1990_TI_Optoelectronics_Data_Book 1990 TI Optoelectronics Data Book

User Manual: 1990_TI_Optoelectronics_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 515

Download1990_TI_Optoelectronics_Data_Book 1990 TI Optoelectronics Data Book
Open PDF In BrowserView PDF
~

TEXAS
INSTRUMENTS

Optoelectronics and
Image Sensors
CCD Sensors, Optocouplers, IR Emitters,
Intelligent Displays, and Phototransistors

1990

1990

Linear Products

Linear Products Data Book Guide
Data Book

Contents

Document No.

•

Linear Circuits Vol
Amplifiers, Comparators,
and Special Functions

Operational Amplifiers
Voltage Comparators
Video Amplifiers
Hall-Effect Devices
Timers and Current Mirrors
Magnetic-Memory Interface
Frequency-to-Voltage Converters
Sonar Ranging Circuits/Modules
Sound Generators

SLYD003
1989

•

Linear Circuits Vol 2
Data Acquisition
and Conversion

A/D and D/A Converters
DSP Analog Interface
Analog Switches and Multiplexers
Switched-Capacitor Filters

SLYD004
1989

•

Linear Circuits Vol 3
Voltage Regulators and
Supervisors

Supervisor Functions
Series-Pass Voltage Regulators
Shunt Regulators
Voltage References
DC-to-DC Converters
PWM Controllers

SLYD005
1989

•

Telecommunications
Circuits

Equipment Line Interfaces
Subscriber Line Interfaces
Modems and Receivers/Transmitters
Ringers, Detectors, Tone Encoders
PCM Interface
Transient Suppressors

SCTD001A
1988/89

•

Optoelectronics and
Image Sensors

Optocouplers
CCD Image Sensors and Support
Phototransistors
IR-Emitting Diodes
Hybrid Displays

SOYD002A
1990

•

Interface Circuits

High-Voltage (Display) Drivers
High-Power (Peripheral/Motor) Drivers
Line Drivers, Receivers, Transceivers
EIA RS-232, RS-422, RS-423, RS-485
IBM 360/370, IEEE 802.3, CCITT
Military Memory Interface

SLYD002
1987

•

Speech System Manuals

TSP50C4X Family

SPSS010
1990

November 1989

I~_G_e_n_e_ra_I_I_n_fo_r_m_a_t_io_n

____________________

CCD Image Sensors and Support Functions

Optocouplers (Isolators)

Intelligent LED Displays

Infrared Emitters and Phototransistors

Quality and Reliability

Applications

~I_1II

Optoelectronics
and Image Sensors
Data Book
1990

CCD Image Sensors, Optocouplers,
Intelligent Displays, IR Emitters,
and Phototransistors

~

TEXAS
INSTRUMENTS

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. TI advises its customers to obtain the latest
version of the relevant information to verify. before placing orders.
that the information being relied upon is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Unless mandated by government
requirements. specific testing of all parameters of each device is not
necessarily performed.
TI assumes no liability for TI applications assistance. customer product
design. software performance. or infringement of patents or services
described herein. Nor does TI warrant or represent that any license.
either express or implied. is granted under any patent right. copyright.
mask work right. or other intellectual property right of TI covering or
relating to any combination. machine. or process in which such
semiconductor products or services might be or are used.
Information contained in this data book supersede all data for this
technology published by TI in the United States before January 1990.

Copyright © 1990. Texas Instruments Incorporated

INTRODUCTION
This data book presents the three major categories of Optoelectronic and Image Sensing devices that Texas
Instruments now offers to the Military, Computer, Industrial, and Consumer electronics markets. These categories
are:
•
•
•

CCD Linear Image Sensors
Optocouplers/Optoisolators
Intelligent LED Displays

The CCD Image Sensor product line offers a range of linear sensors from an organization of 128 x 1 to
3456 x 1. The product family utilizes TI's patented Virtual Phase technology to minimize the number of clock
electrodes required by the imager, resulting in simpler external circuitry requirements and improved performance.
The Optocoupler/Optoisolator devices are offered in metal-can and plastic dual-in-line (P-DIP) packages, JEDECregistered metal cans provide transistor output functions. All of TI's Optocoupler/Optoisolator P-DIPs are UL
recognized and provide functions such as logic gates, triac, and transistor/Darlington outputs.
The Intelligent red LED Displays are plastic-encapsulated dual-in-line packages that contain TTL-compatible onboard electronics to decode input signals and provide constant current to each LED.
This data book also contains information on hermetically sealed standard Pill package Infrared Emitters and
Phototransistors.
A selection guide, located in Section 1, lists the important electrical parameters and features. The glossary
describes the symbols, abbreviations, terms, and definitions. Included is a cross-reference table listing other
manufacturers with the direct or nearest replacement devices. The contents provides easy location of major
information in the general information, quality and reliability, and applications sections. The alphanumeric index
lists page numbers for all the device types. The detailed data sheets complete the salient features of the data book.
While this volume offers design and specification data only for Optoelectronic and Image Sensing components,
complete technical information for all TI semiconductor products are available from your nearest TI Field Sales
Office, local authorized TI distributor, or by writing directly to:
Texas Instruments Incorporated
LITERATURE RESPONSE CENTER
P. O. Box 809066
Dallas, Texas 75380-9066
We sincerely feel that you will discover this new 1990 Optoelectronics and Image Sensor Data Book to be a
significant addition to your collection of technical literature.

v

vi

General Information

CCD Image ..8ensorsand .SupportFunctioris

OptocQuplers . (lsoIators)

UtJI8Ul[V

ctncl·. . Sefiability

1-1

Contents
Page
Table of Contents . . . .
Alphanumeric Index. . .
Quick Reference Guide
Cross-Reference Guide.
Glossary . . . . . . . . . . .

-....
:::s

...o

3Q)

....

o·

:::s

1-2

............... ... .... ......
............... .. ..... ......
............................
... .......... .... ..... ......
.. .......... .... ...... ......

..
. .
_.
..
..

.
.
.
.
.

.
.
.
.
.

..
..
_.
..
..

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

..
..
..
..
..

1-3
1-5
1-7
1-1 5
1-27

Contents
Page
Section 1
General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alphanumeric Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quick Reference Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cross-Reference Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Glossary

1-1
1-3
1-5
1-7
1-15
1-27

Section 2
CCO Image Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Virtual Phase Image Sensing Technoloy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TC102 128 x 1 CCD Linear Image Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TC102-1 128x 1 CCD Linear Image Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TC 103 2048 x 1 CCD Linear Image Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TC103-1 2048 x 1 CCD Linear Image Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TC104 3456 x 1 CCD Linear Image Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TC104-1 3456x 1 CCD Linear Image Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TC106-1 2592x1 CCD Linear Image Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TL 1591 Sample & Hold Driver Circuit for CCD Imagers ....................
TLD369 Dual CCD Image-Sensor Clock Driver . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.

2-1
2-3
2-5
2-17
2-29
2-41
2-53
2-65
2-77
2-89
2-93

.
.
.
.

3-1
3-3
3-9
3-13
3-17
3-19
3-21
3-25
3-31
3-33
3-41
3-49
3-59
3-67
3-75
3-83
3-91
3-99
3-109
3-113
3-119
3-125
3-133
3-137
3-143
3-147
3-151
3-155

Section 3
Optocouplers (Isolators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3N261, 3N262, 3N263 Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4N22, 4N23, 4N24 Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4N22A, 4N23A, 4N24A Optocouplers ...... , . . . . . . . . . . . . . . . . . . . . . . . . . .
JAN, JANTX, JANTXV Processing for 4N22-4N24 and 4N22A-4N24A ........ .
4N25, 4N26, 4N27, 4N28 Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4N35, 4N36, 4N37 Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4N47, 4N48, 4N49 Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JAN, JANTX, JANTXV Processing for 4N47-4N49 ........................
6N 135, 6N 136, HCPL4502 Optocouplers/Optoisolators ....................
6N 137 Optocoupler/Optoisolator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6N 138, 6N 139 Optocouplers/Optoisolators . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HCPL2502 Optocoupler/Optoisolator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HCPL2530, HCPL2531 Optocouplers/Optoisolators ........................
HCPL2601 Optocoupler/Optoisolator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HCPL2630 Dual-Channel Optocoupler/Optoisolator ........................
HCPL2631 Dual-Channel Optocoupler/Optoisolator ........................
HCPL2730, HCPL2731 Dual-Channel Optocouplers/Optoisolators .............
MCT2, MCT2E Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MOC3009 thru MOC3012 Optocouplers/Optoisolators .....................
MOC3020 thru MOC3023 Optocouplers/Optoisolators .....................
OPI8012 thru OPI8015 Optocouplers/Optoisolators .......................
TIL 102, TIL 103 Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIL 111, TIL 114, TIL116, TIL 117 Optocouplers.
. . . . . . .. . ......
TIL 113, TIL 119A Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIL 118-1,-2,-3 Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIL120, TIL 121 Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIL 124, TIL 125, TIL 126 Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
C

0

"

as
E

.
-as
..
....0C

CD
C
CD
~

1-3

Page

C)
CD

.e.
::::J

CD

....S"o

..3
CI)

r+

o·
::::J

Section 3 (Continued)
TIL127, TIL128A Optocouplers ................................ , " ....
TIL153, TIL154, TIL155 Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL156, TIL 157A Optocouplers .......................................
TIL181 Optocoupler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL186-1,-2,-3,-4, AC-Input Optocouplers ...............................
TIL187-1,-2,-3,-4, AC Input Optocouplers/Optoisolators . . . . . . . . . . . . . . . . . . . ..
TIL 188-1,-2,-3,-4, AC Input Optocouplers/Optoisolators . . . . . . . . . . . . . . . . . . . ..
TIL189-1,-2,-3,-4, Optocouplers/Optoisolators ... . . . . . . . . . . . . . . . . . . . . . . . ..
TIL190-1,-2,-3,-4, Optocouplers/Optoisolators ... . . . . . . . . . . . . . . . . . . . . . . . ..
TIL191, A&B, TIL192, A&B, TIL193, A&B Optocouplers ....................
TIL 194, A&B, TIL 195, A&B, TIL 196, A&B AC-Input Optocouplers . . . . . . . . . . . ..
TIL3009 th'ru TIL3012 Optocouplers/Optoisolators . . . . . . . . . . . . . . . . . . . . . . . ..
TIL3020 thru TIL3023 Optocouplers/Optoisolators . . . . . . . . . . . . . . . . . . . . . . . ..

3-161
3-165
3-171
3-175
3-179
3-185
3-185
3-191
3-191
3-197
3-203
3-207
3-213

Section 4
Intelligent LED Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL302, TIL302A thru TIL304, TIL304A Numeric Displays . . . . . . . . . . . . . . . . . ..
TIL305 5 x 7 Alphanumeric Displays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL306, TIL306A. TIL307, TIL307A Numeric Displays with Logic ..............
TIL308, TIL308A, TIL309, TIL309A Numeric Displays with Logic. . . . . . . . . . . . ..
TIL311, TIL311 A Hexadecimal Displays Logic ............................

4-1
4-3
4-9
4-11
4-17
4-23

Section 5
Infrared Emitters and Phototransistors .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
1 N5722 thru 1 N5725 N-P-N Planar Silicon Phototransistors . . . . . . . . . . . . . . . . ..
TIL23, TIL24, TIL25 P-N Gallium Arsenide Infrared-Emitting Diodes .............
TIL24HR2 High-Reliability Processing and Lot Acceptance ...................
TIL131 thru TIL 133 9-Element Arrays ..................................
TIL 134 thru TIL136 12-Element Arrays .................................
TIL601 thru TIL604, LS600, LS602, LS611 thru LS619 N-P-N Planar Silicon
Phototransistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL604HR2 High-Reliability Processing and Lot Acceptance ..................

5-1
5-3
5-7
5-11
5-13
5-19
5-25
5-33

Section 6
Quality and Reliability .............................................. 6-1
Quality/Reliability Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-3
Optocoupler Reliability Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6-9
Section 7
Applications .....................................................
Applications Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Multiplexing Displays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL311 Hexadecimal LED Display ......................................
Counting Circuits Using TIL306 and TIL308 Displays .......................
Optocouplers in Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Interfacing Using Optocouplers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
CCD Output Signal Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Linear CCD Operation at 10 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Operating Instruction Set for Linear CCD Image Sensor .....................
A Simple Method of Conditioning the Output of a CCD Imager to a
Digital System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
TC103-ISM and Interfacing Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

1-4

7-1
7-3
7-5
7-11
7-13
7-19
7-25
7-33
7-49
7-59
7-65
7-67

ALPHANUMERIC INDEX

TYPE

PAGE

lN5722 .........................
lN5723 .........................
lN5724 .........................
lN5725 .........................
3N261 ..........................
3N262 ..........................
~2~ ..........................
4N22 ...........................
4N22A ..........................
4N23 ...........................
4N23A ..........................
4N24 ...........................
4N24A ..........................
4N25 ...........................
4N26 ...........................
4N27 ...........................
4N28 ...........................
4N35 ...........................
4N36 ...........................
4N37 ...........................
4N47 ...........................
4N48 ...........................
4N49 ...........................
6N135 ..........................
6N136 ..........................
6N137 ..........................
6N138 ..........................
6N139 ..........................
HCPL2502 .......................
HCPL2530 .......................
HCPL2531 .......................
HCPL2601 .......................
HCPL2630 .......................
HCPL2631 .......................
HCPL2730 .......................
HCPL2731 .......................
HCPL4502 .......................
JAN4N22 ........................
JAN4N22A ......................
JAN4N23 ........................
JAN4N23A ......................
JAN4N24 ........................
JAN4N24A ......................
JAN4N47 ........................
JAN4N48 ........................
JAN4N49 ........................
JANTX4N22 .....................
JANTX4N22A ....................
JANTX4N23 .....................
JANTX4N23A ....................
JANTX4N24 .....................
JANTX4N24A ....................

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

5-3
5-3
5-3
5-3
3-3
3-3
3-3
3-9
3-13
3-9
3-13
3-9
3-13
3-19
3-19
3-19
3-19
3-21
3-21
3-21
3-25
3-25
3-25
3-33
3-33
3-41
3-49
3-49
3-59
3-67
3-67
3-75
3-83
3-91
3-99
3-99
3-33
3-17
3-17
3-17
3-17
3-17
3-17
3-31
3-31
3-31
3-17
3-17
3-17
3-17
3-17
3-17

TYPE

JANTX4N47 .....................
JANTX4N48 .....................
JANTX4N49 .....................
JANTXV4N22 ....................
JANTXV4N22A ...................
JANTXV4N23 ..... '...............
JANTXV4N23A ...................
JANTXV4N24 .............. : .....
JANTXV4N24A ...................
JANTXV4N47 ....................
JANTXV4N48 ....................
JANTXV4N49 ....................
LS600 ..........................
LS602 ..........................
LS611 ..........................
LS612 ..........................
LS613 ..........................
LS614 ..........................
LS615 ..........................
LS616 ..........................
LS617 ..........................
LS618 ..........................
LS619 ..........................
MCT2 ..........................
MCT2E .........................
MOC3009 .......................
MOC3010 .......................
MOC3011 .......................
MOC3012 .......................
MOC3020 .......................
MOC3021 .......................
MOC3022 .......................
MOC3023 .......................
OPI8012 .................. .
OPI8013 ........................
OP18014 .........................
OPI8015 ........................
PC401 ..........................
PC402 ..........................
TC102 ..........................
TC102-1 ........................
TC103 ..........................
TC103-1 ........................
TC104 ..........................
TC104-1 ........................
TC106-1 ........................
TCK102 .........................
TCK103 .........................
TCK104 .........................
TCK106-1 .......................
TIL102 ..........................
TIL103 ..........................

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

PAGE

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

3-31
3-31
3-31
3-17
3-17
3-17
3-17
3-17
3-17
3-31
3-31
3-31
5-25
5-25
5-25
5-25
5-25
5-25
5-25
5-25
5-25
5-25
5-25
3-109
3-109
3-113
3-113
3-113
3-113
3-119
3-119
3-119
3-119
3-125
3-125
3-125
3-125
7-59
7-59
2-5
2-17
2-29
2-41
2-53
2-65
2-77
7-59
7-59
7-59
7-59
3-133
3-133

r:::

0
'+:;

ca

E
...

....0r:::

C6
...

Q)

r:::
Q)

C!1

1-5

ALPHANUMERIC INDEX

TYPE

PAGE

TILlll .......................... .
TIL 113 .......................... .
TILl14 .......................... .
TILl16 .......................... .
TILl17 .................... '" .. "
TILl18 .......................... .
TILl19A ........................ .
TIL120 ...................... , ... .
G) TIL 121 .......................... .
CD TIL 124 .......................... .
~
TIL 125 .......................... .
~ TIL126 .......................... .
~ TIL127 .......................... .
TIL 128A ........................ .
TIL131 .......................... .
TIL132 .......................... .
TIL 133 .......................... .
Q)
TIL 134 .......................... .
.... TIL135 .......................... .
O' TIL 136 .......................... .
~ TIL 153 .......................... .
TIL154 .......................... .
TIL 155 .......................... .
TIL156 .......................... .
TIL157A ........................ .
TIL181 .......................... .
TIL186-1 ........................ .
TIL186-2 ........................ .
TIL186-3 ........................ .
TIL186-4 ........................ .
TIL187-1 ........................ .
TIL187-2 ........................ .
TIL187-3 ........................ .
TIL 187-4 ........................ .
TIL188-1 ........................ .
TIL 188-2 ........................ .
TIL 188-3 ........................ .
TIL 188-4 ........................ .
TIL189-1 ........................ .
TIL 189-2 ........................ .
TIL189-3 ........................ .
TIL189-4 ........................ .
TIL190-1 ........................ .
TIL190-2 ........................ .
TIL190-3 ........................ .
TIL 190-4 ........................ .
TIL191 .......................... .
TIL191A ........................ .
TIL191B ......................... .
TIL192 .......................... .

ao
...3

1-6

3-137
3-143
3-137
3-137
3-137
3-147
3-143
3-151
3-151
3-155
3-155
3-155
3-161
3-161
5-13
5-13
5-13
5-19
5-19
5-19
3-165
3-165
3-165
3-171
3-171
3-175
3-179
3-179
3-179
3-179
3-185
3-185
3-185
3-185
J-185
3-185
3-185
3-185
3-191
3-191
3-191
3-191
3-191
3-191
3-191
3-191
3-197
3-197
3-197
3-197

TYPE
TIL192A .........................
TIL192B ............ " ............
TIL193 ...........................
TIL193A .........................
TIL 193B . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL 194 . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL 194A .........................
TIL 194B . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL 195 . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL 195A .........................
TIL195B ..........................
TIL 196 . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL 1 96A .........................
TIL196B ..........................
TIU3 ............................
TIL24 ............................
TIL24HR2 ........................
TIL25 ............................
TIL302 ...........................
TIL302A .........................
TIL303 ...........................
TIL303A .........................
TIL304 ...........................
TIL304A .........................
TIL305 ...........................
TIL306 ...........................
TIL306A .........................
TIL307 ...........................
TIL307A .........................
TIL308 ...........................
TIL308A .........................
TIL309 . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL309A .........................
TIL311 ...........................
TIL311A .........................
TIL601 . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL602 . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL603. . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL604 . . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL604HR2 .......................
TIL3009 . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL3010 ..........................
TIL3011 . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL3012 . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL3020 . . . . . . . . . . . . . . . . . . . . . . . . ..
TIL3021 ..........................
TIL3022 ..........................
TIL3023 . . . . . . . . . . . . . . . . . . . . . . . . ..
TL 1591 ..........................
TLD369 . . . . . . . . . . . . . . . . . • . . . . . . ..

TEXAS ."
INSTRUMENTS
POST OFFICE BOX 666303 • DALLAS, TEXAS 75265

PAGE
3-197
3-197
3-197
3-197
3-197
3-203
3-203
3-203
3-203
3-203
3-203
3-203
3-203
3-203
5~

5-7
5-11
5-7
4-3
4-3
4-3
4-3
4-3
4-3
4-9
4-11
4-11
4-11
4-11
4-17
4-17
4-17
4-17
4-23
4-23
5-25
5-25
5-25
5-25
5-33
3-207
3-207
3-207
3-207
3-213
3-213
3-213
3-213
2-89
2-93

OPTOELECTRONICS AND IMAGE SENSORS
QUICK REFERENCE GUIDE
linear arrays
TYPE

PIXELS

TC102 t

PIXEL SIZE
12.7~mx

128 x 1

TC102-1 ~

PACKAGE
10-pin CDIP 10.300 inl

12.7

~m

3.5 V I ~J/cm2

PAGE
NO.
2-5

12.7~m

x 12.7

~m

3.5 V/~J/cm2

10-pin CDIP 10.300 inl

2-17

2048 x 1

12.7

~m

x 12.7

~m

3.5 V/~J/cm2

24-pin CDIP 10.600 inl

2-29

128 x 1

TC103'

SENSITIVITY

TC103-1~

2048 x 1

12.7

~m

x 12.7

~m

3.5 V/~J/cm2

24-pin CDIP 10.600 inl

2-41

TC104'
TC104-1 ~

3456 x 1

10.7

~m

x 10.7

~m

2.0 V/~J/cm2

24-pin CDIP 10.600 inl

2-53

3456 x 1

10.7

~m

x 10.7 ~m

2.0 V/~J/cm2

24-pin CDIP 10.600 inl

2-65

TC106-1 ~

2592 x 1

10.7

~m

x 10.7

~m

2.0 V/~J/cm2

24-pin CDIP 10.600 inl

2-77

I:

o

t Minimum and typical values of Write Reference (WRI and End of Scan (EOS) are specified.
:t: Typical values of WR and EOS are specified.

"';:
ctI

evaluation boards

....

E
...

o

PART NO.

DEVICE EVALUATED

PC401
PC402

PAGE

REMARKS

NO.

TC103, TC103-1, TC104,

Device socket fits TC103, TC103-1, TC104, TC104-1, and

TC104-1 and TC106-1

TC106-1 ISee TCK Evaluation Kits belowl

TC102 and TC102-1

Device socket fits TC102 and TC102-1 (See TCK102 below)

7-59

Cii
...
Q)

I:
Q)

o

evaluation kits
PART NO.

.5

CONTENTS

PAGE

REMARKS

NO.

ceo

TCK102

TC 102 plus PC402

See Application section "Operating Instructions for Unear

TCK103

TC103 plus PC401

See Application section "Operating Instructions for Linear CCO Image Sensors"

TCK104

TC104 plus PC401

See Application section "Operating Instructions for Linear CCD Image Sensors"

TCK106-1

TC106-1 plus PC401

See Application section "Operating Instructions for Linear

ceo

Image Sensors"
7-59

Image Sensors"

recommended support functions for linear image sensors
TYPE

DESCRIPTION

SUPPLY

ANALOG INPUT

VOLTAGE, VCC

VOLTAGE, ANLG IN

MINIVI MAXI VI
TL1591

Sample and hold

4.75

5.5

TLD369

Dual clock driver

4.75

22

MINIVI

0.8

-

FEATURES

MAXIVI

-

PAGE
NO.

8andwidth 25 MHz Typ - Sample Rate 15 MHz Max

2-89

Can switch negative voltage with respect to VDO

2-93

Caution. These devices have limited built-in gate protection. The leads should be shorted together or the device
placed in conductive foam during storage or handling to prevent electrostatic damage to the MaS gates. Avoid
shorting either

as

or EOS to VSS during operation to prevent damage to the amplifiers.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-7

OPTOELECTRONICS AND IMAGE SENSORS
QUICK REFERENCE GUIDE
optocouplers, 6-pin plastic DIP and metal can
ISOLATION VOLTAGE (kV)
TYPE

..
S"
....
o.
3

!.

m
r+

o·:::l

MINIMUM CTR

3N261

1.0

3N262

1.0
1.0

-

50
100 1500 max)
200 11000 max)

4N23 t
4N24t

1.0

-

1.0

-

100

4N22At
4N23At

1.0

-

60

4N24At

-

4N25*

1.0
2.5

-

100
20

4N26

1.5

-

20

4N27

1.5
0.5

-

10

-

10

4N28

1.0

1.0

FEATURES

(%)

RMS

3N263
. 4N22t

G')
CD
:::l
CD

f - 60 Hz
PEAK

NO.

JEDEC, Metal Can

3·3

JEDEC, Metal Can

3-9

JEDEC, Isolated Metal Can

3·13

JEDEC, Plastic DIP, UL File E·65085

3-19

25
60
25

4N35"
4N36

3.54

2.5

100

2.5

1.75

100

JEDEC, Plastic DIP, UL File E-65085

3-21

4N37
4N47§
4N48§

1.5
1.0

1.05

1.0

JEDEC, Metal Can

3-25

4N49§

1.0

-

100
50
100 (500 max)

MCT2
MCT2E

1.5
3.54

-

20

2.5

20

Plastic DIP, UL File E-65085

3-109

TIL102
TIL103

1.0
1.0

25

Metal Can

3-133

TIL111

1.5

TILl13

1.5

TILl14

2.5

TILl16

2.5

-

TILl17

2.5

-

TIll 18

-

TIL119A

1.5
1.5

TIL120

1.0

-

200 (1000 max)

100
13

3-137
Plastic DIP, UL File E-65085

20

300
25

1.0

-

50

TIL124

5.0

10

TIL125
TIL126

5.0

-

TIL127

5.0

TIL 128A

5.0

3-137
3-137
3-147

50
10

-

-

3-143

13

TIL121

5.0

3-137

300

TIL 119A has no base connection.

3-143

Metal Can

3-151

High Voltage, Plastic DIP,

20

UL File E-65085

50
300

3-155

High-Voltage Darlington, Plastic PIP

300

UL File E-65085
TIL 128A has no base connection.

tJAN, JANTX, JANTXV levels to MIL-S-19500/486A USAF are also available.
+Available in PEP3 processing also.

§JAN, JANTX, JANTXV levels to MIL-S-19500/548 are also available.

1-8

PAGE

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TEXAS 75265

3-161

OPTOELECTRONICS AND IMAGE SENSORS
OUiCK REFERENCE GUIDE

optocouplers. 6-pin plastic DIP and metal can (continued)
ISOLATION VOLTAGE (kVI
TYPE

f - 60 Hz
PEAK
RMS

TIL153
TIL154

3.54

2.5

High Voltage, Plastic DIP,

20

UL File E-65085

50

TIL 156

300
3.54

2.5

FEATURES

(%1
10

TIL155
TIL 157A

MINIMUM CTR

PAGE
NO.

3-165

High-voltage, Darlington, Plastic DIP,

300

UL File E-65085

3-171

TIl157 A has no base connection.
TIL181

3.54

2.5

TIL186-1
TIL186-2
TIL186-3

3.54

2.5

2.5

500
1000 (IF ~ 2 mAl

250
3.54

2.5

500
1000 (IF ~ 2 mAl

TIL188-4

1500

TIL189-1

250

TIL 189-2
TIL189-3

3.54

2.5

TlL189-4

TIL190-3

2.5

2.5

2.5

3.54

2.5

TIL 1938

5 mAl

50 (IF

~

5 mA)

20
50 (IF

~

5 mAl

~

5 mA)

100

TIL194

20
3.54

2.5

TIL 1948

50 (IF

3-185

Same as TIL 189 except TIL 190 has no base
lead connection for high-EMI environment.

3-185

High-Voltage, Plastic DIP,
UL File E-65085

3-191

2.5

50 (IF

5 mA)

3.54

2.5

50 (IF
100

Dual Channel S-pin DIP
UL File 65085
Quad Channel 16-pin DIP
UL File 65085

3-197

3-197

3-197

4-pin DIP

3-203

8-pin DIP

3-203

UL File E-650S5

20

TIL196

Single Channel 4-pin DIP

UL File 65085

AC Input. Single Channel
~

100

TIL1958

3-191

UL File E-65085

20
3.54

Same as TIL 189 except TIL190 has no base
lead connection for high-EMI environment.

AC Input, Single Channel

100

TIL195

TIL 1968

~

100

TIL193

TIL196A

50 (IF
20

3.54

TIL 1928

TIL195A

AC Input Darlington, Plastic DIP,
UL File E-65085

E
...
....o
.E

UL File E-65085.

100

TIL192

TIL 194A

500
1000 (IF ~ 2 mAl

20
3.54

TIL1918

TIL 193A

500
1000 (IF ~ 2 mAl

1500

TIL191

TIL 192A

3-179

UL File E-65085.

250
3.54

TIL190-4
TIL191A

UL File E-65085

o
ca

'';::;

1500

TIL190-1
TIL190-2

AC Input Darlington, Plastic DIP,

c

1500

TIL188-1
TIL188-3

20
50 (IF ~ 10 mAl

250
3.54

TIL 187-4
TIL 188-2

3-175

300

TIL187-1
TIL187-3

Plastic DIP, UL File E-65085

10

TIL 186-4
TIL 187-2

50

AC Input, Single Channel
~

5 mAl

16-pin DIP

3-203

UL File E-65085

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

1-9

OPTOELECTRONIC.S AND IMAGE SENSORS
QUICK REFERENCE GUIDE

optocouplers, a-pin plastic. DIP, high-speed
TYPE

CTR (MIN)

VOL (MAX)

Vo - 0.4 V,

IF - 16 mA
TA - O·C to 70·C

IF - 16 mA
7%

6N135 t
6N136 t

19%
15%

HCPL2502
HCPL2530
HCPL2531

7%
19%

HCPL4502

19%

(TA - 25°C unless otherwise noted)
SWITCHING TIMES (MAX)

VF (MAX)

IF - 16 mA

IF'( 16 mA

1.7 V
1.7 V
1.7 V

0.8 p.S (RL = 1.9 kll)
0.8 ps (RL = 1.9 kll)
l.5 pS (RL - 4.1 kll)

3 kVde
3 kV de
3 kV de

0.4 V 110 - 2.4 mAl

1.7 V

0.8 pS (RL - 1.9 k!l)

3 kV de

3-67

1.7 V

0.8 pS (RL

3 kV de

3-33

=

0.4 V 110

2.4 mAl

VF (MAX)
IF - 10 mA

HCPL2601

0.6 V

HCPL2630*

0.6 V
0.6 V

=

CTR (MIN)

SWITCHING TIMES (MAX)
IF

=

7.5 mA, RL - 350 Il, CL - 15 pF

ISOLATION
VOLTAGE (MIN)

1.75 V

3 kV de

3-41

1.75 V

75 ns

75 ns

3 kV de

3-75

1.75 V
1.75 V

75 ns
75 ns

75 ns
75 ns

3 kV de
3 kV de

3-83

VOL (MAX)
IF - 1.6 mA
TA - O·C to 70·C

300%

0.4 V 110 = 4.8 mAl

IF

=

IF - 1.6 mA

1.6 mA

1.7 V

0.4 V 110

= 6.4

mAl

1.7 V

HCPL2730

300%

0.4 V (10

= 4.8

mAl

1.7 V

HCPL2731

500%

0.4 V 110

= 6.4

mAl

1.7 V

tpLH
35 ps,

tpHL
10 ps,

RL = 2.2 kll
60 P.s,

RL = 2.2 kll
25 p.s,

RL = 4.7 kll
35 p'S,

RL = 4.7 kll
20 ps,

RL = 2.2 kll
35 p'S,

RL = 2.2 kll
20 p.s,

RL

=

2.2 kll

optocouplers, 6-pin plastic DIP TRIAC driver
1FT (MAXI

VF (MAXI

MOC3009

VTM - 3V
30 mA

MOC3010

3-91

25°C unless otherwise noted)
SWITCHING TIMES (MAX)

VF (MAX)

500%

RL

=

2.2 kll

ISOLATION
VOLTAGE (MIN)

PAGE

3 kV de

3-49

3 kV de

3-49

3 kV de

3-99

3 kV de

3-99

NO.

25°C unless otherwise noted)
RATEO VORM
100 nA

dv/dt
(TYP)

ISOLATION
VOLTAGE (MINI

12 Vips

7.5 kV de

3V

100 nA

12 Vips

7.5 kV de

1.5 V

3V

100 nA

12 V/p.s

7.5 kV de

5 mA
30 mA

1.5 V

3V

12 V/p.s

7.5 kV de

1.5 V

100 V/p.s

15 mA

1.5 V

3V
3V

100 nA
100 nA
100 nA

100 V/p.s

7.5 kV de
7.5 kV de

MOC3022

10 mA

1.5 V

3V

100 nA

100 Vips

MOC3023

5 mA

1.5 V

3V

100 nA

100 V/p.s

IF - 10 mA
1.5 V

VTM (MAXI
ITM = 100 mA
3V

15 mA

1.5 V

MOC3011

10 mA

MOC3012
MOC3020
MOC3021

NO.

tPHL
75 ns

Vo - 0.4 V
IF - 1.6 mA,
TA - O·C to 70·C

TYPE

PAGE

tPLH
75 ns

6N139 t

IORM (MAXI

t JEOEC registered
*Oual channel

1-10

1.9 kll)

3-59
3-67

(T A '"' 25°C unless otherwise noted)

optocouplers, a-pin plastic DIP, high-speed, high-gain

6N138 t

3-33

NO.

0.4 V 110
0.4 V 110
0.4 V 110 - 2.4 mAl

IF - 5 mA,

TYPE

3-33

tpLH OR tpHL
1 .5 ps (RL = 4.1 kll)

10L = 13 mA
TA - O·C to 70·C
0.6 V

HCPL2631 *

3 kV de

1.7 V

VOL (MAX)

6N137 t

PAGE

= 1.1 mAl
= 2.4 mAl
= 2.4 mAl

0.4 V 110

optocouplers, a-pin plastic DIP, high-speed logic gate

TYPE

ISOLATION
VOLTAGE (MIN)

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

7.5 kV de
7.5 kV de

PAGE
NO.

3-113

3-119

OPTOELECTRONICS AND IMAGE SENSORS
QUICK REFERENCE GUIDE

25 DC unless otherwise noted)

optocouplers, 6-pin plastic DIP TRIAC driver
TYPE

VF (MAX)

1FT (MAXI

TIL3009

VTM = 3 V
30 rnA

TIL3010
TIL3011

IF

=

10 rnA

VTM (MAX)
ITM

=

100 rnA

IDRM (MAX)

dv/dt

ISOLATION

PAGE

RATED VDRM

(TYP)

VOLTAGE (MINI

NO.

1.5 V

3V

100 nA

12 V/~s

3.5 kV de

15 mA

1.5 V

3V

100 nA

12 V/~s

3.5 kV de

10 mA

1.5 V

3V

100 nA

12

V/~s

3.5 kV de

TIL3012

5 mA

1.5 V

3 V

100 nA

12

V/~s

3.5 kV de

TIL3020

30 mA

1.5 V

3V

100 nA

100

V/~s

3.5 kV de

TIL3021

15 mA

1.5 V

3V

100 nA

100

V/~s

3.5 kV de

TIL3022

10 mA

1.5 V

3V

100 nA

100

V/~s

3.5 kV de

TIL3023

5 mA

1.5 V

3V

100 nA

100

V/~s

3.5 kV de

LOGIC

OUTPUT

FUNCTION

CONFIGURATION

IFT+ (MAX)

3·213

HYSTERESIS

SWITCHING TIMES (MAX)

ISOLATION

PAGE
NO.

RATIO (TYPI

t,ORtf

tpLH OR tpHL

VOLTAGE (MIN)

OPI8012

8uffer

Totem pole

10 mA

1.4

70 ns

5 ~s

3.54 kV de

OPI8013

Buffer

Open collector

10 mA

1.4

70 ns

5 ~s

3.54 kV de

OPI8014

Inverter

Totem pole

10 mA

1.4

70 ns

5 ~s

3.54 kV de

OPI8015

Inverter

Open collector

10 rnA

1.4

70 ns

5

~s

3.54 kV de

s::::

o

'';:;
CO

25 DC unless otherwise noted)

optocouplers, 6-pin plastic DIP, Schmitt trigger
TYPE

3·207

.

E
....o

s::::

3·125

hybrid displays
TYPE

TYPE OF
CHARACTER IS)

CHARACTER

COLOR

HEIGHT

OF

mm (inches)

DISPLAY

TIL302
TIL302A
TIL303

7-segment

Polarity and

TIL304A

overflow unit

6,9 (0.2701

Red

6,9 10.2701

Red

14·lead dual·

Left decimal

in-line plastic

Right decimal

5 x 7
alphanumeric

7,610.3001

Red

14·lead dual·

Right decimal

in-line plastic

Right decimal

14·lead dual·
in-line plastic

left decimal

TIL306A

Left decimal

TIL307

Right decimal
7-segment

6,910.2701

Red

16·lead dual·

Right decimal

in-line plastic

Left decimal

TIL308A

Left decimal

TlL309

Right decimal

TIL309A

Right decimal

TIL311
TIL311A

4·3

Hexadecimal

7,6 10.3001

Red

4·3
4·9

Left decimal

TIL306

TIL307A

NO.

Right decimal

TIL304

TIL308

PAGE

Left decimal

TIL303A

TIL305

REMARKS

PACKAGE

4·11

4·17

14-lead dual-

Logic includes latch, decoder, and driver.

in-line pl,astic

TL311 and TL311 A -

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

left and right decimals

4·23

1-11

OPTOELECTRONICS AND IMAGE SENSORS
QUICK REFERENCE GUIDE
infrared-emitting diodes
POWER OUTPUT
TYPE

VF (MAX)
)F - 50 rnA

'P (TYP)
(rim)

35°

1.5 V

940

50

35°

1.5 V

940

0.75

50

35°

1.5 V

940

1.0

50

35°

1.5 V

940

Po (MINI
(mW)

IF
(rnA)

"'HI

TIL23

0.4

50

TIL24

1.0

TIL25
TIL24HR2

PAGE

FEATURES

NO.

Pill package for mounting on double-sided
printed circuit boards. Compatible with

TIL601 Series.

5·7
5-11

G) phototransistors
CI)

:::J

...
e.
:::J
....
o
...
CI)

3

m

r+

o·
:::J

1-12

LIGHT CURRENT
TYPE
IN5722

VCE = 5 V
MIN
MAX
0.5 rnA

DARK CURRENT
(MAX)

3 rnA

VCE = 30 V
25 nA

POWER
DISSIPATION

FEATURES

NO .

50 rnW

IN5723

2 rnA

5 rnA

25 nA

50rnW

EIA~registered

IN5724

4 rnA

8 rnA

25 nA

50rnW

of TIL601 thru TIL604

IN5725

7 rnA

25 nA

50 rnW

~

25 nA

50rnW

~

25 nA

50rnW
50rnW

LS600

0.8 rnA

LS602

0.5 rnA

LS611

0.5 rnA

2 rnA

25 nA

LS612

1 rnA

3 rnA

25 nA

50rnW

LS613

2 rnA

4 rnA

25 nA

50 rnW

versions

LS614

3 rnA

5 rnA

25 nA

50rnW

Pill package designed for

LS615

4 rnA

6 rnA

25 nA

50rnW

mounting on double-sided

LS616

5 rnA

7 rnA

25 nA

50rnW

printed board. Compatible

LS617

6 rnA

8 rnA

25 nA

50rnW

with TIL23 series.

LS618

7 rnA

9 rnA

25 nA

50rnW

LS619

8 rnA

25 nA

50rnW

TIL601

0.5 rnA

3 rnA

25 nA

50rnW

TIL602

2 rnA

5 rnA

25 nA

50rnW

TIL603

4 rnA

8 rnA

25 nA

50 rnW

TIL604

7 rnA

25 nA

50 rnW

TIL604HR2

7 rnA

25 nA

50rnW

~

PAGE

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

5-3

5-25

5-25

5·33

OPTOELECTRONICS AND IMAGE SENSORS
OUiCK REFERENCE GUIDE

sensor-emitter arrays
POWER
TYPE

FUNCTION

OUTPUT

VF MAX

IL MIN

MIN

IF - 50 rnA

VCE - 5 V

IC
IF

IF-50mA

=

VCE

50 rnA

=

5 V

VCE(sa!)
TVP
Ic -

gallium arsenide

1.5 V

on pc board for paper

Nine LS600s mounted

phototransistor

2 rnA

on pc board for paper

to

0.4 V

10 rnA

transistor pair

on 6,4-mm (0.250-inl

1.5 V

centers. For reading

E
...

....oc::::
519

punched cards

Twelve L600s mounted

Twelve-element

on 6,4-mm 10.250-inl

2 rnA

centers in double-sided

array

5-19

pc board
Consists of a TIL 134

2.5 rnA

Twelve-channel
TIL136

5-13

Twelve TIL23s mounted
0.4 rnW

IRED array

phototransistor

specified channel
performance

Twelve-element

TIL135

and TIL 132 with

c::::

o
as

'';::;

Consists of a TIL131

2.5 rnA

Nine-channel

IRED-photo-

gallium arsenide

5-13

tape readers

array

TIL134

5-13

tape readers

Nine-element

TIL133

NO.

Nine TIL23s mounted
0.4 rnW

IRED array
TIL132

PAGE

IF - 50 rnA

Nine-element

TIL131

FEATURES

2 rnA

IRED-photo-

to
10 rnA

transistor pair

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

0.4 V

and TIL135 with
specified channel

5-19

performance

1-13

G)
CD
:::l
CD

.
-3..
ea.

:::l

o

Q)

r+

o·
:::l

1-14

OPTOELECTRONICS
CROSS·REFERENCE GUIDE

Replacements are based on similarity of electrical and mechanical characteristics as shown in currently published
data. Interchangeability in particular applications is not guaranteed. Before using a device as a substitute. the
user should compare the specifications of the substitute device with the specifications of the original.
Texas Instruments makes no warranty as to the information furnished and buyer assumes all risk in the use
thereof. No liability is assumed for damages from the use of the information contained herein.

DEVICE

MANUFACTURER/SOURCE

TI
DEVICE

CODE

3N243

JEDEC Registered (Industry common)

T)L120

B

3N244

JEDEC Registered (Industry common)

T)L120

B

s::

3N245

JEDEC Registered (Industry common)

T)L120

B

'';:;

4N22

JEDEC Registered (Industry common)

4N22

A

CO

4N22A

JEDEC Registered (Industry common)

4N22

A

4N23

JEDEC Registered (Industry common)

4N23

A

4N23A

JEDEC Registered (Industry common)

4N23

A

4N24

JEDEC Registered (Industry common)

4N24

A

4N24A

JEDEC Registered (Industry common)

4N24

A

4N25

JEDEC Registered (Industry common)

4N25

A

4N25A

JEDEC Registered (Industry common)

TIL154

A

4N26

JEDEC Registered (Industry common)

4N26

A

Q)

C!)

4N27

JEDEC Registered (Industry common)

4N27

A

4N28

JEDEC Registered (Industry common)

4N28

A

4N29A

JEDEC Registered (Industry common)

TIL 156

A

4N30

JEDEC Registered (Industry common)

TIL113

A

4N31

JEDEC Registered (Industry common)

TIL119

A

4N33

JEDEC Registered (Industry common)

TIL113

A

4N34

JEDEC Registered (Industry common)

TIL113

A

4N35

JEDEC Registered (Industry common)

4N35

A

4N36

JEDEC Registered (Industry common)

4N36

A

4N37

JEDEC Registered (Industry common)

4N37

A

4N47

JEDEC Registered (Industry common)

4N47

A

4N48

JEDEC Registered (Industry common)

4N48

A

4N49

JEDEC Registered (Industry common)

4N49

A

6N135

Hewlett Packard

6N135

A

6N136

Hewlett Packard

6N136

A

6N137

Hewlett Packard

6N137

A

6N138

Hewlett Packard

6N138

A

6N139

Hewlett Packard

6N139

A

6N140A

Hewlett Packard

6N140A

A

5082-7100

Hewlett Packard

TIL305

B

5082-7101

Hewlett Packard

TIL305

B

5082-7300

Hewlett Packard

TlL309

B

5082-7300

Hewlett Packard

TIL307

B

5082·7302

Hewlett Packard

TIL308

B

5082-7302

Hewlett Packard

TIL306

B

5082-7340

Hewlett Packard

TIL311

B

BPX621

Siemens

TlL602

B

BPX6211

Siemens

TIL602

B

BPX62111

Siemens

TlL603

B

Clairex

TIL118

B

CL12

0

...E

0

..5

...

(ij
Q)

s::

A = TI Direct Replacement
B = Nearest Replacement

TEXAS.
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-15

OPTOELECTRONICS
CROSS·REFERENCE GUIDE

DEVICE

G')
C1)

::s
C1)

...

~

-..
::s

...0

3
Q)

O·
::s

A
B

1-16

MANUFACTURER/SOURCE

TI
DEVICE

CODE

Cl13
Cl15

Clairex

4N37

B

Clairex

TIl116

B

CL16
Cl17

Clairex

TlL117

B

TIl118

8

Cl18
CL19

Clairex
Clairex
Clairex

TIl116
TIl116

B
8

Cl112

Clairex

TIl157

B

Cl1506

Clairex

B

CL1510

Clairex

TIl118
4N37

Cl1511

Clairex

4N37

B

CL10506A
CLT3160

Clairex

TIl116

B

Clairex

B

CLT3170

Clairex

TIL602
TIl604

CNX35

Quality Technologies Corp.

TIl126

A

CNX36
CNYI7-1

Quality Technologies Corp.

4N35

A

General Electric

TIl126

8

CNY17-2

General Electric

TIL126

B

CNYI7-3
CNYI7-4

General Electric

B

General Electric

TIl127
TIl128

CNYI8-2

Siemens

TIL120

B

CNYI8-3

Siemens

TIl121

B

B

8

B

CNY35

General Electric

Tll186-1

A

CNY47

General Electric

TIl116

A

CNY47A
CQY80

General Electric
General Electric

TIL117
4N35

A
A

DllA

Siemens

TIl302

B

DL10

Siemens

TIL302

B

DL10A

Siemens

TIL302

B

Dl57

Siemens

B

Dll01

Siemens

TIl305
TIL304

DL101A

Siemens

GE3009
GE3010
GE3011

8
B

General Electric

TIl304
TIl3009

A

General Electric

TIl3010

A

General Electric

TIL3011

A

GE3012

General Electric

TIl3012

A

GE3020

General Electric

A

GE3021
GE3022

General Electric
General Electric

TIl3020
TIl3021
TIl3022

A
A

GE3023
GEPS2001

General Electric

TIl3023

A

General Electric

TIl117

A

HllAl

General Electric

TIl117

A

H11Al

Motorola

TIl117

A

HllA2
HllA2

General Electric

A

Motorola

TIL112
4N26

HllA3

General Electric

Tll114

A
8

HllA3

General Electric

TIl114

A

HllA3

General Electric

TlL115

B

HllA3

General Electric

TIL116

HllA3

General Electric

TIL116

A
A

= TI Direct Replacement
= Nearest Replacement

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OPTOELECTRONICS
CROSS·REFERENCE GUIDE

DEVICE

CODE

Motorola

HllA4

General Electric

HllA4

Motorola

HllA5

General Electric

TILl18

B

HllA5

General Electric

TILl16

Motorola

4N25
TILlll

A

4N27

A

A

TILl17

A
A

HllAl0

General Electric

4N27

A

HllA520
HllA520

General Electric

A

General Electric

TIL125
TIL 124/TIL 154

HllA550

General Electric

TIll 26

A

HllA590

General Electric

A

HllA590
HllA5100

General Electric

TIL126
TIL 126/TIL 155

General Electric

4N35

HllAAl

General Electric

HllAAl

Motorola

TIL 186-2
TlL186-1

A
A

HllAA2

General Electric

TIL186-1

A

HllAA2

Motorola

TIL186-2

A

CO

HllAA3
HllAA3

General Electric

A
A

Q)

Motorola

TIL 186-3
Till 86-3

Hl1AA4

General Electric

TIL186-4

A

Motorola

A
A

HllAA4

=

TI
DEVICE

HllA3

HllA5

A

MANUFACTURER/SOURCE

B

B

A

Hl1Bl

General Electric

TIL 186-4
TIL189-2

HllBl

General Electric

TILl13

B

HllBl
HllBl

General Electric

B
B

Hl182

General Electric

TIL 187
TIL188
TILl19

HllB2
HllB3

General Electric

TILl13

General Electric

TILl19

A
A

HllB255

General Electric

TIL189-1

A

HllBX522

General Electric

TIL 189-3

Hl1G2

General Electric

TIL156

A
B

HllJl
HllJ2

General Electric
General Electric

TIL3011
TIL3010

HllJ3

General Electric

TlL3011

A
A

General Electric

0

CO

...0E

....C
...

C

Q)

~

B

A

Hl1J4

General Electric

TIL3010

A

HllJ5

General Electric

A

Hl1Ll
Hl1L2

General Electric
General Electric

TIL3010
OPI8015
OPI8015

HCPL2502

Hewlett Packard

HCPL2502

A
A
A

HCPL2530

Hewlett Packard

HCPL2530

A

HCPL2531

Hewlett Packard

HCPL2531

A

HCPL2801

Hewlett Peckard

HCPL2630
HCPL2631

Hewlett Packard

HCPL2601
HCPL2630
HCPL2631

A
A
A

HCPL2730

HCPL2730

A

HCPL2731

Hewlett Packard
Hewlett Packard

HCPL2731

A

HCPL4502

Hewlett Packard

HCPL4502

Hewlett Packard

C

"+::

IL-l

Siemens

Till 25

A
A

IL-5

Siemens

Till 17

A

TI Direct Replacement

B = Nearest Replacement

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-17

OPTOELECTRONICS
CROSS·REFERENCE GUIDE

C)
CD
:3
CD
~

e!.

:3
0
~

3
II)
r+
O·
:3

DEVICE

MANUFACTURER/SOURCE

IL-12
IL-15
IL-16
IL-30
IL-74
IL-94
IL-101
IL-203
IL-250
IL-251
IL-252
IL-501
IL-505
IL-512
ILA-30
ILA-55
ILCA2-30
ILCA2-55
JAN4N22
JAN4N22A
JAN4N22A
JAN4N23
JAN4N23A
JAN4N23A
JAN4N24
JAN4N24A
JAN4N24A
JAN4N47
JAN4N48
JAN4N49
JANTX4N22
JANTX4N22A
JANTX4N22A
JANTX4N23
JANTX4N23A
JANTX4N23A
JANTX4N24
JANTX4N24A
JANTX4N24A
JANTX4N47
JANTX4N48
JANTX4N49
JANTXV4N22
JANTXV4N22A
JANTXV4N22A
JANTXV4N23
JANTXV4N23A
JANTXV4N23A
JANTXV4N24

Siemens
Siemens

Siemens
Siemens
Siemens
Siemens

Siemens
Siemens
Siemens
Siemens
Siemens

Siemens
Siemens
Siemens
Siemens
Siemens
Siemens
Siemens
Micropac

Micropac

Optek/Optron
Micropac
Micropac

Optek/Optron
Micropac
Micropac

Optek/Optron
Micropac
Micropac
Micropac
Micropac
Micropac

Optek/Optron
M!cropac

Micropac

OptekiOptron
Micropac
Micropac

Optek/Optron
Micropac
Micropac
Micropac
Micropac
Micropac

Optek/Optron
Micropac
Micropac

Optek/Optron
Micropac

A = TI Direct Replacement
B = Nearest Replacement

1-18

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TI
DEVICE

CODE

TILl11
TIL112
TIL118
TIL113
TIL 111
TIL153
HCPL2601
TIL127
TIL186-3
TIL 186-2
TIL 186-4
TIL126
4N35
TIL125
TIL 113
TIL189-1
TIL113
TIL189-1
JAN4N22
JAN4N22A
JAN4N22A
JAN4N23
JAN4N23A
JAN4N23A
JAN4N24
JAN4N24A
JAN4N24A
JAN4N47
JAN4N48
JAN4N49
JANTX4N22
JANTX4N22A
JANTX4N22A
JANTX4N23
JANTX4N23A
JANTX4N23A
JANTX4N24
JANTX4N24A
JANTX4N24A
JANTX4N47
JANTX4N48
JANTX4N49
JANTXV4N22
JANTXV4N22A
JANTXV4N22A
JANTXV4N23
JANTXV4N23A
JANTXV4N23A
JANTXV4N24

B
A
B
B
A
B
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

OPTOELECTRONICS
CROSS-REFERENCE GUIDE

DEVICE

A

MANUFACTURER/SOURCE

TI
DEVICE

CODE

JANTXV4N24A

Micropac

JANTXV4N24A

A

JANTXV4N24A

Optek/Optron

JANTXV4N24A

A

JANTXV4N47

Micropac

JANTXV4N47

A

JANTXV4N48

Micropac

JANTXV4N48

A

JANTXV4N49

Micropac

JANTXV4N49

A

L 15AX601

General Electric

TIL601

A

L 15AX604

General Electric

TIL604

A

MANIA

Quality Technologies Corp.

TIL302

A

MAN2A

Quality Technologies Corp.

TIL305

A

I:

MAN10A

Quality Technologies Corp.

TIL302

A

'.;::0

MAN101A

Quality Technologies Corp.

TIL304

A

MAN1001A

Quality Technologies Corp.

TIL304

A

MCA230

Quality Technologies Corp.

TIL156

A

MCA231

Quality Technologies Corp.

TIL 156

A

MCA255

Quality Technologies Corp.

TIL 189-1

A

MCA2230

Quality Technologies Corp.

TIL 127

A

MCA2231

Quality Technologies Corp.

TIL189-2

A

MCA2255

Quality Technologies Corp.

TIL 189-2

A

MCC670

Quality Technologies Corp.

6NI38

A

MCC671

Quality Technologies Corp.

6NI39

A

MCL2502

Quality Technologies Corp.

HCPL2502

A

MCL2530

Quality Technologies Corp.

HCPL2530

A

MCL2531

Quality Technologies Corp.

HCPL2531

A

MCL2601

Quality Technologies Corp.

HCPL2601

A

MCL2630

Quality Technologies Corp.

HCPL2630

A

MCL2631

Quality Technologies Corp.

HCPL2631

A

MCP3009

Quality Technologies Corp.

MOC3009

A

MCP3010

Quality Technologies Corp.

MOC3010

A

MCP3011

Quality Technologies Corp.

MOC3011

A

MCP3012

Quality Technologies Corp.

MOC3012

A

MCP3020

Quality Technologies Corp.

MOC3020

A

MCP3021

Quality Technologies Corp.

MOC3021

A

MCP3022

Quality Technologies Corp.

MOC3022

A

MCP3023

Quality Technologies Corp.

MOC3023

A

MCT2

Quality Technologies Corp.

MCT2

A

MCT2E

Quality Technologies Corp.

MCT2E

A

MCT4

Quality Technologies Corp.

TIL 120

A

MCT26

Quality Technologies Corp.

TIL III

A

MCT210

Quality Technologies Corp.

TIL 126

A

MCT270

Quality Technologies Corp.

TIL 125

A

MCT271

Quality Technologies Corp.

TIL 117

A

MCT272

Quality Technologies Corp.

4N36

A

MCT273

Quality Technologies Corp.

TIL 127

MCT274

Quality Technologies Corp.

TIL 128

MCT275

Quality Technologies Corp.

TIL 127

B
B
B

MCT276

Quality Technologies Corp.

TIL116

A

MCT277

Quality Technologies Corp.

4N35

A

0

C'C

E
...

....I:0

Cii
...
CI)

I:
CI)

C!)

~

TI Direct Replacement
B = Nearest Replacement

TEXAS

"'I}

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1-19

OPTOELECTRONICS
CROSS·REFERENCE GUIDE

DEVICE
MCT2201
MCT2202
MCT5200
MCT5201
MCT5210
MCT52ll

C)

MANUFACTURER/SOURCE
Quality Technologies Corp.
Quality Technologies Corp.
Quality Technologies Corp.
Quality Technologies Corp.
Quality Technologies Corp.

TI
DEVICE
4N35
TlL126
4N35
4N35

Ouality Technologies Corp.

4N35
4N35

CODE
A
A
A
A
A
A
A

MLED9l0

Motorola

TIL23

MOCl19

Motorola

TIL128A

MOC1000

Motorola

TILl16

A
A

CD

MOC 1000

Motorola

4N26

B

...

MOC100l
MOC100l

Motorola

MOC1002

Motorola

4N25
TILl16
4N27

A
B

MOC1002

Motorola

TIL1l6

A

...

MOC1003
MOC1005

Motorola

4N28

Motorola

TIL125

B
A

MOC1006

Motorola

TIL124

I»

MOCll00

Motorola

MOC1200

Motorola

TILl13
TIL1l3

MOC3009
MOC3010

Motorola

MOC3009

Motorola
Motorola

MOC3010
MOC30ll

A

MOC30ll
MOC3012

Motorola

MOC3012

A

MOC3020
MOC3021

Motorola

A
A

:::l

CD

e!.

....
:::l

0

3

"'
O·
:::l

Motorola

A
A
A
A
A

MOC3022

Motorola

MOC3020
MOC3021
MOC3022

MOC3023
MOC5007

Motorola

MOC3023

A
A

Motorola

OPI8015

A

MOC5008

Motorola

OPI8015

MOC5009

Motorola

OPIB015

A
A

MOC8020
MOC8021

Motorola
Motorola

TIL190-2
TIL190-3

MOC8030

Motorola

TIL190-l

A
A

MOC8050

Motorola

TIL190-2

A

MOC8080

Motorola

TIL189-2

A

MOC8l00

Motorola

A

MRD601

Motorola

MRD602

Motorola

TIL126
TIL601
TIL602

MRD603
MRD603

Motorola
Motorola

TIL603

A

TIL604

B

MRD604

Motorola
Optek/Optron

TIL604

A

TIL23

A

TIL24
LS600

A
A

OP123
OP124
OP600

Motorola

Optek/Optron

A

A
A

OP601

Optek/Optron
Optek/Optron

TIL601

A

OP602

Optek/Optron

TIL602

A

OP603

Optek/Optron

TIL603

A

OP604

Optek/Optron

TIL604

A

OP640

Optek/Optron

LS600

A

A = TI Direct Replacement
B = Nearest Replacement

1-20

B

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OPTOELECTRONICS
CROSS·REFERENCE GUIDE

DEVICE

MANUFACTURERfSOURCE

TI
DEVICE

CODE

OP641

OptekfOptron

TIL601

A

OP642

OptekfOptron

TIL602

A

OP643

OptekfOptron

TIL603

A

OPll02

OptekfOptron

TIL1 02f4N22

A

OPll03

OptekfOptron

TIL 103f4N24

A

OPI130

Optek/Optron

4N48

A

OPI140

Optek/Optron

TIL120

8

OPI2100

OptekfOptron

4N35

A

OPI2150

OptekfOptron

TlL112

A

OPI2151

OptekfOptron

4N27

A

OPI2152

Optek/Optron

4N26

A

OPI2153

Optek/Optron

TILI17

A

OPI2154

Optek/Optron

4N37

A

OPI2155

Optek/Optron

4N37

A

OPI2250

OptekfOptron

TIL115

A

OPI2251

Optek/Optron

TIL153

A

OPI2252

Optek/Optron

TILl16

A

OPI2253

OptekfOptron

TILl17

A

OPI2254

Optek/Optron

4N36

A

OPI2255

Optek/Optron

4N36

A

OPI2500

OptekfOptron

TIL186-1

A

OPI2501

Optek/Optron

TIL 186-2

A

OPI2502

Optek/Optron

HCPL2502

A

OPI2630

Optek/Optron

HCPL2630

A

OPI3009

Optek/Optron

TlL3009

A

OPI3010

OptekfOptron

TIL3010

A

OPI3011

OptekfOptron

TlL3011

A

OPI3012

OptekfOptron

TIL3012

A

OPI3020

OptekfOptron

TIL3020

A

OPI3021

OptekfOptron

TlL3021

A

OP13022

OptekfOptron

TlL3022

A

OPI3023

OptekfOptron

TlL3023

A

OPI3150

Optek/Optron

TIL119A

A

OPI3151

Optek/Optron

TlL119A

A

OPI3152

OptekfOptron

TIL189-1

A

OPI3250

Optek/Optron

TIL157A

A

OPI3251

Optek/Optron

TIL157A

A

OPI3252

Optek/Optron

TIL189-1

A

OPI8012

Optek/Optron

OPI8012

A

OPISOl3

Optek/Optron

OPI8013

A

OPIB014

Optek/Optron

OPI8014

A

OPI8015

Optekl0ptron

OPI8015

A

OPI8137

Optek/Optron

6N137

A

PCll0

Sharp

TIL126

A

PC4N25

Sharp

4N25

A

PC4N26

Sharp

4N26

A

PC4N27

Sharp

4N27

A

PC4N28

Sharp

4N28

A

PC4N35

Sharp

4N35

A

C

0

-..::;

ca

E
...
0

C

Cii
...

Q)

C

Q)

~

A = TI Direct Replacement
B = Nearest Replacement

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-21

OPTOELECTRONICS
CROSS·REFERENCE GUIDE

DEVICE

MANUFACTURER/SOURCE

TI
DEVICE

CODE

PC4N36

Sharp

4N36

PC4N37

Sharp

4N37

A
A

PC613
PC618

Sharp

TIL 117

A

Sharp

6N136

A

PC713

Sharp

TlL126

A

PC733
PC733H

Sharp

TIL 186-2

Sharp

TIL 186-2

PC810

Sharp

TIL191A

A
A
A

PCB10A

Sharp

TIL191A

A

PCB10B

Sharp

TIL191B

A

(1)

PCB12

Sharp

TlL191 B

A

e!.

PC812A
PCB13

Sharp
Sharp

TIL191B
TIL194

A
A

:::::I

PC813A

Sharp

TIL 194A

PCB14

Sharp

TIL194

A
A

PCB14A

Sharp

TIL194A

A

PCB15

Sharp

TIL197

A

r+

PCB16
PCB16A

Sharp

TIL191A

A

Sharp

:::::I

PCB16AB

Sharp

TIL191B
TIL191B

A
A

PCB16AC

Sharp

TIL191B

A

PCB16AD

Sharp

TIL191B

A

PCB17

Sharp

TIL191A

A

PCB17Tl

Sharp

TIL191B

A

PCB1B
PCB23

Sharp
Sharp

TIL191
TIL195

A
A

Q
(1)

..
..3
:::::I

0

g)

O·

PC823A
PCB25

Sharp

TIL 195A

A

Sharp

TIL19B

A

PCB26

Sharp

TIL192A

A

PCB26A
PCB26AB

Sharp

TIL 192B

Sharp

TIL 192B

A
A

PCB26AC

Sharp

PCB26AD
PCB27

Sharp

TIL 192B
TIL 192B

A
A

Sharp

TIL192A

A

PC827T1

Sharp

TIL 192B

A

PCB29
PCB43

Sharp

TIL913A

A

Sharp

TIL196

PC843A

Sharp

PCB45

Sharp

TIL196A
TIL199

A
A
A

PCB46

Sharp

TIL193A

A

PCB46A

Sharp

TIL 193B

A

PCB46AB

Sharp

TIL193B

A

PCB46AC

Sharp

TIL 193B

A

PCB46AD
PCB47

Sharp
Sharp

TIL193B
TIL193A

A
A

PCB47Tl

Sharp

TIL 193B

A

PCB49

Sharp

TIL914A

A

PC900

Sharp

OPIB015

PC901

Sharp

OPIB015

A
A

A = TI Direct Replacement
B = Nearest Replacement

1-22

TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OPTOELECTRONICS
CROSS-REFERENCE GUIDE

DEVICE

MANUFACTURER/SOURCE

TI
DEVICE

CODE

PS20018

NEG

TILl17

PS20028

NEG

TIL157A

A

PS20038

NEG

TILl17

A

PS20048

NEG

TIL189-4

A

PS20068

NEG

6N136

A

PS20068111

NEG

6N135

A

PS20078

NEG

6N137

A

PS2010-K

NEG

4N36

A

PS2010-L

NEG

TIL 117

A

I:

PS2010-M

NEG

TILl16

A

PS2011-L

NEG

4N35

A

'';::;
aJ

PS2011-M

NEG

TIL126

A

PS2012111-M

NEG

TIL128

A

PS2012-M

NEG

TIL128A

A

A

PS2015-N

NEG

TIL125

A

PS20168

NEG

6N136

A

PS2018-L

NEG

4N35

A

PS2018-M

NEG

TIL126

A

0

E
~

....I:0
aJ
~

Q)

PS2021-L

NEG

4N35

A

I:

PS2021-M

NEG

TIL 126

A

(!)

PS2031-L

NEG

4N35

A

PS2031-M

NEG

TIL126

A

PS2044

NEG

6N136

A

PS2401A-1R

NEG

TIL1918

A

PS2401A-2R

NEG

TIL 1928

A

PS2401A-4R

NEG

TIL 1938

A

PS2403-1M

NEG

TIL1918

A

PS2403-2M

NEG

TIL1928

A

PS2403-4M

NEG

TIL 1938

A

PS2501-1D

NEG

TIL1918

A

PS2501-2D

NEG

TIL 1928

A

PS2501-4D

NEG

TIL 1938

A

PS2505-1

NEG

TIL 1948

A

PS2505-2

NEG

TIL 1958

A

PS2505-4

NEG

TIL 1968

A

SllM05V

Sharp

MOG3022

A

SGOl182

Honeywell

TILl27

8

SG01182

Honeywell

TILl13

B

SGOl182

Honeywell

TIL157

B

SGOl182

Honeywell

TILl19

B

SGOl182

Honeywell

TIL156

B

SGOl182

Honeywell

TIL128

B

SD2440-1

Honeywell

TIL601

A

S02440-2

Honeywell

TIL602

A

SD2440-3

Honeywell

TIL603

A

SD2440-4

Honeywell

TIL604

A

SE2450-1

Honeywell

TIL23

A

SE2450-2

Honeywell

TIL23

A

SE2450-3

Honeywell

TIL25

A

Q)

A == TI Direct Replacement
B == Nearest Replacement

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-23

OPTOELECTRONICS
CROSS·REFERENCE GUIDE

DEVICE

MANUFACTURER/SOURCE

TI
DEVICE

CODE

SE2460-1

Honeywell

TIL23

6

SE2460-2

Honeywell

SE2460-3

Honeywell

TIL23
TIL24

6
A

SFH600

Honeywell
Honeywell

TILl17
TILl17

6

SFH600-0
SFH601-1

Honeywell

TIL 155

6
6

SPX2E

Honeywell

TIL125

6

SPX2E

Honeywell

TIL124

6

SPX6

Honeywell

TIL 126

A

SPX26
SPX26

Honeywell

TIL153

A

Honeywell

TILl18

6

"'"
!!!..

SPX26
SPX33

Honeywell

TIL 115

6

Honeywell

TIL154

6

....

SPX33

Honeywell

TIL153

SPX3362

Honeywell

TILl16

6
6

3"'"

SPX3362

Honeywell

TILl14

SPX53

Honeywell

TILl17

6
6

I»

SPX53

Honeywell

TIL155

A

C)"

TLP2530

Toshiba

HCPL2530

A

TLP2531
TLP2601

Toshiba

HCPL2531

Toshiba

HCPL2601

A
A

TLP2630

Toshiba

HCPL2630

A

TLP2631

Toshiba

HCPL2631

A

TLP3009

Toshiba

MOC3009

A

TLP3010

Toshiba

MOC3010

A

TLP3011

Toshiba

MOC3011

A

TLP3012

Toshiba

A

TLP3020

Toshiba

MOC3012
MOC3020

TLP3021

Toshiba

A

TLP3022

Toshiba

MOC3021
MOC3022

TLP3023

Toshiba

A

TLP504A

Toshiba

MOC3023
TIL 192A

TLP504A-2

Toshiba

TIL 193A

A

TLP504A-2G6

Toshiba

TIL 1936

A

TLP504AG6

Toshiba
Toshiba

TIL 1926
TIL191A

A
A

TLP521-1G6

Toshiba

TLP521-2A

Toshiba

TIL1916
TIL192A

A
A

TLP521-2G6

Toshiba

TIL1926

TLP521-4A

Toshiba
Toshiba

TIL193A

A
A

TIL1936

A

Toshiba

TIL157A

A

TLP620
TLP620-2

Toshiba
Toshiba

TlL194A
TIL 195A

A
A

TLP620-2G6

Toshiba

TIL195B

A

TLP620-4

Toshiba

TIL 196A

A

TLP620-4G6

Toshiba

TIL 1966

TLP620G6

Toshiba

TIL1946

A
A

TLP621

Toshiba

TIL191A

A

C)
CD
:::I
CD

:::I
0

P+

:::I

TLP521-1A

TLP521-4G6
TLP575

A = TI Direct Replacement
B = Nearest Replacement

1-24

TEXAS ~
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

A
A
A

OPTOELECTRONICS
CROSS·REFERENCE GUIDE

MANUFACTURER/SOURCE

TI
DEVICE

CODE

TLP621-2

Toshiba

TlL192A

A

TLP621-2GB

Toshiba

TIL192B

A

TLP621-4

Toshiba

A

TLP621-4GB

Toshiba

TIL193A
TIL 193B

TLP621GB
TLP624

Toshiba
Toshiba

TlL191 B
TIL191B

A
A

TLP624-2

Toshiba

TIL192B

TLP624-4

Toshiba

TIL193B

A
A

TLP626

Toshiba

TIL194B

A

TLP626-2
TLP626-4

Toshiba

A

Toshiba

TIL 195B
TIL 196B
TIL186-3
TIL186-4

A

TLP630GB

Toshiba
Toshiba

TLP651

Toshiba

6N136

DEVICE

TLP630

A = TI Direct Replacement

A

A
A
A

c:

0

',j:

.
..

CO

E

0

c:

(ij

~
II)
(!J

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS, TEXAS 75265

1-25

ceo IMAGE SENSORS

CROSS·REFERENCE GUIDE

DEVICE

MANUFACTURER/SOURCE

TI
DEVICE

RL 128G

EG&G Reticon

TC102

RL2048

EG&G Reticon

TC103

CCD111

Fairchild

TC102

CCD142

Fairchild

TC103

CCD143

Fairchild

TC103

B = Nearest Replacement

G')
CD

..=
o..
CD

!!.

5'
~

3

C»

r+

o·

=

1-26

.

TEXAS'"

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

CODE

B
B
B
B
B

GLOSSARY
OPTOELECTRONIC AND IMAGE·SENSING TERMS AND DEFINITIONS
Introduction
This glossary contains letter symbols, abbreviations, terms, and definitions commonly used with
optoelectronic devices. Most of the information, excluding the image-sensing concepts, was obtained from
JEOEC Standard No. 77.

Index to Glossary by Symbols and Abbreviations
B
CCO

CTD
CRT
CTR
Ee
Ev
fmod
H
hF
IC(off)
IC(on)

10
Ie
IF
IL
IR
IREO
Iv
Le
Lv
LED
NEP
NTSC
Pn

Po

Qe
Qv
Re
RGB
Rv
sr
td
tf
tf
tr
tr
ts

VF
M
,!1}.

8HI

J.p
e
v

Demodulation bandwidth
Charge-coupled device
Charge-transfer device
Cathode-ray tube
Current transfer ratio
Irradiance
Illuminance
Modulation frequency
Irradiance
Current transfer ratio
Off-state collector current
On-state collector current
Dark current
Radiant intensity
Forward current
Light current
Reverse current
Infrared-emitting diode
Luminous intensity
Radiance
Luminance
Light-emitting diode
Noise equivalent power (spectral density)
National Television System Committee
Noise equivalent power (spectral density)
Radiant flux or power output
Radiant energy
Luminous energy
Radiant responsivity
Red-green-blue (monitor)
Luminous responsivity
Steradian
Delay time
Fall time
Radiant pulse fall time
Radiant pulse rise time
Rise time
Storage time
Forward voltage
Noise equivalent bandwidth
Spectral bandwidth
Half-intensity beam angle
Wavelength at peak emission
Radiant flux
Luminous flux

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

s::::

o

"';::;
ctI

E
...o

....s::::
CU
...
CI)

s::::

CI)

CJ

1-27

GLOSSARY
OPTOELECTRONIC AND IMAGE·SENSING TERMS AND DEFINITIONS
Units of Measurement
Unit
ampere t

Symbol

angstrom

A

candela t
candela/foot 2
candela/meter 2t

cd
cd/ft2
cd/m 2

degree Celsius t

°c

C)

farad t

~

foot
footcandle
footlambert
hertz t

:;j

...

~

!!.

-....
...

0

3

Q)

!:t.
0

~

0.1 nm

oK

See K

F
ft
fc
fL

1 ft ~ 0.3048 m (exactly)
1 fc ~ 1 Im/ft2 ~ 10.76391 Ix
1 fL ~ (1 /1r) cd/ft 2 ~ 3.426259 cd/m 2
1 in ~ 2.54 cm (exactly)
Formerly oK, degree Kelvin
1 L ~ 3183.099 cd/m 2

in
K
L
1m
Ix
m
mho

mho
micron
mil
nit
ohmt
phot
second t

:;j

1 A ~ 10- 10 m ~ 10-4 11m
1 cd ~ 1 Im/sr
1 cd/ft2 ~ 10.76391 cd/m2

Hz

inch
kelvin t
lambert
lumen t
lux t
meter t

: ;j

Note

A

1 Ix

~

1 mho

1 Im/m 2
~

1S

The equivalent unit 11m is preferred
1 mil ~ 10- 3 in ~ 0.0254 mm (exactly)
1 nt ~ 1 cd/m2

11
mil
nt

rl
1 ph ~ 1 Im/cm 2

ph

siemens t

S

steradian t
stilb
volt t
watt t

sr
1 sb ~ 1 cd/cm 2

sb
V

W

t International System (SI) units.

Metric Multipliers
Most of the preceding 51 unit symbols can be combined with the metric multipliers that follow.
Symbol
G

Prefix
giga

M

mega
kilo
hecto
deka
deci
centi
milli
micro

k
h
da
d
m

11
n
p
f

'-28

Multiple

109
106
103
102
10
10- 1

10- 2
10- 3
10- 6
10- 9
10- 12
10- 15

nanD
pica

femto

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

GLOSSARY
OPTOELECTRONICS AND IMAGE-SENSING TERMS AND DEFINITIONS

Analog Output
An output whose amplitude is continuously proportionate to the input.
Axis of Measurement
The direction from the source of radiant energy, relative to the mechanical axis, in which the measurement
of radiometric and/or spectroradiometric characteristics is performed.
Black Level
The display signal level corresponding to the maximum limit for black peaks.

II
I:

o

-.;::;

Brightness

.

CU

E
....o

See Luminance.
Charge-Coupled Device (CCDI
A charge-transfer device that stores charge in potential wells and transfers this charge almost completely
as a packet by translating the position of the potential wells.

.E

Charge-Coupled Image Sensor
A charge-coupled device in which an optical image is converted into packets of charge that can be transferred
as the electrical analog of the image.
Charge-Transfer Device (CTDI
A device in which the operation depends on the movement of discrete packets of charge along or beneath
the semiconductor surface, or through the interconnections on the semiconductor surface.
Color Contrast
The ratio of the luminance values of two colors.
Color Encoder
A device that produces an encoded color signal from separate red, green, and blue color inputs.
Color Edging
Undesired colors appearing at the edges of colored images.
Color Temperature (of a light sourcel
The absolute temperature of a blackbody radiator having a chromaticity equal to that of the light source.
TYPICAL UNIT: K (formerly °KI.
Coordinates
A method of locating a pixel in space, typically using an x, y, and z axis. (Cartesian Coordinates Systeml.
Current Transfer Ratio, DC (of an Optocouplerl (hF or CRTI
The ratio of the dc output current to the dc input current.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-29

GLOSSARY
OPTOELECTRONICS AND IMAGE-SENSING TERMS AND DEFINITIONS

Dark Current (10)
The current that flows through a photosensitive device in the dark condition.
NOTE: The dark condition is attained when the electrical parameter under consideration approaches a value
that cannot be altered by further irradiation shielding.
Darlington Phototransistor

C)

A phototransistor whose collector and emitter are connected to the collector and base, respectively, of
a se"cond transistor. The emitter current of the input transistor is amplified by the second transistor and
the device has very high sensitivity to illumination or irradiation.

CD

GRAPHIC SYMBOL:

:s

...

CD

e?.

....5'

...

o

3

o·...
I»

:s

NOTE: The base region(s) mayor may not be brought out as (an) electrical terminai(s) .
Delay Time ltd)
The time interval from the point at which the leading edge of the input pulse has reached 10% of its
maximum amplitude to point at which the leading edge of the output pulse has reached 10% of its maximum
amplitude.
Demodulation Bandwidth (B)
The frequency interval in which the demodulated output of a photodetector, or a system including a
photodetector, is not more than 3 dB below the midband output. Midband output is the output in the region
of flat response or the average output over a specific frequency range.
Fall Time (tf)
The time duration during which the trailing edge of a pulse is decreasing from 90% to 10% of its maximum
amplitude.
Forward Current (IF)
The current through a semiconductor diode when the p-region (anode) is a positive potential with respect
to the n-region (cathode).
Forward Voltage (VF)
The voltage across a semiconductor diode associated with the flow of forward current. The p-region is
a positive potential width respect to the n-region.
Gray Scale
An optical pattern in discrete steps between light and dark.
Note: A gray scale with ten steps that differ by the square root of two is usually in resolution test charts.
Half-Intensity Beam Angle (OHI)
The angle within which the radiant intensity is not less than half of the maximum intensity.

1-30

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

GLOSSARY
OPTOELECTRONICS AND IMAGE-SENSING TERMS AND DEFINITIONS

Hexadecimal Display
A solid-state display capable of exhibiting numbers 0 through 9 and alpha characters A through F.
NOTE: The TIL311 is a hexadecimal display with an integral TTL circuit that will accept, store, and display
4-bit binary data.
Illuminance (Illumination) (E v )
The luminous flux density incident on a surface; the quotient of the flux divided by the area of illuminated
surface.
TYPICAL UNITS: Im/ft2, Ix = Im/m2; 1 Im/ft2 = 10.76391 Ix.

c:

o
-,;;
CO

Image
A displayed view of one or more objects or parts of objects.

...E
o
c:

Infrared Emission
Radiant energy that is characterized by wavelengths longer than visible red, i.e., about 0.78 I'm to 100 I'm.

n;
...
CI)

c:
CI)

Infrared-Emitting Diode (IRED)
A diode capable of emitting radiant energy in the infrared region of the spectrum resulting from the
recombination of electrons and holes.

(!)

NOTE: TI manufactures GaAs and GaAIAs radiant-energy sources that emit in the 0.82-um to 0.94-um
portion of the near-infrared region. These emitters are spectrally matched with TI silicon photodetectors.
GRAPHIC SYM80L:

Irradiance (E e , formerly H)
The radiant flux density incident on a surface; the quotient of the flux divided by the area of irradiated
surface.
TYPICAL UNITS: W/ft 2 , W/m2; 1 W/ft 2 = 10.76391 W/m2.
Light Current (lL)
The current that flows through a photosensitive device, such as a phototransistor or a photodiode, when
it is exposed to radiant energy.
Light-Emitting Diode (LED)
A diode capable of emitting luminous energy resulting from the recombination of electrons and holes.
GRAPHIC SYMBOL:

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-31

GLOSSARY
OPTOELECTRONICS AND IMAGE·SENSING TERMS AND DEFINITIONS
Linearity
The property of being linear. A linear relationship exists between two quantities when a change in a second
quantity is directly proportional to change in the first quantity.
Luminance (Lv) (Photometric Brightness)
The luminous intensity of a surface in a given direction per unit of projected area of the surface as viewed
from that direction.
TYPICAL UNITS: fL, cd/ft 2 , cd/m 2 ; 1 fL

Q
CD

:::s

=

...

The time rate of flow of luminous energy .

ea.

TYPICAL UNITS: Im*s.

-3.

...

=

3.426259 cd/m 2 .

Luminous Energy (Ov)

CD

o

(1 h) cd/ft 2

Luminous Flux (cJ>v)
Energy traveling in the form of visible radiation .

3

TYPICAL UNIT: 1m

I»

r+

o·:::s

NOTE: Luminous flux is related to radiant flux by the eye-response curve of the International Commission
of Illumination (CIE). At the peak response (A = 555 nml. 1 W = 680 1m.
Luminous Intensity (Iv)
Luminous flux per unit solid angle in a given direction.
TYPICAL UNIT: cd. 1 cd

=

1 Im/sr.

Luminous Responsivity (R v )
The quotient of the rms value of the fundamental component of the electrical output divided by the rms
value of the fundamental component of the luminous flux of a specified distribution.
TYPICAL UNITS: Vllm, Allm.
Modulation Frequency (fmod)
The frequency of modulation of the luminous or radiant flux.
Monochrome
Any combination of colors of the same hue, but of different saturations and luminances.
Noise Equivalent Bandwidth (.1.1)
The equivalent bandwith of a flat (or white) sharp-cutoff noise spectrum, having the same maximum value
and containing the same noise power as the actual broadband output noise power of the device or circuit.
TYPICAL UNIT: Hz.

1-32

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

GLOSSARY
OPTOELECTRONICS AND IMAGE·SENSING TERMS AND DEFINITIONS

Noise Equivalent Power (Pn or NEP)
The rms value of the fundamental component of a modulated radiant flux incident on the detector area
that will produce a signal (voltage or current) at the detector output that is equal to the broadband rms
noise (voltage or current).
TYPICAL UNIT: W.
NOTE: The noise equivalent power equals the broadband output noise (voltage or current) divided by the
responsivity (in volts/watt or amperes/watt).
Noise Equivalent Power (Spectral Density) (Pn or NEP)

II
c

o

The noise equivalent power in a one-hertz bandwidth at the detector output.

'';::;

TYPICAL UNITS: W/Hz1/2.

-

as

E

NOTE: The noise equivalent power spectral density equals the noise equivalent power divided by the square
root of the noise bandwidth.
Off-State Collector Current (lC(off)) (of an Optocoupler)
The output current when the input current is zero.

~

o

c

ca
~

Q)

C
On-State Collector Current (lC(on)) (of an Optocoupler)

Q)

C!J

The output current when the input current is above the threshold level.
NOTE: An increase in the input current will usually result in a corresponding increase in the on-state collector
current.
Optical Axis
A line about which the radiant-energy pattern is centered.
NOTES: 1. The radiant-energy pattern may be nonsymmetrical.
2. The optical axis may deviate from the mechanical axis.
Optocoupler (Optically Coupled Isolator. Photocoupler)
A device designed for the transformation of electrical signals by utilizing optical radiant energy so as to
provide coupling with electrical isolation between the input and the output.
NOTE: As manufactured by Texas Instruments. these devices consist of a gallium arsenide infrared-emitting
diode and a silicon phototransistor and provide high-voltage isolation between separate pairs of input and
output terminals.
Optoelectronic Device
A device that is responsive to or that emits or modifies coherent or noncoherent electromagnetic radiation
in the visible. infrared. and/or ultraviolet spectral regions; or a device that utilizes such electromagnetic
radiation for its internal operation.
Photocurrent
The difference between light current

(Ill

and dark current (lD) in a photo detector.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-33

GLOSSARY
OPTOELECTRONICS AND IMAGE·SENSING TERMS AND DEFINITIONS

Photodetector, Photosensitive Device
A device that is responsive to electromagnetic radiation in the visible, infrared, and/or ultraviolet spectral
regions.
Photodiode
A diode that is intended to be responsive to radiant energy.
GRAPHIC SYMBOLS:

\\

C)
CD
::::J
CD

..
....
o..
3

-® -@-

e!.

::::J

m
r+

\\

NOTE: The photodiode is characterized by linearity between the input radiation and the output current .
It has faster switching speeds than a phototransistor.
Photometric Axis

o·::::J

See Axis of Measurement.
Photometric Brightness
See Luminance.
Photon
A quantum (the smallest possible unit) of radiant energy; a photon carries a quantity of energy equal to
Planck's constant (6.6262 x 10- 34 joule/hertz) times the frequency.
Phototransistor
A transistor (bipolar or field-effect) that is intended to be responsive to radiant energy.
NOTE: The base region or gate mayor may not be brought out as an external terminal.
GRAPHIC SYMBOLS:

Picture Element
The smallest segment of a raster line which can be discretely controlled by the display system. Also called
a pixel, pel, or pixcell.
Quantum Efficiency (of a Photosensitive Device)
The fractional number of effective electron-hole pairs produced within the device for each incident photon.
For devices that internally amplify or multiply the electron-hole pairs, such as phototransistors or avalanche
photodiodes, the effect of the gain is to be excluded from quantum efficiency.

1-34

TEXAS .."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

GLOSSARY
OPTOELECTRONICS AND IMAGE"SENSING TERMS AND DEFINITIONS

Quantum Efficiency. External (of a Photoemitter)
The number of photons radiated for each electron flowing into the radiant source.
Radiance (Le)
The radiant intensity of a surface in a given direction per unit of projected area of the surface as viewed
from that direction.
TYPICAL UNIT: W.sr- 1 m- 2 .

II
t:

Radiant Energy (Qe)

o

",tj
CO

Energy traveling in the form of electromagnetic waves.
TYPICAL UNITS: W.s. J.

E
...o

Radiant Flux or Power Output (.e or PO)

t:

The time rate of flow of radiant energy.

ca...

TYPICAL UNITS: W.

Q)

t:

Radiant Intensity (Ie)

Q)

e,:,

Radiant flux per unit solid angle in a given direction.
TYPICAL UNIT: W/sr.
Radiant Pulse Fall Time (tf)
The time required for a radiometric quantity to change from 90% to 10% of its peak value for a step change
in electrical input.
Radiant Pulse Rise Time (tr)
The time required for a radiometric quantity to change from 10% to 90% of its peak value for a step change
in electrical input.
Radiant Responsivity (Re)
The quotient of the rms value of the fundamental component of the electrical output divided by the rms
value of the fundamental component of the radiant flux of a specified distribution.
TYPICAL UNITS: V/W. A/W.
Resolution
The number of visible distinguishable units in the device coordinate space.
Reverse Current (lR)
The current through a semiconductor diode when the n region (cathode) is at a positive potential with
respect to the p region (anode).
Reverse Voltage (VR)
The voltage across a semiconductor diode associated with the flow of reverse current. The n region is
at a positive potential with respect to the p region.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1-35

GLOSSARY
OPTOELECTRONICS AND IMAGE·SENSING TERMS AND DEFINITIONS
Rise Time (trl
The time duration during which the leading edge of a pulse is increasing from 10% to 90% of its maximum
amplitude.
Series Resistance
The undepleted bulk resistance of the photodiode substrate.
NOTE: This characteristic becomes significant at higher frequencies where the capacitive reactance of
the junction is of the same or lower magnitude compared to the series resistance.

G)
CD Shift Register
:::J
A register in which the stored data can be moved from left to right, or vice versa.
CD

..
..
3

!!.

-

Spectral Bandwidth (A-AI

:::J

o

....

The wavelength interval in which the spectral concentration of a photometric or radiometric quantity is
not less than half of its maximum value .
TYPICAL UNITS:

g)

o·:::J

A,

/Lm, nm.

Steradian (sri
A unit of solid angular measurement equal to the solid angle at the center of a sphere subtended by a
portion of the surface area equal to the square of the radius; there are 4 71" steradians in a complete sphere.
The number of steradians in a cone of full angle () is 2 71" (1 - cos 0.5 ).
Storage Time (tsl
The'time interval from a point at which the trailing edge of the input pulse has dropped to 90% of its
maximum amplitude to a point at which the trailing edge of the output pulse has dropped to 90% of its
maximum amplitude.
Visible Emission
Radiant energy that is characterized by wavelengths of about 0.38 /Lm to 0.78 /Lm,
Wavelength at Peak Emission (Ap)
The wavelength at which the spectral radiant intensity is maximum.
TYPICAL UNITS:

1-36

A,

/Lm, nm. 1

A

= 10 - 4 /Lm = 0.1 nm.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

CCO Image Sensors and Support Functions

2-1

n
n
c
3Q)

co

CD

en
CD
:::J

en
o
en

...

--enc:

"0
"0

...o

r+

"T1

c:

:::J
(')

r+

o·
:::J

en

2-2

VIRTUAL PHASE
IMAGE SENSING TECHNOLOGY BREAKTHROUGH

-_.---------.--<1>1
"VIRTUAL"
ELECTRODE

The CCD (Charge Coupled Device) approach to linear image
sensing will become the leading edge among industry methods
because of process and performance advantages.
Multiple-clock-electrode CCD processing methods have remained complex and difficult to implement in the manufacturing
environment with any measure of cost/performance effectiveness
... until now.

The breakthrough:

Fig. 1

Now, Texas Instruments announces
a breakthrough in CCD image sensor processing technology ...
Virtual Phase (VP).
This giant technological stride greatly simplifies the processing
techniques by reducing the number of clock electrodes on the
device surface to one (Fig. 1). Other techniques require anywhere from two to three levels (Fig. 2). Additional benefits of this
milestone process include simplified device operation and enhanced device quality.
Now, with just one level, the possibility of surface damage and
shorts, common to the multilevel approach, is inherently reduced.
So, the new Virtual Phase technology can boast the same degree
of reliability as standard MOS technology.

n. Patontod Virtual Pha.o Oo.ign

-~
~
:
e --_
:
I

I

The benefits ofthis TI-patented Virtual Phase technology are:

',I

____' :

L ___ ., ". :

I'- ___ .II

L
• ___ J

B'

Fig. 2 Standard 2 Phl.o O•• ign
10.0
I-t- TYPICAL SPECTRAL RESPONSE - l -

r\

I-'"

....

~

~
I

,
1\

~ 1.0

..
~

ITHOUT FILTER

ill

'"

0.1

400

500 600 100 800 900
WAVELENGTH NANOMETERS

•
•
•
•
•
•
•

Simplified clocking
Lower noise/Higher dynamic range
Greater sensitivity to light
Ease of processing and use
Greater stability
Lower dark current
Improved spectral response in the lower wave length (blue)
regions (Fig. 3).

Features:
• Virtual Phase N-Channel silicon MOS technology
• High spectrall"esponsivity ... particularly in the blue region
• Appl"Oximately I-V peak-to-peak output signal
Dynamic range typically 1000:1
End-of-scan signal
• Internal dark and white references
• Blemish-free unifOlmity of image
• Simple, stable operation

•
VI

t:

.2
~

(,)

t:

:::l

LL

...

~

o

0.
0.
:::l

en

--...
VI

o

VI

t:

Q)

en
Q)

0)

C'a

E

o

(J
(J

1000

Fig. 3. Typical Sensitivity vs Wavelength

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-3

•

(")
(")

c
3

Q)
(Q

CD

en

CD
j

tn

o...

tn

en

c

'C
'C

.......o
."
C
j

....
o·
j
(")

tn

2-4

TC102
128 x 1 CCD LINEAR IMAGE SENSOR
D2664, APRIL 1982-REVISED JULY 1989

•

•
•

•
•
•
•
•
•

128 x 1 Sensor Element Organization
CERAMIC DUAL-IN-L1NE PACKAGE

Virtual-Phase N-Channel Silicon MOS
Technology

(TOPVIEWI

High Quantum Efficiency

VSS

VREF

Enhanced Blue Response
Output Signal Approximately
1 Volt Peak-to-Peak

OS

2

Dynamic Range Relative to
Peak-to-Peak Noise Typically 1000: 1

VOO

3

End-of-Scan Signal

TCK

4

WRCK

5

Internal Black and White References
Simple and Stable Operation

00

9

VSS

8

EOS
RCK
XCK

•
f/l

c:

o

';;
(,)

c:
:::s
u.
Caution, These devices have limited built-in gate protection, The leads should be shorted together or the device
placed in conductive foam during storage or handling to prevent electrostatic damage to the MaS gates, Avoid
shorting either as or EOS to VSS during operation to prevent damage to the output amplifiers,

.....
o

c.
c.

:::s

en

--..
f /l

o

description

f/l

The TC102, a 1 28-element CCD line image sensor, functions in high-resolution image scanning applications such as
document reading and optical character recognition. The TCl 02 incorporates virtual-phase MaS technology, which
provides simplified operation and high reliability.

c:
Q)

en

Q)

This device is supplied in a 1 O-pin dual-in-line ceramic side-braze package designed for insertion in mounting-hole rows
on 7,6-mm (0.300-inchl centers. The glass window may be cleaned by wiping with a cotton swab soaked in alcohol.

virtual-phasa technologv

=::~~~1{::,~1~ =:~i:; lI~D:=::::~:::'1 nat

Ctl

E

Q

This patented design results in simplified clocking circuits, reduced noise, and greater light sensitivity. Virtual-phase
technology utilizes a junction-gate region at the substrate dc potential. This accomplishes the same gating and
transport function as a separate gate electrode requiring multiple layers and multiple process steps common in other
device designs. The resulting simplicity of process and ease of operation will increase performance and reliability for
the user.

PRODUCTION DATA d.cumonis conllin information
currant 8S of publication date. Products conform to
specifications per tb. terms of TaxIs Instruments

0)

U
U

Copyright © 1989. Texas Instruments Incorporated

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-5

TC102
128 x 1 CCD LINEAR IMAGE SENSOR
functional block diagram
TCK

DARK CURRENT BUFFER CCD

VDD

DS
VDD
VREF
EOS

("')
("')

WRCK

c

XCK

3

I

TCK

W = WHITE REFERENCE INPUT DIODE

III

B = BLACK REFERENCE ELEMENT
I = ISOLATION ELEMENT

CD

N

(Q

=

RCK

VSS
SUBSTRATE AND
LIGHT SHIELD

128 SENSOR ELEMENTS

fJ)

CD

::J

PIN FUNCTIONAL DESCRIPTION

VI

o
...

-VI
fJ)

PIN

SIGNATURE

NAME

1
2

VREF
OS

Reference Voltage

Bias input for the output amplifiers.

Output Signal

Video output from a cascaded source-follower MOS amplifier.

3

VDD
TCK

NUMBER

C

"0
"0

...o

4
5

r+

"

WRCK

DESCRIPTION

Supply Voltage

Output amplifier supply voltage.

Transport Clock

Drives the

White Reference Clock

Injects a controlled charge into the white reference

ceo transport registers.

ceo shift register

elements to become white-reference and end-af-scan pulses.

C

6

::J

XCK

Controls the transfer of charge packets from sensor elements to shift

Transfer Clock

(')
r+

registers. The interval between pulses of the transfer clock determines

O·

the exposure time.

7

::J

RCK

Controls recharging of the charge-detection diodes in the output

Reset Clock

VI

amplifiers, and clocks the output shift registers where the odd and
even signals have been merged.

8

EOS

End-of-Scan Pulse

Indicates that all charge packets have been shifted out of the
transport registers.

9,10

2-6

VSS

Substrate

All voltages are referenced to the substrate.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 15265

TC102
128 x 1 CCO LINEAR IMAGE SENSOR

functional description
image sensor elements
The line of sensor elements (also called photosites or pixels) consists of 128 photo-sensitive areas, 12.7 micrometers
(0.5 milliinches) square and approximately 12.7 micrometers from center to center. Image photons create
electron-hole pairs in the single-crystal silicon. The electrons are collected in the sensor elements and the holes are
swept into the substrate. The amount of charge accumulated in each element is a linear function of the incident light
and the exposure time. The output signal charge will vary in an analog manner from a thermally generated noise
background at zero illumination to a maximum at saturation under bright illumination.
transfer gate
This structure is adjacent to the line of image sensor elements. The charge packets accumulated in the image sensor
elements are transferred into the transfer gate storage well when the transfer gate voltage goes high. When the
transfer gate voltage goes low, the charge is transferred into the CCO transport shift registers. The transfer gate also
controls the exposure time for the sensor elements and permits charges to enter the end-of-scan (EOS) shift registers
to create the end-of-scan waveform. In addition, the transfer gate permits entry of charge packets to the transport
CCO shift register to create the white reference signals.

en
c:
o

"';:

shift registers

(.)

There are two CCO transport registers, one on each side of the line of image sensor elements and outside of the
transfer gate. Alternate charge packets are transferred to the CCO transport shift registers and moved serially to the
output amplifier. The phase relationship of the reset clock and the transport clock and the geometric layout of the
paths provide for alternate delivery of charge packets to re-establish the original sequence of the linear image data. The
two outer buffer CCO shift registers protect the signal charges in the inner transport CCO shift registers from
peripherally generated dark current noise.

c:

:::::I

...

LL.
~

o
Co..

:::::I
CJ)

black and white reference elements
Four additional sensor elements at each end of the sensor element array (labelled "8" in the block diagram) are covered
by opaque metallization. They provide a black (no illumination) signal reference that is delivered at each end of the
linear image output signal. Also included on the transport CCO shift register, at the opposite end from the amplifier, is
an input diode that provides two white reference pulses in the output signal. The reference pulses are useful as inputs
to external dc restoration and/or automatic exposure control circuitry. The white reference pulse amplitude is
approximately 70% of the maximum output signal amplitude.

-en
o
en
c:
~

CIJ

CJ)

CIJ

C)

ca

output signal amplifier

E

The charge packets are transported to a precharge diode whose potential changes linearly in response to the amount of
the signal charge delivered. This potential is applied to the input gate of an N-channel MaS double-source-follower
amplifier to produce an output signal (aS). A reset transistor, driven by the reset clock (RCK), recharges the chargedetector-diode capacitance before the arrival of each new signal charge packet from the CCO shift registers. A
reference voltage (VREF) is applied to the drain of the reset transistor and acts to bias the as and EOS amplifiers. A
current sink is used as an on-chip load for the amplifier output. No external current sink is needed. The output signal is a
series of negative-going pulses on a dc level.

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

c

u
u

2-7

TC102
128 x 1 ceo LINEAR IMAGE SENSOR
resolution

The modulation transfer function decreases at longer wavelengths (see Figures 7 and 8). If optimum resolution is
required with a light source that has a significant infrared component, then the designer must use appropriate filters to
restrict the optical pass band to. shorter wavelengths.
end-of-scan amplifier
The EOS amplifier is similar to the OS amplifier. XCK transfers charge from the input diode into the EOS register where
it is transported at the TCK clock frequency to the EOS amplifier. This EOS pulse is coincident with the first of the two
white reference pulses that pass through the odd and even transport CCOs, respectively. The EOS output can be used
to alert the external circuitry that the linear image data readout has been completed.
clocks
The transfer clock (XCK) pulse controls the exposure time of the sensor elements. The minimum exposure time is the
time required to shift the entire contents of the transport registers to the output signal amplifier and equals 1 61
multiplied by the RCK period. The maximum exposure time is determined by the tolerable level of dark signal.

n
n

The transport clock (TCK) transports the linear image signal charge from the sensor element region to the output
amplifier.

c

The reset clock (RCK) operates at twice the transport clock frequency so as to recombine the signal charge in the
original sequence and present the charge to the output amplifier. The data rate is equal to the reset clock frequency.

3
Ql

The white reference clock (WRCK) runs at the transfer clock frequency and generates the white reference and the endof-scan pulses. These pulses can be eliminated by connecting WRCK to VOO. Transients on WRCK going below zero
volts will cause charge injection resulting in an increase in apparent dark signal.

CQ

CD

(f)

CD
:::l

en

o

...

en

( f)

c:

Figure 3 presents a suggested circuit for generating the clock waveforms. The RCK clock generator runs continuously.
A binary divider halves the frequency to create TCK. After all signal charges have been transported to the output
amplifier, TCK continues to run to keep thermally generated charges from accumulating in the transport registers .
The XCK and WRCK clock frequencies are submultiples of the TCK frequency. Figure 2 details the timing relationships
among the different clock pulses.

"C
"C

...

o

r+

"T1

c:

:::l
(')

r+

o·

:::l

en

2-8

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TC102

128

x 1 CCO LINEAR IMAGE SENSOR

L-

XCKJl"'.o--------------»--- EXPOSURE TIME -----------------iR
.....

WRCKU

U-

tl

U)

c:

.2
....
(.)

c:

Output Signal (aS) pulse identification:

:l

I == Isolation pixel

U.

IP == Image pixel

.......

8 "" Black reference pixel

o
c.

W = White reference pixel

X .:: Empty pixel

FIGURE 1 - OPERATING INPUT AND OUTPUT VOLTAGE WAVEFORMS

C.
:l

en

--...
U)

o

U)

c:
Q)

en
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) (see Note 1)

Q)

C)

Amplifier drain voltage (VOOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 0.3 V to 30 V
Amplifier reference voltage (VREFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.3 V to 30 V
Transfer clock (XCKI voltage
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- 2 5 V to 5 V
Transport clock (TCKI voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .. - 25 V to 5 V
Reset clock (RCKI voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. _ 25 V to 5 V
White reference clock (WRCK) voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 0.3 V to 30 V
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 250C to 1 250C
Operating free-air temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ 250C to 70 0C
NOTE 1: Voltage values are with respect to

ctI

E

Q
()
()

Vss.

TEXAS " ,
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-9

TC102
128 x 1 CCO LINEAR IMAGE SENSOR
recommended operating conditions at T A

•

Voo

Supply voltage

VREF

Amplifier reference voltage

VIH(X)

Transfer clock high-level input voltage

VIL(X)

Transfer clock low-level input voltage

VIH(T)

Transport clock

high~level

VIL(T)

Transport clock

low~level

input voltage

input voltage

VIH(RI

Reset clock high-level input voltage

VILIR)

Reset clock low-level input voltage

VIH(WR)

White reference clock high-level input voltage

VIL(WR)

White reference clock low-level input voltage

fRCK

Reset clock frequency (output data rate)

MIN

NOM

MAX

UNIT

15
6
1
-17'
1
-1n
1
1n
15
6

16
7
2
-16
2
-16
2
16
16
7
2

20
8
3
-15
3
-15
3
15
20
8
10

V
V
V
V
V
V
V
V
V
V
MHz

,The algebraic convention, where the most negative limit is designated as minimum. is used in this data sheet for clock voltage levels only.

(")
(")

o

electrical characteristics at 25°C free-air temperature. fRCK = 0.5 MHz. texp = 10 ms. tungsten light
source operating at color temperature of 2854 Kwith 2.0-mm-thick Fish-Schurman HA-11 IR-absorbing filter.
and all operating voltages at nominal recommended values.

3I:\)

MIN

PARAMETER

CQ

Average

CD

en
CD

Dark-signal amplitude

en

Sensitivity

:::l

o...

en

ec:n

~
~

Low frequency component

Nonuniformity relative to

average of adjacent pixels

Output amplitude
variation IPRNUlt

2

I

Peak-to-peak
Adjacent pixels from

Peak-ta-peak noise
Equivalent exposure § of peak-to-peak noise

700
500:1

Saturation output amplitude

"T1

Dynamic range relative to peak-to-peak noise t
Charge transfer efficiency

:::l

White reference amplitude

(")

End-at-scan amplitude

c:

...O·
:::l

500
300

Output offset Idc) voltage
Output impedance

en

Transfer gate
Resistance to VSS

Transport gate
Reset gate
Transfer gate

Capacitance to VSS

Transport gate
Reset gate

IREF

Amplifier reference current

100

Supply current

Power dissipation
tOynamic range = saturation output amplitude/standard deviation peak-to-peak noise.
:j:Measured at 700 mV output amplitude with an f/2.8 lens.
§ Exposure = intensity x time

2-10

MAX

0.5
0.5

10
5

1

20

3.5
50

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1
0.35
350
1000
1000:1
0.99999
700
500
10
1
45
45
45
26
57
7
3
6.3
100

UNIT

mV

5 V/I~J/cm2)
100
mV

10

alternate registers (imbalance)

Saturation exposure §

...o...

TYP

mV
nJ/cm 2
nJ/cm 2

1400

mV

mV
mV
V
kQ
kQ

pF
nA

9.4

mA
mW

TC102
128

x 1 CCO LINEAR IMAGE SENSOR

timing requirements
MIN
Time delay from the transport clock rising

'THXH

edge to the transfer clock rising edge
Time delay from the transport clock rising edge

'THWL

to the white reference clock falling edge
Time delay from the transport clock rising

'THRH

edge to the reset clock rising edge
Pulse duration of the high state for the reset

'wlRHI

clock
Time delay from the transport clock falling

'TLXL

edge to the transfer clock falling edge
Time delay from the transport clock falling edge

'TLWH

MAX

UNIT

0

NOM

100

ns

0

100

ns

0

ns

40

ns

50

ns

100

0

to the white reference clock rising edge

ns

Time delay from the transfer clock falling edge

50

ns

rise time (all clocks)

15

ns

fall time (all clocks)

5

ns

to the rising edge of the next transport clock

'XLTH

pulse

"'f

......
o

~

I

it

XCK

\

I

I

~ITHWL

-+I

I.-.---""';I-J:
I
I

~tTLwH

I

TCKJ,

"

I

'THRH~

.ltXLTH

! ~r----~i----------------

!~

I
I

,..

I

~

________J

--o...

rJJ

~ITLXL----t ' - - - - - - - - - - - - - - - - - - -

i

WRCK

0.
0.
:J

t4""tTHXH

I

VJ

VJ

C

(I,)

I

rJJ

I

CO

(I,)

C)

fr--------,\

~-----------

~
l~tw(RHI

E

o
u
u

I
RCK

os

FIGURE 2 - DEVICE TIMING REQUIREMENTS

"-11

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-11

SUO!l3Un~ l-/oddns/sJosuas a6ewl 0:>:>

~

II

N

--I

Nn
CICI-

=

XN
n
n

I

11121 TLD369

VCC~

DEVICE

UNDER TEST

22 n

RCK

I

=
....
"'C

VOO

10 kn

22 n

I

XCK

VREFl..---.l'

~
5knZ'lo.'"F

~~

2C:~
~3:

~

VEE·
TLD369
vcct

~

m

s:
m

.--

I
I

0.1 j.J.F

I

-I

B

Z

TCK

"T1

0

22 n

VJ
VEEt

::IJ

as

EOS

s:
»
-I

0
Z

o ... 0

TEST POINTS

tThis counter chain counts transport clock periods to generate the exposure time interval. The data rate is twice the count rate.
lVCC and VEE are the voltages that will produce the desired values of VIH and VILt respectively, at the RCK, XCK, and TCK inputs.

FIGURE 3 - DRIVER CIRCUIT FOR TESTING LINE IMAGE SENSOR

en

=

Z

~Z ....

m

s:m
::IJ

Vss

>

I:)

m
2

C

VCC~

~,."

~
~

+5V

WRCK

~;;Cr;;1

=

i

m

::IJ

~-­
~z

~

»
::IJ
»
s:m
-I

(3

~~~~

iii
m
>

Vr

en

CI

TC102

128

x 1 CCO LINEAR IMAGE SENSOR

A
I
B

L

---.J

I

C

I

-,

..J
E..J

rL-

D

I
I

----y----------------------------------------------------

F
"'xp Trigger
TCK
XCK
RCK

I
I

--.J
I
--.JI
I

I

---,

I

WRCK

n

n

n

n

~

.....
...

FIGURE 4 - WAVEFORMS IN DRIVER CIRCUIT

o

Co

C.
:::l

TYPICAL CHARACTERISTICS
(In the circuit of Figure 3 with TA = 25°C, fRCK
recommended values, unless otherwise noted)

o

en

SENSITIVITY

RESPONSIVITY

vs

vs

I:

WAVELENGTH OF INCIDENT LIGHT

WAVELENGTH OF INCIDENT LIGHT

en

"

~

\

"

0.4

\ withQut filter

\With
HA·lllilter

'\

~~ 1'f\ e,nc'\eoc'I
r--~t\l

V

I--""""

."c

0.1

8.

~ 0.04

'\

\

\

600

BOO
1000
Incident Wavelength - nm

1200

100%...- 1-70%=

C)

~ ~ H~-

E

poe

~

Q)

~%-

~~

10%_

CO

c

u
u

\

~

r--

~

Q)

----- K rr-laTnT
~

.....- V

I

.~

I~

fY .....-

~

\

0.1
400

--...
en

10

F

en

= 0.5 MHz, texp = 10 ms, and all operating voltages at nominal

om
400

100% quantum efficiency
is 0.B0657A A/W

BOO

\

'\

I I

600

\

1000

1200

Incident Wavelength - nm

FIGURE 5

FIGURE 6

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75266

2-13

TC102
128 x 1 CCD LINEAR IMAGE SENSOR
TYPICAL CHARACTERISTICS
(In the circuit of Figure 3 with TA = 25°C, fRCK
recommended values, unless otherwise noted)

= 0.5 MHz, t exp = 10 ms, and all operating voltages at nominal
MODULATION TRANSFER FUNCTION

MODULATION TRANSFER FUNCTION
vs
SPATIAL FREQUENCY

--

1.0
e:
0

"13
e:

0.8

"

L1.

II
(")

~1!

~ ,itho~t

v,

0

~~

0.6

,

"fle:

~

~

i"

:;
2854 K Light

3

Monochromatic Light

::;;
I

0.2

L1.

I-

0.2

I-

::;;

o

Ql

0.4

."
0

::;;

CO

""

0

.~

0.4

0

L1.

A=9~ 0

0.6

le:

0

::;;

o

0.8

"

."

(")

,
'~ ~00to700nm

U-

e:

'f;;

-=::

e:

filter

l-

:;

SPATIAL FREOUENCY

1.0

o

0.2

CD

0.4

0.8

0.6

o

1.0

o

Normalized Spatial Frequency

en

o

CD

7.9

15.8

23.6

31.5

::::I

Spatial Frequency - cycles/mm

o
...

FIGURE 7

(I)

--en

o

39.4

0.8
0.6
0.4
0.2
Normalized Spatial Frequency
!

I

I

I

7.9

15.8

23.6

31.5

1.0
39.4

Spatial Frequency - cycles/mm
FIGURE 8

(I)

OUTPUT SIGNAL VOLTAGE RELATIVE TO
SATURATED OUTPUT VOLTAGE

AVERAGE AND LOW-FREQUENCY
DARK SIGNAL

s:::

v,

'0
'0

v,

EXPOSURE TIME

o
...

...

10

100r----,----~----~--~~----_,

'#.
I

"

i'J,

s:::

~

/

::::I

...o·
(')

>

E

ij

,,~ij

I

::::I

ro

(I)

~/

-i'
0.1

l'

"
~601---+---.j,.<--+----b,L.---l

..

00

;i9v
.,

~

'C

E
i"

~?-/

E 40 f----+--/--+---7"~i

ell

f

/

//

/

0.01
0.1

V

~

/
10

80~--~----~----1+----_+----~

>

~:>

I\)

II

N
-1>0

--I

Nn

==

X ':'0'

SN74LS626

+5V

VCO

n
n

a

(1/2) TLD369

Vcc t

I

DEVICE

UNDER TEST

2212

RCK

!::
iii!:
m

I vr

.,

Voo

l>
10 kH

I

22n

XCK

;JJ

l>

s:m

VREFL....l

-t

@
!i:

~z

5knZ"

~~

b:lr;;l

+5V

WRCK

1001"F

m

;JJ

s:m

l>

en

C

;JJ

8C~
,;~

m

Vcc t

s:m

~fTI

Z

!;Z ...

§(jj~.

TLD369
Vcc t

~
~
~

'"
~

0.1 jJF

-t

B

Z

TCK

"T1

0

22n

VJ
VEEt

;JJ

s:

as

EOS

l>
-t

(5
Z

(3) ."

0

TEST POINTS

fThis counter chain counts transport clock periods to generate the exposure time interval. The data rate is twice the count rate.

tVee and VEE are the voltages that will produce the desired values of VIH and VIL. respectively, at the RCK. XCK, and TCK inputs.

FIGURE 3 - DRIVER CIRCUIT FOR TESTING LINE IMAGE SENSOR

:z:o
:::a
3!:
:z:o

C':I

m

en
m

2

en
Q
:::a

TC102·1
128 x 1 CCO LINEAR IMAGE SENSOR

A

I
B

~

L

-,

r-

D

-1

L-

E

-1

F

----v~----------------------------------------------

C

texp Trigger

I

I

TCK~
I

XCK~
I

en

c:
o

RCK
WRCK

- - - '....
' _ _ _ _ _ _...J

FIGURE 4 - WAVEFORMS IN DRIVER CIRCUIT

....
o

+'"

c..
c..

TYPICAL CHARACTERISTICS

:::I

(In the circuit of Figure 3 with TA = 25°C, fRCK = 0.5 MHz, t exp = 10 ms, and all operating voltages at nominal
recommended values, unless otherwise noted)

en
---....en
o

RESPONSIVITY

SENSITIV ITY

en

vs

vs

WAVELENGTH OF INCIDENT LIGHT

WAVELENGTH OF INCIDENT LIGHT

c:
Q)

10

~<>
~1j3{ltIJ11'
4

P

>11

/'-

IN'..

0.4

'\.

\

\~ith
HA-l1 filter

c

~

.~

>

c

~

"

..e
(f)

cy

........-

'\

..--

0.1

o

0.4

\

\
\
0.1
400

~ 0.04

\

600
800
1000
Incident Wavelength - nm

---

:::::-.-

0.01
400

...........
.-

-------'::::: >oc'"

~%-

~

~

~%~

~~~
10%_

en
Q)

Cl
CO

E

o

u

u

........100% quantum efficiency
is 0.80657A A/W
for

1200

"" 100% ..... -70%=

--

..-- ...........

-

\

eH\C 1e0

........- /\J.. .::-

~

\ without filter

.

linT

600

\

\
\

I
800

I
1000

1200

Incident Wavelength - nm

FIGURE 6

FIGURE 5

-I.!}

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-25

TC102·1
128 x 1 CCO LINEAR IMAGE SENSOR

TYPICAL CHARACTERISTICS
(In the circuit of Figure 3 with TA = 25°C, fRCK = 0.5 MHz, t exp = 10 ms, and all operating voltages at nominal
recommended values, unless otherwise noted)
MODULATION TRANSFER FUNCTION

MODULATION TRANSFER FUNCTioN

vs

vs

SPATIAL FREQUENCY

1.0

~

c:

.2

tJc:

~

r

0.8

~c:

1!

0

,

B

"'~

~

"'"

c:
0

.~

(")
(")

0.4

"
:.
0

c

I
L1.

>-

~

'3

0.8

A=9~ 0

""

0.4

"
:.
0

2854 K Light

I

0.2

L1.

Monochromatic Light

0.2

>-

:.
o

CO

I

,gco

:.

3
Ql

I

~00to700nm

~co 0.6
1!
>-

:--....

0.6

~

.:..

>-

'3

"""'=::::

c:

~ithout filter

L1.

SPATIAL FREQUENCY

1.0

(1)

o

0.2

0.4

0.8

0.6

a

1.0

a

en
(1)

I

a

:::s
o

7.9

15.8

23.6

39.4

31.5

a

Spatial Frequency - cycles/mm

III

...

0.2

0.6

0.8

I
I
I
I
7.9
15.8
23.6
31.5
Spatial Frequency - cycles/mm

1.0

I
39.4

fiGURE 8

FIGURE 7

--enc:

0.4

Normalized Spatial Frequency

Normalized Spatial Frequency

III

AVERAGE AND LOW·FREQUENCY
DARK SIGNAL

'0

OUTPUT SIGNAL VOLTAGE RELATIVE TO
SATURATED OUTPUT VOLTAGE

vs

't:I

vs

EXPOSURE TIME

o

......

10

"T1

c:

1/

:::s

...o·

>

III

<0

tJjJ71/

(')

E

t'/

:::s

§,

U:i
-'"
~

0

"';)<0 0(,

tf> ov
~~~v
171/~· <,
~
'"
1/1/ ~~
"V'J ~

I

0.1

1/ 1/

[7./

17

0.01
0.1

10

100

texp - Exposure Time - ms

texp - Exposure Time - ms

fiGURE 9

2-26

fiGURE 10

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TC102·1
128 x 1 CCO LINEAR IMAGE SENSOR

MECHANICAL DATA

3.81 (0.150)

0.81 (0.032)R NOM
No.1 SENSOR ELEMENT -

U

5

7,49 (0.295)
7.24 (0.285)

I~ 1.19 (0.047) MAX

I

4.19 (0.165)
3.07 (0.121)
3.81 (0.150)
3.05 (0.120)

. II _

0.30 (0.012)
(0.010)

NOTE:

1,42 (0.056)
1.12 (0.044)

'';;

c:

::J

,

LL

....

2.97 (0.117)
2.36 (0.093)

~

o

c.

C.
::J

--

CJ)

I I)

f

-S EATINGPLANE------~~----_+·~

--tr-- 0.25

c:

o
o

234
5.82 (0.229)
5.56 (0.219)

8.10 (0.319)
7.75 (0.305)

L.J

II)

II

...-11-....

11

~

o

II)

c:
Q)

CJ)

0.48 (0.019)
0•38 (0.015)

Q)

0)

«l

2.54 (0.100) NOM

E

The distance between the top surface of the window and the surface of the sensor is nominally 0,89 (Q,03S). This is determined by observing the
vertical motion of a microscope focused first at one plane, then at the other.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICLALY IN INCHES

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

c

u
u

2-27

(')
(')

c

3
Q)
c.c
CD

en

CD
::l

!II

o...

--enc:
!II

"'0
"'0

o...

r+

"c:
::l

C')

:::!'.

o

::l

!II

2-28

TC103
2048 x 1 CCD LINEAR IMAGE SENSOR
02686, FE8RUARY 1983-REVISEO JULY 1989

•
•

•
•
•
•
•
•
•
•

2048 x 1 Sensor Element Organization

TC103 . . . DUAL-IN-LINE PACKAGE
(TOP VIEW I

Virtual-Phase N-Channel Silicon MOS
Technology
High Quantum Efficiency

V REF

Enhanced Blue Response

OS

Vss

V DD

EOS

Vss

RCK

Output Signal Approximately
1,0 Volt Peak-to-Peak

Vss

INT REF

NC

NC

NC

End-of-Scan Signal

NC

NC

Internal Black and White References

NC

NC

NC

NC

Dynamic Range Relative to
Peak-to-Peak Noise Typically 1000: 1

Simple and Stable Operation
OPTIONAL FEATURE:
Internal Reference Voltage

Vss

Vss

TCK

TCK

WRCK

XCK

NC -

•
UI

I:

o

",p

CJ
I:
::::J
LL

No internal connection

t:
o

0.
0.

-...
::::J

en

UI

o

UI

description

I:

Q)

The TCl 03, a 2048-element CCD line image sensor, functions in high-resolution image scanning applications such as
facsimile and optical character recognition. The TCl 03 incorporates virtual-phase MaS technology, which provides
simplified operation and high reliability. The 2048 sensor elements provide 8 points-per-millimeter resolution across
256 millimeters.

C/)
Q)

C)

CU

-oE

This device is supplied in a 24-pin dual-in-line ceramic side-braze package designed for insertion in mounting-hole rows
on l5,2-mm (0,600-inch) centers. The glass window may be cleaned by wiping with a cotton swab soaked in alcohol.
•

u
u

Caution, These devices have limited built-in gate protection. The leads should be shorted together or the device

J f:::>

W

II

0>

N-t

=n
.j:Io-

1»=

SN74LS626

+5Ve

VCD

x
n
n

c
,...

DEVICE
UNDER TEST

VDD

Z

m

VDD

~

1112) TLD369

:11:1

Vcc t
~

":xl

8U,

'IN'>
82<1

'IN'>

IRCK

IXCK

VREFI

INT
REF

z

,

~

i~

l>

m

-I

en
m

%I

s:m

m

%I

s:m

~

l>

;o~

~~

~..

en
c:

,

%I

IWRCK

m

s:
m

Vcc*

~~

Vss
39£1

VEE;
TLD369

r-

I
I

Vec*

TEST POINTS

tThis counter chain counts transport clock periods to generate the exposure time interval. The data rate is twice the count rate.

~VCC and VEE are the voltages that will produce the desired values of VIH and VIL, respectively, at the ACK, XCK, and TCK inputs.

FIGURE 3-DRIVER CIRCUIT FOR TESTING IMAGE SENSOR

o%I

39<1

VEE*

o.0

Z

."
TCK

O.l.:.lF

I

2
-I

as

EOS

s:
~
o
2

C)

2

en

CI
:11:1

W

TC103
2048 x 1 CCD LINEAR IMAGE SENSOR

IL_:--'

C

..J
E..J

o

---,r----------------------------------------------

F

texp Trigger

I

I

TCK
XCK

-----.JI
-----.JI

n

I

RCK

I
I

---,

I

WRCK

FIGURE 4 - WAVEFORMS IN DRIVER CIRCUIT

•
....
~

o

Co
Co
::::s

TYPICAL CHARACTERISTICS
lin the circuit of Figure 3 with TA = 25 °C, fRCK
mended values, unless otherwise noted)

=

0.5 MHz, t exp

=

10 ms, and all operating voltages at nominal recom-

~

.

r----I-.o

P

>11

- ""\.

0.4

\~ithout filter

\

\With
HA·ll filter

~

'

'"

\

0.4

\

\

\

600

\

1000

::::::....
-

\
800

c:

~ 0.04

0.1

400

..

0.1

o
a.

'~

(J)

..-

I

.~

.;;

'§

:.;...--

,...,

~

'\

....- /U.
;p ;::...--"

1200

c'/ 'OOo/~

--

'--- Quantuf1' _eH\Cle
./ "-

o

RESPONSIVITY
vs
WAVELENGTH OF INCIDENT LIGHT

10

IN-

en

! f)

SENSITIV ITY
vs
WAVELENGTH OF INCIDENT LIGHT

4

-

n

_

;:o.c"

\.

~

~

-- -

0.01
400

Incident Wavelength - nm

~O%==
~%==-]%10%_

RJ

E

c()
()

\

\

is 0.8065n A/W

600

Q)
C)

\

100% quantum efficiency

fOTn~r

c::
Q)
en

~%~

---- ----- --;>"

!f)

\
\

I I
800

1000

1200

Incident Wavelength - nm
FIGURE 6

FIGURE 5

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-37

TC103
2048 x 1 CCO LINEAR IMAGE SENSOR
TYPICAL CHARACTERISTICS
(In the circuit of Figure 3 with TA = 25 ·C. fRCK
mended values. unless otherwise noted)

= 0.5 MHz. texp = 10 ms. and all operating voltages at nominal recom-

MODULATION TRANSFER FUNCTION
vs
SPATIAL FREQUENCY

---.~

1.0
c
0

'tic

0.8

I

without filter

............

::J

u..

~

II
C")
C")

c

..
II)

c
c

0.4

0

'"

0

"-

CD

~c:
<0

.::c:

0.6

0

~ 0.4

"

"0

2854 K Light

0

Monochromatic Light

:2:

0.2

u.. 0.2
~

:2:

o

(Q

0.8

::J

u..

""C

:i:
u..
~
:i:

3I).)

c:

'."c:,

r--..

0.6

.::

0:g0
:;

MODULATION TRANSFER FUNCTION
vs
SPATIAL FREQUENCY
1.0 ...-.....= - , . - - - - , , . - - - - , - - - - , - - - ,

a

0.2

0.4

0.6

0.8

0

1.0

Normalized Spatial Frequency

en
CD

o

::::l

7.9

UI

15.8

23.6

31.5

0

0.2

I

Normalized Spatial Frequency
I
I
I
I

a

39.4

7.9

--enc:

FIGURE 7

UI

......o

23.6

0.8
31.5

1.0
I

39.4

FIGURE 8

OUTPUT SIGNAL VOLTAGE RELATIVE TO
SATURATED OUTPUT VOLTAGE
vs
EXPOSURE TIME

AVERAGE AND LOW FREQUENCY
DARK SIGNAL
vs
EXPOSURE TIME

"0
"0

15.8

0.6

Spatial Frequency - cycles/mm

Spatial Frequency - cycles/mm

o
...

0.4

100r---.----r----,-~--.---_,

10
oR.
I

"c:

.,

::::l

~
"0
>

VV

(')

~~0Vv

:t.

o

>

::::l

UI

9

0

::J

~':> oV

E::J

,,'b ~

cCl
iii

-t<0

~

1'>00
" fi90
/V",,~~"

E
I
"iii

/V

0.1

80~--~----~--_74_----+_--~

0

60r--~r--_4~-_+--~~-~

""C

~

a

,,'b

<0

Ul
0

'"

Cl

!!l

.,c

/

/

V V

VV
0.01

.,~

/

"-

10

0.1

lOa

texp - Exposure Time - ms

4

8

t exp - Exposure Time - ms

FIGURE 9

2-38

2

FIGURE 10

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

10

x

2048

TC103
1 CCD LINEAR IMAGE SENSOR

::1
1::
""""'' ".

MECHANICAL DATA

r

7,6210.300)

7,37 (0.290)

34,9011,374)
34,19 (1,346)

n ''''''''

0,81 10,032) R
NOM

j

No.1 SENSOR ELEMENT

1 2 3 4 5 6 7 8 9 1011 12

I

j.

4,62 (0.182)
4,37 (0,172)

en

B

C

o
o
c
=s

'';::

~~:~~ :~:~~~l
2,9710.117)
2,36(0093)
,

I
~ =u= ~I--SEATINGPLANE~~-'--'
--.l~
----.J/.__
115,19 (0.598)
14,78(0.582)

0,30 (0,012)
0,2510.010)

4,1910.165)
3,07(0121)l

r-1,19 100471 MAX

T--:r .rL

381 (0 150).-J
3:0510'120)

_

0,48(0019)
0,38 (0 015)

2,5410 100) NOM

3,45 (0,136)
3,15 (0,124)

......o

LL

c.
c.
=s

en

--...
en
o
en
c
Q)

en

Q)
0)

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.
NOTE 1: The drst:3nce between the top surface of the window and the surface of the sensor

IS

nominally 0,89 (0.035). This is determined

by obserVing the vertical motion of a microscope focused first at one plane. then at the other.

ca

E

o

()
()

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-39

("')
("')

c

3

Q)

co

CD

en
CD

::J

VI

o...

VI

en

I:
"0
"0

...o...
"

I:
::J

...o·

(")

::J
VI

2-40

TC103-1
2048 x 1 CCD LINEAR IMAGE SENSOR
02686. DECEMBER 1983-REVISED JULY 1989

•

2048 x 1 Sensor Element Organization

•

Virtual-Phase N-Channel Silicon MOS
Technology

•

High Quantum Efficiency

TC103

. DUAL-IN-LiNE PACKAGE
ITOPVIEWI

V REF

•

Enhanced Blue Response

•

Output Signal Approximately 1.0 Volt
Peak-to-Peak

Vss

OS

Vss

V DD

EOS

vss

RCK

INT REF

NC

Dynamic Range Relative to
Peak-to-Peak Noise Typically 1000: 1

NC

NC

NC

NC

•

End-of-Scan Signal

NC

NC

•

Internal Black and White References

NC

NC

•

Simple and Stable Operation

•

•
•

OPTIONAL FEATURE:
Internal Reference Voltage

vss

Vss

TCK

TCK

(I)

WRCK

XCK

t:

o

+"'

Same as TC103 Except for "White
Reference Amplitude" and "End-of-Scan
Amplitude" Specifications

(.)

t:

NC - No internal connection

::J.

u..

+"'

description

~

o
c.

The TC 103-1 , a 2048-element CCO line image sensor, functions in high-resolution image scanning applications such
as facsimile and optical character recognition. The TC103-1 incorporates virtual-phase MOS technology, which provides
simplified operation and high reliability. The 2048 sensor elements provide a 8-points-per-inch resolution across 256
millimeters.

C.

::J

--

CJ)
( I)
~

This device is supplied in a 24-pin dual-in-line ceramic side-braze package designed for insertion in mounting-hole rows
on 1 5,2-mm 10,600-inchl centers. The glass window may be cleaned by wiping with a cotton swab soaked in alcohol.

~

o
(I)
t:

Caution. These devices have limited built-in gate protection. The leads should be shorted together or the device

Q)

J 1<1>. ~ placed in conductive foam during storage or handling to prevent electrostatic damage to the MaS gates. Avoid

CJ)

~ shorting either

as or EOS to VSS during operation to prevent damage to the amplifiers.

Q)

C)

m

virtual phase technology

E

This patented design results in simplified clocking circuits, reduced noise, and greater light sensitivity. The virtual
phase utilizes a junction-gate region at the substrate dc potential. This accomplishes the same gating and transport
function as a separate gate electrode requiring multiple layers and multiple process steps common in other device
designs. The resulting simplicity of process and ease of operation will increase performance and reliability for the user.

PRODUCTION DATA documonts contain informotion

curraot as of publication data. Predacts conform to
specifications pef the terms of Texas Instruments

:':~:=i~.i~~~1i ~:~:~ti:; :'~D::::::~::S~ not

~

TEXAS
INSTRUMENlS
POST OFFICE BOX 855303 • DALLAS, TeXAS 75265

0
U
U

Copyright @ 1989, Texas Instruments Incorporated

2-41

TC103·1
2048 x 1 CCO LINEAR IMAGE SENSOR

functional block diagram
TCK

C:::::::::::::~:JD~A~R[K~C~U~R~R~E~N[TJB~U~F1F!EBRJC~C~DC:::::::::::::::r-------~------OVDD
INT
REF

os
VDO

•

VREF

I

(")

(")

EOS

EOS + DARK CURRENT BUFFER CCD

XCK

WRCK

Vss

TCK

o
W = WHITE REFERENCE INPUT DIODE
B = BLACK REFERENCE ELEMENT
I = ISOLATION ELEMENT
N = 2048SENSOR ELEMENTS

3Q)

co

CD

RCK

SUBSTRATE AND
LIGHT SHIELD

en
CD

::l

PIN FUNCTIONAL DESCRIPTION

C/I

o

"'"

PIN
NUMBER

--en
C/I

1
2
3
4, 10, 15,23,
24
5
6,7,8,9, 16
17, 18, 19, 20
11,14

I:
"C
"C

o
"'"
'*

SIGNATURE

NAME

VREF
OS

Reference Voltage

Bias input for the output amplifiers and internal reference.

Output Signal

Video output fro,m a cascaded source-follower MOS amplifier.

VOO

Supply Voltage

Output amplifier supply voltage.

VSS

Substrate

All voltages are referenced to the substrate.

Internal Reference

Potential derived internally for operational reference voltage.

INT REF
NC
TCK

12

WRCK

13

XCK

DESCRIPTION

No internal connection.

ceo transport registers.

Transport Clock

Drives the

White Reference

Injects a controlled charge into the white reference

Clock

elements to become white-reference and end-ot-scan pulses.

Transfer Clock

ceo shift register

Controls the transfer of charge packets from sensor elements to shift
registers. The interval between pulses of the transfer clock determines the
exposure time.

21

RCK

Controls recharging of the charge-detection diodes in the output

Reset Clock

amplifiers. and clocks the output shift registers where the odd and even
signals have been merged.

22

2·42

EOS

End-of-Scan Pulse

Indicates that all charge packets have been shifted out of the transport
registers.

TEXAS . "
INSTRUMENTs
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TC103·1
2048 x 1 CCO LINEAR IMAGE SENSOR

functional description
image sensor elements
The line of sensor elements lalso called photosites or pixels) consists of 2048 photo-sensitive areas, 12,7
micrometers 10.5 milliinches) square and approximately 12,7 micrometers from center to center. Image photons
create electron/hole pairs in the single-crystal silicon. The electrons are collected in the sensor elements, and the holes
are swept into the substrate. The amount of charge accumulated in each element is a linear function of the incident
light and the exposure time. The output signal charge will vary in an analog manner from a thermally generated noise
background at zero illumination to a maximum at saturation under bright illumination.

transfer gate
This structure is adjacent to the line of image sensor elements. The charge packets accumulated in the image sensor
elements are transferred into the transfer gate storage well when the transfer gate voltage goes high. When the
transfer gate voltage goes low, the charge is transferred into the CCD transport shift registers. The transfer gate also
controls the exposure time for the sensor elements and permits charges to enter the end-of-scan lEaS) shift registers
to create the end-of-scan waveform. In addition, the transfer gate permits entry of charge packets to the transport
CCD shift register to create the white reference signals.

en
s:::::
o
+-'

shift registers

(.)

There are two CCD transport registers, one on each side of the line of image sensor elements and outside of the
transfer gate. Alternate charge packets are transferred to the CCD transport shift registers and moved serially to the
output amplifier. The phase relationship of the reset clock and the transport clock and the geometric layout of the
paths provide for alternate delivery of charge packets to re-establish the original sequence of the linear image data. The
two outer buffer CCD shift registers protect the signal charges in the inner transport CCD shift registers from
peripherally generated dark current noise.

s:::::

::J

LL

...o

+-'

c.
C.

::J

en

black and white reference elements
Four additional sensor elements at each end of the sensor element array lIabelied "8" in the block diagram) are covered
by opaque metallization. They provide a black Ina illumination) signal reference that is delivered at each end of the
linear image output signal. Also included on the transport CCD shift register, at the opposite end from the amplifier, is
an input diode that provides two white reference pulses in the oytput signal. The reference pulses are useful as inputs
to external dc restoration and/or automatic exposure control circuitry.

--...
en
o
en

s:::::
Q)

en
Q)

C)

output signal amplifier

CO

The charge packets are transported to a precharge diode whose potential changes linearly in response to the amount of
the signal charge delivered. This potential is applied to the input gate of an N-channel MaS double-source-follower
amplifier to produce an output signal 105), A reset transistor, driven by the reset clock IRCK), recharges the chargedetector-diode capacitance before the arrival of each new signal charge packet from the eeo shift registers. Reference
voltage IVREF) is applied to the drain of the reset transistor and acts to bias the as and EOS amplifiers. A current sink
is used as an on-chip load for the amplifier output, so no external current sink is needed. The output signal on pin 2 is a
series of negative-going pulses on a dc level.

E

oC,.)
C,.)

internal reference voltage
An internal reference voltage liNT REF) is available on the chip to provide the VREF voltage. The required connections
appear in Figure 3. If the internal reference voltage is not used, an external voltage is connected directly to pin 1. Pin 5
is then left unconnected.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-43

TC103·1
2048 x 1 CCO LINEAR IMAGE SENSOR

resolution
The modulation transfer function decreases at longer wavelengths. (See Figures 7 and 8.) If optimum resolution is
required with a light source that has a significant infrared component, then the designer must use appropriate filters to
restrict the optical pass band to shorter wavelengths.

end-of-scan amplifier
The EOS amplifier is similar to the OS amplifier. XCK transfers charge from the input diode into the EOS register where
it is transported at the TCK clock frequency to the EOS amplifier. This EOS pulse is coincident with the first of the two
white reference pulses that pass through the odd and even transport CCOs, respectively. The EOS output can be used
to alert the external circuitry that the linear image data readout has been completed.

II

clocks

(")

The transfer clock (XCK) pulse controls the exposure time of the sensor elements. The minimum exposure time is
the time required to shift the entire contents of the transport registers to the output signal amplifier and equals 2081
multiplied by the RCK period. The maximum exposure time is determined by the tolerable level of dark signal.
The transport clock (TCK) transports the linear image signal charge from the sensor element region to the output amplifier.

(")

o

The reset clock (RCK) operates at twice the transport clock frequency so as to recombine the signal charge in the
original sequence and present the charge to the output amplifier. The data rate is equal to the reset clock frequency.

3

The white reference clock (WRCK) runs at the transfer clock frequency and generates the white reference and the
end-of-scan pulses. These pulses can be eliminated by connecting WRCK to VOO. Transients on WRCK going below
zero volts will cause charge injection resulting in an increase in apparent dark signal.

Q)

co

(1)

(J)

Figure 3 presents a suggested circuit for generating the clock waveforms. The RCK clock generator runs continuously.
A binary divider halves the frequency to create TCK. After all signal charges have been transported to the output
amplifier, TCK continues to run to keep thermally generated charges from accumulating in the transport registers.

(1)

::l

CII

o
..,

CII

( J)

The XCK and WRCK clock frequencies are submultiples of the TCK frequency. Figure 2 details the timing relationships
among the different clock pulses.

s::::
'0
'0

..,o

r+

."

s::::

::l
(")

r+

o·
::l

CII

2-44

TEXAS •
INSTRUMENTS
POST OFFICE BOX 666303 • DALLAS, TEXAS 75265

2048

xcx

nl-..o------------------

-1 I

x

TC103·1
1 CCo LINEAR IMAGE SENSOR

+-1

EXPOSURE TIME - - - - - - - - - - - -_ _ _

II

WRCKU

X

B8BBIIII

OS~~nnn

3

4

BBasXX
!)
6
1
8
9 10

-~t!pGd4
1

2

3

Output Signal (051 pulse identification: I "" isolation pixel. IP == Image pixel. B = Black reference pixel. WR = White reference pixel, X

=

empty pixel.

FIGURE 1 -OPfRATING INPUT AND OUTPUT VOLTAGE WAVEFORMS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
(see Note 1)
Amplifier drain voltage (VDD1) ............................................... -0.3 V to 30 V
Transfer clock (XCK) voltage .................................................. - 25 V to 5 V
Transport clock (TCK) voltage ................................................. - 25 V to 5 V
Reset clock (RCK) voltage .................................................... - 25 V to 5 V
White reference clock (WRCK) voltage ......................................... -0.3 V to 30 V
Storage temperature ...................................................... - 25°C to 125°C
Operating free-air temperature ............................................... - 25°C to 70 °C

recommended operating conditions at T A

VOO

Amplifier supply voltage

VIH(X)

Transfer clock high-level input voltage

VIL(X)
VIH(T)

Transfer clock low-level input voltage

Transport clock high-level input voltage
Transport clock low-level input voltage

VILIR)

Reset clock low-level input voltage

VIH(WR)
VIL(WR)

White reference clock high-level input voltage
White reference clock

iRCK

Reset clock frequency (output data rate)

-...

CJ)

I /)

o
I/)

CJ)
MIN

NOM

MAX

UNIT

CI)

13

14

15

V

C)

3
-15t
3
15t

4
-14
4
14
4
14
14
7

5
-13

V

Reset clock high-level input voltage

low~level

o

0.
0.
;,

c:
CI)

25°C (see Note 1)

VI LIT)
VIH(RI

......

3
15t
13
6

input voltage

5
13
5
13
15
8
10

V
V
V
V
V

CO

E

o

u
u

V
V
MHz

tThe algebraic convention, where the most negative limit is designated as minimum, is used in this data sheet for clock voltage levels only.
NOTE 1: Voltage values ate with respect to VSS.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-45

TC103-1
2048 x 1 CCO LINEAR IMAGE SENSOR

electrical characteristics at 25°C free-air temperature'
PARAMETER

Dark-signal amplitude

TYP

MAX

Average

MIN

0.5

10

Low frequency component

0.5

5

1.0

20

Nonuniformity relative to
a~erage

of adjacent pixels

Sensitivity
Output amplitude
variation IPRNU) t

2

I Peak-to· peak
Adjacent pixels from

Saturation exposure §
Dynamic range relative to peak-ta-peak noise t
Charge transfer efficiency

500

mV
mV

7
1

kll

Amplifier reference voltage, VREF

~

Capacitance to VSS

o

;:.

V

150

Transport gate

en

kll

500
500
7

I Transfer gate

(1)

...

mV

300

I Reset gate

V

250

LTransport gate
I Reset gate

600

pF

16

Amplifier supply current

en

1400

0.99999

I Transfer gate

en

mV

End-af-scan amplitude

Resistance to VSS

o

VII~J/cm2)

White reference amplitude

(1)

"C

1000:1

Output impedance

3Q)

--enc:

500:1

Output offset Idc) voltage

CO

-c

1000

mV

nJ/cm 2
nJ/cm 2

350
700

mV

mV

0.35

Saturation output amplitude

c

100

1

Equivalent exposure § of peak-ta-peak noise

(")
(")

5

50
10

alternate registers (imbalance)

Peak-to-peak noise

•

3.5

UNIT

8

Total power dissipation

110

12

mA
mW

tOynamic range = saturation output amplitude/standard deviation peak-ta-peak noise.
:t:Measured at 700 mV output amplitude with an f/2.8 lens.
§Exposure = intensity x time
1Test conditions are fRCK = 0.5 MHz, t exp = 10 ms, tungsten light source operating at color temperature of 2854 K with 2.0-mm-thick Fish-Schurman
HA-l1 IR-absorbing filter, and all operating voltages at nominal recommended values using the internal reference voltage.

"T1

s:::

~
(')

:!'.

o

~

en

2-46

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2048

x

TC103-1
1 CCO LINEAR IMAGE SENSOR

timing requirements
MIN
Time delay from the transport clock rising
tTHXH

edge to the transfer clock rising edge.
Time delay from the transport clock rising edge

tTHWL

to the white reference clock falling edge.
Time delay from the transport clock rising

tTHRH

clock.
Time delay from the transport clock falling

tnxL

edge to the transfer clock falling edge.

UNITS

50

ns

0

50

ns
ns

40

ns

50

ns

Time delay from the transport clock falling edge
tnwH

MAX

0

edge to the reset clock rising edge.
Pulse duration of the high state for the reset

tw(RH)

NOM

0

50

0

to the white reference clock rising edge.

ns

Time delay from the transfer clock falling edge
tXLTH

to the rising edge of the next transport clock

50

ns

15
5

ns

1m
til

pulse.
t,

rise time (all clocks)

tf

fall time (all clocks)

ns

I:

0

-,;;
(.)

I:
:l

--II

j4-trHXH
________________

I~

XCK----»

u..

~

\\-_________
I4-trLXL~

I

.....

t--trHWL

WRCK- - - :I ,1\

.

I
I
I

I

I
I

I
I

I

j

I

I4--1trLWH

TCKJ,

\

RCK

I /)

o
en

I
I
I

t~-----'\

~----------

I
trHRH~

--...

CJ)

I
II
I

~
I ~twlRHl

c.

C.
:l

~tXLTH

I

......o
I:

Q)

CJ)
Q)
C)

CO

E

I

Cl

()

()

os

FIGURE 2-0EVICE TIMING REQUIREMENTS

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-47

SUO!lOun::l lJoddns/sJosuas a6ewJ

a:»:»

N

J,.
CD
+5

v.

N-I
CI C":I
SN74LS626

veo

"A)

,

-'='"-

SN7474

CD CI

w

X':"
C":I
C":I
C
r-

DEVICE
UNDER TEST

VOO

I

VOO

I

iii
m

11/21 TL0369

:I>
::z:I

Vee·
I

8U2

~ReK

VREF

Vee·

82.11:
xeK

2!

!!l

!NT
REFI

en
C)

en

g:;:c~

C

i:lC:~
~~

:lD

WRCK

m

3:

Vee·

~I"'I

m
Z

~

~Z

§U14"
r-

I

VEE·
TL0369
Vee·

I

I
I

VEE·

Vss

R
I

o.0

TEST POINTS

tThis counter chain counts transport clock periods to generate the exposure time interval. The data rate is twice the count rate.
tVCC and Vee are the voltages that will produce the desired values of VIH and VIL. respectively, at the RCK, XCK, and TCK inputs.

FIGURE 3-DRIVER CIRCUIT FOR TESTING IMAGE SENSOR

0

TeK

+5V

-I

Z

-n

:lD

3:

3911

l>
-I

OS

EOS

m

3:

l>

~-l

C)

en
m

m

l'lrtJ

~

3:

i:I>

m
-I
m
:lD

~­
i:iZ

"

~

:lD

l>

VEE·

5
z

Z

::z:I

TC103-1
2048 x 1 CCO LINEAR IMAGE SENSOR

C -'L~C--....J

..J
e..J

D

---v~-----------------------------------------------

F

texp Trigger

I

I

TCK
XCK

-----.JI
-----.JI

n

I

RCK

I
I

III

c:

o

----.,

I

WRCK

....
(.)

FIGURE 4 -

c:
~
u..

WAVEFORMS IN DRIVER CIRCUIT

.......
o

0.
0.

TYPICAL CHARACTERISTICS

~

lin the circuit of Figure 3 with T A = 25°C, fRCK = 0.5 MHz, t exp
mended values, unless otherwise notedl

=

10 ms, and all operating voltages at nominal recom-

RESPONSIVITY
vs
WAVELENGTH OF INCIDENT LIGHT

III

c:

Q)

en

10

_w-

4

?

>11

......

\With
HA·11 filter

c

E

'\

~

\

0.4

0.1

400

\

\

o
u

u

i 0.1§~~~IIE

:E
en'"

Q)

OJ
CO

\ without filter

.s;
c:

70%
50%

"'\.

\

--o...
I II

SENSITIV ITY
vs
WAVELENGTH OF INCIDENT LIGHT

/

en

~ 0.04 I---,""""~-+--+-+--+---H.--If----l
100% quantum efficiency +---4-+-----j

\

is 0.80657X A/W

\

600

800
1000
Incident Wavelength - nm

1200

0.01 L-----l_--L_-'-_-'--------l_--L_-'-----l
600
800
1200
400
1000
Incident Wavelength - nm
FIGURE 6

FIGURE 5

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

2-49

TC103-1
2048 x 1 CCO LINEAR IMAGE SENSOR

TYPICAL CHARACTERISTICS
(In the circuit of Figure 3 with T A = 25 °C, fRCK
mended values, unless otherwise noted)

=

0.5 MHz, texp

=

10 ms, and all operating voltages at nominal recom-

MODULATION TRANSFER FUNCTION
vs
SPATIAL FREQUENCY

---

1.0
c
0

-fl

0.8

c

~

•

(")
(")

0

~

0.6

"!

.=c

.,

.0
:;
'"

~

c

0.8

"
~c

0.6

.='"c

""""

0.4

u

c
u..

~ r--...

"
''"c"

1.0

I
r---.:ithout filter

u..

MODULATION TRANSFER FUNCTION
vs
SPATIAL FREQUENCY

A=9~ ~

"'"

0.4

"0

0

T

c:l

'"::>

"0

Monochromatic Light

0

2854 K Light

::i!

I

~ ~00to700nm

:;;:
u.. 0.2

0.2

3

f-

:;;:

ell

CC

o

(I)

en
(I)
:::::I

0

o
o

en

o

0.8
0.2
0.4
0.6
Normalized Spatial Frequency

1.0

7.9

39.4

15.8

I
0

0.6

0.8

I
I
I
I
15.8
23.6
31.5
7.9
Spati al Frequency -- cycles/mm

Spatial Frequency - cycles/mm

--en

0.4

1.0

Normal izer! Spatial Frequency

31.5

23.6

0.2

0

I
39.4

~

en

FIGURE 8

FIGURE 7

AVERAGE AND LOW FREQUENCY
DARK SIGNAL
vs
EXPOSURE TIME

c

"0
"0

o

~

100

10

.-+

OUTPUT SIGNAL VOLTAGE RELATIVE TO
SATURATED OUTPUT VOLTAGE
vs
EXPOSURE TIME

?f2.

g;,

/

E

/,?

,,'?:;~

I

'"con

,,'?:;

/

/

e-::>

00

'),'0

"

~

~

80

>
:;

00
%0

,.,~

//"

iJj

0

0

~c//

>

-c

e

/

60

0
"0

~

'0

,,'?:;

~
'0

40

]3

20

(f)

0.1

w

/

VV

VV

/

c

~

/

0.01
0.1

0..

10

100

t exp - Exposure Time - ms

t exp - Exposure Time - ms

FIGURE 9

2-50

FIGURE 10

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TC103·1
2048 x 1 CCO LINEAR IMAGE SENSOR

MECHANICAL DATA

1::
±

7,62 (0.300)
7,37 (0.290)

,.':~".

B
~

34,90(1.374)::1
34,19 (1.346)

H~n"m""""" .. "

~:::::::m }IiI

r-

CL

4,62 (0.182)
4,37 (0.172)

15,80(0.622)
15,29 (0.602)
15,19 (0.598)
14,78 (0.582)

III

c:

4,19 (0.165)
3,07 (0.121)

l

11

2,97 (0.117)
2,36 (0.093)
1,19 (0.047) M A X !

~-----SEATINGPLANE~~ t
----..II----.II-I'

=a=

0,30 (0.012)
0,25 (0.010)

r-=r -fL

3,81 (0.150) ~
3,05 (0.120)

(.)

c:

::l
LL

.......

o
c.

0,48 (0.019)
0,38 (0.015)

2,54 (0.100) NOM

3,45 (0.136)
3,15 (0.124)
NOTE:

o

.';:;

C.
::l

--...

CI)

I II

o

III

The distance between the top surface of the window and the surface of the sensor is nominally 0.89 lO,035J. This is determined by observing the

c:
Q)

vertical motion of a microscope focused first at one plane. then at the other.

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

CI)
Q)

0')

CO

E

o(.)
(.)

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-51

("')
("')

o

3

OJ


::0

l>
o.1 ).JF m

s:

/! (TI

VCC+

~ Z

~ Ul4r
~

VEE*
TLD369
VCc*

~
~

r-

I
I
I
I

0.1 >iF

VJ
VEE*

+5V

o .0

TEST POINTS

tThis counter chain counts transport clock periods to generate the exposure time interval. The data rate is twice the count rate.
tVee and VEE are the voltages that will produce the desired values of VIH and VIL. respectively, at the RCK, XCK. and TCK inputs.

FIGURE 3-DRIVER CIRCUIT FOR TESTING IMAGE SENSOR

B

TCK

39n

I

"or

-I

en

m

::0

m

s:m
Z
-I

Z

"TI

0

::0

s:

l>
-I

as

EOS

m

::0

en
c

WRCK

i):10
C')

en
m

l>

:
~

:a
"0

s:m

~~
~fO~
tl c:~
~

"'"

Z

m

):10

0
Z

2

=
:a

TC104
3456 x 1 CCO LINEAR IMAGE SENSOR

A

B

L

---'
I

I

'"l...~I~....

C

..J
E..J

D

----v~--------------------------------------------------I

F

taxp Trigger

II

I

TCK

XCK

---1
I
---1

I

(/)

I:

RCK

WRCK

...
o

U

- - - ;' - -_ _ _ _ _ _ _ _...J

I:
::l
LL

......o

FIGURE 4 - WAVEFORMS IN DRIVER CIRCUIT

C.
Q.

TYPICAL CHARACTERISTICS
lin the circuit of Figure 3 with TA = 25°C, fRCK
mended values, unless otherwise noted)

::l

= 0.5 MHz, t exp = 10 ms, and all operating voltages at nominal recom-

SENSITIVITY
vs
WAVELENGTH OF INCIDENT LIGHT

RESPONSIVITY
vs
WAVELENGTH OF INCIDENT LIGHT

10
70%
50%

4

>11

~

~

-"

'-

1\

( /)

o
(/)

I:
CU

en

CU

C'I
CO

E

1\ without filter

with
\
HA-11 filter

-...

en

c

(,)
(,)

r-......

t:.:;;

..,
.;;;
cCI)

(J)

0.4

\

\
0.1

400

600

1

for X inJ.lm.

\

800
1000
Incident Wavelength - nm

1200

0.01 '----'-_-L_...I..-_'----'-_-L_...I..----J
600
400
800
1000
1200
Incident Wavelength - nm
FIGURE 6

FIGURE 5

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-61

TC104
3456 x 1 CCO LINEAR IMAGE SENSOR
TYPICAL CHARACTERISTICS
= 0.5 MHz, t exp = 10 ms, and all operating voltages at nominal recom-

(In the circuit of Figure 3 with TA = 25 °C, fRCK
mended values, unless otherwise noted)

MODULATION TRANSFER FUNCTION
vs
SPATIAL FREQUENCY

MODULATION TRANSFER FUNCTION
vs

c:

c:

'Ec:

't

0

0

c:

...

•
(")
(")

C

U.

~

~c: 0.6

~c:

.

~

t=

c:

c:
0

0

.~

.~

:;

:;

'C

'C

0

...
I

0.4

0

2854 K Light

::E

Monochromatic Light

::E

0.2

u. 0.2
t-

t-

3
Q)

0.8

::l

::l

::E

::E

CO
CD

0

0.2
0.4
0.6
0.8
Normalized Spatial Frequency
I
I
I
I
9.3
18.7
28.0
37.4
Spatial Frequency - cycles/mm

0

en
CD

:l

0

(fl

...

0

--en

0

1.0

0

46.7

I
0

0.2
0.4
0.6
0.8
Normal ized Spatial Frequency
I
I
I
I
9.3
18.7
28.0
37.4
Spatial Frequency - cycles/mm

FIGURE 7

(fl

......
0

46.7

FIGURE 8

OUTPUT SIGNAL VOLTAGE RELATIVE TO
SATURATED OUTPUT VOLTAGE
vs
EXPOSURE TIME

AVERAGE AND LOW FREQUENCY
DARK SIGNAL
vs
EXPOSURE TIME

s::

"C
"C

1.0

100r----,r----,-----,-----.----~

10
?f.
I

"s::

OJ
0>

:l

...
0',

>

q

E
I

:l

..

(fl

~

//

C')

"

c:

/

0>

en

..

-t:
0

/

0.1

.fo~v
/ /
.,,<0 oV
q

{'

~

::l

S::l

oV

'C

2J

~

q

,,\»

V

0.01
0.1

t'

/

~

40

'"0>

20

en

....0
~
c:

/

/

60

0

q

"

80

>

~V
<0

"
/1"

/

"0

OJ

e

V

OJ

"-

10

100

texp - Exposure Time - ms

4

6

8

texp - Exposure Time - ms

FIGURE 9

2-62

2

FIGURE 10

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

10

TC104
3456 x 1 CCO LINEAR IMAGE SENSOR

r-::
---t-

MECHANICAL DATA

45,67(1,798)::1
44,75 (1,762)

7,62 (0.300)
7,37 (0 2901

r-

0,81 NOM
(0.032) R

~I'I

__ ,
I

L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ JI

J

No.1 SENSOR ELEMENT

8

_2:~~2~~2~1~: ~ ~6 ~5~4~3

1 2 3 4 5 6 789101112

•

1

4- 4,50 (0.177)

4,24 (0.167)

II)

c:::

...

.2

15,80(0,622)
15,29 (0.6021
15,19 (0.598)
14,78 (0.5821

4,19 (0.165)
3,07 (0.121)

l

-,

(J

2,97 (0.117)
236 (0093)
r-l,19 (0.047) MAX

c:::

+'

::l

......

LL

1r-r=a=--lI~----SEATINGPLANE~~-,.+---II--- g:: :g:~~~!
-11- ~:: !g:g~~:
3:05 (0:
1- ..j
381 (0 150)
1201

fl I-L
I

o
c.

C.
::l

--...

U)

2,54 (0.100) NOM

I I)

o

8,79 (0.346)
8,48 (0.334)

II)

c:::

Q)

U)

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

Q)

C')
NOTE 1: The distance between the top surface of the window and the surface of the sensor is nominally 0,89 (O.035}. This is determined by observing the
vertical motion of a microscope focused first at one plane. then at the other.

CO

E

o
()
()

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-63

II
C')
C')

c
3
s:»

co
CD

en
CD

::s

en

o
...

--enc::
en

"0
"0

...o...
"::sc::

...o·

(')

::s

en

2-64

TC104-1
3456 x 1 CCO LINEAR IMAGE SENSOR
02687. DECEM8ER 1983-REVISED JULY 1989

•

3465 x 1 Sensor Element Organization

•

Virtual-Phase N-Channel Silicon MOS
Technology

•

High Quantum Efficiency

TC104 ..• DUAL-iN-LiNE PACKAGE

(TOP ViEW)

•

Enhanced Blue Response

•

Output Signal Approximately 0.6 Volt
Peak-to-Peak

•

Dynamic Range Relative to
Peak-to-Peak Noise Typically 1000: 1

VREF

VSS

os

Vss

VDD

3

VSS

4

End-of-Scan Signal

•

Internal Black and White References

•

Simple and Stable Operation

•

OPTIONAL FEATURE:
Internal Reference Voltage

NC

6

Same as TC104 Except for "White
Reference Amplitude" and "End-of-Scan.
Amplitude" Specifications

NC

8

NC

9

NC

10

VSS

NC

CIl

c:

o

'';:'

TCK

TCK
WRCK

•

NC
NC

NC

VSS

•

RCK
NC

INT REF

•

EOS

12

(,)

c:

XCK

:::l
LL.

...o

NC -

-0.
0.
:::l

No internal connection.

(J)

description

CIl

o

The TC 104-1 , a 3456-element CCD line image sensor, functions in high-resolution image scanning applications such
as document reading and optical character recognition. The TCl 04-1 incorporates virtual-phase MaS technology,
which provides simplified operation and high reliability. The 3456 sensor elements provide 400 points-per-inch resolution
across 8.5 inches.

CIl

c:
Q)

(J)
Q)
C)

This device is supplied in a 24-pin dual-in-line ceramic side-braze package designed for insertion in mounting-hole rows
on 15.2-mm (0,600-inch) centers. The glass window may be cleaned by wiping with a cotton swab soaked in alcohol.

C'tI

E

Caution. These devices have limited built-in gate protection. The leads should be shorted together or the device
placed in conductive form during storage or handling to prevent electrostatic damage to the MOS gates. Avoid
shorting either
or EOS to VSS during operation to prevent damage to the amplifiers.

c

as

()
()

virtual phase technology
This patented design results in simplified clocking circuits, reduced noise, and greater light sensitivity. The virtual
phase utilizes a junction-gate region at the substrate dc potential. This accomplishes the same gating and transport
function as a separate gate electrode requiring multiple layers and multiple process steps common in other device
designs. The resulting simplicity of process and ease of operation will increase performance and reliability for the user.

PRODUCTION DATA documents contain information

currant as of publication data. Praduets conform to
specifications par the tarms of TaxiS Instruments

=~~:~~i;ar'::'~~e =i:~ti~n :I~D::::::~:'~ not

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright @ 1989, Texas Instruments Incorporated

2-65

TC104·1
3456 x 1 CCO LINEAR IMAGE SENSOR

functional block diagram
TCK

C:::::::::::::~::D~A~RRK£C~U~R~R~E~N~TJB~U~F~F]E]R~C~C~D~::::::::::::::}--------r------OVDD
INT
REF

os
VDO
VREF

II

EOS

I

(")
(")

WRCK

TCK

C

3Q)

w

~

WHITE REFERENCE INPUT DIODE

8

~

8LACK REFERENCE ELEMENT

CQ

N

CD

~

ISOLATION ELEMENT

~

3456 SENSOR ELEMENTS

RCK

VSS
SUBSTRATE AND
LIGHT SHIELO

en

CD
:l

PIN FUNCTIONAL DESCRIPTION

en

...

o
en

PIN

SIGNATURE

NAME
Reference Voltage

Bias input for the output amplifiers and internal reference.

2

VREF
OS
VDD

Output Signal
Supply Voltage

Video output from a cascaded source-follower MOS amplifier.

3

VSS

Substrate

All voltages are referenced to the substrate.

Internal Reference

Potential derived internally for operational reference voltage.

NUMBER

--en

1

r::

'0
'0

4.10.15.23,

...

o

24

r+

5

"T1

6,7,8,9,16

:l

17,18,19,20
11,14

TCK

12

WRCK

13

XCK

r::

(")

INT REF

:l

Output amplilier supply voltage.

No internal connection.

NC

r+

O·

DESCRIPTION

Transport Clock

Drives the CGO transport registers.

White Reference

Injects a controlled charge into the white reference CGO shift register

Clock

elements to become white-reference and end-of-scan pulses.
Controls the transfer of charge packets from sensor elements to shift

en

Transfer Clock

registers. The interval between pulses of the transfer clock determines the
exposure time.
Controls recharging of the

21

RCK

Reset Clock

charge~detection

diodes in the output

amplifiers, and clocks the output shift registers where the odd and even
Signals have been merged.

22

2·66

EOS

End-ot-Scan Pulse

Indicates that all charge packets have been shifted out of the transport
registers.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3456

x

TC104·1
1 CCO LINEAR IMAGE SENSOR

functional description
image sensor elements
The line of sensor elements (also called photosites or pixels) consists of 3456 photo-sensitive areas, 10,7
micrometers (0.42 milliinches) square and approximately 10,7 micrometers from center to center. Image photons
create electron/hole pairs in the single-crystal silicon. The electrons are collected in the sensor elements, and the holes
are swept into the substrate. The amount of charge accumulated in each element is a linear function of the incident
light and the exposure time. The output signal charge will vary in an analog manner from a thermally generated noise
background at zero illumination to a maximum at saturation under bright illumination.
transfer gate
This structure is adjacent to the line of image sensor elements. The charge packets accumulated in the image sensor
elements are transferred into the transfer gate storage well when the transfer gate voltage goes high. When the
transfer gate voltage goes low, the charge is transferred into the CCD transport shift registers. The transfer gate also
controls the exposure time for the sensor elements and permits charges to enter the end-of-scan (EOS) shift registers
to create the end-of-scan waveform. In addition, the transfer gate permits entry of charge packets to the transport
CCD shift register to create the white reference signals.

I/)

I:

o

'';::::

shift registers

(.)

I:
::J

There are two CCD transport registers, one on each side of the line of image sensor elements and outside of the
transfer gate. Alternate charge packets are transferred to the CCD transport shift registers and moved serially to the
output amplifier. The phase relationship of the reset clock and the transport clock and the geometric layout of the
paths provide for alternate delivery of charge packets to re-establish the original sequence of the linear image data. The
two outer buffer CCD shift registers protect the signal charges in the inner transport CCD shift registers from
peripherally generated dark current noise.

LL.

....
~

o

c.
C.

::J

en

--o

black and white reference elements

I /)
~

Four additional sensor elements at each end of the sensor element array (labelled "6" in the block diagram) are covered
by opaque metallization. They provide a black (no illumination) signal reference that is delivered at each end of the
linear image output signal. Also included on the transport CCD shift register, at the opposite end from the amplifier, is
an input diode that provides two white reference pulses in the output signal. The reference pulses are useful as inputs
to external dc restoration and/or automatic exposure control circuitry.

I/)

I:

Q)

en

Q)

en

output signal amplifier

CO

The charge packets are transported to a precharge diode whose potential changes linearly in response to the amount of
the signal charge delivered. This potential is applied to the input gate of an N-channel MaS double-source-follower
amplifier to produce an output signal (aS). A reset transistor, driven by the reset clock (RCK), recharges the chargedetector-diode capacitance before the arrival of each new signa) charge packet from the CCD shift registers. Reference
voltage (VREF) is applied to the drain of the reset transistor and acts to bias the as and EOS amplifiers. A current sink
is used as an on-chip load for the amplifier output, so no external current sink is needed. The output signal on pin 2 is a
series of negative-going pulses on a dc level.

E

o

u
u

internal reference voltage
An internal reference voltage liNT REF) is available on the chip to provide the VREF voltage. The required connections
appear in Figure 3. If the internal reference voltage is not used, an external voltage is connected directly to pin 1. Pin 5
is then left unconnected.

TEXAS.

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-67

TC104·1
3456 x 1 CCD LINEAR IMAGE SENSOR

resolution
The modulation transfer function decreases at longer wavelengths. (See Figures 7 and 8.) If optimum resolution is
required with a light source that has a significant infrared component, then the designer must use appropriate filters to
restrict the optical pass band to shorter wavelengths.
end-of-scan amplifier
The EOS amplifier is similar to the OS amplifier. XCK transfers charge from the input diode into the EOS register where
it is transported at the TCK clock frequency to the EOS amplifier. This EOS pulse is coincident with the first of the two
white reference pulses that pass through the odd and even transport CCOs, respectively. The EOS output can be used
to alert the external circuitry that the linear image data readout has been completed.

•

clocks
The transfer clock (XCK) pulse controls the exposure time of the sensor elements. The minimum exposure time is the
time required to shift the entire contents of the transport registers to the output signal amplifier and equals 3489
multiplied by the RCK period. The maximum exposure time is determined by the tolerable level of dark signal.

n
n

The transport clock (TCK) transports the linear image signal charge from the sensor element region to the output
amplifier.

c

The reset clock (RCK) operates at twice the transport clock frequency so as to recombine the signal charge in the
original sequence and present the charge to the output amplifier. The data rate is equal to the reset clock frequency.

3
QJ

c.c

The white reference clock (WRCK) runs at the transfer clock frequency and generates the white reference and the endof-scan pulses. These pulses can be eliminated by connecting WRCK to VOO. Transients on WRCK going below zero
volts will cause charge injection resulting in an increase in apparent dark signal.

CD

CJ)

CD

::J

en
...o
en

Figure 3 presents a suggested circuit for generating the clock waveforms. The RCK clock generator runs continuously.
A binary divider halves the frequency to create TCK. After all signal charges have been transported to the output
amplifier, TCK continues to run to keep thermally generated charges from accumulating in the transport registers.

CJ)

The XCK and WRCK clock frequencies are submultiples of the TCK frequency. Figure 2 details the timing relationships
among the different clock pulses.

-r:::

'0
'0

.......o

"r:::
::J

....
o·
C')

::J

en

2-68

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

3456

XCKJl"".........- - - - - - - - - - - - - - - - - EXPOSURE TIME

.

x

TC104-1
1 CCO LINEAR IMAGE SENSOR

---------------+-1

II

WRCKU

aS

x

BBBBIIII

-'"'T't~2
1314 15 16 17 18 19
IP

1

IP
2

IP

3

Output Signal !OS) pulse identification: I "" Isolation pixel, IP

= Image pixel,

B = Black reference pixel. WR

= White reference

(/)

pixeL X = empty pixel.

r::::

o

"';:::'

FIGURE 1-0PERATING INPUT AND OUTPUT VOLTAGE WAVEFORMS

(.)

r::::
::J

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
(see Note 1)

LL

-0.3Vto30V
Amplifier drain voltage (VDD)
Transfer clock (XCK) voltage ..........
.. .. .. .. .. .. . .. ... . ..... ... ... ... . ..
- 25 V to 5 V
Transport clock (TCK) voltage .........................................
- 25 V to 5 V
Reset clock (RCK) voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 25 V to 5 V
White reference clock (WRCK) voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 0.3 V to 30 V
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 25°C to 125°C
Operating free-air temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NOTE 1: Voltage values are with respect to

.......
o

0.
0.

::J

--...

CJ)
( /)

o
(/)
r::::

Q)

Vss.

CJ)
Q)
0)

25°C (see Note 1)

recommended operating conditions at T A

MIN

NOM

MAX

13

14

15

V

3
-151

4

V

-14

5
-13

3
-151

4
-14

5
-13

V

3

4

V

-151

-14

5
-13

White reference alock high-level input voltage

13

14

15

V

VILIWR)

White reference clock low-level input voltage

6

7

IRCK

Reset clock frequency (output data rate)

8
8

V
MHz

VOO

Amplifier supply voltage

VIHIX)

Transfer clock

VILIX)

Transfer clock low-level input voltage

VI HIT)

Transport clock high-level input voltage

VILIT)

Transport clock low-level input voltage

VIHIR)

Reset clock high-level input voltage

VILIR)

Reset clock low-level input voltage

VIHIWR)

high~level

input voltage

UNIT

V

CO

E

o

()
()

V
V

tThe algebraic convention, where the most negative limit is designated as minimum, is used in this data sheet for clock voltage levels only.
NOTE 1: Voltage values are with respect to VSS'

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-69

TC104-1
3456 x 1 CCO LINEAR IMAGE SENSOR

electrical characteristics at 25°C free-air temperature,

TYP

MAX

Average

0.5

10

Low frequency component

0.5

5

4

20

PARAMETER

Dark-signal amplitude

MIN

Nonuniformity relative to
average of adjacent pixels
1.4

Sensitivity

Peak·to-peak
Adjacent pixels from

Output amplitude
variation (PRNU);

mV
nJlcm 2
nJlcm 2

400

300
600

500:1

1000:1
0.99999
400

mV

End-of-scan amplitude

200

mV

6
1

V
kll

I

Transfer gate

150

Transport gate

700

Reset gate

700

Amplifier reference voltage, VREF
Transfer gate

400

~

Capacitance to VSS

900

VI

o

;;

kll

7

en

"'C
"'C

mV

Charge transfer efficiency

Resistance to V S5

Transport gate
Reset gate

VI

1200

White reference amplitude

CD

...o
en
s::::

mV

0.3

3

CD

VI(,.Jlcm 2 )

0.6

Output offset (de) voltage
Output impedance

CC

mV

Equivalent exposure § of peak-to-peak noise

Dynamic range relative to peak-to-peak noise t

Q)

mV

Peak-to-peak noise
Saturation exposure §

c

5
60

10

alternate registers (imbalance)

Saturation output amplitude

(")
(")

2
30

UNIT

V
pF

16

Amplifier supply current

8

Total power dissipation

112

12

mA
mW

tOynamic range = saturation output amplltude!standard deviation peak-to-peak noise.
+Measured at 400 mV output amplitude with an f/2.8 lens.
§Exposure = intensity x time
'Test conditions are tRCK = 0.5 MHz, t exp = 10 ms, tungsten light source operating at color temperature of 2854 K with 2.0-mm-thick Fish-Schurman
HA-l1 lA-absorbing filter, and all operating voltages at nominal recommended values using the internal reference voltage.

"T1

s::

~
(")
r+

O·
~

VI

2-70

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TC104·1
3456 x 1 CCO LINEAR IMAGE SENSOR

timing requirements
MIN
Time delay from the transport clock rising

tTHXH

edge to the transfer clock rising edge.
Time delay from the transport clock rising edge

tTHWL

to the white reference clock falling edge.
Time delay from the transport clock rising

tTHRH

Pulse duration of the high state for the reset
clock.

0

50

ns

0

50

ns

40

ns

50

ns

edge to the transfer clock falling edge.
Time delay from the transport clock falling edge

tTLWH

UNITS

ns

Time delay from the transport clock falling

tTLXL

MAX

0

edge to the reset clock rising edge.

tw(RH)

NOM

0

to the white reference clock rising edge.

50

ns

Time delay from the transfer clock falling edge

to the rising edge of the next transport clock

tXLTH

50

ns

15
5

ns

•
(/j

pulse.
t,

Rise time fall clocks)

tf

Fall time (all clocks)

ns

I:

0

'';;

"
-.!

t--tTHXH

I

XCK

lj(

~~

:

j4-tTLXL-+!

~ ~tTHWL
1
WRCK- - - I :\

.

I

~

~
I

I

;(

I
I

I
I
~tTLWH

TCKJ,

I

"

Q,

en

--...
( /j

o

I
I

______~I-J I

oQ,
::::J

I

.. 'XL TH

r---~~~:::~~I-----------------------------

:

I

___________________________________

.......

(/j

I:

I
I

Q)

fr---------,\

~----------

en
Q)

en
CO

E

'THRH--t

o

RCK

u
u

os

FIGURE 2-0EVICE TIMING REOUIREMENTS

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

2·71

SUO!IOun~ IJoddns/sJosuas afiewl 0:>:>

N

..:..,

II

N

W-I

SN74LS626

+5V.

veo

A)

,

""'C")
c.n ...

SN7474

en

=

"'"

X':"
C")
C")

DEVICE
UNDER TEST

C
VDD

!::
z
m

VDD

11/21 TLD369

:to

::a

VCC+

:>0

82<1
-NIl

IRCK

VREFI

IXCK

fNT

82~

')0

V.O,

REF

,

"'D

i:
:to

s:m

m

~
:%I
~

-I

m

:%I

z

s:

m

~

~

C/I
C

iOr;;1
C~

............,.,

~C/l
z

,

:%I

IWRCK

m

s:m

200n.

VCC+

2

ui.ct

VSS
39D

VEE+
TLD369
Vcc+

r-

I
I

o

:%I

s:~

39n

-I

VEE!

0· 0

:2

."
TCK

0.1,._ F

I

-I

TEST POINTS

tThis counter chain counts transport clock periods to generate the exposure time interval. The data rate is twice the count rate.
tVee and VEE are the voltages that will produce the desired values of VIH and VIL' respectively, at the RCK, XCK, and TCK inputs.

FIGURE 3-0RIVER CIRCUIT FOR TESTING IMAGE SENSOR

OS

EOS

(5
2

c:J

en
m

Z

en
Q
::a

TC104·1

x 1 CCO LINEAR IMAGE SENSOR

3456

A

B

-.l

C

-'L._'--~

L

D ..J
E..J
F---V~----------------------------------------------texp Trigger

I

I

TCK

XCK

-----.J
I
-----.J

fI

I

en

RCK

WRCK

c:
o
.....
(.)
c:

- - - ,L..-_ _ _ _ _-J

FIGURE 4 -

:l

u..
.....
...

WAVEFORMS IN DRIVER CIRCUIT

TYPICAL CHARACTERISTICS
(In the circuit of Figure 3 with TA

= 25°C,

fRCK

=

0.5 MHz, t exp

=

10 ms, and all operating voltages at nominal recom-

CJ)

SENSITIVITY
vs
WAVELENGTH OF INCIDENT LIGHT
._- - ....:-

. c~ \ 000/ 0 - - - f--"70%=
eH\Oe\l

~-:
I---

4

0.4

>11

-:!F

"'"-1'\ -~

-l-~

.;:;

c

C

0.

'"

(fJ

~ p1rJ..

...- ~

0.1

o

0.4

0.1 - -

400

~ 0.04

\

,___ . 1.600

800

-

-

-_.._---

-~

~

r-

-

~

34%-

-~

0%~

~ r~r10%~

1200

0.01
400

Incident Wavelength - nm

Q)

CJ)
Q)

en
CO

E
Cl

u

\

100% quantum efficiency
is 0.80657A AIW

\

\
~

I
600

o
en
c:

U

fOTnr

\
1000

r-

-

:::: '""('

-

>

.;;

--

C\ua(ltU <"

...- ~ :-- ~

V
~

~

~

~

without filter

with
\
\HA-ll filter

en

RESPONSIV ITY
vs
WAVELENGTH OF INCIDENT LIGHT

.

~~

:l

--...

mended values, unless otherwise noted)

10

o
a.
a.

800

I
1000

1200

Incident Wavelength - nm
FIGURE 6

FIGURE 5

TEXAS •
INSTRUMENTS
POST OfFICE BOX 655303 • DALLAS, TEXAS 75265

2·73

TC104·1
3456 x 1 CCD LINEAR IMAGE SENSOR
TYPICAL CHARACTERISTICS
(In the circuit ot Figure 3 with T A = 25°C. tRCK
mended values. unless otherwise noted)

= 0.5 MHz. texp = 10 ms. and all operating voltages at nominal recom-

MODULATION TRANSFER FUNCTION
vs
SPATIAL FREQUENCY

MODULATION TRANSFER FUNCTION
vs
SPATIAL FREQUENCY

1.0 r-~=---,-----.---,----,
.:

.:

on0

0
.;:;

.: 0.8
:0
u.
0

.:
::l
u.
~

.l!!

-t;

~

.=.:

II ..
~

~ 0.6

.:

0
.;:;

("')
("')

0
.;:;

"3'"

"3
"C

0

2854 K Light

:E

c

I

u.

u.. 0.2
f:;;:

:E

CC

0

CD

0.2
0.4
0.6
0.8
Normalized Spatial Frequency

0

en
CD

o

::l

en
o
..,.
en

e!:n

28.0
37.4
18.7
9.3
Spatial Frequency - cycles/mm

0.2
0.4
0.6
0.8
Normalized Spatial Frequency
I

E
I
"iii

~

.:

V

'"

Cij

..

-t::
0

'"

3
"0

V

~vVv
ov

>

~

"C

j!l
~

.

¥

a

~'?-/

-....

40

rJ)

0

'"
E

..
.

/

V

V

VV

0.01
0.1

20
Ee = 2.5 iJ.W/cm2

~

V

0-

0

10
texp - Exposure Time - ms

100

0

FIGURE 9

2-74

2

4
6
8
t exp - Exposure Time - ms
FIGURE 10

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

10

TCt04·t
3456 x t CCO LINEAR IMAGE

r-::

S~NSOR

MECHANICAL DATA
7,62(0300)
7,37 (0290)

I

0,81 10.032) R
.
NOM

::~~ g:~:~l::l

242322212019181716151413
~~

./,IJi,

~I

J

No.1 SENSOR ELEMENT

'ilI

L ----- 1

-- -- --- -

-

-

CL

_J

1-.14,2503104 1:7)6 7 8 9 1011 12
4.24 10.167)

9

III

c:

...

.2

15.8010.622)
15.29 (0.602)

15.19 (0.598)
14.78 (0.582)

CJ

4.19 (0.165)
3.07 (0.121)

l

--,

c:

2,97 10.117)
2 36 (0093)
r-1.19 10.047) MAX

+' .

::l

...

U.

...
Ir-----1~--SEATINGPLANE~~
---il-- g:~~ !~:~~~:
fl1- ..jI-l -11- ~:~: l~:~~~: --...
o

U

c.

,

381 (0150)
3:05 (0: 120)

C.
::l

CJ)

I

2.54 (0.100) NOM

I II

o

8,79 (0.346)
8,48 (0,334)

NOTE:

III

The distance between the top surface of the window and the surface of the sensor is nominally 0,89 (0.035). This is determined by observing the
vertical motion of a microscope focused first at one plane, then at the other.

c:
Q)

CJ)
Q)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

C'l

ca

E

o
u

u

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-75

II
(")
(")

o

3
Q)
c.c
CD

en
CD
~

rn

o
...

--cen
rn

't:I
't:I

o

...
.....

2-76

1C106-1
2592 )( 1 CCO LINEAR IMAGE SENSOR
02992. SEPTEMBER 1986-REVISEO JULY 1989

•

2592 x 1 Sensor Element Organization

•

Virtual-Phase N-Channel Silicon MOS
Technology

•

High Quantum Efficiency

•

Enhanced Blue Response

•

Output Signal Approximately 0.6 Volt
Peak-to-Peak

TC106-l ... DUAL·IN·LlNE PACKAGE
(TOP VIEW)

VSS
VSS

VREF

as
Voo

EOS

RCK
NC
NC
NC
NC
NC
VSS
TCK
XCK

VSS
INT REF

•

Dynamic Range Relative to Peak-to-Peak
Noise Typically 1000: 1

•

End-of-Scan Signal

•

Internal Black and White References

•

Simple and Stable Operation

•

Optional Feature:
Internal Reference Voltage

NC
NC
NC
NC
VSS
TCK
WRCK

fIl

c:

o

....
(.)

c:

NC - No internal connection

description

::l
LL

.......

The TC106-1. a 2592-element CCD line image sensor. functions in high-resolution image scanning
applications such as document reading and optical character recognition. The TC 106-1 incorporates virtualphase MOS technology. which provides simplified operation and high reliability. The 2592 sensor elements
provide 300 points-per-inch resolution across 8.5 inches.

o

0.
0.
::l

en

--...

This device is supplied in a 24-pin dual-in-line ceramic side-braze package designed for insertion in mountinghole rows on 1 5.2-mm (0.600-inch) centers. The glass window may be cleaned by wiping with a cotton
swab soaked in alcohol.

f Il

o

fIl

c:
Q)

Caution. These devices have limited built-in gate protection. The leads should be shorted together
or the device placed in conductive form during storage or handling to prevent electrostatic damage
to the MOS gates. Avoid shorting either OS or EOS to VSS during operation to prevent damage to
the amplifiers.

en
Q)

O'l
ctI

virtual phase technology

E

This patented design results in simplified clocking circuits. reduced noise. and greater light sensitivity.
The virtual phase utilizes a junction-gate region at the substrate dc potential. This accomplishes the same
gating and transport function as a separate gate electrode requiring multiple layers and multiple process
steps common in other device designs. The resulting simplicity of process and ease of operation will increase
performance and reliability for the user.

PRODucnOI DATA d.......1s •••t.in information
.....nt •• of p.blication date. PnuIucts eanform to
spacificatio•• par ttuo tor'"' of T.... I.str....nt.

=i~·{:~:ra

=::i:r :'i'=':A.~

not

Copyright

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALlAS. TEXAS 76266

c

(J
(J

© 1989. Texas Instruments Incorporated

2-77

1C106·1
2592 x 1 CCO LINEAR IMAGE SENSOR
functional block diagram
TCK

C:::::::::::::~::QD~AER!K1C~U~R~RliE~NBTJB~UllF~F1E]RQC~C~DC:::::::::::::::}--------r------OVDD
INT
REF

os
VDD

•

VREF
EOS

(")
(")

c

WRCK

XCK

I

Vss

TCK

RCK

SUBSTRATE AND
LIGHT SHIELD

3Q)

W
B
I
N



:lei
"'C

TLD369
VCc*

~

COUNTER
SN74LS193
(LSBI
0.1,uF

B

TCK

39!l

'1
VEE*

<3> ... CD TEST POINTS
t This counter chain counts transport clock periods to generate the exposure time interval. The data rate is twice the count rate.
*VCC and VEE are the voltages that will produce the desired values of VIH and VIL, respectively, at the RCK, XCK, and TCK inputs.

FIGURE 3, DRIVER CIRCUIT FOR TESTING IMAGE SENSOR

I

·"r

OS EOS

I

;,J

m

s:

m
Z
-I

2
"T1
0

;,J

s:»
-I

0
Z

i

>
~
m

en
m

z

en

=
:lei

TC106·l
2592 x 1 CCO LINEAR IMAGE SENSOR

A

B

---.J,

L

I

c"1 :
o .J
E.J
I

I
I

----v~-------------------------------------------------

F
t exp Trigger

1
I

XCK

-.J
I

-+:,__~r--lL________~r__l~________~r__l~________~r__l~________~~

RCK ____

II)

c::

o

I

....

WRCK ------,~.__________---J

(.)

c::

::l

FIGURE 4. WAVEFORMS IN DRIVER CIRCUIT

U.

.......
o

TYPICAL CHARACTERISTICS
(In the circuit of Figure 3 with TA = 25°C, fRCK = 0.5 MHz, t exp
nominal recommended values, unless otherwise noted)

SENSITIVITY
vs
WAVELENGTH OF INCIDENT LIGHT

10

=

0.
0.
::l

10 ms, and all operating voltages at

en

--...
I I)

o
II)

RESPONSIVITY
vs
WAVELENGTH OF INCIDENT LIGHT

c::

Q)

(J)
Q)

Cl
CO

4

,,~

~

"r-.,

'-

1\

E

1'\ without filter

with

HA-11 filter

\

~

o
()

«
I

1'...

~
.:;

()

'iii
c

o

..,

Q.

II:

\

0.04

~:::7"!-"=~--I---+-+-f--l'r-t---

\
0.1
400

1\
600

for A in I'm.

1\
800

1000

1200

0.01 L..--1_....L_..l-_L..--1_....L_..l----l
400
1000
1200
600
800

Incident Wavelength-nm

Incident Wavelength-nm

FIGURE 5

FIGURE 6

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-85

TC106·1
2592 x 1 CCO LINEAR IMAGE SENSOR
TYPICAL CHARACTERISTICS
(In the circuit of Figure 3 with T A = 25°C, fRCK = 0.5 MHz, texp
nominal recommended values, unless otherwise noted)

MODULATION TRANSFER FUNCTION
vs
SPATIAL FREQUENCY

MODULATION TRANSFER FUNCTION
vs
SPATIAL FREQUENCY
1.0

e
.2
ti
e

III
n
n

e

...,.

...

~e

,:!

l-

l-

~ 0.6

:!!

:!!

..,"
e

e

.~ 0.4 f---+---+----I----+----I
'3
-g
Monochromatic Light

"C

"

...I

l-

cc

2854 K Light

:;

.L

0.2

I-

::i:

CD

en

CD

::s

.

f----+---f---+--+--""-...--l

"

::i:

3Q)

"-,""",~------r---.---,------,

'g",. 0.8 f---+---+-----'''-.c-l-'''''-~-+----I

-3

c

10 ms, and all operating voltages at

0.2

f----+---f---+--+---l

::i:

0
0

0.2
0.4
0.6
0.8
Normalizad Spatial Frequency

1.0

0

9.3
18.7
28.0
37.4
Spatial Frequency-cycles!mm

46.7

C/l

0.2
0.4
0.6
0.8
Normalized Spatial Frequency
I

0

--enc:
C/l

o

FIGURE 7

FIGURE 8

.

0

....
"T1

c:
::s
(')

....
o·
::J
C/l

2-86

I

9.3
18.7
28.0
37.4
Spatial Frequency - cycles!mm

'0
'0

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1.0

46.7

TC1D6·1
2592 x 1 CCO LINEAR IMAGE SENSOR
TYPICAL CHARACTERISTICS
(In the circuit of Figure 3 with T A = 25°C, fRCK = 0.5 MHz, texp
nominal recommended values, unless otherwise noted)

AVERAGE AND LOW FREQUENCY
DARK SIGNAL
vs
EXPOSURE TIME

10 ms, and all operating voltages at

OUTPUT SIGNAL VOLTAGE RELATIVE TO
SATURATED OUTPUT VOLTAGE
vs
EXPOSURE TIME
# 100

10

.
I

'"
s

:!

IV V

~

11<'" oV
/
.; ~'" oV
~\>: .; ",,'" oV
~\>: ,
,,'" oV~

>

E

I
iO
I:

/

iii

/

'"

""~

o

>

0.1

Co

S 60

0

CI)

"C

~\>:~\>:.; .; '"
/
~~/
/

!
I!!

a

-.,


0.8

~

.~

a; 0.6

1
0.7



2

0.2

1.2

~ 1.0

4

0.1

~ IF

<{

/

:l

U

1.6

0",

VCE 5V
TA 25°C
See Note 5

~

~

c:
~

V
0.2

I'::t-~

u

B 0.2

V
0.4

0.4

0.7 1

4

2

7 10

~
o
u

o
-75 -50 -25

IF-Forward Current-rnA

o

25

50

75

100

TA-Free·Air Ternperature-oC

FIGURE 7

FIGURE 8

125

II
...o

Ul

...
C'O

(5

-...

Ul

Ul

~
C.
::I

o
o
o
c.

...
o

NOTE 5: This parameter was measured using pulse techniques. tw

=

100 J.1.s, duty cycle

~

1%.

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

3-7

o

...o

"0
(")

o

c:::

"0

CD
....
C/)

C/)

...o2Q)

....

C/)

3-8

4N22. 4N23. 4N24
OPTOCOUPLERS
01424, AUGUST 1973-REVISED APRIL 1987

JEDEC REGISTERED DEVICES
GALLIUM ARSENIDE DIODE INFRARED SOURCE OPTICALLY COUPLED
TO A HIGH-GAIN N-P-N SILICON PHOTOTRANSISTOR
JAN, JAN TX, JAN TXV Versions Available

•
•

Base Lead Provided for Conventional Transistor Biasing

•

High Overall Current Gain ... 1.5 Typ (4N24)

•

High-Gain, High-Voltage Transistor ... hFE = 700 Typ (4N24),
V(BR)CEO = 35 V MIN

•

High-Voltage Electrical Isolation ... 1-kVRating

•

Stable over Wide Temperature Range

*mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

r

AU lEADS INSULATED FROM CASE

470 0.185) ~

6 lEADS

-, r
{ot, [ ]

0,483 ~O.019) CIA

3,94 0.156

1.02~~O:0l

••51

NC-No internal connection

'9.40.!.370I DIA

7,74 (0.3061

L
NOTE:

i..
a.

0,406 (0.016)

8,51 (0.335)

~ -.l

,j

+--~"*

,

12.7{O....
MIN

-...r.n

..
o

~

o

r.n

-...
r.n

Leads having maximum diameter shall be within 0,18 mm (C.007 inch) of true position relative

to a maximum-width tab when measured in the gaging plane between 1,371 mm (0.054 inch)
and 1,397 mm (0.055 inch) below the seating plane.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

~

c..
:J
o
o

..o
o

c..

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-Output Voltage .. _ .. _ ..... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . ±1 kV
Collector-Base Voltage . . . . . . . . . • . . . . . . . • . . . . . • . . . . . . . . . . . . . _ . . . . . . . . . . . . . . . . . . . . . . 35 V
Collector-Emitter Voltage ... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . _ ..... _ ........ _ 35 V
Emitter-Base Voltage ...... _ ... _ . . . . . . . . . . . • . . _ . • . . . . . . . . . . . . . . . . . . . . . . . • . _ ........ 4 V
Input Diode Reverse Voltage .•... _ ........ _ . . . . . • . . . . . . . . . . . _ . . . . . . . . . . . . . . . _ ........ 2 V
Input Diode Continuous Forward Current at (or below) 65°C Free-Air Temperature (See Note 1) _ .... _ .. 40 mA
Continuous Collector Current . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . • . . . . . . . . _ .. 50 mA
Peak Diode Current (See Note 2) ... _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1A
Continuous Transistor Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 3) ......... 300 mW
Storage Temperature Range • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _55° C to 1250 C
Lead Temperature 1,6 mm (1/16 Inch) from Case for 10 Seconds . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . 240°C
NOTES:

1. Derate linearly to 12S o C free-air temperature at the rate of 0.67 mAle.
2. This value applies for ~w oS; 1 /J.s, PRR ~ 300 Pps.
°
3. Derate linearly to 125 C free-air temperature at the rate of 3 mW/ C.

·JEDEC registered data. This data sheet contains all applicable JEDEC registered data in effect at the time of publication.

PRODUCTION DATA documonts contain information
current IS of publication date. Products conform to
specificatiDns per the terms of rexas Instruments

=:~~~lr::I~"'i ~~:~:~i:f lI'O::~:::t:~~ not

Copyright © 1983, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-9

4N22, 4N23, 4N24
OPTOCOUPLERS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)
PARAMETER
V(BR)CBO
V(BR)CEO
V(BR)EBO

Collector-Base

IC" 100 "A,

Breakdown Voltage

IF" 0

Collector-Emitter
Breakdown Voltage

IC" 1 mA,

Emitter-Base

IE = 1001'A,

Breakdown Voltage

IF" 0

Input Diode Static
IR

TEST CONDITIONS

Reverse Current

IE" 0,
IB = 0,

IF = 0

•
o
't:J
o
(')
o
r::

VF

...
o
...

tn

On-State

IF=10mA,

TA"-55"C

Collector Current

VCE = 5 V,

IB = 0,

VCE=5V,

IB = 0,

IF=10mA,

TA = 100"C

VCE - 20 V,

IB - 0,

Off·Slale

IF = 0

Collector Current

VCE = 20V,

IB = 0,

IF = 0,

TA=100°C

IF = 10mA.

TA =-55°C

Input Diode Static
Forward Voltage

35

35

V

35

35

35

V

4

4

4

V

IF=10mA
IF-1OmA,

TA-lOO"C

IC - 2.5 mA,

IB - 0,

Collector-Emitter

VCE(,al)

Stauration Voltage

IC = 5 mA,

100
0.2

0.4

1

2.5

4

6

4

1

8

10

15

4

2.5
100

100

100

100

1

1.5

1

0.8

1.3

0.7

1.2

Cio

Vin-out

= ±1

Input-ta-Output

Vin-out

= 0,

CapaCitance

See Note 4

Internal Resistance

See Note 5

100

I'A

1.5

0.8

1.3

0.8

1.3

0.7

1.2

0.7

1.2

V

0.3
0.3

V

IB = 0,

kyo

nA

1

0.3

IF = 20mA

'10

100

1.5

IF=20mA

I nput-ta-Output

I'A

mA
2.5

IB = 0,

Ic=10mA,

100

0.15

IF = 20mA

;r+

IB = 0,

IF = 10mA

't:J
Ci)
tn

rn
o

VCE=5V,

TYP MAX

UNIT

35

100
IB = 0,

4N24

TYP MAX MIN

VR= 2V

IF = 2 mA

IC(off)

4N23

TYP MAX MIN

IC= 0,

VCE = 5 V,

IC(on)

4N22
MIN

10 11

lOll

f = 1 MHz.

n

10'1

5

5

5

pF

*switching characteristics at 25° C free-air temperature
PARAMETER

TEST CONDITIONS

I,

Rise Time

VCC= 10V,

If

Fall Time

RL = 100

n,

4N22
MIN

4N23

TYP MAX MIN

4N24

TYP MAX MIN

TYP MAX

UNIT

IF(on) = 10 mA,

15

15

20

1"

See Figure 1

15

15

20

1"

NOTE 4: These parameters are measured between all the input diode leads shorted together and all the phototransistor leads shorted together,

*JEDEC registered data

3-10

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, -':EXAS 75265

4N22, 4N23, 4N24
OPTOCOUPLERS
*PARAMETER MEASUREMENT INFORMATION
INPUT

r---r--ifiIt--~--'\""'-o

~

0--1

700 !!
IN P lJ T

I

I
..... ton

'r-f-~--oOUTPUT

Adjust amplitude of input
pulse for IF(on) ~ 10 rnA

(See NOle 1>1

--I

I+l o
OUTPUT

ff'"

I

'f~
I
I

~90-'y'-,--~~--~9~0"~k~

:

I
I
I

TEST CIRCUIT
NOTES:

VOLTAGE WAVEFORMS

a. The input waveform is supplied by a generator with the following characteristics: Zout '" 50

S~, tr;e:;; 15 ns, tw == 100 iJ,s, duty

cycle""" 1 %.
b. Waveforms are monitored on an oscilloscope with the following characteristics: tr >( 12 n5, Rin> MS1, Gin 0>( 20 pF.

*JEOEC registered data

FIGURE l-SWITCHING TIMES

TYPICAL CHARACTERISTICS
4N22

4N23

COLLECTOR CURRENT

COLLECTOR CURRENT

COLLECTOR-EMITTER VOLTAGE

COLLECTOR·EMITTER VOLTAGE
50r.'-B-O~0~----~---'-----"--~

TAo 25'C

40 I-"-'~':""i--=-----f

E

...r.tl

< l.~ffi(OOi9j

--/

~A5

~

~~864.--JE...~~
" '.......

o
en

-...

0711 (00281

I

en

Leads having maximum diameter shall be within 0,18 mm (0.007 inch) of true position relative
to a maximum-width tab when measured in the gaging plane between 1,371 mm (0.054 inch)

~

and 1,397 mm (0.055 inch) below the seating plane.

a.
:::::s
o(.)
....o

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

* absolute

maximum ratings at 25°C free-air temperature (unless otherwise noted)

± 1 kV
Input-to-output voltage ....
35 V
Collector-base voltage.
35 V
Collector-emitter voltage
4V
Emitter-base voltage ..
. 2 V
Input diode reverse voltage.
Input diode continuous forward current at (or below) 65°C free-air temperature
40 mA
(see Note 1) . . ....... .
50 mA
Continuous collector current ......... .
.. 1 A
Peak diode current (see Note 2) ..... .
Continuous transistor power dissipation at (or below) 25°C free-air temperature
.. 300 mW
(see Note 3) . . . . . .
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . .
-55°C to 125°C
-55°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1(16 inch) from case for 10 seconds ............. . . . . . . . .. 240°C

0-

o

* JEDEC registered data. This data sheet contains all applicable JEDEC registered data in effect at the time of publication.
NOTES: 1. Derate linearly to 125°C free-air temperature at the rate of 0.67 mA/oC.
2. This value applies for tw :s: 1 J,tS, PRR :s; 300 pps.
3. Derate linearly to 125°C free-air temperature at the rate of 3 mW/oC.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments

~~~~~:~~i~8{::1~1~ ~!:~~~ti:r ~Io::;:~:t:r~~s

not

1!1

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright © 1987, Texas Instruments Incorporated

3-13

4N22A, 4N23A, 4N24A
OPTOCOUPLERS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

Collector-base
IC - 100
VIBR)CBO breakdown voltage IF = 0

Collector-emitter

IC - 1 rnA,

VIBR)CEO breakdown voltage IF
Emitter-base
IE
VIBR)EBO breakdown voltage IF
IR

IClon)

Input diode static

reverse current

VR

=0
= 100 ~A,
=0
=

0

"0
r+
0

n

IB

On-state

VCE = 5 V,
IF = 10 rnA,

= 0,
TA = -55°C

collector current

VCE - 5 V,

IB - 0,

=

VCE = 20 V,
IF = 0

collector current

VCE

Input diode static

forward voltage

r::

-

VCElsat)

Collector-emitter
saturation voltage

= 10 rnA,
= 2.5 rnA,

IC = 5 rnA,
IF = 20 rnA
IC

en

IF

0

or
...0
en

V,

IC
IF = 20 rnA

"0

en

= 20

= 0,
IF = 10 rnA,
IF - 10 rnA
IF

= 10 rnA,
= 20 rnA

Input-ta-output

'10

r+

Cio

internal resistance

= 0,

IB

Vin-out

=

4N23A
TYP MAX

IB
TA
IB

= 0,
= 100°C
= 0,

= 0,
TA = 100°C
TA = -55°C

IB

= 0,

IB

= 0,

Input-ta-output

Vin-out - 0,

See Note 4

f

=

UNIT

35

V

35

35

35

V

4

4

4

V

100

100

0.15

0.2

0.4

1

2.5

4

~A

rnA

6

4

1

10

8

2.5

4
100

100
100

15

100

100

nA

100

~A

1

1.5

1

1.5

1

1.5

0.8
0.7

1.3
1.2

0.8
0.7

1.3
1.2

0.8
0.7

1.3
1.2

V

0.3
0.3

V
0.3

± 1 kV, See Note 4

C8D8citance

4N24A
TYP MAX

35

IB

TA = 100°C
IB = 0,

MIN

35

2.5

10 rnA

Off-state

0

...en

= 0,

IC

MIN

100

IF
VF

IB - 0,

4N22A
TYP MAX

2 V

VCE = 5 V,
IF = 10 rnA,

ICloft)

IE - 0,

VCE = 5 V,
IF = 2 rnA

IF

•

~A,

MIN

1011

1011

1 MHz,

5

1011

0
5

5

pF

*switching characteristics at 25°C free-air temperature
PARAMETER
tr

Rise time

tf

Fall time

TEST CONDITIONS

MIN

4N22A
TYP MAX

VCC = 10 V, IFlon) = lOrnA,
RL = 1000, See Figure 1

MIN

4N23A
TYP MAX

MIN

4N24A
TYP MAX

UNIT

15

15

20

~

15

15

20

~

NOTE 4: These parameters are measured between all the input diode leads shorted together and all the phototransistor leads shorted together .
• JEDEC registered data

3-14

TEXAS •

INSTRUM~NTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4N22A, 4N23A, 4N24A
OPTOCOUPLERS
*PARAMETER MEASUREMENT INFORMATION
INPUT
r-----~--_M

I
~Ion

__--~~~~INPUT

r-+-+--- OUTPUT

Adjust amplitude of input

(See Nole Bl

-=-

=

100

I

~IOII

~Ir
1+-*-11
I ~__~O~U~T~PU~T~~~I
I
I
90%
90%
I

pulse for IF(on) """ 1 0 rnA

RL

L

0-1

200 II

{l

VCC - 10 V

I

I

I

I

TEST CIRCUIT

VOLTAGE WAVEFORMS

A. The input waveform is supplied by a generator with the following characteristics: Zout = 50 n, tr :s; 15 nSf tw = 100 its,
duty cycle ~ 1 %.
B. Waveforms are monitored on an oscilloscope with the following characteristics: tr :s; 12 n5 , Rin ~ 1 MO, Cin :s; 20 pF.
* JEDEC registered data

NOTES:

TYPICAL CHARACTERISTICS
4N22A

4N23A

COLLECTOR CURRENT

COLLECTOR CURRENT

'"

'"

COLLECTOR·EMITTER VOLTAGE

50

"~

E 40

~

u

~

(;

u

30

20

I

5?
10

I
I

18 "'0
TA '" 2SoC
See Note 5

1. 40 ",p- - - - -

/'
V
~
r-

~I

1~':lO"'P-_ _ _

---r

-

o '----__.1
o

I

If'20~

I

I

.--

40

~
~

....--

~

30

u

-

j

20

(;
U
I

~

10

I

10

15

I

18 ;0
TA '" 2S"C
See Note S

+

O~"

~

_ _ _ If':lO"'P- - -

-P--l

-----

r-

IF :olomA

I

4N24A
20

25

0
10

COLLECTOR CURRENT

VCE- Collector-Emitter Voltage- V

If·20"'~

(I)

I

----

I
I
15

20

Vee-Collector-Emitter Voltage-V

"

100

---

IF"" lomA

COLLECTOR-EMITTER VOLTAGE

FIGURE 2

...

COLLECTOR·EMITTER VOLTAGE

50

I
I

...
o

CO

"0
(I)

-...
( I)

Q)

Q.
::::I

o(,)

25

...c.o

o

FIGURE 3
IS'" 0

TA '" 25"CSee Note 5

"E
~

~

BO

60

u

~

'ii

40

u

I

5?
20

t:=l===f==r~-T"'--1

VCE~Collector-Emitter

Voltage-V

FIGURE 4
NOTE 5: This parameter was measured using pulse techniques, tw = 100 P.s, duty cycle

TEXAS •
INSTRUMENTS
P0'3T OFFICE BO')( 655303 • DALLAS, TEXAS 75265

1%.

3-15

4N22A. 4N23A. 4N24A
OPTOCOUPLERS
TYPICAL CHARACTERISTICS
NORMALIZED ON·STATE COLLECTOR CURRENTt
INPUT DIODE FORWARD CONDUCTION CHARACTERISTICS

FREE·AIR TEMPERATURE

40

~ 1.6

.,

TA = 25°C

VCE = 5 V
.l!
u 1.4 -IB=O

35

~

«

E 30
I

(]

~
u

]

E 25

11 20

IF"" lOmA

1.2
1.0

-

V

"0 0.8

.........

r--...,
...... r----..

u

j

15

~ 0.6

l-

10

a

~

]
..
§

)
o0

0.2

0

Z

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.4

-75

-50 -25

VF-Forward Voltage-V

25

50

75

100 125

TA-free-Air Temperature-DC
t Normalized to value at T A'" 25° C

FIGURE 5

FIGURE 6

PHOTOTRANSISTOR COLLECTOR CURRENT
INPUT·DIODE FORWARD CURRENT
100

o
"C

!

'VCE=5V

: i .. =-25°C

1

'/1'

r+

o
n
o
c:

"C

Ci)

"'"

UI
UI

0.01

o

0.1

0.4

Dr
r+

40

10

100

IF-Input-Diode Forward Current-mA

o

OFF·STATE COLLECTOR CURRENT

UI

FREE·AIR TEMPERATURE

"'"

-

10 000

t

':!

1000
100

]

10

0.1

~
Ii

0.01

~";'Not 6

/

/

~
I

'"

LOAD RESISTANCE
fVCC 10 V
[I
lOrnA
FT, - 25°C

/V

a

;3

is

AVERAGE SWITCHING TIME

1000

I
I
~ ~BC!,;20V
IF'"

u

FIGURE 7

1/

1/

1/
:§\

+

o

N

4

III

,9
0.00 1
--50

-25

0
25
50
75
100
T A-free-Air Temperature- °c

1
10

125

111111
40

100

400

FIGURE 8

FIGURE 9

NOTE 6: This parameter was measured in the test circuit of Figure 1 with RL varied between 40 {} and 10 kG.

3·16

1k

RL -Load Resistance-Sl

TEXAS •
INSTRUMENTS
POST OFFICE BOX 656303 • DALLAS. TEXAS 75265

4k

10k

4N22. 4N22A. 4N23. 4N23A. 4N24. 4N24A
JAN. JANTX. AND JANTXV PROCESSING AND LOT ACCEPTANCE
This processing applies only to optocouplers ordered under part numbers shown below:

JAN4N22,JAN4N22A, JANTX4N22, JANTX4N22A, JANTXV4N22, JANTXV4N22A
JAN4N23, JAN4N23A, JANTX4N23,JANTX4N23A, JANTXV4N23, JANTXV4N23A
JAN4N24,JAN4N24A,JANTX4N24,JANTX4N24A,JANTXV4N24,JANTXV4N24A

TEST

MIL·STD·750

(PER MIL·S·19500/486A)

TEST METHOD

JAN

JANTX

JANTXV

100% Processing

2072

I nternal visual

X

-

X

X

Temperature cycle: -5SoC to 12SoC, 10 cycles

1051

X

X

Constant acceleration: 20,000 G, Y 1 axis

2006

X

X

High-temperature reverse bias: IF = 0, T A = 12SuC, VeB = 20 V, t = 96 h

1039

X

X

Power burn-in: IF = 40 rnA, PD == 275

1039

X

X

Hermetic seal, fine

1071 Condo G or H

X

X

Hermetic seal, gross

1071 Condo C or D

X

X

2071

X

X

Storage: TA

== 12SoC, t

= 72 h

±

25 mW, t = 168 h

External visual

Product Acceptance
Group A

2071

X

X

X

Electrical: T A ~ 25"C, LTPD is 7 for JAN, 5 for JANTX and JANTXV

as needed

X

X

X

Electrical: T A ~ 100"C, L TPD is 10 for JAN, 7 for JANTX and JANTXV

as needed

X

X

X

Electrical: T A ~ -55"C, L TPD is 10 for JAN, 7 for JANTX and JANTXV

as needed

X

X

X

External visual: L TPD is 10 for JAN, 7 for JANTX and JANTXV

•
...o

(/)

+'"

ctl

(5
Group B·l: LTPD

2026

X

X

X

Thermal shock

1051 Condo B

X

X

X

Thermal shock

1056 Condo A

X

X

X

Hermetic seal, fine

1071 Condo G or H

X

X

X

Hermetic seal, gross

1071 Condo C or D

X

X

X

Moisture resistance

1021

X

X

X

Shock: 1500 G

2016

X

X

X

Vibration: 50 G

2056

X

X

X

Acceleration: 30,000 G

2006

X

X

X

1016

X

X

X

1032

X

X

X

1027

X

X

X

Group B·2: LTPD

Group B·3: LTPD

~

~

-...

(/)

15

~

Solderability

10

(/)

~

c.
~

o
(.)
o
+'"

C.

o

20

Isolation voltage: VIC == 150 V, TA = 125

0.4

~

(5

u
I
!:?

0.1
0.04
/

TA = _55°C

. 'J

I

0.01
0.1

0.4

10

4

40

100

IF-Forward Current-mA

VF-Forward Voltage-V

"C
r+
0

/

10

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2,0

0

18

~:J

TA = 70°C

20

E

«
E
.!.c

I

0
L.L.

~ VCE 10 V

r,ll

III
I
III
I /
// /

100

~

:;

40

HI

TA = 25°C

«
E
.!.c

INPUT·DIODE FORWARD CURRENT

FIGURE 6

FIGURE 5

(')

0

s:::

"C

60

Ii

50

«
E
.!.c
~

:;

u

0
t>

~

(5

u

30

Cl

\~

rr

,0"

\0'
\''<>0

o mA-f---'~~€
T I.
'~~/SSl

r--T

I

-!

N

1.6
VCE=10V
18 = 0
IF = 10 mA
1.2 r-See Note 8

~ 1.4
I-

10

.'"
:J

~

20 I--IF~ 15mA

--

--

--

--

P..
40

oU

I

b

\~

0

...
til

FREE·AIR TEMPERATURE

COLLECTOR·EMITTER VOLTAGE

til

0

vs

vs

til

iii"
r+

RELATIVE ON·STATE COLLECTOR CURRENT

COLLECTOR CURRENT

CD
...

>
.9

1.0

.~

.

0.8

a:

.

0.6

:J

0.4

Q;

/

c

~

-

r-----.- ........

V

U

10

~

~

IF- 5 mA

0.2

~

o

o

2

4

6

8

10

12

14

16

18

20

;3

0
-75

-50 -25

VCE-Coliector·Emitter Voltage-V

0

3-24

50

FIGURE 8

FIGURE 7
NOTES:

25

7. Pulse operation of input diode is required for operation beyond limits shown by dotted Ilnes.
8. These parameters were measured using pulse techniques. tw = 1 ms, duty cycle "'- 2%.

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 855303 • DAUAS. TeXAS 75265

75

TA-Free·Air Temperature-oC

100

125

4N47. 4N48. 4N49
OPTOCOUPLERS
02413, FEBRUARY 1978

~

REVISED SEPTEMBER 1981

GALLIUM ARSENIDE DIODE INFRARED SOURCE OPTICALLY COUPLED
TO A HIGH-GAIN N-P-N SILICON PHOTOTRANSISTOR
•

JAN, JANTX, JANTXV Versions Available

•

Very High Current Transfer Ratio ... 500% Typical (4N49)

•

Photon Coupling for Isolator Applications

•

Base Lead Provided for Conventional Transistor Biasing

•

High-Speed Photodiode-Mode Operation

•

High-Voltage Electrical Isolation ... 1-kV Rating

•

Stable over Wide Temperature Range

•

Hermetically Sealed Package

description
This optocoupler features an improved current transfer ratio (CTR) at an input of one milliampere making
it ideal for coupling with isolation from low-output MaS and CMOS devices to power devices or other
systems. Typical applications include motor-speed controls, numeric systems, meters, and instrumentation.

II
-

*mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE
4.70{O.185I
3,94 (O.155)

M
-, r

1,O~~:W1

'.51

~

(Ot..

7,14(0.305)

L

(IJ

0,406 (O.Ol6)

".4"!'3701

8,51 (0.335)

+---~'-4-

l..-12.7(O.500Ij
MIN

a.
b.

....«J

r

0IA

~~

NOTES:

...o

6 lEADS
rO.483 10.0191 D1A

(5

-...

(IJ

( IJ

CI)

c..
:::s

All linear dimensions are in millimeters and parenthetically in inches.
Leads having maximum diameter shall be within 0,18 mm (0.007 inches) of true position

relative to a maximum-width tab when measured in the gaging plane between 1,371 mm
(0.054 inches) and 1,397 mm (0.055 inches) below the seating plan~.

----------~------------~
*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-Output Voltage .
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Input Diode Reverse Voltage
Input Diode Continuous Forward Current at (or below) 65°C Free-Air Temperature (See Note 1)
Continuous Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . .
..........,.............
Peak Diode Current (See Note 2)
Continuous Transistor Power Dissipation at (or below) 25°C Free·Air Temperature (See Note 3)
Operating Free-Air Temperature Range . . . . . . . . . .
Storage Temperature Range . . . . . .
...,...
Lead Temperature 1/16 Inch (1.6 mm) from Case for 10 Seconds
NOTES.:

o
....o"

0..

o

±1 kV
40V
45V
. 7V

. 2V
40mA
50mA
. .1 A
300mW
_55°C to 125°C
-55°C to 125°C
240°C

1. Derate linearly to 125°C free-air temperature at the rate of 0.67 mA/C.
2. This values applies for tw

~

1 j.J.s, P R R ,

300 pps.

3. Derate linearly to 125°C free-air temperature at the rate of 3 mW/C .
• JEDEC registered data. This data sheet contains all applicable JEDEC registered data in effect at the time of publication.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Taxas Instruments

:~~=~~i~ar::,~1i ~:~~~ti:: :1~O::~:::::t:~~S not

Copyright © 1981, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-25

4N41. 4N48. 4N49
OPTOCOUPLERS

*electrical characteristics at 25°C free-air temperature (unless otherwise noted)
PARAMETER
VI8RIC80
VI8RICEO
VI8RIESO
IR

Collector-Base

IC - 100 "A,

Breakdown Voltage

IF = 0

Collector-Emitter

IC= 1 rnA,

Breakdown Voltage

IF

Emitter-Base

Ie = 100 "A,
IF = 0

Breakdown Voltage
Input Diode Static
Reverse Current

On-State
ICloni

Collector Current

(Phototransistor Model

ICloni

o
.....

Oll-Slale

o
o

ICloffi

'C

ICloffi

n

Off-State

CD
...

Collector Current
(Photodiode Mode)

til

VF

u;-

-

Collector Current
(Phototransistor Model

s:::::

o
iii"
.....
o
...

On-State
Collector Current
IPholodiode Model

'C

TEST CONOITIONS

Input Diode Static
Forward Voltage

IE = 0,
18 = 0,

=0
IC = 0,

4N47

45

45

45

V

40

40

40

V

7

7

7

V

100
18 = 0,

VCE - 5V,
IF = 2 rnA,

IS = 0,
TA=-55"C

VCE = 5 V,

18 = 0,

IF=2mA,

TA=l00"C

VCE - 5V,

18 - 0,

IF = lOrnA,

See Note 4

VCB=5V,
IE = 0

IF = 10 rnA,

VeE-20V,

IS = 0,
IS = 0,

If "" 0,

TA ~ 100°C

VCS = 20V,

IE = 0,

TA - -55"C

IF -lOrnA

1.4

2.B

0.5

1

2

TA = l00"C

IC = 0.5 rnA,

IS - 0,

VCElsati

Collector-Emitter

IC= 1 rnA.

Saturation Voltage

IF = 2 rnA
IC = 2mA,

5

rnA

50

30

BO

BO

30

90

30

BO

BO

'io
Cio

Input-to-Output
Capacitance

100

6

100

6

100

nA

4

100

4

100

4

100

"A

1

10

1

10

1

10

nA

1.7

1

1.4

1.5

O.B

1.4

1.5

1.3

0.7

1
0.7

1.4

1.7

1

L5

O.B

1.3

0.7

1.7
V

1.3

0.3

IS =0,

0.3

V

IS = 0,

0.3

Yin-out = ± 1 kV. See Note 5

Yin-out = 0,

"A

6

IF = 2 rnA

Input-to-Output
Internal Resistance

"A

10

2

0.7

O.B

IF = lOrnA,

100

1

IF = 0
IF = lOrnA,

100

0.5

IF = 0
VCE = 20V,

TVP MAX

UNIT

TVP MAX MIN

VR= 2V
VCE = 5 V,
IF = 1 rnA

4N49

TVP MAX MIN

IF = 2 rnA

til

4N48

MIN

lOll 10 12

lO" 10 12

, = 1 MHz,

2.5

See Note 5

5

2.5

n

lOll 10 12
5

2.5

5

pF

switching characteristics at 25° C free=Bir temperature (See Figure 1)
PARAMETER

°t,

RIse TIme

°If
I,

Fall Time

If
NOTES:

Rise Time

Fall Time

TEST CONDITIONS
VCC= 10V,
RL = lOOn,
VCC= 10V,
RL=l00n,

4N47
MIN

4N49

4N48

TVP MAX MIN

TVP MAX MIN

TVP MAX

IFloni = 5 rnA,

10

20

10

20

15

25

Test Circuit A

10

20

10

20

15

25

IFloni = 5 rnA,

1

3

1

3

1

Test Circuit B

1

3

1

3

1

3
3

UNIT

"'
"'
"'
",

4. This Parameter must be measured using pulse techniques, tw = 100 /oll, duty cycle <; 1 'MI.

5. These parameters .re measured between.1I the input dIode leads shorted together and all the phototransistor lead, shorted together .
• JE DEC registered data

3-26

TEXAS •

INSTRUMENTS
POST OFFICE BOX 665303. DALLAS, TeXAS 75265

4N47. 4N48. 4N49
OPTOCOUPlERS

PARAMETER MEASUREMENT INFORMATION
Adjust amplitude of input pulse for

IFlon)

=

5 rnA

INPUT

0-'

INPUT

L

INPUT

OUTPUT
(See Note b)
OUTPUT

R L .: 100 n

OUTPUT

(See Note b)

TEST CIRCUIT A
PHOTOTRANSISTOR OPERATION
NOTES: a.

TEST CIRCUIT B
PHOTODIODE OPERATION

VOLTAGE WAVEFORMS

The input waveform is supplied bv a generator with the following characteristics: Zout = 50.n, t r ' 15 ns, duty cycle

<:::.

1%. For

Test Circuit A, tw == 100 JJs. For Test Circuit B, tw = 1 IJ.s.
b.

Waveforms ar. monitored on an oscilloscope with the following characteristics: tr ..;; 12 ns, Ain ~ 1 MH. Cin " 20 pF.

FIGURE l-SWITCHING TIMES

...oUJ

TYPICAL CHARACTERISTICS

...
CO

"0

INPUT DIODE FORWARD CONDUCTION CHARACTERISTICS
10

9
TA

"

~

= 25°C

:::l

o

7

I

...o

I
I

C-

O

T

3
2

o
o

(J

1

6

u 5
"E
'"~ 4
~

UJ

Q.

:;

0
U-

~
G)

8

«
E
.!.

-...

/
0.2

0.4

0.6

0.8

1.0

/
1.2

1.4

1.6

VF-Forward Voltage-V
FIGURE 2

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-27

4N47, 4N48, 4N49
OPTOCOUPLERS

TYPICAL CHARACTERISTICS

80

4N48

4N48

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
10

IF = 10 mA

9

70

«
E
.!.c
~

60

18 = 0

9mA

f----h~r--t---=....r....",=----t--7

mA

!---+jt-,,,.c....-b,.....,=--+----+-6 mA

S
"

~

"0
u

7

~

:;

U

8

«
E
.!.c

6

::l

f-----.rH-¥---::*"""'--t---t-5 mA

U

f--IJY-+----=.-"'F---t---t--4 mA

~

I
~

5

k

8

"

4

I

3

"0
u

3mA

I

TA = 25°C
See Note 6

8mA

S:?

I

/'

IF =2 mA.......-

...-

_k-:
I'

2

~
~

--

I~
IF = 1 mA

2mA
IF

1 mA
3

o

4

o

o

5

VCE-Collector-Emitter Voltage-V

"C

2

3

0.5~A4

VCE-Collector-Emitter Voltage-V

r+

o(")

FIGURE 3

o

FIGURE4

!:

4N48

4N48

"C

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

...

CD
en

3r---r---r---,---,----~

o
o

Q)

6

«E
.!.c

r+

o
...
en

-

~
::l

5

18 = 0
TA = 25°C

IF = 2 rnA

4

U

0 3

IF = 0.8 mA

tl

~.

"0
u 2
I

IF=0.6mA

S:?

IF=0.4mA
IF=0_2mA

3

5

4

VCE-Collector-Emitter Voltage-V

VCE-Collector-Emitter Voltage-V
FIGURE 5

NOTE 6:

3-2B

FIGURE 6

This parameter was measured using pulse techniques. tw "" 100 fJ,s, dutY cycle = 1%.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

5

4N47, 4N48, 4N49
OPTOCOUPLERS

TYPICAL CHARACTERISTICS
4N48

4N48

COLLECTOR CURRENT

vs
INPUT DIODE FORWARD CURRENT
100
70

VCE
IB 0
TA 25°C
See Note 6

40

1

t
t

::J

U

B

"
.!!!

o
u

6

TRANSISTOR COLLECTOR CHARACTER ISTICS
16
IF ~ 0
TA~25°C
14


0.8

Q;
0::

~

C.
i

1 mA

~

o

r\.

0.6

~

0.4

-

I":r--..

::J

U

B 0.2
.!!!
" o

4

5

;3

-75 -50 -25

V CB-Collector-Base Voltage- V

o

:::l

o
(,)
o

...c.

I " ."\
IF~2mA~

~

IF -1 mA
2

~
1.4

IF~

.~

IF - 2 mA

10

'"~

1.6

I II

Q)

FREE-AIR TEMPERATURE
oU

10mA

IF

.1

IF

-...
.!!J.

COLLECTOR CURRENT

25

50

75

100

125

TA-Free-Air Temperature-°c

FIGURE 9

FIGURE 10

NOTE 6: This parameter was measured using pulse techniques. tw = 100 J..Ls, duty cycle = 1%.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-29

•

o

'C

r+

o
n
o
c:

'C

Ci"
...
tfj

tii
o
i»
r+

o...

tfj

3-30

4N47, 4N48, 4N49
JAN, JANTX, AND JANTXV PROCESSING
This processing applies only to optocouplers ordered under part numbers shown below:

JAN4N47,JANTX4N47,JANTXV4N47
JAN4N48,JANTX4N48,JANTXV4N48
JAN4N49,JANTX4N49,JANTXV4N49
TEST

MIL-STD-750

(PER MIL-S-19500/S4BI

TEST METHOD

JAN

JANTX

JANTXV

100% Processing

2072

Internal Visual

= 125°C, t = 24 hr

X

1032

X

X

Temperature Cycle: - 55°C to 125°C, 10 cycles

1051

X

X

Constant Acceleration: 20,000 G, Y 1 axis

2006

X

X

1039

X

X

1039

X
X
X

X
X
X

Storage: T A

High-Temperature Reverse Bias:

IF = 0, TA = 125°C. VCB = 36 V, t=48 hr
Power Burn-in: IF = 40 mA, Po = 275 ± 25 mW,
t = 168 hr
Hermetic Seal, Fine

1071 Condo G or H

Hermetic Seal. Gross

1071 Condo Cor D
Para. 4.2. I .1. '

Monitored Thermal Shock

X

2071

External Visual

X

X

X

X

Product Acceptance

•...o

( I)

Group A: LTPD = 5
2071

X

X

X

Electrical: T A = 25°C

as needed

X

X

X

Electrical: T A = 100°C

as needed

X

X

X

Electrical: T A = - 55°C

as needed

X

X

X

Solderability

2026

X

X

X

Resistance to Solvents

1022

X

X

X

1051 Condo B-1

X

X

X

Hermetic Seal, Fine

1071 Condo G or H

X

X

X

Hermetic Seal, Gross

1071 Cond_ C or D

X

X

X

External Visual

....CO

'0
(I)

-...
( I)

Group B-1: LTPD = 15

Q)

c..
::l
o

Group B-2: LTPD = 10
Thermal Shock

o

o
....CO

Group B-3:
Isolation Voltage: VIO = 150 V, TA = 125°C,
t = 24, LTPD = 20
Steady State Operating Life: t = 340 hr, LTPD

=

5

1016

X

X

X

1027

X

X

X

Group 8-4:
X

X

X

2075

X

X

X

2037 Condo A

X

X

X

1032

X

X

X

Decap, Internal Visual; Design Verification
1 Device/O Failure

Bond Strength LTPD = 20 IC = 01
Group B-5: Not Applicable
Group B-6: LTPD = 7
High-Temperature Life (Nonoperating)

t

= 340

hr

'MIL-s- 19500/548

TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-31

4N47, 4N48, 4N49
JAN, JANTX, AND JANTXV PROCESSING

TEST

MIL-STD-750

(PER MIL-S-19500/548)

TEST METHOD

JAN

JANTX

JANTXV

2066

X

X

X

Thermal Shock (Glass Strain)

1056 Condo A

Terminal Strength

2036 Condo E

X
X
X
X
X
X

X
X
X
X
X
X

X
X
X
X
X
X

2006

X
X
X

X
X
X

X
X
X

1041

X

X

X

1026

X

X

X

(Group C Tests are run on one lot every six months)

Group C-l: LTPD

= 15

Physical Dimensions

Group C-2: LTPD

= 10

Hermetic Seal, Fine
Hermetic Seal, Gross

1071 Condo G or H
1071 Condo C or D

Moisture Resistance

1021

External Visual

2071

Group C-3: LTPD

= 10

Shock: 1 500 G

2016

Vibration: 50 G

2056

Acceleration: 30000 G
Group C-4: LTPD

= 15

Salt Atmosphere

o
't:I
....
o

"s::

Group C-5: Not Applicable
Group C-6: A = 10
Steady State Operating Life

o

't:I

...

CD
til

til

o
....Dr

...o

til

3-32

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

6N135, 6N136, HCPL4502
OPTOCOUPLERS/OPTOISOLATORS
02918. JULY 1986-REVISED JULY 1989

•

Compatible with TTL Inputs

•

High-Speed Switching ... 1 Mbitls Typ

•

Bandwidth ... 2 MHz Typ

•

High Common-Mode Transient
Immunity ... 1000 VII's Typ

•

High-Voltage Electrical
Insulation ... 3000 V DC Min

•

Open-Collector Output

•

UL Recognized ... File Number 65085

description
These high-speed optocouplers are designed for use in analog or digital interface applications that require
high-voltage isolation between the input and output. Applications include line receivers that require high
common-mode transient immunity. and analog or logic circuits that require input-to-output electrical
isolation.
The 6N 135. 6N 136. and HCPL4502 optocouplers each consists of a light-emitting diode and an integrated
photon detector composed of a photo diode and an open-collector output transistor. Separate connections
are provided for the photodiode bias and the transistor collector output. This feature. which reduces the
transistor base-to-collector capacitance. results in speeds up to one hundred times that of a conventional
phototransistor optocoupler.
The 6N 135 is designed for TTL/CMOS. TTLILSTTL. and wide-band analog applications.
The 6N 136 and HCPL4502 are designed for high-speed TTLITTL applications. The HCPL4502 has no base
connection.

...oen

..
C'a

*mechanical data

"0
en

-...

Terminal connections:

1. No internal connection
2. Anode
3. Cathode
4. No internal connection
5. GND (Emitter)

6. Output
7. Base: 6N135. 6N136
Open: HCPL4502

en

light-emitting

Q)

diode

a.::::J

..
oo
o

t Detector
t

8. Vce

C-

O

'l~7'87 10'3101~'l

rIf:~:: 11:'::::1
6.

0000
rI!-+I-I

,0 0
1 2001\1

0.33

(O.0131~\.-

2.92 (0.1151 MIN

0,18 (0.007)

I

I•• ~

'.40 (0.055)
0.76 (0.030)

1, 78 (0.070)

1,14 (0.045)

2,79 (0.110)

2,29 10.090)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

* JEDEC registered data. This data sheet contains aU applicable registered data in effect at the time of publication.

PRODUCTION DATA documents contain information
current as of 'publication date. Products conform to
these specifications p'er the terms of Texas
Instruments standard warranty. Production
processing does not necessarily include testing of all
parameters.

Copyright © 1989, Texas Instruments Incorporated

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-33

6N135. 6N136. HCPL4502
OPTOCOUPLERS/OPTOISOLATORS
schematic
ANODE (2)

~ffiOO']=!

..-_ _ _-..,;..(S"'-) VCC

:- -

-

-

(7) SASE: 6N135, 6N136
- OPEN: HCPL4502

I
I

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Supply and output voltage range, Vee and Vo ........................... -0.5 V to 15 V
Reverse input voltage ...................................................... " 5 V
Emitter-base reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 V
Peak input forward current (pulse duration = 1 ms, 50% duty cycle, see Note 1) . . . . . . . .. 50 mA
Peak transient input forward current (pulse duration 1 /lS, 300 Hz) . . . . . . . . . . . . . . . . . . . . . .. 1 A
Average forward input current (see Note 2) ..................................... 25 mA
Peak output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 mA
Average output current ..................................................... 8 mA
Base current ............................................................. 5 mA
Input power dissipation at (or below) 70°C free-air temperature (see Note 3) ............ 45 mW
Output power dissipation at (or below) 70°C free-air temperature (see Note 4) ......... 100 mW
Storage temperature range ......................................... - 55°C to 125°C
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 100°C
lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260°C

E

o

"C

r+

o
(')
o

C
"C

CD
...

en

• JEDEe registered data for
NOTES: 1. Derate linearly
2. Derate linearly
3. Derate linearly
4. Derate linearly

6N135 and 6N136
above 70°C free·air
above 70°C freeMair
above 70°C free-air
above 70°C freeMair

temperature
temperature
temperature
temperature

at
at
at
at

the
the
the
the

rate
rate
rate
rate

of
of
of
of

1.67
0.83
1.50
3.33

mA/oe.
mA/oe .
mW/oe.
mW/oC.

Cii
o

Dr

r+

o
en

...

-

3-34

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

6N135, 6N136, HCPL4502
OPTOCOUPLERS/OPTOISOLATORS

electrical characteristics over operating free-air temperature range of 0 °C to 70°C (unless otherwise
noted)
PARAMETER
'VF

Input forward voltage
Temperature coefficient

"VF

of forward voltage

'V8R

Input breakdown voltage

VOL

Low-level output voltage

TEST CONDITIONS
IF

16 mA,

~

High-level output current

TA = 25°C
IOl = 1.1 mA

=

High-level output current
Supply current,

'ICCH

ICCH
ICCl

high-level output

~

= 0,

0,

=

VCC

15V,

= 0,

VCC

~

~

0,

IF

=

VCC ~ VO

=

5.5 V

VCC = Vo

=

15 V

Vo
10
18

VCC~15V,

IF

Supply current,

VCC ~ 15V,

low-level output

IF

= 0,
=

= 15V,
=0
= 0,
= 0,

IF

18
10
18

5 V,

10

~

~

4.5 V,

16 mA,

~

0

~

3 mA

~

Vo
18

~

0.4

3

500

3

500

nA

1

0.01

1

pA

50

pA

1

~A

2

~A

50

0.02

1

0.02

2
40

40

CI)

~A

a-

o
+"

100

100

~

16N136 only)

o
.!!!

-

0.4 V,

0,

VCC = 4.5 V,

See Note 5
Vo = 0.5 V,

Current transfer ratio

IF = 16 mA,

18 = 0,

Input-output

VIO

resistance
Input-output

See Note 6

insulation

TA

TA = 25°C,
CTR

0.1

0.01

= 0,
=0
= 0,

10

16 mA,

~

VCC
Current transfer ratio

V

0.4

transfer ratio

'CTR

V
mV/oC

25°C

Supply current,

Vo

1.7

UNIT

V

18
15V,

high-level output

forward current

1.6

5
0.1

Transistor

hFE

MAX

-l.B

10l = 2.4 mA

18

TA

TVPt

16 mA,

IF

IF

1.7

5

IR = 10 pA,

TA ~ 25°C
10H

1.6

6N136, HCPl4502
MIN

-loB

VCC = 4.5 V,
IF

6N135
TVPt
MAX

TA ~ 25°C

IF = 16 mA

18 = 0
'IOH

MIN

7%

lB%

19%

24%

%

CI)

a-

Q)

15%

5%

c..
:::I

%

See Note 5
'10

*110
Ci

500 V,

~

25°C,

See Note 6

Input capacitance

VF

capacitance

TA = 25°C,

VIO = 3000 V, t

leakage current
Input-output

Cio

~

= 0,

!l

o
o
o
+"

~A

O

C-

5 s,
1

RH = 45%,

1

1 MHz

60

60

pF

See Note 6

0.6

0.6

pF

f

1= 1 MHz,

~

10 12

10 12

~

t All typical values are at T A ~ 25°C.
'JEDEC registered data lor 6N135 and 6N136
NOTES: 5. Current transfer ratio is defined as the ratio of output collector current 10 to the forward LED input current IF times 100%.
6. These parameters are measured between pins 2 and 3 shorted together and pins 5, 6, 7, and 8 shorted together.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-35

6N135, 6N136, HCPL4502
OPTOCOUPLERS/OPTOISOLATORS

operating characteristics at Vee - 5 V. IF PARAMETER
BW

16 mA. TA

TEST CONDITIONS

Bandwidth (- 3 dBI

RL - 1000,

6N135
MIN

TYP

6N136, HCPL4502
MAX

MIN

2

See Note 7

TYP

MAX

2

NOTE 7: Bandwidth is the range of frequencies within which the ae output voltage is not more than 3 dB below the low-frequency value.

switching characteristics at Vee - 5 V. IF PARAMETER

TEST CONDITIONS

*tPHL

E

See Note 9,

RL = 4.1 kll,
Propagation delay time, See Figure 1

See Note B,

high-to-Iow-Ievel output RL = 1.9 kll,

See Note 9,

~VCM

Common-mode input
dVCM (HI transient immunity,
dt
high-level output

o

r+
Common-mode input
dVCM (LI transient immunity.
dt
low-level output

1.5

= 10 V,

RL = 4.1 kO,
See Figure 2

IF = 0,
See Notes 8 and
10,

~VCM

IF = 0,

= 10 V,

RL = 1.9 kO,

TYP

MAX

0.6

0.8

O.S

0.8

UNIT

~s

0.7

1.5
~s

1000
V/~s

See Notes 9 and 10,

-1000

~VCM

= 10 V, RL = 4.1 kO,
See Figure 2, See Notes 8 and 10,

~VCM

- 10 V,

-1000

RL - 1.9 kO,

See Figure 2, See Notes 9 and 10

V/~s

-1000

* JEDEC registered data for SN 135 and 6N 136
NOTES:

en

1.0

MIN

See Figure 2

o
o

(')

en

MAX

Propagation delay time, See Figure 1
low-to-high-Ievel output RL=1.9kO,
See Figure 1

6N136, HCPL4502

TYP

See Figure 1

'C

c:
'C
CD
...

6N135
MIN

See Note 8,

RL - 4.1 kO,
*tpLH

16 mA. TA - 25°e (unless otherwise noted)

o

Q)
r+

...o
en

8. The 4.1-kO load represents one LSTTL unit load of 0.36 rnA and a 6.1-kO pullup resistor.
9. The 1.9-kO load represents one TTL unit load of 1.S rnA and a 5.S-kO pullup resistor.
10. Common-mode transient immunity, high-level output, is the maximum rate of rise of the common-mode input voltage that
does not cause the output voltage to drop below 2 V. Common-mode input transient immunity, low-level output, is the maximum
rate of fall of the common-mode input voltage that does not cause the output voltage to rise above 0.8 V.

-

3-36

TEXAS .."
INSTRUMENTS
POST OFFICE SOX 655303 • DALLAS, TEXAS 75265

6N135, 6N136, HCPL4502
OPTOCOUPLERS/OPTOISOLATORS

PARAMETER MEASUREMENT INFORMATION

,------,

PULSE
GENERATOR

Zo
tr

~--~r---'~-5V

I

= 50!l
= 5 ns

-+
-+

I
I

INPUT CU:..:;RR~E:.:;N:..:;T_ _~I'---J

OUTPUT

I

MONITOR

100

L ____ _

CL - 15pF
ISee Note AI

(J

L-----~-_4~--_t--GND

TEST CIRCUIT
INPUT
CURRENT

---1I

- - - - IF

~I-----O

OUTPUT~:
!

VOLTAGE

I
I

tpHL ~

I

1.5 V

I

~

-+I

5V

1.5 V

t-14-

VOL

tpLH

WAVEFORMS

...In

....o
CO

"0

NOTE A: CL includes probe and stray capacitance.

-...
.!!!

FIGURE 1. SWITCHING TEST CIRCUIT AND WAVEFORMS

In

Q)

Q.
~
o
u
....o
Co

o

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-37

6N135, 6N136, HCPL4502
OPTOCOUPLERS/OPTOISOLATORS

PARAMETER MEASUREMENT INFORMATION

~--~""-5V

RL
..,----_OUTPUT

}-~

__""-GNO

TEST CIRCUIT

dVCM

--at =
GENERATOR

oV

10V--7:

I 90%

10%

I
I

o

--.I

I
j4-t,

90%~
I 10%
I I

8 V
tr ortf

t,=8nsTYP
tf=8nsTYP

tf-+l ....

~

r+

o
(')
o

.,.-------5 V

OUTPUT---...~;;::

SWITCH AT A: IF - 0

s::

~

...

(j)

OUTPUT---------~ VOL
SWITCH AT B: IF - 16 mA

til

VOLTAGE WAVEFORMS

til

o

cr

FIGURE 2. TRANSIENT IMMUNITY TEST CIRCUIT AND WAVEFORMS

r+

...
~
o

3-38

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

6N135, 6N134i, HCPL4502
OPTOCOUPLERS/OPTOISOLATORS
TYPICAL CHARACTERISTICS
INPUT DIODE FORWARD CURRENT

vs

6N135
CURRENT TRANSFER CHARACTERISTICS

FORWARD VOLTAGE
20
18

«

E

I
c

.,

16
14

§

.

"E

12

~

8

I

6

0
U-

.!:!-

«

9

I

8

E

E

/

/
V

4
2

~

7

0

6

:;
S::J

/

0

I

9

1.2

1.3

1.4

5

-- -- -- --.i- II-/- --- -1:
-- -- -- --

C'r

IF - 25mA

4

IF = 20 mA

3

IF=15mA

1.5

1.6

IF

o
o

1.7

2

4

:;

..,0

0.9

6NI1361

HCPL4502

.

iii

0.4

(;

0.3

.~

E

z
I
a:

I0

.

r;

~c

'0

l-

E
~
:;

I

£1
//

0.9

.
N

I

.........

./

0.8

,

I

I

i5.
::::s

o
(.)
o

f---6N136 •
HCPL4502

...c.

~~,
'\

I

~

...VJ

--~N13~

v.......

V

/

0

"C

VJ

Q)

VCC - 5 V
Vo - 0.4 V
IF = 16 mA

1.0

I!!

.It
/

0.7

1.1

a:

"....

~ ~6N135

0.8

0.6

I

I/)

...cao

FREE-AIR TEMPERATURE

-

-...

16

FIGURE 4

1.2

0.5

14

INPUT DIODE FORWARD CURRENT

~

"C

12

vs

1.1

0

5mA

vs

1.0

~

10

IF -

NORMALIZED CURRENT TRANSFER RATIO

0

c

8

10 mA

NORMALIZED CURRENT TRANSFER RATIO

a:

..
t!:

6

=

YO-Output Voltage-V

FIGURE 3

~c

IF - 35 mA
= 30 mA

II L ,IF
I /

VF-Forward Voltage-V

.,.

_IFI. 4J mA

2

./

0
1.1

r.

10

:;
10

VCC - 5 V
TA = 25°C

11

I
I
/

~

0

12

I

TA - 25°C

I

o

\:

E
(;

VCC = 5 V
Vo = 0.4 V
TA = 25°C
Normalized to IF = 16 mA

0.2
0.1

o
1

2

4

7 10

20

40

70 100

z

I

0.7

a:

I0

0.6
-60 -40 -20

0

20

40

60

80

100

TA-Free-Air Temperature- °C

IF-Forward Current-mA

FIGURE 6

FIGURE 5

'li1

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-39

6N135. 6N136. HCPL4502
OPTOCOUPLERS/OPTOISOLATORS
TYPICAL CHARACTERISTICS
DIFFERENTIAL CURRENT TRANSFER RATIO
vs
INPUT DIODE QUIESCENT FORWARD CURRENT

HIGH-LEVEL OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
~

10.000

«c

4000

I 1000

E
!!
;;

:;
c.
:;

100

10

-'

4

.

III

C

I

•

9

;;

o

/

15~---+---+----t--~-=,....i

iii

~

10

1----+---+---+--------1

£

/

C

0.4

"C

20e--~4=""'~+----t--~~,....i

E
!!

I
U

51-----+-----+------+------~

a:I-

OL-_ _- L_ _ _

IV

./
0.1
-75 -50 -25

0

~

/

'"I

:I:

25

~

40

0
Gi
>

.i:.
J:

~

a:

/

400

0

30.----=~=----.------~----~

I

EVCC - 5V
Vo - 5V
IF - 0

0

25

50

75

100 125

o

o

5

r+

0

_ _ _L __ _

~

20

15

10

IF-Quiescent Input Current-rnA

TA -Free-Air Ternperature- DC

FIGURE 8

FIGURE 7

(")

~

0

I:
"C

en

o

iii
0
i»
r+

...0en

PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE

NORMALIZED FREQUENCY RESPONSE
vs
LOAD RESISTANCE

...CD

-5

--

r-- r-

-

I

"

-10

"
.!:!
"
iii

-15

C
0
C.

.

a:

.....

~~

100~ ~

III
"C
II>

1.2

RL RL = 220ll J
RL = 470 Il...../
RL = 1 kll

~

~

"-

.
.

~ \'\

I

1.1

~

1.0

Q

0.9

>Gi

\

c

..,
'"

O.S

-'

:I:

e-

2

-25

0.7 1

4

2

Y

....".-

Y
6N135

0.7

7 10

I

..,,?

,/

~

:::::P'"

~ 6N136

HCPL4502
0.4
-60 -40 -20 0

tpLH
'\
20

40

60

T A - Free-Air Ternperature- DC

f-Frequency-MHz
FIGURE 9

3-40

-

V/
/
"" -

tPHY / '

.......

.........

0.6 _6N136 tpHL
HCPL4502 .

:i: 0.5

e--'

~PLH

./

C.

£I

-

= 5 V
16 rnA
4.1 kll for 6N135
1.9 kll for 6N136

IV

-20

IF - 16 rnA
TA = 25 DC
I
I I
-30
0.2
0.4
0.1

VCC
IF =
RL =
RL =

0

IV

\

"C

E
0

III

FIGURE 10

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SO

100

6N137
OPTOCOUPLER/OPTOISOlATOR
02919, JULY 1986

•

Gallium Arsenide Phosphide LED Optically Coupled to
Integrated Circuit Detector

•

Compatible with TTL and LSTTL Inputs

•

Low Input Current Required to Turn Output On ... 5 mA Max

•

High-Voltage Electrical Insulation, .. 3000 V DC Min

•

High-Speed Switching . .. 75 ns Max

•

Plastic Dual-In-line Package

•

UL Recognized . .. File Number 65085

description
The 6N 137 optocoupler is designed for use in high-speed digital interfacing applications that require highvoltage isolation between the input and output. Applications include line receivers, microprocessors or
computer interface, digital programming of floating power supplies, motors, and other control systems,
The 6N 137 high-speed optocoupler consists of a GaAsP light-emitting diode and an integrated light detector
composed of a photodiode, a high-gain amplifier, and a Schottky-clamped open-collector output transistor.
An input diode forward current of 5 milliamperes will switch the output transistor low, providing an onstate drive current of 13 milliamperes (eight 1 ,6-milliampere TTL loads). A TTL-compatible enable input
is provided for applications that require output-transistor gating.
The 6N137 is characterized for operation over the temperature range of 0 DC to 70 DC.

* mechanical data

-..
en
o
....

CO

Terminal connections:
1. No internal connection
2. Anode
3. Cathode

"0
en

.

} Light-emitting

en

diode

4. No internal connection
5. GND
6. Output

.!!?
c.

I

7. Enable
8. Vee

Oetecto,

::::l

o
o
....o

c.

o

'i.~7'B7 10.3101~'i.

0)000

r~::~ 11:::::1

If

6.,01

0240

J I!-+I-"
0,89 {D.035} MINI

1\1

r-'

4,70 (D.1a5) MAX

(O.0131~~

2,92 (0.' 15) MIN

0.33
O,1S (0.007)

I

r

I

78 (O.070)
1.14 (0.0451

II

H -......--,--.---,....,.----"1--I

I• •1.

1,40 (0.055)
D.76 (0.030)

2,79 (0.110)
2,29 (0.0901

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

·JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of TexIs Instruments

~!~~:~~i~at::I~~e ~!:~~~ti:; :1~o::::~:t:::'~S not

Copyright © 1986, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-41

6N137
OPTOCOUPLER/OPTOISOLATOR
logic diagram (positive logic)

FUNCTION TABLE
INPUT

ENABLE

OUTPUT

IFlon)

H

L

IFlolI)
X

X

H

L

H

(21

ANOOEJ
CATHODE

(31

-

ENABLE

*absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Reverse input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 V
Enable input voltage (not to exceed VCC by more than 500 mV) . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Peak forward input current (:$ 1 ms duration) (TI-guaranteed value) . . . . . . . . . . . . . . . . .. 40 mA
(JEDEC-registered value) . . . . . . . . . . . . . .. 20 mA
Average forward input current (TI-guaranteed value) ... . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 mA
(JEDEC-registered value) . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10 mA
Output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA
Output power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85 mW
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 55 °C to 125°C
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooC to 70°C
Lead temperature 1,6 mm 11/16 inch) from case for 10 seconds .................... " 260°C

o

"C

r+

o(')
o

s::

* JEDEC registered data

CD
...

recommended operating conditions

"C

en

Ui
o

MIN

NOM

MAX

4.5

5

5.5

V
V

0

Vee
0.8

Input forward current to turn output on

6.3

15

IFloffi
IOL

Input forward current to turn output off

0

250

~A

13

TA

Operating free~air temperature

mA
De

vee

Output supply voltage Isee Note 11

g;-

VIHIENI

High-level enable input voltage Isee Note 21

2

VIL{EN)

Low-level enable input voltage

...

IFlon)

r+

o
en

-

NOTES:

Low~level

(on·5tate) output current

0

1. All voltage values are with respect to GND {pin 51.
2. No external pullup is required at the enable input; an open circuit will establish the high level.

3-42

TEXAS

-1.!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

70

UNIT

V

mA

6N137
OPTOCOUPLER/OPTOISOLATOR
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

'VF

Input forward voltage

IF

~

10 rnA,

aVF

Temperature coefficient of forward voltage

IF

~

10 rnA

'VBR

Input reverse breakdown voltage

IR -

10.A,

'VOL

TA

~

IF

'IOH

High-level output current

IIH(ENI

High-level enable input current

V(ENI ~ 2 V,

'1ILiENI

Low-level enable input current

'ICCH

Supply current, high-level output

VCC
VCC

Supply current, low-level output

'110

Input-output insulation leakage current

~

IF

V(ENI ~ 2 V

~

5.5 V,

V(ENI

~

0.5 V

VCC ~ 5.5 V,

V(ENI

0.5 V,

10 rnA

~

VIO
TA

~

~
~

3000 V,
25'C,

t

~

0.6

-0.2

V(ENI - 0.5 V,

V

mV/oC

250

250.A

5.5 V,

UNIT

V
0.23

5.5 V,
VCC
IF ~ 0
IF

1.75

Vo - 5.5 V,

~

~

'ICCL

MAX

1.6
5

2 V,

V(ENI

10L ~ 13 rnA

5.5 V,

~

25'C

TA -

5 rnA,

VCC

Typt
- 1.8

VCC - 5.5 V,

Low-level output voltage

MIN

25'C

~

V

"A
rnA

-0.5

-2

mA

10

15

mA

13

18

mA

1

"A

5 s,

RH = 45%,

See Note 1

flO

Input-output resistance

Ci

Input capacitance

Cio

Input-output capacitance

~

VIO

500 V,

TA

~

25°C,

10 12

See Note 1
~

VF
f

0,

f

1 MHz,

~

~

TA

1 MHz
~

25°C,

See Note 1

0

60

pF

0.6

pF

+-'

ctI

* JEDEC registered data

(5
en

t All typical values are at Vee = 5 V, TA = 25°C.
NOTE1:' These parameters are measured between pins 2 and 3 shorted together and pins 5, 6, 7, and 8 shorted together.

switching characteristics at

Vee =

5

V,

TA

=

'tPHL
tPLH(ENI
tpHL(ENI
tr
tf

dVCM (HI
dt

dVCM ILl
dt

CL

Propagation delay time, high-to-Iow level

IF

output, from LED input

CL
low~to-high

level

output, from enable

IF
CL

Propagation delay time, high-to-Iow-Ievel

IF

output, from enable

CL
IF

Rise time

CL
IF

Fall time

CL

Common-mode input transient immunity,
high-level output

~
~
~
~
~
~
~
~
~

~
~

~

7.5 rnA,
15 pF,
7.5 rnA,
15 pF,
7.5 mA,
15 pF,
7.5 rnA,
15 pF,
7.5mA,

~

~

350

MIN

n,

See Figure 1

RL

~

350

n,

See Figure 1

RL - 350

n,

See Figure 2

RL

~

350

n,

See Figure 2

RL - 350

n,

15 pF
7.5 mA,

RL

~

350

n,

15 pF

~VCM ~

RL

RL

350

10 V,

TYP

MAX

42

75

UNIT
ns

~
C.
::l

o
(.)

ns

o
+-'

40

ns

o

25

ns

20

ns

30

ns

50

V/.s

-150

V/~s

42

75

C.

IF - 0,

n,

See Note 2 and Figure 3

Common-mode input transient immunity,
low-level output

en

TEST CONDITIONS
IF

output, from LED input

Propagation delay time,

-...

25 De

PARAMETER
Propagation delay time, low-to-high-Ievel

'tPLH

...oen

~VCM ~

RL

~

350

-10 V, IF

~

n,

5 rnA,

See Note 2 and Figure 3

* JEDEC registered data
NOTE 2: Common-mode input transient immunity, high-level output, is the maximum rate of rise of the common-mode input voltage that
does not cause the output voltage to drop below 2 V. Common-mode input transient, low-level output, is the maximum rate
of fall of the common-mode input voltage that does not cause the output voltage to rise above 0.8 v.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-43

6N137
OPTOCOUPLER/OPTOISOLATOR

PARAMETER MEASUREMENT INFORMATION
IF--+

PULSE
GENERATOR
Zo - SO!l
tr - 5 ns

--.
-+

I

I

':'

----,

r--'~------------------

r

I

INPUT
MONITOR

~~SV

3S0!l

I

L ___ _

OUTPUT
OPEN

47 !l

1

INPUT
MONITOR

Eo

=

: RL

__

CL
(See Note Al

TEST CIRCUIT
\---3somvuF = 7.SmAI
- - - - - - - - - 1 7 S m V U F = 3.7SmAI

I
-+I tpHL 14-

I .

0 V

--.{ tpLH 14I

OUTPUT

0.01 pF

1 _ _ _ _ _ _ I ___
~

"C

VOH
1 . SV

----VOL

r+

o
n
o

VOLTAGE WAVEFORMS

FIGURE 1. tpLH AND tpHL FROM LED INPUT TEST CIRCUIT AND WAVEFORMS

c

"C

IF - 7.S mA--+

CD
...

-----,

.--.--------------------.-~~SV

en

~­

en
o

':' I

I
I
I

I

____ ..JI

~:::

iii"
r+

ENABLE
MONITOR---------.....

o
en

...

-

L ___ _

RL - 3S0!l

OUTPUT

PULSE
GENERATOR
Zo - SO!l
tr - 5 ns

CL
(See Note Al

0.01 pF

TEST CIRCUIT
- ----3V
ENABLE
INPUT'-i------\------1.SV

I

I

tPHL(ENI-l4---+l

~tPLH(ENI
I

~
I ______ I

OUTPUT

0 V

VOH

---1.SV

----VOL
VOLTAGE WAVEFORMS

FIGURE 2. tPLH(EN) AND tPHL(EN) FROM ENABLE TEST CIRCUIT AND WAVEFORMS
NOTE A: CL is approximately 15 pF, which includes probe and stray wiring capacitances.

3·44

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6N137
OPTOCOUPLER/OPTOISOLATOR
PARAMETER MEASUREMENT INFORMATION

r

-+
-+

I

I

r--.--------------------__
-----,

~~5V

I
I

OUTPUT

L

0.011'F
OPEN

GENERATOR
TEST CIRCUIT

dVCM
GENERATOR
OV

10V--l:
90%
10%
I
I

--+I

90%~
I 10%
I I

I
I

dt -

8 V
t,o,tf

II
...

t,=8nsTYP
tf-8nsTYP

tf .... 14-

",t,

en

....o

,.--------5 V

OUTPUT----_~c-

C'CS

SWITCH AT A: IF - 0

'0

-...
~

OUTPUT----------~VOL
SWITCH AT B: IF

=

en

5 rnA

CI)

VOLTAGE WAVEFORMS

Q.
::::J
o
(.)
....o

FIGURE 3. TRANSIENT IMMUNITY TEST CIRCUIT AND WAVEFORMS

TYPICAL APPLICATION INFORMATION

Q.

A ceramic capacitor (0.01 "F to 0.1 "F) should be connected between pins 8 and 5 to stabilize the highgain amplifier. The total lead length between the capacitor and the optocoupler should not exceed 20 mm
(0.8 inches). Failure to provide a bypass capacitor may result in impaired switching characteristics.

o

,,_- ____ LGND BUS (BACK)

"

t::==!==t:== v------'
/l-----,
~

""~=====:::!)

NC "'1_ _.ii-t~v

ENABLE
(IF USED)

OUTPUT 1

FIGURE 4. RECOMMENDED PRINTED CIRCUIT BOARD LAYOUT

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-45

6N137
OPTOCOUPLER/OPTOISOLATOR
TYPICAL CHARACTERISTICS
INPUT DIODE FORWARD CURRENT
vs
FORWARD VOLTAGE
20

T
E
~

0.4

I
I
I

TA = 25°e
18
or:(

LOW-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE

16
14

I

6

E
o

'C

4

II

2
1.2

1.3

1.4

j.......:~t----t--+-+-+-+-+-----t

::J

a

0.2 ~-I---1--+--+---+--+--+---I

~

!l

/

~

~

...

0.1

1---11--+--+--+--+--+--~~

~

./

o
1.1

/

Ol-~_~_-L_-L_~_~_I-~

1.5

1.6

o

1.7

10

r+

20

HIGH-LEVEL OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE

'C

CD
...
en

4
c

I

E

...

U

r+

o
en

-

Vee = 5 V
Vo - 5.5 V
IF - 250/LA

or:(

Q)

~

3

::J

~

::J

;
0

2

...J::...

Ii
>

.2'
J:

r-- 1"-- I-

I

J:

9

o

o

10

20

30

40

50

60

TA-Free-Air Temperature- °e

FIGURE 7

3-46

40

FIGURE 6

FIGURE 5

Cii
o

30

50

60

TA-Free-Air Temperature- °e

VF-Forward Voltage-V

o
n
o
c:::

+-+-+--+---11---1

~

I

8

IF-5mA
IOL - 13 rnA

~
S-

10

VIENI - 2 V

!!I,
l!l 0.3

::J

u

= 5V

Vee

>

\1

12

~~~~~-,---.--~-~-.,.----,

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 76265

70

80

70

80

6N137
OPTOCOUPLER/OPTOISOLATOR
TYPICAL CHARACTERISTICS
PROPAGATION DELAY TIME FROM LED INPUT

vs
PULSE FORWARD CURRENT
100

VCC ~ 5 V
RL = 350 II
TA - 25°C

II)

'I

90

CD

E

80

~

70

j::

~I:

60

'il

50

e

40

.:..

30

o

g>

.......

-

I':::::::- f..--

D..

J:

e-

t~ f ~

tpHL

I--

20

:i:

~

10

o
8

6

4

10

12

14

16

FIGURE 8
PROPAGATION DELAY TIME FROM LED INPUT

vs
VCC = 5 V
IF = 7.5 rnA
TA - 25°C

II)

CD

90
80

~
Gi

70

j::

C

I:

o
.;::
co
co

tpLH

60

V

V
./

./

-...

50

-~

40

Q.
::::I
o
(.)

....oc..

o

/

Cl

~

'0
.!!2
Q)

100

'I

UI

UI

LOAD RESISTANCE

E

-...

....«to

IF-Pulse Forward Current-rnA

tpHL

D..

.:..

30

J:

e:i:
...J

e-

20

10

o
o

2

3

4

5

RL -Load Resistance-kll

FIGURE 9

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 76265

3-47

E
o

'0

.-+

oC')
o
r::

'0

~
~

VI

3-48

6N138. 6N139
OPTOCOUPLERS/OPTOISOLATORS
D3012, JULY 1986

•

Compatible with TTL Inputs

•

High Current Transfer Ratio ... 800% Typ at IF

•

High-Speed Switching ... 100 kbit/s Typ

•

High Common-Mode Transient Immunity, .. 500 VII's Typ

•

High-Voltage Electrical Insulation ... 3000 V DC Min

•

High Output Current Rating of 60 rnA

•

Ul Recognized ... File Number 65085

0.5 rnA

description
These devices are useful where large common-mode input signals exist, and in applications that require
high-voltage isolation between circuits. Applications include line receivers, telephone ring detectors, power
line monitors, high-voltage status indicators, and circuits that require isolation between input and output.
The 6N 138 and 6N 139 high-gain optocouplers each consists of a GaAsP light-emitting diode and an
integrated high-gain photon detector composed of a photodiode and a split-Darlington output stage. The
Vee and output terminals may be tied together to achieve conventional photodarlington operation. A
separate base access terminal allows gain-bandwidth adjustments.
The 6N 138 is designed for use primarily in TTL applications. An LED input current of 1.6 milliamperes
and a current-transfer ratio of 300% from 0 DC to 70 DC allows operation with one TTL load input and
one TTL load output utilizing a 2.2-kO pullup resistor.

-...
...o
o
-...
(IJ

The 6N 139 is designed for use in CMOS, LSTTL, or other low-power applications. This device has a minimum
current-transfer ratio of 400% for only 0.5 milliampere input current over an operating temperature range
of oDe to 70 De.

~

(IJ

*mechanical data

(IJ

~
C.

Terminal connections:
1. No internal connection

2. Anode
3. Cathode
4. No internal connection

}

::l

Light-emitting
diode

o
o
c.

..."

5. GND (Emitter\

6. Output

t Detector

7. Base

8. Vee

o

'i~7'87 10'31DI~'i

rIf:,::6,10 ,''0240',1
:::::1
0.33

0000

to.0131~\.-

0,18 (0.007\

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

* JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication.
Copyright © 1986, Texas Instruments Incorporated

PRODUCTION DATA documents contain information

currant as of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production p'rocassing does not
necessarily include testing ~f all parameters.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 656303 • DALLAS, TEXAS 75266

3-49

6N138. 6N139
OPTOCOUPLERS/OPTOISOLATORS
schematic
r-____--------~18~1 VCC
ANODEJI21
~
~

r-____--'-17:.,:.1 BASE
161 OUTPUT

CATHODE

131

* absolute maximum ratings at 25 DC free-air temperature (unless otherwise noted)
Supply and output voltage range, Vee and VO: 6N138 ...................... -0.5 V to 7 V
6N139 . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 18 V
Reverse input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 V
Emitter-base reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V
Peak input forward current (pulse duration = 1 ms, 50% duty cycle) . . . . . . . . . . . . . . . . .. 40 mA
Peak transient input forward current (pulse duration :5 1 Ils, 300 pps) . . . . . . . . . . . . . . . . . . .. 1 A
Average forward input current at (or below) 50 0 e free-air temperature (see Note 1) . . . . . .. 20 mA
Output current at (or below) 25 DC free-air temperature (see Note 2) . . . . . . . . . . . . . . . . . .. 60 mA
Input power dissipation at (or below) 50 0 e free-air temperature (see Note 3) . . . . . . . . . . .. 35 mW
Output power dissipation at (or below) 25 De free-air temperature (see Note 4) ......... 100 mW
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 55°C to 125°e
Operating temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 DC to 100 °e
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 260 De

o

'0

r+

o
(")
o

c:
CD
...

'0

en

NOTES:

1. Derate linearly above 50°C free-air temperature at a rate of 0.4 mA/oC.
2. Derate linearly above 25°C free-air temperature at a rate of 0.8 mA/oC.

3. Derate linearly above 50°C free-air temperature at a rate of 0.7 mW/oC .
4. Derate linearly above 25°C free-air temperature at a rate of 1.33 mW/oC.
*JEDEC registered data.

en

o
Dr
r+
o

...

en

3-50

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

6N138,6N139
OPTOCOUPLERS/OPTOISOLATORS
electrical characteristics over operating free-air temperature range of 0 °C to 70 °C (unless otherwise
noted)
PARAMETER
'VF

Input forward voltage
Temperature coefficient

"VF

of forward voltage

'VaR

Input breakdown voltage

VOL

'IOH

'ICCH

Low-level output voltage

High-level output current

'CTR

'10
'110

IF = 1.6 rnA.

TA = 25°C
IF - 1.6 rnA.

10l = 4.8 rnA.
4.5 V.
VCC
10l = 6.4 rnA.

la = 0
1.6 rnA.
IF
la = 0

VCC - 4.5 V.
10l = 15 rnA.

IF - 5 rnA.
la = 0

VCC - 4.5 V.

IF - 12mA.

10l = 24 rnA.

la = 0

VCC - 7 V.
IF = O.

Vo - 7 V.

VCC - 18 V.

Vo - 18V.

IF = O.

la = 0
Vo open.

IF = O.
5 V.
VCC
IF = 1.6 rnA.

Input-output resistance
Input-output insulation
leakage current

Ci

Input capacitance

Cio

Input-output capacitance

6N138
Typt

MAX

1.5

1.7

MIN

0.1

Vo - 0.4 V.
la = O.

V

0.4
0.1

0.4

0.1

0.4

0.2

0.4

0.05

100

250
~A

10

10

nA

0.2

0.2

rnA

300% 1300%

500% 1400%

10 12

10 12
1

-...
( I)

(\)

n
1

~A

See Note 6
f = 1 MHz

See Note 6

60
0.6

...

l!!
o
(I)

400% 1650%

la = O.

See Note 6
VIO = 500 V.
3000 V. t
5 s.
VIO
RH = 45%.
TA = 25°C.
VF = O.
f - 1 MHz.

-o...

( I)

la = 0

IF = 1.6 rnA.
See Note 5

V

V

la = 0

VCC - 4.5 V.

UNIT

mV/oC

5
0.1

Vo open.
Vo - 0.4 V.

MAX
1.7

-1.8

5

la = 0

VCC - 4.5 V.
IF = 0.5 rnA.
See Note 5

6N139
Typt
1.5

-1.8

IR=10~A.

VCC - 5 V.

Current transfer ratio

TA = 25°C

VCC - 4.5 V.

Supply current,

low-level output

MIN

IF = 1.6 rnA

high-level output
Supply current,

ICCl

TEST CONDITIONS

60

pF

0.6

pF

c..
:::l
o
(.)

...
o

Q.

o

* JEDEC registered data

tAli typical values are at VCC = 5 V. TA = 25°C. unless otherwise noted.
NOTES:

5. Current transfer ratio is defined as the ratio of output collector current 10 to the forward LED input current IF times 100%.
6. These parameters are measured between pins 2 and 3 shorted together and pins 5, 6, 7, and 8 shorted together.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-51

6N138, 6N139
OPTOCOUPLERS/OPTOISOLA10RS

*switching characteristics at Vee" 5 V. TA = 25°e
PARAMETER

*tPHL

6N138

TEST CONDITIONS
IF = 1.6 rnA,
See Figure 1

RL

=

Propagation delay time, IF = 0.5 rnA,
high-to-Iow level output See Figure 1

RL

= 4.7

IF

=

12 rnA,

MIN

6N139

TYP

MAX

2

10

2.2 kit
kll,

RL

=

270O,

RL

=

2.2 kO,

RL

= 4.7

See Figure 1
IF

=

1.6 rnA,

4

See Figure 1

*tpLH

Propagation delay time. IF

= 0.5

rnA,

kO,

low-to-high-Ievel output See Figure 1

IF-12mA,

RL - 270O,

See Figure 1

Common-mode input
dVCM (H) Transient immunity,
dt
high-level output

VCM
RL

=

o

...o

"C
(")

o

s::::
"C

10 Vp-p,

2.2 kO,

IF = 0,
See Notes 7 and 8,

TYP

MAX

4

25

0.3

1

10

60

3.5

7

UNIT

~s

35
~s

500

500

V/~s

-500

-500

V/~s

See Figure 2

Common-mode input
dVCM
--ILl
dt

=

MIN

VCM

transient immunity,

=

Vp-p,

See Figure 2,

low-level output

RL = 2.2 kll,
See Notes 7 and 8

* JEOEC registered data
NOTES: 7. Common-mode transient immunity, high-level output, is the maximum rate of rise of the common-mode input voltage that
does not cause the output voltage to drop below 2 V. Common-mode input transient immunity, low-level output, is the maximum
rate of faU of the common-mode input voltage that does not cause the output voltage to rise above 0.8 V.
8. In applications where dV/dt may exceed 50,000 Vlp.s (such as static discharge) a series resistor, Ree, should be included
to protect the detector Ie from destructively high surge currents. The recommended value is:

CD
...

til

RCC ~

1
0.1 5 IF ImAI kll

Ui
o

...o

Q)

...

til

3-52

TEXAS •
INSTRUMENTS
POST OFfiCE BOX 655303 • DALLAS. TEXAS 75265

6N138,6N139
OPTOCOUPLERS/OPTOISOLATORS
PARAMETER MEASUREMENT INFORMATION

r ---------,

IF ....
PULSE
GENERATOR
Zo - SO!!
tr ,., 5 ns

SV

I

-+
-+

1
I

-.---.;1---'

INPUT CURRENT _ _ _ _
MONITOR

.,,---'-..-..-- OUTPUT

1
IL _____ _

100 !!

CL = lS pF
ISee Note AI

t--------+--~--~--GND

=

' - - - - - - - - OPEN
TEST CIRCUIT

- - - - IF
---1, . . - - - - - - - ,'-___
0

INPUT
CURRENT

I

I

OUTPUT~:
!I
I

VOLTAGE

1.S V

I

tpHL ~

I

~

SV

1.S V

-+I

t-14-

VOL

tpLH

WAVEFORMS
NOTE A: CL includes probe and stray capacitances.

...oen

...
CO

(5

en

-...

en

FIGURE 1. SWITCHING TEST CIRCUIT AND WAVEFORMS

~

C.

:::I

o

..."oc.

o

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-53

6N138, 6N139
OPTOCOUPLERS/OPTOISOLATORS
PARAMETER MEASUREMENT INFORMATION
RCC
r---~~----~'-~~5V

(See Note AI

.,--i-....--OUTPUT

r---~--'--------GND

GENERATOR

~--------------BASE

TEST CIRCUIT

E

GENERATOR

o

10V--7: 90
1

10%
V

%

90%h
I 10%

I

I I

I I

-+I I4-t,

o
....
o

tf-+!

14-

dVCM
dt

=

B V
tr or tf

t, = 8 ns TYP
tf - 8 ns TYP

'0

OUTPUT---_~.
~--------5 V

(')

SWITCH AT A: IF - 0

o
c::

'0

OUTPUT----------~ VOL

CD
...

SWITCH AT B: IF

en

iii
o
iir
....

=

1.6 rnA

VOLTAGE WAVEFORMS
NOTE A: In applications where dV/dt may exceed 50,000 V/p.s (such as static discharge) a series resistor,

o...

protect the detector

Ie

Ree,

from destructively high surge currents. The recommended value is:

1

en

Ree =

0.15 IF (mAl kll

FIGURE 2. TRANSIENT IMMUNITY TEST CIRCUIT AND WAVEFORMS

3-54

TEXAS . "
INSTRUMENlS
POST OFFICE BOX 666303 • DALLAS, TeXAS 75265

should be included to

6N138.6N139
OPTOCOUPLERS/OPTOISOLATORS

TYPICAL CHARACTERISTICS
6N139
CURRENT TRANSFER CHARACTERISTICS
80,----,-----,-----,----,-----,

6N138
CURRENT TRANSFER CHARACTERISTICS
80
70

«

E

.!.c:
!'!

:;
U

VCC=15V
TA = 25°C

60
50

j

40

C.

I

9

30

J~

20

--

,~

10

-t-+--+ IF

- 5 rnA
IF = 4 rnA
IF - 3 rnA

70

-

«

60

I
c:

50

E

~

~
~ 3.5 rnA
IF = 3 rnA
IF = 2.5 rnA

~ 'IF

Ii ::::::=

::J

0

rr

IF = 4.5 rnA
IF = 4 rnA

....--. ~

~

:;

r - - IF - 5 1rnA_

~

:;

u

40
IF = 2.5 rnA
IF = 2 rnA

~

::J

So
::J

30

IF = 2 rnA

0
I

IF = 1.5 rnA

IF = 1.5 rnA

9

IF = 1 rnA

IF - 1 rnA
IF - 0.5 rnA

0.5

2

1.5

2.5

.!
to
c:

~
I-

E
!'!
:;
u
I

a:

IU

111111
1500 VCC = 5 V
1400 Vo = 0.4 V
1300
TA = OOC
~
1200
~ TA - 70 OC- 1100
'\
1000
900
I
800
700
I
600
TA = ooc
II
500
i
l
~I
400
>=TA = ooc_
_ ° ~1
300
pTA = 250C TA - 70 C r-"' ~
200
t:: TA =
= 25°C
100

T~ 1=1 k~lb

o

~

0.1

f- ,",

700~±!1TA
'11111
111111

0.2 0.4 0.7 1

2

4

I

7 10

20

"0

6N139
CURRENT TRANSFER RATIO
vs
INPUT DIODE FORWARD CURRENT

1600

I

...nso

FIGURE 4

6N138
CURRENT TRANSFER RATIO
vs
INPUT DIODE FORWARD CURRENT

0

...

f I)

VO-Output Voltage-V

FIGURE 3

~
a:

2.5

2

1.5

0.5

VO-Output Voltage-V

?F.

II
-

IF = 0.5 rnA

o Ifo

40

?F.
I

..,0
«I

a:

~c:

.

.::
E
!'!
:;
u
I

a:

IU

1700
1600
'/
1500
1,\
IJ
1400
'I
1\.'\
1300
'\'
Ii /
1200
TA = 70°C 1:\
1100
-TA-25°C
~
1000 IH
Iff TA - 0 °C
900
800
'/
700
600
500
400
300
200
100
0.1 0.2 0.4 0.7 1
2

-...
~
f I)

~

c.

VCC = 5 V
Vo = 0.4 V

:::s

o
u
o

...c.

II ,....

"

IF-Input Diode Forward Current-rnA

o
'\
~

~
....;::
4

7 10

20

40

IF-Input Diode Forward Current-rnA

FIGURE 5

FIGURE 6

.

TEXAS'"

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

3-55

6N138.6N139
OPTOCOUPLERS/OPTOISOLATORS
TYPICAL CHARACTERISTICS
6N138

6N139

OUTPUT CURRENT
vs
INPUT DIODE FORWARD CURRENT

OUTPUT CURRENT
vs
INPUT DIODE FORWARD CURRENT

100
5V
70 VCC
Vo = 0.4 V
40

«

E
I

E
!!
:;
u
;

e::J

0

I

E

9

100
5V
70 VCC
40 Vo - 0.4 V
~

20

/'

10
7

0.2

E

10
7

§
;

2

.

~

So
::J

~FTA

~r

=

70°C

~:A=-O~~oC

0
I

1
0.7

9

0.4

0.1
0.1 0.2 0.4

r+

~

2

4

710 20 40

0.1
0.1 0.2 0.4

100

C')

o

2

4

710

20 40

100

IF-Input Diode Forward Current-rnA

IF-Input Diode Forward Current-rnA

o

~ TA = 70°C
r-TA = 25°C
TA
OOC

0.2

1111111

o
'C

,

4

u

2

0.4

20

I

E

4

1
0.7

«

FIGURE 8

FIGURE 7

s:::

'C

6N138

CD
...

INPUT DIODE FORWARD CURRENT
vs
FORWARD VOLTAGE

til

t il

20

o

TA

ji)

=

25 1o C

r+

...

o

til

«

E

15

I

E
~::J

U

.

"E

10

~

0

Ll.

I
o!:!-

5

0
1.3

/
1.4

/
/

PROPAGATION DELAY TIMES
vs
FREE-AIR TEMPERATURE
6

/
II

.. 5
"I

.
~

j::

.
.,.
.

>-

0;
Q

3

c

0

Cl

2

Q.

1.6

1.7

V

/"

--

- -o

10

20

~

30

tpHL

40

50

60

T A -Free-Air Ternperature- °c

VF-Forward Voltage-V

FIGURE 10

FIGURE 9

3-56

~

V
~

0

0:

~H

./'

4

o
1.5

IF = 1.6 rnA
RL ~ 2.2 kll

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

70

80

6N138.6N139
OPTOCOUPLERS/OPTOISOLATORS

TYPICAL CHARACTERISTICS

16

..,.
...

14

~

10

I

E

.
..,.
.

>
a;
C

6N139

6N139

PROPAGATION DELAY TIMES
vs .
FREE-AIR TEMPERATURE

PROPAGATION DELAY TIMES
vs
FREE-AIR TEMPERATURE
6

I
I
IF = 0.5 rnA
RL = 4.7 k!J

IF = 12 rnA
RL = 270!J

,.

II)

12

8

V

......-~

----

~

~

---tPLH

'"
Co

.

~

~

__ I-- ~

c..

-

>

6
4

4

~

c:
0

5

I

tpHL

I--- i===

~

3

c:

o
.~

---

..

V

~t;-

2

Co

~

c..

2

o

f-- I--

tpHL

o

10

20

30

40

50

60

70

80

o
o

'0

20

30

40

50

60

TA-Free-Air Ternperature- °C

TA-Free-Air Ternperature- °C

70

80

...

I/)

...o
Ctl

FIGURE 11

FIGURE 12

'0

-...

.!!!
I /)

Q)

c..
::::I
o
(.)
o

...

Co

o

-1!1

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

3-57

o

'C

r+

o(')
o
r:::

'C

CD
...
en

iii
o
6i
r+

o...

en

3-58

HCPL2502
OPTOCOUPLER/OPTDlSOLATOR
D2963, NDVEMBER 1986

•

Compatible with TTL Inputs

•

High-Speed Switching .. , 1 Mbit/s Typ

•

Narrow CTR Range

•

Bandwidth ... 2 MHz Typ

•

High Common-Mode Transient Immunity ... 1000 V/p.s Typ

•

High-Voltage Electrical Insulation ... 3000 V DC Min

•

Open-Collector Output

•

UL Recognized ... File Number E65085

•

Directly Interchangeable with Hewlett Packard HCPL2502

description
These high-speed optocouplers are designed for use in analog or digital interface applications that require
high-voltage isolation between the input and output. Applications include line receivers that require high
common-mode transient immunity, and analog or logic circuits that require input-to-output electrical
isolation.
The HCPL2502 optocoupler consists of a light-emitting diode and an integrated photon detector composed
of a photodiode and an open-collector output transistor. Separate connections are provided for the
photodiode bias and the transistor collector output. This feature, which reduces the transistor base-tocollector capacitance, results in speeds up to one hundred times that of a conventional phototransistor
optocoupler.

-...r.n

The HCPL2502 is designed for high-speed TTL/TTL applications where matched or known CTR is desired.
CTR is 15 to 22% at IF = 16 rnA.

(5

....oCtI

-...
r.n

mechanical data

r.n

9'91 (0.3701
10'390'~
9,40

Terminal connections:
1. No internal connection
2. Anode
3. Cathode
4. No internal connection
5. GND (Emitter)
6. Output

~
0000

} light-emitting
diode

~

c.

:::s
o
CJ
....o

!

7. Base

Detector

8. Vee

Q

o


.i:.

4

u

/

i5

V

5

25

50

75

100

125

IU

o

o

5

TA-Free-Air Temperature- De

-

I-I-

~~

"C

."
".
I

-10

RL - 1000
RL - 220
RL = 470 0 ---./

0

c.

"

II:

-15

RL=lkO

"C

----"

I 1.1

E
1.0

c

0.9

"o
.~
.'"c.

0.8

>-

£.

-25
IF = 16 mA

~ 2~D~
0.2

0.4

0.7 1

2

4

en

Vee = 5 V
IF = 16 mA
RL = 1.9kO

C.

::J

o
(.)
....o

c.

/

tpHL ""\
0.7

:r!

0.6

~

0.5

e-

z

TA

-...
~

7 10

~

--,,~p

/

_14 I--

I--

l'---tpLH

i

........-1/

0.4
-60 -40 -20

o

17

J:Y

I

E
0

0.1

.

j::

en
o
....
CO

Qj

1\

.~

.

II
...
"0
en

1.2

os.

~

iii -20

-30

20

PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATU-RE

CI)

~ ~ ~ ~r-.
oJ 1\

m

15

FIGURE 8

NORMALIZED FREQUENCY RESPONSE
vs
LOAD RESISTANCE

-5

10

IF-Quiescent Input eurrent-mA

FIGURE 7

0

-...;;;

10

I
U

.
a:-

0

~ r-.....

:::"

0.4
0.1
-75 -50 -25

15

-

25 De

=

.,

V

I

(

TA

.iii

!

:r:'"

/-

20

~

40
10

::r::

.
I:

I

100

Qi

25

.:!

0

p

~

/

0

20

40

60

80

100

T A - Free-Air Temperature - De

f-Frequency-MHz

FIGURE 10

FIGURE 9

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-65

E
o

"0

r+

o

(')

o

r:::

"0

...

(j)
CII

CII

o

i5)

r+

o...
CII

3-66

HCPL2530. HCPL2531
OPTOCOUPLERS/OPTOISOLATORS
D3115, APRIL 1988

•

Compatible with TTL Inputs

•

High-Speed Switching . .. 1 Mbit/s Typ

•

Bandwidth ... 2 MHz Typ

•

High Common-Mode Transient
Immunity . .. 1000 V/p.s Typ

•

High-Voltage Electrical
Insulation ... 3000 V DC Min

•

Open-Collector Output

•

UL Recognized . .. File Number 65085

description
These high-speed optocouplers are designed for use in analog or digital interface applications that require
high-voltage isolation between the input and output. Applications include line receivers that require high
common-mode transient immunity, and analog or logic circuits that require input-to-output electrical
isolation,
Each HCPL2530 and HCPL3531 optocoupler consists of two light-emitting diodes and two integrated photon
detectors. Each detector is composed of a photodiode and an open-collector output transistor. Separate
connections are provided for the photodiode bias and the transistor collector output, This feature, which
reduces the transistor base-to-collector capacitance, results in speeds up to one hundred times that of
a conventional phototransistor optocoupler.

•

The HCPL2530 is designed for TTL/CMOS, TTL/LSTTL, and wide-band analog applications.
The HCPL2531 is designed for high-speed TTL/TTL applications.

...

mechanical data

I/)

...
o

CD ~~~
CD 0
~
9,40 (0.370)

Terminal connections:
1. Anode 1
2. Cathode 1
3. Cathode 2
4. Anode 2
5. GND (Emittersl

~

o

0)

I/)

...

6. Output 2

I/)

7. Output 1

8. Vee

CI)

0..
::J

'i.~7'87 10'3101~'i.
r:::~ ,1:::::1

If

o
o
o
c.

...

0000

o

rI!----+I-1,·14

1,18 (0.0701
(0.045)

6"010'2401,1

II
~_SEATING

PLANE

GAUGE PLANE

10,76

--Jf---,.-i-

(0.030)

0,00 (0.0001

0.33 (0.013)
0,18 (0.007)

~\.-

2,92 (0.115) MIN

2.79(0.1'0)
2,29 (0.090)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

Copyright © 1988, Texas Instruments Incorporated

PRODUCTION DATA documants contain information

current as of publication date. Products conform to

specifications par the tarms of TaxBs Instrumants

:!'~~:~~i~ai~:'~'i ~!::~:: :.~O:::::~:~~ not

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 7526F

3-67

HCPL2530, HCPL2531
OPTOCOUPLERS/OPTOISOLATORS
schematic
r -__-.~--------------------~18~) VCC

ANODE,:]I')

--+

--+
. - -_ _ _ _ _ _ _ _.:.;17:..:.,.)

OUTPUT'

(2)

CATHODE'

ANODE

2:](4)

--+

--+

CATHODE

2

/"____4-_______1;.:6.;..) OUTPUT

2

(3)

~____~______~15~)

GND

absolute maximum ratings at 25 DC free-air temperature (unless otherwise noted)
Supply and output voltage range, Vee and Vo ........................... -0.5 V to 15 V
Reverse input voltage (each channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 V
Peak input forward current (each channel) (pulse duration = 1 ms, 50% duty cycle, see Note 1) 50 mA
Peak transient input forward current (each channel) (pulse duration = 1 ILs, f = 300 Hz) . . . . .. 1 A
Average forward input current (each channel) (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . .. 25 mA
Peak output current (each channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 mA
Average output current (each channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . .. 8 mA
Input power dissipation at (or below) 70 0 free-air temperature
(each channel) (see Note 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 mW
Output power dissipation at (or below) 70 0 free-air temperature
(each channel) (see Note 4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 mW
Storage temperature range ......................................... - 55 °e to 125°e
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 100 °e
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260 0 e

o

...o

'0

n

o

c
...CD

'0

e

-o
til

e

t il

...i»o

-...
til

NOTES: 1. Derate linearly above 70°C free-air temperature at the rate of 1.67 mA/oC.
2. Derate linearly above 70 0 e free-air temperature at the rate of 0.83 mA/oC.

3-68

3. Derate linearly above 70 0 e free-air temperature at the rate of 1.50 mW/oC.
4. Derate linearly above 70 0 e free-air temperature at the rate of 1.17 mW/oC.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 656303 • DALlAS. TEXAS 75265

HCPL253D. HCPL2531
OPTOCOUPLERS/OPTOISOLATORS
electrical characteristics over operating free-air temperature range of 0 °C to 70°C (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

VF

Input forward voltage

IF

~

16 rnA,

VF

Temperature coefficient
of forward voltage

IF

~

16 rnA

VBR

Input breakdown voltage

IR

~

10 pA,

VOL

low·Jevel output voltage

Vee - 4.5 V,
IF ~ 16 rnA

10L - 1.1 rnA

IFI ~ IF2 ~ 00
TA ~ 25°e

Vee ~ Val ~
V02 ~ 5.5 V

High·level
10H

leeH

eTR

~

TA
10L

~

~

25°e

Vee

high· level output

IFI ~ IF2 ~ 0
Vee ~ 15 V,

low-level output

Current transfer ratio

1.7

101

= 102 = 0,

101

= 102 = 0,

IFI ~ IF2 ~ 16mA
Va
Vee = 4.5 V,
IF ~ 16 rnA,
TA

3

0.5 V,
7%

Va = 0.5 V,
See Note 5

5%

V

V

0.5

V

0.1

0.5

3

500

nA

50

50

pA

4

4

pA

500

80

25°e,

UNIT

mV/oe

5
0.1

~

1.7

-1.8

5

~

HCPL2531
TYpt
MAX
1.6

2.4 rnA

Supply current,

15 V,

1.6

MIN

-1.8

Vee - VOl - V02 - 15V,
IFI ~ IF2 ~o
~

HCPL2530
Typt
MAX

25°e

output current

Supply current,

leeL

TA

MIN

80

19%

18%

pA

24%

See Note 5
eTR
'10

110
ei

Current transfer ratio

qj

'ii

eii

=

IF

4.5 V,

16 rnA,

=

Input-output

Via

resistance

See Note 6

Input-output

Via

insulation

TA

~eakage

See Note 6

~nput

current

capacitance

Input-output

eio

~

Vee

capacitance

VF
f

~

~
~

500 V,
3000 V,
25°e,

= 0,

5 s,

~

RH

~

60

pF

0.6

pF

1011

1011

n

0.005

0.005

pA

25°e,

Rh

~

TA

= 25°e,

~

~

insulation

TA

leakage current

See Note 7

Input-input

f

capacitance

See Note 7

1 MHz,

pA

60

55,

Vii

1

0.6

t

Input-input

500 V,

1

1 MHz

~

~

25°e

45%,

-...
en

n

10 12

10 12

See Note 6

500 V,

See Note 7

15%

45%,

~

Vii

resistance

t All typical
NOTES: 5.
6.
7.

t

25°e,

TA

Input-input

=

~

f

1 MHz,
~

TA

...
-...
o
ca

(5
en

en

Q)

c..
::I
o
(J
o

...

C-

0.25

0.25

pF

O

values are at T A = 25°e.
Current transfer ratio is defined as the ratio of output collector current 10 to the forward LED input current IF times 100%.
These parameters are measured between pins 2 and 3 shorted together and pins 5, 6, 7, and 8 shorted together.
These parameters are measured between pins 1 and 2 shorted together and pins 3 and 4 shorted together.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-69

HCPL2530. HCPL2531
OPTOCOUPLERS/OPTOISOLATORS
operating characteristics at Vee - 5 V, IF PARAMETER

BW

TEST CONDITIONS

Bandwidth (- 3 dBI

RL - 100 II,

25°e

16 rnA, TA -

HCPL2530
MIN

TYP

HCPL2531

MAX

MIN

TYP

2

See Note 8

MAX

2

NOTE 7: Bandwidth is the range of frequencies within which the ae output voltage is not more than 3 dB below the low-frequency value.

switching characteristics at Vee = 5 V, IF = 16 rnA, TA = 25°e (unless otherwise noted)
PARAMETER

TEST CONDITIONS
RL

tpLH

~

4.1 kll,

Propagation delay time,

See Figure 1

low-to-high-Ievel output

RL

~

1.9 kll,

HCPL2530
MIN

See Note 9,

HCPL2531

TYP

MAX

1.0

1.5

RL
tPHL

•

high-to-Iow-Ievel output

RL

~

1.9k!l,

aVCM
Common-mode input

dVCM (HI transient immunity,
dt
high-level output

RL

~

~

10 V,

4.1 kll,

See Note 9,

0.7

~

0.6

0.8

0.6

0.8

1.5

0,

See Notes 9 and 10,

1000

See Figure 2

aVCM
RL

~

~

10 V,

1.9 kll,

IF

~

UNIT

~s

See Note 10,
IF

MAX

V/~s

0,
1000

See Notes 10 and 11,

See Figure 2

ro+

o
C')
o

Common-mode input

dVCM (LI transient immunity.
dt
low-level output

I:

'C

en
fir
o

4.1 kll,

See Figure 1
See Figure 1

o
'C
CD
...

~

TYP

~s

See Note 10,

See Figure 1
Propagation delay time,

MIN

NOTES:

aVCM ~ 10 V,

RL

~

4.1 kll,

See Figure 2, See Notes 9 and 11,
aVCM

~

10 V,

-1000

RL~1.9kll,

See Figure 2, See Notes 10 and 11

9. The 4.1-kllload represents one LSTTL unit load 01 0.36 mA and a 6.1-kll pullup resistor.
10. The 1.9-kll load represents one TTL unit load 01 1.6 mA and a 5.6-kll pullup resistor.
11. Common-mode transient immunity, high-level output, is the maximum rate of rise of the common-mode input voltage that
does not cause the output voltage to drop below 2 V. Common-mode input transient immunity, low-level output, is the maximum

rate of fall of the common-mode input voltage that does not cause the output voltage to rise above 0.8 V.

Q)
ro+

o
en

...

-

3-70

V/~s

-1000

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

HCPL2530. HCPL2531
OPTOCOUPLERS/OPTOISOLATORS
PARAMETER MEASUREMENT INFORMATION

r-----..,

PULSE
GENERATOR
Zo - SO {J

SV

I

-+
-+

I
I

tr "'" 5 ns

INPUT CU,-,RR:.cE:..N_T_ _HII~
MONITOR

OUTPUT

L ____ _

100 !!

CL - lSpF
ISee Note A)

L-----~-~-------GND

TEST CIRCUIT (EACH CHANNEL)
INPUT
CURRENT

--..J

L-_ _ _ 0 V

I

I

OUTPUT~:
!I
I

VOLTAGE

I

tpHL

SV
1.S V
-I---VOL

1.S V

~

I

14-

-+I :.- tpLH

WAVEFORMS
NOTE A: CL includes probe and stray capacitance.

FIGURE 1. SWITCHING TEST CIRCUIT AND WAVEFORMS

...oen

....Ctl

"0
en

-...
en

CI)

C.
:::l

o
(.)
o
....c.

o

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-71

HCPL2530. HCPL2531
OPTOCOUPLERS/OPTOISOLATORS
PARAMETER MEASUREMENT INFORMATION

RL
./"....L.......-OUTPUT

J---"'---4I~-GND

TEST CIRCUIT (EACH CHANNELl

GENERATOR

oV

10 V - - 7 :
10%

I I

-+I

o

"C

r+

OUTPUT

o
C')
o

c:
CD

"C

"'"

90%

:

90%~
I 10%
I I
tf~

J4-t,

dVCM

_

8 V

~

-

trortf

I, - 8 ns TYP
If - 8 ns TYP

If-

~

5V

SWITCH AT A: IF - 0 rnA

~VOL

OUTPUT
SWITCH AT B: IF -

16 rnA

(fj

VOLTAGE WAVEFORMS

iii
o

FIGURE 2. TRANSIENT IMMUNITY TEST CIRCUIT AND WAVEFORMS

Qj"
r+

o

-"'"
(fj

3-72

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

HCPL2530. HCPL2531
OPTOCOUPLERS/OPTOISOLATORS
INPUT DIODE FORWARD CURRENT
vs
FORWARD VOLTAGE
20

16
.......- T A = 25°C

.,.,

I

E
~

;;

400

~

"
So

"

/

100
40
10

--'

4

"

i:.

~

;;
U

7

~

I

i5
I

:I:

E

.,

U

0.4

a:
f-

[.7
0.1
-75 -50 -25

10

:::"

7

J:

15

.,

'iii
.
t:

Ol

9

20

E

~

0

a;
>

'.::.,*
t:

u

0

25

50

75

100 125

U

5

0
0

TA--Free-Air Temperature- °C

0

10

5

15

20

IF - Quiescent Input Current - mA

FIGURE 7

FIGURE 8

"C

r+

0

(")

0

I:

NORMALIZED FREQUENCY RESPONSE
vs
LOAD RESISTANCE

"C

~

...

C/l

Ui
iii"
r+

o --.::::

0

...

0

~

1.2~~-~

t-- j--...j-..

~~

-5
"C

'"0t:"

-10 I - - I-- I- RL

a::'"

"
.!:!
"
'iii

-15

RL

"C

E

=

100 n

RL = 220 n·
RL"' 470n..../

0.

=

'""-

1 kn
I

:=;;

D

1.1

j::

.,>

1.0

o

0.9

a;

1\

t:

..,o

[\

I

I

"E

~
~ ~~
.J

III

I

PROPAGA TION DELAY TIME
vs
FREE-AIR TEMPERATURE

.,~0.

0.8

.t

0.7

o

-20

I

--'
:I:

0

z

e-

-25

-30
0.1

:5

IF = 16 mA
TA ~ 25 0 c
1 i

0.2

0.4

e0.7 1

2

4

7 10

0.5 1--1--c.....-q--+--+--f---+--l----1
0.4
-60 -40 -20

f-Frequency-MHz

FIGURE 9

3·74

0

20

40

60

T A - Free-Air Temperature - °C

FIGURE 10

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

80

100

HCPL2601
OPTOCOUPLER/OPTOISOLATOR
02968, NOVEMBER 19B6

•

Gallium Arsenide Phosphide LED Optically
Coupled to an Integrated Circuit Detector

•

High-Voltage Electrical
Insulation ... 3000 V DC Min

•

Internal Shield for Common-Mode Rejection

•

High-Speed Switching ... 75 ns Max

•

Compatible with TTL and LSTTL Inputs

•

UL Recognized ... File Number E65085

•

Low Input Current Required to Turn Output
On ... 5mAMax

•

Directly Interchangeable with Hewlett
Packard HCPL2601

description
The HCPL2601 optocoupler is designed for use in high-speed digital interfacing applications that require
high-voltage isolation between the input and output. It is recommended for use in extremely high groundnoise and induced-noise environments. Applications include line receivers, microprocessors or computer
interface, digital programming of floating power supplies, motors, and other control systems.
The HCPL2601 high-speed optocoupler consists of a GaAsP light-emitting diode and an integrated light
detector composed of a photodiode, a high-gain amplifier, and a Schottky-clamped open-collector output
transistor. An input diode forward current of 5 milliamperes will switch the output transistor low, providing
an on-state drive current of 13 milliamperes (eight 1.6-milliampere TTL loads). A TTL-compatible enable
input is provided for applications that require output-transistor gating.

II

The HCPL2601 is mounted in a standard a-pin dual-in-line plastic package.
The HCPL2601 is characterized for operation over the temperature range of OOC to 70°C. The internal
shield provides a guaranteed common-mode transient immunity of 1000 volts/microsecond minimum.

...o

C/)

...ca

mechanical data

~
(0)

1. No internal connection
2. Anode

} Light-emitting
diode

3. Cathode
4.
5.
6.
7.

No internal connection
GND
Output
Enable

8. Vee

"0
C/)

9'91 10'3901~
(O.370~

-...

9,40

Terminal connections:

0 G

C/)

~

!

C.
:::l

Detector

o
()
o

...c.

o

1I.~7'87 10.3101711.
~~:: 11:::::_1

r
If 1010.2401 \1

0000
J I!--+f- 1,78 (0.070)
r I 1,14 (0.045)

0,89 (0.035) MINi

6,

r-~II----:--------'
4,70 (0.185) MAX

(0.013)~~

1--1r-,....,r--'"""1""--'-'-"";

2,92 (0.115) MIN

0.33
0,18 (0.007)

I

1,40 (0.055)
0,76 (0.030)

2,79 (0.110)
2,29 (0.090)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

PRODUCTION DATA documents contain information
currant as of publication date. Products conform to
specifications par the terms of Texas Instruments

standard warranty. Production processing does not
necessarily include testing of all parameters.

Copyright © 1986, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-75

HCPL2601
OPTOCOUPLER/OPTOISOLATOR
FUNCTION TABLE

logic diagram (positive logic)

INPUT

ENABLE

OUTPUT

IFlon)

H

L

IFloff)

X

H

X

L

H

121
ANODEJ
CATHODE

131

-l+ r-~~--------------~18~IVCC
-1+
)

I
I
I

SHIELD
ENABLE

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

•

Supply voltage, Vee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Reverse input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 V
Enable input voltage (not to exceed Vee by more than 500 mV) ... . . . . . . . . . . . . . . . . . .. 5.5 V
Output voltage ............................... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Peak forward input current (:s; 1 ms duration). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 mA
Average forward input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 mA
Output current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 25 mA
Output power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 40 mW
Storage temperature range ......................................... - 55 °e to 125°e
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 70 0 e
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 260 0 e

o

"C

r+

o
(")

recommended operating conditions

o

s::::
"C

CD
...

en

MIN

NOM

MAX

4.5

5

5.5

V

2

Vee

V

0

0.8

V

Input forward current to turn output on

6.3

15

rnA

0

250

~A

13

rnA
De

vee

Output supply voltage Isee Note 1)

VIHIEN)

High-level enable input voltage Isee Note 2)

VILIEN)

Low~level

IFlon)

enable input voltage

iii

IFlolI)

Input forward current to turn output off

or

IOL

Low-level (on-state) output current

o

TA

r+

...o

en

NOTES:

3-76

Operating free-air temperature

0

1. All voltage values are with respect to GND Ipin 51.
2. No external pullup is required at the enable input; an open circuit will establish the high level.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

70

UNIT

HCPL26D1
OPTOCOUPLER/OPTOISOLATOR
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

VF

Input forward voltage

"VF
VBR

Temperature coefficient of forward voltage
Input reverse breakdown voltage

TA = 25°C

IR-l0~A,

TA _ 25°C
V(EN) = 2 V,

VCC = 5.5 V,

Low-level output voltage

VOL

MIN

IF = 10 rnA,
IF = 10 rnA

Typt

MAX

UNIT

1.6

1.75

V
mV/oC

-1.8

IF = 5 rnA,

IOL = 13 rnA

VCC = 5.5 V,

Vo = 5.5 V,
IF = 250

5

V
0.23

0.6

V
~A

IOH

High-level output current

IIHIENI

High-level enable input current

VIEN) = 2 V,
VCC = 5.5 V,

VIENI = 2 V

-0.2

IIL(EN)

Low-level enable input current

VCC = 5.5 V,

V(EN) = 0.5 V

-0.5

-2

rnA

Supply current, high-level output

VCC = 5.5 V,

V(EN) = 0.5 V,

ICCH

10

15

rnA

13

19

rnA

1

~A

250

~A

IF = 0
VCC - 5.5 V,

ICCL

Supply current, low-level output

110

Input-output insulation leakage current

VIEN) - 0.5 V,

IF = 10 rnA
VIO = 3000 V,

t = 5 s,

TA = 25°C,

RH = 45%,

rnA

See Note 1

'10

Input-output resistance

Ci

Input capacitance

Cio

Input-output capacitance

VIO = 500 V,

TA = 25°C.

10 12

See Note 1
VF = 0,

f = 1 MHz

f = 1 MHz,

TA = 25°C,

See Note 1

°

60

pF

0.6

pF

NOTE 1: These parameters are measured between pins 2 and 3 shorted together and pins 5, 6, 7, and 8 shorted together,

PARAMETER

tPLH(ENI
tpHL(EN)

IF = 7.5 rnA,

RL = 350 (J,

level output, from LED input

CL = 15 pF,

See Figure 1

Propagation delay time, high-to-Iow

IF - 7.5 rnA,

RL - 350O,

level output, from LED input

CL=15pF,

See Figure 1

Propagation delay time, low-to-high

IF = 7.5 rnA,

RL = 350O,

level output, from enable

CL = 15 pF,

See Figure 2

Propagation delay time, high-to-Iow

IF = 7.5 rnA,

RL = 350O,

level output, from enable

CL = 15 pF,

See Figure 2

IF = 7.5 rnA,

RL = 350O.

Fall time

tf

Common-mode input transient

dVCM

ILl

CL = 15 pF
IF = 7.5 rnA,

RL = 350O,

CL = 15 pF


....I

~

Io

0.1 f--t--+--t---+--+--+--t--t

....I

o

>
1.6

o

1.7

10

20

30

FIGURE 6

FIGURE 5
HIGH-LEVEL OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
4

Vee - 5.5 V
Vo = 5.5 V
IF = 250/LA

octc:

~c:

.,

~

3

0

S

S:::I

0

2

Qj

>

"

....I

1:.
Ol
:i:
I

J:

.9

--

o
o

10

I-

20

30

40

50

60

TA-Free-Air Ternperature-

70

°e

FIGURE 7

3-80

40

50

60

TA-Free-Air Ternperature-

VF-Forward Voltage-V

CJ)

...

~

S:::I

OL---'_~_-L_-L_~_~_L---'

...

o
Q)
"'
o

f-~-_;-_+-+-+-+--1_-i

>

/

1.5

c;-

i ii

:!l,
! 0.3
'0

/

o

C
'C

-

/

V(EN) = 2 V
IF = 5 rnA
10L = 13 rnA

I

/

8

1.1

>

I
I
J

, 16

E
~

0.4 ".,V,-e-e-.---=5:-.5::--:c
V:-r--,--,--,--,-----,

I

TA = 25 0 e

18

~

TEXAS
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

80

70

°e

80

HCPL2601
OPTOCOUPLER/OPTOISOLATOR
TYPICAL CHARACTERISTICS
PROPAGATION DELAY TIME FROM LED INPUT

vs
PULSE FORWARD CURRENT
100

Vcc = 5 V
RL = 350
TA = 25°C



.!l

/

~

~I

0.1 L--I--+-+--f---I--+--f--I
r

-'

o

>

./

o
1.1

I

Cl

/

2

o
"0

.

i:l
o
>

II

~

Vee = 5.5 V
IF = 5 mA
IOL-13mA

>

OL-~

1.5

1.6

o

1.7

__- L__

10

20

FIGURE 5

FIGURE 4

s:::

HIGH-LEVEL OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE

CD
...
CII

4

o

Q)

....o

...

CII

Vee = 5.5 V
Vo - 5.5 V
IF = 250 ~A

ctI:
I

~

I:

e
:;

3

u

~

::l

.9::l

0
OJ
>

2

.

-'

.i::Cl
J:
I

J:

9

o

-- o

10

20

30

40

50

60

TA -Free-Air Temperature- °e

FIGURE 6

3-88

__- L__

40

50

i-~

60

TA-Free-Air Temperature- °e

VF-Forward Voltage-V

"0

CII

L-~

30

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

70

80

__

70

~

80

HCPL2630
DUAL·CHANNEL OPTOCOUPLER/OPTOISOLATOR
TYPICAL CHARACTERISTICS
PROPAGATION DELAY TIME FROM LED INPUT
vs
PULSE FORWARD CURRENT
100

VCC ~ 5 V
RL - 350 n
TA = 25°C

OJ

i

90

Q)

E

80

~

70

i=
OJ

~

60

·iii

50

~

40

o

.

t~

.......

C>

--

I":::::- ~

D.

~

30

::t:

e-

20

:5
e-

10

I--""

-

tpHL

o
4

6

10

8

14

12

16

IF-Pulse Forward Current-rnA

i

90

E

80

.

i=

~

Vce = 5 V
IF = 7.5 rnA
TA = 25°C

..,.o
c

/'

/V

70
tpLH

60
50

.g.

40

~

30

C>

---

Ii:

-...r.n

.!?
c.
::::s

OJ

C

...

"0
r.n

PROPAGATION DELAY TIME FROM LED INPUT
vs
LOAD RESISTANCE
100

...

r.n
o
ctI

FIGURE 7

OJ

II
o
(,)
o

...c.

o

/"

V
tpHL

::t:

e-

:i:
...J

e-

20
10

o

o

2

4

3

RL - Load Resistance -

5

kn

FIGURE 8

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-89

o

...o

"C
C'l

o

I:

"£.
CD
~

VJ
VJ

o

...oQT

~

VJ

3-90

HCPL2631
DUAL·CHANNEL OPTOCOUPLER/OPTOISOLATOR
03114. APRIL 1988

•

Gallium Arsenide Phosphide LED Optically
Coupled to an Integrated Circuit Detector

•

Compatible with TTL and LSTTL Inputs

•

Low Input Current Required for On· State
Output ... 5 mA Max

•

•

High-Speed Switching ... 75 ns Max

•

Directly Interchangeable with Hewlett
Packard HCPL2631

•

UL Recognized ... File Number E65085

•

Internal Shield for High Common-Mode
Rejection

High-Voltage Electrical
Insulation ... 3000 V DC Min

description
The HCPL2631 is a dual optocoupler designed for use in high-speed digital interfacing applications that
require high-voltage isolation between the input and output. Applications include line receivers,
microprocessors or computer interface, and other control systems.
Each channel of the HCPL2631 optocoupler consists of a GaAsP light-emitting diode and an integrated
light detector composed of a photodiode, a high-gain amplifier, and a Schottky-clamped open-collector
output transistor. An input diode forward current of 5 mA will switch the output transistor low, providing
an on-state drive current of 13 mA (eight 1.6-mA TTL loads).
The device is mounted in a standard a-pin dual-in-line plastic package. The internal shield provides a
guaranteed common-mode transient immunity of 1000 v/p.5 minimum.
The HCPL2631 is characterized for operation over the temperature range of OOC to 70°C.

-...o

tn

...

mechanical data

CO

1=-9.91103901-=1

Terminal connections:
1.
2.
3.
4.
5.

1 Anode
1 Cathode
2 Cathode
2 Anode
GND

I

~ I~W-;' ~ I

'0
tn

-...
tn

Q)

Q.

6. 2 Output
7. 1 Output

:::l

8. Vee

o
CJ
o

...c.

o
0000
0,89 (O.03S)

MIN1

r-...--1H--~-"'"
4.70 '(0.185) MAX

0.33

(O.O'3J~\.-

2,92 (0.115) MIN

0,18 (0.0071

2,79 (O.ll0)
2.29 {O.OSOI

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

PRODUCTION DATA documents contain information
currant as of publication data. Products conform to
specifications per the terms of Texas Instruments

~~~=~~i~'[::,~1e ~:~:;ti:: :.r:::::::t::'s~ not

Copyright © 1988, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFiCe BOX 655303 • DALLAS, TeXAS 75265

3-91

HCPL2631
DUAL-CHANNEL OPTOCOUPLERJOPTOISOLATOR
logic diagram (positive logic)
III
1 ANODE - .

1 CATHODE.EL5

SHIELD

141

I

I

r--.__ ________
~

++

~18~1 VCC
1 OUTPUT

++
I

<'----.--+-----.
I
I
I

2ANODE~

2CATHODE~

I

I

f

~_-+_.;..16-,-1 2

OUTPUT

I

I
I

~____~~____~~-e~1~5~1 GND

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Reverse input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 V
Output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Peak forward input current, each channel (:5 1 ms duration) . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA
Average forward input current, each channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 mA
Output current, each channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16 mA
Output power dissipation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85 mW
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 55 DC to 125 DC
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 DC to 70 DC
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . 260 D e

...oo

"0
(")

o

C
"0

...CDen

-en

recommended operating conditions

o

Vee

Output supply voltage (see Note 1)

Dr

IFlonl

Input forward current to turn output on

...
en

IFloff)

Input forward current to turn output off

IOl

Low·level (on-state) output current

TA

Operating free-air temperature

...o

-

NOM

MAX

4.5
6.3
0

5

5.5
15
250
13
70

0

NOTE 1: All voltage values are with respect to GND Ipin 5).

3-92

MIN

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX $55303 • OAUAS, TeXAS 75265

UNIT

V
rnA
~A

rnA

°e

HCPL2631
DUAL·CHANNEL OPTOCOUPLER/OPTOISOLATOR

electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

VF

Input forward voltage

IF

"VF
V8R

Temperature coefficient of forward voltage

IF

VOL

Low-level output voltage

Input reverse breakdown voltage

= 10 rnA.
= 10 rnA
= 10 pA.

IR

=

High-level output current

ICCH

Supply current, high-level output

VCC - 5.5 V.

ICCL

Supply current, low-level output

VCC
VII

III

'"put-input insulation leakage current

TA

25°C

MAX

UNIT

1.6

1.75

V
mV/oC

=

Va

V

5

IF - 5 rnA.

0.23

13 rnA

10H

=

=

TA

VCC - 5.5 V.
IF

Typt
-1.8

VCC - 5.5 V.
10L

MIN

= 25°C

TA

5.5 V.

250 pA

=

=0

IF

20

= 10 rnA
t = 5 s.
RH = 45%.

26

IF

5.5 V.

= 500 V.
= 25°C

0.6

V

250

pA

30

rnA

38

0.005

rnA
pA

See Note 2
Via
110

Input-output insulation leakage current

TA

= 3000
= 25°C.

V.

=

t

5 s.

RH

=

45%.

1

pA

See Note 1
Input-input resistance

VII = 500 V.
See Note 2

TA

=

25°C.

Input-output resistance

TA

=

25°C.

'10

Via = 500 V.
See Note 1

Ci

Input capacitance

VF

eii

Input-input capacitance

VF

Cio

Input-output capacitance

rll

= O.
= O.

=
=

f
f

f - 1 MHz.

TA

lOll

Il

10 12

Il

1 MHz

60

pF

1 MHz

0.25

pF

0.6

pF

=

25°C.

See Note 1

tAli typical values are at VCC = 5 V. TA = 25°C.
NOTES: 1. These parameters are measured between pins 1. 2. 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together.
2. These parameters are measured between pins 1 and 2 shorted together and pins 3 and 4 shorted together.

switching characteristics at Vee

=

-...

CI)

o

+'"

CO

"0
CI)

-...
CI)

~

5 V. TA = 25°e

Q.
~

PARAMETER
tpLH
tpHL
tr
tf

TEST CONDITIONS

= 7.5 rnA.
= 15 pF.

Propagation delay time, low-to-high-Ievel

IF

output, from LED input

CL

Propagation delay time, high-to-Iow level

IF - 7.5 rnA.

output, from LED input

= 15 pF.
= 7.5 rnA.
CL = 15 pF
IF = 7.5 mAo
CL = 15 pF
dVCM = 50 V.
RL = 350 Il.

Rise time
Fall time

Common-mode input transient immunity,
dVCM (HI
high-level output
dt
Common-mode input transient immunity,
dVCM (LI
dt
low-level output

MIN

= 350 Il.

RL

See Figure 1

CL

RL - 350 Il.
See Figure 1

IF

RL

=

RL

= 350 Il.

350 Il.

UNIT

TYP

MAX

42

75

ns

42

75

ns

20

ns

30

ns

o
(,)
o

+'"
Q.

o

IF = O.
1000

10000

Vips

-1000-10000

VIpS

See Note 3 and Figure 2
dVCM - -50 V.
RL = 350 Il.

IF - 5 rnA.

See Note 3 and Figure 2

NOTE 3: Common-mode input transient immunity, high-level output, is the maximum rate of rise of the common-mode input voltage that
does not cause the output voltage to drop below 2 V. Common-mode input transient immunity, low-level output, is the maximum
rate of fall of the common-mode input voltage that does not cause the output voltage to rise "above 0.8 V.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-93

HCPL2631
DUAL·CHANNEL OPTOCOUPLER/OPTOISOLATOR
PARAMETER MEASUREMENT INFORMATION
(EACH CHANNEl)

PULSE
GENERATOR
Zo - 50 n
tr -

-

----,I

,--,~------------------,-~~5V

RL =350n

5 ns

INPUT
MONITOR

OUTPUT

47

n

CL
ISee Note AI

0.01 pF

TEST CIRCUIT

INPUT
MONITOR

---350mVIIF ~ 7.5 mAl

14-

175 mov IIF - 3.75 mAl

--+I tpLH ~
I

OUTPUT
VOLTAGE

r+

o

n
o

CD
...

\

~ tpHL

o

"C

I:
"C

I

-1i - - - - - -I\,- - -

I
~

VOH

I

-- -

-

-

-

---1.5 V
----VOL

WAVEFORMS
NOTE A: CL is approximately 15 pF, which includes probe and stray wiring capacitances.

en

FIGURE 1. tPLH AND tpHL FROM LED INPUT TEST CIRCUIT AND WAVEFORMS

Ui
o

Qi
r+
o

...

en

3·94

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

HCPL2631
DUAL·CHANNEL OPTOCOUPLER/OPTOISOLATOR

PARAMETER MEASUREMENT INFORMATION
(EACH CHANNEL)
r--.--------------------.-~~5V

r
I

I

~--___,.___------....--t_OUTPUT

I
I

L

0.01 pF

GENERATOR
TEST CIRCUIT
dVCM
GENERATOR

oV

10V--7:
10%

90%~

90%

. I

I

I

~

I

~

BV
-

tr or tf

10%

I I

I

I4-t,

tf-+l

~

-...

..
( /j

OUTPUT

o

'""-"'_------- 5 V

ctI

SWITCH AT A: IF - 0

'0

~

O U T P U T - - - - - - - - -..~VOL
SWITCH AT B: IF - 5 rnA

...

(/j

CJ.)

VOLTAGE WAVEFORMS

Q.

FIGURE 2. TRANSIENT IMMUNITY TEST CIRCUIT AND WAVEFORMS

o
(.)

::l

------------------------------------------------------------Boc.
TYPICAL APPLICATION INFORMATION

A ceramic capacitor (0.01 /iF to 0.1 /iF) should be connected between pins 8 and 5 to stabilize the highgain amplifier. The total lead length between the capacitor and the optocoupler should not exceed 20 mm
(0.8 inches). Failure to provide a bypass capacitor may result in impaired switching characteristics.
LGND BUS IBACKI

<~~--~--~--~-

NC

cr:r-rJ:c===::::n::==~
\==~r=:F====~
'\~=====:)

OUTPUT 1

OUTPUT 2

FIGURE 3. RECOMMENDED PRINTED CIRCUIT BOARD LAYOUT

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

3-95

HCPL2631
DUAL·CHANNEL OPTOCOUPLER/OPTOISOLATOR
TYPICAL CHARACTERISTICS
INPUT DIODE FORWARD CURRENT
vs
FORWARD VOLTAGE
20

I

TA - 25°e
18

E

14

"~

12

U

10

:;

"t>

10
~

8

LL.

6

;;
I

~

4

/

2

o

'C

..t-

o

(')

I

"

Cl

~

0.3

>
~

"
So
o"

/
/

0.2 f---ll------l---+--+--+--+---i---l

a;
>

.!l
~

.9I

0.1 f---ll------l---+--+--+--+---i---l

...J

o

>

./

o
1.1

I

Vee - 5.5 V
IF = 5 mA
IOL = 13 mA

>

I
I
/

16


"

...J

J:.

Cl

J:
I

J:

9

o

--

o

10

20

30

40

50

60

T A - Free-Air Temperature - °e

FIGURE 6

3-96

__- L__~~__~

40

50

60

T A - Free-Air Temperature - °e

o

'0
o

L-~

30

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

70

80

70

80

HCPL2631
DUAL·CHANNEL OPTOCOUPLER/OPTOISOLATOR
TYPICAL CHARACTERISTICS
PROPAGATION DELAY TIME FROM LED INPUT

vs
PULSE FORWARD CURRENT

.f

100

.,

90

E

80

i=

~

Vee - 5 V
RL - 3500
TA = 25°e

70

OJ

~

60

.~

50

o

.,'"
g.

t~

-

40

d:
:..
:t:

-

~~

30

!-

20

a.:i:

10

~

r--

-

tpHL

-

o
4

8

6

10

12

14

16

-...

( I)

IF-Pulse Forward Current-rnA

o
+oJ
ca

FIGURE 7
PROPAGATION DELAY TIME FROM LED INPUT

vs

90

'"

80

~

70

i=

Q)

100

E

Vce - 5 V
IF - 7.5 rnA
TA = 25°e

/"
,,//

OJ

o
..,.,"o

..e'"

tpLH

60
50

40

CL

:..
:t:

!:i:
....
!-

30

-...

(I)

LOAD RESISTANCE

..f

"0
(I)

--

V

V

c..
::l
o
CJ
o
+oJ

Q.

o

tPHL

20
10

o
o

2

3

4

5

RL - Load Resistance - kO

FIGURE 8

TEXAS . "
INSTRUMENTS
. POST OFFICE BOX 866303 • DALLAS. TEXAS 75265

3·97

o

...o

'C
(')

o

r::::
'C

CD
...

o

o
o

...o

ii)

...

o

3-98

HCPL2730, HCPL2731
DUAL-CHANNEL OPTOCOUPLERS/OPTOISOLATORS
D3262. JUNE 1989

•

Dual-Channel Optocouplers

•

High Current Transfer Ratio ... 1800% Typ at IF - 0.5 mA

•

Low Input Current Requirement ... 0.5 mA

•

High-Speed Switching ... 100 kbit/s Typ

•

High Common-Mode Transient Immunity ... 500 VII's Typ

•

High-Voltage Electrical Insulation ... 3000 V DC Min

•

High Output Current Rating of 60 mA

•

UL Recognized ... File Number 65085

description
These devices are useful where large common-mode input signals exist, and in applications that require
high-voltage isolation between circuits. Applications include line receivers, telephone ring detectors, power
line monitors, high-voltage status indicators, and circuits that require isolation between input and output.
The HCPL2730 and HCPL2731 dual-channel high-gain optocouplers each consists of a pair of light-emitting
diodes and integrated high-gain photon detectors. The VCC and output terminals may be tied together
to achieve conventional photodarlington operation. An integrated emitter-base bypass resistor is provided
for low leakage.
The HCPL2730 is designed for use primarily in TTL applications. An LED input current of 1.6 mA and a
minimum current-transfer ratio of 300% from OoC to 70°C allow operation with one TTL-load input and
one TTL-load output utilizing a 2.2-kO pull up resistor.
The HCPL2731 is designed for use in CMOS, LSTTL, or other low-power applications. This device has
a minimum current-transfer ratio of 400% for only 0.5-mA input current over an operating temperature
range of OoC to 70°C.

ri "

mechanical data

#1 ANODE

2.
3.
4
S.
6

#1 CATHODE
#2 CATHODE
#2 ANODE
GND
#2 OUTPUT

...o
CO

'0

-...
~
I /)

IO'3'OI~
9.4010.370)

1

...

I/)

~

C.
:::l

00) 00

o

to)

...oc.

#1 OUTPUT

o

Vee

0000
0,89 10.035)

MIN1

r-~g.....+----,
4.7010.185) MAX L---:~-';~-,......~

0.33

(O.0131~\.-

0,18 (0.0071

2.92 (0 115) MIN

I

I•• 1.

1,4010.055)
0,76 (0.030)

2.79

ro

110)

2,29 (O.090l

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
Copyright © 1989, Texas Instruments Incorporated

PRODUCTIO,. DATA documents contain information
current as of publication date. Products conform to
specifications par the tarms of Texas Instruments

::-:!:~~i~.i~:I~t ~:~~~ti:; ~IO:=::::t:~~S not

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-99

HCPL2730, HCPL2731
DUAL-CHANNEL OPTOCOUPLERS/OPTOISOLATORS
schematic
1

r----.~-----------8~VCC

#1 ANODE]

#1 CATHODE 2

::::t

7 #1 OUTPUT

3
#2 CATHODE ]

#2 ANODE 4

::::t

6 #2 OUTPUT

' -__.......~5 GND

absolute maximum ratings at 25°C free-air temperature range (unless otherwise noted)
Supply and output voltage range, VCC and YO: HCPL2730 ..... . . . . . . . . . . . . .. -0.5 V to 7 V
HCPL2731 .... . . . . . . . . . . . . . . .. -0.5 to 18 V
Reverse input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 V
Peak input forward current per channel (pulse duration = 1 ms, 50% duty cycle) . . . . . . . .. 40 mA
Average forward input current per channel at (or below) 50°C free-air
temperature (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA
Output current per channel at (or below) 35°C free-air temperature (see Note 2). . . . . . . . .. 60 mA
Input power dissipation per channel at (or below) 50°C free-air temperature (see Note 3) ... 35 mW
Output power dissipation per channel at (or below) 35°C free-air
temperature (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 mW
Operating temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40°C to 85 °C
Storage temperature range ......................................... - 55°C to 125°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 260°C

o

"C

r+

o
n
o

c::
CD
...

"C
til

NOTES:

(i;'

o

D)

1. Derate linearly above SOOC free-air temperature at a rate of 0.57 mA/oC.
2. Derate linearly above 35°C free-air temperature at a rate of 1.2 mA/oC.
3. Derate linearly above SOOC free-air temperature at a rate of 1.0 mw/oe.
4. Derate linearly above 35°C free-air temperature at a rate of 2.0 mw/oe.

r+

o...

til

3-100

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

HCPL2730, HCPL2731
DUAL-CHANNEL DPTOCOUPLERS/OPTOISOLATORS

electrical characteristics over operating free-air temperature range of 0 °C to 70°C (unless otherwise
noted)
PARAMETER
VF

Input forward voltage
Temperature coefficient

OIVF
V8R

VOL

of forward voltage
Input breakdown voltage

Low-level output voltage

TEST CONDITIONS
IF

=

1.6 rnA,

IF

=

1.6 rnA

IR

=

10 ~A,

High-level output current

10L = 4.8 rnA,

18 = 0
IF - 1.6 rnA,

= 8 rnA,
= 4.5 V,

=

=

0,

IF

Vee

=

=

0,

Vee

=

7 V,

18
Va
IB

18 V,

10

IF = 0,

IB

high-level output

Vee = 18 V,

10 = 0,

0,

=

low-level output

Vee = 18V,

10 = 0,

IFl = 1.6 rnA,
18 = 0

IF2

=

Current transfer ratio

V

0.4
0.1

0.4

0.1

0.4

0.2

0.4

0.1

0.05

100

250

=

4.S V,

•

~A

4
nA

...o...
(I)

5

«I

0.4

rnA

"0

0

0.5 rnA,

V
mV/oe

V

V,

= 0,
IF2 = 1.6

1.7

UNIT

10

IB

IF

0.1

18 = 0

Supply current,

Vee

1.S

S

=0
= 0,
=0

Supply current,

=

S

Va = 18 V,
18

7 V,

=0
=7
=0

HCPL2731
Typt
MAX

-1.8

0

IF=12mA,

Vee

1.7

SmA,

Vee = 4.S V,

Vee = 7 V,
IFl = 1.6 rnA,

eTR

IF

18 = 0

IF

leeL

=
=

18

10L = lS rnA,

IF

leeH

= 2Soe

TA

Vee - 4.S V,
Vee

1.S

MIN

-1.8

IF = 1.6 rnA,

10L

HCPL2730
Typt
MAX

= 2Soe

TA

Vee = 4.S V,

10L = 24 rnA,

10H

MIN

Vo
18

=

~

0.6

1.6 rnA

= 0.4
= 0,

-...

rnA

( I)

.!!

V,

Q.

400% 1800%

;j

o
Q
o

See Note 5
Vee = 4.5V,

=

IF

1.6 rnA,

Vo

=

...

0.4 V,

18 = 0,

300% 1000%

SOO% 1600%

1011

1011

10 12

10 12

0.005

0.005

Q.

See Note S
rjj

rjo
Ijj

1;0

Input-input resistance

Vii = SOD V

Input-output resistance
Input-input insulation

Vio = SOD V,
Vii - 500 V,

leakage current

RH

Input-output insulation
leakage current

Vio
TA

= 45%
= 3000 V,
= 2Soe,

See Note 6
t - 5 s,
t

=

o

!l
!l
~A

55,

RH = 4S%,

1

1

~A

See Note 6

ei

Input capacitance

eii

Input-input capacitance

VF = 0,
f = 1 MHz

eio

Input-output capacitance

f

=

1 MHz,

f

=

60

60

pF

0.25

0.25

pF

0.6

0.6

pF

1 MHz

See Note 6

tAli typical values are at Vee = 5 V, TA = 25°C, unless otherwise noted.
NOTES: 5. Current transfer ratio is defined as the ratio of output collector current 10 to the forward LED input current IF times 100%.
6. These parameters are measured between pins 2 and 3 shorted together and pins 5, 6, 7 and 8 shorted together.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-101

HCPL2730. HCPL2731
DUAL·CHANNEL OPTOCOUPLERS/OPTOISOLATORS
vee" 5 V.

switching characteristics at
PARAMETER

25°e
HCPL2730

TEST CONOITIONS

MIN

IF = 1.6 rnA.
See Figure 1

RL

= 2.2

kll.

IF - 0.5 rnA.
high-to-Iow level output See Figure 1

RL

= 4.7

kll

IF = 12 rnA.
See Figure 1

RL

=

IF - 1.6 rnA.

RL - 2.2 kll

Propagation delay time,

tPHL

TA =

27011.

MAX

2

20

tpLH

IF = 0.5 rnA.
low-to-high-Ievel output See Figure 1
IF - 12 rnA.
See Figure 1
Common-mode input

dVCM {HI transient immunity,
dt
high-level output
Common-mode input

dVCM {LI transient immunity.
dt
low-level output

o
'0

RL

MIN

2

20

7

100

0.4

2

4

35

5

35

6

60

2

10

RL - 27011.

3

VCM - 10 VP-P. IF - 1.6 rnA.
See Figure 2
RL = 2.2 kll.
See Notes 7 and 8

MAX

2

= 4.7 kll

VCM = 10 VP-P. IF = O.
See Notes 7 and 8.
RL = 2.2 kll.
See Figure 2

TYP

0.4

See Figure 1
Propagation delay time,

HCPL2731

TYP

10

UNIT

~s

~s

500

500

V/~s

-500

-500

V/~s

NOTES: 7. Common-mode transient immunity, high-level output, is the maximum rate of rise of the common-mode input voltage that

r+

o
o

(")

C

'0

does not cause the output voltage to drop below 2 V. Common-mode input transient immunity, low-level output, is the maximum
rate of fall of the common-mode input voltage that does not cause the output voltage to rise above 0.8 V.

8. In applications where dV/dt may exceed 50.000
to protect the detector

Ie

V/~

{such as static discharge I a series resistor. Rec. should be included

from destructively high surge currents. The recommended value is:

Rec

~

_--,1--,_ kll
0.151F {mAl

...CD
tfj

iii
o

iii
r+
o

...

tfj

3-102

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS,

~EXAS

75265

HCPL2730. HCPL2731
DUAL·CHANNEL OPTOCOUPLERS/OPTOISOLATORS

PARAMETER MEASUREMENT INFORMATION

TEST PER CHANNEL

r ---------,

IF ...
PULSE
GENERATOR
Zo - SO Il
tr """ 5 ns

SV

-+
-+

1
1

1
....:1'--1

INPUT CURRENT _ _ _ _. . .
MONITOR

1000

1

-r--'-...-.--OUTPUT

1

CL - 1S pF
(See Note AI

I _____ _
L

f---------~~-~---GND

TEST CIRCUIT

INPUT
CURRENT

-

--...J

-

- - IF

L..._ _ _ 0

I

I

OUTPUT~:
!
I

VOLTAGE

I

1.5 V

I
tpHL -+I

I

It-

+I

1.5 V

t-14-

-...
tn

5V
VOL

tpLH

WAVEFORMS

...
o

CO

'0
tn

-...
tn

NOTE A: CL includes probe and stray capacitances.

Q)

FIGURE 1. SWITCHING TEST CIRCUIT AND WAVEFORMS

c..
::l
o
CJ
o
c.

...
o

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-103

HCPL2730. HCPL2731
DUAL·CHANNEL OPTOCOUPLERS/OPTOISOLATORS
PARAMETER MEASUREMENT INFORMATION
TEST PER CHANNEL

....-+

r
I
I
I
I
I

RCC

r---~~----~'--V~5'V

(See Note Al

____-i-....---OUTPUT

I

I
L..

~------~~---WLr------~~--------GND

GENERATOR
TEST CIRCUIT

GENERATOR

oV

o
't:J

10V--7:90
1 %
10%
I
I

-+I

r+

90%~
I 10%
I I

I

J+-tr

tf-+l

dVCM =
dt

t r =8nsTYP

14-

tf = 8 ns TYP

o

(')

o

_-------5

OUTPUT---_~c.

C

't:J

8 V
tr or tf

V

SWITCH AT A: IF - 0

CD
"'l

en

OUTPUT-----------~VOL

en
o

SWITCH AT B: IF - 1.6 mA

Dr

WAVEFORMS

o
"'l
en

NOTE A: In applications where dVldt may exceed 50,000 VI~s (such as static dischargel a series resistor, Ree, should be included to
protect the detector Ie from destructively high surge currents. The recommended value is:

r+

-

Ree =

1

0.15 IF (mAl

kll

FIGURE 2. TRANSIENT IMMUNITY TEST CIRCUIT AND WAVEFORMS

3·104

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS .. TeXAS 75265

HCPL2730, HCPL2731
DUAL·CHANNEL OPTOCOUPLERS/OPTOISOLATORS
TYPICAL CHARACTERISTICS
HCPl2730

HCPL2731

CURRENT TRANSFER CHARACTERISTICS

CURRENT TRANSFER CHARACTERISTICS
80

80
IF-SmA
Vee - 4.S V
TA - 2Soe - f-IF - 4

m~\

70
c(

E

IF
IF
IF
IF -

60

I

E

SO

"
;

40

~

CJ

S-

"I

0

9

E

E
!
:;

SO

CJ

40

;
S-

t.
\

..

"I

30

9

20

0

,\

...

~t/

o.S

1.S

V ~

I

l\ \r.

~t::-

o

c(

l~

J~

20

o

m~~

~ t:::=I;,V
L...-

30

10

m~~

- 3
- 2 mA"
- 1
O.S m~\\,

IF - sm~,
70 I-IF - 4 m~,\
IF - 3 mA,
60

2

10

o

2.S

Vee - 4.S V
TA - 2Soe

l':
~

'"

t::- ...-""
~V~ l..-I-

ft

I...- I--

IF-2mA

Jf:
V-

IF - 1.S mA

1

IF - 1 mA-

I

If

o

I

I

IF - o.s mA

I'
o.S

1.S

1

1

2

YO-Output Voltage-V

YO-Output Voltage-V

FIGURE 3

Ii)

...o...

FIGURE 4

CtI

INPUT DIODE FORWARD CURRENT
vs
FORWARD VOLTAGE
100
70

20
18
c(

Vee = 4.S V
TA - 2SoC

40

16

E 14

.!.

~

20

I

10

12

E

10

8

4

~

8

;;

2

II.

6

I:

~

"

CJ

"E

IV

~

0

I

~

~
9

4
2

o
o

2

-...
( /j

Vce - 4.S V
Vo - 0.4 V
TA - 2soe

Q)

HePL2731

c.

HCPL2730

~

o
o

./

(J

...

/

7

Q,

o
7

1
0 .7
0.4
0.2

)
o.S
1.S
VF-Forward Voltage-V

'0
.!

OUTPUT CURRENT
vs
INPUT DIODE FORWARD CURRENT

III

0.1
0.10.20.40.71 2
4 710 20 40 100
IF-Input Diode Forward Current-mA

FIGURE S

FIGURE 6

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-105

HCPL2730, HCPL2731
DUAL-CHANNEL OPTOCOUPLERS/OPTOISOLATORS

TYPICAL CHARACTERISTICS
HCPL2730

RELATIVE CURRENT TRANSFER RATIO

CURRENT TRANSFER RATIO

vs

vs

C.J

INPUT DIODE FORWARD CURRENT

FREE-AIR TEMPERATURE

°It>

1.05

N

VCC - 4.5 V
Va - 0.4 V
TA - 25°C

'#.
I

..,0

.

I

r--

~

---f-...

a::

~c

l!

l-

E
~

"

C.J

13

I
a::

I-

C.J

2000
1800
1600
1400
1200
1000
800
600
400
200

HCPL2731

£o
~

~~rL27~0
I
1111
I
1111

I

0.1 0.2

.~

""

I
II

0.40.71

0.90

~
c
l!

~

"=
4

710

I-

20

40

o

10

20

FIGURE 7

0

30

40

50

60

70

80

TA-Free-Air Temperature- °C

IF-Input Diode Forward Current-mA

(')

" "'" '"

0.85

0.80

2

""-

0.95

~

"-

o

0

"0
.....
0

2

VCC - 4.5 V
IF - 1.6mA
Va - 0.4 V

FIGURE 8

I:

"0

HCPL2731

CD
...
en

RELATIVE CURRENT TRANSFER RATIO
C.J

Ui °It>
N
0
ii)

.....

1.05

I

.............

oct

... ..

0

I~

en

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE
10

" "-

"

.

2

VCC = 4.5 V
IF = 0.5 mA
Va - 0.4 V

"',

iii

>

0.95

>

~

"ii
a::

0.90

.
...

'"-

VCC - 5 V
IF - 1.6 mA
RL - 2.2 kG

9
8

I

E

'" '\.

0

~

a::

j::

5

.2

4

.....

3

0.85

II.

2

lOOJ

\

~

---

tpLH HCPL2731 -

6

c

c

\

7

. .----..-

>.!!

~

~c

PROPAGATION DELAY TIMES

vs

-

-----

"

T

I

I

I

tPHL HCPL2730_

l

tpHL HCPL2731
0.80

o

10

20

30

40

50

60

70

80

o

1 1 1-

o

10

TA-Free-Air Temperature- °C

20
30
40
50 60
70
TA -Free-Air Temperature- °C
FIGURE 10

FIGURE 9

3-106

1

tpLH HCPL2730 _

I

l!

C.J

--t--1

---+-

l-

E
~

·1

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

80

HCPL2730. HCPL2731
DUAL·CHANNEL OPTOCOUPLERS/OPTOISOLATORS
TYPICAL CHARACTERISTICS
HCPL2731

PROPAGATION DELAY TIMES
vs
FREE-AIR TEMPERATURE

PROPAGATION DELAY TIMES
vs
FREE-AIR TEMPERATURE
10

5

~

...

Vcc - 5 V
'F - 12 mA
RL - 270!l_

4

I
I---t-1

trLH-IHCPL2~

I

~>-

3

IV

;!l
c

''I"

~I

-

I-- I---"

I

I

....

-

~

8

I

..E
OJ

j::

I

>-

6

Oi

5

..,0

4

'"'"

3

C

I--

V

-"

t:- V

------

L---- tPHL

./

7

IV

tPLH-HCPL2731 f--

c

2

VCC - 5 V
IF - 0.5 mA
RL - 4.7 k!l

9

V
V

V

tPLH

I---"

IV

Q.

Q.

E
Q.

E
Q.

2

tPHL -HCPL2730

o

tPHL -HCPL2731

o

10

20

30

40

50

60

TA-Free-Air Temperature-

o

70

80

o

10

20

30

40

50

60

TA -Free-Air Temperature- °c

°c

FIGURE 11

FIGURE 12

70

80

•
~

....cao

"0
CI)

-...
CI)

~

c.

:::s
o
o

....oc.

o

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-107

•

o

"'C

.-+

o
o

n

I:

"'C

CD
...

UI
UI

o

Q)

.-+

...

o

UI

3-108

MCT2, MCT2E
OPTOCOUPLERS
D2731, MARCH 1983

COMPATIBLE WITH STANDARD TTL INTEGRATED CIRCUITS
•

Gallium Arsenide Diode Infrared Source
Optically Coupled to a Silicon N-P-N
Phototransistor

•

High Direct-Current Transfer Ratio

•

Base Lead Provided for Conventional
Transistor Biasing

•

High-Voltage Electrical Isolation ... 1.5-kV
or 3.55-kV Rating

•

Plastic Dual-In-Line Package

•

High-Speed Switching: tr = 5 p.s, tf = 5
Typical

•

Designed to be Interchangeable with General
Instruments MCT2 and MCT2E

p's

mechanical data
The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on
a 6-lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering
temperature with no deformation and device performance characteristics remain stable when operated in high-humidity
conditions, Unit weight is approximately 0.52 grams.
940(D3701~

838(03301

g~:~~, I -,-i~~000

'i

:::,:,~D.~O

'i ''''''''''"

~
900

1j../

0305(OOl~)~
17810070).,

--l~1.01(O'<140)

0203(0008)

--,

051(0020)

3,B1(01501

~

r-

MIN

-~~~=:
~jL ~
.jPL~ES
2,54 (0.100) T.P.

NOTES:

a. Leads are within 0,13 mm (0.005 inch) radius of

true position (T.P.) with maximum material
condition and unit installed.

...en

b. Pin 1 Identified by index dot.

...o

c. Terminal connections:
1. Anode
2.

}

Ca~hode

Infrared-emitting

CO

diode

'0
..!!!

3. No internal connection
4. Emitter
5. Collector
6. Base

-...

}

Phototransistor

en

0.381(0.015)
6 PLACES

~
Co

(See NotfIa)

FALLS WITHIN JEDEC MO-OO1AM DIMENSIONS

::::J

o
o

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-Output Voltage: MCT2 ...... ,.,." ............. , . . . . . . . . . . . . . . . . . . . . . . . , .. ±1.5 kV
MCT2E ........... ,', .. , .............. , .. , .............. . ±3.55 kV
Collector-Base Voltage ., .. , ... ,., ...... " ........ , .. , ....... , .. , .......... , .. , ... ,. 70 V
Collector-Emitter Voltage (See Note 1) ....... ,' , , , . , ...... , . , , .. , ........ , . , . , .. , . , , , . .. 30 V
Emitter-Collector Voltage ., ......... " .. ,." .......... , .............. , , .. , , . , . , . . . . . .. 7 V
Emitter-Base Voltage .... , .......... ,." .. , .......... , ... ,., ....... , ...... , " , . . . . . . . 7 V
Input-Diode Reverse Voltage ... " .......... " . , ' , ........ ,',., .... " . . . . . . . . . . . . . . .
3 V
Input-Diode Continuous Forward Current ..... , , , . , . , . . . . . . . . . . . . . . . . . . . . , ........... , .. 60 mA
Input-Diode Peak Forward Current (t w '" 1 ns. PRF '" 300 Hz) , ...... , ...... , .. , .... ,......
3 A
Continuous Power Dissipation at (or below) 25 DC Free-Air Temperature
Infrared-Emitting Diode (See Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,.,
200 mW
Phototransistor (See Note 2) " . , . , ' , . . . . . . . . . . . . . . . . . , " , . , ........... ,........ 200 mW
Total. Infrared-Emitting Diode plus Phototransistor (See Note 3) " , . , .... , .. , ... , ..... " . 250 mW
Operating Free-Air Temperature Range ....... , .. , ..... ,., ..... ,., ...... ,...... - 55 DC to 100°C
Storage Temperature Range .. ,.,., ..... ,', ....... , .... , ........ , .. " . . . . . . .
- 5 5 DC to 1 50°C
Lead Temperature 1,6 mm (1/16 inch) from Case for 10 Seconds ....... ,.,., ... , .. , .... ,.... 260 DC
NOTES:

...oc.

o

1. This value applies when the base-emitter diode is open-circuited.

2. Derate linearly to 10QoC free-air temperature at the rate of 2.67 mW/oC.
3. Derate linearly to 100°C free-air temperature at the rate of 3.33 mW/oC.
Copyright © 1983. Texas Instruments Incorporated

PRODUCTION DATA documents contain information

current as of publication data. Products conform to
specifications per the terms of Texas Instruments

:~~~~:~~i~ai~:I~~e ~:~~:i:: :.~O::;:~:.:~~S not

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-109

MCT2. MCT2E
OPTOCOUPLERS

electrical characteristics at 25°C free-air temperature
PARAMETER

TEST CONDITIONS

Breakdown Voltage

IC - 10
IF = 0

Collector-Base

VIBRICBO
VIBRICEO
VIBRIECO

Collector-Emitter

IC - 1 rnA,

Breakdown Voltage

IF = 0

Emitter-Collector

IE - 100
IF = 0

Breakdown Voltage
Input Diode Static

IR

On-State
Collector
Current

Off-State

E
o

'C

r+

o
(")
o

Collector

ICloffl

Current

hFE

(;"

...

en
o
or
r+

Cio

...o

-

IB = 0
VCB - 10 V,

IF - 10 rnA,

Photodiode
Operation

IE = 0

Phototransistor

VCE - 10 V,

IF - 0

Operation

IB = 0
VCB - 10 V,
IE = 0

IF = 0,

Photodiode
Operation

Transistor Static

VCE = 5 V,

Forward Current

IC = 100 ~A,
IF =0

MAX

I

V

30

V

7

V

I

2

IC = 2 rnA,

Saturation Voltage

18 = 0

~A

5

rnA

20

~A

1

50

0.1

20

nA

MCT2
MCT2E

UNIT

70

250
100

IF = 20 rnA

Collector-Emitter

Internal Resistance

CII

TYP

10

Operation

Input-to-Output

'to

IB - 0,

IF - 10 rnA,

Forward Voltage

VCElsatl

~A,

VCE-10V,

Input Diode Static

I:
'C

IB - 0,

Phototransistor

Transfer Ratio

VF

IE - 0,

VR = 3 V

Reverse Current

IClonl

~A,

MCT2, MCT2E
MIN

IF = 16 rnA,

300
1.25

1.5

V

0.25

4

V

Vin-out = ± 1 .5 kV for MCT2
±3.55 kV for MCT2E

10 11

Il

See Note 4

Input-to-Output

Yin-out - 0,

Capacitance

See note 4

f - 1 MHz,

1

pF

NOTE 4: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.

switching characteristics at 25°C free-air temperature

CII

TEST CONDITIONS

PARAMETER

MCT2, MCT2E
MIN

TYP

MAX

UNIT

Operation

VCC = 10 V,
IClonl = 2 rnA, RL = 100 Il,
See Test Circuit A of Figure 1

5

~s

Rise Time

Photodiode

VCC - 10 V,

Fall Time

Operation

IClon) - 20 ~A, RL - 1 kll,
See Test Circuit 8 of Figure 1

1

~

tr

Rise Time

Phototransistor

tf
tr

Fall Time

tf

3-110

TEXAS •
INSTRUMENTS
POST OFFice BOX 655303 • DALLAS, TeXAS 75265

Mel2. MCl2E
OPlOCOUPLERS

PARAMETER MEASUREMENT INFORMATION
Adjust amplitude of input pulse for:
le(an) "" 2 rnA (Test Circuit A) or
le(an) = 20 J.lA (Test Circuit B)
INPUT

47

L

o~

n

r-I'-.....-o

OUTPUT

(See Note b)

AL=100n

L - _ -.....-o OUTPUT

OUTPUT

(See Note b)

TEST CIRCUIT A
PHOTOTRANSISTOR OPERATION
NOTES:

VOLTAGE WAVEFORMS

TEST CIRCUIT B
PHOTODIODE OPERATION

a. The input waveform is suppljed by a generator with the following characteristics: Zout "" 50

n,

tr";;; 15 ns, duty cycle""" 1%,

tw == 100 /-ls.
b. The output waveform is monitored on an oscilloscope with the following characteristics: tr";;; 12 ns, Rin

FIGURE 1-SWITCHING TIMES

*" 1 MD, C in

~

20 pF

II
...

CIl

~

Co
:l

o

o
o
.....

Co

o

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DAllAS, TEXAS 75265

3-111

MCl2, MCl2E
OPlOCOUPLERS
TYPICAL CHARACTERISTICS

COLLECTOR CURRENT

100

~

vs

INPUT·DIODE FORWARD CURRENT

COLLECTOR·EMITTER VOLTAGE

60

F:VCE;' 10v,

40

«
E
.Lc:

COLLECTOR CURRENT

vs

h~ -25~C

«

/

10
4

;3

10

...o

IF=30 mA
-IF=20 mA

0.4

40
10
I F"':Forward Current-rnA

4

o

100

o

2

I:

FIGURE 3

RELATIVE ON·STATE COLLECTOR CURRENT

"0

vs
FREE·AIR TEMPERATURE

u

en

o~ 1.6

"

en
o

..

~ 1.4

...oro

: 1.2

...

:I

~S

~

~

.~

VCE = 0.4 V to 10 V
18= 0
IF=10mA
See Note 6

1.0

0.8

Qj

a: 0.6

f"-.. I"-....

V

V

~

a~ 0.4
o

-75 -50 -25 o
25 50
75 100 125
TA-Free·Air Temperature-oC
FIGURE4

NOTES: 5. Pulse operation of input diode is required for operation beyond limits shown by dotted lines.
6. These parameters were measured using pulse techniques. tw "'" 1 ms, duty cycle" 2%.

3-112

--- -

-1-~ D,
~ !,SlfJ,qr,

....

__

'~

4
6
8 10 12 14 16 18
VCE-Coliector·Emitter Voltage-V

o

...CD

-

IF=10mA

IJ
FIGURE 2

n

*~-

~---=...~-s>

20

9

,!JI
" A

\f'=40 mA

I

0.1

0.01
0.1

j

j

0.4

0.04

o

\~
r~~

~

u

"0

\~

:I

'0
I

\~

U 30

Q

18'=0 I
TA = 25°C
f-See Note 5

\

~40

:I

9

50

E

U

1;;
..!!

\~
~

18- 0

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

20

MOC3009 THRU MOC3012
OPTOCOUPLERS/OPTOISOLATORS
D2998. AUGUST 1985

•

250 V Phototriac Driver Output

•

•

Gallium Arsenide Diode Infrared Source and
Optically Coupled Silicon Triac Driver
(Bilateral Switch)

Directly Interchangeable with
Motorola MOC3009. MOC3010.
MOC3011. and MOC3012

•

•

UL Recognized ... File Number E65085

•

High Isolation ... 7500 V Peak

•

Output Driver Designed for 11 5 V AC

•

Standard 6-Pin Plastic DIP

Direct Replacements for:
TRW Optron OP13009. OP13010.
OP13011. and OP13012;
General Instrument MCP3009.
MCP3010. MCP3011;
General Electric GE3009. GE3010.
GE3011. and GE3012

mechanical
Each device consists of a gallium arsenide infrared emitting diode optically coupled to a silicon phototriac
mounted on a 6-pin lead frame encapsulated within an electrically nonconductive plastic compound. The
case will withstand soldering temperature with no deformation and device performance characteristics
remain stable when operated in high-humidity conditions.

9,40

II
-..

(O'3701~

8,38 (O.330)

000

,:..-..::':0
o0

0

U)

...o
CO

'0
U)

-.

(Sse Note CI

5.46 (0 215)

~I

0_

~ ~.7

I-----*----

SEATING PLANE

\

0 30S 10 012:1

1~0

203 10 008:

l

~ J
0 51

3,81 (0 '50)
3,17 (0.1251

U)

6 PLACES

10.:~:~ 10.090H]
1,27 [O.OSC}
4 PLACES

2,54 10.1001 T.P._
(See Note AI

~

--I r-'

JL

C.
:::I

01100401

o
(J
o
c.

MIN

...

0,534 (0.0211
0,381 (0.0151
6 PLACES

o

FALLS WITHIN JEDEC MO-COl AM DIMENSIONS

NOTES: A. Leads are within 0.13 mm (0.005 inch) radius of true position (T.P.) with maximum material
condition and unit installed.
B. Pin 1 identified by index dot.
C. Terminal connections:

1.
2.
3.
4.
5.

}

Anode
Cathode

Infrared~emitting

diode

No internal connection

Main
Triac
IDO
6. Main

terminal
substrate
NOT connectl
terminal

}

Phototriac

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments

:'~~~:~~i~8i~:I~~~ ~!:~:~ti:; :I~o:=:::t:~~s not

CP·7

Copyright © 1985, Texas Instruments Incorporated

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-113

MOC3009 THRU MOC3012
OPTOCOUPLERS/OPTOISOLATORS

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-output peak voltage, 5 s maximum duration, 60 Hz (see Note 1) . . . . . . . . . . . . . . . 7.5 kV
Input diode reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 V
Input diode forward current, continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 rnA
Output repetitive peak off-state voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 250 V
Output on-state current, total rms value (50-60 Hz, full sine wave):
TA= 25°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 rnA
T A = 70°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 rnA
Output driver nonrepetitive peak on-state current
(tw = 10 ms, duty cycle = 10%, see Figure 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1.2 A
Continuous power dissipation at (or below) 25°C free-air temperature:
Infrared-emitting diode (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 mW
Phototriac (see Note 3) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 300 mW
Total device (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 330 mW
Operating junction temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40 DC to 100 DC
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 40 DC to 150 DC
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . 260 DC
NOTES:

1.

Input~to~output

peak voltage is the internal device dielectric breakdown rating.

2. Derate linearly to 10QoC free-air temperature at the rate of 1.33 mW/oC.
3. Derate linearly to 10QoC free-air temperature at the rate of 4 mW/oC.
4. Derate linearly to 100°C free-air temperature at the rate of 4.4 mW/oe.

o

't:I

r+

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

o

"

o

s::::

't:I

CD
...
til

TEST CONDITIONS

PARAMETER
IR

Static reverse current

VF

Static forward voltage

VR - 3 V
IF ~ 10 mA

IDRM
dv/dt

Repetitive off-state current, either direction

VDRM

Critical rate of rise of off-state voltage

See Figure 1

dv/dtlcl

Critical rate of rise of commutating voltage

10

~

~

MIN

250 V, See Note 5

or
r+

...o

til

1FT

Input trigger current,

MOC3010

either direction

MOC3011

MAX
100

1.2

1.5

V

10

100

nA

Output supply voltage

~

3 V

VTM

Peak on-state voltage, either direction

IH

Holding current, either direction

15

5

10

mA

5
ITM - 100 mA

1.8
100

NOTE 5: Test voltage must be applied within dv/dt rating.

3-114

30

8

MOC3012

~A

V/~s

0.15
15

UNIT

V/~s

12

1 5 mA, See Figure 1

MOC3009

Cii
o

TYP
0.05

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3

V
~A

MOC3009 THRU MOC3012
OPTOCOUPLERS/OPTOISOLATORS

PARAMETER MEASUREMENT INFORMATION

Vee

(1)

---+
---+

Vin = 30 V rms

(2)

10 k{J

INPUT
(See Note 6)

NOTE 6: The critical rate of rise of off~state voltage, dv/dt, is measured with the input at 0 volts. The frequency of Vin is increased until
the phototriac just turns on. This frequency is then used to calculate the dv/dt according to the formula:

dv/dt = 2 ~7rfVin
The critical rate of rise of commutating voltage, dv/dt{c), is measured by applying occasional 5·volt pulses to the input and increasing
the frequency of Vin until the phototriac stays on (latches) after the input pulse has ceased. With no further input pulses, the
frequency of Vin is then gradually decreased until the phototriac turns off. The frequency at which turn-off occurs may then
be used to calculate the dv/dt(c) according to the formula shown above.

•
-...o
I I)

...
CO

(5

-...

FIGURE 1. CRITICAL RATE OF RISE TEST CIRCUIT

II)

I I)

TYPICAL CHARACTERISTICS

Q)

EMITTING DIODE NORMALIZED TRIGGER CURRENT
vs
FREE-AIR TEMPERATURE

C.
:::J

1.4

800

«

«

...

...

E 1.3
I
c
~ 1.2
::s

U

~ 1.1

.~

E

I
c

~

~

1\

r=

'tJ

.~ 1.0

fti

E
00.9

"

u

200

!co
cii

0

I

-400
I
:!:
,to - 600

100

-800

-6

/

V

...

/

Q.

o

/
/

/

.,

Q.

-25
o
25
50
75
TA-Free-Air Ternperature- DC

I

/

0 -200
-"
co

z

0.8
-50

I

Output tw = 80 1'5
600 rlF =20 rnA
f = 60 Hz
400 TA - 25 DC

.:

~

o
(,)
o

ON-STATE CHARACTERISTICS

/

/

V

-4
-2
o
2
4
VTM-Peak On-State Voltage-V

6

FIGURE 3

FIGURE 2

TEXAS

-II

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-115

MOC3009 THRU MOC3012
OPTOCOUPLERS/OPTOISOLATORS
TYPICAL CHARACTERISTICS

VI

CRITICAL RATE OF RISE OF OUTPUT VOLTAGE
vs
LOAD RESISTANCE
14
0.24
TA ~ 25"C
See Figure 1
OFF· STATE
0.20 ~
12

:>
~
">
"C

"
~
OJ

10

:>

"-

"C

CRITICAL RATE OF RISE OF OUTPUT VOLTAGE
vs
FREE·AIR TEMPERATURE
12
0.24
_ _ _ ~V/dt

10

-<..\~G

~u-<..p.
CO~.... ~

8

(5

......

,-

....

......

~

>

-6

I

">

-6

"C

">
"0

Cl

.5
OJ
0.12 :;
E
E

V

6

0.16

.,

~

cii

~

0

0.08 u
--dv/dt

o
"0
.....

o

'"---

FIGURE 5
RMS APPLIED VOLTAGE
(FOR dv/dt(cl ~ 0.15 V//J-sl
vs
FREQUENCY

c:

"0

(j)
1000

en
o

Qi
.....

o
...
en

I=RL=lkll
25°C
400 f:TA
>
F- See Figure 1
I
~V/dt = 2J2"fVin

.,"

-='"0

100

>

-

"0

.!!!
is.
0ct
rn

:iE

a:
I

:>"

40

10

~0;-

~

~

0

--'.s-

f'4.~

4 I-

I~o!'

ITll&.."

1·"'"

100

40 k 100 k
4 k 10 k
400 1 k
f-Frequency of Applied Voltage-Hz

FIGURE 6

3-116

0.12·r

~
--

T A - Free·Air Temperature - °C

o

en

"C

">
"C

75

50

FIGURE 4

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

"-

0.16 ~

t--. ........~
t-: -l."- .570
; f)

4

VI

:>

"
irQ
......

25

2

o
(")

...

" ~
Ii
6 Ii

o

0.04
0.4
1.2
1.6
0.8
RL - load Resistance - kl!

8

~
..
........ <

dv/dt(cl
._
0.20
See Figure 1

2

-; -?V/d~(CI
4

1\

III

0.08

.,
~

E
o

0.04

o

100

u

MOC3009 THRU MOC3012
OPTOCOUPLERS/OPTOISOLATORS
MAXIMUM RATINGS

«

NONREPETITIVE PEAK ON-STATE CURRENT
vs
PULSE DURATION

T3

E
~
:;

I''''~~I ~ IJ~! ~III~'"

r"'I'" I I

r"'I'"

U

2l

en'"
c
o

2

r--.ro

-"

.,'"
"
:~
"
~

C>.

-

......

Co

c:

o

Z
I

~IIIIUIII
0.01

~ 0

:

11111.,

11111,.

0.1

&I
-

11111"

10

100

tw - Pulse Duration - ms

...

I I)

...

FIGURE 7

o

~

o

-...
II)

TYPICAL APPLICATIONS

I I)

.!!?

Co
:J

MOC3009-MOC30 12

Vcc _ _-'lR
",in"-"I.;.:.11+--,

121

o

-

(.)

120 V.
60 Hz

...

o
c..

o

FIGURE 8. RESISTIVE LOAD

TEXAS

"-!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-117

MOC3009 THRU MOC3012
OPTOCOUPLERS/OPTOISOLATORS
TYPICAL APPLICATIONS

MOC3009-MOC3012

vCC _ _...,R""in,..,....:Ic..11+--.

-

121

120 V.

60 Hz

141

IGT' 15 rnA

FIGURE 9. INDUCTIVE LOAD WITH SENSITIVE-GATE TRIAC

E
o
'0
r+

o
(')
o
r::
"2-

...

MOC3009-MOC30 12
Rin

111

Vce --J\N"""':'-'-t----,

CD

en

121

Cii
o
Dr
r+

...o

-

120 V.

60 Hz

L--t-1_41_ _-+__--'

15 rnA

r-..

0..

"l!!

r--..t--

1

c.

Eo
...o

c:
o
2

I

:!E
(/)
.t:- 0 ~1I1~1I I

\"Jill I

'0

~'II""

1"",,,1,

I

10-"

0.1

0.01

100

tw-Pulse Duration-ms

n

o

FIGURE 4

...

TYPICAL APPLICATIONS

!:
'0
CD
VI
VI

2Q)

...o
...

VI

MOC3020-MOC3023

Rin

(6) 180 Il

11)

vcc ---AoAI'.--f--.

(2)

-

220 V. 60 Hz

(4)

FIGURE 5. RESISTIVE LOAD

3-122

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MOC3020 THRU MOC3023
OPTOCOUPLERSJOPTOISOLATORS
TYPICAL APPLICATIONS

MOC3020-MOC3023

Vcc ---'W'I.--+---,

121

141

IGT:S 15 rnA

FIGURE 6_ INDUCTIVE LOAD WITH SENSITIVE-GATE TRIAC

•
-...

MOC3020-MOC3023

Rin

(/)

111

...ca

Vcc --_''N.....--+---,

o

220 V. 60 Hz

121

141

"0
(/)

-...
( /)

Q)

Q.
15 rnA

<

IGT

<

50 rnA

::::J

o

(J

FIGURE 7. INDUCTIVE LOAD WITH NONSENSITIVE-GATE TRIAC

...oc.

o

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75266

3-123

o
....
o

"C

n
o

I:
"C

CD
...
til
til

o

or
....

...

o

til

3-124

OPIBO 12. OPIBO 13. OPIBO 14. OPIBO 15
OPTOCOUPLERS/OPTOISOLATORS
D2961. SEPTEMBER 1986

•

Gallium Arsenide Emitter Optically Coupled
to a Photo-Detector Integrated Circuit

•

Directly Interchangeable with TRW Optron
OP18012, OP18013, OP18014, OPI8015

•

Output Compatible with TTL/LSTTL Logic
Levels

•

Standard 6-Pin Dual-In-Line Package

•

•

Fan-Out of 8 TTL Loads

Schmitt Trigger Stage with Hysteresis for High
Noise Immunity

•

Four Output Versions:
OPI8012 Buffer Totem-Pole
OPI8013 Buffer Open-Collector
OPI8014 Inverter Totem-Pole
OPI8015 Inverter Open-Collector

•

200-kilobaud Data Rate

•

•

70-ns Maximum Rise Time or Fall Time

•

UL Recognized -

File Number E65085

3540-V

High-Voltage Electrical Isolation.
Peak Rating

mechanical data
Each device consists of a gallium arsenide infrared emitting diode and a silicon monolithic photo-detector
integrated circuit. The device is mounted on a 6-pin lead frame encapsulated within an electrically
nonconductive plastic compound. The photo-detector Ie incorporates a photodiode, a linear amplifier, a
Schmitt Trigger hysteresis stage, and a digital output stage.

838 10330,

INDEX DOT

I S'2 S'2 ~ I

~

---+
---+

(SeeNOle8)~

[

6.61 (0.2601
6.0910.240)

(2)

0 0

...oen

...co

OPI8012

9,40 ( O . 3 7 0 1 - t - - - l

(5

en

-...

4

en

2

(See NoteCl

•

~
Co
:::::I

o
(,)
o

--+
--+

...c..

o

2

FALLS WITHIN JEDEC MO 001 AM DIMENSIONS
NOTES:

A. Leads are within 0,13 mm (0.005 inch) radius of true position (T.P.) with
maximum material condition and unit installed.
B. Pin 1 identified by index dot.
C. Terminal connections:

1. Anode

2. Cathode

}

3. No internal connection

4. Output

} Photo-

Infrared-emitting 5. GND
diode

6. Supply Voltage,

detector

Vee

Ie

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

Copyright © 1986, Texas Instruments Incorporated

PRODUCTION DATA documents contain information

current as of publication date. Products conform to
specifications per the terms of Texas Instruments

~~~~~:~~i~ai~:I~~e ~!:~::i:f ~Io:::~~:~~ not

cpo 7

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-125

OP18012, OP18013, OP18014, OPI8015
OPTOCOUPLERS/OPTOISOLATORS

schematic diagrams
(6)

r - -....-VCC

(6)

,-----VCC

ANODE)'"

~

ANODE)'"

-+

~

(4)

OUTPUT

-+

(2)

' - - - - - -....---<~-'- GND

CATHODE

(2)

'------~-__<~-GND

CATHODE

OPI8013 BUFFER WITH
OPEN-COLLECTOR OUTPUT

OPI8012 BUFFER WITH
TOTEM-POLE OUTPUT

(6)

,----VCC

o

"C

.-+

o

n

ANODE)'"

o
s:::

~

ANODE)(1)
OUTPUT

-+
-+

-+

"C

...

CD

(2)

C/l

CATHODE

(2)

' - - - - - -....---<~GND

OPI8015 INVERTER WITH
OPEN-COLLECTOR OUTPUT

OPI8014 INVERTER WITH
TOTEM-POLE OUTPUT

C/l

o

'----------~--__<~-GND

CATHODE

Q)

.-+

o...

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Supply voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 V
Peak input-to-output isolation voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3540 V
Output voltage (OPI8013, OP18015) . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . .. 35 V
Input diode reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 V
Input diode continuous forward current . . . . . . . . . . . . . . . . . . . . . . . . . . . . _____ . _ ... _ _ _ 25 mA
Continuous total power dissipation at (or below) 25 DC free-air temperature:
Input diode (see Note 2) ____ . ________ ...... ____ . _____ ... ___ ......... _ .. 100 mW
Output IC (see Note 3) _________________ . ______________ . ____ . _ ....... _ _ 200 mW
Total (input diode plus output IC, see Note 4) _ . _ ... ___________ . _____________ 250 mW
Duration of output short to VCC or GND (OPI8012, OP18014) . _____ ..... _____ . __ .... __ . 1 s
Duration of output short toVCC (OPI8013, OP18015) .... ____ .. _ . __ .. _. __ ... __ .. ___ . __ 1 s
Storage temperature range ........ _ ......... _ . . . . . . . . . . . . . . .
- 55 DC to 1 50 DC
Operating free-air temperature range ____ ......... _ .. _ . __ ........ __ .. _. - 55 DC to 100 DC
Lead temperature 1,6 mm (1/16 inch) from the case for 1 second . _ .. _ . _ . _ . _ . _ ..... __ 260 D C

C/l

NOTES:

1. This rating applies between the input leads (pins 1 and 2) shorted together and the output.
5, and 6) shorted together.
2. Derate linearly to 10QoC free-air temperature at the rate of 1.33 mW/oC
3. Derate linearly to 100°C free-air temperature at the rate of 2.67 mW/oC
4. Derate linearly to 100°C free-air temperature at the rate of 3.33 mW/oC

3-126

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Vee.

and GND leads (pins 4,

OP18D12. OPI8D14
OPTOCOUPLERS/OPTOISOLATORS

recommended operating conditions
OPI8012
OPI8014
Supply voltage, Vee

MIN

NOM

MAX

4.75

5

5.25

V

-800
12.8

"A
rnA

70

°e

High-level output current, IOH
Low-level output current, IOL

-40

Operating free-air temperature, T A

electrical characteristics. TA -

- 40 °C to 70°C (unless otherwise noted)

PARAMETER

TEST CONOITIONS
~

VF

Input diode forward voltage

IF

IR

Input diode reverse current

VR -3 V,

IFT+

Input diode positive-going

threshold current

1FT +/IFT- Hysteresis ratio
VOH

High-level output voltage

VOL

Low-level output voltage

lOS

Short-circuit output current

lee

Supply current

UNIT

10 rnA,

~

TA

MIN

OPI8012
Typt
MAX
1.2

25°e

Vee ~ 5 V

1.5
1.4

=

Vee - 5.25 V,

=

Vo
Vee

=

5.25 V

1.5

2.4
2.4

V

"A

10

rnA

3.2

V

0.4
30

0.2

0.4

50

100

-50

-100

IF - 0

8

15

4

15

=

10

15

9

15

IF

-30

1.5
100

3.2
0.2

10 rnA

UNIT

1.4

IF - 0
IF - 10 rnA

0

1.2

10

IF - 0

-800 "A IF - 10 rnA
4.75 V, IF
0
12.8 rnA IF - 10 rnA

Vee
IOL =

1.5

OPI8014
Typt
MAX

100

TA - 25°e

Vee = 5 V
Vee - 4.75 V,
IOH

MIN

V

&I
...

I /)

rnA
rnA

...o
o
-...
~

I/)

tTypical values ;re at T A

= 25°e.

I/)

switching characteristics. T A

(I)

PARAMETER
tr

Rise time

tf

Fall time

tpLH

TEST CONDITIONS

=

=

Propagation delay time,

Vee

low-to-high-Ievel output

Output load: 8 TTL equivalent circuits

5 V, IF

TYP

MAX

25

9
10 rnA, See Figure 1

Propagation delay time,
tpHL

high-lo-Iow-Ievel output

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

UNIT

c..
::::J

70

ns
ns

o
o

...

3

5

"s

o

1

5

"s

OPI8014

OPI8012
MIN

MIN

TYP

MAX

70

25

70

70

9

1

5

3

5

o

Q.

3-127

OP18013. OPI8015
OPTOCOUPLERS/OPTOISOLATORS

recommended operating conditions
OPI8013
OPI8015
Supply voltage, Vee

MIN

NOM

MAX

UNIT

4.75

5

5.25

V

High-level output voltage, VOH

30

Low-level output current, IOL
Operating free-air temperature, T A

electrical characteristics, TA

•

VF

Input diode forward voltage

IF - 10 mA,

IR

Input diode reverse current

VR

Input diode positive-going

1FT +/IFT- Hysteresis ratio
IOH

o

VOL

r+

lee

"0

e::
"0
CD

Low-level output voltage
Supply current

...

lTypical values are at T A

tr
tf

(/)

tpHl

-

MIN

OPI8013
Typt
MAX
1.2

TA - 25°e
TA ~ 25°e

V,

70

°e

MIN

OPI8015
Typt
MAX

1.5

~

1.4

5 V

Vee - 4.75 V,

IF - 0

VOH ~ 30 V

IF - 10mA

Vee - 4.75 V,

IF - 0

~

IOl
.vee

1.5

1.2

100

Vee ~ 5 V

10

1.5

100

0.2

0.4

8

15

10

15

12.8 mA IF - 10 mA

~

5.25 V

IF - 10 mA

V

100

~A

10

mA

1.4

2

IF - 0

UNIT

1.5

0.02

100

0.2

0.4

4

15

9

15

~A

V
mA

25°e.

PARAMETER

o
i»
r+
o

...

-40

switching characteristics, T A

(/)

(ij'

~

~3

Vee

High-level output current

o

g

TEST CONOITIONS

threshold current

mA

- 40 °C to 70°C (unless otherwise noted)

PARAMETER

IFT+

V

12.8

tplH

TEST CONDITIONS

OPI8013
MIN

TYP

MAX

30

70

30

70

ns

9

70

9

70

ns

1

5

3

5

~s

3

5

1

5

~s

Rise time

Vee

low-to-high-Ievel output

Rl

~

~

5 V,

360O,

IF

~

10 mA,

See Figure 1

Propagation delay time,

3-128

UNIT

MAX

\ Fall time
Propagation delay time,

OPI8015

MIN

TYP

high-to-Iow-Ievel output

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OPIB012, OPIB013, OPIB014, OPIB015
OPTOCOUPLERS/OPTOISOLATORS

PARAMETER MEASUREMENT INFORMATION
+5V

VCC

0.01 I'F T I l I'F
360 [)
PULSE
GENERATOR

(see Note

":"

(6)

(111

_ ......--..,.,.,..,1--1

-+
-+

.II.

(2)~ _ _ _ _ _

100 [)

(5)

OUT

J

310 [)

OPI8013
OPI8015

OUTPUT

~r----

A)

IF MONITOR

":"

1(4)

OPI8014
(see Note

C)

15 pF T
(see Note B)
CL -

=

":"

TEST CIRCUIT

INPUT CURRENT

).::.-

~-

-

-

•

-10mA

o

...

CI)

...

I

o

C'CI

I.-tPLH....j
OUTPUT VOLTAGE

OPI8012
OPI8013

I
I
I

I

'0

-...

11'"::90;::0%:::-----:-"":9:"::0":::%""

.!!J.
CI)

10%

Q)

c..
:::s
o
(.)
o

...c.

OUTPUT VOLTAGE

OPI8014
OPI8015

o
WAVEFORMS

NOTES:

A. The input pulse is supplied by a pulse generator with the following characteristics: PRF = 10kHz, duty cycle = 50%,
Ir < 20 ns, If < 20 ns, Zoul = 50 II.
B. CL includes probe and jig capacitance.

C. All diodes are lN3064 or lN916.

FIGURE 1. SWITCHING TIMES

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

3-129

OPI8D12,OPI8D13, OP18D14, OPI8D15
OPTOCOUPLERS/OPTOISOLATORS

POSITIVE-GOING THRESHOLD CURRENT
vs
FREE-AIR TEMPERATURE

HYSTERESIS RATIO
vs
FREE-AIR TEMPERATURE

, 3

VOH (lOH = -800 "A)

!'l,

~
o

>

~::l 2
g.
cS,
o
> 1

~ 2
Co

~

o,
o
>

VOL (lOL

o

=

1

12.8 rnA)

VOL (lOL - 12.8 rnA)

-60 -40 -20
0
20 40
60
80
TA - Free-Air Temperature- De

100

o
-60 -40

-20

0

20

40

60

TA-Free-Air Temperature- DC

FIGURE 5

FIGURE 4

3-130

100

FIGURE 3

FIGURE 2

o

-

r-

~1.2

TA-Free-Air Temperature-

>,

---r--

1.1

-60 -40 -20

(jj

--

.!!-

'C

...

r-...

to-1.3

,

o
i»
....
o
en

..........

:t, 1.4

~ 0.5

o

1.6

II)

V

'0

CI
~ 1.0

5 V

o

~

u

:2 2.0
o

=

1.7

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

80

100

OP18012. OP18013. OP18014. OPI8015
OPTOCOUPLERS/OPTOISOLATORS

TYPICAL CHARACTERISTICS
OP18013,OP18015

OP18012,OP18014

HIGH-LEVEL OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE

SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE

4

-- --

OPIS013

«

2

"-

r--

I

E
!:!

:;

0.7

u

:;

0.4

Q.

t-Vee - 4.75 V
0.2 t-VOH - 30 V

:;
o

-60

«

E
I

~

!:!" -50

:;

u

~

/'

::1
Co

:;

l--

/

-

-

0-40

a;

~

0.1

....J

.i:. 0.07

~'" 0.04
J:

f- Vee -

OPIS015

..9 0.02

5.25 V

Vo - 0

0.01
-60 -40 -20

I

0

20

40

60

SO

I

-20
-60 -40 -20

100

1

1 .2

E
.,

SO

100

Ctl

en

-...
en

OP18014,OP18015

NORMALIZED SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE

NORMALIZED SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE

1.4

IF - 10 mA
~

1- ........

=

0

u
u

""'-.

~ 1.0

1

1.2

~

C.
:::l

o
()
o
+-'

~-I

u

......

-a O.S
Q.

IF - 0 -

~
I
1-"""::
IF - 10 mA

::1

CI)

.,

-c 0.6

C.

o

IIF - 1"--10 mA--------

~

""'-.

""

l: 1.0 -

"""-i

:J

U

-a O.S

IF - 0 -

~

I
I ~
IF - 10 mA

Q.

:J

~

...en

o
+-'
(5

1.6

IF

0.6

.~

.~

§ 0.4

~ 0.4

Vee = 5.25 V
5
z 0.2 -10 = 0

a
Z

Vee = 5.25 V
0.2 -10 = 0
No~maliz~d to ; A -

Normalized to T A - 25°e

o

60

OP18012, OPI8013

1.6
1.4

40

FIGURE 7

FIGURE 6

u

20

TA-Free-Air Temperature- °e

T A -Free-Air Temperature- °e

u

I
0

I

I

I

I

I

-60 -40 -20
0
20
40
60
SO
T A - Free-Air Temperature - °e

100

25°e

o

-60 -40 -20
0
20
40
60
SO
T A - Free-Air Temperature - °e

100

FIGURE 9

FIGURE 8

"-!1

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-131

OP18012, OP18013, OP18014, OPI8015
OPTOCOUPLERS/OPTOISOLATORS

OP18013, OPI8015
RISE TIME AND FALL TIME

OP18012,OP18014
RISE TIME AND FALL TIME

60

.,

50

"E

40

.,"I

j::

vs

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE
60

Ve~

= 5 V
IF = 10 rnA
RL = 360 n
See Figure 1

/

iii
LL

30

"0

"co

•

20

b
~

10

0

">-=

"0

tt:"'"

20

-

b
~

20

VI

6

'"-"I

"E

5

40

60

80

10

tf

o

-60 -40 -20

100

°e

80

100

°e

OP18014,OP18015
PROPAGATION DELAY TIME
vs

FREE-AIR TEMPERATURE

Ve~

=5 V
IF = 10 rnA
See Figure 1

.,

6

"E

5

"I

Vee = 5 V
IF = 10 rnA
See Figure 1

j::

Co

0

J:

e-

.---

/'

.--j

/"

/"

0

";"
0

'"co

3

Co

0

tP~H

o

........

-;; 4

..............

-

:i:
.....

>co

/'
tpHL

3

Ii: 2
I
.....

Ii: 2
I
.....

---

-60 -40 -20
0
20
40
60
80
T A - Free-Air T ernperature - °e

J:

e-

-----

tPLH .....--

tpHL

e-

100

o

-60 -40 -20

/"

/"

..............

:i:
.....
0

20

- -40

60

TA - Free-Air Ternperature-

FIGURE 12

3-132

60

vs

0

e-

40

FREE-AIR TEMPERATURE

-;; 4

"
'"

20

FIGURE 11

>co

1ij
co

0

TA - Free-Air Ternperature-

j::

.S!

I----

"co

tf

0

VI

-

30

OP18012, OPI8013
PROPAGATION DELAY TIME

...

CD

...

tr

"0

FIGURE 10

r:

VI

iii
LL

TA-Free-Air Ternperature-

0

0

40

j::

./

V
/"

-60 -40 -20

(")

.-+

/

V

50

o

"0
.-+
0

0
Q)

V

tr

.,"

tt:

.,
.,"I
"E

Vee = 5 V
IF = 10 rnA
Output Load:
8 TTL equivalent circuit
See Figure 1

FIGURE 13

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

80

°e

100

TIL1 02. TIL1 03
OPTOCOUPLERS
0910, SEPTEMBER 1970-REVISED NOVEMBER 1974

GALLIUM ARSENIDE DIODE INFRARED SOURCE OPTICALLY COUPLED
TO A HIGH-GAIN N-P-N SILICON PHOTOTRANSISTOR
•

Photon Coupling for Isolator Applications

•

Base Lead Provided for Conventional Transistor Biasing

•

High Overall Current Gain ... 1.5 Typ (TIL 103)

•

High-Voltage Transistor ... V (BR )CEO = 35 V Min

•

High·Voltage Electrical Isolation ... l·kV Rating

•

Stable over Wide Temperature Range

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

II
-.

r

r-__'~i" r-'

470(0.185)..

6lEAOS

3.94iG.155i

0433 (0019) DIA

102(00401

0406(00161

CI)

.M

!:51103351

'------

~

85110335)'

1

_ _ _ _ _ _ ----'

1.12.7~~N500I.l

~ 7\

t- \~~f/
\

:::::::::94010370!OIA - . - - -

1,74 lQ 305)

'3 """

~~!

508(0200)

I~D~~tfla)

-

I~073(00291

--

~O.B64j9.034)

45

fI'''

CO

!...'4(0045)

.....;

t-

...
o

"0
CI)

-.

0,711(0.028)

CI)

Q)

NOTE a: Leads having maximum diameter shall be with 0,18 mm (0.007 inches) of true

Q.

position relative to a maximum-width tab when measured in the gaging plane

::::I

between 1,371 mm (0.054 inches) and 1,397 mm (0.055 inches) below the seating
plane.

o
CJ
o

...

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

C-

O
absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-Output Voltage _
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Input Diode Reverse Voltage
Input Diode Continuous Forward Current at (or below) 65°C Free-Air Temperature (See Note 1)
Continuous Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous Transistor Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)
Storage Temperature Range
............ _ .
Lead Temperature 1,6 mm (1/16 Inch) from Case for 10 Seconds
NOTES:

±lkV
35V
35V
4V
2V
40mA
50mA
300mW
-55°C to 125°C
240°C

1. Derate linearly to 125°C free-air temperature at the rate of 0.67 mA/oC.
2. Derate linearly to 12SoC tree-air temperature at the rate of 3 mW/oC.

Copyright © 1983, Texas Instruments Incorporated

PRODUCTION DATA documents contain information

current IS of publication date. Products conform to
specifications par the terms of Taxas Instruments

~~~=~~i~'r::I~~~ ~:~:~ti:r :I~O::~:::':~~S not

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-133

TIL 102. TIL 103
OPTOCOUPLERS

electrical characteristics at 25°C free-air temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER

35

V

IC-l mA,

la =0,

IF = a

35

35

V

Emitter-Base Breakdown Voltage

IE - 100 ~A,

IC= 0,

IF - a

4

4

Input Diode Static Reverse Current

VR - 2V

V(aR)CEO

Collector-Emitter Breakdown Voltage

V(aR)EaO
IR

Phototransistor
On-State

Operation

Collector Current

Photodiode

Operation

Phototransistor
Off-State

Operation

Collector Current

Photodiode
Operation

Transistor Static Forward

•

o
'0

S
(')

o

UNIT

35

IC - 100

hFE

TYP MAX

IF - 0

Collector-Base Breakdown Voltage

IC(off)

TIL103

TYP MAX MIN

IE - 0,

V(aR)CaO

IC(on)

TlLl02
MIN

Current Transfer Ratio

VF

Input Diode Static Forward Voltage

VCE(satl

Collector-Emitter Saturation Voltage

'10

Input-ta-Output Internal Resistance

Cio

Input-to-Output Capacitance

~A,

V

100

VCE=5V,

la = 0,

'IF=10mA

Vca=5V,

IE = 0,

IF=10mA

10

6

2.5

100
15

mA

40

40

~A

~A

100

nA

6 100

6

4

4

~A

IF = a

0.1

0.1

nA

IC= 10mA,IF =0

300

VCE=20V,

la = 0,

IF = 0

VCE=20V,
TA=100"C

la -0,

IF - 0,

Vca=20V,

IE = 0,

VCE =,5V,

500
1.3

IF = 10mA
IC - 2.5 mA,

la = 0,

IF - 20 mA

Ic-l0mA,

la = 0,

IF - 20 mA

Vin-out"" ±1 kV. See Note 3
f -1 MHz, See Note 3
Vin-out = 0,

1.3

0.3
0.3
10" 10 12
2.5

V
V

1011 10 12

!l

2.5

pF

NOTE 3: These parameters are measured between both input diode leads shorted together and all the phototransistor leads shorted together.

switching characteristics at 25°C free-air temperature

C

.

'0

(;)
fI)

Cii
o

....

Dr
o

PARAMETER
Ir

Rise Time

Phototransistor

TEST CONDITIONS
VCC=20V,IB=0,

IC(on) = 5 mA,

If

Fall Time

Operation

RL = 100 n, See Test Circuit A of Figure 1

Ir

Rise Time

Photodiode

VCC-20V,IE-0,

If

Fall Time

Operation

RL = 100 n, See Test Circuit B of Figure 1

I Cion) = 50 ~A,

fI)

3-134

TEXAS . "
INSTRUMENTS
POST OFFJCE BOX 865303 • DALlAS, TeXAS 75285

TIL102

TlLl03

TYP

TYP

3

6
6

150

150

150

150

3

UNIT

~s

ns

TIL1 02. TIL 103
OPTOCOUPLERS
PARAMETER MEASUREMENt INFORMATION
Adjust amplitude of input pulse for:
IC(on) = 5 rnA (Test Circuit A) or

IC(on) = 50 "A (Test Circuit B)
INPUT
200

n

..---t<--MJ-.....-'lNv-o

l-

0--1

INPUT

I

.... ton

.....-oOUTPUT

~1-

",l oft..,.

I

If+--!I

(See Note BI

OUTPUT

RL - 10011

..---r--MJ-"<--'lNv-o INPUT

I

--t

I

~90-%--~~~---90-%~

' - - -.....-0 OUTPUT

:

(See NOle 81

I
I
I

TEST CIRCUIT A
PHOTOTRANSISTOR OPERATION
NOTES:

TEST CIRCUIT B
PHOTODIOOE OPERATION

VOLTAGE WAVEFORMS

The input waveform is supplied by a generator with the following characteristics: Zout

Test Circuit A, tw
b.

= 100 J.ls.

= 50 n,

tr";;;; 15 ns, duty cycle:;:: 1%. For

For Test Circuit B, tw = 1 j.lS.

Waveforms are monitored on an oscilioscope with the following characteristics: tr ~ 12 ns, Rin ~ 1 Mn. Gin S;;;; 20 pF.

II
-...

FIGURE l-SWITCHING TIMES

TYPICAL CHARACTERISTICS

f /)

...
o

CO

TIL102

TIL103

COLLECTOR CURRENT

COLLECTOR CURRENT

vs

vs

COLLECTOR-EMITTER VOLTAGE

COLLECTOR-EMITTER VOLTAGE

50

100

IB = 0
TA = 25°C

See Note 4

40

..:
E
.!.c
~

30

~

u

B

M

7

I

!::!
10

o

Vo

------

,. V-

I~

20

0
u

"'0
f/)

r--

IF=40m~

80

~--

~

.!.c

~

-I

60

1

(

~

u

5

M
40
0

------

I

!::!
20

I~

r-~

o
CJ
o

...

Q.

IF =36mA

o

;-[
IF=20m~

rf----- ~

1

IF = 16mA

I
1
20

C.
:::l

I~

u

1

IF=10lA.=

15

1

See Note 4

E

IF=20m~

10

TA = 25°C

..:

IF=30mA_

f /)

Q)

IB - 0

1

--I

-...

1

25

1

0
0

VeE-Collector-Emitter Voltage-V
FIGURE 2

15

20

VCE-Collector~Emitter

Voltage-V

5

10

25

FIGURE 3

NOTE 4: 'This parameter was measured using pulse techniques, tw = 100 J,ls, duty cycle = 1%.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-135

TIL 102, TIL 103
OPTOCOUPLERS
TYPICAL CHARACTERISTICS
NORMALIZED ON-STATE COLLECTOR CURRENT'

40

FREE-AIR TEMPERATURE

INPUT DIODE FORWARD CONDUCTION CHARACTERISTICS

1.6

~
~

.!1.4f-- 1e=O
U

~

30

3•

20

]

1

§

•

~

V

0

r--....
..........

8

o.6

"

o

10

~

•
0

-

IF = 10mA

1. 2

rso.

26

•
8
~

·c

TA = 25°C

•

VeE = 5 V

o

J o.

I)
0.2

0.4

0.6

0.8

1.0

o.4

1.2

1.4 1.6

2
0
-75

1.8 2.0

" "'

-50 -25

VF-Forward Voltage-V.

0

25

50

75

T A-·Free-Air Temperature-°c
tNormellzl!d to value d T A'" 215°C

E

FIGURE 5

PHOTOTRANSISTOR COLLECTOR CURRENT

FIGURE4

'INPUT-DIQDE FORWARD CURRENT

l0040~EE.
'aVeE = 5 V

o

~
~

n

J3

...o

'0

o

c
'0
CD
...

.1

~-

O

10

TA-2SoC

TIL103

~~!!~~~~!I~~~~~!!!
TlLl02

0
. • • • •

O'I~I~.{IIJI*~rnl~ttl
1J0.04~

tn

0'
o
ii'

10

'--ll..LI--'-1.ulllliL
111--'---'...L.lllill-...LLLJ..wJ.

0.01
0.1

...o

10

0.4

40

IF-Input-Diode Fol'WtIrd Current-rnA

...

FIGURE 6

OFF-STATE COLLECTOR CURRENT

~

LOAD RESISTANCE

FREE·AIR TEMPERATURE

10000

V~E' 20lv

TlLl02
AVERAGE SWITCHING TIME

/V

f--,S" 0
IF = 0

/

/

/

1

'V

,/

1

0.00 1

-50

-26

25

50

15

100

12.

AL-Load Resistance-n

T A-Free-Air T8mper81ure-°C

FIGURE

'7

FIGURE 8

NOTE 5: These parameters ware measured In Test Circuits A and B of Figure 1 with RL varied between 40 nand 10 kn.

3·136

. TEXAS'"
INSTRUMENTS
POST OFFICE BOX 656303 • DALLAS. TEXAS 75265

100

125

TIL 111. TlL114. TIL116. TIL 117
OPTOCOUPLERS
01607, NOVEMBER 1973-REVISEO FEBRUARY 1983

COMPATIBLE WITH STANDARD TTL INTEGRATED CIRCUITS
•

Gallium Arsenide Diode Infrared Source Optically Coupled
to a Silicon N·P·N Phototransistor

•

High Direct·Current Transfer Ratio

•

High·Voltage Electrical Isolation, .. 1.5·kV or 2.5·kV Rating

•

Plastic Dual·ln·Line Package

•

High·Speed Switching: tr = 5 j.Ls, tf = 5 j.LS Typical

mechanical data
The package consists of a gallivm arsenide infrared'emitting diode and an n·p·n silicon phototransistor mounted on a
6·lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering
temperature with no deformation and device performance characteristics remain stable when operated in high·humidity
conditions. Unit weight is approximately 0.52 grams.

NOTES:

t~ . """"
'i.

a. Leads are within 0,13 mm (0.005 inch) radius of

'",.'""'00'''
(5 ... Note Al

-

-

'"

1~

-...

true position (T.P.) with maximum material
condition and unit installed.

6.0910.2401

IJl

b. Pin 1 identified by index dot.
!i.46102Hij

. /"~"",I
""""""'"
SEATING PLANE

2'92(01151~

T
--.L
,---,
~, 0
__

1.78 100701 MAX
6 PLACES

~
mAF"
tJ JL ."

317 (0 12&)

4 PLACES "

I

1. Anode

}

2. Cathode

t nfrared-emitting
diode

3. No internal connection

... -

,.""'''' ::l;m:g:gt.J

...12o
o
-...

c. Terminal connections:

4. Emitter

0,534100211

IJl

}

5. Collector
6. Base

Phototransistor

IJl

0.l81 iO.OH;)

25410 100)T p_

6PLAC£S

.E:!
c.

ISuNOleA)

::::l

FALLS WITHIN JEDEC MO-OOIAM DIMENSIONS

o
t,)
o

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

...

absolute maximum ratings at 25°C free·air temperature (unless otherwise noted)
Input-to·Output Voltage: TIL 111
TIL114, TIL116, TILl17
Collector· Base Voltage
Collector·Emitter Voltage (See Note 1)
Emitter-Collector Voltage
Emitter-Base Voltage
Input-Diode Reverse Voltage
Input·Diode Continuous Forward Current at (or below) 25°C Free-Air Temperature (See Note 2)
Continuous Power Dissipation at (or below) 25°C Free·Air Temperature:
Infrared·Emitting Diode (See Note 3) . . . . . . . . . . .
Phototransistor (See Note 4)
............ .
Total, Infrared·Emitting Diode plus Phototransistor (See Note 5)
Storage Temperature Range
............. .
Lead Temperature 1,6 mm (1/16 Inch) from Case for 10 Seconds
NOTES;

±1.5 kV
±2.5 kV
70V
30V
7V
7V
3V
100mA

Q.

o

150mW
150mW
250mW
-55°C to 150°C
260°C

1. This value applies when the base-emitter diode is open-circuited.

2.
3.
4.
5.

Derate
Derate
Derate
Derate

linearly
linearly
linearly
linearly

to
to
to
to

lOOoe free-air temperature
100"C free-air temperature
lOOoe free-air temperature
1000 e free-air temperature

PRODUCTION DATA documonts contain information
currant IS of publication date. Products conform to
specifications par the terms of Texas Instruments

standard warranty. Production processing does not
necessarily include testing of all parameters.

at
at
at
at

the
the
the
the

rate
rate
rate
rate

of
of
of
of

1.33 mAlC.
2 mW/oC.
2 mW/oC.
3.33 mW/oC.
Copynght © , 983, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3·137

TIL 111. TIL114. TIL 116. TIL 117
OPTOCOUPLERS
electrical characteristics at 25° C free-air temperature
TIL111
TEST CONOITIONS

PARAMETER

Collector-Base
V18R)C80

Breakdown Voltage
Collector-Emitter
VI8R)CEO
Breakdown Voltage
Emitter-Base
V18R)E80

Breakdown Voltage
Input Diode Static

IR

Reverse Current

IC"

10~A,

IC" 1 mA,

Collector

IClon)

E

Off·State
ICloff)

...o

Collector
Current

o

'0

Current

IF" 0
IE" 10 ~A,

t:
'0

VCE=10V,

VCEl,atl

Photodiode

VC8 - 0.4 V,

Operation

IE = 0

Photo transistor

VCE-l0V,

Operation

18 = 0

Photodiode

VC8- 1OV,

Operation

IE = 0

Forward Current

...

-

VCE - 5 V,

IC - 0,

IF = 16mA,

V

30

30

30

V

7

7

7

V

2

IF - 16mA,

VCE - 5 V,

7

20

IF = 16 mA

Forward Voltage

IF-60mA

Collector-Emitter

IC" 2.2 mA,

Saturation Voltage

18" 0

Input-ta-Output

Internal Resistance
Input-.te-Output

Cio

Capacitance

~A

2

5

5

9

7

20

7

20

'fA

1

50

1

50

1

50

0.1

20

0.1

20

0.1

20

nA

IF - 0,

100

200

300

IC - 100 "A,

100

IF = 0

Input Diode Static

10

mA

IF - 0,

IC-l0mA,

10

1.2
IF-16mA,

0.25

550

300
1.2

1.4
1.25

1.5

0.25

0.4

1.4

V

0.4

IF-15mA,

V

IF - 10 mA,

0.25

18" 0
'10

TYP MAX

7

IF = 10mA,

IF =0

IC - 0.5mA,

...

iii"
o
en

70

18" 0

en

en
o

70

18 = 0

Ic=2mA,

CD
...

70

10

Operation

Transfer Ratio

VF

TYP MAX MIN

VR = 3 V

18 = 0

(")

o

TYP MAX MIN

IF" 0

Phototransistor

Transistor Static
hFE

18 - 0,

UNIT

MIN
IF" 0

VCE = 0.4 V,
On-State

IE" 0,

TlLI17

TILl16

TlL114

0.4

Vin-out" ±1.5 kV forTIL111,

±2.5 kV for all others, lOll

lOll

lOll

n

See Note 6
Vin-out "" 0,
See Note 6

f -1 MHz,

1

1.3

1

1.3

1

1.3

pF

NOTE 6: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.

switching characteristics at 25° C free-air temperature
TIL111
PARAMETER

TEST CONDITIONS

'r

Rise Time Photo transistor

tf

Fall Time Operation

TYP MAX MIN

IClon) " 2 mA,

TlLI17

TYP MAX MIN

UNIT

TYP MAX

5

10

5

10

5

10

5

10

5

10

5

10

RL"100n,

'r

Rise Time Photodiode

If

Fall Time Operation

3-138

VCC" 10V,

TIL116

TILl14
MIN

See Test Circuit A of Figure 1
VCC= 10V,

IClon) " 20 ~A,

1

1

1

1

1

1

RL" 1 kn,

See Test Circuit B of Figure 1

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

'"
'"

TIL 111. TIL 114. TIL116. TIL 117
OPTOCOUPLERS

PARAMETER MEASUREMENT INFORMATION
Adjust amplitude of input pulse for:
le(an) = 2 mA (Test Circuit AI or
IC(on) '" 20 J-LA (Test Circuit BI
INPUT

L

o-.J

4711

.rJ1-....-o

OUTPUT

(See Note b)

' - -_ _ _.., OUTPUT

OUTPUT

RL=100n

(See Note bl

TEST CIRCUIT A
PHOTOTRANSISTOR OPERATION

TEST CIRCUIT B
PHOTODIODE OPERATION

VOLTAGE WAVEFORMS

a. The mput waveform is supplied by a generator with the following characteristics: Zout

NOTES:

tw

=

50 E, tr

~:.

15 ns, duty cycle::::: 1%,

100 }.J.S.

b. The output waveform

IS

monitored on an oscilloscope with the following characteristics: tr'~ 12 ns, Rin

.">

1 MH. Cin';' 2Q pF

-...

FIGURE I-SWITCHING TIMES

Ifj

...oca

"0

TYPICAL CHARACTERISTICS
TIL 111, TIL 114

COLLECTOR CURRENT
vs
INPUT·DIODE FORWARD CURRENT

E

.!.c:
::'"

VCE 0.4 V
18 - 0
TA=25°C

10

<{

4

.!.c:

E

0

S
"

0.4

10
4

~

V

TIL116

0.4 r--

..

/

u

0.1

!:? 0.1

0.04

0.04

0.01
0.1

C-

O

TIL117

-0
I

/

u

!:?

...

//

"

U

~

10V
0
TA = 25°C
18

~

"

-0
I

0.
:::s
o(,)
o

VCE

40

u

ti

Q)

100

100

<{

...

Ifj

COLLECTOR CURRENT
vs
INPUT·DIODE FORWARD CURRENT

40

.!E.

TIL116, TIL117

VI

V
0.4

4

10

40

100

0,01
0.1

IF-Forward Current-rnA

0.4

4

10

40

100

IF-Forward Current-rnA
FIGURE 3

FIGURE 2

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • OALLAS, TEXAS 15265

3-139

TlLllL TIll 14. Till 16. TILl17
OPTOCOUPLERS

TYPICAL CHARACTERISTICS
TIL111, TIL114

TIL 116

COLLECTOR CURRENT
vs

vs

COLLECTOR-EMITTER VOLTAGE

COLLECTOR-EMITTER VOLTAGE

60

50 -

«
E
.I.c

...\

't0

U

~~

30

0

E

"'0-

~'tz.-f:

20

~~~:9

I

- -

IF =2411'1'-

.Y

-

DISSIP - - f--c-

- A"orv':-

10 I--IF -16 mA
IF = 8 mA

o

0

o

"0
r+
0

0

-

f-- f--c-

4

8

10

12

14

16

---- - --

---..1>

-'?rv -- --

p ...DISS

f"'IF = 30 11'1'-

-- IPA,
- -

V-- IF = 20 mA

-

-- --

IF = 10 mA

20

o

2

4

8

6

10

12

14

16 18

20

VCE-Collector-Emitter Voltage-V
FIGURE 5

FIGURE 4

0

TIL,,7

"0

...

RELATIVE ON-STATE COLLECTOR CURRENT

COLLECTOR CURRENT

CD

VI

vs

vs

COLLECTOR-EMITTER VOLTAGE

FREE-AIR TEMPERATURE
oU

VI

2-

1.6

~

VCE

l!")

N

"
«
I-

III

r+

...

20

10

-::-:

18

U>

, 1.<>
,O~
,,-~--

o rnl'IF=4

VCE-Collector-Emitter Voltage-V

c:

VI

CIC-

30

o
6

(')

0

\~

r - ~'-Z.

10

.Y

1

2

40

~

0
U
I

-~

10

t

,s,

.. -

Ie>

::>

IF=40 rn l'-,

~

1)(

50

«
E
.I.c

I

tl

U

,»

I I
Ie>

40 -

18 = a
TA = 25°C
See Note 7

I~

TA = 25°C
See Note 7

'.)(

~

0

60

18 = a

\~I
'»

::>

U

COLLECTOR CURRENT

«
E
.I.c

e

1.4

U

IF = 10 mA
1.2 I---See Note 8

'"::>
~

1.0

~

0

.~

~

0:

t)

OJ

0

0.4 V to 10 V

~

r---- --........

V-

.9

:;

0.8

/

0.6

~

U

c

.Y

::>

~

I

0.4

U

a

]

o

o

U

2

4

6

8

10

12

14

16

17

20

0.2

0
-75

-50 -25

VCE-Collector-Emitter Voltage-V

0

25

50

75

T A-Free-Air Temperature- °c

FIGURE 6
NOTES:

3-140

=

18 = 0

FIGURE 7

7. Pulse operation of input diode is required for operation beyond limits shown by dotted lines.
8. These parameters were measured using pulse techniques. tw = 1 ms, duty cycle"';;; 2%.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

100

125

TIL 111. TIL 114. TlL116. TlL117
OPTOCOUPLERS

TYPICAL CHARACTERISTICS
OFF·STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

w
u-

.I:

10 000

«c
.!.c

1000

~

I

o

VCE 10V
IS 0
IF - 0

4000

.~

a::

NORMALIZED TRANSISTOR STATIC FORWARO
CURRENT TRANSFER RATIO
vs
ON·STATE COLLECTOR CURRENT
1.6
VCE ~ 5 V
IF ~ 0
1.4
TA~2SDC

1.2

400

::J

U

/

100

B

i!

40

0
u

e
'"
~
0

"E

/

10

~

o

4

u

/

.~
Vl

~

0.4
0.1

0.8

/'

/"

0.6

u.

.L

:y

/v

1.0

/

o

10

20 30 40 SO 60 70 80 90 100
T A-Free·Air Ternperature-DC

]
~
(;

0.4
0.2

Normalized to
at IC ~ 1 rnA

o
0.1

Z

0.2 0.4

2

HI

120

III
'/

E

'C

::J

80

~
u
"E

~

60

I

40

/11

0
UU-

4

«
E
.!.c

TA

~ 70 DC I

// I

20

-? /

0

o

(;

t>

I

~

RL

2

I I)
~

~

/

I

~

~"
RL

0.4

IIII

0.1

10on

o
o
o

...

Q.

o

1 kn
11111

0.2

'\
"\

RL -475H

!:?
0.04

TA ~ _55 DC

'I

1

0.02
0.01

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

4

10

40 100

400 1000

fmod-Modulation Frequency-kHz

VF-Forward Voltage-V

FIGURE 11

FIGURE 10
NOTE 7:

Q.
::l

0

u

~

...
ctI

VCC 10 V
IS 0
TA ~ 2SOC

~::J

u

II)

o

'0II)

COLLECTOR CURRENT
vs
MODULATION FREQUENCY

II I
TA ~ 25 DC

100

100

10

Se~ Not~ 7

140

I

40

FIGURE 9

INPUT DIODE FORWARD
CONDUCTION CHARACTERISTICS

«

10 20

IC(on)-o"n.State Collector Current-rnA

FIGURE 8

160

4

i ~6

These parameters were measured UStng pulse techniques. tw -; 1 ms, duty cvcle "'" 2%

TEXAS •
. INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-141

E
o

'0

r+

o

(")

o
c:

'0

CD
...

C/l

C/l

o

iii"

r+

o...

C/l

3-142

TIL113, TlL119A
OPTOCOUPLERS
D1499. AUGUST 1981-REVISED JUNE 1989

•

Gallium Arsenide Diode Infrared Source Optically Coupled
to a Silicon N-P-N Darlington-Connected Phototransistor

•

High Direct-Current Transfer Ratio ... 300% Minimum at 10 mA

•

High-Voltage Electrical Isolation ... 1500-Volt Rating

•

Plastic Dual-In-Line Package

•

Base Lead Provided on TI L113 for Conventional Transistor Biasing

•

No Base Lead Connection on TIL 119A for High-EMI Environments

•

Typical Applications Include Remote Terminal Isolation, SCR and
Triac Triggers, Mechanical Relays, and Pulse Transformers

mechanical data
The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon darlington-connected phototransistor mounted on a 6-lead frame encapsulated within an electrically nonconductive plastic compound. The case.
will withstand soldering temperature with no deformation and device performance characteristics remain stable when
operated in high-humidity conditions. Unit weight is approximately 0.52 grams.
NOTES:
a. Leads are within 0,13 rnm (0.005 inch) radius of
true position (T.P.) with maximum material
condition and unit installed.
b. Pin 1 identified by index dot.
Terminal connections:
1. Anode
Infrared-emitting
}
2. Cathode
diode

II
...
In

...o

li~:~::~::"~.~~~.}~~~~,

CO

'0
In

-...
In

(1)

Q.
::::I

FALLS WITHIN JEDEC MO-001AM DIMENSIONS
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

o(J

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-Output Voltage . . . . . .
Collector· Base Voltage (TI L113) . . .
Collector· Emitter Voltage (See Note 1)
Emitter-Collector Voltage
Emitter-Base Voltage (TI L113). . . .
Input-Diode Reverse Voltage
Input·Diode Continuous Forward Current at (or below) 25°C Free-Air Temperature (See Note 2)
Continuous Power Dissipation at (or below) 25°C Free·Air Temperature:
Infrared-Emitting Diode (See Note 3) . . . . . .
Phototransistor (See Note 4)
........ .
Total (Infrared-Emitting Diode plus Phototransistor. See Note 5)
Storage Temperature Range
........... .
Lead Temperature 1,6 mm (1 /16 Inch) from Case for 10 Seconds
NOTES:

±1.5 kV

30V
30V

...c.o

o

7V
7V

3V
100mA
150mW
150mW
250mW
_55°C to 150°C
260°C

1. This value applies when the base-emitter diode is open-circuited.

2.
3.
4.
5.

Derate
Derate
Derate
Derate

linearly
linearly
linearly
linearly

to
to
to
to

100°C
100°C
100°C
100°C

free-air
free-air
free-air
free-air

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications par the tarms of Taxas Instruments

:~~::~~i~a{::1~1i ~!::i~~ti:r :IID::;:::::t~:S~S not

temperature
temperature
temperature
temperature

at
at
at
at

the
the
the
the

rate
rate
rate
rate

of
of
of
of

1.33'mA/C.
2 mW/"C.
2 mWt'C.
3.33 mW/'C.
Copyright © 1989, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-143

TlL113. TIL 119A
OPTOCOUPLERS
electrical characteristics at 25° C free-air temperature
PARAMETER

TEST CONDITIONst

Collector~Base

VIBR)CBO

Collector-Emitter

VIBR)CEO

Breakdown Voltage

Emitter-Base
VISR)ESO

IE" 0,

IF" 0

30

IC" ,. mA,

IB" 0,

IF" 0

30

IE ·lO~A,

IC" 0,

IF" 0

7

IC"

Breakdown Voltage

Breakdown Voltage

MIN

10~A,

TIL 119A

TILl13
TYP MAX

MIN

IClon)

IF" 0

VCE ~ 1 V,

IS - 0,

Collector Current

VCE - 1 V,

IF"lOmA

VCE" 10V,

IS" 0,

VCE"lV,

Ic"10mA, IF" 0

Off-State
ICloffi

Collector Current

IF - 10 mA

UNIT

V

30

V
V

7

IE" 10"A,

On-State

Breakdown Voltage

MAX

V

Emitter-Collector
V(BR)ECO

TYP

100

30

30
IF" 0

mA

160

100

100

nA

1.5

1.5

V

Transistor Static
hFE

Forward Current

15,000

Transfer Ratio
Input Diode Static

VF
VCE(,al)

o

....
o

"0
C')

g

"0

CD
...
CII

IF" 10 mA

Forward Voltage
Collector-Emitter

IC - 125mA,

Saturation Voltage

Ie

I nput-to-DutRut

'10

Internal Resistance

~

Vin.-out

=i

Capacitance

Vin-Qut

=

1.2
1

f" 1 MHz,

0,

lOll

lO"

1.5 kV. See Note 6

I nput-to-Output
Cia

IF - 50mA

IF"10mA

30 mA,

See Note 6

1

-- ..--

TEST CONDITIONS

MIN

1.3

1

TLl13
TYP MAX

Rise Time

VCC·15V,

IClon) " 125 mA,

300

Dr
r+

If

Fall Time

RL" lOOn,

See Figure 1

300

I,

Rise Time

VCC-l0V,

-

If

Fall Time

RL" 100

o

n
1.3

pF

switching characteristics at 25° C free-air temperature

I,

..

V

NOTE 6: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.
t Reference to the base are not applicab!e to TIL 119A.

PARAMETER

en
o

IS - 0,

n,

TIL 119A
MIN

TYP

MAX

UNIT
~,

IClon) " 2.5 mA,

300

See Figure 1

300

~,

CII

PARAMETER MEASUREMENT INFORMATION

1:
-=

1- - -l47n
I

~

I

//

I

VV'v-<)

Adjust amplitude of input pulse for:
IClon) = 125 mA ITIL113)

INPUT

IC(on) = 2.5 rnA (TIL 119A)

I

I

INPUT

o-.J

L

1

I
,--I--<'-OOUTPUT
-L ___ --1
RL"10011
TEST CIRCUIT
NOTES:

90%
OUTPUT

-=

VOLTAGE WAVEFORMS

The input waveform is supplied by a generator with the following characteristics: Zout '" 50

n,

tr ~ 15 ns, duty cycle:=::: 1 %,

tw = 500,",5.
b. The output waveform is monitored on an oscilloscope with the following characteristics: tr .:; ;:; 12 ns, Rin

FIGURE l-SWITCHING TIMES

3-144

TEXAS •
INSTRUMENTS
POST OFFICE BOX 856303 • DALLAS. TEXAS 15265

~

1

Mn.

Cin

~

20 pF.

TlL113. TIL119A
OPTOCOUPLERS
TYPICAL CHARACTERISTICS
COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

120

100

«
E
1-c

200

18 ~ 0
TA=25"C
See Note 7

180

«
E
1-c

80

60

120
100

t)

"0
u

"0
u
I

I

20

0.8

1.2

1.6

2.0

40

VCE = 1 V
IS = 0
T A = 25°C

/'

100

f.-

100

r-

~

:>

u

E

/

5:?

~
(5

/

20

.L.

:::

II

.9u

/

CO

"0
Ul

-..

Ul
Q)

0.1

0.01

4

7

10

20

40

70 100

o

V

o
o
....
t,)

V

I----

0.001

2

Ul

....o

/

18 = 0
IF = 0

0

I

40

II
-..
:::I

10

"0
u

I

NOTE 7:

2

VCE=1 10V

~

-

10

1.2 1.4 1.6 1.8

C.

t)

t)

"0
u

V

«::l
1-

70

~

1

1000

200

0

Sej Notil

OFF-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

400

~

"-

FIGURE 3

COLLECTOR CURRENT
vs
INPUT-DIODE FORWARD CURRENT

:;

"-

VCE-Collector-Emitter Voltage-V

FIGURE 2

u

,01-

18 = 0
TA = 25°C

0.2 0.4 0.6 0.8

VCE-Collector-Emitter Voltage-V

«
E
1-c

~. ~-~-f-

/

/J
If
o

2.4

\~,-"

1/

0
0.4

0

I

/

20
0

"

~-;rr-fj" ~U'-~(/O

l

60

5:?

5:?

i

80

~

40

I

IF = 30 mAl' 1'<,> 01-)-.

IF = 50 mA

0

t)
~

~-bk/~~X
"J~~

0

j

140

U

t

:>

U

160

V

25

/

/

50

c.

o

~

75

100

IF-Forward Current-mA

TA-Free-Air Temperature-OC

FIGURE 4

FIGURE 5

125

Pulse operation of input diode is required for operation beyond limits shown by dotted line.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

3-145

TIL 113, TIL 119A
OPTOCOUPLERS
TYPICAL CHARACTERISTICS
TIL113

RELATIVE COLLECTOR-EMITTER
SATURATION VQL TAGE
vs
FREE·AIR TEMPERATURE

TRANSISTOR STATIC FORWARD
CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT
25,000

1.6
1.4 -

IC = 125 rnA
IS=O
IF =50 rnA

1.2
1.0
0.8

r---

.~

0::

-

~c:

/

:;
U

"E 10,000

~

V

o
u.

"

~

5,000

w
u.

0

25

50

75

100

r

o

.r:::

-75 -50 -25

125

0.1

0.4

4

FIGURE 6

FIGURE 7

...Ci"

INPUT DIODE FORWARD
CONDUCTION CHARACTERISTICS

fI)

160

Cii
o

Se~ No~e 8

HI
II

TA = 25°C

o...

«
E
1-c:

!!!..

~
u"
"E

..

~
0
u.
I
u.

120
100

I

SO

IIII

60

TA = 70°C /,

40

1/ II

20
0

1

I

140

ii"
r+

o

!. ~

/

TA = _55°C

'I

1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VF-Forward Voltage-V
FIGURE B

NOTE 8: This parameter was measured using pulse techniques. tw"" 1 ms, duty cycle" 2%.

3-146

10

40 100

Ic-Collector Current-rnA

T A-free-Air Ternperature-°c

"C

\

~

o

n
o
r:::

1\
I

t: 15,000

0.2

r+

20,000

l-

0.4

o

I

E

0.6

o
"C

i"v

VCE =
IF = 0
TA = 25°C

o

..If

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75266

400 1000

TIL 118·1, TIL 118·2, TIL 118·3
OPTOCOUPLERS
01607, NOVEMBER 1973-REVISED JULY 1989

•

Gallium Arsenide Diode Infrared Source Optically Coupled to a
Silicon N·P-N Phototransistor

•

High Direct-Current Transfer Ratio

•

High-Voltage Electrical Isolation,

•

Plastic' Dual-In-Line Package

•

High-Speed Switching: tr - 2 pS, tf - 2 pS Typical

,3,53 kV

•

Choice of Three Current Transfer Ratios

•

No Base Lead Connection for High EMI Environment

mechanical data
The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor
mounted on a 6-lead frame encapsulated within an electrically non conductive plastic compound, The case
will withstand soldering temperature with no deformation and device performance characteristics remain
stable when operated in high-humidity conditions, Unit weight is approximately 0,52 grams,

-...
( /)

....o

m
(5

-...
(/)

( /)

Q)

C.
::::J

o

(,)

6

2

3

5

4

....oc.
o

NOTES: A. Leads are within 0,13 mm (0.005 inch) radius
of true position (T.P.) with maximum material
condition and unit installed.
B. Pin 1 identified by index dot.
Terminal connections:
,. Anode

2.
3.
4.
5.
6.

}

Infrared· emitting

Cathode
diode
No internal connection
Emitter
Coliector
} Phototransistor
Base

FALLS WITHIN JEDEC MO-001AM DIMENSIONS
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

PRODUCTION DATA documents contain information
currant IS of publicatioR date. Products conform to
specifications per the terms of raxas Instruments

:~~:::~~i~·r::,~'~ ~:~:~ti:r lIl"::~:::::,:i.': not

Copyright

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLA!!>. TEXAS 75265

© 1989, Texas Instruments Incorporated

3-147

TIL 118-1, TlL118-2, TIL118-3
OPTOCOUPLERS

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 3.535 kV peak or dc (± 2.5 kV rms)
Collector-emitter voltage (see Note 1)
..... 30 V
Emitter-collector voltage . . . . . . . . . . . . . . . . . . . . . .
7V
Input diode reverse voltage ................... .
. ..... 3 V
Input diode continuous forward current at (or below)
25°C free-air temperature (see Note 2) ..................... .
100 mA
Continuous power dissipation at (or below) 25 °C free-air temperature:
Infrared-emitting diode (see Note 3) .................... .
150 mW
Phototransistor (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . .
150 mW
Total, infrared-emitting diode plus phototransistor, (see Note 4)
250 mW
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 55°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260°C
NOTES: 1. This value applies when the base-emitter diode is open circuited.

2. Derate linearly to 100°C free-air temperature at the rate of 1.33 mW/oC.
3. Derate linearly to 10QoC free-air temperature at the rate of 2 mW/oC.
4. Derate linearly to 10QoC free-air temperature at the rate of 3.33 mW/oC.

electrical characteristics at 25°C free-air temperature
PARAMETER

o

'0

r+

o
(")
o

!:

CD
...

breakdown voltage
Emitter-collector

V(8R)ECO

IC(on)

'0
(/l

breakdown voltage

Photo-

collector

transistor

I

current

operation

I TIL 118-3

Off-state
collector

IC(off)

o

Ql
r+

o
...

(/l

TIL 118-2

forward voltage
Collector-emitter

VCE(sat)

~

1 mA,

18

~

0,

IE

~

10

~A,

IF

~

0

vCE

5 V,

~

saturation voltage

VCE

internal resistance
capacitance

IF

5 V,

~

IF

~

10 mAo

IC

~

2 mA,

~

10 mA, 18

IF

IF

~

~

0,

=

± 500 V, See Note 5

Vin-out

=

0,

f

~

18

10 mA, 18

Vin-out

Input-to-output
Cio

~

0

TYP

MAX

UNIT

30

V

7

V

~

0

5

mA

10

lnput~to-output

'10

MIN
IF

2

Phototransistor
operation

Input diode static

VF

IC

I TILl18-1

On-state

current
(/l

TEST CONDITIONS

Collector-emitter

V(8R)CEO

1 MHz,

~

~

0

1

100

nA

1.2

1.5

V

0.4

V

0

n

1011
See Note 5

1

2

pF

NOTE 5: These parameters are measured between both input-diode leads shorted together and aU the phototransistor leads shorted together.

switching characteristics at 25°C free-air temperature
PARAMETER
tr

3-148

TEST CONDITIONS

Rise time

Phototransistor

VCC

Fall time

operation

RL

~

~

10 V,

100

n,

IC(on) ~ 2 mA,
See Figure 1

-I!}

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MIN

TYP

MAX

2

15
15

TIL 118·1, TIL 118·2, TIL 118·3
OPTOCOUPLERS
PARAMETER MEASUREMENT INFORMATION
INPUT

Adjust amplitude of Input pulse for:
IC(on) - 2 mA

L

0--1

INPUT
OUTPUT
(See Note B)

OUTPUT

RL - 10011

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The input waveform is supplied by a generator with the following characteristics: Zout = 50 n, tr S '5 ns,
duty cycle ~ 1 %, tw ~ 100 ~s.
B. The output waveform is monitored on an oscilloscope with the following characteristics: tr :!5 12 ns, Rin ~ 1 MO, Cin :!5 20 pF.

FIGURE 1, SWITCHING TIMES

&I
-

TYPICAL CHARACTERISTICS
COLLECTOR CURRENT

vs
INPUT-DIODE FORWARD CURRENT

E

~

40

«
E
.!.

---

«

10

'?S;

CI:I

~

"0

VCE 5V
18 -0
TA = 25°C

-...
CIl
CIl

10

Q)

c..
:::l

4
L/

::J

o
CJ
o
....c.

U

7.5

~

j

15

....o

100

-- --- ---

12.5
I

CIl

vs
COLLECTOR-EMITTER VOLTAGE
15

1:
~::J
u

...

COLLECTOR CURRENT

.!!

;3

5

I
S;

2.5

0.4

o

0.1
0.04
/

0.01
5

10

15

20

25

/
2

JO

4

10

20

40

100

IF-Forward Current-rnA

VCE-Collector-Emitter Voltage-V
FIGURE 2

FIGURE 3

NOTE 6: Pulse operation of input diode is required for operation beyond limits shown by dotted lines.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-149

TIL 118·1, TlL118·2, TIL 118·3
OPTOCOUPLERS

TYPICAL CHARACTERISTICS
OFF-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

RELATIVE ON-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

u

°an

10000

1.6
VCE = 0.4 V to 10 V
18 = 0
IF = 10 mA
See Note 7

N

I

1.4

~

1ii 1.2

""
~
;J

1.0
0.8 _ . -

Gi

0.6

_

0.4

---

0.2

~--

.

a:

o

:;

-/

(;

r------ '-....

.. -- ._-

V ---

t>

.!!
"0

u
!

..L ~.-

'"
ci)

:::
:=

-

-

400
100
40

/

10
4

CI

/
0.4

/

0.1

"'-75 -50 -25

r+

VCE = 10 V
18 = 0
IF - 0

0
I

§

o
n
o

0

25

50

75

o

100 125

10 20 30 40

TA-Free-Air Temperature- °C

...

CD
en

10
See Note 7

Dr

I

140

r+

c(

E
I

120

;:

100

!
:;
u
"E

80

~

60

.

~

40

4

E

1-c:

I

20

o
o

TA - 70°C

(;

t>

0.4

'5"

0.2

I

0.1

u

9

II

10 V- .
Vce
18 - 0
TA = 25°e

--

-

~"

2

"~

III I
I /

0.04

~ ~A-

._.

c(

u

CI
LL

I

I

I

TA = 25°C

-

COLLECTOR CURRENT
vs
MODULATION FREQUENCY

160

0

f--- I--- -

I

RL - 1 k{l
~ RL - 475 {l 21\- -'I
RL - 100 {l '\

~.

.-t

~+

I

"

I

_.
-

.. -

..

0.02
-55°e

i

0.01

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

4

1

VF-Forward Voltage-V

10

40

100

400 1000

fmod-Modulation Frequency-kHz

FIGURE 6

FIGURE 7

NOTE 7: These parameters were measured using techniques. tw = 1 ms, duty cycle .:5 2%.

3·150

60 70 80 90 100

FIGURE 5

INPUT DIODE FORWARD
CONDUCTION CHARACTERISTICS

u;

50

T A.- Free-Air Temperature- °e

FIGURE 4

I::
'C

...
en

1 000

!

o

'C

0

4000

"I
;:
U

~

..,

c(

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75266

TlL120. TIL121
OPTOCOUPLERS
01956, NOVEMBER 1974

GALLIUM ARSENIDE DIODE INFRARED SOURCE OPTICALLY COUPLED
TO A HIGH-GAIN N-P-N SILICON PHOTOTRANSISTOR
•

Photon Coupling for Isolator Applications

•

High Overall Current Gain __ .1.0 Typ (TIL 121)

•

High-Gain, High-Voltage Transistor ... V(BR)CEO = 35 V Min

•

High-Voltage Electrical Isolation ... l-kV Rating

•

Stable Over Wide Temperature Range

mechanical data
THE COLLECTOR IS IN ELECTRICAL CONTACT WITH THE CASE

4 LEADS 0,483 (0.019) DIA
0.406 (0.016)

14--.1- 2,54 (0.100) DIA

.--

-.

4,96 (0.195)
4,52 (0.178)
DIA

en

--L-

5,84 (0.230)
4,31 (0.209)
DIA

....o

~

C'O

'0

I

-..

0,76 ( 0 ' 0 3 0 ) U
MAX
~

.!!!
en

12,7 (0.500)
MIN

Q)

C.

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALL V IN INCHES.
ALL JEDEC TO·72 DIMENSIONS AND NOTES ARE APPLICABLE

:::s
o
(.)
....o

Q.

o
absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-Output Voltage .
Collector·Emitter Voltage
Emitter·Collector Voltage
Input Diode Reverse Voltage
Input Diode Continuous Forward Current at (or below) 65°C Free-Air Temperature (See Note 1)
Continuous Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous Transistor Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 2)
Operating Free-Air Temperature Range. . . . . . . . . . .
Storage Temperature Range
.............. .
Lead Temperature 1,6 mm (1/16 Inch) from Case for 10 Seconds
NOTES:

±1 kV
35 V

7V
3V
40 mA
50mA
. , , 190mW
_55°C to 125°C
-55°C to 150°C
240°C

1. Derate linearly to 125°C free-air temperature at the rate of 0.67 mA/oC.
2. Derate linearly to 125°C free-air ter('lperature at the rate of 1.9 mW/oC.

Copyright

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments

=~:~~i~8r~:,~1e ~~~::i:: ~lo:=::::9t:~~s

not

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

© 1983, Texas Instruments Incorporated

3-151

TIL 120, TlU21
OPTOCOUPLERS
electrical characteristics at 25°C free-air temperature (unless otherwise noted)
PARAMETER

TEST CONDITIONS

TIL 120
MIN

TYP

TIL 121
MAX

MIN

VIBRICEO CollectorMEmitter Breakdown Voltage

IC-1 rnA,

IF = 0

35

35

V(BR)ECO Emitter·Coliector Breakdown Voltage

IE= 1001'A,

IF ~ 0

7

7

IR

Input Diode Static Reverse Current

VR = 3 V

IClonl

On-State Collector Current

VCE=5V,

IF = 10mA

VCE=20V.

IF =0

VCE = 20V,

IF =0,

ICloffi

Off-State Collector Current

VF

Input Diode Static Forward Voltage

Ii

2.5

6

VCEls.,1

Collector-Emitter Saturation Voltage
Input-ta-Output Internal Resistance

Cio

Input-ta-Output Capacitance

5

10

6

100

IF = 20 rnA

IC= 10 rnA,

IF=20mA

Yin-out = ±1 kV, See Note 3
f = 1 MHz,
Vin-aut - 0,

0.3
1012

1011

2.5

See Note 3

nA
I'A

1.3

0.3
10 "

I'A
rnA

100

4
1.3

IC - 2.5 rnA,

UNIT

V
100

4

IF = 10mA

MAX

V

100

TA= 100"C

rjo

TYP

10'2

V
V
n

2.5

pF

NOTE 3: These parameters are measured between both input diode leads shorted together and both phototransistor leads shorted together.

E

switching characteristics at 25°C free-air temperature
PARAMETER

o 'r

"0

If

TEST CONDITIONS

TIL120
MIN

MAX

Rise Time

VCC=20V,

IClonl = 5 rnA

3

20

Fall Time

RL=100n,

See Figure 1

3

20

r+

o
o

n

I:

"0

Ci"
...

(II
(II

o
iii
r+

...

o

(II

3-152

TIL 121

TYP

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

MIN

TYP

MAX

6
6

20
20

UNIT
I's

TlL120, TIL121
OPTOCOUPLERS
PARAMETER MEASUREMENT INFORMATION
Adjust amplitude of input pulse for
IC(on) = 5 mA
INPUT

L

o..J

700 n
.--r--ioIIt-,,""~NY- 1.0

25

1
i,.

~

veE

........

~i'..

0.8

"--

&'

15

~ 0.6

10

"

g

o

0.2

0.4

0.6

0.8

IJ

1.0

~ 0.2

"
1.2

1.4 1.6

1.B 2.0

-75

-50

VF-Forward Voltage-V

Eo

FIGURE

-25

25

50

75

100

125

T A- Free-Air Temperature-aC

4

PHOTOTRANSISTOR COLLECTOR CURRENT

FIGURE

5

INPUT·DIODE FORWARD CURRENT

100

'0

1

o
C"l
o

..j

~

r+

40

VeE = 5 V
2SOC

TA

TIL121

10

v.;

"

c:

~T IL120

'0

".~

til

J

CD
...

0.4

0.1

.y 0.04

til

o

0.01

or
o
...

II,

0.1

100

10

0.4

r+

TILl20

IF-Input-Diode Forward Current-mA
OFF-5TATE COLLECTOR CURRENT

~

FREE-AIR

10000

~

~

~
"

LOAD RESISTANCE

TEMPERA~URE

V~E020Iv

/

1000 - I f = O

i-

1=
r-

IC(on) - 5 rnA
100/,s

tw=

./

10

~
~

/

~

•
~

/

"

..

I

~

NO.4

.§

1

-25

Vee - 20V
TA 2S"C
See Note 5

~

/

'/

40

~

/

100

0.00 1
-50

AVERAGE SWITCHING TIME

FIGURE 6

100

1

25

50

75

100

125

0.1
10

100

1000

RL -Load Resistance-U

T A-free-Air Temperature-OC

FIGURE 8

FIGURE 7

NOTE 5: These parameters were measured in the test circuit of Figure 1 with RL varied between 40.n and 10 kO.

3-154

.........

0.4

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

10000

TlL124, TIL125, TIL126
OPTOCOUPLERS
02227, MAY 1977-REVISEO DECEMBER 1982

COMPATIBLE WITH STANDARD TTL INTEGRATED CIRCUITS

mechanical data

•

Gallium Arsenide Diode Infrared Source Optically Coupled
to a Silicon N-P-N Phototransistor

•
•

High Direct-Current Transfer Ratio
High-Voltage Electrical Isolation ___ 5000-V Rating

•

Plastic Dual-In-Line Package

•
•

High-Speed Switching: tr = 2 I1S, tf = 2 I1S Typical
Typical Applications Include Remote Terminal Isolation,
SCR and Triac Triggers, Mechanical Relays, and Pulse Transformers

The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on a
6-lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering
temperature with no deformation and device performance characteristics remain stable when operated in high-humidity
conditions. Unit weight is approximately 0.52 grams.

-...

ion Leads are within 0,13 mm (0.005 inch) radius of

VI

b. true position (T.P.) with maximum material

...
o

condition and unit installed.
Pin 1 identified by index dot.

CO

Terminal connections:

1. Anode
2. Cathode
3.

}

'0

-...

Infrared--emitting
diode

.!!?

No internal connection

4.

Eminer

5.

Collector

6.

Base

VI

}

Phototransistor

~

a.

:::I

FALLS WITHIN JEDEC MO-OOl AM DIMENSIONS
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

o
o
o

...a.

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-Output Voltage
.... .
Collector-8ase Voltage
.... .
Collector-Emitter Voltage (See Note 1)
Emitter-Collector Voltage
Emitter-8ase Voltage
Input-Diode Reverse Voltage
Input-Diode Continuous Forward Current
Continuous Power Dissipation at (or below) 25°C Free-Air Temperature:
Infrared-Emitting Diode (See Note 2)
......... .
Phototransistor (See Note 3) . . . . . . . . . . . . . .
Total, Infrared-Emitting Diode plus Phototransistor (See Note 4)
Storage Temperature Range
. . . . . . . . . . . .
Lead Temperature 1,6 mm (1/16 inch) from Case for 10 Seconds
NOTES:

±5 kV
70 V

o

30 V

7V
. 7V
. 3V
100mA

150mW
150mW
250mW
_55°C to 150°C
. . . . 260°C

1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to 100°C free-air temperature at the rate of 2 mW/'C.
3. Derate linearly to 100"C free-air temperature at the rate of 2 mWtC.
4. Derate linearly to 100"C free-air temperature at the rate of 3.33 mW/'C.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments

~~~~::~~i~8i~:I~"'~ ~!:~~~tj:: ~Io::::~:t:~s~s not

Copyright

TEXAS.

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

© 1983, Texas Instruments Incorporated

3-155

TIL 124, TIL 125, TlL126
OPTOCOUPLERS

•
electrical characteristics
at 25° C free-air temperature
PARAMETER

V(BR)CBO
V(BR)CEO
V(BR)EBO
IR

Collector-Base

IC= 101lA,

Breakdown Voltage

IF =0

Collector-Emitter

IC-l mA,

Breakdown Voltage

IF = 0

Em itter-Base

IE = 101lA,

Breakdown Voltage

IF =0

Input Diode Static

Collector
Current

Off-State

•

o

"C

IC(off)

"C

CD
..,

Operation

IB =0

Photodiode

VCB-l0V,

Operation

IE =0

Phototransistor VCE= 10 V,

Operation

IB = 0

Photodiode

VCB=10V,

Operation

IE =0

Forward Current

,

Input Diode Static

VCE(sat)

qa
Cio

C/I

..-...

Phototransistor VCE= 10V,

Transfer Ratio

VF

IE = 0,
IB = 0,
IC= 0,

Forward Voltage

VCE=5V,

TIL125

TYP MAX

MIN

TIL126

TYP MAX

IF -10mA,

V

30

30

30

V

7

7

7

V

10

IC= 10mA,

3

2

5

5

9

mA

5

20

5

20

5

20

"A

50

Input-ta-Output

Vin-out - 500 V.

Internal Resistance

See Note 5

I nput-ta-Output

Vin-out - 0,

Capacitance

See Note"5

IF=10mA,

f

1

50

1

50

1

50

0.1

20

0.1

20

0.1

20

100

IF=10mA
IC=l mA,

"A

nA

IF =0

IB = 0

10

1

IF - 0,

Saturation Voltage

UNIT

70

IF - 0

Collector-Emitter

TYP MAX

70

10
IF=10mA,

MIN

70

VR = 3V

Transistor Static

r+

o
C1
o
s:::

Collector

Current

hFE

MIN

Reverse Current

On--5tate
IC(on)

TIL 124

TEST CONDITIONS

10

100

200

100

550

1.2

1.4

1.2

1.4

1.2

1.4

V

0.25

0.4

0.25

0.4

0.25

0.4

V

11

10 11

1 MHz,

1

1.3

n

10 11
1

1.3

1

1.3

pF

NOTE 5: These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted together.

(jj

o

S
o
..,

C/I

switching characteristics at 25°C free-air temperature
PARAMETER

TEST CONDITIONS

tr

Rise Time

Phototransistor

VCC=10V,

tf

Fall Time

Operation

See Test Circuit A of Figure 1

tr

Rise Time

Photodiode

VCC=10V,

tf

Fall Time

Operation

See Test Circuit B of Figure 1

3-156

MIN

IC(on) = 2 mA,RL = 100
IC(on) - 20 "A,R L - 1

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

n,

kn,

TYP MAX UNIT
5

10

5

10

1
1

Il'

'"

TIL 124. TIL 125. TIL 126
OPTOCOUPLERS
PARAMETER MEASUREMENT INFORMATION

Adjust amplitude of input pulse for:
IC(on) = 2 rnA (Test Circuit Al or
le(on) = 20 J.l.A (Test Circuit B)
INPUT

47

L

o..J

n

.r-If-.....-<>

0 UTP UT

(See Note b)

'---_-0

OUTPUT

RL"00n

OUTPUT

(See Note b)

TEST CIRCUIT A
PHOTOTRANSISTOR OPERATION
NOTES:

TEST CIRCUIT B
PHOTODIODE OPERATION

VOLTAGE WAVEFORMS

a. The input waveform is supplied by a generator with the following characteristics: Zout == 50.n, tr
tw = 100 IJ,s.

~

15 ns, duty cycle ~ 1%,

b. The output waveform is monitored on an oscilloscope with the follow"ing characteristics: tr';;;; 12 ns, Rin;;;;' 1 MH, Gin ~ 20 pF.

-...
I II

FIGURE 1-SWITCHING TIMES

...
o

~

o

TYPICAL CHARACTERISTICS

-...

III

III

COLLECTOR CURRENT

Q)

vs

c..
:::I

INPUT-DIODE FORWARD CURRENT

100

~VCE 10
40 =18 0
-TJ

= 25°C

·I'L12G

10

o
o
o

...

y /

C-

O

4

!4·

Ill:

/

1
0.4
/

/

0.1

n n~
0.01

V

0 ..1

VII1

IIII

II

0.4

4

10

40

100

IF-Forward Current-rnA
FIGURE 2

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-157

TIL 124, TIL 125, TIL 126
OPTOCOUPLERS
TYPICAL CHARACTERISTICS
TIL125

TlL124

COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE
60

\J

~"p
1)<

50 -

«
E
.!.c

60
I»
1)<

\~

.!.c

--

,{.

~

,'iJ,

30

'fL

,O~

10 ~

0

'to.... D/SS

IF = 40 mA~ <:.IPA,r-, IF - 30 mA
' t.:-:grvI~ 20 mA
IF -10 mA

2

4

'0
P+
0

6

8

10

12

14

-- ---- -- ..

C\ C-'

\0

a
1>

30

"0
u

20



- - --

- --- -

{\F=30mAj_~...pIS - - - ,SIPA, r' , IOrv

V- I I' = 20 mA

IF=10mA

---

!

--

14

16 18

I

-.~

--j

o

16 18 20

o

4

2

VCE-Collector-Emitter Voltage-V

(')

't'-t

I~

r-- ------l,ez-

~

, «'1>

20

40

~

u"

\ 0

u"

10
10

E

10

--

TA: 25°C
See Note 6

-- ---

50

«

l('l

40

18'~ I)

I~

18 = 0
TA=25°C
See Note 6-

6

10

8

12

20

VCE--Collector-Emitter Voltage-V

FIGURE 3

FIGURE 4

0

c:

TlL126

.

'0

RELATIVE ON-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE

Ci'

til
til

~

VCE = 0.4 V to 10 V
18 = 0
IF = 10 mA
1.2 _ See Note 7

""
>

1_0

0

Qj

..

~

P+

0

til

«
E
.!.c

-;;;

~
u"

a

1>

.

0.8

0:

0_6

a;

~

"0

--

r--

f---""

V

B
~
-;:;

T-T=l

1.4

............

/

~

u

c

~
"
u

I
~

0.4

~

~

0.2

~

o

"0
u
2

4

6

8

10

12

14

16

17

0

20

-75

-50 -25

VCE-Coliector·Emitter Voltage-V

0

FIGURE 5

FIGURE 6

NOTES: 6. Pulse operation of input diode is required for operation beyond limits shown by dotted lines.

7. These parameters were measured using pulse techniques. tw = 1 ms, duty cycle" 2%.

3-158

25

50

75

T A-Free-Air Temperature-°c

TEXAS

..If

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

100

125

TIL 124, TIL 125, TIL 126
OPTOCOUPLERS
TYPICAL CHARACTERISTICS
OFF·STATE COLLECTOR CURRENT
vs
FREE·AIR TEMPERATURE

«c:
.I-c:

4000

:;

400

o

10V

VCE

.~

0
IF - 0

18

1000

~

IX:

1.2

!

C,)

100

l3

"

40

~

"0

::l
C,)

C,)

0'"

~

/

10

.'!l

4

/

I

0.8

~
o

0.6

"

0.4

./

,/

.~

U;

0.4

!:?

0.1

./

1.0

u-

25

~

w

U-

.s:
I

10000

NORMALIZED TRANSISTOR STATIC FORWARD
CURRENT TRANSFER RATIO
vs
ON·STATE COLLECTOR CURRENT
1.6
VCE - 5 V
IF = 0
1.4
TA = 25°C

~

n;

/

o

10

20 30 40 50 60 70 80
T A-Free-Air Ternperature-°c

90 100

E

<;

0.2

Normalized to 1.0

at IC = 1 rnA

o
0.1

z

0.2 0.4

2

4

10 20 40

100

I II

...o
"0
-...

IC(on)-On·State Collector Current-rnA
FIGURE 7

II
-...

FIGURE 8

t'O

160

120

4

H1

«

E
I

I

E
I

1: 100

60

I

40

0
U-

U-

~

"0
I

C,)

TA=70°C/

20
0

~

III I
/
II

~

~ 1,/
o

o
CJ
o
c.

...

RL=100n

2

..::::--"

t

::l
C,)

80

::::I

18

1:

t

'"~

~
C.

10 V
0
TA = 25°C
Vce

II I

TA=25°C

::l
C,)

III

10

I
I
See Note 7

140

«

III

COLLECTOR CURRENT
vs
MODULATION FREQUENCY

INPUT DIODE FORWARD
CONDUCTION CHARACTERISTICS

RL

0.4

\

IIII

0.2

1\

IIII

0.1

RL

!:?

o

1 kn

475 n

0.04

TA = _55°C

I

I

0.02
0.01

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

4

10

40 100

400 1000

VF-Forward Voltage-V

f-Modulation Frequency-kHz

FIGURE 9

FIGURE 10

NOTE 7: These parameters were measured using pulse techniques. tw = 1 ms, duty cycle"';: 2%.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-159

•

o

"C

r+

o
(')
o
s:::

"C

CD
...
f/)
f/)

o

g)
r+

...

o

f/)

3-160

TlL127, TlL128A
OPTOCOUPLERS
02328, MAY 1977-REVISEO JUNE 1989

•

Gallium Arsenide Diode Infrared Source Optically Coupled to a Silicon N·P·N
Darl ington·Connected Phototransistor

•
•
•
•

High Direct·Current Transfer Ratio ... 300% Minimum at 10 mA
High·Voltage Electrical Isolation ... 5000·Volt Rating
Plastic Dual·ln·Line Package
Typical Applications Include Remote Terminal Isolation, SCR and Triac Triggers,
Mechanical Relays, and Pulse Transformers

•

No Base Connection on TIL 128A for Environments with High Electromagnetic Interference

mechanical data
The package consists of a gallium arsenide infrared·emitting diode and an n-p·n silicon phototransistor mounted on a
6·lead frame encapsulated within an electrically nonconductive plastic compound, The case will withstand soldering
temperature with no deformation,and device performance characteristics remain stable when operated in high·humidity
conditions. Unit weight is approximately 0.52 grams.

~~
®®0

NOTES:
a. Leads are within 0,13 mm (0.005 inch) radius of
true position (T.P.) with maximum material
condition and unit installed.
b. Pin 1 identified by index dot.
Terminal connections:
1- Anode
Infrared-emitting
2. Cathode
diode
3. No internal connection

8.38(0.3301

,~,xoo,a

~

~

IS-Noah)

7.62!O.300IT,P.
CS-Note_,
6,6110.2801
6.0910.2401

000

5.4610.2151
2,9210.1151

I"
-

l

~14-900
'os'

SEATING PLANE

0,3115 10.012:

..,~

~I

1

6 PLACES

I

.....L

1.7810.~ --.J
0.6110.020)

3~"D.I601 'mo~1

3,"jO.12S1

5f'--

>

1,2110.0601

4 PLACES

2,5d°1--\\)/
i I
1\ ~O'-~1<-l~IF = 40 mA

80

~

0
u
I

~fJ;/~X
('J.~~
/ I:'1\)1
\'/~'+ \~
I>-

/

IF=50mA

u"

60

~

II

180

100

FIGURE 5

Pulse operation of input diode is required for operation beyond limits shown by dotted line.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-163

TIL127. TIL128A
OPTOCOUPLERS
TYPICAL CHARACTERISTICS
TIL127

RELATIVE COLLECTOR·EMITTER
SATURATION VOLTAGE
vs
FREE·AIR TEMPERATURE

TRANSISTOR STATIC FORWARD
CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

1.6

2l,
13
"0

1.4

>

c U
0°

'"

.1;;N

3.

1.2

II

~~

1.0
O.B

2!/,000
~

r--

,'y

VCE =
f-IF=O
cr:
TA = 25°C
~ 20,000

IC = 125 mA
IB =0
IF =50 rnA

o

.~

--

~

\

~c

.
t=

1/

C 15,000

t

u"

"E 10,000

0.6

~

/

o
,u.

.."

0.4

.;::;

5,000

Vi

0.2

I

UJ

o
'C

u.
.c

o
-75 -50 -25

r+

o
(')
o
s:

0

25

50

75

100

o

125

0.1

4

0.4

T A-Free·Air Ternperature-°c
FIGURE 6

'C

FIGURE 7

CD
...

INPUT DIODE FORWARD
CONDUCTION CHARACTERISTICS

til

160

til

See Notl• 7

o

I

140

ii)

TA = 25°C

r+

...

o

«

-

120

.!.c
t

u"

I

100
BO

"E

~

60

u.
I
u.

40

I

HI

E

til

0

TA = 70°C

/
/'
/J /

I

1// /

20

~ t/

0

o

TA = _55°C

']

I

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VF-Forward Voltage-V
FIGURE 8

NOTE 7: This parameter was measured using pulse techniques. tw

3-164

10

40 100

Ic-Collector Current-rnA

=1

ms, duty cycle oS; 2%.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALlAS, TEXAS 76266

4001000

TIL 153. TIL 154. TIL 155
OPTOCOUPLERS
D2491, SEPTEMBER-REVISED DECEMBER 1982

UL LISTED - FILE
•

# E65085

GaAs-Diode Infrared Source Optically Coupled
to a Silicon N-P-N Phototransistor

•

Direct-Current Transfer Ratio ... 10% to 50%

•

Plug-In Replacements for TI L111 Series

•

High-Voltage Electrical Isolation ... 2500 V RMS (3535 V Peak)

mechanical data
The package consists of a gallium arsenide infrared-emitting diode and an n-p-n silicon phototransistor mounted on a
6-lead frame encapsulated within an electrically nonconductive plastic compound. The case will withstand soldering
temperature with no deformation and device performance characteristics remain stable when operated in high-humidity
conditions. Unit weight is approximately 0.52 grams.

:::~~~~:~~

I~~~I

'i.EJ'i. ;0::;:::::"

t

I

\.!.I\::J

.,I~
\

o 203 {O 008)

ISee Note c)

546(0215)

j'''''''''---~'''"'::::;~;''
.-L

SEATING PLANE+=
03(510012)
178{O070I__

~
90

o°o

661 (0260)
-S09102oWl

fi1-

l

NOTES:

',':':0::"0;0

051(0020)

3,81 (0.150)
3,17(0.1251

'.~".""'~~

1.27 (0.060)
• PLACES

2,54(0100) T,P. ----

tJ JL

--J'--1,OlI 0 ,0401
MIN

II

~

0.381(0.016)
6 PLACES

a.

Leads are within 0,13 mm {0.005 inch} radius of
true position (T.P.) with maximum material

condition and unit installed.
b. Pin 1 identified by index dot.
Terminal connections'
1. Anode
2. Cathode

...o
II)

}Infrared-emitting
diode

.....
CO
'0
II)

3. No internal connection
4. Emitter
5, Collector
6.

-...

Base

(SeoNo,eal

II)

FALLS WITHIN JEDEC MD-001AM DIMENSIONS
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

Q)

absolute maximum ratings at 25° C free-air temperature (unless otherwise noted)
Input-to-Output RMS Voltage (See Note 1)
Collector-Base Voltage
Collector-Emitter Voltage (See Note 2)
Emitter-Collector Voltage
Emitter-Base Voltage
Input-Diode Reverse Voltage
Input-Diode Continuous Forward Current at (or below) 25°C Free-Air Temperature (See Note 3)
Continuous Phototransistor Power Dissipation at (or below) 25°C Free-Air Temperature (See Note 4)
Storage Temperature Range
Lead Temperature 1,6 mm (1/16 inch) from Case for 10 Seconds

2500 V

70 V
30 V

7V
7V

C.
::l
o
(.)
o
.....
a.

o

3V
100 mA
150mW
_55°C to 150°C
260°C

NOTES: 1. This rating applies for sine-wave operation at 50 or 60 Hz. Service capabilitY is verified by testing in accordance with UL
requirements.
2. This value applies when the base-emitter diode is open-circuited.
3, Derate linearly to 100°C free-air temperature at the rate of 1.33 mA/oC.
4, Derate linearly to 100°C free-air temperature at the rate of 2 mW/oC.

PRODUCTION'DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments

~~~~~:~~i~ai~:1~1~ ~!~ti:~ti:r :IIO::::~:t:~~s not

Copyright © 1982, Texas Instruments Incorporated

-I!J

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 ' DALLAS, TEXAS 75265

3-165

TIL 153, TIL 154, TIL 155
OPTOCOUPLERS

electrical characteristics at 25° C free-air temperature
PARAMETER

V(BR)CBO
V(BR)CEO
V(BR)EBO

Collector-Base

IC-10p.A,

Breakdown Voltage

IF =0

Collector-Emitter

IC

Breakdown Voltage

IF = 0

Emitter-Base

IE = 10p.A,

Breakdown Voltage

IF = 0

Input Diode Static
IR

Reverse Current
On..state
Collector

IC(on)

Current

IC(off)

hFE

o
r+

VCB-l0V,

Operation

IE = 0

VCE-5V,

0,

IC =0,

TIL154

70

V

30

30

30

V

7

7

.7

V

1

IE = 0
50

IF=10mA
IC=l rnA,
IB = 0

I nput-ta-Output

Vin-out = 500 V,

!nternal Resistance
Input-ta-Output

See Note 5
Vin-out = 0,

Capacitance

See Note 5

5

/J.A

9

rnA

10

p.A

1

50

1

50

1

50

0.1

20

0.1

20

0.1

20

nA

IF =0,

Collector-Emitter

5

10

10

10

IB =0

IC -lOrnA,

10
2

3

IF = 0,

IF =0

UNIT

70

IF = 10 rnA,

VCB=10V,

TILl55

70

10
IF = lOrnA,

Saturation Voltage

flO

Cio

IB =0

Transistor Static Forward
Current Transfer Ratio

'C

...
VI

Operation
Photodiode

Forward Voltage

VCE(sat)

~

VCE = 10 V,

VCE=10V,

VF

IB

TlL153

MIN TYP MAX MIN TYP MAX MIN TYP MAX

VR =3V

Phototransistor

Input Diode Static

IE =0,

1 rnA,

Pho1otransistor
OIf-State
Operation
Collector
Photodiode
Current
Operation

'C

o
CO)
o
c:

TEST CONDITIONS

IF = lOrnA,

100

100

100 550

200

1.2

1.4

1.2

1.4

1.2

1.4

V

0.25

0.4

0.25

0.4

0.25

0.4

V

1011
f= 1 MHz,

1011
1

1.3

1011
1

1.3

U

1

1.3

pF

NOTE 5: These parameters are measured between both input diode leads shorted together and all the phototransistor leads shorted together.

(jj

o

gr

r+

switching characteristics at 25°C free-air temperature

...
o

VI

PARAMETER
Phototransistor VCC"10V,

tf Fall Time

Operation

See Test Circuit A of Figure 1

t, RiseTime

Photodiode

VCC"10V.

Operation

See Test Circuit B of Figure 1

tf

3-166

TEST CONDITIONS

t, Rise Time

Fall Time

IC(on) = 2 rnA,
IC(on) = 20 p.A,

RL=100n,
RL = 1 kn,

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

MIN TYP MAX UNIT
5

10

5

10

1
1

/J.S
)LS

TIL 153, TIL 154, TIL 155
OPTOCOUPLERS

PARAMETER MEASUREMENT INFORMATION
Adjust amplitude of input pulse for:

'C(onl := 2 mA (Test Circuit AI or
IC(onl = 20 ~A (Te51 Circuit BI
INPUT

47

n

r---~~I-~~~~

L

O--.J

INPUT

'r~""''''''' OUTPUT
(See Note b)

L..____....--o OUTPUT

OUTPUT

RL=100n

(See Note b)

TEST CIRCUIT A
PHOTOTRANSISTOR OPERATION
NOTES:

8.

TEST CIRCUIT B
PHOTOOIOOE OPERATION

VOLTAGE WAVEFORMS

The input waveform is supplied by a generator with the following characteristics: Zout '" 50
tw = 100Jjs.

b. The output waveform is monitored on an oscilloscope with the following characte,istics: t r "

n,

t r " 15 ns, duty cycle:::::: 1%,

12 ns, Ain;;;' 1 M.f1., Cin" 20 pF.

-...

FIGURE l-SWITCHING TIMES

In

...
o

CO

'0
In

-...

TYPICAL CHARACTERISTICS

In

COLLECTOR CURRENT

Q)

vs

c.

INPUT-DIODE FORWARD CURRENT
100
40

«

10

1.c:
e

4

E

~

tJ

17

I

"

Co

o

'-- TIL153

0.4

7

"0
()

...o

T1L154

()

~

(J

Yv

:;

o

o

TIL155

VCE 10V
IB 0
TA = 25°C

17

o. 1
0.04

7
0.0 117
0.1

!IV
0.4

4

10

40

100

IF-Forward Current-mA
FIGURE 2

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-167

TIL 153, TIL 154, TIL 155
OPTOCOUPLERS

TYPICAL CHARACTERISTICS
TIL154

TIL153

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

COLLECTOR CURRENT
vs
COLLECTOR-EMITTER VOLTAGE

,,,

60

I~.I

,-

')<

,~

.Lc
::J
()

~

•

"0
()
I

l'

20

5d
10

r

,

()

(;

ISSIP

0

...
o

4

2

8

10

30

\c::.cJ>
\ 1..0

20

IF =
.
':"'?'-ir IF =30 mp.. ,D,S

12

14

16

C
"C

,

ION

--- --

-- --

o

20

o

2

4

6

8

10

12

14

16 18

20

VCE-Collector-Emitter Voltage-V

FIGURE 3

C')

,

IF=10mA

10mA
18

-- --

,S/PA, 7"

---IF =20 mA

-- -

-

----

'0lt:

40 mp..

V CE-Collector-Em itter Voltage-V

o

FIGURE 4

TIL 155

RELATIVE ON-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

COLLECTOR CURRENT

CD
...

vs

CII

COLLECTOR-EMITTER VOLTAGE
()

60

Ui
o

~

\0

10

"C

...oor
...

\

.Y

-', ,-

_IF
6

---

,,:<\, 7"/0
• N----___

30mA
120 mA

I
I

\~

~

"0
()
I

-i.

10

40

-t>

0

o

I()

~
::J

\l.
\'2:.
l:S''!b~~-9
.t 'i-"
'D
IF = 40 mA

30

~

SOJ

50

.Lc

~

~

')<

E

10

40

I"

<:(

.. '0

E

IB = 0
TA = 25°C
See Note 6

I~

TA= 25°C_
See Note 6

50 I-- ~~
<:(

60

I

liB =10

°It)

IB =0
TA = 25°C
See Note 6

50

N

E
I 40

~

~

<> '30 m':.-

""iii

10

W_

'C
~::J
()

....-

I<>~oImp.
....-

«

"

W 30

VCE = 0.4 V to 10 V
IS = 0
IF = 10 mA
1.2 -See Note 7
1.4

'"

::J

>
g

1.0

.'">

.,.

0.8

a:

0.6

a;

~

(5
()

1.6

20

/

V

-

.............

i'-..

'C
~::J 0.4

I

.Y

()

10

~

0.2

~

(5

0

()

0

2

4

6

8

10

12

14

16

17 20

o
-75

-50 -25

VCE-Collector-Emitter VOltage-V

0

FIGURE5

FIGURE 6

6. Pulse operation of input diode is required for operation beyon.d limits shown by dotted lines.
7~

3-168

25

These parameters were measured using pulse techniques. tw = 1 ms, duty cycle" 2%.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

50

75

T A-Free-Air Temperature-°c

100

125

TIL 153. TIL 154. TIL 155
OPTOCOUPLERS

TYPICAL CHARACTERISTICS
OFF-STATE COLLECTOR CURRENT
vs
FREE·AIR TEMPERATURE
VCE - 10 V
18 0
IF = 0

4000

«c:

1-c:

1000

~

.~

IA"

a:
~

~
~

400

:J
()

w

u..

T
o

10000

NORMALIZED TRANSISTOR STATIC FORWARD
CURRENT TRANSFER RATIO
vs
ON-STATE COLLECTOR CURRENT
1.6
VCE -5 V
1.4 IF =0
TA = 25°C
1.2

I-

100

9u

40

.2

"0

()

~

4

g'

1.0

()

0.8

~
o

0.6

'E

/

10

2l

~
t:::J

u

.~

o

.~

L
10

0.4

c'i)

0.4
0_1

V

u..

/

I

~
g

........--1----

20 30 40 50 60 70 80 90 100
T A-Free-Air Temperature-°c

E

15

0.2

Normalized to 1.0
atIC,=lmA

o
0.1 0.2 0.4

z

2

4

10 20 40

100

IC(on)-On-State Collector Current-mA

FIGURE 7

-...
VI

....o
CO

FIGURE 8

'0

-...
VI

COLLECTOR CURRENT
vs
MODULATION FREOUENCY

INPUT DIODE FORWARD
CONDUCTION CHARACTERISTICS
160
l
See

Not~ 6

10

J

140
120

E
I

t: 100
~
:J
()

..

80

4

«

E
I

60

c;
1:>

20

~V

0
o

~"

.2

0.2
0.1

I

o

RL = 1 kn

0.4

()

....o"a.

RL = 10on

2

II III

IIII

'0

TA=70°C/ j

40

::J

o

t

:J
()

j
1// /

0

Q.

VCC 10 V
18 0
TA 25°C

C

/'

'E

~
u..
I
u..

J

HI
II
I

TA = 25°C

«

VI

Q)

RL

!i

475 n

0.04

TA = -55°C

'1

1

0.02
0,01

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

4

10

40 100

400 1000

VF-Forward Voltage-V

fmod-Modulation Frequency-kHz

FIGURE 9

FIGURE 10

NOTE 6: These parameters were measured using pulse techniques. tw "" 1 ms, duty cycle ~ 2%

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-169

•
o

...o

"0
(")

o
s:

"0

cr;

...

VI
VI

2III
o...

...
VI

3-170

TlL156. TIL157A
OPTOCOUPLERS
D2492. SEPTEMBER 197B-REVISED JUNE 1989

UL LISTED - FILE #E65085
• GaAs-Diode Light Source Optically Coupled to a Silicon N-P-N
Darlington-Connected Phototransistor
• High Direct-Current Transfer Ratio ... 300% Minimum at 10 mA
• Plug-In Replacement for TIL 113 and TIL 119A
• High-Voltage Electrical Isolation ... 2500 V RMS (3535 V Peak)
• No Base Connection on TIL 157 A for Environments with High
Electromagnetic Interference
mechanical data
The package consists of a gallium arsenide infrared·emitting diode and an n·p-n silicon darlington·connected
phototransistor mounted on a 6-lead frame encapsulated within an electrically nonconductive plastic compound_ The
case will withstand soldering temperature with no deformation and device performance characteristics remain stable
when operated in high humidity conditions. Unit weight is approximately 0.52 grams.

9'''''''''~
000

8.31110,330)

IS-Note.)

6,6110.2&0)
6.09(0.240)

0®®

:r-L '.--S,46(0.215)

,----,
-

~~

_~" .---'l ~
..Jl
__

t

-j~

6 PLACES

--.L

SEATING PLANE

~

0,51(0.020)

,i

3,81(0.150)
3,17(0.125)

127(0060)
,,,,,00901
4PlM:fS

~

2,54(0.1001 T.P.
(_N_oJ

..

unit installed.
b. Pin 1 identified by index dot.
Terminal connections:

(SoMN011Ib)

J.6210.3OOlT.P.

&I
-

position (T.P.) with maximum material condition and

'ND

120

40

~

~

80

0
I

60

5:?

5:?

\.?tio~IIF = 30 mA f:' 1'0 0-t-),
'" \~/

0.8

1.2

1.6

2.0

./

0.2 0.4 0.6 0.8

/

100

V

«::1.
.!.c

..-

~

ctI

"0

-.!!J.
( /)
~

Q)

Q.
:::l

VCE =1 10 V
18 =0
100 -IF =0

~

::>

u

10

.9u

~

70

0
u

~

'"

/

40

5:?
20

/

/

~

~

/

I

10

...o

1000
VCE = 1 V
18 = 0
TA=25°C

i0

/

I
~

.9-

0.1

0.Q1

5:?

I

0.001

2

4

7 10

20

40

70100

II
( /)

OFF·STATE COLLECTOR CURRENT
vs
FREE·AIR TEMPERATURE

.9u

0
u

2

FIGURE 3

400

~::>

1.2 1.4 1.6 1.8

VCE-Collector-Emitter Voltage-V

COLLECTOR CURRENT
vs
INPUT·DIODE FORWARD CURRENT

U

18 = 0
TA = 25°C
Seel Note 6

J,

o

2.4

... ...

,

40

FIGURE 2

200

,01-

1/

VCE-Coliector·Emitter Voltage-V

«
E
.!.c

" ~&-~_\[~ Vo
,.x., -?- vU---

I

o
0.4

rI

IF = 40 mA

20

o

I

100

u

I

~:~.rX
,. ",'l-~

..oJ"~

/

IF = 50 mA

U

60

t>

~

E

.!.c

80

~

:;

u

160

«

«

I

I

o

/

IF-Forward Current-mA

V

/

/

o
(,)
o
c.

/

...
o

/
25

50

75

100

125

T A-Free·Air Temperature-°c

FIGURE 4

FIGURE 5

NOTE 6: Pulse operation of input diode is required for operation beyond limits shown by dotted line.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-173

TIL156, T1L157A
OPTOCOUPLERS
TYPICAL CHARACTERISTICS
TIL 156
TRANSISTOR STATIC FORWARD
CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

RELATIVE COLLECTOR-EMITTER
SATURATION VOLTAGE
vs
FREE-AIR TEMPERATURE

>

c u

.9°1,{)

1;;N

:s

II



B S
U

~

E
o
'C

25,000

1.6

1l,

~

"0



1\

/

E

0.6

~

20,000

~c

>

0.4

VCE =
IF = 0
TA = 25°C

.o

0.8

8~
I 

13

~

Q;

/

.

0.01

"0

~ 0.8
I:
!!

"
iij
.J!!

E

1/

(; 0.001
Z

IF = 2 mA

o
';; 1.0

..,>

.!!
'0

u

VCE = 10 V
18 = 0

D

/

0.1

(;

1.6

N

VCE = 10 V
NORMALIZED TO:
IF = 10 mA
TA - 25°C

~

u

~

RELATIVE ON-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

~
V-;F

~ lOm~ ~,

""

:;

u 0.6

E
o

0.0001
0.1

'i"s

0.4

4

10

40

100

u

0.4
-50

IF-Input Current-mA

-25
75
o
25
50
T A - Free-Air Temperature - °c

COLLECTOR CURRENT

1.3

'<';; 1.2
II: 1.1
Q)

.=..
~

w

VCE =5 V
IF = 0
TA = 25°C

1

0.9

~

~ 0.8 I-""
8 0.7

1o

-......
/"

.,.

.

II:

:'-..

~I:

..

.=

/'

~

8

"0

0.2

Q)

..

z

1.0

/

;:

.,

."

g;

il
.J!!

0.4

4

10

40

0.6

o

-...
CI)
CI)

~

C.
::::I

1.2

~ 0.8

.J!!

-;;; 0.1
E
o
(;
0.1

1.4

'E

~ 0.4
0.3

...

~

VCE ~ 5 V
Ic=10mA
IF = 0

!!

0.5

g;

1.6

1:

"E 0.6
(;

CI)

FREE-AIR TEMPERATURE

u.

-...
o

vs

vs

"1o

100

NORMALIZED TRANSISTOR STATIC FORWARD
CURRENT TRANSFER RATIO

NORMALIZED TRANSISTOR STATIC FORWARD
CURRENT TRANSFER RATIO

u.

"

FIGURE 5

FIGURE 4

w

""'"

~

/

V

/"

o
(,)
o
c.

...

/

o

L/
/

-;;;
E 0.4
~
-50

-25

o

25

50

75

100

TA-Free-Air Temperature-OC

IC-Collector Current-mA

FIGURE 7

FIGURE 6

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-183

o

"C

r+

o
CO)
o
c::::

"C

CD
....

en
en
o

ii)
r+

o
....
en

-

3-184

TIL 187·1 THRU TIL 187·4
TIL 188·1 THRU TIL 188·4
AC·INPUT OPTOCOUPLERS/OPTOISOLATORS
02980. JANUARY 1987-REVISED JULY 1989

•

AC Signal Input

•

•

Gallium Arsenide Dual-Diode Infrared Source
Optically Coupled to a Silicon N-P-N
Darlington Phototransistor

High Current Transfer Ratio. 500% Minimum
at IF - 10 rnA. Up to 1500% Minimum at IF
= 2 rnA with Four Categories

•

High V(BR)CEO. 55 V Min

•

Plastic Dual-In-Line Package

•

UL Recognized -

•

High-Voltage Electrical Isolation. 3.535 kV
Peak (2.5 kV rms)

•

No Base Lead Connection on TIL 188 for HighEMI Environment

File # E65085

description
The TIL 187 and TIL 188 Optocouplers are designed for use in AC applications that require very high current
transfer ratio and high voltage isolation between input and output. These optocouplers consist of two GaAs
light-emitting diodes connected in a reverse-parallel configuration and a silicon n-p-n Darlington
phototransistor. The TIL 187 has the base connected for applications where a base signal or base resistor
is required. The TIL 188 is designed with no base connected for applications where high base-noise immunity
is desired. Users can select from four different current gains (TIL187-1 through TIL 187-4 and TIL 188-1
through TIL 188-4).

mechanical data
9,40

8,38

...o

@@0

~

F=i

INDEX DDT

o
en

-...en

IS"NO"BI~
6,61 (0.260\

(2)

6,09 (0.240)

0 0

(See Note C)

(I)

Q.

5,46 (0.215)

2,92(01151

-.----"----.L-..--Iffif 786(~lo:.g~sMAX

~

o
CJ
o

...

1

~

SEATING PLANE 4

1~~

3,81 (O.150)
3,17 10.125)

lJ JL
L
-I I

-----..l

1,78 (0.070)
0,51 (0.020)

0203 (0 aDB}

~:~; :g:~~g:
4 PLACES

2,54 la.100} T.P.
(See Note Al

NOTES:

II
...en

(O'370)~
(0.3301

Q.

101 (0040)
MIN

o

0,534 10.021)

0,381 10.015)
6 PLACES

A. Leads are within 0,13 mm (0.005 inch) radius of true position (T.P.) with maximum material
condition and unit installed.
B. Pin 1 identified by index dot.
C. Terminal connections:

1. Input

2. Input

~

\

Infrared-emitting diode

i: ~~\~i~~:la::nnection~

Phototransistor

TIL 188: No internal connection

TIL187

TIL188

FALLS WITHIN JEDEC MO·001AM DIMENSIONS
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments

~~~~:~~i~ei~:1~1i ~!:~~~ti:; :llo::~:;:::t:is~S

not

Copyright © 1989, Texas Instruments Incorporated

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-185

TlL187·1 THRU TIL 187·4
TIL 188·1 THRU TIL 188·4
AC·INPUT OPTOCOUPLERS/OPTOISOLATORS
absolute maximum ratings at 25°C free·air temperature (unless otherwise noted)
Input-to-output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±3.535 kV peak or dc (±2.5 kV rms)
Collector-base voltage (TIL 187) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 V
Collector-emitter voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 55 V
Emitter-collector voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Emitter-base voltage (TIL 187) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 V
Input diode continuous forward current at (or below)
25 DC free-air temperature (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 rnA
Continuous power dissipation at (or below) 25 DC free-air temperature:
Infrared-emitting diode (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 50 mW
Phototransistor (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 50 mW
Total, infrared-emitting diode plus phototransistor (see Note 4) .................. 250 mW
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 55 DC to 150 DC
Lead temperature 1,6 mm (1116-inch) from case for 10 seconds ...................... 260°C
NOTES:

Eo

1.
2.
3.
4.

This value applies when the base-emitter diode is open circuited.
Derate linearly to 100°C free-air temperature at the rate of 1.33 mA/oC.
Derate linearly to 100°C free-air temperature at the rate of 2 mW/oC.
Derate linearly to 10QoC free-air temperature at the rate of 3.33 mW/oC.

...o

"0
C')

o

c:

"0
(I)
....
C/)

C/)

o

...o....

Qi
C/)

3-186

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TlL187·1 THRU TIL187·4
TIL 188·1 THRU TIL 188·4
AC·INPUT OPTOCOUPLERS/OPTOISOLATORS
electrical characteristics at 25°C free-air temperature (unless otherwise noted)
PARAMETER

V(BR)CBO
V(BR)CEO
V(BR)EBO

IE

~

0,

IB

~

0,

~A,

IC

~

0,

~A,

IF

~

0

TIL 187-2, TIL 188-2

VCE ~ 1 V,

IF

TIL187-3, TlL188-3

IB

Collector-base

IC

~

breakdown voltage

IF

~

10

1 mA,

IC

~

breakdown voltage

IF

~

0

Emitter-base

IE

~

10

breakdown voltage

IF

~

0

IE

~

10

breakdown voltage

~A,

MIN

.

On-state transistor
.

Ie (on) collector operation

~

0

VCE

~

IB

~

0

1 V,

IF

1 V,

IF

~

10 mA,

10 V, IF

~

0,

VCE ~ 1 V,
IF

~

0

IF

~

10 mA

~

10 mA,

IC

UNIT

V
55

V
V

5

5

10

10

20

20

30

30

50

50

V

mA

II

~A

12
100

100

nA

...o
(IJ

10 mA,

~

MAX

...

25000

CO

Input diode static
forward voltage

Cio

~

collector current

transfer ratio

'10

VCB
IE

forward current

VCE(sal) t

0

Off-state
Transistor static

VFt

~

~

IB

Photodiode operation

hFE

0

VCE

TYP

7

TlL187-4, TIL188-4

current

IC(off)

~

MIN

14

2 mA,

~

TIL 188
MAX

55

TIL187-1, TIL188-1

Photo-

TYP

100

0

Collector-emitter

Emitter-collector

V(BR)ECO

TIL 187

TEST CONDITIONS

1

Collector-emitter

IC

~

50 mA, IF

saturation voltage

IB

~

0

Input-ta-output

Vin-out = ±500 V,

internal resistance

See Note 5

Input-ta-output

Vin-out = 0, f

capacitance

See Note 5

IC(on)l

On-state collector current

IC(on)2

symmetry ratio (see Note 6)

VCE

~

1 V,

IF

10 mA,

~

~

~

1.2

1 .5

0.87

1

1

1.2

1.5

V

0.87

1

V

"0
(IJ

-...
( IJ

1 mHz,

1

2 mA

n

1011

1011

1

1

1.3
3

1

1 .3

~
0.
:::I

pF

o(.)
o

...

3

tThese parameters apply for either direction of the input current.
NOTES: 5, These parameters are measured between both input-diode leads shorted together and all the phototransistor leads shorted

0.

o

together.
6. The higher of the two IC(on) values generated by the two diodes is taken as IC(on)l'

switching characteristics at 25 °C free-air temperature
PARAMETER

t,

Rise time

If

Fall time

Till 87

TEST CONDITIONS

VCC ~ 10 V,
RL ~ 100 n,

MIN

TYP

TIL 188
MAX

MIN

TYP

MAX

UNIT

IC(on) ~ 10 mA,

100

100

~s

see Figure 1

100

100

~s

TEXAS

"'!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-187

TIL187·1 THRU TIL187·4
TIL 188·1 THRU TIL 188·4
AC·INPUT OPTOCOUPLERS/OPTOISOLATORS
PARAMETER MEASUREMENT INFORMATION
Adjust amplitude of input pulse is for IClon)

=

10 mA

r-----,
:1

~

l

t:

470

-=l=-r-i-:....-I--~""I4..~-...-:----vvv- INPUT

~ f--"lL._ _ _ _--Ir

I
I

+ I

I

I

" - - ' " - - O U T P U T " " tr

- L __ - - _..J

RL =100n

:
OUTPUT

~.,..,.,..--.."..".,~

I

o

E
..

VOLTAGE WAVEFORMS

TEST CIRCUIT
NOTES:

A. The input waveform is supplied by a generator with the following characteristics: Zo = 50
B. The output waveform is monitored on an oscilloscope with the following characteristics: tr

0

n, tr =
S

12

:'5

n5 ,

15 n5 , duty cycle = 1 %.
Rl ~ 1 Ma, Cin S 20 pF.

FIGURE 1. SWITCHING TIMES

"'0

0

n
0

TYPICAL CHARACTERISTICS

c:
"S!.

...

CD

INPUT CURRENT

en

vs

vs

INPUT VOLTAGE

Cii
0
i»

.....

-

COLLECTOR-EMITTER VOLTAGE

100

200

TA = 25°C
80

0

en

COLLECTOR CURRENT

180

60

«

E

«

160

E

40

I 140
c:

)

~

E
!
:;

U

20
0

~-20

! 120
:;
u

./

V

(;

0

.E

100

.!

80

u

60

"0

~-40

I
!:}

-60
-80
-100
- 1.6 - 1.2 - 0.8 - 0.4

0
0.4 0.8
V-Input Voltage-V

1.2

1.6

40
IS = 0
20 TA = 25°C
IF = 1 rnA
0
2.5
0.5
1.0
1.5
2.0
0
VCE-Collector-Emitter Voltage-V

FIGURE 3

FIGURE 2
Note 7: Pulse operation is required for operation beyond limits shown by the dashed line.

3-188

IF = 3 mA

TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655303 • DALlAS, TeXAS 75265

· TIL187·1 THRU TIL187·4
TIL188·1 THRU TlL188·4
AC·INPUT OPTOCOUPLERS/OPTOISOLATORS
NORMALIZED ON-STATE COLLECTOR CURRENT

COLLECTOR CURRENT
vs

vs

INPUT DIODE FORWARD CURRENT

FREE-AIR TEMPERATURE

1000
400

«

E 100

l
~"

1.2
1 V
VeE
0
IB
TA - 25°C
See Note B

E 1.0

'S

u

4

u

/

I

.~

E

<0

E 0.2
0

0.4

2:

J

/

0.1
0.1

~
,,0

B 0.6 f--, ~
"
,« {"I/
'5"
,
U
0.4
,«
""

10

B
.!!
"
'0

0.8

o
0.4
4
10
'F-Forward Current-mA

40

50
-25
o
25
TA-Free-Air Temperature-

-50

100

FIGURE 4

vs

vs

I 2.0

o

~

1.8

~

w

1.6

..,.,0

VCE = 1 V

a:

IF - 0
Normalized to IC = 10 mA
See Note 8

til
t il

.!!..
.,

E

E

1.2

'S

'S

~

/

u 1.0

o

\

,,/'

u. 0.6

s:

0.4

0

..,.,"

0
0.1

cii

\

,/
0.4

1

4

10

40 100

./

0.8

u. 0.6

.5<

0.4

./

o

V

/

/

o

./

,./

] 0.2
<0
E
0
4001000

...c.o

/

u 1.0

"iii

"~ 0.8

'F = 0

1.6

C.
::l
o(,)

,/

I:

1.4

~ 1.2

G)

IC = 10 mA
1.8 I-VCE = 1V

.::

o

-...

I 2.0

~1.4

] 0.2
<0

(5

FREE-AIR TEMPERATURE

U.

J:

I:

E

CD

TIL 1S7

NORMALIZED TRANSISTOR STATIC
FORWARD CURRENT TRANSFER RATIO

COLLECTOR CURRENT

&I
...o...

TIL1S7

w

100

ti)

NORMALIZED TRANSISTOR STATIC
FORWARD CURRENT TRANSFER RATIO
u.

2:

75

°c

FIGURE 5

J:

~

T10 mA

=

IF=~

/

I

E
~
/

U

IF

E

40

I:

VCE = 1 V
IB = 0

C

-50

-25

2:

Ie-Collector Current-mA

FIGURE 6

o

25

50

T A - Free-Air Temperature-

75

100

°c

FIGURE 7

NOTE 8: These parameters were measured using pulse techniques tw == 1 ms, duty cycle :s 2%.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-189

TIL187·1 THRU TIL187·4
TIL 188·1 THRU TIL 188·4
AC·INPUT OPTOCOUPLERS/OPTOISOLATORS
TIL 187

NORMALIZED ON·ST A TE COLLECTOR CURRENT
(PHOTODIODE OPERATION)
vs
FREE-AIR TEMPERATURE

ow

U
~

E

I!! 1.2
~

U

j

'"

~

Eo

z

~~

1.0

"0

"C

r+

i!! 1.0

0.6

o

25

~

:::

o
o

]

0.9

§
"

""

75

50

..!! 0.8
"0

u

"0

"

0.7
-50

.~

"iii

100

E
o

°e

T A - Free-Air Temperature -

(')

-------..

,.....

ID

'"
-25

1.1

....

~,

0.8

0.4
-50

le=1mA
IS = 0
IF e 0

1.2

1S
c:
~
o

N

~(;

"~

>

;3
]

>I

Ves e 1 V
IF ~ 10 rnA
IS = 0
-

c

c3 1.4

1.3

ID

1.6

"i

NORMALIZED COLLECTOR-EMITTER
BREAKDOWN VOLTAGE
vs
FREE-AIR TEMPERATURE

o

-25

z

FIGURE 8

FIGURE 9

I:

"C

OFF-ST ATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

CD
.....
en
en

o
iii
r+
o
.....
en

-

«

1000
IS
IF

""I

E 100
~
::J

U

(;

~

0
0

./

10
~

t;
..!!

~o

"0

u

*

o

;~~=

I~

~v

; ,,0

~v
B

/

is

0.6

'"

a:
E 0.4
1!!

"0

u

I

IF = 10 rnA

IF = 10 m~

"

~ 0.8

:;

I

VCE = 1 V
18 - 0

~ 1.0

E
1!!

ti

1.2

i

40

.!!

RELATIVE ON-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

/

IF=2~

~

~

/~

= 2mA

:;

9

u 0.2

0.4

E
CJ

/

0.1
0.1

0.4

10

4

40

100

.!!
'0

0

u

-50

-25

o

25

75

50

100

II
...o
f /)

TA-Free-Air Temperature- °c

IF-Forward Current-rnA

w
u..
.r.
I 2.0
o
~ 1.8

~

1.6

~

1.4

TIL189

NORMALIZED TRANSISTOR STATIC
FORWARD CURRENT TRANSFER RATIO
vs
FREE-AIR TEMPERATURE

IC = 10 rnA
1.8 r-VCE = 1V
a:
IF = 0
of!on 1.6
c
1.4
~
c 1.2

'"

u 1.0
"E

"E

~ 0.8

u.. 0.6

'~"

\

./'

is
u..

CJ

is

Z

/

0.8

0.6

CJ

0.2

\

./

0.1

'!rn

0.4

".~

0.2

iii

0
0.4

1

4

10

c..
:J

40 100

4001000

E

is

./

o

~

/

C-

O

/

./

,,/

0

-50

Z

Ic-Collector Current-rnA

/'

o
(.)

/

"~

/

is

f /)

CI)

/'

~

u 1.0

E

.r.
I 2.0

'"

:;

iii

w
u..

-...

..,0

VCE = 1 V
IF = 0
Normalized to IC = 10 rnA
See Note 7

~ 1.2

".~

of/)

TIL189

~

0.4

~

NORMALIZED TRANSISTOR STATIC
FORWARD CURRENT TRANSFER RATIO
vs
COLLECTOR CURRENT

c

~

~

FIGURE 5

FIGURE 4

-25

o

25

50

75

100

TA-Free-Air Temperature- °C

FIGURE 6

FIGURE 7

NOTE 7: These parameters were measured using pulse techniques tw

=

1 ms, duty cycle:::; 2%.

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-195

TIL 189·1 THRU TIL 189·4
TIL 190·1 THRU T1L190·4
OPTOCOUPLERS/OPTOISOLATORS
TYPICAL CHARACTERISTICS
TIL189

RELATIVE COLLECTOR-EMITTER
BREAKDOWN VOLTAGE
vs
FREE-AIR TEMPERATURE

RELATIVE ON·STATE COLLECTOR CURRENT
(PHOTODIODE OPERATION)
vs
FREE·AIR TEMPERATURE
~ 1.3

1.6

~

le=1mA
IS = 0
IF = 0

~

1.4
~

~

=
~
'6 1.0

() 1.2

()

"
~

E
o

Z

o

'C

.-+

o
o

~

'"

i
o
-"
"
~

'~

.,
~

I~

.:..
E

~

I
-25

o

25

- t-- ~

1.0

w

ves - 1 V
0.6 I-IF = 10 mA
IS = 0
-50

~

.~

50

~ 0.9
'0

""

75

TA-Free-Air Temperature-

(")

1.1

al

0.8

0.4

1.2

()

.....

".~ 0.8

100

~ 0.7
-50

"iii

E

o

-25

FIGURE 9

FIGURE 8

!:
'C

OFF-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

~

...

en

en
o

«

1000

E 100

...

()

o

~

0
IS
IF = 0

"I

a;

.-+

~

:;

o

./

10
~

ti

'~4

oS!

'0

()

o.

~,

~

5I
:=

=

4' ,,0

~v

0
-50

-25

o

25

50

75

100

...o

CI)

TA-Free-Air Temperature- °C

+J

FIGURE 6

'0

CO

-...
.!!.!

TYPICAL APPLICATION DATA
5V-------,

. - - - - - - - Vee - 5 V

CI)

IV

c..
::s
o(.)

y ) - - - - OUTPUT

o

+J

C.

o
SN7404

INPUT

FIGURE 7

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-201

•

o

'0

~

o
(')

o

I:
'0

en
...
en

3-202

TIL 194. TIL 195. TIL 196. TIL 194A. TIL 195A. TIL 196A
TIL 1948. TIL 1958. TIL 1968
AC-INPUT OPTOCOUPLERS
D3287. MAY '989- REVISED SEPTEMBER '989

•

AC Signal Input

•

Choice of Three Current-Transfer Ratios

•

Gallium-Arsenide Diode Infrared Source

•

•

Source Is Optically Coupled to Silicon N-P-N
Phototransistor

High-Voltage Electrical Isolation 3.535 kV
Peak 12.5 kV rms)

•

Plastic Dual-In-Line Packages

•

Choice of One. Two. or Four Channels

•

UL Listed -

File IE65085

description
These optocouplers consist of two gallium-arsenide light-emitting diodes connected in a reverse-parallel
configuration for ac-input applications and a silicon n-p-n phototransistor per channel. The TIL 194 has
one channel in a 4-pin package, the TIL 195 has two channels in an a-pin package, and the TIL 196 has
four channels in a 16-pin package. The standard devices, TIL 194, TIL 195, and TIL 196, are tested for a
current-transfer ratio of 20% minimum. Devices selected for a current-transfer ratio of 50% and 100%
minimum are designated with the suffix A and a respectively.
mechanical data
4.80 (D.la9)

&I

D4~i6';)
TIL194

PIN 1

~

~

Vl
~

....
0
CO

"0
Vl

~
If---~- 6,7610.266)
6,25 (0.246)

1

3.8110.150)

f

3.3010.1301

0.51 (0.1251

5,84 (0.230) MAX

- - SEATING PLANE

ML

...:iIL.--,.--...-_
f T
2,54(0.100)

Vl
~

~

Q.

:::J

0

U

0
....C-

mmw
L

r-

~

3.8' 10 '50)

-

I I

O

'c3.?.!!' 0501
1,12 (0.0441

-o! I-- ,,-~--,~.023)

~

0,4310017)

2.29 10.090\

NOTE A: Each pin centerline is iocated within 0,25 (0.010) of its true longitudinal position.
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES.

PRODUCTION DATA documants ..ntain inlormatio.
currant as of publication date. Products conform to
specifications per the tarms of Texas Instruments

:'~-=~ri~8ir::I~'i ~:~:~ti:.n :.~o:=::.:~~ not

Copyright © 1989, Texas Instruments Incorporated

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

3-203

TIL194, TlL195, TIL196, TIL194A, TIL195A, TIL196A
TIL 1948, TIL 1958, TIL 1968
AC-INPUT OPTOCOUPLERS
schematic diagrams
TIL194

TIL195

TIL196

(TOP VIEW)

ITOP VIEW)

ITOP VIEW)
16 1C

1 AIK

1 AIK

8 lC

1 KIA 2

7 lE

1 KIA 2

15 1E

2 AIK 3

6 2C

2 AIK 3

14 2C
13 2E

2 KIA

5

4

2 KIA 4

2E

3A/K

"5

12 3C

3 KIA 6

113E

4 AIK 7

10 4C
9 4E

4 KIA 8

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-output voltage (see Note 1) . . . . . . . . . . . . . . . . . .. ± 3.535 kV peak or dc (± 2.5 kV rms)
Collector-emitter voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 35 V
Emitter-collector voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input diode continuous forward current at (or below) 25°C free-air temperature
(see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Continuous power dissipation at (or below) 25°C free-air temperature:
Phototransistor (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 150 mW
Input diode plus phototransistor per channel (see Note 5) . . . . . . . . . . . . . . . . . . . . . . .. 200 mW
Storage temperature range ......................................... - 55°C to 125°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds. . . . . . . . . . . . . . . . . . . . .. 260°C

o

"C

r+

o
o

(')

C
"C

..,CD
til

Ui
o

NOTES: 1. This rating applies for sine-wave operation at 50 or 60 Hz. Service capability is verified by testing in accordance with UL
requirements .
2. This value applies when the base-emitter diode is open circuited.
3. Derate linearly to 10QoC free-air temperature at the rate of 0.67 mA/oC.
4. Derate linearly to 10QoC free-air temperature at the rate of 2 mw/oe.
5. Derate linearly to 10QoC free-air temperature at the rate of 2.67 mW/oC.

Qj
r+

o
..,

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

-

PARAMETER

til

TEST CONDITIONS

V(BR)CEO

Collector-emitter breakdown voltage

IC - 0.5 mA

V(BR)ECO

Emitter-collector breakdown voltage

IC

ICloff)

Off-state collector current

VCE

CTRt

Current
transfer
ratio

VFt

I
I

TIL194, TlL195, TIL 196

I

TIL 194B, TIL 195B, TIL 1 96B

=

35

=0
=0

7

100 pA,

IF

=

IF

24 V,

=

Input diode static forward voltage

IF

VCE(sat) t

Collector-emitter saturation voltage

IF

= 20 mA
= 5 mA,

Cio

Input-to-output capacitance

Vin-out - 0,
See Note 6

rjo

Input-to-output internal resistance

Yin-out = ± 1 kV,
See Note 6

IClon)1

On-state collector current symmetry ratio
Isee Note 7)

VCE

IClon)2

TYP

MAX

UNIT
V
V

100

nA

1.4

V

20%
IF

TIL 194A, TIL195A, TIL 196A

MIN

IF - 0

5 mA,

VCE

=

5 V

50%
100%

=

5 V,

IC

=

0.4

1 mA

f - 1 MHz,

IF

=

5 mA

1

V

1

pF

10 11

II

3

tThese parameters apply to either direction 9f the input current.
NOTES 6: These parameters are measured between all input-diode leads shorted together and all phototransistor leads shorted together.
7. The higher of the two values of IClon) generated by the two diodes is taken as IClon)l .

3-204

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIL 194. TIL 195. TIL 196. TIL 194A. TIL 195A. TIL 196A
TIL194B. TlL195B. TIL196B
AC·INPUT OPTOCOUPLERS
switching characteristics at 25 DC free-air temperature
PARAMETER

TEST CONDITIONS

TYP

f--'tr+l_-::R..,is-,-e.,.ti_m_e_ _ _ _ _ _ _ _ _ _ _ _ _ _ _--I VCC = 5 V, IClon) = 2 rnA, f-_ _ _-:6_ _ _t--'---(
tf 1
Fall time
RL = 100 n, See Figure 1
6
tThese parameters apply to either direction of the input current.

PARAMETER MEASUREMENT INFORMATION
Adjust amplitude of input pulse for IClon) -

2 rnA

Y r---,L..____..."r

IN:;U.:J
INPUT
(See Note Al

OUTPUT

"

(See Note B)

-=- VCC -

5 V

90%

RL = 100 U

90%

90%

90%

0

TEST CIRCUIT

VOLTAGE WAVEFORMS

NOTES: A. The input waveform is supplied by a generator with the following characteristics: Zo "'" 50 H, tr .$ 15 ns, duty cycle = 1 %.
B. The output waveform is monitored on an oscilloscope with the following characteristics: tr ~ 12 ns, Ri ~ 1 MO. Cj :S 20 pF.

FIGURE 1. SWITCHING TIMES

TYPICAL CHARACTERISTICS

"0

CO

-...

~
( I)

~

100
TA =

25°C

- - t---

80
60 -

E
I

~

"

(I)

o
.....

INPUT CURRENT
vs
INPUT VOLTAGE

«

II
...

..-

L

--

40

C.
::::I

o
(,)
.....o

c.

o

20

~

./

:;
0
u
5c. -20
.E

I -40
.!!-60

f
I

r

-_.-

- - r-

-80
-100
-1.6-1.2-0.8-0.4

00.4

0.81.21.6

VF-Input Voltage-V

FIGURE 2

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3-205

TIL 194. TIL 195. TIL 196. TIL 194A. TIL 195A. TIL 196A
TIL 1948. TIL 1958. TIL 1968
AC·INPUT OPTOCOUPLERS
TYPICAL CHARACTERISTICS
TIL 194. TIL 195. TIL 196
COLLECTOR CURRENT
vs
COLLECTOR·EMITTER VOLTAGE
16

-

18 - 0
14 f- TA - 25°C

/--

~ 12
I
C 10

I 1 I

:;

g
u

8

.!!
"0

6

I

4

.f- .

#-- f-I-~

o
"C

f--~

~

_.

1--

I

2

o

~

10 mA

"
~.!!

FI·i

8

--i

z

.~

~

o

r+

2

I
"C0.01
o

JJ

IF - 2 mA I---

3

4

5

6

7

8

9

0.001 7
0.1

10

o
o

VCE-Coliector·Emitter Voltage-V

"C

RELATIVE ON-STATE COLLECTOR CURRENT
vs
FREE-AIR TEMPERATURE

(')

1/

0.1

o

I
I

5 mA

"t:I

I

I

~

U

-f--- IF-5mA f---

u

J?

~

tVCE - 5 V
I- Normalized to IF
10 ETA - 25°C

c

I l
IF-8mA f--

Ii-I---

!

U

-

IF - 12 mA
IF

NORMALIZED ON-STATE COLLECTOR CURRENT
vs
INPUT-DIODE FORWARD CURRENT
100

4

0.4

10

40

100

IF-Input Current-mA

FIGURE 3

FIGURE 4

c:::

CD
...
en
u

en
o

Dr
r+

...

o
en

-

°~

1.2

u

<

I-

1.1

~ t---..

~

:

"

1.0

~

iii

>
S

0.9

.~

0.8

.c:.

"~

c3

~

I

0.7

~

\

!

.~
w

:8

'\

o

-25

o

25

50

75

0.12

§ 0.08

f\

1j 0.5

-50

V V

./

V

/

-----

I 0.04

...

~

100

~
>

0
-50

TA - Free-Air Temperature- °C

-25

o

25

50

T A - Free-Air Temparatura- °C

FIGURE 5

3-206

I.

Ic-1mA

.!!
"0

I

I

.g"

I\.

~

J?

I

f!
~ 0.20 I---IF - 5 mA

~ 0.16

0.6

u 0.4

0.24

&

VCE - 5 V_
IF-5mA
18 - 0

'"

TYPICAL COLLECTOR-EMITTER
SATURATION VOLTAGE
vs
FREE-AIR TEMPERATURE

FIGURE 6

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

75

100

TIL3009 THRU TlL3012
OPTOCOUPLERS/OPTOISOLATORS
03064, DECEMBER 19B7

•

250-V Phototriac Driver Output

•

High Isolation ... 3535 V Peak

•

Gallium Arsenide Diode Infrared Source and
Optically Coupled Silicon Triac Driver
(Bilateral Switch)

•

Output Driver Designed for 115 V AC

•

Standard 6-Pin Plastic DIP

•

UL Recognized ... File Number E65085

mechanical
Each device consists of a gallium arsenide infrared emitting diode optically coupled to a silicon phototriac
mounted on a 6-pin lead frame encapsulated within an electrically nonconductive plastic compound. The
case will withstand soldering temperature with no deformation and device performance characteristics
remain stable when operated in high-humidity conditions.

10'370)~~~

8.38
9.40 10.330)

®®0

.
;
t
-~

M05
0

90°

-

~

INDEX DOT
ISee Note

B)~

5.46 10.215)
2.92 10.115)

""'"

:l

"."

0.30510.012)

-o\~0.203 10.00B) ~
\

mJ
G 0 CD

6.61 10.260)
6.09 10.240)

1.7810.070)
0.51 10.020)

~
i

2.2910.090)

3.8110.150)
3.1710.125)

1.2710050)
4PLACES

...o

til

ISee Note C)

+'"

CO

1.

'0

-...

7B61~Lo;g~sMAX

.!E
t il

Q)

'-W JL
...J L

1

2.5410 100) T P
(See Note A)

r-

c..
::::J

1.01 10.040)
MIN

o

CJ

o

+'"

0.53410.021)
0.381 10.015)
6 PLACES

C.

o

FALLS WITHIN JEDEC MO·OOI AM DIMENSIONS
NOTES:

A. Leads are within 0,13 mm (0005 inch) radius of true position (T.P.l with maximum material
condition and unit Installed.
B. Pin 1 identified by index dot.
C. Terminal connections:
1. Anode
} Infrared emitting
diode
2. Cathode
3. No internal connection
4. Main terminal

5. Triac Substrate
100 NOT connectl

} Phototriac

6. Main terminal
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

Copyright

PRODUCTION DATA documents contain information

current as of publication date. Products conform to
specifications per the terms of Texas Instruments

:~:~:~~i~at::I~~~ ~!::j~~ti:r :llo::~::t:~~s not

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

© 1985, Texas Instruments Incorporated

3-207

TIL3009 THRU TIL3012
OPTOCOUPLERS/OPTOISOLATORS

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Input-to-output peak voltage, 5 s maximum duration, 60 Hz (see Note 1) ............. 3.535 kV
Input diode reverse voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3 V
Input diode forward current, continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mA
Output repetitive peak off-state voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 250 V
Output on-state current, total rms value (50-60 Hz, full sine wave):
TA= 25°C ........................................................ 100 mA
TA=70oC ......................................................... 50mA
Output driver nonrepetitive peak on-state current
(t w = 10 ms, duty cycle = 10%, see Figure 7) ................................. 1.2 A
Continuous power dissipation at (or below) 25°C free-air temperature:
Infrared-emitting diode (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100 mW
Phototriac (see Note 3) .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 300 mW
Total device (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 330 mW
Operating junction temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 40°C to 100°C
Storage temperature range ......................................... - 40°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds ...................... 260°C

11
o

'C

r+

NOTES:

1. Input-ta-output peak voltage is the internal device dielectric breakdown rating.
2. Derate linearly to 100°C free-air temperature at the rate of 1.33 mW/oC.

3. Derate linearly to 100°C free-air temperature at the rate of 4 mW/oC.
4. Derate linearly to 100°C free-air temperature at the rate of 4.4 mW/oC.

electrical characteristics at 25°C free-air temperature (unless otherwise noted)

o

TEST CONDITIONS

PARAMETER

n
o

IR

!:
'C

VF

(i'

IDRM
dv/dt

C/I

dv/dt(cl

...

Static. reverse current
Static forward voltage
Repetitive off-state current, either direction
Critical rate of rise of off-state voltage
Critical rate of rise of commutating voltage

=3V
IF = 10 rnA
VDRM = 250 V,

MIN

VR

See Note 5

See Figure 1

10

=

o

1FT

Q)
C/I

TIL3010

either direction

TIL3011

100

1.2

1.5

V

10

100

nA

15
Output supply voltage

=3

V

VTM

Peak on-state voltage, either direction

IH

Holding current, either direction

~A

V/~

30

8

15

5

10

rnA

5
ITM

=

100 rnA

1.8
100

NOTE 5: Test voltage must be applied within dv/dt rating.

3-208

UNIT

V/~s

12

TIL3012

r+

o...

Input trigger current,

MAX

0.15

15 rnA, See Figure 1

TIL3009

C/I

TYP
0.05

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

3

V
~A

TIL3009 THRU TIL3012
OPTOCOUPLERS/OPTOISOLATORS

PARAMETER MEASUREMENT INFORMATION

Vee

--+
--+

Vin .. 30 V rms

121

10 k!1

INPUT

(See Note 61

NOTE 6: The critical rate of rise of off-state voltage, dv/dt, is measured with the input at 0 volts. The frequency of Vin is increased until
the phototriac just turns on. This frequency is then used to calculate the dv/dt according to the formula:

dV/dt ~ 2 y'2"fVin
The critical rate of rise of commutating voltage, dv/dt(c), is measured by applying occasional 5-volt pulses to the input and increasing
the frequency of Vin until the phototriac stays on (latches) after the input pulse has ceased. With no further input pulses, the
frequency of Vin is then gradually decreased until the phototriac turns off. The frequency at which turn-off occurs may then
be used to calculate the dv/dt(c) according to the formula shown above.

II
...
C/)

o
+'"

CO

(5

FIGURE 1. CRITICAL RATE OF RISE TEST CIRCUIT

C/)

--------------------------------------------------...
TYPICAL CHARACTERISTICS

800

E

E 1.3
I

~ 1.2

"

II

~ 1.1

Cl

600

I

E
~
:;

E

1\

~

] 1.0
iii

E

"

II

.,

200

10
U;

0

a

.,

D..

I

00.9

-400

:2
1:" -600

0.&

-25

o

25

50

75
TA-Free·Air Ternperature- °C

V

V

o
(.)
o
+'"

/

c..

o

I

/
/

V

-200

-'"
co

2:

- 50

400

I
I
I
Output tw = 80 /lS
IF =20 rnA
f = 60 Hz
TA = 25°C

C:

I'-....

Co
::::I

ON-STATE CHARACTERISTICS

«

«

C/)

~

EMITTING DIODE NORMALIZED TRIGGER CURRENT
vs
FREE-AIR TEMPERATURE
1.4

/

j

/

100

4

-2

o

2

4

6

VTM - Peak On-State Voltage - V

FIGURE 2

FIGURE 3

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

3-209

TIL3009 THRU TIL3012
OPTOCOUPLERS/OPTOISOLATORS

TYPICAL CHARACTERISTICS
CRITICAL RATE OF RISE OF OUTPUT VOLTAGE
vs
LOAD RESISTANCE
14
0.24
TAl =
See Figure 1
OFF-STATE
12
0.20 'Q.

hoc

;;

VI

~

;;

l

I

10

"tl

">
"tl
~",i

~

lIS

U;

O~~U...

8

C ,.

....

a

\~G
_

-

1.0--

-

0.16

.;

">

"tl

en
.;;

"

0.12 ;

E
E

o

;

0.08 (.)

6
--dv/dt
,-rv/d:'C)

4

o

....o

"C

o

0.04
0.4
0.8
1.2
1.6
RL -Load Resistance-kfl

2

n

FIGURE 4

I:

CRITICAL RATE OF RISE OF OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
12 r - - - - - , - - · - - - - r - - - - - , 0 . 2 4
_ _ _ dv/dt
_ _ _ dv/dt(c)
10
0.20
See Figure 1

o

"2-

...

CD

(fl

iii
o
Dr
....o
...

(fl

>

...I

8 f----~:_+----+----___l 0.16

:::0

">

0.12

4 f------'=--"'-+-::------''''''to'~:__-___l 0.08

--2 f-------i-----+-----"='i 0.04
0

~------~------~------~O

25

50
75
TA -Free-Air Temperature- °C
FIGURE 5

3-210

l

"tl

6

~

cii'"

~

"tl

"tl

">
"tl

VI

;;

VI

..::-

TEXAS •
INSTRUMENTS
.POST OFFICE BOX 665303. DALLAS, TEXAS 75265

100

.g'
~

E

§
(.)

TIL3009 THRU TIL3012
OPTOCOUPLERS/OPTOISOLATORS

TYPICAL CHARACTERISTICS
RMS APPLIED VOLTAGE
(FOR dv/dt(c) = 0.15 V/p.s)
vs
FREQUENCY

1000

1 kO
=RL
25°C
400 =TA
- See Figure 1
~V/dt = 2..f2·,rH/in

>
I

Q)

'"

~
"0 100

>

"0

40

.!!!

C.
c.

--



-

I~

~

1 ~"I"" II

100

11"1",, Iii

400

1 k

I II~" Iii

4 k 10k

f-Frequency of Applied Voltage-Hz

ctI

-...

I/)

I/)

MAXIMUM RATINGS

I

E
~

NONREPETITIVE PEAK ON-STATE CURRENT
vs
PULSE DURATION

1""1'' 1 1111111111'' '1' ' 1 1

""/'' 1 1

...
o

(5

FIGURE 6


co

Q.
II)

C

cW

...I

C& D0-f=-=-- -----""""\
I
I
I
I

PINS 4, 5, AND 12 OMITTED

PRODUCTION DATA documents contain information
currant as of publication date. Products conform to
specifications per the tarms of Taxas Instruments

=~~=:~~i;ai'::1~1e ~!:~~~i:r :Iio:=:::::t:~~s not

PINS 5,11, AND 12 OMITTED

PINS 2. 3, 4, 5, 6,12. AND 13 OMITTED

Copyright © 1982, Texas Instruments Incorporated

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-3

TIL302, TIL302A, TIL303, TIL303A, TIL304, TIL304A
NUMERIC DISPLAYS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Reverse Voltage at 25°C Free-Air Temperature:
......... .
Each Segment
Decimal Point
................. .
Peak Forward Current, Each Segment or Decimal Point (See Note 1)
Continuous Forward Current:
Each Segment or Decimal Point . . . . . .
Total for TI L302, TI L302A, TI L303, TI L303A
Total for TI L304, TI L304A. . .
Operating Free·Air Temperature Range
Storage Temperature Range
NOTE 1: This value applies for PRR

~

60 Hz, duty cycle

~

6V
3V
200mA

30mA
240mA
150mA
O°C to 70°C
-25°C to 85°C

10%.

operating characteristics of each segment at 25° C free-air temperature (unless otherwise noted)
PARAMETER
Iv

Luminous Intensity (See Note 2)

Ap

Wavelength at Peak Emission

f!.A

Spectral Bandwidth

TEST CONOITIONS

100
IF=20mA
3

aVF Average Temperature Coefficient of Static Forward Voltage

VR - 6 V

C

Anode-ta-Cathode Capacitance

VR

PARAMETER

;:,

Ap

Wavelength at Peak Emission

CD

f!.A

Spectral Bandwidth

VF

Static Forward Voltage

nm
3.8

V
mVfC
/lA
pF

IF-20mA,

TA=O°Cto70°C

Static Reverse Current

VR - 3 V

Anode-to-Cathode Capacitance

VR - 0,

TYP MAX

/led

660

nm

1.65

nm
2

120

V
mVfC

-1.4
100

f -1 MHz

UNIT

110
20

1.5

IR
C

NOTE 2:

MIN

IF = 20 mA

r+

/lA
pF

Luminous intensitY is measured with a !ight sensor and fi!ter combination that approximates the C1E (!nternational Commission on
Illumination) eye-response curve

(ii"

"0
Q)

-<(/)

4-4

3.4

85

40

CD

rm
C
C

nm

100
1 MHz

f

TEST CONDITIONS

aVF Average Temperature Coefficient of Static Forward Voltage

;:,

/led

660

operating characteristics of decimal point at 25°C free-air temperature (unless otherwise noted)
Luminous Intensity (See Note 2

cO'

0,

UNIT

275

-2.7

TA =O°Cto70°C

Static Reverse Current

Iv

r+

IF -20mA.

IR

TYP MAX

20

VF Static Forward Voltage

III

MIN

-1!1

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TlL302, TIL302A, TIL303, TIL303A, TlL304, TIL304A
NUMERIC DISPLAYS
TYPICAL CHARACTERISTICS
RELATIVE LUMINOUS INTENSITY
vs
FREE·AIR TEMPERATURE

RELATIVE SPECTRAL CHARACTERISTICS
1.0
0.9

-- e--.

0.8

~

(

IF = 20 rnA
TA = 25°C

·in

c:

0.7

~

0.6

::J

~

"
(!

...

0.5

::J
...J

0.4

·E

.,

~

~

V

0.1

~

·in

c:

~

c:

620

660

640

""

680

X-Wavelength-nrn

CO

c
cW

"E

/

II)

.~

DECIMAL
POINT


B

.~ 0.1
700

FIGURE 1

~ 1.4

::J

o
c:

1.6

N

:

0.2

::J

V

0
600

...

-

a: 0.4

\
\

/

0.2

E

0.7

a;

a;

o

r--

n;

>

.~

0.3

'"
a:

2

'"

B

Q)

."

IF = Constant

::J

0

c:

4

Q)

\

c:

~

oU

'\
\
\

C

2

c:

·E
::J
...J

o

1

o

5

10

15

20

25

30

o

2

3

IF-Forward Current-rnA

VF-Forward Voltage-V

FIGURE 3

FIGURE4

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4

5

4-5

TIL302. TlL302A. TlL303. TIL303A. TlL304. TlL304A
NUMERIC DISPLAYS
TYPICAL APPLICATION DATA

TIL302
TIL302A

VCC~\rs'rGND

TlL303
TIL303A

VCC~~:;~D
8COINPUT

NOTE: A 1 and R2 are selected for desired brightness.

FUNCTION TABLE
SN7447A
DECIMAL
OR
FUNCTION

INPUTS
LT

RBI

D

0

H

H

1

H

X

2

H

3
4

C

B

A

L

L

L

L

H

L

L

L

H

H

X

L

L

H

L

H

H

X

L

L

H

H

H

H

X

L

H

L

L

H

5

H

X

L

H

L

H

H

6

H

X

L

H

H

L

H

7

H

L

H

H

H

H

8

H

H

L

L

L

H

H

L

H

L

L
H'

H

H

L

H

9

H

10

H

X
X
X
X

11

H

X

H

L

H

H

H

12

H

X

H

H

L

L

H

13

H

X

H

H

L

H

H

~'

14

H

H

H

H

L

H

CD
::J

15

H

H

H

H

H

H

BI
RBI
LT

X

X
X
X

X

X

X

X

H

L

L

L

L

L

L
L

L

X

X

X

X

X

H

....

::J

~

....
r
m
C
C

(ii'
"0

CIT

S'GN~~~~~~~~~~=H++++=~~+H+H-~~

-I

<
-g

n

INPUT

(See Note B)

19

ivee

00

d

r.

9

I

'CAAAOOO

v

BI:RBOJVcc

d

e

a

f

beg

GNO

8~~
c:~

I

~

IQOQOOQo
d
•
a
f
b
~
D

BllRBOjVcc

~
IT

LAMP

'i'f'I'l

TEST

~z

~.. Ul4r
...

I

-=-

»
r
~
-g

w

=

r

N

»
-I

;:::

n

(5
2

c

»
-I
»

~

-I

;:::
-I
W

=
N

:P

-I

;:::

w

=
W

~"

;:::

________+-______________________-+___

2
C::P

V

RO(1)

"0(2)

C~~~J~R-----t-----------------------------

-I

W

=
w

3:-1

m:::ICIIr_w

n=
c0_
"C:Irr-w
:a=o=
0:a=o
.j::o

NOTES:

A. R1 and R2 are selected for desired brightness.
B. Grounding of any of these lines will illuminate the associated function.

W... Vee
"'.!...J"

bus

--I

<.j::o

Intelligent LED Displays

II

II
r-

m
C
C

(ii'

"0

iii

'<
(II

4-8

TlL305

5

x 7 ALPHANUMERIC DISPLAY
01033, MAY 1971-REVISEO MARCH 1983

SOLID-STATE DISPLAY WITH RED
TRANSPARENT PLASTIC ENCAPSULATION
•

7,62-mm (O.300-inch) Character Height

•

High Luminous Intensity

•

Low Power Requirements

•

Wide Viewing Angle

•

5 X 7 Array with X-Y Select and Decimal

•

Compatible with USASCII and EBCDIC Codes

mechanical data
This assembly consists of a display chip mounted on a printed circuit board with a red molded plastic body. Multiple
displays may be mounted on 11 ,43-mm (0.450-inch) centers.

1,91 (0.075) MAX
BOTH ROWS

COLUMN

D.P.

BOTTOM VIEW

T

19,30 (0.760)
18,29 (0.720)

'i.--'----t---Ere-a--B-l3'i. -.---+---e-e-fr-I3-B-

0,4

0'3

20

0'2

30

<011

40

'0

50

•

DDDDD

1,27 (0.050)
NOM
(See Note b)

00000

DDDDD
DDDDD
rnODDD

DECIMAL
POINT

4,3
(0.1701



C\'J

TOP VIEW ORIENTATION

'-,Ir------...

2,79(0.1101

.!!!

(See Note al

3,18 (0.125)

.-;--,-4-,---,

C.
C
C

'i.

~"'u'""~"'

W

...J

~IMIN
I

--+\

~ ~::: :~:~~~:
OIAALl PINS

NOTES: a.

The true-position spacing is 2,54 mm (0.100 inch) between lead centerlines.
Each pin centerline is located within 0,25 mm (0.010 inch) of its true
longitudinal position.
b. Vertical and horizontal spacing between centerljnes of rows and columns
nominally 1,27 mm (0.050 inch).

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments

:~~:~:~~i~8i~:1~1~ ~!:~:~ti:r :I~o::~:;~:~~s not

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

CL-37

Copyright

© 1983, Texas Instruments Incorporated

4-9

T1L305
5 x 7 ALPHANUMERIC DISPLAY
ab~olute

maximum ratings over openrting free-air temperature range (unless otherwise noted)

.Reverse Voltage at 25°C Free-Air Temperature
Peak Forward Current, Each Diode
Average Forward Current (see Note 1):
Each Diode
....... .
Total
..•.....
Operating Free·Air Temperature .Range
Storage Temperature Range

3V
100mA
lOrnA
200mA
0° to 70°C
-25°C to 85°C

operating characteristics of each diode at 25°C free-air temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER
Iv

Luminous Intensity (see Note 2)

Ap

Wavelength at Peak Emission

tl.:

Spectral Bandwidth

VF

Static Forward Voltage

40
IF= lOrnA

IF -lOrnA,
VR =3V

Anode-ta-Cathode Capacitance

VR = O.

NOTES:

110

!led

660

nm
nm

1.65

1-1 MHz

V

:i!

-1.4

TA = O°C to 70°C

Static Reverse Current

TVP MAX UNIT

20
1.5

"'VF Average Temperature Coefficient of Static Forward Voltage
IR
C

MIN

mVtC

10

!lA

80

pF

1. This average value applies for any 1-ms period.
2. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission
on Illumination) eye-response curve.

TYPICAL CHARACTERISTICS

II

.RELATIVE LUMINOUS INTENSITY
vs
F.REE-AIR TEMPERATURE

RELATIVE LUMINOUS INTENSITY
vs
FORWARD CURRENT
2.0

IF'" Constant

--il-+-t---+--I

2

"
~

~

1

.~ 0.7

r-

m
C
C

(ij"
"0

;-

'<
UI

4-10

&!?;
2

0.4

~

j

0.2

1.6

> E

1.' l -

n

1-+--1f-+--1-+--1--1

!

0.1 ~...L._.L.......J.._-'---'_..J...--J
10
20
30
40
50
60
70
TA-free.Air Temperature- "c

FIGURE 1

:!::: 0

1.2

g
~3
t
t- d

r- tI-

~

~«

~~~~~~~~~~~~

t-+--+---t-t-+--+---i

.~

j

r--_

r-

g :;;

0.8

0.'
0.2

!
<~-

c,G

~o"o"it-tV
10

20

E

II

L

A

I

TA~25"C

10

~

II

0.6

~

"

1.0

.~ ~
-'>

40

TA'" 2SoC

1.8

~

FORWARD CONDUCTION
CHARACTERISTICS

I
20

~

~

~

I

I

I

30

.0

50

IFM-Peak Forward Current rnA

FIGURE 2

TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

a

I
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VF-Forward Voltage-V

FIGURE 3

T1L306, TIL306A, TIL307, T1L307 A
NUMERIC DISPLAYS WITH LOGIC
01034, REVISED JUNE 1982

SOLID-STATE DISPLAYS WITH INTEGRAL TTL MSI CIRCUIT CHIP FOR
USE IN ALL SYSTEMS WHERE THE DATA TO BE DISPLAYED IS
THE PULSE COUNT

•
•

6,9-mm (O.270-lnchl Character Height

•

TI L306 and TI L306A
Have Left Decimal

•

TlL307 and TIL307A
Have Right Decimal

•
•
•

High Luminous Intensity

Easy System Interface
Wide Viewing Angle
Internal TTL MSI Chip and Counter, Latch, Decoder,
and Driver

•

Constant-Current Drive for Light-Emitting Diodes

mechanical data
These assemblies consist of display chips and a TTL MSI chip mounted on a header with either a red molded plastic
body for the TI L306 and TI L307 or a red plastic cap for the TI L306A and TI L307 A. Multiple displays may be mounted
on 11,43-mm (0.450-inch) centers.
~J!?:~
3.38 (0.133)

TF-r----.-'

'..,'NG 'CAN'

lSeeNotl!bl~
:L

PIN ASSIGNMENTS

4,5(0.1110)

PIN 1

0,305(0.012)

omfo~OOiiI

PIN 2
4,5 (0.115(
MAX

PIN 3

4 PLACES

,-,

,q

U-

o
o
"

O

a

15

::·L:::::

!

J

PIN 5
PIN 6

0,508(0.020)
O,406!O.016)
ALL PINS

PIN 7

3

PIN 8
PIN 9
PIN 10
PIN 11
PIN 12
PIN 13

1

2,!)4(O.100IT.P.

!------!
I 10.67(0.4201 I
j.--

PIN 4

9,65 (O.lao)

PIN 14
PIN 15
PIN 16

iia:'r:!E!1

LATCH OUTPUT 0B
(BINARY WEIGHT 2)
LATCH OUTPUT QC
(BINARY WEIGHT 4)
LATCH OUTPUT QD
(BINARY WEIGHT 8)
LATCH OUTPUT QA
(BINARY WEIGHT 1)
LATCH STROBE
INPUT
RIPPLE-BLANKING
INPUT
MAXIMUM-COUNT
OUTPUT
GROUND
PARALLEL COUNT
ENABLE INPUT
SERIAL COUNT
ENAB LE INPUT
RIPPLE-BLANKING
OUTPUT
CLEAR INPUT
DECIMAL POINT
INPUT
BLANKING INPUT
CLOCK INPUT
SUPPLY VOLTAGE,

II

Vec

~

NOTES: a. All linear dimensions are in millimeters and parenthetically in inches.
b. Lead dimensions are not controlled above the seating plane.
c. Centerlines of character segments and decimal points are shown as dashed lines, Associated dimensions are nominal.
d. The true-position pin spacing is 2,54 mm (0.100 inch) between centerlines. Each centerline is located with 0,26 mm (0.010 inch)
of its true longitudinal position relative to pins 1 and 16.
e. On TIL306A and TIL307A devices, the 4 mold indentations are not present.

TIL306

TIL307

TIL306A

TIL307A

PRODUCTION DATA documonls contain information
currant 8S of publication data. Predacts conform to
specifications par the tarms of Texas Instruments

=::i:;-i~~~lJi =:~: :'iD:.a;:.:::.~ nDt

Copyright © 1982, Texas Instruments Incorporated

TEXAS •
INSTRUMENlS
POST .OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-11

sAelds!o O;!l luo6m01UI

f'

~

IV

II

C

::l

~

o·

::l

2!.

~

LOGIC OUTPUTS
__________
____________

( MAX COUNT

-JA~

Vee

~

TO LOGIC CHIP

QA OB QC QD

2 ....

Cr=

3l!P''''
mO
=?

c:; ....

O

cr=
--w

C-

r-):Io

C-

~

iii"

'!:l
Ol
3

mo
-am
):10-

< ....
m
__
r-

:e w
....:z:-"""
--0

r-:::!
Orc;,w

-0

~
~z
~~

n"""
):10

o

m::c~

8C:~
;,~
/!I""l
~Z

§Ul"

TIL307 AND TIL307A HAVE RIGHT DECIMAL

~

'"
'"
N

<>

RBO
NODE
INPUT

DECIMAL
POINT
INPUT

INPUT

SYNCHRONOUS BCD COUNTER, 4-BIT LATCH, DECODER/DRIVER, SEVEN-SEGMENT LED DISPLAY WITH DECIMAL POINT

TIL306. TIL306A. TIL307. T1L307A
NUMERIC DISPLAYS WITH LOGIC
description
These internally-driven seven-segment light-emitting-diode (LED) displays contain a BCD counter, a four-bit latch, and
a decoder/LED driver in a single 16-pin package. A description of the functions of the inputs and outputs of these
devices follows:
PIN NO.
12

DESCRIPTION
When low, resets and holds counter at O. Must be high for normal
counting.

CLOCK INPUT

15

Each positive-going transition wi II increment the counter provided that the
circuit is in the normal counting mode (serial and parallel count enable
inputs low, clear input high).

PARALLEL COUNT
ENABLE INPUT
(PCEI)

9

Must be low for normal counting mode. When high, counter will be
inhibited. Logic level must not be changed when the clock is low.

SERIAL COUNT
ENABLE INPUT
(SCEI)

10

Must be low for normal counting mode, also must be low to enable
maximum count output to go low. When high, counter will be inhibited
and maximum count output will be driven high. Logic level must not be
changed when the clock is low.

MAXIMUM COUNT
OUTPUT

7

Will go low when the counter is at 9 and serial count enable input is low.
Will return high when the counter changes to 0 and will remain high during
counts 1 through 8. Will remain high (inhibited) as long as serial count
enable input is high.

LATCH STROBE
INPUT

5

When low, data in latches follow the data in the counter. When high, the
data in the latches are held constant, and the counter may be operated
independentlY.

LATCH OUTPUTS
(OA, OB, OC, QD)

4,1,2,3

The BCD data that drives the decoder can be stored in the 4-bit latch and
is available at these outputs for driving other logic and/or processors. The
binary weights of the outputs are: OA = 1, OB = 2, Oc = 4, QD = 8.

DECIMAL POINT
INPUT

13

Must be high to display dl)cimal point. The decimal point is not displayed
when this input is low or when the display is blanked.

!2

BLANKING INPUT
(BI)

14

When high, will blank (turn off) the entire display and force RBO low.
Must be low for normal display. May be pulsed to implement intensity
control of the display.

RIPPLE-BLANKING
INPUT
(RBI)

6

When the data in the latches is BCD 0, a low input will blank the entire
display and force the RBO low. This input has no effect if the data in the
latches is other than O.

o
oW

RIPPLE-BLANKING
OUTPUT
(RBO)

11

Supplies ripple-blanking information for the ripple-blanking input of the
next decade. Provides a low if BI is high, or if RBI is low and the data in
the latches is BCD 0; otherwise, this output is high. This pin has a resistive
pull-up circuit suitable for performing a wire-AND function with any
open-collector output. Whenever this pin is low the entire display will be
blanked; therefore, this pin may be used as an active-low blanking input.

FUNCTION
CLEAR INPUT

II
C/)

>

Co
.~

...J

The TTL MSI circuits contain the equivalent of 86 gates on a single chip. Logic inputs and outputs are completely
TTLlDTL compatible. The buffered inputs are implemented with relatively large resistors in series with the bases of the
input transistors to lower drive-current requirements to one-half of that required for a standard Series 54/74 TTL input.
The serial-carry input, actually two internal loads, is rated as one standard series 54/74 load.

"'!1

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-13

TILl06, TlL306A, TIL307, TIL307A
NUMERIC DISPLAYS WITH LOGIC
description (continued)
The logic outputs, except RBO, are active pull-up, and the latch outputs QA, QB, QC, and QD are each capable of
driving three standard Series 54/74 loads at a low logic level or six loads at a high logic level while the maximum-count
output is capable of driving five Series 54/74 loads at a low logic level or ten loads at a high logic level. The RBO node
with passive pull-up serves as a ripple-blanking output with the capability to drive three Series 54/74 loads_
The LED driver outputs are designed specifically to maintain a relatively constant on-level current of approximately
seven milliamperes through each LED segment and decimal point_ All inputs are diode-clamped to minimize
transmission-line effects, thereby simplifying system design_ Maximum clock frequency is typically 18 megahertz and
power dissipation is typically 600 milliwatts with all segments on_
The display format is as follows:

The displays may be interconnected to produce an n-digit display with the following features:

II...
:::J
CD

m
C
C

•

Overriding blanking for suppressing entire display or pulse-modulation of LED brightness

•

Dual count-enable inputs for parallel look-ahead and serial ripple logic to build high-speed fully synchronous,
multidigit counter systems with no external logic, minimizing total propagation delay from the clock to the
last latch output

•

Provision for ripple-count cascading between packages

•

Positive-edge-triggered synchronous 8CD counter

•

Parallel BCD data outputs available to drive logic processors or remote slaved displays simultaneously with
data being displayed

•

Latch strobe input allows counter to operate while a previous data point is displayed

•

Reset-to-zero capability with clear input.
5.5 V
7V
5.5 V
DoC to 85°C
-25°C to 85°C

Supply Voltage, V CC (See Note 1): Continuous
Nonrepetitive Peak, tw .;; 100 ms
Input Voltage (See Note 1) . . . _ . . . .
Operating Case Temperature Range (See Note 2)
Storage Temperature Range
...... .

CD
:::J

r-

Ripple-blanking input and output for blanking leading or trailing zeroes
Floating-decimal-point logic capability

absolute maximum ratings over operating case temperature range (unless otherwise noted)

cE'

...

•
•

NOTES: 1. Voltage values are with respect to network ground terminal.
2. Case temperature is the surface temperature of the plastic measured directly over the integrated circuit. Forced-air cooling may
be required to maintain this temperature.

recommended operating conditions

0'

Supply Voltage, V CC

"C

iii'


ca
C.
U)

...

Q)
s::::

Vee

FROM OUTPUT
UNOERTEST
--~~~~-4~~~~~~--~

NOTES:

A. CL includes probe and jig capacitance.
B. All diodes are 1 N3064.

LOAO CIRCUIT-FIGURE 1

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-15

TlL306. TIL306A. TlL307. TIL307A
NUMERIC DISPLAYS WITH LOGIC
TYPICAL CHARACTERISTICS
RELATIVE LUMINOUS INTENSITY

vs

RELATIVE SPECTRAL CHARACTERISTICS

1.0
0.9
~

u

(

VCC = 5 V
TC = 25"C

0.8

'\
\

l!l

0.7

:J

.,'":J

0.6
0.5

...J

.,>

0.4

';:;

0.3

:J

a;
'"

a:

B
~

';:;

a:

1\

c

660

0.2

~

:J

o

t:

I'"

640

-.....

t:

l!l

\

V
620

~

0.4

'in

\

/
V

0,1

680

'~
700

0,1

...J

0

A-Wavelength-nm

10

20

30

40

50

Tc-Case Temperature-oC

FIGURE 2

FIGURE 3

II
3"
r+
CD

cC'
CD

::J

r+

r-

m
C
C

(ij"
'0

Dr
-<
Ul

4·16

-

0.7

a;
'"

0.2

0
600

t-- r--

>

0

t:

'E

I

2

-.;

\

t:
~

~

I

f-Vcc = 5 V

"

~

CASE TEMPERATURE

4

N

\

'in
t:

oil)

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

60

70

TIL308. TIL308A. TIL309. TIL309A
NUMERIC DISPLAYS WITH LOGIC
D1096, MARCH 1972-REV1SED JUNE 1982

SOLID-STATE DISPLAYS WITH INTEGRAL TTL MSI CIRCUIT CHIP
FOR USE IN ALL SYSTEMS REQUIRING A DISPLAY OF BCD DATA
•

6,9-mm (O.270-lnch)
Character Height
• TIL308 and TIL308A
Have Left Decimal
• TI L309 and TI L309A
Have Right Decimal
mechanical data

•

Easy System Interface

•

Wide Viewing Angle

•

Internal TTL MSI Chip with Latch, Decoder, and Driver

•

Constant-Current Drive for Light-Emitting Diodes

These assemblies consist of display chips and a TTL MSI chip mounted on a header with either a red molded plastic
body for the TI L308 and TI L309 or a red plastic cap for the TI L308A and TI L309A. Multiple displays may be
mounted on 11,43-mm (0.450-inch) centers.
4::4?:(9·l~
3,38 (0.133]

TF11==r
ISeeNOt8b)~

""ING'lANE

PIN ASSIGNMENTS
FOR BOTH TYPES

4,5(0.180)

PIN 1

0,30510.012)
0,203 (O.OOB)

PIN 2

7,62:+0,26
10.300i0.Q10)

4,5(0.175)
MAX

r- BOT~ARXOWS
1,9110.075)

4 PLACES

PIN 3

-.--t--ri---H

PIN 4

A-J

o

PIN 5
PIN 6

~-t

"o
"o

R

0,508(0.020)
0,406(0.016)

If
n
,

14

PIN 7

ALL PINS

PIN 8
PIN 9

0

26,67(1.050)

,PIN 10
PIN
PIN
PIN
PIN
PIN

25'L'6I""" !-J,:_ _----l
2.54(O.100)T,P.
14 PLACES
(See N01ed}

I

10,67(0.420)

11
12
13
14

15

PIN 16

I

~9.65(O.380)~

LATCH OUTPUT QB
(BINARY WEIGHT 21
LATCH OUTPUT Qc
(BINARY WEIGHT 41
LATCH OUTPUT QD
(BINARY WEIGHT 81
LATCH OUTPUT QA
(BINARY WEIGHT 11
LATCH STROBE INPUT
LATCH DATA INPUT C
(BINARY WEIGHT 41
LATCH DATA INPUT D
(BINARY WEIGHT 81
GROUND
NO INTERNAL
CONNECTION
LATCH DATA INPUT B
(BINARY WEIGHT 21
BLANKING INPUT
LATCH DATA INPUT DP
LED TEST
LATCH OUTPUT DP
LATCH DATA INPUT A
(BINARY WEIGHT 11
SUPPLY VOLTAGE.
VCC

(I)

>-

CtI

0..
(I)

i:5

oW

...r::

...J

Q)

.~

NOTES: a. All linear dimensions are in millimeters and parenthetically in inches.
b. Lead dimensions are not controlled above the seating plane.
c. Centerlines of character seqments and decimal paints are shown as dashed lines. Associated dimensions are nominal.
d. The true-position pin spacing is 2,54 mm <0.100 inch) between centerlines. Each centerline is located within
0,26 mm (0.010 inch) of its true longitudinal position relative to pins 1 and 16.
e. On TI L.30BA and TI L.309A devices. the 4 mold indentations are not present.

TIL308
TlL308A

II

!r::

TIL309
A

Fl7!s
E!_7

TIL309A

c

DoP _

D

Copyright

PRODUCTION DATA documants contain information

current as at publication date. Products conform to
lpecificatiodl par the terms of Texas Inltrumants

::=:~~~ai:I~7i

=::i:; :'f:=:::~:.s nat

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

© 1982, Texas Instruments Incorporated

4-17

sAelds!C C'"

f"

IUa6!11alui

~

00

II

c:

:::I

~

o·
:::I

LATCH OUTPUTS

~

BLANKING
INPUT

LATCH
STROBE
INPUT

~

I

;cr;;l

~~

LATCH
DATA
INPUTS

~~
V

LED

TEST
INPUT

-LJ

"

~

'"'-t

Cli=

-w

c..
iii"
c.a

r-l>
l>-

iil

3

cn=
-aca

<-t
cn_
r:e w

-=
-lea

:c-

-

r-:::!
Clr-

---I

C)w

-=
,",ea
l>

~
'-'=;:..t

~

~

)------;

f

~ ~b

~-

~

~P-l

-L.J

DP

m=

25!?'

0"

~

~

~

~

~

r-U

~bE
~~
~~
~~

z

~~

TO LOGIC CHIP

--4>-A

!!!.
r:r

Vee

z-t

ci= .
S:W

~

Y-

j'

~
~

@'

I

dP~

~
TIL30S AND TIL30BA HAve LEFT DECIMAL
TIL309 ANDTIL309A HAVE RIGHT DECIMA

TlL30R. TIL30RA. TlL309. TIL309A
NUMERIC DISPLAYS WITH LOGIC
description
These internally-driven seven-segment light-emitting-diode (LED) displays contain a five-bit latch and a decoder/LED
driver in a single 16-pin package. A description of the functions of the inputs and outputs of these devices follows:
DESCRIPTION

FUNCTION

PIN NO.

LATCH STROBE INPUT

5

When low, the data in the latches follow the data on the latch inputs.
When high, the data in the latches are held constant and are unaffected by
new data on the latch inputs.

LATCH DATA INPUTS
A,B,C,D,DP

15,10,6,7,12

Data on these inputs are entered into the latches under the control of the
latch strobe input. The binary weights of the inputs are: A = 1, B = 2,
C = 4, D = 8. DP is decimal point latch data input.

LATCH OUTPUTS
QA, OB, Oc, aD, QDP

4,1,2,3,14

The BCD data that drives the decoder is stored in the five latches and is
available at these outputs. The binary weights of the outputs are: OA = 1,
OB = 2, Oc = 4, aD = 8. ODP is decimal point latch output.

BLANKING INPUT

11

When low, will blank (turn off) the entire display. Must be high for normal
operation of the display.

LED TEST INPUT

13

When low, will turn on the entire display, overriding the data in the latches
and the blanking input. Must be high for normal operation of the display.
FUNCTION TABLE
BLANKING

LEO

0

C

B

A

OP

STROBE

INPUT

TEST

00

Oc

°B

0

L

L

L

L

L

L

H

H

L

L

L

L

L

1

L

L

L

H

H

L

H

H

L

L

L

H

H

L

H

L

L

FUNCTION

LATCH INPUTS

LATCH OUTPUTS
0A 00P

DISPLAY
, TIL308

1/
U

,,

-,

C

2

L

L

H

L

L

L

H

H

L

3

L

L

H

H

H

L

H

H

L

L

H

H

H

-,
-::1

4

L

H

L

L

L

L

H

H

L

H

L

L

L

Lj

5

L

H

L

H

H

L

H

H

L

H

L

H

H

6

L

H

H

L

L

L

H

H

L

H

H

L

L

7

L

H

H

H

H

L

H

H

L

H

H

H

H

8

H

L

L

L

L

L

H

H

H

L

L

L

L

9

H

L

L

H

H

L

H

H

H

L

L

H

H

r

TIL309

0

,,

2
:3
'-I

~

S

Ci

IS

-,

-I

,-

,

B

i

B
9

•
II)

~

i5..
II)

C

cW

A

H

L

H

L

L

L

H

H

H

L

H

L

L

t=l

II

...c:

MINUS SIGN

H

L

H

H

H

L

H

H

H

L

H

H

H

-

-

C)

C

H

H

L

L

L

L

H

H

H

H

L

L

L

IL

IL

BLANK

H

H

L

H

H

L

H

H

H

H

L

H

H

E

H

H

H

L

L

L

H

H

H

H

H

L

L

L

F

H

H

H

H

H

L

H

H

H

H

H

H

H

I

C

,-

BLANK

X

X

X

X

X

X

L

H

X

X

X

X

X

LED TEST

X

X

X

X

X

X

X

L

X

X

X

X

X

B

B

:=:

irrelevant.

H = high level, L:=: low level, X

1/

::J

C

1/

...I

Q)

...

Qi
c:

1-

C

C

DP input has arbitrarily been shown activated (high) on every other line of the table,

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-19

TlL308, TlL308A, TlL309, TIL309A
NUMERIC DISPLAYS WITH LOGIC
description (continued)
The TTL MSI circuits contain the equivalent of 78 gates on a single chip. Logic inputs and outputs are completely
TTL/DTL compatible. The buffered inputs are implemented with relatively large resistors in series with the bases of the
input transistors to lower drive·current requirements to one·half of that required for a standard Series 54/74 TTL input.
Some of the additional features of these displays are as fOllows:
• Latched BCD and decimal point logic outputs provided to drive logic processors simultaneously with the
displayed data
•

Minimum number of inputs required ... 4·line BCD plus decimal point

•

Overriding blanking for suppressing entire display or for pulse'modulation of LED brightness

•

LED test input to simultaneously turn on all display segments and decimal point

•

Can be operated in a real·time mode or latched·update·only mode by use of the latch strobe input

•

Displays numbers 0 thru 9 as well as A, C, E, F, or minus sign

•

Can be blanked by entry of BCD 13 or by use of the blanking input

•

Decimal point controlled independently with decimal-point latch

•

Constant-current-source TTL-LED interface for optimum performance.

The latch outputs except GOp are active pull·up, and each one, except GOp, is capable of driving three standard
Series 54/74 loads. The LED driver outputs are designed specifically to maintain a relatively constant on·level current
of approximately seven milliamperes through each LED segment and decimal point. All inputs are diode·clamped to
minimize transmission-line effects, thereby simplifying system design. Power dissipation is typically 575 milliwatts with
all segments on.

absolute maximum ratings over operating case temperature range (unless otherwise noted)

II

Supply Voltage, VCC (See Note 1): Continuous
... , ....
Nonrepetitiv. Peak, tw';;; 100 ms
Input Voltage (See Note 1)
.....
Operating Case Temperature Range (See Note 2)
Storage Temperature Range
...... .
NOTES:

5.5V
7V
5.5V
aOc to 85°C
-25°C to 85°C

1. Voltage values are with respect to network ground terminal.
2. Case temperature is the surface temperature of the plastic measured directlv over the integrated circuit. Forced-air cooling may

be required to maintain this temperature.

recommended operating conditions

r-

m

Supply Voltage, Vee

C

C
iii"

Normalized Fan-out from each output, N

(to Series 54/74 Integrated Circuits)

Low Logic Level
High Logic Level

'0

;A

VIH

High~Level

VIL

Low-Level Input Voltage

VIK

Input Clamp Voltage

TEST CONDITIONS

Figure f3

!Oecimal Point

Vee = 5 V

MIN

Typt

700

1200

40

MAX UNIT

!,cd

70

Vee=5V,

See Note 4

660

nrn

Vee- 5V ,

See Note4

20

nrn

I nput Voltage

2

V

Vee = 4.75 V, II = -12 rnA

VOH High-Level Output Voltage
VOL Low-Level Output Voltage (See Note 5)

aop

Vee = 4.75 V, 10H = -120!'A

aA, as, ae, aD

Vee -4.75 V, 10H - -240 I'A

aDP

Vee =4.75 V, 10L -1.6rnA

aA, as, ae, aD

Vee - 4.75 V, 10L

Input Current at Maximum Input Voltage

Vee = 5.25 V, VI = 5.5 V

V

-1.5

V

2.4

V
0.4

4.8 rnA

II

O.S

1

V
rnA

IIH

High-Level Input Current

Vee =5.25V, VI-2.4V

20

I'A

IlL

Low-Level Input Current

Vee -5.25V, VI-O.4V

-{I.S

rnA

lOS

Short-Circuit Output Current

ICC

Supply Current

laA, aB, ae, aD

-9

Vee = 5.25 V

-27.5

-1

laDP

-3.2
1 i5

Vee=5.25V, All Inputs at 0 V

180

rnA
rnA

t All typical values are at Vee = 5 V.
NOTES: 3. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE (International Commission
on 'liumination) eye-response curve.
4, These parameters are measured with all LED segments and the decimal point on.
6, This parameter is measured with the display blanked.

switching characteristics, Vee

= 5 V, Te = 25°e

FROM (INPUT)

TO (OUTPUT)

TEST CONDITIONS
eL=15pF,

A,B,e,D,DP

RL = 1.2 kfl,

See Figure 1

tpLH - Propagation delay time, low-to·high-Ievel output

MIN

TYP

MAX

II

r-----~7~~----~--~ ~

en

>
CO

tpHL;;;;: Propagation delay time, high-to-Iow-Ievel output

i5.
PARAMETER MEASUREMENT INFORMATION

en

i5
C

W

OUTPUT

FROM OUTPUT
UNDER TEST

l~h
~ eL= 15pF

NOTES:

...I

Vee

....s::

Q)

1

.2l
Q;

....s::

A. CL includes probe and jig
capacitance.
B. All diodes are 1 N3064.
C, Measurements made with
latch strobe input grounded.

LOAD CIRCUIT-FIGURE 1

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

4-21

TIL308. TIL308A. TIL309. TIL309A
NUMERIC DISPLAYS WITH LOGIC
TYPICAL CHARACTERISTICS
RELATIVE SPECTRAL CHARACTERISTICS
1.0

?;
c:

~

VCC

0.9

(

5V

TC~ 25°C

'\

0.8

'in

j

0.7

!I

0.6

c:

'E

0.5

..J

0.4

0

:::l

.,.

.!l

\

0.3

/

a;

a:

0.2

\

V

0.1

\

/

o
600

640

620

""

680

660

X-Wavelength-nm

700

FIGURE 2

•
S"
r+
CD

cO"
CD
:J

r+

r-

m

C
C

iii"

"0

iii"


.....
..,
1;;

2

Cii
0

>

I

-VCC

:::l

..
a:

CASE TEMPERATURE

4

0.7

--

I
~

5V

r--

- --

a;

?;

.....c:
.!:

0.4

'in

.

0.2

:::l

0

c:

'E

:::l

..J

0.1

o

10

20

30

40

50

Tc-Case Temperature-oC
FIGURE 3

4-22

TEXAS . .
INSTRUMENTS
POST OFFICE

aox 665303 • DALLAS, TEXAS 7628&

60

70

TIL311. TlL311A
HEXADECIMAL DISPLAY WITH LOGIC
D 1176. MARCH 1972 - REVISED APRIL 1987

SOLID-STATE HEXADECIMAL DISPLAY WITH
INTEGRAL TTL CIRCUIT TO ACCEPT,
STORE, AND DISPLAY 4-BIT BINARY DATA

•

7,62-mm (O.300-lnchl
Character Height

•
•
•
•

•

High Brightness

•

Left-and-Right-Hand Decimals

•

Separate LED and Logic Power •
Supplies May Be Used

Wide Viewing Angle
Internal TTL MSI Chip with Latch, Decoder, and Driver
Operates from 5-Volt Supply
Constant-Current Drive for Hexadecimal Characters
Easy System Interface

mechanical data
These assemblies consist of display chips and a TTL MSI chip mounted on a header with either a red molded plastic
body for the TIL311 or a red plastic cap for the TIL311A. Multiple displays may be mounted on 11,43-mm
(0.450-inch) centers.

fiOFPIN 1

1,78(0.070)

Ii OFPIN

1

19,31 (0.760)
18,29(0.120)

II

2.54 (0.100) TP

II)

12 PLACES
(Sae Note d)

>
ca
C.
II)

C

2,16(0.085) MAX

PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

1
2
3
4
5
6
7
8
9
10
11
12
13
14

cW

LED SUPPLY VOLTAGE
LATCH DATA INPUT B
LATCH DATA INPUT A
LEFT DECIMAL POINT CATHODE
LATCH STROBE INPUT
OMITTED
COMMON GROUND
BLANKING INPUT
OMITTED
RIGHT DECIMAL POINT CATHODE
OMITTED
LATCH DATA INPUT D
LATCH DATA INPUT C
LOGIC SUPPLY VOLTAGE. VCC

-

...J

I:

Q)

.~
Q)

I:

NO'TES: a. All linear dimensions are in millimeters and parenthetically in inches,
b. Lead dimensions are not controiled above the seating plane.
c. Center lines of character seqments and decimal points are shown as dashed lines. Associated

dimensions are nominal.
d. The true-position pin spacing is 2,54 mm (0.100 inch) between center lines. Each centerline is
located within 0,26 mm (0.010 inch) of its true longitudinal position relaTive to pins 1 and 14.
e,l On TI L311 A devices, the 3 mold indentations are nOT presenT,

PRODUCTION DATA documents conllin information
current as of publication date. Products conform to
specifications par the terms of Texi. Instruments

=~=i;·i~:I~1J.i ~::\::i:r :'io;.e;:::t::'snot

Copyright © 1982. Texas Instruments Incorporated

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

4-23

TILl11, TIL311A
HEXADECIMAL DISPLAY WITH LOGIC
description
This hexadecimal display contains a four-bit latch, decoder, driver, and 4 X 7 light-emitting-diode (LED) character with
two externally-driven decimal points in a 14-pin package. A description of the functions of the inputs of this device
follows.
FUNCTION

LATCH DATA INPUTS
(A,B,C, D)

When low, the data in the latches follow the data on the latch data inputs.
When high, the data in the latches will not change. If the display is blanked
and then restored while the enable input is high, the previous character
will again be displayed.

5

8

When high, the display is blanked regardless of the levels of the other
inputs. When low, a character is displayed as determined by the data in the
latches. The blanking input may be pulsed for intensity modulation.

3,2,13,12

Data on these inputs are entered into the latches when the enable input is
low. The binary weights of these inputs are A = 1, B = 2, C = 4, D = 8.

4,10

These LEDs are not connected to the logic chip. If a decimal point is used,
an external resistor or other current-limiting mechanism must be connected in series with it.

BLANKING INPUT

DECIMAL POINT
CATHODES
LED SUPPLY

This connection permits the user to save on regulated V CC current by
using a separate LED supply, or it may be externally connected to the
logic supply (VCe!.

LOGIC SUPPLY (VCe!

Separate VCC connection for the logic chip.

14

COMMON GROUND

II

DESCRIPTION

PINNO.

LATCH STROBE INPUT

This is the negative terminal for all logic and LED currents except for the
decimal points.

7

CD
::::I

The LED driver outputs are designed to maintain a relatively constant on-level current of approximately five
milliamperes through each of the LED's forming the hexadecimal character. This current is virtually independent of the
LED supply voltage within the recommended operating conditions. Drive current varies slightly with changes in logic
supply voltage resulting in a change in luminous intensity as shown in Figure 2. This change will not be noticeable to
the eye. The decimal point anodes are connected to the LED supply; the cathodes are connected to external pins. Since
there is no current limiting built into the decimal point circuits, this must be provided externally if the decimal points
are used.

r-

The resultant displays for the values of the binary data in the latches are as shown below.

::::I
....
CD

cC'

....
m

o
o

iii'

'C

ii'
-<
til

··..··
·.. ·
o

4-24

... ... .•. .... ....
..... .·..•• ....· ·....· .......· .·.....· ...
···• ...... . ..... ·· ·....
·• ·· ....
· ·· ·· ·· ...
·
·
·
...
·
·
.
.
·
·
· ··
·· .... ... · ·· ... ·.. · ·.. · .. · ·· ·· ...· · ·... ·...· ....
2

3

4

5

6

8

9

TEXAS .."
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

10

11

12

13

14

15

TlL311. TIL311A
HEXADECIMAL DISPLAY WITH LOGIC
functional block diagram
LED

SUPPt. v

A
lATCH
DATA {

B

INPUTS

:

4-81T
LATCH

LATCH
STROBE
INPUT

LEFT
DECIMAL
POINT
CATHODE

RIGHT
DECIMAL
POINT
CATHODE

absolute maximum ratings over operating case temperature range (unless otherwise noted)

NOTES:

(/)

7V
7V

Logic Supply Voltage, VCC (See Note 1)
LED Supply Voltage (See Note 1)
Input Voltage (Pins 2, 3, 5, 8, 12, 13; See Note 1)
Decimal Point Current
Operating Case Temperature Range (See Note 2)
Storage Temperature Range
...... .

II

5.5V
20mA
O°C to 85°C
-25°C to 85°C

1. Voltage values are with respect to common ground terminal.
2. Case temperature is the surface temperature of the plastic measured directly over the integrated circuit. Forced-air cooling may
be required to maintain this temperature.

>
CO

Q.
.~

c
cW

....I

recommended operating conditions
Logic Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LED Supply Voltage, VLED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Decimal Point Current, IF (DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Latch Strobe Pulse Duration, tw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Setup Time, tsu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hold Time, th . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

.
.
.
.
.
.

MIN NOM MAX UNIT
4.5
5
5.5
V
4
5
5.5
V
5
mA
40
ns
50
ns
40
ns

4-25

TlL311, TIL311A
HEXADECIMAL DISPLAY WITH LOGIC
operating characteristics at 25°C case temperature

I

PARAMETER

'v

Luminous I ntensity (See Note 3)

IEach decimal

VLEO= 5V,

IF(OP) = 5 mA

35

100

,",cd

35

100
660

"cd
nm

20

nm

Ap

Wavelength at Peak Emission

Vee=5V,

!>.A

Spectral Bandwidth

IF(OP) = 5 mA, See Note 5

VIH

High~Level

V,L

Low-Level Input Voltage

'vIK
I,

Input Clamp Voltage

Vee - 4.75 V,

11--12mA

Input Current at Maximum Input Voltage

Vee= 5.5V,

VI-5.5V

I'H
IlL

High-Level Input Current

Vee = 5.5 V,

V, = 2.4 V

40

Low-Level Input Current

Vee = 5.5 V,

VI = 0.4 V

-1.6

"A
mA

60

90

mA

45

90

mA

VLEO=5V,

Input Voltage

2

Logic Supply Current
lee
ILEO LED Supply Current

NOTES:

MIN TYP MAX UNIT

TEST CONOITIONS

Vce=5V,
Average Per
Character LE D See Note 4

VLEO = 5.5 V.
IF(OP) = 5 mA, All inputs at 0 V

Luminous intensity is measured with a light sensor and filter combination that
on Illumination) eye-response curve.

4.

This parameter is measured with

{i

E."

displayed, then again with

B

5. These parameters are measw'ed with

TYPICAL CHARACTERISTICS
RELATIVE SPECTRAL CHARACTERISTICS

TTTft- -- r '\t

a.• VCC-5~

•

,.

~

]

0.7
0.6

~

0.5

!

0.4

~

':;;

::s
r+

0.3

;j1 0.2

(I)

"C

Dr
-<
CIl

l--

I V
I V
640

.~

_.

_.

-

\

.

620

- -- f--

\---

r-I-+-t·/

600

(I)

r-r-

r-H~
r+-

0.1

cE'
::s
r+
rm
C
C
iii'

-

\

660

""

680

700

).,-Wavelength-nm

FIGURE 1
RELATIVE LUMINOUS INTENSITY

REL.ATIVE L.UMINOUS INTENSITY

L.OGIC SUPPL.Y VOLTAGE

CASE TEMPERATURE

~

~ 1.6
VLED= 5V
TC"" 2SoC -

e 1.4

Vee = 5 V

>

IV

1. 2

~

1

$
~

0.8

I

I- I-

--

1

i""-t--

I
1
>

6

~ o. 2

]

- f - - --

~

!

a
5.5

4.5

0.4

0.2

--

f--- -

I-- -

r--

-

-

+--+--1--

~---

0.1 '---'-_,"---'-_-'---'_-"--..J
a 10 20 30 40 50 60 70

Vee-Logic Supply Voltage-V

Tc-Case Temperature-"e

FIGURE 2

4-26

-~r--~-

S 0.7 - - - - - .

a6

J o.

-1--+-+--+---1

2

l- I- i-

FIGURE 3

TEXAS

.Jf

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

-1.5

V

approximates the CI E (International Commission

displayed.

displayed.

1.0

V

1 mA

Vee = 5.5 V,

3.

V
0.8

Infrared Emitters and Phototransistors

5-1

::::I

.........
...
CD
Q)

c..

m

3

;:::j..
r+

...VI

CD

Q)

::::I

c..

"'tI

:s-

or+
or+

...
::::I
VI
....
VI
o
...
VI
Q)

r+

5-2

1N5722 THRU 1N5725
N-P-N PLANAR SILICON PHOTOTRANSISTORS
MARCH 1972-REVISED APRIL 198;

JEDEC-REGISTERED VERSIONS OF TIL601 THRU TIL604
•

Recommended for Application in Character Recognition, Tape and Card
Readers, Velocity Indicators, and Encoders

•

Unique Package Design Allows for Assembly into Printed Circuit Boards

*mechanical data
0,483 (0.0191
0,228.,009)

-rr

'W
l
,'._< r"·
I~

1,550 (0.061) DIA
1,473 (0.058)

:--~'235ID'D~~ f--

EMITTER
_

en
o
en
-iii

...
~

100'0'000'1

2.mID.DB2)
2.133 r0841

~
1,702 (0.067)
1,600 (0.063)

9··
.
-a

{COLLECTOR

~.254 (0.010)
0,127(0.005)

---l

c

as

...o
...o
~

11

~ 0,610 (0.024)
0406(0016)

.c
D..

2,083 (0.082)

"'C

r---- ;:~~~ :~: ~~~t ---

c:::

FOUR TIMES
ACTUAL SIZE

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

as
en

......
~

Q)

*absolute maximum ratings at 25°C case temperature (unless otherwise noted)

'E
w

Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . .
Emitter-Collector Voltage . . . . . . . . . . . . . . . . . . . . .
Continuous Device Dissipation at (or below) 25°C Case Temperature (See Note 1)
Operating Case Temperature Range
Storage Temperature Range
Soldering Temperature (10 seconds) .

50V
7V "'C
50mW Q)
~
-65°C to 125°C as
-65°C to 150°C ~
240°C C

....

*electrical characteristics at 25°C case temperature (unless otherwise noted)
TEST CONDITIONS

PARAMETER

TYPE

Ie = 100/lA, Ee= 0

ALL

50

V(BR)ECO Emitter-Collector Breakdown Voltage

IE = 100 /lA, Ee - 0

ALL

7

VCE=30V, Ee = 0

ALL

10

VeE-30V, Ee - 0,

Dark Current

lN5722
IL

Light Current

veE (sat)

Collector-Emitter Saturation Voltage

V
V
25

ALL

TC = 100°C

NOTES:

MIN TYP MAX UNIT

V(BR)CEO Collector-Emitter Breakdown Voltage

1
0.5

/lA
3

VCE=5V,

Ee = 20 mW/cm 2 , lN5723

2

5

See Note 2

lN5724

4

8

lN5725

7

IC = 0.4 mA, Ee = 20 mW/cm 2 ,

See Note 2

ALL

nA

0.15

mA

V

1. Derate linearly to 125°C at the rate of 0.5 mwl'c.
2. Irradiance (Eel is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered
tungsten linear-filament lamp operating at a color temperature of 2870 K.

*JEOEC registered data. This data sheet contains all applicable JEDEC registered data in effect at the time of publication.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications per the terms of Texas Instruments

:'~::~~i~ai~:1~1e ~!=i~~i:f :llo::~:~~:~~s not

Copyright

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

© 1983. Texas Instruments Incorporated

5-3

1N5722 THRU 1N5725
N-P-N PLANAR SILICON PHOTOTRANSISTORS
*switching characteristics at 25° C case temperature
TEST CONDITIONS
VCC

= 30 V,

IL

R L = 1 kll,

= 800/JA,

See Figure 1

*PARAMETER MEASUREMENT INFORMATION
See Note a

5'
....
...
...

C»
CD
Q.

"

0.8 V
90%

OUTPUT

~------"-o() See Note b

II

m

3

=

TEST CIRCUIT

C»

...
...o0;

t - - ~ .....

FIGURE 1

Q.

::s-

-1-----

OUTPUT VOLTAGE WAVEFORM

::s
O

T---tr~

Ul

"'tI

I

o

CD

I
I
I
I

NOTES:

Input irradiance is supplied by a pulsed xenon bulb source. Incident irradiation is adjusted for I L :::; 800 p,A.

b. Output waveform is monitored on an oscilloscope with the following characteristics: tr:e;;; 25 ns, Rin

~

1 MO, Cin :e;;; 20 pF.

• JED E C registered data

::s
en
iii'
o
...
en

TYPICAL CHARACTERISTICS

...

RELATIVE OUTPUT

NORMALIZED LIGHT CURRENT
ANGULAR DISPLACEMENT

CASE TEMPERATURE OF SOURCE AND SENSOR

•
•

•

1.2

.:'

1.00

I

i

1.0

~

f-.

O·'MM.
O. I '---,'--,'-......L.W.1.U._.............L..LJ>LJ...
0.01
0.02 0.04 0.07 0.'
0.2
0.4
Oi.tanceBetweenLenael_tn

FIGURE2

5-4

i•

O.

'1-:1

0.' r0.2

t-

./

• OB

/

SOURCE:
TIl.23 o. TIL24
IF m50mA

I I I

J
~

-

i

SENSOR:
1N5122-1N5725

-VCE~5V

I

I

I

J

/

0.7 5

o

FIGURE 3

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75266

\

~

!

0.50

0

0.2

•

o0

-76 -60 -25
0
2S
60
75 100 125
TC-c-T.rnpenr11.I",ofSuul'Oll.ndS~oC

.

50"

4(/J

~ 2rJl

I
,rfl rJl 100 2fIl

8-Angur.. Displacement

FIGURE 4

3IJ0

400 saO

1N5722 THRU 1N5725
N·P·N PLANAR SILICON PHOTOTRANSISTORS
TYPICAL CHARACTERISTICS

1N5723

COLLECTOR CURRENT
COLLECTOR-EMITTER VOLTAGE

COLLECTOR-EMITTER VOLTAGE

I

2.0

_~C ~ 25°C

/

Sell Note 2

/

I
I

/

Ee ~ 60 mWlcm<

/

/
/E.

40mW/cm2

/

/

//
'/ V
.b:: VE, 20mW/cm 2

.....-

0.05
VCE -Colle.:tor-Ernitter Voltoge-V

FIGURE 5

COLLECTOR.EMITTER SATURATION VOLTAGE

,

t

Ie
TC

=
w

a.S.mA
25°C

0.20

1

~ 0" 1--~1--~1--~1-----'r---I~-I

,u

40

50

60

80

E e -lrradlance-mWlcm 2

FIGURE 7

OARK CURRENT

CASE TEMPERATUAE

>0000
, 000

I I

-VCE~30V

Ee

~

a

!

~

j

/

V

V

•~~: ::o~

/
O~
.~

0.'

!

V

!c

kl.WW
0.7

,:\: nn'

//

,o'n~

0.01

0.001

I

0.0

-50

,
10

75

TC-CaseTamperature- C

20

40

100

'000

fmod-Modulation Ffeq"ency-kH~

FIGURE 10

FIGURE 9
NOTE 2:

I 1111111

Irradiance (Ee) is the radiant power per unit area incident upon a surface. For this measurement the source is an unfiltered tungsten
linear-filament lamp operating at a color temperature of 2870 K.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5-5

1N5722 THRU 1N5725
N·P·N PLANAR SILICON PHOTOTRANSISTORS
TYPICAL CHARACTERISTICS

RELATIVE SPECTRAL CHARACTERISTICS

1.2~------'-------~------~------~------~------~~------r-------~------'
Output of Tungsten
Source at 2870 K

Response of Human Eve

.......
...
C1I
5'

~ 1·°r-------t-----~j_~~~j_----_1------_±~~~,,~----~-=~::~------i
:>
a

Q)

6~

m

~ 0.6~------~-------1+-----~U_~----_+~~----~----_/~~--~\t--------~----~

Co

O.B~------~------~--~~~----~~----~~----~4_~~_+------~------~

I

2,
...... i

...
en

C1I

Q)

::l
Co

""a

:::r

...
......

~ 0.4~------~------~~----~--~--~~_+-------

.~

10
~

0.2~------~----~~------~~~~--_+--------~--~--~--+_--_+--~~--~----~

O~~~~'_

0.4

0.3

o
o

__

~~

______

0.5

~

0.6

____

~L_

0.7

A-

____

~

__

~~~

O.B

0.9

__

~

__

~

_ _ _ _ _ _D __ _ _ _

1.0

1.1

~

1.2

Wavelength - J.Im

FIGURE 11

Q)

::l

en

...o

(ii'

...
en

TEXAS INSTRUMENTS CUSTOMIZED OPTOELECTRONIC ARRAYS
The 1 N5722 through 1 N5725 series is available mounted in printed circuit boards for custom-designed array or matrix
applications. The array is a complete unit, without the problems associated with small, difficult-to-handle components.
These arrays can be designed for punched-card or tape readers, position indicators, pattern and character recognition,
shaft encoders, and many other special applications.
Texas Instruments custom·array techniques offer many advantages:
•

The arrays are pre-assembled and tested, ready for installation.

•

Custom arrays ",an be manufactured in almost any configuration to allow maximum design flexibility.

•

Sensitivity across an entire array will be matched to within 50%.

•

GaAs sources can be furnished to give complete solid-state matched sets for specific applications.

•

Arrays with components firmly soldered into place on both sides of a printed circuit board are more
rugged than individually wired sensing devices.

Specifying optoelectronic arrays is easy; all that is required is a print of the array and the desired specifications.
TI sales engineers will assist in developing specifications for special applications.

TEXAS . "

INSTRUMENTS
5-6

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIL23, TIL24, TlL25
P-N GALLIUM ARSENIDE INFRARED-EMITTING DIODES
D2132, FEBRUARY 1970-REVISED APRIL 1987

DESIGNED TO EMIT NEAR-INFRARED
RADIATION WHEN FORWARD BIASED
•

Output Spectrally Compatible with Silicon Sensors

•

High Power Efficiency

•

High Power Output

•

Small Size Permits Matrix Assembly Directly into Printed Circuit Boards

•

High Radiant Intensity

•

TlL24HR2* Includes High-Reliability Processing and Lot Acceptance
(Refer to TIl24HR2 for Summary of Processing)

....o
..
U)

U)

'iii

c

as
o
o

..

mechanical data

.c:
Q.

"C
C

~

as

....

(5~'~~:~'::IRAD

U)

II)

2,337 (0092)

~
·~--YHV

.'!::
T"":

E

2--cA.THODE

O.49(00191~ \-~

'-ANODE

0,23 (0.0091

W

0,406 (0.016)

...5.....

"C

II)

3,43 (0.135)
3,10(0.122)

as

4 TIMES
ACTUAL SIZE

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

II

absolute maximum ratings
Reverse Voltage at 25°C Case Temperature
"""'"
Continuous Forward Current at 25°C Case Temperature (See Note 1)
Operating Case Temperature Range
Storage Temperature Range
Soldering Temperature (10 seconds) ,

2V
, , , 100mA
-65°C to 125°C
-65°C to 150°C
240°C

* All electrical and mechanical specifications for the TI L24 also apply for TI L24HR2.
NOTE 1: Derate linearly to 125°C case temperature at the rate of 1 rnA/C. For lJulsed operatiC.ln at higher currents,

Instruments
:~~~~:~~i~at::1~1e ~:~:~ti:r :I~O:::~:':~~ not

Figures 8 and 9.

Copyright © 1983, Texas Instruments Incorporated

PRODUCTION DATA documents contain information
current 8S of publication data. Products conform to
specifications per the terms of Texas

5t:=e

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5-7

TIL23, TIL24, TIL25
P·N GALLIUM ARSENIDE INFRARED· EMITTING DIODES

operating characteristics at 25° C case temperature
PARAMETER

-.......
::::I

...
CD

TEST CONDITIONS

Po

Radiant Power Output

I<.p
Ill<.

Wa\(elength at Peak Emission

TYP

TIL24
MAX

MIN

0.4

Spectral Bandwidth

Half~lntensity Beam A~

VF

Static Forward Voltage

TYP

TIL25
MAX

1

MIN

TYP

MAX

UNIT

0.75

mW

940

940

940

nm

50

50

50

nm

IF=50mA

8HI

Dl

TIL23
MIN

35'

35'

35'

1.25

1.5

1.5

1.5

V

0-

m

3

;::+"
r+
CD

...

(II

Dl

::::I

TYPICAL CHARACTERISTICS

0"tI

::::I"

or+

RELATIVE SPECTRAL CHARACTERISTICS

o
r+

...Dl

1.2r-------~------~------_,--------~------~------~------_T------~------~

..

::::I
(II

fij"
r+

...o

(II

,

S,

....~*~:l-

1.0 t_----i---:..:.::.:'T=.,.~=T.c.:...---t_---_t::::;;;:;;;

Output of Tungsten

_F;;;;;;,;S~o~urce at 2870 K

o

5 0.8~---~----~~--~~---~~---~~---~+-~~-+----~r----4

ill~

~

~ 0.6 ~-------+--------HL------~~~----r-7'-----r--------~--t-~rl-------~------~

E
~

~ 0.4 ~---~----It--~L--Hr--7'-t-------t~

.~

0;

oc 0.2 ~-----t--~~~---~~'-~--t-------t-----l-+---\-1--~
0L--c~

0.3

__

~

0.4

____

~~

0.5

______

~

0.6

____

~~

______

0.7

~

____

L-~

0.8

X-Wavelength-J.lm

FIGURE 1

5-8

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

0.9

____

~~

1.0

______

~

1.1

____

~

1.2

TlL23, TIL24, TIL25
P·N GALLIUM ARSENIDE INFRARED·EMITTING DIODES
TYPICAL CHARACTERISTICS
RELATIVE PHOTON INTENSITY
vs

RELATIVE POWER OUTPUT
vs

ANGULAR DISPLACEMENT

CASE TEMPERATURE

1.2

1.0

.~c

]

0.8

-~---

-~--

c

£0 0.6 - -

.c
0.

">

.~

'a:"

V '\

~c~
I

0-

0

!

J

0.2

:;
B-

1\
\\

-----1--'~"
I

0.4 - - -

.....
.....o
en

++

o

0.7

en
.Ci)

o

c

~

~

.~

'" 0.07
a: 0.1

§b!ftftll=

ctI

...o

.c
0..

-.~

/

\

"C
C

O.OLI----+-+-~+---t-_+

.
ctI

10·

20°

0°

30·

10'

-75 -50 -25

6-Angular Displacement

0

25

50

75

en

100 125

...

T C-Case Temperature-OC

FIGURE 2

CI)

.t::

fiGURE 3

E

w
E

c
I

()
0

to

.-

"

C)

I-

20 1----

1ii

"
~

~

10 I-----

E

.g

"'"
~
C)
.c

~
'~"
I

~L

0

r- -- -

V

V

V
bL
-

---

-~--

-20 - -

/

TC

See Note 2

+;:.
B~

-25

~

0
0.

.~ 0.7
1ii
a: 0.4

'"

~

25

50

75

/

/

.-

~

0.2

0

/

2

0

1---- -

~~-

-50

./

~

-

-30
-75

25°C

4

Co

'"

50

~
~
0

40

E
~
E

30

13
U

-"

TC ~ 25°C

_\.
i

\.

'\

I

\

\
\

.~

i'..

:;:

:;: 0.07
0.04

20

0.02 ,
0.01

o

100

200

300

400

500

10
100

1\

1\

400

I F-Forward Current-rnA

IF-Forward Current-mA
FIGURE 8

5·10

200

\

FIGURE 9

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

700

1000

TIL24HR2
HIGH-RELIABILITY PROCESSING AND LOT ACCEPTANCE

•

This processing applies only to devices ordered under the part number TIL24HR2

•

For electrical and mechanical specifications, refer to TIL24 data sheet
This processing and lot acceptance follow the sequence of tests in MIL-S-19500 for JANTX types. This is not to
be construed to be a JANTX-qualified part. A detail specification is available upon request through your TI Field Sales
Office, local authorized TI distributor, or by writing directly to:
Texas Instruments Incorporated
LITERATURE RESPONSE CENTER

.
...
.....
tI)

o

P.O. Box 809066
Dallas, Texas 75380-9066

tI)

'iii
MIL-STD-750
TEST METHOD

TEST

100% Processing

Storage: TA

~

125°C, t

~

24 h

Temperature Cycle: - 55°C to 125°C, 10 cycles
Constant Acceleration: 20,000 G, Y 1 axis
Power Burn-in: IF = 50 rnA, t = 168 h
Hermetic Seal, Fine

Hermetic Seal, Gross
External Visual

1032
1051
2006
1039
1071 Condo G or H
1071 Condo Cor D
2071

Product Acceptance
Group A: LTPD ~ 5
~

25°C

Group B-1: LTPD
Solderability

~

15

Group B-2: LTPD
Thermal Shock

~

10

per detail spec

2026

tL
"C

r::::

..
ctI
tI)

...
CI)

,,!::

w

..
.....

"C
CI)

r::::

1051 Condo B-1
1071 Condo G or H
1071 Condo C or D

Hermetic Seal, Gross
~

.t:.

ctI

Hermetic Seal, Fine

Group B-3: LTPD

...oo

E

2071

External Visual

Electrical: TA

r::::

ctI

5

Steady-State Operating Life: t

~

340 h

1027

Group B-4:
Oecap, Internal Visual; Design Verification

2075

1 Devlce/O Failure

Bond Strength LTPD

~

20 IC

~

2037 Condo A

0)

Group B-5: Not Applicable
Group B-6: LTPD

~

7

High-Temperature Life (Nonoperating)
t ~ 340 h

1032

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5-11

T1L24HR2
HIGH-RELIABILITY PROCESSING AND LOT ACCEPTANCE

MIL-STO-750
TEST

TEST METHOD

(Group C Tests are run on one lot every six months)

Group C-l: LTPO

=

15
2066

Physical Dimensions

....

5'
....

m
CD

Q.

m
3
;::;'"

....
CD

..

Group C-2: LTPD = 10
Thermal Shock IGlass Strain)
Hermetic Seal. Fine

::l

Moisture Resistance

1021

External Visual

2071

Group C-3: LTPD
Shock: 1 500 G

=

'0
2016

Vibration: 50 G

2056

Acceleration: 2000 G IX,. y,. y 2 axis)
Group C-4: LTPD

=

Salt Atmosphere
Group C-5: Not Applicable

."

Group C-6: A

::r

..
.....

=

1041

10

Steady-State Operating Life: t

=

1000 h

m

::l
(I)

tir
o
(I)

5-12

2006

15

Q.

....oo
....

1071 Condo C or 0

Hermetic Seal, Gross

(I)

m

1056 Condo A
1071 Condo G or H

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

1026

TIL131 THRU TIL133
9-ELEMENT ARRAYS AND 9-CHANNEL PAIR
SEPTEMBER 1971-REVISEDSEPTEMBER 1989

TIL131 •.• 9-ELEMENT GALLIUM ARSENIDE IRED ARRAY
TIL132 ... 9-ELEMENT PHOTOTRANSISTOR ARRAY
TIL133 •.. 9-CHANNEL PAIR
• Center-to-Center Spacing of 2,54 mm (0.100 inch) for Tape Reading
• Reliable Solid-State Components

...

en

• IREDs Eliminate Lamp-Filament-Sag Problems

...en
o

• Spectrally Matched for Improved Performance

';

• Printed Circuit Board Construction Allows Precise Alignment

C
CO

description
The TIL 131 is an array of nine TIL23 gallium arsenide infrared-emitting diodes mounted in a printed circuit board.
The TIL 132 is an array of nine selected LS600 phototransistors. The TIL133 is a pair of selected arrays
comprising a TIL131 and TIL132 and offering specified channel performance.

mechanical data

......o
...o

..c
a..

"C
The printed circuit board material is glass-base NEMA standard FR-4, class II, O.6-kg/m 2 (2-0z/ft2) copper-clad C
CO
on each side. The approximate weight ofthe TIL131 and TIL132 is 3.7 grams each.
7,620 ± 0,051
(0.300 ± 0.002)

0.838 (0.033)
0.686 (0.027) CIA

(See Note)

18 WIRE HOLES

...en

......

Q)

PHOTOTRANSISTORS
OR
IR·EMITTING DIODES

'E

w

"C

...
......CO

Q)

.E

2,540 :!:: 0,051 8 PLACES
(0.100 ± 0.002)
TOLERANCE NONACCUMULATIVE
(See Note)

5,21 (0.205)
4,95 (0.195)

~------- ~~:: ;g:~~) --------+1

~---------:~::~::~:~:~--------~
1,74 (0.0685)
1.43 (0.0565)

1.45 (0.057)

0.94 (0.037)

MAX

MAX

COLLECTOR

CATHOCE~

TIL132

TIL131

SIDE VIEWS OF ACTIVE ELEMENTS

ALL DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTE: The tolerances shown for these dimensions apply to location of the mounting holes and the active elements only. Tolerance of ± 0.13 mm
(0.005 inch) applies for location dimensions of the wire holes.
PRODUCTION DATA documents contain information
current as of publication date. Products conform to
specifications. per the terms of Texas Instruments

~~~~~'!":11~1~~~~:r~ t:~~~~C:;f~11 ~~~~~:~~~. does

not

TEXAS

.Jf

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1989. Texas Instruments Incorporated

5-13

TIL131 THRU TIL133
9·ELEMENT ARRAYS AND 9·CHANNEL PAIR
TIL131 absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Reverse voltage ............................................................................ 2 V
Continuous forward current at (or below) 25°C free-air temperature (see Note 1) ................ 100 rnA
Operating free-air temperature range .............................................. -65°C to 125°C
Storage temperature range ....................................................... -65°C to 150°C
Soldering temperature (10 seconds) ........................ ;............................... 240°C

::::s
....
iil

.c..

NOTE 1: Derate linearly to 12S·C free-air temperature at the rate of 1 mWI"C.

TIL131 operating characteristics of each element at 25°C free-air temperature range
PARAMETER

CD

Po

Radiant power output

)..p

Wavelength at peak emission

1':.)"

Spectral bandwidth

;:;:

BHI

Half-intensity beam angle

CD

VF

Static forward voltage

m
3

..

r+

TEST CONDITIONS

MIN

TYP

0.4
'F = 50 mA

MAX
1

UNIT
mW

930

nm

50

nm

35·
1.25

1.5

V

en

Dl

TIL 132 absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

::::s

Collector-emitter voltage ................................................................... 50 V
Emitter-collector voltage ..................................................................... 7 V
Continuous device dissipation at (or below) 25°C free-air temperature (see Note 2) .............. 50 mW
Operating free-air temperature range .............................................. -65°C to 125°C
Storage temperature range ..... :................................................. -65°C to 150°C
Soldering temperature (10 seconds) ........................................................ 240°C

c..

"0

::r

or+

..
.

o
r+
Dl

::::s

NOTE 2: Derate linearly to 125·C free-air temperature at the rate of 0.5 mW/·C.

[

TIL 132 electrical characteristics at 25°C free-air temperature

en

o
en

individual element characteristics
TEST CONDITIONS

PARAMETER

MIN

V BRlCEO

Collector-emitter breakdown voltage

Ic = 100

!lAo

E. = 0

50

VIBRlECO

Emitter-collector breakdown voltage

'E = 100 ~A.

Ee= 0

7

ID

Dark current

V cE =30V,

E.=

IL

Light current

V cE =5V,

E. = 20 mW/cm2 ,

See Note 3

VeE sat

Collector-emitter saturation voltage

Ie = 0.4 mA,

E. = 20 mW/em 2 ,

See Note 3

TYP

MAX

UNIT
V
V

a
2

100

nA

12

mA

0.15

V

element matching characteristics
PARAMETER
Light current matching factor

MIN

TEST CONDITIONS
V CE =5V,

E. = 20

mW/cm 2 ,

See Note 3

TYP

MAX

0.5

NOTE 3: Irradiance (Eel is the radiant power per unit area incident upon a surface. For this measurement, the source is an unfiltered tungsten
linear-filament lamp operating at a color temperature of 2870 K.

TEXAS ."

5-14

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIL131 THRU TIL133
9-ELEMENT ARRAYS AND 9-CHANNEL PAIR
TIL133 absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)
Maximum ratings ofTlL131 and TIL132 apply.

TIL133 electrical characteristics at 25°C free~air temperature
PARAMETER

TEST CONDITIONS!

Ic

Output collector current

VCE sat

Collector-emitter saturation voltage

IF = 50 mA,
IF = 50 mA,

MIN

TYP

2.5

4

10

0.4

0.7

IC=2mA

MAX

~

...o

TIL 133 switching characteristics at 25°C free-air temperature
PARAMETER

t

TEST CONDITIONS!

=5 V,

t,

Rise time

Vcc

tf

Fall time

RL = 100 a,

MIN

TYP

II)

MAX

"iii

1.5

IC(on) = 2 rnA,
See Figure 1

r::::

......
CO

1.5

...oo

These parameters are measured at a lens-to-Iens distance of 0.1 00 inch.

.r::::

PARAMETER MEASUREMENT INFORMATION

Q.
"C
r::::

47a

~

ADJUST AMPLITUDE OF INPUT PULSE
FOR IC(ON) = 2 mA

INPUT
(See Note A)

CO

...

II)

L

INPUT 0 - 1

...
Q)

"~

E

OUTPUT
(See Note B)

Vcc=5V

90%

RL =100a

w

90%

"C

...CO
...

OUTPUT

TEST CIRCUIT

Q)

r::::

VOLTAGE WAVEFORMS

~

NOTES: A. The input waveform is supplied by a generator with the following characteristics: Zout = 50 a, t, s 15 ns, duty cycle 1%, tw = 100
B. The output waveform is monitored on an oscilloscope with the following characteristics: t, s 12 ns, R;n ~ 1 Ma, C;n s 20 pF.

~s. ~

FIGURE 1. SWITCHING TIMES

TEXAS ..,
INSJRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5-15

~

TIL131 THRU TIL133
9-ELEMENT ARRAYS AND 9-CHANNEL PAIR
TYPICAL CHARACTERISTICS

0
0

Q)
~

c..
m

3

;:+
r+

...

~

til

Q)

::s

c..

100

ci

iii

2

:::J

Qj

iii
a:

0.2

c:

0.1

Q)

u

:;
c.
:;

0

80

I

70

E
~:::J

60

U

"'

1\

50

~SOURCE:

~ IF=50mA

0.02
-TA
0.01
0.01

"'tJ

::r

riI
25 C

"-

30

u.

r- SENSO : r- VCc=5V r- T A i25°[C [-

C

r+
Q)

::s
til
0"

20

til

I / I
V / /

0.9

1.0

1.1
1.2
.1.3
1.4
VF - Forward Voltage - V

TIL131

1.2

/

"

1.0

/

'iii
c:
Q)

/

0.7

'"

a:

0.6

Q.

Q)

:;:::
Qj

/
/

c:

~
.c

0

Q)

0.8

:E

;:

>

V '\

~

:;;

Q.

>

/

0.4

~

0.4

V

Qj

0.2

IX

/

0.2

V

0.1
10

20

40
100 200
400
I F- Forward Current - mA

1000

U)

1\

\\

~

0;

.2

C.

0

r-..

/

o

30°

\.
20°

10°

0°

10°

B- Angular Displacement

FIGURE 4

FIGURES

t Normalized to output at IF = 50 mAo Tc = 25'C.
NOTE 4: These parameters were measured using pulse techniques: tw = 0.04 ms, duty cycle ~ 10%.

TEXAS ."

INSTRUMENTS
5-16

1.5

RELATIVE PHOTON INTENSITY
vs
ANGULAR DISPLACEMENT

2

0

I

TIL131

:;

.s-:::J

/
/

RELATIVE POWER OUTPUT
vs
FORWARD CURRENT

4

+-

1
1 :...1

/

/

/

FIGURE 3

7 ~TA = 25°C
t- See Note 4

...

-r- I
I

o

10

r+

0

-r

40

I

/
'/

l

FIGURE 2

...

I

/

TA = _55°C

10

0.02 0.04
0.1
0.2
0.4
Distance Between Lenses - in

0
r+
0

..-.1

°

0

I

0.04

TA =

TA=25°C

.2:

'E

~

:;

«

E

1

0.7
0.4

ro
I

I--

Q)

~
B
.::

See ~ote 4

90

4

~

-......

TIL131

FORWARD CONDUCTION CHARACTERISTICS

10

.S:

::s

TIL133

COUPLING CHARACTERISTICS

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

20°

30°

TIL131 THRU TIL133
9-ELEMENT ARRAYS AND 9-CHANNEL PAIR
TYPICAL CHARACTERISTICS
TIL131

TIL132

CHANGE IN WAVELENGTH OF PEAK INTENSITY
vs
E
FREE-AIR TEMPERATURE
c
I
30

I

!?

'"

:-"

.
"

I

I

V

IF =Constant

N

20

E

g

.

10

o

01
C

~

o

-10

.r:

a,

/

l7'

-20

~

-30
-75 -50 -25

~

Co

~

1.00

'T

C

/

~

:;

-

0

0.75

01

I

:::i

".!::!.

0.50

25

75

50

100

........

'"
iU
u

a

1

o

125

CI)

1\
en

z 0.25

o

..
....
......o
o

'x

7

iU
E

"V

v

II

J::



a

\

0

\

I

30°

\.
20°

10°

0°

10°

e- Angular Displacement
FIGURES

FIGURE 4

NOTE 4: These parameters were measured using pulse techniques: tw = 0.04 ms, duty cycle.: 10%.

TEXAS ."

5-22

"\\

INSTRUMENTS
POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

20°

TIL134 THRU TIL136
12-ELEMENT ARRAYS AND 12-CHANNEL PAIR
TYPICAL CHARACTERISTICS

0«
I

TIL134

TIL135

CHANGE IN WAVELENGTH OF PEAK INTENSITY
vs
FREE-AIR TEMPERATURE

NORMALIZED LIGHT CURRENT
vs
ANGULAR DISPLACEMENT

300

U

1.25

J co~stanl

//

I =

°II>
N

"«
f-

200

'"

100

ro

::l

/

~

E

~

'"t:

0

Ol

~

-100

U

.s:::

g, -200
Qi
'"
>

~

Ie.

c<


J.

!
"0

0.20

a 0,16
~

:;;

'"

t-

•

TC: 25°C

TC: 25°C

3.5

See Note 2

See Note 2

>
.~

....c:

4.0

0.24

«

V CE : 5 V

3.0

E

'-..............

.............

.!.

--

~

~

u

j
"0

u
I
_u

V CE : 1 V
2.5
2.0
1.5
1.0
0.5

a
20

30

40
50
60
Ee -lrradiance-mW/cm 2

70

80

a

15
10
5
Ee -lrradiance-mW/cm 2

20

FIGURE 8

FIGURE 7

NOTE 2. Irradiance (Eel is the radiant power unit area incident upon a surface. For this measurement, the source is an unfiltered tungsten
linear~filament lamp operating at a color temperature of 2870 K.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5·29

T1L6D 1 THRU T1L6D4, LS6DD, LS6D2, LS611 THRU LS619
N·P·N PLANAR SILICON PHOTDTRANSISTORS

TYPICAL CHARACTERISTICS
RELATIVE OUTPUT

DARK CURRENT

10000

-......
..

1000

f--

::::I

I»
CD

Q.

..

r+

CD

VI

CASE TEMPERATURE

MODULATION FREQUENCY
10

I I
VCE = 30 V

~

Ee= 0
100

«c

.!.c

10

m OJ~"
3 i!..

:;::;:

VI

0
I
_0

V
/

0.1

(I)

I»
::::I

om

V

Q.
~

:r

V

0.001
-50

/

/

VCE = 5 V

7

25°C

TC

4
2

I

'5

0.7

0

0.4

~

.~
I;;
Ii

V

RL -loon

'"kri,
'I.

0.2

RL = 1

a:

0.1
0.07

/

0.04

RL = 10kn

0.02

-25

0
r+
0

..

o

II

0.01

50

25

75

100

1

125

2

4

10

11111

40

20

100

T c-Case T emperature-0 C

f mod-Modulation Frequency-kHz

FIGURE 9

FIGURE 10

400

1000

r+

I»
::::I
(I)

RELATIVE OUTPUT

iii'
r+

.

VI

COUPLING CHARACTERISTICS
OF TI L23 OR TI L24 WITH TI L602

0

CASE TEMPERATURE OF SOURCE AND SENSOR

(I)

I.S

100
70

40
20

«
E
.!.c
~

"

OJ

:;

10

~
~ ...........

SOURCE:
TlL24 or
TIL23
IF - 50 rnA
TC = 25°C

1.4
1.2

:;

1.0

.

O.B

ia:

0.6

~

0

4

"-

2

.~

"-

Co

'\1\.

'5

0

SENSOR:
TILS02
VCE = 2 V
TC - 25°C

0.7

0.4

I
-

/

0.2

0.1

om

0.02

0.04

0.070.1

0.2

0.4

0.7

1

SENSORS:
TIL601- TILS04
LS600. LS602.
LS611 thru LS619
VCE - 5 V

o
-75

Distance Between Lenses-in

-50 -25
o
25
50
75 100 125
TC-Case Temperature of Source and Sensor-°c

FIGURE 11

5-30

-

~

'- SOURCE:
TlL23 or TlL24
IF=50rnA

0.4
0.2

k'

FIGURE 12

TEXAS

~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIL601 THRU TlL604. LS600. LS602. LS611 THRU LS619
N·P·N PLANAR SILICON PHOTOTRANSISTORS
TYPICAL CHARACTERISTICS
NORMALIZED LIGHT CU"RRENT

vs
ANGULAR DISPLACEMENT
1.25

.
...
'm
.....
U)

.:'
E
~~

1.00

0.75

<)

j

,
I

..J

~

0.50

§
Z°

v ""'\
\
I
if ·x. \
«
I

o

U)

c
co

...oo

1\

0

.c
Q.

0.25

"C
C

co

..
...
U)

00
500

400

300 20° 10° 0°

100 200

300 40° 500

CI)

9-Angular Displacement

.t::

E

FIGURE 13

w

....
....
.E
"C

CI)

co

RELATIVE SPECTRAL CHARACTERISTICS
1.2r_------r-----~r_----~r_----~~----~------~------~------_r------~

Output of Tungsten

i

Source at 2870 K

Response of Human Eye

..+_~=:==l_------1

1.0!-------t-------1I~~--_r------_t------_lt;~--~~~--

o
; 0.8r_------+_------4-l---_\-+------~~----~~----_4~~~--+_------+_------~

I

~ 0.6r_------+_------4f------~~~--_+~~--~~----~~~--_\+_------4_------~

i
1/1

0.4

1-------+-------I+------,~_4'~--+_+-----

~Ii

~ 0.2r_------+---~~~------~~~--_+------~r_--_f--~_4----+_--~--4_------~

O~~~~'_

0.3

0.4

__

~~

______

0.5

~

0.6

____

~~

____

~~~~~

0.8
Wavelength - J.Itn

0.7

x-

___L_ _

0.9

~

______

1.0

~

1.1

____

~

1.2

FIGURE 14

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

5-31

::l
....
...I»
...CD

C.

m

3

;:;:
r+

...

CD

UI

I»

::l

C.
"'0

::r

o
o
r+

r+

...I»

::l

UI

(ij"
r+

o...

UI

E

5-32

TlL604HR2
HIGH"RELIABILITY PROCESSING AND LOT ACCEPTANCE
•

This processing applies only to devices ordered under the part number TIL604HR2

•

For electrical and mechanical specifications. refer to TIL604 data sheet

This processing and lot acceptance follow the sequence of tests in MIL-S-19500 for JANTX types. This is not to
be construed to be a JANTX-qualified part. A detail specification is available upon request through your TI Field Sales
Office. local authorized TI distributor. or by writing directly to:
Texas Instruments Incorporated
LITERATURE RESPONSE CENTER

..
.......
~

o

P.O. Box B09066
Dallas, Texas 75380-9066

II)

"en
c:
CO

MIL-STD-750
TEST METHOD

TEST
100% Processing
Storage: TA = 125°C, t = 24 h
Temperature Cycle: -55°C to 125°C, 10 cycles
Constant Acceleration: 20.000 G. Y 1 axis

1032
1051
2006

o
o

..c:

Q.

"C

c:

CO

High-Temperature Reverse Bias:

1039

..'E

Hermetic Seal, Fine

1071 Condo G or H

"C

Hermetic Seal, Gross

1071 Condo C or 0
2071

VeE = 30 V,
TA = 125°C, t

1039

= 48

h

Power Burn-in:
Po = 50 mW,
t = 168 h

External Visual

...CD

II)

w

l!!

.......
CO

c:

Product Acceptance
Group A: LTPO = 5
External Visual

2071

= 25 DC
= 100°C
LTPO = 15

Electrical: T A
Electrical: TA
Group B-1:
Solderability

Group B-2: LTPO
Thermal Shock

II

2026

=

10
1051 Condo B-1
1071 Condo G or H
1071 Condo C or 0

Hermetic Seal. Fine
Hermetic Seal, Gross

Group B-3: LTPD = 5
Steady-State Operating Life: t

=

1027

340 h

-II

TEXAS
INSTRUMENTS
POST OFFICE BOX 656303 • DALLAS. TEXAS 75265

5-33

TlL604HR2
HIGH-RELIABILITY PROCESSING AND LOT ACCEPTANCE

MIL-STD-750

TEST

TEST METHOD

Group 8-4:

Decap, Internal Visual; Design Verification
2075

1 DevicelO Failure
80nd Strength LTPD

~

20 (C

~

0)

2037 Condo A

Group 8-5: Not Applicable

::l
....
~

Q)
~

CD

c.
m

3
;:;:

r+

CD

Group 8-6: LTPD

~

7
1032

High-Temperature Life (Nonoperating)

t

~

340 h

(Group C Tests are run on one lot every six months)
Group C-l: LTPD

~

15
2066

Physical Dimensions

GrOl!p C-2: LTPD

~

10
1056 Condo A

VI

Thermal Shock (Glass Strain)
Hermetic Seal, Fine

1071 Condo Gar H

Q)

Hermetic Seal, Gross

1071 Condo Cor D

::l

Moisture Resistance

1021

External Visual

2071

~

C.
"'C

::r

Group C-3: LTPD
Shock: 1 500 G

2016

or+

Vibration: 50 G

2056

o
r+
~

Q)

::l
VI

(ii'
r+

o

~

VI

5-34

~

10

Acceleration: 2000 G (X 1, Y 1, Y 2 axis)
Group C-4: LTPD

~

2006

15

Salt Atmosphere

1041

Group C-5: Not Applicable
Group C-6: A

~

10

Steady-State Operating Life: t

~

1000 h

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 76265

1026

Quality and Reliability

6-1

Contents
Page
Quality/Reliability Program .......... '.' ........................ .
Device Reliability Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

•
6-2

6-3
6-9

TEXAS INSTRUMENTS QUALITY/RELIABILITY PROGRAM
FOR OPTOELECTRONICS AND IMAGE·SENSING COMPONENTS
QUALITY IRELIABILITY PROGRAM
FOR OPTOELECTRONICS AND IMAGE-SENSING COMPONENTS
Texas Instruments has an extensive commitment to produce semiconductor products with the highest quality
and reliability performance possit:ie. TI monitors/controls the entire semiconductor process, from the earliest
stages of device processing through completion of the final device. These monitored processes, which follow
rigid quality standards, are illustrated in Table 1. To further emphasize this quality thrust, TI incorporates quality
reviews with many of our major customers. These reviews incorporate comparisons between customer incoming
and TI outgoing inspection reports and in many cases have gained the customer confidence required for shipto-stock implementation. Our continuing goal is to be the Number 1 supplier in the industry, and we have set
up our QA program to meet this challenge.
The broad spectrum of industrial/military applications demands that our products operate under adverse conditions
and prolonged use. Please refer to Table 2 for our overall testing capability and to Table 3 for specific military
standard test capability available at TI.
Extensive facilities are used in our failure analysis laboratory to analyze in-house and field failures of TI devices.
Inputs from this lab are instrumental in generating the actions necessary for continuous improvement of our
products. Table 4 outlines our Failure Analysis Procedures and our test facilities.
In summary, this chapter includes the following tables:
Table
Table
Table
Table

1
2
3
4

Typical Standard Device Flow
Overall Test Capability
Military Standard Test Capability
Failure Analysis Capability

>-

~

:.c
TEXAS INSTRUMENTS QUALITY POLICY
For every product or service we offer
we shall define the requirements that solve
the customers' problems, and

WE SHALL CONFORM TO THOSE REQUIREMENTS
WITHOUT EXCEPTION.
For every job each Tier performs
the performance standard is:

.!2
"i
a:
"C
C

a:s

>-

.t::

CU
::::s
C

DO IT RIGHT THE FIRST TIME.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75286

6-3

TEXAS INSTRUMENTS QUALITY/RELIABILITY PROGRAM
FOR OPTOELECTRONICS AND IMAGE·SENSING COMPONENTS
Table 1. Typical Standard Device Flow
Piece parts per device
specification from incoming
accepted inventory or front end

QC Monitor (Epoxy Coverage)

Apply Mounting Epoxy

QC Monitor (Oven Temperature)

Mount Bars and Cure Epoxy

QC Monitor (Bar Alignmentl

Visual Inspection

'ac

Monitor (Machine Condition/Bond Parameters/Bond Strengthl

Bonding

QC Monitor (Bond Visual)

Bond Inspection

QC Monitor (Epoxy Mix. Machine Condition. Seal Integrityl

Seal/Encapsulation

QC Monitor (Electrical Test)

Electrical

Symbolization

Visual/Mechanical Inspection

QC Monitor (VIM Inspect)

Sample Solderability Test

Sample Temperature Cycle Test

Ship

•
6·4

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TEXAS INSTRUMENTS QUALITY/RELIABILITY PROGRAM
FOR OPTOELECTRONICS AND IMAGE·SENSING COMPONENTS
Table 2. Overall Test Capability
Test
Acceleration, Sustained

Capability
50 to 50,000 G (standard)

(Centrifuge)
Bond Strength

o to

Altitude (Barometric
Pressure, Reduced)

150,000 It simulated altitude

Electrostatic Susceptibility

MIL-STD-883, Method 3015

Flammability

800°C to 1100°C

25 grams

Moisture Resistance

+ 2 °C to 96°C, 40% RH to 100% RH

H.A.S.T.

+85°C to +138°C, 40% RH to 100% RH

Particle Detection

Acoustical (PIND)
Electrical

=:: 1 microgram
Intermittency =:: 1 p.s with 100-mV amplitude

Pressure Cooker (Autoclave)

o to

Radiographic Inspection (X-Ray)
Film

Resolution to 0.001 inch, 150 kV, 5 mA

Salt Atmosphere/Spray

25°C to 45 oe, up tp 20% salt solution

1 5 psig of steam pressure

Seal
Gross Leak

Bubble
Dye Penetrant
Weight Gain
Radioactive Tracer Gas

;" 1
;,,5
>2
~1

X
X
X
X

10 - 5 atm cm 3/s
10- 6 atm cm 3/s
10 -6 atm cm 3/s
10- 10 atm cm 3 /s

Symbolization
(Resistance to Solvents)

Shock (Mechanicall

To limits of:

MIL-STD-202, Method 213
MIL-STD-750
MIL-STD-810. Method 516
MIL-STD-883

Solderability, Meniscograph

MIL-STD-883, Method 2022

Solderability/Soldering

Up to 280°C

Temperature Cycling

-65°C to +200oC

Terminal Strength (Lead Integrity)

Lead Fatigue, Tension, Torque

Thermal Shock

-65°C to +200oC

Ultrasonics

o to

100 psi at 40 kHz or 25 kHz

Vibration. Fatigue

10 to 100 Hz, 5 to 70 G

Vibration, Random

20 to 2000 Hz, Power Spectral Density 1.3 G 2/Hz

Vibration, Variable

5 to 2000 Hz as limited by 1 inch double

>

:!:

:.c
.!2
"i

a:

"C
I:

ca

>

:!:
ca

:::s

o

II

amplitude and 60 inches/second velocity.

o to

70 G (standard), 70 to 100 G (nonstandard)'

*Limited fixture availability.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

6-5

TEXAS INSTRUMENTS QUALITY/RELIABILITY PROGRAM
FOR OPTOELECTRONICS AND IMAGE·SENSING COMPONENTS
Table 3. Military Standard Test Capability
TEST CATEGORY

MIL·STO·202
All Conditions

Altitude

except G

Bond Strength
Dew Point

MIL-STO-750

MIL-STO-883

All Conditions

All Conditions

except G
Conditions A or B

except G
Conditions A, C, or 0

All Conditions

All Conditions

Flammability

All Conditions

Immersion

All Conditions

All Conditions

All Conditions

Insulation Resistance

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

All Conditions

Meniscograph Solderability

All Conditions

Moisture Resistance

Resistance to Solvents
(Symbolization)
Salt Atmosphere
Salt Spray

All Conditions

All Conditions

Seal

All Conditions

All Conditions

All Conditions

Solderability

All Conditions

All Conditions

All Conditions

Soldering Heat

All Conditions

All Conditions

All Conditions

All Conditions

Temperature Cycling

except Method 107,

except Method 1051,

Conditions 0 & E

Conditions D & E

Temperature Storage

All Conditions

except E
Conditions A thru F

Terminal Strength

All Conditions

(Lead Integrity)
Axial Lead

All Conditions

All Conditions

All Conditions

Tensile Test
Thermal Shock

All Conditions

(Glass Strain)

All Conditions
except E & F
All Conditions

Acceleration, Sustained

All Conditions

(Centrifuge)

All Conditions

Method 2001,
except G, H, & J

Particle Impact
Noise Detection

All Conditions

All Conditions

IPINOI
Forward Instability

All Conditions

Shock (FIST)
Backward Instability

All Conditions

Shock (BIST)

All Conditions
Method 2002,
Shock (Mechanical) t

All Conditions

All Conditions

Conditions F and G,
may require special
fixturing. l

t Also perform mechanical shock per MIL-STO-8108, Method 516.

t: Call

6-6

Physical Test supervisor for available fixtures.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TEXAS INSTRUMENTS QUALITY/RELIABILITY PROGRAM
FOR OPTOELECTRONICS AND IMAGE·SENSING CDMPONENTS
Table 3. Military Standard Test Capability (Continued)
TEST CATEGORY

MIL·STD·202

Vibration, Fatigue
Vibration. Noise

MIL·STD-750

MIL-STD-883

All Conditions

All Conditions

All Conditions

All Conditions

Vibration, Random t

All Conditions

Vibration, Variable Frequency t

All Conditions

All Conditions

All Conditions

X-Ray, Filml

All Conditions

All Conditions

All Conditions

t Also perform random vibration and variable frequency vibration per MIL-STO-8108, Method 514.1. procedures I, II, III, IV, V, VI, and
VII. Omit paragraph 4.5.1.1. Resonant Search, and paragraph 4.5.1.2, Resonant Dwell.
Radiographic inspection is performed in accordance with many government and customer specifications. Before any new radiographic
specification is accepted or deemed acceptable for use as a test standard within the Semiconductor Group, it must be approved by
Environmental Test Services.

:j:

Table 4 ..FaiJU1"e Analysis Capabilities
I.

Nondestructive Techniques
A. Hermeticity evaluation
B. X-ray interpretation of bonding and die mount
C. Electrical characterization
1. Breakdown. leakage. and functional tests run at temperature extremes
2. Polaroid documentation of curve traces and/or oscilloscope traces

II.

Destructive Techniques
A. Decapsulation/Delid of devices
B. Probe and isolation of electrical defects
C. Layer-by-Iayer removal of device levels by selective etching
D. Microsection analysis
1. Sections taken at shallow to 90 0 angles - sample sizes to 1.5 inches
2. Selective staining to delineate diffusions. dielectrics. etc.
3. Thickness measurements by SEM or optical microscopy
E. Optical microphotography - magnifications to 5000X
F. Infrared microscopy - transmission and reflection
G. Nanometrics
H. Planar plasma etching
I. Scanning electron microscopy - SEM
1. Routine magnification to 50.000X
2. 50-A resolution
3. Back-scattered electron detector
4. Military product lot acceptance of metallization
5. Voltage contrast
6. Specimen current amplifier
J. Electron microprobe
1. Chemical detection of elements with atomic number greater than 11
2. Typical 4- to 5-l'm beam penetration
3. Spot size typically 1000 to 2000 A
K. Auger spectroscope
L. Ion microprobe mass analysis
M. Gas and/or plastic composition analysis

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

6-7

II

6-8

TEXAS INSTRUMENTS OPTOCOUPLER RELIABILITY DATA

OPTOCOUPLER RELIABILITY DATA
INTRODUCTION
Texas Instruments designs and builds quality and reliability into all the products it offers to the electronic
marketplace. The quality control organization is uniquely responsible for coordinating the total effort and for
providing direct action necessary to insure that quality and reliability objectives are met.
The reliability data shown in this report is indicative of the extensive testing performed by TElx3.s Instruments on
all components to assure continued leadership in quality and reliability. Included in this report is a summary of 1987
through June 1989 reliability testing on the 4N22 and 4N47, parent devices for the JAN, JAN"FX, and JANTXV
metal can optocoupler products, and typifies results of product built to the standard device product flow.

OPERATING LIFE TEST
Data was summarized from monthly and semi-annual Group B and Group e quality conformance inspections
according to MIL-S-19500/486A (4N22) and MIL-S-19500/548 (4N47) plus additional testing deemed necessary
by TI Quality Assurance to guarantee process integrity. Life testing was performed under the following conditions:
TA = 25°e
IF = 20 mA
VeE = 10 V
PD = 275 mW
Test duration varied from 340 hours to 1000 hours to allow data accumulation on 8545 devices exercised for
a total of 4,074,160 device hours. No critical failures were observed.
In addition, 4801 device type 4N24 optocouplers have been placed on continuous life test at the above referenced
conditions for long-term monitoring of performance characteristics. These devices are read and recorded at 1000
hour intervals, and have accumulated 14,735,100 device hours with no critical failures. This data also applies
to JAN, JANTX, and JANTXV products.

STORAGE LIFE TESTS
Devices were stored in ovens at 125°e for 340 or 1000 hours (depending on requirement). Readings of all
parameters included in the device specifications were made with zero failures in the sample of 4372 devices
for a total of 1,822,560 device hours.

ENVIRONMENTAL TESTS
The tests listed in Table 1 were performed on samples of the product with the catastrophic or degradation failures
as shown. The test conditions shown represent requirements imposed on the product by our customers and
do not necessarily represent maximum capability of the component. Inquiries concerning response to the specific
requirements should be addressed to your TI sales representitive.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

6·9

TEXAS INSTRUMENTS OPTOCOUPlER RELIABILITY DATA

Table 1. Environmental Test Results
MIL·STD·750
TEST

QUANTITV

TEST

TESTED

METHOD
1016

High Temperature Isolation Voltage,

FAILURES

1493

0

1304

1

1786

1

VIO = 150 V. TA = 125°C, TO = 24 hr.
1051

temperature Cycling, - 65°C to

+ 125 "c,

15 minutes at extremes (25 cycles)
1056

Thermal Shock (Glass Strain).

1021

Moisture Resistance

2016

Mechanical Shock,

2050

1500 G, 0.5 ms, X1, V1, V2
Vibration, Variable Frequency,

2066

Constant Acceleration,

100°C to -5°C, 5 cycles

50 G minimum
30 kG, 1 minute X1, V1, V2

II

6·10

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Applications

7-1

»

"C
"0
(')

til

::!'.

o

::J
CII

II
7-2

APPLICATIONS SUMMARY

Multiplexing Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Page
7-5

A common requirement is to display numbers, letters, and special symbols. Described are circuits
to interface with 7-segment and 5 x 7 dot-matrix displays.
TIL311 Hexadecimal LED Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 -11

The display of register information on computer control panels is an ideal application for the TIL311.
A TIL311 display with on-board electronics is illustrated.
Counting Circuits Using TIL306 and TIL308 LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

7 -13

Complex counting and display circuit designs are described in simple terms. Several typical circuits
are explained.
Optocouplers in Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

7 -19

A review of the characteristics of optocouplers also provides descriptions and illustrations of how
they are used in typical circuit applications.
Interfacing Using Optocouplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

7-25

Worst-case design techniques are used for choosing component values for the interface circuitry
between optocouplers and standard TTL logic gates.
CCD Output Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7-33

A variety of methods are presented for converting CCD output signals into analog or digital video
data.
linear CCD Operation at 10 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

7-49

The operating of the CCD linear image sensor and the digitization of the output signal at 10 MHz
is discussed.
Operating Instruction Set for linear CCD Image Sensor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

7-59

Described is the instruction set for operating the CCD linear image sensors (TC102, TC103, TC104,
and TC1 06-1) on a board (PC401 orPC402), and in an evaluation kit (TCK1 02, TCK1 03, TCK1 04
or TCK1 06-1.
A Simple Method of Conditioning the Output of a CCD Imager to a Digital System ............

7-65

TC103-ISM and Interfacing Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
The scanner module, interfacing circuit, and I/O ports are discussed. Applications include facsimile
scanner, optical recognition, and PC scanner.

In

c::

o
'';:::;

This is a description of a simple method of converting the output of a CCD imager into a binary
waveform in which one logic level represents "black" and the other "white" for bar-code or optical
character reading applications.

ro

(.)

7-67

c.
c.

«

II
7-3

7-4

MULTIPLEXING DISPLAYS

seven-segment displays
To display numbers and symbols an array of display
elements is required. Two common configurations are
shown in Figure 1. Figure 1 a shows the seven-segment
display that can be used to display the decimal numerals
and some alphabetical characters by turning on appropriate
segment patterns. Figure 1 b shows a 5 x 7 dot matrix that
can be used to display any alphanumeric symbol by turning
on the appropriate dot pattern. The pattern required for each

a

f~=~b

e~~~c
=d
a. SEVEN-SEGMENT LED DISPLAY

00000
00000
00000
00000
00000
00000
00000
b. 5 X 7 DOT MATRIX DISPLAY

Figure 1. Display Matrices
number, character, or symbol to be displayed must be stored
in a read-only memory or a display decoder in order to
properly display a desired character. The interface to a
seven-segment display is the BCD-to-seven-segment
decoder driver like the SN7446 shown in Figure 2a. The
input to the decoder is the BCD code for the number to be
displayed. The RBI and BI signals can be taken low to turn
off all segments, regardless of the input code. When BI is
high, the LT (amp test) input can be brought low to turn on
all segments to perform a lamp test operation. The BIIRBO
can serve as an output for ripple blanking to other decoders.
When RBI is brought low, RBO as an output will go low for
rippling a blanking signal to other display decoders. The
segment drivers A through H are connected to the LED's
of the display to control which LED's are turned on.

The entire circuit and display is available as a single
device, the TIL306, shown in Figure 2b. This device has the
4-bit BCD code input, a decimal point input, and depends
on a non-BCD code to provide blanking. Devices also exist
that include a register as well as a decoderldriver and display
in the same unit. The TIL30B shown in Figure 2c is one of
those. It stores the four BCD inputs in a quadruple S-R flipflop whose outputs are available from the device. There is
a latch strobe input that, when low, stores the BCD code
in the 4-bit register. There is a blanking input, BI, that, when
low turns off all segments, and an LED test input that, when
low, turns on all segments. If the LED test and the BI inputs
are both high, the display shows the number whose code
is latched in the device data register. Such a register
simplifies the 1/0 requirements of the microcomputer since
it can be treated as a complete storage location. It may be
connected to either the data bus or any special system 1/0
bus.
The interface to a 5 x 7 or other dot matrix is handled
in much the same way as the seven-segment device. The
simplest device of this type is the TIL311, which displays
hexadecimal characters using LEOs arranged on a 4 x 7
dot matrix pattern as shown in Figure 3a. It includes a 4-bit
data register with a latch strobe input that causes the 4-bit
input data to be entered while the strobe is low. As long
as the strobe stays high, the information displayed and
stored will not change. Thus, one could treat the strobe as
a rising-edge latch signal. The overall structure of the TIL311
is shown in Figure 3. There is a blanking input that, when
high, causes the display to be blanked. There is a left and
right decimal point input available.
The control of a 5 x 7 dot matrix display device like
the TIL305 requires a ROM or EPROM in which the display
pattern for each character to be displayed is stored. The
basic circuit structure is shown in Figure 4 for an individual
interface to a TIL305. The TTL signals from the seven input
lines (ASCII' code inputs) are connected to the inputs 11
through 17. The current-drive capability is provided by
SN75491 drivers acting as sink drivers from the output lines
01 through 07 and as source drivers for the column lines
on the TIL305. At the time a column line is driven with
current, the column select code CA through CE must
simultaneously be applied to the column select lines of the
EPROM. The EPROM outputs the seven row signals for a

!/)

r::

o

";:
CO
Co)

0.
0.

«

II
7-5

5V

TIL302

.. ,.

, 3

.- ,
,.. , ,

r---<

,.
RANGE

D.P. E
6

7

R2

R2

,Ir ,

,Ir ,

,Ir ,

F

G

C

D

A

B

11

10

8

1

13

R2

R2

RBI- SN75493

CE

~
•

T I I

CA
0,

16
L-11

4

15
L--I.

121 SN14LS2.;-

OJ
EPROM

rL.J>-

0.
°5

13
12
1,

4

Os
°1

p-

;;:L....P-

°2

L--

D>-

~

Co Cc Cs

L.

~

TIl305

IL P-

r-~

tv-

VU""

GND

~
p-

*
8

I

.1

1

8

MODULO 16

COUNTER

4·TO·16 DECODER

Figure 5. 16-Character Display

J

TlL305

TIL311 HEXADECIMAL LED DISPLAY

The T1L311 is designed to store and display decimal and
hexadecimal da tao The device consists of an MSI logic chip
to perform logic and storage functions plus a light emitting
diode (LED) display in a single 14'pin dual in-line package.
I! accepts parallel 8-4·2·1 data on four input lines and
displays the corresponding decimal or hexadecimal charac·
ter on a 4-by·7 dot matrix. Figure I illustrates the
hexadecimal character representation for the decimal
numbers 0 through 15. The logic levels are designed to be

··· ..... · ..... · ....
·· · ...·.... ...·... ....··
· ... · ·· ...·· ··... ··
·· ....
···....·· ......·· ··.·......· ·...·...·· ···... ···...··· ·...··.... ·...·....
.. · .. . ... ... ...· ....
· ·
···..··
·.. ·
o

8

4

9

10

11

12

6

13

14

15

FIGURE 1. T1L3II Hexadecimal Character Configuration

TTL compatihle: a high level is 2 V to 5 V. a low level is
OVtoO.XV.
The hlock diagram in Figure' 2 shows the major
sections of the T1UII: latches. decoder. current driver.
and LED display. The inputs are DATA. LATCH STROBE.
BLANKING. and DP. DATA is parallel XA-2·1 coded data.
When LATCH STROBE is low. the data in the latches
follow the data inputs. When LATCH STROBE goes high.
the data on the input lines at strobe time is stored in the

latches.
The 4·hit code is decoded and the required diodes are
turned on via the constant-current drivers to display the
proper character.
The LED display contains two decimal points: one to
the left and one to the right of the character. A low input
to one of the DP inputs will turn that decimal point ori.
BLANKING must be low to display the character.
When BLANKING goes high, the character is turned off
regardless of the inputs. The BLANKING input does not
change the data stored in the latches. BLANKING may be
pulsed to intensity-modulate the display. The apparent
brightness of the display is proportional to the duty cycle
of the modulating signal, assuming a frequency high enough
to avoid visible flicker. For example, at 1 kHz, a 50% duty

BLANKING
INPUT
LATCH
STROBE
INPUT

rn
~

c:
o

I

...
ctI

22

-=---DATA
INPUTS

21

-=----

FOUR
BIT
LATCH

DECODER

CONSTANT
CURRENT
DRIVER

~

••••••••
•••••

•

• •
••••••

I

DP

(.)

Q.

c..

«

II

FIGURE 2. TIL311 Hexadecimal Display Block Diagram

7-11

LATCH
STROBE
ENABLE

I
TIL311
lOGICAL
ONE

1.--

~J

CLOCK

- r-

ClK

'-- K

-J

a~

~

-

ClK

-

' - - ClK

J-- K

r--

a-LL)-LJ

J

O~

ClK

r

K

o~

K

Q~

FIGURE 3. TlL311 Used As Counter Display

lSB

MSB

.0.00.00 •••• 00.0
FIGURE 4. Discrete Light Display fora 16·Bit Register

•
7-12

cycle would cause an apparent brightness of 50% of the
steady·state brightness.
Figure 3 illustrates the use of the TIL3ll as a decimal
display. The JK flip-flops are connected as a count·by-ten
counter and represent one decade position in a multidecade counter. The four Q outputs of the·four flip-flops
furnish the data inputs to the TIL311. Normally LATCH
STROBE will be held high so that the display does not
follow the counting. When counting is complete for a given
time base, LATCH STROBE is pulsed with a negative-going
pulse. The new data is then transferred from the decade
counter into the lau;hes and displayed.
Another application for the TIL311 is to display
register information on computer control panels and service
panels. Figure 4 illustrates the use of discrete lights to
display the contents of a l6-bit register. The length of the
display can easily lead to errors in interpretation of the

data. Figure 5 illustrates the use of the TIL311 to display
the same data in the same l6-bit register. The 16 register
pOSitions are divided into four 4-bit groups. The four bits in
each group proVide the inputs to ·each of four TIL311
displays. The resulting four hexadecimal character display
proVides a more concise interpretation of the register data.

••• •• ••••••
•••• •••
• •
••• •••
•• ••
• •• ••
•••••

••• •

•

• ••
•••••

FIGURE 5. Hexadecimal Display fora 16·Bit Register

COUNTING CIRCUITS
USING TIL306 AND TIL308 LEOs

Digital instruments have experienced a constant evolution
since 1960, Counters that once occupied several inches of
rack space in a 19-inch rack have been replaced by units the
size of a text book with performance characteristics
surpassing the older models, A major contribution to these
changes is the continued advances in solid-state devices:
integrated circuits have replaced the tubes and transistors
and light-emitting diodes (LEOs) have replaced the
incandescent displays,

in-line package, Texas Instruments has provided the
designer a device that reduces the complexity of his system
without reducing flexibility of design, Two of these devices
are the TlL306 and TIL301l, The TlL306 and TlL308 have
decimal points to the left side of the character. The TlL307
and TlL309 have decimal points to the right side of the
character, but are otherwise identical to the TlL306 and
TIL308, respectively, They can be combined to count,
store, and display data in multiple decade positions,

Texas Instruments has introduced a new product that
simplifies further the design of systems utilizing counters or
digital read-outs, By combining an 1(' chip to perform the
logic function and an LED display in a single 16-pin dual

The TlL306, as shown in Figure I, consists of four
major sections: counter, latches. decoder/driver, and LED
display,

LOGIC OUTPUTS

__-.....J'......-

CIRCUIT DESCRIPTION

___
TO LOGIC CHIP

I/)

!:

o
ca

+J

(.)

c.

c.

LATCH
STROBE
INPUT

~~----------------~

RBO OECIMAL
NODE
POINT
INPUT
BLANKING
INPUT

L-~C=O=U=N~T~E=R~--"ILI__~L=A~T~C=H~E=S~--"ILI______D_E_C_O_D_E_R_I_D_R_IV_E_R______-JILI____~L~E~D~D~IS=P~L~A~v____J

FIGURE /, Functional Block Diagram of TIL 306

o......+-rb

LATCH
DATA
INPUTS

•

D

iEES~ -<{>o--------t>---~-~====:t:'Ly---~
INPUT

L---_--=LA.-..T.:..CcHES

_

....JIL-____--=D::.:E:.:C:.:O:~O:..:E:.:R.:.:/=O.:.:R.:.'V:..:E=_R_'___ _ _ _ _ ____'L_ _L_E_D_O_IS_P_L_A_V_

FIGURE 2. Functional Block Diagram of TIL308

7-14

___'

A high on BLANKING inhibits the driver and gates
and blanks the LED display. For normal operation, the
BLANKING input must be low.
A low on RIPPLE BLANKING blanks the display if
the latch flip-flops contain a count of zero. This
combination also forces the RBO NODE to go low. By
connecting the ROO NODE of one decade position to the
RIPPLE BLANKING input of the next decade position,
zero suppression can be achieved. This is discussed in detail
in a later portion of this report, Counter Circuit
Description. The RBO NODE has a resistor pullup, which
allows this output to be used as an input. A low level
applied to ROO will blank the LED display independently
of other input.

The inputs and outputs, designed to be TTL
compatible, consist of DATA INPUTS, DATA OUTPUTS,
LATCH STROBE, BLANKING, and LED TEST.
The BCD data and decimal point on the DATA
INPUT lines are transferred into the latch flip-flops when
LATCH STROBE is low. The BCD data and decimal point
data stored in the latches are available at DATA OUTPUT.
With LATCH STROBE high the DATA INPUT lines can
change without effecting the data stored in the latches.
BLANKING must be high to display the data stored
in the latches. When BLANKING goes low, the decoder
drivers are inhibited and LED display is turned off. The
data stored in the latches are not effected by BLANKING.
LED TEST can be used to test the LED display. A
low to LED TEST will override all other signals and turn all
of the LEDs on. LED TEST does not change the status of
the latches.
With the basic operation of the circuits outlined, two
typical interconnection methods are shown in Figure 3
and 4. Figure 3 shows the TIL306 connected in the
synchronous mode. Figure 4 shows the TIL306 in the
asynchronous mode. The asynchronous mode will be used
in the following example of a counter.

j,,,

FIGURE 3. T1L306 Interconnections
SynchronousCount Mode and High-Order-Zero
Suppression.

BOT
ZERO

SUPf'RESS

\~~~CT

--lCH

FIGURE 4. TIL3061nterconnections for
Asynchronous-Counting Mode and
Low-Order-Zero Suppression.

COUNTER CIRCUIT DESCRIPTION
The counter is a major constituent in digital instru-

ments.
The TlL308 looks
physically identical to the
TIL306. flowever, the TIL306 contains a counter section:
the TlL30S does not. The TlL308 accepts 8-4-2-1 BCD
code from external sources, stores it in latches, and displays
the stored character by means of an LED display. As shown
in Figure 2, the TI L308 consists of the three major
sections: latch, decoder/driver, and LED display.

LEAST SIGNIFICANT

MOST
SIGNIFICANT BIT

Digital voltmeters, frequency

counters, event

counters, and period counters all have a circuit in common,

very much like the one shown in Figure 4.
The circuit to be discussed in detail in this report
incorporates both the TIL306 and the TIL308. One of the
limiting factors of the TiL306 is that the counter typically
does not count faster than 18 MHz. Combining the TlL306
with a TIL308 and feeding the TlL308 from a high-speed
counter expands the system to a much higher frequency.
Figure 5 shows a BCD counter capable of working at
100 MHz. The circuit consists of two SN74S 112 Schottky

FIGURE 5. /00 MHz Decade Counter Using Texas Intruments Schottky ITL Logic and A TIL308 Display.

TTL circuits and one SN74S II Schottky TTL circuit. This
configuration results in an asynchronous BCD counter
capable of dividing a 100-Mflz signal down to 10 MHz. The
speed is a result of Texas Instruments Schottky TTL
devices that allow flip-flops to toggle in excess of
100 MHz. The Q outputs of the four flip-flops are fed into
one TIL308, resulting in a decade with readout. The
following decade position consists of a TIL306, which is
capable of handling the 10 MHz rate. This circuit can be
expanded even further by preceeding the Schottky counter
stage with an EeL counter stage. ECL IC flip-flops with a
4OO-MHz toggle rate and discrete built EeL flip-flops with a
toggle rate of 800 MHz are possible. Figure 6 shows a block
diagram of a stage which is capable of counting up to
800 MHz. Since ECL levels do not cciincide with TTL
levels, an ECL-TTL converter is necessary. The output of
the converter will drive the TIL308 without any
interference caused by switching speed problems.

VI

C

o

'';::;
CO

()

Q.
Q,

«

II
7-15

LATCH STROBE

I

STRB

,-------jA

TlL306 devices shows a big empty surface in the middle of
the board and considerably fewer interconnects to the
display. The cost savings resulting from using such a
counter are quite obvious.
Figure 9 is a photo of a IOO-MHz counter using seven
TlL306 devices and two TlL308 devices. A compact
assembly technique reduced the total size.

LSB
COUNT
CONTROL

J

·-fi.':.::'.

0

ClK
K

K

FIGURE 6. BOO-MHz Decade Counter Using ECL Logic
and A TIL30B Display.

~ _~J
FIGURE 7. Nine-Digit Counter

A
B
FIGURE B. Two Counters with Identical Performance. Counter (A) Uses TfL306 Devices; Counter (B) Does not. Note how
many less Components are Needed in the Counter Using TIL306 Devices.

•
7-16

Figure 7 is a block diagram representation of a
nine-digit readout, consisting of an Eel decade counter
with a Tll308 display and a Schottky TTL decade counter
with a TIL308 display, asjust described, and seven TlL306
devices. Part count is minimal, and the complexity of the
PC Board is minimized.
Figure 8 is a photo of two counters with identical
performance illustrating the difference in component count
between a conventional counter consisting of SN7490,
SN7475, and SN7447 TTL integrated circuits, resistors,
with a display using Tll302 devices, and a counter using
TlL306 devices. Both counters are specified to operate up
to 15 MHz, using a six-digit readout. The counter using

FIGURE 9. A Portable IOO-MHz Counter Using Seven
TfL306 Devices.

Figure 10 shows all of the basic circuit boards and
components used in the counter shown in Figure 9 and
shown schematically in Figure 12. The upper board is
timebase. The center board is control. The bottom board is
counter and display.

in Figure 5 and seven TlL306 devices. This counter is
capable of measuring frequencies up to 100 MHz and lime
wilh lO-nanosecond resolution. Again minimum parI counl
and simplicily have been Ihe major objectives. The unit is
universal and the counler can be expanded inlo olher
funclions by adding circuils 10 the basic building block.

.

~'.

.'
..

••

,~;;f".,

~:, -

.

_.

~)~

~

-----~

.....

.,

,,"""
»

~~

~~-

""

lit

.
..

~ft1~*".,*.ilrM

~ ~

. .'"

.

~'.

,,,' ;;

FIGURE 10. The Three Basic Circuit Boards
of the Portable Counter.
EIGHT

STAG~SOF

FIGURE I I. The Three Basic Circuit Boards Fastened
Together into A Compact, High-Density Unit
S'I1490DECADE COUNTERS

A

CIJ

t:

o

';;
CO

(.)

C.
Q.

«

FIGURE 12. Schematic of A Frequency and Time Counter
Figure II shows the assembly technique for high
density component packing. The total size is 1.2 inches
high, 1.2 inches deep and 4.25 inches wide. This counter
can be incorporated in a lightweight and portable
instrument. Total power dissipation is 9 watts.
Figure 12 shows a complete schematic of a frequency
and time counter incorporating the 100-MHz stage shown

II

The counter has three main functional sections:
timebase, control, and counter.
The top part of Figure 12 is the time base. A IO-MHz
oscillator is formed using two SN74H04 TTL high-speed
inverters. The output is coupled through a third inverter to

7-17

isolate the oscillator from the rest of the circuit.
Capacitor C I is a coarse adjust and capacitor C2 is a fine
adjust. C2 should be a piston capacitor to allow finer
resolution during adjustment. For more accurate
requirements, a separate oscillator in a
temperature-controlled oven with AGe circuitry can
replace this circuit. The output of the oscillator is fed into a
divider chain consisting of eight SN7490 decade dividers.
Timing signals from 10 MHz' to 0.1 Hz are generated and
switch selectable as the time base. In the middle of the
schematic in Figure 10 is the control circuit. The purpose
of the control circuit is to gate the counter, and to generate
latch strobe, and reset signals.
The input of FIF I is the time base signal in the
frequency measuring mode or the unknown time period in
the time measuring mode.
With all circuits reset, the Q output of F IF2 holds a
high level at the JK inputs of F IF I. With a pulse coming
into the F/FI, Q of F/FI changes from 0 to I on the
negative·going edge. This I is applied to the first stage of
the counter, allowing it to count. F IF2 does not change
state since it changes only on a negativeiloing edge. With
the next pulse to the clock input of F IF I, F IF I changes
state on the negativeiloing edge, changing the Q output
from logical I to logical zero. This negativeiloing transition
sets FIF2 and at the same time stops the counter from
counting. With F IF2 set, Q of F IF2 is a O. A 0 at the JK
inputs of FIF I inhibits change with any additional pulses
coming into its clock input. The Q output of F IF2 is
connected to the input of a monostable multivibrator, 1/2
SN74123. This multivibrator generates a short
positive·going pulse at the Q output. The pulse width is
determined by the RC combination R6C5 and is set in this
application to 150 nanoseconds. The output signal is
inverted and applied to the Latch Strobe inputs of the
TIL306 and TIL308 devices. This pulse transfers the data
from the counters into the latches to be displayed.
The Qof FIF2 is connected to the JK inputs of F IF I
and also through a resistor to transistor T I. During
counting operation 02 is high, turning T\ on and
preventing C4 from charging. At the end of the count cycle,
the 02 is low, turning T\ off. The capacitor C4 begins
charging through resistors R4 and R5. R4 is adjustable and
allows a variation in the display time. R5 prevents the
charging current and the current through T I from

•
7-18

exceeding I mA when, R4 is turned to zero. Once the
charge across C4 reaches the firing potential of the
unijunction, T2, the unijunction generates a positive pulse
at Base 2, which is coupled into the monostable
multivibrator, SN74123. The positive pulse determined by
R7C6, 150 nanoseconds wide, is inverted by an inverter, 1/6
of SN74H04, and applied to the reset input of the TIL306
devices, the four F/Fs of the first counter stage, and the
two F/Fs in the control section. With F/F I and F/F2 reset
the JK inputs are reset to a high level by FIF2 and the
circuit ,is again ready to handle the incoming signa\.
The bottom part of the schematic in Figure 10 shows
the counter section. The first stage is made up of two
SN74SIl2, one SN74S1 I, and one TIL308. The two
SN74SIl2 circuits and one SN74SI1 circuit form a decade
counter consisting of four flip-flops and one gate. Schottky
TTL devices are used because of the speed requirement. If
only a 70-MHz counting rate is reqUired, this circuit could
be a single SN74196 circuit. The Q output of the fourth
F/F is connected to the clock input of the first TIL306.
The maximum count of the TIL306 is coimected to the
clock input of the next TIL306. This operation is the
asynchronous mode, which is acceptable for counter
purposes.
The counter is controlled by the two inputs to the
first FIF of the first decade. The clock input is the
unknown frequency in the frequency mode, or the known
time pulses from'the time base in the time-measuring mode,
The JK inputs are connected to the Q output of the control
F/F, .This signal gates the counter. As already explained, a
high level to the JK inputs allows the F/Fto change state
on a negative edge of a pulse applied to the clock input,
With the JK inputs low, the clock input does not affect the

F/F,
To complete the operation of the counter, the Latch
Strobe and the Reset are applied to the circuit as shown. S3
allows choosing between suppression or displaying of zeroes
to the left of the most significant digit, With the switch
closed, a ground is applied to the ripple blanking input of
the most significant digit. If this digit is a zero, the display
is blanked and the ripple blanking output goes zero, This
output is connected to the next digit al)d the process
repeated until all leading zeroes are suppressed, If switch S3
is opened the high-order 'zeroes are displayed. All that is
necessary for operation of the counter now is to provide a
power supply and a signal to be counted,

OPTOCOUPLERS IN CIRCUITS

optocouplers in circuits
There are many situations in which information must
be transmitted between switching circuits electrically
isolated from each other. This isolation has been
commonly provided by relays, isolation transformers,
and line drivers and receivers. There is, however,
another device that can be used quite effectively to
solve these problems. This device is the optocoupler.
The need for the optocoupler is most prominent in
areas where high voltage and noise isolation, as well
as small size, are considered important. By coupling
two systems together with the transmission of radiant
energy (photons), the necessity for a common ground
is eliminated - the main purpose of the optocoupler
- and the systems can be effectively isolated.

are shown for both devices since they are used to
determine the rise and fall times of the output current
waveform. Because a relatively large transistor base
area is necessary for increased sensor efficiency, the
collector-base junction capacitance is fairly large.
INPUT
STAGE

\

I

ANODE~

CATHODE3~
A

Four Texas Instruments optocoupler devices, the
TIL 102, TIL1 03, TIL 120, and TIL121, are discussed
in this report. How these devices can be used in
various circuits to provide proper isolation in many
systems will be a key part of this discussion. There
are many circuit applications for optocouplers;
however, the ones offered in this report are just
several which can be of special use. Complete
specifications tor these devices are not included here

OUTPUT
STAGE

0--+--,

~
_

COLLECTOR

BASE

EMITTER
, . . . - -.....-

.....--0 C

-+
INPUTS

OUTPUTS

Ko--..._...J

'---------0 B

FIGURE 1 . Terminal Connections and Equivalent

Circuit for the TIL 1 02/TIL 103

but are available' elsewhere in this book.

description of an optocoupler
Basically, a Texas Instruments optocoupler consists
of a GaAs (gallium arsenide) infrared-emitting diode
(IRED) as the . input stage and a silicon n-p-n
phototransistor as the output stage. The coupling
medium between diode and sensor is an infraredtransmitting ("IR") glass, as used in the
TIL 1 02/TIL 103, TIL 120/TIL 121. Photons emitted
from the diode (emitter) have wavelengths of about
900 nanometers. The sensor transistor responds most
efficiently to photons having this same wavelength.
Consequently, the input and output devices are
spectrally matched for optimum transfer
characteristics.
Equivalent circuits for the TIL 1 02/TIL 103 and
TIL 120/TIL 121 are shown in Figures 1 and 2. For both
families of devices, a current source between the
collector and base of the sensor is used to represent
the virtual base current generated by incident photons
striking the base. This base current is proportional to
the amount of radiation emitted from the diode. The
collector-base and base-emitter junction capacitances

ANODE
INPUT
STAGE'

CATHODE

CIl

A 0---"",-",

-+

~

c

CCB

INPUTS

FIGURE 2. Terminal Connections and Equivalent

Circuit for the TIL 120/TIL 121

...ca

.2
(.)

OUTPUTS

CaE

!:

E

c..
c.

«

II
7-19

characteristics of an optocoupler
100

To fully utilize the advantages offered by an
optocoupler, it is necessary that the circuit designer
become aware of some of its characteristics. The
difference in characteristics between the families is
attributed mainly to the difference in construction.

40

:: VCE = 5 V
IB=O
TA = 25'C

/
TIll03

The characteristics most useful to the designer are as
follows:
1. High-voltage isolation. High-voltage isolation
between the inputs and outputs is obtained by the
physical separation between emitter and sensor.
This isolation is possibly the most important
advantage of the optocoupler. These devices can
withstand large potential differences, depending on
the type of coupling medium and construction of
the package. The IR glass separating the emitter
and sensor in the TIL 102/TIL 103 and TIL 120/
TIL 121 has an isolation capability of 1000 V. The
isolation resistance is greater than 10 12 O.
2. Noise isolation. Electrical noise in digital signals
received at the input of the optocoupler is isolated
from the output by the coupling medium. Since the
input is a diode, common-mode noise is rejected.
3. Current gain. The current gain (output current/input
current) of an optocoupler is largely determined by
the efficiency of the n-p-n sensor and by the type
of transmission medium used. For the TIL 103, the
current gain is greater than unity, which in many
cases eliminates the need for current amplifiers in
the output. However, both the TIL 102/TIL 103 and
TIL 120/TIL 121 have output current levels that are
compatible with inputs of digital integrated circuits
such as 54/74 TTL. Figures 3 and 4 show typical
input-to-output current relationships.
4. Small size. The dimensions of these devices enable
them to be used on standard printed-wiring boards.
The TIL 102/TIL 103 and TIL 120/TIL 121 are built
in a metal can similar to a transistor package. The
physical dimensions of these packages are shown
in Figures 5 and 6.
These are some of the prime characteristics of an
optocoupler that can be used effectively to isolate two
systems .

•
7-20

II

TI l102

0.01
0.1

4

0.4

10

40

100

IF-Input-Diode Forward Cur~ent (rnA)

FIGURE 3. Typical Input/Output Current
Relationship for the TIL 1 02/TiL 103

100
40

VeE -5 V
TA=25'e

<"

!

~

a

TIL121

10
4

Tll120-

5

1/

~

'0
<.>

~

~

0.4

i

0.1

If

"2

.c 0.04
~
I
~

Ih

0.01
0.1

0.4

4

10

40

I F-Input-Diode Forward Current (rnA)

FIGURE 4. Typical Input/Output Current
Relationship for the TIL120/TIL121

100

,......,..--....- - 0 +5 V

!kn

!kn

TI11021T1 L 103
OR
TI L 1201TI1121

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICAll Y IN INCHES

INPUT

FIGURE 5. Dimensions of the TIL 102/T1L 103

THE COLLECTDR IS IN ELECTRICAL CONTACT WITH THE CASE
4LEADSO.483(0.0191D1A

U;lg~~O''''lo.o''l=

1.1 NON·INVERTING FUNCTION

..-"'--"'-0+5 V
4,96(0.1951
4,62(0.1781

01.

-'--

5.B4102301
4.31(0.2091
DI.

TlL1021T1L103

c::J'

OR

~

0'7~0301--ItJ

1kn

TIL120ITILI21

0--,

12,7(0.5001

MIN

INPUT

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICAllY IN INCHE$.

FIGURE 6. Dimensions of the TIL 120/TlL 121

typical circuit applications
1kn

The characteristics anp advantages of an optocoupler
enable the designer to use it in a wide range of circuit
applications. Important among the applications of an
optocoupler are those involving 54/74 TTL and similar
digital integrated-circuit families. As was mentioned
previously, an optocoupler has output currents
compatible with TTL inputs. This compatibility enables
it to be especially attractive as an interface element
between digital systems. The device is particularly
beneficial in applications where high voltage
differences may exist between systems. However, it
is not limited only to digital applications, as shown by
the following examples.

Ibl INVERTING FUNCTION

FIGURE 7. Schmitt Trigger Coupling Optocoupler
to 54/74 TTl Inputs

trigger as shown in Figure 8. For this circuit,
regeneration or positive feedback is provided by the
coupled emitters of Oland 02. The output of this
circuit is noninverting and is compatible with TTL
logic.
rJ)

driving 54/74 TTL
An effective method of coupling an optocoupler to TTL
circuitry is by using a Schmitt trigger that has an
output level compatible with standard TTL devices.
By coupling any of the Texas Instruments optocouplers to the SN7413, as shown in Figure 7, the
isolated signal at the input can be converted to TTL
logic levels. Noise immunity is provided by the coupler
as well as by the threshold level of the SN7413.
The optocoupler can also be employed as part of a
Schmitt trigger circuit that utilizes discrete
components. Because the output of the optocoupler
is a transistor, it can be used as the input stage to the

Another Schmitt trigger utilizing discrete components
that makes use of the base connection of the
TIL 102/TIL 103 is shown in Figure g. In this circuit,
positive feedback is provided from the collector of 02
to the base of 01. Resistor Rl limits the base current
to Oland keeps the device off when there is no signal
at the emitter. As with the circuit in Figure 8, the
output of this circuit is non inverting and compatible
with TTL levels.

C

o

".j:j

CO

.52
c.
c.



~
E
g
N

Figure 4. High Duty Cycle Output
(0.5 MHz) Signal

Figure 2. TCI0l Output Sigual,
High-Frequency (10 MHz) Operation

Inversion is required after the negative envelope is detected.
Also, the black level is the smallest negative output. Since
it can be inverted at any time, the signal should be processed
as negative video and inverted after processing. This blacklevel voltage is the reference for all the gray shades of
negative voltage below it. The reference level is still needed
even if only threshold detection is the required output.
Becausl' the output signal dc operating voltage is
variable, a level shift technique that can be keyed to the black
level of the CCD output signal is required to establish the
desired stable reference. Therefore, all signal processing
methods in Figure 1 start with a level shift and black level
clamp circuit. Figure 5 shows the level shift accomplished
by a coupling capacitor that is large enough so that no
significant change in charge occurs during a video-line
readout time. Four black reference pulses are placed before
OUTPUT
SIGNAL

r--:'--.,

CCO

BLACK LEVEL
VOLTAGE

HIGH-INPUT
Z AT LOW
FREQUENCY

~

OUTPUT

SWITCH
UNITY
GAIN

Figure 5. Low-Level Shift and
Black Level Clamp Block Diagram

Figure 3. Low Duty Cycle Output
(7.16 MHz) Signal

7-34

and after four isolation pulses at the beginning and end of
the data pulse train. This is done so that, during these black
reference pulses, the switch closes so the charge on the
capacitor is cla~ped during the black reference output time
of the CCD. The output of the amplifier then becomes the
black reference voltage. This method of restoring black to
a video data line is called line' clamping. This method is
widely used in video circuit design.

Another method of providing the level shift and black
level clamp employs a programmable reference diode, the
TI TlA31 C (see Figure 6). This method is unique in that
it is all direct-coupled and therefore must have automatic
drift-correction for the shift in CCD amplifier dc output
voltage, as well as for other temperature induced component
drifts.
However, like the line-clamped capacitor method, this
circuit stores a charge on the capacitor, C. The charge on
the capacitor determines the output black reference voltage
for the period of one readout line. The basic components in
the simplified schematic shown in Figure 6 operate as
described in the following paragraphs.
The major output signal path begins with the output
voltage of the CCD being applied to the base of the signalbuffer emitter follower (2N3904). The path proceeds through
the programmable reference diodes and ends at the levelshifted output. A load resistor and a negative supply provide
the operating current so that the output black level can be
zero or negative if desired. The FET resistor divider controls
the voltage drop through the reference diode and the FET
capacitor provides a temporary memory for the gate bias of
the FET over a line period. The comparator automatically
controls the output for correct FET gate bias voltage. Thus
the reference diode drops the correct value so that the output
matches the set in black reference voltage during the black
reference pulse in the output signal train, which is the strobe
time for the comparator. The comparator is strobed on for
each of the four black reference pulses so that, during each
pulse, charge current to the storage capacitor makes needed
corrections. In this manner, the comparator automatically
tracks changes to maintain the desired black reference output
voltage.
In the actual circuit (Figur~ 7), the black level is
clamped to zero volts within the limits of the offset voltage

of the comparator. Also, the charge current sent to the storage
capacitor is the difference between the current from the
22 M(l resistor and the current from the 2N3904 voltageto-current converter for the comparator. The l-I'F
comparator provides good ac coupling.

Threshold Detection
The preceding discussion covers the subjects of level
shift black-level clamp. The following is a discussion of the
various methods of signal processing. The first method as
shown in Figure 1 is threshold detection. The threshold-type
processor consists of the following three main elements:
I. The level shift and black-level clamp circuit (see
Figure 7)
2. A comparator with a negative threshold reference
3. A data-clocked D Type flip-flop to act as a
sample-and-hold.
This threshold-type processor has a true TTL output
that is zero for gray shades darker than the preset threshold
and a one for gray shades lighter than that threshold (see
Figure 8). The timing of the black-level strobe and the data
clock for the flip-flop is important in getting correct
operation. A complete circuit for a TC 102 is presented in
Figure 9, starting with a master clock driving the timing logic
with exposure control and finishing with CCD tlock drivers.
The clock oscillator frequency sets the data rate and
the monos table multi vibrator triggered by the clock sets the
reset clock pulse duration. Dividing the clock oscillator
output by two produces the transport clock signal for each
transport clock cycle. This signal goes to the preset input
of the second flip-flop. There it is synchronously released
to the clock-driver level translation transistor on command
by the borrow output of the exposure-time down-counter
chain to the clock input of the flip-flop.

VDD

CI)

c:
.2

CCD

..JlJL1UL

TL431C

...

BLACK REFERENCE
CLAMP PULSES

('1:1

CJ

C.
Co

BLACK REFERENCE
VOLTAGE INPUT

!lddv
10 kO

-..J

5V~

W

1 kn

00

veH

):,

~ ~~"o
RCK
I~~

O.';F

VeL

5V
CLOCK FOR DATA F/F

SN7474
5V

FREa~FREQ
ADJ

1-'10· kD-

15
620
~xeK

leONT

11

SN75369

10
'150 pF
9

XCK

~5V

y"

SN74S74I TCK

'h SN74S74

13
5V

Vee

L

WRCK

b8;.. .::x::eK-iI____~

h

, 0.1 I'F-=
5V

~TeK
100

Figure 9. Timing Logic and CCD Clock Drivers

>

~

'"o

Figure 10. Comparator Strobe Pulse Timing with Output Signal

OUTPUT
SIGNAL

~----------------~------OUTPUT

CCD
COMPARATOR

S2

BLACK-LEVEL
SET (0 VI

Figure 11. CCD Output Signal Buffering Circuit and Automatic Black Reference Block Diagram
+10 V-

VI

INPUT FROM
CCD

c:

OPEN

.';:::;
CO

51 CLOSED

o

r-----------------~f~$----------------~--------_+I---­
I
I
BLACK LEVEL
CLAMP

S2

I
I

r-1.-.---------1
I

CLOSED
~~--;---------T_----------------~fr5----------------_1
OPEN

BLACK LEVEL
SAMPLE

OV

Figure 12. Input/Output and Switch Timing for Automatic Wack Reference
7-39

.~
C.

c.

«

•

FROM
OUTPUT
OFCCD
15 kll

300 II

-20 V

+18V

GAIN - 0.95

+5 V
TRW A·TO·D
FLASH CONVERTER
MODEL TDC1021

,*O.l/tF
51 II

-=

1
2
3
4
5
6

-=
-1 V
O.l/tF-:I::'

0.1 /tF

-=

470 II

-6V

. -=

1 kll

7

O.l/tF,*

8

AGND
VIN
NC
VRT
VRB
VEE
NLiNV
VRM

CONVERT
D4LSB
03
02
D1 MSB
DGND
VCC
NMINV

1 kll

1 kll

CONVERTER
PULSE
FROM LOGIC
BINARY
OUTPUTS
LSB
1

16
15
14

2

1-3

4

12
11
10
9

MSB

8

-=
*,O.l/tF

+5 V

~--~--------~-e--6V

*,O.l/tF

+5 V

4700

+5V

--u-

3V
OV
BLACK-LEVEL
SAMPLE FROM
LOGIC

4.3 kO
510 II
F---+~

BLACK
LEVEL
SET
510 II
5.1 kll

3.3 kll

~---------4~--~~--------~--------6V

l ' 0.01

ALL PNP - 2N3906
NPN - 2N3904
DIODES - lN4148

/t F

3V-,,OV
U
BLACK·LEVEL CLAMP
FROM LOGIC

Figure 13. Automatic Black-Level Control and AID Converter
(0.1 to 10 MHz Operation)
The black-level clamp and black-level sample can be
timed to occur during the same dark reference pulses time.
However, the black-level clamp disturbs the signal and may
cause some errors in the black-level sample. The control
signals to S 1 and S2 are timed by the exposure-time counters
so that the switches will be turned on and off at the exact
black reference pulse times.
The signal is now conditioned so that it will interface
with the A/O converter. For high speed conversion at
10 MHz, the TRW TOCI021 4-bit parallel flash converter

7-40

is used. It requires no external sample and hold because of
its speed and design. The TOCI021 accepts a 0 to -1 V
input signal, requires a convert pulse to tell when the analog
signal is to be converted, and is powered from + 5 V and
- 6 V supplies. The convert pulse timing as related to the
output data of the CCO is important for correct AID
conversion.
As specified in the TOC 1021 data sheet, the analog
amplitude data sample is read 10 ns after the 50% point of

the convert pulse rising edge. In addition, the pulse is a
positive going TTL amplitude and should be nominally 30-ns
in duration. From this condition, the convert pulse should
be decoded from the timing logic so its leading edge is 10 ns
ahead of the desired sample point on the output pixel pulse
of the CCO. To approximate where to decode the convert
pulse, it is necessary to determine the time delay of the pixel
pulse arriving at the analog input of the converter relative
to the logic from which the convert pulse is to be decoded.
The propagation delay time between the reset clock falling
edge and the pixel's falling edge is determined to be 15 ns
(see Figure 14).
The reset clock rising edge is located where the
transport clock feedthrough starts to disturb the data pixel
(see Figure IS). Therefore, the convert pulse ends exactly
where the reset pulse starts and exists 30 ns before that point.

With the convert pulse timed correctly with the output data
stream, the final result of the converted data is as shown in
Figure 16.
The optical input for the CCO is a uniformly
illuminated seven-gray shaded and black test pattern. The
input uses an incandescent source operated from direct
current to prevent 60-cycle modulation. An IR filter cannot
be used because there is not enough light output to produce
a I-V CCO output. As a result of the IR plus visible light
combined, the gray shades are not uniform changes in
intensity. However, this condition does not detract
significantly from the presentation. The A/O converter is set
up for outputs of 0000 for a 0 V input and 1111 for a-I V
input. Therefore, an analog -0.067 V is equal to a one
binary bit state change.
This AID method is for a linear CCO. However, it can
be used with an area CCO by altering the black-level sample
and black-level clamp to coincide with black reference pulses
or pixels from the data streams of the image sensor. A good
example of how black reference pixels of area image-sensors
are located in their output data streams is in the processor,
consisting of a low-pass video filter and amplifier.

Low-Pass Video Filter and Amplifier

Figure 14. Conditioned CCO Output Signal
(Reset Clock)

>

~E

g
N

Figure 15. Conditioned CCD Output Signal
(Converter Pulse)

The video information in the output signal from an area
image sensor [e.g., a closed circuit television (CCTV)
camera] can be extracted with black reference level (pedestal)
by a low-pass video-filter type processor. Such a processor
(see Figure 17) has an automatic black-level clamp very
similar to the scheme used with the AID converter. In
addition, it has an automatic video level control with
composite blanking and composite sync to form a near
standard composite monochrome video output signal.
The automatic black-level clamp is very similar to the
one used with the flash AID converter. The coupling
capacitor and clamp transistor are the same and work into
a high input impedance amplifier with a positive gain of
approximately four. The video filter (LPF) with a low-pass
cutoff of 3.2 MHz (half the serial clock frequency) is driven
by this amplifier. The filter recovers the negative video
envelope by taking an average of the negative voltage under
the amplified output signal from the CCD. This computerdesigned filter has a low-overshoot fast-cutoff characteristic
so that video up to 3.2 MHz is passed and the serial clock
at 6.44 MHz is down 36 to 40 dB. In most cases, the video
has a low duty-cycle (see Figure 3). The ratio of time output
voltage is the video envelope value divided by time; it is at
the reset voltage value.
This low duty-cycle makes the output signal of the filter
small compared to the peak-input signal (often 25 % or less).
Gain is required to produce a reasonable 0.75 V signal. This
arrangement works because positive video is required and
the amplifier can invert the video while amplifying. The
black-level sample is taken from the output of this amplifier
before it is blanked. In this circuit, two PNP emitter followers
share a common load resistor and serve as a switch. The
output is sent to a simple two-transistor comparator. The

7-41

VI

c::

o

....ctI

()

a.
c..


'6

>
'6

:>

:>

ci

ci

20 "s/div

1 "s/div
DATA RATE 10 MHz
APPROXIMATELY 35% FULL WELL

Figure 22. Processed Output

CONCLUSION
The various methods described in the preceding
paragraphs are provided to familiarize the prospective CCD
user or designer with the requirements for both CCD output

signal conditioning and basic signal processing methods.
Selection of a particular method or approach will depend on
the application. The designer must expand and update these
methods based on his system requirements.

!II

c:

..;:::o
ctI

.~
0.
0.

«

II
7-47

):>
"C
"C
(")
Q)

=.o
::l

CJ)

II
7-48

LINEAR CCD OPERATION AT 10 MHz
This application report covers the following main topics:
I. The operation of the Texas Instruments TC I 02
128 x I linear image sensor at a 10 MHz data
rate
2. Restoration of the black reference to the data
using the dark-reference pixels of the CeO
3. Conversion of the output signal into binary data
without sample-and-hold
In addition, circuit approaches (with data) to solve the
problem of high-frequency clocking and the resulting
transport-clock feedthrough into the output signal are
discussed

CCD Clocking
Operation of the TC 102 at a 10 MHz data rate is
affected by the function of each clock relative to the other
clocks. The purpose of the CCO clocks is to move the data
from the photo sites to the detection circuit. The data is
generated at the photo sites in the form of a charge that is
proportional to the optical input. At the detection circuit, the
charge is converted to a proportional voltage that is applied
to the output of the CCO.
The first step in the conversion is to send the charge
from the photo sites, via the transfer gate region, to the CCD
shift registers, which are adjacent to the photo sites. The
transfer is made by applying a high transfer-clock pulse while
the transport clock is held high. The relationships among the
various clock levels required to move the charge are as
follows:
I. When a clock is high, it allows the charge to flow
into the area under the clocked region (a well)
and when a clock is low or most negative it
biocks the charge flow (a barrier).
2. When a clock makes a high-to-Iow transition, the
charge contained in its well is shifted to an
adjacent virtual well region.
3. When both clocks are high, the photo site charge
flows into the well of the transfer gate.
4. When the transport gate returns to the low state,
it acts as a charge barrier in the transport register.
The charge is then introduced into the virtual
wells of the transport register by the transfer
gate.
5. When the transfer gate returns to the low state,
it moves the charge into the transport register.
When the transport clock goes high to move the
charge toward the transport combining region,
the transport gate remains low to prevent charge
flow back to the photo sites.
The charges from adjacent even and odd photo sites
are simultaneously clocked along the even and odd transport
shift registers to the combining portion of the transport

register. Thus, an even charge packet and an odd charge
packet arrive in the region at the same time. To separate the
packets into correct numerical order, the reset clock is used
for the charge clocking. The reset clock goes high on each
half cycle of the transport clock. The reset clock selects each
packet in the correct order and applies them to a single
register. This single register converts the charge to a voltage
that is sent, via the reset MOS switch, to the V ref output.
After the optically generated charge is sent to the
output, the white reference portion of the output and the endof-scan signal are applied to their respective outputs. The
charge for both of these signals is introduced by clocked bias
on the injection diodes. The white-reference clock controls
the reverse bias on the injection diodes. A reduction of the
positive bias on these diodes causes a charge to be injected
into each transfer region (a clocked barrier-well). These
charges are applied at the opposite ends of the two transport
and end-of-scan registers from the charge detection diodes.
The proper relationship among the clocks must be maintained
for charge injection into the registers. The relationships are
as follows:
I. The white-reference clock must be low to
generate the charge.
2. The transfer clock must be high to form a
collecting well.
3. The transport clock must be high to clear all
extraneous charge from the virtual well region.
Under these conditions the charge is contained in the
transfer gate region (a process known as "fill") and is not
transferred to the virtual well region of the registers until
the transfer-clock voltage goes low.
However, before the transfer-gate voltage goes low,
the transport clock voltage goes low to block out-of-time
charge flow down the register. The injection diode voltage
goes high to create a deep potential well to prevent further
injection and to remove the excess charge contained in the
transfer region (a process known as "spill"). The removal
of the excess charge produces a charge packet that is
controlled by the size of the clocked well portion of the
transfer gate. This makes the injected charge to the register
dependent upon the well capacity of the CCD or the saturation
output level. To complete the transfer into the register, the
transfer clock is returned to the low state and provides a highcharge barrier.

High Speed Operation-l0 MHz
To provide a suitable clocking method for data rate
frequencies ranging from 5 to approximately 10 MHz, the
portion of the data period that must be dedicated to the reset
clock in order to get satisfactory operation must be
determined. The reset-pulse duration at the top 10 % should

7-49

•

not be less than 40 ns. In addition, the reset pulse should
start coincidentally with the transport-clock transition.
Coincidence is necessary because, if the reset pulse rises
before the transport-clock transition, there is danger of the
charge from a previous pixel being mixed with the charge
that is being read out. The purpose of placing the reset pulse
in coincidence with the transport-clock transition is to allow
as much time as possible for the output signal to settle and
data to be acquired.
At 10 MHz, the data period is only 100 ns. Ifthe reset
pulse is 40 ns plus rise and fall times, there are fewer than
50 ns for the data time. Two data periods are produced for
each period of the transport clock, TCK. A timing-logic
circuit that will produce the recommended timing can be
derived from the circuit on the data sheet. To derive the
circuit, the clock oscillator must be capable of running at
four times the data frequency or 40 MHz and the first divider
flip-flop must be able to clock at 40 MHz. The circuit shown
in Figure 1 is a modified version of the data-sheet circuit.
To provide IO-MHz operation, all logic ICs are Schottkyclamped for high speed. As in the data-sheet circuit, the first

frequency divider is four. This gives four quadraturecomplementary output waveforms (designated A, B, C, and
D in Figure 2) which represent the logic timing.
A delayed signal in phase with the A waveform is used.
for reset clock, RCK. Another frequency division by two
provides the TCK that is delayed by the SN75369 drivers.
To meet the XKC transfer clock timing as related to the TCK
as specified in the data sheet, the decoding of the E waveform
must be different from that in the data sheet circuit. This
difference causes the XCK to rise with the TCK transition
and to fall near the center of the second half-period of the
TCK so that the 50-ns minimum is satisfied at 10 MHz. The
minimum can be as low as 40 ns to accommodate.12-MHz
operation for most of the linear CCDs. The XCK logic signal
is used to gate a first half-period of the TCK through the
SN75453 white reference driver. Both the XCK and WRCK
repetition rates are determined by the SN74LS193 counter
chain. The counter chain down counts TCK periods to set
the exposure time or XCK repetition rate period. The
waveforms (see. Figure 2) are simplified in that circuit
propagation delay times have not been taken into account.

SN74S74

o

SN74S124

0

TEST POINTS

5·30 pF
TRIMMER

CAP

DEVICE
UNDER TEST

0.1 "F

VOO

22 II
RCK

VDO

XCK

VREF

10 kSl
22 II

VCL
VCH

WRCK

+5 V

--------COUNTER CHAIN

COUNTER
SN74lS193
!LSBI

COUNTER
SN74LS193

-

-

-

LO

I>----;:>CO
CU

SN74LS193
IMSBI

-

,

I
I

BORI>----i>

I

CAR

I

'-.:rA-;B,-,Cr-:r0..;c,LR,,-> 0.1 "F
SWITCH

-COUNTER -

+5 V - t " - - - - - - ,
VCH

l~D:n *--~-l
...-----+VCH

t---b:--;"-O:-:--:+- VCL

I
I l0kn
_____ ...J -20 V-+---4----'
VCL
AOJ

Figure 1. Waveform Generation Circuit for Testing Line Image Sensor (10 MHz)
7-50

CLK

A~

L
L' - - _....

8--'1...-_-'
C - ,..._ - - - '

.--r

D...J

I...-_ _ _....

TCK - - , ' - -_ _ _ _--'

E~
F

I

XCK

--.J

WRCK-----,~__________~

L

TCK~

r
JI'--__---'rl..._ _ _....r l..._ _ _....rlL-_ _ _....!lL-____r--L

RCK~
CONVERT

Figure 2. Logic Timing, 10 MHz Operation - TCI02
For the exact effect of circuit propagation delay times,
Figure 3 shows the TCK, RCK, XCK, and WRCK as seen
at the clock inputs of the TC 102.
Figure 3 shows that the reset clock rises coincidently
with the transport clock transitions. However, because of
the delay in the counter chain borrow output (SN74S00 and
SN74S74), the rise of the transfer clock is delayed from the
rise of the transport clock by 40 ns. The WRCK is delayed
by the same amount and the delay is not detrimental as long
as both clocks are present at least 30 ns before the TCK goes
low. When the reset clock pulse rise time is less than 15 ns,
the quantities specified in the data sheet may cause a small

increase in dark current. If the dark current increase is
detrimental to operation, then additional capacitance or
resistance can be added to the clock drive lead to increase
the rise time to 15 ns.
Figure 4 illustrates the output-signal delay of the CCO
with respect to the input of the clock. The transistor-buffered
output signal in the two white-reference regions is shown
with the RCK. The waveforms indicate that the delay between
the reset clock and the reset interruption in the output signal
is approximately 13 ns. This delay is reasonably accurate
even though there is a moderate amount of ringing on the
waveforms. The ringing is increased by the test equipment.

en
c::
o

'''::

m
CJ

0..
Q.

 CD
BOR.-

SN74LS193

+5 V

SN74LS193

14
CL
JO.1I'F

Figure 9. Black-Level Sample and Clamp Decoding

7-54

CL

Analog to Binary Signal Conversion

supplies. The convert-pulse timing as related to the output
data of the CCD is important for correct AID conversion.
The TD 1021 analog amplitude data sample is read
10 ns after the 50% point of the convert pulse rising edge.
In addition, the pulse is a positive TTL amplitude and should
be nominally 30 ns wide. From these conditions, the convert
pulse should be decoded from the timing logic so its leading
edge is 10 ns ahead of the desired sample point on the output

The signal is conditioned so it will interface with the
analog-to-digital converter (see Figure 10). For high-speed
conversion at 10 MHz, the TRW TDI021 4-bit parallel flash
converter is used. It requires no external sample-and-hold
because of its speed and design. It accepts a 0 to - I V input
signal, requires a convert pulse to tell when the analog signal
is to be converted, and is powered from 5 V and - 6 V
FROM
OUTPUT
OF CCD
3000

15 kO

'-----_'\ivv--+ 18 V

-20V~~~-----'---J

r---------~--------_.~+5V

TRW A·TO·D
FLASH CONVERTER

510

2
3

0.1 !,F

1 kO

AGND
VIN
NC

4
VRT
5
-1V-e~----------~ VRB
6
-6V-e----~ VEE
7
0.1 !'F-::I:'
NLiNV
":" 0.1!'F,*
8
VRM

CONVERT
D4LSB
03
02
D1 MSB
DGND
VCC
NMINV

CONVERT
PULSE
FROM LOGIC
BINARY
OUTPUTS
LSB
1

16
15
14

2

13

4

12
11

MSB

10

8

":"

9

,*0.1!'F

4700

1 kO

1 kO

+5V

' - - -___- - - -___-...- - 6 V
,*0.1!'F

+5 V

4700

3V

ov

--u-

BLACK-LEVEL
SAMPLE FROM
LOGIC

en
s:::::

o

'.j:;

«J

.2

Q.

5100

1.2 kO
*,0.1!'F

3.3 kO

,*0.1!'F

5.1 kO

ALL PNP - 2N3906
NPN - 2N3904
DIODES - 1N4148

'------~~-~~----~------6V

'T' 0.01 !,F
3V....,.
OV

U

BLACK-LEVEL CLAMP
FROM LOGIC

Figure 10_ Automatic Black-Level Control and AID Converter
(0.1 to 10 MHz Operation)

7-55

c.

«

II

pixel pulse of the CCD. In order to approximate where to
decode the convert pulse, it is necessary to determine the
time delay of the pixel pulse arriving at the analog input of
the converter relative to the logic from which the convert
pulse is to be decoded. The propagation delay time between
the reset clock high-to-low transition and the high-to-low
transition of the pixel is 15 ns (see Figure 11).
In addition, as shown in Figure 12, the reset clock
rising edge is located where the transport clock feedthrough
starts to disturb the data pixel. Therefore, the convert pulse
should end exactly where the reset pulse starts and should
exist 30 ns before that point. The timing diagram in Figure 2
indicates that this is the location shown for the convert pulse
and it is decoded from the logic symbols by an AND function
of logic signals D and delayed B as shown in Figure 1. Logic

signal B is delayed by one gate delay to narrow the convert
pulse by 10 ns so that pulse will be 40 ns or less wide. Since
the pixel delay was also taken with respect to the reset clock,
which is delayed from the logic signals used for decoding,
additional delay would be needed to place the convert signal
exactly as required. Two SN74S08 AND gates were added
to provide this delay. Figure 12 shows the CCD pixel data
entering the AID converter and the convert pulse show how
well this timing method works.
The results of this design approach are represented in
Figure 13. This optical input for the CCD is a uniform
illuminated seven-gray shade and black using an incandescent
source operated from direct current to prevent 60-cycle
modulation. No IR filter is used because there would not be
enough light output to produce a I-V CCD output. As a result

.2

t

~

E
o

o

~

o

N

50 ns/div

50 ns/div

Figure 11. Conditioned CCO Output Signal
Time Related to Reset Clock

Figure 12. Conditioned CCO Output Signal
Time Related to Convert Pulse

»

"C
"C

o

II)

r+

O·
:::J

en

BLACK

2

3

4

5

6

7

Figure 13. Conditioned CCO Gray Shade Signal and
AlO Converter Binary Outputs

7-56

of the IR plus visible light combined, the gray shades are
not uniform changes in intensity. However, this does not
detract significantly from the presentation. The AID
converter was set up for its output to be 0000 for a 0 V input
and 1111 for a -1 V input. Therefore, -0.067 V analog
equals one binary bit state change. Combining the digital
outputs with the conditioned CCD signal adds ringing and
spikes to the signal. The ringing and spikes are undesirable
in the final presentation at 10 MHz output. Figures 14, 15,
and 16 show relatively clean output signals.

Figure 16. Conditioned CCO Output with Optical Input
(10 MHz Operation - 50 ns/div)

>
'6

>E
o

~

CONCLUSION

500 nsfdiv

Figure 14. Conditioned CCO Output with Optical Input
(10 MHz Operation - 500 ns/div)

The methods and circuits presented for IO-MHz
operation of the TC 102 linear image sensor have been
directed at the elimination of the transport clock feedthrough
from the output signal, automatically maintaining the output
signal black reference, and digitization of each pixel output.
Although the TC 102 is highlighted in this report, ihe methods
described can be applied to the complete family of virtual
phase linear CCD devices for operating frequencies in the
range to 10 MHz.

>

~
E
o
o

>

III

c:

o

N

'';::
C'C
(J

c..
0.


'0
'0
(")

OJ
,..

o·

::s
(f)

II
7-58

OPERATING INSTRUCTION SET FOR
LINEAR CCO IMAGE SENSOR
Introduction
The PC401 and PC402 are the Evaluation Boards designed to facilitate operation of the Texas Instruments
CCO linear imager sensors. The PC401 operates the following types of imagers:
TC103 (2048 x 1 pixel organization)
TC104 (3456 x 1 pixel organization)
TC106-1 (2592 x 1 pixel organization)

Reference: Evaluation Kit Reference: Evaluation Kit Reference: Evaluation Kit -

TCK103
TCK104
TCK106-1

Reference: Evaluation Kit -

TCK102

The PC402 operates the following type of imager:
TC102

(128 x 1 pixel organization)

The boards are intended to be used as construction aids for experimental systems using the above-listed
CCO line-scan imagers. The necessary electronic systems required to drive the CCO imagers are included.
Only the input of power supplies and optics is required. The logic circuitry required to time the drive signals
correctly and the drivers that interface the logic to CCO levels is provided on the board.
Clocking control is provided by an internal clock generator that can produce data rates from 200 kilohertz
to 2 megahertz and can, if required, be overridden by an external clock input.
Exposure time control is also available internally with provision for exposure times from 2 to 16 milliseconds,
and can also be overridden by an external input.
Clock voltages for transport, transfer, and reset clocks are controlled as shown below.
•
•

The low-level voltage levels are directly controlled from one of the external supplies (VILl.
The high-level voltage levels are supplied from the board and can be adjusted (V CH adjust).

Power Supply Requirements
Three voltage supplies are required:
(1) Logic supply: + 5 volts, 300 milliamperes
(2) Imager output amplifier (VDD): + 16 volts min, 100 milliamperes
(3) Imager low-level clock (VILl: - 16 volts min, 100 milliamperes

Equipment Required for a Typical Setup
(1)
(2)
(3)
(4)

Oscilloscope (Tektronix Model 765)
Current-limited power supplies (two HP 6216A, one HP 6214A)
CCO imager being evaluated
Connectors for connecting board to power supplies

UJ

s:::
o

',tj

CO

(,)

Procedure
(1)

(2)
(3)

'Adjust the power supplies as follows:
Supply # 1: + 5 volts, current limit 250 milliamperes
Supply # 2: + 16 volts, current limit 70 milliamperes
Supply # 3: - 16 volts, current limit 70 milliamperes
Connect the power supplies to the evaluation board as shown in Figure 1.
Adjust the oscilloscope with the main sweep set to 2 milliseconds per division and vertical
sensitivity set to 5 volts per division. Connect the external sync of the scope to the white
reference clock (WRCK) test point shown in Figure 1 to synchronize the scope with the exposure
time rate.

C.

c.
!ldd~

-...J

a,
I\)

XCK

.

Jl-

11

~~
RCK

TCK

R

EXPOSURE TIME

.

.

~

L . . .- - -

U

lJl.Jl

JlJUW

n
~~

OS

,

2

3

4

3

13 14
EOS

~'~-n-n~~~~n-n-JL~~-"~~~'-M-~rL-~~~-"-rL-J~~"-rL-~

Outl?ut Signal (OS) pulse identification: I = tsolation pixel, IP

= Image

~~

pixel. B = Black reference pixel, WR = White reference pixel, X = Empty pixel.

FIGURE 2. OPERATING INPUT AND OUTPUT VOLTAGE WAVEFORMS (TC103 SHOWN)

ClK

EXT ClK
INPUT

EXT

52l~
FREQ
AOJ

~

ClK
J1

+5

+5 • •

ID

D.I

1

2

lDIFREa

0

•

•

j1210

PRE

alL.rc
CCO

~oo
VOO

I

D.l

9.1

pkO
•

~

III

•

TO EXT EXP
COUNTER
CHAIN
INPUT

_I'"

'I

1

E

"1 ...

__

...........

=

D.I

~ZS~~ __~N~~~6

+VOD

r

I .. : I

I?

~!llU

VREF

....... I

-kO

7.2 V

INPUT~
REF

5.1

7.5

kO

VSS

EXT
J3rINT
I

kOW-

A

18

U6 -14
a

kO

:~~

0 V OD
0+ 5V

~Vll
~GNO

EXT~!,TIME

INPUT

"
w

0,

II

. UI U2 U3 U4 U5 U6 VRI

SN74lS626N
SN74DDN
SN7474N
SN74SIDN
SN7474N
SN74lS123N
- uA78MD8C

Vil

FIGURE 3. EVALUATION BOARD SCHEMATIC

Applications

Vil

T.P.I
EOS
OUTPUT

CLK

,

,

A~

L

,

B

---j

C

-,

D

..J

E

----.J,,

F

------11~--------~----~------------------------------------

L..-_....Jr

..J

!-,_ _ _

,

'---_. . .r---

!
,

: ' - 60 ns WIDE

INT G
EXP

I

---J

EXT EXP{"V
TIME
INPUT
OPTIONS·

lL__

XCK

WRCK

~~

__________ ____-+__________ _______________________________
~

~

,:

~~-------+---~---------------------------~L_ _ _ _ _ _~

,

RCK

»
'0

~.
(')

III

:to
o
:::s
en
•

____......n~_ _ __....Jn~______....Jn~______~n~______~~
FIGURE 4. LOGIC TIMING WAVEFORMS

TO PIN 14

ONCONNECTOR--------~C~O~U~N=TE=R~.-----------.~----~C=O~U~N~T=ER~~--'
ISee Figure 1}

SN74LS193
ILSB}

Y.SN74LSOO

L,OAD

FROM PIN 7
ON CONNECTOR
(See Figure 11

COUNTER
SN54LS193
LOAD

5V

0.1~Fl

FIGURE 5. EXTERNAL TIME EXPOSURE CIRCUIT

7-64

SN54LS193
(MSB)
LOAD

A SIMPLE METHOD OF CONDITIONING THE OUTPUT OF A CCD IMAGER
FOR INTERFACING TO A DIGITAL SYSTEM
introduction
For applications such as bar-code reading or
optical character reading, it may be desirable to
convert the analog output of a Charge-Coupled
Device (CCD) imager into a binary waveform in
which one logic level represents "black" and the
other "white". The resulting binary waveform
could then be used as a data input to a digital
processing
system
for
decoding
(a
microprocessor, for example). A simple, lowcost method of producing such a waveform is
described below.
In the circuit shown in Figure 1, the voltage
output of a CCD imager is amplified, filtered,
rectified, and "digitized" to produce a simple
serial representation of the image. The input of
the circuit is required to be at standard video
level (approximately 1 volt peak-to-peak), and
the output is a TTL-compatible signal. Following
is a detailed description of how the circuit
operates.

description of circuit
The signal from the CCD imager is first amplified
by the LM318 (U2). C1 removes the DC offset
from the input, and R1 and R2 determine the gain
of the amplifier. The gain of the amplifier is
approximately - 200 and severely clips the
signal. Because the circuit needs only to
distinguish "black" from "white", no
information is lost, and in fact the clipping is
actually beneficial to the performance of the
circuit. This benefit is gained by clipping because
it partially removes some of the undesired
transfer clock components from the· signal. Next,
the inverted and amplified signal is rectified by

CR1. This limits the negative swing of the
rectifier output to one diode drop below ground.
At this point, the "black" level is at or slightly
below zero volts. Next, the signal is integrated
by R3 and C3. This acts as a low-pass filter,
removing most of the transfer-clock component
from the signal. The final stage is a comparator,
U2, with hysteresis (provided by the
combination of R4 and R5) that squares the
filtered and rectified signal and provides the final
TTL-level output. Because the transfer clock
cannot be completely removed from the signal
with only a single-order integrator, there is still
some high-frequency noise riding on the signal
at the input to the comparator. The hysteresis
allows the comparator to ignore the effects of
this noise. Without the hysteresis, spurious
pulses would appear at the output.

evaluation
This circuit was breadboarded and tested using
the TCK 103 evaluation board to provide the
necessary timing signals and preamplification of
the CCD imager output. The TCK 103 uses a
Texas Instruments TC 103 imager, a
2048-element linear imager that is capable of
providing resolution up to 240 points per inch.
It was found that there was some degradation
of the imager resolution due to the coarseness
of the integration. It is believed that a higher
order integrator might improve resolution. One
factor to consider in analyzing the value of this
circuit implementation in a practical application
would be to weight the low cost and minimal
parts count of this solution against a more
complicated and expensive solution yielding less
degradation of resolution.

7-65

CIl

s::::

o

+-'

CO

(.)

C.
C.

cd:

II

C2
5 pF
R2
100 kO

Cl
10 ~F

Rl

15 V

470 !l

VIN ~I-----"'\N-""'-I

(6)

15V

R3
1.6 k!l

(31
(7)

>----;.....-VOUT
-15 V

C3

CRl
lN914

-15 V
R4

3.3 k!l

R5
24 k!l

FIGURE 1. SCHEMATIC DIAGRAM OF CCD IMAGER SIGNAL CONDITIONING CIRCUIT

»

'0
'0

o·
Q)

:!'.

o

::J

VI

7-66

TCI03-ISM Interfacing Circuit
Introduction
Features of TCI03
• 2048 X I Sensor Element Organization
• Virture-Phase Technology
• Enhanced Blue Response
• Output Signal Approximately ... I V Peak-to-Peak
• Maximum Operating Frequency . . . 10 MHz
• Effective Sensing Length ... 254 nm (A4, B4 size)

TCI03-ISM Scanner Module
The TC103-ISM is used to evaluate the TC103 CCD. It contains the optical system,
the driving circuit for the CCD, and a TC103 CCD, itself. The operating frequency is
2 MHz. The output data rate is 500 kHz. The resolution is 200 dots per inch and there
are 2048 sensing elements. Hence, the time required to scan a line is 4.096 ms.
The illumination source for the TC103-ISM is a white fluorescent lamp. The
wavelength is between 390 nm and 600 nm. The effective optical path is 333 nm.
The output signals from the TC 103-ISM are the Output Signal (OS) and the Transfer
Clock (XCK). The waveform of OS can be observed with an ocsilloscope.

en

Interfacing Circuit

t:

The interfacing circuit is designed to interface the CCD Scanner Module and a PC.
The image is first scanned by the scanner and the data is sent to the PC. The resulting
image is printed by a laser printer such as the TI Omnilaser 2115.

o

";:;

ca

()

c.
c.

The input signals consist of the Master Clock (MCLK), the Transfer Clock (XCK), <{
and the Scanner Output Signal (OS). The analog signal is sent through the threshold.
comparator (V I, LM3II) and becomes a digital signal. The threshold voltage is set by
observing the comparator output waveform (VI, pin 7). A flip-flop (V2A, SN74LS74)
is used to clock the data and a serial-to-parallel shift register (V3, SN74LSI64) is used
to convert 8 bits of data into one byte. Since there are 2048 bits of data for one image
line, a total of 256 bytes of memory space needed.

7-67

The XCK is used to indicate at which point the image data starts. When this signal
goes from low to high, OS contains the beginning of the image data. Hence, a flip-flop
(U2B, SN74LS74) is used to start the reading sequence.
From the timing diagram of the scanner module, it is found that the first valid data
appears after 87 Master Clock (MCLK) cycles. An 8-bit counter (U8, SN74LS590) is
used to do the counting. As seen in Figure 2, 89 MCLK cycles are then chosen to be
the delay time before reading any data into memory. When the counter counts to 89, it
will trigger the CCDPALl (U9) and a Start-Of-Scan (SOS) signal will, in turn, trigger
another flip-flop (U12B, SN74LS74), which will reset the CCDPAL2 (UlO). The input
clock to CCDPAL2 is MCLK divided by 4 and this clock is further divided by 8 and
becomes the counter clock for the second counter (U6, SN74LS590). A write-enable signal
will also be generated and fed to the SRAM chip (US, IDT6116). The addresses for the
SRAM chip are produced by the second counter with increment for every 32 MCLK cycles.
Therefore, all the 256 bytes of data will be stored into the SRAM without any software
control.
When the second counter counts to 256, a Ripple-Carry-Over (RCO) pulse will be
sent to the TMS7742 microcontroller. This pulse will interrupt the microcontroller and
an interrupt service routine will begin.
T~S7742

PrograDl

There are 4 110 ports in the TMS7742. In this circuit, ports A and B are used as
110 cOlitroller ports. Port C is used as the data/address port and port D controls the upper
3 bits of the SRAM address.
When the program is initialized, 110 signals are sent to clear and disable all flipflops and counters. Next, the flip-flops and counters are enabled and the TMS7742 enters
the idle state until interrupted by RCO signal from the second counter (U6). When
interrupted, the address is placed on port C and latched (U7, SN74LS373). A read-enable
signal is then sent to the SRAM and read from port C. After reading all 256 bytes of
data, the data is sent to a computer via the on-chip serial port and a data-level converter
(U14, MC1488). A laser printer then prints the resulting image.

•

It should be noted that the TMS7742 is operated in the single-chip mode. The
operating frequency is 5 MHz. Only 174 bytes are used to write the interfacing program .

Application
The CCD scanner and the interfacing circuit are designed to be used as an optical
reader. Applications include facsimile scanner, optical recognition, and PC scanner.
The interfacing circuit is capable of producing a correctly scanned line of image
on a laser printer and a thermal head printer. Demonstrations were performed with good
results.
7-68

J2
MClK

'------t-

Tf-----+-iI

I I

i

I II II I

MClK
IPO
4

IP1
IP2
S IP3
17--_ _::-I
1-O---_ _c:-I
6IP4

1-"----7-1~

IPS
IP6
IP7

1191

CClK~

SOS
Rfw

SOS~
-

~

OEI

1

01 S
02 6
9
03
12
04
1S

CCOPAL2
_ _ 18
CClK
RAMWE
17
CClK2

RST

IEJ--4

AO
A1

00 2

01

U10

U9

CCDPAL 1
1S
QA 1

--

t~l-

~ICJ

~I_K

--7

A2
A3
A4
AS

as

16
06 19
07

RAMOE 12
_
11
OE

A6
A7

SN74lS373

PAL16R4

U11
28
29 CO
30 C1

t----IDJ

PAL16R4

01 24
02

32 C3
31
C2
33 C4

SV

-'NT3 12
-INT1 r'~3_ _ _....-.,,--

34 C5
-RESET

35 C6
C7

~_---l-l

f-;';:;4;-_____=__ t---ir'-'--"~
--''!.r::..:....·

83/TXDI:3,,7,_ _ _ _ _ _ _

3
4 80
_---j--___

SV

DO 27
26

Vee

~181

~:

5

X1

1
10 BS(R/W)
9 A4

____+___-=81

X2 17

Me 36
Vss 40

8 A3
7 A2

v

C1

\-:-:-----:i
,
~PF

X1

=

5 MHz C2

30 pF

6 A1
AO
.......

ffi

TMS7742

II

Figure 1. Application Notes on TCI03-ISM and Interfacing Circuit

Applications

MC1488

MCK

I

~
IAIXCK

j.-5 x MCK

Jl
I
I

~---------------------------------------------------

IBI CCLRJ

I
I
ICI CCLK1

n

- - ' - - - B9 x MCK - -...
~

(0)8081

-4--------~~\~S----~

L ___________________________________

lEI 8082
je-32X MCK1
IFI CCLK2

,IG) RAMWE

IHI -INT3

Figure 2. Timing Diagram for CCD Scanner Interface Circuit

II
7-70

Scanner Module Timing Descriptions
Timing Diagram No.1
This timing diagram shows the scanner module input logic and the PAL® IC output
logic.

Scanner Module Logic Inputs
SIGNAL NAME
MCLK

DESCRIPTION
Master clock for all input logic and PAL® logic. This clock operates at
2 MHz at 50% duty cycle.
This signal provides the clock logic for the CCO transfer clock input.

XCK

The period of this signal determines the integration time for the CCO.
This period has been set to. 5 ms for the scanner module.

CLMP

This signal provides the clamp logic for the video processing circuitry.

PAL® Ie Output Logic
SIGNAL NAME
TCK
RCK
S/H
RCK

DESCRIPTION
This signal provides the clock logic for the CCO transport clock input.
The frequency of this signal is 1/2 the data rate.
This signal provides the clock logic for the CCO reset clock input. The
frequency of this signal (500 kHz) determines the data rate.
This signal provides the sample and hold logic for the TL 1591
Sample/Hold IC.
This signal provides the conversion logic for the TL5501 6-bit A/O
converter.

Timing Diagram No. 2
I/)

This timing diagram shows the relationship between the master clock (MCK) and
all the CCD clock signals (XCK, TCK, RCK) for the sample/hold logic (S/H) and the
AID converter logic (RCK).

c:

o
',t:j
CtI
(,)

C.
C.
<{

II
PAL is a registered trademark of Monolithic Memories, Inc.
7-71

r--l
MCK

SCANNER MODULE LOGIC INPUTS

[:t::~~~~~=~~~~~::JI
~~--IIf-------

XCK

CLMP

n

I

. .---,i---

~

I

5 ms

FREQ .. 2 MHz

-------~~

n

FREQ .. 200 Hz

4.162 ms

------I~ ---I~.0.838
I
L
...

ms

FREQ '" 200 Hz

I
I
I

PAL® ICLOGIC OUTPUTS

TCK

[:::~~~~~_~._~==~~~~~~::=]I

FREQ - 250 kHz

RCK

[:I:~~~~~::=::~~~~~:::J

FREQ .. 500 kHz

[=!:~~~~~~=~~~~~~::=J

FREQ - 500 kHz

StH

Figure 3. Timing Diagram No.1

II
7-72

FREQ - 500 kHz

FREQUENCY - 2 MHz
I

SCANNER MOOULE
LOGIC INPUTS

I

I

XCK I

I

FREQUENCY - 200 MHz

I

I
I

CLMP I

I

FREQUENCY - 200 MHz

I

I

I

PAl' IC LOGIC
OUTPUTS

I

TCKI

I

I

I
I

~ i
I
I

U
LJl
I
i

I
I

:I
:

I

I

I

I

RCK!

RCK

I

S/H::

I

I

I

FREQUENCY = 250 kHz

U

U

n

n

n

I

n
I I
I

U
I

n

n

Figure 4. Timing Diagram No.2

-;-J
'-J

W

II

Applications

nL-_

FREQUENCY -

500 kHz

FREQUENCY -

500 kHz

FREQUENCY -

500 kHz

Timing Diagram No.3
This timing diagram shows the entire frame time for the scanner module. The video
signal is shown at various points in the video processing.
SIGNAL NAME

051
052

DESCRIPTION

This is the raw CCD signal. The dark reference pixels (19) precede the
active pixels (2048).
This is the sample and held video signal. The sample and hold removes
the reset to zero between pixels.
This is the amplified, inverted, clamped, and buffered video signal.

053

This signal is available at the output connector of the scanner module.
It is also input into the 6-bit AID for digitizing.

II
7-74

MCK

oooooooooomoomoommrumrumrumrumrumrumrumrumru~~~~~~~~MMOOOOOOOOOOOOOOOOOOOOoooooomlOO~~~mm~
I

XCK

t-~-------------INTEGRATION TIME--------------~"I

L-....;

I!

5)(MCK~

~4)(MCK

I~

I'

,j

j

RCK~
I 1
2
3
4
5
6
OSI~
I 10
I
I
I
I
I
I

16

17

18

19

2

3

4

OARK REFERENCE PIXELS - - - - -

2047 2048

v~

SIH~
I

OS2~

I
I
I
I
I
I
I
I
I
I
I

~

87xMCK---------~

I
I
I
I

OS3

I
I
I

NOTES: RCK logic is the AID conversion clock
as' is the CCD video signal
OS2 is the sample and hold video Signal
OS3 is the amplified and inverted video signal

Figure

s.

(I)

c:

-

.2

Timing Diagram No.3

C'O

o

a.
a.

~

II
7-75

;;; S

N

IX)

£

'"'".a

0

C!
!:
0


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:26 18:18:01-08:00
Modify Date                     : 2017:07:26 19:30:29-07:00
Metadata Date                   : 2017:07:26 19:30:29-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:ae90a012-e68c-c945-8bca-3d74d52c7d1d
Instance ID                     : uuid:0544bc0d-62fa-504e-aa90-12d5329002ef
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 515
EXIF Metadata provided by EXIF.tools

Navigation menu