1990_Siemens_Optoelectronics_Data_Book 1990 Siemens Optoelectronics Data Book
User Manual: 1990_Siemens_Optoelectronics_Data_Book
Open the PDF directly: View PDF
.
Page Count: 770
| Download | |
| Open PDF In Browser | View PDF |
-
m
SIEMENS
~
m
Z
en
Optoelectronics
Data Book 1990
o
"...o
n
.....
o
_.
::s
CD
CD
n
en
CTRON.es, 'NC.®
Serving Wisconsin
....
CD
CD
C
1-800-323-1270
SIEMENS
Optoelectronics
Data Book
Siemens Components, Inc., Optoelectronics Division
Company Overview
Siemens Components, Inc.,Optoelectronics Division is headquartered in .
Cupertino, California - in the heart of
Silicon Valley. Siemens is a world
leader in light emitting diode (LED)
technology, sophisticated CMOS IC
design, optics, and packaging. Our
product line includes:
• Small Alphanumeric Displays
• Programmable DisplayTM
Devices
• Intelligent Display ® Devices
• Military Displays
.
• Numeric Displays
• Bar Graphs, Light Bars
• LED Lamps
• Optocouplers
• Infrared Emitting Diodes &
Photodetectors
• Custom Optoelectronic products
operating companies, Siemens
affiliates and joint ventures. The six
operating companies are Siemens
Communications Systems, Siemens
Components, Siemens Energy and
Automation, Siemens Information
Systems, Siemens KWU, and
Siemens Medical Systems.
Siemens U.S.A. is a member of the
worldwide Siemens organization
which has sales of $34 billion,
353,000 employees, and 172 production facilities in 35 countries.
Technology Strengths
Our strengths are in the following
areas:
• Continual process development /
improvement in LED material
• In-house design of complex
CMOS integrated circuits using
Our materials technology includes:
the latest CAD/CAM and CAE
visible and IR LEDs (GaAsP, GaP or
equipment
combinations of these~ GaAlAs, and
• . Sophisticated optics and
Silicon Carbide) and photodetectors.
packaging capabilities
Assembly of final products is done
• State-of-the-art system knowhow
offshore in Malaysia. Our Malaysia
for complex IC/LED hybrids
plant is a show case of automation
• Leading supplier of custom
and efficiency, featuring the latest
optoelectronic products
automated assembly and test
• A history of innovation:
equipment - resulting in high yields
• Invented Intelligent Display
and high quality products.
devices, 1977
• Invented Programmable
History
Display devices, 1984
Both feature built-in CMOS IC
Siemens Optoelectronics Division
control circuits for easy
began in 1969 as Litronix to manufacinterface with microprocessors
ture LED lamps, numeric displays,
Second sourced by our
and optocouplers for the OEM market, .
competitors because of market
as well as calculators and watches for
acceptance
the consumer market. In 1977
.
Siemens acquired Litronix and
refocused priorities toward the basic
Quality and Reliability
business of producing and marketing
Every aspect of day-to-day producLED materials and components.
tion is closely monitored and verified
to ensure that all materials, proSiemens Optoelectronics is a division
cesses, manufacturing, and testing
of Siemens Components, Inc., which
meet precise engineering standards.
is part of Siemens U.S.A. with sales
Rigorous quality control checks are
of $3.1 billion and over 27,000 embuilt into each stage of production.
ployees. Siemens U.S.A. includes
The finished product undergoes
Siemens Corporation, six U.S.
thorough electrical, optical, dimen-
sional, and visual inspections
resulting in products of superior
quality. Our overall product quality
average is 50 PPM. Our worldwide
quality system including PPM and
SOC programs, and our flexible
manufacturing capabilities, allows us
to produce the industry's highest
quality products with Just-ln-TIme
deliveries at competitive prices.
Product Applications
Siemens optoelectronic products are
used in a broad range of electronic/
commercial/industrial/militarymarket
segments, such as: test instrumentation, medical equipment, computers
and computer peripherals, telecommunications, process/industrial
controls, terminals, and power
supplies.
Conclusion
Siemens is strategically positioned to
concentrate efforts on innovative
products and systems offering valueadded and cost-effective features to
our customers. All our resources and
capabilities in the production of LED
materials (visible and infrared), R&D
engineering, IC design, optics/
packaging, automated assembly, and
a strong focus on reliability keep
Siemens at the leading edge of oplO
technology.
TABLE OF CONTENTS
Page Number(s)
Alphanumeric Index ...............................................................................................................................................iv - ix
Quality and Reliability Information
Quality at Siemens Optoelectronics ............................................................................................................................1
Optoelectronics, Quality and Reliability ......................................................................................................................2
High Reliability and Military Optoelectronic Devices ..................................................................................................6
Reliability Report, Monolithic Intelligent Display® Devices ........................................................................................ 7
Optocoupler Manufacturing and Reliability ................................................................................................................8
Reliability Report, Small Outline Surface Mount Couplers .......................................................................................... 12
Custom Optoelectronic Products
Custom Optoelectronic Products ...........................................................................................................................1 - 2
Custom Optoelectronic Materials and Die ............................................................................................................. 1 - 5
LED Die ...................................................................................................................................................................1-8
LED Intelligent Display® & Programmable DisplayTM Devices, Military Displays,
Small Alphanumeric Displays
Selector Guide .......................................................................................................................................................2 - 2
LED Intelligent Display & Programmable Display Devices, Military Displays, Small Alphanumeric Displays ...... 2 - 7
Selector Guide: Intelligent Display Assemblies .....................................................................................................2 -184
Intelligent Display Assemblies ...............................................................................................................................2 - 185
.LED Numeric Displays, LED Bar Graphs and Light Bars
Selector Guide .......................................................................................................................................................3 Numeric Displays ...................................................................................................................................................3 Light Bars ...............................................................................................................................................................3 Bar Graphs .............................................................................................................................................................3 Graphs for Displays ...............................................................................................................................................3 -
2
4
12
18
22
LED Lamps
Selector Guide .......................................................................................................................................................4 .,- 2
Packaging of LEDs on Continuous Tapes .............................................................................................................4 - 5
Lamps ......................................................... :..........................................................................................................4 - 6
Lamp Accessories .................................................................................................................................................4 - 25
Graphs for Lamps ..................................................................................................................................................4 :.. 27
Optocouplers (Optolsolators)
Selector Guide .......................................................................................................................................................5 Tape & Reel Packaging for SOlC8 Optocouplers ..................................................................................................5 Surface Mount Lead Bend Options ........................................................................................................................5 Optocouplers ........................................................................................,......... :......................................................5 -
2
7
8
9
Fiber Optic Devices
Selector Guide .......................................................................................................................................................6 - 2
Fiber Optic Devices ...............................................................................................................................................6 - 3
Infrared Emitters
Selector Guide .......................................................................................................................................................7-1
Infrared Emitters .........................................................................................................:........................................... 7 - 5
Photodiodes
Selector Guide ........................................................................................................................................................8 - 1
Photodiodes ................................................•..........................................................................................................8 - 4
Phototransistors
Selector Guide .......................................................................................................................................................9 - 1
Phototransistors ......................................................................................................................................................9 - 4
Photovoltaic Cells
Selector Guide .......................................................................................................................................................10 - 1
Photovoltaic Cells ...................................................................................................................................................10 - 2
Application Notes
List of Application Notes .......................................................................................................................................;11 - 1
Application Notes .................................................................................................................................................:.11 - 2
Siemens Components/Semiconductor Group Sales Offices
iii
ALPHANUMERIC INDEX
PART NO.
DESCRIPTION
7500V. 5-11
7500V. 5-11
7500V.5-12
7500V.5-12
7500V.5-12
BPX81-3
BPX81-4
BPX82
BPX63
BPX84
BPX85
BPX86
BPX87
BPX88
BPX89
Photoxtr, Mini, 18 Deg, 1.6mA ....................... 9-12
Photoxtr, Mini, 18 Deg, 2.5mA ....................... 9-12 .
Photoxtr Plastic, 2 Element Array .................. 9-12
Photoxtr Plastic, 3 Element Array •................. 9-12
Photoxtr Plastic, 4 Element Array .................. 9-12
Photoxtr Plastic, 5 Element Array ................... 9-12
Photoxtr Plastic, 6 Element Array .................. 9-12
Photoxtr Plastic, 7 Element Array .................. 9-12
Photoxtr Plastic, 8 Element Array .................. 9-12
Photoxtr Plastic, 9 Element Array .....,............ 9-12
Optocoupler,8 Pin 5ngl, 300% CTR, 600DV,
Low Input Current .......................................... 5-14
Optocoupler,8 Pin 5ngl, 400% CTR, 6000V,
Low Input Current .......................................... 5-14
BPX90
BPX90K
BPX91B
BPX92
Photodiode,
Photodiode,
Photodiode,
Photodiode,
2004-9002
2004-9003
2004-9015
2004·9016
2004-9019
2004-9020
2004-9053
Clip & Collar, Tl 3/4, Black ............................. 4-25
Clip & Collar, Tl 3/4, Clear .......................... ,.4-25
Clip & Collar, Tl, Clear •................................. 4-25
Clip & Collar, Tl, Black .................................. 4-25
Mount, Right Angle, Tl 3/4, Black ................. 4-25
Reflector, T1 3/4, Polished .•........•.................... 4-25
Disc, 5lotted, for 5FH910 .............................. 7-54
BPY11P-4
BPYllP-5
Photovoltaic, .08'x.15', 47nNLX .................... 10-4
Photovoltaic, .08'x.15', 56nA/LX ......•............. 10-4
BPY62-2
BPY62-3
BPY62-4
BPY62-5
BPY62-6
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
2600-7048
2600-7048
2600-7048
Wafer, Epitaxial, 655nm, D-5haped GaAsP/
GaAs •...............................•..................•.......... 1-8
Wafer, Epitaxial, 655nm, 3' GaAsP/GaAs ..... 1-9 .
Wafer, Epitaxial, 655nm, 2' GaAsP/GaAs ..... 1-10
BP103-2
BP103-3
BP103-4
BP103-5
BP103-6
Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,
PART NO.
PAGE
DESCRIPTION
4N25
4N26
4N27
·4N28
Optocoupler, 6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
20% CTR,
20% CTR,
10% CTR,
10% CTR,
4N32
4N33
4N35
4N36
4N37
Optocoupler, 6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
500% CTR,
500% CTR,
100% CTR,
100% CTR,
100% CTR,
6Nl38
6N139
BP103B-2
BP103B-3
BP103B-4
Photoxtr, Tl
Photoxtr, Tl
'Photoxtr, Tl
7500V ... 5-9
7500V ... 5-9
7500V ... 5-9
7500V ... 5-9
BPY63P
BPY64P
Plastic Lens, 55· ................. 9-4
Plastic Lens, 55 •................ 9-4
Plastic Lens, 55 • ................ 9-4
Plastic Lens, 55· ................. 9-4
Plastic Lens, 55· ................. 9-4
Plastic, 25· .......................... 9-6
Plastic, 25 •...... :.................... 9-6
3/4, Plastic, 25· ........................... 9-6
3/4 ,
3/4 ,
BP104
BP104B5
Photodiode, Plastic w/Filter, 60·, PIN ......... ,.. 8-4
Photodiode, Plastic w/Filter, SMD .................. !Hl.
BPW21
BPW32
BPW33
BPW34
BPW34B
BPW34F
Photodiode, TO-5, Hermetic, 60· .................. 8-8
Photodiode, Clear Plastic, 60· ....................... 8-10
Photodiode, Clear Plastic, 60· ....................... 8-12
Photodiode, Clear Plastic, 60·, PIN ............... 8-14
Photodiode, Plastic, so· ................................ 8-16
Photodiode, Plastic w/Filter, 60·, PIN ............ 8-18
BPX38-2
BPX38-3
BPX38-4
BPX38-5
BPX38-6
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
BPX43-2
BPX43-3
BPX43-4
BPX43-5
BPX43-6
Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,
Photoxtr, TO-18,
BPX48
BPX60
BPX61
BPX63
BPX65
Photodiode, Plastic, Differential, 60· ............. 8-20
Photodiode, TO-5, Flat Glass Lens, 50· ........ 8-22
Photodiode, T0-5, Flat Glass Lens, 50·, PIN 8-24
Photodiode, TO-18, Rnd Plastic Lens, 75· .... 8-26
Photodiode, TO-18, Flat Plas. Lens,
Hermetic, PIN ...................................•........... 8-28
Photodiode, TO-18, Flat Glass Lens,
Hermetic, PIN ............................................... 8-30
TO-18,
TO-18,
TO-18,
TO-18,
TO-18,
Hermetic, 40·
Hermetic, 40·
Hermetic, 40·
Hermetic, 40·
Hermetic, 40·
Hermetic,
Hermetic,
Hermetic,
Hermetic,
Hermetic,
TO-18,
TO-18,
TO-18,
TO-18,
TO-18,
20· ..................... 9-10
20· ..................... 9-10
20· ..................... 9-10
20· ..................... 9-10
20·' ................... 9-10
8· ........................................ 9-14
8· ........................................ 9-14
8· ........•..•............................ 9-14
8· ........................................ 9-14
8· ........................................ 9-14
Photovoltaic Cell, 650nNLX .......................... 10--6
. Photovoltaic Cell, 250nNL. ............................ 10-8
CNY17-1
CNY17-2
CNY17-3
CNY17-4
Optocoupler,6 Pin 5ngl,
Optocoupler, 6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
40% CTR, 5300V ... 5-16
63% CTR, 5300V ... 5-16
100% CTR, 5300V.5-16
160% CTR, 5300V.5-16
CNY17F-l
CNY17F-2
CNY17F-3
CNY17G-F-l
CNY17G-F-2
CNY17G-F-3
Optocoupler,6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
Optocoupler,6 Pin 5n91,
Optocoupler, 6 Pin 5ngl,
Optocoupler,6 Pin 5ngl,
40%CTR,5300V ... 5-20
63% cm, 5300V ... 5-2O
100% CTR, 5300V.5-20
40% CTR, S300V ... 5-20
63% CTR, 5300V ... 5-20
100% CTR, 5300V.5-20
Dl330M
DL340M
DL430M
DL440M
Display, .11',
Display, .11',
Display; .15',
Display, .15',
DL1414T
DL1416B
DL1416T
Int. Display, 4 Char, .112', Red ..................... 2-7
Int. Display, 4 Char, .160', Red ..................... 2-11
Int. Display, 4 Char, .160', Red ..................... 2-16
DL1814
DL2416T
DL3416
Int. Display, 4 Char, .112', Red ..................... 2-21
Int. Display, 4 Char, .160', Red ..................... 2-25
Int. Display, 4 Char; .225', Red ..........•........•. 2-31
DLG1414
DLG2416
DLG3416
DLG4137
Int.
Int.
Int.
Int.
DLG573S
Display, .68', Grn, Sx7 Dot Matrix, Com. Row
Cathode ................................•........................ 2-61
Display, .68', Grn, 5x7 Dot Matrix, Com. Row
Anode .......................................:.................... 2-61
DLG5736
BPX66
Plastic, SO· •............................... 8-32
Plastic w/Filter, 60· .................... 8-32
Plastic, SO· ................................ 8-34
Plastic, 60· ........... :..................... 8-36
Red,
Red,
Red,
Red,
.
..................... 9-8
..................... 9-8
..................... 9-8
..................... 9-8
..................... 9-8
PAGE
Display,
Display,
Display,
Display,
.
CC MPX, 3 Digit .............. 3-4
CC MPX, 4 Digit .............. 3-4
CC MPX, 3 Digit .............. 3-4
CC MPX, 2 Digit .. :........... 3-4
.
4 Char, .145', Grn, 5x7 Dot Mtrx 2-44
4 Char, .200', Grn, 5x7 Dot Mtrx 2-49
4 Char, .270',Grn, 5x7 Dot Mtrx 2-55
5ngl, .43', Grn, 5x7 Dot Matrix .. 2-36
DLG7137
Int. Display, 5ngl, .68', Grn, 5x7 Dot Matrix .. 2-40
DL01414
DL02416
DL03416
Int. Display, 4 Char, .145', HER,5x7 Dot Mtrx2-44
Int. Display, 4 Char, .200', HER,5x7 Dot Mtrx2-49
Int. Display, 4 Char, .270', HER,5x7 Dot Mtrx2-55
BPX79
Photovoltaic Cell, .18'x.18', 135nNLX .......... 10-2
DL04135
DL07135
Int. Display, 5ngl, .43', HER, 5x7 Dot Matrix. 2-36
Int. Display, 5ngl, .68', HER, Sx7 Dot Matrix .2-40
BPXBO
BPX81-2
Photoxtr, Plastic, 10 Element Array ............... 9-12
Photoxtr, Mini, 18 Deg, 1.0mA ........•.............. 9-12
DLR1414
DLR2416
Int. Display, 4 Char, .14S', Red, 5x7 Dot Mtn< 2-44
Int. Display, 4 Char, .200', Red, 5x7 Dot Mtn< 2-49
iv
ALPHANUMERIC INDEX
PAGE
PART NO,
DESCRIPTION
PART NO,
DESCRIPTION
DLR3416
Inl. Display, 4 Char, .270', Red, 5x7 Dot Mtrx 2-SS
IDA2416-32
Int. Display Asmbly, 32 Char ......................... 2-193
DLRS73S
Display, .68', RedSx7 Dot Matrix, Com. Row
Cathode ......................................................... 2-61
Display, .68', Red Sx7 Dot Matrix, Com. Row
Anode ............................................................ 2-61
IDA3416-16
IDA3416-2O
IDA3416-32
Int. Display Asmbly, 16 Char ......................... 2-197
Inl. Display Asmbly, 20 Char ......................... 2-197
Int. Display Asmbly, 32 Char ......................... 2-197
GBG1000
GBG48S0
Bar Graph, Green, 10 Element ...................... 3-18
Bar Graph, Green, 10 Element ...................... 3-20
IDA7135-16
IDA7135-2O
IDA7137-16
IDA7137-2O
Int.
Inl.
Inl.
Inl.
ILl
1L2
ILS
Optocoupler, 6 Pin Sngl, 20% CTR, 7S00V ... S-32
Optocoupler, 6 Pin Sngl, 100% CTA, 7S00V. S-32
Optocoupler, 6 Pin Sngl, 50% CTR, 7500V ... 5-32
DLRS736
PAGE
GLS6
Lamp, Axial, Green, 1.0 mcd/l0mA, 40· ....... 4-23
GLB2Soo
GLB2SS0
GLB2800
GLB2820
GLB2855
GLB2885
Light Bar,
Light Bar,
Light Bar,
Light Bar,
Light Bar,
Light Bar,
HllAl
HllA2
HllA3
HllA4
Hl1A5
HIlMI
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
Hl1Bl
Hl1B2
Hl1B3
Optocoupler, 6 Pin Sngl. 500% CTR, 75OOV. 5-28
Optocoupler, 6 Pin Sngl. 200% CTR, 75OOV. 5-28
OptocoLipler, 6 Pin Sngl, 100% CTR, 7SOOV. S-28
Hl1C4
HllCS
HllC6
Optocoupler, 6 Pin Sngl, Photo SCR, 7500V. S-30
Optocoupler, 6 Pin Sngl, Photo SCR, 7500V. S-30
Optocoupler,6 Pin Sngl, Photo SCR, 7500V. S-30
HD1075G
HD10750
HD107SR
HD1075Y
HD1077G
HDlO770
HD1077R
HD1077Y
Display,
Display,
Display,
Display,
Display,
Display,
Display,
Display,
.28', Grn, CA, DP Right.. .................. 3-6
.28', HER, CA, DP Right .................. 3-6
.28', Red, CA, DP Right ................... 3-6
.28', Yel, CA, DP Right ..................... 3-6
.28', Grn, CC, DP Right ................... 3-6
.28', HER, CC, DP Right .................. 3-6
.28', Red, CC, DP Right.. ................. 3-6
.28', Yel, CC, DP Right .................... 3-6
HDll05G
HDll050
HD1105R
HD1105Y
HD1107G
HDll070
HDll07R
HDll07Y
Display,
Display,
Display,
Display,
Display,
Display,
Display,
Display,
.39',
.39',
.39',
.39',
.39',
.39',
.39',
.39',
HD1131G
HD11310
HD1131R
HD1131Y
HD1133G
HD11330
HD1133R
HD1133Y
Display,
Display,
Display,
Display,
Display,
Display,
Display,
. Display,
. HDSP2000LP
HDSP2001LP
HDSP2002LP
HDSP2003LP
Green,
Green,
Green,
Green,
Green,
Green,
.IS'x.3S'
.IS'x,75'
.3S'x.1S'
.3S'x.1S'
.3S'x.3S'
.3S'x.7S'
6 Pin Sngl,
6 Pin Sngl,
6 Pin Sngl,
6 Pin Sngl,
6 Pin Sngl,
6 Pin Sngl,
Emitting Area ...... 3-12
Emitting Area ...... 3-13
Emitting Areas .... 3-14
Emitting Areas .... 3-1S
Emitting Area ...... 3-16
Emitting Area ...... 3-17
50% CTA,
20% CTR,
20% CTR,
10% CTR,
30% CTR,
20% CTR,
ILB
IL9
7S00V ... 5-24
7500V ... 5-24
7500V ... 5-24
7S00V ... 5-24
7S00V ... 5-24
7S00V ... 5-26
ILIO
ILll
Grn, CA, DP Right.. .................. 3-8
HER, CA, DP Right .................. 3-8
Red, CA, DP Right ................... 3-8
Yel, CA, DP Right.. ................... 3-8
Grn, CC, DP Right ................... 3-8
HER, CC, DP Right .................. 3-8
Red, CC, DP Right.. ................. 3-8
Yel, CC, DP Right .................... 3-8
IDAI414-16-1
IDAI414-16-2
Inl. Display Asmbly, 16 Char w/Buffer ........... 2-185
Inl. Display Asmbly, 16 Char w/o Buffer ........ 2-18S
IDA1416-32
IDA2416-16
Inl. Display Asmbly, 32 Char ......................... 2-189
Inl. Display Asmbly, 16 Char ......................... 2-193
Optocoupler, 6 Pin Sngl, 20% CTR, 8KV
w/Base lead ....... :.......................................... S-38
Optocoupler, 4 pin Sngl, SO% CTR, 8KV
w/o Base lead ............................................... S-39
Optocoupler, 6 Pin Sngl, SO% CTR, 8KV
w/Base lead ................................................. S-39
100% CTR, 7500V .5-40
200% CTR, 7S00V . S-40
100%.CTR, 7S00V.5-40
12.5% CTR, 7SOOV S-42
ILlO1B
IL201
1L202
1L203
Optocoupler, 8 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler,6 Pin Sngl,
Hi-Spd 100nS,SmAS-4S
10% CTA, 7S00V ... S-47
30% CTR, 7S00V ... 5-47
50% CTR, 7S00V ... 5-47
1L205
1L206
1L207
Optocoupler, SMD, Pxtr, 40% CTR, 2S00V ... S-49
Optocoupler, SMD, Pxtr, 63% CTR, 2S00V ... S-49
Optocoupler, SMD, Pxtr, 100% CTR, 2S00V .5-49
IL211
1L212
1L213
Optocoupler, SMD, Pxtr, 20% CTR, 2S00V ... 5-51
Optocoupler, SMD, Pxtr, 50% CTR, 2S00V ... 5-51
Optocoupler, SMD, Pxtr, 100% CTA, 2S00V.5-51
IL215
1L216
1L217
Optocoupler, SMD, Pxtr, 20% CTA, 2S00V ... 5-53
Optocoupler, SMD, Pxtr, 50% CTR, 2S00V ... 5-S3
Optocoupler, SMD, Pxtr, 100% CTA, 2500V.S-53
Il221
Optocoupler, SMD, Photodarl, 100% CTA,
25OOV ............................................................. 5-SS
Optocoupler, SMD, Photodarl, 200% CTR,
2SooV ............................................................. 5-S5
Optocoupler, SMD, Photodarl, SOO% CTR,
2S00V ............................................................. 5-SS
Il250
Il251
1L252
1L256
Optocoupler,6 Pin Sngl, 20% CTR, 7500V,
AC Input ........................................................ 5-58
Optocoupler, 6 Pin Sngl, 20% CTR, 7S00V,
AC Input ......................................................... 5-S8
Optocoupler, 6 Pin Sngl. 100% CTR,
7500V, AC Input ............................................ S-S8
Optocoupler, SMD, 20% CTR, 2S00V,
AC Inpilt ........................................................ S-60
Il410
Il420
OptoCoupler, 6 Pin Sngl, Photo SCR,
7S00V ............................ ,................................ S-63
Optocoupler, 6 Pin Sngl, Triac, 7500V .......... S-64
Optocoupler, 6 Pin Sngl. Triac. 7500V .......... S-68
IlCT6
ILOl
IlD2
IlDS
Optocoupler. 8 Pin
Optocoupler. 8 Pin
Optocoupler. 8 Pin
Optocoupler.8 Pin
IlD30
IlD31
IlD32
Optocoupler. 8 Pin Dual. 100% CTA. 7500V.S-40
Optocoupler. 8 Pin Dual. 200% CTA. 7500V.S-40
Optocoupler,8 Pin Dual. SOO% CTR. 7500V.5-80
Il400
II
Optocoupler,4 Pin Sngl, 20% CTA, 8KV
w/o Base lead ............................................... S-38
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Il223
Small Alphanumeric Comm. Disply, 4 Char,
.IS' Dot Matrix Red ........................................ 2-63
Small Alphanumeric Comm. Disply, 4 Char,
.15' Dot Matrix Yel ......................................... 2-63
Small Alphanumeric Comm. Disply, 4 Char,
.IS' Dot Matrix HER ....................................... 2-63
Small Alphanumeric Comm. Disply, 4 Char,
.
.IS' Dot Matrix Grn ........................................ 2-63
16 Char ......................... 2-201
20 Char ......................... 2-201
16 Char ......................... 2-201
20 Char ......................... 2-201
IL30
IL31
ILS5
IL74
Il222
.53', Grn, CA, DP Right.. .................. 3.,-10
.53', HER, CA, DP Right .................. 3-10
.53', Red, CA, DP Right ................... 3-10
.53', Yel, CA, DP Right.. ................... 3-10
.53', Grn, CC, DP Right ................... 3-10
.53', HER, CC, DP Right .................. 3-10
.53', Red, CC, DP Right ................... 3-10
.53', Yel, CC, DP Right .................... 3-10
Display Asmbly,
Display Asmbly,
Display Asmbly,
Display Asmbly,
Dual.
Dual.
Dual.
Dual.
20% CTR. 7SOOV ... 5-72
20% CTA. 7SOOV ... 5-74
100% CTR. 7500V.5-74
SO% CTR. 7SOOV ... 5-74
ALPHANUMERIC INDEX
PART NO.
DESCRIPTION
LD273
LD274-1
LD274-2
LD274-3
Emitter, IR,
Emitter, IR,
Emitter, IR,
Emitter, IR,
LD275-1
LD275-2
LD275-3
Emitter, IR, Tl 3/4, Plastic, 18° ....................... 7-18
Emitter, IR, Tl 3/4, Plastic, 18°........................ 7-18
Emitter, IR, Tl 3/4, Plastic, 18° ....................... 7-18
LD1005
LD1006
LD1007
Lamp. Red/Grn. Tl 3/4• 2.S mcd/20mA, 100° 4..£
Lamp, Red/Grn. n 3/4• 4.0 mcd/20mA, 100° 4..£
Lamp, Red/Grn. 1:1 3/4, 6.3 mcd/20mA, 100° 4..£
LDll03
LDll04
LDll05
Lamp. Red/Grn. Rect. 1.0 mcd/20mA, 100° .. 4-7
Lamp. Red/Grn, Rect. 1.6 mcd/20mA, 100· .. 4-7
Lamp. Red/Grn. Rect. 2.S mcd/20mA,1 00° .. 4-7
LDB5410
Lamp. Blue. Tl 3/4, 2,S mcd/20mA. 16· ....... ..4-8
Ouad,100%CTR,7500V 5-40
Quad, 200%CTR,75OOV5-40
Quad. 500%CTR,7500V5-a0
Ouad,100%CTR,75OOV 5-40
Quad,12.5%CTR,7500V5-42
LDGl151
LDGl152
LDGll53
LDG2330,
Lamp, Grn .. Tl. 2.S mcdl20mA. 70· .............. 4-9
Lamp, Grn. Tl. 6.0 mcd/20mA, 70· .............. 4-9
Lamp, Grn.
10 mcd/20mA, 70· ............... 4-9
Lamp, Grn. Replaced by LG S26o..DO
E7502 ........................... ,................................. 4-18
IP-16A
LED Die, Masked Diffused GaAsP ................ 1-11
IRL80A
IRL81A
Emitter, IR, Side Facing, GaAs ...................... 7-5
Emitter, IR, Side Facing, GaAIAs ................... 7..£
LDG3901
LDG3902
LDG3903
Lamp. Grn. Rect.l.0 mcd/20mA, 100· ......... 4-10
Lamp, Gm. Rect. 1.6 mcd/20mA. 100· ......... 4-10
Lamp. Gm. Rect, 2.5 mcd/20mA, 100· ......... 4-10
ISD2010
Small Alphanumeric Indus. Disply, 4 Char,
.15' Dot Matrix Red ........................................ 2-71
Small Alphanumeric Indus. Disply, 4 Char,
.15' Dot Matrix Yel ......................................... 2-71
Small Alphanumeric Indus. Disply, 4 Char,
.15' Dot Matrix HER ....................................... 2-71
Small Alphanumeric Indus. Disply, 4 Char,
.15' Dot Matrix Grn ........................................ 2-71
LDG5071
LDG5072
LDG5171
LDG5172
Lamp.
Lamp.
Lamp.
Lamp,
LDG5591
LDG5592
Lamp, Grn. Tl 3/4, 40 rricd/20mA. 24· ........... 4-12
Lamp, Grn. Tl 3/4, 80 mcdl20mA. 24· ........... 4-12
LDHllll
LDH1112
LDH1113
LDH2310
Lamp, HER. Tl. 2.5mcdI10mA. 70· ............. 4-9
Lamp, HER. Tl. 4.0 mcdl10mA. 70· ............. 4-9
Lamp, HER, Tl, 6.0 mcdl10mA, 70· ............. 4-9
Lamp, HER, Replaced by LS S260-DO
E7502 ............................................................. 4-18
LDH3601
LDH3602
LDH3603
Lamp, HER, Rect, 1.6 mcdl10mA, 100· ........ 4-10
Lamp, HER, Rect, 2.S mcdl1OmA, 100° ........ 4-10
Lamp, HER, Rect, 4.0 mcd/l0mA, 100° ........ 4-10
LDH5021
LDH5022
LDH5023
Lamp, HER, T1
Lamp, HER,T1
Lamp, HER, T1
LDH5121
LDH5122
LDH5123
Lamp, HER, n 3/4, 2.0 mcd/l0mA, 70" ......... 4-13
Lamp, HER, Tl.~4, 4.0 mcd/l0mA, 70· ......... 4-13
Lamp, HER, Tl /4,6.0 mcd/l0mA, 70· ......... 4-13
LDH5191
LDH5192
LDH5193
Lamp, HER, T1 3/4, 10mcd/l0mA, 24° .......... 4-12
Lamp, HER, T1 3/4, 20 mcd/l0mA, 24° .......... 4-12
Lamp, HER, Tl 3/4,30 mcd/l0mA. 24· .......... 4-12
LDRll0l
LDRll02
LDRll03
Lamp, Red, Tl, 1.0 mcd/20mA,70" .............. 4-9
Lamp, Red, n, 2.0 mcd/20mA, 70" ............... 4-9
Lamp, Red, Tl, 4.0 mcd/20mA, 70· .............. 4-9
LDR3701
LDR3702
Lamp, Red, Rect, 0.4 mcd/20mA. 100" .... :... 4-10
Lamp, Red, Rect, 0.63 mcd/20mA, 100· ...... 4-10
LDR5001
LDRS002
LDRS003
Lamp, Red, Tl 3/4 , 1.0mcdl20mA, 70· .......... 4-11
Lamp, Red, Tl 3/4 , 2.5mCd120mA, 70· .......... 4-11
Lamp, Red, Tl 3/4 , 4.0mCd/20mA, 70° ........ ..4-11
LDRS091
LDRS092
LDRS093
Lamp, Red, Tl 3/4, 2.S mcd/20mA, 24° ......... 4-12
Lamp, Red, n 3/4, 4.0 mcd/20mA, 24° ......... 4-12
Lamp, Red, T1 3/4, 10 mCd/20mA. 24° .......... 4-12
PART NO.
DESCRIPTION
ILOSS
ILD74
Optocoupler. 8 Pin Dual. 100% CTR. 7500V.5-40
Optocoupler, 8 Pin Dual, 12.5% CTR, 7500V 5-42
ILD250
Optocoupler,8 Pin Dual, 50% CTR, 7500V,
AC Input ......................................................... 5-58
Optocoupler, 8 Pin Dual, 20% CTR, 7500V,
AC Input ......................................................... 5-58
Op\ocoupler, 8 Pin Dual, 100% CTR, 7500V,
AC Input ......................................................... 5-58
ILD251
ILD252
ILD61o..l
ILD61o..2
ILD61o..3
ILD61o..4
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
ILOl
IL02
IL05
Optocoupler, 16 Pin Quad, 2O%CTR, 7500V 5-74
Optocoupler, 16 Pin Ouad,100%CTR,7500V 5-74
Optocoupler, 16 Pin Quad, 50%CTR, 7500V 5-74
IL030
IL031
IL032
ILOSS
IL074
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
ISD2011
ISD2012
ISD2013
ISD2310
ISD2311
ISD2312
ISD2313
ISD2351
ISD2352
ISD2353
8 Pin
8 Pin
8 Pin
8 Pin
PAGE
Dual,
Dual,
Dual,
Dual,
16 Pin
16 Pin
16 Pin
16 Pin
16 Pin
40% CTR, 7500V ... 5-a2
63% CTR, 7500V ... 5-82
100% CTR, 7500V.5-a2
160% CTR, 7500V. 5-a2
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix Red ........................................ 2-79
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix Yel ......................................... 2-79
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix HER ....................................... 2-79
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix Grn ........................................ 2-79
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix Yel, Sunlight View .................. 2-87
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix HER, Sunlight View ............... 2-87
Small Alphanumeric Indus. Disply, 4 Char,
.20' Dot Matrix Grn, Sunlight View ................. 2-87
LD242-2
LD242-3
Emitter, IR, TO-18, 40°:'........ :......................... 7-8
Emitter, IR, TO-18, 40° ................................... 7-8
LD260
LD261·4
LD261-5
LD262
LD263
LD264
LD265
LD266
LD267
LD268
LD269
Emitter,
Emitter,
Emitter,
Emitter,
Emitter,
Emitter,
Emitter,
LD271
LD271H
LD271L
LD271LH
Emitter, IR,
Emitter, IR,
Emitter, IR,
Emitter, IR,
IR, 10 Element Array ........................ 7-10
IR, Mini, Plastic, 30° .......................... 7-10
IR, Mini, Plastic, 30° .......................... 7-10
IR, 2 Element Array ........................... 7-10
IR, 3 Element Array ........................... 7-10
IR, 4 Element Array ........................... 7-10
IR, 5 Element Array ........................... 7-10
Em~ter, IR, 6 Element Array ........................... 7-10
Emitter, IR, 7 Element Array ........................... 7-10
Emitter, IR, 8 Element Array ........................... 7-10
Emitter, IR, 9 Element Array ........................... 7-10
Tl 3/4, Plastic, 25° ....................... 7-12
Tl 3/4 , Plastic, 25° ....................... 7-12
T1 3/4, Plastic, 25°,1' Leads ........ 7-12
Tl 3/4 , Plastic, 25°, l' Leads ........ 7-12
vi
PAGE
Tl 3/4, Plastic,
Tl 3/4, Plastic,
Tl 3/4, Plastic,
H3/4, Plastic,
25°, Oval .............. 7-14
10° ....................... 7-16
10° ....................... 7-16
10° ....................... 7-16
n.
Grn. n 3/4• 2.S mcd/20mA. 70· ......... .4-11
Grn, n 3/4 , 6.0 mcd/20mA. 70· .......... 4-11
Grn, Tl :/4. 2.5 mc.d/20mA. 70· .......... 4-13
Grn. Tl /4,6.0 mcd/20mA. 70· .......... 4-13
3 /4,
3/4,
2.0 mcd/l0mA, 70· ......... 4-11
4.0 mcd/l0mA, 70· ......... 4-11
3/4, 6.0 mcd/l0mA, 70° ......... 4-11
ALPHANUMERIC INDEX
PART NO.
DESCRIPTION
LDR5101
LDR5102
LDR5103
LDRG2340
Lamp, Red, T1 3/4 , 1.0 mcd/20mA, 70" ......... 4-13
Lamp, Red, T1 3/4 ,2.5 mcd/20mA, 70· ......... 4-13
Lamp, Red, T1 3/4 , 4.0 mcd/20mA, 70· ......... 4-13
Lamp, Red/Grn, Replaced by LU S26O-DO
E7502 ......................................; ...................... 4-18
LDY1131
LDY1132
LDY1133
LDY2320
Lamp, Yel, T1, 1.0 mcd/lOmA. 70· ............... 4-9
Lamp, Yel, T1, 2.0 mcd/10mA, 70· ............... 4-9
Lamp, Yel, T1, 4.0 mcd/10mA, 70· ............... 4-9
Lamp, Yel, Replaced by LY S260·DO
E750 ............................................................... 4-18
LDY3801
LDY3802
LDY3803
Lamp, Yel, Rect, 1.0 mcd/20mA, 100· ......... .4-10
Lamp, Yel, Rect, 1.6 mcd/20mA. 100· .......... 4-10
Lamp, Yel, Rect, 2.5 mcd/20mA, 100· .......... 4-10
LDY5061
LDY5062
Lamp, Yel, T1 3/4 1.0 mcd/10mA, 70· ............ 4-11
Lamp, Yel, T1 3/4 2.5 mcd/10mA, 70· ............ 4-11
LDY5161
LDY5162
LDY5163
Lamp, Yel, T1 3/4 1.0 mcd/10mA, 70· ............ 4-13
Lamp, Yel, T1 3/4 2.5 mcd/10mA, 70· ............ 4-13
Lamp, Yel, T1 3/4 4.0 mcd/10mA, 70· ............ 4-13
LDY5391
LDY5392
LDY5393
Lamp, Yel, T1 3/4 10 mcd/10mA, 24· ............. 4-12
Lamp, Yel, T1 3/4 20 mcd/10mA, 24· ............. 4-12
Lamp, Yel, T1 3/4 30 mcd/10mA, 24· ............. 4-12
LG3389·EO
LG3389·FO
Lamp, Grn, T1, Low Curr, 0.63 mcd/2mA ..... 4-14
Lamp, Grn, T1, Low Curr, 1 mcd/2mA .......... 4-14
LG5411·LO
LG5411·NO
LG5411-PO
Lamp, Grn, T1 3/4, Superbrt, 10 mcd/10mA .. 4-15
Lamp, Grn, T1 3/4 , Superbrt, 25 mcd/10mA .. 4-15
Lamp, Grn, T1 3/4, Superbrt, 40 mcd/10mA .. 4-15
LG5469-EO
LG5469-FO
Lamp, Grn, T1 3/4 , Low Curr, 0.63 mcd/2mA. 4-16
Lamp, Grn, T1 3/4, LowCurr.1 mcd/2mA ...... 4-16
LG K380
LGS26O·DO
Lamp, Grn, T1, Argus .................................... 4-17
Lamp, Grn, T1 3/4, SOT·23 SMD,Replaces
LDG2330·Z42 ................................................ 4-18
LPDBOA
LPT80A
LPT85A
Photodrlgtn, NPN, Side Facing, Plastic, 40· .9-16
Photoxtr, NPN, Side Facing, Plastic, 40· ....... 9-17
Photoxtr, NPN, Side Facing, Plastic, 40· ....... 9-19
LPT100
LPT100A
LPT100B
LPT110
LPT110A
LPT110B
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
Photoxtr,
LS3369-EO
LS3369·FO
Lamp, HER, T1. Low Curr, 0.63 mcd/2mA .... 4-14
Lamp, HER, T1, Low Curro 1 mcd/2mA ......... 4-14
LS5421-MO
LS5421-PO
LS5421·QO
. Lamp, HER, T1 3/4, Superbrt, 16 mcd/10mA .4-15
Lamp, HER, T1 3/4 , Superbrt, 40 mcd/10mA .4-15
Lamp, HER, T1 3/4, Superbrt, 63 mcd/10mA .4-15
LS5469-EO
LS5469·FO
Lamp, HER, T1 3/4, Low Curr, 0.63 mcd/2mA 4-16
Lamp. HER, T1 3/4, Low Curr, 1 mcd/2mA .... 4-16
LS K380
LSS260-DO
Lamp, HER, T1, Argus ................................... 4-17
Lamp, HER, SOT-23 SMD. Replaces
LDH2310-Z42 ................................................ 4-18
Lamp, Red/Grn, SOT-23 SMD, Replaces
LDRG2340-Z42 .............................................. 4-18
LUS250-DO
Ceramic,
Ceramic,
Ceramic,
Ceramic,
Ceramic,
Ceramic,
PAGE
T0-18,
TO-18,
TO-18,
T0-18,
TO-18,
T0-18,
25·
25·
25·
25·
25·
25·
Lamp, Yel, T1, Low Current, 0.63 mcd/2mA .4-14
Lamp, Yel, T1, Low Current, 1 mcd/2mA ...... 4-14
LY5421-MO
LY5421-PO
LY5421-QO
Lamp, Yel, T1 3/4, Superbrt, 16 mcd/10mA ... 4-15
Lamp. Yel, T1 3/4 , Superbr!. 40 mcd/10mA ... 4-15
Lamp, Yel, T1 3/4 , Superbrt, 63 mcd/10mA ... 4-15
DESCRIPTION
LY5469-EO
LY5469-FO
Lamp, Yel, T1 3/4 , Low Curr, .63 mcd/2mA .... 4-16
Lamp, Yel, T1 3/4 , Low Curr, 1 mcd/2mA ....... 4-16
LYK380
LYS260·DO
Lamp, Yel, Tl, Argus ..................................... 4-17
Lamp, Yel, SOT-23 SMD, Replaces
LDY2320-Z42 ................................................. 4-18
MCA230
MCA231
MCA255
Optocoupler, 6 Pin Sngl. 100% CTR, 75OOV. 5-85
Optocoupler. 6 Pin Sngl. 200% CTR, 75OOV. 5-85
Optocoupler, 6 Pin Sngl, 100% CTR, 75OOV. 5-85
MCT2
MCT2E
MCT6
Optocoupler,6 Pin Sngl, 20% CTR, 7500V ... 5-87
Optocoupler, 6 Pin Sngl, 20% CTR, 7500V ... 5-87
Optocoupler, 6 Pin Sngl. 20% CTR. 7500V ... 5-89
MCT270
MCT271
MCT272
MCT273
MCT274
MCT275
MCT276
MCT277
Optocoupler, 6 Pin Sn91,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sn91,
Optocoupler, 6 Pin Sngl,
Optocoupler, 6 Pin Sn91,
Optocoupler,6 Pin Sngl,
MDL2416C
MDL2416TXV
MDL2416TXVB
Int. Display, 4 Char, .15', Red, Hi-Rei ........... 2-95
Int. Display, 4 Char, .15', Red, Military .......... 2-95
Int. Display, 4 Char, .15', Red, Military .......... 2-95
MPD2545
Prog. Display. 4 Char, .25', Dot Matrix HER,
Hi-Rel ............................................................. 2-103
Prog. Display, 4 Char, .25', Dot Matrix Grn,
Hi-Rel ............................................................. 2-103
Prog. Display, 4 Char, .25', Dot Matrix Yel,
Hi-Rel ............................................................. 2-103
MPD2547
MPD2548
PAGE
50% CTR, 7500V ... 5-91
45% CTR, 7500V ... 5-91
75% CTR, 7500V ... 5-91
125% CTR, 7500V.5-91
225% CTR, 7500V.5-91
70% CTR, 7500V ... 5-91
15% CTR, 7500V ... 5-91
100% CTR, 7500V.5-91
MSD2010 TXV
Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix Red ....................................... 2-113
MSD2010 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix Red ....................................... 2-113
MSD2011 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix Yel ........................................ 2-113
MSD2011 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix Yel ........................................ 2-113
MSD2012 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix HER ............. :........................ 2-113
MSD2012 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix HER ...................................... 2-113
MSD2013 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.15' Dot Matrix Grn ....................................... 2-113
MSD2013 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
15' Dot Matrix Grn ....................................... 2-113
...................... 9-21
...................... 9-21
...................... 9-21
...................... 9-21
...................... 9-21
...................... 9-21
LY3369-EO
LY3369-FO
PART NO.
MSD2310 TXV
Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Red ....................................... 2-124
MSD2310 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Red ....................................... 2-124
MSD2311 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Yel ........................................ 2-124
MSD2311 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Yel ........................................ 2-124
MSD2312 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix HER ...................................... 2-124
MSD2312 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix HER ...................................... 2-124
MSD2313 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Grn ....................................... 2-124
MSD2313 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Grn ....................................... 2-124
MSD2351 TXV
Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Yel, Sunlight View ................. 2-135
MSD2351TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Yel, Sunlight View ................. 2-135
MSD2352 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix HER, Sunlight View .............. 2-135
vii
ALPHANUMERIC INDEX
PAGE
PAGE
PART NO,
DESCRIPTION
MSD2352 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix HER, Sunlight View .............. 2-135
MSD2353 TXV Small AlphaNumeric Mil. Disply, 4 Char,
.20' Dot Matrix Grn, Sunlight View ................ 2-135
MSD2353 TXVB Small AlphaNumeric Mil. Disply, 4 Char,
.20' Oot Matrix Grn, Sunlight View ................ 2-135
PART NO,
DESCRIPTION
SFH225
SFH248
SFH248F
Photodiode, Black Plastic, PIN, 60· ............... 8-54
Photodiode, Plastic, SO· ................................ 8-56
Photodiode, Plastic w/Filtei, 60· .................... 8-56
SFH250
SFH250F
OBG1000
OBG4B30
OLB2300
OLB2350
OLB2600
Bar Graph, HER, 10 Elemenl.. ....................... 3-18
Bar Graph, HER, 10 Element .....•................... 3-20
Light, Bar, HER, .15'x.35' Emitting Area ....... 3-12
Light, Bar, HER, .15'x.75' Emitting Area ....... 3-13
Light, Bar, HER, .35'x.15' Emitting Areas ...... 3-14
SFH250V
Photodiode Detector, Plastic, Fiber Optic ..... 6-3
Photodiode Detector, Plastic w/Filter,
Fiber Optic ..................................................... 6-3
Photodiode Detector, Plastic Connector
Housing, Fiber Optic ..................................... 6-5
OLB262O
OLB2655
OLB2685
Light, Bar, HER, .25'x.15' Emitting Areas ...... 3-15
Light, Bar, HER, .35'x.35' Emitting Area ....... 3-16
Light, Bar, HER, .35'x.75' Emitting Area ....... 3-17
SFH303-2
SFH303-3
SFH303-4
SFH303F-2
SFH303F-3
SFH303F-4
Photoxtr, n 3/4 , Plastic, 20· .......................... 9-23
Photoxtr, n 3/4 , Plastic, 20· .......................... 9-23
Photoxtr, n 3/4, Plastic, 20· ......................... 9-23
Photoxtr, n 3/4, Plastic w/Filter, 20· ............... 9-23
Photoxtr, Tl 3/4, Plastic w/Filter, 20· ............... 9-23
Photoxtr, Tl 3/4, Plastic w/Filter, 20· ............... 9-23
PDl165
PDf167
Prog. Display, 1,16' Sq. 8x8 Dot Matrix HER 2-146
Prog. Display, 1.16' Sq. 8x8 Dot Matrix Grn .2-146
SFH305-2
SFH305-3
Photoxtr, Mini, Plastic, 16· •............................ 9-25
Photoxtr, Mini, Plastic, 16· ........•..•................. 9-25
PD2435
Prog. Display, 4 Char, .200', 5x7 Dot Matrix
HER ................................................................ 2-154
Prog. Display, 4 Char, .200', 5x7 Dot Matrix .
Red .•..••.......................................................... 2-154
Prog. Display, 4 Char, .200', 5x7 Oot Matrix
Grn ............ :......•............................................. 2-154
SFH309-2
SFH309-3
SFH309-4
SFH309-5
SFH309F-2
SFH309F-3
SFH309F-4
SFH309F-5
Photoxtr, Ti, Plastic, 20· ................................. 9-27
Photoxtr, Tl, Plastic, 20" ................................ 9-27
Photoxtr, n, Plastic, 20" ................................ 9-27
Photoxtr, n, Plastic, 20 •.......•....................... 9-27
Photoxtr, n, Plastic w/Filter, 20· ................... 9-27
Photoxtr, n, Plastic w/Filter, 20· ................... 9-27
Photoxtr, n, Plastic w/Filter, 20· ................... 9-27
Photoxtr, Tl, Plastic w/Filter, 20· ................... 9-27
SFH317-2
SFH317-3
SFH317-4
SFH317F-2
SFH317F-3
SFH317F-4
Photoxtr, Tl
Photoxtr, Tl
Photoxtr, Tl
Photoxtr, Tl
Photoxtr, Tl
Photoxtr, n
SFH350
SFH350F
Photoxtr Detector, Plastic, Fiber Optic ........•. 6-7
Photoxtr Detector, Plastic, w/Filter Fiber
Optic .............................................................. 6-7
Photoxtr Detector, Plastic Connector
Housing, Fiber Optic ..................................... 6-9
PD2436
PD2437
PD3535
PD3536
PD3537
PD4435
P04436
PD4437
Prog. Display, 4 Char, .270', 5x7 Dot Mattix
HER ................................................................ 2-164
Prog. Display, 4 Char, .270', 5x7 Dot Matrix
Red ......•......................................................... 2-164
Prog. Display, 4 Char, .270', 5x7 Dot Matrix
Grn ..•.............................................................. 2-164
Prog. Display, 4 Char, .45', 5x7 Oot Matrix
HER ......................................................•......... 2-174
Prog. Display, 4 Char, .45', 5x7 Dot Matrix
Red ................................................................ 2-174
Prog. Display, 4 Char, .45', 5x7 Oot Matrix
Grn ................................................................. 2-174
PFOK-l
Kit, Plastic Fiber Optic ................................... 6-15
RB-42B
RM-14A
LEO Die, Mask-Diffused GaAsP .................... 1-12
LEO Die, Mask-Diffused GaAsP, Monolithic
w/Cursor .........•............................................. 1-13
LEO Die, Mask-Diffused GaAsP, Monolithic .. 1':'14
LEO Die, Mask-Diffused GaAsP, Monolithic .. 1-15
LEO Die, Mask-Diffused GaAsP, Monolithic .. 1-16
LEODie, Mask-Diffused GaASP, Monolithic .. 1-17
LED Die, Mask-Diffused GaAsP, Monolithic .. 1-18
LEO Die, Mask-Diffused GaAsP, Monolithic .. 1-19
LEO Die, Mask-Diffused GaAsP, Monolithic .. 1-20
LEO Die, Mask-Diffused GaAsP .................... 1-21
LED Die, Mask-Diffused GaAsP, Point
Source ................................................:..........:.1-22
RM-15B
RM-62A
RM-64A
RM-73A
RM-81B
RM-85D
RM-86A
RP-12C
RP-13CB
RBG1000
RBG4820
Bar Graph, Red, 10 Element ......................... 3-18
Bar Graph, Red, 10 Element .. :...................... 3-20
RL50
RL54
RL55
Lamp, Axial, Red, 0.5 mcd/l0mA, 90· .......... 4-21
Lamp, Axial, Red, 0.4 mcd/l0mA, 90· .......... 4-21
Lamp, Axial, Red, 2.0 mcd/l0mA, 90· .......... 4-23
SFH100
SFH200
SFH204
SFH205
SFH205-Q2
SFH206
SFH206K
Photodiode, Plastic, so· .......................... ,..... 8-38
Photodiode, Plastic, so· ................................ 8-40
Photodiode, 4 Quadrant, Plastic, 70· ............ ~2
Photodiode, Black, TO-92, PIN, 70" .............. 8-44
Photodiode, Black, TO-92, PIN, 70" .............. 8-46
Photodiode, Black, TO-92, PIN, 60" .............. 8-48
Photodiode, Clear Plastic, T0-92, PIN, 60· ... 8-50
SFH217
SFH217F
Photodiode, Tl 3/4, Plastic, Flat Top, PIN ...... 8-52
Photodiode; Tl 3/4, Plastic w/Filter, Flat Top,
PIN ................................................................. 8-52
SFH350V
3/4 ,
SFH400-2
SFH400-3
SFH401-2
SFH401-3
SFH401-4
SFH402-2
SFH402-3
Emitter, IR, TO-18, 60 , 20mW/SR ................... 7-20
Emitter, IR, TO-18, 6·, 32mW/SR ................... 7-20
Emitter,lR, TO-18, 15·, 10mW/SR ................. 7-22
Emitter,lR, TO-18, 15·, 16mW/SR .....•........... 7-22
Emitter,lR, TO-18, 15·, 25mW/SR ................. 7-22
Emitter, IR, TO-18, 40·, 2.5mW/SR ................ 7-24
Emitter,lR, TO-18, 40·, 4.OmW/SR ................ 7-24
SFH405-2
SFH405-3
Emitter, IR, Mini, 16· ...................................... 7-26
Emitter, IR, Mini, 16· ...................................... 7-26
SFH409-1
SFH409-2
SFH409-3
Emitter,lR, Tl, Plastic, 20·, 6.3-12.5mW/Sr .. 7-28
Emitter, IR, n, Plastic, 20·, 10-20mW/Sr ...... 7-2S
Emitter, IR, Tl, Plastic, 20·, >l6mW/Sr ..•...... 7-28
SFH431-1
SFH431-2
SFH431-3
SFH435
Emitter, IR, TO-18, 18·, 10-20mW/Sr ............. 7-30
Emitter,lR, TO-18, 18·, 16-32mW/Sr ............. 7-30
Emitter, IR, TO-1S, lS·, >25mW/Sr ................ 7-30
Emitter, IR, S·, GaAs .....•................................ 7-31
SFH450
SFH450V
Emiller, IR, GaAs, Plastic Fiber Optic ............ 6-11
Emitter, IR, GaAs, Plastic Connector
Housing, Fiber Optic ... :................................. 6-13
Emitter, IR, GaAlAs, Plastic Connector
Housing, Fiber Optic ..................................... 6-13
Emiller, IR, GaAlAs, Plastic Connector
Housing, Fiber Optic ..................................... 6-13
SFH451V
SFH452V
viii
Plastic, 60· ........................... 9-29
Plastic, SO· ........................... 9-29
Plastic, 60· .........•................. 9-29
3/4, Plastic w/Filter, SO· ............... 9-29
3/4, Plastic w/Filter, SO· ............... 9-29
3/4, Plastic w/Filter, SO" ............... 9-29
3/4 ,
3/4,
SFH480-1
SFH480-2
SFH480-3
Emitter,lR, TO-18, GaAlAs, 6· ....................... 7-34
Emiller, IR, TO-1S, GaAlAs, 6· ....................•.. 7-34
Emitter, IR, TO-1S, GaAlAs, 6· ....................... 7-34
SFH481-1
Emitter, IR, TO-18, GaAlAs, 15· ..................... 7-36
ALPHANUMERIC INDEX
PART NO,
DESCRIPTION
SFH481-2
SFH481-3
SFH482-1
SFH482-2
SFH482-3
Emitter,
Emitter,
Emitter,
Emitter,
Emitter,
SFH484-1
SFH484-2
SFH484-3
Emitter, IR: Tl 3/4, GaAIAs, 8', 50-100mW/Sr 7-40
Emitter, IR, Tl 3/4, GaAIAs, 8', 8D-160mW/Sr 7-40
Emitter, IR, Tl 3/4 , GaAlAs, 8', >125mW/Sr ... 7-40
SFH485-1
SFH485-2
SFH485-3
SFH485P-l
SFH485P-2
Emilter,
Emitter,
Emitter,
Emitter,
Emitter,
IR,
IR,
IR,
IR,
IR,
Tl
Tl
Tl
Tl
Tl
GaAlAs, 20', 16-32mW/Sr 7-42
GaAIAs, 20', 25-50mW/Sr 7-42
3/4, GaAIAs, 20'g, >40mW/Sr. 7-42
3/4,40', FlatTop, GaAIAs ....... 7-44
3/4,40', FlatTop, GaAIAs ....... 7-44
SFH487-1
SFH487-2
SFH487-3
SFH487P-l
SFH487P-2
Emitter,
Emitter,
Emitter,
Emitter,
Emitter,
IR,
IR,
IR,
IR,
IR,
Tl,
Tl,
Tl,
Tl,
Tl,
GaAIAs, 20', 12.5-25mW/Sr .. 7-46
GaAIAs, 20', 20-40mW/Sr ..... 7-46
GaAIAs, 20', >32mW/Sr ....... 7-46
Flat Top, 65', 2-4mW/Sr ........ 7-48
Flat Top, 65', >3.15mW/Sr .... 7-48
SFH600-0
SFH600-1
SFH600-2
SFH600-3
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
6
6
6
6
Pin
Pin
Pin
Pin
Sngl,
Sngl,
Sngl,
Sngl,
40% CTR, 5300V ... 5-93
63% CTR, 5300V ... 5-93
100% CTR, 5300V. 5-93
160% CTR, 5300V. 5-93
SFH601-1
SFH601-2
SFH601-3
SFH601-4
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
6
6
6
6
Pin 8ngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,
40% GTR, 5300V ... 5-97
63% GTR, 5300V ... 5-97
100% CTR, 5300V. 5-97
160% CTR, 5300V. 5-97
SFH601G-l
SFH601G-2
SFH601G-3
SFH601G-4
Optocoupler,
Optocoupler,
Optocoupler,
Optocoupler,
6
6
6
6
Pin
Pin
Pin
Pin
40% CTR, 5300V ... 5-101
63% CTR, 5300V ... 5-101
100% CTR, 5300V.5-101
160% CTR, 5300V.5-101
SFH606
Optocoupler, 6 Pin Sngl, 63-125% CTR,
SFH609-1
SFH609-2
SFH609-3
Optocoupler, 6 Pin Sngl, 40% CTR, 5300V ... 5-109
Optocoupler, 6 Pin Sngl, 63% CTR, 5300V ... 5-109
Optocoupler, 6 Pin Sngl, 100% CTR, 5300V. 5-109
SFH617G-l
SFH617G-2
SFH617G-3
Optocoupler, 4 Pin Sngl, 40% CTR, 5300V ... 5-113
Optocoupler, 4 Pin Sngl, 63% CTR, 5300V ... 5-113
Optocoupler, 4 Pin Sngl, 100% GTR, 5300V.5-113
SFH750
Emitter, Vis. Red, GaAsP, Plas. Fiber Optic .. 6-11
Emitter, Vis. Red, GaAsP, Plas. Connector
Housing, Fiber Optic ..................................... 6-13
Emitter, Vis. Grn, GaP, Plas. Rber Optics ..... 6-11
Emitter, Vis. Red, GaAsP, Plas. Connector
Housing, Fiber Optics .................................... 6-13
IR,
IR,
IR,
IR,
IR,
PAGE
TO-18,
TO-18,
TO-18,
TO-18,
TO-18,
GaAIAs,
GaAIAs,
GaAIAs,
GaAIAs,
GaAIAs,
15'
15'
30'
30'
30'
.................... 7-36
.................... 7-36
.................... 7-38
.................... 7-38
.................... 7-38
3/4,
3/4,
Sngl,
Sngl,
Sngl,
Sngl,
5300V ............................................................. 5-105
SFH750V
SFH751
SFH752V
SFH900-1
SFH910
Reflector Sensor, Mini. Plas. Emitter
Detector Pair .................................................. 7-50
Reflector Sensor, Mini. Plas. Emitter
Detector Pair .................................................. 7-50
Reflector Sensor, Mini, Plas. Emitter
Detector Pair .................................................. 7-50
Reflector Sensor, Mini, Plas. Emitter
Detector Pair .................................................. 7-50
Reflector Sensor, Mini, Plas. Emitter
Detector Pair .................................................. 7-50
Reflector Sensor, Mini, Plas. Emitter
Detector Pair .................................................. 7-50
Interrupter, Differential Photo ........................ 7-54
SFH2030
SFH2030F
Photodiode, PIN. T1 3/4, 20' ........................... 8-58
Photodiode, PIN, Tl 3/4 , 20' ........................... 8-58
SFH900-2
SFH900-3
SFH900-4
SFH905-1
SFH905-2
SFH6011
Optocoupler, 6 Pin Sngl, 63-200% CTR,
5300V ............................................................. 5-117
ix
PART NO,
DESCRfPTION
SFK610-1
SFK610-2
SFK61 0-3
SFK610-4
SFK611-1
SFK611-2
SFK611-3
SFK611-4
Optocoupler,4
Optocoupler. 4
Optocoupler, 4
Optocoupler. 4
Optocoupler. 4
Optocoupler, 4
Optocoupler, 4
Optocoupler, 4
TP60P
TP61P
Photovoltaic Cell, Rnd, luNLX ...................... 10-10
Photovoltaic Cell, Hex, 1uNLX ...................... 10-10
YBG1000
YBG4840
Bar Graph, Yellow, 10 Element ...................... 3-18
Bar Graph, Yellow, 10 Element... ................... 3-20
YL56
Lamp, Yel, Axial, 20mcd/10mA, 40' .............. 4-23
YLB2400
YLB2450
YLB2700
YLB2720
YLB2755
YLB2785
Light
Light
Light
Light
Light
Light
Bar,
Bar,
Bar,
Bar,
Bar,
Bar,
Yel,
Yel,
Yel,
Yel,
Yel,
Yel,
PAGE
Pin Sngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,
Pin Sngl,
.15'x.35'
. 15'x. 75'
.35'x.15'
.35')(.15'
.35'x.25'
.35'x.75'
40% CTR, 7500V ... 5-121
63% CTR, 7500V ... 5-121
100% CTR, 7500V.5-121
160% CTR, 7500V.5-121
40% CTR, 7500V ... 5-121
63% CTR, 7500V ... 5-121
100% CTR, 7500V.5-121
160% CTR, 7500V.5-121
Emitting
Emitting
Emilting
Emitting
Emitting
Emitting
Area ........... 3-12
Area ........... 3-13
Areas ......... 3-14
Areas ......... 3-15
Area ........... 3-16
Area ........... 3-17
SIEMENS
Quality at Siemens Optoelectronics
At Siemens Optoelectronics, quality means more than
today's satisfied customer. It means measuring up to
our customer's plans for tomorrow.
delivery. And it means measurable results. During the past
decade, we've continually reduced the cost of quality while
increasing our productivity and reducing ppm.
It means a sophisticated process: Quality manu-facturing
and assurance programs, ongoing training and statistical
quality control. It means continuously using customer feedback to build in improvements, ensuring just-in-time
In short, quality has become our way of life, permeating
everything we do. It's become the art and science of
exceeding our customer's expectations.
At Siemens Optoelectronics - Quality Means
Measurable Results
.•
70
n
II
II
II
;; A
: I n PPM (xl 00)
60
PI GOBI/1990
\
II "
II II
II II
II II
II II
50
I
I,_
II II
I
I'll
1_
••
I
I.
I:..
: ~: ;:\
\: H :; \
\
40
..., V :; \
~; \
"~ ~
.•
30
•
,~
20
COQ-1987
COQ GOBII1990
10
82
83
84
85
PPM (x 100)
PI - Productivity Index
COQ - Cost of QUBlily (%)
86
87
88
89
90
SIEMENS
Optoelectronics
Quality and Reliability
Introduction
Parts Per Million (PPM) Program
In the technological community as a whole, the terms
''quality'' and "reliability" are frequently reduced to little more
than advertising platitudes-heavily promised, but seldom
delivered in the form of highly reliable, precision-made
products. At Siemens Optoelectronics Division, however, we
strive for continually increasing product excellence through
increased quality and reliability reflecting a company-wide
commitment of the highest priority.
The intensive, quality-oriented efforts of every group have
enabled us to achieve one of the lowest defect percentages
in the industry. Our Parts Per Million (PPM) program meets
all industry expectations and is at a level sufficient to supply
high-caliber OEM customers including IBM, DELCO, DEC,
and SPERRY (UNISYS).
Our ability to produce quality optoelectronic products
offering longterm reliabiliiy is directly related to intensive
research and development, advan~d manufacturing, a
quality-oriented work force, and a company wide philosophy
attuned to the changing needs of a technologically
sophisticated customer base.
Another important facet of our total commitment to manufacturing excellence is a program of quality control and reliability testing, under the Reliability and Quality Assurance
(R&QA) Department. R&QA's responsibility is to interface
directly with the customers, not only to determine their
present satisfaction level, but to assess their future needs as
well. In this way, R&QA makes certain that we will
successfully meet all current and future quality/reliability
requirements of our customers.
Similarly, it is also R&QA's responsibility to maintain open
communication with customers, keeping them informed of
our latest capabilities and achievements in the areas of
product quality and reliability through detailed reports.
Although the concepts of quality and reliability are closely
related, they are somewhat divergent, specialized activities.
Simply put, Quality Assurance makes certain that products
are "made right': ranging from rigid inspection and monitoring of all materials used in production processes, to monitoring the actual production processes themselves. Reliability,
on the other hand, ensures that products ''work right" after
assembly. At Siemens, component reliability results from an
extensive program of routine monitoring and special testing
activities which will be detailed later.
2
The annual improvement of the PPM level is vital to our
ability to remain a cost-effective, on-time supplier of highquality components to the industry. Our PPM program is at
the heart of the quality/reliability "revolution" which has
occured in the semiconductor industry during the last few
years.
Designed to control and monitor every step of the manufacturing process, as well as to assist in predictability studies,
our PPM program represents the key to our long-term success in a highly competitive industry. To this end, we are
heavily committed to:
• Maximum automation of processes to obtain consistent,
reproducible results.
• A system of stringent process controls to ensure the
achievement of expected results.
• Effective quality systems to continuously audit the PPM
level actually being achieved.
Customer benefits of the PPM system are numerous:
• A low PPM defect rate enabling you to eliminate incoming
QA testing.
• Dependable on-time delivery for a ':JUST IN TIME"
inventory system, Significantly reducing inventory costs.
• Efficient, highly automated manufacturing to keep
long term price increases as low as possible.
• Fewer production line failures; lower assembly costs;
increased profit margin.
• Fewer field failures on end products; lower warranty and
service costs.
The 1988/89 PPM goal for Siemens Optoelectronics is
50 PPM.
Customer Quality Return Performance
September 1987 - August 1988
1.0%
0.8%
~
~
0.6%
?=
:::;
g
0.4%
;/!
~
~
1987
~
~
~
~
~
m
~
~
_
~
1988
CUSTOMER QUALllY RETURN
Statistical Quality Control (SQC)
Quality Assurance
To achieve our PPM goals efficiently, we have implemented
a sophisticated program of Statistical Quality Control
(SQC). In effect, SQC ensures highly-reproducible, controlled
manufacturing processes and '1ust-in-time" delivery. It
enables us to meet our PPM goals without resorting to a
"brute force" approach. SQC is consistent with William E.
Deming's principal theory that productivity improves as a
product's variability rate decreases.
At Siemens the Quality Assurance Group serves the
vital function of maintaining constant product quality
standards. Quality Assurance activities begin with the careful
assessment of raw materials, continues through in-process
monitoring, and concludes with outgoing audits as outlined
below:
• Raw Material
-
We recognize the necessity of meeting our customers' ever
increasing quality requirements through a carefully
developed, well·implemented program of Statistical Quality
Control. After considerable research and careful planning,
our SQC program was developed using the following
6-point plan for Statistical Process Control:
• Establishment of goals and objectives for company-wide
implementation of Quality program
• Assessment of SQC technical capability and quantification
of training aids
• Provision for training managers, engineers, supervisors,
and analysts in methods and practices of SQC, as needed
• Managerial involvement in gaining statistical evidence
pertaining to specific processes
• Identification of examples of successful SQC implementation ...to be used as models for emulation
• Monitoring progress toward established goals through a
program of periodic self-audits
Vendor surveys
Vendor qualifications
Incoming inspections
Vendor rating systems
• In-process Monitors
-
Die attach monitors
Lead bond monitors
Encapsulation monitors
Finishing operations monitors
• Outgoing Audits
- Outgoing audits (all lots)
- Finished goods monitor (random)
The flowchart on the right shows the basic quality control
procedures employed by Siemens Opto in the production
of LEOs.
3
LED Quality Assurance Flowchart
Reliability
The fundamental objective of our reliability program is to
ensure that all our products meet or exceed, quantitatively
and qualitatively, the performance requirements of our
customers and our Engineering Group. To achieve this goal,
the Reliability Group constantly monitors products by generiC
groups. This monitoring provides continuous updated measurement of product reliability in specific operating
environments.
QUALITY CONTROL
RECEIVING
INSPECTION
WAFER
FABRICATION
r-
QUALITY CONTROL
MONITORS
&
The following are typical Reliability Tests performed for the
monitoring program:
• Temperature Cycle: 100 Cycles from -40°C to 100°C'
• Thermal Shock: 30 Cycles from DoC to 100°C'
• Ambient Life Test: Max rated power for tODD hours
• Elevated Life Test: Max rated power at 70°C
for 1000 hours
• High Temperature Storage: Max storage temperature,
1000 hours
• Low Temperature Storage: Minimum storage
temperature, 1000 hours
• Temperature Humidity: 85°C - 85% RH, 500 hours
• Solder Heat Test: 260°C, 5 seconds
PROCESS AUDITS
QUALITY CONTROL
ACCEPTANCE OF
FINISHED WAFERS
DIE
PREP
DIEATIACH
LEAD BOND
~
QUALITY CONTROL
MONITORS
&
'Typical temp cycle and thermal shock condition. Exact conditions vary with
product family.
PROCESS AUDITS
Reliability Test Data (1982-1988 Monitoring
Data)
4th ELECT/TEST 1
QUALITY CONTROL
PRE-SEAL
VISUAL
ENCAPSULATION
I----J
Intelligent
Dispaly~
Displays
Devices
Optocouplers
10,024
1002K
0
. 0.0%
6421
642K
0
O.O'A>
7473
747%
2
0.03%
18,981
1898K
2
0.01%
8,475
254K
2
0.02%
4490
134K
1
0.02%
4629
138K
0
0.0%
13,269
398K
2
0.02%
Burn-In (1000 Hrs)
Sample Size
Total Hours
Total Reject
FR'(%)
3652
3652K
0
.0%
1372
1372K
0
0.0%
3422
3421K
1
0.03%
4620
4620K
0
0.0%
High Temperature
Burn-In (1000 Hrs)
Sample Size
Tota! Hours
Total Reject
FR'(%)
3838
3838K
0
0.0%
1048
1048K
0
0.0%
1088
1088K
0
0.0%
4620
4619K
1
0.02%
2730
2
0.0%
2244
0
0.0%
2203
0
0.0%
10,023
3
0.03%
Temperature Cycle
(100 Cy)
Sample Size
Total Cycles
Total Reject
Percent Reject
QUALITY CONTROL
PROCESS AUDIT
Thermal Shock (30 Cy)
Sample Size
Total Cycles
Total Reject
Percent Reiect
FINAL TEST
AND MATCHING
MARK & PACK
Room
QUALITY
ASSURANCE
ACCEPTANCE OF
FINISHED PRODUCT
I
FINISHED GOODS
STORES
CUSTOMER
Standard
Type 01 Test
J
QUALITY
ASSURANCE
FINAL SHIPPING
INSPECTION
Lamps
Temperatu~e
Solder Heat Test
(260°C, 5 sec.)
Sample Size
Total Reject
Percent Reject
'FR = Failure Rate, % per 1000 hours.
4
Description of Tests • Reliability Monitor Program
Military
Standard
PreTest
Reedings
Temp Cycle (TIC)
MIL STD 883B,
Method 1010.2
GO/NOGO
10 cycles per sub group. 15 min. dwell, 5 sec. Iransler time.
max. storage temp. ranges vary by product
GO/NOGO
Thermal Shock
(TIS)
MIL STD 8838,
Method 1011.1
GO/NOGO
30 cycles: boiling water; then Ice water with 5 min. dwell time
at each extreme
GO/NOGO
Life Test (UT)
MIL STD 833B,
Method 1005.2
Read/Record
Room temperature burn·in at max. rated conditions,
1000 hours duration
Read/Record at
168,500 and
1000 hours
High lemp Burn In
(HISI)
MIL STD 883B,
Method 1005.2
ReadlRecord
Maximum rated operating temp. delermined Irom product spec. Read/Record at
and derated current as compensation for thermal dissipation,
168,500 and
1000 hours
1000 hours duration
1WJe of Teet
Solder Heat Test
-
GO/NOGO
Test
Temp = 260 "C, dwell time
=5 seconds
Post Test
Reedings
GO/NOGO
Conclusion
Reliability test equipment ranges from multiple burn-in racks
and table testers to a scanning electron-beam microscope.
Weve even designed and produced our own automatic
microprocessor-based read/record tester.
Siemens is firmly committed to the design, development and
production of innovative optoelectronic components and
assemblies of the highest quality and reliability. Working to
achieve this goal, every group within the DivisionManagement, Engineering, Reliability and Quality
Assurance, Manufacturing, and Marketing-provides a vital
service, enabling us to achieve and maintain the consistent
product quality and the high levels of reliability required by
our customers in the electronics industry.
Special testing covers a broad spectrum of environmental
'and life-stress tests. How well a sample performs under
these highly-accelerated conditions indicates its reliability
potential under service-life conditions.
Special testing affords us vital information in many important
areas:
• New product performance
• New processes
• New manufacturing technique
• New material quality
• Special customer specifications
• Long-term reliability prediction
Due in large part to the efforts of the Reliability and Quality
Assurance Department and to our successful PPM and
SQC efforts, we will continue to maintain our leadership
position in a highly competitive future-oriented industry.
Reliability is also concerned with failure analysis. To determine the cause of failures, we selectively test and section
products to localize and identify their failure mechanism .
.Selective isolation enables us to gauge the precise effects of"
stresses induced during reliability testing.
5
SIEMENS
High Reliability and Military
Optoelectronic Devices
Capabilities
High reliability products must function under severe
environmental, mechanical, and electrical stress. To meet
this challenge Siemens Optoelectronics has established
closely monitored product designs and process control
techniques, insuring long product life.
the requirements of MIL-S-19500G. Electrical, environmental, and mechanical testing is done per MIL-STD-750
and MIL-STD-883 test methods and procedures. Our
military lines are staffed by highly trained and experienced
people who are certified on a periodic basis as required
byDESC.
High Reliability Custom Optoelectronic Products
Testing
In addition to our standard displays, Siemens has the
cap,mility to design,' manufacture and test custom
optoelectronic devices-ranging from components to
assemblies.
We maintain a well equipped high reliability lab for electrical, mechanical, and environmental tests. All testing for
JAN and Hi-rei products is done in Cupertino, California
and for Industrial products, in Penang, Malaysia.
High Reliability Displays
Calibration and Quality Control Systems
Our Hi-rei, Intelligent Display devices are qualified to
quality level A of MIL-D-87157 test levels.
For,calibration systems Siemens complies with the,
requirements of MIL-S-45662, and for quality control
systems, MIL-Q-9858.
Military Specifications
Ceniflcatlon
Siemens is a QPL supplier and approved by DESC to
supply qualified MIL-D-87157/3 devices in accordance with
Siemens Hi-rei and military optoelectronic devices conform
to the following Military Specifications:
Military Specifications
MIL-D-87157
General specification for display, light emitting diode, and solid state devices
MIL-S-19500
General specification for semiconductor devices
MIL-Q-9858
Quality program requirements
MIL-STD-105
Standard for sampling procedures and tables for tables for inspection by attributes
MIL-STD-202
Standard for test methods for electronics and electrical components
MIL-STD-750
Standard for test methods for semiconductor devices
MIL-STD-883
Standard for test methods and procedures for microelectronics
MIL-STD-45662
Standard for calibration system requirements
DOD-STD-1686
Electrostatic discharge control program
MIL-HDBK-52A
Evaluation of contractor calibration system handbook
DOD-HDBK-263
Electrostatic discharge control handbook
6
SIEMENS
RELIABILITY REPORT
DL 1414T, DL 14168
DL1814,DL2416T, DL3416
Monolithic Intelligent Display® Devices with
CMOS Drivers, Multiplexers, ASCII ROM, Character RAM
and Pin Driven Display Attributes
The following summary documents the capability
of the above Intelligent Display devices to meet or
exceed the reliability standards for the highest
level of commercial types of these devices.
I. LIFE TESTS
Test
Test Condition
High Temp Storage
# of Tests
Total Units
Tested
Total Device
Hours
Total Fall
Calculated
Failure Rate
(per 1000 hours)
11
334
334,000
0
13
14
382
412
382,000
412,000
0
0
25°C, Vcc =5.5 V
Sequencing Char.
11
268
268,000
0
3.73x 10- 3
Elevated Operating Life
55°C, Vcc =5.5 V
Sequencing Char.
13
372
372,000
0
2.69x 10- 3
High Temp
Operating Life
85°C, Vcc =5.5 V
Sequencing Char.
5
130
130,000
0
7.69x 10- 3
High Temp/High Humidity
Operating Life
85°C/85% RH,
5
70
70,000
0
14.29x 10- 3
85°C, Non-operating
-40°C, Non-operating
Low Temp Storage
High Temp/High Humidity
Storage
Ambient Operating Life
85°C/85% RH
Non·operating
2.99xl0- 3
2.62x 10- 3
2.43 x 10- 3
Vcc =5.5 V
Sequencing Char.
Note: Assumed one failure on all calculations.
II. ENVIRONMENTAL TESTS
Test
MIL-sTD·883·
Reference
Test Condition
Solder Coverage
Solder Heat Resistance
2003
260°C, 5 sec.
Temperature Cycling
1010
-40 to +85°C, 15 min. dwell,
5 min. transfer, 200 cycles.
Temperature Cycling
1010
Thermal Shock
1011
-40 to + 100°C, 15 min. dwell,
5 min. transfer, 100 cycles.
to + 100°C, 5 min. dwell, 3 sec. transfer,
liquid to liquid, 50 cycles.
# of Tests
4
4
Total Units
Tested Total Failed
130
140
0
8
240
0
8
493
0
o
9
75
0
260°C, 5 sec.
0
Moisture Resistance
1004
10 days, 90-96% RH, -10 to +65°C, non-operating
1
38
0
Shock
2002
0
2005
1
1
22
Vibration Fatigue
38
0
Constant Acceleration
Terminal Strength
2001
2004
5 blows each X Y Z, axis, 1500 G, 0.5 ms
" "
32±B hrs. each X Y Y2 , 96 hrs. total, 60 Hz, 20 G
" "
1 min. each axis, X, Y, Z, 5 kg
1
38
0
1 lb. for 30 sec., then 8 oz., 3 bends 15 °
Salt Atmosphere
1009
1
1
38
39
0
0
Electrostatic Discharge
Solvent Resistance
3015.2
35°C fog, 24 hours
1.5 kG, 100 pF, 5 positive and
5 negative voltage discharges, Vz,
applied to all pins vs. GND
Vz =1.5 kV
10
0
Vz =2.0 kV
10
0
Vz =3.0 kV
10
0
Immersed at 25°C in solvent for 10 minutes, 5 unit samples, or boiling solvents for 3 minutes, 2 unit samples.
Passed: Freon TF, Acetone, TA, 111 Trichloroethane
Failed: Isopropanol, Methanol, Methylene Chloride, TE-35, TP-35, TCM, TMC, TMS + Ethanol, and Carboxylic
Acid, TE, and TES.
Note: Failures are defined as 9Ither mechamcal or functional failures.
7
SIEMENS
OPTOCOUPLER
'MANUFACTURING and RELIABILITY
Single, Pual, and Quad Channel Optocouplers
THE CONCERN FOR OPTOCOUPLER RELIABILITY
OPTOCOUPLERINPUT
Because of the widespread use of optocouplers as an interface device, optocoupler reliability has been a major
concern to circuit designers and components engineers.
Published studies of comparative tests have indicated a lack
of manufacturing consistency with individual manufacturers
as well as from manufacturer to manufacturer. This has
resulted in user uncertainty about designing in optocouplers
despite the fact that these devices often offer the better
solution in the circuit
The area of greatest concern in optocoupler reliability has
been the IR LED, The decrease in LED light output power
over current flow time has been the object of considerable
attention in order to reduce its effects, (Circuit designs which
have not included allowances for parametric changes with
temperature, input current, phototransistor bias, etc. have
been attributed to LED degradation, To insure reliable
system operation over time, the variation of circuit from data
sheet conditions must be considered.)
This report is intended to demonstrate Siemens' concern,
efforts, and results in addressing these manufacturing issues
to assure users of the quality (out-going) and reliability (long
term) of our opto-isolated products. First, aspects of
optocoupler characteristics are discussed along with the
measures Siemens has taken to assure their quality and
reliability, Secondly, the reliability tests used to approximate
worst case conditions and the latest results of these tests are
described.
Siemens has focused on the infrared LED to improve CTR
degradation, and consequently achieved a significant
improvement in coupler reliability, The improvements have
included die geometry to improve coupling efficiency,
metalization techniques to increase die shear strength and
to increase yields while reducing user cost, and junction
coating techniques to protect against mechanical stresses,
thus stabilizing long term output
OPTOCOUPLER OUTPUT
The Current Transfer Ratio (CRT) is the amount of output
current derived from the amount of input current CTR is
normally expressed as a percent For example, if 10 mA of
input current is applied to the input (LED) and 10 mA of
collector current is obtained, then the CTR is 100 or 100%.
CTR is affected by a variety of influences: LED output power.
Hfe of the transistor. temperature, diode current, and device
geometry. If all these factors remaiT) constant, the principle
cause of CIA dE1gradation is the degradation of the input
LEO, As mentioned earlier. Siemens .has made tremendous
progress in manufacturing techniques to reduce CTR
degradation. Figure 1 graphs the CTR degradation of
Siemens' optocouplers. The data is presented under two
contlitions. Both conditions apply a constant stress over the
4'OOQ-hour period. This is unlikely to occur in actual
apptk:ation, and therefore can be considered as a worst
case condition. The first condition (IF = 10 mAl is a typical
operating pOint for actual application. The second condition
(IF = 60 mAl stresses the LED at an extremely high, forward
current to demonstrate worst case conditions, and magnifies
CTR degradation. Siemens' manufacturing techniques maximize coupling efficiency which realize high transfer ratios
and low input current requirements. Additionally this allows a
large variety of standard CTRvalues, and the capability of
special selection in produCtion volumes.
CURRENT TRANSFER RATIO
There are a variety of outputs available in optocouplers. A
standard bipolar phototransistor is the most common. They
are available with different ratings to fit most applications,
including versions without access to the base of the
transistor to reduce noise transmission. Darlington transistor
outputs offer high gain with reduced input current
requirements, but typically trade-off speed. Logic
optocouplers provide speed but trade-off working voltage
range, Logic couplers are normally only used in data
transmission applications. Silicon Controlled Rectifier (SCR)
devices allow control of much higher voltages and typically
are applied to control AC loads, They are also offered in
inverse-parallel (anti-parallel) SCR (triac) configurations that
both cycles of an AC sinusoid can be switched, In the
Siemens manufacturing flow, all these devices are 100%
monitored at a high temperature hot rail (see Figure 4) to
eliminate potential failures due to marginal die attaches and
lead bends, resulting in a more reliable product Siemens
offers all the above types of products.
In optocouplers, especially the transistor, the slow change
over several days in the electrical parameters when voltage
is applied, is termed the field effect This process is extreme
particularly at high temperatures (100°C) and with a high
DC voltage (1kV), Changes in the electrical parameters of
the silicon phototransistor can occur due to the release of
charge carriers, In this way, a similar effect as takes place in
a MOS transistor (inversion at the surface) is caused by the
strong electrical field. This may result in changes in the
gain, the reverse current, and the reverse voltage. In this
case, the direction of the electrical field is a decisive factor.
In Siemens' opl()couplers, the pn junctions of.the silicon
phototransistor are protected by a TRIOS (transparent ion
screen) from influences of the electrical field, In this way,
changes of electrical parameters by the electrical field are
limited to an extremely low value or do not occur at all.
8
ISOLATION BREAKDOWN VOLTAGE
Isolation voltage is the maximum voltage which may be
applied across the input and output of the device without
breaking down. This breakdown will not normally occur
inside the package between the LED and the transistor, but
rather on the boundary surfaces across which partial
discharges can occur. Siemens uses a double mold
manufacturing technique where the LED and transistor are
encapsulated in an infrared transparent inner mold. The
next step in the process is an epoxy over mold. The double
mold technique lengthens the leakage path for high voltage
Figure 2: Reliability Requirements for
Optocouplers
discharges appreciably, allowing the deviceto achieve very
high isolation voltages. All of Siemens optocouplers are built
using U.L. approved process. A standard line of V.D.E.
approved optocouplers is also available.
MECHANICAL/ENVIRONMENTAL TESTS
COLLECTOR TO EMITTER BREAKDOWN VOLTAGE
Collector to emitter breakdown voltage (BVCEO) can be
thought of as a transislor's working voltage. When considering the application, the selection should be made to
include a safety margin to insure the device is off when it is
supposed to be off. Siemens transistor technology in wafer
processing offers a variety of BVCEO devices. Each is
parametrically (see Figure 4) tested to insure proper
operation.
Test
MIL·STD·883
Reference
Temperature Cycle
1010
-55°C to +150 0 C,
100 Cycles
Thermal Shock
1011
DoC to + 100°C, 50 Cycles
Solder Heat
Solderability
260 °C, 10 Seconds
260°C, 5 Seconds
2003
Pressure Pot
BLOCKING VOLTAGE
Blocking voltage (VDRM, expressed in peak value) is used
when describing the working voltage for SCR or triac type
devices. Siemens offers products through 600 volts of
blocking capability.
DWDT RATING
DV/DT, an important safety specification, describes a triac
type device's capability to withstand a rapidly rising voltage
without turning on or false firing. Siemens triac type devices
have the highest available DV/DT rating offered on the
market. Siemens manufacturing process yields a 10,000
VIpS DViDT rating. This rating eliminates the need for
snubber (RC) networks which negatively affect loads sensitive to leakage currents, while reducing component count
for circuit implementation and cost. An example of such a
load would be heon indicator lamps. Siemens' triac type
devices also carry a load current rating three times the
industry standard. This 300 mA current capability allows the
device to drive most AC loads without the need for a followon triac or interposing an electromechanical relay. Siemens
manufactures this device with or without zero croSSing
detector logic.
Test Condition
15 PSIG ±1, 121°C, Steam
96 Hours
Solvent Resistance
2015
Moisture
Resistance'
1004
10 Days, 90-98% RH,
-10°C to +65°C,
Non-Operating
Shock'
2002
Condition B
5 Blows each X" Y" Z"
Axis 1500G, 0.5 ms
Vibration Fatigue'
2005
Condition A
32 ±8 Hrs., each X" Y" Z"
96 Hours, 60 Hz, 20G
Constant
Acceleration'
2001
Condition A
1 Min. each Axis X,Y,Z,
5KG
Terminal Strength'
1 lb. lor 30 Seconds, then
8 oz., 3 Bends 15°
2004
'Monitored periodically.
LIFE TESTS
Test Conditions
Temp
(OC)
RH
(%)
Bias
Hours
Ambient Lile Test
25
,s60%
Max
Rating
1000
Elevated Lile Test
70
,s60%
Derated
Max
Rating
1000
High Temp Lile Test
Low Temp Lile Test
Temp/Humidity Lile
Intermittent Operating Lile
150
-55
85
25
,s60%
,s60%
850/0
,s60%
0
0
0
Max
Rating
1000
1000
1000
1000
High Temperature
Reverse Bias
125
,s60%
80%01
Max
Voltage
Rating
1000
Tests
Figure 1. CTR Degradation vs. Time
QUALITY AND RELIABILITY TESTS
The tests in Figure 2 were performed on Siemens optocouplers. The tests allow early detection of weak points, and
provide information. regarding the reliability characteristics of
the component.
From the Life Test information assumptions of useful life
expectancy can be obtained. All quality and reliability tests
are performed in conditions that either exceed or are
equiv!j.lent to the limits defined in our data sheets. International standards are also considered. Assuming that no new
additional failure mechanisms are created by the stress
conditions, the results of the stress test will correlate to
conditions fn the field and can be used to estimate useful
lifetime. The environmental stress tests ensure Siemens
manufacturing capabilities will provide package integrity in
the most rigorous conditions. The Life Test results highlight
our ability in packaging and electrical performance to
achieve MTBF hours which meet and exceed the highest
expectations for the semiconductor industry.
5D~D--------'OOD'--------200D~------~3000~------4D~OO
Ule TISI HOld
Relative degradation in current-transfer ratio (CTR) over a
period of time with the coupler diode forward-biased.
----. Life Test Condition: Coupler diode forward-biased
at IF = 10 mA, Tamb = 25°C
---- Life Test Condition: Coupler diode forward-biased
at IF = 60 mA, Tamb = 25°C
9
Figure 3. Environmental and Life Test Results
Single Channel Optocouplers
ENVIRONMENTAL TESTS
Test
Temperature Cycle
Sample Size
Good
Reject
. %Reject
-55°C to + 150°C, 100 Cycles
6056
.6056
0
.0.00%
Thermal Shock
o°C to
4596
4595
1
0.02%
Solder Heat Test
+ 100°C, 30 Cycles
260 DC, 10 Seconds
3392
3392
0
0.00%
High Temp Storage
150°C, 1000 Hours
1442
1441
1
0.07%
Low Temp Storage
- 55°C, 1000 Hours
1442
1442
0
0.00%
Temp Humidity
+85°C/85% RH, 1000 Hours
454
454
0
0.00%
Test Condition
LIFE TESTS
Test
Ambient Life Test
Test Condition
Reject
MTBF·
(Unit Hours)
1442
Good
1442
0
2,030,000
1442
1442
0
2,030,000
Sample
Size
1442
Unit
Hours (k)
1442
Elevated Life Test
60 mA, 25°C, Po -255 mW Max.
40 mA, 70°C, Po -l04 mW
Intermittent
Op Test
On=3 Minutes, Off-2 Minutes 60 mA, 25°C,
Po =235 mW Max.
1442
1442
1442
0
2,030,000
Total
4326
4326
4326
0
6,200,000
,.. Based on the life test result sp resente d,. an overall MTBF of 6,00,000
2
unit hau rs can be d em0 nstratedo nail Beststaebas
E im t" si .
Dual Channel Optocouplers
ENVIRONMENTAL TESTS
Test
Test Condition
Temperature Cycle
-55°C to + 150°C, 100 Cycles
Thermal Shock
O°C to + 100°C, 30 Cycles
Solder Heat Test·
260°C, 5 Seconds
High Temp Storage
150°C, 1000 Hours
Low Temp Storage
-55°C, 1000 Hours
Temp Humidity
+85°C/85% RH, 1000 Hours
Sample Size
6160
3969
2840
1442
1442
402
Reject
%Reject
1
0.020/0
3968
·1
0.03%
2838
2
0.07%
1442
0
0.00%
1442
0
0.00%
402
0
0.00%
Good
6159
LIFE TESTS
Test
Test Condition
Sample
Size
Unit
Hours (k)
Reject
MTBF·
(Unit Hours)
Ambient Life Test
37.5 mA/Channel, Po=388 mW Max., 25°C
1442
1442
Good
1442
0
2,030,000
Elevated Life Test
19.6 mA/Channel, Po=138 mW Max., 70°C
1442
1442
1442
0
2,030,000
Intermittent
Op Life
On=3 Minutes, Off=2 Minutes 37.5 mA/Channel,
Po =388 mW Max., 25°C
1338
1338
1338
0
1,940,000
Total
4222
4222
4222
0
6,000,000
Based on the hfe test. results presented, an overall MTBF of 6,000,000 unit hours can be demonstrated on a " Best Estimate " basiS.
Quad Channel Optocoupler
ENVIRONMENTAL TESTS
Good
Relect
%Reject
6055
1
0.02%
4296
0
0.00%
3405
1
0.03%
IS0°C, 1000 Hours
Sample Size
6056
4296
3406
1442
1442
0
0.00%
Low Temp Storage
-55°C, 1000 Houts
1442
1442
0
Temp Humidity
+85°C/85% RH, 1000 Hours
402
402
0
0.00%
O.OooAl
Test
Temperature Cycle
Test Condition
-55°C to +150°C, 100 Cycles
Thermal Shock
OOC to + 100 o C, 30 Cycles
Solder Heat Test
260°C, 10 Seconds
High Temp Storage
LIFE TESTS
Test
Test Condition
Ambient Life Test
37.5 mA/Channel, Po=388 mW Max., 25°C
Elevated Life Test
19.6 mA/Channel, Po =138 mW Max., ?GoC
On=3 Minutes, Off = 2 Minutes 37.5 mA/Channel,
Po= 138 mW Max., 25°C
Intermittent
Life Test
.
Total
Sample
Size
1442
1442
Unit.
Hours (k) . Good
Reject
MTBF·
(Unit Hours)
2,030,000
1442
1442
0
1441
1440
2
530,000
1442
1442
1442
0
2,030,000
4326
4325
4324
2
1,600,000
Based on the life test results presented (at m8XImum rated conditions), an overall MTBF of 1,600,000 Unit hours can be demonstrated on a
"Best Estimate" basis.
10
PACKAGE INTEGRITY
ASSEMBLY QA INSPECTIONS
Although packaged in standard IC configurations, optocouplers have some unique package considerations. The
use of two chip and internal light transfer medium require
careful selection of materials to insure compatibility under a
variety of operating conditions. In addition to the high
isolation voltages achieved by Siemens optocouplers, our
devices are tested to assure high levels of mechanical
integrity and moisture resistance. For example, a ninety-six
hour pressure pot test has been recently implemented to
more stringently verify moisture resistance. As meaningful
test results are accumulated, they will be included in future
reports.
1. Die Attach and Lead Bond Inspection - Random
sampling of die bonding integrity by a shear strength test
and wire attach integrity by a wire pull test.
2. Visual QC Monitor - Microscopic inspection of die placement, die and wire bonds, wire loops, damaged die and
wire and emitter junction coat coverage.
3. Encapsulation Inspection - Sample lot inspection for
molding defects.
4. Temperature Cycle Test - Sample lot temperature cycling
from -55°C to + 150°C for 10 cycles subjecting the parts
to thermal stresses in order to eliminate marginal die
attach, wire bonds and misalignments.
PACKAGE DENSITY
5. Hot Rail Test - 100% electrical continuity testing at 100°C
to insure removal of thermal intermittent parts.
Board space has become increasingly more important in
the electronic industry. Siemens uses a plate molding
technique to achieve reduction in cost, allowing us to offer a
wide selection of packages. These consist of single channel
optocouplers in 4,6,8, and 16 pin DIP packages, dual
channel devices in 8 pin DIP packages, and quad channel
devices in 16 pin DIP packages. All of the above devices
are available in three surface mount lead configurations, as
well as the standard through-the-hole lead. Siemens has
also introduced a standard single channel optocoupler in a
SOIC-S footprint package. All of these packages have been
designed and tested to meet the highest quality and reliability expectation of the semiconductor industry.
6. HiPot Test - 100% testing of isolation voltage parameter
per ULNDE requirements.
7. Parametric Tests - 100% electrical tests to data book or
customer-selection parameters.
S. QA Final' Tests - Lot audits to assure conformance to all
product requirements.
Figure 4. Coupler Process Flow & Inspections
Thermocompresslonl
Tbermosonic Wire
Bonding
D-Operation
O-Inspection or Test
11
SIEMENS
RELIABILITY REPORT
IL205-207, IL211-213
IL215-217, IL221-223
Small Outline Surface Mount Optocoupler
The following summary documents the capability
of the small outline surface mount optocoupler
series to meet and exceed reliability standards
for the highest level semiconductor products.
ENVIRONMENTAL
Test
Conditions
Duration
lbtal
Devices Tested
Falluras
Thermal Shock
-55°C to
OOC to +100°C
200 Cycles
100 Cycles
226
0
Solder Heat Test
260°C
10 Seconds. 3 Times
30 Seconds
912
76
0
8 oz. Tension
215°C
60 Seconds
76
0
Conditions
Duration
Total
Device Hours
Failures
121 °C/15 PSIG Steam.
288 Hours
44.640
0
85°C/85% RH
1000 Hours
240.000
·0
High Temperature Storage
150°C
1000 Hours
342.000
0
Low Temperature Storage
-55°C
1000 Hours
208.000
0
Conditions
Duration
Total
Device Houra
Falluras
Ambient Ufe
25°C. IF=60 mA
1000 Hours
352.000
0
Ambient Ufe
25°C.IF=40mA
1000 Hours
57.000.
0
High Temperature Ufe
70°C. IF=40 mA
1000 Hours
240.000
0
Temperature Cycling
Lead Integrity Test
Vapor Phase Zone Test
+150 oC
350
0
0
ENVIRONMENTAL LIFE
Test
Pressure Pot Test
Temperaturel Humidity
OPERATING LIFE
Test
GENERAL
Isolation Breakdown 3KVACRMS for 1 sec: No Failures
Average Change in CTR Over Pressure Pot Test: 3.6%
12
Custom Optoelectronic Products
Materials and Die
1-1
SIEMENS
CUSTOM OPTOELECTRONIC PRODUCTS
::~~:It!--I_DATA
>Q
CUSTOM SIGNAL
PROCESSING ICs
1-8
SIEMENS
655 nm
3" GaAsP/GaAs
EPITAXIAL WAFER
PART NO. 2600-7056
DESCRIPTION
PHYSICAL PROPERTIES
Siemens epitaxial layers are grown by Hydride
Vapor-Phase Epitaxy (HVPE). High quantum
efficiencies and uniformity make these wafers
ideal for visible displays and solid-state.
near-monochromatic light sources.
EPITAXIAL LAYER
Material:
Conductivity:
GaAS1.X PX: Te
n-type
Carrier
Concentration:
0.5-5.0 x 1017cm-3
Peak PL
Wavelength:(1)
Brightness:
Size:
Grown on 3" diameter SEMI spec substrate
Thickness:
500 ±50 lAm
Bow:
Pits:(2)
-50 ±100 lAm
Voids:(2)
3 per wafer maximum larger than
1 mm diameter
15 per sq. inch max.
Projections:(2)
3 per sq. inch maximum higher than 15 jAm
Scratches:(2)
3 per wafer max.; none longer than 10 mm
Chips:
None penetrating further than 2 mm
Cracks:
None
655 ±5 nm
Polycrystal:(2)
None
0.8 mCd min. at 15 A/cm 2
Broken Lattice:(2)
None
Twin Lines:(2)
None
Graded Layer
Thickness:
15 jAm min.
Constant Layer
Thickness:
10 jAm min.
SUBSTRATE
Material:
GaAs
Growth Type:
Czochralski or Boat-Grown
Conductivity:
n-type
Orientation:
(100). off 3 ±0.5° toward the
nearest <110>
Notes:
1. Other wavelengths also available.
2. Excludes outer 2 mm perimeter .of wafer.
1-9
655 nm
2" GaAsP/GaAs
EPITAXIAL WAFER
SIEMENS
PART NO. 2600-7057
DESCRIPTION
PHYSICAL PROPERTIES
Siemens epitaxial layers are grown by Hydride
Vapor-Phase Epitaxy (HVPE). High quantum
efficiencies and uniformity make these wafers
ideal for visible displays and solid-state,
near-monochromatic light sources.
Size:
Grown on 2" diameter SEMI spec substrate
Thickness:
455 ±50 I'm
-50 ±100 I'm
15 per sq. inch max.
EPITAXIAL LAYER
Bow:
Pits:(2)
Voids:(2)
3 per wafer maximum larger than
1 mm diameter
Material:
GaAs1_~P/re
Projections:(2)
Conductivity:
n-type
Scratches:(2)
Carrier
Concentration:
0.5-5.0 Xl 0 17cm- 3
Peak PL
Wavelength:(1)
Brightness:
Chips:
3 per sq. inch maximum higher than 15 Jim
3 per wafer max.i none longer than 10 mm
None penetrating further than 2 mm
Cracks:
None
655 ±5 nm
Polycrystal:(2)
None
0.8 mCd min. at 15 A/cm 2
Broken Lattice:(2)
None
Twin Lines:(2)
None
Graded Layer
Thickness:
15 I'm min.
Constant Layer
Thickness:
10 I'm min.
SUBSTRATE
Material:
GaAs
Growth Type:
Czochralski or Boat-Grown
Conductivity:
n-type
Orientation:
(100), off 3 ±0.5° toward the
nearest <110>
Notes:
1. Other wavelengths also available.
2. Excludes outer 2 mm perimeter of wafer.
1-10
IP-16A
Mask-Diffused GaAsP LED
SIEMENS
PART NO. 2600-7070
~iiii~~~
P-metal
(anode)
AR
Coating
Diffusion Barrier
Epitaxial Layer
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens IP-16A is a mask-diffused GaAsP lightemitting diode. With a bright and uniform 700 nm
light-emitting area, this device is ideal for optocoupler applications.
Forward I-V Characteristics
VF3
VF2
VF1
Reverse I-V Characteristics
VR1
-10.0 V
@ -10
MATERIAL
Peak EL Wavelength
A-
700 nm
@20mA
Spectral Half-Width
FWHM
40 nm
@20mA
Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs, .,Px : Te
GaAs : Si or GaAs: Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
570 Jlm
300 Jlm
200 Jlm
Radiant Intensity
1-11
RI
1.60V
1.55 V
1.40 V
@20mA
@10mA
@ 100 J.LA
J.LA
35 JlW/ster @10mA
SIEMENS
RB-42B
Mask-Diffused GaAsP LED
PART NO. 2680-0016
r..,...----- ARP-metal
Coating
(anode)
Diffusion Barrier
Substrate
N-metal (calhode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RB-42B is a mask-diffused GaAsP
light-emitting diode. With a bright and uniform
655 nm emission, this device is ideal for display
applications.
Forward I~V Characteristics
VF3
VF2
VF,
Reverse I-V Characteristics
MATERIAL
, Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs, .•p. : Te
GaAs: Si orGaAs: Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
0.020"
0.065"
0.010"
1.64V
1.59V
1.42V
@20mA
@10mA
@ 100jJA
VR,
-25.0 V
@-10jJA
Peak EL Wavelength
A.
655nm
@20mA
Spectral Half-Width
FWHM
40 nin
@20mA
Luminous Intensity
LI
500 !lCd
@10mA
1-12
SIEMENS
RM-14A
Mask-Diffused GaAsP
Monolithic LED with Cursor
PART NO. 2680-0117
P-metal (anode)
Diffusion Barrier
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RM-14A is a mask-diffused GaAsP
monolithic light-emitting diode with cursor. With a
bright and uniform 655 nm light-emitting area, this
device is ideal for display applications.
Forward I-V Characteristics
VF3
VF2
VF,
Reverse I-V Characteristics
VR,
-23.0 V
@ -1O!lA
MATERIAL
Peak EL Wavelength
i..
655nm
@20mA
Spectral Half-Width
FWHM
40 nm
@20mA
LI
240~Cd
@10mA
Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs,.'p. : Te
GaAs: Si or GaAs : Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
0.144"
0.105"
0.010"
Luminous Intensity
(Device has no AR coating)
1-13
1.59V
1.57V
1.40V
@20mA
@10mA
@ 100!lA
SIEMENS
RM-15B
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0008
r-,....- - - - - AR Coating
P-metal (anode)
Diffusion Barrier
1.·• •.• •.• • •.• •.• • • •·• •.• • •
·~IIII;~IIII-4-
Epitaxial Layer
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RM-15B is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.
Forward I-V Characteristics
VF3
VF2
VFl
Reverse I-V Characteristics
VRl
-23.0 V
@-10pA
MATERIAL
Peak EL Wavelength
A.
655 nm
@20mA
Spectral Half-Width
FWHM
40nm
@20mA
Luminous Intensity
LI
Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs, .'p. : Te
GaAs : Si or GaAs : Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
0.159"
0.133"
0.010"
1-14
1.58V
1.56V
1.39V
@20mA
@10mA
@ 100 pA
350 IlCd "@ 10 mA
SIEMENS
RM-62A
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0031
P-metal (anode)
g'.I~q:;::: Diffusion
Barrier
Epitaxial Layer
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RM-62A is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.
Forward I-V Characteristics
VF3
VF2
VF1
Reverse I-V Characteristics
MATERIAL
Peak EL Wavelength
Spectral Half-Width
Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs,.'px : Te
GaAs : Si or GaAs : Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
0.107"
0.079"
0.010"
Luminous Intensity
(Device does not have
AR coating)
1-15
1.62V
1.60V
1.41 V
@20mA
@10mA
@ 100 J.iA
VR1
-23.0 V
@ -10 J.iA
A.
655 nm
@20mA
FWHM
40 nm
@20mA
LI
440~Cd
@10mA
SIEMENS
RM-64A
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0038
P-metal (anode)
Diffusion Barrier
Epitaxial Layer
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RM-64A is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.
Forward I-V Characteristics
VF3
VF2
VF1
1.62V
1.60V
1.42V
Reverse I-V Characteristics
VR1
-24.0 V
@-10~
MATERIAL
Peak EL Wavelength
A.
655 nm
@20mA
Spectral Half-Width
FWHM
40 nm
@20mA
LI
350J.l.Cd
@10mA
Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs, .,P. : Te
GaAs : Si or GaAs : Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
0.105"
0.095"
0.010"
Luminous Intensity
(Device does not have
AR coating)
1-16
@20mA
@10mA
@100~
SIEMENS
RM-73A
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0003
P-metal (anode)
Diffusion Barrier
Epitaxial Layer
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RM-73A is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.
Forward I-V Characteristics
VF3
VF2
VFl
Reverse I-V Characteristics
MATERIAL
Peak EL Wavelength
Spectral Half-Width
Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs, .'p. : Te
GaAs: Si or GaAs: Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
0.07aH
0.059H
0.010 H
Luminous Intensity
(Device does not have
AR coating)
1-17
1.64 V
1.60V
1.42 V
@20mA
@10mA
@ 100!IA
VRl
-23.0 V
@-10!IA
A.
655 nm
@20mA
FWHM
40nm
@20mA
LI
400 flCd
@10mA
SIEMENS
RM-81B
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0056
P-metal (anode)
Diffusion Barrier
1·. ·. . . . . . . . . . .~iI_Riilj........................... I.. Epitaxial Layer
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RM-81B is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.
Forward I-V Characteristics
VF3
VF2
VF ,
Reverse I-V Characteristics
VR,
-23.0 V
@ -10 IIA
MATERIAL
Peak EL Wavelength
A.
655 nm
@20mA
Spectral Half-Width
FWHM
40nm
@20mA
LI
220 !lCd
@10mA
Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs, ..P. : Te
GaAs: Si or GaAs: Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
0.135"
0.112"
0.010"
Luminous Intensity
(Device does not have
ARcoating)
1-18
1.59V
1.57V
1.40V
@20mA
@10mA
@10011A
SIEMENS
RM-85D
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0030
P-metal (anode)
Diffusion Barrier
Epitaxial Layer
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RM-85D is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission. this device is ideal for
display applications.
Forward I-V Characteristics
VF3
VF2
VF,
Reverse I-V Characteristics
VA'
-23.0 V
@-1011A
MATERIAL
Peak EL Wavelength
A.
655nm
@20mA
Spectral Half-Width
FWHM
40 nm
@20mA
Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs,.,P. : Te
GaAs : Si or GaAs : Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
0.087"
0.074"
0.010"
Luminous Intensity
(Device does not have
ARcoating)
1-19
LI
1.63V
1.59V
1.42V
320
~Cd
@20mA
@10mA
@ 100 IIA
@10mA
SIEMENS
RM-86A
Mask-Diffused GaAsP
Monolithic LED
PART NO. 2680-0114
P-metal (anode)
Diffusion Barrier
Epitaxial Layer
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RM-86A is a mask-diffused GaAsP
monolithic light-emitting diode. With a bright and
uniform 655 nm emission, this device is ideal for
display applications.
Forward I-V Characteristics
VF3
VF2
VF1
1.63 V
1.60V
1.42V
Reverse I-V Characteristics
VR1
-23.0 V
@-10~
Peak EL Wavelength
i..
655 nm
@20mA
FWHM
40nm
@20mA
LI
280~Cd
@10mA
MATERIAL
Epitaxial Layer:
GaAs, .,p, : Te
Spectral Half-Width
Substrate:
GaAs : Si or GaAs : Te
Metalizations:
Anode
Cathode
Aluminum
Gold-Germanium
Luminous Intensity
(Device does not have
ARcoating)
Height
Width
Thickness
0.089"
0.069"
0.010"
Dimensions
(center to center):
1-20
@20mA
@10mA
@100~
SIEMENS
RP-12C
Mask-Diffused GaAsP LED
PART NO. 2680-7075
P-metal (anode)
Diffusion Barrier
. . . . . . . i . . . ·. . .·.·. . ·.·. . . . .·. . ·.
i . . .·. .·. · i I
J- Epitaxial Layer
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RP-12C is a mask-diffused GaAsP Iightemitting diode. With a bright and uniform 655 nm
emission, this device is ideal for lamp and display
applications.
Forward I-V Characteristics
VF3
VF2
VF ,
Reverse I-V Characteristics
VR,
-25.0 V
@-101JA
MATERIAL
Peak EL Wavelength
A
655nm
@20mA
Spectral Half-Width
FWHM
40nm
@20mA
Luminous Intensity
LI
500J.LCd
@10mA
Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs,.,p, : Te
GaAs: Si orGaAs: Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
0.012"
0.012"
0.010"
1-21
1.70V
1.64V
1.45 V
@20mA
@10mA
@ 100 IJA
SIEMENS
RP-13B
Mask-Diffused GaAsP
Point Source LED
PART NO. 2600-7074
P-metal (anode)
.Diffusion Barrier
! • • • • • • • ~• • ~IIIII~. ;':1 .~I4-
Epitaxial Layer
Substrate
N-metal (cathode)
DESCRIPTION
TYPICAL DEVICE PARAMETERS
Siemens RP-13B is a mask-diffused GaAsP point
source light-emitting diode. With a bright and
uniform 655 nm emission. this device is ideal for
lamps or dot-matrix displays.
Forward I-V Characteristics
VF3
VF2
VF,
Reverse I-V Characteristics
VR,
-25.0 V
@ -10!lA
MATERIAL
Peak EL Wavelength
A.
655 nm.
@20mA
Epitaxial Layer:
Substrate:
Metalizations:
Dimensions
(center to center):
GaAs,_'p. : Te
GaAs : Si or GaAs : Te
Anode
Cathode
Aluminum
Gold-Germanium
Height
Width
Thickness
0.015"
0.015"
0.010"
Spectral Half-Width
Luminous Intensity
(Device does not have
ARcoating)
1-22
1.64V
1.59V
1.42V
@20mA
@10mA
@100!lA
FWHM
40nm
@20mA
LI
450 !LCd
@10mA
Intelligent Display@Devices
Programmable DisplayTMDevices
Military Displays
Small Alphanumeric Displays
Intelligent Display Assemblies
2-1
Intelligent Display® Devices - Segmented
No. of
PartNoJ
Color
Package Outline
Charaet_
Charaet..
Height
4
DL1414T
Red
e~
~J'WI'1~
ell! iZlSIlZlSI
.112'
~
... ...
...
~
..
~f0~
e® !219
~
e~
I--~-
.112'
4
.160'
4
DL2416T
Red
4
~I
_.
X Axis
±3QO
.160'
_. I£!SJ
~
VAxis
±S5°
Both Axes
±40°
DL1814
Red
DL1416T*
Red
'
X Axis
±40°
8
DL1416B
Red
. .....
_-_
Viewing
Angle
Dl3416
Red
.225'
V Axis
±S00
X Axis
±450
VAxis
±SSO
X Axis
±45°
V Axis
±S5°
II>lntelligent Display Is a registered trademerk of Siemens
* Not recomended·for new designs.
2-2
Description
Page
17 segment. 4 character display with built-in
CMOS ASCII decoder. multiplexer. memory and
driver.
Access time: 280 ns.
Low power consumption.
Portable applications; telecommunications
equipment.
2-7
17 segment, 8 character display with built-in
CMOS ASCII decoder, multiplexer, memory and
driver.
Access time: 525 ns.
Low power consumption, dimming capability.
Hand held equipment; portable applications;
telephone and telecommunications equipment.
16 segment, 4 character display with built-in
CMOS ASCII decoder, multiplexer, memory and
driver.
Access time: 350 ns (DL1416B)
Independent cursor function.
Bench equipment.
17 segment, 4 character display with built-in
CMOS ASCII decoder, multiplexer, memory and
driver.
Access time: 300 ns
Characters readable up to 8 feet; memory clear
function; independent cursor function.
Two chip enables for easy syslem expansion .
Medical equipment; instrumentation; table top
equipment:
17 segment, 4 character dlspiay with built-in
CMOS ASCII decoder, multiplexer, memory
and driver.
Access .time: 300 ns
Characters readable up to 12 feet; memory
clear function; Independent cursor function .
Two chip enables for easy system expansion.
Telecommunications equipment; instrumentation; table top equipment.
2-21
2-11
2-16
2-25
2-31
Intelligent Display® Devices - Dot Matrix
No. 01
Part NoJ
Color
Package Outline
DLR1414
Red
114141
DL01.414
HER
Characters
Character
Height
4
Viewing
Angle
X Axis
±500
.145'
YAxls
±75°
4
X Axis
±SOO
DLG1414
Green
DLR2416
Red
2416
1
DL02416
HER
1
~
00000
00000
00000
00000
00000
00000
00000
.200'
YAxis
±75°
DLG2416
Green
DLR3416
Red
4
DL03416
HER
.270'
X Axis
±S00
Y Axis
±75°
DLG3416
Green
DL04135
HER
1
±75°
DLG4137
Green
.43'
00000
00000
00000
00000
00000
00000
00000
DL07135
HER
DLG7137
Green
1
±75°
.66'
2-3
Description
Page
Dot matrix drop·in replacement for DL1414T.
Four 5x7 dot matrix characters.
126 ASCII characters (English plus 5 other
languages).
. Access time: 110 ns .
For portable applications; telecommunications
equipment.
2-44
Dot matrix drop-in replacement for DL2416T.
Four 5x7 dot matrix characters.
126 ASCII characters (English plus 5 other
languages).
Access time: 110 ns.
For bench equipment, Instrumentation.
2-49
Dot matrix drop-in replacement for DL3416T.
Four 5x7 dot matrix characters.
126 ASCII characters (English plus 5 other
languages).
Access time: 110 ns .
For bench equipment, Instrumentation.
2-55
Single 5x7 dot matrix character.
Readable to 20 feet plus; wide viewing angle;
lamp test; brightness control.
One chip-enable for easy. system expansion.
96 ASCII character format.
Access time: 150 ns .
Telecommunications equipment, table top
equipment, instrumentation.
2-36
Single 5x7 dot matrix character.
Readable up to 30 feet plus; wide viewing angle;
lamp test; brightness control.
One chip-enable for easy system expansion.
96 ASCII character format.
Access time: 150 ns .
Ideal for scales, POS terminals, instrumentation.
mainframe peripherals.
2-40
Programmable DisplayTM Devices - Dot Matrix
Package Outline
~
..... ::.::...
: ....:
:....
...........
~
..: ....:- ..: .. ............... :
. .... ......· ....
.... . .....
....·
Part No.1
Color
PD2435
HER
PD2437
Green
PD3535
HER
4
.200'
4
PD3536
Red
PD3537
Green
PD4435
HER
.270'
4
PD4436
Red
PD4437
Green
PD1165
HER
000 00
PD1167
Green
~@fO
8~00000~
a
Character
Height
PD2436
Red
Y911!~~
000 000
2900~i
~~~OO
No. of
Characters
.45'
Display
size
1.16'
square
Viewing
Angle
X Axis
±55'
YAxis
±65'
X Axis
±55'
YAxis
±65'
X Axis
±55'
YAxis
±65'
±75'
2-4
Description
Four 5x7 dot matrix characters.
Built·in.CMOS ASCII decoder, multiplexer,
memory and driver. Software driven-true
microprocessor peripherals. Additional features
over Intelligent Display devices include: control
and display memory read/Write, dimming (3
levels) and blanking, blinking cursor/character
and lamp test.
128 ASCII character format.
Extended operating temperature range: ·40'C to
+85'C.
Four 5x7 dot matrix characters.
Built·in CMOS ASCII decoder, multiplexer,
memory and driver. Software driven-true
microprocessor peripherals. Additional features
over Intelligent Display devices include: control
and display memory read/Write, dimming (3
levels) and blanking, blinking cursor/character
and lamp test.
128 ASCII character format.
Extended operating temperature range: ·40'C to
+85'C.
Four 5x7 dot matrix characters.
Built·in CMOS ASCII decoder, multiplexer,
memory and driver. Software driven-true
microprocessor peripherals. Additional features
over Intelligent Display devices include: control
and display memory read/Write, dimming (3
levels) and blanking, blinking cursor/character
and lamp test.
128 ASCII character format.
Extended operating temperature range: -40'C to
+85'C.
Single BxB dot matrix display module with CMOS
circuits, and logic interfaces.
Each dot is addressable over a TTL compatible,
B bit bus.
Can be alternately programmed to display text or
graphics.
Software controllable features: 9 intensity levels,
memory clear, blanking or blinking, lamp test.
Interlocking X-Y stackable package.
Page
2-154
2-164
2-174
2-146
Military Alphanumeric Displays
Part NoJ
Color
Package Oulllne
No. of
Characters
Character
HeIght
Temperature
Range
DescrIption
Page
Intelligent DIsplay DevIce
iSI2I
ICI~
~Zt
){I~
.....
.........I
,'" "
I ••••••••
ISIZt
I<:I~
ISQI
1tJ~
..
..-! ,:....~(
···1- ..,,,
MDL2416C
MDL2416
TXV/TXVB
Red
MPD2545
HER
4
.15'
Four 17 segment characters.
Built-in CMOS circuitry - TIL and microprocessor compatible.
Rugged ceramic package, hermetically sealed
flat glass lens. Low profile package .
Conforms to Quality Level A.
Operating
temperature
range:
-55'Cto
+l00'C.
Four 5x7 dot matrix characters.
Built-In CMOS ASCII decoder, multiplexer,
memory, and driver.
96 character ASCII font.
Rugged ceramic package, hermetically sealed
flat glass lens.
Conforms to Quality Level A.
2-95
Programmable Display DevIce
4
MPD2547
Green
MPD2548
Yellow
Operating
temperature
range:
-55'Cto
+l00'C.
.250'
2-103
Military Small Alphanumeric Displays
No. of
Part NoJ
Color
Package Outline
Characters
Character
HeIght
Temperature
Range
Description
Page
Operating
temperature
range:
-55'Cto
+l00'C.
Four 5x7 dot matrix characters.
Available In TXV arid TXVB screened versions.
Rugged ceramic package, hermetically sealed
flat glass lens.
Serial input/parallel output. Easily cascaded for
multiple displays. Low power on-board CMOS
shift registers and constant current LED row
drivers .
External column strobing allows use of full
ASCII and customized fonts.
Conforms to Quality Level A.
2-113
Operating
temperature
range:
-55'C to
+l00'C.
Four 5x7 dot matrix characters.
Available in TXV and TxvB screened versions.
Rugged ceramic package, hermetically
sealed flat glass lens.
Serial Input/parallel output. Easily cascaded
for multiple displays. Low power on-board
CMOS shift registers and constant current
LED row drivers.
External column strobing allows use of full
ASCII and customized fonts.
Conforms to QuaUty Level A.
2-124
Operating
temperature
range:
-55'C to
+l00'C .
SunUght viewable.
Four 5x7dot matrix characters.
Available in TXV and TXVB screened versions.
Rugged ceramic package, hermetically sealed
flat glass lens.
Serial Input/parallel output. Easily cascaded for
multiple displays. Low power on-board CMOS
sMt registers and constant current LED row
drivers.
External column strobing allows use of full ASCII
and customized fonts.
2-135
MSD2010
Red
...,...,...,...,...,...,
...
....: ...
I .11
I:::: ...
I- II
.;
.I.
I··::
I.· II
.....
MSD2011
Yellow
4
MSD2012
HER
MSD2013
High
Efficiency
Green
.150'
MSD2310
Red
.....· ... .......·
·.......
.....·
...:
I •••••_.-
E
• 1.
MSD2311
Yellow
MSD2312
HER
MSD2313
High
Efficiency
Green
.....:.....·:
·i.......•••5·..•.......·: ..........
... ...
4
.200'
MSD2351
Yellow
4
MSD2352
HER
MSD2353
High
Efficiency
Green
.200'
2-5
Hi Rei/Industrial & Commercial Small Alphanurneric Displays
No. of
ISD2010
Red
,..,,..,,..,,..,,..,,..,
....I II .= .;
...
1.·-1
...
Characters
Part NoJ
Color
Package Outline
.....
I •••• E::.! .1. .....
Character
Haight
Temperature
Range
Description
Operating
temperature
range:
·55'C to
+1OO'C .
Hi Relllndustrial Displays
Four 5x7 dot matrix characters.
Rugged ceramic package, hermetically sealed
flat glass lens.
Serial input/parallel output. Easily cascaded for
multiple displays. Low power ol1'board CMOS
sMt registers, constant current LED row drivers.
External column strobing allows use of full ASCII
and customized fonts.
2-71
Operating
temperature
range:
-55'Cto
+100'C.
Hi Relnndustrlal Displays
Four 5x7 dot matrix characters.
Rugged ceramic package, hermetically sealed
flat glass lens.
Serial input/parallel output. Easily cascaded for
multiple displays. Low power on· board CMOS
shift registers, constant current LED row· drivers.
External column strobing allows use of full ASCII
and customized fonts.
2-79
..
ISD2011
Yellow
4
ISD2012
HER
.150'
~~~~~~
ISD2013
High
Efficiency
Green
IS02310
Red
··...•••E••••...·· ..J.. ...........··
I ••••••••
ISD2311
Yellow
4
IS02312
HER
.200'
ISD2313
High
Efficiency
Green
.... ..... ...
•••5·•••= : ....=
·5...••••••••
· .........·
I •••
§
IS02351
Yellow
4
IS02352
HER
IS02353
High
Efficiency
Green
.200'
HDSP2000LP
Red
HDSP2001LP
Yellow
HDSP2OO2LP
HER
HDSP2003LP
High
Efficiency
Green
4
.150'
Operating
temperature
range:
-55'C to
+100'C .
Operating
temperature
range:
-40'C to
+85'C .
Page
HI ReI/Industrial Displays
Sunlight viewable.
Four 5x7 dot matrix characters.
Rugged ceramic package, hermetically sealed
flat glass lens .
Serial input/parallel output. Easily cascacjed for
multiple displays. Low power on-board CMOS
shWt registers, constant current LED row drivers.
External column strobing allows use of full ASCII
and customized fOhtS.
Commercial Displays
Four 5x7 dot matrix characters.
Plastic package.
Serial Input/parallel output. Easily cascaded for
multiple displays. Low power on-board CMOS
sMt registers, constant current LED row drivers.
External column strobing allows use of full ASCII
and customized fonts.
2-87
2-63
Alphanumeric Display
No. of
Package Outline
Part NoJ
Color
Characters
Character
Height
DLR5735
Red
DLG5735
Green
.69'
DLR5736
Red
DLG5736
Green
.69'
Polarity
Common
.Cathode
Row
Common
Anode
Row
2-6
luminous Intensity
Per Segment
@mA
Typ,(Jlcd)
200
650
Description
Page
Single 5x7 dot
matrix character.
No built-In .CMOS
drive circuitry.
2-61
20
10
DL 1414T
SIEMENS
.112" Red, 4-Digit 17-Segm'ent
ALPHANUMERIC Intelligent Display®
With Memory/Decoder/Driver
Package Dimensions in Inches (mm)
.OI2·.0021YP
('30S)'('OS~
[~,
Tolerance:·.XXt.Ol (.254).
.XXX'.OOS (.127)
FEATURES
• 0.112" High, Magnified Monolithic Character
• Wide Viewing Angle, X Axis ±40o,
Y Axis ±55°
• Close Vertical Row Spacing, .800"
• Rugged Solid Plastic Encapsulated Package
• Fast Access Time, 280 ns
• Compact Size for Hand Held Equipment
• Built-In Memory
• BUilt-in Character Generator
• Built-In Multiplex and LED Drive Circuitry
• Direct Access to Each Digit Independently &
Asynchronously
• TTL Compatible,S Volt Power
• 17th Segment for Improved Punctuation Marks
• Low Power Consumption, 1\tpically 10 mA per
Character
• IntenSity Coded for Display Uniformity
• Extended Operating Temperature Range:
-40°C to +85°C
• End-Stackable, 4-Character Package
• 100% Burned In and Tested
• Superior ESD Immunity
DESCRIPTION
The DL 1414T is a four digit display module having 16 bar
segments plus a decimal and a built-in CMOS integrated circuit.
The integrated circuit contains memory, ASCII character
generator, and LED multiplexing and drive circuitry. Inputs are
TIL compatible. A single 5-volt power supply is required. Data
entry is asynchronous and random access. A display system can
be built using any number cif DL 1414Ts since each character in
any DL 1414T can be addressed independently and will
continue to display the character last written until it is replaced
by another.
Loading data into the DL 1414T is straightforward. The desired
data code (00-06) and digit address (Ao, A1) is presented in
parallel and held stable during a write cycle. Data entry may be
asynchronous and in random order. (Digit 0 is defined as right
hand digit with A1 =Ao =0 =low).
System interconnection is also straightforward. The least significant two address bits (Ao, A1)are normally connected to the like
named inputs of all DL 1414Ts in the system. Data lines are
connected to all DL 1414Ts directly and in parallel. Multiple
DL 1414T systems usually use an external one-of-N decoder
chip. The ''write'' pulse is connected to the CE of the decoder. A
3-to-Sline decoder multiplexer (74138) or a 4-t0-16 line
decoder/multiplexer (74154) are possible choices. All higherorder address bits (above A1) become inputs to the decoder.
All products are 100% burned-in and tested, then subjected to
.out-going AQL's of .25% for brightness matching, visual alignment and dimensions, .065% for electrical and functional.
Important: Refer to Appnote 1S, "Using and Handling
Intelligent Displays" . Since this is a CMOS device, normal precautions should be taken to avoid static damage.
See Appnote 15 for applications information.
2-7
TOP VIEW
Maximum Ratings
121110987
~
Supply Voltage, Vee ................. - 0.5 to + 6.0 Vde
Voltage, Any Pin Respect to GND . ~0.5 to (Vee +0.5) Vdc
Operaiing Temperature ............... - 40°C to + 85 °C
Storage Temperature ............... - 40°C to + 100°C
Maximum Solder Temperature, 1.59 mm (0.063")
below Seating Plane, t< 5 sec ................. 260°C
Relative Humidity (non condensing) @85°C ......... 85%
~
123456
Optical Characteristics @2SoC
Spectral Peak Wavelength. . . . . . . . . . . . . . . .. 660 nm typo
Magnified digit size ................... 0.112" xO.OB5"
Time Averaged Luminous Intensity
(100% brightness, ............... 0.40 mcd/digit min.
8 segments/digit, Vee=5 V) ...•.... 0.75 mcd/digit typo
LED to LED Intensity Matching ............. 1.8:1.0 max.
Device to Device Intensity Matching (one bin) . 1.5:1.0 max.
Bin to Bin Intensity Matching ............... 1.9:1.0 max.
Viewing Angle (off normal axis)
Horizontal ................................. ±400
Vertical ................................... ± 55°
Pin
Function
Pin
1
2
3
4
5
05 Data Input
04 Data Input
WR Write
A 1 Digit Select
ACI Digit Select
6
Vee
7
8
9
10
11
12.
Function
Gnd
OQ
01
02
03
06
Data Input (LSS)
Data
Data
Data
Data
Input
Input
Input
Input (MSB)
TIMING CHARACTERISTICS
WRITE
eye
A". AI
LE
W"YEFORMS
::x.
c==
i
TAS -
x:::
_ _ TAH:.J
~
J t.::: .-J
__ X'--+-i-~>.C
TWo
00-06.
Tw
::J
Tos
-
ToH:=:J
TIMING MEASUREMENT
VOLTAGE LEVELS
DC CHARACTERISTICS
Parameter
lee 4 Digits on
10 segments/digit
Min.
-40°C
Typ. Max.
60
75
Min.
+2S0C
Typ. Max.
50
65
Min.
+8S oC
Typ.
40
M~.
55
Units
mA
Conditions
Vec=5 V
lee Blank
1.5
3.5
1.0
2.7
0.5
2.0
mA
Vee =WR=5 V,
VIN=OV
IlL (all inputs)
BO
1BO
60
160
45
90
p.A
VIN=0.8 V,
Vcc=5 V
Vlri
VIL
2.0
2.0
2.0
0.8
O.B·
0.8
V
Vee =5 V±0.5 V
V
Vee =5 V±0.5 V
AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @4.5 VSVeeS5.5 V
Symbol
-40°C (ns)
+2SoC (ns)
Address Set Up Time
Parameter
TAS
175
250
325
Address Hold Time
TAH
30
30
30
Write Delay Time
Two
25
25
25
Write Time
Tw
150
225
300
Data Set Up Time
Tos
125
175
250
Data Hold Time
TOH
30
30
30
Access Time(2)
TAee
205
280
355
Notes: 1. ACCess time TACe =TAS +TDH
2. Oigit multiplex frequency may vary from 200 Hz to 1.3 KHz.
DL 1414T
2-8
CHARACTER SET
DL 1414T BLOCK DIAGRAM
"-
"-
DD
D1
'-,D2
L
L
L
H
L
L
L
H
L
H
H
L
L
L
H
L
H
H
H
H
H
~
I
H
L
H
06D50403"
L H L L
L H L H
L H H L
L H H H
H L L L
I
9j 96
" ±J
, I , iI T,
I
I
n
'-'
*
J
I
I
-
Il
I
--
I
,
u
J
_I
(y
C
J
I
I
C
U
,
1
- I- LI -- \ -:.,
-- -~
J~
,--, _0-,-, r- -,-, C--, r-,
,C LJrCu
'-- JJ '-- +-,
-,- ,
1-( ,-- ,1\11, ,,\I" []
H .L LJ --------- - T, , , J I
J J
:::, lY'-1 r,,-1 _Jc: --.-V\I
V
U
8
0 I
~
H L L H
~
H L H L
H L H H
LOADING DATA STATE TABLE
\I
1\
,
\I
-.---
7
{-
r
-_.-- c - f--
\
'-
1
-'
\
---_. ---
1\
--
----.-~
All Other Input Codes Display uBlank"
DIGIT
WR
A1
L
L
l
l
L
H
L
H
L
L
L
H
H
H
L
L
06 05 D4 03 02 01
DO
PREVIOUSLY LOADED DISPLAY
H
X
AO
L
L
X
L
X
H
L
l
H
H
L
L
H
L
H
H
H
L
L
H
H
H·
H
L
L
H
L
H
L
3
2
1
0
G
R
E
G
G
R
E
U
Y
E
G
L
L
L
L
H
L
L
L
H
L
L
H
L
H
L
H
H
H
SEE CHARACTER CODE
B
B
R
L
L
U
U
E
E
E
E
E
L
W
B
L
E
SEE CHARACTER
SET
=DON'T CARE
TYPICAL INTERCONNECTION FOR 32 DIGITS
v+
0"
0,.021
~.
0:13
020 0 "
DI,i Dli
11 1 1 11 1 1 1 1 1 1 1 1
1>0-1\"0'"
DATA
°0-..06
7
ADORESS
"0 A,
"
012 DII
" ,
1 1 1 1 1 1 1 I 1'"
D·I~
Wi
1J It'1 ItI I1I I1I I1I I1I
11
-,~
ADORESS A l _ A
~
,,
1. 3 - & 7 4 1 3 1 4
A._C
WI IT'~ G
,
L-....!
DL.1414T
2-9
DESIGN CONSIDERATIONS
For further information refer to Appnotes 18 and .19 in the
.
current Siemens Optoelectronic Data Book_
For details on design and applications of the DL 1414T utilizing standard bus configurations in multiple display systems,
or parallel I/O devices, such as the 8255 with an 8080 or
memory mapped addressing on processors such as the
8080, zao, 6502, or 6800 refer to Appnote 15 in the current
Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 12 pin DIP sockets .600" wide
with .100" centers work well for single displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN_
ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
It is highly recommended that the display and the components that interface with the display be powered by the
same supply to avoid logic inputs higher than Vcc. Additionally, the LEDs may cause -transients in the power supply
line while they change display states. The common practice
is to place .01 p.F capacitors close to the displays across
Vcc and GND, one for each display, and one 10 p.F
capacitor for every second display.
For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
OPTICAL CONSIDERATIONS
The .112" high characters of the DL 1414T allow readability
up to 6 feet. Proper filter selection will allow the user to build
a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
ESD PROTECTION
The metal Gate CMOS IC of the DL 1414T is extremely
immune to ESD damage. However, users of the~e devices
are encouraged to take all the standard precautions, normal
for CMOS components. These include properly grounding
personnel, tools, tables, and transport carriers that come in
contact with unshielded parts. If these conditions are not, or
cannot be met, keep the leads of the device shorted
together or the parts in anti-static packaging.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DL 1414T is a
standard red display and should be matched with a long
wavelength pass filter in the 600 nm to 620 nm range. For
display systems of multiple colors (using other Siemens
displays), neutral density grey filters offer the best
compromise.
SOLDERING CONSIDERATIONS
The DL 1414T can be hand soldered with SN63 solder using a grounded iron set to 260°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol can be used.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastiC filters by
allowing for proper air flow.
Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.
.
Optimal filter enhancements for any condition can be gain. ed through the use of circular polarized, anti-reflective,
band-pass filters. Circular polarizing further enhances contrast by reducing the light that travels through the filter and
reflects back off the display to less than 1%.
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot D.l.water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. PaUl, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
For faster cleaning, solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.(1)
One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA;
Unacceptable solvents contain alcohol, methanol, methylene
chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES.
Since many commercial mixtures exist, you should contact
your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied
Chemical Corporation, Specialty Chemical Division, Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical,
Midland, MI; E.I. DuPont de Nemours & Co., Wilmington,
DE.
Refer to Siemens Appnote 23 for further information.
Note: 1. Acceptable commercial solvents are: Basic TF, Arklone P,
Genesolve D. Genesolve DA. Blaco-Tron IF, Slaco-Tron TA and,
Freon TA.
.. DL 1414T
2-10
SIEMENS
DL 14168
.160" Red, 4-Digit 16-Segment Plus Decimal
ALPHANUMERIC Intelligent Display®
With Memory/Decoder/Driver
Package Dimensions in Inches (mm)
TOlERANCE:
A,
FEATURES
•
•
•
•
0.16" ~0.125·, Magnified Monolithic Character
Viewing Angle, X Axis ±30o, Y Axis ±50°
Rugged, Solid Plastic Encapsulated Package
Top Lens Rail for Display Protection
• Fast Access Time, 350 ns
• Fun Size Display for Stationary Equipment
•
•
•
•
Built-in Memory
Built-in Character Generator
Built-In Multiplex and LE.D Drive Circuitry
Direct Access to Each Digit Independently &
Asynchronously
• TTL Compatible, 5 Volt Power
• 17th Segment (Decimal POint) for Improved
Punctuation Marks
• Independent Cursor Function
•
•
•
•
End Stackable, 4 Character Package
IntenSity Coded for Display Uniformity
100% Burned In and Tested
Extended Operating Temperature Range: -40°C
to +85°C
.xx ...01 (.25)
.xxx .. .005 (.127)
C1M.ATSEATINGP(.AN(
DESCRIPTION
The DL 14168 is a four digit display module having
16 segments plus decimal and a built in CMOS integrated
circuit.
The integrated circuit contains memory, ASCII ROM decoder,
multiplexing circuitry, and .drivers. Data entry is asynchronous
and can be random. A display system can be built using any
·number of DL 14168s since each digit of each DL 14168
can be addressed independently. Each digit will continue to
display the character last ''written'' until replaced by another.
System interconnection is very straightforward. The least
significant two address bits (Ao, A,) are connected to the like
inputs of all DL 14168s in a system. In small systems having
16 digits (four DL 14168s), the enable (CE) inputs of the four
devices could simply be used directly to select each
DL 14168. In larger display systems, the CE inputs would
come from a 1 of N decoder integrated .circuit. In this case,
address lines A2 ".A n would go to the decoder inputs. Data
lines (Do-D6) would be connected to all' DW168s directly
and in parallel. The cursor (CU) and write (WR) lines would
also be connected directly and in parallel. The display will
then behave as a "write only memory" .
The cursor function causes all segments of a digit position to
illuminate. The cursor is NOT a character, however, and
upon removal, the previously displayed character will
reappear.
Important: Refer to Appnote 18, "Using and Handling
Intelligent Displays" . Since this is a CMOS device, normal
precautions should be taken to avoid static damage.
Specifications are subject to change without notice.
2-11
Maximum Ratings
Optical Characteristics
Supply Voltage Vcc ............... - 0.5 V to + 6.0. Vdc
Voltage, Any Pin Respect to GND . .-: 0.5 to IYcc + 0.5) VOc
Operating Temperature ............... -40°C to +85°C
Storage Temperature ...........".... - 40°C to + 100 °C
Maximum Solder Temperature, 1.59 mm (0.063")
below Seating Plane, t < 5 sec ................. 260°C
Relative Humidity (non condensing) @85OC ......... 85%
Time Averaged wminous Intensity
per digit (8 segments) ................ 0.25 mcd min.
@25°C ............................ 0.75 mcd typ.Off Axis Viewing Angle:
Horizontal ................................. ±30 o
Vertical ................................... ± 50 0
Digit size ........................... 0.160" xO.125"
Spectral Peak Wavelength .................... 660 nm
lED to lED Intensity Matching ............. 1.8:1.0 max.
Average Display Intensity Matching (one bin) .. 1.5:1.0 max.
Bin to Bin Intensity Matching (adjacent bins) . . 1.9:1.0 max.
TIMING CHARACTERISTICS
WRITE
CYCLE
ITI
cu
A0. A r
WR
00- 06
WAVEFORMS
~
=x.
t::===
-'
!
TCES
TAS
C
X
_I
TIMING MEASUREMENT
VOl. TAGE lEVELS
-
Tw
Tos
y
Pin
1 05
2 04
2"oi9i"ai,i6fsi4i3iiil
~
,
I F
--~
~
TWo
1-
TeE"
3
'2(9 IZ,SI IZ,SI ,z'S'
TAH - .
DIGIT
DIGIT
2
DIGIT
1
DIGIT
0
I
>.c:
i
-
Oil)
4 01
5 02
6 03
7 ~
8 WR
9 CU
10 All)
TOP VIEW
~~~!~!!!~12
Function
Oata'lnput
Data Input
Data Input
Data Input
Data Input
Data Input
Chip Enable
Write'
Cursor Input
Digit Select
Pin
11
12
13
14
15
16
17
18
19
20
Function
Digit Select
A1
Unused
Unused
Unused
Unused
Unused
Unused
v+
v-
Data Input
06
TOH=:.J·
=><==X
-
4 VOLTS
2 VOLTS
o VOL 15
DC CHARACTERISTICS
-40°C
Parameter
·Min.
Min.
+25'C
Typ. Max.
+85°C
Max.
Icc 4 Digits on
10 segments/digit
115
140
80
125
65
100
mA
Vcc=5 V
Icc Blank
2.5
4.0
2.0
3.5
1.5
2.5
mA
Vcc =WR=5 V,
Bl= o.a V
100
120
75
90
60
75
p.A
Vcc=5 V, VIN= 0.8 V
IlL
VIH
VIL
2.0
2.0
Min.
Max. Units
lYP·
lYP·
2.0
0.8
0.8
AC CHARACTERISTICS Minimum at Vcc =4.5 V in nanoseconds
.,
Parameter
Symbol
0.8
Conditions
V
Vcc=5 V±O.5 V
V
Vcc=5 V±0.5 V
+85°C
-40'C
+25°C
TAS
225
300
400
Cursor Set Up Time
Tcus
225
300
400
Chip Enable Set Up Time
TCES
225
300
400
Data Set Up Time
Tos
100
175
300
Write Time
Tw
150
250
350
TAH
30
50
80
TOH
30
50
80
Two
30
50
80
TCEH
30
50
80
TCUH
30
50
80
TAcc
255
350
480
Address Set Up Time
Address Hold Time
Data Hold Time
Write Delay Time
Chip Enable Hold
Cursor Hold Time
Access Time
DL 1416B
2-12
LOADING DATA
LOADING CURSOR
The chip enable (CE) held low and cursor (CU) held
high will enable data loading. The desired data code
(00.06) and selected digit address (Ao·A,) should be
held stable while write (W) is low for storing new data.
The timing parameters in the AC characteristics
table are minimum and should be observed. There are
no maximum timing requirements. Data entry may be
asynchronous and in random order. All undefined
data codes (see character set) loaded as data will dis·
playa blan k.
The chip enable (CE) and Cursor (CU) are held low.
A write (W) signal will now load a cursor into any
digit position addressed by (AD· A,.); as defined in
data entry. A cursor will be stored if DO = Hand
removed if DO = L. The (CU) pulse width should
not be less than write (WR) pulse or erroneous data
may appear in the display.
Digit 0 is defined as the right hand digit with A, = Ao
= 0 =(\owl.
TYPICAL LOADING CURSOR STATE TABLE
TYPICAL LOADING DATA STATE TABLE
ADDRESS
Co CUw
l
L
H
L
H
L
H
~I ~
A,
...
DATA INPUT
OS
05 04 03 02
DO
01
3
2
1
0
"
'0
'0
'"
'0
'0
'0
'0
x x x x xix xlx!x x
CHAfoIGE CHAnGE CHANGE CHAfIIGE
L
L
L
H
L
L
H
H
H
L
H
L
L
L
L
L
L
H
H
CHANGE Cll41'1GE t":HATOGE
CHAIIIGE CHANGE
H
l
L
L
H
CHAfoIOE
H
H
IH
L
L ILL
H
L
L
·0
L
L
H
H
- - -
x = DON'T CARE
'0
~ ~ ~'~I~
L
~ l ~J ~ l~J~
'0
-
C
'"
U
""OR
A
X
X
X
X
A
L
L
L
L
H
H
L
L
A
C
B
A
0
C
B
E
0
K
B
E
SEE CHARACTER SET
H
H
B
B
., .
OISPLAY
DIGIT
ADDRESS![
DIGIT DIGIT DIGIT DIGIT
D6D5D4D3D2D1DQ
PREVIOUSLY lOADED DISPLAY
DISPLAY PREVIOUSLY STORED CUASOfIS
L
L
X H
L
H
X
X
H L
X H
x x x x X L
II
. x = DON'T CARE
~
x x x x
x x x x
..
.
, ,,
, mmm
mm ..
.. m
, ....
III ..
..
CHARACTER SET
DO
L
H·
01
02
L
L
H
D6D504 D3
" ±:
L H L L
l
H L H
l
H H L
I
\
+
\
I
n
'-'
o
L H H H
B
H L L l
iJ FI
H L L H
H .J..-,-
"D '-.
_u
L.
u
,
I-{
LY
\I
/\
\I
I
7
t_
r
'.
I
I
I
I
, 5 6 ,
-J
,
l.
.l
u
"}
\
I
I
,-,
H L H L
H L H H
-'
2 -':r
\I
(y
-,-,
.JJ
C
,c
lJ
1\/1
L
r·
t.
I ,
r1
LJ
-,-,
,,
.,
J\'
,\I
l-'
/I
V
I I
V\I
-'
1\
I
\
\
NOTE: All undefined data codes that are loaded or occur on power-up will cause a blank display state_
DL 1416B
2-13
i
DATA
SELECT/ENABLE
CI
I
AOAI~Weu
D6DSD4D3P201Dti
INTERNAL SCHEMATIC
011
DATA BUS
Dig
Dt
DB
01
D&
.,
DS
D4
DO
mmmm
m m III
III
m m III m
........
...... WVI uCo!
•
I ........ '""
0,-0-
I
"
.ru"
III
D•
u
Typical Interconnect
lor small systems. 12dlgils
D31--- D 2 7 - - - - - - - - - - - - - - -
-DB
----------
mm m m m m m m
-to. WA,A1CU- o....o.ii
DATA
BUS
>
......
0.",0-
11
W
mm m m
-
.....0, WI
",croCi
'\
I
All
Ai
A2
A3
A4
DISAaLE
r--"7
A
6
B
5
4
3
2
74C421
C
D
DISPLAYS
1106
c...-.!!
Typical schematic
lor 32 digit systems
DL 14168
2-14
DESIGN CONSIDERATIONS
Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI;
E.I. DuPont de Nemours & Co., Wilmington, DE.
For details on design and applications of the DL 1416B
utilizing standard bus configurations in multiple display
systems, or Parallel 1/0 devices, such as the 8255 with an
8080 or memory mapped addressing on processors such
as the 8080, Z80, or 6800, or non-microprocessor based
systems, please refer to Appnote 9A and 13 in our current
Optoelectronic Data Book.
Further information is available in Siemens Appnotes 18 and
19 in our current Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 20 pin DIP sockets 1.10" wide
with .100" centers work well for single displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc., Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
It is highly recommended that the display and the components that interface with the display be powered by the
same supply to avoid logic inputs higher than Vee. Additionally, the LEOs may cause transients on the power supply
line while they change display states. Common practice is to
place .01 J.lF capacitors close to the displays across Vee and
GND, one for each display, and one 10 J.lF capacitor for
every second display.
Further information is available in Siemens Appnote 22 in
our current Optoelectronic Data Book.
OPTICAL CONSIDERATIONS
The .16" high characters of the DL 1416B allow readability
up to 8 feet. Proper filter selection will allow the user to build
a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized by first considering the ambient
lighting environment.
ESD PROTECTION
The metal gate CMOS IC of the DL 1416B is extremely immune to ESD damage. It is capable of withstanding
discharges greater than 3KV. However, users of these
devices are encouraged to take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers
that come in contact with un-shielded parts. Where these
conditions are not, or cannot be met, keep the leads of the
device shorted together or the parts in anti-static packaging.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DL 1416B is a red
display and should be matched with a long wavelength
pass filter in the 600 nm to 620 nm range. For display
systems of multiple colors (using other Siemens displays),
neutral density grey filters offer the best compromise.
SOLDERING CONSIDERATIONS
The DL 1416B can be hand soldered with SN63 solder
using a grounded iron set to 260°C.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is '1uzzy" characters,
but mounting the filters close to the display reduces this
effect. Care should be taken not to overheat the plastic
filters by allowing for proper air flow.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol can be used.
Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.
Optimal filter enhancements for any condition can be
gained through the use of circular polarized, anti-reflective,
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%;
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
For faster cleaning, solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.
One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Unacceptable solvents contain alcohol, methanol, methylene
chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES.
Since many commercial mixtures exist, you should contact
your solvent vendor for chemical composition information.
Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ;
Please refer to Siemens Appnote 23 for further information.
DL 1416B
2-15
SIEMENS
DL 1416T
.160" RED, 4·DIGIT 16·SEGMENT
ALPHANUMERIC Intelligent Display@
WITH MEMORY/DECODER/DRIVER
Package Dimensions in Inches (mm)
DIGIT
~~t-.~======--~~~
•
JllllIIP.
(.!III)
.045 REf'
{1.141
:
.10"(211)
101 GIURNE
...,
OJll)
tDllrla: lXl,DI (.at), .IIIt,DOS (.II7)
NOT FOR NEW DESIGNS
(Refer to the Improved Extended Performance of DL 14168 for Similar Applications.)
FEATURES
•
End-stackable; 4·Character Package
•
High Contrast, 160 mil High, Magnified Monolithic
Characten
A cursor is defined as all segments of a digit position
to be lit. The cursor is not a character, however, and
upon removal leaves the previously displayed character
unchanged. Normally, the cursor would be loaded
and unloaded (flash) under software control. This can
be used as a pointer in a line of DL 1416T displays or'
a "lamp test" function is realized by simply storing
a cursor in all four digit positions of a display.
• Viewing Angle ± 20°
•
•
64-Character ASCII Format
Built·in Memory, Decoder, Multiplexer and Driven
•
Direct Access to Each Digit Independently and
Asynchronously
•
5 Volt Logic, TTL Compatible
•
5 Volt Power Supply Only
•
Independent Cunor Function
•
Intensity .Coded For Display Uniformity
System interconnection is very straight forward. The
least significant two address bits (AD, A, ) are
connected to the like inputs of all DL 1416Ts in
system. In small systems having 16 digits
14-DL 1416Ts), the enable ICE) inputs of the four
devices could simply be used directly to select each
DL 1416T. In larger displays, the CE inputs would
come from A l-of-N decoder integrated circuit In
this case, address lines A2 .•• An would go to the
decoder inputs. Data lines 100-D6) would be connected to all DL 1416Ts directly and in parallel. The
cursor (CU) and write (W) lines would also be connected directly directly and in parallel. The display
will then behave as a "write-only memory."
a
DESCRIPTION
The DL 1416T Intelligent Display is a four-digit LED
display module having a 16-segment font and an
on-board CMOS integrated circuit driver.
The CMOS chip includes memory for four digits and
cursor, 64 ASCII character generator ROM, and
segr.;,ent/digit drivers with associated multiplexing circuitry. Inputs are TTL compatible as is the power
supply requirement. Data entry is asynchronous and
random access. A display system can be built using
any number of DL 1416Ts since each digit of each
DL 1416T can be addressed independently. Each digit
will continue to display the character last "written"
until replaced by another.
2-16
All products are 100% burned-in and tested, then
subjected to out-going AQL's of ,25% for brightness matching, visual alignment and dimensions,
,065% for electrical and functional.
Important: Refer to Appnote 18, "Using and Handling
Intelligent Displays", Since this is a CMOS device, normal
precautions should be taken to avoid static damage,
Pin
1
2
3
4
5
6
7
8
9
10
Function
Data Input
Data Input
Data Input
Data Input
Data Input
Data Input
Chip Enable
'C'E
W"
Write
Cursor Input
~
Digit Select
A0
05
04
00
01
02
03
Pin
11
12
13
14
15
16
17
18
19
20
Function
Al
Digit Select
Unused
Unused
Unused
Unused
Unused
Unused
V+
V06
Data Input
20 i9 i. i7 i& i5 14 i3
iz i
~
DIGIT
3
DIGIT
2
DI IT
1
DIGIT
0
TOP VIEW
!!!~!!!!!~
OPTO·ELECTRONIC CHARACTERISTICS @ 25't
MAXIMUM RATINGS-
OPTICAL CHARACTERISTICS (TYPICALI
Luminous Intensity per
digit'8 segments @5V,. . . . • . . . . . . . .
.8 mcd
Viewing Angle ....................... ± 20 0
Digit Size . . . . . . . . . . . . . . . . . . . . 0.16" xO.12S"
Spectral Peak Wavelength .............. 660nm
LED to LED intensity matching ....... 1.8: 1.0 max.
Display to Display intensity matching .. 1.5:1.0 max.
Bin to bin intensity matching ........ 1.9: 1.0 max.
Vee················· . -0.5 V to 6.0 V
Voltage, Any Pin
Reipect to GND (V-I .. -0.5 to Vee +0.5 VDC
Operating Temperature . . . . . . . -20 to +SS·C
Storage Temperautre. . . . . . . . . -20 to +70· C
Relative Humidity
85%
In on condensing) @l6S·C
...........
DC CHARACTERISTICS
-200 CTyp
Parameter
Icc 4 digits on (10 seg/digit)
Icc Cursor2
+ii5°CTyp
+25°c4
Conditions
80 mA max'
Vee = 5.0 V
105 rnA max'
Vee = 5.0 V
Icc Blank
VIN = 0
7mA
max
2.0mA
Vee = 5.0 V
w= 5.0 V
IlL
10pA
160pA max
201lA
VIN =.BV
Vee = 5.0 V
VIL
.BV Max
Vee =4.5V
VIH 3
2.7 V Min
3.3V Min
Vee =4.5V
Vee = 5.5 V
1. Measured at S seconds.
2. 60 sac. max. duration.
3. Vee" VIH .. 0.6 Vee
4. Vcc = +5.0 VDC tlO%
TIMING CHARACTERISTICS
AC CHARACTERISTICS. 25°C
WRITE
MINIMUM TIMING PARAMETERS 0 4.5 V (nanoseconds)
TAS
Two
Tw
TDS
TDH
TAH
TeEH
TeES
TAce4
1000
500
500
1000
400
400
400
1000
C't'Cl E
WAVE FORMS
ITI
~ TeES
en "121. AI
iV
=xL:::.==:=
J
TWo
00- De,
VOLTAGE LEVELS
TCEH
i
y
TAS - - - - TAH
"C
Tw
~
TIMING MEASUREMENT
1400
---.t
.
Tos
1_
F
I
i-TOH~'>C
==>eX.
4 VOLTS
- 2 VOLTS
o VOL 18
Note 1: This display conteins a eMOS integrated circuit. Normal CMOS handling precautions shllUld be taken to
avoid damage dua to high static volteges or electric fields.
Note 2: Unusad inputs must be tied to an appropriate logic voltage level (eigher V+ or V-I.
Note 3: Waming- Do not use solvents conteining alcohol.
Note 4: Access time Is defined al TAS + TDH (sum of eddress set up and data hold tillles).
DL 1416T
2-17
LOADING CURSOR
LOADING DATA
The chip enable (CE) held low and cursor (CU) held
high will enable data loading. The desired data code
(00-06) and selected digit address (Ao-Al ) should be
held stable while write (W) is low for storing new data.
The timing parameters in the AC characteristics
table are minimum and should be observed. There are
no maximum timing requirements. Data entry may be
asynchronous and in random order. All undefined
data codes (see character set) loaded as data will displaya blank.
The chip enable (CE) and Cursor (CU) are held low.
A write (W) signal will now load a cursor into any
digit position for which the respective first four data
lines (Do, 01, 02, 03) individually or together are
held high. If previously stored, the cursors can only
be removed if their respective data lines are held
. low while CE, CU are low and write (W) occurs.
The cursor- (CU) should not be hardwired high (off).
During the power-up of 0 L 1416s the cursor memory
will be in a random state. Therefore, it is recommended for the processor-based system to initialize
or write out possible cursors during. the system initializing portion of the software.
Digit 0 is defined as the right hand digit with Al = Ao
= 0= low.
The cursor display will be over ridden by a blank
from an undefined code in that digit position.
TYPICAL LOADING DATA STATE TABLE
:
ADORES
DATA INPUT
~r.~~~I~D6D5D4D3D2D100
i
~! ~
x
~x
x
I~!~ ~ ~ ~
I.
LL!HH
LL
HH
HL
I
DIGIT DIGIT DIGIT DIGIT
3210
I Xi [X I X X:l~ II 'H:~'
'H:~' ,":~, 'H:~"
::~~::::~~::r,H;NGE :
~;~ ~ ~i~ ~
HH
i.
L L L LIH HIII CHANGE C B
L _ :-; L
1l
HI L
,Li H
L l
H LlliL
- L
H
H
L
H l
L
L
8_H-.LL..JL_-J._--'--L_--.L--'-_-.L
1-
I IH
H
-
L
H
H
DeB
II
Ii
-_~
A
A
DeB
E
D
I(
B
E
SEE CHARACTER SET
X" DON'T CARE
CHARACTER SET
"-
DD
DI
,D'
D6D5D4 D3
~
L H L L
L H L H
L H
"
L
L H H H
H L L L
H L L H
,
I
*
\
I
n
;)
8
0
-1
CI
I -,
I
;)
uI
~
I
J
, , ...,--,
J..
,-,
+
-'
'-
II
Cu
'J
" iI % % Cy
r-
]
-.-
'-,
I
I
[
H
I
I_-
I ..I
H L
\I
1\
\I
,
t_
r
'O~
\
I
...I
-J
I
C- r-
L_
F? 5 T,
NOTE: All I.lI'Idefined data codes that are loaded
-~
11
.J.J
lY
6
\
I
F'
-7
cJ
L
H L H L
H "
I
I
" '"
'"
,,
U
, -,
_I
1/
v
LJ
r1
LJ
I I
V"
1\
occur on power-up will cause a blank display state.
DL 1416T
2-18
DATA
S(l(CT/ENAUE
.. :
.!!'..
1
=>151
.!IS:;.
.
AD AI
«iii
en
D6 DS Dt Dl D2 DI ~
INTERNAL SCHEMATIC
011
011
01
07
1M!
Dt
05
O.
.
0302D1D
III
11/ 11/ 11/ 11/
11/ 11/ 11/ 11/
11/
1\0.1\0;;........
0,"0. W l,CuCE
0.... 0. WV,cUCE
OATA BUS a.~o.
I
W
A,
t.!
11/ 11/
III
Typical Interconnect
for small systems. 12dlglts
----------
D31--- D 2 7 - - - - - - - - - - - - - - 11/ 11/ 11/ 11/
00-'0. if
DATA
BUS
>
"" ... 0.
A.", cu CE a. ...o. W",,,,CUCE
11
ii
11/ 11/ 11/ III
A3
A4
DI5ABlE
11/ 11/ 11/ 11/
-
0,"0. W"fA,CuCE
'II
II
AD
AI
A2
-D8
---::
A
B
C
D
6
5
4
3
2
DISPLAYS
ltoG
74C421
---!
Typical schematic
for 32 digit systems
DL141Err
2-19
town, NJ; Baron-Blakeslee, Chicago, IL; Dow Chemical,
Midland, MI; E.1. DuPont de Nemaurs & Co., Wilmington,
DE.
DESIGN CONSIDERATIONS
For details on design and applications of the DL 1416T utilizing standard bus configurations in multiple display systems,
ar parallel 1/0 devices, such as the 8255 with an 8080 or
memory mapped addressing on processors such as the
8080, Z80, 6800, ar nan-micro processar based systems,
please refer to. Appnate 9A and 13 in the current Siemens
Optoelectronic Data Book.
For further information refer to Appnotes 18 and 19 in the
current Siemens Optoelectronic Data Baok.
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 20 pin DIP sockets 1.10" wide
with .100" centers work well far single displays. Multiple
display assemblies are best handled by langer SIP sackets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
It is highly recommended that the display and the components that interface with the display be pawered by the
same supply to. avaid lagic inputs higher than Vee. Additianally, the LEOs may cause transients on the pawer supply
line while they change display states. The cammon practice
is to. place .01 t.tF capacitors clase to. the displays acrass
Vee and GND, one far each display, and ane 10 p.F
capacitar far every secand display.
For further informatian refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
OPTICAL CONSIDERATIONS
The 0.16" high characters of the DL 1416T allow readability
up to six feet. Proper filter selection will allow the user to
build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The anly limitation is cost. The cosUbenefit ratio
for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
ESD PROTECTION
The metal gate CMOS IC af the DL 1416T is extremely immune to ESD damage. It is capable of withstanding
discharges greater than 3KV. Hawever, users of these
devices are encauraged to. take all the standard precautians, normal for CMOS components. These include praperIy grounding persannel, toals, tables, and transpart carriers
that came in cantact with unshielded parts .. Where these
canditions are not, or cannot be met, keep the leads of the
device sharted tagether ar the parts in anti-static packaging.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DL 1416T is a red
display and should be matched with a long wavelength
pass filter in the 600 nm to 620 nm range. For display
systems of multiple colars (using other Siemens displays),
neutral density grey filters offer the best campromise.
SOLDERING CONSIDERATIONS
The DL 1416T can be hand soldered with SN63 salder using a grounded iran set to 260°C.
Additional cantrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is '1uzzy". characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.
Wave soldering is also. possible following these conditians:
Preheat that does not exceed 93°C on the salder side of
the PC board or package surface temperature af 70°C.
Water soluble organic acid flux or (except carboxylic acid)
resin-based' RMA flux without alcohol can be used.
a
Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.
Optimal filter enhancements for any conditian can be gained through the use of circular polarized, anti-reflective,
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back 011 the display to less than·1%.
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.
Several filter manufacturers supply quality filter materials.
Some of them are: Panel graphic Corporatian, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, SI. Paul, MN; Polaroid Carporatian,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
For faster cleaning, solvents may be used. Care should be
exercised in choasing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.
One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to. provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Praducts, Batavia, IL; Nabex
Components, Griffith Plastic Carp., Burlingame, CA; Photo
Chemical Products af California, Santa Manica, CA; I.E.E.Atlas, Van Nuys, CA.
Unacceptable solvents contain alcohol, methanol, methylene
chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES.
Since many commercial mixtures exist, you should contact
your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are: Allied
Chemical Corporation, Specialty Chemical Division, Morris-
Refer to Siemens Appnote 23 for further infarmation.
Dl1416T
2-20
SIEMENS
DL 1814
.112" Red, a-Digit 17-Segment
ALPHANUMERIC Intelligent Display®
With Memory/Decoder/Driver
Package Dimensions in Inches (mm)
FEATURES
TOLERANCf:
.0.112" x 0.088" Magnified Monolithic Character
•
•
•
•
•
•
•
•
•
•
•
•
•
Rugged Solid Plastic Encapsulated Package
Wide Viewing Angle ±40o, Both Axis
Compact Size for Hand Held Equipment
Fast Access Time, 525 ns
Full Integrated CMOS Drive Electronics
Direct Access to each Digit Independently &
Asynchronously
TTL Compatible, 5 Volt Power
17th Segment for Improved Punctuation Marks
Low Power Consumption, l}tpicaliy 10 mA per
Character
Display Blank Function
End·Stackable, Eight Character Package
Intensity Coded for Display Uniformity
100% Burned In and Tested
.xx ...Ol(.25)
.XXX_.Ol0(.254)
Maximum Ratings
Supply Voltage Vee ............... -0.5 V to +6.0 Vdc
Voltage, Any Pin Respect
to GND .................. -0.5 V to (Vee +0.5) Vdc
Operating Temperature ....... " ...... -40°C to +85°C
Storage Temperature ............... -40°C to + 100°C
Relative Humidity (non condensing) @85°C ......... 85%
Maximum Solder Temperature, 1.59 mm (0.063")
below Seating Plane, t<5 sec ................. 260°C
ESD (MIL-STD-883, method 3015) ............. Vz =3 KV
Optical Characteristics
• Extended Operating Temperature Range:
-40°C to +85°C
DESCRIPTION
The DL 1814 is an 8-digit module. Each digit has 16
segments plus a decimal segment and a built-in CMOS
integrated circuit.
The integrated circuit contains memory, ASCII character
generator, and LED multiplexing and drive circuitry. Inputs
are TIL compatible. A single 5 volt power supply is required. Data entry is asynchronous and random access. A
display system can be built using any number of DL 1814's
since each character in any DL 1814 can be addressed
independently and will continue to display the character
last written until it is replaced by another.
All products are 100% burned-in and tested, then
subjected to out-going AQL's of .25% for brightness
matching, visual alignment and dimensions, .065% for
electrical and functional.
2-21
Spectral Peak Wavelength. . . . . . . . . . . . . . . . . 660 nm typo
Magnified digit size ................... 0.112" x 0.088"
Time Averaged Luminous Intensity ...... 0.2 mcdJdigit min.
(100% brightness,
8 segments/digit, Vcc=5 V) ........ 0.5 mcd/digit typo
. LED to LED Intensity Matching ............. 1.8:1.0 max.
Device to Device Intensity Matching (one bin) . 1.5:1.0 max.
Bin to Bin IntenSity Matching ............... 1.9:1.0 max.
Viewing Angle (off normal axis)
Horizontal ................................. ±40o
Vertical ................................... ±40o
TOP VIEW
26
Pin
14
1
2
3
4
5
6
~--,-....,-....,-....,-....
~~ ~'U~'nt;:'!iJ:i;:'UfU:"'~
Il'" I!I>I "'''' "''' "'" 1[1"
I!JlI "'''
- - - --
1 2 3 4
DO
D1
D2
D3
D4
D5
D6
GND
AD
A1
A2
7
8
5 6 7 8. 9 10 II 12 13
9
10
11
12
13
I
WR
Function
Pin
Function
Data
Data
Data
Data
Data
Data
Data
14
15
16
BL
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
NO
input
input
input
input
input
input
input
17
18
19
20
21
22
23
24
25
26
Address
Address
Address
Write
VCC
(Blank I
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
(Chip Enable)
CE
DC CHARACTERISTICS
Parameter
Min.
-40°C
Typ. Max.
+25°C
Min.
'tYP.
Max.
Min.
+85°C
Typ. Max. Units
Conditions
Icd1) 8 Digits on
10 segments/digit
130
156
100
120
85
102
mA
Vcc=5 V
Icc Blank(1)
2.5
5.0
2.0
3.5
1.5
2.0
mA
Vcc=5 V,
BL=0.8 V
IlL (all inputs)
75
110
55
80
40
55
p.A
VIN=0.8 V,
Vcc=5 V
V IH
2.7
VIL
2.7
2.7
0.8
0.8
.0.8
V
Vcc=5 V±0.5 V
V
Vcc=5 V±O.5 V
Notes: 1. Measured at 5 sec.
AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @Vcc=4.5 V
-40·C (ns)
Parameter
Symbol
+25°C (ns)
+85°C (ns)
TCES
300
450
550
TAS
300
450
575
Chip Enable Hold Time
TCEH
50
75
100
Address Hold Time
TAH
50
75
100
Write Delay Time
Two
100
150
200
Write Time
Tw
200
300
450
Data Set Up Time
Tos
150
250
350
Chip Enable Set Up Time
Address Set Up Time
Data Hold Time
TOH
50
75
100
Access Time
TACC
350
525
675
Notes:
1. "Off Axis Viewing Angle" is here defined as: "the minimum angle in any
direction Irom the normal to the display surface at which any part of any
segment in the display is not visible.
2. This display contains a CMOS integrated circuit. Normal CMOS handling
TIMING CHARACTERISTICS
WRIT£ CYCLE WAVEFORMS
IT
precautions should be taken to avoid damage due to high static voltages
~
~TCES
I.-----... TCEH
or electric fields. See Appnote 18.
A", AI
3. Unused inputs must be tied to an appropriate logic voltage level (either
V+ or V-).
....
4. Warning: 00 not use solvents containing alcohol.
5. Vcc~5.0 VOC ± 10%.
6. Access time is defined as TAS + TOH (sum of address set up and data
hold time).
7. Vcc~4.5 V, worst case for all timing parameters.
~.
l
~
~
x::=
~
011-06
TAS
I
X
.=:1
TIMING MEASUREMdm
VOLTAGE LEVELS
TDS
:
YAH
:'J
>.C
_ _ TDH=:.!
=><==X: o~ :~~~!
VOLTS
DL 1814
2-22
DISPLAY BLANKING
CHARACTER SET
Blanking the display may be accomplished by loading a
blank or space into each digit of the display or by using
the (BL) display blank input.
DO
D2
, H ,
FIGURE 1. FLASHING CIRCUIT FOR DL 1814
USING A 555
OUTPUT
.-i
~
\
H H ,
11
U
,
H H H
B
,,
\
I
I
jj
*
,,
J
L
-
D
J
-
OJ
,0 ,
_"0
u
H
T
.J..
LJ
H L H ,
P
LY
H L H H
\I
1\
V
2- N.c.
6
H
H
L
"
-
,
H L
J.:.
3
Q
H
H L ,
555
L
H
L
L
L H L L
A flashing circuit can easily be constructed using a 555
astable multivibrator. Figure 1 illustrates a circuit in
which varying R1 (100K-10K) will have a flash rate
of 1 Hz-10 Hz.
~10PF1~
H
,
L
H
L
H
H
,
H
H
H
H
--"--
D6DSD4 D3
Setting the (BL) input low does not affect the contents of
either data. A flashing display can be realized by pulsing
(BL).
1
,
L
L
L
D'
H
-1
,-1
,
,
[[
\I
% [y
_u
-- 1
U,
cJ 6 "1,
:'
-- -~ -J,
--,-, C C r
l]
L
JJ L _ ,
--_. - - -In
,
,
,
I-{ '-,v lJ
,,
-,-, , ,
VII
+
I.
I
I
I
f_
I
\
(-
._,,1/
1\'
F? 5
7
1._
I
r
'-
LJ
-,
\
-'
\
/I
V
--
1\
BLOCK DIAGRAM
Al
~o
1----
~- 1 - - - - ,
~N
~ :2~~
:Z~~
@~
@~
@~
LOADING DATA
DlGITDRIVERS
DlSPlAV
Loading data into the 0L1814 is straightforward. The desired
data and chip enable should be present and stable during
a write pulse. No synchronization is necessary, and each
character will continue to be displayed until it is replaced
with another. Multiple displays will require an external
decoder IC connected to the chip enable input.
17 LINES
IlAIA
SELECrfENABLE
68LfNES
DO
Setting the chip enables CE to its true state will enable data
loading. The desired data code (00·06) and digit address
(Ao, AI, A2) must be held stable during the write cycle for
storing new data. Data entry may be asynchronous and
random. {Digit 0 is defined as right hand digit with
ROM
01
02
D3
D4
OS
06
•
WFi
.,
A2
f
(A2 =Al =Ao =0.)
TYPICAL LOADING DATA STATE TABLE
"8[
H
H
H
Cl: Wfi
A2
A1
AO
D6
X
H
H
X
X
X
X
X
X
X
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
H
L
H
H
X
H
H
H
H
H
H
L
L
L
H
H
H
H
H
H
L
X
L
L
H
H
X
H
X
L
H
H
H
L
L
L
L
L
L
L
L
H
L
L
X
H
X
H
H
H
X
L
X
D5 D4 D3 02
01
DO
PREVIOUSLY LOADED DISPLAY
I
X
X
X
L
L
L
L
L
L
L
L
L
L
L
H
L
L
L
H
X
H
H
H
L
H
H
I
2-23
H
L
L
S
S
S
S
S
S
S
S
S
B
6
I
I
I
I
I
I
I
I
L
L
H
B
L
X
X
L
L
L
H
H
L
L
L
H
L
L
H
L
L
L
H
H
L
H
L
L
L
BLANK DISPLAY
L
L I L I H I H
SEE CHARACTER CODE
H
I
7
5
E
E
E
E
E
E
E
U
U
U
DIGIT
4
3
M
E
M
E
M
E
M
E
M
E
B
M
E
B
B
E
E
B
E
B
2
N
N
N
N
L
L
L
L
L
L
L
U
E
G
SEE CHARACTER SET
1
S
S
S
U
U
U
U
U
U
U
0
U
E
E
E
E
E
E
E
E
E
DL 1814
ELECTRICAL AND MECHANICAL
CONSIDERATIONS
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 26 pin DIP sockets .960" wid~
with .100" centers work well for single ·displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
VOLTAGE TRANSIENT SUPPRESSION
It is highly recommended that the display and the
components that interface with the display be powered by
the same supply to avoid logic inputs higher than Vee.
Additionally, the LEOs may cause transients in the power
supply line while they change display states. Common practice is to place .01 pF capacitors close to the displays across
Vee and GND, orie for each display, and one 10 /LF
capacitor for every second display.
For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
OPTICAL CONSIDERATIONS
The .112" high characters of the DL 1814 allow readability
up to six feet. Proper filter selection will allow the user to
build a display that can be utilized over this distance.
ESD PROTECTION
The metal gate CMOS IC of the DL 1814 is extremely
immune to ESD damage. It is capable of withstanding
discharges greater than 3 KV. However, users of these
devices are encouraged to take all the standard precautions, normal for CMOS components. These include
properly grounding personnel, tools, tables, and transport
carriers that come in contact with un-shielded parts. Where
these conditions are not, or cannot be met, keep the leads
of the device shorted together or the parts in anti-static
packaging.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first
considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescen! (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
eflective in optimizing contrast ratios. The DL 1814 is a
standard red display and should be matched with a long
wavelength pass filter in the 600 nm to 620 nm range. For
display systems of multiple colors (using other Siemens'
displays), neutral density grey filters offer the best
compromise.
SOLDERING CONSIDERATIONS
The DL 1814 can be hand soldered with SN63 solder using
a grounded iron set to 260°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the. solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol can be used.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this eflect.
Care should be taken not to overheat the plastic filters by
allowing for proper airflow.
Wave temperature of 245°C ± 5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minLites. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.
Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective,
band-pass filters. The circular polarizing further enhances
. contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%.
For faster cleaning, solvents may be. used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
Unacceptable solvents contain alcohol, methanol, methylene
chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES.
Since many commercial mixtures exist, you should contact
your solvent vendor for chemical composition information.
Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ;
Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI;
E.I. DuPont de Nemours & Co., Wilmington, DE.
One last note on mounting filters: receSSing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
For further information refer to Appnotes 18 and 19 in the
current Siemens Optoelectronic Data Book.
Refer to Siemens Appnote 23 for further information.
DL 1814
2-24
DL 2416T
SIEMENS
.160" Red, 4-Digit 16-Segment Plus Decimal
ALPHANUMERIC Intelligent Display®
With Memory/Decoder/Driver
....
15.11
=,..
,5!'c:I
-eo!!
Package Dimensions in Inches (mm)
-.ft
c:I
.012 :t .002 TYP
[
(.~)(;
.60±'o2
~I51)
FEATURES
Tolerance:.Xh.OI(.254)
XXX±.OOS (.127)
.0.16" x 0.125" Magnified Character
• Wide Viewing Angle, X Axis ±45°, Y Axis ±55°
• Close Multi-line Spacing, O.S" Centers
• Rugged Solid Plastic Encapsulated Package
• Fast Access Time, 300 ns @25°C
• Full Size Display for Stationary Equipment
• Built-in Memory
• Built-in Character Generator
• Built-in Multiplex and LED Drive Circuitry
• Direct Access to Each Digit Independently &
Asynchronously
• Independent Cursor Function
• 17th Segment for Improved Punctuation Marks
• Memory Function that Clears Character and
Cursor Memory Simultaneously
• li'ue Blanking for Intensity Dimming Applications
• End-Stackable, 4-Character Package
• IntenSity Coded for Display Uniformity
• Extended Operating Temperature Range: - 40°C
to +S5°C
• 100% Burned In and Tested
• Wave Solderable
• TTL Compatible over Operating Temperature
Range
DESCRIPTION
The DL 2416T is a four digit display module having 16
segments plus decimal and a built-in CMOS integrated
circuit.
The integrated circuit contains memory, ASCII ROM .
decoder, multiplexing circuitry, and drivers. Data entry is
asynchronous and can be random. A display system can be
built using any number of DL 2416Ts since each digit of
any DL 2416T can be addressed independently and will
continue to display the character last stored until replaced
by another.
System interconnection is very straightforward. The least
significant two address bits (Ao, Aj) are normally connected
to the like named ilJ.E!!ts of alLQL 2416Tsin the system. With
two chip enables (CE1, and CE2) four DL 2416Ts (16
characters) can easily be interconnected without a decoder.
Data lines are connected to~DL 2416Ts directly and in
parallel, as is the write line (WR). The display will then
behave as a write-only memory.
The cursor function causes all segments of a digit position
to illuminate. The cursor is not a character, however, and
upon removal the previously displayed character will
reappear.
The DL 2416T has several features superior to competitive
devices. The superior ESD immunity afforded by the metal
gate CMOS construction and 100% pre-burned in processing assures users of the DL 2416T that the devices will function in more stressful assembly and use environments. The
full width character ':,)" affords better readability under
adverse conditions and the 'true blanking" allows the
designer to dim the display for more flexibility of display
presentation. Finally, the CLR clear function will clear the
cursor RAM and the ASCII character RAM, simultaneously.
• Superior ESD Immunity
-Continued
2-25
DESCRIPTION (Continued)
Maximum Ratings
All products are 100% burned-in and tested, then subjected to out-going AQL's of .25% for brightness matching.
visual alignment and dimensions, .065% for electrical and
functional.
Supply Voltage Vee ............... - 0.5 V to + 6.0 Vdc
Voltage, Any Pin Respect
to GND .................. -0.5 V to (Vee +0.5) Vdc
Operating Temperature ............... -40°C to +85°C
Storage Temperature ............... -40°C to + 100°C
Relative Humidity (non condensing) @85°C ......... 85%
Maximum Solder Temperature, 1.59 mm (0.063")
.
below Seating Plane, t<5 sec ................. 260°C
See Appnote 14 for applications information.
TOP VIEW
18 17 16 15 14 13 12 11 10
•••••••• •
r:xxx=
Optical Characterlatlcs
Spectral Peak Wavelengih . . . . . . . . . . . . . . . .. 660 nm typo
Magnified digit size .................... : .160" x .125"
.Time Averaged Luminous Intensity
(100% brightness, ................ 0.5 mcd/digit min.
8 segments/digit. Vee=5 V) ........ 1.0 mcd/digit typo
LED to LED Intensity Matching ............. 1.8: 1.0 max.
Device to Device Intensity Matching (one bin) . 1.5:1.0 max.
Bin to Bin Intensity Matching ............... 1.9:1.0 max.
Viewing Angle (off normal axiS)
Horizontal ................................. ± 45 °
Vertical ............... : ... ; ............... ±55°
•••••••••
1 2 3
Pin
1
2
3
4
5
6
7
8
9
4
5
6
7
Function
~ Chip Enable
l!n Chip Enable
8 9
Function
Gnd
Of' Data Input
01 Data Input
Pin
10
11
12
13
14
15
16
17
18
~Claar
CUE· Cursor Enable
eo Cursor Select
Wl'l Wrlta
A 1 Digit Select
Alii Digit Select
Vec
D2 Data I"put
D3 Dat8 Input
06 Data Input
06 Data Input.
04 08ta Input'
In:: Olsplav Blank
DC CHARACTERISTICS
-40°C
+25°C
Max.
led' ) 4 Digits on
10segmentsldigit
100
130
85
Max.
115
Icc Cursei'll, 2)
140
185
120
165
100
145
mA
Vee=5 V
Icc Blank'"
Eiis
Vee increases.
TIMING CHARACTERISTICS
WRITE CYCLE WAVEFORMS
LOADING DATA
Setting the chip enable (CE1, CE2) to their true state will
enable data loading. The desired data. code (00-06) and
digit address (Ao, AI) must be held stable during the write
cycle for storing new data.
Data entry may be asynchronous and random. (Digit 0 is
defined as a right hand digit with AI =A2=0.)
TIMING MEASUREMENT
VOLTAGE LEVELS
Clearing of the entire internal four-digit memory can be accomplished by holding the clear (CLR) low for one complete
display multiplex cycle, 15 mS minimum. The clear function
will clear both the ASCI.! RAM and the cursor RAM. Loading
an illegal data code will display a blank.
~4VOLTS
~2VOLTS
o vOLTS
TYPICAL LOADING DATA STATE TABLE
CONTROL
I![ ~=CUE
H
H
X
H
X
H
X
L
L
L
L
X
L
H
H
H
H
H
L
H
H
H
X
L
X
L
L
L
L
X
L
X
L
L
L
L
L
L
L
L
X
L
L
L
CO' WI! COl
X
X
H
X. H
X
X
H
H
H
L
L
L
L
H
X
H
H
X
L
H
H
L
H
DATA
AI AO
06 05 D4 03 02 01 DO
H
H
H
H
H
H
H
L
H
DISPLAY
ADDRESS
X
X
L
L
H
H
X
H
X
X
PREVIOUSLY LOADED DISPLAY
X
X X X X X
X
X
X
X
X
X
X
X
L
H L
L
L H L
H L
H
H L H L
L
H L
L H H L
H
H L
L
L
L
H
BLANK DISPLAY
X
H
H
L
L
L
H H
X
X
DIGIT
X
X
H
H
L
L
H
CLEARS CHARACTER DISPLAYS
SEE CHARACTER CODE
3
2
1
0
G
R
E
Q
G
B
R· E
R E
R
E
R U
L U
L U
Y
Y
Y
G
L
G
G
G
U
E
E
E
E
E
seE CHARACTER
SET
x = DON'T CARE
DL.416T
2-27
LOADING CURSOR
Setting the chip enables (CE1. CE2) and cursor selec.!J9U)
to their true state will enable cursor loading. A write (WR)
pulse will now store or remove a cursor into the digit loca~
tion addressed by Ao. AI; as defined in data entry. A cursor
will be stored if 00=1; and will be removed if 00=0. The
c.!:!Lsor (CU) pulse width should not be less than the write
(WR) pulse or erroneous data may appear in the display.
For those users not requiring the cursor, the cursor enable
signal (CUE) may be tied low to disable the display of the
cursor function. A flashing cursor can be realized by simply
pulsing CUE. If the cursor has been loaded to any or all
positions in the display. then CUE will control whether the
cursor(s) or the characters appear. CUE does not affect the
cOntents of cursor memory.
LOADING CURSOR STATE TABLE
CONTROL
It cn-mCUE
H
H
H
H
H
H
H
H
H
H
X
X
L
L
X
X
L
L
L
L
L
L
L
L
X,X
m
\'VI(
ct:If
L X
H X
H L
H L
H L
H 'L
H L
L
X
H ,H
H H
L H
L H
L H
L ,H
L H'
L
H
L
L
L
L
X
X
H
X
H
H
H
ADDRESS
OATA
AI Nl
D6D5 D4D3D2 01 DO
3
PREVI0U3LV LOADED DISPLAV
DISPLAV PREVIOUSLV STORED CURSORS
L
L
H
H
L
L
!I
X
H
H
H
H
H
X
L
H
DISABLE CURSOR DISPLAV
x x x X
H II X x
DISPLAV STORED CURSOR
L
H
H
X
X
X
X
X
X
X
X
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
DISPLAV
DIGIT
2
0
I
B
B
B
B
B
E
E
E
E
A
A
A
R
R
IliI
IliIIliI
IliI IliIIliI
I!III I!IIIm IliI
IliI E IliI IliI
'B
B
B
E ,A R
E A R
E IliIIliI
x • DON"T CARE
DISPLAY BLANKING
Blanking the display may be accomplished by loading a
blank or space into each digit of the display or by using the
(Bl) display blank input.
Setting the (Bl) input low does not affect the contents of
either data or cursor memory. A flashing display can be
realized by pulsing (Bl).
A flashing circuit can easily be constructed using a 555
astable multivibrator. Figure 1 illustrates a circuit in'which
varying R1 (100K -10K) will have a flash rate of
1 Hz .... 10 Hz.
FIGURE 1. FLASHING CIRCUIT FOR DL 2416T
USING A 555
An example of a simple dimming circuit using a 556 is
illustrated in Figure 2. Adjusting potentiometer R2 will dim
the display through frequency modulation (2.5 KHz to
4.4 KHz). Adjusting potentiometer R3 will dim the display by
increasing the negative pulse width (10 0/0 to 50%).
FIGURE 2. DIMMING CIRCUIT FOR DL 2416T
USING A 556
Q
1
~10~Fl
The display can be dimmed by pulse width modulating the
(SC) at a frequency sufficiently fast to not interfere with the
internal clock. This clock frequency may vary from 200 Hz
to 1.3 KHz. The dimming signal frequency should be
2.5 KHz or higher. Dimming the display also reduces power
consumption.
8'
2
Vee
R2
1101(0 ..
7
-Nt.
~
555
OUTPUT
3
6
4
5
Rl
101(0
Rl
vee
-...-1
'"'
14
~
13
3
12
...
tfc
4
Vee
5
el
6
ttc
~
vee
556
1
R3
';50 1(0
C3
f-vee
11
10
-Vee
9
~
J..~C2
Tom:
on DL·2416f
C1=4.7 pf
&2=10 pF
C3=1 pF
DL241ST
2-28
CHARACTER SET
~~-+060
02
03
L
L
H
L
L
L
D4HEI
0
I
H L L
4
H L H 5
•
H
L
L
H
H
L
H
L
H
H
3
L
4
L
5
L
6
L
L
" :H
, J
l
3
r, _u-0 L_
I
L H L 2
L H H 3
L
H
L
L
2
,-,
I_I
I
--,
OJ
CI
I
.-, F(
P LY
C_J
9)
96
uI
cJ Uc
H
H
H
L
C:y
I
I
-,
I
H
L
L
8
H
9
•
7
Q
L
L
L
I
\
\
/
8
0
I T
!
! , ,
J
JJ
L_
C
r
lJ I
,--,
T
I I
II,
I J
VII
Vi
-,-,
I
LJ
V
r-
i
/\
L
H
L
H
H
H
L
H
A
8
•
H
C
*-- T
I
,
7
i_
'.
I
L
1\11
\
l
••
H
H
H
H
H
E
F
L
--
/
---,
H '-- J J
-,
r
I
.1.
H
L
H
0
I
J
lJ
v
L
L
\
_I
I
\
-}
1\1
I "
/\
I
-J
I
n
LJ
--
All other input codes dispiay "blank"
ROM
Internal Block Diagram
00-06
CLR----~¥_~----_4~--~----~---L----44--~
WR
AoA,
CEf
CEi
eEl'
Typical Schematic for 16 Digit System
DL 2416T
2-29
Baron-Blakeslee, Chicago, IL; Dow Chemical, Midland, MI;
E.1. DuPont de Nemours & Co., Wilmington, DE.
DESIGN CONSIDERATIONS
For details on design and applications of the DL 2416T utilizing standard bus configurations in multiple display systems,
or parallel I/O devices, such as the 8255 with an 8080 or
memory mapped addressing on processors such as the
8080, Z80, 6502, 8748, or 6800 refer to Appnote 14, and 20,
in the current Siemens Optoelectronic Data Book.
For further information refer to Appnotes 18 and 19 in the
current Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 18 pin DIP sockets .600/1 wide
with .100/1 centers wOrk well for single displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New BrunswiCk, NJ;
RObinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
It is highly recommended that the display and the
components that interface with the display be powered by
the same supply to avoid logic inputs higher than Vee.
Additionally, the LEOs may cause transients in the power
supply line while they change display states. Common practice is to place' .01 I'F capacitors close to the displays across
Vee and GND, one for each display, and one 10 "F
capacitor for every second display.
For further information refer to Appnote 22 in the current
.
Siemens Optoelectronic Data Book.
OPTICAL CONSIDERATIONS
The .160/1 high characters of the DL 2416T allow readability
up to eight feet. Proper filter selection will allow the user to
build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first
considering the ambient lighting environment.
ESD PROTECTION
The metal gate CMOS IC of the DL 2416T is extremely
immune to ESD damage. However, users of these devices
are encouraged to take all the standard precautions normal
for CMOS components. These include properly grounding
personnel, tools, tables, and transport carriers that come in
contact with unshielded parts. Where these conditions are
not, or cannot be met, keep the leads of the device shorted
together or the parts in anti-static packaging.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DL 2416T is a
standard red display and should be matched with a long
wavelength pass filter in the 600 nm to 620 nm range. For
display systems of multiple colors (using other Siemens'
displays), neutral density grey filters offer the best
compromise.
SOLDERING CONSIDERATIONS
The DL 2416T can be hand soldered with SN63 solder using a grounded iron set to 260°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol can be used.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.
Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063/1 below
the seating plane. The packages should not be immersed in
the wave.
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of. mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.
Optimal filter enhancements for any condition can be
gained through the use of circular polarized, anti-reflective,
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%.
For faster cleaning; solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.(1)
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. PaUl, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
Unacceptable solvents contain alcohol, methanol, methylene
chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and TES.
Since many commercial mixtures exist, you should contact
your solvent vendor for chemical composition information.
Some major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical Division, Morristown, NJ;
One last note on mounting filters. Recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; IEE.Atlas, Van Nuys, CA.
POST SOLDER CLEANING PROCEDURES
Refer to Siemens Appnote 23 for further information.
(1}Some commercial names for acceptable compounds are: Basic TF. Arklone P, Genesolve D. Blaeo·tron TF. Freon TA. Genesolve DA. and Blaeo·tron TA.
DL2416T
2-30
SIEMENS
DL 3416
.225" Red, 4-Digit 16-Segment Plus Decimal
ALPHANUMERIC Intelligent Display®
With Memory/Decoder/Driver
Package Dimensions in Inches (mm).
FEATURES
ltURANCE:
.0.225" x 0.192" Magnified Monolithic Character
• Wide Viewing Angle, X Axis ±45°, Y Axis ±55°
• Close Vertical Row Spacing, 0.8" centers
• Rugged Solid Plastic Encapsulated Package
• Fast Access Time, 300 ns
• Full Size Display for Stationary Equipment
• Built-in Memory
• Built-In Charscter Generstor
• Built-In Multiplex and LED Drive Circuitry
• Each Digit Independently Addressed
• Independent Cursor Function
• 17th Segment for Improved Punctuation Marks
• Memory Clear Function
• Display Blank Function, for Blinking and Dimming
• End-8tackable, 4-Character Package
• Intensity Coded for Display Uniformity
• Extended Operstlng Tempersture Range:
-40°C to +85°C
• Wave Solderable
• 100% Burned In and Tested
• Superior ESD Immunity
.xx •.01(.25)
.xxx·.0051.127)
DESCRIPTION
The DL 3416 is a four digit display module having 16
segments plus decimal and a built-in CMOS integrated
circuit.
The integrated circuit contains memory, ASCII ROM
decoder, multiplexing circuitry, and drivers. Data entry is
asynchronous and can be random. A display system can be
built using any number of DL 3416s since each digit of any
DL 3416 can be addressed independently and will continue
to display the character last stored until replaced by another.
System interconnection is very straightforward. The least
significant two address bits (Ao, A1) are normally connected
to the like named inputs of all DL 3416s in the system. With
four chip enables four DL 3416s (16 characters) can easily
be interconnected without a decoder.
Alternatively, one-of-n decoder IC's can be used to extend
the address for large displays.
Data lines are connected to all DL 3416s directly and in
parallel, as is the write line (WR). The display will then
behave as a write-only memory.
The cursor function causes all segments of a digit position
to illuminate. The cursor is not a character, however, and
upon removal the previously displayed character will
reappear.
All products are 100% burned-in and tested, then subjected to out-going AQL's of .25% for brightness matching,
visual alignment and dimensions, .065% for electrical and
functional.
2-31
Maximum Ratings
TOP VIEW
Supply Voltage Vcc ............... - 0.5 V to + 6.0 Vdc
Voltage, Any pin Respect
.
to GND .................. -0.5 V to (Vcc +0.5) Vdc
Operating 'Temperature .. : ............ -40°C to +85°C
Storage Temperature ............... -40°C to + 100°C
Relative Humidity (non condensing) @85°C ......... 85%
Maximum Solder Temperature, 1.59 mm (0.063")
below Seating Plane, t<5 sec ................. 260°C
tttt=
I
Pin
1
2
3
4
5
Optical Characteristics
Spectral Peak Wavelength. . . . . . . . . . . .. . . . . 660 nm typo
Magnified digit size ......................225" X .192"
Time Averaged Luminous Intensity
(100% brightness,
8 segments/digit,Vcc =5 V) ......... 0.5 mcd/digit min.
......... 1.0 mcd/digit typo
LED to LED Intensity Matching ............. 1.8: 1.0 max.
Device to Device Intensity Matching (one bin) . 1.5:1.0 max.
Bin to Bin Intensity Matching ............ , .. 1.9:1.0 max.
Viewing Angle (off normal axis)
Horizontal ................................. ±40o
Vertical ........... :: ...................... ±55°
2'3
'"
5
b
1
8
9
1011
Function
Pin
CEl Chip Enable
CE2 Chip Enable
CE3 Chip Enable
CE4 Chip Enable
CLR Clear
.
12
13
14
15
16
17
·18
19
20
21
22
vec
6
7
8
9
10
11
AO Digit Select
A 1 Digit Select
WRWrite
CU Cursor Select
CUE Cursor Enables
Function
l
GND
N/C
B[ Blanking
N/C
DO Data Input
.01 Data Input
02 Data Input
03 Data Input
04 Data Input
05 Data Input
06 Data Input
TIMING CHARACTERISTICS
WRITE
CYCLE
WAVEFORMS
CEI,CE2
C'E3. CE4
CD
I - - T C E •. - - , TCEH'I-
=x1.:::==
Af/J, AI
J
TWoC= TW
:J
TIMING MEASUREMENT
VOLTAGE
_ _ TAH:J
3.
X'i
D0-06.
x=
.1
TAS -'-
To.
>c
TOH~
-'
=x=x:
-
LEVELS
4 VOLTS
2 VOtTS
o VOL T8
DC CHARACTERISTICS
-40°C
Parameter
.Min.
+25°C
Typ.
100
Max.
130
Icc Cursor(1. 2)
140
Icc Bhink(1)
2.0
IlL (all inputs)
80
Icd1~.4. Digits on
Min •
+85°C
Min.
Typ.
70
Max. Units
100
mA
Conditions
Typ.
85
Max.
115
170
120
150
100
130
mA
Vcc=5 V
5.0
1.5
4.0
1.0
2.7
mA
Vcc=5 V, BL=0.8 V
180
60
160
45
90
p.A
VIN=0.8 V, Vcc=
5.0 V
V
Vcc=5 V±0.5 V
0.6
V
Vcc=5 V±0.5 V
Vcc=5 V
10 segments/digit
2.7
2.7
2.7
0.6
0.6
Notes:- 1. Measured "at 5 sec.
2. 60 sec. max. duration.
DL 3416
2-32
AC CHARACTERISTICS Guaranteed Minimum TIming Parameters @4.5 V::sVcc::s5.5 V
Symbol
-40°C (ns)
+25°C (ns)
+85°C (ns)
Chip Enable Set Up TIme
Parameter
TCES
175
275
375
Address Set Up Time
TAS
175
275
375
Cursor Set Up Time
Tcus
175
275
375
Chip Enable Hold Time
TCEH
25
25
75
Address Hold Time
TAH
25
25
75
TCUH
25
25
75
75
Cursor Hold Time
Write Delay Time
Two
50
50
Write Time
Tw
125
225
300
Data Set Up Time
Tos
100
150
225
25
75
TOH
25
Clear(3)
TClA
15 ms
15 ms
16 ms
Access TIme(2)
TACC
200
300
450
Data Hold Time
Notes: 1. VcC=4.S V is worst case, all timing parameters improve as Vee increases.
2. Access lime Tpec=TAS+TDH
3. Clear timing in miliseconds.
LOADING DATA
For those users not requiring the cursor, the cursor enable
Signal (CUE) may be tied low to disable display of the
cursor function. A flashing cursor can be realized by simply
pulsing CUE. If the cursor has' been loaded to any or all
positions in the display, then CUE will control whether the
cursor(s) or the characters appear. CUE does not affect the
contents of cursor memory.
Setting the chip enable (CE1, CE2, CE3, CE4) to their true
state will enable loading. The desired data code (00-06)
and digit address (Ao, A 1) should be held stable during the
write cycle for storing new data.
Data entry may be asynchronous and random. (Digit 0 is
defined as a right hand digit with A1 =Ao=O.)
LOADING CURSOR STATE TABLE
Clearing of the entire internal four-digit memory can be accomplished by holding the clear (CLR) low for one complete
display multiplex cycle, 15 mS minimum. The clear function
will clear both the ASCII RAM and the cursor RAM. Loading
an illegal data code will display a blank.
I [ ce1CE2ffifficUE
""
""
"
"
"
"
H
TYPICAL LOADING DATA STATE TABLE
Br'ce1 Cf2ffiffi CUE W WR" ear
Al AD
H
D6 D5 D4 D3 02 D1 DO
3
DIGIT
2 1
G
R
,,
,,
.x x x x x x x
,
x x x x x x
,, , ,, , ,, ,
, ,
"
"
," ,, ,, ,, ,"" ,, ,,"" ,,
"" "" "" ,, , , " ,
"
•
"
, , " " ""I ,I ,I ,I "I "I
I, I uI
" , , ,
" "
"
x
"""
H
H
H
H
, ,
X
X
X
X
X
H
H
X
H
X
X
X
X
X
X
X
H
X
X
X
X
X
X
H
X
X
X
X
X
H
X
X
X
X
H
H
H
H
H
H
H
H
PREVIOUSLY LOADED DISPLAY
X
X
X
X. X
X X
H
H
X
H
H
X
H
X
X
X
X
X
X
X
X
X
X
X
X
X
H
X
X
X
X
X
R
R
G
G
G
G
G
G
H
R
R
R
R
R
E
E
E
E
E
E
E
U
0
X
X
X
X
""
""
x"
""
"
"x
H
" "
X
X
X
X
,,
,,
,
,
X
X
X-OON'TCARE
V
X
X
,
W WR" eur
X
X
,, " ,, ,"," ""
,, "" ,, ,, "
, ,"" , , ""
, ," , ," "
"
H
X
X
H
X
"
X
H
"
., AD
06 05 04 03 02 Df DO
3
DIGIT
1
2
·· .
WI ~1~1~1~1~lm
PREVIOUSLY LOADED DISPLAY
DISPLAY PREVIOUSLY STORED CURSORS
DISABLE CURSOR DISPLAY
".1" II xlxlxlxlxlxl'
DISPLAY STORED CURSORS
••
• /ill
/ill. III
III
••
•
E
E
E
E
E
E
E
E
0
A
A
R
R
III
III
/ill
/ill
III
/ill
III
III
III
A
A
R
R
III III
DISPLAY BLANKING
V
V
V
Blanking the display may be accomplished by loading a
blank or space into each digit of the display or by using the
(BL) display blank input.
E
E
X-DON'T CARE
Setting the (BL) input low does not affect the contents of
either data or cursor memory. A flashing display can be
realized by pulsing (BL). A flashing circuit can be constructed using a 555 astable multivibrator.
LOADING CURSOR
Figure 1 illustrates a circuit in which varying R1 (100K-10K)
will have a flash rate of 1 Hz-10 Hz.
X
X
X
X
X
H
X
X
X
H
BLANK DISPLAY
CLEARS CHARACTER DISPLAV
SEe CHARACTER CODE
X
G
E
SEE CH:E;ACTU
The display can be dimmed by pulsing the (BL) line at a
frequency sufficiently fast to not interfere with the internal
clock. This clock frequency may vary from 200 Hz to 1.3 Hz.
The dimming signal frequency should be 2.5 Hz or higher.
Dimming the display also reduces power consumption.
Setting the chip enables (CE1, CE2, CE3, CE4) and cursor
selec~) to their true state will enable cursor loading. A
write (WR) pulse will now store or remove a cursor into the
digit location addressed by Ao, A 1; as defined in data entry.
A cursor will be stored if 00=1; and will be removed if
00=0. Cursor will not be cleared by the CLR signal. The
cursor J9J) pulse width should not be less than the write
pulse (WR) width or erroneous data may appear in the
display.
An example of a simple dimming circuit using a 556 is
illustrated in Figure 2. Adjusting potentiometer R2 will dim
the display through frequency modulation (2.5 KHz to
4.4 KHz). Adjusting potentiometer R3 will dim the display by
increasing the negative pulse width (10% to 50%).
OL 3416
2-33
FIGURE 1. FLASHING CIRCUIT FOR DL 3416
USING A 555
FIGURE 2. DIMMING CIRCUIT FOR DL 3416
USING A 556
Vee
1st
1
*10~F!
-2
vee
R3
750 KII
Rl
10 KO
7
r-N.G.
13
555
6
3
DUTPUT
vee
R2
110 KII
12
Ne
55&
5
,-i
Rl
11
Vee
10
Vee ~G2
el
To jj[
on DL-3416 ..
Ne
·7
C1='-1 pF
C2=10 pF
C3=1 pF
Typical Schematic for 16 Digits.
Internal Block Diagram
ii
DO-DL
eEl
fill
en
I[
...
CEi
Ci4
a;
cu£
m
.
Cli
00
""
.
CUI
A,
>
~ ~
~
~
..
»
~
A,
A,
1111
Typical Schematic 10. 16 Digits
CHARACTER SET
00
D1
02
D6
os D4
D.
L
L
L
L
0
L H L 2
L H H •
n
1I
H
L
L
L
,
1
L
H
L
L
2
"
,,
H L L 4
OJ ,CJ,
H L H 5
,0
.-,
LY
t
--0
_u
3
L
L
H
L
4
jj
9j
"'J
U
H
H
L
L
J
r-
L_
F? 5
L
H
H
L
6
H
H
7
L
L
L
H
8
~y
/
/
H
L
H
L
5
s:s
H
L
\
H
L
L
H
9
\
/
L
H
H
H
L
H
L
H
•
A
*
+
L
L
H
H
C
H
L
H
H
L
H
H
H
H
H
H
H
D
E
F
..
/
, 5 uc , B JD -- - !- ----n
,C- G ,--,' , .L,- LJ H L_, ,V,,
J.J f
")
/
/
I
,
, LJ, , " vv
T
I
V
\/
/\
,
V
-7
1._
I
r
L
\
-,
\
-'
/
\
.l
/
,
-J
1\,
n
,v
lJ
/\
--
ALL OTHER CODES DISPLAY BLANK
OL3416
2-34
DESIGN CONSIDERATIONS
For further information refer to Appnotes 18 and 19 in the
current Siemens Optoelectronic Data Book.
For ideas on design and applications of the DL 3416 utilizing
standard bus configurations in multiple display systems. or
parallel 1/0 devices. such as the 8255 with an 8080 or
memory mapped addressing on processors such as the
8080. Z80. 6502. 8748. or 6800 refer to Appnote 14. and 20.
in the current Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally. 22-pin DIP sockets .600" wide
with .100" centers work well for single displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package align·
ment. Socket manufacturers are Aries Electronics. Inc..
Frenchtown, NJ; Garry Manufacturing. New Brunswick. NJ;
Robinson-Nugent. New Albany. IN; and Samtec Electronic
Hardware. New Albany. IN.
ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
It is highly recommended that the display and the
components that interface with the display be powered by
the same supply to avoid logic inputs higher than Vee.
Additionally. the LEOs may cause transients in the power
supply line while they change display states. Common practice is to place .01 "F capacitors close to the displays across
Vee and GND. one for each display. and one 10 "F
capacitor for every second display.
OPTICAL CONSIDERATIONS
The .225" high characters of the DL 3416 allow readability
up to twelve feet. Proper filter selection will allow the user to
build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first
considering the ambient lighting environment.
ESD PROTECTION
The metal Gate CMOS IC of the DL 3416 is extremely
immune to ESD damage. However, users of these devices
are encouraged to take all the standard precautions. normal
for CMOS components. These include properly grounding
personnel, tools. tables. and transport carriers that come in
contact with unshielded parts. If these conditions are not. or
cannot be met. keep the leads of the device shorted
together or the parts in anti-static packaging.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DL3416 is a
standard red display and should be matched with a long
wavelength pass filter in the 600 nm to 620 nm range. For
display systems of multiple colors (using other Siemens'
displays). neutral density grey filters offer the best
compromise.
SOLDERING CONSIDERATIONS
The DL 3416 can be hand soldered with SN63 solder using
a grounded iron set to 260°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin· based RMA flux without alcohol can be used.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.
Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C. for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.
Optimal filter enhancements for any condition can be gained through the use of circular polarized. anti·reflective.
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%.
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.
Several filter manufacturers 9upply quality filter materials.
Some of them are: Panelgraphic Corporation. W. Caldwell.
NJ; SGL Homalite, Wilmington. DE; 3M Company. Visual
Products Division. St. Paul. MN; Polaroid Corporation,
Polarizer Division. Cambridge, MA; Marks Polarized Corporation. Deer Park. NY; Hoya Optics. Inc .• Fremont. CA.
For faster cleaning. solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed.
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane). TA. 111 Trichloroethane. and
unheated acetone.
One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products. Batavia, IL; Nobex
Components. Griffith Plastic Corp.• Burlingame, CA; Photo
Chemical Products of California. Santa Monica. CA; I.E.E.Atlas. Van Nuys. CA.
Unacceptable solvents contain alcohol. methanol. methylene
chloride. ethanol. TP35, TCM. TMC. TMS+. TE. and TES.
Since many commercial mixtures exist. you should contact
your solvent vendor for chemical composition information.
Some major solvent manufacturers are: Allied Chemical Cor·
poration. Specialty Chemical Division. Morristown. NJ;
Baron·Blakeslee. Chicago. IL; Dow Chemical. Midland. MI;
E.I. DuPont de Nemours & Co.• Wilmington. DE.
Refer to Siemens Appnote 23 for further information.
DL3416
2-35
..
"Eo!!
"I
~
~c
-""
~i
is
SIEMENS
HIGH EFFICIENCY REDDLO
'. GREEN DLG
4135
4137
.43" SINGLE CHARACTER
5 X 7 DOT MATRIX Intelligent Display®
WITH MEMORY/DECODER/DRIVER
Package Dimension in Inches (mm)
.14
MIN.
(3.56)
J
.looTYR
(2.54)
r-
' - -_ _ "DEVICE
MARKING
BEGINS
OVER PIN 1
.235
(5f!
.430
0.18 ± .02
1~.571
~O.92)
1.511
.loo
1.00
MAX.
1
~L~H-_......I
L
~.54)
f8AOOE
CODE
WMINOUS
INTENSITY
CODE
.065 lYP
(.165)
.012
(.30)
TOLERANCE:
FEATURES
.XXX. - .010 (.254)
• 0.43" High, Dot Matrix Character
• Wide Viewing Angle, ±7S·
• 96 Character ASCII Format - Both Upper Case and
Lower Case Characters
• Fully Encapsulated, Rugged Solid Plastic Package
• Built-In Memory
• Built-In Character Generator
• Built-In Multiplex and LED Drive Circuitry
• Built-In Lamp Test
• Intensity Control (4 levels)
• Microprocessor Bus Compatible
• Intensity Coded for Display Uniformity
• Single S-volt Power Supply Required
• X/Y Stackable
• Available in High Efficiency Red and Green
DESCRIPTION
TheDLO 4135/DLG 4137 are single digit 5 x 7 dot matrix
Intelligent Display devices with 0.43" character height.
The built·in CMOS integrated circuit contains memory,
ASCII character generator, LED multiplexing and drive
circuitry; thereby eliminating the need for additional
circuitry. They will display the 96 ASCII characters.
These devices are TTL and microprocessor compatible and
offer the possibility of cascading the displays, allowing for
multi·character messages. These displays were designed
for viewing distances of up to 20 feet. They require a single
5-volt power supply and parallel ASCII input.
All products are 100% burned-in and tested, then sub·
jected to out-going AQL's of .25% for brightness matching,
visual alignment and dimensions, .065% for electrical and
functional.
Important: Refer to Appnote 1e, "Using and Handling
Intelligent Displays". Since this is a CMOS device, normal
precautions should be taken to avoid static damage.'
2-36
TIMING PARAMETERS @25°C, Vcc =5.0 V ±0.5 V
Maximum Ratings
Vee Range (max.) .................. . . .. -0.5 to 7.0 V
Voltage, Any Pin
Respect to GND .............. - 0.5 to Vcc + 0.5 Vdc
Operating Temperature. . . . . . . . . . . . . . . -40°C to + 85°C
Storage Temperature ................ -40 0 C to + 100°C
Maximum Solder Temperature 0.063"
above Seating Plane, t<5 sec ................ 260°C
Relative Humidity @85°C (non-condensing) ......... 85%
Symbol
Parameter
TCES
Tos
Data Set-Up
100
Tw
Write Pulse
120
TOH
Data Hold
20
TCEH
Chip Enable Hold
TACC
Access Time
Optical Characteristics (Typical) @25·C
Time Average Luminous Intensity/Dot @5 V
DLO 4135 .............................. 1500 "cd
DLG 4137 .............................. 1500 "cd
Digit Size .................................... 0.43"
Viewing Angle (Note 1) ........................ ± 75°
Spectral Peak Wavelength
DLO 4135 ............................. , . 630 nm
DLG 4137 ............................... 565 nm
Dot to Dot Intensity Ratio ...................... 1.8: 1.0
Units (n5)
Chip Enable Set·Up
,
CE
10
20
150
rACC
I{
~
-
,
J
TCE.
~Tw_
WE
-
t
DATA
f-
I
~
J
TeES l+rDS
,,---'~
:'-TD. __
DC CHARACTERISTICS
-40·C
Parameter
Min.
+25·C
Max.
Typ.
Max.
Units
180
100
140
85
115
mA
Vcc=5 V
BLO=BL1 =5 V
5.5
1.5
4.0
0.8
3.5
mA
Vcc=WR=5.0 V
BLO=BL1 =0 V
50
100
JlA
VIN =0.8 V
Vcc=5.0 V ±0.5 V
Max.
Icc (20 dots on)
135
Icc Blank
2.0
IlL (all inputs)
VIH
Min.
25
2.0
5.0
5.5
0.8
4.5
5.0
5.5
4.5
5.0
Conditions
V
Vcc=5.0 V ±0.5 V
0.8
V
Vcc =5.0 V ±0.5 V
5.5
V
2.0
0.8
4.5
Min.
2.0
VIL
Vcc
+85·C
Typ.
Typ.
Notes:
1. "Off Axis Viewing Angle" is here defined as: "the minimum angle in any direction from the normal to the
display suriace at which any part of any dot in the display is not visible."
2. This display contains. CMOS Integrated circuit. Normal CMOS handling precautions should be
taken to avoid damage due to high static voltages or electric Ileids. See Appnote 18.
Unused inputs must be tied to an appropriate logic voltage level (either V+ or GNO).
Vcc~5.0 VOC ±10%.
5. Clean only in water, isopropyl alcohol, freon TF, or TE (or equivalent).
3.
4.
2-37
OLO 4135/0LG 4137
LOADING DATA
LAMP TEST
loading data into the OlO 4135/0lG 4137 is straightforward. Chip enable (CE)should be present and
stable during a write pulse (WR). Parallel data information should be stable for the minimum time (fW) and
held for TOH after ,write has gone high. No synchronization is necessary and each character will continue to
be displayed until it is replaced with another. Multiple
displays may be stacked together with only an additional decoder IC for chip enable decoding.
The lamp test (lT) when activated causes all dots on
the display to be illuminated at 'h brightness. The
lamp test function is independent of write~) and
the settings of the blanking inputs (BlO • Bll ).
This convenient test gives a visual indication that all
dots are functioning properly. lamp test may also be
used as a cursor function or pointer which does not
destroy previously displayed characters.
Note 6: Either BlO or BL1 should be held high for display to light up.
DIMMING AND BLANKING THE DISPLAY
Brightness
level
Blank
'h Brightness
V, Brightness
-BlI
a
a
1
1
Full Brightness
DATA LOADING EXAMPLE
WR
BLO
Bll
H
X
H
X
X
X
X
CE
Bla
a
I
a
I
,
D6
X
H
X
X
X
X
L
L
H
X
X
X
X
X
X
L
X
X
X
X
H
H
H
L
L
L
L
L
H
D5
D4
DATA INPUT
D2
D3
LT
Dl
DO
X
X
X
X
X
X
BLANK
X
X
X
LMP TEST
L
L
H
A
Ne
L
L
H
H
H
H
H
H
L
L
H
L
r
L
L
H
H
H
L
H
H
L
L
H
H
3
L
L
H
H
H
L
H
L
H
L
H
H
+
x = Don't Care
NC = No Change
OLO 413510lG 4137
2-38
TOP VIEW
PIN FUNCTIONS
.
·00000"
16
15
14
DOOOOOD
13
00000 "
2
3
4
5
6
7·
8·
00000
00000·
00000.
00000
PIN
LT
12
11
• 10
• 9
FUNCTION
PIN
LAMP TEST
9
DO
DATA LSB
FUNCTION
WR
WRITE
10
D1
DATA
BL1
BRIGHTNESS
11
D2
DATA
BLO BRIGHTNESS
12
D3
DATA
NO PIN
13
D4
DATA
NO PIN
14
D5
DATA
CE
15
D6
DATA MSB
16
+ VCC
L
H
L
H
H
H
H
H
L
L
H
8
9
A
B
CHIP ENABLE
GND
C'~I
-.
.~c:a
""
=,.,
.so!!
c ...
is
CHARACTER SET
D0
L
D1
D2
D3
D695D4HEX
L L L
L
L
L
H
L
L
L
L
H
L
L
H
H
L
L
0
1
2
3
H
L
H
L
L
H
L
5
L
4
L
H
H
L
6
H
H
H
L
7
L
L
L
L
H
L
L
H
H
C
H
L
H
H
D
L
H
H
H
E
H
H
H
H
F
0
THESE CODES DISPLAY BLANK
t
L H 1
L H L
2
L H H 3
H L L
4
H L H 5
HH L
6
HHH
7
.. ·:5:-. :.:.... :.:. ..:: .. .. ·...... ..
.
: : -e-e.
.....
.....
..
·
.....
..
.
....
.
.
·
..
....
....
.
..
.
.: .-!. !:::-........... ...:: :·.....: :...: ·-:-.::. ..: .-: .... ...·...
.... as. ..•....: .........
.i.·-!
. .... :.- .....
..... ...-..: .... .. .··· ......
.... ··.· ·.
..... .... :..... ....: ...:-.:::
.
...
.
..
·
····.....·..
. .. ... ... ·..··....·· . . ..
......::. ... : .....:•••..:.........: :...:..........
.:•• . :.....~:....
·
·
..
.. . r:·~ .....· .....
:.:.: i-··: .i..: :.....i..: i.... : .....i··:!. ...·· ·..·. ·........
... ...
i::::
f··:
i::::
:
:::.
··r
i
!:
..
:
:!.:.~:. :::.::: :e.:._: .:••••:.:.: · .··. ·· .··..
: :.:.: : e••••••: i :...: _:e
.... .......... ... ... ..: ... :-.. ......·· . ..· ..· ···... ..·· ......· ... ...
:!. ::
......
........ ... i... :...:! I:::: -i·· ....
...: .I· I. ...·· ·..·. i·::. .··.. .I..! ..
. ...:
·
..
.........
....
.. ....
.... ·1.··. i....! i...: !.:.! .:.:. :···i .:::. ··
.......
...
·
~ •••• .....
·
.. .....
· . ... ..... ··. .·· :::::
e
·
16 Digits Interconnection
+5
I
GND
I I I
I I I
A0- A3
I Ij Ij
j
I I I
I I I
16
CE
OLD 413510LG 4137
2-39
SIEMENS
HIGH EFFICIENCY RED
GREEN
OLO 7135
DLG 7137
.68" SINGLE CHARACTER
5 X 7 DOT MATRIX Intelligent Display ®
WITH MEMORY/DECODER/DRIVER
Package Dimensions in Inches (mm)
DLO 7135
IDLERANCE:
FEATURES
.XX = ±.02 (.51)
.XXX = ± .010 (.254)
.050
(1.27)
I
.50 RE
J~-.l0)
Z
600
i-(i5.24r-i
DESCRIPTION
• 0.6S" High, Dot Matrix Character
The DLO 7135/DLG 7137 are single digit 5 x 7 dot matrix
Intelligent Display devices with 0.68" character height.
The built-in CMOS integrated circuit contains memory,
ASCII character generator, LED multiplexing and drive
circuitry; thereby eliminating the need for additional
circuitry. They will display the 96 ASCII characters.
• Wide Viewing Angle, ±75°
• 96 Character ASCII Format - Both Upper Case and
Lower Case Characters
• Fully Encapsulated, Rugged Solid Plastic Package
• Built-In Memory
• Built-In Character Generator
• Built-In Multiplex and LED Drive Circuitry
.These devices are TIL and microprocessor compatible and
offer the possibility of cascading the displays, allowing for
multi-character messages. These displays were designed
for viewing of up to 30 feet. They require a single 5-volt
power supply and parallel ASCII input.
• Built-In Lamp Test
• Intensity Control (4 levels)
All products are 100% burned-in and tested, then subjected to out-going AQL's of .25% for brightness matching,
visual alignment and dimensions, .065% for electrical and
functional.
• Microprocessor Bus Compatible
• Intensity Coded for Display Uniformity
• Single S-volt Power Supply Required
• XIV Stackable
• Available in High Efficiency Red and Green
Important: Refer to Appnote 18, "Using and Handling
Intelligent Displays". Since this is a CMOS device, normal
precautions should be taken to avoid static damage.
2-40
TIMING PARAMETERS @25°C, Vcc~5.0 V ±0.5 V
Maximum Ratings
Vec Range (max.) ...................... -0.5 to 7.0 V
Voltage, Any Pin
Respect to GND .............. -0.5 to Vcc +0.5 Vdc
Operating Temperature ............... - 40°C to + 85 °C
Storage Temperature ............... -40°C to + 100°C
Maximum Solder Temperature 0.063"
below Seating Plane, 1<5 sec ................. 260°C
Relative Humidity @85°C (non-condensing) ......... 85%
Symbol
Parameter
TCEs
Chip Enable Set-Up
Units (ns)
TDs
Data Set-Up
100
Tw
Write Pulse
120
TDH
Data Hold
20
TCEH
Chip Enable Hold
TACC
Access Time
10
20
150
Optical Characteristics (Typical) @25"C
Time Average Luminous IntensitylDot @5 V
DLO 7135 .............................. 1500 !-Icd
DLG 7137 .............................. 1500 !-Icd
Digit Size .................................... 0.68"
Viewing Angle (Note 1) ........................ ± 75°
Spectral Peak Wavelength
DLO 7135 ............................... 630 nm
DLG 7137 ............................... 565 nm
Datto Dot Intensity Ratio ...................... 1.8: 1.0
,
CE
TAa:
I
- -
~
J
,
TeEH
!-TWR-
WE
-
TefS
f.Tos
~
DATA
I(
I
~
,'rI~
_TOH ......
DC CHARACTERISTICS
-40"C
Parameter
Min_
+25"C
Typ.
Max.
Icc (20 dots on)
155
Icc Blank
2.0
Min.
+85"C
Min.
Conditions
Typ.
Max.
Typ.
Max.
Units
200
125
160
105
135
mA
Vcc~5 V
5.5
1.5
4.5
0.8
3.5
mA
Vcc~WR~5.0 V
BLO~BLl ~O V
50
100
~
VIN=0.8 V
VcC~5.0 V ±0.5 V
BLO=BL1=5V
IlL (all inputs)
VIH
25
2.0
2.0
VCC
4.5
5.0
5.5
0.8
4.5
V
Vcc~5.0 V ±0.5 V
0.8
V
Vcc~5.0 V ±0.5 V
5.5
V
2.0
0.8
VIL
5.0
5.5
4.5
5.0
Notes:
1. "Off Axis Viewing Angle" is here defined as: "the minimum angle in any direction from the normal to the
display surlaee at which any part of any dot in the display is not visible."
2. This display contains a CMOS Integrated circuit. Normal CMOS handling precautions should be
taken to avoid damage due to high static voltages or electric lIelds. See Appnote 18.
3. Unused inputs must be tied to an appropriate logic voltage level (either V+ or GND).
4. Vcc =5.0VDC ±10DAl.
5. Clean only in water. isopropyl alcohol. freon TF. or TE (or equivalent).
_ OLO 1135/0LG 1131
2-41
LOADING DATA
LAMP TeST
Loading data into the OLO 7135/0LG 7137 is straightforward. Chip enable (CE) should be present and
stable during a write pulse (WR). Parallel data information should be stable for the minimum time (TW) and
held for TOH after write has gone high. No synchronization is necessary and each character will continue to
be displayed until it is replaced with another. Multiple
displays may be stacked together with only an additional decoder IC for chip enable decoding.
The lamp test (LT) when activated causes all dots on
the display to be illuminated at 'h brightness. The
lamp test function is'independent of write~) and
the settings of the blanking inputs (BLO • BL 1 ).
This convenient test gives a visual indication that all
dots are functioning properly. Lamp test may also be
used as a cursor function or pointer which does not
destroy previously displayed characters.
Note 6: Either Bla or Bl1 should be held high for display to light up,
DIMMING AND BLANKING THE DISPLAY
Brightness
Level
-BLO
BLl
0
0
1
1
Blank
V, Brightness
'12 Brightness
Full Brightness
0
1
0
1
DATA LOADING EXAMPLE'
CE
WR
BLO
Bll
H
X
H
LT
D6
D5
D4
X
H
X
X
DATA INPUT
D2
D3
01
DO
X
X
X
X
Ne
X
X
L
L
H
X
X
j
X
X
X
X
X
BLANK
X
X
X
X
L
X
X
X
X
X
X
X
LMP TEST
L
L
H
H
H
H
L
L
L
L
L
H
A
L
L
H
H
H
H
H
H
L
L
H
L
r
L
L
H
H
H
L
H
H
L
L
H
H
3
L
L
H
H
H
L
H
L
H
L
H
H
+
= Don't Care
NC = No Change
x
OLO 7135iDLG 7137
2-42
TOP VIEW
Pin
PIN 1 INDICATOR
Function
2
3
1 000000014
2 000000013
3 000000 0 12
4 000000011
5 000000010
60000000 9
7 0 00000 0 B
Pin
VCC
IT lamp test
CE Chip enable
WR Write
Bll Brightness
BlO Brightness
GND
1
4
5
6
7
Function
14
13
12
11
10
9
8
D6
D5
D4
D3
D2
Dl
DO
Data
Data
Data
Data
Data
Data
Data
input MSB
input
input
input
input
input
input lSB
CHARACTER SET
L L L
D0 L
H
01
02
03
HEX
L
L
L
L
Ii)
L
H
L
L
L
1
L
2
H
H
L
L
3
L
H
L
H
L
H
H
H
L
H
H
H
L
L
L
L
4
5
6
7
L
L
L
H
L
H
L
-H
H
L
L
L
H
8
H
H
H-
9
A
B
L
L
H
H
L
H
H
C
H
H
H
H
H
H
H
o
E
F
L
H
0
THESE CODES DISPLAY BLANK
L L H 1
L H L
2
L HH 3
H L L
4
HLH 5
.: .: .....
... .... ...:
...... ..............
...
. . .
. .
:w- ... ... .
-i!!- ••!..
.....
..
.
....
.
..
..
....
....
.
.
..
• :. •
.
.
.
....
..
.
: ._! ::::- •••• •••:: :w.w: :•• W: :: ..
.:.-1.... -:.. ·••••...: •.••....
. .... . ..
... ..... .. ..::
....
..... .i. I •••• • ••••. .....
: •••••••••• :
••••••••••
::.e
......
....
::
.....
....
·.. ..... .....
... ......
........
...
.
.
.......
...
·
..
. J .... ....... ...... ....
:...: i i···: :.... ··i .! :: !!. i :...: :....: -.-:::
=.... ...
.... . • ::: :...:.... . • : .... ...
"i .
..... :.:.
: ....... : ..... : .......... ...
..:: ......·. ... ... .... ... ..... ....... . . . · . .. .................
....
....::.. ..: ...:! i····:
... -i.·' ....
...!:.: :: :i. ..:; ::.... J. .I:::
..........
.::..
...:
......
.
.
.
.
.. .. .. . ..... ··
..
.:. . ...
.... ··.
.:.:.
.:... ...::.. ........ =.. I....::..... ::::
...:.:. ····1
... ....
-i··: :.... -i··:
i····
..:::.::_ :.....
•••: : ••• :
: : :..
. ........... ....... ........ ..
... .. .. ....
=:..::.. : .... :
:
: ••: : •••:
w
W
•• :
'.
=
HH L 6
H H H
=... :
7 :••••••••: :•••••••••
16 Digits Interconnection
+5
GND
BL0-BN~
Df/J-D6 '--tT-i 11
WR~
AIIl- A3
II
Dl5
I
I I I
I I I I
I I I
J J 1
I I I I
00
111
16
CE
OLO 7135/0LG 7137
2-43
SIEMENS
OLR 1414
HIGH EFFICIENCY RED OLO 1414
GREEN DLG 1414
RED
.145" 4-Digit, Dot Matrix
ALPHANUMERIC Intelligent Display@)
With Memory/Decoder/Driver
Package Dimensions in Inches (mm)
0920
(234)
,0220
(,56)
i
'I (62~~1 I
012(30) ± 002(05)
REF
ir~~
800
12P
""
I
'(Y
210L
(5,33)
, TOLERANCE
J(J(J( a
±,02 (.51)
FEATURES
DESCRIPTION
• Dot Matrix Replacement for DL 1414T
• 0.145" High Dot Matrix Character
• 128 Special ASCII Characters for English,
German, Italian, Swedish, Danish, and
Norwegian Languages
• Wide Viewing Angle, X Axis ±SO·,
Y Axis ±7S·
• Close Vertical Row Spacing, 0.800 n
• Fast Access Time, 110 ns at 2S·C
• Compact Size for Hand Held Equipment
• BUilt-in Memory
• Built-in Character Generator
• Built-in Multiplex and LED Drive Circuitry
• Direct Access to Each Digit Independently and
Asynchronously
• TTL Compatible, S-Volt Power
• Low Power Consumption, Typically 20 mA
per Character
'
• Intensity Coded for Display Uniformity
• Extended Operating Temperature
Range: -40·C to +8S·C
• End-Stackable, 4-Character Package
• 100% Burned In and Tested
The DLRIDLO/DLG 1414 is a four digit, 5x7 dot matrix display
module with a built-in CMOS integrated circuit. This display is a
drop-in dot matrix replacement for the segmented DL 1414T.
The integrated circuit contains memory, ASCII ROM decoder,
multiplex circuitry and drivers. Data entry is asynchronous and
can be random. A display system can be built using any
number of DLRIDLO/DLG 1414s since each digit can be
addressed iridependently and will continue to display the
character last stored until replaced by another. System interconnection is very straightforward. The least significant two
address bits (Ao, A,) are normally connected to the like-named
inputs of all displays in the system. Data lines are connected to
all DLRIDLD/DLG 1414s directly and in parallel, as is the write
line (WR). The display then will behave as a write-only memory.
The DLR/DLD/DLG 1414 has several features superior to
competitive devices. 100% burn-in processing insures that the
DLRIDLOIDLG 1414 will function in more stressful assembly
and use environments.
The character set consists of 128 special ASCII characters for
English, German, Italian, Swedish, Danish, and Norwegian.
All products are 100% burned-in and tested, then subjected to
out-going AQL.:s of .25% for brightness matching, visual alignment and dimensions, .065% for electrical and functional.
See Appnotes 18, 19, 22, and 23 for additional information.
2-44
TOP VIEW
Maximum Ratings
DC Supply Voltage ................. -0.5 V to + 7.0 Vdc
Input Voltage Levels Relative
to GND (all inputs) ............ -0.5 V to Vee + 0.5 Vdc
Operating Temperature ............... -40°C to +85°C
Storage Temperature ................ -40°C to + 100°C
Maximum Solder Temperature, .063" (1.59 mm)
below Seating Plane, t<5 sec ................. 260°C
Relative Humidity @ 85°C ....................... 85%
12
11 10 9
8
7
Pin
~
1 2
3 4
5
Function
05 Data tnput
04 Data Input
WRWnte
A 1 Digit Select
AO Digit Select
4
6
Vee
GND
DO Data
01 Data
02 Data
03 Data
06 Data
7
8
9
10
6
11
12
Optical Characteristics
Spectral Peak Wavelength ............. Red 660 nm typo
HER 630 nm typo
Green 565 nm typo
Display Multiplex Rate .................... 200 Hz min.
.
Viewing Angle (off normal axis)
horizontal ................................. ±50o
vertical ................................... ± 75°
Digit Height .............................. 0.145 inch
Time Averaged Luminous Intensity(1)
(100% brightness, Vee~5 Vdc)
Red .............................. 50 !,cd/LED typo
HER . . . . . . . .
. ..... 60 !,cd/LED typo
Green ............................ 70 !,cd/LED typo
LED to LED Intensity Matching ............ 1.8:1.0 max.
LED to LED Hue Matching @Vee~5 V
(Green only) . . . . . . . . . . . . . . . . . . . . . . . .. ± 2 nm max.
TIMING CHARACTERISTICS (Vee
AO. Al
-
Input (LSB)
Input
Input
Input
Input (MSB)
=4.5 V)
"'-TAS-'
...-TAH .....
I
X
00-06
K
2.0 V
0.8V
-
2.0 V
K
I-TD5-
0.8 V
.... TOH ....
2.0V
~
0.8 V
t----Tw-
•
lAce
Note: These waveforms are not edge triggered.
Note: 1. Peak luminous [ntenslty values can be calculated by multiplying
these values by 7.
DC CHARACTERISTICS
-40°C
Parameter
Min.
+25°C
Typ.
Max.
Icc 4 Digits on
20 dots/digit
90
Icc Blank
IlL (all inputs)
30
VIH
2.0
Max.
Typ.
Max.
Units
120
80
105
70
95
mA
Vee~5
2.8
4.0
2.3
3.0
2.0
2.5
mA
Vee~WR~5
VIN~O V
60
120
50
100
40
80
!,A
VIN~0.8 V
Vee~5.0 V
25
2.0
5.0
5.5
Min.
20
4.5
5.0
5.5
4.5
5.0
Conditions
V
V
V
Vee~5.0
V±0.5 V
0.8
V
Vec~5.0
V±0.5 V
5.5
V
2.0
0.8
0.8
4.5
+85°C
Typ.
VIL
Vec
Min.
DLR/DLOIDLG 1414
2-45
AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @Vcc=5 0 V ±O 5 V
Parameter
-40°C (ns)
Symbol
+25°C (ns)
+ 85°C (ns)
Address Set Up Time
TAs
10
10
.10
Data Set Up Time
Tos
20
30
50
Write Pulse Time
Tw
60
70
90
Address Hold Time
TAH
20
30
40
Data Hold Time
TOH
20
30
40
TAcc")
90
110
140
Total Access Time
Note: 1. TAcc~Set Up Time + Write Time+Hold Time.
LOADING DATA STATE TABLE
DIGIT
WR
A1
H
L
L
L
L
L
L
L
L
L
H
H
L
L
X
AO
D6 05 04 03 02 01
PREVIOUSLY LOADED DISPLAY
L
H
L
L
L
H
L
H
H
L
H L
H
L
L
H
L
L
H
H
L
H
H
L
L
L
L
H
H
H
L
L
L
H
L
L
H
L
H L
H H
SEE CHARACTER CODE
X
DO
3
2
1
H
H
L
L
H
H
G
G
G
G
B
B
B
SEE
R
E
Y
R
E
E
U
E
R
U
E
L
U
E
L
E
L
E
E W
L
CHARACTER
SET
0
X = DON'T CARE
TYPICAL INTERCONNECTION FOR 32 DIGITS
v+
.., ... ""
"'-%'0',
°0-.°6
DAT~
A1
,
-,
r
AO
ADORES SA
2_ A :
01601$
DIZ 011
I
J.I
I
I I
00"
....
I
..
Wi
1
ADDRESS
,..""
02(1019
If1 If1 I I I I I I II
II
r--;I--
" ' 3 - 11• 138 ,
A,_C
RITE_G
,,,
~
DLR/DLO/DLG 1414
2-46
BL.OCK DIAGRAM
COLUMNS 0 TO 19
TIMING AND CONTROL LOGIC
ROW DECODER
06
05
D4
D3
02
01
DO
7 BIT ASCII COOE
'"
§
ROM
!l! ~
~ z
'"~
COLUMN ENABLE
LATCHES
AND
COLUMN DRIVERS
COLUMN DATA
128.35 BIT
ASCII
CHARACTER
DECODE
44BO BITS
CHARACTER SET
DO
01
02
03
D6 05 04 H.x
IoSCil
CODE
o
0
0
0
0
0
0
0
0
t
1
I
1
o
o
0
0
2
3
•••• ....-=.:. ......_. ._..
0
J.
o
o
1
o
4
1
0
1
o
0
5
I
I
1
o
0
7
6
o
o
o
I
o
o
o
I
I
I
1
I
o
o
I
I
0
0
o
I
o
I
I
1
o
... .. ... .. ... .. ... ..
8
8
9
C
....::. '. ••••• ..... I:: H::' .::
•.....::! iL.: i::.: :...: :...: : ''; .:r' =::' ::::. =::'
::.:ME
0::':::
••••:
···"r '::=' •
I
1
... ..r:" .....:.: :......: ..... ... .... ...... ... ...... . .....
I.
001
o
1
0
0
.-:"
......:.:......::::
I::''': ...:: :: :: : : : :
1 : ...:
••••
• ••• I I "
:..:: ':' •.:.•
.... ::....:..: I·...:: : ....: ........................ : :'• .:... :
:. :::: .:.. r: •••.
010
•
2
•
I
...
o
I
I
I
I
0 0
0
I
1 0
I
I
1
3
4
5
6
•
•• 'M'·':. .... '.'
'r:' ..:.' ,'.-: : ','
• •
......
•
...
I"
::
,I
.':
I •• :..
: .:::...I.. I. .....
I,• •
,I •
.-:', :
...................
I:
•
••
o·
,I
-',
••
••
••••
•
....
! "i Ii ....:. HI,,'! I.••• ::.. ,,- : ...: : ...!:: ;; ,I ..... D:.' ,,:
::...' J. i........I ...r ....:I •••: i :,..: .... ::
....
: ...... I": :.... "':
r'" !.... :.... : :,. ·i.' i...·· =. :.·1-=. i.·••:. :.-:.
.... .....
• ................ .
:::r·-::::.::::
:::::,::'.: I : : : : :
,
.....
II
•
..... ........................ ,......................
....... .......
.. .. ......1..
... ..•. ...,
': .... ...
:•_1:, ::
I: • : : :: :: :'••••••••
. . . . . . . . . . . ': ••••
•
•
!
: :.:.' i" ....= i :...: " I.'':",: : ::.•• :..
:: ••,!.. M'"!''' :-..... :.. • .: i . ,
.i
._.
.... ..... .......
.........
.... ....... .... .I... •• •• •• •• •......:1 ! .· .....
3'" ..,: .=.
-1 •••••
=: .: . .· .......
7'
• ...
...:r::
: -::...:':" •••....
.::.:
.: 1'..' .... ' ..': ....:
::
.,
... ••
"oL'
• • • • • • • •••
I.:.: •••••
=•• :..
:
:.'
:
....:...:.
•
•
I. :
h
....
...
I::: II :
"
Notes: 1. High = 1 level.
2. Low = 0 leveL
3. Upon power up, the device will initialize in a random state.
DLR/DLO/DLG 1414
2-47
PESIGN CONSIDERATIONS
For details on design and applications of the DLR/DLO/
. DLG 1414 utilizing standard bus configurations in multiple
display systems, or parallel I/O devices, such as the 8255
with an 8080 or memory mapped addressing on processors
such as the 8080, Z80, 6502, or 6800 refer to Appnote 15
in the current Siemens Optoelectronic Data Book.
ELECTRICAL AND MECHANICAL
CONSIDERATIONS
VOLTAGE TRANSIENT SUPPRESSION
For best results power the display and the components that
interface with the display with the same supply to avoid
logic inputs higher than Vcc. Additionally, the LEOs may
cause transients in the power supply line while they change
display states. The common practice is to place .01 I'F
capacitors close to the displays across Vcc and GND, one
for each display, and one 10 I'F capacitor for every second
display.
ESD PROTECTION
The silicon Gate CMOS IC of the DLRIDLOIDLG 1414 is
very strong against ESD damage. It is capable of withstanding discharges greater than 2 KV.·However, take all
the standard precautions, normal for CMOS components.
These include properly grounding personnel, tools, tables,
and transport carriers that come in contact with unshielded
parts. If these conditions are not, or cannot be met, keep
the leads of the device shorted together or the parts in antistatic packaging.
SOLDERING CONSIDERATION
The DLRIDLOIDLG 1414 can be hand soldered with SN63
solder using a grounded iron set to 260°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board ora package surfa:ce temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol cim be. used.'
Wave temperature of 245°C ±5°C with a dwell between
1.5 sec. to 3.0 sec. Exposure to the wave should not
exceed temperatures above 260°C, for 5 seconds at
0.063" below the seating plane. The packages should not
be immersed in the wave.
.
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0:1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
ceptable. Do not use commercial dishwasher detergents.
ac-
For faster cleaning, solvents may be used. Carefully select
any solvent as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at
elevated temperatures. Acceptable solvents are TF(trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated
acetone.(l)·
,
Unacceptable solvents contain alcohol, methanol; methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and
TES. Since many commercial mixtures exist, you should
contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are:
Allied Chemical Corporation, Specialty Chemical Division,
Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow
Chemical, Midland, MI; E.1. DuPont de Nemours & Co.,
Wilmington, DE.
For further information refer to Appnote 18 and 19 in the
current Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display
modules is to use sockets. Standard pin DIP sockets
.600" wide with .100" centers work well for single displays.
Multiple display assemblies are best handled by longer SIP
sockets or DIP sockets when available for uniform package
alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New.Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
OPTICAL CONSIDERATIONS
The .145" high characters of the DLRIDLO/DLG 1414 are
readable up to six feet. To build a display readable from six
feet, give careful consideration to proper filter selection.
Filters enhance the contrast ratio between a lit LED and the
character background, intensifying discrimination of different
characters. The only limitation is cost. To maximize the
cost/benefit ratio for filters first consider the ambient lighting
environment.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The DLR 1414 is a
standard red display and should be matched with a long
wavelength p"ss filter in the 600 nm to 620 nm range.
The DLO 1414 is a high efficiency red display and should
be matched with a long wavelength pass filter in the 570 nm
to 590 nm range. The DLG 1414 should be matched with a
yellow-green band-pass filter that peaks at 565 nm. :for
displays of multiple colors, neutral density grey filters offer
the gest compromise.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer ttie "next step 'up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
· coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this
effect, however to avoid overheating the plastic filters allow
for proper air·flow.
· Optimal filter enhancements for any condition can be
gained through the use of circular polarized, anti-reflective,
band-pass filters. Circular polarizing further enhances contrast by reducing the light that travels through the filter and
· reflects back off
. the display to less .than 1%.
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; 'Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are R.M.F. Products, B'atavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California , Santa Monica, CA; I.E.E.Atlas, Van NUYS, CA.
Refer to Siemens Appnote 23 for further information.
Note: 1. Acceptable commercial solvents are Basic TF, Arklone P,
Genesalve D, .Genesalve DA. Blaea-Tran TF, Blaee-Tran TA,.
and Freon TA.
DLR/DLO/DLG 1414
SIEMENS
OLR 2416
HIGH EFFICIENCY RED OLO 2416
GREEN OLG 2416
RED
.200" 4-Digit 5 x7 Dot Matrix
ALPHANUMERIC Intelligent Display® With Memory/Decoder/Driver
'E,;I
.,iIl
.2' ..
= ....
:iiis
Package Dimensions in Inches (mm)
TOLERANCE
FEATURES
• Dot Matrix Replacement for DL 2416T
• 0.200n 5 x 7 Dot Matrix Character
• 128 Special ASCII Characters for English,
German, Italian, Swedish, Danish, and
Norwegian Languages
• Wide Viewing Angle, X Axis ±SO· Max.,
Y Axis t7S· Max.
• Close Multi-line Spacing, 0.8 n Centers
• Fast Access Time, 110 ns at 2S·C
• Full Size Display for Stationary Equipment
• Built-in Memory
• Built-in Character Generator
• Built-In Multiplex and LED Drive Circuitry
•. Direct Access to Each Digit Independently
and Asynchronously
• Independent Cursor Function
• Memory Function that Clears Character and
Cursor Memory Simultaneously
• True Blanking for Intensity Dimming
Applications
• End-Stackable, 4-Character Package
• Intensity Coded for Display Uniformity
• Extended Operating Temperature Range: -:40·C
to +8S"C
• Superior ESD Immunity
• 100% Burned In and Tested
• Wave Solderable
• TTL Compatible over Operating Temperature
Range
.xxx. 1.02 (.51)
DESCRIPTION
The DLRIDLOIDLG 2416 is a four digit, 5x7 dot matrix display
module with a built·in CMOS integrated circuit. This display is a
"drop·in" dot matrix replacement for the DL 24161
The integrated circuit contains memory, ASCII ROM decoder,
multiplexing circuitry, and drivers. Data entry is asynchronous
and can be random. A display system can be built using any
number of DLR/DLO/DLG 2416 since each digit can be
addressed independently and will continue to display the
character last stored until replaced by another.
System interconnection is very straightforward. The least signi·
ficant two address bits (Ao, A l ) are normally connected to the
like-named inputs of all displays in the system. With two chip
enables (CE1, and CE2) four displays (16 characters) can
easily be interconnected without a decoder.
Data lines are connected to all DLR/DLO/DLG 2416s directly
and in parallel, as is the write line (WR). The display will then
behave as a write-only memory.
The cursor function causes all dots of a digit position to
illuminate at half brightness. The cursor is not a character,
however, and upon removal the previously displayed character
will reappear.
The DLRIDLOIDLG 2416 has several features superior to
competitive devices. 100% burn-in processing insures that the
DLR/DLO/DLG 2416 will function in more stressful assembly
and use environments. The "true blanking" allows the designer
to dim the display for more flexibility of display presentation.
Finally, the CLR clear function will clear the cursor RAM and'
the ASCII character RAM, simultaneously.
-Continued
See Appnotes 18, 19, 22, and 23 for additional information.
• Interdlgit blanking
2-49
TOP VIEW
DESCRIPTION (Continued)
18 17 16 15 14 13 12 11 10
The character set consists of 128 special ASCII characters for
English, German, Italian, Swedish, .Danish, and Norwegian.
,"
AI
All products are 100% burned-in and tested, then subjected to out-goingAQL:s of .25% for brightness matching,
visual align!Tlent and dimensions, .065% for electrical and
functional.'
:1. ~:::
"'j'
123456789
Maximum Ratings
DC Supply Voltage ................. -0.5 V to + 7.0 Vdc
Input Voltage, Respect to GND
(all inputs) .................. -0,5 V to Vcc +0.5 Vdc
Operating Temperature ............... -400C to +85°C
Storage Temperature .......... , ..... -40°C to + 100°C
Relative Humidity @ 85°C ....................... 85%
Maximum Solder Temperature, 1.59 mm (0.063")
below Seating Plane, t<5 sec ................. 260°C
Pin
Function
Pin
function
1
2
3
4
5
6
7
8
CEl Chip Enable
CE2 Chip Enable
CLR Clear
CUE Cursor Enable
CU Cursor Select
WRWrite
A1 Digit Select
AO Digit Select
10
9
Vee
GND
DO Data Input
01 Data Input
02 Data Input
03 Data Input
06 Dala Input
05 Data Input
~Data Input
BL Display Blank
11
12
13
14
15
16
17
18
Optical Characteristics
Spectral Peak Wavelength ...... , . . . . . . Red 660 nm typo
HER 630 nm typo
Green 565 nm typo
Digit Height. . . . . . . . . . . . . . . . . . . . . .. 0.200" (5.08 mm)
Time Averaged Luminous Intensity<')
@Vcc=5V
Red. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 60 ,",cd/LED typo
HER ............................ 100 ,",cd/LED typo
Green ........................... 120 ,",cd/LED typo
LED to LED IntenSity Matching
@Vcc=5 V .......................... 1.8:1.0 max.
LED to LED Hue Matching (Green only)
@Vcc=5V .... '... , ......... ,., .. , ... ±2nmmax.
Viewing Angle (off normal axis)
Horizontal ...... , , . , . , , ........ , . , , .... ±,500 max.
Vertical. , .... , . , , . , . , , , ..... , . , . , , .... ± 75° max.
TIMING CHARACTERISTICS
WRITE CYCLE WAVEFORMS
m.m ---J~"'---+-----+-~r
l!U.crn _
.-.TeEH- _
f4- ~:....
2,OV
0,8V
- Teu;;-
TCLRD
X
DIJ..I6
!\.
2,OV
0,8 V
j.-Tos_ ~TDIi"
(
\VIi
2.0 V
0,8 V
~TW_
TACe
Note: 1, Peak luminous intensity values can be calculated by multiplying
these values by 7:
Note: These waveforms are not edge triggered,
DC CHARACTERISTICS
Parameter
Min.
-40°C
Typ. Max.
135
Icc 80 dots on
160
+25°C
Typ. Max.
110
Icc Blank
IlL (all inputs)
30
VIH (all inputs)
2:0
2.B
4.0
60
120
4.5
130
25
2.3
3.0
50
100
2.0
5.0
5.5
Typ.
95
20
115
mA
Vcc=5 V
100
mA
Vcc=5 V
2.0
2.5
mA
Vcc=5.0 V
BL=0.8 V
40
BO
,..A
VIN=O.B V
Vcc=5.0 V
O.B
4.5
Max. Units Conditions
2.0
O.B
VIL (all inputs)
+8SoC
Min.
110
135
Icc Cursor
all dots@50%
Vcc
Min.
5.0
5.5
4.5
5.0
V
Vcc=5.0 V.±0.5 V
O.B
V
Vcc=5.0 V ±0.5 V
5.5
V
DLR/DlO/DLG 2416
2-50
FIGURE 1. FLASHING CIRCUIT FOR
DLR/DLO/DLG 2416
USING A 555
FIGURE 2. DIMMING CIRCUIT FOR
DLR/DLO/DLG 2416
USING A 556
~
1
~lO"FL
Vee
Vee
.2
Vee
110KIl
••
7
i-N.C.
10 Kn
555
3
OUTPU T
6
NO
556
.-±
5
t-
11
Vee:--+-..,
R1
to
Vee
C1
6
'*
C2
To i[
OIlDLRfOfG2416
NO
C1=4.7 pF
C2=10 pF
C3=1 pF
BLOCK DIAGRAM
ill
COLUMNS DTO 19
TIMING AND CONTROL LOGIC
COLUMN ENABLE
LATCHES
AND
COLUMN DRIVERS
ROW DECODER
~ _L...Jr---=---tt-....",===::-" .... 12;
~
03
~~
00
~-
:5
Z
~
128:: BIT
~
COLUMN DATA
CHARACTER
DECODE
........_...._4480=.;B,;ITS;.......
CURSOR MEMORY BITS DTO 3
WR __.r---,
AD
A1
en
CE2
CU
CUE
OLRIOLOIOLG 2416
2-51
AC CHARACTERISTICS Guaranteed Minimum Timing Parameters @Vcc=5.0 V
Parameter
Symbol
±0.5 V
-40·C (n8)
+SSoC (n8)
+2S 0 C(il8),
o· .
Chip Enable Set Up Time
TCES
0
Address Set Up Time
TAS
10
10
10
0
10
Cursor Set Up Time
Teus
10
10
Chip Enable Hold Time
TCEH
0
0
0
Address Hold Time
TAH
20
30
40
Cursor Hold Time
TcuH
20
30
40
Clear Disable Time
TClRo
1 I's
1 I's
1 I's
Write Time
Tw
60
70
90
Data Set Up Time
Tos
20
30
50
Data Hold Time
TOH
20
30
40
TClR
TACC
a 15 1~
c
z
"
1
L
1
DO
04 03
D7
,
u
: 15 I~
u
J
·
>
c
z
"
a 15
I~
..
> >
DLR/DLO/DLG 3416
2-59
DESIGN CONSIDERATIONS
For further information refer to Appnote 18 and 19 in the
current Siemens Optoelectronic Data Book.
For details on design and applications offhe DLR/DLOI
DLG 3416 utilizing standard bus configurations in multiple
display systems, or parallel 110 devices, such as the 8255
with an 8080 or memory mapped addressing on processors
such as the 8080, Z80, 6502, 8748, or 6800, refer to
Appnote 14 and 20"in thl:! current Siemens Optoelectronic
Data Book.
'
An alternative to soldering and cleaning the display
modules is to use sockets. Standard pin DIp sockets
.600" wide with .100" centers work well for single displays.
Multiple display assemblies are best handled by longer SIP
sockets or DIP sockets when available for uniform package
alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
ELECTRICAL AND MECHANICAL
CONSIDERATIONS
For 'further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
VOLTAGE TRANSIENT SUPPRESSION
For best results power the display and the components that
interface with the display with the same supply to avoid
logic inputs higher than Vee. Additionally, the LEDs may
cause transients in the power supply line while they change
.display states. The common practice is to place .01 /AF
capacitors close to the displays across Vee and GND, one
for each display, and one 10 /AF capacitor for every second
display.
OPTICAL CONSIDERATIONS
The :270" high characters of the DLR/DLO/DLG 3416 are
readable up to twelve feet. To build a display readable from
twelve feet,' carefully select the proper filter. Filters enhance
the contrast ratio between a lit LED and the character
background, intensifying discrimination between different
characters. The only limitation is cost. To maximize the
cost/benefit ratio for filters, first consider the ambient lighting
environment.
ESD PROTECTION
The silicon Gate CMOS IC olthe DLRIDLO/DLG 3416 is
very strong against ESD damage. It is capable of withstanding discharges greater than 2 KV. However, take all
the standard precautions normal for CMOS components.
These include properly grounding personnel, tools, tables,
and transport carriers that come in contact with unshielded
parts. If these conditions are not, or cannot be met, keep
the leads of the device shorted together or the parts in antistatic packaging.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. TheDLR 3416 is a
standard red display and should be matched with a long
wavelength pass filter in the 600 nm to 620 nm range.
The DLO 3416 is a high efficiency red display and should
be matched with a long wavelength pass filter in the 570 nm
to 590 nm range. The DLG 3416 should be matched with a
yellow-green band-pass filter that peaks at 565 nm. For
displays of multiple colors, neutral density grey filters offer
the best compromise.
SOLDERING CONSIDERATION
The DLR/DLO/DLG 3416 can be hand soldered with SN63
solder using a grounded iron set to 260°C.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast impr9vement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters. Mounting the filters close to the display reduces this
effect; however to avoid overheating the plastic filters, allow
for airflow.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of 85°C.
Water soluble organic acid flux (except carboxylic acid) or
resin-based RMA flux without alcohol can be used.
Wave temperature of 245°C ±5°C with a dwell between
1.5 sec. to 3.0 sec. Exposure to the wave should not
exceed temperatures above 260°C, for 5 seconds at
0.063" below the seating plane. The packages should not
be immersed in the wave.
Optimal filter enhancements for any condition can be
gained through the use of circular polarized, anti-reflective,
band-pass filters. Circular polarizing further enhances contrast by reducing the light that travels through the filter and
reflects back off the display to less than 1%.
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot D.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; ,3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya OptiCS, Inc., Fremont, CA.
For faster cleaning, solvents may be used. Carefully select
any solvent as some may chemically attack the nylon package. Maximum exposure should not exceed two minutes at
elevated temperatures. Acceptable solvents are TF(trichlorotrifluoroethane), TA, 111 Trichloroethane, and unheated
acetone.!l)
One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
Unacceptable solvents contain alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and
TES. Since many commercial mixtures exist, contact a
solvent vendor for chemical composition information. Some
major solvent manufacturers are: Allied Chemical Corporation, Specialty Chemical DiviSion, Morristown, NJ; BaronBlakeslee, Chicago, IL; Dow Chemical, Midland, MI;
E.1. DuPont de Nemours & Co., Wilmington, DE.
Refer to Siemens Appnote 23 for further information.
Note: 1. Acceptable commercial solvents are Basic TF, Arklone P,
Genesolve D, Genesolve DA, Blace-Tron TF, Blaco·Tron TA,
and Freon TA.
DLRIDLO/DLG 3418
2-60
RED DLR5735
RED DLR 5736
GREEN DLG 5735
GREENDLG 5736
SIEMENS
.69" (17.5 mm) 5 x 7 ALPHANUMERIC DISPLAY
(No Built-In CMOS DriveCfrcuitry) .
Package Dimensions in Inches (mm)
.OB/2.0l DIA. MAX.
HUE
CODE
TYPICAL
ROW 1
ROW 2
ROW 3
LUMINOUS
INTENSITY
CODE
ROW 4
ROW
~
DATE
CODE
ROW 6
ROW 7
PART
NUMBER
f
25~u,:r-_""""N
• 170 (4.32) MIN
....l.....012(.30) ~~
NOTE: RECOMMENDED
MOUNTING BOARD HOLE SIZE
,040 (1.02)
~:~~~::~~~: QIA.
FEATURES
Maximum Ratings
• DLR IDLG 5735 Common Row Cathode
DLR IDLG 5736 Common Row Anode
• 5 x 7 Matrix Array with Row-Column
Power Dissipation (Package) ................................. 750 mW
Derate Unearly from 25·C ............................... 11.5 mW/·C
Storage Temperature ....... , ..... , ................. - 20°C to + 70°C
Operating Temperature ............................. - 20·C to + 70·C
Continuous Forward Current
Per Segment. .......................... < • • • • • • • • • • • • • • • • • 20 mA
Pulse Peak Current/Segment
20 % Duty Cycle ......................................... 100 mA
Select
• End & Side Stackable
• Rugged Encapsulation (Filled Reflector
Construction)
• Compatible with ASCII and EBCDIC
Format
• Standard 12 pin, 0.3" pin spacing,
Dual-Inline Package
• Good "OFF" Segment Contrast
Grey Face with Clear Segments
Reverse Voltage
DLR 5735, 5736 ............................................. 3 V
DLG 5735, 5736 ............................................ 5 V
Solder Temperature
1116'" below seating plane for 5 seconds ....................... 260°C
Electrical/Optical Characteristics '(famb
Parameter
Luminous Intensity
Digit Average (Per Dot)
DLR 5735/5736
DLG 5735/5736
Forward Voltage
DLR 5735/5736
DLG 5735/5736
Reverse CUrrent
DLR 5735/5736
DLG 5735/5736
Peak Emission Wavelength
DLR 5735/5736
DLG 5735/5736
Spectral Line Half·Width
DLR 5735/5736
DLG 5735/5736
DESCRIPTION
The DLR 5735/5736 Series (gallium arsenide phosphide) and the DLG 5735/5736 Series (gallium phosphide) are 5 x 7 dot matrix light emitting diode
alphanumeric displays.
Compatible with ASCII and EBCDIC formats, these
displays are well suited for use in keyboard verfiers,
computer peripheral equipment, and other applications requiring an alphanumeric display. They are
stackable both horizontally and vertically to generate
large alphanumeric or even graphic displays.
2-61
Min
Typ
100
320
200
650
1.7
2.3
=25°C)
Max
Unit
I'cd
Test
Condition
"cd
1,=20 mA
1,=10 mA
2.0
3.0
V
V
1,=20 mA
1,=20mA
100
100
,.A
,.A
VR =3V
VR =5V
650
565
nm
nm
40
30
nm
nm
PIN CONFIGURATIONS
DLR5735
DLG5735
DLR5736
DLG5736
SCHEMATIC
-t......-Hf--+-4--t!:::='--L 12
PIN
1
2
3
4
5
6
7
8
9
10
11
12
FUNCTION
ROW 1 CATHODE
ROW 2 CATHODE
12
COLUMN 2 ANODE
+-"";;;;""R='-f-l0
COLUMN 1 ANODE
ROW 6 CATHODE
ROW 7 CATHODE
COLUMN 3 ANODE
ROW 5 CATHODE
COLUMN 4 ANODE
ROW 4 CATHODE
ROW 3 CATHODE
COLUMN 5 ANODE
PIN
1
2
3
4
5
6
7
8
9
10
11
12
TOP VIEW
FUNCTION
COLUMN 1 CATHODE
ROW 3 ANODE
COLUMN 2 CATHODE
ROWS ANODE
ROW 6 ANODE
ROW 7 ANODE
COWMN 4 CATHODE
COLUMN 5 CATHODE
AOW4ANODE
COLUMN 3 CATHODE
ROW 2 ANODE
ROW 1 ANODE
TOP VIEW
TYPICAL VERTICAL SCAN DISPLAY SYSTEM
VERTICAL STROBl NG - BLOCK DIAGRAM
7 LINE ASCII
DIGIT SELECT
7 BIT INPUT
STORAGE BUFFERS
2
1
t1
3
[
MASTER
CLOCK
TIMING
CIRCUITRY
CHARACTER
ROM
5 BIT OUTPUT
STORAGE
BUFFERS
COLUMN
DRIVERS
ROW
DRIVERS
==
==
==
~
III
1
2
3
1
2
3
LED
DISPLAY
==
==
-===
LED
DISPLAY
==
==
==
-
LED
DISPLAY
=
=
-=
DLR 5735
2-62
SIEMENS
HDSP2000LP
YELLOW HDSP2001 LP
HIGH EFFICIENCY RED HDSP2002LP
BRIGHT GREEN HDSP2003LP
RED
.150" 4·Character 5x7 Dot Matrix
Serial Input Alphanumeric Display
Package Dimensions in Inches (mm)
.012 (.3)±
.002(.05)
.200
1-(5.08)1
REL
----*
.1 '
.300 (7.62)±
O1Y25)
--l
LUMINOUS
INTENSITY
COOE (AND
COLOR CODE
FOR YELLOW)
t'· J
(2.54)
.270
(6.86)
Pin
Function
Column 1
2
3
4
5
6
7
FEATURES
• Four 0.150" Dot Matrix Characters
• Four Colors: Red, Yellow, High Efficiency
Red,. Bright Green
• Wide Viewing Angle: X Axis ± 50 0
Y Axis ±7So
• Built-in CMOS Shift Registers with
Constant Current LED Row Drivers'
• Shift Registers Allow Custom Fonts
• Easily Cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Extended Operating Temperature Range:
_40 0 to + 8S"C
• Categorized for Luminous Intensity
• All Displays Color Matched
• Compact Plastic Package
• 100% Burned In and Tested
12
11
10
9
TOLERANCE: •• 015 (.38)
8
9
10
11
12
Column 2
Column 3
Column 4
Column 5
No Connection
Oata Out
VB
Vee
Clock
Ground
Data In
DESCRIPTION
The HDSP200XLP are four digit 5x7 dot matrix serial input alpha. numeric displays. The displays are available in red, yellow, high
efficiency red, or bright green. The package is a standard twelve-pin
DIP with a flat plastic lens. The display can be stacked horizontally
or vertically to form messages of any length. The HDSP200XLP has
two fourteen-bit CMOS shift registers with built-in row drivers. These
shift registers drive twenty-eight rows and enable the design of
customized fonts. Cascading multiple displays is possible because of
the Data In and Data Out pins. Data In and Out are easily input with
the clock signal and displayed in parallel on the row drivers. Data
Out represents the output of the 7th bit of digit number four shift
register. The shift register is level triggered. The like columns of each
character in a display cluster are tied to a single pin. (See Block
Diagram). High true data in the shift register enables the output
current mirror driver stage associated with each row of LEOs in the
5x7 diode array.
The TIL compatible VB input may either be tied to VCC for maximum
display intensity or pulse width modulated to achieve intensity control
and reduce power consumption.
-Continued
See Appnote 44 for application information.
2-63
FIGURE 2. MAX. ALLOWABLE POWER DISSIPATION
VS.TEMPERATURE
DESCRIPTION (Continued)
In the normal mode of operation, input data for digit four,
column one is loaded into the seven on-board shift register
locations one through seven. Column one data for digits 3,
2, and 1 is shifted into the display shift register locations so
that column one input is enabled for an appropriate period
of time, T. A similar process is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time into the shift
register is t, then with five columns, each column of the
display is operating at a duty factor of:
1.0 r---r--r--r---r--r--r---r--r---.
DF=_T_
5(T+t)
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the
display should be refreshed (turned on) at a minimum rate
of 100 times per second.
0.0 ......--'-----'-""-.......--'-........-'-.............-'-......-'-.........
~
~
~
0
~
~
00 00 ~ 1~
Tamb Ambient Temperature ·C
0
With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1/[5x(100))=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.
AC ELECTRICAL CHARACTERISTICS
(Vec=4.75 to 5.25 V, Tamb =-40°C to 85°C)
Maximum Ratings
Supply Voltage Vee to GND ........... -0.5 V to + 7.0 V
Inputs, Data Out and VB ........... -0.5 V to Vee + 0.5 V
Column Input Voltage, VeOL ........... -0.5 V to + 6.0 V
Operating Temperature Range ......... -40oC to +85°C
Storage Temperature Range .......... -55°C to +100°C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5 sec ... " ............ 260°C
Maximum Allowable Power Dissipation
at Tamb= 25°C(1) .. _........................ 0.86 W
Note:
1. Maximum allowable dissipation is derived from Vcc =5.25 V. V.=2.4 V.
VCOl =3.5 V 20
0
LEOs on per character, 20% OF.
Symbol
Description Min. Typo Maxl1) Units Fig.
TSETUP
Setup Time
50
ns
1
THoLO
Hold Time
25
ns
1
TWL
Clock Width
Low
75
ns
1
TWH
Clock Width
High
75
ns
1
F(CLK)
Clock
Frequency
MHz
1
TTHL,
TTLH
Clock Transition Time
200
ns
1
TpHL,
TpLH
Propagation
Delay Clock
to Data Out
125
ns
1
0
5
Note:
1. V. Pulse Width Modulation Frequency - 50 KHz (max).
FIGURE 1. TIMING CHARACTERISTICS
CLEANING THE DISPLAYS
IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
uv
cleaning solution is hot 0.1. water (60°C) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do
not use commercial dishwasher detergents.
ClOCK
0.4 V
For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning processing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.
2.0V
DATA IN
'--+------0.6V
2.4 V
DATA OUT
0.4 V
HDSP2000LPI2OO1 LP/2002LP/2003LP
2-64
RECOMMENDED OPERATING CONDITIONS
Symbol
Min.
Nom.
Max.
Supply Voltage
Vcc
4.75
5.0
5.25
V
Data Out Current, Low State
IOl
1.6
mA
Parameter
Data Out Current, High State
Units
IOH
-0.5
Column Input Voltage, Column On HDSP2000LP(1)
VCOl
2.4
3.5
V
Column Input Voltage, Column On, HDSP2001 LP/2002LP/2003LP11)
VCOl
2.75
3.5
V
Setup Time
TSETUP
70
ns
Hold Time
THolD
30
ns
Width of Clock
TW(ClK)
75
mA
ns
Clock Frequency
TClK
5
MHz
Clock Transition Time
TTHl
200
ns
Note:
1. See Figure 3 - Peak Column Current vs. Column Voltage.
OPTICAL CHARACTERISTICS
Red HDSP2000LP
Symbol
Min.
Typ.(4)
Peak Luminous Intensity per LED(1.3)
(Character Average)
IVPEAK
105
200
Peak Wavelength
ApEAK
655
nm
AD
639
nm
Description
Dominant Wavelength(2)
Max.
Units
/lcd
Test Conditions
Vcc=5.0 V, VCOl =3.5 V
Tamb =25°C, VB =2.4 V
Yellow HDSP2001LP
Symbol
Min.
Typ.<4)
Peak Luminous IntenSity per LED(1· 3)
(Character Average)
IVPEAK
400
1140
Peak Wavelength
ApEAK
583
nm
AD
585
nm
Description
Dominant Wavelength(2)
Max.
Units
/lcd
Test Conditions
Vcc =5.0 V, VCOl =3.5 V
Tam b=25°C, VB =2.4 V
High Efficiency Red HDSP2002LP
Symbol
Min.
Typ.(4)
Peak Luminous Intensity per LED(1.3)
(Character Average)
IVPEAK
400
1430
/lcd
Peak Wavelength
ApEAK
635
nm
AD
626
nm
Description
Dominant Wavelength(')
Max.
Units
Test Conditions
Vcc=5.0 V, VCOl =3.5 V
Tamb =25°C, VB =2.4 V
Bright Green HDSP2003LP
Symbol
Min.
Typ.(4/
Peak Luminous IntenSity per LED(1. 3)
(Character Average)
IVPEAK
570
1550
/lcd
Peak Wavelength
ApEAK
565
nm
AD
569
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc =5.0 V, VCOl =3.5 V
Tam b=25°C, VB =2.4 V
Notes:
1. The displays are categorized for luminous intensity with the intensity
category designated by a letter code on the bottom of the package.
2. Dominant wavelength Ao. is derived from the CIE chromatiCity diagram.
and represents the single wavelenglh which defines Ihe color of
the device.
3. The luminous Slerance of the lED may be calculated using the following
relationships:
lv (cdlm2) = Iv (Candela)/A (Meter)'
lv (Fooliamberts)=nlv (Candela)/A (Foot)'
HDSP2000LP A=S.S8x 10-8 m'=6x 10-7 ft.'
HDSP2001l2/3lP A=7.8xl0-s m'=8.4x 10-7 ft.'
4. All typical values specilied at Vcc=5.0 V and Tsmb=25°C unless
otherwise noted.
HDSP2QOOlPI2001LP/2002LP/2003LP
2-65
+ 85°C) (unless otherwise specified)
ELECTRICAL CHARACTERISTICS (-40°C to
Description
Symbol
Supply Current (quiescent)
Min.
Typ..D02 05)
(4.88)
(8t
U J = = - . : r 0 (.25)
Pin
FunctIon
1
2
3
4
Column 1
Column 2
Column 3
Column 4
ColumnS
No Connecllon
5
6
7
8
9
FEATURES
• Four .200" Dot Matrix Charactera
• Four Colora: Red, Yellow, High Efficiency
.Red, High Efflclancy Graen
• Wide Viewing Angle
• Bullt·ln CMOS Shift Reglstera with
Constant Current LED Row Drlvera
• Shift Registers Allow Custom Fonts
• Easily Cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Operating Temperature Range:
-55· to +100·C
• categorized for Luminous Intensity
• caramlc Packag" Hermetically Sealed
Fist Glasa Window
dol~~k":=~ ),l".-=C.....C,...,=-=-=''=
C
c c ......
.......ldeal poclllgo
Vea,
WorkWlelc
IIIIlchCodo
i
!
X~£(;aSIS
c
c
c c
c
DalIO",
Va
Vee
10
Clock
11
Ground
Cal. In
12
H.. ClcIo
LumlnDul
InIe..IlyCoclo
c
Part Numbe, 81.....
TOLERANCE: ••015 (....pllo.. nDled)
DESCRIPTION
The IS02310 through IS02313 are four digit 5x7 dot matrix serial
input alphanumeric displays. The displays are available in red, yellow,
high efficiency red, or high efficiency green. The package is a standard
twelve-pin hermetic DIP package with glass lens. The display can be
stacked horizontally or vertically to form messages of any length. The
IS0231X has two fourteen-bit CMOS shift registers with built-in row
drivers. These shift registers drive twenty-eight rows and enable the
design of customized fonts. Cascading multiple displays is possible
because of the Data In and Data Out pins. Data In and Out are
easily input with the clock signal and displayed in parallel on the row
drivers. Data Out represents the output of the 7th bit of digit number
four shift register. The shift register is level triggered. The like columns
of each character in a display cluster are tied to a single pin. (See
Block Diagram). High true' data in the shift register enables the output current mirror driver stage associated with each row of LEOs in
the 5x7 diode array.
The TIL compatible VB input may either be tied to Vcc for maximum
display intensity or pulse width modulated to achieve intensity control
and reduce power consumption.
-ConUnued
See Appnote 44 for application information, and Appnotes 18, 19, 22,
and 23 for additional information.
2-79
DESCRIPTION (Continued)
In the normal mode of operation, input data for digit four,
column:one is loaded into the seven on-board shift register
locations one through seven. Column one data for digits 3,
2, and 1 is shifted into the display shift register locations.
Then column one input is enabled for an appropriate period
of time; T. A similar process is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time into the shift
register is t, then with five columns, each column of the
display is operating at a duty factor ·of:
FIGURE 2. MAX. ALLOWABLE POWER DISSIPATION
VS.TEMPERATURE
1.2
~ 1,0
.! ~
i.2J!..g 0,8
Rth JA)
is 0,6
:> ..
E ;
DF=_T_
5(T+t)
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary t6 achieve a flicker free display.
For most strobed display systems, each column of the
display should be refreshed (turned on) at a minimum rate
of 100 times per second.
.
11 0
:::iD.
0.4
i
0,2
-'-
!
i.l
~
J clw- ~
clw- ~~1\
\
350
1j(M~ = 125°C
0.0
-60
With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1/[5x(100)]=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.
.1
Rlh(JA) } 55O
C :I
E
i
i
..
!
!
-40
-20· 0
20 40
60 80
.Ta • Ambient Temperaiilre • 'C
100 120
AC ELECTRICAL CHARACTERISTICS
(VCC=4.75 to 5.25 V, Tamb =-55°C to +100°C)
Symbol Description Min. TypS1) MaxS2) Units Fig.
Maximum Ratings
Supply Voltage Vcc to GND ........... -0.5 V to + 7.0 V
Inputs, Data Out and VB' .......... -0.5 V to Vcc +0.5 V
Column Input Voltage, VCOl ........... ...:0.5 V to +6.0 V
Operating Temperature Range ........ -55°C to + 100°C
Storage Temperature Range .......... -65°C to + 125°C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5 sec ................. 260°C
Maximum Power Dissipation·
at Tamb =25°C(2) ............................ 1.1 W
Notes:
1. Operation above + 100°C ambient is possible provided the following
condition are met. The iuncton should not exceed TJ =125°C.and the
case temperature (as measured at pin 1 or the back of the display) should
not exceed Tc=100°C.
2. Maximum di"'1ipation is derived from Vcc =5.25 V, VB=2.4 V, VCOl =}.5 V
20 LEOs on per character, 20% OF.
.
TSETUP
Setup Time
50
10
ns
1
THolO
Hold Time
25
20
ns
1
TWl
Clock Width
Low
75
45
ns.
1
TWH
Clock Width
High
75
45
ns
1
F(ClK)
Clock
Frequericy .
6
5
MHz
1
TTHl,
TTlH
Clock Transition Time
75
200
ns
1
TpHl,
TplH
Propagation
Delay Clock
to Data Out
50
125 I·· ns
1
Notes:
1. All typical
values specified at Vcc =5.0 V and T,mb=25°C unless
otherwise noted.
2. VB Pulse Width Modulation .Frequency - 50 KHz (max).
FIGURE 1. TIMING CHARACTERISTICS
CLEANING THE DISPLAYS
2.4V
IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
cleaning solution is hot D,1. water (60°C) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do
not use commercial dishwasher detergents.
CLOC1<
0.4 V
2.0V
DATA IN
0.8 V
For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning processing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.
2.,4 V
DATA OUT
0:4 v
\
.'
1802310 Ihru 1802313
2-80
RECOMMENDED OPERATING CONDITIONS (Guaranteed over operating temperature range)
Symbol
Min.
Nom.
Max.
Supply Voltage
Parameter
Vcc
4.75
5.0
5.25
V
Data Out Current, Low State
IOl
1.6
rnA
-0.5
rnA
Data Out Current, High State
IOH
Column Input Voltage, Column On(1)
VCOl
2.75
70
Hold Time
TSETUP
THOlD
30
Width of Clock
TW(ClK)
75
Setup Time
Clock Frequency
TClK
Clock Transition Time
TTHl
Free Air Operating Temperature Range
Tamb
Units
3.5
V
45
ns
ns
ns
5
-55
MHz
200
ns
+100
°C
Note:
1. See Figure 3 - Peak Column Current vs. Column Voltage.
OPTICAL CHARACTERISTICS
Red ISD231 0
Symbol
Min.
Typ.l4)
Peak Luminous Intensity per LED(1. 3)
(Character Average)
IVPEAK
220
370
,",cd
Peak Wavelength
ApEAK
655
nm
AD
639
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc=5.0 V, VCOl =3.5 V
TJ5)=25°C, Vs=2.4 V
Yellow ISD2311
Symbol
Min.
Typ.l4)
Peak Luminous Intensity per LED(1. 3)
(Character Average)
IVPEAK
650
1140
,",cd
Peak Wavelength
ApEAK
583
nm
AD
585
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc = 5.0 V, VCOl = 3.5 V
TJ(5) = 25°C, Vs=2.4 V
High Efficiency Red ISD2312
Symbol
Min.
Typ.l4)
Peak Luminous Intensity per LED(1.3)
(Character Average)
IVPEAK
650
1430
,",cd
Peak Wavelength
ApEAK
635
nm
AD
626
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc=5.0 V, VCOl =3.5 V
TJ(5)=25°C, Vs=2.4 V
High Efficiency Green ISD2313
Symbol
Min.
Typ.(4)
Peak Luminous Intensity per LED(1. 3)
(Character Average)
IVPEAK
1280
2410
,",cd
Peak Wavelength
ApEAK
568
nm
AD
574
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc=5.0 V, VCOl=3.5 V
TJ(5)=25°C, Vs=2.4 V
Notes:
1. The displays are categorized for luminous intensity with the intensity
category designated by a letter code on the bottom of the package.
2. Dominant wavelength 10. is derived from the CIE chromaticity diagram. and
represents the single wavelength which defines the color of the device.
3. The luminous sterance of the lED may be calculated using the following
relationships: lv (cd/m,) = Iv (Candela)IA (Meter)2
lv (Foollamberts) =nlv (Candela)/A (Foot)2
A=5.3xl0·' M2=5.8x 10-7 (Foot)2
4.
All typical values specified at Vcc=5.0 V and Tamb=25°C unless
otherwise noted.
5. The luminous intensity;s measured at Tamb=TJ=25°C. No time is
allowed for the device to warm up prior to measurement.
IS02310 thru ISD2313
2-81
ELECTRICAL CHARACTERISTICS (-55°C to + 100°C) (unless otherwise specified)
Description
Symbol
Supply Current (quiescent)
Min.
Icc
Supply Current (operating)
Icc
Column Current at any
Column Input(2)
Typ,(1)
Max.
Units
2
5.0
mA
VB=O.4 V
Vcc=5.25 V
2.5
5.0
mA
VB=2.4 V
VCLK=VOATA=2.4 V
All SR Stages = Logical 1
3
10.0
mA
ICOL
(All)
380
·ICOL
VB, Clock or Data Input
Threshold Low
VIL
Va, Clock or Data Input
Threshold High
VIH
2.0
Data Out Voltage
VOH
2.4
JAA
Va=O.4 V
520
mA
VB=2.4 V
0.8
V
3.6
-30
IlL
FCLK=5 MHz
10
Vc c=5.25 V
VcoL=3.5 V
All SR Stages = Logical 1
Vcc=4.75 V - 5.25 V
V
VOL
Input Current Logical 0
Test Conditions
V
IOH=-0.5mA
0.2
0.4
V
IOL=1.6 mA
-'110
-300
JAA
-1
-10
jAA
VB only
Input Current Logical 0
Data, Clock
IlL
Input Current Logical 1
Data, Clock
IIH
10
jAA
Input Current Logical 1
IIH
200
jAA
Vcc';5.25 V
IcoL=O mA
Vcc=4.75 V - 5.25 V, VIL =0.8 V
Vcc=4.75 V - 5.25 V, VIH=2.4 V
VB
Power Dissipation per
Package
Po
0;52
W
Thermal Resistance IC
Junction-to-Pin
R9J_PIN
25
°CIWI
Device
Vcc=5.0 V, VCOL =3.5 V, 17.5% OF
15 LEOs on per character, Va = 2.4 V
Not..:
1. All typical values specified at Vcc=S.O V and Tamb= 2SOC unless
otherwise noted.
2. See Figure 3 - Peak Column Current VS. Column Vo~age.
FIGURE 3. PEAK COLUMN CURRENT
VS. COLUMN VOLTAGE
600
500
.
ili
~
400
,
1802310-11
f- 18023111231212313
300
B
iB 200.
'ii
- 100
o0.0
J
.J!
1.0
2.0
3.0
4.0
5.0
6.0
V.DI- Column Voltage - Volts
ISD2310 thr. 1802313
2-82
FIGURE 4. BLOCK DIAGRAM
Column Drive Inputs
Column
1 2 3 4 5
I
"""l.'r
..l!:
~ r-:J
LED
Matrix
2
"""l.'r
r)
LED
Matrix
3
~r
~
rv
LED
Matrix
4
~
;11.;11.¥.;.;
Blanking
Control. VB
-
Serial
Data
Input
-
I
J
1 234 5 6 7
Rows
I
1 2 3 4 567
1
I
Rows 1-7
Rows 1-7
Constant Current Sinking LED Drivers
Rows 1-7
~~ ~~ ~~
Rows 8-14
Rows 15-21
Rows 22-28
28-Bit SIPD Shift Register
1
-
Serial
Data
Output
Clock
CONTRAST ENHANCEMENT FILTERS FOR SUNLIGHT READABILITY
Display Color
Part No.
Filter Color
Marks Polarized Corp.'
Filter Series
Optical Characteristics of Filter
Red, HER
1802310,2312
Red
MPC 20-15C
25%@635nm
Yellow
1802311
.
Amber
MPC 30-25C
25%@583 nm
.E!
II
as
'0
Green
1802313
Yellow/Green
Multiple Colors
High Ambient Light
Neutral Gray
MPC 80-10C
10% Neutral
Multiple Colors
Neutral Gray
MPC 80-37C
37% Neutral
MPC 50-22C
22%@568 nm
.
D.
.!!!
::I
e
U
• Marks Polarized Corp.
25-B Jefryn Blvd. W.
Deer Park, NY 11729
516·242·1300
FAX (516) 242-1347
Marks Polarized Corp. manufactures to MIL·I·45208 inspection system.
1802310 1hru 1802313
2-83
THERMAL CONSIDERATIONS
The small alphanumeric displays are hybrid LEO and
CMOS assemblies that are designed for reliable operation
in commercial, industrial, and military environments. Optimum reliability and optical performance will result when the
junction temperature of the LEOs and CM05 ICs are kept
as low as possible.
THERMAL MODELING
150231X displays corisist of two driver ICs and four 5 x 7
LEO matrixes. A thermal model of the di~play is shown in
Figure 5. It illustrates that the junction temperature of the
semiconductor = 'junction self heating + the case temperature
rise + the ambient temperature. Equation 1 shows this"
relationship.
FIGURE 5, THERMAL MODEL
Equation 1.
. TJ(LED)= PLED ZBJC+ PCASE (R8JC+ R8CAl+ TA
TJ(LED)= [(IcoJ28) VF(LED) Z8Jcl
+ [(n/35) ICOL OF (5 VcoU
+ Vcc Icel • [R8JC + RecAI + TA
The junction rise within the LEO is the product of the
thermal impedance of an individual LEO (37°CIW,
OF = 20%, F = 200 Hz), times the forward voltage, VF(LED),
and forward current, IF(LED), of 13 - 14.5 mAo This rise
.
averaQes TJ(LEP).= 1.oC. The table below shows the VF(LED)
for the respective displays.
VF
Part Number
Min.
Typ.
1502310
1.S
1.7
2.0
150231112/3
1.9
2.2
3.0
Max.
The junction rise within the LEO driver IC is the combination
of the power dissipated by thelC quiescent current and the
28 row driver current sinks. The IC junction rise is given in" '
. ,
Equation 2.
A thermal resistance of 28°CIW results in a typical junction
rise of SoC.
Equation 2.
TJ(IC) = PCOL (R8JC + RecA) + TA
TJ(IC) = [5 (VCOL-VF(LED» • (ICOL/2) • (n/35) OF+Vcc' Icel • [RBJc+R8cAl+TA
1502310 thru 1802313
2-84
THERMAL MODELING (Cont.)
For ease of calculations the maximum allowable electrical
operating condition is dependent upon the aggregate
thermal resistance of the LED matrixes and the two driver
ICs. All of the thermal management calculations are based
upon the parallel combination of these two networks which
is 15°CIW. Maximum allowable power dissipation is given
in Equation 3.
Equation 3.
PDISPLAY
TJ(MAX)-TA
ReJc+ RecA
PDISPLAY = 5 VCOL ICOL (n/35)
OF + VCC Icc
For further reference see Figures 2, 7, 8, 9, 10 and 11.
KEY TO EQUATION SYMBOLS
OF
Icc
ICOL
n
PCASE
PCOL
PDISPLAY
PLED
RecA
ReJc
TA
TJ(IC)
TJ(LED)
TJ(MAX)
VCC
VCOL
VF(LED)
ZeJC
DUly factor
Quiescent IC current
Column current
Number of LEOs on in a 5 x 7 array
Package power dissipation excluding LED under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of an LED
Thermal resistance case to ambient
Thermal resistance junction to case
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal impedance junction to case
IS02310 lhru IS02313
2-85
OPTICAL CONSIDERATIONS
The light output of the LEDs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For
optimum light output, keep the thermal resistance of the
socket or PC board as low as possible.
FIGURE 6. NORMALIZED LUMINOUS INTENSITY
VS. JUNCTION TEMPERATURE
FIGURE 9. PACKAGE POWER DISSIPATION
1.5 r--r----r--r--,--,---r--"!'"'""--,
,
5
I.
1
1.0
is
E..§.....~...§.....~...§.....§.. §.....§... E....§....E...§....~...§....~...§....~
...§....3
...
10E
...§
.....
J
•
0.51--1--I-:i'4-+-+--!---t--I
f
5
10
15
20
25
30
35
40
LEOa per Character
FIGURE 10. MAX. CHARACTER POWER DISSIPATION
.1
. . . .--~~~~~
~
00 00 l00mm
~~~~~~--
~
~
4
0
~
i!If
0.50 ~-"'-"'"T.":"--::o:::::~~=-:--..,...."";"'r-...,
...!lc
o.~ E-....,.<~d",.,....-l--+-+-::-liF-~t--I
o
Tj. LED Junction Temperatura • "C
When mounted in a 10°CfW socket and operated at
Absolute Maximum Electrical conditions, the ISD231X will
show an LED junction rise of 17°C. IfTA =40oC, then the
LED's TJ will be 57°C. Under these conditions Figure 7
shows that the Iv will be 75% of its 25°C value.
1
is
i
0.30
I
o.~
Ii.
FIGURE 7. MAX. LED JUNCTION TEMPERATURE
VS. SOCKET THERMAL RESISTANCE
B 0.10 ~-+~oq..-,::oo~-i--:t:=-""'~F--I
~ 0.00 t...I.&.a.J:........I.I.a........I.w.......................................................
o
5
10
15
20
40
25
LEOa per Character
J
FIGURE 11. CHARACTER POWER DISSIPATION
;=
0.5
5
0.4 ..........
'
I
i
!
I
FIGURES. MAX. PACKAGE POWER DISSIPATION
2.0
c
VCC!5.25~,lcc=10mA
J
0
I
I
J•
J
i
V~I- 3.6, Ieol ='520mA
1.5
O(:.2O%,Ta-2s"C
y
1.0
/
0.5
5
/
i
I
15
I
J
0.2
.+ 1!~
~/
./
t-t-60'"""!i"u'*"'t-+--:D~./'--t--+--t---t
5
10
15
20
25
30
35
~
LEOa per Character
:
10
"':>01
0.3
o
i:
o
I
I ,o.oU4;;±;;t~U
. ~ ~::: --.-' >::::
Y1
V
~
0.0
V
I
O~ty Factor
1
~
Vee -SV, Icc - 5mA
1........................y.~!. -:.~:~~, !~.::: ~~~ ..........
20
25
30
:
:
J
35
40
LEOa per Character
1802310 thru 1802313
2-86
IS02351
HIGH EFFICIENCY RED IS02352
HIGH EFFICIENCY GREEN IS02353
SIEMENS
YELLOW
Sunlight Viewable .200" 4·Character 5x7 Dot Matrix
Serial Input Alphanumeric Hi ReI/Industrial Display
r---~--~~~~~~~~~~~~
112
(2.S4)
1>.:::::=F.=:*~~:::;;:=:;:=::d
.010 (.25)
•.002f5)
W~(6.35)
(4.8S) (Sr
~O (.25)
Pin
Function
1
2
3
Column 1
Cofumn2
5
6
ColumnS
No ConnecliOn
9
VB
Vee
Clock
Column 3
Column 4
Data Out
12 PL
•.1lIl3 (.08)
FEATURES
Pin 1 marked by
dol and by notch on
underside of pacicago
• Four .200" Dot Matrix Characters
li:.......I:J=;-;::;-;=;-r=;-;=;-;=;--,
I:J I:J I:J I:J I:J
Year
• Three Colors: Yellow, High Efficiency
Red, High Efficiency Green
• Sunlight Viewable
WorkWeek
Batch Code
:::t: 4 ' -
i
XSEZaSIS
~
10
11
12
Ground
Data In
Hue Code
Luminous
Inl,,..Hy COd'
c
C
c:::J t::J CJ t::I
Part Number Siemens
TOLERANCE: •• 015 (exceplions noted)
• Wide Viewing Angle
• Built-in CMOS Shift Registers with
Constant Current LED Row Drivers
• Shift Registers Allow Custom Fonts
• Easily Cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Operating Temperature Range:
-55· to + 100·C
• Categorized for Luminous Intensity
• Ceramic Package, Hermetically Sealed
Flat Glass Window
DESCRIPTION
The 1502351 through 1502353 are four digit 5x7 dot matrix serial
input alphanumeric displays. The displays are available in yellow,
high efficiency red, or high efficiency green. The package is a standard
twelve-pin hermetic package with glass lens. The display can be
stacked horizontally or vertically to form messages of any length. The
ISD235X has two fourteen-bit CMOS shift registers with built-in row
drivers. These shift registers drive twenty-eight rows and enable the
design of customized fonts. Cascading multiple displays is possible
because of the Data In and Data Out pins. Data In and Out are
easily input with the clock signal and displayed in parallel on the row
drivers. Data Out represents the output of the 7th bit of digit number
four shift register. The shift register is level triggered. The like columns
of each character in a display cluster are tied to a single pin. (See
Block Diagram). High true data in the shift register enables the output current mirror driver stage associated with each row of LEOs in
the 5x7 diode array.
The TIL compatible VB input may either be tied to Vee for maximum
display intensity or pulse width modulated to achieve intensity control
and reduce power consumption.
-Continued
See Appnote 44 for application information, and Appnotes 18. 19. 22,
and 23 for additional information.
2-87
DESCRIPTION (Continued)
FIGURE 2. MAX. ALLOWABLE POWER DISSIPATION
VS,TEMPERATURE
In the normal mode of operation, input data for digit four,
column one is loaded into the seven on-board shift register
locations one through seven. Column one data for digits 3,
2, and 1 is shifted into the display shift register locations.
Then column one input is enabled for an appropriate period
of time, T. A similar process is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time ioto the shift
register is t, then with five columns, each column of the .
display is operating at a duty factor of:
1.5
...
==
:a 6
\ 1\
1.0
Is
o ...
Rth JA)
~1
EiS
::s iii
.§~ 0.5
.. 0
~ ...
DF=_T_
5(T+t)
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the
display should be refreshed (turned on) at a minimum rate
of 100 times per second.
...0
With columns to be addressed, this refresh rate then gives a
value for the time T+I of: 1/[5x(100))=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.
RthlJA)
Tj(M
0.0
·60
-40
~
35::C;
~! 55°
~\
1'\
\X) = J25°C
! I .
40 60 BO 100 120
-20
0
20
Ta - Ambient Temperatu,. - °C
AC ELECTRICAL CHARACTERISTICS
(Vce=4.75 to 5.25 V, Tamb =-55°C to +100DC)
Symbol Description Min. Typ!l) Max!2) Units Fig.
Maximum Ratings
TSETUP
Setup Time
50
10
ns
1
Supply Voltage Vee to GND ........... -0.5 V to + 7.0 V
Inputs, Data Out and VB ........... ~0.5 V to Vee + 0.5 V
Column Input Voltage, Veol ........... -0.5 V to +6.0 V
Operating Temperature Range(1. 2) ..... -55 DC to + 100 DC
Storage Temperature Range .......... -65 DC to + 125 DC
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5 sec ................. 260 DC
Maximum Power Dissipation
at Tam b=25 DC(2) ....... .' ................... 1.35 W
THolO
Hold Time
25
20
ns
1
TWl
Clock Width
Low
75
45
ns
1
TWH
Clock Width
High
75
45
ns
1
F(ClK)
Clock
Frequency
MHz
1
TTHl,
TTlH
TpHl,
TplH
Notes:
1. Operation above + 100°C ambient is possible provided the following
condition are met. The iunction should not exceed TJ ~ 125 °e and the .
case temperature (as measured at pin 1 or the back of the display) should
not exceed Tc~ 100 °C.
2. Maximum dissipation .is derived from Vcc~5.25 V,
20 LEOs on per character, 20% OF.
Ve~2.4
V, VCOl ~3.5 V
6
5
Clock Transition Time
75
200
ns
1
Propagation
Delay Clock
to Data Out
50
125
ns
1
Notes:
1. All typical values specified at Vcc~5.0 V and Tamb~25°C unless
otherwise noted.
2. VB Pulse Width Modulation Frequency - 50 KHz (max).
FIGURE 1. TIMING CHARACTERISTICS
CLEANING THE DISPLAYS
2.4 V
IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
cleaning solution is hot D.I. water (60 DC) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do
not use commercial dishwasher detergents.
CUJa(
0.4 V
2.0 V
DATA IN
O.BV
For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning processing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.
2.4 V
DATA
our
0.4 V
16D2351 thru 15D2353
.2-88
RECOMMENDED OPERATING CONDITIONS (Guaranteed over operating temperature range)
Parameter
Symbol
Min.
Nom.
Max.
Supply Voltage
VCC
4.75
5.0
5.25
V
Data Out Current, Low State
IOl
1.6
mA
-0.5
mA
Data Out Current, High State
IOH
Column Input Voltage, Column On(1)
VCOl
2.75
TSETUP
70
Hold Time
THOlD
30
Width of Clock
TW(ClK)
75
Setup Time
Clock Frequency
TClK
Clock Transition Time
TTHl
Free Air Operating Temperature Range
Tamb
Units
3.5
V
45
ns
ns
ns
5
-55
MHz
200
ns
+100
°C
NOle:
1. See Figure 3 - Peak Column Current
VS.
Column Voltage.
OPTICAL CHARACTERISTICS
Yellow ISD2351
Symbol
Min.
Typ.(')
Peak Luminous Intensity per LED(t. 3)
(Character Average)
IVPEAK
2400
3400
,",cd
Peak Wavelength
APEAK
583
nm
AD
585
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vc c=5.0 V, VCOl =3.5 V
T}5) = 25°C, Vs=2.4 V
High Efficiency Red ISD2352
Symbol
Min.
Typ.(')
Peak Luminous Intensity per LED(t. 3)
(Character Average)
IVPEAK
1920
2850
,",cd
Peak Wavelength
ApEAK
635
nm
AD
626
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vc c=5.0 V, VCOl =3.5 V
T}5)=25°C, Vs=2.4 V
High Efficiency Green ISD2353
Symbol
Min.
Typ.(')
Peak Luminous Intensity per LED(t. 3)
(Character Average)
IVPEAK
2400
3000
,",cd
Peak Wavelength
ApEAK
568
nm
AD
574
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vc c=5.0 V, VCOl =3.5 V
T}5) = 25°C, Vs=2.4 V
Notes:
1. The displays are categorized for luminous intensity with the intensity
4.
category designated by a letter code on the bottom of the package.
All typical values specified at Vcc=5.0 V and T,mb=25°C unless
otherwise noted.
5. The luminous intensity is measured at Tamb =TJ=2SoC. No time is
allowed for the device to warm up prior to measurement.
2. Dominant wavelength A.D, is derived from the CIE chromaticity diagram,
and represents the single wavelength which defines the color of
the device.
3. The luminous sterance of the lED may be calculated using the following
relationships: lv (cd/m') = Iv (Candela)/A (Meter)'
lv (Footlamberts) =.Iv (Candela)/A (Foot)'
A=5.3x 10·' M2=5.Bx 10.7 (Foot)'
180235t thru 1802353
2-89
ELECTRICAL CHARACTERISTICS (-55°C to
Symbol
Description
Supply Current (quiescent)
+ 100°C) (unless otherwise specified)
Min.
Typ.(!)
Max.
Units
2
5.0
mA
VB=0.4 V
2.5
5.0
mA
VB =2.4 V
3
10.0
mA
10
fAA
VB =0.4 V
650
mA
VB=2.4 V
0.8
V
Icc
Supply Current (operating)
Icc
Column Current at any
Column Input(21
ICOl
(All)
550
ICOl
VB, Clock or Data Input
Threshold Low
Vil
VB, Clock or Data Input
Threshold High
VIH
2.0
Data Out Voltage
VOH
2.4
Test Conditions
Vcc=5.25 V
VClK = VDATA = 2.4 V
All SR Stages = Logical 1
FclK =5 MHz
Vc c=5.25 V
Vcol=3.5 V
All SR Stages = Logical 1
Vcc=4.75 V - 5.25 V
V
V
IOH=-0.5 mA
0.2
0.4
V
IOl=1.6 mA
-110
-300
fAA
-1
-10
~
3.6
VOL
-30
Input Current Logical 0
VB only
III
Input Current Logical 0
Data, Clock
III
Input Current Logical 1
Data, Clock
IIH
10
~
Input Current Logical 1
VB
IIH
200
~
Power Dissipation per
Package
PD
0.74
Thermal Resistance IC
Junction·to·Pin
R9J c PIN
25
W
Vc c=5.25 V
ICOl =0 mA
Vcc=4.75 V - 5.25 V, Vil =0.8 V
Vcc=4.75 V - 5.25 V, VIH=2.4 V
Vcc=5.0 V, VCOl =3.5 V, 17.5% OF
15 LEOs on per character, VB = 2.4 V
°CfW!
Device
Notes:
1. All typical values specified at Vcc=S.O V and Tamb =25°C unless
otherwise noted.
2. See Figure 3 - Peak Column Current VS. Column Voltage.
FIGURE 3. PEAK COLUMN CURRENT
VS. COLUMN VOLTAGE
600
,
500
(
~
• 400
-
iG
~ 300
B
i... 200
'ii
-
100
o0.0
1.0
.J
2.0
3.0
4.0
5.0
6.0
Vcol - Column Voltage - Voila
1502351 thru 1502353
2-90
FIGURE 4. BLOCK DIAGRAM
Column Drive Inputs
Column
1 234 5
{'r
'-~:r
~r::>
II :~
Blanking
Control, VB
Serial
Data
Input
--1
-
~
II
~
2
LED
Matrix
3
~
LED
Matrix
4
::>r:Ii!
I
1 2 345 6 7
Rows
1 234 567
LED
Matrix
'-l.>
I
Rows 1-7
Rows 1-7
Constant Current Sinking LED Drivers
I
Rows 1-7
2~ ~~ ~
Rows 8-14
Rows 15-21
Rows 22-28
f--
28·Bit SIPO Shift Register
Serial
Data
Output
1
Clock
CONTRAST ENHANCEMENT FILTERS FOR SUNLIGHT READABILITY
Display Color
Part No.
Filter Color
Marks Polarized Corp.·
Filter Series
Optical Characteristics of Filter
HER
Red
MPC 20·15C
25%@ 635 nm
Amber
MPC 30·25C
25%@ 583 nm
'C
22%@568 nm
IL
IS02352
Yellow
IS02351
Green
IS02353
.
.
fl
CD
'0
Yellow/Green
MPC 50·22C
CII
Multiple Colors
High Ambient Light
Neutral Gray
MPC 80·10C
10% Neutral
Multiple Colors
Neutral Gray
MPC 80·37C
37% Neutral
'S
I:!
U
• Marks Polarized Corp.
25·B Jefryn Blvd. W.
Deer Park, NY 11729
516·242·1300
FAX (516) 242·1347
Marks Polarized Corp. manulactures to MIL·I·45206 inspection system.
1502351 thru 1502353
2-91
THERMAL CONSIDERATIONS
The small alphanumeric displays are hybrid LED and
CMOS assemblies that are designed for reliable operation
in commercial, industrial, and military environments. Optimum reliability and optical performance will result when the
junction temperature of the LEOs and CMOS ICs are kept
as low as possible.
.
THERMAL MODELING
IS0235X displays consist of two driver ICs and four 5 x 7
LED matrixes. A thermall110del of the display is shown in
Figure 5. It illustrates that the junction temperature of the
semiconductor = junction self heating + the case temperature
rise+the ambient temperature. Equation 1 shows this
relationship.
FIGURE 5. THERMAL MODEL
Equation 1.
TJ(lED)= PLED Z8JC+PCASE (R8JC + R8CA) + TA
TJ(lED) = [(ICOl!28) VF(lED) Z8Jel + [(0135) ICOl OF (5 Vcou + VCC Icel • [R8JC + R8cAl + TA
The junction rise within the LED is the product of the
thermal impedance of an individual LED (37°CfW,
OF = 20%, F = 200 Hz), times the forward voltage, VF(lED),
and forward current, IF(lED), of 13 - 14.5 mA. This rise
averages TJ(lED)= 1 °C. The table below shows the VF(lED)
for the respective displays.
VF
Part Number
Min.
IS02351 12/3
1.9
I Typ. I Max~
12.2 I 3.0
The junction rise within the LED driver IC is the combination
of the power dissipated by the IC quiescent current and the
28 row driver current sinks. The IC junction rise is given in
Equation 2.
A thermal resistance of 28°CfW results in a typical junction
rise of 6°C.
Equation 2.
TJ(IC) = PCOl (R8JC+ R8CAl+ TA
TJ(IC) = [5 (VCOl-VF(lED)) • (ICOl/2) • (0135) OF+ Vcc • Icel • [R8JC+ R8cAl + TA
1802351 .hru 1802353
2-92
THERMAL MODELING (Cont.)
For ease of calculations the maximum allowable electrical
operating condition is dependent upon the aggregate
thermal resistance of the LED matrixes and the two driver
ICs. All of the thermal management calculations are based
upon the parallel combination of these two networks which
is 15°CIW. Maximum allowable power dissipation is given
in Equation 3.
Equation 3.
PDISPLAY = TJ(MAX)-TA
RflJC+ ROCA
PDISPLAy=5 VCOL ICOL (n/35) DF+ VCC Icc
For further reference see Figures 2. 7. 8. 9. 10 and 11.
KEY TO EQUATION SYMBOLS
DF
Icc
ICOL
n
PCASE
PCOL
PDISPLAY
PLED
ROCA
R9JC
TA
TJ(IC)
TJ(LED)
TJ(MAX)
VCC
VCOL
VF(LED)
ZflJC
Duty factor
Quiescent IC current
Column current
Number of LEDs on in a 5 x 7 array
Package power dissipation excluding LED under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of an LED
Thermal resistance case to ambient
Thermal resistance junction to case
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal iiTIpedance junction to case
ISD2351 thru ISD2353
2-93
OPTICAL CONSIDERATIONS.
FIGURE 9. PACKAGE POWER DISSIPATION
2.0
The light output of the LEDs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For
optimum light output, keep the thermal resistance of the
socket or PC board as low as possible.
VCC..'5V,Icl:-5~
==,
c .1.5
OF = 20%
0
iI
FIGURE 6. NORMALIZED LUMINOUS INTENSITY
VS. JUNCTION TEMPERATURE
I
10m~~
....................................................................................
i
'D
.,,;
Normalized ~: -
......... i
c
I
r--
~
.1
~
~
4
./
0.5
0.0
~
/
",
--"
/
/
o
5
10
15
20
25
30
LED. per Character
35
40
FIGURE 10. MAX. CHARACTER POWER DISSIPATION
0.5 c---,----r--r--r-..---r--.----,
L.......:.........J...........J....o...-L-'-.l....a....L..........E.....&....I-.o.-I~
~
L
1.0
Ta=25OC
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
1!1~~~~!"~'~!~~~~~
&
,1
.. I
I
lcol = 45OmA, Vcol = 3.5V;
i
_
0 ~ ~ 00 00 l00l~~
TI- LED Juncdon Temperature - DC
==,
When mounted in a 10°CIW socket and operated at
Absolute Maximum Electrical conditions, the ISD235X will
show an LED junction rise of 17°C. If TA=40°C, then the
LED's TJ will be 57°C. Under these conditions Figure 7
shows that the Iv will be 75% of its 25 °C value:
is
I
J
FIGURE 7. MAX. LED JUNCTION TEMPERATURE
VS. SOCKET THERMAL RESISTANCE
0.4
0.3
0.1
J:-~~9'IIf+_-+-+--:P>''"_::;,-c.'--t--t
E--t~~~..........o::r-+-±::::......~-I
o.oc...r......,,;:;............,........&J,..o...............a.a.J.......~.......1.L.a........
o 5 . 10 15 20 25 30 35 40
LEDa per Charactar
FIGURE 11. CHARACTER POWER DISSIPATION
s:
c
.S!
i
Ii
.!!
Q
•...
FIGURE 8. MAX. PACKAGE POWER DISSIPATION
3.0
-
J
i
Duty Factor
!
OA
:.
0.3
I!
0.2
U
iii
I
Vcol =3.5 ,Icol =600m
OF = 20%:Ta =25"C
Vcol':'I 3.5V:lcol = 600mA
!
,--1"71'""+--1
..
0.5
.c
'- vcct5.25J. Icc Jl0mA
I
Vcc = 5.25V, Icc = 10mA
0.6
........... · · ·. · · . ·. · · · . ·········7 ~
!-'
:2
--"
...........
0.1
0.0
0
5
10
15
20
25
30
35
~
LED. per Charactar
./
V
./
0.0
o
5
10
15
20
25
30
35
~
LED. per Character
1502351 thru 1502353
2-94
SIEMENS
MOL 2416C
MOL 2416TXV
MOL 2416TXVB
.15" Red, 4-Digit, 16 Segment plus Decimal
HI-REL/Military Alphanumeric Intelligent Display@)
with Memory/Decoder/Driver
'&.!!
=1
.;ai
= ...
.!I"
.Ei'
C>
Package Dimensions in Inches (mm)
PART
NUMBER
E~
DATE
CODE
Notes:
Part Number, Dais Coda, U Code
marked on face In shaded area.
lOlERANCE: .XX.. .01 (.25)
.XXX ...010(.250)
FEATURES
DESCRIPTION
• 150 Mil High, Non-Magnified Monolithic Character
• Rugged Ceramic Package, Hermetically Sealed
Flat Glass Window
• Low Profile Package
• Dual In Line Configuration
• Close Vertical Row Spacing, .600 Inches
• 100 Mil Pin Spacing
• Wide Viewing Angle
• Wide Temperature Operating Range, -55°C
to +1CJO°C
• Fully Integrated CMOS Drive Electronics
• Direct Access to Each Digit Independently and
Asynchronously
• TTL Compatible, 5 Volt Power Supply
• Independent Cursor Function
• 17th Segment for Improved Punctuation Marks
• Two Chip Enables
• Interdlglt Blanking
• Display Blank Function
• Memory Clear Function
• End-Stackable, Four Character Package
• Intensity Coded for Display Uniformity
• TXVB Process Conforms to MIL-D-87157 Quality
Level A Test and Tables I, II, ilia and IV
• TXV Process Conforms to a Modified MIL-D-B7157
Quality Level A Test and Table I
The MDL 2416 is a military alphanumeric four digit display
having a 17 segment font and built·in CMOS drive circuitry
that is TTL and microprocessor compatible. The integrated
circuit contains memory. ASCII ROM decoder, multiplexing
circuitry. and drivers. The MDL 2416 is designed for use in
extremely harsh environments where only the most reliable
product is acceptable.
2-95
Data entry is asynchronous and can be random. A display
system can be built using any number of MDL 2416s Since
each digit of any MDL 2416 can be addressed independently and will continue to display the character last stored
until replaced by another.
System interconnection is straightfoward. The least significant two address bits (Ao. Al ) are normally connected to the
like named inputs of all MOL 2416s in the system. With two
chips enables. (CE1. CE2). four MDL 2416s (16 characters)
can easily be interconnected without an external decoder.
Important: Since this is a CMOS device. normal precautions should be taken to avoid static damage.
OPTOELECTRONIC CHARACTERISTICS
-0.5 to + 6.0 VDe
-0.5 to Vee +0.5 VDe
Operating temperature
Storage temperature
-55 to + 100°C
-65 to + 125°C
DC CHARACTERISTICS @2SoC
Min.
Parameter
4.5
Vcc
25°C
OPTICAL CHARACTERISTICS
ABSOLUTE MAXIMUM RATINGS
DC Supply
Input Voltage Relative to Gnd
(all inputs)
.
@
660 nm typo
40 nm typo
±·50·
Spectral Peak Wavelength
Spectral Line Half·Width
Viewing Angle (Note 1)
Digit Size
Luminous Intensity (Typ.)
Intensity matching, Seg. to Seg.
l\tp.
.15 in.
0.1 mcd/seg @ Vcc=5V
1.8:1 @ Vcc=5V
Conditions
25°C
5.0
Max.
5.5
Units
V
0.10
1.5
4.0
mA
Vcc=5 V. WR=Vcc,
VIN = 0 V All other pins
Icc (10 segments/char.
4 digits on)
65
85
115
mA
Vcc=5 V
Icc (all segments on cursor
in 4 digits) (1, 2)
85
120
165
mA
Vec = 5 V Measured at
5 sec, 60 sec max.
0.8
V
Vec=5 V ±0.5 V
V
Vcc=5 V ±0.5 V
Icc (Blank) (1)
Vil (all inputs)
2.0
VIH (all inputs)
160
60
III (all inputs)
,..Po
Vcc=5 V. VIN=0.8 V
1. Measured at 5 sec.
2. 60 sec. max. duration.
AC CHARACTERISTICS
Parameter
Chip Enable Set Up Time
Address Set Up Time
Symbol
TeES
-55°C (ns)
190
+2SoC (ns)
275
+100oC (ns)
410
190
275
410
Cursor Set Up Time
Teus
,190
275
410
Chip Enable Hold Time
TCEH
25
25
25
Address Hold Time
TAH
25
25
25
TAS
'.
,.
Cursor Hold Time
TcuH
25
25
25
Write Delay Time
Two
40
50
60
Write Pulse
Tw
150
225
350
Data Set Up Time
Tos
100
150
300
Data Hold Time
TOH
25
25
25
Clear
TClA
12 ms
15ms
17.5 ms
TIMING CHARACTERISTICS
WRITE CYCLE WAVEFORMS
TIMING MEASUREMENT
\KllTAGE LEVELS
::x=:x:
'VOlTS
-2WlTS
0 VOlTS
(for tester calibration onlY) ,
Notes: 1. "OffAxis Viewing Angle" is here defined as: '1he minimum angle in any direction from the normal to the display suitace at which any part of
any segment in the display is not visible."
".
2. This display contains a CMOS integrated circuil. Normal CMOS handling precautions should Pe taken to avoid damage due to high static
voltages or electric fields. SEE APPNOTE 18.
3. Unused inputs must be tied to an appropriate logic voltage level (either V+ or V-).
2-96
MOL 2416
TOP VIEW
Pin
18
10
r:s0
~,~
DIGIT 3
r:sl21
It'~
DIGIT 2
~'Z1
IL'~
l{'~
DIGIT 0
DIGITI
9
•
Pin
ro
Chip Enable
C01Clear
CUE Cursor Enable
CD Cursor Select
WR Write
AI Digit Select
AO Digit Select
3
4
5
6
7
8
9
/S"21
1
Function
CE'i Chip Enable
1
2
Vee
18
17
16
15
14
13
12
11
10
Function
m:
.Display Blank
D4 Data input
D5 Data input
D6 Data input
D3 Data input
D2 Data input
Dl Data input
DO Data input
GND
PIN DEFINITIONS
Vee
Positive power supply.
Al
Next to least significant address bit.
Gnd
Negative power supply.
CU
Cursor load control which must be held high to store
DO Ihru 06
Data inputs, DO is the least signilicant dala inpul and
06 is the most significant data input.
WR
data in the RAM and low to store data in the cursor
memory.
CUE
Write input which must be held low to write data into
Cursor function control, displays the cursor in any positions having an "on" in cursor memory.
memory.
CE1, CE2
Two chip enable inputs which must be held low to enable
the chip.
AO
Least significant address bit.
An input which clears the RAM when held low for 15ms.
Blanking input. Turns off all segments when held low.
Does nat affect RAM or cursOT memory contents.
CHARACTER SET
......
DD
DI
D2
D3
"
L
L
L
L
D
L H L 2
L H H 3
H L L.
H L H •
n
U
-,
CU
P
H
L
L
L
1
L
H
L
L
2
I
II
,
I
CJ
I I
,-,
L~
2
H
H
L
L
3
L
L
H
L
H
L
H
L
L
H
H
L
• • •
H
H
H
L
7
±J
9j % ~y
J
uI 5 6 I
n
c rJ.J [
• t.J
_I
-0 r_u
l_
F? 5
I
"l
T
I
I I
W
II
V
,,
VII
L
L
L
H
H
L
L
H
H
H
L
H
L
H
L
H
• ,• • •
,
...
8
...
D
.J
:....:
T
..l
\I
V
,
/,
*
+
- -,
L
L
H
H
C
...
H
L
H
H
D
H
H
H
H
,
E
,
-, -J
---- -~
I
I
I
t_
I
LJ
~(
7
l_
i
l
I
l_
,,
\
"l
J
,
L
H
H
H
1\,/1
1\'
IV
r1
lJ
" --
All other Input codes display "blank"
MOL 2416
FUNcnONAL DESCRIPTION
Referring to the block diagram:
Display Memory-consists of a 4 by 7-bit RAM block.
Each 7-bit location holds the 7-bit ASCII data for the
four displays.
Cursor Memory-holds the cursor data for all the
displays.
ROM-has a look-up table for the 64 characters.
Oscillator Logic-provides all the necessary timing.
Display Drivers-17 segment drivers and 4 digit drivers.
LED Displays-each display is comprised of 16
segments and one decimal point which make up the
alphanumeric characters.
BLOCK DIAGRAM
ROM
TYPICAL SCHEMAnC FOR 16 DIGIT SYSTEM
+5
I
LL
J
GNO
I
11
D4
015
8[
DO-D6
CLR
WR
CU
CUE
AoAl
'
----..
?L
,
--
,
14...
t
r
t
I
03
DO
f
*
CE2
~
... CE2
4>
CE1
CE1
MOL 2418
2-98
LOADING DATA
For those users not requiring the cursor, the cursor enable
signal (CUE) may be tied low to disable the display of the
cursor function. A flashing cursor can be realized by simply
pulsing CUE. If the cursor has been loaded to any or all
positions in the display, then CUE will control whether the
cursor(s) or the characters appear. CUE does not affect the
contents of cursor memory.
Setting the chip enable (CE1, CE2) to their true state will
enable data loading. The desired data code (00-06) and
digit address (Ao, A,) must be held stable during the write
cycle for storing new data.
Data entry may be asynchronous and random. (Digit 0 is
defined as a right hand digit. with A, =Ao =0.)
Clearing of the entire internal four~t memory can be accomplished by holding the clear (CLR) low for one complete
display multiplex cycle, 15 mS minimum. The clear function
will clear both the ASCII RAM and the cursor RAM. Loading
an illegal data code will display a blank.
DISPLAY BLANKING
Blanking the display may be accomplished by loading a
blank or space into each digit of the display or by using the
(BL) display blank input.
Setting the (BL) input low does not affect the contents of
either data or cursor memory. A flashing display can be
realized by pulsing (BL).
LOADING CURSOR
Setting the chip enables (CE1, CE2) and cursor selec.!..(gU)
to their true state will enable cursor loading. A write (WR)
pulse will now store or remove a cursor into the digit location addressed by Ao, A,; as defined in data entry. A cursor
will be stored if 00=1; and will be removed if 00=0. The
cursor (eU) pulse width should not be less than the write
(WR) pulse or erroneous data may appear in the display.
The display can be dimmed by pulse width modulating the
(BL) at a frequency sufficiently fast to not interfere with the
internal clock. Experimentation is encouraged, although
4.5 KHz square wave on the (BL) pin will have no affect on
display brightness. As the low state duty factor is increased,
the display will dim, not affecting other device functions.
TYPICAL LOADING DATA STATE TABLE
CONTROL
IlL CIT W
CUE
CD'
ADDRESS
Vm f[jj
AI
AO
H
H
H
H
H
H
H
L
H
H
X
H
X
L
L
L
L
X
L
X
X
X
H
L
L
L
L
X
L
X
L
L
L
L
L
L
L
X
L
L
X
X
X
H
H
H
H
X
H
X
H
X
X
L
L
L
L
H
L
H
H
H
H
H
H
H
H
H
H
L
X
X
L
L
H
H
X
H
X
X
X
L
H
L
H
X
H
X
H
L
L
L
H
L
H
X
X
DISPLAY
DIGIT
DATA
D6 D5 04 D3 D2 DI
DO
PREVIOUSLY LOADED DISPLAY
X X
X X
X
X
X
X X
X
X X
X
X
H L
L
L
H L
H
H L
H L
H L
H
H L
L
H H· L
L
H L
L
L
L
H
L
BLANK DISPLAY
H L
L
L
H H H
CLEARS CHARACTER DISPLAYS
SEE CHARACTER CODE
3
2
I
0
G
G
G
G
G
G
B
R
R
R
R
R
L
L
E
E
E
E
U
U
U
Y
E
E
·E
E
G
L
U
E
Y
Y
SEE CHARACTER
SET
x =DON'T CARE
LOADING CURSOR STATE TABLE
CONTROL
IlL l:ftWCUE
H
H
H
H
H
H
H
H
H
H
X
a
X
X
L
L
L
L
L
X
X
L
L
L
L
L
x x
L
X
L
X
L
H
H
H
H
H
H
L
L
H
ADDRESS
CD'
WR
CIJi
X
X
L
L
L
L
L
X
L
X
H
H
L
L
L
L
L
H
L
H
H
H
H
H
H
H
H
H
H
Ii
AI AO
DATA
D6
os
D4 03 D2 DI DO
PREVIOUSLY LOADED DISPLAY
DISPLAY PREVIOUSLY STOREO CURSORS
L
L
X X
X
X X X
H
L
H
X X
X X
H
X X
H L
X X
X X
H
X X
H H
X
X X X
X X
H
H L
X
X X X
X X
L
DISABLE CURSOR DISPLAY
H H II x x x
x X L
DISPLAY STORED CURSOR
x
3
DISPLAY
DIGIT
2
0
I
B
B
B
B
B
E
E
E
E
B
B
B
E
E
E
A
A
A
R
R
A
A
R
R
Il!l
Il!lll!l
Il!l Il!lll!l
Ii'! Ii'! Ii'! Ii'!
Ii'! E iiiii'!
Il!l Il!l
DON'T CARE
MDL2416
2-99
QUALITY ASSURANCE LEVELS
The MOL 2416TXVBs are tested in conformance with
Quality Level A of MIL'D-87157 for hermetically sealed LED"
displays with 100% screening. The product is tested to
Tables I, II, ilia and IVa.
The MOL 2416TXVs are tested in conformance with Quality
Level A, Table I and Group A, Table II. "
The MOL 2416Cs are tested in conformance with Quality
Table I & II, Group A, except delta determinantsin Table I.
Table I. Quality Level A of MIL-D~87157
" Test Screen
Method
Conditions
1. Precap Visual
2072
MIL-STO-750 .
2. High Temperature Storage
1032
MIL-STO-750
3. Temperature Cycling
1051
MIL-STO-750
ConditionS, 10 Cycles, 15 min. Dwell
Tamb =-65°C to +125°C
4. Constant Acceleration
2006
MIL-STD-750
5,000 G's at Y1 Orientation
5. Fine Leak
1071
MIL-STO-750
Condition H, Leak Rate ~5x10-7 cc/s
6. Gross Leak
1071
MIL-STO-750
Condition C
1015
MIL-STO-883
Condition B at Vcc=5.5 V, Tamb = 100°C, t= 160 hours
7. Interim Electrical/Optical Tests(2)
8. Surn-ln{l)
9. Final Electrical Test
-
Tamb =125°C, Time = 24 hours
Icc, Iv at Vcc=5.0 V, Tamb =25°C.
Same as Step 7.
(2)
Alv= -20%, Alcc= ± 10%, Tamb =25°C
10. Delta Determinants
11. External Visual
2009
MIL-STO-883
Notes:
1. MIL·STD·SS3 test method applies.
2. Limits and conditions are per the Electrical/Optical Characteristics. The
10H and 10L tests are the inversa of VOH and
. Electrical Characteristics.
VOL
specified in the
"MOL 2416C1TXVITXVB
2-100
Table II. Group A Electrical Tests - MIL-D-87157
Subgroup/Test
Parameters
Subgroup 1
DC Electrical Tests at 25°C(1)
LTPD
Icc ($), Icc(CU), IcC 4.5
4. RST
volts. Reset is used only to synchronize
blinking and will not clear the display.
Chip enable (active high).
5. CE1
6.' CEO
Chip enable (active low).
Address input (MSB).
7. A2
Address input.
8. A1
Address input (LSB).
9. AO
Ground.
10. GND
Write. Active Low. If the device is
11. WR
selected, a Iowan the write input loads·
. the data into memory.
Data Bus bit f{MSB).
12. 07
13. 06
Data Bus bit 6.
14. 05
Data Bus bit 5:
Data Bus bit 4.
15. 04
Data Bus bit 3.
16. 03
Data Bus bit 2.
17. 02
18. 01
Data Bus bit 1.
.
Data Bus bit 0 (LSB).
19. DO
Plus 5 volts power pin.
20. Vee
DATA "READ" CYCLE
I
TIMING MEASUREMENT LEVELS
--~~---5V
0V _ _
..J*
2.0 V
TOP VIEW
20
11
..... ..... .....
........
... ........• ..
.....
..
·..... ... . ....
•••• ••
DIGIT 3
DIGIT 2
DIGIT 1 DIGIT 0
r--------l'O
PIN 1
MPD 254517/8
2-105
DATA INPUT COMMANDS
CEO
CE1
RD
WR
1
0
0
0
0
0
0
0
1
1
1
1
1
X
0
1
1
1
X
1
0
0
0
0
0
1
1
1
A2 A1
AD D7 D6 D5 D4 D3 D2 D1
X
1
1
1
1
1
1
X
0
0
1
0
X
0
0
0
1
1
0
1
0
X
X
X
X
X
X
1
X
X
0
1
1
0
X
X
X
1
0
1
1
X
X
X
0
1
0
1
X
CEl
RD
WR
0
1
X
0
X
0
X
X
1
0
X
X
1
X
X
1
OPERATION
4x8
No Change
Read Digit 0 Data To Bus
($) Written To Digit 0
(W) Written to Digit 1
(I) Written To Digit 2
(3) Written to Digit 3
Char. Written To Digit 0
And Cursor Enabled
1
X
The Display MuHlplexer controls all display output to the
digit drivers so no additional logic is required for a display
system.
r: - - - - - - - - - -,
DISPlAY MEMORY
(RAM)
X
OPERATION
X
X
0
1
0
.The Clock Source can originate either from the internal
oscillator clock or from an external source-usually from the
output of another MPD 2545/7/8 in a multiple module
display.
BLOCK DIAGRAM
8 I
1
1
DO
The Character Generator converts the 7-bit ASCII data into
the proper dot pattern for the 96 characters shown in the
character set chart.
Illegal
No Change
No Change
No Change
NOTE: 0 = Low Logic Level. 1= High logic Level, X =- Don't ~re.
IJO..07
1
1
0
X
X
X
0
1
The Control logic dictates all of the features of the display
device and is discussed in the Control Word section of this
data sheet.
MODE SELECTION
CEO
X
X
1
X
X
0
0
0
0
X
en. h-~1...
4 -tH
REG
1x8
The Column Drivers are connected directly to the display. .
r,:-------:;-,
I
The Display has four digits. Each of the four digits is comprised of 35 LEOs in a 5x7 dot array which makes up the
alphanumeric characters.
I
I
I
I
I
96;:'"
48)(80
I
The intensity of the display can be varied by the Control
Word in steps of 0% (Blank), 250lb, 50 0lb, and full
brightness.
l!: ________ 1
---,
15
MICROPROCESSOR INTERFACE
The interface to the microprocessor is through the address
lines (AO-A2), the data bus (DO-07)! two chip select lines
(CEO, CE1), and read (RD) and write (WR) lines.
ClKSEL
To derive the appropriate enable signal, the WR and RD
lines should be "NANDEO" into the CE1 input. The CEO
should be held low when executing a read, or write
operation.
~
,------------:;,
The read and write lines are both active low. During a valid
read the data input lines (00-07) become outputs. A valid
write will enable the data as input lines.
:0000
I
t11~~-tL---.J
DISPlAY
1...: _ _ _ _ _ _ _ _ _ _ _ _ -'
INPUT BUFFERING
FUNCTIONAL DESCRIPTION
The MPD 2545/7/8 block diagram includes 5 major blocks
and internal registers (indicated by dotted lines).
Display Memory consists of a 5x8 bit. RAM block. Each of
the four 8-bit words holds the 7-bit ASCII data (bits 00-06).
The fifth 8-bit memory word ,is used as a control word
register. A detailed description olthe control register and its
functions can be found under the heading Control Word.
Each 8-bit word is addressable and can be read from or
written to.
If a cable length of 6 inches or more is used, all inpliis to
the display should be buffered with a tri-state non-inverting
buffer mounted as close to the display as conveniently
possible. Recommended buffers are: 74LS245 for the data
lines and 74LS244 for the control lines.
MPD 25461718
2-106
PROGRAMMING THE MPD 2545/7/8
There are five registers within the MPD 2545/7/8. Four of
these registers are used to hold the ASCIl code of the four
display characters. The fifth register is the Control Word,
which is used to blink, blank, clear or dim the entire display,
or to change the presentation (attributes) of individual
characters.
ADDRESSING
The addresses within the display device are shown below.
Digit 0 is the rightmost digit of the display, while digit 3 is on
the left. Although there is only one Control Word, it is
duplicated at the four address locations 0-3. Data can be
read from any of these locations. When one of these locations is written to, all of them will change together.
Address
0
1
2
3
4
5
6
7
character will be displayed using the attribute. If bit 07 is
cleared, the character will display normally.
CONTROL WORD
When address bit A2 is taken low, the Control Word is
accessed. The same Control Word appears in all four of the
lower address spaces of the display. Through the Control
Word, the display can be cleared, the lamps can be tested,
display brightness can be selected, and attributes can be
set for any characters which have been loaded with their
most significant bit (07) set high.
Brightness (DO, 01): The state of the lower two bits of the
Control Word are used to set the brightness of the entire
display, from 0% to 100%. The table below shows the correspondence of these bits to the brightness.
Contents
Control Word
Control Word (Duplicate)
Control Word (Duplicate)
Control Word (Duplicate)
Digit 0 (rightmost)
Digit 1
Digit 2
Digit 3 (leftmost)
D7
D6
D5
D4
D3
D2
D1
DO
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
1
1
0
1
0
1
0
0
Operation
Blank
25% brightness
50% brightness
Full brightness
x = donl care
Bit 07 of any of the display digit locations is used to allow
an attribute to be assigned to that digit. The attributes are
discussed in the next section. If bit 07 is set to a one, that
Attributes (02-04): Bits 02, 03, and 04 control the visual
attributes (i.e., blinking, alternate) of those display digits
which have been written with bit 07 set high. In order to use
any of the four attributes, the Cursor Enable bit (04 in the
Control Word) must be set. When the Cursor Enable bit is
CONTROL WORD FORMAT
07
06
05
03
04
02
01
DO
01
DO BRIGHTNESS
1
1
0
0% (Blank)
1 25%
0 50%
1100%
o
o
03 02 ATTRIBUTE
o 0 Display Cursor instead
Of Character
o 1 Blink Character
1 0 Display Blinking Cursor Instead
Of Character
Alternate Character
With Cursor
04 ATTRIBUTE ENABLE
o
Disable Above Attributes
1 Enable Above Attributes
05 BLINK
o Blink-Attribute Disabled
1 Blink Entire. Display
06 LAMP TEST
o Standard Operation
1 Display All Dots At 50% Brightness
D7 CLEAR
o Standard Operation
1 ·Clear Entire Display
MPD 2545/7/B
2-107
set, and bit D7 in a character location is set, the character
will take on one of the following display attributes.
D7 06 05 04 03 02 01
DO
0
0
0
0
X
X
B
B
0
0
0
1
0
0
B
B
0
0
0
0
0
0
1
1
0 '1
1
0
B
B
B
B
0
0
0
1
1
1
B
B
Operation
Disable highlight
attribute
Display cursor· instead
of character
Blink single character
Display blinking
cursor· instead of
character
Alternate character
with cursor·' '
*"Cursor" refers to a condition when all dots in a single character space are
lit to half brightness.
X = don' care
B ~ depends on the selected brightness
Attributes are non-destructive. If a character with bit D7 set
is replaced by a cursor (Control Word bit D4 is set, and
D3=D2=0) the character will remain in memory and can be
revealed again by clearing D4 in the Control Word.
'
Blink (05): The entire display can be caused to blink at a
rate of approximately 2Hz by setting bit D5 in the Control
Word. This blinking is independent of the state of D7 in all
character locations.
In order to synchronize the blink rate in a bank of these
devices, it is necessary to tie all devices' clocks and resets
together as described in a later section of this data sheet.
07 06 05 D4 03 02 01
o
0
X
X
X
B
DO
B
Operation
Blinking display
Lamp Test (06): When the Lamp Test bit is set, all dots in
the entire display are lit at half brightness. When this bit is
cleared, the display returns to the characters that were
showing before the lamp test.
'
07 06 05 04 03 02 01
o
0
X
X
X
X
Operation
DO
X
Clear Data (7): When D7 is set in the Control Word all
character and Control Word memory bits are reset to zero.
This causes total erasure of the display, and returns all digits
to a non-blink, the preset brightness, non-cursor status.
' Operation
07 06 05 04 03 02 01 DO
00
OX
X
%
%
Clear
CASCADING
Cascading the MPD 2545/7/8 is a simple operation. The
requirements for cascading are: 1) decoding the correct
address to determine the chip select for each additional
device, 2) assuring that all devices are reset simultaneOUSly, and 3) selecting one display as the clock source
and setting all others to accept clock input (the reason for
cascading the clock is to synchronize the flashing of multiple displays). One display as a source is capable of driving
six other MPD 2545/7/8s. If more displays are required, a
buffer will be necessary. The source display must have
pin 3 tied high to output clock signals. All other displays
must have pin 3 tied low.
VOLTAGE TRANSIENTS
It has become common practice to provide 0.01 pi bypass
capacitors liberally in digital systems. Like other CMOS
circuitry, the Intelligent Display controller chip has very low
power consumption and the usual 0.01 pi Would be adequate
were it not for the LEDs. The module itself can, in some
conditions, use up to 100 mA (multiplexed). In order to
prevent power supply transients, capacitors with low inductance and high capacitance' at high frequencies are required. This suggests a solid tantalum or ceramic disc for
high frequency bypass. For larger displays, distribute the
bypass capacitors evenly, keeping capaCitors as close to the
power pins as possible. We recommend a 10 ,..f and 0.01 pi
for every Intelligent Display to decouple the displays
themselves, at the display.
Lamp test
CASCADING THE MPD 2545ma
AO-~
Wii
iiii
Vee
,
Vee
"
12
t3
A3
A4
Mj
14
15
• .5
3
74LS13b
~:-108
MPD 254517/8
HOW TO LOAD INFORMATION INTO THE
MPD 2545/7/8
ELECTRICAL AND MECHANICAL
CONSIDERATIONS
Information loaded into the MPo 2545/7/8 can be either
ASCII data or Control Word data. The following procedure
(see also typical loading sequence) will demonstrate a
typical loading sequence and the resulting visual display.
The word STOP is used in all of the following examples.
The CMOS IC of the MPo 2545/7/8 is designed to provide
resistance to both Electrostatic and Discharge Damage and
Latch Up due to voltage or current surges. Several precautions are strongly recommended for the user, to avoid
overstressing these built-in safeguards.
Step 1
Step
Step
Step
Step
2
3
4
5
Step 6
Step 7
Step 8
Step 9
Step 10
SET BRIGHTNESS
Set the brightness level of the entire display to
your preference (example: 100%)
ESD PROTECTION
Users of the MPo 2545/7/8 should be careful to handle
the devices consistent with Standard ESo protection
procedures. Operators should wear appropriate wrist, ankle
or feet ground straps and avoid clothing that collects static
charges. Work surfaces, tools and transport carriers that
come into contract with unshielded devices or assemblies
should also be appropriately grounded.
LOAD FOUR CHARACTERS
Load an "s" in the left-hand digit.
Load a ''T'' in the next digit.
Load an "0" in the next digit.
Load a "P" in the right-hand digit.
If you loaded the information correctly, the
MPo 2545 should now show the word "STOP. "
LATCH UP PROTECTION
Latch up is a condition that occurs in CMOS ICs after the
input protection diodes have been broken down. These
diodes can be reversed through several means:
BLINK A SINGLE CHARACTER
Into the digit, second from the right, load the hex
code "CF," which is the code for an "0" with the
07 bit added as a control bit.
NOTE: the "0" is the only digit which has the
control bit (07) added to normal ASCII data.
Load enable blinking character into the control
word register.
The MPo 2545 should now display "STOP" with a
flashing "0. "
VIN < GNo, VIN > Vcc +0.5 V, or through excessive currents begin forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin
conducting as much as one amp through the Vcc pin. This
destructive condition will persist (latched) until device failure
or the device is turned off.
The Voltage Transient Suppression Techniques and buffer
interfaces for longer cable runs help considerably to prevent
latch conditions from occuring. Additionally, the following
Power Up and Power Down sequence should be observed.
ADD ANOTHER BLINKING CHARACTER
Into the left hand digit, load the hex code "03"
which is for an "s" with the 07 bit added as a
control bit.
The MPo 2545 should display "STOP" with a
flashing "0" and a flashing "S."
POWER UP SEQUENCE
1. Float all active signals by tri:stating the inputs to the
displays.
2. Apply Vcc and GNo to the display.
3. Apply active signals to the displays by enabling all input
signals per application.
ALTERNATE CHARACTER/CURSOR ENABLE
Load enable alternate character/cursor into the
control word register.
The MPo 2545 should now display "STOP" with
the "0" and the ''S'' alternating between the letter
and a cursor (all dots lit).
POWER DOWN SEQUENCE
1. Float all active signals by tri-stating the inputs to the
display.
INITIATE FOUR-CHARACTER BLINKING
(Regardless of Control Bit setting)
Load enable display blinking.
The MPo 2545 should now display the entire
word "STOP" blinking.
2. Turn off the power to the display.
TYPICAL LOADING SEQUENCE
I~ ~I:ill~ ~ ::c
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H L
H L
H L
H L
H L
H L
H'L
H L
H L
H L
L
H
H
H
H
H
L
H
L
L
X
H
H
L
L
L
X
H
X
X
~
X
H
L
H
L
H
X
H
X
X
,..
... ......
a
a
0 0
1 0
1 0
1 0
1 0
1 0
0 0
1 0
0 a
0 1
"'.,..cc cc c c c
0
0
0
1
0
1
0
0
0 0
1 0
1 0
0 1
1 0
0 1
1 0
1 0
1
C>
C
0 1 1
0 1 1
1 0 0
1 1 1
0 0 0
1 1 i
1 1 1
a
1 1
0 0 0
1 1
1 1
1 1
DISPLAY
S
ST
STO
STOP
STOP
STOoP
S"TO"P
StTOtp
S"T"O"P"
"Blinking Character
tCharacter alternating with cursor (all dots lit)
MPD 2545/7/B
2-109
CHARACTER SET
L
H
L
L
L
H
H
L
L
H
L
L
H
H
L
L
L
L
L
H
H
H
H
H
L
L
L
L
L
L
H
H
H
D1 L
D2 L
D3 L
HEX iii
L
L
L
L
H
H
2
3
4
5
6
7
8
9
D0
H
H
L
L
H
L
L
L
L
H
A
H
B
H
H
H
H
H
H
H
H
H
H
H
C
0
E
F
L L L 0
THESE CODES DISPLAY BLANK
L LH 1
L H L 2
L HH 3
. .: . ..!.. ::
'ii!'
~~; i::_: !! i. .: -:...i.i -! ........: ...., s··.. ::..M ...,. ... ......:: .. ::: ..'.'
". :::1- :::::
r:..: .1. 100M .....
I i:::; :.. :: :i ..
:i
..
·
...·...
.
.:.:. ::j::
-I-!-
n
:
: ••• 1
r- '. .. .··1.! ...
i..
...
I···. .:.i ff! .i··-;.... .....
.:.:.
: :
H H H 7
I:::' '::i j"" :::::
t i,..! i.) i.:,! ::< ::::i :;:::
:
. ....
· . ·.....
:
:
:
Notes: 1. A2 must be held high for ASCII data.
.
2. Bit 07 ~ 1 enables attributes for the assigned digit.
GENERAL QUALITY ASSURANCE LEVELS
The parts are tested in conformance with Quality Level A of
MIL-D-87157 for hermetically sealed LED displays with
100% screening. The product is tested.to Tables I, II, lila
and IVa.
.
Table I. Quality Level A of MIL-D-87157
Test Screen
1. Precap Visual
2. High Temperature Storage
Method
Conditions
2072
MIL-STD-750
1032
Tamb =125°C, Time=24 hours
MIL-STD~750
3. Temperature Cycling
1051
MIL-STD-750
Condition B, 10 Cycles, 15 min. Dwell
4. Constant Acceleration
2006
MIL-STD-750
5,000 G's at V1 Orientation
5. Fine Leak
6. Gross Leak
1071
MIL~STD-750
1071
MIL-STD-750
7. Interim Electrical/Optical Tests
8. Burn-ln(1)
Condition C
Limits and conditions are per the Electrical/Optical Characteristics. The IOH and IOL tests are the inverse of VO H and VOL
specified in the Electrical Characteristics. Tamb = 25°C.
1015
MIL-STD-883
9. Final Electrical Test
10. External Visual
Condition G or H
Condition B at Vcc=5.5 V, Tamb= 100°C. t= 160 hours.
Same as Step 7.
2009
MIL-STD-883
Not.:
1. MIL·STO-883 test method applies.
MPD 2S4517/8
2-110
Table II. Group A Electrical Tests - MIL-D-87157
SubgrouplTest
Parameters
Subgroup 1
DC Electrical Tests at 25°C
LTPD
Limits and conditions are per the Electrical/Optical Characteristics. The IOH and IOL tests are the inverse of VOH and VOL
specified in the Electrical Characteristics.
5
Subgroup 2
Selected DC Electrical Tests at High
Temperatures
7
Subgroup 3
Selected DC Electricai Tests at Low
Temperatures
7
Subgroup 4, 5 and 6 Not Applicable
Subgroup 7
Optical and Functional Tests at 25°C
Satisfied by Subgroup 1
5
Subgroup 8
External Visual
7
Table ilia. Group B, Class A and B of MIL-D-87157
SubgrouplTest
Subgroup 1
Resistance to Solvents
Internal Visual and Mechanical(3)
Subgroup 2(1· 2)
Solderability
Subgroup 3
Thermal Shock (Temp Cycle)
MIL-STD-750
Method
Conditions
1022
4 Devices/O Failures
2014
1 Device/O Failures
2026
Tamb =245°C for 5 seconds
LTPD= 15
1051
Condition B, 10 Cycles, 15 min. Dwell
LTPD=15
Moisture Resistance
1021
Fine Leak
1071
Condition G or H
Gross Leak
1071
Condition C
Electrical/Optical Endpoints
Subgroup 4(1)
Operating Life Test (340 hours)
Limits and conditions are per the
Electrical/Optical Characteristics. The
IOH and IOL tests are the inverse of
VOH and VOL specified in the Electrical
Characteristics. Tamb = 25°C.
1027
Tamb =100oC @Vcc=5.5V
LTPD= 10
Same as Subgroup 3
Electrical/Optical Endpoints
Subgroup 5
Non-Operating (Storage)
Life Test (340 hours)
Sample
Size
1032
Electrical/Optical Endpoints
Tamb = +125°C
LTPD= 10
Same as Subgroup 3
Notes:
1. Whenever electrical/optical tests are not required as endpoints, electrical
rejects may be used.
3. MIL·STD·883 test methods apply.
4. Visual requirements shall be as specified in MIL-STD-883.
Methods 1010 or 1011.
2. The LTPO applies to the number of leads inspected except in no
case shall less than 3 displays be used to provide the number of
leads required.
MPD 25451718
2-111
Table IVa. Group C, Class A and B of MIL·D·87157
SubgrouplTest
MIL·STD·750
Method
Conditions
Subgroup 1
Physical Dimensions
2066
Subgroup 2(2.6)
Lead Integrity
2004
Condition B2
Fine Leak
1071
Condition G or H
Gross Leak
1071
Condition C
2016
1500G, Time=0.5 ms, 5 Blows in
Each Orientation X1, Y1, Y2
Subgroup 3
Shock
Vibration, Variable Frequency
Constant Acceleration
External Visual(4)
External Visual(4)
2 DeviceslO Failures
LTPD=15
2006
5,000G at Y1 Orientation
1001 or 1011
Limits and conditions are per the
ElectricallOptical Characteristics. The
IOH and IOL tests are the inverse of
VOH and VOL specified in the Electrical
Characteristics. Tamb = 25 DC.
1041
LTPD=15
1010 or 1011
LTPD=20 (C=O)
Subgroup 5
Bond Strength(S)
2037
Subgroup 6
Operating Life Test{7)
1026
Tamb=100DC@Vcc=5.5V
1026
Same as Subgroup 3
ElectricallOptical Endpoints(?)
LTPD=:15
2056
ElectricallOptical Endpoints
Subgroup 4(1.3)
Salt Atmosphere
Sample
Size
Condition A
).=10
Noles:
1. Whenever electrical/optical-tests are not required as endpoints, electrical
rejects may be used,
2. The LTPD applies to the number of leads inspected except in no case
shall less than three displays be used to provide Ihe number of
4. Visual requirements shall be as specified in MIL-STD-883,
Methods 1010 or 1011.
5. Displays may be selected prior to seaf.
6. MIL-STD-883 test method applies.
leads required.
7. Test method or conditions in accordance with detail specification.
3. Solderability samples shall not be used.
MPD 2545/7/8
2-112
SIEMENS
MSD2010TXV/TXVB
YELLOW MSD2011 TXVITXVB
HIGH EFF. RED MSD2012TXVITXVB
HIGH EFF. GREEN MSD2013TXVITXVB
RED
.150" 4-Character 5x7 Dot Matrix
Serial Input Alphanumeric Military Display
FIn
Column 1
Column 2
Column 3
Column 4
Column 5
No Connection
DalaOu!
V.
Vee
Clock
Ground
5
6
7
8
10
II
12
~.100
~1(2.54)
CII
(Bf!
Funcdon
I
2
3
4
U
Dalaln
_
.010(.25)
.100(2.54)
•.OO2(05)Ti+..005 (.13) Typ.
Typ.
Non Accum. 10PL
.300
FEATURES
• Four .150" Dot Matrix Charactera
• Four Colors: Red, Yellow, High Efficiency
Red, High Efficiency Green
• Wide Viewing Angle
• Bullt·ln CMOS Shift Registers with
Constant Current LED Row Drivers
• Shift Registers Allow Custom Fonts
• Easily cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Military Operating Temperature Range:
-55 0 to +100·C
• Categorized for Luminous Intensity
• Ceramic Package, Hermetically Sealed
Flat Glass Window
• TXVB Process Conforms to MIL·D·87157
Quality Level A Test and Tables I, II, ilia
and IVa
• TXV Process Conforms to a Modified
MIL·D·87157 Quality Level A Test and
Table I
(7.62)
PIn 1 (ndicator ~::I...CI..c:J....c:I...cL...C:1..-,
Year
== 4 - Hua Codl
Werle Week
Luml""us
Balch
Int,nsHy Code
COO·~~cr~~~~~
TOLERANCE: •.015 (."".pllons noted)
DESCRIPTION
The MSD2010 through MSD2013TXV/TXVB are four digit 5x7 dot
matrix serial input alphanumeric displays. The displays are available in
red, yellow, high efficiency red, or high efficiency green. The package
is a standard twelve-pin hermetic DIP package with glass lens. The
display can be stacked horizontally or vertically to form messages of
any length. The MSD201X has two fourteen-bit CMOS shift registers
with built-in row drivers. These shift registers drive twenty-eight rows
and enable the design of customized fonts. Cascading multiple displays is possible because of the Data In and Data Out pins. Data In
and Out are easily input with the clock signal and displayed in
parallel on the row drivers. Data Out represents the output of the 7th
bit of digit number four shift register. The shift register is level triggered. The like columns of each character in a display cluster are
tied to a single pin. (See Block Diagram). High true data in the shift
register enables the output current mirror driver stage associated with
each row of LEDs in the 5x7 diode array.
The TIL compatible Va input may either be tied to Vee for maximum
display intensity or pulse width modulated to achieve intensity control
and reduce power consumption.
-Continued
See Appnote 44 for application information. and Appnotes 18, 19. 22,
and 23 for additional information.
2-113
DESCRIPTION (Continued)
FIGURE 2. MAX. ALLOWABLE POWER DISSIPATION
VS.TEMPERATURE
In the normal mode of operation,input data for digit four,
column one is loaded into the seven on-board shift register
locations one through seven. Cblumn one data for digits 3,
2, and 1 is shifted into the display shift register locations.
Then column one input is enabled for an appropriate period
of time, T. A similar process. is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time into the shift
register is t, then with five columns, each column of the
display is operating at a duty factor of:
1.0
'\.
3i: 0.8
~g
0.6
~=
E Ci
0.4
:!III.
0.2
o[
=> ..
DF=_T_
5(T+t)
]i;
.. 0
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the
display should be refreshed (turned on) at a minimum rate
of 100 times per second.
R (JA) =35° fIN'
; ..,
~th(JAI = 55lCfIN
With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1/[5x(100)]=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.
~
/
"
1j(MAX) = 125°C
Q
II.
\
~
0.0
-60
I
-40
:
j
-20
0
20 40 60
80 100 120
Ta - Ambient Temperature - °C
AC ELECTRICAL CHARACTERISTICS
(Vee =4.75 to 5.25 V, Tamb =-55°C to +100°C)
Symbol Description Min. TypJl) MaxJ2) Units Fig.
Maximum Ratings
TSETUP
Setup Time
50
10
ns
Supply Voltage Vee to GND ........... -0.5 Vto + 7.0 V
Inputs, Data Out and VB . .......... -0.5 V to Vee +0.5 V
Column Input Voltage, VeOl ........... -0.5 V to +6.0 V
Operating Temperature Range(!' 2) ..... -55°C to + 100°C
Storage Temperature Range .......... -65°C to + 125 °C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5 sec .................. 260°C
Maximum Power Dissipation
at T amb =25°C(2)
Red ..................................... 0.91 W
Yellow, HER, High Elf. Green ................. 0.86 W
THOlD
Hold Time
25
20
ns
1
TWl
Clock Width
Low
75
45
ns
1
TWH
Clock Width
High
75
45
ns
1
F(ClK)
Clock
Frequency
MHz
1
TTHl,
TTlH
TpHl'
TplH
Notes:
aooc
1. Operation above + 1
ambient is possible provided the following
condition are met. The junction should not exceed TJ = 125 Q C and the
1
6
5
Clock Transition Time
75
200
ns
1
Propagation
Delay Clock
to D.ata Out
50
125
ns
1
case temperature (as measured at pin 1 or the back of the display)
should not exceed Tc =1000e.
.
2. Maximum dissipation is derived from Vcc =5.25 V. VB =2.4 V.
VCOl =3.5 V 20 LEOs on per character, 20oA> OF.
,1. All typical values specified at Vcc =5.0 V and T,mb= 25°C unless
FIGURE 1. TIMING CHARACTERISTICS
CLEANING THE DISPLAYS
Notes:
otherwise noted.
2. VB Pulse Width Modulation Frequency - 50 KHz (max).
IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
cleaning solution is hot 0.1. water (60°C) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do
not use commercial dishwasher detergents.
2.4V
CLOCK
0.4 V
For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning processing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.
2.0 V
DATArN
a.BV
2.4 V
DATA OUT
0.4 V
MSD2010
2-114
thru MSD2013TXVITXVB
RECOMMENDED OPERATING CONDITIONS
Symbol
Min.
Nom.
Max.
Supply Voltage
Vcc
4.75
5.0
5.25
V
Data Out Current, Low State
IOl
1.6
mA
-0.5
mA
Parameter
Data Out Current, High State
IOH
Column Input Voltage, Column On(')
Units
VCOl
2.75
TSETUP
70
Hold Time
THOLD
30
ns
Width of Clock
TW(ClK)
75
ns
Setup Time
3.5
V
45
ns
Clock Frequency
TClK
5
Clock Transition Time
TTHl
200
ns
Free Air Operating Temperature Range
Tamb
+100
°C
Nate:
1. See
-55
MHz
Figure 3 - Peak Column Current vs. Column Voltage.
OPTICAL CHARACTERISTICS
Red MSD2010
Symbol
Min.
Typ.c4)
Peak Luminous Intensity per LED('·3)
(Character Average)
IVPEAK
105
200
!,cd
Peak Wavelength
ApEAK
655
nm
AD
639
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc = 5.0 V, VCOl = 3.5 V
Ti5)=25°C, Vs=2A V
Yellow MSD2011
Symbol
Min.
Typ.c4)
Peak Luminous Intensity per LED('· 3)
(Character Average)
IVPEAK
400
750
!,cd
Peak Wavelength
ApEAK
583
nm
AD
585
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc=5.0 V, VCOl =3.5 V
TJ(5) = 25°C, Vs =2A V
High Efficiency Red MSD2012
Symbol
Min.
Typ.(4)
Peak Luminous Intensity per LED('· 3)
(Character Average)
IVPEAK
400
1430
!,cd
Peak Wavelength
ApEAK
635
nm
AD
626
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc=5:0 V, VCOl =3.5 V
Ti5)=25°C, Vs=2A V
High Efficiency Green MSD2013
Symbol
Min.
Typ.c4)
Peak Luminous Intensity per LED('· 3)
(Character Average)
IVPEAK
850
1550
!,cd
Peak Wavelength
ApEAK
568
nm
AD
574
nm
Description
Dominant Wavelength(2)
Nates:
1. The displays are categorized
for luminous intensity with the intensity
category designated by a letter code on the bottom of the package.
2. Dominant wavelength Ao, is derived from the CIE chromaticity diagram, and
represents the single wavelength which defines the color of the device.
3. The luminous sterance of the lED may be calculated using the following
relationships: lv (cd/m') -Iv (Candela)IA (Meter)'
lv (Footiamberts)-nlv (Candela)IA (Foot)'
A-5.3x 10-8 M'-5.8x 10-7 (Foot)'
4.
Max.
Units
Test Conditions
Vcc=5.0 'v, VCOl =3.5 V
TJ(5) = 25°C, Vs =2.4 V
All typical values specified at Vee-5.O V and T.mb-25°C unless
otherwise noted.
5. The luminous intensity is measured at Tamb=TJ=25°C. No time is
allowed for the device to warm up prior to measurement.
MSD20'O thru MSD20'3TXVITXVB
2-115
ELECTRICAL CHARACTERISTICS (-55°C to
Symbol
Description
Supply Current (quiescent)
+ 100°C) (unless otherwise specified)
Min.
Icc
Typ.<1)
Max.
Units
2
5.0
mA
VB =O.4 V
5.0
mA
VB =2.4 V
10.0
mA
10
JJA
350
435
mA
335
410
mA
0.8
V
2.5.
Supply Current (operating)
3
Icc
Test Conditions
FCL K=5 MHz
Column Current at any
Column Input(2)
All
ICOL
Red
ICOL
'I COL
Yellow. HER. Green
VB. Clock or Data Input
Threshold Low
VIL
VB. Clock or Data Input
Threshold High
VIH
2.0
Data Out Voltage
VOH
2.4
VOL
-30
Vcc =5.25 V
VCLK = VOATA = 2.4 V
All SR Stages = Logical 1
VB=O.4 V
Vcc =5.25 V
VCOL=3.5 V
All SR Stages = Logical 1
VB=2.4 V
Vcc=4.75 V - 5.25 V
V
3.6
V
IOH=-0.5 mA
0.2
0.4
V
IOL = 1.6 mA
-110
-300
JJA
-1
-10
JJA
Input Current Logical 0
VB only
IlL
Input Current Logical 0
Data. Clock
IlL
Input CurrentLdgical1
Data. Clock
IIH
10
,.A
Input Current Logical 1
VB
IIH
200
,.A
Power Dissipation per
Package
Po
0.44
Thermal Resistance IC
Junction-to-Pin
RaJ-PIN
30
W
Vcc=5.25 V
ICOL =0 mA
Vcc=4.75 V - 5.25 V. VIL =0.8 V
Vcc=4.75 V - 5.25 V. VIH=2.4 V
Vcc =5.0 V. VCOL=3.5 V. 17.5% DF
15 LEDs on per character. VB =2.4 V
°C/WI
Device
Noles:
1. All typical values specified at Vcc~5.0 V and Tamb~25°C unless
otherwise noted.
2. See Figure 3 - Peak Column Current vs. Column Voltage.
FIGURE 3. PEAK COLUMN CURRENT
.
. VS. COLUMN VOLTAGE
600
--
500
~ 400
i-MSD201
!...
~
300
~
200
I
C ~2011/2012/2013
B
,f
'ii
-
100
o0.0
~y
1.0
2.0
3.0
4.0
5.0
6.0
V00' -Column Voltago . Volts
MSD2010 thru MSD2013TXVlTXVB
2-116
FIGURE 4. BLOCK DIAGRAM
Column Drive Inputs
Column
1 2 3 4 5
~
)l!.
J<
-J!.
~
~ rv'
II
Serial
Data
Input
:Ii!'
-
II
1 2 3 4 5 6 7
LED
Matrix
2
~
LED
Matrix
3
r:)
LED
Matrix
4
A
I
1 2 345 6 7
Rows
Blanking
Control, Va
~
"('~
I
Rows 1-7
Rows 1-7
Constant Current Sinking LED Drivers
~~ ~~
Rows 8-14
Rows 15-21
I
Rows 1-7
~~.
Rows 22-28
Serial
~ Data
28·Bit SIPD Shift Register
Output
1
Clock
CONTRAST ENHANCEMENT FILTERS FOR SUNLIGHT READABILITY
Display Color
Part No.
Filter Color
Marks Polarized Corp.'
Filter Series
Optical Characteristics of Filter
Red, HER
MSD2010, 2012
Red
MPC 20·15C
25%@ 635 nm
Yellow
MSD2011
Amber
MPC 30·25C
25%@ 583 nm
Green
MSD2013
Yellow/Green
MPC 50·22C
22%@568nm
.
i
01
.
'0
a.
01
'3
Multiple Colors
High Ambient light
Neutral Gray
MPC 80·10C
10% Neutral
Multiple Colors
Neutral Gray
MPC 80·37C
37% Neutral
2
U
'Marks Polarized Corp.
25·B Jefryn Blvd. W.
Deer Park, NY 11729
516·242·1300
FAX (516) 242·1347
Marks Polarized Corp. manufactures to MIL·'·45208 inspection system.
MSD2010 lhru MSD2013TXVITXVB
2-117
GENERAL QUALITY ASSURANCE LEVELS
The parts are tested in conformance with Quality Level A of
MIL-D-87157 for hermetically sealed LED displays with
100% screening. The product is tested to Tables I, II, lila
and IVa.
Table I. Quality Level A of MIL·D-87157
Test Screen
Method
Conditions
1. Precap Visual
2072
MIL-STO-750
2. High Temperature Storage
1032
MIL-STO-750
Tamb = 125°C: Time=24 hours
3. Temperature Cycling
1051
MIL-STO-750
4. Constant Acceleration
2006
MIL-STO-750
ConditionB, 10 Cycles, 15 min. Dwell
Tamb =-65°C to + 125°C
10,000 G's at Y1 Orientation
5. Fine Leak
1071
MIL-STO-750
Condition H, Leak Rate :0;;5 x 10-7 cc/s
6. Gross Leak
1071
MIL-STO-750
Condition C
7. Interim Electrical/Optical Tesl5<2)
8. Burn-ln(1)
Icc (at VB=O.4 V and 2.4 V), ICOl (at VB =0.4 V and 2.4 V), IIH
(VB, Clock and Data In), III (VB, Clock and Data In),
IOH' IOl' Visual Function and Iv Peak. VIH and Vil inputs
are guaranteed by the electronic shift register test.
Tamb =25°C.
1015
MIL-STO-883
9. Final Electrical Test (2)
Same as Step 7.
10. Delta Determinants
11. External Visual
Condition Bat Vcc=VB=5.25 V, VCOl =3.5 V, Tamb =100°C.
LED On-Time Duty Factor = 5%, t = 160 hours
Alcc= + /-1 mA, AIIH= + /-10 mA (Clock and Data In),
Al oH = +/-10% of initial value, Al v =-20%
2009
MIL-STO-883
Table II. Group A Electrical Tests - MIL·D-87157
Subgroup/Test
Subgroup 1
DC Electrical Tests at 25°C
LTPD
Parameters
Icc (at VB=O.4 V and 2.4 V), ICOl (at VB=O.4 V and 2.4 V),
IIH (VB, Clock and Data In), III (VB, Clock and Data In), IOH' IOl'
Visual Function and Iv Peak. VIH and Vil inputs are guaranteed
by the electronic shift register test.
5
Subgroup 2
Selected DC Electrical Tests at High
Temperatures(2)
Same as Subgroup 1, except delete Iv and Visual Function,
Tamb ";100°C
7
Subgroup 3
Selected DC Electrical Tests at Low
Temperatures(2)
Same as Subgroup 1, except delete Iv and Visual Function,
Tamb =-55°C
7
Subgroup 7
Optical and Functional Tests at 25°C
Satisfied by Subgroup 1
5
Subgroup 8
External Visual
MIL-STO-883, Method 2009
7
Subgroup 4, 5 and 6 Not Tested
Notes:
1. Mll-STO·BB3 test method applies.
2.
Limits and conditions are per the Electrical/Optical Characteristics. The
10H and 10L tests are the inverse of VOH and VOL specified in the
Electrical Characteristics.
MSD2010 thru MSD2013TXVITXVB
2-118
Table ilia. Group B, Classes A and B of MIL·D·87157
SubgrouplTest
Subgroup 1
Resistance to Solvents
Internal Visual and Mechanical
Subgroup 2(1,2)
Solderability
Subgroup 3
Thermal Shock (Temp Cycle)
Moisture Resistance(3)
Visual Inspection Endpoints
MIL·STD·750
Method
Conditions
4 Devices/O Failures
1022
2075
Inspection may be performed through
glass cover, includes front and back
cavities
1 Device/O Failures
2026
Tamb =245°C for 5 seconds
LTPD=15
1051
Condition 81,15 min. Dwell
LTPD= 15
1021
Within 24 hours after completion of
moisture resistance test
Hermetic Seal
107·1
Fine Leak
1071
Condition G or H
Gross Leak
1071
Condition C
Electrical/Opticai Endpoints(4)
Subgroup 4
Operating Life Test (340 Hours)
Icc (at Vs=0.4 V and 2.4 V),
ICOl (at VB = 0.4 V and 2.4 V),
IIH (VB, Clock and Data In),
III (VB, Clock and Data In),
IOH' IOl' Visual Function and Iv Peak.
VIH and Vil inputs are guaranteed by
the electronic shift register test.
Tamb =25°C.
1027
Electrical/Optical Endpoints(4)
Subgroup 5
Non-Operating (Storage)
Life Test (340 hours)
Sample
Size
Tamb= + 100°C at VCC= Vs =5.25 V,
VCOl =3.5 V, LED on time DF=5%
LTPD= 10
Same as Subgroup 3
1032
Electrical/Optical Endpoints(4)
Tamb = +125°C
LTPD=10
Same as Subgroup 3
Not••:
1. Whenever electrical/optical tests are not required as endpoints, electricel
rejects may be used.
2. The l TPD applies to the number of leads inspected except in no
case shall less than 3 displays be used to provide the number of
leads required.
3. Inilial conditioning shall be a 15 degree inward bend and back to original
position, one cycle.
4. Limits and conditions are per the Electrical/Optical Characteristics. The
10H and 10L tests are the inverse of VOH and VOL specified in the
Electrical Characteristics.
MSD2010 thru MSD2013TXVITXVB
2-119
Table IVa. Group C, Classes A and B of MIL-D-871S7
SubgrouplTest
MIL-STD-7S0
Method
Conditions
Subgroup 11')
Physical Dimensions
2066
Subgroup 2(1, 2)
Lead Integrity
2004
Hermetic Seal
1071
Fine Leak
1071
Condition G or H
Gross Leak
1071
Condition C
2016
1500G's, Time=0.5 ms, 5 Blows in
Each Orientation Xl, Yl, Y2
Subgroup 3
Shock
Vibration, Variable Frequency
Constant Acceleration
External Visual(3)
External Visual(3)
Subgroup 5
Bond Strength(7)
Subgroup 6
Operating life Test + Vcc Icel . [RoJC + RecAl + TA
The junction rise within the LED is the product of the
thermal impedance of an individual LED (37°CIW,
OF = 200f0, F=200 Hz), times the forward voltage, VF(LED),
and forward current, IF(LED), of 13 - 14.5 mA. This rise
averages TJ(LED)= 1°C. The table below shows the VF(LED)
for the respective displays.
Part Number
VF
Min.
Typ.
MS02010
1.6
1.7
2.0
MS02011/2/3
1.9
2.2
3.0
Max.
The junction rise within the LED driver IC is the combination
of the power dissipated by the IC quiescent current and the
28 row driver current sinks. The IC junction rise is given in
Equation 2.
A thermal resistance of 28°CIW results in a typical junction
rise of 6°C.
Equation 2.
TJ(IC) = PCOL (ReJC + RecA) + TA
TJ(IC) = [5 (VCOL-VF(LED) • (lcoL/2)' (n/35)OF+Vcc' Icel' [Rruc+RecAl+TA
MSD2010 thru MSD2013TXVITXVB
2-121
THERMAL MODELING (Cont.)
For ease of calculations the maximum allowable electrical
operating condition is dependent upon the aggregate
thermal resistance of the LED matrixes and the two driver
ICs. All of the thermal management calculations are based
upon the parallel combination of these two networks which
is 15°CIW. Maximum allowable power dissipation is given
in Equation 3.
Equation 3.
PDISPLAY = 5 VCOl ICOl (n/35) OF + Vcc Icc
For further reference see. Figures 2,7,8,9,10 and 11.
KEY TO EQUATION SYMBOLS
OF
Icc
ICOl
n
PCASE
PCOl
PD1SPLAY
PLED
RSCA
R6JC
TA
TJ(IC}
TJ(lED}
TJ(MAX}
VCC
VCOl
VF(lED)
Z6JC
Duty factor
Quiescent IC current
Column current
Number of LEOs on in a 5 x 7 array
Package power dissipation excluding LED under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of an LED
Thermal resistance case to ambient
Thermal resistance junction to case
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal impedance junction to case
MSD2010 thru MSD2013TXVITXVB
2-122
OPTICAL CONSIDERATIONS
FIGURE 9. PACKAGE POWER DISSIPATION
The light output of the LEOs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For
optimum light output, keep the thermal resistance of the
socket or PC board as low as possible.
i5
~
.
0
......... '
j
...........
Z'E
1
Ta=25OC
.
........j................
j..;........... ,
/'
""~u
~ ~g ~~~~~~!~
..~. .~~!
. . . ~~~~~*~
f................
o
0.5
g'
;;.::....
j
'1:1
1.0
=
a.
i
Ve~1 = 3.5", leol'= 335~
O~ = 20·)', Ta = ks·c i
m
a.
~.~
._>o_10~.
~ 4.................;.....~o~::!!;~.~..!?:.:::=
_5i
•:1.1_
Vee =5V, )cc = 5mA
c:
.2
FIGURE 6. NORMALIZED LUMINOUS INTENSITY
VS. JUNCTION TEMPERATURE
OJ
1.5
.
==
0.0
o
5
V
10
......................
vr
V
/
....
-e.!
.5!'c
.sit
Ci
15
20
5303540
LEOs per Character
!. . . . . . . . t. . . . . . . . .!........................ ~;:::. .
.9
........
FIGURE 10. MAX. CHARACTER POWER DISSIPATION
.1
~~~~~~~~~~~~~~
~
~
~
0 ~ ~ M 00 1001~m
1] - LEO Junction Temperature _·C
When mounted in a 10 °CfW socket and operated at
Absolute Maximum Electrical conditions, the MS0201X will
show an LED junction rise of 17°C. If TA = 40°C, then the
LED's TJ will be 57°C. Under these conditions Figure 7
shows that the Iv will be 75% of its 25°C value.
FIGURE 7. MAX. LED JUNCTION TEMPERATURE
VS. SOCKET THERMAL RESISTANCE
~
a.
0.30
S
u
0.20
..
0.10
i!
co
.r;
50~-r--~-r--~~--~~~,-~r-~
0
~
45~-r--r-~~r-1-~--~-1--;--;
6 40~-r--+--+--+--t--~~--~~~~
uo
y
5 •. 35 ~-r--+--+--+--t---f",.."..-F--l,.....+-I
0.00
0
5
10
15
20
25
30
LEOs per Character
35
40
~ ~ 30 ~-r--+--+--+--4:."e.::.j-~--+.......;~~
~~25
./.
!I a.
•
iiE20
~ 15
:
I:'
I='
= ?5.C
0.0
-60
With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1/[5x(100)]=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.
35iCNI
Rlh(JA) = 55l CIW
..
E ..
DF=_T_
5(T+t)
\
-40
-20 0
20 40 60 80
Ta - Ambient Temperatura - ·C
100 120
AC ELECTRICAL CHARACTERISTICS
(Vee =4.75 to 5.25 V, Tamb =-55°C to + 100°C)
Symbol Description Min. TypSI/ MaxS2/ Units Fig.
Maximum Ratings
Supply Voltage Vee to GND ..... , ..... -0.5 V to + 7.0 V
Inputs, Data Out and VB . .......... -0.5 V to Vee +0.5 V
Column Input Voltage, VeOl ........... -0.5 V to +6.0 V
Operating Temperature Range!1. 2) ..... -55°C to + 100°C .
Storage Temperature Range .......... -65°C to + 125°C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t < 5 sec ................. 260 °C
Maximum Power Dissipation
at Tamb= 25°C(2) ........................... 1.1 W
Notes:
1. Operation above + 100·e ambient is possible provided the following
condition are met. The junction should not exceed TJ =125·e and the
case temperature (as measured at pin 1 or the back of the display)
should not exceed Tc= 100·e.
2. Maximum dissipation is derived from Vco =5.25 V. V.=2,4 V.
VCOL =3.5 V 20 LEOs on per character. 20% OF.
TSETUP
Setup Time
50
10
ns
1
THOlO
Hold Time
25
20
ns
1
TWl
Clock Width
Low
75
45
ns
1
TWH
Clock Width
High
75
45
ns
1
F(elK)
Clock
Frequency
MHz
1
TTHl,
TTlH
TpHl,
TplH
6
5
Clock Transition Time
75
200
ns
1
Propagation
Delay Clock
to Data Out
50
125
ns
1
Nots.:
1. All typical values specified at Vcc =5.0 V and Tamb = 25·e unless
otherwise noted.
2. Ve Pulse Width Modulation Frequency - 50 KHz (max).
FIGURE 1. TIMING CHARACTERISTICS
CLEANING THE DISPLAYS
2.4 V
IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
cleaning solution is hot D.1. water (60°C) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do"
not use commercial dishwasher detergents.
.
~.v
2.0 V
DATA IN
O.SY
For post solder cleaning use water or non-alcohol mixtures
formulilted for vapor cleaning processing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.
2.4 V
OATA OUT
0.4"
. MSD2310 thr. MSD2313TXVITXVB
2-125
RECOMMENDED OPERATING CONDITIONS (Guaranteed over operating temperature range)
Parameter
Supply Voltage
Data Out Current, Low State
Symbol
Min.
Nom.
Max.
Vce
4.75
5.0
5.25
Data Out Current, High State
..
Hold Time
Width of Clock
mA
-0.5
IOH
Setup Time
V
1.6 .
IOl
Column Input Voltage, Column On(1)
Units
mA
V
VCOl
2.75
3.5
TSETUP
70
THOlD
30
ns
TW(ClK)
75
ns
45
ns
Clock Frequency'
TClK
5
Clock. Transition Time
TTI-il
200
ns
Free Air Operating Temperature Range
Tamb
+100
°C
-55
MHz
Note:
1. See Figure 3 - Peak Column Current vs. Column Voltage.
OPTICAL CHARACTERISTICS
Red MSD2310
Description
Peak Luminous Intensity per
(Character Average) .
LED(1,~)
Peak Wavelength
Dominant Wavelength(2)
Symbol
Min.
Typ.(4)
IVPEAK
220
370
/lcd
ApEAK
655
nm
AD
639
nm
Max.
Units
Test Conditions
Vcc=5.0 V, VCOl =3.5 V .
TP)=25°C, Vs=2.4 V
Yellow MSD2311
Symbol'
Min.
Typ,!4)
Peak Luminous Intensity per LED(1, 3)
(Character Average)
IVPEAK
650
1140
/lcd
Peak Wavelength
ApEAK
583
nm
AD
585
nm·
Description
Dominant Wavelength
Max.
Units
Test Conditions
Vcc =5.0 V, VCOl =.3.5 V
T}5)=25°C, Vs=2.4 V
High Efficiency Red MSD2312
Symbol
Min.
Typ.(4)
Peak Luminous Intensity per LED(1. 3)
(Character Average)
IVPEAK
650
1430
/lcd
Peak Wavelength
ApEAK
635
nm'
AD
626
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc=5.0 V, VCOl =3.5 V
TJ(5) = 25°C, Vs=2.4 V
,
High Efficiency Green MSD2313
Description
Peak Luminous Intensity per LED(1. 3)
(Character Average)
Peak Wavelength
..
Symbol
Mln~
Typ.(4)
IVPEAK
1280
2410
/lcd
568
nm
574
nm
ApEAK
Dominant Wavelenglh(2)
AD
.
Notes:
.
1. The displays are categorized for luminous intenSity with the intens~y
category designated by a letter code on the :bottom of·the package.
2. Dominant wavelength AD. is derived from the CIE chromaticity diagram. and
represents the single wavelength which defines the color of the device.
3. The luminous sterance of the lED may be calculated using the following
relationships: lv (cd/m') -Iv (Candela)/A (Meter)'
lv (Footlamberts) =.Iv (Candela)/A (Foot)'
A=5.3x 10-' M'=5.8x 10- 7 (Foot)'
Max.
Units
Test Conditions
Vcc=5.0 V, VCOl:=3.5 V
T}5) = 25°C, Vs=2.4 V
\
4. All typical values specified at Vce=5.0 V and T,mb=25°C unless
otherwise noted.
5. The luminous intensity is measured at Tamb""TJ=25°C. No time is
allowed for the device to warm up prior to measurement.
MSD23'O
2':'126
thru MSD23'3TXV/TXVB
ELECTRICAL CHARACTERISTICS (-55°C to
Description
Symbol
Supply Current'(quiescent)
Icc
Supply Current (operating)
Icc
Column Current at any
Column Input(2)
ICOL
(All)
+ 100°C) (unless otherwise specified)
Min.
Typ.(1)
Max.
Units
2
5.0
mA
Vs=O.4 V
2.5
5.0
mA
Vs=2.4 V
3
10.0
mA
10
~
Vs=O.4 V
520
mA
Vs =2.4 V
O.B
V
3BO
ICOL
Vs. Clock or Data Input
Threshold Low
VIL
Vs. Clock or Data Input
Threshold High
VIH
2.0
Data Out Voltage
VOH
2.4
Test Conditions
Vcc =5.25 V
VCLK = VOATA = 2.4 V
All SR Stages = Logical 1
FCLK=5 MHz
Vcc=5.25 V
VCOL =3.5 V
All SR Stages = Logical 1
Vcc=4.75 V - 5.25 V
V
3;6
VOL
-30
V
IOH=-0.5 mA
0.2
0.4
V
IOL=1.6 mA
-110
-300
~
-1
-10
~
Input Current Logical 0
Vs only
IlL
Input Current Logical 0
Data. Clock
IlL
Input Current Logical 1
Data. Clock
IIH
10
~
Input Current Logical 1
Vs
I)H
200
~
Power Dissipation per
Package
Po
0.52
Thermal Resistance IC
Junction-to-Pin
RBJ_PIN
25
W
Vcc=5.25 V
ICOL=O mA
Vcc=4.75 V - 5.25 V. VIL=O.B V.
Vcc=4.75 V - 5.25 V. VIH =2.4 V
Vcc=5.0 V. VCOL =3.5 V. 17.5% OF
15 LEOs on per character. Vs=2.4 V
°CIWI
Device
Notes:
1. All typical values specified at
Vcc~5.0 V and Tamb=25°C unless
otherwise noted.
2. See Figure 3 - Peak Column Current vs. Column Voltage.
FIGURE 3. PEAK COLUMN CURRENT
VS. COLUMN VOLTAGE
600
500
t
!...
400
MSD2310-1l
f- MSD23111231212313
300
~ 200
8
ii
-100
o0.0
J
.JI
1.0
2.0
3.0
4.0
5.0
6.0
V,.I - ColulM Voltage· VolIl
MSD2310 lhru MS02313TXV/TXVB
2-127
FIGURE 4. BLOCK DIAGRAM
Column Drive Inputs
Column
12345
{'>
{'j-J
~
-1'\
rv'
LED
Matrix
2
~
LED
Matrix
3
~>
~
LED
Matrix
4
*
:.~*
II
Serial
Data
Input
I
1 2 345 6 7
Rows
Blanking
Control, VB
--
11
1 234 567
I
Rows 1-7
Rows 1-7
I
Rows 1-7
. Constant Current Sinking LED Drivers
~ ~ ~
Rows 8-14
Rows 15-21
Rows 22-28
28·Bit SIPO Shift Register
---
Serial
Data
Output
1
Clock
CONTRAST ENHANCEMENT FILTERS FOR SUNLIGHT READABILITY
Display Color
Part No.
Filter Color
Marks Polarized Corp.·
Filter Series
Optical Characteristics of Finer
Red, HER
MSD2310, 2312
Red
MPC 20·15C
25%@ 635 nm
Yellow
MSD2311
Amber
MPC 30·25C
25%@ 583 nm
Green
MSD2313
Yellow/Green
MPC 50·22C
22%@ 568 nm
Multiple Colors
High Ambient Light
Neutral Gray
MPC aO·10C
10% Neutral
Multiple Colors
Neutral Gray
MPC aO·37C
37% Neutral
.
.
l!l
·c
III
'0
IL
.!!!
:::II
I:!
U
• Marks Polarized Corp.
25·B Jefryn Blvd.
Deer Park, NY 11729
516·242·1300
FAX (516) 242·1347
Marks Polarized Corp. manufactures to MIL·I·4520B inspection system.
w.
MSD2310 Ihru MSD2313TXVITXVB
2-128
GENERAL QUALITY ASSURANCE LEVELS
The parts are tested in conformance with Quality Level A of
MIL-D-87157 for hermetically sealed LED displays with
100% screening. The product is tested to Tables I, II, lila
and IVa.
Table 1_ Quality Level A of MIL-D-87157
Test Screen
Method
Conditions
1. Precap Visual
2072
MIL-STD-750
2. High Temperature Storage
1032
MIL-STD-750
Tamb =125°C, Time=24 hours
3. Temperature Cycling
1051
MIL-STD-750
4. Constant Acceleration
2006
MIL-STD-750
Condition B, 10 Cycles, 15 min. Dwell
Tamb =-65°C to + 125°C
10,000 G's at YI Orientation
5. Fine Leak
1071
MIL-STD-750
Condition H, Leak Rate :s5x 10-7 ccls
6. Gross Leak
1071
MIL-STD-750
Condition C
7. Interim Electrical/Optical Tests(2)
8. Burn-In(t)
9. Final Electrical Test
Icc (at VB=O.4 V and 2.4 V), ICOL (at VB=O.4 V and 2.4 V), IIH
(VB, Clock and Data In), IlL (VB, Clock and Data In),
IOH' IOL' Visual Function and Iv Peak. VIH and VIL inputs
are guaranteed by the electronic shift register test.
Tamb =25°C.
1015
MIL-STD-883
Same as Step 7.
(2)
Alcc= + 1-1 mA, AIIH= + 1-10 mA (Clock and Data In),
AIOH = + 1-10% of initial value, AIv = -20%
10. Delta Determinants
. 11. External Visual
Condition Bat Vcc=VB=5.25 V, VCOL =3.5 V, Tamb =100°C.
LED On-Time Duty Factor = 5%, t=160 hours
2009
MIL-STD-883
Table II. Group A Electrical Tests - MIL-D-87157
SubgrouplTest
Subgroup 1
DC Electrical Tests at 25°C
Parameters
LTPD
Icc (at VB =0.4 V and 2.4 V), ICOL (at VB=O.4 V and 2.4 V),
IIH (VB, Clock and Data In), IlL (VB, Clock and Data In), IOH' IOL'
Visual Function and Iv Peak. VIH and VIL inputs are guaranteed
by the electronic shift register test.
5
Subgroup 2
Selected DC Electrical Tests at High
Temperatures(2)
Same as Subgroup 1, except delete Iv and Visual Function,
Tamb = 100°C
7
Subgroup 3
Selected DC Electrical Tests at Low
Temperatures(2)
Same as Subgroup 1, except delete Iv and Visual Function,
Tamb =-55°C
7
Subgroup 7
Optical and Functional Tests at 25°C
Satisfied by Subgroup 1
5
Subgroup 8
External Visual
MIL-STD-883, Method 2009
7
Subgroup 4, 5 and 6 Not Tested
Notes:
I. MIL-STO-883 test method applies.
2. Limits and conditions are per the Electrical/Optical
Characteristics. The
10H and 10L tests are the inverse of VOH and VOL specified in the
Electrical Characteristics.
MSD23tO thru MSD2313TXVfTXVB
2-129
.
Table lila Group B Classes A and B of MIL-O-871S7
Subgroup/Test
Subgroup 1
Resistance to Solvents
Internal Visual and Mechanical
MIL-STD-7S0
Method
Sample
Size
Conditions
1022
4 Devices/O Failures
2075
Inspection may be performed through
glass cover. includes front and back
cavities
1 Device/O Failures
Subgroup 2(1,2)
Solderability
2026
Tamb = 245°C for 5 seconds
LTPD=15
Subgroup 3
Thermal Shock (Temp Cycle)
1051
Condition 81.
1021
Within 24 hours after completion of
moisture resistance test
I
I
Moisture Resistance<3)
Visual Inspection Endpoints
H5. min.
Hermetic Seal
1071
Fine Leak
1071
Condition G or H
Gross Leak
1071
Condition C
Electrical/Optical Endpoints(4)
. Subgroup 4
Operating Life Test (340 Hours)
LTPD=15
Icc (at VB=0.4 V and 2.4 V).
ICOl (at VB = 0.4 V and 2.4 V).
IIH (VB. Clock and Data In).
III (VB. Clock and Data In).
IOH. IOl. Visual Function and Iv Peak.
VIH and Vil inputs are guaranteed by
the electronic shift register test.
Tamb =25°C .
1027
Electrical/Optical Endpoints(4)
Subgroup 5
Non-Operating (Storage)
Life Test (340 hours)
Dwell
Tamb= + 100°C atVcc= VB =5.25 V.
Vco l =3.5 V.LED on time DF=5%
LTPD=10
Same. as Subgroup 3
1032
Electrical/Optical EndpointS(4)
Notee:
1. Whenever electrical/optical tests are not required as endpoints. electrical
rejects may be used.
2. The lTPD applies to the number of leads inspected except in no
case shall less than 3 displays be used to provide the number of
leads required.
Tamb = + 125°C
LTPD=10
Same as Subgroup 3
3. Initial condnioning shall be a 15 degree inward bend and back to original
position. one cycle.
4. Limits and conditions are per the Electrical/Optical Characteristics. The
IOH and IOL tests are the inverse of VOH and VOL specified in the··
Electrical Characteristics.
MSD23101hru MSD2313TXVITXVB
2-130
Table IVa. Group C, Classes A and B of MIL·D·87157
Subgroup/Test
MIL·STD·750
Method
Conditions
Subgroup 1(1)
Physical Dimensions
2066
Subgroup 2(1.2)
Lead Integrity
2004
Hermetic Seal
1071
Fine Leak
1071
Condition G or H
Gross Leak
1071
Condition C
2016
1500G·s. Time = 0.5 ms. 5 Blows in
Each Orientation Xl. Yl. Y2
Subgroup 3
Shock
Vibration. Variable Frequency
Constant Acceleration
External Visual(3)
External Visual(3)
Subgroup 5
Bond Strength(?)
Subgroup 6
Operating Life Tes~8)
2 Devices/O Failures
Condition B2
LTPD= 15
LTPD=15
2056
2006
10.000G·s at Yl Orientation
1010 or 1011
Electrical/Optical Endpoints
Subgroup 4(5.6)
Salt Atmosphere
Sample
Size
Icc (at VB = 0.4 V and 2.4 V).
ICOL (at VB =0.4 V and 2.4.V).
I)H (VB. Clock and Data In).
IOL (VB. Clock and Data In).
IOH. IOL. Visual Function and Iv Peak.
VIH and VIL inputs are guaranteed by
the electronic shift register test.
Tamb =25°C.
1041
LTPD= 15
1010 or 1011
2037
Condition A
LTPD=20 (C=O)
1026
Tamb = + 100°C at Vcc=Vs=5.25 V.
VCOL =3.5 V. LED on time DF=5%
).=10
Electrical/Optical Endpoints(4)
Same as Subgroup 3
Notes:
1. The LTPD applies to the number of leads inspected except in no case
shaliless than three displays be used to provide the number of
leads required.
2. MIL·STD·BB3 test method applies.
3. Visual requirements shall be as specified in MIL·STD·BB3.
Methods 1010 or 1011.
6. Solderabilily samples shall not be used.
7. Displays may be selected prior to seal.
B. If any given inspection lot undergoing Group 8 inspection has been
selected to satiSfy Group C inspection requirements, the 340·hour life
tests may be continued on test to 1000 hours in order to salisfy the
Group C life Test requirements. In such cases, either the 340·hour endpoint measurement shall be made a basis for Group B lot acceptance or
4. Limits and conditions are per the electrical/optical characteristics. The
IOH and tOl tests are the inverse of VOH and VOL specified in the
Ihe 1000·hour endpoint measurement shall be used as the basis for both
Group S and Group C acceptance.
Electrical Characleristics.
5. Whenever electrical/optical tests are not required as endpoints. electrical
reiecls may be used.
MSD2310 Ihru MSD2313TXV/TXVB
2-131
THERMAL CONSIDERATIONS
The small alphanumeric displays are hybrid LED and
CMOS assemblies that are designed for reliable operation
in commercial, industrial, and military environments. Optimum reliability and optical performance will result when the
·junction temperature of the LEDs and CMOS ICs are kept
as low as possible.
· THERMAL MODELING
MSD231 X displays consist of two driver ICs and four 5 x 7
LED matrixes. A thermal model of the display is shown in
Figure 5. It illustrates that the junction temperature of the
semiconductor = junction self heating + the case temperature
rise +the ambient temperature. Equation 1 shows this
relationship.
.
FIGURE 5. THERMAL MODEL
· Equation 1.
TJ(LED)= PLED Z8JC+ PCASE (R8JC+ R8CAl+ TA
TJ(LED)= [(ICOL/28) VF(LED) Zrucl + [(n/35) ICOL DF (5 Veou + Vcc Icel • [R8JC + R8CAl + TA
The junction rise within the LED is the product of the
thermal impedance of an individual LED (37°CfW,
·DF = 20%, F = 200 Hz), times the forward voltage, VF(LED),
and forward current, IF(LED), of 13 - 14.5 mAo This rise
averages TJ(LED)= 1°C. The table below shows the VF(LED)
for the respective displays.
Part Number
VF
Min.
Typ.
MSD2310
1.6
1.7
2.0
MSD2311i2/3
1.9
2.2
3.0
Max.
The junction rise within the LED driver IC is the combination
of the power diSSipated by the IC quiescent current and the
28 row driver current sinks. The IC junction rise is given in
Equation 2.
A thermal resistance of 28°CfW results in a typical junction
rise of 6°C.
Equation 2.
TJ(IC) = PCOL (R8JC+ R8CAl+ TA
TJ(IC) = [5 (VCOL-VF(LED» • (ICOL /2) • (n/35) DF+ Vce • Icel • [Rruc + R8CAl + TA
MSD2310 lhru MSD2313TXVITXVB
2':132
THERMAL MODELING (Cont.)
For ease of calculations the maximum allowable electrical
operating condition is dependent upon the aggregate
thermal resistance of the LED matrixes and the two driver
ICs. All of the thermal management calculations are based
upon the parallel combination of these two networks which
is 15°C/W. Maximum allowable power dissipation is given
in Equation 3.
Equation 3.
PDISPLAY = 5 VCOL ICOL
(n/35) DF + Vcc Icc
For further reference see Figures 2, 7, 8, 9, 10 and 11.
KEY TO EQUATION SYMBOLS
DF
Icc
ICOL
n
PCASE
PCOL
PD1SPLAY
PLED
ReCA
ReJC
TA
TJ(IC)
TJ(LED)
TJ(MAX)
VCC
VCOL
VF(LED)
ZeJC
Duty factor
Quiescent IC current
Column current
Number of LEDs on in a 5 x 7 array
Package power dissipation excluding LED under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of an LED
Thermal resistance case to ambient
Thermal resistance junction to case
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal impedance junction to case
MSD2310 thru MSD2313TXVITXVB
2-133
OPTICAL CONSIDERATIONS
FIGURE 9. PACKAGE POWER DISSIPATION
The light output of the LEDs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For
optimum light output, keep the thermal resistance of the
socket or PC board as low as possible.
......... !
3.~,
...8.
0
1.0
1
is
I..
'"
;0 ~"~"'~' '!~ ~' '~' 'i'.~. .~. .~.:..~.~. .~. ~"·~·"~"·§"·~·~ :~ .~ "~ ·; ze.f.~·:~. ~!·:~-·"~"'i~ "'~"
I!
vel: - 5V,! Icc = SmAoJ
vchllcol ='380
OF = 20%, Ta - !!s·c
c
FIGURE 6. NORMALIZED LUMINOUS INTENSITY
VS. JUNCTION TEMPERATURE
"1:J
Y
1.5
~,
Do
./
0.5
/' ""
l!
0
Tam25"C
:.
ii ~" '~"'I"~' ~' ' ~' ~' ~' ~ ' ~' ~' ~"'~"'~"!~"'~ "~ '~"'I"~ '~"'I"~ '~"'* ~"'; '
0.0
V
,/
o
5
10
15
20
25
30
LEOs per Chsracter
35
40
1
FIGURE 10. MAX. CHARACTER POWER DISSIPATION
'--"""":--"':'7:=:-.,...........,."....,:--...,....--...----.
~ 0.50 ~__
TJ· LED Junction Temperature ··C
5
I 0.40 ~-.';!:::':'E~~'-';'+--I--7P~:.*---I
~
When mounted in a lO°C/W socket and operated at
Absolute Maximum Electrical conditions, the MSD231X will
show an LED junction rise of 17°C. If TA = 40°C, then the
LED's TJ will be 57°C. Under these conditions Figure 7
shows that the Iv will be 75% of its 25°C value.
~0.3O~~F-~~~-~~~~~--+-~
!
a 0.20 r-t:t:~~~I-=P~'-11
FIGURE 7. MAX. LED JUNCTION TEMPERATURE
VS. SOCKET THERMAL RESISTANCE
J
+. . . . . . . I. . . . . . . .+. . . . . . +. . . . . . . I. . . .
0.10
50~~--~~--~~~~~~~~~
5
:~
i
.......
O.OO ....................o..a..I.................................o...I..&........1.&.<......J......I.o..&.J
o
i
0
! "'"
§ 0, 35 r-+-+--+-+-ie-+~F"""'-~I--+--I
~ ~
~
D
i
o~~~~~~~~~~~~~~
5
10 15 20 25 30 35 40 45
Socket Thermal Resistance· OCIW
50
...
.
..
1.0
:.
0.5
i
0.0 o
35
40
Vee =5V, Icc =5mA
:
I
I
I
Veol':' 3.5V. lcol = 380mA
0.40
J
y
0.20
I
0.10
E--+~.;.e:;.+-::::oit"""=+-+--J~-I
B 0.00 lE~.Jti~E::3E::J:::j:::l=::I~~
V
V
--r-,.--r-.......
~--r--r-"T""-"!".
is 0.30 1'-;"'F-TI'lI:+-lr---!e--;--:::.dI"c;..-:.k,..--I
FIGURE 8. MAX. PACKAGE POWER DISSIPATION
2.0
c
a
Vcc
Icc
11
Veol = 3.~, leol =,520
'ii
1.5
OF = 20%, Ta = 25°C V
is
~ 5.25~. =~o::l
0.50
,
c
5r-+_+--+_+-~P_=_0~~_nN~!~+_~--i
o
15
20
25
30
LEOa per Character
FIGURE 11. CHARACTER POWER DISSIPATION
c;' ... 15 1io--"'fJ......--~+--+!_+-;V,;;;CC~=5~.2=5V~,;.;ICC=-1'":1:-:0~mA;.:·--I
~ 10 r-+_+--+_+-~n:-=-;2O:1:L:":'E0:'1S~,_OF_t-2O%_r:--I
l!'"
0
10
A"
+~-.-.~.;....~
.....
~~...~..~~.~~..-!~~.,3-.~-.y~.;~~~-.~-;~~-2~-..~~:..-...~
...
..-...-...
3..
5
30 r-+-+--+-+--j.......
..",~-+-I--!---I
!Wii ::~..-...-...+~~
i
r--:~"""!-::::;;ooI!I"'--!--:-:.I=~-'9'--l
o
V
5
10
15
20
25
30
LEOs per Character
35
40
,/
5
10
15
20
25
30
LEOs per Character
35
40
MSD2310 lhru MSD2313TXVITXVS
2-134
SIEMENS
YELLOW
HIGH EFF. RED
HIGH EFF. GREEN
MSD2351 TXVITXVB
MSD2352TXVITXVB
MSD2353TXVITXVB
Sunlight Viewable .200" 4·Character 5x7 Dot Matrix
Serial Input Alphanumeric Military Display
112
(2.84)
.010(.25)
•.002 (.05)
.1
T.:1 ~2tO(635)
(4.88) (8.43)
•
~=E=::=I=::4~::::;::=:::=~ ~
.
•.010 (.25)
PIn
1
Funcdon
Column 1
Column 2
Column 3
Column 4
ColumnS
No Connection
Data Out
12 PL.
10
11
12
•.003 (.08)
Pin 1 marked by
FEATURES
• Four .200n Dot Matrix Characters
• Three Colors: Yellow, High Efficiency
Red, High Efficiency Green
• Sunlight Viewable
• Wide Viewing Angle
• Bullt·in CMOS Shift Registers with
Constant Current LED Row Drivers
• Shift Registers Allow Custom Fonts
• Easily Cascaded for Multiple Displays
• TTL Compatible
• End Stackable
• Military Operating Temperature Range:
_55· to + 100·C
• Categorized for Luminous Intensity
• Ceramic Package, Hermetically Sealed
Flat Glass Window
• TXVB Process Conforms to MIL·D·B7157
Quality Level A Test and Tables I, II, ilia
and IV
• TXV Process Conforms to a Modified
MIL·0·B7157 Quality Level A Test and
Table I
dot and by notch on
underside of package
Year
WorkWeek
Ba1chCod.
VB
Vee
Clock
Ground
Data In
<=I r::J r::J r::J
i
Hue Code
Luminous
IntensityCode
<=I r::J r::J
Part Number Siemens
TOLERANCE: •.015 (ex"ptions noled)
DESCRIPTION
The MSD2351 through MSD2353TXV ITXVB are four digit 5x7 dot
matrix serial input alphanumeric displays. The displays are available in
yellow, high efficiency red, or high efficiency green. The package is a
standard twelve-pin hermetic package with glass lens. The display
can be stacked horizontally or vertically to form messages of any
length. The MSD235X has two fourteen-bit CMOS shift registers with
built-in row drivers. These shifi registers drive twenty-eight rows and
enable the design of customized fonts. Cascading multiple displays is
possible because of the Data In and Data Out pins. Data In and Out
are easily input with the clock signal and displayed in parallel on the
row drivers. Data Out represents the output of the 7th bit of digit
number four shift register. The shift register is level triggered. The like
columns of each character in a display cluster are tied to a single
pin. (See Block Diagram). High true data in the shift register enables
the output current mirror driver stage associated with each row of
LEOs in the 5x7 diode array.
The TTL compatible VB input may either be tied to Vee for maximum
display intensity or pulse width modulated to achieve intensity control
and reduce power consumption.
.
-Continued
See Appnote 44 for application information, and Appnotes 18, 19, 22,
and 23 for additional information.
2-135
DESCRIPTION (Continued)
In the normal mode of operation, input data for digit four,
column one is loaded into the seven on-board shift register
locations one through seven. Column one data for digits 3,
. 2, and 1 is shifted into the display shift register locations.
Then column one input is enabled for an appropriate period
of time, I A similar process is repeated for columns 2, 3, 4,
and 5. If the decode time and load data time into the shift
register is t, then with five columns, each column of the
display is operating ata duty factor of:
FIGURE 2. MAX. ALLOWABLE. POWER DISSIPATION
VS.TEMPERATURE
1.5
:as==
;o .""Ii
II
Rth(JA) = 3SdC/W"
R~(JA)I = sslClW'
EO
~
E ; 0.5
"
0
:!!a.
'lC
1j(MI
a.
Q
With columns to be addressed, this refresh rate then gives a
value for the time T+t of: 1/[5x(100))=2 msec. If the device
is operated at 5.0 MHz clock rate maximum, it is possible to
maintain t«T. For short display strings, the duty factor will
then approach 20%.
0.0
-60
-40
~ '\
\
~+
-20 0
20 40 60 80 100 120
Ta - Ambient Temperatura - °C
AC ELECTRICAL CHARACTERISTICS
(Vee=4.75 to 5.25 V, Tamb =-55°C to +100°C)
Symbol Description Min. Typ!l) Max!2) Units Fig.
Maximum Ratings
Supply Voltage Vee to GND ........... -0.5 V to + 7.0 V
Inputs, Data Out and VB ........... -0.5 V to Vee + 0.5 V
Column Input Voltage, Veol ........... -0.5 V to + 6.0 V
Operating Temperature Range ........ -55°C to + 100°C
Storage Temperature Range .......... -65°C to + 125°C
Maximum Solder Temperature, 0.063" (1.59 mm)
below Seating Plane, t<5 sec ................. 260°C
Maximum Power Dissipation.
at Tamb =25°C ............................ 1.35 W
Notes:
1. Operation above + 100°C ambient is possible provided the following
condition are met The iunction should not exceed TJ = 125°C and the
case temperature (as measured at pin 1 or the back of the display)
should not exceed Tc = 100
\. \
1.0
~1
DF=_T_
5(T+t)
T+t, allotted to each display column, is generally chosen to
provide the maximum duty factor consistent with the minimum refresh rate necessary to achieve a flicker free display.
For most strobed display systems, each column of the
display should be refreshed (turned on) at a minimum rate
of 100 times per second.
2.
'
ce.
TSETUP
Setup Time
50
10
ns
1
THolO
Hold Time
25
20
ns
1
TWl
Clock Width
Low
75
45
ns
1
TWH
Clock Width
High
75
45
ns
1
F(elK)
Clock
Frequency
MHz
1
TTHl,
TTlH
TpHl,
TplH
6
5
Clock Transition Time
75
200
ns
1
Propagation
Delay Clock
to Data Out
50
125
ns
1
Notes:
Maximum dissipation is derived from Vcc =5.25 V. VB=2.4 V.
LEOs on per character. 20% OF.
1. All typical values specified at Vee =5.0 V and Tamb =25°e unless
otherwise noted.
2. VB Pulse Width Modulation Frequency - 50 KHz (max).
Veal =3.5 V 20
FIGURE 1. TIMING CHARACTERISTICS
CLEANING THE DISPLAYS
IMPORTANT - Do not use cleaning agents containing
alcohol of any type with this display. The least offensive
cleaning solution is hot 0.1. water (60°C) for less than
15 minutes. Addition of mild saponifiers is acceptable. Do
not use commercial dishwasher detergents.
2.4V
ClOCK
O.4V
2.0 V
For post solder cleaning use water or non-alcohol mixtures
formulated for vapor cleaning proceSSing or non-alcohol
mixtures formulated for room temperature cleaning. Nonalcohol vapor cleaning processing for up to two minutes in
vapors at boiling is permissible. For suggested solvents
refer to Siemens Appnote 19.
DATA IN
O.BV
2.4V
DATA OUT
O.4V
MSD2351
2-136
thr" MSD2353TXVrrxVB
RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Min.
Nom.
Max.
Supply Voltage
VCC
4.75
5.0
5.25
V
Data Out Current, Low State
IOl
1.6
mA
-0.5
mA
Data Out Current, High State
IOH
Column Input Voltage, Column anI')
Setup Time
VCOl
2.75
TSETUP
70
Hold Time
THolD
30
Width of Clock
TW(ClK)
75
Clock Frequency
TClK
Clock Transition Time
TTHl
Free Air Operating Temperature Range
Tamb
Units
3.5
45
V
ns
ns
ns
5
-55
MHz
200
ns
+100
°C
Note:
1. See Figure 3 - Peak Column Current vs. Column Voltage.
OPTICAL CHARACTERISTICS
Yellow MSD2351
Symbol
Min.
Typ.<4)
Peak Luminous Intensity per LED(1. 3)
(Character Average)
IVPEAK
2400
3400
!,cd
Peak Wavelength
APEAK
583
nm
AD
585
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc=5.0 V, VCOl =3.5 V
T}5)=25°C, VB=2.4 V
High Efficiency Red MSD2352
Symbol
Min.
Typ.<4)
Peak Luminous Intensity per LED(1, 3)
(Character Average)
IVPEAK
1920
2850
!,cd
Peak Wavelength
APEAK
635
nm
AD
626
nm
Description
Dominant Wavelength(2)
Max.
Units
Test Conditions
Vcc=5.0 V, VCOl =3.5 V
T}5)=25°C, VB=2.4 V
High Efficiency Green MSD2353
Symbol
Min.
Typ.<4)
Peak Luminous Intensity per LED(1. 3)
(Character Average)
IVPEAK
2400
3000
!,cd
Peak Wavelength
ApEAK
568
nm
AD
574
nm
Description
Dominant Wavelength(2)
Notes:
1. The displays are categorized for luminous intensity with the intensity
category designated by a letter code on the bottom of the package.
2. Dominant wavelength 1o. is derived from the CIE chromaticity diagram, and
represents the single wavelength which defines the color of the device.
3. The luminous sterance of the lED may be calculated using the following
relationships: lv (cd/m') = Iv (Candela)/A (Meter)'
lv (Footlamberts) =.Iv (Candela)/A (Foot)'
A=5.3x 10·' M'=5.8x 10·' (Foot)'
4.
Max.
Units
Test Conditions
Vcc=5.0 V, VCOL.:=3.5 V
T}5)=25°C, VB=2.4 V
All typical values specified at Vcc=5.0 V and Tamb =25°C unless
otherwise noted.
5. The luminous intensity is measured at Tamb= TJ= 25°C. No time is
allowed for the device to warm up prior to measurement.
MSD2351 thr. MSD2353TXVITXVB
2-137
ELECTRICAL CHARACTERISTICS (-55°C to
Description
Symbol
Supply Current (quiescent)
+ 100°C) (unless otherwise specified)
Min.
Typ.
Icc
Max.
Units
5.0.
mA
VB=O.4 V
Test Conditions
5.0
mA
VB=2.4 V
Supply Current (operating)
Icc
10.0
mA
Column Current at any
Column Input(l)
ICOl
(All)
10
#J.A
VB=O.4V··
650
mA
VB=2.4 V
0.8
V
550
ICOl
VB, Clock or Data Input
Threshold Low
Vil
VB, Clock or Data Input
Threshold High
VIH
2.0
Data Out Voltage
VOH
2.4
Vcc=5.25 V
VClK=VDATA = 2.4 V
All SR Stages = Logical 1
FClK =5 MHz
Vcc=5.25 V
VCOl =3.5 V
All SR Stages = Logical 1
Vcc=4.75 V - 5.25 V
V
Val
-30
-110
V
IOH=0.2 mA
0.4
V
IOl = 1.6 mA
-300
#J.A
Input Current Logical 0
VB only
III
Input Current Logical 0
Data, Clock
III
-10
#J.A
Input Current Logical 1
Data, Clock
IIH
10
#J.A
Input Current Logical 1
VB
IIH
200
#J.A
Power Dissipation per
Package
PD
0.74
W
Thermal Resistance IC
Junction-to-Pin
R8J _ PIN
25
°CIW!
Device
Vcc=4.75 V
ICOl =0 mA
Vcc=4.75 V - 5.25 V, Vil =0.8 V
Vcc=4.75 V - 5.25 V, VIH =2.4 V
Vc c =5.0 V, VCOl =3.5 V, 17.5% DF
15 LEDs on per character, VB=2.4 V
Nole:
1. See Figure 3 - Peak Column Current
VS.
Column Voltage,
FIGURE 3. PEAK COLUMN CURRENT
VS. COLUMN VOLTAGE
/
600
".
500
r
~.
:.. 400
~
Co>
c
§
300
'0
Co>
~ 200
If
'li
-100
o0.01.0
)
2.0
3.0
4.0
5.0
6.0
Vcol- Column Voltage - Volls
MSD2351 thru MSD2353TXVITXVB
2-138
FIGURE 4. BLOCK DIAGRAM
Column Drive Inpuls
Column
1 234 5
~
~
*,..-J\
~ rV
~
''Ii'
Blanking
Control, Va
Serial
Data
Input
---
LED
Matrix
2
II
II
~
LED
Matrix
3
~r
,....
.....J\,
LED
Matrix
4
~
I
1 2 3 4 567
Rows
1 234 567
~
..
1
Rows 1-7
Rows 1-7
Constant Current Sinking LED Drivers
I
Rows 1-7
r'~ r'~ ~
Rows 8-14
Rows 15-21
-
Rows 22-28
28·Bit SIPO Shift Register
Serial
Data
Output
I
Clock
CONTRAST ENHANCEMENT FILTERS FOR SUNLIGHT READABILITY
Display Color
Part No.
Filter Color
Marks Polarized Corp.·
Filter Series
Optical Characteristics of Filter
HER
Red
MPC 20·15C
25%@635nm
Yellow
MSD2351
.
Amber
MPC 30·25C
25%@583nm
;:
Green
MSD2353
Yellow/Green
MSD2352
II
N
III
'0
MPC 50·22C
22%@568nm
.
Do
III
'S
Multiple Colors
High Ambient Light
Neutral Gray
MPC 80·1 DC
10% Neutral
Multiple Colors
Neutral Gray
MPC 80·37C
37% Neutral
e
U
• Marks Polarized Corp.
25-B Jefryn Blvd. W.
Deer Park, NY 11729
516·242·1300
FAX (516) 242·1347
Marks Polarized Corp. manufactures to Mll·I·4520B inspection system.
MSD2351 thru MSD2353TXVITXVB
2-139
GENERAL QUALITY ASSURANCE LEVELS
The parts are tested in conformance with Quality Level A of
MIL-D-87157 for hermetically sealed LED displays with
100% screening. The product is tested to Tables I. II. lila
and IVa.
Table 1_ Quality Level A of MIL·D·87157
Test Screen
,
Method
Conditions
1. Precap Visual
2072
MIL-STD-750
2. High Temperature Storage
1032
MIL-STD-750
Tamb =125°C. Time=24 hours
3. Temperature Cycling
1051
MIL-STD-750
4. Constant Acceleration
2006
MIL-STD-750
Condition B. 10 Cycles. 15 min. Dwell
Tam b=-65°Cto +125°C
10.000 G's at Y1 Orientation
5. Fine Leak
1071
MIL-STD-750
Condition H. Leak Rate S5 x 10-7 eels
6. Gross Leak
1071
MIL-STD-750
Condition C
7. Interim Electrical/Optical Tests(2)
8. Burn-ln(l)
Icc (at VB=O.4 V and 2.4 V). ICOl (at VB =0.4 V and 2.4 V). IIH
(VB. Clock and Data In). III (VB. Clock and Data In).
IOH. IOl. Visual Function and Iv Peak. VIH and Vil inputs
are guaranteed by the electronic shift register test.
Tam b=25°C.
1015
MIL-STD-883
9. Final Electrical Test (2)
Same as Step 7.
10. Delta Determinants
11. External Visual
Condition B at Vcc = VB = 5.25 V. VCOl = 3.5 V. Tamb = 100°C.
LED On-Time Duty Factor = 5%. t = 160 hours
4lcc= + /-1 mAo 41 1H = + /-10 mA (Clock and Data In).
410H = + /-10 0/0 of initial value. 4Iv=-20%
2009
MIL-STD-883
Table 11_ Group A Electrical Tests - MIL·D-87157
Subgroup/Test
Subgroup 1
DC Electrical Tests at 25°C
Parameters
LTPD
Icc (at VB=O.4 V and 2.4 V). ICOl (at VB=O.4 V and 2.4 V).
IIH (VB. Clock and Data In). III (VB. Clock and Data In). IOH. IOl.
Visual Function and Iv Peak. VIH and Vil inputs are guaranteed
by the electronic shift register test.
5
Subgroup 2
Selected DC Electrical Tests at High
Temperatures(2)
Same as Subgroup 1. except delete Iv and Visual Function.
Tam b=100oC
7
Subgroup 3
Selected DC Electrical Tests at Low
Temperatures(2)
Same as Subgroup 1. except delete Iv and Visual Function.
Tamb =-55°C
7
Subgroup 7
Optical and Functional Tests at 25°C
Satisfied by Subgroup 1
5
Subgroup 8
External Visual
MIL-STD-883. Method 2009
7
Subgroup 4. 5 and 6 Not Tested
Notes:
1. Mll·STD·883 test method applies.
2. limits and conditions are per the Electrical/Optical Characteristics. The
10H and 10L tests are the inverse of VOH and VOL specified in the
Electrical Characteristics.
MSD2351 thru MSD2353TXVITXVB
2-140
Table ilia. Group B, Classes A and B of MIL-D-87157
SubgrouplTest
Subgroup 1
Resistance to Solvents
MIL-STD-750
Method
Conditions
Sample
Size
4 Devices/O Failures
1022
2075
Inspection may be performed through
glass cover, includes front and back
cavities
1 Device/O Failures
Subgroup 2(1.2)
Solderability
2026
Tamb = 245°C for 5 seconds
LTPD=15
Subgroup 3
Thermal Shock (Temp Cycle)
LTPD= 15
Internal Visual and Mechanical
1051
Condition 81,15 min. Dwell
Moisture Resistance(3)
Visual Inspection Endpoints
1021
Within 24 hours after completion of
moisture resistance test
Hermetic Seal
1071
Fine Leak
1071
Condition G or H
Gross Leak
1071
Condition C
Electrical/Optical EndpointS(4)
Subgroup 4
Operating Life Test (340 Hours)
Icc (at VB = 0.4 V and 2.4 V),
ICOl (at VB = 0.4 V and 2.4 V),
IIH (VB, Clock and Data In),
III (VB, Clock and Data In),
IOH' IOl' Visual Function and Iv Peak.
VIH and Vil inputs are guaranteed by
the electronic shift register test.
Tamb =25°C.
1027
Electrical/Optical Endpoints(4)
Subgroup 5
Non-Operating (Storage)
Life Test (340 hours)
Tamb = +100°C at Vcc=V8=5.25 V,
VCOl = 3.5 V, LED on time DF = 5%
LTPD=10
Same as Subgroup 3 .
1032
Electrical/Optical EndpointS(4)
Tamb = + 125°C
LTPD=10
Same as Subgroup 3
Notea:
1. Whenever electrical/optical tests are not required as endpoints, electrical
3. Initial conditioning shall be a 15 degree inward bend and back to origipal
rejects may be used.
2. The lTPD applies to the number of leads inspected except in no
case shall less than 3 displays be used to provide the number of
leads required.
position, one cycle.
4.
limits and conditions are per the Electrical/Optical Characteristics. The
IOH and IOL tests are the inverse of VOH and VOL specified in the
Electrical Characteristics.
MSD2351 'hru MSD2353TXVITXVB
2-141
Table IVa. Group C, Classes A and B of MIL-D-87157
MIL-STD-750
Method
SubgrouplTest
Conditions
Subgroup 1(1)
Physical Dimensions
2066
Subgroup 2{1, 2) .
Lead Integrity
2004
Hermetic Seal
1071
Fine Leak
1071
Condition G or H
Gross Leak
1071
Condition C
2016
·1500G·s. Time = 0.5 ms. 5 Blows in
Each Orientation X1. Y1. Y2
Subgroup 3
Shock
Vibration. Variable Frequency
2006
External Visual(3)
.'
Subgroup 5
Bond Strength(7)
Subgroup 6
Operating Life TesllB)
Condition B2
LTPD=15
LTPD=15
10.000G·s at Y1 Orientation
1010 or 1011
Electrical/Optical Endpoints
External Visual(3)
2 Devices/O Failures
2056
Constant Acceleration
Subgroup 4(5, 6)
Salt Atmosphere
Sample
Size
Icc (at VB=O.4 V and 2.4 V).
ICOl (at VB = 0.4 V and 2.4 V).
I'H (VB. Clock and Data In).
IOl (VB. Clock and Data In).
IOH. IOl. Visual Function and Iv Peak,
V,H and V,l inputs are guaranteed by
the electronic shift register test.
Tamb =25°C.
,
1041
LTPD=15
1010 or 1011
2037
Condition' A
LTPD=20 (C=O)
1026
Tamb = + 100°C at Vcc =VB=5.25 V.
VCOl =3.5 V. LED on time DF=5%
A=10
Electrical/Optical Endpoints(4)
Notes:
1. The lTPD applies to the number of leads inspected except in no case
shall less than three displays .be used to provide the number of
leads required.
2. Mll-STD-883 test method applies.
3. Visual requirements shall be as specified in Mll-STD-883.
Methods 1010 or 1011.
4. Limits and conditions are per the electrical/optical characteristics.
Same as Subgroup 3
6. Solderability samples shall not be used.
7. Displays may be selected prior to seal.
8. If any given inspection lot undergoing Group B inspection has been
selected to satisfy Group C inspection requirements. the 340-hour life
tests may be continued on test to 1000 hours in order to satisfy the
Group C Life Test requirements. In such cases, either the 340-hour endpoint measurement shall be made a basis for Group B lot acceptance .or
the 1ODD-hour endpoint measurement shall be used as the basis for both
Group B and Group Cacceptance.
.
5. Whenever electrical/optical tests are not required as endpoints. electrical
rejects may be used.
MSD2351
2-142
thru MSD2353TXV/TXVB
THERMAL CONSIDERATIONS
The small alphanumeric displays are hybrid LED and
CMOS assemblies that are designed for reliable operation
in commercial, industrial, and military environments. Optimum reliability and optical performance will result when the
junction temperature of the LEDs and CMOS ICs are kept
as low as possible.
THERMAL MODELING
MSD235X displays consist of two driver ICs and four 5 x 7
LED matrixes. A thermal model of the display is shown in
Figure 5. It illustrates that the junction temperature of the
semiconductor = junction self heating + the case temperature
rise+the ambient temperature. Equation 1 shows this
relationship.
FIGURE 5. THERMAL MODEL
Equation 1.
TJ(LED) = PLED ZeJC + PCASE (ReJc + RecA) + TA
TJ(LED) = [(IcoL/28) VF(LED) ZeJcl + [(n/35) ICOL DF (5 Vcou + Vcc Icel . [ReJc + RecAl + TA
The junction rise within the LED is the product of the
thermal impedance of an individual LED (37°C/W,
DF=200f0, F =200 Hz), times the forward voltage, VF(LED),
and forward current, IF(LED), of 13 - 14.5 mA. This rise
averages TJ(LED) = 1°C. The table below shows the VF(LED)
for the respective displays.
VF
Part Number
Min.
MSD2351 12/3
1.9
I Typ. I Max.
I 2.2 I 3.0
The junction rise within the LED driver IC is the combination
of the power dissipated by the IC quiescent current and the
28 row driver current sinks. The IC junction rise is given in
Equation 2.
A thermal resistance of 28°C/W results in a typical junction
rise of 6°e.
Equation 2.
TJ(IC) = PCOL (ReJc + RecA) + TA
TJ(IC) = [5 (VCOL-VF(LED»)' (ICOL/2) . (n/35) DF+Vcc' Icel . [ReJc+ReCAl+TA
MSD2351 thru MSD2353TXVITXVB
2-143
THERMAL MODELING (Cont.)
For.ease of calculations the maximum allowable electrical
operating condition is dependent upon the aggregate
thermal resistance of the LED matrixes and the two driver
ICs. All of the thermal management calculations are based
upon the parallel combination of these two networks which
is 15°CIW. Maximum allowable power dissipation is given
in Equation 3.
Equation 3.
PDISPLAY
TJ(MAX)-TA
ReJc+RecA
PDISPLAy=5 Vcol Icol (n/35) DF+Vcc Icc
For further reference see Figures 2.7. 8. 9. 10 and 11.
KEY TO EQUATION SYMBOLS
OF
Icc
ICOl
n
PCASE
PCOl
PDISPLAY
PLED
ReCA
ReJC
TA
TJ(IC)
TJ(lED)
TJ(MAX)
VCC
VCOl
VF(lED)
ZeJC
Duty factor
Quiescent IC current
Column current
Number of LEOs on in a 5 x 7 array
Package power dissipation excluding LED under consideration
Power dissipation of a column
Power dissipation of the display
Power dissipation of an LED
Thermal resistance case to ambient
Thermal resistance junction to case _
Ambient temperature
Junction temperature of an IC
Junction temperature of a LED
Maximum junction temperature
IC voltage
Column voltage
Forward voltage of LED
Thermal impedance junction to case
MSD2351 thru MSD2353TXVfTXVB
2-144
OPTICAL CONSIDERATIONS
FIGURE 9. PACKAGE POWER DISSIPATION
The light output of the LEOs is inversely related to the LED
diode's junction temperature as shown in Figure 6. For
optimum light output, keep the thermal resistance of the
socket or PC board as low as possible.
2.0
==c,
..
.
""
.e-
~o ~"§"'~"'!~ "'~' ' i' ~' '~' '~+~' '~' '~' ~·"~" ~· §"·~·~§·~ ~ "~ ·; Z~·~ ·.~ ¥.~:.-~'~"'i~ "'~' '
.~
..........
,~_~
1
i5
J
Ta=25"C
1.5
~
~
E'
.
./'
./
1.0
./
0.5
0.0
~
,;'
OF =20%
/
/
i.........:
~o gg 1~~~~~1~
~~"~~1~~~~~~~
........ ................:................
.. .................................
Z
,I
smA
leol ='450mA, Veol ~ 3.5V:
0
FIGURE 6. NORMALIZED LUMINOUS INTENSITY
VS. JUNCTION TEMPERATURE
'D
Vcc ~ 5V, lei: =
o
5
10
15
20
25
30
LEOs per Character
35
40
.3
FIGURE 10. MAX. CHARACTER POWER DISSIPATION
.1
~~~~~~~~~~~~~~
~
~
0 ~ ~ 00 00 l00I~~
TJ - LEO Junction Temperature _·C
4
==c,
0.6
...
.
0.5
i5
Ii
0.4
~
0
0.3
I!
0.2
0
ii
When mounted in a 10 cCIW socket and operated at
Absolute Maximum Electrical conditions, the MS0235X will
show an LED junction rise of 17 cC. If TA = 40 cC, then the
LED's TJ will be 57°C. Under these conditions Figure 7
shows that the Iv will be 75% of its 25°C value.
Vcc = 5.25V, Icc = 10mA
Vcol':' 3.5V,'lcol = 600mA'._ _h,l:...l--l
I
Outy Factor
Oi
...
0..
FIGURE 7. MAX. LED JUNCTION TEMPERATURE
VS. SOCKET THERMAL RESISTANCE
.c
(J
. . . . I. ·. . ·. ·. . ·1...............+. . . . . . .+. . . . . . . .I·......·
50.-;r-,--~~--~-r~~,-~--,
iii
0.1
::;;
0.0
0
5
10
15
2
25
30
LEOs per Character
35
40
FIGURE 11. CHARACTER POWER DISSIPATION
--r--.,.--.----.
0.5 .,-.....,,............- - - . . -......
==c,
o~~~~~~~~~~~~~~
o
5
10 15 '20 25 30 35 40 45
Socket Thennal Resistance - ·CIW
.t 25VI
VCCr5 .
,;
Veol _ 3.5J, leol 600m
DF _ 20"10, Ta _ 25"C
~ 2.0
./
~
0.2
0.1
0.0
~1.5""·"""""""""""""·"·""""7~·""""""·"·"·"
11.0
0.3
~
!(J
,ICC=,10mA!--!--t--t
D
is
JS
I.
!2.5 -:--
0.4
1
50
FIGURE 8. MAX. PACKAGE POWER DISSIPATION
~ 3.0
i...
0
5
10
15
20
25
30
LEOs per Character
35
40
/
t.
."./'
iii 0.5 I:--t""'~-+-+-"""i--+-+-I
=s
0.0
...r.................L.L.<........I..o..o.......J
L&.I.o...o.J~..,.J.............&..I........................
o
5
10
15
20
25
30
LEOs per Character
35
40
MSD23511hru MSD2353TXVITXVB
2-145
SIEMENS
PD1165
VERY BRIGHT GREEN PD1167
HIGH EFFICIENCY RED
1.16" Square 8x8 Dot Matrix Programmable Display™Module
With On Board Drivers, Built-In RAM
and Software Controllable Features
Package Dimensions in Inches (mm)
LUMINOUS
......,~.,,:+_L_:JN
INTENSITY
COIl'
.02'{.1I6j
TVP•
.08 --l.wl---....:::1!F----=;iF
t~,
Tolerance 1;.0101.25)
. FEATURES
DESCRIPTION
•
•
•
•
•
•
•
Active Display Size 1.16" Square
0.11" Dlam. Dots on 0.15~.Centers
Very Bright Green or High Efficiency Red
Intensity Matched and Binned
Readable from 35 Feet
Viewing Angle ±75°
Interlocking XJ( Steckable Packages for Larger
Displays
• On board CMOS Circuits with Complete Drive
Circuits and logic Interfaces
• Each Dot Addressable Over TTL Compatible, 8 Bit
BUS
.
• Alternate Language & Graphics Programming
Capability
• Cascadable·Synchronlzable logic for Expanded
Display Systems
• Software Controlled Attributes:
9 Levels of Intensity Settings
Memory Clear
Blanking or Blinking
BulH·ln Lamp lest
• 100% Burned In Prior to Final Test
• 20 Pin DIP Package: 0.6" Wide Rows, 0.1" Pin
Spacing
• Wave Solderable
• -20°C to +70°C Operating Range
The high efficiency red PO 1165 and very bright green
PO 1167 are modular axa dot matrix Programmable
Displays. They are constructed with highly efficient IIIN
material LEOs, packaged in a reflector package for maximum dot illumination. Further optimizing light output are
built-in CMOS drive circuits. These circuits strobe the LEOs
at peak currents that give the best time averaged luminous
intensity for the power required. The user has complete control. of the display through further built-in CMOS circuitry.
The display appearance can be set by programming an
a bit RAM.
Features such as blinking, synchronizing, blanking, one of
nine intensity levelS or lamp tests are easily programmed
through a control word. Additional external connections are
available for clock inputs, clock outputs and total intensity
control through. an external resistor.
All products are 100% burned-in and tested, then subjectedto out-going AQL's of .25% for brightness matching,
visual alignment and dimensions, .065% for electrical and
functional.
The display is constructed of epoxy filled polycarbonate with
two interconnected pcbs. A heat sink is attached to cool.the
device with its 20 pin dip lead construction. The package is
wave solderable and has been fully qualified for operation
and storage over a temperature range from -20°C to
+70 oC.
2-146
Maximum Ratings
Optical Characteristics @25°C
Vcc, DC Supply Voltage ............. -0.5 to +6.0 Vdc
VIN , Input Voltage Levels Relative
to GND (all inputs) ........... -0.5 to (Vce +0.5) Vdc
Operating Temperature ............... - 20°C to + 70 °C
Storage Temperature ................ - 20°C to + 70 °C
Relative Humidity (non condensing) @65°C ......... 90%
Power Dissipation @Vcc=5.0 V,
TA= -20°C ............. : ................. 1.6 W
Junction Temperature
@70°C (8 JA =25°C/W) ....................... 95°C
Maximum Solder Temperature .063" (1.59 mm)
below the Seating Plane, t<5 sec .............. 260°C
Spectral Peak Wavelength. . . . . . . . . . .. (HER) 630 nm typo
........... (Green) 565 nm typo
Viewing Angle, both axis
(off normal axis) ............................ ± 75°
Active Display Size ............... : ...... 1:16" square
Dot Size ............................... 0.11" diam.
Pitch (center to center dot spacing) ............... 0.15"
Time Averaged Luminous Intensity
(100% bright) . . . . .. . . . . . . . . . . . . . .. 0.5 med/dot min.
1.7 mcd/dot typo
Dot to Dot Intensity Matching Ratio .......... 1.8:1.0 max.
Display Average Intensity Matching
Ratio (per bin) ........................ 1.5:1.0 max.
Bin to Bin Matching Ratio
(adjacent bin) ......................... 1.9:1.0 max.
Recommended Operating Conditions - 20°C to + 70 °C
Parameter
Min.
Vec, Supply Voltage
4.5
VIH , Input Voltage High
2.7
Nom. Max.
5.0
Units
5.5
V
V
VIL, Input Voltage Low
Clock Fan Out
==>
_Teat-o
I--TAS ____
_TNI-O
JAOUT
1JO.D6
a.BV
2.av.
(
a.BV
(
O.4V
~
a.sv
2.4 V •
:=i:,=:
_Too~
--1
2.av.
(
I--T"......
~Tws .....
2.0V.
I--TWH-o
2.0V.
J
O.BV
~T.----t
T....
TWAIT_
T"",
PO 2435/617
2-155
SWITCHING SPECIFICATIONS (Vcc=4.5 V)
READ CYCLE TIMING
Specification Minimum
Parameter
Description
TAs
Address Setup
TCES
Chip Enable
Tws
Write Enable Setup
Too
-40°C
Units
25°C
85°C
a
a
a
a
a
a
ns
20
30
40
ns
Data Delay Time
100
150
175
ns
TR
Read Pulse
150
175
200
ns
TAH
Address Hold
Data Hold
a
a
a
a
ns
TOH
a
a
TTRI
Time to Tristate (Max time)
30
40
50
ns
TCEH
Chip Enable Hold
a
a
a
ns
TWH
Write Enable Hold
30.
40
50
ns
TACC
Total Access Time = Setup· Time + Write Time +
Time to Tristate
200
245
290
ns
TWAIT(1)
Wait Time between Reads
TCYCLE
Read Cycle Time = TRACC + TWAIT
Notes:
1. Wait 1 ~s between any Reads or Wriies after writing a Control Word with
ns
ns
a
a
a
ns
200
245
290
ns
2. All input voltages are (V'L =0.8 V. V'H=2.0 V).
3. Data out voltages are measured with 100 pF on the data bus and the
ability to source = -40 ~ and sink = 1.6 rnA. The rise and fall times are
60 ns. VOL =0.4 V. VOH = 2.4 V.
a Clear (07~ 1). Wait l~s between any Reads or Writes after Clearing a
Control Word with a Clear (07 = 0). All other Reads and Writes can be
back to back.
SWITCHING SPECIFICATIONS (Vcc=4.5 V)
WRITE CYCLE TIMING
Specification Minimum
.
Parameter
TCLR
TCLRO
.
Description
-40°C
25°C
85°C
Units
Clear RAM
1
1
1
,..s
Clear RAM Disable
1
1
1
fAs
10
10
10
ns
TAs
Address Setup
TCES
Chip Enable Setup
a
0
a
ns
TRs
Read Enable Setup
10
10
10
ns
Tos
Data Setup
20
30
50
ns
Tw
Write Pulse
60
70
90
ns
TAH
Address Hold
20
30
40
ns
TOH
Data Hold
20
30
40
ns
TCEH
Chip Enable Hold
a
a
0
ns
TRH
Read Enable Hold
20
30
40
ns
TACC
Total Access Time = Setup Time + Write Time +
Hold Time
90
110
140
ns
• Wait 1 ~s between any Reads or Writes after writing a Control Word with a Clear (07 = 1). Wait 1~s between any Reads or Writes after Clearing a Control Word
with a Clear (07=0). All other Reads and Writes can be back to bsck.
PO 2435/6/7
2-156
DC CHARACTERISTICS @25°C
Limits
Min.
Typ.
Max.
Units
Conditions
4.5
5.0
5.5
Volts
Nominal
Icc Blank (All Inputs low)
2.5
3.5
mA
Vcc=5 V, All inputs=O.B V
Icc BO lEOs/unit (100% Bright)
115
130
mA
Vcc=5V
Volts
Vcc=4.5 V to 5.5 V
Volts
Vcc=4.5 V to 5.5 V
Parameter
Vcc
VIL (All Inputs)
-0.5
V1H (All Inputs)
2.0
IlL (All Inputs)
25
O.B
VOL (00-07)
100
IJA
0.4
Volts
Vcc = 4.5 V to 5.5 V, VIN = O.B V
Vc c =4.5 V to 5.5 V
VO H (00-07)
2.4
Volts
Vcc=4.5 V to 5.5 V
10H (00-07)
-B.9
mA
Vcc=4.5 V, Vo H=2.4 V
10L (00-07)
1.6
mA
Vcc = 4.5 V, VOL = 0.4 V
Oata 1/0 Bus loading
100
pF
Clock 110 Bus loading
240
pF
Note: 1. Typical average LED drive current is 1.9 rnA. Peak current at 1/7 duty cycle is 13.1 rnA.
TOP VIEW
PIN DEFINITIONS
Pin
11
20
1. RD
2. ClKl/O
·....... :::5.. ......: .......
.....
:
.....
·DIGIT
.....
· DIGIT2 DIGIT DIGIT....
1
3
3. ClKSEl
0
4. RST
10
PIN ASSIGNMENTS
Pin
Function
1 RD
READ
2 CLK 1/0 CLOCK 110
3 CLKSELCLOCK SELECT
4 RST
RESET
5 CE1
CHIP ENABLE
6 CEO
CHIP ENABLE
7A2
ADDRESS MSB
8 A1
ADDRESS
ADDRESS LSB
9 AIl
10 GND
Pin
11
12
13
14
15
16
17
18
19
20
5.
6.
7.
B.
9.
10.
11.
CEI
CEO
A2
AI
AO
GND
WR
12.
13.
14.
15.
16.
17.
lB.
19.
20.
D7
D6
D5
D4
D3
D2
Function
WR
07
06
05
04
03
02
01
DO
Vee
WRITE
DATAMSB
DATA
DATA
DATA
DATA
DATA
DATA
DATA LSB
2-157
Dl
DO
Vee
Active low, will enable a processor to read
all registers in the PO 2435/6/7
If ClK SEl (pin 3) is low, then expect an
external clock source into this pin. If ClK
SEl is high, then this pin will be the
master or source for all other devices
which have ClK SEl low.
ClocK SElect, determines the action of
pin 2. ClK 1/0. see the section on
Cascading for an example.
Reset. Must be held low until Vcc > 4.5
volts. Reset is used only to synchronize
blinking, and will not clear the display.
Chip enable (active high).
Chip enable (active low).
Address input (MSB).
Address input.
Address input (lSB).
Ground.
Write. Active low. If the device is
selected, a low on the write input loads
the data into the PO 2435/6/7's rnernory.
Data Bus bit 7 (MSB).
Data Bus bit 6.
Data Bus bit 5.
Data Bus bit 4.
Data Bus bit 3.
Data Bus bit 2.
Data Bus bit 1.
Data Bus bit 0 (lSB).
Plus 5 volts power pin.
PO 2435/6/7
DATA INPUT COMMANDS"
CEO CEl
1
0
0
0
0
0
0
0
1
1
1
1
1
1
RD
WR
A2
A1
AO
D7
D6
D5
D2
D1
DO
X
X
X
X
X
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
1
0
0
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
1
1
0
1
0
1
1
0
1
0
1
X
X
X
X
X
X
0
0
0
0
1
1
1
0
0
1
1
1
0
1
0
1
0
1
X
X
X
X
X
X
1
D4 D3
1
X
The Control logic dictates all of the feafures of the display
device and is discussed in the Control Word section of this
data sheet.
MODE SELECTION
CEO
CEl
RD
WR
0
1
0
0
1
X
X
X
X
X
1
X
X
1
0
X
OPERATION
The Character Generator converts the 7-bit ASCII data into
the proper dot pattern for the 128 characters shown in the
character set chart.
Illegal
No Change
No Change
No Change
The Clock Source can originate either from the internal
oscillator clock or from an external source-usually from the
output of another PO 2435/6/7 in a multiple module display.
NOTE: 0:;; Low Logic level, 1 :;; High Logic Level, X:;; Don't Care.
The Display Multiplexer controls all display output to the
digit drivers so no additional logic is required for a display
system.
BLOCK DIAGRAM
r. - - - - - - - - - -,
IlO-Il1
I
8'
I
DISPlAY MEMORY
(flAM)
'x8
CTL
REG
Ix8
OPERATION
No Change
Read Digit 0 Data To Bus
($) Written To Digit 0
01'1) Written to Digit 1
(I) Written To Digit 2
(3) Written to Digit 3
Char. Written To Digit 0
And Cursor Enabled
The Column Drivers are connected directly to the display.
14
I
The Display has four digits. Each of the four digits is comprised of 35 LEOs in a 5x7 dot array which makes up the
alphanumeric characters.
128 CHAR.
ROM
128)(5
The intensity of the display can be varied by the Control
Word in steps of 0% (Blank). 25%. 50%. and full
brightness.
MICROPROCESSOR INTERFACE
The interface to the microprocessor is through the address
lines (AO-A2). the data bus (00-07). two chip select lines
(CEO. CE1). and read (RO) and write (WR) lines.
ClK SEL
The CEO should be held low when executing a read. or
write operation.
XCLK
1m
The read and write lines are both active low. During a valid
read the data input lines (00-07) become outputs. A valid
write will enable the data as input lines.
INPUT BUFFERING
If a cable length of 6 inches of more is used. all inputs to
the display should be buffered with a tri-state non-inverting
buffer mounted as close to the display as conveniently
possible. Recommended buffers are: 74LS245 for the data
lines and 74LS244 for the control lines.
FUNCTIONAL DESCRIPTION
The PO 2435/6/7 block diagram includes the major blocks
and internal registers.
Display Memory consists of a 5x8 bit RAM block. Each of
the four a-bit words holds the 7-bit ASCII data (bits 00-06).
The fifth a-bit memory word "is used as a control word
register. A detailed description of the control register and its
functions can be found under the heading Control Word.
Each 8-bit word is addressable and can be read from or
."
written to.
PO 2435/6/7 "
2-158
PROGRAMMING THE PO 2435/617
There are five registers within the PD 24351617. Four of
these registers are used to hold the ASCII code of the four
display characters. The fifth register is the Control Word,
which is used to blink, blank, clear or dim the entire display,
or to change the presentation (attributes) of individw.il
characters.
ADDRESSING
The addresses within the display device are shown below.
Digit 0 is the rightmost digit of the display, while digit 3 is on
the left. Although there is only one Control Word, it is
duplicated at the four address locations 0-3. Data can be
read from any of these locations. When one of these locations is written to, all of them will change together.
Address
0
1
2
3
4
5
6
7
Contents
Control Word
Control Word (Duplicate)
Control Word (Duplicate)
Control Word (Duplicate)
Digit 0 (rightmost)
Digit 1
Digit 2
Digit 3 (leftmost)
Bit D7 of any of the display digit locations is used to allow
an attribute to be assigned to that digit. The attributes are
discussed in the next section. If bit D7 is set to a one, that
character will be displayed using the attribute. If bit D7 is
cleared, the character will display normally.
CONTROL WORD
When address bit A2 is taken low, the Control Word is
accessed: The same Control Word appears in all four of the
lower address spaces of the display. Through the Control
Word, the display can be cleared, the lamps can be tested,
display brightness can be selected, and attributes can be
set for any characters which have been loaded with their
most significant bit (D7) set high.
Brightness (DO, 01): The state of the lower two bits of the
Control Word are used to set the brightness of the entire
display, from 0% to 100%. The table below shows the correspondence of these bits to the brightness.
07 06 05 04 03 02 01
0
0
0
0
0 ·0
0
0
x=
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
0
1
1
DO
0
1
0
1
Operation
Blank
25% brightness
50% brightness
Full brightness
don't care
CONTROL WORD FORMAT
07
06
05
04
03
02
01
Tn
DO
BRIGHTNESS
0% (Blank)
25%
50%
100%
03 02 ATTRIBUTE
o 0 Display Cursor Instead
Of Character
o 1 Blink Character
1 0 Display Blinking Cursor Instead
Of Character
Alternate Character
With Cursor
04 ATTRIBUTE ENABLE
o Disable Above Attributes
1 Enable Above Attributes
05 BLINK
o Blink-Attribute Disabled
1 Blink Entire Display
06 LAMP TEST
o Standard Operation
1 Display All Dots At 50% Brightness
07 CLEAR
o Standard Operation
1 Clear Entire Display
PO 2435/617
2-159
Attributes (02-04): Bits 02, 03, and 04 control the visual
attributes (i.e., blinking) of those display digits which have
been written with bit 07 set high. In order to use any of the
four attributes, the Cursor Enable bit (04 in the Control
Word) must be set. When the Cursor Enable bit is set, and
bit 07 in a character location is set, the character will take
on one of the following display attributes.
D7 06 05 04 03 02 01
Operation
Disable highlight
attribute
Display cursor' instead
of character
Blink single character
Display blinking
cursor' instead 01
character
Alternate character
with cursor'
0
0
0
X
X
B
B
0
0
0
1
0
0
B
B
0
0
0
0
0
1
b
1
0
1
1
0
B
B
B
B
0
0
0
1
1
1
B
B
07 D6 05 D4 03 02 01
o
DO
0
Lamp Test (06): When the Lamp Test bit is set, all dots in
the entire display are lit at half brightness; When this bit Is
cleared, the display returns to the characters that were
shOWing before the lamp test. The lamp test will remain if
implemented simultaneously with a clear instruction.
,1
X
DO
X
Operation
Lamp test
0
X
X
X
X
X
DO
X
Operation
Clear
CASCADING
The SMC-4740 oscillator is designed to drive up to 16
PO 2435/6/7s with input loading of 15 pF each.
The general requirements for cascading 16 displays
together are:
1. Determine the correct address for each display.
2. Tie' CEO to ground and use CE1 from an address
decoder to select the correct display,
rate of approximately 2Hz by setting bit 05 in the Control
Word. This blinking is independent of the state of 07 in all
character locations.
3. Select one of the Displays to, provide the Clock for the
other displays.
In order to synchronize the blink rate in a bank of these
devices, it is necessary to tie all devices' clocks and resets
together as described in a later section of this data sheet.
4. Tie ClK SEl to ground on other displays.
5. Use RST to synchronize the blinking between
the displays.
Operation
DO
B
X
07 06 0504 03 02 01
Blink (05): The entire display can be caused to blink at a'
X X X B
X
character and Control Word memory bits are reset to zero.
This causes total erasure of the display, and returns all digits
to a non·blink, full brighiness, non·cursor status.
Attributes are non·destructive. If a character with bit 07 set
is replaced by a cursor (Control Word bit 04 is set, and
03=02=0) the character will remain in memory andean be
revealed again by clearing 04 in the Control Word ..
o 0
X
Clear Data (07): When 07 is set in the Control Word, all
*''Cursor'' refers to a condition when all dots in a single character space are
lit to half brightness.
X = donl care
B = depends on the selected brightness
D7 06 D5 D4 D3 D2 D1
0
Blinking display
CASCADING DIAGRAM
RST
RD
WR
l
WR
vee
T
RD
RST
ClKl10
ClKSEl
P02435/617
0ll-D7
I
ftDATA 110
I ADDRESS
A4-
0
M - ADDRESS
DECODER
PB-
AIl-A2
•
CEO
CEl
-b
j
V
~
4 MORE DISPLAYS
IN BETWEEN
11 If
'~J.'
J!iL
l
~~
>
J
WR
RD
RST
ClK 110
f
ClKSEl
P024351617
DD-07
~
AD-A2
CEO
J
;F
CEl
j
ADDRESS DECODE CHIP 1 TO 4
S
PO 2435/617
2-160
VOLTAGE TRANSIENT SUPPRESSION
Step 5
It has become common practice to provide 0.Q1 Ilf bypass
capacitors liberally in digital systems. Like other CMOS
circuitry, the Intelligent Display controller chip has very low
power consumption and the usual 0.Q1 Ilf would be adequate
were it not for the LEOs. The module itself can, in some
conditions, use up to 100 mAo In order to prevent power
supply transients, capacitors with low inductance and high
capacitance at high frequencies are required. This suggests
a solid tantalum or ceramic disc for high frequency bypass.
For multiple display module systems, distribute the bypass
capacitors evenly, keeping capacitors as close to the power
pins as possible. Use a 0.01 pF capacitor for each display
module and a 22 IlF for every third display module.
Step 6
Step 7
Load a "P" in the right·hand digit.
If you loaded the information correctly, the
PD 2435/6/7 would now show the word "STOP."
BLINK A SINGLE CHARACTER
Into the digit, second from the right, load the hex
code "CF," which is the code for an "0" with
the 07 bit added as a control bit.
NOTE: The "0" is the only digit which has the
control bit (07) added to normal ASCII data.
Load enable blinking character into the control
word register.
The PO 2435/6/7 should now display "STOP"
with a flashing "0".
ADD ANOTHER BLINKING CHARACTER
Into the left hand digit, load the hex code "03"
which is for an "S" with the 07 bit added as a
control bit.
The PO 2435/6/7 should now display "STOP"
with a flashing "0" and a flashing "S."
ALTERNATE CHARACTERI
CURSOR ENABLE
Step 9
Load enable alternate characterlcursor into the
control word register.
The PO 2435/6/7 should now display "STOP"
with "0" and the "S" alternating between the
letter and a cursor (which is all dots lit).
INITIATE FOUR-CHARACTER BLINKING
Regardless of Control Bit setting)
Step 10 Load enable display blinl Vee +0.5 V, or through excessive currents begin forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin
conducting as much as one amp through the Vee pin. This
destructive condition will persist (latched) until device failure
or the device is turned off.
Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for 5 seconds at 0.063" below
the seating plane. The packages should not be immersed in
the wave.
The Voltage Transient Suppression Techniques and buffer
interfaces for longer cable runs help considerably to prevent
latch conditions from occuring. Additionally, the following
Power Up and Power Down sequence should be observed,
PO 2435/617
2-162
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot D.I. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is .
acceptable. Do not use commercial dishwasher detergents.
for filters can be maximized to the user's benefit by first considering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The PD 2435 is a high
efficiency red display and should be matched with a long
wavelength pass filter in the 570 nm to 590 nm range. The
PD 2436 is a standard red display and should be matched
with a long wavelength pass filter in the 600 nm to 620 nm
range. The PD 2437 should be matched with a yellow-green
band-pass filter that peaks at 565 nm. For displays of multiple
colors, neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.
For faster cleaning, solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.(1l
Note: 1. Acceptable commercial solvents are: Basic TF, Arklon. P, Genesolv
0, Genesolv DA, Blaco"'ron TF. Blaco"'ron TA and, Freon TA.
Do not use solvents containing alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, and
TES. Since many commercial mixtures exist, you should
contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are:
Allied Chemical Corporation, Specialty Chemical Division,
Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow
Chemical, Midland, MI; E.!. DuPont de Nemours & Co.,
Wilmington, DE.
For further information refer to Appnotes 18 and 19 ill the
current Siemens OptoelectrQr)ic Data Book.
An alternative to soldering and cleaning the display 1110dules .
is to use sockets. Naturally, 20 pin DIP sockets .600" wide
with .100" centers work well for single displays, Multiple'
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
Optimal iilter enhancements for any condition can be gained through the use of circular polarized, anti-reflective,'
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%. Proper
intensity selection of the displays will allow 10,000 foot
candle sunlight viewability.
Several filter manufacturers supply quality filter materials.
Some of them are: Panel graphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting Situations, Several .Bezel
manufacturers are: R.M;!:. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
OPTICAL CONSIDERATIONS
The .200" high character of the PD 2435/6/7 allows readability up to eight feet. Proper filter selection will allow the
user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a IiI. LED and the character background. This will maximize
discrimination of different characters as perceived by the .
display user. The only limitation is cost. The cost/benefit ratio
See Siemens Appnote 23 for further information.
PO 2435/617
2-163
SIEMENS
PD3535
RED PD3536
BRIGHT GREEN PD3537
HIGH EFFICIENCY RED
.270" 4-Character, 5x7 Dot Matrix Alphanumeric
Programmable DisplayTM with Built-In CMOS Control Functions
Package Dimensions in Inches (mm)
+j--.:r
.055
t- Jl~,
l
T[JTY'.1
.450
(11.43)
(15.24)
AT SEAnNG
1
PlANE
--I
i-
.160 ±.020
WMtNOUS
INTENSITY
(4.06)
CATEGORY
ALL TOLERANCES ±O.OlD UNLESS MAX.
FEATURES
• Four 0.270" Dot Matrix Characters In High
Efficiency Red, Red, or Bright Green
• Built-in Memory, Decoders, Multiplexer
and· Drivers
• Wide Viewing Angle, X Axis ±55·, Y Axis ±65·
• Categorized for Luminous Intensity
• 128-Character ASCII Format (Both Upper and
Lower Case Characters)
• 8-Bit Bidirectional Data BUS
• READ/WRITE Capability
• 100% Burned In and Tested
• Dual In-Line Package Configuration, .600" Wide,
.100" Pin Centers
• End-Stackable Package
• Internal or External Clock
• Built-in Character Generator ROM
• TTL Compatible
• Easily Cascaded for Multidisplay Operation
• Less CPU Time Required
• Software Controlled Features:
Programmable Highlight Attribute
(Blinking, Non-Blinking)
Asynchronous Memory Clear Function
Lamp Test
Display Blank Function
Single or Multiple Character Blinking Function
Programmable Intensity,
Three Brightness Levels
• Extended Operating Temperature Range:
-40·C to +85OC
DESCRIPTION
The PD 3535/6/7 are four digit display system modules. The
digits are 0.27" by 0.20" 5 x 7 dot matrix arrays constructed
with the latest solid state technology in light emitting diodes.
Driving and controlling the LED arrays is a silicon gate CMOS
integrated circuit. This integrated circuit provides all necessary
LED drivers and complete multiplexing control logic.
Additionally, the IC has the necessary ROM to decode 128
ASCII alphanumeric characters and enough RAM to store the
display's complete four digit ASCII message with special attributes. These attributes, all software programmable at the
user's discretion, include a lamp test, brightness control,
displaying cursors, alternating cursors and characters, and
flashing cursors or characters. The CMOS IC also incorporates
special interface control circuitry to allow the user to control the
module as a fully supported microprocessor peripheral. The
module, under internal or external clock control, has asynchronous read, write, and memory clear over an eight bit
parallel, TIL compatible, bi-directional data bus. Each module
is fully encapsulated within a package 1.4" x 0.72" x 0.295".
The standard 20 pin DIP construction with two 0.6" rows on
0.1" centers is wave solderable and has been fully tested with
over one million total device hours to operate over a temperature range from -40°C to +85°C.
All products are 100% burned-in and tested, then subjected to
out·going AQL's of .25% for brightness matching, visual alignment and dimensions, .065% for electrical and functional. All
the devices are intensity binned to allow users to construct a
uniform display of any length.
See the end of this data sheet or refer to Appnotes 18, 19, 22,
and 23 for further details on handling and assembling Siemens
Programmable Displays.
2-164
Maximum Ratings
TIMING CHARACTERISTICS
(@Vee =4.5 V, Temp=25°C)
DC Supply Voltage . ................ -0.5 V to + 7.0 Vdc
Input Voltage Levels Relative
to GND (all inputs) ............ -0.5 V to Vee +0.5 Vdc
Operating Temperature ............... -40°C to +85°C
Storage Temperature ................ -40°C to + 100°C
Maximum Solder Temperature, .063" (1.59 mm)
below Seating Plane, t<5 sec ................. 260°C
Data WRITE Cycle
en. eEt
AD. At
Optical Characteristics @25°C
Spectral Peak Wavelength ............ (HER) 630 nm typo
. . . . . . . . . . . . (Red) 660 nm typo
. . . . . . . . .. (Green) 565 nm typo
Viewing Angle
horizontal ....... , ......................... ± 55 °
(off normal axis) vertical ...................... ±65°
Digit Height ..................... 0.270 inch (6.86 mm)
Time Averaged Luminous Intensity(!)
Red ............................. 30 !,cd/LED min.
HER/Green ....................... 90 !,cd/LED min.
LED to LED Intensity Matching ............ 1.8:1.0 max.
Device to Device (one bin) ................ 1.5:1.0 max.
Bin to Bin (adjacent bin) .................. 1.9:1.0 max.
Note: 1. Peak luminous intensity values can be calculated by multiplying
these values by 7.
DO·D6
_-+_~I-----J
1 0 - - - - - - T..,.-------I
·Notes: 1. All input voltage are (V ll = O.B V, VIH = 2.0 V.l
2. These waveforms are not edge triggered.
Data READ Cycle
CEO. CEt ~
~
AD·A3
;::'T".-...
I""-TCEH- 4.5
volts. Reset is used only to synchronize
blinking, and will not clear the display.
Chip enable (active high).
Chip enable (active low).
Address input (MSB).
Address input.
Address input (LSB).
Ground.
Write. Active Low. If the device is
selected, a Iowan the write input loads
the data into the PO 3535/6/7's memory.
Data Bus bit 7 (MSB).
Data Bus bit 6.
Data Bus bit 5.
Data Bus bit 4.
Data Bus bit 3.
Data Bus bit 2.
Data Bus bit 1.
Data Bus bit 0 (LSB).
Plus 5 volts power pin.
PO 3535/6/7
2-167
DATA INPUT COMMANDS
CEO
CE1
RO
WR
A2
A1
AD
07
06
05
04
1
0
0
0
0
0
0
0
1
1
1
1
1
X
X
X
X
X
1
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
1
0
0
0
1
0
1
0
X
X
X
X
X
X
X
0
1
1
1
1
1
X
X
X
X
X
X
0
1
1
0
1
0
1
1
0
1
0
1
1
X
X
X
1
CEI
RD
WR
0
1
X
X
1
X
0
X
0
X
X
1
0
X
X
1
OPERATION
81
DISPLAY MEMORY
(RAM)
CIl
4x8
'"
REG
14
h--+---I
I
X
0
0
0
0
1
1
1
0
0
1
1
1
X
X
X
0
1
0
1
X
No Change
Read Oigit 0 Data To Bus
($) Written To Digit 0
rN) Written to Digit 1
(f) Written To Digtt 2
(3) Written to Digit 3
Char. Written To Digit 0
And Cursor Enabled
The Display Multiplexer controls all display output to the
digit drivers so no additional logic is required for a display
system.
r. - - - - - - - - - -,
00-07
OPERATION
X
X
The' Clock Source can originate either from the internal
oscillator clock or from an external source-usually from the
output of another PO 3535/6/7 in a multiple module display.
BLOCK DIAGRAM
I
00
X
X
The Character Generator converts the 7-bit ASCII data into
the proper dot pattern for the 128 characters shown in the
character set chart.
Illegal
No Change
No Change
No Change
I
01
X
X
The Control Logic dictates all of the features of the display
device and is discussed in the Control Word section of this
data sheet.
MODE SELECTION
CEO
03 02
128 CHAR.
The Column Drivers are connected directly to the display.
ROM
128 Ie 5
The Display has four digits. Each of the four digits is comprised of 35 LEOs in a 5x7 dot array which makes up the
alphanumeric characters.
The intensity of the display can be varied by the Control
Word in steps of 0% (Blank), 25%, 50%, and full
brightness.
MICROPROCESSOR INTERFACE
The interface to the microprocessor is through the address
lines (AO-A2), the data bus (00-07), two chip select lines
(CEO, CE1), and read (RO) and write (WR) lines.
eLK SEl
XCLK
RS'i'
The CEO should be held low when executing a read, or
write operation..
.
The read and write lines are both active low. During a valid
read the data input lines (00-07) become outputs. A valid
write will enable the data as input lines.
INPUT BUFFERING
If a cable length of 6 inches of more is used, all inputs to
the display should be buffered with a tri-state non-inverting
buffer mounted as close to the display as conveniently
possible. Recommended buffers are: 74LS245 for the data
lines and 74LS244 for the control lines.
FUNCTIONAL DESCRIPTION
The PO 3535/6/7 block diagram includes the major blocks
and internal registers.
Display MemorY consists of a 5x8 bit RAM block. Each of
the four 8-bit words holds the 7-bit ASCII data (bits 00-06).
The fifth 8-bit memory word is used as a control word
register. A detailed description of the control register and its
functions can be found under the heading Control Word.
Each 8-bit word is addressable and can be read from or
written to.
PO 3535J8n
2-168
PROGRAMMING THE PD 3535/6/7
There are five registers within the PO 35351617. Four of
these registers are used to hold the ASCII code of the four
display characters. The fifth register is the Control Word,
which is used to blink, blank, clear or dim the entire display,
or to change the presentation (attributes) of individual
characters.
ADDRESSING
The addresses within the display device are shown below.
Digit 0 is the rightmost digit of the display, while digit 3 is on
the left. Although there is only one Control Word, it is
duplicated at the four address locations 0-3. Data can be
read from any of these locations. When one of these locations is written to, all of them will change together.
0
1
2
3
4
5
6
7
CONTROL WORD
When address bit A2 is taken low, the Control Word is
accessed. The same Control Word appears in all four of the
lower address spaces of the display. Through the Control
Word, the display can be cleared, the lamps can be tested
display brightness can be selected, and attributes can be '
set for any characters which have been loaded with their
most Significant bit (07) set high.
Brightness (DO, 01): The state of the lower two bits of the
Control Word are used to set the brightness of the entire
display, from 0% to 100%. The table below shows the correspondence of these bits to the brightness.
.Contents
Address
Bit 07 of any of the display digit locations is used to allow
an attribute to be assigned to that digit. The attributes are
discussed in the next section. If bit 07 is set to a one, that
character will be displayed using the attribute. If bit 07 is
cleared, the character will display normally.
Control Word
Control Word (Duplicate)
Control Word (Duplicate)
Control Word (Duplicate)
Digit 0 (rightmost)
Digit 1
Digit 2
Digit 3 (leftmost)
07
0
0
0
0
06 05
0
0
0
0
X
X
X
X
04 03 02 01 DO
X
X
X
X
X
X
X
X
X 0
X 0
X ·1
X 1
0
1
0
1
Operation
Blank
25% brightness
50% brightness
Full brightness
X - dontcare
CONTROL WORD FORMAT
D7
06
05
Trr
BRIGHTNESS
0% (Bialik)
25%
50%
100%
03 02 ATTRIBUTE
o 0 Display Cursor Instead
Of Character
o 1 Blink Character
1 0 Display Blinking Cursor Instead
Of Character
Alternate Character
With Cursor
D4 ATTRIBUTE ENABLE
o ·Disable Above Attributes
1 Enable Above Attributes
05' BLINK
o
1
Blink-Attribute Disabled
Blink Entire Display
06 LAMP TEST
o Standard Operation
1 Display All Dots At 50% Brightness
07 CLEAR
o
Standard Operation
1 Clear Entire Display
PO 3535/617
2-169
Lamp Test (06): When the Lamp Test bit is set, all dots in
the entire display are lit at half brightness. When this bit is
cleared, the display returns to the characters that were
showing before the lamp test. The lamp test will remain if
implemented silmutaneously with a clear instruction.
Attributes (02-04): Bits 02, 03, and 04 control the visual
attributes (i.e., blinking) of those display digits which have
been written with bit 07 set high. In order to use any of the
four attributes, the Cursor Enable bit (04 in the Control
Word) must be set. When the Cursor Enable bit is set, and
bit 07 in a character location is set, the character will take
on one of the following display attributes.
D7 06 05 04 03 02 01 DO
0
0
0
0
X
X
,B
B
0
0
0
1
0
0
B
B
0
0
0
0
0
0
1
O' 1
1
1
0
B
B
B
B
0
0
0
1
I
1
B
B
'07 06 05 D4 D3 02' 01
,010 X X X X
Operation
.Disable highlight
attribute
Display cursor" instead
of character
Blink single character
Dispiay blinking
cursor" instead of
, character
Alternate character
with cursor"
I
DO
Operation
.,
X,Lamptes1
,
Clear Data (07): When 07 is set in the Control Word, all
character and Control Word memory bits are reset to zero.
This causes total erasure of the display, and returns all digits
to a non-blink, full brightness; non-cursor status.
07 06 05 D4 0302 01 00
Operation
OXXXXXXClear
..
·"Cursor" refers to a condition when all dots In a Single character space are
lit to half brightness.
X ~ don' care
B = depends on the selected brightness
CASCADING
The SMC-4740 oscillator is designed to drive up to 16
PO 3636/6/7s with input loading of 16 pF each.
Attributes are non-destructive. If a character with bit 07 set
is replaced by a cursor (Control Word bit 04 is set, and
03=02=0) the character will remain in memory and can be
revealed again by clearing 04 in the Control Word.
The general requirements for cascading 16 displays
together are:
1. Determine the correct address for each display.
2. Tie CEO to ground and use CEI from an address
decoder to select the correct display.
3. Select one of the Displays to provide the Clock for the
other displays.
4. Tie ClK SEl to ground on other displays.
6. Use RST to synchronize the blinking between
the displays.
Blink (05): The entire display can be caused to blink at a
rate of approximately 2Hz by setting bit 06 in the Control
Word. This blinking is independent of the state of 07 in all
character locations.
In order to synchronize the blink rate in a bank of these
devices, it is necessary to tie all devices' clocks and resets
together as described in a later, section of this data sheet.
07 06 05 04 03 02 01
o
0
X
X
X
DO
B' B
Operation
Blinking display
CASCADING DIAGRAM
RST
Iili
R
vee
L
WR
,f
RST
RD
ClKliO
ClKSEl
P03535/6n
... • .
DO-D7
DATAliO
AO-A2
CEO
CEI
f
~
~
._.. .... :)
"
IN BETWEEN
ttl1
;::
m
Oil
ADDRESS
ADDRESS
ASi -
RST
.I
ClK I/O
r
CLKSEl
P0353516n
DO-D7
AO-A2
.
CEO
CE1
ADDRESS DECODE CHIP I TO 4
DECODER
A6i -
?
RD
....
I
0
A4, -
~:
!
WR
S
PO 35351817
2-170
Step 5
VOLTAGE TRANSIENT SUPPRESSION
It has become common practice to provide 0.01 pi bypass
capacitors liberally in digital systems. Like other CMOS
circuitry, the Intelligent Display controller chip has very low
power consumption and the usual 0.01 I-'f would be adequate
were it not for the LEDs. The module itself can, in some
conditions, use up to 100 mA. In order to prevent power
supply transients, capacitors with low inductance and high
capacitance at high frequencies are required. This suggests
a solid tantalum or ceramic disc for high frequency bypass.
For multiple display module systems, distribute the bypass
capacitors evenly, keeping capacitors as close to the power
pins as possible. Use a 0.01 tJF capacitor for each display
module and a 22 I-'F capacitor for every third display
module.
Step
Step
Step
HOW TO LOAD INFORMATION INTO THE PD 3535/6/7
Information loaded into the PD 3535/6/7 can be either
ASCII data or Control Word data. The following procedure
(see also typical loading sequence) will demonstrate a
typical loading sequence and the resulting visual display.
The word STOP is used in all of the following examples.
Step 1
Step 2
Step 3
Step 4
Step
SET BRIGHTNESS
Set the brightness level of the entire display to
your preference (example: 100%)
LOAD FOUR CHARACTERS
Load an "S" in the left-hand digit.
Step
Load a "T" in the next digit.
Load an "0" in the next digit.
Load a "P" in the right-hand digit.
If you loaded the information correctly, the
PD 3535/6/7 would now show the word "STOP."
BLINK A SINGLE CHARACTER
6
Into the digit, second from the right, load the hex
code "CF," which is the code for an "0" with
the 07 bit added as a control bit.
NOTE: The "0" is the only digit which has the
control bit (07) added to normal ASCII data.
7
Load enable blinking character into the control
word register.
The PD 3535/6/7 should now display "STOP"
with a flashing "0"
ADD ANOTHER BLINKING CHARACTER
8
Into the left hand digit, load the hex code "03"
which is for an "S" with the 07 bit added as a
control bit.
The PD 3535/6/7 should now display "STOP"
with a flashing "0" and a flashing "S."
ALTERNATE CHARACTERI
CURSOR ENABLE'
9
Load enable alternate character/cursor into the
control word register.
The PD 3535/6/7 should now display "STOP"
with "0" and the "S" alternating between the
letter and a cursor (which is all dots lit).
INITIATE FOUR-CHARACTER BLINKING
Regardless of Control Bit setting)
10 Load enable display blinking.
The PO 3535/6/7 should now display the entire
word "STO~" blinking.
TYPICAL LOADING SEQUENCE
I~ ~ I~ I~ ~ c ~
1.
2.
3.
4.
5.
6.
7.
S.
9.
10.
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
L
H
L
L
X
H
H
L
L
L
X
H
X
X
X
H
L
H
L
H
X
H
X
X
""u.Ift"l:tCf)N __
0
QQQQQQQ Q
0
0
0
0
0
1
0
0 0 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 1 0
1 0 0 1
0 0 1 0
1 1 0 1 0
0 0 0 1 1
0 0 1 0 0
0 1 1
0 1 1
1 0 0
1 1 1
0 0 0
1 1 1
1 1 1
0 1 1
1 1 1
0 1 1
DISPLAY
S
ST
STO
STOP
STOP
STOoP
S"TO"P
StTOtp
S"r-O"P"
"Slinking Character
tCharacter alternating with curs~r (all dots lit)
PO 3535/617
2-171
CHARACTER SET·
DO
ASCII
COOt
0
0
·0
0
0
01
03
06 D
o
o
0
0
0
0
1
0
0
0
I
0
1
0
1
1
0
0
3
1
0
0
0
0
1
1
0
,1
1
0
0
0
0
7
8
I
0
0
1
9
0
1
0
0
I
0
0
I
I
I
I
I
I
I
.... ..
• . ...= .. ..... .-.
r:!. .::
ap.
ir .m. .. o::! . L:.'
:,..
e
"- :~: if- -:::s I:: == A::: !:.:! ::.:.!. o!:" .: ~- I:::: P: ~~. ::t:
02
I
":
o.
2
0
1
I
0
0
5
•
•
:_0
6
I
I
I
0
0
I
A
8
I
·0
" 0i=~.1 1"'1 =...1::e.-:I
I
I
C
I
I·
0
[
r
:0"
I"':
.... ::....:..: I·...:. 1·...:·...••................. : : .. .:... :
I
0 0
•
;j) ~i ]:! C: Ii t~ F·13 t1 I .J t< L.t11 r·i Ci
.............. , . . . . . . . I' I: I ..... I"
1 0
I
:5
i...1I
e
I
I 0
1 1
1
6
=
"
... "'
J i I.:: I. : •••• ',' ", I ••••• E'" "
: '0"
0 ~~ J ~...: -." :"-i" ': ! ::... :..
:
M.
I
:".:"
i'.
-:
:-•••
:.
...
1
...
:
::: ie"l I'" :-:'.:': :::::
i''': ': -:
i larll..:
+ .:::
•...::-.. ... ........ : .... :: J. '..:
:.......,:......... J.. : I' ': :', ,': :"'1"
7:... ..-: : ....! I .sI,.I::: ,', "'1,'
.
........ ................
r:. .L :II!· I·...·
,,:••
Notes: 1. High =1 level.
2. Low = 0 level.
·3. Upon power up. the device will initialize in a random state.
ELECTRICAL AND MECHANICAL
CONSIDERATIONS
POWER UP SEQUENCE
1. Float all active Signals by tri-stating the inputs to the
displays.
2. Apply Vee and GND to the display.
3. Apply active Signals to the displays by enabling all input
signals per application.
The CMOS IC of the PD 3535/6/7 is designed to provide
resistance to both Electrostatic Discharge Damage and
Latch Up due to voltage or current surges. Several precautions are strongly recommended for the user, to avoid
overstressing these built-in safeguards.
ESD PROTECTION
Users of the PD 3535/6/7 should be careful to handle the
devices consistent with Standard ESD protection procedures. Operators should wear appropriate wrist, ankle or .
feet ground straps and avoid clothing that collects static
charges. Work surfaces, tools and transport carriers that
come into contact with unshielded devices or assemblies
should also be appropriately grounded.
POWER DOWN SEQUENCE
1. Float all active signals by td-stating the inputs to the
display.
2. Turn off the power to the display.
SOLDERING CONSIDERATIONS
PD 3535/6/7scan be hand soldered with SN63 solder
using a grounded iron set to 160°C.
Wave soldering is also possible following these conditions:
Preheat that does not exceed 93°C on the solder side of
the PC board or a package surface temperature of B5°C.
Water soluble organic acid flux (except Carboxylic acid) or
resin-based RMA flux without alcohol can be used.
LATCH UP PROTECTION
Latch up is a condition that occurs in CMOS ICs after the
input protection diodes have been broken down. These
diodes can be reversed through several means:
VIN < GND, VIN > Vee +0.5 V, or through excessive currents begin forced on the inputs. When these situations exist, the Ie may develop the response of an SCR and begin
conducting as much as one amp through the Vee pin. This
destructive condition will persist (latched) until device failure
or the device is turned off.
Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec. Exposure to the wave should not exceed
temperatures above 260°C, for five seconds at 0.063"
below the seating plane. The packages should not be immersed in the wave.
The Voltage Transient Suppression Techniques and buffer
interfaces for longer cable runs help considerably to prevent
latch conditions from occuring. Additionally, the following
Power Up and Power Down sequence should be observed.
PO 35351817
2-172
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane, and
unheated acetone.(l)
Note: 1. Acceptable commercial solvents are: Basic TF, Arklone P, Genesolv
D, Genesolv DA, Blaco:rron TF, Blaco:rron TA and, Freon TA.
Do not use solvents containing alcohol, methanol, methy·
lene chloride, ethanol, TP35, TCM, TMC, TMS +, TE, and
TES, Since many commercial mixtures exist, you should
contact your preferred solvent vendor for chemical compo·
sition information. Some major solvent manufacturers are:
Allied Chemical Corporation, Specialty Chemical Division,
Morristown, NJ; Baron·Blakeslee, Chicago, IL; Dow
Chemical, Midland, MI; E.1. DuPont de Nemours & Co.,
Wilmington, DE.
For further information refer to Appnotes 18 and 19 in the
current Siemens Optoelectronic Data Book.
An alternative to soldering and cleaning the display modules
is to use sockets. Naturally, 20 pin DIP sockets .600" wide
with .100" centers work well for single displays. Multiple
display assemblies are best handled by longer SIP sockets
or DIP sockets when available for uniform package alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
OPTICAL CONSIDERATIONS
The .270" high character of the PO 3535/6/7 allows read·
ability up to eight feet. Proper filter selection. will allow the
user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only I.imitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first con·
sidering the ambient lighting environment.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The PO 3535 is a high
efficiency r.ed display and should be matched with a long
wavelength pass filter in the 570 nm to 590 nm range. The
PO 3536 is a standard red display and should be matched
with a long wavelength pass filter in the 600 nm to 620 nm
range. The PO 3537 should be matched with a yellow-green
band·pass filter that peaks at 565 nm. For displays of multiple
colors, neutral density grey filters offer the best compromise.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.
Optimal filter enhancements for any condition can be gained through the use of circular polarized, anti-reflective,
band· pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%. Proper
intensity selection of the displays will allow 10,000 foot
candle sunlight viewability.
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgiaphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoy~ Optics, Inc., Fremont, CA.
One last note on mounting filters: receSSing display and
bezel assemblies is an inexpensive way io provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica,CA; I.E.E.Atlas, Van Nuys, CA.
.
See Siemens Appnote 23 for further information.
PO 3535/617
2-173
SIEMENS
PD4435
RED PD4436
BRIGHT GREEN PD4437
HIGH EFFICIENCY RED
.45" 4-Character, 5 x7 Dot Matrix Alphanumeric
Programmable Display'" with Built-In CMOS Control Functions
Package Dimensions in Inches (mm)
UMINOUS
INTENSITY CODE
--.l
rl~;;:;;----l------,h 0'.285
Lr--TiiTiriiTirr-.l
.., ,..
.10 TYP.
12.54)
f
17.24)
.020 ± .DOh .010 ±.002 TVP
1.508 •.254)
TOLERANCE .lIlOI. t 0.020
FEATURES
• Four 0.45" Dot Matrix Characters In High
Efficiency Red, Red, or Bright Green
• Built-in Memory, Decoders, Multiplexer
and Drivers
• Wide Viewing Angle, X Axis ±55 0, Y Axis ±65 0
• Categorized for Luminous Intensity
• 128-Character ASCII Format (Both Upper and
Lower Case Characters)
.
• 8-Bit Bidirectional Data BUS
• READIWRITE capability
• 100% Burned In and Tested
• Dual In-Line Package Configuration, Pin Rows
.600· Wide, .100· Pin Centers
• End-Stackable Package
• Internal or External Clock
• Built-In Character Generator ROM
• TTL Compatible
• Easily Cascaded for Multidlsplay Operation
• Less CPU Time Required
• Software Controlled Features:
Programmable Highlight Attribute
(Blinking, Non-Blinking)
Asynchronous Memory Clear Function
Lamp Test
Display Blank Function
Single or Multiple Character Blinking Function
Programmable Intensity,
Three Brightness Levels
• Extended Operating Temperature Range:
-40OC to +85OC
DESCRIPTION
The PO 4435. PO 4436, and PO 4437 are four digit display
system modules. The digits are 0.45" by 0.27" 5x7 dot
matrix arrays constructed with the latest solid state technology
in light emitting diodes. Driving and controlling the LED arrays
is a silicon gate CMOS integrated circuit. This integrated circuit
provides all necessary LED drivers and complete multiplexing
control logic.
Additionally, the IC has the necessary ROM to decode 128
ASCII alphanumeric characters and enough RAM to store the
display's complete four digit ASCII message with special attributes. These attributes, all software programmable at the
user's di,scretion, include a lamp test, brightness control,
displaying cursors, alternating cursors and characters, and
flashing cursors or characters. The CMOS IC also incorporates
special interface control circuitry to allow the user to control the
module as a fully supported microprocessor peripheral. The
module, under internal or external clock control, has asynchronous read, write, and memory clear over an eight bit
parallel, TTL compatible, bi-directional data bus. Each module
is fully encapsulated within a package 1.5" x 0.8" x 0.285".
The standard 20 pin DIP construction with two 0.6" rows on
0.1" centers is wave solderable and has been fully tested with
over one million total device hours to operate over a temperature range from -40°C to +85°C.
All products are 100% burned-in and tested, then subjected to
out-going AQL's of .25% for brightness matching, visual alignment and dimensions, .065% for electrical and functional. All
the devices are intensity binned to allow users to construct a
uniform display of any length.
See the end of this data sheet or refer to Appnotes 18. 19, 22,
and 23 for further details on handling and assembling Siemens
Programmable Displays.
2-174
Maximum Ratings
TIMING CHARACTERISTICS
(@Vee=4.5 V, Temp = 25°C)
De Supply Voltage ................. -0.5 V to + 7.0 Vdc
Input Voltage Levels Relative
to GND (all inputs) ............ -0.5 V to Vee + 0.5 Vdc
Operating Temperature ............... -40oC to +85°C
Storage Temperature ................ -40°C to + 100°C
Maximum Solder Temperature, .063" (1.59 mm)
below Seating Plane, t< 5 sec ................. 260°C
Data WRITE Cycle
Optical Characteristics @25°c
Spectral Peak Wavelength. . . . . . . . . .. (4435) 630 nm typo
. . . . . . . . . .. (4436) 660 nm typo
. . . . . . . . . .. (4437) 565 nm typo
Viewing Angle
horizontal ................................. ± 55 °
(off normal axis) vertical ...................... ±65°
Digit Height ..................... 0.420 inch (10.6 mm)
Time Averaged Luminous Intensity(l)
Red ............................. 75 licd/LED min.
HER/Green ...................... 100 licd/LED min.
LED to LED Intensity Matching ............ 1.8:1.0 max.
Device to Device (one bin) ................ 1.5:1.0 max.
Bin to Bin (adjacent bin) .................. 1.9:1.0 max.
Note: 1. Peak luminous intensity values can be calculated by multiplying
these values by 7.
1 - - - - - - T""-------t
'Notes: 1. All Input voltage are (Vll = 0.8 V, VIH = 2.0 V.l
2. These waveforms are not edge triggered.
Data READ Cycle
2.0 V•
CEo. CEI
DIJ-I18
a.lv
UV.
____~----~~~J~--t-~~'-----fO~.4~V
- - - -.....- TwAIT
PO 443518/7
2-175
SWITCHING SPECIFICATIONS (Vcc = 4.5 V)
READ CYCLE TIMING
Specification Minimum
Parameter
Description
TAS
Address Setup
ci
0
.0
ns
TCES
Chip Enable
0
0
0
ns
Tws
Write Enable Setup
20
30
40
ns
Too
Data Delay Time
100
150
175
ns
TR
Read Pulse
150
175
200
ns
TAH
Address Hold
0
0
0
ns
TOH
Data Hold
TTRI
Time to Tristate (Max time)
TCEH
-40°C
25°C
85°C
Units
0
0
0
ns
30
40
50
ns
Chip Enable Hold
0
0
0
ns
TWH
Write Enable Hold
30
40
50
ns
TACC
Total Access Time=Setup Time + Write Time+
Time to Tristate
200
245
290
ns
TWAIT(l)
Wait Time between Reads
TCYClE
Read Cycle Time = T RAcc + TWAIT
Notes:
1. Wait 1 "" between any Reads or Writes after wr~ing a Control Word with
a Clear (07 =1). Wait l~s between any Reads or Writes after Clearing a
Control Word with a Clear (07 = 0). All other Reads and Writes can be
back to back.
0
0
0
ns
200
245
290
ns
2. All input voltages are (V,L = 0.8 V, V,H = 2.0 V).
3. Data out voltages are measured with 100 pF on the data bus and the
ability to source=-40 ~ and sink= 1.6 rnA. The rise and rail times are
60 ns. VOL =0.4 V, VoH =2.4 V.
SWITCHING SflECIFICATIONS (Vcc=4.5 V)
WRITE CYCLE TIMING
Specification Minimum
Parameter
TClR'
TClRO
.
-40°C
Description
Clear RAM
. Clear RAM Disable
25°C
85°C
Units
1
1
1
Il s
1
1
1
Ils
TAS
Address Setup
10
10
10
ns
TCES
Chip Enable Setup
0
0
0
ns
TRS
Read Enable Setup
10
10
10
ns
Tos
Data Setup
20
30
50
ns
Tw
Write Pulse
60
70
90
ns
TAH
Address Hold
20
30
40
ns
TOH
Data Hold
20
30
40
ns
TCEH
Chip Enable Hold
0
0
0
ns
TRH
Read Enable Hold
20
30
40
ns
TACC
Total Access Time=Setup Time + Write Time +
Hold Time
90
110
140
ns
• Wait 1 "" between any Reads or Writes after writing a Control Word with a Clear (07 = 1). Wait 1 ~s between any Reads or Writes after Clearing a Control Word
with a Clear (07 = 0). All other Reads and Writes can be back to back.
PO 4435/617
2-176
DC CHARACTERISTICS @25°C
Limits
Parameter
Vcc
Min.
Typ.
Max.
Units
4.5
5.0
5.5
Volts
2.5
5
mA
150(1)
170(2)
mA
0.8
Volts
Vcc=4.5 V to 5.5 V
Volts
Vcc=4.5 V to 5.5 V
Icc Blank (All Inputs low)
Icc 80 lEOslunit (100% Bright)
130
VIL (All Inputs)
-0.5
VIH (All Inputs)
2.0
IlL (All Inputs)
25
VOL (00-07)
Conditions
Nominal
Vcc=5 V. All inputs = 0.8 V
Vcc=5 V
100
,..Po
0.4
Volts
Vcc=4.5 V to 5.5 V
Vcc =4.5 V to 5.5 V. VIN = 0.8 V
VOH (00-07)
2.4
Volts
Vcc=4.5 V to 5.5 V
10H (00-07)
-8.9
mA
Vcc=4.5 V. VO H = 2.4 V
10L (00-07)
1.6
mA
Vcc=4.5 V. VOL =0.4 V
Data 110 Bus loading
100
pF
Clock 110 Bus loading
240
pF
Notes: 1. Typical average LED drive current is 1.9 mA. Peak current at 117 duty cycle is 13.1 mAo
2. Characterization data indicates max Icc will vary from 200 mA at -40°C to 130 mA at 85°C.
TOP VIEW
PIN DEFINITIONS
Pin
•••• ••••• •••• ••
•
•
• • •• ••••
••
•••••
••
•• •••• ••
1. RO
•••••
•
•• •
•
•
2. ClKl/O
3. ClKSEL
4. RST
PIN ASSIGNMENTS
PD 4435/8nPINOUT
Pin
Function
1 RD
READ
2 CLK 1/0 CLOCK 1/0
3 CLKSELCLOCK SELECT
4 FiST
RESET
5 CEI
CHIP ENABLE
6 CEo
CHIP ENABLE
7A2
ADDRESS MSB
8 Al
ADDRESS
ADDRESS LSB
9AO
10 GND
Pin
11
12
13
14
15
16
17
18
19
20
Function
WR
D7
D6
D5
D4
D3
D2
Dl
DO
Voc
WRITE
DATAMSB
DATA
DATA
DATA
DATA
DATA
DATA
DATA LSB
5.
6.
7.
8.
9.
10.
11.
CEl
CEO
12.
13.
14.
15.
16.
17.
18.
19.
20.
07
06
05
04
03
02
01
DO
Vee
A2
Al
AO
GNO
WR
Active low, will enable a processor to read
all registers in the PO 4435/617 .
If ClK SEl (pin 3) is low, then expect an
external clock source into this pin. If ClK
SEl is high, then this pin will be the
master or source for all other devices
which have ClK SEl low.
ClocK SElect, determines the action of
pin 2. ClK 110, see the section on
Cascading for an example.
Reset. Must be held low until Vcc > 4.5
volts. Reset is used only to synchronize
blinking, and will not clear the display.
Chip enable (active high).
Chip enable (active low).
Address input (MSB).
Address input.
Address input (lSB).
Ground.
Write. Active Low. If the device is
selected, a Iowan the write input loads
the data into the PO 4435/6/7s.
memory.
Data Bus bit 7 (MSB).
Data Bus bit 6.
Data Bus bit 5.
Data Bus bit 4.
Data Bus bit 3.
Data Bus bit 2.
Data Bus bit 1.
Data Bus bit 0 (LSB).
Plus 5 volts power pin.
PO 44351617
2-177
DATA INPUT COMMANDS
•
CEO
CEl
1
0
0
0
0
0
0
0
.. 1
1
1
1
1
1
RD
WR
X
X
0
1
1
1
1
1
1
0
0
0
0
0
A2 A1
X
1
1
1
1
1
1
AO 07 06 05 04 03 02 01
X
X
0
0
0
1
1
0
0
0
1
0
1
0
DO
OPERATION
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
'1
1
0
0
0
0
0
0
0
1
0
1
X
1
1
1
0
X
0
1
1
1
1
1
0
1
1
X
X
X
No Change
Read Digit 0 Data To Bus
($) Written To Digit 0
(W) Written to Digit 1
(I) Written To Digit 2
(3) Written to Digit 3
Char. Written To Digit 0
And Cursor Enabled
CEl
RD
WR
0
1
1
0
0
X
0
X
X
X
X
X
1
1
X
X
OPERATION
The Clock Source can originate either from the internal
oscillator clock or froni an external source-usually from the
output of another PO 4435/617 in a multiple module
display.
r----------,
I
00-07
DISPLAY MEMORY
CI'l
(RAM)
REG
be8
4x8
14
!-r--+-'--!
I
X
The Character Generator converts the 7-bit ASCII data into
the proper dot pattern for the 128 characters shown in the
character set chart.
Illegal
No Change
No Change
No Change
BLOCK DIAGRAM
8 I
0
1
X
The Control logic dictates all of the features of the display
device and is discussed in the Control Word section of this
data sheet
MODE SELECTION
CEO
1.
128 CHAR.
ROM
128)(5
The Display Multiplexer controls all display output to the
digit drivers so no additional logic is required for a display
system.
The Column Drivers are connected directly to the display.
The Display has four digits. Each of the four digits is comprised of 35 LEOs in a 5x7 dot array which makes up the
alphanumeri? characters.
The intensity of the display can be varied by the Control
Word at settings of 0% (Blank), 25%, 50%, and full
brightness.
MICROPROCESSOR INTERFACE
ClKSEl
XClK
liST
The interface to the microprocessor is through the address
lines (AO-A2), the data bus (00-07), two chip select lines
(CEO, CE1), and read (RO) and write (WR) lines. .
The read and write lines are both active low. During a valid
read the data input lines (00-07) become outputs. A valid
write will enable the data as input lines.
INPUT BUFFERING
FUNCTIONAL DESCRIPTION
The PO 4435/617 block diagram includes the major blocks
and internal registers.
If a cable length of 6 inches of more is used, all inputs to
the display should be buffered with a tri-state non-inverting
buffer mounted as close to the display as conveniently
possible. Recommended buffers are: 74LS245 for the data
lines and 74LS244 for the control lines.
Display Memory consists of a 5x8 bit RAM block. Each of
the four 8-bit words holds the 7-bit ASCII data (bits 00-06).
The fifth 8-bit memory word is .used as a control word
register. A detailed description of the control register and its
functions can be found under the heading Control Word.
Each B-bit word is addressable and can be read from or
written to.
PD 4435/6n
2-178
Load a "P" in the right-hand digit.
If you loaded the information correctly, the
PD 4435/6/7 should now show the word
"STOP"
Step 5
VOLTAGE TRANSIENT SUPPRESSION
It has become common practice to provide 0.01 Ilf bypass
capacitors liberally in digital systems. like other CMOS
circuitry, the Programmable Display controller chip has a
very low power consumption and the usual 0.01 Ilf would
be adequate were it not for the LEOs. The module itself
can, in some conditions, use up to 100 mA. In order to
prevent power supply transients, capacitors with low
inductance and high capacitance at high frequencies are
required. This suggests a solid tantalum or ceramic disc
for high frequency bypass. For multiple display module
systems, distribute the bypass capacitors evenly, keeping
capacitors as close to the power pins as possible. Use a
0.01 "F capacitor for each display module and a 22 "F
capacitor for every third display module.
BLINK A SINGLE CHARACTER
Into the digit, second from the right, load
the hex code "CF," which is the code for an
"0" with the 07 bit added as a control bit.
NOTE: the "0" is the only digit which has
the control bit (07) added to normal ASCII
data.
Load enable blinking character into the
control word register.
The PO 4435/6/7 should now display
"STOP" with a flashing "0."
Step 6
Step 7
ADD ANOTHER BLINKING CHARACTER
Into the left hand digit, load the hex code
"03" which is for an "s" with the 07 bit
added as a control bit.
The PO 4435/6/7 should display "STOP" with a
flashing "0" and a flashing "S."
Step 8
HOW TO LOAD INFORMATION INTO THE
PO 44351617
Information loaded into the PO 4435/6/7 can be
either ASCII data or Control Word data. The following procedure (see also typical loading sequence)
will demonstrate a typical loading sequence and the
resulting visual display. The word STOP is used in
all of the following examples.
Step 1
Step 2
Step 3
Step 4
ALTERNATE CHARACTERI
CURSOR ENABLE
Load enable alternate characterlcursor into
the control word register.
The PO 4435/6/7 should now display
"STOP" with the "0" and the "s" alternating between the letter and a cursor
(which is all dots lit).
Step 9
SET BRIGHTNESS
Set the brightness level of the entire display
to your preference (example: 100%)
LOAD FOUR CHARACTERS
Load an "s" in the left-hand digit.
Load a "T" in the next digit.
Load an "0" in the next digit.
INITIATE FOUR·CHARACTER BLINKING
(Regardless of Control Bit setting)
Load enable display blinking.
The PO 4435/6/7 should now display the
entire word "STOP" blinking.
Step 10
TYPICAL LOADING SEQUENCE
I~ SI~I~ ~ ::;:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
L
L
L
L
L
L
L
H
H
H
H
H
H
H
L H
L H
L H
H
H
H
H
H
H
H
H
H
H
~
L L X X
L H H H
L H H L
L H L H
L H L L
L H L H
L L X X
L H H H
L L X X
L L X X
-
"" Vee +0.5 V, or through excessive currents begin forced on the inputs. When these situations exist, the IC may develop the response of an SCR and begin
conducting as much as one amp through the Vee pin. This
destructive condition will persist (latched) until device failure
or the device is turned off.
Wave temperature of 245°C ±5°C with a dwell between 1.5
sec. to 3.0 sec, Exposure to the wave should not exceed
temperatures above 260°C, for five seconds at 0.063"
below the seating plane. The packages should not be immersed in the wave.
The Voltage Transient Suppression Techniques and buffer
interfaces for longer cable runs help considerably to prevent
latch conditions from occuring. Additionally, the following
Power Up and Power Down sequence should be observed.
, PO 4435J6I7
2-182
POST SOLDER CLEANING PROCEDURES
The least offensive cleaning solution is hot 0.1. water (60°C)
for less than 15 minutes. Addition of mild saponifiers is
acceptable. Do not use commercial dishwasher detergents.
Incandescent (with almost no green) or fluorescent (with
almost no red) lights do not have the flat spectral response
of sunlight. Plastic band-pass filters are inexpensive and
effective in optimizing contrast ratios. The PO 4435 is a high
efficiency red display and should be matched with a long
wavelength pass filter in the 570 nm to 590 nm range. The
PO 4436 is a standard red display and should be matched
with a long wavelength pass filter in the 600 nm to 620 nm
range. The PO 4437 should be matched with a yellow-green
band-pass filter that peaks at 565 nm. For displays of multiple
colors, neutral density grey filters offer the best compromise.
For faster cleaning, solvents may be used. Care should be
exercised in choosing these as some may chemically attack
the nylon package. Maximum exposure should not exceed
two minutes at elevated temperatures. Acceptable solvents
are TF (trichlorotrifluoroethane), TA, 111 Trichloroethane,
and unheated acetone.(1)
Do not use solvents containing alcohol, methanol, methylene chloride, ethanol, TP35, TCM, TMC, TMS+, TE, or
TES. Since many commercial mixtures exist, you should
contact your preferred solvent vendor for chemical composition information. Some major solvent manufacturers are:
Allied Chemical Corporation, Specialty Chemical Division,
Morristown, NJ; Baron-Blakeslee, Chicago, IL; Dow
Chemical, Midland, MI; E.1. DuPont de Nemours & Co.,
Wilmington, DE.
Additional contrast enhancement can be gained through
shading the displays. Plastic band-pass filters with built-in
louvers offer the "next step up" in contrast improvement.
Plastic filters can be further improved with anti-reflective
coatings to reduce glare. The trade-off is "fuzzy" characters.
Mounting the filters close to the display reduces this effect.
Care should be taken not to overheat the plastic filters by
allowing for proper air flow.
For further information refer to Appnote 18 and 19 in the
current Siemens Optoelectronic Data Book.
Optimal filter enhancements for any condition can be
gained through the use of circular polarized, anti-reflective,
band-pass filters. The circular polarizing further enhances
contrast by reducing the light that travels through the filter
and reflects back off the display to less than 1%. Proper
intensity selection of the displays will allow 10,000 foot
candle sunlight viewability.
An alternative to soldering and cleaning the display
modules is to use sockets. Naturally, 20 pin DIP sockets
.600" wide with .100" centers work well for single displays.
Multiple display assemblies are best handled by longer SIP
sockets or DIP sockets when available for uniform package
alignment. Socket manufacturers are Aries Electronics, Inc.,
Frenchtown, NJ; Garry Manufacturing, New Brunswick, NJ;
Robinson-Nugent, New Albany, IN; and Samtec Electronic
Hardware, New Albany, IN.
Several filter manufacturers supply quality filter materials.
Some of them are: Panelgraphic Corporation, W. Caldwell,
NJ; SGL Homalite, Wilmington, DE; 3M Company, Visual
Products Division, St. Paul, MN; Polaroid Corporation,
Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY; Hoya Optics, Inc., Fremont, CA.
For further information refer to Appnote 22 in the current
Siemens Optoelectronic Data Book.
One last note on mounting filters: recessing display and
bezel assemblies is an inexpensive way to provide a
shading effect in overhead lighting situations. Several Bezel
manufacturers are: R.M.F. Products, Batavia, IL; Nobex
Components, Griffith Plastic Corp., Burlingame, CA; Photo
Chemical Products of California, Santa Monica, CA; I.E.E.Atlas, Van Nuys, CA.
OPTICAL CONSIDERATIONS
The .450" high character of the PO 4435/6/7 allows readability up to eight feet. Proper filter selection will allow the
user to build a display that can be utilized over this distance.
Filters allow the user to enhance the contrast ratio between
a lit LED and the character background. This will maximize
discrimination of different characters as perceived by the
display user. The only limitation is cost. The cost/benefit ratio
for filters can be maximized to the user's benefit by first
considering the ambient lighting environment.
See Siemens Appnote 23 for further information.
Note: 1. Acceptable commercial solvents are: Basic TF, Arklone P,
Genesolva D. Genesolva DA. Blaco-Tron TF. Blaco-Tron TA.
and Freon TA.
PO 44351Bn
2-183
Intelligent Display Assemblies
No. of
Part NoJ
Color
Package Outline
OD~:D
~l~
J!I~~
Characters
Character
HeIght
16
IDA1414-16-1
IDA1414-16-2
Red
.112"
32
IDA1416-32
Red
.160'
IDA2416-16
Red
IDA2416-32
Red
16
.160"
32
.160"
,
16
IDA3416-16
Red
DD~
IDA3416-20
Red
IDA3416-32
Red
IDA7135-16
HER
~IIIITilllillllllllllll~I~I~I~I~1U;~1~111
c:::::Ic::J
c::Jc:::::I
IDA7137-16
Green
IDA7135-20
HER
IDA7137-20
Green
For non·standard requirements, see Custom Optoelectronic Products on page 1-2.
2.:.184
.225"
20
.225"
32
.225"
16
.68"
Description
Page
Intelligent Display assembly with
four segmented DL1414 displays,.
decoder, and interface buffer on a
single circuit board.
IDA141-16-1 buffered input data
lines. IDA1414-16-2 Non-buffered
input data lines.
2-185
Intelligent Display assembly with
four segmented DL1416 displays,
decoder. and interface buffer on a
single circuit board ..
2-189
Intelligent Display assembly with
four segmented DL2416 displays,
decoder, and interface buffer on a
single circuit board ..
2-193
Intelligent Display assembly with
eight segmented DL2416 displays,
decoder, and interface buffer on a
single circuit board ..
Intelligent Display assembly with
four segmented DL3416 displays,
decoder, and interface buffer on a
single circuit board ..
Intelligent Display assembly with
five segmented DL3416 displays,
decoder, and interface buffer on a
single circuit board ..
2-197
Intelligent Display assembly with
eight segmented DL3416 displays,
decoder, and interface buffer on a
single circuit board ..
Intelligent Display assembly with
sixteen dot matrix DL07135 or
DLG7137 displays, decoder, and
interface buffer on a single circuit
board ..
2-201
20
.68"
Intelligent Display assembly with
twenty dot matrix DL07135 or
DLG7137 displays, decoder, and
interface buffer on a single circuit
board ..
SIEMENS
IDA 1414-16
.112" Red, 17 Segment, 16 Character
DL 1414 Intelligent Display®ASSEMBLY
IDA·1414-16-1 Buffered Input Data Lines
IDA 1416-16-2 Non-buffered Input Data Lines
FEATURES
DESCRIPTION
•
112 Mil High, Magnified Monolithic Character
•
Wide Viewing Angle, ± 40·
•
Complete Alphanumeric Display Assembly Utilizing
the DL 1414
• Buill-in Multiplex and LED Drive Circuitry
• Built-In Memory
• Buill-in Character Generator
The IDA 1414-16 Assembly is an extension of the very
easy-to-use DL 1414 Intelligent Display. This product
provides the designer with circuitry for display
maintenance. It also minimizes interaction and
interface normally required between the user's system
and a multiplexed alphanumeric display.
•
Displays 64 Character ASCII Set
•
Direct Access to Each Digit Independently
•
Single 5.0 Volt Power Supply
•
TTL Compatible
•
Easily Interfaced to a Microprocessor
•
IDA 1414-16-1 Input Data Lines Are Buffered
•
IDA 1414-16-2 Input Lines Are Not Buffered
The assembly consists of four DL 1414's in a single
row, together with decoder and interface buffer on a
single printed circuit board. Each DL 1414 provides its
own memory, ASCII ROM character decoder,
multiplexing circuitry, and drivers for its four
17- segment LED's.
Intelligent Display Assemblies.can be used for applications such as data terminals, controllers, instruments,
and other products which require an easy to use
alpha-numeric display.
2-185
IDA 1414-16
Maximum Ratings
vee ................................................................................ 6.0 V
Voltage applied to any input .......•......•••.••••.••••..••..•••••••... -0.5 to Vee+0.5 VDC
Operating Temperature .•.•..••.....•..•........•..•...•........•••..•.•..••.... 0 to +65° C
Storage Temperature ..............•.....•.•.•••••••.....•..••..••.•..••...•.• -20 to +70° C
Relative Humidity (non-condensing) @ 65° C .•.•..•.•.....•..•..••.•....•••..........•... 85%
Optoelectronic Characteristics @ 25° C
Parameler
Symbol
Min
Supply Voltage
Vee
4.75
Supply Current (Total)
Supply Current -1
Supply Current -2
Icc
Typ
-1 (Do-Os, A,z.
-1 (Ao, A, )
-2 (Do-Os,
-2 (A,z,
Units
V
400
380
mA
mA
75
25
,mA
mA
Tesl Condlllons
Vee =5.0 V (10 Segments/Digit)
Supply Current (Display Blank) leeBLANK
Supply Current -1
Supply Current -2
Input Voltage - High
Max
5.25
Vee =5.0V
VIN=O
VIH
A:J, WR)
Ao, A, )
2.0
2.7
3.5
2,7
3.5
2.0
VIH
A:J, WR)
Input Voltage - Low
All inputs
VIL
Input Current - High
Any iripui
IIH
Input Current
Any input
IlL
0,8 ..
Low
Luminous Intensity
Average Per Digit
Peak Emission Wavelength
V
V
V
V
V
V
Vcc =4.5 V
Vee =5,5 V
Vee =4.5 V
Vee =5,5 V
V
Vee =4.5 V
20
.A
Vee =5.5 V, Vr;=2.7 V
400
.A
Vee =5,5 V, ",=0.4 V
Iv
0.5
mcd
lpk
660
nm
:0:40
Deg
Viewing Angle
Switching Characteristics @ 5 V
Parameter
ITy,r.)
Symbol
Write Pulse
Address/DE Setup Time
Data Setup Time
Write setup
Data Hold Time
Address/DE Hold Time
Tw
TAS
Tos
Two
TOH
TAH
(Min)
Vee =5.0 V (8 Segments/Digit)
ITVp)
@OC
@25"C
@I65"C
300
350
350
50
50.
50
325
400
400
75
75
75
350
450
450
100
100
100
Units
nS
nS
nS
nS
nS
nS
Timing Characteristics
+',"~,t=
l \
~ Two f.= Tw
J
j.:.-: Tos
f
Timing Measuremenl
Yoll.p lev, Is
)C
-
hOItS
2 II
vo •
OlUlt.
==.j
!e
--I TOHI--
IDA 1414-16
2-186
System Overview
The Intelligent Display Assembly offers the designer
16 alphanumeric characters and operates from just a
5V supply. Based on the DL 1414 four character
Intelligent Display, the IDA 1414-16 adds all the
support logic required for direct connection to most
microprocessor buses. The system interface takes
place through a 14 hole dual in line pattern. The user
may solder wires directly into these holes or use a
ribbon cable and connectors.
System Power Requirements
Operating from a single +5V power supply, the
IDA 1414-16 requires a maximum operating current of
400 mA with ten of the segments lit on each character. With the display blanked, the board circuitry
draws 75 mA maximum.
tion-supply the data, address and proper control
signals and the characters appear, with each character
location independently addressable. The basic signal
flow sequence to load a character would start with
the address lines going to the desired address. After
the address has stabilized, the data can change to the
desired values. After the data have stabilized, the
WR pulse is started, and must remain low for at least
325 ns. Signals must be held stable for 75 ns,
minimum, after the rising edge of the WR pulse to
ensure correct loading, while the addresses must be
stable for 400 ns preceding the same rising edge of
the WR pulse. See the timing diagram for a pictorial
explanation.
System Design Considerations
It is often necessary, because of the nature of
displays, to use ribbon cable from the CPU board. We
have provided a 14 pin dual-in-line hole pattern for
this purpose. In those circumstances for cables over
12 inches, use IDA 1414-16-1 (buffered version)
instead of IDA 1414-16-2 (non-buffered version).
Voltage transients from noisy systems may couple
through the cables into the Intelligent Display and can
cause serious damage.
Display Interface
The display interface available on the 14 pin dual in
line hola pattern consists of seven data lines (DO to
06), four address lines (AO to A3), write pulse, Vee,
and GND.
WR (Write, active low): To store a character in the
display memory, this line must be pulsed low for a
minimum of 325 ns. See timing diagram for timing
and relationships to other signals.
Address lines AO to A3 are set up so that the rightmost character is the lowest address. The left-most
character is the highest address. Data lines are set up
so that DO is the least significant bit and 06 is the
most significant bit.
Avoid handling the assembly other than by the edges
of the PCB. Static damage can still be a problem, so
take the necessary precautions. Keep in conductive
material, grounded work areas, etc.
The IDA 1414 assemblies should need minimal
cleaning. A gentle wiping with a soft damp cloth
should be its only requirement. The solvent that
cannot be used on any Intelligent Display product is
alcohol. Therefore, if a solvent is. used, first check
chemical composition before application.
Using the Display Interface
Through the use of memory-mapped 1/0 techniques,
the IDA can be treated almost like a memory loca-
CHARACTER SET
DO
01
02
03
DID
04HU
L H L
2
L H H 3
H L
L •
H L H 5
L
H
L
L
L
0
1
L
L
L
,
L
H
L
L
H
H
L
L
2
3
L
L
H
H
L
H
L
4
L
L
L
L
L
L
H
5
6
7
8
L
H
H
H
H
H
H
L
L
H
L
H
H
H
L
H
L
H
L
L
H
H
H
L
H
H
L
H
H
H
H
H
H
H
9
A
8
C
0
E
F
+
" ±J JJ % ~y
- - t_
r. ,, :r J u, C
1,
0
L
J
B -' 6
-'
'.-,'
, ,
rr1",
T
C"D
0
C_u
L_
L...J H '-OJ
J.J l. ,
lJ H
, , VV
, "7 Lr
FJ ,-, F? 5 -r, LJ
0:
/
I
\
I ,
L~
\
I
*
I
I
I
..l.
/I
V
I I
\I
1\
\I
\
(,.
-----
\
----1\11
I I
-,
J
/
\
-~
,\I
/
-J
I
n
I "
LJ
1\
--
ALL OTHER INPUT CODES DISPLAY BLANKS
IDA 1414-16
2-187
Physical Dimensions (in inches)
an
I
C1
I.
4.50
-----+ib'l~
_
PIN
FUNCTION
1
AO DIGIT SELECT
.A.1 D!G!T SELECT
D4 DATA INPUT
DO DATA INPUT (LSBI
D3 DATA INPUT
D2 DATA INPUT
GND
A3 DIGIT SELECT
WRWRITE
A2 DIGIT SELECT
D6 DATA INPUT (MSBI
D1 DATA INPUT
D5 DATA INPUT
2
3
4
5
"
Wires may be soldered direct to
14 hole dual in line position or
contact clm" be made with
ribbon cable and connector
such as Berg 65493-006 or
Amp 86838-1/86838-2.
6
7
8
9
10
11
12
13
14
1211';39 I
1
1
7.:11'211~~;
DL 1414
2
3
.30
4
+ vee
8
DL 1414
5
1
2
3
4
5
9 - - - - - - - !.....-:~
.[
1'"7_ _ _ _ _ _ _-'
12
13
I.
,·Wi
lO-A2
1-"3
l
f
L
1"5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _---'
r.------------------------~
L--
~~~
>----------'
IDA 1414-16
2-188
SIEMENS
IDA 1416·32
.160", Red, 16 Segment, 32 Character
DL 1416 Intelligent Display®ASSEMBLY
with Memory IDecoderIDriver
"~I'
.;~
=»
-.....is.
.!!.!!
FEATURES
DESCRIPTION
• 160 MIL High Magnified Monolithic Character
• Complete Alphanumeric Display Assembly Utilizing
the DL 1416
• Built·ln Multiplex and LED Drive Circuitry
• Bullt·ln Memory
• Bullt·ln Character Generator
• Displays 64 Character ASCII Set
• Direct Access to Each Digit Independently
• All Inputs are Buffered
• Cursor Function
• Single 5.0 Volt Power Supply
• TTL·Compatlble
• Easily Interfaced to a Microprocessor
2-189
The IDA 1416-32 Assembly is an extension of the very
easy-to-use DL 1416 Intelligent Display, This product
provides the designer with circuitry for display
maintenance. It also minimizes interaction and interface
normally required between the user's system and a
multiplexed alphanumeric display.
The assembly consists of eight DL 1416's in a single row
together with decoder and interface buffers on a single
printed circuit board. Each DL 1416 provides its own
memory, ASCII ROM character decoder, multiplexing circuitry, and drivers for its four 16-segment LED's.
Intelligent Display Assemblies can be used for applications such as data terminals, controllers, instruments, and
other products which require an easy to use
alphanumeric display.
System Overview
Using the Display Assembly
The IDA 1416-32 Intelligent Display Assembly offers the
designer 32 alphanumeric characters and operates from
just a + 5 volt supply. Based on the previously introduced
DL 1416 four characler Intelligent Display. The
IDA 1416-32 adds all the support logic required for direct
connection to a host system.
Through the use of memory·mapped I/O techniques, the
IDA can be treated almost like a memory location-supply the data, address, proper control Signals and the
characters appear, with each character location in·
dependently addressable. The basic signal flow sequence
to load a character would start with the address lines go·
ing to the desired address. Data can change to the
desired values (including cursor). After the data has
stabilized, the write (WR) pulse Is started. See specifica·
tions and timing diagram for times and pictorial
explanation.
System Power Requirements
Operating from a single + 5 volt power supply, the
IDA 1416-32 requires a typical operating current of
390mA with ten segments lit for each digit. The maximum
operating current with all segments lit for al.1 digits will be
900mA maximum.,
System Design Considerations
it is often necessary, because of the nature of displays,
to use cables. Avoid excessively long cables; try to keep
them short. Because of current steps due to internal
multiplexing, wire length and size will affect load regula·
tion which may cause an incorrect display.
Display Interface Signals
The system interface takes place through a 16 hole dual·
in-line pattern. The user may solder wires directly into
these holes or use a ribbon cable connector. The inter·
face signals available at the 16 holes consist of seven
data lines (DqJ to 06), five address (A~A4), write and cur·
sor input.
Avoid handling the assembly other than by the edges of
the PCB. Static damage can still be a problem, so take
the necessary precautions. Keep in conductive material,
grounded work areas, etc.
WR
(Write, active low): To store a character in the
display memory must meet minimum write cycle
waveform.
CU
(Cursor select, active low): This input must be
held high during a write cycle to load ASCII data
into memory; and held low during a write cycle
to load cursor data into memory. The cursor
(CU) should not be hardwired high (off). DlJring
the power·up of the DL 1416's the cursor
memory wili be in a random state. Therefore, it
is recommended for the host system to initialize
or write out ali possible cursors during system ini·
tialization. Also, the cursor display will be overrid·
den by a blank from an undefined code in that
digit poSition.
The IDA 1416-32 requires minimal cleaning. A gentle
wiping with a soft damp cloth should be its only requirement. The solvent that cannot be used on any Intelligent
Display product is alcohol, therefore, if a solvent is used,
first check chemical composition before application.
CHARAlJTER SET
"-
DO
"-
D1
,D'
L
L
L
H
L
L
L
"
L
D6D5D4 D3
L H l
L
l H l
H
L H H l
L H H H
Address lines AIj to A4 are set up so that the right·most
character is the lowest address location. The left·most
character is the highest address. Data lines are set up so
that 00 is the least significant bit and 06 is the most
significant bit.
H l
L L
H L L H
H
H
"
L
L
"
:H 9)
L
L
H
L
H
"
"
H
H
% ~y
+ -- - ,
*
,
n , ( j u,
5 6 ,
u
-)
B DJ -- - l_ ---- -~ ,
,-OJ ,(""I-, _u-0 L JJ.." [ r G
n
' , T LJ, ~{ t_ II\AI 1\, lJ
,--,
-'"
I
\
1/
\
I
I
I
/
\
I
I
I
.1.
H L H L
P
H L H H
\I
1\
,-,
lY
,
V
F? 5
7
i_
r
t
T
\
I
I I
,
I
LJ
\
-'
'"
v/I
1\
I I
v."
--
NOTE: All ", .. dtl,ned dill cDdlllhll' In Iaclid o. OCC\Ir on p_·"pw,U ......... bI.nk lilptty rtIIH.
IDA 1416-32
2-190
IDA 1416-32
Maximum Ratings
Vee ............................. ............................................ . 6.0V
Voltage applied to any input .......................................... - 0.5 V to Vee + 0.5V
Operating Temperature ................................................... OOto +65°C
Storage Temperature ................................................... - 20° to + 70°C
Optoelectronic Characteristic @ 25 °C
Symbol
Min
Supply Voltage
Parameter
Vee
4.75
Supply Current
Cursor
lee
Typ
Blank (Total)
Typical/Digit
Max
Units
5.25
V
1250
rnA
Vee = 5V·AII segments on.
100
rnA
Vee = 5V Inputs low.
rnA
Vee = 5V ( 10 segments/digit)
390
Input Voltage High
VIH
Input Voltage Low
VIL
Input Current High
Tast Conditions
2
V
Vee=5V
0.8
V
Vee=5V
IIH
40
Input Current Low
IlL
-1.6
"A
mA
Vee = 5.25 VI = O.4V
Luminous Intensity
Average per digit
Iv
Vee = 5V (8 segment digit)
Vee = 5.25 VI = 2.4V
0.5
mcd
Peak Emission Wavelength
660
mm
Viewing Angle
±20
Deg
Switching Characteristics
Parameters'
Symbol
Write Pulse
Data Setup time
Data hold time
Address setup time
Address hold time
Write delay time
Tw
Tos
TOH
TAS
TAH
Two
OOC (TYD)
475
. 950
400
950
400
475
25°C (Min)
65°C (Typ)
Units
560
1100
500
1100
500
540
675
1300
600
1300
600
625
nS
nS
nS
nS
nS
nS
TIMING CHARACTERISTICS
IDA 1416-32
2-191
Physical Dimensions (In inches)
,-
.301
8.80
~
-
~.25 Typ.
..
I
I
~
.
I
I
,.75 ReI.
rr~I~l0
T'L~~~c;r;r;:::
" U~L."".
~~L. ....
.t
----J
.154 Oi •.
Typ .
8.50
PIN
FUNCTION
1
2
3
4
5
Wires may be soldered directly to 16 hole dual in-line position or contact can be made with ribbon cable ·and connector such as Berg
65493-008 or Amp 86839-1/86839-2.
01 DATA INPUT
A1 CHARACTER ADDRESS
DIi DATA INPUT
A_ CHARACTER ADDRESS
D4 DATA INPUT
6 02 DATA INPUT
7 A3 CHARACTER ADDRESS
8GND
9 A2 CHARACTER ADDRESS
10 A4 CHARACTER ADDRESS
11 05 DATA INPUT
12 CU CURSORINPUT
13 03 DATA INPUT
14 WWRITE
15 oil> DATA INPUT
16
7
vec
6
2- A'
>-----------------~Ul~--------------~----------~------~~--r_--.
3- 06
>--------...,---!Iy----.~4
RE=;ttt::::;t=::;rtt:F
5
201918
107
OL. 1416.
MC-'40SOB(2J
,,- 05
5- 04
1234-56789
11
201918
106
OL 1416
123456789
11
201918
11
10-5
OL 14.16
23456789
>---+-----+~~~~~6---~~++trHH--~HH~++++--~++++HHH_-~
>-_-+____-+~5.~4~~~---~++~HH---~~++++---4++++HHH_-~
'51- 0_
01 >:::=+::::::::=+4?'~~'4~~'5~::::::::tttt~::::::~~+++t:::::::t+t~~:::::
>
3U 2
6-- 0302 >>:::=+::::::::~~~3~~2::~::::::::tt~::::::::~+++t:::::::::t~~:::::
13
"
14-WR
~:::t::::::::=+~~9~~'0~:::::::::::t~::::::::::t:tt::::::::::~~:::::
12- CD >
10
4 _ A_ >-_-+____-+..::....--'-'1"1jj>-12
10- A4
7 - A3
9- A2
>-__-+_~_':"I~ 7~~2 It::=:;;;:;:_::;~-;;~;;:~;-;~;------------------'
14
10-'2 PIN 7
...... _
IO-~PIN7
L.---J!1li..5L....._.J-l----:ID-1
PIN 7
10A'4'6-{!2
2-192
IDA 2416 Series
SIEMENS
.160", RED 17 SEGMENT
DL-2416 Intelligent Display ASSEMBLY
FEATURES
•
•
•
•
•
•
160 Mil High Magnified Monolithic Character
Wide Viewing Angle ± 400
Complete Alphanumeric Display Assembly Utilizing
the DL 2416
• Built-in MUltiplex and LED Drive Circuitry
• Built-in Memory
• Built-in Character Generator
Displays 64 Character ASCII Set
Direct Access to Each Digit Independently
Display Blank Function
Memory Clear Function
• Cursor Function
• Choice of 16 or 32 Character Display Length
(Other lengths optional)
• Single 5_0 Volt Power Supply
•
•
•
•
The IDA 2416 Series Assembly is an extension of the
very easy-to-use DL 2416 Intelligent Display_ This.
product provides the designer with circuitry for
display maintenance_ It also minimizes interaction
and interface normally required between the. user's
system and· a multiplexed alphanumeric display_
The assembly consists of DL 2416's in a single row
together with decoder and interface buffers on a single
printed circuit board_ Each DL 2416 provides its
own memory, ASCII ROM character decoder, multiplexing circuitry,and drivers for its four 17-segment
LED's_
Intelligent Display Assemblies can be used for applications such as data terminals, controllers, instruments,
and other products which require an easy to use alphanumeric display_
TTL Compatible
Easily Interfaced to a Microprocessor
Tri~State or Open-Collector Input Circuitry
Schmitt Trigger Inputs on Control Lines
Description
Part Number
IDA 2416-16
Single Line 16 Character Alphanumeric Display Utilizing the DL 2416
IDA 2416-32
Single Line 32 Character Alphanumeric Display Utilizing the DL 2416
For custom lengths in increments of four characters, consult factory
2-193
SystenI avervilW
writes the cursor. A "(I" on 0(1 removes the cursor.
The change occurs during the next write pulse per
the timing diagram.
The Intelligent Display Assembly offers the
designer e choice of either 16 or 32 alphanumeric
characters (the IDA 2416-16 end IDA 2416-32,
respectively), end operates from just a + 5V supply.
Based on the DL 2416 four-character Intelligent
Display, the IDA 2416 adds all the support logic
required for direct connection to most microprocessor buses. The system interface takes place
through a 26-pin connector, which has available on
it the data end addrass lines as well as the control
signals needed. Two additional connectors are
liiCludvd on the IDA 2415-cna of them;: u:ed fer
the power and ground, connections, and the otner
is used to implement display enable selection.
fiJi (Clear, active low): When held low for one display multiplex cycle (see DL 2416 data sheet for
more information) of 15 ms, this line will cause all
stored characters in the display. except for the cursor,
to be cleared. CIlf is active regardless of address or
display enable lines. The CLR input drives a schmitt·
trigger.
Dn to DE4 (Display Enable, active low): There are
four jumper selecteble lines, anyone of which can be
seiecteo to provide one oT TOUi' wira, addrisses tnit
can be used when multiple IDAs are built into a sys·
tem. When low, this line enables the selected display
to permit date loading. The display enable input
drives a schmitt-trigger.
Address lines Alii to A4 are set up so that the rightmost character is the lowest address. The left-most
character is the highest address. Data lines are set up
so that Dii is the ieast significant iJit and 06 is the
most significant bit.
System Power Requirements
Operating from a single +5-V power supply, the
IDA 2416-16 requires a typical operating current of
450 mA with eight of the segments lit on each
character. For the 32 character display, the current
increases to B50 mA, typical. For the worst-case
condition with all segments lit, the 16 character
display draws 650 mA and 1he 32 character display
requires'1250 mAo With the display blanked, the
board circuitry draws about 70 mAo
U.ing the Display Interface
Through the use of memory-mapped 1/0 techniques,
the IDA can be treated almost like a memory loca·
tion - supply the data, address and proper control
signals and the characters appear, with each character
location independently addressable. The basic signal
flow sequence to load a character would start with
tha address lines going to the desired address while
the CLR and BL lines are high to permit the data to
be loaded in and displayed. After the address has
stabilized, the data can change to the desired values
(including the cursor). After the data has stabilized,
the WR pulse is started, and must remain low for at
least 350 ns. Signals must be held stable for 75 ns,
minimum, after the riSing edge of the WR pulse to
ensure correct loading, while the addressas must be
stable for 650 ns preceding the same rising edge of
the WR pulse. See the timing diagram for a pictorial
explanation.
Di.play Interfllce
The display interface available on the 26·pin connector consists of seven data lines (00 to 06), five
address lines (A0 to A4), four display-enable lines
(D'Elto OE4(.), several' unused pins, and various con'
trol signals. All address, data, and control lines have'
either pull-up or pull-down 1 K ohm resistors.
Bt (Blanking, active low): When this line is pulled
low, it causes the entire IDA display to go blank
without affecting the contents of the display memory on the DL 2416s. 8[ is active regardless of
address or display enable lines. A flashing display can
be realized by pulsing this line.
WR (Write, active low): To store a character in the
display memory, this line must be pulsed low for a
minimum of 36() ns. See timing diagram for timing &
relationships to other signals. The WR input drives a
schmitt-trigger.
Enable Selection
For board enable (the ~ through I5Eiflines) the
user can choose anyone of the four enable signals he
has provided on the cable. This signal will be used to
provide a master 'enable to each IDA. All that need be
done is to insert the shorting plug in the appropriate
position on the pins provided. This allows the user to
make the system display the same information on
two or more different IDAs or display different
information on each of up to four groups of IDA's.
CUE (Cursor Enable, active high): When high, this
line permits the cursor to be displayed, and when
brought low, it disables the cursor function without
affecting the stored value. CUE is active regardless of
address or display enable lines. A flashing cursor can
be created by pulSing the CUE line low.
1m' (Cursor Select~ 'active low): The cursor function
(character with all segments lit) is loaded by selecting
the digit address and holding Im'true. A "1" on 0(1
IDA 2418
2-194
IDA 2416 Series
Maximum Ratings
Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0 V
Voltage applied to any input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to Vcc +0.5 VDC
Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to +6S·C
Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • .. 0 to +70°C
Relative Humidity (non condensing) @ 65°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85%
Optoelectronic Characteristics @ 25°C
Parameter
Symbol
Supply Current/Digit
Min
Typ
Max
Units
25
Icc
Test Conditions
mA
Vee = 5.0 V (8 Segmenu/Digitl
Total (lDA·2416·16)
leo
650
mA
Vee = 5.0 V (All Segments/Digit)
Total (lDA·2416-32)
ICC
1250
mA
Vee = 5.0 V (All Segments/Digiti
5.25
V
Supply Voltage
Vee
4.75
Input Voltage - High
(All inputs)
V IH
3.3
Input Voltage - Low
(All inputs)
V IL
Input Current - High
(All inputs)
Input Current - Low
(All inputs)
5.00
V
Vee = 5.0 V ± .25 V
0.8
V
Vee=5
IIH
40
"A
Vee = 5.5 V, VI = 2.4 V
IlL
2.2
mA
Vee = 5.5 V, VI = 0.4 V
Vee = 5.0 V (8 Segments/Digit)
Luminous Intensity
Average Per Digit
Peak Wavelength
Iv
0.5
mcd
Apeak
660
nm
±45
Deg
Viewing Angle
Venical & Horizontal From
Normal To Display Plane
Switching Characteristics @ 5 V
Parameter @ 25° C
Symbol
Min
Units
Tw
TAS
TOS
Two
TOH
TAH
TeLR
350
550
550
200
75
75
15
nS
nS
nS
nS
nS
nS
mS
Write Pulse
Address/DE Setup Time
Data Setup Time
Write Setup
Data Hold Time
Address/DE Hold Tim(
Clear Time
TIMING CHARACTERISTICS
WRITE CYCLE WAVEFORMS
m,m
6E3, ffi
culA~ A4
I
t-I --------~--~~
I
=>t~---+--~*==
.I. :::J
I
TAH
TAS
I
%
I
WR
"
~TWO~
I
011-06
=t
TIMING MEASUREMENT
VOLTAGE LEVELS
Tw
J.
=x=x:
Tos
----0/+-
x=
TOH
-
=:!
4 VOLTS
2 VOLTS
o VOLTS
IDA 2416
2-195
Physical
4.80 (IDA 2416-16) _ _ _ _ _+1
8.80 (IDA 2416-32)
.250
TYP
I....t------r
.154DIA
TYP
lOLERANCE: ±.02
±.010
RECOMMENDED MATING CONNECTOR
Connector
&J2
,&.J3
Function
Type
ControllData
Power
26-Pin Ribbon
AMP
Suggested Mfg_
BERG PIN 65484-011
PIN PIN 87026-2
HOUSING PIN 1-87025-3
PIN
.)'11'
H
:.
.
Z6
25
..
' ..
'.
14u
'
FUNCTION
FUNCTION
A2 ADDRESS LINE
DE4 DISPLAY ENABLE
A3 ADDRESS LINE
i5E3 DISPLAY ENABLE
A4 ADDRESS LINE
DEl DISPLAY ENABLE
NO CONNECTION
DE2 DISPLAY ENABLE
Dill DATA LINE
NO CONNECTION
01 DATA LINE
NO CONNECTION
02 DATA LINE
J2-14
J2-15
J2-16
J2-17
J2-18
J2-19
J2-20
J2-21
J2-22
J2-23
J2-24
J2-2S
J2-26
NO CPNNECTlDN
06 DATA LINE
NO CONNECTION
04 DATA LINE
CUE CURSOR ENABLE
OS DATA LINE
CU CURSOR SELECT
Alil ADDRESS LINE
CLR CLEAR
Al ADDRESS LINE
WR WRITE
03 'DATA LINE
BL BLANKING
J3-1
J3-2
GND
VCC
J3-3
J3-4
VCC
GND
15
IIU
PIN
J2-1
J2-2
J2-3
J2-4
J2-S
J2-6
J2-7
J2-8
J2-9
J2-10
J2-11
J2-12
J2-13
12
'
..
'
Note:
m
(i
[I
5:
RESISTQR ..... RTOFPACltltlfIItJ
JlESISTORPART OfPII.Clt 112 Ult)
RlSISTORI'II.R1OF ..... CIIR3(J1t1
UIIUSEDP".SOFJZARE.
7. 10. IZ. 14 AMI 16
IDA 2416
2-196
IDA 3416 Series
SIEMENS
.225" Red 17 Segment
DL 3416 Intelligent Display@ASSEMBLY
FEATURES
• 225 Mil High Magnified Monolithic Character
• Wide Viewing Angle ± 40·
• Complete Alphanumeric Display Assembly Utilizing
the DL 3416
• Built-in MUltiplex and LED Drive Circuitry
• Built-in Memory
• Built-in Character Generator
• Displays 64 Character ASCII Set
• Direct Access to Each Digit Independently
• Display Blank Function
o Memory Clear Function
• Cursor Function
• Choice of 16, 20 or 32 Character Display Length
(Other lengths optional)
The IDA 3416 Series Assembly is an extension·. of the
very easy-to-use D L 3416 Intelligent Display. This
product provides the designer with circuitry for
display maintenance. It also minimizes interaction
and interface normaliy required between the user's
system and a multiplexed alphanumeric display.
The assembly consists of DL 3416's in a single row
. together with decoder and interface buffers on a single
printed circuit board. Each D L 3416 provides its
own memory, ASCII ROM character decoder, multiplexing circuitry, and drivers for its four 17-segment
LED's.
Intelligent Display Assemblies can be used for applications such as data terminals, contr~Hers, instruments,
and other products which require an easy to use alphanumeric display.
• Single 5.0 Volt Power Supply
• TTL Compatible
• Easily Interfaced to a Microprocessor
• Schmitt Trigger Inputs on Data and Write Lines
Specifications are subject to change without notice.
Part Number
Description
IDA 3416-.16
Single Line 16 Character Alphanumeric Display Utilizing the DL 3416
IDA 3416-20
Single Line 20 CharaCter Alphanumeric Display Utilizing the DL 3416
Single Line 32 Charaeter Alphanumeric Display Utilizing the DL 3416
IDA 3416-32
For Custom Lengths, on Increments of 4 Characters, Consult the Factory.
2-197
IDA 3416 Series
Maximum Ratings
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.0V
Voltage applied to any input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to Vcc +0.5 VDC
Operating Temperature . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . .
0 to +65°C
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -20 to +70°C
Optoelectronic Characteristics @ 25°C
Paramater
Symbol
Supply Current/Digit
Supply Current/Digit
Min
Typ
Max
Units
6
mA
mA,
860
mA
25
lee
lee
Test Conditions
Vee = 6.0 V (8 Segments/Olgltl
Vee = 6.0 V
"
Total (10.0.,.3416-16),
lee
Total (lOA-3416-20)
lee
1050
Total (lOA-3416-32)
lee
1680
Supply Voltage
Vee
4.75
Input Voltage - High
(All inputs)
VIH
3.5
Input Voltage - Low
(All inputs)
V IL
Input Current - High
(All inputs)
I nput Current - Low
5.00
U::~P!·6:'1~~~
5V
Vee" 6.0 V (All Segments/Digit)
(See Note 2)
Vee = 6.0 V (All Segments/Digit)
(Sea Note 2)
Vee = 5.0 V (All Segments/Oigltl
(See Note 2)
,
mA
V
5.25 '
V
Vee = 5.0 V ± .25 V
0.8
V
Vee
IIH
40
I'A
Vee = 5.5 V, V I = 2.4 V
IlL
6.4
mA
Vee = 5.5 V, VI = 0.4 V
Vee = 5.0 V (8 Segments/Digit)
=
5
I
(All inputs)
Luminous Intensity
Average Per Digit
Peak Wavelength
Iv
0.8
mcd
Apeak
660
nm
±40
Deg
Viewing Angle
Vertical & Horizontal From
Normal To Display PIi..;.
Switching Characteristics @ 5 V
Parameter @ 25° C
Symbol
Min
Units
Tw
TAS
Tos
Two
TOH
TAH
TeLR
350
550
550
200
75
75
15
nS
nS
liS'
nS
nS
'nS
,mS
Write Pulse
'Address/DE Setup Time
Data Setup Time
Write Setup
Data Hold Time
Address/DE Hold Time
Clear Time
TIMING CHARACTERISTICS
WRITE CYCL,E WAVEFORMS
I
~
, 1"--------<11-------~
I
!
1
I,'
=>t,-~-- ,-_.*'1-0- F
;,"
X'---TAS
TAH
I-TWO-C-T-w-~-JI
0;-06
=l~~--TDS -~=~=i-+I
..o--
TIMING MEASUREMENT
VOLTAGE LEVELS
~4VOLTS
~2YOLTS
o YOLTS
IDA 3416
2-198
System Overview
CIT (Cursor Select, active low): The cursor function
The Intelligent Display Assembly offers the designer
a choice of either 16, 20 or 32 alphanumeric
characters and operates from just a + 5V supply.
Based on theDL 3416 four-character Intelligent
Display, the IDA 3416 adds all the support logic
required for direct connection to most microprocessor buses. The system interface takes place
through a 20 or 26-pin connector, which has
available on it the data and address lines as well as
the control signals needed. One additional connector is used for the power and ground connections.
(character with all segments lit) is loaded by selecting
the digit addresS'and holding CU true. A "1" on 00
inserts the cursor. A "0" on 00 removes the cursor.
The change occurs during a write pulse per the
timing diagram.
CLR (Clear, active low): When held low for one display multiplex cycle (see DL 3416 data sheet for
more information) of 15 ms, this line will cause all
stored characters in the display, except for the cursor,
to be cleared. CLR is active regard hiss of address or
display enable lines.
System Power Requirements
CE2 (Chip Enable, Active Low): To store a character
in the display memory, this line must be held low
at least 550 nanoseconds preceding the leading
edge of the WR pulse.
Address lines A0 to A4 are set up so that the rightmost character is the lowest address. The left-most
character is the highest address. Data lines are set up
so that 00 is the least significant bit and 06 is the
most significant bit.
Operating from a single +5-V power supply, the
IDA 3416 Series Assembly requires a typical operating.
current of 30 mA per digit with eight of the segments
lit on each character. For the worst case condition
with all segments lit, the current is 52 mA per digit
and with the display blank the current is 6 mA
per digit.
Display Interface
The display interface available on the 20 or 26·pin
connector consists of seven data lines (00 to 06), five
address lines (A0to A4), and various control signals.
All address, data, and control lines have either pull·up
or pull-down 1K ohm resistors. BL (Blanking, active
low): When this line is pulled low, it causes the entire
IDA display to go blank without affecting the contents of the display memory on the 0 L 3416s.. BL is
active regardless of address or display enable lines.
A flashing display can be realized by pulsing this line.
WI'! (Write, active low): To store a character in the
display memory, this line must be pulsed low for a
minimum write time. See timing diagram for timing
& relationships to other signals.
Using the Display Interface
Through the use of memory-mapped I/O techniques,
the IDA can be treated almost like a memory location - supply the data, address and proper control
signals and the characters appear, with each character
location independently addressable. The basic signal
flow sequence to load a character would start with
the address lines going to the desired address while
the CLR and BL lines are high to permit the data to
be loaded in and displayed. After the address has·
stabilized, the data can change to the desired values
(including the cursor). After the data have stabilized,
the WR pulse is started, and must remain low for at
least 350 ns. Signals must be held stable for 75 ns,
minimum, after the rising edge of the WR pulse to
ensure correct loading, while the addresses must be
stable for 550 ns preceding the same rising edge of
the WR pulse. See the timing diagram for a pictorial
explanation.
CUE (Cursor Enable, active high): When high, this
line permits the cursor to be displayed (see Note 2),
and when brought low, it disables the cursor function
without affecting the stored value. CUE is active
regardless of address or display enable lines. A flashing cursor can be created by pulsing the CU E line low.
Notes:
1) CMOS Handling precaution - App Note 18
2) Cursor should not be on longer than 60 sec.
3) Cleaning solvents - use NO alcohol
IDA 3416
2-199
IDA3416 Physical Dimensions
'8
PRODUCT
A
IDA 3416·16
3.00
6.00
6.95
(76.20)
3.65
(92.71)
(152.40)
7.30
(176.58)
8.25
(209.55)
IDA 3416·20
C
(185A2)
PIN
J:::.~
"
)'
,.
"
:.
20
J2·2'
J2·3
J2·4
J2·5
J2·6
J2·7 .
J~·8
J2·9
J2·10
J3·'
J3·2
.48
(1~~[g7
;bl~
( 5OCO)1
I-
11 .00
(279.40)
~
I
FUNCTION
PIN
CC CAT;' LINt
BL BLANKING
05 DATA LINE
UNUSED
04 DATA LINE
A1 ADDRESS LINE
03 DATA LINE
AIADORESS LINE
02 DATA liNE
elR CLEAR
J:."
GND
vee
r
CAT;'
L.I~":C
i l l CHIP
J2-13
01 DATA LINE
CU CURSOR SELECT
J2-14
ENABLE
J2·15
WAWFlITE
J2-16
J2-18
J2-19
J2·2D
CUE CUSOR ENABLE
A3 ADDRESS LINE
UNUSED
A4 ADDRESS LINE
A2 ADDRESS LINE
J3·3
J3-4
GND
J2·17
vee
~
"- ,
r::::J
to:!
.1 5~
(3.81) -1o:i.~0)
(3.81)
FUNCTION
or
J2-12
,L
1. f°
.75
-REF
(19.05)
2.3 2)
(5l
.22 REF
(5.59)
r::::J c:::J r::::J
.12 Dia
'-T,p
(3.05)
4.50
. (114.3)
10.50
(266.70
PIN
l
'b
J2·'
J2·2
J2-3
J2-4
J2·5
J2-6
J2-7
J2-8
J2-9
J2-10
J2-11
J2-12
J2-13
•
!!
26
••
J3-'
J3'2
FUNCTION
A2 ADDRESS LINE
5E4 DISPLAY ENABLE
A3 ADDRESS LINE
DE3 DISPLAY ENABLE
A4 ADDRESS LINE
DEi" DISPLAY ENABLE
NO CONNECTION
OE2 DISPLAY ENABLE
01 DATA LINE
NO CONNECTION
01 DATA LINE
NO CONNECTION
02 DATA LINE
PIN.
J3-3
J3-4
GND
vee
FUNCTION
J2-14 NO CONNECTION
J2-15 D6 DATA LINE
J2-16 NO CONNECTION
J2-17 04 DATA LINE
J2-18 CUE CURSOR ENABLE
J2-19 D5 DATA LINE
J2-20 CO CURSOR SELECT
J2-21 AI ADDRESS LINE
J2-22 CLR CLEAR
J2-23 " A1 ADDRESS LINE
J2-24 WR WRITE
J2-25 03 DATA LINE
J2-26 B[ BL~NKING
vec
GNO
RECOMMENDED MATING CONNECTOR
Connector
&J2
&,.J2
&J3
Function
Control/Data
Control Data
Power
Type
20 Pin Ribbon
26 Pin Ribbon
AMP
Suggested Mfg.
BERG PIN 65496-007
BERG PIN 65484-011
PIN PIN 87026-2
HOUSING PIN 1-87025-3
IDA 3416
2-200
SIEMENS
IDA 7135 Series
Green IDA 7137 Series
HIGH EFFICIENCY RED
.68" HIGH, 5 x 7 DOT MATRIX
Intelligent Oisplay® ASSEMBLY
FEATURES
DESCRIPTION
• A Complete Alphanumeric Display Assembly Utilizing
the DLX713X Series 5 x 7 Dot Matrix Display
• Built·in Multiplex and LED Drive Circuitry
• Built·in Memory
• Built·in Character Generator
• Displays 96 Character ASCII Set, Including Both UPi>er
and Lower Case Characters
• Direct Access to Each Digit Independently
• Three Brightness Levels
• Display Blank Function
e Lamp Test Function
• Wide Viewing Angle, :!: 50°
• Readable in High Ambient Lighting
• Available in High Effi.clency Red and Green
• Choice 0116 or 20 Character Display Lengths
• Single 5.0 Volt Power Supply Requirement
• Easily Interlaced to a Microprocessor
• TTL Compatible
• Fully Buffered Inputs
The IDA 713X Series Assembly is an extension of the
single character DLX 713X, 5 x 7 fully intelligent dot
matrix display. This display assembly provides the
designer with circuitry for display maintenance, while
minimizing the interaction and interface normally
required between the user's system and a multiplexed
alphanumeric display.
The assembly consists of DLX 713X's in a single row,
together with the necessary address decoders and inter·
face buffers, on a single printed circuit board. Each
DLX 713X provides its own memory, ASCII ROM char·
acter generator, multiplexing circuitry, and drivers for
the 35 LED dots.
Intelligent Display Assemblies can be used for
applications such as P.O.S. terminals, message systems,
industrial equipment, instrumentation, and any other
products requiring a large, easily readable, "user
friendly", alphanumeric display.
~
For additional information refer to Appnote 25.
For cleaning we recommend De-ionized water, Isopropyl Alcohol,
Freon TE or Freon TF.
Important: Refer to Appnote 18, "Using and Handling Intelligent
Displays." Since this is a CMOS device, normal precautions
should be taken to avoid static damage.
Specifications are subject to change without notice.
Part NumbGr
IDA7135-16
IDA 7137-16
IDA 7135-20
IDA 7137-20
COLOR
Hi. Elfi. Red
Green
Hi. Eltl. Red
Green
Description
Single Line, 16 Character Alphanumeric Display Utilizing the DLO 7135
Single Line, 16 Character Alphanumeric Display Utilizing the DLG 7137
Single Line, 20 Character Alphanumeric Display Utilizing the DLO 7135
Single Line, 20 Character Alphanumeric Display Utilizing the DLG 7137
2-201
MAXIMUM RATINGS
SWITCHING CHARACTERISTICS @ 5V
... 6.0V
VCC·
Voltage applied to
any input,
. - 0.5 to Vcc + 0.5VDC
Operating Temperature
.. , .. O'C to + 65'C
Storage Temperature ., ...... , .. -20'Cto +65'C
Relative Humidity
(non condensing) @ 65'C
, ... , ...... 85%
Parameter
11"\0'1 ? ..
170
5
85
42
!CG
ICC
ICC
ICC
Vee
VIH
VIL
III
IV
25"C
4.75
2.7
Max
Viewing Angle
Units
Tw
Tos
TOH
TAS
200
230
100
30
ns
ns
ns
ns
Test Conditions
rnA
rnA
rnA
5.25
vbc
VCC=S.O V, BLO=BL1:= 1
VCC=5.0 V, BlO=BU =0
VCC=5.0 V, BlO=O, BU = 1
Vcc = 5.0 V, BlO = 1, BU = 0
1.0
160
VDC
VDC
uA
"CD
VCC=5.0V ±.25V
VCC=5.0V
VCC=5.0V
VCC=5.0V
220
10
565 (Green)
640 (Hi.. Effi. Red)
.,r:-
Minimum
Units
250
lun,lo,).)
Symbol
Write Pulse
Data Setup Time
Hold Time
Address Setup
OPTOELECTRONIC CHARACTERISTICS AT 25°C
Typ
Symbol
Parameter
Min
Supply Current/Digit
Supply Current/Digit (Blank)
Supply Current/Digit
Supply Current/Digit
Supply Voltage
Input Voltage·High (All Inputs)
Input Voltage·low (All inputs)
Input Current
luminous Intensity/Dot Average
Peak Wave Length
IDA 7137
@
±50'1
rr...."
nm
.nm
Deg
TIMING CHARACTERISTICS
DISPLAY INTERFACE
WRITE CYCLE WAVEFORMS
A0-A4
00-06
)<
C >.C
~Tos-FTOH~
TIMING MEASUREMENT
VOLTAGE LEVELS
=x=:x:
4 VOLTS
- 2 VOLTS
a VOLTS
SYSTEM OVERVIEW
The Intelligent Display Assembly offers the designer a choice of
either 16 (IDA 713X·16) or 20 (IDA 713X·20) alphanumeric charac·
ters. Based on the DLX713X intelligent dot matrix display, the IDA
713X adds all the support logic required for direct connection to
most microprocessor-buses. The system interface takes place
through a 26 pin connector, which has the data and address
lines as well as the control signals available on it. One additional
connector is used for the power and ground connections.
The display interface available on the 26 pin conhector consists
of seven data lines (DO to D6):J!ye address lines (AOjg A4, see
Not. 3), t~ brightness inputs (BlO to BU), lamp test (IT), the Chip
Enable (CE), and the Write line (WR). All address and data lines
have 1K ohl!!.E.ull up resistors.
BlO and BU (Brightness, active low): When both of these are
pulled 10\0\\ it causes the entire IDA display to go blank without
!!flecting the contents of the display memory on the DLX713X's.
BL is active regardless of address or display enable lines. These
two lines are used to vary the intensity of the display to one of
four levels.
WR (Write, active low): To store a character in the display memo
ory, this line must be pulsed low for a minimum of 200 ns.
See timing diagram for timing and relationships to other signals.
IT (Lamp test, active low): This line can be activated to light
all display dots.
·For IDA 713X·16 only.
Four address bits are used.
DIMMING AND BLANKING THE DISPLAY
Brightness
Level
SYSTEM POWER REQUIREMENTS
Oparating from a single + 5V power supply, the IDA 713X·16
requires a typical operating current of 2720 rnA at brightest level.
For the 20 character assembly, typical operating current is 3400
rnA. For worst case conditions, the 16 character assembly draws
3520 rnA, while the 20 character assembly draws 4400 rnA.
With the display blanked, the board circuitry for the 16 character
assembly draws 60 rnA, and the 20 character assembly 'draws
100 rnA.
BU
BLO
Blank
0
0
'A Brightness
0
1
Y2 Brightness
1
0
Full Brightness
1
1
IDA 7135
2-202
USING THE DISPLAY INTERFACE
IDA 713X XX· DIGIT ADDRESSING TRUTH TABLE
Through the use of memory-mapped 110 techniques, the IDA
can be treated almost like a memory location-supply the data,
address and proper control signals and the characters appear,
with each character location independently addressable_ The basic
signal flow sequence to load a character would start with the
address lines going to the desired address_ After the address has
stabilized, the data can change to the desired values. After the
data has stabilized, the WR pulse is started and must remain low
for at least 200 ns to ensure correct loading. See the timing diagram for a pictorial explanation. Either BLO or Bll should be held
high for displays to light up.
0
0
0
Address Bit
A3 A2 AI
a 0 0
0
0
0
0
0
1
0
0
1
0
1
0
0
1
a
0
1
1
0
1
1
1
0
0
1
0
a
1
0
1
0
1
1
a
1
1
1
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
A4
a
0
0
0
0
0
0
0
0
0
0
0
0
LAMP TEST
The lamp test (IT) when activated causes all dots on the display
to be illuminated at half brightness. The lamp test function is independent of write (WR) and the settings of the blanking inputs (BlO),
Bll).
This convenient test gives a visual indication that all dots are
functioning properly. Lamp test may also be used as a cursor function or painter which does not destroy previously displayed characters.
a
Device Addressed
AO
0
0
1
1
0
0
0
0
1
2
3
4
5
6
7
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
9
10
11
12
13
14
15
a
16
1
0
1
18
19
iI
17
*Entire area is for 20 characters, smaller portion is for 16 characters.
Rightmost character is digit O.
CHARACTER SET
D0
01
02
03
bE
ID~ HEX
L L L
0
L L H
1
L
L
L
L
H
L
L
L
0
L
H
L
L
H
H
L
L
L
L
H
L
H
L
H
L
L
H
H
L
H
H
H
L
L
L
L
H
H
L
L
H
H
L
H
2
3
4
5
6
7
8
9
A
H
H
L
H
B
L
L
H
H
H
L
H
H
C
0
L
H
H
H
E
H
H
H
H
F
THESE CODES DISPLAY BLANK
..
-I-i- .;.- ::;~ :::.
.......
:: ·:'i- ~.
L H L 2
:: i . ..i 'i' ··1·· :i
·-i-· .
.1.1.
I:
::
H H L 6
H H H
7
.'.
&I
.
....
.....
:
. ....
::.
:
'..".'.:.':: ..:...............•........! ......:......: :.... *: -:
:..-!::::- i :::::: .i. -••:
F
':::i
r" ::::: t i...i !.) i.:J >:: ::::i :;:::
:
IDA 7135
2-203
.500
.300
.530 REF-I
(13.48) I
.
I--
I .
u"u~~,~
(8.26)
(Tolerance ± .01)
Pin
Function
Pin
Function
J2·1
J2·2
J2·3
J2-4
J2·5
J2·6
J2·7
J2·8
J2·9
J2·10
J2·11
J2·12
J2·13
A2 Address Line
No Connection
A3 Address Line
No Connection
A4 Address Line
No Connection
No Connection
No Connection
DO Data Line
No Connection
01 Data Line
No Connection
02 Data Line
J2·14
J2·15
J2·16
J2·17
J2·18
J2·19
J2·20
J2·21
J2·22
J2·23
J2·24
J2·25
J2·26
No Connection
06 Data Line
No Connection
04 Data Line
BL1 Brightness
05 Data Line
No Connection
AO Address Line
BLO Brightness
Al Address Line
WR Write
03 Data Line
ct Lamp Test
J3·1
J3·2
GND Ground
J3·3
J3·4
Vce
Vee
II
Product
A
B
c
D
IDA 7135·16
IDA 7137·16
3.80 Typ.
(96.52)
11.90
(302.26)
12.20
(309.88)
.120 Typ 10 piaces
(3.05)
IDA 7135·20
IDA 7137·20
3.55 Typ
(90.17)
14.70
(373.38)
15.00
(381.00)
.155 Typ 12 places
(3.94)
RECOMMENDED MATING CONNECTOR
I!>. ____ a ..... _
.....-FuiictlQn
uutJ".... n ..".
'J""
....'WVIliltnilUI
_---_... _ho J2
& J3
Control/Data
26·Pin Ribbon
BERG PIN 65948·011
Power
AMP
PIN PIN 87026·2
HOUSING PIN 1·87025·3
GND Ground
===
r-'
~~;::~T~
------------
AO-JI-21
A1-JZ -23
Aa-JI-1
A3-JZ-3
11
"""'Ill.
A4-JZ-5
NOTE: III Part of Resistor Pack RPI (IK SIp)
121 Part of Resistor Pack RP2 (IK SIp)
W Address bits AO-M are decoded by ICB, U3-U5 t~nableJQ.O-IDI9.
00 All like lines on all displays are tied together; e.g.;lT. WR, Bll, BLO, etc.
lOA 7135
2-204
Numeric Displays
Bar Graphs
Light Bars
3-1
LED Numeric Displays
Package
Type
Multi-digit
magnified
monolithic
Package Outline
~
[8JBJl::"D
Compact
single digit
encapsulated (Iilled
reflector)
..
Part
Number
"---~
[81818}8]
..............
DL-330M
DL-340M
Character
Height
.11"
(2.Bmm)
Description
Polarity
CJ
[8J
,_
DL-430M
DL-440M
.15'
(3.Bmm)
7 seg. 4 dig~
C.C.
HD10750
CA
7 segment,
D.P. right
C.C.
Red
800
High
Eft.Red
1000
HD.OiiY
C.C.
HD1075G
C.A.
HD1077G
C.C.
HDll05R
C.A
HDll07R
C.C.
HDll050
CA
[8.]
HDll070
Yellow
7 segment,
D.P. right
C.C.
HDll05Y
CA
HDll07Y
C.C.
HDll05G
CA
HDll07G
C.C.
HDl131R
C.A
HDl133R
C.C.
HDl1310
CA
3-6
900
1000
25
Red
1000
.39"
(10mm)
3-4
20
15
C.A.
Green
Compact
single digit
encapsulated (filled
reflector)
5
2500
per digit
7 seg. 3 digit
HD1077R
.2B"
(7mm)
Red
7 seg. 2 digit
C.A
HD1075Y
Page
7 seg. 3 digit
HD1075R
HD10770
Luminous
Intensity per
Segment
IlClJ1lYP~ ---.nJ(
C.C.
Multiplex
@@
Color
I--
High
Eft. Red
15
Yellow
900
Green
1000
3-6
35
Red
Compact
single digit
encapsulated (filled
reflector)
[8.]
HDl1330
HDl131Y
.53"
(13.5mm)
7 segment,
D.P. right
C.C .
1400
3-10
20
CA
Yellow
HDl133Y
C.C.
HDl131G
CA
HDl133G
C.C.
Green
3-2
-
High
Eft. Red
1300
1400
Bar Graphs
Package
Type
Part
Number
Package Outline
10 0000000001
10
Element
Encapsulated
(filled
reflector
Color
RBG-10oo
Red
Light
Emitting
Area
Luminous Intensity
Per Segment
Polarity
flcd (typ.)
500
OBG-10oo
High Eff.Red
.YBG-1000
Yellow
GBG-1000
Green
addressable anode
RBG-4820
Red
and
500
OBG-4B30
High Eff.Red
cathode
2500
YBG-4B40
Yellow
GBG-4B50
Green
2500
.04 x .15'
DIP)
/0000000000/
Page
mA
Separately
.06 x .20"
3-18
2000
20
3-20
2000
Light Bars
Package
Type
Small rectangular.
Rugged
encapsulated.
Large rectangular.
Rugged
encapsulated.
Square.
Rugged
encapsulated.
Square.
Rugged
encapsulaled.
Large rectangular.
Rugged
encapsulated.
Large rectangular,4
section
Rugged
encapsulated.
Part
Number
Package Outline
U=:JI
II
II
0
m
11=1
[[I[[]
Color
Light
Emitting
Area
Description
.15 x .35"
Two die light bar.
Luminous
Intensity
OLB-2300
High Elf. Red
YLB-2400
Yellow
GLB-2500
Green
10
OLB-2350
High Eff. Red
20
YLB-2450
Yellow
GLB-2550
Green
20
OLB-2655
High Elf. Red
20
YLB-2755
Yellow
GLB-2B55
Green
OLB-2600
High Elf. Red
YLB-2700
Yellow
GLB-2BOO
Green
OLB-26B5
High Eff. Red
YLB-27B5
Yellow
GLB-2BB5
Green
OLB-2620
High Elf. Red
YLB-2720
Yellow
GLB-2B20
Green
3-3
10
.15x .75'
.35 x .35"
Page
mcd (typ.) mA
Four die light bar
(1x4).
Four die light bar.
6
12
12
20
per
each
die
3-12
20
per
each
die
3-13
20
3-16
20
.15 x .35"
Four die light bar
with mechanical
barrier creating 2
isolated rectangular
light emitting areas
(2x2).
10
6
10
20
per
each
die
3-14
.40
.35 x .75'
Eight die light bar.
24
20
3-17
40
.15x .35'
Eight die light bar
with mechanical
barrier creating 4
isolated rectangular light emitting
areas (2x4).
10
6
10
20
per
each
die
3-15
SIEMENS
.11" 3 DIGIT
.11" 4 DIGIT
.15" 3 DIGIT
.15" 2 DIGIT
DL-330M
DL..340M
DL-430M
DL-440M
RED SEVEN SEGMENT MAGNIFIED MONOLITHIC NUMERIC DISPLAY
Package Dimensions in Inches (mm)
DL-43OM
DL-33OM
+9'
I~([t~·
.~.
1 - -.... ---1
DL-44OM
DL-340M
FEATURES
•
Rugged Encapsulated Package
•
I ntegrated Magnifier Lens
•
Monolithic Construction for Maximum
Brightness at Minimum Power
•
Common Cathode for Simplicity of
Multiplexing
•
Standard Dual·ln-Line Package
•
Categorized for Brightness Uniformity
DESCRIPTION
The DL·330M/340M and DL·430M/440M
are red numeric LED displays. Low cost is
.achieved through minimum use of mono·
lithic GaAsP material and magnification to
full height using a simple integrated lens
construction. A red plexiglass or circularly
poladzed filter is recommended to enhance
visibility and to eliminate glare from the
surface of the package.
These displays are designed for multiplex
operation, the desired digit being displayed
by selecting the appropriate cathode. A
right hand decimal point is provided.
rUt" (t#"
.'''88
t::I t::I.
.i
. .........
n
.
3D
--..1
1----"5--1
Maximum Ratings: "
Incf:cates
FEATURES
• Large Rectangular Package
• Mechanical barrier creating four isolated
rectangular light emitting areas
• Uniform Light Emitting Area
• Excellent ONIOFF Contrast
• Choice of Three Colors
• Categorized for Light Output
• Yellow and Green Categorized for
Dominant Wavelength
• Panel or Legend Mountable
• Can be Mounted on P.C. Boards
or DIP Sockets
.X-Y Stackable
• Suitable for Multiplexing
• IC Compatible
APPLICATIONS
These devices are ideally suited for:
• Message Annunciators
• Positions/Status Indicators
• Telecommunications Indicators
• Bar Graphs
DESCRIPTION
The OLB 2620IYLB·2720/GLB 2820 series
light bars are rectangular displays. They are
configured in a dual in·line package with a
mechanical barrier creating four isolated rec·
tangular light emitting areas. The OLB 2620
and YLB 2720 devices utilize eight LED chips
which are made from GaAsP on a transparent
GaP substrate. The GLB 2820 device utilizes
eight chips made from GaP on a transparent
GaP substrate.
1
2
34
S
6
7
8
Maximum Ratings
alB 2620 & GlB 2820
YlB 2720
t3SmW
90mA
8SmW
. SOmA
2SmA
20mA
30mA
2SmA
Average Power Dissipation per LED chip
Peak Forward Current per LED chip
Ta = SO·C (max pulse width = 2ms)
Average Forward Current per LED
Pulsed conditions (Ta = SO·C)
DC Forward Current Per LED
(Ta = SO·C)
Reverse Voltage per LED chip
Operating Temperature
Storage Temperature
Lead Soldering Temperature,
1/16 inch below seating plane
Junction Temperature
6V
- 40·C to + 8S·C
- 40·C to + 8S·C
2SO·C for 3 sec.
6V
100·C
Electrical/Optical Characteristics (@ 25°C)
Parameters
Min.
Typ.
Luminous Intensity (per light emitting area)
OLB2620
10
4.5
YLB2720
4
6
GLB2820
3.7
10
Peak Wavelength
635
OLB2620
S83
YLB2720
565
GLB2820
Dominant Wavelength
626
OLB2620
585
YLB2720
572
GLB2820
Forward Voltage
2.1
OLB2620
2.2
YLB2720
2.2
GLB2820
Reverse Voltage
6
15
OLB2620
6
15
YLB2720
6
15
GLB2B20
3-15
Max.
Units
Test
Conditions
mcd
mcd
mcd
20mADC
20mADC
20mADC
nm
nm
nm
nm
nm
nm
2.6
2.6
2.6
V
V
V
V
V
V
IF=20mA
1,=20mA
1,=20mA
IR =1001JA
IR =1001JA
iR =1001JA
SIEMENS
OLB, 2655
YLB 2755
GLB 2855
HIGH EFFICIENCY RED
YELLOW
GREEN
LIGHT BARS
Package Dimensions in Inches (mm)
.40 SQ.
PIN" PIN F!JNCTION
1--<10.16>--/
I
MAX.
I
D~
~:r
.35 SQ.
[l
l'
2
3
-:To
(7.62)
-.1~
Calnodea
Anooea
Anodeb
. Cathode b
Cathodec
Anodec
Anoded
Cathoded
~---PART
IDENTIFICATION
LOCATION
FEATURES
• Square Package
• . Uniform Light emitting Area
• Excellent ON/OFF Contrast
• Choice of Three Colors
• Categorized for Light Output
• Yellow and Green Categorized for
Dominant Wavelength
• Panel or Legend Mountable
• Can be Mounted on P.C. Boards or DIP Sockets
• X-Y Stackable
• Suitable for Multiplexing
• IC Compatible
APPLICATIONS
These devices are Ideally suited for:
•
•
•
•
Message Annunciators
PositionslStatus Indicators
Telecommunications Indicators
BarGraphs
DESCRIPTION
The OLB 2655IYLB 2755/GLB 2855 series light
bars are square displays deSigned for application requiring a large light emitting area. They
are configured in a dual in-line package and
contain a single light emitting area. The OLB
2655 and YLB 2755 devices utilize four LED
chips which are made from GaAsP on a transparent GaP substrate. The GLB 2855 device
utilizes four chips made from GaP on a transparent GaP substrate.
Maximum Ratings
Average Power DiSSipation per LED chip
Peak Forward Current per LED chip.
Ta = 50·C (max pulse width = 2ms)
Average Forward Current per LED
Pulsed conditions (fa = 50·C)
DC Forward Current Per LED
(fa = SO·C)
Reverse Voltage per LED chip
Operating Temperature
Storage Temperature
Lead Soldering Temperature,
1116 inch below seating plane
OLB 2655 & GLB 2855
I 35mW
90mA
20mA
30mA
·25mA
6V
- 4O·C to +85·C
- 4O·C to + 85·C
260·C for 3 sec.
lOO·C.
Electrical/Optical Characteristics (@
Luminous Intensity
OLB2655
YLB2755
GLB2855
Peak Wavelength
OLB2655
YLB2755
GLB2855
Dominant Wavelength
OLB2655
YLB2755
GLB2855
Forward Voltage
OLB2655
YLB2755
GLB2855
Reverse Voltage
OLB2655
YLB2755
GLB2855
3-16
SOmA
25mA
Junction Temperature
Parameters
VLB 2755
··85mW
UnHs
Test
Conditione
20
12
20
mcd
mcd
mcd
20mADC
20mADC
20mADC
635
583
565
nm
nm
nm
626
585
572
nm
nm
nm
Min.
Typ.
9
8
7.5
2.1
2.2
2.2
6
6
6
25°C)
15
15
15
Max.
2.6
2.6
2.6
V
V
V
IF =2OmA
IF=2OmA
IF = 20mA
V
V
V
IR=IOOIlA
.. IR.=IOOIIA
IR=I0011A
SIEMENS
OLB 2685
YLB 2785
GLB 2885
HIGH EFFICIENCY RED
YELLOW
GREEN
LIGHT BARS
Package Dimensions in Inches (mm)
.80
I - - (20.32)
--I
(ltD])
I
MAX.
I
- - ( 1 9.75
.05)--
........
l~r!1
..
,
,,
,,,
,,
I
. •30 TYP.
[[
(1,62)
PART
=-=-=-:=-::r::;::;;::;:;:::::;:-- IDENTIFICATION
LOCATION
r-:
e
........
110·-
Z
"
"""
""
.--.1
I
sci;
.-
~
MM
1 2
FEATURES
•
•
•
•
•
•
Large Rectangular Package
Uniform Light Emitting Area
Excellent ON/OFF Contrast
Choice of Three Colors
Categorized for Light Output
Yellow and Green Categorized for
Dominant Wavelength
• Panel or Legend Mountable
• Can be Mounted on P.C. Boards
or DIP Sockets
34
5
6 7.8
Maximum Ratings
OLB 2685 & GLB 2885
Average Power Dissipation per LED chip
Peak Forward Current per LED chip
Ta = 50'C (max pulse width = 2ms)
.
Average Forward Current per LED
Pulsed conditions (Ta = 50'C)
DC Forward Current Per LED
(Ta=50'C)
Reverse Voltage per LED chip
YLB 2785
135mW
90mA
85mW
60mA
25mA
20mA
30mA
25mA
Lead Soldering Temperature,
6V
- 40'C to + 85'C
- 40'C to + 85'C
260'C for 3 sec.
1/16 inch below seating plane
Junction Temperature
100'C
Operating Temperature
Storage Temperature
• X-Y Stackable
• Suitable for Multiplexing
Electrical/Optical Characteristics
• IC Compatible
Parameters
(Tamb
6V
=25°C)
Units
Test
Conditions
40
24
40
mcd
mcd
mcd
20mADC
20mADC
20mADC
635
583
565
nm
nm
nm
626
585
572
nm
nm
nm
Min.
Typ.
18
16
15
Max.
LUminous Intensity
APPLICATIONS
These devices are ideally suited for:
• Message Annunciators
• Positions/Status Indicators
• Telecommunications Indicators
• Bar Graphs
DESCRIPTION
The OlB 26851YlB 2785/GlB 2885 series
light bars are rectangular displays designed
for applications requiring a large light emitting
. area. They are configured in a dual in·line pack·
age and contain a single light emitting area.
The OlB 2685 and YLB 2785 devices utilize
eight lED chips which are made from GaAsP
on a transparent GaP substrate. The GlB 2885
device utilizes eight chips made from GaP on a
transparent GaP substrate.
OLB2685
YLB2785
GLB2885
Peak Wavelength
OLB2685
YLB2785
GLB2885
Dominant Wavelength
OLB2685
YLB2785
GLB2885
Forward Voltage
OLB2685
YLB2785
GLB2885
2.1
2.2
2.2
2.6
2.6
2.6
V
V
.v
i F =20mA
i F =20mA
IF = 20mA
Reverse Voltage
OLB2685
YLB2785
GLB2885
3-17
6
6
6
15
15
15
V
V
V
IR=100~
IR=I00~
iR=I00~
SIEMENS
RBG-1 000
HIGH EFFICIENCY RED OBG~ 1000
YELLOW YBG-1000
GREEN GBG-1000
RED
10 ELEMENT
BA~GRAPH
Package Dimensions in Inches
.010
TVPJ
IT:]
.<
-1.20 ~
Maximum Ratings
Storage Temperature .................... -200to +85°C
Operating Temperature ................... :'-20° to +85"C
Power Dissipation @25°C ................... : ... 450 mW
Derating Factor from 25"C ............ : ....... 7.5 mW/oC
Contlnous Forward Current
. ,"
RBG-1ooo per display ...... ; ..... ;: :: ...... ;·,'.·200 mA
per element ........ '; . . . . . . . . . . .. . . . .. 20 mA
OBG-10oo
' ,
,
YBG.1ooo
per display .... , ....... ; ...... ' .... 156 mA
GBG.1ooo
per element: ........... '; ..... : .... 20 mA
FEATURES
Peak Inverse Voltage per Element ...... , .............. 3 V
•
10 Element Display
Opta-Electronic Characteristics (@25 ·C)
•
End Stackable Module
•
Individual Addressable Anode and
Cathode
Parameter
Luminous Intensityl Element
(Display Average)
10
Intensity Coded for Display
Uniformity
RBG·1OOo
.5
mcd IF = 20 mAl
Segment
•
Rugged Encapsulation
OBG·1ooo
2.5
•
Choice of Colors
YBG·1ooo
2.0
GBG·10oo
2.0
mcd IF = 20mAi
Segment
mcd fF=2o mAl
Segment
m'cd IF = 20 mAl
Segment
DESCRIPTION
The Red RBG-1000, Hi-e'fficiency Red
OBG-1000, Yellow YBG-1000, and
Green GBG-1000 are 10 individual
element bar graphs. They are contained in
a 1 inch long, 20 pin dual-in-line package
that can be end stacked as bar-graph
displays of various lengths. Applications
include: bar graph, solid-state meter
movement, position indicator, etc.
Forward Voltage
RBG-1ooo
OBG·1ooo
YBG-1000
GBG-10oo
Reverse Leakage .
Emission Peak Wavelength
RBG·10oo
OBG·1000
YBG·1ooo
GBG·1OOo
3-18
Test
Typ Max Unit Condition
1.7
2.2
2.4
2.4
0.1
660
630
585
565
2.0
2.8
3.0
3.0
100
V
V
V
V
p.A
IF =2o mA
I F =2o mA
I F =2o mA
IF =2o mA
VR =3V
nm
nm ..
nm
nm
RBG-1000, OBG-1000, YBG-1000 AND GBG-1000
TOP VIEW
PIN
20 19 18 17 16 15 I. 13 12
II
000000000
7
8
9
10
ELEMENT #10
PRODUCT IDENTIFICATION
MARKING
FUNCTION
1
ANODE 1
FUNCTION
11
CATHODE 10
2
ANODE 2
12
CATHODE 9
3
ANODE 3
13
CATHODE 8
4
ANODE 4
14
CATHODE 7
5
ANODE 5
15
CATHODE 6
6
ANODE 6
16
CATHODE 5
7
ANODE 7
17
CATHODE 4
8
ANODE 8
18
CATHODE 3
9
ANODE 9
19
CATHODE 2
ANODE 10
20
CATHODE 1
10
TYPICAL
PIN
APPLICATIONS
+12V
10
VIN~VV_""'""",
LIGHT SPOT DISPLAY
>12Y
I
J JJJJ ru==i
lliih..1
LINEAR DISPLAY
DRIVERS
Siemens UAA 170
Siemens UAA180
National LM3914
National LM3915
Sharp I R2406
III '-'-!ll DDDJ
11
~
t----!!
~.,"
1~le
III
1
111111 ~I--
I
UAAllO
~
VIN
17
i
l!
LIGHT BAND DISPLAY
No endorsement or warranty of other manufacture,-, prOducts Is Intended
3-19
SIEMENS
RBG-4820
HIGH EFFICIENCY RED OBG-4830
YELLOW YBG-4840
GREEN GBG-4850
RED
10 ELEMENT LINEAR DISPLAY
PaCkage Dimensions in Inches (mm)
i .
1.A1luntoierilT1ceddjme~onsto'
re1erenceonly
2.YllG·4840andGBG~0!1Iy
PIN 1 MARKING
Maximum Ratings
Storage Temperature
Operating Temperature
FEATURES
·20·C to +85·C
-20·C to +85·C
450mW
Power Dissipation @ 25°C
• 10 Element Array
• End Stackable With Package
Interlock to Assure Alignment
7.5mW/·C
Derating Factor from 25° C
Lead Soldering Temperature
(1/16 below seating plane)
Peak Aeverse Voltage Per Led
260·C tor 3 sec.
3V
Continuous Forward Current
• Matched LED's for Uniform Display
• Individually Addressable Anode and
Cathode
• Intensity Coded for Display Uniformity
30mA
30mA
20mA
30mA
ABG-4820
OBG-4830
YBG-4840
GBG-4850
•
•
•
•
Wide Viewing Angle
Rugged Encapsulated Construction
Standard Dual-In-Une Package
High On-Off Contrast, Segment to Segment
Hue Coded For Uniformity
• Choice of Colors
Optoelectronic Characteristics (@ 25°C)
Parameters
Min.
Units
Test
Conditions
500
2500
2000
2000
Ilcd
Ilcd
Iled
Ilcd
1,=20mA
t,=20mA
t,=20mA
1,=20mA
655
635
583
566
nm
nm
nm
nm
645
626
585
571
nm
nm
nm
nm
Typ.
Max.
Luminous Intensity
Per Element
ABG-4820
OBG-4830
YBG-4840
GBG-4850
Peak Wavelength
ABG-4820
OBG-4830
YBG-4840
GBG-4850
Dominant Wavelength
ABG-4820
OBG-4830
·YBG-4840
GBG-4850
Forward Voltage
Per LED
ABG-4820
OBG-4830
YBG-4840
GBG-4850
Aeverse Voltage
Per LED
ABG-4820
OBG-4830
YBG-4840
GBG-4850
DESCRIPTION
The Red RBG-4820, Hi-efficiency Red, OB<34830, YellowYBG-4840 and Green GBG-4850
are 10 individual element linear bar displays and
are designed to display information in easily
recognizable bar graph form. They are end
stackable for expanded display lengths. The
package interlock ensures that each bargraph
will align accurately and correctly with the next
one. Applications include solid state meters,
position indicators, and instrumentation.
3-20
1.6
2.1
2.2
2.1
3
3
3
3
12
30
50
50
2.0
2.5
2.6
2.5
V
V
V
V
1,=20mA
1,=20mA
1,=20mA
1,=10mA
V
V
V
V
IR=100uA
IR=100uA
IR=100uA
IR=100uA
RBG·4820 OBG·4830 YBG·4840 and GBG·4850
TOP VIEW
20 19 18 17 16 .15
PIN
14 13 12
~GBBGGBBG8
5
PIN
FUNCTION
ANODE 1
FUNCTION
11
CATHODE 10
2
ANODE 2
12
CATHODE 9
3
ANODE 3
13
CATHODES
4
ANODE 4
14
CATHODE 7
5
ANODE 5
15
CATHODE 6
6
ANODE 6
16
CATHODE 5
7.
ANODE 7
17
CATHODE 4
8
ANODE 8
18
CATHODE 3
ANODE 9
19
CATHODE 2
ANODE 10
20
CATHODE 1
1
II
6
PRODUCT IDENTIFICATION
MARKING
9
10
TYPICAL
APPLICATIONS
+12V
10
13
UAAI70
12
LIGHT SPOT DISPLAY
+12V
I
>
LINEAR DISPLAY
DRIVERS
liih aI 71
18
···'l!xg ooo I
~
Siemens UAA 170
Siemens UAA180
National LM3914
National LM3915
Sharp I R2406
......--...!
~12j13l"le
I
~ UAAllO
...
YIN
J J J Jd==1
7
17
i
..I!
LIGHT BAND DISPLAY
No endorsement or warranty of other manufacturer's products is intended
3-21
GRAPHS FOR DISPLAYS
2-
1.
.
..
Relative spaCtral emission veraus wavelength
V.= standard eye rasponse curve
%
e
100
y
Ifr-.
Ifl\
1\ I
I
1\
\
40
i\
20
-~y
-+
..._-- 7 -
_
0400
.-
- ~
.. --
\
550
3B.
10'
mA
5
1=
I
1.4
a"up8Mad
-g.....
Yell~~E
g~~
1.0
•
!/ i's..paH8d
•
I
-.
I
10
,
tB
2,2
2.6
~
3.0 V 3.4
10
to
-v,
pF~-H*ffi~~~~++~ffi
f
v
10
-1,
10"~mDG.
n.AI=+
o=tM
30~4+~~4+~~~~
f-++tttIIIIttl-IIt+tIffill'o~itHttI
---v,
0=0.05
10'
IrWI
1318
-VA
8B.
Permissible pul.. handUng capabUlty
pars.gment
Forwsrd currant veraus pul.. wldth
Duty cycle D ss parameter (T.=700c)
Permissible pul.. handUng capabUlty
par.egment
Forward currant versus pulse width
Duty.cycla D 88 parameter (T.=45"C)
40~-H*ffi~~~~++~ffi
20
_ ~225
2,0
eA.
6.
Capacitance veraus raverae voltage
,
4.
Relative luminous Intanslty
veraus forward current
( ...for pulse operation)
Forward currant veraus
forward voltage
mA
to'
100nm
600
650
--A
to'
I8CI
\\
\~
II
1;1
soo
450
..
3A.
Forward currant versus
forward voltage
( ...for pulse operation)
to-
nod
1\
rod
60
I
I
I
;"row ~pe
graen
VA
Radiation characteristic
Relative spectral emission yeraus half angle
IIr'
10-2
10-'
-I,
3-22
5
10'
10'
GRAPHS FOR DISPLAYS (Cont.)
6C.
Permlsslbla pulse handling capability
parsegmant
Forward currant versus pulsa width
Duty cycla D as parametar (T.=45°C)
10'
7.
Lumlnouslntanslty versus
ambient tamperatura
12
I.
mA
T
I
1,
I
[t
120
o~
%
~
t;;: 10 0
t'~
o=T
,Q
o
'10-1,
10'3
'10-'
S
I I
I I
I I i
i
80
I
I
60
f'
25
o
o
50
75°C 100
-TA
1()0
I
I
I
!
!' yellow
s~per-red
I green:
' :?::::!
, !:red~
,
,,
I·
I
I
I
40
1304
o
10-2
f
!
I
,I
I
i ,I
i
I
20
0
1O-!i
VF2S- 100
""
I
0,5
III
%
green
I
0
Vf
supoNed
.../~ellow- f-- I--
'\J'-.
reI? '\.
0
10' 10.1
10
~
0
0,2
8.
Forward vOltage versus
ambient temparatura
;
:
i
!
I
i
i
i
I I I
I i I
. 25
50
i
~303
75°C 100
- - TA
--i,
10.
Permlsslbla continuous powar dissipation
and pulsa currant per sagment varsus
amblant temparatura
9.
Wavalength at peak.emlsslon varsus
ambient tamperatura
690
nm
Aplllk
f
i.---"
670
red
6&0
f-"'"
65 0 ......
-
640
630
f-
125
.....
i
-
supeH8d
1--'-'-
j
75
620
610
600
590
580
570
- -yellow
-
560
550
o
--
f- green
~
I I
25
50
I
i
I
I
~
IE
,
I
I
o
p
i
I
60
P
1
!
45
1\
,
i
Z5
"w
!
1\
i
50
75°C 100
-T,
i
i
f-
,I
,
t
0'
75
1
50
30
1\
15
·c
100
o
GRAPHSIDISPLAY
3-23
LED Lamps
4-1
LED Lamps
Package
Type
Package Outline
Part
Number
COlor
Lens
Viewing
Angle
LDR5091
LDR5092
LDH5191
LDH5192
Red
Clear
4.0
Ig
Efficiency
Red
24·
Yellow
Clear
LDH5121
LDH5122
LDH5123
40
Blue
Water
Clear
16·
LS5421-PO
LS5421-QO
LY5421-PO
High
Efficiency
Red
70·
LY5469-EO
LY5469-FO
LGS469-EO
6.0
4-13
10
1.0
Yellow
Yellow
Diffused
2.5
Green
Green
Diffused
2.5
High
Efficiency
Red
Orange
Tinted
60
4.0
20
16
40
63
16
Yellow
Yellow
Tinted
20·
40
10
45
4-15
2
7.5
4-16
63
10
Green
LGS411-PO
LS5469-FO
100
2.0
LG5411-LO
LSS469-EO
20
4.0
LY5421-QO
LG5411-NO
4-8
4.0
Red
Diffused
LY5421-MO
T1 3/4
5mm
l'leads
100 mil
lead
spacing
with
standoffs
25
1.0
LDG5172
LS5421-MO
20
2.5
2.5
Red
LDY5163
LDG5171
60
80
LDY5161
LDY5162
4-12
10
30
Green
LDR5103
;0
20
20
LDR5101
T1 3/4
5mm
l'leads
100mi!
lead
spacing,
no
standoffs
100
30
LDG5591
LDR5102
20
Page
10
Yellow
LDY5393
LDB541 0
mA
10
Orange
Clear
LDY5391
LDG5592
Fwd.
10
LDH5193
LDY5392
mcd
Max.
Current
(mA)
2.5
Red
LDR5093
T1 3/4
5rrm
l'leads
100 mil
lead
spacing,
no
standoffs
Luminous
Intensity (min.)
Water
Clear
25
40
High
Efficiency
Red
0.63
1.0
0.63
Yellow
Green
Diffused
50·
1.0
0.63
1.0
LGS469-FO
4-2
LED Lamps
Package
Type
Package Outline
Part
Number
Color
Lens
Viewing
Angle
T1 3/4
5mm
l'leads
100mii
lead
spacing
with
standoffs
LDH5021
D
=
=
LDH5023
LDY5061
LDG5072
LS3369-EO
LS3369-FO
High
Efficiency
Red
LG3369-EO
T15mm
l"leads
100mil
lead
spacing.
no
standoffs
"'::
Yellow
Diffused
2.5
Green
Green
Diffused
6.0
2.5
High
Efficiency
Red
Diffused
60°
2.0
Red
LDY1132
Red
Diffused
70°
Yellow
Rectangular
5mm
1" leads
~,
==0
Green
LYK380
Yellow
LGK380
Green
LDH3603
Yellow
Diffused
2.0
Green
Diffused
6.0
20
10
Tinted
Transparent
Not
applicable
32 (10)
15m/m
45
4-17
20
60
4-10
0.4
Red
0.63
High
Efficiency
Red
Red
Diffused
1.6
2.5
1000
4.0
1.0
Yellow
LDY3803
LDG3901
LDG3902
60
Luminous Flux
LDY3801
LDY3802
4-9
10
2.5
High Eff.
Red
LDH3602
6.0
4.0
LSK380
LDH3601
100
1.0
LDGl153
LDR3701
20
4-14
2.5
LDGl151
LDR3702
75
4.0
LDYl133
LDG1152
2
4.0
LDYl131
~~
1.0
1.0
LDH1112
20
0.63
LDH1113
Flattop.
T13mm.
1" leads
100mil
lead
spacing.
no
standoffs.
0.63
1.0
High
Efficiency
Red
60
1.0
Green
LDRll03
100
0.63
LDRll0l
LDH1111
Page
4-11
10
1.0
Yellow
Yellow
20
4.0
6.0
LG3369-FO
LDRll02
[:J
Ir~~ent
2.0
70°
LY3369-EO
LY3369-FO
rnA
4.0
Red
Diffused
LDY5062
LDG5071
2.5
Red
LDR5003
LDH5022
mcd
Max.
Fwd.
1.0
LDR5001
LDR5002
Luminous
Intensity (min.)
Green
LDG3903
Yellow
Diffused
Green
Diffused
1.6
2.5
1.0
1.6
2.5
4-3
LED Lamps
. Package
Type
Package Outline
Miniature
Axial
,Lead
8
Part
Number
RL-50
Red
Lens
Water
Clear
Viewing
Angle
Red
Red
·Diffused
Luminous
Intensity (min.)
mcd
mA
Max.
Fwd.
Current
(mA)
Page
40
4-21
0.5
900
10
Red
Diffused
RL-54
RL-55
Miniature
Axial
Lead,
High
dome
lens.
Color
0,4
500
40
2.0
-----Q-----
SOT23
Subminiature
1.3mmby
3mmby
lmmhigh
t;Jp
YL-56
Yellow
Yellow
Diffused
GL-56
Green
LSS260-DO
High
Efficiency
Red
Water
Clear
LYS260-DO
High
Efficiency
Yellow
Red
Diffused
LGS260-DO
Green
Green
Diffused
LUS250-DO
Red and
Green
Colorless
Diffused
10
400
4-23
25
1,0
Green
Diffused
1400
1,0
20
12,5
(30 on
ceramic
substrate)
4-18
Multicolor LED Lamps
Package
Type
Package Outline
Part
Number
Color
Lens
Viewing
Angle
LD1005
T13/4
5mm
l'Leads
~~
Clear
Diffused
LD1007
T13/4
5mm
l'Leads
~~
mcd
mA
Max.
Fwd.
Curren
(mA)
Page
2,5
LD1006
LDll03
Luminous
Intensity (min.)
1000
Red and
Green
6.3
20
60
1.0
Colorless
Diffused
LDll04
4-6
4,0
1,6
4-7
2.5
LDll05
Lamp Accessories (pgs.25-26)
m
i
Mounting Clip and ColiarforT13/4 LEDs
Part Number: 2004-9002 - Black
2004-9003 - Clear
~.
Right Angie Mount
Part Number: 2004-9019 - Biack
g
4-4
Mounting Clip and Collar for T1 LEDs
Part Number: 2004-9015 - Black
2004-9016 - Clear
Reflector
Part Number: 2004-9020 - Polished
Packaging of LEOs on continuous tapes
Light emitting diodes are available now in taped
form. Packaging of unidirectional LEOs on
continuous tapes is based on the lEe
publication 40 (secretariat) 451.
The component tapes are wound on reels and
supplied in boxes containing two reels each. One
reel comprises 1000 items of the 5 mm types or
2000 items of the 3 mm types.
The ordering codes for taped components with
unidirectional leads packaged on reels are as
follows:
For components with 2.54 mm lead spacing
(version A, B, and 0), "E7500" is added to the
last position of the type number.
Example: LOR1101 E7500
Direction of unreeling.
1 "" Cathode
2 "" Anode
For components with 5.08 mm spacing (version C
and E) "E7501" is added to the last position of
the type number.
Example: LOG5171 E7501
Dimensional table for radial tape
Description
Symbol
Dimensions in inches (mm)
Overall Tape Width
W
.709 + .039 (18 + 1 )
- .020 . - 0.5
Hold Down Tape Width
Wo
.236 ± .012 (6 ± 0.3)
Feed Hole Location
W,
.354 + .030 (9 + 0.75)
- .020
- 0.5
Hold Down Tape Position
W2
"S .118 ("S 3)
Overall Taped Package Thickness
t
.035 max. (0.9)
Tape Feed Hole Diameter
Do
.157 ± .008 (4 ± 0.2)
Feed Hole to Bottom of Component
H
.709 + .079 (18 + 2)
Height of Seating Plane
Ho
.630 ± .020 (16 ± 0.5)
Feed Hole to Overall Component Height
H,
1.268 max. (32.2)
Feed Hole Pitch
Po
.500 ± .012 (12.7 ± 0.3)
Feed Hole-Component Center Distance
P2
.250 ± .028 (6.35 ± 0.7)
Component Lead Pitch
F
.100} + .024
+ 0.6)
.200 - .004 5.08 - 0.1
Component Lead Pitch
F" F2
+.016(
+0.4)
ea..100. _ .004 2.54 _ 0.1
Deflection Left or Right
Llp
± .040 (± 1)
Deflection Front or Rear
Llh
± .079 (± 2)
4-5
e.54
LD 1005/1006/1007
SIEMENS
TWO·COLOR, RED AND GREEN
T1% LED LAMP
Package Dimensions in Inches (mm)
.024
(0.6)
.016
(0.4)
FEATURES
Maximum Ratings
• T1 % Package Size
Reverse Voltage (V R) .
.. 5 V
. . . . . . .. .. . . ..
60 mA
Forward Current" (IF) . . . . . . .. . .. . ... . . . .
Surge Current" (iFs), t s 10"s . . . . . . . . . . . . . . . . . . . . . . . .
1A
Storage Temperature (T5Ig ) ...
-55 to +100°C
Junction Temperature (Tj) . . . .. . . . . .
. .....•. 100°C
•
Colorless Lens
•
Two-Color Operation,
Red and Green
•
Three Leads, One of Which
Is Common Cathode
•
Minimum Lead Length 1 "
• _05" Lead Spacing
DESCRIPTION
The LD 100X series has a colorless round,
5 mm case with diffuser layer. Two chips
(GaP-green and TSN-red) allow use as
optical indicator with two functions.
Because of its very low current consumption and hence low inherent heating as well
as high vibration resistance and long service life, this LED is suitable for applications where signal lamps are not or only
inadequately useful. Moreover, the LED
can be driven by TIL ICs.
Power Dissipation (P,O') Tamb~25°C ..
200 mW
Thermal Resistance (R ,hJA) Junction·to·Air. .
375 KlW
Characteristics (Tamb = 25°C)
Parameter
Symbol
Wavelength of the Emitted
Apeak
Light
Dominant Wavelength
\Jom
Half Angle
(Limits for 50% of Luminous
Intensity Iv)
TSN·red GaP·green Unit
645 ± 15 560± 15
nm
638
Forward Voltage
(IF~20
mAl
Reverse Current (VR ~ 5 V)
561
50
'"
VF
2.4 (s3.0)
IR
om (sI0)
nm
Deg.
V
Rise Time
t~
100
50
"A
ns
Fall Time
tf
100
50
ns
Co
12
45
pF
CapaCitance
(VR~O
V,
f~
1 MHz)
Luminous Intensity
Part Number
lO 1005
Min
Unit
Test
Condition
2.5
mcd
mcd
mcd
lOrnA
lOrnA
LD 1006
4.0
lO 1007
6.3
10mA
·The ratings indicated for the forward current IF or the surge current iFS ,
respectively, are maximum ratings of the component. If both chips are
operated simultaneously, the sum of the forward current ratings is not
allowed to exceed the indicated maximum value.
See graph numbers lA, 2A, 3A (HER), 38 (green), 4A, SA, 6A, 7A, SA, 9A,
lOA on pages 4-27 - 4-34.
4-6
LD 1103/110411105
SIEMENS
TWO·COLOR RED AND GREEN
RECTANGULAR LED LAMP
Package Dimension in Inches (mm)
.354
(9.0)
.323
(8.2)
]
201'
(5.1)
.189
(4.8)
""'--1
~ C==~3;;::=:::+3 ~~iJ
.024 (0.6)
t (2.4)
-1.094
.016(0.4)
FEATURES
• Rectangular Shape
• Colorless Lens
• Two-Color Operation, Red and Green
• Three Leads, One of Which Is
Common Cathode
• Minimum Lead Length 1 "
Maximum Ratings
Reverse Voltage (VA) ........................................ 5 V
Forward Current· (IF) ..................................... 60 rnA
Surge Current (iFsl. t ~ 10 JIS· .. . . . . . . . . . . . . . . • . . . . . . . . . . . . . . .. 1 A
Storage Temperature (T5Ig ) . .. .. ... ... .. .. ..... .. .. -55 to + lOOGe
Junction Temperature (Tjl ............ , ................... l00"C
Power Dissipation (Ptcl), lamb = 25°C.. . ...
.. 200 mW
Thermal Resistance Junction·Air (R1hJAI ' . .
. ............ 375 KJW
Characteristics (Tamb = 25 ·C)
• .05" Lead Spacing
DESCRIPTION
The LD 1103 series has a colorless case
with rectangular, luminous area and dif·
fuser layer. Two chips (Gap·green and
TSN·red) enable the use as optical
indicator with two functions.
Because of its very low current consump·
tion and hence low inherent heating as well
as high vibration resistance and long ser·
vice life, this LED is suitable for applica·
tions where signal lamps are not or only
inadequately useful. Moreover, the LED
can be driven by TTL ICs.
Symbol
TSN·,ed GaP·green Unit
Wavelength of the Emitted
Lighl
>.peak
645± 15 560± 15
Dominant Wavelength
Aperture Cone (Half Angle)
(Limits for 50% of luminous
Intensity 'v)
Lateral Emission of
Light Screened
Forward Voltage (IF = 20 mAl
Reverse Current (VA =5 V)
Rise Time
,,"om
638
Parameter
Fall Time
Capacitance (VA = 0 V.
1=1 MHz)
561
nm
Dog.
50
VF
2.41~3.0)
IR
0.011~
100
100
12
I,
If
Co
nm
V
I,A
10)
ns
50
50
45
ns
pF
Luminous Intensity
Test
Type
Min
Unit
Condition
LO 1103
LD 1104
LO 1105
1.0
mM
mcd
mcd
20mA
1.6
25
20mA
20mA
-The ratings indicated for the forward current 'F or the surge currenl iFS'
respectively. are maximum ratings of the component. If both chips are
operated simultaneously. the sum 01 the forward current ratings is not
allowed to exceed the indicated maximum value.
See graph numbers lA, 2B, 3A (HER), 3B (green), 4A, SA, SA, 7A,
SA, 9A, lOA on pages 4·27 - 4-34.
4-7
SIEMENS
LDB5410
BLUE T1% LED LAMP
Preliminary Data Sheet
Package Dimensions in Inches (mm)
iif64
(0:4!
.016
L
-1
Surtace not flat
~
.307
(7.8)
(7.5)
.295
-
~
tL
(2~)~-~ ~~:r&if~
.059
(1.5)
~ .354
(0.8)
(0.5)
1.141
i~~l~
1.063
~13~i
1 ---'
±
i~~l
,.323
.217
I
I
\
,
\
I
I
~Anode
.024
(0.6)
(0.4)
.016
FEATURES
•
•
•
•
•
Maximum Ratings
Pure Blue Light (480 nm)
ClearT·13f.o Plastic Package
1" Min. Lead Length
High Brightness
TTL Compatible
Reverse voltage
Forward current
Storage temperature range
Junction temperature
Total power dissipation
(Tamb = 25°C)
Thermal resistance
Junction to Air
V
1j
1
25
-5510 +100
100
Plot
150
mW
R'hJamb
500
KlW
VA
IF
Tslor
=25°C)
DESCRIPTION
Characteristics (Tamb
The LDB5410 is a Silicon Carbide (SiC) LED,
emitting a pure blue light from a clear T·1 %
plastic package. The LDB5410 is ideal for such
applications as: spectroscopy, calibration, and
light sources in medical equipment.
Wavelength at peak emission
Dominant wavelength
Min.
Typ.
Unit
~peak
480
480
16
nm
nm
Oeg.
dam
Viewing angle
Forward voltage
(I F=20 mAl
Reverse current
(VA = IV)
Capacitance
(VA=OV;f=1 MHz)
Luminous intensity
(I F=20 mAl
VF
4(;;;8)
IA 0.01(;;;10)
V
~A
Co
160
pF
2.5
6.0
mcd
CAUTION: Because of low reverse voltage, the
polarity of the LDB5410 should be checked
before inserting into a circuit.
See Appnote 31 for further information.
See graph numbers 1C, 2C, 3C, 48, 68 on pages 4·27 - 4-34.
4-8
mA
'C
'C
SIEMENS
HIGH EFFICIENCY YELLOW
LOR 1101/1102/1103
LOH 1111/1112/1113
LOY 1131/1132/1133
HIGH EFFICIENCY GREEN
LDG 1151/1152/1153
RED
HIGH EFFICIENCY RED
T1 LED LAMP
Package Dimension in Inches (mm)
.19(4.8)
. :·- ·
fir
.17(4.4)
.10
.02810.7)
.016(0.4)
,
.,J~: ==::::::gA
- Fa
;~ :~:----f-+-
.05(1.2)
Cathode
FEATURES
• High Light Output
• Diffused Lens
• Wide Viewing Angle 70 0
·T1Size
• 1" Lead Length
• Front Panel Mounting
Snap-in Mounting Clips Available
Clip/Collar #2004-9016 Clear
#2004-9015 Black
• IIC Compatible
~
--
i~6~
.016
"'-:""'11(0.4)
.13.1
13.4)
.114
12.9)
.106
12.7)
.12
(3.1)
Maximum Ratings
LOR 110X
Reverse voltage
VA
IF
Forward current
Surge current (::;:101-'-5)
Storage temperature range
V
100
2
iFS
TSlg
1]
Junction temperature
Total power dissipation
(Tamb =25"C)
Thermal resistance junction to air
LOH lllX
LOY 113X
LOG 115X
SO
rnA
A
100
100
"C
200·
375
200
375
mW
K/W
"c
-55 to +100
Ptot
RlhJA
Characteristics (Tamb=25°)
LOR 110X LOH.lllX LOY 113X LOG 115X
DESCRIPTION
The LDR 11 OX Series is a standard red gallium arsenide
phosphide (GaAsP) LED lamp. The LDH111 X high
efficiency red and LDY13X yellow are premium high
efficiency light emitting diode lamps fabricated with TSN
(transparent substrate nitrogen) technology. The LDG
115X green Series is a gallium phosphide (GaP) lamp.
All have a diffused plastic lens which emits a full flooded
intense light.
Wavelength at peak emission
Dominant wavelength
Apeak 665±15
Adom 645
Viewing angle
(Limits for 50% of luminous
intensity Iv)
Forward voltage (IF = 20mA)
Reverse current (VR = 5 V)
Rise time
Fall lime
Capacitance
(VR=OV;f=l MHz)
"
70
VF
1.6(:52.0)
645±15
590±10
560±15
638
70
592
70
561
70
nm
nm
Oog.
40
Co
4-9
pA
100
100
200
200
50
50
ns
ns
12
10
45
pF
Luminous Intensity
See graph numbers on pages 4-27 - 4-34.
Red: 10,20,30, 5B, SC, 7B, 8B, 9B, lOB
HER: lA, 2E, 3A, SA, 6A, 7A, 6A, 9A, lOA
Yellow: lA, 2E, 3A, SA, 6A, 7A, 6A, 9B, lOA
Green: lA, 2F, 3B, SA, SA, 7C, SA, 9A, lOA
V
2.4(:53.0)
0.01 ($10)
'A
Ir
II
PIN
mcd(MIN)
Test conditions
LOR nOl
LOR 1102
LOR 1103
1.0
2.0
4.0
20mA
20mA
20mA
LOH 1111
LOH 1112
LOH 1113
2.5
4.0
6.0
10mA
lOrnA
10mA
LOY 1131
LOY 1132
LOY 1133
1.0
2.0·
4.0
lOmA
10mA
10mA
LOGl151
LOG 1152
LOG 1153
2.5
S.O
10
20mA
20mA
20mA
SIEMENS
RED
LOR 3701/3702
LOH 3601/3602/3603
LOY 3801/3802/3803
LOG 3901/3902/3903
HIGH EFFICIENCY RED
YELLOW
GREEN
RECTANGULAR LED LAMP
Package Dimensions in Inches (mm)
.100
L-F*=!I.,'i~=~ij--~
.197
(5.0)
.189
(2.54) rt1::::::::::~"\===:::!:~-~~
(9.0)
TL·354
I'
1.142 (29.0)
.323 __
(4.8)
-\~
1.063 (27.0)
.
(8.2)
....i-.~=~i~EE==3+-1
~
r-
~\)
.016 (0.4)
FEATURES
• Red Diffused Lens, LOR 370X
Red Diffused Lens, LDH 360X
Yellow Diffused Lens, LOY 380X
Green Diffused Lens, LOG 390X
• T1 3A Size Rectangular Shape
• Minimum Lead Length 1 n
• 1110" Lead Spacing
• IIC Compatible
DESCRIPTION
t(22)
Maximum Ratings
Reverse voltage
Forward current
Surge current (t" 10 s)
Storage temperature
Junction temperature
Power dissipation (Tamb
25 ·C)
Thermal resistance junction to air
=
Characteristics
Tamb
= 25·C)
Wave length of emitted light
Dominant wave length
Viewing Angle
(limits for 50% of luminous
intensity Iv) shielded against
lateral emission of light
Forward voltage (IF
20'mA)
Reverse current (VA
5 V)
Rise time
Fal/time
Capacitance (VA ~ 0 VI
=
=
The LOR 370X is a standard red GaAsP LEO
lamp. The LOH 360X high efficiency red and
LDY 380X yellow are light emitting diode
lamps fabricated with lSN (transparent substrate nitrogen) technology. The LOG 390X
green is a gallium phosphide LEO lamp. All
these lamps have a diffused lens which
forms an evenly dispersed rectangular
head-on light. They can be used singly as
indicators or stacked together to form arrays.
Luminous Intensity
See graph numbers on pages 4-27 - 4-34.
Red: 10, 2B, 3D, 5B, 6C, 7B, SB, 9B, lOB
HER: lA, 2B, 3A, SA, SA, 7A, SA, 9A, lOA
Yellow: lAo 2B, 3E, SA, SA, 7A, SA, SA, lOA
Green: lA, 2B, 3A, SA, 60, 7C, SA, 9A, lOA
Apeak
A. dom
cp
VA
IF
i FS
Ts
Tj
Ptot
RlhJamb
If
Co
mW
K/W
LDH 360X
645 ± 15
638
100
LDY 380X
590 ± 10
592
100
5
5
40
1.6("2.0)
0.01 ("10)
5
5
40
100
100
10
PIN
Min.
Unit
Test Condition
LDR 3701
LDR 3702
.4
.63
mcd
mcd
20mA
20 mA
LDH 3601
LDH 3602
LDH 3603
1.6
2.5
4.0
mcd
mcd
mcd
20mA
20mA
20mA
LDY 3801
LOY 3802
LDY 3803
1.0
1.6
2.5
mcd
mcd
mcd
20mA
20mA
20mA
LOG 3901
LOG 3902
LOG 3903
1.0
1.6
2.5
mcd
mcd
mcd
20mA
20mA
20mA
4-10
V
mAo
A
·C
·C
LDR 370X
665 ± 15
645
100
VF
IA
t,
5
60
1
-55to +100
100
200
375
LDG 390X
560 ± 15 nm
561
nm
100
Deg.
2.4("3.0)
0.01 ("10)
50
50
45
V
~A
ns
ns
pF
SIEMENS
LOR 500115002/5003
HIGH EFFICIENCY RED LOH 5021/5022/5023
HIGH EFFICIENCY YELLOW LOY 5061/5062
HIGH EFFICIENCY GREEN LOG 5071/5072
RED
T1% LED LAMP
,
Package Dimensions in Inches (mm)
.10
(2.54)
Lp:=:=~~~~~~~1:::
;)
.024
(0.6)
(0.4)
.016
FEATURES
Maximum Ratings
•
•
•
•
•
•
•
Reverse voltage
Forward current
Surge current (T ~ 10"s)
Storage temperature range
Junction temperature
Total power dissipation
(Tamb= 25°0)
Thermal resistance junction to air
High Light Output
Diffused Lens
Wide Viewing Angle 70·
With Standoffs
T1~ Package Size
1" Lead Length
Front Panel Mounting
Snap.ln Mounting Clips Available
Clip/Collar #2004·9002 Black
#2004·9003 Clear
• IIC Compatible
DESCRIPTION
The LOR 500X is a standard red gallium
arsenide phosphide (GaAsP) LED lamp. The
LOH 502X high efficiency red and LOY 506X
yellow are premium high efficiency light
emitting diode lamps fabricated with TSN
(transparent substrate nitrogen) technology.
The LOG 507X green is a gallium phosphide
(GaP) lamp. All have a diffused plastic lens
which emits a full flooded intense light.
See graph numbers on pages 4-27 - 4-34.
Red: 10, 2G, 3D, 5B, SC, 7B, SB, 9A, lOB
HER: lA, 2G, 3A, SA, SA, 7A, SA, 9A, lOA
Yellow: lA, 2G, 3E, SA, SA, 7A, SA, 9A, lOA
Green: lA, 2G, 3B, 5A, SD, 70, SA, gA, lOA
lOR 500X LDH 502X
LDY 506X
LDG 507X
VR
IF
i FS
Tstg
Tj
Ptot
RthJA
V
5
5
100
60
1
2
-55 to +100
100
100
mA
A
°C
°C
mW
200
375
200
375
KIW
Characteristics (Tamb = 25°C)
LOR 500X LOH 502X LOY 506X LOG 507X
Wavelength at peak emission
Dominant wavelength
Half angle
(Limits fOf 50% of luminous
intensity Iv
Forward voltage (IF = 2OmA)
Reverse current (VA::: 5 V)
665±15
645
645.t15
638
35
35
Apeak
Adorn
,-
Rise time
Fall time
VF
IR
I,
If
Capacitance
(VR= OV: f= lMHz)
Co
Luminous Intensity Grouping
PIN
LOR SOOl
LOR S002
LOR S003
mcd(Min)
1.0
2.S
4.0
Test conditions
20mA
20mA
'ZOmA
LOH S021
LOH S022
LOH 5023
2.0
4.0
6.0
lOrnA
lOrnA
lOrnA
LOY 5061
LOY S062
1.0
2.S
lOrnA
lOrnA
LOG S071
LOG S072
2.S
6.0
20mA
20mA
4-11
1.6(",2.0)
590'±:10
592
35
560±15
561
nm
nm
35
Deg.
2.41~·0)
V
0.01 (' .. 10)
100
200
100
200
50
50
"A
ns
ns
12
45
pF
10
SIEMENS
RED
HIGH EFFICIENCY RED
YELLOW
LOR 509115092/5093
LOH 5191/5192/5193
LOY 5391/5392/5393
GREEN LOG 5591/5592
T1 3A LED LAMP
Package Dimensions in Inches (mm)
J
.10
(2.54)
.071(1.8)
.047(1.2)
.024(0.6)
.016 (0.4)
I----~:~i~ :~~~:
FEATURES
•
•
•
•
•
•
High Light Output
Lightly Tinted Clear Lens
Wide Viewing Angle, 24 0
T13Jo Package Size
1" Lead Length
Front Panel Mounting
Snap-In Mounting Clips Available
CliplColiar #2004-9002 Black
#2004-9003 Clear
• IIC Compatible
DESCRIPTION
The LDR 509X is a standard red GaAsP light
emitting diode lamp. The LDH 519X high efficiency red and LDY 539X yellow lamps are
fabricated with TSN (transparent substrate
nitrogen) technology. The LDG 559X is a gallium phosphide LED lamp. All four have a
lightly tinted clear lens with a narrow viewing
angle for the concentration of intense brightness in a head-on position. This is particularly
desirable for legend back lighting applications.
See graph numbers on pages 4-27 - 4-34.
Red: 10, 2H, 3D, 5B, 6C, 7B, 8B, 9B, lOA
HER: lA, 21, 3A, SA, 6A, 7A, 8A, 9A, lOG
Yellow: lA, 21, 3E, SA, 6A, 7A, 8A, 9A, 10C
Green: lA, 21, 3B, SA, 6D, 7C, 8A, 9A, lOA
Maximum Ratings
LOR 509X
LDH 519X
LOY 539X
LOG 559X
Reverse voltage
VA
5
5
V
Forward current
IF
iFS
100
2
60
1
mA
A
Storage temperature range
Tstg
-55to +100
°C
Junction temperature
Total power dissipation (Tamb :;;;: 25°C)
Thermal resistance, junction to air
Pto !
R1hJA
100
200
mW
375
K/W
Surge current (T
~
10 ~s)
Characteristics (Tamb =
T)
'C
25 'c)
lOR 509X LOH 519X LOY 539X LOG 559X
Wavelength at peak
emmislon
Apeak
Adam
Dominant wavelength
Viewing angle
(limits for 50% of
luminous intensity Iv)
'i'
Forward voltage (IF = 20mA) VF
Reverse current (VR :;::; 5 V) IA
Rise time
FaU time
Capacitance
(V, = 0 V; f = 1 MHz)
Co
"
"
66S±lS
645
645± 15
24
1.6(<;2.0)
24
5
5
100
100
40
12
638
Luminous Intensity Grouping
Min
Mcd
Test Current
LOR 5091
LOR 5092
LOR 5093
2.5
4.0
10
20 mA
20 mA
20 mA
LOH 5191
LOH 5192
LOH 5193
10
20
30
10mA
10mA
10 mA
LOY 5391
LOY 5392
LOY 5393
10
20
30
10mA
10 mA
10mA
LOG 5591
LOG 5592
40
80
20 mA
20 mA
PIN
4-12
590± 10
592
24
2.4(<;3.0)
0.01(<;10)
100
100
10
560± 15
561
nm
nm
24
Deg.
V
50
50
45
/'A
ns
ns
pF
SIEMENS
LOR 5101/5102/5103
LOH 5121/5122/5123
HIGH EFFICIENCY YELLOW LOY 5161/5162/5163
HIGH EFFICIENCY GREEN LOG 5171/5172
RED
HIGH EFFICIENCY RED
T1 3.4 LED LAMP
Package Dimensions in Inches (mm)
.10
(2.54)
.024(0.6)
.016 (0.4)
FEATURES
•
•
•
•
•
•
•
High Light Output
Diffused Lens
Wide Viewing Angle 70°
With Standoffs
T1 % Package Size
1" Lead Length
Front Panel Mounting
Snap-in Mounting Clips Available
Clip/Collar #2004-9002 Black
#2004-9003 Clear
• I/C Compatible
DESCRIPTION
The LDR 510X Series is a standard red
gallium arsenide phosphide (GaAsP) LED
lamp. The LDH 512X high efficiency red and
LDY 516X yellow are premium high efficiency
light emitting diode lamps fabricated with
TSN (transparent substrate nitrogen)
technology. The LDG 517X green is a gallium
phosphide (GaP) lamp. All have a diffused
plastic lens which emits a full flooded
intense light.
See graph numbers on pages 4-27 - 4-34.
Red: 1A, 2G, 3D, 58, 6C, 78, 88, 98, 108
HER: 1A, 2G, 3A, SA, 6A, 7A, SA, 9A, 10A
Yellow: 1A, 2G, 3E, 5A, 6A, 7A, SA, 9A, 10A
Green: lA, 2G, 38, 5A, 6D, 7C, SA, 9A, lOA
Maximum Ratings
LDR 510X LDH 512X
LDY 516X
LDG 517X
VR
Reverse voltage
Forward current
Surge current (T"; lOlLS)
Storage temperature range
Junction temperature
Total power dissipation
(Tamb= 25DC)
Thermal resistance junction to air
Characteristics (Tamb
= 25°)
Wavelength at peak emission
Apeak
Dominant wavelength
Adorn
Viewing angle
{limits for 50% of luminous
intensity Iv
Forward voltage (IF = 2OmA)
Rave"", current (VR = 5 V)
'"
Rise time
Fall time
capacitance
(VR =0 V; f= IMHz)
IF
i FS
TS ' 9
Ti
5
100
2
-55 to +100
100
200
375
Ptot
R.hJA
VF
1.6(0;;2.0)
IR
I,
If
Co
mcd (Min)
LOR 5101
LOR 5102
LOR 5103
LOH 5121
LOH 5122
LOH 5123
LDY5161
LOY 5162
LOY 5163
LOG 5171
LOG 5172
4-13
1.0
2.5
4.0
2.0
4.0
6.0
1.0
2.5
4.0
2.5
6.0
mA
A
100
DC
DC
200
375
mW
KIW
LOR 510X LOH 512X LOY 516X LOG 517X
560±15
645±15
59O±10
665±15
592
561
645
638
70
70
70
70
40
nm
nm
Oeg.
V
24(0;;;3.0)
0.01 (0;;;10)
100
200
100
200
50
50
,..A
ns
ns
12
45
pF
luminous Intensity Grouping
PIN
V
5
60
1
Test Conditions
20mA
20mA
20mA
lamA
lamA
lamA
lamA
lamA
lamA
20mA
20mA
10
SIEMENS
LS3369-EO/-FO
YELLOW LY3369-EO/-FO
GREEN LG3369-EO/-FO
HIGH EFFICIENCY RED
LOW CURRENT T1 LED LAMP
Package Dimensions in Inches (mm)
.1914.8)
.17(4.4)
.10
.02810.n
.016(0.4)
.,,4 ~:
_!~
=====+=;;'0
.0511.2)
FEATURES
Power
Low
Requirement
o 60° Viewing Angle
o Diffused Lens
o 1" Lead Length
o IIC Compatible
o
~
I
•
- •
.114
(2.9)
~:~ l~--Ca-1hod+'+-
.1116
(2.7)
.024
(0.&)
-- .01&
-,-:/
.13
(0.4)
.
(3.4)
.12
(3.1)
Maximum Ratings
Reverse Voltage (VAl ......................................................5 V
Forward Current (IF) ......•............................................. 7.5 mA
Surge Current «SI0 ,.sJDS .005)(IFs! ....................•............... 100 mA
Storage Temperature Range (T• .> .................................. -55 to +100·C
Junction Temperature (T~ ................................................ 100·C
Total Power Dissipation (Tam. = 25 ·C)(PtoJ ................................. 20 mW
Thermal Resistance Junction-air (Ru",A)' ........•...........•......•....... 500 KIW
(Tamb = 25°C)
Typ
Max
Unit
Electrlca.,Optlcal Characteristics
Min
DESCRIPTION
The 3369 series are low current LED lamps
that have been designed to optimize light
output at very low currents_ These parts are
ideally suited. for applications where power is
at a premium, such as portable equipment.
See graph numbers 2J, 3F and 4C (HER). 3G and 40
(yellow), 3H and 4E (green). 6F on pages 4-27 - 4-34.
Luminous Intensity
HER. Yellow. Grn (-EO)
HER. Yellow. Grn (-FO)
Peak W8vetength
HER
Yellow
Green
Dominant Wavelength
HER
Yellow
Green
Hell Angle
Forward Voltage VF
HER
Yellow. Green
Reverse Current IR
Response Time
(Rise Time) t,
Iv lrom 10% to 90%
HER. Yellow
Green
0.63
1
Test Condition
2
2
moo
mcd·
IF =2mA
IF = 2 mA
635
590
565
nm
nm
nm
IF - 2mA
IF - 2mA
IF.-2mA
625
592
564
60
nm
nm
nm
Deg.
IF - 2mA
IF=2mA
IF =2mA
V
V
IF - 2 mA
IF = 2 mA
VR = 5V
1.8
1.9
.010
2.5
2.7
10
p.A
200
ns
IF- 25 mA
450
ns
'F- 25mA
T - 1 ,.sec
T-ll'sec
Response Time
(Fall Ttme) t,
Iv lrom 90% to 10%
HER. Yellow
Green
Capacitanca Co
HER. Yellow
150
ns
200
ns
3
pF
12
pF
IF- 25 mA
T = 1 ,.sec
IF -25mA
T=ll'sec
VR = OV
1= 1 MHz
Green
VR
-
OV
I -1 MHz
Spectral Line Helfwidth
HER
Yellow
Green
4-14
45
50
25
nm
nm
nm
IF - 2mA
IF - 2mA
IF =2mA
SIEMENS
LS5421-MO/-PO/-QO
YELLOW LY5421-MO/-PO/-QO
GREEN LG5411-LO/-NO/-PO
HIGH EFFICIENCY RED
SUPERBRIGHT T1 3A LED LAMPS
Package Dimensions in Inches (mm)
.34
O.30~18.641
(7.621
li'.:'.l
.020
.022
1511
D::.'I
III~~~:, ..~
.094 R
(2.39RI sUF~;e
(2667)
(cathode)
TOLERANCE: ',XXX •.010
FEATURES
Maximum Ratings
• High Light Output
• New Lens to Optimize Output
• 20° Viewing Angle
Power Dissipation amb = 25 ·C) ........................................ 150 mW
Storage and Operating Temperature ................................ -55 to + 100·C
Continuous Forward Current. ............................................. 45 rnA
Reverse Voltage .......................................................... 5 V
Surge Current (7S10 I's) . . ... . . . . . . . . .. . . . . .. . .
. .................. 1 A
• HER Lamp, Orange Tinted Lens
Yellow Lamp, Yellow Tinted Lens
Green Lamp, Water Clear Lehs
• 1" Lead Length
DESCRIPTION
The 5421/5411 series are superbright T1%
LED lamps. Improvements in materials and
optimization of lens and reflectors have
resulted in a dramatic increase in luminous
intenSity.
rr
Electrical/Optical Characteristics
Luminous Intensity
HER, Yellow (-MO)
HER, Yellow. Green (-PO)
HER, Yellow (-00)
Green (-1.O)
Green (-NO)
Peak Wavelength
HER
Yellow
Green
Half Angle
Forward Voltage
Reverse Current IR
(lamb
= 25°C)
Min
Typ
Max
16
40
63
10
25
40
60
100
40
40
mcd
mcd
mcd
mcd
mcd
IF
IF
IF
IF
IF
635
590
560
20
2.2
0.1
nm
nm
nm
Deg.
V
p.A
IF = 10 rnA
IF = 10 rnA
IF = 10 rnA
3.0
100
Unit
See graph numbers 1B, 2N, 31, 4F, 5C, 6E, 7E, SA, 9A, lOB on pages
4-27-4-34.
4-15
Test Condition
=
=
=
=
=
lOrnA
10 rnA
lOrnA
lOrnA
10 rnA
IF= lOrnA
IR = 5V
SIEMENS
HIGH EFFICIENCY RED
LS5469~E01-FO
LY5469-EO/-FO
GREEN LG5469-EO/-FO
YELLOW
LOW CURRENT T1 3A LED LAMP
Package Dimensions in Inches (mm)
.10
1254)
I II=~
.020
(51)
:,. ~;=1
.094 A
12.39 A)
1266n
mLERANCE: .xxx _ .010
FEATURES
Maximum Ratings
• Low Power Requirement
.50· Viewing Angle
• Diffused Lens
• 1 n Lead Length
• IIC Compatible
Reverse Vottage (V,,) . . . . . . . .
. ................................ 5 V
Forward Current (IF) . . . . . . . . . . . . . . . . . .
. ........................... 7.5 mA
Surge Current (7,;10 p.S/D,; .005) (IF'> ..................... ' ................ 100 mA
Storage Temperature Range (T.'> .....
. ........... -55 to +100 oC
Junction Temperature (T) .............................
.' ........ tOOOC
Total Power Dissipstion (Tamb = 25°C) (P"J ..... " .•................., .... : ..... 20 mW
Thermal Resistance Junction·air (Ru,JA) . . . . . . . . . . . . . . . • . .
. •.....•... 500 KNI
Electrical/Optical Characterllltii:~(Tamb
DESCRIPTION
The 5469 series are low current LED lamps
that have been designed to optimize light
output at very low currents. These parts are
ideally suited for applications where power is
at a premium, such as portable equipment.
Both the HER and yellow lamps utilize
GaAsP on GaP semiconductor materials
while the green lamps utilize GaP on GaP.
LUminous Intensity
HER. Yellow. Grn (-EO)
HER, Yellow, Grn (-FO)
P~ak Wavelength
HER
Yellow
Green
Dominant Wavelength
HER
Yellow
Green
Half Angle
Forward Voltage VF
HER
Yellow, Green
Reverse Current IA
= 25 DC)
Max
'Unit
Test GondRion
Min
Typ
0.63
1
2
2
mcd
mcd
IF = 2 mA
IF = 2 mA
635
590
565
nm
nm
nm
IF = 2 mA
IF = 2 mA
IF = 2 mA
625
592
564
50
nm
nm
nm
Deg.
IF = 2 mA
IF = 2 mA
IF = 2mA
V
V
~
IF = 2 mA
IF = 2mA
VA = 5V
1.8
1.9
010
Response Time
2.5
2.7
10 .
(Rise TIme) t,
Iv from 10% to 90%
HER, Yellow
200
ns
Green
450
ns
IF= 25 mA
T=l~sec
See graph numbers 2K, 3F and 4C (HER), 3G and 4D
(yellow), 3H and 4E (green), 6F on pages 4-27 - 4-34.
IF = 25 mA
T=l~sec
Response Time
(Fall Time) ~
Iv from 90% to 10%
HER, Yellow
150
ns
Green
200
ns
Capacitance Co
HER, Yellow
Green
Spectral Line Halfwidth
HER
Yellow
Green
4-16
3
pF
12
pF
45
50
25
nm
nm
nm
IF= 25 mA
T=1psec
IF = 25mA
T=1psec
VA = OV
f = 1 MHz
VA = OV
f = 1 MHz
IF = 2 mA
IF = 2mA
IF = 2mA
SIEMENS
LS K380
YELLOW LV' K380
GREEN LG K380
HIGH EFFICIENCY RED
T1 ARGUS LED LAMP
Package Dimensions in Inches (mm)
Budactnolftll
apr-I
.100
.112.
j
'-.-
(2.54)
.1 4 .1 0(2.8)
ir5~
D.6
~16!••1::(I~7))
rI2.9)1.,22(3.I)
==r
~71C1liodJ ;].D93(2'35)
11.8)
~~
,081(2.05)
1.142(2•.0)
.IS.,'
1.D63(27.O)
.173 (H)
~2'IO.6)
.D16(OA)
Diffuser ~r=:t3:::=:i~-.
Reflector
Chip
Position1~~~~~~~J
•
•
•
•
•
•
•
Colors: HER, Yellow, Green
Lens: Tinted Transparent
Low Power Dissipation
Low Self-Heating
Rugged Design
Optimal for Backlighting Applications
Cathode: Shorter Solder Tab
Diode with reflector and diffuser
ARGUS LED
FEATURES
Maximum Ratings
Reverse Voltage N.) ............................................................................................................5 V
Forward Current (I,) ......................................................................................................... 45 mA
Surge Current t" = 10!'S' (I",) .............................................................................................. 1 A
Operating Temperature Range (T....) ............................................................. -55·C to +loo'C
Storage Temperature Range (TITO) ......................... ,....................................... -55'C to + loo'C
Junction Temperature (T) ............................................................................................. + 100'C
Total Power Dissipation (PTOr) T....=25·C ..................................................................... 150 mW
Thermal Resistance Junction to Air (R"."J .................................................................. 500 K/W
DESCRIPTION
The LS/LY/LG K380 are T1 (3 mm) ARGUS
LED lamps. ARGUS lamps can be used enly
.with an additional, custom-built reflector
(Le., white plastic, such as Pocan 87375).
The front end of the reflector is covered by a
diffuser (see illustration). Uniform illumination
can be enhanced by the reflector design
tailored to the LED and/or by the use of
appropriate diffuser material. if the diffuser
is tinted, the spectral transmission must
be adjusted to the wavelength emitted by
the LED.
Applications include backlighting of display
panels, e.g. front panels, graphic control
and display boards, sealed keyboards,
large-scale displays, dot matrix displays.
Characteristics (T~mb=25'C)
LSK380
Parameter
Wavelength at Peak
Emission (1,=20 mAl
Dominant Wavelength
Spectral Bandwidth
at 60% +v (1,=20 mAl
Forward Voltage (1,=10 mAl
Reverse Current N.=5 V)
Capacitance
N.=OV, 1=1 MHz)
Switching Times
(1,=100 mA, t,,=10!'S)
Rise Time from 10% to 90%
Fall Time from 90% to 10%
Luminous Rux (1.=15 mAl
Symbol
HER
LYK380
Yellow
LG K380
Gnoan
Unit
~
635 (typ.)
628
586 (typ.)
590
565 (typ.)
567
nm
nm
V,
I.
<\
46
2.0 (S2.6)
O.ot (:S10)
45
2.0 (S2.6)
0.01 (:s10)
25
2.0 (S2.6)
0.01 (:S10)
nm
V
C.
12
10
15
pF
t"
t"
300
150
32(2:10)
300
300
450
32(2:10)
"-
+v
.
150
32(2:10)
""
• Lwninous flux factor of ~ In one packagang unit ~ ....
MIM S 2.
See graph numbers lB, 2L, 31, 5C, SE, 7E, SA, 9C, lOB on pages 4-27-4-34.
4-17
fIA
ns
ns
mlm
SIEMENS
HIGH EFFICIENCY RED LS
HIGH EFFICIENCY YELLOW LV
HIGH EFFICIENCY GREEN LG
HIGH EFFICIENCY RED/GREEN LU
S260.;00
S260-00
S260-00
S250-00
SOT23
SURFACE MOUNT LED LAMP
Package Dimensions in Inches (mm)
.041 (1.05)
.037 (0.95)
'''Cn-t-+---r-n_-+-:: !~:~
.055 (1.4)
.047 (1.2)
Pinouts (top view)
Pin Function
LsiLY/LG S26CJ..DO
FEATURES
• Available In:
High Efficiency Red, LS S260-DO
High Efficiency Yellow, L Y S260-DO
High Efficiency Green, LG S260-DO
High Efficiency Red and Green
(Two Chip), LU S2S0-DO
• Colored Diffused Plastic Package
(Except for LU S2S0-DO which is
Colorless Diffused)
• Rectangular Package, 1.3 mm by 3 mm
by 1mm Thick
• Wide Viewing Angle,. 140 0
• Ideal for Use as Failure Indicators
Mounted on Printed Circuit Boards
• Ie Compatible
DESCRIPTION
These surface mount LED lamps (SOT23)
are available in high efficiency red, yellow,
green, and red/green combination. The
lamps are supplied in bulk or on 8 mm wide
tape on standard 18 cm diameter reels with
3000 components per reel: The packaging
conforms to IEC standards and can be used
on all commercial automatic surface mount
insertion equipment. Add E7502 at the end
of the part number, i.e., LS S260-DO E7502,
to order the lamps on tape and reel.
Special 38 cm reels with 10,000 components
per reel are available. Contact the factory for
ordering information on 10,000 units per reel.
See Appnote 38 for surface mount information.
LU S250-DO
1
NC
Red
2
3
Anode
Cathode
Green
Common Anode
Maximum Ratings (All Devices)
Note: For the LU S250-DO the following operating conditions apply when one diode is on
while the other diode is off.
Reverse Voltage (VR ) •..•......•...•••....•.••...••....•....•••.•...•••..••. 5 V
Forward Current (IF) ................................................... 12.5mA
Ceramic Substrate' (IF) ................................................. 30 mA
SurgeCurrent(T=10,.s)(I FS) ................................................ 1 A
Ceramic Substrate' (T= 10,.s)(IFSl .......................................... 1 A
Junction Temperature (T.,) ................................................ 100ac
StorageTemperature(Ts) ......................................... -55 to + l00 aC
Power DiSSipation (PTOT) ....•..•............•.••. , ..•.........•.••...•... 70 mW
Ceramic Substrate' (PTOT) ...... : ..•.....••.....•....•...•..••....•...• 200 mW
Thermal ResistanceJunction to Air (RTHJV) ................ '. . . . .
. ..... 1050 KIW
Thermal Resistance Junction to Ceramic (RTHJSR ) ........................... 375 KIW
Electrical/Optical Characteristics (Tamb =25°C)
Wavelength of Em~ted Light
LSS260-DO
LYS260·DO
LGS260-DO
Dominant Wavelength
LSS260·DO
LYS260-DO
LGS260·DO
Aperture Cone (V, <)
(Limits for 50% of luminous
intensity (IV) shielded against
lateral emission of light)
Forward Voltage (IF= 10 mAl
Reverse Current IYR= 5 V)
Luminous Intensity (IF = 10 mAl
635 ±15
590 ±10
565 ±15
nm
nm
nm
AooM
628
592
564
nm
nm
nm
rp
70
VF
IR
Iv
2.0 (:s2.6)
0.1 (:sIC)
A.PEAK
ApEAK
ApEAK
AOOM
AOOM
0.75(~0.4)Typ.
1. Ceramic substrate 2.5 cm' surface area, 0.7 mm thick.
See graph numbers lA, 2M, 3A (HER), 3E (yellow), 38 (green), 4G, SA, 7F,
SC,9A, 10Aon pages 4-27-4-34.
4-18
Dag.
V
"Po
mcd
PACKAGING OF SURFACE MOUNT LED.
LEOs in SOT23 packages are available on continuous
tapes, In this case, the IEC publication 40 (secretariat)
458 applies,
The 8 mm broad tape is wound on an 18 em or 33 em film
reel and is equipped with 3000 or 10,000 components,
r
Top of
component
Cross section
~
Section AlA
reference level
~
'-
t-AI
• i'<+j't--!-...;--+.t-r-.
Compon,n'
_
Direction of unreeling
Bliller,..
'I
Dimensional table for blister tape
Dellgnallon
Symbol
Dlmen810nl In Inch.. (mm)
Tape width
W
SOf23
.315 ± .012 (8 ± 0.3)
Carrier tape thickness
t
.012 max. (0.3)
Pitch of sprocket holes
P,
.157 ± .004 (4 ± 0.1)
Diameter of sprocket holes
0,
.039 + .008 (1 + 0.2)
Distance of sprocket holes
E
.069 ± .Q04
F
.138 ± .002 (3.5 ± 0.05)
P,
.079 ± .002 (2 ± 0.05)
Distance of components
Distance compartment
10 compartment
~.7S
Note8
Cumulative pitch error
+ 0.2 mmllO pitches
± 0.1)
Center hole to center
compartment
P,
.157 (4)
K
.098 max. (2.5)
a
15° max.
R" R2
D12 max. (0.3)
H,
.012
I>U 3,0 12l4¥ ¥ V
-VF
3D.
Forward currant va. forward voltage
3C.
Forward currantl,=I(V,)
High efficiency grean
Forward currant va. forward voltage
mA
30
mA
10'
if'
/ 1/'
I
I
1/
II
'0
er
I
10'
I
I
0
4
_v,
V 5
iii'
1,1 \2 U 1,4 \5 \6 \7 1,8 1,9 1.0 V
-VF
GRAPHSIlAMP
4-29
GRAPHS FOR LAMPS (Cont.)
3E.
3F.
Forward currant VB. forward vollaga I,=I(V,)
HER
Forward currant IF=I(VF)
High efficiency yellow
mA
10'
rnA
1,
i
,
10"~~~
,
li'r£'~~/~~
10'
\41,6 1117.D 7.2
10E·'~-_-_--_--I--_--_-_--I
1.4
1.6
1.8
2.2
2.4
2.6
1.2
S-
I
10·'
Z4Z67.8~l2lq6
-V,
--VF
3.Il V
3H.
Forward currant versus forward vollage I,=I(V,)
Graen
3G.
Forward currant versus forward voltage I,=I(VF)
Yellow
rnA
10EI
rnA
HIE'
I.----
I
I
/
10EO
,
10E-
10E-l
1.5
1
2
2.5
I
1.5
3.5
3
--VF
31.
Forward currant versus forward vOllage
10'
rnA
2.5
2
--VF
4B.
4A.
Luminous Intensity 1,,=1(1,)
Relative luminous Intensity
versus forward current
120
~~~I:~
-led
IF
I.
HER
,
/
10
blue
I,
Vi-""
I
t
%
1/
TAl '::
V
V
60
I
0
10
40
20
,
,,~
lO-
U
"
U
U U
U
o
I
o
~ UVU
-VF
-IF
12
16
20mA 24
--I,
GRAPHSILAMP
4-30
GRAPHS FOR LAMPS (Cont.)
40.
4C.
Reletlve luminous Intensity versus forward
Yellow
~~:tlve luminous Intanslty versus forward currentl~.=f(I,)
10£
,
IDE
V
10E'
IVrel =
,
./
10EO
IVrel'"
Iv
IV@2mA
IV
IV@2mA
I
f
1OE-'
10E-
,
.
10E-
rnA
10E-'
0.1
currentl~.=f(I,)
rnA
10
0.1
10
--IF
II
~
4F.
4E.
Relative luminous Intensity
versus forward currant
Relative luminous Intensity versus forward currentl~.=f(l,)
Green
,
IDE
./
llJEO
Ivrel
Q
_
lv_
IV@2mA
1
,
lOE-
IDE""'
0.1
V
mA
10
1
--IF
5A.
Capacitance C=f(VR)
4G.
Luminous Intensity I.=f(l,)
pF
0
t
pF
T
r-..
[
58.
Capacitance versus
reverse voltage
50
gr~n
0
0
l\.
r-..
t\
r
0
0
0
fHER
0
~
10·'
10'
-VA
~
~
yello~l1
1~73
-I,
0
0
10
10'y
GRAPHSIl.AMP
4-31
GRAPHS FOR LAMPS (Cont.)
5C.
Capacitance C=f(V.)
SB.
SA.
Forward current versus
..... ambient temperature
Forward currant versus
ambient temperature
0
30
80
rnA
pF
C
40
f
30
f-- I -h
50
f\
red
40
11m
20
'"
~~~
ill
yelt~!n
~jlllrERI I
I-011)",
R'~.Mo·375 KfW
\
1\
30
r-r--.
10
J\.
20
1\
\.
",-
10
J\.
20
,
1\
10
I\,
f\
TTl
20
40
60
80
o
o
100 at
40
20
80
--T,,,,,
-T'mb
&C.
so.
6E.
Forward current versus
ambient temperature
Maximum permissible forward current
1,=f(T)
Maximum permissible forward currant
versus ambient temperature
mA
mA
OJ
120
80
If
r 100
~
mA
1,
~-,-,
I- -
80
I-
1---
60,
1---
1----
40
\
N.. JU ·375K/W
\
-.
--
zo
1--
~~-
-1---
f
'\
I
f\
-, .. _.
40
1-'
30
r--...
'\
20
20
-- 1--1'\
60
80
100'(
Maximum permissible forward current
versus ambient temperatura
15
50
75
OJ
----1
1
1'\
r-... . . . . 1\
10'_
,~
20
40
60
80 '( 100
-lj,.
7B.
7A.
Permlsslbla pulss handling capability
Forward current versus cycle duration
Duly cycle 0 = parameter (T...=25"C)
Permissible pulse handling capability
l,=f(T). Duly cycle 0 = parameter (T~.=25·C)
t
1
'1\
J!!~ h,
o
o
1l5't
mA
8
rnA
7
HER
~~.n
10
--......,.T.mb
SF.
red
40
~.._.l5Ol/W
-
'1'-
60
50
60
\.'
20
f----
-t~ ~f-~K -+-j
IF
60 '(
A
10'
IF
t
ftltlllEI3iE!I§]!!rn~
O=f~
Hli
0= 0.005 -lill-l-+m-l--Iill-l-+liI
OPI
OP2
10'~0•
~
~
o I~
o
20
40
60
8O'C 100
--T,
_t'
GRAPHS/LAMP,
4-32
GRAPHS FOR LAMPS (Cont.)
7C.
70.
7E.
Permissible pulse handling capability
Forward currant versus cycle duration
Duty cycle D = parameter (T••=25'C)
Permissible pulse handling capability
I,=fm, V = parameter (T....=25'C)
Permissible pulse handling capability
Forward currant versus pulse width
Duty cycle D = parameter (1••=25'C)
mA
A
10'
4
10
I-'/M""""'~
4
Ir
t
"'r
t
I
I,
I,
1O'!IIIIO~'O~'11111
....J -tltHHitJ--Httt-+tffI--t-ttt1
UI
0,02
0,05
Ell
~
~:2
11'11:'
102~~
~~~~~Kffi++~itH
m
• •
~
,,~I,L.f-_-f"--:~L..f'''''';!-'''.
Il~ II:' 10' II' 'IJ' 10'
If'
,,-s
_T
H--I-ttt+°-H'lttt-t~
0.0,005
T'
II
~~:j§ll!jj~'l~§!tfn
I
5
-I
7F.
BA.
88.
Permissible pulse handling capability
I,=fm, Duty cycle D = parameter, (T••=25'C)
Forward voltage versus
ambient temperatura
Forward voltage versus
ambient temperatura
%
mA
,o,~.
ffi!ml
120
V,
HER
yellow
green
VF2S•
t
0.0,005
g..~H44H-Hl!,¥I,'O,O'
1;t~~lPI',,*H;g~~
100
rl
i
:J.j:: 1='
i--=
V,
V""'~
Lo Fi--=F1'4"9-!-l--+-1;;;;J;.;±:l
60
"",!:HI'N'l9d''!l!I''l-fg,1
',4
""",,,,,,,,,,,%,0,5
'0' _ _
60
H-l-+-H--++-+-H-j
0,6
40
0,4 HH--t-++-t-t--HH---i
20
o
o
25
75
50
100'e
ro 20 30 III 50 60 10 BO 'C
3D 10 10
-lamb
-I,;
--I
Be.
SA.
S8,
Forward voHage versus amblenttemparatura
Luminous Intensity versus
amblanttemperatura
Luminous flux versus
amblenttamparatura
~=f(T",,>
VF1ll
%
12
o~
%
VF IZO
0
VF25
r
0,1
\1~
100
!.t....%
~
~
0
HER
../yellow
,- -'-
green
"-~
I
~ 1""'-
80
~
60
60
40
4>r
......"
"- ~
40
100
e-
Z5
50
100"C
75
-
o
o
~~
25
50
75
-T"
100"1:
!
:,tJfS-:
40
f-+-
I
20
ZO
+
,I
20
11
00
!
25
h--t--L
,
-ftli
-T,
50
75'C 100
lamb
GRAPHSIlAMP
4-33
GRAPHS FOR LAMPS (Cont.)
10A.
Wavelength of emIssIon '-....=1 (T"".)
nm
--
660
650
ATk
640
I
630
Il1O
I-
~
l-
~peak ...
150
1
610
......
1100
O~ellOw
I-- I-" I-
SIlO
580
sao
570
56
O~en
550 0
25
I- ~ l50
75
e
L
~ po ~
P JL
L
HER
I-
::::::: :: "Yoij
...55. i'""" f:::: IG,;;.-1
51D
100'(
-----........ i"
l..,...- i-'
..0
630
600
~
!IO
070
620
59
10B.
Wavalength of peak amlsslon
veraus ambIent temperature
-
k-- l-
•
15
1000C
GRAPHSILAMP
4-34
Optocouplers
5-1
Optocouplers
Package
and
Type
8 Pin
SOIC-8
DIP.
phototransis!er
Miniature
4 Pin DIP
single
channel.
phototransister
Part
Number
Package Outline
_.-,
W ....
,.
,,,.~
a
~
WA
ANO""~''''TTER
SFK610
CAJ~£2
SFK611
•
•
4 Pin DIP
single
channel,
phototransis!er
0
____;;,I .
3 EMmER.
I
A
6jf
~_
-B~'
CAlIIJIEl
IEMrtlER
U -~'CATHODE l
~. ~ COllECTOfI
NCl
• EMITTER,
mA
I
6 Pin DIP
single
channel,
phototransister
This vlew!or
SFH601G
se~esonly.
This diagram
!orCNY17F
series only.
A
-~l
CATHODE z
NC ~
~
Small outline surface
mount SOIC-8 footprint.
.05" standard lead
spacing.
40-80
63-125
100- 200
20 Min.
50 Min.
100 Min.
20 Min.
50Min.
100 Min.
Available on tape and
reel.
SFK610-1
40-80
SFK610-2
63-125
SFK61 0-3
100- 200
SFK610-4
SFK611-1
BVCEO
Page
70
5-49
2500 VRMS
5-51
30
I~
1I~
160- 320
CTR groupings.
100% burn-in.
(Vo )'
Isofatlon
Breakdown
Voltage
r-5-53
7500"
70
5-121
530O"
70
5-113
40- 80
Srou.ECroR
CATHOOE'@'CIlU.ECTOR
....
ANODE 2
IL205
IL206
IL207
IL211
IL212
1L213
IL215
IL216
IL217
Current
Transfer
RBtlo(%)
IF= 10 mA
Features
~
COLLECTOR
• EMITTER
SFK611-2
63-125
SFK611-3
100- 200
SFK611-4
160 - 320
SFH617G-l
40 -80
SFH617G-2
TRIOS (Transparent
Ion Shield)..
VDE #0884 and #0883
applied for.
63 -125
SFH617G-3
8 mm lead spacing; input
to output.
100- 200
CNY17-'
CNY17-2
CNY17-3
CNY17-4
SFH6OQ-0
SFH6OQ-l
SFH6OQ-2
SFH6oo-3
SFH601-1
SFHSOI-2
SFH601-3
SFH601-4
SFH601G-l
SFH601G-2
SFH601G-3
SFHS01G-4
SFH609-1
SFH609-2
SFH609-3
CNY17F/GF-l
CNY17F/GF-2
CNY17F/GF-3
40-80
63-125
100 - 200
160 - 320
40-80
CTR groupings. VDE
63 - 125
approved #0883.
100- 200
100% burn-in.
. (VDE 0884 optional with
160- 320
option 1) ,
40- 80
63 - 125
100- 200
160 - 320
40 -80
CTR grOUPln~. VDE
approved #0 3, #0805,
63 -125
#0806. 100% burn-In.
100- 200
(VDE 0884 optional with
option 1)
160- 320
40 -80
CTR groupings. High
BVcB% VDE approved
63-125
#08 .100% burn-in.
100 - 200
No base pin connection.
. 140 - 80
CTR groupings. 100% burn-In. 63 _ 125
VDE approved #OBB3. (VDE
0884 optional w/QIlIion
100 - 200
li
1. 1 sec. unless otherwise speCIfied.
2. UL qualified voltage.
3. According to VDE #0883.
5-2
I
I
5-16
70
---5-93
r--53OO"
5-97
r--5-101
90
5-109
70
5-20
Optocouplers
Package
and
Type
6 pin DIP
single
channel,
phototransistor
Part
Number
Package Outline
U
-'~'-
CATHODE Z:t
NC
l
~
COLLECTOR
•
EMITTER
ffi A
III
IL2
IL5
IL74
4N25
4N26
4N27
4N28
4N35
4N36
4N37
Hl1Al
HllA2
HllA3
HllA4
HllA5
MCT2
MCT2E
MCT270
MCT271
MCT272
MCT273
MCT274
MCT275
MCT276
MCT277
IL201
IL202
IL203
SFH606
SFH6011
16 pin
DIP
package,
single
channel,
phototransistor
8 pin DIP
dual
channel,
phototransistor
0
A
ll~
~L11L11 OOI.Y)
P1'COLl~ID
LED ANODE '16
W
~.
'"
-,
i
IL10 (4 pin)
W
_'~'~'M'
ClInt
~
VDE approved #0883
and #0804.
20 Min.
100 Min.
50 Min.
12.5 Min.
BV"",
-
6CGi1e&IOr
iii:
5
EmI~1J
Wff A
Page
50
70
20
~2
5-42
20 Min.
5-9
10 Min.
Low cost industry
standard.
VDE approved #0883
and #0804.
100 Min.
5-12
SO Min.
20 Min.
20 Min.
10 Min.
30 Min.'
20 Min.
20 Min.
SO Min.,
45 Min.
75 Min:
125 Min.
225 Min.
70 Min.
15 Min.
100 Min.
10 Min.
30
7500'
5300"
5-24
5-a7
5-91
I---
«
Low input forward
current.
VDE approved #0883
and #0804.
30 Min.
~
SO Min.
!:!:
TRIOS (TRansparent
IOn Shield).
High reliability.
63 Min.
Very high isolation
breakdown voltage.
20 Min.
E
5-47
"
70
5300"
5-105
I 5-117
VDE approved #0700,
#0883, #0804, #0860.
IEC#601NDE#0750,
IEC#380NDE#0806,
IEC#435NDE#0805.
SO Min.
5-38
8 KVRuf
(1 Min.)
7 KVRMS'
10 KVoc
30
I--5-39
ILll (6 pin)
30
ILCT6
5-72
20 Min.
lCo\1td1t1'
~n3
AI'GdI
(V. )'
Isofatlon
Breakdown
Voltage
'F=
IL9 (6 pin)
It[DCAnIlOE
~
Current
Transfer
Ratio(%)
10 mA
IL8 (4 pin)
7"F'fEM/Trol
I
Features
ILDl
SO
VDE approved #0883
and #0804.
100 Min.
ILD2
7500'
5300"
5-74
70
ILD5
SO Min.
ILD74
12.5 Min.
1. 1 sec. unless otherwise specified.
2. ULquaJlfledvoltage.
3. According to VDE #0883.
5-3
20
5-42
Optocouplers
Package
and
Part
Number
Package OUtline
Type
MOTS
8 pin DIP
dual
channel,
phOtotransistor
0
_"~.~m",
.
cmmz
'IIIITT(II'
~
5
CATIIOOE ,
,~
ANODE'!
~~K "
'1
CATIIOOE '
CATIIOOE '
ANODE •
~rdlng to VDe 110883.
5-6
5-8
Tape and Reel Packaging for sOles Optocouplers
All SOICB optocouplers are available in tape and reel
. format To order any surface mount IL2XX optocoupler
on tape and reel, add a suffix "T" to the part number.
--.11--1
The tape is 12mm and is wound on a 33 em reel. There
are 2000 parts per reel. Taped and reeled SOICB optocouplers conform to EIA-4B1.
10 Pitches Cumulative
- [ Tolerance on Tape
±O.2 (±O.008)
Pin 1 and Top
of Component
iiT
Top
Cover
1"'
K.
j'
--11.... d
F
I
l-_-_-~
: :1
W
~
---.l
t) Ii
I
t
- .
"
,~:::lJ
~~'------~-.~~----------~--~~----~~r-~
Direction of Feed
Description
Symbol
Dimensions In
Inches (mm)
SOICS
Tape width
W
.472±.012 (12 ±.3)
Carrier tape thickness
t
.012 (0.3) max.
Pitch of sprocket holes
Po
.157±.004 (4±0.1)
Diameter of sprocket holes
Do
.059 (1.5) min.
Distance of sprocket holes
E
.069±.004
(1.75±0.1)
Distance of compartment
F
.217 ± .002 (5.5 ± .005)
P2
.079 ±.002 (2 ±0.05)
Distance compartment to
compartment
P3
.157 (4)
Compartment
Ko
Ao
Bo
.140 (3.5)
.252 (6.4)
.205 (5.2)
Hole in compartment
0,
.054(1.5)
Width of fixing tage
W,
.325 (B.3) tape
d
.004 (0.1) max.
Device tilt in the compartment
15° max.
Minimum bending radius
1.1B (30)
5-7
Notes
Cummulative pitch error .'
+0.2mm/10 pitches
Center hole to center
compartment
The fixing tape shall not cover
the sprocket holes, nor
protrude beyond the carrier
tape so not to exceed max .
tape width
.
.
'SIEMENS·
SURFACE MOUNT
LEAD BEND OPTIONS
-004
-009
Dimensions in inches (mm)
Standard Packages (0.1" lead spacing)
a-pln
4-pln
0
U
0
i
- ..
"
&-pIn
The entire optocoupler line is available with a
lead bend for surface mounting.
0
16-pln
FEATURES
• Surface Mountable
• Available for all 4, 6, 8 & 16 Pin Plastic
Packages with 0.1" Lead Spacing
• All Electrical Parameters Remain
Unchanged from Standard Packages
• 1INo Stand-off Heights
(.004" and .009")
ORDERING INFORMATION
To order any standard optocoupler with a
surface mount lead bend, add: ~004 or
-009 to the standard part number.
.
Example:
Standard part number: ILD1
Surface Mount:
ILD1-004 or
ILD1-009
:::;:
Min.
Max.
Min.
MD.
A
(9.47)
.373
(9.98)
.393
(9.53)
.375
(10.03)
.395
B
(.013)
.0005
(.102)
.0040
(.102)
.0040
(.249)
.0098
Dimension.
-009
-004
All other package dimensions remain unchanged:
5-8
SIEMENS
4N25/4N26
4N27/4N28
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
~,
-"'~~
1::j
'"
1660)
CATHODE (-)
2
NC
3
~
5
COLLECTtJR
4
EMITTER
161(1)
".
~
01'
n 781
i20Ji
'"
r-
'80
!L!.!!
048
[8381 11221...(
f
I~
• I/O Compatible with Integrated Circuits
• 0.5 pF Coupling Capacitance
• Underwriters Lab Approval #E52744
VDE Approvals 0883/6.80, 080411.83
• (f9
DESCRIPTION
The 4N25. 4N26. 4N27. and 4N28 are
optically coupled isolated pairs. each consisting of a Gallium Arsenide infrared LED
and a silicon NPN phototransistor. Signal
information. including a DC level. can be
transmitted by the device while maintaining a high degree of electrical isolation
between input and output. They can be
used to replace relays and transformers in
many digital interface applications. They
have excellent frequency response when
used in analog applications.
Maximum Ratings
Gallium Arsenide LED
Power Dissipation at2S0C ...................... 150 mW
Derate Linearly from 2SoC .................... 2.0 mW/·C
Continuous Forward Current ...................... 80 mA
Forward Current Peak (I"" pulse, 300 pps) ........... 3.0 A
Peak Reverse Voltage ...........................• 3.0 V
Detector (Silicon Phototransistor)
Power Dissipation at 2S·C ...................... 150 mW
Derate Linearly from 2S·C .................... 2.0 mW/oC
Coliector·Emitter Breakdown Voltage (BVCEa! .......... 30 V
Emitter·Coliector Breakdown Voltage (BVECO) .......... 7.0 V
Collector·Base Breakdown Voltage (BVcsol ............ 70 V
Package
Total Package Dissipation at2S·C Ambient
(equal power in each element) ................... 250 mW
Derate Linearly from 25°C .................... 3.3 mW/·C
Isolation Test Voltage
in Accordance with DINS7883/6.80 ... 3750 VAC/5300 VDC
Creepage Path ............................. 8 mm min.
Clearance Path ............................. 7 mm min.
Tracking Index According to VDE 0303 ........... KBlOO/A
Storage Temperature ...................... -55 to +150°C
Operating Temperature .................... -55 to +1OO·C
Lead Soldering Time at 260 ·C .... : ................ 10 sec
I-
d",~1
m
1~~i.JJ.!
1~::I~1-
FEATURES
n"
13301
I
I.JO~I
"'".20
'12
I~::
~
I!>·
Min
*BVeco
'BVCBO.
'I CEO (dark)
4N25,
4N26,4N27
4N28
'ICBO (dark)
Unit
Test Condition
1.3
0.1
lOa
1.5
lOa
V
pA
pF
IF = SOmA
VR = 3.0 V
VR = 0
V
V
V
VCE = 5.0 V
Ic = I mA
IE = lOa pA
Ic - 100 pA
5
10
2
Coliector·Emitter Capecitance
Coupled Characteristics
'DC Current Transfer Ratio
4N25,4N26
50
lOa
20
0.2
0.5
0.1
0.3
pF
2500
1500
500
7500
'Indicates JEDEC registered values
VCE = 10 V
(base open)
VcB =10V
(emitter open)
VCE = a
IF = 10mA,
VcE =10V
IF = 10mA,
VCE = 10 V
0.5
'Coliector·Emitter
Saturation Voltage
nA
nA
nA
pF
2
4N27,4N28
5-9
Max
30
7
70
*BVCEO
Capacnance. Input to
Output
Breakdown Voltage
'4N25
'4N26,4N27
'4N28
UL Qualified for
'Resistance, Input to
Output
Rise and Fall TImes
Typ
ISO
HFE
V
V
V
VDC
100
GD
ps
2
0.5
....·~I
81
.!!s
Electrlcal'Characterlstlcs (Tamb = 25°C)
Parameter
Gallium Arsenide LED
'Forward Voltage
• Reverse Current
Capacitance
Phototransistor Detector
V
Peak, 60 Hz
Peak, 60 Hz
Peak, 60 Hz
IF = lamA,
VCE = 10 V
IF = 50 mA,
Ic = 2.0 mA
!i
1Yplcal switching characteristics
versus ba.e resistance
~
l
!!?tIo
Input:
IF .10mA
50 Pulse width .100 m5
Outy~e .. 50%
(seesv.uctJng time test
schematic 1 and
500
'--
,
.0
Input:
IF .. 10 mA
Pulsewidlh,., lOOmS
Normalized 10:
SDK
schemalic 2 and
.....1Ilns
/ :--.....
10
/"
r""
lOOK
500K
1M
'.1
lYplcallorward voltage
versus forward current
0.5
1
5
RL (Kn)
13r-------1-------1---,,..-"''--I
50
/
f-----::;I..L'-----+-----i
'.8!C'.I:=-----!-----~IO:-----::,00
'V
IF .120mA
-
."mA
----..
1-----..
-25
1000
J
soo
~
/II
0
Vce" ..'sov":"-
Vc:a .tOV
lamb _ 25 D C
~~~::~~
50
10
i
1
100
W
III
5
Normalized to:
I
-55
lYplcal leakage current
versus ambient temperature
-20
~
20
40
60
80
Ambrent temperalure (OC)
100
Collector current versus
diode forward current
0
25
SO
AmbientterJljlerature(oC)
5 IF_l0mA
VeE _10V
lamb _ 25°C
,
5
.1
,
"'''''rnA.
.01
VCEtvJ
/
0
IF .I'OmA
1
if" 1.0mA
01!-,----'---5~-----!1O'
50100
Jnputcurrent.IF(mA]
I
I,
L'I-~---+------1
0
,
Output current
versus temperature
IF _ S.OmA.
" .051(
10
1
ForwardCL/fI1!nt.IF(mA)
IF" lOmA
~V
//
/
IF" zomA
...--
~" ;;---
lYplcal output current (Ice)
versus Input current
100
I
~10
rON
load resistance.
--+--------1
VCE .10V
lamb'" 25°C
1
8i1SHmitterfesistan~.RBE(0)
Normalized to:
IF .10mA
VCE .... tOV
lamb. 250(:
V
V
5 IF .. 10 rnA
V
.--/"
14,-------,------,-----',
D.•
~
(see Switching lime test
.-/'
"------- r-
"I<
10,-----,---------,
DUty cycle .. 50%
/
V
-mol
Collector current versus
collector voltage
'lYplcal switching times
versus load resistance
(Saturated operation)
100
/' ----
---
~
.01
75
100
,
10
-FofwanI currenl. If (mA)
20
Switching time lest schematic and waveforms
Vee = 10 V
'INPUT] tf.3 K
VOUT
RBE
Vee
=10 V
.PU~~
,"PUI
,.Jr------il~
I
I
I-:~-I
i I I
I
VOUT
I
1--"'-1
t-'... ...l
r-"~I
I
I I
I
I
.'0["':'.
OUIPUI 10% - -
... -.--
I
I
t-"~
t-'-t
I I
II
I
I
90% - - - - -
Switching time test schematic 1
Switching time lest schematic 2
4N25/4N26
5-10
SIEMENS
4N32/4N33
PHOTODARLINGTON
OPTOCOUPLER
Package Dimensions in Inches (mm).
ANOOE'~
CATHODE
.BASE
·
,
n
2
5
NC 3
..
.
COLLECTOR
4 EMITTER
roo,
""
. . Q'.
~~-I~
I~
0"15"
Maximum Ratings
FEATURES
• Very High Current Transfer Ratio
(500% Min.)
• High Isolation Resistance (1011 n
Typical)
• Low Coupling Capacitance
• Standard Plastic Dip Package
• Underwriters Lab Approval #E52744
•
~ VDE Approvals 0883/6.80,
Gallium Arsenide LED (Drive Circuit)
Power Dissipation at 25°C. .
. ................................. 150 mW
Derate Linearly from 55°C ........................................... 2 mW/oC
Continuous Forward Current ............................................ 80 rnA
Peak Reverse Voltage ................................................... 3 V
Photodarlington Sensor (Load Circuit)
Power Dissipation at 25°C Ambient .................................... 150 mW
Derate Linearly from 25°C .......... , .............................. 2.0 mW/oC
Collector (load) Current ............................................... 125 rnA
Collector-Emitter Breakdown Voltage (BVcEO) ................................ 30 V
Collector Base Breakdown Vollage (BVcao) ................................. 50 V
Emitter-Base Breakdown Voltage (BVEBol .................................... 8 V
Emitter-Collector Breakdown Voltage (BVEco) ................................. 5 V
Package
Total Dissipation at 25°C ........' ..................................... 250 mW
Derate Linearly from 25°C' ........................................ 3.3 mW/oC
Isolation Test Voltage
in Accordance with DIN57883/6.80 ........................ 3750 VAC/5300 VDC
Creepage Path ...................... :' ............................ 8 mm min.
Clearance Path ................................................... 7 mm min.
Tracking Index According to VDE 0303 ................................. KB100/A
Storage Temperature ............................................ -55 to +150°C
Operating Temperature ..................................... , .... -55 to +100 oC
Lead Soldering Time at 260°C. . . . . . . . . . . . . . . .. . ........................ 10 sec
Electrical Characteristics (Tamb =25°C)
080411.83
DESCRIPTION
The 4N32 and 4N33 are optically coupled
isolators employing a gall ium arsenide
infrared emitter and a silicon photo
darlington sensor. Switching can be
accomplished while maintaining a high
degree of isolation between driving and
load circuits. They can be used to replace
reed and mercury relavs with advantages
Of long life, high speed switching and
elimination of magnetic fields.
Min
GaAS Emitter
Forward Voltage'
Reverse Current·
CapaCitance
Typ
Max
Unit
Conditions
1.25
0.1
100
1.5
100
V
JIA.
pF
IF=50 rnA
VR=3.0 V
VR=O V
V
V
V
V
V
nA
VcE =5 V. Ic=0.5 rnA
Ic=1ooJlA..IF=0
Ic=1oo JIA.. IF=O
Ic =1ooJlA..I F=0
IE=100JIA.
VcE =10 V. IF-O
%
IF-10 rnA. VcE =10 V
Ic=2 rnA. IF-8 rnA
V,0 -500 V
Sensor
13K
HFE
BVcEO
BVCBO '
30
50
BVEBO "
BVEco
8
5
1.0
'CEO·
Coupled Characteristics
Current Transfer Ratio·
VCEISAl)
1.0
10"
1.5
Isolation Resistance"
Isolation Capacitance
Turn-on Time
Turn-off Time
Isolation Voltage
4N32'
4N33'
4N32/33 UL Qualified for
'Indicates JEDEC registered data.
5-11
100
500
V
II
pF
5
100
1500
6000
7500
I'll
I'll
V
V
VDC
VCC= 10 V. Ic -50 rnA
IF=200 rnA. RL =180 II
Pulse Width = 8ms
Peak. 60 Hz
Peak. 60 Hz
SIEMENS
4N35/4N36/4N37
PHOTOTRANSISTOR
OPTOCOUPLER
.B'
Package Dimensions in Inches (mm)
,1~.360~"
TOPVtEW
'~'
6
240
V
U,
"6111
ANODE
CATHODE 2
1J
ct~'
...
BASE
~ COllECT~R
_EMmER
.
LED CHIP ON PIN 2
PT CHIP ON PIN 5
.130
.oJ1I
I ~~
~
NeJ
IlO
.210
I
0.111
,m
~l!'
I
I
~~
~t:\.II.
FEATURES
•. High Current-Transfer-Ratio (100% Min)
• Standard Dual-In-Line
• 0.5 pF Coupling Capacitence
• Underwriters Lab Approval #E52744
• ~ VDE Approvals 0883/6.80.
080411.83
DES~RIPTION
4N35, 4N36, 4N37 are optically coupled
pairs employing a Gallium Arsenide infrared
LED and a silicon NPN phototransistor.
Signal information, including a DC level,
can be transmitted by the device while
maintaining a high degree of electrical
isolation between input and output. The
4N35, 4N36, 4N37 can be used to replace
relays and transformers in many digital
interface applications, as well as analog
applications such as CRT modulation.
Maximum Ratings
Gallium Arsenide LED
Power Dissipation at 25"C , , ' . , , . , , , , , , , , , tOO mW
Derate Linearly from 55"C ", .. """,1,33 mW/"C
Continuous Forward Current, , , , , , , , , , ,
, ,60 mA
Peak Aeverse Voltage ........ , , , , , , , , , , , ... 6,0 V
Detector (Silicon Phototransistor)
Power Dissipation at 25"C ' , ,. , , , , , ... , , , ,300 mW
Derate Linearly from 25"C " " " " " , . ,4,0 mW/"C
Collector-Emitter Breakdown Voltage (BVCEol ,. , ,30 V
Emitter-Collector Breakdown Voltage (BVECO) , , , , ,7 V
Collector-Base Breakdown Vo~age (BVCBol, , , , , ,70 V
Package
,
Isolation Test Voltage in Accordance
w~h DIN57883/6,80 ' , , , ' , , , ,3750 VAC/5300 VDC
,Creepage Path, ' , , , .. , , .. , , , , , , .. , , .. 8 mm min.
Clearance Path"",.""""""",. ,7 mm min.
Tracking Index According to VDE 0303 ' '" ,KB100lA
Storage Temperature' " ' . " " " " " ,-55 to +150"C
Operating Temperature' " " " " " " ,-55 to +100"C
Lead Soldering Time at 260 "C'
, , ' , , , ,10 sec
Aelative Humidity at 85"C ' , , ,. ,
'" , , , ,,85%
Electrical Characterlatlcs (T8mb = 25 DC)
Min
Gallium Arsenide LED
Forward Voltage"
Typ
Mu
Unlt
Conditions
1.3
1.5
1.7
1.4
10
V
V
V
"A
pF
iF -l0 mA
0,9
0,7
Reverse Current*
Capacitance
Phototransistor Detector
HFE
BVCEO "
BVCEO '
ICEO (dark)
leEO (dark)'
,1
100
100
30
150
7
5
BVceo"
Collector-Emitter Capachance
Coupled Charecteristics
DC Current Transfer Aatio'
100
DC Current Transfer Aatio'
40
50
SOO
V
pF
70
2
Capachance. Input to Output"
Aesistanee, Input to Output"
TON' ToF'
Coliector·Emitter Saturation
Voltage VCE(sat)"
Input to Output Isolation
Current (Pulse Width =
V
V
nA
"A
%
IF =10 mAo TA =-5S"C
IF-l0mA,TA-l00OC
VR-6.0V
VR=O, 1=1 MHz
VCE -S.OV,lc -l00"A
·Ie . l mA
IE=100"A
VCE -l0 V.IF=O
VCE -30 V, IF-O
TA=l00OC
Ic .l00"A
VCE-O
IF-l0mA,TA -2SOC
VCE -l0 V
%
2.5
10"
pF
Q
10
,.s
0,3
V
100
100
100
"A
"A
"A
VDC
IF=10mA,VCE =10V
TA -55· to l00·C
1-1.0 MHz
VIO=5OO V
Ic-2 mA, AE= 100 Q
Vee -l0 V
IF=10mA.ie -0,5mA
8 m. sec)"
4N35
4N36
4N37
4N35/36137 UL Qualified lor 7500
"Indicates JEDEC registered daIB.
5-12
V,O - 2S00 YAMS
V,O -17SO YAMS
V,0=10SOVAMS
.1YPlcal switching characteristics
versus base resistance
l\'plcal switching times
versus load resistance
(Saturated operation)
'00
~
l
''''
Inpul
IF .. tOmA
o PulseWldlfl .. l00mS
Duty~e .. 50%
'00
V
lseeSWilthinlltime test
V
-
schematictand
waveforms)
'~
,
"-----I---
,
_'00
:3
~
SDK
f
soaK
,,.,
tM
1\tplcal forward voltage
versus forward current
..........
~ 1.21-_ _ _ _+,_<"! •..",,:;oC""'-_I-_--,.£--j
g
; 1.11-=----\----7"1'--7"'-,~ .. .pGt.
~ .1.O/-----?l-"""'----7"I'------
i
J
It,
I
~.<
,>'ll'
, .• /------:;;1.-<"----+-----\
V
I
.J.
500
j,VI
/II
Vcs _tOV
Tamb .. 25°C
~~:~~=A
50
20
'00
.!!s
11
i~
.IlL
,
10
Inputcurrentlf(mA)
t!i"1
.....
W
Vce .. SOV-
I,,
20
~
!1
40
60
80
100
AmbienttemperaturelGC)
Normalized to:
5 IF .. IOmA
VCE _10V
T~mb .. 2SoC
--
IF ..12DmA.
r-
- r-.:.
I
-25
'000
Collector current versus
diode forward current
" .I'mA
-55
lYplcalleakage current
versus ambient temperature
,
IF" IOmA
.,,
VCfM
V
'V
,
Output current
versus temperatura
I" .,
"!-,-----5~---..".
50100
,
Forward current, If(mA)
I
/
IF" S.OmA
"17~---t_="'=·='=·'=mA4
,
'.8,".,::.....----',------,L,,----~,oo
I,
rON
/v
"
If" 10mA
,.,It-----j-------I
:-
1
5
to
Load resistance. RL (Kn)
0,5
.------
V
'00
1.3f-----i-----i----:;;,.-""----l
2
"
" ;:;;----
lYplcal output current (Ica)
versus Input current
,.• r - - - - - , - - - - - , - - - - - - ,
ramb _ 25 G C
lamb" 25°C
/
/
V
~
5 ~C; !Ot~~--t-----i
/
~
lOOK
Normalized to:
Normalizelito.
V
"
rON
Base-emitterresistance, RB£ (Il)
IF _10mA
4 VCE I ; tOV
collector voltage
so
.
,OJ(
Collector current versus
1O,------r-----,
Input:
IF.-IOmA
Pulse width -tOO mS
Duty cycle", 50%
(seeSwilChing dmetest
schemalic2 and
wavelorms
"f
r-- J---..-
25
so
Ambient temperature Iae)
75
,
I'
,
B
t .,
"" ,.,
-----
~
/
,
,.
tOO
"
20
Forward current, If (rnA)
Switching time test schematic and waveforms
Vee = 10 V
INPUT] Ff_3 K
VOUT
INPUT:J
,--1r----'---II~
= 10 V
L
-
RaE
r
Vee
'2.
'
5LII
I '
1--'"-,
~".,
, 1 -....,
1-'--1
I~ I
I
VOUT
OUTPUr,
11)% - -
.,.c ___
':
I
I
,.."",-1,
'I I
r"~',
I
I
'
9tl% - - - - -
SwHchlng time test schematic 1
Swttchlng time test schematic 2
4N35/4N3614N37
5-13
6N138
6N139
SIEMENS
LOW INPUT CURRENT, HIGH GAIN
OPTOCOUPLER
Package Dimensions in Inches (mm)
NC~8
ANODE
v"",
VB
2
7
CATHODE 3
6
Vo
•
GND
NC
•
FEATURES
• 6000 Volt Isolation Voltage
• High Current Transfer RatIo 800%
• Low Input Current Requirement O.5mA
• TIL Compatible Output - O.1V VOL
• High Common Mode Rejection 500Vlllsec.
• High Output Current - 60mA
• DC to 1 Megabit I Sec. Operation
• Adjustable Bandwidth - Access to
Base
• Standard Molded Dip PlastIc Package
• UL Approval # E52744
DESCRIPTION
High common mode transient immunity and
very high current transfer ratio together with
6000 volts DC insulation are achieved by
coupling an LED with an integrated high gain
photon detector in an 8 pin dual in line
package. Separate pins for the photodiode
and output stage enable TIL compatible
saturation vOltafles with high speed operation.
Photo Darlington operation is achieved by ty·
ing the Vcc and Vo terminals together. Access
to the base terminal allows adjustment to the
gain bandwidth.
The 6N138 is ideal for TIL applications since
the 300% minimum current transfer ratio with
an LED current of 1.6mA enables operation
with 1 unit load in and 1 unit load out with a
2.2K Q pull-up resistor.
The 6N139 is best suited for low power logic
applications involving CMOS and low power
TIL. A 400% current transfer ratio with only
O.5mA of LED current is guaranteed from DoC
to 70°C.
APPLICATIONS
• Logic ground isolation - TIlffTL,
TIUCMOS, CMOS/CMOS, CMOSJTTL
• EIA RS 232C Line Receiver
• Low Input Current Line Receiver - Long
Lines, Party Lines
• Telephone Ring Detector
• 117 VAC Line Voltage Status Indication-Low Input Power Dissipation
• Low Power Systems - Ground Isolation
Maximum Raiings
Maximum Temperatures
Storage Temperatures
- 55° to + 125°C
Operating Temperatures
O·Cto +70OC
Lead Temperature (soldering, 10 sec.)
260·C
Average Input Current (IF)
20mA
Peak Input Current (IF)
(50% Duty Cycle - 1ms pulse width)
40mA
Reverse Input Voltage (VAl
5v
Input Power Dissipation
35mW
(Derate linearly above 50% in free air temperature at
0.7mW/OC)
Output Current - 10 (Pin 6)
60mA
(Derate linearly above 25°C in free ai.r temperature at
0.7mA1°C)
Emitter-Base Reverse Voltage (Pin 5-7)
0.5V
Supply and Outage Voltage - Vee (Pin 8-5), Vo (Pin 6-5)
6N138
.
-0.5 to 7V
6N139
- 0.5 to 18V
Output Power Dissipation
100mW
(Derate Linearly Above 25°C in Free Air Temperature at 2.0mW/OC)
Caution:
Due to the small geometries of this device it should be handled with
Electrostatic Discharge (ESD) precautions. Proper grounding would
further prevent damage and/or degradation which may be induced
by ESD.
5-14
Electro-Optical Characteristics (TA = OOC to 70°C, Unless Otherwise Specified)
Parameter
Current Transfer Ratio
(CTR)
Logic Low
Output Voltage (VOL)
Device
Min
Typ Max
6Nt39
400
500
800
900
6N138
300
600
6N139
6N139
6N139
0.1
0.1
0.2
004
004
Test Conditions
Units
%
'F=0.5mA, Vo =0.4V, Vee=4.5V
I F =1.6mA, Vo=0.4V, Vee =4.5V
%
IF=1.6mA, Vo=OAV, Vee =4.5V
IF = 1.6mA, 10 = 6AmA, Vee = 4.5V
'F=5mA, 10= 15mA, Vee =4.5V
IF= 12mA, 10= 24mA, Vee =4.5V
IF = 1.6mA, 10 = 4.8mA, Vee = 4.5V
V
0.4
Note
5,6
6
6N138
0.1
004
V
Logic High
6N139
0.05
100
IlA
IF=OmA, Vo - Vee = 18V
Output Current (I0H)
6N138
0.1
250
!lA
IF=OmA, Vo=Vee=7V
Logic Low Suppty
Current (ICCL)
0.2
mA
'F = 1.6mA, Vo = OPEN, Vee = 5v
6
Logic High Supply
Current (ICCH)
10
mA
IF=OmA, Vo=OPEN, Vee=5v
6
104
Input Forward Voltage (VF)
Input Reverse Breakdown
Voltage (BVR)
1.7
5
Temperature Coefficient of
Forward Voltage
I F =1.6mA, TA =25'C
IR= 10uA, TA =25'C
mV/'c
-1.8
Input Capacitance (CIN )
V
V
60
pF
Input·Output Insulation
Leakage Current (I,.,)
1.0
IlA
6
6
IF= 1.6mA
f= 1MHz, VF=O
45% Relative Humidity, TA =25'C
t = 5., V,., = 3000VDC
7
Resistance Input-Output)
(R,.,)
10"
Q
V,., = 500Voc
7
Capacitance (Input-Output)
(C,.,)
0.6
pF
f=lMH z
7
Switching Specifications (TA =25°C)
Parameter
Typ
Max
5
0.2
25
1
lAS
IF = 0.5mA, RL =4.7k2
IF= 12mA, RL=27D2
6N138
1
10
lAS
'F = 1.6mA, RL = 2.2k2
6N139
5
1
60
7
lAS
' F=0.5mA, RL=4.7k2
'F=12mA, R.L=270mAQ
4
35
lAS
IF = 1.6mA, RL = 2.2k2
Device
Min
Propagation
Delay Time
6N139
-
To Logic Low
at Output tPHL
Propagation
Delay Time
To Logic High
at Output tPLH
6N138
Units
Test Conditions
Note
6,8
6,8
Common Mode Transient
Immunity at Logic
High Level (CMH) Output
v/"s
IF = OmA, RL = 2.2k2
Ree = O,lVeml = 10Vo-o
9,10
500
Common Mode Transient
Immunity at Logic
Low Level (CML) Output
v/"s
'F = 1.6mA, ~L = 2.2k2
Ree=O,IVcM/= 10~
9,10
-500
Notes
1. Derale linearly above 50'C free·air temperature at a rate of O.4mAl'C.
2. Derate linearly above 50 0 e free-air temperature at a rate of O.7mW/oC.
3. Derate linearly above 25°C free-air temperature at a rate of O.7mAJoC.
4. Derate linearly above 25 DC free-air temperature
at a rBte of 2.0mW/oC.
5. DC current transfer ratio is defined as the ratio of output collector current, ' 0 , to the forward LED Input current, 'Ftimes 100%
6. Pin 7 open.
7. Device considered a two·terminal device: pins 1,2,3 and 4 shorted together and pins 5,6,7, and 8 shorted together.
a. Use of a resistor between pin 5 and 7 will decrease gain and delay time.
9. Common mode transienl immunity in logic high level is lhe maximum tolerable (positive) dNcm/dt on the leading edge of the com·
man mode pulse, Vem , 10 assure thaI the output will remain in a logic high state (I.e. Vo > 2.0V) common mode transient immunity in
logic low level is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common mode pulse Signal, Vcm ' to assure thaI
the output will remain in a logic low state (i.e. Vp < O.8V).
;0. In applicaiions where dvldt may exceed 50,OOo.lus (such as state discharge) a series resistor, Ree should be Included to protect Ie
from destructively high surge currents. The recommended value us Rce ..,~
kQ.
0.15 IF (rnA)
5-15
SIEMENS
CNV17 SERIES
SINGLE. CHANNEL
PHOTOTRANSISTOR OPTOCOUPLER
Package Dimensions in Inches (mm)
I', ~~2 'I
6·
O
2
•
•
•
-~.....
CATHDIlE· 2
~
• c:ournoR
NC 3
4 EMITTER
Maximum Ratings
Emitter CGaAs infrared emitting diodel
Reverse voltage
FEATURES
• 5300 Volt Breakdown Voltage
• I:ligh Current Transfer Ratio, 4 Groups
CNY 17-1, 40.to 80%
CNY 1.7-2, 63 to 125%
CNY 17-3, 100 to 200%
CNY 17-4, 160 to 320%
•
Long Term Stability
• Industry Standard Dual-in-Line
• Underwriters Lab Approval #E52744
·@
DVE
VDE Approval #0883
VDE Approval #0884 (Optional
with Option 1, add -X001 suffix)
DESCRIPTION
The CNY 17 is an optically coupled pair
employing a gallium arsenide infrared LED
and a silicon NPN phototransistor. Signal
information, including a DC level, can be
transmitted by the device while maintaining
a high degree of electrical isolation between
input and output. The CNY 17 can be used
to replace relays and transformers in many
digital interface applications, as well as
analog applications such as CRT modulation.
VA
I,
Forward current
Surge current It 110; 10 ~s)
Power dissipation
iFS
Plot
Detector lSi phototran.istarl
Collector·emitter reverse voltage
Emitter-base reverse voltage
VCEO
VEBO
Collector current
Ic
Collector current h< 1 msJ
Power dissipation
lCSM
P IOI
Coupler
Storage temperature
Operating temperature
Junction temperature
Soldering temperature in a 2 mm distance
T.tor
T.mb
1j
r It
60
2.5
100
7
70
50
100
150
1
I~A
mA
mW
-4010 +150
to +100
100
-~O
from the case bottom Ie =E; 3 5)
260
T,
Isolation voltage
5300
v
iii.
(between emitter and detector referred to
standard climat. 23/50 DIN 50014;
leakage path. OIN 57883, 6.80
8.2 MIN.
mm
7.3 MIN.
mm
air path. VDE 0883. 6.80
Tracking resistance: Group III IKC:;> 600 in accordance with VOE 110 § 6. table 3 and
DIN 53 480/VDE 0330. part 1.
Isolation yoltage @ Vis = 500 V
10"
Characteristics (Tamb = 25°C)
Emitter (GsAs infrared emitting diode)
Forward voltage IIF = 60 mAl
Breakdown voltage IIR = 10 ~A)
Reverse current (VR = 6 VI
Capacitance (VA = 0 V; , = 1 MHz)
Thermal Resistance
Detector lSi phototransistor)
Capacitance (VeE = 5 V; f = 1 MHzr
(Vee
5 V; f
1 ~Hzl
(Vee = 5 V; f = 1 ~Hz)
=
=
Thermal ReSistance
Coupler
ColI~ctor-emitter
V,
1.25 (,.; 1.65)
V ••
I.
30 (;>6)
0.01 (,.; 10)
40
750
Co
R'hJamb
cc,
Cc.
C,.
RthJamb
11
500
saturation voltage
(I, " 10 mA; Ic = 2.5 mAl
VCEsal
Coupling capacitance
C.
5-16
6.8
1 8.5
(,.; .4)
1 .25
.55
I
v
V
"A
pF
K/W
I
pF
pF
pF
KIW
The optocouplers are grouped according to their current transfer
ratio Icll,at VcE=5 V, marked by dash numbers.
-1
-2
Switching Operation (with saturation)
IF
-4
-3
1./1, (1,= 10 mAl
40-80
63-125
100-200
160-320
%
1./1, (1,=1 mAl
30(>13)
45(>22)
70(>34)
90 (>56)
%
Collector-Emitter
Leakage Current
(Vce=10 V) (ICEO)
2(550)
2 (S50)
5 (s1OO)
5 (S100)
nA
.
V,o
1kQ
-=-=---;;:::r-J7----;~;,,<~
:g
,--t"t-+......~_~ ,
5V
rf:
S
+
TTL levels are
observed but
no TTL
switching times
Linear Operation (without saturation)
IF
=
Group
-1
(1,=2OmA)
Tum-On Time
Rise Time
Turn-Off Time
F\
t".
75
n
3.0 (S5.6)
JlS
\,
2.0 (S4.0)
JlS
\..
\.
2.3 (S4.1)
JlS
FaflTime
2.0 (s3.5)
JlS
Cut-Off Frequency
Fco
250
kHz
Load Resistance
Turn-On Time
Rise Time
Turn-Off Time
Minimum current
transfer ratio as a function
of diode current
VeE
TTL
V"=SV
4711
=25 ·C,
:'7kQ
RL=7SQ
1,~
( T.....
=
or 2 TTL inputs
with a 2.7 kO
pull-up resistor
FaflTime
(T....b
3.0 (S5.5)
4.2 (S8.0)
6.0 (S10.5)
JlS
\,
2.0 (S4.0)
3.0 (s6.0)
4.6 (S8.0)
JlS
\..
\.
18 (s34)
23 (s39)
25 (S43)
JlS
11 (s2O)
14 (s24)
15 (S26)
JlS
0.25 (SO.4)
VCESAT
= -25 ·C.
VeE =5 V)
(T.mb =O·C; VeE =5V)
,
Ie 10
Ie
,
10'
4
5
~
P-2
/
r-
,
10
¥.¥.=/(I.)
is.
200
V
Current transfer ratio as a
func;tion of diode current
%1.=/(1.)
300
-4
(1,=5mA)
t".
Current transfer
ratio as a function
of diode current
=5V)
'1.-¥,=/(I F)
-2and-3
(1,=10 mAl
i-!-
P-2
,/
,
10
1
1
100
/
3
/
~
F-'
10 0
r--l
10'
--I,
/
./
r...2
10'mA
VI
,VI
10
10-'
./
J
,/
5
100
5
10' 2 mA
--IF
10 10-' 2
S fi'
5
10' 2 mA
--1,
CNY17
5-17
Current transfer
ratio as a function
of diode current
Vc~=5V)
(T...b ",,25 ·C.
Current transfer
ratio as a function
of diode current
Current transfer ratio as a
function of diode current
(Tomb
=50 'C;
VeE
. (T....b
=5V)
10 3 '
103 '
r
103
r~
~
V
,
10
.,..i.
2
.l-
VI-'
10'
VI
,
5100 2
II
10-' 2
5
10' 2
--1,
10' 2 mA
(l,=10mA.
le=!( VeE)
4
2
10-'2
20
5 1D' 2
( T....b =2S·C)
1~=f( VeE)
mA
30
IIII
Ir~
I~
tm
1."30~
IIII
1,- 8~
I." 2O.J!.A
1
10
I," 6~
10
IIII
l.-lOllA
,
1,- 4mA
/0" SIlIA
10'
-25
I
25
50
75"C
10
Collector-emitter
off-state current
Vf=>f.(I,}
I1A
',2
Ii'h
Jill
lCEO
SO'C
75'(
V
10'
'O'.~
VCE=40V
1(r'1B.
II
J
(T.mb =25 'C; 1, =0)
leEc=/(T}
1 ,0"II,lti",,-,-;-;,oiviiiii
'/
1,0
0,9 ,o~
ISV
--Vee
Forward voltage
J
2m~
10
lSV
'--Vee
I,'
1,-
IF- 1mA
111' 21lA
--T
5 10' 2mA
--I,
Output characteristics
IIII
lJU
).-14cill~
II I I
5
I
,I
(Current gain B=5501
mA
30
'3
10
(T.....,:::2S"C; 1,:::0)
'" ¥.=/(T)
10'
5
Transistor characteristics
=5V)
/
vv
Current transfer ratio as
a function of temperature
I
2
1
'Iv
10'
510' 2mA
Ie 103
If
I-'
10
/
~-!,
VeE
.J-
1
I
10-'2
4
,
2
1
10
=7S·C; vcE =5V)
",*=/(/,)
'It?;='(!')
'" ¥-=I(1,)
'0'
--1,
1~~~~LU~2~5~~50~~~~~m~
lOZ IIA
--T
CNY17
5-18
Saturation voltage as a
function of collector current
and modulation depth for CNY17·1
Handling same except for CNY17·2
(T.....tI =2S'C)
(1.... b =25 'c)
V VCEU! =f(lcJ
\0
1.0
I
Q9
I
VCEsat
II Vel ""I =1(IcJ
1.0
0.9
VCEsat 0.9
OB
OB
I
VcEsal
O.B
0.7
IF"ii/e
/' I I
1/ i II
I
U6
0.5
0.4
OJ
CNY17·3
( T.... b =25 'C)
V VChu=l(1cJ
O.7
0.7
0.6
ns
O.5
0.2
Q2
. O.1
O. 1
10'
OA
/
,
0.3
1
11111
./ 1," 3x/e
10'
5
~III.II
Tnf
e
O.1
III
10'mA
IF"2x/~
O.3
02
III
--Ie
I
I
V
O.5
r,"2xIe
0.4
1,1. ~~
II
lO'mA
10'
Permissible loss
transistor and diode
CNY17·4
(T....b ==2S'C)
mW
V VChu=l(1cl
W
5
lo'mA
--Ie
--Ie
Permissible loss diode
P~1(T_.)
mA IF=/(T.",,}
200
120
VCEsat...D.9
I
O.B
0.7
'\1rQnSistor
a6
Q4
O.3
100
/
/
-
\
IF "Ie
as
"- \
Diode
50
IF- 2x/c
Q2
60
\
- --
"
"- ~
IF" 3xIe
1
1111
10'
rnA
5
-Ie
lO'mA
50
25
Diode capacitance
(0 =Parameter; TIIIIII =2S'C)
1,=f(r)
(T""b =25'C; /::.1 MHz)
lO'E!IIB!!~~
pF
50
I
I
t
1
10-3
10-1
10"
_T
100
10's
o
100
O(
Transistor capacitances
(r_" =25'C; 1=1 MHz)
C=/(
!
.....
v.l
I
'\
I
~
20
lB
16
14
CEO
Cca
CCE
12
10
~
10
10"
"
15
24
20
10- 5
50
-Tamb
C 22
r-
10' L.lJJllIILL.WD1L.illla..JL.WJWLli1JWLJ.llWI
25
O(
I"
pF
I
30
I·
~
C~/(V")
I,
~
30
75
100
-TII/T\b
Permissible pulse load
r-r- ~.
~,
0'
10'
--VA
--v.
lo'V
CNY 17
5-19
SIEMENS
CNY17F SERIES
VDE LEAD BEND CNY17G F SERIES
SINGLE CHANNEL
PHOTOTRANSISTOR OPTOCOUPLER
NO BASE CONNECTION
Package Dimensions in Inches (mm)
CNY17F
CNY17G-F
-t~r
~
CATIIODE 2
5 COllECTOR
NC 3
CNY17F
FEATURES
Maximum Ratings:
• CNY17F G Lead Bend in Accordance
with VDE 0805/0806
Emitter (GsAs infrared emitter)
Reverse voltage
DC forward current
Surge forward current It:S 10 !-Is)
Total power dissipation
V,
IF
I FSM
Detector (silicon phototransistor)
Collector-emitter reverse voltage
Collector current
Collector current It S 1 ms)
Totsl power dissipation
Ie
• 5300 Volt Breakdown Voltage
• Base Terminal not connected for
Improved Common Mode
Interface Immunity
• High Current Transfer Ratio, 3 Groups
CNY17F/GF-1, 40 to 80%
CNY17F/GF-2, 63 to 125%
CNY17F/G F-3, 100 to 200%
• Low CTR Degradation
• High Collector-emitter Voltage VCEO = 70V
• 100% Burn-in
• ~ VDE Approval #0883
• o VDE Approval #0884 (Optional
with Option 1, add -X001 suffix)
Optocoupler
Storage temperature range
Ambient temperature range
Junction temperature
Soldering temperature (max. 105)11
Isolati~n
p..,
VCEO
lcsM
Plot
Tstg
T,mb
T,
T,
4 EMmER
6
60
2.5
100
V
mA
A
mW
70
50
100
150
V
mA
mA
mW
-40 ...
-40 ...
100
260
+ 150
+ 100
'C
'C
'C
'C
test Yoltage lU
between emitter and detector referred to
standard climate 23/50 DIN 50014
Leakage path
Air Path
CNY17F
CNY17G-F
11,.
5300
>8.0
Vdc
mm
>7.3
>8.0
mm
mm
2:100
(group 3)
1011
Q
Tracking resistance
DESCRIPTION
The CNY17F/G F is an optocoupler that
employs a GaAs infrared emitting diode
optically coupled to a silicon planar phototransistor detector. The component is incorporated in a plastic plug-in DIP-6 package.
The coupling device is suitable for signal
transmission between two electrically separated circuits. The potential difference
between the circuits to be coupled is not
allowed to exceed the maximum permissible reference voltages.
In contrast to the CNY17 Series, the base
terminal of the F/G·F type is not connected.
This results in a substantially improved
common-mode interference immunity.
in acc. with VOE 01'0 § 6, table 3
and DIN 53480/VDE 0303, part 1.
Isolation "resistance (V;o = 500 V)
KB
R,.
Characteristics (Tamb = 25°C)
Emitter (GaAs infrared emitter)
Forwar~ voltage (I, = 60 mAl
Breakdown voltage (I, = 10 ~A)
Reverse current (VR = 6 V)
Capacitance (V, = 0 V; f = 1 MHz)
Thermal resistance')
Detector (silicon phototransistor)
Capacitance (Ve. = 5 V; f = 1 MHz)
Thermal resistance')
VF
BV
I,
V
V
RthJA
1.25 ('" 1.65)
30 (2: 6)
0.01 ("'10)
40
750
Ce•
R1hJA
6.8
500
pF
K/W
VCEU1
0.25 ('" 0.4)
0.5
V
pF
Co
~A
pF
K/W
OptocQupler
Collector-emitter saturation voltage
(IF = 10 mA; Ie = 2.5 mAl
Coupling capacitance
5-20
C,
The optocouplers are grouped according to their current transfer ratio
and marked bV Arabic numerals.
-1
Group
lcllF
at
VCE = 5 V,
-3
-2
Idl, (I, = 10 mAl
40 ... 80
63 ... 125
100 ... 200
%
lell,(J, =1 mAl
30 (>131
45 (> 221
70 (> 341
%
21s 501
2 (S 501
5 (S 100)
nA
Collector-emitter
leakage current
(VeE
= 10 VI
/CEO
Linear operation (without saturation)
~ -K ff:v. ."
I,
o
load resistance
R,
75
Turn-on time
'0.
3.0 (:;;; 5.6)
~u
Fall time
2.3(:54.1)
2.0 (5 3.5)
"0
Cut-off frequency
Yo.
"'
"'
"'
"'
2.0 (54.0)
Rise time
Tum-off time
I,
250
1amb
:10mA
=5V
= 25°C
"1
kH,
,~
gj
....
Switching operation (with saturation)
I,
IkO
•s.
V,p-5V
,+-~I',",~<"",~"
:g
_
0I2TTlinpuis
b:L..:'wilha2.7kO
pull·upresislOf
1
Group
If
'0.
If =10mA
3.0 IS 5.51
4.2 (s8.0)
2.0 (S4.0)
3.0 (Sa.O)
Turn-off time
18 (S34)
23 IS 39)
11 IS 20)
14 (S24)
toff
Fall time
~
TTl
2 and 3
= 20 rnA
Rise time
Turn-on time
"'
"'
"'
"'
0.25 (:;;;0.41
VeE..1
V
Current transfer ratio (typ.)
versus diode forward current
' 8mb"" OOC; VCE '" 6 V
Current transfer ratio (typ.)
versus diode forward current
' 8mb = _25°C, VCE: 5 V
Minimum curr.nt tran.f.r ratio
v .... u. dlod. forward current
' 8m b = 26°C, VCE : 5 V
%
300
TTL levds are
observedbul
no TTL
SWIlchinglimes
ali.
OS!.
,
,
%
%
10
10
lt min
If
200
P-
P
2
10 I
2
10 I
1
1
100
3
2
~
~
10'
1
10'
/
./
II
J
,rJ
,lIiI
5
10° 2
S· 10'
-1,
-1,
5-21
2 rnA
10 10
I
2
10'
5
-I,
10'
2 rnA
Currant tranlfer ratio (tYP.1
yarSUI dioda forward current
T.mb - 26°C; VeE"'" 6 V
Current tranefer ratio (typ.)
yeraua dioda forward current
Current transfer ratio Ityp.)
yaraua diode forward current
Tamb;;; 75 c C, VeE'" 5 V
Tamb - 50°C, VeE'" 5 V
,
10
,
10
,
%
%
%
10
r
Ie
10
~
I
,
2
Ie
10
t
~
,
2
1
10
.2-
,
.1.
1
1
/
1/
,Vv
10 10' 2
5
10° 2
I
5
/
,1/1/
10'
-I,
,.L
2 rnA
5
-I,
Current tranater ratio {tYP.1
versus temperature
IF =to rnA; VeE ""·5 V
mA
,
%
10
10'
Output characteristic. (typ.)
Collector current versus
collactor-emltter yoltage
Tamb '" '25 C C
30
I
10°
r
I,,~
1
,
so
25
0
SO·(
75°(
L
2m~
0,9
10
15V
--VCE
-1
!Jl
L
1,0
IF· 4mA
I,,'
I,' lmA
2 rnA
V
.....
I,' 6mA
0
10
V
~
2
,
5
-I,
~
1,1
3
-25
5
V
I~
10
2
1,2
li~
,
1
Forward voltage (tvP.) of the
diode versull forward current
tiLl
Ie
10
10 10
2 rnA
10",
10'
10'
-I,
Collector-emltter le.kaga current
{typ.1 of the transistor veraua temperature
Tamb'" 25 c c;
IF '" 0
I'A
1()D.~
lem
I
Current transfer ratio varaus load tima
%
V,,=40V
V,,-10V
110
10-' _ _
1Ir'1M.
1~2U5~ULLU2L5~~~UL~~~~,oo~
=5V
= 1 kO
T.mb = 25°C
I,
= 60 rnA
Measuring current = 10 rnA
Confidence coefficient
S= 60%
VeE
R,
r-
-
1"-90
10'
-1
5-22
95%
II
r-
50%
1-~
II
5'1
10'
-I
CoUector-emlttar saturation
Colloctor-emittor saturation
voltage (typ.) versus collector
voltage (typ.) versus collector
current and control range')
V
to
~::r=u:5!C
voltage (typ.) versus collector
current and control rango'l
for group 3
V ' am b:::: 250C
W
to
0.9
VCEsat Q9
0,8
0.8
1 0.7
o.6
0.7
U9
!
Collector-emitter saturation
currant and control range')
V for group 2
Tamb = 25 D C
I
Va: sal
VCEUI
0.6
O.5
U4
0.3
0.5
/
II
/ II
3,
O.
Q2
O.1
O.1
10'
--Ie
,.-
V
O.5
IF= 2xIe
0.4
U2
ri-
O.7
0.6
US
IF·3xIe
rrr
IF =Ie
0.4
II
O.3
IF= 3xlc
II11
IIII
10'mA
~
02
O.1
I, =1xle
IIIII
I'!"ml
IIII
10'mA
lO'mA
--Ie
--Ie
Permissible forward current of
the diode versus ambient
temperature
Permissible power dissipation
for transistor and diode
versus amblant temperature
mA
mW
200
120
I\ot
1
,50
100
l~ra.nSistor
1"\
1\
Diode
50
25
\
\
"- "\
50
60
~
1"-
I'-.
30
\
"\
25
75
-Tam~
Permissible pul.e handling
capability
Forward current versul pul ••
width
D '" parameter; Tamb '" 25°C
"\
50
100 DC
75
--Tamb
Transistor capacitances (typ.,
versus emitter vollage
1amb = 25°C; f =: 1 MHz
Diode capacitance (typ.1 versus
reverse voltage
pf
Tamb '" 25°C; f "" 1 MHz
pF
24
50
22
I,
20
i
......
lB
16
30
20
1"-
14
l-
10
12
[([
f-
I-
10
10' ,-!-,JIJIL.lIUJ,,-!-lW..l.lJ.WDLJJ.1IIIl'-:"llllll
10- s 10'" 10-) 10-l___
10-1 1' 10G 10' s
o
10'
~D
10'
---VA
5-23
10' V
10'
10'
-V,
H11A1 thru H11A5
SIEMENS
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
'E.~:l
{!)
il&
L
I
.280
Uln
TOP VIEW
,~.
ANODE
CATHODE 2
<:.
NC.·
§
BASE
COlLECTOR
4
EMITTER
LED CHIP ON PIN 2
PT CHIP ON PIN 5
.OJ!)
.l3O
.DBO
1SO
~~ctiil\l
T
I
1&311
JM8
1L22J
I
(1.32)-1
I-
J12ll
--r1.508)
(.762)
I
""
:r:i..jj.
JllO
1OO
~)
FEATURES
Maximum Ratings
• 7500 Volt Withstand Test Voltage
Gallium Arsenide LED
Power Dissipation at 25°C ............................................ 100 mW
Derate Linearly from 25°C, .... , ... , ."
....... 1.33 mW/oC
Continuous Forward Current ,.,."., .......... , ..... , .. , .• , .... " ... , .. 60 mA
Reverse Voltage .. , .. ,', ... ,
.. , .......... , ....... , ............ ,3V
• 0.5 pF Coupling Capacitance
• CTR Minimum: H11 A 1 - 50%
H11A2, H11A3 - 20%
H11A4 -10%
H11A5 -30%
• Underwriters Lab Approval #E52744
DESCRIPTION
The H11 A1 thru H11 A5 are industry standard
optocouplers, consisting of a GaAs infrared
LED and a silicon phototransistor. These
optocouplers are constructed with a
high voltage insulation, double molded
packaging process which offers 7.5 KV
withstand test capability.
Detector Silicon Phototransistor
Power Dissipation at 25°C, ............ , , .. , , , , . , , .... , . , ....... , ..... 150 mW
Derate Linearly from 25°C .. , ........ , , .. , , .... , , ....... , . , .. , ..... 3.3 mW/oC
Collector-Emitter Breakdown ......................... , ........... , , ... , .. 30 V
Emitter-Collector Breakdown ..................... , .. , , .. , .. , .............. 7 V
Collector-Base Breakdown,. ,. , , ... , , ..... ' .. ". , ..... , , .. , .. , , . , ...... , , .. 70 V
Package
Total Package Dissipation at 25°C (LED plus Detector) .... , ..... , ...... , ... 250 mW
Derate Linearly from 25°C .• , ............. , , ... , ,. , .. , , , , . , . , , .. , .. 3.3 mW/oC
Storage Temperatura .. , . , ... , . , , , .. , .. , ..... , . , ... , ............. -55 to + 150°C
Operating Temperature.".,,', .. ,', ........................... , .-55 to +100°C
Lead Soldering Time at 260°C ................ , ...... , .. , .. ' .. , .......... 10 sec
Electrical Characteristics (Tamb
MIn
Gallium Arsenide LED
Forward Voltage
Forward Voltage (H 11 A5 only)
Reverse Current
Junction Capacitance
Phototransistor Detector
BVcEO
BVECO
BVcBO
Resistance Input to Output
Switching Times
UnU
1.1
1.1
1.5
1.7
10
50
V
V
,..A
pF
VF=3 Y
VF=O V. f=.1 MHz
5
2
V
V
V
nA
pF
Ic=10 mAo IF=O mA
IE=100,..A .. IF=0 mA
Ic=10,..A
VcE =10V.I F=OmA
VCE=O
V
Ice =0.5 mAo IF= 10 mA
%
%
%
%
VcE =10V.I F=10mA
70
'CEO
to.
5-24
50
0.4
50
20
10
30
0.5
7500
5300
100
3.0
3.0
ton
Condltlons
Max
30
ColIE19tor-Emitter CapaCitance
Coupled Characteristics
VCEloat)
DC Curient Transfer Ratio
H11A1
H11A2. H11A3
H11A4
H11A5
CapaCitance Input to Output
Withstand Test Voltage
=25 ·C)
Typ
pF
VDC
VAC RMS
GQ
""
~s
.
IF=10 mA
.
t=1 sec.
t=1 sec.
RE=100 Q.VcE =10 V
Ic=2 mA
.
Wtraul load rell
"'" T,.,,1. .1 I
:!
i
1
~u~e'~,: • 100 mS
o tycycle. 50%
t~SwilChlnotimel,esl
"" r
50
==sr
I
LV
10
'P
........
V
05
,
1.3
L
~
.01
so, 00
10
,
~PlcalleakagelI =~:~ture
Output current
vel'liUS temperatura
r-
50
10
Normali~ 10:
J
r--
Jl
I
f
Va: .IOV
'I --
'(I
"
•
//J
,I
I I ! ' I 1 ,J
" "
'"
80
IF
2
I
·55
·25
.120mA
If. lOrnA
I
.'1---
1
----
••1'mA
f--
.olL
diode torwa
-,
I
IF -lOrnA
VeE .10V
lamb .. 25°C
I
/I;
~".~vVa: .30V----,
10
, Ftirwardcurrenl, iFlmA)
Valli)
versus 8mb en
500
:::=---L------f,------,'oo
------~.---------·IO
Laadreslslance.1\ (lUll
,00II
1.2
f "1-==-___
l1.oL_*~07I_1
rON
, I
,
a.'
/
'.4
JI
V
1
-
IF .. !rnA
I
a
I
25
"
Ambienllemperatufe I-e)
h
r;;rma,ized 10:
If .10 rnA
¥;~b"_'~~oC
..
/
-
--
a.'
OI~
00
~
---
'0r--
0.1/
---~
I
10
I
I
10
-.J
2
5 Forwardcurrenl.lf(mA)
Switching time teat schematic and waveforms
H11A1 thru H11A5
5-25
SIEMENS
H11AA1
BIDIRECTIONAL INPUT
OPTOCOUPLER
Package Dimensions in Inches (mm)
!hE!J::~.
:~1.
.2-40(6.10)
.260(6.60)
ANODECATHODE1~'BASE
0-
CATHODE ANODE 2
.L....!
el'"
:::~:~~d~:~
.
I ..
.280 (7.11).048 I
.330(8.38) .(1.22) I I
....
..
.150
1120
--r. (:soo,
'(1.32)" ,...
~
.016(.400)-11.1120(.508)
5 COllECiOR
NC3
-:-
.100
~)
~1XiI
300
(~'..J!-!
~
-t
II
.
"
4 EMITTER
(3.30)
.130
(3.81)
.150
0.15•.
(.300)
.012
Maximum Ratings
FEATURES
•
•
•
•
•
•
•
AC or Polarity Insensitive I~put
Current Transfer Ratio 20% Min.
Industry Standard Dual·ln-Line
Bullt·in Reverse Polarity Input Protection
ItO compatible with integrated circuits
Underwriters' Lab Approval #E52744
~ VDE Approvals-0883t6.80;
0804t1.83
Gallium Arsenide LED
Power Dissipation @ 25°C ... .
.. ... 200mW
Derate Linearly from 25°C .... .
. ....... 2.BmWI·C
Continuous Forward Current .. .
. ...
. ... 100mA
Peak Reverse Voltage ....
. .............. 3.0V
Detectot (Silicon Phototransistor)
Power Dissipation @ 25°C .... .
. ......... 200mW
Derate linea~y from 2S·C ........... , .
. ... 2.BmWI·C
Collector-Emi~er Breakdown Voltage (BVcEO) ..
.. 30V
.. ... 5V
Emitter-Base Breakdown Voltage (8VECO> ....
. .. 70V
Collector-Base Breakdown Voltage (BVCBO) .
Package
Total Package Dissipation at 25°C Ambient
(LED Plus Detector) . . . . . .
. ... 2S0 mW
Derate Linearly from 25°C
...... 3.3 mW/oC
Isolation Test Voltage in Accordance with DINS78831B.80.. . ... 37S0 VACIS300 VDC
Creepage Path
.. ...........
. .... 8 mm min.
Clearance Path
............................... 7 mm min.
ltacklng Index According to VDE 0303 .
. ..... KB100lA
Storage Temperature .
.
Electrical Characteristics (Tamb
Parameter
.DESCRIPTION
The H11AA1 is a bidirectional input optically
coupled isolator. It consists of tw() gallium' .
arsenide infrared emitting diodes coupled
to a silicon NPN phototransistor in a 6-pin dual
in-line package. The H11AA1 has a minimum
CTR of 20% and.a CTR symmetry of 1:3. It is
designed for applications requiring detection
or monitoring of AC signals.
. -55to +150°C
Operating Temperature ........
Lead Soldering time @ 2BO·C. . .
UL Quafified for. . . .. . . . . . .
Gallium Arsenide LED
Forward Voltage VF
.phototrar~Sistor Detector
BVcEO
BVECO .
BVCBO
Min
30
7
70
. .... . . . . .. . . . . . .
=25°C)
Max
Unit
1.2
1.5
V
IF= ±10mA
100
V
V
V
nA
Ic=1mA
IE=100pA
Ic = 100,.A
VcE =10V
0.4
V
IF= ±10 mA
Ic=O.SmA
%
IF=±10mA
VcE =10V
SO
10
90
VCE(oat)
Symmetry
CTR@+10mA
CTR@-10mA
5-26
20
0.33
Test
Condition
Typ
leEo
Coupled Characteristics
DC Current Transfer Ratio
CTA
. ... -SSto +100·C
. . . . . . . . . . . 10 sec
. ...... '.7500 VDC
1.0
3.0
INPUT
CHARACTERISTICS
TRANSFER
CHARACTE RISTICS
'~
_@
;{
E
~
40
j
20
a
I
>-
z
~
.~
:1
-:<'.0 -1.0
0
~.ogg~
.J
1.0
~ .000'
2.0
OUTPUTVS.
INPUT CURRENT
_§. T0
.'
.,,
,
I-
.0
5
.ODS
-
,
.00
~ .000
; ,
VCE " 10 VOL is
9
-"I
8
I-
7
I
~
vV' rf=
--to:;;
1,:-t-'-i'-'-I-
~25J1A
~
",'r·
SYMMETRY
. CHARACTERISTICS
'0-s
_§'
,
II
s
10
~
,
o
>z
.,
>-
/
NORMALIZED TO;
= IOVOl.iS
Vee
IF= lOrnA
-s
V
/
~ 10
V
VI
:>
"~ 10-,
/
,lJ,J
~"-;;O~AI
:>
0
IVI
o 1 2 3 4 5 6 7 8 9 10
COLLECTOR·EMITTER VOLTAGE - VCEO WI
DARK CURRENT
VS. TEMPERATURE
11
I
V CE
IB=l~A
,fj':
"
1111111
510 50 100
INPUT CURRENT - 'F ImAI
.,
II
le= 15;tA
~11
o
.,
~.~~
It- l--
4
o
\I'Olmj II I
"~ .000.,1 .2 .5 1 .2
E
~ 6
a« ,
NORMALIZED TO:
, 11
fA
< 10
V
,0
!::::!
,
= 1.0mA
OUTPUT
. CHARACTERISTICS
,
,,
8
II
...-IF
01 .05.1 .51
510 50100
COLLECTOR·EMITIEAVOLTAG! -
Z
INPUT VOLTAGE - V F IV)
~
•• -IF" 5.0mA
'F = 2.0mAI
V -
.05
•• •• IF '" 20rnA.
r-~F" lOrnA
3
~
;a
~-
~'f '50m~1
6 .Oll=~rtfI-'t~+1=~';~.'~o..':'m+'A~
~ .005
_
•• --IF O.2mA
:>
~ -20
I
~
IF-lOrnA
1
~
0
NORMALIZED TO:
VeE" 10VOLT~
::;
«
,/
~
10- 1
«'0
~
-50 -25 0 25 50 75 100
CASE TEMPERATURE ,'CI
-,
.01
11
.05.1
.5 1
5 10
50 100
COLLECTOR·EMITTER VOLTAGE - V CE (VI
HIlMI
5-27
SIEMENS
"H11B1/H11B2/H11B3
PHOTODARLINGTON
OPTOCOUPLER
Package Dimensions in Inches (mm)
_.....
I;:U'I""
-Q
~
r
-,~ .....
il&
~
PJ~
ICS
J30
I~
JIG
CATHDDEa
ctil:m
&CII.l.ECI1I'
II BIllER
LED CHP ON PIN 2
PT CHIP ON PlU
J50
t
T i~ ~
~=..tt.
FEATURES
Maximum Retlngs
• 7500 Volt Withstand Test Voltage
• 0.5 pF Coupling Capacitance
• CTA Minimum et IF= 1 mA:
H11B1 500%
H11B2200%
H11B3 100%
• Underwriters Lab Approval f#E52744
Gallium Arsenide LED
Power Dissipation at 25·C ............................................ 100 mW
Derale Linearly from 25 OC ........................................ 1.33 mW /·C
Continuous Forward Current. ................................... " ...... 60 mA
Reverse Voltage ........•......................................•........3 V
Dalector Silicon Phototransistor
Power Dissipation at 25·C .......................•.........•.......... 150 mW
Derate Linearly from 25·C ......................................... 2.0 mW/·C
Coliector·Emitter Breakdown ............. "................................ 25 V
Emitter·Coliector Breakdown .............................................. 7 V
Coflector·Base Breakdown ........................................•...... 30 V
Coflector-Current (Continuous) ......................................... 100 mA
Package
Total Package Dissipation at 25·C (LED plus Detector) ..................... 260 mW
Derate Linearly from 250C ......................................... 3.5 mW/·C
Storage Temperature ............................................ -55 to + 150·C
Operating Temperature .......................................... -55 to +100·C
Lead Sofdering Time at 260·C ........................................... 10 sac
DESCRIPTION
The H11B1/H11B2/H11B3 are industry
standard optocouplers, conSisting of a GaAs
infrared LED and a silicon photodarlington
transistor. These optocouplers are constructed with a high voltage insulation,
double molded packaging pr09ess which
offers 7.5 KV withstand test capability.
5-28
Electrical Characteristics (Tamb =25°C)
Min
Gallium Arsenide LED
Forward Voltage
HIISI, S2
HllB3
Reverse Current
Junction Capacitance
Phototransistor Detector
SVCEO
SVECO
SVCBO
ICEO
Coupled Characteristics
VCE(SA']DC Current Transfer Ratio
Hl1S1
HIIS2
Hl1S3
Capacitance Input to Output
Withstand Test Voltage
Resistance Input to Output
Switching Times
t.n
toll
Typ
Max
Unit
1.1
1.1
1.5
1.5
10
V
V
50
25
7
30
100
Conditions
pF
IF=IO mA
IF=50 mA
VF=3 V
VF=O V, f= I MHz
V
V
V
nA
Ic= 1.0 mA, tF=O mA
IE=100 pA, IF=O mA
tc= 100 pA, IF=O mA
VcE =10 V, IF=O mA
pA
TYPICAL OPTOELECTRONIC
CHARACTERISTIC CURVES
GsA. EMITTER:
FORWARD CURRENT CHARACTERISTICS
VOLTAGE
160r-,--r--,-r--,-,--,
1 --1-+---1
1401--+-+-+-1+-
;;! 120 I-+--+-t-++-+-+----l
I
...
ii'iII: 100 r--
.-1--++-1---+-+---1
~ 80'--
u
1.0
500
200
100
V
IF= 1 mA, Ic= I mA
%
VcE =5 V,I F=1 mA
VcE =5 V,I F=1 mA
VcE =5 V,I F=1 mA
0/.
%
0.5
7500
5300
100
125
100
pF
VDC
VACRMS
Gil
""""
~ 60r-'+--+---H~+--t-t--4
~ 40 - - --t----j--t---i-+--l
~ 20r--r--t,ft/-+---t--t--4
09
t=1 sec
t=1 sec
V
1.0
1.1 1.2 1.3 1.4 1.5
FORWARD VOLTAGE (VOLTS)
1.6
DARLINGTON
TRANSISTOR CURRENT VS VOLTAGE
RE=IOOIl, VcE =10V,
Ic=10 mA
10 20 30 40 50 60 70 80 90
COLLECTOR VOLTAGE (V)
DARLINGTON
TRANSISTOR OUTPUT
CURRENT VS VOLTAGE
200 r-r-r-r-r-r--r--r--r-"T'"""'I
I I
;{ 180
.s~ 160 Ir-iI
1 ,I 1
I , ' 50,mA"",,":::
..10-"'1
.1f--+
.40mA.·-_l....... t..---:b..!
c -:::loo
w 140 1-+--+--++-jI7""~S>i"......,..-q-+---l
~ 120
~
:=u
I I
V
100
80
j 60
840
u
F
.... aomA
I I I
I--I--HH~-tl, 12~mfI F -l0mAL
'L1F=oi J I I
20
.2 .4 .6 .8 1.01.21.41.61.8 2.0
VeE COLLECTOR VOLTAGE (V)
DARK CURRENT VS
TEMPERATURE
10'~~~~~
110'11/
~
w
a: 102
II:
::l
u
'"
II:
10
i3
~
1
25
50
75
100
125
TEMPERATURE (OC)
HllB1/HllB2JHllB3
5-29
:SIEMENS
H11C4/H11C5/H11C6
PHOTO SCR OPTOCOUPLER
Advance Data Sheet
Package Dimensions in Inches (mm)
'~8
ANODE
CATHODE 2
NC
3
.
GATE
5
ANODE
4
CATHODE
FEATURES
Maximum Ratings
• 400 Volts Blocking Voltage
• llIrn On Current (1FT> 5.0 mA 'lYpical
• Gate 1\igger Current (IGT) - 20pA
'lYplcal.
."
• Gate li'igger Voltage (VGT)- 0.6 Volt
Typical
• 7500 Volt Isolation Voltage
• Surge Anode Current - 5.0 Amp
• Solid State Reliability
• Standard Dip Package
• Underwriters Lab Approval #E52744
Gallium Arsenide LED (Drive Circuit)
Power Dissipation at 25·C ......................................... 100 mW
Derate Linearly from 25·C ..................................... 1.33 mW/OC
Continuous Forward Current ......................................... 60 mA
Peak Reverse Voltage ............................................... S.O V
Peak Forward Current (1 ~. 1% Duty Cycle) ............................. 3.0 A
SCR Detector (Load Circuit)
Power Dissipation (25·C case) ..................................... 1000 mW
Derate Linearly from 25·C ........................................ 13.3 mW/·C
RMS Forward Current ............................................. 300 rnA
Surge Anode Current (10 ms duration) .................................. 5.0 A
Peak Forward Current (100 po, 1% Duty Cycle) ............................ 10 A
Surge Gate Current (5 ms duration) .................................. 200 mA
Reverse Gate Voltage ............................................... S.O V
Anode Voltage (DC or AC Peak) ...................................... 400 V
Coupled
Isolation Voltage (Hl1C4/Hl1C5/Hl1CS) (t = 1 sec.) .................... 7500 VDC
5300 VAC (RMS)
Total Package Power Dissipation ...................................• 400 mW
Derate Linearly from 25· ....................................... 5.3 mW/OC
Operating Temperature Range ...........................•. -55·C to + 100·C
Storage Temperature Range ............................... -55·C to + 150·C
Lead Soldering Time at 2S0·C ....................................... 10 sec
DESCRIPTION
The H11C4, H11C5, H11C6 are optically
coupled SCRs employing a GaAs infrared
emitter and a silicon photo SCR sensor.
Switching can be accomplished while maintaining a high degree of isolation between
triggering and load circuits. It can be used in
SCR triac and solid state relay applications
where high blocking voltages and low input
current sensitivity 'is r!3quired.
The H11C4 and H11C5has a maximum turnon-current of 11 mA. The H11C6 has a maximum of 14 mA.
5-30
Electrical Characteristics
Parameter
Input Diode
Forward Voltage
Reverse Current
Capacitance
Photo-SeR
Forward Leakage
Current (Iel
Min
(Tamb
= 25°C)
Typ
Max
Unit
Test Condftlon
1.2
1.5
10
V
p.A
pF
IF = lOrnA
VR = 3 V
V=O,I=II'Hz
150
p.A
150
p.A
RGK = 10 Kohm, IF = 0
VOM = 400 V
TA = 100·C
RGK = 10 Kohm, IF = 0
VRM = 400 V
TA = l00·C
RGK = 10 Kohm
TA = 100·C
I. - 150 I'A
RGK = 10 Kohm
TA = 100·C
I. = 150 p.A
IT = 300 mA
RGK = 27 Kohm,
VFX = 50. V
VFX = 100 V
RGK = 27 Kohm
RL = 10 Kohm
VFX =100V
RL = 10 Kohm
RGK = 27 Kohm
50
Reverse Leakage
Current (I,,)
Forward Blocking
Voltage (VoMI
400
V
Reverse Blocking
Voltage (Vow
400
V
On-state Voltage (VJ
Holding Current (IH)
1.1
1.3
500
V
I'A
Gate Trigger
Voltage (Vorl
O.S
1.0
V
Gate Trigger
Current (lor!
20
50
I'A
Capacitance
Anode to Gate
Gate 10 Calhode
Coupled
Turn-on Current (1FT)
-HllC4/Hl1C5
-'-HllCS
- HllC4/HllC5
-HllCS
Isolation Voltage
Isolation Resistance
Isolation Capacitance
20
350
pF
pF
V
= 0,1
"1
= II'Hz
a~
so
......
.. J!!
5
7
20
30
11
14
7500
100
2
mA
mA
mA
mA
Voc
G-ohm
pF
SS
CIS
VOM ~ 50V
RGK = 10 Kohm
VOM = l00V
RGK - 27 Kohm
1 second
5300 VAC (RMS)
V;so = 500 V
1=IMHz,V=O
HllC4
5-31
SIEMENS
IL 1/2/5
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches «(T1m)
TOPYIEW
ANODE
,~.
CATHODE 1 ; - ' "
NC
J
BASE
5
COLLECTOR
•
EMtnER
LED CHIP ON PIN 2
PT CHIP ON PIN 5
FEATURES
MaxImum Ratings
• Current Transfer Ratio@ IF = 10 mA
IL1 - 20% Min.
IL2 -100% Min.
IL5 - 50% Min.
• High Collector-Emitter Voltage
IL1 - BVC 0 =50 V
IL2, IL5 - ~VCEO = 70 V
• Field-Effect Stable by TRansparent IOn
Shield (TRIOS)·
• Double Molded Package Offers
Withstand Test Voltage
7500 VACpEAK, 1 sec.
4420 VACRMs ' 1 min.
• UL Approval #E52744
• VDE Approvals 0883/6.80, 080411.83
Emitter
Reverse Voltage ...................................................................................................................6 V
Forward Current ............................................................................................................ 100 rnA
Surge Current ..............................•....•......•............•..........•...........•....•................•.•..••••.•..•.. 2.5 A
Power Dissipation .......................•............•........: ..............•...................•..•.........•••.••.•..•• 200 mW
Derate Linearly' Jrom 25'C ..............•......................................•..••.....,...•.•....••...•.•..... 2.6 mW/'C
DESCRIPTION
The IL 1/2/5 are optically coupled isolated
pairs employing GaAs infrared LEOs and
silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the drive while maintaining a high
degree of electrical isolation between input
and output. The IL 1/2/5 are especially
designed for driving medium-speed logic
and can be used to eliminate troublesome
ground loop and noise problems. These
couplers can be used also to replace relays
and transformers in many digital interface
applications such as CRT modulation.
Detector
Collector-Emitter Reverse Voltage
IL1 ...........•.........................................•...........................................•.....•.....•..•.••.......•.....•.50V
1L2, IL5 ............................................................................................................................70 V
Emitter-Base Reverse Voltage ................•.......... ,...................•.....................•.....•..•..•..•.....•.. 7 V
Collector-Base Reverse Voltage .......••....•.•...............•..•.•.•......•...•.....•.....................•.....••... 70 V
Collector Current .........................•....••....•......•••....••..•.•....•.•...••..................................••.... 50 mA
Collector Current (t<1 ms) •••.••.•....•••...•....•.•••.•..•.••.•••.•...•..•.•..•.•..•.••.........•....••........•.•... 400 mA
Power Dissipation ....•.....•....••.....•....••.•...•...........•..........•............••..•......••.•.....•.....•........ 200 mW
Derate Linearly from 25'0 .....••.....•...•.••...•.•.•..•..•.••....•.••.....•..•••..•.••....•.................... 2.6 mW/'C
Package
Storage Temperature ..•.•..•..•....•....•.•......•....••...••....•.•..........•..•.•....•.....•.•.•••...• -40'C to + 150'C
Operating Temperature ................................................................................. -4O'C to + 1OO'C
Junction Temperature ..................................................................................................... 1OO'C
Soldering Temperature (in a 2 mm
distance from case bottom) .•................•.......•........•....•.•.•.••.•..•.................................... 260·C
Package Power DissipaUcn ............•.••.•.....••.....••...••••............•..•.•......••.....•...............•.. 250 mW
Derate Linearly from 25'C ...............•......•.....•......•....•.••..•.••...•.....•..........•................ 3.3 mW/'C
UL Withstand Test Voltage (PK) (1=1 sec.) .•...•..•....•.....•....•••...•••..••...• 7500 VDC15300 VI>C"",
VDE Isolation Test Voltage
in Accordance with DIN 57883/6.80 ...............,.................•....•.....••.. 5300 VDCI3750 VAC,.,.
Creepage Path ...............................................................•............................•.....•..•.•.•8 min mm
Clearance Path ..•....................................•.....•......•..........•..................................•....•.. 7 min mm
Tracking Index According to VDE 0303 ...................•.•.......................................•......• KB1OO/A
Working Voltage ..•••...•.•.....•......••.....••.•...•....•.....•......•...............•.......•.......•...........• 1700 VAC....
Insulation Resistance .......•.......•......•....•......•............•.................•..•..•...••.••.•..•..••...••...•... 10" n
See Appnote 45, "How to Use Optocoupler
Normalized Curves .•
TRansparent IOn Shield.
5-32
Characteristics
Characteristics (Cont.)
Symbol
Emitter
Forward Voliage
(1,=60 rnA)
Breakdown Vollage
(1.=10pA)
Reverse Currenl
(V.=6V)
Capacllance
(V.=O V. f=l MHz)
Thennal ResiSlance
JuncUon to Lead
Detector
Capacllance
(V..=5 V. f= 1 MHz)
(V..=5V. f=l MHz)
(VER=5 V. f=l MHz)
Collector-Emitter
Leakage Current
(V..=10V)
Collector-Emiller
Saluration Voliage
(1 ..=1 rnA. 1.=20 pAl
Base-Emiller Voltage
(V..=10V.I.=20pA)
DC Forward
Current Gain
(V..= 10 V. 1.=20 pAl
Saturated OC Forward
Current Gain
(V.,.= 0.4 V. '.=20 pAl
Thennal ResiSlance
Junction to Lead
Package Transfar
Characteristics
ILl
Saturated Current
Transfer Ratio
(Collector-Emiller)
(1,= 10 rnA. V.,.=0.4 V)
Currenl Transfer Ratio
(Collector-Emilter)
(1,=10 rnA. V..=10V)
Current Transfer Ratio
(Collector-Base)
(1,=10 rnA. Vce=9.3 V)
Min.
1.25
V,
V,..
Typ.
6
1.65
30
0.01
I.
Max.
V
10
pA
C,
40
R.,...
750
'C/w
C..
Cca
C..
6.8
8.5
11
lceo
5
50
0.25
0.4
200
650
1800
HFE".,
120
400
600
500
CTR..
CTAce
20
80
0.25
Isoletlon and Insulation
Common Mode Rejection
OulputHigh
(V...=50V"".
FI"=1 kn. 1,=0 mAl
Common Mode Rejection
OulpulLow
(V...=50V~••
FI,,=l kn, 1,=10 rnA)
Common Mode
Coupling Capacllance
Package Capacitance
(V,.•=OV. f=l MHz.)
Insulation Rasislance
(V,...=500V)
Oieleclric Leakage Current
(V..=442O AC_.
1 min.• 60Hz)
(V
..
'"
~
..
!
"l!
a
~
i Ta=·55"C
E
~
1.1
1000
0.9
i Ta= 1000C
0.7
.2 '
w
.1
~
10
If· Forward Current· mA
1010-6
100
Maximum LED current versus ambient temperature
::0
60
-'
40
i
10.3
10.2
10.1
10 0
10 I
Maximum LED power dissipation
,
!.~"""""r"""·i""·""
_+;;;;;;;{~~_~L_
80
0
cw
10-4
;
100
E
C
~
!
10.5
t .. LED Pulee Dur.Uon • a
120
«
.......5.t-:~~~~
100
.!
0.8
+ ....
.1 '
Q
..J
i
I
.05 ;
il
1.0
u.
i~, ~i
:
~~~t~1~~ !. . . . .J. ~~
0(
;
1.2
i
~
! :-+---+i-~M---1
1 I""
,~100
. . . . ·I. . . . . . . . . . I. . . . . I. . . . . . . . . ·t. ·. . :·t~
20
!!:
Do
o
-40
·60
·20
20
40
60
Ta • Amblem Temperature· "C
80
250 1--;--1---;;----;;---1--+--+--;
I'"
50
OL-~~~~~~L_~~~~~~
100
-60
Maximum datector power dissipation
·40
·20
0
20
40
60
Ta • Ambient Temperature. OC
80
100
ILl Maximum collactor current versus call actor voltaga
300 ,.---,--.....; -.----r-...,---,--,----,
·t. . ·+. . . . . . . . . . . ,. . . . ,. . . . . . . .
~
250 ......
~
::: ........i........1..................
~.
a.
+·t. .· . . . .
':-++- ---+t--
~o-)I
o L.........:---.i........J........!....o-'--'--'--.l-:
·60 -40 -20
o 20 40 60 60
········..····..··..········i..··..·····....··..····..··· ......···..................
.1
100
.1
Ta • Ambient Temperatura· "C
~
a
11
:.
.11~
I~
Normalization factor for non...aturatad and saturatad CTR
T _1I=25°C versus IF
1.5,--------:'-----.---...."......,
Normalized to:
Vee = 1OV: IF = lOrnA. Ta = 250C
CTRce(sat) Vee = 0.4V
1.0
,
10
Vee· Collector·Emitter Voltage. V
100
Normalization factor for non ....turatad and satur.ted CTR
T...1I=5O°C versus IF
1.5,--------,------,-------,
Normalized
Vee = 10V.: IF = 10mA. Ta = ~5OC
ui:
i
CTRee(sat) Vee = 0.4V
i
.f
!
i
,
0.5 ········_···.. ············f····· .
...,
0.5
I-----..;---:.-?-"'---+----""<::"-;
Z
~
0
0.0
.1
10
IF • LED Current· mA
100
10
IF· LED Currem - mA
100
ILI/2/5
5-35
Normalization factor for non-saturated and saturated CTR
Normalization factor for non-saturated and aaturated CTR
Tn.='00'C versus I"
1.5.------;-----.------,
T1III,=70°C versus .,
1.5.-----...-----...,...----...,
!
tA:
Normalized
Vee = lOV; IF = lOrnA, Ta = 2s'C
~
:.
cTRce(satl Vee = 0.4V
............................
1"..........................1( ........................
1.0
~
Nannallzed
i
l.
~
U
:
!
i,g
.
!
~
0.5 ............................1..............
.
i
z0
.1
10
i:
lOa
0.0
L....-_..........................................................._ _....................
10
IF - LED Currant .. mA
.1
IF - LED Current - mA
Normalized CTR.. versus LED Current
Collector current versus diode forward current
5 Normalized
o SCTRe~
" SCTReb-iTo
~.
.
1
~
a
!
1
0.0
~
j
L..-............................' - -................................._
.............................
1
10
If - LED Current- mA
.1
T.....2S·C
1.0
0.5
0.1
.01
1
Collector current versuB base voltage
101r-_+-_~_-+-~-~~--~-1
8
100
I: :
J
10-1
L. . . .
10 0 r.--t--t--t--t7'/'-t---I
!...........................
WORST CASE
20
102r--~--~----~--~---~-...,
104r--~---r--_r-~r-~~-~
10 3 ............
10
F."",", Cu".nt IF (mA)
Collector-emiller lealeage versus temperatura
~
-- ---
.05
100
105r---r--r--~--,r--~-~
~
/
i
i
0.5
Vee-1OV
§
:!
"'D
1,_10mA
~
·~ ~:!:~~1·?? ....................·
1.0 ...... ....
u
100
10
1.5 r---..-SC--:T--Re-b.,.~-5-----.----.,
...
~_....· T_ _
;
~
~
0.0
f
-
!
I§ 0.5
iii:
Vce=10V;IF=10mA,Ta= 5'C
CTRce(~t\ Vee = ·O.4V
1.0 ·............................i..........·................· ..........·
.
r--....;.'7"''''-+"'7''''-1----1---->---1
r. . . . . . . . . . . .\. . . . . . .
..................
V-'--t--+---t--+--+----l
10-2 L....-.......- ' -......_'---'-.....:..........- - ' ' - - ' ' - - ' -.......- J
-20
a
20
40
60
80
100
Ta - Ambient Temperatura - 'C
Normalization factor for non...aturated and satursted
HFE at Tn ... 2S·C versus I.
C.versuaVfJIE.
10000 ...---,.---,.---,,----,,-----:--r--r-...,
ii:'
S:
cb
.
'"...
..
!!
1000
f;I
u
Ii
~
100
E
w
.!a
'II
.!
U
/""
10
0.0
0.1
0.2
0.3
/
0.4
r
I
1.5 '--N-o-nn-a-nz-e-dto'"'!,....: --------~------,
j
V
I!!
z
;
i
1.0
]
I
z
0.5
~
zW
:
II.
!
0.5
Ib = 2OpA: Vee=10V, T&=25'C
Z
0.6
0.7
0.8
Vbe - Base Emiller Voltage - V
0.0
1
10
100
Ib - Baae Currant - pA
1000
IL 11215
5-36
Normalization factor for non-eaturated and saturated
HFE at T_,,50°C ve!'Susl.
1.5
J
~
Normalization factor for non-ealurated and aalurated
HFE at T_=70°C versusl.
1.5.-----.,.------r-----,
r---==---....,..---=---r------,
J
~
1.0
I. 0.51----i>--~--+--l~-_i
~
:§!
100
......:----_t
0.51-----11-~~--+
II.
ffi
10
iii
II.
:I:
0.0
1000
IL1 propagation delay versus collector load resistor
3.5
3.0
...~
2.5
Ii
I
2.0
10
---+----q 1.5
l
10
100
1000
Ib • Ba•• Cunen! .11A
1L2 propagation delay versus collector load resistor
1000 .....- - - . , - - - - - . , . - - - - . , 4 . 0
100
L-......................................................................................
1
Ib • Base Currant .11A
t
NHFE
Vee-l0V
J
!!: 0.0 L.........................I..-.............................!_.....................~
1
1.0
1 L......--'-"........'--'................"--.......-'ll.0
.1
10
100
RL • Load Reslator· Kn
1000 . . . - - - - - r - - - - - r - - - - , 2 . 5
.
.
!
!
!
~
!
t
c
i.
-i.
l
~
~
.
i~
!
100
Il
c
·=--!----Il.5
tPHL
1 ........................-..1....................................... 1.0
.1
10
100
~
RL· Col1aclDr Load R.II.",r· Kn
IL5 propagation dalay versus collector load reslator
1000
.
100
?-
I. . ·. ·. ·
i..
·. ·. . ·. ·. ·..··..t··......·..·......·.
5:
c
!
c
I
l.
...
125"C. IF. lbmA
VeJ. 5V. Vth a 1:5V
.c
f
2.5
Ta
!
:
:
1.5
a.
t
....
tPHL
:I:
e.
1
.1
10
RL • Collector Load Resistor • Kn
t.
1.0
100
~
IllJ2J5
5-37
ILS/IL9
SIEMENS
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm).
NO'W·
PrCOLLEClllRIO
LED ANODE 16
/.
Ol9, Il1tONLy)
Pr
7PrEMITJE1l
....
1 LED CAJ1IODE
.,so
lae)
J.t1v
.010
(.254'
FEATURES
Absolute Maximum Ratings
• Minimum Internal Separation of 2.0 mm
between Conductive Parts
• Minimum External Separation of Leads
and Creepage Distance of 13 mm
• Standard DIP Profile on Leads and
Package
• Machine Insertable on PCB
• ILS Is Four Lead Product
• 1L9 is Six Lead with Base Contact
• Underwriters Lab Approval #E52744
• ~ VOE and IEC Approvals 0700,
0883/6.80, 080411.83, 0860/8.86,
IEC601NDE0750, IEC380NDE806/8.81,
IEC435NDE0805
Storage Temperature .............................................. -55 to 100·C
Operating Temperature ............................................ -55 to 100·C
Lead Solder Temperature (1.6 mm from cast for t = 5 sec) ................ '.. '.... 260·C
Isolation Test Voltage In Accordance with DIN57883/6.80 .......... 7070 VAC/l0 K VDC
Creepage Path. . . . . . . . . . . . . . . .
. . . . . . . . . .. . ....................... 13 mm
Clearance Path.. . . . . . .
. .. . . . .. . . . . . . . . . .. .. " ..................... 13 mm
liacklng Index According to VDE 0303 ... '. . . .. ................. . ...... KB100/A
UL Qualified for .................................................... 8000 VRMS
DESCRIPTION
The iLa and IL9 are optically coupled
isolators employing a gallium arsenide
. infrared emitter and a silicon phototransistor.
LED
Forward DC Current .........................
. .................... 60 rnA
Peak Forward Current (1 ~sec pulse. 300 pps) ............................... 3.0 A
~~:~;~~~~:~i~~
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . :. . . . . . . . . . . ·. . IO:~~
Derate Linearly from 25·C ......................................... 1.33 mW/·C
Phototranslator
Collector Emitter Voltage ................................................. 30 V
Emitter Base Voltage ...............................................•..... 7 V
Collector Current .................................................... 100 rnA
. Power Dissipation ...................................................300 mW
Derate Linearly from 25·C .......................................... 4.0mW/OC
Electrical Characteristics (25°C unless otherwise noted)
LED
VF(IF = 10 rnA) ................................................... 1.5 V max .
IA(VA = 5V) ..................................................... 10~max.
Phototranalator
BVCEO(lc = 1.0 rnA) ................................................ 30Vmin.
BV EBo (IE = 10 ~A) .................................................. 7 V min.
leEo(VeE = 10V) ................................................. 50nAmax.
Coupled
DCCurrentTransfer Ratio (IF = 10 rnA. VeE = 10 V) ....................... 20% min.
SaturationVoltage·Coliectorto Emitter (IF = 20 mA, Ic = 2 rnA) ............. 0.4 V max.
TON = (Ic = 2 rnA, RE = 100 0, 100 ~ Pulsewidth, 1% Duty Cycle) .......... 14 ~ typo
TOFF = (Ic = 2 rnA, RE = 1000, 100 ~s Pulsewidth, 1% Duty Cycle) .......... 11 ~typ.
Input to Output Resistance at 500 VDC ...... : ............................ 10'0 0
5-38
IL10/lL11
SIEMENS
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
{1L.9,1L110NLY)
NC'W'PrBASE
'"
PTCOllECTOA10
(20071
LED ANODE 16
0,
L '"
(635)
j
j~~
7 PfEMfTTER
I ,
LED CATHODE
,150
(3.8)
'
~
,.635)
'"
(.813)
.010
(2541
.0"
(15.24)
'"
.10 IL-l1 ONLY
(2.541
FEATURES
Absolute Maximum Ratings
• Minimum Internal Separation of 2.0 mm
between Conductive Parts
• Minimum External Separation of Leads
and Creepage Distance of 13 mm
• Standard DIP Profile on Leads and
Package
Storage Temperature. . . . . . . . . . . . . .
. ........... . . ......... -55 to 100°C
Operating Temperature. . . . . . . . . . . .
. ............ .
. -55 to 100°C
... 2BOoC.
Lead Solder Temperature (1.6 mrn from cast for t = 5 sec) .
Isolation Test Voltage in Accordance with DIN57883/B.80 .
. .7070 VAC/10 K VDC
Creepage Path ..
13mm
Clearance Path ..
. ........... 13mm
Tracking Index According to VDE 0303
.... KB100/A
UL Qualified for
.. 8000 VRMS
•
•
•
•
Machine Insertable on PCB
IL10 is Four Lead Product
IL11 is Six Lead with Base Contact
Underwriters Lab Approval #E52744
VDE and IEC Approvals 0700,
0883/6.80, 0804/1.83, 0860/8.86,
IEC601IVDE0750, IEC380IVDE806/8.81,
IEC435IVDE0805
.®
DESCRIPTION
The IL 10 and IL 11 are optically coupled
isolators employing a gallium arsenide
infrared emitter and a silicon phototransistor.
LED
.BOmA
.3:0A
.. 5.0V
.. 100mW
.1.33mW/oC
Forward DC Current
Peak Forward Current (1 ~sec pulse, 300 pps)
Reverse Voltage. .
. ............ .
Power Dissipation
Derate Linearly from 25°C.
Phototranslstor
Collector Emitter Voltage.
Emitter Base Voltage.
Collector Current
Power Dissipation ....
Derate Linearly from 25°C.
.. 30V
.... 7V
. .100mA
.. 300mW
. .4.0mW/oC
Electrical Characteristics (25°C unless otherwise noted)
LED
VF (IF
~
,A(VA
~
10 mAl ..
51/) ....
Phololransislor
BVeEO (Ie ~ 1.0 rnA) .
BV EBo (IE ~ 10 ~A) ..
ho (VeE ~ 10 I/) .
.................. 1.5Vmax.
. ... 1O~A max.
.......... 30Vmin.
. ...... 7Vmin.
. ................... 50 nA max.
Coupled
DC Current Transfer Ratio (I, ~ 10 mA, VCE ~ 10 V) .
. ........ 50% min.
Saturation Voltage·Coliectorto Emitter (I, ~ 20 rnA, Ie ~ 2 rnA)
.... 0.4 V max.
TON ~ (Ie ~ 2mA, RE ~ 1000, 100~sPulsewidth, 1% Duty Cycle)
.... 14~styp.
TOFF ~ (Ie ~ 2 mA, RE ~ 1000, 100 ~s Pulsewidth, 1% Duty Cycle) .
. .. 11 ~s typ.
Input to Output Resistance at 500 VDC ...
. ....................... 10'0
°
5-39
SII:·:ME N'S
IL30/1L31/1L55 SINGLE CHANNEL
ILD30/lLD31/1LD55 DUAL CHANNEL
ILQ30/lLQ31/1LQ55 QUAD CHANNEL
PHOTODARLINGTON
OPTOCOUPLER
Package Dimensions in Inches (mm)
IL30llL3111L55 (Single Channel)
TOP VIEW
ANO",~ ....,
CATHODE 2
15 COLLECTOR
Ntl3
.
4 EMmER
LED CHIP ON PIN 2
PT CHIP ON PIN 5
ILD30llLD3111LD55 (Dual Channel)
TOP VIEW
ANODE
FEATURES
•
•
•
•
125 mA Load Current Rating
Fast Rise Tlme-10 p'S
Fast Fall Time-35 P.s
Current Transfer Ratio
100% Min.
200% Min. (1L31, ILD31, ILQ31 only)
• Solid State Reliability
• Standard Dip Package
• Undernlter Lab Approval #E52744
• ~. VDE Approvals 0883/6.80,
1~8
EMmER
.
7 COLLECTDR
.,
CATtroOE 2
(660)
ANODE 4
CATHODE 3
~
~
6 COlLECTOR
(610)
'L-...-trT.T-,,;r-,-d
"
5 EMfrnR
LED CHIPS ON PINS 2 AND 3
PT CHIPS ON PINS 6 AND 7
ILQ30llLQ3111LQ55 (Quad Channel)
0804/1.83
780,
~------~------~
DESCRIPTION
800
IL30/1L3111L55, ILD30/lLD31/1LD55 and
ILQ30llLQ31/1LQ55 are optically coupled
isolators employing a Gallium Arsenide infrared emitter and a silicon photodarlington
sensor. Switching can be accomplished while
maintaining a high degree of isolation between driving and load circuits, with no
crosstalk between channels. They can be used to replace reed and mercury relays with
advantages of long life, high speed switching
and elimination of magnetic fields.
'"
(330)
The 1130/1131/1L55 are equivalent to
MCA2-30/MCA2-31/MCA2-55.
ILD30/lLD31/1LD55 are designed to reduce
board space requirements in high density
applications.
300
""
'"
5-40
d
,~
l;Y
TYPICAL OPTOELECTRONIC
CHARACTERISTIC CURVES
Maximum Ratings
Gallium Arsenide LED (each channel)
Power Dissipation @25°C.
Derate Linearly from 25°C
GaAs EMITTER:
FORWARD CURRENT CHARACTERISTICS
.75mW
.10mWfoC
Continuous Forward Current ..
. .... 50mA
. .... 3 V
Peak Reverse Voltage ..
ILD30
IL030
150mW
Photodarlington Sensor (Each Channel)
Power Dissipation at 25 DC Ambient
Derate linearly From 25 D C
125 rnA
ILD5S
ILOS5
150mW
2.0 mW/·C
125mA
30V
SSV
2.0 mWf·C
Collector (load) Current
Collector Emitter Breakdown
Voltage (BVCEQ)
160
140 r--
;;
I-
- 55·C to
- SS·C to
r--
~ 100
a:
a:
80 r---
~
20 I- \-.
zw
70
u
50
a:
0
IU
..J
..J
u
Max
Unit
1.25
0.1
50
1.5
10
"A
40
w 30
0
Typ
I
/
Test
Condition
~
1/
Forward Voltage ..
Reverse Current.
30/55
V
1.0
ICEO· .
V
pF
100
nA
Capacitance
Collector.E~itter .
3.4
pF
VCE= lOV
V
10
...... "'"
200
%
IF=10mA
VCE=5V
400
VCEISAD'
0.9
Rise Time .
Fait Time.
10
35
UL Qualif!ed for
Isolation Resistance.
Isolation Capacitance.
200
7500
1.0
V
IC=50mA
IF = 50mA
Vcc= 13.5V
IF = 50mA
Rc=10011
VDe
1012
0.5
I
~
lBO
;:: 160 I-\F
z
w 140
~u
I-
u
w
I
IF=5V~
J40ImA._ii=~
V
I-
120
100
80
0
60
40
~
20
..J
..J
u
IL31.ILD31.ILQ31 only
r-
V,II F = 4mA
l =JmA.A FI ~ ~
V jl l
DARLINGTON
TRANSISTOR OUTPUT
CURRENT VS VOL TAGE
0
400
l
.1 I
IIF - 6 mA
10 20 30 40 50 60 70 80 90
COLLECTOR VOLTAGE IVI
0:
100
III
11/IF-BmA
j
20
IF=20mA
VR=3.0V
VR=O
Ic= 100"A
IF=O
VCE= 10V
IF=O
V
~
I
IF -10mA
J
GaAsEmitter
Capacitance.
1.6
I IF =12mA
a:
a: 60
OJ
.8 mm min.
.7 mmmin.
..7mmmin.
KB100fA
Min
/
1.0
1.1
1.2 1.3 1.4 1.S
FORWARD VOLTAGE (VOLTS)
100
~ 90
~
I- 80
.. 3750 VACf5300 VDC
= 25°C)
V
DARLINGTON
TRANSISTOR CURRENT VS VOLTAGE
.3.3 mWfoC
.. 5.33 mWfoC
... 5.67 mWfoC
Clearance Path ..
Tracking Index According to VDE 0303
Current Transfer Ratio
1
:1
~ 40
sec
.250 mW
.400mW
.. 500mW
IL30f31f55
ILD30f31f55. IL030f31f55.
Coupled Characteristics
Current Transfer Ratio ..
1
~
"
+ 12S·C
a.9
Isolation Test Voltage
.
in Accordance with DIN57BB3f6.BO
Creepage Path
Sensor
BVCEO· .
1
u
+ 100·C
10
IL30flL3111L55 ...
ILD30fILD31fILD55
IL030f1L031fIL055
Derate Linearly from 25°C
IL30fIL31fIL55.
ILD30flLD31flLD55 ..
IL030flL031 flL055 ...
Parameter
}
~
::J
Total Package Power Dissipation @25°C
Electrical Characteristics (Tamb
~
.§. 120
~ 60
Package
Storage Temperature
Operating Temperature
Lead Soldering Time al 260·C
VOLTAGE
I
~11IF==20m~_
~~~
r
IF -10mA
IJ
IF =0
I IJ
.2 .4 .6 .8 1.01.21.4 1.6 1.8 2.0
VeE COLLECTOR VOLTAG.E IV)
DARK CURRENT VS'
TEMPERATURE
ohm
pF
.1EEH~
o
~
50
n
100
1~
TEMPERATURE I·CI
ILfDf03Df31155
5-41
SIEMENS
IL 74 SINGLE CHANNEL
ILD 74 DUAL CHANNEL
ILQ ;74 QUAD CHANNEL
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions In Inches (mm)
IL 74 (Single Channell
,<0
TOP VIEW
rEj
,~.
ANODE
CATHODE l~.
.240
!!lP1
1&60)
·
0
.'L
02.
!!.1!l
(2.031
"'H-~.....
r ...............
'80
oH
I
!L.lli .048 -W'.ln.,r
18J~1 ~~
I-
L'€...
~...jj.
~
NC l '
BASE
COlLECTOR
.EMIITeR
LED CHIP ON PIN 2
PT CHIP ON PIN 5
.130
d
~·::1
ISO
300
~...ff.!
008
/.3051
(S081
.02
02'
(162
TYP
~
15"
ILD 74 (Dual Channell
TOP VIEW
'~' • COLLECTOR
EMITTER
ANOOf
CATHODE
2
CATHODE
3
1
;;:,
ANODE.
6
.
COLLECTOR
s EMmER
LED CHIPS ON PINS 2 AND 3
PT CHIPS ON PINS 6 AND 7
Q
FEATURES
35% typical transfer ratio
0.5 pF coupling capacitance
Industry standard dual-in-line package
Single channel, dual, and quad .
configurations
• Underwriters Lab Approval #E52744
• ~ VDe Approvals 0883/6.80,
0804/1.83
•
•
•
•
.06
..
illJJ-..!L
. ".,,-'
(3'012"
r"ot3.8,)
is'
ILO 74 (Quad Channell
TOP VIEW
'"
~----~----~
...
DESCRIPTION
IL74 is an optically coupled pair employ·
ing a Gallium Arsenide infrared LED and
a silicon NPN phototransistor. Signal information, including a DC level, can be
transmitted by the device while maintaining a high degree of electrical isolation
between input and output. The IL74 is
especially designed for driving mediumspeed logic, where it may be used to
eliminate troublesome ground loop and
noise problems. It can also be used to
replace relays and transformers in many
digital interface appl ications, as well as
analog applications such as CRT modulation. The ILD74 offers two isolated
channels in a single DIP package while the
I LQ74 provides four isolated channels
per package.
.
'30
~
O ".
I
",-dO'
• 7400 Series T2L Compatible
ANODE
1
16
EMITTER
CATHODe
~
15
COLLECTOR
CATHODE
l
I.
COLleCTOR
ANODE
4
IJ
EMITTER
ANODE
~
12
EMITTER
CATHODE
6
n
COLLECTOR
CATHODE
1
10
COllECTOR
9
EMITTER
ANODE a
LED CHIPS ON PINS 2, 3, 6, 7
PT CHIPS ON PINS 10, 11, 14, lS
5-42
Maximum Ratings
Gallium Arsenide LED (Each channel)
Power Dissipation at 25°C ....... , ............ .
.. ..... 150mW
.1.33 mW/oC
Derale Linearly from 25°C. . . . . . . . .
Continuous Forward Current . ......................... , ... . 60 rnA
Peak Reverse Voltage ......
. ........... 3.0 V
Detector-Silicon Phototransistor (Each channel)
Power Dissipation at 25°C ......
. ... 150 mW
Derate Linearly from 25°C ............................. 2.0 mW/oC
Coliector·Emitter Breakdown
Voltage (BVCEO) .......
. .............................. 20 V
Emitter·Base Breakdown
Voltage (BVECO) .......
. ....................... , ....... 5 V
Coliector·Base Breakdown
Voltage (BVeso) ......................................... 70 V
Storage Temperature ............................... -55 to + 150°C
Operating Temperature. . . . .
. ................. -55 to + 100 °C
Lead Soldering Time at 260°C ............................... 10 sec
UL Qualified for .
.. .. . .. .. . .. .
.7500 VDC
Package
Total Package Dissipation
at 25°C Ambient
(LED Plus Detector)
Derate Linearly from 25°C
Isolation Test Voltage in
Accordance with
DIN57883/6.80
Creepage Path
Clearance Path
Tracking Index According
to VDE 0303
IL74
ILD74
ILQ74
200mW
3.3mW/oC
400mW
5.33 mW/oC
500mW
6.67 mWloC
3750 VACI
5300 VDC
3750 VACI
5300 VDC
3750 VACI
5300 VDC
Bmmmin.
7mmmin.
7mm min.
7mm min.
7mmmin.
7mmmin.
KB100/A
KB100/A
KB100/A
eEl
i~
8';
££
oe,
Electrical Characteristics Per Channel (Tamb =25°C)
Parameter
Min
Gallium Arsenide LED
Forward Voltage
Reverse,Current
Capacitance
Phototransistor Detector
BVCEO
leeo
Coliector·Emmitter
Capacitance
Coupled Characteristics
OCCurrent
Transfer Ratio
VSAT
Capacitance,
Input to Output
20
12.5
Typ
Max
Unit
1.3
0.1
100
1.5
100
,.A
pF
IF=20 mA
VR=3.0 V
VR=O
V
nA
Ic=l mA
VcE =5V,IF=0
2.0
pF
VCE=O
35
%
IF=16 mA,
VcE =5 V
Ic=2mA,
IF=16 mA
50
5.0
0.3
500
0.5
V
T.st
Conditions
V
0.5
pF
100
Gil
Resistance,
Input to Output
Switching Times
tON
3.0
~s
toFF
3.0
~
RE=100 D,
VcE =10V
Ic=2mA
IUD/Q74
5-43
IL74 Single Channel
~plcal switching characteristics
Typical switching times
versus load resistance
versus base resistance
(Saturated operation)
'00
~
l
'000
Input
IF = lOrnA
o Pulse Width '" lOOmS
Duty~le = 50%
(sell SWitchlllg time test
schematic 1 and
501(
""
~
'"
500K
a.'
'.4r--------,--------,------,
'00
'.3f------1-----1--:;7""'0--I
a
~~~"C
.'
.2.1.0
If .. SOmA
V
"1/
}
{1.1
~
V
IL74 Single Channel
~plcal output current (lea>
versus Input cunnt
l'jplc.11orwa1d voltage
,,,,,,'
If = 10mA
loadresistance,RL(I(!"I)
versus forward current
~
/--........
,./
If .. 20mA
~
05 ; ; - - -
,
1M
Base·emitterresistance, RBE (Il)
1.2
Tamb '" 25°C
1.0
/
5~
TON
5 1F _10 rnA - - j - - - - - - I
VCE = tOV
.yV
50
il
100K
Normalized to:
_""s
"
'------r-
.0
!
./
O~
5
/
V
collector VOltage
Input
IF" lOrnA
PulSewldlh • lOOmS
Outycycle .. 50%
(see SWitching time test
schematic 2 and
500
"""'rmsl
Collector current versus
",------,--------,
"r
t---
- r-
.0
r-- I'-----
.5
.5
.,
0
25
50
Ambienll~mpernture (OC) •
75
/ ----
,
100
"
20
Forwardcurrenl,lf(mA}
Switching time test schematic and waveforms
Vee = 10 V
~.3K
INPUT]
VOUT
RSE
'-3~~
.3L,
1NP1J10..Jr-~I~
Vee = 10 V
:-~"-:
i"'"l"'
I
VOUT
OUTPUI 0
I
~"~I
I
'II
10% - -
':
5" -"-.
I
t - ~II_;
I-''''..l I
I
I-'~
I.
I I
I I
I
1-"-1
I.
I
90% - - - - -
Switching time test schematic 1
Switching time test schematic 2
IlIP/Q7.
5-44
SIEMENS
IL101B
HIGH SPEED
THREE STATE OPTOCOUPLER
Package Dimensions in Inches (mm)
FEATURES
Maximum Ratings
• High Speed
• Faraday Shielded Photodetector
Improves Common Mode Rejection
• DTlJTTL Compatible, 5 V Supply
• Three State Output Logic for
Multiplexing
• Built-In Schmitt Trigger Avoids
OscJllation
• UL Approval #E52744
Input Diode
Forward DC Current ...................................................................••........................................25 mA
Reverse Voltage ............................................................................•.....•.....•.......................•........ 5 V
DESCRIPTION
IL 101 B is an optically coupled pair with a
Gallium Arsenide Phosphide LED and a
silicon monolithic integrated circuit
including a photodetector. High speed
digital information can be transmitted
while maintaining a high degree of
electrical isolation between input and
output. The 1L101B can be used to
replace pulse transformers in many digital
interface applications. A built-in Schmitt
Trigger provides hysteresis reducing
oscillation possibility.
OutputlC
Supply Voltage (Vee) ............................................................................•..................................... 7 V
Enable Input Voltage (V,)
(not to exceed Vee by more than 500 mV) ..................................••....................................... 5.5 V
Output Collector Current (Ie) •.....•.........•..•.•..•.................•.....•........•.........•..........••......•....••.. 100 mA
Output Collector Power Dissipation ..........................................•.........•....•.....•....•.•............ 100 mW
Output Collector Voltage (Vour) ...•.....................................•................................•......•.•.....•..•...••7 V
Isolation Voltage (Input·Output), DC ................................................................................... 6000 V
Package
Storage Temperature ............................................................................................. 55'C to + 125'C
Operating Temperature ...........................................................................................•. O'C to +70'C
Lead Solder Temperature ................................................................................... 260'C for 10 sec.
Electrical Characteristics (Tamb=O°C to 70°C)
Parameter
I;, (1) - Logic (1)
Input Current for
Logic (0) Output
(Rgure 1)
I. (0) - Logic (0)
Input Current for
Logic (1) Output
(Rgure 1)
Va (1) - Logic (1)
Gate Voltage
VG (0) - Logic (0)
Gate Voltage
Vrur (0) - Logic (0)
Output Voltage
Icc
5-45
Min.
Typ.
Max.
12
Unit
Test Condition
mA
250
2.0
mA
V
.8
V
.35
.6
V
18
22
mA
Vcc=5.5 V, Va=2.4 V, 1,,=12 rnA
IWI (sinking) =16 mA
Vee= 5.5 V, Va =0.5 V
1,,=0.10mA
Switching Characteristics (T. mb=25°C. Vcc=5 V)
Parameter
t",,(1)Propagation
Delay Time to
Logic Level (1)
(Rg. 1. Note 1)
Min.
Typ.
Max.
Unit
Test Condition
OPERATING PROCEDURES AND DEFINITIONS
Logic Convention: The IL 1018 is defined in terms of
positive logic.
175
300
Bypassing: A ceramic capacitor (.01 mF min.) should be
connected from pin 8 to pin 5 to stabilize the switching
amplifier operation. Switching properties may be impaired
by not providing for bypassing.
f\=350 n, C,=15 pF,
ns
1.=12mA
1,,(0)-
Polarities: All voltages are referenced to network ground
(pin 5). Current flowing toward a terminal is considered
positive.
Propagation
Delay Time to
Logic Level (0)
(Rg. t, Note 2)
70
f\ = 350 n, C,=15 pF,
ns
300
Gate input: No external pull-up required for a logic (1).
1.=12mA
t,,-t,(O)output RiseFall Time (10-90%)
15
f\=350 n. C, =15 pF,
ns
TRUTH TABLE (Positive Logic)
I. =12 rnA
Electrical Characteristics (T. mb=25°C)
-Input to Output
Parameter
Min.
Insulation Voltage
Input-Output
(BV,,) (Note 3)
6000
Typ.
Max.
Unit
7500
VDC
Tast Condition
Input'
Enable
Output
1
1
o
o
1
1
0
o
0
off
off
'See definition of terms for
logiC state.
t= 1 sec.
Resistance,
Input-Output
(R.~) (Note 3)
1012
Capacitance
Input-Output
(c,.,) (Note 3)
0.5
0.8
n
V.~= 500 V
pF
f= 1 MHz
Electrical Characteristics (T. mb=25°C)
-Input Diode
Parameter
Min.
Forward Voltage
(V,)
Reverse Breakdown
Voltage (V..)
Capacitance (I.)
FIGURE 1.
INPUT
I..
MONITORING
NODE
Max.
Unit
1.5
1.75
V
1,,=10 rnA
V
pF
1.=10mA
V= 0, f= 1MHz
5
10
Tast Condition
TEST CIRCUIT FOR tpd (0) AND tpd (1)
+5V
PULSE
GENERATOR
Zo = 50n
tR '" 5ns
Typ.
[!
I..
4m~
Vee
I;t.
.!
t,'>.. E;'.~
/!
GNDf.'
'"..!
. +OM
1
BYPASS
RL
cC
OUTPUTVou,
MONITORING
NODE
·C l is approximately 15pF, which includes
probe and stray wiring capacitance.
INPUT
l,n
J
\----
350mV 11," = 7.5mAI
- 3.75mA)
1----------- : ----- 17SmV (l,n
-----o.ttpd(O).--
---It: pd(l)M--
~
~
1___________
e~~PUT
:
: ____ ______
:
VoudO
1.5V
- - - - - - - - - - - Vou , (0)
Notes:
1. The ~,(1) propagation delay is measured from the 3.75 rnA pOint on the
trailing edge of the input pulse to the 1.5 V point on the trailing edge of
the output pulse.
2. The t,..,(0) propagation delay is measured from the 3.75 rnA point on
the input pulse to the 1.5 V point on the leading edge of the output pulse.
3. Pins 2 and 3 are shorted together, and pins 5, 6, 7, and 8 shorted
together.
4. At 10 rnA V, decreases with increasing temperature at the rate of
1.6 mV/'C.
IL101B
5-46
SIEMENS
IL201/1L202/1L203
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
ANOO'~.
CATHODE
2
NC
3
FEATURES
DESCRIPTION
• High Current Transfer-Ratio
(75%-450%)
• High Collector-Emitter Voltage
BVCEO = 70 V
• Long Term Stability
• Industry Standard Dual-In-Llne
• Min 10% Current-lr.msfer-Ratio
Guaranteed @IF 1 mA
• Underwriters Lab Approval #E52744
• ~ VDE Approvals 0883/6.80.
080411.83
The IL201. IL202, IL203 are optically
coupled pairs employing a Gallium Arsenide
infrared LED and a silicon NPN phototransistor. Signal information. including a DC
level, can be transmitted by the device while
maintaining a high degree of electrical isolation between input and output. The IL201,
IL202, IL203 can be used to replace relays
and transformers in many digital interface
applications, as well as analog applications
such as CRT modulation.
=
Electrical Characteristics (O°C -70"C unless otherwise spacified)
T...
Maximum Ratings
Gallium Arsenide LED
Power Dissipation@2S"C . • . • . . . . . . . . . • . . . • 200 mW
Derate Linearly from 2!i"'C . . • • . . . . . • . . . . . 2.6 mWrC
Continuous Forward Current . . . . . • . • . • . • . .. 100 mA
Peak Reverse Voltage ." . . . • . . . • . • • . • • • • . . 6.0 V
Detector (Silicon Phototransistorl
Power Dissipation@ 2SoC . • • • . • . . . . . . . • • • . • 200 mW
Derate Linearly From 25"C . . • • • • . . • . • • . . • 2.6 mWrC
.
Total Package Dissipation at 2SoC Ambient
Max
1.2
1.0
1.5
1.2
10
Breakdown Voltage VA 6
Photo transistor Detector
HFE
100
21?
Coupled Characteristics
Base CUrrent
Transfer Ratio
(LED Plus Detector) . • • . . . • • . . • • . • . • . • • • • 250 mW
mwrc
Isolation Test Voltage in
Accordance with OIN57883f6.80. ..3750 VAC/5300 VDC
Creepage Path. . • .
. ........ 8 mm min.
Clearance Path. . . .
. ..... 7 mm min.
TraC?king Index According to VDE 0303.
. ..• KB100/A
Storage Temperature . . • . . • . • . . . • • . . . . -55 to +15O"C
Operating Temperature .•.••••.••.•.••• -55 to +100"C
Lead Soldering Time@260oe................. 10 sec
UL Qualified for
TVp
0.1
Unit
Condition
V 'F'" 20mA
V IF=1mA
".A V R "'6V
V
200
TA = 25°C
IR = tapA
VCE '" 5V.
Ie = 100 ",A
Collector-Base Breakdown Voltage (BV eao ) ......... 70 V
Derate Linearlv From 25"C ..••...••.••••• 3.3
Parameter
Min
Gallium Arsenide LEO
Forward Voltage Vp
Forward Voltage VF
Reverse Current
IR
BVceo
BVeco
BV CBO
ICEO
Collector-Emitter Breakdown Voltage (BVCEO) . • . . . • . 30 V
Emitter.collector Breakdown Voltage IBV eco ) • . . . • . • 7 V
P~k~e
~
70
10
10
90
V Ic=IOI"\
50
0.15
(s.t)
DC Current Transfer Ratio (CTR)
IL201
75
tOO
IL202
125
200
IL203
225
300
DC Current Transfer Ratio (CTR)
IL201
10
IL202
30
IL203
50
Input to Output
...................................... 7500 vee
5-47
0.4
IE = 100#A
nA VCE"'10V.
T A = 25°C
"
IF=10mA
V ca- 10V
V
IF'" lamA
Ie -2mA
IOTRJ
VCE
'e-1 mA
7
V
V
150
% IF = 10mA
250
"VCE = 10 V
450 . %
%
"
%
'F-1mA
VeE -10V
BAS'
5
COl.LECTOR
"
EMITTER
l'tplcolswllchlng_
versus baM raalstance
JSaturated .Operali~)
'OOr--------,---,--------r--,
'0011
'nput
,...
I.~---+---+---+----i
i
50
f
10
.......
1luty"",.50110
Y
/
~2""
~,oo
ii 1Of---=!"""-j----j--I
Norm~to:
IF_IOmA
_ _ ·1IIOrnS
"'"
~
_
Collector. current Y8I8U1
collector voItIgo
0
/ ..........
v
V
v
5 If .10mA
/
VeE-'OV
ilrm" 250(;
.---,V-
0.'
Sase-emltter!'8Slstlnce.RBE({I)
t
0.5
r..
5
If .. S.DrM
1D
IF ..
,,
50 '00
'Ar--------,---------,--------,
'00
'.3f--------j---------j----::,..::;'--l
50
,.• f--------j-.
,
f 1.,t-'=--+-----,7'f-~,<---I
/
110
V
}
Lf--------",I...:::------7'l'-------l
"'f--------:::I.4--------j--,--------l
.. ~.,'-------~'--------~IO~-------::'OO
,
RllWllrdcurrent,lFlmA)
/
versUI ambient tamperaturw
1000
V
II
"'"
I
/II
Vcs·IOV
VCE" 5OV---t
lamb" 2S·C
~::~
0
10
50
f/
//I
~I/
,
,
10
l'tplcall••kage cummt
./
1
1.0"'"
VCEM
lJIadraislaRce.RL(KDl
l'tplc.ol output current (leeI
venlUB Input current
~
IF" 10mA
V
,
... /'
,
,··!;;;,O<:;-------;""=--::'OOK=--------::"""=----:!,.
If .. 201M
-20
'00
Il1IUIcunant,IF(mA)
Output cummt
COII_.ummt
........
d _ _ cummt
"".... tempendure
10
I
Normalized to:
IF .. l0mA
VeE-IOV
lamb" 250(;
Normalized to:
".lOrnA
I,
" .'10 rnA
r--
" .I'mA
I
I" ,
-r--.
I
I-
I---
,
-55
-25
0
25
50
', /
---
,
IF. 'IlIA
.0
---
VeE·IOV
lamb .. 25"C
" .120mA
i'---
,
.0
75
,
100
Ambienttemperatu~(·C)
10
"
FoIWIIdamnt.IF(mA)
Switching tlmo _ _ _ end !"""'f<>1'ma
Vee = 10 V
·tf.3K
INPUT]
.
Vour
RSE
Vee
=10V
INPUT:J -z..~RL
-
"FlIT
,.Jr---.-t'~
,-1.-,
i""r
(--"'-,
I--;"..J
1
1
I '
1
VOUT
,.'.,
OIJ1PIJT'
5(i:1
'''' -- ':
... ----
1
I
1
I--~
;~:,
I' 1
1
IIDIIIt - - - - -
Switching time teet _ _ 'e 1
11.201111.2021'1:<03
5-48
SIEMENS
IL205/1L206/1 L207
PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
MODfLNo'
ANOOE'~'NC
CATt«IOE2
711ASE
NC3
6COLL~
NC4
5 EMITTER
..
~
,.
192
.oG4(.1O)
I
JXl8I.201
I
(~
'VP
FEATURES
Maximum Ratings
• Industry Standard SOIC·8
Surface Mountable Package
• Standard Lead Spacing of -OS"
• Available in Tape and Reel Option
(Conforms to EIA Standard RS481A)
• 2500 VRMS, Isolation Voltage
• High Current liansfer Ratios, 3 Groups:
1L205, 40 - 80%
1L206, 63 - 125%
IL207, 100 - 200%
• High BVCEO, 70 V
• Underwriters Lab Approval #E52744
(Code Letter P)
• Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering
Gallium Arsenide LED
Power Dissipation @25°C
Derate Linearly from 25°C ..
Continuous Forward Current
Peak Reverse Voltage ........ .
Detector (Silicon Phototransistor)
..... 150mW
Power DiSSipation @25°C ....... .
Derate Linearly from 250C ......... .
. .2.0mW/oC
Collector· Emitter Breakdown Voltage (BVcEQ) .....
..70V
. .......... 7 V
Emitter-Collector Breakdown Voltage (BVECI») ..
. ...... 70V
Collector-Base Breakdown Voltage (BVcBol ...
Package
Total Package Dissipation at 250C Ambient
(LED Plus Detector) . . . . . . . . . . . . .
. ......................... 250 mW
Derate Linearly from 250C ..
. ........... 3.3 mW/oC
Storage Temperature. . . . . . .
. . . . . . . . . . . . - 55 to + 150°C
Operating Temperature . . . .
. . . . . . - 55 to + 100°C
Soldering Time @260oC .....................•...................... 10 sec
(See Application Note 39 for a detailed report on solderability tests using dual wave.
vapor phase and IR reflow scldering processes.)
Electrical Characteristics (Tamb
DESCRIPTION
1L205/206/207 are optically coupled pairs
employing a GaAs infrared LED and a silicon
NPN phototransistor. Signal information,
including a DC level, can be transmitted by the
device while maintaining a high degree of
electrical isolation between input and output.
The IL205/206/207 come in a standard SOIC-8
small outline package for surface mounting
which makes them ideally suited for high
density applications with limited space. In addition to eliminating through-holes requirements,
this package conforms to standards for surface
mounted devices.
Parameter
= 25°C)
Min
Gallium Arsenide LED
Forward Voltage
Reverse Current
Capacitance
Test
Condition
1\tp
Max
Unit
1.3
.1
100
1.5
100
V
p.A
pF
IF = 60 rnA
VR = 6.0
VR = 0
V
V
nA
Ic = 100 p.A
IE = 100 p.A
VCE = 10 V
IF = 0
VCE = 0
Phototransistor Detector
BVCEO
BVECO
ICEO (dark)
Collector· Emitter Capacitance
Coupled Characteristics
DC Current Transfer
IL20S
IL206
IL207
Collector-Emitter Saturation
Voltage VCE ("')
70
7
10
5
40
63
100
80
125
200
0.4
t""
100
3.0
See Appnote 39 for solderability information.
t"ff
3.0
5-49
50
pF
A specified minimum and maximum CTR allows
a narrow tolerance in the electrical design of the
adjacent circuits. The high BVCEO of 70 V gives
a higher safety margin compared to the industry
standard 30 V.
Capacitance. Input to Output
Breakdown Voltage
Equivalent DC Isolation Voltage
Resistance. Input to Output
t'.....!"E"1
.!:!.9
................ 90mW
. .. 0.BmW/oC
.... . 60mA
. ....... 6.0V
.5
2500
3535
0';'
IF = 10 rnA.
VCE = 10V
V
IF = 10mA.
Ic = 2.0 rnA
pF
VACRMS . t = 1 min.
VDC
GO
Ic=2mA.
~s
RE = 1000.
VCE = 10V
,..
gCi
......
s:§
os!.
: Typical switching characteristics
versus base resistance
t
ted operation)
(Saura
100
"l
Input
IF
= 10 mA
o Pulse width = 100 mS
sCtlematiC1and
V
/'
1Of.-----
f'
..
Duty~le
V
g~~ =h~gS:e test
~
§
I
~
50K
,OO~
Base-emllterresistance, RBE
10K
=50%
(see' SWitching time test
schema~c 2 and
waveforms
100
50
'001(
1
V
/
"
/ "-
V
'p
'0<;
1.0
"
,,'," ,I 1
IF = 10 rnA
Pulse Wldth = 100 mS
500
""'''11.,
Collector current versus
collector voltage
Typical switching times
versus load resistance
1000
01.
0.5
0.9l::::::~-__:J2:::.......---t---1
0·,lo:::::::=--~-------ii'')---""10100
0.1
50
f7
1
I
--
IF
120mA
IF
",1 '0 rnA
j
1000
Jl
;,1
0
//J
0
VCB = toV
lamb ",25"C
VeE =50V--i
~~~: ~~ ~=2
10
~v
1
, "
-20
100
50
f/
III
5
2Q
4(1
ao
60
Ambienttemperalure
I
IF = 'rnA
I
25
to:
" r;:h;rrnallZe{j
If = 10 rnA
1DO
(OC}
-
---
VeE = 10 V
lamb = 25"C
0
r----
o
VCE(V)
Collector current versus
diode forward current
IF ..15mA
-25
I
A
l.npulcurrenl,IFlmA)
Output current
versus temperature
-55
L------"f---------;:"
O1 ,
Typical leakage current
versus ambient temperature
V
/
Fmwardcurrent,IFlmfI.)
01
501 DO
10.
1
0
.1
"v
l)'pical output current (Ica)
versus Input current
1.3L---l-----'--+----::7""'-~
I----
IF = SOmA
'ON
100
lp-
IF" 10mA
Loadre.5lstanCll.RL(lWI
l)'plcal forward voltage
versus forward current
2
IF=2(Jm~
1
(a)
1.4
Normalized 10:
IF = lOrnA
VCE = 10V
Tamb" 25°C
~
V
,
7
~
0.17
r----
-
05
~
01
50 ,
75
100
Amblenllemperature("C)
"
2D
5 Forwardcurrent.IF\mAj
Switching time test schematic and waveforms
Vee = 10 V
INPUT]
~ ~OUT
RBEQ
Switching time test schematic 1
Vee = 10 V
k
'"'": ·*2-)
VO",
Switching time test schematic 2
IL20512061207
5-50
SIEMENS
IL211/1L212/1L213
PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
MODElND.
ANOOE.'~''''
CRHODE 2
.016(.41)
1 8ASf:
NC3
6!COI.I.ECRlR
NC4
5 EMITTER
IWECODf
"...~
... v:
.1Z5
13,18)
1l1li
(.201
i= ----I..EADCOPLANARIT
J)l5
*.D015
(1."1
,..,
FEATURES
• Industry Standard SOIC-8
Surface Mountable Package
• Standard Lead Spacing of .05"
• Available In Tape and Reel Option
(Conforms to EIA Standard RS481A)
•. 2500 VRMS, Isolation Voltage
• 20, 50, and 100% min. CTR @I F = 10 mA
• Electrical Specifications Similar to
Standard 6 Pin Coupler
• Underwriters Lab Approval #ES2744
(Code Letter P)
• Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering
DESCRIPTION
IL211/212/213 are optically coupled pairs
employing a GaAs infrared LED and a silicon
NPN phototransistor. Signal information,
including a DC level, can be transmitted by the
device while maintaining a high degree of
electrical isolation between input and output.
The IL211/212/213 come in a standard SOIC-8
small outline package for surface mounting
which makes them ideally suited for high
density applications with limited space. In addition to eliminating through-holes requirements,
this package conforms to standards for surface
mounted devices.
A choice of 20, 50, and 100% minimum CTR
(IL21111L21211L213 respectivelyj at IF = 10 mA
makes them suitable for a variety of different
.applications.
See Appnote 39 for solderability information.
Maximum Ratings
Gallium Arsenide LED
Power Dissipation @25°C ..
Derale Linearly from 25°C
Continuous Forward Current ..
. .............. 90mW
............................. 0.BmW/oC
. ........................ 60mA
. ................. 6.0 V
Peak Reverse Voltage ..
Detector (Silicon Phototransistor)
Power Dissipation @25°C .
. ............................ 150 mW
Derate Linearly from 25°C ...................................... 2.0 mW/oC
Coliector·Emitter Breakdown Voltage (BVcEol ............................. 30 V
Emitter·Coliector Breakdown Voltage (BVECol .............................. 7 V
Coliector·Base Breakdown Voltage (BVcBo)' . . . . . .
.70 V
Package
Total Package Dissipation at 25°C Ambient
. ......................... 250 mW
(LED Plus Detector) . . . . . . . .
................ .
. . 3.3 mW/oC
Derate Linearly from 25°C. . .
Storage Temperature ...................................... - 55 to + 150°C
Operating Temperature. . . . . .
. .................... - 55 to + 100 °C
Soldering Time @260°C ............................................ 10 sec
(See Application Note 39 for a detailed report on solderability tests using dual wave,
vapor phase and IR reflow soldering processes.)
Electrical Characteristics (Tamb = 25°C)
Parameter
Min
Gallium Arsenide LED
Forward Voltage
Reverse Current
Capacitance
Phototransistor Detector
BVCEO
BVECO
lceo (dark)
30
7
Collector-Emitter Capacitance
Coupled Characteristics
Test
Condition
lYP
Max
Unit
1.3
.1
100
1.5
100
V
pA
pF
IF = 10 mA
VR = 6.0
V
V
Ic = 1 pA
IE = 10pA
VCE = 10V
IF = 0
VCE = 0
90
10
5
50
nA
VR
'"
0
2
pF
50
BO
130
%
IF = 10mA,
VCE = 10 V
V
IF = 10 mA,
Ic = 2.0 mA
DC Current Transfer
IL211
IL212
IL213
Coliector·Emitter Saturation
Voltage VCE (,."
Capacitance, Input to Output
Breakdown Voltage
Equivalent DC Isolation Voltage
Resistance, Input to Output
to,
toll
5-51
20
50
100
0.4
.5
2500
3535
100
3.0
3.0
pF
VAC RMS t = 1 min.
VDC'
GO
ps
Ic=2mA,
RE = 1000
pS
VCE = 10V
-InfI----
....
Ty......
(Saturalad operatton)
~"'"
.l
~~.IIJOmS
.. ==:.s:.1Ist
'0>
-
-,.,.
.......
"f-.----
,
1.0
"---
1;':';OmA I I
::=..s:. ...
I
,0>
'ao
,
o
I"
0.5
.. ,
1
5
LoadI'lSislanCe. J\ (1<0)
"
~ k::::::::::::-+----:--:;;of~~
11.f
LO~~~-::---;;:7f___c___:I
.. L::::::::=--.-J,L-----7.'o,---"'1o,OI
/
0
II
17
.....
-,
~
ff
111
Vea_fOV
,
..
10
InpuIcurrenl,lfllllAl
f/
::~~~
Va ... ~:::::;
T.rnb·2SOC
10
5
,
!... _ ......curnn.
m.......ni
,
/
,
FatwlIdCII'feIIf.IFfmA)
-
plQllooIIIge
//
1.2
0.1
,
.01
we...... Input current
.
If. !rI.omA
IF .I.DIM
01
'01
'.3
~
1f.10nIA
"17
TypIC.' OUtpul c.mI.' ~ca)
cunnt
u
-z:::;=
D.'
'ao
,
0.1.
T.rre - 25·C
V
/ .........
V
'[7
"'"
V
'0
..I''V----
.y
~.2ond
~
..
NormalizecllO:
If .10mA
VeE. tOY
V
PulSewidth_lOOmS
TypIQl- '""lOge
versul forward
collector vollOge
10
! ..
"" "."
""
wreuaload ,..lolon.
c
V
/
COllector current ve....
Typlool switching limos
,
,
,01
-zo
r7h'
~
-
ff
--,01
Collector current WI.....
diode furwonl cu......
_'1:
IF. 10 InA
Va·IOV
lamb - 250C
2
I
"
I
.7,.,",
--
-
••1,,",
I
I
I" .,
IF. JIIIII
c--.
.0'
-5S
f.
-25~~re(-c)'
Swl!chlng tim. _
---
Tamb·25"C
•:r,o,",
,
NormaIiadlO:
IF. to rnA
VCE • 1('1 V
r----,. ,0>
IChll1l18tlc end
0
'7
::::::::::=-
.,
O"er
.01
10
zo
-..n.
tf
----~I·~
Vcc=10V
INPUT]
.
INPIl1
I
.3K
VOUT
Rse
Switching _ _ _ motlc I
D~~","_II
j'jl,
....,
,
Switching tim. teo..._otle 2
t-'--;
t-... ..l ,
, t-~
I
OUTP1Jl':"~_~::
... ---- , ~r~<~:
------ , --- ...
1L21112121213
5_52
·SIEMENS
IL215/1L216/1L217
PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
MO!)ELNo.
ANODE1~'NC
CATHODE 2
.D16(.41)
7 BASE
NC3
6 OOlLECIOR
NC4
5 EMlmR
OOECODE
~7Ltf
L[ADCOPlANARIT
.D45
:!:.Q015
(.64)
(1.141
tOLERAt«:E.OO5(Unle$!lolllelM5ls~ihed)
FEATURES
Maximum Ratings
• Industry Standard SOIC-8
Surface Mountable Package
• Standard Lead Spacing of .05"
• Available in Tape and Reel Option
(Conforms to EIA Standard RS481A)
• 2500 VRMS, Isolation Voltage
• Low Input Current Required
• 20, 50, 100% CTR @IF = 1 mA
• Electrical Specifications Similar to
Standard 6 Pin Couplers
• Underwriters Lab Approval #E52744
(Code Letter P)
• Compatible with Dual Wave, Vapor Phase
and IR Reflow Soldering
Gallium Arsenide LED
Power Dissipation @25°C , .
Derate Linearly from 25°C ..
.........................
.. .. 90mW
...................... 0.8 mW/'C
.60mA
..... 6.0 V
Continuous Forward Current
Peak Reverse Voltage.
Detector (Silicon Phototransistor)
Power Dissipation @25'C .. .
.............. 150mW
Derate Linearly from 2500 .... .
. ... 2.0 mW/OC
Collector-Emitter Breakdown Voltage (BVCEO)
... 30V
Emitter-Collector Breakdown Voltage (BV,co) ..
................... 7 V
Collector-Base Breakdown Voltage (BVC80) .....
.. .... 70V
Package
Total Package Dissipation at 2500 Ambient
(LED Plus Detector)
.................... 250 mW
Derate Linearly from 2500 ................
. ...... 3.3 mW/'C
Storage Temperature. . .
. .......... - 55 to + 150 'C
Operating Temperature
........... -55 to + 100 'C
Soldering Time @260'C .......
. .......... 10 sec
(See Application Note 39 for a detailed report on solderability tests using dual wave,
vapor phase and IR reflow soldering processes.)
Electrical Characteristics (Tamb = 25°C)
DESCRIPTION
IL215/216/217 are optically coupled pairs
employing a GaAs infrared LED and a silicon
NPN phototransistor. Signal information,
including a DC level, can be transmitted by the
device while maintaining a high degree of
electrical isolation between input and output.
The IL215/216/217 come in a standard SOIC-8
small outline package for surface mounting
which makes them ideally suited for high
density applications with limited space. In addition to eliminating through-holes requirements,
this package conforms to standards for surface
mounted devices.
The high CTR at low input current is designed
for low power consumption requirements such
as CMOS microprocessor interfaces.
See Appnote 39 for solderability information.
Parameter
Min
Gallium Arsenide LED
Forward Voltage
Reverse Current
Capacitance
Phototransistor Detector
BVc,o
BVECO
ICEO (dark)
Collector-Emitter Capacitance
Coupled Characteristics
DC Current Transfer
IL215
IL216
IL217
Collector-Emitter Saturation
Voltage VCE ("'Q
Capacitance, Input to Output
Breakdown Voltage
Equivalent DC Isolation Voltage
Typ
.1
100
30
7
20
50
100
90
10
5
V
pi<
pF
50
V
V
nA
IF ~ 1 mA
VR ~ 6.0
VR ~ 0
Ic ~ 1 mA
IE ~ 10~A
VCE ~ 5 V
IF ~ 0
VCE ~ 0
pF
50
80
130
%
IF ~ 1 mA,
Vc, ~ 5 V
V
IF ~ 1 mA,
Ic ~ 0.1 mA
.35
.5
2500
3535
too
t,.
3.0
5-53
1.3
100
Test
Condition
Unit
2
100
3.0
Resistance, Input to Output
Max
.4
pF
VAC RMS
VDC
Gil
~s
~s
t
~
1 min.
Ic ~ 2 mA,
RE ~ 10011
Vc, ~ 10 V
.. b a l _ I n g .........r1I1I..
wrwl baM mI....nee ,
.1_ . .
,.,. ......
~pl..llWllchlng
(Saturated operallOn) •
IM::::::~~-r------r-~
SIlO
-
1luIy~s:.
:;
f.~--l--+--Ii
10
'p
1.0,,*
I
1M
~pl..1"'....111 vOltage
1.2
f I.IL=::::::::-~~-:__71~7.......__,
J L~--*~_:;:7f_--~1
1.•
••
•.• k::::::=---!,------;lIO'---1ciIM
1
I
!
\0
VcE·IOV
lamb - 25-C
f--
I
~1ce1I.akoge
-lS
cUmlnl
versul ambient ternpemure
/v
/
V
1000
-'-
... LL-l--f--t--t/711
Vea _lOV
lamb .. ZS"C
.
50
I M'
III cur rent
..I
-----1
'"""
" .. 'IlIA
.01
YaM
COllector
dl.... _ current versus
r-----
I
.1
1
ID
•];'mA
" ."mA
I Ip
-55
V
'[7
Output CUmlnt
venue temperature
NDnnalzed to:
.OIL'-----!-.-----.IO
501
Input current
50
".•.• mA
!.,L----i--,-,-.-,.•-",,-
'ON
FoIwarocurrent,1F(1IIA1
IF .10mA
I'" ~
~p1..1 output cUmlnl (Iool
u,L------+-------r~~~
I"
/ ..........
IF .. 20 rnA
______ ----: • 10 mA
I" V-
1M
0.1
rlntl .. 25"C
/
\0
V81'8UI
I.'
I
LV
...
'.1
YenlU. forwIn:I curntnl
~
Normalized to:
5tt; ~O,:re=--l-----,
V
V
~u.
10 :::::-..:::....:.-.::.----,
""'" 1. 100 ImS
~'~"=
=....2111d
,IO,L-__~~~~----II~
Collector current
coil_voltage
11m..
lIenOl
f
NonnaIizedIO:
IF .10mA
Vee .IOV
Tamb I I 25°C
---'7
•
•.17
r----.
t----..
50
75
IM
"'r---
J
.01
"
10
SFoIwanItuttenI,IFlrMJ
Switching time tnt schematic and waveforms
Vee -10V
"M] J!~..
~EQ
'- ..
Swllchlng lIme ...IIChe_c 1
Swllchlng lime _
_Ie
..
2
IL21512161217
5-54
SIEMENS
IL221/1L222/1L223
PHOTODARLINGTON
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
MODEL NO.
"OOE'S'"
CATHOOE2
.D161.411
7&.5£
NC3
6COl.lEC'IDR
NC4'
5 ENlnER
OOECODE
JXlO
12.
Lq..,",===
r
FEATURES
Maximum Ratings
• Industry Standard SOIC·8
Surface Mountable Package
• Standard Lead Spacing of .05"
• Available in Tape and Reel Option
(Conforms to EIA Standard RS481A)
• 2500 VRMS, Withstand Test Voltage
;, High Current Transfer Ratios
@ IF=1 mA: IL221 -100% Min.
IL222 - 200% Min.
IL223 - 500% Min.
• Electrical Specifications Similar to
Standard 6 Pin Couplers
• Underwriters Lab Approval #E52744
(Code Letter P)
• Compatible with Dual Wave, Vapor
Phase and IR Reflow Soldering
Gallium Arsenide LED
Power Dissipation at 25°C.
Derate Linearly from 2SoC ..
Continuous Forward Current
Peak Reverse Voltage ..
...
LEUCOPl.NWUT
11.141
:t.oo'5
""
lOLERANCE ..OO5{Unlcss~n.rwlSesPCClfiedl
. ..... 90mW
. .O.B mW/oC
... 60mA
... 6.0 V
Detector (Silicon Phototransistor)
IS0mW
Power Dissipation at 25°C ... .
. .... 2.0mW/oC
Derate Linearly from 25°C .... .
Coliector·Emiller Breakdown Voltage (BVcEo) ..
.. ... 30V
. ...... 5V
Emitter·Coliector Breakdown Voltage (BVECO)..
Package
Total Package Dissipation at 2SoC Ambient
(LED Plus Detector) ...
.............
. ...... 2S0 mW
Derate Linearly from 2S °C .
. ................. 3.3 mW/oC
Storage Temperature. . .
. .-SSto + ISOoC
Operating Temperature. . . . .
. ................. -55 to + 100°C
Soldering Time at 260°C ....
. ................... 10 sec
(See Application Note 39 for a detailed report on solderability tests using dual wave,
vapor phase and IR reflow soldering processes.)
Electrical Characteristics (Tamb = 25°C)
DESCRIPTION
The IL221 1222/223 family of devices are
high current transfer ratio (CTR) optocouplers. They employ a GaAs infrared LED
emitter and a silicon NPN photodarlington
transistor detector.
These devices are offered with CTRs tested
at an LED current of 1 mA. This low drive
current permits easy interfacing from CMOS
to LSTIL or TIL.
These optocouplers are constructed in a
standard SOIC·S foot print. This package
makes them ideally suited for high density
applications. In addition to eliminating
through-hole requirements, this package
conforms to standards for surface mounted
devices.
Parameter
Min
Typ
Gallium Arsenide LED
Forward Voltage
Reverse Current
Capacitance
Photodarlington Transistor
BVCEO
BVECO
0.1
100
Max
Unit
1.3
100
IJA
VR~6.0
pF
VF~O
30
5
ICEO
SO
Collector-Emitter Capacitance
3.4
Coupled Characteristics
DC Current Transfer Ratio @ IF ~ 1 mA
IL221
100
IL222
200
IL223
SOO
Collector-Emitter Saturation
Voltage VeE (sal)
Capacitance, Input to Output
Withstand Test Vollage
Resistance Input to Output
5-55
0.5
2500
100
Test Conditions
IF~1
V
V
pF
VAC RMS
GQ
V,
F~
1 MHz
Ic~1001JA
V
V
nA
pF
0/0
%
%
mA
IE~100
IJA
VCE~S V, IF~O A
VCE~10
}
V
IF~1.0 mA, VCE~S V
IF~1 mA, ICE~O.S mA
1=1 min.
Peak LED current versus duty factor, Tau
Forward voltage versus forward current
l0000~--~--~---r--~--~--~~-,
1.4
>,
.01
.02
.05
1.1
~
i
0.9
&!!
.st--=~~~~
100
i: Ta = 100"C
OF _ /I
!
!
.1.
.2
1.0
:;
..............................:"..........................................................
0.8
:
:
:
0.7
.1
10
100
1010-6
If - Forward CUrrent - mA
10-S
10-4
10-3
10-2
10-1
10 0
10 1
t- LED Pul.e Duration -.
Normalized CTR.. versus IF
Normalized CTR.. versus LED current
100~_G_-·--T~a---~-~--c'i----------~------~~
3r---------,----------r--------~
-G- Ta = -2O"C
Normalized 10:
..... Ta=2S"C
II=1mA,Ta=2S"C
Vcb= 101{
i
i 2. .: . .~::7~.;. . . . . . . . . . . . . . . ..l..,,~~~01!I.
.... Ta=2S"C
. . Ta=SO"C i
eB
....
Ta-7~C
i
10~--------~----~~_+---------;
U
I
~ormalized 10:
II = lmA,Vi:e = sv
]
1
~
+8=2S"C
~
..
o~~~~~~~~~.u~--~~
.1
10
If - LED Current - mA
~
.1
100
.1
2000
..
_G_ Ta=-20"C
Ta=25"C
Ta= 5O"C
Ta _70"C
~
J!
....,
......:;;J....;~.:=;;;::;;. . . . .
.0u
+i
2
10
If - LED Current - mA
1000
,
:I
e
I
.1
....I!!
e
~
U
Ta =2S"C
--i Ta - 5O"C
+i Ta=70"C
i
0.00
a:•
1SOD
Ic
!
!
O.OS
100
CTR versus LED current
r---------,---------.,-----------,
.0
10
If - LED Current - mA
CTR.. versus LED currant
0.10
b
-nt
.OOS'
i
.!!
~ " iE--i
Duly aclDr
1.3
100
....
....
Vea= 10V
500
0
.1
10
100
If - LED Current - mA
11.221f213
5-56
Collector CURllnl YBt1IUB LED· CURllnt
PholocuRllnt vet1lus LED currant
1000 , . - - - - - - - - . - - - - . . . . , . . - - - - . . ,
-a- Ta -20"C
... Ta=25'C
Vce-10V
c
. . Ta- SO"C
E
-0- Ta =70'C .
C 100
100
.
1-
~
C
~
.
I
:I
U
if
.a
1!
Do.
I
I=a
.
•••••••••••••••••••••••••••••••••••••••••••••••••••••• o.
j
u
1
.1
10
If - LED Currant - mA
!
!
I
...................................
!
.a
.1!
I
!
10
-G-Icb-!oc
... Icb2~"C
... Icbsil"C
-0- Icb 7j)"C
100
10
H - LED Currant- mA
100
Normalized I"" vat1lus I,
1000r---------r---------r--------..,
Ta=-20~
-G... Ta=25oQ
100 L-"::l...
a:-..,f,;a-::=~50:?I"Q"*·- - - -0- Ta =70"Ci
i:
10
H - LED Current- mA
100
1L221/2/3
5-57
SIEMENS
IL250/251/252
DUAL CHANNEL ILD250/251/252
SINGLE CHANNEL
BIDIRECTIONAL INPUT
OPTOCOUPLERS
Package Dimensions in Inches (mm)
SINGLE CHANNEL
AnodoQdllolo~_, CoIIIcmr
Boa
•
5
CllhDdI AnDdI 2
Nt 1
......
4
Bnmer
DUAL CHANNEL
Anodo.l:alhod"~,1• CaI\ecIor
EmHt",
FEATURES
CilhodlfAnod, 2
• AC or Polarity Insensitlva Inputs
• Selected Current Transfer Ratios
(20%,50%,100% Min.)
• Industry Standard Dual-ln-L1ne
• Built-In Reverse Polarity
Input Protection
• Improved CTR Symmetry
• Underwriters Lab Approval #E52744
• & VDE Approvals 0883/6.80,
@0804/1.83-IL250/251/252 only
Anod~lh~e
I
CllhodafAnode
4
• Collector
.
'DO
'"
Maximum Ratings
The IUILD250 has a minimum eTR of 50%,
the IUILD251 has a minimum eTR of 20%.
and the IUILD252 has a minimum eTR
of 100%.
The IL250/1/2 are single channel optocouplers. The ILD250/112 has two isolated
channels in a single DIP package.
They are designed for applications requiring
detection or monitoring of Ae signals.
EmIIIer
(2S4t
DESCRIPTION
The IUILD250/251/252 are bidirectional
input optically coupled isolators. They consist
of two gallium arsenide infrared emitting
diodes coupled to a silicon NPN phototransistor per channel.
i
Gallium Arsenide LED (Each channel)
Power Dissipation at 25'C
Derate Linearly from 25'C
Continuous Forward Current
Peak Reverse Vonage
1L250/112
ILD250/1/2
200 mW
2,6 mW/'C
100 rnA
1.2mW/'C
UL W~hstand Test Voltage (PK}
(t=1 sec)
VDE Isolation Test Voltage in
Accordance w~h DIN57883/S.80
Creepage Path
Clearance Path
Tracking Index According to
VDE 0303
Storage Temperature
Operating Temperature
Lead Soldering Time at 2S0
5-58
'c
90mW
SOmA
3.0V
Detector-Silicon Phototransistor (Each channel)
Power Dissipation at 25'C
200 mW
Derate Linearly from 25'C
2.S mW/'C
Collector-Emitter Breakdown
Voltage (BVCEol
Emitter·Base Breakdown
Voltage (BVEcol
Coliector·Base Breakdown
Voltage (BVC80)
Package
Tolal Package Dissipation at 25'C
Ambient (LED Plus Detector)
Derate Linearly from 25'C
1L2501112
ILD250/112
150mW
2.0 mW/'C
30V
5V
70V
250mW
400mW
3.3 mW/'C
5.3 mW/'C
7500 VDCI
5300 VACRMS
3750 VACI
5300 VDC
Smmmin.
7mmmin.
KB100/A
-55 to + 150'C
-55 to + l00'C
10 sec
Electrical Characteristics (Tamb =25°C)
Parameter
Min
Gallium Arsenide LED
Forward Voltage VF
Phototransistor Detector
BVCEO
BV,co
BVCBO
30
7
70
Typ
Max
1.2
1.5
V
50
V
V
V
nA
0.4
V
50
10
90
5
leeo
Coupled Characteristics
VCE(sat)
Unit
Test
Condition
IF~
±10 mA
Ic~1
mA
Ic~ 100 !~
I
5
I
.0 5
o
.0 I
.005
~
.00 I
"
:a
8
9 10
COLLECTOA·EMITTEAVQLTAGE - VCEO (V)
/
"~
~ 10-8
~
9
~
I
INPUT CURRENT - IF (mAl
"
~10-1 0
/
~ 10- 11
,/
10-1
-50 -25
Symmetry characteristics
--"
0
NORMALIZED TO:
Vee = 10 VOLTS
IF = 10mA
I
"i=
"~
I
Z
V
10-
~ lO-
;/
I
a ,
~
V
\1'Otlll I
IIII II
.000 .1.2 .5 1 2 510 50 100
>-
/
NORMALIZED TO:
Vee = 10 VOLTS
1
<.0005
Dark current va. temperatura
l-~iA
1-1-
.51
_~
COLLECTOR·EMITTER VOLTAGE - VeE (V)
Output characteristics
~
~
=1
0
I"
VCE"'0VOLT~
.1~+tI,4=t=::jJI=~'f':'~2~.0;mA~
~ .05
~ r- --.. ,~ 1.0~A
g
.Olf-:=~rtt~t=:t=~~'f~"~0:':.5m4A~
~ .005r-
-5
-2.0 -1.0
0
1.0
2.0
INPUT VOLTAGE - VF IV)
I
NORMALIZED TO:
1 IF = 10mA
::
I
~
'g
~
40
-"I
~
Output vs. Input current
Transfer characteristics
Input characteristics
,[J"oJ
~~ '" -;;O~AI.
ff
10-
::;
a
25
so
75
CASE TEMPERATURE (OC)
100
""~
3
10-.01
.05.1
.5 1
5 10
50100
COLLEC10R·EMITTER VOLTAGE - VeE IVI
IUILD2501251/252
5-59
IL256
SIEMENS
AC INPUT PHOTOTRANSISTOR
SMALL OUTLINE
SURFACE MOUNT OPTOCOUPLER
Package Dimensions in Inches (mm)
1IlDEl. ....
. . 'H·.
r.mra: 2
~
I
.IDI(.2O)r='1:
11XIll£aUR
Me.
SEMITTEJI
''i.~
... ,...,'J!
...
L
.
~
.004(.101
7 MSE
Me3
'"
1.2IIJ
r
I
11'111
-----
...
""'''''''''''''
~:s
".M)
FEATURES
Maximum Ratings
• Industry Standard SOIC-8
Surface Mountable Package
• Standard Lead Spacing of .05"
• Available in Tape and Reel Option
(Conforms to EIA Standard RS481A)
• Bidirectional AC Input
• Guaranteed CTR Symmetry of
2:1 Maximum
Gallium Arsenide LED
Power Dissipation at 25°C. . . .
. ............................... 90 mW
Derate Linearly from 25°C ......................................... 0.8 mW'·C
Continuous Forward Current ........................................... 60 mA
DESCRIPTION
The IL256 is an AC input phototransistor
optocoupler. The device consists of two
infrared emitters connected in anti-parallel
and coupled to a silicon NPN phototransistor
detector.
These circuit elements are constructed with a
standard SOIC-8 foot print. Soldering and
assembly with this optocoupler is covered in
detail in Appnote 39.
The product is well suited for telecom
application such as ring detection or off/on
hook status, given its bidirectional LED input
and guaranteed current transfer ratio CTR of
20% at IF= 10 mA.
Detector (Silicon Phototransistor)
Powsr Dissipation at 25°C ............................................ 150 mW
Derate Linearly from 25·C ......................................... 2.0 mW'·C
Collector-Emitter Breakdown Voltage (BVCEa> ................................ 30 V
Emitter-Base Breakdown Voltage (BVEool ..•................................. 5V
Collector-Base Breakdown Voltage (BVCBa> ................................. 70 V
Package
Total Package Dissipation at 25°C Ambient
(LED Plus Detector) ................. .. .
. ........................ 240 mW
Derate Linearly·from 25·C ......................................... 3.1 mW'·C
Storage Temperature ............................................. -55 to + 150·C
Operating Temperature .......................................... -55 to + 100·C
Electrical Characteristics (Tamb=25°C)
Parameter
Gallium Arsenide LED
Forward Voltage VF
Phototransistor Detector
BVeEo
BVECO
BVCBO
ICEO
Coupled Characteristics
Min
30
5
70
Typ
Max
1.2
1.5
50
10
90
5
VCE(sat)
DC CUrrent Transfer
Ratio (CTR)
Symmetry
CTR@ +10mA
CTR@-10mA
Input to Output Withstand Test
Voltage
5-60
2500
1.0
Test Condltlona
V
IF= ±to mA
V
le=l.mA
Ic ·l00 fAA
le· 100 fAA
50
V
V
nA
0.4
V
IF. ±IS mA.lc=2 mA
%
IF-±10mA, VcE -l0V
20
0.5
Unit
VCE~10
V
2.0
VACRMS t - 1 min.
Forward voltage versus forward cunant
Peak LED cunant versus duty lactor, Tau
1.4...------,------,-------,
;
;
1.3 ....................·...... ;:~·~·:55::c
·!..
j
>
~
i
~
>
tOOOO~-,---r--,--~-~--r---,
........·i"................
c
;
1.2 ........................... ';" .......
E
1.1
1.0
0.9 1-----o:::;*"""'-----1,c------I
. . . . . . . . . . . . . .!. . . . . . . . . . . . . . ,;. . . . . . . . . . . . . ..
O.S
0.7
.1
10
100
II- Forward Currant - rnA
t - LED Pulaa Duration· •
Normalized CTR versus I. and TR'
Normalized saturated CTR
2.0
1.0
-a-
~
i
~
Z
;
....± .. .TJ."~~C;...............~~.::.~.~.~~i.~~.~.~.?~.........
1.5
..............
Nonnallzed to :
T. . 25'C
..... T•• 70'C
...... T. . loo'C
O.S
Ta='25'C
1.0
T8=25'C
Vce(s~t)
=0.4V
......
~
0.6
i".._
0.4 1-----+~&5,<:--+--~1I-f
a
Z
0.5
0.2
1---""",,~1F----
0.0
.1
10
100
1
Normalized CTR",
1000
,
;
;
Nonnalized to:
i
11=10mA, T:"'25'C
'1,
1.0
............................·............................1..................
100
1:
~
"
u
S
;
Zo
!
10
25'0
.... 70'0
0
...'"
0.51-----;o"l'-"""~--+-----I
-a- 25'0
;,
.... 50'0
..... 70'0
0.0 L..................................._
.1
100
Photocunant versus LED cllrrenl
1.5...-----,-----""T'"-----,
~
·10
If - LED CUnant - rnA
1'- LED Cunant - rnA
.!!
........................ul---'.......................J
10
.1
100
10
.1
II- LED Currant -mA
Normalized HFE versus I., Tu'
Base current versus I. and HFE
700
1.2
100
i
100
II- LED Current - rnA
~
10 C
:I:
i!
~~
u
".!l!
ii
"~
z0
E
j
~
II!
CD
...............
r--
O.B
0.6
0.4
.1
1000
-m.
.........-a-
Ii
:I:
'"
1.0
......
......
1
NHF -20'0
NHF 25'0
NHF 50'0
NHF 70'C
10
100
1000
Ib - Base Current -11-'
Ib • B... Current -1lA
5-61
IL256
Base emllter voltage veraus base.curnnt
Normalized saturated HFE versus '.
,
1.5
Normalized to:
HFE
UI
Ii.
:.:
i
at Vee =10V,ICb =10jIA
Ta=25OC
100
i
'1
............. ·························:o:f··Tii·;;·:2U·C·······
i
I!I---........~,
i!
..j.
1i
I
.1
:!!
.01
.
ID
~
0.0
1
10
100
lb· Base Currant· t1A
. . . . . . ,. . .;. .;. ~~.:.~~::.H=. . . . . . .
B
~Ta=70OC
i
0.5
10
I
Ta=25'C
~ Ta=50'C
en"
I
1000r-~---.----~-.~~--~-----'
/
/
!
···"/·········································1········............
.001
1000
0.4
0.5
0.6
0.7
0.8
Vbe· Base Emitter Valtage· V
11256
5-62
SIEMENS
IL400
PHOTO SCR OPTOCOUPLER
Advance Data Sheet
Package Dimensions in Inches (mm)
ANODE
,~. Q,,..
CATHOOE 2
NC
FEATURES
•
•
•
•
•
•
•
•
•
400 Volts Blocking Voltage
liIrn On Current (1ft) 5.0 rnA lYpical
Gate Trigger Current (IGT) - 20,..A
Gate Trigger Voltage (tGT) - 0.6 Volt
7500 Volt Isolation Voltage
Surge Anode Current -1.0 Amp
Solid State Reliability
Standard Dip Package
Underwriters Lab Approval #E52744
DESCRIPTION
The IL400 is an optically coupled SeR
employing a GaAs infrared emitter and a
silicon photo SeR sensor. Switching can be
accomplished while maintaining a high
degree of isolation between triggering and
load circuits. It can be used in SeR triac and
solid state relay applications where high
blocking voltages and low input current
sensitivity is required.
3
5
ANODE
4
CATHODE
Gallium Arsenide LED (Drive Circuit)
Power Dissipation at 2S·C .
. .... 100 mW
Derate Linearly from 2S·C ..................................... 1.0S mW/·C
Continuous Forward Current. . .. . . . . . . .. . . . .
. ..................... 60 mA
Peak Reverse Voltage . . . . . . . . .. . . . . . .. . . . . .. . .
.6.0 V
Peak Forward Current (100 1'5. 1% Duty Cycle) . . . . . . . . . . . . . .
. .... 1.0 A
SCR Detector (Load Circuit)
Power Dissipation at 2S·C ambient .......... .
.... 2oomW
Derate Linearly from 2S·C . . . . . . .
.
...... 2.11 mW/·C
Anode Current. ..................................... .
. .... 100mA
Surge Anode Current (S ms duration) .... .
.. ....... 1.0A
Surge Gate Current (S ms duration) ................... .
. ......... 200 mA
Reverse Gate Voltage ........ .
...6.0V
Anode Voltage (DC or AC Peak) .................. .
. .......... 400 V
Coupled
Isolation Voltage ............................... .
. .. 6000 VDC
Total Package Power Dissipation ......... .
. ... 2S0 mW
Derate Linearly from 2S· ................ .
. ....... 2.63 mW/·C
Operating.Temperature Range ........... .
. ... -SS·C to + 100·C
Storage Temperature Range ........................ . . ... -55·C to +1S0·C
Electrical Characteristics (Tamb = 25 ·e)
Parameter
Input Diode
Forward Voltage
Reverse Voltage
Reverse Current
Photo -SCR
Forward Leakage
Current (loJ
Reverse Leakage
Current (IR)
Forward Blocking
Voltage (VOM)
- Min
-Typ
Max
Unit
Test Condition
1.2
1.S
10
V
V
I'A
IF ~ 20 mA
IR ~ 10~
VR ~ SV
0.2
2.0
I'A
0.2
2.0
JIoA
RGK ~ 27 Kohm. IF ~ 0
VRX ~ 400 V. TA ~ 2S·C
RGK ~ 27 Kohm. IF ~ 0
VRX ~ 400 V. TA ~ 2S·C
RGK ~ 10 Kohm
TA ~ 100·C
Id ~ 1S0JloA
RGK ~ 10 Kohm
TA ~ 100·C
Id ~ 1S0 JIoA
IT ~ 100mA
RGK ~ 27 Kohm,
VFX ~ SO V
VFX ~ 100 V
RGK ~ 27 Kohm
RL ~ 10 Kohm
VFX ~ 100 V
RL ~ 10 Kohm
RGK ~ 27 Kohm
400
V
Reverse Blocking
Voltage (VOM)
400
V
S.O
On Voltage (VI)
Holding Current (IH)
V
1.2
500
~
Gate Trigger
Voltage (V",)
0.6
1.0
V
Gate Trigger
Current (I",)
20
SO
I'A
S.O
10.0
mA
2
Vee
G·ehm
pF
Coupled
Turn-on Current (1FT)
Isolation Voltage
Isolation Resistance
Isolation Capacitance
5-63
O.S
7500
100
VFX ~ 100 V
RGK ~ 27 Kohm
t~1 sec.
V;", ~ SOO V
f ~ 1 MHz
SIEMENS
IL410
ZERO VOLTAGE CROSSING
600 V TRIAC DRIVER OPTOCOUPLER
]&101.
Package Dimensions in Inches (mm)
.340
~;g----l
~!-
---I
f'!':J
~
L
-,ii-
---
l-
r:
L1D1IHOIlE l i ' 1RIACANOOE.
1
L1DCAIHOIJ£'
~.
.
z~c
NC 3
5SU8S1RAIT
00 NOTCOItN!10K V/JlS
• Very Low Leakage <10K JlA
• Withstand Test Voltage from
Double Molded Package
7500 VACpEAK
• Small6-Pln DIP Package
• UL Approval #E52744
DESCRIPTION
The IL410 consists of a GaAs IRLED optically coupled to a photosensitive zero crossing TRIAC network. The TRIAC consists of two inverse
parallel connected monolithic SCRs. These three semiconductors are
assembled in a six pin 0.3 inch dual in-line package, using high
insulation double molded, over/under leadframe construction.
High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR predriver resulting in an LED trigger
current of less than 2 mA(DC).
The IL410 uses two discrete SCRs resulting in a commutating dV/dt
greater than 10KV/JlS. The use ola proprietary dv/dt clamp results in a
static dV/dt of greater than 10KV/JlS. This clamp circuit has a MOSFET
that is enhanced when high dV/dt spikes occur between MT1 and MT2
of the TRIAC. When conducting, the FET clamps the base of the
phototransistor, disabling the first stage SCR predriver.
The zero cross line voltage detection circuit consists of two enhancement MOSFETS and a photodiode. The inhibit voltage of the network is
determined by the enhancement voltage of the N-channel FET. The Pchannel FET is enabled by a photocurrent source that permits the FET
to conduct the main voltage to gate on the N-channel FET. Once the
main voltage can enable the N-channel, it clamps the base of the
phototransistor, disabling the first stage SCR predriver.
The 600V blocking voltage permits control of off-line voltages up to
240VAC, with a safety factor of more than two, and is sufficient for as
much as 380VAC.
The IL410 isolates low-voltage logic from 120, 240, and 380 VAC lines
to control resistive, inductive, or capacitive loads including motors,
solenoids, high current thyristors or TRIAC and relays.
Applications include solid-state relays, industrial controls, office
equipment, and consumer appliances.
5-64
Maximum Ratings
Characteristics (Cant.)
Emiller
Reverse Voltage ..............................................••.......••.....•..•.....................•.. 6 V
Forward Current ..................................................................................... 60 mA
Surge Current ...........................................................................................2.5 A
Power Dissipation ................................................................................ 100 mW
Derate from 25'C .......................................................................... 1.33 mWI'C
Thermal Resistance .......................................................................... 750 'CIW
Symbol
Oulpul Oeleclor (Cont.)
Holding Current
(VT=3V)
Latching Curren I
(VT=2.2V)
LED Trigger Current
(V",=5 V)
Zero Cross Inhibit Voltage
(1,=Rated 1FT)
Oeleclor
Peak Off·State Voltage ............................................................................ 600 V
Peak Reverse Voltage ............................................................................. 600 V
RMS On·State Current .......................................................................... 300 mA
Single Cycle Surge ...................................................................................... 3A
Total Power Dissipation ....................................................................... 500 mW
Derate from 2S'C ............................................................................ 6.6 mWI'C
Thermal Resistance .......................................................................... 150 'CIW
Tum·OnTIme
(VRM=V",,=424 VAC)
Tum·OffTIme
(PF=1.0,1,=300mA)
Critical Rate of Rise
of Off·State Voltage
(VRM =VCM=424 VAC)
Package
Storage Temperature ............................................................ ·SS'C to + 150'C
Operating Temperature ......................................................... -55'C to + lOO'C
Lead Soldering Temperature ....................................................... 260'C/S sec.
Withstand Test Voltage ........................................ 7500 VAC_/S300 VAC..,.
Min.
Typ.
Max
Unll
IH
65
200
pA
I,
5
2
I"
15
t".
35
JIS
t"",
50
JIS
dv,.../dt
10000
Symbol
Emiller
Forward Voltage
(1,=60mA)
Breakdown Voltage
(1.=10 pAl
Reverse Current
(V.=6 V)
Capacitance
(V,=O V, f= 1 MHz)
Thermal Resistance
Junction 10 Lead
Min.
V,
V",
6
Typ.
Max
Crilical Rate of Rise
of Commutating Current
(1,.=300 rnA)
Thermal Resistance
Junction to Lead
1.3
1.5
30
I.
0.1
c,
40
Oulpul Oelector
Repetitive Peak
Off·State Voltage
(100.=100 pAl
V."..
Off·State Voltage
(1......,=70 pAl
V......,
Off·State Current
(Vc=600V, T~.=100'C,
1,=OmA)
1D{RMS)1
Off·State Current
(Vc=120 V, 1,=Rated 1FT )
'O(RMS)2
On-State Voltage
(1,.=300mA)
V",
On·State Current
(PF=1.0, V"RMS,=1.7 V)
I",
Surge (Non·Repetitive)
On·State Current (f=50 Hz) I",.
V
VlJIS
V/JIS
2000
VlJIS
VlJIS
di/dt
100
Aims
R"...
150
'CIW
dV,_/dt
10
pA
pF
'C/W
600
650
V
424
460
V
10
1.7
Insulation and Isolation
Crjijcal Rate of Rise of
Coupled InpuVOulput
Voltage (1,=0 A,
VRM=V",,=424 VAG)
dv,,,,/dt
Common Mode Coupling
Capacitor
CeM
Package Capacitance
(f= 1 MHz, V,o=O V)
C,o
Insulation Resistance
Rs
Withstand Test Voltage
Input·Output
(Relative Humidity S50%)
WTV
(l,oS10 pA, 1 min.)
WTV
Relative Humidity S50%)
WTV
WTV
(1'0,,10 pA, 1 sec.)
V
750
R"."
Unit
100
pA
20
pA
3
V
300
3
25
2000
10000
(T~.=80'C)
Characteristics
mA
Vo<
(T~.=60'C)
Critical Rate of Rise
of Commutating Voltage
(VRM=VCM=424 VAC)
mA
·'1
.....
go
.!!S
i!
Cle.
10000
VlJIS
0.01
pF
0.8
pF
n
4420
6250
5300
7500
VACRMS
VAC"""
VAC"",
VAC"""
rnA
A
IL410
5-65
FIGURE 2. NORMALIZED LED TRIGGER CURRENT
VS. POWER FACTOR
POWER FACTOR CONSIDERATIONS
A snubber isn't needed to eliminate false operation of the
TRIAC driver because of the IL410's high static and
commutating dv/dt with loads between 1 and 0.8 power
factors. When inductive loads with power factors less than
0.8 are being driven, include a RC snubber or a single
capacitor directly across the device to damp the peak
commutating dv/dt spike. Normally a commutating dv/dt
causes a turning-off device to stay on due to the stored
energy remaining in the turning-off device;
2.0
r----.---.,-.---r---r--,-.----,
fFth Normalized to IAh @ ·PF = 1.0
Ii :: =:-: :-: :""1:.-:::-:::-:::-:::-!~-:::-:::"",=~j~~===
ji
But in the case of a zero voltage crossing optotriac, the
commutating dv/dt spikes can inhibit one half of the TRIAC
from turning on. If the spike potential exceeds the inhibit
voltage of the zero cross detection circuit, half of the TRIAC
will be held-off and not turn-on. This hold-off condition can
be eliminated by using a snubber or capacitor placed
directly across the optotriac as shown in Rgure 1. Note that
the value of the capacitor increases as a function of the
load current.
-5~
~
1.4
1.2
\
I
\~.
;
!
'i - - - I
1.01--+--i---+--+--+
0.8 '---'-...............-'---'---'-.......- .......-'-...............---1
0.0
0.2
0.6
0.4
0.8
1.0
1.2
PF· Power Factor
FIGURE 3. SCHEMATIC
FIGURE 1. SHUNT CAPACITANCE VS.
LOAD CURRENT
.001 ....................................................................................,................Jc.............................
o
50
100
150
200
250
300
350
400
IL - Load Curranl· mA(RMS)
CATHODE
The hold-off condition also can be eliminated by providing
a higher level of LED drive current. The higher LED drive
provides a larger photocurrent which causes the phototransistor to turn-on before the commutating spike has activated the zero cross network. Figure 2 shows the relationship of the LED drive for power factors of less than 1.0.
The curve shows that if a device requires 1.5 rnA for a
resistive load, then 1.8 times (2.7 mAl that amount would
be required to control an inductive load whose power
factor is less than 0.3.
IL410
5-66
Forward YOltage versus forward current
Peak LED current versus duty factor, Tau
1.4 , . . - - - - - - , - - - - - - . , - - - - - - - - - - - ,
10000.--~--.----,----r----r----,---,
1.3 ...................................................................................
Duty Factor
E
1000
.005'
.01 '
.02 ~i":_::"-Ik:--+--~<;---+-.05 '
.1 ~
1.0 i----==--f'-----::7'"'1"------j
2'
100
0.91------::0*''''-----+-----1
Ta=100°C
0.8 ............................. ······························t·······················.......
,sr'I'=¥=t=~~~j
0.7
.1
100
10
If· Forward Current· mA
I . LED Pulse Duration· s
Maximum LED power dissipation
Maximum oUlput power dissipation
600
;:
;:
E
100
:;;
~
E
................................
r:::
500
400
0
~
0
...
W
..J
~
"- 300
~
0
50
.,
Vi
is 200
"5
'0
% 100
W
..J
...
0
...
0
·60
·40
·20
0
20
40
60
Ta· Ambient Temperature. °C
80
100
Ta· Ambient Temperature· °C
OnooState terminal voltage versus terminal current
500
400
~
300
If
100
e.
cr
C
!!::
a
i
200
0
·100
en ·200
b.
·300
!:: -400
'?
.500
/
--t---
l----~
L -.....-1._'---'--'-_.i..-.....--'-_'---'--'----'
·3
-2
-1
o
2
3
VT· On-State Vollage - V(RMS)
IL410
5-67
SIEMENS
IL420
600 V TRIAC DRIVER OPTOCOUPLER
Package Dimensions in Inches (mm)
.340
t
i1&
(6.601
1;~~~/"1
ID
LED ANODE 1
~
LEO CATHODE 2
~
5 SUBSTRATE
00 NOT CONNECT
.260
L
6 TRIAC ANODE 2
Ne 3
4 TRIAC ANODE 1
~~130
,3.3Oi
.008
,2031 -11-
':ii'
FEATURES
High Input Sensitivity 1FT = 2 mA
600 V Blocking Voltage
300 mA On-State Current
High Static dvldt 10,000 V/IlS
Inverse Parallel SCRs Provide
Commutatlng dvldt >2K VlIlS
• Very Low Leakage <10K I1A
• Withstand Test Voltage from
Double Molded Package
7500 VACpEAK
•
•
. •
•
•
• Small 6-Pln DIP Package
• UL Approval #E52744
.300
0.62)
-----.L,. '"''
150
M
00
15'
DESCRIPTION
The IL420 consists of a GaAs IRLED optically coupled to a photosensitive non-zero crossing TRIAC network. The TRIAC consists of two
inverse parallel connected monolithic SCRs. These three semiconductors are assembled in a six pin 0.3 inch dual in-line package, using
high insulation double molded, over/under leadframe construction.
High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR predriver resulting in an LED trigger
current of less than 2 mA(DC).
The IL420 uses two discrete SCRs resulting in a commutating dV/dt of
greater than 10KV/ms. The use of a proprietary dv/dt clamp results in a
static dV/dt of greater than 10KV/ms. This clamp circuit has a MOSFET
that is enhanced when high dV/dt spikes occur between MT1 and MT2
of the TRIAC. When conducting, the FET clamps the base of the
phototransistor, disabling the first stage SCR predriver.
The 600V blocking voltage permits control of off-line voltages up to
240VAC, with a safety factor of more than two, and is sufficient for as
much as 380VAC.
The IL420 isolates low-voltage logic from 120,240, and 380 VAC lines
to control resistive, inductive, or capacitive loads including motors,
solenoids, high current thyristors or TRIAC and relays.
Applications include solid-state relays, industrial controls, office
equipment, and consumer appliances.
5-68
Maximum Ratings
Characteristics (Cont.)
Emiller
Reverse Voltage ..........................................................................................6 V
Forward Current ..................................................................................... 60 mA
Surge Current ........................................................................................... 2.5 A
Power Dissipation ................................................................................ 100 mW
Derate from 25'C .......................................................................... 1.33 mW/'C
Thermal Resistance .......................................................................... 750 'cm
Symbol
Oulput Detector (ConL)
On-State Voltage
(IT=300mA)
V",
On-State Current
(PF=1.0. V~....,=1.7V)
I",
Surge (Non-Repetitive)
On-State Current (f=50 Hz) IlSM
Holding Current
(VT=3V)
IH
Latching Current
(VT=2.2V)
I,
LED Trigger Current
(V...=5 V)
1FT
Turn-On Time
(V"",=V",,=424 VAC)
t"..
Turn-Olf Time
(PF=1.0. 1,.=300 mAl
t"",
Critical Rate of Rise
of Off-State Voltage
(VFN=V",,=424 VAC)
dV
~
E
~
1.2
~,
1.1 1--""''----l-Ta=25'
E
~
.cos!
1000
i
1.0
0.9
:!i:
0.7
L -...................u..L........_ - ' -........................_
.1
.2 :
100
~
~
Ta=100'C
...........................................................+..............................
~
U'O
0.8
!
.1 ;
......fil
.
F-----::".r.=----+------l
.02~-
.05
u"
If
.01 :
.S!i-t==:;:;r===F~~~
.............................
10
1~0~-~6~~10~-~S~~10~_74~~1~~~3~~1~~~2~~1~~71~~1~OnO~~1~01
100
If- Forward Current - mA
I - LED Pulse Duration - s
Maximum LED power dissipation
Maximum oUlpul power dissipation
600
~,
100
1
'"
0
...
...w
w
50
'0
-40
-20
Ta -
20
~
500
400
0
~
D-
O
-60
~
......•.... ........... ..........
40
60
i
~
VI
'"
300
is 200
:;
CL
:;
0
~
80
100
D-
100
Ta - Ambient Tempersture - 'C
Ambient Temperature - 'C
On..tate terminal voltage versus terminal current
-2
-1
0
2
3
VT - On-SlBte VoIlBge - V(RMS)
IL420
5-71
SIEMENS
ILCT6
DUAL PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
ANOO.' ~"M''''"
~
CA<. HoaE; 2
CATHODE 3
1 COLLECTOR
6COlLECTOR
~
ANODe 4
P02)
rl--,-1----,
!i2ii
280
!L.!.!.I
(839)
330
5 EMITTER
LED CHIPS ON PINS 2 AND 3
PT CHIPS ON PINS 6 AND 7
040
.
.048
~-III-.052
'
~I
-I~~
(.50S)
020
FEATURES
•
•
•
•
•
•
Two Isolated Channels Per Package
50% Typical Current Transfer Ratio
1 nA Typical Leakage Current
Direct Replacement For MCT6
Underwriter Lab Approval #E52744
~ VDE Approvals 0883/6.80,
080411.83
DESCRIPTION
The I LCT6 is a two channel opto isolator
for high density applications. Each channel
consists of an optically coupled pair employing a Gallium Arsenide infrared LED and a
silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a
high degree of electrical isolation between
input and output. The I LCT6 is
especially designed for driving medium-speed
logic, where it may be used to eliminate
troublesome ground loop and noise problems.
It can also be used to replace relays and
transformers in many digital interface applications, as well as analog applications such
as CRT modulation_
Maximum Ratings
Maximum Temperatures
Storage Temperature ........................................ -55°C to + 150°C
Operating Temperature ...............•...................... -55°C to + 100°C
Lead Temperature (Soldering, 10 seconds) ................................ 260°C
Input Diode (each channel)
Rated Forward Current, DC ............................................ 60 mA
Peak Forward Current, DC (1 ~s pulse, 300 pps) .............................. 3 A
Power Dissipation at 25°C Ambient .................................... 100 mW
Derate Linearly Irom 25°C ......................................... 1.3 mW/·C
Output Transistor (each channel)
Power Dissipation at 250C Ambient .................................... 150 mW
De,ate Linearty Irom 25°C ............................................ 2 mW/OC
Collector Current ..................................................... 30 mA
Coupled
Isolation Test Vottage
in Accordance with DIN57883/6.80 ........................ 3750 VAC/5300 VDC
Creepage Path ................................................... 7 mm min.
Clearance Path ................................................... 7 mm min.
Tracking Index According to VDE 0303 ................................ KB100/A
Total Package Dissipation at 25°C Ambient .............................. 400 mW
Derate Linearly lrom 250C ...........•.........•.................. 5.33 mW/oC
UL Qualilied lor ...................................................7500 VDC
Electrical Characteristics (Tamb = 25 DC)
Min
Input Diode
Rated Forward Voltage
Reverse Voltage
3.0
Reverse Current
Junction Capacnance
Output Transistor
Breakdown Voltage
Collector to Emitter
30
Emitter to Collector
7.0
Leakage Current·
Collector to Emitter
CapacnBnce Collector
to Emitter
Coupled
DC Current Transfer Ratio (Ie1IF) 20
Saturation Voltage
Collector to Emitter
Isolation Resistance
Isolation Capacitance
Breakdown Voltage
Channel-te-Channel
Capacitance Between
Channels
Bandwidth
Swnching Times
Output Transistor
5-72
!".
t..
Typ
Max
Unit
1.25
8.0
0.1
100
1.50
V
V
~
pF
10
CondUlona
IF=20 mA .
IA-l0~
VA-3.0 V
VF-OV
V
V
Ic=I.0 mA
nA
VcE =10 V
8.0
pF
VCE-OV
50
%
VcE =10 V, IF=10 rnA
10"
0.5
V
Q
pF
Ic -2.0mA,I F-16mA
V,o =500 V
1=1.0 MHz
1500
VDC
Relative Humidity =40%
0.4
150
pF
KHz
1-1.0 MHz
Ic -2.0 rnA, Vcc -l0 V
RL =100Q
3.0
3.0
~
65
10
1.0
100
0.40
~
IE=I00~
Ic=2 mA, RE-l00.Q
VcE =10 V
10
1000
Input
IF .. 10mA
Pulse widlh '" 100mS
Duly cycle", 50%
(see Switchingtimt:IeSl
schematic
500
...."'ms
100
y'
5 IF" lOrnA
V
VeE = 10V
lamb" 25°C
·05
,
1
0.1
TON
1
0.'
so
10
.D1
100
r
0.9
,
1
'00
,
VI
JJ/
::~~
10
,
~
1
-20 -0
II!
"
20
60
80
Ambienlternperalurof°C)
IF .. I to mA
"
IFf
IF
-25
,;,,!'
0.1
IF .120nIA
5.1
/II
'?"
--- rr
//
Forward current, IF(mA)
I
IF·l0mA
4 VeE'" 10V
lamb" 25°C
/I
..
0.8
10
_"oe/
Collector current versus
diode forward current
Normalized to:
JiI
•
"'"
11.1
Output current
versus temperature
1000
VCE .. 50V-
IF" 1.0mA
p
VCEtV}
'lYplcalleakage current
versus ambient temperature
~
~
'!!
Loadlt$lSlaI\ce. RL(KD)
"~100
~50
"
I.,
IF" S.OmA
0.1
...........
' -------
1 _ lamA
V
L
V
~
1.0
,/'
1.3
If .. 20mA
05~
/
,/
10
1.'
Normalized 10:
'"'
"
.s
'iYplcal forward voltage
versus forward current
Collector current versus
collector voltage
'iYPlcal 8wltchlng times
versu8 ·Ioad resistance
0.'
~
.01
75
100
1
,
10
Forwarclcurrenl,IF(mA)
20
Switching time teat schematic and waveforms
f -'3L
Vee = 10 V
INM:J
-
INPUT
VOUT
'2..
oj
I~
,
,
1-"-1
1--"'-1
1-'... ..1 I
I
i"'"r
I
I
~'·I
lQo;t. - -
I I
I
I
"'" ----
90% - - - - -
I
I-"~
I
I
I
I
II
I I
I
i+"~ I I
-''''
-- ...
- __ 90%
ILeTS
5-73
SIEMENS
ILD1/2/5
QUAD CHANNEL ILQ1/2/5
DUAL CHANNEL
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
ILD112/S
'JSO
(965)
IiOi6)
<0'
FEATURES
• Current Transfer Ratlo@I F = 10 mA
ILD/Q1 - 20% Min.
ILD/Q2 -100% Min.
ILD/QS - 50% Min.
• High Collector-Emitter Voltage
ILD/Q1 - BVCEO = 50 V
ILD/Q2. ILD/QS - BVCEO =70 V
• Field-Effect Stable by TRansparent IOn
Shield (TRIOS)·
• Double Molded Package Offers
Withstand Test Voltage
7500 VACpEAK• 1 sec.
4420 VACRMs' 1 min.
• UL Approval #ES2744
VDE Approval #0883
• &>
DESCRIPTION
The ILD/01/2/5 are optically coupled isolated pairs employing GaAs
infrared LEDs and silicon NPN phototransistor. Signal information,
including a DC level, can be transmitted by the drive while maintaining
a high degree of electrical isolation betWeen input and output. The ILDI
0112/5 are especially designed for driving medium-speed logic and
can be used to eliminate troublesome ground loop and noise
problems. Also these couplers can be used to replace relays and
transformers in many digital interface applications such as CRT
modulation. The ILD1/215 has two isolated channels in a single DIP
package and the IL01/2/5 has four isolated channels per package.
See Appnote 45, "How to Use Optocoupler Normalized Curves. ..
'TRansparent IOn Shield.
5-74
Characteristics (Cant.)
Maximum Ratings
Symbol
EmlUer
Reverse Voltage ..........................................................................................6 V
Forward Current ................................................................................... 100 mA
Surge Current ........................................................................................... 2.5 A
Power Dissipation ................................................................................200 mW
Derate Linearly from 25·C ............................................................... 2.6 mW/'C
Package Transfar
Characteristics
IlO/Q1
Saturated Current
Transfer Ratio
(Coliector·Emitter)
(1,,=10 mAo V..=0.4 V)
Current Transfer Ratio
(Coliector·Emitter)
(1,,=10 mAo V..=10V)
Current Transfer Ratio
(Coliector·Base)
(1,=10 mAo V..=9.3 V)
IlO/Q2
Saturated Current
Transfer Ratio
(Collector·Emitter)
(1,=10 mAo V..=0.4 V)
Currenl Transfer Ratio
(Cot/ector·Emitter)
(1,=10 mAo V..=10 V)
Current Transfer Ratio
(1,=10 mAo V..=9.3 V)
Oolector
Colieclor·Emitter Reverse Voltage
ILD/Ol ....................................................................................................50 V
ILD/02. ILDto5 ......................................................................................70 V
Emitter·Base Reverse Voltage ..................................................................... 7 V
Coliector·Base Reverse Voltage ................................................................ 70 V
Cot/ector Current .................................................................................... 50 rnA
Cot/ector Current (t
CML
5000
V/flJ>
Ccu
0.01
pF
10.1-'
n
q.o
0.8
As
5+ 10
1>0
I;
%
%
pF
3.3
0.5
10
10
pA
pA
4
0.6
10
12
pA
pA
V
HFE
200
650
1800
HFE"'T
120
400
600
600
pA
pF
pF
pF
C..
C..
C,.
R,...,
lsolallon and Insulation
Common Mode Re(ection
OUlpulHigh
N..;=50V....
RL=l kn. 1,=0 mAl
Common Mode Relection
OulputLow
N..;=50Vp.p.
RL=l kn. 1,,=10 mAl
Common Mode
Coupling Capacitance
Package CapaCitance
N,o=OV. f=l MHz.)
Insulation Resistance
N,.o=500V)
Dielectric Leakage Current
N ..=442OAC(IWS)'
1 min .• 60Hz)
N,o=6250VDC.l min.)
N,o=5304 AC(IWS)'
1 sec .• 60Hz)
N,o=7500 VDC. 1 sec.)
Min.
C'/W
ILDlQl1215
5-75
SWITCHING TIMES
Saturatad SWHchlng
Non-Saturated SWHchlng
FO:J-
F= 10KHz,
DF=50%
F=10KHz,
IF·' ....
DF = 50%
Non-Saturated Switching Timing
RL
t. . .
Vo
Saturatad SWitching Timing
'lJ
tD
Characteristic
Delay
Rise llme (Vcc=6 V)
ILDlQ1
1,...2OmA
1LD1Q2
l,.=5mA
ILDJQ5
1,...10mA
Unit
T.
0.8
1.7
1.7
lIB
I-
1.9
2.6
2.6
. lIB
ILDlQ1
1,...2OmA
Characteristic
Delay
Rise llme (V",=0.4 V)
ILO/Q2
1,...6mA
ILDlQ5
1,...10mA . Unit
T.
0.8
1
1.7
lIB
I-
1.2
2
7
lIB
Storage'(RL=76 n)
..
0.2
0.4
0.4
lIB
Storage (R.= 1 kn)
..
7.4
6.4
4.6
lIB
Falillme
\.
1.4
2.2
2.2
lIB
Falillme (Vcc=5 V)
\.-
7.6
13.6
20
lIB
t"..
1.6
5.4
2.6
lIB
I,.,.
8.6
7.4
7.2
lIB
Propagation H· L
(60% of V,.,.)
t"..
0.7
1.2
1.1
lIB
PropagaUon H· L
(V",=1.6V)
PropagaUon L· H
I,.,.
1.4
2.3
2.6
lIB
Propagation L· H
ILOI0112J5
5-76
Forward voltage versus forward current
P.ak LED current veraus duty faclor. Tau
,
1.4
10000
,;
;
.
1.3
..........................•~ ........•....................................
1.2
···························t········
=
1.1
1d
1.0
!!I
>
t
~
1!
i!
t1.
;
i
;
Ta a-55"C
C
.oos!
E
I
i Taal00"C
.1
1'-
'E
~
,
,0,0-6
~
40
i
!!o
J
'\j
100.ic
Q
...w
.Q
l···.····f\
. . . .·. . . .
20
~
a ......
·······....:-·r···..........
····· ·.-. . · · · · ...........
l····-'-···l·.·.·.·. ·.-.-'-· · · · . . . . .
~
4
a
~
10 0
10 1
20
40
60
Ta - Ambl.nt T.mp.ralura - "C
80
Do
200
150
100
50
a
~
=!F~f*~+K
~
Maximum datector pow.r dlsslpallon
300
/0-1
250
~
TJ(I.IAX)
/0-2
300
80
60
10.3
10-4
Maximum LED power dissipation
...---;-.,---;--,---,---r-.,.---,
Q
10-5
I- LED Puloa Duration -.
100
'"
U
,
i
100
10
Forward Current - mA
.1 '
.2'
.5;
!
;
;
;
;
100
Maximum LED currant varaua amblanllemparalura
120
.
::i
.
;
··························r··························
...........................
,
O.B
1
.01 '
1000
..
0.9
0.7
Duty Factor
-40
-20
a
20
40
60
Ta - Ambl.nl Temperature -"C
80
100
Maximum coll.ctor currant v.rsus colleclor voltage
r---r-..,--.--r-.,..---,,.-......--.
1
iB·
J
B
·
100
~
10
Vc. - Collector-Emllter Voltage - V
Ta - Ambient T"",paratu18 - ·C
l;
~
~
1
Ii
....
~
Normallzallon factor for non....luralad and salurat.d CTR
T....=25D C versus '.
1.5...------;-----,---...,........,
NormaIiZed~:
,
Vee a 10V, IF = lamA, Ta = 25"C
1.0
Normalization factor lor non....lurat.d and saluraled CTR
T•• =60"C veraus I.
1.5
I
,
CTRce(sati Vee = 0.4V
...........................
............;......................•.................
'"
II:
lJ
f
0.5
.1
10
IF - LED Currenl- mA
...----~----_;_-----,
i
Normalized to:
Vee = 10V; IF = lamA, Ta: ~5"C
i
CTRce(sati Vee: 0.4V
1.0 ••.•.•...•.......•.•••••.•..!............................!......................... .
!
i,
11
,,;
;
...........................+
,..... .
0.0
100
.!!
i
·
Z
i
100
'
;
··················1··········
,
0.5 ·••••••• ..
!
0.0 L-...........................t._.............................L...---'-'-............J
100
.1
10
IF - LED CUrrant - mA
ILDlC11215
5-77
Normalization factor .for non4aturated and saturatad CTR
Tamb=70°C versUB IF
Normalization factor for non4aturated and saturated CTR
T....It=100°Cvaraus IF
1.5 ....==----~..:...----""T""---___,
l
i
.'f.
~
IJ
1.5,..-------,r-------,------,
Normalizad to:
Vee =10V: IF = 10mA. Ta=2s"C
i
IL
CTRce(sat\ Vee = 0.4V
!
··············r.........
~ 1.0 ······································ ..
1.0
~
1------t--7"'7"'''-+-'--'''''''':---I
0.5
i
IL
0.0
~
L -.......~......~'--..............................~.........................
10
IF· LED Currant· mA
.1
0.0
100
.............."-...........................",,---,....................
10
100
IF • LED Clirram ; mA
~-,-~
.1
Normalized CTR.. varsus LED Currant
Collactor currant versus dloda forward currem
10
1.5,..---___- , - - - - - - - - , , . - - - - - ,
Normaiized to
!
.D
U
II:
b
1.0
j
T..",.2S"C
/ ---
1.0
0.5
B
1'ii
i
!
I
~
0.0
...................,.........'--...........................'--........................
1
10
0.1
.05
.01
~
.1
---
1,.10mA
Vee.l0 V
'i"
1
100
If· LED Current· mA
20
10
Forward Cum.t IF(rnA)
Collector·emltter leakage varsus tamparaturs
105r---r--r---r----,r--.--~
104r----+----t--~r_-+-~~-~
~
10 3 .............. ,............
1.....................,
I 102~---4-----+;~~~~~~---4----~
1
8
~
WORST CASE
J
o
40
20
60
80
Ta. Amblem Temparature. "C
100
Vbe·Base Emfttar VOltaga • V
i..
Normalization factor for non'saturated and saturated
HFE at T_.=2S"C versus I.
1.5 "--N-o-nna-li-z.-d-to"':----'--;-i- - - - - - ,
~
:
Ib = 201lA. Vco=10V. Ta=2S;C
:
~ 1.0 I:::====P-r--,t--;;NH~F;:;E:---i
1
I
II.
~
0.3
0.4
0.5·
0.6
0.7
:z:
0.8
0.0 lL.........-'-...........ol10'-.
· - ' -..............I...
00-~~~ul..JOOO
Ib • Base Current·
Vbe • Base Emitter. Voltage· V
IlA
ILDI011215
5-78
1.5
Normalization factor lor non_turated and ..turaled
HFE at T_.=50'C varaual.
..--N-orrna-=I-izad-to'!'"':--..:.....-"Ti----'
Normallzailon factor 10. non-saturatad and saturated
HFE at T_._70'C veraus I.
1.5..---=--...--.:....-.,..-----,
Ib ~ 20",,: V_l0V, Ta-25i C
;;
11
{1!
;
l.. . . . . . . . . . . . .
1.0 '====="ili=:=__..........
II!
!
:z:
{1!
II!
NHFE
:z:
i
1
z..
~
:i
0.5
0.5
...
iii
!I:
0.0
1
10
100
Ib - Baas Currant-""
0.0
ILO/QI propagation dalay v.raus collecto. load r..lstor
!
co
3.5
!
.'".
I
9
c
Il
3
5!
1
.1
10
RL - Load R..lstor - Kn
1.0
100
.
!
!
a.
!!:
1000
----r----...,----.., 2.5
i
Ie
·
...........................
ILO/Q2 propagation delay varaus collector load .aslstor
:z:
c
......................._
10
100
Ib - Baa. Cu ....nt .""
1000 .....
!..
100
L -_ _..............._
1
1000
1000 . - - - - , . - - - - . , . - - - - . . , 4 . 0
..:·
NHFE
Vce= 10V
I
zw~
...:z:
1.0
!
100
2.0
·
!!:
!!:
'·1
c
10
1.5
1
.1
10
RL· ColilClor Load RalI.to.· Kn
-at
si
so
e
i
,!
t.
a.
1 tPHL
IL
3
-I
9
:z:
c
Ie.
..
~
IL
1.0
100
...ii.
ete,
5!
!!:
ILDlas propagation delay varaus collector load raalstor
1000
..·
2.5
!
f
!
·
I
100
1.co
:
c
j
.!!
Ie
·
10
3
1
.1
10
RL - Collector Load R..lstor - Kn
I
l
tPHi.
IL
!!:
1.5
1.0
100
·
5!
!!:
IlOlQ11215
5-79
SIEM-=NS
ILD32/1LQ32
MULTI-CHANNEL PHOTODARLINGTON
OPTOCOUPLER
Package Dimensions in Inches (mm)
·AHODf1
~
"
"""" ,
OOHODE 3
ANODE 4
"
.
."'mn
7COU£<11TA
8 CCIU.ECIUR
.
'''''"'''
LED CHIPS ON PINS 2 AND 3
PT CHIPS ON PINS 8 AND 7
(TOP VIEW)
ILQ32
'I'
.00
I----~-----I
FEATURES
• 7500 Volt Isolation Voltage
• Very High Current li'Imsfer Ratio
(500% Min.)
• High Isolation Resistance
(10 11 (l Typical)
• Low Coupling Capacitance
• Standard Plastic Dip Package
• Underwriters Lab Approval #E52744
•
,eo
In41
'"
~ VDE Approval #0883
Maximum Ratings: (At 25"C)
DESCRIPTION
The ILD32 and ILQ32 are optically coupled
isolators employing a gallium arsenide infrared emitter and a silicon photodarlington
sensor. Switching can be accomplished while
maintaining a high degree of isolation between driving and load circuits. They can be
used to replace reed and mercury relays
with advantages of long life, high -speed
switching, and elimination of magnetic fields.
The ILD32 offers two isolated channels in a
DIP package and the ILQ32 has 4 channels.
These devices can be used to replace
4N32's or 4N33's in applications calling for
several single-channel couplers on a board.
Gallium Arsenide LED (Drive Circuit)
Power Dissipation at 25°C. . . . .
. ........... .
......... 150mW
Derate Linearly from 25 °C ................ .
. ........ 2mW/oC
Continuous Forward Current .......... .
. ....... BOmA
Peak Reverse Vollage ...... .
. .................. 3V
Photodarlington Sensor (Load CircuiQ
Power Dissipation at 25°C Ambient ..... .
. ....................... 150mW
Derate Linearly from 25°C ........... .
. ........ 2.0 mW/OC
Collector (Load)·Current ..
. .................. 125 rnA
Collector-Emitter Breakdown Voltage (BVCEol ............................. 30V
Emliter-Coilector Breakdown Voltage (BVECO)
.................~ V
Package
Total Dissipation ILD32 ................ .
..400mW
IL032 .... .
. ........ 500mW
. ............. 5.33 mW/oC
Derate Linearly from 25°C -ILD32 .
-IL032
............. 6.67 mW/oC
Storage Temperature . . . ....... , ..
. ............. -55°C 10 +150°C
Operating Temperature
.............. -55°C to + 100°C
lead Soldering TIme at 260°C .......... .
. ................. 10 sec
5-80
Electrical Characteristics
Parameter
Min
GaAs Emitter
Forward Voltage
Reverse Current
Capacitance
Sensor
BVr,EQ
BV ECO
= 25°C)
Typ
Max
1.25
0.1
100
1.5
V
100
"A
JO
5
1.0
ICED
Coupled Characteristics
Current Transfer Ratio
(Tamb
100
500
1.0
VeEISAT)
Isolation Resistance
Isolation Capacitance
1011
1.5
Turn-on Time
5
100
Unit
pF
IF= lOrnA
VA = 3.0Y
VA = 0
V
V
nA
Ie = 100 ~A. IF = 0
IE = 100~A
VeE = 10 V. IF = 0
%
V
ohm
pF
IF = lOrnA. VeE = lOV
Ie = 2 rnA. IF = 8 rnA
V,O = 500 V
~s
(Vee = 10 V. Ie = 50 rnA
IF = 200 rnA. RL = lBOD
Turn·off Time
Isolation Voltage
(t = 1 sec)
7500
5300
VDC
VAC AMS
VDE Isolation Test
Voltage in Accordance
with DIN 57 883/6.80
5300
3750
VDC
VAC AMS
5-81
Test Condition
~s
SIEMENS
ILD 610 SERIES
DUAL PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm) .
.380
1~---1
~~"OO~I
D~'~
16.10)
.240
(6~
......
.040
l
:.
.
PIN CONFIGURATION:
PIN
."""'.
~
..,
FUNCTION
..
,
,-
..,
~
-'
-
t.!.:.Q!l
11.27)
.1l5O
r-1M-t,-,....;t"l-f"t11
048
.280
lL.W~1
18.391 1':32J-! I.330
.052
'
~I
.J~~
(.508)
.020
FEATURES
Maximum Ratings
• Dual Version of SFK 8101811 Series
• High Current Transfer Ratios, 4 Groups
ILD 81M 40 to 80%
ILD 81()'2 63 to 125%
ILD 81()'31oo to 200%
ILD 810.4160 to 320%
• 7500 Volt Isolation
• VCEsat O•25 (sO.4)Volt
Emitter (GaAs LED)
Aeverse Voltage
IF=10 mA; Ic =2.5mA
• VCEO 70 Volt
• 100% Burn-In
• UL Approval #52744
DESCRIPTION
DC forward current
Surge forward current (I", 10,.s)
Tolal power dissipation
Detector (silicon phototranslstor)
Collector·emitter voltage
Collector current
Collector currenl (I", 1 ms)
Total power dissipation
Oplocoupler
Storage temperature range
Ambient temperature range
Junction temperature
Scldering temperature
• (max. 10 sec)'
Isclation lest voltage (t = 1sec)
Isolation resistance
, Dip scldering: Insertion depth <3.6 mm
The ILD 610 Series is a two-channel optccoupler series for high density applications.
Each channel consists of an optically coupled pair employing a Gallium Arsenide
infrared LED and a silicon NPN phototransistor. Signal information, including a DC
level, can be transmitted by the device
while maintaining a high degree of electrical isolation between input and output. The
ILD 610 Series is the dual version of the
SFK 610/611 Series and uses a repetitive
pin-out configuration instead of more common alternating pin-out used in most dual
couplers.
5-82
a
v
A
Plot
60
1.5
100
Vceo
Ie
I""",
PlOt
70
50
100
150
VA
IF
1_
rnA
mW
V
rnA
rnA.
mW
T••
T"",.
Ti
-55... +150·C
-55... +100·C
·C
100
Tsol•
260
7500
5300
10.1-
VIS
AlSO
·C
VDC
VAC (AMS)
0
CHARACTERISTICS @ T;mb 25°C
Emitter (GaAs infared emitter)
Forward voltage (IF = 60 rnA)
Breakdown voltage (IA = 10 I'A)
Reverse current (VA = 6 V)
Capacitance (VA = 0 V; f = 1 MHz)
VF
VSA
IA
Co
1.25 (:51.65)
30 (2:6)
0.01 (:510)
25
V
V
~
pF
Detector (silicon phototransistor)
Collector-emitter dark current
Collector-emitter breakdown voltage
Emitter-collector breakdown voltage
Capacitance (VCE = 5 V; f = 1 I'Hz)
ICEO
BVCEO
BVECO
CCE
2
70
7.5
7
nA
V
V
pF
Coupled
Collector-emitter saturation voltage
(tF = 10 rnA, Ic = 2.5 rnA)
Coupling capacitance
VCE("I)
Cc
0.25 «0040)
0.35
V
pF
Group
Current transfer ratio'
IF =10mA, VcE =5V
Current transfer ratio'
IF=1 rna, VcE =5 V
ILD 610;1
ILD61()"2
ILD 610·3
ILD 610-4
40-80
63-125
100-200
160-320
%
13 min.
22 min.
34 min.
56 min.
%
2 (:550)
lcEo (VCE = 10 V)
CTR will m~tch within a ratio of 1.7:1
2 (:550)
5 (:5100)
5(:5100)
nA
SWitching Characteristics
Linear Operation (without saturation) IF10 rnA, Vee = 5 V, Re = 75 {}
Group
Turn on time
Rise time
Turn off time
Fall time
Ion
t,
t"ff
~
ILD 610·1
ILD 61()"2
ILD61()"3
ILD 61()"4
3.0 «5.6)
2.0 «4.0)
2.3«4.1)
2.0 «3.5)
3.2 «5.6)
2.5 «4.0)
2.9«4.1)
2.6 «3.5)
3.6 «5.6)
2.9 «4.0)
304 «4.1)
3.1 «3.5)
4.1 «5.6)
3.3 «4.0)
3.7«4.1)
3.5 «3.5)
JlS
I's
JlS
JlS
Switching operation (with saturation) Vee = 5 V, Re = 1 KO
Group
Turn on time
Rise lime
Turn off lime
Fall lime
Ion
t,
t"ff
~
ILD 61()"1
IF =20 mA
ILD 610·2
IF =10mA
ILD610·3
IF =10mA
ILD 61()"4
IF=SmA
3.0 «5.5)
2.0 «4.0)
18«34)
11 «20)
4.3«8.0)
2.8 «6.0)
24 «39)
1.1 «24)
4.6 «8.0)
3.3 «6.0)
25 «39)
15«24)
6.0 «10.5)
4.6 «8.0)
25 «43)
15«26)
5-83
"s .
JlS
I'S
"S
~plc.1
_Itching tlmn
Input:
,see_time ...
y
Duty,,"•• 5OIi
and
5
V
1
0.1
V
;----
.. 10mA.
g.
rON
O.,...------I-----j
1
5
~·.10mA
/I
<4
,
VI
~100
I
~50
::~~
VeE - ,o~=A
,
".'20 rnA
lamb '" 25°C
-55
-25
"r-
•
/:
.,
.1
r-- ~
0
25
50
Ambient temperatura I"C)
1
75
100
1NPUT:J ~Rl
-
'Z.
''''''
,.J,..----il~
I
,
i-"I'
I
1-'"-:1
VOUT
I r-'·I
OU1PIJT!.~:i::
... ---I01Il - - - - -
I
.
"
Forwanlc:urfl!nt.IFImA)
Switching Ume teat achemaHe a n d _
Vcc a l0V
~
---
.0
- r---
I
.1
01
100
Normalized to:
5 IF'" 10mA
VeE .10V
r--
" .1'rnA
~
20
40
60
80
Ambienllemperaturel'"Cl
0
--
IF .. 10mA
1
I"
W
1$
~
VCE".. 10V
Tamb.25O(:
I
///
CDlIector current versua
diode forward current
I
NarrnallzedlO:
~
Forward currenl, If(mA)
VCE(V)
Output current
versus temperatura
1000
!CO
0··0~.1:'----~1r-----7:":----~,00
01!-,-----,1----~"
50 100
10
veraus ambient tempel'llture
20
1,,1-----==-1-""---:--:71'----_1
.1I5h_---t-..";""'"='=·'=mA",,
'l\rplcall••kage current
1
f "1--'=--.+----7"1'----7''--1
'V
I
loadresislancll,I\(KO)
1,,
J1.2
jj.
'.91----~I-""---_j----_1
D.S
•
ul----_jr_---_j--::;;""'~_1
I'"'·'InI/<-::::::====t==ol"i..!"",!£·,..,mA"1
/..-
V
/ -""""1-
10
~; ~01:re--I-----j
Tarm _25°C
If .. 201M
/
~
1.<,----,,----,-----,
Normalized
Pulse widlh .100 mS
I =.:!,
vera"s forward current
" , - - - -to:- - , - - - - - - ,
~.'0mA
!CO
'l\rpJcal to_rei voItIIge
Collector current verwua
collector vottage
veraus load reel_nee
1000
1-"'-:
1-... ..1 1
I
(+"1
t""'-1 :
I.
I
I
I
I
I
20
MCA230/231 1255
SIEMENS
PHOTODARLINGTON
OPTOCOUPLER
Package Dimensions in Inches (mm)
t::1
-0-
.240
16.101
'iT
"""
tJ
TOP'IIEW
..... '~ .....
CAIIIJD( z
NC.1
s OOUlCtOR
4 EMITTER
.010
LEO CHIP ON PlN:2
am,
PTCHIP ON PIN 5
11.181
""
1~..c:::o..I
I
.2!D
(111).
~.'"
JI4'.j
.33OL!:II1Zl
11.32,
.052
I-
r!i!1
~t::..jl-o
!i
....
....
.. .!!
aa
FEATURES
Maximum Ratings
• 7500 Volt Withstand Test Voltage
• 0.5 pF Coupling Capacitance
• CTR Minimum: MCA230/255 -100%
MCA231 - 200%
• Fast Rise Time - 10 ,..s
• Fast Fall Time - 35 ,..s
• Underwriters Lab Approvall#E52744
Gallium Arsenide LED
Power Dissipation al 25°C ..
Derate Linearly from 25°C.
Continuous Forward Current
Reverse Voltage .
DESCRIPTION
The MCA230/231/255 are industry standard
optocouplers, consisting of a GaAs infrared
LED and a silicon photo Darlington transistor. These optocouplers are constructed
with a high voltage insulation, double
molded packaging process which offers
7.5 KV withstand test capability.
Detector Silicon Phototranslstor
Power Dissipation at 25°C ...
Derate Linearly from 25°C.
Collector-Emitter Breakdown
MCA230 ....... .
MCA23t ..
MCA255 ....
EmiUer-Coliector Breakdown
Collector-Base Breakdown
MCA230.
MCA231
MCA255
Package
Total Package Dissipation at 25°C (LED plus Detector) .
Derate linearly from 25°C.
Storage Temperature ..
Operating Temperature .
lead Soldering Time at 260°C.
5-85
oS!.
. ... 135mW
. ...... 1.8mW/oC
.. SOmA
. ... 6V
..210mW
. .... 2.8 mW/oC
. .. 30V
. ......... 30V
.55V
.................... 7V
.............. 30V
......... 30V
.. 55V
. ........ 260mW
. ... 3.5mW/oC
. .... -55 to +150 0 C
. ... -55 to + 100°C
. .. 10 sec
Bectrlc8l Characteristics (Tamb=25°C)
Min
Gallium Arsenide" LED
Forward Voltage
Reverse Current
Junction Capacitance
Phototransistor Detector
BVCEO
MCA230
MCA231
MCA255
BVECO
BVceo
MCA230
MCA231
MCA255
Typ
Max
Unit
1.1
1.5
10
V
"A
pF
50
Conditions
TYPICAL OPTOELECTRONIC
CHARACTERISTIC CURVES
G.AI EMITTER:
FORWARD CURRENT - VOLTAGE
CHARACTERtSTICS
IF=20 mA
VF=3V
VF~O V. f= 1 MHz
l00r-'--'--;-~--r--r-.
V
V
V
'V
30
30
55
100
V
V
V
nA
Ic=10"A. 1,=0 mA
16=10"A. 1,=0 mA
Ic= 10"A. 1,=0 mA
VcE =10 V. IF=O rnA
1.0
1.0
1.0
1.2
V
V
V
V
V
1c.=2 mAo IF=16 mA
Ic=I,=50 mA
Ic=2 mA.I,=1 mA
Ic .. l0 inA. 1,=5 mA
Ic=50 mAo IF=10 mA
ICEO
Ic= loo"A. IF=O mA
Ic=loo "A.IF=O mA
Ic=100"A. IF=O mA
. IE-l0"A. IF=O mA
VCE(sall
MCA230/2311255
Resistance Input to Output
Switching Times
t.,
....
100
200
0.5
7500
5300
100
%
VCE=S V. IF= 10 rnA
%
. VcE =5 V. IF= 10 mA
pF
VDC
t=1 sec
VAC AMS t=1 sec
GQ
ffi 100 '--- -t-+l''--t-+-+---l
!:: ~~ -1~
".
".
RE=loo Q. VcE =10 V
~_y,/~-1_+--+---I
20 -
0.9 • 1.0 "'1.11.2
1.3
1.4
1.5
1.6
FORWARD VOLTAGE (VOLTSI
DARLINGTON
TRANSISTOR CURRENT
100
II,
~ 90
~
60
z
w 70
II::
a: 60
I-
"
50
0
40
e;
l-
-12 mA
I, '10mA
I I I
/
1II,"SmA
/
I I
} I, ·6mA.
/
e;
e; 10
.!'
va VOLTAGE
I I I
I
w 30
-'
-'
0 20
Specifications are subject to change without notice.
/
'1+-t._+-+-t
-'-"+--+-t-+--i---J
40 - -
~
"II::
10
35
"t-t-
I
1,20
Coupled Characteristics
DC Current Transfer Ratio
MCA230. MCA255
MCA231
Capacitance Input to Output
Withstand Test Voltage
I
140
30
30
55
5
.
0
10 20 30 40 50 60 70 60 90
COLLECTOR VOLTAGE IVI
DARLINGTON
TRANSISTOR OUTPUT
CURRENT VS VOLTAGE
~
~
200 r-r-r-.---.r--rr--r--"T--"T-"T-;
L1
160
-'. I .11
I,' 5O.mA..... ~
..l-"'1
~ : : 1-1, • 40 mA.·_I-~-::Io".lf'......!--+-±:..I
~ "I 1
5120
~
100
.... ~mA
r.=~=t=l~$~I~I;,;;~
I ~mfI
~j
80
60
8
4°r-t-t-ti~~~~~~
I, • 10 mAL
.!' 20
I-
I,
1-t-+-+II#f:I-,+''::0 I 1 1 1
.2 .4 .6 .8 1.01.21.41.61.8 2.0
VeE COLLECTOR VOLTAGE IVI
DARK CURRENT VS
TEMPERATURE
~
10'~~~~~
1=
/
~ 10'~~~~~~~~~~
~ 102~~~~~/~~~~~
~101i_
~
.E
1
1
o
25
50
75
100
125
TEMPERATURE lOCI
MCA230/23l1255
5-86
MCT2/MCT2E
SIEMENS
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
1;
,340(80641
.360 (9J4)
TOP VIEW
1·~1;;J...J::;;L....I=-I
-6.
.240
ANODE
CATHODE
"V
(5.10)
(060}
160
~
NC3
LJ.'-r-r...-.-T""T""'
..
~
BASE
COLLECTOR
.EMlnER
LED CHIP ON PIN 2
Pi CHIP ON PIN 5
....
:t~-1mct~
I~
.280
,~.
~
.150
I
a.lll
im
(~~--1
(~
I
I
I-
~
---r~
(,762)
I
.'16(.400)", \.
.1I21l(.508l
lIll
.100
-(l54)
""
FEATURES
Maximum Ratings
•
•
•
•
Gallium Arsenide LED
Power Dissipation at 25°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .... 200 mW
Derate Linearly from 25°C ......................................... 2.6 mW/oC
. .... 60 rnA
Continuous Forward Current .......
7500 Volt Withstand Test Voltage
0.5 pF Coupling Capacitance
CTR Minimum: 20%
Underwriters Lab Approval #E52744
DESCRIPTION
The MGr2 and MGr2E are industry standard
optocouplers, consisting of a GaAs infrared
LED and a silicon phototransistor. These
optocouplers are constructed with a high
voltage insulation, double molded packaging
process which offers 7.5 KV withstand test
capability.
Reverse Voltage
............. ,
................ 3 V
Detector Silicon Phototransistor (each channel)
.................
..200 mW
Power Dissipation at 25°C ... .
... . . . .. . . . . .
. .2.6 mW/oC
Derate Linearly from 25°C ......... .
. .................................. ~V
Collector· Emitter Breakdown ... .
.. ................. 7 V
Emitter·Collector Breakdown .. .
Collector·Base Breakdown .... .
' " .. 70 V
Package
Total Package DiSSipation at 25°C (LED plus Detector) ... .
Derate Linearly from 25°C ....... " . . . . ... . . . . . . .. .. .
. .250 mW
. " ..... 3.3 mW/oC
Storage Temperature ............................................ -55 to + 150°C
Operating Temperature......................
Lead Soldering Time at 260°C.
.-55 to +100oC
.......................
. ...... 10 sec
Electrical Characteristics (Tamb =25°C)
Min
Gallium Arsenide LED
Forward Voltage
Reverse Current
Junction Capacitance
Photatransistor Detector
BVCEO
BV Eco
BVCBO
Typ
Max
Unit
1.1
1.5
10
V
IF~20
~A
VF~3
50
pF
VF~O
Ic~
2
V
V
V
nA
nA
pF
30
7
70
50
20
ICEO
ICBO
Collector·Emitter Capacitance
Coupled Characteristics
VeE (sal)
DC Current Transfer Ratio
Capacitance Input to Output
Withstand Test Voltage
Resistance Input to Output
Switching Times
too
tofl
5-87
20
Condftlons
0.1
60
0.5
0.4
rnA
V
V, f~1 MHz
1 rnA,
IF~O
rnA
IE~100~A, IF~OmA
10 J<
Collector current veraul
diode forward current
..
1
i
I!J
VCE_50V-
.
0.8
"
1
Normalized to:
IF= 10mA
Vee .10Y
TaMl = 25°C
2
VI
-20
-4
~
,~.
Output current
Yenlua temperature
1000
. ,,""
0.'
VCf(V)
typical leakage currant
versus Imblent temperature
1
,~
IF .. HJrnA.
50100
"
"\~
.2 .0
'
'"If
1
1.2
,1.1
1
Loadr~stance.Rt.(Kn)
0
j
IF = 5.0mA
rON
.01
0.5
If = 10 mA
DI
I
DI
1.3
IF" zomA
I.O~
0.'
/
0
I.
Normalized
_OIl
..........
100
~plcal forwlrd voltage
versu8 forward current
Collector current venlUI
collector voltage
~
---
I
-25
AMlien1temperatureC"C)
0
25
50
ArOOientte~erature(°C) .
75
100
"
~lWIIrdcurren1.lF(mA)
Swttchlng time !eM Khematle and waveform.
Vee= 10V
INPII1
,.Jr------ill~
:-~-:
I~:·t
~
,j-'j-I,....,,
i
DUTPUT'
:'3,L
""'---- ,
10% - -
I I
9O'Iio - - - - -
MCT6
5-90
MCT270 thru MCT277
SIEMENS
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
ru'
1;l:~~:i:1
".I~
TOP VIEW
'~'
ANODE
CATHODE l
-V
i6.6Q
.Il0l
1l-Fl--f"1-f'''H
r
17.111
i8.38J
I
.048
il~.j
..., i-
• 7500 Volt Withstand Test Voltage
• 0.5 pF Coupling Capacitance
• CTR Minimum: MCT270 - 50%
MCT271 - 45%
MCT272 -75%
MCT273 -125%
MCT274 - 225%
MCT275 -70%
MCT276 -15%
MCT277 -100%
• Underwriters Lab Approval #E52744
DESCRIPTION
The MCT270 through MCT.277 are industry
standard optocouplers, consisting of a GaAs
infrared LED and a silicon phototransistor.
These optocouplers are constructed with a
high voltage insulation, double molded pack·
aging process which offers 7.5 KV withstand
test capability.
Maximum Ratings
Gallium Arsenide LED
Power Dissipation at 25°C ................ 100 mW
Derate Linearly Irom 25°C ............ 1.33 mW/oC
Continuous Forward Current.
. ... 60 rnA
Reverse Voltage . . . .. . . . . . . . .
. ..... 3 V
Detector Silicon Phototransistor
Power Dissipation at 25°C ................ 150 mW
Derate Linearly lrom 25°C ............... 2 mW/oC
Collector-Emitter Breakdown ................. 30 V
Emitter-Collector Breakdown ............
. .7 V
Collector-Base Breakdown. . . . . .
. .. 70 V
.130
,33<1
f 'lBl)
~.I50
...
Ll
3XJ
(.2031
mlt:...jj.
FEATURES
• EMITTER
LEO CHIP ON PIN 2
PT CHIP ON PIN 5
NO
U.181
12.03)
.280
BASE
COLLECTOR
-El
~-IJ.L~ ..
1J
~
<:.
NC )
Electrical Characteristics (T8mb =25°C)
Min
Gallium Arsenide LED
Forward Voltage
Reverse Current
Junction Capacitance
Phototransistor Detector
BVCEO
BVEBO
BVCBO
Iceo
Coupled Characteristics
Typ
1.5
10
50
30
5
70
VCE(sat)
DC Current Transfer Ratio
MCT270
50
MCT271
45
MCT272
75
MCT273
125
MCT274
225
MCT275
70
MCT276
15
100
MCT277
CTRcE rnin.=12.5%@Vce =0.4V, IF=16 rnA
MCT271-276
CTRcE min. =40% @Vce =0.4·V, IF= 16 mA
MCT277
0.5
Capacitance Input to Output
Withstand Test Voltage
7500
5300
Resistance Input to Output
100
Swttching Times t"" toll:
MCT270, 272
MCT271
MCT273
MCT274
MCT275,277
MCT276
Package
Total Package Dissipation at 25°C
(LED plus Detector) . . . . .
Derate Linearly Irom 25°C. .
. ....... 250 mW
. .... 3.3 rnW/oC
Storage Temperature ................ -55 to +150 oC
Operating Temperature .............. -55 to + 100·C
Lead Soldering Time at 260°C ............... 10 sec
5-91
Max
50
0.4
Unit
V
Conditions
"A
pF
IF=20 rnA
VF=3 V
VF=O V, 1= 1 MHz
V
V
V
nA
Ic=1.0 rnA, IF=O rnA
le=loo"A,IF=OmA
Ic=10 "A,IF=O rnA
VCE = 10 V, IF=O mA
V
%
Ic=2 rnA, IF= 16 rnA
VcE =10V,I F=10mA
90
150
250
400
210
60
pF
VACpEAK
VACRMS
GQ
~s
10
7
20
25
15
3.5
I
1=1 MHz
l,o:S1 O"A, t=5 sec.,
RH:s50%
V,_0 -500 VDC
RL = 100 Q, Vcc=5 V
Ic=2 rnA
'tYpical switching times
\lersus load resistance
•000
.
Input
IF'" 10 rnA
Pulsewldlh"" lOOmS
Duly cycle" 50%
lseeSwitctnng lime test
schematic
waveforms
.00
"'"
V
"
•
5~
..
•
/
/'
05
~
.,
Tamb" 2S"C
.
If .. 2ilmA
If .. 10 rnA
------
05 ;;:;--
..
TON
5
•
500
I
VCE-50V-
~~: ~~=;?
,~
~
40
60
Arrblenllemperature tGel
..
5
VCEIVI
.S
Tamb = 25"C
t
"
80
'00
IF
.120 rnA
IF .. lOrnA
'F
.1'mA
I
•
••
.
I
4 VCE _tOV
I
/II
ff
-25
25
50
AmblenitemperaluretOC)
..
Forwardcurrenl, JFlmA)
.
'00
Collector current versus
diode forward current
Normalized to:
5 IF 10 mA
=
--
VeE = 10V
----
Tarnb '" 25"C
------
IFfr-
-55
0
'.9
I•
f/
.'
1f> C
If"' lOrnA
2
//I
'Poe
,»,,!"
.f,.o
Normalized to:
IF ... IOmA
J
.. -$~
1.1
~
Output current
versus temperature
.000
,»,,!
E
..
50100
..
'.2
g
i
V
Load reSIStance. RL tKO)
20
~
If. SO rnA
"If
'TYplcalleakege current
versus ambient temperature
•-20
"
Normalized 10:
5 IF'" tOmA
VeE .tOV
V
V
............ r-
~pical forward voltage
versus forward current
Collector current versul
collector voltage
•
.5
•
/
.-----
.5
..............
75
..
.00
.
20
ForwardcurrenI,IF(mA)
Switching time test schematic and waveforms
Vcc=5V
INPur o.Jr--,-------iI'~
1-"'-1
1--"'
-1
i-""r I
,,,,-1 1
I
I
I
I
r'·1
1- ,
1 1-"·1
.UlPuro3Li:1
10% - -
I:
Pulse width = 100 !l5
Duty Cycle = 10%
i~:'
I
I
I
5fliIII - - - .
9(1% - - - - -
MCT270 Ihru MCT277
5-92
SIEMENS
SFH600SERIES
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimension in Inches (mm)
.3077.8
.29117.<)
(j
O.·
§.
24816J1
,
,
5
ANOIE
CATHOIE'
;;.
Ne 3
BASE
5 OOLLECTOR
4 EMITTtR
LED CIIIP (II PIN 2
PTCH1PONPINS
Maximum Ratings
Reverse Voltage (VR) .•............••..•...•..••..•••....•......•.... 6 V
Forward Current (IF) ....... , ..••..•...•.••..•..........•.... , ••..• 60 mA
FEATURES
•
High Quality Premium Device
•
Long Term Stability
•
High Current Transfer RatiO,
4 Groups
SFH 600·0, 40 to 80%
SFH 600·1, 63 to 125%
SFH 600·2, 100 to 200%
SFH 600·3, 160 to 320%
• 5300 Volt Isolation (1 Minute)
• Storage Temperature -55 to + 150 0 C
• VCE SAT 0.25 «0.4) Volt
IF = 10 mA, Ie = 2.5 mA
• UL Approval 'Es2744
· 4
•
VDE Approval #0883
~ VDE Approval #0884 (Optional
with Option 1, add ·X001 suffix)
~~~:rCD~~;~~~i~~)I(~;)1~~.S. ~ ~ ~ ~: ~::',:: ~:::::',:::',',',',',::::',:',:::: '1~'!~
Detector (Silicon Phototranslstor)
Coliector·Emitter Voltage (CCEO) ..•...........................•...... 70 V
Emitter-Base Reverse Voltage (V ESO) • . . . . . . • . . . . . • . . . • . . . . . . • • . • . . . • .. 7 V
Collector Current (lC) .•........•...••.....•...•..•.........•...•• ,. 50 rnA
Collector Current (ICS), t = 1 ms . • . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. • ... 100 mA
Power Dissipation (Ptot) .. . . . . . . . . . . . . . . . . • • . . . . . . . . . • . . • . . . . . . .. 150 mW
Coupler
Storage Temperature (Tstor) . . . . . . . . . . . . . . . • . • • . • • . . . • . . . .. -55 to + 150·C
Ambient Temperature (Tamb) ........•...•......•.. , . . . . . .. -55 to + 100·C
Junction Temperature (Tj) •..•••.•..........•.....•..•••............ 100·C
Soldering Temperature (TL), 1 Min ................................... 260-C
Isolation Test Vollage (1 Min.) (ViS> (between emitter and detector referred to
standard climate 23/50 DIN 50014) . . . .. . . . . . .. . . . .. .. . .. . . . . • . . . . 5300 V
Tracking Resislance . . . . . . . . . • . . • . . . . . . • . . . . . . . . . . . . . . . • • . . .. Min. 8.2 mm
Air Path., .....••...........•.•..•...••.....••...• , .. ··•··· Min. 7.3 mm
Tracking Raslstance
Group III (KC = >600) in accordance with VDE0110 ~ 6
Tabl. 3 and DIN 534BOIVDE0303, Part 1
As to nominal isolation voltage VDE 0883 applies.
Isolation Resistance
(A,s> at V,. "" 500 V...............................
Flammability
DIN57471 or VDE0471, Part 2. of April 1975 or MIL·202E, Melhod 11A
Characteristics (Tamb
DESCRIPTION
The optoelectronic coupler SFH 600
comprises a GaAs LED as the emitter
which is optically coupled with a
silicon planar phototransistor as the
detector. The component is located in
a plastic plug·in case 20 AB DIN 41866.
The coupler allows to transfer signals
between two electrically Isolated
circuits. The potential difference
between the circuits to be coupled is
not allowed to exceed the maximum
permlssable Insulating voltage.
1011 n
Climatic Conditions
DIN 40040, Humidity Class F
=25 ·C)
Emltto"GaAs LEDI
Forward Voltage (VF)' 'F = 60 mA ....... .
Breakdown Voltage(VSR),IR = 100l'A ....... .
Reverse Current (lR), VA = 3 V ..
Capacitance (CO), VR= OV. f = 1 MHz ....... .
Thermal Resistance lAth Jamb)
1.251,;1.651 V
....... 301~6)V
. .. 0.01 (:s 101 I'A
. ... 40pF
750 KIW
Detector (Silicon Phototransistor)
Capacitance. (VCE = 5 V. f = 1 MHz)
CCE'
eee·
CEe
Thermal Aesistance (Ath Jamb) .' .
5.2 pF
6.5 pF
9.5 pF
500 KIW
Coupler
Collector·Emitter Saturation Voltage (VCE sat)
If=10 mA.le=2.5mA) ...................................... 0.25 (,;0.41 V
Coupling Capacitance (CK) ........................................ 0.55 pF
5-93
The optocouplers are grouped according to their current transfer
ratio 1eII, at VcrF5 V, marked by dash numbers.
-0
-1
-2
-3
lell, (1,=10 mAl
40-80
63-125
100-200
180-320
%
lell,(I,=l mAl
30(>13)
45(>22)
70(>34)
90(>56)
%
Collector-Emitter
Leakage Current
(VCE=10 V) (ICEo)
2 (S35)
2(';35)
5(,;35)
5(,;70)
nA
Linear Operation (without saturation)
Rl ,75Q
I,
-
~
4m
::
1,-
V,,=5V
Load Resistance
F\.
75
n
Turn-On Time
r...
3.2 (,;4.6)
""
""
""
""
Rise Time
2.0 (';3.0)
\,
Turn-Off Time
3.0 (,;4.0)
k
Fall Time
2.5 (,;3.3)
~
Cut-Off Frequency
kHz
250
Fco
Switching Operation (with saturation)
:g'+--I~",~lkQ:OP:'~~Linputs
L
_
' with a 2.7 kO
pull-up resistor
+5V
TTL levels are
observed but
no TTL
switching times
.
TTL
-0
(1,=20 mAl
-1 and-2
(1,=10mA)
(1,=5mA)
r...
3.7 (';5.8)
4.5 (,;6.2)
5.8 (sS.Q)
\,
2.5 (';4.0)
3.0 (,;4.2)
4.0 (,;5.5)
k
19(,;25)
21 (';27)
24 (,;31)
~
VCESAT
11 (';14)
12(,;15)
14 (s18)
Group
Turn-On Time
Rise Time
Turn-Off Time
Fall Time
=9~h'7kQ_
0.25 (sO.4)
-3
""
""
""
""
V
SFH600
5-94
Minimum current transfar ratio
a. 8 function of diode current
4; .. fil,l
I,
.
T." flM
%
300
1; ./(/,)
VCE=5V
'4
'4
10'
10'
-
200
2
~
10'
10'
0
1
2
3
10'
?""
I
'0'
3
100
10' mA
10 0
-1,
Currant tran.far ratio a. a
of diada current (T.", ..
~unction
t"f(lf)
i;=/(hl
VCE=5V
""
Currant t,anaf., ,atlo .a a
function of dlod.current (T.....
500c)
4;-""11,)
VCE=5V
,
'4
'4
10'
10
Ie
l
,
vI--"
*"1
r
0
1'\
1
,:/::V
10
2
3
:It
76"C)
VCE=5V
'4
T,
10' V
'O'mA
--1,
Currant transfer ratio as a
function of diode currant (T...II = 25"C1
10'
0
1
2
_,1
/
o
VCE=5~
,......
r
rV
10'
J
'00
I
Current tran.f.r "tiD as. .
function of dloda current (T''''II "" OOC)
Current transfer ratio a. a
function of diode current IT.... ... -25"C1
IT,"'II ... 26OC, Vel - 5 VI
5
,0,
0
I'-.
1
2
3
10
0
1
,~
2
3
10"
--1,
10"
'O'mA
10'mA
--r,
Currant tran..ar ratio •• a
function of temperatura
,"
-';=fln
'4
10"
10 '
100
--I,
10' lIlA
Transistor characterlatlcs (8 = 6501
Ie =-1(VcEI
(IF=10mA,VCE==5V)
(Tamb=2S·C,IF==O)
GroupZaa
mA
10
30
I
I
Ie
I~
If
/"
3
,
10
-- I
2
1
,5
,0
I-
I
I.=30pA
I
1.=20",
I •• 15pA
1.=,.",
11 =5~A
1 •
,
25
50
--r
75'C
15V
SFH 600
5-95
...
Coilectar-.",IIt"otf-st.t.cu".nt
Output ch,nteteri.tlc. Ie - ltv,",
S.. uration \loltl"" 'function
of callecto, CU"lnt Ind ."odul.tlon d_th
for SFH 800.0
lr.oIIII!=25 'C)
V Vcon,=f(/cl
l(;€o =IIV, 1)
ITamb=2S-CI' Group2&3
(Tamb=25"C,IF=O)
r-T"I
1,0
v,
!
r---
Y
1,'"
IIA
1,:10
A
Illrmt
TTTTT",---,-r,Tr
J
o,g
lJJ'
I
! : f--<--Ht+W''--jI, U!I
I,,,'" ;!..
f-
"
Vet ..
e
:'
I:'
4=7 A
,"
"
1,=1
1,=2 A
.,
IS V
100
-I,
_Va
V (Tamb::2S"C)
1.0
1,0
la .. U
!O~
"Ch,tU
O,T
, 0.7
0,0
0,0
0,'
0,'
0.'
...
10
0,1
'IO'.A
- - ' I,
°
0,'
~
L
.
h""(j
lV
O,l
~!
20
0,1
'
oW
ZOO
120
I
I,
I ..
!
,
\T,ansistor
..
\
100
I" \
Diod,
50
,\
~
I
-.
,,'_~'__ ~_...l--.J
~O· ~
'0'- 10'! '0·: '0 . ,0= 10' S
25
50
75
rP
fJ'v"
I
1
:"-
"
'\
\j
I
-'"
.''
ITamb::2S·C: f= 1 MHz)
25
.'C
'I
I'
TI.ns;Stolc.p_citlnCIIC=IlV.l
30
,,~
!,
I
ii' ' Iii ' I
o •.!
..
ZI"C
1,\
: I:
:
I,:h{c
10
I.-11ft
I
::i i!
IF:'::;/c
0,2
'-mllllllltlpulM ...ct
. . . . .til","'. T_ •
11/
!
,'I
1,=1(-)
0,'
I
O,l 1-:-II,=2x/c
II
II
0,1
I
U
[//,=lalc
O,l
lD
0,0
'02111A
III !
iT !'-'
1"
O,T
_I 1.= Ic
0.'
1/
0.'
Jill
c
M
IFdl~(:-I
.."
V (Tam b=2S"C)
I~
•
10'
5
--Ie
D.... c.,.clt.noe c .. Itv.l
(Tam b=2S"C.f::1 MHzl
a.tur.tian volt.,••s I function
of call.ctor cun,nt Ind ."adlliltion d.pth
for SfH 601)..1
VOl ..· -111,1
S,tur.tlon volt. . . ~, fuftCtlolt
ot collector cu".n~ and madul.tion d.pth
for SfH IlOO-2
v" ... = III,'
V ITamb ",2S"CI
S.,ur.tian vol ..' •••• function
ofcoillctorculrentlnd."odul.tiondepth
fOI SFH 800'VeE .. • = 111,1
5
50
75
--r..
100'(
--v.
%
I,
'" - - - - - - - - -
r.
•. 100
----VeE
Rl
-----~----
-
_
~. -.::::: -
_ _ ~_ .
_
''''
--~50%_
,,--- -'---_._.- ------li'l__
110'0'
=5V
'" 1 kO
7'Mb .. eooc
t, =SOmA
.
Measuring current'; 10 rnA
Conl;••n•• coelf;.;en'
S = 60%
.'
SFH 600
5-96
SIEMENS
SFH601 SERIES
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimension in Inches (mm)
~
Oc.:J\
O·
.248(6.3)
•
5
3
•
AIIOIlE~'1IA8E
~
.,.THODE'
Me 3 .
5 COUB:IOR
4 EMITTER
Maximum Ratings
Reverse Voltage (VR) .••.....•••••.••••••.•.••...•••••••••••••...•••• 6 V
Forward Current (IF.) •• . . . • • • • . . • . • • • • • . • • • • . • . • • • • • • • . . . . . • • • • • . .. 60 mA
Surge Current (tFsl, tp = 10 pS •••••••••••••••••••• , ••••••••••••••••• , . 2,6 A
Power
FEATURES
• Highest Quality Premium Device
• Built to Conform to VDE Requirements
• Long Term Stability
• High Current Transfer Ratios, 4 Groups
SFH 601-1, 40 to 80%
SFH601-2, 63 to 125%
SFH 601-3, 100 to 200%
SFH 601-4, 160 to 320%
• 5300 Volt Isolation (1 Minute)
• Storage Temperature -40' to +150'C
• VCEaat 0.25 « 0.4) Volt at IF = 10 mA,
Ic=2.5 mA
• UL Approval #E52744
• ~ VDE Approval #0883
• ~VDE Approval #0884 (Optional
with Option 1, add -X001 suffix)
• CECC Approved
DESCRIPTION
~lsslpatlon'(Ptod
••••••••.•••••.•••.••••••••••.•.•••..•.•• 100 mW
Detector (Silicon Photolrlnal.tor)
Conector·Emltter Voltage (VCEO) •.••••••••••....•.•••.....•••.••.•••• 70 V
Emltter·Base Reverse Voltage (VEBO) ..•••••••..••.••••.••.•..•..•••••. 7 V
Collector Current (Ie) • • • . • • . • • . • . . . . . • • • . . • • • . • . • . . • • • • . . • . • • • • • • •• 50 mA
Collector Current (Ics). t = 1 ma •...•••..•..•••..................... 100 mA
Power Dlsslpatlon.(Ptot) •••.••••••••.••.•.•••••••..••••••••..•••. 150 mW
Coupler
Storage Temperature (Tstor) •••..•••..•.....••••••..••••••. -40 to -+l50·C
Ambient Temperature (Tamb) • • • • • • • • • • • • . . • • • • . • . . • • • • • • •• -40 to -+100·C
JUnction Temperature (Tj) ••.•••••••.••••••.•..••••••..•.•••••••.... 100·C
SOldering Temperature tTL). 10 s Max................................ 260·C
Isolation Te.t VOltage (V,al, 1 Min per VDE 0883 • • • • . . . • • • • • . . . . • •• 5300 vee
(between emitter and detector referred to
standard climate 23150 DIN 50014)
Tracking Resistance •.••.....••.••••••••••.••..•••••.•••••••• Min. 8.2 mm
Air Palh •.......•...•••.•.••••••..••••.•...••••••••.••••••. Min. 7.3 mm
Tracking ROII'tlnce
Group III (KC= >600) In accordance with VDE 0110 j 6
Table 3 and DIN 534801VDE 0303, Part 1.
As to nominal isolation voltage DIN 57883 or VDE 0883 applies.
10010110n ReSistance (Rial 01 V,. _ 500 V ............................. t011 n
Climatic CondlDona
DIN 40040, humidity CI.s. F
Fllmmoblll1y
DIN 57471 or VDE 0471, Part 2,
of April 1975 or MIL202E, Method 11 A
The SFH601 is an optocoupler that is com·
prised of a GaAs LED emitter which is
optically coupled with a silicon planar
phototransistordetector. The component is
packaged in a plastic plug-in case 20 AB
DIN 41866. The coupler transmits signals
between two electrically isolated circuits. The
potential difference between the circuits to be
coupled is not allowed to exceed the maximum permissible insulating voltage.
5-97
.Chara~terlstlcs (T amb =' 25'C)
Linear Operation (without saturation)
Emiller (GaAs LED)
IF
-
Forward VoltageWF), IF=60 rnA ... , ......................... 1.25(s 1.65) V
Breakdown Voltage (VBR), )R= 100,,", ............................. 30(;06) V
RL=7Sn
~
Reverse Current (IR), VR =3 V."••••.•••..••••••••••••••••••••••• 0.01 (s;10)/lA
'. C~pacltance (CO)
.
(VR=OV;f=l MHz) .............................................. 40pF
:::
V,p=SV
.1(-
47n
Thermal Resistance (RthJamb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 750 KM
Detector (Silicon Phototranslltor)
Capacitance tVCE; 5 V; f == 1 MHz)
CCE ......... , ..................... , .......... : .................... 6.6pF.
~~: :::::: :':::.':::::::::::::::::::::'::.::::::::::::::: :':::: :.:::.6;~ ~~
Thermal Resistance (RthJamb) .................................... 500 KJW
Coupler
Coliector·Emitter Saturation Voltage (VCEsat)
(IF = 10 mA, Ic =2.5 mAl ......................... , ... 0.25«0.4) V
Coupling Capacitance (CK) . . ... . . . . . . . . . . . . . . .. . . . . . . . . . .. 0.30 pF
-1
~
-3
-4
40-80
63-125
100-200
160-320
'%
Ie II, (1,=1 mAl
30(>13)
45(>22)
70(>34)
90 (>56)
%
Collector-Emitter
Leakage Current
(VCE=10V)(lceo)
2(,;50)
2(';50)
5(,;100)
5(,;100)
nA
R..
75
0
~
3.0 (';5.6)
(IS
Rise Time
Turn-Off Time
Fall Time
Cut·Off Frequency
The optocouplers are grouped according to their current transfer
ratio lell.at Ver 5 V, marked by dash numbers.
lell, (1,=10 mAl
Load Resistance
Turn-On Time
\,
2.0 (';4.0)
(IS
\""
2.3(';4.1)
(IS
~
2.0 (';3.5)
(IS
250
kHz
Feu
Switching Operation (with saturation)
3-'.
IF
.
1kn
V,p-5V
~~".
~~
--,----,----
or 2 TTL
, with
a 2.7inputs
kO
pull·up resistor
~
+S:'7kn
TTL levels are
observed but
no TTL
switching timeS
Group
-1
(1,=2OmA)'
Turn-On Time
Rise Time
Tum-OIl Time
Fall Time
.
TTL
.
~.nd-3
.
.-4
(1",10mA)
(l,=SmA)
~
3.0(,;5.5)
4.2(,;8.0)
6.0(';10.5)
(IS
\,
2.0(,;4.0)
3.0 (';6.0)
4.6(';8.0)
(IS
\""
18(';34)
23 (';39)
25 (';43)
(IS
~
11 (';20)
14(,;24)
15(';26)
(IS
VCESAT
0.25.(SO.4)
V
SFH601
5-98
Minimum curr.nt tranafer ratio
•• a fUnction of dlod. cUrrant
.. 25°C, Vl;~ .. 5 VI
IT.... b
I,
-;;""fll,)
Dfo
,
Current transfer ratio as a
function of diode currant IT.",b = _25°C)
Current transf.r ratio as •
function of diode current (T...b
*"""
10
r;
'" f(hl
VCE=5V
f(lF)
%
Ie 10
10 0
~
,.J..
V
I
/
100
1=
c-5f- tz-
f(h)
~
Ii' ::
I---
/
--
r/
5
10' '-10-' 2
5 10 ' 2 mA
--Ie
10'
Current transfer ratio a ••
~unClion of diode Current (T.... !>
t'" fUd
VCE=5V
2
-~
21/11
10-1
Current Iranafer ratio as a
function of diode current t T....~ "" 25"C)
1; '"
~
-~
/'
,VII
10
101
10'mA
--IF
l-!-la'
VII
t--.2
t--.l
~
P
0
10 '
I
f--
V
2
"
10
--
--
1
1
100
I---
I;
20 0
4
%
10'
Ie
T
DOC)
'"
VCE =5 V
'"
5 10'
2 mA
5 10'
--IF
Currant tranaf.r ratio aa a
fUnction of diode current (T."'b = 7 SOC)
SDOC)
~ '" f(/d
VCE=5 V
VCE =5V
I,
,
,
%
10
%
Ie
Ie
1
1
..!-.
~
V
la'
-
I--
...i-
,
2
/
10
4
~
2
1
.J-
V
2
10 2
1
1
/
V
10
,
10-' 2
1/
/
ill
5
10'
10'
10' 2 mA
5
[Iv
10- 1 2
,I
5
10'
--IF
,
% If
Ie 10
10 10-1 2
=fln
I
I
10,I
:3
' I
I 2
~~"Q~
20
I
I
I
I
1111
II
I,"IO~
1111
I," 20~A
I
I
10, I
-25
' I
10
I
,
1111
I," 10 ~A
I
I' ,
"
'
I
i
I," 51l A
Is= 2~A
I11IIII i I I
25
2 mA
Inl
I
,4
,
10'
1111
l
J
, I
I
5
mA
10
, I
10"
TransiateH characteristics (8 = 550)
II; '" fWed
(Tam b=25'C,IF=O)
(IF=10mA,VCE=5V)
Ii
1
5
--Ie
--IF
Current .ransfer ratio .s a
function of temperature
.!.£
10' 2 mA
5
/
17
50
--T
10
IS V
--VeE
SFH 601
5-99
CoI_ _ _
01001_ _ _ _
_ration VDIIage . . . IIInctIon
.......
output ......-otIc.l e =1(Vee!
(lamb = 25"C)
ICED· I (V, lJ (lamb = 25"C,
IF - 0)
~~II
lctoR
y
., "
I r;, l~
11
1
I
/, 50"
IS"
'.'
to
~
r~
L'~"~;~rrllHdM+l-H1
'.
lion depth lor SFH 801·1
VVCE ... - I(le> (lamb - 25"C)
7
0.&
I V
v-
O"to"
/
......
.
0.3
,
11111
010'
0.&
5
, II 5
10
~
IF-hie
0.3
11111
Irtil1
'0'
5.:11
5
--Ie
P"" • l(lamb)
I
I,
,
1
i
I
..
f\
f"l\
~
50
... '\\
••
25
.,
.-
' ,
!,
I
'IJ'
-v,
•
,v
'III1'-oopodW_
C • l(Vol (Tamb • 25'C: I - 1
pf MHz)
!4'rTT1rnmrmm1llOl'
22 F!'IIIIIII-+ttlllll--tt
10 1-tH1IF~/I-tI
1IH+HIIII-+l'IIIIII--H
..
1II+1-H11111-H-H""'<+
12
1'\
'0
a
r'\
I"
~
50
.
I.
'\~
I
I
5 ,.1O'mA
--Ie
I ..
I
,~rllnsist";'
.
...
I
I,
I
I
m
.'"
oW
I I. :
10'
/-t
'!
I
11111
5
'{
-11 r
I,-ble
-tI
r-
I
H
!
lJ)
IF.'2X/~
102mA
........lalble 1_ ...' ; _
"
I il
III il
~I
Permlosl",. pulos load
•
i
0
V. parameter, Tamb • 25"C,
IF' I(t)
'.
ZO
'I'
OJ
.L III
0
1(I2111A
-Ie
..
I
,-Ie
05
02
,
1I)2m"
I
1" ~
I'll I
·1
7
~
IF-laic
~
10'
5
--Ie
I
c
III
I
1/
"50
III
!
I
o.s
11111
I
-_I1onoeC-I(Vol
(lamb - 25"C,1 = 1 MHz)
OJ
0.&
~.
5
--T
I,I.~~
OJ
IF-2_.t:
0
'
lion depth lor SFH 801-3
v,VeE .., - 1(1e> (lamb· 25'C)
!
0.&
QZ
. ....
VCESlt0.9
05
,
-',
,.
tIon depth lor SFH 801·2
V VeE ... - 1(1e> (lamb - 25"C)
1D
0.3
II .'
I
I
I
I
OJ
_ _ voItop .. 81unot1on
01 008 _ _ _ modul..
_ _ VDIIage .. 8 function
01 collector o.nwnl_ mod.l..
T~i
II
0.3
--v"
~
/'
•
_.
'.'
1,-3xlc
u.s
75
-_T.~
••
.·c
r'\
25
SO
75
,
CO·C
_Ion 01 ....... 1 _ ratio . . . function 01,_ lime
'Ie
--.
i;' 1(0
'k
110
I
.!.L,
-..
i
100
90
-
-
-
J%
II
50%
,..~
Vo<
RL
- 5V
- 1 kO
T.... - 25"C
IF
= 60 mA
Measuring current - 10 mA
Confidence coefficient
S=60%
II
TI
.r
II
10' h
_f
SFH801
5-100
SIEMENS
SFH 601G SERIES
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
,
0
AHOOE~'IIASE
~
C~CTOR
2
,
CATHODE 2
3
•
He 3
5
4 EMIMR
Maximum Ratings
Reverse Voltage (VA) ..............•....••........••...............•. 6 V
Forward Current (IF) .......•.•.................................... 60 mA
~~~:r CD~~:~~~i~~~,(~;)1~ ~.s. ~ ~ ~ ~ ~ ~
FEATURES
• Wide Lead Spacing
• Highest Quality Premium Device
• Long Term Stability
• High Current Transfer Ratios, 4 Groups
SFH 601G·1, 40 to 80%
SFH 601G·2, 63 to 125%
SFH 601G·3, 100 to 200%
SFH 601G.4, 160 to 320%
• 5300 Volt Isolation (1 Minute)
• Storage Temperature - 40° to + 150°C
• VCEsat 0.25 « 0.4) Volt
IF=10 rnA, Ic =2.5mA
• UL Approval #E52744
• &. VOE Approval #0883, #0805, #0806
@ VOE Approval #0884 (Optional
•
with Option 1, add -X001 suffix)
• eEee Approved
:::"":""::::::::""::::""::::"":'la~';':
Detector (Silicon Phototranalslor)
Collector·Emltter Voltage (VCEO) .••...............•.....•...••....•.. 70 V
Emltter·Base Reverse Voltage (VEBO) ...•......•............•.....•.... 7 V
Collector Current (IC) ...•............••............................ 50 mA
Collector Current (ICS)' t = 1 me ••.... , . . . .
. . . . • . . . . • . •. 100 rnA
Power Dissipation (Pto t ) • . . . . • . .. . . . . . . . . . . . .. .. . .. . . . . • . . . .. • . .. 150 mW
Coupl.r
Storage Te.mperature (T stor) • . . .. . .. . . . . .. . . . . . . .. . . . . . . ... -40 to + 150·C
Ambient Temperature (T 8mb) .............................. -40 to +100·C
Junction Temperature (Tj) .......................................... 100·C
Soldering Temperature CTd. 10 s Max. .•...
. •.•..••..•.•...•• 260·C
Isolation Test Voltage (Vis), 1 Min. . . . . . . . .
. ... 5300 VDC
(between emitter and detector referred to
standard climate 23/50 DIN 50014)
Tracking Resistance. • . . . . . . . . . . . . . . . . . . . . . • . . .
Min. 8.2 mm
Air Path . • . . . . . . • . • . . . • . . . . . . . . . . . . . . . . . . . . . • . . . . • . . .
Min. 8 mm
Tracking Resistance
Group III (KC = >600) in accordance with VDE 0110 i 6
Table 3 and DIN 53480NDE 0303. Part t.
As to nominal isolation voltage OIN 57883 or VOE 0883 applies.
Isolation Resistance IRisl)' @ Vis
~
500 V ........•.........•..... tot t
n
Climatic Conditions
DIN 40040, humidity Class F
Flammability
DIN 57471 or VOE 0471, Part 2,
of April 1975 or MIL202E. Melhod 11 A
Characteristics (T amb
=25 DC)
Emillor (OaAs LED)
DESCRIPTION
The SFH 601G is an optocoupler that is com·
prised of a GaAs LED emitter which is optically
coupled with a silicon planar phototransistor
detector. The component is packaged in a
plastic plug-in case 20 AB DIN 41866. The
coupler transmits signals between two electrically isolated circuits. The potential difference
between the circuits to be coupled is not allowed to exceed the maximum permissible
insulating voltage.
Forward Voltage (VF). IF~60 mA ....•..•.•.•..•..•.....•..... 1.25 IS 1.65) V
BreakdownVollage(VBR), 'R=100JolA.. ••••. ••.........
. ..... 30(~6) V
Reverse Current (IR), VR = 6 V ............................... 0.01 (~10)itA
Capacitance (CO)
(VR~OV;f~1 MHz) ...•..•.....••........•.....
. ...•.... 40pF
Thermal Resistance (RthJamb) . . . . . . . . . . . .
. ........... 750 KNI
Detector (SlUcon Phototranslstor)
CapaCitance (VCE~5 V; f= 1 MHz)
~
........................................................
~~
CeB .................•...............•.......................... 8.5 pF
eEB ...........•...........•......• : ....•..........•...........• 11 pF
Thermal Resistance (RthJamb) .................................... 500 KIW
5-101
Cheracterlstlca(Contlnued)
Coupler
Coliector·Emitter Saturation Voltage (VCEsat)
(I F =10 mA,lc=2.5 mAl ......................•••.•. 0.25 «0.4) V
Coupling Capacitance (CK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0.30 pF
The optocouplers are grouped according to their current transfer
ratio Ie/IF at VerF..5 V, marked by dash numbers.
-1
-2
-3
-4
loll, (1,=10 rnA)
40-80
63-126
100-200
180-320
!o"F (~.. 1 rnA)
30(>13)
46(>22)
70(>34)
90(>66)
poIlector-Emltter
Leakage Current
(V..=10 V) (I.,..,)
"
"
2($50)
2($50)
5($100)
5(,,100)
nA
Linear Operation (without saturation)
1.=10 rnA, Vop=5 V, T....=25"O
F\
r".
75
n
3.0 (s5.6)
ps
\,
2.0(,,4.0)
ps
ps
Fall Time
t"".
\.
2.3 (S4.1)
2.0("3.5)
ps
Cut·Off Frequency
FOCI
250
kHz
Load Resistance
Turn·On Tune
R1se11me
Turn-Off Time
Switching Operation (with saturation)
3If
1kll
Vap - 5 V
"--'----f~
or2 TTL inputs
--..
"with a 2.7 kO
pull·up resistor
'5:'7kll
TTL levels are
observed but
no TTL
switching times
Qraup
Turn-On Time
Rise Time
Turn-Off Time
Fall Time
~
.
TT l
-1
-21111C1-3
-4
(1,=20 rnA)
(1,=10mA)
(1,=6mA)
r".
3.0($5.5)
4.2($8.0)
6.0 (s10.S)
ps
\,
2.0($4.0)
3.0($6.0)
4.6 (s8.0)
t"".
18($34)
23 ($39)
25 ($43)
J.IS
ps
\.
11 ($20)
14($24)
15(';26)
VCSAr
0.25($0.4)
J.IS
V
SFH601G
5-102
Minimum current tren.fer r.tlo
•••• unction 0' dlod. current
ITI"'b - 25"C. VeE - 5 V)
I,
'Ie T," flI,)
Current tran.fer ratio a. a
.unctlon o' diode currant (Tlmb
*" '"
300
'(hi
'"
Current transfer r.tio •• a
function 01 diode current (TI"'b .. O"C)
_25°C)
t"((lf)
VCE=5V
%
%
3
10 3
Ie 10
Ie
T
e-i-
200
1
VCE=5V
I-
-
~
/
W->l-
/
2
.2
101
4
I
100
r--2
1/
~
P'
1111
102mA
5
10"
10'
'--
.. -
2 rnA
Current transfer r.tlo •••
.unction ot diode current (T. Mb
Current tran,'er ratio ., 8
~unctlon ot diode current IT. mb .. 50"(:)
-/;=f(hl
VCE=5V
Current tran.fer ,atla a. 8
'unctlon o. diode current t T.Mb .. 25°C)
f(l,)
5
--I,
--1,
t"
1-
,~
II/
101
~
7
f?
/
1/1/
1"--1
10'
._.
I-
,
3
VCE=5V
t
= fUd
75OC)
-
VCE=5V
%
%
3
10 3
Ie
Ie
1
If
..!-.
-
e-i-
~
V
102
I-
2
/1--'
10 1
4
~
...l-
2
/
10 2
1
I
2
1
/
,
10
10-' 2
/
/
II
5
10'
10'
5 10' 2 rnA
--1,
'II
,/
10-'2
5
10'
5
--I,
Current transter ratio a. a
function of tamperatufe
.!.£..
% If
=
(In I (IF = 10 rnA,
5ffi
I
I
Ie = f(VeE)
30
1
550)
1111
II II
I~"14ci ~~
1
J
1111
0
I
I
I
I
10"
(Tamb =25"C. fF=O)
Ie
I
I! 'i21
=
5
rnA
!
4
,3
I
10 10-' 2
1Q1 2 mA
Tran.l.tor characteristics (8
VCE = 5 VI
Iel03,~mgl
1
/
/
17
IB" 3O~A
nn
IB" 20~A
,
10
1I1I
, !
II I
,Ii I:!' II
i
IB" IO~A
Ii
Ii! i lUiI
UIi I I [1jJ .11u
lo,LlJ.
I
-25
IB"
IB"
L' .
25
50
--T
75°C
o
o
5~A
2~A
10
15 V
--v"
SFH 601G
5-103
Forward YOlt.g8 V, .. fll,I
Output charact.,iltlca Ie .. flV..1
Saturatton IIOltag. . . . Iumrtlon
of collaclor currant and modu ..tlon depth
for SFH 101·t
VCE sal "" f(le)
1~ (Tamb",,2S"C)
Collector·.mltts,oft-st.t.curr.nt
lcoo .. flV. n,(Tamb:: 25"C, IF =0)
,
I
I
I
n
"
-,.,-
ICED
1
1 I~'
V't'·· o.s
O.1
'
I
OS
I
Ini
I
05
D.4
I
OJ
I
Q2
II
JI~Ht
I
II m
ll"jii
1111111
D.1
ISV
10
--I,
- - 'Vel
Stanu.tion voltags a•• function
ofcoliactorcu".nt.ndmCJdulationd.pth
tor SFH 801.2.
.
v VCEsat=f{Ie) ITamb =25"C)
I~25OW"-!'.l..L':2!:'S-'..USO:':'-'""'1S!-'-'-':!IOO'C
,~
10
los
;
1
as
OJ
Q2
/
.......
2
.1
11111
5
101
5
--Ie
..s
J
11111
,0'
..
11111
I F -3x/c
1
0
5
If- 2x k
•
O,7I--l-++ttfttt--++......,itI
1/
os
102mA
0
IF-hIe
11111
I III
5
1
nl~
..
j
10.1
"22
o
100-(
2
1'\
CO
"
•
•
'\
25
~;,
•
'\
o
I
I
0
'\
"
f\
.' V
pFl (T"rnb",,25·C; f= 1 MHz)
60
I"~
,~
-V,
Traftllltor c.paclt.ncH C. IIVJ
PermI,.1bIe1oas
diode Ptot = l(TamtJ
,.
-_T_.
!
iii, I
-i
..
'IS
I
:I!
--
8
50
11 ~
iii
ZO
1\
""ll\
1'-1\
25
I
I,
iii
.'
120
I
I
I
I
1'0
10
Diode
so
!
I
as f--H-t+'-4+'---/t-l-'I-+HftI
n.
"\i'lInsistOt
100
~:
'i
~.
c
30
l()2mA
Pennlsslble!oes
tran,lstorPklt=fCTllmbl
I,
II:V~I
(Tam b",,25-C, 1= 1 MHzl
Q2.~~
oW
'00
1Q2mA
o.sf--H+H*WLi·-r'~ftI
Irml
')01
5
--Ie
OF
a. f--H-t+Lf+tii---o
--Ie
Permissible pulse load
.
v=parameter, Tamb=25°C
IF = f{t)
104~!l!'mlj!~IIEE~EII
5
,
~
f--H-t+HttI~+-'--Y-'HI
'erEQI :
1111111
10,
Diode cepacltanoe C •
S.tur.llonwolt.g•••• tunctJon
ot collactor curr.nt and modutation depth
torSFH &01-4
V/VCEsat=f(fe) (Tamb=25"C)
1O,----"nTITH
I.'.~~
09
0,0'
--7
Saturation vollag. al a function
of collector currant and modul.tlon depth
tOIlSFH &01-3
V,VCE 9a1.:::1(le)
(Tamb",2S"C)
le ,
50
-_T_
75
2
100·C
--.
Variation of currant tra__ r ratio
. . . function of Io.d ti_
"
.
-';"'Itl
VeE = 5 V
RL
= 1 kO
T. mb = 25°C
IF
= 60 rnA
Measuring current = 10 rnA
Confidence coefficient
S= 60%
-,
SFH601G
5-104
SIEMENS
SFH 606
5.3 kV TRIOS*Q!) OPTOCOUPLER
HIGH REUFAST TRANSISTOR
Package Dimensions in Inches (mm)
.307 .8
.291 (7.4)
tj
.248(6.3)
0
1
3
FEATURES
• Isolation Test VoHage: 5300 V
• High CUrrent Transfer Ratios
at 10 mA: 63-125%
at1 mA: >22%
• Fast SWHchlng Times
• Minor CTR Degradation
• 100% Burn-ln
• Field-Effect Stable by TRIOS
• Temperature Stable
• Good CTR Linearity Depending on
Forward Current
• High Collector-Emitter Voltage
VcEo=70 V
• Low Saturation Voltage
• Low Coupling CapacHance
• External Base Wiring Possible
• VDE Approval Applied For
:
All00e~6BASE
~
CATHODE 2
4
NC 3
5 COI.LEC1'OR
4 !MlrnR
DESCRIPTION
The optically coupled isolator SFH 606 features a high current transfer
ratio as well as a high isolation voltage. It employs a GaAs infrared
emitting diode as emitter, which is optically coupled to a silicon planar
phototransistor acting as detector. The component is incorporated in a
plastic plug-in DIP-6 package.
The coupling device is suitable for signal transmission between two
electrically separated circuits. The difference in potential between the
circuits to be coupled must not exceed the maximum permissible
reference voltages.
"TRansparenllOn Shield.
5-105
Maximum Ratings
SWITCHING TIME
Emilio. (GaAs Infrared Emitter)
Switching Operation (with saturation)
Reverse Voltage ..........................................................................................6 V
Db Forward Current' ........................................................:...................... 60 rnA
Surge Forward Current (t,;10 JJS) ....................................................... :..... 2.5 A
Total Power Dissipation ....................................................................... 100 mW
Detoctor (Silicon Phototransistor)
Collector-Emitter Voltage ........................................................................... 70 V
Emitter-Base Voltage ..........................................................................:........ 7 V
Collector Current .......... :......................................................................... 50 rnA
Collector Current (t,;1 ms) ................................................................... 100 rnA
Total Power Dissipation ....................................................................... 150 mW
Oplocouplor
Storage Temperature Range ................................................ '-55'C to +150'.C
Ambient Temperature Range ................................................. -55'C to + 1OO'C
Junctlon Temperature ...........................................................;................. 1OO'C
Soldering Temperature (max. 10 S)') ..................................................... 260'C
Isolation Test Voltage 2 )
(between emitter and detector referred
tostanderd climate 23/50 DIN 50014) ......................................... 5300VDC
Leakage Path ................................... ;....................................:............. "8.2 mm
Air path ..............................................................................................."7.3 mm
:g,-t._+-,::o.c:~1_kQ_-<>V"
L
~:~
~~'~'m. ~...
0'
TTL inputs
= 52 V
with a 2.7 kO
pull·up resIstor
+5:'OIiQ
TTL levels are
observed but
no TTL
•
TTL
' ..
Tracking Rosistanco
In Accordance with VDE 0110 §6. table 3. and
DIN 53480/VDE 0303. part 1 ................................................. "1OO(group 3)
Isolation Resistance (V,o~500V) ............. :............................................. 10" n
Turn-On TIme
\,..
3.8(';4.5)
JJS
Notel:
Rise TIme
I.
k
2.5(';3.0)
JJS
1. Dip soldering: Insertion depth s3.6 mm.
Turn-Off TIme
2. DC test voltage In accordance with DIN 57883, draft 6'80.
Fall TIme
~
VcaAT
11 (s14)
(IS
8(,;10)
JJS
V
';0.4
Characteristics (TA';'25°C)
Einiller (GaAs Infrared Einitter)
Forward Voltage (1.=60 rnA)
Breakdown Voltage (1.=10 JIA)
Reverse Current (V.=6 V)
Capacitance (V.=O V. f=1 MHz)
Thermal Resislance
1.25 (S1.65)
30(;'6)
0.01 (,;10)
25
750
V ..
V
5.2
6.5
9.5
500
pF
pF
pF
C.
0.25 (,;0.4)
0.5
V
pF
Ie· I,
Ie. I,
63-125
45(>22)
%
%
ICEO
2(,;35)
nA
V,
BV
I.
Co
R".,.
JIA
pF
KNI
Detector (Silicon Phototransistor)
Capacilance
(V..=5 V. f=1 MHz)
(V",,=5 V. '=1 MHz)
(V..=5 V. f= 1 MHz)
Thermal Resistance
C..
C""
CEB
R".,.
KNI
Oplocoupler
Collector-Emitter Saturation Voltage
(1.=10 rnA. le=2.5 rnA)
Coupling Capacitance
Current Transfer Ratio
(1,=10 rnA)
(1.=1 rnA)
Collector-Emitter Leakage Current
(V..=10V)
VCfIAT
SFH606
5-106
Minimum currenttranslar ratio
vereus dloda forward currant
(T.=25"C,Vce=5 V)
300
Currenllransfer ratio (typo)
verSUB diode forward currant
(T.=25'C, V",=5 V)
10'
~
%
%
I,
!Lmin
I,
!
Currant transfer ratio (typo)
versuB diode forward currant
(T.=O'C, Vce=5 V)
5
1;
t 10'
200
100
10
-
V
10'
10'
-I,
""
,v
v
10'
,..,
Hila
10'
10"
mA 10'
Currant tran.fer ratio (typo)
versuB diode forward currant
(T.=25'C, Vce=5 V)
10'
10'
10'
5mA10'
-I,
Currant transfer ratio (typo)
versus diode forward currant
(T.=50'C,Vce=5 V)
,
SmAl0'
10'
Current transfer ratio (typo)
varsus dloda forward current
(T.=75'C, Vce=5V)
10'
I,
%
S
I,
!
1;
!
,
,/
10
10'
""
la'
SmA 10'
Current tran.fer ratio (typo)
veraus temperature
(1,,= 10 rnA, V",=5 V)
5
10' f--++t+ftttl-++H-1+llJ
10'MIm.
mo
10'
% 0'm
1
. .
1311
10'
10"'
10'
SmA 10'
-I,
-I,
ColiectoHmlllar saturallon voltage
(typ.) versus collector current and
control rsnge (T.=25'C)
Collector current versuB
collector.mltter voltage
(Current gain 8=550, T.=25'C, V,sO,5 V)
10'
I
%
:;:;:
I, =30~A
27.S~A
25~A
22,5~A
,
17,5~A
,
,
10
""
50 '[ 100
-1
[/1,=3.1,
0,2
5~A
25~A-r
2S
1//
0,3
7,5~A
Ii"
-25
IF =2x~c:-I
0,4
10~A
.- -t--i -
If
;
a,s
125~A
-l--.
,
10
0,6
•
j5~A
!
I
-
0,7
20~~
II
0,1
II
111~
10
VIS
10'
SFH606
5-107
Diode forward voltage (typo)
versus fOlWard current
1,2
If v
!
III
rl1'
I
1,1
[HIT I
I /1
25'(
50'(
~
, I
I I'I
I
-
-
I
1\ "
II
10
/i/
'" v" =12V
,
/
I
'/
,
Iii
!
~
I
J-
0,9 10.,
if
I
0508
50
25
75
-T
O(
Diode capacitance (typo)
versus reverse voltage
Permissible pulse handling capability
Forward current versus pulse width
(T.=25'C, f =1 MHz)
(D=parameter, T.=25'C)
,,%
o
100
10 '
10'
Permissible power dissipation
for transistor and diode versus
ambient temperature
30
200
pF
28
!
I
20
~
rnW
p
f-
24
22
rca
[co
I
/
26
"-
VeE = 35V
Irl'i
/
1,0
20
pF
~A
,
~75'(
I
I
(T.=25'C, f =1 MHz)
10'
I
i I'
Transistor capacitance (typo)
versus emitter voltage
.
Collector-emitter leakage current
(typo) of the translslor versus
temperature (1,=0)
150
\Transistor
1,\
18
1\
I
16
100
14
12
10
8
10' 0,5
""- \
Diode
50
~1
10'
OS06
LlJ.lliII.-'-1lJJJIL.LWJ"--l.illWILU.llJJl...l'b'"
10-5
Permissible forward current of the
diode versus ambient temperature
10-1.
10-~
10-2
10"
--I,
100
o
o
5 10'
"-1\
1""- ~
25
so
f\
75 '( 100
--T,
Current transfer ratio versus load time
(V",,=5 V,R,=1 kO, T.=60'C; 1,=60 rnA, Measuring current =10 rnA,
Confidence coefficient S=60%)
%
120
rnA
110
~
95%
~
60
I"\.
80 10'
25
50
75
O(
-- II
~
10'
10'
_I
"\.
o
50%
5%
90
"\.
30
o
~-
I"\.
II
1"--
100
--r.
SFH 606
5-108
SFH609 SERIES
SIEMENS
HIGH RELIABILITY
PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches(mm)
~
I~I
6
O·
".CUI
•
5
3
,
ANOIlE~'BASE
~
CATHOIlE'
5 OOU£C1llR
Ne 3
-4 EMITTER
LEDCHIP(JlPIN2
PT CHIP ON PIN 5
FEATURES
Maximum Ratings
• Highest Quality Premium Device
Emitter (GaAs infrared emitter)
Reverse voltage
VR
DC forward current
IF
Surge forward current (/;;; 10 jts)/FSM
Total power dissipation
Ptot
• Built to Conform to VDE Requirements
• Long Term Stability
• High Current Transfer Ratios, 3 Groups
SFH 609-1, 40 to 80%
SFH 609-2, 63 to 125%
SFH 609-3, 100 to 200%
• Storage Temperature - 40° to
+150°C
• VCEsat 0.25 « 0.4) Volt
IF= 10 rnA, Ic=2.5 rnA
., VCEo90V
• UL Approval #E52744
• VDE Approval #0883
DESCRIPTION
The optically coupled isolator SFH 609 features a high
current transfer ratio as well as high isolation voltage.
and uses as emitter a GaAs infrared emitting diode
which is optically coupled with a silicon planar phototransistor acting as detector. The component is incorporated in a plastic plug-in package 20 A 6 DIN 41866.
The coupling device is suitable for signal transmission
between two electrically separated circuits. The potential
difference between the circuits to be coupled is not
allowed to exceed the maximum permissible isolation
voltage.
5-109
Optocoupler
Storage temperature range
Ambient temperature range
Junction temperature
Soldering temperature
(max. 10 sec)')
Isolation voltage (1 min)'}
between emitter and
detector referred to
standard climate 23/50
DIN 50014
AC reference voltage }
DC reference voltage
mA
A
mW
90
7
50
100
150
v
-40to +150
-40 to + 100
100
·C
·C
·C
TSOld
260
·C
ViS
5300
Vdc
V
mA
mA
mW
in acc. with
DIN 57883. 6.80
andlor VDE 0883. 6.80
min 8.2
min 7.3
Leakage path
Air path
') Dip soldering: Insertion depth
v
2.5
100
Detector (silicon phototransistor)
Collector-emitter voltage
(Is = 0)
VCEO
Emitter-base voltage (/c = 0)
VEBO
Ic
Collector current
Collector current (/ S 1 ms)
ICSM
Totlll power dissipatiOn·
Ptot
• 5300 Volt Isolation (1 Minute)
6
60
3.6 mm
I) DC test voltage In accordance with DIN 57883. draft 4/78
mm
mm
CHARACTERISTICS @25°C
Emitter
Forward voltage (IF = 60 mAl
Breakdown voltage (/R = 10,.A)
VF
YteR)
Reverse current (VR = 6 V)
Capacitance (VR = 0 V; f = 1 MHz)
Thermal resistance
IR
Go
1.25 «1.65) V
30(~6)
R'hJA
V
,.A
0.D1 «10)
40
750
pF
KfW
Detector (silicon phototransistor)
Capacitance (VCE = 5 V; f
(Vce = 5 V; f
(VEe = 5 V; f
Thermal resistance
= 1 MHz)
= 1 MHz)
= 1 MHz)
GeE
Gee
GEe
Rtt>.JA
pF
pF
pF
6.8
8.5
11
500
KfW
Optocoupler
Collector-emitter saturation voltage
(IF = 10 mA, Ic = 2.5 'mA)
Coupling capacitance
VCEsa' 0.25 «0.4)
Ct<
V
pF
0.30
The optocouplers are grouped according to their current transfer
ratio lellF at VeE=5 V and marked by dash numbers.
-1
-2
--3
40-80
63-125
100-200
%
30(>13)
45(>22)
70(>34)
%
2(S50)
2 (S50)
5 (SI00)
nA
Group
VI, (1,=10 rnA)
.I~/I, (1,=1
mAl
Collector-Emitter
Leakage Current
(lceo)
(Vce=10V)
Linear operation (without saturation)
Switching times
h
VOP
= lOrnA
= 5V
Tamb
= 250C
load resistance
fiL
75
o
Turn-on time
t.,
3.0 (S 5.6)
~s
Rise time
t,
2.0 (:$ 4.0)
~s
Turn-off time
tolf
2.3 (;:;;4.1)
~s
Fall time
tf
2.0 (:;; 3.5)
~s
Cut-off frequency
too
250
kHz
Switching operation
(~ith saturation)
o
Ie
!,:::OJ'' ' ' ' ' H:
I
J'I"'"
I.,
f:
'S:'7kQ
!!-.
1kO
Vop= 5~
~
'+--.
T"''"''--.~
.'
or2TTlinputs
TTL lavel is
observed
withe 2.7 kO
but no TTL
switching times
pull-up resistor
.
TTL
.
Turn-on time
too
3.01:$ 5.5)
2 and 3
I, = 10 rnA
4,2 (:$ 8.0)
Rise time
t,
2.0 IS 4.0)
:i.0 (:$ 6.0)
~s
Turn-off time
toff
18 (:5 34)
23 (:5 39)
ps
Fall time
tf
11 (S 20)
1
Group
I, = 20 rnA
14 (:$ 24)
0.25 (:5 0.4)
Vee-at
~s
ps
V
SFH 609
5':"110
0/0
Minimum current transfa, ratio
varsus diode forward currant
T....b = 25"<:; VeE = 5 V
300
Current tranafer ratio (typ.)
versus diode forward current
))-!.\
!.J.. m1n
0793
I,
Current transfer ratio (typ.)
versus diode forward currant
::z 5 V
% T.mb =- -25"C: Va'" 5V
0/0 T.mb '" DOC; VeE
10'
10'
Ie
I
I
200
el-2
el2
10 I
l-:::
10I
1
1
100
3
L
/
r--2
1"--1
~
~
VlI
10'
10'
10'
1I
VlI
10'
S
--I,
,
~
5
•
10
--I,
,
% T.mb'" 500c; VeE'" 5 V
10
10
5
S,
10
Currant transf.r ratio (typ.)
versus diode forward current
% T."'b '" 75OC: Vet = 5 V
10 l
=
~
ll-2
2
10 I
1
r1-2
10 I
1
J..
/
VII
,
10 10 ,
5
10'
5
e
10'
IV
1m
5
100
2
5
10'
2mA
, -,/
10
10
--I,
---I,
Current transfer ratio (typ.)
veraus tam perature
I~ '" 10 rnA; VeE =- 5 V
,
mA
lO
%
10
.
10
I
2
i
8i,
10
2 mA
--I,
Collector current versus
collector.mltter voltage
(Current gain B .. 550)
T" ... b = 25OC: iF = 0
Ie
I
S
,
I
/
V
S
,111I
1°,0' 2
2mA
2mA
--I,
Currant transfer ratio (typ.)
varsus diode forward current
Current transfar ratio (typ.)
versus diode forward current
% T.ml> '" 25OC; VeE" 5 V
10I
,V
lIie
510'2510'2mA
~
I L II
1111
1~.'4rill'A
III
20
3
10 I
I,"lOIlA
2
IB" 20llA
1
10
HH
I," 10 IlA
,
10
-25
8
2S
SO
IB"
51l A
IB" 21lA
1
o
o
7S0C
--T
10
15 V
--Vc<
SFH 609
5-111
t.,...
OutpUt o.....
lcsltyp.)
CoII.om oufNftt YUWI
call1IOtOr..mltt.rvolh,1
• B... nolco"nacted
III T_-26OC
._=. . . .
~ ~!~."C",-.
v
311
\2
~
00
r','
I/r~
~
5
~ .~~
(
.~
'"
iii
1/
'5V
,.)
,.'
'.910"
- - . V"
Q,2
.'0>
-I,
IT
75
50
--
--_-~
T_" 260(;: '-1 MHz
c
("
L
iii
30
I"
IF-2xk
.0.4
10
II I III
I"-
v:
If·31C~
,
0
,
1)
50
IFI-~e
,
OJ
Q,2
5
of
0.9
OJ
111
~vol""
Jr"P:s"C
I:
0
Diod. C8pIIG"-nce ,typ.) venUI
- .... Ity;.) ___ aollHtor
cu,.,.....ndoontn:lll1l.... 'Jfor
--
,
Q
--T
Calleotor-etl'llthr.t&mltion
VeE .. ,
J
lL
OJ
5
II
IF- 2mA
IF-5x/c
0.4
~
IF- 4mA
0
! o.a,
~
IF·~
IF-1mA
Va ... Q9
5
IF·~
0
t.,i,
I"",
2
,
Il:':\l
Ih1I
5
5
1)1
0
lO zmA
5
1m
IF-2x1c
IIIII
--Ie
0212
.'
, lhil
5 ,,,. .
11
-Ie
.,
),.,
--v,
means that dMI CUIT8fII flow of tlNidlodllhls to be.djusledto the doubled wlueof the'collector
'I J, .. hIt;
cu""","
.
.
'-mlistble power dialJtdon
Perml_ble ' - d current of
rN_u •• mblllnt~
c.p.cItllnnltyp.J ................
A _dlode_l.mblent
:~I"C"-IMHI
II '-"peNtoN
120
200
I
22
I,
p
I
1,so
t-t- t--
!'\1ranSiStOr
i\
60
I" 1\
Diodl:
so
o
1
1
20
~
o
,25
e"
~~
,
--
2
10
r'\1\
8
"
I"~
511
t-r- t'\
8
,.6
75
~
--'-
1110-[
"
2S
6
""
50
•2
--'-""
15
100·(
0
'tlII
SFH809
5-112
SIEMENS
SFH 617G SERIES
5.3 kV TRIOS*® OPTOCOUPLER
Package Dimensions in Inches (mm)
1---.400(10.16) - i
ANOOE~
COLLECTOR
CATHODE~ EMITTER
.....
r!el
....
.!!,S
FEATURES
• Creepage Distances and Clearances
to VDE 0110b
• Fulfills the VDE Standards:
OB04/0B05/0B06/0B60
• VDE 0884 Approval Applied for
• UL 1409 Approval Applied for
•
•
•
•
Insulation Thickness ~O.B mm
Creepage Distance sB mm
High Common-Mode Rejection
Current Transfer Ratios:
SFH 617G-1 40-80%
SFH 617G-2 63-125%
SFH 617G-3 100-200%
g~
li:s.
0e.
Maximum Ratings
Emitter (IR GaAs Diode)
Reverse Voltage . .
DC Forward Current.
. Surge Forward Current (t S 10
.6 V
~s)
Total Power Dissipation ...... ... .
Deteclor (Silicon Phototransistor)
Collector-Emitter Voltage
Emitter·Base Voltage .. .
Collector Current. ............ .
Collector Current (tsl ms) .... .
Total Power Dissipation . .
The SFH 617G line isolating optocoupler has
been designed for especially demanding
applications. The reflective coupler without
base connection and a 0.80 mm separation
between electrically conducting parts results
in an excellent high-voltage safety. Despite
the small size of the package, modified pins
ensure a creepage distance of 8 mm. The
pins have been bent up to a spacing of
0.4", which also maintains a creepage
distance ~8 mm on the PC board. For use
in circuits requiring safe electrical isolation in
accordance with protection class II.
........ .70 V
. ...... . 7V
. ... 50mA
..100mA
. ... 150mW
Oplocoupler
Storage Temperature Range ............... .
Operating Temperature Range ..
DESCRIPTION
.60mA
.................... 2.5A
. .. , .100mW
Junction Temperature, .....
Soldering Temperature (max. 10 S)1 .....•.
Isolation Test Voltage2
(between emitter and detector referred
to standard climate 23150 DIN 50014) .
Creepage Distance
, ............. : ... -55 to +150°C
. .... -55 to +100°C
. .................. 100°C
. ........................... 260°C
Clearance
. ....... 5300 VDC
.~8.0mm
............. ~8.0 mm
Tracking Resistance
In Accordance with VDE 0110. §6. table 3
and DIN 53480IVDE 0303. part 1 ..
Isolation Resistance (V,o= 500 V) .....
Notes:
1. Dip soldering: Distance to case bottom edge ~O.5 mm
2. DC test voltage in accordance with DIN 57883, draft 4178
*TRansparent IOn Screen.
5-113
.~100
...... 1011 0
Switching Operation
Characteristics (Tamb = 25°C)
Emitter (IR GoAs Emitter Diode)
Forward Vollage
(1,=60 rnA)
Breakdown Vollage
(IR = 1O,.A)
V,
1.25 (,,;;1.65)
V
VBR
30(2:6)
V
(with saturation)
Reverse Current
(VR=6 V)
Capacitance
(VR=OV, 1=1 MHz)
Thermal Resistance1
IR
0.01 (,,;;1.65)
,.A
Co
RTHJA
25
750
KIW
Detector (Silicon Phololransistor)
Capacilance
(VcE=5 V, 1=1 MHz)
Thermal Resistance'
CCE
RTHJA
6.8
500
pF
K/W
VCESAT
0.25 (,,;;OA)
CK
0.25
V
pF
pF
+5V
2,7kn
Optocoupier
.Coliector·Emitter Saluralion Vollage
(1,=10 rnA, Ic =2.5 rnA
Coupling ~apacilance
TIL levels are
observed but
no TIL
switching times
Note:
1. Static air. coupler soldered in"PCB or inserted in base.
-1
1,=20 mA
Current Transfer Ratio by dash number. Ic/IF at VCE = 5 V
Turn-On-Time
-1
-2
-3
Idl, (1,=10 rnA
40-80
63-125
100-200
%
Idl, (1,=1 rnA
30 (>13)
45 (>22)
70 (>34)
%
2(,,;;50)
2 (,,;;50)
5(,,;;100)
nA
Coliector·Emitter
Leakage Currenl
(VcE=10V)
(icEo)
iaN
3.0 «5.5)
4.2 «8.0)
~s
lR
2.0 «4.0)
3.0 «6.0)
~s
1oF,
18 «34)
23 «39)
~
I,
11 «20)
14 «24)
~
0.25 «OA)
0.25 «OA)
V
Rise Time
Turn·Oft·Time
-2, -3
IF =10mA
Fall Time
VCESAT
Non-eaturated switching
SWITCHING TIMES
Linear Operation
(without saturation)
=5V
Vo
Dash Number
-1
Load Resistance
75
Turn-On-Time
Rise Time
la"
Turn·Oft·Time
Fall Time
I,
f-
tpLH
1--::-1_-+-,
V
~
I-..J
-2, -3
I
j\~
II
3.0 «5.6)
3.2 «5.6)
2.0 «4.0)
2.5 «4.0)
2.3 «4.1)
2.9 «4.1)
~s
2.0 «3.5)
2.6 «3.5)
~s
~s
Saturated SWitching
Saturated switching
Non-eaturated switching
to
f""·OV
IF=:J~ CC=SV
~= • F_"~ t~ ~
F= 10KH2,
DF=50%
.-
,
vO
F= 10KHz,
DF=5O%
- itR
Vo 1---101;-~
RL
Vo
-
\
tplL
ts
I
SFH 617G
5-114
Normalization factor for non-aaturatad and saturatsd CTR
Normalization factor for non ...aturalad and saturated CTR
T....~=25°C versus IF
T.....=50°C versus IF
1.5
1.S
.-------,------;----~..,
i
Normalized I~:
Vea = 10V, IF = lOrnA, Ta = 2S"C
1
CTRea(sal\ VC9 = O.4V
1.01-----I-----ht:....---I
1.01------\------Jt''------I
:
·················t······················· .....
O.S
,------"T""----""T"-------,
O.SI-----I-""77""--I---~rl
Ta;' 2S"C
-Go 1NCTR(SA T)
.... lNCTR
:
0.0 '---"-......................1...--'--"-..............."---'--"-....................
100
.1
10
IF - LED Current - rnA
0.0
Normalization factor for non-aaturated and saturated CTR
T....=100°C versus IF
J
1.5,-------,------,---------.
.~
Normalized to:
Vea = 10V; IF = lOrnA, Ta;' 2SoC
J
·t! ..·..· ....................
CTRC9(Sat\ Vee = 0.4V
1.0 ............................................•..............
CTRC9(Sat! Vee = 0.4V
~ 1.0
!
!
1
I
O.S 1-----+---:7":7""-+---""""-/
I
0.5 ..............................l ...............
!
I
~
:
0.0 '---"-......................"---'--"-..............."---'--"-................
.1
10
100
IF - LED Current - mA
10
IF - LED Current - mA
Collector-amiller leakage versus temperature
I
w
o!.
.e
l!
1000
~
10 3
t
10 1
t
10-1
10-2
-20
~
veA
= SV, Vth = l:SV
100 ........................!.......................l .............
!'5.
J
10 2
'0 10 0
0
2.S
!
Ta= 2SoC, IF= 16mA
10 4
u
11
100
Propagation dalay versus collector load realstor
lOS
cc
100
Normalization factor for non-aaturatad and saturated CTR
!
Z15
10
IF - LED Current - mA
T.... =70°C versus IF
1.S , . . . . . - - - - - . . - - - - - - . . - - - - - - - - ,
Normalized 10:
Vea = 10V: IF = lOrnA, Ta = 2S"C
i
L -........................."'-----'----'............." " - _ " - - -....................
.1
..
!i!
1.S
10
!b
1
0
40
60
20
80
Ta - Ambient Temperature _ °C
100
~
....
:c
II.
IPHL
:z:
....
!!o
Ii
8.
.1
10
RL - COLLECTOR LOAD RESISTOR - Kf.l
1.0
100
SFH617G
5-115
Current transfer ratio (typ.)
versus temperature
(IF~10 mAo VCE~5 V)
Minimum current transfer ratio
versus diode forward current
Output characteristics (typ.)
Collector curlent versus
collector-emiller voltage
(T,mb = 25°C)
(T""b~25°c. VCE~5V)
,
%
10
%
300
~
~
.!s..min
I,
J.ill
IF = 14mA
b-t't:
1
m
200
3
,
10
2
~
1
-++
~mA
100
,
10
·25
25
50
~
6mA
0
3
4mA
~2
~
P
t"'-1
2O!!i
1~
10'
75°(
0
10%mA
10
--I,
--T
Diode forward voltage (typ.)
Forward voltage
versus forward current
Transistor capacitances (typ.)
Capacitance versus
collector-emiller voltage
(Tomb = 25°C. f~1 MHz)
'.2
11 v
c
F
1
t
0
V IS
-\lh
Pennfssible pulse handling capability
Forward current versus pulse width
(Pulse duly factor D = parameler.
T,mb=25°C)
4
1.1
1,
1
B
6
4
2
C"
0
'.0
8
6
4
"'"
5 mAIO'
O.9'OL.'-,.LL-'-Sllill,LO'-'-'uS '0'
2
0
10.2
-·-1,
Permissible power dissipation
for transistor and diode versus
ambient temperature
10-5
10-4
10-3 10-2
10- 1
100
S
10'
--I,
Pennlssible forward current of the
diode versus ambient temperature
Forward voltaga varsus forward current
1.4...-------;.,....-----,------,
1.3
. . . . . . . . . . . . . . .1. . . . . . . . . . . . . . . . . . . . . . . . .
I
1.2
......•......................~.........
~
1.1
I
0.9
200
p
~
mW
1,50
100
I'
1\
Diode
60
1\
I"
1\
"
50
1S
"'-I'
30
I' ~
2S
>
J
['\.Transistor
50
o
o
~
\
O(
--T,mb
100
o
o
2S
50
['-..,
i
Ta=-55OC
r--="---,.-f
1.0
0.81"""'----i-.,----;------I
0.7 '--...............................:--'-.........................-.,...........................
.1
10
100
If- Forward Currant - rnA
75 .( 100
--lamb
SFH617G
5-116
SIEMENS
SFH 6011
5.3 kV TRIOS*® OPTOCOUPLER
HIGH RELIABILITY
Package Dimensions in Inches (mm)
.307
.8
.291 (7.4)
(j
0
.248(6.3)
0
6
ANODE
~6
2
5
CATHODE 2
3
4
NC 3
~
BASE
5 COllECTOR
4 EMlmR
FEATURES
DESCRIPTION
• Isolation Test Voltage: 5300 V
• High Current Transfer Ratios
at 10 mA: 63-200%
at 1 mA: 50% typo (>22)
• Fast SwRchlng TImes
• Minor CTR Degradation
·100% Burn-In of Emitting Diode to
Stabilize Radiant IntensRy
• Field-Effect Stable by TRIOS
• Temperature Stable
• Good CTR LInearity Depending on
Forward Current
• High Collector-Emitter Voltage
VcEo=70V
• Low Saturation Voltage
• Low Coupling Capacitance
• External Base Wiring Possible
• High SecurRy Against Premature Failure
• VDE Approval Applied For
The optically coupled isolator SFH 6011 features a high current transfer
ratio as well as high isolation voltage. It has a GaAs infrared emitting
diode as emitter, which is optically coupled to a silicon planar phototransistor detector. The component is incorporated in a plastic plug-in
DIP-6 package.
The coupling device is suitable for signal transmission between two
electrically separated circuits. The potential difference between the
circuits to be coupled is not allowed to exceed the maximum permissible
reference Voltages.
This optocoupler exhibits a high standard of quality and great reliability.
Quality assurance is implemented by a repeated 100% test and by a
subsequentrandom-sample testing, in which the basic AQL is 0.065 for
major faults ..
The second 100% test is performed at an extended temperture of 70~C
with more severe test-limits. Thus reliability is considerably increased
with the following failure rates: Up to 1000 hours in service (premature
failure phase): a failure rate of <100 fit. After 1000 service hours: a
constant failure rate of <10 fit. (1 fit=1 failure per 109 component hours.)
"TRansparent IOn Shield.
5-117
Maximum Ratings
SWITCHING TIMES
EmItter (GaAs Infrared Emiller)
Reverse Vollage ..................................................................;....................... 6 V
DC Forward Currenl ....•.•. ,...•.....•..................•..•..•••.....•................••....••.•. 60 mA
Surge Forward Current (tSl0)1S) •...................................•.....•............... 2.5 mA
Tolal Power Dissipation ....................................................................... 100 mW
Linear Operation (without saturation)
=5V
Detector (Silicon Phototransistor)
Collector·Emitter Vollage •........•..................•.•...•••••..•..•..•.....•.....••••••..•.••.... 70 V
Emitter-Base Vollage ...................•••.................................•.•;........................ 7 V
Collector Current ......•....•.............••••.••..•.........................•••••••..•••••....••..•. 50 mA
Collector Current (t Sl ms) ................................................................... 100 mA "
Tolal Power Dissipation ................•.................•.................•..•.•.....••....•• 150 mW ,
Optocoupler
Storage Temperature Range .................. ,............................. -55'C to +150'C
Ambient Temperature Range ................................................ -55'C to +lOO'C
Junction Temperature Range .....•.•..•....•.•..•......•..•..........•••.•••.•.•..•.•..•..••. lOO'C
Soldering Temperature (max. 10 s) 1 •..••.•.••••.•••••••.•.•••••••••••.•.••'.•.••.••••••.•• 260'C
Isolation Test VoIlage2 '
'
(between emitter and detector referred
to slandard climate 23/50 DIN 50014) ......................................... 5300 VDC
Leakage Path ...................................................................................... ~.2 mm
Air path ...........................................:.....................................................7.3 mm
'.=10 rnA, Vop=5 V, T.~.=25Dq, .
",
Load Resistance
R"
75
n
Turn-On lime
\,.
3.0. (S5.6)
)1S
\,
2.0(,;4.0)
)1S
\".
2.3(54.1)
)1S
~
2.0 (s3.5)
)1S
250
kHz
Rise lime
Turn-Off lime
Fall Time
TrackIng Resistance
In Accordance with VDE 0110 §6, table 3, and
DIN 53480/VDE 0303, part 1 .................................................................. 100
Isolation Resislance (V,o=500 V) ........................................................... 10" n
Cut-Off Frequency
Notes:
Switching Operation (with saturation)
1. Dip soldering: 0.5 mm clearance from package.
Fcc
- -'"
=:g
2. DC test vonage in accordance with OIN 57883, draft 6.80.
IF
Characteristics (Tamb=25°C)
EmItter (GaAs Infrared Emitter)
Forward Vollage (IF=60 mAl
Breakdown Vollage (1.=100 pA)
Reverse Current (V.=6 V)
Capacllance (V.=O V, f=l MHz)
Thermal Resislance
Detector (SIlicon Phototransistor)
, Capacllance
(V..=5 V, f=l MHz)
(Vca=5 V, f="l MHz)
(V..=5 V, f=l MHz)
Thermal Resislance
Optocoupler
Coliector·Emitter Saturation Vollage
(1.=10 mA, le=2.5 mAl
Coupling Capacitance
Current Transfer Ratio
(1.=10mA, Vce=5V)
(1.=1 mA, VCE=5 V)
Collector-Emitter Leakage Current
(VCE=10V)
1kQ
v"
~~
.
..-t--t-="~---22)
%
%
Turn-On lime
Rise lime
ICEO
2(s50)
nA
Turn-Off lime
FallTlme
\,.
4.2 (S8.0)
)1S
\,
3.0 (S6.0)
)1S
\".
23 (S39)
)1S
~
14 (S24)
)1S
0.25 (SO.4)
V
VraAT
SFH 6011
5-118
versus diode forward current
(T.=25'C. V",=5 V)
,
%
300
~
~mi1
1,
I
Curront Iransf.r ratio (typ_)
versus diode forward current
(T.=O'C. Vc,=5 V)
Curront transfor ratio (typ_)
Minimum current transfer ratio
versus diode forward currenl
(T.=25'C. V,,=5 V)
%
%
10
10 l
2DO
~
l-
10I
10I
-
100
~
o
10-'
10
5 10'
1/
I
~
5 10'
IS
,
to-'
10'
--1,
--1,
1Q1
,
2 rnA
Current Iransfor ratio (typ_)
Currenl lranslar ratio (typ_)
versus diode forward current
(T.=25'C. V,,=5 V)
10
[7
10- 1 2
5
S-
--1,
'10'
2 rnA
Current transf.r ratio (typ.)
versus diode forward current
(T.=75'C. Vc,=5 V)
versus diode forward current
(T.=50'C. Vc,=5 V)
%
10 l
-
10 I
~
,I
10
10-'
5
flo
101
-
10 I
I
10'
2 iliA
S>
I
,
mA
30
1 0 ' _
--1,
IIII
)--l
collactor--ernittar voltage
Base not connected (T.=25'C)
mA
30
.1
I III
0635
Ir~
IF~
II I I
IB-
30~
I~
III I
101 _
?'T~
F = .::!;:..
IB- 20 ~A
10
I III
IF - 6mA
10
IB- 10 ~A
IB"
IB"
lY1
10' u.u.u.L1.L1.L1~LLLL.L.l..w
-25
25
SO
15
10
0(
--r.
2 rnA
Collector current versus
I~_14ciJ.
20
10'
Outpul characteristics (typ.)
I II I
0634
S-
/
10- 1
--1,
Collector current varsus
coliectoro(Jmitter voltage
(Current gain B=550. T.=25'C. 1,=0)
%
-
,
10
10·' 2
--1,
Currenl lranslar ratio (Iyp_)
versus lemperatura
(1,= 10 rnA. V,,=5 V)
10
1,- 4mA
5~IA
IF- lmA
2~A
15 V
1;10
2mA
15V
SFH6Dll
5-119
Dlods forward vonaga (typ.)
versus forward currsnt
:]1
v
1.2
~ sooe
~ lS'C
ICE~
pF
""
lao.~
24
Va=40V
C,
11Ir'IIIv.,a~·1'0~VIIII·
rj
1.1
TransIstor capacitanca (typ.)
versus emlner voltage
(Tn .=25'C, f=1 MHz)
Collector·smltter leakage
currant (typ.) of the transIstor
versus temperatura
(Tn .=25'C, 1,=0)
~
V
~
18
CEB
16
\
12
10
,
~
5 1D'
5 10'
5
S
M?
1D'mA
I"1i11
b1
1~~~W·~0~·L2~5~~~~~~~~'00~
--I,
lao
10·'
Collector-amltter saturallon
voltage (typ.) versus collector
current and control range')
(Tn .=25'C)
V
PermIssIble power dIssIpation
for transIstor and dlods versus
ambIent temperatura
0.8
I~
0.7
0.3
0.2
'\iTransistor
1\
100
./
0.1
10'
50
o
25
50
'IS ,
o
"
f"
~
o
10'mA
"
30
Diode
11111
1,= 3x/c
~
60
" "-\ \
",
1,=2xlc
r--....
~
~
0.6
/
.~ f-
Q f-
p
0.5
mA
121)
200
0.9
10'V
PermIssible forward current of the
dIode versus ambIent tlimperatura
mW
,
to
10'
--V.
--T.
0.4
:'
111' _ _
1/
Vc"..
~~
\
14
J
1.0
:~
o
25
50
"
1)O'e
75
--~
lOO'e
--~
--/c
PermIssIble pulse handling capability
Forward current versus pulse wIdth
(D=parameter, T~.=25'C)
DIode capacitance (typ.)
veraus reverse voltage
pF (Tn.=25'C, f =1 MHz)
30
28
C 26
t
Current transfar rallo versus load lime
(V..=5 V,R.=1 kn, T_=60'C, 1,=60 rnA, Measuring
current =10 rnA, Confidence coefficient 5=60%)
%
lID
,....
21,
22
20
I-
18
16 I-
I12 III,
10 fff-
-
-
~
..:...
-
-
-
r--
10'
10'
95'1.
II
t--
90
50'/0
- II
....
soio
80 ,0 ,
2 f-€61
o
10·'
~
10'
-I
10' h
--1:
N01e:
1.lr 2 )C Ie means that the current flow of the diode has to be adjusted to twice the value 01 the collector current.
SFH6011
5-120
SIEMENS
SFK610/611 SERIES
SINGLE PHOTOTRANSISTOR
OPTOCOUPLER
Package Dimensions in Inches (mm)
I1------1.
r..'l
175 14.451
-1-'-0·
r.?lI,190(4.B31
PIN 1 IDENnFlCATIDN
240 (6.10)
.260 (5.60)
_I
.'30(3.30)
_ )_
,'50 {3.811
---.-
.130(3.30)
.150.(3.81J
\
.100(2.54)
lYP
SFK&10
FEATURES
• High Current li'ansfer Ratios,
4 Groups
SFK610/611-1 40 to 80%
SFK610/611-2 63 to 125%
SFK610/611-3 100 to 200%
SFK610/611-4 160 to 320%
• 7500 Volt DC Isolation
• Low Saturation Voltage
• VCEO = 70 Volt
• 100% Burn-In at IF = 50 mA
Tamb = 60°C, t = 24h
• UL Approval #52744
• Trios
DESCRIPTION
The SFK610/611 series is a single-channel
optocoupler series for high density applications. Each coupler consists of an
optically coupled pair employing a
Gallium Arsenide infrared LED and a
silicon NPN phototransistor. Signal information. including a DC level. can be
transmitted by the device while maintaining a high degree of electrical isolation
between input and output.
O'
"lS G
SFK611
ANODC1~4EMITTER
CATHODEI~4COlLECTOR
CATHOOE2~3COLlECTOR
ANOOE2~3EMITTER
Maximum Ratings
Emitter (GaAs LED)
Reverse Voltage
DC forward current
Surge forward current (t" 10 ~s)
Total power dissipation
Detector (silicon phototranslstor)
Colleetor·emitter voltage
Collector current
Collector current (t" 1 ms)
Total power dissipation
Optocoupler
Storage temperature range
. Ambient temperature range
Junction temperature
Soldering temperature
(max. 10 sec)'
Isolation test voltage (t = 1sec)
Isolation resistance
, Dip soldering: Insertion depth <3.6 mm
The SFK610/611 series offers an additional
level of reliability with 100% burn-in of the
LI:;D emitter at elevated temperature.
5-121
VR
IF
IFSM
Plot
VCEO
Ie
IcsM
Plot
Tamb
Tj
V's
RlSO
V
rnA
A
mW
70
50
100
150
V
rnA
rnA
mW
-55 ... +150·C
-55. .+100°C
·C
100
T.g
Tsold
6
60
2.5
100
'
260
7500
5300
10 11
·C
VDC
VAC(RMS)
II
CHARACTERISTICS @ T.... 25°C
Emitter (GaAs infared emitter) .
Forward voltage (IF = 60 mAl
Breakdown voltage (IR = 10 PA)
Reverse current (VR = 6 V).
Capacitance (VR = 0 V; f = 1 MHz)
VF
VSR
IR
Co
1.25 (sl.65)
30 (",6)
0.01 (sI0)
25
V
V
p.A
pF
Detector (silicon phototransistor)
Collector-emitter breakdown vbltage
Emitter-collector breakdown voltage
Capacitance (VCE = 5 V; f = 1 p.Hz)
BVCEO
BVECO
CCE
70
7.5
6.8
V
V
pF
VCE (sat)
Cc
0.25 «O.~O)
0.35
V .. '
pF' .'
Coupled
Collector-emitter saturation voltage
(IF = 10 mA, Ic = 2.5 mAl
Coupling capacitance
Group
SFK610/611.1
SFK610/611·2
SFK610/611-3
SFK610/611-4
40-80
63-125
100-200
160-320
Current transfer ratio'
IF =10mA, VcE =5V
%
Current transfer ratio'
IF=1 ma, VcE =5V
13 min.
22 min.
34 min.
56 min.
0/.
ICEO (VCE = 10 V)
2 (s50)
2 (s50)
5 (s 100)
·5 (s 100)
nA
CTR will match within a rallo of 1.7:1
Switching Characteristics
Linear Operation (without saturation) IF10 mAo Vee = 5 V, Re = 750
Group
Turn on time
Rise time
Turn off time
Fall time
SFKil0/611·1
Ion
t,.
Iolf
~
3.0 «5.6)
2.0 «4.0)
2.3«4.1)
2.0 «3,5)
SFK610/611·2
3.2 «5.6)
2.5 «4.0)
2.9 «4.1)
2.6«3.5)
SFK610/611-3
3.6 «5.6)
2.9 «4.0)
3.4 «4.1)
3.1 «3.5)
SFK610/611-4
4.1 «5.6)
3.3 «4.0)
3.7 «4.1)
3.5«3.5)
p.S
p.S
P.s
P.s
SwHchlng operation (with saturatlon).Vee =5 V, Re=1 KO
Group
Turn on time
Rise time
Turn off~me
Fall time
ton
t,
Iolf
~
SFK610/611·1
IF=20mA
3.0«5.5)
2.0 «4.0)
18«34)
11 «20)
SFK610/611·2
IF =10mA
SFK610/611-3
IF=10mA
SFK610/611-4
IF=5 rnA
4.3 «8.0)
2.B «6.0)
24«39)
11 «24)
4.6 «8.0)
3.3 «6.0)
25 «39)
15«24)
6.0«10.5)
4.6«8.0)
25 «43)
15«26)
5-122
P.s
p'S
p.S
P.s
Fiber Opfic Devices
Infrared Emitters
Phofodiodes
Phofofransistors
PhofovolfaicCells
6-1
Fiber Optic Emitters
Part
Number
Package Outline
Package Infrareell
Visible
Type
(Color)
Surge
Maximum
Current
Wavelength
Features
(tc~!18)
nm
Pege
T1 3/4
SFH450
..
@
··W
..-::
SFH750
SFH751
Ught
grey
plastic
Infrared
T13/4
Visible
(Red)
Red
plastiC
T1 3/4
Green
plastic
Visible
(Green)
SFH450V
~.
~
H
U
SFH451V
SFH452V
SFH750V
Infrared
Grey
plastic
connector Visible
housing.
(Red)
Visible
(Hyper-
SFH752V
950
GaAs
3.5
660
GaAsP
1.5
560
GaAsP
1.0
950
GaAs
3.5
Aber optic short
distance data
transmission.
6-11
2.3mm aperture
holds 1000
micron plastic
fiber.
Matches with
SFH25O/FN or
SFH350/FN.
840
6-13
660
1.5
650
iedi
Fiber Optic Photodiodes
Part
Number
Package OutDne
-
SFH250
48].
SFH250F
bi
j
H
ij
SFH250V
Package Aperture
Type
T1"/4
Plastic
SFH250.
clear
SFH250F.
daylight
filter
Black
plastic
connector
housing.
Dark Current
VR=20V
nA
Max.
Wavelength
nm
950
~JO)
i3mm
900
850
Features
Page
PIN type. Fiber
optic short
distance data
transmission.
6-3
2.3mm aperture
holds 1000 micron
plastic fiber.
Matcheswnh
SFH450N. 451V.
452V.750N.
6-5
Fiber Optic Phototransitors
Part
Number
Package Outline
SFH350
~3ITJ
t" __
c:=::::::s
~
I
j
U
@
SFH350F
B JiiI rtHJ
SFH350V
Photocurren Collector
Package Aperture
Emiller
Featurea
W50nm
Type
Voltage
VCE=5V
V
mA
Fiber optic short
Tl s/4
0.7
distance data
Plastic
transmission.
SFH350.
clear
2.3mm aperture
SFH350F,
holds 1000 micron
0.55
daylight
50
2.3'Tm
plastic fiber.
filter
Matches with
Black
SFH450N. 451V.
plastic
0.7
452V, 750N,
connector
SFH751.
housing.
SFH752V.
Page
6-7
6-9
Fiber Optic Kit
Part Number: PFOK-l
Design-In kit for fiber optic devices.
Contains: 1) Emitters-8FH450, SFH750, SFH751. SFH750V; 2) Photodiodes-8FH250. SFH250F, SFH250V;
3) Phototransistors-8FH350. SFH350F; 4) Flber-7'long & 15' long; 5) Application Note; and 6) Data Book.
6-2
6-15
SIEMENS
SFH250
WITH IR FILTER SFH250F
PLASTIC FIBER OPTIC
PHOTODIODE DETECTOR
Preliminary Data Sheet.
Package Dimensions in Inches (mm)
Sur/ace notflal
.093 (2.35)
.08712.2)
~Anode
.100 12.54)
SFH2S0
FEATURES
Maximum Ratings
• 2.3 mm Aperture Holds Standard
1000 Micron Plastic Fiber
• No Fiber Stripping Required
• Daylight Rejection Filter (SFH250F)
• High Reliability
• Low Noise
• Fast· Switching Times
• Low Capacitance
• Very Good Linearity
• Sensitive in the Visible (SFH250) and
Near IR Range (SFH250 & 250F)
• Molded Microlens for Efficient Coupling
Operating and Storage Temperature Range (T)..
DESCRIPTION
The SFH250/250F are fast silicon PIN photodiodes in a low cost plastic package for use
in short distance data transmission using
1000 micron plastic fibers. Both come in a
5 mm (T13J4) plastic package featuring a tubular
aperture which is wide enough to accommodate fiber and cladding. A microlens on
the bottom of the aperture improves the light
coupling efficiency of the fiber output into
the photodiode.
The SFH250 has a clear plastic housing; the
SFH250F has a black plastic housing.
. .. -55 to +100oC
Soldering Temperature (Distance from solder to package=2 mm)
Dip Soldering Time. ts5 sec (Tsl. . . . . . . . .. . . . . .. . . .
. ......... 260 oC
Reverse Voltage (VR) .................................................. 30 V
Power Dissipation (PTOr) . . . . . . . . . . . . . . . . . . . .
. .................... 100 mW
Thermal Resistance (RrHJ.J .......................................... 750 K1W
.';:
Characteristics (T8mb =25°C)
Wavelength of Max. Photosensitivity
SFH250
SFH250F
Spectral Range of Photosensitivity
(S = 10% of SM"'"
SFH250
SFH250F
Dark Current (VR = 20 V)
;;:
A. MAX
850
900
nm
nm
IA
400 to 1100
800 to 1100
1 (S10)
nm
nm
nA
Electrons
Photon
AMAX
Quantum Efficiency (A = 850 nm)
Rise and FaU Time of the Photocurrent
from 10% to 90%. respectively. and from
90% to 10% of its Peak Value
(RL =500. VR=30 V, .=880 nm)
Capacitance (VR=O V. f= 1 MHz. Ev=O Ix)
tR. tF
Co
10
11
Noise Equivalent Power
NEP
2.9x 10- 1'
Detection Limit (VR= 20 V)
Photoeurrent (VR=5 V) (Note 1)
SFH250/250F A=950 nm
SFH250 .=660 nm
0.89
ns
pF
W
For application information see Appnote 40.
6-3
-JHz
DL
3.5x1012
em -JHz
-W--
IpH
IpH
4.0
3.0
,..Po
,..Po
, Photocurrenl generated at 10 JjW light incidence through plastic 1000 micron fiber (distance
lens·fiber :sO.1 mm, fiber type ESKA EH4001, fiber face polished).
Typical applications include: automotive wiring,
isolation interconnects, medical instruments,
robotics, electronic games, and copy machines.
:!"I
..................
SFH250
Relative spectral sensitivity
5"" = f(~)
Dark current IA
""III_
/
1\
II
\
II
" 1/
\
20
".
f(VA)
,A
%
".
60
:<
60.
800
1000
-->
Capacftance C = f (VR)
Tamb = 25°C
Tamb = 25°C
1200nm
,f
12
"'"'1118
"
10'O!-,-..L.L--L,,':-'-L.L~20:-"-LL-'-:lOV
--VR
•
,
,
,
2
,,'
SFH 2501250F
6-4
SFH250V
SIEMENS
PLASTIC FIBER OPTIC
PHOTODIODE DETECTOR
Preliminary Data Sheet
Pac~ge
Dimensions in Inches (mm)
rl=::;;;;~h.calh.d•
.157(4.00)
1 t!~
•100
(2.54)
(:.~)-
FEATURES
Maximum Ratings
• 2.3 mm Aperture Holds Standard 1000 Micron
Plastic Fiber
• No Fiber Stripping Required
• Connect Fiber without lIivlstlng
• Plastic Connector Housing
• Mounting Screw Attached to Connector
• Interference-Frea 'Dansmlsslon because of
Ught·Tlght Housing
• 'Dansmlner and Receiver Can Be Flexibly
Positioned
• No Cross Talk
• Auto Insertable and Wave Soldarable
• Supplied In Tubes
• Molded Mlcrolens tor Efficient Coupling
• Fast Switching Time
• Sensitive In Visible and Near IR Range
• Very Good Unearlty
Operaling and Slorage Temperature Range (T) .............. -55 to +100 oC
Soldering Temperature (Distance from solder to package =2 mm)
Dip Soldering Time. t~5 sec (Tsl ............................... 260 0 C
Reverse Voltage (VA) ..........•.•.....•.....••.•..•.....•....•.• 30 V
Power Dissipation (PTOT) •.•..•..••.•..••••••••••••••••••.••••• 100 mW
Thermal Resistance (RTHJ
750 KJW
DESCRIPTION
The SFH250V is a fast silicon PIN photodiode for use
in short distance data transmission using 1000 micron
plastic fibers. The photodiode is part of a family of
light link components for applications requiring a low
cost fiber optic link. The device is housed in a plastiC
connector with a mounting screw permanently
attached to the thread and deSigned to house a
1000 micron plastic fiber with cladding. A microlens
improves the light coupling efficiency of the fiber
output into the photodiode.
'> ...................................
Characteristics (T8mb =25°C)
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity
(S 10% of SUAX)
Dark Current (VA 20 V)
Ao.AX
850
nm
IA
400 to 1100
1 (~10)
nm
nA
Electrons
Photon
Q
Quantum Efficiency (1=850 nm)
Rise and Fall Time of the Photocurrent
from 10% to 90%, respectively. and
from 90% to 10% of its Peak Value
(RL =500, VA=30 V, 1=880 nm)
Capacitance
(VA =0 V, f=l MHz, Ev=O Ix)
0.89
t A, tF
10
ns
Co
11
pF
W
NEP
2.9x 10- 1•
Detection Limit (VA =20 V)
DL
3.5x 10"
Photocurrent (VA = 5 V) (Note 1)
1-660 nm (red)
IpH
3.0
Noise Equivalent Power
-1Hz
cm -1Hz
-W--
1 Photocurrenl generated al 10 Jl-W light incidence through plastic 1000 micron fiber
(distance lens-fiber :sO. 1 mm, fiber type ESKA EH4001, fiber ends polished).
Typical applications include: Remote photointerrupter/
sensing; Fast optocoupler with extremely high isolation voltage; Transmission of analog/digital signals,
data buses; Feedback loop in switch mode power
supplies; Isolation in test/measurement/medical inStruments; Noise immune data transmission in electrically
noisy environments (motors, relays, solenoids, etc.).
For application information see Appnotes 40, 41, 42, 43.
See SFH250/F for component without plastiC housing.
6-5
ill
....
CI_
~>
Q
"Po
a!.:I
SFH250V
Relattve spectral' sensitivity
Dark curnnt tA • !(VA)
Tamb = 25°C
.Srel"" t(X)
""-
%
10
~.
•
J
!•
8
r,9Wn
1\
SI'tL'
II
\
pF
11
"H-fflIIHtttttH
II
'1/
II
I
•
400
!tv,,>
lamb = 25°C
I",• •
• II
•
capacitance C -
1\
600
800
1000
--).
1200nm
10'OLJ...l.-L.Ll,,-Ll-.LJLtoLLLJ....LJ3• V
-VA
SFH250V
6-6
SIEMENS
SFH350
WITH IR FILTER SFH350F
PLASTIC FIBER OPTIC
PHOTOTRANSISTOR DETECTOR
Preliminary Data Sheet
Package Dimensions in Inches (mm)
l
~
o
--!l L
~
028(07)
016(04)
k
117 (415)
.177('.5,
.21715.5)
.20115.11
FEATURES
Maximum Ratings
• 2.3 mm Aperture Holds Standard
1000 Micron Plastic Fiber
• No Fiber Stripping Required
• Daylight Rejection Filter (SFH350F)
• High Reliability
• Good Linearity
• Sensitive In the Visible (SFH350) and
Near IR Range (SFH350 & 350F)
• Three Lead Phototranslstor
• Molded Mlcrolens for Efficient Coupling
Operating and Storage Temperature Range (T) .................... -55 to +100·C
Soldering Temperature (Distance from solder to package=2 mm)
Dip Soldering Time, ts5 sec (Tsl ..................................... 260ac
Collector-Emitter Voltage (VCE) .......................................... 50 V
Collector Current(lcl ................................................ 50 mA
Collector Peak Current. tSl0 sec (Icp) ................................. 100 mA
Emitter Base Voltage (VEe> .............................................. 7 V
Power Dissipation (Tamb=25·C)(PTOT) ••••••••••••••••••••••••••••••••• 200 mW
Thermal Resistance (RTHJ'> .......................................... 375 KIW
DESCRIPTION
The SFH350/350F are NPN silicon phototransistors in a low cost plastic package for use
in short distance data transmission using
1000 micron plastiC fibers. Both come in a
5 mm (T1%) plastiC package featuring a tubular
aperture. It is wide enough to accommodate
fiber and cladding. A microlens on the bottom
improves the light coupling efficiency-fiber
output to PTX.
The SFH350 has a clear plastic housing; the
SFH350F has a black plastiC housing.
Typical applications include: automotive wiring,
isolation interconnects, medical applications,
robotics, electronic games, etc.
Characteristics (T8mb = 25°C)
Wavelength 01 Max. Photosensitivity
SFH350
SFH350F
Spectral Range 01 Photosensitivily
(S-10% 01 SM">
SFH350
SFH350F
Capacitance
(Vco=O V, 1=1 MHz, E=O Ix)
(Vc.=OV, 1=1 MHz, E=O Ix)
(Vo.=O V, 1= 1 MHz, E=O Ix)
Rise and Fall Time
(Ie = 1.0 mA, Vco=5 V, RL =1 kII)
Current Gain
(Vco-5 V, 1c.=2 mAl
Photocurrent (Vco =5 V) (Note 1)
SFH350F 1 = 950 nm
SFH350 1 = 660 nm
1
850
900
nm·
nm
400 to 1100
800 to 1100
nm
nm
Cco
Cc.
Co.
9
22
20
pF
pF
pF
tR• tF
15
lMAX
~
ICE
ICE
Typ.
1.0
0.8
mA
mA
Photocurrent generated at 10 IlW light incidence through plastic 1000 micron fiber (distance
lens-liber .:SO.1 mm, fiber type ESKA EH4001. fiber lace polished).
For application information see Appnote 40.
6-7
""
500
ill
co_
...lit
:!!co
SFH350
-Reliiti... spRtra. sensitivity
Output ch_lca
S", -10.)
100
i
ill
II
60
f\
I.~ f- I-- f- f-
I, 3,5
II
I
l- f- .....
~ .....
V'~ F=
tI(f- t- ~
3,5~A
..... l- ..... f-
3,0
1\
2,5
i
I
2,0
II
0
1,5
j
I-'
0
400
600
IL
r-: r¥:
""" . 2,5~
20
r--~
C
f
1e
i
0,5 r-t- t- O,5j,lA
'!
~
1
16
1\
1\
14
12
CEB
I--
10
!
I
C"
1j,lA
1000
-~
1200nm
o
o
I
6
B
-VCE
10V
o
10"
I
1\
II
l,5~A
1,0
800
l- I-- ..... I-
--
pF
22
2~A
I
i
-
.... -
I
0
C8pacft.once C • I(V)
Ie - l(Veel; I. - Parameter
rnA
4,0
%
10"
10'
"
~C"
1\1
10'
10'V
-V
SFH 35OI36OF
6-8
SIEMENS
SFH350V
PLASTIC FIBER OPTIC
PHOTOTRANSISTOR DETECTOR
Preliminary Data Sheet
Package Dimensions in Inches (mm)
Emitter
.157 (4.00)
Base
Dete<:10r'1~0 I!~'OO)
(2.54)
.200
(5.08)
+-
FEATURES
Maximum Ratings
• 2.3 mm Aperture Holds Standard 1000 Micron
Plastic Fiber
• No Fiber Stripping Required
• Connect Fiber without lWlsting
• Plastic Connector Housing
• Mounting Screw Attached to Connector
• Interference-Free li'ansmission because of
light-Tight Housing
• 'Dansmitter and Receiver Can Be Flexibly
Positioned
• No Cross Talk
• Auto Insertable and Wave Solderable
• Supplied in lUbes
• Good Linearity
• Molded Microlens for Efficient Coupling
• Sensitive in the Visible and Near IR Range
• Base Lead Connection for External Biasing
Operating and Storage Temperature Range (T). . . . .
. ..... -55 to + 100°C
Soldering Temperature (Distance from solder to package=2 mm)
Dip Soldering Time. t;s5 sec (Tg). . . .
. ....... 260 oC
Collector-Emitter Voltage (VCE)
. . . ... . .. . . .
. ..... . 50 V
Collector Current(lcl .............. . . . . . . .. . . .
. ......... 50 mA
Collector Peak Current. t;s 10 sec (Icp)
......... 100 mA
Emitter Base Voltage (VEB) ..........
. ............. 7 V
Power Dissipation (T""b=25°C) (PTOT)'
...... 200 mW
Thermal Resistance (RTHJAI ....
. . . . . . . . . . . . . . ... 375 K/W
DESCRIPTION
....
~"I
.....
ou
~;;:
Characteristics (Tamb =25°C)
Wavelength of Max. Photosensitivity
Spectral Range of Photosensitivity
(S=10% of SMAX)
Capacitance
(VcE=OV.f=l MHz. E=Olx)
(VCB=O V, f=1 MHz. E=O Ix)
(VEB=O V. f=l MHz. E=O Ix)
Rise and Fall Time
(lc=1.0mA. VcE =5V. RL=l kII)
Current Gain
(VcE=5 V.Ic.=2 mAl
Photocurrent (VcE =5 V) (Note 1)
A= 660 nm (red)
1
The SFH350V is a NPN silicon phototransistor in a low
cost plastic package for use in short distance data
transmission using 1000 micron plastic fibers. The
phototransistor is part of a family of light link components for applications requiring a low cost fiber optic
link. The device is housed in a plastic connector with
a mounting screw permanently attached to the thread
and designed to house a 1000 micron plastic fiber
with cladding. A microlens improves the light coupling
efficiency of the fiber output into the phototransistor.
"'0
u::
AMAX
850
nm
400 to 1100
nm
9
pF
pF
pF
CCE
CCB
C EB
22
20
tAo tF
15
~s
p
500
Typ.
ICE
0.8
mA
Photocurrent generated at 10 JjW light incidence through plastic 1000 micron fiber
(distance lens·fiber :sO.t mm, fiber type ESKA EH4001, fiber ends polished).
For application information see Appnotes 40, 41, 42, 43.
See SFH350/F for component without plastic housing.
Typical applications include: Remote photointerrupter/
sensing; Fast optocoupler with extremely high isolation voltage; Transmission of analog/digital signals,
data buses; Feedback loop in switch mode power
supplies; Isolation in tesVmeasuremenVmedical instruments; Noise immune data transmission in electrically
noisy environments (motors, relays, solenoids, etc.).
6-9
SFH350V
......... ---~
Olllput_
s..,-I(j.)
:I
4,0
II 1\
:
,
-'
"
I.~
I- ~ l-
17'1"'" F ~
I
il
60
,
A_
i
II
I
,:
1
"'"
0
400
2.5
V
I-t- ~
2,0
+~
ll'!"::' r-
1,5
!-
-~ l-
,...,...
2,5uA
,
f
N
20
16
1\
14
12
r-
10
!
2uA
i1
rr--- t- O,5,uA
0,5
1000
-A'
1200nm
o
o
'EO
1\
1
,I
'C[
~'c.
1\1
i
I
4
,
J,
l,uA
I
~
,,
18
1,0
j
800
I-+~ r-
l,5,uA
i
1J
600
f'
'j-I
~
,...1-
,...~
l- I- ~
3,~ ~ !- l-
I
0
pF
22
mA
100
0
CopocI..... C - 1M
'e - '(Vee): '. - Paramo'or
%.
6
10V
----'--- VCE
o
J
10-'
10",
10'
10'
-V
10'V
SFH360V
6-10
SIEMENS
SFH450/750/751
PLASTIC FIBER OPTIC
TRANSMITTER DIODE
Preliminary Data Sheet
Package Dimensions in Inches (mm)
.093(2.35)
.087(2.2)
SurlaeenalOal
~Anode
.100(2.54)
,187(4.75)
.177(4.5)
.217(5.5)
.201(5.1)
FEATURES
• 2.3 mm Aperture Holds 1000 Micron
Plastic Fiber
Maximum Ratings
SFH450
• High Reliability
• Long Life Time
Operating and Storage
Temperature
Junction Temperature
Soldering Temperature
(Distance from solder to
package =2 mm)
Dip Soldering Time
ts5sec
Reverse Voltage
Forward Current (DC)
Surge Current
(tsl0"s. D = 0)
Power Dissipation
Thermal Resistance
Junction/Air
RthjA
350
• Fast Switching Times
• Molded Mlcrolens for Efficient Coupling
Electrical Characteristics (Tamb
= 25°C)
• No Fiber Stripping Required
• SFH450 - Infrared, Light Grey Plastic
Package
• SFH750 - Visible Red, Red Plastic
Package
• SFH751 - Visible Green, Green Plastic
Package
DESCRIPTION
The SFH450 is a gallium arsenide (GaAs) infra·
red emitter. The SFH750 is a gallium arsenide
phosphide (GaAsP). visible red emitter; the
SFH751 is a gallium phosphide (GaP) visible
green emitter. These three devices form a new
family of low cost fiber optic components
designed for short distance data transmission
using 1000 micron core plastic fiber. The devices
come in a 5 mm (T1 3A) plastic package featuring
a tubular aperture which is wide enough to
accommodate fiber and cladding. A microlens
on the bottom of the aperture improves the light
coupling efficiency into an inserted plastic fiber.
Wavelength
Spectral Bandwidth
Switching Times
tON (10 - 90%)
tOFF (90 - 10%)
Capacitance
Forward Voltage
IF = 100 rnA
IF = 10mA
Coupling Characteristics
into a 1000 Micron Core
Plastic Fiber
(ESKA EH4001)
Distance Fiber to Lens
SO.1 mm. polished ends.
(IF = 10mA)
Typical applications include: automotive wiring,
isolation interconnects, medical equipment,
robotics, electronic games, and copy machines.
6-11
SHF750
SFH751
DC
DC
-55 to + 100
100
T
Ti
'·1
.....
....
ii:Q
c>.!!
260
DC
5
45
V
mA
1.5
1
150
150
A
mW
500
K1W
Ts
VR
IF
260
5
130
260
5
75
IFS
Plot
3.5
210
500
SFH450
SHF750
SFH751
A
950 ±20
8FH450
Relative opectral eml..1on
Sl'H75OI751
."I... =IW,
10'0 \
I
0
Q
I,
SF"",
1\
0
0
\
I
\
1\ .
0
II
1\
211
I'
0
\
0
II1II
92D
950
1000
11lQ]
.
"
s..
!DOOM!
,
ICIO
-A
"'
1"'11"1'1'1.11"11
0
0
••
".'.Forwalll . .molll 'F'= I(VF) ,
A
'..,=10-)
r
,
SFH450
,
Relative epecIralemlaalon
1\
-v,
SFH750/751
8FH450
800501751
FoJwanI cumonl'F - I(VF)
Rodlllllintenelly
Radiant Intenally
.
,,'
;,
,
I.rel = I(lF)(r =5 .... T - 5 ms) ,
I.,el-I(I F) (r s 5,.s. T - 5 ms)
t.
·"'IIDII~
80050
Red
1%
I",
!;l 8FH751
Green
,
"
.,
,,~
U U
~
U
~
..-'
M U UY
--v,
8FH750
8FH450
PennI88lble pulse lood
I(r). Tamb - 25'C
Duty Cycle 0 - Parameter
Permlalbl. pulse IDod
I(r). Temb - 25'C
'F -
'F -
IlIA' Duty Cycle 0
= Parameter
I,
I
8FH7501751 •
8FH450
Maximum permlselble
= l(Tam,,)
,,
'"
I'"
j ,~
I,
140
r.
40
,
,
"
"
.,
20
40
60
..
80
-'
3OV,
i.... SFH250
~
\
\
m"C
,
500
\
f'\\
,
I\.
,
ZO
Teal CirculI for Switching Ti ....
8~J501
Gre,n,
1\
roo
"
10
, ~ed
1 ',. SFH751 \
r.
,,,
8FH450n5Ol751
Maximum pennlulbl.
•• forwalll currant 'F = l(Tam,,)
•• , - curranl'F
40
60
so
'\
1000C
_ T...
6-12
SIEMENS
SFH450V/451V/452V
SFH750V/752V
PLASTIC FIBER OPTIC
TRANSMITTER DIODE
Preliminary Data Sheet
Package Dimensions in Inches (mm)
/
-
.953(24.20)_1
.937 (23.80)
T.1=::::;;~;;;::*-~lcathade
'1001It!~
.200
(2.54)
(5.08) +--
FEATURES
Maximum Ratings
.2.3 mm Aperture Holds 1000 Micron
Plastic Fiber
• No Fiber Stripping Required
• Connect Fiber without Twisting
• Plastic Connector Housing
• Mounting Screw Attached to Connector
• Interference-Free Transmission because
of Light-Tight Housing
• No Cross Talk
• Auto Insertable and Wave Solderable
• Supplied in Tubes
• Molded Microlens for Efficient Coupling
Operating and Storage Temperature (T).
........... -55to +100 0 C
Junction Temperature (TJ ) .
................ 100 0 C
Soldering Temperture (Distance from solder to package~2 mm)
Dip Soldering Time t,;;5 sec (Ts)
.260°C
Reverse Voltage (V R ) •.
. ............... 5 V
DESCRIPTION
The SFH450V, SFH451V, and SFH452V are
infrared emitters. the SFH450V is a gallium
arsenide (GaAs) emitter, the SFH451V, a
gallium aluminum arsenide (GaAIAs) emitter,
and the SFH452V, a very fast infrared emitter.
The SFH750V is a gallium arsenide phosphide
(GaAsP), visible red emitter and the SFH752V,
hyper·red emitter. These devices are part of a
family of low cost fiber optic components
designed for short distance data transmission
using 1000 micron core plastic fiber. The
devices are housed in a plastic connector with
a mounting screw permanently attached to the
thread and a tubular aperture wide enough to
accommodate fiber and cladding. A microlens
on the bottom of the aperture improves the light
coupling efficiency into an inserted plastic fiber.
Typical applications include: Remote photointerrupter/sensing; Fast optocoupler with
extremely high isolation voltage; Transmission
of analog/digital Signals, data buses; Feedback loop in switch mode power supplies;
Isolation in test/measurement/medical instruments; Noise immune data transmission in
electrically noisy environments (motors, relays,
solenoids, etc.).
Forward Current (DC)
Surge Current
(t,;;10 ~s. D~O)
Power Dissipation
Thermal Resistance
Junction/Air
SFH450V
SFH451V
SFH452V
130
SFH750V
75
45
mA
PTOT
3.5
210
1.5
150
1.5
150
A
mW
RTHJA
350
500
500
KIW
IF
SFH752V
Electrical Characteristics (Tamb = 25°C)
Wavelength
Spectral
Bandwidth
Switching Times
tON (10-90 011»
tOFF (90-100/0)
Capacitance
Forward Voltage
IF~ 100 mA
Coupling
Characteristics
into a 1000
Micron Core
Plastic Fiber
(ESKA EH4001)
Distance Fiber
to Lens
SD.1 mm,
polished ends.
(IF~10 mAl
SFH450V
950
AA
t,
t,
Co
SFH451V
830
SFH452V
770
SFH750V
660
SFH752V
665
55
80
80
35
35
nm
0.05
0.05
40
0.12
0.05
40
0.07
0.01
40
JJsec
1
40
0.1
0.1
40
1.3 (,;;1.5) 1.4 (,;;1.6)
90
4Q
1.4 (,;;1.6)
40
1.6 (,;;2.0) 1.6 (,;;2.0)
5
40
For application information see Appnotes 40, 41, 42, 43.
See SFH450/4511750/751 for components without plastic housing.
6-13
nm
J.'sec
pF
VF
P'N
'·1
.....
-..
.....
CI.!:!
IFS
V
~W
:9C1
"-
SfH450V
Relative apectral eml••lon
10o.
;-.
0197
I
i I 1\
t'
0
7U
8fH750
fl
II
I--i
0
i
0
II
II
1\
0
0
0
800
i
I' I
I
920
II
1\
1\
1\
1\
1O-21Ul...LLL.Ll...LLLLl...LW
960
1000 1040
-A
1080Ml
1,0
.50
'50
2,0
2,5 3,0
3,5
4/J
--v,
4,5V
Radiant Intenalty
lerel = f(IF) (-1 = 5 pS, T = 5 ms)
lerel "" f(IF) (,.:c 51's, T "" 5 ms)
,
1.5
SfH750V
SfH450V
Radiant Intensity
SfH750V
Forward current IF "" f(VFl
10'
I.
1.100 • .1.
!
I
II
0
10
I(VF)
D
I~ = I (A)
1
0
t,t\
SfH450V
Forward CUmlnt 'F
SfH750V
Reilltive spectral emission
". I,., = I(A)
SFH750
Red
,
10
..r
,
SFH751
Green
10
10
0
,
1/
0
~
,/
1~~
U
U
~z
U
U
~
U ~2Y
_-v,
--',
SfH750V
Permlaslble pulse load
SfH450V
Permissible pulse load
SfH450Vl451V
Maximum permIssible
'F ::= f(T), Tamb :: 2Soc
rnA Duty Cycle 0 = Parameter
IF"" 1(1'), Tamb = 2S QC
Duty Cycle D = Parameter
rnA forward current IF = f (Tam~
200
10'===--'=~~""-'"
1,
11' :
I
140
f.-.
120
100
80
60
40
-
20
10'
10-2 10.1
trf
- - Tamb
10. 5 ,0"
101 s
,
,0--]
10- 1 ,0",100
l,()
--Tam\)
SfH750V
Maximum permissible
,a
70
"
~
80
100
°c
otI
S~HJ501
30V
0
i.e., SFH250
1\
Green
1\
0
1'\
0
60
Te.t Circuit lor Switching Time.
{ed
SFH751
-T.
SfH450V/451V/750V
rnA forward current IF '" f (T am~
1,
20
10's
1\
500
1\
0
1'\1\
0
0
20
40
60
80
~
1OO0 (
- _ T...
SFH450Vl451V/452VI750VI752V
6-14
SIEMENS
PFOK-1
PLASTIC FIBER OPTIC KIT
I~.·,·,~.,·~~~~,.
"".'~"'e
j!
DESCRIPTION
Kit Contents
The plastic fiber optic kit is intended to be a
comprehensive design-in tool for potential
customers that have already received data
sheets or samples of our discrete fiber optic
components. The kit contains all necessary
components and literature for a designer
to set up an optical link and test our components in a system.
SFH250
SFH250F
SFH250V
SFH350
SFH350F
SFH450
SFH750
SFH750V
SFH751
Fiber'
Fiber'
Data Book
Application Note
• Siemens will not supply samples or production quantities. Rber cables are only available
in this kit.
6-15
.........
....
"ii:CII
:;:;
Photodiode
Photodiode with daylight filter
Photodiode in connector housing
Phototransistor
Phototransistor with daylight filter
IR Emitter
Red Emitter
Red Emitter in connector housing
Green Emitter
15 feet, approx.
7 inches, approx.
"I
co.!!
~
Infrared Em itters
Package Outline
Part
Number
~
U
Package
Type
Half
Angle
LD271
1S(:25
3
100
10-20
SFH481-2
16-32
SFH4B1-3
~5
SFH402-2
2.5-5.0
±40°
m
@
SFH402-3
TO-1B,
flat glass
lens.
SFH482-1
OJ ~
SFH482-3
~8
SFH431-1
10-20
SFH431-2
TO-18,
dome
glass
lens.
±8°
16-32
SFH431-3
~5
LD242-2
4.8-8.0
Modified
TO-18,
plastic
lens.
LD242-3
±40°
100
~.3
7-3
100
7-20
7--34
7-22
Hermetic seal for
high rei use.
Narrow angle,
GaAIAs, 880nm.
7-36
3
Hermetic seal for
high rei use. Wide
angle, GaAs,
950nm. Matches
with BPX38
phototransistor
orBPX65/66
photod iodes.
7-24
2.5
Hermetic seal for
high rei rei use.
Wide angle,
GaAIAs, 880nm.
7-38
3
Hermetic seal for
high rei rei use. 3leaded. Narrow
beam. GaAs,
950nm.
Reversed polarity
as compared to
SFH401.
7-30
5
Suitable for sound
transmission.
Ideal for short
range light
barriers. Very
wide angle.
GaAs, 950nm.
Matches with
BP103 phototransister & BPX63
photodiode.
7-8
100
5-10
Hermetic seal for
high rei use. Very
narrowangle.
GaAs, 950nm.
Matches with
BPX43 phototransistor.
Hermetic seal for
high rei use.
Narrow angle,
very high
intensity. GaAIAs,
880nm.
Hermetic seal for
high rei use. Very
narrow angle,
GaAs, 950nm.
Matches with
BPY62 photetransister.
Page
2.5
3.15-6.3
±30°
SFH482-2
-.
~4.0
Features
Infrared Assemblies
Package Outline
Part
Number
Package VceS at
Type
1.,=10mA
SFH900-1
@ ~~
SFH900-4
=
Surge
Current
t<1Ofl5
A
Features
Page
0.25-0.5
SFH900-2
SFH900-3
Current
Transfer
Ratio
mA
0.4-.08
Miniature
plastic
with
daylight
filter.
.63-1.25
.2(S.6)
1.5
Reflective light
barrier for short
(upto5mm)
distances.
7-50
~1.0
CJ
~ ~
SFH905-1
40-125flA
SFH905-2
~100flA
SFH910
Plastc
with
daylight
filter
2004-9053
Plastic
disc with
96 slots.
7-4
Output:
Counting pulse Z
Directional signal R
~0.33·
Resolution
Differential photo
interrupter.
7-54
1
Disc for SFH910.
Can be ordered
separately.
SIEMENS
IRL-80A
GaAs INFRARED EMITTER
Package Dimensions in Inches (mm)
~~-,,-.~---~------~
".'"
"""DE
,
,\~
1~"~~lb~@~t't;~8L~:1<:J
FEATURES
Maximum Ratings:
•
•
•
•
Reverse voltage
Forward current (Tamb=25 D C)
Operating/storage temperature
Power dissipation (Tamb = 25 D C)
Derate above 25 D C
Lead soldering temp <,11. inch from
plastic package) for 5 sec.
Low Cost Plastic Package
Long Tenn Stability
Wide Beam, 60·
Matches Phototranslstor LPT-80A
3
60
V
mA
-40to +100
DC'
100
mW
1.33
mW/DC
240
DC
950
± 20
(",0.4)
nm
nm
mW/sr
Characteristics (Tamb = 25 D C)
DESCRIPTION
The IRL-80A is a high power GaAs emitter diode, emitting radiation in the near infrared range. It is mounted in
a clear miniature plastic side-facing package and was
designed for a variety of applications which require
beam interruption.
Radiation Characteristics
Wavelength of radiation at Imax
Spectral bandwidth at 50% of Imax
Radiant intensity (Note 1) IF = 20 mA
Half angle
(limits for 500/0 of radiarit intensity I.,)
Forward voltage (IF = 20 mAl
Breakdown voltage (IR = 10,.A)
Note 1: A 1 cm' silicon detector is aligned
No aperture is used.
Relative Spectral Emission
'00 r-T-r-"T"...,..~It""""""""""""-""
Jt-l
1\r+--I---l---+l
OJ 1-+--+-t-++
f
70
:
I
"rr~~-1-r-~'r-\r-+-~
~ ~ r+~--rrt-~~Irlr\t-+-~
i ..
J
,00
If1\
\
\
"H-~+-j~L_\~r;-H
•
~p)
: \
_JH--+--rl
30
~
w
1\
\
I
1
H71--"
\
:
I
!
I
I
\
~
920940960
7-5
9801000
1020
............
1... %
I.
:1;30_
Deg.
VF
1.5 max
V .
VeR
(",3)
V
wtth the mechanical axis.
.
'P.
IRL-81A
SIEMENS
GaAIAs INFRARED EMITTER
Package Dimensions in Inches (mm)
FEATURES
Maximum Ratings
• GaAlAS Infrared Emitting Diode
Reverse Voltage (,;;25°C)
Forward Current (,;;25°C)
Operating and Storage Temperature
Power Dissipation (T,mb,;;25°C)
Derate Above 250C
•
•
•
•
•
Low Cost
Miniature Side Facing Package
Clear Plastic
Long Term Slability
Wide Beam, 50°
• Matches Phototransistor LPT·80A or
Photodarllngton LPD·80A
DESCRIPTION
The GaAlAs infrared emitting diode IRL-S1A is
designed to emit radiation at a wavelength in
the near infrared range. The chip is positioned
to emit radiation from the side of the clear
plastic miniature package. It operates efficiently
with the matching LPT-SOA phototransistor, or
LPD-SOA photodarlington.
VR
IF
T
P,ot
5
100
-40 to +100
200
2.67
V
mA
°C
mW
mWloC
880.
-36 ... +44
1.5 (,;;2.0)
30 (;,,5)
;,,1.0
1.5
±25
nm
nm
V
V
mWlsr
mW
Deg.
'Characteristics (Tamb = 25°C)
Wavelength of Radiation at 1m"
Spectral Bandwidtli at 50% of Imax
Forward Voltage (IF = 20 mAl
Breakdown Voltage (IR = 10pA)
Radiant Intensity (IF = 20 mAo Note 1)
Radiant Power Output (IF = 20 mAl
HaW Angle
t
A 1
cm2 silicon
VF
VBR
I,
Po
'"
detector with a radiometric filler is aligned with the mechanical axis of the DUT. No
aperature is used.
7-6
~~"
TYPICAL OPTOELECTRONIC CHARACTERISTICS
.
Relative spectral emission
1..,~I(lI)
"4
Maximum permlsalble
Iorwald cunenllF I (Tam,,)
..•
B
12S
1
I
I, ...
v
I,
t
II
I
75
,
,
~1
so
II
1\
I
•
7tiO
100
ISO
900 950
-A
I'
I'
IS
~
I \
80
II
70
~
~
~
60
~
ct:
40
30
20
10
1\
j
50
.!l!
(}}.
\
II
j
.E
o ,
/ 1\
90
~
I
I
:/
'I
11
\
_l,
1'\.
..... t 80
60
40
o
20
20
Angle (Degrees)
7-7
I
1\
1OD4N1
100
~
1
40
. . r-- t60
80
2
J
"
S
6
-v,
7
IY
SIEMENS
LO 242 SERIES
INFRARED EMITTER
Package Dimensions in Inches (mm)
11:;
Radiant8l'BI
!i j
F'O=18=IO.4=51====1I....1a.......
.571 114.51
.482112.51
j.!
.21715.51
.21115.351
.142 (3.6
.118(3.01
Maximum Ratings
Storage Temperature
Soldering Temperature
(Distance from soldering joint
to package ~2 mm. soldering
time t :s 3 s)
Junction Temperature
Reverse Voltage
Forward Currenr
Surge Current (t = 10 I's. 0 = 0)
Power Dissipation
Thermal Resistance
T
Ts
JiA
IF
IFS
P,ot
RthJamb
RthJL
-40 to +80
·C
230
100
5
250
3
470
450
160
·C
·C
V
mA
A
mW
KIW
KIW
FEATURES
Characteristics
• Modified TO-18 Size Metal Case
• Rounded Plastic Lens
• Long Term Stability
• Very Wide Beam. 80·
• Matches with
Phototransistor BP103
and Photodiode BPX63
DESCRIPTION
The GaAs infrared emitting diode LO 242
is designed to emit radiation ~t a wavelength hi the near infrared range_ The radiation emitted is excited by current flowing
in forward direction and can be modulated.
The plastic cover permits wide-angle radia·
tion. The anode terminal is marked by the
adjacent projection on the rim of the case
bottom. The cathode is electrically connected to the case. The LO 242 is particularly suitable for use as emitter for I R
sound transmission in radio and TV sets.
(Tamb
= 25·C)
Wavelength (IF = 100 mAo tp = 20 ms)
Spectral Bandwidth
(IF = 100 mAo tp = 20 ms)
Half Angle
Active Area
Active Die Area per Die
Distance Die Surface
to Package Surface
Switching Time {I. from 10% to
90% and from-90% to 10%
at IF = 100 mAl
Capacitance Cl/A = 0 V)
Forward Voltage
(IF = 100 mAl
(IF = lA.,t. = 1001'S)
Breakdown Voltage (IR = 10 IIA)
Reverse Cwrrent Cl/A = 5 V) ,
Temperature Coefficient of I. or 'li.
Temperature Coefficient of VF
Temperature Coefficient of Apeak
950±20
nm
A
Lx W
55
±40
0.25
0.5 x 0.5
nm
Deg.
mm2
mm
H
0.3 to 0.7
mm
trlt,
Co
1
40
!IS
pF
VF
VF
VBA
IA
TC,
TOy
Tc"
1.3 (:s1.5)
1.9 (:s2.5)
30 (~5)
0.01 (:s1)
-0.55
-1.5
0.3
V
V
V
6l.
."
Radiant IntenSity I. In Axial Direction Measured at a Solid Angle 0111
Group
Radiant Intensity
(IF = 100 mAo Ip = 20 ms) I.
(IF = 1 A. tp = 1001's) I.
Radiant Power (IF = 100 mA
tp = 20 ms) 'li.
7-8
IIA
%lK
mV/K
nm/K
=0.D1 sr
LD242-2
LD242-3
4... S
45
~6.3
60
mW/sr
mW/sr
13
16
mW
Relatl"a .pectralamluJon I... "/IAI
Radl.tlon char.cterlstic toO" 11,,1
10"
10Q
Radlant'ntan.'ty I." ((/,1
10'
ZO'
0
;
1\
,
,-
0
50
0
.
1\
0
10
, I'
,
BIll
920
J
,V
960
1O~
1000
1090nm
-.1.
Forward volt'gal,· IIV,I
M... parml.'b'a forward cum"'
mA ""'IT_I
300
I,
If
250
pF
50
~
c
1'0
11O·I-tE-!,-y~t+-b!4H-I'_
Temperature Coefficient of VF
Temperature Coefficient of ~peak
.
-4010 +80
%lK
mV/K
nm/K
=0.01 ..
LD261-4
L0261-5
260, 262-268.
2104
3.2106.3
2.5t08
mW/sr
5
6.5
8
mW
..
R.I.tiv. apitclrll.mlaalon I, .... t (A.I
,,'
100
1.
"
1. '0);"'"
'f:
1,0,
'\
Ell
.
so
"
\
lO
III
I
'0
I'
,V
o
•
V
'0
9ZO
!Ell
IIDl 1:1'"
-.I.
1Il10l1li
Ma•. pennlaaJble forward current
mA IF '" f(Tam~
80
I,
70
0
,\
'\
50
0
li'tbJU=,,/ ~RthJl=650KfW
750K/W
0
~
0
0
0
20
40
\
"-'BI_
\
BO
60
10- 2 WLc':-'LL-'--:'::-'-:LC-:'::-L'-:-'-'
1,0 1,5 2,0 2.5 3,0 3,5 4,0 1.,5V
1000(
'--V,
--Tamb
Forwardvoltega
Capeclgnca C = , IV"I
Redientinten'lty~"'(T.... 1
~ ='IT.... 1
OF
50
...'L
C
~
140
.....
10
..
1
1'\
"
1.4
i:w0r~L2
1.2
! ,•
"J
'QI!I
- ...
as H+H+H-i"H-+H
U
e ..
I!::
'2E
OJ
20
~4
H-+H+H+H+H
Q4
Dl
0
ro-'
~,'
-!Ii
ID'
o
~, V
mn
- ...
-30-20-1) 0101O.JlI,IJSOElJ70III!IOtJO°[
--V,
,
o
- ...
-.Jl·ZO·D 0 IJ ZOIlI,(lS09J70 90 00100
II[
Perm, pula.....ndlinG c.p.bllity
Wavelength al pee,k .mie,lon
ol ...... I(T....1
If. tltl;I' '" parameter; 7;, ••• "'25·C
A
101 _ _
IJOO
I!
....v
""
950
940
ro'
...... ~
V
930
910
910
90'
,
25
so
- ...
75
1000[
LO 261
7-11
SIEMENS
LD271/271H
1" LEADS LD271 L/271 LH
INFRARED EMITTER
Package Dimensions In Inches (mm)
Maximum Ratings
FEATURES
•
•
•
•
•
•
Low Cost
T-1~ Package
Lightly Diffused Gray Plastic Lens
LD 271ULD 271LH 1-lnch Leads
Long Term Stability
Medium Wide Beam, 50°
• Very High Power
• High Intensity
• Matches with Photodlodes SFH 205 or
BP104 or Phototranslstors BP103B
DESCRIPTION
LD 271/H/ULH an infrared emitting diode.
emits radiation in the near infrared range
(950 nm peak). The emitted radiation. which
can be modulated. is generated i:iy forward
flowing current. The device is enclosed in a
5 mm plastiC package. An application for the
LD 271 family is remote control of color TV
receivers.
Storage Temperature
Soldering Temperature
(Distance from soldering joint
10 package ~10 mm. soldering
lime I :s 3 0)
Junction Temperalure
Reverse Voltage
Forward Currenl
Surge Current (I • 10 ,..., 0 • 0)
Power Dissipation
Thermal Resistance
-5510 +100
·C
·C
V
mA
A
mW
RlhJamb
260
100
5
130
3.5
210
350
KIW
l.
950±20
nm
4>.
A
Lx W
55
±25
0.25
0.5 x 0.5
nm
Deg.
mm2
mm
H
4.0104.6
mm
I,. ~
c.
1
40
pF
VF
VF
VBA
IA
TCI
TCy
TG,.
1.30 (:s1.5)
1.9 (:s2.5)
30 (~5)
0.01 (:s1)
-0.55
-1.5
+0.3
V
V
V
pA
%/K
mVIK
nm/K
T
Ts
r.
V~
IF
IFS
PI"
OC
Characteristics (Tamb = 25°C)
=
WlMllength (IF 100 mAo Ip = 20 mo)
Spectral Bandwidth
(IF = 100 mAo 1.= 20 mo)
Half Angle
Acti""Area
ActiVe Die Area per Ole
Distence Die Surface .
to Package Surface
Switching Time (I. from 10% 10
90% and from 90% 10 10%
at IF - 100 mAl
Capacitance fYA = 0 V)
Forward Voltage
(IF = loomA)
(IF = lA. I. - lOOpS)
l;lreakdown Voltage (fA = 10 pAl
Reverse CUFrent fYA = 5 V)
Temperalure Coefficient of I. or ••
Temperature Coefficienl.of VF
Temperature Coefficient of l.peak
'P
ps
Radiant Intensity .. In AxIal Dinoction Ma....rad at a Solid Angle 01 0 • D.01 sr
Group
Radiant Intens~y
(IF = 100 mAo I. - 20 ms) I.
(IF = 1 A. t., = l00"s) I.
Radianl Power (IF - 100 mA
t.-20ms) ••
7-12
LD 271 a
LD271L
LD271Ha
LD 271 LH
15(~10)
~16
100
120
mW/sr
mW/sr
12
16
mW
..
100
I
10
Radiation c"aractarl.tic I... • fl,1
I.
20'
I.IOCI.A
I
80
I.
~-f(IF)
101
~
1,,1 90
t
Ibdlant Intensity
RelatlVllapectNlamlalon .... ·,{11
1
\
10,
0
50
"
40'
\
0
50'
1
10
60"
I'
...',.,"
o
SIll
920
960
1000 1040
-A
10S0nm
LJct~~~::t:::LJ
1cr'
forward volta.a I, -1(YrI
M .... parmlulbla forward cunant
rnA 1,-117.-1
10'EEmfJlII
A
200
I, ..
I,~
i~
1
H--tty-ip,+-bt9.-.Cl--t9=+t-I
.
,
10
140
10°'._
120
100
.
80
f\.
40
1'\
20
1\
10-21,O'!"--f'.5:-'-,2,O":-l--:'~:"5'-:3,0":-l--:'~5:-'-,4/l":-,-.J4.SV
-v,
Radiant Intanalty 1.1;1 0
capacltanca C-IC v..1
OF
50
..1.
c
~". 1.Z
I"
30
-II~~
1.4
1
t;o~~tl
H+H+H+H+H
H+H+H+H+H
1.0
!
1» H-t-f''id-H-I+t-I-H
1'\
., H+H+H+H-I"'ki
" H+H+H+H+H
/0
.. r++H+H+H-i-H
10
OJ
o
o mL".J.JJ..I.UllI.",.Ll.ill.lIlL,rf..-'-.L.lJlllIJ., V
--...
-3D-20-1O 0 lIllD.Jl4D5:JeDitllll9D1OO
- - VR
,
°c
f++++++++++-l-H
.
-lJ-ZO-(JO·lDlDJl40SD601OBD!Il1l00(
-~
Wavalangth. pau amlDion
nm 1,. ... -117.
11100
I,
,
950
140
i
...... 1-""
960
1--" ......
930
910
.~
",,-:,",ll"'-;"'"'-:"~~
'111
900
10'_
OD2
......
o
50
75
1000(
10-5
-b,
10-'
1(r)
10-2 10"'
~
1O's
_T
LD 2711HlULH
7-13
LD273
SIEMENS
TWO CHIP
INFRARED EMITTER
Package Dimensions in Inches (mm)
.197 (5.0)
~
~
.060 (1.5)
.024 (0.61
.016 (0.41
.224 (5.7)
.252 (6.41
Maximum Ratings
FEATURES
• Very High Radiant Intensity
• l\vo Chip Device
• Grey Oval Plastic Package
• Equivalent to T1~ Size
• Matches with Photodiodes SFH 205 or
BP104 or Phototransistors BP103B
DESCRIPTION
Characteristics (Tamb = 25°C)
The LD 273 is an infrared emitter consisting
of·two GaAs-IRLED chips connected in a
series. This provides a very high radiant
intensity of greater than 25 mW/sr at 100 mAo
Radiation is emitted in the axial (0°) direction
from a smoke colored oval plastic package.
This device serves particularly well as a
powerful emitter of increased range in remote
control applications.
Wavelength (IF = 100 mA, Ip = 20 ms)
Spectral Bandwidth'
(IF = 100 mA, to = 20 ms)
Half Angle
(Horizontal to terminal plane)
Half Angle
(Vertical to terminal plane)
Active Area (2 die)
Active Die Area per Die
Distance Die Surface
to Package Surface
Switching Time (I. from 10% to
90% and from 90% to 10%
at IF = 100 mAl
Capacitance (VR = a V)
Forward Voltage
(IF = 100 mAl
(IF = fA, to = l00jlS)
Breakdown Voltage (IR = 10 /'A)
Reverse Current (VR - 10 V)
Temperature Coefficient of Ie or +s
Temperature Coefficient of VF
Temperature Coefficient of ~peak
Radiant Intensity in Axial
Direction Measured at a Solid '.
Angle of II = 0.01 sr
(IF = 100 mA, tp a 20 ms)
(IF = 1 A, ,. = 100 JIS)
Radiant Power (IF = 100 mA
tp = 20 ms)
Mounting Instruction
In order not to damage the system when soldering in the emitting diodes, the soldering
. distance to the plastic package has to be dimen"
sioned as large as possible. We r,ecommend a
minimum distance of 10 mm between package
and soldering point for the usual soldering conditions (260 eC/3 sec).
!!
~
Storage Temperature
Soldering Temperature
(Distance from soldering joint
to package 2mm
Dip soldering time .. 5s
Iron soldering time 0<;3,
Junction temp~rature
Re~erse
voltage.
Forward current
FEATURES
• Three Radiant IntenSity Groupings
• Low Cost
• T10/.1 Package
• Lightly Diffused Gray Plastic Lens
• Long Term Stability
• Narrow Beam, 20°
• Excellent Match to Silicon Photodetector BP103B
DESCRIPTION
The GaAs infrared emitting diode LD 274
emits radiation at a wavelength in the near
infrared range. It is enclosed in a T 1 %
plastiC package of 5 mm diameter. This
device is designed for remote control applica·
tions requiring extremely high power.
Surge current (T= 10~s)
Power dissipation (T = 25'C)
Thermal Resistance
T
-55to +100
·C
Tsold
260
300
100
·C
Tsold
Tj
VA
IF
iFS
Ptot
RlhA
100
3
165
450
'C
'C
V
rnA
A
mW
KIW
Characteristics (Tamb = 25·)
Wavelength at peak emission at
IF= 100 mA,tp= 20ms
Spectral bandwidth at 50% of Imax
at IF = 100mA, tp = 20 ms
Half angle
Active chip area
Dimensions of active chip area
Distance chip surface to case surface
SWitching time:
(Ie from 10% to 90%: IF= lOOmA)
Capacity (VA = 0 V)
Forward VOI)age (IF = 100mA)
(IF= lA: tp= 100~s)
Breakdown voltage (IA;= 100~)
Reverse current (VA = 5V)
Temperature coefficient of Ie or CIte
Temperature coefficient of VF
Temperature coefficient of Apeak
Apeak
950±20
nm
AA
cp
A
LxW
55
±10
0.09
0.3 x 0.3
4.9 to 5.5
nm
Oeg.
mm'
mm
mm
0
tr,tf
Co
VF
VF
VBA
IA
TC
TC
TC
Radiant intensity Ie in axial direction at a steradian
~s
25
1.30 (!!i1.5)
1.e(s2.5)
30(>5)
0.01 (!!i1)
-0.55
-1.5
+0.3
pF
v
v
V
~
%/K
mV/K
nm/K
n = 0.01 sr. or 6.65°.
Radiant IntenSity IE In Axial Direction Measured at a Solid Angle of 12=0.01 ••
Group
Radiant Intensity IE
(IF~100 mA, Tp~20 ms)
(IF~l A, Tp~ 100 ~s)
Total Radiant Flux ct>E
(IF~lOOmA, Tp~20ms)
7'-16
LD 274-1
LD 274·2
LD 274-3
30-60
335
50-100
560
;,
(IF= 100 mAo Tp=20 ms)
7-18
nm
nm
Deg.
mm'
mm
mm
,..
pF
V
V
V
~
%/K
mV/K
nm/K
- 0 01sr
Q -
LD 275-1
LD 275-2
LD 275-3
10-20
110
16-32
180
~25
~225
mW/sr
mW/sr
10
t2
14
mW
Relative spectral emission IREL =f (A)
Radiation Characteristic IREL =f (cp)
Relative radiant Intensity
IE
IE '00 mA = I (IF)
,.
...
,,'
t",9O
.
..
leo
l-J
I.
'197
I. 1OO .A
1\
,
50
40
1\
30
V
100
I
I
20
10
~
,V
•
IBG
920
960
1000
1JIoO
1011Dnm
20" ·40° 60"
'0"'
--A
Forward currant IF =f (Tamb)
Capacitance C = f (VR)
Forward current IF=I (VFJ
"'-_II
BOO 1000 120"
Permissible pulse load IF = 1(tp)
duty cycle D = parameter
A
100
\
I,
\
\
1,,0
60
1\
40
Iyp,
lO
pF
28
C 26
I:~
I,
I
f-1-tt-tttlI-H'lWH-tttt1ltl
'"
18
16
14
12
"
2{)
40
60
. el
I~04~
\
~'"
80 °C 100
10" LUL-:':-''-:':-'-:I-:-'-:':-'--:'-:-1..I-:,:-,
T-!
- - T...
1,0
l,S
2Jj
2,S
3,0
3,5
4J)
-v,
VF
4,SV
IE
Forward voltage VF 25 = f (Tamb)
el!!
--I,
I!,-
-'EE...
Wavelength at peak emission
Radiant Intensity IE 25 = f (TambJ
ApEAK = 1(Tamb)
1,4
100 0
99
2Lu
2
v. zs•
•
0
I•
0
0
,/
0
8
"
"
,/
/
0
6
0,6
940 /
93 o·
0,4
920
',2
•
2
o~
-30-20-1001020304050607080 [100
- - T...
"
~30-2O-tOO
~
10 20 3040 5060'70 8O·C 100
- _ T....
91 0
.
~~
90 00
2S
SO
7S
(
100
- T...
LD275
7-19
SIEMENS
SFH 400 SERIES
GaAs INFRARED EMITTER
Package DimenSions in Inches (mm)
.295 .5)
.272 (6.9)
.571 14.
.492 (12.5)
.~
(0.45)
;+------+
.
Maximum Ratings
FEATURES
• Package: 18 A 3 DIN 41 876 (TO 18),
Glass Lens, Hermetically Sealed, Solder
Tabs, Lead Spacing 2.54 mm ('/••,
•
•
•
•
Anode Marking: Tab at Case BoHom
High Reliability
Long Life
Very High Radiant Intensity,
Narrow Beam
• High Pulse Power
• Two Radiant Intensity Ranges
• Same Package asSFH 480, SFH 216
DESCRIPTION
The GaAs infrared emitting diode SFH 400,
fabricated in a liquid phase epitaxy process.
features high efficiency and emits radiation
at a wavelength in the near infrared range.
The radiation is activated by dc or pulse
operation in forward direction; simultaneous
modulation is possible. The cathode is
electrically connected to the case.
The applications include light-reflecting
switches for steady and varying intensity.
IR-remote control, industrial electronics,
"measuring and controlling".
Storage and Operating Temperature (T"". T..> ......................:...................... -6500 to +10000
Soldering Temperature at Dip Soldering ~2 mm distance
from case bottom) (t <:5 sec.) (T,.l ............................................................................... 260·C
Soldering Temperature at Iron Soldering ~2 mm distance
from case bottom) (t<: 3 sec.) (T,) .... :..................................................... , ..................... 3OO·C
Junction Temperature (T) ............................................................................................... I00·C
Reverse Voltage (V.) ............................................................................................................5 V
Forward Current (I,) Tc= 25'C ....................................................................................... 300 mA
Surge Current (t s 10 JIS. D=O) (I",) ...................................................................................... 3 A
Power Dissipation (P'OT) Tc= 25'C .............................................................................. 470 mW
Thermal Resistance (R".,.) .......... ,..... ;......................................................................... 450 KJW
(R".,J .......................................................................................... 160 KJW
Characteristics (TA=25°C)
Parameter
Wavelength at Peak Emission
(1,=100 mA, 1,.=20 ms)
Spectral Bandwidth at 50% of I"",
(1,=100 mA, t.=2O ms)
Hall Angle
Active Chip Area ..
Dimensions of Active Chip Area
Distance Chip Surface to Case Surface
Switching limes
(I, from 10% to 90%,
and from 90% to 10%. I, =100 mAl
CapaCitance (V.=O V. f=1 MHz)
Forward Voltage
(1,=100mAj
(1,=1 A, 1,.=100 JIS)
Breakdown Voltage (1.=10 jJA)
Reverse Current (V.=5 V)
Temperature Coefficient of I, or"
Temperature Coefficient of V,
Temperature Coefficient of ""-
Unit
Symbol
""-
950±2O
nm
"'-
65
±6
0.25
0.5,,0.5
4.0- 4.8
nm
cp
A
L"W
D
t..t"
C,
VF
VF
V...
I.
TC,
TC.
TC.
1
40
Deg.
mm'
mm
mm
JIS
pF
1.30 (SI.5)
1.9 (S2.5)
30~5)
0.Q1 (<:1)
-0.55
-1.S
0.3
V
V
·V
jJA
%/K
mV/K
nm/K
Radiant Intensity I, In Axial Direction at a Sieredian n ,,0.01 sr or 6.5 degrees
(1,=100 mA, 1,.=20 ms)
(1,=1 A, 1,.=100 JIS)
Radiant Flux (total)
(1,=100 mA, 1,.=20 ms)
7-20
SFH400-2
SFH400-3
I,
I,
20-40
220
,,32
270
mW/sr
mW/sr
"
5.5
7
mW
Relallve spectral emission
versus wavelength
Y.
10'
100 '----'r--T-rlr""-----'--'-'-'-'-'
90
lrtt
i
~~-+-+-r~~~r
r--
80
I \
70
I
60
,
\
50
40
f--
f--
l-
V
10'
30
rI-
i=
I
1II
II
10
0
BIll
...
,V
103
hi
10-
920
960
1000
1040
1080nm
10-'
IIr'
10'
-IF
--A
Forward current versus
case temperatura
mA
e
350
\
feR""
150
r-...
EEtyP.~
L
20
~
~~ax.
30
II
20
1,0
10
\
L ..... ~
60
80
-Tc
100 'C
Forward voltage versus
ambient temperatura
1.4
10-'
I,D
~
1.5
2.0
2,5
~5 4,0 4,5V
-V'F
10'
3,0
1.4
10'
--I-T
I IW1
IS:tmmH111tt1t
0.0
0]
0.6
0.4
0.4
0.2
0.2
o
~-
-30 -20-10 0 10 10 30 40 !iJ III 10 l1li 90 'ji0 'C
10' V
~-~IF
IF
0.8
l'b1
Et~§jIFfjmt£l~~g
1.2
'1.0
'·10'
-v,
Permissible pulse handling capability
Forward currant versus cycle duration
(Tc=2S'C, Duty cycle D = parameter)
Radiant Intensity
versus ambient temperature
V,
VF25
1"\
R",. = 450 KIW
IN
°o
r...
1
40
10-
1'1"
50
pf
50
C
,
1\
t-...
Capacitance versus revBrse voltage
IF
l,D,
= 160 KIW
10'A
Forward current versus
forward VOltage
A
10'
zoo
100
Radiation characterlsllc
Relative spectral emission
versus half angle
Radiant Intensity versus
forward current
T
0=0,005
0,01
0,02
IOl1111~~~:~~51111
~,5
0,2
DC
~
-30 -10 -il 0 111 20 II 40 50 III 70 80 !IO UlO 'C
-1A
-1A
SFH400
7-21
SIEMENS
SFH 401 SERIES
GaAs INFRARED EMITTER
Package Dimensions in Inches (mm)
.252 6.4
.224(5.7)
FEATURES
• Package: 18 A 3 DIN 41 876 (TO 18),
Glass Lens, Hermetically Sealed, Solder
Tebs, Lead Speclng 2.54 mm (,,,.j
• Anode Marking: Tab at case Bottom
• High Reliability
• Long Life
• Very High Radiant IntensHy,
Narrow Beam
• High Pulse Power
• Two Radiant IntenSity Ranges
Maximum Ratings
Storage and Operating Temperature (T1ITlI' T.,.) ............................................. ·55·C to +100'0
Soldering Temperature at Dip Soldering ~2 mm distance
Irom case bottom) (t S5 sec.) (T,) ............................................................................... 26O·C
Soldering Temperature at Iron Soldering ~2 mm distance
Irom case bottom) (ts 3 sec.) (T"l ............................................................................... 3OO'C.
Junction Temperature (T) ............................................................................................... l00'C
Reverse Voltage ~.) ............................................................................................................5 v
Forward Current (I,) Te= 25'C .......................................................................................300 rnA
Surge Current (t S 10 lIS, 0=0) (I,.) ......................................................................................3 A
Power Dissipation (PTOT) Te= 25'C .............................................................................. 470 mW
Thennal Resistance (R"".) ................................................ ,......................................... 450 KIW
(R,..,J .......................................................................................... I60KIW
• Same Package as SFH 481
DESCRIPTION
The GaAs infrared emitting diode SFH 401,
fabricated in a liquid phase epitaxy process,
features high efficiency and emits radiation
ata wavelength in the near infrared range.
The radiation is activated by de or pulse
operation in forward direction; simultaneous
modulation is possible. The cathode is
electrically connected to the case.
The applications include light-reflecting
switches for steady and varying intensity,
IR-remote control, industrial electronics,
"measuring and controlling".
Characteristics (TA=25'C)
Parameter
Wavelength at Peak Emission
(1,=100 mA, t,.=2O ms)
Spectral Bandwidth at 50% 011....
(1,=100 mA, t,.=2O ms)
Hall Angle
Active Chip Area
Dimensions of Active Chip Area
Distance Chip Surlace to case SUrface
Switching Times
(I,from 10% to 90%,
and from 90% to 10%,1, =100 rnA)
capacitance ~.=0 V, 1= 1 MHz)
Forward Vollj3ge
(1,=100 rnA)
(1,=1 A, t,.=100 lIS)
Breakdown Voltage (1.=10 pAl
Reverse Current ~.=5 V)
Temperature CoelrlCient oIl, or "
Temperature Coefficient olV,
Temperature Coefficient 01 ~
Unit
Svmbol
~
950±2O
nm
f1)..
±55
±15
0.26
0.6 x 0.6
2.8- 3.7
nm
Deg.
min"
mm
mm
cp
A
LxW
D
t",t,
1
40
C.
lIS
pF
1.30 (SI.5)
1.9 (S2.5)
V,
V,
V,..
I.
TC,
V
V
V
pA
%II<
mV/K
30~5)
0.01 (sl)
-0.55
-1.5
0.3
TCy
TC.
nm/K
Radlantlnt.nsltv ~ In Axial Direction at a Steradian n 2:0 01 sr or 8 5 degraas
SFH401-2
SFH401-3
SFH40104
10-20
16-32
(i,=l00 rnA, t,.=2O ms)
>25
mW/sr
I,
100
120
225
mW/sr
(i,=1 A, t,.=I00IlS)
i,
Radiant Rux (totai)
(i,=100rnA, t,.=2O ms)
7-22
.,
5.5
7
8.5
mW
Rolatlvo spoctral omission
versus wavelength
%
100
t
SO
H
0197~
t-'
1\
1\
II
70
Radiation characteristic
Relative spectral emission
versus half anglo
to'
V
90
Irel
Radiant Intonslty vorsus
forward currant
I.
Jel00lllA
,
\
!
50
:
50
40
\
1
30
10
I
20
II
10
1'1'-
,V
o
S811
910
950
1000 lOW
--A
10 0
-IF
j6
1\
I--+-t--t-j-t---
VR,"",",~t---
Capacitance versus raverse voltage
pF
50
10'
I,
10
0
typ,
,-
max.
30
1\
150
T
l"'-
IL
\
200
I"
1--
,
1\
r-...
II
20
RUlJA '" 450 I ............................................. -55'C to +l00'C
Soldering Temperature al Dip Soldering (;:2 mm distance
from case bottom) (I s5 sec.) (T,) ............................................................................... 2OO'C
Soldering Temperalure allron Soldering (;:2 mm distance
from case bottom) (I S 3 sec.) (T.) .............•...............................................•................. 3OO'C
DESCRIPTION
The GaAs infrared emitting diode SFH 402,
fabricated in a liquid phase epitaxy process,
features high efficiency and emits radiation
at a wavelength in the near infrared range.
The radiation is activated by dc or pulse
operation in forward direction; simultaneous
modulation is possible. The cathode is
electrically connected to the case.
The applications include lighHeflecting
switches for steady and varying intensity,
IR·remote control, industrial electronics,
"measuring and controlling" ..
:!~~~::;~;~.~~~.:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::.~.~:~
Forward Current (I,) Tc= 25'C ....................................................................................... 300 rnA
Surge Current (t S 10 "", 0=0) (I ..) ...................................................................................... 3 A
Power Dissipafion (PTQT) Tc= 25'C .............................................................................. 470 mW
Thermal Resistance (R..,.) .......................................................................................... 450 KNI
(RlKlJ .......................................................................................... 160 KNI
Characteristics (TA=25°C)
Parameter
Wavelength at Peak Emission
(1,,=100 rnA, 1,,=20 ms)
Spectral Bandwidth at 50% of IMAX
(1,=100 rnA, 1,,=20 ms)
Half Angle
Acwe Chip Area
Dimensions of Active Chip Area
Distance Chip Surface to Case Surface
Switching Times
(;.trom 10% to 90%,
and from 90% to 10%, I, =100 rnA)
Capacitance (V.=O V, f=1 MHz)
Forward Voltage
(1,,=100 rnA)
(1,=1 A, 1,,=100 "")
Breakdown Voltage (1.=10 JIA)
Reverse Current (V.=5 VJ
Temperature Ccefficient of IE or +E
Temperature Ccefficient of V,
Temperature Ccefficienl of )..,....
Symbol
Unit
)..,....
950±2O
nm
l!J..
cp
A
LxW
0
±55
±4O
0.25
0.5 x 0.5
2.1- 2.7
nm
Deg.
mm'
mm
mm
t",t,
""
C.
40
pF
V,
V,
V,..
I.
TC,
TCy
TC,
1.30 (sl.5)
1.9 (s2.5)
30(;:5)
0.01 (SI)
-0.55
-1.5
0.3
V
V
V
JIA
%/K
mV/K
nm/K
Radiant Inlensity I, in Axial Direction at a Steradian n ,,0_01 sr or 6_5 degrees
(1,-100 rnA, 1,,-20 ms)
(1,=1 A, 1,,=100 "")
IE
IE
SFH402-2
2.5,-5
28
SFH402-3
:.4
35
mW/sr
mW/sr
Radiant Rux (total)
(1,,=100 rnA, 1,,=20 ms)
+E
5.5
7
mW
7-24
Relative speclral emission
versus wavelength
%
100
RadIation characlarfstlc
Relative speclral emission
versus half angle
10'
fo; I-
1",90
i
Radiant Intensity veraus
forward currant
~
BO
70
50
40
1\
0
V
10'
I
I'
10
10
o
BBO
'"
910
960
1000 10411
-A
rnA
30'
311'
1\
200
Itr'
10'
-I,
40'
40'
50'
50'
60'
60'
BO'
90'
lO'A
L....::r::::::J~~~~::t:::~~
forward VOltage
A
pF
50
10'
,
...-R,"", = 160 i2mm
Dip soldering time .. 5s
Iron soldering time";3s
Junction temperature
Reverse voltage
Forward current
Surge current (T: 10~s)
Power dissipation (T: 25'C)
Thermal Resistance
Tstg
-55to +tOO
'c
Tsold
Tj
VR
IF
iFS
Ptot
R1hJA
260
300
100
5
100
3
165
450
'c
'c
'c
V
mA
A
mW
KlW
Apeak
950±20
nm
61
55
±20
0.09
0.3 x 0.3
3.5
Deg.
mm'
mm
mm
Tsold
Characteristics (Tamb = 25°)
Wave length at peak emission at
IF: 100 mA tp: 20ms
Spectral bandwidth at 50% of Ima•
at IF: 100mA, tp: 20 ms
Half angle
Active chip area
Dimensions of active chip area
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:13 08:59:09-08:00 Modify Date : 2017:07:13 10:10:19-07:00 Metadata Date : 2017:07:13 10:10:19-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:32058059-e32d-354a-abed-de4448e06f2a Instance ID : uuid:9434fe25-caa6-554a-8204-6aa97469c304 Page Layout : SinglePage Page Mode : UseNone Page Count : 770EXIF Metadata provided by EXIF.tools