.mb - 26°C; VeE"'" 6 V

Current tranefer ratio (typ.)
yeraua dioda forward current

Current transfer ratio Ityp.)
yaraua diode forward current
Tamb;;; 75 c C, VeE'" 5 V

Tamb - 50°C, VeE'" 5 V

,
10

,
10

,

%

%

%
10

r
Ie

10

~

I

,

2

Ie

10

t

~

,

2

1

10

.2-

,

.1.

1

1

/

1/

,Vv
10 10' 2

5

10° 2

I

5

/

,1/1/
10'

-I,

,.L

2 rnA

5

-I,

Current tranater ratio {tYP.1
versus temperature

IF =to rnA; VeE ""·5 V

mA

,

%
10

10'

Output characteristic. (typ.)
Collector current versus
collactor-emltter yoltage
Tamb '" '25 C C

30

I

10°

r

I,,~

1

,
so

25

0

SO·(

75°(

L

2m~
0,9

10
15V
--VCE

-1

!Jl

L

1,0

IF· 4mA
I,,'

I,' lmA

2 rnA

V

.....

I,' 6mA

0

10

V

~

2

,

5

-I,

~

1,1

3

-25

5

V

I~

10

2

1,2

li~

,

1

Forward voltage (tvP.) of the
diode versull forward current

tiLl

Ie

10

10 10

2 rnA

10",

10'

10'

-I,

Collector-emltter le.kaga current
{typ.1 of the transistor veraua temperature
Tamb'" 25 c c;

IF '" 0

I'A

1()D.~
lem

I

Current transfer ratio varaus load tima
%

V,,=40V
V,,-10V

110

10-' _ _

1Ir'1M.
1~2U5~ULLU2L5~~~UL~~~~,oo~

=5V
= 1 kO
T.mb = 25°C
I,
= 60 rnA
Measuring current = 10 rnA
Confidence coefficient
S= 60%

VeE
R,

r-

-

1"-90

10'

-1

5-22

95%

II

r-

50%
1-~

II

5'1

10'
-I

CoUector-emlttar saturation

Colloctor-emittor saturation

voltage (typ.) versus collector

voltage (typ.) versus collector

current and control range')

V

to

~::r=u:5!C

voltage (typ.) versus collector
current and control rango'l
for group 3

V ' am b:::: 250C

W

to

0.9

VCEsat Q9

0,8

0.8

1 0.7

o.6

0.7

U9

!

Collector-emitter saturation

currant and control range')
V for group 2
Tamb = 25 D C

I

Va: sal

VCEUI

0.6
O.5

U4
0.3

0.5

/
II

/ II

3,

O.

Q2

O.1

O.1
10'
--Ie

,.-

V

O.5

IF= 2xIe

0.4

U2

ri-

O.7

0.6

US

IF·3xIe

rrr

IF =Ie

0.4

II

O.3

IF= 3xlc

II11
IIII

10'mA

~

02
O.1

I, =1xle
IIIII

I'!"ml
IIII

10'mA

lO'mA

--Ie

--Ie

Permissible forward current of
the diode versus ambient
temperature

Permissible power dissipation
for transistor and diode
versus amblant temperature

mA

mW
200

120

I\ot

1

,50

100

l~ra.nSistor

1"\

1\

Diode

50

25

\
\
"- "\
50

60

~

1"-

I'-.

30

\

"\
25

75
-Tam~

Permissible pul.e handling
capability
Forward current versul pul ••
width
D '" parameter; Tamb '" 25°C

"\

50

100 DC

75
--Tamb

Transistor capacitances (typ.,
versus emitter vollage
1amb = 25°C; f =: 1 MHz

Diode capacitance (typ.1 versus

reverse voltage

pf

Tamb '" 25°C; f "" 1 MHz

pF

24

50

22
I,

20

i

......

lB

16
30

20

1"-

14

l-

10

12

[([

f-

I-

10

10' ,-!-,JIJIL.lIUJ,,-!-lW..l.lJ.WDLJJ.1IIIl'-:"llllll
10- s 10'" 10-) 10-l___
10-1 1' 10G 10' s

o

10'

~D

10'

---VA

5-23

10' V

10'

10'

-V,

H11A1 thru H11A5

SIEMENS

PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)

'E.~:l
{!)

il&

L
I

.280
Uln

TOP VIEW

,~.

ANODE
CATHODE 2

<:.

NC.·

§

BASE
COlLECTOR

4

EMITTER

LED CHIP ON PIN 2

PT CHIP ON PIN 5

.OJ!)

.l3O

.DBO

1SO

~~ctiil\l

T

I

1&311

JM8

1L22J
I
(1.32)-1

I-

J12ll

--r1.508)
(.762)

I

""

:r:i..jj.

JllO

1OO

~)

FEATURES

Maximum Ratings

• 7500 Volt Withstand Test Voltage

Gallium Arsenide LED
Power Dissipation at 25°C ............................................ 100 mW
Derate Linearly from 25°C, .... , ... , ."
....... 1.33 mW/oC
Continuous Forward Current ,.,."., .......... , ..... , .. , .• , .... " ... , .. 60 mA
Reverse Voltage .. , .. ,', ... ,
.. , .......... , ....... , ............ ,3V

• 0.5 pF Coupling Capacitance
• CTR Minimum: H11 A 1 - 50%
H11A2, H11A3 - 20%
H11A4 -10%
H11A5 -30%
• Underwriters Lab Approval #E52744

DESCRIPTION
The H11 A1 thru H11 A5 are industry standard
optocouplers, consisting of a GaAs infrared
LED and a silicon phototransistor. These
optocouplers are constructed with a
high voltage insulation, double molded
packaging process which offers 7.5 KV
withstand test capability.

Detector Silicon Phototransistor
Power Dissipation at 25°C, ............ , , .. , , , , . , , .... , . , ....... , ..... 150 mW
Derate Linearly from 25°C .. , ........ , , .. , , .... , , ....... , . , .. , ..... 3.3 mW/oC
Collector-Emitter Breakdown ......................... , ........... , , ... , .. 30 V
Emitter-Collector Breakdown ..................... , .. , , .. , .. , .............. 7 V
Collector-Base Breakdown,. ,. , , ... , , ..... ' .. ". , ..... , , .. , .. , , . , ...... , , .. 70 V
Package
Total Package Dissipation at 25°C (LED plus Detector) .... , ..... , ...... , ... 250 mW
Derate Linearly from 25°C .• , ............. , , ... , ,. , .. , , , , . , . , , .. , .. 3.3 mW/oC
Storage Temperatura .. , . , ... , . , , , .. , .. , ..... , . , ... , ............. -55 to + 150°C
Operating Temperature.".,,', .. ,', ........................... , .-55 to +100°C
Lead Soldering Time at 260°C ................ , ...... , .. , .. ' .. , .......... 10 sec

Electrical Characteristics (Tamb
MIn
Gallium Arsenide LED
Forward Voltage
Forward Voltage (H 11 A5 only)

Reverse Current
Junction Capacitance
Phototransistor Detector
BVcEO
BVECO
BVcBO

Resistance Input to Output
Switching Times

UnU

1.1
1.1

1.5
1.7
10

50

V
V
,..A
pF

VF=3 Y
VF=O V. f=.1 MHz

5
2

V
V
V
nA
pF

Ic=10 mAo IF=O mA
IE=100,..A .. IF=0 mA
Ic=10,..A
VcE =10V.I F=OmA
VCE=O

V

Ice =0.5 mAo IF= 10 mA

%
%
%
%

VcE =10V.I F=10mA

70

'CEO

to.

5-24

50

0.4
50
20
10
30
0.5
7500
5300
100
3.0
3.0

ton

Condltlons

Max

30

ColIE19tor-Emitter CapaCitance
Coupled Characteristics
VCEloat)
DC Curient Transfer Ratio
H11A1
H11A2. H11A3
H11A4
H11A5
CapaCitance Input to Output
Withstand Test Voltage

=25 ·C)

Typ

pF
VDC
VAC RMS
GQ

""
~s

.

IF=10 mA

.

t=1 sec.
t=1 sec.

RE=100 Q.VcE =10 V
Ic=2 mA

.

Wtraul load rell

"'" T,.,,1. .1 I
:!

i

1

~u~e'~,: • 100 mS
o tycycle. 50%
t~SwilChlnotimel,esl

"" r
50

==sr
I

LV

10

'P

........

V

05

,

1.3

L

~

.01

so, 00

10

,

~PlcalleakagelI =~:~ture

Output current
vel'liUS temperatura

r-

50

10

Normali~ 10:

J

r--

Jl

I

f
Va: .IOV

'I --

'(I

"

•

//J

,I

I I ! ' I 1 ,J
" "
'"
80

IF

2

I

·55

·25

.120mA

If. lOrnA

I

.'1---

1

----

••1'mA

f--

.olL

diode torwa

-,

I

IF -lOrnA
VeE .10V

lamb .. 25°C

I

/I;

~".~vVa: .30V----,

10

, Ftirwardcurrenl, iFlmA)

Valli)

versus 8mb en

500

:::=---L------f,------,'oo

------~.---------·IO

Laadreslslance.1\ (lUll

,00II

1.2

f "1-==-___
l1.oL_*~07I_1

rON

, I

,
a.'

/

'.4

JI
V

1

-

IF .. !rnA

I

a

I
25

"

Ambienllemperatufe I-e)

h

r;;rma,ized 10:
If .10 rnA

¥;~b"_'~~oC

..

/

-

--

a.'

OI~

00

~

---

'0r--

0.1/

---~

I

10

I

I

10

-.J
2

5 Forwardcurrenl.lf(mA)

Switching time teat schematic and waveforms

H11A1 thru H11A5

5-25

SIEMENS

H11AA1
BIDIRECTIONAL INPUT
OPTOCOUPLER

Package Dimensions in Inches (mm)

!hE!J::~.
:~1.
.2-40(6.10)
.260(6.60)

ANODECATHODE1~'BASE

0-

CATHODE ANODE 2

.L....!

el'"

:::~:~~d~:~

.
I ..
.280 (7.11).048 I
.330(8.38) .(1.22) I I

....
..

.150
1120

--r. (:soo,

'(1.32)" ,...

~

.016(.400)-11.1120(.508)

5 COllECiOR

NC3

-:-

.100

~)

~1XiI

300

(~'..J!-!

~

-t
II
.

"

4 EMITTER

(3.30)
.130
(3.81)
.150

0.15•.

(.300)

.012

Maximum Ratings

FEATURES
•
•
•
•
•
•
•

AC or Polarity Insensitive I~put
Current Transfer Ratio 20% Min.
Industry Standard Dual·ln-Line
Bullt·in Reverse Polarity Input Protection
ItO compatible with integrated circuits
Underwriters' Lab Approval #E52744
~ VDE Approvals-0883t6.80;
0804t1.83

Gallium Arsenide LED
Power Dissipation @ 25°C ... .
.. ... 200mW
Derate Linearly from 25°C .... .
. ....... 2.BmWI·C
Continuous Forward Current .. .
. ...
. ... 100mA
Peak Reverse Voltage ....
. .............. 3.0V
Detectot (Silicon Phototransistor)
Power Dissipation @ 25°C .... .
. ......... 200mW
Derate linea~y from 2S·C ........... , .
. ... 2.BmWI·C
Collector-Emi~er Breakdown Voltage (BVcEO) ..
.. 30V
.. ... 5V
Emitter-Base Breakdown Voltage (8VECO> ....
. .. 70V
Collector-Base Breakdown Voltage (BVCBO) .
Package
Total Package Dissipation at 25°C Ambient
(LED Plus Detector) . . . . . .
. ... 2S0 mW
Derate Linearly from 25°C
...... 3.3 mW/oC
Isolation Test Voltage in Accordance with DINS78831B.80.. . ... 37S0 VACIS300 VDC
Creepage Path
.. ...........
. .... 8 mm min.
Clearance Path
............................... 7 mm min.
ltacklng Index According to VDE 0303 .
. ..... KB100lA

Storage Temperature .

.

Electrical Characteristics (Tamb
Parameter

.DESCRIPTION
The H11AA1 is a bidirectional input optically
coupled isolator. It consists of tw() gallium' .
arsenide infrared emitting diodes coupled
to a silicon NPN phototransistor in a 6-pin dual
in-line package. The H11AA1 has a minimum
CTR of 20% and.a CTR symmetry of 1:3. It is
designed for applications requiring detection
or monitoring of AC signals.

. -55to +150°C

Operating Temperature ........
Lead Soldering time @ 2BO·C. . .
UL Quafified for. . . .. . . . . . .

Gallium Arsenide LED
Forward Voltage VF
.phototrar~Sistor Detector
BVcEO
BVECO .
BVCBO

Min

30

7
70

. .... . . . . .. . . . . . .

=25°C)
Max

Unit

1.2

1.5

V

IF= ±10mA

100

V
V
V
nA

Ic=1mA
IE=100pA
Ic = 100,.A
VcE =10V

0.4

V

IF= ±10 mA
Ic=O.SmA

%

IF=±10mA
VcE =10V

SO
10
90

VCE(oat)

Symmetry
CTR@+10mA
CTR@-10mA

5-26

20

0.33

Test
Condition

Typ

leEo
Coupled Characteristics
DC Current Transfer Ratio
CTA

. ... -SSto +100·C
. . . . . . . . . . . 10 sec
. ...... '.7500 VDC

1.0

3.0

INPUT
CHARACTERISTICS

TRANSFER
CHARACTE RISTICS

'~

_@

;{

E
~

40

j

20

a

I

>-

z

~

.~

:1

-:<'.0 -1.0

0

~.ogg~

.J

1.0

~ .000'

2.0

OUTPUTVS.
INPUT CURRENT
_§. T0
.'

.,,
,

I-

.0

5

.ODS

-

,

.00
~ .000

; ,

VCE " 10 VOL is

9

-"I

8

I-

7

I

~

vV' rf=
--to:;;

1,:-t-'-i'-'-I-

~25J1A

~

",'r·

SYMMETRY
. CHARACTERISTICS

'0-s

_§'

,

II

s

10

~

,

o
>z

.,

>-

/

NORMALIZED TO;
= IOVOl.iS

Vee

IF= lOrnA

-s

V

/

~ 10

V

VI

:>

"~ 10-,

/

,lJ,J

~"-;;O~AI

:>

0

IVI

o 1 2 3 4 5 6 7 8 9 10
COLLECTOR·EMITTER VOLTAGE - VCEO WI

DARK CURRENT
VS. TEMPERATURE

11

I
V CE

IB=l~A

,fj':

"

1111111

510 50 100
INPUT CURRENT - 'F ImAI

.,

II

le= 15;tA

~11

o

.,

~.~~

It- l--

4

o

\I'Olmj II I

"~ .000.,1 .2 .5 1 .2

E

~ 6
a« ,

NORMALIZED TO:

, 11

fA

< 10

V

,0

!::::!

,

= 1.0mA

OUTPUT
. CHARACTERISTICS

,
,,

8

II

...-IF

01 .05.1 .51
510 50100
COLLECTOR·EMITIEAVOLTAG! -

Z

INPUT VOLTAGE - V F IV)

~

•• -IF" 5.0mA
'F = 2.0mAI

V -

.05

•• •• IF '" 20rnA.

r-~F" lOrnA

3

~

;a

~-

~'f '50m~1

6 .Oll=~rtfI-'t~+1=~';~.'~o..':'m+'A~
~ .005
_
•• --IF O.2mA

:>
~ -20

I

~

IF-lOrnA

1

~

0

NORMALIZED TO:
VeE" 10VOLT~

::;

«

,/

~

10- 1

«'0
~

-50 -25 0 25 50 75 100
CASE TEMPERATURE ,'CI

-,
.01

11

.05.1

.5 1

5 10

50 100

COLLECTOR·EMITTER VOLTAGE - V CE (VI

HIlMI

5-27

SIEMENS

"H11B1/H11B2/H11B3
PHOTODARLINGTON
OPTOCOUPLER

Package Dimensions in Inches (mm)

_.....

I;:U'I""

-Q
~
r

-,~ .....

il&

~

PJ~

ICS

J30

I~
JIG

CATHDDEa

ctil:m

&CII.l.ECI1I'

II BIllER

LED CHP ON PIN 2

PT CHIP ON PlU

J50

t

T i~ ~
~=..tt.

FEATURES

Maximum Retlngs

• 7500 Volt Withstand Test Voltage
• 0.5 pF Coupling Capacitance
• CTA Minimum et IF= 1 mA:
H11B1 500%
H11B2200%
H11B3 100%
• Underwriters Lab Approval f#E52744

Gallium Arsenide LED
Power Dissipation at 25·C ............................................ 100 mW
Derale Linearly from 25 OC ........................................ 1.33 mW /·C
Continuous Forward Current. ................................... " ...... 60 mA
Reverse Voltage ........•......................................•........3 V
Dalector Silicon Phototransistor
Power Dissipation at 25·C .......................•.........•.......... 150 mW
Derate Linearly from 25·C ......................................... 2.0 mW/·C
Coliector·Emitter Breakdown ............. "................................ 25 V
Emitter·Coliector Breakdown .............................................. 7 V
Coflector·Base Breakdown ........................................•...... 30 V
Coflector-Current (Continuous) ......................................... 100 mA
Package
Total Package Dissipation at 25·C (LED plus Detector) ..................... 260 mW
Derate Linearly from 250C ......................................... 3.5 mW/·C
Storage Temperature ............................................ -55 to + 150·C
Operating Temperature .......................................... -55 to +100·C
Lead Sofdering Time at 260·C ........................................... 10 sac

DESCRIPTION
The H11B1/H11B2/H11B3 are industry
standard optocouplers, conSisting of a GaAs
infrared LED and a silicon photodarlington
transistor. These optocouplers are constructed with a high voltage insulation,
double molded packaging pr09ess which
offers 7.5 KV withstand test capability.

5-28

Electrical Characteristics (Tamb =25°C)
Min
Gallium Arsenide LED
Forward Voltage
HIISI, S2
HllB3
Reverse Current
Junction Capacitance
Phototransistor Detector
SVCEO
SVECO
SVCBO
ICEO
Coupled Characteristics
VCE(SA']DC Current Transfer Ratio
Hl1S1
HIIS2
Hl1S3
Capacitance Input to Output
Withstand Test Voltage
Resistance Input to Output
Switching Times
t.n
toll

Typ

Max

Unit

1.1
1.1

1.5
1.5
10

V
V

50
25
7
30
100

Conditions

pF

IF=IO mA
IF=50 mA
VF=3 V
VF=O V, f= I MHz

V
V
V
nA

Ic= 1.0 mA, tF=O mA
IE=100 pA, IF=O mA
tc= 100 pA, IF=O mA
VcE =10 V, IF=O mA

pA

TYPICAL OPTOELECTRONIC
CHARACTERISTIC CURVES
GsA. EMITTER:
FORWARD CURRENT CHARACTERISTICS

VOLTAGE

160r-,--r--,-r--,-,--,

1 --1-+---1
1401--+-+-+-1+-

;;! 120 I-+--+-t-++-+-+----l
I
...

ii'iII: 100 r--

.-1--++-1---+-+---1

~ 80'--

u

1.0
500
200
100

V

IF= 1 mA, Ic= I mA

%

VcE =5 V,I F=1 mA
VcE =5 V,I F=1 mA
VcE =5 V,I F=1 mA

0/.

%
0.5

7500
5300
100
125
100

pF
VDC
VACRMS
Gil

""""

~ 60r-'+--+---H~+--t-t--4

~ 40 - - --t----j--t---i-+--l
~ 20r--r--t,ft/-+---t--t--4
09

t=1 sec
t=1 sec

V

1.0

1.1 1.2 1.3 1.4 1.5
FORWARD VOLTAGE (VOLTS)

1.6

DARLINGTON
TRANSISTOR CURRENT VS VOLTAGE

RE=IOOIl, VcE =10V,
Ic=10 mA

10 20 30 40 50 60 70 80 90
COLLECTOR VOLTAGE (V)

DARLINGTON
TRANSISTOR OUTPUT
CURRENT VS VOLTAGE
200 r-r-r-r-r-r--r--r--r-"T'"""'I

I I

;{ 180

.s~ 160 Ir-iI

1 ,I 1

I , ' 50,mA"",,":::

..10-"'1
.1f--+

.40mA.·-_l....... t..---:b..!
c -:::loo
w 140 1-+--+--++-jI7""~S>i"......,..-q-+---l
~ 120

~

:=u

I I

V

100
80

j 60
840
u

F

.... aomA

I I I
I--I--HH~-tl, 12~mfI F -l0mAL

'L1F=oi J I I

20

.2 .4 .6 .8 1.01.21.41.61.8 2.0
VeE COLLECTOR VOLTAGE (V)

DARK CURRENT VS
TEMPERATURE

10'~~~~~

110'11/
~
w

a: 102

II:

::l

u

'"
II:

10

i3
~

1

25

50

75

100

125

TEMPERATURE (OC)

HllB1/HllB2JHllB3

5-29

:SIEMENS

H11C4/H11C5/H11C6
PHOTO SCR OPTOCOUPLER
Advance Data Sheet
Package Dimensions in Inches (mm)

'~8

ANODE
CATHODE 2
NC

3

.

GATE

5

ANODE

4

CATHODE

FEATURES

Maximum Ratings

• 400 Volts Blocking Voltage
• llIrn On Current (1FT> 5.0 mA 'lYpical
• Gate 1\igger Current (IGT) - 20pA
'lYplcal.
."
• Gate li'igger Voltage (VGT)- 0.6 Volt
Typical
• 7500 Volt Isolation Voltage
• Surge Anode Current - 5.0 Amp
• Solid State Reliability
• Standard Dip Package
• Underwriters Lab Approval #E52744

Gallium Arsenide LED (Drive Circuit)
Power Dissipation at 25·C ......................................... 100 mW
Derate Linearly from 25·C ..................................... 1.33 mW/OC
Continuous Forward Current ......................................... 60 mA
Peak Reverse Voltage ............................................... S.O V
Peak Forward Current (1 ~. 1% Duty Cycle) ............................. 3.0 A
SCR Detector (Load Circuit)
Power Dissipation (25·C case) ..................................... 1000 mW
Derate Linearly from 25·C ........................................ 13.3 mW/·C
RMS Forward Current ............................................. 300 rnA
Surge Anode Current (10 ms duration) .................................. 5.0 A
Peak Forward Current (100 po, 1% Duty Cycle) ............................ 10 A
Surge Gate Current (5 ms duration) .................................. 200 mA
Reverse Gate Voltage ............................................... S.O V
Anode Voltage (DC or AC Peak) ...................................... 400 V
Coupled
Isolation Voltage (Hl1C4/Hl1C5/Hl1CS) (t = 1 sec.) .................... 7500 VDC
5300 VAC (RMS)
Total Package Power Dissipation ...................................• 400 mW
Derate Linearly from 25· ....................................... 5.3 mW/OC
Operating Temperature Range ...........................•. -55·C to + 100·C
Storage Temperature Range ............................... -55·C to + 150·C
Lead Soldering Time at 2S0·C ....................................... 10 sec

DESCRIPTION
The H11C4, H11C5, H11C6 are optically
coupled SCRs employing a GaAs infrared
emitter and a silicon photo SCR sensor.
Switching can be accomplished while maintaining a high degree of isolation between
triggering and load circuits. It can be used in
SCR triac and solid state relay applications
where high blocking voltages and low input
current sensitivity 'is r!3quired.
The H11C4 and H11C5has a maximum turnon-current of 11 mA. The H11C6 has a maximum of 14 mA.

5-30

Electrical Characteristics
Parameter
Input Diode
Forward Voltage
Reverse Current
Capacitance
Photo-SeR
Forward Leakage
Current (Iel

Min

(Tamb

= 25°C)

Typ

Max

Unit

Test Condftlon

1.2

1.5
10

V
p.A
pF

IF = lOrnA
VR = 3 V
V=O,I=II'Hz

150

p.A

150

p.A

RGK = 10 Kohm, IF = 0
VOM = 400 V
TA = 100·C
RGK = 10 Kohm, IF = 0
VRM = 400 V
TA = l00·C
RGK = 10 Kohm
TA = 100·C
I. - 150 I'A
RGK = 10 Kohm
TA = 100·C
I. = 150 p.A
IT = 300 mA
RGK = 27 Kohm,
VFX = 50. V
VFX = 100 V
RGK = 27 Kohm
RL = 10 Kohm
VFX =100V
RL = 10 Kohm
RGK = 27 Kohm

50

Reverse Leakage
Current (I,,)
Forward Blocking
Voltage (VoMI

400

V

Reverse Blocking
Voltage (Vow

400

V

On-state Voltage (VJ
Holding Current (IH)

1.1

1.3
500

V
I'A

Gate Trigger
Voltage (Vorl

O.S

1.0

V

Gate Trigger
Current (lor!

20

50

I'A

Capacitance
Anode to Gate
Gate 10 Calhode
Coupled
Turn-on Current (1FT)
-HllC4/Hl1C5
-'-HllCS
- HllC4/HllC5
-HllCS
Isolation Voltage
Isolation Resistance
Isolation Capacitance

20
350

pF
pF

V

= 0,1

"1

= II'Hz

a~

so

......

.. J!!

5
7

20
30
11
14

7500
100
2

mA
mA
mA
mA
Voc
G-ohm
pF

SS
CIS

VOM ~ 50V
RGK = 10 Kohm
VOM = l00V
RGK - 27 Kohm
1 second
5300 VAC (RMS)
V;so = 500 V
1=IMHz,V=O

HllC4

5-31

SIEMENS

IL 1/2/5
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches «(T1m)
TOPYIEW
ANODE

,~.

CATHODE 1 ; - ' "
NC

J

BASE

5

COLLECTOR

•

EMtnER

LED CHIP ON PIN 2

PT CHIP ON PIN 5

FEATURES

MaxImum Ratings

• Current Transfer Ratio@ IF = 10 mA
IL1 - 20% Min.
IL2 -100% Min.
IL5 - 50% Min.
• High Collector-Emitter Voltage
IL1 - BVC 0 =50 V
IL2, IL5 - ~VCEO = 70 V
• Field-Effect Stable by TRansparent IOn
Shield (TRIOS)·
• Double Molded Package Offers
Withstand Test Voltage
7500 VACpEAK, 1 sec.
4420 VACRMs ' 1 min.
• UL Approval #E52744
• VDE Approvals 0883/6.80, 080411.83

Emitter
Reverse Voltage ...................................................................................................................6 V
Forward Current ............................................................................................................ 100 rnA
Surge Current ..............................•....•......•............•..........•...........•....•................•.•..••••.•..•.. 2.5 A
Power Dissipation .......................•............•........: ..............•...................•..•.........•••.••.•..•• 200 mW
Derate Linearly' Jrom 25'C ..............•......................................•..••.....,...•.•....••...•.•..... 2.6 mW/'C

DESCRIPTION
The IL 1/2/5 are optically coupled isolated
pairs employing GaAs infrared LEOs and
silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the drive while maintaining a high
degree of electrical isolation between input
and output. The IL 1/2/5 are especially
designed for driving medium-speed logic
and can be used to eliminate troublesome
ground loop and noise problems. These
couplers can be used also to replace relays
and transformers in many digital interface
applications such as CRT modulation.

Detector
Collector-Emitter Reverse Voltage
IL1 ...........•.........................................•...........................................•.....•.....•..•.••.......•.....•.50V
1L2, IL5 ............................................................................................................................70 V
Emitter-Base Reverse Voltage ................•.......... ,...................•.....................•.....•..•..•..•.....•.. 7 V
Collector-Base Reverse Voltage .......••....•.•...............•..•.•.•......•...•.....•.....................•.....••... 70 V
Collector Current .........................•....••....•......•••....••..•.•....•.•...••..................................••.... 50 mA
Collector Current (t<1 ms) •••.••.•....•••...•....•.•••.•..•.••.•••.•...•..•.•..•.•..•.••.........•....••........•.•... 400 mA
Power Dissipation ....•.....•....••.....•....••.•...•...........•..........•............••..•......••.•.....•.....•........ 200 mW
Derate Linearly from 25'0 .....••.....•...•.••...•.•.•..•..•.••....•.••.....•..•••..•.••....•.................... 2.6 mW/'C
Package
Storage Temperature ..•.•..•..•....•....•.•......•....••...••....•.•..........•..•.•....•.....•.•.•••...• -40'C to + 150'C
Operating Temperature ................................................................................. -4O'C to + 1OO'C
Junction Temperature ..................................................................................................... 1OO'C
Soldering Temperature (in a 2 mm
distance from case bottom) .•................•.......•........•....•.•.•.••.•..•.................................... 260·C
Package Power DissipaUcn ............•.••.•.....••.....••...••••............•..•.•......••.....•...............•.. 250 mW
Derate Linearly from 25'C ...............•......•.....•......•....•.••..•.••...•.....•..........•................ 3.3 mW/'C
UL Withstand Test Voltage (PK) (1=1 sec.) .•...•..•....•.....•....•••...•••..••...• 7500 VDC15300 VI>C"",
VDE Isolation Test Voltage
in Accordance with DIN 57883/6.80 ...............,.................•....•.....••.. 5300 VDCI3750 VAC,.,.
Creepage Path ...............................................................•............................•.....•..•.•.•8 min mm
Clearance Path ..•....................................•.....•......•..........•..................................•....•.. 7 min mm
Tracking Index According to VDE 0303 ...................•.•.......................................•......• KB1OO/A
Working Voltage ..•••...•.•.....•......••.....••.•...•....•.....•......•...............•.......•.......•...........• 1700 VAC....
Insulation Resistance .......•.......•......•....•......•............•.................•..•..•...••.••.•..•..••...••...•... 10" n

See Appnote 45, "How to Use Optocoupler
Normalized Curves .•
TRansparent IOn Shield.

5-32

Characteristics

Characteristics (Cont.)
Symbol

Emitter
Forward Voliage
(1,=60 rnA)
Breakdown Vollage
(1.=10pA)
Reverse Currenl
(V.=6V)
Capacllance
(V.=O V. f=l MHz)
Thennal ResiSlance
JuncUon to Lead
Detector
Capacllance
(V..=5 V. f= 1 MHz)
(V..=5V. f=l MHz)
(VER=5 V. f=l MHz)
Collector-Emitter
Leakage Current
(V..=10V)
Collector-Emiller
Saluration Voliage
(1 ..=1 rnA. 1.=20 pAl
Base-Emiller Voltage
(V..=10V.I.=20pA)
DC Forward
Current Gain
(V..= 10 V. 1.=20 pAl
Saturated OC Forward
Current Gain
(V.,.= 0.4 V. '.=20 pAl
Thennal ResiSlance
Junction to Lead
Package Transfar
Characteristics
ILl
Saturated Current
Transfer Ratio
(Collector-Emiller)
(1,= 10 rnA. V.,.=0.4 V)
Currenl Transfer Ratio
(Collector-Emilter)
(1,=10 rnA. V..=10V)
Current Transfer Ratio
(Collector-Base)
(1,=10 rnA. Vce=9.3 V)

Min.

1.25

V,
V,..

Typ.

6

1.65

30
0.01

I.

Max.

V
10

pA

C,

40

R.,...

750

'C/w

C..
Cca
C..

6.8
8.5
11

lceo

5

50

0.25

0.4

200

650

1800

HFE".,

120

400

600

500

CTR..

CTAce

20

80

0.25

Isoletlon and Insulation
Common Mode Rejection
OulputHigh
(V...=50V"".
FI"=1 kn. 1,=0 mAl
Common Mode Rejection
OulpulLow
(V...=50V~••
FI,,=l kn, 1,=10 rnA)
Common Mode
Coupling Capacllance
Package Capacitance
(V,.•=OV. f=l MHz.)
Insulation Rasislance
(V,...=500V)
Oieleclric Leakage Current
(V..=442O AC_.
1 min.• 60Hz)
(V

..
'"
~
..
!

"l!
a

~

i Ta=·55"C

E

~

1.1

1000

0.9

i Ta= 1000C

0.7

.2 '

w

.1

~

10
If· Forward Current· mA

1010-6

100

Maximum LED current versus ambient temperature

::0

60

-'

40

i

10.3

10.2

10.1

10 0

10 I

Maximum LED power dissipation

,
!.~"""""r"""·i""·""
_+;;;;;;;{~~_~L_

80

0

cw

10-4

;

100

E

C
~

!

10.5

t .. LED Pulee Dur.Uon • a

120

«

.......5.t-:~~~~

100

.!

0.8

+ ....

.1 '

Q

..J

i

I

.05 ;

il

1.0

u.

i~, ~i

:

~~~t~1~~ !. . . . .J. ~~

0(

;

1.2

i

~

! :-+---+i-~M---1
1 I""
,~100

. . . . ·I. . . . . . . . . . I. . . . . I. . . . . . . . . ·t. ·. . :·t~

20

!!:

Do

o

-40

·60

·20
20
40
60
Ta • Amblem Temperature· "C

80

250 1--;--1---;;----;;---1--+--+--;

I'"

50

OL-~~~~~~L_~~~~~~

100

-60

Maximum datector power dissipation

·40

·20
0
20
40
60
Ta • Ambient Temperature. OC

80

100

ILl Maximum collactor current versus call actor voltaga

300 ,.---,--.....; -.----r-...,---,--,----,

·t. . ·+. . . . . . . . . . . ,. . . . ,. . . . . . . .

~

250 ......

~

::: ........i........1..................

~.
a.

+·t. .· . . . .

':-++- ---+t--

~o-)I

o L.........:---.i........J........!....o-'--'--'--.l-:
·60 -40 -20
o 20 40 60 60

········..····..··..········i..··..·····....··..····..··· ......···..................
.1

100

.1

Ta • Ambient Temperatura· "C

~

a
11

:.

.11~

I~

Normalization factor for non...aturatad and saturatad CTR
T _1I=25°C versus IF
1.5,--------:'-----.---...."......,
Normalized to:
Vee = 1OV: IF = lOrnA. Ta = 250C
CTRce(sat) Vee = 0.4V
1.0

,

10
Vee· Collector·Emitter Voltage. V

100

Normalization factor for non ....turatad and satur.ted CTR
T...1I=5O°C versus IF
1.5,--------,------,-------,
Normalized
Vee = 10V.: IF = 10mA. Ta = ~5OC

ui:

i

CTRee(sat) Vee = 0.4V

i

.f
!
i

,

0.5 ········_···.. ············f····· .

...,

0.5

I-----..;---:.-?-"'---+----""<::"-;

Z

~

0

0.0

.1

10
IF • LED Current· mA

100

10
IF· LED Currem - mA

100
ILI/2/5

5-35

Normalization factor for non-saturated and saturated CTR

Normalization factor for non-saturated and aaturated CTR
Tn.='00'C versus I"
1.5.------;-----.------,

T1III,=70°C versus .,

1.5.-----...-----...,...----...,

!

tA:

Normalized
Vee = lOV; IF = lOrnA, Ta = 2s'C

~

:.

cTRce(satl Vee = 0.4V
............................
1"..........................1( ........................

1.0

~

Nannallzed

i
l.
~

U

:

!

i,g

.

!

~

0.5 ............................1..............

.

i

z0

.1

10

i:

lOa

0.0

L....-_..........................................................._ _....................

10
IF - LED Currant .. mA

.1

IF - LED Current - mA
Normalized CTR.. versus LED Current

Collector current versus diode forward current
5 Normalized

o SCTRe~
" SCTReb-iTo

~.

.
1

~

a

!

1

0.0

~

j

L..-............................' - -................................._

.............................

1

10
If - LED Current- mA

.1

T.....2S·C

1.0

0.5

0.1

.01

1

Collector current versuB base voltage

101r-_+-_~_-+-~-~~--~-1

8

100

I: :
J

10-1

L. . . .

10 0 r.--t--t--t--t7'/'-t---I

!...........................

WORST CASE

20

102r--~--~----~--~---~-...,

104r--~---r--_r-~r-~~-~
10 3 ............

10

F."",", Cu".nt IF (mA)

Collector-emiller lealeage versus temperatura

~

-- ---

.05

100

105r---r--r--~--,r--~-~

~

/

i

i

0.5

Vee-1OV

§

:!

"'D

1,_10mA

~

·~ ~:!:~~1·?? ....................·

1.0 ...... ....

u

100

10

1.5 r---..-SC--:T--Re-b.,.~-5-----.----.,
...

~_....· T_ _

;

~

~
0.0

f

-

!

I§ 0.5

iii:

Vce=10V;IF=10mA,Ta= 5'C
CTRce(~t\ Vee = ·O.4V
1.0 ·............................i..........·................· ..........·

.

r--....;.'7"''''-+"'7''''-1----1---->---1

r. . . . . . . . . . . .\. . . . . . .

..................

V-'--t--+---t--+--+----l

10-2 L....-.......- ' -......_'---'-.....:..........- - ' ' - - ' ' - - ' -.......- J
-20
a
20
40
60
80
100
Ta - Ambient Temperatura - 'C
Normalization factor for non...aturated and satursted
HFE at Tn ... 2S·C versus I.

C.versuaVfJIE.

10000 ...---,.---,.---,,----,,-----:--r--r-...,
ii:'

S:
cb

.
'"...
..
!!

1000

f;I

u
Ii
~

100

E
w

.!a

'II

.!
U

/""
10
0.0

0.1

0.2

0.3

/

0.4

r

I

1.5 '--N-o-nn-a-nz-e-dto'"'!,....: --------~------,

j

V

I!!
z

;

i

1.0

]

I
z

0.5

~

zW

:

II.

!
0.5

Ib = 2OpA: Vee=10V, T&=25'C

Z

0.6

0.7

0.8

Vbe - Base Emiller Voltage - V

0.0

1

10
100
Ib - Baae Currant - pA

1000

IL 11215

5-36

Normalization factor for non-eaturated and saturated
HFE at T_,,50°C ve!'Susl.

1.5

J
~

Normalization factor for non-ealurated and aalurated
HFE at T_=70°C versusl.
1.5.-----.,.------r-----,

r---==---....,..---=---r------,

J
~

1.0

I. 0.51----i>--~--+--l~-_i

~

:§!

100

......:----_t

0.51-----11-~~--+

II.

ffi

10

iii
II.
:I:

0.0

1000

IL1 propagation delay versus collector load resistor

3.5
3.0

...~

2.5

Ii

I

2.0

10

---+----q 1.5

l

10

100

1000

Ib • Ba•• Cunen! .11A

1L2 propagation delay versus collector load resistor

1000 .....- - - . , - - - - - . , . - - - - . , 4 . 0

100

L-......................................................................................

1

Ib • Base Currant .11A

t

NHFE
Vee-l0V

J

!!: 0.0 L.........................I..-.............................!_.....................~
1

1.0

1 L......--'-"........'--'................"--.......-'ll.0
.1
10
100
RL • Load Reslator· Kn

1000 . . . - - - - - r - - - - - r - - - - , 2 . 5

.

.

!

!

!

~

!

t
c

i.

-i.

l

~

~

.
i~
!

100

Il
c

·=--!----Il.5
tPHL
1 ........................-..1....................................... 1.0
.1
10
100

~

RL· Col1aclDr Load R.II.",r· Kn

IL5 propagation dalay versus collector load reslator
1000

.
100

?-

I. . ·. ·. ·

i..

·. ·. . ·. ·. ·..··..t··......·..·......·.

5:
c

!

c

I
l.
...

125"C. IF. lbmA

VeJ. 5V. Vth a 1:5V

.c

f

2.5
Ta

!

:
:

1.5

a.

t

....

tPHL

:I:

e.

1
.1

10
RL • Collector Load Resistor • Kn

t.

1.0
100

~

IllJ2J5

5-37

ILS/IL9

SIEMENS

PHOTOTRANSISTOR
OPTOCOUPLER

Package Dimensions in Inches (mm).

NO'W·

PrCOLLEClllRIO

LED ANODE 16

/.

Ol9, Il1tONLy)

Pr
7PrEMITJE1l
....

1 LED CAJ1IODE

.,so

lae)

J.t1v
.010
(.254'

FEATURES

Absolute Maximum Ratings

• Minimum Internal Separation of 2.0 mm
between Conductive Parts
• Minimum External Separation of Leads
and Creepage Distance of 13 mm
• Standard DIP Profile on Leads and
Package
• Machine Insertable on PCB
• ILS Is Four Lead Product
• 1L9 is Six Lead with Base Contact
• Underwriters Lab Approval #E52744
• ~ VOE and IEC Approvals 0700,
0883/6.80, 080411.83, 0860/8.86,
IEC601NDE0750, IEC380NDE806/8.81,
IEC435NDE0805

Storage Temperature .............................................. -55 to 100·C
Operating Temperature ............................................ -55 to 100·C
Lead Solder Temperature (1.6 mm from cast for t = 5 sec) ................ '.. '.... 260·C
Isolation Test Voltage In Accordance with DIN57883/6.80 .......... 7070 VAC/l0 K VDC
Creepage Path. . . . . . . . . . . . . . . .
. . . . . . . . . .. . ....................... 13 mm
Clearance Path.. . . . . . .
. .. . . . .. . . . . . . . . . .. .. " ..................... 13 mm
liacklng Index According to VDE 0303 ... '. . . .. ................. . ...... KB100/A
UL Qualified for .................................................... 8000 VRMS

DESCRIPTION
The iLa and IL9 are optically coupled
isolators employing a gallium arsenide
. infrared emitter and a silicon phototransistor.

LED
Forward DC Current .........................
. .................... 60 rnA
Peak Forward Current (1 ~sec pulse. 300 pps) ............................... 3.0 A

~~:~;~~~~:~i~~

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :. . . . . . . . . . . ·. . IO:~~

Derate Linearly from 25·C ......................................... 1.33 mW/·C
Phototranslator
Collector Emitter Voltage ................................................. 30 V
Emitter Base Voltage ...............................................•..... 7 V
Collector Current .................................................... 100 rnA
. Power Dissipation ...................................................300 mW
Derate Linearly from 25·C .......................................... 4.0mW/OC

Electrical Characteristics (25°C unless otherwise noted)
LED
VF(IF = 10 rnA) ................................................... 1.5 V max .
IA(VA = 5V) ..................................................... 10~max.

Phototranalator
BVCEO(lc = 1.0 rnA) ................................................ 30Vmin.
BV EBo (IE = 10 ~A) .................................................. 7 V min.
leEo(VeE = 10V) ................................................. 50nAmax.
Coupled
DCCurrentTransfer Ratio (IF = 10 rnA. VeE = 10 V) ....................... 20% min.
SaturationVoltage·Coliectorto Emitter (IF = 20 mA, Ic = 2 rnA) ............. 0.4 V max.
TON = (Ic = 2 rnA, RE = 100 0, 100 ~ Pulsewidth, 1% Duty Cycle) .......... 14 ~ typo
TOFF = (Ic = 2 rnA, RE = 1000, 100 ~s Pulsewidth, 1% Duty Cycle) .......... 11 ~typ.
Input to Output Resistance at 500 VDC ...... : ............................ 10'0 0

5-38

IL10/lL11

SIEMENS

PHOTOTRANSISTOR
OPTOCOUPLER

Package Dimensions in Inches (mm)

{1L.9,1L110NLY)

NC'W'PrBASE

'"

PTCOllECTOA10

(20071

LED ANODE 16

0,

L '"

(635)

j

j~~

7 PfEMfTTER

I ,

LED CATHODE

,150
(3.8)

'
~

,.635)

'"

(.813)

.010

(2541

.0"

(15.24)

'"

.10 IL-l1 ONLY
(2.541

FEATURES

Absolute Maximum Ratings

• Minimum Internal Separation of 2.0 mm
between Conductive Parts
• Minimum External Separation of Leads
and Creepage Distance of 13 mm
• Standard DIP Profile on Leads and
Package

Storage Temperature. . . . . . . . . . . . . .
. ........... . . ......... -55 to 100°C
Operating Temperature. . . . . . . . . . . .
. ............ .
. -55 to 100°C
... 2BOoC.
Lead Solder Temperature (1.6 mrn from cast for t = 5 sec) .
Isolation Test Voltage in Accordance with DIN57883/B.80 .
. .7070 VAC/10 K VDC
Creepage Path ..
13mm
Clearance Path ..
. ........... 13mm
Tracking Index According to VDE 0303
.... KB100/A
UL Qualified for
.. 8000 VRMS

•
•
•
•

Machine Insertable on PCB
IL10 is Four Lead Product
IL11 is Six Lead with Base Contact
Underwriters Lab Approval #E52744
VDE and IEC Approvals 0700,
0883/6.80, 0804/1.83, 0860/8.86,
IEC601IVDE0750, IEC380IVDE806/8.81,
IEC435IVDE0805

.®

DESCRIPTION
The IL 10 and IL 11 are optically coupled
isolators employing a gallium arsenide
infrared emitter and a silicon phototransistor.

LED
.BOmA
.3:0A
.. 5.0V
.. 100mW
.1.33mW/oC

Forward DC Current
Peak Forward Current (1 ~sec pulse, 300 pps)
Reverse Voltage. .
. ............ .
Power Dissipation
Derate Linearly from 25°C.

Phototranslstor
Collector Emitter Voltage.
Emitter Base Voltage.
Collector Current
Power Dissipation ....
Derate Linearly from 25°C.

.. 30V
.... 7V
. .100mA
.. 300mW
. .4.0mW/oC

Electrical Characteristics (25°C unless otherwise noted)
LED
VF (IF

~

,A(VA

~

10 mAl ..
51/) ....

Phololransislor
BVeEO (Ie ~ 1.0 rnA) .
BV EBo (IE ~ 10 ~A) ..
ho (VeE ~ 10 I/) .

.................. 1.5Vmax.
. ... 1O~A max.
.......... 30Vmin.
. ...... 7Vmin.
. ................... 50 nA max.

Coupled
DC Current Transfer Ratio (I, ~ 10 mA, VCE ~ 10 V) .
. ........ 50% min.
Saturation Voltage·Coliectorto Emitter (I, ~ 20 rnA, Ie ~ 2 rnA)
.... 0.4 V max.
TON ~ (Ie ~ 2mA, RE ~ 1000, 100~sPulsewidth, 1% Duty Cycle)
.... 14~styp.
TOFF ~ (Ie ~ 2 mA, RE ~ 1000, 100 ~s Pulsewidth, 1% Duty Cycle) .
. .. 11 ~s typ.
Input to Output Resistance at 500 VDC ...
. ....................... 10'0

°

5-39

SII:·:ME N'S

IL30/1L31/1L55 SINGLE CHANNEL
ILD30/lLD31/1LD55 DUAL CHANNEL
ILQ30/lLQ31/1LQ55 QUAD CHANNEL
PHOTODARLINGTON
OPTOCOUPLER
Package Dimensions in Inches (mm)
IL30llL3111L55 (Single Channel)

TOP VIEW

ANO",~ ....,

CATHODE 2

15 COLLECTOR

Ntl3

.

4 EMmER

LED CHIP ON PIN 2
PT CHIP ON PIN 5

ILD30llLD3111LD55 (Dual Channel)
TOP VIEW
ANODE

FEATURES
•
•
•
•

125 mA Load Current Rating
Fast Rise Tlme-10 p'S
Fast Fall Time-35 P.s
Current Transfer Ratio
100% Min.
200% Min. (1L31, ILD31, ILQ31 only)

• Solid State Reliability
• Standard Dip Package
• Undernlter Lab Approval #E52744
• ~. VDE Approvals 0883/6.80,

1~8
EMmER
.
7 COLLECTDR

.,

CATtroOE 2

(660)

ANODE 4

CATHODE 3

~

~

6 COlLECTOR

(610)

'L-...-trT.T-,,;r-,-d
"

5 EMfrnR
LED CHIPS ON PINS 2 AND 3
PT CHIPS ON PINS 6 AND 7

ILQ30llLQ3111LQ55 (Quad Channel)

0804/1.83
780,

~------~------~

DESCRIPTION

800

IL30/1L3111L55, ILD30/lLD31/1LD55 and
ILQ30llLQ31/1LQ55 are optically coupled
isolators employing a Gallium Arsenide infrared emitter and a silicon photodarlington
sensor. Switching can be accomplished while
maintaining a high degree of isolation between driving and load circuits, with no
crosstalk between channels. They can be used to replace reed and mercury relays with
advantages of long life, high speed switching
and elimination of magnetic fields.

'"

(330)

The 1130/1131/1L55 are equivalent to
MCA2-30/MCA2-31/MCA2-55.
ILD30/lLD31/1LD55 are designed to reduce
board space requirements in high density
applications.

300

""
'"
5-40

d

,~
l;Y

TYPICAL OPTOELECTRONIC
CHARACTERISTIC CURVES

Maximum Ratings
Gallium Arsenide LED (each channel)
Power Dissipation @25°C.
Derate Linearly from 25°C

GaAs EMITTER:
FORWARD CURRENT CHARACTERISTICS

.75mW

.10mWfoC

Continuous Forward Current ..

. .... 50mA
. .... 3 V

Peak Reverse Voltage ..

ILD30
IL030
150mW

Photodarlington Sensor (Each Channel)
Power Dissipation at 25 DC Ambient

Derate linearly From 25 D C

125 rnA

ILD5S
ILOS5
150mW
2.0 mW/·C
125mA

30V

SSV

2.0 mWf·C

Collector (load) Current
Collector Emitter Breakdown
Voltage (BVCEQ)

160
140 r--

;;
I-

- 55·C to
- SS·C to

r--

~ 100
a:
a:
80 r---

~

20 I- \-.

zw

70

u

50

a:
0

IU
..J
..J

u

Max

Unit

1.25
0.1
50

1.5
10

"A

40

w 30

0

Typ

I

/

Test
Condition

~

1/

Forward Voltage ..

Reverse Current.

30/55

V
1.0

ICEO· .

V
pF

100

nA

Capacitance

Collector.E~itter .

3.4

pF

VCE= lOV

V

10

...... "'"

200

%

IF=10mA
VCE=5V

400

VCEISAD'

0.9

Rise Time .
Fait Time.

10
35

UL Qualif!ed for
Isolation Resistance.
Isolation Capacitance.

200

7500

1.0

V

IC=50mA
IF = 50mA
Vcc= 13.5V
IF = 50mA
Rc=10011

VDe
1012
0.5

I

~

lBO
;:: 160 I-\F
z
w 140

~u

I-

u

w

I

IF=5V~

J40ImA._ii=~
V
I-

120
100
80

0

60
40

~

20

..J
..J

u

IL31.ILD31.ILQ31 only

r-

V,II F = 4mA
l =JmA.A FI ~ ~

V jl l

DARLINGTON
TRANSISTOR OUTPUT
CURRENT VS VOL TAGE

0

400

l

.1 I
IIF - 6 mA

10 20 30 40 50 60 70 80 90
COLLECTOR VOLTAGE IVI

0:

100

III
11/IF-BmA

j

20

IF=20mA
VR=3.0V
VR=O
Ic= 100"A
IF=O
VCE= 10V
IF=O

V

~

I

IF -10mA

J

GaAsEmitter

Capacitance.

1.6

I IF =12mA

a:
a: 60
OJ

.8 mm min.
.7 mmmin.
..7mmmin.
KB100fA

Min

/

1.0
1.1
1.2 1.3 1.4 1.S
FORWARD VOLTAGE (VOLTS)

100
~ 90
~
I- 80

.. 3750 VACf5300 VDC

= 25°C)

V

DARLINGTON
TRANSISTOR CURRENT VS VOLTAGE

.3.3 mWfoC
.. 5.33 mWfoC
... 5.67 mWfoC

Clearance Path ..
Tracking Index According to VDE 0303

Current Transfer Ratio

1
:1

~ 40

sec

.250 mW
.400mW
.. 500mW

IL30f31f55
ILD30f31f55. IL030f31f55.

Coupled Characteristics
Current Transfer Ratio ..

1

~

"

+ 12S·C

a.9

Isolation Test Voltage
.
in Accordance with DIN57BB3f6.BO
Creepage Path

Sensor
BVCEO· .

1

u

+ 100·C
10

IL30flL3111L55 ...
ILD30fILD31fILD55
IL030f1L031fIL055
Derate Linearly from 25°C
IL30fIL31fIL55.
ILD30flLD31flLD55 ..
IL030flL031 flL055 ...

Parameter

}

~

::J

Total Package Power Dissipation @25°C

Electrical Characteristics (Tamb

~

.§. 120

~ 60

Package
Storage Temperature
Operating Temperature
Lead Soldering Time al 260·C

VOLTAGE

I

~11IF==20m~_

~~~

r

IF -10mA

IJ

IF =0

I IJ

.2 .4 .6 .8 1.01.21.4 1.6 1.8 2.0
VeE COLLECTOR VOLTAG.E IV)

DARK CURRENT VS'
TEMPERATURE

ohm
pF

.1EEH~
o

~

50

n

100

1~

TEMPERATURE I·CI

ILfDf03Df31155

5-41

SIEMENS

IL 74 SINGLE CHANNEL
ILD 74 DUAL CHANNEL
ILQ ;74 QUAD CHANNEL
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions In Inches (mm)
IL 74 (Single Channell
,<0
TOP VIEW

rEj

,~.

ANODE
CATHODE l~.

.240

!!lP1

1&60)

·
0

.'L
02.

!!.1!l
(2.031

"'H-~.....

r ...............
'80

oH

I

!L.lli .048 -W'.ln.,r

18J~1 ~~

I-

L'€...
~...jj.

~

NC l '

BASE
COlLECTOR

.EMIITeR

LED CHIP ON PIN 2
PT CHIP ON PIN 5

.130

d

~·::1
ISO

300

~...ff.!
008

/.3051

(S081

.02

02'

(162
TYP

~

15"

ILD 74 (Dual Channell
TOP VIEW

'~' • COLLECTOR
EMITTER

ANOOf
CATHODE

2

CATHODE

3

1

;;:,

ANODE.

6

.

COLLECTOR

s EMmER

LED CHIPS ON PINS 2 AND 3
PT CHIPS ON PINS 6 AND 7

Q

FEATURES
35% typical transfer ratio
0.5 pF coupling capacitance
Industry standard dual-in-line package
Single channel, dual, and quad .
configurations
• Underwriters Lab Approval #E52744
• ~ VDe Approvals 0883/6.80,
0804/1.83
•
•
•
•

.06
..
illJJ-..!L
. ".,,-'
(3'012"

r"ot3.8,)

is'

ILO 74 (Quad Channell
TOP VIEW

'"
~----~----~

...

DESCRIPTION
IL74 is an optically coupled pair employ·
ing a Gallium Arsenide infrared LED and
a silicon NPN phototransistor. Signal information, including a DC level, can be
transmitted by the device while maintaining a high degree of electrical isolation
between input and output. The IL74 is
especially designed for driving mediumspeed logic, where it may be used to
eliminate troublesome ground loop and
noise problems. It can also be used to
replace relays and transformers in many
digital interface appl ications, as well as
analog applications such as CRT modulation. The ILD74 offers two isolated
channels in a single DIP package while the
I LQ74 provides four isolated channels
per package.
.

'30
~

O ".
I
",-dO'

• 7400 Series T2L Compatible

ANODE

1

16

EMITTER

CATHODe

~

15

COLLECTOR

CATHODE

l

I.

COLleCTOR

ANODE

4

IJ

EMITTER

ANODE

~

12

EMITTER

CATHODE

6

n

COLLECTOR

CATHODE

1

10

COllECTOR

9

EMITTER

ANODE a

LED CHIPS ON PINS 2, 3, 6, 7
PT CHIPS ON PINS 10, 11, 14, lS

5-42

Maximum Ratings
Gallium Arsenide LED (Each channel)

Power Dissipation at 25°C ....... , ............ .

.. ..... 150mW
.1.33 mW/oC

Derale Linearly from 25°C. . . . . . . . .

Continuous Forward Current . ......................... , ... . 60 rnA
Peak Reverse Voltage ......

. ........... 3.0 V

Detector-Silicon Phototransistor (Each channel)
Power Dissipation at 25°C ......
. ... 150 mW
Derate Linearly from 25°C ............................. 2.0 mW/oC
Coliector·Emitter Breakdown
Voltage (BVCEO) .......
. .............................. 20 V
Emitter·Base Breakdown
Voltage (BVECO) .......
. ....................... , ....... 5 V
Coliector·Base Breakdown
Voltage (BVeso) ......................................... 70 V
Storage Temperature ............................... -55 to + 150°C
Operating Temperature. . . . .
. ................. -55 to + 100 °C
Lead Soldering Time at 260°C ............................... 10 sec
UL Qualified for .
.. .. . .. .. . .. .
.7500 VDC
Package
Total Package Dissipation
at 25°C Ambient
(LED Plus Detector)
Derate Linearly from 25°C
Isolation Test Voltage in

Accordance with
DIN57883/6.80
Creepage Path
Clearance Path
Tracking Index According
to VDE 0303

IL74

ILD74

ILQ74

200mW
3.3mW/oC

400mW
5.33 mW/oC

500mW
6.67 mWloC

3750 VACI
5300 VDC

3750 VACI
5300 VDC

3750 VACI
5300 VDC

Bmmmin.
7mmmin.

7mm min.
7mm min.

7mmmin.
7mmmin.

KB100/A

KB100/A

KB100/A

eEl

i~

8';

££
oe,

Electrical Characteristics Per Channel (Tamb =25°C)
Parameter

Min

Gallium Arsenide LED
Forward Voltage

Reverse,Current
Capacitance
Phototransistor Detector
BVCEO
leeo
Coliector·Emmitter
Capacitance
Coupled Characteristics
OCCurrent

Transfer Ratio
VSAT
Capacitance,
Input to Output

20

12.5

Typ

Max

Unit

1.3
0.1
100

1.5
100

,.A
pF

IF=20 mA
VR=3.0 V
VR=O

V
nA

Ic=l mA
VcE =5V,IF=0

2.0

pF

VCE=O

35

%

IF=16 mA,
VcE =5 V
Ic=2mA,
IF=16 mA

50
5.0

0.3

500

0.5

V

T.st
Conditions

V

0.5

pF

100

Gil

Resistance,
Input to Output

Switching Times
tON

3.0

~s

toFF

3.0

~

RE=100 D,
VcE =10V
Ic=2mA

IUD/Q74

5-43

IL74 Single Channel
~plcal switching characteristics
Typical switching times
versus load resistance

versus base resistance
(Saturated operation)
'00

~

l

'000

Input
IF = lOrnA
o Pulse Width '" lOOmS
Duty~le = 50%
(sell SWitchlllg time test
schematic 1 and

501(

""

~

'"

500K

a.'

'.4r--------,--------,------,

'00

'.3f------1-----1--:;7""'0--I

a

~~~"C
.'

.2.1.0

If .. SOmA

V
"1/

}

{1.1
~

V

IL74 Single Channel
~plcal output current (lea>
versus Input cunnt

l'jplc.11orwa1d voltage

,,,,,,'

If = 10mA

loadresistance,RL(I(!"I)

versus forward current

~

/--........

,./

If .. 20mA

~

05 ; ; - - -

,

1M

Base·emitterresistance, RBE (Il)

1.2

Tamb '" 25°C

1.0

/

5~

TON

5 1F _10 rnA - - j - - - - - - I
VCE = tOV

.yV

50

il

100K

Normalized to:

_""s

"

'------r-

.0

!

./

O~
5

/

V

collector VOltage

Input
IF" lOrnA
PulSewldlh • lOOmS
Outycycle .. 50%
(see SWitching time test
schematic 2 and

500

"""'rmsl

Collector current versus

",------,--------,

"r

t---

- r-

.0

r-- I'-----

.5

.5

.,

0
25
50
Ambienll~mpernture (OC) •

75

/ ----

,

100

"

20

Forwardcurrenl,lf(mA}

Switching time test schematic and waveforms

Vee = 10 V

~.3K

INPUT]

VOUT

RSE

'-3~~

.3L,

1NP1J10..Jr-~I~

Vee = 10 V

:-~"-:

i"'"l"'

I

VOUT
OUTPUI 0

I

~"~I

I
'II

10% - -

':

5" -"-.

I

t - ~II_;
I-''''..l I
I

I-'~

I.

I I
I I
I

1-"-1
I.

I

90% - - - - -

Switching time test schematic 1

Switching time test schematic 2
IlIP/Q7.

5-44

SIEMENS

IL101B
HIGH SPEED
THREE STATE OPTOCOUPLER
Package Dimensions in Inches (mm)

FEATURES

Maximum Ratings

• High Speed
• Faraday Shielded Photodetector
Improves Common Mode Rejection
• DTlJTTL Compatible, 5 V Supply
• Three State Output Logic for
Multiplexing
• Built-In Schmitt Trigger Avoids
OscJllation
• UL Approval #E52744

Input Diode
Forward DC Current ...................................................................••........................................25 mA
Reverse Voltage ............................................................................•.....•.....•.......................•........ 5 V

DESCRIPTION
IL 101 B is an optically coupled pair with a
Gallium Arsenide Phosphide LED and a
silicon monolithic integrated circuit
including a photodetector. High speed
digital information can be transmitted
while maintaining a high degree of
electrical isolation between input and
output. The 1L101B can be used to
replace pulse transformers in many digital
interface applications. A built-in Schmitt
Trigger provides hysteresis reducing
oscillation possibility.

OutputlC
Supply Voltage (Vee) ............................................................................•..................................... 7 V
Enable Input Voltage (V,)
(not to exceed Vee by more than 500 mV) ..................................••....................................... 5.5 V
Output Collector Current (Ie) •.....•.........•..•.•..•.................•.....•........•.........•..........••......•....••.. 100 mA
Output Collector Power Dissipation ..........................................•.........•....•.....•....•.•............ 100 mW
Output Collector Voltage (Vour) ...•.....................................•................................•......•.•.....•..•...••7 V
Isolation Voltage (Input·Output), DC ................................................................................... 6000 V
Package
Storage Temperature ............................................................................................. 55'C to + 125'C
Operating Temperature ...........................................................................................•. O'C to +70'C
Lead Solder Temperature ................................................................................... 260'C for 10 sec.

Electrical Characteristics (Tamb=O°C to 70°C)
Parameter
I;, (1) - Logic (1)
Input Current for
Logic (0) Output
(Rgure 1)
I. (0) - Logic (0)
Input Current for
Logic (1) Output
(Rgure 1)
Va (1) - Logic (1)
Gate Voltage
VG (0) - Logic (0)
Gate Voltage
Vrur (0) - Logic (0)
Output Voltage

Icc

5-45

Min.

Typ.

Max.

12

Unit

Test Condition

mA

250
2.0

mA
V

.8

V

.35

.6

V

18

22

mA

Vcc=5.5 V, Va=2.4 V, 1,,=12 rnA
IWI (sinking) =16 mA
Vee= 5.5 V, Va =0.5 V
1,,=0.10mA

Switching Characteristics (T. mb=25°C. Vcc=5 V)
Parameter
t",,(1)Propagation
Delay Time to
Logic Level (1)
(Rg. 1. Note 1)

Min.

Typ.

Max.

Unit

Test Condition

OPERATING PROCEDURES AND DEFINITIONS
Logic Convention: The IL 1018 is defined in terms of
positive logic.

175

300

Bypassing: A ceramic capacitor (.01 mF min.) should be
connected from pin 8 to pin 5 to stabilize the switching
amplifier operation. Switching properties may be impaired
by not providing for bypassing.

f\=350 n, C,=15 pF,

ns

1.=12mA

1,,(0)-

Polarities: All voltages are referenced to network ground
(pin 5). Current flowing toward a terminal is considered
positive.

Propagation
Delay Time to
Logic Level (0)
(Rg. t, Note 2)

70

f\ = 350 n, C,=15 pF,

ns

300

Gate input: No external pull-up required for a logic (1).

1.=12mA

t,,-t,(O)output RiseFall Time (10-90%)

15

f\=350 n. C, =15 pF,

ns

TRUTH TABLE (Positive Logic)

I. =12 rnA

Electrical Characteristics (T. mb=25°C)
-Input to Output
Parameter

Min.

Insulation Voltage
Input-Output
(BV,,) (Note 3)

6000

Typ.

Max.

Unit

7500

VDC

Tast Condition

Input'

Enable

Output

1

1

o

o
1

1
0

o

0

off
off

'See definition of terms for
logiC state.

t= 1 sec.

Resistance,
Input-Output
(R.~) (Note 3)

1012

Capacitance
Input-Output
(c,.,) (Note 3)

0.5

0.8

n

V.~= 500 V

pF

f= 1 MHz

Electrical Characteristics (T. mb=25°C)
-Input Diode
Parameter

Min.

Forward Voltage
(V,)
Reverse Breakdown
Voltage (V..)
Capacitance (I.)

FIGURE 1.

INPUT
I..
MONITORING
NODE

Max.

Unit

1.5

1.75

V

1,,=10 rnA

V
pF

1.=10mA
V= 0, f= 1MHz

5
10

Tast Condition

TEST CIRCUIT FOR tpd (0) AND tpd (1)
+5V

PULSE
GENERATOR

Zo = 50n
tR '" 5ns

Typ.

[!
I..

4m~

Vee

I;t.

.!

t,'>.. E;'.~

/!

GNDf.'

'"..!

. +OM
1

BYPASS

RL

cC

OUTPUTVou,
MONITORING
NODE

·C l is approximately 15pF, which includes
probe and stray wiring capacitance.
INPUT
l,n

J

\----

350mV 11," = 7.5mAI
- 3.75mA)

1----------- : ----- 17SmV (l,n

-----o.ttpd(O).--

---It: pd(l)M--

~
~
1___________

e~~PUT

:

: ____ ______

:

VoudO
1.5V

- - - - - - - - - - - Vou , (0)

Notes:
1. The ~,(1) propagation delay is measured from the 3.75 rnA pOint on the
trailing edge of the input pulse to the 1.5 V point on the trailing edge of
the output pulse.
2. The t,..,(0) propagation delay is measured from the 3.75 rnA point on
the input pulse to the 1.5 V point on the leading edge of the output pulse.
3. Pins 2 and 3 are shorted together, and pins 5, 6, 7, and 8 shorted
together.
4. At 10 rnA V, decreases with increasing temperature at the rate of
1.6 mV/'C.
IL101B

5-46

SIEMENS

IL201/1L202/1L203
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)

ANOO'~.
CATHODE

2

NC

3

FEATURES

DESCRIPTION

• High Current Transfer-Ratio
(75%-450%)
• High Collector-Emitter Voltage
BVCEO = 70 V
• Long Term Stability
• Industry Standard Dual-In-Llne
• Min 10% Current-lr.msfer-Ratio
Guaranteed @IF 1 mA
• Underwriters Lab Approval #E52744
• ~ VDE Approvals 0883/6.80.
080411.83

The IL201. IL202, IL203 are optically
coupled pairs employing a Gallium Arsenide
infrared LED and a silicon NPN phototransistor. Signal information. including a DC
level, can be transmitted by the device while
maintaining a high degree of electrical isolation between input and output. The IL201,
IL202, IL203 can be used to replace relays
and transformers in many digital interface
applications, as well as analog applications
such as CRT modulation.

=

Electrical Characteristics (O°C -70"C unless otherwise spacified)
T...

Maximum Ratings
Gallium Arsenide LED
Power Dissipation@2S"C . • . • . . . . . . . . . • . . . • 200 mW
Derate Linearly from 2!i"'C . . • • . . . . . • . . . . . 2.6 mWrC
Continuous Forward Current . . . . . • . • . • . • . .. 100 mA
Peak Reverse Voltage ." . . . • . . . • . • • . • • • • . . 6.0 V
Detector (Silicon Phototransistorl
Power Dissipation@ 2SoC . • • • . • . . . . . . . • • • . • 200 mW
Derate Linearly From 25"C . . • • • • . . • . • • . . • 2.6 mWrC

.

Total Package Dissipation at 2SoC Ambient

Max

1.2
1.0

1.5
1.2
10

Breakdown Voltage VA 6
Photo transistor Detector
HFE
100

21?

Coupled Characteristics
Base CUrrent
Transfer Ratio

(LED Plus Detector) . • • . . . • • . . • • . • . • . • • • • 250 mW

mwrc

Isolation Test Voltage in
Accordance with OIN57883f6.80. ..3750 VAC/5300 VDC
Creepage Path. . • .
. ........ 8 mm min.
Clearance Path. . . .
. ..... 7 mm min.
TraC?king Index According to VDE 0303.
. ..• KB100/A
Storage Temperature . . • . . • . • . . . • • . . . . -55 to +15O"C
Operating Temperature .•.••••.••.•.••• -55 to +100"C
Lead Soldering Time@260oe................. 10 sec
UL Qualified for

TVp

0.1

Unit

Condition

V 'F'" 20mA
V IF=1mA
".A V R "'6V

V

200

TA = 25°C
IR = tapA
VCE '" 5V.

Ie = 100 ",A

Collector-Base Breakdown Voltage (BV eao ) ......... 70 V

Derate Linearlv From 25"C ..••...••.••••• 3.3

Parameter
Min
Gallium Arsenide LEO
Forward Voltage Vp
Forward Voltage VF
Reverse Current
IR

BVceo
BVeco
BV CBO
ICEO

Collector-Emitter Breakdown Voltage (BVCEO) . • . . . • . 30 V
Emitter.collector Breakdown Voltage IBV eco ) • . . . • . • 7 V
P~k~e

~

70

10

10

90

V Ic=IOI"\
50

0.15

(s.t)

DC Current Transfer Ratio (CTR)
IL201
75
tOO
IL202
125
200
IL203
225
300
DC Current Transfer Ratio (CTR)
IL201
10
IL202
30
IL203
50
Input to Output

...................................... 7500 vee

5-47

0.4

IE = 100#A

nA VCE"'10V.
T A = 25°C

"

IF=10mA
V ca- 10V

V

IF'" lamA
Ie -2mA

IOTRJ
VCE

'e-1 mA

7

V
V

150
% IF = 10mA
250
"VCE = 10 V
450 . %
%

"
%

'F-1mA
VeE -10V

BAS'

5

COl.LECTOR

"

EMITTER

l'tplcolswllchlng_
versus baM raalstance
JSaturated .Operali~)

'OOr--------,---,--------r--,

'0011

'nput

,...

I.~---+---+---+----i

i

50

f

10

.......

1luty"",.50110

Y
/

~2""

~,oo

ii 1Of---=!"""-j----j--I

Norm~to:

IF_IOmA
_ _ ·1IIOrnS

"'"
~

_

Collector. current Y8I8U1

collector voItIgo
0

/ ..........

v

V

v

5 If .10mA

/

VeE-'OV
ilrm" 250(;

.---,V-

0.'

Sase-emltter!'8Slstlnce.RBE({I)

t

0.5

r..

5

If .. S.DrM

1D

IF ..

,,

50 '00

'Ar--------,---------,--------,

'00

'.3f--------j---------j----::,..::;'--l

50

,.• f--------j-.

,

f 1.,t-'=--+-----,7'f-~,<---I

/

110

V

}

Lf--------",I...:::------7'l'-------l
"'f--------:::I.4--------j--,--------l

.. ~.,'-------~'--------~IO~-------::'OO

,

RllWllrdcurrent,lFlmA)

/

versUI ambient tamperaturw
1000

V

II

"'"

I
/II

Vcs·IOV

VCE" 5OV---t

lamb" 2S·C

~::~

0

10

50

f/

//I

~I/

,
,

10

l'tplcall••kage cummt

./

1

1.0"'"

VCEM

lJIadraislaRce.RL(KDl

l'tplc.ol output current (leeI
venlUB Input current

~

IF" 10mA

V
,
... /'

,

,··!;;;,O<:;-------;""=--::'OOK=--------::"""=----:!,.

If .. 201M

-20

'00

Il1IUIcunant,IF(mA)

Output cummt

COII_.ummt
........
d _ _ cummt

"".... tempendure
10

I

Normalized to:
IF .. l0mA

VeE-IOV
lamb" 250(;

Normalized to:
".lOrnA

I,

" .'10 rnA

r--

" .I'mA

I

I" ,

-r--.

I

I-

I---

,
-55

-25

0

25

50

', /

---

,

IF. 'IlIA

.0

---

VeE·IOV

lamb .. 25"C

" .120mA

i'---

,

.0

75

,

100

Ambienttemperatu~(·C)

10

"

FoIWIIdamnt.IF(mA)

Switching tlmo _ _ _ end !"""'f<>1'ma

Vee = 10 V

·tf.3K

INPUT]

.

Vour

RSE

Vee

=10V

INPUT:J -z..~RL
-

"FlIT

,.Jr---.-t'~

,-1.-,
i""r

(--"'-,
I--;"..J

1

1

I '

1

VOUT

,.'.,

OIJ1PIJT'
5(i:1
'''' -- ':
... ----

1

I

1
I--~

;~:,

I' 1
1

IIDIIIt - - - - -

Switching time teet _ _ 'e 1

11.201111.2021'1:<03

5-48

SIEMENS

IL205/1L206/1 L207
PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
MODfLNo'

ANOOE'~'NC

CATt«IOE2

711ASE

NC3

6COLL~

NC4

5 EMITTER

..
~
,.

192

.oG4(.1O)

I

JXl8I.201

I

(~
'VP

FEATURES

Maximum Ratings

• Industry Standard SOIC·8
Surface Mountable Package
• Standard Lead Spacing of -OS"
• Available in Tape and Reel Option
(Conforms to EIA Standard RS481A)
• 2500 VRMS, Isolation Voltage
• High Current liansfer Ratios, 3 Groups:
1L205, 40 - 80%
1L206, 63 - 125%
IL207, 100 - 200%
• High BVCEO, 70 V
• Underwriters Lab Approval #E52744
(Code Letter P)
• Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering

Gallium Arsenide LED
Power Dissipation @25°C
Derate Linearly from 25°C ..

Continuous Forward Current
Peak Reverse Voltage ........ .
Detector (Silicon Phototransistor)
..... 150mW
Power DiSSipation @25°C ....... .
Derate Linearly from 250C ......... .
. .2.0mW/oC
Collector· Emitter Breakdown Voltage (BVcEQ) .....
..70V
. .......... 7 V
Emitter-Collector Breakdown Voltage (BVECI») ..
. ...... 70V
Collector-Base Breakdown Voltage (BVcBol ...
Package
Total Package Dissipation at 250C Ambient
(LED Plus Detector) . . . . . . . . . . . . .
. ......................... 250 mW
Derate Linearly from 250C ..
. ........... 3.3 mW/oC
Storage Temperature. . . . . . .
. . . . . . . . . . . . - 55 to + 150°C
Operating Temperature . . . .
. . . . . . - 55 to + 100°C
Soldering Time @260oC .....................•...................... 10 sec
(See Application Note 39 for a detailed report on solderability tests using dual wave.
vapor phase and IR reflow scldering processes.)

Electrical Characteristics (Tamb

DESCRIPTION
1L205/206/207 are optically coupled pairs
employing a GaAs infrared LED and a silicon
NPN phototransistor. Signal information,
including a DC level, can be transmitted by the
device while maintaining a high degree of
electrical isolation between input and output.
The IL205/206/207 come in a standard SOIC-8
small outline package for surface mounting
which makes them ideally suited for high
density applications with limited space. In addition to eliminating through-holes requirements,
this package conforms to standards for surface
mounted devices.

Parameter

= 25°C)

Min

Gallium Arsenide LED
Forward Voltage
Reverse Current
Capacitance

Test
Condition

1\tp

Max

Unit

1.3
.1
100

1.5
100

V
p.A
pF

IF = 60 rnA
VR = 6.0
VR = 0

V
V
nA

Ic = 100 p.A
IE = 100 p.A
VCE = 10 V
IF = 0
VCE = 0

Phototransistor Detector

BVCEO
BVECO
ICEO (dark)
Collector· Emitter Capacitance
Coupled Characteristics
DC Current Transfer
IL20S
IL206
IL207
Collector-Emitter Saturation
Voltage VCE ("')

70
7

10
5

40
63
100

80
125
200
0.4

t""

100
3.0

See Appnote 39 for solderability information.

t"ff

3.0

5-49

50

pF

A specified minimum and maximum CTR allows
a narrow tolerance in the electrical design of the
adjacent circuits. The high BVCEO of 70 V gives
a higher safety margin compared to the industry
standard 30 V.

Capacitance. Input to Output
Breakdown Voltage
Equivalent DC Isolation Voltage
Resistance. Input to Output

t'.....!"E"1

.!:!.9

................ 90mW
. .. 0.BmW/oC
.... . 60mA
. ....... 6.0V

.5
2500
3535

0';'

IF = 10 rnA.
VCE = 10V

V
IF = 10mA.
Ic = 2.0 rnA
pF
VACRMS . t = 1 min.
VDC
GO
Ic=2mA.
~s
RE = 1000.
VCE = 10V

,..

gCi

......

s:§

os!.

: Typical switching characteristics
versus base resistance
t
ted operation)
(Saura

100

"l

Input
IF
= 10 mA
o Pulse width = 100 mS
sCtlematiC1and

V

/'

1Of.-----

f'

..

Duty~le

V

g~~ =h~gS:e test

~

§

I

~

50K
,OO~
Base-emllterresistance, RBE

10K

=50%
(see' SWitching time test
schema~c 2 and
waveforms

100

50

'001(

1

V

/

"

/ "-

V

'p

'0<;
1.0

"

,,'," ,I 1

IF = 10 rnA
Pulse Wldth = 100 mS

500

""'''11.,

Collector current versus
collector voltage

Typical switching times
versus load resistance
1000

01.

0.5

0.9l::::::~-__:J2:::.......---t---1

0·,lo:::::::=--~-------ii'')---""10100
0.1

50

f7
1

I

--

IF

120mA

IF

",1 '0 rnA

j

1000

Jl

;,1

0

//J

0

VCB = toV
lamb ",25"C

VeE =50V--i

~~~: ~~ ~=2

10

~v

1

, "

-20

100

50

f/

III

5

2Q

4(1

ao

60

Ambienttemperalure

I
IF = 'rnA

I
25

to:
" r;:h;rrnallZe{j
If = 10 rnA

1DO

(OC}

-

---

VeE = 10 V
lamb = 25"C

0

r----

o

VCE(V)

Collector current versus
diode forward current

IF ..15mA

-25

I

A

l.npulcurrenl,IFlmA)

Output current
versus temperature

-55

L------"f---------;:"

O1 ,

Typical leakage current
versus ambient temperature

V

/

Fmwardcurrent,IFlmfI.)

01

501 DO

10.

1

0

.1

"v

l)'pical output current (Ica)
versus Input current

1.3L---l-----'--+----::7""'-~

I----

IF = SOmA

'ON

100

lp-

IF" 10mA

Loadre.5lstanCll.RL(lWI

l)'plcal forward voltage
versus forward current

2

IF=2(Jm~

1

(a)

1.4

Normalized 10:
IF = lOrnA
VCE = 10V
Tamb" 25°C

~

V

,

7

~

0.17

r----

-

05

~
01

50 ,

75

100

Amblenllemperature("C)

"

2D

5 Forwardcurrent.IF\mAj

Switching time test schematic and waveforms

Vee = 10 V
INPUT]

~ ~OUT

RBEQ
Switching time test schematic 1

Vee = 10 V

k
'"'": ·*2-)

VO",

Switching time test schematic 2

IL20512061207

5-50

SIEMENS

IL211/1L212/1L213
PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER

Package Dimensions in Inches (mm)
MODElND.

ANOOE.'~''''

CRHODE 2

.016(.41)

1 8ASf:

NC3

6!COI.I.ECRlR

NC4

5 EMITTER

IWECODf

"...~
... v:
.1Z5
13,18)

1l1li

(.201

i= ----I..EADCOPLANARIT

J)l5

*.D015

(1."1

,..,

FEATURES
• Industry Standard SOIC-8
Surface Mountable Package
• Standard Lead Spacing of .05"
• Available In Tape and Reel Option
(Conforms to EIA Standard RS481A)
•. 2500 VRMS, Isolation Voltage
• 20, 50, and 100% min. CTR @I F = 10 mA
• Electrical Specifications Similar to
Standard 6 Pin Coupler
• Underwriters Lab Approval #ES2744
(Code Letter P)
• Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering

DESCRIPTION
IL211/212/213 are optically coupled pairs
employing a GaAs infrared LED and a silicon
NPN phototransistor. Signal information,
including a DC level, can be transmitted by the
device while maintaining a high degree of
electrical isolation between input and output.
The IL211/212/213 come in a standard SOIC-8
small outline package for surface mounting
which makes them ideally suited for high
density applications with limited space. In addition to eliminating through-holes requirements,
this package conforms to standards for surface
mounted devices.
A choice of 20, 50, and 100% minimum CTR
(IL21111L21211L213 respectivelyj at IF = 10 mA
makes them suitable for a variety of different
.applications.
See Appnote 39 for solderability information.

Maximum Ratings
Gallium Arsenide LED
Power Dissipation @25°C ..
Derale Linearly from 25°C

Continuous Forward Current ..

. .............. 90mW
............................. 0.BmW/oC
. ........................ 60mA
. ................. 6.0 V

Peak Reverse Voltage ..
Detector (Silicon Phototransistor)
Power Dissipation @25°C .
. ............................ 150 mW
Derate Linearly from 25°C ...................................... 2.0 mW/oC
Coliector·Emitter Breakdown Voltage (BVcEol ............................. 30 V
Emitter·Coliector Breakdown Voltage (BVECol .............................. 7 V
Coliector·Base Breakdown Voltage (BVcBo)' . . . . . .
.70 V
Package
Total Package Dissipation at 25°C Ambient
. ......................... 250 mW
(LED Plus Detector) . . . . . . . .
................ .
. . 3.3 mW/oC
Derate Linearly from 25°C. . .
Storage Temperature ...................................... - 55 to + 150°C
Operating Temperature. . . . . .
. .................... - 55 to + 100 °C
Soldering Time @260°C ............................................ 10 sec
(See Application Note 39 for a detailed report on solderability tests using dual wave,
vapor phase and IR reflow soldering processes.)

Electrical Characteristics (Tamb = 25°C)
Parameter

Min

Gallium Arsenide LED
Forward Voltage

Reverse Current
Capacitance
Phototransistor Detector
BVCEO
BVECO
lceo (dark)

30
7

Collector-Emitter Capacitance
Coupled Characteristics

Test
Condition

lYP

Max

Unit

1.3
.1
100

1.5
100

V
pA
pF

IF = 10 mA
VR = 6.0

V
V

Ic = 1 pA
IE = 10pA
VCE = 10V
IF = 0
VCE = 0

90
10
5

50

nA

VR

'"

0

2

pF

50
BO
130

%

IF = 10mA,
VCE = 10 V

V

IF = 10 mA,
Ic = 2.0 mA

DC Current Transfer
IL211
IL212
IL213
Coliector·Emitter Saturation
Voltage VCE (,."
Capacitance, Input to Output
Breakdown Voltage
Equivalent DC Isolation Voltage
Resistance, Input to Output
to,
toll

5-51

20
50
100

0.4
.5
2500
3535
100
3.0
3.0

pF
VAC RMS t = 1 min.
VDC'
GO
ps
Ic=2mA,
RE = 1000
pS
VCE = 10V

-InfI----

....

Ty......
(Saturalad operatton)

~"'"
.l
~~.IIJOmS
.. ==:.s:.1Ist

'0>

-

-,.,.

.......

"f-.----

,

1.0

"---

1;':';OmA I I

::=..s:. ...

I

,0>

'ao

,

o

I"

0.5

.. ,

1
5
LoadI'lSislanCe. J\ (1<0)

"

~ k::::::::::::-+----:--:;;of~~
11.f

LO~~~-::---;;:7f___c___:I
.. L::::::::=--.-J,L-----7.'o,---"'1o,OI

/

0

II

17

.....

-,

~

ff

111

Vea_fOV

,

..

10

InpuIcurrenl,lfllllAl

f/
::~~~

Va ... ~:::::;

T.rnb·2SOC
10

5

,

!... _ ......curnn.
m.......ni

,

/

,

FatwlIdCII'feIIf.IFfmA)

-

plQllooIIIge

//

1.2

0.1

,

.01

we...... Input current

.

If. !rI.omA

IF .I.DIM

01

'01

'.3

~

1f.10nIA

"17

TypIC.' OUtpul c.mI.' ~ca)

cunnt

u

-z:::;=

D.'

'ao

,
0.1.

T.rre - 25·C

V

/ .........

V

'[7

"'"

V

'0

..I''V----

.y

~.2ond

~

..

NormalizecllO:
If .10mA
VeE. tOY

V

PulSewidth_lOOmS

TypIQl- '""lOge
versul forward

collector vollOge
10

! ..

"" "."

""

wreuaload ,..lolon.
c

V

/

COllector current ve....

Typlool switching limos

,

,

,01

-zo

r7h'

~

-

ff
--,01

Collector current WI.....
diode furwonl cu......

_'1:

IF. 10 InA
Va·IOV

lamb - 250C
2

I

"

I

.7,.,",

--

-

••1,,",

I

I

I" .,

IF. JIIIII

c--.

.0'
-5S

f.

-25~~re(-c)'

Swl!chlng tim. _

---

Tamb·25"C

•:r,o,",

,

NormaIiadlO:
IF. to rnA
VCE • 1('1 V

r----,. ,0>

IChll1l18tlc end

0

'7

::::::::::=-

.,

O"er

.01

10

zo

-..n.

tf

----~I·~

Vcc=10V

INPUT]

.

INPIl1

I

.3K
VOUT

Rse

Switching _ _ _ motlc I

D~~","_II

j'jl,
....,

,

Switching tim. teo..._otle 2

t-'--;

t-... ..l ,

, t-~
I

OUTP1Jl':"~_~::
... ---- , ~r~<~:
------ , --- ...
1L21112121213

5_52

·SIEMENS

IL215/1L216/1L217
PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER

Package Dimensions in Inches (mm)
MO!)ELNo.

ANODE1~'NC

CATHODE 2

.D16(.41)

7 BASE

NC3

6 OOlLECIOR

NC4

5 EMlmR

OOECODE

~7Ltf
L[ADCOPlANARIT

.D45

:!:.Q015
(.64)

(1.141

tOLERAt«:E.OO5(Unle$!lolllelM5ls~ihed)

FEATURES

Maximum Ratings

• Industry Standard SOIC-8
Surface Mountable Package
• Standard Lead Spacing of .05"
• Available in Tape and Reel Option
(Conforms to EIA Standard RS481A)
• 2500 VRMS, Isolation Voltage
• Low Input Current Required
• 20, 50, 100% CTR @IF = 1 mA
• Electrical Specifications Similar to
Standard 6 Pin Couplers
• Underwriters Lab Approval #E52744
(Code Letter P)
• Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering

Gallium Arsenide LED
Power Dissipation @25°C , .
Derate Linearly from 25°C ..

.........................
.. .. 90mW
...................... 0.8 mW/'C
.60mA
..... 6.0 V

Continuous Forward Current
Peak Reverse Voltage.
Detector (Silicon Phototransistor)
Power Dissipation @25'C .. .
.............. 150mW
Derate Linearly from 2500 .... .
. ... 2.0 mW/OC
Collector-Emitter Breakdown Voltage (BVCEO)
... 30V
Emitter-Collector Breakdown Voltage (BV,co) ..
................... 7 V
Collector-Base Breakdown Voltage (BVC80) .....
.. .... 70V
Package
Total Package Dissipation at 2500 Ambient
(LED Plus Detector)
.................... 250 mW
Derate Linearly from 2500 ................
. ...... 3.3 mW/'C
Storage Temperature. . .
. .......... - 55 to + 150 'C
Operating Temperature
........... -55 to + 100 'C
Soldering Time @260'C .......
. .......... 10 sec
(See Application Note 39 for a detailed report on solderability tests using dual wave,
vapor phase and IR reflow soldering processes.)

Electrical Characteristics (Tamb = 25°C)

DESCRIPTION
IL215/216/217 are optically coupled pairs
employing a GaAs infrared LED and a silicon
NPN phototransistor. Signal information,
including a DC level, can be transmitted by the
device while maintaining a high degree of
electrical isolation between input and output.
The IL215/216/217 come in a standard SOIC-8
small outline package for surface mounting
which makes them ideally suited for high
density applications with limited space. In addition to eliminating through-holes requirements,
this package conforms to standards for surface
mounted devices.
The high CTR at low input current is designed
for low power consumption requirements such
as CMOS microprocessor interfaces.
See Appnote 39 for solderability information.

Parameter

Min

Gallium Arsenide LED
Forward Voltage
Reverse Current

Capacitance
Phototransistor Detector
BVc,o
BVECO
ICEO (dark)
Collector-Emitter Capacitance
Coupled Characteristics
DC Current Transfer
IL215
IL216
IL217
Collector-Emitter Saturation
Voltage VCE ("'Q
Capacitance, Input to Output
Breakdown Voltage
Equivalent DC Isolation Voltage

Typ

.1
100
30
7

20
50
100

90
10
5

V
pi<
pF

50

V
V
nA

IF ~ 1 mA
VR ~ 6.0
VR ~ 0
Ic ~ 1 mA
IE ~ 10~A
VCE ~ 5 V
IF ~ 0
VCE ~ 0

pF

50
80
130

%

IF ~ 1 mA,
Vc, ~ 5 V

V

IF ~ 1 mA,
Ic ~ 0.1 mA

.35
.5
2500
3535

too
t,.

3.0

5-53

1.3
100

Test
Condition

Unit

2

100
3.0

Resistance, Input to Output

Max

.4

pF
VAC RMS
VDC
Gil
~s
~s

t

~

1 min.

Ic ~ 2 mA,
RE ~ 10011
Vc, ~ 10 V

.. b a l _ I n g .........r1I1I..
wrwl baM mI....nee ,

.1_ . .

,.,. ......

~pl..llWllchlng

(Saturated operallOn) •

IM::::::~~-r------r-~

SIlO

-

1luIy~s:.

:;

f.~--l--+--Ii

10

'p
1.0,,*

I

1M

~pl..1"'....111 vOltage

1.2

f I.IL=::::::::-~~-:__71~7.......__,

J L~--*~_:;:7f_--~1
1.•

••
•.• k::::::=---!,------;lIO'---1ciIM

1

I

!

\0

VcE·IOV

lamb - 25-C

f--

I

~1ce1I.akoge

-lS

cUmlnl

versul ambient ternpemure

/v

/

V

1000

-'-

... LL-l--f--t--t/711

Vea _lOV
lamb .. ZS"C

.

50

I M'

III cur rent

..I

-----1

'"""

" .. 'IlIA

.01

YaM

COllector
dl.... _ current versus

r-----

I

.1

1

ID

•];'mA
" ."mA

I Ip

-55

V

'[7

Output CUmlnt
venue temperature
NDnnalzed to:

.OIL'-----!-.-----.IO

501

Input current

50

".•.• mA

!.,L----i--,-,-.-,.•-",,-

'ON

FoIwarocurrent,1F(1IIA1

IF .10mA

I'" ~

~p1..1 output cUmlnl (Iool

u,L------+-------r~~~

I"

/ ..........

IF .. 20 rnA

______ ----: • 10 mA

I" V-

1M

0.1

rlntl .. 25"C

/

\0

V81'8UI

I.'

I

LV

...

'.1

YenlU. forwIn:I curntnl

~

Normalized to:

5tt; ~O,:re=--l-----,

V

V

~u.

10 :::::-..:::....:.-.::.----,

""'" 1. 100 ImS

~'~"=

=....2111d

,IO,L-__~~~~----II~

Collector current
coil_voltage

11m..

lIenOl

f

NonnaIizedIO:
IF .10mA
Vee .IOV
Tamb I I 25°C

---'7
•

•.17

r----.
t----..
50

75

IM

"'r---

J

.01

"

10
SFoIwanItuttenI,IFlrMJ

Switching time tnt schematic and waveforms

Vee -10V

"M] J!~..
~EQ

'- ..

Swllchlng lIme ...IIChe_c 1

Swllchlng lime _

_Ie

..

2

IL21512161217

5-54

SIEMENS

IL221/1L222/1L223
PHOTODARLINGTON
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
MODEL NO.

"OOE'S'"

CATHOOE2

.D161.411

7&.5£

NC3

6COl.lEC'IDR

NC4'

5 ENlnER

OOECODE

JXlO

12.
Lq..,",===

r

FEATURES

Maximum Ratings

• Industry Standard SOIC·8
Surface Mountable Package
• Standard Lead Spacing of .05"
• Available in Tape and Reel Option
(Conforms to EIA Standard RS481A)
• 2500 VRMS, Withstand Test Voltage
;, High Current Transfer Ratios
@ IF=1 mA: IL221 -100% Min.
IL222 - 200% Min.
IL223 - 500% Min.
• Electrical Specifications Similar to
Standard 6 Pin Couplers
• Underwriters Lab Approval #E52744
(Code Letter P)
• Compatible with Dual Wave, Vapor
Phase and IR Reflow Soldering

Gallium Arsenide LED
Power Dissipation at 25°C.
Derate Linearly from 2SoC ..
Continuous Forward Current
Peak Reverse Voltage ..

...

LEUCOPl.NWUT

11.141

:t.oo'5

""

lOLERANCE ..OO5{Unlcss~n.rwlSesPCClfiedl

. ..... 90mW
. .O.B mW/oC
... 60mA
... 6.0 V

Detector (Silicon Phototransistor)
IS0mW
Power Dissipation at 25°C ... .
. .... 2.0mW/oC
Derate Linearly from 25°C .... .
Coliector·Emiller Breakdown Voltage (BVcEo) ..
.. ... 30V
. ...... 5V
Emitter·Coliector Breakdown Voltage (BVECO)..
Package
Total Package Dissipation at 2SoC Ambient
(LED Plus Detector) ...
.............
. ...... 2S0 mW
Derate Linearly from 2S °C .
. ................. 3.3 mW/oC
Storage Temperature. . .
. .-SSto + ISOoC
Operating Temperature. . . . .
. ................. -55 to + 100°C
Soldering Time at 260°C ....
. ................... 10 sec
(See Application Note 39 for a detailed report on solderability tests using dual wave,
vapor phase and IR reflow soldering processes.)

Electrical Characteristics (Tamb = 25°C)

DESCRIPTION
The IL221 1222/223 family of devices are
high current transfer ratio (CTR) optocouplers. They employ a GaAs infrared LED
emitter and a silicon NPN photodarlington
transistor detector.
These devices are offered with CTRs tested
at an LED current of 1 mA. This low drive
current permits easy interfacing from CMOS
to LSTIL or TIL.
These optocouplers are constructed in a
standard SOIC·S foot print. This package
makes them ideally suited for high density
applications. In addition to eliminating
through-hole requirements, this package
conforms to standards for surface mounted
devices.

Parameter

Min

Typ

Gallium Arsenide LED
Forward Voltage

Reverse Current
Capacitance
Photodarlington Transistor
BVCEO
BVECO

0.1
100

Max

Unit

1.3
100

IJA

VR~6.0

pF

VF~O

30
5

ICEO

SO

Collector-Emitter Capacitance
3.4
Coupled Characteristics
DC Current Transfer Ratio @ IF ~ 1 mA
IL221
100
IL222
200
IL223
SOO

Collector-Emitter Saturation
Voltage VeE (sal)
Capacitance, Input to Output
Withstand Test Vollage
Resistance Input to Output

5-55

0.5
2500
100

Test Conditions
IF~1

V

V
pF
VAC RMS
GQ

V,

F~

1 MHz

Ic~1001JA

V
V
nA
pF

0/0
%
%

mA

IE~100

IJA

VCE~S V, IF~O A
VCE~10

}

V

IF~1.0 mA, VCE~S V
IF~1 mA, ICE~O.S mA

1=1 min.

Peak LED current versus duty factor, Tau

Forward voltage versus forward current

l0000~--~--~---r--~--~--~~-,

1.4

>,

.01
.02
.05

1.1

~

i

0.9

&!!

.st--=~~~~

100

i: Ta = 100"C

OF _ /I

!
!

.1.
.2

1.0

:;

..............................:"..........................................................

0.8

:
:
:

0.7
.1

10

100

1010-6

If - Forward CUrrent - mA

10-S

10-4

10-3

10-2

10-1

10 0

10 1

t- LED Pul.e Duration -.

Normalized CTR.. versus IF

Normalized CTR.. versus LED current
100~_G_-·--T~a---~-~--c'i----------~------~~

3r---------,----------r--------~
-G- Ta = -2O"C
Normalized 10:
..... Ta=2S"C
II=1mA,Ta=2S"C
Vcb= 101{

i

i 2. .: . .~::7~.;. . . . . . . . . . . . . . . ..l..,,~~~01!I.

.... Ta=2S"C
. . Ta=SO"C i

eB

....

Ta-7~C

i

10~--------~----~~_+---------;

U

I

~ormalized 10:

II = lmA,Vi:e = sv

]

1

~

+8=2S"C

~

..

o~~~~~~~~~.u~--~~

.1

10
If - LED Current - mA

~

.1

100

.1

2000

..

_G_ Ta=-20"C
Ta=25"C
Ta= 5O"C
Ta _70"C

~

J!

....,

......:;;J....;~.:=;;;::;;. . . . .

.0u

+i

2

10
If - LED Current - mA

1000

,
:I

e

I

.1

....I!!

e
~
U

Ta =2S"C

--i Ta - 5O"C
+i Ta=70"C
i
0.00

a:•

1SOD

Ic

!
!

O.OS

100

CTR versus LED current

r---------,---------.,-----------,

.0

10

If - LED Current - mA

CTR.. versus LED currant
0.10

b

-nt

.OOS'

i

.!!

~ " iE--i

Duly aclDr

1.3

100

....
....

Vea= 10V

500

0
.1

10

100

If - LED Current - mA

11.221f213

5-56

Collector CURllnl YBt1IUB LED· CURllnt

PholocuRllnt vet1lus LED currant

1000 , . - - - - - - - - . - - - - . . . . , . . - - - - . . ,
-a- Ta -20"C
... Ta=25'C
Vce-10V
c
. . Ta- SO"C
E
-0- Ta =70'C .
C 100

100

.

1-

~

C
~

.

I

:I

U

if
.a
1!
Do.

I

I=a

.

•••••••••••••••••••••••••••••••••••••••••••••••••••••• o.

j

u

1
.1

10
If - LED Currant - mA

!
!

I

...................................
!

.a

.1!

I

!

10

-G-Icb-!oc
... Icb2~"C
... Icbsil"C
-0- Icb 7j)"C

100

10
H - LED Currant- mA

100

Normalized I"" vat1lus I,

1000r---------r---------r--------..,

Ta=-20~

-G... Ta=25oQ

100 L-"::l...
a:-..,f,;a-::=~50:?I"Q"*·- - - -0- Ta =70"Ci

i:

10
H - LED Current- mA

100

1L221/2/3

5-57

SIEMENS

IL250/251/252
DUAL CHANNEL ILD250/251/252
SINGLE CHANNEL

BIDIRECTIONAL INPUT
OPTOCOUPLERS
Package Dimensions in Inches (mm)
SINGLE CHANNEL

AnodoQdllolo~_, CoIIIcmr
Boa
•
5

CllhDdI AnDdI 2

Nt 1

......

4

Bnmer

DUAL CHANNEL

Anodo.l:alhod"~,1• CaI\ecIor
EmHt",

FEATURES

CilhodlfAnod, 2

• AC or Polarity Insensitlva Inputs
• Selected Current Transfer Ratios
(20%,50%,100% Min.)
• Industry Standard Dual-ln-L1ne
• Built-In Reverse Polarity
Input Protection
• Improved CTR Symmetry
• Underwriters Lab Approval #E52744
• & VDE Approvals 0883/6.80,
@0804/1.83-IL250/251/252 only

Anod~lh~e

I

CllhodafAnode

4

• Collector
.

'DO

'"
Maximum Ratings

The IUILD250 has a minimum eTR of 50%,
the IUILD251 has a minimum eTR of 20%.
and the IUILD252 has a minimum eTR
of 100%.
The IL250/1/2 are single channel optocouplers. The ILD250/112 has two isolated
channels in a single DIP package.
They are designed for applications requiring
detection or monitoring of Ae signals.

EmIIIer

(2S4t

DESCRIPTION
The IUILD250/251/252 are bidirectional
input optically coupled isolators. They consist
of two gallium arsenide infrared emitting
diodes coupled to a silicon NPN phototransistor per channel.

i

Gallium Arsenide LED (Each channel)
Power Dissipation at 25'C
Derate Linearly from 25'C
Continuous Forward Current
Peak Reverse Vonage

1L250/112

ILD250/1/2

200 mW
2,6 mW/'C
100 rnA

1.2mW/'C

UL W~hstand Test Voltage (PK}
(t=1 sec)
VDE Isolation Test Voltage in
Accordance w~h DIN57883/S.80
Creepage Path
Clearance Path
Tracking Index According to
VDE 0303
Storage Temperature
Operating Temperature
Lead Soldering Time at 2S0

5-58

'c

90mW
SOmA
3.0V

Detector-Silicon Phototransistor (Each channel)
Power Dissipation at 25'C
200 mW
Derate Linearly from 25'C
2.S mW/'C
Collector-Emitter Breakdown
Voltage (BVCEol
Emitter·Base Breakdown
Voltage (BVEcol
Coliector·Base Breakdown
Voltage (BVC80)
Package
Tolal Package Dissipation at 25'C
Ambient (LED Plus Detector)
Derate Linearly from 25'C

1L2501112
ILD250/112

150mW

2.0 mW/'C
30V
5V
70V

250mW

400mW

3.3 mW/'C

5.3 mW/'C
7500 VDCI
5300 VACRMS
3750 VACI
5300 VDC

Smmmin.
7mmmin.
KB100/A
-55 to + 150'C
-55 to + l00'C
10 sec

Electrical Characteristics (Tamb =25°C)
Parameter

Min

Gallium Arsenide LED
Forward Voltage VF
Phototransistor Detector
BVCEO
BV,co
BVCBO

30
7
70

Typ

Max

1.2

1.5

V

50

V
V
V
nA

0.4

V

50
10
90
5

leeo
Coupled Characteristics
VCE(sat)

Unit

Test
Condition
IF~

±10 mA

Ic~1

mA

Ic~ 100 !~

I

5
I

.0 5

o

.0 I
.005

~

.00 I

"

:a

8

9 10

COLLECTOA·EMITTEAVQLTAGE - VCEO (V)

/

"~

~ 10-8
~
9
~

I

INPUT CURRENT - IF (mAl

"

~10-1 0

/

~ 10- 11

,/

10-1

-50 -25

Symmetry characteristics

--"

0
NORMALIZED TO:
Vee = 10 VOLTS
IF = 10mA

I

"i=
"~

I

Z

V

10-

~ lO-

;/

I

a ,
~

V

\1'Otlll I
IIII II

.000 .1.2 .5 1 2 510 50 100

>-

/

NORMALIZED TO:
Vee = 10 VOLTS

1

<.0005

Dark current va. temperatura

l-~iA

1-1-

.51

_~

COLLECTOR·EMITTER VOLTAGE - VeE (V)

Output characteristics

~

~

=1

0

I"

VCE"'0VOLT~

.1~+tI,4=t=::jJI=~'f':'~2~.0;mA~
~ .05
~ r- --.. ,~ 1.0~A
g
.Olf-:=~rtt~t=:t=~~'f~"~0:':.5m4A~
~ .005r-

-5
-2.0 -1.0
0
1.0
2.0
INPUT VOLTAGE - VF IV)

I

NORMALIZED TO:

1 IF = 10mA

::

I
~

'g

~

40

-"I

~

Output vs. Input current

Transfer characteristics

Input characteristics

,[J"oJ

~~ '" -;;O~AI.

ff

10-

::;

a

25

so

75

CASE TEMPERATURE (OC)

100

""~

3

10-.01

.05.1

.5 1

5 10

50100

COLLEC10R·EMITTER VOLTAGE - VeE IVI

IUILD2501251/252

5-59

IL256

SIEMENS

AC INPUT PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
1IlDEl. ....

. . 'H·.

r.mra: 2

~
I

.IDI(.2O)r='1:

11XIll£aUR

Me.

SEMITTEJI

''i.~
... ,...,'J!
...
L
.

~

.004(.101

7 MSE

Me3

'"

1.2IIJ

r

I

11'111

-----

...

""'''''''''''''
~:s

".M)

FEATURES

Maximum Ratings

• Industry Standard SOIC-8
Surface Mountable Package
• Standard Lead Spacing of .05"
• Available in Tape and Reel Option
(Conforms to EIA Standard RS481A)
• Bidirectional AC Input
• Guaranteed CTR Symmetry of
2:1 Maximum

Gallium Arsenide LED
Power Dissipation at 25°C. . . .
. ............................... 90 mW
Derate Linearly from 25°C ......................................... 0.8 mW'·C
Continuous Forward Current ........................................... 60 mA

DESCRIPTION
The IL256 is an AC input phototransistor
optocoupler. The device consists of two
infrared emitters connected in anti-parallel
and coupled to a silicon NPN phototransistor
detector.
These circuit elements are constructed with a
standard SOIC-8 foot print. Soldering and
assembly with this optocoupler is covered in
detail in Appnote 39.
The product is well suited for telecom
application such as ring detection or off/on
hook status, given its bidirectional LED input
and guaranteed current transfer ratio CTR of
20% at IF= 10 mA.

Detector (Silicon Phototransistor)
Powsr Dissipation at 25°C ............................................ 150 mW
Derate Linearly from 25·C ......................................... 2.0 mW'·C
Collector-Emitter Breakdown Voltage (BVCEa> ................................ 30 V
Emitter-Base Breakdown Voltage (BVEool ..•................................. 5V
Collector-Base Breakdown Voltage (BVCBa> ................................. 70 V
Package
Total Package Dissipation at 25°C Ambient
(LED Plus Detector) ................. .. .
. ........................ 240 mW
Derate Linearly·from 25·C ......................................... 3.1 mW'·C
Storage Temperature ............................................. -55 to + 150·C
Operating Temperature .......................................... -55 to + 100·C

Electrical Characteristics (Tamb=25°C)
Parameter
Gallium Arsenide LED
Forward Voltage VF
Phototransistor Detector
BVeEo
BVECO
BVCBO
ICEO
Coupled Characteristics

Min

30
5
70

Typ

Max

1.2

1.5

50
10
90
5

VCE(sat)

DC CUrrent Transfer
Ratio (CTR)
Symmetry
CTR@ +10mA
CTR@-10mA
Input to Output Withstand Test
Voltage

5-60

2500

1.0

Test Condltlona

V

IF= ±to mA

V

le=l.mA
Ic ·l00 fAA
le· 100 fAA

50

V
V
nA

0.4

V

IF. ±IS mA.lc=2 mA

%

IF-±10mA, VcE -l0V

20
0.5

Unit

VCE~10

V

2.0

VACRMS t - 1 min.

Forward voltage versus forward cunant

Peak LED cunant versus duty lactor, Tau

1.4...------,------,-------,
;
;
1.3 ....................·...... ;:~·~·:55::c

·!..

j

>
~

i

~

>

tOOOO~-,---r--,--~-~--r---,

........·i"................

c

;

1.2 ........................... ';" .......

E

1.1
1.0
0.9 1-----o:::;*"""'-----1,c------I

. . . . . . . . . . . . . .!. . . . . . . . . . . . . . ,;. . . . . . . . . . . . . ..

O.S

0.7

.1

10

100

II- Forward Currant - rnA

t - LED Pulaa Duration· •

Normalized CTR versus I. and TR'

Normalized saturated CTR

2.0

1.0

-a-

~

i

~

Z

;

....± .. .TJ."~~C;...............~~.::.~.~.~~i.~~.~.~.?~.........

1.5

..............

Nonnallzed to :
T. . 25'C

..... T•• 70'C
...... T. . loo'C

O.S

Ta='25'C

1.0

T8=25'C

Vce(s~t)

=0.4V

......

~

0.6

i".._

0.4 1-----+~&5,<:--+--~1I-f

a

Z

0.5

0.2

1---""",,~1F----

0.0
.1

10

100

1

Normalized CTR",

1000

,

;
;

Nonnalized to:

i

11=10mA, T:"'25'C

'1,

1.0

............................·............................1..................

100

1:

~

"
u

S

;

Zo

!
10

25'0
.... 70'0

0

...'"

0.51-----;o"l'-"""~--+-----I

-a- 25'0

;,

.... 50'0
..... 70'0
0.0 L..................................._
.1

100

Photocunant versus LED cllrrenl

1.5...-----,-----""T'"-----,

~

·10

If - LED CUnant - rnA

1'- LED Cunant - rnA

.!!

........................ul---'.......................J

10

.1

100

10

.1

II- LED Currant -mA

Normalized HFE versus I., Tu'

Base current versus I. and HFE
700

1.2

100

i

100

II- LED Current - rnA

~

10 C

:I:

i!

~~
u

".!l!

ii

"~

z0

E

j

~
II!

CD

...............

r--

O.B

0.6

0.4

.1
1000

-m.

.........-a-

Ii

:I:

'"

1.0

......

......

1

NHF -20'0

NHF 25'0
NHF 50'0
NHF 70'C

10

100

1000

Ib - Base Current -11-'

Ib • B... Current -1lA

5-61

IL256

Base emllter voltage veraus base.curnnt

Normalized saturated HFE versus '.

,

1.5
Normalized to:
HFE

UI

Ii.

:.:

i

at Vee =10V,ICb =10jIA

Ta=25OC

100

i

'1

............. ·························:o:f··Tii·;;·:2U·C·······

i

I!I---........~,

i!

..j.

1i

I

.1

:!!

.01

.

ID

~

0.0
1

10
100
lb· Base Currant· t1A

. . . . . . ,. . .;. .;. ~~.:.~~::.H=. . . . . . .

B

~Ta=70OC
i

0.5

10

I

Ta=25'C

~ Ta=50'C

en"

I

1000r-~---.----~-.~~--~-----'

/

/

!

···"/·········································1········............

.001

1000

0.4

0.5

0.6

0.7

0.8

Vbe· Base Emitter Valtage· V

11256

5-62

SIEMENS

IL400
PHOTO SCR OPTOCOUPLER
Advance Data Sheet
Package Dimensions in Inches (mm)

ANODE

,~. Q,,..

CATHOOE 2
NC

FEATURES
•
•
•
•
•
•
•
•
•

400 Volts Blocking Voltage
liIrn On Current (1ft) 5.0 rnA lYpical
Gate Trigger Current (IGT) - 20,..A
Gate Trigger Voltage (tGT) - 0.6 Volt
7500 Volt Isolation Voltage
Surge Anode Current -1.0 Amp
Solid State Reliability
Standard Dip Package
Underwriters Lab Approval #E52744

DESCRIPTION
The IL400 is an optically coupled SeR
employing a GaAs infrared emitter and a
silicon photo SeR sensor. Switching can be
accomplished while maintaining a high
degree of isolation between triggering and
load circuits. It can be used in SeR triac and
solid state relay applications where high
blocking voltages and low input current
sensitivity is required.

3

5

ANODE

4

CATHODE

Gallium Arsenide LED (Drive Circuit)
Power Dissipation at 2S·C .
. .... 100 mW
Derate Linearly from 2S·C ..................................... 1.0S mW/·C
Continuous Forward Current. . .. . . . . . . .. . . . .
. ..................... 60 mA
Peak Reverse Voltage . . . . . . . . .. . . . . . .. . . . . .. . .
.6.0 V
Peak Forward Current (100 1'5. 1% Duty Cycle) . . . . . . . . . . . . . .
. .... 1.0 A
SCR Detector (Load Circuit)
Power Dissipation at 2S·C ambient .......... .
.... 2oomW
Derate Linearly from 2S·C . . . . . . .
.
...... 2.11 mW/·C
Anode Current. ..................................... .
. .... 100mA
Surge Anode Current (S ms duration) .... .
.. ....... 1.0A
Surge Gate Current (S ms duration) ................... .
. ......... 200 mA
Reverse Gate Voltage ........ .
...6.0V
Anode Voltage (DC or AC Peak) .................. .
. .......... 400 V
Coupled
Isolation Voltage ............................... .
. .. 6000 VDC
Total Package Power Dissipation ......... .
. ... 2S0 mW
Derate Linearly from 2S· ................ .
. ....... 2.63 mW/·C
Operating.Temperature Range ........... .
. ... -SS·C to + 100·C
Storage Temperature Range ........................ . . ... -55·C to +1S0·C

Electrical Characteristics (Tamb = 25 ·e)
Parameter
Input Diode
Forward Voltage
Reverse Voltage
Reverse Current
Photo -SCR
Forward Leakage
Current (loJ
Reverse Leakage
Current (IR)
Forward Blocking
Voltage (VOM)

- Min

-Typ

Max

Unit

Test Condition

1.2

1.S
10

V
V
I'A

IF ~ 20 mA
IR ~ 10~
VR ~ SV

0.2

2.0

I'A

0.2

2.0

JIoA

RGK ~ 27 Kohm. IF ~ 0
VRX ~ 400 V. TA ~ 2S·C
RGK ~ 27 Kohm. IF ~ 0
VRX ~ 400 V. TA ~ 2S·C
RGK ~ 10 Kohm
TA ~ 100·C
Id ~ 1S0JloA
RGK ~ 10 Kohm
TA ~ 100·C
Id ~ 1S0 JIoA
IT ~ 100mA
RGK ~ 27 Kohm,
VFX ~ SO V
VFX ~ 100 V
RGK ~ 27 Kohm
RL ~ 10 Kohm
VFX ~ 100 V
RL ~ 10 Kohm
RGK ~ 27 Kohm

400

V

Reverse Blocking
Voltage (VOM)

400

V

S.O

On Voltage (VI)
Holding Current (IH)

V

1.2
500

~

Gate Trigger
Voltage (V",)

0.6

1.0

V

Gate Trigger
Current (I",)

20

SO

I'A

S.O

10.0

mA

2

Vee
G·ehm
pF

Coupled
Turn-on Current (1FT)
Isolation Voltage
Isolation Resistance
Isolation Capacitance

5-63

O.S
7500

100

VFX ~ 100 V
RGK ~ 27 Kohm
t~1 sec.
V;", ~ SOO V
f ~ 1 MHz

SIEMENS

IL410
ZERO VOLTAGE CROSSING
600 V TRIAC DRIVER OPTOCOUPLER

]&101.

Package Dimensions in Inches (mm)
.340

~;g----l

~!-

---I

f'!':J

~

L

-,ii-

---

l-

r:

L1D1IHOIlE l i ' 1RIACANOOE.

1

L1DCAIHOIJ£'

~.

.

z~c

NC 3

5SU8S1RAIT
00 NOTCOItN!10K V/JlS
• Very Low Leakage <10K JlA
• Withstand Test Voltage from
Double Molded Package
7500 VACpEAK
• Small6-Pln DIP Package
• UL Approval #E52744

DESCRIPTION
The IL410 consists of a GaAs IRLED optically coupled to a photosensitive zero crossing TRIAC network. The TRIAC consists of two inverse
parallel connected monolithic SCRs. These three semiconductors are
assembled in a six pin 0.3 inch dual in-line package, using high
insulation double molded, over/under leadframe construction.
High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR predriver resulting in an LED trigger
current of less than 2 mA(DC).
The IL410 uses two discrete SCRs resulting in a commutating dV/dt
greater than 10KV/JlS. The use ola proprietary dv/dt clamp results in a
static dV/dt of greater than 10KV/JlS. This clamp circuit has a MOSFET
that is enhanced when high dV/dt spikes occur between MT1 and MT2
of the TRIAC. When conducting, the FET clamps the base of the
phototransistor, disabling the first stage SCR predriver.
The zero cross line voltage detection circuit consists of two enhancement MOSFETS and a photodiode. The inhibit voltage of the network is
determined by the enhancement voltage of the N-channel FET. The Pchannel FET is enabled by a photocurrent source that permits the FET
to conduct the main voltage to gate on the N-channel FET. Once the
main voltage can enable the N-channel, it clamps the base of the
phototransistor, disabling the first stage SCR predriver.
The 600V blocking voltage permits control of off-line voltages up to
240VAC, with a safety factor of more than two, and is sufficient for as
much as 380VAC.
The IL410 isolates low-voltage logic from 120, 240, and 380 VAC lines
to control resistive, inductive, or capacitive loads including motors,
solenoids, high current thyristors or TRIAC and relays.
Applications include solid-state relays, industrial controls, office
equipment, and consumer appliances.

5-64

Maximum Ratings

Characteristics (Cant.)

Emiller
Reverse Voltage ..............................................••.......••.....•..•.....................•.. 6 V
Forward Current ..................................................................................... 60 mA
Surge Current ...........................................................................................2.5 A
Power Dissipation ................................................................................ 100 mW
Derate from 25'C .......................................................................... 1.33 mWI'C
Thermal Resistance .......................................................................... 750 'CIW

Symbol
Oulpul Oeleclor (Cont.)
Holding Current
(VT=3V)
Latching Curren I
(VT=2.2V)
LED Trigger Current
(V",=5 V)
Zero Cross Inhibit Voltage
(1,=Rated 1FT)

Oeleclor
Peak Off·State Voltage ............................................................................ 600 V
Peak Reverse Voltage ............................................................................. 600 V
RMS On·State Current .......................................................................... 300 mA
Single Cycle Surge ...................................................................................... 3A
Total Power Dissipation ....................................................................... 500 mW
Derate from 2S'C ............................................................................ 6.6 mWI'C
Thermal Resistance .......................................................................... 150 'CIW

Tum·OnTIme
(VRM=V",,=424 VAC)
Tum·OffTIme
(PF=1.0,1,=300mA)
Critical Rate of Rise
of Off·State Voltage
(VRM =VCM=424 VAC)

Package
Storage Temperature ............................................................ ·SS'C to + 150'C
Operating Temperature ......................................................... -55'C to + lOO'C
Lead Soldering Temperature ....................................................... 260'C/S sec.
Withstand Test Voltage ........................................ 7500 VAC_/S300 VAC..,.

Min.

Typ.

Max

Unll

IH

65

200

pA

I,

5
2

I"
15

t".

35

JIS

t"",

50

JIS

dv,.../dt

10000

Symbol
Emiller
Forward Voltage
(1,=60mA)
Breakdown Voltage
(1.=10 pAl
Reverse Current
(V.=6 V)
Capacitance
(V,=O V, f= 1 MHz)
Thermal Resistance
Junction 10 Lead

Min.

V,
V",

6

Typ.

Max

Crilical Rate of Rise
of Commutating Current
(1,.=300 rnA)
Thermal Resistance
Junction to Lead

1.3

1.5

30

I.

0.1

c,

40

Oulpul Oelector
Repetitive Peak
Off·State Voltage
(100.=100 pAl
V."..
Off·State Voltage
(1......,=70 pAl
V......,
Off·State Current
(Vc=600V, T~.=100'C,
1,=OmA)
1D{RMS)1
Off·State Current
(Vc=120 V, 1,=Rated 1FT )
'O(RMS)2
On-State Voltage
(1,.=300mA)
V",
On·State Current
(PF=1.0, V"RMS,=1.7 V)
I",
Surge (Non·Repetitive)
On·State Current (f=50 Hz) I",.

V

VlJIS
V/JIS

2000

VlJIS
VlJIS

di/dt

100

Aims

R"...

150

'CIW

dV,_/dt

10

pA
pF

'C/W

600

650

V

424

460

V

10

1.7

Insulation and Isolation
Crjijcal Rate of Rise of
Coupled InpuVOulput
Voltage (1,=0 A,
VRM=V",,=424 VAG)
dv,,,,/dt
Common Mode Coupling
Capacitor
CeM
Package Capacitance
(f= 1 MHz, V,o=O V)
C,o
Insulation Resistance
Rs
Withstand Test Voltage
Input·Output
(Relative Humidity S50%)
WTV
(l,oS10 pA, 1 min.)
WTV
Relative Humidity S50%)
WTV
WTV
(1'0,,10 pA, 1 sec.)

V

750

R"."

Unit

100

pA

20

pA

3

V

300
3

25

2000

10000

(T~.=80'C)

Characteristics

mA

Vo<

(T~.=60'C)

Critical Rate of Rise
of Commutating Voltage
(VRM=VCM=424 VAC)

mA

·'1
.....
go

.!!S

i!
Cle.
10000

VlJIS

0.01

pF

0.8

pF

n
4420
6250
5300
7500

VACRMS
VAC"""
VAC"",
VAC"""

rnA
A

IL410

5-65

FIGURE 2. NORMALIZED LED TRIGGER CURRENT
VS. POWER FACTOR

POWER FACTOR CONSIDERATIONS
A snubber isn't needed to eliminate false operation of the
TRIAC driver because of the IL410's high static and
commutating dv/dt with loads between 1 and 0.8 power
factors. When inductive loads with power factors less than
0.8 are being driven, include a RC snubber or a single
capacitor directly across the device to damp the peak
commutating dv/dt spike. Normally a commutating dv/dt
causes a turning-off device to stay on due to the stored
energy remaining in the turning-off device;

2.0

r----.---.,-.---r---r--,-.----,
fFth Normalized to IAh @ ·PF = 1.0

Ii :: =:-: :-: :""1:.-:::-:::-:::-:::-!~-:::-:::"",=~j~~===
ji

But in the case of a zero voltage crossing optotriac, the
commutating dv/dt spikes can inhibit one half of the TRIAC
from turning on. If the spike potential exceeds the inhibit
voltage of the zero cross detection circuit, half of the TRIAC
will be held-off and not turn-on. This hold-off condition can
be eliminated by using a snubber or capacitor placed
directly across the optotriac as shown in Rgure 1. Note that
the value of the capacitor increases as a function of the
load current.

-5~

~

1.4
1.2

\

I
\~.

;

!

'i - - - I
1.01--+--i---+--+--+
0.8 '---'-...............-'---'---'-.......- .......-'-...............---1
0.0
0.2
0.6
0.4
0.8
1.0
1.2

PF· Power Factor

FIGURE 3. SCHEMATIC

FIGURE 1. SHUNT CAPACITANCE VS.
LOAD CURRENT

.001 ....................................................................................,................Jc.............................

o

50

100

150

200

250

300

350

400

IL - Load Curranl· mA(RMS)

CATHODE

The hold-off condition also can be eliminated by providing
a higher level of LED drive current. The higher LED drive
provides a larger photocurrent which causes the phototransistor to turn-on before the commutating spike has activated the zero cross network. Figure 2 shows the relationship of the LED drive for power factors of less than 1.0.
The curve shows that if a device requires 1.5 rnA for a
resistive load, then 1.8 times (2.7 mAl that amount would
be required to control an inductive load whose power
factor is less than 0.3.

IL410

5-66

Forward YOltage versus forward current

Peak LED current versus duty factor, Tau

1.4 , . . - - - - - - , - - - - - - . , - - - - - - - - - - - ,

10000.--~--.----,----r----r----,---,

1.3 ...................................................................................

Duty Factor


E
1000

.005'
.01 '
.02 ~i":_::"-Ik:--+--~<;---+-.05 '
.1 ~

1.0 i----==--f'-----::7'"'1"------j

2'
100

0.91------::0*''''-----+-----1
Ta=100°C
0.8 ............................. ······························t·······················.......

,sr'I'=¥=t=~~~j

0.7
.1

100

10

If· Forward Current· mA

I . LED Pulse Duration· s

Maximum LED power dissipation

Maximum oUlput power dissipation
600

;:

;:

E
100

:;;

~

E

................................

r:::

500
400

0

~
0

...
W
..J

~
"- 300

~

0

50

.,

Vi

is 200

"5

'0

% 100

W
..J

...

0

...
0
·60

·40
·20
0
20
40
60
Ta· Ambient Temperature. °C

80

100
Ta· Ambient Temperature· °C

OnooState terminal voltage versus terminal current

500
400

~

300

If

100

e.
cr
C

!!::

a
i

200

0
·100

en ·200
b.
·300
!:: -400

'?

.500

/

--t---

l----~

L -.....-1._'---'--'-_.i..-.....--'-_'---'--'----'

·3

-2

-1

o

2

3

VT· On-State Vollage - V(RMS)

IL410

5-67

SIEMENS

IL420
600 V TRIAC DRIVER OPTOCOUPLER

Package Dimensions in Inches (mm)
.340

t
i1&
(6.601

1;~~~/"1
ID

LED ANODE 1

~

LEO CATHODE 2

~

5 SUBSTRATE
00 NOT CONNECT

.260

L

6 TRIAC ANODE 2

Ne 3

4 TRIAC ANODE 1

~~130

,3.3Oi

.008

,2031 -11-

':ii'
FEATURES
High Input Sensitivity 1FT = 2 mA
600 V Blocking Voltage
300 mA On-State Current
High Static dvldt 10,000 V/IlS
Inverse Parallel SCRs Provide
Commutatlng dvldt >2K VlIlS
• Very Low Leakage <10K I1A
• Withstand Test Voltage from
Double Molded Package
7500 VACpEAK

•
•
. •
•
•

• Small 6-Pln DIP Package
• UL Approval #E52744

.300
0.62)

-----.L,. '"''
150

M

00

15'

DESCRIPTION
The IL420 consists of a GaAs IRLED optically coupled to a photosensitive non-zero crossing TRIAC network. The TRIAC consists of two
inverse parallel connected monolithic SCRs. These three semiconductors are assembled in a six pin 0.3 inch dual in-line package, using
high insulation double molded, over/under leadframe construction.
High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR predriver resulting in an LED trigger
current of less than 2 mA(DC).
The IL420 uses two discrete SCRs resulting in a commutating dV/dt of
greater than 10KV/ms. The use of a proprietary dv/dt clamp results in a
static dV/dt of greater than 10KV/ms. This clamp circuit has a MOSFET
that is enhanced when high dV/dt spikes occur between MT1 and MT2
of the TRIAC. When conducting, the FET clamps the base of the
phototransistor, disabling the first stage SCR predriver.
The 600V blocking voltage permits control of off-line voltages up to
240VAC, with a safety factor of more than two, and is sufficient for as
much as 380VAC.
The IL420 isolates low-voltage logic from 120,240, and 380 VAC lines
to control resistive, inductive, or capacitive loads including motors,
solenoids, high current thyristors or TRIAC and relays.
Applications include solid-state relays, industrial controls, office
equipment, and consumer appliances.

5-68

Maximum Ratings

Characteristics (Cont.)

Emiller
Reverse Voltage ..........................................................................................6 V
Forward Current ..................................................................................... 60 mA
Surge Current ........................................................................................... 2.5 A
Power Dissipation ................................................................................ 100 mW
Derate from 25'C .......................................................................... 1.33 mW/'C
Thermal Resistance .......................................................................... 750 'cm

Symbol
Oulput Detector (ConL)
On-State Voltage
(IT=300mA)
V",
On-State Current
(PF=1.0. V~....,=1.7V)
I",
Surge (Non-Repetitive)
On-State Current (f=50 Hz) IlSM
Holding Current
(VT=3V)
IH
Latching Current
(VT=2.2V)
I,
LED Trigger Current
(V...=5 V)
1FT
Turn-On Time
(V"",=V",,=424 VAC)
t"..
Turn-Olf Time
(PF=1.0. 1,.=300 mAl
t"",
Critical Rate of Rise
of Off-State Voltage
(VFN=V",,=424 VAC)
dV

~

E

~

1.2

~,

1.1 1--""''----l-Ta=25'

E
~

.cos!
1000

i

1.0
0.9

:!i:

0.7

L -...................u..L........_ - ' -........................_

.1

.2 :

100

~

~

Ta=100'C

...........................................................+..............................
~
U'O

0.8

!

.1 ;

......fil
.

F-----::".r.=----+------l

.02~-

.05

u"

If

.01 :

.S!i-t==:;:;r===F~~~

.............................

10

1~0~-~6~~10~-~S~~10~_74~~1~~~3~~1~~~2~~1~~71~~1~OnO~~1~01

100

If- Forward Current - mA

I - LED Pulse Duration - s

Maximum LED power dissipation

Maximum oUlpul power dissipation

600

~,

100

1

'"

0

...
...w
w

50

'0

-40

-20

Ta -

20

~

500
400

0

~

D-

O
-60

~

......•.... ........... ..........

40

60

i

~
VI

'"

300

is 200
:;
CL

:;

0

~

80

100

D-

100
Ta - Ambient Tempersture - 'C

Ambient Temperature - 'C

On..tate terminal voltage versus terminal current

-2

-1

0

2

3

VT - On-SlBte VoIlBge - V(RMS)

IL420

5-71

SIEMENS

ILCT6
DUAL PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)

ANOO.' ~"M''''"

~

CA<. HoaE; 2

CATHODE 3

1 COLLECTOR

6COlLECTOR

~
ANODe 4

P02)

rl--,-1----,
!i2ii

280

!L.!.!.I
(839)

330

5 EMITTER

LED CHIPS ON PINS 2 AND 3
PT CHIPS ON PINS 6 AND 7

040

.
.048

~-III-.052

'

~I

-I~~

(.50S)
020

FEATURES
•
•
•
•
•
•

Two Isolated Channels Per Package
50% Typical Current Transfer Ratio
1 nA Typical Leakage Current
Direct Replacement For MCT6
Underwriter Lab Approval #E52744
~ VDE Approvals 0883/6.80,
080411.83

DESCRIPTION
The I LCT6 is a two channel opto isolator
for high density applications. Each channel
consists of an optically coupled pair employing a Gallium Arsenide infrared LED and a
silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a
high degree of electrical isolation between
input and output. The I LCT6 is
especially designed for driving medium-speed
logic, where it may be used to eliminate
troublesome ground loop and noise problems.
It can also be used to replace relays and
transformers in many digital interface applications, as well as analog applications such
as CRT modulation_

Maximum Ratings
Maximum Temperatures
Storage Temperature ........................................ -55°C to + 150°C
Operating Temperature ...............•...................... -55°C to + 100°C
Lead Temperature (Soldering, 10 seconds) ................................ 260°C
Input Diode (each channel)
Rated Forward Current, DC ............................................ 60 mA
Peak Forward Current, DC (1 ~s pulse, 300 pps) .............................. 3 A
Power Dissipation at 25°C Ambient .................................... 100 mW
Derate Linearly Irom 25°C ......................................... 1.3 mW/·C
Output Transistor (each channel)
Power Dissipation at 250C Ambient .................................... 150 mW
De,ate Linearty Irom 25°C ............................................ 2 mW/OC
Collector Current ..................................................... 30 mA
Coupled
Isolation Test Vottage
in Accordance with DIN57883/6.80 ........................ 3750 VAC/5300 VDC
Creepage Path ................................................... 7 mm min.
Clearance Path ................................................... 7 mm min.
Tracking Index According to VDE 0303 ................................ KB100/A
Total Package Dissipation at 25°C Ambient .............................. 400 mW
Derate Linearly lrom 250C ...........•.........•.................. 5.33 mW/oC
UL Qualilied lor ...................................................7500 VDC

Electrical Characteristics (Tamb = 25 DC)
Min
Input Diode
Rated Forward Voltage
Reverse Voltage

3.0

Reverse Current
Junction Capacnance
Output Transistor
Breakdown Voltage
Collector to Emitter
30
Emitter to Collector
7.0
Leakage Current·
Collector to Emitter
CapacnBnce Collector
to Emitter
Coupled
DC Current Transfer Ratio (Ie1IF) 20
Saturation Voltage
Collector to Emitter
Isolation Resistance
Isolation Capacitance
Breakdown Voltage
Channel-te-Channel
Capacitance Between
Channels
Bandwidth
Swnching Times
Output Transistor

5-72

!".
t..

Typ

Max

Unit

1.25
8.0
0.1
100

1.50

V
V
~
pF

10

CondUlona
IF=20 mA .
IA-l0~

VA-3.0 V
VF-OV

V
V

Ic=I.0 mA

nA

VcE =10 V

8.0

pF

VCE-OV

50

%

VcE =10 V, IF=10 rnA

10"
0.5

V
Q
pF

Ic -2.0mA,I F-16mA
V,o =500 V
1=1.0 MHz

1500

VDC

Relative Humidity =40%

0.4
150

pF
KHz

1-1.0 MHz
Ic -2.0 rnA, Vcc -l0 V
RL =100Q

3.0
3.0

~

65
10
1.0

100

0.40

~

IE=I00~

Ic=2 mA, RE-l00.Q
VcE =10 V

10

1000

Input
IF .. 10mA
Pulse widlh '" 100mS
Duly cycle", 50%
(see Switchingtimt:IeSl
schematic

500

...."'ms

100

y'

5 IF" lOrnA

V

VeE = 10V
lamb" 25°C

·05

,

1
0.1

TON

1

0.'

so

10

.D1

100

r

0.9

,

1

'00

,

VI
JJ/

::~~

10

,

~

1
-20 -0

II!

"

20
60
80
Ambienlternperalurof°C)

IF .. I to mA

"

IFf

IF

-25

,;,,!'

0.1

IF .120nIA

5.1

/II
'?"

--- rr

//

Forward current, IF(mA)

I

IF·l0mA
4 VeE'" 10V
lamb" 25°C

/I

..

0.8

10

_"oe/

Collector current versus
diode forward current

Normalized to:

JiI

•
"'"

11.1

Output current
versus temperature

1000

VCE .. 50V-

IF" 1.0mA

p

VCEtV}

'lYplcalleakage current
versus ambient temperature

~

~
'!!

Loadlt$lSlaI\ce. RL(KD)

"~100
~50
"

I.,

IF" S.OmA

0.1

...........

' -------

1 _ lamA

V

L

V

~

1.0

,/'

1.3
If .. 20mA

05~

/
,/

10

1.'

Normalized 10:

'"'

"

.s

'iYplcal forward voltage
versus forward current

Collector current versus
collector voltage

'iYPlcal 8wltchlng times
versu8 ·Ioad resistance

0.'

~
.01

75

100

1

,

10
Forwarclcurrenl,IF(mA)

20

Switching time teat schematic and waveforms

f -'3L

Vee = 10 V

INM:J
-

INPUT

VOUT

'2..

oj

I~

,

,

1-"-1

1--"'-1
1-'... ..1 I

I

i"'"r
I
I
~'·I

lQo;t. - -

I I

I
I

"'" ----

90% - - - - -

I

I-"~

I
I
I
I

II
I I
I

i+"~ I I

-''''

-- ...

- __ 90%

ILeTS

5-73

SIEMENS

ILD1/2/5
QUAD CHANNEL ILQ1/2/5
DUAL CHANNEL

PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
ILD112/S
'JSO
(965)

IiOi6)

<0'

FEATURES
• Current Transfer Ratlo@I F = 10 mA
ILD/Q1 - 20% Min.
ILD/Q2 -100% Min.
ILD/QS - 50% Min.
• High Collector-Emitter Voltage
ILD/Q1 - BVCEO = 50 V
ILD/Q2. ILD/QS - BVCEO =70 V
• Field-Effect Stable by TRansparent IOn
Shield (TRIOS)·
• Double Molded Package Offers
Withstand Test Voltage
7500 VACpEAK• 1 sec.
4420 VACRMs' 1 min.
• UL Approval #ES2744
VDE Approval #0883

• &>

DESCRIPTION
The ILD/01/2/5 are optically coupled isolated pairs employing GaAs
infrared LEDs and silicon NPN phototransistor. Signal information,
including a DC level, can be transmitted by the drive while maintaining
a high degree of electrical isolation betWeen input and output. The ILDI
0112/5 are especially designed for driving medium-speed logic and
can be used to eliminate troublesome ground loop and noise
problems. Also these couplers can be used to replace relays and
transformers in many digital interface applications such as CRT
modulation. The ILD1/215 has two isolated channels in a single DIP
package and the IL01/2/5 has four isolated channels per package.
See Appnote 45, "How to Use Optocoupler Normalized Curves. ..

'TRansparent IOn Shield.

5-74

Characteristics (Cant.)

Maximum Ratings

Symbol

EmlUer
Reverse Voltage ..........................................................................................6 V
Forward Current ................................................................................... 100 mA
Surge Current ........................................................................................... 2.5 A
Power Dissipation ................................................................................200 mW
Derate Linearly from 25·C ............................................................... 2.6 mW/'C

Package Transfar
Characteristics
IlO/Q1
Saturated Current
Transfer Ratio
(Coliector·Emitter)
(1,,=10 mAo V..=0.4 V)
Current Transfer Ratio
(Coliector·Emitter)
(1,,=10 mAo V..=10V)
Current Transfer Ratio
(Coliector·Base)
(1,=10 mAo V..=9.3 V)
IlO/Q2
Saturated Current
Transfer Ratio
(Collector·Emitter)
(1,=10 mAo V..=0.4 V)
Currenl Transfer Ratio
(Cot/ector·Emitter)
(1,=10 mAo V..=10 V)
Current Transfer Ratio
(1,=10 mAo V..=9.3 V)

Oolector
Colieclor·Emitter Reverse Voltage
ILD/Ol ....................................................................................................50 V
ILD/02. ILDto5 ......................................................................................70 V
Emitter·Base Reverse Voltage ..................................................................... 7 V
Coliector·Base Reverse Voltage ................................................................ 70 V
Cot/ector Current .................................................................................... 50 rnA
Cot/ector Current (t

CML

5000

V/flJ>

Ccu

0.01

pF

10.1-'

n

q.o

0.8

As

5+ 10

1>0

I;

%

%

pF

3.3
0.5

10
10

pA
pA

4
0.6

10
12

pA
pA

V

HFE

200

650

1800

HFE"'T

120

400

600

600

pA

pF
pF
pF

C..
C..
C,.

R,...,

lsolallon and Insulation
Common Mode Re(ection
OUlpulHigh
N..;=50V....
RL=l kn. 1,=0 mAl
Common Mode Relection
OulputLow
N..;=50Vp.p.
RL=l kn. 1,,=10 mAl
Common Mode
Coupling Capacitance
Package CapaCitance
N,o=OV. f=l MHz.)
Insulation Resistance
N,.o=500V)
Dielectric Leakage Current
N ..=442OAC(IWS)'
1 min .• 60Hz)
N,o=6250VDC.l min.)
N,o=5304 AC(IWS)'
1 sec .• 60Hz)
N,o=7500 VDC. 1 sec.)

Min.

C'/W
ILDlQl1215

5-75

SWITCHING TIMES
Saturatad SWHchlng

Non-Saturated SWHchlng

FO:J-

F= 10KHz,
DF=50%

F=10KHz,

IF·' ....

DF = 50%

Non-Saturated Switching Timing

RL

t. . .

Vo

Saturatad SWitching Timing

'lJ
tD

Characteristic
Delay
Rise llme (Vcc=6 V)

ILDlQ1
1,...2OmA

1LD1Q2
l,.=5mA

ILDJQ5
1,...10mA

Unit

T.

0.8

1.7

1.7

lIB

I-

1.9

2.6

2.6

. lIB

ILDlQ1
1,...2OmA

Characteristic
Delay
Rise llme (V",=0.4 V)

ILO/Q2
1,...6mA

ILDlQ5
1,...10mA . Unit

T.

0.8

1

1.7

lIB

I-

1.2

2

7

lIB

Storage'(RL=76 n)

..

0.2

0.4

0.4

lIB

Storage (R.= 1 kn)

..

7.4

6.4

4.6

lIB

Falillme

\.

1.4

2.2

2.2

lIB

Falillme (Vcc=5 V)

\.-

7.6

13.6

20

lIB

t"..

1.6

5.4

2.6

lIB

I,.,.

8.6

7.4

7.2

lIB

Propagation H· L
(60% of V,.,.)

t"..

0.7

1.2

1.1

lIB

PropagaUon H· L
(V",=1.6V)

PropagaUon L· H

I,.,.

1.4

2.3

2.6

lIB

Propagation L· H

ILOI0112J5

5-76

Forward voltage versus forward current

P.ak LED current veraus duty faclor. Tau

,

1.4

10000

,;

;

.

1.3

..........................•~ ........•....................................

1.2

···························t········

=

1.1

1d

1.0

!!I

>

t

~
1!

i!

t1.

;

i

;

Ta a-55"C

C

.oos!

E

I

i Taal00"C

.1

1'-

'E

~

,

,0,0-6

~

40

i
!!o

J

'\j

100.ic

Q

...w
.Q

l···.····f\
. . . .·. . . .

20

~

a ......
·······....:-·r···..........
····· ·.-. . · · · · ...........
l····-'-···l·.·.·.·. ·.-.-'-· · · · . . . . .
~

4

a

~

10 0

10 1

20
40
60
Ta - Ambl.nt T.mp.ralura - "C

80

Do

200
150
100
50

a

~

=!F~f*~+K

~

Maximum datector pow.r dlsslpallon
300

/0-1

250

~

TJ(I.IAX)

/0-2

300

80
60

10.3

10-4

Maximum LED power dissipation

...---;-.,---;--,---,---r-.,.---,

Q

10-5

I- LED Puloa Duration -.

100

'"

U

,

i

100

10
Forward Current - mA

.1 '

.2'
.5;
!
;
;
;
;

100

Maximum LED currant varaua amblanllemparalura
120

.

::i

.

;
··························r··························
...........................
,

O.B

1

.01 '

1000

..

0.9

0.7

Duty Factor

-40

-20
a
20
40
60
Ta - Ambl.nl Temperature -"C

80

100

Maximum coll.ctor currant v.rsus colleclor voltage

r---r-..,--.--r-.,..---,,.-......--.

1

iB·
J
B
·

100

~

10
Vc. - Collector-Emllter Voltage - V

Ta - Ambient T"",paratu18 - ·C

l;

~
~

1
Ii

....

~

Normallzallon factor for non....luralad and salurat.d CTR
T....=25D C versus '.
1.5...------;-----,---...,........,
NormaIiZed~:
,
Vee a 10V, IF = lamA, Ta = 25"C
1.0

Normalization factor lor non....lurat.d and saluraled CTR
T•• =60"C veraus I.
1.5

I

,

CTRce(sati Vee = 0.4V
...........................
............;......................•.................

'"

II:

lJ

f

0.5

.1

10
IF - LED Currenl- mA

...----~----_;_-----,

i

Normalized to:
Vee = 10V; IF = lamA, Ta: ~5"C

i

CTRce(sati Vee: 0.4V
1.0 ••.•.•...•.......•.•••••.•..!............................!......................... .
!

i,

11

,,;
;
...........................+
,..... .

0.0

100

.!!

i
·
Z

i

100

'

;

··················1··········
,

0.5 ·••••••• ..

!

0.0 L-...........................t._.............................L...---'-'-............J
100
.1
10
IF - LED CUrrant - mA
ILDlC11215

5-77

Normalization factor .for non4aturated and saturatad CTR
Tamb=70°C versUB IF

Normalization factor for non4aturated and saturated CTR
T....It=100°Cvaraus IF

1.5 ....==----~..:...----""T""---___,

l

i
.'f.
~

IJ

1.5,..-------,r-------,------,
Normalizad to:
Vee =10V: IF = 10mA. Ta=2s"C

i

IL

CTRce(sat\ Vee = 0.4V

!

··············r.........

~ 1.0 ······································ ..

1.0

~

1------t--7"'7"'''-+-'--'''''''':---I

0.5

i

IL

0.0

~

L -.......~......~'--..............................~.........................

10
IF· LED Currant· mA

.1

0.0

100

.............."-...........................",,---,....................
10
100
IF • LED Clirram ; mA

~-,-~

.1

Normalized CTR.. varsus LED Currant

Collactor currant versus dloda forward currem
10

1.5,..---___- , - - - - - - - - , , . - - - - - ,

Normaiized to

!

.D
U

II:

b

1.0

j

T..",.2S"C

/ ---

1.0

0.5

B

1'ii

i

!

I

~

0.0

...................,.........'--...........................'--........................
1

10

0.1

.05

.01

~

.1

---

1,.10mA
Vee.l0 V

'i"

1

100

If· LED Current· mA

20

10

Forward Cum.t IF(rnA)

Collector·emltter leakage varsus tamparaturs

105r---r--r---r----,r--.--~
104r----+----t--~r_-+-~~-~

~

10 3 .............. ,............

1.....................,

I 102~---4-----+;~~~~~~---4----~
1
8
~

WORST CASE

J
o

40
20
60
80
Ta. Amblem Temparature. "C

100
Vbe·Base Emfttar VOltaga • V

i..

Normalization factor for non'saturated and saturated
HFE at T_.=2S"C versus I.
1.5 "--N-o-nna-li-z.-d-to"':----'--;-i- - - - - - ,
~

:

Ib = 201lA. Vco=10V. Ta=2S;C
:

~ 1.0 I:::====P-r--,t--;;NH~F;:;E:---i

1

I
II.

~

0.3

0.4

0.5·

0.6

0.7

:z:
0.8

0.0 lL.........-'-...........ol10'-.
· - ' -..............I...
00-~~~ul..JOOO

Ib • Base Current·

Vbe • Base Emitter. Voltage· V

IlA
ILDI011215

5-78

1.5

Normalization factor lor non_turated and ..turaled
HFE at T_.=50'C varaual.
..--N-orrna-=I-izad-to'!'"':--..:.....-"Ti----'

Normallzailon factor 10. non-saturatad and saturated
HFE at T_._70'C veraus I.

1.5..---=--...--.:....-.,..-----,

Ib ~ 20",,: V_l0V, Ta-25i C

;;

11
{1!

;

l.. . . . . . . . . . . . .

1.0 '====="ili=:=__..........
II!
!
:z:

{1!

II!

NHFE

:z:

i

1
z..

~
:i

0.5

0.5

...
iii
!I:

0.0
1

10
100
Ib - Baas Currant-""

0.0

ILO/QI propagation dalay v.raus collecto. load r..lstor

!

co

3.5

!

.'".
I

9
c

Il

3

5!

1
.1

10
RL - Load R..lstor - Kn

1.0
100

.

!

!

a.

!!:

1000

----r----...,----.., 2.5

i
Ie

·

...........................

ILO/Q2 propagation delay varaus collector load .aslstor

:z:

c

......................._

10
100
Ib - Baa. Cu ....nt .""

1000 .....

!..

100

L -_ _..............._

1

1000

1000 . - - - - , . - - - - . , . - - - - . . , 4 . 0

..:·

NHFE
Vce= 10V

I

zw~

...:z:

1.0

!
100

2.0

·

!!:

!!:

'·1

c

10

1.5

1
.1

10
RL· ColilClor Load RalI.to.· Kn

-at

si
so

e

i

,!

t.

a.

1 tPHL

IL

3

-I
9

:z:

c

Ie.

..
~

IL

1.0
100

...ii.
ete,

5!

!!:

ILDlas propagation delay varaus collector load raalstor

1000

..·

2.5

!

f

!

·

I

100

1.co
:

c

j

.!!

Ie

·

10

3

1
.1

10
RL - Collector Load R..lstor - Kn

I

l

tPHi.

IL

!!:

1.5

1.0
100

·

5!

!!:

IlOlQ11215

5-79

SIEM-=NS

ILD32/1LQ32
MULTI-CHANNEL PHOTODARLINGTON
OPTOCOUPLER

Package Dimensions in Inches (mm)

·AHODf1

~
"

"""" ,
OOHODE 3

ANODE 4

"

.

."'mn
7COU£<11TA
8 CCIU.ECIUR

.

'''''"'''

LED CHIPS ON PINS 2 AND 3
PT CHIPS ON PINS 8 AND 7

(TOP VIEW)

ILQ32

'I'
.00

I----~-----I

FEATURES
• 7500 Volt Isolation Voltage
• Very High Current li'Imsfer Ratio
(500% Min.)
• High Isolation Resistance
(10 11 (l Typical)

• Low Coupling Capacitance
• Standard Plastic Dip Package
• Underwriters Lab Approval #E52744
•

,eo
In41

'"

~ VDE Approval #0883
Maximum Ratings: (At 25"C)

DESCRIPTION
The ILD32 and ILQ32 are optically coupled
isolators employing a gallium arsenide infrared emitter and a silicon photodarlington
sensor. Switching can be accomplished while
maintaining a high degree of isolation between driving and load circuits. They can be
used to replace reed and mercury relays
with advantages of long life, high -speed
switching, and elimination of magnetic fields.
The ILD32 offers two isolated channels in a
DIP package and the ILQ32 has 4 channels.
These devices can be used to replace
4N32's or 4N33's in applications calling for
several single-channel couplers on a board.

Gallium Arsenide LED (Drive Circuit)
Power Dissipation at 25°C. . . . .
. ........... .
......... 150mW
Derate Linearly from 25 °C ................ .
. ........ 2mW/oC
Continuous Forward Current .......... .
. ....... BOmA
Peak Reverse Vollage ...... .
. .................. 3V
Photodarlington Sensor (Load CircuiQ
Power Dissipation at 25°C Ambient ..... .
. ....................... 150mW
Derate Linearly from 25°C ........... .
. ........ 2.0 mW/OC
Collector (Load)·Current ..
. .................. 125 rnA
Collector-Emitter Breakdown Voltage (BVCEol ............................. 30V
Emliter-Coilector Breakdown Voltage (BVECO)
.................~ V
Package
Total Dissipation ILD32 ................ .
..400mW
IL032 .... .
. ........ 500mW
. ............. 5.33 mW/oC
Derate Linearly from 25°C -ILD32 .
-IL032
............. 6.67 mW/oC
Storage Temperature . . . ....... , ..
. ............. -55°C 10 +150°C
Operating Temperature
.............. -55°C to + 100°C
lead Soldering TIme at 260°C .......... .
. ................. 10 sec

5-80

Electrical Characteristics
Parameter

Min

GaAs Emitter
Forward Voltage
Reverse Current

Capacitance
Sensor
BVr,EQ
BV ECO

= 25°C)

Typ

Max

1.25
0.1
100

1.5

V

100

"A

JO
5
1.0

ICED
Coupled Characteristics

Current Transfer Ratio

(Tamb

100

500
1.0

VeEISAT)
Isolation Resistance
Isolation Capacitance

1011
1.5

Turn-on Time

5
100

Unit

pF

IF= lOrnA
VA = 3.0Y
VA = 0

V
V
nA

Ie = 100 ~A. IF = 0
IE = 100~A
VeE = 10 V. IF = 0

%
V
ohm
pF

IF = lOrnA. VeE = lOV
Ie = 2 rnA. IF = 8 rnA
V,O = 500 V

~s

(Vee = 10 V. Ie = 50 rnA
IF = 200 rnA. RL = lBOD

Turn·off Time
Isolation Voltage
(t = 1 sec)

7500
5300

VDC
VAC AMS

VDE Isolation Test
Voltage in Accordance
with DIN 57 883/6.80

5300
3750

VDC
VAC AMS

5-81

Test Condition

~s

SIEMENS

ILD 610 SERIES
DUAL PHOTOTRANSISTOR
OPTOCOUPLER

Package Dimensions in Inches (mm) .
.380

1~---1

~~"OO~I

D~'~

16.10)
.240

(6~

......

.040

l

:.

.

PIN CONFIGURATION:
PIN

."""'.

~
..,

FUNCTION

..

,

,-

..,

~

-'

-

t.!.:.Q!l
11.27)
.1l5O

r-1M-t,-,....;t"l-f"t11
048

.280

lL.W~1
18.391 1':32J-! I.330

.052

'

~I

.J~~
(.508)

.020

FEATURES

Maximum Ratings

• Dual Version of SFK 8101811 Series
• High Current Transfer Ratios, 4 Groups
ILD 81M 40 to 80%
ILD 81()'2 63 to 125%
ILD 81()'31oo to 200%
ILD 810.4160 to 320%
• 7500 Volt Isolation
• VCEsat O•25 (sO.4)Volt

Emitter (GaAs LED)
Aeverse Voltage

IF=10 mA; Ic =2.5mA
• VCEO 70 Volt
• 100% Burn-In
• UL Approval #52744

DESCRIPTION

DC forward current

Surge forward current (I", 10,.s)
Tolal power dissipation
Detector (silicon phototranslstor)
Collector·emitter voltage
Collector current
Collector currenl (I", 1 ms)
Total power dissipation
Oplocoupler
Storage temperature range
Ambient temperature range

Junction temperature
Scldering temperature
• (max. 10 sec)'
Isclation lest voltage (t = 1sec)

Isolation resistance
, Dip scldering: Insertion depth <3.6 mm

The ILD 610 Series is a two-channel optccoupler series for high density applications.
Each channel consists of an optically coupled pair employing a Gallium Arsenide
infrared LED and a silicon NPN phototransistor. Signal information, including a DC
level, can be transmitted by the device
while maintaining a high degree of electrical isolation between input and output. The
ILD 610 Series is the dual version of the
SFK 610/611 Series and uses a repetitive
pin-out configuration instead of more common alternating pin-out used in most dual
couplers.
5-82

a

v
A

Plot

60
1.5
100

Vceo
Ie
I""",
PlOt

70
50
100
150

VA
IF

1_

rnA

mW

V
rnA
rnA.

mW

T••
T"",.
Ti

-55... +150·C
-55... +100·C
·C
100

Tsol•

260
7500
5300
10.1-

VIS
AlSO

·C
VDC
VAC (AMS)
0

CHARACTERISTICS @ T;mb 25°C
Emitter (GaAs infared emitter)
Forward voltage (IF = 60 rnA)
Breakdown voltage (IA = 10 I'A)
Reverse current (VA = 6 V)
Capacitance (VA = 0 V; f = 1 MHz)

VF
VSA
IA
Co

1.25 (:51.65)
30 (2:6)
0.01 (:510)
25

V
V
~
pF

Detector (silicon phototransistor)
Collector-emitter dark current
Collector-emitter breakdown voltage
Emitter-collector breakdown voltage
Capacitance (VCE = 5 V; f = 1 I'Hz)

ICEO
BVCEO
BVECO
CCE

2
70
7.5
7

nA
V
V
pF

Coupled
Collector-emitter saturation voltage
(tF = 10 rnA, Ic = 2.5 rnA)
Coupling capacitance

VCE("I)
Cc

0.25 «0040)
0.35

V
pF

Group
Current transfer ratio'
IF =10mA, VcE =5V
Current transfer ratio'
IF=1 rna, VcE =5 V

ILD 610;1

ILD61()"2

ILD 610·3

ILD 610-4

40-80

63-125

100-200

160-320

%

13 min.

22 min.

34 min.

56 min.

%

2 (:550)
lcEo (VCE = 10 V)
CTR will m~tch within a ratio of 1.7:1

2 (:550)

5 (:5100)

5(:5100)

nA

SWitching Characteristics
Linear Operation (without saturation) IF10 rnA, Vee = 5 V, Re = 75 {}
Group
Turn on time
Rise time
Turn off time
Fall time

Ion
t,

t"ff
~

ILD 610·1

ILD 61()"2

ILD61()"3

ILD 61()"4

3.0 «5.6)
2.0 «4.0)
2.3«4.1)
2.0 «3.5)

3.2 «5.6)
2.5 «4.0)
2.9«4.1)
2.6 «3.5)

3.6 «5.6)
2.9 «4.0)
304 «4.1)
3.1 «3.5)

4.1 «5.6)
3.3 «4.0)
3.7«4.1)
3.5 «3.5)

JlS
I's

JlS
JlS

Switching operation (with saturation) Vee = 5 V, Re = 1 KO
Group
Turn on time
Rise lime
Turn off lime
Fall lime

Ion
t,

t"ff
~

ILD 61()"1
IF =20 mA

ILD 610·2
IF =10mA

ILD610·3
IF =10mA

ILD 61()"4
IF=SmA

3.0 «5.5)
2.0 «4.0)
18«34)
11 «20)

4.3«8.0)
2.8 «6.0)
24 «39)
1.1 «24)

4.6 «8.0)
3.3 «6.0)
25 «39)
15«24)

6.0 «10.5)
4.6 «8.0)
25 «43)
15«26)

5-83

"s .

JlS
I'S
"S

~plc.1

_Itching tlmn

Input:

,see_time ...

y

Duty,,"•• 5OIi
and

5

V

1

0.1

V

;----

.. 10mA.

g.

rON

O.,...------I-----j

1

5

~·.10mA

/I

<4

,

VI

~100

I

~50

::~~
VeE - ,o~=A

,

".'20 rnA

lamb '" 25°C

-55

-25

"r-

•

/:
.,
.1

r-- ~

0
25
50
Ambient temperatura I"C)

1

75

100

1NPUT:J ~Rl
-

'Z.

''''''

,.J,..----il~
I

,

i-"I'

I

1-'"-:1
VOUT

I r-'·I

OU1PIJT!.~:i::
... ---I01Il - - - - -

I

.

"

Forwanlc:urfl!nt.IFImA)

Switching Ume teat achemaHe a n d _

Vcc a l0V

~

---

.0

- r---

I

.1

01

100

Normalized to:
5 IF'" 10mA
VeE .10V

r--

" .1'rnA

~

20
40
60
80
Ambienllemperaturel'"Cl

0

--

IF .. 10mA

1

I"

W

1$

~

VCE".. 10V
Tamb.25O(:

I

///

CDlIector current versua
diode forward current

I

NarrnallzedlO:

~

Forward currenl, If(mA)

VCE(V)

Output current
versus temperatura

1000
!CO

0··0~.1:'----~1r-----7:":----~,00

01!-,-----,1----~"

50 100

10

veraus ambient tempel'llture

20

1,,1-----==-1-""---:--:71'----_1

.1I5h_---t-..";""'"='=·'=mA",,

'l\rplcall••kage current

1

f "1--'=--.+----7"1'----7''--1

'V

I

loadresislancll,I\(KO)

1,,

J1.2

jj.

'.91----~I-""---_j----_1

D.S

•

ul----_jr_---_j--::;;""'~_1

I'"'·'InI/<-::::::====t==ol"i..!"",!£·,..,mA"1
/..-

V

/ -""""1-

10

~; ~01:re--I-----j
Tarm _25°C
If .. 201M

/

~

1.<,----,,----,-----,

Normalized

Pulse widlh .100 mS

I =.:!,

vera"s forward current

" , - - - -to:- - , - - - - - - ,

~.'0mA

!CO

'l\rpJcal to_rei voItIIge

Collector current verwua
collector vottage

veraus load reel_nee
1000

1-"'-:

1-... ..1 1
I

(+"1

t""'-1 :

I.

I

I

I
I

I

20

MCA230/231 1255

SIEMENS

PHOTODARLINGTON
OPTOCOUPLER

Package Dimensions in Inches (mm)

t::1
-0-

.240
16.101

'iT

"""
tJ

TOP'IIEW

..... '~ .....

CAIIIJD( z
NC.1

s OOUlCtOR

4 EMITTER

.010

LEO CHIP ON PlN:2

am,

PTCHIP ON PIN 5

11.181

""

1~..c:::o..I
I

.2!D

(111).

~.'"
JI4'.j
.33OL!:II1Zl
11.32,
.052

I-

r!i!1

~t::..jl-o

!i
....

....
.. .!!

aa

FEATURES

Maximum Ratings

• 7500 Volt Withstand Test Voltage
• 0.5 pF Coupling Capacitance
• CTR Minimum: MCA230/255 -100%
MCA231 - 200%
• Fast Rise Time - 10 ,..s
• Fast Fall Time - 35 ,..s
• Underwriters Lab Approvall#E52744

Gallium Arsenide LED
Power Dissipation al 25°C ..
Derate Linearly from 25°C.
Continuous Forward Current
Reverse Voltage .

DESCRIPTION
The MCA230/231/255 are industry standard
optocouplers, consisting of a GaAs infrared
LED and a silicon photo Darlington transistor. These optocouplers are constructed
with a high voltage insulation, double
molded packaging process which offers
7.5 KV withstand test capability.

Detector Silicon Phototranslstor
Power Dissipation at 25°C ...
Derate Linearly from 25°C.
Collector-Emitter Breakdown
MCA230 ....... .
MCA23t ..
MCA255 ....
EmiUer-Coliector Breakdown
Collector-Base Breakdown
MCA230.
MCA231
MCA255
Package
Total Package Dissipation at 25°C (LED plus Detector) .
Derate linearly from 25°C.
Storage Temperature ..
Operating Temperature .
lead Soldering Time at 260°C.

5-85

oS!.

. ... 135mW
. ...... 1.8mW/oC
.. SOmA
. ... 6V
..210mW
. .... 2.8 mW/oC
. .. 30V
. ......... 30V
.55V
.................... 7V
.............. 30V
......... 30V
.. 55V
. ........ 260mW
. ... 3.5mW/oC
. .... -55 to +150 0 C
. ... -55 to + 100°C
. .. 10 sec

Bectrlc8l Characteristics (Tamb=25°C)
Min
Gallium Arsenide" LED
Forward Voltage
Reverse Current
Junction Capacitance
Phototransistor Detector
BVCEO
MCA230
MCA231
MCA255
BVECO
BVceo
MCA230
MCA231
MCA255

Typ

Max

Unit

1.1

1.5
10

V
"A
pF

50

Conditions

TYPICAL OPTOELECTRONIC
CHARACTERISTIC CURVES
G.AI EMITTER:
FORWARD CURRENT - VOLTAGE
CHARACTERtSTICS

IF=20 mA
VF=3V
VF~O V. f= 1 MHz

l00r-'--'--;-~--r--r-.

V
V
V
'V

30
30
55
100

V
V
V
nA

Ic=10"A. 1,=0 mA
16=10"A. 1,=0 mA
Ic= 10"A. 1,=0 mA
VcE =10 V. IF=O rnA

1.0
1.0
1.0
1.2

V
V
V
V
V

1c.=2 mAo IF=16 mA
Ic=I,=50 mA
Ic=2 mA.I,=1 mA
Ic .. l0 inA. 1,=5 mA
Ic=50 mAo IF=10 mA

ICEO

Ic= loo"A. IF=O mA
Ic=loo "A.IF=O mA
Ic=100"A. IF=O mA
. IE-l0"A. IF=O mA

VCE(sall
MCA230/2311255

Resistance Input to Output
Switching Times
t.,

....

100
200
0.5
7500
5300
100

%
VCE=S V. IF= 10 rnA
%
. VcE =5 V. IF= 10 mA
pF
VDC
t=1 sec
VAC AMS t=1 sec
GQ

ffi 100 '--- -t-+l''--t-+-+---l

!:: ~~ -1~

".
".

RE=loo Q. VcE =10 V

~_y,/~-1_+--+---I

20 -

0.9 • 1.0 "'1.11.2

1.3

1.4

1.5

1.6

FORWARD VOLTAGE (VOLTSI

DARLINGTON
TRANSISTOR CURRENT
100

II,

~ 90

~

60
z
w 70
II::
a: 60
I-

"

50

0

40

e;

l-

-12 mA
I, '10mA

I I I
/

1II,"SmA

/

I I
} I, ·6mA.

/

e;

e; 10

.!'

va VOLTAGE

I I I

I

w 30
-'
-'
0 20

Specifications are subject to change without notice.

/
'1+-t._+-+-t

-'-"+--+-t-+--i---J

40 - -

~

"II::

10
35

"t-t-

I

1,20

Coupled Characteristics

DC Current Transfer Ratio
MCA230. MCA255
MCA231
Capacitance Input to Output
Withstand Test Voltage

I

140

30
30
55
5

.

0

10 20 30 40 50 60 70 60 90
COLLECTOR VOLTAGE IVI

DARLINGTON
TRANSISTOR OUTPUT
CURRENT VS VOLTAGE

~
~

200 r-r-r-.---.r--rr--r--"T--"T-"T-;

L1

160

-'. I .11

I,' 5O.mA..... ~

..l-"'1

~ : : 1-1, • 40 mA.·_I-~-::Io".lf'......!--+-±:..I

~ "I 1

5120

~

100

.... ~mA

r.=~=t=l~$~I~I;,;;~
I ~mfI

~j

80
60

8

4°r-t-t-ti~~~~~~
I, • 10 mAL

.!' 20

I-

I,

1-t-+-+II#f:I-,+''::0 I 1 1 1

.2 .4 .6 .8 1.01.21.41.61.8 2.0
VeE COLLECTOR VOLTAGE IVI

DARK CURRENT VS
TEMPERATURE

~

10'~~~~~

1=

/

~ 10'~~~~~~~~~~

~ 102~~~~~/~~~~~

~101i_
~

.E

1

1

o

25

50

75

100

125

TEMPERATURE lOCI
MCA230/23l1255

5-86

MCT2/MCT2E

SIEMENS

PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)

1;

,340(80641
.360 (9J4)

TOP VIEW

1·~1;;J...J::;;L....I=-I

-6.

.240

ANODE
CATHODE

"V

(5.10)

(060}
160

~

NC3

LJ.'-r-r...-.-T""T""'

..

~

BASE
COLLECTOR

.EMlnER

LED CHIP ON PIN 2
Pi CHIP ON PIN 5

....
:t~-1mct~

I~
.280

,~.

~

.150

I

a.lll

im
(~~--1

(~

I

I

I-

~

---r~
(,762)

I

.'16(.400)", \.
.1I21l(.508l

lIll

.100
-(l54)

""

FEATURES

Maximum Ratings

•
•
•
•

Gallium Arsenide LED
Power Dissipation at 25°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .... 200 mW
Derate Linearly from 25°C ......................................... 2.6 mW/oC
. .... 60 rnA
Continuous Forward Current .......

7500 Volt Withstand Test Voltage
0.5 pF Coupling Capacitance
CTR Minimum: 20%
Underwriters Lab Approval #E52744

DESCRIPTION
The MGr2 and MGr2E are industry standard
optocouplers, consisting of a GaAs infrared
LED and a silicon phototransistor. These
optocouplers are constructed with a high
voltage insulation, double molded packaging
process which offers 7.5 KV withstand test
capability.

Reverse Voltage

............. ,

................ 3 V

Detector Silicon Phototransistor (each channel)
.................
..200 mW
Power Dissipation at 25°C ... .
... . . . .. . . . . .
. .2.6 mW/oC
Derate Linearly from 25°C ......... .
. .................................. ~V
Collector· Emitter Breakdown ... .
.. ................. 7 V
Emitter·Collector Breakdown .. .
Collector·Base Breakdown .... .
' " .. 70 V
Package
Total Package DiSSipation at 25°C (LED plus Detector) ... .
Derate Linearly from 25°C ....... " . . . . ... . . . . . . .. .. .

. .250 mW
. " ..... 3.3 mW/oC

Storage Temperature ............................................ -55 to + 150°C

Operating Temperature......................
Lead Soldering Time at 260°C.

.-55 to +100oC

.......................

. ...... 10 sec

Electrical Characteristics (Tamb =25°C)
Min
Gallium Arsenide LED
Forward Voltage
Reverse Current

Junction Capacitance
Photatransistor Detector
BVCEO
BV Eco
BVCBO

Typ

Max

Unit

1.1

1.5
10

V

IF~20

~A

VF~3

50

pF

VF~O
Ic~

2

V
V
V
nA
nA
pF

30
7
70
50
20

ICEO

ICBO
Collector·Emitter Capacitance
Coupled Characteristics

VeE (sal)
DC Current Transfer Ratio
Capacitance Input to Output
Withstand Test Voltage
Resistance Input to Output
Switching Times
too
tofl

5-87

20

Condftlons

0.1
60
0.5

0.4

rnA
V
V, f~1 MHz

1 rnA,

IF~O

rnA

IE~100~A, IF~OmA

10 J<

Collector current veraul
diode forward current

..

1

i

I!J
VCE_50V-

.

0.8

"

1

Normalized to:
IF= 10mA
Vee .10Y
TaMl = 25°C

2

VI

-20

-4

~

,~.

Output current
Yenlua temperature

1000

. ,,""

0.'

VCf(V)

typical leakage currant
versus Imblent temperature

1

,~

IF .. HJrnA.

50100

"

"\~

.2 .0
'

'"If
1

1.2

,1.1

1

Loadr~stance.Rt.(Kn)

0

j

IF = 5.0mA

rON

.01
0.5

If = 10 mA

DI

I

DI

1.3

IF" zomA

I.O~
0.'

/
0

I.

Normalized

_OIl
..........

100

~plcal forwlrd voltage
versu8 forward current

Collector current venlUI
collector voltage

~

---

I

-25

AMlien1temperatureC"C)

0
25
50
ArOOientte~erature(°C) .

75

100

"

~lWIIrdcurren1.lF(mA)

Swttchlng time !eM Khematle and waveform.

Vee= 10V
INPII1

,.Jr------ill~

:-~-:

I~:·t

~

,j-'j-I,....,,
i
DUTPUT'
:'3,L
""'---- ,
10% - -

I I

9O'Iio - - - - -

MCT6

5-90

MCT270 thru MCT277

SIEMENS

PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)

ru'

1;l:~~:i:1

".I~

TOP VIEW

'~'

ANODE
CATHODE l

-V

i6.6Q

.Il0l

1l-Fl--f"1-f'''H

r

17.111
i8.38J

I

.048

il~.j
..., i-

• 7500 Volt Withstand Test Voltage
• 0.5 pF Coupling Capacitance
• CTR Minimum: MCT270 - 50%
MCT271 - 45%
MCT272 -75%
MCT273 -125%
MCT274 - 225%
MCT275 -70%
MCT276 -15%
MCT277 -100%
• Underwriters Lab Approval #E52744

DESCRIPTION
The MCT270 through MCT.277 are industry
standard optocouplers, consisting of a GaAs
infrared LED and a silicon phototransistor.
These optocouplers are constructed with a
high voltage insulation, double molded pack·
aging process which offers 7.5 KV withstand
test capability.

Maximum Ratings
Gallium Arsenide LED
Power Dissipation at 25°C ................ 100 mW
Derate Linearly Irom 25°C ............ 1.33 mW/oC
Continuous Forward Current.
. ... 60 rnA
Reverse Voltage . . . .. . . . . . . . .
. ..... 3 V

Detector Silicon Phototransistor
Power Dissipation at 25°C ................ 150 mW
Derate Linearly lrom 25°C ............... 2 mW/oC
Collector-Emitter Breakdown ................. 30 V
Emitter-Collector Breakdown ............
. .7 V
Collector-Base Breakdown. . . . . .
. .. 70 V

.130

,33<1

f 'lBl)
~.I50

...

Ll

3XJ

(.2031

mlt:...jj.
FEATURES

• EMITTER

LEO CHIP ON PIN 2
PT CHIP ON PIN 5

NO
U.181
12.03)

.280

BASE
COLLECTOR

-El
~-IJ.L~ ..

1J

~

<:.

NC )

Electrical Characteristics (T8mb =25°C)
Min
Gallium Arsenide LED
Forward Voltage
Reverse Current
Junction Capacitance
Phototransistor Detector
BVCEO
BVEBO
BVCBO
Iceo
Coupled Characteristics

Typ

1.5
10
50
30
5
70

VCE(sat)

DC Current Transfer Ratio
MCT270
50
MCT271
45
MCT272
75
MCT273
125
MCT274
225
MCT275
70
MCT276
15
100
MCT277
CTRcE rnin.=12.5%@Vce =0.4V, IF=16 rnA
MCT271-276
CTRcE min. =40% @Vce =0.4·V, IF= 16 mA
MCT277
0.5
Capacitance Input to Output
Withstand Test Voltage
7500
5300
Resistance Input to Output
100
Swttching Times t"" toll:
MCT270, 272
MCT271
MCT273
MCT274
MCT275,277
MCT276

Package
Total Package Dissipation at 25°C
(LED plus Detector) . . . . .
Derate Linearly Irom 25°C. .

. ....... 250 mW
. .... 3.3 rnW/oC
Storage Temperature ................ -55 to +150 oC
Operating Temperature .............. -55 to + 100·C
Lead Soldering Time at 260°C ............... 10 sec

5-91

Max

50
0.4

Unit
V

Conditions

"A
pF

IF=20 rnA
VF=3 V
VF=O V, 1= 1 MHz

V
V
V
nA

Ic=1.0 rnA, IF=O rnA
le=loo"A,IF=OmA
Ic=10 "A,IF=O rnA
VCE = 10 V, IF=O mA

V
%

Ic=2 rnA, IF= 16 rnA
VcE =10V,I F=10mA

90
150
250
400
210
60

pF
VACpEAK
VACRMS
GQ
~s

10

7
20
25
15
3.5

I

1=1 MHz
l,o:S1 O"A, t=5 sec.,
RH:s50%
V,_0 -500 VDC
RL = 100 Q, Vcc=5 V
Ic=2 rnA

'tYpical switching times
\lersus load resistance
•000

.

Input
IF'" 10 rnA
Pulsewldlh"" lOOmS
Duly cycle" 50%
lseeSwitctnng lime test
schematic

waveforms

.00

"'"

V

"

•
5~

..

•

/
/'

05

~

.,

Tamb" 2S"C

.

If .. 2ilmA
If .. 10 rnA

------

05 ;;:;--

..

TON

5

•

500

I
VCE-50V-

~~: ~~=;?

,~

~

40

60

Arrblenllemperature tGel

..

5
VCEIVI

.S

Tamb = 25"C

t

"
80

'00

IF

.120 rnA

IF .. lOrnA

'F

.1'mA

I

•

••

.

I

4 VCE _tOV

I

/II
ff

-25

25
50
AmblenitemperaluretOC)

..

Forwardcurrenl, JFlmA)

.

'00

Collector current versus
diode forward current

Normalized to:
5 IF 10 mA

=

--

VeE = 10V

----

Tarnb '" 25"C

------

IFfr-

-55

0

'.9

I•

f/

.'

1f> C

If"' lOrnA

2

//I

'Poe
,»,,!"

.f,.o

Normalized to:
IF ... IOmA

J

.. -$~

1.1

~

Output current
versus temperature

.000

,»,,!

E

..

50100

..

'.2

g

i

V

Load reSIStance. RL tKO)

20

~

If. SO rnA

"If

'TYplcalleakege current
versus ambient temperature

•-20

"

Normalized 10:
5 IF'" tOmA
VeE .tOV

V

V
............ r-

~pical forward voltage
versus forward current

Collector current versul
collector voltage

•
.5

•

/

.-----

.5

..............

75

..

.00

.

20

ForwardcurrenI,IF(mA)

Switching time test schematic and waveforms

Vcc=5V

INPur o.Jr--,-------iI'~
1-"'-1
1--"'
-1
i-""r I
,,,,-1 1
I

I

I

I

r'·1

1- ,
1 1-"·1

.UlPuro3Li:1
10% - -

I:

Pulse width = 100 !l5
Duty Cycle = 10%

i~:'
I

I

I

5fliIII - - - .
9(1% - - - - -

MCT270 Ihru MCT277

5-92

SIEMENS

SFH600SERIES
PHOTOTRANSISTOR
OPTOCOUPLER

Package Dimension in Inches (mm)
.3077.8

.29117.<)

(j

O.·

§.

24816J1

,

,

5

ANOIE
CATHOIE'

;;.

Ne 3

BASE
5 OOLLECTOR

4 EMITTtR
LED CIIIP (II PIN 2
PTCH1PONPINS

Maximum Ratings
Reverse Voltage (VR) .•............••..•...•..••..•••....•......•.... 6 V
Forward Current (IF) ....... , ..••..•...•.••..•..........•.... , ••..• 60 mA

FEATURES
•

High Quality Premium Device

•

Long Term Stability

•

High Current Transfer RatiO,
4 Groups
SFH 600·0, 40 to 80%
SFH 600·1, 63 to 125%
SFH 600·2, 100 to 200%
SFH 600·3, 160 to 320%
• 5300 Volt Isolation (1 Minute)
• Storage Temperature -55 to + 150 0 C
• VCE SAT 0.25 «0.4) Volt
IF = 10 mA, Ie = 2.5 mA
• UL Approval 'Es2744

· 4
•

VDE Approval #0883

~ VDE Approval #0884 (Optional
with Option 1, add ·X001 suffix)

~~~:rCD~~;~~~i~~)I(~;)1~~.S. ~ ~ ~ ~: ~::',:: ~:::::',:::',',',',',::::',:',:::: '1~'!~
Detector (Silicon Phototranslstor)
Coliector·Emitter Voltage (CCEO) ..•...........................•...... 70 V
Emitter-Base Reverse Voltage (V ESO) • . . . . . . • . . . . . • . . . • . . . . . . • • . • . . . • .. 7 V
Collector Current (lC) .•........•...••.....•...•..•.........•...•• ,. 50 rnA
Collector Current (ICS), t = 1 ms . • . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. • ... 100 mA
Power Dissipation (Ptot) .. . . . . . . . . . . . . . . . . • • . . . . . . . . . • . . • . . . . . . .. 150 mW
Coupler
Storage Temperature (Tstor) . . . . . . . . . . . . . . . • . • • . • • . . . • . . . .. -55 to + 150·C
Ambient Temperature (Tamb) ........•...•......•.. , . . . . . .. -55 to + 100·C
Junction Temperature (Tj) •..•••.•..........•.....•..•••............ 100·C
Soldering Temperature (TL), 1 Min ................................... 260-C
Isolation Test Vollage (1 Min.) (ViS> (between emitter and detector referred to
standard climate 23/50 DIN 50014) . . . .. . . . . . .. . . . .. .. . .. . . . . • . . . . 5300 V
Tracking Resislance . . . . . . . . . • . . • . . . . . . • . . . . . . . . . . . . . . . • • . . .. Min. 8.2 mm
Air Path., .....••...........•.•..•...••.....••...• , .. ··•··· Min. 7.3 mm
Tracking Raslstance
Group III (KC = >600) in accordance with VDE0110 ~ 6
Tabl. 3 and DIN 534BOIVDE0303, Part 1
As to nominal isolation voltage VDE 0883 applies.
Isolation Resistance

(A,s> at V,. "" 500 V...............................

Flammability
DIN57471 or VDE0471, Part 2. of April 1975 or MIL·202E, Melhod 11A

Characteristics (Tamb

DESCRIPTION
The optoelectronic coupler SFH 600
comprises a GaAs LED as the emitter
which is optically coupled with a
silicon planar phototransistor as the
detector. The component is located in
a plastic plug·in case 20 AB DIN 41866.
The coupler allows to transfer signals
between two electrically Isolated
circuits. The potential difference
between the circuits to be coupled is
not allowed to exceed the maximum
permlssable Insulating voltage.

1011 n

Climatic Conditions
DIN 40040, Humidity Class F

=25 ·C)

Emltto"GaAs LEDI
Forward Voltage (VF)' 'F = 60 mA ....... .
Breakdown Voltage(VSR),IR = 100l'A ....... .
Reverse Current (lR), VA = 3 V ..
Capacitance (CO), VR= OV. f = 1 MHz ....... .
Thermal Resistance lAth Jamb)

1.251,;1.651 V
....... 301~6)V

. .. 0.01 (:s 101 I'A
. ... 40pF
750 KIW

Detector (Silicon Phototransistor)
Capacitance. (VCE = 5 V. f = 1 MHz)

CCE'
eee·
CEe
Thermal Aesistance (Ath Jamb) .' .

5.2 pF
6.5 pF
9.5 pF
500 KIW

Coupler
Collector·Emitter Saturation Voltage (VCE sat)
If=10 mA.le=2.5mA) ...................................... 0.25 (,;0.41 V
Coupling Capacitance (CK) ........................................ 0.55 pF

5-93

The optocouplers are grouped according to their current transfer
ratio 1eII, at VcrF5 V, marked by dash numbers.
-0

-1

-2

-3

lell, (1,=10 mAl

40-80

63-125

100-200

180-320

%

lell,(I,=l mAl

30(>13)

45(>22)

70(>34)

90(>56)

%

Collector-Emitter
Leakage Current
(VCE=10 V) (ICEo)

2 (S35)

2(';35)

5(,;35)

5(,;70)

nA

Linear Operation (without saturation)
Rl ,75Q

I,

-

~
4m
::

1,-

V,,=5V

Load Resistance

F\.

75

n

Turn-On Time

r...

3.2 (,;4.6)

""
""
""
""

Rise Time

2.0 (';3.0)

\,

Turn-Off Time

3.0 (,;4.0)

k

Fall Time

2.5 (,;3.3)

~

Cut-Off Frequency

kHz

250

Fco

Switching Operation (with saturation)

:g'+--I~",~lkQ:OP:'~~Linputs
L

_

' with a 2.7 kO
pull-up resistor

+5V

TTL levels are
observed but
no TTL
switching times

.

TTL

-0
(1,=20 mAl

-1 and-2
(1,=10mA)

(1,=5mA)

r...

3.7 (';5.8)

4.5 (,;6.2)

5.8 (sS.Q)

\,

2.5 (';4.0)

3.0 (,;4.2)

4.0 (,;5.5)

k

19(,;25)

21 (';27)

24 (,;31)

~
VCESAT

11 (';14)

12(,;15)

14 (s18)

Group

Turn-On Time
Rise Time
Turn-Off Time
Fall Time

=9~h'7kQ_

0.25 (sO.4)

-3

""
""
""
""
V

SFH600

5-94

Minimum current transfar ratio
a. 8 function of diode current

4; .. fil,l

I,

.

T." flM

%
300

1; ./(/,)

VCE=5V

'4

'4

10'

10'

-

200

2

~
10'

10'

0
1
2
3

10'

?""

I

'0'

3

100

10' mA

10 0

-1,

Currant tran.far ratio a. a
of diada current (T.", ..

~unction

t"f(lf)

i;=/(hl

VCE=5V

""

Currant t,anaf., ,atlo .a a
function of dlod.current (T.....

500c)

4;-""11,)

VCE=5V

,

'4

'4

10'

10

Ie

l

,

vI--"

*"1

r

0

1'\

1

,:/::V
10

2
3

:It

76"C)

VCE=5V

'4

T,

10' V

'O'mA

--1,

Currant transfer ratio as a
function of diode currant (T...II = 25"C1

10'

0
1
2

_,1

/
o

VCE=5~

,......

r
rV
10'

J

'00

I

Current tran.f.r "tiD as. .
function of dloda current (T''''II "" OOC)

Current transfer ratio a. a
function of diode current IT.... ... -25"C1

IT,"'II ... 26OC, Vel - 5 VI

5

,0,

0

I'-.

1
2
3

10

0
1

,~

2

3

10"

--1,

10"

'O'mA

10'mA

--r,

Currant tran..ar ratio •• a
function of temperatura

,"

-';=fln

'4

10"
10 '

100

--I,

10' lIlA

Transistor characterlatlcs (8 = 6501
Ie =-1(VcEI

(IF=10mA,VCE==5V)

(Tamb=2S·C,IF==O)

GroupZaa

mA

10

30

I
I

Ie

I~

If

/"

3

,

10

-- I

2
1

,5
,0

I-

I
I.=30pA

I
1.=20",

I •• 15pA
1.=,.",
11 =5~A
1 •

,
25

50

--r

75'C

15V

SFH 600

5-95

...

Coilectar-.",IIt"otf-st.t.cu".nt

Output ch,nteteri.tlc. Ie - ltv,",

S.. uration \loltl"" 'function
of callecto, CU"lnt Ind ."odul.tlon d_th
for SFH 800.0
lr.oIIII!=25 'C)
V Vcon,=f(/cl

l(;€o =IIV, 1)

ITamb=2S-CI' Group2&3

(Tamb=25"C,IF=O)

r-T"I

1,0

v,
!

r---

Y

1,'"

IIA

1,:10

A

Illrmt

TTTTT",---,-r,Tr

J

o,g

lJJ'

I

! : f--<--Ht+W''--jI, U!I

I,,,'" ;!..

f-

"

Vet ..

e

:'

I:'

4=7 A

,"

"
1,=1

1,=2 A

.,

IS V

100

-I,

_Va

V (Tamb::2S"C)

1.0

1,0

la .. U

!O~

"Ch,tU

O,T

, 0.7

0,0

0,0

0,'

0,'

0.'

...

10

0,1

'IO'.A
- - ' I,

°

0,'

~
L

.

h""(j

lV

O,l

~!

20

0,1

'

oW

ZOO

120

I
I,

I ..

!

,

\T,ansistor

..

\

100

I" \
Diod,

50

,\
~

I

-.

,,'_~'__ ~_...l--.J
~O· ~
'0'- 10'! '0·: '0 . ,0= 10' S

25

50

75

rP

fJ'v"

I
1
:"-

"

'\

\j

I

-'"

.''

ITamb::2S·C: f= 1 MHz)

25

.'C

'I

I'

TI.ns;Stolc.p_citlnCIIC=IlV.l

30

,,~

!,

I
ii' ' Iii ' I

o •.!

..

ZI"C

1,\

: I:

:

I,:h{c

10

I.-11ft

I

::i i!

IF:'::;/c

0,2

'-mllllllltlpulM ...ct

. . . . .til","'. T_ •

11/

!

,'I

1,=1(-)
0,'

I

O,l 1-:-II,=2x/c

II
II

0,1

I

U

[//,=lalc

O,l

lD

0,0

'02111A

III !
iT !'-'

1"

O,T

_I 1.= Ic

0.'

1/

0.'

Jill

c

M

IFdl~(:-I

.."

V (Tam b=2S"C)
I~

•

10'
5
--Ie

D.... c.,.clt.noe c .. Itv.l
(Tam b=2S"C.f::1 MHzl

a.tur.tian volt.,••s I function
of call.ctor cun,nt Ind ."adlliltion d.pth
for SfH 601)..1
VOl ..· -111,1

S,tur.tlon volt. . . ~, fuftCtlolt
ot collector cu".n~ and madul.tion d.pth
for SfH IlOO-2
v" ... = III,'
V ITamb ",2S"CI

S.,ur.tian vol ..' •••• function
ofcoillctorculrentlnd."odul.tiondepth
fOI SFH 800'VeE .. • = 111,1

5

50

75

--r..

100'(

--v.

%

I,

'" - - - - - - - - -

r.

•. 100

----VeE
Rl

-----~----

-

_

~. -.::::: -

_ _ ~_ .

_

''''

--~50%_

,,--- -'---_._.- ------li'l__
110'0'

=5V

'" 1 kO
7'Mb .. eooc

t, =SOmA
.
Measuring current'; 10 rnA
Conl;••n•• coelf;.;en'
S = 60%

.'
SFH 600

5-96

SIEMENS

SFH601 SERIES
PHOTOTRANSISTOR
OPTOCOUPLER

Package Dimension in Inches (mm)

~
Oc.:J\

O·
.248(6.3)

•

5

3

•

AIIOIlE~'1IA8E
~

.,.THODE'

Me 3 .

5 COUB:IOR
4 EMITTER

Maximum Ratings
Reverse Voltage (VR) .••.....•••••.••••••.•.••...•••••••••••••...•••• 6 V
Forward Current (IF.) •• . . . • • • • . . • . • • • • • . • • • • . • . • • • • • • • . . . . . • • • • • . .. 60 mA
Surge Current (tFsl, tp = 10 pS •••••••••••••••••••• , ••••••••••••••••• , . 2,6 A

Power

FEATURES
• Highest Quality Premium Device
• Built to Conform to VDE Requirements
• Long Term Stability
• High Current Transfer Ratios, 4 Groups
SFH 601-1, 40 to 80%
SFH601-2, 63 to 125%
SFH 601-3, 100 to 200%
SFH 601-4, 160 to 320%
• 5300 Volt Isolation (1 Minute)
• Storage Temperature -40' to +150'C
• VCEaat 0.25 « 0.4) Volt at IF = 10 mA,
Ic=2.5 mA
• UL Approval #E52744
• ~ VDE Approval #0883
• ~VDE Approval #0884 (Optional
with Option 1, add -X001 suffix)
• CECC Approved

DESCRIPTION

~lsslpatlon'(Ptod

••••••••.•••••.•••.••••••••••.•.•••..•.•• 100 mW

Detector (Silicon Photolrlnal.tor)
Conector·Emltter Voltage (VCEO) •.••••••••••....•.•••.....•••.••.•••• 70 V
Emltter·Base Reverse Voltage (VEBO) ..•••••••..••.••••.••.•..•..•••••. 7 V
Collector Current (Ie) • • • . • • . • • . • . . . . . • • • . . • • • . • . • . . • • • • . . • . • • • • • • •• 50 mA
Collector Current (Ics). t = 1 ma •...•••..•..•••..................... 100 mA
Power Dlsslpatlon.(Ptot) •••.••••••••.••.•.•••••••..••••••••..•••. 150 mW

Coupler
Storage Temperature (Tstor) •••..•••..•.....••••••..••••••. -40 to -+l50·C
Ambient Temperature (Tamb) • • • • • • • • • • • • . . • • • • . • . . • • • • • • •• -40 to -+100·C
JUnction Temperature (Tj) ••.•••••••.••••••.•..••••••..•.•••••••.... 100·C
SOldering Temperature tTL). 10 s Max................................ 260·C
Isolation Te.t VOltage (V,al, 1 Min per VDE 0883 • • • • . . . • • • • • . . . . • •• 5300 vee
(between emitter and detector referred to
standard climate 23150 DIN 50014)
Tracking Resistance •.••.....••.••••••••••.••..•••••.•••••••• Min. 8.2 mm
Air Palh •.......•...•••.•.••••••..••••.•...••••••••.••••••. Min. 7.3 mm

Tracking ROII'tlnce
Group III (KC= >600) In accordance with VDE 0110 j 6
Table 3 and DIN 534801VDE 0303, Part 1.
As to nominal isolation voltage DIN 57883 or VDE 0883 applies.

10010110n ReSistance (Rial 01 V,. _ 500 V ............................. t011 n
Climatic CondlDona
DIN 40040, humidity CI.s. F
Fllmmoblll1y
DIN 57471 or VDE 0471, Part 2,
of April 1975 or MIL202E, Method 11 A

The SFH601 is an optocoupler that is com·
prised of a GaAs LED emitter which is
optically coupled with a silicon planar
phototransistordetector. The component is
packaged in a plastic plug-in case 20 AB
DIN 41866. The coupler transmits signals
between two electrically isolated circuits. The
potential difference between the circuits to be
coupled is not allowed to exceed the maximum permissible insulating voltage.

5-97

.Chara~terlstlcs (T amb =' 25'C)

Linear Operation (without saturation)

Emiller (GaAs LED)

IF
-

Forward VoltageWF), IF=60 rnA ... , ......................... 1.25(s 1.65) V
Breakdown Voltage (VBR), )R= 100,,", ............................. 30(;06) V

RL=7Sn

~

Reverse Current (IR), VR =3 V."••••.•••..••••••••••••••••••••••• 0.01 (s;10)/lA
'. C~pacltance (CO)
.
(VR=OV;f=l MHz) .............................................. 40pF

:::

V,p=SV

.1(-

47n

Thermal Resistance (RthJamb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 750 KM

Detector (Silicon Phototranslltor)
Capacitance tVCE; 5 V; f == 1 MHz)

CCE ......... , ..................... , .......... : .................... 6.6pF.

~~: :::::: :':::.':::::::::::::::::::::'::.::::::::::::::: :':::: :.:::.6;~ ~~

Thermal Resistance (RthJamb) .................................... 500 KJW

Coupler
Coliector·Emitter Saturation Voltage (VCEsat)
(IF = 10 mA, Ic =2.5 mAl ......................... , ... 0.25«0.4) V
Coupling Capacitance (CK) . . ... . . . . . . . . . . . . . . .. . . . . . . . . . .. 0.30 pF

-1

~

-3

-4

40-80

63-125

100-200

160-320

'%

Ie II, (1,=1 mAl

30(>13)

45(>22)

70(>34)

90 (>56)

%

Collector-Emitter
Leakage Current
(VCE=10V)(lceo)

2(,;50)

2(';50)

5(,;100)

5(,;100)

nA

R..

75

0

~

3.0 (';5.6)

(IS

Rise Time
Turn-Off Time
Fall Time
Cut·Off Frequency

The optocouplers are grouped according to their current transfer
ratio lell.at Ver 5 V, marked by dash numbers.

lell, (1,=10 mAl

Load Resistance
Turn-On Time

\,

2.0 (';4.0)

(IS

\""

2.3(';4.1)

(IS

~

2.0 (';3.5)

(IS

250

kHz

Feu

Switching Operation (with saturation)

3-'.
IF

.

1kn

V,p-5V

~~".
~~
--,----,----

or 2 TTL
, with
a 2.7inputs
kO
pull·up resistor

~
+S:'7kn

TTL levels are
observed but
no TTL
switching timeS

Group

-1
(1,=2OmA)'

Turn-On Time
Rise Time
Tum-OIl Time
Fall Time

.

TTL

.

~.nd-3

.

.-4

(1",10mA)

(l,=SmA)

~

3.0(,;5.5)

4.2(,;8.0)

6.0(';10.5)

(IS

\,

2.0(,;4.0)

3.0 (';6.0)

4.6(';8.0)

(IS

\""

18(';34)

23 (';39)

25 (';43)

(IS

~

11 (';20)

14(,;24)

15(';26)

(IS

VCESAT

0.25.(SO.4)

V

SFH601
5-98

Minimum curr.nt tranafer ratio
•• a fUnction of dlod. cUrrant
.. 25°C, Vl;~ .. 5 VI

IT.... b
I,

-;;""fll,)

Dfo

,

Current transfer ratio as a
function of diode currant IT.",b = _25°C)

Current transf.r ratio as •
function of diode current (T...b

*"""

10
r;
'" f(hl

VCE=5V

f(lF)

%
Ie 10

10 0

~
,.J..

V
I

/
100

1=
c-5f- tz-

f(h)

~

Ii' ::

I---

/
--

r/

5

10' '-10-' 2

5 10 ' 2 mA
--Ie

10'

Current transfer ratio a ••
~unClion of diode Current (T.... !>

t'" fUd

VCE=5V

2
-~

21/11

10-1

Current Iranafer ratio as a
function of diode current t T....~ "" 25"C)

1; '"

~

-~

/'

,VII

10

101
10'mA
--IF

l-!-la'

VII

t--.2
t--.l

~
P

0
10 '

I

f--

V

2

"

10

--

--

1

1
100

I---

I;

20 0

4

%
10'

Ie

T

DOC)

'"

VCE =5 V

'"

5 10'

2 mA

5 10'
--IF

Currant tranaf.r ratio aa a
fUnction of diode current (T."'b = 7 SOC)

SDOC)

~ '" f(/d

VCE=5 V

VCE =5V

I,

,

,

%
10

%

Ie

Ie

1

1

..!-.
~

V

la'

-

I--

...i-

,

2

/

10

4

~
2

1

.J-

V

2

10 2

1

1

/

V
10

,

10-' 2

1/

/

ill
5

10'

10'

10' 2 mA

5

[Iv
10- 1 2

,I
5

10'

--IF

,

% If

Ie 10

10 10-1 2

=fln

I

I

10,I

:3

' I
I 2

~~"Q~
20

I
I

I
I

1111

II

I,"IO~

1111
I," 20~A

I

I
10, I
-25

' I

10

I

,

1111
I," 10 ~A

I

I' ,
"

'

I

i

I," 51l A
Is= 2~A

I11IIII i I I
25

2 mA

Inl

I

,4

,

10'

1111

l
J

, I

I

5

mA

10

, I

10"

TransiateH characteristics (8 = 550)
II; '" fWed
(Tam b=25'C,IF=O)

(IF=10mA,VCE=5V)

Ii

1

5

--Ie

--IF

Current .ransfer ratio .s a
function of temperature

.!.£

10' 2 mA

5

/

17

50
--T

10

IS V

--VeE

SFH 601

5-99

CoI_ _ _

01001_ _ _ _
_ration VDIIage . . . IIInctIon

.......

output ......-otIc.l e =1(Vee!
(lamb = 25"C)

ICED· I (V, lJ (lamb = 25"C,
IF - 0)

~~II
lctoR

y

., "

I r;, l~

11

1

I

/, 50"

IS"

'.'

to
~

r~

L'~"~;~rrllHdM+l-H1

'.

lion depth lor SFH 801·1
VVCE ... - I(le> (lamb - 25"C)

7

0.&

I V

v-

O"to"

/

......

.

0.3

,

11111

010'

0.&

5

, II 5
10

~

IF-hie

0.3

11111

Irtil1

'0'

5.:11
5
--Ie

P"" • l(lamb)
I

I,

,

1

i

I

..

f\
f"l\
~

50

... '\\

••

25

.,

.-

' ,

!,
I

'IJ'
-v,

•

,v

'III1'-oopodW_
C • l(Vol (Tamb • 25'C: I - 1

pf MHz)

!4'rTT1rnmrmm1llOl'
22 F!'IIIIIII-+ttlllll--tt
10 1-tH1IF~/I-tI

1IH+HIIII-+l'IIIIII--H

..

1II+1-H11111-H-H""'<+
12

1'\

'0

a

r'\
I"

~
50

.

I.

'\~

I
I

5 ,.1O'mA
--Ie

I ..

I

,~rllnsist";'
.

...

I

I,

I

I

m

.'"

oW

I I. :

10'

/-t

'!

I

11111
5

'{

-11 r

I,-ble

-tI

r-

I

H
!

lJ)

IF.'2X/~

102mA

........lalble 1_ ...' ; _

"

I il
III il

~I

Permlosl",. pulos load

•

i

0

V. parameter, Tamb • 25"C,
IF' I(t)
'.

ZO

'I'

OJ

.L III

0

1(I2111A

-Ie

..

I

,-Ie

05

02

,

1I)2m"

I

1" ~

I'll I
·1

7

~

IF-laic

~

10'
5
--Ie

I

c

III

I

1/

"50

III

!

I

o.s

11111

I

-_I1onoeC-I(Vol
(lamb - 25"C,1 = 1 MHz)

OJ

0.&

~.

5

--T

I,I.~~

OJ

IF-2_.t:

0

'

lion depth lor SFH 801-3
v,VeE .., - 1(1e> (lamb· 25'C)

!

0.&

QZ

. ....

VCESlt0.9

05

,

-',

,.

tIon depth lor SFH 801·2
V VeE ... - 1(1e> (lamb - 25"C)
1D

0.3

II .'

I

I
I
I

OJ

_ _ voItop .. 81unot1on
01 008 _ _ _ modul..

_ _ VDIIage .. 8 function

01 collector o.nwnl_ mod.l..

T~i

II

0.3

--v"

~

/'

•

_.

'.'

1,-3xlc

u.s

75
-_T.~

••

.·c

r'\
25

SO

75

,

CO·C

_Ion 01 ....... 1 _ ratio . . . function 01,_ lime

'Ie

--.

i;' 1(0

'k

110

I

.!.L,
-..

i

100

90

-

-

-

J%
II
50%
,..~

Vo<
RL

- 5V
- 1 kO

T.... - 25"C
IF
= 60 mA
Measuring current - 10 mA
Confidence coefficient
S=60%

II

TI
.r

II
10' h

_f

SFH801

5-100

SIEMENS

SFH 601G SERIES
PHOTOTRANSISTOR
OPTOCOUPLER

Package Dimensions in Inches (mm)

,
0

AHOOE~'IIASE
~
C~CTOR

2

,

CATHODE 2

3

•

He 3

5

4 EMIMR

Maximum Ratings
Reverse Voltage (VA) ..............•....••........••...............•. 6 V
Forward Current (IF) .......•.•.................................... 60 mA

~~~:r CD~~:~~~i~~~,(~;)1~ ~.s. ~ ~ ~ ~ ~ ~
FEATURES
• Wide Lead Spacing
• Highest Quality Premium Device
• Long Term Stability
• High Current Transfer Ratios, 4 Groups
SFH 601G·1, 40 to 80%
SFH 601G·2, 63 to 125%
SFH 601G·3, 100 to 200%
SFH 601G.4, 160 to 320%
• 5300 Volt Isolation (1 Minute)
• Storage Temperature - 40° to + 150°C
• VCEsat 0.25 « 0.4) Volt
IF=10 rnA, Ic =2.5mA
• UL Approval #E52744
• &. VOE Approval #0883, #0805, #0806
@ VOE Approval #0884 (Optional
•
with Option 1, add -X001 suffix)
• eEee Approved

:::"":""::::::::""::::""::::"":'la~';':

Detector (Silicon Phototranalslor)
Collector·Emltter Voltage (VCEO) .••...............•.....•...••....•.. 70 V
Emltter·Base Reverse Voltage (VEBO) ...•......•............•.....•.... 7 V
Collector Current (IC) ...•............••............................ 50 mA
Collector Current (ICS)' t = 1 me ••.... , . . . .
. . . . • . . . . • . •. 100 rnA
Power Dissipation (Pto t ) • . . . . • . .. . . . . . . . . . . . .. .. . .. . . . . • . . . .. • . .. 150 mW

Coupl.r
Storage Te.mperature (T stor) • . . .. . .. . . . . .. . . . . . . .. . . . . . . ... -40 to + 150·C
Ambient Temperature (T 8mb) .............................. -40 to +100·C
Junction Temperature (Tj) .......................................... 100·C
Soldering Temperature CTd. 10 s Max. .•...
. •.•..••..•.•...•• 260·C
Isolation Test Voltage (Vis), 1 Min. . . . . . . . .
. ... 5300 VDC
(between emitter and detector referred to
standard climate 23/50 DIN 50014)
Tracking Resistance. • . . . . . . . . . . . . . . . . . . . . . • . . .
Min. 8.2 mm
Air Path . • . . . . . . • . • . . . • . . . . . . . . . . . . . . . . . . . . . • . . . . • . . .
Min. 8 mm
Tracking Resistance
Group III (KC = >600) in accordance with VDE 0110 i 6
Table 3 and DIN 53480NDE 0303. Part t.
As to nominal isolation voltage OIN 57883 or VOE 0883 applies.
Isolation Resistance IRisl)' @ Vis

~

500 V ........•.........•..... tot t

n

Climatic Conditions
DIN 40040, humidity Class F
Flammability
DIN 57471 or VOE 0471, Part 2,
of April 1975 or MIL202E. Melhod 11 A

Characteristics (T amb

=25 DC)

Emillor (OaAs LED)

DESCRIPTION
The SFH 601G is an optocoupler that is com·
prised of a GaAs LED emitter which is optically
coupled with a silicon planar phototransistor
detector. The component is packaged in a
plastic plug-in case 20 AB DIN 41866. The
coupler transmits signals between two electrically isolated circuits. The potential difference
between the circuits to be coupled is not allowed to exceed the maximum permissible
insulating voltage.

Forward Voltage (VF). IF~60 mA ....•..•.•.•..•..•.....•..... 1.25 IS 1.65) V
BreakdownVollage(VBR), 'R=100JolA.. ••••. ••.........
. ..... 30(~6) V
Reverse Current (IR), VR = 6 V ............................... 0.01 (~10)itA
Capacitance (CO)
(VR~OV;f~1 MHz) ...•..•.....••........•.....
. ...•.... 40pF
Thermal Resistance (RthJamb) . . . . . . . . . . . .
. ........... 750 KNI
Detector (SlUcon Phototranslstor)
CapaCitance (VCE~5 V; f= 1 MHz)
~

........................................................

~~

CeB .................•...............•.......................... 8.5 pF
eEB ...........•...........•......• : ....•..........•...........• 11 pF
Thermal Resistance (RthJamb) .................................... 500 KIW

5-101

Cheracterlstlca(Contlnued)

Coupler
Coliector·Emitter Saturation Voltage (VCEsat)
(I F =10 mA,lc=2.5 mAl ......................•••.•. 0.25 «0.4) V
Coupling Capacitance (CK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.30 pF
The optocouplers are grouped according to their current transfer
ratio Ie/IF at VerF..5 V, marked by dash numbers.
-1

-2

-3

-4

loll, (1,=10 rnA)

40-80

63-126

100-200

180-320

!o"F (~.. 1 rnA)

30(>13)

46(>22)

70(>34)

90(>66)

poIlector-Emltter
Leakage Current
(V..=10 V) (I.,..,)

"
"

2($50)

2($50)

5($100)

5(,,100)

nA

Linear Operation (without saturation)

1.=10 rnA, Vop=5 V, T....=25"O

F\
r".

75

n

3.0 (s5.6)

ps

\,

2.0(,,4.0)

ps
ps

Fall Time

t"".
\.

2.3 (S4.1)
2.0("3.5)

ps

Cut·Off Frequency

FOCI

250

kHz

Load Resistance
Turn·On Tune
R1se11me
Turn-Off Time

Switching Operation (with saturation)

3If

1kll

Vap - 5 V

"--'----f~
or2 TTL inputs
--..
"with a 2.7 kO
pull·up resistor

'5:'7kll

TTL levels are
observed but
no TTL
switching times

Qraup
Turn-On Time
Rise Time
Turn-Off Time
Fall Time

~
.

TT l

-1

-21111C1-3

-4

(1,=20 rnA)

(1,=10mA)

(1,=6mA)

r".

3.0($5.5)

4.2($8.0)

6.0 (s10.S)

ps

\,

2.0($4.0)

3.0($6.0)

4.6 (s8.0)

t"".

18($34)

23 ($39)

25 ($43)

J.IS
ps

\.

11 ($20)

14($24)

15(';26)

VCSAr

0.25($0.4)

J.IS
V
SFH601G

5-102

Minimum current tren.fer r.tlo
•••• unction 0' dlod. current
ITI"'b - 25"C. VeE - 5 V)
I,
'Ie T," flI,)

Current tran.fer ratio a. a
.unctlon o' diode currant (Tlmb

*" '"

300

'(hi

'"

Current transfer r.tio •• a
function 01 diode current (TI"'b .. O"C)

_25°C)

t"((lf)

VCE=5V

%

%

3

10 3

Ie 10

Ie

T

e-i-

200

1

VCE=5V

I-

-

~

/

W->l-

/

2

.2

101

4
I

100

r--2

1/

~
P'

1111

102mA

5

10"

10'

'--

.. -

2 rnA

Current transfer r.tlo •••
.unction ot diode current (T. Mb

Current tran,'er ratio ., 8
~unctlon ot diode current IT. mb .. 50"(:)
-/;=f(hl
VCE=5V

Current tran.fer ,atla a. 8
'unctlon o. diode current t T.Mb .. 25°C)
f(l,)

5

--I,

--1,

t"

1-

,~

II/

101

~

7

f?

/

1/1/

1"--1

10'

._.

I-

,

3

VCE=5V

t

= fUd

75OC)

-

VCE=5V

%

%

3

10 3

Ie

Ie

1

If
..!-.

-

e-i-

~

V

102

I-

2

/1--'

10 1

4

~

...l-

2

/

10 2

1

I

2
1

/

,

10

10-' 2

/

/

II
5

10'

10'

5 10' 2 rnA
--1,

'II

,/

10-'2

5

10'

5

--I,

Current transter ratio a. a
function of tamperatufe

.!.£..

% If

=

(In I (IF = 10 rnA,

5ffi
I

I

Ie = f(VeE)

30

1

550)

1111

II II

I~"14ci ~~

1

J

1111

0

I
I

I

I

10"

(Tamb =25"C. fF=O)

Ie

I

I! 'i21

=

5

rnA

!
4

,3
I

10 10-' 2

1Q1 2 mA

Tran.l.tor characteristics (8

VCE = 5 VI

Iel03,~mgl

1

/

/
17

IB" 3O~A

nn
IB" 20~A

,
10

1I1I

, !

II I

,Ii I:!' II

i

IB" IO~A

Ii

Ii! i lUiI
UIi I I [1jJ .11u
lo,LlJ.
I

-25

IB"
IB"

L' .

25

50
--T

75°C

o
o

5~A
2~A

10

15 V

--v"
SFH 601G

5-103

Forward YOlt.g8 V, .. fll,I

Output charact.,iltlca Ie .. flV..1

Saturatton IIOltag. . . . Iumrtlon
of collaclor currant and modu ..tlon depth
for SFH 101·t
VCE sal "" f(le)
1~ (Tamb",,2S"C)

Collector·.mltts,oft-st.t.curr.nt
lcoo .. flV. n,(Tamb:: 25"C, IF =0)

,

I
I
I

n

"

-,.,-

ICED

1

1 I~'

V't'·· o.s
O.1

'

I

OS

I

Ini

I

05

D.4

I

OJ

I

Q2

II
JI~Ht
I
II m
ll"jii
1111111

D.1
ISV

10

--I,

- - 'Vel

Stanu.tion voltags a•• function
ofcoliactorcu".nt.ndmCJdulationd.pth
tor SFH 801.2.
.
v VCEsat=f{Ie) ITamb =25"C)

I~25OW"-!'.l..L':2!:'S-'..USO:':'-'""'1S!-'-'-':!IOO'C

,~

10

los
;

1

as
OJ
Q2

/

.......

2
.1

11111
5

101
5
--Ie

..s

J

11111

,0'

..

11111
I F -3x/c

1

0

5

If- 2x k

•

O,7I--l-++ttfttt--++......,itI

1/

os

102mA

0

IF-hIe
11111

I III
5

1

nl~

..

j

10.1

"22

o

100-(

2

1'\

CO

"

•

•
'\

25

~;,

•

'\
o

I
I

0

'\

"

f\

.' V

pFl (T"rnb",,25·C; f= 1 MHz)

60

I"~

,~

-V,

Traftllltor c.paclt.ncH C. IIVJ

PermI,.1bIe1oas
diode Ptot = l(TamtJ

,.

-_T_.

!

iii, I

-i

..

'IS

I

:I!

--

8

50

11 ~

iii

ZO

1\
""ll\
1'-1\
25

I

I,

iii

.'

120

I
I

I
I

1'0

10

Diode

so

!

I

as f--H-t+'-4+'---/t-l-'I-+HftI
n.

"\i'lInsistOt

100

~:
'i
~.

c

30

l()2mA

Pennlsslble!oes
tran,lstorPklt=fCTllmbl

I,

II:V~I

(Tam b",,25-C, 1= 1 MHzl

Q2.~~

oW

'00

1Q2mA

o.sf--H+H*WLi·-r'~ftI

Irml

')01

5
--Ie

OF

a. f--H-t+Lf+tii---o

--Ie

Permissible pulse load
.
v=parameter, Tamb=25°C
IF = f{t)

104~!l!'mlj!~IIEE~EII

5

,

~

f--H-t+HttI~+-'--Y-'HI

'erEQI :

1111111

10,

Diode cepacltanoe C •

S.tur.llonwolt.g•••• tunctJon
ot collactor curr.nt and modutation depth
torSFH &01-4
V/VCEsat=f(fe) (Tamb=25"C)

1O,----"nTITH

I.'.~~

09

0,0'

--7

Saturation vollag. al a function
of collector currant and modul.tlon depth
tOIlSFH &01-3
V,VCE 9a1.:::1(le)
(Tamb",2S"C)

le ,

50

-_T_
75

2

100·C

--.

Variation of currant tra__ r ratio
. . . function of Io.d ti_

"

.

-';"'Itl

VeE = 5 V
RL
= 1 kO
T. mb = 25°C
IF
= 60 rnA
Measuring current = 10 rnA
Confidence coefficient
S= 60%

-,
SFH601G

5-104

SIEMENS

SFH 606
5.3 kV TRIOS*Q!) OPTOCOUPLER
HIGH REUFAST TRANSISTOR
Package Dimensions in Inches (mm)
.307 .8
.291 (7.4)

tj
.248(6.3)

0
1

3

FEATURES
• Isolation Test VoHage: 5300 V
• High CUrrent Transfer Ratios
at 10 mA: 63-125%
at1 mA: >22%
• Fast SWHchlng Times
• Minor CTR Degradation
• 100% Burn-ln
• Field-Effect Stable by TRIOS
• Temperature Stable
• Good CTR Linearity Depending on
Forward Current
• High Collector-Emitter Voltage
VcEo=70 V
• Low Saturation Voltage
• Low Coupling CapacHance
• External Base Wiring Possible
• VDE Approval Applied For

:

All00e~6BASE
~

CATHODE 2

4

NC 3

5 COI.LEC1'OR
4 !MlrnR

DESCRIPTION
The optically coupled isolator SFH 606 features a high current transfer
ratio as well as a high isolation voltage. It employs a GaAs infrared
emitting diode as emitter, which is optically coupled to a silicon planar
phototransistor acting as detector. The component is incorporated in a
plastic plug-in DIP-6 package.
The coupling device is suitable for signal transmission between two
electrically separated circuits. The difference in potential between the
circuits to be coupled must not exceed the maximum permissible
reference voltages.

"TRansparenllOn Shield.

5-105

Maximum Ratings

SWITCHING TIME

Emilio. (GaAs Infrared Emitter)

Switching Operation (with saturation)

Reverse Voltage ..........................................................................................6 V
Db Forward Current' ........................................................:...................... 60 rnA
Surge Forward Current (t,;10 JJS) ....................................................... :..... 2.5 A
Total Power Dissipation ....................................................................... 100 mW

Detoctor (Silicon Phototransistor)
Collector-Emitter Voltage ........................................................................... 70 V
Emitter-Base Voltage ..........................................................................:........ 7 V
Collector Current .......... :......................................................................... 50 rnA
Collector Current (t,;1 ms) ................................................................... 100 rnA
Total Power Dissipation ....................................................................... 150 mW
Oplocouplor
Storage Temperature Range ................................................ '-55'C to +150'.C
Ambient Temperature Range ................................................. -55'C to + 1OO'C
Junctlon Temperature ...........................................................;................. 1OO'C
Soldering Temperature (max. 10 S)') ..................................................... 260'C
Isolation Test Voltage 2 )
(between emitter and detector referred
tostanderd climate 23/50 DIN 50014) ......................................... 5300VDC
Leakage Path ................................... ;....................................:............. "8.2 mm
Air path ..............................................................................................."7.3 mm

:g,-t._+-,::o.c:~1_kQ_-<>V"
L

~:~

~~'~'m. ~...

0'
TTL inputs
= 52 V

with a 2.7 kO
pull·up resIstor

+5:'OIiQ

TTL levels are
observed but
no TTL

•

TTL

' ..

Tracking Rosistanco
In Accordance with VDE 0110 §6. table 3. and
DIN 53480/VDE 0303. part 1 ................................................. "1OO(group 3)
Isolation Resistance (V,o~500V) ............. :............................................. 10" n

Turn-On TIme

\,..

3.8(';4.5)

JJS

Notel:

Rise TIme

I.
k

2.5(';3.0)

JJS

1. Dip soldering: Insertion depth s3.6 mm.

Turn-Off TIme

2. DC test voltage In accordance with DIN 57883, draft 6'80.

Fall TIme

~
VcaAT

11 (s14)

(IS

8(,;10)

JJS
V

';0.4

Characteristics (TA';'25°C)
Einiller (GaAs Infrared Einitter)
Forward Voltage (1.=60 rnA)
Breakdown Voltage (1.=10 JIA)
Reverse Current (V.=6 V)
Capacitance (V.=O V. f=1 MHz)
Thermal Resislance

1.25 (S1.65)
30(;'6)
0.01 (,;10)
25
750

V ..
V

5.2
6.5
9.5
500

pF
pF
pF

C.

0.25 (,;0.4)
0.5

V
pF

Ie· I,
Ie. I,

63-125
45(>22)

%
%

ICEO

2(,;35)

nA

V,
BV
I.
Co

R".,.

JIA

pF

KNI

Detector (Silicon Phototransistor)
Capacilance
(V..=5 V. f=1 MHz)
(V",,=5 V. '=1 MHz)
(V..=5 V. f= 1 MHz)
Thermal Resistance

C..
C""
CEB

R".,.

KNI

Oplocoupler
Collector-Emitter Saturation Voltage
(1.=10 rnA. le=2.5 rnA)
Coupling Capacitance
Current Transfer Ratio
(1,=10 rnA)
(1.=1 rnA)
Collector-Emitter Leakage Current
(V..=10V)

VCfIAT

SFH606

5-106

Minimum currenttranslar ratio
vereus dloda forward currant
(T.=25"C,Vce=5 V)

300

Currenllransfer ratio (typo)
verSUB diode forward currant
(T.=25'C, V",=5 V)

10'

~

%

%

I,

!Lmin
I,

!

Currant transfer ratio (typo)
versuB diode forward currant
(T.=O'C, Vce=5 V)

5

1;

t 10'

200

100

10

-

V
10'

10'

-I,

""

,v

v

10'

,..,

Hila

10'
10"

mA 10'

Currant tran.fer ratio (typo)
versuB diode forward currant
(T.=25'C, Vce=5 V)

10'

10'
10'

5mA10'

-I,

Currant transfer ratio (typo)
versus diode forward currant
(T.=50'C,Vce=5 V)

,

SmAl0'

10'

Current transfer ratio (typo)
varsus dloda forward current
(T.=75'C, Vce=5V)

10'
I,

%
S

I,

!

1;

!

,

,/

10

10'

""

la'

SmA 10'

Current tran.fer ratio (typo)
veraus temperature
(1,,= 10 rnA, V",=5 V)

5

10' f--++t+ftttl-++H-1+llJ

10'MIm.

mo
10'

% 0'm
1
. .

1311

10'
10"'

10'

SmA 10'

-I,

-I,
ColiectoHmlllar saturallon voltage
(typ.) versus collector current and
control rsnge (T.=25'C)

Collector current versuB
collector.mltter voltage
(Current gain 8=550, T.=25'C, V,sO,5 V)

10'

I

%

:;:;:

I, =30~A
27.S~A
25~A
22,5~A

,

17,5~A

,

,

10

""

50 '[ 100
-1

[/1,=3.1,

0,2

5~A

25~A-r
2S

1//

0,3

7,5~A

Ii"

-25

IF =2x~c:-I

0,4

10~A

.- -t--i -

If

;

a,s

125~A

-l--.

,
10

0,6

•

j5~A

!

I
-

0,7

20~~

II

0,1

II

111~
10

VIS

10'

SFH606

5-107

Diode forward voltage (typo)
versus fOlWard current
1,2

If v

!

III

rl1'
I

1,1

[HIT I

I /1

25'(
50'(

~

, I

I I'I

I

-

-

I

1\ "

II
10

/i/
'" v" =12V

,

/

I

'/

,

Iii

!

~

I

J-

0,9 10.,

if
I

0508

50

25

75
-T

O(

Diode capacitance (typo)
versus reverse voltage

Permissible pulse handling capability
Forward current versus pulse width

(T.=25'C, f =1 MHz)

(D=parameter, T.=25'C)

,,%

o

100

10 '

10'

Permissible power dissipation
for transistor and diode versus
ambient temperature

30

200

pF
28

!

I

20

~

rnW

p

f-

24
22

rca

[co

I

/

26

"-

VeE = 35V

Irl'i

/
1,0

20
pF

~A

,

~75'(

I
I

(T.=25'C, f =1 MHz)

10'

I

i I'

Transistor capacitance (typo)
versus emitter voltage
.

Collector-emitter leakage current
(typo) of the translslor versus
temperature (1,=0)

150

\Transistor

1,\

18

1\

I

16

100

14
12
10
8

10' 0,5

""- \
Diode

50

~1
10'

OS06
LlJ.lliII.-'-1lJJJIL.LWJ"--l.illWILU.llJJl...l'b'"

10-5

Permissible forward current of the
diode versus ambient temperature

10-1.

10-~

10-2

10"

--I,

100

o
o

5 10'

"-1\

1""- ~

25

so

f\

75 '( 100

--T,

Current transfer ratio versus load time
(V",,=5 V,R,=1 kO, T.=60'C; 1,=60 rnA, Measuring current =10 rnA,
Confidence coefficient S=60%)
%

120
rnA

110

~

95%

~
60

I"\.

80 10'

25

50

75

O(

-- II

~
10'

10'
_I

"\.
o

50%

5%

90

"\.

30

o

~-

I"\.

II

1"--

100

--r.
SFH 606

5-108

SFH609 SERIES

SIEMENS

HIGH RELIABILITY
PHOTOTRANSISTOR
OPTOCOUPLER

Package Dimensions in Inches(mm)

~

I~I

6
O·
".CUI

•

5

3

,

ANOIlE~'BASE
~

CATHOIlE'

5 OOU£C1llR

Ne 3

-4 EMITTER
LEDCHIP(JlPIN2
PT CHIP ON PIN 5

FEATURES

Maximum Ratings

• Highest Quality Premium Device

Emitter (GaAs infrared emitter)
Reverse voltage
VR
DC forward current
IF
Surge forward current (/;;; 10 jts)/FSM
Total power dissipation
Ptot

• Built to Conform to VDE Requirements
• Long Term Stability
• High Current Transfer Ratios, 3 Groups
SFH 609-1, 40 to 80%
SFH 609-2, 63 to 125%
SFH 609-3, 100 to 200%
• Storage Temperature - 40° to

+150°C

• VCEsat 0.25 « 0.4) Volt
IF= 10 rnA, Ic=2.5 rnA
., VCEo90V
• UL Approval #E52744
• VDE Approval #0883

DESCRIPTION
The optically coupled isolator SFH 609 features a high
current transfer ratio as well as high isolation voltage.
and uses as emitter a GaAs infrared emitting diode
which is optically coupled with a silicon planar phototransistor acting as detector. The component is incorporated in a plastic plug-in package 20 A 6 DIN 41866.
The coupling device is suitable for signal transmission
between two electrically separated circuits. The potential
difference between the circuits to be coupled is not
allowed to exceed the maximum permissible isolation
voltage.

5-109

Optocoupler
Storage temperature range
Ambient temperature range
Junction temperature
Soldering temperature
(max. 10 sec)')
Isolation voltage (1 min)'}
between emitter and
detector referred to
standard climate 23/50
DIN 50014
AC reference voltage }
DC reference voltage

mA

A
mW

90
7
50
100
150

v

-40to +150
-40 to + 100
100

·C
·C
·C

TSOld

260

·C

ViS

5300

Vdc

V
mA
mA
mW

in acc. with
DIN 57883. 6.80
andlor VDE 0883. 6.80
min 8.2
min 7.3

Leakage path
Air path
') Dip soldering: Insertion depth

v

2.5
100

Detector (silicon phototransistor)
Collector-emitter voltage
(Is = 0)
VCEO
Emitter-base voltage (/c = 0)
VEBO
Ic
Collector current
Collector current (/ S 1 ms)
ICSM
Totlll power dissipatiOn·
Ptot

• 5300 Volt Isolation (1 Minute)

6
60

3.6 mm

I) DC test voltage In accordance with DIN 57883. draft 4/78

mm
mm

CHARACTERISTICS @25°C
Emitter

Forward voltage (IF = 60 mAl
Breakdown voltage (/R = 10,.A)

VF
YteR)

Reverse current (VR = 6 V)
Capacitance (VR = 0 V; f = 1 MHz)
Thermal resistance

IR
Go

1.25 «1.65) V
30(~6)

R'hJA

V
,.A

0.D1 «10)
40
750

pF

KfW

Detector (silicon phototransistor)
Capacitance (VCE = 5 V; f
(Vce = 5 V; f
(VEe = 5 V; f
Thermal resistance

= 1 MHz)
= 1 MHz)
= 1 MHz)

GeE
Gee
GEe
Rtt>.JA

pF
pF
pF

6.8
8.5
11
500

KfW

Optocoupler
Collector-emitter saturation voltage
(IF = 10 mA, Ic = 2.5 'mA)
Coupling capacitance

VCEsa' 0.25 «0.4)

Ct<

V

pF

0.30

The optocouplers are grouped according to their current transfer
ratio lellF at VeE=5 V and marked by dash numbers.
-1

-2

--3

40-80

63-125

100-200

%

30(>13)

45(>22)

70(>34)

%

2(S50)

2 (S50)

5 (SI00)

nA

Group

VI, (1,=10 rnA)
.I~/I, (1,=1

mAl

Collector-Emitter
Leakage Current

(lceo)

(Vce=10V)

Linear operation (without saturation)

Switching times

h
VOP

= lOrnA
= 5V

Tamb

= 250C

load resistance

fiL

75

o

Turn-on time

t.,

3.0 (S 5.6)

~s

Rise time

t,

2.0 (:$ 4.0)

~s

Turn-off time

tolf

2.3 (;:;;4.1)

~s

Fall time

tf

2.0 (:;; 3.5)

~s

Cut-off frequency

too

250

kHz

Switching operation

(~ith saturation)

o
Ie

!,:::OJ'' ' ' ' ' H:
I

J'I"'"

I.,

f:
'S:'7kQ

!!-.

1kO

Vop= 5~

~
'+--.
T"''"''--.~

.'

or2TTlinputs

TTL lavel is
observed

withe 2.7 kO

but no TTL
switching times

pull-up resistor

.

TTL

.

Turn-on time

too

3.01:$ 5.5)

2 and 3
I, = 10 rnA
4,2 (:$ 8.0)

Rise time

t,

2.0 IS 4.0)

:i.0 (:$ 6.0)

~s

Turn-off time

toff

18 (:5 34)

23 (:5 39)

ps

Fall time

tf

11 (S 20)

1

Group

I, = 20 rnA

14 (:$ 24)
0.25 (:5 0.4)

Vee-at

~s

ps

V

SFH 609

5':"110

0/0

Minimum current transfa, ratio
varsus diode forward currant
T....b = 25"<:; VeE = 5 V

300

Current tranafer ratio (typ.)
versus diode forward current

))-!.\

!.J.. m1n

0793

I,

Current transfer ratio (typ.)
versus diode forward currant
::z 5 V

% T.mb =- -25"C: Va'" 5V

0/0 T.mb '" DOC; VeE

10'

10'

Ie

I

I
200

el-2

el2

10 I

l-:::

10I

1

1
100

3

L

/

r--2
1"--1

~
~

VlI

10'

10'

10'

1I

VlI
10'

S

--I,

,

~

5

•

10

--I,

,

% T.mb'" 500c; VeE'" 5 V

10

10

5

S,
10

Currant transf.r ratio (typ.)
versus diode forward current

% T."'b '" 75OC: Vet = 5 V
10 l

=

~

ll-2

2

10 I

1

r1-2

10 I

1

J..

/

VII
,

10 10 ,

5

10'

5

e
10'

IV
1m

5

100

2

5

10'

2mA

, -,/
10

10

--I,

---I,

Current transfer ratio (typ.)
veraus tam perature
I~ '" 10 rnA; VeE =- 5 V

,

mA
lO

%
10

.

10

I
2

i

8i,
10

2 mA

--I,

Collector current versus
collector.mltter voltage
(Current gain B .. 550)
T" ... b = 25OC: iF = 0

Ie

I

S

,

I

/

V

S

,111I
1°,0' 2

2mA

2mA

--I,

Currant transfer ratio (typ.)
varsus diode forward current

Current transfar ratio (typ.)
versus diode forward current

% T.ml> '" 25OC; VeE" 5 V

10I

,V

lIie

510'2510'2mA

~

I L II
1111

1~.'4rill'A
III

20
3
10 I

I,"lOIlA

2
IB" 20llA

1
10

HH
I," 10 IlA

,
10

-25

8
2S

SO

IB"

51l A

IB" 21lA

1

o
o

7S0C

--T

10
15 V
--Vc<

SFH 609

5-111

t.,...

OutpUt o.....
lcsltyp.)
CoII.om oufNftt YUWI
call1IOtOr..mltt.rvolh,1
• B... nolco"nacted
III T_-26OC

._=. . . .

~ ~!~."C",-.

v

311

\2

~

00

r','

I/r~

~

5

~ .~~

(

.~

'"

iii

1/

'5V

,.)

,.'

'.910"

- - . V"

Q,2

.'0>

-I,

IT
75

50

--

--_-~

T_" 260(;: '-1 MHz

c

("
L

iii

30

I"
IF-2xk

.0.4

10

II I III

I"-

v:

If·31C~

,

0

,

1)

50

IFI-~e

,

OJ

Q,2

5

of

0.9

OJ

111

~vol""

Jr"P:s"C

I:

0

Diod. C8pIIG"-nce ,typ.) venUI

- .... Ity;.) ___ aollHtor
cu,.,.....ndoontn:lll1l.... 'Jfor

--

,

Q

--T

Calleotor-etl'llthr.t&mltion

VeE .. ,

J

lL

OJ

5

II

IF- 2mA

IF-5x/c

0.4
~

IF- 4mA

0

! o.a,
~

IF·~

IF-1mA

Va ... Q9

5

IF·~
0

t.,i,

I"",

2

,

Il:':\l

Ih1I
5

5

1)1

0

lO zmA

5

1m
IF-2x1c
IIIII

--Ie

0212

.'

, lhil
5 ,,,. .

11

-Ie

.,

),.,

--v,

means that dMI CUIT8fII flow of tlNidlodllhls to be.djusledto the doubled wlueof the'collector

'I J, .. hIt;
cu""","

.

.

'-mlistble power dialJtdon

Perml_ble ' - d current of

rN_u •• mblllnt~

c.p.cItllnnltyp.J ................

A _dlode_l.mblent

:~I"C"-IMHI

II '-"peNtoN
120

200

I

22

I,

p

I

1,so

t-t- t--

!'\1ranSiStOr

i\

60

I" 1\
Diodl:

so
o

1
1

20

~

o

,25

e"

~~

,

--

2

10

r'\1\

8

"

I"~

511

t-r- t'\

8

,.6

75

~

--'-

1110-[

"

2S

6

""
50

•2

--'-""
15

100·(

0

'tlII

SFH809

5-112

SIEMENS

SFH 617G SERIES
5.3 kV TRIOS*® OPTOCOUPLER

Package Dimensions in Inches (mm)

1---.400(10.16) - i

ANOOE~

COLLECTOR

CATHODE~ EMITTER

.....
r!el
....

.!!,S

FEATURES
• Creepage Distances and Clearances
to VDE 0110b
• Fulfills the VDE Standards:
OB04/0B05/0B06/0B60

• VDE 0884 Approval Applied for
• UL 1409 Approval Applied for
•
•
•
•

Insulation Thickness ~O.B mm
Creepage Distance sB mm
High Common-Mode Rejection
Current Transfer Ratios:
SFH 617G-1 40-80%
SFH 617G-2 63-125%
SFH 617G-3 100-200%

g~

li:s.
0e.
Maximum Ratings
Emitter (IR GaAs Diode)
Reverse Voltage . .
DC Forward Current.
. Surge Forward Current (t S 10

.6 V
~s)

Total Power Dissipation ...... ... .

Deteclor (Silicon Phototransistor)
Collector-Emitter Voltage
Emitter·Base Voltage .. .
Collector Current. ............ .
Collector Current (tsl ms) .... .
Total Power Dissipation . .

The SFH 617G line isolating optocoupler has
been designed for especially demanding
applications. The reflective coupler without
base connection and a 0.80 mm separation
between electrically conducting parts results
in an excellent high-voltage safety. Despite
the small size of the package, modified pins
ensure a creepage distance of 8 mm. The
pins have been bent up to a spacing of
0.4", which also maintains a creepage
distance ~8 mm on the PC board. For use
in circuits requiring safe electrical isolation in
accordance with protection class II.

........ .70 V

. ...... . 7V
. ... 50mA
..100mA
. ... 150mW

Oplocoupler
Storage Temperature Range ............... .
Operating Temperature Range ..

DESCRIPTION

.60mA
.................... 2.5A
. .. , .100mW

Junction Temperature, .....
Soldering Temperature (max. 10 S)1 .....•.
Isolation Test Voltage2
(between emitter and detector referred
to standard climate 23150 DIN 50014) .
Creepage Distance

, ............. : ... -55 to +150°C
. .... -55 to +100°C
. .................. 100°C
. ........................... 260°C

Clearance

. ....... 5300 VDC
.~8.0mm

............. ~8.0 mm

Tracking Resistance
In Accordance with VDE 0110. §6. table 3
and DIN 53480IVDE 0303. part 1 ..
Isolation Resistance (V,o= 500 V) .....
Notes:
1. Dip soldering: Distance to case bottom edge ~O.5 mm
2. DC test voltage in accordance with DIN 57883, draft 4178

*TRansparent IOn Screen.

5-113

.~100

...... 1011 0

Switching Operation

Characteristics (Tamb = 25°C)
Emitter (IR GoAs Emitter Diode)
Forward Vollage
(1,=60 rnA)
Breakdown Vollage
(IR = 1O,.A)

V,

1.25 (,,;;1.65)

V

VBR

30(2:6)

V

(with saturation)

Reverse Current

(VR=6 V)
Capacitance
(VR=OV, 1=1 MHz)
Thermal Resistance1

IR

0.01 (,,;;1.65)

,.A

Co
RTHJA

25
750

KIW

Detector (Silicon Phololransistor)
Capacilance
(VcE=5 V, 1=1 MHz)
Thermal Resistance'

CCE

RTHJA

6.8
500

pF
K/W

VCESAT

0.25 (,,;;OA)

CK

0.25

V
pF

pF

+5V
2,7kn

Optocoupier
.Coliector·Emitter Saluralion Vollage
(1,=10 rnA, Ic =2.5 rnA
Coupling ~apacilance

TIL levels are
observed but
no TIL
switching times

Note:
1. Static air. coupler soldered in"PCB or inserted in base.

-1
1,=20 mA

Current Transfer Ratio by dash number. Ic/IF at VCE = 5 V

Turn-On-Time

-1

-2

-3

Idl, (1,=10 rnA

40-80

63-125

100-200

%

Idl, (1,=1 rnA

30 (>13)

45 (>22)

70 (>34)

%

2(,,;;50)

2 (,,;;50)

5(,,;;100)

nA

Coliector·Emitter
Leakage Currenl
(VcE=10V)

(icEo)

iaN

3.0 «5.5)

4.2 «8.0)

~s

lR

2.0 «4.0)

3.0 «6.0)

~s

1oF,

18 «34)

23 «39)

~

I,

11 «20)

14 «24)

~

0.25 «OA)

0.25 «OA)

V

Rise Time
Turn·Oft·Time

-2, -3
IF =10mA

Fall Time

VCESAT

Non-eaturated switching

SWITCHING TIMES

Linear Operation

(without saturation)

=5V

Vo

Dash Number

-1

Load Resistance

75

Turn-On-Time
Rise Time

la"

Turn·Oft·Time
Fall Time

I,

f-

tpLH

1--::-1_-+-,

V

~

I-..J

-2, -3

I

j\~

II

3.0 «5.6)

3.2 «5.6)

2.0 «4.0)

2.5 «4.0)

2.3 «4.1)

2.9 «4.1)

~s

2.0 «3.5)

2.6 «3.5)

~s

~s

Saturated SWitching

Saturated switching

Non-eaturated switching

to

f""·OV
IF=:J~ CC=SV
~= • F_"~ t~ ~
F= 10KH2,
DF=50%

.-

,

vO

F= 10KHz,
DF=5O%

- itR
Vo 1---101;-~

RL

Vo

-

\

tplL

ts

I

SFH 617G

5-114

Normalization factor for non-aaturatad and saturatsd CTR

Normalization factor for non ...aturalad and saturated CTR

T....~=25°C versus IF

T.....=50°C versus IF

1.5

1.S

.-------,------;----~..,

i

Normalized I~:
Vea = 10V, IF = lOrnA, Ta = 2S"C

1

CTRea(sal\ VC9 = O.4V

1.01-----I-----ht:....---I

1.01------\------Jt''------I

:

·················t······················· .....

O.S

,------"T""----""T"-------,

O.SI-----I-""77""--I---~rl

Ta;' 2S"C
-Go 1NCTR(SA T)
.... lNCTR

:
0.0 '---"-......................1...--'--"-..............."---'--"-....................
100
.1
10
IF - LED Current - rnA

0.0

Normalization factor for non-aaturated and saturated CTR
T....=100°C versus IF

J

1.5,-------,------,---------.

.~

Normalized to:
Vea = 10V; IF = lOrnA, Ta;' 2SoC

J

·t! ..·..· ....................

CTRC9(Sat\ Vee = 0.4V
1.0 ............................................•..............

CTRC9(Sat! Vee = 0.4V

~ 1.0

!

!

1

I

O.S 1-----+---:7":7""-+---""""-/

I

0.5 ..............................l ...............

!

I

~

:

0.0 '---"-......................"---'--"-..............."---'--"-................
.1
10
100
IF - LED Current - mA

10
IF - LED Current - mA

Collector-amiller leakage versus temperature

I
w
o!.

.e
l!

1000

~

10 3

t

10 1

t

10-1
10-2
-20

~

veA

= SV, Vth = l:SV
100 ........................!.......................l .............

!'5.

J

10 2

'0 10 0
0

2.S

!

Ta= 2SoC, IF= 16mA

10 4

u

11

100

Propagation dalay versus collector load realstor

lOS

cc

100

Normalization factor for non-aaturatad and saturated CTR

!

Z15

10
IF - LED Current - mA

T.... =70°C versus IF

1.S , . . . . . - - - - - . . - - - - - - . . - - - - - - - - ,
Normalized 10:
Vea = 10V: IF = lOrnA, Ta = 2S"C

i

L -........................."'-----'----'............." " - _ " - - -....................

.1

..

!i!

1.S

10

!b

1
0
40
60
20
80
Ta - Ambient Temperature _ °C

100

~
....
:c
II.

IPHL

:z:
....
!!o

Ii
8.

.1

10
RL - COLLECTOR LOAD RESISTOR - Kf.l

1.0
100

SFH617G

5-115

Current transfer ratio (typ.)
versus temperature
(IF~10 mAo VCE~5 V)

Minimum current transfer ratio
versus diode forward current

Output characteristics (typ.)
Collector curlent versus
collector-emiller voltage
(T,mb = 25°C)

(T""b~25°c. VCE~5V)

,

%
10

%
300

~

~

.!s..min
I,

J.ill
IF = 14mA

b-t't:

1

m

200

3

,

10

2

~

1

-++

~mA

100

,

10

·25

25

50

~

6mA

0

3

4mA

~2

~
P

t"'-1

2O!!i
1~

10'

75°(

0

10%mA

10

--I,

--T
Diode forward voltage (typ.)
Forward voltage
versus forward current

Transistor capacitances (typ.)
Capacitance versus
collector-emiller voltage
(Tomb = 25°C. f~1 MHz)

'.2
11 v

c

F

1

t

0

V IS

-\lh
Pennfssible pulse handling capability
Forward current versus pulse width
(Pulse duly factor D = parameler.

T,mb=25°C)

4

1.1

1,

1

B

6
4

2
C"

0

'.0

8

6
4

"'"
5 mAIO'

O.9'OL.'-,.LL-'-Sllill,LO'-'-'uS '0'

2
0
10.2

-·-1,
Permissible power dissipation
for transistor and diode versus
ambient temperature

10-5

10-4

10-3 10-2

10- 1

100

S

10'

--I,
Pennlssible forward current of the
diode versus ambient temperature

Forward voltaga varsus forward current

1.4...-------;.,....-----,------,
1.3

. . . . . . . . . . . . . . .1. . . . . . . . . . . . . . . . . . . . . . . . .

I

1.2

......•......................~.........

~

1.1

I

0.9

200
p

~

mW

1,50
100

I'

1\

Diode

60

1\

I"

1\

"
50

1S

"'-I'

30

I' ~

2S

>

J

['\.Transistor

50
o
o

~

\
O(

--T,mb

100

o

o

2S

50

['-..,

i

Ta=-55OC

r--="---,.-f

1.0

0.81"""'----i-.,----;------I
0.7 '--...............................:--'-.........................-.,...........................
.1
10
100
If- Forward Currant - rnA

75 .( 100

--lamb

SFH617G

5-116

SIEMENS

SFH 6011
5.3 kV TRIOS*® OPTOCOUPLER
HIGH RELIABILITY
Package Dimensions in Inches (mm)
.307

.8

.291 (7.4)

(j

0

.248(6.3)

0

6

ANODE

~6

2

5

CATHODE 2

3

4

NC 3

~

BASE

5 COllECTOR
4 EMlmR

FEATURES

DESCRIPTION

• Isolation Test Voltage: 5300 V
• High Current Transfer Ratios
at 10 mA: 63-200%
at 1 mA: 50% typo (>22)
• Fast SwRchlng TImes
• Minor CTR Degradation
·100% Burn-In of Emitting Diode to
Stabilize Radiant IntensRy
• Field-Effect Stable by TRIOS
• Temperature Stable
• Good CTR LInearity Depending on
Forward Current
• High Collector-Emitter Voltage
VcEo=70V
• Low Saturation Voltage
• Low Coupling Capacitance
• External Base Wiring Possible
• High SecurRy Against Premature Failure
• VDE Approval Applied For

The optically coupled isolator SFH 6011 features a high current transfer
ratio as well as high isolation voltage. It has a GaAs infrared emitting
diode as emitter, which is optically coupled to a silicon planar phototransistor detector. The component is incorporated in a plastic plug-in
DIP-6 package.
The coupling device is suitable for signal transmission between two
electrically separated circuits. The potential difference between the
circuits to be coupled is not allowed to exceed the maximum permissible
reference Voltages.
This optocoupler exhibits a high standard of quality and great reliability.
Quality assurance is implemented by a repeated 100% test and by a
subsequentrandom-sample testing, in which the basic AQL is 0.065 for
major faults ..
The second 100% test is performed at an extended temperture of 70~C
with more severe test-limits. Thus reliability is considerably increased
with the following failure rates: Up to 1000 hours in service (premature
failure phase): a failure rate of <100 fit. After 1000 service hours: a
constant failure rate of <10 fit. (1 fit=1 failure per 109 component hours.)
"TRansparent IOn Shield.

5-117

Maximum Ratings

SWITCHING TIMES

EmItter (GaAs Infrared Emiller)
Reverse Vollage ..................................................................;....................... 6 V
DC Forward Currenl ....•.•. ,...•.....•..................•..•..•••.....•................••....••.•. 60 mA
Surge Forward Current (tSl0)1S) •...................................•.....•............... 2.5 mA
Tolal Power Dissipation ....................................................................... 100 mW

Linear Operation (without saturation)

=5V

Detector (Silicon Phototransistor)
Collector·Emitter Vollage •........•..................•.•...•••••..•..•..•.....•.....••••••..•.••.... 70 V
Emitter-Base Vollage ...................•••.................................•.•;........................ 7 V
Collector Current ......•....•.............••••.••..•.........................•••••••..•••••....••..•. 50 mA
Collector Current (t Sl ms) ................................................................... 100 mA "
Tolal Power Dissipation ................•.................•.................•..•.•.....••....•• 150 mW ,
Optocoupler
Storage Temperature Range .................. ,............................. -55'C to +150'C
Ambient Temperature Range ................................................ -55'C to +lOO'C
Junction Temperature Range .....•.•..•....•.•..•......•..•..........•••.•••.•.•..•.•..•..••. lOO'C
Soldering Temperature (max. 10 s) 1 •..••.•.••••.•••••••.•.•••••••••••.•.••'.•.••.••••••.•• 260'C
Isolation Test VoIlage2 '
'
(between emitter and detector referred
to slandard climate 23/50 DIN 50014) ......................................... 5300 VDC
Leakage Path ...................................................................................... ~.2 mm
Air path ...........................................:.....................................................7.3 mm

'.=10 rnA, Vop=5 V, T.~.=25Dq, .

",

Load Resistance

R"

75

n

Turn-On lime

\,.

3.0. (S5.6)

)1S

\,

2.0(,;4.0)

)1S

\".

2.3(54.1)

)1S

~

2.0 (s3.5)

)1S

250

kHz

Rise lime
Turn-Off lime
Fall Time

TrackIng Resistance
In Accordance with VDE 0110 §6, table 3, and
DIN 53480/VDE 0303, part 1 .................................................................. 100
Isolation Resislance (V,o=500 V) ........................................................... 10" n

Cut-Off Frequency

Notes:

Switching Operation (with saturation)

1. Dip soldering: 0.5 mm clearance from package.

Fcc

- -'"
=:g

2. DC test vonage in accordance with OIN 57883, draft 6.80.

IF

Characteristics (Tamb=25°C)
EmItter (GaAs Infrared Emitter)
Forward Vollage (IF=60 mAl
Breakdown Vollage (1.=100 pA)
Reverse Current (V.=6 V)
Capacllance (V.=O V, f=l MHz)
Thermal Resislance
Detector (SIlicon Phototransistor)
, Capacllance
(V..=5 V, f=l MHz)
(Vca=5 V, f="l MHz)
(V..=5 V, f=l MHz)
Thermal Resislance
Optocoupler
Coliector·Emitter Saturation Vollage
(1.=10 mA, le=2.5 mAl
Coupling Capacitance
Current Transfer Ratio
(1.=10mA, Vce=5V)
(1.=1 mA, VCE=5 V)
Collector-Emitter Leakage Current
(VCE=10V)

1kQ

v"

~~
.

..-t--t-="~---22)

%
%

Turn-On lime
Rise lime

ICEO

2(s50)

nA

Turn-Off lime
FallTlme

\,.

4.2 (S8.0)

)1S

\,

3.0 (S6.0)

)1S

\".

23 (S39)

)1S

~

14 (S24)

)1S

0.25 (SO.4)

V

VraAT

SFH 6011

5-118

versus diode forward current

(T.=25'C. V",=5 V)

,

%
300

~

~mi1
1,

I

Curront Iransf.r ratio (typ_)
versus diode forward current
(T.=O'C. Vc,=5 V)

Curront transfor ratio (typ_)

Minimum current transfer ratio
versus diode forward currenl
(T.=25'C. V,,=5 V)

%

%

10

10 l

2DO

~

l-

10I

10I

-

100

~

o

10-'

10

5 10'

1/

I

~

5 10'

IS

,
to-'

10'

--1,

--1,

1Q1

,

2 rnA

Current Iransfor ratio (typ_)

Currenl lranslar ratio (typ_)
versus diode forward current
(T.=25'C. V,,=5 V)

10

[7

10- 1 2

5

S-

--1,

'10'

2 rnA

Current transf.r ratio (typ.)
versus diode forward current
(T.=75'C. Vc,=5 V)

versus diode forward current

(T.=50'C. Vc,=5 V)

%

10 l

-

10 I

~

,I

10

10-'

5

flo

101

-

10 I

I
10'
2 iliA

S>

I

,

mA
30

1 0 ' _

--1,

IIII

)--l

collactor--ernittar voltage
Base not connected (T.=25'C)
mA
30

.1

I III

0635

Ir~
IF~

II I I
IB-

30~

I~

III I

101 _

?'T~
F = .::!;:..

IB- 20 ~A
10

I III

IF - 6mA

10

IB- 10 ~A
IB"
IB"

lY1

10' u.u.u.L1.L1.L1~LLLL.L.l..w
-25
25
SO
15

10

0(

--r.

2 rnA

Collector current versus

I~_14ciJ.
20

10'

Outpul characteristics (typ.)

I II I

0634

S-

/

10- 1

--1,
Collector current varsus
coliectoro(Jmitter voltage
(Current gain B=550. T.=25'C. 1,=0)

%

-

,

10

10·' 2

--1,
Currenl lranslar ratio (Iyp_)
versus lemperatura
(1,= 10 rnA. V,,=5 V)

10

1,- 4mA

5~IA
IF- lmA

2~A

15 V

1;10

2mA
15V

SFH6Dll

5-119

Dlods forward vonaga (typ.)
versus forward currsnt

:]1

v
1.2

~ sooe
~ lS'C

ICE~

pF

""
lao.~

24

Va=40V

C,

11Ir'IIIv.,a~·1'0~VIIII·

rj

1.1

TransIstor capacitanca (typ.)
versus emlner voltage
(Tn .=25'C, f=1 MHz)

Collector·smltter leakage
currant (typ.) of the transIstor
versus temperatura
(Tn .=25'C, 1,=0)

~

V

~

18

CEB

16

\

12
10

,

~

5 1D'

5 10'

5

S
M?

1D'mA

I"1i11

b1

1~~~W·~0~·L2~5~~~~~~~~'00~

--I,

lao

10·'

Collector-amltter saturallon
voltage (typ.) versus collector
current and control range')
(Tn .=25'C)

V

PermIssIble power dIssIpation
for transIstor and dlods versus
ambIent temperatura

0.8

I~

0.7

0.3
0.2

'\iTransistor

1\

100

./

0.1
10'

50

o

25

50

'IS ,

o

"

f"

~

o
10'mA

"

30

Diode

11111
1,= 3x/c

~

60

" "-\ \
",

1,=2xlc

r--....

~

~

0.6

/

.~ f-

Q f-

p

0.5

mA
121)

200

0.9

10'V

PermIssible forward current of the
dIode versus ambIent tlimperatura

mW

,

to

10'

--V.

--T.

0.4

:'

111' _ _

1/

Vc"..

~~

\

14

J

1.0

:~

o

25

50

"

1)O'e

75

--~

lOO'e

--~

--/c
PermIssIble pulse handling capability
Forward current versus pulse wIdth
(D=parameter, T~.=25'C)

DIode capacitance (typ.)
veraus reverse voltage
pF (Tn.=25'C, f =1 MHz)
30
28
C 26

t

Current transfar rallo versus load lime
(V..=5 V,R.=1 kn, T_=60'C, 1,=60 rnA, Measuring
current =10 rnA, Confidence coefficient 5=60%)
%
lID

,....

21,

22
20

I-

18

16 I-

I12 III,

10 fff-

-

-

~
..:...

-

-

-

r--

10'

10'

95'1.

II

t--

90

50'/0

- II

....

soio

80 ,0 ,

2 f-€61

o

10·'

~
10'
-I

10' h

--1:

N01e:

1.lr 2 )C Ie means that the current flow of the diode has to be adjusted to twice the value 01 the collector current.
SFH6011

5-120

SIEMENS

SFK610/611 SERIES
SINGLE PHOTOTRANSISTOR
OPTOCOUPLER

Package Dimensions in Inches (mm)

I1------1.
r..'l

175 14.451

-1-'-0·

r.?lI,190(4.B31
PIN 1 IDENnFlCATIDN

240 (6.10)
.260 (5.60)

_I

.'30(3.30)
_ )_
,'50 {3.811

---.-

.130(3.30)
.150.(3.81J

\

.100(2.54)
lYP

SFK&10

FEATURES
• High Current li'ansfer Ratios,
4 Groups
SFK610/611-1 40 to 80%
SFK610/611-2 63 to 125%
SFK610/611-3 100 to 200%
SFK610/611-4 160 to 320%
• 7500 Volt DC Isolation
• Low Saturation Voltage
• VCEO = 70 Volt
• 100% Burn-In at IF = 50 mA
Tamb = 60°C, t = 24h
• UL Approval #52744

• Trios

DESCRIPTION
The SFK610/611 series is a single-channel
optocoupler series for high density applications. Each coupler consists of an
optically coupled pair employing a
Gallium Arsenide infrared LED and a
silicon NPN phototransistor. Signal information. including a DC level. can be
transmitted by the device while maintaining a high degree of electrical isolation
between input and output.

O'
"lS G

SFK611

ANODC1~4EMITTER

CATHODEI~4COlLECTOR

CATHOOE2~3COLlECTOR

ANOOE2~3EMITTER

Maximum Ratings
Emitter (GaAs LED)
Reverse Voltage
DC forward current
Surge forward current (t" 10 ~s)
Total power dissipation
Detector (silicon phototranslstor)
Colleetor·emitter voltage
Collector current
Collector current (t" 1 ms)
Total power dissipation
Optocoupler
Storage temperature range
. Ambient temperature range
Junction temperature
Soldering temperature
(max. 10 sec)'
Isolation test voltage (t = 1sec)
Isolation resistance
, Dip soldering: Insertion depth <3.6 mm

The SFK610/611 series offers an additional
level of reliability with 100% burn-in of the
LI:;D emitter at elevated temperature.
5-121

VR
IF

IFSM
Plot

VCEO
Ie
IcsM
Plot

Tamb

Tj

V's
RlSO

V
rnA
A
mW

70
50
100
150

V
rnA
rnA
mW

-55 ... +150·C
-55. .+100°C
·C
100

T.g

Tsold

6
60
2.5
100

'

260
7500
5300
10 11

·C
VDC
VAC(RMS)

II

CHARACTERISTICS @ T.... 25°C
Emitter (GaAs infared emitter) .
Forward voltage (IF = 60 mAl
Breakdown voltage (IR = 10 PA)
Reverse current (VR = 6 V).
Capacitance (VR = 0 V; f = 1 MHz)

VF
VSR
IR
Co

1.25 (sl.65)
30 (",6)
0.01 (sI0)
25

V
V
p.A
pF

Detector (silicon phototransistor)
Collector-emitter breakdown vbltage
Emitter-collector breakdown voltage
Capacitance (VCE = 5 V; f = 1 p.Hz)

BVCEO
BVECO
CCE

70
7.5
6.8

V
V
pF

VCE (sat)
Cc

0.25 «O.~O)
0.35

V .. '
pF' .'

Coupled
Collector-emitter saturation voltage
(IF = 10 mA, Ic = 2.5 mAl
Coupling capacitance

Group

SFK610/611.1

SFK610/611·2

SFK610/611-3

SFK610/611-4

40-80

63-125

100-200

160-320

Current transfer ratio'
IF =10mA, VcE =5V

%

Current transfer ratio'
IF=1 ma, VcE =5V

13 min.

22 min.

34 min.

56 min.

0/.

ICEO (VCE = 10 V)

2 (s50)

2 (s50)

5 (s 100)

·5 (s 100)

nA

CTR will match within a rallo of 1.7:1

Switching Characteristics
Linear Operation (without saturation) IF10 mAo Vee = 5 V, Re = 750
Group
Turn on time
Rise time
Turn off time
Fall time

SFKil0/611·1

Ion

t,.

Iolf
~

3.0 «5.6)
2.0 «4.0)
2.3«4.1)
2.0 «3,5)

SFK610/611·2
3.2 «5.6)
2.5 «4.0)
2.9 «4.1)
2.6«3.5)

SFK610/611-3
3.6 «5.6)
2.9 «4.0)
3.4 «4.1)
3.1 «3.5)

SFK610/611-4
4.1 «5.6)
3.3 «4.0)
3.7 «4.1)
3.5«3.5)

p.S
p.S

P.s
P.s

SwHchlng operation (with saturatlon).Vee =5 V, Re=1 KO
Group
Turn on time
Rise time
Turn off~me
Fall time

ton

t,

Iolf
~

SFK610/611·1
IF=20mA
3.0«5.5)
2.0 «4.0)
18«34)
11 «20)

SFK610/611·2
IF =10mA

SFK610/611-3
IF=10mA

SFK610/611-4
IF=5 rnA

4.3 «8.0)
2.B «6.0)
24«39)
11 «24)

4.6 «8.0)
3.3 «6.0)
25 «39)
15«24)

6.0«10.5)
4.6«8.0)
25 «43)
15«26)

5-122

P.s
p'S

p.S

P.s

Fiber Opfic Devices
Infrared Emitters
Phofodiodes
Phofofransistors
PhofovolfaicCells

6-1

Fiber Optic Emitters
Part
Number

Package Outline

Package Infrareell
Visible
Type
(Color)

Surge
Maximum
Current
Wavelength
Features
(tc~!18)
nm

Pege

T1 3/4
SFH450

..

@

··W

..-::

SFH750

SFH751

Ught
grey
plastic

Infrared

T13/4

Visible
(Red)

Red
plastiC
T1 3/4
Green
plastic

Visible
(Green)

SFH450V

~.

~
H

U

SFH451V
SFH452V
SFH750V

Infrared
Grey
plastic
connector Visible
housing.
(Red)
Visible
(Hyper-

SFH752V

950
GaAs

3.5

660
GaAsP

1.5

560
GaAsP

1.0

950
GaAs
3.5

Aber optic short
distance data
transmission.

6-11

2.3mm aperture
holds 1000
micron plastic
fiber.
Matches with
SFH25O/FN or
SFH350/FN.

840
6-13
660
1.5
650

iedi

Fiber Optic Photodiodes
Part
Number

Package OutDne

-

SFH250

48].
SFH250F

bi

j
H

ij

SFH250V

Package Aperture
Type
T1"/4
Plastic
SFH250.
clear
SFH250F.
daylight
filter
Black
plastic
connector
housing.

Dark Current
VR=20V
nA

Max.
Wavelength
nm
950

~JO)

i3mm

900

850

Features

Page

PIN type. Fiber
optic short
distance data
transmission.

6-3

2.3mm aperture
holds 1000 micron
plastic fiber.
Matcheswnh
SFH450N. 451V.
452V.750N.

6-5

Fiber Optic Phototransitors
Part
Number

Package Outline

SFH350

~3ITJ
t" __

c:=::::::s

~

I

j
U

@
SFH350F

B JiiI rtHJ

SFH350V

Photocurren Collector
Package Aperture
Emiller
Featurea
W50nm
Type
Voltage
VCE=5V
V
mA
Fiber optic short
Tl s/4
0.7
distance data
Plastic
transmission.
SFH350.
clear
2.3mm aperture
SFH350F,
holds 1000 micron
0.55
daylight
50
2.3'Tm
plastic fiber.
filter
Matches with
Black
SFH450N. 451V.
plastic
0.7
452V, 750N,
connector
SFH751.
housing.
SFH752V.

Page

6-7

6-9

Fiber Optic Kit
Part Number: PFOK-l
Design-In kit for fiber optic devices.
Contains: 1) Emitters-8FH450, SFH750, SFH751. SFH750V; 2) Photodiodes-8FH250. SFH250F, SFH250V;
3) Phototransistors-8FH350. SFH350F; 4) Flber-7'long & 15' long; 5) Application Note; and 6) Data Book.

6-2

6-15

SIEMENS

SFH250
WITH IR FILTER SFH250F
PLASTIC FIBER OPTIC
PHOTODIODE DETECTOR
Preliminary Data Sheet.
Package Dimensions in Inches (mm)
Sur/ace notflal

.093 (2.35)
.08712.2)

~Anode
.100 12.54)

SFH2S0
FEATURES

Maximum Ratings

• 2.3 mm Aperture Holds Standard
1000 Micron Plastic Fiber
• No Fiber Stripping Required
• Daylight Rejection Filter (SFH250F)
• High Reliability
• Low Noise
• Fast· Switching Times
• Low Capacitance
• Very Good Linearity
• Sensitive in the Visible (SFH250) and
Near IR Range (SFH250 & 250F)
• Molded Microlens for Efficient Coupling

Operating and Storage Temperature Range (T)..

DESCRIPTION
The SFH250/250F are fast silicon PIN photodiodes in a low cost plastic package for use
in short distance data transmission using
1000 micron plastic fibers. Both come in a
5 mm (T13J4) plastic package featuring a tubular
aperture which is wide enough to accommodate fiber and cladding. A microlens on
the bottom of the aperture improves the light
coupling efficiency of the fiber output into
the photodiode.
The SFH250 has a clear plastic housing; the
SFH250F has a black plastic housing.

. .. -55 to +100oC

Soldering Temperature (Distance from solder to package=2 mm)

Dip Soldering Time. ts5 sec (Tsl. . . . . . . . .. . . . . .. . . .
. ......... 260 oC
Reverse Voltage (VR) .................................................. 30 V
Power Dissipation (PTOr) . . . . . . . . . . . . . . . . . . . .
. .................... 100 mW
Thermal Resistance (RrHJ.J .......................................... 750 K1W

.';:

Characteristics (T8mb =25°C)
Wavelength of Max. Photosensitivity
SFH250
SFH250F
Spectral Range of Photosensitivity
(S = 10% of SM"'"
SFH250
SFH250F
Dark Current (VR = 20 V)

;;:

A. MAX

850
900

nm
nm

IA

400 to 1100
800 to 1100
1 (S10)

nm
nm
nA
Electrons
Photon

AMAX

Quantum Efficiency (A = 850 nm)
Rise and FaU Time of the Photocurrent
from 10% to 90%. respectively. and from
90% to 10% of its Peak Value
(RL =500. VR=30 V, .=880 nm)
Capacitance (VR=O V. f= 1 MHz. Ev=O Ix)

tR. tF
Co

10
11

Noise Equivalent Power

NEP

2.9x 10- 1'

Detection Limit (VR= 20 V)
Photoeurrent (VR=5 V) (Note 1)
SFH250/250F A=950 nm
SFH250 .=660 nm

0.89

ns
pF
W

For application information see Appnote 40.

6-3

-JHz

DL

3.5x1012

em -JHz
-W--

IpH
IpH

4.0
3.0

,..Po
,..Po

, Photocurrenl generated at 10 JjW light incidence through plastic 1000 micron fiber (distance
lens·fiber :sO.1 mm, fiber type ESKA EH4001, fiber face polished).

Typical applications include: automotive wiring,
isolation interconnects, medical instruments,
robotics, electronic games, and copy machines.

:!"I
..................

SFH250
Relative spectral sensitivity
5"" = f(~)

Dark current IA

""III_

/

1\

II

\

II

" 1/
\

20

".

f(VA)

,A

%

".
60

:<

60.

800

1000

-->

Capacftance C = f (VR)
Tamb = 25°C

Tamb = 25°C

1200nm

,f
12

"'"'1118

"

10'O!-,-..L.L--L,,':-'-L.L~20:-"-LL-'-:lOV
--VR

•

,

,
,
2

,,'

SFH 2501250F

6-4

SFH250V

SIEMENS

PLASTIC FIBER OPTIC
PHOTODIODE DETECTOR
Preliminary Data Sheet
Pac~ge

Dimensions in Inches (mm)

rl=::;;;;~h.calh.d•

.157(4.00)

1 t!~

•100
(2.54)

(:.~)-

FEATURES

Maximum Ratings

• 2.3 mm Aperture Holds Standard 1000 Micron
Plastic Fiber
• No Fiber Stripping Required
• Connect Fiber without lIivlstlng
• Plastic Connector Housing
• Mounting Screw Attached to Connector
• Interference-Frea 'Dansmlsslon because of
Ught·Tlght Housing
• 'Dansmlner and Receiver Can Be Flexibly
Positioned
• No Cross Talk
• Auto Insertable and Wave Soldarable
• Supplied In Tubes
• Molded Mlcrolens tor Efficient Coupling
• Fast Switching Time
• Sensitive In Visible and Near IR Range
• Very Good Unearlty

Operaling and Slorage Temperature Range (T) .............. -55 to +100 oC
Soldering Temperature (Distance from solder to package =2 mm)
Dip Soldering Time. t~5 sec (Tsl ............................... 260 0 C
Reverse Voltage (VA) ..........•.•.....•.....••.•..•.....•....•.• 30 V
Power Dissipation (PTOT) •.•..•..••.•..••••••••••••••••••.••••• 100 mW
Thermal Resistance (RTHJ
750 KJW

DESCRIPTION
The SFH250V is a fast silicon PIN photodiode for use
in short distance data transmission using 1000 micron
plastic fibers. The photodiode is part of a family of
light link components for applications requiring a low
cost fiber optic link. The device is housed in a plastiC
connector with a mounting screw permanently
attached to the thread and deSigned to house a
1000 micron plastic fiber with cladding. A microlens
improves the light coupling efficiency of the fiber
output into the photodiode.

'> ...................................

Characteristics (T8mb =25°C)
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity
(S 10% of SUAX)
Dark Current (VA 20 V)

Ao.AX

850

nm

IA

400 to 1100
1 (~10)

nm
nA
Electrons
Photon

Q

Quantum Efficiency (1=850 nm)
Rise and Fall Time of the Photocurrent
from 10% to 90%, respectively. and
from 90% to 10% of its Peak Value
(RL =500, VA=30 V, 1=880 nm)
Capacitance
(VA =0 V, f=l MHz, Ev=O Ix)

0.89

t A, tF

10

ns

Co

11

pF
W

NEP

2.9x 10- 1•

Detection Limit (VA =20 V)

DL

3.5x 10"

Photocurrent (VA = 5 V) (Note 1)
1-660 nm (red)

IpH

3.0

Noise Equivalent Power

-1Hz
cm -1Hz
-W--

1 Photocurrenl generated al 10 Jl-W light incidence through plastic 1000 micron fiber
(distance lens-fiber :sO. 1 mm, fiber type ESKA EH4001, fiber ends polished).

Typical applications include: Remote photointerrupter/
sensing; Fast optocoupler with extremely high isolation voltage; Transmission of analog/digital signals,
data buses; Feedback loop in switch mode power
supplies; Isolation in test/measurement/medical inStruments; Noise immune data transmission in electrically
noisy environments (motors, relays, solenoids, etc.).
For application information see Appnotes 40, 41, 42, 43.
See SFH250/F for component without plastiC housing.
6-5

ill
....

CI_
~>

Q

"Po

a!.:I

SFH250V
Relattve spectral' sensitivity

Dark curnnt tA • !(VA)
Tamb = 25°C

.Srel"" t(X)

""-

%
10

~.

•

J

!•
8

r,9Wn

1\

SI'tL'

II

\

pF
11

"H-fflIIHtttttH

II

'1/

II
I

•
400

!tv,,>

lamb = 25°C

I",• •

• II

•

capacitance C -

1\
600

800

1000
--).

1200nm

10'OLJ...l.-L.Ll,,-Ll-.LJLtoLLLJ....LJ3• V

-VA

SFH250V

6-6

SIEMENS

SFH350
WITH IR FILTER SFH350F
PLASTIC FIBER OPTIC
PHOTOTRANSISTOR DETECTOR
Preliminary Data Sheet
Package Dimensions in Inches (mm)

l

~
o
--!l L
~

028(07)

016(04)

k

117 (415)
.177('.5,

.21715.5)

.20115.11

FEATURES

Maximum Ratings

• 2.3 mm Aperture Holds Standard
1000 Micron Plastic Fiber
• No Fiber Stripping Required
• Daylight Rejection Filter (SFH350F)
• High Reliability
• Good Linearity
• Sensitive In the Visible (SFH350) and
Near IR Range (SFH350 & 350F)
• Three Lead Phototranslstor
• Molded Mlcrolens for Efficient Coupling

Operating and Storage Temperature Range (T) .................... -55 to +100·C
Soldering Temperature (Distance from solder to package=2 mm)
Dip Soldering Time, ts5 sec (Tsl ..................................... 260ac
Collector-Emitter Voltage (VCE) .......................................... 50 V
Collector Current(lcl ................................................ 50 mA
Collector Peak Current. tSl0 sec (Icp) ................................. 100 mA
Emitter Base Voltage (VEe> .............................................. 7 V
Power Dissipation (Tamb=25·C)(PTOT) ••••••••••••••••••••••••••••••••• 200 mW
Thermal Resistance (RTHJ'> .......................................... 375 KIW

DESCRIPTION
The SFH350/350F are NPN silicon phototransistors in a low cost plastic package for use
in short distance data transmission using
1000 micron plastiC fibers. Both come in a
5 mm (T1%) plastiC package featuring a tubular
aperture. It is wide enough to accommodate
fiber and cladding. A microlens on the bottom
improves the light coupling efficiency-fiber
output to PTX.
The SFH350 has a clear plastic housing; the
SFH350F has a black plastiC housing.
Typical applications include: automotive wiring,
isolation interconnects, medical applications,
robotics, electronic games, etc.

Characteristics (T8mb = 25°C)
Wavelength 01 Max. Photosensitivity
SFH350
SFH350F
Spectral Range 01 Photosensitivily
(S-10% 01 SM">
SFH350
SFH350F
Capacitance
(Vco=O V, 1=1 MHz, E=O Ix)
(Vc.=OV, 1=1 MHz, E=O Ix)
(Vo.=O V, 1= 1 MHz, E=O Ix)
Rise and Fall Time
(Ie = 1.0 mA, Vco=5 V, RL =1 kII)
Current Gain
(Vco-5 V, 1c.=2 mAl
Photocurrent (Vco =5 V) (Note 1)
SFH350F 1 = 950 nm
SFH350 1 = 660 nm
1

850
900

nm·
nm

400 to 1100
800 to 1100

nm
nm

Cco
Cc.
Co.

9
22
20

pF
pF
pF

tR• tF

15

lMAX
~

ICE
ICE

Typ.

1.0
0.8

mA
mA

Photocurrent generated at 10 IlW light incidence through plastic 1000 micron fiber (distance
lens-liber .:SO.1 mm, fiber type ESKA EH4001. fiber lace polished).

For application information see Appnote 40.

6-7

""

500

ill
co_

...lit
:!!co

SFH350
-Reliiti... spRtra. sensitivity

Output ch_lca

S", -10.)

100

i
ill
II

60

f\

I.~ f- I-- f- f-

I, 3,5

II

I
l- f- .....
~ .....
V'~ F=
tI(f- t- ~
3,5~A
..... l- ..... f-

3,0

1\

2,5

i

I

2,0

II

0

1,5

j
I-'

0
400

600

IL

r-: r¥:

""" . 2,5~

20

r--~

C

f

1e

i

0,5 r-t- t- O,5j,lA

'!

~

1

16

1\
1\

14
12

CEB

I--

10
!

I

C"

1j,lA

1000

-~

1200nm

o
o

I
6

B

-VCE

10V

o

10"

I

1\

II

l,5~A

1,0

800

l- I-- ..... I-

--

pF
22

2~A

I

i

-

.... -

I

0

C8pacft.once C • I(V)

Ie - l(Veel; I. - Parameter

rnA
4,0

%

10"

10'

"
~C"
1\1

10'

10'V

-V

SFH 35OI36OF

6-8

SIEMENS

SFH350V
PLASTIC FIBER OPTIC
PHOTOTRANSISTOR DETECTOR
Preliminary Data Sheet
Package Dimensions in Inches (mm)

Emitter

.157 (4.00)

Base

Dete<:10r'1~0 I!~'OO)
(2.54)

.200
(5.08)

+-

FEATURES

Maximum Ratings

• 2.3 mm Aperture Holds Standard 1000 Micron
Plastic Fiber
• No Fiber Stripping Required
• Connect Fiber without lWlsting
• Plastic Connector Housing
• Mounting Screw Attached to Connector
• Interference-Free li'ansmission because of
light-Tight Housing
• 'Dansmitter and Receiver Can Be Flexibly
Positioned
• No Cross Talk
• Auto Insertable and Wave Solderable
• Supplied in lUbes
• Good Linearity
• Molded Microlens for Efficient Coupling
• Sensitive in the Visible and Near IR Range
• Base Lead Connection for External Biasing

Operating and Storage Temperature Range (T). . . . .
. ..... -55 to + 100°C
Soldering Temperature (Distance from solder to package=2 mm)
Dip Soldering Time. t;s5 sec (Tg). . . .
. ....... 260 oC
Collector-Emitter Voltage (VCE)
. . . ... . .. . . .
. ..... . 50 V
Collector Current(lcl .............. . . . . . . .. . . .
. ......... 50 mA
Collector Peak Current. t;s 10 sec (Icp)
......... 100 mA
Emitter Base Voltage (VEB) ..........
. ............. 7 V
Power Dissipation (T""b=25°C) (PTOT)'
...... 200 mW
Thermal Resistance (RTHJAI ....
. . . . . . . . . . . . . . ... 375 K/W

DESCRIPTION

....
~"I
.....

ou
~;;:

Characteristics (Tamb =25°C)
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity
(S=10% of SMAX)
Capacitance
(VcE=OV.f=l MHz. E=Olx)
(VCB=O V, f=1 MHz. E=O Ix)
(VEB=O V. f=l MHz. E=O Ix)
Rise and Fall Time
(lc=1.0mA. VcE =5V. RL=l kII)
Current Gain
(VcE=5 V.Ic.=2 mAl
Photocurrent (VcE =5 V) (Note 1)
A= 660 nm (red)
1

The SFH350V is a NPN silicon phototransistor in a low
cost plastic package for use in short distance data
transmission using 1000 micron plastic fibers. The
phototransistor is part of a family of light link components for applications requiring a low cost fiber optic
link. The device is housed in a plastic connector with
a mounting screw permanently attached to the thread
and designed to house a 1000 micron plastic fiber
with cladding. A microlens improves the light coupling
efficiency of the fiber output into the phototransistor.

"'0

u::

AMAX

850

nm

400 to 1100

nm

9

pF
pF
pF

CCE
CCB
C EB

22
20

tAo tF

15

~s

p

500

Typ.

ICE

0.8

mA

Photocurrent generated at 10 JjW light incidence through plastic 1000 micron fiber
(distance lens·fiber :sO.t mm, fiber type ESKA EH4001, fiber ends polished).

For application information see Appnotes 40, 41, 42, 43.
See SFH350/F for component without plastic housing.

Typical applications include: Remote photointerrupter/
sensing; Fast optocoupler with extremely high isolation voltage; Transmission of analog/digital signals,
data buses; Feedback loop in switch mode power
supplies; Isolation in tesVmeasuremenVmedical instruments; Noise immune data transmission in electrically
noisy environments (motors, relays, solenoids, etc.).

6-9

SFH350V

......... ---~

Olllput_

s..,-I(j.)

:I

4,0

II 1\

:

,

-'

"
I.~
I- ~ l-

17'1"'" F ~

I

il

60

,

A_

i

II

I

,:

1

"'"

0
400

2.5

V

I-t- ~

2,0

+~

ll'!"::' r-

1,5

!-

-~ l-

,...,...

2,5uA

,
f

N

20

16

1\

14

12

r-

10

!

2uA

i1

rr--- t- O,5,uA

0,5

1000
-A'

1200nm

o

o

'EO

1\

1
,I

'C[

~'c.

1\1

i

I
4

,

J,

l,uA

I

~

,,

18

1,0

j

800

I-+~ r-

l,5,uA

i

1J
600

f'
'j-I

~

,...1-

,...~
l- I- ~
3,~ ~ !- l-

I

0

pF
22

mA

100

0

CopocI..... C - 1M

'e - '(Vee): '. - Paramo'or

%.

6
10V
----'--- VCE

o

J

10-'

10",

10'

10'
-V

10'V

SFH360V

6-10

SIEMENS

SFH450/750/751
PLASTIC FIBER OPTIC
TRANSMITTER DIODE

Preliminary Data Sheet
Package Dimensions in Inches (mm)
.093(2.35)
.087(2.2)

SurlaeenalOal

~Anode
.100(2.54)

,187(4.75)
.177(4.5)

.217(5.5)
.201(5.1)

FEATURES
• 2.3 mm Aperture Holds 1000 Micron
Plastic Fiber

Maximum Ratings
SFH450

• High Reliability
• Long Life Time

Operating and Storage
Temperature
Junction Temperature
Soldering Temperature
(Distance from solder to
package =2 mm)
Dip Soldering Time
ts5sec
Reverse Voltage
Forward Current (DC)
Surge Current
(tsl0"s. D = 0)
Power Dissipation
Thermal Resistance
Junction/Air

RthjA

350

• Fast Switching Times
• Molded Mlcrolens for Efficient Coupling

Electrical Characteristics (Tamb

= 25°C)

• No Fiber Stripping Required
• SFH450 - Infrared, Light Grey Plastic
Package
• SFH750 - Visible Red, Red Plastic
Package
• SFH751 - Visible Green, Green Plastic
Package

DESCRIPTION

The SFH450 is a gallium arsenide (GaAs) infra·
red emitter. The SFH750 is a gallium arsenide
phosphide (GaAsP). visible red emitter; the
SFH751 is a gallium phosphide (GaP) visible
green emitter. These three devices form a new
family of low cost fiber optic components
designed for short distance data transmission
using 1000 micron core plastic fiber. The devices
come in a 5 mm (T1 3A) plastic package featuring
a tubular aperture which is wide enough to
accommodate fiber and cladding. A microlens
on the bottom of the aperture improves the light
coupling efficiency into an inserted plastic fiber.

Wavelength
Spectral Bandwidth
Switching Times
tON (10 - 90%)
tOFF (90 - 10%)
Capacitance
Forward Voltage
IF = 100 rnA
IF = 10mA
Coupling Characteristics
into a 1000 Micron Core
Plastic Fiber
(ESKA EH4001)
Distance Fiber to Lens
SO.1 mm. polished ends.
(IF = 10mA)

Typical applications include: automotive wiring,
isolation interconnects, medical equipment,
robotics, electronic games, and copy machines.

6-11

SHF750

SFH751
DC
DC

-55 to + 100
100

T
Ti

'·1
.....
....
ii:Q

c>.!!

260

DC

5
45

V
mA

1.5

1

150

150

A
mW

500

K1W

Ts
VR
IF

260

5
130

260
5
75

IFS
Plot

3.5
210

500

SFH450

SHF750

SFH751

A

950 ±20



8FH450
Relative opectral eml..1on

Sl'H75OI751

."I... =IW,
10'0 \

I

0

Q

I,

SF"",

1\

0

0

\

I
\

1\ .

0

II

1\

211

I'

0

\

0
II1II

92D

950

1000

11lQ]

.

"

s..

!DOOM!

,

ICIO

-A

"'

1"'11"1'1'1.11"11

0

0

••
".'.Forwalll . .molll 'F'= I(VF) ,

A

'..,=10-)

r

,

SFH450

,

Relative epecIralemlaalon

1\

-v,

SFH750/751

8FH450

800501751
FoJwanI cumonl'F - I(VF)

Rodlllllintenelly

Radiant Intenally

.

,,'

;,

,

I.rel = I(lF)(r =5 .... T - 5 ms) ,

I.,el-I(I F) (r s 5,.s. T - 5 ms)

t.
·"'IIDII~

80050
Red

1%

I",

!;l 8FH751
Green

,

"

.,

,,~

U U

~

U

~

..-'

M U UY

--v,

8FH750

8FH450
PennI88lble pulse lood
I(r). Tamb - 25'C
Duty Cycle 0 - Parameter

Permlalbl. pulse IDod
I(r). Temb - 25'C

'F -

'F -

IlIA' Duty Cycle 0

= Parameter

I,

I

8FH7501751 •

8FH450
Maximum permlselble
= l(Tam,,)

,,

'"

I'"

j ,~

I,

140

r.

40

,
,

"
"

.,

20

40

60

..

80

-'

3OV,
i.... SFH250

~

\

\
m"C

,

500

\

f'\\

,

I\.

,

ZO

Teal CirculI for Switching Ti ....

8~J501

Gre,n,

1\

roo

"

10

, ~ed
1 ',. SFH751 \

r.

,,,

8FH450n5Ol751

Maximum pennlulbl.

•• forwalll currant 'F = l(Tam,,)

•• , - curranl'F

40

60

so

'\

1000C

_ T...

6-12

SIEMENS

SFH450V/451V/452V
SFH750V/752V
PLASTIC FIBER OPTIC
TRANSMITTER DIODE
Preliminary Data Sheet
Package Dimensions in Inches (mm)

/

-

.953(24.20)_1
.937 (23.80)

T.1=::::;;~;;;::*-~lcathade

'1001It!~
.200

(2.54)

(5.08) +--

FEATURES

Maximum Ratings

.2.3 mm Aperture Holds 1000 Micron
Plastic Fiber
• No Fiber Stripping Required
• Connect Fiber without Twisting
• Plastic Connector Housing
• Mounting Screw Attached to Connector
• Interference-Free Transmission because
of Light-Tight Housing
• No Cross Talk
• Auto Insertable and Wave Solderable
• Supplied in Tubes
• Molded Microlens for Efficient Coupling

Operating and Storage Temperature (T).
........... -55to +100 0 C
Junction Temperature (TJ ) .
................ 100 0 C
Soldering Temperture (Distance from solder to package~2 mm)
Dip Soldering Time t,;;5 sec (Ts)
.260°C
Reverse Voltage (V R ) •.
. ............... 5 V

DESCRIPTION
The SFH450V, SFH451V, and SFH452V are
infrared emitters. the SFH450V is a gallium
arsenide (GaAs) emitter, the SFH451V, a
gallium aluminum arsenide (GaAIAs) emitter,
and the SFH452V, a very fast infrared emitter.
The SFH750V is a gallium arsenide phosphide
(GaAsP), visible red emitter and the SFH752V,
hyper·red emitter. These devices are part of a
family of low cost fiber optic components
designed for short distance data transmission
using 1000 micron core plastic fiber. The
devices are housed in a plastic connector with
a mounting screw permanently attached to the
thread and a tubular aperture wide enough to
accommodate fiber and cladding. A microlens
on the bottom of the aperture improves the light
coupling efficiency into an inserted plastic fiber.
Typical applications include: Remote photointerrupter/sensing; Fast optocoupler with
extremely high isolation voltage; Transmission
of analog/digital Signals, data buses; Feedback loop in switch mode power supplies;
Isolation in test/measurement/medical instruments; Noise immune data transmission in
electrically noisy environments (motors, relays,
solenoids, etc.).

Forward Current (DC)
Surge Current
(t,;;10 ~s. D~O)
Power Dissipation
Thermal Resistance
Junction/Air

SFH450V
SFH451V
SFH452V
130

SFH750V

75

45

mA

PTOT

3.5
210

1.5
150

1.5
150

A
mW

RTHJA

350

500

500

KIW

IF

SFH752V

Electrical Characteristics (Tamb = 25°C)
Wavelength
Spectral
Bandwidth
Switching Times
tON (10-90 011»
tOFF (90-100/0)
Capacitance
Forward Voltage
IF~ 100 mA
Coupling
Characteristics
into a 1000
Micron Core
Plastic Fiber
(ESKA EH4001)
Distance Fiber
to Lens
SD.1 mm,
polished ends.
(IF~10 mAl

SFH450V
950

AA
t,
t,
Co

SFH451V
830

SFH452V
770

SFH750V
660

SFH752V
665

55

80

80

35

35

nm

0.05
0.05
40

0.12
0.05
40

0.07
0.01
40

JJsec

1
40

0.1
0.1
40

1.3 (,;;1.5) 1.4 (,;;1.6)
90

4Q

1.4 (,;;1.6)
40

1.6 (,;;2.0) 1.6 (,;;2.0)
5

40

For application information see Appnotes 40, 41, 42, 43.
See SFH450/4511750/751 for components without plastic housing.

6-13

nm

J.'sec
pF

VF

P'N

'·1
.....
-..
.....

CI.!:!

IFS

V
~W

:9C1
"-

SfH450V
Relative apectral eml••lon
10o.

;-.

0197

I
i I 1\

t'

0

7U

8fH750

fl

II

I--i

0

i

0

II
II

1\

0

0
0
800

i
I' I
I
920

II

1\
1\
1\

1\

1O-21Ul...LLL.Ll...LLLLl...LW
960

1000 1040
-A

1080Ml

1,0

.50

'50

2,0

2,5 3,0

3,5

4/J

--v,

4,5V

Radiant Intenalty
lerel = f(IF) (-1 = 5 pS, T = 5 ms)

lerel "" f(IF) (,.:c 51's, T "" 5 ms)

,

1.5

SfH750V

SfH450V
Radiant Intensity

SfH750V
Forward current IF "" f(VFl
10'

I.
1.100 • .1.

!

I

II

0

10

I(VF)

D

I~ = I (A)

1

0

t,t\

SfH450V
Forward CUmlnt 'F

SfH750V
Reilltive spectral emission

". I,., = I(A)

SFH750

Red

,
10

..r

,

SFH751

Green
10

10

0

,

1/

0

~

,/

1~~

U

U

~z

U

U

~

U ~2Y
_-v,

--',
SfH750V
Permlaslble pulse load

SfH450V
Permissible pulse load

SfH450Vl451V
Maximum permIssible

'F ::= f(T), Tamb :: 2Soc
rnA Duty Cycle 0 = Parameter

IF"" 1(1'), Tamb = 2S QC
Duty Cycle D = Parameter

rnA forward current IF = f (Tam~
200

10'===--'=~~""-'"

1,
11' :

I

140

f.-.

120

100
80
60
40

-

20

10'
10-2 10.1

trf

- - Tamb

10. 5 ,0"

101 s
,

,0--]

10- 1 ,0",100

l,()

--Tam\)
SfH750V
Maximum permissible

,a
70

"

~

80

100

°c

otI

S~HJ501
30V

0

i.e., SFH250

1\

Green

1\

0

1'\

0

60

Te.t Circuit lor Switching Time.

{ed
SFH751

-T.

SfH450V/451V/750V

rnA forward current IF '" f (T am~

1,

20

10's

1\

500

1\

0

1'\1\
0
0

20

40

60

80

~

1OO0 (

- _ T...

SFH450Vl451V/452VI750VI752V

6-14

SIEMENS

PFOK-1
PLASTIC FIBER OPTIC KIT

I~.·,·,~.,·~~~~,.
"".'~"'e

j!

DESCRIPTION

Kit Contents

The plastic fiber optic kit is intended to be a
comprehensive design-in tool for potential
customers that have already received data
sheets or samples of our discrete fiber optic
components. The kit contains all necessary
components and literature for a designer
to set up an optical link and test our components in a system.

SFH250
SFH250F
SFH250V
SFH350
SFH350F
SFH450
SFH750
SFH750V
SFH751
Fiber'
Fiber'
Data Book
Application Note

• Siemens will not supply samples or production quantities. Rber cables are only available
in this kit.

6-15

.........
....
"ii:CII
:;:;

Photodiode
Photodiode with daylight filter
Photodiode in connector housing
Phototransistor
Phototransistor with daylight filter
IR Emitter
Red Emitter
Red Emitter in connector housing
Green Emitter
15 feet, approx.
7 inches, approx.

"I

co.!!
~

Infrared Em itters
Package Outline

Part
Number

~

U

Package
Type

Half
Angle

LD271

1S(:25

3
100

10-20

SFH481-2

16-32

SFH4B1-3

~5

SFH402-2

2.5-5.0
±40°

m

@

SFH402-3

TO-1B,
flat glass
lens.

SFH482-1

OJ ~

SFH482-3

~8

SFH431-1

10-20

SFH431-2

TO-18,
dome
glass
lens.

±8°

16-32

SFH431-3

~5

LD242-2

4.8-8.0
Modified
TO-18,
plastic
lens.

LD242-3

±40°

100
~.3

7-3

100

7-20

7--34

7-22

Hermetic seal for
high rei use.
Narrow angle,
GaAIAs, 880nm.

7-36

3

Hermetic seal for
high rei use. Wide
angle, GaAs,
950nm. Matches
with BPX38
phototransistor
orBPX65/66
photod iodes.

7-24

2.5

Hermetic seal for
high rei rei use.
Wide angle,
GaAIAs, 880nm.

7-38

3

Hermetic seal for
high rei rei use. 3leaded. Narrow
beam. GaAs,
950nm.
Reversed polarity
as compared to
SFH401.

7-30

5

Suitable for sound
transmission.
Ideal for short
range light
barriers. Very
wide angle.
GaAs, 950nm.
Matches with
BP103 phototransister & BPX63
photodiode.

7-8

100

5-10

Hermetic seal for
high rei use. Very
narrowangle.
GaAs, 950nm.
Matches with
BPX43 phototransistor.
Hermetic seal for
high rei use.
Narrow angle,
very high
intensity. GaAIAs,
880nm.
Hermetic seal for
high rei use. Very
narrow angle,
GaAs, 950nm.
Matches with
BPY62 photetransister.

Page

2.5

3.15-6.3
±30°

SFH482-2

-.

~4.0

Features

Infrared Assemblies
Package Outline

Part
Number

Package VceS at
Type
1.,=10mA

SFH900-1

@ ~~

SFH900-4

=

Surge
Current
t<1Ofl5
A

Features

Page

0.25-0.5

SFH900-2

SFH900-3

Current
Transfer
Ratio
mA

0.4-.08
Miniature
plastic
with
daylight
filter.

.63-1.25
.2(S.6)

1.5

Reflective light
barrier for short
(upto5mm)
distances.

7-50

~1.0

CJ

~ ~

SFH905-1

40-125flA

SFH905-2

~100flA

SFH910

Plastc
with
daylight
filter

2004-9053

Plastic
disc with
96 slots.

7-4

Output:
Counting pulse Z
Directional signal R
~0.33·
Resolution

Differential photo
interrupter.

7-54

1
Disc for SFH910.
Can be ordered
separately.

SIEMENS

IRL-80A
GaAs INFRARED EMITTER

Package Dimensions in Inches (mm)

~~-,,-.~---~------~­
".'"
"""DE

,

,\~

1~"~~lb~@~t't;~8L~:1<:J
FEATURES

Maximum Ratings:

•
•
•
•

Reverse voltage
Forward current (Tamb=25 D C)
Operating/storage temperature
Power dissipation (Tamb = 25 D C)
Derate above 25 D C
Lead soldering temp <,11. inch from
plastic package) for 5 sec.

Low Cost Plastic Package
Long Tenn Stability
Wide Beam, 60·
Matches Phototranslstor LPT-80A

3
60

V
mA

-40to +100

DC'

100

mW

1.33

mW/DC

240

DC

950
± 20
(",0.4)

nm
nm
mW/sr

Characteristics (Tamb = 25 D C)

DESCRIPTION
The IRL-80A is a high power GaAs emitter diode, emitting radiation in the near infrared range. It is mounted in
a clear miniature plastic side-facing package and was
designed for a variety of applications which require
beam interruption.

Radiation Characteristics

Wavelength of radiation at Imax
Spectral bandwidth at 50% of Imax
Radiant intensity (Note 1) IF = 20 mA
Half angle
(limits for 500/0 of radiarit intensity I.,)
Forward voltage (IF = 20 mAl
Breakdown voltage (IR = 10,.A)
Note 1: A 1 cm' silicon detector is aligned
No aperture is used.

Relative Spectral Emission

'00 r-T-r-"T"...,..~It""""""""""""-""
Jt-l
1\r+--I---l---+l
OJ 1-+--+-t-++

f

70

:

I

"rr~~-1-r-~'r-\r-+-~

~ ~ r+~--rrt-~~Irlr\t-+-~

i ..

J

,00

If1\
\
\

"H-~+-j~L_\~r;-H

•

~p)

: \

_JH--+--rl

30

~

w

1\
\

I

1
H71--"

\

:

I

!

I

I

\

~

920940960

7-5

9801000

1020

............

1... %

I.

:1;30_
Deg.
VF
1.5 max
V .
VeR
(",3)
V
wtth the mechanical axis.
.
'P.

IRL-81A

SIEMENS

GaAIAs INFRARED EMITTER

Package Dimensions in Inches (mm)

FEATURES

Maximum Ratings

• GaAlAS Infrared Emitting Diode

Reverse Voltage (,;;25°C)
Forward Current (,;;25°C)
Operating and Storage Temperature
Power Dissipation (T,mb,;;25°C)
Derate Above 250C

•
•
•
•
•

Low Cost
Miniature Side Facing Package
Clear Plastic
Long Term Slability
Wide Beam, 50°

• Matches Phototransistor LPT·80A or
Photodarllngton LPD·80A

DESCRIPTION
The GaAlAs infrared emitting diode IRL-S1A is
designed to emit radiation at a wavelength in
the near infrared range. The chip is positioned
to emit radiation from the side of the clear
plastic miniature package. It operates efficiently
with the matching LPT-SOA phototransistor, or
LPD-SOA photodarlington.

VR
IF
T

P,ot

5
100
-40 to +100
200
2.67

V
mA
°C
mW
mWloC

880.
-36 ... +44
1.5 (,;;2.0)
30 (;,,5)
;,,1.0
1.5
±25

nm
nm
V
V
mWlsr
mW
Deg.

'Characteristics (Tamb = 25°C)
Wavelength of Radiation at 1m"
Spectral Bandwidtli at 50% of Imax
Forward Voltage (IF = 20 mAl
Breakdown Voltage (IR = 10pA)
Radiant Intensity (IF = 20 mAo Note 1)
Radiant Power Output (IF = 20 mAl
HaW Angle
t

A 1

cm2 silicon

VF
VBR
I,
Po

'"

detector with a radiometric filler is aligned with the mechanical axis of the DUT. No

aperature is used.

7-6

~~"

TYPICAL OPTOELECTRONIC CHARACTERISTICS

.

Relative spectral emission

1..,~I(lI)
"4

Maximum permlsalble
Iorwald cunenllF I (Tam,,)

..•

B

12S

1

I

I, ...

v

I,

t

II

I

75

,

,
~1

so

II
1\

I

•

7tiO

100

ISO

900 950
-A

I'
I'

IS

~

I \

80

II

70

~

~
~

60

~

ct:

40
30
20
10

1\

j

50

.!l!

(}}.

\

II

j

.E

o ,

/ 1\

90

~

I
I
:/
'I

11

\
_l,
1'\.

..... t 80

60

40

o

20

20

Angle (Degrees)

7-7

I

1\

1OD4N1

100

~

1

40

. . r-- t60

80

2

J

"

S

6

-v,

7

IY

SIEMENS

LO 242 SERIES
INFRARED EMITTER

Package Dimensions in Inches (mm)

11:;

Radiant8l'BI

!i j

F'O=18=IO.4=51====1I....1a.......
.571 114.51
.482112.51

j.!

.21715.51
.21115.351

.142 (3.6
.118(3.01

Maximum Ratings
Storage Temperature
Soldering Temperature
(Distance from soldering joint
to package ~2 mm. soldering
time t :s 3 s)
Junction Temperature
Reverse Voltage
Forward Currenr
Surge Current (t = 10 I's. 0 = 0)
Power Dissipation
Thermal Resistance

T

Ts

JiA
IF
IFS
P,ot
RthJamb

RthJL

-40 to +80

·C

230
100
5
250
3
470
450
160

·C
·C
V
mA
A
mW

KIW
KIW

FEATURES
Characteristics

• Modified TO-18 Size Metal Case
• Rounded Plastic Lens
• Long Term Stability
• Very Wide Beam. 80·
• Matches with
Phototransistor BP103
and Photodiode BPX63

DESCRIPTION
The GaAs infrared emitting diode LO 242
is designed to emit radiation ~t a wavelength hi the near infrared range_ The radiation emitted is excited by current flowing
in forward direction and can be modulated.
The plastic cover permits wide-angle radia·
tion. The anode terminal is marked by the
adjacent projection on the rim of the case
bottom. The cathode is electrically connected to the case. The LO 242 is particularly suitable for use as emitter for I R
sound transmission in radio and TV sets.

(Tamb

= 25·C)

Wavelength (IF = 100 mAo tp = 20 ms)
Spectral Bandwidth
(IF = 100 mAo tp = 20 ms)
Half Angle
Active Area
Active Die Area per Die
Distance Die Surface
to Package Surface
Switching Time {I. from 10% to
90% and from-90% to 10%
at IF = 100 mAl
Capacitance Cl/A = 0 V)
Forward Voltage
(IF = 100 mAl
(IF = lA.,t. = 1001'S)
Breakdown Voltage (IR = 10 IIA)
Reverse Cwrrent Cl/A = 5 V) ,
Temperature Coefficient of I. or 'li.
Temperature Coefficient of VF
Temperature Coefficient of Apeak

950±20

nm

A
Lx W

55
±40
0.25
0.5 x 0.5

nm
Deg.
mm2
mm

H

0.3 to 0.7

mm

trlt,
Co

1
40

!IS
pF

VF
VF
VBA
IA
TC,
TOy
Tc"

1.3 (:s1.5)
1.9 (:s2.5)
30 (~5)
0.01 (:s1)
-0.55
-1.5
0.3

V
V
V

6l.
."

Radiant IntenSity I. In Axial Direction Measured at a Solid Angle 0111
Group
Radiant Intensity
(IF = 100 mAo Ip = 20 ms) I.
(IF = 1 A. tp = 1001's) I.
Radiant Power (IF = 100 mA
tp = 20 ms) 'li.

7-8

IIA
%lK
mV/K
nm/K

=0.D1 sr

LD242-2

LD242-3

4... S
45

~6.3

60

mW/sr
mW/sr

13

16

mW

Relatl"a .pectralamluJon I... "/IAI

Radl.tlon char.cterlstic toO" 11,,1
10"
10Q

Radlant'ntan.'ty I." ((/,1

10'
ZO'
0
;

1\

,
,-

0

50
0

.

1\

0

10

, I'

,

BIll

920

J

,V
960

1O~

1000

1090nm

-.1.

Forward volt'gal,· IIV,I

M... parml.'b'a forward cum"'
mA ""'IT_I
300

I,

If

250

pF

50

~

c

1'0

11O·I-tE-!,-y~t+-b!4H-I'_
Temperature Coefficient of VF
Temperature Coefficient of ~peak

.

-4010 +80

%lK
mV/K
nm/K

=0.01 ..

LD261-4

L0261-5

260, 262-268.

2104

3.2106.3

2.5t08

mW/sr

5

6.5

8

mW

..

R.I.tiv. apitclrll.mlaalon I, .... t (A.I

,,'

100

1.

"

1. '0);"'"

'f:

1,0,

'\

Ell

.

so

"

\

lO

III

I

'0

I'

,V

o
•

V

'0

9ZO

!Ell

IIDl 1:1'"
-.I.

1Il10l1li

Ma•. pennlaaJble forward current

mA IF '" f(Tam~
80
I,

70

0

,\
'\

50
0

li'tbJU=,,/ ~RthJl=650KfW
750K/W

0

~

0
0
0

20

40

\

"-'BI_

\
BO

60

10- 2 WLc':-'LL-'--:'::-'-:LC-:'::-L'-:-'-'
1,0 1,5 2,0 2.5 3,0 3,5 4,0 1.,5V

1000(

'--V,

--Tamb
Forwardvoltega

Capeclgnca C = , IV"I

Redientinten'lty~"'(T.... 1

~ ='IT.... 1

OF

50

...'L

C

~

140

.....

10

..

1
1'\

"

1.4

i:w0r~L2

1.2

! ,•

"J

'QI!I
- ...

as H+H+H-i"H-+H

U

e ..
I!::

'2E

OJ

20

~4

H-+H+H+H+H

Q4

Dl

0

ro-'

~,'

-!Ii
ID'

o

~, V

mn

- ...

-30-20-1) 0101O.JlI,IJSOElJ70III!IOtJO°[

--V,

,

o

- ...

-.Jl·ZO·D 0 IJ ZOIlI,(lS09J70 90 00100

II[

Perm, pula.....ndlinG c.p.bllity

Wavelength al pee,k .mie,lon
ol ...... I(T....1

If. tltl;I' '" parameter; 7;, ••• "'25·C

A
101 _ _

IJOO

I!
....v

""
950

940

ro'

...... ~

V

930
910

910

90'

,

25

so

- ...
75

1000[

LO 261

7-11

SIEMENS

LD271/271H
1" LEADS LD271 L/271 LH
INFRARED EMITTER

Package Dimensions In Inches (mm)

Maximum Ratings

FEATURES
•
•
•
•
•
•

Low Cost
T-1~ Package
Lightly Diffused Gray Plastic Lens
LD 271ULD 271LH 1-lnch Leads
Long Term Stability
Medium Wide Beam, 50°
• Very High Power
• High Intensity
• Matches with Photodlodes SFH 205 or
BP104 or Phototranslstors BP103B
DESCRIPTION

LD 271/H/ULH an infrared emitting diode.
emits radiation in the near infrared range
(950 nm peak). The emitted radiation. which
can be modulated. is generated i:iy forward
flowing current. The device is enclosed in a
5 mm plastiC package. An application for the
LD 271 family is remote control of color TV
receivers.

Storage Temperature
Soldering Temperature
(Distance from soldering joint
10 package ~10 mm. soldering
lime I :s 3 0)
Junction Temperalure
Reverse Voltage
Forward Currenl
Surge Current (I • 10 ,..., 0 • 0)
Power Dissipation
Thermal Resistance

-5510 +100

·C

·C
V
mA
A
mW

RlhJamb

260
100
5
130
3.5
210
350

KIW

l.

950±20

nm

4>.
A
Lx W

55
±25
0.25
0.5 x 0.5

nm
Deg.
mm2
mm

H

4.0104.6

mm

I,. ~

c.

1
40

pF

VF
VF
VBA
IA
TCI
TCy
TG,.

1.30 (:s1.5)
1.9 (:s2.5)
30 (~5)
0.01 (:s1)
-0.55
-1.5
+0.3

V
V
V
pA
%/K
mVIK
nm/K

T

Ts

r.
V~
IF
IFS
PI"

OC

Characteristics (Tamb = 25°C)

=

WlMllength (IF 100 mAo Ip = 20 mo)
Spectral Bandwidth
(IF = 100 mAo 1.= 20 mo)
Half Angle
Acti""Area
ActiVe Die Area per Ole
Distence Die Surface .
to Package Surface
Switching Time (I. from 10% 10
90% and from 90% 10 10%
at IF - 100 mAl
Capacitance fYA = 0 V)
Forward Voltage
(IF = loomA)
(IF = lA. I. - lOOpS)
l;lreakdown Voltage (fA = 10 pAl
Reverse CUFrent fYA = 5 V)
Temperalure Coefficient of I. or ••
Temperature Coefficienl.of VF
Temperature Coefficient of l.peak

'P

ps

Radiant Intensity .. In AxIal Dinoction Ma....rad at a Solid Angle 01 0 • D.01 sr
Group
Radiant Intens~y
(IF = 100 mAo I. - 20 ms) I.
(IF = 1 A. t., = l00"s) I.
Radianl Power (IF - 100 mA
t.-20ms) ••

7-12

LD 271 a
LD271L

LD271Ha
LD 271 LH

15(~10)

~16

100

120

mW/sr
mW/sr

12

16

mW

..

100

I

10

Radiation c"aractarl.tic I... • fl,1

I.

20'

I.IOCI.A

I

80

I.

~-f(IF)

101

~

1,,1 90

t

Ibdlant Intensity

RelatlVllapectNlamlalon .... ·,{11

1

\

10,

0

50

"

40'

\

0

50'

1
10

60"

I'

...',.,"

o
SIll

920

960

1000 1040
-A

10S0nm

LJct~~~::t:::LJ

1cr'
forward volta.a I, -1(YrI

M .... parmlulbla forward cunant
rnA 1,-117.-1

10'EEmfJlII
A

200

I, ..

I,~

i~

1

H--tty-ip,+-bt9.-.Cl--t9=+t-I
.

,
10

140

10°'._

120
100

.
80

f\.

40

1'\

20

1\

10-21,O'!"--f'.5:-'-,2,O":-l--:'~:"5'-:3,0":-l--:'~5:-'-,4/l":-,-.J4.SV

-v,

Radiant Intanalty 1.1;1 0

capacltanca C-IC v..1

OF

50

..1.

c

~". 1.Z

I"
30

-II~~

1.4

1

t;o~~tl

H+H+H+H+H
H+H+H+H+H

1.0

!

1» H-t-f''id-H-I+t-I-H

1'\
., H+H+H+H-I"'ki

" H+H+H+H+H

/0

.. r++H+H+H-i-H
10
OJ

o

o mL".J.JJ..I.UllI.",.Ll.ill.lIlL,rf..-'-.L.lJlllIJ., V

--...

-3D-20-1O 0 lIllD.Jl4D5:JeDitllll9D1OO

- - VR

,

°c

f++++++++++-l-H

.

-lJ-ZO-(JO·lDlDJl40SD601OBD!Il1l00(

-~

Wavalangth. pau amlDion

nm 1,. ... -117.
11100

I,

,

950
140

i

...... 1-""

960

1--" ......

930
910

.~

",,-:,",ll"'-;"'"'-:"~~

'111
900

10'_
OD2

......

o

50

75

1000(

10-5

-b,

10-'

1(r)

10-2 10"'

~

1O's

_T

LD 2711HlULH

7-13

LD273

SIEMENS

TWO CHIP
INFRARED EMITTER

Package Dimensions in Inches (mm)

.197 (5.0)

~

~
.060 (1.5)

.024 (0.61
.016 (0.41

.224 (5.7)
.252 (6.41

Maximum Ratings
FEATURES

• Very High Radiant Intensity
• l\vo Chip Device

• Grey Oval Plastic Package
• Equivalent to T1~ Size
• Matches with Photodiodes SFH 205 or
BP104 or Phototransistors BP103B
DESCRIPTION

Characteristics (Tamb = 25°C)

The LD 273 is an infrared emitter consisting
of·two GaAs-IRLED chips connected in a
series. This provides a very high radiant
intensity of greater than 25 mW/sr at 100 mAo
Radiation is emitted in the axial (0°) direction
from a smoke colored oval plastic package.
This device serves particularly well as a
powerful emitter of increased range in remote
control applications.

Wavelength (IF = 100 mA, Ip = 20 ms)
Spectral Bandwidth'
(IF = 100 mA, to = 20 ms)
Half Angle
(Horizontal to terminal plane)
Half Angle
(Vertical to terminal plane)
Active Area (2 die)
Active Die Area per Die
Distance Die Surface
to Package Surface
Switching Time (I. from 10% to
90% and from 90% to 10%
at IF = 100 mAl
Capacitance (VR = a V)
Forward Voltage
(IF = 100 mAl
(IF = fA, to = l00jlS)
Breakdown Voltage (IR = 10 /'A)
Reverse Current (VR - 10 V)
Temperature Coefficient of Ie or +s
Temperature Coefficient of VF
Temperature Coefficient of ~peak
Radiant Intensity in Axial
Direction Measured at a Solid '.
Angle of II = 0.01 sr
(IF = 100 mA, tp a 20 ms)
(IF = 1 A, ,. = 100 JIS)
Radiant Power (IF = 100 mA
tp = 20 ms)

Mounting Instruction
In order not to damage the system when soldering in the emitting diodes, the soldering
. distance to the plastic package has to be dimen"
sioned as large as possible. We r,ecommend a
minimum distance of 10 mm between package
and soldering point for the usual soldering conditions (260 eC/3 sec).

!!
~

Storage Temperature
Soldering Temperature
(Distance from soldering joint
to package 2mm
Dip soldering time .. 5s
Iron soldering time 0<;3,
Junction temp~rature
Re~erse

voltage.
Forward current

FEATURES
• Three Radiant IntenSity Groupings
• Low Cost
• T10/.1 Package
• Lightly Diffused Gray Plastic Lens
• Long Term Stability
• Narrow Beam, 20°
• Excellent Match to Silicon Photodetector BP103B

DESCRIPTION
The GaAs infrared emitting diode LD 274
emits radiation at a wavelength in the near
infrared range. It is enclosed in a T 1 %
plastiC package of 5 mm diameter. This
device is designed for remote control applica·
tions requiring extremely high power.

Surge current (T= 10~s)
Power dissipation (T = 25'C)
Thermal Resistance

T

-55to +100

·C

Tsold

260
300
100

·C

Tsold

Tj
VA
IF
iFS
Ptot
RlhA

100
3
165
450

'C
'C
V
rnA
A
mW

KIW

Characteristics (Tamb = 25·)
Wavelength at peak emission at

IF= 100 mA,tp= 20ms
Spectral bandwidth at 50% of Imax
at IF = 100mA, tp = 20 ms
Half angle
Active chip area
Dimensions of active chip area
Distance chip surface to case surface
SWitching time:
(Ie from 10% to 90%: IF= lOOmA)
Capacity (VA = 0 V)
Forward VOI)age (IF = 100mA)
(IF= lA: tp= 100~s)
Breakdown voltage (IA;= 100~)
Reverse current (VA = 5V)
Temperature coefficient of Ie or CIte
Temperature coefficient of VF
Temperature coefficient of Apeak

Apeak

950±20

nm

AA
cp
A
LxW

55
±10
0.09
0.3 x 0.3
4.9 to 5.5

nm
Oeg.
mm'
mm
mm

0
tr,tf

Co
VF
VF
VBA
IA
TC
TC
TC

Radiant intensity Ie in axial direction at a steradian

~s

25
1.30 (!!i1.5)
1.e(s2.5)
30(>5)
0.01 (!!i1)
-0.55
-1.5
+0.3

pF
v

v
V
~

%/K

mV/K
nm/K

n = 0.01 sr. or 6.65°.

Radiant IntenSity IE In Axial Direction Measured at a Solid Angle of 12=0.01 ••
Group
Radiant Intensity IE
(IF~100 mA, Tp~20 ms)
(IF~l A, Tp~ 100 ~s)
Total Radiant Flux ct>E
(IF~lOOmA, Tp~20ms)

7'-16

LD 274-1

LD 274·2

LD 274-3

30-60
335

50-100
560

;,
(IF= 100 mAo Tp=20 ms)

7-18

nm
nm
Deg.
mm'
mm
mm

,..
pF
V
V
V

~
%/K
mV/K
nm/K

- 0 01sr

Q -

LD 275-1

LD 275-2

LD 275-3

10-20
110

16-32
180

~25
~225

mW/sr
mW/sr

10

t2

14

mW

Relative spectral emission IREL =f (A)

Radiation Characteristic IREL =f (cp)

Relative radiant Intensity
IE

IE '00 mA = I (IF)

,.

...

,,'

t",9O

.
..

leo

l-J

I.

'197

I. 1OO .A

1\

,

50
40

1\

30

V

100

I
I

20

10

~

,V

•

IBG

920

960

1000

1JIoO

1011Dnm

20" ·40° 60"

'0"'

--A

Forward currant IF =f (Tamb)

Capacitance C = f (VR)

Forward current IF=I (VFJ

"'-_II

BOO 1000 120"

Permissible pulse load IF = 1(tp)
duty cycle D = parameter

A

100

\
I,

\
\

1,,0

60

1\

40

Iyp,

lO

pF
28
C 26

I:~

I,

I

f-1-tt-tttlI-H'lWH-tttt1ltl

'"

18

16
14
12

"
2{)

40

60

. el

I~04~

\

~'"

80 °C 100

10" LUL-:':-''-:':-'-:I-:-'-:':-'--:'-:-1..I-:,:-,
T-!

- - T...

1,0

l,S

2Jj

2,S

3,0

3,5

4J)

-v,

VF

4,SV

IE

Forward voltage VF 25 = f (Tamb)

el!!

--I,

I!,-

-'EE...

Wavelength at peak emission

Radiant Intensity IE 25 = f (TambJ

ApEAK = 1(Tamb)

1,4

100 0
99

2Lu

2

v. zs•

•
0

I•

0

0

,/

0

8

"
"

,/

/

0

6

0,6

940 /
93 o·

0,4

920

',2

•

2

o~

-30-20-1001020304050607080 [100

- - T...

"

~30-2O-tOO

~
10 20 3040 5060'70 8O·C 100

- _ T....

91 0

.

~~

90 00

2S

SO

7S

(

100

- T...

LD275

7-19

SIEMENS

SFH 400 SERIES
GaAs INFRARED EMITTER

Package DimenSions in Inches (mm)
.295 .5)
.272 (6.9)

.571 14.
.492 (12.5)

.~

(0.45)

;+------+
.

Maximum Ratings

FEATURES
• Package: 18 A 3 DIN 41 876 (TO 18),
Glass Lens, Hermetically Sealed, Solder
Tabs, Lead Spacing 2.54 mm ('/••,
•
•
•
•

Anode Marking: Tab at Case BoHom
High Reliability
Long Life
Very High Radiant Intensity,
Narrow Beam

• High Pulse Power
• Two Radiant Intensity Ranges
• Same Package asSFH 480, SFH 216
DESCRIPTION
The GaAs infrared emitting diode SFH 400,
fabricated in a liquid phase epitaxy process.
features high efficiency and emits radiation
at a wavelength in the near infrared range.
The radiation is activated by dc or pulse
operation in forward direction; simultaneous
modulation is possible. The cathode is
electrically connected to the case.
The applications include light-reflecting
switches for steady and varying intensity.
IR-remote control, industrial electronics,
"measuring and controlling".

Storage and Operating Temperature (T"". T..> ......................:...................... -6500 to +10000
Soldering Temperature at Dip Soldering ~2 mm distance
from case bottom) (t <:5 sec.) (T,.l ............................................................................... 260·C
Soldering Temperature at Iron Soldering ~2 mm distance
from case bottom) (t<: 3 sec.) (T,) .... :..................................................... , ..................... 3OO·C
Junction Temperature (T) ............................................................................................... I00·C
Reverse Voltage (V.) ............................................................................................................5 V
Forward Current (I,) Tc= 25'C ....................................................................................... 300 mA
Surge Current (t s 10 JIS. D=O) (I",) ...................................................................................... 3 A
Power Dissipation (P'OT) Tc= 25'C .............................................................................. 470 mW
Thermal Resistance (R".,.) .......... ,..... ;......................................................................... 450 KJW
(R".,J .......................................................................................... 160 KJW

Characteristics (TA=25°C)
Parameter
Wavelength at Peak Emission
(1,=100 mA, 1,.=20 ms)
Spectral Bandwidth at 50% of I"",
(1,=100 mA, t.=2O ms)
Hall Angle
Active Chip Area ..
Dimensions of Active Chip Area
Distance Chip Surface to Case Surface
Switching limes
(I, from 10% to 90%,
and from 90% to 10%. I, =100 mAl
CapaCitance (V.=O V. f=1 MHz)
Forward Voltage
(1,=100mAj
(1,=1 A, 1,.=100 JIS)
Breakdown Voltage (1.=10 jJA)
Reverse Current (V.=5 V)
Temperature Coefficient of I, or"
Temperature Coefficient of V,
Temperature Coefficient of ""-

Unit

Symbol

""-

950±2O

nm

"'-

65
±6
0.25
0.5,,0.5
4.0- 4.8

nm

cp

A
L"W
D

t..t"
C,
VF
VF
V...
I.
TC,
TC.
TC.

1
40

Deg.
mm'
mm
mm

JIS
pF

1.30 (SI.5)
1.9 (S2.5)
30~5)

0.Q1 (<:1)
-0.55
-1.S
0.3

V
V
·V
jJA
%/K
mV/K
nm/K

Radiant Intensity I, In Axial Direction at a Sieredian n ,,0.01 sr or 6.5 degrees
(1,=100 mA, 1,.=20 ms)
(1,=1 A, 1,.=100 JIS)
Radiant Flux (total)
(1,=100 mA, 1,.=20 ms)

7-20

SFH400-2

SFH400-3

I,
I,

20-40
220

,,32
270

mW/sr
mW/sr

"

5.5

7

mW

Relallve spectral emission
versus wavelength

Y.

10'

100 '----'r--T-rlr""-----'--'-'-'-'-'
90

lrtt

i

~~-+-+-r~~~r­
r--

80

I \

70

I

60

,

\

50
40

f--

f--

l-

V

10'

30

rI-

i=

I

1II

II

10
0
BIll

...

,V

103

hi

10-

920

960

1000

1040

1080nm

10-'

IIr'

10'
-IF

--A

Forward current versus
case temperatura
mA

e

350

\
feR""

150

r-...

EEtyP.~

L
20

~

~~ax.

30

II

20

1,0

10

\

L ..... ~

60
80
-Tc

100 'C

Forward voltage versus
ambient temperatura
1.4

10-'
I,D

~

1.5

2.0

2,5

~5 4,0 4,5V
-V'F

10'

3,0

1.4
10'

--I-T

I IW1

IS:tmmH111tt1t

0.0

0]

0.6

0.4

0.4

0.2

0.2

o

~-

-30 -20-10 0 10 10 30 40 !iJ III 10 l1li 90 'ji0 'C

10' V

~-~IF

IF

0.8

l'b1

Et~§jIFfjmt£l~~g

1.2
'1.0

'·10'

-v,

Permissible pulse handling capability
Forward currant versus cycle duration
(Tc=2S'C, Duty cycle D = parameter)

Radiant Intensity
versus ambient temperature

V,
VF25

1"\

R",. = 450 KIW

IN

°o

r...

1

40

10-

1'1"

50

pf
50
C

,

1\
t-...

Capacitance versus revBrse voltage

IF

l,D,

= 160 KIW

10'A

Forward current versus
forward VOltage
A
10'

zoo

100

Radiation characterlsllc
Relative spectral emission
versus half angle

Radiant Intensity versus
forward current

T

0=0,005

0,01
0,02

IOl1111~~~:~~51111
~,5

0,2

DC

~
-30 -10 -il 0 111 20 II 40 50 III 70 80 !IO UlO 'C

-1A

-1A

SFH400

7-21

SIEMENS

SFH 401 SERIES
GaAs INFRARED EMITTER

Package Dimensions in Inches (mm)
.252 6.4
.224(5.7)

FEATURES
• Package: 18 A 3 DIN 41 876 (TO 18),
Glass Lens, Hermetically Sealed, Solder
Tebs, Lead Speclng 2.54 mm (,,,.j
• Anode Marking: Tab at case Bottom
• High Reliability
• Long Life
• Very High Radiant IntensHy,
Narrow Beam
• High Pulse Power
• Two Radiant IntenSity Ranges

Maximum Ratings
Storage and Operating Temperature (T1ITlI' T.,.) ............................................. ·55·C to +100'0
Soldering Temperature at Dip Soldering ~2 mm distance
Irom case bottom) (t S5 sec.) (T,) ............................................................................... 26O·C
Soldering Temperature at Iron Soldering ~2 mm distance
Irom case bottom) (ts 3 sec.) (T"l ............................................................................... 3OO'C.
Junction Temperature (T) ............................................................................................... l00'C
Reverse Voltage ~.) ............................................................................................................5 v
Forward Current (I,) Te= 25'C .......................................................................................300 rnA
Surge Current (t S 10 lIS, 0=0) (I,.) ......................................................................................3 A
Power Dissipation (PTOT) Te= 25'C .............................................................................. 470 mW
Thennal Resistance (R"".) ................................................ ,......................................... 450 KIW
(R,..,J .......................................................................................... I60KIW

• Same Package as SFH 481

DESCRIPTION
The GaAs infrared emitting diode SFH 401,
fabricated in a liquid phase epitaxy process,
features high efficiency and emits radiation
ata wavelength in the near infrared range.
The radiation is activated by de or pulse
operation in forward direction; simultaneous
modulation is possible. The cathode is
electrically connected to the case.
The applications include light-reflecting
switches for steady and varying intensity,
IR-remote control, industrial electronics,
"measuring and controlling".

Characteristics (TA=25'C)
Parameter
Wavelength at Peak Emission
(1,=100 mA, t,.=2O ms)
Spectral Bandwidth at 50% 011....
(1,=100 mA, t,.=2O ms)
Hall Angle
Active Chip Area
Dimensions of Active Chip Area
Distance Chip Surlace to case SUrface
Switching Times
(I,from 10% to 90%,
and from 90% to 10%,1, =100 rnA)
capacitance ~.=0 V, 1= 1 MHz)
Forward Vollj3ge
(1,=100 rnA)
(1,=1 A, t,.=100 lIS)
Breakdown Voltage (1.=10 pAl
Reverse Current ~.=5 V)
Temperature CoelrlCient oIl, or "
Temperature Coefficient olV,
Temperature Coefficient 01 ~

Unit

Svmbol
~

950±2O

nm

f1)..

±55
±15
0.26
0.6 x 0.6
2.8- 3.7

nm
Deg.
min"
mm
mm

cp
A
LxW
D

t",t,

1
40

C.

lIS
pF

1.30 (SI.5)
1.9 (S2.5)

V,
V,
V,..
I.
TC,

V
V
V
pA
%II<
mV/K

30~5)

0.01 (sl)
-0.55
-1.5
0.3

TCy

TC.
nm/K
Radlantlnt.nsltv ~ In Axial Direction at a Steradian n 2:0 01 sr or 8 5 degraas
SFH401-2
SFH401-3
SFH40104
10-20
16-32
(i,=l00 rnA, t,.=2O ms)
>25
mW/sr
I,
100
120
225
mW/sr
(i,=1 A, t,.=I00IlS)
i,
Radiant Rux (totai)
(i,=100rnA, t,.=2O ms)

7-22

.,

5.5

7

8.5

mW

Rolatlvo spoctral omission
versus wavelength

%
100

t

SO

H

0197~

t-'

1\
1\

II

70

Radiation characteristic
Relative spectral emission
versus half anglo

to'

V

90

Irel

Radiant Intonslty vorsus
forward currant

I.
Jel00lllA

,

\

!

50
:

50
40

\

1

30

10

I

20

II

10

1'1'-

,V

o
S811

910

950

1000 lOW
--A

10 0
-IF

j6

1\

I--+-t--t-j-t---

VR,"",",~t---

Capacitance versus raverse voltage
pF
50

10'
I,

10

0

typ,

,-

max.

30

1\

150

T

l"'-

IL

\

200

I"

1--

,

1\
r-...

II

20

RUlJA '" 450 I ............................................. -55'C to +l00'C
Soldering Temperature al Dip Soldering (;:2 mm distance
from case bottom) (I s5 sec.) (T,) ............................................................................... 2OO'C
Soldering Temperalure allron Soldering (;:2 mm distance
from case bottom) (I S 3 sec.) (T.) .............•...............................................•................. 3OO'C

DESCRIPTION
The GaAs infrared emitting diode SFH 402,
fabricated in a liquid phase epitaxy process,
features high efficiency and emits radiation
at a wavelength in the near infrared range.
The radiation is activated by dc or pulse
operation in forward direction; simultaneous
modulation is possible. The cathode is
electrically connected to the case.
The applications include lighHeflecting
switches for steady and varying intensity,
IR·remote control, industrial electronics,
"measuring and controlling" ..

:!~~~::;~;~.~~~.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.~.~:~
Forward Current (I,) Tc= 25'C ....................................................................................... 300 rnA
Surge Current (t S 10 "", 0=0) (I ..) ...................................................................................... 3 A
Power Dissipafion (PTQT) Tc= 25'C .............................................................................. 470 mW
Thermal Resistance (R..,.) .......................................................................................... 450 KNI
(RlKlJ .......................................................................................... 160 KNI

Characteristics (TA=25°C)
Parameter
Wavelength at Peak Emission
(1,,=100 rnA, 1,,=20 ms)
Spectral Bandwidth at 50% of IMAX
(1,=100 rnA, 1,,=20 ms)
Half Angle
Acwe Chip Area
Dimensions of Active Chip Area
Distance Chip Surface to Case Surface
Switching Times
(;.trom 10% to 90%,
and from 90% to 10%, I, =100 rnA)
Capacitance (V.=O V, f=1 MHz)
Forward Voltage
(1,,=100 rnA)
(1,=1 A, 1,,=100 "")
Breakdown Voltage (1.=10 JIA)
Reverse Current (V.=5 VJ
Temperature Ccefficient of IE or +E
Temperature Ccefficient of V,
Temperature Ccefficienl of )..,....

Symbol

Unit

)..,....

950±2O

nm

l!J..
cp
A
LxW
0

±55
±4O
0.25
0.5 x 0.5
2.1- 2.7

nm
Deg.
mm'
mm
mm

t",t,

""

C.

40

pF

V,
V,
V,..
I.
TC,
TCy
TC,

1.30 (sl.5)
1.9 (s2.5)
30(;:5)
0.01 (SI)
-0.55
-1.5
0.3

V
V
V

JIA
%/K
mV/K
nm/K

Radiant Inlensity I, in Axial Direction at a Steradian n ,,0_01 sr or 6_5 degrees
(1,-100 rnA, 1,,-20 ms)
(1,=1 A, 1,,=100 "")

IE
IE

SFH402-2
2.5,-5
28

SFH402-3
:.4
35

mW/sr
mW/sr

Radiant Rux (total)
(1,,=100 rnA, 1,,=20 ms)

+E

5.5

7

mW

7-24

Relative speclral emission
versus wavelength
%
100

RadIation characlarfstlc
Relative speclral emission
versus half angle

10'

fo; I-

1",90

i

Radiant Intensity veraus
forward currant

~

BO
70

50

40

1\

0

V

10'

I

I'

10
10

o
BBO

'"

910

960

1000 10411
-A

rnA

30'

311'

1\
200

Itr'

10'

-I,

40'

40'

50'

50'

60'

60'

BO'
90'

lO'A

L....::r::::::J~~~~::t:::~~

forward VOltage
A

pF
50

10'

,

...-R,"", = 160 i2mm
Dip soldering time .. 5s
Iron soldering time";3s
Junction temperature
Reverse voltage
Forward current
Surge current (T: 10~s)
Power dissipation (T: 25'C)
Thermal Resistance

Tstg

-55to +tOO

'c

Tsold

Tj
VR
IF
iFS
Ptot
R1hJA

260
300
100
5
100
3
165
450

'c
'c
'c
V
mA
A
mW
KlW

Apeak

950±20

nm

61

55
±20
0.09
0.3 x 0.3
3.5

Deg.
mm'
mm
mm

Tsold

Characteristics (Tamb = 25°)
Wave length at peak emission at
IF: 100 mA tp: 20ms
Spectral bandwidth at 50% of Ima•
at IF: 100mA, tp: 20 ms
Half angle
Active chip area
Dimensions of active chip area

5) 0.01 (",1) -0,55 -1,5 +0,3 nm ~s pF V V V ~ %/K mV/K nm/K Radiant Intensity IE In Axial Direction Measured at a Solid Angle of!l =0 01sr Group Radiant Intensity IE (IF~ 100 mA, Tp-20 ms) (IF~1 A, Tp~100~s) Total Radiant Flux '~E (IF~ 100 mA, Tp~20 ms) 7-28 SFH 409-1 SFH 409-2 SFH 409·3 6.3-12.5 70 10-20 110 ~16 mW/sr 150 mW/sr 10 12 14 mW RfllMhlalP8Cll1Ilemllllon Rldlantchal1lclerlstlcs lrel=f[f) Rldllnlinlenllll, larel = I (IF) IT'" Spa. T = Sms) IroI=II.~1 10° 0° 100 Irrl 90 t f, 80 60 50 \ 3D ~ I' 880 920 960 -. toaD 10 1040 o o 20 40 1 10, 60 SO' 70' 70' BO' gOo· 80 60' FOIWsrdcunen\ IF=I(VFl Of 10'1&1_ , " 20 40' SO' ,," .10' A 10' A \ 40 40' BO~ 10' , 60 .I lOsa"m M."mum.."nllll*torntdcund IF =f(T.mbl rnA 100 30' .,' 10 10 30' ~ I. 40 21)' 10 I r 100 mAft~'C \ 10 21)' 3D 181-t+tttlltH-+tHlltt-+ffiffi11 f :: Iyp, 10 mmllI 18 I' I'12 10 8 10- 2 WL-":-'-':-Ll"L':-l--LLL-Ll 1,0 1,~ 2JJ 2,5 3,0 3,5 4!J 4,5V 100°C 10' '. V. Forward voIbige VF 25 = I (T1mb) L' r-r-,-or-,-rr-,-rr-,-n 1,2 H+H+H+H+H 1,0 o --V, -Tamb oM 1000 T:: e -Ie , -"'- 990 A.peak f H+No+-H+t-++H 9S0 970 Vf Vf25 , 960 OJ 950 O.~ 940 0,' 0,' la' v Wavelength,tpaakemlalon Apellk=tlTlmbl Radianlinlens'I,~=I(Tamb) 1,21 10' _v, 10'" ..... ..... ..... " ' 930 910 H+H+H+t-++H 0,' -30-20-100 102030405060708090100 -.lamb °c ·30-20·100102030405060708090100 -.Tamb 910 0C 900 o 21 SO 75 loone - - - . 'amb Permlsl!ble pulse loed 'F = I (T); Dul,cycla D == P'l1Imetar 1 SFH 409 7-29 SIEMENS SFH 431 SERIES INFRARED EMITTER Package Dimensions in Inches (mm) .205 (5.2) .195 (4.9) .",t, I .211 (5.35) • Cathode Cathode is connected to case. FEATURES Absolute Maximum Ratings • TO-18 Hermetic Package, 3-Leaded Parameter Power Dissipation • Dome Glass Lens • Very Narrow Beam, ±8° • Three High SFH 431 SFH 431-1 SFH 431-2 SFH 431-3 Power Intensity Ranges 10 mW/Sr . 10-20 mW/Sr 16-32 mW/Sr ~25 mW/Sr • Reversed Polarity Compared to SFH 401 • GaAs Material DESCRIPTION The SFH 431 is a GaAs infrared emitting diode which emits radiation in the near infrared range. The emitted radiation, which can be modulated, is caused by current in the forward direction. The SFH 431 comes in a 3-leaded TO-18 package and has a glass lens to provide a narrow emitting beam. The cathode lead is the lead closest to the tab. The cathode is electrically connected to the case. The SFH 431 is electrically similar to the SFH 401 series, but has a reversed pin out and case polarity. Symbol DC Forward Currenl Surge Current(1 < lOps, D = 0) Reverse Vollage Min IF VR Ts TA TJ Storage Temperature Operating Temperature Junction Temperature -55 -55 Lead Soldering Temperature ('AI inch from case) Max 470 300 3.0 5.0 100 100 100 Unit mW mA A V ·C ·C ·C 260·C for 5 sec. Electrical Characteristics (Tamb = 25°C) Parameter Forwaid Voltage Forward Voltage Reverse Current Peak Wavelength Half Angle Symbol VF VF IR J.p Min 930 cp Dash Number Radiant Intensity Ie "'. (Total) typo Radiant Characteristics lral = f (q» 7-30 Typ 1.3 1.9 0.01 950 ±B Max 1.5 2.5 10 970 Unit V V pA nm Deg. Test Condltlona IF=100 mA IF=l A VR =5V IF=100 mA Unit mW/Sr mW SIEMENS SFH 435 GaAs INFRARED EMITTER DOUBLE EMITTING DIODE Package Dimensions in Inches (mm) SUrtac. ootf~t .024 (0.6) .100 Chip ~_.~016 0.4) (2.54) .059 (1.5) 1205(5.2) -e:. op A Lx W 0 886 80 ±6 0.16 0.4 x 0.4 40 ... 4.8 nm nm Deg. mm' mm mm to. I, C. VF VF VSR IR TC TC TC "'E 0.6/0.5 25 1.5(:s1.8) 3.0(:s3.8) 30(:.:5) 0.01 (:$1) - 0.5 - 0.2 0.25 10 liS pF V V V IIA· %/K %/K nmlK mW IIItcIIItnt Intenelty Ie In Axial Direction M_red at a Solid Angle of g=O_OI.r Group Radiant Intensity IE (I F-l00 mAo Tp=20 ms) (I F- l A. Tp.100 ps) 7-34 SFH 480-1 SFH 480-2 SFH 4811-3 25-50 280 40-60 ",63 525 450 mW/sr mW/sr Ralatlve Spectral emission Radiant Intensity . '.. = '(A) % 1 I ' 100 Radiant characteristics '.. =1(.) 1~mA=I(I.) I, I T. ... 1tA 10 \ ~. I ...' 0,2 • 750 aoo eso 900 ISO taOO hll -_I, --A Maximum pennlsaable forward current Forward currant IF=f(Tanm) ',=I(V,) .. ',=I(T,..,) 1 ,I \ I'i. ,!lIN" .1 "H+HffiI!-+I-HIIHI-++HtHfl , • HffillIttI-+ttttllH+ 50KIW I 1 20 c /' , 1, 11 \~'IIJG .. \6GK/W 120 4OrrmmlrTTI11tnrn- II 1 1 •a C=I(V,,) pf A 10 ". . .. Capacitance 40 60 10 o loo·C _ _ .T... 1 • HtHlllltl-l+HlHIII-+ttttlttl 2 ] 4 5 , 1 BY --V,. ·~».~V~~~~~LUWW'V~~~IOV ":"-VR T"" Forward voltage • . VF Radiant Intensity V,25 =I(T... ) 1.25 ) \'anm " 2 wavelength at peak emission n. ~peak=f(Tm,) .oo ,/ 2 -,... • • / • V- " • • 4 • 2 2 • ....!L = lIT 25 s. 75 100·C • ....... ... V I" 170 25 s. 75 100-[ ...• 25 SO 75 100-(, - T... Pennls.abla pulse load ',=I(r) IlIA Duty cycle D = Parameter -_T SFH 480 7-35 SIEMENS SFH481 SERIES GaAIAs INFRARED EMITTER Package Dimensions in Inches (mm) .252 6.4 .224(5.6) ; .218 5.53 .209 (5.3) OIlp LDcal~n Maximum Ratings V Storage Temperature Range Power Dissipation (Tcs25°C) 5 200 2.5 100 -5510 +100 470 Thermal Resistance: Junction to Air Junction to Case 450 160 IE (1,=100 rnA, Tp=20 ms) 7-40 SFH 484-1 SFH 484-2 SFH 484-3 50-100 560 80-160 900 .,125 975 mW/sr mW/sr 21 23 25 mW Relallve lpoctniamlilion RadlanllntensHy I.. =I(A) Radiant characteristics I.. =j(~) I. I, 100 rnA = I(IJ " I I • 1"1 Q I II - 1 II • \ , 7S0 .. 100 -. ISO '00 950 10GOnllt --I, Mulmum pennI_bIo torw.... eu.....1 I,=ICT...) • 125 1'100 I, I I 7S 1\ \ IS o C=I(VA) •, OF "RE .. ,~ / I' , o zo ~ 40 60 10 o 11101( 1 2 3 4 - 1... 5 6 7 Radlonllntenslty I, ...!..... =I" y ..... / I'" ., r- ... r-rr-r- 6 ",- 'DO I It, r- ....... -- - "V ,V Wavelength at peak emission Apeak = ICT... ) ) \'1IIItI • 1.25 l 2 o- 100l1l\I' I I I --VA 1.25 • WIIIV i I • II • I IV -V, il I \ I I i i , ( ,.' \ so Capacitance Forward cunent I,=I(V,) / / -L , • , 0) 0 2S o so - 1... • 2S so 7S 100-c " ..,, IS SO 75 100"( -·--Tantl - _ 1... Forward currant (max); ParmI_ie pul.. l..d depandonl upon Ihoload longth 1"""lIIa paelcaga boIIom 10 the .. PCboani. 1,=I(r) Duty cycle D = Parameter 1,"'111_ '20 If l00t-++HE (IF~100 mAo Tp~20 ms) - 7-44 SFH 485p·l SFH 485P·2 3.15-6.3 35 ~5 mW/si 56 mW/sr 21 23 mW Relative spectral emission Radiant Intensity 1.. =fo.l I , mA • % I ral =1(rp) 100 I 1"1,,,8 I Radiant characteristics 10~ rnA = f(I,) ;( • .- .- - - I 4 1/ 2 1\ 750 800 850 900 950 10 1000nlll 100 lOCO Maximum permlssabla forward current Forward current IF=f(Tamb) Capacitance C=f(V,1 IF=f(VF) mA ,0 0 , pF 4 A "5 75 \ " 1\ 0 r - / !0 3 , I--'rftf- 0 , , 0 1\ 5 o !OCCOm! --I, --A 0,0 I" 1\ o 20 40 60 eo 1\ o 100"( 1 :2 3 4 5 6 7 o BV ICmV 100111\ --v, --T"", !V 10V --'V, Radiant Intensity Ie _ rr 1 Ie 25 -f~larTb Wavelength at peak emission l.peak= f[f.,.1 om 0 4 " r:• V 1.., 2 / 0 0,.1-+-+--1--1-+-+--11"-.....; n,'I--+--+--+--+--+--+-+0,4+-+--+--+-+-+-+-+--1 . f'., I' • V II 4 0 " ~21--+--+--+-+-+-+-+--1 25 -_T,... V 0 " 75 .• o 100"( 25 50 75 100·[ _..._-- Tant! Forward current (max): dependent upon the lead length from the package bottom to the RIA PC board. Permissable pulse load IF = f(r) Duty cycle D:;::: Parameter • 12 • I, I 0 0 40 0 0 10 20 --, JOmm SFH 485P 7-45 SIEMENS SFH 487 GaAIAs INFRARED EMITTER Package Dimensions in Inches (mm) .024(0.6) .016(0.4) t Calhode -~9-==~~~~h 10 .122(3.1) (2~4) .O~ (1.5) r .114(2.9) l.lBl(3O) _ _ _ _ _l_~~i!_<'"' ----1.102(28) ::':ftbn Maximum Ratings Slorage lemperature Soldering temperature at dip soldering: (" 2 mm distance from the case bottom; soldering time t s 5 sec) -55 to Ts.. Tso/d 260 T.... TJ VR 300 + 100 ·C ·C Soldering temperature at iron soldering: (" 2 mm distance from the case bottom; soldering time ts3 sec) FEATURES • Radiant Intensity Selections SFH487·1 12.5-25 SFH487·2 20-40 SFH487·3 ~32 • Good Spectral Match to Silicon Photo Detector • Gallium Aluminum Arsenide Material • • • • • LowCost T·1 Package Clear Blue Tinted Plastic Lens Long·Term Stability Medium Wide Beam, 40° • Very High Power, 20 mW Typical atloomA • High Intensity, 30 mW/sr at 100 mA DESCRIPTION SFH 487, an infrared emitting diode, emits radiation in the near infrared range (880 nm peak). The emitted radiation, which can be modulated, is generated by forward flowing current. The device is enclosed in a 3mm plastic package. Uses for SFH 487 include: IR remote control of color "TV receivers, smoke detectors, and other applications requiring very high power, such as IR touch screens. Junction temperature Reverse voltage Forward current Surge current (T = 10 liS) Power dissipation (T = 25·C) Thermal resistance ·C ·C IF IFS 100 5 100 2.5 Plot RIM 200 A mW 375 K/W V mA Characteristics (Tamb = 25°C) Wavelength at peak emission at IF = 10 mA Wavelength at peak emission at IF = 100 mAo t""" = 20ms, Duty cycle = 1:12 Wavelength at peak emission at IF = lA, t""" = 1001lS, Duty cycle = 1:100 Spectral bandwidth at IF = 10 mA Half angle Active chip area Dimensions of active chip area Apeak 883 nm Apeak 8B6 A), 80 ±20 0.16 nm nm 'P A LxW Distance chip surface to stand off Switching time: (Ie from 10% to 90%; and from 90% to 10% IF = 100 mAl . Capacitance (VR=O \I, f=1 MHz) Forward voltage (IF = 100 mA; tpu,se = 20 ms) (IF = 1 A, tp",.. = 100 liS) Breakdown voltage (IR = 10 IJA) Reverse current (VR=5 V) Temperature coefficient of Ie or 4»e Temperature coefficient of VF Temperature coefficient of Apeak nm 880 ).peak o t" ~ Co VF VF VBR IR . TC TC TC De9· mrn' 0.4 x 0.4 mm 2.6 mm 0.6/0.5 25 1.5 (s 1.8) 3.0 (s 3.8) 30 (,,5) 0.01 (sl) - 0.5 - 0.2 0.25 Radiant IntenSity IE In Axial DlrecUon Measured at a Solid Angle of g Group Radiant Intensity IE (lF~100 mA, Tp~20 ms) (lF~ 1 A, Tp~ 100 ~s) Total Radiant Flux ~E (lF~ 100 mA, Tp~20 ms) 7-46 liS pF V V V IJA %/K %/K nmIK =0,01.r SFH487-1 SFH 487·2 SFH 487-3 12.5-25 , 140 20-40 270 .peak Spectral bandwidth at IF = lOrnA Half angle Active chip area A LXW Dimensions of active chip area Distance chip surface to case surface Switching time: (Ie from 10 % "090 % ; and from 90% to 10% 0 : IF!: 100 rnA) Capacitance (VR = 0 V. f = 1 MHz) Forward Voltage (IF =loo rnA; t.... =20 ms) (I F=IA;tpu.. =loo",,) Breakdownvoltage(lR=101JA) Reverse current (VR =5 Vj Temperature coefficient of I. or Temperature coefficient ofV, Temperature coefficient of APeak t,; t f Co VF VF VBR IR TC TC TC +. Ceg. IJA - %/K %/K nmiK Radiant Intensity IE In Axial Direction Meaured at a Solid Angle of 11- 0 -01sr Group Radiant Intensity IE (1,=100 mAo Tp=20 ms) (1,=1 A, Tp =100,.s) Total Radiant Flux ct>E (1,=100 mA, Tp=20 ms) 7-48 SFH 487P-l SFH 487p·2 2-4 25 01:3.15 35 mW/sr mW/sr 21 23 mW Radiant Intensity Relative spectral emission '.. ~f(X) Radiant characteristics I,el=f(.,co) -"-=f(l) I 100 F .,TO' ' , % TO' " TO' I II ["'o.B I -- " I 0,2 1 , lS0 BOO 90~ BSO 9S0 1000nlll -_A ~-lf Maximum permls.able forward current .,12S ',~f{f..J , Forward curron' Capacitance IF:::f(VF) C~f(V,) TO~ ! [ V , " H-++IllllI--f-Hl!'IlII----H-+1II111 f----i-f-- "'111m 1\ 10 25 ,o \ 20 40 60 8e ~ 100"( ""o v, Forward voltage VF 25 =f(TanJ , , 1., ,t- /, 5 6 1 '~JD~-LLU1WL~Jillill BV lfilllV ,v 100mV , 2 , , o __7S T,,,,, 11)1)"( o "In .00 'F=f(r) / / I'" ....... V ,80 SO V , " , o . __15 T,,,,, lOOG( V 50 75 100-r -_To,.., Forward currenl (max): dependent upon the lead length 'rom the package bottom to the rnA PC board. 12 Permlssable Pulse Load Duty cycle 0 Wavelength at peak emission Apeak = f(Tant:» .~. 25 TOV --V, , , , SO 3 Radiant Intensfty Ie "25 = f(Ta...d , r-- , 2S 2 '(,, r-- , 1 --v, - - T ,... , 30 = Parameter , , I, 1 , " 20 , TO zo ]0 111m --I SFH 487P 7-49 SFH900 SERIES SFH905 SERIES SIEMENS . MINIATURE LIGHT REFLECTION EMITTER/SENSOR Package Dimensions in Inches (mm) .075 .012 (0.3) .020 r(0.5) (1.9) .087 (2.2) .177('.5)L .189(4.8)..- ~03(0.9) .047(1.21 .059(1.5} .071(1.8) .087(2.2) MAX. .016(0.4) .020(0.5) 1 FEATURES • IR Emitter and NPN Phototransistor Detector • High Sensitivity (SFH900) • Low Saturation Voltage • No Cross Talk (SFH900) Negligible Cross Talk (SFH905) • DeSigned for Short Distances Up to 5 mm • Current Transfer Ratio Groups SFH900-1 - ICE 0.25 to 0.5 mA SFH900.-2 - ICE 0.4 to 0.8 mA SFH900-3 - ICE 0.63 to 1.25 mA SFH900-4 - ICE ~ 1.0 mA SFH905-1 -ICE 40 to 125"A SFH905-2 -ICE ~100 ",A DESCRIPTION The SFH900/SFH905 are light reflection switches for short distances, operating in the infrared range, which includes a GaAs IRLED transmitter and an NPN phototransistor with a high photosensitive receiver. Both components are manufactured in modern strip-line technique and are mounted side-by-side in a plastic package. A daylight filter screens against undesired light effects. The SFH905 has lower current transfer ratios than the SFH900. ~====;=={~=i 2 ~ , .010(0.25) .014(0.35) ,. EMITTER·ANODE 2.EMITTER·CATHOOEI DeTECTOR-EMmER 3. OETECTOR-COllECTOR Maximum Ratings Emitter (GaAs infrared diode) Reverse Voltage (VR) •.................•................•................. 6 V Forward DC Current (IF) ............................................... 50 rnA Surge Current (Tps10,.s, T""'b=40°C)(I FSM)..... ..: .................... 1.5 A Total Power Dissipation (Tamb = 40°C) (PTOT)'. . ..... 80 mW Thermal Resistance (RTHJA) . . . . . . . . . . . . . .750 KNI Detector (silicon phototransistor) Coliector·Emitter Voltage (VCEoJ ................................ . . .... 30V . ..... 7V Emitter·Coliector Voltage (VECO) ... . Collector Current (Icl .................................................. 10 rnA Power Dissipation (Tamb = 40°C) (PTOT) ......... 100 mW Thermal Resistance (R THJA) . . . . ........... 600 KNI Light Reflection Switch . ................... -40 to +85°C Storage Temperature Range (TSTG) . . . . Ambient Temperature Range (T""b) ................................ -40 to + 85.oC Junction Temperature (TJ) ......... . ......................... 100°C Soldering Temperature (3 s max.)1 (Ts) ................................... 235°C With heat sink between caSe·and soldering (Ts). . . . . . . . . . . 260°C Total Power Dissipation (Tamb=400C) (PTor)' ............................. 150 mW 1. Dip soldering: 3 mm from case bottom. The SFH900/905 are designed for applications in industrial and entertainment electronics, e.g., as position reporting devices and end position switches, for speed monitoring or in general, as sensor elements in various types of motion transmitters. For applications information see Appnote 26. 7-50 Characteristics SFH900 Emitter (GaAs inlrared diode) Forward Voltage (I, = 50 rnA) Breakdown Voltage (IR = 10 1"\) Reverse Current (VR= 6 V) Capacitance (VR = 0 V; 1=1 MHz) SFH900 SFH905 V, V"" IR Detector (silicon phototransistor) Capacitance (VcE=5 V; 1= 1 MHz) SFH900 SFH905 Collector· Emitter Leakage Current (VCE= 10 V) SFH900 SFH905 Photocurrent (outside light sensitivity) (VcE=5 V; Ev=1000 Lx) SFH900 SFH905 Light Rellection Switch Coliector·Emitter Current (1,= 10 rnA; VCE =5 V; 0= 1 mrn) SFH900·1 SFH900·2 SFH90()'3 SFH900·4 SFH905·1 SFH905·2 Coliector·Emitter Saturation Voltage (IF =10rnA; 0=1 rnrn) (Ic = 85 1"\) SFH900·1 (Ie = 135 1"\) SFH900·2 (IC=2151"\) SFH900·3 (Ic = 335 1"\) SFH900·4 (Ic= 13 ~A) SFH905·1 (Ie = 34 1"\) SFH905·2 d- Load Resistance (Ru 1.25 (Sl.65) 30(,,6) 0.01 (S 10) V V ~A 40 25 pF pF 11 7 pF pF 20 (S200) 20 (S100) nA nA S3 SO.5 rnA rnA 0.25 to 0.50 0.40 to O.BO 0.63 to 1.25 ,,1.0 rnA rnA rnA rnA 40 to 125 ,,100 1"\ 1"\ kG Turn-On Time (fON) 65 ,is Rise Time (fR) 50 J.ls Turn-Off Time (fOFF) 55 J.ls Fall Time (f F) 50 J.ls Note: Ie = 1 rnA. TEST CIRCUIT .~ ~." _~-C_ Output SFH905 VCE SAT VCE SAT VCE SAT VCESAT VCE SAT VCE SAT 0.2 0.2 0.2 0.2 0.2 0.2 V V V (SO.6) (SO.6) (SO.6) (SO.6) (SO.6) (SO.6) Load Resistance (Ru kG Turn-On Time (fON) 40 Rise Time (f R) 30 Turn-Off Time (fOFF) 45 Fall Time (fF) 40 J.ls Note: Ic= 1001"\; Vs=5 V; 1,= 10 rnA. V V V TEST CIRCUIT Reflector with 90% reflection ~/ (Kodak neutral white test card) , { a SFH900 SFH90S Collector current WlSUS spacIng Collector current versus spacing 01 media 01 media % l00,-~--.--.--,--- f-++--t--+--S je .0 t-+-t-+-tl \ {dl = 60 f-+-+-4\rl-'''--r---''r----J 40 60 Ht--+-t--fH-,+--+-t-+-I 1\ f+--+---+\--'<-r--t--i 40HM-r-r~T-~,~T-~ \ 201H-t-+++++-t'~ 2 3 ,.. 5 DD~~-L~~~-7~~~ , 2 3 4 mm 5 IIIIfI _d --d SFH9OOI905 7-51 SFH900/905 Max. permissible forward current versus ambient temperature 120 SFH900/905 Forward voltage (typ.) of diode versus forward current 1,2 m. mA Jl ~ 100 Ii 50'C 1 0 (Ii "/S'C 1.1 60 II V '\ 1,0 '\ II 20 ') 0 20 40 60 "'" 8()·C 100 --Tamb SFH900/905 Permissible power dissipation lor diode and transistor versus ambient temperature SFH900/905 Permissible pulse handling capability Forward current versus pulse width (D=parameter, Tamb=25"C) SFH900 Switching characteristics tON and toFF versus load resistance (Tamb=25"C, IF=10 mAl 10 160 Total power dissipation mW , s \ 0 BO \ ~ \ '\1\ '\ 0 10 20 40 - ~~ ~ I 60 '. ~,,,, t IC=1 1m I , 10 10" 80 I>C 100 ,~ 2 1\ ~'" 0 ~ '. 1\ TtJstol DiodJ lc=100\lA 10' 07., kQ 10' --Tamb SFH905 Switching characteristics tON and toFF versus load resistance (Tamb=25"C, IF=10 mAl 10' SFH900/905 Relative spectral emission of emiller (GaAs) and detector (Si) . versus wavelength 100 .s ~ I- ,,,I . If 1\ % ~ SFH900 Collector current versus forwerd current (spacing d to reflector=1 mm; 90% reflection) 3,0 mA ~5 so --toff II ~O , 10 VCE =20V 60 J 1,5 vv Detector II 20 , 10 10' " o1/ 700 \ \ I / If:Emitte. \ \ BOO 900 1000 nm 1100 --X 1,0 Q5 o o III ~~ I/'~ V~'"rV 12 ~ 16 mA 20 --I, SFH9001905 7-52 SFH905 SFH900 SFH905 Collector currant versuslorward currant (spacing d to reflector=1 mm; Output characterlstfcs Collector currant versus collector· emitter voltage (spacing to reflector: Output characteristics 90% reflection) Collector current versus collector. emitter voltage (spacing to reflector: d=1 mm; Tomb =25"C; 90% reflection) d=1 mm; T.mb =25"C; 90% reflection) 30 0 30 0 2,~ ~A If =20mA mA ~" 270 2~ 0 /, 21 0 Vc,.20V:t 180 V' r f- I .~ , 120 0 0 ~ ~ '{,.5V ..... r- 1,2 I- 0 If='O~ 12 0 ~ "" 12 16 rnA 20 If =1mA IF;; 00 12 ~F !'~~A - I I I -l- IF .'0~A III 0/ I I -IF If ;; 6mA 0 c--- c-- ~F ~ 2~A 0 2mA 0 16 V 20 12 16 V 20 --Vo, SFH900 SFH905 SFH900 Output charactsrlstlcs (typ.) Collector currant versus collector· emlttsr voltage (spacing to reflector: Output characteristics (typ.) Collector currant versus collectoremitter voltage (spacing to reflector: Diode capacitance (typ.) veraus reverse voltage (T.mb =25"C; f=1 MHz) d=1 mm; T.mb =25"C; 90% reflection) ~O 15 0 IF= SmA 0 IF=~ 21 0 II V If =22mA I I I 18 0 I I 0,. l-U- 1325 2~ 0 IF~ 1,6 ~ 150 ~A 27 0 -t1" I I II ,~z mA IF! 1,6 d=1 mm; T.mb =25"C; 90% reflection) 30 0 ~A IF 1.2imA 270 20~A 50 pF 1]26 I I 24 0 ~o .... IF =18mA 21 0 I 1,2 IF! 1slmA 150 II / IF = lOrnA 12 0 II 90 I o o IU Q~ IF QBVW I 20 10 IF;; 6mA II 0 = 2lnA Q6 I '\ If =10mA 0 IF = SmA F=1mA I,U. I 180 30 o IF;; 2mA 0 O~ ~ 0,6 --V" , z 1~ 0,8 V 1,0 . ." 10 --VA VIO , --v" SFH905 SFH900 SFH905 Diode capacitance (typ.) versus reverse voltage (T.mb=25"C; f=1 MHz) llanslstor capacitance (typ.) versus reverse voltage (Tomb=25"C; f=1 MHz) llanslstor capacitance (typ.) versus reverse voltage (T.mb=25"C; f=1 MHz) 30 0 20 rrTTmnrTTIT110rncrmrmrrrnmn pF F pF H-tffltlll-++t-Hlllt+ftlIlHH-+HllIII 16 H-tffltllf--ttttltllt-+fttlIffi---I-H1M 25 0 f" 1~ H-tffltlll-++t-Hlllt+ftlIlHH-+HllIII 20 0 12 15 r, 0 H-tffltlll-++t-Hlllt+ftlIlHH-+HllIII 10 10 0 .. 10' -v, V la' 0 " 10 r-. ., 10 '" 10' --VA SFH900/905 7-53 SIEMENS SFH 910 Differential Photo Interrupter w/Counting Pulse & Direction Recognition Package Dimensions in Inches (mm) 1 ANODE 2 CATHODE 3 GROUND 4 DIRECTIONAL SIGNAL R 5 COUNTING PULSE SIGNAL Z 6 SUPPLY VOLTAGE .134 (3.4) .118 (3.0) .323 (8.2) .307 (7.8) FEATURES • • • • - Counllng Mechanism Movement Direction Display Slot Width: 1.260 (3.2 mm) Typical Operating Range of the Logic: .016 (0.405) .016 (0.395) 5 mAz I L -_ _ _ _ _ _~--------o,~ 4 I I I I 1 I I 1 1 IIL______________ _____ Emitter diode I ANODE 2 CATHODE 3 GROUND 4 DIRECTIONAL SIGNAL R 5 ,COUNTING PULSE SIGNAL Z 6 SUPPLY VOLTAGE ~ 3 Perinlsalble power dissipation _ ambient tempenllure Max. pennl.slble lorwanl cunent versus ambient temperature (emltl8lj' 50 200 mW 180 ,-r- ~ mA 1\ 40 ~Of /'awanl cllfl'llftll(8l8US facwllnlvoltage 10' mA Detector IF 5 160 1 ,140 \ 30 120 \ 100 20 , \ 10 1\ - - f--Emjtter typ. Ii" ax. 80 \ 60 40 10 20 ~ 20 40 60 80 ·C 100 -T"", o o f6 20 40 60 8O·C 100 - T... 10" .0 , '2!I V -v, SFH910 7-56 Photodiodes Pholosansl- Radlanl Peak Dark Package Half Current IIvlly Sansillva Wave'-=950nm Type Angle V.=10V length O.5mW/cm' Araa nA mm' nm nA Package Outline W~ ID SFH20S SFH206 Plastic wI daylight filter. Solder tabs. 2S(~1S) GJ ; Q 0.. ±70" 2(:S30) 8-44 2S(~16) 7.00 950 .: IIai ill SFH22S = =- ED . :E m SFH248F SFH217 " ,' , -+\. a / SFH2l7F SFH2030 It=~ c=J. ® \ .. ::j .' Plastic wI daylight filter. TO-92 Clear plastic TO-92 Plastic wI daylight fitter. Tj3f4f1at. Clear plastic. ±70" ±60" 2(:S30) 2(:S30) 100 (:S200) ±60" 950 8--46 950 PIN type, short switching time . Matches with emitters SFH4841 485, LD271/274. 8-54 850 950 Low noise. Short switching time. Low capacMnce. 8-S2 900 PIN type. Low cost diode for fiber optics. Transmission over 560 m/bits. Low noise. Short switching time. Low capacitance. 8-58 Extremely low dark current. For exposure meters. Matches with emitter, LD242. 8-26 PIN type. Very high speed,5nS. Low dark current, 1mA. 8-28 8-S6 1(S10) 20V 9.S(~5) 1 - pA 80~50) l(S~ 20 850 1 25(~15) 900 IlA ±7S" BPX65 BPX66 - 3(~1.8) T1'/4 SFH2030F Plastic wI daylight ~ ~ 1.54 8-50 pA T1'/4 Clearplastic. TO-18 flat plastic lens. 4.84 7.5(~4» ±20" BPX63 17(~12.5) 7.00 24(~1S) ±60" fi~er. [) ~ pA 8--48 PIN type, built in filter. Curved surface. Superior sIn ratio at low luminance. pA T1'/4ffat. Plastic wI daylight fitter. TO-18 plastic lens. 25(~15) PIN type, built in filter. Superior SIN ratio at low luminance. 850 80(~50) Plastic wI daylight SFH248 EfP-ii2---- - Plastic, clear. SFH206K Solder tabs. SFH205Q2 fi~er. Solder tabs. Page pA pA W Features S(:S20) pA lV 10(~8) 1 800 llfS) 2"1 :1:40" f - - 0.15 (SO.3) 1V 8-1 10~S.5) .097 850 PIN type. Very high speed,5nS. Very low dark current, l5mA. 8-30 II i Photodiodes Package autUne Part Number BPW21 @ i== BPX60 BPX61 Phot_ns" Radiant Peak Dark IlvHy Package Half Current ),:95Onm llensH"" Wa".. Featurn length Type Angle V.=10V O.5mWcm' A,.. nA :1:60· Similar to TO-5. Fta glass lens. Harmeti:1:55· cally sealed lens. nA 2(S30) 5V 10~.5} 7(S300) 70~35) 2(S30) 70(~) mm' High reliability. V. filter. 550mn. ~ EirI F\ BP104BS BPX92 (rJ n r"""", " Plastic. Solder !ebs. :1:60· 2(S30) 850 :1:60· 1(S;100) BPX90 5 (S;20) pA IV Plastic. clear. Solder !ebs. :1:60" BPX90K Plastic with daylight filter. SFH200 Plastic. clear. Solder !ebs. SFH100 Plastic. clear. solder !ebs. 5 (s;2oo) High reliability. Superior SIN ratio at low luminance. 8-22 High reliability. PIN type. 8-24 Superior SIN ratio at low luminance. 7.00 7.00 920 IR remote control. PIN type. 8-6 Surlace mount. 1.0 850 High reliability. PIN type. 8-36 Superior SIN ratio at low luminance . 10~7) 0.97 800 Low dark current. 8-10 5pA. 45(~) 5.5 850 13~8) jIA 5.0 20 (:?!14) 2.0 800 High sensitivity. High zero crossover. 175 21.8 850 High sensitiVitY. Superior signal to 8-38 noise ratio at low luminance. 25~15) jIA 9.5~4) . BPW32 rta Plastic with daylight filter. 8-8 7.34 jIA ~ Page nm ' High sensitivity. Superior signal to noise ratio at low 8-32 luminance. 950 5«40) pA 1V :1:600 8-2 0.4(S;10) ~150) 8-40 Photodiodes Package Outline Part Number BP104 BPW33 T F1 Package Type Photos&nslDark Radiant Peak Current tlvlty Sensitive Wave1..=950nm Half Features V.=1DV Area length O.5mWlcm' Angle nA mm' nm nA Plasticw daylight filter. 2(S30) BPW34 IR remote control. PIN type. ~ 800 Light measuring applications. Low dark current. 8-12 7.00 850 PIN type. Low junction capacitance. 8-14 75(~50) 7.45 850 PIN type. High blue sensitivity. 8-16 25(~15) 7.00 800 PIN type. 8-18 High blue sensitivity. 8--34 17(~12.5) 4.84 950 75(~35) 7.34 80(~50) I!A 20 (S100) pA Plastic. clear. solder tabs. 1V ±60· 2(S30) I!A BPW34B 2(S30) BPW34F BPX91B ~ A tF1 m BPX48 SFH204 Plasticw daylight filter. Plastic. clear. solder tabs. Plastic. clear. solder tabs. I!A ±60· Not 6 pin DIP. applicable. 8-3 Page 7(S300) 65(~35) 7.45 850 100 (S200) 24(~15) 2xl.54 850 Fast response. differential type photodiode. 90~m 8-20 apart. Precision applications. Four quadrant photodiodes. .01 (S2) .13(~.08) 4x .01 850 12~mapart. Precision measurement applications. ~2 SIEMENS BP 104 SILICON PIN PHOTOD.IODE WITH DAYLIGHT FILTER Package Dimensions in Inches (mm) .157 (4) .146 (3.7) I i .020 Clt11odt. (O.5) JJ14(035) Frame .02 (5.08) Radian1 s.nsItiw Am .087 ~ .087 (2.20 ~ 2.20) FEATURES Maximum Ratings • Daylight Filter • Silicon Planar PIN Photodlode Reverse Voltage (VR) .................................................. 20 V Operating and Storage Temperature Range ....................... -40 to + BO°C Soldering Temperature in a 2 mm Distance from the Case Bottom (t :s 3 s}.(Tsl ................................... 230OC Power Dissipation (Tam. = 25°C) (PtoI) ••••••••••••.•••••••••••••••••••• 150 mW • • • • Plastic Package 2110" Lead Spacing High Speed Lead Bend Option (for SMD) DESCRIPTION BP 104 is a silicon planar PIN photodiode, encapsulated in a plastic package, which simultaneously serves as filter and is transparent to I R radiation. Its terminals are soldering tabs spaced 5.08 mm (2/10") apart. Due to its design the diode can easily be mounted, even on PC boards. The flat back of the epoxy resin case makes rigid fixing ofthe component feasible. Arrays can be realized by multiple arrangements. This universal photodetector is suitable for diode as well as voltaic cell operation. The signal/noise ratio is particularly favorable, even at low illuminances. The PIN photodiode is outstanding for its low junction capacitance, high maximum frequency, and fast switching times. It is particularly suitable for I R sound transmission Characteristics (Tamb = 25°C) Photcisensitivity (VR = 5 V, ~ = 950 nm E. =·0.5 mW/cm2) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity (S - 10% of Smax) Radiant SensHive Area Dimensions of the Radiant SensHive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (VR = 10 V) Spectral PhotosensitivHy (l\ = 950 nm) ~A 17 (:!:12.5) 950 nm A Boo... l100 4.84 nm mm2. LxW 2.20 x 2.20 mm H 0.5 IR '" 2 (:s30) mm Deg. nA s" 0.70 AIW 0.90 Electrons Photon Va 327 (:!:250) mV Isc 17 (:!:12.5) ~ ~, ~ 125 ns S ~max ~ ±60 Quantum Efficiency (l\ = 950 nm) Open CircuH VOltage (E. = 0.5 mW/cm'. ~ = 950 nm) Short CircuH Current (E. =0.5 mW/cm', ~ =950 nm) Rise and Fall Time of the Photocurrent from 10% to 90% and from 90% to 10% of the Final Value (RL = 1 Kn, VR = 5 V, ~ = 830 nm Ip= 17,A) Forward Voltage (IF = 100 mAo E. =O) Capacitance (VR = 0 V. f = 1 MHz, Ev - 0 Ix) Temperature Coefficient Vo Temperature Coefficient Is VF 1.3 V Co TCy TC, 4B -2.6 O.IB pF mVlK Noise Equivalent Power (VR = 1 V) NEP 3.6 x 10-" 0 6.1 X 10" Detection Limit (VR -1 V) 8-4 %/K J:L ,[Hz cm../Bi W Photocurrant Ip = f(Ee) Open circuit current VL = f(Ee) Relative spectral sensitivity 5 ..,.f(1)) ~o -r-- 100 -- -- 90 5., t [7[\ -l- 1\ I \ f-I- 1/ 60 70 r- - r-r- I-i 10' 50 ZO' UL I, 1 1 I-.JI--I- II 30 '-r-r- 20 10 10' \ I I 40 1\ - 800 900 1000 10' 10' 1\ II 700 1100 10-1 10' 10' 1200nm 10.l 10' 10' ---.~ --E. ~:;: =u~o~; I~ : Powe,dl"'paUDn Pial· f(T"",,,> mW 11l'~ em' Iplonert[l!Iverl Capacitance C '" f (VA) pFf=1 MHz;E=O fg'R) pA BODO 175 60 I, ISO [ t I 6ODO 125 \ 100 i 40DD '\ 5 J - \ / 60 80 100'C --(T"","> Ip Photocurnnt ~ ... f (TamtJ 1.4 H 50 1 I i ~tI 40 II 30 ! r T I 20 V 2000 0 40 / 1/ \ 0 20 I t--- --j \ 75 O.B O· ~I-I- 60 'ir Directional characteristic Srel = tho) mV 10' ~A I V~ , 10 3D 10 10 i 40V -~ Open circuit voltage Dark current IR = f (TamtJ nA VR =10 V; E • 0 10 3 =: ~ = f(TamtJ V L25 0 -==-= _:. - H++H-+++--1-+--1 0.6 I-- -I-- 0.4 H-+++--I-+++-H----1 01 Hc-+-t-+-+i-t-+"I-+~ -30 -/I) -10 0 10 /I) 30 40 50 60 10 BII 'C -10m, 0.4 t---+--+--+--+--+-I--+--i H--+--++-+-+--IQ1t---+-+-+-t--t-C-+--j-10" '---L_'---_ -/I) 40 o ~ 60 BO --Tnmb IDD 'C o 10 20 ~ U ~ 60 70 ~C - . Tumb BP 104 8-5 SIEMENS BP 104B8 SILICON PIN PHOTODIODE WITH DAYLIGHT FILTER Package Dimensions in Inches (mm) . .. . ]!b 7(2.2) ;_. .~ i (1.9) ..157 (4) ' .146 (3.7) 0'71 ~ . . t-+_.. . (1.8) j.. . .031 (0.8) ... J (0.7) Radiant Sensitive Atea .028 Cathode FEATURES Maximum Ratings • • • • • • • • Reverse Voltage (VR) ..................................................... 20 V Operating and Storage Temperature Range ..................•........ -40 to + 80 DC Soldering Temperature in a 2 mm Distance from the Case Bottom (t :s 3 s) (Tsl ...................................... 230 DC Power Dissipation (Tamb = 25 DC) (ptot) .•............•....•..•......•.....•• 15 mW Silicon Planar Pin Photodlode Plastic Package 2110" Lead Spacing Low Junction Capacitance Short Switching Time High Sensitivity Daylight Filter Lead Bend (for SMD) DESCRIPTION The BP104BS is a silicon planar PIN photodiode in a plastic package. Because the terminals are soldering tabs bent for surface mounting the diode can easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. The cathode is marked by a blue dot. These devices can be arrayed. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. The PIN photodiode is outstanding for low junction capacitance, high cut-off frequency and short switching times. An application is IR sound transmission. Characteristics (Tamb = 25°C) Photosensitivity (VA = 5 V, A = 950 nm Eo = 0.5 mW/cm2) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity (8 = 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (VR = 10 V) Spectral Photosensitivity (A = 950 nm) Quantum Yield (A = 950 om) Open Circutt Voltage (Eo = 0.5 mW/cm 2, A = 950 nm) Short Circuit Current (Eo = 0.5 mW/cm 2, A = 950 nm) Rise and Fall Time of the Photo· cuirent from 10% to 90% and from 90% to 10% of the Final Value (Rt = 1 KG, VA = 5 V, A = 830 nm Ip = 25 pA) Forward Voltage (IF = 100 mA, -Eo = 0, Tomb = 25OC) Capacitance (VA = a V, E = 0, f = 1 MHz) Temperature Coefficient of Va Temperature Coefficient of Is Noise Equivalent Power (VA Detection Limit (VA 1 = 10 V) = 10 V) S hom", 25(~15) 920 pA nm A A 800. .. 1100 7.00 nm mm2 Lx W 2.65 x 2.65 mm H 0.5 '" ±60 mm Deg. nA IA S, 2 (:s30) 0.68 0.90 Va Isc 327 (~275) AIW Electrons ~ mV 25 (~15) pA ns ~ 400 VF 1.3 V Co TCv TC, 72 -2.6 0.18 pF mVlK %/K NEP 3.7 x 10- 1• VHz cmVHz W t,. 0 7.3 X 1012 ..J!L. The illuminance indicated refers to unfiltered radialion of a tungsten fifament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5030 and lEe pub!. 3OfH), 8-6 Rolollve 0 _ 1 ooniIllvlly versus wavllangth PhotOCUmtnt Ip .. IeEe) Open elreuR voltage VL • I(Ev) Directional chal1lcterlatlc Srel = f(.,,) mV 10' % 100 1\ 0 10' r 60 10' 0 10' 0 / 0 100II 600 1\ 800 1000 1200 •• -A Power dlulpatlon PIOI 10' f (TamtJ .. , 100 pi' 60 ( , 1\ 15 50 I , 60 40 80 1I 1I T.,('I:) 20 10 V 10 40 30 iL 100 SO t II ~ 25 20 Capacitance versus rever&8 voltage '.IMHz;E·O Tamb = 25°C; E .,. 0 1000 1\ 125 10' --E. Oork currenl 'A • '(VA) . mW 150 10' II lD lOY 0 10· z --v. -v. 10'1 10' 10' Ip Vo Photacurronl I. . . . I(T"",,> Dark cumnt IR ." f(TamtJ VA. 10 V: E • 0 Open circuit voltage V025 ;;; " 1.1 II fCTamtJ I I~ "" i"" tau I" 10'V I~ "'" 1"-. OJ o.a I 10 I...... !'-.. .... 0.& 0.& 0.' I.. • ~ .D.2 o-1I-lD-1O - ... • 10 lD II .. 50 10 70 .... ,I 1 1 1 1 1 1 1 1 I• • lD 40 60 10 -r... ICD"C o0 ID 20 30 40 50 liD 70 JOIC - _ T.. BP I04B8 8-7 BPW 21 SIEMENS SILICON PHOTODIODE WITH VA FILTER Package Dim~nsion in Inches (mm) RldilnISenshiwllAIQ.10B!2.7U •.1D8Itl1J if!Tn=':::" ~{~~ t_~' I I .-l ~ t'0111:1 . .J ·~.S11 .13413,41 .12613.21 -..j.236l61~ .22415.n 114,5) .492112,51 Maximum Ratings Tamb Tstg -40... +80 -40... +80 'C 'C Reverse voltage Tsotd VR Total power dissipation Ptot 235 10 250 300 'C V mW 80 kIw Operating temperature range Storage temperature range Soldering temperature in a 1.5 mm distance from the case bottom (t<5 sec) FEATURES • Incorporates, V>. Filter . • High Reliability • Hermetically Sealed, Glass Lens Package, Similar to TO·S • Low Noise • High Open-clrcult Voltage as Photovoltaic Cells • Detector for Low Illuminance • Short Switching Time • High Photosensitivity • Linear Relation Between Is and Illuminance of 10-2 to 105 Ix • Wide Temperature Range • Suitable In the Range of Visible Light Rth JA Rth JC Thermal resistance Characteristics (Tamb =25 ·C) Photosensitivity (VR = 5 V, standard light A, T=2856K) Wavelength of max. photosensitivity Spectral range of photosensitivity (S= 10% of Smaxl Radiant sensitive area Dimension of radiant sensitive area Distance chip surface to case top edge Half angle Dark current (VR = 5 V) (VR= 10 mV) Spectral photosensitivity (0 = 550 nm) Quantum yield (0 = 550 nm) Open,circuit voltage (Ev= 1000 lx, standard light A, T=2856 K) Short·circuit current (Ev= 1000 lx, standard light A, T=2856 K) (Deviation of Is linearity In the range of 3 'IO~ to 10' Ix: max. 12%) Rise and fall time of photocurrent from 10% to 90% and from 90% 10 10% of final value (RL = 1 KG, VR = 5 V, A = 550 nm, Ip = 10"A) Forward voltage (IF = 100 mA, Ee=O) DESCRIPTION BPW 21 is a Planar .Silicon Photodiode. The N·Si material results in a positive front and negative back contact. These photodetectors can be operated as photodiodes with reverse voltage or as photovoltaic cells. Applications include exposure meters for daylight as well as artificial light of high color temperature in photographic fields and color analysis. CapaCitance (VR = 0 V, f= 1 MHz, Ev= 0 Ix) Temperature cueificient of V, Temperature coelliclenl of Is Noise Equivalent Power (VR=IV) Detection lim~ (VR = I V) 8-8 kIW S lsmax IO(~5.5) 550 nAllx nm A 350... 775 7.34 2.71 x 2.71 nm mm' mm 1.9...2.3 mm Deg. A LxW H tp ±60 I. I. 2«30) 8 (:$200) 0.34 0.80 So .~ Vo 400 (~320) nA pA A1W Electrons PiiiiiOrl mV Iso 10(~5.5) "A tr,1f . 1.5 ~s VF 1.2. V Co TC TC 580 -2.6 0.12 pF niit/K '10K NEP 7.2 x 10-14 0 I x 10" W -'Hz em' -'Hz --W- Photocunanl I, - f (Ev) Open circuit voltage Va .,. f(E v) ....hltlv.....lr.1 photouftlltlvlty v ........ _vel.ngth Directional characteristic fho) Srel - • 1, , • I I 30' 1 V, eN21 «l' 1 '.4 5<1' 60' 70' Oil' 90' lOll' '.2 • 350IoOO4SO 500550600 650 70D 750SOOrMI --, ToIII po_r dl..lpation v .... u. ambl.ntt.mp.,.lure II. a.rk curr.nt v ....", ambient lemp.,.atur. . Capacitance C', '(VA)" -1 MHz , v.-av .w nA "• I I 1·1 I"• I I pF 10' • r, R c=80KIW I I • 80 10 • "• \ 15 L R ttI.JI.=300KIW 40. , " 100 • • • 20 1\ 2D 10'0 4D 60 20 BODe 0 10 ., . ., 10 , - - T.... Short-cIrcuit curr.... v.,.u. ambl.nt temp .....u... Open..c;irc::uit voltage VI,. ... a DOI'k curronil A - '(VA) ambienttemp."lure ,,'0' 2 1--1- '- 2 ..Y9_ ! 1.' ~" Von I, , a , "• .. I' • 10 4 2 " • 2D 4D .. IID'< - T... ...• V 2 --v. 6 8 10V 0 20 4D 60 80 1000 e -_Tlrnb 8PW21 8-9 BPW 32 SIEMENS SILICON PHOTODIODE Package Dimensions in Inches (mm) .031IM1 .02810,7) -..I '@f' ... - 1..J ~ ~ RadiantSenslt1veAreI .039 x.039 (D.985:1e D.885) I tlthod,./' FEATURES • Very Low Dark Current • • • .• Silicon Planar Photodiode Transparent Plastic Package 2110" Lead Spacing Low illuminances Usage, I.e., Light Sensor • Lead Bend Option (for SMD) DESCRIPTION The BPW 32 is a silicon planar photodiode, which is incorporated in a transparent plastic package. 'Its terminals are soldering tabs, arranged in 5.08 mm (2/10") lead spacing. Because of this design, the diodes can also very easily be assembled on PC boardS. The flat back of the epoxy resin case makes rigid fixing of the component feasible. The BPW 32 has been developed as a de· tector for low illuminances and is intended for use as a sensor in exposure meters and automatic exposure timers. The component is outstanding for low dark currents and. when used as a voltaic cell-for a high open circuit voltage at low illuminances. The cathode is marked by an orange dot. Maximum Ratings Reverse Voltage (VR) ................................................... 7 V Operating and Storage Temperature Range ....................... -40 to +80·C Soldering Temperature in a 2 mm Distance . from the Case BoHom (t :s 3 s) (Tsl ., ...•....•...•••••.••..••••....... 230·C ~ower Dissipation (Tamb = 25·C) (Plot) ................. '" ............. 100 mW Characteristics (Tamb = 25OC) Photosens~ivity (VR = 5 V, Note 1) Wavelength of Max. Photosensitiv~ Spectral Range of Photosensitivity (S = 10% of Smax) Radiant Sens~ive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (VR " 1 V) Zero Crossing (E. = 0, Tamb = 50OC) Spectral Photosensitivity (). - 800 nm) ~, S 10 (:2:7) 800 nAllx nm ~ 350... 1100 A O.W nm mm' Lx W 0.985 x 0.985 mm H

nllp - I (Ev) Open circulI voRage VL - I(Ev) ~lo.) " I'. "'I"' " 100 I I I) 0 , ..... ..... II 0 0 IJ I II I 40 I 0 o " V 012 Ip Phatocurrent Ip25 0 "" f{TamtJ J 4 567 S 9 lIV -'I 4 1 r-... , - ... m'L.oILl--L-L..L.LLJ--'.....J o 20 40 60 II - '... l 1111°1: " [6 I 10' --V. 10° r-... 10'V ~ _ I(T b) V o am L2s " '" 0.4 , [1 -30-Z0-1O 0 10 l030 40506070lIloC 10 I 'I Opon cln:ull vollage flO,• • ' 6 0 10 1 Dark current IR '" f{Tam~ .. V. -1 V: E. 0 ~"'-­ 10'111. 1) t , 1/ 20 I- o (I 111 ze 30 40 50 60 70 l1li"( -w DI~ram at the zero croasover So 1---+----+ 20 -1 r, BPW32 8-11 BPW 33 SIEMENS SILICON PHOTODIODE' Package Dimensions in Inches (mm) -Rad"IIIltSensitiveAlea .107 (2.71) •. 107 (2.71) Maximum Ratings FEATURES • Very Low Dark Current, 20 pA • • • • • • Silicon Planar Photodlocle 1i'ansparent Plastic Package 2110 n Lead Spacing High Sensitivity, 75 nAllx Light Measuring Applications Lead Bend Option (for SMD) DESCRIPTION The BPW 33 is a large area silicon planar photodiode, which is incorporated in a transparent plastic package. Its terminals are soldering tabs, arranged in 5.08 mm (2/10") lead spacing. Because of its design the diodes can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. The BPW 33 has been developed as a detector for low illuminances and is intended for use as a sensor in exposure meters and automatic exposure timers. The component is outstanding for high open circuit voltage at low illuminances. The cathode is marked by an orange dot. Reverse Voltage (VR) ................................................... 7 V Storage Temperature Range ............................... '..... -40 to + 80CC Soldering Temperature in a 2 mm Distance from the Case Bottom (t ,,; 3 s) (Ts> ....................... , ........... 230°C Power Dissipation (Tomb = 2S0C)(PtoI) ••••••.••••••••••••••.••• _ ••••••• 150 mW Characteristics (Tamb = 25OC) Photosensitivity (VR = 5 V, Note 1) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity Radiant SensHive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surfaca and Package Surface Half Angle Dark Current (VR = 1 V) Zero Cross Over (Ev = 0 Tamb = SOCC. Note 2) Spectral Photosensitivity. (>. ": 850 nm) A 7S(:!:3S) 800 3S0 ... 1100 7.34 nAllx nm nm mm2 Lx W 2.71 x 2.71 mm H IR '" O.S ±60 20 (,,;100) mm Deg. pA So :!:20 pAJrrtJ S 0.S9 AIW Electrons 0.86 PiiiiiOr1 Vo 440 (. Quantum Yield(>. = 800 om) Open CircuH Voltage (Ev = 1000 lx, Note 1) Short Circuit Current (Ev = 1000 lx, Note 1) Rise and Fall Time of the Photocurrent from 10% to 90% and from 90% to 10% of the Final Value (Rc = 1 KII, VR = 5 V, >. = 830 nm Ip = 70 !SA) Forward Voltage (IF = 100 mA, Ea = 0 Tomb = 25°C) Capacitance (VR = 0 V, E = O. f = 1 MHz) Temperature Coefficient of Vo Temperature Coefficient I. VF 1.3 V Co TOy TC, 630 -2.6 0.2 pF mVIK %JK Noise Equivalent Power (VR = 1 V) NEP 4.3 x 10- 1• '11HZ em '11HZ Detection LimH (VR = 1 V) D 6.3 X 10'3 ..::JL W The illuminance indicated refers to unffltered radiation of a tungsten filamenllamp at a color temperature of 2856 K (standard light A in accordance with DIN 5040 and lEe publ. 306-1). 2S0 is a measure for the lower spectral sensitivity when ttle photodiode is used in exposure meters. The zero cross over SO is defined in the diagram. I 8-12 , Photocurrent Ip "" f(Ey) Open circuit yoltage Vl "" f(Ey) .....Un...-ctnlunsltlvltr ~o S",-'IAI " 1/1\ Jfto t IlA 10) - Srel "" f(l") II BD \ " / ,/ \ , \ ,,' 10' 10' 10' ,I'DO 6lXI 800 -, 1!X11 l200nm 10 2 pA Capacitance C "" f{V R) f MHz: E - 0 =, D.rtccurrent/Jl-'IV.1 E-O r...~-26·C _. eo pF 0 '00 l7 90 0 ,sof-H-tr+++-H-t-i 115 H-t--+\!- ,,' 10~lx 10) -_E. Power dissipation PIOI '" f(TamtJ l' DirecUonal characteristic mY 10· -t--t--t-H so0 1/ 60 II 70 0 II ,ooH-+++''k--j- " 0 " 7SH-+++H\:++-H so H-+-+-+--l-HI'd-t--j 500 " ~ 10 / 15 H-+-+-+--l-H ':-'--'---:':2D:-'--C4:-'~';-;'~-!.SO;-'--;!'00~C --(T"".i 0 0 , 0 300 ! " " 0 0 , 1 3 1 ,, , 7 Iii 0 10D 9 lOY -~ u.rtc current I. -, I~~I Pbotocurrent ,::,. - , (wi 10' -·--V, 102V Shott circuit current 1." , IT....J V.-1V;e'-O pA '0' 1.1 I, I, IpJS. UI 'iffio H-t-tPl-1'9'--t-H--1 t QBH+-H-++H-t-+-+ \D 10' ..-1- I- QB ,,' 0.1 !I ~, 1 ,,0 0 -10-20-10 0 10 2030 4050 6070 111°C -r... 10 40 60 BD -r... o m·e o i 10 20 10 40506070 BOoe -In DiII,Fllm o'th. HroCroM over So 1 r-... I' , I"- f---l---l60 I' , .1 1--- r---+-+1Oj-- '--_-'-_..l" 0 o mm 3D 40 ~ W W -r... I, ~C BPW33 8-13 SIEMENS BPW 34 SILICON PIN PHOTODIODE Package Dimensions in Inches (mm) •- Radiant Sensitive Area .107 (2.71) •.107 (2.71) FEATURES • Silicon Planar PIN, Photodlode • Transparent Plastic Package • 2110' Lead Spacing • Low Junction Capacitance • Short Switching Time, • High Sensitivity • Lead Bend Option (lor SMD) DESCRIPTION The BPW 34 Is a silicon planar PIN photodiode, which is incorporated in a transparent plastic package. Its terminals are soldering tabs arranged In 5.08 mm(2/10jlead spacing. Due to its design the diode can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. Arrays can be realized by multiple arrangements. This versatile photodetector can be used as a diode as well as a voltaic cell. The Signal/noise ratio is particularly favorable, even at low Illuminances. The open circuit voltage at low illuminances Is higher than with comparable mesa photovoltaic cells. The PIN photodiode is outstanding for low junction capaCitance, high cut-off frequency and short switching times. The photodiode is particularly suitable for IR sound transmission. Maximum Ratings Reverse Voltage (VR) .................................................. 32 V Operating and Storage Temperature Range '................... -40 to + 80°C Soldering Temperature in a 2 mm Distance from the Case BoHom (t ~ 3 s) (Tal .... , .............................. 230°C Power Dissipation (Tamb ~ 25 DC) (P 150 mW oJ ...................... , ........ : , Characteristics (lamb = 25°C) Photosensitivity (VR ~ 5 V, Note 1) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity (5 ~ 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (VR ~ 10 V) Spectral Photosensitivity (>. ~ 850 nm) Quantum Yield (>. ~ 850 nm) Open Circuit Voltage (Ev ~ 1000 lx, Note 1) Short Circuil Current (Ev ~ 1000 lx, Note 1) Rise and Fall Time of the Photocurrent from 10% to 90% and from 90% to 10% of the Final Value (RL ~ 1 KO, VR ~ 5 V, X= 630 nm Ip = 7O,.P-) Forward Voltage (IF = 100 mA, E. = 0 Tamb ~ 25°C) Capacitance (VR = 0 V, E = 0, f = 1 MHz) Temperature Coefficient of Vo Temparature Coefficient of IKor Ip Noise Equivalent Power (VR = 10 V) Detection Limit (VR = 10 V) 880 nAllx nm X A 400... 1100 7.00 nm mm' xW S 80 (~50) ~"" 2.65 )(2.65 mm H 0.5 '" mm Deg. IR 2(~30) nA S 0.62 AIW 0.90 Electrons Photon Vo ±60 365 (~300) mV 80 (~50) ,.P- t" ~ 350 ns VF 1.3 V C. TCy TC, 72 -2.6 0.18 pF mViK %/K NEP 4.1 x 10-" 0 6.6 X 10" JL '-'Hz cm'-'Hz -W- Isc illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5030 and lEe pub!. 306-1). 1 The 8-14 Photocurrent 'p "" f(E v) Open circuit voltage Vl Relative spectral sensitivity % 5",,-fo-) 1---- - - - ; -----, ~ s", "1--- - -- -Jl'---i-+---l ! 101---lf- . -- ~ 1 10' 50-7-- ---"I--I-- - DlrecUolUIl eharaet.rlatic 5,.1- , 1... 1 mV 10' v\ 10' 90 = f(Ev) IIA 1 ---- 10' f----¥---+-+--+-f----1 lOH't----I-----1f---+---+----1 40 20 10 ~I-- 10' --- / :-+-+-\----1 ' ' '=--='' C:-'---:'' ':---C':'-00:-:''-=00---:900 LLWJlJLLillillll 1000 nm lmtlllLcL !!IIII, " 10l 10' --A 10~lx 10J --E, fCTamtJ Power dissipation PIOI '" Oarkcurrent/,,"'IV,,1 li".b- 2S'C E- a p' mW n, 9000 I, 150 t 6000 "'1"15 / 100 J 4000 1/ 75 50 200 I / , / 15 V , o Ca~citanc. pF .0 20 40 60 SO IOOGe -_T, 20 10 30 -~ Darkeumlnt/A "'IT..,.I C - , I~I VA -IOV f .. 0 f-1MHz;E-O rnmmrrnmrTTImrTTmm "m' 14 I, i'::H-++H-+++-8-l 0,' f-t+H+H--I-+-1---j 0,6 H-++H--+++-H---I 0,4 f-t--l-+-1r-++H--I--H 01 H-++H--+++-H---I I IOl sol-tl-tlllllf-tl'llllll-++HfII-+H1llm "f+HtttH-tttlM---I-ttIHlll-tttliffi 'Of+HtttH-tttI~H#Hlll-tttliffi 20 -.lO-2fl-IO 0 I) 10' .-1 o 203040506070 00 DC 20 - - T ... ~n cll'CUlt voltllp VL" f lE.I Short c,"=ult CUmint I. - , IE,I mV 40 --... 60 80 to oc Open drcuttVOItl'_G'" It..bl " 70 '00 I' ...... I, 400 300 ...... 40 " 30 4 200 20 1 .0 -r---r--o m ro ~ ~ -----I..m ~ ~ ~C BPW34 8-15 SIEMENS BPW 34B SILICON PIN PHOTODIODE Package Dimensions in Inches (mm) 0... 50 Radiant sensitive Area .107 (2.71) x .107 (2.71) Maximum Ratings FEATURES • High Blue Sensitivity, 400 mm • Transparent Plastic Package 30% Srel • 2ND" (5.08 mm) Lead Spacing • Very Low Dark Current, 30 nA Reverse Voltage ryR) ..... Operating and Storage Temperature Range . .... Soldering Temperature in a 2 mm Distance from the Case Bottom (t S 3 s) (Ts) Power Dissipation (T,mb = 25°C) (P,oJ . Characteristics (Tamb DESCRIPTION The BPW34B is a planar silicon photodiode in a transparent plastic package. Its terminals are soldering tabs arranged in 2/10" (5.08 mm) lead spacing. Due to its design, the diode can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. Arrays can be realized by multiple arrangements. The increased blue sensitivity with short wavelength makes the BPW34B particularly suitable for application with high blue light source. This versatile photodetector is suitable for diode as well as a voltaic cell operation. The signal/noise ratio is particularly favorable, even at low illuminances. The open circuit voltage at Jow illuminances is higher than with comparable mesa photovoltaic cells. The cathode is marked by a tab on the solder lead. ............. 32V ..... -40 to + 80°C .................... 230°C ................. 150mW = 25OC) Photosensitivity (VR = 5 V) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity (S = 100,1, of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current ryR = 10 V. E = 0) Spectral Photosensitivity (A = 850 nm) Quantum Yield Open Circuit Voltage (Ev = 1000 Ix. Note 1) Short Circuit Current (Ev = 1000 Ix. Note 1) Rise and Fall Time of the Pholocurrent (RL = 1 KIl VR = 5 V.). = 830 nm Ip = 70 pA) Forward Voltage (IF = 100 mAo E, = 0 T,mb = 25OC) Capacitance ryR = 0 V. f = 1 MHz. E = 0) 75 (~50) 850 nAllx nm A 350...1100 7.45 nm mm 2 LxW 2.73 x 2.73 mm H IR 0.5 ±60 2 (S30) mm Deg. nA S, 0.62 AIW 0.90: Electrons Photon S ASmax ).

. = 950 nm) Short Circuit Current (E. = 0.5 mW/cm', I- = 950 nm) Rise and Fall Time of the Photocurrent from 10% to 90% and from 90% to 100Al of the Final Value (RL = 1 KIl, VA = 5 V, I- = 830 nm Ip=25~) S ~A ~Sma)( 25 (:!:15) 950 nm IA 800... 1100 7.00 nm mm' LxW 2.65 x 2.65 mm H 'P IA 0.5 2 (S30) mm Deg. nA S, 0.68 A/W 0.90 Electrons Photon 327 (:!:275) mV 25 (:!:15) ~ t" ~ 400 ns Va Isc ±oo Forward Voltage (IF = 100 mA, E. = 0 Ternb = 25°C) Capacitance (VR = 0 V, E = 0, f = 1 MHz) Temparature Coefficient of Va Temperature Coefficient of Is VF 1.3 V Co TC v TC, 72 pF -2.6 0.18 mV/K Noise Equivalent Power (VR = 10 V) NEP 3.7 x 10- 1• Detection Limit (VR 1 The = 10 V) %JK ...Y:L -1HZ -1HZ cm D 7.3 X 10" illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5030 and lEe pub1. 306-1). 8-18 W Photacurrent I. = !(Eel Open circuli vOltago VL - !(Ev) RELATIVE SPECTRAL SENSmVITY ""=IM 100 VI\ I 40 mV 10' 10' \ \ "'=IM UL I, , 50 DIRECTIONAL CHARACTERISTIC. ~A 1 10' 10' 10' 10' 1 II 30 1/ 20 10 1/ o 1Q) mW 1\ 10' 1\ 100 900 I(QJ 1100 --, 1200nm 10' 10' 10' 10 4 IJWlcm l 10' --E. Plot = I POWER DISSIPATION 10' (T,mb) DARK CURRENT 150 \ 125 100 , 1000 C , 1\ 75 50 40 60 , 80 I : '" --'- 60 L ~ 25 20 2000 100 Tamb ('C) ~ 50 II 40 V 10 PHOTO CURRENT ~ =I~"'" DARK CURRENT M ¥R=lOV:E=O 20 r- l"o 10 20 30 --Y, 10 40Y I~Y I~ I~ --v, I,=I~..I OPEN CIRCUIT VOLTAGE ~=I~..I 12 I~ I.' 1\ 30 V r- C=IIVRl CAPACITANCE pF l=lMHz:E=O 100 11=1 !VR) pA Tu=2S"C:E=O \L 1 I~ T '" I....... r-... 1.0 8 j 10 ... 1'- .... 0.' 0,6 Q' • I~ .0.2 0_30_ 20 _ 10 0 10 20 30 40 50 60 70 80 oc 10 20 40 --I.., lOOOC o 10 20 30 40 50 60 10 - _ 1... sooc Bf'W 34F 8-19 SIEMENS BPX 48 SILICON DIFFERENTIAL PHOTODIODE Package Dimensions in Inches (mm) A RacllantSens/ll\reArea A .087(2.2))11',028(0.7) FEATURES Maximum Ratings • Differential Photodlode • Plastic Encapsulated, Strip Line Technique • Tightly Spaced Diodes for Precise Positional Indication • Lead Bend Option (for SMD) Reverse Voltage (VA) ...... . ................................... 10 V Storage Temperature Range. . .............................. -40 to +80 oC Soldering Temperature in a 2 mm Distance from the Case Bottom (t ;,; 3 s) (Tg) ................................... 230ac Power Dissipation (P!oJ ........ ; ..................................... 50 mW DESCRIPTION The differential photodiode BPX 48 is designed for special industrial electronic applications, such as follow-up control, edge control, path and angle scanning, respectively. The individual diodes are spaced 90 j.lm apart, thus resulting in a highly precise positional indication. The rise and fall times of the photocurrent are so short that control systems with small down times can be built up. The silicon planar method ensures a low dark current level, low noise and thus very favorable signal relationships. Characteristics (Tamb = 25°C) (Single Diode) Photosensitivity (VA = 5 V, Note 1) Wavelength of Max. Photosensitiv~y Spectral Range of Photosensitivity (5 = 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (VA = 10 V) Spectral Photosensitivity (A = 850 nm) Max. Deviation of Photosens~iv~ Between Diodes Quantum Efficiency (A = 850 nm) Open Circu~ Voltage (Ev = 1000 lx, Note 1) Short Circu~ Current (Ev = 1000 lx, Note 1) Rise and Fall Time of the Photocurrent from 10% to 90% and from 90% to 10% of the Final Value (RL = 1 KD. VA = 5 V, A = 830 nm Ip = 20 pAl Forward Voltage (IF = 100 mA, E. = 0 Tamb = 25°C) . Capacitance (VA = 0 V, f = 1 MHz, Ev = 0 Ix) (VA = 10 V, f = 1 MHz Ev=Olx) Temperature Coefficient Vo Temperature Coefficient 10 XSmax 24(",15) 850 nMx nm A A 430 ... 1150 1.54 nm mm2 LxW 0.7 x 2.2 mm H mm Deg. IA 0.5 ±60. 100 (;,;200) s" 0.55 ANI ±5 0.80 % Electrons Photon Vo 330 (",280) mV Isc 24 (",15) pA t,.t, SOO ns 5 '" A nA VF 1.3 V Co 25 pF C,o TCv Te, 6 -2.6 0.18 pF mViK %lK illuminance indicated refers to unfiftered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and lEe pub!, 306-1). 1 The 8-20 PhotocurraRll p = I(Ev) Open circuli voltage VL = I(Ev) _ v e opecInIl I8nalUvlly SaltA) 100 . Sr •• 1 Dlrecllomll eharac:terfallc Srel '" Ie",) / 0 8 ,. ". mV % /1"- ~ -C- II O / 0 i c-i 0/ o~ 400 600 \ .. BOO ,," 1001) 1200nm --A 10 2 104 1x 10) ~--E¥ DerkeUnllnt I" .. I IV,,' n' 150 DIode; cep.cltance ••• funetion T_ D '" 25"C ,F ofNl".... "DItII. . C·'I~1 15 ~T ~. t , HH-t''-I ,," 10.1 -~ V~ 102V '" , IT""'; \1 I' I.D W' t Q. m' Q6 "- :..... r--. II 0,4 0,4 H---t--t-~H- 01 m' Ql- H-+++-1'-+++-I--+--1 ---- .....-10' -lI-2D-Vl 010 2D 311 40 ~61 '10 9J ere 0 15 5<1 -\.0 75 -~ ... 100 12S D C 0 10 10 30 ~ - f-~ -I.. 40 SO 60 70 if BOOt BPX 48 B-21 BPX 60 SIEMENS SILICON PHOTODIODE " lt Package Dimensions in Inches (mm) Radlalll5enSillveArea .107(2.71»)11 .107(2.71) .33318,451 ~U51 q,.D1BIO.45) f=='~ .362t.21' . l D.35 l9r I t=.57."ULJ T .'""." ~-:-,3413:41 Fnm, 11.2 ~." .236(61 .22415.11 .492112.51- .12613.21 Maximum Ratings Reverse Voltage (V.) ..................................................32 V Operating and Storage Temperature Range ................... -40 to +80°C Soldering Temperature in a 2 mm Distance from the Case Bottom (t ~ 3 s) (Tsl ................................... 230°C Power Dissipation (P•.,) .............................................. 325 mW Thermal Resistance (RlhJam,,) ••••••••••••.•••••••..••..•••.••••••••••• 300 KIW (RtnJc,..} .......................................... 80 KIW Characteristics (Tamb = 25"C) FEATURES • • • • • • Silicon Planar Photodlode Premium Hi-Rei Device Modified TO-5 Hermetic Case Flat Glass Lens Large Photosensitive Area Suitable for Visible as well as IR Range DESCRIPTION The BPX 60 is a planar silicon photodiode. The large area photosensitive system is suitable for cell as well as diode operation at a very low reverse current level. The hermetically sealed case-a TO·S modifica· tion with flat glass window-allows application at extreme operating conditions. The signal/noise ratio is particularly favorable even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. Photosensitivny (V. = 5 V. Note 1) wavelength of Max. Photosensitivity Spectral Range of Photosensitivity (S .; 10% of Smax) Radiant Sensnive Area Dimensions of the Radiant Sensitive :Area . Distanca Between Chip Surfaca and Package Surface HaH Angle Dark Current (V. = 10 V) Spectral PhotosensniWy (), = 850 nm). Quantum Efficiency (), = 850 nm) Open Circuit Voltage (Ev = 1000 Ix. Note 1) Short Circuit Current (Ev = 1000 Ix. Note 1) Rise and Fall Time of the Photocurrent from 10% to 90% and from 90% to 10% of the Final Value IRL = 1 KD. V. = 5 V. ~ = 830 nm. p = 70",A) Forward Voltage (IF = 100 mAo E. = a Temb = 25°C) Capacitanca (V. = a V. f = 1 MHz. Ev = a Ix) Temperature Coefficient Vo Temperature Coefficient Is Noise Equivalent Power (V~ = 1 V) Detection limn (V. = 1 V) 70(",35) 850 nAilx nm A 400... 1100 7.34 nm mm2 LxW 2.71 x 2.71 mm H I. 1.9... 2.3 ±55 7 (~30b) mm Deg. nA S. 0.50 AI'N 0.73 """"PiiO'iCin Vo 460 (",390) mV Ise 70(",35) ",A t,. ~ 3.0 ~s VF 1.3 V C, TCv TC, 580 -2.6 0.18 pF mViK %JK NEP 9.5 x 10-" S >.sma. ~ f' D' Electrons 2.9 X 10.2 W ./HZ em' .fRZ --W- illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and lEe pub!. 306-1). 1 The 8-22 Photocu""nl'p = t(E V) Open circuli voltage VL - t(Ev) "1.tln.~ct'.I •• tIIIltlvlty % 5,"-'I/..) to r\ S., ... i DI"~lonai CMl'llcterllllc SIBI .. 1(",) mV 10' 10' I U, Il! 1\ Q7 116 1\ Q5 10' '" 0.3 10' Q! '.1 '00 SOD 600 700 BOO 900 lDOOnm --E. Power dlulpatlon PIOI = f(TamtJ r:. I '" 250 10'_ -.{ '" ISO HR",,",!,"c:.:"'t' ' 'j':' :/W''f\f-+-I-t-I 10'._ '" H-+-++-t-HIrl-+-1 50 H-+-++-t-HH-+-1 ,,', ':-,-'-:::,,-'--,',,:--'---',!=,--L-!; ..-L-:::IOO .( 4 B 12 ,. ,. " -U, --T t:; -,1r...J •• U.,.-r-,--,-.-.--,,--,...,., 'BV pF 1000 I, '"' 40' , " 0 101 lOG 102V -_VR Doric CU""nt 'R ' t(Tam.> VR =10 V I".. I....... 10' r-- -- 10' III H-++++++f+~-j I, I. 10' .!L 1,,,. 111 H-+-t-hoI-I'''F--t-H-I t Capacitance C - t(VR); t = 1 MHz Dark current 'A = f(VA) RthJIi =80K/W Plloiocynwnt 10' 10~ Ix 103 10' _l I'-. Q8 ....... " 10' as f-++-1f+-H-++ 1>' IU f-t-t-t-++--t-l-t--HH ,,' ,,', D.2f-t-l-t-++--t--I-+-HH ·JO·lD·II 0 10 20 ~ II 0.• 10' '0 5060 70 BOoe 1 50 100 150 200 0 ( --lamb -~ o 1020 ){) 40 ! 56 6070 SOO[ ---1m 8hol1 circuit currenti'!; - , (T..,.J 1.1 I, IUS' I'- _f-- ll! D.6 H-t-++-t--t-lH r-- - ---1--+--+-+-+'H , .• I--t--t--t--t--I--t--+-i Qll--t-t-t-t-t-t-t---I o L...-L-L...- _.L...- _ _ _ _ o 10 lD 10 40506070 BOoe -~ BPX 60 8-23 SIEMENS BPX 61 SILICON PIN PHOTODIODE Package Dimensions in Inches (mm) RldlantSensillveArn ·.101(2.71)" .101(2.71) j ,. CArloOE .71:J1 (5 OS) 18) 571 (14.5) (12.5) 236 (6) (5.7) .492 .224 Maximum Ratings FEATURES • • • • • Silicon Planar PIN Photodlode Premium HI-Re.1 Device Modified TO-5 Hermetic Case Flat Glass Lens Large Photosensitive Area • Low Dark Current • Short Switching Time • Suitable for Visible as well as IR Range DESCRIPTION The BPX 61 is a planar silicon photodiode with low reverse current. Its low capacitance permits use up to 10 MHz. The large area photosensitive system is suitable for cell as well as diode operation at a very low reverse current level. The hermetically sealed case-a TO-5 modification with flat glass window-allows application at extreme operating conditions. The signal/ noise ratio is particularly favorable even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. The PIN photodiode is outstanding for low junction capacitance, high cut-off frequency and short switching times. REMlrae Voltage (V,,) ................................................. :32 V Operating and Storage Temperature Range ................... -40 to +80°C Soldering Temperature in a 2 mm Distance from the Case Bottom (t :s 3 s) (Tsl ................................... 230OC Power Dissipation (Tamb = 25 0 C)(P.,.) ................................. 325 mW Thermal Resistance (RlhJamoJ ..•..................•................•.. 300 KIW (R........,l ...............•.....................•... . 80 KIW Characteristics (lamb = 25OC) PhotosensHivity (VR .; 5 V, Note 1) Wavelength of Max. Photosensitivny Spectral Range of Photosen.ilivny (S - 10% of Smax) Radiant Sensitive Area Dimensions of the Radii'"t Sensnive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (VR = 10 V) Spectral Photosensitivity ~ = 850 nm) Quantum Efficiency ~ = 850 nm) Open CircuH Voltage (Ey =.1000 lx, Note 1) Short Circuit Current (Ey = 1000 lx, Note 1) Rise and Fall TIme of the Photocurrent from 10% to 90% and from 90% to 10% of the Final value IRL = 1 KO, VR = 5 V, ), = 830 nm, p=70pA) . Forward Voltage (IF = 100 mA, E. = 0 Tam~ = 25°C) CapacnBnce (VR = 0 V, f = 1 MHz, Ey = 0 Ix) Tempereture CoeffICient Vo Temperature Coefficient I. Noise Equivalent Power (VR = 10 V) Detection LimH (VR = 10 V) S 70 (:!:50) 850 nAllx nm A 400. .. 1100 7DO nm mmO L xW 2.85 x 2.65 mm H '" IR 1.9..• 2.3 ±55 2 (:s30) mm Deg. nA s" 0.62 AIW 0.90 Ptiiiiiiil 375 (:!:320) mV "smax ), Vo Electrons (~50) pA I"t, 350 n~ I.c 70 VF 1.3 V Co TOy TC, 72 -2.6 0,18 pF NEP 4.1 x 10- 1• 0 6.6 X mVlK %/K JL v'Hz cmv'Hz 10'0 illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and lEe publ. 306-1). 1 The 8-24 W Ph.toe.mont Ip = f(Ey) Rea-tlve .,.ctnll ..nshtvltr mY 10' " % 'f Directional characteristic Sral - 1(9) Open circuit vonage Va .. f(Ev) $ .. ,-".1.1 10' U, 100 1 10' ~ SO / SO \ \ \ 1/ '0 10' o/ 10" 400 SOO 600 700 IX! !l00 IlOO Imln 10' _A 10' 10~ b. 10l --E, Power dlsslpatl.n Plot = f(Tam,,) p' mW BOOII lSO J 11/1 RthJG=BOK/W 0 '\ . , R,hJU=300K/W 150 100 2000 0 20 40 60 80 --T IOO D ( 10 10 30 -VA '" Pbotocumont,;;; • , Ct.1 CliPHhI!ilC. C - t{VRI '-1MHI .1,4 , OOH-ftIIIIHtHI!HtHtIH-HtIIIft t 1-7 ~ V 0 pf 1\0 J / I, 10'_. i':.: OJ 10 R'I_+ttHtll-l-HttlHtttIIII iOH-ftIIIINtttlIHtHtIH-HtIIIft SOH-ftIIIIHMH " H-ftIIIIHHtlIH 301-+!-IHIIH-HlIIil*HlHIH-HlHII D.' H++-f-+++-I-+-+-I 0.6 H-+++--If-t++-H-l 0.' H-+++--If-t++-H-l 20 10-1 10- 1 10' ---V. 1lJ2v 1)1. II H-+++--If-t++-H-l 0.1 o -J]-20-1l 0 n 2Il 30 I,() - ... m'D~-L~1O-L~"~~iO-L~OJ~~m 0t 50 60 70 III DC - - I... O,*, drcuh Yonqet,;.. , Ct.J i Sbon clrcuh cuI'Nnt;;!!; - , IT.....,) 1.2 I, IUs- I" I'-. •• to -l- f- 0/1 r-.... 06 Il.i 0.' ...- 02 2 o , o o 102030.40506070 sooe ---t;". I-r- o 10 ZO - ... 30 405060 70 BODC BPX 61 8-25 SIEMENS BPX 63 SILICON PHOTODIODE Package Dimensions in Inches (mm) RIdIInI_Am .039 x .039 ctJ.DI81U.451 ,571114~1 .492112.51 Maximum Ratings Reverse Voltage (V,.J •............•....•..........•..................... 7 V Operating and Storage Temperature Range ................... -40 to +80 oC Soldering Temperature in a 2 mm Distance from the Case Bottom (t ~ 3 s) (rsl ................................... 23000 Power Dissipation (ram. = 25°C) (P.,.) .............................•... 200 mW Characteristics (T8mb = 25"C) FEATURES • Very Low Dark Current • Silicon Planar Photocllocle • Modified TO-18 Package • Metal Case and Plastic Lens DESCRIPTION The BPX 63 is a planar silicon photodiode. mounted on a TO·18 base plate and covered with transparent plastic material. The BPX 63 has been developed as a de· tector for low illuminances and is intended for use as a sensor for exposure metars and automatic exposure maters. The component is outstanding for low dark currents and-whan used as a voltaic cell-for a high open circuit voltage liflow illuminances. The cathode of the BPX 63 is , electrically connected to the case. Photosensitlyny (VR - 5 V, Note 1) 'Wavelength of Max. PhotosensitiYny Spectral Range of PhotosensnMty (S ~ 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Batween Chip Surfece and Package Surfece Half Angle Dark Current (YR - 1 V) Zero Cross Over (Ev - 0 Tamb - 50"0, Note 2) Spectlal Photosensnivny (lI = 850 nm) Quantum Efficiency (lI - 800 nm) Open Circuit Voltage (Ey = 1000 lx, Note 1) Short Circuit Current (Ev = 1000 lx, Note 1) Rise and Fall TIme of the Photo· current from 10% to 90% and from 80% to 10% of the Final value IRL = 1 KII, VR - 5 V, A = 830 nm, p - 10 pAl Forward Voltage (IF = 100 mA, =0 Tam. = 25°C) Capacitance (VR - 0 V, f - 1 MHz, Ev - 0 Ix) Temperature Coefficient Vo Temperature Coefficient Is e. Noise Equivelent Power (VR - 1 V) Detection Umn (VR = 1 V) S 10(~8) Asmax 800 A A 350... 1100 0.97 nm mm' L xW 0.985 x 0.985 trim H 0.2 ... 0.8 ±75 mm Deg. pA 'I' IR So s,. 5(~20) ~20 nAIIx nm pA/rrW O.SO AIW 0.73 """'PiiOiOn'"" Vo 450(~380) mV Isc 10(~8) pA 1.3 ,,8 Electrons ,t" ~ VF 1.3 V C. TCy TC, 100 -2.6 0.16 pF mV/K %/K NEP 2.5 x 10. 15 ...:tL .JHz cm@ 0 3.9 X 10" W The illuminance indicated refers to unfirtered radiation of a tungsten filament lamp at a color tempe,a\u,a of 285& K (standard light A In acco,dance with DIN 5033 and lEe publ. 306-1). 'So is a measu.. lor the IoweoI apectnd oanaiIMIy when the photodioda is . - in .._ .. meters. The zero cross ewer So is defined in Ihe clagram. t 8-26 Photocurrant Ip = f (Ey) Open circuit voltage Vo Relatlva spactralsensltlvlty Sf.t'" II}.) 100 II "\ s,. t II 80 60 / Dlrectlonsl characteristic S'BI = f('P) mV 104 , 1\ \ I 1 U, \ i-- !-- II 40 = f (Ey) , IJA 10 'I, , V 10 . \ \ 10 10' I, IV 10 10' I , ..- 400 6110 800 1000 1100nm 1D· 10' 10 2 10' Power dissipation Ptot "" f (TamtJ Dark current fR pA mW lOO 10 3 104tx --E. -). =:I I rv Capacitance C = f R) tvR) T.mb '" 25'C pF 120 15 v 250 ,. 200 V 150 V \ o o 20 40 PhotocufTent 10 V o 60 60 100°C - - Tamb t:; '" ,IT.mb) 0 1 1 3 4 5 6 78 -'. Dark current IA = f (Tam~ Ev = 0; VA = 1 V FH-+-+-+++++-+--i Q9 H---t---t-H--t-+-+-r-t-1 0.6 H--t-+-+-++-H--t-+--j 0.4 H--t-+-+-++-H--t-+--j 10 0.1 I 10° 101V ~; [V 3 1/ , 10 10 I -_VR Zero eros. over So= I, to 10-1 9 10 V pA 10' f'r 1\ I 40 \ 50 60 V 10 \ 100 60 V 15 100 , I ~- / H--t-+-+-++-H--t-+--j 10' ~30 ~20 -10 0 10 20 30 40 50 60 10 9l"t _ _ T... o 10 40 60 80 100°C --Tamb BPX 63 8-27 BPX 65 SIEMENS SILICON PIN PHOTODIODE Package Dimensions in Inches (mm) .018 (0.45) .571 (14.5) '.482 (12.5) Maximum Ratings Reverse Voltage (VR) .................................................• 50 V Operating and Storage Temperature Range ................... -40 to +80°C Soldering Temperature in a 2 mm Distance Irom the Case Bottom (t :s 3 s) (Tal ........ " ......................... 230°C Power DISSipation (P,oJ .: •............................ , .........•... 230 mW Characteristics (T8mb = 25OC) FEATURES " Yo • • • • • • • Silicon Planar PIN Photodlode Premium Hi-Rei Device 10-18 Size Package Flat Glass Lens High Speed Low Dark Current Suitable for the Visible as well as IR Range DESCRIPTION The BPX 65 is a planar silicon PIN photodiode in a case 18 A 2 DIN 41876 (5im_ to TO-18) with a flat window_ The cathode is electrically connected to the case_ The flat window has no influence on the beam path of optical lens systems. Because of its high cut-off frequency this diode is particularly suitable for use as optical sensor of high modulation bandwidth. The PIN photodiode is outstanding for low junction capacitance and short switching times. PhotosenSitivity (VR = 5 V. Note 1) Wavelength 01 Max. Photosensitivity Spectral Range of Photosensitivity (S = 10% of Smax) Radiant Sensitive Area Dimensions 01 the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Hall Angle Dark Current (VR =20 V) Spectral Photosensitivity (A= 850 nm) S XSmax nAllx nm 350. .. 1100 1.00 nm mm' L xW 1 x 1 mm H IR 2.25 ... 2.55 ±40 1 (:s5) mm Deg. nA S. 0.55 A1W Electrons 'P 0.80 ~ Vo' 320 (~27.) Photocunanllp - f(E v) Open circulI VOlllga VL Directional characteristic = f(Ev) S",,=f(~) pA 10 1 % 100 , \ I 0 II 0 1/ 0 10' 10' \ \ / 20 10' 1\ BOO 600 1000 1200nm -A 10 2 10' Dark cunanllR - , dl..lpaUon PI01 Tamb .. 25°C = f{Tam,,) 10' 10" 1x 10 3 --E. Junction capacitance =f{Tam,,): E =0 ;:8~~~gE~u.ncy f -1 MHz pF 20 mW 300 , 250 P"f ZOO -10- V , 1/ \ IS0 10 \ 100 •o \ 20 40 60 " 10- 5 \ 50 0 IL 1\ 1 0 400 mV 1010 10BO 100 '( 10 30 20 40 SOV 10' -(Tam,! --(Tam') II Sari.. mlatance Rs = Dark ..nanllR - f{T...,,)E = 0: VR - 20 V 1,2 /, iP2S \D i f(V,.l: E=0 measuring frequency f .. 100 MHz pA 10' i • , 10- I, 10 I ~ l1,li , , 1010- 0,6 0,4 100 f--+----f~+--+----< '- ........ 1'--- 10" ~2 50 1--- --- - - ---I-- 10- 5 • -30-20-10 0 10 20JO 4050 6010 BO'[ 10-50 ---+---+--+--j OL.-'_-'-_--'-_"----' I-- 50 100 150'( -(Tam,) -{T..,.l o 10 20 30 40 SOV -VR BPx65 8-29 SIEMENS BPX 66 SILICON PIN PHOTO DIODE Package Dimensions in Inches (mm) .018 (0.45) .571 (14.5) .492 (12.5) Maximum Ratings Reverse Voltage (VR) ..................................................50 V Storage Temperature Range ............................... -40 to +80°C Soldering Temperature in a 2 mm Distance from the Case Bottom (t S 3 s) (Ts) . . . . . . .. . . ................... 230°C Power Dissipation (P,oJ ........................................... ·.. 250 mW = 25"C) FEATURES Characteristics (T8mb • Silicon Planar PIN Photodiode • Premium Hi-Rei Device Photosensitivity (VR = 5 V, Note 1) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity (S =10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (VR = 1 V) Spectral Photosensitivity (lI = 850 nm) • TO-18 Size Package • Flat Glass Lens • High Speed • Very Low Dark Current • Suitable for the Visible as well as IR Range DESCRIPTION The BPX 66 is a planar silicon PIN photodiode in a case 18 A 2 DIN 41876 (sim. to TO-18) with a flat window and extremely low dark current. The cathode is electrically connected to the case. The flat window has no influence on the beam path of optical lens systems. Because of its high cut-off frequency, this diode is particularly suitable for use as optical sensor of high modulation bandwidth. The PIN photodiode is outstanding for low junction capacitance and short switching times. >.smax S 10 (;;,;5.5) 850 nNlx nm A A 350... 1100 1.00 nm mm2 xW 1)( 1 mm '" mm Deg. IR 2.25 ... 2.55 ±40 0.15 (sO.3) S, 0.55 0.80 NW Electrons Photon Va 330 (;;,;280) mV Isc 10 (;;,;!i:5) ,.Po t" ~ 30/80 ns H nA Quantum Efficiency (lI = 850 nm) Open Circuit Voltage (Ev = 1000 lx, Note 1) Short Circuit Current (Ev = 1000 lx, Note 1) Rise and Fall Time of the Photocurrent from 10% to 90% and from 90% to 10% of the Final Value. (RL = 5011, VR = 5 V, A = 880 nm, Ip = 10,.Po) FOrward Voltage (IF = 100 mA, Eo = 0 Tamb = 25°C) Capacitance (VR = 0 V, f = 1 MHz, Ey = 0 Ix) (VR = 1 V, f = 1 MHz, Ey = 0 Ix) (VR = 20 V, f = 1 MHz, Ev = 0 Ix) Temperature Coefficient Vo Temperature Coefficient Is VF 1.3 V Co C, C20 TCv TC, 11 6.4 2.4 -2.6 0.2 pF pF pF Noise Equivalent POwer (VR = 20 V) NEP 3.3 x 10-14 Detection Limit (VR 1 The = 20 V) 0 3.1 X 10'2 mViK %lK J:L .,fHz cm .,fHz W illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a. color temperature of 2856 K (standard light A in accordance with DIN 5033 and lEe publ. 306-1). 8-30 Photocummt I. = I(Ev) Open circuit current VL • I(Ev) pA' 10 3 % 10 0 mY 1010 VI\ 0 II 0 0 I, \ I 110' II 10' I / 1 1 20 0 1000 10' 1\ 600 800 10DO 10' 10'_ 10-' Ll.lJJ1lJLJ..lllJlIlILlilJUllIL---LJ'1lillJJ 10' .12DOom 100 101 102 -~ 10) 10" Ix --E, Junction capacnan.. ~~1;gE~onoy I -1 MHz Dart'cu.,..IIR • I(VA); E - 0 Tamb ... 25 C1C . pF 20 mW 300 I, 250 ~f 20 r lto"' 1\ 0 , \ 150 -- 100 - -"'-1\ 50 -. o o 10 ./ - - -f----f-c I\f--f-40 80 60 " 10-5 f--.-f-10" 20 V 10- -- 100'C •o 10 15 -ITml 20 25 30V 10' -VA -- II As - I(V,.); E - 0 """"ng frequ~ncy I - .100 MHz I,Z Ip n r-r-,-----,·;--r-l- 'I- T 1J I I I'f Ff-+-+-+-f-~-! H, f---+-+-+-f-+---'- -.[ f---+-f--+-H-- -t .-.- --I 0,6 , f---+-+-+--+--+ ':1 0,4 t-- !-, '.1- - 1\' \ I 100 i "- r-.... ,, ,' ~Z I--f--+--+-H-++-IJ ~r ;1 -·IT..,.J r--.... .10 0'---_ -30-20-10 0 10 2030 4050 6070aOoC I 110 -----'l--...L- 10' I ~~t= \ 1 \0 ,D,B \ ZOO T;;;;ooo 50 100 1S0 -r 20Doe o o 10 20 30 40 10V -VA BPX86 8-31 SIEMENS BPX90 WITH DAYLIGHT FILTER BPX 90K PLANAR SILICON PHOTODIODE Package Dimensions in I.nches (mm). Cathode Characteristics (Tamb = 25°C) Symbol FEATURES • Transparent Plastic Package - BPX 90 • Daylight Filter - BPX 90K • Silicon Planar Photodiode • 0.2" Lead Spacing • High Sensitivity, BPX 90: 45 nAllx; BPX 90K: 13 nAllx • Lead Bend Option (for SMD) DESCRIPTION The BPX90 and BPX90K are planar silicon photodiodes. The BPX90 is in a transparent plastic package. The BPX90K is in a black plastic package with IR filter. Its terminals are soldering tabs arranged in 0.2" (5.08 mm) lead spacing. -Due to its design, the diode can be easily assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. Arrays can be realized by multiple arrangements. Photosensitivity 01A = 5 V, Note 1) 01A = 5 V, ~=950 nm, Ee=0.5 mWlcm2) Wavelength of Max. Photosensitivity Spectral Range 01 Photosensitivity (S = 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Hall Angle Dark Current 01A = 10 V) Spectral Photosensitivity (A = 850 nm) S 13(~8) p.A 950 nm ~ A 400 ... 1100 5.5 800 ... 1150 5 nm mm' Lx W 1.75 x 3.15 1.65 x 3.05 mm H 0.5 ±60 5 (S200) 0.5 . ±60 5 (s200) mm Deg. nA 0.50 0.48 0.73 0.62 AMI Electrons Photon '" IA S, Quantum Efficiency (A = 850 nm) Open Circuit Voltage (Ee = 0.5 mWlcm' ~ = 950 nm) Va Short Circuit Current (Ee = 0.5 mWlcm' ~ =950 nm)' Isc Rise and Fall Time 01 the Photocurrent Irom 10% to 90% and lrom 90% to 10% of the Final Value (R L = 1 Kn. VA = 5 V. ~ = 830 nm. Ip = 45 p.AlBPX90. Ip = 30 j.AIBPX90K) tr,t, Forward Voltage (I, = 100 rnA, Ee = 0 VF Tarnb =·25°C) 450 (~380) (~340) mV p.A 1.3 1.3 ,",sec 1.3 1.3 V Co 430 430 pF 100 -2.6 0.18 100 -2.6 0.18 45 (~25) 400 13(~8) Capacitance 01A = 0 V, I = 1 MHz Ev=Olx) 01A = 10 V. 1=1 MHz Ev=Olx) C,o TC v TC, Noise Equivalent Power 01A c 1 V) NEP Maximum Ratings Detection Limit 01A = 1 V) Irom the Case Bottom (IS3 s) (Ts) ........ 230°C . .... 100 mW Power Dissipation (P'oI)' .... Unit nNix 850 Temperature Coefficient Va Temperature Coefficient Is Soldering Temperature in a 2 mm Distance BPX90K (~25) Asn,,, This versatile photodetector is suitable for diode as well as voltaic cell operation. The signal/noise ratio is particularly favorable. even at low illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. Reverse Voltage 01rJ .................. .... 32V Operating and Storage Temperature Range ...... . ... -40to +80 oC BPX90 45 D 8 x10 -,. 2.9 X 10" 8 x 10-" 2.9 X 1012 pF mVlK %lK W ~ cm'~ -W-- 'The illuminance indicated refers to unfiltered radiation of a tungsten-filament lamp at a color temperature of 2856 K. (Standard light A in accordance with DIN 5033 and lEe pub!, 306-1.) 8-32 IIPXJO BPlCBO Reletl.. opocInIl ,,_'vlly PhotOcurrant " % S,d .I(lI) (Ip a Directional characteristic Brei - f(.,) m' I (Ev) .10) rr-'"'-,-,,,.,.,.....j\"',,. to 10' 0" Srd -D.9 t UI 10' 1/ ~1 Q.6 ~5 10' 10' 10' 10' ~. o.l ~2 0_1 soa '00 600. 7LII _. a 900 l«11nll 10' 120 '~ ~ f\ -: 60 10' --E, capacitance Dark Current n'IR"'(T"",,) I'iMer Dlalpatlon mW Plol " I(T..,.I - 10' I 10'. ._ tt - 1\ pF f:,'~~~ 600 t--;':'~;",,",,-'-mm"'Tmrn I, 500 f+rHltlH+Hltllf-WI!III-++1HII 1.00 l::++lHIIt++tIllffi-+++llI-++IHlIi C 10'• • I 40 200 1-++llII1II--I-f+lIJll\.'WllJII...j.j.lllIm 1\ -_. - 20 1 0 ' _ -- 100I-+HllI1I\-t-+++IIlI-++lHIII..l+lllIIH 0 20 40 60 80 _ _ T.... 100 DC Urr-,--rr--.--,,-,-,..,..., 10.1 -lamb Ip P _ n n t ,P25 , .I(T"",,) JJ 10° o~+• .l...!,:-L:'!;:2'--!;16-'-:!20:f-;2"".L:2!:-!,v ! 10' 10° 'K Dark curronl'R' 1(T"",.,1 Short circuit current L IK25 0 nA VA -10V t ;;; f (TamtJ ~l I, ~ ' nl • u IOzV '--VR 1-- I- f0- Ul Q.6 Q6 1K 0,' III .zg-. .JO • 0 10 ZO]O t,Q 50 60 70 eo'C .-' L.l....l....L..L-'--"--L..1--'.....J 20 t.D 611 &II lOOoe o -w -100 BPX90K % II 2t-... Sm 90 r...... r8 , r- -,- - 1-- r--~r-- II 40 30 . - 1--20 30 405060 70 SOOt --100 \ 50 -I- -- 2 1\ il 60 l- -r- 10 I 10 I o I teo ~ - Rolauve SpocIral Senllllvily S.. - 1(lI) 100 i\ i \1 II 20 1\ 10 1\ J 700 800 900 1000 1'00 --X 1200n1ll o 10 20 ]0 40506070 -w .BPlCBOK Photoc:unent ; Ip " I (Ev) sooe BPX 918 SIEMENS SILICON PHOTODIODE Package Dimensions in inches (mm), - Radiant Sensitive Area .107 (2.71) x .107 (2.71) FEATURES • High Blue Sensitivity, 400 mm = 30% Srel • Low Dark Current • Transparent Plastic Package • 2110" (5.08 mm) Lead Spacing • Lead Bend Option (for SMD) DESCRIPTION The BPX 91B is a planar silicon photo· diode, which is incorporated In a transparent plastic package. Its terminals are soldering tabs arranged in 2110" (5.08 mm) lead spacing. Due to Its design, the diode can also very easily be assembled on PC boards. The flat back of the epoxy resin case makes rigid fixing of the component feasible. Arrays can be realized by multiple arrangements. The Increased blue sensitivity with short wavelength makes the BPX,91B particularly suitable for application with high blue light source. This versatile photodetector is suitable for diode as well as voltaic cell operation. The signal/noise ratio Is particularly favorable. even at low Illuminances. The open circuit voltage at low illuminances is higher than with comparable mesa photovoltaic cells. The cathode is marked by a tab on the solder lead. Maximum Ratings Reverse VOltage (V,,) .................................................. 10 V Operating and Storage Temperature Range ., •....•...•....... -40 to +80OC Soldering Temperature in a 2 mm Distance Irom the Case Bottom (t :s; 3 s) (Tsl ................................... 230·C Power Dissipation (Tomb = 25 ·C) (P.,.) .................................. 150 mW Characteristics (Tamb = 25"C) Photosensitivity Wavelength 01 Max. Photosensitivity Spectral Range 01 Photosensitivity (S = 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Hall Angle Dark Current (VR = 10 V, E = 0) Spectral Photosensnivity (). = 850 nm) Quantum Yield Open Circun Vettage (Ev = 1000 lx, Note 1) Short Circun Current . (Ev = 1000 lx, Note 1) Rise and Fall Time of the Photoeurrent (RL = 1 KO VR =5 V, l. = 830 nm Ip = 65pA) Forward Vottage (I F '= 100 mA, E. = 0 Tomb = 25OC) Capacijance (VR = a V, I = 1 MHz, E = 0) (VR - 10 V, I = l'MHz, E = 0) Temperature Coefficient Va Temperature Coefficient Is Noise Equivalent' Power (VR - 1 V) Detection Limit (VR =1 V) 1 The >.om.. 65 (2:35) 850 nNix nm l. A 320... 1100 7.45 nm mm2 LxW 2.73 x 2.73 mm H IR 0.5 ±60 7 (:s;300) mm Deg. nA S. 0.60 AfW Electrons 0.86 ""'PiiOiOil Va 450 (2:380) mV Ise 65 (2:35) pA ~, ~ 1.6 pO VF 1.3 V 580 180 -2.6 0.2 pF pF mV/K %/K W S

.. = 850 nm) Quantum Efficiency (>.. = 850 nm) . Open Circuit Voltage (Ev = 1000 Ix. Note 1) Short Circuit Current (Ev = 1000 lx, Note 1) Rise and Fall TIme of the Photocurrent from 10% to 90% and from 90% to 10% of the Final Value fR L = 1 KII. VR = 5 V, ~ = 830 nm. p=20~A) Forward Voltage (IF = 100 mAo E. = 0 Tamb = 25°C) Capacitance f'JR = 0 V. f = 1 MHz. Ey f'JR = 10 V. f = 1 MHz. Ey = o Ix) Temperature Coefficient Va Temperature C~icient 10 = 0 Ix) Noise Equivalent Power (VR = 1 V) Detection Limit f'JR= 1 V) 1 The S 9.5(~4) ~"" 850 nAllx nm ~ A 400... 1100 1 nm mm' L xW 0.82 x 1.27 mm H IR '" 0.5 ±60 1 (:s100) mm Deg. nA s,. 0.50 AJW 0.73 Electrons Photon Va (~370) 440 mV Isc 9.5(~4) p.A tr,t, 1.2 ~ VF 1.3 V Co 90 pF C '0 TOy TC( 23 -2.6 0.2 pF mViK %/K. W NEP 0 3.6 x 10-1' 2.8 X 10" .fHz em' .fHz -W-- illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and lEe publ. 306-1). 8-36 Y. Ul I --1\ II Q1 Q6 1\ I 1(11') 10' , II 1 0.1 400 = 10' 1\ - Q' OJ Directional characteristic 5,eI mV 5'11 Q9 i Photocurrent Ip '" f(E v) Open circuit voltage VL = f(E v) R.'atlve.pect'lt •• nlltlvitv S... ·II}.) 500600 700 600 900 10' IOOOnm 10 i 10' 10' 10' 10'_. 10'''. 10'._ 10~ Ix --e. Dark current 'R "" t(V A) Power dlsllpation p,o. = I (T... bl mW oA 60 , 10'._ 3D 20 20 40 10-10!-'-~4-,-:,...L~11;-'-:'';-6"-;!;;1O-'-!:14:-'-:!1B;;-!V lOo oe flIl !IO -(.0 --VR 110 rrnmrrrmrmnrTl11mrTTl1rmn I, '00 J--H1-ttttIH-ttlIlIHl-IllIiII-++!I1III! 1,1' \D t-I"++H--t++-H--l BOJ--HI-ttttIN-ttlIIIHI-H!I-II!-++!I4lIi lUI 60 Q6 40 III 10 OJ H--H+H+H--H .' 10' 0 IT' 10' 10' 102V 10' .' -:11-20-11 0 10 201040 506070 1Il0t -" -w 1ll 40 60 BO --w 1000( o ...nCllQlltvott... t;"'I~ ShortcJrcultCUrNn1~ = tlT..J I' -l- I- ...... '8 .s Q6 ...... -_. ,- 0.' - r1 i--rf - - I-f-- f- 1 1-- fo 10 20 3D 40506070 o mw sooe -In ~ w ~ ~ ID -w ~t BPX 92 8-37 SIEMENS SFH 100 SILICON PHOTODIODE Package Dimensions in Inches (mm) ---lJIy Calhod. ~-----111 Anod. Radiant Sensitive Area .343 (8.7) K .108 (2.7) Maximum Ratings FEATURES • High Blue Sensitivity • Very Low Dark Current • Transparent Plastic Package • 12.7 mm Lead Spacing • Low Reverse Voltage • Lead Bend Option (for SMD) DESCRIPTION The SFH100 silicon planar photodiode is .supplied for universal applications. It is' especially suitable for operation with small reverse voltage (approx. 0.1 V) for the detection of very limited illumination. The increased blue sensitivity of the diode lightens application with luminous source, which has a short wave emission spectrum. The component is built in a transpar&nt plastic package and contains solder tab leads spaced at 12.7 mm. Switching Applications ~ Ev Alyptw,lhSlnilII,npulcurrenlshouldbeull9das operalionalampllf,e,. IK = Evnwx175 {Ev max in lux-Iv max in nAI Reverse Voltage (VA) ··· .... ·· ........ ·· ................................ 7 V Operating and Storage Temperature Range ................... -40 to +800C Soldering Temperature in a 2 mm Distance from the Case Bottom (t S 3 s) (Tsl ................................... 23000 Power Dissipation (P,,.) ............................................. 100 mW Characteristics (Tamb = 25°C) Photosensitivity (VR - 5 V. Note 1) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity (S = 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (VA = 10 V) Spectral Photosensitivity (X = 850 nm) Quantum Efficiency (X = 850 nm) Open Circuit Vo~age (Ev = 1000 Ix. Nole 1) Short Circu~ Current (Ev = 1000 Ix. Note 1) Rise and Fall Time of the Photocu,rrent from 10% to 90% and from 90% to 10% of the Final Value fR L = 1 KII,VA = 5 V. X = 830 nm. p = 200 pAl Forward Voltage (IF = 100mA. E. = 0 Temb = 25°C) CapacHance (VA = 0 V. f = 1 MHz. Ev = 0 Ix) Temperature Coefficient Vo Temperature CoeffICient 10 S XSm", 175 (~150) 850 nAnx nm X A 300. .. 1100 21.8 nm mm' L·x W 8.5 x 2.5 mm H '" mm Deg. IA 0.5 ±60 0.4.(SI0) s,. 0.5 AIW Electrons PhOJ?n 0.88 nA Vo 430 (~350) mV Isc 175 (~150) pA t,. ~ 1.8 ,.s VF 1.3 V Co TOy TC, 1000 -2.6 0.2 pF mVlK %JK W Noise Equivalent Power (VA - 1 V) NEP Detection LimH (VR= 1 V) 0 2.3 x 10-1• 2.0 x 10" .,[Hz cm· .,[Hz -W-- 1The illuminance indicated refers 10 unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and lEe pubt. 306-1). 8-38 Relative spectral sensitivity Srel = f(>') ,A Photocurrent Ip = f (Ev) Open circuit voltage VL Directional characteristic Srci = f(",) 10' = f(Ev) to' 20' lO' ° 400 lO' LLWllilLl..lllJJULllilill.LiiJillllllO' 600 800 1000 1200 nm lO' -'~i\ 10 2 10 1 --E, (plane receiver) Collector-base capacitance pF C, ~ f(VR) Dark current IA = f(T amb) , pA 10 1000 I, 900 ! pholodiode 104lx C, 1 BOO 70a 600 500 , 400 1(1' I 300 200 100 , 10V - - Tamb I. Photocurrent ~ = f(TamJ 'K = Short circuit vol ~ Open circuit voltage VL L25° 1,1 V, I, I'r ',0 fq+++-H-+++-H ~ '.I ',0 1':-- 1- " _I'.. " I- e- ,- ~- ~H-+++-H-+++-H 0,8 If 0,5 H-t-+++-++-+-++-1 0,5 0,4 H-t-++--H-t-++--H 0,4 0,1 f-++H++--f-++H 01 I. =1(Tam~ -V I(Tamb) I , , f'.,. I , e- f--- - I - f----- -)iJ·20·1O 0 10 10JO 4050 6010 9)°C --Tamb -Tomb °a c-t--- II) za JO 40 ~ 506070 BOOt --Tomb SFH 100 8-39 SIEMENS SFH 200 SILICON PHOTODIODE Package Dimensions in Inches (mm) Maximum Ratings FEATURES • Very Large zero Crossover, Reverse Voltage (VA) .•.....•........................................•... 1 V Operating and Storage Temperature Range ..•....... : ........ -55 to +80OC Soldering Temperature in a 2 mm Distance lrom the Case Bottom (l :s; 3 s) (T,,) ..............................•.... 230OC Power DiSSipation (Tamb = 25 OC) (P..l ................................. 100 mW 1 rrN/pA • Transparent Plastic Case • 5.08 mm (2110") Lead Spacing • Lead Bend Option (for SMD) DESCRIPTION SFH 200 is a planar si.licon photodiode incorporated in a transparent plastic package. Its terminals are solder tabs arranged in 5.08 mm (2/10 inch) lead spacing. The diode can also very easily be mounted on PC boards. The SFH :;:00 is developed for low luminescence as receiver for such applications as exposure meters. The photo component distin· gul$hes.itseif by large zero point divisions and by high open circuit voltage with low lumineScence. Type Characterization: notch with blue point. The cathode is marked by a tab on solder lead. Characteristics (Tamb = 25OC) Photosensitivity (VA = 5 V. Note 1) Wavelength 01 Max. Photosens~ivity Spectral Range 01 Photosensitivity (S = 10% 01 Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Batween Chip SUrface and Package Surface Hall Angle Dark Current (VA = 1V) Spectral Photosensitivity (l\ = 850 nm) Zero C(ossing (E. = 0, T.... = 40'C) Quantum Efficiency (l\ - 850 nm) Open Circuit Voltage (Ev = 1000 lx, Note 1) Short Circuit Current (Ev = 1000 lx, Note 1) Rise and Fall Time of the Photocurrent Irom 10% to 90% and lrom 90% to 10% of the Final Value (RL = 1 KO, VA = 5 V,l. = 830 nm: I. = 20 "A) Forward Voltage (IF = 100 rnA, E. a 0 Tam. = 25OC) Capacitance (VA = 0 V, I = 1 MHz, Ev = 0 Ix) (VA = 3 V, I = 1 MHz, Ev = 0 Ix) lilmperature Coefficient Vo Temperature Coefficient 10 Noise Equiva1ent (VA a 1 V) ~ Detection Limit (VA = 1 V) S 20(~14) ~'" 800 nAnx nm I. A 350 ... 1100 2 mrn2 L xW 1x 2 mm H mm Deg. pA nm IA 0.5. ±60 5 (:s;40) S. So 0.5 :s;1 ~ 0.73 PiiOiOrl Vo 450 (~380) mV Isc 20 (:!!14) ,.A t".~ 1.5 "s 'I' VF Co C3 TCv TC, NEP D AIW pAJrrtJ Electrons V 1.3 180 70 -2.6 ·0.2 2.5 x 1()-14 pF pF mViK %lK W 5.6 x 10" em' .JHZ --W- .JHZ 1lhe illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2656 K (standard light A in accordance with DIN 5033 and IEC pub!. 306-1). 8-40 Photocurrent Ip = f(E y} Open circuit voltage VL = f(Ey) S",=/(..I.) % 100 /\ II 60 10 1 10~ 10' 10' ", 10' Directional characterlatlc S,el = '(\1') \ / \ 0 400 mV \ II 0 ~A BOO 1IIXI tlDllnm -A filii PaWl' diaiP4ltlon Plo1 = f (T_,) 120 f P m ~ :'\ 60 "" Ii! 40 20 20 CaDacitlinctl C - f pF Ii! " III "t IVAI Diagr.-n of z'!.ro cro.sov.r Sa E=u 2~rrrrm~Tmmrnm~~mm 1,2 220 HtHIIII--tttItlll-HlHlIIHtttlIIII I- 200 H-tttlIlIH-fHI.tfjiHIIII--t+HtIIH 18oH-HillIII::l-fHl.tfjiHIIII--t+HtIIH 160 I-ttttllHH-fHlIilll'.I-HHIIII--ttHtIIH '~~~~~rR~rH~ .20 H-HHlIHi-+++IHII-++tH!li-+tHllll 0,6 100 0,4 80 60 0,2 40 - 20 Ht~I-tl-HtlllI-tt-ltltllt-tttt!llll 0,Lcr-!-,.llllUII'0_-,.,UlllJl""-:_,,LJJlJIJlL,,,:-'-1JJ1ii11,0,V --u. -3{I-ZD-l0 II 1020Jtl40506070IIJDC _ T... SFH 200 8-41 SIEMENS SFH 204 SILICON FOUR QUADRANT PHOTODIODE Package Dimensions in Inches (mm) .21 (5.4) .18 (4.5) CONNECTOR SCHEME 512 , I l I J I I li-~-:.'~: :>:::~j rr---'" I _-" 3 1 I,f"" OIODE SYSTEM WITH LIGHT SENSITIVE SURFACE ,,'---r: ~ ~ I I 1·1 .. , ',' FEATURES • • • • Miniature Size Four Quadrant Active Sections Close Spacing of Contacts, 12 I'm Can Determine If and By How Much a Light Source Has Deviated • SMD Package Optional MEASUREMENT IN ~m Maximum Ratings Characteristics (T8mb DESCRIPTION The SFH 204 silicon planar miniature four quadrant photodiode has application in edge drive, positioning, and path and corner scanning control devices. The active units are spaced at only 12 lIm apart from individual contacts. It is therefore possible to get exact positioning with high definition. ........ 12V ... -40to +80 oC Reverse Voltage (VR) ..... Operating and Storage Temperature Range (T • Tol ... Soldering Temperature in a 2 mm Distance from the Case Bottom (t ,; 3 s) (Tsl ............. . Power Dissipation (PI,.) ............... . = 25°C) Photosensitivity (VR ~.5V. Note 1) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity (S ~ 10% otSmax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (VR ~ 10 V) Spectral Photosensitivity (A ~ 850 nm) Max. Deviation of Photosensitivity Between Diodes Quantum Efficiency (A ~ 950 nm) -Conljnued 8-42 .. 230 oC ...... 40mW 0.13 (t ~f( T..... b Dark current ) fA ""/( VA) mW pA T....." ",,25"C; £ =0 11S 1.000 1/ I. 150 1300 0 S 10 0 \ S / / 200 0 \ V I / / 0 1000 S 0 20 40 60 80 10 --Tamb. Photocurrent ~ ""/( Capacitance C=/(v A ) --'. 15 Dark current T_b ) pF /=1 MHz. £=0 nA 100 c t " BO 70 i i: I' I, , fA =/( T...." ) V A =10V;E=O 1O'~n s=s I '111. 10 1 'I 0.9 I , I 30 10 lOY ":1 BillII 0.' I :1111 10' 0.6 !'- 01 I 10' --T_. SFH 205 8-45 SIEMENS SFH 20SQ2 SILICON PIN PHOTODIODE WITH DAYLIGHT FILTER Package Dimensions in Inches (mm) .Q2~ ••020 Area Not Flat (0.& .. 0.5) .01611.1112 (OAx 0.3) ffl """"~J~j - (~."""';M'" "" .D98 ~ Maximum Ratings Reverse Voltage (VA) .................................................. 20 V Operating and Storage Temperature Range. . . . . . . . . . ....... -40 to + 80°C Soldering Temperature in a 1 mm Distance from the Case Bottom (t S 3 s) (Ts) ................................... 230 oC Power Dissipation (Tamb = 25°Cj(P.,,) . ,. . . . ... . .................... 150 mW FEATURES • • • • Black Plastic Encapsulated Package 5.08 mm (.20") Lead Spacing Built·in Daylight Filter Suitable for IR Sound Transmission DESCRIPTION The SFH 205Q2 is a silicon planar PIN photodiode, which is incorporated in a plastic package which simultaneously serves as filter and is also transparent for infrared emission. Its terminals are soldering tabs arranged in 5.08 mm (.20") lead spacing. Due to its design, the diode can vertically and automatically be assembled on PC boards. Arrays can be realized by muHipie arrangements. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, even at low illuminances. The PIN photodiode is outstanding for low junction capaCitance, high cut-off frequency and short switching times. The photodiode is particlilarly suitable for IR sound transmission and remote control. The cathode is marked by stamping at the case edge. Characteristics (Tamb = 25OC) Photosensitivity (VA = 5 V, ~ = 950 nm Eo = 0.5 mW/cm?:j Wavelength of Max. Photosensttivity Spectral Range of Photosensitivity (S = 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (VA = 10 V) Spectral Photosensitivity (A = 850 nm) Quantum Efficiency (A = 850 nm) Open Circuit Voltage (E... 0.5 mW/cm', ~ - 950 nm) Short Circuit Current (E. = 0.5 mW/cm', ~ = 950 nm) Rise and Fall Time of the Photo· current from 10% to 90% and from 90% to 10% of the Final Value (RL = l' KIl, VA = 5 V, ). = 830 nm Ip = 25 pAl Forward Voltage (IF = 100 mA, E. = 0 T.mb = 25°C) Capacitance (VR = 0 V, f = 1 MHz, Ev = 0 Ix) Temperature Coefficient Vo Temperature Coefficient 10 Noise EquiValent Power (VR Detection Limtt (VA 8-46 = 10 V) = 10 V) 25 (:!:15) 950 pA nm A 800. .. 1100 7.00 nm mm' Lx W 2.65 x 2.65 mm H IA '" 2.3 ... 2.5 ±70 2 (S30) mm Deg. nA s" 0.68 0.90 AIW Electrons Photon Vo 327 (s250) mV Isc 25 (:!:15) pA tr,t, 350 ns S ~Smax ~ VF 1.3 V Co TC v TC, 72 -2.6 0.18 pF mV/K %/K NEP 3.7 x 10-" .,{Hz em .,{Hz 0 7.3 X 10" ..:!L W Relativ. spectral sensitivity -to S,.,=f(.l.) 100 "' ~ II 10 r. =f(E.) Directional characteristic s,.,=f(I,Il) 10' 1/1\ r:: Photoc:urrent ;.=950nrn " t 101 Il- " 50 10' 1\ 40 I '" II 20 10° !\ 10 II 700 1\ 800 900 '!GOO "00 10' 'ZOOnm .., .' "' _E. --X lO'f$ Dark current r~ ",If II~) pA T_ b =2S"C; £=0 mW 200 "'" I ~CI 175 / I. 1 /150 3000 f\ 125 100 ~I I 75 200 0 '\ / V I 50 V V / 1000 15 o Capacitance --T_. tl 20 II 40 50 60709090 \Ooce 10 PhotQc:urrent C",/(V,,) r!;; "" ( T_ b :i! I I' '1III II ~+ I 20 10 10' I. , 0.' I I 40 )0 1.4 II 10' 0.6 II 04 J!-. 10' f-f-.- t- It 1=i'=i' jf - 10' .- I I~ =I( T..... " ) VA=lOV,E=O nA 1 lOV Dark current ) pF 1=1 MHz, E=O .0 --'. 01 , -30'20-10 0 '(J --r_. 203(}40 506070 00 "( 10' -f T 20 1,0 !)O l.. BO ()O DC SFH 20502 8-47 SIEMENS SFH 206 SJLlCON PIN PHOTODIODE WITH DAYLIGHT FILTER Package Dimensions in Inches (mm) .p -s>.~ C8thoda .10 ~lRadlan, SensltiVa .1 ~t=b==J=rD3OiD.75l=='1" (2.54) - -Area .157L (4.0) (3.8) .150 Maximum Ratings FEATURES • Black Plastic Package • 0.1" (2.54mm) Lead Spacing • Built In Daylight Filter DESCRIPTION The SFH 206 is a silicon planar PIN photodiode in a black'plastic package that serves as a filter for infrared radiation. Its terminals are solder tabs with 0.1" (2.54 mm) spacing. Due to its design the diode can vertically be assembled on PC boards. ArraYs can be realized by multiple arrangements. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, especially at low light levels. The PIN photodiodeis outstanding for low junction capacitance, high cut off frequency and short switching times. Applications include fR sound transmission and remote control. The anode Is marked by stamping at the case edge. Reverse Voltage (V,.) .................................................. 20 V. Operating and Storage Temperature Range ........................ -40 to +BOOC Sotdering Temperature in a 1 mm Distance Irom the Case Bottom (t S 3 s) (T,.) ................................... 230 oC Power Dissipation (Tamb, = 2S 0 C)(P.,J ....•..•............•..........•• 150 mW Characteristics (Tamb = 25OC) Photosensftivity (V. = 5 V. ~ - 950 nm E. = 0.5 mW/crn~ Wavelength ot Max. Photosensftivfty Spectral Range 01 Photosensitivity (S - 10% 01 Smax) Radiant Sensitive Area Dimensions ot the Radiant Sensftive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current (V. - 10 V) Spectral Pholosensitivfty (A = 850 nm) S 25 (l!:16) 950 ,.A nm A BOO... 1100 7.00 nm mm2 LxW 2.65 x 2.65 mm H mm Deg. nA !.sm"" ~ IR '" 1.2... 1.4 ±70 2 (S30) s,. 0.68 AIW Electrons ~ 0.90 """PiiOiOii" Vo 327 (l!:2S0) mV 1$0 25 (l!:16) ,.A ~ 350 ns VF 1.3 V Co 72 pF mVIK %/K Quantum Efficiency (A = 850 nm) Open Circuit Voltage (E. = 0.5 mW/cm2. ~ = 950 nm) Short Circuit Current (E. = 0.5 mW/Cm2. ~ - 950 nm) Rise and Fall Time 01 the Photo· current from 10% to 90% and lrom 90% to 10% of the Final Value (RL = 1 KO. V. = 5 V. A = 830 nm Ip=2SpA) . Forward Voltage (IF = 100 mAo E. = 0 Tamb = 2S 0 C) Capacitance (VR = 0 V. I = 1 MHz. Ev - 0 Ix) Temperature Coefficient Vo Temperature Coefficient 10 TCy TC, -2.6 Noise Equivalent Power (V. = 10 V) NEP 3.7 x 10-1• Detection limit (V. - 10 V) 8-48 t,. 0 0.18 7.3 X 10'2 JL ..{Hi cm..{Hi W Photocurrent Ip Relative spectral sensitivity % ". 1/1\ -- - S....90 to. lD I \ 1/-- 6. 5. •• - 30 I 1\ - II 2. 1. --~ II 700 900 Directional characteristic S"I ""/(rp) m' I.' I.' I.' 10' I.' I.' 10' U, ~ BOO f(E,) s .'I.' I, 1\ II = f (Eel Open circuit vol18ge VL $,.1",/(1) 1000 1100 I.' 1200nnl I.' --~ I.' --E, Power dlsalpatlon J- tot '- ,(Tambl Dark current I,. =/(VRl mW pA T_t. ",25'C; £=0 ..... 175 • II I. 15 1300• l"1.• 5 1\ 5 • .. ,• 5 20 40 60 80 CaplCitance pF Photocurrent C=/(VAI V V V ,. 100"C - - T... ... V V V 2•• 1\ so •o I 15 -VA Ny II f.;;=/( Tantl 1 /=1 MHz; £=0 '-' E . 9• 7. i 60 .... so I.• • -I - II - II 0.9 H-+-++--H-+-+-t-t- 0.6 H-+-+-t-H-++-t-t- 0.' 10'._ 0.1 II "" -VA -30-20-\1 n ID 20304050.6070 9J DC - T... 10-'0'-7--=1Il~-C"'':-'--:'60~-C90':-'-::::1lJ 0, --T"", SFH 206 8-49 SIEMENS SFH 206K PIN PHOTO DIODE Package Dimensions in Inches (mm) " ~~" ..t .10 ~~==t~nl3Oio~==i1 (2.54) Cathode ~~lRadlont Sensiliva ·-AraI • .157L I~ .150 Maximum Ratings Operating and Storage Temperature Range ..... '................... -40 to +SOOC Soldering Temperature in a 2 mm Distance . from the Case Bottom It s 3 s) (Tsl ................................... 230°C R9\I8roe Vo~age (V,.) .................................................. 20 V Power Dissipation (Tamb a 25OC) (P.,J ....•..........•..•............•. 150 mW FEATURES • Waterclesr Plastic Package • 0.1· (2.54 mm) Lead Spacing • Suitable for IR Sound Transmission DESCRIPTION The SFH 206K is a silicon planar PIN photodiode which is Incorporated In a colorless plastic package. The terminals are solder tabs with 0.1" (2.54 mm) spacing. Due to its design the diode can be assembled vertically on PC boards. Arrays can be realized by multiple arrangements. This versatile photodetector can be used as a diode as well as a voltaic cell. The signal/noise ratio is particularly favorable, even at low illuminances. The PIN photodiode Is outstanding for low juneticn capacitance, high cut off frequency and short switching times. It is particularly suitable tor IR sound transmission and remote control. The anode Is marked by stamping at the case edge. Characteristics (Tamb ..; 25"C) Spectral Sensitivity (V. = 5 V. standard light A. T. 2856K) Wavelength of Max. Photosensitivity Spectral Range of Sensitivity IS a 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sens~ive Area Distance Between Chip Surface and Package Surface HaW Angle Dark Current (V. = 10 V) Quantum Efficiency (). = 850 nm) Open Circu~ VoIIage (Ev = 1000 Ix. Note 1) Short Circu~ Current (Ev • 1000 Ix. Note 1) Rise and Fall Time of the Photocurrent from 10% to 90% and from 90% to 10% of the Final Value (RL = 1 KO. V. = 5 V. }. - 830 nm I. = 80 pAl Forward Vo~ge (IF = 100 mAo E. - 0 Tam> = 25"C) Capacitance (V. = 0 V. f - 1 MHz. Ev - 0 Ix) Temperature CoeffICient Va Temperature Coefficient 10 Noise Equivalent Power (V. • 10 V) Detection 1 lim~ (V. = 10 V) S 80(",50) 850 naIIx nm Asm., }. 400. .. 1100 A 7.00 nm mm2 lxW 2.65 x 2.65 mm H I. 1.2... 1.4 ±70·. 2 (:s30) mm Ceg. nA' Electrons 0.88 PiiOiiiil Vo 365 (",310) mV loe SO (",50) pA ~ 35e) ns VF 1.3 V .Co 72 -2.6 0.18 pF mViK 'P t,. TCy TC, NEP 4.2 x 10-1' %lK JL .,{Hz em .,{Hz 0 6.3" 10" The Illuminance indicated refers to unfiltered radiation of a tungsten filament lamp at color temperalur. of 2856 K (standard light A in accordance wiIh OIN 5030 and IEC pub!. 306-1). 8-50 W y. Photocurrent Ip = f (Ev) Open circuit voltage VL = f(Ev) Relatlv.spectraillnsitivity S ..... /(1) '00 I 10~ \ / / .0' .~'.0' . °/00 500 600 700 800 9IXl lCOl 1100 nm --A Power dlsslpaUon Ptal "" f(TamtJ '0' -Ev 10' .. pA Parkcurr.nt mW IoODO 175 . 11l=/(VII) Ul V Iloo j'125 0 / 2000 ~ ~~ ·20 40 60 '/ I eo ur 1.2 V~~~ =1 T.... b ....... "- 1n b. ....... 0.6 I 75 5 V / 100 i Opan circuit voltage r. .. --2S'C' E-O - I, 150 0.' 1000 Q2 --T_. too "C 00 10 20 3D '0 50 60 70 8O'C --Tamb Clpadtanca C./(VII) pF S'.I ""f(lp) 10' \ I °o Directional characteristic 110' 60 20 mV 10} \ I 40 ~A Photocurrent ~=I T"' b I_f MHz; E-O Dark current 1R =1 Tomb nA VR=lDV:E""O ro' t4 100 I,· 90 7;i 1.2 to I 1to . 70 O.B H+-H-t-t-I-t+-H 0.6 H--+++-H--+++-H 0.4 H+-H-t-t-I-t+-H 0) I-t+H+H+H--1 50 II 10' 40 30 I-- 20 10 o 10·' 'ID'" iI o II' -"" -II-1O-~ 0 ~ _T_ 10 II <050 60 7Il 60 'C 10' ,,-, o 2D 40 -_T_. 60 90 moe SFH 206K 8-51 SIEMENS SFH 217 SFH 217F SILICON PIN PHOTODIODE WITH DAYLIGHT FILTER Package Dimensions in Inches (mm) 1 ~~11\3.~ .154 .1121 to.n to.4) ,01& .~. \3.11 ".II .189 .J !~~ ,.11 a.;,Loca1ion Maximum Ratings Reverse voltage. storage/operating temperature range Power dissipation Soldering temperature (Solder 2 mm distance from case 30 . V -55 to +100 ·C 100 mW 300 ·C t,,3sec) Electrical/Optical Characteristics (Tamb = 25' C) SFH217 FEATURES • • • • • • • Silicon Planar Pin Photodlode Cost Effective Device T·13A Package RatTop High Speed, 1 ns Low Dark Cunent, 1 nA IR Riter (SFH217F) DESCRIPTION The SFH217 and SFH217F are planar PIN photodiodes in a plastic T·1% package wrth a flat lens. The flat window has no effect on the beam path of optical lens systems. It is characterized by its low junction capacitance and fast switching speeds. Because of its high cut-off frequency, this diode is particularly suitable for use as an optical sensor of high modulation bandwidth. Radiant sensitive area Dimensions of radiant sensitive area Distance chip surface to package surlace Wavelength of the max. sensitivity Quantum yield (Electrons per photon) (). = 850 nm) Spectral sensitivity (). = 850 nm) Rise time of the photocurrent Ooad resistance Rl = 50 0; V.=5V; A = 880 nm. Ip = 14 pA) Forward voltage O,=100mZ. E.=O. T.=25·C) Capacitance (V.=0v. 1=1 MHz. E=Olx) 08rkcurrent (V. = 20 V; E=O)· Photosensitivity (V. = 5 V. standard light A. T = 2856 k) Photosensitivity (V.=5 V. A=950nm. E.=0.5mW/cm' Spectraf range of photosensitivity (s= 10% of S.".,J Open circuh voltage (Ev=looo I.x. standard light A. T=2856 K) (E. = 0.5 mW/crn'. A = 950 nm) SFtt217F 1 A LxW H ~ 1 xl 1 xl 0.4 ... 0.7 0.4 ... 0.7 850 900 S 0.89 0.62 0.89 0.62 V, 1.3 Co I. 11 1 (",10) S 9.5("'5) ~ mm' mm mm nm Electrons Photon AIW ns ·1.3 V 11 1 (,,10) pF nA 3.0(",1.8) pA 800 ... 1100 nm 300(",250) mV mV nAnx S A 400 ... 1100 Va Va 350(",300) Is Is 9.3(",5) Short circuit current (Ev = 1000 I x. standard light A. T=2856 K) (E. = 0.5 mW/cm'. A = 950 nm) Noise ecuivafent power (V. = 20 V) NEP 2.9 X 10.14 Oetection.limh (V. = 20 V) 0' 3.S Temperature coefficient for Is Tempera~re coefficient for Uo TC TC 0.2 -2.6 11 8-52 Tt,. illumin.nee indie.ted ,.,.,. to un'ill.'" radia1iOfl of , X10'2 tun ....,. ftl"".1tt 2858 K 'ttanard light A in accordlllW:e with DIN 5033,1td lEe pub!. 308·11. 3.1 ("'1.8) ,.A ,.A 2.9)(10- '4 ..YL 3.S X10'2 0.2 -2.6 ../Hz cm../Hz W %/K mVI1< 1_,. .. , coleN' t.....per..u,. of Relative Spectral Sensitivity Relative Spectral Sensitivity 8rel=f(~) 8rel=f~) % SFH217 % SFH217F 10 10 • • 1\ .. \ r... 400 1", • 20 600 800 1000 1200nm • • 400 \ I J 600 800 ,,' 1200nm Directional Characteristics 8 rel =l(l") mV 101 10" I I,,' 10.1 1000 --A IJA SFHZ17F I'" "'§ \ --A Photocurrent Ip = f (Eel u, " \ • • II "/ ~~, 10' I, • \ II JlA SFH217 • I = Photocurrentl p f (Ev) 10' 10 _E. 10' ,,' 10'lx Power Dissipation 'Ptot =! (TA) .11' "• '50 I"• • 10. 10' 10' 1\ 50 10.' 10-) •o 10° 10- l ,0-' 100 10'mW/crr,z Dalt Current IR =f rJ R) pi. 20 4D &D 80 100·( - TA -E, Ip Capacity C = f rJ R) T"".=25 a C Photocurrent Ip 25 =f (TAl pF 12 rnmnmrn_-rrmmr-rrnmn I, " 10'• • I ~f ~~~+1-r~~~~ 10 IO,H-H-H-H-H-+++++-I D,9 10'". ,.'.""'-LJ.....'-,.':-'-'-'-.L,'=".'-'--'-'-'"V --VR H--H--++-+-+-H-H 0,6 H++1-r~-+~~ ~.,-;_,:'-lllIlWIO';-_'LillWU..:-.Ulllllll ..:-',..l1lllW'Oly --VR 0,4 H-+-+--+-+-H-+-t-H 0,' H-+-+-+-+-H-++H -30-20-10 0 10203040S0607080 g t -TA SFH 217 SFH 217F 8-53 II a: SIEMENS SFH 225 PIN PHOTODIODE Package Dimensions in Inches (mm) 1+-__' __ .953 (24.2) - - - - - . J .!PL .006 (23.0) .100 .197(5.0) r-j",======t:=!:p9'"i (2.54) .L.t-r==i=::::i=::.::=::~::::t~:4....I .020 (0.5) .012 t. (1.15); .030 (0.75) .045 (0.3rr .118 (3.0) .110 (2.8) CZd~.n Direction FEATURES • Built In IR Filter • Short Switching Time -125 ns l\'pical • Spectrally Matched to Emitters SFH484/485 and LD271/274 Maximum Ratings Operaling and Storage Temperature Range (T] .................. , ... -40 to +80 oC Soldering Temperature (2 mm distance from case bottom; soldering time tS3 s) (Tsl ................................ 230°C Reverse Voltage (V.v .................................................. 20 V Total Power Dissipation (Tamb = 25°C) (PTOT) •.•••.•.•.•.••••..•••••••••• 150 mW • Flattened Black Epoxy Package DESCRIPTION The SFH 225 is a silicon planar PIN photodiode. It is housed in a black epoxy package that acts as a daylight rejection filter. Due to its small package and 2.54 mm (0.1 inch) lead spacing, it is suitable for high density packaging. The SFH 225 can be used in a reversed (photodiode) or forward biased (photo cell) mode. Its low signal/noise ratio and IR filter make it especially suitable at low light levels. The PIN photodiode is outstanding for low junction capacitance, short SWitching times and high cut off frequency. Applications include remote control, IR sound transmission, dimmers and light reflective switches. Characteristics (Tamb =25°C) Photosens~ivity (VR=S V, 1=950 nm E. = 0.5 mWlcm2) S 17(~12.S) Wavelength of Max. Photosensitivity IsMAX 950 Spectral Range of Photosensitivity (S=10% of SM..) Radiant Sensitive Area Dimensions of Radiant Sensitive Area Distance Chip Surface to Casa Surface Half Angle Dark Current (VR=10 V) Spectral Sensitiv~y (1 = 950 nm) 1 A LxW H cp IR S, 800 to 1100 4.84 2.20x2.20 0.6 to 0.8 ±60 2 (S30) 0.70 nm mm2 mm mm Deg. nA ANI Electrons 0.90 PliCiiOi1 Quantum Yield (1=950 nm) Open·Circuit Voltage (EE=O.S mWlcm2; 1-950 nm) Short-Circuit Current (E.=O.S mWlcm2; A=950 nm) Rise and Fall Time of Photocurrent from 10% to 90%, or from 90% to 10% of final value (R L = 1 ! ....................................... 230 oC Power Dissipation (Pto,), . . . . . . . . . . . . . ............ '.' ................. 50 mW • Detector For Low Illuminance • Short Switching Time • • • • Low Capacitance High Spectral Sensitivity Cathode Marking: Middle Solder Tab Suitable for Use in the Visible Light and Near Infrared Range • Daylight Filter Option, SFH248F DESCRIPTION SFH248 and SFH248F are silicon differential photodiodes fabricated in planar technology. The devices are packaged in a plastic case similar to a 1092. The terminals are solder tabs with .01" (2.54 mm) lead spacing. These photodetectors can be used as photodiodes with reverse voltage or as photovoltaic cells. Applications include: edge control, path and corner scanning, industrial electronics, measuring and contrOlling devices. Characteristics (Tamb = 25°C) Spectral Sensitivity evR ~ 5 V,.Note 1) Spectral Sensitivity . evR =5 V: X ~ 950 nm Ee ~ 0.5 mW/cm2 ) Wavelength 01 Max. Sensitivity Spectral Range of Photosensitivity (S ~ 10% 01 Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area Distance Between Chip Surface and Package Surface Half Angle Dark Current evR ~ 10 V) Spectral SenSitivity (>. ~ 850 nm) Quantum Yield (>. ~ 850 nm) Open Circuit Voltage (Ee ~ 1000 lx, Note 1) (Ee = 0.5 mW/cm2 X ~ 950 nm) Short Circuit Current (Ee ~ 1000 lx, Note 1) (Ee ~ 0.5 mW/cm2 X ~950 nm) Rise and Fall Time of the Photocurrent from· 10% to 90% and from 90% to 10% of the Final Value (RL ~ 1 II. VR ~ 0 V X ~ 830 nm, Ip ~ 20 pA) FOrward Voltage (IF ~ 100 mA, Ee ~ 0 Tamb ~ 25°C) Capacitance evR ~ 0 V, f ~ 1 MHz Ev ~ 0 Ix) evR ~ 10 V. f = 1 MHz Ev ~ 0 Ix) Temperature Coetiicient Vo Temperature Coatiicient Is Symbol SFH248 S 24 (2: 15) S SFH248F Unit nAllx 7.5 (2:4) pA )..Smax 850 950 nm X A . 430 to 1150 1.54 800 to 1150 1.54 nm mm2 Lx W 0.7 x 2.2 0.7 x 2:2 mm 0 1 ±60 100 (S;200) 1 ±60 100 (S;200) mm Deg. nA 0.55 0.55 0.80 0.80 A/W Electrons Photon 340 (2:280) mV mV 7.5 (2:4) pA pA ns 'I' IR S, Vo Vo 390 (2:320) IK IK 24 (2: 15) tpt, 500 500 VF 1.3 1.3 V Co C,o TCy TC, 40 10 -2.6 0.18 40 10 -2.6 0.18 ---i s 14 '1':: " f- 18 " 16 39DnF 1\ 14 12 Breakdown voltage,generator 10 10' for measuring circuit W, : 4 turns 0.15 (1) CuLS W2: 1 turns 0.25 0 CuL W3: 140 turn 0.150 CuLS 10' 10' -~. tnteriorspacaofthecoil with SIFEARIT cylindrical core, materialM25, inner coil diameter: 11 mm BP103 9-5 SIEMENS 8P 1038 SERIES PHOTOTRANSISTOR Package Dimensions in Inches (mm) Frame .10 (2.54) L .024 (0.6) (0.4) .1116 Maximum Ratings FEATURES • Silicon NPN Epitaxial Phototransistor Operating and Storage Temperature Soldering Temperature (Distance from soldering jOint to package 2: 2 mm Dip Soldering Time t :s 5 s Iron Soldering Time t :s3 s) Collector Emitter Voltage Collector Current Collector Peak Current (t < 10 "s) Emitter Base Voltage Power Dissipation (T""b = 25 DC) Thermal Resistance • Low Cost • T 13.4 Package • Clear Plastic Lens • Acceptance Angle 5.00 • Very High Gain • Matches with Infrared Emitters LD271, LD 273, SFH484 or 485 DESCRIPTION Characteristics (Tamb DC Ts Ts VCEO Ic IpK VEe 260 300 35 50 DC DC V mA mA V mW 100 7 200 375 KIW 850 420 to 1100 0.12 0.5 x 0.5 4.1 to 4.7 ±25 nm nm mm2 mm mm Deg. CeE 6.5 pF ICEO 5 (:s100) nA RthJA = 25°C) Asmax X Die Area Distance Die Surtace to Package Surface Hall Angle Capacitance (VCE = 0 V, 1 = 1 MHz, E = 0 Ix) Collector Emitter Leakage Current (VCEO = 35 V, E = 0 Ix) Group A L xW H '" BP103B-2 Photocurrent 01 the Transistor, Collector to Emitter (Note 1) 2.5 to 5.0 (Ev = 1000 lx, VCE = 5 V) IpeE (E. = 0.5 mWlcm 2 X.= 950 nm, VCE = 5 V) IPCE 0.63 to 1.25 Rise/Fall TIme (Ic = 1 mA, VCE = 5 V 7:5 RL =II ••••..•....•.•.•..•....•••.••••......••••..••....••• ·55·C to +125'C Soldering Temperature (distance from soldering iolnt to package l!2 mm) Dip Soldering Time (t 0:5 sec.) (T"l ..••...••......•..•.•.•....•.•.••••.....••••..•......••.••......•.•...•••......••.... 260·C Iron Soldering lime (t 0;3 sec.) (T.) .••....•......••.•••.......••••.........•...........••••••.......•..•.........•••... 300·C Collector Emitter Voltage fY..o) ................................................................................................50 V Collector Current (Ie) ..............................................................................................................50 mA Collector Peak Current (t <10 fIB) (I",) ................................................................................. 200 mA Emitter Base Voltage fYES) .....•....••. ; ............................................................................................7 V Power Dissipation (PTDT) T...= 25'0 ................................................................................... 330 mW Thermal Resistance (R".,.) ......•...•..........•........•.•...•......•••.•..•.....•.••.........•••........••.•..........•.• 450 KIW FEATURES • Silicon NPN EpHaxlal Phototranslstor • T0-18 Hermetic Package • Flat Glass Lens • Premium HI·Rel Device • Moderate Gain • Wide Acceptance Angle, 80· • Five Sensitivity Ranges DESCRIPTION The BPX38 is a silicon epitaxial planar phototransistor in an 18 A3 DIN 41876 (T0·18) case with a flat window and high radiant sensitivity for front irradiance. The flat window has no influence on light paths. The collector terminal is electrically connected to the case. The BPX38 is suitable for industrial applications where lens systems are used. Characteristics (Tamb=25°C) Wavelength of Max. Photosensldvity Spectral Range of Photosensitivity Radiant Sensitive Area Die Area Distance Die Surface to Package Surface Half Angle Photocurrent of \he Coltector, Base Diode (E,,=1000 lx, VS-5 V) (EE=0.5 mW/cm ,~950 nm, Vca=5 V) Capacitance fY..=0 V, f= 1 MHz, E=O) fYca=O V, f=1 MHz, E=O) fY..=O V, f=1 MHz. E=O) Collector Emitter Leakage Current fY..=25 V, E=O) -2 Photocurrent, Collector to Emitter (Note 1) (E,,=I000 lx, standard light A, V..=5 V) (EE=0.5 mW/cm2, ~950 nm, V..=5 V) ~ nm nm mm2 mm mm Ceg. tp 880 450-1150 0.675 lxl 2.25-2.55 :t4O I.... I"", 5.5 1.8 pA pA C.. Ceo CEO 23 39 47 pF pF ~ A LxW H pF nA 20 (S300) ICEO -3 -4 1.5 2.3 -5 -6 111 3.6 4.6 mA 0.8-1.6 ~1.25 mA 15 18 22 fIB 200 200 200 200 mV 280 420 650 640 I"", 0.95 I"", 0.2-0.4 t,.,,, 9 12 nm, V..=5 V) V...... 200 Current Gain (E,=0.5 mW/cm2, ~950 nm, V.. =5 V) I,.. 170 0.32-0.63 0.5-1.0 RiseIFalllime (le= 1 mA, V..=5V, 1\=1 kn, ~B30nm) Collector Emitter Saturation Voltage (lc=IPCEmln .0.3, ~950 i;:;;;; The itlumlnances refer to unfiltered radlahon of a tungsten filamenllamp at a color temperature of 2856K (slandard lighl A in accordance wilh DIN 5033 and lEe pub!, 306-11). I_ianee flux meter 8334A with option 013. . e" measured wKh HP radianl . Note.: 1. Measured with LED l= 950 nm. IPCE= Photocurrent 01 transistors; ~= Pholocurrenl d Colleclor·Base-Oiode. 2. Supplies of this group cannol be guaranteed due to unforeseeable spread of yield. In this C899 we win reserve us the right of delivering a substitute group. 9-8 Direction" ctwact:e"S'llcs S,er .. 1(,,) Photoc:urrent Ip = , IE.) % ,00 Il 0 V \ \ I II 0 mA 10' \ 40 0 \ \ V \ 0 600 800 1000 -, 01 10 ,LO,,.u.lllJJlJ,""'O,-'-1J.lJJill,O';-'L11!llW'04IX 1200nm --E. PowtIr dlulpetlon J\.I • , 11;,...1 Photoc:urnnt I::~ ., 1"t...1 I.B fIt JOO L ~1.6 f-+'Irl--j t r---r~", 3~ 1'-' 150 rr 2 1.1 /DO - 0.8 150 ,. 100 0.' 50 0.2 __ J 25 50 75 100 125 1500[ -30-l0-10 o 10 ZO]Jt.OS0607QOO90100ac --r... -100 D.rk cumnt 11:£0 IJA VcE "25V;f=O lcro ..- 1"'111121 ,,' ,,' -"' '~'-- ,,> Ll--'--'-LJ..J....L...J--L-'--'-' o 10 20 30 40 50 =, 1T,,1tIII1 so 6DY 150 pi 3D pi 60 ee'-'IVeDI pF I Cco 20 H-+tHM--++t1ttt11-+t+tHtti IOH-+tHttll--++t1-1l11f-+t+tHttl Emltte,-bII,. capeci1lnce' CEB-I!Vul Collector-b... cap.citenee ColiectOl..mltt8r c:.paclUnce CCE-IIM:t1 i " 6D Cn i ......... ..... 20 I _. o 1,-l..ill.JJUJ,--'-WlIlll._.LLWlill 10"1 IJII 101 111 V ---Vn 2000( -Tamb -fa o .·1 - .'v 10' o 10' III' IOV, BPX38 9-9 SIEMENS BPX43 SERIES PHOTOTRANSISTOR Package Dimensions in Inches (mm) .110(2.8) (~ ~) :Ij~~~~$!I~~I=':187 ' \ ~,,~ .212 (~:;) .236 (6) (5.4) Radiant Sensitive Area Maximum Ratings Operating and Storage Temperature CTrro' T...> .................................................... -55'C to +125'C SoIdertng Temperature (dstance from soldering joint to package ;,,2 mm) Dip Soldering Time (t s6 sec.) CT,) ..................................................................................... 260'C Iron Soldering lime (t S3 sec.) CT,) .................................................................................... 3OO'C Collector Emitter Voltage IY",a) ................................................................................................ 50 V Collector Current (Ie) ..............................................................................................................50 mA Collector Peak Current (t <10 11") (I..) ................................................................................. 200 mA Emitter Base Voltage IY.J ..........................................................................................................7 V Power Dissipation (PlOT) T_= 26'C ................................................................................... 330 mW Thermat Resistance (R"."J ................................................................................................. 460 KNV FEATURES • • • • • • • Silicon NPN EpHaxlal Phototranslstor T0-18 Hermetic Package Rounded Glass Lens Premium HI·Rel Device Very High Gain Narrow Acceptance Angle, 30· Five Sensitivity Ranges DESCRIPTION The BPX43 is a silicon NPN epitaxial planar phototransistor in an 18 A 3 DIN 41876 (TO-18) case with lens-shaped window for front irradiance. The special transistor system in connection with the lens shaped window provides a high spectral sensitivity. The collector terrninal is electrically connected to the case. The BPX43 is suitab!'l for industrial applications at low illuminances. Characteristics (Tamb=2S·C) Wavelength of Max. Photosensitivity Spectrat Range of Photosensitivity Radant Sensitive Area Die Area Distance Die Surface to Package Surface HatfAngle Photocurrent of the Collector: Base Diode (Ey=I000 lx, V5'5 V) (E,=0.5 mW/cm ,~=950 nm, V",=5 V) Capacitance IY..=O V, f=1 MHz. E=O) IY",=O V, f=1 MHz, E=O) IYm=O V, f= 1 MHz, E=O) Collector Emitter Leakage Current 1Y..=25 V, E=O) -2 Photocurrent, Collector to Emitter (Note 1) (Ey=IOOO lx, standard light A, V..=5 V) (E,=O.~ mW/cm2 , '--950 nm, V~5 V) ~ nm nm mm2 mm mm Dog. cp 880 460 -1100 0.675 1x 1 2.26-2.65 :1:15 lpea I- 36 II pA pA C.. C", Cm 23 39 47 'pF pF pF 20 (s300) nA ~ A LxW H I... -3 -4 -5 -8'" IPeE 3.8 6.0 9.6 16.0 22.5 mA IPeE 0.8-1.6 1.25-2.5 2-4 3.2-6.3 l!5 mA Rise/Fatl Time (1.=1 mA, VCf.=5 V,'"=1 kO, t",t" 9 12 15 18 22 II" Collector Emitter Saturation Voltage (le=l".,."., • 0.3, ~950 nm, V",=5 V) V..... 200 220 240 260 290 mV Current Gain (1:,,=0.5 mW/cm2 , ~960 nm, VCf.=5 V) C;; 110 170 270 430 640 ~830nm) I.... 306-11). The HILlmlflsnces refer 10 UnfIltered radiallon 01 a lungslen filament lamp at 8 color temperature of 2856K 013, (standard light A In accordance wilh DIN 5033 and lEe pub!. !lux m_ 8334A wilh aptian HatH: I:Measured wlh LED A= 950 nm. 1.:.= Phatacurrenl 01 transistors; Irradianaa e. maasured wlh HP radiant \.co- Phalacurfent 01 CoIIacIOf-8asH)_. 2. Supplies of this group cannot be guaranteed due to unforeseeable spread of yiek1ln this case we win· reserve us the right of delivering a substilute group. • 9-10 R.latlv •• p.ctr.I .....ltivllr Photocurtentf p =/IE,I IVeE = 5VI S",·/lll. DirectIOnal characterlatlc Srel .. f(1P) .A % 0 10 10' I ,1/'" \ 0 I, 1 I 0 I ,. 10' :~ 1 3- 2 il I _\ I II 0 \ / 0 400 /y 10' 600 800 --. 1000 10', 10' 1200nlll '. I 10' 10'111 -E, Pow., dlulpetlon P,o, .. , IT.....I oW 350 101 i -- 1 R'hltRI 1-+",,"",f--I-''''''l'--+-1 ]00 3~ r'-1'~~I"~I~t,~--r--r--1 '" '\ rI2 1.2 c-- '" e-- ....- ... _-f'>.- ---r-- - . - 1--\-'-- ,.. "',.. 1\, f-- --I- -F\-I-1---+-+--+.+->..+--1 '" 1--'+--1--+-11-+--1--- . --I- I 50 I--t-- - , L-- r- --I-- '.2 I - _..- -- _.- ---I- o ___ .\---.1---1__.1-.--' 25 50 75 100 125 !50"l: -30iO-1O 01020304050607090901000( -bo ~ -r,., Emittlr·base clpaclt.nce CEO= '(VEBI Colltlcto,.o. •• caplciUlnel CoII.cto,..mltt.r cap.ctt.nce Ce.'"'l'/cal Ce~"'I\E:d of '" ,--rrnTfTl;r-'-'TTmTT " 'ca i " Hf+lttlIIH-t+1ttttI +-tttH tnl-f.-H-lllHH--t+flIIjj-! "1-+tf'l..[;±Ht--++rlr " , 1 .' 0. .'v -I'u D.rk cumlnt ICEO .. , 11.....1 Vci -25V;E-O .A nA ICE 1 1D'~4m f=.m ICED 10~ 3 '111.1 10 110' 2 10' _ _ 10' 1~11ItI. 1~'L.l--.l-...LL-"....L.L...L.L....L-'--' o 10 ,20 30 40 50 60V 50 100 150 200 0 ( --~, BPX43 9-11 BPX 81 SERIES SIEMENS PHOTOTRANSISTOR SINGLE AND ARRAYS Package Dimensions in Inches (mm) Example: BPX84 Single Unit ....... ~I D.1ILs4) - foI' 'c 1It6nC ........ "'-.lI11111;Ul.'OIlIO,.Q1 Maximum Ratings FEATURES • Silicon NPN Planar Phototranslstor • Low Cost • Miniature Size • Available as Single Unit, BPX 81 and Arrays: lWo Chip, BPX 82 Three Chip, BPX 83 Four Chip, BPX 84 Five Chip, BPX 85 Six Chip, BPX 86 Seven Chip, BPX 87 Eight Chip, BPX 88 Nine Chip, BPX 89 Ten Chip, BPX 80 • Narrow Acceptance Angle, 36 0 • High Gain, Up to 5 mA DESCRIPTION The types BPX 80 to BPX 89 are plastic encapsulated phototransistor arrays consisting of an arrangement of max. 10 silicon NPN epitaxial planar phototransistors. The individual photoelectric detectors are spaced apart according to the standard lead spacing of 2.54 mm (mO"). A small angle of the lensshaped light window avoids optical '\::ross modulation" from the adjacent system. The collector terminals are marked by small projections arranged at the sides of the solder pins. The phototransistor is suitable for versatile applications in conjunction with filament lamps and infrared light. The BPX 81 can be mounted on PC boards and is also provided for use as detector of the light emitting diode LD 261 (same type as BPX 81) in miniature light barriers. " Operating and Storage Temperatura Soldering Temperatura (Distance Irom soldering joint to package O!: 2 mm Dip Soldering Time t :s 5 s Iron Soldering Time t :s3 s) Collector Emitter Voltage Collector Current Collector Peak Current (t < 10 pS) Power DiSSipation (Tam. = 25 ·C) Thermal Resistance T -40 to +80 "C Ts Ts VCEO Ic IPI( PlOt RthJA 230 300 32 50 200 100 750 650 ·C ·C V mA mA mW KIW KIW 850 440 to 1070 0.17 0.6 x 0.6 1.3 to 1.9 ±18 nm nm mm2 mm mm Deg. RthJG Characteristics (Tamb = 25°C) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity Radiant Sensitive Area Die Araa Distance Die Surtace to Package Surface Hall Angle Capacitance (VCE = 0 V. I = 1 MHz, E = 0 Ix) Collector Emitter Leakage Current (VCEO = 25 V, E = 0 Ix) Group BPX81·2 Photocurrent of the Transistor, Collector to Emitter (Note 1) (Ev -1000 Ix Vce = 5 V) Ip (E. = 0.5 mW/cm' X=95Onm Ip VCE = 5 V) Rise/Fall lime (Ic = 1 mA, VCE - 5 V RL=1 kO) t,,~ Collector Emitter Saturation Voltage (Ic = IPCErn;n • 0.3 E = 1000 Ix) VCEsaI Current Gain (Ev .1000 Ix IPCE Vce = 5 V) IPee ~, X A L xW H op Cce 6 pF ICEO 25 (:s200) nA BPX81-3 BPX81-4 BPX82-88 BPX80 1.0 to 2.0 1.6 to 3.2 0!:2.5 1.25 to 3.2 mA .25 to.5O .40 to .80 0!:.63 .32 to .80 mA "5.5 6 8 5.5t08 pS 150 150 150 150 mV 190 300 450 450 . " The Illuminances refer to unfiltered radlallon of a tungsten filament lamp at a color temperature of 2858 K (standard light A in accordance with DIN 5033 and IEC 3Q6.1).lrrediance E. measured with HP radiant flux meter 8334A with option 013. with LED)" Callector-Base-Diode. 1 Measured 9-12 = 950 nm. Ipee .. Photocurrent of transistors; IPCB • Photocurrent of Directional characteristic S,el .. 1(\1') Photocurrent alia tunction ot rnA' c. orc,/f' '" fie.) Relative IIpectrelunaltlvlty '!. Sr,I""!!}.. ) 10' 100 / V II 50 I 30 10 10 / mE \ I 40 1 10' \ / 60 Ip 1\ l\ 1\ / \ 10·) 1000 1100 nm 400 100 600 700 800 900 10' 10' 0,01 05 -A 104\X 10' --f, Ill"" ~2 _E, Photocurrant ~ '" , tr..m~l Ip l~O mW 100 1,6 \ \ --~,\ v Lllok-- "'/ \ ,\-Rthki~·750KIW - r-'- . 60 1,0 \\ '\ 10 40 -~ 0,8 r- - -r- -- 10 I-t-- - - - - - - . - r-- - ~ 40 60 0,2 o 80 100 or -3D-20-1O 0102030401060708090100 'C - T... Collector..emiHer leakage current versus ambient temperature Collector.. mltter capacitance pF "" 0,4 ~ 20 V 0,6 20 30 V"" Cc£=ftvce) nA VcE =25V;E=O 105nmRD~ 8 T:::R111 i i I I 10' , I 1 0 ' " 10' I 1)3 10 2 1]1 100 10' 10-1 o 112 V ----VeE 9-13 50 100 1S00( SIEMENS BPY62·SERIES PHOTOTRANSISTOR Package Dimensions in Inches (mm) .110 ~I!CJ7\~'~ .236 (6) (4.75) .212 (5.4) Max. Radianl Sensitive Area Maximum Ratings Operating and Storage TemperalUt& (T.... T...> .................................................... -65'C to + 125'C Soldering Temperature (distance from soldering /Olnl to package :t2 mm) Dip Soldering Tome (t S5 sec.) (T'> ..................................................................................... 260'C Iron Soldering lime (I s3 sec.) (T'> ............................................. ,...................................... 3OO'C Collector Emnter Voltage CoI",o) ................................................................................................ 60 V Collector Currenl (Ie) ............................................................................................................ 100 rnA Collector Peak Currenl (I <10 psI (I",) .................................................................................200 rnA Emitter Base Voltage CoI.,J ..........................................................................................................7 V Power Dissipation (P",,)T_= 25'C ....................... :...........................................................300 mW Thermal Resistance (R,....l ............................ ,.............................................••...........•....•.... 460 KIN FEATURES • Silicon NPN EpHaxlal Phototranslstor - T0-18 Hermetic Package - Rounded Glass Lens - Premium HI· Rei Device -High Gain - Very Narrow Acceptance Angle, 160 - Five Sensitivity Ranges DESCRIPTION The BPY62 is a silicon NPN epitaxial phototransistor in an 18 A 3 DIN 41876 (TO-18) package with a light window for front irradiance.The base connection is brought out and the emitter is marked by a tab on the case bottom. The collector is electrically connected to the case. The BPY62 is suitable for versatile applications in connection with filament lamp light where sensitive photoelectric detectors are required. Characteristics (T.mba25°C) Wavelength of Max. Photosensitivity Spectral Range of Pholosensltlvlty Radanl SenslllW Area DieMa Distance Die SUrface to Package SUrface Half Angle Pholocurrenlof the Collector. Base Diode (Ey= 1000 Ix. V =5 VI (E,=0.5 mW/C~. <1.--950 nm. V...=5 V) Capecitance CoI..=OV. 1=1 MHz. E=O) CoI...=OV. 1=1 MHz. E=O) CoI..=O V. f=1 MHz. E=O) CoIleclor Emilter Leakage Currenl CoI",=25 V. E=O) Pholocurrent Collector to Emitter (Note 1) (Ey= 1000 Ix. standard IIghl A. V",=5 VI (E.=0.5 mW/cm2. <1.=950 nm. Voe=5 VI RiselFail TIme (le=1 mAo V",=5 V. f\. =1 kn, "-=830 nm) ~ 860 400-1100 0.12 0.5,,0.5 2.6-3.2 :1:8 "" A L"W H " nm nm mm2 mm nvn Deg. I"", I"", 17 4.5 pA pA C", C... C.. 6 11 19 pF pF pF 5 (sl00) 1- nA -2 -3 -4 -5 -8 PI I"" 3.0 4.6 7.2 11.4 15.3 rnA I... 0.5-1 0.8-1.6 1.26-2.6 2-4 :.3.2 rnA ",.f,. 6 7 9 12 16 ps Collector Emitter Saturation Voltage (le=l....... '0.3. <1.=960 nm. Voe=6 VI V",,,,, 160 160 160 180 200 rrN Currenl Gain (E.=O.5 mW/cm2 • <1.--950 nm. V",=5 VI i;;;; 170 270 420 670 880 -, I"" The Ulumlnances reler 10 unlll!ered radlatlOll 0/. lungsten "lament lamp at • color lemparalu", 0/ 2866K (standard lighlA In OCCOIdance with DIN 5m3 and IEC publ. 3Of!.11~ Irradianoa me...lIed with HP radiant llu. meier 8334A wilh option 013. e. r,.,.- 1. Measurad wlh LEO)" 960 nm. I.... PhoIocurrenl of lransisl"",: Photocurran! of CoIIact...._Dioda. 2. Supplias 0/ Ihis·group cannot be guanlnleed due 10 un'.......bItt spraad 0/ yield. In Ihls .... we wiI ........ u.lho rlghl of dellverfng. auballlule group. 9-14 Relative spectral sensitivity Photocurrent 88 a function of Directional characteristic S'd=f(~l Ev or E.: IP - !(Evl S'cl=!(~l '.Powerdlsslpatlon Ptot '" f(TamtJ Rth = parameler mW 300 % 100 I, ./ R..c "'"' .0 1\ \ II 1000 200 \ '" II o ! II 1\ I I 60 600 80D 1200nlZl 1CXX) ir Output characteristics Ic VeE Is"" parameter nA 1"'1 "A 1000 Ip = f(V ee) rnA 0 600 1,6 301 I. Ip2S1.4 I 25 I, 3jO"i 10' Photocurrent ~ "" f (Tam!)l Output characteristics Ie "" f(Vce) IR = parameter (emitter circuit) m I le=4.0JlA 3,5J1A w' 11.2 20 I,D 2.5.uA I;' 0,6 ~,5"t 200 10 0,4 It 5IIA 11.OJJA 1°.5JJA 100 -Tamb I;' O,B 15 2.0JlA 400 50 ISO'C -Tamb Leakage currenl (CEO = ! am~ = 25 V, E = 0 10 50 -~ 0 -v", Collector-emltter capacitance CeE !(VeE> 5V _v'" o 2 V -Tamb Emltter..IJase capacitance CEB = !(VEBI Coflactor-base capacitance CeB - !(VeBI g ·30·20·11 Qll20Jl40S0607000001l0"C pF pF m Urr~~Tmmrnmmr~mm 24r+~~tffi$-tffi~~~ CEO 2ZH++HII-IH-II.+HffiIIf-l-++HIII FFfI11fIII=#~++flfIII 1 18 f---rfttllll-tlfltllllf-flliHllll-tlllttli 20 161-+fttllIl-tifttllII-HHIlIIIl-tlItttIII 14H++HII-IH-II.+HttIIII'rltHtill 12r+~~tffi$-tffi~-N11H111 ror+~~tffi$-tffi~~~ _va> o· v ~.L,~;'-"JlJ,WLrr,-J,u..LIIW,." .• .J..J..IJ.UW.,o';;+,WJlI,o'v BPV62 9-15 SIEMENS LPD-80A PHOTOD4RLINGTON Advance Data Sheet Package Dimensions in Inches (111m) FEATURES M~ximum • Silicon NPN Photodarlington • Miniature Side-Facing Package Collector Emitter Voltage Emitter Collector Voltage Operating and Storage Temperature Power Dissipation @ 25'C Deviation Above 25'C • Low Cost • High Sensitivity • Matches IRL-80A Infrared Emitter DESCRIPTION The LPD-80A is an epitaxial NPN silicon photodarlington. The chip is positioned to accept radiation from the side of the clear .miniature package. It efficiently receives infrared radiation from the matching IRL-80A. Ratings VCE VEC T p.. 30 5 V V ·C -40 to +100 100 mW 1.33 rroNl'C Characteristics (Tamb = 25"C) Photocurrent (Note 1) (VCE = 5 V. H = 0.5 mW/cm~ Dark Current (VCE = 10 V. H = 0) Saturation Voltage (Ic = 250 pA H =" 0.5 mW/cm~ 1 .5 4 mA ICEO 100 nA VeEsat 1.1 V ICE The light source is a tungsten filament bulb used in conjunction with a 950 ::t:30 nm filter. The mechanical axis of the OUT is aligned with the light source. Specifications are subject to change without notice. 9-16 SIEMENS LPT-80A PHOTOTRANSISTOR Package Dimensions in Inches (mm) t 1.11U i .. Maximum Ratings: Collector-emitter voltage Emitter-Collector voltage Collector current Collector peak current (t = Ims) Storage and operating temperature Maximum permissible soldering temperature (tsS sec) Power dissipation (Tamb = 2S°C) "Derate above 2SoC linearly FEATURES • Low Cost Plastic Package. • High Sensitivity • Matches Infrared Emitter IRL-80A VCEO VECO Ic ICM T 30 S SO 100 -40to +100 V V mA mA °C Ts Ptot 240 100 1.33 °C mW" mW/oC ICEO BVECO s100 nA 870 nm ±40 Deg. 30Vmin.@ Ic=1 mA SVmin. @ Ic=100~ Ip VCE(sat) ",200 0.1SVtyp = Characteristics (Tamb 25°C) Collector-emitter leakage current (VcE=1S V; H=O) Wavelength of the max. sensitivity Acceptance half angle Breakdown voltage DESCRIPTION The LPT-80A is a plastic, NPN phototransistor. It comes in a lensed, clear plastic, side-lacing, miniature package. Its spheric lens was designed to accept light lrom very wide angles (± 40°). This sensitive detector is ideal lor a wide variety 01 industrial processing and control applications which require a beam interruption. Photocurrent (Note 1) (VCE = S V. H = O.S mW/cm') Saturation voltage (lc = 2S0 ~, H = O.S mW/cm') 'BV" CEO ~ 0.4 V ,nax. Note 1: The light source is a tungsten filament bulb used in conjunction with a 9S0 ± 30 nm filter. The mechanical axis of the OUT is aligned with the light source. - 9-17 TYPICAL OPTOELECTRONIC CHARACTERISTICS RELATIVE SPECTRAL SENSITIVITY 100 (~ 90 00 50 Z 0 a. ffi II: UJ 2: / 40 UJ en \ / If 60 90 \ \ / 70 S(rel) ANGULAR RESPONSE 100 ~ 1\ If UJ II: \ 30 I- 70 40 eoo 100 900 1000 1100 J ... ./ ICE versus IRRADIANCE \ \ WOW ~ 00 ANGLE (DEGREES) 1.6 1.2 0.9 ICE (mA) / 0.6 0.3 V / / / L V V / 00 H=/'o",W. ,-.- 1.S 1.4 1.3 1.2 1.1 1.0 """"",,,~ :::- ... H=a/...~2- r- Ice 0.9 (mA) 0.8 0.7 0 .• / O.S 0.4 03 0.2 0.1 J 1 0.1 1'- ~ ICE versus VeE 1.5 VCE=5V \ II 00 00 x (nM) -' J 30 ex: UJ 20 a. 0 10 eoo \ 50 UJ 10 DOO ~- 60 " \ I Z \ 20 I 80 v 0.5 IRRADIANCE (mW/cm') 1.0 2 3 4 5 6 7 Vce(' 50 i= g 40 " 20· 40 60 TEMPE.RATUAE 80 ,.'" 25 I 20 ~ 15 e ~ ~ ~ ">- / / I RI.n! 15 1\ 'll 30 20 ~ ~ 11 ~ Vee .. 5V TA • 25°C o 500' 700 900 1,100 1,300 10 ANGULAR RESPONSE (LPT110 AlB) ANGULAR RESPONSE (LPT100 AlB) i"l '" '00 ....... ~. .1 .1 AI'!.. I '" il \ 1° t- , 11 ! po 15 , 11~ L VL • LL.t::: 7 / ~TlloA,4i f. / ' 4 , 8 9 10 /~ 2 COLlECTOR VOLTAGE (VOLTS) , 1 2 3 4 5 6 7 8 9 U V '" 10 COLLECTOR VOlTAGE (VOlTS) VcE=5V ICE versus lice (LPT100 AlB) I-H-+-l-+--b~1 10+-+-+--+....... -=:1...-1"9'-1--1--11- " "12 !--~ '" (rnA) 4 2 10 15 IRRADIANCE (mW/crrf) 20, ..,~ l-' ~15I--+--+--+7'<-j 0 • • 5 BASE CURRENT versus IRRADIANCE Ice versus lice (lPT100) 12 L L 1£ 5 1 "'~ ../L • 7 , 20 40 60 80 / 0 6 0 V 2 9 5 20 'P\~- 14 13 10 1--I-b-fl...-++++++-1 4 ~ 80 60 ! \ Ice versus IRRADIANCE ~t"1"".- _--j-_ 12 :-- 3 \L I ANGLE(OEGREfS) ICE versus lice (LPT110) 131-+-t-1-+-t-.1I-t-- 2 +:r.lTI I I I ! : 0 ANGLE (DEGREES) 14 . - , - , - , - , - , - . , - , . . , . , . , 1 , i--! INPUT CURRENT - Ie' (mAl ICE versus VCC (LPTll0 AlB) ~l--- -i -r J 1/ 806040200200406080 6· !~ j-~ 1\ I 0 ,1 L I ~ .11 t- . I I I I , \ TA '" 2S"C 25 lOOn _UT .01 '00 \ j ±tt COLLECTOR CURRENT - Ie (mAl TURN·ON DELAY TIMES FOR CURRENT INPUT CURRENT - Ie (mAl I' o WAVELENGTH -), Cnml VCc"SV,_ JJ :'-, i= 300 10 \ . 12 ~ v!, '5~._ Tr 1\ 10 100 - 30 " (~C) TURN·OFF DELAY TIMES FOR CURRENT ] 18 ." 60 w .01 -20 21 90 V 1,000 I ~ RISE AND FALL TIME VS COLLECTOR . CURRENT SPECTRAL CHARACTERISTICS H=fO 1)..= == HJ"," ..b = ~ ~ 10 t---j---t-;r"?t~ Lt---t>"7""--t---j--j H~'tItW 12345678910 COlLECTOR VOLTAGE (VOLTS) 5 Vca=5V 10 15 20 fIRAOIANCE(mW/arf) .2 1 2 3 4 5 6 7 8 9 COLLECTOR YOLTAGE (VOlTS) 10 LPTlOOIAIB. LPTl101A1B 9-22 SIEMENS SFH303 SFH303F WITH DAYLIGHT FILTER NPN SILICON PHOTOTRANSISTOR Package Dimensions in Inches (mm) .024 (0.6) .016(0.4) .10 (2.54) "l. PI.S T-~=========8:=l .047(1.2) m 11 -~-====~:::;-l Collector E '--'--- ,- .201 (5.1) .189 (4.8) .992 (25.2) .953 (24.2) .232 (5.9) .217 (5.5) SFH303 FEATURES Maximum Ratings • High Reliability • Good Linearity • Suitable for the Visual and Near IR Range • Daylight Fllter-SFH303F • Detection Angle, 40' • High Photosensitivity Operating and Storage Temperature (T""" T.,..) ............................................. -55'C to + lOO'C Soldering Temperature (distance from soldering joint to package ;,2 mm ) Dip Soldering Time (t S5 sec.) (Ts) .............................................................................. 260'C Iron Soldering lime (t S 3 sec.) (Ts) ........................•..•......••...••.•..•......••.••.............•...... 3OO'C Collector Emitter Voltage ry=} .......................................................................................... 50 V Collector Current (I.,) ....................................................................................................... 50 mA Collector Peak Current (t<10 fIS) (I",) ....•....•.•••.••..•........•.......•...................................... 100 rnA Emitter Base Voltage ryE.) ....•..••••...•.•....•••••..••....•.••.••...••.•..•.•.•...•....................................•...•7 V Power Dissipation (PTOT) T~.= 25'C ............................................................................. 200 mW Thermal Resistance (R".",) ........................................................................................375 KIW DESCRIPTION The SFH303/303F are silicon phototransistors with external base connection. The SFH303 comes in a standard TW. (5 mm) water clear package. The SFH303F has a black daylight filter. The three leaded device has a tab to indicate the emitter. The collector lead is the center lead. The devices are suitable for use in industrial control applications, light barriers in DC and AC operation, etc. Characteristics (Tamb = 25'C) Wavelength at the max. photosensitivity sma>< Range of spectral photosensitivity (S=10% ofS ma><) Radiant sensitive area A SFH303 850 400-1100 Dimensions of the radiant sensitive area WxL Hall angle 'P Photocurrent of the collector base diode (Ev=IOOOlux. VCB=5V) IPCB (Ee = 0.5 mW/cm', X = 950 nm. VCB=5V) IPCB Capacitance (VcE=O\/,f=1 MHz. E=Olux) CCE (VCB=O\/, f=1 MHz, E=Olux) CCB (VEB=O\/, f=1 MHz, E=Olux) CEB Photocurrent (,,4) 13 typ (Ev = 1000 lux, Vce=5V) Ip (E.=0.5 mW/cm'. =950 nm. Ip VcE =5V) RiseiFall Time (lc =2mA,X=830nm, VcE =5\/, 15 RL=I K) TIT, Collector/Emitter Saturation Voltage (Ic = 2 ma, E = 1000 lux) VCE (sat) 140 (Ic = 250 pA. X = 950 nm. Ee = 0.5 mW/cm') VCE(sat) Current Gain Ev= 1000 lux. VcE =5 \/, 500typ E.=0.5 mW/cm' IpeE X=880nm. VcE =5V Collector Dark Current (VCEO= 10 \/, E=O lux) 800-1100 nm 0.30 nm mm' 0.75 x 0.75 ±20 mm D8g. 27 p.A 5 p.A 9 19 20 pF pF pF (,,0.8) 2typ mA rnA 15 ~s mV 130 mV 500typ IpCB 2(:550) IC.EO SFH303IF Photocurrent, Collector to Emitter (EE=0.5 mW/cm2, A=950 nm, VCE=5 V) 9-23 SFH303F 900 I"", 2 (:s50) nA Radiation Characteristics S'eI=I(~) l '.'10'_ Output Charecterlstlcs Ie = 1 (VeE> 18 = Parameter Photocurrent )PCE =1 (VcE> m'. ,• mA IB"'SOJJA r- V~ ,,,.. 40"" • F',,-"A 2S~A 20.uA • 15.uA 10,uA 10' .!-"---:-~::-'---1;;'2~~"--'--;;2.V 5.' • 6 8 tov --VeE --VCE •• = = Capacitance C 1M Dark Current ICEO 1(VCE) •• '.' ,.,- 1m % SFH303 pF 22 C • I' I ,· S,... 1)0 f" 8 6 . .. 7. 14 2 r • • C" Ca 6 I 4 J 2 ,.-'..'• .L.L.L.L::-, • .L.L..LL+'"..LL~30V Relative Spectrel Sensitivity S,eI =1 (}I) . •10' 10-, I ~, II 50 "2. ':~~~=s.;B=a;e~ eoo loOO -. 600 1000 -VCE Photocurrent Ip = 1 (Ev) Relative Spectrel Sensitivity S,el =1 (}I) )JA ·SFH3D3 ,.• % SFH303F 1200l'1l1I = PhotOcurrent Ip 1(Eel rnA SFH303F 10' s... 1\ 1\ I 1 8• • .. 1\ 1\ • • 400 10' \ / 600 BOO 1000 10.3 1200nm -A 10· Z to-I 100 101mW/cII1 -E. SFH303IF 9-24 SIEMENS SFH 305 SERIES PHOTOTRANSISTOR Package Dimensions in Inches (mm) .045 11.15) 10.9) .035 .142" .10S 13.S) IWI3.2) __r--+r+__ +--ttt-~~S 0-5 0 .083 12.1) I \~ ~5' I~) .01 .059 1·25) (15) .OOS .020 (0.5) .016 (0.4) .118 (3) .098 (2.5) I--- 121~4) ---j Maximum Ratings FEATURES o • • • • Miniature Plastic Package 2.54 mm (1/10") Lead Spacing Detector for'SFH 405 Infrared Emitter Narrow Acceptance Angle, 32· Designed for Maximum Spacing of 1/fmm'Setwiien-Emitter & Detector Operating and Storage Temperature Soldering Temperature (Distance from soldering joint to package ?:; 2 mm Dip Soldering Time t :s 5 s Iron Soldering Time t :s3 s) Collector Emitter Voltage Collector Current Collector Peak Current (t < 10 psi .Power Dissipation (lamb = 25°C) Thermal Resistance T -40 to +80 °C Ts Ts VCEO Ic IPJ( Ptot 230 300 32 50 200 75 950 850 °C °C KIW KIW 850 460 to 1060 0.17 0.6 x 0.6 1.3 to 1.9 ±16 nm nm mm2 mm mm Deg. AthJA RthJG DESCRIPTION The SFH 305 is a NPN silicon planar photo transistor in clear plastic encapsulation with solder PIN terminals_ The connectors ih the form of solder tabls are spaced 2.54 mm (1/10 inch). The photo transistors are grouped according to photo sensitivity. The SFH 305 is suitable for use as detector for the infrared diode SFH 405 to effect miniature light barriers with close spacing between sender and receiver up to 10 mm maximum. Also, the SFH 305 is suitable for application with glow-lamp light, i.e. daylight. The collector is marked with a colored dot. Characteristics (Tamb V mA mA mW = 25°C) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity Radiant Sensitive Area Die Area Distance Die Surface to Package Surface Half Angle Photocurrent of the Collector Base Diode (Ev = 1000 lx, VCE = 5 V) Asmax X A L xW H '" I'A IpCB Capacitance CVCE = 0 V, f = 1 MHz, E = 0 Ix) Collector Emitter Leakage Current CVCEO =25 V, E = 0 Ix) Group Photocurrent of the Transistor, Collector to Emitter (Note 1) (Ev = 1000 lx, VCE = 5 V) Ip (Eo = 0.5 mW/cm 2 X = 950 nm, VCE = 5 V) Ip Rise/Fall Time (Ic = 1 mA, VCE = 5 V RL = 1 kIl) tp t, Collector Emitter Saturation Voltage (Ic = IpCEm'" 0 0.3 E = 1000 Ix) VCEsat Current Gain IpCE (Ev = 1000 lx, VCE = 5 V) IpCB .. CCE 5.5 pF ICEO 3 (:s20) nA SFH305-2 SFH305-3 1 t02 1.6 to 3.2 mA .25 to.5 .4 to.8 mA 5.5 6 J'S 150 150 mV 190 300 ... .. The illuminances refer to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856 K (standard light A in accordance with DIN 5033 and IEC 306-1). Irradiance Ee measured with HP radiant flux meter 8334A with option 013. , Measured with LED ~ = 950 nm. IpCE Collector-Base-Diode. 9-25 = Photocurrent of transistors; IpCB = Photocurrent of Relative spectral sensitivity S,el =1 (;.) Directional characteristic Srel "" 1(,,) mA Photocurrent Ip =/(E,,) 0 I" II Srel' 80 112 i I 1\ : ! 1 =eIL" -~eLI / 60 ~~~~~= 305-2 11 0 II 40 V 1 J !j 20 oV 400 '/ \ \ 600 800 1000 3 1200nm 1(11 -A Photocurrent Collector emitter capacitance ~ =1 {1....1 pF nA CCE; f(VCE) T" 8 7 0,8 10 0.6 o 3 , 10 I 10 ~-+-+-+ 10-3 10-' 10-' 10' 10' 10'V ·~V.CE -To""" mW Powerdlulpatlan P'al; f(TamO> 100 P,.. I 80 f----, 60 or -~ ,tL 2 111111 -30-10-10 0 10 103040 50 60 70 80 90 100 "C Leakage current I CEO =/(1-, ;25 V; E;O) (VeE , 5 4 0,1 10' Ix 4 10 1,0 10 3 -<, 10' 10 1'(',: 10 2 h , = 850KIW \\ VR'hJl 'R'hlU=950K/W - ~ I~ ~ , I\, 20 20 40 60 00 --lamb 9-26 100"<: 50 100 .l5OOC SIEMENS WITH DAYLIGHT FILTER SFH309 SFH309F PHOTOTRANSISTOR Package Dimensions in Inches (mm) Surface not,fJat 205 (5.2} .1n(4.51 .024 (O~} .016 ([4} .161 (4.11 .154 (a9} C I'L .10 (2.541 .071 (1.8} .047 (1.2} ' 0.122 (3.1} c::====:::::j::=W1J_-+4.J0.~114 (2.9} l ....----l~ \~l -_-I-+-- r' ~ '\ t· .... '. .J. .157 (4.0} .142 (3.6) Maximum Ratings FEATURES • • • • • • • • High Reliability T1 (3 mm) Package 0.10 Inch (2.54 mm) Lead Spacing Low Cost Good Linearity Daylight Filter-SFH309F Narrow Acceptance Angle, 32 0 Matches with SFH409 Infrared Emitter DESCRIPTION The SFH309/309F are silicon NPN phototransistors in a standard T1 (3 mm) size plastic package. The SFH309F has a black daylight filter. The devices are suitable for use in a variety of low cost, high volume applications such as IR remote control and other consumer and entertainment products. Operating and Storage Temperature (TSTO' T...> ............................................. -55'C to +loo'C Soldering Temperature (distance from soldering iolnt to package ~ mm) . Dip Soldering TIme (t s5 see:) (T,) .............................................................................. 260·C Iron Soldering TIme (t s 3 sec.) (T,) ............................................................................. 3OO'C Collector Emitter Voltage IYem) ..........................................................................................35 V Collector Current (Ie) ....................................................................................................... 15 mA Collector Peak Current (1<10 (IS) (1.,..) ............................................................................. 75 mA Power Dissipation (PTOT)T~.= 25·C ............................................................................. 165 mW Thermal Resistance (R..".,) .......................................................................................... 450 KNI Characteristics (Tamb=25°C) SFH309lF 9-27 800-1100 0.045 0.24 mm H 'I' 3.5 ±16 3.5 ±16 mm Deg. CCE 5.3 5.3 pF mA :\. (E,=0.5 mW/cm2 , :\.:950 nm, V",=5 V) Rise/Fall TIme (le=2 rnA, :\.:830 nm, V",=5 v, f\=1 kn) Collector Emitter Saturation Voltage (lc=2 rnA, 1.=50 !LA, E=O Ix) (lc=0.25 mA, :\.:950 nm, E,=0.5 mW/cm2 ) Leakage Current IYCEo=25 V, E=O Ix) Photocurrent, Collector to'Emitter (E,=0.5 mW/cm2 , :\.:950 nm, VCE=5 V) A D SFH309 860 360-1125 0.045 0.24 ~ Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity Radiant Sensitive Area Diameter of the Die Area Distance between Chip Surface and Lead Frame Standoff Half Angle Capacitance (V~=O V, f=l MHz, E=O Ix) Photocurrent, Collector to Emitter (E,,=1000 lx, VCE=5 V) lPOE SFH309F 900 5("t.6)Typ. 1.3 (l!0.4)Typ. 2 (l!0.5)Typ. \"r" 10 10 VeeJIIt 200 JLs mV 130 VC< aso SFH317F 900 400-1100 800-1100 A 0.30 WxL 0.75 x 0.75 mm H 0.4-Q.7 ±60 mm Deg. IPCB 2.6 ~ IPCB 0.65 ~ ~ 9 19 20 pF pF pF '" Ccs CE. Ip (i!:0.5) 1.8 mA (2:0.1)0.2 15 VT, VC€(sat) - IPCE IPCB 500typ mV 130 mV 500typ nA ICEO Photocurrenl (E.=o.5 mW/cm2, A=950 nm, Vce=5 V) mA I'S VCE{sat) 140 SFH3171F 9-29 nm nm mm' I"", l~'I i:1 oS -;; ... • .5 li % 100 Relative Spectral Sensitivity Relative Spectral Sensitivity Srel=f(l\) Srel=f(l\) %'SFH317F SFH317 \ \ 1 80 1\ II 0 60 1\ 0 ~O' l\ Srel II 80 1\ 40 ~ 400 800 1000 1200nm -A 400 600 10' '-~1200nm J 0 600 10'._ \ \ 20 0 0 =f (Ev) A SFH317 100 1/ r Photocurrent IpeE 800 10' 10' 1000 10' 10' --A Photoclirrent IpeE = f (Eel " Radiation Characteristics Srel = f (1") Photocurrent IpeE ~A SFH 317F rnA 10' 10' 10' ----f, 10'1) =f (VeEl 10' 1= 10' irl- E , Ctfj~~~~ttJ 10 60· 70· BO· 90.' , 10 o 2 4 6 8 10 12 14 16 18 ZO ZZV' -VeE Output Characteristics Ie = f (VeEl Capacitance C rnA .Ie = Parameter 4,0 IB~ t- l - I, 3,5 3,0 Z,5 t- l- I- 20 [ I- I- ~ t- l- ...... I-:" 17'~ F::: l- I- ~ 3,5)JA il Z,O 1,5 pF 22 .....,1- r -¥- f I- t- l- I- lH- I- - - t-~ 16 i\ 14 lZ 2,5)JA /' 18 10 =f (V) "- CEB " Z)JA 1,5)JA C" 1,0 1)JA 0,5 0 ~CCB r..; rt- f- O,5)JA I 4. 10V -V~ ____ .. 10' 10' 10'V -V SFH317IF 9-30· Photovoltaic Cells Package Outline [3: :! I Dark Radiant Peak Sensitivity Currant Sensitive WaveV.=IV, E=D Area Part Number Package Half slllAllx) Angle Typical Type BPX79 Chip with wires. length Capacitance VR=OV,E::O Page I1A mm' 0.3 «50) 20 800 8.7 850 .8 10-4 0.9 850 8 1O-a 0.36 850 3 10-8 1.3 850 nF 0== 0== ±60· 170 (~100) 2500pF 10-2 nNix 47-63 BPY11P-4 Chip with wires. ~~~~~ ~56 BPY11P-5 ~= G-~ DO © -==$ 1(~10) ±60· BPY63P Chip with wires. ±60· .65(~.45) BPY64P Chip with wires. ±60· .25~.18) TP60P 4 n .Ix Plastic. threaded Anode marked by red lead. ±60· TP61P 10 Chip with wires. Anode marked by red lead. 10-1 1(~0.7) 0.1(~2) 3 10-10 BPX 79 SIEMENS SILICON· PHOTOVOLTAIC CELL Package Dimensions in Inches (mm) .G39t;.D2D ('tij I ~/ ! I t (''''ij .03.....0 ~ .''''(4.8) (Ii .o3'(OJ) ~-- DfpSolder ----- tF-- ----(Ii i:~ _~..11a..009 .. "". (30') Rod 2.156(70) .... -----+1 1) ConIlclAraa Maximum Ratings FEATURES • Silicon Planar Photovoltaic Cell • .Medium Size Radiation Sensitive Surface • Decreased Blue Sensitivity Reverse voltage Storage temperature and operating temperature Characteristics (Tamb VR T8mb 1 - 55 to +100 v 'C = 25°C) Photosensitivity (standard light A, T = 2856 K) Wavelength of Max. Photosensitivity Spectral Range of Photosensitivity (S = 10% of Smax) Radiant Sensitive Area S ASmax h A t70 (",100) 800 nN)x 350 to 1100 20 nm mm2 4.47 x 4.47 ±60 mm Oeg. nm Dimensions of the Radiant DESCRIPTION The BPX 79 is a silicon planar photovoltaic cell. The increased sensitivity with shorter wavelengths makes it particularly suitable for applications with light sources having a high share of blue. The planar method ensures a low reverse current level and low noise. The photovoltaic cell is nitride· passivated and has an anti·reflection coating for a wavelength of A = 450 nm. Sensitive Area Half Angle Dark Current (VR = 1 V. E = 0) Lx W '" IR 0.3 (S50) ~A 0.55 0.80 AfW Electrons Photon VL 450 (",310) mV Isc 170 (",100) ~A t" ~ 6 ~s Co C, TC TC 2500 1800 -2.6 0.2 pF pF mV/K %/K Spectral Photosensitivity (h = 850 nm) Quantum Efficiency (h = 850 nm) Open Circuit Voltage (Ev = 1000 lx, standard light A T = 2856 K) Short Circuit Current (Ev = 1000 lx, standard light A T = 2856 K) Rise and Fall Time of the Photo· current from 10% to 90% and from 90% to 10% 01 the Final Value (RL = 1 KIl, VR = 1 V, h = 950 nm Ip = 150~) Capacitance (VR (VR = 0 V,·I = 1 MHz, Ev = 0 Ix) = 1 V,I = 1 MHz, Ev = 0 Ix) Temperature Coefficient VL Temperature Coefficient IK 10-2 S, Open circuit voltage and short circuit currant versus illuminance Relative spectral sensitivity versus wavelangth ~A % 100 S~I v 90 80 1 60 \ 110' \ 10' \ 1/ 40 v, 100 / 50 mV 10' '\ / 70 " Directional characteristic Relative spectral sensitivity versus half angle \ 30 10' 20 10 ~ a 400 500 600 700 BOO 900 1000 lIDO nm -A -E, capacitance veraus reverse voltage (E=Oj ~A lOO0 10' f ~O0 Total power dissipation varsus ambient tamparature Dark current versus amblant temparature pF mW· 300 I, ........ 1-- 250 flO' - 200 0 101 1500 150 \ 10' 1000 / SOD ~ l'n1 10' 20 40 60 80 100 'C -VA Short-circuit currant veraus ambient temperature 1,2 t - - 10025 I,D r- 1.2 qB q6 qs 0,4 0,4 V 02 o 10 1D lO ~ 40 50 60 70 SO'C --T, a 20 40 60 ~K 80 --T, 100'e f"'. I,D ~B o o ~ V025 ~ \ Open..,lrcuit voltage versus ambient temperature v, 100 \ 50 16 o \ 100 :-..... ....... r"-.. I ~ o 010 1D lO 40 5060 --T, 70 8O'C BPX79 10-'3 SPY 11 P SERIES SIEMENS SILICON PHOTOVOLTAlC CELL Package Dimensions in Inches (mm) .087 (2.2) .W9 0t Radiant Sensitive Area = .189 (4.8). 1.26 (4.4)_ (32) . 173 (3D) .067 (1.7) MAX L~. 1 -.1,,'.008 =::J1(00.2) . 11t . . - 1.18 L---- Cathode I frL(0.5) .020 .059 MAX (03) (1.5) .012 1) CONTACT SURFACE .106(2.7) MIN Maximum Ratings Ambient temperature Reverse voltage (positive pole to cathode) T.... V, -5510100 "C V 1 Characteristics (Tamb = 25°C) Photosens~ivity FEATURES • Small .Package May Be Stackad Tightly Together • Choice of 2 Sensitivity Groups ' • Fast Response Time • DESCRIPTION BPY 11 P is a photovoltaic cell, fabricated with planar technology. The silicon protovoltaic cell is suitable for use in control and drive circuits, for light pulse scanning, and for quantitative light measurements. Its rapid response, small dimensions, and high permissible operating temperature make universal application feasible. Since this cell is not encased, the assembly of high efficient scanning systems can be realized. For this purpose the cells may be cemented closely together on suitable mounting assemblies. (standard light A, T = 2856 K) Wall8length of Max. Photosensiti~y Spectral Range of Photosensitivity (S = 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitill8 Area Half Angle Dark Current (VA = 1 V, E = 0) (VA = 1 V, E = 0, Tamb = 50CC) Spectral Photosensitivity (A = 850 nm) 60 (;!!:47) 850 pMx nm 420 to 1060 8.7 nm mm2 'I' 1.95 x 4.45 ±60 'mm Deg. 'A 'A 1 (;!!:10) 2.5 pA pA S, 0.55 0.80 AlW Electrons Photon V, 440 (;!!:260) mV Isc 60 (;!!:28) ,.A S Asma>< ~ A Lx W Quantum Efficiency (A = 650 nm) Open Circuit Voltage (Ev = 1000 lx, standard light A T = 2856 K) Short Circuit Current (Ev = 1000 lx, standard light A T = 2856 K) Rise and Fall Time of the Photocurrent from 10% to 90% and from 90% to 10% of the Final Value (R, = 1 KO, VA = 1 V, ~ = 840 nm I. = 25O,.A) Capacitance (VA = 0 V, f = 1 MHz, Ev = 0 Ix) Temperature Coefficient V, Temperature Coefficient 'K tr,t, 3 pS Co TC TC 0.8 -2.9 0.12 nF mViK %lK Spectnll Pholosenaltlvlty Group Short Circu~ Current (Ev = 1000 lx, standard light A T = 2856 K) 10-4 'K BPY llP-4 BPY l1P-5 47 to 63 ';!!:56 pA Relative Iplctnl ....lIIolly Qpon Short 5", - f(~) .,,,,,,It voillge VL - f(Ev) .'R:U1t voillge fK - capacitance C CI f(V A); E." 0 f (Ev) % roo :/ r\ 1~ H-t--t-t-lH-++-H II 60 D,' i<:::1H-+++++-HH I 50 D,6HH-++"I'--l;:,+-HH II '0 D~H-+-+-HH++H 31l I m II 20 DlH-+-+-HH++H 400 500 600 700 BOO. 900 1 lIDO 1100 DO!-'-'--'--'--:O,""5-'--'-l-J,-!"ov JIm '--v, -~ Directional CharacterlltiC Dark current as a function ot temperature f (TamtJ VR -1 V; E-O 'A "" Stel=f(cp) u,..,' "' 10' I, I, L. . 5 V . V ~ls· II ., 'D ·11 ,Q D 50 IplnllCliwlr) 1OO"C o 0,5 -lamb Open circuit voltage Short circuit currant .s a function of temperature .s a function of temperature 5 ',5 IS V. 'S25" ·v"u i t \D \0 5 5 o 0 20 40 60 1--'1--' T,,-5O"C '0 .5 -'" Oark current 'R "" t(VR) Tamb "" Parameter; E '" 0 110 l00DC o 10 40 60 BO -Tamb --+Tamb 10-5 100°C -v, tOV SIEMENS BPY63P PHOTOVOLTAIC CELL Package Dimensions in Inches (mm) .398 .L..-,--+J !.!Q1l .390 (9.9) ..-1~:="'"1 .059 max. (1.5)! ; [2.5 max. (White ~22 ::::;j .039 max. (1.0) ~ \" Red Anode Strands •. 012 (0.3) .014 (0.35) FEATURES Maximum Ratings • High Sensitivity • Cost Effective PaCkage Reverse Voltage (VR' Note 2) ........................................... 1.0 V Temperature Range (TN· ..................................... . -55 to +100·C Characteristics (T8mb = 25°C) DESCRIPTION BPY 63P is a silicon photbvoltaic cell (photoelement) fabricated with planar technology. The silicon chip comes with two leads and is covered with a hydro protective layer. BPY 63P is suitable for use in control and regulation circuits. Also, as a photoelement, it can be used as a detector of incandescent light and daylight. Photosensitivity Wavelength of Max. Photosensitivity Spectral Range of Photosensttivity (S = 10% of 8max) Radiant Sensitive Area 8 ~Sm'" ~ A 0.65 (",0.45) 850 ~Allx 400 to 1100 0.94 nm cm' 9.69 x 9.69 ±60· . 10 mm Deg. ~ nm Dimensions of the Radiant Sensitive Area Lx W Half Angle Dark Current (VR = 1 V. E Spectral Photosensitivtty (lI = 850 nm) s,. 0.5 AIW Electrons S, 0.72 """"PiiOiiin Vo 430 (",280) mV . Isc 0.65 (",0.45) mA t" ~ 11 pS Co TK TK 8 -2.6 0.2 nF mViK %JK = 0) Quantum Efficiency (lI = 850 nm) Open Circuit Voltage (Ev = 1000 Ix. Note 1) Short Circuit Current (Ev = 1000 lx, Note 1) Switching Times (RL =.1.. KG. VR = 1 V; ~ = 840 nm. Ip = 500 ~) Capacitance (VR = 0 V. f = 1 MHz. Ev = 0 Ix) Temperature Efficiency of Vo Temperature Efficiency of Is 1 '" IR The illuminance indicat~ refers to unfiltered radiation of a tungsten filament lamp at a color temperature of 2856K. port of the voltage source to be connected to white strands. 2 Plus 10-6 Open c'n:uH voltage Vc - I(Ev) Short circuli voltage Is - I(Ev) Relative spectral sensitivity 5"" -,(>.) % 100 90 Srel 80 1 -- - -- I- 60 - 40 - ~ ~ ~ --- - - 10 [10'l1li. I~ - II mV 10 4 '1 10' f- II 30 10 - I 50 20 f- ~- 1/ --- 70 JJA 104 ~ ~- D,_'onal cheraClarfetl.. 5"" _ 1(0) 11••• -- II 101 - - 0400 500 600 700 600 900 1000 nm --A -Ev capacitance C ~ '(V.); E - 0 Ix Da~k current IR versus tamperatu,'" 'A - I (Tam", VA - 1 V Derk current I. - , (VA) Tv "" Parameter ! UA 10' ~A nF 15 10' I, I, ! v- -- r- 25°C 1"-- 0,5 1 10 V t-f- 0 V l,OV 10 V 0 0 o Open cftcul, voltage Vo versus temperatura I~V 0,5 -VA Short circuit current IS versus temperatura Is Is,s - '(Tam", Vo Vo,s - I(Tam", 1,5 ~ I' 1,0 1,0 4- 1-1- r- f' ~ 0,5 5 o 0 - o 20 40 100'C V' V -VA 5 V 5O"y VV I 10 r-.. , 10 20 40 10-7 60 BO -.....·Tamb 10 o 50 I 100'( - - Tamb BPY64P SIEMENS PHOTOVOLTAlC CELL Package Dimensions in Inches (mm). II CONTACT SURFACE .138(UIMIN. Maximum Ratings v. Reverse voltage Tom. Temperature range Characteristics (Tamb FEATURES • Silicon Photovoltaic Cell • Medium Size Radiation Sensitive Surface DESCRIPTION The BPY 64P is suitable for versatile applications in control and drive circuits. It can be used. like all silicon photovoltaic cells. as detector for light of filament lamps or daylight. - 5510+100 v 'c =25"C) Photosensitivity (standard light A, T - 2856 K) Wavelength 01 Max. Photosensitivity Spectral Range of Photosensitivity (S = 10% of Smax) Radiant Sensitive Area Dimensions of the Radiant Sensitive Area . Hall Angle Dark Current (VR - 1 V, E = 0) (VR = 1 V, E = 0, Tam. = SO°C) Spectral Photosensitivity (>.= 850 nm) Quantum Efficiency (>. = 850 nm) Open Circuij Voltage (Ev = 1000 lx, standard light A T = 2856 K) Short Circuit Current (Ev • 1000 lx, standard light A T = 2856 K) Rise and Fall Time of the Photocurrent Irom 10% to 90% and from 90% to 10% of the Final Value (RL - 1 KP, VR =.1 V, ~ = 840 nm Ip - 250 pAl CapacMnce (VR = 0 V, I = 1 MHz, Ev - 0 Ix) Temperature Coefficient VL Temperature Coefficient I. 10-8 1 S ~ 0.25 (~0.18) 850 nAllx nm ~ 420 to 1050 Q.36 nm cm' 5.98 x 5.98 ±60 mm Dog. I. 4 10 pA pA s,. O.SO AJW Electrons 0.72 PiiOtOil 450(:2;280) mV A L xW '" IR VL Isc 0.25 (~0.18) mA tr.t, 5 "s Co TC TC 3 nF mVlK %II< -2.6 0.2 Open circuit voltage VL =f(E,) Short circuit voltage I K = f (Ev) Reletlve spectral sensitivity % 5,., =f(i.) 100 r~J~-T 50 40 30 20 10 I 'mV 104~1~mllleI1104 10 I 1 10 10 1/1 \ VL [K ~~=~ il1-_~ . 'I 60 pA \ 3 103 UL IK I 2 2 1/ / \ 400 500 600 700 BOO 900 1000 1100 nm -h Directional characteristic S,el -Ev =f(rp) . Capacitance nF E=O 8 o C = f ( VR) ; I I I I L ! 11 H-l--- ~ r-r---' ~rf--tl~i-+-t-~ I--~ o 0,5 -VR 10-9 1,0 V TP 60P TP 61P SIEMENS SILICON PHOTOVOLTAIC CELLS Package Dimensions in Inches (mm) TPSOP I Radiant Sensitive Area --.L -.157(4) -~ - T M12.1 TP61P FEATURES • Silicon Photovoltalc Cell • Stud Package, TP 60P • Wide Temperature Range, _55° to +100°, TP 61P • Very High Sensitivity, 1000 nA/ix Typ. .... Maximum Ratings Operating and storage temperature range Reverse voltage 11 Tlmb VR ·C v Characteristics (T8mb = 25"C) DESCRIPTION The silicon photovoltaic cells TP 60 P and TP 61P are suitable for use in drive and control circuits. Featuring the same electrical characteristics, they differ only in design. The anode (positive pole of the cell) is marked by a red lead. Photosensitivity (standard light A. T = 2856 I<) Wavelength of Max. Photosensitivity Spectral Range of Photosensftivity (S - 10% of Smax) Radiant Sensitive Area Half Angle Dark Current (VR = 1 V. E = 0) (VR = 1 V. E = 0, Tamb = 50°C) Spectral Photosensftivity (>. = 850 nm) Quantum Efficiency (>. = 850 nm) Open Circuit Voltage (E, = 1000 lx, standard light A T=28561<) , (E" = 0.5 mW/cm2, ~ • 850 nm) Short Circuit Current (Ev = 1000 lx, standard light A T = 2856 K) Rise and Fall Time of the Photocurrent from 10% to 90% and from 90% to 10% of the Final Value (RL = 1 KO, VR = 1 V, ~ = 840 nm Ip=1 mAl Capacitance (VA - 0 V, f • 1 MHz, Ev = 0 Ix) Temperatura Coefficient VL Temperature Coefficient IK 10-10 S I.sm"" ~ A op 1 (:!!0.7) 850 ,.AIix nm 400 to 1100 1.3 nm cm 2 Deg. ±60 IR IR 0.1 (:!!2) SA 0.55 AIW 0.80 Electrons Photon VL VL 450 (:!!270) 430 (:!!250) mV' mV Isc 1 (:!!.7) mA ,t" ~ 5 lIS Co TC TC 3 -2.6 0.2 nF mV/K %lK p.A p.A Relative spectral sensitivity Srot "" f(1l.) ~A % 100 / 90 Srel I Open circuit voltage VL == f(Ev) ahort circuit current 'K = f(Ey) V 80 mV 10 4 10' \ ---t-tttttt I, I ,Iii / 70 V 60 I 50 / 40 30 / 20 II 10 1 400 600 800 1000 I! til :1 !W lO, \ o 10' 10' 1200 nm 10' 10' --J.. Directional characteristic Srer= f(,,) 10' 10'lx -E. Capacitance C = f(VR> nF 10· 15 K- 20· 10 I" t- i t'-... 1'-1 I r- l-r- r-----', , i o photovoltaic cell (plane receiver) I -! o 1V Dark currant 'A "" f(TamtJ 10' J....- ~ 4- f- I 10' o 1V 10--11 LIST OF APPLICATION NOTES APPNOTE# TITLE PAGE LEDs & Photometry .......................................................................................................:................. 1·1-2 2 Applications of Optocouplers ......................................................................................................... 11-6 3 Multiplexing LED Displays .............................................................................................................. 11-10 4 Driving High-Level Loads with Optocouplers ................................................................................. 11-14 5 More Speed from Optocouplers ..................................................................................................... 11-18 6 Operating LEDs on AC Power. ........................................................................................................ 11-20 9B Applying the DL 1416B Intelligent Displa~ Device ....................................................................... 11-21 11 Mounting Considerations for LED Lamps and Displays ................................................................. 11-26 13 Displaying Message Systems without a Microprocessor ....................................... :....................... 11-28 14 Applying the DL 2416T/DLX 2416 Intelligent Di!1pla~ Device .................................................;..... 11-30 15 Applying the DL 1414/DLX 1414 Intelligent Displa~ Device ......................................................... 11-36 16 Silicon Photovoltaic Cells, Silicon Photodiodes and Phototransistors ............................................ 11-41 17 Applying the DL 3416/DLX 3416 Intelligent Display" Device ......................................................... 11-45 18 Guidelines for Handling and Using Intelligent Displa~ Devices ................................................... 11-51 19 Cleaning LED Opto Products ..........................................................................................................11-53 20 Moving Messages Using Intelligent Displa~ Devices and 8748 Microprocessor ......................... 11-55 21 Silver Plated Tarnished Leads ........................................................................................................ 11-57 22 . Socket Selection Guide ................................................................................................................... 11-58 23 LED Filter Selection ......................................................................................................................... 11-59 24 Drivers for Light Emitting Displays ............................................................;...................................... 11-61 25 The DLX 713X, 5x7 Dot Matrix Intelligent Displa~ Device .......................................................... 11-65 26 SFH 900 - A Low-Cost Miniature Reflex Optical Sensor ......................................................., ....... 11-68 28 The DLO 4135/DLG 4137, 5x7 Dot Matrix Intelligent Displa~ Device ......................................... 11-75 29 . Serial Intelligent Display .................................................................................................................. 11-79 31 Blue-Light Emitting Silicon-Carbide Diodes - Materials, Technology, Characteristics ................ 11-84 33 Light Activated Switches ................................................................................................................. 11-87 34 Remote Control ................................................:........ :..................................................................... 11-95 35 Photographic Aperture, Exposure Controls, and Electronic Flash ........ :........................................ 11-102 ·36 General Photoelectric Application Circuits ..................................................................................... 11-104 37 GenerallR and Photodetector Information ...........................................•...........................,............. 11-107 38 Surface Mounting ............................................................................................................................ 11-121 39 Solderability of the Small Outline Coupler ....................................................................................... 11-130 40 Low-Cost, Plastic Fiber Optic Systems Using Siemens Light-Link Emitters and Detectors ........... 11-135 41 Light-Link Components Control High Frequency Switched Mode Power Supplies ....................... 11-141 42 Motor Control with Electrical Isolation of Operator Module and Power Unit Using Light-Link Components ......................................................................................................... 11-147 43 FREDFET Power Half-Bridge: Short-Circuit Proof through Light-Link Components ....................... 11-149 44 Designing with the Small AlphaNumeric Display ............................................................................ 11-152 45 How to Use Optocoupler Normalized Curves ................................................................................. 11-161 11-1 SIEMENS LEOs & Photometry Appnote 1 by George Smith The observed spectrum of electromagnetic radiations, extends from a few Hz, to beyond 1024 Hz, covering some 80 octaves. The narrow channel from 430 THz to 750 THz would be entirely negligible, except for the fact that more information is communicated to human beings, in this channel, than is obtained from the rest of the spectrum. This radiation has a wavelength ranging from 400nm to 700nm, and is, detectable by the sensory mechanisms of the human eye. Radiation observable by the human eye is commonly called light. Measurements of the physical properties of light and light sources, can be described in the same terms as any other form of' electromagnetic energy. Such measurements are commonly called Radiometric Measu rements. The eye responds to the rate at wh ich radiant energy falls on the retina, Le., on the radiant flux density expressed as Watts/m 2 • The corresponding photometric quantity is Lumens/m 2 . The standard luminosity function is then, a plot of Lumens/Watt as a function of wavelength. The function has a maximum value of 680 Lumens/ Watt at 555nm and the Y. power points occur at 510nm and 610nm (Fig. 2). 700 I r\ 600 1 \ ~ 500 I ~ 400 rn Measurements of the psychophysical attributes of the electromagnetic radiation we call light, are made in terms of units, other than these radiometric units. Those attributes which relate to the luminosity (sometimes called visibility) of light and light sources, are called photometric quantities, and the measure· ment of these aspects is the subject of Photometry. z \ ~300 ~ -'200 100 a 400 J V 500 \ \ '~ 600 700 WAVELENGTH }., (nm) , The electronics engineer who is starting to apply light emitting diodes and other opto-electronic devices to perform useful tasks, will find the subject of photom,etry to be a confused mass of strange units, confusing names for photometric quantities,and general dis· agreement as to what the important requirements'are for his application. The photometric quantities are related to the corresponding radiometric quantities by the C.I.E. Standard Luminosity Function (Fig. 1). which we may colloquially 'refer to as the standard eyeball. We can think of the luminosity function, as the transfer function of a filter which approximates the behavior of the' average human eye under good lighting conditions. Radiometric Quantity C.I.E. Standard Luminosity Function Filter Photometric Quantity Figure 1. Relationship between radiometric units and photometric units. 11-2 Figure2. CIE standard photopic luminosity function. The LUMEN is the unit of LUMINOUS FLUX and corresponds to the watt as the unit of radiant flux. Thus the total luminous flux emitted by a light source in all directions is measured in lumens, and can be traced back to the power consumed by the source to obtain an efficiency n'umber. Since it is generally not practical to collect all the flux from a light source, and direct it in some desired direction, it, is desirable to know how the flux is distributed spatially about the source. If we treat the source as a point (far field measurement), we can divide the space around the source into elements of solid anglel(dw), and inquire as to the luminous flux (dF) contained in each element of ,solid angle (dd~). The resulting quantity is Lumens/Steradian and is called LUMINOUS INTENSITY (I), (Fig. 3). The unit of Luminous intensity is called the CANDELA, sometimes loosely called the candle, or candle power. dw=dA r2 dA CosO (Projected Area) Figure 5. Definition of luminance. Figure 3. Solid angles and luminous intensity. Since the space surrounding a point contains 4 11 ,steradians, ,it is apparent that an isotropic radiator of one candela intensity, emits a total luminous flux of 411 Lumens. The fundamental quantitative standard of the pho· tometric system of units is the standard of luminance. The luminance of a black body radiator at the temperature of freezing platinum (2043.So K) is 60 candela per square centimeter. [A blackbody radiator is a perfect absorber of all electromagnetic energy incident on it. In thermal equilibrium at a given temperature, it emits radiation, spectrally distributed according to Plancks Formula No real light source is isotropic, so it is quite commo'n to show a plot of Luminous intensity versus angle off the axis (Fig. 4). If the source has no axis of symmetry, a more complex diagram is required. O· 15· 30· The units of Luminance in present use are an engi· neering nightmare. 1 candela/cm2 is called a Stilb 1111 candela/cm2 is called a Lambert 1 candela/m 2 is called a Nit 1111 candela/m 2 is called an Apostilb 1111 candela/ft2 is called a foot·Lambert 45· 60· 75· The foot Lambert is the most commonly used unit in this country; , 90· Of particular interest is a source whose angular distribution pattern is a circle (Fig. 6). For such a source we have 10 = 10 Cos 0, the luminance of such a source in a given direction 0, is then given by Figure 4. Spatial distribution, pattern. For an extended radiating surface, (such as an LED chip), each element of area contributes to the lumi· nous intensity of the source, in any given direction. The luminous intensity contribution in the given direction, divided by the projected area of the surface element in that direction, is calhid the LUMINANCE (B) of the source (in that direction), (Fig. 5). The quantity is sometimes called photometric brightness, or simply brightness. The use of the term brightness on its own, should be discouraged, as this involves various subjective properties such as texture, color, sparkle, apparent size, etc. that have psychological implications. B d 10 _ d 10 CosO O-dAcosO-dACosO d 10 CiA The luminance is seen to be the same in all directions. Such a source is called a LAMBERTIAN SOURCE. It can be shown that a perfectly diffusing surface behaves in this fashion. The formula governing a diffusing surface 10 = ,10 Cos 0 is ,called Lambert's Cosine Law. It can be shown that a flat LED chip is a very good approximation to a Lambertian Source. 11-3 APPLICATION TO LIGHT EMITTING DIODES 10 The above description of photometric quantities should indicate that there are many ways in which the photometric properties of LEOs can be stated. There is no general agreement among LED makers and users, as to the best way to specify LED performance, and this has led to much confusion and misunderstanding. Many factors must be taken into account when evaluating LED specifications for a particular application, and electronic engineers will need to develop a knowledge of these factors to put LEOs to effective use in new designs. Figure 6. Lamberti.n radiation pattern. If we now take a surface element (dA) and determine the intensity contribution in each direction we can determine the total flux (dF) emitted by the surface element. The resultant ratio (~~) ,Lumens/m 2 is called the LUMINOUS EMITTANCE (L). For a flat surface we may calculate L from 1T/2 L= 21T J B(8) SIN 8 Cos 8 d. 8 o The corresponding radiant emittance i'n watts/m 2 is of considerable interest for GaAs infrared LED's where total output power is an important parameter. The total luminous flux emitted by a light source can then be calculated from Ftotal = J LdA. These photometric quantities are sufficient to describe the properties of light sources such as light emitting diodes. When light falls on a receiving surface, it is either partially reflected in the case of a purely passive surface, or partly converted into some other form of energy by what we may describe as an "active surface (such as a phototransistor or photomultiplier cathode). In either case we are interested in how much flux falls on each element of the surface; Lumens/m 2 in the case of a passive surface which we wish to illuminate, or the eye; and Watts/m 2 in the case of other active surfaces. The quantity Lumens/m 2 , in this case is called the ILLUMINANCE sometimes loosely referred to as the illumination: The unit of illuminance is the LUX also referred to as the metercandle. Another commonly used unit of illuminance, in the.u.S. is the FOOT CANDLE, equal to one lumen per square foot. One lumen per square cm is called a PHOT: Many of these photometric quantities and units are in common use in the field of illumination engineering. While English units are the most common in this country, a mixed system of units is involved in common usage. 11-4 Presently available light emitting diodes are made from III-V, II-VI, and IV semiconductors, with Gallium Arsenide Phosphide and Gallium Phosphide being the major materials. Gallium Aluminum Arsenide is also used but is less common. Gallium Arsenide is commonly included in this group, but GaAs emits only infrared radiation around 900 nm, which is not visible to the eye, and is thus not properly called light. All specifications of non-visible emitters must be in radiametric units. GaP emits green light between 520 and 570 nm peaking at 550nm, very close to the peak eye sensitivity. It also can emit red light between 630 and 790 nm peaking at 690nm. GaAsll_X) Px emits light over a broad range from green to infrared depending on the percentage of phosphorus in the material (x). For x in the 0.4 region, red light between 640 and 700 nm peaking at 660 nm, is obtained. For x 0.5, amber light peaking around 610 nm is obtained. = Gall_x) AlxAs as presently available emits red light between 650 and 700 nm peaking at 670 nm.lt also emits into the infrared. The efficiency of these materials is very dependent on the emitted wavelength, with drastic fall off in efficiency as the wavelength gets shorter. Fortunately the standard eyeball filter favors the shorter wavelength (down to 555nm) and gives some measure of compensation. Some typical efficiencies reported by device makers, and the resulting overall luminous efficiency (Lumens/electrical watt) are as follows: GaP~red .72% @20LumlWatt= .14 LumiWatt overall GaAs. s P. 4 red .3% @ 50LumlWatt" .15 LumlWatt overall GaAIAs red 1.5% @ 40LumIWatt = .024 LumlWatt overall GaP green .006% @675LumIWatt = .04 LumlWatt overall GaAs. S P. 5 amber .0044% @340LumlWatt.015 LumlWatt overall For simple status indicator applications, front panel lamps and similar applications, several factors must be taken into account: obtained. In this case a diffusive lens giving a large apparent source with lower luminance, is more visible than a high luminance point source. (1) Color. Generally the designer has Henry Ford's color choice; various similar shades of red. Amber and green are available in smaller quantity, because of availability of suitable raw material. When a LED is used with an optical system to activate a remote sensor such as a cadmium sulphide or cadmium selenide cell (red light), or a GaAs IR emitter is used with a silicon photo detector, the performance requirements are somewhat different. It can be shown that for a given optical arrangement the irradiance of the detector determines the detected signal and this is proportional to the radiance of the source, which is comparable to the luminance (brightness) of the source. The intensity of the source will not be a factor unless the detector active area is larger than the incident beam. (2) Apparent source size. Various combinations of chip size and optical systems are available so that apparent source sizes from about 5 mils to about 300 mils diameter are available as standard prod· ucts. Other things being equal, a larger source size is more visible. (3) Angular distribution. GaAsP diode chips are nearly Lambertian, but GaP are nearly isotropic. With suitable optical design, the angular distribution pattern can be changed from very broad to quite narrow. By placing the chip at the focus of the lens system a narrow high intensity beam is obtained. The off axis visibility is drastically reduced. By using diffusing lens materials, a large area source with good off axis visibility is obtained. In this case the luminance is reduced. (4) Luminous intensity. This will govern the visibility under optimum background contrast conditions, when viewed at normal distances. 1 mi Ilicandeia is typical for red lamps of either GaAsP or GaP at normal operating conditions. (5) Luminance. When it is not possible to provide a dark contrasting background, or when the source is viewed at very close distances, the luminance becomes important. Values from 100 ft-L to 5000 ft-L are typical. These factors are all related to the design of the device and the user should understand the trade offs. High luminance values in excess of 10,000 ft-L are easily obtained by running very high current densities in the LED chip, but this can lead to shortened life if carried too far. When average power consumption must be minimized but good visibility is required, or detection at a considerable distance is required, pulsed operation can be used. With GaAs and GaAsP emitters using low duty cycle short pulses, very high peak intensity levels can be reached permitting communication over considerable distances. This technique is not useful with GaP diodes since they do not exhibit a linear relationship between optical output and instantaneous forward current, becoming saturated at moderate current levels. GaP also has a 50% higher rate of fall off in light output with temperature increase, than GaAsP which further inhibits high power appli· cations. The use of LED's to give a "Heads Up" projected display, such as for an automobile speedometer readout, or aircraft cockpit application, places severe requirements on the display luminance. For easy visibility, the projected image must be sufficiently contrasted with the ambient illumination. This requires very high luminance values for the LED's together with the use of photochromic windshields and probably polarizing screens. The foregoing is a necessarily simplified description of a very complex subject. The reader should avail himself of the standard textbook literature on these subjects. For a given drive current the luminous intensity of two different chips will be similar, while the luminance will be inversely proportional to the active area of the chip. References: If the designer can use filter screens or circularly polarizing filters in front of the light source, excellent protection from background illumination can be R. Kingslake, Applied Optics & Optical Engineering Committee on Colorimetry of the O.S.A., The Science of Color. Warren J. Smith, Modern Optical Engineering. 11-5 SIEMENS Applications of Optocouplers Appnote 2 by George Smith The ILl is the first in a family of optocouplers. These products are also called photon coupled isolators, photocouplers, photo-coupled pairs and optically coupled pairs. All of the characteristics of the ILl are electrical: it has no external optical properties. Hence optoisolators are not OPTOELECTRONIC DEVICES; they are in fact one of the simplest of all ELECTRO-OPTICAL SYSTEMS. ' The ILl consists of a Gallium Arsenide infrared emitting diode, and a silicon phototransistor mounted together in a DIP package. When forward current (I F) is passed through the Gallium Arsenide diode, it emits infrared radiation peaking at about 900nm wavelength. This radiant energy is transmitted through an optical coupling medium and falls on the sl!rface of the NPN phototransistor. Photo-transistors are designed to have large base areas; and hence a large base·collector junction area; and a small emitter area. Some fraction of the photons that strike the base area cause the, formation of elec: tron-hole pairs in the base region. This fraction is called the QUANTUM EFFICIENCY of the photo· detector. The high junction capacitance, CCb, results in an output circuit time constant RLCcb , with a corresponding output voltage rise time. The output current in this configuration is quite small and hence this connection is not normally used. The commonest circuit configuration is to leave the base connection open. With this connection, the holes generated in the base region cause the base potential to rise, forward biasing the base-emitter junction. Electrons are then injected into the base from the emitter, to try to neutralize the excess holes. Because of the close proximity of the collector junction, the probability of an electron recombining with a hole is small and most of the injected electrons are immediately swept into the collector region. As a result, the total collector current is much higher than the photogenerated current, and is in fact /3 times as great. VOUT If we ground the base and emitter, and apply a posi· tive voltage to the collector of the photo· transistor, ' , the device operates as a photo diode. The high field across the collector base junction quickly draws the electrons across into the collector region. The holes drift towards the base terminal attracting electrons from the terminal. Thus a current flows from collector to base, causing a voltage drop across the load resistance (Rd. 11-6 The, total collector current is then several hundred times. greater than for the previous connection. This gain comes with a penalty of much slower operation. Any drop in collector voltage is coupled to the base via the collector-base capacitance tending to turn off the injected current. The only current available to' charge this junction capacitance is the original photo-current. Thus, the rate of change of the output voltage is the same for both the diode and transistor connections. In the latter case, the voltage swing is /3 times as great, so the total rise time is /3 times as great as for the diode connection. Thus the effective output time constant is /3 R L Ccb. For the ILl this results in a typical 21'S rise time for 10011 load. The ratio of the output current from the photo-transistor (Ie or IE), to the input current in the Gallium Arsenide diode, is called the Current Transfer Ratio (CTR). For the 1L1, CTR is specified at 20% minimum with 35% being typical at IF =10 mA.* Thus for 10 rnA input currentthe minimum output current is 2 rnA. Other important parameters are VF typically 1.3V at 100 rnA IF. v~ DIGITAL INTERFACES Output Sensing Circuits The output of the phototransistor can directly drive the input of standard logic circuits such as the 7400 TTL families. The worst case input current for the 74 series gate is -1.6 rnA for VIN = 0.4 Volts. This can be easily supplied by the ILl, with 10 rnA input to the infrared diode. NOlo eXtfap.o'"cailbUI high..,nllll~IW. Obviously, several optocoupler output transistors can ' be connected to perform logical functions. TTL Active Level Low (74001' ~ Not~: Usesmall,rplIUuprO$OJIQf forhigher.perd -=- Note: lD\jocolOR conne(:lIon. It is more difficultto operate into TTL gates in the active level high configuration. Some possible methods are as follows; v~ Note. logical AND connec:tion. Input Driving Circuits The inp'ut side of the ILl has a diode characteristic as shown . :. 1 .... 60 20 o j , 2 3 864200.4o.s1.21.6 VR IVoltsl VF IVolnl .... The forward current must be controlled to provide the desired operating condition. 11-7 :!"I :i.1 ~ · . The input calJ be conveniently driven by integrated circuit logic elements in a number of different ways. TTL Active Level High (7400Se.iesl (3) Integrated circuit line drivers and receivers are used to transmit digital information over long lines in the presence of common mode noise. The meximum common mode noise Voltage permissible is usually in the 30 Volt range. There are many practical situations 'where common mode noise voltages of several hundred Volts can be induced in long lines. For these applications, optocouplers provide protection against several thousand Volts. LINEAR APPLICATIONS TTL Active Level Low (7400 Seriesl The curve of input current versus output current for the ILl is somewhat non-linear, because of the variation of (J with current for the photo-transistor, and the variation of infrared radiation out versus forward current in the GaAs diode. The useful range of input current is about 1 mA to 100 mA, but higher currents may be used for short duty cycles. There are obviously many other ways to drive the device with logic signals, but the commonest needs can be met with the above circuits. All provide 10 mA into the LED giving 2 mA minimum out of the photo· transistor. The 1 Volt diode knee and its high capaci· tance (typically 100 p F), provides good noise immun· ity. The rise time and propagation delay can be reduced by biasing the diode on to perhaps 1 mA forward current, but the noise performance will be worse. All previous configurations show medium speed digital interfaces. These circuits have various advantages over other ways of doi ng the task. (1) They can replace relays and reed relays, giVing much faster switching speeds,no contact bounce, better reliability, and usually better electrical isolation ex"ept for special configurations. How· ever relays have high current capability, higher output voltage, lower on resistance and offset voltage and higher off resistance. (2) They can replace pulse transformers in many floating epplications. Opto-isolators can transmit DC signal components .and low frequency AC, whereas pulse trensformers couple only the high frequency components, and a latch is required to restore the DC information. Pulse transformers have faster rise time than photo-transistor optocouplers. For linear applications the LED must be forward biased to some suitable current (usually 5 mA to 20 mAl. Modulating signals can then be impressed on this DC bias. A differential amplifier is a good way to accomplish this.. Sensing in linear applications can be done in several ways depending on the requirements. For high fres quency performance, the photo·transistor should be operated into a low impedance input current amplifier. The simplest such scheme is a grounded base amplifier. A B v" 11-8 impedance of about 6.3n. This would give a con· siderable speed improvement over a lOOn load. The circuit will work equally well either way, with a phase inversion between the two. Obviously a PNP transistor would work as well. A high speed operational amplifier could be used to give excellent performance. A feedback amplifier could also be used to get a low impedance input. The current gain is Note that in all cases the output can be taken from either the collector, or the emitter of the photo· transistor depending on the polarity desired. The operating speed is the same in either case. ~ + ~:) . CONCLUSION This appnote covers the most commonly used ways of applying photo-transistor optoeouplers. The design engineer will see many ways to expand on these circuits to achieve his end goals. The devices are extremely versatile, and can provide better solutions to many systems problems than other competing components. Special designs are possible to optimize certain parameters such as coupling capacitance, or transfer ratio. The input impedance is approximately ( 1+ vce~~VBE) .026 For example if R, = gOOn, R2 = lOon, Vee = 5V; we would have a current gain of 10 and an input SUMMARY OF PROPERTIES OF SIGNAL COUPLING DEVICES Device Optocoupler Advantages Disadvantages Economical. Solid state reliability. Medium to high speed signal transmission. DC & low frequency transmission. High voltage isolation. High isolation impedance. Small size DJ P Package. No contact bounce Low power operation. Finite ON Resistance Finite OFF Resistance. Limited ON state current. Limited OFF state voltage. Low transmission efficiency. (LoweTR) High power capability. High cost. Low ON resistance. DC transmission. High voltage isolation. High power consumption. Unreliable. Very slow operation. Physically large. Pulse Transformers High speed signal transmission. Moderate size. Good transmission efficiency. No DC or low frequency transm ission. Expensive for high isolation impedance or voltage. Differential line Drivers and Receivers Solid state reliability. Small size DIP package. High speed transmission. DC transmission. Low cost. Very low breakdown Voltage. Low isolation impedance. Relays 11-9 SIEMENS Multiplexing LED Displays Appnote 3 by George Smith In digital displays, such as would be used in a D.V.M. or counter of conventional design, all digits are operated in parallel, with a separate decoder·driver for each digit operated from data generally stored in a quad latch. them particularfy suitable for multiplexed operation, and hence it is the preferred method to use, if a scheme can be designed which is cost competitive with non·multiplexed operation. Throughout this paper, it will be, generally assumed that we are talking of a system using TT L type logic families, with MSI functions being used where applic' able. In most production situations this will be the most economical approach. There will' be some cases where discrete gates and flip·flops may yield a lower cost. There are also cases where a single MOS chip contains all the necessary logic functions, and only interface driver circuits are required. The seven segment numeric displays with a common anode connection made by Siemens provide compatibility with the most widely available decoder-drivers, which are active level low outputs. The commonest device is SN 7447 or Similar. Any of these is suitable for driving the HD107XX, HD110XX, orHD1131XXSeries type dipslay. For common cathode displays, such as the Siemens DL330M, DL340M, DL430M, or DL440M, SN7448 decoder can be used, and anode drivers become cathode drivers. In many cases, a reduction in cost can be effected by operating the display in a time division multiplexed mode. The question of cost effectiveness depends on the particular application. As a general rule, the greater the number of digits in the display, the more advantageous the mUltiplex system becomes from'the cost standpoint. Because of the great variety of situa· tions possible, it is difficult to say at what number of digits the change should be made. In some circum· stances, non·multiplexed operation of less than 8 digits is more economical. On the other hand, there are circumstances under which multiplexing is used for three and four digit displays at a cost saving. This application note attempts to show some of the many ways of multiplexing digits, and it is left to the designer to decide whether his own system applica· tion would be lower in cost if he used a multiplex scheme. The properties of light emitting diodes (LED) make ~ - DIGIT SELECT ,v" j+!... ~ ~ ~ ~ 0 ANODE DRIVER I J II Ci OIGITO I I .. . A ..,!.. oeD! DATA iNPUT .2- .... .... c BeaTO SEVEN SEGMENT SN7441 0 E F G Figure 1 11-10 ANODE DRIVER ~ 1=1 OIGlTl 1== Y --- I--- I ANODE DRIVER '-' U OlGIT7 J I most of the packages are lower cost than the seven segment decoder. The scheme shown is a 20% cost reduction over non-multiplexed operation, based on O.E.M. prices for the components. For less than eight digits, it would be difficult to compete with non-multiplexed operation using this scheme. In a multiplex system, the corresponding cathodes of each digit are bussed together, and driven from one seven segment decoder-driver, via the usua I current limiting resistors. The display data is presented serially by digit, to the decoder-driver, together with an enable signal to the appropriate digit anode Figure 1. CASE 2: Each digit anode is driven by a switch, capable of passing the full current of all segments. The simplest switch would be a PNP high current switch or amplifier transistor, such as a core driver type. Multiplexing becomes more attractive, when 'the data is stored in a shift register, rather than in latches. In this case the data is circulated around the register, at some suitable rate, and is sequentially presented at the input of the seven-segment decoder-driver. The anode drive can be obtained from a counter and decoder as in Figure 2, or from a parallel output shift register - Figure 3. In operation, the anode switches are activated one at a time, in the desired sequence, while the appropriate digital data is presented at the input to the decoderdriver. The amount of circuitry required in Figure 1 "ATA{~ 'DATA { •DATA { 'DATA{~ Figure 2 is much less than that used in the non-multiplexed scheme. The question of overall economy is dependent on the amount of circuitry required to sequence the anodes and present the data at the decoder input. Let us consider some typical situations. ClOCK--------. ...--------1 A ClK ..-.------1 B 74LS164 CASE 1: An a-digit counter-timer display, with the data stored in multiple latch circuits. This is the most common situation present in a counter-timer of conventional design. A quad latch (SN7 4 75) is used to store each digit, and this data is periodically updated. To scan this data, a.4 . pole a position switch is requiied (SN7 4151). To select the appropriate digit, an octal counter (SN7493) and a BCD decoder (SN7442) are required. The complete circuit is as shown in Figure 2. The total package. count is about the same for .this arrangement, as for non-multiplexed operation, but TO ANODE DRIVERS Figure 3 11-11 D. -----i_.J Figure 4 This circuit, which can be expanded to any number of digits, circulates a single zero, and thus can directly drive the PNP anode switches. Systems using recirculating memories generally require this digit timing circuitry for other reasons, so it is generally available in the system already. themselves nicely with Siemens Intelligent Display devices. Apart from the strictly logical problems involved in a multiplexed display, the designer must choose suitable operating conditions for the LED's. Peak forward current, current pulse width, duty cycle and repetition rate, are all factors which the designer must determine. For displays of 8 digits; a very common number in counter-timer instruments, the 74164 8 bit shift register makes a very good circulating shift register. The luminous intensity, or the luminance of GaAsP LEO's, is essentially proportional to forward current over a wide range, but certain phenomena modify this condition. At 'low currents, the presence of nonradiative recombination processes, results in less light output than the linear relationship would predict. This effect is noticeable in the region below about 5 mA per segment (for 1/4 inch characters). The result is that noticeable difference in luminance from segment to segment can occur at low currents. At high currents, the power dissipation in the chip causes substantial temperature rise, and this reduces the efficiency of the chip. As a result the light output versus forward current curve falls below the straight The scheme can be extended to more digits by adding a 4 bit shift register, such as the 7494; the extra shift bits are inserted at the points marked ® in Figure 4. The same circuit can be used for less than 8 digits, if a 12 V. % duty cycle is satisfactory. The preceding schemes demonstrate that systems containing recirculating data are very effectively coupled to multiplexed LED displays. Many multi-digit systems such as calculating machines use L.S.I. MOS circuits to provide their logic, and these naturally lend themselves to recirculating data. It is now practical to use microprocessors in instruments, which lend i. 11-12 variation in light output at a low DC current, but a much smaller variation in the average output when operated in a pulsed mode. As well as an increase in luminance, or luminous intensity due to pulsing, there is an increase in brightness because of the behavior of the eye. The eye does not behave as an integrating photometer, butas a partially integrating and partially peak reading photometer. As a result, the eye perceives a brightness that is somewhere between the peak and the average brightness. Figure 5 line, at high currents (Figure 5). It should be emphasized that this latter effect is entirely due to self heating. If the power dissipation is limited, by running short pulses at low duty cycle, the output follows the straight line up to very high current densities. Whereas 100 A/cm2 may be used in DC operation, as much as 104 A/cm 2 can be used under pulsed conditions, with 'a proportionate increase in peak intensity. (If this did not occur, GaAsP lasers could not be built.) Gallium Phosphide, however, has an inherent saturation mechanism that causes a drastic reduction in efficiency at high current densities even if the junction temperature remains constant. This effect is due to competing non-radiative recombination mech· anisms at high current density. As a first approximation the brightness of a pulsed LED will be similar to that when operated at a DC forward current equal to the average pulsed current. For example, for 40 mA peak current at 25% duty cycle, the brightness will be similar to DC operation at 10 mAo The actual brightness comparison will depend on the actual pulsing conditions. Under most legitimate conditions the brightness will be greater for pulsed operation. Figure 5 shows how the actual light output at 5 rnA DC is substantially less than expected from the ideal curve, because of the "foot" on the curve at low currents. Operation at 50 rnA peak current and 10% duty cycle yields a high peak output as shown, and an integrated average output that is much closer to the ideal value. It should be obvious that variations in the "foot" from segment to segment cause a significant The net result is that a low duty cycle high intensity pulse of light looks brighter than a DC signal equal to the average of the pu Ised signal. The practical benefit of multiplexed operation then, is an improvement in display visibility for a given average power consumption besides the lower cost. The brightness variation from segment to segment and digit to digit is also reduced by time-sharing. The gain in brightness over DC operation can be as much as a factor of 5 at low duty cycles of 1 or 2 percent, and peak currents of 50 to 100 mAo A number of factors must be taken into account when deciding on the design of a multiplexed display. Besides the optical output, thermal considerations are very im porta nt. Most 1/4" size LED numerics are rated at 30 mA DC max per segment. Under pulsed operation, higher currents can be used provided several thermal considerations are taken into account. (1) The average power dissipation must not exceed the maximum rated power. (2) The power pulse width must be short enough to p'revent the junction from overheating during the pulse. This implies that the pulse width must get shorter as the amplitude increases. Present experience indicates that for pulses of 10 J.Ls, the amplitude should be limited to 100 mA max. Shorter pulses of higher amplitude may be used but the circuit problems become severe if the pulse width is very short. 11-13 SIEMENS Driving High-Level Loads WithOptocouplers Appnote 4 by David M. Barton Frequently a load to be driven by an optocoupler requires more current, voltage, or both, than an optocoupler can provide at its output. minimum available output current of each device assuming 60°C derating (from Table I) and a 10 percent margin for temperature effects. Available optocoupler output current, of course, is found by multiplying input (LED section) current by the "erR" or current - transfer-ratio. For worst-case design, the minimum specified value would be used. The minimum erR of the 1L1 is 20%. Temperature derating is not usually. necessary over the 0 to +60degree Celcius range because the LED light output and transistor beta have approximately compensating coefficients. if the ILl is being operated from logiC with 5 volt driving transistor and 0.2 volt V CE saturation is assumed for the driving transistor, a 75 ohm RIF resistor will provide the 48 mAo .The forward voltage of the IR-emitting LED is about 1.2 volts. Figures lA and 1B show two such drive circuits. Multiplying the minimum CTR by 0.9 would ensure a safe design over this temperature range. Over a wide range, more margin would be required. ISO LIT The LED source current is limited by its rated power dissipation. Table I shows maximum .allowable IF vs maximum ambient temperature. Values for Table I are based on a 1.33 mWtC derate from the 100 mW at 25°C power r a t i n g : ' Table I T'L 1.2K INPUT ~VVO..-- 50 LEO PULSE CURRENT !mAI § = Il!!t=1= X R( '''' =3OK ~ RBl ~ 101( 0 300 ~ . " - 5 10 50 100 SOD m5 Figure 3~ 10 50 100 500 LED PULSE CURRENT (mAl lEO PULSE CURRENT (mAl Parameters vs LED Pulse Current Another method of increasing speed is to operate the photo-transistor as a photo-diode. I n this method, bias voltage is suppl ied between the collector and base terminal, the emitter being unused. Operation to at least 10 MHz is possible this way, but the price is the need for external ampl ification. Figure 4 is a graph EVI"ff'5~VBI~11 ;; a ~mllll1l '''' ;; 400 ~ 300 '" DEVICE 5", ~ Of course discrete·component amplifiers could be used and may be best in some applications. I,""'mA ~ ~ Another device which will provide a good interface is an integrated comparator amplifier. The photo-transistor collector goes to Vee. Its base has a 200n load resistor to ground and goes to one input of the comparator. Also, a resistor ~oes from this node to the minus supply. This resistor is chosen to supply 50/lA. The other comparator input is grounded. The voltage at the comparator input will switch from -10 mV to +10 mV or more when the diode turns on and the output will drive the T2 L loads. orr~I~~~I-~~~'''~'~ 1020 50100 LED DRIVE PULSE DURATION Figure 6 Figure 4. Diode Mode Output Current vs Drive Pulse Duration CONCLUSIONS showing peak output current versus drive pulse duration for 200 mA peak drive current. Since output current is small, some type of widebandwidth amplifier must be employed in order to drive T2 L loads. 11-19 For operation to 500 kHz, the addition of a base-emitter resistor and a high-current driver is probably the best method of increasing optocoupler speed. Above 500 kHz one must revert to photodiode mode and use an external amplifier to drive most loads, particularly T2L. SIEMENS Operating LEOs on AC Power Appnote 6 by DBvld M. Barton Introduction Frequently it is desirable to operate LEOs on AC power rather than DC. Typically, the power source is 120 VRMS 60 Hz. The most obvious method is to rectify this power with a series diode and use a resistor to limit LED current as shown in Figure 1. R RECTIFIER 2.0 .3 U .5 LED .2 20 30 50 I LED IAVERAGE) (mA) FIGURE 3. Saries Capacitor Value vs Avarage LED Currant for 120 VRMS 60 Hz. The Method Figure 2 shows a better method. Here a capacitor is used to control LED current and a shunt silicon diode provides rectification. FIGURE 2. Since, for current in either direction, voltage drop across the LED or rectifier is a negligible part of the supply voltage, current in the capacitor is almost exactly equal to the AC supply voltage divided by the reactance of the capacitor. Average capacitor current is then . 1. Ic (AV! =.9 X VRMS/Xc and average half·cycle LED or nictifier currel'lt is = 1/2 iD (AV! =.45 VRMS/Xc A resistor is necessary in series with the capacitor to limit turn·on transient currents. A value of 100 ohms will be adequate in mo.st cases. The current in the LED, of course, flows almost exactly in quadrature with the line voltage. For this reason, .power dissipation is low, being limited to the expected LED and rectifier power loss, tne loss iri series resistor and to losses in the capacitor. The latter term will be extremely low if high quality capacitors are used. Although power consumption of a circuit may not be of much significance in ternis of the cost of the power, it certainly can be important to reduce heat generation within an enclosure. If more than one LED is to be operated from the same source, simply put the LEOs in series in the same circuit, as shown in Figure 4. For small numbers of LEOs the current will be, for practical purposes, the same as for one. Rs C ~'_I""" AC FIGURE 4. or, for 120 VRMS, 60 Hz operation, CAY) 10 2 This method, though sound, results in very high power dissipation in the resistor since the LED operates on only 1.6 volts. 3. ILED 1/1' .1 FIGURE 1. The Power Resistor Method CAY) 1/ ii: ~~ 2. ILED I./~ 1.0 Conclusion Cost of the series capacitor (mylar! will be similar to the cost of a series power resistor. The shunt diode, a IN4148 or similar, will cost about two cents; much less than a series rectifier which must have a several hundred volt PIV rating. = 20 mA X C~F ILED CAY) or C~ F = ....;;;...;;.....;.---:. 20mA Figure 3 shows the value of the series capacitor needed for a range of average LED currents assuming 60 Hz, 120 volt power. 11-20 So, the capacitor method is both lower in cost and lower in heat generation and power consumption than the resistor method. SIEMENS Applying the DL 14168 Intelligent Display® device Appnote 98 by Dave Takagishi Electrical Description This application note is intended to serve as design and application guide for users of the DL 14168 Intelligent Display. The information presented covers: device electrical description and operation, considerations for general circuit designs, mUlti-digit display systems and interfacing to the 6800, Z80, and 8080 microprocessors. The on-board electronics of the DL 14168 eliminates all the traditional difficulties of using displays - segment decoding, driving, and multiplexing. The DL 14168 has gone further and provided intemal memory for the four digits. This approach allows the user to address one of four digits, load the desired data asynchronously to the multiplex rate and continue. The DL 14168 was designed to provide an easy-to-use alphanumeric display for the 64 character ASCII systems. Only twelve interconnect pins plus power and ground are. needed to drive a single four digit display. The overall package is designed to allow end stacking of the DL 14168 to form any desired character length display. Figure 1 is a block diagram of the circuitry in the DL 14168. The unit consists of a display and a single integrated circuit chip. The display is four 16-segment alphanumeric monolithic LED die magnified to a height of 160 mils. The Figure 1. Block Diagram T z ROM ::; ::t J- L,------r-' - - - 3 2 LINES ---1 OSC/ DIGIT DECODER Cau.TERI DECODER I DISPLAY J RAM ,TTL TO CMOS LEVEL SHIFTERS 11-21 I IC chip contains the 16 segment drivers. 4 digit drivers. 64character ROM, four-word 7-bit RAM. internal oscillator for multiplexing. multiplex counter/decoder. cursor RAM, write address decoder. and level shifters for the inputs. The inputs to the DL 1416B are: CE CHIP ENABLE (active low) This determines which device in an array will actually execute the loading of data. When the chip enable is in the high state. all inputs are inhibited. Ao. A, DIGIT ADDRESS The address to the DL 1416B determines the digit in which the data will be written. Address order is right-to-Ieft for positive-true address. Do-D. DATA LINES. The seven data input lines are designed to accept the 64 ASCII code set. See Table 1 for character set. w Operation Loading data into the DL 1416B is similar to writing into a RAM. The data and address must be present before the leading edge of the write signal (W) and must be present until after the trailing edge. The waveforms of Rgure 2 demonstrate the relationship of the signals r~ired to generate a write cycle utilizing chip enable (CE) and write .(W) (Check data sheet for minimum values). As can be seen from the waveforms. CE and W are interchangeable. The true internal "write" function is formed by the ';and-of-the~nots'" ' ' Figure 2. Address Table WRITE CYCLE WAVEFORMS UTILIZING CHIP ENABLE lal Add,,!,:=:::) " , X,,-,_ - ' -_ __ tA.l r _..,.1,-,I~_-'--___ _ _ _ _ _...;--.j's!TUP:i- ;,-C_tH_O'_o_ _---,j:::: 1S!TUP WRITE (active low) Data to.be written into the DL 1416B must be present before the leading edge of write. The data and address must.be stable until after the trailing edge. Ch'pE..... - - , . Write Dmo'. ===:x CURSOR (active low) When the CU is held low. the DL 1416B enables the user to write or remove a cursor in any digit position. The cursor function lights all 16 segments in the selected digits without erasing the data. After the cursor is removed. the. digit will again display the previously written character. If \ ~tSETUPIDJ-I ' .: .1.\<-_ _ _ __ , X,--..,..-_-,-_ WRITE CV~LE WAVE~ORMS ~ILlZING WRITE 'WI Add.... · =:::X. . Chip Enable . , J;: .." ...... - I . =i~" ",. _ f'----,--- tIETUPleI:t-==-+_'_ _ _ __ W,'to \. ~ elta In X'--____ =::::x luTLM> 101 r I-- --i I I:: X ..:==----tHOl.D POSITIVE SUPPLY TIL compatible +5 volts V- NEGATIVE SUPPLY Ground Multiplexed display systemlS sequentially read and display data from a memory device. In synchronous systems. control circuitry must compare the location of data to be read and displayed to the location of new data to be stored. i.e. synchronize. before a write can be done. This can be slow if there are many memory locations. It can also be cumbersome. Table 1. Character Set DO Dl D' L L L H L L L L H H H H L L L L L H H H H 010504 D3 L HI L I:. H!l H l LIHi H L L'H;Hi H : j .. : L"l !L" , i I , I ! i" } i ., '* + , 12 -' 8 9 -- n ) 1I 1 , T n .1. IHiL I HIL P /"1 i 1+1+ " 1\ III , -- u 'I I 5 6 -- _l, -- , ,, -, 1 -J I t_ r- , LJ L_ Tl JJ [ rF- lJ, 1-( 1 1\" I I 1\' IV F? 5 , , OJ n.] :H!l'Li" i fI S5 % ~y H' H H -- v-'7 r 1 i t_ L t_ T -_. LJ " \ J -, I n LJ , I v " vv 1\ -- Data entry of the DL 1416B is asynchronous and data may be stored in random order. Each digit will continue ti:> display the character last "written" until replaced by another. The cursor function causes all 16 segments of a digit to light. The cursor can indicate the position in the display of . the next character to be entered. The cursor is not a character but overrides display of the storeq character. Upon removal of the cursor. the display will again show the character ,stored in memory. The cursor can be written into any digit position by setting the digit position addreSll (A,. A.,). enabling chip enable (CE). cursor select (CO). write (WR) data (Do). A high on data line Do will place a cursor into position set by the address; A.,. A,. Conversely. a low on Do will remove the cursor. Nota: 1, All undefined codes will display a blank. 11-22 APPN01E9B General Interface The cursor will remain displayed after the cursor (CU) and write (W) signals have been removed. The waveforms in Figure 3 show a cursor being placed in Digit o. The most general and straight-forward interface approach would be to use the parallel I/O device of a microprocessor. This interface scheme can be completely software dependent. One eight bit output port can handle the seven input data bits and the cursor. Another eight bit output port can contain the address and chip enable information with one bit reserved for the write signal. Figure 3. Cursor Write Cycle CE I \ \ Vi An 8080 system shown in Figure 4 illustrates a 16 character display using a 8255 programmable peripheral interface I/O device with a 7442 one-of-ten decoder added for ease of programming. The following program will display a simple 16 character message using the parallel I/O interface. I CIJ \ I Do I \ Ao INIT: Al CUSR: CUSR1: Hardwiring the cursor (CU) line high is not recommended. This internal cursor memory will be randomly loaded on power-up and all positions must be cleared before a cursor-free display is. ensured. DISP: DISP1: General Circuit Design ConSiderations Using positive-true address logic, address order is from right to left. For left to right address order, use the "onescomplement" or simple inversion of the addresses. For systems with only a 6 bit ASCII code format, data line De cannot be left open. Data De must be the complement of data line D5 • If an illegal code is loaded into the DL 1416B, it will display a blank in the digit accessed. DSPWT: A "display test" function can be realized by simply storing a cursor in all digits. Because of the random state of the cursor RAM after power up, it is necessary to clear it initially to assure that all the cursors are off. When using DL 1416Bs on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all DL 1416B inputs. This is most easily achieved with hex-non-inverting buffers such as 74365ICs. The object is to prevent transient current in the DL 1416B protection diodes. The buffers should be located on the display board near the DL 1416Bs. Local power supply bypass capacitors are also needed in many cases. These should be 6 or 10 volt tantalum type having 10 IlF or greater capacitance. Low internal resistance is important to eliminate voltage transients due to the current steps which result from the internal multiplexing of the DL 1416B. If small wire cables are used, it is good engineering practice to calculate the wire resistance of the ground plus the +5 volt wires. More than 0.1 volt drop (at 25 mA per digit worst case) should be avoided, since this loss is in addition to any inaccuracies or load regulation limitations of the power supply. 11-23 TABLE: ~- MVI A, SOH OUT CONTROL MVI A, OOH OUT PORTA MVIB,OFH MOV A, B CALL DSPWT DCRB JNZ CUSR1 LXI H, TABLE MOV A, M OUT PORTA MOVA,B CALL DSPWT INXH INRB MVIA,10H CMPB JNZ DISP1 HLT ORI SOH OUTPORTB ANI7FH OUTPORTB ORISOH OUTPORTB RET DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB ;CONTROL DATA MODE 0 ;LOAD CONTROL REGISTER ;CLEAR CURSOR DATA ;LOAD DATA PORT ;SET COUNTER ;WRITE SUBROUTINE ;DECREMENT COUNTER ;16 CHARACTERS ;SETTABLE ;LOAD DATA OUTPUT ;LOAD ADDRESS & WRITE ;INCREMENT TABLE ADDRESS ;INCREMENT COUNTER ;SET # OF DIGITS ;16 CHARACTERS ;END OF PROGRAM ;SET WRITE BIT OFF ;LOAD ADDRESS ;SET WRITE BIT ON ;LOADWRITE ;SET WRITE BIT OFF ;LOADWRITE OC3H OC9H OD4H OD3H OC1H OD4H OCEH OC1H OC6H OAOH OD3H OD4H OCSH OC7H OC9H OCCH APPNOTE9B I/O or Memory Mapped Addressing Conclusion Some designers may wish to avoid the additional cost of a parallel I/O in their system. Structuring the addressing achitecture for the DL 1416B to look like a set of peripheral or output devices (I/O mapped) or RAMs and ROMs . (memory mapped), is very easy. Rgure5 shows the simplicity of interfacing to microprocessors, such as 8080, Z80 and 6502 as examples. Note that although other manufacturer's products are u·sed in examples, this application note does not imply specific endorsement, or recommendation or warranty of other manufacturer's products by Siemens. The interface schemes shown demonstrate the simplicity of using the DL 1416B with microprocessors. The slight differences encountered with various microprocessors to interface with the DL 1416B are similar to those encountered when using different RAMs. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements. The interface with the 6800 microprocessor in Figure 6 illustrates the. need for designers to check the timing requirements.of the DL 1416B and the I1P. The typical data output hold time is only 30 ns for DBE =02 timing; two inverters in the DBE line are added to increase the data output hold time for compatibility with the 50 nS minimum spec of the DL 1416B. Figure 4. ------------------, Ir-------------------~------~-------,I I I ....---., I I I DAfAO 2 J I > DATA au!' ,.,. 8080 6 ~ DL 1416B DL 1416B OL 1416B J III III III III •> I PORTA. 1 OL 14169 DATA 6- I 1 7 , 0 A_O 2 • PORT 8 3 •> 61-----1 1 ·1 1 7 I f- I 1 I I II I I I I ~I"""-" I II I I II 1 D I W ~ , I I I ,LI ______________________________________ PORTe ~ leu I- 8080 SYSTEM -------------------~ 11-24 APPNOTE9B Figure 5. Mapped Interface R~~~ ':1i~-Y 1010 ZIO 1502 ~ OPTIOIIAL IUFf£RS • A_ESS • ~ -;;-\ DATA r-----v CONTROl. OIC L 01.141 •• -L OLl.... 0\.14188 [DIll r ".,.g ~DIT&O-' L ~ A Il I r--- ~ DECODEII b LECT CUE A. CUI - ... MIIALLEL It ~ r COIIIIIIIL Figure 6. - mrT HALT llIO" TSC DL 1416B DATA IMTA ADDRESS ADDRESS 68DO DL 1416B DII 11-25 APPNOTE9B SIEMENS Mounting Considerations for LED Lamps and Displays Appnote 11 by Dave Takagishi There are numerous' ways to mount an LED lamp into a panel or a piece of equipment imd this application note is written as' an aid to designers and engineers when using LED lamps and displays. causes no break in digit spacing. In applications using screw-down mounting, a flexible washer should be used to avoid strain from misalignment or board warpage. MOUNTING TECHNIQUES: There are several ways to mount LED lamps such as the Siemens LDR5001 by soldering directly into PCB's, plugging into sockets, or, panel mounting with or without clips. Bending of the leads is allowed bearing the following guidelines in mind. Leads must not be bent closer than .065 inches from the base of case when leads are not in excess of .020 inch in diameter. Leads should be clamped next to the case during bending of leeds to relieve stresses. Under no circumstances must any mechanical force be applied to case while bending the leads. Also, incorrectly spaced holes in the printed circuit board will place mechanical stress on the plastic case which can cause failure during soldering. t t IERI Connector/Socket Suppliers Aries Augat Berg ,EMC Robinson Nugent Precision Concept, Inc. (Partial List) Frenchtown, NJ Attleboro, MA New Cumberland, PA Woonsocket, RI New Albany, IND Bohemia, NY THERMAL CONSIDERATIONS: Displays of the HD11XXX type can be soldered directly into a printed circuit board or be plugged into sockets. ' Many displays can be end-stacked (butted end-to-end) to obtain longer displays with more digits. This usually 11-26 Most LED failures can be traced to excess thermal stress. A typical LED chip is mounted on a substrate or lead frame' with a wire bond from the top of the chip to a metallized trace on the substrate and is encapsulated :in 'epoxy. Temperature changes cause these various materials to expand and contract at different rates. Extreme low temperatures are most likely to cause structural failure_ High temperatures, usually cause reduced lifetime rather than immediate failures. The internal LED junction temperature depends on ambient temperature, power applied to the LED, and the thermal resistance, LED chip-to-ambient. Long-term degradation of the LED chips, causing reduced light output, will occur if junction temperature exceeds 125 deg. C. Also the epoxy material overcoating the LED chips may gradually become opaque if it is subjected to temperatures above 125 deg. C. For these reasons, all Siemens LED products carry derating specifications designed to limit LED junction temperature to 100 deg. C. Particular care is needed in designing multiplexed systems. Here, increased forward voltage and the effects of the thermal time constant, chip to ambient (about 10mS typical) can cause "thermal ripple" peak excursions above 100 deg. C while calculated average temperature is much lower. A separate reason for keeping LED chip temperature down is the reduced light output, shown in Figure 1. One can reach a point of diminishing returns, particularly in multiplexed systems, in which an increase in current reduces reliability while actually resulting in little or no increase in display visibility. In such cases, olle would be. well advised to put his money in higher brightness-grade displays. A well-designed display system, especially if high power levels or multiplexed operations are involved, should: 1. Allow for convection airflow around the display. 2. Place other heat-generating components' either away from or above, but never below the display ("Display current-control resistors, for example). 3. Take the increased forward voltage and "thermal ripple" peaks into account, in multiplexed systems, and not allow peak temperature to exceed 100 deg. C. . In common with many semiconductor products, LED displays offer the user the most reliable and longest lifetime product available. These good properties do depend, however, on proper usage. Semiconductor products are well-known to be rather unforgiving of abuse. when compared to the older technologies. LED's are not different, they are, in fact, hybrid integrated ~ircuits. LUMINOUS INTENSITY VS AMBIENT TEMPERATURE SOLDERING CONSIDERATIONS: Care should be taken not to overheat LED's when soldering. Effectiveness and safety in soldering are related to three basic parameters: temperature, time, and distance. In general, soldering time should not exceed 3 seconds at 1/16 inch from case at 260°C. Some packages allow greater latitude, as indicated on individual data sheets. OPTICAL CONSIDERATIONS: Siemens recommends the use of a contrast enhancing filter in front of LED displays. This filter will increase the contrast ratio of digit to surrounding area and help remove reflected light and glare from the PCB and components around the display. Insetting the display to reduce direct ambient light on the display should also be considered. ROHM & HAAS red "Plexiglass" #2423 makes a good general purpose filter for the 640-660 nm Peak Emission Wavelength of red LEOs. A 1/16 inch thick sheet of this inexpensive material is quite effective. Additional information on this and other filter materials may be obtained by contacting the following suppliers: ROHM & HAAS HOMALITE PANELGRAPHIC 3M POLAROID FORRED LEDS ROHM & HAAS HOMALITE PANELGRAPHIC POLAROID Plexiglass 2423 1670, 1605 Red 60, Red 63, Red 65, Purple gO HRCP FOR GREEN LEDS ROHM & HAAS PANELGRAPHIC HOMALITE Plexiglas 38168 Green 48 1425, 1440 FOR YELLOW LEDS PANELGRAPHICS .HOMALITE Yellow 25, Amber 23 1720,1726 NEUTRAL DENSITY FILTER Neutral Gray 10 HOMALITE 180 16 0 1"' 140 120 100 0 ....... 0 -so -26 0 2S 50 75 Philadelphia, PA Wilmington, DE West Caldwell, NJ St. Paul, MN Cambridge, MA 100 AMBIENT TEMPERATURE JOCJ 11-27 SIEMENS Displaying Message Systems Without a Microprocessor. Appnote 13 by Dave Takagishi Any Siemens 4 digit, alphanumeric Intelligent Display device has on board memory, decoder and drive circuitry. This makes it particularly well suited to marry directly to a microprocessor. However, small mUlti-message systems of 4, 8, 12, 16 character length need not have a microprocessor to drive the Intelligent Display, With the· aid of PROM Intelligent Display devices can combine lighted indicators, status displays, annunciator messages or symbols, or a "canned message' into a single display. Figure 1. Annunciator Displays An automobile, for example, has several switches each lighting its own status or annunciator indicator. A single Intelligent Display could easily display messages alternately upon interrogation of the appropriate switches. Figures 1, 2, and 3 show a DL 1416 but any of our Intelligent Display devices can be substituted. The circuit shown in Figure 1 will display four character messages sequentially for each open switch and continue to display until switches are returned to their normally closed positions. The Counters U4 and US address the PROM U6 and select switches on U1. The Data Selector, U1, sequentially selects one of eight switches (oil, temperature, catalytic, generator, brake, door, belt, and null), The eighth switch or null state can display a blank for a normal or off condition. The output of U1 enables the display's CEo When this signal goes high, the Monostable, U2, will fire and inhibit the .Oscillator U3 for approximately a two second display time. The PROM,U6, generates the ASCII code data for each word. Expansion of the display can easily be achieved by adding a PROM for each additional display . .Another annunciator type display is shown in Figure 2. This display has a message of up to 16 characters and will continue to display the same line until the 6 bit input code changes state. With this scheme, it can be seen that the 16 character X64 line message PROM can easily be adapted for other message and character length combinations. 11-28 Flgllre 2. Typical Circuit for 64 Messages of 16 Characters Long Canned Messages The canned message type display can be an ideal sales, marketing or instructional aid. The message can be altered by replacing the PROM. 32 word message. The oscillator, U1, increments the counters U2, U3, U4 providing the address for the DL 1416's and PROM U9. After eight counts the monostable U10 is fired, inhibiting the oscillator for a two second display time. Devices U5 and ua were added for cursor control. Decoder ua will alternately enable or disable a data bit for a cursor to proceed writing new data into each digit. The multiplexer U5 will select the character data or the cursor data for the 00-03 data lines. Inverters on the address lines cause data entry to occur from the left rather than from the right. The technique for this display would be to sequentially display a word or group of words, depending on the character length of the display, through the entire message. The system could either continue to repeat itself or could go through the complete sequence once each time a switch is operated. Figure 3 is the schematic for a sales demo box for the DL 1416. A 256Xa PROM was used to display an a digit- Figure 3. ITt'1" .:.t 1'· I :4C!61,U2:- ~P74C161 U4 CP74CI61 U3 .. B r , .. I~ L~ 8 \. (I JrffJ DLl416 UI 745472 UIO 4047 f1 U, t- _Il ~-f lOOK I.' jUg 1[11' 3[b'M ~ m::;-.,. ~7 ~ 11-29 " " ~ DLl416 U5 11 III SIEMENS Applying the DL 2416T/DLX2416* Intelligent Display® device Appnote 14 by Dave Takagishi This application note is intended to serve as a design and application guide for the DL 2416TIDLX 2416 (hereafter referred to as 2416) alphanumeric Intelligent Displays. The information presented covers device electrical description and operation, considerations for general circuit design, and interfacirig the 2416 to microprocessors. Refer to the specific data sheet and other Siemens Appnotes for more details. plexing). The Intelligent Display also provides internal memory for the four digits. This approach allows the user to asynchronously address one of four digits, and load new data without regard to the LED multiplex timing. a: Figure 1a is block diagram of the DL 2416T. The unit consists of four 17-segment monolithic LED dies and a single CMOS integrated circuit chip. The LED dies are magnified to a height 01160 mils by built-in lenses. The IC chip contains 17 segment drivers, four digit drivers, 64 character ROM, four word x 7 bit Random Access Memory, oscillator for multiplexing, multiplex counterl decoder, cursor memory, address decoder, and miscellaneous control logic. Electrical & Mechanical Description The internal electroriics iri these Intelligent Displays eliminates all the traditional difficulties of using multi-digit light emitting displays (segment decoding, drivers, and multiFigura 1a. Block Diagram - DL 2416T r- r"'I SEGMENT ORIVERS ROM r/~ 17 LINES ~2 IiImmm ~ oSCI OISPLAY MULTIPLEXER 3 to. RAM DIGIT DRIVERS " I ~ I I I INPUT CONTROL ~. ~ .. . ~.~ [ I] [I[ I I CURSOR MEMORY J •• II] [ .~ ] Ia: *DL 2416T -segmented display. DLX 2416 (DLR 2416, DLG 2416, or OLO 2416) - dol matrix displays. 11-30 2 I 1 0 JJ Figure 1b is a block diagram of the OLX 2416. The unit consists of 4 (5x7) LEOs and a single CMOS integrated chip. The IC chip contains the column drivers and row drivers, 128 character ROM, four word x 7 bit Random Access Memory, oscillator for multiplexing, multiplex counter/decoder, cursor memory, address decoder, and miscellaneous control logic. of the six "faces". The assembled and tested substrate ("PTF" multilayer), is placed within the shell and the entire assembly is then filled with a water·clear IC·grade epoxy. This yields a very rugged part, which is quite impervious to moisture, shock and vibration, Although not "hermetic", the device will easily withstand total immersion in water/deter· gent solutions. Packaging Packaging consists of a transfer·molded nylon lens which also serves as an "encapsulation shell" since it covers five Figure 1b. Block Diagram - DLX 2416 COLUMNS 0 TO 19 TIMING ANO CONTROL LOGIC DISPLAY OUTPUT LOGIC ROW DECODER ROM 128x35 BIT ASCII CHARACTER DECODE 44BO BITS COLUMN DATA CURSOR MEMORY BITS 0 TO 3 CUE Figure 2. TOP VIEW Pin DL 24161 DLX2416 18 17 16 15 14 13 12 11 10 18 17 16 15 14 13 12 11 10 ...... . .. . . . . . .. 123456789 ... ...: "·5.-ta .... : 2 3 4 5 6. .. J. ...: 8 9 123456789 Function Pin Function CE 1 Chip Enable CE2 Chip Enable CLRClear CUE Cursor Enable CU Cursor Select WRWrite A, Digit Select A, Digit Select 10 11 12 13 14 15 16 17 18 GND Do Data Input D, Data Input D, Data Input D, Data Input D, Data Input D, Data Input D, Data Input BL Display Blank Veo ~·I ~J!! =a~ ~ APPNOTE 14 11-31 Electrical Inputs to the 2416 Figure 3b. Character Set - DLX 2416 Vee Positive supply +5voltS GND Ground Do-De Data Lines The seven data input lines are designed to accept the first 64 ASCII characters, See Rgure 3a for character set. (The DL 2416T interprets all undefined codes as a blank). See Figure 3b for character set for DLX 2416. Aa, A1 Address Lines The address determines the digit position to which the data will be written. Address order is right to left for positive-true logic. WR Write (Active Low) Data and address to be loaded must be present and stable before and after the trailing edge of write. (See data sheet for timing information). ASCII CODE CE1, CE2 Chip Enable (Active Low) This determines which device in an array will actually accept data. When either or both chip enable is in the high state, all inputs are inhibited. CLR Clear (Active Low) The data RAM and cursor RAM for DL 2416T will be cleared when held low for 15 mS. For the DLX 2416 the minimum for CLR is 1 mS. CUE Cursor Enable. Activates Cursor function. Cursor will not be displayed regardless of cursor memory contents when cue is Low. CU Cursor Select (Active Low) This input must be held high to store data in data memory and low to store data into the cursor memory. BL Display Blank (Active Low) Blanking the entire display may be accomplished by holding the BL input low. This is not a stored function, however. When BL is released, the stored characters are again displayed. BL can be used for flashing or dimming. : Lilli I MLL" n u ,, OJ H ",_, p . ( 3 ~ ] [ .JJ ., f? 5 LY : : , , ( , 5 6 1 8 g :Il !Ii !IS & ", T £: F G U V ~J : + ,, .. *, ,. H .L I LJ ~( L M v y "1 r \ " T ,. L .., .. .. J 0 I 0 0 I I I I 1 a 0 Clearing of the entire internal four-digit memory may be accomplished by holding the clear line (CLR) low for one complete internal display m!Jltiplex cycle, 15 mS minimum for DL 2416T, 1 mS for DLX 2416; less time may leave some data uncleared. CLR also clears the cursor memory. Display Blanking Blanking the display may be accomplished by loading a blank, space or illegal code into each digit of the display or by using the (BL) display blank input. Setting the (BL) input low does not affect the contents of either data or cursor memory. A flashing display can be realized by pulsing (BL). Operation Multiplexed display systems sequentially read and display data from a memory device. In synchronous systems, control circuitry must compare the location of data to be read to the location or position of new data to be stored or displayed, I.e., synchronize before a Write can be done. This can be slow and cumbersome. Data entry in "intelligent displays· is asynchronous and may be done in any randomorder. Loading data is similar to writing into a RAM. Each digit has its own memory location and will display until replaced by another code. : ;, , , , 0 0 Clear Memory : ~ LNLI 0 01 D2 Notes: 1. High =1 level. 2. Low =0 level. 3. Upon power up, the device will initialize in a random state. Figure 3a. Character Set - DL 2416T . 00 ? The waveforms of Figure 4 demonstrate the relationships of the signals required to generate a write cycle . 0 " I\PPNOTE14 11-32 Figure 4. If the user does not wish to utilize the cursor function, the cursor enable (CUE) can be tied low to disable the cursor function. A flashing cursor can be realized by simply pulsing the CUE line.after cursor data has been stored. General Design Considerations Using Positive true logic, address order is from right to left. For left to right address order, use the "ones complement" or simple inversion of the addresses. For systems with only a 6-bit (abbreviated ASCII) code format, Data Line 0 6 cannot be left open. Data 0 6 must be the complement of Data Line 0 5 • (Check individual data sheet for minimum values). As can be seen from the waveforms, all signals are referenced from the rising or trailing edge of write. Cursor The cursor function of the DL 2416T causes all 16 linesegments of a digit to light. For the DLX 2416 the cursor function causes all dots to light at 50% brightness. The cursor can be used to indicate the position in the display of the next character to be entered. The cursor is not a character but overrides the display of a stored character. Upon removal of the cursor, the display will again show the character stored in memory. The cursor can be written into any digit position by setting the cursor enable (CUE) high, setting the digit address (A" A o)' enabling Chip Enable, (CE1, CE2), cursorselect (CU), Write (WR) and Data (Do). A high on data line Do will place a cursor into the position set by the address Ao and A, . Conversely, a low on Do will remove the cursor. The cursor will remain displayed after the cursor (CU) and write (WR) signals have been removed. During the cursor-write sequence, data lines 0, through 0 6 are ignored by the 2416. Figure 5. DIGIT DIGIT DIGIT DIGIT If[ m~cuEa;WRm A\ H H H H H H H X X L L L XXHXHXX X L H X H X X H L H X X L H H H X L L H L H L L L H L H L L L H L H H H H H H H H H H H H H Ag 060604030201 H , x x x x x x L L H L L L H L ,, , X X x X X X H , L l L H L DO 3 1 1 0 X H L ,, H H , , ,, ,, , , , , , , , , , ,, ,, , ,, ,, ,~ i ,~ , , , H H H X H H H H H H H H H H H H H H H H H X X ,, , X X x x x X X H , X X X x H H X X X X X X H : \; : I: l x X X H H x H X X X H X X X X H , , x x x x x x , H X X X X X X X X-Don'tc.,. NC" No Chanll' f,om previoully d"pl~yed X X X X Because of the random state of the cursor RAM after power up, if the cursor function is to be used, it will be necessary to clear cursors initially to assure that all cursor memories contain its zero state. This is easily accomplished with the CLR input. When using the 2416 on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all inputs. This is most easily achieved with Hex non-inverting buffers such as the 74365. The object is to prevent transient current in the protection diodes. The buffers should be located on the display board near the displays. Local power supply bypass capacitors are also needed in many cases. These should be 6 or 10 volt, tantalum type having 10 J.LF or greater capacitance. Low internal resistance is important due to current steps which result from the internal multiplexing of the displays. If small wire cables are used; it is good engineering practice to calculate the wire resistance of the ground plus the +5 volt wires. More than 0.1 volt drop, (at 25 mA per digit worst cast) should be avoided, since this loss is in addition to any inaccuracies or load regulation limitations of the power supply. The 5-volt power supply for the displays should be the same one supplying Vee to all logic devices which drive the display devices. If a separate supply must be used, then local buffers using hex non-inverting gates should be used on all displays inputs and these buffers should be powered from the display power supply. This precaution is to avoid logic inputs higher than display Vee during power up or line transients. No.moIOollE.,ry X X x A "display test" or "lamp test" function can be realized by simply storing a cursor into all digits. . .. ..dC ..,,,,,. Ne E_.P''''''''''~'Q Ne Ne Ne Ne Ne D D K K . .. .. " m . m ... m m E E E cha,acters APPNOlE 14 11-33 Interfacing the 2416 A general and ~traight-forward inteiface circuit is shown in Figure 6 using It)e DL 2416T, but any ?416 display c8n be used interchangeably in these eXamples (also applies to Figure 7, 8, and 9). This scheme can easily interface to ILP systems or any other systems Which can provide the seven data lines, appropriate address and control lines. Figure 6. General Interface Circuit r-----------------------------------, I' I GIlD 'I 01. 2416T DL2416T I At. I A, I I I I I I ICE L ____-, ___________________________ .,. ___ _ Parallel 110 The parallel I/O device of a microprocessor can easily be connected to the circuit in Figure 6. One eight bit output port can provide the seven input data bits and the cursor (CU). Another eight bit output port can contain the address and chip enable information and the other control signals. Figure 7. 16-Dlglt Parallel ,1/0 System r-------------------::.--:..--------' I Figure 7 illustrates a 16-character display with an 8080 system using the 8255 programmable peripheral interface device. The following program will display a simple 16-character message using this interface. va INIT: MVI A,SOH ' ;CONTROL DATA MODE OUT CONTROL ;LOAD CONTROL REGISTER MVI A,OOH ;CLEAR CURSOR DATA CUSR: OUT PORT A ;LOAD DATA PORT , MVI B, OFH ;SET CHARACTER COUNTER CUSRI: MOVA,B ;WRITE SUBROUTINE CALLDSPWT DCRB ;DECREMENT COUNTER JNZ CUSRI ;DIGITO? MOVA,B , CALL DSPWT MVIA, FFH ;SET DATA FOR CONTROL OUT PORT B ;LOAD CONTROL LINES DISP: LXIH, TABLE ;SET TABLE ADDRESS ;MOVE TABLE DATA INTO DISP1: MOVA,M ACCUMULATOR ;LOAD DATA PORT OUT PORTA MOVA,B CALLDSPWT ;LOAD ADDRESS AND CONTROL ;INCREMENT TABLE ADDRESS INXH ;INCREMENT COUNTER INRB ;SET # OF DIGITS MVlA,10H CMPB JNZ DISP1 ;16 CHARACTERS? ;END OF PROGRAM HALT ;SET CONTROL BITS OFF DSPWT: ORI FOH ;LOAD CONTROL OUT PORT C ;SET WRITE BIT ON ANI7FH ;LOAD WRITE OUTPORTC ;SET WRITE BIT OFF ORI FOH OUTPORTC ;LOAD CONTROL RET ,DB ;OC3H TABLE: ;OC9H DB ;OD4H DB ;OD3H DB ;OC1H DB :OD4H DB :OCEH DB ;OC1H DB :OC6H DB :OAOH DB DB :OD3H DB ;OD4H DB :OC8H ;OC7H DB DB :OC9H DB :OCCH APPNOTE14 11-34 Figure 8. Mapped Interface Figure 9• ..'"'"'" .." 110 or Memory Mapped Addressing Conclusion Some designers may wish to avoid the additional cost of a parallel I/O in their system. Structuring the addressing achitecture for the 2416 to look like a set of peripheral or output devices (I/O mapped) or RAM's and ROM's (memory mapped) is very easy. Figure 8 shows the simplicity of interfacing to microprocessors, such as 8080, Z80 and 6502 as examples. Note that although other manufacturer's products are used in examples, this application note does not imply specific endorsement, or recommendation or warranty of other manufacturer's products by Siemens. The interface with the 6800 microprocessor in Figure 9 illustrates the need for designers to check the timing requirements of the DL 2416T and the j1P. The typical data output hold time is only 30 ns for DBE =02 timing; two inverters in the DBE line are added to increase the data output hold time for compatibility with the 50 nS minimum spec of the DL 2416T. The interface schemes shown demonstrate the simplicity of using the 2416 with microprocessors. The slight differences encountered with various microprocessors to interface with the 2416 are similar to those encountered when using different RAMs. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements. APPNOTE14 11-35 SIEMENS Applying the DL 1414/DLX 1414* Intelligent Display® Device Appnote 15 by Dave Takagishi This application note is intended to serve as a design and application guide for users of the DL 1414/DLX 1414 (referred to as 1414 hereafter) alphanumeric Intelligent Display. The information presented covers device electrical description and operation, considerations for general circuit design, and interfacing the 1414 to microprocessors. Electrical & Mechanical Description General The internal electronics in these Intelligent Displays eliminates all the traditional difficulties of using multi-digit light Figure 1a. Block Diagram-DL 1414 ROM • OL 1414 - segmented display. OLX 1414 (OLR 1414, OLG 1414, or OLO 1414) - dot matrix displays. 11-36 emitting displays (segment decoding, drivers and multiplexing). The Intelligent Display also provides internal memory for the four digits. This approach allows the user to asynchronously address one of four digits, and load new data without regard to the LED multiplex timing. Figure 1a is a block diagram of the DL 1414. The unit consists of four 17 segment monolithic LED die and a single CMOS integrated circuit chip. The LED die are magnified to a height of 112 mils by the built-in lenses. The IC chip contains 17 segment drivers, four digit drivers, 64 character ROM, four word x 7 bit Random Access Memory, oscillator for multiplexing, multiplex counter/decoder, address decoder and miscellaneous control logic. covers five of the six "faces". The assembled and tested substrate (ceramic or "PTF" multilayer) is placed within the shell and the entire assembly is then filled with a waterclear IC-grade epoxy. Rgure 1b is a block diagram of the DLX 1414. The unit consists of four (5x7) LED arrays and a single CMOS integrated chip. The IC chip contains the column drivers and row drivers, 128 character ROM, four word x 7 bit Random Access Memory, oscillator for multiplexing, multiplex counter/decoder, cursor memory, address decoder, and miscellaneous control logic. This yields a very rugged part which is quite impervious to moisture, shock and vibration. Although not "hermetic', the device will easily withstand total immersion in water/ detergent solutions. Packaging Packaging consists of an injection-molded plastic lens which also serves as an "encapsulation shell" since it Figure 1b. Block Diagram - DLX 1414 COLUMNS 0 TO 19 TIMING AND CONTROL LOGIC 06 D5 7 BIT ASCII CODE D4 DISPLAY OUTPUT LOGIC ROW DECODER RAM READ LOGIC !ll !!j § 0 ~ '"z D3 02 01 ~ DO ROM COLUMN DATA 128x35 BIT ASCII CHARACTER DECODE 4480 BITS Figure 2. TOP VIEW 12 11 10 0;1 8 Pin DLX 1414 DL 1414 7 ~ 3 12:1 45 b 1 2 3 4 5 6 121110987 B a Function Pin Function 0, Data Input 7 8 9 10 11 12 GND 0, Data Input WRWrife A, Digit Select A" Digit Select Va; 0, Data Input (lSB) 0, Data Input 0, Data Input D. Data Input 0, Data Input (MSB) 123456 1·1 .... .!:!c; iiz .;- 11-37 APPNOTE15 Electrical Inputs to the DL 1414 Figure 3b. Character Set - DLX 1414 POSITIVE SUPPLY +5 volts GROUND ., , DATA LINES The seven data input lines are designed to accept the first 64 ASCII characters. See Figure 3a for the character set for DL 1414 and Figure 3b for the character set for DLX 1414. (The DL 1414 interprets all undefined codes as a blank). ASCII CDO£ 0 o 0 4 0 !5 1 0 1 0 0 1 1 9 1iii-air -!Ii' -t= L.~! fj ~~ !:I !~.i r:~ s:: ~ E~ l~: 2 I 6 ADDRESS LINES The address determines the digit position to which the data will be written. Address order is right to left for positive-true logic. WRITE (Active Low). Data and address to be loaded must be present and stable before and after the trailing edge of write. (See data sheet for timing info). Noles: 1. High = 1 level. 2. Low =0 level. 3. Upon power up, the device will initialize in a random state. Figure 3a. Character Set - DL 1414 "'- DD D1 "'-D2 D6D5 D4 03 L H L L L H L H ( H H L L H H H H L L L H L L H H L H L H L H H L L L H L L H H L L H L ," H L H L L H L H H H H H Operation Multiplexed display systems sequentially read and display data from a memory device. In synchronous systems, control circuitry must compare the location of data to be read to the location or position of new data to be stored or displayed, i.e., synchronize before a Write can be done. This.can be slow and cumbersome. ±J 55 % Cy -T \ !* I n , lJ 3 u, cJ 6 "1 U B 0J -- - L ---- -~ -j, -, ,--, I Q I I \ I I I I I I Data entry in Intelligent Displays is asynchronous and may be done in any random order. Loading data is similar to writing into a RAM. Each digit has its own memory location and will display until replaced by another code. \ I I 0..1 ,, ,--, ,--, _U 1- , "D .1. I LJ r- l_ \I , \I 7 i- [ , I'1.1'I I-{ '-- ,-, F:' LY F( 5 1\ T, JJ r t T I I I LJ \ _I \ "1 ,C- 1\, '" r lj The waveforms of Figure 4 demonstrate the relationships of the signals required to generate a Write cycle. (Check individual data sheet for minimum values.) As can be seen from the waveforms, all signals are referenced from the rising or trailing edge of Write. n lJ v II I I V\I 1\ -- Figure 4. Write Cycle Waveform All Other Input Codes Display "Blank" I ' A S - - - - ! I-'AH AD-A, ~~-------------'-*---------------t~ DO-OS ~--------------------------'-X--------f-71C ViA ~~-----------------"'t_=~w-==r_ °v___· 'I I':=:::'os--I I-;:'OH APPNOTE15 11-38 Figure 6. General Interface Circuit Figure 5. Data Loading Table ADDRESS \iii A, Act DATA INPUT 06 05 04 03 DO DIGIT 3 DIGIT 2 DIGIT 1 DIGIT 0 X X NO CHANGE NO CHANGE NO CHANGE NO CHANGE' l H NO CHANGE NO NO CHANGE CHANGE L NO CHANGE NO CHANGE 02 01 X LLLHLLLL HXXXXXX LLHHLLLLH LH LH L L L NO LHHCHANGE r------------------------------, v,, C HHHLLLHLL LLHLLLHLH LHLHLLHLHH see CHARACTER seT X· DON'T CARE -------------------------------~ General Design Considerations The 1414 does not have a chip enable input. Therefore, each display in a system requires its Write pulse be gated with appropriate address signals. Figure 7a shows the use of a 74154 decoder (4 line to 16 line) for up to a 64 character display. Using the G1 input for display select (address select in a memory mapped system) and the G2 input to gate the Write signal. Another approach (Figure 7b and 7c) which minimizes logic for a 16 or 32 digit display takes advantage of decoding scheme of the 7442 decoder. Using positive true logic, address order is from right to left. For left to right address order, use the "ones complement" or simple inversion of the addresses. For systems with only a 6-bit (abbreviated ASCII) code format, Data line 0 6 cannot be left open. Data 0 6 must be the complement of Data line Os. When using the 1414 on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all inputs. This is most easily achieved with Hex non-inverting buffers such as the 74365. The object is to prevent transient current in the protection diodes. The buffers should be located on the display board . near the displays. Figure 7. Gating the Write Pulse 7a. Local power supply bypass capacitors are also needed in many cases. These should be 6 or 10 volt, tantalum type having 10 I1F or greater capacitance. Low internal resistance is important due to current steps which result from the internal multiplexing of the displays. DISPlAY~G. ,,"--G. A, . A A, A, If small wire cables are used, it is good engineering practice to calculate the wire resistance of the ground plus the +5 volt wires. More than 0.1 volt drop, (at 25 mA per digit worst case) should be avoided, since this loss is in addition to any inaccuracies or load regulation limitations of the power supply. 7b. The 5-volt power supply for the displays should be the same one supplying Vee to all logic devices which drive the display devices. If a separate supply must be used, then local buffers using hex, non-inverting gates should be used on all inputs and these buffers should be powered from the display power supply. This precaution is to avoid logic inputs higher than display Vee during power up or line transients. 7e. Interfacing the 1414 Parallel UO A general and straight-forward interface circuit is shown in Rgure 6 (using DL 1414s but any 1414 display can be used interchangeably in Figures 8,9, and 10). This scheme can easily interface to I1P systems or any other systems which can provide the seven data lines, appropriate address and control lines. The parallel 110 device of a microprocessor can easily be connected to the circuit in Figure 6. One eight bit output port can provide the seven input data bits. Another eight bit output port can contain the address and control signals. Figure 8 illustrates a 16-character display with an 8080 system using the 8255 programmable peripheral interface APPNOTE15 11-39 I/O device. The following program will display a simple 16character message using this interface. Figure 8•. 1S-0Iglt Parallel 110 ~7------~------------' ---,I !GNO I I :I - I I I ___ .l I I ~----------------------- Sample 110 Program DISP: DISP1: DSPWT: TABLE: The interface with the 6800 microprocessor in Figure 10 illustrates the need for designers to check the timing requirements of the 1414 and the IlP. The typical data output hold time is only 30 ns for DBE=02 timing; two inverters in the DBE line are added to increase the data output hold time for compatibility with the 50 ns minimum spec of the 1414. Conclusion iI INIT: output devices (I/O mapped) or RAMs and ROMs (memory mapped), is very easy. Rgure 9 shows the simplicity of interfacing to microprocessors, such as 8080, l80 and 6502 as examples; MVI A, BOH OUT CONTROL MVI B,OOH LXI H, TABLE MOVA,M OUT PORTA MOVA, B CALL DSPWT INXH INRB MVIA,10H CMPB JNZ DISP1 HALT ORI FOH OUTPORTB ANI7FH OUTPORTB ORI FOH OUT PORTB RET DL DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB ;CONTROL DATA MODE 0 ;LOAD CONTROL REGISTER ;SET COUNTER =0 ;SET TABLE ADDRESS ;MOVE TABLE DATA TO ACCUMULATOR ;LOAD DATA PORT Note that although other manufacturer's products are used in examples, this application note does not imply specific endorsement, or recommendation or warranty of other manufacturer's products by Siemens. The interface schemes shown demonstrate the simplicity of using the 1414 with microprocessors. The slight differences encountered with different microprocessors to interface with the 1414 are similar to those encountered when using different RAMs. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements. Figure 9. Mapped Interface ;LOAD ADDRESS AND CONTROL ;INCREMENT TABLE ADDRESS ;INCREMENT COUNTER ;SET # OF DIGITS ;16 CHARACTERS? ;END OF PROGRAM ;SET CONTROL BITS OFF ;LOAD CONTROL ;SET WRITE BIT ON ;LOADWRITE ;SET WRITE BIT OFF ;LOAD CONTROL ;OC3H ;OC9H ;OD4H ;OD3H ;OC1H ;OD4H ;OCEH ;OC1H ;OC6H ;OAOH ;OD3H ;OD4H ;OCBH ;OC7H ;OC9H ;OCCH Figure 10. Gating the Write Pulse I/O or Memory Mapped Addressing CE CE Some designers may wish to avoid the additional cost of a parallel I/O in their system. Structuring the addressing architecture for the 1414 to look like a set of peripheral or 11-40 APPNOTE15 SIEMENS Silicon Photovoltaic Cells, Silicon Photodiodes and Phototransistors Appnote 16 Optoelectronic components are increasingly used in modern electronics. Main fields of application are Iight barriers for production control and safety devices, light control and regulating equipment like twilight switches, fire detectors and facilities for optical heat supervision, scanning of punched cards and perforated tapes, positioning of machine tools (for measuring length, angle and position), of optical apparatus and ignition processes, for signal transmission at electrically separated input and output, as well as conversion of light into electrical energy. Lately, new fields of application opened up for optoelectronic components in the photo industry in form of exposure and aperture control and for automatic electronic flashes. I R sound transmission and I R remote control are new modes in the radio industry. 'Computer diagnosis and LED displays in instrument panels are possible applications in the automotive industry. Depending upon the application either photovoltaic cells or photodiodes are used. Wherever amplifiers with high input impedance are required, photodiodes are to be preferred. Phototransistors are predominantly used in connection with transistor circuits or to drive' integrated circuits, whereas photovoltaic cells 'are preferred to scan large surfaces, if a strictly linear relation between light and signal level or optimum reliability is required. PHOTOVOLTAIC CELLS Photovoltaic cells are active two-poles with a comparably low resistance that has its cause in the voltage of the voltaic cell, which may only be ,some tenth of a volt. For practical application, this characteristic requires special attention. The open circuit voltage VL rises almost logarithmically as a function of the illuminance and, particularly in case of planar photovoltaic cells, reaches high values already at very low illuminances. It is independent of the size of the photovoltaic cell. 'K The short circuit current increases linearly with the illuminance. It is proportional to the size of the exposed photosensitive area at uniform illuminance. 11-41 The maximum energy of the photovoltaic cell is yielded in a load resistance RL of approx ~L . Practical short circuit operation and thus proportion· ality between optical and' electrical signal is given at load resistance up to 2 ~~ . This relation can be applied to an open circuit voltage of;?; 100 mV. 'K In any type of application the highest value of has to be used. A simple procedure to gain information on the load resistance required'is to measure VLand at given illumination conditions, irrespective of the radiation source. In case the voltage yielded by the photovoltaic cell is insufficient it can also be used in diode operation at reverse voltages liP to 1 V. In such case the flowing dark current has to be taken into consideration. 'K The rise time of a signal voltage delivered to a load resistor by the voltaic cell primarily depends -on the operating conditions. There are two distinctive borderline cases: 1. Load resistor smaller than the matching resistor (tendency toward short circuit operation). 2. Load resistor larger than the matching resistor (tendency to open circuit operation). In case 1) the photovoltage rise is analogous to the charging of a capacitor via a resistor from a constant voltage source. In photovoltaic cells the junction capacitance C; must be charged. The rise occurs by the time constant r = RL • Cj , RL being the load resistor (the low ohmic resistance of the photovoltaic cell is considered negligible). In case 2) the photovoltage rise is similar to the charging of a capacitor by a constant current mode. The rise time t, of the photovoltage follows the equa· tion: 'K is the short·circuit current under given illumination conditions. This relation only holds true for values of Vp less than 80% of the final value of the open circuit voltage. The principal characteristic of the rise. time of photovoltaic cells is shown in the following diagram: SILICON PHOTODIODES These photodiodes have a PN junction poled by a reversed bias. The capacitance which decreases with a growing reverse voltage reduces the switching times. The .PN junction is of easY'accessto ihe light. Without illumination a very small reverse current flows, the socalled dark current. Light falling onto the surrounding of the PN junction generates charge carrier pairs there that lead to an increase of the reverse current: This photocurrent is proportional to the illuminance. Therefore, photodiodes are particularly well suited for quantitative light measurements. The planar technique has 2 essential advantages: The dark currents are considerably smaller than for comparable photo electric components in non-planar technique. This leads to a reduction of the current noise arid thus to a decisive improvement of the signal/noise ratio. --I Case 1) Rise time according to the equation Vp = IK ' RL ' (1 - e- _ t_ _ ) . RL' Cj Time constant T= RL ' q. Rise time t = Vp ' Cj . r (K . fall time in both cases T = RL ' q Case 2) Modulation transients can, under certain conditions, lead to a modification of the above diagram .. photons of dilierenf wovelenglhs (blue,red,lnfrared) (hght! ' P'region E.g. At very low time constants (particularly in short circuit operation) the actual pulse shape of the short circuit current that deviates from an ideal square pulse has to. be noted. See diagram. ~ i" __ In· . t . char{gelregIOn •. N regIon "N+reg,on melolconlacl Figure 1 Figure 1 shows the' basic design of a photodiode. The .Iimit of the space charge region is indicated by a dashed line .. --I --I· J ~ J-'- ____ts~~~e " IK t J,lde -.z.~ coniOCt/ -!~ JHuminafionln· . lux. t1· With.out illumination only a small dark current 10 flows through the PN junction as a result of therrrially generated carriers. ' With light, additional charge carrier pairs (hole electron pairs) are generated in the P arid N region by the radiation quantum (internal· photo effect). Carriers originating in the space charge region are immediately extracted because of the electrical field present there, i.e. the holes in the P and th'e electrons in the N direction. Carriers from the remaining field must first diffuse into the space charge region in order to be separated there; If holes and electrons recombine before, they do not contribute to the photocurrent. Thus, the photocurrent Ip is a combination of the drift current of the space charge region and the diffusion current of the·P and N area. Ip is proportional to the incident radiation intensity. Since lo.is very .small for diodes, it can be neglected in thE! equation Ip = Ip + 10 , Subsequently one gets a linear correlation between Ip and the inc'ident radiation intensity over a very wide range:' .. Relative spectral sensitivity II 5.., = flkl 100 -,-----,----,---;"1<'--,---. r---t--1--1-/--/---jI\-\c - - eo f-t--f-'--+I---I-\-H----i /\ J 40 t--t:-f--+----+----t-----j-\---1 \ V ZO / \ / 600 \ Diodes with a small space charge width are termed PN diodes, diodes with a large space charge width PIN diodes. 800 l000nm -A PN diodes have the diffusion current as dominating part of the photocurrent whereas it is the drift current in the case of PI N diodes. 11-42 As the capacitance of the space charge widttJ W is inversely proportional, the PIN diode is characterized by a smaller capacitance than a PN diode of identical surface. The capacitance of (most of) the diodes reads: Co-A Junction capacitance BS 8 function of = f (VA) WO~,,-.-'-'-r-r-r'-, c t 150 t-t-t-t-HHH--i--i--i I, 50 "''.,.... 0 ...... --- max 1- .. _____________ .. +-- base Figure 3 Figure 3 shows the design of a phototransistor. The emitter and base leads are affixed laterally to make the base diode most easily accessible to light. The large collector zone ensures that the most possible radiation quanta are abo.srbed there and will contrib· ute to the photocu rrent. Contrary to. a photodiode, a linear interconnection between the incident radiation intensity and the photocurre"t Ip exists only in a small region, since the current gain 8 depends on the current. Figure 4 shows typical current voltage characteristics of a photo· transistor. Since the reverse current ' CBC of the base diode is amplified in the same way as the photocurrent Ip, the signal/noise ratio of the phototransistor is the same as that of the photodiode . tvncurve:: Photocurrent as a function of the coUector-emitter voltage Ip = f (Vee) rnA Ev '" parameter e.g. BPX 38 mi"F 10 Figure 2 ~ emdler-- lIiIm - cattector Fig. 2 shows the capacitance as function of the voltage for a PIN diode, e.g. BPY 12. reverse voltage C ~~c~"'~tt~Q[~t~5=~\='1=1\:::DIII~~cQ~nt~Qc~t~~O'id. metot---_a_ _ _ _ _ _ _ _ _ _ _ The less the doping N of the basic material and the higher the applied voltage V, the lower the capacitance. pi light WV 10' ----VA lOOOlxf- Ip SI LICON PHOTOTRANSISTORS The introduction of the planar technique allows to produce phototransistors of small dimensions. They are used as photoelectric detectors in control and reg· u lating devices. The photoelectric transistors are excellently suited as receivers for incandescent lamp light, as their maximal photosensitivity lies near the infrared limit of the light wave spectrum. In its mode of operation a photoelectric transistor corresponds to that of a photodiode with built·in amplifier. It has a 100 to 500 times higher photo· sensitivity than a comparable photoelectric diode. The photoelectric transistor is preferably operated in an emitter circuit and acts similar to an AF transistor. Unilluminated only a small collector·emitter leak· age current flows. It amounts to approximately Id = 8 • ,CBC, 8 standing for the current amplification and ICBC for the reverse current of the base diode. At illumination the reverse current of the base diode increases by the photocurrent Ip'. Thus, one receives for the photocurrent Ip -8(/cBC + Ip'). ' CBC Consequently, the photocurrent of a transistor is a function of the photocurrent /p' of the base diode and the current amplification 8. As 8 cannot be increased indefinitely, an as high as possible photosensitivity of the base diode is aimed at. 11-43 J..-- r 300lx f- 7"1-~ '-I-c- -- --+-+-+_-+---+1 - 1 1-__ to' ~4~ J. ~~ -f- ID-2 ~r:::-- - r-+t-f=i-~ _L~_ '---'-----'-----L--L--'--_L o 5 10 Figure 4 m m~ ~ ~ ~ ~ ~ V -itE For the versatile applications, special type photo· transistors are available. BPY 62, BPX 43, BP 101 and BP 102 requiring no lens on the receiver side are suit· able for general applications. BPY 62 is outstanding for a higher cut off frequency, BPX 43 for a higher photo-sensitivity. In case the appl ication demands a lens on the detector side, this requirement is met by BPX 38. The flat window of this phototransistor makes a precise reo production of the focal spot on the photosensitive surface of the transmitter system possible. On account of the larger system surface, the adjustment and align' ment of the transistor case to the light emitter causes less difficulties. Mounting Instructions For Silicon Voltaic Cells and " PhotOciiodes, open design witho(.t casing As, silicon is an inherently brittle material, the photo· electronic component should be shielded from pressure or tension. Contact points lire particularly endangered. Should tension come to bear on the solid wire leads which, ,for technological reasons, are alloyed to a very thin P layer it should only be parallel to the surface and must not exceed 200 p (pond). Leads may only be bent 3 mm' offthe outer edge of the photoelectric component. Photoelectric components can be ceo mented onto metallic or plastic supports but the ex· pansion coefficient of the material has to be taken into consideration to prevent mechanical strain be· tween support and photoelectric component at change of temperature. An epoxy resin is to be used to ceo ment or encapsulate the photoelectric component. It has to be colourless and should not grow darker with time. After curing, the epoxy resin must not have any gas occlusions (filter effect). The epoxy resin EPICOTE 1621) together with the hardener LAROMIN·C 2602 ) are particularly suited for the en· capsulation of photoelectric components. 100 weight parts EPICOTE 162, 3B weight parts LAROMIN·C 260 are to be mixed well and re;pain workable for about 30 minute~. After that period of time the epoxy becomes' viscid'. All material to be encap· sulated has to be drY, dust· and grease·free. Should bubbles form" after the encapsulation it is advisable to raise the curing process temperature to 100°C for a short time. It makes the bubbles come to the surface and burst. The normal curing temperature lies between 60 and BO°C. The curing time is 1 hour, it lessens with higher temperature. When working 'with epoxy great care should be taken, that neither the resin nor the hardener touches the skin. The quickly binding glue SICOMET B53 ) proves adequate to cement open·design Si diodes or photovol~aic cells. The light sensitive surface of the photovoltaic cell' is coated with a protective lacquer and should not be contaminated while cementing. At the types mentioned, the user may preset the operating point of the phototransistor by wiring the base leads. The rapidity of response may thus be increased and the photosensitivity reduced. A fixed bias can reverse the phototransistor. Coincidence cir· cuits can'be realized by scanning this bias. The phototransistor ,BPY 61 meets the require",ent for high packing density. It is enclosed in a miniature glass case of 13 mm x 2.1 RIm 0 and its photosensi· tivity is by the factor 500 to 1000 higher than small· surface silicon photovoltaic cells. Also the BPX 62 in micro ceramic case is, provided for use on PC boards at minimum space requirements. The tolerance range of the light sensitivity is subdivided into four sensi· tivity groups. There is no' base contact. Light is the controlling element whiC;h produces a correspondingly high collector current via the emitter·base path of the transmitter system, multipiied by the factor of the current gain. The rise and fall times depend on the illuminance and decrease With rising intensity. Main applications are scanning of binary coded discs, films and punched cards. Under limited mounting' conditions the following amplifier must often be connected by relatively long leads. There is only little danger of interference pick· up since a sufficiently large signal to noise ratio is ensured by high photoelectric currents. R.Jettv. spectral ••neltlvity 'h Sr•• e·' (A.) 100 BO 60 , o~, \00 600 800 1OO0nm ---'1 1) Registered trademark (Shell Chemicall , 2) Registered trademark (BASF) , 3) Registeredtrademart (Sichel·Werke. Hannover) 11-44 SIEMENS Applying the DL 3416/DLX 3416* Intelligent Display® device Appnote 17 by Dave Takagishi This application note is intended to serve as a design and application guide for users of the DL 3416!DLX 3416 (referred to as 3416 hereafter) alphanumeric Intelligent Displays. The information presented covers device electrical description and operation, considerations for general circuit design, and interfacing the 3416 to microprocessors. Refer to the specific data sheet and other Siemens Appnotes for more details. plexing). The Intelligent Display also provides internal memory for the four digits. This approach allows the user to asynchronously address one of four digits, and load new data without regard to the LED multiplex timing. Figure 1a is a block diagram of the DL 3416. The unit consists of four 17-segment monolithic LED dies and a single CMOS integrated circuit chip. The LED dies are magnified to a height of 225 mils by built·in lenses. The IC chip contains 17 segment drivers, four digit drivers, 64 character ROM, four word x 7 bit Random Access Memory, oscillator for multiplexing, multiplex counter! decoder, cursor memory, address decoder, and miscellaneous control logic. Electrical & Mechanical Description The internal electronics in these Intelligent Displays eliminates all the traditional difficulties of using multi-digit light emitting displays (segment decoding, drivers, and multiFigure 1a. Block Diagram - DL 3416 ~ SEGMENT DRIVERS ROM ~ I /')... " 17LINES Z7 I-L...- osc/ DISPLAY MULTIPLEXER ml*! m ~ 3 t.. RAM DIGIT DRIVERS r I INPUT CONTROL I CURSOR MEMORY J ~. [ I I [ [ll [II •[ CD U'I..,II..., N ... 1 0 CCQCCCC 'OL 3416 - segmented display. DLX 3416 (OLR 3416, DLG 3416, or OLO 3416)-dot matrix displays. 11-45 i" J I;; 2 I 1 0 I Rgure 1b is a block diagram of the DLX 3416. The unit consists of four (5x7) LED arrays and a single CMOS integrated chip. The IC chip contains the column and row drivers, 128 character ROM, four word x 7 bit Random Access Memory, oscillator for multiplexing, multiplex counter/decoder, cursor memory, address decoder, and miscellaneous control logic. of the six "faces'. The assembled and tested s~bstrate ("PTF" multilayer), is placed within the shell and the entire assembly is then filled with a water-clear IC-grade epoxy. This yields a very rugged part. which is quite impervious to moisture, shock and vibration. Although not "hermetic", the device will easily withstand total immersion in water/detergent solutions. Packaging Packaging consists of a transfer-molded nylon lens which also serves as an "encapsulation shell" since it covers five Flgure1b. Block Diagram - DLX 3416 COLUMNS 0 TO 19 TIMING AND CONTROL LOGIC DISPLAV OUTPUT LOGIC ROW DECODER COLUMN DATA CURSOR MEMORV BITS 0 TO 3 CUE Figure 2. TOP VIEW DL 3418 ~ ~ DLX3418 '" .. , ,, , -: :~:: :··1- .I. " t,'.'. 11-46 Pin Function Pin Function 1 .2 3 4 6 6 7 8 9 CE 1 Chip Enable CE2 Chip Enable CLRClear CUE Cursor Enable CU Cursor Select WRWrite A, DIgit Select A. Digit Select 10 11 12 13 14 16 16 17 18 GND D. Data Input 0, Data Input 0, Data Input D. Data Input D. Data Input 0, Data Input b, Data Input Bi. Display Blank Va; APPNOTE17 Electrical Inputs to the 3416 Figure 3b. Character Set - DLX 3416 Positive supply +5 volts Ground ASCII COD£ Data Lines The seven data input lines are designed to accept the first 64 ASCII characters. See Rgure 3a for character set. (The DL 3416 interprets all undefined codes as a blank). See Rgure 3b for character set for DLX 3416. Cursor Enable. Activates Cursor function. Cursor will not be displayed regardless of cursor memory contents when cue is Low. Display Blank (Active Low) Blanking the entire display may be accomplished by holding the BL input low. This is not a stored function, however. When BL is released, the stored characters are again displayed. BL can be used for flashing or dimming. Figure 3a. Character Set - DL 3416 , '. , '" !:H:%I%I~'I' ~ , L H H· M H L ~. L ,, +"-H--o-+----t-:--r==-t-'+-::=--+-::"+:o-'-:-+---::+-::-+-=-+-+-1----t--:=-I1 ( ) + , It t_ .. -, -? 'I'" a ( ,3 i 'lSi 6J]=--,-,'B=-r-=,9+-=---I'_'_-+=+-==-+--=-I--c-11 r1 OJ F~ ]1[ilJl['r G HiI tl H L.., * \ +,. M II \ 1 J " IV , 1ii·ii~.~-ij5::~..~~i~~jL~::H~.:r:~:;:E;:E~i~: 0 o , ,~~~~' i Ii :A: ~: 0 2 4 I , , o §060Qt~~£¥ ::.,:::::::: ~~ .+. , ..... :: ..... i2i 1. i:~ :~: ,"i ;:i) ~i ]:a:: 0 Noles: 1. High=1level. 2. Low =0 level. 3. Upon power up, the device will initialize In a random state. Clear Memory Clearing of the entire internal four-digit memory may be accomplished by holding the clear line (CLR) low for one complete internal display multiplex cycle, 15 mS minimum for DL 3416, 1 mS for DLX 3416. Less time may leave some data uncleared. CLR also clears the cursor memory. Display Blanking Cursor Select (Active Low) This input must be held high to store data in data memory and low to store data into the cursor memory. : I ~ Hit I : I ~ I:T;· 0 0 3 Write (Active Low) Data and address to be loaded must be present and stable before and after the trailing edge of write. (See data sheet for timing information). CUE 0 000 Address Lines The address determines the digit position to which the data will be written. Address order is right to left for positive-true logic. Chip Enable (Active High) Chip Enable (Active Low) This determines which device in an array will actually accept data. When either or both chip enable is in the high state, all inputs are inhibited. Clear (Active Low) The data RAM and cursor RAM of the DL 3416 will be cleared when held low for 15 mS. The minimum for the CLR is 1 mS for the DLX 3416. DO DI D2 Blanking the display may be accomplished by loading a blank, space or illegal code into each digit of the display or by using the (BL) display blank input. Setting the (BL) input low does not affect the contents of either data or cursor memory. A flashing display can be realized by pulsing (BL). Operation Multiplexed display systems sequentially read and display data from a memory device. In synchronous systems, control circuitry must compare the location of data to be read to the location or position of new data to be stored or displayed, i.e., synchronize before a Write can be done. This can be slow and cumbersome. Data entry in "intelligent displays· is asynchronous and may be done in any random order. Loading data is similar to writing into a RAM. Each digit has its own memory location and will display until replaced by another code. The waveforms of Figure 4 demonstrate the relationships of the signals required to generate a write cycle . LJ " ALL OTHER CODES DISPLAY BLANK APPNOTE17 11-47 If the user does not wish to utilize the cursor function, the cursor enable (CUE) can be tied low to disable the cursor function. A flashing cursor can be realized by simply pulsing the CUE line after cursor data has been stored. Figure 4. _ CU.Ao.A, -------I '-'--. ta• 4V~ CEl.m ~:~, lI I-- to. -----* I :~-ov DATA 0'6 I General Design Considerations ---f c:: i I I :.; I----- tDM ---l --I t. i::-::-:-:-::-:-:---:-:"':':~ Using Positive true logic, address order is from right to left. For left to right address order, use the ·ones complement" or simple inversion of the addresses. For systems with only a 6-bit (abbreviated ASCII) code format, Data Line De cannot be left open. Data De must be the complement of Data Line 05' (Check individual data sheet for minimum values). As can be seen from the waveforms, all signals are referenced from the rising or trailing edge of write. Cursor For the DL 3416 the cursor function causes all 16 linesegments of a digit to light~ For the DLX 3416 the cursor function causes all dots to light at 50% brightness. The cursor can be used to indicate the position in the display of the next character to be entered. The cursor is not a . character but overrides the display of a stored character. Upon removal of the cursor, the display will again show the character stored in memory. The cursor can be writtel') into any digit position by setting .. the cursor enable (CUE) high, setting the digit address (A1, Ae), enabling Chip Enable, (CE1, CE2), cursor select (CU), Write (WR) and Data (Do)' A high on data line Do will place a cursor into the position set by the address Ae and A1 • Conversely, a low on Do will remove the cursor. The cursor will remain displayed after the cursor (CU) and write (WR) signals have been removed. During the cursor-write sequence,·data lines 0 1 through De are ignored by the 3416. FigureS. A "display test" or "lamp test" function can be realized by simply storing a cursor into all digits. Because of the random state of the cursor RAM after power up, if the cursor function is to be used, it will be necessary to clear cursors initially to assure that all cursor memories contain its zero state. This is easily accomplished with the CLR input. When using the 3416 on a separate display. board having more than 6 inches of cable length, it may be necessary to buffer all inputs. This is most easily achieved with Hex non-inverting buffers such as the 74365. The object is to prevent transient current in the protection diodes. The buffers should be located on the display board near the displays. Local power supply bypass capacitors are also needed in many cases. These should be 6 or 10 volt, tantalum type having 10 I1F or greater capacitance. Low internal resistance is important due to current steps which result from the internal multiplexing of the displays. If small wire cables are used, it is good engineering practice to calculate the wire resistance of the ground plus the +5 volt wires. More than 0.1 volt drop, (at 25 mA per digit worst cast) should be avoided, since this loss is in addition to any inaccuracies. or load regulation limitations of the power supply. LOADING OATA DIGiT DIGIT DIGIT DIGIT Bl: erleE2cuEfilWRf[Ji A, 40 06 0504 03 02 0100 ~ I: H H It X x L H X L L , , H L L H L L Ie l H H H L H H L H L H L H H H l L H L HiL H H H H H H H L H , H H H H H L L H H I LIH , , H 'T , , LIL, , H H H H H H H· l H L H ~ H L L "L I 0 NCNCNCNC XX NCNCNCNC , , ~UHI HH , , H H .L H L.... :. L LIH LIL H L 2 xxx XX H L , X L '1'1' ,,, ,,, , X L 'H L LOAPING CURSOR H H HHXX H l H 3 PA£YIOUS CHARACTERS H H H - - .. .. ··· . . ····. . , , , ,, , , , , , , , , , , ,, ,, ,,, ,, ,,, ,,, ,,, , , , ,, ,x ,x ,x ,, ,, H H H H X X X X X x ~ 0".,"1 care NC·NDc ...... 'romI"V iOU5Iydillllayeddl..act." X X x : NC :~ ~C C B : Ne LL PCNeA L HOC 8 E H H H H x 0 K B e ~~AAACT!~_S~ The 5-volt power supply for the displays should be the same one supplying Vee to all logic devices which drive the display devices. If a separate supply must be used, then local buffers using hex non-inverting gates should be used on all inputs and these buffers should be powered from the display power supply. This precaution is to avoid logic inputs higher than display Vee during power up or line transients. f.larmoID.l.E:;;-E.iIIIIl ............ Sta,.dC~I_. NC NC NC NC II NC II II NC .. .. •• " •• " II II • "•" E E E 11-48 APPN01E17 Interfacing the 3416 INIT: A general and straight-forward interface circuit is shown in Figure 6. Figures 6.7.8. and 9 show DL 3416's being used. but any displays from the 3416 family can be used interchangeably in these examples. This scheme can easily interface to I1P systems or any other systems which can provide the seven data lines. appropriate address and control lines. CUSR: MVI A.SOH OUT CONTROL MVI A.OOH OUT PORTA MVI B.OFH MOVA. B CALL DSPWT DCRB JNZCUSRI MOVA. B CALL DSPWT MVIA.FFH OUT PORT B LXI H. TABLE MOVA.M CUSRI: Figure 6. General Interface Circuit DISP: DISP1: rv;---------------------------------' I GNO ;WRITE SUBROUTINE ;DECREMENT COUNTER ;DIGIT O? ;SET DATA FOR CONTROL ;LOAD CONTROL LINES ;SET TABLE ADDRESS ;MOVE TABLE DATA INTO ACCUMULATOR ;LOAD DATA PORT OUT PORTA MOVA. B CALL DSPWT I I I ;CONTROL DATA MODE 0 ;LOAD CONTROL REGISTER ;CLEAR CURSOR DATA ;LOAD DATA PORT ;SET CHARACTER COUNTER 0".0. leo CUE Ii[ INXH INRB MVIA.10H CMPB JNZDISP1 HALT DSP.WT: ORI FOH OUTPORTC ANI7FH OUTPORTC ORIFOH OUTPORTC RET TABLE: . DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB DB n A, A. IL ___________________________________ "'-_'-.J ParallellJO The paral!ell/O device of a microprocessor can easily be connected to the circuit in Rgure 6. One eight bit output R0rt can provide the seven input data bits and the cursor (CU). Another eight bit output port can contain the address and chip enable information and the other control signals. Rgure 7 illustrates a 16-character display with an 8080 system using the 8255 programmable peripheral interface I/O device. The following program will display a simple 16-character message using this interface. Figure 7. 16-01glt Parallel 1/0 System ~~~ 1" I mtDIf-:-::-\ I DATA ~ I I I I I ---~ ;16 CHARACTERS? ;END OF PROGRAM ;SET CONTROL BITS OFF ;LOAD CONTROL ;SET WRITE BIT ON ;LOADWRITE ;SET WRITE BIT OFF ;LOAD CONTROL ;OC3H ;OC9H ;OD4H ;OD3H ;OC1H ;OD4H ;OCEH ;OC1H ;OC6H ;OAOH ;OD3H ;OD4H ;OC8H ;OC7H ;OC9H ;OCCH r--------------------------------------, ---,I I I I I I I I ;LOAD ADDRESS AND CONTROL ;INCREMENT TABLE ADDRESS ;INCREMENT COUNTER ;SET # OF DIGITS I" 1- I .. ..... ,-' PCH1T A leu 7 -{ -{ 7 u. 7 m . --- ,... ~ ot.3416 ~. .... . DL3416 DI D' - IR - IH - If I I I • - ... DL 3418 ~ I i DL3418 ft I I I I I I I .: III I I I I I lA, A. A. A I I I In L. __ I I I I I I I I I I I -r.:rd;!' I I I I I I I • .L.!. -- -- -------- 11-49 I - I _.J APPNOTE'7 Figure 8.. Mapped Interface Figure 9. I/O or Memory Mapped Addressing Conclusion Some designers may wish to avoid the additional cost of a parallel 1/0 in their system. Structuring the addressing achitecture for the 3416 to look like a set of peripheral or output devices (I/O mapped) or RAM's and ROM's (memory mapped) is very easy. Rgure 8 shows the simplicity of interfacing to microprocessors, such as 80BO, ZBO and 6502 as examples. Note that although other manufacturer's products are used in examples, this application note does not imply specific endorsement, or recommendation or warranty of other manufacturer's products by Siemens. The interface with the 6800 microprocessor in Rgure 9 illustrates the need for designers to check the timing requirements of the DL 3416 and the I1P. The typical data output hold time is only 30 ns for DBE =02 timing; two . inverters in the DBE line are added to increase the data output hold time for compatibility with the 50 nS minimum spec of the DL 3416. The interface.schemes shown demonstrate the simplicity of using the 3416 with microprocessors. The slight differences encountered with various ITlicroprocessors to interface with the 3416. are similar to t~ose encountered when using different RAMs. The techniques used in the examples were shown for their generality, and any display of this family are interchangeable in these examples. The user will undoubtedly invent other schemes to optimize his particular system to its requirements. . APPNOTE17 11-50 SIEMENS Guidelines for Handling and Using Intelligent Displays® Appnote 18 by Malcolm Howard Dave Takagishi IMPORTANT! This appnote contains vital Information for optimum design and performance of Intelligent Displays_ Siemens Opto Intelligent Displays and Programmable Displays are one, four or eight-digit LED display modules, having 16, 17 segment or 5x7 dot matrix fonts and on-board CMOS integrated circuits. The CMOS chip provides segment decoding, drivers, multiplexing and memory for easy interfacing to most microprocessors. Since Siemens first began manufacturing Intelligent Displays, questions concerning their use have arisen. This application note is a guide for the design and handling considerations of these products. System Design Consideration In the practical circuit (Le., design of PCB, etc.) the voltage to any input must never exceed the power inputs (Le., GNDkOGRAI1WILLDISPlAYfOUR-3;.>CIIARJ\CTtRI1ESSAG[S .. 6 ;"INA"TlHES-SOUARr.-HOIJINGHESSAOr.f"ORHAT.lTIlS[S" h flV[ or rHETIHE 1[51£0 SI[H[NS/LITROHH DL-:!U6 .. '*INIElLlGENTDJ51"lAYS(R) .. ' •••• n ................................. " .................... . , B 9 10 JO'tt(lkUAkY19S:! 11 12 IN CPl A.P:! II 13 JBO Jill JJjI:! JIIJ AUSI AUS::' AUS) AUS. U 15 16 17 Jill" 18 AUStl 19 "(IV HOI.' 20 JHP 21 AUS2' HDV MDY JMf' MDV HDV JMP /lDV /lDV ~~ 2l HAUSJ, ~~ 26 27 AUS~' ~; gg:: ~:~~ D069FP OD6C036f 006[9J OD6F13 ",KCYPDLLINr. m!~" 0076fll 007724DO 0 R::','LOIUTEXTl-lI ~~~: ~:DO fU.'HIGIHTEXTl-t) ANrANG 007Cfll 0071'1 64DO R~.'UIWCT[XT~-U RJ."UGlt(lEllT~-ll ANrANG ~~~~ ~~ R2 •• lDWCTEXTJ-1) kl.'HIGlI(TUrJ-i) D081 :;~45:>9:;4 008::;41555347 009'1'41424::;20 IINr,UIG R~"lOW(H;XH-1I ~3"HIGII(T[xU""IJ lOANFIINO,STIITT JI /lDV MOV MDV /lOV J~ tNC 36 DJNZ 37SCHLI CAll J811I1LT' JZ 39 NOV 40 /lDV ~I SCItL1' XCII gg;~ ~~;~~g~g 009520202020 00'1'920202020 D0902020:2020 DOA100 DO",2544551154 DOIl6415::;::;347 OD1I1I41424520 32 33 34lDECH, 42 :! INC ~~~z 45 46 ItOV :>1 CA!.L liD'" CA!.L HDV CALL NOV 5~ CALL :>J 54 NOV CAl.L 1\0\1 47 48 4'1' 5':1 ':'i5 56WII"TI:. J&lANI<.1t1RIIN20H-32H INEXTCHIIRACTEII 'LIISlCHIlRAClE.[( ==~ ~~;:~:~: 00e620202020 ~~§ ~g~g~:~: ODC3544::;::;0::;4 001:741555347 00C941424520 OOCF33202020 : ~~~rlJ~t:~t~~G: T~l SIUY 'CHIP Sr.LECT:! DISf'lAY ggg~ ~g~g~~~~ 000F2D202020 DDEJDD i~~~ ~~~~!iii JTr 57 JHP 59 WEITER, ~JNZ ~~ Jill" :~ H g~: ~g04 00:;C39 ~gg~ ~~ oo:;ro:! 006018 OO.Sl£1r:'l1l 006393 ;:~ f~~~ ~~hli~~II" 671111$491,"OV 68 DUTl 69 IN1: 70 MOl,! n 73 74 :~~~ ~~2D2D20 DUll INC I.lJtli IICY '" '" '" '" '" DIDIBJ 0lD220202020 Dl06DO :~~T~~~f'~TO~nn ;~~~~M~lHE 66I1Uo;;4f1Y,HDV 71 DOF42D20202D 00FB2D202D20 :! PIT IIDDRCSS ..~~f.~ II~.", 11.114 PI,,,. r1~" "'US"Dl =~:N~t~:g~s AUSI OOOC EINFUI:0064 lUll ODC3 HALT TEXT4 D02F" 'lOU :~~~:1 ~~~: ~~~~:'t" :::r IISIlENIILYCOHf'lETE, Fig. 4 11-56 NOE[(RORS IIUS4 DOlE ~~~~ER g:~g DATEN 001f TEXT .. 00A2 SIEMENS Silver Plated Tarnished Leads Appnote 21 by Dave Takagishi Silver plating, as an alternative to gold plating, has excellent electrical conductivity, LED die attach, and wire bonding properties. But tarnished leads can cause soldering difficulties. This application note will discuss silver tarnish and solderability. Type RMA: Mildly Activated Rosin Flux A WW rosin flux with a small amount of activating agent. Flux its residue are non-conductive and noncorrosive. Type RA: Activated Rosin Flux Similar to RMA flux but with greater amounts of activating agents. Flux and its residue are nonconductive & non-corrosive. Types AC: Organic Acid Flux A fully active organic flux with greater flux ability than a rosin flux. Due to its organic nature, the flux residues decompose at soldering temperatures but must be removed to prevent conductive and corrosive aftereffects. Recommended flux types with respect to the various tarnish amount: 1. Tarnish free may be soldered with Alpha 1~O, Kester 135, or equivalent Type R flux. (Identified by a bright surface) 2. Minor tarnish will require Alpha 611, Kester 197, or equivalent Type RMA flux. (Identified by a medium bright surface) 3. Mild tarnish will require Alpha 711, Kester 1544, or equivalent Type RA flux. (Identified Bya light tint surface) 4. Moderate tarnish will require Alpha 830, Kester 1429, or equivalent Type AC flux. (Identified by a light tan color on the surface) 5. If severe tarnish is present, as identified by a· dark tan to black color, a cleaner/surface conditioner Alpha 140, Kester 5560, or equivalent must be used. A few seconds and at room temperature is all that is required. These conditioners are acidic; therefore, a thorough wash and rinse is recommended. Care is advised to only immerse the leads and not the body, because optical properties may be damaged. Effects of Tarnish Solderability means the metals or surfaces to be soldered must be types that will go into solution with tin-lead alloys. When exposed to the atmosphere, all metals form oxides or tarnish of varying degree which reduce the ability of solder alloys to adhere to the metals. Silver tarnish is formed when silver chemically reacts with sulfur to form silver sulfide (A92 S). This tarnish is the reason for poor solderability of silver plated products. However, the amount of tarnish and the kind of solder flux used actually determine the solderability. As the tarnish increases, a more active flux must be used to penetrate and remove the tarnish. Prevention and Handling Prevention is the best method for inhibiting the formation of tarnish and insuring good solderability of silver plated devices. To inhibit silver tarnish, do not expose the silver . plating to sulfur and sulfur compounds. One source of sulfur is free air. Another is paper products such as bags and cardboard. Listed below are a few suggestions for storing silver plated products. 1. Store the unused devices in polyethylene sheet to keep out free air. 2. Loose devices may be stored in zip-lock or sealed plastic bags. 3. For long term storage, place petroleum napthalene (mothballs) with product inside plastic packages to help keep out free air. 4. The silver leads may be wrapped in "Silver Saver" paper for protection. "Silver Saver" is manufactured by: Daubert Coated Products 1200 Jorie Drive Oak Brook, 111.60521 (312) 582-1000 . 5. Tapes such as adhesive, electrical, and masking should not be used because the adhesive may leave a film and will need to be removed before soldering. The best defense against the formation of tarnish is to keep silver plated devices in protective packaging until just prior to soldering. Soldering To obtain reliable circuit operation, good soldering is necessary. For wave soldering, Sn60 is the most commonly used solder for electronic components. Two alternatives are Sn63 and Sn62 solder. A high quality rosin core flux is recommended for hand solder operations. Typically the core is an RMA type flux. Two major soldering suppliers are: Alpha Metals 600 Rt440 Jersey City, NJ 07304 (201) 434-6778 Kester Solder 4201 Wrightwood Ave. Chicago, 111 60639 (312) 235-1600 Regardless of the flux and solder technique used, care should be taken to assure the optical properties of the optoelectronic product are not degraded in any manner. Fluxes Depending on the amount of tarnish, different types of flux may be required. Below is a list of flux in order of inQreasing strengt~. Type R: Un-activated Rosin Flux A pure water-white gum rosin without any additives. Flux and its residue are non-conductive and noncorrosive. Siemens does not assume any responsibility for damage caused by products mentioned above. 11-57 SIEMENS Socket Selection Guide Appnote 22 by Dave Takagishi This application note is a guide to locate a suitable socket for various Siemens products. This guide is not intended to imply specific endorsement or warranty of other manufacturer's products by Siemens. The selection of a socket is first based on the number of pins and the pin spacing required. Sockets for displays require an orientation and sometimes stackability. Other requirements may be: Contact tYpe (i.e., side vs. edge) Plating type (i.e., tin vs. gold) PCB mounting (i.e., solder vs. wirewrap) Height of socket Table 1. Part Number DL330M DL340M DL430M ·DL440M HD1075X HD1077X HDll05X HDll07X HD1131X HDII32X HDII33X HDII34X DLX573X HDSP200XLP ISD235X ISD231X ISD201 X Optocouplers: 6 pin 8pin 16 pin Arrays To use this guide, (1) Find Siemens produclpart number in Table 1, (2) Note number of pins, (3) Note spacing and orientation ... (Example 300 H), (4) Go to Table 2, find # of pin with corresponding spacing/orientation and follow to suggested socket. . The purpose of this application mite is to guide you to possible vendors and suggest one oulof many possible socket choices. It is recommended that the part numbers given be used as a starting point with a vendor for choosing a socket. The part number will depend on your requirement and application. , of Pins Spacing 12 14 12 12 10 10 10 10 10 10 10 10 12 12 12 12 12 6 8 16 2-20 .300H .300H .300H ;300H (SPC) (SPC) .300 V .300 V .600H .600H .600H .600H .300 V .300H .250H .250H .300H .300B .300B .3OOB .looB Table 2. 'of Pins Row·Row Spacing ARIES New Jarsay GARRY MFG. New Jersey ROBINSON· NUGENT, Indiana 12 14 18 22 22 13 12 14 14 20 10 10 10 18 6 8 16 2-20 .300H .300H .600 V .600 V SPC SPC .300 V .300 V .600 V .300H SPC .300 V .600 V .300 V .300B .300B .300B .100B 12-513-10 14·511-10 18-6511-10 24-6513-10 (2) 102-06-X 102-14-X·X·X 3OO-18-X·X-X 3OO·22-XX-X (2)ICN-063·X ICL-143-S6-X Others 12-513-10 14-511-10 14-6511-10 20-511-10 - - 102-14·X-X-X 3OO-14·X-X-X 102·2O:CC-X-X - 10.6511-10 18-511-10 6-513-10 8-511-10 102-18-X-X-X, 102.(J6-X 102-8-X·X-X PIN-LINE SERIES Yes SERIES 200 SERIES 2002 Yes ICL-143-S6-X ICL-203-S6-X SAMTEC Indiana ICC"314-T IC-618-X ' '/CC-624-X - ICC-314 IC-614-X ICC-32O - - ICN-063-53-X ICN-OB3-53-X IC-310-X IC-61o.X ICC-318 IC-306-X IC·308 SB-25-100X Yes SSA-1XX-XSERIES ICK-1XX-XSERIES LIst of Possible Vendors Aries Electronics Co. P.O. Box 130 Frenchtown, NJ 08825 201-996-6841 Garry Manufacturing 1010 Jersey Ave . New Brunswick, NJ 08902 201 ~545-2424 Robinson"Nugent 800 E. Eighth St. New Albany, IN 47150 812-945-0211 Samtec 810 Progress Blvd. New Albany, IN 47150 812-944-6733 Noles: 1. All sockets are 0.100 pin·to-pln spacing. 2. Products listed are generally tin plated PCB solder type. Contact vendor for other types. 3. Row-row spacing of pins: (H)-pins are horizontal with respect 10 viewing of display; (V)-pins are vertical with respect to viewing of display; (B)-pins can be either horiiontal or vertical; (SPC)-plns not standard 0.100 or row-row spacing. 4. Others - Special sockets for display such as right angle. etc. Contact vendor for details. 5. Consull vendor for stackability. 6. Strip in-line sockets may be used. (Cut to length required.) 7. Vendor may have other products also suitalble for your application. 11-58 SIEMENS LED Filter Selection Guide Appnote 23 By Dave Takagishi The most important design consideration for a piece of equipment using LED products is the ability to display information to an observer clearly. This information must be easily and accurately recognized in various ambient light conditions. This application note will discuss the design considerations and recommendations for filtering. A choice among available filters must be made on the basis of which filter and LED combination is most effective, but experimentation with each choice must be made to choose the most esthetic combination. Since the quality of readability is very subjective, the best judge of the performance of a product is the human eye and in the user's conditions. To improve the readability of a display it will be necessary to employ certain techniques such as contrast enhancement, wavelength filtering, special filtering, and mounting. Effectiveness of Wavelength Filters with Different Lighting Contrast is very dependent upon the ambient lighting. If the ambient light is outside the spectrum of the LED, then it is very easy to reduce the reflected light. This is the case for a red LED display in fluorescent lighting or a green LED in incandescent lighting. Bright sunlight has a flat spectral distribution curve and when it is directly incident upon a display the background may meet or exceed the light output of the display. It should be obvious that a wavelength filter alone is not sufficient in daylight ambient conditions. Contrast Enhancement The objective of contrast enhancement is to maximize the contrast between the display segments 'ON' and 'OFF' states. This is done by reducing the ambient light reflected from the surface of the display and allowing as much of the emitted light to reach the observer. This can be accomplished by painting the front surface of the display to match as close as possible the color of an 'OFF' segment. This reduces the distracting areas around the display and therefore enhances the 'ON'segments. Contrast enhancement may be improved further by the use of selected wavelength filters. Under bright ambient conditions, contrast enhancement is more difficult and additional techniques such as louvered filters and/or shading may be necessary. Other Techniques An.acceptable contrast is difficult to achieve if high ambient . light is parallel to the viewing axis (the incident light is perpendicular to the face of the display). If the incident light is not parallel to the viewing axis, the use of louvered filters or shading and recessing is recommended. It is the shading of louvered filters that reduces the incident light to allow for more contrast. The drawback to this filter is the restricted viewing angle. Circular polarizing filters are effective in reducing the reflected light from the highly reflective (glossy) surfaces of bubble lensed products, such as the Intelligent Displays. Glare can still be present from the surface of filters, therefore, an anti-reflection surface is recommended. This can be incorporated into the filter. The trade-off is that both ambient and display light are diffused and the display may appear fuzzy if not mounted close enough to the filter. Care should be taken to design the printed circuit board to keep all reflective surfaces away from display area or display side of the board or consider a dark coating on the reflective surfaces. Filters The majority of display applications use plastic filter material for their low cost and ease of assembly. The filter requirements for different ambient lighting conditions and different color displays make it necessary to become familiar with the various relative transmittance characteristics. Most filter manufacturers will provide transmittance curves for their products. When selecting a filter, the shape of the transmittance curve vs wavelength should be considered in relationship to the LED radiated spectrum to obtain maximum contrast enhancement. For standard red displays, a long wavelength pass filter having a sharp cutoff in the 600nm to 620nm range is ideal. The same applies for high efficiency red displays with a long wavelength pass filter in the 570nm to 590nm range. The yellow and green displays are more difficult to filter effectively. The most effective filter for yellow displays is a yellow-orange or amber filter. Yellow-only filters are very poor for contrast enhancement. Green displays will require a band-pass yellow-green filter which peaks at 565nm. Mounting Considerations The designer should consider recessing the display and bezel assembly to add some shading effect. The shading will reduce the indirect lighting for better contrast. It is essential to desig n the unit to allow sufficient air flow for circulation and mount current limiting resistors on another board or any heat generating components away from the displays. 11-59 Filter Recommendations Visible Fillers Manufacturer Red Hi·EIf Ylw Grn Homalite 1605 1670 1720 1726 1425 1440 Red 60 Red 63 Red 65 Ylw25 Arnb 23 Grn48 2423 2444 Panelgraphic Rohm & Haas Spcls Gray 10 2412 3-M Louvered Filters Polaroid Circular Polarizing Near IR Filler Rohm & Haas Filter Material Manufacturers Panelgraphic Corporation 10 Henderson Drive West Caldwell, New Jersey 07006 201-227-1500 SGL Homalite 11 Brookside Drive Wilmington, Delaware 19804 302-652-3686 3M Company Visual Products Division 3M Center, Bldg 220-10W SI. Paul, Minnesota 55101 612-733-0128 Rohm and Haas Independence Mall West, Philadelphia, Penn 19105 215-592-3000 Polaroid Corporation Polarizer Division ' 549 Technology Square Cambridge, Mass 02139 617-864-6000 Dontech Inc, P.O, Box 889 Doylestown, PA 18901 215-348-5010 ESCO Products Inc, 171 Oak Ridge Road Oak Ridge, NJ 07438 201-697-3700 Red #2711 Bezel & Filter Assembly Manufacturers R.M,F, PRODUCTS P,O. Box 413 Batavia, IL 60510 312-879-0020 NOBEX COMPONENTS Nobex Division GrHfith Plastic Corp. 1027 California Dr, Burlingame, CA 94010 415-342-8170 PHOTO CHEMICAL PRODUCTS OF CALIFORNIA 1715 Berkeley SI. Santa Monica, CA 90404 213-828-9561 I.EE-Atlas Industrial Electronic Engrs Inc, 7740 Lemona Avenue Van Nuys, CA 91405 213'787-0311 11-60 APPNOTE23 SIEMENS Drivers For Light Emitting Displays Appnote 24 by Dave Takagishi The purpose of this application note is to provide some information on the integrated circuits present/y available to drive L!ght Emitting Diodes (LED) displays and how to interface them to the various displays. For circuits using TTL Logic or transistors (fig 3). As = Vcc - Vce - Vf If Vee Background As LED displays come in various sizes (0.1" to O.S"), colors (red, high-efficiency red, green, yellow), fonts (7/9/14/16 segment, dot-matrix, or bar graph), and types (common anode, common cathode, multi-digit). The brightness is essentially proportional to the current through an LED and each element within a display should have the same current or a brightness variation may be apparent. A display subsystem can be made up from several elements. V, MAIN SYSTEM TTL or Transistor Display System FIGURE 1 FIGURE 3 The partitioning of these elements are dependent on the drivers used; therefore, the display driver chosen is dependent on the specifications of "the display and the application. Also some types of displays require using a multiplexing technique because of the internal interconnections. This is only applicable for multi-digit displays. It can be see!! that the term vce(saturation voltage) for the driver is going to be a factor in determining the series limiting resistor. Therefore, a darlington vs a single output transistor will have different current limiting resistor values to maintain a constant current through the LED. Selection Typical Circuits One factor in choosing the display and/or driver will be whether the display is a common cathode or common anode type display. Figure 2 shows a very basic circuitfor driving an LEu. The series resistance can be easily calculated from the following formula. VB As = Vb I~ Vf Darlington Transistor I~ ~ As ifl-r-f1-f-¥1 L________ ________ V, ~ CC Common Cathode Display FIGURE 4 FIGURE 2 11-61 Vee ,-------------- I I I L_ A _ _ Common Anode Display FIGURES B__ Q... ____ _ Rs Another factor is the different drivers go low or high, 7447 ,or EQUIV. DATA INPUT Vee 7448 or EQUIV. A. BCD r -- - -- E F Open Collector Type Driver w/Common Anode Display FIGURES G -- - -- -, I I I I1... _ _ _ _ _ _ _ _ I I --------~ r-I I I Common Cathode Display w/Drlver FIGURE 6 I I IL r------------ Vee ------------,I I I I L__ ___ A B c D E I I __...JI __ ·F G 7447 or EQUIV. DATA INPUT Common Anode Display w/Driver FIGURE 7 or can be wired into different configurations. 11-62 ________ _ Open Collector Type Driver w/Common Cathode· Display FIGURE 9 From figures 6/7/8/9, it may appear obvious to combine the seven (7) series resistors (Rs) into one common resistor in the common line. However this should not be done because of the possible variation in Vf from segment to segment. This variation in Vf can cause a variation in current, resulting in segment brightness differences. . Table 1 is a list of some of the most common LED drivers available. Besides having different current drive capabilities,. one product may have a feature which may make them easier to use in a particular application. - Serial vs parallel input data - Data latching type drivers - Blanking - Drive the ripple blanking input (rl:!o) with pulse width modulation to vary brightness. - Multi-digit drivers - Constant current drivers - Advantage of a constant current driver is the change of Vf will not affect the brightness. This is important with different color LED's. Multiplexing In a multiplex system, the corresponding segment of each digit is bussed together and driven from one segment drive via the usual current limiting resistors. The display data is presented serially by digit to the decoder driver together with the appropriate .•digit signal (figure 10). For more information on "multiplexing, see Appnote #3 (Multiplexing LED· .Displays). One way to simplify the design procedure for alphanumeric displays would be to consider the Siemens Intelligent Displays@. This device family incorporates all necessary interface control with drivers and memory built·in with the display. This means the designer need not be concerned about the memory, multiplex circuitry, character generator, or drivers for these are provided inside a modular unit. More information on these products is available in the Siemens Opto Short Form Catalog or general catalog. Circuits herein mentioned are not the responsibility of Siemens Opto and are for reference only. Products are continually being improved by vendorsandlor are obsoleted; therefore, consultation with the factory is recommended. Block Diagram of a 4~Diglt~­ Multiplexed Display FIGURE 10 TABLE 1 Single Digit Decoder/Drivers PART # MFGR If/seg TYPE 7447 74247 7446 Fairchild Hitachi Motorola National 8ignetics Teledyne TI 40 ma CA BCD-to-7 seg, open coli, ripple blnkng COMMENTS. 7448 74248 Fairchild Hitachi Motorola National Signetics TI 6 ma CC BCD-to-7 seg, int pull-up, ripple blnkng 7449 74249 Fairchild Hitachi Motorola National 8ignetics TI 8 ma CC BCD-to-7 seg, open coli, blnkng input 088857 National 60 ma CA BCD-to-7 seg decoder, ripple blnkng 088858 National 50 ma CC BCD-to-7 seg decoder, ripple blnkng CD4511 4511B MC14511 Fairchild National Motorola 25 ma CC BCD-to-7 seg, latched, blnkng 088647 088648 National 10 ma CC 9 seg drivers NE587 8ignetics 50 ma CA BCO-to-7 seg, latched, ripple blnkng, vari current NE589 8ignetics 50 ma CC BCD-to-7 seg, latched, ripple blnkng, vari current CA3161E RCA 25 ma CA BCD-to-7 seg, constant current drivers 9368 Fairchild 20ma CC BCD-to-7 seg, ripple blnkng 9374 Fairchild 15 ma CA BCD-to-7 seg, ripple blnkf!g 11-63 i ·'1 11- =a:l :t TABLE 1, Continued Multi-Digit DisRlax Drivers: MM5450 National 25 ma CA 34 seg serial input, brightness control MM5451 National 25 ma CA 35 seg serial input, brightnes control MM74C912 National 100 ma CC 6 digit, 7 seg+decimal, BCD decoder, output enble MM74C911 National 100 ma CC 4 digit, 8 seg controller/seg driver MM74917 National 100 ma CC 6 digit, 7 seg+decimal, Hex decoder, output enble DS8669 National 25 ma CA Dual BCD-to-7 seg decoder/driver CA3168E RCA 25 ma CA Dual BCD-to-7 seg decoder/driver ICM7212 ICM7212A ICM7212M ICM7212AM Intersil 8 ma CA 4 digit, latched, 28 seg drivers, brightness cntl ICM7218A Intersil 20 ma CA 8 digit, 8 seg (decoded/spcl), w/mem/drivers ICM7218B Intersil 10 ma CC 8 digit, 8 seg (decoded/spcl), w/mem/drivers ICM7218C Intersil 20 ma CA 8 digit, 8 seg(hex/bcd), w/inem drivers ICM7218D Intersil 10 ma CC 8 digit, 8 seg(hex/bcd), w/mem/drivers ICM7218E Intersil 20ma CA 8 digit, 8 seg (decoded/spcl), w/mem drivers, cntls avble TSC700A Teledyne 11 ma CA 4 digit decoder/driver, parallel output, brightness cntl TSC7212A Teledyne 5 ma CA 4 digit decoder/driver, parallel output, brightness cntl SAA1060 Signetics 40 ma CA 16 element serial in/parallel out driver SDA2014 Siemens 12 ma CC 2 or 4 digit, serial bcd input SDA2131 Siemens 20 ma CA 16 element, serial input Other Drivers: XR-2000 Exar 400 ma sink 5 darlington transistors, MOS-to-LED XR-2201 XR-2202 XR-2203 XR-2204 Exar 500 ma sink 7 darlington transistors, open collector w/diodes TTL-to-LED, compatible to Sprague (ULN-xxxx) CA3081 RCA 100 ma sink 7 common emitter transistor array CA3082 RCA 100 ma source 7 common collector transistor array 9665 9667 Fairchild 250 ma sink 7 common emitter darlington transistor array Bar GraRh Drivers-: UAA180 Siemens 10 ma n.a. 12 element bar driver LM3914 National 2-20 ma n.a. 10 element dot/bar linear output driver LM3915 National 1-30 ma n.a. 10 element dot/bar log output driver 11-64 SIEMENS The DLX 713X, 5 x 7 Dot Matrix Intelligent Display® Device Appnote 25 by Dave Takaglshi Package This application note is intended to serve as a design and application guide for users of the DlO 7135, and DlG 7137 Siemens Optoelectronics Division Intelligent Displays. The information presented covers device electrical description, operation, general circuit design considerations, and interfacing to microprocessors. The 35 dots form a 0.48 x 0,68 inch overall character size in a 0.700 x 0.800 inch dual-in-line package. The ±50 degree wide viewing angle complements the large display and is the ideal display for the industrial control application. Display construction is. a filled reflector type with the intregrated circuit in the back .and then filled with IC-grade epoxy. This results in a very rugged part which is quite impervious to moisture, shock, and vibration. Electrical Description The DLX 713X Intelligent Alphanumeric 5 x 7 Dot Matrix Display contains memory, character generator, multiplexing circuits, and drivers built into a single package, Figure 1 is a block diagram of the DLX 713x. The unit consists of 35 lED die arranged in a 5x7 pattern and a single CMOS integrated circuit chip. The IC chip contains the column drivers, row drivers, 96 character generator ROM, memory, multiplex and blanking circuitry, r------------------l 0, D2 DJ >a: ~ w :; Ds D. a: w I- 0:; <0 ~a: l: o a: ~w 0::: a: a: o 000001 000001 000001 000001 000001 000001 ,000001 , , L________ _ ________ 1 ~~f=Ir= I ----L . r:=::l LUMINOUS INTENSITY CODE .50 REF. 112.70) - ~~~ Physical Dimension Inches FIGURE 2 Electrical Inputs PIN Name 1 Vcc 2 LT lamp test 3 CE chip enable 4 WR write 5 Bl1 brightness 6 BlO brightness 7 GND DLX-71311' Block Diagram FIGURE 1 11-65 PIN 14 06 13 05 12 04 11 03 10 D2 9 D1 8 DO Name data input (msd) data input data input data input data input data input data input (Isd) Pin Description WR~ Vcc GND _ Positive Supply +5 volts Ground Data Lines see figure 3 for character set Chip Enable (active low) This determines which device in an array will accept data Write'(active low) Data and chip enable must be present and stable before and after the write pulse (see data sheet for timing) Blanking Control Input (active low) Used to control the level of display brightness lamp Test (active low) Causes all dots to light at 'h brightness 00-06 CE L:;::Tw~. !---TeEs CE~. 00-06 -1 r- X r I T os--1 T OH X Timing Characteristics Figure 4 Display Blanking and Dimming The DLX 7131( Intelligent Display has the capability of three levels of brightness plus blank. Figure 5 shows the combination of BlO and Bl1 for the different levels of brightness. The BlO and Bl1 inputs are independent of write and chip enable and does not affect the contents Of the internal memory. A flashing display can be achieved by pulsing the blanking pins at a 1-2 hertz rate. Either BlO or Bl1 should be held high to light up the display. CHARACTER SET DO L H L Dl 02 03 L L L H L· LH Ll 234 L H L. l Lll H L L H HHH HHHHHH 6789ABCD UNDEFINED L HjL 2 ! II #:*:~~g.: ' ::: ::: :+:'+'; II ••••• ; .: : HIH13 f;~1:t C~::::4~)E.~~::::::::~: == :::..O? 4 ;:i) i:~ :E; (:: ]) EF:· (:i I···' I . J L.. I-:-i 1'1 i:i H L ~15 I:::: C:! F;:: !:::; oor tJ \:5 L:J >:: :of= :;~ [: ••••• ] ••••••• _ l t< HLl Dimming and Blanking Control 0 Brightness Level Blank V. brightness 'h brightness full,brightness 1" L 6, :: .::j t.:) (: (~f:~ t-:· 0:::' tOOl :i..j ~:: 1 ill reI l:i ±Hi 7, i:::· ·::i roo ::::: '1: t~ =.) £.:.1 ::< ::::1::::';: i :;. ..... :~:;: Bll BlO 1 1 1 o o o 1 o Figure 5 Character Set Figure 3 Lamp Test The lamp test when activated causes all dots on. the display to be illuminated at half brightness. It does . not destroy any previously stored characters. The lamp test function is independent of chip enable, write, and the settings of the blanking inputs. This convenient test gives a visual indication that all dots are functioning properly. Because of the lamp test not affecting the display memory, itcan be used as a cursor or pOinter in a line of displays .. Operation In a dot matrix display system, it is advantageous to use a multiplexed approach with 12 drivers (5 digit + 7 segments) rather than 35 segment drivers. This obviously reduces the number of drivers and interconnections required. A multiplexed system must be a synchronous system or the digits or elements may have different on (lit) times and therefore varying brightness. The DlX 713x is an internally multiplexed display but the data entry is asynchronous. loading data is similar to writing into a RAM. Present th.e.data, select the chip, and give a write'signal. For a multidigit system; each digit has its own unique location and will display its contents until replaced by another code. The waveforms of figure 4 demonstrates the relationship of the signals required to' generate a write cycle. Check the data sheet for minimum values . required for each signal. 11-66 General Design Considerations I/O or Memory Mapped System When using the DLX 713x on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all of the input lines. A non-inverting 74365 hex buffer can be used. The object is to prevent transient current into the DLX 713x protection diodes. The buffers should be located on the display board and as close to the displays as possible. Because of high switching currents caused by the multiplexing, local power supply by-pass capacitors are also needed in many cases. These should be 6 or 10 volt, tantalum type having 5 - 10 uf capacitance. The capacitors may only be required every 6-7 displays depending on the line regulation and other noise generators. If small wire cables are used, it is good engineering practice to calculate the wire resistance of the ground and the +5 volt wires. More than 0.2 volt drop (at 100ma per digit) should be avoided, since this loss is in addition to any inaccuracies or load regulation of the power supply. The 5 volt powersupplyforthe DLX 713x should be the same one supplying the Vcc to all logic devices. If a separate supply must be used, then local buffers should be used on all the inputs and these buffers should be powered from the display power supply. This precaution is to avoid line transients or any logic signals to be higher than Vcc during power up. For a memory mapped system using a processor such as the 8080 or 8085, the interfacing is also straight-forward. Each display is treated as a memory location with its own address, like another 1/0 or RAM location. See Figure 7, 8-DLX-713x 8080 : SYSTEM l- OATA ~~ ;:===OOW~I~~~=====~~~L4~~:C+=~~=+~~~1 I : : ADDRESS coox I : ______ • ...J Block Diagram for a-Digit DLX 713x Dot Matrix Display Figure 7 ROUTINE FOR AN 8 DIGIT DISPLAY USING THE DLX 713x AND 8085 OR 8080 MICROPROCESSOR DATA TO BE DISPLAYED IS IN AO(LSD) THRU A8(MSD) Interfacing DISPLAY ADDRESS COOX LSD IS RIGHT MOST DIGIT For an eight digit display using the DLX 713x, interfacing to a single chip microprocessor such as the 8748 is easy and straight forward. One approach may be to dedicate one port for the seven data signals and another 8-bit port for the write signals. The schematic is shown in Figure 6. DOES NOT SAVE REG A.B,H,L,D,E DADO DPAD LEN EOU EOU EOU ORG 100H DISP: LXI'" LXI MVI MOV XCHG MOV XCHG INX INX OCR JNZ RET DISP1: OAOOOH OCOOOH 08H DATA ADDRESS LOCATION DISPLAY ADDRESS LOCATION DISPLAY LENGTH H,DADD D,DPAD B,LEN A,M LOAD DATA ADDRESS LOAD DISPLAY ADDRESS LOAD DISPLAY LENGTH GET DATA XCHG HIL & DIE LOAD DISPLAY FROM REG A RESTORE HIL & DIE INCREMENT DISPLAY ADDRESS INCREMENT DATA ADDRESS DECREMENT LENGTH COUNTER END OF DISPLAY? RETURN TO MAIN PROGRAM M,A 0 H B DISPl Conclusion Note that although other manufacturer's products are used in the examples, this application note does not imply specific endorsement, or warranty of other manufacturer's products by Siemens. The interface schemes shown demonstrate the simplicity of using the DLX 713x Dot Matrix Intelligent Display. Slight timing differences may be encountered for various microprocessors, but can be resolved similar to those encou.ntered when using different RAM's. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements. DLX 713x wHh 8748 Figure 6 INIT: ORL ORL MOV MOV MOV START: INC DATA: MOV OUTL MOV RR MOV WRITE: OUTL MOV OUTL DJNZ RET P1.#OFFH P2.#00H R1.#OFH R2.#OFEH R3.#08H Rl A.@Rl P2.A A.R2 A R2.A Pl.A A.#OFFH Pl,A R3, START SUBROUTINE TO LOAO AN a-OIGIT OISPLAY USING THE OL7135 DATA IN RAM 10H-17H (MSD-LSD) PORT 1 ALL HIGH (WRITE) PORT 2 ALL LOW (DATA) RAM ADDRESS - 1 WRITE PULSE COUNTER INCREMENT RAM POINTER FETCH DATA FROM RAM LOAO PORT 2 RECALL WRITE SHIFT A TO NEXT WRITE SAVE WRITE SEND WRITE PULSE WAIT RESET WRITE PULSE LOAD COMPLETE? RETURN TO MAIN PROGRAM 11-67 SIEMENS SFH 900 - A Low-Cost Miniature Reflex Optical Sensor Appnote 26 Whether for an industrial plant or a hobbyists' drilling machine, an electric drive will hardly be acceptable nowadays without speed control. Incremental bar patterns simply applied to rotating shafts can be detected by the new Siemens reflex optical sensor, the SFH 900. The information can be processed with a minimum of· circuitry, whether fora high rate of black-to-white transitions or just single, slow transitions. Construction The SFH 900 optical sensor is a remarkable component even by virtue of its shape alone. Its maximum height of 2.2 mm is in the trend of today's electronics, of putting a large number of functions into a very small space. The small dimensions allow it to be used where ordinary optical sensors run into space or other problems. Fig. 1 is an enlarged picture of the device. Dimensions and pin configuration are shown in Fig. 2. Fig. 1 SFH 900 reflex optical sensor, front and back view, shown here three times normal size Fabricated by lead frame technique in a thermoplastic package, .the sensor uses a GaAs infra-red diode as a radiation emitter and a large-area phototransistor as the detector. High sensitivity is ensured by a 1 mm 2 radiation sensitive area and a current gain of almost 1000. The effect of unwanted ambient light is almost screened out by a filter. Two fixing notches are a help in mounting the device. Lead frame technology accurately locates the optically active areas relative to these notches and thus to the component body. Fig.3 is an example of one form of mounting. Fig.2 Outline dimensions and pin connections of SFH 900 Radiation sensitive Pin connections -iU1.9 ~ ~ A optional S.2+0.4mm 13.3+1 mm 1 Emitter anode 2 Emitter cathodel detector emitter 3 Detector collector 11-68 Characteristics Main technical data are given in the Table. Turn-on and turn-off times are also important. These depend essentially on the collector current Ic and the load resistance RL. Typical switching times for Ie = 1 mA and RL = 1 kn are 50 to 70 Ils. The user will be mainly concerned with the following pOints: • What collector current, Ie, can be expected under given static conditions? • What are the signal amplitudes when scanning bar patterns of different pitches? • What is the temperature dependence of the collector current and what is the repeatability of the measured values? Flg.4 SFH 900 collector current Ie as a function of forward current IF with 90% diffuse reflectin at distance d=1mmandwithUs =5V . 'e 10 / J 1 II 0.1 V V J I Collector current Dependence of collector current on emitter diode forward current IF is almost linear at forward currents above 10 rnA, as can be seen from Fig.4. At currents below 1 rnA the dependency shows almost a square law. The measurement was made with a standard reflector (Kodak neutral white test card, r = 90%) at a distance of 1 mm. Fig.5 shows Ic characteristics for distances of 0.2 to 10 mm at a constant forward current of 10 mAo The curves are for four different reflecting materials: two standard Kodak reflectors with 15% and 90% reflection, polished aluminium and a strongly absorbing foil. DC-fix adhesive tapes and other tapes commonly used for printed circuit layouts proved particularly suitable. It should be mentioned that the curve for polished aluminium in Fig.5 is very similar to the Kodak reflector response with r = 90%, in spite of the reflection being mirrored by the metal and diffused by the standard reflector, as a result of the wide directional characteristics of the emitter and detector. At short distances (e. g. d = 0.25 mm) very large changes of current per unit distance are obtained. Because of these steep edges, which can only be used dynamically, the SFH 900 may also be utilized as a microphone. / 0.01 / 0.001 0.1 10 rnA -'F U.-5V Fig. 5 SFH 900 collector current leas a function of reflector distance d with different reflector materials ~--­ Us \! t 0.1 I--I-+--+--t-t---'tr--Jj 0.01 '-----'---'--'---'---'--'" 0.1 mm 10 -d Forward current IF = 10 mA Operating voltage Us = 5 V. 11-69 jd ~--- Ie Fig.3 Suggestion for mounting the SFH 900. Projections N in the flexible plastic clamp locate in corresponding notches in the body of the optical sensor 100 Emitter (GaAs infra-red diode) Reverse voltage Forward dc current Surge current (t s 10 I1s) Power dissipation (Tamb = 40·C) , Thermal resistance UA IF iFSM Plot 'R"iJU Detector (silicon phototransistor) Collector-emitter voltage Emitter-collector voltage Collector current Total power dissipation (Tamb = 40 .C) Collector-emitter leakage current (Uce = 10 V) Photocurrent under ambient light (Uce = 5 V) (Ee = 0.5 mW/cm") Reflex optical sensor Storage temperature range Ambient temperature range Junction temperature Total power dissipation (Tamb = 40 ·C) Collector current (1.= 10 n1A; Uce = 5V; d= 1 mm) Table Uceo Ueco Ic Ptot Iceo rnA A mW I--"'---'I;-----I-~--"-l74LS190 3· ~t?- s~ [f-"-V - 900 TAB2453 SLJ 10kQ 2 4.7UF 1 2 74LS47 10 J., 1-'7'-----=-J 6 ~ 6 r f r'1 T1 = 1 11 Reset ~- 16 +5V 11-74 I-'-----'=; Decoder ~ 9 8 uF 8i.4·1.9 10.15 +5V . 7 m~o SIEMENS The OLO 4135/0LG 4137 5 x 7 Dot Matrix Intelligent Display® Appnote 28 by Dave Takagishi Package This application note is intended to serve as a design and application guide for users of the DLO 4135 and DLG 4137 Siemens Opto Intelligent Displays. The information presented covers device electrical description. operation. general circuit design considerations. and interfacing to microprocessors. The 35 dots form a 0.30 x 0.43 inch overall character size in a .500 x 1.00 inch dual-in-line package. The ±50 degree wide viewing angle complements the display and is the ideal display for industrial control applications. Display construction is a filled reflector type with the integrated circuit in the back and then filled with ICgrade epoxy. This results in a very rugged part which is quite impervious to moisture, shock, and vibration. Electrical Description The DLO 4135/DLG 4137 Intelligent Alphanumeric 5 x 7 Dot Matrix Display contains memory, character generator, multiplexing circuits, and drivers built into a single package. .100 (2.54) ~ Figure 1 is a block diagram of DLO 4135/DLG 4137. The unit consists of 35 LED die arranged in a.5x7 pattern and a single CMOS integrated circuit chip. The Ie chip contains the column drivers. row drivers. 96 character generator ROM. memory. multiplex and blanking circuitry. 0.18 (.46) Do 0, > 0, 03 o :; ·0. :; Os D. a: w a: w t- o:; --____-:-"X'--_ / - - T0 5 -l Timing Characteristics· FIGURE 4 CHARACTER SEt roo L]""BITI H 01 02 03 ~ f L L l L L l H l L H L L l L H l H. H H l H L 1 , 3 4 H L L H 9 5U~DEFINED 7 0. H 8 L H A H H L L H H· B C H H 0 L H H H H H H E Display Blanking and Dimming. The DlO 4135/DlG 4137 Intelligent Display has the capability of three levels of brightness plu~ank. Fi·gure 5 shows the combination of BL~ and BL1forthe different levels of brightness. The Bl~ and BL 1 inputs are independent of write and chip enable and does not affect the contents of the internal memory. A flashing display can be achieved by pulsing the blanking pins at a 1-2 hertz rate. Either BL~or Bl1 should be held high to light up the display. Brightness level Blank '.4 brightness V, brightness full brightness Character Set. FIGURE 3 Bll BlO 0 0 0 1 1 0 1 1 Dimming and Blanking Control FIGURE 5 Operation In a dot matrix display system, it is advantageous to usea multiplexed approach with 12 drivers (5 digit + 7 segments) rather than 35 segment drivers. This obviously reduces the number of drivers and inter~ connections required. A multiplexed system must be a synchronous system, or the digits or elements may have different on (iit) times and therefore varying brightness. The DlO 4135/DlG 4137 is an internally multiplexed display, but the data entry is asynchronous. loading data Is similar to writing into a RAM. Present the data, select the chip, and give a write signal. For a multi-digit system, each digi~ has its own unique address location and will display its contents until replaced by another code. Lamp Test The lamp test when activated causes all dots on the display tei be illuminated at half brightness. It does not destroy any previously stored characters. The lamp test function is independent of ch.ip enable, write, and the settings of the blanking inputs. This convenient test gives a visual indication that all dots are functioning properly. The lamp test can be used asa cursor or pOinter in a line of displays because itdoes not affect the display memory. 11-76 General Design Considerations 1/0 or Memory Mapped System When using the oLO 4135/0LG 4137 on a separate display board having more than 6 inches of cable length, it may be necessary to buffer all of the input lines. A noninverting 74365 hex buffer can be used. The object is to prevent current transient into the DLO 4135/DLG 4137 protection diodes. The buffers should be located. on the display board and as close to the displays as possible. For a memory mapped system using a processor such as the 8080 or 8085, the interfacing is also straight-forward. Each display is treated as a memory location with its own address, like another 1/0 or RAM location. See figure 7. Because of high switching currents caused by the multiplexing, local power supply by-pass capacitors are also . needed in many cases. These should be 10 volt, tantalum type having 5 - 10 uf capacitance. The capacitors may only be required every 6-7 displays depending on the line regulation and other noise generators. If small wire cables are used, it is good engineering practice to calculate the wire resistance of the ground and the +5 volt wires. More than 0.2 volt drop (at 100ma per digit) should be avoided, since this loss is in addition to any inaccuracies or load regulation of the power supply. The 5 volt power supply for the DLO 4135/DLG 4137 should be the same one supplying the Vee to all logic devices. If a separate power supply must be used, then local buffers should be used on all the inputs. These buffers should be powered from the display power supply. This precaution is to avoid line transients or any logic Signals to be higher than Vcc during power up. Interfacing For an eight digit display using the DLO 4135/DLG 4137 interfaCing to a single chip microprocessor, such as the 8748, is easy and straight forward. One approach may be to dedicate one port for the seven data signals and another 8-bit port for the write signals. The schematic is shown in Figure 6. START: DATA: WRITE: ORL ORL MOV MOV MOV INC MOV OUTL MOV RR MOV OUTL MOV OUTL OJNZ RET P1.#OFFH P2,nOOH R1.#OFH R2.#OFEH R3.#OSH R1 A.@Rl P2.A A.R2 A R2.A P1.A A.#OFFH P1.A R3. START DATA TO BE DISPLAYED IS IN AO(LSD) THRU A7 (MSD). DISPLAY ADDRESS COOX LSD IS RIGHT MOST DIGIT DOES NOT SAVE REG A.B.H.L,D.E DADD DPAD LEN EOU EOU EOU ORG 100H DISP: LXI LXI MVI MOV XCHG MOV XCHG INX INX DCR JNZ RET DISP1: OAOOOH OCOOOH OSH DATA ADDRESS LOCATION DISPLAY ADDRESS LOCATION DISPLAY LENGTH H.DADD D.DPAD B.LEN A.M LOAD DATA ADDRESS LOAD DISPLAY ADDRESS LOAD DISPLAY LENGTH GET DATA XCHG H/L & DIE LOAD DISPLAY FROM REG A RESTORE HIL & DIE INCREMENT DISPLAY ADDRESS INCREMENT DATA ADDRESS DECREMENT LENGTH COUNTER END OF DISPLAY? RETURN TO MAIN PROGRAM M.A D H B DISPl Conclusion Note that although other manufacturer's products are used in the examples, this application note does not imply specific endorsement, or warranty of other manufacturer's products by Siemens. The interface schemes shown demonstrate the simplicity of using the oLO 4135/DLG 4137 Dot Matrix Intelligent Display. Slight timing differences may be encountered for various microprocessors, but can be resolved using similar methods as those used when· using interfacing microprocessors with various RAMs. The techniques used in the examples were shown for their generality. The user will undoubtedly invent other schemes to optimize his particular system to its requirements. Subroutine to Load an 8-Digit Display using the DLO 4135/DLG 4137 INIT: Routine for an 8-oigit Display using the DLO 4135/DLG 4137 and 8085 or 8080 Microprocessor DATA IN RAM 10H-17H (MSD-LSDI PORT 1 ALL HIGH (WRITE) PORT 2 ALL LOW (DATA) RAM ADDRESS - 1 WRITE PULSE COUNTER INCREMENT RAM POINTER FETCH DATA FROM RAM LOAD PORT 2 RECALL WRITE SHIFT A TO NEXT WRITE SAVE WRITE SEND WRITE PULSE WAIT RESET WRITE PULSE LOAD COMPLETE? RETURN TO MAIN PROGRAM 11-77 o r~ rlJ~ 8748 ., '2 6543210 7 6 5 4, 3. 2 1 0 '--- I I I ~ ' - - 0, ~ D, ." .... ;;§ ~t D: c· :; 99;! Ds DD 0, 4;>~. 1111 1111 I III I III I III I III I III I III I I I I I I I ...L. DLO 4135/DLG 4137 with 8748 FIGURE 6 -----, DLO 4135 or DLG 4137 I I 8080 OR 8085 SYSTEM I DATA I I/OW \ ( ~ I ~ I I I ADDRESS. ~= ,,- I DECODER - _ _ _ _ .J Block Diagram for 8-Dlgit DLO 4135/DLG 4137 Dot Matrix Display FIGURE 7 11-78 + SIEMENS Serial Intelligent Display Appnote 29 by Dave Takagishi Circuit Description This application note describes a method of obtaining a serial input display with a selected number of digits using an 8051/8031 microprocessor and DL 2416 IntelIi gent Displays. The very popular DL 2416 has been selected as the example for this Application Note; however, the information contained herein can also be applied to other Intelligent Displays. (Refer to Intelligent Display Product Guide) The block diagrams of the 8031 (Fig. 1) and the DL 2416 (Fig. 2) show the internal structure of these devices. By combining the DL 2416, an easy to use peripheral device in a parallel system, and the 8031 results in a low cost, simple serial display system. A32-digit system can be built using an 8031 microprocessor, an 8212 or equivalent latch, a 2716 EPROM, and a 75189 IC for interfacing to 20mA or RS232 input lines. Buffers were added to minimize the long cable noise spikes and interface loading on the bus. See Figure 3 for system schematic. Introduction A parallel bus' configuration is frequently used to transfer data to a microprocessor when it is used on a single card system. However, if the system is not physically small in number of chips or has multiple cards, data handling becomes cumbersome and costly. For long distances, serial communications over a two (2) or four (4) wire link is desirable and is economically attractive. However, the trade-off between cost and speed has to be considered by the designer. Software Considerations This system, as described, is set up to receive data only at 100 baud rate. Additional software is required for transmit routine. For a given data rate and (data format is start bit, 9-data bits and a stop bit) three (3) sections of software and possibly a special crystal oscillator frequency may be required for a given transmit rate. On power-up or reset, the serial port and timer control words must be initialized. Description The DL 2416 'Intelligent Display' is a .160" four (4) character, 17 segment, LED display module with "OnBoard" memory, character generator, multiplexer and display drivers integrated into a custom integrated circuit. This eliminates the necessity to design external circuitry normally required to drive a multiplexed display. Using these important attributes of the Intelligent Display, the designer now only has to provide for interfacing, which is a seven-bit ASCII parallel code, a two-bit address, and a write signal. The procedure for writing these commands is"similar to those used for an external Random Access Memory. The serial/parallel and parallel/serial conversion is normally accomplished by using a UART (Universal Asynchronous Receiver/Transmitter) or a USART (Universal Synchronous/Asynchronous Receiver/Transmitter). The 8031 is a very attractive mircrocontroller to use in this application because it has an integral UART. This integral UART provides the designer with the means for controlling the conversion of serial into parallel information or vice-versa. The 8031 has more RAM than the popular 8048, but the operation and instruction sets are very similar. Refer to the 8031 data sheet for a complete description of the product. Special control functions have been included in this program as follows: Power Up Return Backspace Line Feed See Figure 5 for the actual program listing. Conclusion This Application Note has introduced the reader to the ease of interfacing the DL 2416 to any microproces"sor. By combining the DL 2416 and the 8031, difficulties usually associated with serial conversion using software and its attendant timing problems can be easily overcome. SIEMENS OPTOELECTRONIC "DIVISION does not endorse or guarantee other manufacturer's products used in this Application Note. FIGURE 1 11-79 8031 BLOCK DIAGRAM FIGURE 2 DL 2416 BLOCK DIAGRAM FIGURE3 SYSTEM SCHEMATIC FIGURE4 FLOWCHART FIGURE5 PROGRAM LISTING r-- - - - - - - - - - - ,.z..z~~~- I - - - - - - - - - - -, vee -----I IdVl I vss I .fI . PSEN _~~-----.,.,,.., ALE RST Pl.O P3.Q.P3.7 P1.7 FIGURE 1 - 8031 BLOCK DIAGRAM Repri'nted By Permission Of Intel Corp. Copyright 1982 r-SEGMENT DRIVERS ROM r-/ I ......... ':>. '" 17L1NES II.-- - "/ Dsel MULTIPLEXER DISPLAY ~~~ ~ 3 }. RAM DIGIT DRIVERS r I [ INPUT CONTROL [] I l' ~[I[ I I I I .. CURSOR MEMORY I [ J ] ccccccc 10: fD.n~MN"'O FIGURE 2 - ,DL 2416 INTERNAL BLOCK DIA'GRAM 11-80 2 I 1 0 I ., y " ., ADO AD' AD' AD' ~f--c5" :g: ~,. 4 iii Q 0 ..:-4> ALE 30 3 P20 1 .21 .22 75189 ~ Q 241121 AD • A' A' A' A. 8 2 1 2 AD. AD7 8 1 ·1' ~~ OND I~ 21 ~ ~ A7 A8 A. A10 g~ 2 7 1 6 1: D' D' D' g: D7 CEDE "f~ OND PSEN 29 r :r ...J.... 1 ~R16 aND EA "~31 ., II ., ~ 7 4 4 . 2 FIGURE 3 - SYSTEM SCHEMATIC !"I" IJ.!! =a.1 ~ , 11-81 y FIGURE 4 - SERIAL IDA FLOW CHART 11-82 FIGURE 5 - PROGRAM LISTING ;SERIAL IDA USING 8031 UP ;AND IDA2416-32 0000 020040 0003 32 OOOB 0013 32 32 0023 32 ooaOH LJMP INIT 0OO3H ;EXTEANAL INTERRUPT 0 OOOBH ;TIMER 0 OVERFLOW 0013H ;EXTERNAL INTERRUPT 1 0018H ;TIMER 1 OVERFLOW 0023H ;SERIAL 1/0 INTERRUPT OAG ATI OAG ATI OAG ATI OAG ATI OAG ATI 32 0018 OAG ] INTERRUPTS NOT USED ] INITIALIZE 803 l~P ] CLR RAM :::::J CLR RAM PTR ] DISPLAY RAM ] INPUT CHAR ;SETUP SERIAL PORT :9 BIT UAAT MODE 3 ;SET TIMER 0040 0043 0046 0049 004C 75ABOQ 758922 758072 759870 028E 004E 7920 E4 7820 F7 09 DBFC 7820 CLRAM: 7B20 900000 DISPAM: 0050 0051 0053 0054 0055 0057 0059 0058 DOSE 0060 0061 0062 0063 INIT: CLAI: 793F OISP1: 0064 E7 FO 19 A3 DBFA 0066 0069 006B 3098FD C298 E599 SEAIN: 0060 006E FC 2460 0070 "4013 OAG MOV MOV MOV MOV SETB MOV CLA MOV MOV INC DJNZ MOV MOV MOV MOV MOV MOVX DEC INC DJNZ JNB CLA MOV OQ40H IE,#aOH TMOD,#22H TH1.#72H SCON,#7QH #8EH Rl,#RA.M ;ENABLE INTERRUPTS ;TIMER 0 & 1 AUTO RELOAD ;RElOAD FOR 110 ;MODE3 Rev ;TIMER 1 ON ;RAM INITIAL ADDRESS A R3,#CNTR @AI,A AI R3,ClRl :LOAD ## OF DIGITS ;LOADRAM RO,IIRAM ;seT RAM INPUT PNTR TO INITIAL AMCNTA :A3~COUNTEA DPTR,#DSPTR ;oPTR=oISPLA Y POINTER Rl,#RAM ;R1=RAM DISPLAY POINTER+LENGTH ;FETCH OAT A FROM RAM A,@AI @DPTA,A ;LOAD DISPLAY AI DPTR R3,DISP1 RI,SERIN ;WAIT UNTIL AN INPUT AI A,SBUF ;CHECK FOR CONTROL WORDS 0072 0073 0075 0077 0078 007A 007C 0070 007F 0081 0082 0085 00B6 0087 0088 0089 008B 0080 DOBF CNTLWo: EC 2473 4007 EC 2476 4002 EC 2478 50E5 18 020066 EC F6 08 E8 AJMP LDATA: 24CO 5002 7820 020059 MOV ADD JC MOV ADD JC MOV ADD JC MOV ADD JNC DEC LoAT1: MOV MOV INC MOV ADD JNC MOV AJMP R4,A A,#060H LoATA A,R4 A,#073H CLRAM :SAVE A ;JUMP IF DATA ;CR A,A4 A,#076H CLAAM :LF A,R4 A,#078H SEAIN AD SEAIN _ :OTHEA CDNTAOL :BS A,R4 @AO,A AD :LOAD AAM A,RO A,#OCOH LOATl RO,#RAM DISPRM END ALL MNEMONICS COPVRIGHT INTEL CORP., 1982 11-83 ] ] DATA=CRDATA = LF DATA = BS LOAD DATAINTO RAM SIEMENS Blue-Light Emitting Silicon-Carbide Diodes - Materials, Technology, Characteristics Appnote 31 by Dr. Claus Weyrich Siemens Research Laboratories Munich, \<\est Germany Introduction Light-emitting diodes (LEDs) are widely used in the field of electronics as indicator lamps and seven-segment displays because of their excellent characteristics such as high mechanical stability, low operating voltage, compatibility with semiconductor drive circuits, low operating temperature and long service life. LEDs are now massproduced in the colors red, super-red, yellow and green. The semiconductor materials that are used are III-V compounds such as gallium arsenide phosphide (GaAs,_,P,), gallium phosphide (GaP) and, recently, also gallium aluminum arsenide (Ga,_,A1,As). An extension of the color of LEDs into the blue region of the spectrum has been wished by many users. The materials that are suitable for blue-light diodes are discussed here, followed by a survey of the technology and characteristics of blue-light diodes based on silicon carbide (SiC), the material that is preferred forthis application by the Siemens company. as with the other III-V materials, but by highly accelerated electrons that are generated in the very high-resistance i layer of a metal-i-GaN-n-GaN layer by collision-ionization processes and thus lead to the emission of light. The efficiency of this mechanism, which results in higher operating-voltages of the device, decreases with increasing current density (and thus luminous intensity of the diode). The situation is similar in the case of blue-light diodes using ZnS and ZnSe materials, in which likewise no low-resistance pn junction can be produced. The result of this is that with all the materials mentioned, despite ihe direct band-gap structure that is favorable for the generation of light and which leads to very efficient photoluminescence or cathodoluminescence for instance, the efficiency of the internal conversion of electrical energy into light is lower in comparison. SiC is the only material that allows reproducible p and n doping and possesses a suitable band gap for the emission of light in the blue region of the spectrum. The advantage of a device that can easily be controlled in all its physical characteristics more than makes up for the fact that SiC has an indirect band-gap structure, which is less favorable for generating light. Groundwork on SiC blue-emitting LEDs has been performed in Great Britain, the USSR, Japan and in the Feder, al Republic of Germany at Hannover Technical University. Proceeding from the work done in Hannover, the development of SiC blue-emitting LEDs was pursued in the Siemens research laboratories and diodes were created with the highest efficiencies known to date. Siemens is one of the first semiconductor manufacturers to have successfully produced such'diodes in the laboratory. -Semiconductor materials for blue-light emitting diodes For emission in the blue region of the spectrum GaAs,_,P, or GaP is out of the question because the band gap is too small, limiting the wavelength of the emitted radiation towards the lower end. But there are other semiconducting compounds such as gallium nitride (GaN), zinc sulfide (ZnS), zinc selenide (ZnSe) and silicon carbide (SiC). GaN was investigated quite intensively for the purpose of creating blue-light LEDs at the beginning of the 70s. With but one exception however, industrial research into this semiconductor material was then discontinued. The major drawback is the fact that GaN cannot be pdoped with sufficiently low resistance. Thus the light in this semiconductor is not produced by the radiative recombination of injected charge carriers at the pn junction 11-84 Technology and design of SiC LEOs An essential feature of SiC is its appearance in several modifications with different band gaps. For the production of blue-light LEOs the hexagonal modification 6H (o----4_-+--( VD:= 20Vpp IRL401 The circuit described in the following reacts within a range of 1 m. regardless as to whether the light is reflected from the human skin or from textiles. dislancebetween tran$mitler and receiver lsapprox.100mm '-<::::::r-¢>r--~------O-VSJ = -12' Transmitter The pulse generator of the transmitter circuit shown in Fig. 9.1 operates with a CMOS-gate. type HEF4011'. and produces pulses with a duration of 10 ,.s and a repetition frequency of 100 Hz. The peak current of 1.5 A required by the LED. type LD27. is supplied by the Darlington stage consisting of T, and h The electrolytic capacitor C, operates as a buffer. The pulse duration is adjustable by potentiometer P2 and the repetition frequency is set by potentiometer Pl' Under the assumption of a duty cycle 1000:1. an average current of 1.7 mA is required for the complete transmitter circuit. h--ttr-- 12'" &kllz lOon 560n The NTC-resistor K 164 has been connected to the base of the transistor BC238 and not directly to the LED as usually practiced. This measure reduces the self-heating of the thermistor. The control characteristic is adjustable by the two 1-kO-potentiometers. To obtain a temperature drift of only 2.5% for the complete circuit in the. mentioned temperature range. the resistance of the potentiometers should be set to a value of approx. 500 0 each. , HEF4011 refers to RCACD4011 Fig. 9.1 r-----~------------~-----~,------~~~---ClOO~---o.6V 0.91 'I '! 1M n 110rs 15k LD271 n I ~Ioms----l ( nOOHz) 11-93 10. Optoelectronic Steel Tape Reader Characteristics Supply voltage Supply current Pulse interval Pulse duration Half angle of the radiation cone 6V 1.7mA at V. = 6 V Under more adverse conditions steel tape is often used instead of normal punched tape forreading control data into numerically controlled machine tools. The circuit proposed here is based on a configuration with 12 pit parallel read-in. The LEOs associated with the 12 bit are connected in series and supplied through the resistor R1 from the 24 V supply. Each bit is allocated a phototransistor BPXB1 and operational amplifier TCA335A. The phototransistor is connected to the inverting input of its associated operational amplifier, so with incident light (hole in the tape) the voltage at pin 3 of the TCA335A drops. A positive pulse then appears at the output. 10 ms 10 tis 35" Receiver The broadband receiver circuit shown in Fig. 9.2 is applicable if the ambient light is less than 500 Ix. For realizing the infrared filter in front of the photodiode BPW34 a nonexposed but developed color film, type CT1 B (Agfa) is used. The signal supplied from the BPW34 is amplified by the transistors T1 to T5 and is available at the output with an amplitude of 6 Vpp; The gain is about 20,000. The operating point of T5 is adjusted by the potentiometer P2, setting a dc-level of 3 V to the base of T5 . The output signal is symmetrized by potentiometer P1 which determines the operating point of the. transistor T2• Up to an ambient temperature of 40°C the LEOs require no additional cooling. Compared with tape readers employing light bulbs, the LED configuration is more robust, requires less maintenance and its power consumption is a factor of 10 lower. Reader errors cannot occur in practice because if a LED goes open circuit all 12 are without current and the fault is immediately apparent. Fig. 9.2 Fig. 10.1 I, ,," BPW 34 ,::lO.mA=--t:l;;:l°:r--1I-""""1_-'-_ _ _' -_ _""""1_-r-C.14 v '/ " D1 1I C iiI l00IIF/.3S 'I 4.7k " .. , ~-----if--.. tDIuIIh"TCA335A pin 2 Characteristics Supply voltage Supply current Gain Output voltage Noise (without ambient light) Operating range in conjunction with the above described transmitter. reflection from skin or textiles 9V 5 mA atVs = 9 V 12 x lD 261 II 20,000 6 Vpp approx. 0.5 V max. 1 m 11-94 SIEMENS Remote Control Appnote 34 time constant of R1C 1-circuit is dimensioned for a burstlength of 1 ms. The 1 nF-capacitor, connected to output of gate 1, suppresses pulse spikes during turn-on. 1. Simple Infrared Remote Control with Low Current Consumption For remote-controlled switch operation only a very simple circuit is needed. The infrared signal consists of a 20 kHz burst with a duration of approx. 1 ms. To reduce the interference by ambient light and flashes, an integrating circuit is connected to the receiver, which will only supply a trigger pulse after having been applied by a series of pulses. Due to the oscillation at the output of G4 , the Darlington transistor BC875 is periodically conductive. The transmitter diodes, type LD271 are operated at peak currents of up to 1 A. The energy is supplied during 1 ms by the 470 p.Fcapacitor. Its voltage drops by a value of 1 V during the ~~ . TransmiHer Receiver A 20 kHz-oscillator consisting of two CMOS-NAND gates (Fig. 1.1) is used. As long as gate 2 has L-Ievel, the oscillation is interrupted. After pressing key T, H-potential is applied to the input of gate 1 as well as to the output of gate 2 and the oscillator starts operating. After a certain time, determined by the time constant of the C 1R1-circuit, the voltage at the input of gate 1 drops below' the minimum H-Ievel threshold and thus the oscillation is interrupted. The The photodiode BP104 with integrated IR filter is used as a load with a resistance of 56 kll (Fig. 1.2). At normal ambient light this resistance is low enough to generate no voltage drop. The next stage is an emitter follower with an input impedance of approx. 1 Mil. In conjunction with the second stage a gain of 100 is achieved. The dc operating point is controlled by means of an inverse feedback. By the next two stages, being also part of the inverse feedback circuit, the signal is further amplified by a factor of approx. 100. Fig. 1.1 ,---------------,------.--0." The input signal, amplified totally by a factor of 10,000 is supplied to an integrated rectifier circuit. At each pulse the 10 nF-capacitor is charged by a certain voltage depending on the ratio of the capacitors (680 pF and 10 nF). As soon as the threshold of the transistor, being connected to the rectifying circuit is reached, a pulse with a positive switching edge is generated. It is steepened by means of four inverters. This edge triggers the following JK-flip-flop 4027 operating as a monoflop. At its output a defined pulse is available for triggering the following flip-flop 4027. In this case antivalent outputs are used to drive a red or a green LED. IOn 20kHz-Oscillator Fig. 1.2 686 'l l057C 4049 11-95 to be negligible. For instance, a resonant circuit with a determined quality factor 0 needs pulses in a quantity of (0/3) in order to reach 50% of the maximum resonant amplitude. Assuming a carrier frequency of 50 kHz, a quality factor of 16 and a bandwidth of 3 kHz,S pulses are required to obtain a value, which is 50% of the maximum resonant-circuit voltage. In the described circuit the interval for the total pulse train was chosen with 400"s which refers to 20 pulses. Technical- Data 1i'Imsmitter Supply voltage Pulse width (single pulse) Carrier frequency Peak current 9V approx. 1 ms approx. 20 kHz approx. 1 A Receiver Supply voltage Supply current (without LED) Intermediate frequency Gain Range Transmitter 9V 2mA approx. 20 kHz approx. 80 dB ~15 m Only one CMOS-Ie, type HEF4011 1 has been utilized"to realize the two oscillating circuits of the transmitter, operating at 10 Hz resp. 50 kHz (see Fig. 2_1). The 10 Hz-oscillator has a duty cycle of 250:1. " Fig. 2.1 2. Power-Saving Infrared Transmission for One Channel With the transmitter-receiver combination described in the following it is possible to transmit simple instructions, e.g. on-off, over a distance of about 20 m by using the light emitting diode LD271 and the receiving photodiode BPW34. Therefore this device is favored for remote control operations of electrical equipment, e.g_ dimmers, motors, switches, model railways or even installations carrying high tensions. Besides that, it can be advantageously used to realize light barriers, since the high carrier frequency guarantees a high interference immunity against continuous and low-frequency modulated light. If an optical system is used for the transmitter as well as for the receiver, much greater distances than the above mentioned can be covered_ These different intervals are obtained through by-passing the charging capacitor by means of the diode BAY61. The 50 kHz-oscillator is modulated by 10 Hz, i.e. it operates only during a time of 400"s. The LD27, emitting infrared light, is square-wave modulated by a Darlington stage with reference to the rhythm of the output signal. If the peak current is a 1 A, the average value is only 2 mAo As this peak current is not available from the battery, it is supplied from a 470/LFcapacitor, the voltage of which decreases by a value of 0.5 V for the duration of the pulse train. The diode current being higher at the start positively effects the resonant circuit of " the receiver. An extension to more than one channel is possible, but the current consumption will increase by the number of channels. Thus this operating principle is also applicable for remote controlling of TV-receivers and of other devices demanding higher requirements. If the number of channels is n, 2n-1 different instructions can be transmitted.·Since.the information is only transmitted for a short period; the average power dissipation is reduced by a factor of 500 in comparison to the peak power. In the described application the repetition frequency 'is 10 Hz, i.e. the interval between two instructions is 100 ms. Characteristics By the ambient light a noise voltage is generated in the photodiode BPW34. Therefore, the input circuit of the receiver operates with a narrow-band-filter, keeping the_noise influence low. Each instruction consists of a pulse train with constant pulse interval (e.g. 50 kHz). The number of pulses per train required for processing a statement depends on the amplifier. Therefore, it has to be considered that a narrow-band amplifier has a transient response which is not Supply voltage Supply current Subcarrier frequency Duration of pulse train to train repetition period Emitted peak power Half-angle of the radiation 'cone 11-96 6V 2mAat6V 50 kHz 400 I's : 100 ms 80 mW/sr 35° Receiver 3. IR Preamplifier with the IC TCA440 for Infrared Remote Control Systems The receiver shown in Fig. 2.2 operates with the photodiode BPW34, which is matched to an input impedance of approx. 80 kll at 50 kHz. The dc diode-current should not exceed a value of 20 pA. For the infrared filter placed in front of the photodiode, a non·exposed but developed color film, type CT18 (Agfa) has been used. In the following circuit the pulses are amplified, clipped, rectified and applied to a monostable multivibrator, which covers the space between two pulse trains. Therefore a dc voltage is available at the output of the receiver as long as the push button of the transmitter is operated. Thus the required function ca:n be realized. Preamplifiers for IR remote control systems with pulse code modulation must meet additional overdrive requirements compared with frequency coded systems. Receiver overdrive in conjuction with tuned circuits results in falsification of the envelope pulse duration. However, the receiver can only process such pulse ''distortion'' to a certain degree. As the input signals can differ by a factor of more than 105 , a control loop must be introduced to prevent overdrive. The control circuit must act fast enough to assure correct transmission of the first bit. This is especially important for the transmission of single instructions. The requirements are less critical for repetition instructions; here it suffices when the correct control state condition is achieved by the tirne transmission of the second instruction commences. The amplifier consisting of transistors T1 to Ts offers a gain of 20,000. T1 operates as an impedance former. The bandwidth is adjusted to a value of 3 kHz by a selective feedback between T3 and T4. Ts operates as the threshold switch and limiter. The signal is integrated by the capacitor Cs and delayed, so that after the start of the pulse train three to four 50 kHz-oscillations pass before the following monostablemultivibrator is triggered. Thus it is guaranteed that short pulse-interferences do not trigger the monovibrator, consisting of two NAND-gates, type HEF4011, . The duration of the monovibrator pulse is 100 ms. Thus it is assured that the steady state is obtained after a period of 100 ms, if the following pulse train is not emitted from the LED. With single instructions, the Signal AGC circuit must act within a fraction of the bit duration. This necessitates a response time of less than 100"s. The dwell time in the control state must. however, be much longer, ideally more than 100 ms so that for repetition instructions a more-or-Iess steady control state condition already exists for the second instruction. In addition to this control loop driven by the useful signal for single instructions, a control circuit dependent on light level is also advisable. This assures maximum sensitivity under low ambient light conditions and reduces the amplification with increasing light level to maintain the light noise jusf below its disturbing level. 'HEF4011 refers to RCA CD4011 Characteristics Supply voltage Required current (without output circuit) Receiving bandwidth Centre frequency Adrnissible ambient light day light incandescent light fluorescent lamp light IR·filter, cut-off wavelength 9V 10 mA atV.=9V 3 kHz 50 kHz In practice, the operator can bring the transmitter very close to the receiver. When this form of overdrive occurs it must be assured, that correct recognition of the signal is not prevented. For guidance purposes, a minimum separation of 5 cm can be assumed. The resultant level differences of more than 100 dB generally can not be fully handled by the internal control circuit of the Ie; additional measures such as peak level limiting are therefore required to hold pulse distortion within the admissible limits. max. 4,000 lux max. 500 lux max. 10,000 lux 870nm Fig. 2.2 ·9V '.7 " r I'P 120P BPW 34 no Olp or relay' ,. /,i LED " 'PI Ilk 11-97 Ilk III .!!o j- Fig. 3.1 shows a circuit incorporating the IC TCA440 which essentially meets all the above requirements. Fig. 3.1 The output circuit bandwidtn is about 4 kHz and contributes decisively to the receiver sensitivity. The output voltage is limited by the TCA440 to about 4 to 5 Vpp. When designing this circuit, care should be taken to prevent inductive feedback from the circuit inductance Ll to ttie input transformer. Technical Data Input IR irradianee (A=950±30 nm) Minimum Maximum 1 nW/mm' 5 ·10' nW/mm' Range a) without wall influence (free room) Angle O· Angle 30' b) with wall influence (corridor) Corridor 2 m wide x 2.5 m high Angle O· It is assumed that the transmitter radiates an IR signal with a , >12m > 8m >20m under the following conditions: carrier of approximately 30 kHz modulated with information as 7 bit instructions in biphase code. The bit length should be about 1 ms, the repetition frequency, if present. about 10 Hz. - Transmitter peak power 160 mW - Low outside light (Max. illumination 500 Lux. caused by daylight or fluoresc~nt lamp) (i.e. 2 lower limit LD 271 .with 1 A peak current) In series with the IR diode BP104, which is similar to the photodiode BPW34 but with integral IR filter, is a resonant circuit tuned to 31.25 kHz and having a resonant impedance of 50 kO. Damping is provided by the 100 kO resistor and transformed input impedance of the TCA440. With a transformation ratio of 5:1. the TCA input impedance of about 4 kO appears as 100 kO on the primary side. The bandwidth of 10 to 12 kHz is relatively large, but this makes the input circuit design uncritical and assures short rise and fall times. The capacitive loading is mainly on the secondary side, only the BP104 junction capacitance loads the primary side. The bandwidth can be halved if required.by removing the 100 kO resistor. Outside light' influence With incandescent light E=1000 Lux Range reduction <50% Admissible variation in pulse group length '(rated value 500 or 1000 I's) AGe time constants ±10% Gain reduction Gain increase Center frequency <1001's >100 ms 31.25 kHz Bandwidth for small signals approx.' 3,kHz (AGC not operating) referred to output 7 In the TCA440 the preamplifier stage with inputs 1, 2 and output 15 and the controlled IF amplifier with input 12 and output 7 are utilized. The latter requires a resonant circuij at the output. otherwise the output voltage is too low. The AGC starts to operate through pin 9 when the output circuit voltage exceeds 2.5 Vpp. Under high ambient light conditions tlie input amplifier gain can also be controlled. The DC output current of the BP104 causes a small voltage drop at the bottom end of the primary winding which is utilized for gain control. Input 3 is current biassed such that the AGC already acts at relatively low photocurrent levels. Output signal '15 V:; modulated Supply voltage 15V+3V,-5V admissible ripple Input transformer: 865531-L0250-A028 Pot core 11 x 7, A, =250 nH n, = 565 turns, 0.07 dia. n, = 111 turns, 0.07 dia. <2% Primary inductance approx. 85 mH L,: 865517-A0250-A028 Pot core 9 x 5, AL =250 nH n = 1 00 turns, 0.1 dia. 11-98 4. Single Channel IR Receiver with High Interference Resistance Technical Data (TTL Version) Supply voltage 5V 55 rnA. 40 kHz 4 kHz 1 ms 10 Hz approx. 3 nA. Supply current Carrier center frequency fo Fig. 4.1 shows an IR receiver circuit which is especially suitable for light barriers or simple IR transmission systems. It features increased resistance to extraneous light interference, for example the switch-on pulses of fluorescent lamps. Input circuit bandwidth Pulse group duration t Pulse group repetition frequency 1/ T Respo,)se threshold (max sensitivity) referenced to the photodiode useful current Range measured with a transmitter fitted The pulse groups emitted by the transmitter (to = 40 kHz, with 3 x LD271,1" , =1 ms, T =100 ms) are received and amplified by approximately 60 dB on OP 1. P3 sets the switching threshold for the following threshold switch OP 2, at the output of which the pulses are again available at TIL level. The first pulse received by the diode triggers MF1 which produces a pulse of c;luration (see Fig. 4.2). This in turn releases after approximately 90 ms a pulse of duration 12 (G 1 and G2). The second transmitted pulse can only pass G4 during the period 12' The output signal A (continuous signal) is delivered by MF3, a post-triggered monoflop with 13>T. . >12m =1 A. Fig. 4.2 '1 OUtpUI S.On (todecoderJ 19k H no 1.9k Without any influence of extraneous light, a distance of 25 to 30 m between transmitter and receiver can be easily realized, whereas the distance is much higher if the circuit with LC-network is used. Fig. 6.2 shows a circuit without coils. The large-signal characteristics and noise immunity are improved by a network consisting of resistors and diodes. The described preamplifier circuit is also appiicable for IR remote control systems used in TV sets. In this case, only a range of 15 to 18 m is covered because of the wire-netting protection and the stray influences of the TV defeCtion coils. Both circuits should advantageously be mounted in a double-screened case. 11-101 SIEMENS Photographic Aperture, Exposure Controls, and Electronic Flash . Appnote 35 crystal display. To avoid a too strong damping of the base circuit by the capacitor of the display, two diodes are connected in series to the LCD. The pulse duration of the blocking oscillator signal is mainly defined by the selfinductance and self-capacitance of the coil, while the repeating frequency depends on the time constant of the base circuit The optimum output voltage is achieved at a repeating frequency of approx. 3 kHz. the oscillations start at a collector voltage VCE of -60 mV and a mean current Ic of 30 pA. 1. Solar Cell Generator for Exposure Control in . Cameras without Moving Parts Exposure meters normallywbrk with a moving coil instrument With a field effect liquid crystal display and a solar generator with two photovoltaic cells, type BPY64 a fully electronic light control without mechanical moving .parts can be realized .. The reversal point of ttie indicator is reached at an illumination of 100 lux (color temperature of 2850 K). Thus exposure-time display for low-priced cameras is possible. 2. Phototransistor Used In a Computerized Photoflash Unit Circuit Description A basic requirement is an oscillator which starts oscillating at a voltage below 100 mV. Two photovoltaic cells, type BPY64, feed a blocking oscillator with transistor AC121 VII as shown in Fig. 1.1. Because of the low photo-electric voltage available at low illuminations a germanium transistor with a low threshold voltage has to be used. In operation, the transistor is at first conductive so that a magnetic field can be built up in the primary winding of the transformer Tr. Through the secondary winding, a reverse voltage is induced to the base circuit which turns off the transistor. At this moment the magnetic field of the coil collapses. The potential difference between collector and base is momentarily approx. 5 V at the break-down point of the liquid A new circuit has been designed for the receiving part of the computerized photoflash unit It offers the advantage in that it essentially compensates all the undesired influences produced by exposure time errors, ambient light, temperature, and tolerances of the photosensitivity. A phototransistor in conjunction with an integrating capacitor connected to the emitter serves as a photodetector. A computerized photoflash unit differs from a standard one in that the duration of the photoflash is determined by a photodetector. Therefore, the exposure time for a camera film is constant and does not depend on the intensity of the reflected light, i.e. the flash is interrupted sooner or later in dependence on the quantity of reflected light Fig. 2.1 shows on principle the control circuit of a computerized photoflash unit The photocurrent of the phototransistor charges the capacitor C1 and thus the turn-off thyristor shown in the fiQure with broken lines is triggered. Fig. 1.1 Ir Silicon Diodes -...-'" Fig. 2.1 2x BPV 64 'Vs L(O ~ r--- ~ -...-"" photo- transIstor , , ----.../ Ie, Coil Pot Core Material 14 x 8 N30 n1 = 666 turns n2 = 333 turns 0.07 ECu l = 1.84 11-102 ~, I'ynstor :2. I ('reUlI ............ ' I J I Ra serve as voltage divider, at which a positive voltage of A trial was conducted to find out how far exposure time errors of photoflash devices using the circuit of Fig. 2.1 depend on the sensitivity of the phototransistor. It has been experienced that the sensitivity changes by about 25% in a distance between 0.9 m to 4.0 m. This variation is generated through the change of the current gain depending on the collector current. The compensation of the linearity error of a phototransistor is only partially possible because of its unavoidable characteristic tolerance. Therefore it is more convenient to use a circuit in which the value of the current gain does not essen· tially influence the exposure time of a computerized photo· flash unit. The base collector current dependence on the luminous intensity is completely linear whereas this is contrary to the one of the emitter collector current. This is founded in the fact that the base·collector-junction serves as a photodiode. Therefore, a special circuit has been designed. The current generated through the light is integrated by a capacitance not being connected to the emitter of the phototransistor but to its base as shown in Fig. 1.1. At the beginning of the exposure the capacitor is not charged, i.e. the base·emitterjunction is not conductive. If the phototransistor is illuminated charge carriers are generated. A hole moves to the base terminal and positively charges the capacitor C1 with refer· ence to ground potential. When the capacitor is charged so that the base·collector·junction becomes conductive, the phototransistor starts to amplify, i.e. the emitter current increases. The amplified photocurrent produces a voltage drop across the load resistor R2 and thus the following turnoff thyristor is triggered. The disadvantage of the circuit shown in Fig. 2.1 is that the signal slewing rate is not fast enough, because the capacitance of the integrating capacitor C1 is increased by the gain of the phototransistor at that instant when the base-emitterjunction becomes conductive, i.e. when there is an ampli· fication effect. In order to improve the signal slewing rate the circuit shown in Fig. 2.2 is recommended. Here the capacitor C1 is connected to the base and emitter. If the voltage across the load resistor R4 increases, the level at the capacitors low end also rises with nearly the same amount as at the high end of C1 connected to the base. Therefore, the capacitor - C1usually requires no charge. The circuit according to Fig. 2.3 assures that at the beginning of each photoflash the capacitor C1 always has the same charge impedance of the illumination which previously occurred. The resistors R2 and Fig. 2.2 r--I I phDID· " transistor - - _.../ ~'Ilhy"slor )r¥-~ circuli .,. I I I I ,.! ~ 1 V referred to the level of the phototransil;ltor emitter is disposable before the photoflash is started. The diode 0 1 is turned off. Its voltage difference effects that a current ilows via the resistor R1 into the base of the phototransistor. At its base-emitter-junctions a voltage drop, not being essentially increased by the external illumination is produced. At the beginning of the photoflash, a negative pulse is applied via terminal B to the resistor R2 . By the current flowing through R2 the diode 0 1 becomes conductive and its level changes from +1 V to -0.7 V. This potential difference is fully transmitted via the integrating capacitor C1 to the base of the phototransistor, which is therefore reversely biased by this voltage. Thereafter, this bias is compensated by the photocurrent. The negative voltage pulse required at the beginning of the photoflash can be derived from the same voltage source, which generates the collector-emitter-voltage at the beginning of the photoflashing. The voltage at terminal A is taken from a divider being in parallel to the photoflash capacitor, i.e. it is also available before the photoflashing occurs. Fig. 2.3 r--I 1";:;"thyristor II] 1>1") "rcull 560 k r--o[1-1::::J v (4) l~ /=/s [e;;-:v::r -1]-lp . In this case, Ip is the photocurrent, Isat the saturation current, V the voltage between the p and n contact, VT the voltage equivalent of the temperature and n is the diode factor. In the case of Ip = 0, equation (4) is reduced to a normal diode equation and describes the dark characteristic (Ev = 0). When subjected to light, the characteristic is shifted downwards corresponding to the illuminance. The opencircuit voltage c'-Vv;;+v' If photons with an energy hv?!Eg penetrate into the diode, electron hole pairs are generated on both sides of the pn junction. The energy difference (hv-Eg) is disSipated to the grid on the form of heat. The electrical field in the space charge region repels the majority carriers and attracts the minority carriers on the other respective side (thus, holes from the n side to the p side and, vice versa, electrons from the p side to the n side). In this way, the charge carrier pairs are separated and a photocurrent flows through an external circuit, also without an additional voltage (photovoltaic effect). Carriers occurring in the space charge region are immediately sucked off due to the field prevailing in this layer. The carriers from the other regions must first of all diffuse into the space charge region in order to be (5) = = belongs to I 0 (RLE co) and the short-circuit current = -/p belongs to V = 0 (RLE = 0). Is There is a linear relationship, depending on the diode type, between the illuminance Ev and the photocurrent Ip, which covers several powers of ten (eight and more). However, due 11-107 = .. =2 ·-co . !:z 15 c 1 to Ip-Ey and Ip>/s, a logarithmic relationship prevails between the open-circuit voltage VL and the illuminance Ey. The forward current IF belonging to the open-circuit voltage VL is equal to the impressed photocurrent. In diode mode, the photocurrent of one or the other diode type may slightly change together with the applied voltage. This is due to the voltage dependence of the space charge region. In the case of silicon photodiodes, the dark current [first term in equation (4)1 once again only plays a role with extremely low' illuminances (in the millilux range). Photodlodes (PN and PIN diodes) Photodiodes can optimally be matched to the desired application by choosing the correct mode of operation and by means of a suitable internal structure. In addition to the schematic structure of each individual diode type, figure 1.3 shows the doping behavior and the field pattern as well as the region in which the avalanche effect takes place at a sufficiently high voltage (ionization region). Fig. 1.3 Doping behavior and field pattern of photodiodes Spectral Sensitivity Fig. 1.2 shows the graph of the spectral sensitivity of a silicon and a germanium photodiode. The positions of the emission maxima of the most important light emitting diodes. . and the sensitivity of the human eye are also shown. PNdiode IpFRlZ-I N PIN diode I Ip'l Dop;ngbehav;O'INO-N,lb INO-~:~u 10 10 cm- 3 Fig_ 1_2 cm- 3 10'5 Relative sensitivity of a silicon and a germanium diode F;eldP,nernEt:_ x 5.10 5 V/crn The twophotodiodes cover the wavelength band from approximately 300 to 1800 mm. In this case, the silicon diode is of greater significance; it covers the visible range and, with its maximum sensitivity in the near infrared area, is well matched to the GaAs infrared emitting diode, whose bestknown field of application covers IR remote controls and light barriers. The sensitivity limit of semiconductor detectors in the long wave spectral wave band >.g is determined by the energy gap Eg. The run of the spectral sensitivity curve in the remaining wave band is determined by the absorption coefficient "'A and the recombination relationships in the interior and on the surface of the semiconductor (carrier loss). The drop in the curve towards shorter' wavelengths is due to the higher absorption for shortwave radiation; for this reason, carrier pairs are only generated in the regions near the surface but, due to the high prevalent recombination rate, are mostly lost with respect to the photocurrent. Eb 10" Wcrn x Medium --+-infrared . x 5.10 5 !Edx-V RLZ Ultra-IVisible violet light INI !Edx=V RLZ x --0; In the case of the PN photodiode, the radiation which, as a rule, enters the p+ region vertically, is absorbed in the mainly quaSi-neutral p and n regions due to the narrQw space charge region; thus, the photocurrent predominantly consists of the diffusion current. As the characters are diffused relatively slowly, PN diodes are frequently used in applications in which the stress is placed rather more on low dark currents than on high speed. (For complete diffusion of a 5 I'm thick p layer, an electron needs 3 ns, and a hole needs 15 ns for the same distance in the n region). Therefore, silicon PN diodes can be found in exposure meters which still operate perfectly under starlight; this presupposes dark currents of less than approximately 10-11 Nmm 2 . Solar cells also belong to the group of PN photodiodes. Contrary to the PN diode, in the case of PIN photodiodes most of the light is absorbed in the space charge region. These photodiodes are mostly used.in applications requiring high speeds. In order to achieve a large space charge region, if possible, in accordance with equation (2), the semiconductor material must be intrinsic (intrinsic I) (mostly weak n or weak p doped) into which a p+ region is diffused on the one side and an n + region is diffused on the other . side. A P't IN + structure (''sandwich'' structure) is obtained. In accordance with equation (3), the junction capacitance q is low due to the large space charge region of the PIN diode. Ci values are used between a few picofarad and a few tenths of a picofarad. The product from Ci and RL (load resistance) is the time constant of the measurement circuit. In order to achieve PIN diodes which are as '~ast" as possible, the voltage is increased to such an extent that the carriers drift through the space charge region at saturation 11-108 speed Vsat . In silicon and germanium, a saturation speed Vsat from 5 x 106 to 1 X 107 cmlsec is achieved with fields of approximately 2 x 104 Vlcm. Accordingly, a carrier requires approximately 50 ps to completely drift through a 5 ,..m thick region. PhotoYoltaic Cells Voltaic cells are active dipole components which convert optical energy into electrical energy without requiring an external voltage source. The properties of a voltaic cell are essentially characterized by the open·circuit voltage and the short-circuit current. In the case of a short circuit (V = 0), the current Is is a linear function of the illiuminance and thus also proportional to the area subjected to radiation. The open-circuit voltage Vo initially increases logarithmically with the luminous intensity. This is independent of the size of the cell and amounts to approximately 0.5 V at 1000 Ix. In order to extract the maximum amount of energy from a voltaic cell,the load resistance RL must lie in the order of magnitude of R; = "/volls . The internal resistance R; of a voltaic cell should be as low as possible in order to prevent unnecessary loss. In order to measure the luminous intensity, the proportional relationship between the optical and electrical signals is important, and in practice, this applies up to a load resistance of R;f:::!.Vo/2 Is. In principle, voltaic cells can also be operated in diode mode by applying a voltage in reverse direction. Obviously, this voltage must not exceed the maximum reverse voltage. view) with emitter (n+), base (p) and collector (n); the latter is mostly subdivided into a weakly doped n and a highly doped n+ region. As the diffusion length LD of the holes in the n+ region is low due to the high amount of doping, only the p and n regions provide the maximum amount to the primary photocurrent ICB of the collector-base diode. This is due to the low photosensitivity (also in comparison with photodiodes) of epitaxial transistors in the long wave band. A large part of the long-wave radiation is absorbed in the n+ region as the n region is mostly extreme thin (10 to 20 ,..m) as a result of the requirement for extremely low conductor resistances. The view of the transistor shows a base with a large area in which the emitter and also the base connection are attached to the side; in this way, as uniform as possible a surface sensitivity is achieved. The gain of phototransistors normally lies between 100 and 1000. Gain deviations from the linearity and thus from the linear relationship between the illuminance and the photocurrent amount to (over approximately four powers of ten of the photocurrent Ip, from some 100 nA to some mAl less than 20% and mostly less than 10%. With regard to dynamic behavior, phototransistors are less favorable than photodiodes as, in addition to the collecting and charging processes in photodiodes, there is also a delay due to the amplification mechanism (Miller effect). In addition to the rise and fall times tr and tf, the transistor also has the delay time td' This is the time required until the photbcurrent has reached 10% of its final value after activation of an optical square-wave pulse. For the rise and fall times of a phototransistor, the following relationship applies: Phototranslstol'S In principle, a phototransistor corresponds to a photodiode (collector-base diode) with a series-connected transistor as amplifier. The phototransistor is the simplest integrated photoelectric component. Figure 1.4 shows one of the practical designs of a bipolar phototransistor (cross-section and Fig. 1.4 Bipolar phototransistor In this case, fT is the transition frequency, R is the load resistance, eCB is the collector-base capacitance, G is the gain, a is a constant whose value lies between four and five. The rise and fall times of usual phototransistors range from 1 to approximately 30 ,..s with 1 kOhm load resistance. Therefore, they are particularly suitable for utilization within a frequency range up to some 100 kHz, which suffic~s for important applications such as light barriers, punch tapes, and punch card readers. 2. Emitters (Radiation emitting components) Principle of Operation and Materials Light emitting diodes operate in accordance with the principle of injection luminescence. Through a pn junction operated in forward direction, n-type charge carriers are injected into the neutral nand p region where they partially recombine for emission, sending out a photon with the energy hv = hcllo.s.Eg (h = Planck's constant, v = frequency, !"I .... .!!C; 'iii,", .i' 11-109 c = speed of light, ),.= wavelength, Eg = energy gap). This is shown in figure 2.1 in the energy diagram for a pn junction. valence band (hole), in which case the released energy is given off as a photon (cp figure 2.2, left). In the case of the so-called indirect semiconductors with Si, Ge, and GaP as the most important representatives, however, this transition is linked with a pulse change of the electron. Recombination is then only possible with the participation of third partners, for example, phonons or impurities. These must ensure pulse compensation. The energy released during the transition is mainly diSSipated as heat to the grid. In indirect semiconductors, this leads to the probability of radiant recombination being less by orders of magnitude than in direct semiconductors. Nevertheless, effective radiant recombination can be generated in some indirect semiconductors. This is achieved by doping with isoelectronic impurities. The two most efficient isoelectronic impurities in GaP are the nitrogen atom and the zinc-oxygen pair. Radiant recombination is then achieved by way of the decay of an electron hole pair (exciton) bonded to the isoelectronic impurity (cp figure 2.2, right). Fig. 2.1 The pn junction of a light emitting diode Electrons \ f---- eVD' "-: / Conduction band ________ Inlermediatelevel E> E> E> E> I -1------Eg Energy gap " " - - - - - Valence band ~E>E>E>' I Space I : charge : I r8'"IOn I .....L._ _ _ _- . 1 @ Holes [-:-E>_-E>-e(-~-~-8~----l~~_h 0 - - ] A high degree of crystal perfection is a precondition for the creation of effectively radiant recombination as crystal defects act as centers for non-radiating recombination. For this reason, the active layers of light emitting diodes are produced epitaxially at temperatures far below the melting point of the semiconductor material. @ ® without" external voltage @w.ith externally applied voltage Diode operated in forward direction!1 ~directrecombina­ lion. 2 ~ indirect recombination) The probability of radiant recombination essentially depends on the band structure type of the corresponding semiconductor material. In the case of direct semiconductors with GaAs as the most important representative, an electron can directly fall from the conduction band into a free state in the III-V compound semiconductors and mixtures of these can be used as materials for light emitting diodes as their energy gaps cover wide spectrum and the band structure, contrary to the classical semiconductors Si and Ge, enable the creation of effective radiant recombination. Above all, the semiconductors GaAs, Gap, and the terniary mixtures Ga (As, P) and (Ga, AI) As have practical significance. Fig. 2.2 Dependence of energy states on the wave number vector k in the case of direct (GaAs) and indirect (GaP) semiconductors. GaA, GaP Conduction N band hv Valence band / -k +k 11-110 -k +k Infrared Emitters (IR l.EOs) beiween 850 and 900 nm and to tune the emitter diodes to the maximum detector sensitivity. With selectively sensitive detectors, it would be possible to create transmission systems with two (or more) optically separate channels. IR emitters are based on GaAs which has an energy gap of approximately 1.43 eV: corresponding to emission of approximately 900 nm. H'igher external quantum efficiencies can be achieved with these diodes than with light emitting diodes for the visible wave band. The left-hand side of figure 2.3 shows the schematic of the diode body of a silicondoped GaAs IRED. By means of liquid phase epitaxy (LPE), the active layer with a high crystal perfection can be grown onto a GaAs substrate. Due to the amphoteric characteristic of the silicon irnpurity, the pn junction forms automatically during the process of epitaxy. Due to the silicon doping, the emission lies at 950 nm and is thus so far underneath the band edge that the radiation created in the diode body is only absorbed to a slight extent. Part of the radiation leaves the diode body on a direct path through the near surface. However, radiation emitted in the direction of the substrate is also useful. For this purpose, the rear of the diode body is mirrored and serves as a reflection surface. Electrical and Optical Characteristics of IR LEOs Figure 2.4 shows the emission spectrum of the most important LEOs and the relative spectral contact sensitivity V>.. With respect to the emission spectrum of the IRED relative to the sensitivity curve of the silicon photodiode, see figure 1.2. The emission spectrum of the GaP diode ranges from the yellow to the green wave band. By dying the plastiC seal, the emission ban<;1 can be limited in such a way that the emitted light appears yellow (~p = 575 nm) or green (~p = 560 nm) to the viewer. Fig. 2.4 Emission spectra of the most important LEOs GaAs-IREDs are fitted in plastiC packages or in hermetically sealed glass-metal housings. Wavelength A - - nm An essential piece of information for the user is the radiation characteristic. If the light emitting diodes are used in an arrangement without optical lenses, for example, in a punch tape reading head, the radiation should have a small half angle. This is the case with l.D260 to 269 and COY77. 700 1.0 '" 1f7- 2~ I 0.8 0.6 0.4 I Array designs are suitable for a wide range of applications as they can be rowed up in any configuration. a f " ~\ I In conjunction with optical lens systems, designs are preferred in which the radiation leaves the component through a flat window (COY78, SFH402). / 34 ~ ..... 2.0 1.8 1: 2: 3: 4: 5: Ga P: Zn.O Ga ASo,G PO.' Ga ASO,35PUG~ N GaAso,15PO,8~N GaP:N IR (900nm) JR (S20-S80nm) ..-GaAs:Si n·GaAs Transparent LPE (Helero) pnJunctlon lPE Technology GaAs-IRED Switching 1000ns time Itypical) == Semiconductor - 1\ \ 2.4 2.2 VA.: Spectral contact sensitiVity curve __ 1'______ _ lPE \ Red Red TSN- Red 'TSN-Yellow GaP-Green/yeliow Fig. 2.3 Epitaxy I\VA f'..... Structure of the diode body of an IRED (950nm) 5 500 J "" ......... 2.6 eV Photon energy ___ Further developments in the field of silicon-doped liquid phase epitaxial IREDs is aimed at expanding the wave band. The amphoteric character of the silicon doping is retained in the terniary mixed crystal (GaAl) As in that the energy gap can be varied by means of the amount of AI. In this way, it is possible to produce emission wave bands JR i / ~~ ;(~ 1.6 550 / Y I .~ V I !\ I 0.2 600 \'II I .~ E 650 LPE (Helero) Diffusion Diffused GaAs IRED 50ns _Contact LPE = liquid phase epitaxy 11-111 Burrus type 15ns = Oxide In the case of GaAs diodes and the red GaAS06 POA diode, the emitted radiation (or luminous intensity, respectively) of IREDs and LEOs changes in the normal operating range in a linear relationship with the forward current while, in the case of TSN diodes and GaP diodes, it rises slightly overproportionally (figure 2.5). At constant current, the radiant intensity or luminous intensity, respectively, decreases with rising temperature. The temperature coefficient is -0..7% per degree for GaAs, -0..8% per degree for GaAsp, and-o.3% per degree for Gap. This is negligible for many applications. If the temperature dependence proves disturbing, it can widely be eliminated by compensation circuits. Fig_ 2.5 The radiant power emitted by LEOs declines with increasing length of d!1Efration ("aging'). A "life" of components was introduced to describe the degree of degradation. It is defined as the time after which the radiant power has fallen to half the value. In the case of IREDs, for example, the average life dependent on the operating current and ambient temperature is approximately 10.5 h (extrapolated from continuous tests). Refer to figure 2.7. Light current - diode current characteristic

Total radiant power of a source 4>101 Watt 00 4.7 W t,1}tot= f IdQ 0 E Irradiance Watt meter W · .. is the surface density of the radiant power (spherical surface) for a point source. ffi2 E= dtP. dA=R2dQ dA' L Radiance Watt m2 sterad W Iii'sr E= dtP I dQR2' = fi2; I=ER2 ..• is the radiant intensity referred to the radiant surface viewed by the observer. ( Surface projection Ap = A cos t, when t is the angle by which the is rotated againstthe connecting line to viewer. L = AI. p = radi~nt surface A I ). COSt Important optical quantity. 1) In an undamped beam path L is maintained and cannot be increased by any optical measure. 2) The human eye sees differences in radiance as differences in brightness. Sensitivity of detector I I s=E Ampere irradiance A·m2 Electrical quantity (current, voltage or resistance) in relation to irradiance --W 11-116 Illuminance (units and conversion factors) 1 Lux~lx 1 Millilux~mlx 1 Phot~ ph 1 Foolcandle ~ Ie') ~ ~ ~ ~ Ix mix ph Ic 1 10-3 10' 10.76 10-3 1 10'" 10-7 1 1.076 x 10-3 9.29 9.29 929 1 la' 10760 Illuminance .. ____________ Phot(ph).lumen em2 I I 10-6 I 2 345678910'5 I I I I III 10 2 Milli-lux(mlx) 2 I I 2 345678910-' I I I III I I I I I I I II 345678910-3 2 I 3 45678910-2 m2 , 1 .3 II .5 .6.1.B.9tO I I I 111I11 I 11111111 2 3 X 10-2 10-5 ________________ _ -..100- - - - -----lux(lx). lumen - 3 4 56789100; I I I 1111111 I 3 I 11111111 10- I X 45.678910- 1 ·2 .2 .3 iI.5.6J.&9to _ - - - - - - - - - - - - Footeandle(Icl·lumen loot2 11-117 20 --_ 30 4050&0 80100 I I 1111111 I 11111111 2 345678910 --- --------. 1) equivalent footcandle } tootlambef1 (luminous denSity) g footcandle (Illuminance). apparent footcandle I I I I r I II 34'5678910-2 -- -- - - 3.4 5678910 I I I 111111 I 11111111 I 2 Figure 5.1 Conversion of illuminance E, into irradiance E, (Planck's black body) Figure 5.2 Conversion of illuminance E, into irradiance Ee at 2856 K (Planck's black body) c L II. IL 1 Iii' .L II Vlv ~ ~lL 1I 103 I ~ 1--- -- 3000 K - / //1 3200 K f-- 2856 K 2800 K 2600 K LL lV V L r, Vv .1 L LL 1 , lL V I I I .L / / 7L / lL VL / V V ~ r- 2400 / .'zB56K K 2200 K 11/, I I~ i Vi' I/. W II 2000 K I l , I / II / .L V II VIVI) ,I 1I ~VV 10-1 / II 3 10 ml\ 102~ Irradiance ~Ee 11-118 lrradiance ----... E. Luminous density (units and conversion factors) sb cd/m' cd/ft> cdlin' 1 Stilb = cd/cm' = sb 1 cd/m' = Nit = nt 1 cd/ft' 1 cd/in' = = = = 1 10-' 1.076 x 10-3 0.155 10' 1 10.76 1550 929 9.29 1 144 6.45 10-' 6.45 X 10-4 6.94 x 10-3 1 1 Apostilb = asb 1 Lambert = Loria lmLormla 1 footlambert 1 equivalentfootcandle 1 apparentfootcandle ftL or ftla = = = = = = 3.18 x 10-' 0.318 3.18 x 10-' 0.318 3183 3.18 2.96 x 10-' 2.05 X 10-' 296 2.05 2.05 x 10-3 0.296 3.43 x 10-' 3.43 0.318 Units X 2.21 x 10-3 asb L Lm ftL 31400 3.14 33.8 4870 3.14 3.14 x 10-' 3.38 x 1O-~ 0.487 3140 0.314 3.38 487 2920 0.292 3.14 452 1 10' 10 10-4 1 10-3 0.1 103 1 9.29 x 10-' 929 0.929 10.76 1.076 x 10-3 1.076 1 10-8 10-7 10-6 10-5 10-4 10-3 1b-2 10-1 1 101 10 2 103 -. ~~ ;0-9 ;o-a ;0-7 ;0-6 ~0-5 ;0-4 ;0-3 ;0-2 ~O-l" ;01 ;02 - . cd In 2 No perception ~• Rod vision L.~ -1 Cone vision Boundary, Daylight vision Purkinje effect Dark adaptation 1 Dazzling Electromagnetic radiation Figure 5.3 Frequency and wave bands Dielectric heating Medical application light Radiation Cosmic radiation :: " F..quency 1020 :I 10'8 1016 I I 10'4 10'2 Radiation 10'0 108 106Hz $JJNVW~\dkQ\tV$JS:/¢'} 10"2 11 10 10'2 102m Wavelength 10.8 lC),'0 I lpm '6 J,/light spectrum', L O,38~m 100 10'4 II I i i l n m ; l l)Jm lmm , ,, , ,, ,, I ----\ O,7a~ 11-119 I I I lcm lan 1m Figure 5.4 Figure 5.5 Relative sensitivity of different light-sensitive detectors Nomogram for electromagnetic radiation % 10 0 "'. n I~~ / \ / \ /x... r'-. 1\ II / :~~;descent" •\ i / I V! V 50 . o D,Z II L V ..! L , I o,s 0,6 1,2 "-._..... 200 10m! 380 400 1,4 1,6 1,8 -A ,, ,, 10.5 ,, Extreme 100 10. 4 ,, 2,21lm - --- Ultraviolet ~ U 0,6 103 I -.,--;,r-...J...'-.,---+1'--r,-'---"-rt_ _...J'L.., .•~ Infrared ~.o--L' 0/.2 0.46 Violet Blue ~25 Green 0,59 0,65 Yellow Orange 0.725 I / I Bluish green 600 Yellow gret~m! / Yellow lQ3 Orange / , ," / Extreme far 106 Figure 5.6 Visual efficiency 11 of the total radiation of a black body versus temperature "- t -- I ,, T7 --- i ~tt ~r~ 0,04 >< ~ Q03 ~1f Rt *'!. 2)9S% 0.02 "" ~ 0.01 8! I I Rows 1-7 Rows 1-7 LED Matrix 4 Rows 1-7 Constant Current Sinking LEO Drwers ~~ ~~ ~ Rows 8-14 Data Rows 15-21 Rows 22'28 Serial Data Output 28·Bit SIPO Shift Register Input 1 Clock current shift register out (logic 1) and is ANDed with this reference source to turn on the output drivers. Data is loaded serially into the shift register when the clock goes from HIGH to LOW and the data is stable for a minimum hold time and will be latched on the LOW to HIGH signal of the clock. The Data Output (pin 7) is a TTL buffer interface from the 28th bit of the shift register (i.e., the 7th row of character four in each package). The Data Output directly interconnects to the Data Input (pin 12) on a succeeding SAN display. The data, clock and Vb inputs are all buffered to allow direct interface to any TTL logic family. Theory of Operation Dot matrix alphanumeric display systems generally are organized logically so that any character can be generated either as a combination of five subsets of seven bits each or seven subsets of five bits each. This technique reduces from 35 to five or seven the number of outputs required from the character generator. To display a complete character, these subsets of data appear sequentially in the appropriate locations of the display matrix. Repeating this process a minimum of 100 times per second insures that each of the appropriate matrix locations is re-energized, the eye will perceive a continuous image of the entire character. The apparent intensity of each of the display elements will be equal to the intensity of that element during the "ON" period multiplied by the ratio of the "ON" time to refresh period. This ratio is referred to as the display duty factor and the technique, "strobing." Each character of SANs is made up of five subsets of seven bits. For a four character display, 28 bits representing the first subset of each of the four characters are loaded serially into the on-board SIPO shift register. The first column is energized for a period of time, T. This process is repeated for columns two through five. If the time required to load the 28 bits into the SIPO shift register is t, the duty factor is: OF = t/5 (t+ T), and the term 5(t+ T), the refresh period. For a satisfactory display, the refresh frequency should be <::100Hz, which means: 5(t+ T) = 10ms (t+T) = 2ms Therefore, two milliseconds is the maximum time period which should be allowed for loading and displaying of each column. !"I .... .so ... z ~ APPNOTE44 11-153 Interfacing A display system using the SAN display requires interfacing with a character generator and refresh memory electronics. The system in Figure 2 is a single four digit display, therefore the 1/N counter becomes a 1/4 counter where N equals the number of characters in the string. The refresh memory stores the information to be displayed. Information can be coded in anyone of several different standard data codes, such as ASCII or EBDIC; or a customized code and display font using a custom coded ROM. The only requirement being that the output data be generated as five subsets of seven bits each. The character generator receives data from the refresh memory and outputs seven displaying data bits that correspond to the character and the column select data input. This data is converted to serial format in the parallel to serial shift register. In a typical system the right most character to be displayed is selected first, and the data corresponding to the ON and OFF display elements in the first column is clocked into the first seven shift register locations of the SAN. In a similar manner, column one data for characters three, two and one is selected by the 1/N counter, decoded and shifted into the display shift register. After 28 clock counts, data for each character is located in the SAN shift register locations which are associated with the seven rows of the appropriate LED matrix. The 1/N counter overflows, triggering the display time counter enabling the output of the 1/5 column select decoder, and disabling the clock input to the display. The information now in the shift registers will be displayed for a period, T. The divide by five counter which provides column select data for both the SAN and the character generator is incremented one count and column data is loaded and displayed in the same manner as column one. Since data is loaded for all of the like columns in the display string and these columns are enabled simultaneously, only five columns are enabled simultaneously. Only five column transistors are required regardless of the number of characters in the string. The column switch transistors should be selected to handle approximately 110 mA per character in the display string. The collector voltage saturation voltage characteristics and column voltage supply should be chosen to provide a 2.6V. SVcol >Vcc. To save power supply costs and improve efficiency, this supply may be a full rectified unregulated DC voltage as long as the PEAK value doesn't exceed the Vcc and the minimum value doesn't drop below 2.6 volts. Since large current transients can occur if a column line is enabled during data shifting operations, the most satisfactory operations will be achieved if the columns current is switched off before clocking begins. Interface Design A logical "1" in the display shift register turns a corresponding LED "ON." Clocking occurs on the high to low transition of the clock input. A character generator which produces seven bit "column" data can be used. The internal shift register is 28 bits in length. The right hand digit is loaded first. Each column should be refreshed at a minimum rate of 100 Hz. The following program uses a single chip microprocessor to control a SAN display (i.e., the 8051 microprocessor and a Sprague UCN5890A driver). See Figure 3. The processing speed of a microprocessor is so high that the refresh rate of 1/5 can't be comprehended, therefore this program repeats itself 255 times before continuing to another line of data (similar to the scanning technique of a television screen). This process is repeated for each of the five columns which comprise the five subsets of data necessary to display the desired characters. After the fifth count, the 1/5 decoder automatically resets to one and the sequence is repeated. The only changes required to extend this interface to character strings of more than four digits are to increase the size of the refresh memory and to change the· divide one by four counter to a module equal to the number of digits in the desired string. APPNOTE44 11-154 Figure 2. Block Diagram SYSTEM C IN Tl RESET CLOCK IN +7 lINCOUNTER N • NO. OF DIGITS IN DISPLAY STRING CLOCK IN OUT OUT START CLOCK IN DISPLAY TIME (T) OUT COUNTER I- 1111 C?-- ASCH~ C?-- IN 1 J2. 7·BIT PARALLEL IN SERIAL OUT SHIFT REGISTER ~ ~ 7 CLOCK IN I- nlill CLOCK IN ~ -5 0--- j....!.. ~ COLUMN SELECT COUNTER REFRESH MEMORY DATA~ }~"" DATA OUT ASCH DATA IN 7-LlNE (COLUMN) CHARACTER GENERATOR COLUMN SELECT DATA IN TO{~ ~ .--:.......c 115 DECODER COLUMN ENABLE TRANSISTORS ENABLE I - ~ DATA IN CLOCK IN SAN DISPLAY I--- DATA OUT COLUMN SELECT INPUTS I I I I I Figure 3. Schematic for SAN Display & UCN5890A e 'Icc 9 P3.6 00 WR 10 DATA 12 41 l1-li051 15 STROBE Vee P2.0 P3.7 P3.2 GND I 3 2 14 CLK 1 5 DATA IN UCN 5890A 4 3 2 Oe DATA IN 1 9 V. SAN DISPLAY 131 V. 8 lobe CLK 11 2 COL 3 3 5 4 4 5 DATA OUT ~ S"GND 11 21 8 7 6 5 GND 1 ..1 APPNOTE44 11-155 Program to Drive One SAN Display with the 8051 and the UCN5890A as the Column Driver This program assumes that the data memory address is loaded into DPTR prior to entering this subroutine: ;RO = # REPEATS ;R1 = DISPLAY ADDRESS ;R2=WAIT ;R3=#COL ;R4 = ROW COUNTER ;R5 = BmCOL ;R6 = DIGITCOUNTER ;R7=UNUSED REG 30H REG 31H EaU DPTRL EaU DPTRH ;DPTR MEM LOW REGISTER ;DPTR MEM HIGH REGISTER HDSP: BEGIN: MOV MOV MOV SETB SETB MOV CLR SETB MOV MOV MOV CLR MOVC INC MOVX RR DJNZ DJNZ CLR MOV DJNZ MOV DJNZ SETB MOV DJNZ MOV MOV DJNZ RET ;# OF REPEAT CYCLES ;SAVE DPTRLOW ;SAVE DPTR HIGH ;TURN OFF COLUMN ;DATA 1st COLUMN ;# OF COL ;COLCLK ;COLCLK ;#ROWS ;4 DIGITS ;7BIT/COL START: NXCOL: NWBYT: NXBT: RO, #OFFH DPTRL, DPL DPTRH, DPH P3.2 P2.0 R3,#5H P3.7 P3.7 R4,#7H R6, #4H R5, #7H A A, @A+DPTR DPTR @R1, A A R5, NXBT R6, NWBYT P3.2 R2,#nH R2,$ R2,#nH' R2, $ P3.2 1>2, #OOH R3, START DPH, DPTRH DPL, DPTRL RO, BEGIN ;GETDATA ;INC DATA ADDRESS ;OUTPUT DO & CLK ;SHIFT TO NEXT BIT ;D07TIMES ;DO 4 CHARS ;TURN ON COL ;WAITTIME ;WAIT ;WAIT ;TURN OFF COL ;SET COL DRVR DATA ;NEXTCOL ;RESTORE DPTR HIGH ;RESTORE DPTR LOW ;REPEATS? ;RETURN FOR ANOTHER LINE 11-156 APPNOTE44 Table 2. SAN Display Opt/cal Characterlcs Part No. LEDPK Iv Average LED Iv Character' Iv HDSP2000LP HDSP2001LP HDSP2002LP HDSP2003LP I1cd 200 750 1430 1550 I1cd 40 150 286 310 ISD/MSD2010 ISD/MSD2011 ISD/MSD2012 ISD/MSD2013 200 750 1430 1550 ISD/MSD2310 ISD/MSD2311 ISD/MSD2312 ISD/MSD2313 ISD/MSD2351 ISD/MSD2352 ISD/MSD2353 Average Sterance Lv LED Peak IF Average IF l1v mcd mA mA I1cd/mA cd/m2 ft candle 0.60 2.25 4.30 4.65 12.0 12.0 12.0 12.0 2.4 2.4 2.4 2.4 17 63 119 129 717 1923 3667 3974 67 179 340 369 40 150 286 310 0.60 2.25 4.30 4.65 12.0 12.0 12.0 12.0 2.4 2.4 2.4 2.4 17 63 119 129 717 1923 3667 3974 67 179 341 369 300 1140 1632 2410 60 228 326 482 0.90 3.42 4.89 7.23 13.6 13.6 13.6 13.6 2.7 2.7 2.7 2.7 22 84 120 177 1075 2923 4179 6179 100 271 388 573 3400 2850 3000 680 570 600 10.20 8.55 9.00 16.0 16.0 16.0 3.2 3.2 3.2 212 178 187 8718 7308 7692 810 679 714 • 15 LEOs ON per character, OF=20%. Optical Considerations Luminous Intensity Control Figure 4. Brightness Control Using a One Shot Multlvibrator The luminous intensity of the Small Alphanumeric display can be easily adjusted from sunlight viewability through night vision requiremimts (lSD/MSD 235X only). 50K The light output of the SAN display depends on a number of variables. These include the absolute efficiency of the LED material, the average current through the LED, and the LED's junction temperature. The readability of the display's light output depends upon the luminous and chrominous contrast of the LED diode to the package and ambient lighting environment. Table 2 lists the luminous intensity per LED for the SAN family. The average character brightness is based on 15 LEDs per character with a 20% duty factor. The time averaged LED current for the SAN is in the range of 2.4 3.2 mMED (DF = 20%). The Blanking Control (VB) can be used to change the duty factor ON time, resulting in a lower LED intensity. Figure 4 shows a 74LS122 timer whose pulse width can be manually adjusted for a 1000:1 intensity control. Optical FIHerlng Having a bright display does not guarantee readability in a given lighting ambient. The readability of the SAN depends on the contrast of the LED to the ambient light. The human eye measures contrast in both brightness (luminance) and color (chrominance) perception. There are three contrast ratios that describe the optimum readability for the display. The first is ratio between the ON LED to an OFF LED and should be much greater than one. The second ratio deals with the ON LED to the color and brightness of the surrounding package and also is much greater than one. The third ratio is equal to OFF LED to the brightness and color qf the surrounding package. This ratio should be equal to one, meaning no color or bright· ness difference between the OFF LED and the package. A1 o A2 OUTPUT 74LS122 B1 B2 TRIGGER CLR L -_ _ _ _-' c or ENABLE (V.) "IL--.lJ ct::OECREASE - tNTENSITY Using proper package design and optical filter selection insures high constrast ratios. In dim ambients high optical transmission long wave and bandpass filterS are the best choice. However, in high light ambients low transmission neutral density (grey) filters give the best contrast ratios of the OFF LED and ON LED to the package background, improving the true readability of the display. For sunlight readability, the SAN's glass window permits the use of glass or plastic circularly polarized filters. These filters greatly minimize the incident light that falls on the surface of the OFF LEDs and the package background. Table 3 is a guide for filter selection. III .!" 11.-157 AFPNOTE44 Table 3. Contrast Enhancement Filters Display Color(2) Part No. Ambient Light Dim Moderate Bright ~ Red HDSP2000LP Panelgraphic Dark Red 63 Panelgraphic Ruby Red 60 Chequers Red 118 Plexiglass 2423 Yellow HDSP2001LP Panelgraphic Yellow 27 HER HDSP2002LP Panelgraphic Ruby Red 60 Chequers Red 112 Bright Green HDSP2003LP Panelgraphic Green 48 Chequers Green 107 Display Color Part No. Filter Color Marks Polarized Corp. Filter Series Optical Characteristics of Filter Red, HER MSD 2010, 2012, 2310,2312,2352 Red MPC 20-15C 25%@635nm Yellow MSD2011,2311, 2351 Amber MPC 30-25C 25%@583nm Green MSD 2013.2313, 2353 Yellow/Green Polaroid HNCP37 3M Light Control Film Panelgraphic Gray 10 Chequers Gray 105 Polaroid HNCP10-Glass Marks Polarized MPC 30-25C Note 1 Polaroid HNCP10-Glass Marks Polarized MPC 20-15C Polaroid HNCp10-Glass Marks Polarized MPC 50-12C ~ N .~ ~ MPC50-22C 22%@568nm ~ :> ~ U Multiple Colors High Ambient Light Neutral Gray MPC 80-10C 10% Neutral Multiple Colors Neutral Gray MPC 80-37C 37% Neutral Nola: I. Optically coaled circular polarized filters, such as Polaroid HNCPIO. 2. For multiple colors use Marks Polarized Corporation fillers, MPC SO-lOG or MPC 8().37C. Polaroid Corporation 1 Upland Road, Bldg. #2 Norwood,· MA 02062 'Ir (800) 225-2770 Marks Polarized Corporation 25-B Jefryn Blvd. W. Deer Park, NY 11729 'Ir (516) 242-1300 FAX (516) 242-1347 Marks Polarized Corp. manufactures to MII...I·45208 inspection system. 11-158 APPNOTE44 Thermal Consideration Figure 5. Normalized Luminous Intensity vs. Junction Temperature 10 ..: .....................: :::.....1:................. 1••.•••:~:••.. ::::t:=....:..... . . . .................... ·..··.. ·f···....·· ·..·....f··· ....;;!......·..1.................. ~ ........ Normalized t o : - - ! .......................... ~ ........L................ L. . . . . . . .. ..- r-- .......-i: Optimum reliability and optical performance will result when the junction temperature of the LEOs and CMOS ICs are kept as low as possible. The plastic HDSP200XLP should operate to a maximum ambient temperature of 85·C. while maintaining a maximum junction temperature of S100·C. The ceramic and glass SANs (ISO/MS02XXX) may operate up to 100·C as long as the junction tempera· ture of the IC is maintained at less then 125·C. "1- ; . ; .~- Table 4. 1--t--+------/-,1·- -~ ~~-... ----1- - ..l----.~.-. ·-t·-.... ~ ~ I .1 ~ ~~~~--~~~~~~~--~~~~ ·60 -40 -20 o 20 40 60 80 100 120 140 TJ· LED Junction Temperature ··C The light output of the LEOs is inversely related to the LED diodes junction temperature as shown in Figure 5. For optimum light output. keep thermal resistance of the socket of PC board as low as possible. VF Model Number Min • Typ. HDSP2000LP 1.6 1.7 Max. 2.0 HOSP2001/2/3LP 1.9 2.2 3.0 Figure 7. Thermal Model For example. when the HDSP200XLP is mounted in a 10·C/W socket and operated at Absolute Maximum Electri· cal conditions, the LED junction will rise 17"C above ambient. If TA 4Q·C. then the LEO's TJ will be 57·C. Under these conditions Figure 5 shows that the Iv will be 75% of its 25·C value. = Figure 6. Maximum LED Junction Temperature VS. Socket Thermal Resistance ro.--.-'--'--.--~-r--r-.--.--' c 45 I 40 j i~ ~:p5 [--+--+--+7-'" := ::::=: == ~~i:3.5V~~410,;;A· := ;:::; :::::::~=== Thermal Modeling For a thermal model of the display. see Figure 7 which shows junction self heating + the cas,e temperature rise + ambient temperature = junction temperature of the semf· conductor. Equation 1 shows this relationship. ~ ~ 20 t--+--b...,.-+--r-,).-_-r-~......,.i---:-.-r--I .!l t! • 15 t;-""'f--:..-+_!--+_-tnc~c:-=~ ..... 2_5_V;....I_CC;..=.,..;.10:.;.m:.:,A.;.....4 n = 20 LEOs, OF= 20% . . . . . .J. . . . . . . . 1~ ........................................r?:y~ o~~~~~~~~~~~~~~ o 5 10 15 20 25 30 35 40 Socket Thermal Resistance· 'C/W 45 50 11-159 APPNO]'E44 Equation 1. TJ(lED) = PlED~C + PCASE (R... C+ I\CA) + TA TJ(lED) = [(IcOl/28 ) VF(lED) Z...cl + [(n/35) Icol OF (5 VcoJ + Vcc Iccl· [R...c + R.cAl + TA The junction rise within the LED equals the thermal impedance of an individual LED (37°CNI, OF = 20%, F = 200 Hz) times the forward voltage, VF(lED)' and forward current, IF(lED)' of 13-14.5 mA. This rise averages TJtlED) =.1°C. Table 4 shows the VF(lED) for respective displays. The junction rise within the LED driver IC is the combination of the power dissipated by the IC quiescent current and the 28 row driver current sinks. The IC junction rise is given in Equation i A thermal resistance of 28°CNI results in a typical junction rise of 6°C. Equation 2. TJ(I~') = PCOL (R...c + R.CA) + TA TJ(IC) = [5 (VCOL - VF(lED)· (lcol/2) • (n/35) OF + Vcc • Iccl • [ROJC + R.cAl + TA For easier calculations, the maximum allowable electrical operating condition is dependant on the the aggregate thermal resistance of the LED matrixes and the two driver ICs. The parallel combination of these two networks is 15°CNI. All of the thermal management calculations are based on this number. The maximum allowable power dissipation is given in Equation 3. Equation 3. PDISPLAY = 5 VCOL ICOl (n/35) OF + Vcc Icc KEY TO EQUATION SYMBOLS Duty factor Quiescent IC current Column current Number of LEOs on in a 5 x 7 array Package power dissipation excluding LED under consideration PeOl Power dissipation of a column PDISPLAY Power dissipation of the display Power dissipation of a LED PLED Thermal resistance case to ambient ROCA Thermal resistance junction to case R... c Ambient temperature TA Junction temperature of an IC TJ(lC) Junction temperature of a LED TJ(lED) Maximum junction temperature TJ(MAX) IC voltage Vcc VCOl Column voltage Forward voltage of LED VF(lED) Thermal impedance junction to case Z... c APPNOTE44 11-160 SIEMENS How to Use Optocoupler Normalized Curves Appnote 45 by Bob Krause An optocoupler provides insulation safety, electrical noise isolation, and signal transfer between its input and output. The insulation and noise rejection characteristics of the optocoupler are provided by the mechanical package design and insulating materials. A phototransistor optocoupler provides signal transfer between an isolated input and output via an infrared LED and a silicon NPN phototransistor. When current is forced through the LED diode, infrared light is generated that irradiates the photosensistive basecollector junction of the phototransistor. The base-collector junction converts the optical energy into a photocurrent which is amplified by the current gain (HFE) of the transistor. The gain of the optocoupler is expressed as a Current Transfer Ratio (CTR), which is the ratio of the photoransistor collector current to the LED forward current. The current gain (HFE) of the transistor is dependent upon the voltage between its collector and emitter. Two separate CTRs are often needed to complete the interface design. The first CTR, the non-saturated or linear operation of the transistor, is the most common specification of a phototransistor optocoupler and has a Vce of 10 volts. The second is the saturated or switching CTR of the coupler with a Vce of 0.4 volts. Figure 1 and 2 illustrate the Normalized CTRcE for the linear and switching operation of the phototransistor. Figure 1 shows the Normalized Non-Saturated CTR cE operation of the coupler as a function of LED current and ambient temperature when the transistor is operated in the linear mode. Normalized CTRCE(SAT) is illustrated in Figure 2. The saturated gain is lower with LED drive greater than 10 mA. 11-161 Figure 1. Normalized eTR versus 'F and Tamb 2.0 ... -Go Ta: 25'C ... Ta:50'C .... Ta: 70'C . 1.5 II: -:-':'~~-'t------ 0 '0 ~ =a Normalized to : If = 10 rnA; Vee =10V 1.0 E (; z 0.5 0.0 .1 10 IF - LED Current - rnA 100 Figure 2. Normalized Saturated eTR 1.0 -Go Ta = 2S'C i ... Ta=SO'C i .... Ta = 70'C i ~ Ta=I00'Q 0.8 I!:0 'i 0.6 E 004 .!:! 'iii (; Vee (sat) = OAV I :::::::::::··::::::::::::::::1:::·····..······ .. z Normalized to: I 0.2 1----1!I';691----1f = 10 rnA. Vee =10V Tal2S'C I 0.0 .1 1 10 IF - LED Current - rnA 100 The following design example illustrates how normalized curves can be used to calculate the appropriate load resistors. Step 2. Select the minimum'ioad resistor using the following equation Vee - VOL (2) Problem 1. Using an IL 1 optocoupler in a common emitter amplifier (Rgure 3) determine the worst case load resistor under the following operation conditions: .. CTR CE(SA1) IF I 100% - IL 5V - 0.4V RL(MlN) • ·7.2%2mA 100% - 5011A Figure 3. IL1 to 74HC041nterface RL(MIN)=48.94 Kn, select 51Kn±5% The switching speed of the optocoupler can be greatly improved through the use of a resistor between the base and emitter of the output transistor. This is shown in Figure 5. This resistor assists in discharging the charge stored in the base to emitter and collector to base junction capacitances. When such a speed-up technique is used the selection of the collector load resistor and the baseemitter resistor requires the determination of the photocurrent and the HFE of the optocoupler. Vee T. mb =70·C, IF =2 mA, VOL=O.4 V, Logic load=74HC04 IL 1 Characteristics: CTRCElNONSAT)=20% Min. @(T. mb =25·C, IF=10 mA, VcE=10 V) Solution Step 1. Determine CTAcE(sAT) using the normalization factor (NFCE(SAT») found in Figure 2. . The photocurrent generated by the LED is decribed by the CTRcB of the coupler. This relationship is shown in equations 3 and 4. Equation 5 shows that CTRcE is the, ' product of the CTRcB and the HFE. The HFE of the transistor is easily determined by evaluating equation 4, once. the CTRCE(SAT) and CTR CB are known. The Normalized CTRcB is shown in Figure 6. Equations 5, 6, and.7 describe the solution for determing the RaE that will permit reliable operation. Figure 5. Optocoupler/Loglc Interface with RaE Resistor w ~.~ Figure 4. Normalized Saturated CTR '.0 ., 0.8 r--~--r----.....,r----'----, = + Ta 2500 ... Ta=5Ooo' "'+"~'ta;;;'7ijOC" vce(JaI) i =0.4V ........................................................... 0.6 Vee 0.4 ..._ _ _ _~~ 0.0.,'--.........0-...............,'-;;-.-'=':;:2m-=A .............uJ , 0'--...0-...................... 100 IF· LED Current· rnA (1) CTRCE(SAT)=CTRCE(NON SAT) NFcE(SAT) CTRCE (SAT)=20% ·0.36 CTRCE (SAT)=7.2% APPNOTE45 11-162 Problem 2· Figure 6. Normalized CTRca versus LED Current 1.5 ~ I- r-------,----....,...-----, 1.0 o Using an IL2 optocoupler in the circuit shown in Figure 6, determine the value of the collector load and base-emitter resistor, given the following operational conditions: " T. mb =70°C, IF=5 mA, VOl =O.4 V, Logic load =74HC04 IL2 Characteristics: CTAcE=100% @T. mb =25°C, VcE=10 V, IF=10 rnA U 1 iii E ~ CTRca= 0.24% @T. mb =25°C, Vca =9.3 V, IF=10 mA 0.5 1-------:~7""~"""""+-----1 Solution Step 1. Determine CTACE(SAT)' and CTAca. From Figure 2 the CTACE(SAT)=55%, [NFCE(SAT)=0.55] 100 10 If - LED Current- mA From Figure 6 the CTAca=0.132%, [NFcB =0.55] Step 2. Determine Rl (3) CTA CB = Ice X IF From Equation 2 Al = 1.7 Kn 100% Select Al= 3.3 Kn Step 3. Determine AaE' using Equation 9 (4) (10) (5) CTACE(SAl) (6) HFE (7) 100% 0.55 0.65V 0.24% 0.55 3.3Kn ABe = SmA 100% 0.55 3.3Kn -[5V _ 0.4V] 100% = CTAce HFE(SAl) RBE = 199Kn. select 220Kn _ CTRCE(SAl) (SAl) CTRce Using a 3.3 kQ collector and a 220 Kn base-emitter resistor greatly minimize the turn-off propagation delay time and pulse distortion. The following table illustrates the effect the AaE has on the circuit performance. Vbe ABE - - - - Ice· IBE IF = 5 rnA, Vcc=5 V (8) RL =3.3Kn Rae=oon (9) ABE = VBE CTACE NFCE(sAl) CTAce NFcB Fi L -;-=::,---=c--::,:;--:::::..---IF CTAce NFCE(SAl) AL [ 1 100% - Vee - VCE(SAl)J RL=3.3 Kn RBe =220 kn tdetay 1 116 2 116 trise 4 116 5 116 tstorage 17 116 10 116 ~.II 5 116 12 116 \PHl 3.5116 7 116 tplH 22116 12 116 Pulse Distortion 50!!s pulse 37% 10% Not only does this circuit offer less pulse distortion, but it also improves high temperature switching and lower static DC power dissipation and improved common mode transient rejection. ~"I !! ... co: APPNOTE45 11-163 NOTES NOTES Semiconductor Group Sales Offices • EASTERN REGION Siemens Components. Inc. 120 Wood Avenue South Suite 606 Iselin. NJ 08830 'If (201) 603-0600 • CENTRAL REGION Siemens Components. Inc. 5600 North River Rd. Suite 735 Rosemont. IL 60018 'If (312) 692-6000 Siemens Components. Inc. 307 Fellowship Rd. Suite 202 Mt. Laurel. NJ 08054 'If (609) 273-6677 Siemens Components. Inc. 39209 West Six Mile Rd. SUite 209 Livonia. MI 48152 'If (313) 462-1195 Siemens Components. Inc. 2 Lowell Research Center Dr. Suite 105 Lowell. MA01852 'If (508) 454-0113 Siemens Components. Inc. 3003 LBJ Freeway. #115 Dallas. TX 75234 'If (214) 620-2294 Siemens Components. Inc. 6525 The Corners Parkway Suite 206 Norcross. GA 30092 'If (404) 449-3981 • WESTERN REGION Siemens Components. Inc. 19000 Homestead Rd. Cupertino. CA 95014 'If (408)725-3586 'If (408)725-3566 (Bay Area only) Siemens Components. Inc. 625 The City Drive South Suite 320 Orange. CA 92668 'If (714)385-1274 Siemens Components. Inc. 20750 Ventura Blvd. Suite 300 Woodland Hills. CA 91364 'If (818) 883-4653/4658 Intelligent Display@Devices, Programmable Displays, Small Alphanumeric Displays, and Military Displays LED Lamps eTRONles, INt:.@ Serving Wisconsin 1-800-323-1270 Bar Graphs, Light Bars, Numeric and Alphanumeric Displays Optocouplers Custom Optoelectronic Products Infrared Emitters, Photodiodes, Phototransistors Issued by Siemens Components, Inc., Optoelectronics Division 19000 Homestead Road , Cupertino, California 95014 Order Nu"!ber M21T013 Data Subject to Change BANTA 25M 6/89 Pri nted in U.S.A.


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:13 08:59:09-08:00
Modify Date                     : 2017:07:13 10:10:19-07:00
Metadata Date                   : 2017:07:13 10:10:19-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:32058059-e32d-354a-abed-de4448e06f2a
Instance ID                     : uuid:9434fe25-caa6-554a-8204-6aa97469c304
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 770
EXIF Metadata provided by
EXIF.tools

Navigation menu