1990_TI_Programmable_Logic_Data_Book 1990 TI Programmable Logic Data Book

User Manual: 1990_TI_Programmable_Logic_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 737

Download1990_TI_Programmable_Logic_Data_Book 1990 TI Programmable Logic Data Book
Open PDF In BrowserView PDF
-1.!1 TEXAS

INSTRUMENTS

Progratntnable Logic

1990

1990

General Information

~_D_a_ta__S_h_ee_t_s___________________f.~

~_A_P_P_li_c_at_io_n__R_e_p_o_rt_s____________~F_lII

~_D_e_v_e_lo_p_m_e_n_t_s_y_s_t_e_m_s__________-,!_~•

~_M_e_c_h_a_n_ic_a_I_D_a_t_a________________b~

The Programmable Logic
Data Book

TEXAS
INSTRUMENTS

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. TI advises its customers to obtain the latest
version of the relevant information to verify, before placing orders,
that the information being relied upon is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. ,Unless mandated by government
requirements, specific testing of all parameters of each device is not
necessarily performed.
TI assumes no liability for TI applications assistance, customer product
design, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or
relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1990, Texas Instruments Incorporated

INTRODUCTION
In this data book, Texas Instruments (TI) presents technical information on TI's broad line of programmable
logic devices (PLDs), including the high-speed 5-ns PAL® circuits and high-density, low-power, Erasable
Programmable Logic Devices (EPLDs). More than 40 PLD functions in industry standard architectures are
available from Texas Instruments. For high-performance applications, TI also offers several high-speed
programmable state machine devices. Where low power and reprogrammability are key considerations,
TI offers its family of EPLDs. This data book includes specifications on existing and future products including:
• High-performance, low-power IMPACT'" and IMPACT-X'" 20- and 24-pin standard
PAL ® circuits including Tl's new 5-ns device
• Tl's high-speed 6-ns programmable address decoder, TIBPAD18N8-6
Flexible, '22V10-architecture macrocell PAL® ICs including TI's enhanced version, the
TIBPAL22VP10
• Fast, 50-MHz programmable state machines, including enhanced versions of the
'82S 105B/167B and TI's complex TIBPLS506
• The TIBPSG507, programmable sequence generator with internal 6-bit counter and 50-MHz
performance
• Higher speed versions of the industry standard EPLD architectures including the 20-ns EP630.
Texas Instruments high-speed programmable bipolar devices utilize TI's advanced IMPACT'" and new
IMPACT-X'" technologies. IMPACT-X'" uses trench isolation and polysilicon emitters to increase performance
and reduce power dissipation compared to traditional processes. For EPLDs, TI utilizes its 1.0 micron highvoltage EPIC'" CMOS technology to combine the benefits of low power and higher speed.
This volume contains design and specification data for 183 device types. Package dimensions are given
in the Mechanical Data section in metric measurement (and parenthetically in inches). In some cases,
package dimensions are included in the actual data sheet.
Several programmable logic application reports have been incorporated into this book to aid in the design
of TI PLDs. User notes also explain considerations for programming and testing of PLDs in a manufacturing
environment.
Complete technical data for any Texas Instrument semiconductor product is available from your nearest
TI field sales office, local authorized TI distributor, or by calling Texas Instruments at 1-800-232-3200.

PAL is a registered trademark of Monolithic Memories Inc.
IMPACT. IMPACT·X, and EPIC are trademarks of Texas Instruments Incorporated.

v

-

vi

General Information

1-1

Contents
Alphanumeric Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Explanation of Function Tables ................................
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hardware/Software Manufacturers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIIMPACT'M Design Centers ........................... . . . . . . .

1-2

Page
1-3
1-5
1-10
1-11
1-12
1-13

ALPHANUMERIC INDEX

Page

Page

EP330-15C

EP330-251 .......
EP330-25M .....

2-3
2-3
EPB10DC-25 .. . . . . . , ' . . . . . . , '
..
2-15
EPB10DC-30 . . . . . . . , .
..
2-15
EPB10DC-35
EPB10DI-40 ......
2-15
2-15
EP610JC-25
....................
2-15
EP610JC-30 ..............
2-15
EPB10JI-40 .....
EPB10JC-35
.................
2-15
EPB10lC-25.
EPBl OlC-30 ...
2-15
EPB10lC-35
EPB10Ll-40 ..
2-15
EPB10PC-25 . '" . . . . . . " . . . . . . . .
2-15
EP610PC-30
.. , . . . . . . . . . . . . . . . . .
2-15
2-15
EPB10PI-40 ..
EPB10PC-35
EPB30-20C
EP630-251 ....
2-33
EP630-25M ..
2-33
2-47
EP910DC-30 . . . . . . . , . ... .... .. ,
EP910DC-35
2-47
2-47
EP910DI-45 ..
EP910DC-40
EP910JC-30
2-47
... , ' " ....
2-47
EP910JC-35
EP910JC-40
EP910JI-45
2-47
2-47
EP91 OlC-30 .
2-47
EP910lC-35 ....
EP910Ll-45
2-47
EP910lC-40
EP910PC-30
2-47
EP910PC-35
2-47
EP910PC-40
EP910PI-45
2-47
EP1Bl0JC-35 . . . . . . . . . . . . . .
2-65
EP1Bl0JC-45
EP1Bl0JI-45
2-B5
2-B5
EP1Bl0lC-35 ...
EP1Bl0lC-45
2-B5
EP1Bl0Ll-45
PAl16lBAM
2-B7
PAL lBlBA-2M ....
2-B7
PAL1BR4AM
2-B7
PAL 16R4A-2M ..
2-B7
PAl16RBAM ...
2-B7
PAllBRBA-2M ..
2-B7
PAllBRBAM
2-B7
2-87
PAllBRBA-2M ..
TIBPAD1BNB-7C . . . . . . . . . . . . . . . . . . .
2-99
2-107
TIBPAD1BNB-BC . . . . . . . . . . . . . . . . . . . . .
TIBPAllBlB-7M ......... 2-115
TIBPAllBlB-5C
TIBPAL1BlB-7C
2-131
TIBPAllBlB-l0M ...
TIBPAL16I.,B-l0C
TIBPAl 16lB-12M .....
2-149
TIBPAl16lB-12C
TIBPAllBlB-15M .....
2-1B7
TIBPAllBlB-15C
TIBPAl 1 BlB-20M .....
2-1Bl
TIBPAllBlB-25C
TIBPAl 1 BlB-30M .
2-195
TIBPAllBR4-7M ..
2-115
TIBPAllBR4-5C
TIBPAL1BR4-7C
TIBPAllBR4-10M
2-131
TIBPAL16R4-10C
TIBPAllBR4-12M
2-149
TIBPAL1BR4-12C
TIBPAllBR4-15M
2-1B7
",

",

TIBPAl16R4-15C
TIBPAl16R4-20M
TIBPAllBR4-25C
TIBPAllBR4-30M
TIBPAllBRB-5C
TIBPAllBRB-7M
TIBPAllBRB-7C
TIBPAL1BRB-l0M
TIBPAl lBRB-l OC
TlBPAllBRB-12M
TlBPAllBR6-12C
TlBPAl16RB-15M
TIBPAl 16R6-1 5C
TlBPAl16R6-20M
TIBPAl16R6-25C
TlBPAl16RB-30M
TIBPAllBRB-5C
TlBPAL1BRB-7M .. ' ...
TIBPAllBRB-7C
TIBPAl16RB-l0M
TIBPAllBRB-l0C
TlBPAL1BRB-12M
TIBPAL lBRB-12C
TIBPAL1BRB-15M
TIBPAl lBRB-l 5C
TIBPAllBRB-20M
TlBPAllBRB-25C
TlBPAllBRB-30M
TIBPAl20lB-5C
TIBPAl20lB-7M ...
TlBPAl20lB-7C
TlBPAl20lB-l0M .
TlBPAl20lB-l0C
TIBPAl20lB-12M .
TIBPAl20lB-15C
TIBPAl20lB-20M .
TIBPAl20lB-25C ..
............
TIBPAL20l8-15CNl
TIBPAl20lB-25CNl
................
TlBPAl20R4-7M ...
TIBPAl20R4-5C
TlBPAl20R4-7C
TlBPAl20R4-10M
TlBPAl20R4-10C
TlBPAl20R4-12M
TIBPAl20R4-15C
TlBPAl20R4-20M
TIBPAl20R4-25C .....
. . . . . ... . ..
TlBPAl20R4-15CNl ....
TlBPAl20R4-25CNl .
TlBPAl20RB-7M
TlBPAl20RB-5C
TlBPAl20RB-l0M
TlBPAl20RB-7C
TIBPAl20RB-l0C
TlBPAl20RB-12M
TIBPAl20R6-15C
TIBPAl20RB-20M
TIBPAl20RB-25C .
TIBPAl20RB-15CNl .
TIBPAl20RB-25CNl .
TIBPAL20RB-5C
TlBPAl20RB-7M
TIBPAl20RB-7C
TlBPAl20RB-l0M
TlBPAl20RB-12M
TIBPAl20RB-l0C
TIBPAl20RB-15C
TIBPAl20R6-20M
TIBPAl20RB-25C .
TIBPAl20RB-15CNl ..
TIBPAl20RB-25CNl .
TIBPAl22Vl0C
TIBPAl22Vl0-15C
TIBPAl22Vl0-20M
TIBPAl22Vl0AM.
TIBPAl22Vl0AC
TIBPAl22VP10-20C
TIBPAI.,22VP10-25M
TIBPAlR19lBC
TIBPAlR19R4C
TIBPAlR19R6C
TIBPAlR19RBC
TIBPAl T19lBC.
TIBPAlT19R4C

TEXAS ."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

,'

2-1Bl
2-195
2-115
2-131
2-149
2-1B7
2-1Bl
2-195
2-115
2-131
2-149
2-1B7
2-1Bl
2-195
2-209
2-225
2-243
2-2Bl
2-275
2-2B7
2-2B7
2-209
2-225
2-243
2-2Bl
2-275
2-2B7
2-2B7
2-209
2-225
2-243
2-261
2-275
2-2B7
2-287
2-209
2-225
2-243
2-261
2-275
2-2B7
2-2B7
2-299
2-311
2-299
2-325
2-337
2-337
2-337
2-337
2-349
2-349

1-3

ALPHANUMERIC INDEX

Page

1-4

Page

TIBPALT19R6C ............................ 2-349

TICPAL22Vl0Z-35C. . . . . . . . . . . . . . . . . . . . . . . ..

2-429

TIBPALT19RSC ............................ 2-349

TIEPAL 1OH 16ET6C .........................

2-445

TIBPLS506C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

2-361

TIEPAL10H16PS-3C .........................

2-451

TIBPSG507C

TIBPSG507M . . . . . . . . . ..

2-375

TIEPAL10H16PS-6C ......................... 2-457

TIBS2S 105BC

TIBS2S105BM ..........

2-391

TIEPAL10H16TE6C ......................... 2-463

TIBS2S167BC

TIB82S167BM ..........

2-403

TIEPAL 10016ET6C. . . . . . . . . . . . . . . . . . . . . . . . ..

2-469

TICPAL16LS-55C ........................... 2-415
TICPA116R4-55C . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-415

TIEPAL10016PS-3C ......................... 2-475
TIEPAL 10016TE6C. . . . . . . . . . . . . . . . . . . . . . . . .. 2-4S1

TICPAL 16R6-55C . . . . . . . . . . . . . . . . . . . . . . . . . ..

2-415

TIFPLAS39C

TICPAL 16RS-55C . . . . . . . . . . . . . . . . . . . . . . . . . ..

2-415

TIFPLAS40C .............................. 2-4S7

TICPAL22Vl0Z-25C. . . . . . . . . . . . . . . . . . . . . . . ..

2-429

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-4S7

GLOSSARY

INTRODUCTION
These symbols. terms. and definitions are in accordance with those currently agreed upon by the JEDEC Council
of the Electronic Industries Association (EIA) for use in the USA and by the International Electrotechnical
Commission (lEC) for international use.
PART 1 - GENERAL CONCEPTS AND CLASSIFICATIONS OF CIRCUIT COMPLEXITY
Chip-Enable Input
A control input that when active permits operation of the integrated circuit for input. internal transfer.
manipulation. refreshing. and/or output of data and when inactive causes the integrated circuit to be in
reduced-power standby mode.
NOTE: See "chip-select input."
Chip-Select Input
A gating input that when inactive prevents input or output of data to or from an integrated circuit.
NOTE: See "chip-select input."
Field-Programmable Logic Array (FPLA)
A user-programmable integrated circuit whose basic logic structure consists of a programmable AND array
and whose outputs feed a programmable OR array.
Gate Equivalent Circuit
A basic unit-of-measure of relative digital-circuit complexity. The number of gate equivalent circuits is that
number of individual logic gates that would have to be interconnected to perform the same function.
Large-Scale Integration (LSI)
A concept whereby a complete major subsystem or system function is fabricated as a single microcircuit.
In this context. a major sybsystem or system. whether digital or linear. is considered to be one that contains
100 or more equivalent gates or circuitry of similar complexity.
Medium-Scale Integration (MSI)
A concept whereby a complete subsystem or system function is fabricated as a single microcircuit. The
subsystem or system is smaller than for LSI. but whether digital or linear. is considered to be one that
contains 12 or more equivalent gates or circuitry of similar complexity.
Memory Cell
The smallest subdivision of a memory into which a unit of data has been or can be entered. in which it
is or can be stored. and from which it can be retrieved.
Memory Integrated Circuit
An integrated circuit consisting of memory cells and usually including associated circuits such as those
for address selection. amplifiers. etc.
Output-Enable Input
A gating input that when active permits the integrated circuit to output data and when inactive causes
the integrated circuit output(s) to be at a high impedance (off).

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012. DALLAS, TEXAS 75265

1-5

GLOSSARY

Output-Enable Input
A gating input that when active permits the integrated circuit to output data and when inactive causes
the integrated circuit output(s) to be at a high impedance (off).
Programmable Array logic (PAl®)
A user-programmable integrated circuit which utilizes proven fuse link technology to implement logic
functions. Implements sum of products logic by using a programmable AND array whose outputs feed
a fixed OR array.
.
Read/Write Memory
A memory in which each cell may be selected by applying appropriate electronic input signals and the
stored data may be either (a) sensed at appropriate output terminals, or (b) changed in respons'e to other
similar electronic input signals.
Small-Scale Integration (SSI)
Integrated circuits of less complexity than medium-scale integration (MSI)
Typical (TVP)
A calculated value representative of the specified parameter at nominal operating conditions (Vee = 5 V,
T A = 25 o e), based on the measured value of devices processed, to emulate the process distribution.
Very-large-Scale Integration (VlSI)

a

A concept whereby a complete system function is fabricated as single microcircuit, In this context, a
system, whether digital or linear, is considered to be one that contains 3000 or more gates or Circuitry
of similar complexity.

PAL is a registered trademark of Monolithic Memories Inc.

'-6

TEXAS . "
INSTRUMENTS
POST OFFice BOX 655012 • DALLAS, TeXAS 75265

GLOSSARY

PART 2 -

OPERATING CONDITIONS AND CHARACTERISTICS (IN SEQUENCE BY lETTER SYMBOLS)

f max

Maximum clock frequency
The highest rate at which the clock input of a bistable circuit can be driven through its required
sequence while maintaining stable transitions of logic level at the output with input conditions
established that should cause changes of output logic level in accordance with the specification.

ICC

Supply current
The current into' the

Vee

supply terminal of an integrated circuit.

ICCH

Supply current, outputs high
The current into' the Vee supply terminal of an integrated circuit when all (or a specified number)
of the outputs are at the high level.

ICCl

Supply current, outputs low
The current into' the Vee supply terminal of an integrated circuit when all (or a specified number)
of the outputs are at the low level.

IIH

High-level input current
The current into' an input when a high-level voltage is applied to that input.

III

low-level input current
The current into' an input when a low-level voltage is applied to that input.

10H

High-level output current
The current into' an output with input conditions applied that, according to the product
specification. will establish a high level at the output.

10l

low-level output current·
The current into * an output with input conditions applied that. according to the product
specification. will establish a low level at the output.

lOS flO)

Short-circuit output current
The current into' an output when that output is short-circuited to ground (or other specified
potential) with input conditions applied to establish the output logic level farthest from ground
potential (or other specified potential).

10ZH

Off-state (high-impedance-state) output current (of a three-state output) with high-level voltage
applied
The current flowing into' an output having three-state capability with input conditions established
that. according to the production specification. will establish the high-impedance state at the output
and with a high-level voltage applied to the output.
NOTE: This parameter is measured with other input conditions established that would cause the
output to be at a low level if it were enabled.

10Zl

Off-state (high-impedance-statel output current (of a three-state output) with low-level voltage
applied
.
The current flowing into' an output having three-state capability with input conditions established
that. according to the product speCification. will establish the high-impedance state at the output
and with a low-level voltage applied to the output.
NOTE: This parameter is measured with other input conditions established that would cause the
output to be at a high level if it were enabled.

*Current out of a terminal is given as a negative value.

TEXAS . "
INSTRUMENTS
POST OFF1CE BOX 655012 • DALLAS, TEXAS 75265

1-7

GLOSSARY

VIH

High-level input voltage
An input voltage within the more positive (less negative) of the two ranges of values used to
represent the binary variables.
NOTE: A minimum is specified that is the least-positive value of high-level input voltage for which
operation of the logic element within specification limits is guaranteed.

VIK

Input clamp voltage
An input voltage in a region of relatively low differential resistance that serves to limit the input voltage
swing.

VIL

Low-level input voltage
An input voltage level within the less positive (more negative) of the two ranges of values used to
represent the binary variables.
NOTE: A minimum is specified that is the most-positive value of low-level input voltage for which
operation of the logic element within specification limits is guaranteed.

VOH

High-level output voltage
The voltage at an output terminal with input conditions applied that, according to the product
specification, will establish a high level at the output.

VOL

Low-level output voltage
The voltage at an output terminal with input conditions applied that, according to the product
specification, will establish a low level at the output.

ta

Access time
The time interval between the application of a specific input pulse and the availability of valid signals
at an output.

tdis

Disable time (of a three-state output)
The time interval between the specified reference points on the input and output voltage waveforms,
with the three-state output changing from either of the defined active levels (high or low) to a highimpedance (off) state. (tdis = tPHZ or tPLZ).

ten

Enable time (of a three-state output)
The time interval between the specified reference points on the input and output voltage waveforms,
with the three-state output changing from a high-impedance (off) state to either of the defined active
levels (high or low). (ten = tpZH or tpzU.

th

Hold time
The time interval during which a signal is retained at a specified input terminal after an active transition
occurs at another specified input terminal.
NOTES: 1 . The hold time is the actual time interval between two signal events and is determined by
the system in which the digital circuit operates. A minimum value is specified that is the
shortest interval for which correct operation of the digital circuit is guaranteed.
2 . The hold time may have a negative value in which case the minimum limit defines the longest
interval (between the release of the signal and the active transition) for which correct
operation of the digital circuit is guaranteed.

tpd

1-8

Propagation delay time
The time between the specified reference points on the input and output voltage waveforms with
the output changing from one defined level (high or low) to the other defined level. (tpd = tPHL or
tPLH)·

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 76265

GLOSSARY

tpHL

Propagation delav time. high-to-Iow level output
The time between the specified reference points on the input and output voltage waveforms with
the output changing from the defined high level to the defined low level.

tPHZ

Disable time (of a three-state output) from high level
The time interval between the specified reference points on the input and the output voltage waveforms
with the three-state output changing from the defined high level to a high-impedance (off) state.

tPLH

Propagation delav time. low-to-high-Ievel output
The time between the specified reference points on the input and output voltage waveforms with
the output changing from the defined low level to the defined high level.

tpLZ

Disable time (of a three-state output) from low level
The time interval between the specified reference points on the input and output voltage waveforms
with the three-state output changing from the defined low level to a high-impedance (off) state.

tpZH

Enable time (of a three-state output) to high level
The time interval between the specified reference points on the input and output voltage waveforms
with the three-state output changing from a high-impedance (off) state to the defined high level.

tPZL

Enable time (of a three-state output) to low level
The time interval between the specified reference points on the input and output voltage waveforms
with the three-state output changing from a high-impedance (off) state to the defined low level.

tsu

Setup time
The time interval between the application of a signal at a specified input terminal and a subsequent
active transition at another specified input terminal.
NOTES: 1 . The setup time is the actual time interval between two signal events and is determined
bV the system in which the digital circuit operates. A minimum value is specified that is
the shortest interval for which correct operation of the digital circuit is guaranteed.
2 . The setup time may have a negative value in which case the minimum limit defines the
longest interval (between the active transition and the application of the other signal) for
which correct operation of the digital circuit is guaranteed.

tw

Pulse duration (width)
The time interval between specified reference points on the leading and trailing edges of the pulse
waveform.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

1-9

EXPLANATION OF FUNCTION TABLES

The following symbols are used in function tables on TI data sheets.
H

high level (steady state)

L

low level (steady state)

i

transition from low to high level

t

transition from high to low level
value/level or resulting value/level is routed to indicated destination

~

value/level is reentered

X

irrelevant (any input, including transitions)

Z

off (high impedance) state of a 3-state output

a ... h

the level of steady-state inputs A through H respectively

QO

the level of Q before the indicated steady-state input conditions were established

00

complement of QO or level of
established

Qn

JL

1.....[
TOGGLE

0

before the indicated steady-state input conditions were

level of Q before the most recent active transition indicated by t or i
one high-level pulse
one low-level pulse
each output chahges to the complement of its previous level on each transition indicated by
t or i.

If, in the input columns, a row ,contains only the symbols H, L, and/or X, this means the indicated output is
valid whenever the input configuration is achieved and regardless of the sequence in which it is achieved. The
output persists so long as the input configuration is maintained.
If, in the input columns, a row contains H, L, and/or X together with i and/or t, this means the output is valid
whenever the input configuration is achieved but the transition(s) must occur following the achievement of
the steady-state levels. If the output is shown as a level (H, L, QO, or 00), it persists so long as the steady-state
input levels and the levels that terminate indicated transitions are maintained. Unless otherwise indicated, input
transitions in the opposite direction to those shown have no effect at the output. (If the output is shown as
a pulse,
SL or l..S ,the pulse follows the indicated input transition and persists for an interval
dependent on the circuit.)

1-10

TEXAS . "
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

ORDERING INFORMATION

PAL@ NUMBERING SYSTEM AND ORDERING INSTRUCTIONS
Factory orders for leadership PAL® circuits described in this catalog should include a nine-part type number
as explained in the example below. Exclude the prefix when ordering standard PALs.

EXAMPLE:

TIB

16

PAL

R

8

-15

C

N

prefix------------'/
TIB
TIC
TIE

= Bipolar PAL
= CMOS PAL
= ECl PAL

Product Family Designator --_..../

Input Register Type - - - - - - - - - - "
No Designator::::: No Input Register

A

=

D-Type Aegister

T : : : Transparent Latch Register
Number of Array Inputs _ _ _ _ _ _ _ _. J
Output Configuration Designator _ _ _ _ _ _ _ _ _J
R ::::: Registered

L ::::: Active Low
X ::::: Exclusive-OR

Number of Outputs in the
Designated Configuration - - - - - - - - - - - - '

Performance Designator - - - - - - - - - - - - - - - '

HIGH SPEED

LOW-POWER

A
-7

A·2
-25

Temperature Range - - - - - - - - - - - - - - - - - - '
C = Commerical (O°C to 70°C)

M

=

Military (- 55°C to 125 eCI

PackageType-----------------------~

N

=

20-Pin Plastic DIP

= 20-Pin Ceramic DIP

= 24-Pin.
= 24·Pin,
JW = 24-Pin,
NW = 24-Pin,

NT
JT

300·mil Plastic DIP
3pO-mil Ceramic Dip
BOO-mil Ceramic DIP
BOO-mil Plastic DIP

FN = Plastic Chip Carrier
FK = Ceramic Chip Carrier

W

=

Ceramic Flat Pack

PAL is a registered trademark of Monolithic Memories Inc.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655012 • I)ALLAS, TEXAS 75265

1-11

HARDWARE/SOFTWARE MANUFACTURERS

ADDRESSES FOR PAL® AND FPLA PROGRAMMING AND SOFTWARE MANUFACTURERSt
adams-macDonald enterprises, Inc.
800 Airport Road
Monterey, CA 93940
(408) 373-3607

LOGICAL DEVICES INC. (CUPL Design Software)
1201 N.W. 65th Place
Ft. Lauderdale, FL 33309
(305) 974-0967
(800) 331-7766

ADVIN SYSTEMS INC.
1050-L East Duane Ave.
Sunnyvale, CA 94086
(408) 984-8600

MINC Incorporated (PLDesigner Software)
1575 York Road
Colorado Springs, CO 80918
(719) 590-1155

ANVIL SOFTWARE
427-3 Amherst St.
Suite 341
Nassua, NH 03063
(617) 641-3861

Micropross
Parc d' acivite des Pres
5, rue Denis Papin
59650 VILLENEUVE D'ASCQ;
FRANCE
(20) 47.90.40

Bytek Corporation
508 Northwest 77th St.
Boca Raton, FL 33487
(407) 994-3520

STAG MICRO SYSTEMS
1600 Wyatt Drive
Santa Clara, CA 95054
(800) 227-8836

BP MICROSYSTEMS
10681 Haddington,
Suite # 190
Houston, TX 77043
(713) 461-9430

System-General Corp.
3FI., No.6, Lane 4,
Tun Hwa N. Rd.,
P.O. Box: 53-591
Taipei, Taiwan, R.O.C.
886-2-9173005
886-2-9111283 FAX

DATA I/O (ABEL Design Software)
10525 Willows Road, N.E.
Redmond, WA 98073-9746
(800) 247-5700
INLAB INC. (proLogic Design Software)
2150-1 West 6th Ave.
Broomfield, CO 80020
(303) 460-0103
(800) 237-6759

System-General America
510 South Paric Victoria
Malpitas, CA 93035
(408) 263-6667
(408) 262-9220 FAX

tTexas Instruments does not endorse or warrant the suppliers referenced. Presently, Texas Instruments has certified DATA 1/0, Sunrise,
Structured Design and Digital Media. Other programmers are now in the certification process. For a current list of certified programmers,
please contact your local TI sales representative.
I

1-12

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655012 • DA;LlAS, TEXAS 75265

TI IMPACT™DESIGN AND SERVICE CENTERS

Design and programming assistance is offered by Texas Instruments IMPACT" Design and Service Centers.
The centers are equipped with the latest in software and hardware tools for design, debugging, prototyping,
and production on a local basis. Supported by a professional engineering staff, the centers provide complete
code development, device programming, symbolization, functional and DC parametric testing.
NORTHERN CALIFORNIA

BOSTON

MARSHALL IMPACT CENTER
336 Los Coches Street
Milpitas, CA 95035
(408) 942-4600

HALL-MARK IMPACT CENTER
6 Cook Street
Pinehurst Park
Billerica, MA 01821
(617) 935-9777

IMPACT is a trademark of Texas Instruments Incorporated.

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

1-13

-

1-14

Data Sheets

2-1

-

2-2

EP330
HIGH·PERFORMANCE 8·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE IEPLD\
OCT~8ER 19B~

J OR N PACKAGE

• Programmable Replacement for
Conventional TTL, 74HC, and 20-Pin PAL®
Family

(TOP VIEW)

VCC

• UV-Light-Erasable Cell Technology
Provides:
- Reconflgurable Logic
- Reprogrammable Cells
- Full Factory Testing for 100%
Programming Yields

I/O
I/O
I/O
I/O

I/O
I/O
I/O
I/O

• High-Voltage EPIC'M Process Allows for
Higher Performance as follows:
Maximum tpd: - 25M ... 25 ns
-201 •.. 20 ns
-15C ... 15 ns

FNPACKAGE

• User-Programmable Output Logic
Macrocells Provide Flexibility in Output
Types with:
- Selectable for Registered or
Combinational Operation
- Output Polarity Control
- Independently User Programmable
Feedback Path

(TOP VIEW)

i?u

_d~g

==

W
I/O
I/O
I/O
I/O
I/O

• Programmable Design-Security Bit
Prevents Copying of LogiC Stored in Device

~
a:
0-

t-

• Advanced Software Support Featuring
Schematic Capture, Interactive Netlist,
Boolean Equations, and State-Machine
Design Entry

O
::J
Pin assignments in operating mode

• Package Options Include:
- 20-pin Ceramic Dual-In-Llne (J) - UV-erasable
- 20-pin Plastic Dual-In-Line (N) - One-Time Programmable
- 20-pln Plastic Chip Carrier (FN) - One-Time Programmable

C

o
a:

0-

description
general
The EP330 features advanced· CMOS speed and very low power. It combines the High-Voltage
Enhanced-Processed Implanted CMOS (HVEPIC'M) process with ultraviolet-light-erasable technology. Each
output has an Output-logic-Macrocell (OlM) configuration that allows user definition of the output type. This
EPlD provides a reliable low-power substitute for numerous high-performance TTL PAls.
AVAILABLE OPTIONS
PACKAGE TYPE
SPEED

TA
RANGE

CLASS

CERAMIC
DUAL·IN·LINE
(J)

-55'C to 125'C

25 ns

EP330·25MJB

N/A

N/A

- 40'C to 85 'C

20 ns

EP330·201J

EP330·201N

EP330·201FN

O'C 10 70'C

15 ns

EP330·15CJ

EP330·15CN

EP330-15CFN

PLASTIC
DUAL·IN-LINE
(N)

PLASTIC
CHIP CARRIER
(FN)

EPIC IS a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories, Inc.
PRODUCT PREVIEW documents contain Information on
products In the tormatlve or design phase of development.
Characteristic data and other specifications are design
goals. Texas Instruments reserves the right to change or
discontinue these products wHhout notice.

TEXAS

~

INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright © 1989, Texas Instruments Incorporated

2-3

EP330
HIGH-PERFORMANCE 8-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
description (continued)
The EP330 can accommodate up to 18 inputs and up to eight outputs. The 20-pin 300-mil package contains eight
macrocells each using a programmable AND/fixed-OR structure. This AND-OR structure yields eight product
terms for the logic function as well as an individual term for Output Enable.
The EP330 output-logic macrocell allows the user to configure output and feedback paths for combinationa.1 or
registered operation either active high or active low. With a tpd of 15 ns, the EP330 may be configured as a
low-power substitute for popular PAL devices such as the PAL16XXB series or the PAL16XX-15 series.
The CMOS EPROM technology makes it possibleforthe EP330to operate at an active power-consumption level
that is less than 75% of equivalent bipolar devices without sacrificing speed performance. This technology also
facilitates 100% generic testability as well as UV-light erasability. As a result, designs and design modification
can be quickly effected with a given EP330 without the need for post-programming testing.
Programming the EP330 is accomplished with the use ofthe TI EPLD development system, which supports four
different design entry methods. When the design has been entered, the A+PLUS software (which is the heart
of the development system) performs automatic translation into logical equations, performs complete Boolean
minimization, and fits the design directly into an EP330. The device can then be programmed to achieve
customized working silicon within mir]utes at the designer's desk.

'"0

The EP330M is characterized for operation over the full military temperature range of -55°C to 125°C. The
EP3301 is characterized for operation from -40°C to 85°C. The EP330C is characterized for operation from O°C
to 70°C.

::D

o
C

c:

functional description

o-I
'"0

::D

m
m

<

:E

Externally, the EP330 provides ten dedicated inputs (one of which may be used as a synchronous clock input)
and eight I/O pins that may be configured for input, output, or bidirectional operation.
The logic diagram shows the complete EP330, while Figure 1 shows the basic EP330 macrocell. The internal
. architecture is organized with the familiar sum of products (AND-OR) structure. Inputs to the programmable AND
array (shown running vertically in Figure 1) come from two sources: first, the true and complement of the ten
dedicated input pins and second, the true and complement of the eight feedback signals, each one originating
from an I/O architecture-control block. The 36-input AND array encompasses a total of 72 product terms
distributed equally among the eight macrocells. Each product term (shown running horizontally in the logic
diagram) represents a 36-input AND gate.
As shown in the logic diagram, the outputs of eight product terms are ORed together, then the output of the OR
gate is sent as an input to an exclusive-OR gate. The purpose of this exclusive-OR gate is to allow the user to
specify the polarity of the output signal by using the invert-select EPROM cell (active high if the EPROM cell is
programmed and active low if it is not programmed).
The exclusive-OR output then feeds the I/O architecture control block. The control block configures the output
for registered or combinational operation. In the registered configuration, the output is registered via a positive
edge-triggered D-type flip-flop. In this condition, the feedback signal going to the array is also registered and
comes directly from the output of the D-type flip-flop. In the combinational configuration, the output is
nonregistered and the feedback signal comes directly from the I/O pin. In the erased state, the EP330 contains
the same architectural characteristics as the PAL16L8.

2-4

TEXAS .Jf

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

EP330
HIGH·PERFORMANCE 8·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
logic diagram (positive logic)
12

CLK/I

1

16

20

24

28

32

35

Vb~

DE
0

7

2

19

~

~JARCHITECTURE~
I/O

~

~,ARCHITECTURE~
1/0

18

~

~,ARCHITECTURE~
I/O

17

~

~JARCHITECTURE~
I/O

16

I/O

CONTROL

~~

DE
0

7

3

DE
0

'::"

7

4

I/O

CONTROL

I/O

CONTROL

DE
0

7

5

CONTROL

a..
I-

0

~

::::)

§l>-

7

~JARCHITECTURE~
I{O

15

I/O

CONTROL

C

0

a:
a..

DE
0

7

7

W

a:

I/O

DE
0

6

-==>w

§l>-

~JARCHITECTURE~
I/O

§l>-

~ARCHITECTUR~~
I/O

14

I/O

CONTROL

r
~

DE
0

8

7

13

I/O

CONTROL

I

DE
0

§l>-~J
I

12

I/O

I{O
ARCHITECTURE~

9

7

CONTROL

I
11
~

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-5

EP330
HIGH-PERFORMANCE 8-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
CLOCK

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

OE

}-Ok

VO

J"

12

RCHITECTUR~

CONTROL

h~ ) i\ l\.

l\. 4 ~l\.4

+

~

t

4

~

X. ~

) 4 ~ 4

~44 ~~~

n

••• ••

FEEDBACK

N.OTES: A. This diagram shows one of the eight macrocelis within the EP330.
B. The double·arrow lines (t) show I/O feedback from a macrocell.

FIGURE 1. LOGIC ARRAY MACRO CELL

."

output-enable product term

oC

The output enable (DE) product term determines whether an output signal is allowed to propagate to the output
pin. If the output of the DE product term is low, then the output buffer becomes a high-impedance node, thus
inhibiting the output signal from reaching the output pin. For combinational configurations, this DE product term
can be used to allow for true bidirectional operation.

£1

The EP330 contains eight separate OE product terms, one per I/O pin. If it is desired that all outputs be enabled
or disabled simultaneously, use an identically programmed product term at each of the outputs. If different
outputs are to be enabled under different conditions, different DE product terms for each specific output may
be defined .

:D

c

."

:D

~

1/0 architecture

-

Figure 2 shows the different output configurations that can be chosen for any ofthe eight I/O pins on the EP330.
Because of the individuality of each I/O architecture control block, both registered and combinational output can
be chosen on a given EP330 device.
In the combinational configuration, either active-high or active-low output polarity can be chosen. Pin feedback
or no feedback is also optional. In the registered configuration, the user has control over output polarity and may
choose to use the internal feedback path or no feedback. Any I/O pin can be configured as a dedicated input
by choosing no output and no feedback from the array. In the erased state, the I/O architecture is configured
for a combjnatlonal active-low output with pin feedback.

2-6

TEXAS -If

INSIRUMENTS
POST OFFice BOX 655303 ." DALLAS, TEXAS 75265

EP330
HIGH-PERFORMANCE 8-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
CLOCK

(PIN 1)

OE

AND
ARRAY
36 INPUT

AND
ARRAY
36 INPUT

OUTPUT/POLARITY

FEEDBACK

OUTPUT/POLARITY

FEEDBACK

Combinational/High

Pin, None

D Register/High

D Register, None

Combinational/low

Pin, None

D Register/low

D Register, None

None

Pin

None

D Register

3:

w

~
a:

c..
PAL compatibility
o
Figures 2(a) and 2(b) show how an EP330 can be configured as a drop-in replacement for two commonly used ::;)
(b) Registered Conflgratlon

(a) Combinational Configuration

FIGURE 2. I/O CONFIGURATIONS

~

Tables 1 and 2 provide additional information conceming the EP330 as a replacement for the 20-pin PAL family
of devices,

c
o
a:

TEXAS -If

2-7

members of the 20-pin PAL family: the PAL 16L8 and the PAL16R8. When configured in these manners, the
EP330 is both a functional replacement, as well as a pin-to-pin replacement, for the PAL16L8 and PAL 16R8,

INSJRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

c..

EP330
HIGH·PERFORMANCE 8·MACROCELL
ERASABLE PROGRAMMABLE LOGlC DEVICE (EPLD)

19

--'---CC::::J

36·INPUT
PROGRAMMABLE

AND ARRAY

2

18

3

17

9

12

11

•

"Invert Select" EPROM cell is in the erased state providing active-low outputs.

•

"Combinational Mode" is chosen providing Combinational Output with Input (Pin) Feedback (COIF).

•

8-product-term OR gate compared to 7·product-term OR gate on PALI6L8.

•

Pin feedback to the array at 12 through 19 is not available in PAL16L8.

FIGURE 3. EP330 CONFIGURATION FOR REPLACING A PAL16L8

2-8

TEXAS ~

INSIRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

EP330
HIGH·PERFORMANCE 8·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)

19

2

18

3

17

4
16

3=
W

5>
W

5

a:

15

a.

I-

0

6

::J

14

C

0

a:

7

a.
13

8

12

9

11

•

"Invert Select" EPROM cell is in the erased state providing active-low outputs.

•

"Registered Mode" is chosen providing Registered Output with Registered Feedback (RORF).

•

Complement of pin 11 is used as common DE term for all eight output pins.

FIGURE 4. EP330 CONFIGURATION FOR REPLACING A PAL16RB

TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-9

EP330
HIGH-PERFORMANCE 8-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
TABLE 1. CONFIGURATIONS FOR 20-PIN PAL

RE~LACEMENT

PAL

EP330

EP330

I/O

OUTPUT/

PART NUMBER

PIN NUMBER

MACROCELL NUMBER

CONFIGURATION MODE

POLARITY

10H8

12-19

1-8

Combinational

Comb/High

None

1018

12-19

1-8

Combinational·

Comb/low

None

12

8

Combinational

None

Pin

13-18

2-7

Combinational

Comb/High

None

19

1

Combinational

None

Pin

12

8

Combinational

None

Pin

13-18

2-7

Combinational

Comb/low

None
Pin

12H6

1216

14H4

14L4

"'tJ

::D

o

16C1

C

c:

o-I

16H2

16L2

"'tJ

::D

~
~

19

.1

Combinational

Non~

12-13

7-8

Combinational

None

Pin

14-17

3-6

Combinational

Comb/High

None

18-19

1-2

Combinational

None

Pin

12-13

7-8

Combinational

None

Pin

14-17

3-6

Combinational

Comb/Low

None

18-19

1-2

Combinational

None

Pin

12-14

6-8

Combinational

None

Pin

15

5

Combinational

Comb/Low

None

16

4

Combinational

Comb/High

None

17-19

1-3

Combinational

None

Pin

12-14

6-8

Combinational

None

Pin

15-16

4-5

Combinational

Comb/High

None
Pin

17-19

1-3

Combinational

None

12-14

6-8

Combinational

None

Pin

15-16

4-5

Combinational

Comb/low

None

17-19

1-3

Combinational

None

Pin

16H8

12

8

Combinational

Comb/High/Z

None

&

13-18

2-7

Combinational

Comb/HighiZ

Comb

16HD8

19

1

Combinational

Comb/High/Z

None

1618

12

8

Combinational

Comb/Low/Z

None

&

13-18

2-7

Combinational

Cdmb/Low/Z

Comb

16LD8
16R4

16R6
16R8
16P8

16RP4

16RP6
16RP8

2-10

FEEDBACK

19

1

Combinational

Comb/Low/Z

None

12-13

7-8

Combinational

Comb/low/Z

Comb

14-17

3-6

Registered

Reg/Low/Z

Reg

18-19

1-2

Combinational

Comb/low/Z

Comb

12

8
2-7

Combinational

Comb/Low/Z

Comb

13-18

Registered

Reg/Low/Z

Reg

19

1

Combinational

Comb/low/Z

Comb

12-19

1-8

Registered

Reg/Low/Z

Reg

12

8

Combinational

Comb/Option/Z

None

13-18

2-7

Combinational

Comb/Option/Z

Comb

19

1

Combinational

Comb/Option/Z

None

12-13

7-8

Combinational

Comb/Option/Z

Comb

14-17

3-6

Registered

Reg/Option/Z

Reg

18-19

1-2

Combinational

Comb/Option/Z

Comb
Comb

12

8

Combinational

Comb/Option/Z

13-18

2-7

Registered

Re/Option/Z

Reg

19

1

Combinational

Comb/Oplion/Z

Comb

12-19

1-8

Registered

Reg/Option/Z

Reg

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

EP330
HIGH-PERFORMANCE 8-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
TABLE 2. DEVICE SPECIFICATIONSt
HIGH-SPEED PAL SERIES 16XXBI-15

HIGH-SPEED EPLD

PARAMETER

SYMBOL

EP330

PAL16LBBI-15

PAL16RBBI-15

45mA

180mA

180mA

tpd

Input to nonregistered output

15 ns

15 ns

NIA

teo1

Clock to output delay

12 ns

12 ns

·12 ns

tsu
fmax

Input setup time

12 ns

15 ns

15 ns

Max frequency

42 MHz

37 MHz

37 MHz

Supply current active
ICC

t

f= 1 MHz

Over commercial temperature range

absolute maximum

ratin~s

over operating free-air temperature range (unless otherwise noted)

Supply voltage range, Vee (see Note 1) ............................................ ,. -0.3 V to 7 V
Instantaneous supply voltage range, Vee (t s 20 ns) ..................................... -2 V to 7 V
Programming supply voltage range, Vpp ........................................... -·0.3 V to 13.5 V
Instantaneous programming supply voltage range, Vpp (t s 20 ns) ...................... -2 V to 13.5 V
Input voltage range, VI ............................................................. -0.3 V to 7 V
Instantaneous input voltage range, VI (t s 20 ns) ......................................... -2 V to 7 V
Vee or GND current range .................................................... -175 mA to 175 mA
Operating free-air temperature, T A ................................................. -·65°C to 135°C
Storage temperature range .............................................. . . . . . . . . .. -·65°C to 150°C

~

Il.

recommended operating conditions
EP330-201

EP330-25M
Supply voltage

W

a:

NOTE 1: All voltage values are with respect to GND terminal.

Vee

;:

UNIT

t;

5.25

V

::l

EP33D-15C

MIN

MAX

MIN

MAX

MIN

MAX

4.5

5.5

4.5

5.5

4.75

VI

Input voltage

0

Vee

0

Vee

0

Vee

V

VIH

High-level input voltage

2

Vee+0.3

2

2

VIL

low-level input voltage (see Note 2)

-0.3

0.8

-0.3

Vee+0.3
0.8

-0.3

Vee+0.3
0.8

V

0

Vee

0

VCC

0

Vec

V

Va

Output voltage

tw

Pulse duration, elK high or low

14

12

10

ns

V

tsu

Setup time, input

20

16

12

ns

th

Hold time, input

0

0

0

ns

tr

Rise time, input

3
3

3
3

3

ns"

C

oa:

Il.

Fall time, input
ns
3
tf
·C
Operating free-air temperature
-55
-40
70
125
85
0
TA
..
NOTE 2: The algebraic convention, In which the more negative value IS designated minimUm, IS used In thiS data sheet for logic voltage levels
only.

TEXAS

-If

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-11

EP330
HIGH-PERFORMANCE 8-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
electrical characteristics over recommended ranges of supply voltage and free-air temperature
(unless otherwise noted)
PARAMETER

TEST CONDITIONSt

EP33D-25M

EP330-201

EP33D-15C

MIN

MIN

MIN

High-level output
VOH

VCC=MIN,

voltage

VOL

Low-level output voltage

VCC=MIN,

II

Input current

IOZ

Off·state output current

ICC

Supply current

Ci

Input capacitance

Co
Cclk
C pp

MAX

2.4

IOH=-8mA

MAX

2.4

MAX

2.4

UNIT
V

0.5

0.5

0.5

V

VI = VCCmax or GND

±10

±10

±10

VCC= MAX,

Va = VCC or GND

±10

±10

±10

!lA
!lA

f= 1 MHz,

No load,

Programmed as
an 8-bit counter

70

70

45

mA

VCC=5V,

VI =2V,

f= 1 MHz

10

10

·10

pF

Output capacitance

10

10

10

pF

Clock capacitance

10

10

10

pF

20

20

20

pF

IOL=24 mA

Programming input
capacitance (pin 11)

electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
PARAMETER~

f max

EP330-25M

EP330-201

EP330-15C

MIN

MIN

MIN

Maximum frequency

MAX

tpd

Input to nonregistered output delay
Clock input to registered output delay

tpzx

Output enable time

tpxz

Output disable time

tcnt

Minimum clock period (internal)

CL = 35 pF,

See Note 3

See Note 4

Maximum frequency without

42

MAX

30

22

tco

fcnt

t

TEST CONDITIONSt

MAX

42

UNIT
MHz

25

20

15

ns

24

18

12

ns

20

20

15

ns

20

20

15

ns

24

20

15

ns

50

feedback, (1/tcnt>

66.6

MHz

For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

:j: Letter symbols for switching characteristics and timing requirements in this data sheet have been chosen for compatibility with those used in other

documentation previously prepared by another supplier for similar products. Any similarity to symbols used on other TI data sheets or to those
shown in glossaries in TI data books is coincidental. The meanings may not be the same.
NOTES: 3. The f max values shown represent the highest frequency of operation without feedback in the pipeline condition.
4. This is for an output voltage change of 500 mV.

PARAMETER MEASUREMENT INFORMATION

functional testing
The EP330 is functionally tested through complete testing of each programmable EPROM bit and all internal
logic elements, thus ensuring 100% programming yield. The erasable nature of the EP330 allows test program
patterns to be used and then erased.

2-12

TEXAS "
INSTRUMENTS

POST OFFICE BOX 655303 • DAllAS, TEXAS 75265

EP330
HIGH-PERFORMANCE 8-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
PARAMETER MEASUREMENT INFORMATION
r---Vcc

DEVICE -.f------i_-e-- ~~ST
OUTPUT
SYSTEM
CLt

r Includes capacitance. Equivalent loads may be used for testing.
FIGURE 5. DYNAMIC TEST CIRCUIT

design security
The EP330 contains a programmable design-security feature that controls the access to the data programmed
into the device. If this programmable feature is used, a proprietary design implemented in the device cannot be
copied or retrieved. Therefore, a very high level of design control is achieved since programmed data within
EPROM cells is invisible. The bit that controls this function, along with all other program data, may be reset by
erasing the cells in the device.

latchup
The EP330 input, I/O, and clock pins have been carefully designed to resist the latchup that is inherent in CMOS
structures. The EP330 pins will not latch up for input voltages between --1 V and Vee + 1 V with currents up
to 250 mA. During transitions, the inputs may undershoot to -2 V for periods of less than 20 ns.

3:
w

~a:

D.

ti

Although the programming pin (pin 11) is designed to resist latchup to the 13.5-V limit, during positive-current
latch-up testing, the verify mode (pin 1) and program mode (pin 11) can be inadvertently entered into, causing ~
current flow in the pins. This should not be construed as latchup.
,.,.,

C

oa:
D.

TEXAS ..If

INSIRUMENlS
POST OFFICE BOX 655303 • DALLD.S, TEXAS 75265

2-13

EP330
HIGH-PERFORMANCE 8·MACROCELL
ERASABLE .PROGRAMMABLE LOGIC DEVICE (EPLD)
PARAMETER MI:ASUREMENT INFORMATION

_________I_NP_U_T_O_R_V_O____

~ _J~~----------------------------__

j+- tpd ---.!

*~------

__________________________
~I-----J
COMBINATIONAL OUTPUT

j4-tpxz-+j
HIGH IMPEDANCE
3·STATE

COMBINATIONAL OR
REGISTERED OUTPUT
'+-tpzx-+'

_ ____

~H~IG~H~IM~P~ED~A~N~C~E~-------I------~fr--------------------~

3.STATE

VAUD OUTPUT

(a) Combinational Mode

"C

tr-.l

:x:J

o

ClK

C

J

14- tw -+i

\\....----'1
!4- tsu --.!~I+--IIO

-++1'-<1-1

MACROCELL 18

1101112]

110-.-........

INPUT

MACROCEU 8

II!

~6

(181 (151

g~~ L.J'~~_IIO

' "1

G8
~

INPUT

11711141 INPUT

-"-'="------D.rI

'--_ _ _.:.e""'-8'.:.:."3"'-1

Pin numbers in ( ) are for DIP packages; pin numbers in [

CLKZ

I are for chip-carrier packages.

When both the true and complement forms of any signal are left intact, a logical false state results on the
output of the AND gate. If both the true and complement connections are open, then a logical "don't care"
applies for that input. If all inputs for the product term are programmed open, then a logical true state results
on the output of the AND gate.
Two dedicated clock inputs provide synchronous clock signals to the EP610 internal registers. Each of the
, clock signals controls a bank of 8 registers. CLK1 controls registers associated with macrocells 9-16, and
CLK2 controls registers associated with macrocells 1-8. The EP610 advanced I/O architecture allows the
number of synchronous registers to be user defined, from one to sixteen. Both dedicated clock inputs are
positive-edge triggered.

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 855012 • DALLAS. TeXAS 75265

2-17

EP610
HIGH·PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
I/O architecture
The EP610 inpuVoutput architecture provides each macrocell with over 50 possible 1/0 configurations. Each
I/O can be configured for combinational or registered output, with programmable output polarity. Four
different types of registers (D, T, JK, and SR) can be implemented into every I/O without any additional logic
requirements. 1/0 feedback selection can also be programmed for registered or input (pin) feedback. Another
benefit of the EP61 0 I/O architecture is its ability to individually clock each internal register from asynchronous
clock signals.

1

2

3

4

•

7

8

•

10

11

12

13

,.

14

16

17

,.

18

20

21

22

23

24

2.

26

27

28

2.

30

31

32

33

34

3.

36

37

38

3.

SYNCHRONOUS
ClOCK

OE/ClK

Vcc~

-,:: '--"

OE

-o--t::~

--'i

OEIClK

elK

}-

I"

~

...

2
3

~

4

=':r-

""}=)""}-

~ 6

~

•

I/O
ARCHrrECTURE
CONTROL

H>~

~

-D-

CLEAR

L)'LJ.

. L ).

).

L
12,

131

1:,L:,t

171

18'

'"

{10J

(111

)'LJ.

)'L)'

~
{141 1151

(161 1111 1181 1191

).

J.

).~·Lf

(201 1211

if;(23}

00---

FEEOBACK

Pin numbers are for dual-in-line packages.

FIGURE 1. LOGIC ARRAY MACROCELL (MACROCELL 1 ILLUSTRATED)

OE/CLK selection
Figure 2 shows the two modes of operation that are provided by the OE/eLK select multiplexer. The operation
. of this multiplexer is controlled by a single EPROM bit and may be individually configured for each EP610 I/O
pin. In Mode 0, the 3-state output buffer is controlled by a single product term. If the output of the AND gate is
true, the output buffer is enabled. If the output of the AND gate is false, the output buffer is in the highimpedance state. In this mode, the macrocell flip-flop may be clocked by its respective synchronous clock
input. After erasure, the OEleLK select multiplexer is configured in Mode O.
In Mode 1, the output-enable buffer is always enabled. The macrocell flip-flop may now be triggered from an
asynchronous clock signal generated by the OEleLK multiplexable product term. This mode allows individual
clocking of flip-flops from any available signal in the AND array. Because both true and complement signals
reside in the AND array, the flip-flop may be configured for positive- or negative-edge-triggered operation.
With the clock now controlled by a product term, gated clock structures are also possible.

2-18

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 666012 • DALLAS. TEXAS 75265

EP610
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
MOOEO

MODE 1

OE - P-T arm Controlled
CLK - Synchronous

OE - Enabled
elK - Asynchronous

SYNCHRONOUS'
CLOCK

SYNCHRONOUS
CLOCK

VCC

VCC

110
REGISTER
The register 'is clocked by the synchronous clock signal. which is
common to 11 other Macrocells. The output is enabled by the logic
from the product term.

OUTPUT
BUFFER

The output is permanently enabled and the register is clocked via
the product term. This allows for gated clocks that may be generated
from elsewhere in the EP610.

FIGURE 2. OE/CLK SELECT MULTIPLEXER

output/feedback selection
Figure 3 shows the EP61 0 basic output configurations. Along with combinational output, 4 register types are
available. Each macrocell I/O may be independently configured. All registers have individual asynchronous
clear control from a dedicated product term. When the product term is asserted, the macrocell register will
immediately be loaded with a zero independently of the clock. On power-up, the EP610 performs the clear
function automatically.
When the D or T register is selected, 8 product terms are ORed together and made available to the register
input. The invert select EPROM bit determines output polarity. The feedback-select multiplexer enables
register, I/O (pin), or no feedback to the AND array.
If the JK or SR registers are selected, the 8 product terms are shared between 2 OR gates. The allocation of
product terms for each register input is optimized by the TI EPLD Development System. The invert select
EPROM bit configures output polarity. The feedback-select multiplexer enables registered or no feedback to
the AND array.
Any I/O pin may be configured as a dedicated input by selecting no output and pin feedback. No output is
obtained by disabling the macrocell output buffer. In the erased state, each I/O is configured for
combinational active-low output with input (pin) feedback.

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265,

2-19

EP610
HIGH·PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)

1/0 SELECTION
FEEDBACK

OUTPUT/POLARITY
Combinational/high

Pin, None

Combinationaillow

Pin, None

None

Pin

(s) COMBINATIONAL
SYNCHRONOUS
CLOCK
VCC

OE/CLK
SELECT
I/O SELECTION

OE

OUTPUT/POLARITY

FEEDBACK

JK Register/high
JK Register/low

JK Register. None
JK Register. None

None
None

JK Register
Pin
FUNCTION TABLE

Q

INPUTS

(b) D-TYPE FLIP-FLOP

FIGURE 3_ I/O CONFIGURATIONS

2-20

TEXAS •

INSlRUMENTS
POST OFFICE BOX 655012 • DALLAS, texAS 75265

OUTPUT
Q

CLR

CLK

D

L

I
I

L

L

L

H

H

L

Lor H

X

X
X

00

H

L

EP610
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SYNCHRONOUS
CLOCK
VCC

OE/CLK
SELECT
I/O SELECTION

ClK

OE

OUTPUT/POLARITY
T Register/high

FEEDBACK
T Register, Pin, None

T Registerllow

T'Register, Pin. None

None

T Register

None

Pin

FUNCTION TABLE

o

1T

INPUTS
CLR

ClK

L

Cl

~~~--------------~R

OUTPUT

I

T
L

QO

L

I

H

00

L

Lor H

00

H

X

X
X

0

L

lei TOGGLE FLIP-FLOP
SYNCHRONOUS
CLOCK
VCC

OE/CLK
SELECT
I/O SELECTION
OUTPUT/POLARITY

FEEDBACK

JK Register/high

JK Register, None

OE

JK Register/low

JK Register. None

None

JK Register

--"""'0

FUNCTION TABLE
INPUTS

Cl

OUTPUT

CLR

CLK

J

K

0

L

t
t
t
t

L

L

L

H

QO
L

L

L
L
L
H

Lor H

X

H

L

H

H

H

00

X
X

X
X

QO
L

Idl J··K FLIP-FLOP

FIGURE 3_ 1/0 CONFIGURATIONS (CONTINUED)

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012. DALLAS. TEXAS 75265

2-21

EP610
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SYNCHRONOUS
CLOCK
VCC

OE/ClK
SELECT

I/O SELECTION
FEEDBACK

OUTPUT/POLARITY
SR Register/high
SR Register/low

SR Register. None
SR Register. None

None

SR Register

FUNCTION TABLE
OUTPUT

INPUTS
ClR

ClK

S

R

Q

L

t
t
t
t

L

L

00

L
L
L
L
H

L

H

L

H

L

H

H

H

Undefined

Lor H

X

X

00

X

X

X

L

FIGURE 3. 1/0 CONFIGURATIONS (CONTINUED)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range. Vee (see Note 1) ..................................... -0.3 V to 7 V
Instantaneous supply voltage range, Vee (t :s; 20 ns) ............................ -2 V to 7 V
Programming supply voltage range, Vpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.3 V to 13.5 V
Instantaneous programming supply voltage range, Vpp (t :s; 20 ns) ................. -2 V to 13.5 V
Input voltage range, VI ................................................. -0.3 V to 7 V
Instantaneous input voltage range, VI (t co;; 20 ns) ............................... -2 V to 7 V
Vee or GND current ............................................. -175 mA to 175 mA
Power dissipation at 25°e free-air temperature (see Note 2) .. . . . . . . . . . . . . . . . . . . . . . .. 1000 mW
Operating free-air temperature, TA ...................................... -65°e to 135°e
Storage temperature range ........................................... -65°e to 1500 e
NOTES: 1. All voltage values are with respect to GND terminal.
2. For operation above 25°C free-air temperature, derate to 120 mW at 135°C at the rate of 8.0 mWrC.

2-22

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75266

EP610
HIGH-PERFORMANCE 16-MACROCElL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
recommended operating conditions
EP6101

PARAMETER

EP610C

MIN

Vee
VI

Supply voltage

0

VIH

High-level input voltage
low-level input voltage (see Note 3)
Output voltage

tr

Rise time

TA

MIN

5.5

4.75

5.25

0

VCC

2

VCC+0.3

4.5

Input voltage

Vil
Vo

tl

MAX

Vee
VCC+0.3

2
0.3

0.8

0.3

0.8

0

VCC
100

0

VCC
250

ClK input

Fall time

MAX

Other inputs

250

ClK input

100

250

Other inputs

250

500

Operating Iree-air temperature

-40

500

85

0

70

UNIT

V
V
V
V
V
ns
ns
°e

Note 3: The algebraic convention, In which the more negative value IS designated minimum, is used in this data sheet lor logic voltage levels
and temperature only.

electrical charateristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER

TEST CONDtTIONS

ITIL
ICMOS

High-level output

VOH voltage

IOH
IOH

= -4mA
= -2 mA

EP6101
MtN

TYpt

EP610C
MAX

MIN

2.4

2.4

3.84

3.84

TYpt

MAX

UNIT
V

Val

low-level output voltage

IOl-4mA

0.45

0.45

V

II

Input current

VI

±10

±10

IlA

10Z

Off-state output current

= VCC or GND
Va = VCC or GND

±10

I1A

ICC

Supply current

I Standby
I Non-turbo
ITurbo

±10

I See Note 4

VI = VCC or GND,
No load

= 0, I =

I See Note 5
I See Note 5

Input capacitance

VI

Co

Output capacitance

Cclk

Clock capacitance

Va - 0, I - 1 MHz, TA - 25°C
VI - 0, I - 1 MHz, TA - 25°C

t All typical values are at VCC

0.15

0.02

0.1

3

15

3

10

32

75

32

60

= 25°C

Ci

1 MHz, TA

0.02

mA

20

20

pF

20

20

pF

20

20

pF

= 5 V, TA = 25°C.

NOTES: 4. When in the non-turbo mode, the device automatically goes into the standby mode approximately 100 ns after the last transition.
5. These parameters are measured with device programmed as a 16-bit counter and I = 1 MHz.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

2-23

EP610
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
combinational mode, turbo bit on
PARAMETERt

TEST CONDITIONS

tpdl

Input to nonregistered output

tpd2
tpzx

1/0 input to nonregistered output
Input to output enable

CL=35pF

tpxz

Input to output disable

tclr

Asynchronous output clear time

CL - 5 pF.
CL-35pF

tio

1/0 input buffer delay

EP61 0·25
MIN

EP61D-30

MAX

MIN

25

See Note 6

EP61 0·35

MAX

MIN

MAX

UNIT

27

30
32

35
37

ns

ns

25

30

35

ns

25
27

30
32

35
37

ns

2

2

2

ns

ns

combinational mode, turbo bit off
PARAMETERt

TEST CONDITIONS

todl

Input to nonregistered output

tpd2
tpzx

1/0 input to nonregistered output

tpxz

Input to output disable

CL = 5 pF.

tclr
tio

Asynchronous output clear time
1/0 input buffer delay

CL-35pF

EP6l 0·25
MIN

CL = 35 pF

Input to output enable
See Note 6

EP6l0·30

MAX

MIN

EP61D-35

MAX

MIN

MAX

UNIT

55
57

60

65

ns

62

67

ns

55
55

60
60

65
65

ns

57

62

67

ns

2

2

2

ns

ns

synchronous clock mode
PARAMETERt

TEST CONDITIONS

f max

Maximum frequency

See Note 7

tcol

Clock to output delay time

tcnt

Minimum clock period (register
feedback to register output)

See Note 5

fcnt

Maximum frequency with feedback

See Note 5

EP6l 0·25
MIN

MAX

EP61 0·30
MIN

MAX

41.7

47.6

EP6l0·35
MIN

MAX

37

MHz

15

17

20

25

30

35

40

33.3

UNIT

28.6

ns
ns
MHz

asynchronous clock mode
PARAMETERt
fmax

Maximum frequency

taco 1

Clock to output
delay time

tacnt

Minimum clock period (register
feedback to register output)

facnt

Maximum frequency with feedback

TEST CONDITIONS
See Note 7

EP6l 0·25
MIN

MAX

47.6

ITurbo bit on
ITurbo bit off

EP61 0·30
MIN

MAX

41.7
27
57

30

35
28.6

UNIT
MHz

37
67

62

33.3

MAX

37
32

25
40

EP61D-35
MIN

ns
ns
MHz

t Letter symbols for switching characteristics and timing requirements in this data sheet have been chosen for compatibility with those used in
other documentation previously prepared by another supplier for similar products. Any similarity to symbols used on other TI data sheets or to
those shown in glossaries in TI data books is coincidental. The meanings may not be the same.
NOTES: 5. These parameters are measured with device programmed as a 16-bit counter and f = 1 MHz.
6. This is for an output voltage change of 500 mY.
7. The f max values shown represent the highest frequency of operation without feedback.

2-24

TEXAS . "

INSTRUMENTSPOST OFFICE BOX,656012 • DALLAS. TEXAS 75265

EP610
HIGH-PERFORMANCE 16-MACOCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
timing requirements over recommended ranges of supply vOltag'e and free-air temperature
synchronous clock mode
PARAMETERt

TEST CONDITIONS

ITurbo bit on
ITurbo bit off

tsu

Input setup time

th

Input hold time

tch

Clock high pulse duration

tcl

Clock low pulse duration

EP61 0-25

MIN

MAX

21
51
0
10
10

EP61 0-30

MIN

MAX

24
54
0
11
11

EP61 0-35

MIN

MAX

27
57
0
.12
12

UNIT
ns
ns
ns
ns

asynchronous clock mode
PARAMETERt
tasu

Input setup time

ITurbo bit on
ITurbo bit off

tah

Input hold time

tach
tacl

Clock high pulse duration
Clock low pulse duration

TEST CONDITIONS

EP610-25
MIN

MAX

8
38
12
10
10

EP61 0-30

MIN

8
38
12
11
11

MAX

EP610-35
MIN

8
38
12
12
12

MAX

UNIT
ns
ns
ns
ns

t Letter symbols for switching characteristics and timing requirements in this data sheet have been chosen for compatibility with those used in
other documentation previously prepared by another supplier for similar products, Any similarity to symbols used on other TI data sheets or to
those shown in glossaries in TI data books is coincidental. The meanings may not be the same,

TEXAS ,.,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265

2-25

EP610
HIGH· PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
functional testing
The EP61 0 is functionally tested including complete testing of each programmable EPROM bit and all internal
logic elements thus ensuring 100% programming yield. As a result, traditional problems associated with fuseprogrammed circuits are eliminated. The erasable nature of the EP610 allows test program patterns to be
used and then erased.
Figure 4 shows the test circuit and the conditions under which dynamic measurements are made. Because
power supply transients can affect dynamic measurements, simultaneous transitions of multiple outputs
should be avoided to ensure accurate measurement. The performance of threshold tests under dynamic
conditions should not be attempted. Large-amplitude fast ground-current transients normally occur as the
device outputs discharge the load capacitances. These transients flowing through the parasitic inductance
between the device ground terminal and the test-system ground can create significant reductions in
observable input noise immunity.

,------Vcc
DEVICE _ _ . - -....- -....-TO
OUTPUT
TEST SYSTEM

340 II

el t

tlncludes jig capacitance

FIGURE 4. DYNAMIC TEST CIRCUIT

design security
The EP61 0 contains a programmable design security feature that controls the access to the data programmed
into the device. If this programmable feature is used, a proprietary design implemented in the device cannot
be copied or retrieved. This enables a high level of design control to be obtained since programmed data
within the EPROM cells is invisible. The bit that controls this function, along with all other program data, may
be reset by erasing the device.

turbo bit
Some EPLDs contain a programmable option to control the automatic power-down feature that enables the
low-standby-power mode of the device. This option is controlled by a turbo bit that can be set using the EPLD
Development System. When the turbo bit is on, the low-standby-power mode is disabled. This renders the
circuit less sensitive to Vee noise transients created by the power-up/power-down cycle when operating in
the low-power mode. The typical lee versus frequency data for both the turbo-bit-on mode and the turbo-bitoff (low-power) mode is shown in Figure 5. All dynamic parameters are tested with the turbo bit on. Figure 6
shows the relationship between the output drive currents and the corresponding output voltages.

2-26

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

EP610
HIGH·PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SUPPLY CURRENT
vs
MAXIMUM FREQUENCY

OUTPUT CURRENT
vs
OUTPUT VOLTAGE

100

100
70

TURBO BIT ON

~

«

10

40

I

C
!
:;

C
!
:;

20

:;
S::l

10

u

CJ
~

a.
a.

TURBO BIT OFF

Jl

IOL

/"""

--

E

I

Vee - 5 V
TA - 25°e

/

I

.............

~H

7
'\.

0

I

~

I

\

.9

0.1

0.01
100

\.

4

Vee - 5 V
TA - 15°e
1 k
10 k 100 k 1 M 10 M 100 M
fmax-Maximum Frequency-Hz

\

2
1

\

o

2
3
4
VO-Output Voltage-V

5

FIGURE 6

FIGURE 5

If the design requires low-power operation, the turbo bit should not be set. When operating in this mode,
some dynamic parameters are subject to increases.

TEXAS •
INSTRUMENTS
PeST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-27

EP610
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)

X

INPUT OR 1/0

----------------------,~--------------------[4--tpd---+i
COMBINATIONAL
OUTPUT

__________________________

X

l ,.---------

~I--------J

__

====-t

I4-- tPXZ
COMBINATIONAL OR
)
HIGH-IMPEOANCE STATE
VALID
OUTPUT
REGISTERED OUTPUT _ _ _ _ _ _ _ _ _ _ _ _ _ _~------I,,.....;~--~==~;;,;.:;-

~tpzx--+I
COMBINATIONAL OR _ _ _ _.:.;H;;.;;IG;;.;H;.;.-IM;;;;..:PE;;D;;;A;,;,NC;;;E;;.;S;,;T;;;A;:,;TE;..._ _...;.I,______-CKr--V-A-Ll-D-O-U-TP-U-T--REGISTERED OUTPUT

_

[4---lcl'~
REGISTERED OUTPUT _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

\J ___
ASYNCHRONOUSLY
__IA'"
Cl.E;;;A..
R.;;O.;;UT.;.;P..;;U;.;,T_ _ _

la) COMBINATIONAL MODE

If--Ich---"
ClK1. ClK2

\}I~.'IV

J:I \ \. /
-.../ t,

INPUT OR 1/0

-+I If I*-tcl---.l

'I
14--

I4-lsu~lh~

~

VALID

\'--

.

~I".""''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

I
"'-lco1~

REGISTERED OUTPUT

_____________________

Xl~--------------_

_

VALID OUTPUT

(b) SYNCHRONOUS CLOCK MODE

REGISTERED OUTPUT

____________________Xlr--------------_

•

(e) ASYNCHRONOUS CLOCK MODE

FIGURE 7. SWITCHING WAVEFORMS

2-28

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 •

DAL.l~S.

TEXAS 75265

VALID OUTPUT

EP610
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
MECHANICAL DATA

lr

.24-PIN CERAMIC DIP (CDIP}

l.14 (0.045}
0.97 (0.0381

·:~~~::::Q::::::I~~~'w
I I-- 2.49 (0.0981

--.j

0.13 (0.005}
MIN

MAX

I

~

~

24-PIN DIP PlASTIC (PDIP}
1.40 (0.055}

1tO.51~~N020}

8.26 (0.325}
7.49 (0'295}~
6.86 (0.270}
6.22 (0.245}
0.305 (0.012}
0.203 (0.008}

: :-: ~'7:7'- tl

PIN 1

1.14 (0.045}1i

j~::::::::::]
r
I
31.89 (1.255}

3.68 (0.145}

31.50 (1.2401

3.18 (0.125}
SEATING

4.32 (0.170}
3.56 (0.140}

-t-~

0.51T~p020}

~" -'-i~ li li li ~ ~ li UUli ~ li~- -

~

0.51 (0.020} MIN

Irli'

10-

2.54 (0.1001 SSC

,.''''.~" ~
II

0.41 (0.016} --I~

-'''''

3: 18 (0: 125}

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-29

EP610
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
MECHANICAL DATA
28·PIN CERAMIC LEADED CHIP CARRIER (CLCC)
GLASS
WINDOW

n m~

3.S1 10.1501 R TYP.

12.57 10.495I
12.3210.4851
11.5810.4561
10.92 10.4301

---

, -J1

+ ---

Y~::.L:::j'

Ij.-- 7.62REF
10.3001
I
-----.j
BOTTOM VIEW

1.1410.0451 R
0.S9 10.0351

~12'5710'4961~
12.32T~~4851
VIEW

0'S910'035IX45'1~0'2510'0101

0.1510.0061

JJ.
T7
0.2010. 00SI ...J

-L
IT

0.5310.0211

! 0.43 T· 0 17)
~~~=~=
f
f
0.S1 10.0321

I

NOM

DETAIL "P"

0.66 10.0261

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

2·30

TEXAS ~

INS"TRUMENlS
POST OFFICE BOX 855012 • PALLAS. TEXAS 75265

SEE
DETAIL "P"

/_.----./

10.9210.4301

EP610
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
MECHANICAL DATA
28-PIN PLASTIC LEADED CHIP CARRIER (PLCCI

1.27 10.05011

Bse

SEE
DETAil
"8"

r

/~~

,PIN NO.'

1,1410.045)x45°

I

Ti

/

I
12,57 10.4951

12.32 10.4B51

"-

\

10.92 10.4301

11,58 (0.456)

J'OOI

Lji

Ij.--- 7.62REF
10.3001
I
------.j

I

r-

0.25410.0101
0.203 10.00Bt"1
1.22 10.0481
~
1.07 (0.0421

T""
1.22 (0.0481
1.07 (0.0421

J

o.64 (0.0251
MIN
3.05 (0.1201
2.29 10.0901
4.57 (0.1aOI
4,1910.1651

111

0.51 (0.0201 MIN

~
1.14 (0.0451
1 ~ 0,64 (0.025)

~
DETAIL "B"

r

0.53(0.0211

L0.41 lO.0161
f
f
0.81 (0.0321

0.66 10.0261

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

TEXAS ."

INSTRUMENlS
POST OFFICE BOX 656012 • DALLAS, TeXAS 75265

2-31

-

2-32

EP630
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
D3357, OCTOBER 1989
JT OR NT PACKAGE
ITOPVIEW)

• High-Density (Over 600 Gates)
Replacement for TIL and 74HC
• Low Operating Current:
ICC max, , , 100 mA

CLK

VCC
)

• High Speed:
Propagation Delay Time, .• 20 ns

110
1/0
1/0
1/0
1/0
1/0
1/0
1/0

1/0
1/0
1/0
1/0
1/0

• Asynchronous Clocking of All Registers or
Banked Register Operation from
2 Synchronous Clocks
• Sixteen Macrocells with Configurable I/O
Architecture Allowing for up to 20 Inputs
and 16 Outputs

1/0

GND

• Each Output Macrocell User-Programmable
for 0, T, SR, or JK Flip-Flops with Individual
Clear Control or Combinational Operation

CLK2

FZ OR FN PACKAGE
ITOP VIEW)

• UV-Light-Erasable Cell Technology Allows
for:
Reconflgurable Logic
Reprogrammable Cells
Full Factory Testing for 100%
Programming Yields

;;;: U U

o
U U
0
""_u»_""
...J

4

3 2

~
w

1 282726

:>w

25
24

• Programmable Design Security Bit Prevents
Copying of Logic Stored In Device
• Advanced Software Support Featuring
Schematic Capture, Interactive Netlist,
Boolean Equations, and State Machine
Design Entry

7

23

8

22

10

21
20

11

a:
Q.

I-

o

19

::>

12131415161718

• Package Options Include Plastic [for OneTime-Programmable (OTP) Devices] and
Ceramic Dual-In-Line Packages, Ceramic
Quad Flat Packages, and Plastic Chip
Carriers

c

oa:

Q.

NC-No internal connection

AVAILABLE OPTIONS
PACKAGE TYPE
TA
RANGE

SPEED
CLASS

CERAMIC
DUAL-IN-LINE
(JT)

O°C to 70°C
- 40°C 10 B5°C

20
25

EP630-20CJT
EP630-251JT

J-LEADED
CERAMIC
QUAD FLATt
(FZ)
EP630-20CFZ
EP630-251FZ

- 55°C to 125°C

25

EP630-25MJTB

EP630-25MFZB

PLASTICt
DUAL·IN-LiNE
(NT)

PLASTICt
CHIP CARRIER
(FN)

EP630-20CNT
EP630-251NT

EP630-20CFN
EP630-251FN

N/A

N/A

t Contact factory for mechanical data on this package.

fnR~:'U~~!:t'~~E: ~.!:i~~a~i::s:o:feJ:er::!~~

Characlll,isti. data .... ottior opacifications are dasign
goals. Taxas Instruments reserves the right to change
Dr di8continue thase products without notice.

Copyright © 1989. Texas Instruments Incorporated

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 15265

2-33

EP630

HIGH· PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
description
general

The Texas Instruments EP630 Erasable Programmable Logic Device is capable of implementing over
600 equivalent gates of SSI and MSI logic functions all in plastic and ceramic space-saving 24-pin, 300-mil
dual-in-line (DIP) packages and 28-pin chip-carrier packages. It uses the familiar sum-of-products logic,
providing a programmable AND with a fixed OR structure. The device accommodates both combinational and
sequential .(registered) logic functions with up to 20 inputs and 16 outputs. The EP630 has a user
·programmable output logic macrocell that allows each output to be configured as a combinational or
registered output and feedback signals active high or active low.
A unique feature of the EP630 is the ability to program D, T, SR, or JK flip-flop operation individually for each
output without sacrificing product terms. In addition, each register can be individually clocked from any of the
input or feedback paths available in the AND array. These features allow a variety of logic functions to be
simultaneously implemented.
The CMOS EPROM technology reduces the power consumption to less than 55% of equivalent bipolar
devices without sacrificing speed performance. Erasable EPROM bits allow for enhanced factory testing.
Design changes can be easily implemented by erasing the device with ultraviolet (UV) light.
Programming the EP630 is accomplished by using the TI EPLD Development System, which supports four
different design entry methods. When the design has been entered, the software performs automatic
translation into logical equations, Boolean minimization, and design fitting directly into an EPLD.

"0
;:g

o
c

c:
(')

functional

The EP630 is an Erasable Programmable Logic Device (EPLD) that uses a CMOS EPROM technology to
implement logic designs in a programmable AND logic array. The device contains a revolutionary
programmable I/O architecture that provides advanced functional capability for user programmable logic.

~

"0
;:g

m

S
m

:E

. Externally, the EP630 provides 4 dedicated data inputs and 16 I/O pins, which may be configured for input,
output, or bidirectional operation. Figure 1 shows the EP630 basic logic array macrocell. The internal
architecture is organized with familiar sum-of-products (AND-OR) structure. Inputs to the programmable AND
array come from true and complement signals from the 4 dedicated data inputs and the 161/0 architecturecontrol blocks. The 40-input AND array encompasses 160 product terms, which are distributed among 16
available macrocells. Each EP630 product term represents a 40-input AND gate.
Each macrocell contains 10 product terms, 8 of which are dedicated for logic implementation. One product
term is used for clear control of the macrocell internal register. The remaining product terms are used for
output enable/asynchronous clock implementation.
There is an EPROM connection at the intersection pOint of each input signal and each product term. In the
erased state, all connections are made. This means both the true and complement forms of all inputs are
connected to each product term. Connections are opened during the programming process. Therefore, any
product term may be connected to the true or complement form of any array input signal.

TEXAS ~

INSTRUMENlS
2-34

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

EP630
HIGH·PERFORMANCE 16·MACOCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
functional block diagram

eLK1 111121
INPUT (21131

131141

12611221

I/O----"LJ

H_......~-I/O

~
w

5>
w

a:
Q.

I-

o

::::>

1101112]

1181 {151

IIO-4+1-1:':::]
-,1_";...:"'-,3c..

[171 (141 INPUT

"--_ _ _1:.;.:'6::.."c::'3::.' CLK2

Pin numbers in ( ) are for DIP packages; pin numbers in [

1are for chip-carrier packages.

When both the true and complement forms of any signal are left intact, a logical false state results on the
output of the AND gate. If both the true and complement connections are open, then a logical "don't care"
applies for that input. If all inputs for the product term are programmed open, then a logical true state results
on the output of the AND gate.
Two. dedicated clock inputs provide synchronous clock signals to the EP630 internal registers. Each of the
clock signals controls a bank of 8 registers. ClKl controls registers associated with macrocells 9-16, and
ClK2 controls registers associated with macrocells 1-8. The EP630 advanced I/O architecture allows the
number of synchronous registers to be user defined, from one to sixteen. Both dedicated clock inputs are
positive-edge-triggered.

TEXAS ."

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75266

2-35

EP630
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
I/O architecture
The EP630 input/output architecture provides each macrocell with over 50 possible I/O configurations. Each
I/O can be configured for combinational or registered output, with programmable output polarity. Four
different types of registers (D, T, JK; and SR) can be implemented into every I/O without any additional logic
requirements. 110 feedback selection can also be programmed for registered or input (pin) feedback. Another
benefit of the EP630 I/O architecture is its ability to individually clock each internal register from asynchronous
clock signals.

1

2

3

4

•

6

7

8

•

'10

11

12

,.

14

13

SYNCHRONOUS

16
18
17

20

"

22

21

24

23

26

2.

28

27

30

2'

31

32

34

33

36

3.

37

38

CLOCK

3.

OE/eLK

Vcc~
-L~

-n-:- ~ ~

OE/eLK

0'

r:---<>-

©

eLK

l~

=}=).=).-

."
::rJ

=}-

o

=}-

-6-

CLEAR

(")

-I
."
::rJ

-c>-~

~

C

c:

I/O
ARCt;llTECTURE
CONTROL

L~

121

31

,., t, '" ,., ,.,
.L

,.,

~

"
(101

1111

L

1141 (15\

(161

"L
\171

teL

-TLf

1181 1191 (201 1211

ttl31

FEED·
BACK

Pin numbers are for dual-in-line packages.

m

-<

--

FIGURE 1. lOGIC ARRAY MACROCEll (MACRO CEll 1 IllUSTRATED)

~ OE/CLK selection
Figure 2 showS the two modes of operation that are provided by the DE/elK select multiplexer. The operation
of this multiplexer is controlled by a single EPROM bit and may be individually configured for each EP630 I/O
pin. In Mode 0, the 3-state output buffer is controlled by a singleproductterm. If the output of the AND gate is
true, the output buffer is enabled. If the output of the AND gate is false, the output buffer is in the highimpedance state. In this mode, the macrocell flip-flop may be clocked by its respective synchronous clock
input. After erasure, the OE/elK select multiplexer is configured in Mode O.
In Mode 1, the output-enable buffer is always enabled. The macrocell flip-flop may now be triggered from an
asynchronous clock signal generated by the DE/elK multiplexable product term. This mode allows individual
clocking of flip-flops from any available signal in the AND array. Because both true and complement signals
reside in the AND array, the flip-flop may be configured for positive- or negative-edge-triggered operation.
With the clock now controlled by a product term, gated clock structures are also possible.

TEXAS ."

INSTRUMENlS
2-36

POST OFFICE BOX 656303 • DALLAS. TeXAS 16265

EP630
HIGH· PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
MODE 0

MODE 1

OE - P-Term Controlled
elK - Synchronous

OE - Enabled
eLK - Asynchronous

SYNCHRONOUS
CLOCK

SYNCHRONOUS
CLOCK
VCC

VCC

The register is clocked by the synchronous clock signal, which is
common to 7 other Macrocells. The output is enabled by the logic
from the product term.

The output is permanently enabled and the register is clocked via
the product term ..This al/ows for gated clocks that may be generated
from elsewhere in the EP630.

FIGURE 2. OE/ClK SELECT MULTIPLEXER

~

output/feedback selection

->w
W

Figure 3 shows the EP630 basic output configurations. Along with combinational output, four register types
are available. Each macrocell I/O may be independently configured. All registers have individual
asynchronous clear control from a dedicated product term. When the product term is asserted, the macrocell
register will immediately be loaded with a zero independently of the clock. On power-up, the EP630 performs
the clear function automatically.

a:

a..

I-

When the D or T register is selected, eight product terms are ORed together and made available to the (.)
register input. The invert select EPROM bit determines output polarity. The feedback-select multiplexer ::l
enables register, I/O (pin), or no feedback to the AND array.
C
If the JK or SR registers are selected, the eight product terms are shared between two OR gates. The
allocation of product terms for each register input is optimized by the TI EPLD Development System. The
invert select EPROM bit configures output polarity. The feedback-select multiplexer enables registered or no
feedback to the AND array.
Any I/O pin may be configured as a dedicated input by selecting no output and pin feedback. No output is
obtained by disabling the macrocell output buffer. In the erased state, each I/O is configured for
combinational active-low output with input (pin) feedback.

TEXAS . "

INSfRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-37

o

a:
a..

EP630
HIGH·PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)

I/O SELECTION

(a)

"'tJ,

SYNCHRONOUS
CLOCK
VCC

:JJ

o

OUTPUT/POLARITY

FEEDBACK

Combinational/high

Pin, None

Combinational/low

Pin. None

None

Pin

COMBINATIONAL

OE/ClK
SELECT

C

I/O SELECTION

c:
o

OUTPUT/POLARITY

-t
"'tJ

ClK

:JJ

OE

m

S
m

FEEDBACK

o Register/high
o Register/low

o Register,

None

0 Register

None

Pin

o

Register, Pin. None

FUNCTION TABLE
10

~

o

INPUTS
ClR
ClK
L

C1

L

~~~--------------~R

(b) 0-TYPE FLIP-FLOP

FIGURE 3. I/O CONFIGURATIONS

TEXAS.~

2-38

INSTRUMENlS
POST OFFICE BOX 855303 • DAllAS; TEXAS. 75265

t
t

L

L

H

X

OUTPUT

0

0

L

L
H

H
X
X

00
L

Pin. None

EP630
HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SYNCHRONOUS
CLOCK
VCC

OE/CLK
SELECT
I/O SELECTION
FEEDBACK

OUTPUT/POLARITY
T Register/high
T Register/low

OE

T Register. Pin. None
T Register, Pin, None

None

T Register

None

Pin

FUNCTION TABLE
INPUTS

OUTPUT

ClR

ClK

T

Q

L

L

QO

L

T
T

H

Co

L

L

X

Go

H

X

X

L

3:
w

:>w

Ie) TOGGLE FLIP-FLOP
SYNCHRONOUS
CLOCK
VCC

a::

~

OE/ClK

~

SELECT

o

::J
C

I/O SELECTION
OUTPUT/POLARITY
OE

FEEDBACK

JK Register/high

JK Register, None

JK Register/low

JK Register, None

None

JK Register

FUNCTION TABLE
INPUTS
C1

OUTPUT

ClR

ClK

J

K

Q

l

T
T
T
T

L

L

L

H

QO
L

H

L
H

DO

L
L
L
L

H

L
X

H
X

X

X
X

H

00
L

Id) J··K FLIP-FLOP

FIGURE 3. 1/0 CONFIGURATIONS (CONTINUED)

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-39

o

a::

~

EP630
HIGH-PERFORMANCE 16-MACROCELL
.
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SYNCHRONOUS
CLOCK
VCC

OE/ClK
SELECT

I/O SELECTION
OUTPUT/POLARITY
OE

FEEDBACK

SR Register/high

SR Register, Nona

SR Register/low

SR Register. None

None

SR Register

"""---'0
FUNCTION TABLE

C1

OUTPUT

INPUTS
ClR

ClK

S

R

0

L

t
t
t
t

L

L

00

L
L
l

L
H

."

XI

L

H

L

H

l

H

H

H

Undefined

L

X

X

00

X

X

X

L

o
C

c::
(')

Ie) S·R FLlp·FlOP

-t

FIGURE 3. 1/0 CONFIGURATIONS (CONTINUED)

."

XI

m

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

S
m

Supply voltage range, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 7 V
Instantaneous supply voltage range, Vee (t :S 20 ns) . . . . . . . . . . . . . . . . . . . . . . . . . . . . -:-2 V to 7 V
Programming supply voltage range, Vpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.3 V to 13.5 V
Instantaneous programming supply voltage range, Vpp (t :S 20 ns) ................. -2 V to 13.5 V
Input voltage range, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to 7 V
Instantaneous input voltage range, VI (t :S 20 ns) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2 V to 7 V
Vee or GND current . . . . . . . . . . . . . . . . . . . . ; . . . . . . . . . . . . . . . . . . . . . . . . -175 mA to 175 mA
Operating free-air temperature, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°e to 135°e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°e to 1500 e

:e

NOTE 1: All voltage values are w~h respect to GND terminal.

TEXAS •

2-40

INSfRUMENlS
POST OFFICE BOX 665303 • DALLAS. TEXAS 75285

EP630
HIGH·PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
recommended operating conditions
EP630-25M

PARAMETER

MIN

Supply voltage

4.5

Vee
VI

Input voltage

VIH

High-level input voltage

Vil

low-level input voltage (see Note 2)

Va

Output voltage

tr

Rise time

tf

Fall time

TA

Operating

0

MIN

5.5
Vee
Vee +0.3

2

EP630-20C
MAX

MIN

4.5

5.5

4.75

0

vee

0

2

Vee+ 0.3

2

5.25

V

Vee
Vee+ 0 .3

V
V

O.B

-0.3

O.B

-0.3

0.8

0

Vee
100

0

Vee
100

0

Vee
250

Other inputs

250

250

elK input

100

100

250

Other inputs

250

250

500

temperature

-55

125

-40

UNIT

MAX

-0.3

elK input

free~air

EP630-251
MAX

V
ns

500

85

0

V

ns

70

°e

Note 2: The algebraic convention, in which the more negative value is designated minimum, is used in this data sheet for logic voltage levels
only.

electrical charateristics over recommended ranges of supply vOltage and free-air temperature
(unless otherwise noted)
PARAMETER

TEST CONDITIONS

EP6630-25M
MIN

High-level output
VOH voltage
VOL

low-level output voltage

II

Input current

10Z

Off-state output current

lec

Supply current

ITIL
leMOS

IOH - -4mA

2.4

= -2mA
= 4 mA

3.84

10H

EP630-201
MtN

MAX

2.4

EP630-20C
MIN
2.4

3.84

UNIT

MAX

V

3.84

0.45

0.45

0.45

V

VI - VCC or GNP

±10

±10

±10

j.lA

Va - Vec or GND

±10

±10

±10

j.lA

150

150

150

15

15

10

150

150

100

10l

IStandby
I Nonturbo
ITurbo

MAX

VI = VCC or GND,
No load

I See Note 3
I See Note 4
I See Note 4

Ci

Input capacitance

VI - 0, f - 1 MHz, TA - 25°C

eo

Output capacitance

Va

Cclk

Clock capacitance

VI - 0, f - 1 MHz, TA - 25°C

= 0, f = 1 MHz, TA = 25°C

j.lA
mA

20

20

20

pF

20

20

20

pF'

20

20

20

pF

:>w
a:

c..
t-

O

::J
C

oa:
c..

NOTES: 3. When In nonturbo, the device automatically goes Into the standby mode approximately 100 ns after the last tranSItion.
4. These parameters are measured with the device programmed as a 16-bit counter and f = 1 MHz.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 86&303 • DALLAS. TEXAS 75285

3:

w

2-41

EP630

HIGH-PERFORMANCE 16-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
combinational mode, turbo bit on
PARAMETERt
tpdl

TEST CONDITIONS

MAX

Input to nonregistered output delay

110 input to nonregistered output

tpd2

delay

tpzx

Output enable time

tpxz

Output disable time
Asynchronous output clear time

tclr
tio

EP630-25M
MIN

.

CL = 35 pF

CL = 5 pF,

See Note 5

CL - 35 pF

110 input buffer delay

EP630-251
MIN

EP630-20C

MAX

MIN

MAX

UNIT

25

25

20

ns

27

27

22

ns

25

25

20

ns

25

25

20

ns

30

30

25

ns

2

2

2

ns

combinational mode, turbo bit off
PARAMETERt
\gdl

Input to nonregistered output delay

tpd2

1/0 input to nonregistered output
delay

:J:J

tpzx

Output enable time

tpxz

Output disable time

C.

tclr

Asynchronous output clear time
1/0 input buffer delay

"'0

o

c:
o

-f

tio

S
m
~

EP630-25M
MIN

MAX

CL=35pF

CL - 5 pF,
CL-35pF

See Note 5

EP630-251
MIN

EP630-20C

MAX

MIN

MAX

UNIT

40

40

35

42

42

37

ns

40

40

35

40

40

45

45

35
40

ns
ns

2

2

2

ns

ns
ns

synchronous clock mode

"'0

:J:J

TEST CONDITIONS

PARAMETERt
fmax

Maximum frequency

tcol

Clock to output delay time

tcnt
fcnt

Minimum clock period (register
feedback to register output)
Maximum frequency with feedback

TEST CONDITIONS
See Note 6

EP63D-25M
MIN

MAX

50

MAX

50

See Note 4
See Note 4

EP630-251
MIN

EP630-20C
MIN

MAX

MHz

55

18

18

15

25

25

20

40

40

UNIT

ns
ns
MHz

50

asynchronous clock mode
PARAMETERt
f max

Maximum frequency

tacol

Clock to output
delay time

tacnt

Minimum clock period (register
feedback to register output)

facnt

Maximum frequency with feedback

TEST CONDITIONS
See Note 6

EP630-25M
MIN

MAX

EP630-251
MIN

MAX

EP630-20C
MIN

MAX

50

ITurbo btl on
ITurbo btl off

MHz
30

30

25

45

45

40

25
40

UNIT

25
40

20
50

ns
ns
MHz

t Letter symbols for switching characteristics and timing requirements in this data sheet have been chosen for compatibility with those used in
other documentation previously prepared by another supplier for similar products. Any similarity to symbols used on other TI data sheets or to
those shown in glossaries in TI data books is coincidental. The meanings may not be the same .
.NOTES: 4. These parameters are measured with device programmed as a 16-bit counter and f = 1 MHz.
5. This is for an output voltage change of 500 mY.
6. The fmax values shown represent the highest frequency of operation without feedback.

TEXAS ."

2-42

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75266

EP630

HIGH· PERFORMANCE 16·MACOCELL

ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
timing requirements over recommended ranges of supply voltage and free-air temperature
synchronous clock mode
PARAMETERt

tsu

Input setup time

TEST CONDITIONS

ITurbo bit on
1Turbo bit off

th

Input hold time

tch

Clock high pulse duration

tcl

Clock low pulse duration

EP630-25M
MIN

MAX

EP630-251
MIN

MAX

MAX

15
30
0
9
9

20
35
0
10
10

20
35
0
10
10

EP630-20C
MIN

UNIT
ns
ns
ns
ns

asynchronous clock mode
PARAMETERt

ITurbo bit on
ITurbo bit off

tasu

Input setup time

tah

Input hold time

tach

Clock high pulse duration

tacl

Clock low pulse duration

TEST CONDITIONS

EP630-25M
MIN

MAX

10
25
15
10
10

EP630-251
MIN

10
25
15
10
10

MAX

EP630-20C
MIN

8
23
12
9
9

MAX

UNIT
ns
ns
ns
ns

t Letter symbols for switching characteristics and timing requirements in this data sheet have been chosen for compatibility with those used in
other documentation previously prepared by another supplier for similar products. Any similarity to symbols used on other TI data sheets or to
those shown in glossaries in TI data books is coincidental. The meanings may not be the same.

;:
w

:>w
I%:

0..

t-

O
::J
Q

oI%:
0..

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 855303 • DALLAS, TEXAS 76266

2-43

EP630

HIGH· PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
functional testing _
The EP630 is functionally tested including complete testing of each programmable EPROM bit and ali internal
logic elements thus ensuring 100% programming yield. As a result, traditional problems associated with fuse-_
programmed circuits are eliminated. The erasable nature of the EP630 allows test program patterns to be
used and then erased.
Figure 4 shows the test circuit and the conditions under which dynamic measurements are made. Because
power supply transients can affect dynamic measurements, simultaneous transitions of multiple outputs
should be avoided to ensure accurate measurement. The performance of threshold tests under dynamic
conditions should not be attempted. Large-amplitude fast ground-current transients normally occur as the
device outputs discharge the load capacitances. These transients flowing through the parasitic inductance
between the device ground terminal and the test-system ground can create significant reductions in
observable input noise immunity.
,..-----vcc
DEVICE _--._ _...._ _..._TO
OUTPUT
TEST SYSTEM

340 Il

CL t

"'0
::XJ

o

t Includes jig capacitance
Equivalent loads may be used for testing

C

c:

FIGURE 4. DYNAMIC TEST CIRCUIT

(")

-I
"'0
::XJ

design security
The EP630 contains a programmable design security feature that controls the access to the data programmed
into the device. If this programmable feature is used, a proprietary design implemented in the device cannot
be copied or retrieved. This enables a high level of design control to be obtained since programmed data
within the EPROM cells is invisible. The bit that controls this function, along with all other program data, may
be reset by erasing the device.
.

m

<
;n
~

turbo bit
These EPLDs contain a programmable option to control the automatic power-down feature that enables the
low-standby-power mode of the device. This option is controlled by a turbo bit that can be set using the EPLD
Development System. When the turbo bit is on, the low-standby-power mode is disabled. This renders the
circuit less sensitive to Vee noise transients created by the power-up/power-down cycle when operating in
the low-power mode. The typical lee versus frequency data for both the turbo-bit-on mode and the turbo-bitoff (low-power) mode is shown in Figure 5. All dynamic parameters are tested with the turbo bit on. Figure 6
shows the relationship between the output drive currents and the corresponding output voltages.

TEXAS ."

2-44

INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TEXAS 75265

EP630
HIGH·PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SUPPLY CURRENT
vs
MAXIMUM FREQUENCY

OUTPUT CURRENT
vs
OUTPUT VOLTAGE

100

100
70

TURBO BIT ON

~

c(

10

Vee - 5 V
TA - 25°e

40

I

~

~

::I

:;

~

!

CJ

CJ

;

>

Q.

TURBO BIT OFF

Q.

::I

/

20

I

10

5::I

7

I

4

IOL

/""

E
I

-...........

~H
"-

0

'"I

~

'\

\

9

0.1

\

2
0.01
100

Vee - 5 V
TA a 15°e
10 k 100 k
1 M
10 M 100 M
fmax-Maximum Frequency-Hz

1 k

1

o

FIGURE 5

2
4
3
VO-Output Voltage-V

\
5

~

s:w

FIGURE 6

If the design requires low-power operation, the turbo bit should not be set. When operating in this mode,
some dynamic parameters are subject to increases.

a::
a.

....

(.)

::J
Q

o

a::

a.

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-45

...
EP630
HIGH·PERFORMANCE 16·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)

X

INPUT OR 1/0

---------------------J~-------------------j4--tpd~

COMBINATIONAL
OUTPUT

--------------...;..----""\X

l ,....--------

••

---------------~I------'
~tpxz~

COMBINATIONAL OR
),
HIGH-IMPEDANCE STATE
VALID OUTPUT
~..:.:::::.:;.::::::..=:=;:;;..::~:.:;....
REGISTERED OUTPUT _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _~------I

~tPzx---.l

COMBINATIONAL OR _______.;,;H~IG_H_-IM
__
PE;;;D.;,;A_NC_E;..S_T_A_TE
_____...;..II------IK,....-V-A-L-ID-O-U-T-PU-T---REGISTERED OUTPUT

•

j4---telr~

\l

ASYNCHRONOUSLY
REGISTERED OUTPUT _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--'A\,_....::C;;:LE;:;;A:.:.:R.;;O~U~TP:..:U;.;T_ _
(al COMBINATIONAL MODE

"'0

~

CLK1, CLK2

~

INPUT OR 1/0

-I
~

-

\

{

~

~t.u-+r-th-.!

~

VALID

I+-tel-.!

V

~",.,_,.".,,.,,.,"7"7"7"7'r?''r?''r?',.,,.,,.,,.,''7''7''7''7'r?'~

I

"'0
~

---A
----.! t, I+-

C

-+I tf

!4- teo 1 ---+I

Xl~-------------•
VALID OUTPUT

REGISTERED OUTPUT _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _..J.

(bl SYNCHRONOUS CLOCK MODE

m
~

REGISTERED OUTPUT

_________________-..Jx'r--------------•

•

(el ASYNCHRONOUS CLOCK MODE

FIGURE 7. SWITCHING WAVEFORMS

TEXAS

~

INSTRUMENTS
2-46

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

VALID OUTPUT

EP910
HIGH·PERFORMANCE 24·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
03187, OCTOBER 1988-REVISED AUGUST 1989
DUAL-IN-LiNE PACKAGE

• High-Density (Over 900 Gates)
Replacement for TTL and 74HC

(TOP VIEW)
CLK
I

• Virtually Zero Standby Power .•. Typ 20 J.lA
• High Speed:
Propagation Delay Time ... 30 ns

VCC
I
I
110
1/0
110
1/0
1/0
110
1/0
1/0
110
1/0
110
1/0

I
1/0
110
110
110
110
1/0
110
1/0
110
110
110
110

• Asynchronous Clocking of All Registers or
Banked Register Operation from
2 Synchronous Clocks
• 24 Macrocells with Configurable I/O
Architecture Allowing for Up to 36 Inputs
and 24 Outputs
• Each Output Macrocell User-Programmable
for D, T, SR, or JK Flip-Flops with Individual
Clear Control or Combinational Operation
• UV-Light-Erasable Cell Technology Allows
for:
Reconfigurable Logic
Reprogrammable Cells
Full Factory Testing for 100%
Programming Yields

CLK2

GND

CHIP-CARRIER PACKAGE
(TDPVIEWI

• Programmable Design Security Bit Prevents
Copying of Logic Stored in Device

~

u u

a ___ U»
...J U
"'

• Advanced Software Support Featuring
Schematic Capture, Interactive Netlist,
Boolean Equations, and State Machine
Design Entry

6

5

4

3

2

U

0
___ '"

1 4443424140

39
38
37

• Package Options Include Plastic [For OneTime-Programmable (OTP) Devices] and
Ceramic Dual-In-Line Packages and
J-Leaded Chip Carriers

10

36

11

35

0

12
13

34
33

14

32

15

31

16

30
29
1819202122232425262728

0---00""---0

:::::

zz:::r.::::

:::::

(!)(!ld

NC-No internal connection
AVAILABLE OPTIONS
PACKAGE TYPE
TA

SPEED

CERAMIC

CERAMIC

PLASTIct

PLASTICt

RANGE

CLASS

DUAL-IN·LINE

CHIP CARRIER

DUAL·IN·LINE

CHIP CARRIER

PACKAGE (CDIP)

(CLCC)

PACKAGE (PDIP)

(PLCC)

EP910DC-30

EP910JC-30

EP910PC-30

EP910LC-30

30 ns
O°C _ 70°C
-40°C - 85°C

35 ns

EP910DC-35

EP910JC-35

EP910PC-35

EP910LC-35

40 ns

EP910DC-40

EP910JC-40

EP910PC-40

EP910LC-40

45 ns

EP910DI-45

EP910JI-45

EP910PI-45

EP910Ll-45

"lThis package is for One-Time-Programmable (DTP) devices.

PRODUCTION DATA documonts contain information
current 8S of publication datB. PnHlucts conform to
specifications par the terms of TexIs Instruments

:::~:~~i~air::I:ri ~!:~~~ti:r :I~":a~:::::':~~

not

Copyright @ 1989. Texas Instruments Incorporated

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-47

EP910
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
description
general
The Texas Instruments EP910 Erasable Programmable Logic Device is capable of implementing over 900
equivalent gates of SSI and MSllogic functions accommodating up to 36 inputs and 24 outputs all in plastic
and ceramic space-saving 40-pin, 600-mil dual-in-line (DIP) packages and 44-pin chip-carrier packages.
Each of the 24 macrocells contains a programmable-AND, fixed-OR PLA structure that yields 8 product terms
for logic implementation and a single product term for output-enable and asynchronous-clear control
functions. The architecture of the output logic macrocell allows the EP910 user to program output and
feedback paths for both combinational or registered operation, active high or active low.
For increased flexibility, the EP910 also includes programmable registers. Each of the 24 internal registers
may be programmed to be a D, T, SR, or JK flip-flop. In addition, each register may be clocked
asynchronously on an individual basis or synchronously on a banked register basis.
In addition to density and flexibility, the performance characteristics allow the EP91 0 to be used in the widest
possible range of applications. The CMOS EPROM technology reduces the power consumption to less than
20% of equivalent bipolar devices without sacrificing speed performance. Another advantage is 100% generic
testing. The device can be erased with ultraviolet (UV) light. Design changes are no longer costly, nor is there
a need for post-programming testing.
Programming the EP910 is accomplished by using the TI EPLD Development System, which supports four
different design entry methods. When the design has been entered, the software performs automatic
translation into logical equations, Boolean minimization, and design fitting directly into an EP91 O. The device
may then be programmed to achieve customized working silicon within minutes at the designer'S own
desktop.

functional
The EP910 is an Erasable Programmable Logic Device (EPLD) that uses a CMOS EPROM technology to
implement logic designs in a programmable AND-logic array. The device also contains a revolutionary
programmable I/O architecture that provides advanced functional capability for user programmable logiC.
Externally, the EP910 provides 12 dedicated data inputs and 241/0 pins, which may be configured for input,
output, or bidirectional operation. Figure 1 shows the EP910 basic macrocell. The internal architecture is
organized with the familiar sum-of-products (AND-OR) structure. Inputs to the programmable AND array come
from the true and complement signal from 12 dedicated data inputs and 24 feedback signals originating from
each of the 24 I/O architectural control blocks. The 72-input AND array encompasses 240 product terms,
which are distributed among 24 available macrocells. Each EP910 product term represents a 72-input AND
gate.
At the intersection point between each AND array input and each product term, there is an EPROM control
cell. In the erased state, all connections are made. This means both the true and complement of all inputs are
connected to each product term. Connections are opened during the programming process. Therefore, any
product term may be connected to the true or complement form of any array input signal.

2-48

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

-

EP910
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
functional block diagram

elK' 111121
,12) 131
113) [4J

Vee

MACROCElL 12

MACROCELl 24

I

117) 119)

1271 (241 I

I

(181 [201

1261 (23)

I 11911211

[251122)
12411211 ClK2

Pin numbers in parenthesis are for DIP packages. Pin numbers in brackets are for chip-carrier packages.

When both the true and complement of an array input signal are connected, a logical false results on the
output of the AND gate. When both the true and complement forms of any array input signal are programmed
open, then a logical "don't care" results for that input. If all 72 inputs for a given product term are programmed
open, then a logical true state results on the output of the corresponding AND gate. Two dedicated clock
inputs (not available in the AND array) provide the clock signals used for asynchronous clocking of the EP91 0
internal registers. Each of these clock signals is positive-edge triggered and has control over a bank of 12
registers. CLK1 controls registers associated with macrocells 13 through 24. CLK2 controls registers
associated with macrocells 1 through 12. The EP910 advanced I/O architecture allows the number of
synchronous registers to be user defined, from 1 to 24. Both dedicated clock inputs are positive-edge
triggered.

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265

2-49

EP910
HIGH·PERFORMANCE 24·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
I/O architecture
The EP910 input/output architecture provides each macrocell with over 50 possible I/O configurations. Each
I/O can be configured for combinational or registered output, with programmable output polarity. Four
different types of registers (D, T, JK, and SR) can be implemented into every I/O without any additional logic
requirements. I/O feedback selection can also be programmed for registered or input (pin) feedback. Another
benefit of the EP91 0 I/O architecture is its ability to individually clock each internal register from asynchronous
clock signals.
01
1

•••
:I

Ii

7

~gMgg_

9

11

•••••••

_.~u_

..... _..• _.. ro

13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

53 55 57 59 61

SYNCHRONOUS
CLOCK

63 65 61 69 71

~1351

(3)

(5\

\7\

~

191

~

111\

~

113\

~

-

'150\

(17)

~

Pin numbers shown are for dual-in-line packages.

(19)

~

-123\

\2&\

\27\

~

(29)

~

(31\

~

- -t33}

137}

(39)

-

~

FIGURE 1. LOGIC ARRAY MACROCELL (MACROCELL 1 ILLUSTRATED)

OE/CLK selection
Figure 2 shows the two modes of operation that are provided by the OE/ClK select multiplexer. The operation

of this multiplexer is controlled by a single EPROM bit and may be individually configured for each of the
EP910 I/O pins. In Mode 0, the 3-state output buffer is controlled by the OE/ClK product term. If the output of
the AND gate is true, the output buffer is enabled. If the output of the AND gate is false, the output buffer is in
the high-impedance state. In this mode, the macrocell flip-flop is clocked by its respective synchronous clock
input signal (ClK1 or ClK2). After erasure, the OE/ClK select multiplexer is configured in Mode O.
In Mode 1, the output-enable buffer is always enabled. The macrocell flip-flop may now be triggered from an
"jasynchronous clock signal generated by the OE/ClK multiplexable product term. This mode allows individual
clocking offlip-flops from any of the 72 available AND array input signals. Because both true and complement
signals reside in the AND array, the flip-flop may be configured for positive- or negative-edge-triggered
operation. With the clock now controlled by a product term, gated clock structures are also possible.

2-50

TEXAS ",

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

EP91 0
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DElVE (EPLD)
MODE 0

MODE 1

OE -

OE - Enabled
eLK - Asynchronous

P-Term Controlled

ClK - Synchronous
SYNCHRONOUS
CLOCK

SYNCHRONOUS
CLOCK

VCC

VCC

1/0
REGISTER

1/0
REGISTER

The register is clocked by the synchronous clock signal, which is
common to 11 other Macrocells. The output is enabled by the logic
from the product term.

OUTPUT
BUFFER

The output is permanently enabled and the register is clocked via
the product term. This allows for gated clocks that may be generated

from elsewhere in the EP910.

FIGURE 2. OE/ClK SELECT MULTIPLEXER

output/feedback selection
Figure 3 shows the EP91 0 basic output configurations. Along with combinational output, 4 register types are
available. Each macrocell I/O may be independently configured. All registers have individual asynchronousclear control from a dedicated product term. When the product term is asserted, the macrocell register will
immediately be loaded with a zero independently of the clock. On power-up, the EP910 performs the clear
function automatically.
In the combinational configuration, 8 product terms are ORed together to acquire the output signal. The
invert-select EPROM bit controls output polarity and the output-enable buffer is product term controlled. The
feedback-select multiplexer enables registered I/O (pin), feedback, or no feedback to the AND array.
When the D or T register is selected, 8 product terms are ORed together and made available to the register
input. The invert select EPROM bit determines output polarity. The OE/ClK select multiplexer is used to
configure the mode of operation to Mode 0 or Mode 1 (see Figure 2). The feedback-select multiplexer enables
registered I/O (pin) or no feedback to the AND array.
If the JK or SR registers are selected, the 8 product terms are shared among two OR gates whose outputs
feed the two primary register inputs. The allocation of product terms for each register input is optimized by the
TI EPLD Development System. The invert select EPROM bit controls output polarity while the OE(CLK s.elect
multiplexer allows the mode of operation be Mode 0 or Mode 1. The feedback-select multiplexer enables
registered 1(0 (pin) or no feedback to the AND array.
Any 1(0 pin may be configured as a dedicated input by selecting no output and pin feedback. No output is
obtained by disabling the macrocell output buffer. In the erased state, 1(0 is configured for combinational
active-low output with input (pin) feedback.

TEXAS ",

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 76265

2-51

EP910
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
OE

I/O SELECTION
OUTPUT/POLARITY

FEEDBACK

Combinational/high
Combinational/low

Pin, None

None

Pin

Pin, None

Ie) COMBINATIONAL
SYNCHRONOUS
CLOCK
VCC

OE/CLK
SELECT
I/O SELECTION
OUTPUT/POLARITY

D Register/high
D Register/low
CLK

OE

None

o Register

None

Pin
FUNCTION TABLE

a

10

INPUTS

C1

~--------------------;R

Ib) 0-TYPE FLIP-FLOP

FIGURE 3_ I/O CONFIGURATIONS

2-52

TEXAS ~.
INSTRUMENTS
POST OFFICE BOX

6~5012

FEEDBACK

D Register, Pin, None
D Register, Pin, None

• DALLAS. TEXAS 75265

OUTPUT

a

CLR

CLK

0

L

t

L

L

L

t

H

H

L

Lor H

X

00

H

X

X

L

EP910
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SYNCHRONOUS
CLOCK
VCC

OE/ClK
SELECT
I/O SELECTION
FEEDBACK

OUTPUT/POLARITY
T Register/high

ClK

OE

T Register, Pin, None

T Register/low

T Register, Pin, None

None

T Register

None

Pin
FUNCTION TABLE

r------'Q
1T

C1

INPUTS
ClK

a

t

L

L

t

H

L

Lor H

H

X

X
X

00
00
Co

l

~-------------------;R

OUTPUT
T

ClR

L

(e) TOGGLE FLIP-FLOP

SYNCHRONOUS
CLOCK
VCC

OE/ClK
SELECT

I/O SELECTION
OUTPUT/POLARITY

FEEDBACK

JK Register/high

JK Register, None

OE

JK Register/low

JK Register, None

None

JK Register

...----.Q
C1

FUNCTION TABLE

ClR
L
L
l
L
l
H

K

OUTPUT
Q

L

l

00

L

H

L

H

L

H

H

H

00

X
X

X
X

00

INPUTS
ClK
J

t
t
t
t
Lor H

X

l

(d) J-K FLIP-FLOP

FIGURE 3. I/O CONFIGURATIONS (CONTINUED)

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. ;reXAS 75265

2-53

EP9tO
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SYNCHRONOUS
CLOCK
VCC

OE/ClK
SELECT
I/O SELECTION
OUTPUT/POLARITY
OE

FEEDBACK

SR Register/high

SR Register, None

SA Aegister/low

SA Register, None

None

SA Register

"'----'0

FUNCTION TABLE
OUTPUT

INPUTS
Cl

CLA

ClK

S

A

a

L

l

L

00

L

t
t
t
t

L

Lor H

H

X

X

L
L

l

H

L

H

L

H

H

H

Undefined

X

X
X

00
l

(el S-R FLIP-FLOP

FIGURE 3, I/O CONFIGURATIONS (CONTINUED)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, Vee (see Note 1) , , , , , , , , , , , .. , , , . , . , , , , , . , . , , , . , . , . , -0,3 V to 7 V
Instantaneous supply voltage range, Vee (t :s; 20 ns) , , , , , , , , , , , , . , , , , .... , , . , , , , -2 V to 7 V
Programming supply voltage range, Vpp , . , . , . , , . , , , . , , , . , , , , , , , , , . , ... ,. -0,3 V to 13,5 V
Instantaneous programming supply voltage range, Vpp (t :s; 20 ns) , . , ... , . , . , . , , .. , -2 V to 13.5 V
Input voltage range, VI, .. , .. , ..... , . , . , ................. , .. , . , ... , .... , -0.3 V to 7 V
Instantaneous input voltage range, VI (t :s; 20 ns) ........... , .... , . , ............ -2 V to 7 V
Vee or GND current ... , , , ......... , ............................. -250 mA to 250 mA
Power dissipation at 25°e free-air temperature (see Note 2) .................... , . . .. 1200 mW
Operating free-air temperature, TA ...................................... -65°e to 135°e
Storage temperature range ............................................ -65°e to 1500 e
NOTES: 1. All voltage values are with respect to GND terminal.
2. For operation above 25·C free-air temperature. derate to 144 mW at 135·C at the rate of 9.6 mWrC.

2-54

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

EP910
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
recommended operating conditions
EP9101

PARAMETER

Vee Supply voltage
Input voltage
VI
High-level input voltage

Vil
Vo

low-level input voltage (see Note 3)
Output voltage

tr

Rise time

tf

Fall time

TA

Operating free-air temperature

UNIT

MAX

MIN

MAX

4,5

5,5

4,75

5,25

V

Vee
Vee+ O,3
0,8

V

0

VIH

EP910C

MIN

2
-0,3

a
elK input
Other inputs

Vee
Vee+ 0,3
0,8

0
2
-0,3
0

Vee
50

Vee
100

50

elK input

100
100
100
70

50
50

Other inputs

-40

85

0

V
V
V
ns
ns
'e

Note 3: The algebraic convention, in which the more negative value is designated minimum, is used in this data sheet lor logic voltage levels
and temperature only,

electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
EP9101
PARAMETER

TEST CONDITIONS
MIN

ITIl
leMOS

TYpt

EP910C
MAX

2.4
3,84

10H = -4mA

High-level output
voltage

VOL

low-level output voltage

10l - 4mA

0.45

II

Input current

VI - Vee or GND

10Z

Off-state output current

Vo = Vee or GND

ICC

Supply current

IStandby

~

ITurbo
ei

Input capacitance

Co

Output capacitance

eclk* Clock capacitance

VI = 0, 1= 1 MHz,
Vo = 0, 1= 1 MHz,

TA = 25'e
TA = 25'e

±10
±10
0,15
30
100
20
20

1=1 MHz,

TA = 25'e

20

I See Note 4

VI = Vee or GND,

ISee Note 5

No load

VI = 0,

I See Note 5

TYpt

MAX

2.4
3,84

VOH

10H = -2mA

MIN

0,02
6
45

UNfT

V

0,02
6
45

0.45
±10
±10
0,1
20
80
20
20
20

V

J.IA
J.IA
mA
pF
pF
pF

t All typical values are at Vee = 5 V, TA = 25'e,
* During programming, the clock capacitance of elK2 is 60 pF maximum,
NOTES: 4, When in the non-turbo mode, the device automatically goes into the standby mode approximately 100 ns after the last transition,
5, These parameters are measured with device programmed as a 16-bit counter, and I = 1 MHz,

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-55

EP910

HIGH· PERFORMANCE 24·MACROCELL
ERASABALE PROGRAMMABLE LOGIC DEVICE (EPLD)
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
combinational mode, turbo bit on
PARAMETERt

EP91 0-30

TEST CONDITIONS

tpdl
tpd2
tpzx

Input to nonregistered output
110 input to nonregistered output

tpxz

Input to output disable

CL - 5 pF,

tclr
tio

Asynchronous output clear time

CL- 35pF

MIN

CL=35pF

Input to output enable
See Note 6

EP91 0-35

MAX

MIN

EP91 0·40

MAX

MIN

MAX

UNIT

30
33

35
38

40
43

ns
ns

30
30

35

40
40

ns

35

33

38

43

ns

3

3

3

ns

1/0 input buffer delay

ns

combinational mode, turbo bit off
PARAMETERt
tpdt
ipd2
tpzx

EP91 0·30

TEST CONDITIONS

Input to nonregistered output
110 input to nonregistered output

MIN

EP91 0·35

MAX

MIN

60
CL = 35 pF

Input to output enable

tpxz

Input to output disable

CL - 5 pF,

lelr
tio

Asynchronous output clear time

CL=35pF

See Note 6

EP91 0·40

MAX

MIN

MAX

UNIT

70
73

ns

63

65
68

60

65

ns

ns

60

65

70
70

63

68

73

ns

3

3

3

ns

1/0 input buffer delay

ns

synchronous clock mode
PARAMETERt

EP91 0·30

TEST CONDITIONS

fmax Maximum frequency
Clock to output delay time

MIN

MAX

41.7

See Note 7

fcnt

Minimum clock period (register feedback to
register output)
Maximum frequency with feedback

See Note 5
See Note 5

MAX

EP91 0-40
MIN

MAX

32.3

37

leol
tcnt

EP91 0-35
MIN

MHz

18

21

24

30

35

40

33.3

28.6

UNIT

25

ns
ns
MHz

asynchronous clock mode
TEST CONDITIONS

PARAMETERt
f max

Maximum frequency

tac01

Clock to output delay time

tacnt
fcnt

See Note 7

EP91 0·30
MIN

MAX

33.3

ITurbo bit on
ITurbo bit off

Minimum clock period (register feedback to
register output)
Maximum frequency wtth feedback

33.3

EP91 0·35
MIN

MAX

31.3

EP91 0-40
MIN

MAX

29.4

UNIT
MHz

33

38

43

63

68

73

ns

30

35

40

ns

28.6

25

MHz

t Letter symbols for switching characteristics and timing requirements in this data sheet have been chosen for compatibility with those used in
other documentation previously prepared by another supplier for similar products. Any Similarity to symbols used on other TI data sheets or to
those shown in glossaries in TI data books is coincidental. The meanings may not be the same.
NOTES: 5. These parameters are measured with device programmed as a 16-bit counter, and f = 1 MHz.
6. This is for an output voltage change of 500 mV.
7. The f max values shown represent the highest frequency of operation without feedback.

2-56

TEXAS •

INSTRUME:NTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265

EP910
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
timing requirements over recommended ranges of supply voltage and free-air temperature
synchronous clock mode
TEST
CONDITIONS

PARAMETERt

tsu

Input setup time

th

Input hold time

ITurbo bit on
ITurbo bit off

EP91 0-30
MIN

MAX

EP91 0-35
MIN

MAX

EP91 0-40
MIN

24

27

31

54

57

61

0

0

0

MAX

UNIT
ns
ns

tch

Clock high pulse duration

12

13

15

ns

tcl

Clock low pulse duration

12

13

15

ns

asynchronous clock mode
TEST
CONDITIONS

PARAMETERt

tasu

Input setup time

tah

Input hold time

ITurbo bit on
ITurbo bit off

EP91 0-30
MIN

MAX

EP91 0-35
MIN

MAX

EP91 0-40
MIN

10

10

10

40

40

40

15

15

15

MAX

UNIT
ns
ns

tach

Clock high pulse duration

15

16

17

ns

tacl

Clock low pulse duration

15

16

17

ns

t letter symbols for sWitching characteristics and timing requirements In thiS data sheet have been chosen for compallbility with those used In
other documentation previously prepared by another supplier for similar products. Any similarity to symbols used on other TI data sheets or to
those shown in glossaries in TI data books is coincidental. The meanings may not be the same.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

2-57

EP910
HIGH· PERFORMANCE 24·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
functional testing
The EP91 0 is functionally tested including complete testing of each programmable EPROM bit and all internal
logic elements thus ensuring 100% programming yield. As a result, traditional problems associated with fuseprogrammed circuits are eliminated. The erasable nature of the EP910 allows test program patterns to be
used and then erased.
Figure 4 shows the dynamic test circuit and the conditions under which dynamic measurements are made.
. Because power supply transients can affect dynamic measurments, simultaneous transitions of multiple
outputs should be avoided to ensure accurate measurement. The performance of threshold tests under
dynamic conditions should not be attempted. Large-amplitude fast-ground-current transients normally occur
as the device outputs discharge the ,load capacitances. These transients flowing through the parasitic
inductance between the device ground terminal and the test-system ground can create significant reductions
in observable input noise immunity.

,------vcc
DEVICE _ _- -...- -....-TO
OUTPUT
TEST SYSTEM

340 !l

Cl t

t Includes jig capacitance

FIGURE 4. DYNAMIC TEST CIRCUIT

design security
The EP91 0 contains a programmable design security feature that controls the access to the data programmed
into the device. If this programmable feature is used, a proprietary design implemented in the device cannot
be copied or retrieved. This enables a high level of design control to be obtained since programmed data
within the EPROM cells is invisible. The bit that controls this function, along with all other program data, may
be reset by erasing the device.

turbo bit
Some EPLDs contain a programmable option to control the automatic power-down feature that enables the
low-stand by-power mode of the device. This option is controlled by a turbo bit that can be set using the TI
EPLD Development System, When the turbo bit is on, the low-stand by-power mode is disabled, This renders
the circuit less sensitive to Vee noise transients created by the power-up/power-down cycle when operating
in the low-power mode. The typical lee versus frequency data for both the turbo-bit-on mode and the turbobit-off (low power) mode is shown in Figure 5. All dynamic parameters are tested with the turbo bit on. Figure 6
shows the relationship between the output drive currents and the corresponding output voltages,

2-58

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

EP910
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SUPPLY CURRENT

OUTPUT CURRENT

vs

vs

MAXIMUM FREQUENCY

OUTPUT VOLTAGE

100

100

TURBO BIT ON

1

-"

~

20

:;

10

!!
:;
u

~

Ii

F.

70 fvee - 5 V~
25°e-

TURBO BIT OFF

§-

Ih

~

7

I

4

-IOL

-~-v:::

I

-.......

~H

0

I

~

0.1

~
Vee - 5 V
TA - 15°e

rTIlil
0.01
100

'\

9

WJIll

1 k
10 k 100 k 1 M 10 M 100 M
fmax-Maximum Frequency-Hz

\

..

_\

2
1

\

o

FIGURE 5

-

2
3
4
VO-Output Voltage-V

5

FIGURE 6

If the design requires low-power operation, the turbo bit should be (disabled) off. When operating in this
mode, some dynamic parameters are subject to increases.

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

2-59

EP910
HIGH-PERFORMANCE 24-MACROCELL
ERASAB~E PROGRAMMABLE LOGIC DEVICE (EPLD)

X

INPUT OR 110

-----------------,~---------------~tpd---+i

\:1'''---------

COMBINATIONAL
OUTPUT ______________________~I~--.------'~
If--tpxz~

,.--=::.;.:;-.:==;;.;;---I

COMBINATIONAL OR
),
VALID OUTPUT
REGISTERED OUTPUT ______________________
~-------:

HIGH-IMPEDANCE STATE

!.--tPZX--+\
COMBINATIONAL OR _________H.,I_GH;.;.-_IM_P,;;E_D_AN;.;.C;,;E;;.S;,.T;.;.A;.;.T_E_______',__________--t:K--V-A-l-ID--O-UT-P-U-T---REGISTERED OUTPUT

•

j4--tcl'~
REGISTERED OUTPUT _____________________________________

~

ASYNCHRONOUSLY

__'I\'-__.;:C;:;:lE:;::A;:.R:.;O~U~T~P,;;;U.;.T_ _

lal COMBINATIONAL MODE

I4-- t ch----'

~II\.,
/

--' tf le-tcl-.l

'!I

''!Ie/

~

ClK', ClK2 - - - /

~ t, 14-I4-tsu-+r-th---.l·
INPUTORIIO~ VALID
~I".~~~~..,.,..,.,..,.,..,.,..,.,..,.,..,.,.,.,.,.,~
I

!4-- tco,---+I
REGISTERED OUTPUT

Xlr------------------

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- J
•

_

VALID OUTPUT

Ibl SYNCHRONOUS CLOCK MODE

REGISTERED OUTPUT

____________________Xlr------------~---------•

leI ASYNCHRONOUS

•

C~OCK

FIGURE 7. SWITCHING WAVEFORMS

2-60

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

VALID OUTPUT

MODE

EP910
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
MECHANICAL DATA
4O-PIN CERAMIC DIP (COIP)
WINDOW
8.9 10.3501 NOM DIA

r-

15.7 10.6201
13.010.5101

~~rrr~rrrTI<~~~~"~"~~
2.510.0981 MAX

16.00 10.6301
1499105901

j

I---

r

5.710.2251
4.610.1801

~

! I,., \_sp:. .=:E~=~=-G

---L-1-

~ ~:

~. .

r-

r"'~

~(J3~Oi

0.3810.0151

3.210.1251

0.20 10.0081

-J I.-

PIN 1

1.6510.0651
0.97 10.0381

0.13 10.0051

MIN~ ~

53.2 12.0961 MAX

U-

Jl
2.5410.1001

"I

~
0.51 10.0201
0,4110.0161

1.7810.0701
0.38 10.0151

Bse

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

40-PIN PLASTIC DIP (PDIP)

15,37 (0.6051

s~
~

'''''~~~l:::::::=:-:::::::]
"" 'r
1
tL
3.94(0.155)

,,~:M

;;:;:N:·

5371

14-1·---------~:~~:~;::~:-;:~"'::::~~:::~c:.- - - - - - - - - - > 1 :.~: :~:~::

]r-----------------------

u
~LO.51NI!~201
~

f
3,3010,1301
3,05 to., 20)

0,30 10.012)

16.26 (0.640)
15.49 (0.610)

0.20 10.0081

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

TEXAS ",

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75266

2-61

EP910
HIGH-PERFORMANCE 24-MACROCELl
ERASABLE PROGRAMMABLE lOGIC DEVICE (EPLD)
MECHANICAL DATA
44-PIN CERAMIC LEADED CHIP CARRIER (CLCCI
BOTTOM VIEW

1,2710.060)

sse

1

r

TOP

1.02 (0.040))145°
NO M

VIEW
GLASS
~INDOW
7.11 10.280) R NOM

·~n ~
I

~
17,40 10.885)

16.6610.656) [
16.00 10.630)

lJ ,. 6610.6561=1~
t=
'-' '-'

~12'70REF10.5001---.1

~

'-'

'-'

,~

16,00 (0.630)

~:~: :~:~;::

J

17.65 (0.6951

R

17.40 10.685)

0.25 (0.0101
0,15 10.0061

-----.t

~k

0,53 (0.021,

0,43 10.0171

•

0,66 (0.026)
DETAil "PO'

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

2-62

TEXAS ..,
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

EP910
HIGH-PERFORMANCE 24-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
MECHANICAL DATA
44-PIN PLASTIC LEADED CHIP CARRIER (PLCCI
SEE DETAil "8"

~
/

/

I

b

L~
~

1,22

l~

, 6,00 (0.6301

D
h
~

I
16'6610'6561~

16,51 (0.6501

17,65 (0.6951
17,40 (0.6851

)1

J-

17.40 (0.685)
16,6610.6561
16,51 (0.6501

1,14(0.0451 R
0,64 (0.0251

', /

l!t

O'5110'0201 MIN

'I

----l

3.05 IO.,201

2,29 (0.0901
0.64 (0.0251
MIN

4.57 (0.1aOI
4.19 (0.1651

[O'0481~ 0.254 [0.010)

1,07 (0.0421

0.203 (0.008)

~

-

I

~

r-----

1.22 10.0481
1,07 (0.0421

•

0,53 (0.021)
0,41 (0.0161

f

*T

0,81 10.0321
0,66 (0.0261
DETAIL "S"

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012· DALLAS. TEXAS 75265

2-63

-

2-64

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)

03232, FEBRUARY 19S9-REVISED AUGUST 1999

• Erasable, User-Configurable LSI Circuit
Capable of Implementing 2100 Equivalent
Gates of Conventional and Custom Logic

CHIp· CARRIER PACKAGE
(TOP VIEW)

• Speed Equivalent to 74LS TIL with 33-MHz
Clock Rates

9 8765432 1 68 67 66 6564636261
110
I/O
I/O
110
INPUT
INPUT
INPUT

• Virtually Zero Standby Power •.. 35 fLA Typ
• Active Power of 250 mWat 5 MHz
• Programmable Clock Option Allows
Independent Clocking of All Registers
• Forty-eight Macrocells with Configurable
I/O. Architecture Allowing Up to 64 Inputs or
48 Outputs

ClKl
VCC
CLK2

10
11
12
13
14

15
16
17
18
19

INPUT
INPUT
INPUT

20

1/0

23
24
25
26

• Accepts TIL S51 and MSI Based
Macrofunction DeSign Inputs

110
110
110

• TIL/CMOS I/O Compatibility
• 100% Generically Testable - Provides
100% Programming Yield

0

21

22

60
59
58
57
56
55
54
53
52
51
50
49
48
47

46
45
44

110
I/O
ItO
110
INPUT
INPUT
INPUT

ClK4

vcc
ClK3
INPUT
INPUT
INPUT
I/O
I/O
110
I/O

n~R~~~~M~~D~~~~ac

g~~ggggg~~~gggggg

'"

• CAD Support from the TI EPLD
Development System Featuring Schematic
Capture Design Entry with Extensive
Primitive and Macrofunction Libraries
• Packaged in a 68-Pin J-Leaded, Ceramic
(with Window) and Plastic (One-Time
Programmable) Chip Carrier
AVAILABLE OPTIONS
PACKAGE TYPE
TA

SPEED

CERAMIC

PLASTIC

RANGE

CLASS

CHIP CARRIER

CHIP CARRIER

(CLCC)

(PLCC)

35 ns

EP1810JC·35

EP1810LC·35

45 ns

EP1810JC·45

EP1810LC·45

45 ns

EPI810J)·45

EP1810Ll·45

O°C to 70°C
-40°C to 85°C

description
The EP1810 series of CMOS EPLDs from Texas Instruments offer LSI density, TIL equivalent speed
performance and low power consumption. Each device is capable of implementing over 2100 equivalent
gates of SSI, MSI and custom logiC circuits. The EP1810 series is packaged as a 68-Pin J-Leaded Chip
Carrier, and is available in ceramic (erasable) and plastic (one-time programmable) versions.
The EP181 0 series is designed as an LSI replacement for traditional low-power Schottky TTL logic circuits, Its
speed and density also make it suitable for high-performance complex functions such as dedicated
peripheral controllers and intelligent support chips. Integrated-circuit count and power requirements can be
reduced by several orders of magnitude allowing similar reduction in total size and cost of the system, with
significantly enhanced reliability.

PRODUCTIOII DATA do.umlnll 00.111. informllio.
..mnt II of pulllicotio. dOle. Products .onform 10
specifications par the terms of TaXIS Instruments

:=:~~i;ar.!:I'i =:~ti:r :.~o::~:~9t::.s not

Copyright

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

o- ~ ::v=(t:
II
l
~I~~l
: . D D-l:V =(to l
I

II

0

J

0

c

I.

I

0

Kc

Y:[>-II

I

II
II

II

IIp-~
~

L__

__-1

O

I
II
c
RC
I
IL ____________ II ____________ I
~L

~L

_______

~

FiGURE 1. MACROCELL COMPONENTS
Typical logic functional implemented into a single macrocell. Each EP1810 macrocell can accommodate the
equivalent of 40 gates.
FROM OTHER
MACROCELLS

EP1Sl0
INPUTS

I

•

r,

---------,,

':;;G-;
ARRAV

LOAo-=-I----4~-----~

I
I
I

ENT

I/O PIN

ENP-.-.

~

OATAO--'-----I---------l_~

x>--+----'
L _________________________

CLEAR-+----+-----------------I

~

TO OTHER
MACROCELLS

EQUIVALENT GATES - 40

FIGURE 2. SAMPLE CIRCUIT

2-68

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TEXAS 76265

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
The EP1810 macrocell architecture is shown in Figures 3 and 4. There are 32 macrocells called local
macrocelis. These macrocelis offer a multiplexed feedback path (pin or internal) which drives the local bus of
the respective quadrant.
There are another 16 macrocelis known as the global macrocells (see Figure 4). These global macrocells
have features that allow each macrocell to implement buried logic functions and, at the same time, serve as
dedicated input pins. Thus, the EP181 0 may have an additional 16 input pins giving a total of 32 inputs. The
global macrocells have the same timing characteristics as the local macrocelis.

•

II ~lOCAL

GLOBAL BUS

QUADRANT
SYNCHRONOUS
CLOCK
BUS----.
V
OE/CLOCK

:;;=

LSELECT
OE

-D£~

DE/eLK

L-~1

is"

i ,

').-

0

~
~

~

t;

5

f

CLK

2

~}~}-

3

4
5

~-

I/O
ARCHITECTURE
CONTROL

r-{>r---

~
~

6
CLEAR

'r • .• if

t
t
'--v--'
GLOBAL
OEDICATED
INPUTS

t16INPUTS)

'

~

.. . . .

...

•

L

-D-LOCAL BUS

'--.r-----1
QUADRANT

A. B. C. D
GLOBAL
FEEDBACK
('6 MACROCELLSI

'--v---"
QUADRANT
LOCAL
FEEOBACK
(12 MACROCEllS)

r::l-

FEEDBACK'i"
SELECT

I

FIGURE 3. LOCAL MACROCELL LOGIC ARRAY

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

2-69

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
QUADRANT
SYNCHRDNOUS
CLOCK
_ - - - - G L O B A L B U S - - - - -.... _ L O C A L BUS---+
CLOCK
v
t..SELECT

OE
S~T

r;=

-rn:::~

OEICLK

-<>-r-2L

~~'--1 [<

©

.,

m 01

i=}--

~

i=}-~
~

Fe}--

...

2

i!

~

5
6

CLEAR

CLK-.Qp

r

110
ARCHITECTURE
CONTROL

r1>r---

r=rJ-

o

0

0

r

l ~

0

0

0

0

Or

'--v------I
GLOBAL
DEDICATED
INPUTS
(16INPUTSI

QUADRANT
A.B.C. D
GLOBAL
FEEDBACK
{16 MACROCELLSI

-D--

f

0

0

o

L:l.

O

LOCAL BUS
GLOBAL BUS

~

'----y-----J
QUADRANT
LOCAL
FEEDBACK
(12 MACROCELLSI

FIGURE 4. GLOBAL MACROCELL LOGIC ARRAY

clock options
Each of the EP181 0 internal flip-flops may be clocked independently or in user defined groups. Any input or
internal logic function may be used as a clock. These clock signals are activated by driVing the flip-flop clock
input with a clock buffer (CLKB) primitive. In this mode, the flip-flops can be configured for positive or negative
edge triggered operation.
Four dedicated system clocks (CLK1-CLK4) also provide clock signals to the flip-flops. System clocks are
connected directly from the EP181 0 external pins. With this direct connection, system clocks give enhanced
clock to output delay times than internally operated clock signals. There is one system clock per EP1810
quadrant. When using system clocks, the flip-flops are positive edge triggered (data transitions occur on the
rising edge of the clock) .

. macrofunction.s
The macrofunctions shown in Figure 5 allow the circuit designer to use popular TTL SSI and MSI building
blocks. Many macrofunctions are standard TTL circuits such as counters, comparators, multiplexers,
decoders, shift registers, etc. and are identified by their familiar TTL part numbers. Macrofunctions are
constructed by combining one or more macrocells. These high-level function blocks may be combined with
low-level gate and flip-flop elements to produce a complete logic design.
An automatic function built into the TI EPLD Development System ensures that the use of macrofunctions
causes no loss of deSign efficiency. The development system analyzes the complete logic schematic and
automatically removes unused gates and flip-flops from any macrofunction employed. This MacroMunching'·
process allows the logic designer to employ macrofunctions without the problems of optimizing their use.
MacroMunching is a trademark of ALTERA Corporation .

2-70

.

TEXAS'"

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 76265

EP1810
HIGH-PERFORMANCE 48;MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
All inputs to macrofunctions are designed with intelligent-default input signal levels (VCC or GND). Normally
active high and low signals or unused inputs can simply be left unconnected, further improving productivity
and reducing the burden placed on the designer.
Macrofunctions are TTL compatible SSI and MSI circuits giving the circuit deSigner a high-level approach to
EPLD design. Macrofunctions include input default values to unconnected inputs and MacroMunching'· to
unused outputs. The macrofunction library consists of over 100 components.
74162 FUNCTION TABLE
ACTIVE lOW

SOGN . .

~
I - - - - ;';,:;; - ~ MACROFlINCTION
NAME

vccl

~C:

CLRN

I
I

Vee
Vee

GNO:

CK

:

i L__________ ~--,
I

DEFAULT VALUES

NUMBER OF MACRO
CELLS USED BY THE

OUTPUTS

INPUTS
LON

CLRN

ENP

I
I

X

L

L

H

X
X

I

H

H

X
X
X

I

H

H

L

X

I
I

H

H

H

H

H

H

H

H

CK

RCO

ENT 0 C B A
d

c

b a

~

L

.I.

L

HO~D

I~

1~

bOUNT
HOLD COUNT
COUNT UP

H

t

L

t

L

t

H

L
L
L
L
L
H

H = high level (steady state)
L = low level (steady state)
X = don't care (any input including transitions)
= transition from low to high level
a.b,c,d = level of steady state input at inputs A,B,C,D

...r

FIGURE 5. MACROFUNCTION SYMBOL

design libraries
Texas Instruments provides both primitive and macrofunction libraries within the EPLD Development System.
These libraries are used with the LogiCaps ,. schematic capture design entry to specify the logiC. Elements
from both libraries may be used in the same deSign, allowing full utilization of the EP181 0 resources.

primitive. library
The primitive library consists of 80 low-level logic gates, flip-flop, and I/O symbols. See section on primitive
library in the A+ PLUS" reference guide. Basic gates provided are AND, OR, NAND, NOR, Exclusive OR and
NOR, and NOT functions. De-Morgan's inversion (bubble input) of each gate is included. These logic gates
have a maximum of 12 inputs. Larger gates may be constructed by chaining primitives together. Flip-flops in
the form of D,T,JK and SR types are supplied. Each flip-flop has asynchronous clear capability. To connect
signals to external pins, input and 3-state I/O buffers are available. For the deSigner's convenience,
compound primitives that combine register and I/O buffers, are also supplied.

macrofunction library
The development system macrofunction library encompasses over 100 high-level building blocks that can
greatly increase design productivity. See the ADLlB'· and TTL macrofunctions manual that comes with the
development system. The library contains the most commonly used TTL SSI and MSI functions. In addition, a
number of more specialized macrofunctions have been added. These blocks perform logic functions in an
optimum manner for EPLD implementation. They include counters implemented with toggle flip-flops, inhibit
gates, combinational shift-registers/counters and a variety of useful logic structures not found in standard TTL
devices.

LogiCaps is a trademark of ALTERA Corporation.
A+PLUS is a trademark of ALTERA Corporation.
ADUB is a trademark of ALTERA Corporation.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-71

EP1810
HIGH.PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
starting a design
To get started on an EP181 0 design the following sequence of preliminary steps is suggested. The equations
given will help estimate how to build your system with EP1810s.
partitioning
Partition the complete system into functional blocks. Major functional blocks may be expressed in standard
MSI TTL form for integration within the EP181 O. Should the design require a multiple EPLD solution, the 1/0
connections which interface between the EPLDs should be minimized. The complete schematic should be
structured as a set of subsystems such as counters, shift registers, comparators, etc., to allow easy design
entry.

timing specifications
Knowledge of the base-clock frequency and critical-timing paths are necessary to make the correct choice of
EPlDs. The EP181 0 series can support circuits operating up to 33 MHz. Critical-timing paths are determineq
based upon input buffer, logic array, and output buffer delays. See switching characteristics. Smaller EPLDs,
such as the EP910 or EP610, can be used for circuits that demand higher speed requirements on critical
paths.
estimating a fit
To estimate the amount of logic that will fit into an EP1810, the number of input and output pins and the
number of macrocells must be specified.
To estimate the number of macrocells, determine the number of buried flip-flops (flip-flops that do not drive
output pins) and the number of macrocells used by macrofunctions. Since basic gates are implemented
within the logic array, they usually do not require an entire macrocell. Therefore, they may be safely ignored in
the estimation.
Each member of the macrofunction library has a maximum number of macrocells used to build the function.
This number is shown in the lower right hand corner of the symbol. Refer to the ADLlB'· and TTL
macrofunction manual to determine how many macrocells each macrofunction requires. Note that some
macrofunctions have no macrocell specification. These functions use only a portion of the logic array, thus
other logic coOld be added before the entire macrocell is used.
esUmation formula
The estimation formula is as follows:
1. Determine the number of output pins = OP
2. Determine the number of input pins = IP (if less than 16 enter zero)
3. Determine the number of macrocells = BFF + MR where: BFF = buried flip-flops and MR
function reqUirements.

=

macro-

If OP + IP + BFF + MR < 48, the design will mostlikely fit into an EP181 O. Complete the design using the TI
EPLD Development System.

2-72

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TeXAS 75265

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, Vee (see Note 1) ............... . . . . . . . . . . . . . . . . . . .. -0.3 V to 7 V
Instantaneous supply voltage range, Vee (t :s; 20 ns) . . . . . . . . . . . . . . . . . . . . . . . . . .. -2 V to 7 V
Programming supply voltage range, Vpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -0.3 V to 13.5 V
Instantaneous programming supply voltage range, Vpp (t :s; 20 ns) ............... -2 V to 13.5 V
Input voltage range, VI ............................................... -0.3 V to 7 V
Instantaneous input voltage range, VI (t :s; 20 ns) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -2 V to 7 V
Vee or GND current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -400 mA to 400 mA
Power dissipation at 25°e free-air temperature (see Note 2) .. . . . . . . . . . . . . . . . . . . . . . .. 2000 mW
Operating free-air temperature, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°e to 135°e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -65°e to 1500 e
NOTES: 1. All voltage values are with respect to GND terminal.
2. For operation above 25'C free-air temperature. derate to 240 mW at 135'C at the rate 01 16 mWrC.

recommended operating conditions

VCC
VI

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage (see Note 3)

Va

Output voltage
Rise time

MAX

MIN

MAX

4.5

5.5

4.75

5.25

V

vCC
VCC+0.3
0.8

V

0
2
-0.3

VCC
VCC+0.3
0.8

a

Fall time

TA

Operating free-air temperature

0
2
0.3

a

VCC
50

CLK input

tf

UNIT

MIN

Input voltage

tr

EP1810C

EP18101

PARAMETER

VCC
100

Other inputs

50

100

CLK input

50

100

Other inputs

50
-40

100

85

0

70

V
V
v
ns
ns
·C

NOTE 3: The algebraic convention, in which the more negative value is designated minimum, is used in this data sheet for logic voltage levels
and temperature only.

electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
High-level
VOH output voltage

ITIL
ICMOS

TEST CONDITIONS
10H - -4mA

2.4

10H = -2mA

3.84

VOL
II

Low-level output voltage

10L = 4mA

Input current

10Z

Off-state output current

ICC

Supply current

I Standby
INon-turbo
ITurbo

EP18101
Min

TYpt

EP1810C
MAX

MIN

TYpT

MAX

2.4

UNIT
V

3.84
0.45

0.45

V

VI - VCC or GND

~10

±10

J.lA

Va - VCC or GND

±10

±10

J.lA

VI = VCC or GND,
No load

ISee Note 4
ISee Note 5

JSee Note 5

0.035

0.15

0.035

0.15

10

40

10

30

100

240

100

180

mA

Ci

Input capacitance

VI- O.

1 -1 MHz,

TA - 25'C

20

20

pF

Co

Output capacitance

va =0,

f= 1 MHz.

TA = 25'C

20

20

Cclk

Clock capacitance

VI = 0,

1= 1 MHz.

TA = 25'C

25

25

pF
pF

t All typical values are at VCC = 5 V. TA = 25'C.
NOTES: 4. When in the non-turbo mode. the device automatically goes into the standby mode approximately 100 ns after the last transition.
5. These parameters are measured with device programmed as four 12-bit counters and f
1 MHz.

=

INSTRUMENlS
TEXAS "
POST OFFICE BOX 656303 • DALLAS, TEXAS 75265

2-73

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
turbo-bit on
PARAMETERt

TEST CONDITIONS

tpd1(tot)

Input to nonregistered output delay

.tpd2(tot)
tin

I/O input to nonregistered output delay
Input pad and buffer delay

tio

I/O input pad and buffer delay

tlad

Logic array delay

tad
tpzx

Output buffer and pad delay
Output buffer enable time

tpxz

Output buffer disable time

EP1810-35
MIN

CL = 35 pF

CL = 35 pF
CL - 5 pF,
See Note 6

MAX

EP1810-45
MIN

MAX

UNIT

35

45

ns

40
7

50

ns

7

ns

5
19

5
27

ns
ns

9

11

ns

9

11

ns

9

11

ns

turbo-bit off
PARAMETERt
tpd1(tot)
tpd2(tol)
tin

Input to nonregistered output delay
Input pad and buffer delay

tio

I/O input pad and buffer delay

TEST CONDITIONS

I/O input to nonregistered oulput delay

tlad

Logic array delay

tad
tpzx

Output buffer and pad delay
Output buffer enable time

tpxz

Output buffer disable time

CL=35pF

CL=35pF
CL - 5 pF,
See Note 6

EP1810-35

EP1810-45

MIN

MIN

MAX

MAX

UNIT

75

ns
ns

7

80
7

5

5

ns

49

57
11

ns

9
9

11

ns
ns

9

11

ns

65
70

ns

t Letter symbols for switching characteristics and timing requirements in this data sheet have been chosen for compatibility with those used in
other documentation previously prepared by another supplier for similar products. Any similarity to symbols used on other TI data sheets or to
those shown in glossaries in TI data books is coincidental. The meanings may not be the same.
NOTE 6: This capacitance is for an output voltage change of 500 mY.

2-74

TEXAS .."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75266

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
synchronous/asynchronous clock mode, turbo-bit on
PARAMETERt

TEST CONDITIONS

f max Maximum frequency
Register set-up time

tsu
th

leh
lei
tic

See Note 7

EP1811l-35
MIN

MAX

EP1810-45
MIN

MAX

UNIT

40

33.3

10

11

ns

Register hold time

15

18

Clock high pulse duration
Clock low pulse duration

12
12

15
15

ns
ns

Clock delay

MHz

19

27

ns
ns

tics

System clock delay

4

Feedback delay

6

8
7

ns

tfd
tclr

24

32

ns

Register clear time nonregistered output

tcnt

Minimum clock period (register output feedback to
register input-internal data)

fcnt

Maximum frequency with feedback

45

35
See Note 5

22.2

28.6

ns

ns
MHz

synchronous/asynchronous clock mode, turbo-bit off
PARAMETERt

TEST CONDITIONS

fmax Maximum frequency
Register set-up time

tsu
th

tch
tcl
tic

See Note 7

EP1810-35
MIN

MAX

EP181 0-45
MIN

MAX

UNIT

40

33.3
11

Register hold time

10
15

18

ns

Clock high pulse duration

12

15

ns

Clock low pulse duration

12

Clock delay

tics

System clock delay

tfd

Feedback delay

tcl r

Register clear time nonregistered output

tcnt

Minimum clock period (register output feedback to
register input-internal data)

fcnt

Maximum frequency with feedback

15

28.6

ns

49

57

ns

4
-24

8
-23

ns
ns

54

62

ns

45

35
See Note 5

MHz
ns

22.2

ns
MHz

t Letter symbols for switching characteristics and timing requirements in this data sheet have been chosen for compatibility with those used in
other documentation previously prepared by another supplier for similar products. Any similarity to symbols used on other TI data sheets or to
those shown in glossaries in TI data books is COincidental. The meanings may not be the same.
NOTES: 5. f max is measured with device programmed as four 12-bit counters.
7. The f max values shown represent the highest frequency of operation without feedback.
B. The negative number shown for this specification is to compensate for the 30 ns that is being added to the tlad parameter in the
turbo·bit off mode. In the non-turbo mode, tfd is not affected by the additional propagation delay because the logic array is already
taken out of the non-turbo mode by the first transition into the array. See section on EPLD delay elements.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-75

EP1810
HIGH·PERFORMANCE 48·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
functional testing
The EP1810 is functionallly tested including complete testing of each programmable EPROM bit and all
internal logic elements thus ensuring 100% programming yield. As a result. traditional problems associated
with fuse-programmed circuits are eliminated. The erasable nature of the EP1810 allows test program
patterns to be used and then erased.
Figure 6 shows the dynamic test circuit and the conditions under which dynamic measurements are made.
Because power supply transients can affect dynamic measurements. simultaneous transitions of multiple
outputs should be avoided to ensure accurate measurement. The performance of threshold tests under
dynamic conditions should not be attempted. Large-amplitude fast-ground-current transients normally occur
as the device outputs discharge the load capacitances. These transients flowing through the parasitic
inductance between the device ground terminal and the test-system ground can create significant reductions
in observable input noise immunity.
...------vcc
DEVICE _ - ._ _......_ _...._TO
OUTPUT
TEST SYSTEM

340

[l

t Includes jig capacitance

FIGURE 6. DYNAMIC TEST CIRCUIT

design security
The EP1810 contains a programmable design security feature that controls the access to the data
programmed into the device. If this programmable feature is used. a proprietary design implemented in the
device cannot be copied or retrieved. This enables a high level of design control to be obtained since
programmed data within the EPROM cells is invisible. The bit that controls this function. along with all other
program data. may be reset by erasing the device.

turbo bit
Some EPLDs contain a programmable option to control the automatic power-down feature that enables the
low-standby-power mode of the device. This option is controlled by a turbo bit that can be set using the TI
EPLD Development System. When the turbo bit is on. the low-standby-power mode is disabled. This renders
the circuit less sensitive to Vee noise transients created by the power-up/power-down cycle when operating
in the low-power mode. The typical ICC versus frequency data for both the turbo-bit-on mode and the turbobit-off (low power) mode is shown in Figure 7. All dynamic parameters are tested with the turbo bit on.
Figure 8 shows the relationship between the output drive currents and the corresponding output voltages.
Figures 7 and 8 show the ICC vs f max • and output current vs output voltage.

2-76

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TEXAS 75265

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SUPPLY CURRENT
vs
MAXIMUM FREQUENCY

0.1 L..J...u..uJILLllJ..Lllll....l...IJ.WIII-L.llLWL.!.UJ.UIIL...l...I.wJII
100
1 k
10 k 100 k
1 M 10 M 100 M
fmax-Maximum Frequency-Hz

FIGURE 7
OUTPUT CURRENT
vs
OUTPUT VOLTAGE
100
70

c(

Vee

e

40

l!!

SCo
S

0
I

IOL

L

20

I

:;
CJ

.

~

E

~I:

5 V

TA - 25°e

10

-..........

~

7

"\

4

9

\

2
1

o

2
3
4
VO-Output Voltage-V

5

FIGURE 8

If the design requires low-power operation, the turbo bit should be off (disabled). When operating in this
mode, some dynamic parameters are subject to increases.

TEXAS ."

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75266

2-77

EP1810
HIGH·PERFORMANCE 48·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
SYSTEM CLOCK DELAY
tics

INPUTS

CLOCK DELAY
INPUT
DELAY

INPUTS

tin

tic

LOGIC ARRAY DELAY
tlad

REGISTER
DELAY

OUTPUT
DELAY

'su
'h
'hs

'od

1/0

'"'.x

REGISTER CLEAR DELAY
telr

1/0
1/0

FEEDBACK
DELAY

INPUT
DELAY

'Id

tjo

NOTE: For combinatorial outputs, the delay between the logic array and the output buffer is zero. (i.e., tsu

FIGURE 9. EPLD MACROCELL DELAY PATHS MODEL

2-78

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655:i03 • DALLAS. TEXAS 75265

=0

or th

= 0)

EP1810
HIGH· PERFORMANCE 48·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE
INPUT MODE

I+--'!- tio

I/O

PIN-----.*I..~:.-----------------­
j+tin-tl

INPUT PIN

---,"""","\\:/'
I'\.

I

--------~ ~~---------------------------I..--tlad

LOGIC ARRAY INPUT

-'

--------~I
l!\

:

----------~I'----------~·~-------------

.I

r-tclr

LOGIC ARRAY OUTPUT

\,LI

I'\.
-----------------------~ ~-------------CLOCK MODE
tr .....

I

_tch_

j4--tcl~

I

I

I

~tin-tf

~

CLOCK INTO LOGIC ARRAY

:;

\1

V

CLOCK PIN

t iC

\

---4

OATA FROM LOGIC ARRAY

~

"-

/
\

r--

*

\'---

j+-ts~£th
~ !~

CLOCK FROM LOGIC ARRAY

--.. ~tf

j+"-tfd--tl

REGISTER OUTPUT TO
LOGIC ARRAY

SYSTEM CLOCK MODE
SYSTEM CLOCK PIN
tin

SYSTEM CLOCK
AT REGISTER
DATA FROM
LOGIC ARRAY

\ ......----'/

/

----~

-tt--tf
:

1-1- tics

V~----~\~

1

I+-t.U~th

____~/

\.

w _ _':k~--------------------~I1'\.\..
__
OUTPUT MODE

CLOCK FROM
/
LOGIC ARRAY ________~

\

/
,,'-______....

~tod_tf

L~:.~A~~~~ ==x::=)(

:
I

'0.

tpxz.....
_____________.......... 1 _____---L)!4__---.!,

OUTPUT PIN

X

X_......-__
_
~tpzx
1

...

,,----

)HIGH3~:;:~:NCE(L....-__

tpd IItot) - tin + tlad + tad
tpd2ltot) - tlo + tin + !tad + tad

FIGURE 10. SWITCHING WAVEFORMS

TEXAS ",
INSTRUMENTS
POST OFFICE BOX 855303 • DALLAS, TEXAS 76285

2-79

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
understanding EPLD timing characteristics
introduction
One of the most important benefits of using an EPLD in any design is the integration of complex logic
functions into single chip solutions in most cases. However. when the functional compatibility of a design has
been determined. timing analysis should be completed to ensure AC parameter compatibility.
The purpose of this applications supplement is to discuss the timing delays which exist in the TI EPLDs. The
focus here is on the Inherent delay paths that exist in every EPLD and their relation to the data sheet switching
specifications. This should aid designers in modelling and simulating their logic designs.
gate delays vs EPLD timing characteristics
Accurately modelling the timing characteristics requires an understanding of how a given application is
implemented within the EPLD. Most designs targeted for EPLDs contain basic gates. and TTL
macrofunctions. which are emulated by the EPLD general macrocell structure. The macrocell structure is an
array of logic in an AND/OR configuration with a programmable inversion followed by an optional flip-flop and
feedback. (See Figure 11):
When designing with EPLDs. the term "gate delay" is not a useful measure. Within the EPLD AND array are
product terms. A product term is simply an n-input AND gate where n is the number of connections.
Depending on the logic implemented. a single product term may represent one to several gate equivalents.
Therefore. gate delays do not necessarily provide EPLD timing characteristics.
DEDICATED

FEEDBACK
SIGNALS

INPUTS

",,'~~~

J~7~7~7~7
7\4~ 7J~~7 7~\4
"" ""
~ ~ ~

~ ~ ~

g

-p-QQQQ-

-p-

OPTIONAL

FIXED

INveRTER

~¥r

PROGRAMMABLE

OPTIONAL
REGISTER

I

INVERSION
CONTROL

G~D

FEEDBACK
MUX

I

BIT

FEEDBACK
TO OTHER

MACRQCEllS

AND GATES

FIGURE 11. EPLD MACROCELL
AND/OR/INV structure
The AND portion consists of a column of AND gates, each of which has a very large number of possible inputs
selected by EPROM bits. The EPROM bits serve as electrical switches. An erased bit passes the input into the
AND gate (switch on). while a programmed bit cuts it off (switch off). AU bits are 'initially erased.

2-80

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 855303 • DALLAS. TEXAS 75265

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
The number of possible inputs to an AND gate varies from 40 (EP610) to 88 (EP1810). In the EP610 and
EP910 every dedicated input and its inversion and every macrocell feedback and its inversion are possible
inputs to the AND gate. In the EP181 0 which has local and global bussing, not all of the macrocell feedback is
available at every AND gate. The reason larger devices such as the EP1810 do not have all feedbacks feeding
the AND gates is to preserve the speed characteristics of the device.
Following the AND gates is a fixed 8 input OR function. This structure is called a fixed OR because the AND
functions are hard wired into the OR gates, and cannot be redistributed if unused.
The OR gate feeds a programmable inverter (XOR). A dedicated EPROM bit either programs the inversion
function on or off.

EPLD delay elements
The simplest solution to the architectural requirements is to model time through the logic array as a constant.
This parameter is called tlad. The rest of the elements in the timing model are similar to those found in
conventional logic. There are input and output delay parameters (tin, tio, tad); register parameters (\su, th, tclr,
ths, tics, tiel; and internal connection parameters (tfd). A detailed diagram of an EPlD Macrocell Delay Paths
Model is shown in Figure 9 with a description of the signals.

glossary - Internal delay elements
tclr

Asynchronous register clear time. This is the amount of time it takes for a low signal to appear at
the output of a register alter the transition at the logic array, including the time required to go
through the logic array.

tfd

Feedback delay. In registered applications, this is the delay from the output of the register to the
input of the logic array. In combinational applications, it is the delay from the combinational
feedback to the input of the logic array.

th

Register hold time. This is the internal hold time of the register inside a macrocell: measured from
the register clock to the register data input.

tlad

logic array delay. This parameter incorporates all delay from an input or feedback through the
AND/OR structure.

tic

Clock delay. This delay incorporates all the delay incurred between the output of an input pad or 1/
o pad and the clock input of a register including the time required to go through the logic array.
This delay is differentiated from the system clock delay tics by the need to pass through a ClKB
primitive, which specifies individual register clocking.

tics

System clock delay. This delay incorporates all delays incurred between the output of the input
pad and the clock input of the registers for dedicated clock pins.

tin

Input pad and buffer delay which direct the true and complement data input signals into the AND
array.

tio

I/O input pad delay. This delay applies to I/O pins committed as inputs.

tad

Output buffer and pad delay. For registered applications, this incorporates the clock to output
delay of the flip flop. In combinational applications, it incorporates delay from the output of the
array to the output of the device.

tsu

Register setup time. This is the internal setup time of the register inside a macrocell - measured
from the register data input until the register clock.

txz

Time to 3-state output delay. This delay incorporates the time between a high-to-Iow transition on
the enable input of the 3-state buffer to assertion of a high Impedance value at an output pin.

tzx

3-state to active output delay. This delay incorporates the time between a low-to-high transition on
the enable input of the 3-state buffer to assertion of a high or low logic level at an output pin.

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-81

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
explaining the EPLD data sheet specifications
The data sheet for each TI EPLD references timing parameters which characterize the switching operating
specifications. These parameters are measured values, derived from extensive device characterization and
100% device testing. Among the switching characteristics are the following: tac01(tot), tacnt(tot), tah(tot),
tasu (tot) , tc01 (tot), tclr(tot), tcnt(tot), th (tot) , tpd1 (tot), tpd2 (tot) , tPXZ(tot), tPZX(tot), tsu(tot). These
parameters, described below in detail, may be represented by the EPLD internal delay elements. (See
Figure 12)

~tfd*""-tl.d

tpd!totl - tin + tlad + tod

tcntltotl - tfd + tlad + tsu
tacntltot) - tfd + tlad + tsu

tt-tln _______ tlad~txz or tzx--tlll
tp2Xltoti - tin + tlad + tzx
tPXZltotl - tin

+

tlad

+

tXl

~tin'"

tasultot} - (tin

tic

1111

+ ttadl - llin + tiel + tau

INPUT

tclrltotl "" tin + telr + tod

INPUT

CLOCK-..;;;-_ _ _ _ _ _ _ _--'

INPUT

tt-tin

...

t aco 1(totl .. tin

tic

...

+ tic + tod

INPUT
INPUT-;;'N:::P;---------;H>
CLOCK " ' ; ; ; - - - - - - - - - - - '
~tin...,.~I.I__---t,c.----___.!~
~tin

tiC$---~~--tod__tt

...

t co1{tot) .. tin

+ tics + tod

FIGURE 12. TI EPLD TIMING EQUATIONS

2-82

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
glossary - external delay elements
Iac01 (tot)

Defined as the asynchronous clock to output delay. It is the time required to obtain a valid
output after a clock is asserted on an input pin. This delay is the sum of the input delay (tin).
the clock delay (tiel. and the output delay (tod).

tacnt(tot)

Defined as the asynchronous clocked counter period. It is the minimum period a counter can
maintain when asynchronously clocked. This delay is the sum of the feedback delay (tfd)
and the logic array delay (tfad). and the register setup time (tsu).

lah(tot)

Defined as the asynchronous hold time. It is the amount of time required for data to be
present after an asynchronous clock. This value is the difference between the sum of the
input delay (tin). the clock delay (tiel. and the hold time (th) and the sum of the input delay
(tin) and logic array delay (tlad).

tasu(tot)

Defined as asynchronous setup time. It is the time required for data to be present at the input
to the register before an asynchronous clock. This value is the difference between the sum of
the input delay (tin). array delay (lfad) and the register setup time (ts u) and the sum of the
input delay (tin) and the clock delay (tiel.

tc01 (tot)

Defined as system clock to output delay. It is the time required to obtain a valid output after
the system clock is asserted on an input pin. This delay is the sum of the input delay (tin). the
system clock delay (tics). and the output delay (tod).

tclr(tot)

Defined as delay required to clear register. It is the time required to change the output from
high to low through a register clear measured from an input transition. This delay is the sum
of input delay (tin). register clear delay (tclr), and the output delay (tod).

tcnt(tot)

Defined as the system clock counter period. It is the minimum period a counter can maintain.
This delay is the sum of the feedback delay (tfd). the logic array delay (tlad). and the internal
register setup time (tsu).

th(tot)

Defined as hold time for the register. It is the amount of time the data must be valid after the
system clock. It is the difference between the sum of the internal input delay (tin). the system
clock (tics). and the system-clock hold time (ths) and the sum of the input delay (tin) and
logic array delay (tlad).

tpd1 (tot)

Propagation Delay; Defined as the delay from a dedicated input to a non-registered output.
This is the time required for data to propagate through the logic array and appear at the
EPLD external output pin. This delay is the sum of input delay (tin). array delay (tlad) and
output delay (ted).

tpd2(tot)

Propagation Delay; Defined as the delay from 1/0 pin to a nonregistered output. This is the
time required for data from any external 1/0 input to propagate through any combinational
logic and appear at the external output pin of an EPLD. This delay is the sum of the 1/0 delay
(tio). input delay (tin). array delay (tlad). and the output delay (ted).

tPXZ(tot)

Defined as the time to enter into 3-state. It is the time required to change an external output
from a valid high or low logic level to 3-state from an input transition. This delay is the sum of
input delay (tin). array delay (tlad). and the time to activate the 3-state buffer (txz).

tPZX(tot)

Defined as the delay from high impedance to active output. It is the time required to change
an external output from 3-state to a valid high or low logic level measured from an input
transition. This delay is the sum of input delay (tin). array delay (tlad). and the time to deactivate the 3-state buffer (tzx).

tsu(tot)

Defined as set up time for the register. It is the time required for data to be present at the
register before the system clock. This value is the difference between the sum of input delay
(tin). array delay (tlad). and an internal register setup time (ts u) and the sum of the input
delay (tin) and the system clock delay (tics).

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 856303. DALLAS, TEXAS 75285

2-83

EP1810
HIGH·PERFORMANCE 48·MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
conclusion
To understand timing relationships in the EP1810 and all EPLDs, it is very important to break up the internal
paths into meaningful microparameters that model portions of the EPLD architecture. Once internal paths are
decomposed, it is then possible to obtain accurate timing information by summing the appropriate
combinations of these microparameters. The EP1810 data sheet and relevant EPLD data sheets provide
architectural information on which the parameters apply and how the primitives are implemented.The TI EPLD
Development System provides minimized files that aid in the decomposition of designs. The combination of
these elements and the knowledge. of the architecture of each device allow characterization of any timing path
within an EPLD.

2-84

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303,. DALLAS. TEXAS 75266

EP1810
HIGH-PERFORMANCE 48-MACROCELL
ERASABLE PROGRAMMABLE LOGIC DEVICE (EPLD)
MECHANICAL DATA
68·PIN PLASTIC LEADED CHIP CARRIER (PLCC)
1.3 (0.0501

asci

r

~NOl

'lt004~ 45°

24.33109581

~r:r

--;ffif------+ -------;:::m-

~
~{.~~:~;:~.:~I
~
25.27(0995)

25]2(0.9851

tl ~

O.. 5.1 to 020.)

MIN

0.254 1~.~101
0.203 (0.008)

1.2210.0481

1,07 Ufil42)

L....--'.. 0.53 (0.021)
-'--t-7ff>;!~~ ~

0.66(0.0261

DETAIL "8"

68·PIN CLCC CERAMIC
GLASS
WINDOW
7.1(0.280) TYP

102100401 x 45°

1~.____ 20.3~~F8001 _ _ _ _->1

10-_____

24'3310.958131
23,82 (0.930)

Io------~::~; :g:::::
0,89 (0.035)

45°11
* ~=4
L-J.. ~53'O~
11:~~~'!!

x

0.15 (0.008)

0.2010.008)

0.43

~
DETAIL "P"

0.81(0.0321
0,6& (0.0261

~.0171

f

TEXAS . "

2·85

INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS, TEXAS

7~265

2-86

PAL 16L8AM, PAL 16L8A·2M, PAL 16R4AM, PAL 16R4A·2M
PAL 16R6AM, PAL 16R6A·2M, PAL 16R8AM, PAL 16R8A·2M
STANDARD HIGH·SPEED PAL® CIRCUITS
02705. FEBRUARY I 984-REVISED AUGUST 1989

•

J OR W PACKAGE

Choice of Operating Speeds
High Speed, A Devices ... 25 MHz
Half Power, A-2 Devices ... 16 MHz

•

Choice of Input/Output Configuration

•

Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs
3-STATE

REGISTERED

INPUTS

PAL 1618

10

2

0

6

PAllSR4

8

0

4 13-statel

4

PAllSR6

8

0

S 13-statel

2

PAl16R8

8

0

8 13-statel

0

Q

OUTPUTS

Vee
0
liD
I/O
110
110
110
I/O

1/0 PORTS

DEVICE

o OUTPUTS

(TOPVIEWI

I

0

GND
FK PACKAGE
(TOP VIEWI
U
U

description

>0

These programmable array logic devices feature
high speed and a choice of either standard or
half-power devices. They combine Advanced
Low-Power Schottky t technology with proven
titanium-tungsten fuses. These devices will
provide reliable, high-performance substitutes
for conventional TTL logic. Their easy
programmability allow for quick design of
"custom" functions and typically result in a
more compact circuit board. In addition, chip
carriers are available for further reduction in
board space.

1 20 19
4

18

5

17

6

16
15
14

8

9 1011 12 13
0
Z

-og

r.:J

The Half-Power versions offer a choice of
operating frequency. switching speeds, C1nd
power dissipation. In many cases, these HalfPower devices can result in significant power
reduction from an overall system level.
The PAL 16' M series is characterized for
operation over the full military temperature range
of -55°C to 125°C.

tlntegrated Schottky~Barrier diode-clamped transistor is patented
by Texas Instruments. U.S. Patent Number 3.463.975.
PAL is a registered trademark of Monolithic Memories Inc.

PRODUCTION DATA documenls contain information

current as of publication date. Products conform to
specifications per the terms of Texas Instruments

~:~~:~~i;8i~:,~1e ~!:~~~ti:r :'IO::~::::9t:~~s

not

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright © 1989, Texas Instruments Incorporated

2-87

PAL 16R4AM, PAL 16R4A·2M, PAL 16R6AM, PAL 16R6A·2M, PAL 16R8AM, PAL 16R8A·2.
STANDARD HIGH·SPEED PAL@> CIRCUITS
PAL16R4'

PAL16R4'
FK PACKAGE

J OR W PACKAGE
(TOP VIEW}

elK

(TOP VIEW}

Vee

u
-' UO
__ "U>:;::,

1/0
1/0

2

3

1 2019

Q
Q
Q
Q

18

1/0

5

17

Q

6

16

Q

15

Q

14

Q

I/O
I

1/0

GND

BE

9 1011 1213

-

~I~

gg

(!)

PAL16R6'

PAL16R6'
FK PACKAGE

J OR W PACKAGE
(TOP VIEW}

elK

(TOP VIEW}

Vee

u
-' UO
__ "U>:;::,

1/0
Q

3

1 2019

4

Q

5

17

Q

Q

6

16

Q

Q

7

Q

Q

Q
14

8

1/0

GND

2

Q

Q

9 1011 1213

OE

-

~I~

ga

(!)

PAL16R8'

PAL16R8'
FK PACKAGE

J OR W PACKAGE
(TOP VIEW}

elK

(TOP VIEW}

Vee

"-' u
__ u>o

Q
Q

3

Q
Q
Q
Q
Q
Q

GND

2

1 20 19

4

18

5

17

6

16

7

15

8

14
9 10111213

OE

-~I~OO
(!)

2-88

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

Q

PAL 16lBAM, PAL 16lBA·2M, PAL 16R4AM, PAL 16R4A·2M
STANDARD HIGH·SPEED PAL® CIRCUITS
functional block diagrams (positive logic)
PAL16L8AM
PAL 16L8A·2M
EN >1

&

'<:1k>-----0

p..----O
10

t>

0-........-1/0
16

k>-*f-..........-I/O
0--.+-......-1/0
0--.+.........-1/0

0-*1-.......-1/0
0-*1-.......-1/0
6

PAL16R4AM
PAL 16R4A·2M

De

EN2

..

ClK
&
32X 64

r;&;j)
8

~ 'V

,~

+

~ 'V
l.....-

r+r-+r-+r+I--

rl-

;;'1

C1
_1'"

1-0

10

2'<:1 i""

Q

~

'"""'

Q

~

Q

~
EN

>1
'<:1

~

f--+-

I'--j"""

r+--

r--r

~~

"'
"'
"'
"'

1/0
110
110

I/O

4

rv denotes fused inputs

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

2·89

PAL l6R6AM, PAL l6R6A·2M, PAL l6RHAM, PAL l6RHA·2M
STANDARD HIGH·SPEED PAL® CIRCUITS
functional block diagrams (positive logic)
PAL16R6AM
PAL 16R6A-2M

DE

-tN2
Cl

r,

ClK
&
32 X 64

;;>1

4-

1-0 2

10

~

~
~

----

~ 'V

Q

Q

~

a

~

f----,

~

f----,

Q

~
I---

r-+r-+-

a

~

f----,

~

-....-:-'6x{>
~ 'V

I"

Q

EN

h

;;'1

'V

I---

I/O
I/O

I...-.-;.. 2

~

6

PAL16R8AM
PAL 16R8A-2M

DE------------------------clfI~__,
CLK------------------------------~

&
32 X 64

8

r;;;,;;,-r""Mi~~--

Q

t---t--"b.~-

Q

t---t--"b.-l--t---+--b--l-t---+--"b--l-t---+--"b--l--

Q

Q

Q

Q

r---t---t-~LQ

8

- denotes fused inputs

2·90

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

PAL 16L8AM, PAL 16L8A·2M
STANDARD HIGH·SPEED PAL® CIRCUITS

1111

FIRST
FUSE

INCREMENT

N UMBERS 0

4

B

12

16

20

24

28

31

0
32
6.
96
128
160

I--

"2
22.
12)"

v-l

1191

~j

(18)

r-1

(171

';~
28.

-

320

352
38.
"6

-

448
(3) .80

o

110

512

54.
576

I--

608
640

672

110

70'

(41 736
768
600

832
66'
6'6
.28

I--

1

(161

V

110

.60

(51 ••2
1024
1056

f--

1088
"20
1152
1184
1216

1

(15)

V

110

(6)'248
1280
1312

1344
1376
1408

-

1440
1472

1
V

(141

110

1

'504

(7 IX

1536

1568

--;

1600

I - --.,

1632

16. .
1696
(8)

1

(131

1/0

1728
1760
1792
1824
1856

-

1888

-

J!!.2016

Fuse number - First Fuse number

1

(121

v

1920
1952
1984

o

(11)

+ Increment

TEXAS .."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

2-91

PAL 16R4AM, PAL 16R4A·2M
STANDARD HIGH·SPEED PAL® CIRCUITS

CLK iUJ"FIRST
FUSE
NUMBERS 0

INCREMENT
8

12

16

20

24

28

0
32
64
.6
128
160
192

31

-.,
~~

(2)~

~
288

,......
,......

320
3.2
364
418
448
(31 480

~

1
~

I

(191

1
I

(181

110

110

,'2

f---;

544

576
60

j'";(j

D-

640

~

672
704
(4) 738

r.:J

(171

i7o' '":J
10

(16)

10

Q

~~

788
8
832
864
896
92
960
(5) ••2

D-

Q

~~

1024
1058

j'";(j

108
1120

)-

1152

(6)

1184
1216
1248

(15)

-V

~~

1344
I----'

1376

1408
1440

D-

1412

"1-"0 '":J
10

(141

V

1536

1

>--

1568

1600
1632
1664
1696

>--

V

1728

8 '760
J.::I
1792
1824

1856
1888

1920
1952
1984

../

I

1
I

(131 1
10

(121

v

(9)2016

~

2-92

Q

....£!.~

1504

Fuse number -

Q

>-

1280
1312

171

':I

10

First Fuse number + Increment

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

110

PAL 16R6AM. PAL 16R6A·2M
STANDARD HIGH·SPEED PAl® CIRCUITS

CLK

111

FIRST
FUSE

INCREMENT

N UMBERS 0

4

8

12

16

20

24

28

31

a

32
64
'6
128
160
"2

1

l2~

~

131

288
320
352
,84
416
448
480

I--

151

>-

>

-

136

>

:-;::t

..-

1181

a

M

10

~
..-

1171

a

b

1161

a

115;

a

b..-

1141

a

t:l

1131

a

.

M

10

I"

~~
\0-

1088
1120
1152
1184
1216

>

\0-

-

1280
1312

\0-

1344

:>-

1376

\0-

1408
1440
1472

1504

\0-

153

\--

1568

\-\0-

1600
1632
1664
1696

181"60

b-

1792

1856
1888
~

1952
1984

1 191 2016

I"

M
10

"i:o
lD

("

~~

J

1824
1920

b

10

t::2.~

I--

1728

M

~~

161 '246

Fuse number - First Fuse number

10

...52.1

168
800
832
864
8'6
.28
.60
9• 2
1024
1056

171

...-1-0
~1

512
544
516
606
640
612
104

141

1191 1/0

VI

-

1121

I

1/0

~
+ Increment

TEXAS " ,
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-93

PAL 16RBAM, PAL 16RBA·2M
STANDARD HIGH·SPEED PAl® CIRCUITS

CLK IIIJ~
FIRST"
,
FUSE
0
NU M8ERS
0
32
60
.6
'28
'60
'92
121~2~

INCREMENT
4

8

12

16

20

24

28

31

t>
>--

----

266
288
320
352
380
0'.
448
131 080

I-

-

>

\-

840

672
700
141 736

>

I--

768
800

"""-

-

960

>

1191

a

r.J

1181

a

~~
'j":Q
10

-V

1024
'05
1088
1120
1152
"84
1216

r;:o

10 1.J::rtJ 1?l a

"

-

1-0
10

r.:J.....

1161

a

r.J

1151

a

':I

(141

a

r.J....

1131

a

r.J

1121

a

~~

I 151 992

>

T-O
10

"

~~

'248
1161
1280
1312
1344

\..-

137
'408
'440

-

1472
1504

>

1536
1568
1600

)--

1832
1664
1696

\..-

1728

;r

1792
1824
1856
1888
1920
1952
1984

10

'T-"ii
10

~~

\....

181'760

.--1-0

~h

1171

I--

D-

....-1-0
10

t:2.~

I 19120 '6

2-94

r.::J

~~

"""-

832

860
896
928

Fuse number - First Fuse number

10

~~

5'2
544
578
608

I

'j":Q

+ Increment

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

~I

PAL 16LBAM, PAL 16LBA-2M, PAL 16R4AM, PAL 16R4A-2M
PAL 16R6AM, PAL 16R6A-2M, PAL 16RBAM, PAL 16RBA-2M
STANDARD HIGH-SPEED PAL® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) ................................. , 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 DC to 125 DC
Storage temperature range ......................................... - 65 DC to 150 DC
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER
Vee

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

IOH

High-level output current

IOL
TA

Operating free-air temperature

I OE input
I

All others

MIN
4.5
2
2

Low-level output current

-55

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

NOM
5

MAX
5.5
5.5
5.5
0.8
-2
12
125

UNIT
V
V
V
rnA
rnA
°e

2-95

PAL 16LBAM, PAL 16R4AM, PAL 16R6AM, PAL 16R8AM
STANDARD HIGH·SPEED PAl® CIRCUITS
electrical characteristics over recommended operating free·air temperature range
PARAMETER

TEST CONOITIONS

VIK

Vee - 4.5 V,

VOH

Vee

VOL

Vee
Outputs

10ZH

1/0 ports
Outputs
I/O ports

10Zl
II

11/0 ports

IIH

.IAII others

= 4.5
= 4.5

II -

V,

IOH

V,

IOl

= -2 mA
= -12 mA

=

Vee

= 5.5

Vee

=

5.5 V,

VI

=

Vee

=

5.5 V,

VI

= 2.7

=

V,

III

Vee

10S~

Vee - 5.5 V,

lee

Vee

=

5.5 V,

5.5 V,

Vo
Vo

VI

2.4

V
V

0.4
100
-20
-100
0.2

5.5 V

100

V

25
-0.2

I OE input
I All others

= 0.4 V
V,

UNIT

20

= 0.4 V

=0

MAX
-1.5

3.2
0.25

-0.1
-30

Vo - 0.5 V
VI

TYpt

= 2.7V

Vee

5.5 V,

MIN

-18 mA

Outputs open

75

V
~A
~A

mA
~A

mA

-250

mA

180

mA

MAX

UNIT
MHz

timing requirements
MIN
0

fclock

Clock frequency

tw

Pulse duration {see Note 21

tsu
th

Setup time, input or feedback before elK!

lelock high

15

IClock low

20

Hold time, input or feedback after elK!

25

ns

25

ns

0

ns

NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, fclock. The minimum pulse durations specified
are only for clock high or clock low, but not for both simultaneously.

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER

FROM

TO

TEST CONOITIONS

f max
tpd

I, I/O,

0, I/O

MIN

Typt

MAX

UNIT

25

45
15

30

MHz
ns

tpd

elK!

Q

R1 = 390O,

10

20

ns

ten

DEI

Q

R2 = 750O,

15

25

ns

tdis

DE!

Q

See Figure 1

10

25

ns

ten

1,1/0

0,1/0

14

30

ns

tdis

I, I/O

0, 110

13

30

ns

t All typical values are at Vee = 5 V, TA = 25°e.
~Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second. Set Vo at 0.5 V

to avoid test equipment degradation.

2-96

TEXAS . "

INSTRUMENlS
POST OFFICE BOX 655303 • DAl.LAS, TEXAS 75265

PAL 16L8A-2M, PAL 16R4A-2M, PAL 16R6A-2M, PAL 16R8A-2M
STANDARD HIGH-SPEED PAL ® CIRCUITS
electrical characteristics over recommended operating free-air temperature range
PARAMETER

TEST CONDITIONS

= 4.5
= 4.5

VIK

VCC

VOH

VCC

VOL

VCC - 4.5 V,
Outputs

10ZH

1/0 ports
Outputs

10Zl

1/0 ports

II
1/0 ports
IIH

All others

VCC
VCC

=
=

=

V,

II

V,

10H

5.5 V,
5.5 V,

=

Vo
Vo

= 2.7
= 0.4

=

VCC = 5.5 V,

ICC

VCC

=

5.5 V,

5.5 V,

=

VI = 0 V,

V
0.4
100
-100
0.2
100

2.7 V

= 0.5

V

-20

25

I OE input

VI = 0.4 V
Vo

UNIT

20

V

VI

MAX
-1.5

3.2

V

VCC = 5.5 V,
VCC

Typt

0.25

10l - 12 rnA

VI = 5.5 V

10S~

2.4

-2 rnA

VCC = 5.5 V,

III

MIN

-18 rnA

I All

-0.2
-0.1

others
-30

V

75

Outputs open

V
~A
~A

rnA
~A

rnA

-250

mA

90

rnA

timing requirements
fclock

Clock frequency

IClock high
IClock low

tw

Pulse duration, (see Note 21

tsu

Setup time, input or feedback before ClKI

th

Hold time, input or feedback after ClKI

MIN

MAX

UNIT

0

16

MHz

25

ns

25
35

ns

0

ns

NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, fclock. The minimum pulse durations specified
are only for clock high or clock low, but not for both simultaneously.

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER

FROM

TO

TEST CONDITIONS

fmax
tpd

1,1/0,

0,1/0

tpd

ClKI

Q

Rl

ten

OEI

tdis

OEI

ten

1,1/0

tdis

1,1/0

MIN

Typt

16

25

MAX

UNIT
MHz

25

40

ns
ns

11

35

Q

R2

= 390 Il,
= 750 Il,

20

35

ns

Q

See Figure 1

11

30

ns

0,1/0

25

40

ns

0,1/0

25

35

ns

tAli typical values are at VCC = 5 V, TA = 25°C.
*Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second. Set
to avoid test equipment degradation.

Va at 0.5

V

programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-97

PAL l6LBAM,. PAL l6LBA·2M, PAL l6R4AM, PAL l6R4A·2M
PAL l6R6AM, PAL l6R6A·2M, PAL l6RBAM, PAL l6RBA·2M
STANDARD HIGH·SPEED PAl® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
SV

S1

b

R1
FROM OUTPUT
UNDER TEST
CL
ISee Note A)

-...--4..-.......-

TEST
POINT

R2

LOAD CIRCUIT FOR
THREE-STATE OUTPUTS

~~~~G _ _ _.....15,.~5-_-V-_-_-_-_-_ :
. . Isu""'-

:

DATA
INPUT

HIGH·LEVEL
PULSE

V

'h.--'

.1.5 V
1.5 V
~

-:----3V

LOW·LEVEL
PULSE

0

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT

J1.5
tpd

IN-PHASE
OUTPUT

V

-f.---..!
I'

~

I

I

I

1.5 V:

,

I

Ipd~

OUT-OF-PHASE
OUTPUT

\

Ipd

e

~,-~-:

VOH

1.5 V

J/-3V

~---O

~VOH
1.5 V

(See Note 01

3V

~
:
J _____ 0

OUTPUT
CONTROL
(low-level
enabling)

1.5 V

-

"1II

I I
I I

WAVEFORM 1
S1 CLOSED
(See Note B)
WAVEFORM 2
S10PEN
(See Note Bl

!--tdis

I

II

~3.3V

I
1.SV
I I _ _ LVOL+O.SV
~

I
ten~

VOL

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

1.5 V

14-

ten....

VOL

~Ipd

1

~'~\1

VOLTAGE WAVEFORMS
PULSE DURATIONS

~5~- - : V

\

~---3V

---./f. .'.5- -v~
0
tw ____

~

I

V
:;r-1.SV

------~

--l-

..: . .
tdis
I

VOL

.t.

T==i=VOH

·~VOH-O.5V
~OV

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE·STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten 5 pF for tdis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled
the output control.
s 10 MHz. tr and If S 2 ns. duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch 51 is closed.

by

C. All input pulses have the following characteristics: PRR
E. Equivalent loads may be used for testing.

FIGURE 1

2-98

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAD16NB-7C
HIGH-PERFORMANCE PROGRAMMABLE ADDRESS DECODER
03085, JANUARY 1988-REVISEO AUGUST 1989

•

J OR N PACKAGE

Very-High-Speed Address Decoder /Ideal for
Use with High Speed Processorsl

(TOP VIEW)

Vee

•

1/0 Propagation Delay: 7 ns Max

•

Field Programmable on Standard PLD
Programmers

•

Fully TTL Compatible

•

Security Fuse Prevents Unauthorized
Duplication

•

Dependable Texas Instruments Quality and
Reliabilitv

•

Potentiel Applications
Address Decoders
Code Detectors
Peripheral Selectors
Fault Monitors
Machine State Decoders

0
1/0
1/0
1/0
1/0
1/0
1/0
0

I

GND
FN PACKAGE

(TOP VIEW)

u

u
_>0
3

description
The TIBPAD16N8 is a very-high-speed
Programmable Address Decoder featuring 7 ns
maximum propagation delay, the highest speed
in the TTL programmable logic family. The
TIBPAD16N8 utilizes the IMPACT-X'" process
and proven titanium-tungsten fuse technologv
to provide reliable, high performance substitutes
for conventional TTL logic.

2

1 20 19

4

18

5

17

6

16
15

14
9 1011 12 13

a

The TIBPAD16N8 contains 1 dedicated inputs and 8 outputs. Each output has two product terms, one
of which is used to enable the inverting buffer associated with the respective output. Six of the outputs
are I/O ports, the remaining two are dedicated outputs. Each of the six I/O ports can be individually
programmed as an input or an output; this allows the device to be used for functions requiring up to 16
inputs and 2 outputs or 1 inputs and 8 outputs.

a

The TIBPAD16N8 is supplied with all six I/O ports in the input configuration (output buffers in the highimpedance state). If an I/O port is selected to be an output, it must be programmed accordingly. It is
recommended that all unused outputs on this device remain in the three-state condition for better noise
immunity.
The TIBPAD16N8-7C is characterized for operation from

IMPACT~X

aoc to

75°C.

is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA d.cumo.ts ....toin inlormotion
currant IS af publication dat8. Predacts conform to
spacificati.l. par .... terms of TaXI. Instruments

==::i~8i~r:1~7i

=::i:t lrr:::::£:r~~1 nat

Copyright @ 1989. Texas Instruments Incorporated

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-99

TlBPAD16N8·7C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER
functional block diagram (positive logic)

a.

EN :.:1

32x16

'iJb----O
b----o

I>

10

16

6

b4H-+e-1I0

6

2-100

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

TIBPAD16NB·7C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER
logic diagram (positive logic)
INCREMENT
FIRST
FUSE
NUM8ERS

,
0

,

1\
4

8

12

16

20

24

r-..

Xl-~
~
J<1-~
~

64
96
(3)

....
128
160

~
192
224
(5)
256
288
(6)

k1&f

320
352

171

".x
...

~

384
416

(8)

31

p.!!l
~
.K...

0
32
(2)

28

".x
....

448

(12)

480

(9)

".x

~

....

o

1/0

I/O

1/0

I/O

1/0

I/O

o

111)

Fuse number = First Fuse number + Increment

TEXAS ."

INSIRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2·101

TIBPAD16NB·7C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range .................................... " ooe to 75°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during programming cycle.

recommended operating conditions
MIN

NOM

MAX

UNIT

4.75

5

5.25

V

0.8

V
V

Vee

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

10H

High-level output current

-3.2

rnA

10L
TA

low-level output current

24
75

rnA

2

Operating free-air tempe'rature

0

·e

electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

MIN

TYpt

2.4

3
0.3

MAX
-1.5

UNIT

VIK

Vee = 4.75 V,

11= -18 rnA

VOH

Vee = 4.75 V,

10H = -3.2 rnA

VOL
II

Vee = 4.75 V,

10L = 24 rnA

Vee = 5.25 V,

VI = 5.5 V

10ZH*

Vce = 5.25 V,

Va = 2.7 V

0.1

rnA

10ZL *

Vee = 5.25 V,

Va = 0.4 V

-0.1

rnA

IIH*

Vee = 5.25 V,

VI = 2.7 V

25

~A

*

Vee = 5.25 V,

VI = 0.4 V

-0.25

rnA

Vee = 5 V,
Vee = 5.25 V,

Va = 0.5 V
Outputs open
VI = 0,

-70

-130

rnA

120

180

IlL
10§

lee
el
Co

-30

V
V

0.5

V

0.2

rnA

VI = 2 V

5

rnA
pF

Va - 2 V

6

pF

t All typical values are at Vee = 5 V, T A = 25 ·e.
1/0 leakage is the worst case 01 10ZL and IlL or 10ZH and IIH.
§ This parameter approximates lOS. The condition Va = 0.5 V takes tester noise into account. Not more than one output should be shorted

*

at a time and duration of the short-circuit should not exceed one second.

switching characteristics with two outputs switching (typical PAD mode) over recommended ranges
of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER

FROM

tpd

1,1/0

ten

1,1/0

tdis

1,1/0

TEST

TO

CONDITIONS

0,1/0
2 outputs switching

0,110
0,1/0

Rl = 200 II,
R2 = 39011
See Figure 1

t All typical values are at Vee = 5 V, T A = 25·e

2-102

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

MIN

Typt

MAX

UNIT

2

5

7

ns

3
3

8

10

ns

8

10

ns

TIBPAD16NB·7C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications. algorithms. and the latest information on hardware. software. and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available. upon request. from the nearest TI field sales office. local
authorized TI distributor. or by calling Texas Instruments at (214) 997-5666.

PARAMETER MEASUREMENT INFORMATION
sv
S1

b
R1

FROM OUTPUT
UNDER TEST

_+_..._ ....._

TEST
POINT

R2

CL
(See NOle AI

LOAD CIRCUIT FOR
THREE-STATE OUTPUTS

\.1-:;;~---3.SV

.1/,1.SV

INPUT

----"
Ipd
IN-PHASE
OUTPUT

, .

i /1,.--+-:I -.. . .t-:-5~
:L
'''.'

---i-'_--J
,

'"

1.S V

Ipd....1
OUT-OF-PHASE
OUTPUT
(See NOle 01

0.3 V
.,

'\1.SV
.

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

.,

1.SV

VOH
VOL

1.SV
I

I
len ~

J+-

,:

-1- - - - -- 0.3
~ J+- Idis

- - VOL

V

i

I
=3.3 V
WAVEFORM1----r\l1.SV
I'~VOL+O.SV
S1 CLOSED
,~-==:!-= VOL
(See Note BI
ten -+I j414- tdis

-.!

Ipd

p.vVOH
.

~3.SV

Ipd

'I
,..

OUTPUT
CONTROL
(low-level
enablingl

WAVEFORM 2
S1 OPEN

l.

~

(See Note BI

I __,,":-_.t.-= VOH

I

1.S V

LVOH-O.S V

=0 V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS

NOTES: A. CL includes probe and jig capacitance and is SO pF for tpd and ten. 5 pF for 'dis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR:s 1 MHz. tr = tf = 2 ns. duty cycle = SO%
D. When measuring propagation delay-times of 3-state outputs, switch Sl is closed.

FIGURE 1

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-103

TIBPAD16NB·7C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER

WORST CASE MULTIPLE OUTPUT SWITCHING CHARACTERISTICS
WORST CASE PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING
8.0

..
..
c
I

~,..

~
Q

Vcc
7.9 -R1 R2 7.8 -CL TA 7.7

1

- 4.75 V.
2000.
3900.
50 pF.
75°C

7.6
7.5

c

i.
'"
;.

7.4

Q.

7.3
7.2
7.1
7.0
2

4

6

Number of Outputs Switching

FIGURE 2

2-104

TEXAS ~

INSTRUMENTS
.POST OFFICE BOX 655012 • DALLAS, TEXAS 75265 .

8

TIBPAD16NB·7C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER
TYPICAL CHARACTERISTICS
PROPAGAnON DELAY TIME

SUPPLY CURRENT

vs

vs

FREE-AIR TEMPERATURE

FREE-AIR TEMPERATURE

150'U-N~P~R~O-G~R~A-M~M~E~D-D~E~V-IC~E~--r--'---'

6.5

..T
.E

I\tPH~

6.0

\

j::

\

1:-

~ 5.5

.§

tpLH

......

.'"

tii

a.

2 5.0

IL

90~~

__- L_ _

~

_ _L-~__- L _ _~~

VCC - 5 V.
R1 - 200 Il
R2-3901l
CL - 50 pF.
1 OUTPUT SWITCHING

/
,/

-

7

/
'\

--

jV

I\..

"-V

./

r-.

-----

4.5
-75 -50 -25 0
25 50 75 100 125
TA-Free-Air Temperature- °C

-75 -50 -25 0
25
50 75 100 125
T A - Free-Air Temperature - °C

FIGURE 4

FIGURE 3
PROPAGATION DELAY TIME

PROPAGATION DELAY TIME

vs

vs

SUPPLY VOLTAGE

LOAD CAPACITANCE
24

7.0 -R1
6.8 -R2
.. 6.6 -CL
6.4 -TA
~ 6.2
j:: 6.0
1:- 5.8
~ 5.6 i'..
~
& 5.4
'; ..5.2
~ 5.0
2 4.8
IL 4.6
4.4
4.2
4.0
4.5

i

-

200 Il.
39dll.
50 pF •
25°C

In

c

.

I
E

j::

.

>

a;

..... ~

VCC - 5 V.
R1 - 200 Il.
R2 - 390 Il.
20
TA - 25°C.
18 1 OUTPUT SWITCHING
22

-- -

Q

c

~

.'"

tPHL -

£

tP~H::

4.75
5.25
VCC-Supply Voltage-V

VL

12

8

4

5.5

/
/

14

6

I
I

V t PHL

16

a. 10

r-J

V

~

~

o

FIGURE 5

h

V

.-..I-

tPLH-

~V

,/

V

600
400
200
CL -Load Capecitance-pF

800

FIGURE 6

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265

2-105

-

2-106

T1BPAD18N8-6C
HIGH-PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY
03086. DECEM8ER 1987-REVISED AUGUST 1988

•

J OR N PACKAGE
(TOP VIEW)

Very-High-Speed Address Decoder (Ideal for
Use with High Speed Processors)

Vee

•

I/O Propagation Delay: 6 ns Max

•

Suitable for High Speed NAND-NAND Logic
Implementation

•

Field Programmable on Standard PLD
Programmers

•

Fully TTL Compatible

•

Security Fuse Prevents Unauthorized
Duplication

•

Dependable Texas Instruments Quality and
Reliability

•

Potential Applications
Address Decoders
Random Logic (NAND-NANDI
Code Detectors
Peripheral Selectors
Fault Monitors
Machine State Decoders

I/O
110
110
110
liD
110
110
110

GND

....._ _...rFN PACKAGE

(TOP VIEW)
U

uo

--->=:,
3

2

1 20 19

4

18

5

17

6

16

7

15

8

14

I/O
liD
I/O
liD
liD

9 10 11 12 13

-0-00

z

l?

description

--

The TIBPAD18N8-6C is a very-high-speed Programmable Address Decoder featuring 6-ns maximum
propagation delay, the highest speed in the TTL programmable logic family. The TIBPAD18N8 uses the
IMPACT-X" process and proven titanium-tungsten fuse technology to provide reliable, high-performance
substitutes for conventional TTL logic.
The TIBPAD18N8-6C contains 10 dedicated inputs and 8 product terms, each followed by an inverting
buffer. Each of the eight buffers can be individually programmed so that the corresponding pin can function
either as an input or output, depending on the state of the fuse controlling the output buffer, as indicated
by Table 1. This allows the device to be used for functions requiring up to 17 inputs and a single output
or down to 10 inputs and 8 outputs.
A high-speed feedback path, which does not go through the output buffer, is provided to offer higher
performance operation in designs where feedback is required. The architectural fuse on the internal
multiplexer is used for the selection of this path (see Table 21. This makes the TIBPAD18N8-6C ideal for
the implementation of a very fast NAND-NAND logic. The TIBPAD18N8 is supplied with all eight output
buffers disabled thus establishing all programmable input/output lines as inputs. If an 1/0 line is selected
to be an output it must be programmed accordingly.
The TIBPAD18N8-6C is characterized for operation from O°C to 75°C.

IMPACT-X is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA d...mlnto ••otlin infarmotlo.
..mot II of pu.llollion dote. Producll ...far.. to

.-ilintl........ thlllnni 0' T.... I.strumanto

=H~ai:::I~7i =:~:; :.r::~:.:~ not

Copyright @ 1987, Texas Instruments Incorporated

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265

2-107

TIBPAD18N8-6C
HIGH-PERFDRMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY

functional block diagram (positive logic)

10

18x!>

~

~

t>

B

V

8
8

r*-

8x

8

&

36x8

1/0

EN

~

8
L.,8XMUX

8..-

1
8

-

Gl

.".

Table 1. Output Buffer Programming
ARCHITECTURAL
FUSE

Table 2. I/O Multiplexer Programming
ARCHITECTURAL

OPERATION

FUSE
Intact

Input
Intact

(Output Buffer

Blown

in 3-State)
Blown

2-108

Output

TEXAS . "

INSrRUMENlS
POST OFFICE BOX

65~12

• DALLAS. TEXAS 75265

OPERATION
Output Buffer Feedback
Fast Feedback
(pre-output buffer)

TIBPAD18N8·6C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY
logic diagram (positive logic)
INCREMENT
Ir-----------------------A~

o

4

B

12

16

____________________
20

24

2B

32

~\

35

,~

n 296
~~"."
n 297
Ill,

0
,131

Gl

o

r

288

~"."
r

36
1141

"'I

Gl

n 29B

2B9

~

~"".
r

72
,lSI

o

o

Gl

290

~

n~99

~~"""

lOB
(16)

Gl

o

r

291
300
~ 1151
11

...

144
,171

I/O

MUX,
Gl

r

292

11~01

•

~".'"

lBO
IBI

Gl

D

r

293

11~02

~"""
r

216
1(91

o

Gl

294

11~03

~j"""

252
(111

Gl

H'GH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/ANO ARRAY
Fuse number

o

MUX 1

=

First Fuse number

+

T

295 _

Increment

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-109

TIBPAD18N8-6C
HIGH-PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) ................................................. " 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range ...................................... ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
MIN

NOM

MAX

UNIT

4.75

5

5.25

V

Vee

Supply voltage

VIH

High-level input voltage Isee Note 2)

Vil
10H

low-level input voltage Isee Note 2)
High-level output current

0.8
-3.2

10l

Low-level output current

24

TA

Operating free-air temperature

2

0

75

V
V
rnA
rnA
De

NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system andlor

tester noise. Testing these parameters should not be attempted without suitable equipment.

electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

VIK

Vee

VOH

Vee

VOL

Vee

IOZH*

Vee

10Zl*
II

Vee

IIH

Vee

III

Vee

IO§

Vee

lee
ei

Vee

Vee

= 4.75 V.
= 4.75 V.
= 4.75 V.
= 5.25 V,
= 5.25 V.
= 5.25 V.
= 5.25 V.
= 5.25 V.
= 5.25 V.
= 5.25 V.

=

II

10H

MIN

Typt

2.4

3
0.37

-18 rnA

=

-3.2 rnA

10l - 24 rnA

= 2.7 V
Vo = 0.4 V
VI = 5.5 V

Vo

=2V
Vo = 2 V
VI

eo

V
V

0.5

V

20

~A

-20

~

20

~A

~

-0.25

rnA

-75

-130

rnA

145

180

5

rnA
pF

6

pF

VI

-30

UNIT

20

VI-2.7V

= 0.4 V
Vo = 0.5 V
VI = 4.5 V

MAX
-1.2

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER

FROM
I

tpd

(2 outputs
switching)

TEST

TO

CONDITIONS

=
=
=

o Ina feedback)

Rl

o Iwith 1 fast feedback path)

R2

o (with 2 fast feedback paths)

el
50 pF.
See Figure 1

o Iwith 3 fast feedback paths)

20011.
39011.

MIN

Typt

MAX

2
3.5

4.5

6

ns

7

10

ns

5

9.5

6.5

12

14
18

ns
ns

UNIT

t All typical values are at Vee = 5 V. TA = 25 De.
.
* I/O leakage is the worse case of 10Zl and III or IOZH and IIH.
§ This parameter approximates lOS. The condition Vo = 0.5 V takes tester noise into account. Not more than one output should be shorted
at a time and duration of the short circuit should not exceed one second.

2-110

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

TlBPAD 1BNB·6C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY

PARAMETER MEASUREMENT INFORMATION
5V

Rl
fROM OUTPUT UNDER TEST

....--<_-4~- TEST
POINT

CL-50pF
(see Note AI

R2

LOAD CIRCUIT

IN-PHASE
OUTPUT

OUT-Of-PHASE
OUTPUT

VOLTAGE WAVEfORMS
PROPAGATION DELAY TIMES
NOTES:

A. CL includes probe and jig capacitance.
B. All input pulses have the following characteristics: PRR ,,; 1 MHz, tr

= tf = 2 ns, duty cycle = 50%.

FIGURE 1

TEXAS ",

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-111

TlBPAD 18N8·6C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY
TYPICAL CHARACTERISTICS
PROPAGATION DELAY TIME

SUPPLY CURRENT

vs

vs

SUPPLY VOLTAGE

FREE-AIR TEMPERATURE
200

j

E

.!.<:

150

~:::J

125 VCC - 4.5 V

>is.

100

tJ

-L
tPHL

~

-;--- r--

4

i=

.

-

--

>-

~

5.25 V

3

.,o
<:

.

~

I

tJ
~

5

I

~VCC - 5V
VCC - 4.75 V

75

I

~

<:

~VCC -

\ \

a.

:::J

III

..

-

175 VCC - 5.5 V
c(

6

2

R1 - 2000
R2 - 3900
CL - 50 pF
TA - 25°C
2 OUTPUTS SWITCHING
NO FEEDBACK I

Co

£

50
25

I

o
25
50
TA-Free-Air Temperature- °C

4.5

75

5.5

5
Vec-Supply Voltage-V

FIGURE 3

FIGURE 2

PROPAGATION DELAY TIME

PROPAGATION DELAY TIME

vs

vs

FREE-AIR TEMPERATURE

LOAD CAPACITANCE

6

6

.,c

tpLH

I

tpLH

5

I

I

tPHL

CD

tpHL

E

4

>.!!
0

3

i=

.,
<:

0g
0

VCC - 5 V
-R1 - 2000
R2-3900
CL-50pF
r- 2 OUTPUTS SWITCHING
NO FEEDBA1CK

o

o

.a.

Q)

2

0
25

VCC - 5 V
R1 - 2000
R2 - 3900
TA - 25°C
NO FEEDBACK
2 OUTPUTS SWITCHING

S!
a..

50

75

o

TA-Free-Air Temperature- DC

100

150

200

CL -Load Capacitance-pF

FIGURE 5

FIGURE 4

2-112

50

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

250

TlBPAD1BNB·6C
HIGH·PERFORMANCE PROGRAMMABLE ADDRESS DECODER/NAND ARRAY
TYPICAL CHARACTERISTICS
PROPAGATION DELAY TIME
vs
NUMBER OF FAST FEEDBACK PATHS
25

In

c
I
GO
E

j::

>
CD
"ii

20

15

c

c
0

';

.'"

10

VCC - 5 V
R1 - 200 {l
R2 - 390 {l
CL - 50 pF
TA - 25°C
2 ~UTP~TS SflTC11NG

0.

e

a.

5

2

3

4

5

6

7

Number of Fast Feedback Paths

FIGURE 6
WORST-CASE PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING
8

.,c

.
.
c
.,.
I

E

7

6

j::

5

>
"ii

4

c
0

'"

3

CD

0.

£

2

VCC - 4.75 V
R1 - 200 {l
R2-390{l
CL - 50 pF
TA - 75°C
NO FEEDBACK
2345678
Number of Outputs Switching

FIGURE 7

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-113

..

2-114

TIBPAL 16LB·7M. TlBPAL16R4·7M. TlBPAL 16R6·7M. TlBPAL16RB·7M
TIBPAL 16LB·5C. TIBPAL 16R4·5C. TlBPAL 16R6·5C. TIBPAL 16RB·5C
HIGH·PERFORMANCE IMPACT·XTMPAL® CIRCUITS
03359, OCTOBER 1989

•

TIBPAl16l8'
M SUFFIX ... J PACKAGE
C SUFFIX ... 'J OR N PACKAGE

High·Performance Operation:
f max (no feedback I
TIBPAL 16R'· 7M Series ... 100 MHz
TIBPAL 16R' -5C Series, .. 125 MHz
f max (internal feedback I
TIBPAL16R'-7M Series ... 100 MHz
TIBPAL 16R' -5C Series ... 125 MHz
f max (external feedbackl
TIBPAL16R'-7M Series ... 74 MHz
TIBPAL 16R' -5C Series ... 115 MHz
Propagation Delay
TIBPAL 16L' -7M ... 7 ns Max
TIBPAL 16L'-5C ... 5 ns Max

(TOP VIEW I

Vee
0
1/0

I

GND

•

Functionally Equivalent, but Faster than
EXisting 20-Pin PALs

•

Preload Capability on Output Registers
Simplifies Testing

•

Power-Up Clear on Registered Devices (All
Register Outputs are Set Low, but Voltage
Levels at the Output Pins Go Highl

•

I/O
I/O
I/O
I/O
I/O
0

TIBPAl16l8'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEWI

u

_ >u
3

Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs

2

Security Fuse Prevents Duplication

•

Dependable Texas Instruments Quality and
Reliability

18
17
16
15
14

3-STATE

REGISTERED

I/O

Q OUTPUTS

PORTS

10

2

0
4 13-statel
6 (3-statel
a (3-statel

6

INPUTS

PAL 1618
PAl16R4

a

0

PAl16R6

a

0

PAL 16Ra

a

0

110
I/O
I/O
110
110

a:

0.

IU

9 1011 12 13

o OUTPUTS

DEVICE

:>w

1 20 19

6

•

~
w

0

;:)

C

oa:

Pin assignments in operating mode

4

0.

2
0

description
These Programmable Array Logic devices feature the highest speed yet achieved in a bipolar PAL circuit.
This family of PALs is 100% functionally and pin-for-pin compatible with the industry standard 'PAL 16L8,
'PAL 16R4, 'PAL 16R6, and 'PAL 16R8. The Texas Instruments IMPACT-X'· (Enhanced Implanted Advanced
Composed Technologyl fabrication process has been employed to ensure this ultra-high-performance
operation. This process combines the latest Advanced Low-Power Schottky technology with proven
titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic. Their
easy programmability allows for quick design of custom functions and typically results in a more compact
circuit board. In addition, chip carriers are available for further reduction in board space.
All of the register outputs are set to a low level during power-up. Extra circuitry has been provided to allow
loading of each register asynchronously to either a high or low state. This feature simplifies testing because
the registers can be set to an initial state prior to executing the test sequence.
The TIBPAL 16' M series is characterized for operation over the full military temperature range of - 55°C
to 125°C. The TIBPAL16' C series is characterized for operation from O°C to 75°C.
IMPACT-XTOI is a trademark of Texas Instruments Incorporated.
PAL® is a registered trademark of Monolithic Memories, Inc.
tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975.

rnR~t!!Ufo~::t~~!E: ~::i~~a:::;S:o:feJ~=er!:!~~~

Characteristic data and other specifications are design
goals. Texas Instruments reserves the right to change
or discontinue these products without notice.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1989, Texas Instruments Incorporated

2-115

TIBPAL 16R4·7M, TIBPAL 16R6·7M, TIBPAL 16R8·7M
TIBPAL 16R4·5C, TlBPAL 16R6·5C, TlBPAL 16R8·5C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
TIBPAL 16R4'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE

TIBPAL 1SR4'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE

ITOP VIEW)

ITOP VIEWI

elK

>< U

Vee

...J UO
__ u>:::o

110

I/O

3

2

1 20 19

Q

4

Q

5

17

Q

6

16

I/O

Q

GND ......_ _...r-

Q
Q

I/O
I/O

I

Q

14

8

Q

9 1011 1213

OE

-

~Io

gg

c.:>

"tI

T·IBPAL 16RS'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE

TIBPAL16RS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE

ITOP VIEW I

ITOP VIEWI

elK

::I:J

>< U

Vee

...J UO
__ u>:::o

I/O

0

Q

C

c:

3

2

1 20 19

Q
Q

(")

Q

-t

I

Q

"tI

I

Q

::I:J

I

-

GND

I/O
OE

m

<
m
:E

18

Q

5

17

Q

6

16

Q

7

15

Q

8

14

Q

9 10 11 12 13

-

~Io

ga

c.:>
TIBPAL 16RS'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE

nBPAL 16RS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE

ITOP VIEWI

ITOPVIEW)

elK

>< u

Vee

...J u
__ u>o

Q

Q

3

Q

4

Q

5

Q

6

Q

GND

18

Q
Q

8

Q
""'I._ _..j'-

9 10 11 12 13

OE

- 0lw
zO
c.:>

Pin assignments in operating mode

TEXAS . "

INSTRUMENTS
2-116

1 20 19

7

Q

I

2

POST OFFICE BOX 665303 • DALLAS. TEXAS 75266

a a

TIBPAL 16L8·7M. TIBPAL 16L8·5C. TIBPAL 16R4·7M. TIBPAL 16R4·5C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS

functional block diagrams (positive logic)
'PAL 16la

EN ;'1

&

90----0

32 X 64

0----0
16. [>

10

1/0

16

P-4t+.......-1/0

P--.t-+...-

1/0

P-.,........-I/O

3:
w

6

:>w
c::

'PAL 16R4

a..

....

J EN2

0"E

~Cl

ClK

(.)

r,

&
32

x 64

1-0

;'1

-+-

10

;s;c;4

-+-

----

~ 'V

f>+-

r+-

a..

~

0

:---"\
Q

~
EN

;'1
1/0

9

~

r-+f---]

""
""
""

r+-

~

~
4

,

c::

Q

~
~
r---

'V

0

~

--f..8

::J
Q

Q

29

1/0

1/0

1/0

4

rv denotes

~

fused Inputs

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DAllAS, TEXAS 75265

2-117

TlBPAL 16R6·7M, TIBPAL 16R6·5C, TlBPAL 16R8,7M, TlBPAL 16R8·5C
HIGH·PERFORMANCE IMPACT·X'M PAl® CIRCUITS

functional block diagrams (positive logic)
'PAL l6R6

OE

-C2

elK

~el

&
32 X 64

;;'1

~

I 0 2\1
lD

~

-:-'i6xi>-..;L 'V
'6

r+
~

0.:- 'V

"'tI

r-----,

P-

r-----,

Q

Q

r-----,

~

Q

r-----..
EN ;;'1

~

:JJ

o

r+-

.~

c:

1/0

..-

'--- 2

6

(')

1/0

\1

f---

C

o
o

~

f---

o

r-----,

p..
'----

I'"'"

r---.

-I
'PAL 16Ra

"'tI

:JJ

m

OE--------------------------aEN:1---,

S
m

elK----------------------------~

:e

&

32

8

x 64

r;;;.;;;lIT"-r:O~b_---- a
r----t----ir~-a

r----t----ir-l-- a
r---t---1-~l--a

,---r----o...-+-- a
r----t----ir-l--a

r---t--iO---:l--a
a
rv denotes

fused inputs

TEXAS ~

2·118

INSTRUMENlS
POST OFFICe BOX 655303 • DALLAS, TEXAS 75265

TIBPAL 16LH·7M, TlBPAL 16L8·5C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS

FIRST

INCREMENT

~~~BERS ~O~--~4~--~B~--~1~2~~Al~6~~~2~O~--~2~4~--~2~B~,~31
3~ t;-'
- 1-++-1-44 - ::~

!

t

-

160
192-- 224·

-

f--

128

--

119) 0

.

12)~
256·

1

288
320

352384416-- ..

f-

v

11B) II')

448-

I~_.
512-544

1

576·
608--640672
704

v

117) 1/0

1

14) 736
768
800-

1

832
864896
928
960

....

3:
w
5>
w

116) 1/0

a:

J5) 992

0..

1024

1

1056
1088

1120

v

1152

I-

o

115) 1/0

:::l

'184

Q

1216
1248

oa:

-~
1280
1312

1344

r---

1376

1408

~)--_C>ol-.--_1'-'1-'-'-4)

0..

1/0

)---f-"

1440
1472

17)'504
1536-1568
1&00--+

113) 1/0

1632 - 1664

1696
1728

1760

IB) >L

1792
1824

1856
1888
1920
1952
1984
19)2016

112) 0

H----C'-'-J-

768
800
832
864
89
928
96

o
C

c:

n-I

M

10

":J

(171

a

(161

a

'";:] (151
.v

a

V

~1

~1 73.

::D

I/O

-

(31 480

"0

(181

'j':(j

-

>-

10

~

....:!~

151 992
1024
1056
1088

"0

"20

::D

r=>-

1162
1184
1216

m

S
m
:E

161

1344
1376
'40
'440

..- >-

1472
1504

.....-.

1536
1568
'GOO

~

'63

M
10

f---.'

1728

b

1141

a

L-£.!.1

-- 1
V

1664

1696

181

ID

t:!.1

'248
1280
1312

171

M

1131 1

/0

1760

.......,

1792

1824
1856
1888
1920
'95

-

1984

j
v

11211 /0

191 20 '6

~ OE
Fuse number - First Fuse number - Increment

TEXAS ",

INSTRUMENTS
2·120

POST OFFICE BOX 655303 • DALLAS. TeXAS 7,5265

TIBPAL 16R6·7M, TlBPAL 16R6·5C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS

CLK .!.!.!-[>
111
FIRST
F USE

INCREMENT

N UMBERS 0

4

8

12

16

20

24

28

31

0

1

32

r--

6.
9.
128
,.0
192
224

r----

v

1191

I/O

1

121~

~

131

141

151

f-----'

288
320
352
)84
"6
448
.80

,.......,V

I--

.>

-

-

..-0

*.1 17 1a

10

~Ol

>--

768
800
.32
8 ••
89.
928
960
992

*~ a

10

~Ol

>--

512
54.
57.
608
640
672
704
73.

..-0

V

M

r:J

10

~
w

1161

rv""

a

1024

P-

,,20
1152
1184

1216

161

10

r:J

10

I(151

V

o

oa:

1280

1312

-

1344
1376

>-- D-

1408

(71

1440
1472
1504

10 r:J
ID

1141

Q"

a

~~

1536
1568
1600

1632
1664

1696
1728

181

1792
1824

'""=

1856
1888

I-'"

1920
1952
1984

.----.

191 201 •

First Fuse number

Ij(j
tAJ131 Q
v

10

~1

>--

1760

Fuse number -

>-

>--

1

I

1121

1111

I/O

OE

+ Increment

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

o

:::>

c

....:2.~

1248

w

a:
Q"

~~

1056
1088

:;

2·121

TIBPAL 16R8·7M. TIBPAL 16R8·5C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS

,

ClK II) ....
FIR ST
FU SE
NU MBERS

INCREMENT
0

4

8

12

16

20

24

28

31

-

0
32
64
96
'28
'60
'92

>

--

(2)~

M
10

-;:::t

(19)

v

Q

t£!.~

2~
288
320
352
384
4'6
448
(3) 480

-V

."

:a
c

768
800
832
864
896
92
960

(")

151 992

o

c:
.....

-

."

r-1=0

....-

r.:J.

1171

r.:J.

1161

Q

I->

10

V

Q

~~

....-

.=
- >

"20
1216

161'248

W
10

r.:J. {lSI Q
V

~Il

l---'

1280
1312
1344
1376
1408

;:::::i

b-

'440
1472

M'"
10

r:t

1141

b

{l31

r.:J.

112)

V

a

~1

171'504
1536
1568

>--

1600
1632
1664

;::: p-

1696
1728

M
10

Q

~~

181 1760
1792
1824
1856

0-

'88
1920
1952
1984

f>-

ro
10

V

~

~1

19)20'6

Fuse number - First Fuse number + Increment

TEXAS ."

INSTRUMENTS
2·122

10

~1

1184

:e

1181 Q

....-

1152

S
m

'j';(j"

I->

1024
1056
1088

:a
m

v

t:!.~

r-

5'2
544
576
608
640
672
704
(4) 736

I-ii '"';:J
10

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

~)

a

TlBPAL16L8-7M. TlBPAL16R4-7M. TIBPAL16R6-7M. TIBPAL16R8-7M
HIGH-PERFORMANCE IMPACT-XTM PAL® CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°C
Storage temperature range ......................................... - 65°C to 1 50°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER

MIN

NOM

MAX

4.5

5

5.5

UNIT
V

5.5

V

vee

Supply voltage

VIH

High-level input voltage Isee Note 2)

Vil

Low-level input voltage (see Note 2)

0.8

V

10H

High-level output current

-2

mA

10l

Low-level output current

Iclock

Clock frequency

tw

Pulse duration, clock (see Note 2)

tsu

2

0

12

mA

100

MHz

6
6

ns

Setup time, input or feedback before elK t

7

ns

th

Hold time, input or leedback alter elK!

0

TA

Operating free-air temperature

I High
I low

ns

-55

25

125

°e

NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system and/or
tester noise. Testing these parameters should not be attempted without suitable equipment.

PARAMETER

TEST CONDITIONS
II -

VOH

Vee = 4.5 V,

10H = -2 rnA

Vee = 4.5 V,

IOl=12mA

Vee = 5.5 V,

VO=2.7V

Val
10lH t
lOll t
II

0, Q outputs
1/0 ports
0, Q outputs

1/0 ports

L1/0 ports

MIN

-18 rnA

vee - 4.5 V,

Vee = 5.5 V,

Va = 0.4 V

Vee = 5.5 V,

VI = 5.5 V

2.4

Typt

MAX

UNIT

-0.8

-1.5

V

3.2
0.3

V
0.5
20
100
-20
-250
1
100

V
~A

~A

rnA
~A

Vee = 5.5 v,

VI = 2.7 V

Vee = 5.5 v,
vee = 5 V,
Vee - 5.5 V,

VI = 0.4 V
Va = 0.5 V
Outputs open,

I TA - 25°e and 125°e

VI = 0 V,

OE = VIH

ITA = -55°e

ei

1= 1 MHz,

VI = 2 V

pF

eo

1= 1 MHz,

Va = 2 V

pF

eclk

1= 1 MHz,

VelK - 2 V

pF

IIH
III t
10S§
lee

I All others

25
-0.08 -0.25
-30

-70

-130

120

180

mA
mA
mA

t All typical values are at Vee = 5 V, TA = 25°e.
t 1/0 leakage is the worst case 01 lOll and III or 10lH and IIH, respectively.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. Set Va at 0.5 V

to avoid test equipment ground degradation.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

W

s:w

a:
a..

electrical characteristics over recommended operating free-air temperature range
VIK

;:

2-123

I-

o
c
oa:

:::>

a..

TIBPAL16L8·7M, TlBPAL1fiR4·7M, TIBPAL16R6·7M, TIBPAL16R8·7M
HIGH·PERFORMANCE IMPACT·X™ PAL® CIRCUITS
switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwisenotedl (see Figure 51
PARAMETER
fmax t

FROM

I

TO

Without feedback
With internal feedback (counter configuration)

MIN
100

TYpt

MAX

UNIT

MHz

100
74

With external feedback
tpd

1.1/0

0,1/0

7

ns

tpd

ClK!

a

6

ns

tpd§

ClK!

Feedback input

3

ns

ten

OE.
OE!
1,1/0
1,1/0

a
a

7.5

ns

7.5

ns

0,1/0
0,1/0

8.5

ns

8:5

ns

!dis
ten
tdis

t All typical values are at VCC ~ 5 V, T A = 25°C.
:tSee section on fmax specifications.
§This parameter applies to TIBPAl 16R4' and nBPAl 16R6' only (see Figure 2 for illustration) and is calculated from the measured f max
with internal feedback in the counter configuration.

"'0

:zJ

o
C

c:
n
-I

"'0

:zJ

m

:S
m

:E

TEXAS ."

2-124

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

T1BPAL 16L8-5C, TIBPAL 16R4-5C, T1BPAL 16R6-5C, TIBPAL 16R8-5C
HIGH-PERFORMANCE IMPACT-X™ PAL® CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to Il disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
to 75°e
Storage temperature range ......................................... - 65 °e to 150 °e

ooe

NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER

MIN

NOM

MAX

UNIT

4.5

5

5.25

v
v
v

Vcc

Supply voltage

VIH

High-level input voltage (see Note 2)

Vil

Low-level input voltage (see Note 2J

10H

High-level output current

0.8
-3.2

10l

Low-level output current

24

mA

fclock

Clock frequency

125

MHz

tw

Pulse duration, clock Isee Note 2)

tsu
th

Setup time, input or feedback before elK t

4

Hold time, input or feedback after ClK!

0

TA

Operating free-air temperature

0

2

5.5

0

I High
I low

4

mA

ns

4

25

75

ns
ns
DC

NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system and/or
tester noise. Testing these parameters should not be attempted without suitable equipment.

TEST CONDITIONS

MIN

MAX

UNIT

-0.8

-1.5

V

VIK

~

4.75 V,

II

VOH

VCC

~

4.75 V,

10H

VOL

VCC

10l

~

24 mA

0.5

V

Vo

~

2.7 V

100

~A

~

0.4 V

-100

~A

0.2

mA

10ZH*

Vce

= 4.75 V,
= 5.25 V,

10Zl *
II

VCC

~

5.25 V,

Vo

VCC

5.25 V,

VI

IIH*

VCC

5.25 V,

*

VCC

5.25 V,

10S§

VCC

=
=
=
=
=

III

ICC

VCC

-18 mA

Typt

VCC

~

~

-3.2 mA

f

Co

f

Cclk

f

=
=
=

VI

~

2.7 V

25

~A

VI

= 0.4 V

-0.08 -0.25

mA

Vo

5.25 V,

VI

1 MHz,
1 MHz,

0.3

V

5.5 V

5.25 V,

1 MHz,

3.2

=

~

~

0.5 V
OV,

Outputs open

Ci

2.4

=2V
=2V
VClK = 2

-30

-70

-130

rnA

120

180

mA
pF

VI

pF

Vo

pF

V

t All typical values are at VCC = 5 V, TA ~ 25°C.
* I/O leakage is the worst case of 10Zl and III or 10ZH and IIH, respectively.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. Set

Va

at 0.5 V

to avoid test equipment ground degradation.

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303· DALLAS, TEXAS 75265

w
a::

a..

electrical characteristics over recommended operating free-air temperature range
PARAMETER

3:
w
:;

2-125

tO

::;)

Q

oa::
a..

TIBPAL 16L8·5C, TlBPAL 16R4·5C, TlBPAL l6R6·5C, TlBPAL 16R8·5C
HIGH·PERFORMANCE IMPACT·X™ PAL® CIRCUITS
switching characteristics over recommended supply voltage and operating free·air temperature ranges
(unless otherwise noted) (see Figure 6)
PARAMETER

TO

FROM

fmax*

MIN

Without feedback

125

With internal feedback (counter configuration)

125

With external feedback

115

Typt

MAX

UNIT

MHz

tod

1,1/0

0,1/0

5

tpd

ClKi

Q

4

ns

tpd!

ClKi

Feedback input

3

ns

ten

OE.

Q

5.5

ns

tdis

OEi

Q

5.5

ns

ten

1,1/0

0,1/0

6.5

ns

tdis

I, I/O

0, I/O

6.5

ns

Skew between registered outputs

tskew'
tAli typical values are at VCC

=

5 V, TA

=

ns

ns

25°C.

iSee section on fmax specifications.
§This parameter applies to TlBPAl 16R4' and TIBPAl 16R6' only (see Figure 2 for illustration) and is calculated from the measured f max
with internal feedback in the counter configuration.
'This parameter is the measurement of the difference between the fastest and slowest tpd (elK-ta-O) observed when multiple registere~
outputs are switching in the same direction .

."

:::D

o
C

c:

o

-I

."

:::D

m

S
m
~

TEXAS .."

INSTRUMENTS
2-126

POST OFFICE BOX 866303 • DALLAS, TEXAS 75265

TlBPAL16l8·7M, TlBPAL16R4·7M, TlBPAL 16R6·7M, TlBPAL16RB·7M
TlBPAL 16LB·5C, TIBPAL 16R4·5C, TlBPAL 16R6·5C, TIBPAL 16R8·5C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications. algorithms. and the latest information on hardware. software. and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available. upon request. from the nearest TI field sales office. local
authorized TI distributor. or by calling Texas Instruments at (214) 997-5666.

preload procedure for registered outputs (see Note 31
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. Each register is preloaded
individually by following the steps given below.
Step
Step
Step
Step

1.
2.
3.
4.

With VCC at 5 volts and Pin 1 at VIL. raise Pin 11 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse Pin 1. clocking in preload data.
Remove output voltage. then lower Pin 11 to VIL. Preload can be verified by observing
the voltage level at the output pin.

~
w

preload waveforms (see Note 3)

PIN 11

______I

:>w
a:

~tsu~

!+- td --.I

i

I

I

I

I

I
I

I

I

I
I

I

I

I

..J'>-<

I-

I Inn: -r n-- -'.
I

:

REGISTERED I/O_ _ _ _

c:L

d-----1

'-- tw-.l

I

PIN 1

j4- t

'''~

o
~
c
oa:

Vil

c:L

I

B"-O-U-T-P-U-T-- : : :

NOTE 3: td ~ tsu ~ tw ~ 100 ns to 1000 ns.
V'HH = 10.25 V to 10.75 V.

TEXAS ",

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-127

TIBPAL16L8·7M, TIBPAL16R4·7M, TIBPAL16R6·7M, TIBPAL16R8·7M
TIBPAL 16L8·5C, TlBPAL 16R4·5C, TlBPAL 16R6·5C, TlBPAL 16R8·5C
HIGH·PERFORMANCE IMPACT·X'" PAL® CIRCUITS
f max SPECIFICATIONS
f max without feedback. see Figure 1
In this mode. data is presented at the input to the flip-flop and clocked through to the Q output with no
feedback. Under this condition. the clock period is limited by the sum of the data setup time and the data
hold time (tsu +th). However. the minimum f max is determined by the minimum clock period
(twhigh +twlow).
Thus. f max without feedback = (tw high + tw low)
ClK

lOGIC

ARRAY

"U

%I

o
C

c:
(')
-I
"U

%I

S
m

FIGURE 1. f max WITHOUT FEEDBACK

f max with internal feedback, see Figure 2
This configuration is most popular in counters and on-chip state-machine designs. The flip-flop inputs are
defined by the device inputs and flip-flop outputs. Under this condition. the period is limited by the internal
delay from the flip-flop outputs through the internal feedback and logic array to the inputs of the next flip-flop.

1
(tsu +tpd ClK-to-FB)
Where tpd ClK-to-FB is the deduced value of the delay from ClK to the input of the logic array.
Thus. f max with internal feedback =

ClK

=e

lOGIC

Q

ARRAY

FIGURE 2. f max WITH INTERNAL FEEDBACK

TEXAS •

INSTRUMENTS
2-128

POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

TlBPAL 16L8·7M. TIBPAL16R4·7M. TIBPAL 16R6·7M. TlBPAL16R8·7M
TIBPAL 16L8·5C. TIBPAL 16R4·5C. TIBPAL 16R6·5C. TlBPAL 16RB·5C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
f max SPECIFICATIONS
f max with external feedback, see Figure 3
This configuration is a typical state-machine design with feedback signals sent off-chip. This external
feedback could go back to the device inputs or to a second device in a multi-chip state machine. The slowest
path defining the period is the sum of the clock-to-output time and the input and setup time for the external
signals Itsu + tpd CLK-to-Q).
Thus, f max with external feedback =

1
Itsu +tpd CLK-to-Q)

CLK
a~-.....-4.NEXT DEVICE

LOGIC

ARRAY

~

I4-r----tsu------1+~-tPd CLK.to.a-+ tsu-1

w

:>w

FIGURE 3. f max WITH EXTERNAL FEEDBACK

IX

a..
tO

::::>

C

oIX

a..

FIGURE 4. PROPAGATION DELAY FROM ClK! to I/O, THRU lOGIC ARRAY

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DAllAS, TEXAS 75265

2-129

TIBPAL16L8·7M, TIBPAL16R4·7M, TIBPAL16R6·7M, TIBPAL16R8·7M
TlBPAL 16L8·5C, TlBPAL 16R4·5C, TIBPAL 16R6·5C, TIBPAL 16R8·5C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
5V

S1

b
2000

FROM OUTPUT _ . ._ ...._ ..._
UNDER TEST
CL
(See Note AI

3V
TIMING
,/.,
INPUT _ _ _ _J~~.~V_ _ _ _ 0

TEST
POINT

2000

HIGH'LEVEl~5V
-~;-v-3V

PULSE

.

DATA
~-; -::-: 3 V
INPUT - . / ' 1.5V
~O

"'tJ

LOW· LEVEL
PULSE

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

C

c:

(')

INPUT

-I
"'tJ

tpd

::D

m

S
m
~

-i1.5

IN·PHASE

~OUTPUT

tpd

II
OUT -OF· PHASE
OUTPUT
(See Note D)

I..
I
I
I
I

...

\1~~

V

- - - 3V

!1.5V

~

\1.5

'"

·1

.,

,

14
V

VOL

tpd

• FVOH
1.5 V

VOLTAGE WAVEFORMS
PROPAGATION DelAY TIMES

J/.::'""" 3 V

" "

OUTPUT~3V
1.5 V
I

ten -+I

--VOL

-1- - - - _. 0
I+-

, I

WAVEFORM 1
S1 CLOSED
(See Note BI
WAVEFORM 2
S10PEN

1.5 V
I

1

enabling I

tpd

~

I

0

~~'~V_O

(low-level

+--VOH

I
I

1

CONTROL
0

I

1

1

VOLTAGE WAVEFORMS
PULSE DURA TlO!"S

I

·1

I

~,

::D

o

.

I

I.---tw~

!4-th ....
I+-tsu-+j
1

-+l I+-- tdis

I I

25 V

I'
~.
I 1.5V
VOl+0.5V
~
,
'
--~
ten -+I

j+-

- - a - VOl
-+I 14tdis T.
I_-_*--VOH

~

(See Note BI

I

-

1.5 V

-

LVOH-O.5 V
~

0 V

VOL TAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE·STATE OUTPUTS

NOTES: A. CL includes probe and jig capacitance and is 50 pf for tpd and ten. 5 pF for tdis'
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR :$ 10 MHz, tr and tf ~ 2 ns, duty cycle ~ 50%.
D. When measuring propagation delay times of 3-5tate outputs, switch 51 is closed.
E. Equivalent loads may be used for testing.

FIGURE 5

TEXAS . "

INSTRUMENTS
2-130

POST OFFiCe BOX 655303 • DALLAS. TeXAS 75265

TIBPAL 16L8·1 OM. TIBPAL 16R4·1 OM. TIBPAL 16R6·1 OM. TIBPAL 16R8·1 OM
TIBPAL16L8· 7C. TIBPAL 16R4·7C. TIBPAL16R6· 7C. TIBPAL 16R8· 7C
HIGH·PERFORMANCE IMPACT-XTMPAL® CIRCUITS
D3115, MAY 19BB-REVISED OCTOBER 19B9

•

ITOP VIEW)

Vee

o

110
110
110
110
110
110

o
GND ......._ _...r-

•

Functionally Equivalent, but Faster than
Existing 20-Pin PALs

•

Preload Capability on Output Registers
Simplifies Testing

•

Power-Up Clear on Registered Devices (All
Register Outputs are Set Low, but Voltage
Levels at the Output Pins Go High)

•

TIBPAl1SlS'
M SUFFIX .. , J PACKAGE
C SUFFIX ... J OR N PACKAGE

High-Performance Operation:
f max (no feedback)
TIBPAL 16R' -7C Series ... 100 MHz
TIBPAL16R'-10M Series ... 62.5 MHz
f max (internal feedback)
TIBPAL 16R' -7C Series ... 100 MHz
TIBPAL 16R'-10M Series ... 62.5 MHz
f max (external feedback)
TIBPAL16R'·7C Series ... 74 MHz
TlBPAL 16R'-10M Series ... 55.5 MHz
Propagation Delay
TIBPAL 16L' -7C ... 7 ns Max
TIBPAL 16L'-10M ... 10 ns Max

TIBPAllSlS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
ITOP VIEW)
U

_ >u
3

Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs

•

Security Fuse Prevents Duplication

•

Dependable Texas Instruments Quality and
Reliability

2

0

1 20 19

18
17
16
15

14

I/O
110
110
110
I/O

9 10 11 12 13

DEVICE

INPUTS

3·STATE

REGISTERED

1/0

o OUTPUTS

Q OUTPUTS

PORTS

PAl16l8

10

6

8

4 13·state)

4

PAl16R6

8

2
0
0

0

PA116R4

6 13-statel

2

PAl16R8

8

0

8 13-state)

0

Pin assignments in operating mode

description
These programmable array logic devices feature high speed and functional equivalency when compared
with currently available devices, These IMPACT-X" circuits combine the latest Advanced Low-Power
Schottky t technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes
for conventional TTL logic, Their easy programmability allows for quick design of custom-functions and
typically results in a more compact circuit board. In addition, chip carriers are available for further reduction
in board space.
All of the register outputs are set to a low level during power-up. Extra circuitry has been provided to allow
loading of each register asynchronously to either a high or low state. This feature simplifies testing because
the registers can be set to an initial state prior to executing the test sequence.
The TIBPAL 16' M series is characterized for operation over the full military temperature range of - 55°C
to 125°C. The TIBPAL16' C series is characterized for operation from OOC to 75°C.
IMPACT-X"" is a trademark of Texas Instruments Incorporated.
PAL@ is a registered trademark of Monolithic Memories, Inc.
tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments. U.S. Patent Number 3,463,975.

This document contains information on products in
mora than ORa phase of development. The status of,
8ach device is indicated on the pagels) specifying its
electrical charletaristies.

Copyright © 1989, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-131

TIBPAL 16R4·1 OM, TIBPAL 16R6·1 OM, TIBPAL 16R8·1 OM
TIBPAL 16R4·7C, TIBPAL 16R6·7C, TIBPAL 16R8·7C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
TIBPAL l6R4'

TIBPAL16R4'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE
(TOP VIEW)

elK

M SUFFIX ... FK PACKAGE

C SUFFIX ... FN PACKAGE
(TOP VIEW)

Vee
I/O
3

2

1 20 19

I/O
Q

4

18

I/O

Q

5

17

Q

Q

6

16
15

Q
Q

14

Q

Q

I/O

8

I
I/O
GND '""L_ _..T"" BE

9 1011 1213

-

~Io

gg

<.'J

TIBPAL l6R6'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE

TIBPAL 16RIl'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE
(TOP VIEW)

elK

(TOP VIEW)

Vee
110
Q

3

2

1 20 19

Q

4

18

Q

5

17

Q

6

16

8

14

Q

15

Q

I/O
GND'--l._ _....t-'0E

9 1011 1213

TIBPAL16R8'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)

TIBPAL l6RS'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE
(TOP VIEW)

elK

Vee
Q

3

Q
Q

2

1 20 19

Q

4
5

17

Q

6

16

18

Q

15

Q
I

GND '""L-=-----=----J-'

14

B

Q

9 101" 12 13

DE

- 0lw
0
zO
<.'J

Pin assignments in operating mode

2-132

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75285

0

TIBPAl 16lB·1 OM, TlBPAl16lB·7C, TlBPAl 16R4·1 OM, TIBPAl16R4·7C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS

functional block diagrams (positive logic I
'PAL16l8
EN ~1

&

k>-----o

32 X 64

P----o
16x

t>

10

I/O
16

0-.............-1/0

6

0-.-+.........-1/0

6

'PAlI6R4

OE

EN2

ClK

Cl

r--&
32

1"6.1>

8
4

~ 'V

r-+-

r+'--

x 64

r--+-

~

J
2'<;7

----,

10

r-+r-+r-+t---

'V

1-0

~1

8

----,

----,
----,
EN

a
a
a
a

~1

'<;7

~

I/O

f---y--

"

~

,

f-+-

t--+~
4

...
-"

I/O
I/O
I/O

4

rv

denotes fused inputs

TEXAS . "
INSTRUMENTS
POST OFFice BOX 655303 • DALLAS, TEXAS 75265

2·133

TIBPAL16R6·10M, TlBPAL16R6·7C, TlBPAL16R8·10M, TIBPAL16R8·7C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS

functional block diagrams (positive logic)
'PAL16R6

DE--------------------------clE!~--,
CLK------------------------------~

&

32 X 64

r---t----;b-:+--o
r---t----;b-:l-o
r---t----;~l-o
r----t----i-~_o

t----t----;h-..:1--o
....-t--

l-_....:s~~;b-ed-......--~-

110
110

6

.'PAL16R8

DE
CLK
;>1

a
a
a

16

a
a
a
a
a

rv denotes fused inputs

2-134

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL 16L8·1 OM,TlBPAL 16LB·7C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS

111)

FIRST
FUSE

INCREMENT

,
0

N UMBERS

0
32 --

6.-

96-

4

----

--

B

12

16

20

24

- -

2B

31

--

f--

---- --

}--

128160

-f--/

192
22.

119)

V

o

)---

~~

~

256-

~ ~~r~1

288
320

]

-~

352
384

f----f-----'

416 -

448-

1/0

.80

illet--

=::'

512
544
576--

-

1

>---

608

640

>----

672
704

117)

V

1/0

>----

14) : 6
768

1

800~

832
864
896
928

116)

V

960

1/0

--

15) 992

.

~

1024
1056
1088

--

1120

- --

"52

1

>----

115)

V

1/0

•

f---

1184

1216
1248

~

-

1---

-

>---

1280
1312

-

1344
1376

-.,..

1440
1472

17)'504 - -

X
15361568
1600

1632 - 1664-

114)

---

~-----J'-.j

+
-

1/0

f--------j

----

_...

t

1696

1728

-

IB)1760

---

--

1792
1824
1S56
lS88

~1
----,f--/

~
First Fuse number

-..,

j---

t-=J----

-r

113)

1/0

>--

-

1920

1952
1984

Fuse number -

1
V

1408

112)

V

o

Ill)

+ Increment

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-135

TIBPAl 16R4·1 OM, TlBPAl16R4·7C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS

ClK (11

FIRST

INCREMENT

FUSE

NUMBERS 0

4

8

12

16

20

24

28

0
32
64
9.
'28
,.0
'92
224

31

1
I

>--

I--"

1
v

(31 480
5'2
5
576
60
640
672
704

~

- >-

(41 736
7.8
800
832
864
896
.28

>-

••

1024
1056

1088
1120

P-

f---'

1152

""
1216

1280
1312

'3'
1376
'40

ro

-;::} (171

10

v

a

~~
'i':o

':l

(161

a

':l

(151

a

T:O ':l
10

(141

a

10

M
10

P-

t--

1440
1472

~~

1504
1536
1568
'600
'63
1664
'696
1728

1

f--

-

v

f--

1760

1BI
1792
1824
1856

1888
1920

r--

'95

'.84

(91 20 '6

-

2-136

I

110

~1

(61'248

Fuse number '""' First Fuse number

(181

~1

(51 992

(71

1/0

v

(2~
25.
288
320
352
384
4'.
448

(191

f-/

I

1
V

I

(131

(121

~
+ Increment

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1/0

1(0

nBPAL 16R6·1 OM. nBPAL 16R6·7C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS

ClK .!..!.l{)
II}
F IRST

F USE
N UMBERS 0

INCREMENT
4

8

12

16

20

24

28

0
32
64
96
128
160
192
224
12!t,t----

Jl

1

>-

-

-

V

119}

1

1/0

2~

IJ}

14}

IS}

288
320
352
384
416
448
480

~

-

512
544
516
608
640
672
104
13.

)-

i:O

-;:t.118} Q
v

10

~I
j':(j

~117} Q

).. 10

~~

f--

168
800
832
864
896
928
960
992

V

j':(j
I--

)-

10

':I

116}

':I

lIS}

v

Q

~

~~
f-I--

1024

1056
1088
1120

1248

--

1280

f--

I--

1152
1184
1216

r'j':(i

)-

1312
1344

I--

1472

f--

V

Q

~~

16}

1376
1408
1440

10

j':(j

D-

'";:11 14 }

ID

V

Q

..:2.J

1504

17}
1536
1568
1600

f--

1632

-

1664

1696
1728

18}

p-

'j'";O

':1113}

10

v

Q

~1

1760
1792

>r--

1824
1856
1888

1920

-

1952
1984

19}2016

1
V

I

112}

I/O

--

1152
1184
1216

M

10

'";:1 (15)

v

Q

~1

16)'248

I--

1280
1312

1344
1376
1408
1440

f---'

p.. rr:o
10

f---'

1472
1504

1536
1568
1600

)..-...,

p~

1632
1664
1696
1728

'";:11 14 )

""\..>""

Q

~1

17)

r'j":Q
10

'"j

113)

I.:l.v

112)

Q

~1

18)1160
1792

>--

1824
1856
188

>-

1920

~
10

1952
1984

~~

19)2016

2-138

Q

~

1024

Fuse number - First Fuse number

Q

+ Increment

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALl.AS. TEXAS 75265

l..::),ill)

Q

TlBPAL 16L8·1 OM, TIBPAL 16R4·1 OM, TlBPAL 16R6·1 OM, TIBPAL 16R8·1 OM
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
absolute maximum ratings over operating free· air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 1 50°C
NOTE 1: These ratings applv except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER

UNIT

MIN

NOM

MAX

4.5

5

5.5

V

5.5

V

Vee

Supply voltage

VIH

High-level input voltage (see Note 2)

VIL

low-level input voltage (see Note 2)

0.8

V

10H

High-level output' current

-2

rnA

10L

Low-level output current

Iclock

Clock frequency

tw

Pulse duration. clock (see Note2!

2

12
0

tsu

Setup time, input or feedback before CLKi

th

Hold time, input or feedback after eLKt

TA

Operating free-air temperature

I High

8

I Low

8

62.5

rnA
MHz
ns

10

ns

0

ns

55

25

125

~

NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system and/or
tester noise. Testing these parameters should not be attempted without suitable equipment.

PARAMETER

TEST CONDITIONS
Vee

~

4.5 V,

II

VOH

Vee

~

4.5 V,

10H

~

VOL

Vee

~

4.5 V,

10L

~

10ZH t
10Zl t

'0, Q outputs
I/O ports
0, Q outputs
I/O ports

II
I/O ports
IIH

I All others

Vee ~ 5.5 V,

~

Vo

~

~

~

5.5 V,

Vo

Vee

~

5.5 V,

VI

~

5.5 V

Vee

~

5.5 V,

VI

~

2.7 V

Vee

~

5.5 V,

VI

Vee

~

5 V,

Vo -

Vee

~

5.5 V,

Outputs open,

V

3.2

100
-20
-250
1
100
25
-0.08 -0.25
-30

~ VIH
2 V

0 V,

BE

ei

1 MHz,

VI

eo

f

~

1 MHz,

Vo

eclk

f

~

1 MHz,

VeLK ~ 2 V

ITA ~ 25 'e and 125 'e

-70

-130

140

220

I TA ~ -55'e

~

2 V

I-

o

::l

V
0.5
20

0.5 V

~

~

UNIT

-1.5

0.3

0.4 V

f

~

MAX

-0.8

0.4 V

IlL t

VI

Typt

2.7 V

Vee

~

2.4

-2 rnA
12 rnA

10S§
lee

MIN

-18 rnA

a:

c..

electrical characteristics over recommended operating free-air temperature range
VIK

->w
W

'e

250

C

o

V

a:

~A

c..

~A

rnA
~A

rnA
rnA
rnA

5

pF

6

pF

6

pF

t All typical values are at Vee ~ 5 V, TA ~ 25'e.
t I/O leakage is the worst case of 10ZL and IlL or 10ZH and IIH, respectively.
§ Not more than one output should be shorted at a time and duration of the short·circuit should not exceed one second. Set Va at 0.5 V
to avoid test equipment ground degradation.

PRODUCT PREVIEW documents contain information

on products in the formative or design ~h8se of
development. Characteristic dati Bnll othar

:::=':::1ri~~ d:ira:;:~rT~::~rl:::~:'~

. products without notica.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75266

2-139

TIBPAl 16lB·1 OM, TlBPAl 16R4·1 OM, TIBPAl 16R6·1 OM, TIBPAl 16RB·1 OM
HIGH·PERFORMANCE IMPACT·rM PAL@ CIRCuiTS
switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted) (see Figure 5)
PARAMETER

FROM

fmax t

TO

MIN

Without feedback

62.5

With internal feedback (counter configuration)

62.5

With external feedback

55.5

tpd

I, I/O

0, I/O

tpd

ClKt

Q

tpd§

ClKt

Feedback input

ten

OE~

Q

tdis

OEt

Q

ten

I, I/O

0, I/O

~is

I, I/O

0, I/O

3
2

2
2
3
2

Typt

MAX

UNIT

MHz
6

10

ns

4

6

ns

5

ns

4

10

ns

4

10

ns

6

10

ns

6

10

ns

t All typical values are at VCC = 5 V, T A = 25°C.
:t:See section on f max .specifications.
§This parameter applies to TlBPAlI6R4' and TIBPAl 16R6' only (see Figure 2 for illustration) and is calculated from the measured f max
with internal feedback in the counter configuration.

"C

:D

o

o
n

c:
-I
"C

:D

m

S
m
~

PRODUCT PREVIEW do••menll .ontain information
on products in the formative or design phase of
development. Characteristic d8t8 anil othar

2-140 ~~:~:sri~~ ~~li::a=::I~r T:i::~:ur:~::
products without Rotica.

-II

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIBPAL 16L8·7C. TIBPAL 16R4·7C. TIBPAL 16R6·7C. TIBPAL 16R8·7C
.
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . .
.... ....
. . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '. . . . . .. oae to 75°e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 °e to 150 ae
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER
Vee

Supply voltage

VIH

High-level input voltage (see Note 2)

V)l

Low-level input voltage (see Note 2)

10H

High-level output current

MIN

NOM

MAX

UNIT

4.5

5

5.25

V

5.5

V

2

0.8
-3.2

V
mA

24

mA

100

MHz

10l

Low-level output current

Iclock

Clock frequency

tw

Pulse duration, clock (see Note 2)

tsu
th

Setup time, input or feedback before CLKi

7

ns

Hold time. input or leedback alter elK!

0

ns

TA

Operating free-air temperature

0

0

I High
I low

5

ns

5

25

75

°e

NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system and/or
tester noise. Testing these parameters should not be attempted without suitable equipment.

electrical characteristics over recommended operating free-air temperature range
PARAMETER

TEST CONDITIONS

MIN

MAX

UNIT

-0.8

-1.5

V

0.5

V

Vee

~

4.75 V,

II

VOH

Vee

~

4.75 V,

10H ~ -3.2 mA

VOL

Vee

~

4.75 V.

10l

~

10ZH t

Vee

~

5.25 V.

Vo

~

2.7 V

100

~A

10Zlt

Vo

~

0.4 V

-100

~A

mA

II

Vee -- 5.25 V,
5.25 V.
Vee

IIHt

Vee

III t

Vee

10S§

Vee
Vee

lee

~

-18 mA
2.4

3.2
0.3

24 mA

V

VI

~

5.5 V

0.2

~

5.25 V,

VI

~

2.7 V

25

pA

~

5.25 V,

VI

~

0.4 V

-0.08 -0.25

mA

~

5.25 V,

Vo

~

5.25 V,

Outputs open,

~

VI

~

Typt

VIK

~

-30

0.5 V

0 V

ei

I

~

1 MHz,

VI

eo

I

~

1 MHz,

Vo

eclk

I

~

1 MHz,

VelK ~ 2 V

~
~

2 V
2 V

-70

-130

mA

160

210

mA

5

pF

6
6

pF

pF

t All typical values are at Vee ~ 5 V. TA ~ 25°e.

:t: 110 leakage is the worst case of IOZl and ItL or IOZH and ItH, respectively.
§ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Set

Vo

at 0.5 V

to avoid test equipment ground degradation.

PRODUCTION DATA documanls contain information
current as of publication data. Products conform to

spacifications per the terms of TaXIs Instruments

:~~=~~i~a[;:'~~i ~=::i:f :,~O:::::£:is~ not

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-141

TIBPAL 16L8-7C, TIBPAL 16R4-7C, T1BPAL 16R6-7C, TIBPAL 16R8-7C
HIGH-PERFORMANCE IMPACT-XTM PAL® CIRCUITS

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted) (see Figure 6)
PARAMETER

FROM

fmax t

TO

MIN

Without feedback

100

With internal feedback (counter configuration)

100

With external feedback

74

II

1 or 2 outputs switching
8 outputs switching

MHz
7

6

7.5

2

4

6.5

ns

3

ns

4

7.5

ns

4

7.5

ns

3

6

ns

2

6

9
9

tpd

ClK!

Q

tj)d§

ClK!

Feedback input

ten

OEI

Q

2

tdis

OE!

Q

2

ten

1,1/0

0,1/0

tdis

1.1/0

0,1/0
Skew between registered outputs

UNIT

5.5

1,1/0

tskew'

MAX

3
3

tpd

0, I/O

TYpt

0.5

ns

ns
ns

tAli typical values are at VCC ~ 5 V, TA ~ 25°C.
t See section on f max specifications.
§This parameter applies to TIBPAl 16R4' and TIBPAl 16R6' only (see Figure 2 for illustration) and is calculated from the measured f max
with internal feedback in the counter configuration.
'This parameter is the measurement of the difference between the fastes1 and slowest tpd (elK-lo-0J observed when multiple registared
outputs are switching in the same direction.

PRODUCTION DATA dooumont. oontlin informotion
cumnt at publiclltion data. Products confDrm to
lpecillOllio.. par tho
of To... InstrumORts
2-142 :'~~:~~~.i::::e ~:\~~i:r :'Io:::::~~.~. not

I'

te,.,.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

TIBPAL 16L8·1 OM, TIBPAL 16R4·1 OM, TIBPAL 16R6·1 OM, TlBPAL 16R8·1 OM
TIBPAL 16L8·7C, TIBPAL 16R4·7C, TIBPAL 16R6·7C, TIBPAL16R8·7C
HIGH·PERFORMANCE IMPACT·X'" PAL® CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

preload procedure for registered outputs (see Note 3)
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. Each register is preloaded
individually by following the steps given below.
Step
Step
Step
Step

1.
2.
3.
4.

With VCC at 5 volts ano Pin 1 at VIL, raise Pin 11 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse Pin 1, clocking in preload data.
Remove output voltage, then lower Pin 11 to VIL. Preload can be verified by observing
the voltage level at the output pin.

r\----V.,

preload waveforms (see Note 3)

PIN 11

---J/

...
·-----VIL

I+-tsu~
~td~
!+- td ---.I
If- tw -+I
I
I

PIN 1

i

I

I

- - - - - : - - - - - : 1 - -....·

I

I

L.---....;.--....;.------

>-<. ___
I

I

I

I

I
I

I

I
I

REGISTERED I / O - - - -....

I

I I----r-r----I

V
'"

VIL

I
I
I

IN_P_U_T_ _-.J8'-O-U-T-P-U-T-- : : :

NOTE 3: td ~ tsu ~ tw ~ 100 ns to 1000 ns.
VIHH ~ 10.25 V to 10.75 V.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-143

TIBPAL 16L8·1 OM, TlBPAL 16R4·1 OM, TIBPAL 16R6·1 OM, TlBPAL 16R8·1 OM
TlBPAL 16L8·7C, TIBPAL 16R4·7C, TlBPAL 16R6·7C, TIBPAL 16R8·7C
HIGH·PERFORMANCE IMPACT·X™ PAL® CIRCUITS
f max SPECIFICATIONS
f max without feedback. see Figure 1
In this mode. data is presented at the input to the flip·flop and clocked through to the Q output with no
feedback. Under this condition. the clock period is limited by the sum of the data setup time and the data
hold time (tsu +th). However. the minimum f max is determined by the minimum clock period
(twhigh +twlow).
Thus. f max without feedback =

(tw high +tw low)

or __1__ .
(tsu +th)

CLK

LOGIC

ARRAY

FIGURE 1. f max WITHOUT FEEDBACK

f max with internal feedback. see Figure 2
This configuration is most popular in counters and on-chip state-machine designs. The flip-flop inputs are
defined by the device inputs and flip-flop outputs. Under this condition. the period is limited by the internal
delay from the flip-flop outputs through the internal feedback and logic array to the inputs of the next flip-flop.
Thus, f max with internal feedback

=

1
(tsu +tpd ClK-to~FB)

Where tpd ClK-to-FB is the deduced value of the delay from ClK to the input of the logic array.
CLK

LOGIC

Q

ARRAY

r-tsu--~~II4-"-tPd CLK-to-FB ~
FIGURE 2. f max WITH INTERNAL FEEDBACK

2-144

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 76265

TlBPAL 16LB·1 OM, TlBPAL 16R4·1 OM, TlBPAL 16R6·1 OM, TIBPAL 16RB·1 OM
TIBPAL 16LB· 7C, TIBPAL 16R4·7C, TIBPAL 16R6·7C, TIBPAL16RB·7C
HIGH·PERFORMANCE IMPACT·X'M PAL~ CIRCUITS
f max SPECIFICATIONS
f max with external feedback, see Figure 3
This configuration is a typical state-machine design with feedback signals sent off-chip. This external
feedback could go back to the device inputs or to a second device in a multi-chip state machine. The slowest
path defining the period is the sum of the clock-to-output time and the input and setup time for the external
signals (tsu +tpd CLK-to-Q).
Thus, f max with external feedback =

1
(tsu + tpd CLK-to-Q)
ClK

af--r-I. NEXT DEVICE

lOGIC

ARRAY

I4-r----tsu------t~M..-tpd ClK-to-a-+- tsu-1
FIGURE 3. f max WITH EXTERNAL FEEDBACK

.-

-

>--

-

->0
_

Cl

>--

1

-

-

""'

~

a

1/0

I

FIGURE 4. PROPAGATION DELAY FROM CLKi to I/O, THRU LOGIC ARRAY

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-145

TIBPAl 16l8·1 OM, TIBPAl 16R4·1 OM, TIBPAl 16R6·1 OM, TlBPAl 16R8·1 OM
TIBPAL16l8·7C, TlBPAl16R4·7C, TlBPAl16R6·7C, TIBPAl16R8·7C
HIGH·PERFORMANCE IMPACT·X™ PAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
5V

5V

S1

b

S1

b
39011

20011
fROM OUTPUT
UNDER TEST

_+_..._ ..._

CL
(See Note Al

TEST
POINT

fROM OUTPUT
UNDER TEST

_+_..._ ..._

CL
(See Note Al

39011

LOAD CIRCUIT fOR
C SUffiX DEVICES

TEST
POINT

75011

LOAD CIRCUIT fOR
M SUffiX DEVICES

[3.5VlI3Vl
~---[3.5VlI3VI
TIMING
I 5 V
HIGH·LEVEL
I 5 V
15 V
INPUT _ _ _ _JU _. _ _ _ _ _ [0.3 Vl (01
PULSE
I
.
I'
[0.3 Vl (01

~

I+--tw~

I4-th-+t
.~~
I

DATA~.-1-_-[3.5Vl(3VI
1.5 V

INPUT

1.5 V

[0.3 Vl (01

I

LOW·LEVEL
15 V I S V
PULSE"
- - - -

VOLTAGE WAVEfORMS
SETUP AND HOLD TIMES
,..----.......
INPUT

.!II1.5

..J:
tpd

IN-PHASE
OUTPUT

OUT-Of-PHASE
OUTPUT
ISee Note 01

-

-

-

- - [3.5 Vl (3 VI

\1.5 V

I ' - - - - - [0.3

I..

I

:+--VOH

I

.1

I
I

1".1

I"~

f1.5V

,\1.5 V
.

VOLTAGE WAVEfORMS
PROPAGATION DELAY TIMES

tpd

~

I

1

VOL

tpd

Vl (01

OUTPUT ~[3.5Vl(3VI
CONTROL
1.5V
1.5V
(low·level
I
_1 _ _ _ _ _ _ [0.3 Vl (01
enabling I
I
I
ten
I+-+t 14-- tdis

--+I

- - VOL

i

I :
I
=3.3 V
WAVEfORM1~1.5V
I
.c--VOL+0.5V

I

S1 CLOSED

(See Note BI

FVOH
.

[0.3 Vl (01

VOLTAGE WAVEfORMS
PULSE DURATIONS

1".1
:

tpd

V

I

~I [3.5Vl(3VI

WAVEfORM 2
S10PEN

ten-+!

I

J4-

-+I

__ ..1_

- -"X" ~ tdis T.

' _____ i-=

~

(See Note BI

VOL
VOH

I

1.5 V

LVOH-0.5 V

=0 V

VOLTAGE WAVEfORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS

NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten· 5 pF for ldis·
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR '" 10 MHz. tr and tf = 2 ns. duty cycle = 50%. For M suffix. use
the voltage levels indicated in parentheses ( ). For C suffix, use the voltage levels indicated in brackets [ J.
D. When measuring propagation delay times of 3-state outputs, switch 51 is closed.
E. Equivalent loads may be used for t~sting.

FIGURE 5

2-146

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIBPAL 16L8·1 O'M, TIBPAL 16R4·1 OM, TIBPAL 16R6·1 OM, TlBPAL 16R8·1 OM
TIBPAL16L8·7C, TlBPAL16R4·7C, TlBPAL16R6·7C, TIBPAL16R8·7C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE

PROPAGATION DELAY TIME
vs
SUPPLY VOLTAGE
8

200r-~--~--~--+-~r--+--_r--;


15.

160

I

4

r--

.~

.

140

3

!:}

.;:

2

120r-~--~--~--+---r--+--_r--;

100L-~--~--~--~

-75 -50 -25

0

25

o

__~~__~~
50 75 100 125

I

"E

j::

..
;;

5.25
4.75
5
VCC-Supply Voltage-V

FIGURE 6

FIGURE 7

4.5

c
0

7

14

VCC = 5 V
TA = 25°C
R1 = 200 f!

12

R2 = 390 f! ----'----t;,.,.c.'---r-=--i

I

~\, \1

6

4 -

-

Co

2

Ol

0.

o

.,

\10 )

01.00'~

W~...---r-

5 -tPlH (I, 1/0 to 0, 1/0)

3

e

PROPAGAT)ON DELAY TIME
vs
LOAD CAPACITANCE
16r---~--~----~--~--~--~

~

.

5.5

8

>

c

to 0, 1/0)
to 0, 1/0)

TA-Free-Air Temperature- °C

PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE

.,c

(I, 1/0
(I, 1/0

tPlH (ClK to Q)
TA = 25°C
CL = 50 pF
R1 = 200 f!
R2 = 390 f!
1 OUTPUT SWITCHING

Ol

g.

U

tpHl
tPlH

~PHl (ClK to Q)
)
)

c

Co
::0

CI)

~

6

>

$

U

5

.

!

7

.,
'I
"
~

tjHl TlK to Q)

-I---"

,--:c~O)
tl'lH \

--

II

'I
"E

j::

.
~

10r---~---f--~T7~~~~~~

>

8r---~~~~~~~_r--~----;
tPlH (ClK to Q)

c

.~

6 r--7''-i>o'~~~--='FtPHL (eLK to

I

Ol

:g,

VCC = 5 V
Cl = 50 pF
R1 = 200 f!
R2 - 390 f!
1 OUTPUT SWITCHING

e

tPHl

(I, 1/0

Q)

I

to 0, 110)

4r-~G----*--~~--~---;----;

0.

2r----r--~----+---_r--__i----;

OL---~--~--~----~--~--~

-75 -50 -25
0
25
50 75 100 125
TA-Free-Air Temperature- °C

o

100

200
300
400
500
CL -load Capacitance-pF

600

FIGURE 9

FIGURE 8

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-147

TlBPAl 16l8·1 OM, TlBPAl 16R4·1 OM, TlBPAl 16R6·1 OM, TIBPAl 16R8·1 OM
TIBPAl16l8·7C, TIBPAl16R4·7C, TIBPAl16R6·7C, TlBPAl16R8·7C
HIGH·PERFORMANCE IMPACT·X'" PAL® CIRCUITS
TYPICAL CHARACTERISTICS
POWER DISSIPATION
vs
FREQUENCY
8-BIT COUNTER MODE
1000
V
~

E

900

I
c:

I

TA =

.."0co
Q

OJ C

TA

~

f..--' ~ V ~/

V

800

lD

'"
:E
"'i
III

~ .....

TA = 25°C

Q.

c:
I
c:

./

,/

'i)j
III

.

~J

II

1CC

0.6

CL - 50 pF
8-Bit Counter

~d

o"c::.:~0

04
.
"U
~ - 0.3

......

= 80°C

.

0

...C

VCC - 5 V
TA = 25°C
R1 = 200 {J
R2 = 390 {J

0.7

a- 0.5

3:

...I

0.8

!!

V'

....V

SKEW BETWEEN OUTPUTSt
vs
NUMBER OF OUTPUTS SWITCHING

.Q

..
3:

700

....

0.2

I

.

0.1

.!f

0

III

3:

....

600

1

4
10
F-Frequency-MHz

2

100

40

3

4
6
7
5
Number of Outputs Switching

FIGURE 10

FIGURE 11
PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING
8

.

7

.I.

c:
I

6 r-tpHL (I. I/O to O. I/O)

j::

5 -tpLH

.E

+ • ++

(I. I/O to O. I/O)

>
co

a;
C

tpHl \CLK to 0)

4

c:
0

.~

'"

3

co
Q.

...e

VCC = 5 V
TA = 25°C
CL = 50 pF
R1 = 200 {J
R2=390{J

2

o

o

ttH1K~

234
5
6
7
Number of Outputs Switching

FIGURE 12
t Output switching in the same direction (tpLH compared to tpLH/tpHL to tpHL)

2-148

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

8

8

TlBPAL 16L8·12M, TlBPAL 16R4·12M, TlBPAL 16R6·12M, TlBPAL 16R8·12M
TlBPAL 16L8·1 DC, TlBPAL 16R4·1 DC, TlBPAL 16R6·1 DC, TIBPAL 16R8·1 DC
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
D3023, MAY 1987 - REVISED NOVEMBER 19B9

•

•

TIBPAL16LB'
M SUFFIX ... J PACKAGE
C SUFFIX, .. J OR N PACKAGE

High·Performance Operation:
f max (w/o feedback)
TIBPAL16R'-10C Series ... 62.5 MHz
TIBPAL 16R'-12M Series ... 56 MHz
f max (with feedback)
TIBPAL 16R'-10C Series ... 55.5 MHz
TIBPAL 16R'-12M Series ... 48 MHz
Propagation Delay
TIBPAL 16L-10C ... 10 ns Max
TIBPAL 16L·12M . . . 12 ns Max

ITOP VIEW)

Vee
0
liD
liD
liD
liD
liD

Functionally Equivalent, but Faster than
Existing 20·Pin PALs

liD

I

0

GND

•

Preload Capability on Output Registers
Simplifies Testing

•

Power-Up Clear on Registered Devices (All
Register Outputs are Set Low, but Voltage
Levels at the Output Pins Go High)

•

Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs

TIBPAL 16LB'
M SUFFIX, , . FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEWI
U

u

_>0
3

2

1 20 19

•

Security Fuse Prevents Duplication

18

•

Dependable Texas Instruments Quality and
Reliability

17

INPUTS

3·STATE

REGISTERED

I/O

o OUTPUTS

Q OUTPUTS

PORTS

PAL16L8

10

2

0

6

PAL 16R4

8

0

4 (3·state)

4

PAL16R6

8

0

6 (3·state)

2

PAL16RB

8

0

8 (3·state)

0

OEVICE

6

16

liD

7

15

liD

8

14

liD

9 10 11 12 13

Pin assignments in operating mode

description
These programmable array logic devices feature high speed and functional equivalency when compared
with currently available devices. These IMPACT'" circuits combine the latest Advanced Low-Power
Schottky t technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes
for conventional TTL logic. Their easy programmability allows for quick design of custom-functions and
typically results in a more compact circuit board. In addition, chip carriers are available for further reduction
in board space.
All of the register outputs are set to a low level during power-up. Extra circuitry has been provided to allow
loading of each register asynchronously to either a high or low state. This feature simplifies testing because
the registers can be set to an initial state prior to executing the test sequence.
The TIBPAL 16' M series is characterized for operation over the full military temperature range of - 55 DC
to 125 DC. The TIBPAL16' C series is characterized for operation from 0 DC to 75 DC,

IMPACT is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories, Inc.
tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975.
Copyright @ 1989, Texas Instruments Incorporated

PRODUCTION DATA documents contain information

currant as of publication date. Products conform to
specifications per the terms of Texas Instruments

::':=:~~i~ar::1~7e ~!=:~ti:r :1~O;:~:::::t:~~ not

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-149

TIBPAL 16R4·12M, TlBPAL 16R6·12M, TlBPAL 16R8·12M
TIBPAL16R4·1 DC, TIBPAL 16R6·1DC, TlBPAL 16R8·1 DC
HIGH~PERFORMANCE IMPACTTMPAL® CIRCUITS
TIBPAL lSR4'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE
(TOP VIEW)

elK

TIBPAllSR4'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
>£

Vee

...J

110

GND ""'l._ _...1"'"

u

uo

_U>;;:,

liD
3

2

1 2019

Q

4

18

110

Q

5

17

Q

Q

6

16

Q

Q

7

15

Q

110
110

8

14

Q

9 1011 1213

DE

-

~I~ ~ ~
(,:J

TIBPAL lSRS'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE

nBPAllSRS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE

(TOP VIEW I

(TOP VIEW)

elK

Vee

>£

U

...J uo
_ _ U>;;:,

110
Q

3

2

1 20 19

Q

GND

18

Q

5

17

Q

6

16

Q

7

15

Q

8

14

110
DE

9 10 11 12 13

TIBPAL lSRS'
M SUFFIX ... J PACKAGE
C SUFFIX ... J OR N PACKAGE
(TOP VIEW)

elK

TISPAllSRS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
>£

Vee
Q

3

2

1 20 19

Q

4

18

Q

5

17

Q

6

16

Q

7

15

Q

8

14

Q

9 1011 12 13

GND ' - _ - - ' r DE

- 20
ClIW a a
(,:J

Pin assignments in operating mode

2·150

U

...J U
__ u>o

Q

I

Q

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TlBPAL 16LB·12M, TIBPAL 16LB·1 OC, TIBPAL 16R4·12M, TIBPAL 16R4·1 OM
HIGH·PERFORMANCE IMPACpMPAL® CIRCUITS

functional block diagrams (positive logic)
'PAl16lS
&

EN "01

b-----o

32 X 64

0..----0
16x!>
10

I/O
16

P--.+........-I/O

........-I/O

o-~

b-e+........-I/O
o..e+.......-I/O
b-e+.......-I/O
6

'PAl16R4

J EN2

oE

1: C1

ClK

r---s;32X 64

J:

;>1

8

t-+-

1-°2'\71,.,.

r--,

10

f-+
~

8
4

r+-

~ "v

P-f~

"v

Q

t----"I

~

Q

1---'1

f-fI--

~

Q

t----"I
EN

;>1

.....

'\7

~
f--,L

"\

~

~

f-+-4
4

rv denotes

I/O
I/O
I/O

f--+-

f

o

-

"'

I/O

fused inputs

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2·151

TIBPAl16R6·12M, TlBPAl16R6·1 DC, TIBPAl16R8·12M, TIBPAl16R8,·1 DC
HIGH·PERFORMANCE IMPACT ™PAl® CIRCUITS
functional block diagrams (positive logic)
'PAL 16R6

DE

_"EN2

ClK

~8
32 X 64

'"

;;'1

f-+-

Cl
1-0 2

10

~

-:-~~ 'V

-+~

-

~ 'V

Q

---.,
Q

~

----....
----....

R-

---.,

Q

~
J;....

-

Q

Q

r---.
r---.

I'"
EN ;;'1

-4---

+

\7

.
.

Q

110
110

2

6

'PAL 16RS

DE-------------------------aErU---,

CLK--~------------------------~

r;;;.;;-1--,.....M~~--

Q

t---T---1:r--:t-Q

r--,--b--+-r--I--"'b--+-r--I--"'b--+--

Q

Q

Q

r---r----1tr.-.:~Q

rv denotes

2-152

fused inputs

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TIBPAL 16LB·12M, TlBPAL 16LB·1 OC
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS

INCREMENT

FIRST

~~~BERS
0
0-

32 --

4

8

-.

l-

.. -

12

16

20

24

28

31
.

60
96'28 - '60
'92

-

f---

>-

(191 0

,........f-'

220

2320--56

~
288

3523840'6
448
060

0t>t=
512-

677326

(1811/0

f-

1

.-

544
576·

608640 .-

700

(41

(171 1/0

768
BOO832
860
896
928
960
992

I---

(16 1 1/0

1--1-7

~

>--

1024

1058
1088
1120

-

1152

-

11841216
1248

~

~">-_JI»..----,(c:.1=51

1/0

-

1
'376
j
,-'536'~ll·gj·I--lllllml~~1~_~
1280

13'2

,-

'344

11411/0

i">-

~
1472
'440

==::d<}--"(7~It'5~00~=fEt1=~Et~=EEtl==EEt~~Ett=~rft=~=EE=~=t~~~~

'-

1568

~

~

'632--

16641696-

-

v

-t-

1

(1311/0

~~~g~-~-~lt~~!J~~-trt~~··11~+.t~r-!11l~~t1~~t1~~c["t"JrJ:~--·""!"i~~t::-~~JI1 ___r"'

.!!4>t=

=::::j(J--

1192

'856

1984

(91~--1=~+=~~+=~~+=4=~+=~~~-J.--+_

I

I

I"

(121

-

. 1.[ -+

'~:~g
952

--v"b--1

.--.J

.-

,~o

>--V

7~+-t-(.++----+...

0

)-t=-=-=J--

576

p>--

608

640
672
704
(4) 736

7:0

~17) a

10

~~

768
800
832
86.
896
928

>--

p-

I-ii
10

~

(16)

a

I.JV

(15)

a

b

(14)

a

·V

>--

960

~~

(5) 992

>--

1024
1056
1088
1120
1152
1184
1216

>--

b-

>--

b-

----'

1408
1440

~

1412

.......,...
1-0
10

V

~1

----1

(7)'504

10

~~

(6)1~
1280
1312
1344·
1376

i:O

~

1536
1568
1600
16321664
1696
1728

~

..

.-/

J

(13)

~ 1

liD

(8)1760
1792

1

1824

1856
1888
1920
1952
1984

9

~

2016

~

2-154

I

~)

I

Fuse number .. First Fuse number

V

(12)

+

Increment

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265

110

TIBPAL 16R6·12M, TIBPAL 16R6·1 DC
HIGH·PERFORMANCE IMPACpMPAL® CIRCUITS
cLKl1),{>----------------______________________________________~
FIRST
INCREMENT
~~~BERS~O------4-----B-----1-2----~1-6-----20-----2-4-----2-8--3--1

~L t1

96 . -

L i··. ~--

!-

~.::=

-

j

:

=}-t=--p.- I---lr- .J.!.!I1
J

·t-mm-ilmEmBf§=W

160
128*'
192--

f---

f--

.--

288 -.

~~~

,

. --t

'r--

_-{j----1

--~--=-t>

---

.--

-2 (18)

\00

+
-- -I~k~
'J
:~= ~~~fi~~~~11~~~};~~~-~-ft~~~~~~~~-"~~~~~C~1~~
~~ .
- = l--tItt=lttt1±1tlt1 r-.---->- "i':'O b
-

!~:
512

. _

Q

_

:~~

v

10

672
704

--

'-~

+-

768

110

~~\-- __

----t=)....--l

256

..

_.

(17)

Q

>-}--

:~~-t>
I-ii
:::
}-10 -

~
(16)
Q

928

::~

-~

c-=

+- _ _

i~::~g~~ag~··-BiEg~~fa-~--En+-

1120=
1152

--:::tt~=t+tt=1+~t

~hl

_~ -.-,--J<.i-k"l-+-_.-..J

-

+.

~-1~ 'j':Q
10

b

1-I-.,J.15) Q

f-"

mr~-j·r-tJrrr~--+~-'ii~+--tl--11~~L;C1h

I~-=t

__

-H-++---+

1280
1312
1344-·

I v

-

T

I--+~..

~!~:-

-

>---<

-

>---c:>

.-1=0
10

~

(14)

--J>o!=

Q

1440

(7)~:~!~HE]Ia3~I--=ifif~3iff-j-ft=tiEfEEtFgf----<~~_tt~
~-=tttl+~·~~~l1jjt~t!t!=3~~=itJ1=~f*~~~~f=3~-~-"
- b
t·· .1568=
16001632--

_.
.--

-

-··,-T7+ , ..

t·-

~:::---I-+-+_i-+---__I__+_I_+__ - -t-:r--~t-

g!~-

+- - H

(8)'~2

~:~:

I

H--

+-

,

H-- t
T"

~b-

f-

-t-

H-T-~

.--

1-0
10

t
>
C
1
t~H't -~~
-+-f-.L.
I

--f-+++-

1888
19201952
1984

-.

+-

t--

>--

-+

+--~

---f++-+--l--i-+-t---r-T'" +

,

-+-- i--+-+'---t--

_

_

-~.:.:J...

(9)~',fl---:::t::!!.-l----+1IIT-t7-:;-:
j
-+ t-t-t-+~+-~
~ t t--t 1 r--J +t-r-tn++ i r l t i i -r tt--t-

)---

Q

~

r-i-.+-+-r-·.~i--+~·~+~~~~~~~I~~~~~~~t-11
:. W
r+

....

t , 4--t-··

(13)

II-

--'~

1/0

~=-J:::J-------- I (l1)OE
•.
~
A

Fuse number - First Fuse number + Increment

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012· DALLAS, TEXAS 75265

2-155

TlBPAL 16R8-12M, TIBPAL16R8·10C
HIGH-PERFORMANCE IMPACTTMPAl® CIRCUITS

I

Fuse number -

2-156

First fuse number

INCREMENT

r-

l-Itt-

8

12
f--t

16

20
f---

.

t-

+ Increment

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TIBPAL 16L8·12M, TlBPAL 16R4·12M, TIBPAL 16R6·12M, TIBPAL 16R8·12M
HIGH·PERFORMANCE IMPACT'MPAl® CIRCUITS

absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER

MIN

NOM

MAX

4.5

5

5.5

UNIT

V

5.5

V

Vee

Supply voltage

VIH

High-level input voltage Isee Note 21

VIL

Low-level input voltage (see Note 2)

0.8

V

10H

High-level output current

-2

rnA

2

10L

LOW-level output current

fclock

Clock frequency

tw

Pulse duration, clock (see Note 2)

tsu
th

Setup time, input or feedback before CLKt
Hold time, input or feedback after CLKt

TA

Operating free-air temperature

0

I High
I Low

12

rnA

56

MHz

9
9

ns

11

ns
ns

0
-55

25

125

°e

NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system andlor
tester noise. Testing these parameters should not be attempted without suitable equipment.

electrical characteristics over recommended operating free-air temperature range
PARAMETER

TEST CONDITIONS

VIK

Vee

VOH

Vee

VOL

Vee

10ZH~

Vee

10ZL ~

Vee

II

Vee

= 4.5
= 4.5
= 4.5
= 5.5
= 5.5
= 5.5

=

II

V,

= -2 rnA
= 12 rnA
Vo = 2.4 V
Vo = 0.4 V
VI = 5.5 V

V,
V,
V,

IIH~

Vee - 5.5 V,
Vee

10S§

Vee

=
=

lee

Vee

Cin
C out

f

f

eilo

f

=
=
=

eeLK

f

= 1 MHz,

2.4

10H
10L

V,

IlL ~

MIN

-18 rnA

V,

VI

= 2.4 V

5.5 V,

VI

=

5 V,

Vo

= 5.5 V,

VI

= 0.5 V

1 MHz,
1 MHz,

Vila = 2 V

1 MHz,

VeLK

MAX

UNIT

-0.8

-1.5

V

3.2
0.3

0.4 V

= 0,
VI = 2 V
Vo = 2 V

Typt

-30
Outputs open

= 2V

V
0.5

V

100

~A

-100

~A

0.2

rnA

25

~A

-0.08 -0.25

rnA

-70

-250

rnA

140

220

rnA

5

pF

6

pF

7.5

pF

6

pF

t All typical values are at Vee = 5 V, TA = 25°e.
~ 110 leakage is the worst case of 10ZL and IlL or 10ZH and IIH, respectively.
§ Not more than one output should be shorted at a time and duration of the short~circuit should not exceed one second. Set

Vo at 0.5 V

to avoid test equipment ground degradation.

TEXAS ."

INSTRUMENTS
~"(J;)T

mFICE BOX 655012 • DALLAS, TEXAS 75265

2-157

TlBPAL 16LB-12M, TIBPAL 16R4-12M, TIBPAL 16R6-12M, TIBPAL 16RB-12M
HIGH-PERFORMANCE IMPACTTMPAL® CIRCUITS

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER

fmax~

I

MIN

TVPt

With Feedback

48

80

Without Feedback

56

85

3

7

12

ns

2

5

10

ns

1
1
3
2

4
4

10
10
14
12

ns

FROM

TEST CONDITIONS

TO

tpd

1,1/0

0,1/0

tpd

ClK!

Q

ten

OEI
OE!
1,1/0
I, I/O

Q

tdis
ten
tdis

Rl

R2

= 390 II,
= 750 Il,

See Figure 1

Q

0,1/0
0,1/0

t All typical values are at VCC = 5 V, TA = 25°C,
t f max (with feedback)

2-158

=

tsu

1

+ tpd (ClK to

Q)

, f max (without feedback)

=

.

tw high

1

+ tw low

TEXAS ~

INSTRUMENTS
POST OFfICE BOX 655012. DALLAS, TEXAS 75265

.

8
8

MAX

UNIT

MHz

ns
ns
ns

TIBPAL 16L8-1 DC, TIBPAL 16R4-1 DC, TlBPAL 16R6-1 DC, TIBPAL 16R8-1 DC
HIGH-PERFORMANCE IMPACT ™ PAL® CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) ................................................... 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range ...................................... ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER
Vcc

Supply voltage

VIH
V)L

High-level input voltage (see Note 2)

10H

High-level output current

10L

Low-level output current

Iclock

Clock Irequency

tw

Pulse duration, clock (see Note 2)

tsu

Setup time, input or feedback before CLKf

th

Hold time, input or leedback after CLKi

TA

Operating free-air temperature

MIN

NOM

MAX

UNIT

4.75
2

5

5.25
5.5
0.8
-3.2
24
62.5

V

Low-level input voltage (see Note 2)

0
8
8
10
0
0

I High
I Low

V
V
mA
mA
MHz
ns
ns
ns

25

75

°c

NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include a/l overshoots due to system and/or
tester noise. Testing these parameters should not be attempted without suitable equipment.

electrical characteristics over recommended operating free-air temperature range
PARAMETER

TEST CONDITIONS

MIN

TVpt

MAX

-1.5

2.4

-0.8
3.2
0.3

UNIT

VIK

Vee = 4.75 V,

11= -18 mA

VOH

Vee - 4.75 V,

10H -

VOL

Vee = 4.75 V,

10L = 24 mA

10ZHt

Vee = 5.25 V,

Va = 2.4 V

10ZL t

VCC = 5.25 V,

Va = 0.4 V

II

Vee = 5.25 V,

VI = 5.5 V

IIHt

Vee = 5.25 V,

VI = 2.4 V

25

~A

IlL t

Vee = 5.25 V,

VI = 0.4 V

-0.08 -0.25

mA

10S§

Vec = 5 V,

Vo = 0

Ice

Vec = 5.25 V,
1 - 1 MHz,

VI = 0,

1 = 1 MHz,
1 = 1 MHz,
1 = 1 MHz,

Va = 2 V

Cin

Caut
Cilo
CCLK

-3.2 mA

-30
Outputs open

VI = 2 V
Vi/o = 2 V
VCLK = 2 V

-70
140
5
6
7.5
6

V
V

0.5

V

100
-100
0.2

~A

-130
180

~A

mA

mA
mA
pF
pF
pF
pF

t All typical values are at VCC = 5 V, TA = 25 °e.
t 1/0 leakage is the worst case 01 10ZL and IlL or 10ZH and IIH, respectively.
§ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-159

TIBPAL 16L8·1 OC, TIBPAL 16R4·1 ~C, TIBPAL 16R6·1 OC, TIBPAL 16R8·1 OC
HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS
switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER

FROM

TO

TEST CONDITIONS

With Feedback
fmax*

Without Feedback

tpd

1,1/0

0,1/0

tpd

CLKt

ten

OE<
OEt
1,1/0
1,1/0

a
a
a

tdis
ten
tdis

t All typical values are at VCC
* f max (with feedback)

= tsu

Rl
R2

= 390 n,
= 750 n,

See Figure 1

0,1/0
0,1/0

MIN
55.5
62.5
3

TYpt

MAX

80
85
7

10

ns

2

5

8

no

1
1

4
4
8
8

10
10
10
10

3
3

UNIT

MHz

no
no
ns
ns

= 5 V, T A = 25 DC.
1

C K ) ' f max (without feedback)
+tpd( L toO

=

1

h' h i '
tw.g +tw ow

programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information'on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

2-160

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TlBPAl16lB·12M, TIBPAl16R4·12M, TIBPAl16R6·12M, TIBPAl16RB·12M
TIBPAl 16lB·1 DC, TlBPAl 16R4·1 DC, TIBPAl 16R6·1 DC, TlBPAl 16RB·1 DC
HIGH·PERFORMANCE IMPACT'MPAL® CIRCUITS
preload procedure for registered outputs (see Note 3)
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state·machine sequence. Each register is preloaded
individually by following the steps given below.
Step
Step
Step
Step

1.
2.
3.
4.

With Vee at 5 volts and Pin 1 at VIL, raise Pin 11 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse Pin 1, clocking in preload data.
Remove output voltage, then lower Pin 11 to VIL. Preload can be verified by observing
the voltage level at the output pin.

preload waveforms (see Note 3)

PIN 11

i\----"'"

----II

!t-tsu~
jf- t
j+- td ........t
14- tw -+I

I

I

I

PIN 1

I

----~--_:_----I
I

I

...
·----VIL

d---1

I

I

I

I

LI_-_-_-.....;..:_-_:_-_-_-_-_-_-_
I
I

I

I

I

I

I
I

I

I
I

I

VIH
VIL

REGISTERED I / O - - - - - - X
..._ _ _I_N_PU_T_ _....J8'-O-U-TP-U-T-- : : :

NOTE 3: td = tsu = tw = 100 ns to 1000 ns.
VIHH = 10.25 V to 10.75 V.

TEXAS

-1!1

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2·161

TlBPAL 16L8·12M. TIBPAL 16R4·12M. TIBPAL 16R6·12M. TIBPAL 16R8·12M
TIBPAL 16L8·1 DC. TlBPAL 16R4·1 DC. TIBPAL 16R6·1 DC. TlBPAL 16R8·1 DC
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION

CL
(See Note A)

R2

LOAD CIRCUIT FOR
3-STATE OUTPUTS
[3.5 V] (3 V)
TIMING
INPUT

'/1.5V

4·

[0.3 V] {OJ

HIGH-LEVEL
PULSE

- ------"'I~
,.~
,.~ r.:.:.:

~-:-::-

[3.5 V] (3 V)

~

[0.3 V] {OJ

INPUT

I

-..Ii

tpd

1.5V

- - - \.. 1.5V

,

IN-PHASE
,
OUTPUT,

1/

T

1.5V'
,

I~~,

tpd~

OUT-OF-PHASE
OUTPUT
{See Note OJ

\L' \ 1.5V

----

-

[3.5 V] (3V)
OUTPUT
CONTROL
(low-level

~
1.5 V

[3.5 V] (3 V)
[0.3 V] (OJ

ten

H
VOL

~,tpd

Tv::-:

V OH

1.5V
--VOL

II

~-

--.I!+-

,

t dl

,"
I "\
I

-+!

I

.

I+-

.-

-

-

-

.-+!UI+-

WAVEFORM-l--+'''''V:+ 1.5V - ,
Sl CLOSED
I
(See Note B)
tdl.-.i
ten
WAVEFORM 2
S10PEN
(See Note B)

[3'5V]{3v)

1.5 V

,

enabling)

~V

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

[0.3 V] {OJ

VOLTAGE WAVEFORMS
PULSE DURATIONS

1\
[0.3 V] {OJ
i4--+I- tpd
, J __ Va

-l+--+I

[3.5 V] (3 V)

I

LOW-LEVEL~I
I
PULSE
1.5 V 1.5 V

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

L

y

It-- Iw --.I

tsu~th

DATA~1.5V

INPUT

y

v-:t..-I+-

Y..
A L

, -*

----

=3.3V

VOL
VOL +0.5 V

-

~-

1.5 V

[0.3 V] {OJ

OH

L.- VVOH -0.5 V
-OV

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance and is 50 pF for t"d and t.n , 5 pF for t dlS '
B. Waveform 1 is for an output with internal conditions such thatthe output is low except when disabled by the output control. Waveform 2
is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: For M suffix. use the voltage levels indicated in parentheses ( ), PRR ~ 10 MHz,
t, and tf S 2 ns, duty cycle = 50%. For C suffix, use the voltage levels indicated in brackets [], PRR s 1 MHz, t f = tf = 2 ns, duty
cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.
E. Equivalent loads may be fused for testing.

FIGURE 1

2-162

TEXAS ",
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TIBPAL 16R4-1 DC, TIBPAL 16R6-1 DC, TIBPAL 16R8-1 DC
HIGH-PERFORMANCE IMPACTTMPAL® CIRCUITS
metastable characteristics for TIBPAL16R4-1 OC, TIBPAL16R6-10C, and TIBPAL16R8-1 OC
At some point in every system designer's career, he or she is faced with the problem of synchronizing
two digital signals operating at two different frequencies. This problem is typically overcome by
synchronizing one of the signals to the local clock through use of a flip-flop. However, this solution presents
an awkward dilemna since the setup and hold time specifications associated with the flip-flop are sure
to be violated. The metastable characteristics of the flip-flop can influence overall system reliability.
Whenever the setup and hold times of a flip-flop are violated, its output response becomes uncertain and
is said to be in the metastable state if the output hangs up in the region between V,l and V,H. This metastable
condition lasts until the flip-flop falls into one of its two stable states, which takes longer than the specified
maximum propagation delay time (ClK to Q maxi.
From a system engineering standpoint, a designer cannot use the specified data sheet maximum for
propagation delay time when using the flip-flop as a data synchronizer - how long to wait after the specified
data sheet maximum must be known before using the data in order to guarantee reliable system operation.
The circuit shown in Figure 2 can be used to evaluate MTBF (Mean Time Between Failure) and .a.t for a
selected flip-flop. Whenever the Q output of the OUT is between 0.8 V and 2 V, the comparators are in
opposite states. When the Q output of the OUT is higher than 2 V or lower than 0.8 V, the comparators
are at the same logic level. The outputs of the two comparators are sampled a selected time (Lit) after
SClK. The exclusive OR gate detects the occurrence of a failure and increments the failure counter.
NOISE
GENERATOR

... -

:

DATA
IN

OUT
----,

10

VIH

MTBF
COUNTER

COMPARATOR

I

I - h.....-f
I
I
I
I
I

SClK------H~C1

+

Vil
COMPARATOR

:
I

I _____ JI
L
SClK + A t - - - - - - - - - - - - - - - - - - - <....- - - - - - - t

FIGURE 2. METASTABLE EVALUATION TEST CIRCUIT
In order to maximize the possibility of forcing the OUT into a metastable state, the input data signal is
applied so that it always violates the setup and hold time. This condition is illustrated in the timing diagram
in Figure 3. Any other relationship of SClK to data will provide less chance for the device to enter into
the metastable state.

-

DATA

SClK

-

•
I

SClK

+

I
I

-+'__....~--------L----J'---'.~:----

At _ _ _ _

I

I

I
I
~~~

~~~
MTBF _

TIME (SEC)
# FAILURES

tree -



(1,1/0 to 0,1/0)

'"

6~~--+-~-+-~r--+-~--4

Qj

6

0

c
o

c
0

~
[

.,

c

5

-;

i 4........::::t:==:::c:::::::p....-rr""4--j-----j

5

''""
Q.

E
Q.

£
4

4

3~~_~_~_~_~~_-L~

3

- -

------

4.5

-75 -50 -25
0
25
50
75 100 125
T A -Free-Air Temperature- °C

tPHL II,II? to 0,1102-

~

tPlH 11,110 to 0,110)

I

tPHL (CLK to Q ) _

J

tPLH (CLK to Q ) -

4.75

5

5.25

5.5

VCC-Supply Voltage-V

FIGURE 5

FIGURE 6
PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING

11

VCC _ 5 V

10

R1 - 200 {) --+--+---+--+---+----1
R2 - 390 [J

~

9

~

8 I- T A = 25 °C

~

Cl - 50 pF
See Figure 1

g

i

£

-~ \,,\"\\.

\\,\\0 \0

'

0 \10\ f---

__ --~\\,~

i;'

~

~\\O\ ~

~1

7
6

__

51-""

--~
I

4

1

I

lC~K

to Q) _

tpLH ICLK to Q) - : - -

3L-~_~

1

2

_

_L_~_~~_-L~

3
4
567
8
Number of Outputs Switching

FIGURE 7

'Ii1

TEXAS
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265

2-165

TIBPAl 16l8·1 DC, TIBPAl 16R4·1 DC, TIBPAl 16R6·1 DC, TlBPAl 16R8·1 DC
HIGH·PERFORMANCE IMPACT™PAL® CIRCUITS
TYPICAL CHARACTERISTICS
POWER DISSIPATION
PROPAGATION DELAY TIME

vs

vs

FREQUENCY
a-BIT COUNTER MODE

LOAD CAPACITANCE

b

900

16

VCC - 5 V, TA - 25°C
R1 - 2000, 1 Output Switching--:!.,..--I

f

14

R2 - 3900
See Figure 1

E
j::

12

In

..

I0'l-~7"'---b~-t-----1
0'\

....0

>

.!!!

f---+-- ~~~0~~-7~
~
....~+."

'~

'"

~

'in

8

.!!
~

1----,H~-7"I--____".f<'

"

~
~

S!

D.

6

f---""---¥-~--+---+---+------1

I

700 -TA - 25°C

I

I

c

D.

__
100
200
300
400
500
CL -Load Capacitance-pF

2L-_~_-L_~

o

TAI~
600

L-_~_~

----rr

TA - OOC

C

IV

C.

~I

~ 800

7'

~ 1 0 I----+-----:A~_,;.TI:

VCC - 5 V

1

600·

I I

SUPPLY CURRENT

vs
FREE-AIR TEMPERATURE
UNPROGRAMMED DEVICE
1701---4---+--+--+--1---+--+---1

~ 1601---+--t-~~f-+--1---+--+------1
I

~1501--~~~-~~~-1---+--+---1
§
u140r-~-~~-+-~~~~~---+---1
~
c.
c.

~1301--~---+~~~~~~~~~--1

I

~1201-----1---+---+---~~~-+~~~

__-L__~__L-~L--L__-L~
-75 -50 -25
0
25 50 75 100 125
TA-Free-Air Temperature- °C

100L-~

FIGURE 10

2-166

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

V
V

.....

~

v

10
4
F-Frequency-MHz
FIGURE 9

FIGURE 8

~

........... ~
...........

40

100

TlBPAl16lS-15M. TIBPAl16R4-15M. TlBPAl16R6-15M. TIBPAl16RS-15M
TIBPAl16lS-12C TIBPAl16R4-12C TIBPAl16R6-12C TIBPAl16RS-12C
HIGH-PERFORMANCE IMPACT™ PAl® CIRCUITS
03338, JANUARY 1986-REVISED AUGUST 1989

•

•

TIBPAL 16LS'
M SUFFIX ... J OR W PACKAGE
C SUFFIX ... J OR N PACKAGE

High-Performance Operation
Propagation Delay
M Suffix, , . 15 ns Max
C Suffix, , , 12 ns Max

(TOP VIEWI

Vee

Functionally Equivalent, but Faster than
PAL16L8B, PAL16R4B, PAL16R6B, and
PAL16R8B

o

•

Power-Up Clear on Registered Devices
(All Registered Outputs are Set High but
Voltage Levels at the Output Pins Go Low)

•

Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs

•

Dependable Texas Instruments Quality and
Reliability

DEVICE

INPUTS

3-STATE

REGISTERED

o OUTPUTS

Q OUTPUTS

PAL 1618

10

2

0

liD
I/O
liD
liD
liD
liD

o
GND

- " ' _ _...r-"

TIBPAL 1 6LS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEWI

1/0 PORTS

u

u
__ >0

6

PAL16R4

8

0

4 (3-state)

4

PAL 16R6

8

0

6 (3-statel

2

PAL16R8

8

0

8 (3-state)

0

3

2

1 20 19

4

18

17

description
These programmable array logic devices feature
high speed and functional equivalency when
compared with currently available devices.
These IMPACT'" circuits combine the latest
Advanced Low-Power SChottky t technology
with proven titanium-tungsten fuses to provide
reliable, high-performance substitutes for
conventional
TTL
logic.
Their
easy
programmability allows for quick design of
"custom" functions and typically results in a
more compact circuit board, In addition, chip
carriers are available for further reduction in
board space.

I/O
I/O

6

16

I/O

7

15

I/O

14

liD

8
9 1011 1213

Pin assignments in operating mode

The TIBPAL16' M series is characterized for
operation over the full military temperature range
of - 55°C to 125°C. The TIBPAL 16' C series
is characterized for operation from DOC to 75°C.

IMPACT is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories, Inc.
t Integrated Schottky-Barrier diode-clamped transistor is patented
by Texas Instruments, U.S. Patent Number 3,463,975.

PRODUCTION DATA d.cumants c.ntoin information
curreRt 8S of publication date. Products conform to
specifications per the terms of Texas Instruments
standard warranty. Production processing does not
nacessarily include testing of all parameters.

Copyright © 1989, Texas Instruments Incorporated

TEXAS •
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-167

TlBPAL 16R4·15M, TlBPAL 16R6·15M, TIBPAL 16R8·15M
TIBPAL 16R4·12C, TlBPAL 16R6·12C, TlBPAL 16R8·12C
HIGH·PERFORMANCE IMPACTTNPAl® CIRCUITS
TIBPAL 16R4'
M SUFFIX •.. J OR W PACKAGE
C SUFFIX ••. J OR N PACKAGE

TIBPAL 16R4'
M SUFFIX •.. FK PACKAGE
C SUFFIX .•• FN PACKAGE

(TOP VIEW)

(TOP VIEW)

Vee

elK

" u
UO
__ ..J
u>::::

110

110

3

2

1 2019

Q

18

Q

17

Q

Q

16

Q

110

Q

7

15

Q

110
110

8

14

Q

9 1011 12 13

GND""L_.......J,.....OE

-

~I~

gg

t:)

TIBPAL 16R6'
M SUFFIX ... J OR W PACKAGE
C SUFFIX ... J OR N PACKAGE

TIBPAL 1SRS'
M SUFFIX ..• FK PACKAGE
C SUFFIX ••. FN PACKAGE

(TOP VIEW)

(TOP VIEW)

" u
UO
__ ..J
u>::::

Vee

elK

110

3

Q

I

2

1 2019

Q

4

18

Q

Q

5

17

Q

Q

6

16

Q

Q

7

15

Q

Q

8

14

Q

110

9 1011 12 13

GND'-1.._ _..J-'0E

-

~I~

gd

t:)

TIBPAL 16RS'
M SUFFIX ... J OR W PACKAGE
C SUFFIX ..• J OR N PACKAGE

TlBPAL 1SRS'
M SUFFIX •.. FK PACKAGE
C SUFFIX .•• FN PACKAGE

(TOP VIEW)

(TOP VIEW)

~.t3
__ u>d

Vee

elK

Q

3

Q

GND

-....._---'r-

Q

5

17

Q

Q

6

16

Q

Q

7

15

Q

Q

8

14

Q

18

9 1011 12 13

DE

-

0IW d d

zO
t:)

Pin assignments in operating mode

2·168

1 2019

4

Q

I

2

Q

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

TlBPAL 16L8·15M, TIBPAL 16L8·12C, TIBPAL 16R4·15M, TIBPAL 16R4·12C
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
functional block diagrams (positive logic)
'PAL16L8

&

EN ;;'1

"70-------0

32 X64

0-----0

I>

10

0-...........-1/0
16

P-ti.......-I/O
P-ti"'",,-I/O

D-e+......-I/O

o--tH.......-

I/O

o--tH.........-I/O
6

'PAL16R4

OE------------------------------~
CLK------------------------________

~

&

10-------0

32X 64

I>

8

,-r--h--+--

0

t--t--""b--+-o
16

[)---II---- 0
4
4

P - " - - H - t - - I/O

o-.............- t - - I / O
o-..............- t - - I / O
o-.............- t - - I / O
4

rv denotes

fused inputs

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-169

TIBPAL16R6·15M, TIBPAL16R6·12C, TIBPAL16R8·15M, TlBPAL16R8·12C
HIGH·PERFORMANCE IMPACTIMPAl® CIRCUITS
functional block diagrams (positive logic)
'PAL l6R6

_[N2
r, C1

OE

ClK
&
32X 64

-:-c;- -::- 'V
~
2.,...

;;'1

44-

10

1-1 2

~

~ 'V

a
Q

r----,

4-

Q

r----.

~

-

a

r-'

r----.
r----.

Q

r----,

~

Q

;;'1
- EN
~

r----,
'V

f--

~

~

......
~

2

r

I/O
I/O

...

6

~

'PAL l6RS

~------------------------clEi~~

ClK--~------------------------~

r;;;';;1-r:I=~7b---

i--;---"b--+-i--;---"b--+-r--;---b--+-r--;---"b--+-i--;---b--+--

Q

Q

Q

Q

Q

Q

r---r----1~~Q

rv denotes

2-170

fused inputs

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TIBPAL 16L8·15M, TIBPAL 16L8·12C
HIGH·PERFORMANCE IMPACTTM PAl® CIRCUITS

Ill)

FI RST
FUSE

INCREMENT

,

NUMBERS 0

4

0
32
64
96128
160
192
22.
12lbt-~

8

12

16

20

24

28

31

--

-.-

)--:--

I---"
'.-./

------

]

119)

V

o

I---"

;~
288320 - 352
38.
416
448
480

.0ct:

512-

544

~r-....

1

118)

V

1/0

-

-

576·

h

608
640
672
704
14) 736

1

117)

V

1/0

f--

768
800
832
864
896
928
960
IS) 992

------

1024
1056
1088
1120
1152
'184
1216

-:>-

1

116)

V

J

115)

1/0

1/0

I---"

16)'248
1280
1312
1344
1376
1408
1440
1472

>--

1--

~

>--

,........

1

114)

1/0

17)'50'
1536

>--

1568

1600
16321664
1696

>--

1728

IB)1760

=d--

1856
1888
1920
1952

113)

J

1

112)

V

1/0

o

>--

1984

~
Fuse number - First Fuse number

1

+==J--p.

'28

119) 1/0

'60

>--

'92
224

~
256
288

320

352

118) I/O

384
4'6
448

131 480
512-544
576
608
640
672
704

D-

R
117)
-yoa

t'j""1
10

~~

(4) 736

>--

768
800

832

D-

864
896

10

928
960

(5) 992

>--

1024
1056

1088
1120
1152
1184
1216

>-->
>--

16)'248

IT

>-;:.J.

115)

~

(14)

v

10

a

~~

1280
1312
1344
1376

-yo-

1408
1440
1472
1504

a

>--

(7) ;>t.
15361568
1600
1632-

--~

1664

18)

1696
1728
1760

r-

J

I

113) 1/0

--d'J

1792

1824
1856

r/>---r>oln

1888
1920
1952

9

1984
2016

~.
Fuse number

2-172

1 __1
'."1.":'2) 1/0

=

t=---::d
FIRST

INCREMENT

FUSE
NUMBERS 0

4

8

12

16

---)
20

24

28

I

31

j!~~=.fit[atri~~~1f-~H++=ttf:--tiHl_-1-~i~-i~~=E~L=ErtEC- S=~nj~ ~t~1~:E-k3~~~
E~~ c---t
-~-+-- +- ~"--_J
5------d
-==t-

~~: _

-+

"

_

m_' 1 ~ r~
::~~- If~~tt=+~~

320

13'{)t~

t

~

rr= ~

t+-

' __

~

~ "~~~

,~

r--

F1

j--

-

I-

-

-+ ~

736

r=b- '~1
10
}----

--

r---

1~~=§~~-BB3EfB

~

1024

-

~

t=

----'

--

~

"84~~

~

1216
1248

-

~I~-

~-t-, -

b-

'T1~

115 10

1D

~I'l
-~ :J

L...

- t - ,

116 10

1D

'--

1088

~~~~

ITtl
>C1

~

-+-~++++--+++-+

1 OS6

1171 0

~

'~---t>==:

928

I

"

C11'1

r---

~-

~++++-+~4~-4~

::~_--

I

"'J

>----

-f:::=-

672
704

m
:::

~1

- B~~Ffn=f~$4nffFfF~I-~=t=> 1~ ~Io

'1+-t--:;: ~~ "'~~:
~+~~~' -1
" i=ttlLiti__
-1--

512

1/0

,
'

1280-~-

1312

13761344-

1408
14401472
1504

~--=

+-~

15361568
1600-16321664

181

+

}--b-~ ~IO

+-

1696==tEllttEE±t:-+j''
1728
1760

Fuse number -

First Fuse number

---+-

-

~

+ Increment

TEXAS

l!}

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-173

TIBPAL 16R8·15M. TIBPAL 16R8·12C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
CLK~.

--_. . _ - - - - - - -

INCREMENT

FIRST

FU SE

NU MBERS

0

8

4

12

16

20

24

28

31

I

0

32
64
96
128

>

'60

192

'j";'"i

'-;::] (19)

10

V

a

~'1

(2~

';~
288

f---

320

352
384
4'.
448

>

f---

~-

..........

>--

608

640
672

f----'

704

V

a

TT
10

I.J

(17)

a

I.J.....

(16)

a

b

(15)

a

v

~~

(4) 736
768
800
832
864
896
928

All.!)

10

~~

f---

5'2
544
57.

'T=1

~

-

p-

960

T=T
10

~~

5) 992

(X

~

1024
'056
1088
1120
1152
1184
1216

"j':"i'"
I----'

D-

V

~~

(6)'248
'280
1312

"j':"i'"

\--

'344

D-

1376

1408
'440
1472

1536

---\

1568
1800
1832

---1

----"

t>

1664
1696
1728

---1

1792
1824

1856

=>t-

r-~) a

"j':"i'"

'";:J

10

T1
10

I

Fuse number - First Fuse number + Increment

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

a

-~) a

~'1

(9)=:?'·

(13)

V

~1

(8)1780
~

1888
1920
1952
1984

10

~1'1

\--

(7)'504

2-174

10

~)

TIBPAL 16L8-15M, TIBPAL 16R4-15M, TIBPAL 16R6-15M, TIBPAL 16R8-15M
HIGH-PERFORMANCE IMPACTTM PAL® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions (see Note 21
PARAMETER

VCC

Supply voltage

VIH
Vil

High-level input voltage
Low-level input voltage

MIN

NOM

MAX

4.5

5

5.5

V
V
V

2

10H

High-level output current

5.5
0.8
-2

10l

Low-level output current

12

fclock

Clock frequency

tw

Pulse duration, clock (see Note 2)

tsu

Setup time, input or feedback before elKi

th
TA

Hold time, input or feedback after ClK T

0

I High
I low

50

9

mA
mA
MHz
ns

10
15

ns

0
-55

Operating free-air temperature

UNIT

ns
125

°c

NOTE 2: The total clock period of ClK high and ClK low must not exceed clock frequency. fclock. Minimum pulse durations specified
are only for ClK high or ClK low, but not for both simultaneously.

electrical characteristics over recommended operating free-air temperature range
PARAMETER
VIK

VCC

VOH

Vce

VOL

Vec

10ZH

Outputs

1/0 ports
Outputs

10Zl
II

IIH

1/0 ports

=
=
=

4.5 V,

TEST CONDITIONS
II = -18 mA
10H = -2 mA

4.5 V,

10l

4.5 V,

=

=

5.5 V,

Va

=

2.7 V

VCC

=

5.5 V,

Va

=

0.4 V

Vee

=
=

5.5 V,

5.5 V,

VI

VI

=
=

2.4

Typt

5.5 V,

VI

=

10S*

Vec

5.5 V,

Vo

ICC

VCC

=
=

5.5 V,

VI

= 0.5
= 0,

V
0.5

-250
Pin 1, 11

0.2

All others

0.1

Pin 1, 11

50

1/0 ports

100
20
-0.25

All others

=

V

100
-20

2.7 V

Vee

UNIT

20

5.5 V

III

MAX
-1.5

3.3
0.35

12 mA

Vce

Vee

MIN

1/0 ports

0.4 V

-0.2

All others
-30

V
Outputs open

170

V
~A
~A

mA

~A

mA

-250

mA

220

mA

t All typical values are at Vce = 5 V, T A = 25°e.
tNat more than one output should be shorted at a time and duration of the short circuit should not exceed one second. Set Va at 0.5 V

to avoid test equipment degradation.

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-175

TIBPAL 16L8·15M, TlBPAL 16R4-15M, TlBPAL 16R6-15M, TIBPAL 16R8-15M
HIGH-PERFORMANCE IMPACpM PAL® CIRCUITS
switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER

FROM

TO

fmax~
!Pd~

1,110

0,110

tDd

CLKt

Q

ten

DEI
OEt

Q

1,110
1,110

0,110
0,110

tdis
ten
tdis

Typt

MAX

8

15

ns

R1 = 3900,

7

12

ns

R2 = 7500,
See Figure 1

8

12
12

ns
ns

15

ns

15

ns

TEST CONDITIONS

MIN
50

Q

UNIT
MHz

7

8
8

tAli typical values are at VCC = 5 V, TA 25°C.
1:Maximum operating frequency and propagation delay are specified for the basic building block. When using feedback, limits must be
calculated accordingly.

2-176

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL 16L8-12C, TIBPAL 16R4-12C, TIBPAL 16R6-12C, TlBPAL 16RB-12C
HIGH-PERFORMANCE IMPACTTM PAL® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions (see Note 2)
PARAMETER
VCC

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

10H

High-level output current

MIN

NOM

MAX

UNIT

4.75

5

5.25

V

5.5

V

2

0.8
-3.2

10L

Low-level output current

fclock

Clock frequency

tw

Pulse duration, clock Isee Note 21

tsu

Setup time, input or feedback before CLKt

th

Hold time, input or feedback after CLK!

0

TA

Operating free-air temperature

0

0

I High
I Low

V
mA

24

mA

62

MHz

7

ns

8
10

ns
75

ns
DC

NOTE 2: The total clock period of CLK high and CLK low must not exceed clock frequency, fclock. Minimum pulse durations specified
are only for CLK high or CLK low, but not lor both simultaneously.

electrical characteristics over recommended operating free-air temperature range
PARAMETER

TEST CONDITIONS

VIK

VCC

VOH

VCC

VOL

VCC

10ZH

Outputs
I/O ports
Outputs
10ZL

I/O ports

VCC
Vce

= 4.75
= 4.75
= 4.75
=
=

V,

II = -18 mA
10H = -3.2 mA

V,

IOL

V,

5.25 V,
5.25 V,

Vo
Va

=
=
=

Typt

0.35

5.25 V,

VI

=

5.5 V

IIH

Vce

=

5.25 V,

VI

=

2.7 V

IlL

Vce

5.25 V,

10*

Vee

lec

Vce

=
=
=

= 0.4 V
Va = 0.5 V
VI = 0,

UNIT
V
V

0.5
20
100
-20

0.4 V

=

MAX
-1.5

3.3

2.7 V

Vce

5.25 V,

2.4

24 mA

II

5.25 V,

MIN

-250

~A
~A

Pin 1, 11

0.1

All others

0.1

Pin 1, 11

20

All others

20
-0.2

mA

-125

mA

200

mA

VI

-30
Outputs open

V

170

mA
~A

tAli typical values are at Vee = 5 V, TA = 25 De.
.
+The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, lOS.

TEXAS •
INSTRUMENTS
POST OFFice BOX 655303 • DALLAS, TEXAS 75285

2-177

TIBPAL 16L8-12C, TlBPAL 16R4-12C, TIBPAL 16R6-12C, TIBPAL 16R8-12C
HIGH-PERFORMANCE IMPACTTM PAl® CIRCUITS
switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER

fmax~
tpd~
tod
ten
tdis
ten
tdis

FROM

TO

TEST CONDITIONS

MIN

TYpt

MAX

8
7
8
7
8
8

12
10
10
10
12
12

62
1,1/0
CLKt
OE.
OEt
1,1/0
1,1/0

t All typical values are at VCC

0,1/0
Q
Q
Q

Rl
R2

=
=

500 II,
500 II,
See Figure 1

0,1/0
0,1/0
=

5 V, T A

=

UNIT

MHz
ns
ns
ns
ns
ns
ns

25°C.

:l:Maximum operating frequency and propagation delay are specified for the basic building block. When using feedback, limits must be

calculated accordingly.

programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of ·programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 995-5666.

2-178

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TlBPAl16l8·15M, TlBPAl16R4·15M, TIBPAl16R6·15M, TIBPAl16R8·15M
TlBPAl16l8·12C, TIBPAl16R4·12C, TlBPAl16R6·12C, TIBPAl16R8·12C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
5V

S1

b
R1

FROM OUTPUT
UNDER TEST

_+_.._ ..._

TEST
POINT

R2

CL
(See Note A)

LOAD CIRCUIT FOR
THREE-STATE OUTPUTS
/..
TIMING
INPUT _ _ _

---'~

1 5 V
1 5 V
~
.
.

---[3.5VI(3V)

[3.5 VI (3 V)

jf1.5V
_ _ _ _ _ [0.3 VI (0)

HIGH-LEVEL
PULSE

:_

1.5V

1.5V

LOW-LEVEL~I [3.5 VI (3V)
PULSE

1.5V

[0.3 V) (0)

-

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

r----"\
INPUT

../1 1.5 V

tpd

I..
I

~I
I

: f

IN-PHASE
OUTPUT

1

tpd

l1li

- - - - [3.5 VI (3 V)

~

1' - - - - [0.3 V) (0)
I..
~I tpd

1
1 . 5V :

1
I"

OUT-OF-PHASE
OUTPUT
(See Note D)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

+--VOH

~
I
~I

-

1.5V
- -

[0.3 VI (0)

VOLTAGE WAVEFORMS
PULSE DURATIONS

\1.5 V

---I:

[0.3 VI (0)

tw

DATA~.-1---[3.5VI(3V)
INPUT

I

r- 4

I+-th~
1

)4-tsu-+t

VOL

---+I

I!

IIi

VOH

7'1.5 V
--VOL

~3.3

V
WAVEFORM1---r\: 1.5V
l~vOL+0.5V
S1 CLOSED
I ~-==:!-= VOL
(See Note B)
t en -+1 ~
I4- t dis
VOH
WAVEFORM 2
I
S10PEN
1.5 V
LVOH-0.5 V

-.!

tpd

:r.:-:-I

OUTPUT ~[3.5VI (3 V)
CONTROL
1.5 V
1.5 V
(low-level
I
enabling)
1
-1- - - - [0.3 VI (0)
ten
r+~ I+-- tdis

l.

~

(See Note B)

' _____ i-=

~0

V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE·STATE OUTPUTS

NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten, 5 pF for tdis'
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: For M suffix, use voltage levels indicated in parentheses (),
PRR :s 10 MHz, tr and tf :S 2 n5 , duty cycle = 50%. For C suffix, use the voltage levels indicated in brackets [ ],
PRR s 1 MHz, tr = tf = 2 ns, duty cycle = 50%.
O. When measuring propagation delay times of 3-state outputs, switch 51 is closed.
E. Equivalent loads may be used for testing.

FIGURE 1

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-179

-

2-180

TIBPAL 16Lo·20M, TIBPAL 16R4·20M, TIBPAL 16R6·20M, TIBPAL 16Ro·20M
TIBPAL 16Lo·15C, TIBPAL 16R4·15C, T1BPAL 16R6·15C, T1BPAL 16Ro·15C
HIGH·PERFORMANCE IMPACpM PAl® CIRCUITS
03340, FEBRUARY 1984- REVISED AUGUST 1989
nBPAl16l8'
M SUFFIX ... J OR W PACKAGE
C SUFFIX ... J OR N PACKAGE
(TOP VIEW)

•

High-Performance Operation
Propagation Delay
M Suffix , , , 20 ns Max
C Suffix. , . 15 ns Max

•

Functionally Equivalent, but Faster than
PAL16L8A, PAL16R4A, PAL16R6A, and
PAL16R8A

•

•

Vee

0
I/O
I/O
I/O

Power-Up Clear on Registered Devices
(All Registered Outputs are Set High but
Voltage Levels at the Output Pins Go Low)

I/O
I/O
I/O

Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs

INPUTS

3·STATE

REGISTERED

o OUTPUTS

Q OUTPUTS

PAL 16lB

10

2

PAl16R4
PAl16R6

B
B

0
0

0
4 (3·state)
6 (3-state)

4

PAl16RB

B

0

B 13-state)

0

DEVICE

I/O PORTS

0

I

GND
TIBPAl16l8'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)

6

U

u
__ >0

2
3

description
These programmable array logic devices feature
high speed and a choice of either standard or
half-power devices, They combine Advanced
Low-Power Schottky t technology with proven
titanium-tungsten fuses. These devices will
provide reliable, high-performance substitutes
for conventional TTL logic. Their easy
programmability allows for quick design of
"custom" functions and typically result in a
more compact circuit board. In addition, chip
carriers are available for further reduction in
board space.

2 1 20 19

4

18

5

17

16
7

15

8

14
9 10 11 12 13

The PAL 16' M series is characterized for
operation over the full military temperature range
of - 55°C to 125°C, The PAL 16' e series is
characterized for operation from ooe to 70°C.

tlntegrated Schottky-Barrier diode·clamped transistor is patented by Texas Instruments, U.S. Patent Number 3.463,975.
IMPACT is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.

PRODUCTION DATA d••umants .lHII8in information
.u"ent es of publlcatio. date, Products .onfarm to
specifications per the terms of TaXIS Instruments

:=~::i~·i~:~~i =~~:i:r :.r:.~:::::.:::.s not

Copyright © 1989, Texas Instruments Incorporated

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • OALlAS, TEXAS 75265

2-181

TIBPAL 16R4·20M,TIBPAL16R6·20M, TlBPAL 16RB·20M
TIBPAL 16R4·15C, TlBPAL16R6·15C, TIBPAL 16RB·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
TIBPAL 16R4'
M SUFFIX •.. J OR W PACKAGE
C SUFFIX ••• J OR N PACKAGE

TIBPAL 16R4'
M SUFFIX ..• FK PACKAGE
C SUFFIX .•• FN PACKAGE

ITOPVIEW)

(TOP VIEW)

elK

tl 0
__ :J
u>:::

Vee
I/O
110

3

2

1 20 19

Q

4

18

Q

5

17

Q

6

16

Q

7

15

110
110

8

14
9 1011 1213

GND '-L=-----.:...JI-' 6E

TIBPAL 16R6'
M SUFFIX .•. J OR W PACKAGE
C SUFFIX ... J OR N PACKAGE

TISPAL 16R4'
M SUFFIX ... FK PACKAGE
C SUFFIX .•. FN PACKAGE

(TOP VIEW)

(TOP VIEW)

elK

~ u
....I uo
__ u>:::

Vee
I/O

3

Q

2

1 20 19

Q

18

Q

17

Q

16

Q

15

Q

14

110

9 1011 1213

GND .......___I-'0E

TIBPAL 16RS'
M SUFFIX ... J OR W PACKAGE
C SUFFIX ... J OR N PACKAGE

TIBPAL 16RS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE

(TOP VIEW)

(TOP VIEW)

elK

Vee
Q
Q

3

2

1 20 19

Q
Q
Q
Q
Q
Q

9 10 "

GN D '-L=---'-:":'I-' DE

2-182

TEXAS .",
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

12 13

TIBPAL 16LB·20M, TlBPAL 16LB·15C, TIBPAL 16R4·20M, TIBPAL 16R4·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
functional block diagrams (positive logic)
'PAL16L8

EN .><1

&

32 X64

vb-----o
b-----o
b-_ _.....-I/O

16

b-.-+.........-

I/O

b-,.;.......-I/O
h-a-I._ _-

I/O

b-+l-

8

a
16

a
4
;;'1
4

V

I/O
I/O

I/O
I/O

4

rv

denotes fused inputs

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-183

TIBPAL 16R6·20M, TIBPAL 16R6·15C, TIBPAL 16R8·20M, TIBPAL 16R8·15C
HIGH·PERFORMANCE IMPACTTM PAl® CIRCUITS
functional block diagrams (positiva logic)
'PAL16R6

~----------------------~~~--,

CLK----------------------------~

r;;;;--r"j":'i'771o--Q
r----t----~~-Q
r----t----~_l_-

Q

r---r--;~~Q
r---r--;~~Q

~-....::2:r-~""""'I--

1/0

P-....t.......--t--

1/0

'PAL16RB

~----------------------~da~__,
CLK--~------------------------_P
&
32 X 64

8

r;;;.;;l-r'i':"~~---

Q

r----r----~~-Q
8
rv denotes fused inputs

2-184

TEXAS

..If

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL 16LH·20M, TIBPAL 16LH·15C
HIGH·PERFORMANCE IMPACTTM PAl® CIRCUITS

1(1 )

INCREMENT

FI RST

FU SE

0

4

o-

r--

N UMBERS

32 -64

8

12

16

20

24

28

31

--

---

)---

-

.6128
160
,.2
22.

-j
(19)

) - -I-"

o

)--

Ett--2:'288
320-352
384416
448
480

I--

:--'

1

(18)

v

110

illt>t=
512
544
576
608
640
.72
704

-

I-"

1

(17)

v

110

t--

(4);
7.8
800
832
884
8 ••
.28

-I-"

1

(16)

v

110

.60
(5) ••2
1024
1056

1

0--

1088
1120
1152

(15)

v

110

1184
1216

(6)'248
1280
1312

1

1344
1376
1408
1440

(14)

v

1/0

1472
~

(7)'504
1536

1568
1600

)--

'.32-

~

1664

1696
(8)

">

(13)

110

)--

1728
1780
1792

1824
1856
1888
1920
1952

~

1984
(9)201.

Fuse number - First Fuse number

J
1

(12)

V

o

~
+

Increment

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-185

TIBPAL 16R4·20M, TlBPAL 16R4·15C
HIGH·PERFORMANCE IMPACT'M PAL® CIRCUITS
ClK (11 "FIRSr
F

~~BERS

N

INCREMENT
4

'0

0
32
6.
96128- .
160
192
22.

12

8

16

20

24

28

31

-]

f----

---

!--"
v

i

\--A

~
256
288320
352
38.
"6
"8
'80

l

~

~

~--

(181 1/0

V

t::-

f---

512
544
516
608
640
612
10'
(41 136

~

=>-

TT
10

I.J.
,..-

(171

a

~

(161

a

bIv

(151

a

~~

-'A

768
800
832
86'
890
928
960
992

f----

P-

T="T
10

V

~~

\--

1 (51 1::>1.

OA

-

1024

1056
1088

\--

1'20
"52
1184
1216
1248

1 (61

(191 1
/0

b-

T1
10

~

X

1280
1312
1344·

P-

1376
1408

~~

1472

1504

1 JZI
1536
1568

f----

1600

-

1632~

.--

../

10641696
1728

(81

-

1760

l

(131

1/0

Vi

-~
1792

1824

r-

1856
1888

1920
1952

I-...

)-

,.84
2016

9
I%.:_

1

1

Fuse number "'" First Fuse number

2-186

t{>,(14 1a

10

f----

1440

1

"i"'""i"

I

+

I

I

Increment

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

-'-A

j

(121

1

110

~10E

TIBPAL 16R6·20M, TIBPAL 16R6·15C
HIGH·PERFORMANCE IMPACT'M PAl® CIRCUITS

-

-j--

t . -t

. 1-1

f---

J

(121 1/0

rr=---l:I-- J '4'-"0>

Fuse number - First Fuse number + Increment

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2·187

TlBPAL 16RB·20M, TIBPAL 16RB·15C
HIGH·PERFORMANCE IMPACpM PAL@ CIRCUITS

CLK (11-",

INCREMENT

FIRST

~~~BERS
o

4

0

8

12 ,

16

20

24

28

31

32
64
96128
160
192

)--

~

)--

>-

256
288
320
352
38'
"6

T:"i"ro
10

I

~

( 19 1 0

~~

- b-

r:--:;"

1-1

10

r.:J..
v

(181

>-;:l

(17

a

448

~512

544
576608
640
672
70.
(4) 736

T=1
10

~1

768
800
832
86'
896
928
960
~ 992

p-

1024

1066
1088
1120
1152
1164
1216

(61'248
1280
1312
1344-

1376
1408

1440
1472

(7)'50'

--vb-- 1536
1568
1600 - -

1632~

16641696-

r-+

.,.

1-

r--

-j-

1728

t

(81 1760

t+

1192

1824
1~

4

1888-

--

1920

1952

I

(91~b-t

if-+ ;H+ t~: +

r

1---

---vb--f- T t - -t t T I-tt ti-t1-t--

Fuse number - First Fuse number

2-188

b--+-+-----t--

+

Increment

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

10

-VO-)O

TIBPAL 16LB-20M, TlBPAL 16R4-20M, TlBPAL 16R6-20M, TlBPAL 16RB-20M
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free·air temperature range .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°C
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER
VCC

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

IOH

High-level output current

IOL

Low~level

fclock

Clock frequency

tw

Pulse duration, clock (see Note 21

tsu

Setup time, input or feedback before CLKt

th

Hold time, input or feedback after CLKt

TA

Operating free-air temperature

MIN

NOM

MAX

UNIT

4.5

5

5.5
5.5
0.8
-2
12
41.6

V

2

output current

I
I

High
Low

0
10
11
20
0
-55

V

V
mA
mA
MHz
ns
ns
ns

125

·C

NOTE: 2. The total clock period of elK high and elK low must not exceed clock frequency, fclock. Minimum pulse durations specified
are only for elK high or eLK low, but not for both simultaneously.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-189

TIBPAL 16L8·20M, TlBPAL 16R4·20M, TlBPAL 16R6·20M, TlBPAL 16R8·20M
HIGH·PERFORMANCE IMPACT'M PAL® CIRCUITS
electrical characteristics over recommended operating free-air temperature range
PARAMETER

TEST CONDITIONS

VIK

Vee

VOH

Vee

VOL

Vee

= 4.5
= 4.5
= 4.5

Vee
Vee

Outputs
10ZH

1/0 ports

Outputs
10Zl

1/0 ports

II

Vee

Vee

IIH

=

V,

II

V,

10H

V,

10l

= -2 rnA
= 12 rnA

=

5.5 V,

Vo

=

2.7 V

=

5.5 V,

Vo

=

0.4 V

=
=

5.5 V,

5.5 V,

=

VI

=

VI

MIN

Typt

2.4

3.2

-18 rnA
0.25

100
-20
-250

5.5 V

2.7 V

Vee

=

lost

Vee

lee

Vee

=
=

VI

=

5.5 V,

Vo

5.5 V,

VI

= 0.5
= 0,

5.5 V,

Pin 1, 11

0.2

All others

0.1

Pin 1, 11

50

1/0 p'orts

100
20

1/0 ports

0.4 V

-0.25
-0.2

All othe!,
-30

V

140

Outputs open

UNIT
V
V

0.4
20

All others
III

MAX
-1.5

V
~A

~

rnA

~A

rnA

-250

rnA

190

mA

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER

FROM

TO

TEST CONDITIONS

f max

MIN

TYpt

MAX

10

20

ns

8

15
15

ns
ns

tad

1,1/0

0,1/0

tpd

elKt

Q

Rl

ten

OEi

Q

tdis
ten

OEt
1,110

R2
See Figure 1

15

ns

0,1/0

10

20

ns

tdis

1,1/0

0,1/0

10

20

ns

Q

= 3900,
= 7500.

8
7

tAli typical values are at Vee = 5 V, TA = 25°e.
tNot more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Set

to avoid test equipment degradation.

2-190

UNIT
MHz

41.6

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Va at 0.5 V

TIBPAL 16L8-15C, TlBPAL 16R4-15C, TIBPAL 16R6-15C, TlBPAL 16R8-15C
HIGH-PERFORMANCE IMPACT'M PAl® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output Isee Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
MIN
4.75
2

PARAMETER
vee

Supply voltage

VIH

High-level input voltage

Vil

Low-level input voltage

IOH

High-level output current

IOl

Low-level output current

fclock

Clock frequency

tw

Pulse duration, clock (see Note 2)

tsu

Setup time, input or feedback before C;:LKf

I

High

I low

th

Hold time, input or feedback after elK!

TA

Operating free-air temperature

0
8

NOM
5

MAX
5.25
5.5
0.8
-3.2
24
50

V
V
V
mA
mA
MHz
ns

g

15
0
0

UNIT

ns
ns

75

°e

NOTE 2: The total clock period of elK high and elK low must not exceed clock frequency, fclock. Minimum pulse durations specified
are only for elK high or elK low, but not for both simultaneously.

~

TEXAS
INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

2-191

TlBPAL 16LO-15C, TIBPAL 16R4-15C, TIBPAL 16R6-15C, TlBPAL 16RO-15C
HIGH-PERFORMANCE IMPACTTM PAL® CIRCUITS

electrical characteristics over recommended operating free-air temperature range
PARAMETER

TEST CONDITIONS

V,K

Vee = 4.75 V,

1,=-18rnA

VOH

Vee = 4.75 V,

10H = -3.2 rnA

VOL
10ZH
10Zl

Outputs
I/O ports
Outputs
I/O ports

Vee = 4.75 V,

10l = 24 rnA

Vee = 5.25 V,

Vo = 2.7 V

Vee = 5.25 V,

Vo = 0.4 V

I,

Vee = 5.25 V,

V, = 5.5 V

IIH

Vee = 5.25 V,

V, = 2.7 V

',l
10*

Vee = 5.25 V,
Vee = 5.25 V,

V, = 0.4 V

lee

Vee = 5.25 V,

V, = 0,

MIN

Typt

2.4

3.3
0.35

MAX
-1.5
0.5
20
100
-20
-250

Pin 1, 11

0.1

All others
Pin 1, 11

0.1

All others

20
-0.2

20

-30

Vo = 2.25 V

140

Outputs open

UNIT
V
V
V
pA
pA
rnA
pA

-125

mA
rnA

180

rnA

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER

FROM

TO

TEST CONDITIONS

f max

MIN

Typt

MAX

10

15

ted

I, I/O

0,1/0

tDd

elKi

Q

R1

=
=

500!l,

S
8
7
10
10

12
12

ten

OEI

Q

R2

tdis

OEi

Q

See Figure 1

ten

1,1/0

0,1/0

tdis

1,1/0

0,1/0

500!l,

UNIT
MHz

50

ns
ns
ns

10

ns

15

ns

15

ns

t All typical values are at Vee = 5 V, TA = 25 ce.
tThe output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, lOS.

programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers,
Complete programming specifications, algorithms. and the latest information on hardware. software. and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available. upon request. from the nearest TI field sales office. local
authorized TI distributor. or by calling Texas Instruments at (214) 995-5666.

2-192

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL 16L8·20M. TIBPAL 16R4·20M. TIBPAL 16R6·20M. TlBPAL 16R8·20M
TlBPAL 16L8·15C. TIBPAL 16R4·15C. TIBPAL 16R6·15C. TlBPAL 16R8·15C
HIGH·PERFORMANCE IMPACpM PAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
5V

51

b

R1
FROM OUTPUT ~'--0
3

description
These programmable array logic devices feature
high speed and a choice of either standard or
half-power devices. They combine Advanced
Low-Power Schottky t technology with proven
titanium-tungsten fuses. These devices will
provide reliable, high-performance substitutes
for conventional TTL logic. Their easy
programmability allows for quick design of
"custom" functions and typically result in a
more compact circuit board. In addition, chip
carriers are available for further reduction in
board space.

2

1 20 19

4

18

5

17

6

16

8

14

15

I/O
I/O
I/O
I/O
I/O

9 1011 12 13

-0

z

-og

(!)

The PAL 16' M series is characterized for
operation over the full military temperature range
of - 55°C to 125°C. The PAL16' C series is
characterized for operation from OOC to 70°C.

tlntegrated Schottky· Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975.
IMPACT is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Incorporated

PRODUCTION DATA documents contain information
current as of publication date. Products conform to

speCifications per the terms of Texas Instruments

==~~~8i~:I:ri ~:~::ti:r :''i'::~:::;:t:~~S

not

Copyright © 1989, Texas Instruments Incorporated

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-195

TIBPAL 16R4·30M, TIBPAL 16R6·30M, TlBPAL 16R8·30M
TIBPAL 16R4·25C, TIBPAL 16R6·25C, TlBPAL 16R8·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTMPAl® CIRCUITS
TIBPAl16R4'
M SUFFIX ... J OR W PACKAGE
C SUFFIX .•• J OR N PACKAGE

TIBPAl16R4'
M SUFFIX •.. FK PACKAGE
C SUFFIX .•. FN PACKAGE

(TOP VIEW)

(TOP VIEW)

elK

::5 ~O

Vee

_ _ U>;:,

1/0
1/0

3

2

1 20 19

Q
Q

18
17

Q

16

Q

15

1/0
1/0

14
9 1011 1213

GND '-I.._....;.Jt-'0E

TIBPAl16R6'
M SUFFIX ... J OR W PACKAGE
C SUFFIX ..• J OR N PACKAGE

TIBPAl16R6'
M SUFFIX ... FK PACKAGE
C SUFFIX ..• FN PACKAGE
(TOP VIEW)

(TOP VIEW)

elK

~

Vee

U

..J UO
_ _ U>;:,

1/0

3

Q

2

1 20 19

Q

18

Q

17
16

Q
Q

15

Q

14

1/0
GND -"'_--.Jr- OE

9 1011 1213

TIBPAL 16RS'
M SUFFIX ... J OR W PACKAGE
C SUFFIX ... J OR N PACKAGE

TlBPAl16RS'
M SUFFIX ..• FK PACKAGE
C SUFFIX ... FN PACKAGE

(TOP VIEW)

(TOP VIEW)

elK

Vee
Q
Q

3

1 20 19

4

18

Q

5

17

Q

Q

6
7

15

Q

8

Q

16
14
9 1011 12 13

GND ""1..._....;.Jr-0E

2-196

2

Q

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL 16LB·30M. TIBPAL 16R4·30M
TIBPAL 16LB·25C. TIBPAL 16R4·25C
LOW·POWER HIGH·PERFORMANCE IMPACpMPAL® CIRCUITS
functional block diagrams (positive logic)
'PAl16lB
EN ~~1

&

p-----O

32 X 64

p.----O

P-..............-I/O

[>
10

16

P-4H--+.....-1/0
D--.t..........-I/O

6

D-.-+......--I/O

6

'PAL 16R4

J EN2

De

'1 C1

ClK

~

&
32

c;-

8

,

4

r+'---

x 64

;>1

-i-l-

1=1
10

~
Q

~

-+-

r+-

'V

~

'V

Q

~

-+-

--I-

Q

2"7

Q

~
EN

;>1
"7

---;-

;+-

""

""

---;-

-i-

'7'"-

r+4

""

I/O
I/O

I/O
I/O

~

4

,
rv

denotes fused inputs

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-197

TlBPAL 16R6·30M, TlBPAL 16R8·30M
TIBPAL 16R6·25C, TIBPAL 16R8·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTMPAl® CIRCUITS
functional block diagrams (positive logic)
'PAL 16R6

De

l.EN2
t, Cl

ClK

~8

~1

10

32X64r+-

-+-

~

~

~

~

p..;L 'V

~

~

~

~

~

Q

Q

r-..:L 'V p...

~

Q

1=1 2

Q
~

~

Q

~

~
r--

Q

~

EN

;;>1

~

'V

r--

~

liD
liD

2

...

6

"""-

'PAL 16RS

De------------------------~~--_,
ClK-----------------------------P
&

8

r;;;>;;l-,.....I=~~--

Q

32 X 64

r---r-I:r--=~Q
r-----t-----~~-Q

r-----t------"b-~-

Q

r-----t------"b-~-Q
r-----t-----"b-~-Q

r-----t------~~-Q
r-----t-----~~-Q
8

rv denotes

2-198

fused inputs

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 65530:i • DALLAS, TeXAS 75266

TIBPAL 16LB·30M, TIBPAL 16LB·25C
LOW·POWER HIGH·PERFORMANCE IMPACpMPAl® CIRCUITS
1(1 )

FI RST

INCREMENT

FU SE
N UMBERS 0
0-

32 -64
96128

4

B
.....

12

16

20

24

2B

31

1-.

>-- h

--

f.-/

160

1

(19)

V

o

>->--

192
224

~
256

>--'k

1

h

1

h

1

288
320--

352
384416

(IB)

V

I/O

448

(3) 480
512544
576·

608

640
672
704
736

(4)

(17)

V

I/O

>--'

768
800

832
864
896
928

f-

I--"

(16)

V

I/O

-

9.0

992
(5) X
1024
1056

1088

h

1120

1152

1

(IS)

V

I/O

1184

1216

(6)'248
1280
1312

).-

1344
1376

1408

).-

1440
'472
(7)'50'
1536

P

1

-

1568
1600

1632-

,."

1

(14)

(13)

~J

1696
1728

1760

(B)X
1192
1824
1856

h

1888
1920
1952

1

(12)

V

I/O

I/O

o

>----'

1984
(9)201.

(11 )

~

Fuse number - First Fuse number

+ Increment

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-199

TlBPAL 16R4·30M. TIBPAL 16R4·25C
LOW·POWER HIGH·PERFORMANCE IMPACrrMPAl® CIRCUITS
CLK 11 I
INCREMENT

FIRST
FUSE
N UMBERS 0

4

o-

8

12

16

24

20

28

j---

32
64
96128'60
'92
224
121~

31

. .+-

-]

)--

I--

t-

'-I

"

256
288
320
352
384
4'6
448
480

J

~

1

'-

-

5'2
544
576

IT

-

608-

)..

~.

640
672
704
736

jQ
}--,

)..

rC:) "

--

1344
1376
1408
1440
1472
1504

~

f-.

)--

~

;=::KJ-.

+.

1~~-

f-

t

1568
-+

----t-

It

I--

t

.. -

~I
Q
V

h.

10

r-.:.J

(141

V

Q

~

J

- 1

_.

1696
1728
1760

1131

1/0

::=:;K}----J
1792
1824

1656
1888
1920
1952
1984
2016

+
..

-t-

.~

-

. .i-

~ ,Lj

+-.~-~'

~

~~-

-j-

J!I.4>r=. +-t+-tt+t t iH-f+++u

++

..~

T

I

I

Fuse number = First Fuse number + Increment

2-200

~
10

I=T

D-

I (71 X

~I Q

~

I-;.I

1280
1312

I

)--->
}--,

+--

I~

10

N

1088
1120
1152
1184
1216·
1248

181

t:£1.~

~~

f--.

1024
1056

1600 - -1632

~I Q

'T1

t-)..

1_151

1664-'

10

-I

768
800832
864
896
928
960
992

I

1181 I 10

~

~

141

I

IA

'tr

1191 I /0

...

i---'

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

t--'=---~

I ....---

1121

1/0

L-

b-

992
1024
1066

1088
1120
1152
1184
1216

>-

t> ~
~1

161'248
1280
1312

'344

~I
v
0

1376
1408

'440
1472

111'504
1536~

1568
'600'632- .
16641696
1128

";:] (131
·V

IB)'760
1792
1824

+

'~6

1888
1920

,

~::!

t:-

191~~1 iW i ~
~lt+-tHt::4t-~ ~~ I
I

-

I

+~

rH+--

Fuse number - First Fuse number + Increment

2-202

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

0

TIBPAL 16LB·30M, TIBPAL 16R4·30M, TlBPAL 16R6·30M, TIBPAL 16R8·30M
LOW·POWER HIGH·PERFORMANCE IMPACT'MPAl® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . .
... .. ...
. 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
- 55 De to 125 De
Storage temperature range ...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
- 65 DC to 150 DC
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER
Vee

Supply vollage

VIH

High~level

VIL

Low-level input voltage

input voltage

MIN

NOM

MAX

4.5

5

5.5

V
V

2

UNIT
V

IOH

High-level output current

5.5
0.8
-2

IOL

Low-level output current

12

mA

fciock

Clock frequency

25

MHz

Iw

Pulse duration, clock (see Note 2)

Isu
Ih

Setup time, input or feedback before elK i
Hold time, input or feedback after CLKi

TA

Operating free-air temperature

0

I High
I Low

15

ns

20

ns

25
0
-55

mA

125

ns
De

NOTE 2: The total clock period of elK high and elK low must not exceed clock frequency, fclock. Minimum pulse durations specified
are only for elK high or elK low, but not for both simultaneously.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-203

TIBPAL 16L8-30M, TIBPAL 16R4-30M, TIBPAL 16R6-30M, TIBPAL 16R8-30M
LOW-POWER HIGH-PERFORMANCE IMPACTTMPAl® CIRCUITS

electrical characteristics over recommended operating free-air temperature range
PARAMETER

TEST CONDITIONS

VIK

Vee

~

VOH

Vee

~

VOL

Vee
Outputs

10ZH
10ZL

I/O ports
Outputs
I/O ports

II

~

4.5 V,
4.5 V,
4.5 V,

-18 rnA
IOH ~ -2 rnA
10L ~ 12 rnA

Vee

~

5.5 V,

Vo

~

2.7 V

Vee

~

5.5 V,

Vo

~

0.4 V

Vee

~

5.5 V,

VI

MIN

Typt

~

II

~

2.4

3.2
0.25

Pin I, 11

5.5 V

All other
Pin I, 11

Vee

IIH

~

5.5 V,

~

VI

2.7 V

I/O ports
All other

IlL

Vee

~

5.5 V,

VI

lost

Vee

~

Vo

Vee

~

5.5 V,
5.5 V,

ICC

VI

~
~
~

I/O ports

0.4 V

All other

-30

0.5 V
0,

75

Outputs open

MAX

UNIT

-1.5

V

0.4
20
100
-20
-250
0.2
0.1
50
100
20
-0.25
-0.2
-250

V

V

105

~A
~A

rnA

~

rnA
rnA
rnA

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER

FROM

TO

TEST CONDITIONS

f max

Typt

MAX

15
10
15
10
14
13

30
20
25
25
30
30

1,1/0

0,1/0

tDd

eLKt
OE.

Q
Q

tdis
ten

OEt

Q

1,1/0

0,1/0

tdis

1,1/0

0, I/O

Rl ~ 390 Il,
R2 ~ 750 Il,
See Figure 1

ae.

UNIT

MHz

25

tDd
ten

MIN

ns
ns
ns
ns
ns
ns

t All typical values are at Vee ~ 5 V, T A ~ 25
tNat more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Set Va at 0.5 V
to avoid test equipment degradation.

2-204

TEXAS ~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAl16lB·25C. TlBPAl16R4·25C. TIBPAl16R6·25C. TIBPAl16RB·25C
lOW·POWER HIGH·PERFORMANCE IMPACpMPAl® CIRCUITS

absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . '
7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free·air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75 °e
Storage temperature range
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65 °e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER
Vee

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

IOH

High-level output current

IOL

Low-level output current

fclock

Clock frequency

tw

Pulse duration, clock (see Note 2)

r High
I Low

tsu

Setup time, input or feedback before CLKi

th

Hold time, input or feedback after CLKt

TA

Operating free-air temperature

MIN

NOM

MAX

UNIT

4.75
2

5

5.25
5.5
0.8
-3.2
24
30

V

0
10
15
20
0
0

V
V
rnA
rnA
MHz
ns
ns
ns

70

°e

NOTE 2: The total clock period of elK high and elK low must not exceed clock frequency, fclock. Minimum pulse durations specified
are only for eLK high or elK low, but not for both simultaneously.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2·205

TlBPAL 16LB·25C, TlBPAL 16R4·25C, TlBPAL 16R6·25C, TlBPAL 16RB·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
electrical characteristics over recommended operating free-air temperature range.
TEST CONDITIONS

PARAMETER

Vee

= 4.75 V,
= 4.75 V,
= 4.75 V,

10l

= 24 rnA

Vee

=

5.25 V,

Vo

= 2.7

Vee

=

5.25 V,

Vo

= 0.4 V

VIK

Vee

VOH

Vee

VOL
Outputs
10ZH
10Zl

1/0 ports
Outputs
1/0 ports

=

Vee

II

5.25 V,

II = -18 rnA
10H - -3.2 rnA

VI

=

IIH

Vee

=

5.25 V,

VI

Vee

=
=
=

5.25 V,

= 0.4 V
Vo = 2.25
VI = 0,

5.25 V,

Vee
5.25 V,
Outputs open

lee

2.4

3.3

MAX
-1.5

100
-20
-250

V

Pin 1, 11

0.1

All others

0.1

Pin 1, 11
·AII others

20

VI

-30

V

75

UNIT
V
V

0.5
20

V

III
lot

Vee

Typt

0.35

5.5 V

= 2.7

MIN

V
~A
~A

rnA
~A

20
-0.2

rnA

-125

rnA

100

rnA

switching characteristics over rec·ommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER

FROM

TO

Typt

MAX

15

25

ns

R1 = 5000,

10

15

ns

R2 = 5000,

15

20

ns

See Figure 1

10

20

ns

TEST CONDITIONS

f max

MIN

UNIT
MHz

30

tpd

1,1/0

0,1/0

tad

elKt

ten
tdis

OEJoet

a
a
a

ten

1,1/0

0,1/0

14

25

ns

tdis

1,1/0

0,1/0

13

25

ns

tAli typical values are atVCC = 5V,TA = 25°C.
:t:The output conditions have been chos~n to produce a current that closely approximates one half of the true short-circuit output current, lOS.

programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 995-5666.

2-206

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL 16L8·30M, TIBPAL 16R4·30M, TIBPAL 16R6·30M, TIBPAL 16R8·30M
TIBPAL 16L8·25C, TIBPAL 16R4·25C, TIBPAL 16R6·25C, TIBPAL 16R8·25C
LOW·POWER HIGH·PERFORMANCE IMPACrrMPAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
SV

S1

b

R1
FROM OUTPUT
UNDER TEST

-<........~...._

TEST
POINT

R2

CL
(See Note A)

LOAD CIRCUIT FOR
OUTPUTS

THREE~STATE

./.

TIMING
INPUT

[3.S VI 13 VI

)'i 1.5

HIGH~LEVEL

PULSE

V

- - - - - ' :- - - - - - - - 10.3 VI 101
. . t su .....- th~
'
'[3.SVI13VI
DATA
',5V
-'-~~V-

~

INPUT

[0.3 VI 101

I

J1.5

V

,

LOW LEVEL
PULSE

:

IN~PHASE

1

/'

OUTPUT

I

.

~tpd
:

1.5 V I

I

tpd ~

OUT~OF~PHASE
OUTPUT

[3.S Vl13 VI

I ' - - - - - 10.3 VI 101

tpd~

\1 1.5 V

, [ 0 . 3 VI 101
-----'

:
~
:

[3.5VI13VI

1.5 V

-

- -

-

[0.3 VI 101

VOLTAGE WAVEFORMS
PULSE DURATIONS

--- 15 V

\

I

~ tw

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT

----[3.5VI[3VI

~
1.5 V

'{,-~~

C'

I
I4-----+t- tpd

VOH

T' ., \

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

1 5 V

I
ten-+l

~

I I
I I

WAVEFORM 1
S1 CLOSED
ISee Note BI

-

- -

[0.3 VI 101

I

-1I

!t-tdis

I
I

~3.3V

I __

I

ten-+!

(See Note B)

- - -

I
:
LVOL+0~5V
~

- - VOL
WAVEFORM 2
S1 OPEN

[3.5VI13VI

1.5 V

I

I

(low-level
enabling)

VOL

~I
1.5 V VOH

(See Note Dj

~

OUTPUT
CONTROL

~

I

_:
tdis .....

---X T

""...-

I _
__
_

VOL

i.v
OH

~
L VOH-0~5
~O

V

V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE~STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and tenl 5 pF for tdis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: For M suffix, use voltage levels indicated in parentheses (),
PRR ::::; 10 MHz, tr = tf ::::; 2 ns, duty cycle = 50%. For C suffix, use the voltage levels indicated in brackets [ L
PRR ::::; 1 MHz, tr = tf = 2 ns, duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch Sl is closed.
E. Equivalent loads may be used for testing.

FIGURE 1

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-207

2-208

TIBPAL20L8·7M. TIBPAL20R4·7M. TIBPAL20R6·7M. TIBPAL20R8·7M
TIBPAL20L8·5C. TIBPAL20R4·5C. TIBPAL20R6·5C. TlBPAL20R8·5C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
D3353, OCTOBER 19B9

•

TlBPAL20L8'
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE

High·Performance Operation:
f max (no feedback)
TlBPAL20R'·5C Series ... 125 MHz
TIBPAL20R'·7M Series ... 100 MHz
f max (internal feedback)
TIBPAL20R'·5C Series ... 125 MHz
TIBPAL20R'·7M Series ... 100 MHz
f max (external feedback)
TIBPAL20R' ·5C Series ... 115 MHz
TIBPAL20R'·7M Series ... 74 MHz
Propagation Delay
TIBPAL20R'·5C Series ... 5 ns Max
TIBPAL20R'·7M Series ... 7 ns Max

(TOP VIEW)

Vee
I

o
1/0
1/0
1/0
1/0
1/0
1/0

o

•

Functionally Equivalent, but Faster than,
Existing 20·Pin PALs

•

Preload Capability on Output Registers
Simplifies Testing

•

Power·Up Clear on Registered Devices (All
Register Outputs are Set Low, but Voltage
Levels at the Output Pins Go High

GND '-\.."':"'_.:J-'

•

•

TlBPAL20L8'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)

Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs

4

DEVICE

I INPUTS

3·STATE
o OUTPUTS

REGISTERED
a OUTPUTS

I/O
PORTS

14
12
12
12

2
0
0
0

0
4 13-st8te buffers)
6 13-state buffers)
8 13-state buffers)

6
4
2
0

3

2

:>w

1 282726

a:

5

25

6

24

I

7

23

GND

8

22

(.)

9

21

10

20

:::l
C

Security Fuse Prevents Duplication

'PAL20L8
'PAL20R4
'PAL20R6
'PAL20R8

~

w

UU
_»_0

uu

11

c.

...

oa:

19
12131415161718

c.

-00--0
ZZ
c.?c.?

description

These programmable array logic devices feature
Pin assignments in operating mode
high speed and functional equivalency when
compared with currently available devices.
These IMPACT·X'" circuits combine the latest
Advanced Low·Power Schottky t technology
with proven titanium-tungsten fuses to provide
reliable, high·performance substitutes for
conventional TTL logic. Their easy programmability allows for quick design of custom functions and typically
results in a more compact circuit board.
The TIBPAL20'M series is characterized for operation over the full military temperature range of - 55°C
to 125°C. The TIBPAL20'C series is characterized from OOC to 75°C.

IMPACT-X is a trademark of Texas Instruments Incorporated

PAL is a registered trademark of Monolithic Memories Inc.
t'ntegrated Schottky-Barrier diode-clamped transistor is patented
by Texas Instruments, U.S. Patent Number 3,463,975.

I..

PRODUCT PREVIEW ••••II.nts o:ontain iat.r..lli••
pnd.... in tho farmlllvo or design ph_ at
d•••I.p ....t. Char••t.rlstl. .ata
.thor
splCifil:ltiDnl Ira ••i~goalL Tuu IRltru ..lntI
=.:.:~IIt.2;:'. ngo .r di...llln.. -

=
OIl

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright © 1989, Texas Instruments Incorporated

2·209

TIBPAL20R4·7M, TIBPAL20R6·7M, TlBPAL20R8·7M
TIBPAL20R4·5C, TIBPAL20R6·5C, TIBPAL20R8·5C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
TIBPAL20R4'
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE
(TOP VIEW)
elK

TIBPAL20R4'
M SUFFIX ... FK PACKAGE

C SUFFIX ... FN PACKAGE
(TOP VIEW)
"

Vee
I
1/0
1/0
Q
Q
Q

U

U

U U
0
__ U»_'"
..J

4 3 2
5

Q

1 28 2726
25

110

6
7

24

8

22

9

21

GND
Q

19

1/0

23

1/0
1/0

Q
Q

12131415161718

TlBPAL20R6'
M SUFFIX ... JT PACKAGE
C SUFFIX ..• JT OR NT PACKAGE
(TOP VIEW)

"o::u

elK

c

TIBPAL20R6'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)

Vee
I
110
Q
Q
Q
Q

c:

(")

-I

::u
"m

S
m

4 3

I

5

I

6

2

1 282726

1/0

I

~

25
24

Q

23
22
21

Q
GND
Q

20
19

Q

12131415161718

GND ......_--'-.... DE

TIBPAL20R8'
M SUFFIX .•. JT PACKAGE
C SUFFIX ..• JT OR NT PACKAGE
(TOP VIEW)
elK

TlBPAL20R8'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)

tl tl
__ :J
u»_O

Vee
I
Q

4 3

2 1 282726

Q

25
24

Q

23

Q

22
21

Q

Q

I

19

I
GND

12131415161718

'-'-_......J... OE

Pin assignments in operating mode

2-210

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TEXAS 75285

Q

Q

TIBPAL20L8·7M, TIBPAL20R4·7M
TIBPAL20L8·5C, TIBPAL20R4·5C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
functional block diagrams (positive logic)
TIBPAl20lB'

EN ~1

&

40 X 64

'\l~---O

1:>----0

14

20

K>-<.-!-........... I/O

...- I / O

~H-

K>-<,-!-",>--I/O

~
w

6

:>w

TIBPAl20R4'

a:

'0E

Q.

EN

ClK

t-

C1

--s;40X64

SiiX'i>

~2
4

r+
0.....-..

-+-

*

8

r-+-

CJ

~l

1-0 '\l

r+r+-

'V

r++

>--

'V

0

r---.

1D

a
~

r-----.

a

::>

c
a:
Q.
0

a

~
EN ~1
1/0

'\l

"7'""
-i-

--"
-i~

---r;-

"'
"'
"'

1/0

1/0
1/0

,

4

rv

denotes fused inputs

TEXAS ~

INSTRUMENTSPOST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-211

TIBPAL20R6·7M, TlBPAL20R8·7M
TIBPAL20R6·5C, TIBPAL20R8·5C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20R6'

DE------------------------W

"
(19)

N
v

liD

1200

(6) ....
v

1240

r---J

1440

1480
1520
1560

(7)

v

8)

\...

(9)

t,)

~

1320
1360
1400

(18)

liD

>j

::J
C

0

a:
Q.

~

1600
1640
1680
1720
1760
1800
1840
1880

a:
Q.

l-

......

1280

~

W

A

(17)

liD

~

1920
1960
2000
2040
2080
2120
2160
2200

1

(16)

1

(15)

1/0

v

A

2240
2280

2320
2360
2400
2440

I ( 10)"

v

2480
2520

.....

o

(14)

~

......

11) ....

(13)

-.r--

-:
Number

Fuse
Fllst Fuse Number -+- Increment
Pin numbers shown are for JT and NT packages.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-213

TIBPAL20R4·7M
TIBPAL20R4·5C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
logic diagram (positive logic)
(1)

CLK

--'-t>

INCREMENT

10
(2)

1\
4

B

16

12

24,

20

2B

32

\

36

(23)

......

I-

FIR ST
FU SE
IIIU MBERS 4g

(3) ...

-

(4)"

80
120
160
200
240
280

.
......

320
360
400
440
480
520
560
600

H

....,

,

-;
960
1000
1040
1120
1160
1200
1240

I-

1600

'-=>....
"
)-

1760
1800
1840

-

1880

....

1920

"

2000
2040
2080
2120
2160
2240

2280
2320
2360
2400
2440
2520

l-

I

11)"

I

I

v

~19

B
10

V

o

fl]

~B )0

n

1.1.

Cl

~

10

(17 )0

~

1

(16

1

(15

.!,14)
I

Fu se Number

First Fuse Number + Increment
Pin numbers shown ar e f 0 r J T and NT packages.

2-214

o

~

2480

10)

1/0

~

2200

""""1.-

I

Cl

1960

(9)

....
"

~

1640
1680
1720

(B)

v

Cl

....

1400

(7) .....

(21)

0

Cl

1280
1320
1360
1440
1480
1520
1560

l

1/0

;r- ~~.,

r-;r-

1080

(~

(22)

~

640
680
720
760
800
840
880
920

5)

l

'"

I

L-

INCREMENT

"0

(~

..

4

8

12

16

20

24

28

32

...

36

"

(231

......

FI RST
FU SE
0
N UMBERS 40
80
120
160
200
240
280

(31

(~

...

(51

...

(61~

...

).-.

H

r

640
680
720
760
800
840
880
920

~r

-rv-'"
DjrJ

'"

960
1000
1040
1080
1120
, 160
1200

t>-

1280
1320

r-L.->-

1440
1480
1520
1560

"

1600
1640

3:
w

5>

w

(1

a:

I.-

~

Q.

t-

O

~

:::>

V

Q

Cl

oa:

f-----J

Q.

~

B

J-

I.-

Cl

1880

'"

1920
1960
2000
2040

)--

2080
2120
2160

~
10

b

(1 6)

I.-

a

Cl

2200

A

'"

2240

2280

(10)~

b

~

To

1840

...

'R

2O )0

V

~Cl

1240

1800

(~

~

t:G

10

Cl

1680

....

o

10

:::..t

1720
1760

(~

1,'0

Cl

1400

...

kl1

(221

.....

320
360
400
440
480
520
560
600

1360

(~

F-

2320
2360
2400
2440
2480
2520

~1

(151

I/O

.J----'
~14)

(1.!!,r-

....

'I

I

~ OE

Fus e Number -;= First Fuse Number + Increment
Pin numbers shown are for JT and NT packages.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-215

TlBPAL20R8·7M
TlBPAL20R8·5C
HIGH IMPACT·XTM PAL® CIRCUITS
logic diagram (positive logic)
(1 )

C LK

~

INCREMENT

"0

4

8

16

12

"
20

24

28

32

(2)

-;..

FIR ST
FU SE
a
NU MBERS 40
80
120
160
200
240
280

(~

,
(23)

.....

)-~

320
360
400
440
480
520
560
600

r,J-

640
680
720
760
800
840
880
920

J-

1040

10ao

J-

1120
1160
1200
1240

v

()

~~~g

r-

1480
1520

v

..,..

1560

"

1600
1640
1680
1720
1760

r-

1800

(8) ....

~~;g

.....

"
f-

2160
2200

~
10

Q

1:1 (20

-vo-

Q

C1

B
B

1:1 (19

10

v

Q

1(18

IO

Q

v

C1

fl]
1.
fl]

1(17

IO

Q

v

~

lO

(16

v

"

2320
2360
2400
2440
2480
2520

'1

~~ -vo-

Q

(15

Q

C1

.....

"
(14)

1)

"1- - I

-v

4-

3)_

Fus e Number = First Fuse Number + Increment
Pin numbers shown are for JT and NT packages.

2·216

v

1- - - - - '

2280

-;..

1:1(21

C1

C1

2240

10)

~
IO

C1

1920
1960
2000
2040
2080
2120

9) ....

~

C1

1360
1400
1440

(7) ....

Q

~ r-----'

960
1000

6)

~~
C1

(~

4) ...

36

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OE

TIBPAL20LB·7M, TlBPAL20R4·7M, TIBPAL20R6·7M, TlBPAL20RB·7M
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER
VCC

Supply voltage

VIH
VIL

High-level input voltage

IOH

High-level output current

MIN

NOM

MAX

4.5

5

5.5

V

5.5

V

O.B
-2

V
mA

2

Low-level input voltage

IOL

low-level output current

fclock

Clock frequency

tw

Pulse duration, clock

tsu
th
TA

Setup time, input or feedback before CLKt

Hold time, input or feedback after CLKt

a

12

mA

100

5

MHz
ns

5

ns

7

ns

a

I High
I Low

-55

Operating free-air temperature

fclock, t w , tsu, and th do not apply for TIBPAL20LB'.

UNIT

25

125

ns
DC

~
w

:>w

a:

0..

tO

;:)

C

oa:
0..

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • OAU.AS, TEXAS 75265

2-217

TIBPAL20L8·7M, TIBPAL20R4·7M, TIBPAL20R6·7M, TlBPAL20R8·7M
HIGH·PERFORMANCE IMPACT·X™ PAl® CIRCUITS
electrical characteristics over recommended free-air operating temperature range
PARAMETER

TEST CONDITIONS
VCC '" 4.5 V,

II'" -18 rnA

VOH

VCC '" 4.5 V,

10H'" -2 rnA

Val

Vcc '" 4.5 V,

10l'" 12 rnA

10ZH

Vcc '" 5.5 V,

Va '" 2.7 V

Vcc'" 5.5 V,

Va", 0.4 V

Vcc '" 5.5 V,

VI '" 5.5 V

Vcc '" 5.5 V,

VI '" 2.7 V

10Zl

I 0, Q outputs
I 1/0 ports

II
1/0 ports
IIH

All others
1/0 ports

III

Vcc '" 5.5 V,

All others

10S~

o:::IJI
C

c:

(")
~

TYpt
-0.8

2.4

0.25

Va - 0.5 V

Vcc'" 5.5 V,

V

100
-20

~A
~A

-0.25

rnA

1
100

rnA

25

-70

V

0.5

-0.1
-30

UNIT
V

3.2

VI'" 0.4 V

Vcc'" 5.5 V,

MAX
-1.5

-0.2
-250

~

rnA
rnA

Outputs open,

VI'" 0,
OE at VIH

Ci

I", 1 MHz,

VI'" 2 V

pF

Co

I", 1 MHz,

Va'" 2 V

pF

Cclk

I", 1 MHz,

VClK '" 2 V

pF

ICC

""0

MIN

VIK

210

t All typical values are at VCC '" 5 V, T A '" 25 ·C.
:t: Not more than one output should be shorted at a time, and duration of the short circuit should not exceed 1 second. Set
to avoid test equipment ground degradation.

Vo

rnA

at 0.5 V

switching characteristics over recommended operating free-air temperature range (unless otherwise
noted I
PARAMETER

""0

::rJ

Irnax§

S

FROM
without leedback

TEST CONDITIONS

TO

with internal leedback

100

(counter configuration)

tpd

1,1/0

0,1/0

tpd

ClK

Q

ten

OE!

Q

Rl '" 2000,
R2 '" 2000,
See Figure 1

UNIT

MHz

74
ns
ns
ns

tdis

OEt

Q

ns

ten

1,1/0

0,1/0

ns

tdis

1,1/0

0,1/0

ns

§See 1m ax SPECIFICATIONS. 1m ax does' not apply lor TlBPAl20l8'.

2-218

MAX

100

with external leedback

~

MIN

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL20LB-5C, TIBPAL20R4-5C, TIBPAL20R6-5C, TlBPAL20RB-5C
HIGH-PERFORMANCE IMPACT-X™ PAL® CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) ................................................... 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range ...................................... OOC to 75°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER

MIN

NOM

MAX

UNIT

4.75

5

5.25

V
V
V

VCC

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

10H

High-level output current

-3.2

IOL

Low-level output current

24

mA

fclock

Clock frequency

125

MHz

tw

Pulse duration, clock

5.5

2

0.8

0

I High
I Low

mA

4

ns

4

ns

tsu

Setup time. input or feedback before ClKt

4

ns

th

Hold time. input or feedback after CLKt

0

TA

Operating free-air temperature

0

ns
DC

fclock. two tsw and th do not apply for TIBPAL20LS·.

25

75

w

:>==w
~

Q.

I-

o
~
c
o
~

Q.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-219

TIBPAL20L8·5C, TlBPAL20R4·5C, TlBPAL20R6·5C, TlBPAL20R8·5C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
electrical characteristics over recommended free·air operating temperature range
PARAMETER

o
c
c:
n-I

Typt

MAX

UNIT

-0.8

-1.5

V

0.3

0.5

II = -18 rnA

VOH

Vce - 4.75 V.

IOH -

VOL

Vcc = 4.75 V.

10l = 24 rnA

Vcc = 5.25 V.

Vo = 2.7 V

Vcc = 5.25 V.

Vo = 0.4 V

II

Vcc = 5.25 V.

IIH*

vcc = 5.25 V.

III *
10S§

Vcc = 5.25 V.

VI = 0.4 V

Vcc - 5.25 V.

Vo = 0.5 V

ICC

Vcc = 5.25 V.
Outputs open.

VI = O.
OE at VIH

Ci

1= 1 MHz.

VI = 2 V

pF

Co

1= 1 MHz.

Vo = 2 V

pF

Cclk

1= 1 MHz.

VClK = 2 V

pF

10Zl

::a

MIN

Vcc = 4.75 V.

10ZH

'"0

TEST CONDITIONS

VIK

O. Q outputs
110 ports
0, Q outputs
1/0 ports

-3.2 iliA

2.4

V
20
100

V
~A

-2Q
-100

~A

VI = 5.5 V

1

rnA

VI = 2.7 V

25
-0.25

rnA

-130

rnA

210

rnA

-30

-70

~A

t All typical values are at VCC = 5 V. TA = 25°C.
* For 110 ports. the parameters IIH and III include the off-state output current.
§ Not more than one output should be shorted at a time, and duration of the short circuit should not exceed 1 second. Set

Va at 0.5 V

to avoid test equipment ground degradation

switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

FROM

TO

TEST CONOITIONS

'"0

::a
m

Imax§

<
-

with internal leedback

:E

UNIT

MHz

115

= 200 D.
= 200 D.

5

ns

4.5

ns

See Figure 1

3

ns

Q

5.5

ns

OEI

Q

ns

ten

1.110

0.110

tdis

1.110

0.110

5.5
6.5
6.5

tpd

1.110

O. 110

tpd

ClK!

Q

tpd

ClK

ten

OEI

tdis

tskew

Rl
R2

Internal

Feedback

ns
ns
ns

Skew between registered outputs

§See 1m ax SPECIFICATIONS. Imax does not apply lor TIBPAl20l8·.

2-220

MJ!.X

125

(counter configuration)

with external feedback

m

MIN

125

without leedback

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAs 75265

TIBPAL20L8·7M. TlBPAL20R4·7M. TIBPAL20R6·7M. TIBPAL20R8·7M
TIBPAL20L8·5C. TIBPAL20R4·5C. TIBPAL20R6·5C. TIBPAL20R8·5C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

preload procedure for registered outputs (see Note 3)
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. Each register is preloaded
individually by following the steps given below.
Step
Step
Step
Step

1.
2.
3.
4.

With VCC at 5 volts and Pin 1 at VIL, raise Pin 11 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse Pin 1, clocking in preload data.
Remove output voltage, then lower Pin 11 to VIL. Preload can be verified by observing the voltage
level at the output pin.

~
~
a:

preload waveforms (see Note 3)

~/

PIN 11

I--tsu~
I- t
j+- td ---.I
~ tw-+l

I

PIN 1

I

I

a..
t-

d-1

O

I

____-:- __-:-:_--II

1
. . ._-_-_-_-_-_:_-_-_-_-_-_-_ :::

:

REGISTERED I/O

I

I

I

'>_--<

-----'.

Q

oa:
a..

I

I

:::;)

I
I

I

"M

;t:<'-O-U-T-P-U-T-- vOH

"-. _ _ _ _ _ _ _.J. -

-

Vll

"-.- - - - - VOL

NOTE 3: Id ~ Isu = Iw = 100 ns 10 1000 ns.
VIHH = 10.25 V 1010.75 V.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-221

TIBPAL20LB·7M, TIBPAL20R4·7M, TlBPAL20R6·7M, TIBPAL20R8·7M
TIBPAL20LB·5C, TlBPAL20R4·5C, TIBPAL20R6·5C, TIBPAL20R8·5C
HIGH·PERFORMANCE IMPACT·X TN PAL® CIRCUITS
f max SPECIFICATIONS
f max without feedback. see Figure 1
In this mode. data is presented at the input to the flip-flop and clocked through to the Q output with no
feedback. Under this condition. the clock period is limited by the sum of the data setup time and the data
hold time (tsu + th). However, the minimum f max is determined by the minimum clock period
(twhigh +twlow).
Thus, f max without feedback =

1
or
(tw high + tw low)
(tsu + th)
ClK

lOGIC

ARRAY

"'0

::D

o
C

c:

FIGURE 1. f max WITHOUT FEEDBACK

f max with internal feedback. see Figure 2

o

-I
"'0

This configuration is most popular in counters and on-chip state-machine designs. The flip-flop inputs are
defined by the device inputs and flip-flop outputs. Under this condition, the period is limited by the internal
delay from the flip-flop outputs through the internal feedback and logic array to the inputs of the next flip-flop.

::D

Thus, f max with internal feedback =

S
m

Where tpd ClK-to-FB is the deduced value of the delay from ClK to the input of the logic array.

m
~

1
(tsu +tpd ClK-to-FB)
ClK

lOGIC

Q

ARRAY

j + - - tsu

---I~W"_ tpd CLK-tO-FB--+!

FIGURE 2. f max WITH INTERNAL FEEDBACK

2-222

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL20L8·7M,TIBPAL20R4·7M, TlBPAL20R6·7M, TIBPAL20R8·7M
TIBPAL20L8·5C, TlBPAL20R4·5C, TIBPAL20R6·5C, TIBPAL20R8·5C
HIGH·PERFORMANCE IMPACT·XT. PAL® CIRCUITS
f max SPECIFICATIONS

f max with external feedback. see Figure 3
This configuration is a typical state-machine design with feedback signals sent off-chip. This external
feedback could go back to the device inputs or to a second device in a multi-chip state machine. The slowest
path defining the period is the sum of the clock-to-output time and the input and setup time for the external
signals (tsu+tpd ClK-to-O).
Thus. f max with external feedback

=

1
(tsu +tpd ClK-to-O)
CLK

LOGIC
ARRAY

ai--....-4.NEXT DEVICE

3:
w

rl4-----tsu---......+l4-tPd CLK.to.a-+ ts u1

:>
w

FIGURE 3. f max WITH EXTERNAL FEEDBACK

a:

Q.
f--,

.........

.....

>8

tr:l
v

a

C1

1

~~l

tO

::J
C

oa:
Q.

110

FIGURE 4. PROPAGATION DELAY FROM ClKt to 1/0. THRU LOGIC ARRAY

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TEXAS 76265

2-223

TIBPAL20L8·7M, TIBPAL20R4·7M, TIBPAL20R6·7M, TIBPAL20R8·7M
TIBPAL20L8·5C, TIBPAL20R4·5C, TIBPAL20R6·5C, TIBPAL20R8·5C
HIGH·PERFORMANCE IMPACT·XTM PAl@ CIRCUITS
PARAMETER MEASUREMENT INFORMATION

51
R1
FROM OUTPUT_-4II-_"'_"'_ _ TEST
UNDER TEST
POINT

CL
(See Nole A)

R2

LOAD CIRCUIT FOR
3·STATE OUTPUTS

~- •. ~.~

3V
TIMING
INPUT

"'0
::rJ

4-----

It-

tsu~th

~
1.5V

;IV

o

C

I

c:
-I

L1.5V

INPUT

"'0
::rJ

--'1

Ipd

m

I
I

IN.PHASE
OUTPUT

~

I.

I

IJ

T

1_ _ •
Ipd -,.....--...

OUT·OF·PHASE
OUTPUT
(See Nole D)

1.5V

\L' \ 1.SV

0

I4---+a- Ipd
I J - - VOH
I ~V

I

Ipd

!I:"":": VOH
T 1.5V

I

3V

0

OUTPUT~3V

CONTROL
(Iow.level

enabling)

WAVEFORM 1
S1 CLOSED
(See Nole B)

- - VOL

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

---JI

----

I

1.5 V

1.5 V

/I

~---- 0

I"n....l

i+"
I
I I I dls -+! l+I \ ___ L~I_ ~ 2.5V
1.5 V
..L
I.
I ___ 'L
I
.
- L VOL +0.5 V

I

VOL

~I

3 V
0

VOLTAGE WAVEFORMS
PULSE DURATIONS

\-;.~V--3V

~

t.,

LOW.LEVEL~I
.
I
PULSE
1.5 V 1.5 V

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

(")

S
m

PULSE~··~·

o

ct--1.5V

DATA
INPUT

o

HIGH.LEVEL

'/1.5 V

. ~
len -rI

WAVEFORM 2
S1 OPEN
(See Nole B)

I!

l

I+-

14-

IdIS-+!

~~ _

-

VOL

I ...i'
~- VOH

£.-=-.

_

_

::H;.5 V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. 3·STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten, 5 pF for tdis'
B. Waveform 1 is for an output with intern'al conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR '" 10 MHz. tr = tf '" 2 ns. duty cycle = 50%.
D. When measuring propagation delay times of 3-5tate outputs, switch 51 is closed.
E. Equivalent loads may be used for testing.

FIGURES

2·224

TEXAS .."

INSfRUMENTS
POST OFFICE BOX 665303 • DALLAS. TEXAS 75265

TlBPAL20LB·10M, TIBPAL20R4·10M, TIBPAL20R6·10M, TIBPAL20RB·10M
TIBPAL20LB·7C, TIBPAL20R4·7C, TlBPAL20R6·7C, TIBPAL20RB·7C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
D3307, OCTOBER 1989

•

•

Functionally Equivalent, but Faster than
Existing 24·Pin PALs

•

Preload Capability on Output Registers
Simplifies Testing

•

Power-Up Clear on Registered Devices (All
Register Outputs are Set Low, but Voltage
Levels at the Output Pins Go High!

•

TlBPAL20LB'
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE

High·Performance Operation:
f max (no feedback!
TIBPAL20R'·7C Series, .. 100 MHz
TIBPAL20R'·10M Series ... 62.5 MHz
f max (internal feedback!
TIBPAL20R'·7C Series ... 100 MHz
TIBPAL20R'·10M Series ... 62.5 MHz
f max (external feedback!
TIBPAL20R·7C Series ... 74 MHz
TIBPAL20R'·10M Series ... 55.5 MHz
Propagation Delay
TIBPAL20L'·7C ... 7 ns Max
TlBPAL20L'·1OM ... 10 ns Max

(TOP VIEW)

Vcc
I

o
110
1/0
1/0
1/0
1/0
1/0

o

TIBPAL20LS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
U

U
___ Uz>_o

Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs

•

Security Fuse Prevents Duplication

•

Dependable Texas Instruments Quality and
Reliability

4

3

2

1 28 27 26

25
24
23
22

110
110
110
NC
110

19

110

10

110

"
121314 15 16 17 18

DEVICE
'PAL20L8
'PAL20R4
'PAL20R6
'PAL20R8

3-STATE

I INPUTS

o OUTPUTS

14
12
12
12

2
0
0
0

REGISTERED
Q OUTPUTS

1/0
PORTS

0

6
4

NC - No internal connection

2
0

Pin assignments in operating mode

4 (3-state buffers)
6 (3-state buffers)
8 (3-state buffers)

--QU--O
ZZ
(!)

description
These programmable array logic devices feature high speed and functional equivalency when compared
with currently available devices. These IMPACT-X~ circuits combine the latest Advanced Low-Power
Schottky t technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes
for conventional TTL logic. Their easy programmability allows for quick design of custom functions and
typically results in a more compact circuit board. In addition, chip carriers are available for further reduction
in board space.
All of the register outputs are set to a low level during power-up. Extra circuitry has been provided to allow
loading of each register asynchronously to either a high or low state. This feature simplifies testing because
the registers can be set to an initial state prior to executing the test sequence.
The TIBPAL20' M series is characterized for operation over the full military temperature range of - 55°C
to 125°C. The TIBPAL20' C series is characterized for operation from OOC to 75°C.
IMPACT-KIIII is a trademark of Texas Instruments Incorporated.
PAL® is a registered trademark of Monolithic Memories, Inc.
t Integrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975.

This document contains information on products in
more than ana phase of development. The status of
88ch device is indicated on the pagafs) specifying its
electrical characteristics.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright

© 1989, Texas Instruments Incorporated

2-225

TIBPAL20R4·10M, TIBPAL20R6·10M, TIBPAL20R8·10M
TIBPAL20R4·7C, TIBPAL20R6·7C, TIBPAL20R8·7C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
TIBPAL20R4'
M SUFFIX . .. JT PACKAGE
C SUFFIX . .. JT OR NT PACKAGE

TIBPAL20R4'
M SUFFIX . .. FK PACKAGE
C SUFFIX . .. FN PACKAGE

ITOPVIEW)

(TOP VIEW)

CLK

VCC

~ u t3 0
--uz>_",

I

110
110

4

3 2

1 2827 26

Q

I

5

25

Q

I

6

24

Q

23

Q

22

NC

21

Q

Q

Q

110
110

10

20

Q

110

11

I

4:.:::......-.:.::...

GN 0

110

12131415 1617 18

0E

TIBPAL20R6'
M SUFFIX . .. JT PACKAGE

TIBPAL20R6'
M SUFFIX . .. FK PACKAGE
C SUFFIX . .. FN PACKAGE
nop VIEW)

C SUFFIX . .. JT OR NT PACKAGE
(TOP VIEW)

CLK

I

u ~ 0
__ :J
uz>_'"

110

4321282726

VCC
Q
Q
Q
Q

Q

25

Q

24

Q

I

7

23

Q

NC

8
9

22

NC
Q

19

Q

Q

Q

10
11

1/0
I

12131415 16 17 18

GND L...l:;:""'-..:::Jf.J OE

TIBPAL20R8'
M SUFFIX . .. JT PACKAGE
C SUFFIX . .. JT OR NT PACKAGE

TIBPAL20R8'
M SUFFIX . .. FK PACKAGE
C SUFFIX . .. FN PACKAGE

(TOP VIEW)

(TOP VIEW)

CLK
I

VCC
I
Q

4

3

2

1 28 27 26

Q

25

Q

24

Q

23

Q

22

Q

Q
Q

I

Q

I

12131415161718

GND L...l:;:""'-..:::J,.JOE

- -

~ ~Io

-

0

l!J

NC-No internal connection

Pin assignments in operating mode

2-226

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

TlBPAL20L8-10M. TlBPAL20R4-10M
TIBPAL20L8-1C. TIBPAL20R4-1C
HIGH-PERFORMANCE IMPACT-X™ PAl® CIRCUITS
functional block diagrams (positive logic)
TlBPAl20lB'

EN ;;'1

&

vh-----o
b-----o
b-...._ ....-I/O

14

b--e-I_.....-I/O
6

h--6I_.....-

liD

h-a+_4__-

liD

h--a-I_.....-

liD

h--a-I___-

liD

6

TIBPAl20R4'

OE-----------------~

CLK-------------------_________~
&

;;'1

1=0

vb----- 0

10

t--i-----{;=l-

20X C>
12

0

20

h---I--o

vb-....- ......_.J._-

I/O

b-__~......_.J._-

1/0

b-.....J._..._+--

I/O

h-....~...._+_-I/O

4

'V denotes fused inputs

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-227

TIBPAL20R6·10M, TIBPAL20R8·10M
TIBPAL20R6·7C, TlBPAL20R8·7C
LOW·POWER HIGH·PERFORMANCE IMPACT·XT. PAL® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20RS'

~--------~----------------

1/0

(17)

>-- ..

1720
1760

1800

1/0

:>--d

1840

1880

"

1920
1960

2000
2040
2080
2120

(16)

110

2160
2200

"

2240

2280

:>--d

2320
2360
2400

I ( 10)-

(18)

~

V

.....r---'

1600

(9)_

I 10

1520
1560
1640
1680

(8) _

(19)

2440
2480
2520

(15)

o

(14)

v

~

I( 1!.!r-

.....

-

(13)

Fuse Number == First Fuse Number + Increment
Pin numbers shown are for JT and NT packages.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2·229

TIBPAL20R4·10M
TIBPAL20R4·7C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
logic diagram (positive logic)
CLK

~----------------------~I7.N~C~RE~M~E~N~T~---------------------------'
/~O--~4~---B----~1~2~--1~6~~~~--~24----~2~B--~3~2~~3~6~\

,

121~

"

FI RST

FU SE
NU MBERS

~V

141

v

(51

1""1-

0
40
80
120
160
200
240
280

)-

320
360
400
440
480
520
560
600

161

'0

f>'.J

~
V

1560

()

1600
1640

1680

>--

1720

1760
1800
1840

1S80

.....

1920
2040

~
~
'0

2120

2160
2200
2240
2280
2320

11BI

a

' ] 1171

a

V""

'0

c,

v

1161

J

r---..

2360
2400
2440
2480

]-

2520

I

....

1151

"~

1/0

1/0

.....

I

1'2J.r-

a

c,

:J

2080

!

1141
I

r

l

~

31-

use Number = First Fuse Number + Increment
Pin numbers shown are for JT and NT packages

2-230

a

c,

]

1960

2000

1101~

~I
v

~b

-

\-

1280

1520

...

V

1- I---'

"

960
1000

1480

II~

I10

c,

1360
1400
1440

IIBI

1211

D-~r:J ".,

1320

1171

I10

'.J

1120
1160
1200
1240

...

~

1221

~~o

640
680
720
760
800
840
880
920

1040
1080

I

1231

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

OE

TIBPAL20R6·10M
TlBPAL20R6·7C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
logic diagram (positive logic)
elK

11 }

v

..

INCREMENT
/

0

4

8

12

16

20

24

28

32

I~

....

4} ....

1231

.A

J]

80
120
160
200
240
280

"

320
360
400
440
480
520
560
600

)-

"'l.....

>-

800

840
880
920

G-

960

1000
1040

1080

L>-

1120
1160
1240

.A

1320

1360
1480
1520
1560

10

~~

Cl

1880

<}

1920

1960
2000

>-~

2040
2080
2120
2160
2200

Cl

1.1
rv--

11 61

o

.A

2240
2280
2320
2360

'~....

~

~!

B

>-

1800

I~
....

~

11

Cl

.A

1840

l!!l.t

12010

"

rv--

10

"

1600
1640
1680
1720
1760

~ iJ
Cl

o

t--

>-

1400
1440

1,'0

Il,.. '"

iJ

10

Cl

"

1280

17}

10

ID

1200

16}

122}

B
Cl

640
680
720
760

15}

"

'"

FI RST
FU SE
0
NU MBERS 40

I~

36

2400
2440
2480
2520

~

115}

1/0

....

,I

111

TT
Fuse Number = First Fuse Number + Increment
Pin numbers shown are for JT and NT packages

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

1141
~

+}
I

OE

2-231

TlBPAL20R8·10M
TlBPAL20R8·7C
HIGH IMPACT·XTM PAl® CIRCUITS
logic diagram (positive logic)

c lK

(11

v

INCREMENT
"0

4

8

16

12

"

20

24

28

32

~
FIR ST
FU SE
0
NU M8ERS 40

(31",
v

4)

(51

640
680
720
760
800
840
880
920

-t.

...

(6)",

...r

.;1

'"
)-

(20

B
r~~
V

IO

Q

Q

C1

.....

"

D-

1520
1560

.....

""

1600
1720

)-

1800

)----'

8....

B
10

(18
Q

C1

~
10

:l(17
....

Q

C1

1840
1880

1.....,

1920

1960
2000

r-

2040

2080
2120
2160
2200

J....

(16

1.

(15

A
IO

Q

C1

....

2240
2280

~

2320
2360
2400
2440
2480

...

1

R

.....

1760

10)~

Q

"

960
1000
1040
1080
,120
'160
1200
1240

1680

9)

(21

V

.(.C1

1640

.4-

Wl

b

C1

1440
1480

(8)",

Q

---'

) - J~

1360
1400

4-

(23)

....

C1

mg
(71",

,

>- El]~

80
120
160
200
240
280
320
360
400
440
480
520
560
600

36

vo-

Q

C1

2520

....

.....,

(14)
11 ...

~ 1-1

"1.-

~;31_
OE

Fuse Number =:: First Fuse Number + Increment
Pin numbers shown are f o r J T and NT packages.

2-232

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

TlBPAL20LB-' OM, TIBPAL20R4-' OM, TIBPAL20R6-' OM, TIBPAL20RB-' OM
HIGH-PERFORMANCE IMPACT-XTM PAl® CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125°e
Storage temperature range ......................................... - 65 °e to 150 °e
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER

VCC
V,H
V,L
IOH
lOL

Supply voltage
High-level input voltage (see Note 2)

MIN

NOM

MAX

UNIT

4.5

5

5.5

V
V
V
mA
mA
MHz
ns
ns
ns
ns

2

5.5
O.B
-2

0

62.5

Low-level input voltage (see Note 2)
High~level

output current

low-level output current

12

fclock

Clock frequency

tw

Pulse duration, clock (see Note 2)

tsu
th

Hold time, input or feedback after ClK;

TA

Operating tree-air temperature

LHigh
I low

Setup time, input or feedback before CLKt

8
8
10
0
-55

25

125

~

W

°c

fclock, t w , tsu, and th do not apply for TlBPAl20l8'.
NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system andlor
tester noise. Testing these parameters should not be attempted without suitable equipment.

:;
w

a:
c..
I-

(.)
:::;)

Q

oa:
c..

r.R:Uf:'~!~::E: ~::rg~·:::':·:f"d::.r::~~~~

Cha.....ristic data .... DlliBr _ificationl .r. design
goall, r.... I••trum.nts resarves III. right 10 chlnge

Dr discontinue thase products with aut notice.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-233

TIBPAL20L8·10M, TIBPAL20R4-10M, TlBPAL20R6-10M, TIBPAL20R8-10M
HIGH-PERFORMANCE IMPACT-XTM PAl® CIRCUITS

electrical characteristics over recommended operating free-air temperature range
PARAMETER
~

4.5 V,

II

VOH

Vee

~

4.5 V,

10H

~

Val

Vee

~

4.5 V,

10l

~

10ZH'

110 ports
0, Q outputs

~

5.5 V,

Va

20

2.7 V

100
-20
-250

~A

~

5.5 V

Vee

~

5.5 V,

VI

~

2.7 V

Ill'
10S§

Vee
Vee

~

5.5 V,
5 V,

VI ~ 0.4 V
Va ~ 0.5 V
Outputs open

lec

Vee ~ 5.5 V,
VI ~ OV,
1- 1 MHz,
I ~ 1 MHz,
I ~ 1 MHz,

VI - 2 V
Va ~ 2 V

6

pF

VelK ~ 2 V

6

pF

110 ports

I All others

~

OE

~

0.4 V

V

VI

VIH

1
100
25
-0.08 -0.25
-30
-70 -130

I TA
I TA

~ 25°e and 125°e

140

~ -55°C

220
250

5

~A

mA
~A

mA
mA
mA
pF

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted) (see Figure 5)
PARAMETER

FROM

Imax'

-I

~

0.5

Va

C

S
m

0.3

V
V

3.2

5.5 V,

eclk

m

12 mA

UNIT

5.5 V,

eo

"tI

2.4

-2 mA

MAX
-1.5

~

Ci

:a

~

-0.8

~

IIH

(')

~

Typt

Vee

110 ports

II

C

Vee

MIN

-18 mA

Vee

10Zl'

o

~

Vec

0, Q outputs

"tI
:a

TEST CONDITIONS

VIK

I

TO

MIN

Without leedback

62.5

With internal feedback (counter configuration)

62.5

With external leedback

55.5

Typt

MAX

UNIT

MHz

tpd

1,1/0

0,110

3

6

10

tpd

ClKi

Q

2

4

8

ns
ns

tpd#

elKi

Feedback input

5

ns

ten

OEI

Q

2

ns

OEi

Q

2

4
4

10

tdis

10

ns

ten
tdis

1,110

0,1/0

1.1/0

0,1/0

3
2

6
6

10
10

ns
ns

tAli typical values are at Vee ~ 5V,TA ~ 25°e.
'110 leakage is the worst case 01 10Zl and III or 10ZH and IIH, respectively.
§ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Set Va at 0.5 V
to avoid test equipment ground degradation.
, See section on f max specifications.
#This parameter applies to TlBPAL20R4' and TIBPAL20R6' only (see Figure 2 for illustration) and is calculated from the measured f max
with internal feedback in the counter configuration.

r.R~'::'Uf:'~~~~!E: ~.::r:.:a:::':":l'·J::.r.::::.c:

Characteristic data and otller specifications a.. dasign

2 -2 34 goals, Taxaslnstruments ,es...es tile right ta chango
or discontinue these products without nDtice.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL20LB-7C, TlBPAL20R4-7C, TlBPAL20R6-7C, TIBPAL20RB-7C
HIGH-PERFORMANCE IMPACT-XTM PAl® CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage. Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75 °e
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins duri~g a programming cycle.

recommended operating conditions
PARAMETER
Vee

Supply voltage

VIH

High-level input voltage (see Note 2)

Vil

Low-level input voltage (see Note 2)

IOH

High-level output current

IOl

Low-level output current

fclock

Clock frequency

tw

Pulse duration, clock (see Note 2)

MIN

NOM

MAX

UNIT

4.75

5

5.25

V

5.5

V

2

0.8

-3.2
24
100

0

I

V
mA
mA
MHz

High

5

ns

I low

5

ns
ns

tsu

Setup time, input or feedback before CLKt

7

th

Hold time, input or feedback after elK;

0

TA

Operating free-air temperature

0

25

75

ris
De

fclock. t w , tsu, and th do not apply for TIBPAl20l8'.
NOTE 2: These are absolute voltage levels with respect to the ground pin of the device and include all overshoots due to system and/or
tester noise. Testing these parameters should not be attempted without suitable equipment.

PRODUCTION DATA do•• ments contain information

current IS of publicltion date. Products conform to
Ipacifications per the terml of Texil Instruments

=~~:~i~ai~:I'::li ~~:i:; ~~,::.:~:~~ not

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-235

TIBPAL20L8·7C, TIBPAL20R4·7C, T1BPAL20R6·7C, TIBPAL20R8·7C
'HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
electrical characteristics over recommended operating free·air temperature range
PARAMETER

TEST CONDITIONS

= 4.75 V.
= 4.75 V.
= 4.75 V.

VIK

Vee

VOH

Vee

VOL

Vee

10ZH t
10ZL t

Vee - 5.25 V.

II
IIHt

Vee

IlL t

Vee

10S§

Vee
Vee
Vee

=
=
=
=
=

II

=

10H

= -3.2 mA
= 24 mA

2.4

TYpt

MAX

UNIT

-0.8

-1.5

V

3.2
0.3

V

Vo - 2.7 V

100

~A

= 0.4 V
= 5.5 V
VI = 2.7 V
VI = 0.4 V
Va = 0.5 V

-100

~A

0.2

mA

Va

5.25 V.

VI

5.25 V.
5.25 V.
5.25 V.

V
0.5

10L

5.25 V.

MIN
-18 mA

-30

25

~A

-0.08 -0.25

mA

-70

-130

mA

160

210

mA

Vee'" 5.25 V.

Outputs open
VI - 2 V

5

pF

eo

VI = 0 v.
f - 1 MHz.
f - 1 MHz.

=

2 V

6

pF

eclk

f

=

6

pF

lee
ei

=

Vo

1 MHz.

VeLK

2 V

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted) (see Figure 6)
PARAMETER

f max '

"

I

FROM

TO

MIN

Without feedback

100

With internal feedback (counter configuration)

100

With external feedback

74

II

Typt

1 or 2 outputs switching

3

5.5

7

8 outputs switching

3

6

7.5

2

4

6.5

1.1/0

tpd

eLKi

a

tpd"

eLKi

Feedback input

ten

OEI

a
a

2

0.1/0
0,1/0

2

6

tdis

OEi

ten

1,1/0

tdis

1,1/0

tskew l

Skew between registered outputs

UNIT
MHz

tpd

0.1/0

MAX

ns
ns

3

ns

4

7.5

ns

2

4

7.5

ns

3

6

9
9

ns

0.5

ns
ns

t All typical values are at Vee = 5 V, TA = 25°e.
t 1/0 leakage is the worst case of 10ZL and IlL or 10ZH and IIH, respectively.
§ Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second. Set Va at 0.5 V
to avoid test equipment ground degradation.
, See section on f max specifications.
#This parameter applies to TIBPAL20R4' and TlBPAL20R6' only (see Figure 2 for illustration) and is calculated from the measured f max
with internal feedback in the counter configuration.
~ This parameter is the measurement of the difference between the fastest and slowest tpd (CLK-to-Ql observed when multiple registered
outputs are switching in the same direction.

PRODUCTION DATA

documonts contoin info,mation

current as of publication data. Products conform to
spacifications per the terms of Texis Instruments

2-236 ::=~~ir,.i:I~1oi ~:~~~i:; :'lo::s,:~~~~ not

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL20LB·' OM, TIBPAL20R4·' OM, TIBPAL20R6·' OM, TIBPAL20RB·' OM
TIBPAL20LB·7C, TIBPAL20R4·7C, TIBPAL20R6·7C, TIBPAL20RB·7C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algori~hms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997·5666.

preload procedure for registered outputs (see Note 3)
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state·machine sequence. Each register is preloaded
individually by following the steps given below.
Step
Step
Step
Step

1.
2.
3.
4.

With VCC at 5 volts and Pin 1 at VIL, raise Pin 11 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse Pin 1, clocking in preload data.
Remove output voltage, then lower Pin 11 to VIL. Preload can be verified by observing the voltage
level at the output pin.

preload waveforms (see Note 3)

PIN 11

----J/

~td-1

j4- t su-+j

!+- td -...t

M-tw-./

I

I

I

I

iii

PIN 1

.I_-_-'---~-_-_-_i
.
_-_-_-_-_-__

I

I

I

I
I

I

I
I

--------~~
REGISTERED 110

VIL

I

I
I

~

VIH

I
I

~~--O-UT-P-U-T---VOH
INPUT

~

......- - - - - - - "

- VIL

......- - - - - VOL

NOTE 3: td ~ tsu = tw = '00 ns to 1000 ns.
VIHH = 10.25 V to 10.75 V.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2·237

TIBPAL20L8·' OM, TIBPAL20R4·' OM, TIBPAL20R6·' OM, TIBPAL20R8·' OM
TlBPAL20L8·7C, TIBPAL20R4,7C, TIBPAL20R6·7C, TIBPAL20R8·7C
HIGH·PERFORMANCE IMPACT·XTN PAL@ CIRCUITS
f max SPECIFICATIONS
fmax without feedback. see Figure 1
In this mode, data is presented at the input to the flip-flop and clocked through to the Q output with no
feedback. Under this condition, the clock period is limited by the sum of the data setup time and the data
hold time (tsu +th). However, the minimum f max is determined by the minimum clock period
(twhigh +twlow).
1
Thus, f max without feedback =
1
or - - - .
(tw high+tw low)
(tsu +th)

FIGURE 1. f max WITHOUT FEEDBACK

f max with internal feedback. see Figure 2
This configuration is most popular in counters and on-chip state-machine designs. The flip-flop inputs are
defined by the device inputs and flip-flop outputs. Under this conditiQn, the period is limited by the internal
delay from the flip-flop outputs through the internal feedback and logic array to the inputs of the next flip-flop.
Thus, f max with internal feedback =

1
(tsu + tpd ClK-to-FB)
Where tpd ClK-to-FB is the deduced value of the delay from ClK to the input of the logic array.
ClK

lOGIC

Q

ARRAY

r--ISU

---I~~14f-- Ipd elK-Io-FB ~

FIGURE 2. f max WITH INTERNAL FEEDBACK

2-238

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 656303 • DALLAS. TEXAS 75265

TlBPAL20LB·10M, TIBPAL20R4·10M, TlBPAL20R6·10M, TlBPAL20RB·10M
TlBPAL20LB·7C, TlBPAL20R4·7C, TIBPAL20R6·7C, TlBPAL20RB·7C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
f max SPECIFICATIONS
f max with external feedback. see Figure 3
This configuration is a typical state-machine design with feedback signals sent off-chip. This external
feedback could go back to the device inputs or to a second device in a mUlti-chip state machine. The slowest
path defining the period is the sum of the clock-to-output time and the input and setup time for the external
signals (t su + tpd CLK-to-Q).
Thus. f max with external feedback =

1
(tsu +tpd CLK-to-Q)
ClK

lOGIC

Q

1--.....-1. NEXT

DEVICE

ARRAY

~r----tsu------'+"'-tpd ClK-to-Q -+tsu...j
FIGURE 3. f max WITH EXTERNAL FEEDBACK

-

~t>y ~.....-

Q

Cl

-!>b= .
I---

J

~ 1

~

1/0

FIGURE 4. PROPAGATION DELAY FROM CLKt to 110. THRU LOGIC ARRAY

TEXAS .."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2·239

TlBPAL20L8·' OM,TlBPAL20R4·' OM, TlBPAL20R6·' OM, TlBPAL20R8·' OM
TlBPAL20L8·7C, TIBPAL20R4·7C, TIBPAL20R6·7C, TIBPAL20R8·7C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
PARAMETER MEASUREMENT INFORMATION

CL

R2

(See NoleA)

LOAD CIRCUIT FOR
3·STATE OUTPUTS
[3.5 V] (3 V)
TIMING
INPUT

DATA
INPUT

'/1.5 V

4-----

[0.3 V] (0)

tsu~th

~-:-::-

-.-l' 1.5 V

[3.5 V] (3 V)

~

[0.3 V) (0)

HIGH.LEVEL~
PULSE'
,

[3.5 V] (3 V)

LOW.LEVEL~'
,
PULSE'
1.5V 1.5V

[3.5 V) (3 V)

,

M-Iw
--PI
,

----

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

L
INPUT --./j

1.5V

l\

T

IN.PHASE
I
OUTPUT---'I-.J
Ipd

~Ipd

1/

I

I J __
1.5V I
I

--k--toI

OUT·OF·PHASE
OUTPUT
(See Nole D)

\L
' \ 1.5V

OUTPUT
CONTROL
(Iow·level
enabling)

~

~ Ipd

v:-::
L ~~VV

VOH

1.5 V

I

len

V OH

\::..V
VOL

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

[0.3 V] (0)

VOLTAGE WAVEFORMS
PULSE DURATIONS

- - - - [3.5 V] (3 V)
" - 1.5V
[0.3 V) (0)

Ipd~

[0.3 V) (0)

-.I

II
CL -

i+"

I I

I "\
I
len

-+!

WAVEFORM 2
S10PEN

-

[0.3 V) (0)

-

LI
~3.3V
}r:-

I

OL

-

I
Io,.-+! l+-

WAVEFORM-1--+I""IV+ 1.5V - I
S1 CLOSED
(See Note B)

[3'5v)(3v)

1.5 V

l

I+-

I

L--~
-

T -

10,.-+1 1+ L

VOL
VOL +0.5 V

\:=E:...
I ..:t

(SeeNOleB)~~___

VOH

:::.5 V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. 3·STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten, 5 pF for tdis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR s 10 MHz, tr and tf S 2 ns, duty cycle = 50%. For M suffix use
the voltage levels indicated in parentheses. For C suffix, use the voltage levels indicated in brackets [ J,
O. When measuring propagation delay times of 3-state outputs, switch S1 is closed.
E. Equivalent loads may be used for testing.

FIGURES

2·240

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIBPAL20L8·10M, TlBPAL20R4·10M, TIBPAL20R6·10M, TIBPAL20R8·10M
TIBPAL20L8·1C, TIBPAL20R4·1C, TIBPAL20R6·1C, TIBPAL20R8·1C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE

PROPAGATION DELAY TIME
vs
SUPPLY VOLTAGE
8

200~~---+--~--+_--~-+--~~



~>

180

.
~

160

Q.

I

7

6

tPHl (I, 1/0 to 0, 1/01

r--

5

.~

.'"g-

140

u

~
120~~---+--~--+---~-4--~~

__ __ __ __
-75 -50 -25
0
25
50

100~~

~

~

~

L-~

__

75

a:

~PHl (ClK to 0)
I
I

3

tPlH (ClK to 0)
TA = 25°C
CL = 50 pF
R1 = 200 !l
R2 - 390!l
1 OUTPUT SWITCHING

2

o

~~

100 125

4.75
5.25
5
VCC-Supply Voltage-V

4.5

TA-Free-Air Temperature- °C
FIGURE 6

FIGURE 7

PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE

PROPAGATION DELAY TIME
vs
LOAD CAPACITANCE

8

.
c::
I

7

I O~

.,

6

j::

5 ~tPlH (I, 1/0 to 0,1/0)

E

.

>

Qj

a

4

c::
CI

.~

.'"
Q.

!:!
a..

3
2

o

l'\\. \\,

\10 to

t~.:..i--

~ tjHl TlK to 0)

1

tPlH (I, 1/0 to 0, 1/0)

4

c::

o

Q.
::l

VI

..
I'

I

I-"'"

- ---I--

~~~O\
tl'\.l'\ \

VCC - 5 V
Cl-50pF
R1 - 200!l
R2 - 390!l
1 OUTPUT SWITCHING

.

5.5

VCC = 5 V
TA = 25°C ---+----+----+-----1
R1 - 200 !l
R2 = 390 !l ----'----6~_+-__I

14

I'.,

12

j::

10 ~--+---4--_7"~,...::.=+"""""""""::::....,,::=---1

E

.
~

>

8~--+~~~~~~=+--~--~
tpLH (CLK to 0)

c::

.~

6 ~~4,.<~~!:............:=FtPHL (elK to Q)

'"
~
CI

4

a:

I
I
1-~~~--*_-t~P~Hl~(I~,I~/0_rtO-O~,~I,/O~)--___1

2~--~--~----+_--~--~--~

O~--~--~--~----L---~--~

-75 -50 -25
0
25
50 75 100 125
TA-Free-Air Temperature- °C

o

100

200
300
400
500
CL - Load Capacitance - pF

600

FIGURE 9

FIGURE 8

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALlAS. TEXAS 75286

2·241

TIBPAL20L8·10M, TlBPAL20R4·10M, TIBPAL20R6·10M, TlBPAL20R8·10M
TIBPAL20L8·7C, TIBPAL20R4·7C, TlBPAL20R6·7C, TlBPAL20R8·7C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
TYPICAL CHARACTERISTICS
POWER DISSIPATION
vs
FREQUENCY
8-BIT COUNTER MODE
1000
V

I=

III

~J

c

E

II

TA

0

.~

·i
III

is

..,,-

TA

=I O!C
= 25°C

'"c

II

900

I
c

V

V V
V
.....V

BOO

/

..... II~

:2
~

.~

",11

6. -

/

0.5

;3c:o::~ 04.
" 0....
"
! - 0.3
.c
"

Q.

I

0.6

.I!l

~
0

Q

VCC = 5 V
TA = 25°C
R1 = 200 {J
R2 = 390 {J
Cl = 50 pF
B-Bit Counter

0.7

tJl

TA = BOoC

Q;

O.B

I

CC

~

SKEW BETWEEN OUTPUTSt
vs
NUMBER OF OUTPUTS SWITCHING

.....

0.2

I

0.1

~

700

Q.

tJl

~

..."
.!f

600
1

4
10
F-Frequency-MHz

40

0
3

2

100

4
6
7
5
Number of Outputs Switching

FIGURE 10

FIGURE 11
PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING
B
7

III

C

.
.
I

E
i=
>
a;
Q

..,

J

6 _

tpHl (I. 110 to O. 110)

5 _

tplH (I. I/O to O. 110)

, • + •

4

tPHL\CLK~

3

ttlH (ClK to Q)-

c

..'"

I

0

c.
0

.t

VCC = 5 V
TA = 25°C
Cl = 50 pF
R1 = 200 n
R2 = 390 {J

2

o

+

o

2

3

4

5

6

Number of Outputs Switching

FIGURE 12
tOutput switching in the same direction (tpLH compared to tpLH/tpHL to tPHLl

2-242

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

7

B

B

TIBPAL20L8·12M, TIBPAL20R4·12M, TIBPAL20R6·12M, TIBPAL20R8·12M
TIBPAL20L8·10C, TIBPAL20R4·10C, TIBPAL20R6·10C, TIBPAL20R8·10C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
03336. OCTOBER 19B9

•

TIBPAL20LB'
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE

High·Performance Operation:
f max (w/o feedback)
TIBPALZOR'·10C Series ... 71.4 MHz
TIBPAL20R'·12M Series ... 62.5 MHz
f max (internal feedback)
TIBPAL20R'·10C Series ... 58.8 MHz
TIBPAL20R'·12M Series ... 52.6 MHz
f max (external feedback)
TIBPAL20R'·10C Series ... 55.5 MHz
TIBPAL20R'·12M Series ... 48 MHz
Propagation Delay
TIBPAL20L'·10C ... 10 ns Max
TIBPAL20L'·12M ... 12 ns Max

ITOP VIEW)

Vcc
I

o
I/O
110
110
110
110
110

o
I

•

Functionally Equivalent to, but Faster than,
Existing 24·Pin PALs

•

Preload Capability on Output Registers
Simplifies Testing

•

Power·Up Clear on Registered Devices (All
Register Outputs are Set Low, but Voltage
Levels at the Output Pins Go High)

•

GN D

'-L':"'''':'::J-'

TlBPAL20LS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
u

u
___ uz>_o

Package Options Include Both Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs

•

Security Fuse Prevents Duplication

•

Dependable Texas Instruments Quality and
Reliability

4

3

:2

,

28 27 26
25

I

24

I

23

n

NC

21
10

20

11

19

110
110
110
NC
110
110
110

12 13 14 lS 16 17 18

DEVICE
'PAL20LB
'PAL20R4
'PAL20R6
'PAL20RB

3·STATE

I INPUTS

o OUTPUTS

14
12
12
12

2
0
0
0

REGISTERED
Q OUTPUTS

I/O
PORTS

0

6
4
2
0

4 /3-state buffers)
6 (3-5tate buffers)
8 (3-5tate buffers)

--ou--o
zz
l?

NC - No internal connection
Pin assignments in operating mode

description
These programmable array logic devices feature high speed and functional equivalency when compared
with currently available devices. These IMPACT-X'· circuits combine the latest Advanced Low-Power
Schottky t technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes
for conventional TTL logic. Their easy programmability allows for quick design of custom functions and
typically results in a more compact circuit board. In addition, chip carriers are also available for further
reduction in board space.
Extra circuitry has been provided to allow loading of each register asynchronously to either a high or low
state. This feature simplifies testing because the registers can be set to an initial state prior to executing
the test sequence.
The TIBPAL20'M series is characterized for operation over the full military temperature range of - 55°C
to 125°C. The TIBPAL20'C series is characterized from OOC to 75°C.
IMPACT-X is a trademark of Texas Instruments Incorporated
PAL is a registered trademark of Monolithic Memories Inc.
tlntegrated Schottky-Barrier diode-clamped transistor is patented by Texas Instruments, U.S. Patent Number 3,463,975.

This document contains information on products in
more than one phase of development. The status of
each device is indicated on the pagels) specifying its
electrical charactBristics.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1989, Texas Instruments Incorporated

2-243

TIBPAL20R4-12M. TIBPAL20R6-12M. TlBPAL20R8-12M
TIBPAL20R4-10C. TIBPAL20R6-10C. TIBPAL20R8-10C
HIGH-PERFORMANCE IMPACT-XTM PAL® CIRCUITS
TIBPAL20R4'
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE

TIBPAL20R4'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE

(TOP VIEW)

(TOP VIEW)

ClK

VCC

:Jut;

I

0

--uz>_:.::

I/O
4

110

3

2

1 28 27 26

Q
Q
Q
Q

1/0
Q

I

2:i

Q

NC

22

NC

1/0
1/0

21

Q

10

20

Q

11

19

1/0

12131415161718

GNO y.:~.......:c::J...' OE

TIBPAL20R6'
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE

TIBPAL20R6'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)

(TOP VIEW)

ClK

25
24

~ u ij e
__ uz>-_

VCC
I
110

4

3

2

1 28 27 26

Q

25

Q

Q

24

Q

22

NC

21

Q

10

20

Q

11

19

Q

Q
Q
Q

Q

I
I

110
I

GN 0 y.:",,-.....:c::J...'

1713;4151617 18

OE

TIBPAL20R8'
M SUFFIX ... JT PACKAGE
C SUFFIX ... JT OR NT PACKAGE

TIBPAL20R8'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE

(TOP VIEW)

(TOP VIEW)

elK

VCC
I
Q

4

3

2

~

28 27 26

Q

25

Q

24

Q

23

Q

22

Q

21

Q

10

Q

11

I

GNO

20
19

12131415161718

Lt:..::.........:.~ OE

- -

~ ~Io

-

0

C)

NC-No internal connection

Pin assignments in operating mode

2-244

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Q

TlBPAL2DLB·12M, TIBPAL2DR4·12M
TIBPAL2DL8·1 DC, TlBPAL2DR4·1 DC
HIGH·PERFORMANCE IMPACT·X'" PAL® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20LB'

EN .. ,

&

'\l[}----O

40X 64

[}----O

'4

20

1:>--.+........-1/0
I:>-...r......-- 1/0

b41tt-+t-1/0

TIBPAL20R4'

OE

EN
C,

CLK

r---s:40 X P4

rwxi>

'2
4

-+'---

~

'V

~

'V

,.,

8

1=0 '\l

---l-

'D

-t-t-i-

-l---c;--+-

o
~

o
~

--,
EN

r---

,.,
'\l

'"
"'\

~

-i-

"'\

--""7

-~

"'\

o
o

1/0
1/0

1/0
1/0

4
I

t\.." denotes fused inputs

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-245

T1BPAL20R6·12M, TIBPAL20R8·12M
TIBPAL20R6·10C, T1BPAL20R8·10C
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
functional block diagrams (positive logic)
TlBPAL20R6'

0e----------------~-------~

1760
1800
1840

c,

Q

Q

Q

(17)

v

Q

....

1880

~

1920
1960
2000
2040
2080
2120
2160
2200

;=J
~ I

2240
2280
2320
2360
2400
2440
2480
2520

(16)

I/O

j

I

(11 ) ..

...

""

I
I

(15)

:J

4-

!,14)
I

'J

I

~

Fuse Number = First Fuse Number + Increment
Pm numbers shown are for JT and NT packages

2-248

,D

c,

1520

(10)

f61rJ ""

.r

1560

(!;

1

.r

1440
1480

I

(21) I

...

.....,

640
680
720
760
800
840
880
920

1360
1400

I (B) ..

r

j

'"

1320

I(~

I /0

1"-

1120
1160
1200

(6) ..

(22)

V

960
1000
1040
1080

I

(23)

.A

""
80
120
160
200
240
280

1(5) ....

1'1

4

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

I/O

TlBPAL20R6·12M
TIBPAL2DR6·1 DC
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
logic diagram (positive logic)
elK

11)

......!C

INCREMENT

"0

II~

"

4

B

12

16

20

24

2B

32

36

"

123)

.A

......

FIR ST
FU SE
0
NU MBERS 40

80
120
160
200
240
280

...,

(3)

II ~

....

(5) ....

....

--=>-

320
360
400
440
480
520
560
600

)--

::r.;-

960
1000
1040
1080
1120

.A

"

1360
1440
1520

1560

~

~
....

119

r----'

~B
V

A

"

~~~g
1680

::r-

1720
1760
1800

1840
1880

....

1920
1960
2000

~
,.

2080
2120

iJ

117

""V"'"

c,

r----'

~

2040

1rl116
V

c,

2160

.A

2200

2240
2280

l

2320
2360

2400

(15)

.A~J

2440
2480

1~

fl]

)0

c,

c,

1480

v

,. ~

~
::r- ,.
~

1240

1400

(9)

~

c,

1320

-;...

o
,.
~I.l""

. . . .::r- ,.

1280

IB)

1.'0

.A -

"

640
680
720
760
800
840
880
920

1200

171

122)

c,

1160

(6) ...

-J

2520

I/O

'"

114)

II 11 )

-'}-+-I
"
113)

L.::}--. OE

Fuse Number = First Fuse Number + Increment
Pin numbers show n are fo r J T and NT packages

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-249

TIBPAL20R8·12M
TlBPAL20R8·10C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
logic diagram (positive logic)

c lK

'....v

(1)

INCREMENT

"0

4

8

16

12

"
20

24

28

32

(2) ....

36

,
(23)

.....
~

FIR ST

FU SE

0
40
80
'20
'60
200
240
280

NU MBERS

(3)"

4)"
v

(5)"

b- ~;J'"

10t-'-v--

....
....

320
360
400
440
480
520
560
600

r"1~

640
680
720
760
800
840
880
920

>-

1080

r-

1120
1160
1200

1240

1400
1440

)-

1480
'520

1560

"1....

1720

)-

1760

1800
1880

"

1920
1960
20DO

2040

LJ-

2080
2120
2160

2200

1....

2240

2280
2320

r-

2360

2400

I

2440
2480
2520

IO

a

(19

'-v--

a

1......

a

~ 1..
10

5
5
10

10

Cl

~
10

Cl

(18

(17

v

a

~

a

~

a

..r----'

(14)

(1 1)

.j- r-I
3)_
OE

Fuse Number = First Fuse Number + Increment

4'

Pin numbers shown are for JT and NT packages

2·250

v

Cl

Cl

1840

1~

~(20

~
1..
~
10

Cl

1600
1640
1680

""""1-

a

"1- r----

m~

(9)

(21

Cl

1360

(8)

i:l.
"V""

..r r----

1040

(7)

~
IO

Cl

960
1000

(6)

a

Cl

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265'

T1BPAL2DLB·12M, T1BPAL2DR4·12M, TIBPAL2DR6·12M, TIBPAL2DRB·12M
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS

absolute maximum ratings over operating free·air temperature range (unless otherwise notedl
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free·air temperature range ...............' . . . . . . . . . . . . . . . . . .. - 55 DC to 125 DC
Storage temperature range ......................................... - 65 DC to 150 DC
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER

MIN
4.5
2

Vee
VIH
Vil
IOH
IOl
fclock

Supply vollage

Iw

Pulse duration, clock

Isu
Ih
TA

Setup time, input or feedback before CLKt

High-level input voltage

NOM
5

MAX
5.5
5.5
0.8
-2
12
62.5

25

125

Low-level input voltage
High-level output current
Low-level output current

Clock frequency

I High
I low

Hold lime, inpul or feedback after elK!
Operating free-air temperature

fclock' Iw, Isu' and Ih do not apply for TIBPAl20l8'.

0
9
9
12
0
-55

UNIT
V
V
V
mA
mA
MHz
ns
ns
ns
ns
°e

~

W

:;
w
a:
0..

I-

o
~
c

oa:
0..

PRODUCT PREVIEW d......nll OIl111io infarmati••
on P!'odlCIJ in the Ionn.ti...r daigl ~huo of
d...lop....t, C•• r.ctarllti. data anil olh.r
lpacifiCltiaM Ira dnIa....... T_I iMtru_1I
........ the right to ....... or d"OInll••••_
pr.d.CIJ with.ut loti...

TEXAS •

IN STRUM ENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2·251

TIBPAL20L8-12M •. TlBPAL20R4-12M. TIBPAL20R6-12M. TlBPAL20R8-12M
HIGH-PERFORMANCE IMPACT-XTM PAl® CIRCUITS

electrical characteristics over recommended free-air operating temperature range
PARAMETER

TEST CONDITIONS

VIK

VCC

VOH
VOL

VCC

10ZH

VCC

= 4.5 V,
= 4.5 V,
= 4.5 V,
= 5.5 V,

VCC

=

VCC

=

10ZL

VCC

I 0, Q

outputs

11/0 ports

II

I I/O ports
I All others

IIH

."

::u

o
C

c:

(")

m
:$
m
~

=

MIN

-18 rnA

10L
Vo

= -2 rnA
= 12 rnA
= 2.7 V

5.5 V,

Vo

=

5.5 V,

VI

10H

=

=
=
=

5.5 V,

VI = 0.4 V
Vo = 0.5 V

ICC

VCC
5.5 V,
Outputs open,

Ci

f

Co

f

Cclk

f

=
=
=

5.5 V,

3.2
0.25

0.5

V

100

pA

-20
-0.25

pA
rnA
rnA

2.7 V

-30

-70

VI = 0,
OE at VIH

=2V
=2V
VCLK = 2

UNIT
V
V

1

VI

VCC

MAX
-1.5

100

5.5 V,

VCC

-0.8

5.5 V

=

IlL

=

2.4

Typt

0.4 V

VCC

10S*

pA

25
-0.25

rnA

-130

rnA

210

rnA

1 MHz,

VI

7

1 MHz,

Vo

8

pF

12

pF

1 MHz,

V

pF

switching characteristics over recommended operating free-air temperature range (unless otherwise
n.oted)
PARAMETER

FROM

TO

TEST CONDITIONS

without feedback

MIN

Typt

MAX

UNIT

62.5

with internal feedback

frnax§

MHz

52.6

(counter configuration)

-I
."
:zJ

II

with external feedback

48
3

8

12

ns

2

5

10

ns

Q

3

8

10

ns

OE!

Q

2

8

10

ns

ten

I, I/O

0, I/O

3

8

12

ns

tdis

I, I/O

0, I/O

2

8

12

ns

tpd

I, I/O

0, I/O

R = 390 II,

tpd

CLK!

Q

See Figure 1

ten

OE

tdis

t All typical values are at VCC

=

5 V, TA

=

R = 750 II,

25°C.

:J: Not more than one output should be shorted at a time, and duration of the short circuit should not exceed 1 second. S~t

to avoid test equipment ground degradation.
§See f rnax SPECIFICATIONS. f max does not apply for TIBPAL20L8'.

PRODUCT PREVIEW dD"".11111 OIl1111i. i.famalla.
D. prodoOll i. the lor..lli.. Dr ....... ~."" of
dlvaID, •••I. Chor.elorlolic dall ••~ Dlh.r

,;;

2-252 =~::"

~~r.:'",;,T=~~=,:,.:

prodoOll wlthlHll ROIie..

TEXAS •

INSTRUMENlS
POST OFFICE !;lOX 655303 • DALLAS, TeXAS 75265

Vo

at 0.5 V

TlBPAL2DL8·' DC. TlBPAL2DR4·' DC. TIBPAL2DR6·' DC. TIBPAL2DR8·' DC
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75°C
Storage temperature range ............................... :......... - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER

MIN
4.75
2

Supply vollage

VCC
VIH
VIL
IOH
IOL
fclock

Clock frequency

Iw

Pulse duration, clock

Isu
th
TA

Selup lime. inpul or leedback before CLK!
Hold lime, inpul or leedback aller CLK!

Highwlevel input voltage

NOM
5

MAX
5.25
5.5
O.S
-3.2
24
71.4

25

75

Low-level input voltage
High-level output current
Low-level output current

a

I High
I Low

7
7
10

a
a

Operating free-air temperature

UNIT
V
V
V
mA
mA
MHz
ns
ns
ns
ns

°c

Iclock' Iw, Isu, and Ih do nol apply lor TIBPAL20LS'.

PRODUCTlOIi DATA documants contain information
currant 8S of publicatiaR data. Products conform to

specifications par the tarms of Taxas Instrumants

::C::~~i~8{~::ri =:~ti:r :.~o:=::~::-.~s not

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75265

2·253

TIBPAL2DLB·1 DC, TlBPAL2DR4·1 DC, TIBPAL2DR6·1 DC, TIBPAL2DRB·1 DC
HIGH·PERFORMANCE IMPACT·XTMPAL® CIRCUITS

electrical characteristics over recommended free-air operating temperature range
PARAMETER

TEST CONDITIONS

MIN

VIK

Vcc = 4.75 V.

II = -18 mA

VOH

VCC = 4.75 V.

10H = -3.2 mA

VCC = 4.75 V.

10L - 24 mA

VOL
0, Q outputs

VCC = 5.25 V,

Vo = 2.7 V

VCC = 5.25 V,

Vo = 0.4 V

II
IIHt

VCC = 5.25 V,

VI = 5.5 V
VI = 2.7 V

IlL t

VCC = 5.25 V,

lOS!

VCC = 5.25 V,

VI = 0.4 V
Vo - 0.5 V

VCC = 5.25 V,

VI = 0,

Outputs open,

OE at VIH

10ZH
10ZL

1/0 ports
0, Q outputs
1/0 ports

VCC = 5.25 V,

ICC

Typt

MAX

~0.8

-1.5

2.4

V
V

0.3

0.5
20
100
-20
-100
0.2

-30

UNIT

-70

V
~A

~

mA

25

~

-0.25

mA

-130

mA

210

mA

Ci

1= 1 MHz,

VI = 2 V

7

Co

1= 1 MHz,

Vo = 2 V

8

pF
pF

Cclk

1= 1 MHz,

VCLK - 2 V

12

pF

switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

FROM

TEST CONDITIONS

TO

with internal feedback
Imax'

MIN

MAX

58.8

(counter configuration)

UNIT

MHz

55.5

with external feedback

3

8

10

ns

2

5

8

ns

7

ns

6
6

10

ns

10

ns

B

10

ns

B

10

ns

tpd

I, I/O

0, I/O

tpd

ClK!

Q

R1 = 200O,

tcd#

ClKt

feedback

See Figure 1

ten

DEI

Q

2

tdis

OE!

Q

ten

I, I/O

0, I/O

tdis

I, I/O

0, I/O

2
3
2

tskew

Typt

71.4

without feedback

R2 = 390O,

0.5

Skew between registered outputs

ns

t All typical values are at VCC = 5 V, TA = 25°C.
:j: For 1/0 ports, the parameters IIH and IlL include the off-state output current.
§ Not more than one output should be shorted at a time, and duration of the short circuit should not exceed 1 second.
~ See Imax SPECIFICATIONS. f max does not apply lor TIBPAL20LB'.
#This parameter applies to TlBPAL20R4' and TIBPAL20R6' only (see Figure 2 for illustration) and is calculated from the measured f max
with internal feedback in the counter configuration.

PRODUCTION DATA documents contain information
current as of publication date. Products conform to

2 254 specifications par the tarms of Texas Instruments
-

:'~=~i~ai~:1~1e ~!:~:~i:; :,~o::~::::A~r~~S not

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL20L8·12M, TIBPAL20R4·12M, TlBPAL20R6·12M, TlBPAL20R8·12M
TlBPAL20LB·1 DC, TIBPAL20R4·1 DC, TIBPAL20R6·1 DC, TlBPAL20R8·1 DC
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications. algorithms. and the latest information on hardware. software. and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available. upon request. from the nearest TI field sales office. local
authorized TI distributor. or by calling Texas Instruments at (214) 997-5666.

preload procedure for registered outputs (see Note 3)
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. Each register is preloaded
individually by following the steps given below.
Step
Step
Step
Step

1.
2.
3.
4.

With VCC at 5 volts and Pin 1 at V,L. raise Pin 11 to V,HH.
Apply either V,L or V,H to the output corresponding to the register to be preloaded.
Pulse Pin 1. clocking in preload data.
Remove output voltage. then lower Pin 11 to V,L. Preload can be verified by observing the voltage
level at the output pin.

preload waveforms (see Note 3)

~

....._-_-__ _ VIHH

PIN 11

-

VIL

I+-tsu~

PIN 1

t+- td --+I

j+--td-+!
14- tw--.t

I

I

)

I

____-:-__--.,.:_---1

>-<

IL_-_-_-....;..-_-_-.;..:_-_-_-_-_-_-_ VIH

:
I
I

I
I

I
I

I

REGISTERED 1 1 0 - - - -.....

VIL

I
I

I

j:!(r-O-U-T-P-UT-- VOH

"M

_ _ _ _ _ _ _ _J

-

VIL

- - - - - - VOL

~ Isu ~ Iw ~ 100 ns 10 1000 ns.
VIHH ~ 10.25 V 10 10.75 V.

NOTE 3: Id

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-255

TIBPAL20L8·12M, TlBPAL20R4·12M, TIBPAL20R6·12M, TlBPAL20R8·12M
TlBPAL20L8·10C, TIBPAL20R4·10C, TlBPAL20R6·10C, TIBPAL20R8·10C
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
f max SPECIFICATIONS
f max without feedback. see Figure 1
In this mode, data is presented at the input to the flip-flop and clocked through to the Q output with no
feedback. Under this condition, the clock period is limited by the sum of the data setup time and the data
hold time (tsu +th). However, the minimum f max is determined by the minimum clock period
(twhigh + twlow).
1
Thus, f max without feedback =
1
or - - - .
(tw high+tw low)
(tsu +th)
CLK

LOGIC

ARRAY

FIGURE 1. f max WITHOUT FEEDBACK

f max with internal feedback. see Figure 2
This configuration is m,Ost popular in counters and on-chip state-machine designs. The flip-flop inputs are
defined by the device inputs and flip-flop outputs. Under this condition, the period is limited by the internal
delay from the flip-flop outputs through the internal feedback and logic array to the inputs of the next flip-flop.
Thus, f max with internal feedback =

1
(tsu + tpd ClK-to-FB)

Where tpd ClK-to-FB is the deduced value of the delay from ClK to the input of the logic array.
CLK

LOGIC

ARRAY

Q

~t5U---i+"""- tpd CLK-to-FB ~
FIGURE 2. f max WITH INTERNAL FEEDBACK

2-256

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL2DL8·12M, TIBPAL2DR4·12M, TlBPAL2DR6·12M, TIBPAl20R8·12M
TIBPAL2DL8·1 DC, TIBPAL2DR4·1 DC, TIBPAL2DR6·1 DC, TIBPAl2DR8·1 DC
HIGH·PERFORMANCE IMPACT·X"" PAL® CIRCUITS
f max SPECIFICATIONS
f max with external feedback. see Figure 3
This configuration is a typical state-machine design with feedback signals sent off-chip. This external
feedback could go back to the device inputs or to a second device in a mUlti-chip state machine. The slowest
path defining the period is the sum of the clock-to-output time and the input and setup time for the external
signals (tsu +tpd CLK-to-Q).
Thus. f max with external feedback =

1
(tsu + tpd CLK~to-Q)
ClK

QI----.-....

lOGIC
ARRAY

NEXTOEVICE

FIGURE 3. f max WITH EXTERNAL FEEDBACK

l--

-

10
C1

)--

I("

~
....

t+

1=0

">-

Q

F1

~

l-}--

...

r-J

110

)--

X"
....

-I~

...

FIGURE 4. PROPAGATION DELAY FROM CLKt to I/O. THRU LOGIC ARRAY

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-257

TlBPAL20LB·12M, TIBPAL20R4·12M, TIBPAL20R6·12M, TIBPAL20R8·12M
TIBPAL20LB·1 DC, TlBPAL20R4·1 DC, TIBPAL20R6·1 DC, TIBPAL20RB·1 DC
HIGH·PERFORMANCE IMPACT·xrM PAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION
SV

S1

~
R1

FROM OUTPUT _ ...._ . ._ ..._
UNDER TEST
CL
ISee No.e AI

TEST
POINT

R2

LOAD CIRCUIT FOR
THREE-STATE DEVICES

[3.5VI13V)

./.
7,1.SV
---~~ - - - 14-- 'h --.t
I+-'su-+t
1

TIMING
INPUT

-

1. S V

1.SV

- [0.3 VI (0)

1. S V

[0.3 VI (0)

,.----....

.LI 1.S V

tpd

I..
1
:

tpd

-

-

~I
1

- - [3.5 VI 13 V)

f1SV

~I

:+-~
14

~I [3.5 VI 13 V)

LOW-LEVEL
1 SV
1 SV
PULSE··
- - - -

OUT·OF-PHASE
OUTPUT
(See Note 01

ten
VOH
VOL

tpd
VOH

1 . SV

--VOL

WAVEFORM 2
S10PEN

14-

--.f I+-- tdis
-33 V

-.

I 1.S V
",-----VOL +0.5 V
~
1
1 __ -Z._
ten---+!

j+-

- -"I ~ I+-tdis T.

' _____ i-=

~

(See Note B)

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

----+I

i i iIIi

WAVEFORM 1
S1 CLOSED
(See Note B)

: r . : : 1

F

[0.3 VI (0)

OUTPUT ~[3.5VI(3V)
CONTROL
1.S V
1.S V
(low-level
I
I
.
i
-1- - - ---[0.3 VI (0)

enablmgl

tpd

,

i i i
14
~
14
~I

[0.3 VI (0)

VOLTAGE WAVEFORMS
PULSE DURATIONS

\1.S V
1 ....- - - - [ 0 . 3 VI (0)

---.I:

IN-PHASE
OUTPUT

-

)

~ 'w-----.J
1
1

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT

1.SV

I

DATA~rl---[3.5VI13V)
INPUT

~---[3.5VI13V)

HIGH-LEVEL
PULSE

VOL

VOH

I

1.5 V

LVOH-0.5 V
• 0 V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS

NOTES: A. CL includes probe and jig capacitance and is SO pF for tpd and ten, 5 pF for tdis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR oS 10 MHz, tr and tf oS 2 ns, duty cycle ~ 50%_ For M suffix, use
the voltage levels indicated in parentheses ( ). For C suffix, use the voltage levels indicated in brackets [ 1D. When measuring propagation delay times of 3~state outputs, switch S 1 is closed.
E. Equivalent loads may be used for testing.

FIGURE 5

2-258

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL20LB· t 2M. TIBPAL20R4· t 2M. TIBPAL20R6·12M. TlBPAL20RB·12M
TIBPAL20LB· t ~C. TlBPAL20R4· t ~C. TlBPAL20R6·1 ~C. TIBPAL20RB· t DC
HIGH·PERFORMANCE IMPACT·XTM PAL® CIRCUITS
TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
FREE·AIR TEMPERATURE

PROPAGATION DELAY TIME
vs
SUPPLY VOLTAGE
8

200r-~--~--~--+-~r--+---r~
VI

«

T6

E
I

~

-

7

"

180r-~--~--~--+--

~

~

2l

"6.
a.

u

2

a:

120~-4---r--1---+-~r--+---r--;

-75 -50 -25

0

25

50

75

TA e 25·C
CL = 50 pf
R1 = 2000
R2-3900
1 OUTPUT SWITCHING

100 125

4.5

FIGURE 7

PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE

I

9

I

,

,

8

..E

jPHL (,I, I/O ,to O~ ....

7

tPLH (I, I/O to 0, I/O)

.

a.

E!
a.

5 -

tfHL (~LK t~ 0)
tpLH (CLK to 0)

2

o

I

14~--1----+----r---1---~~~

,../"

-

--

1---1

4

3

PROPAGATION DELAY TIME
vs
LOAD CAPACITANCE
16~--'----r----r---'---~---'

,

VI

6

VI

.T

E
i=

-::::

~

25

'il
Q

a:
75

8 r----Y~'_;k~"""""I----'--c-::_:_:_'_--=-1
6

r-.....,..,..+:.~-*--'<--I----+----+--~

to

~

50

10r---~--~~~~~~~~--~

cQ

I

0

12~--1----+----~~~~~--~

>

IV

Vcc - 5 V
CL - 50 pf
R1 - 2000
R2-3900
1 OUTPUT SWITCHING

-75 -50 -25

5.5

VCC-Supply Voltage-V

FIGURE 6

10

5.25

5

4.75

TA-free-Air Temperature-·C

-;to

0)

o

100~~--~--~--~~~~--~~

cQ

tpLH (CLK to

3

Cl

S:?

Q

0)

c

....
g.

I

>
"ii

I.

tPHL (CLK to

4

~

::J

.

to O. I/O)

(I. 1/0

5

.!!!

Ul

i=

tPLH

>

::J

~ 160r-~--~~~~~

c
I

tpHL (I, I/O to O. I/O)

100 125

VCC = 5 V -\--t---~----+----l
TA = 25·C
R1 = 200 0 -+---4---+----1
2
R2 = 3900
o ~__1_0_U_T_PU_T__SW
__IT_C_H_IN_G~____...I.__ __ '

4

o

TA-free-Air Temperature-·C

100

200

300

400

500

600

CL -Load Capacitance-pf
FI~URE

FIGURE 8

9

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TeXAS 75266

2-259

TIBPAL20LB·12M, TlBPAL20R4·12M, TlBPAL20R6·12M, TlBPAL20RB·12M
TIBPAL20LB·10C, TIBPAL20R4·10C, TlBPAL20R6·10C, TIBPAL20R8·1 DC
HIGH·PERFORMANCE IMPACT·XTM PAl® CIRCUITS
TYPICAL CHARACTERISTICS
POWER DISSIPATION
vs
FREQUENCY
a-BIT COUNTER MODE
1000
VCC 1

==E

I

c

Til. -

i.;;;...
Q

----

OJ C

TA - 25°C
800
TA - 80°C

Gi
~

.., ~

...I

,.,... ~ ~
""
,.,... ~

.....

I

~

0.7

~

0.6

.~

VCC - 5 V
TA - 25°C
R1 - 200 n
R2-390n
CL-50pF
8-Bit Counter

(I)

s

S. a 0.5

.....

::J

~

0

;; 0.4

=cj

! -

0.3

j

0.2

~

0
Do.

Q
Do.

0.8

c

900

I

.!!

r

.

~!

I

SKEW BETWEEN OUTPUTS t
vs
NUMBER OF OUTPUTS SWITCHING

700

(I)

~

0.1

j

600

1

o

100

4
10
40
F-Frequency'-MHz

2

3

4
7
6
5
Number of Outputs Switching

FIGURE 10

FIGURE 11
PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING

10

9
~

I

tpHL \1, \I

8

otlO,lIbl'1+

~.

I

~

i=

.

>-

6

;!l
c
·8

5

~
~
~

Do.

,_
Oto O,II 01
tPLH \1,1/ I
I

7

!_

tCLK

I

\CLK to Ql

rHL~

4

tPLH

3
2

o
o

70 Q)

Vcc - 5 V
TA - 25°C
CL - 50 pF
R1 - 200 n
R2-390n
2345678
Number of Outputs Switching

FIGURE 12

TEXAS ",

INSTRUMENTS
2-260

POST OFFICE BOX 855303 • DALLAS. TeXAS 75285

8

TIBPAL20LB·20M, TIBPAL20R4·20M, TIBPAL20R6·20M, TlBPAL20RB·20M
TlBPAL20LB·15C, TIBPAL20R4·15C, TIBPAL20R6·15C, TIBPAL20R8·15C
HIGH PERFORMANCE IMPACTTMPAL® CIRCUITS

D2920, JUNE 1986-REVISED AUGUST 1989

TIBPAL20LS'
M SUFFIX .•. JT OR W PACKAGE
C SUFFIX ... JT OR NT PACKAGE

•

High Performance: f max (w/o feedback)
TIBPAL20R' C series, .. 45 MHz
TIBPAL20R' M series ... 41.6 MHz

•

High Performance ... 45 MHz Min

Vcc

•

Functionally Equivalent to, but Faster than,
PAL20L8, PAL20R4, PAL20R6, PAL20R8

o

•

Power·Up Clear on Registered Devices (All
Register Outputs are Set Low, but Voltage
Levels at the Output Pins Go High)

•

Preload Capability on Output Registers
Simplifies Testing

•

Package Options Include Plastic and
Ceramic Chip Carriers in Addition to Plastic
and Ceramic DIPs

•

Reduced ICC of 180 mA Max

DEVICE

I INPUTS

'PAl20l8
'PAl20R4
'PAl20R6
'PAl20R8

14
12
12
12

3·STATE
o OUTPUTS
2
0
0
0

REGISTERED
o OUTPUTS
0
4 (3·state buffers)

6 (3·state buffers)
8 (3-state buffers)

(TOP VIEW)

I
110
110
110
110

I/O
110

o

TlBPAL20LS'
M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
u

1/0
PORTS
6
4
2

u u

___ 2>_0

4

2 1 28 27 26
25

I

0

3

24

6

23
22

NC

description
These programmable array logic devices feature
high speed and functional equivalency when
compared with currently available devices.
These IMPACT'" circuits combine the latest
Advanced Low-Power Schottky t technology
with proven titanium-tungsten fuses to provide
reliable, high performance substitutes for
conventional
TTL
logic.
Their easy
programmability allows for quick design of
custom functions and typically results in a more
compact circuit board. In addition, chip carriers
are also available for further reduction in board
space.

110
110

21
20
19

11

12131415 16 17 18

--Ou--o
zz
(!)
NC - No internal connection
Pin assignments in operating mode

Extra circuitry has been provided to allow loading of each register asynchronously to either a high or low
state. This feature simplifies testing because the registers can be set to an initial state prior to executing
the test sequence.
The TIBPAL20'M series is characterized for operation over the full military temperature range of - 55°C
to 125°C. The TIBPAL20'C is characterized from OOC to 75°C.

IMPACT is a trademark of Texas Instruments Incorporated
PAL is a registered trademark of Monolithic Memories Inc.
t'ntegrated Schottky-Barrier diode-clamped transistor is patented
by Texas Instruments, U.S. Patent Number 3,463,975.
Copyright © 1989, Texas Instruments Incorporated

PRODUCTION DATA documents contain information

currant 8S of publication data. Products conform to

specifications par the terms of Texas Instruments

=~=~~i~8{::1~1i ~~:\~~ti~n :1~O=~:::t:~~S not

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-261

TIBPAL20R4·20M, TIBPAL20R6·20M, TIBPAL20R8·20M
TlBPAL20R4·15C, TIBPAL20R6·15C, TIBPAL20R8·15C
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
TIBPAL20R4'
M SUFFIX . .. JT OR W PACKAGE
C SUFFIX . .. JT OR NT PACKAGE

TIBPAL20R4'
M SUFFIX . .. FK PACKAGE
C SUFFIX . .. FN PACKAGE

(TOP VIEW)

(TOP VIEW)

ClK

VCC

I

~ u ts a
--uZ>_""

I
liD
liD

4

3 2

Q

Q
Q

I 28 27 26.
25
24
23

22
21

liD
liD

20
19
12 1314 15 16'7 18

G NO '-"''---'''I-' DE

TIBPAl20R6'
M SUFFIX . .. JT OR W PACKAGE
C SUFFIX . .. JT OR NT PACKAGE

TIBPAL20R6'
M SUFFIX . .. FK PACKAGE
C SUFFIX . .. FN PACKAGE
(TOP VIEW)

(TOP VIEW)

ClK

VCC
I
liD

4

Q
Q

Q

liD

I

5

I
I
NC
I

6
7

2 I 28 27 26

3

8
9

I

10

I

II

Q

19

Q

121314 IS 16 17 18

TlBPAl20RS'
M SUFFIX . .. JT OR W PACKAGE
C SUFFIX . .. JT OR NT PACKAGE

TlBPAL20RS'
M SUFFIX . .. FK PACKAGE
C SUFFIX ... FN PACKAGE

(TOP VIEW)

(TOP VIEW)

ClK

VCC
I
Q

4

Q

I
I

Q

Q
Q

Q

2

I 28 27 26
24

I

23

NC
I

22
9

21

I'

10

20

I

II

I

G NO

3

5
6

19
12131415 161718

o....o..;.:=---=~ DE

--

~ ~I~

-

a

Cl

NC - No internal connection

Pin assignments in operating mode

2-262

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 665012 • DALLAS, TEXAS 75265

TlBPAL20LB·20M, TlBPAL20R4·20M
TlBPAL20LB·15C, TIBPAL20R4·15C
HIGH·PERFORMANCE IMPACrrMPAL® CIRCUITS
functional block diagrams (positive logic)
TlBPAL20LB'

EN ~1

&

40X 64

'

12

0

20

t--t---LL-a

4
4

rv

_1-+-+--- 1/0

0-....

b-'iH_I-+-+---

1/0

b-..,I--oIt+-l---

1/0

b-..-1I--01t+-l---

1/0

denotes fused inputs

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

2-263

TIBPAL20R6·20M, TIBPAL20R8·20M
TIBPAL20R6·15C, TIBPAL20R8·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
functional block diagrams (positive logic)
T1BPAL20R6 '

Oe------------------------------V

1/0

~

.....

1600
1640
1680

'>------v

1720
1760

117)
1/0

1800
1840

I!l.r-

1880

...
~

1920
1960

2000

116)

2040

.7

2080
2120

I/O

V

2160

19) .....

2200

~
.....

2240

2280
2320
2360

I

I

11 O)~

;r

2400
2440
2480
2520

.....

-;...

11

-J

115)

o

114)

......

(13)

!It

.,J----'-'"

Fuse Number = First Fuse Number + Increment
Pin numbers shown are for JT and NT packages.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265-

2-265

TIBPAL20R4·20M
TlBPAL20R4·15C
HIGH·PERFORMANCE IMPACpM PAL® CIRCUITS
logic diagram (positive logic)
elK

11

!rv

INCREMENT
/0

1\
4

8

16

12

20

13l(-

28

24 ,

32

...

36

,\

FIR ST
FU SE
IIIU M8ERS 4g
80
120
160
200
240
280

~...

123)

.A

'.J

>-

...

)-

560
600

-J-

640
680
720
760
800
840
880

~

121)

LJ

1-

960
1040

)-

1080
1120

',60
1200

-

1240

1280

117)~

1320

>--

1360
1400
1440

>--

1480
1520
1560

D.A

'"

1600
1640
1680
1720
1760

~

lS00
1840

II~

1880

'0

c,

'.0
'0

...

119)

Q

118)

b-po--

117)

Q

Q

c,

~l

2080
2120

2160
2200

116)

1/0

'I-----'

2240
2280
2320
2360
2400
2440
2480
2520

I

Ill)

D:J

I

115)

'-J-

I

~

use Number == First Fuse Number + Increment
Pin numbers shown are for JT and NT packages

TEXAS ,.,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

110

~14)

I

2-266

,

~

1960
2000
2040

110)~

b-po-

f6i
tJ
f6i
'0

'-J

1920

1 19 )

Q

'0

1000

16)

I 10

v
r- ~~
,
""

1~920

..

I 10

-

320
360
400
440
480
520

I~

~

122)

)-

OE

TIBPAL20R6·20M
TIBPAL20R6·15C
HIGH·PERFORMANCE IMPACpM PAL® CIRCUITS
logic diagram (positive logic)
CLK

I2lt>
"0

I ( 2)-

INCREMENT
,.

4

B

12

16

20

24

2B

32

(3)_

4)_

320
360
400
440
480
520
560
600

....

~l
-

"1/""
r- ~rJ
'"
10

)--I

r-

960
1000
1040

'"

1080

)-

-

""

r-

1560

(J-

1600
1640
1680
1720
1760
1800
1880

~
.....

@J
10

IJ....

(1

'0

IJa.-

(1

C1

~

'"

1920
1960
2000
2040
2120
2160

(1 6)

a.-

10

2080

Q

e,

2200

~

2240

~

2280

2320
2360
2400
2440

11)

~
10

~ IJ
r~

D-

1840

...

(20 )Q

e1

1520

1£!r-

b-v

C1

1360

(~

~
'0

C1

~

1480

....

)Q

..,'J-

640
680
720
760
800
840
880
920

1440

(B)_

1/0

e1

1400

'4..-

1/0

"'"

1280
1320

(7)

(22)

~

1120
1160
1200
1240

(6)

(23)

~

80
120
160
200
240
280

(~-

,
"

FIR 5T
FU SE
0
NU MBER5 40

a.-

36

2480
2520

'"

(15)

1/0

,

(14)

....

,J--I

+

Fu S8 Number = First Fuse Number + Increment
Pin numbers shown are for JT and NT packages

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

OE

2·267

TIBPAL20RIi·20M
TIBPAL20RB·15C
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
logic diagram (positive logic)

c LK

I.!lt>

INCREMENT
"0

4

8

16

12

"

20

24

28

32

(21

'--i..

36

,

-

(231

FIR ST
FU SE
a
NU M8ERS 40

fejrJ ""

(31 ...

80
'20
'60
200
240
280

'>-

(41

320
360
400
440
480
520
560
600

640
680
720
760
800
840
880
920

'>-

.

.""1-

(~

'>- c,

1240

'>-

'>-

1800

(181

10

v

Q

(171

10

v

Q

C1

1840

1880

.A

.....

1920
1960

2000
2040
2080

'>-

2120

10

Q

C1

2160

2200
2240
2280

~

2320
2360
2400
2440

C1

2480
2520

~

Q

.A

,

'"

(14 I

(11~

1- ,...1

'"

Fu se Number = First Fuse ftIIumber + Increment
Pin numbers shown are for JT and NT packages

2·268

Q

'J

1600
1680
1720
1760

-t

iJ
-vo-

(191

10

C1

1640

(101

Q

~

1560

.--'-t

(201

'"

~~~g

1520

(91 ...

IJv

C1

1400
1440
1480

(81

@J
10

~
IJ
-~
'J
~
~6
-~

>-

1360

...

Q

C1

1200

(71

~

(211

V

_~

I

110

4

3 2

1 28 27 26

110

25

110

Q

24

Q

Q

23

Q

Q

22
21
20

NC

19

110

Q

110
110
I
GNO

10

11

I
.......- - ' - > - '

Q

1213 14 15 Hi 1l 18

6E

TIBPAL20RS'
FN PACKAGE
(TOP VIEW)

TIBPAL20RS'
JT OR NT PACKAGE
(TOP VIEW)

CLK

Q

VCC
I
110

4

Q
Q

'2

3

1 28 27 26

5

25

Q

6

24

Q

Q
Q

NC

Q
Q

110
I

GN 0 .......""----'.::1-'

I

Q

NC

21

Q

10

20

Q

11

19

Q

1213 1415 16 1718

6E

TIBPAL20RS'
FN PACKAGE
(TOP VIEW)

TlBPAL20RS'
JT OR NT PACKAGE
(TOP VIEW)

CLK

23

n

I

u t5
__ ::i
uz>_o

Q

4

VCC

3 2

1 28 27 26

Q

25

Q

24

Q

23

Q
Q

I

Q

G N 0 .......=--""":'::1-'

21

I

Q

I

22

NC

20

10

19

11

I

12131415 1617 18

6E

- -

~ ~Io

- a

<:J

NC-No internal connection

Pin assignments in operating mode

2-276

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS, TEXAS 75265

TIBPAL20L8·25C. TIBPAL20R4·25C
LOW·POWER HIGH·PERFORMANCE IMPACpM PAl® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20LS'

EN ;'1

&

0..----0

40X64

0..----0
20X I>
14

1/0
20

P-~-++--I/O

P-..t--++--I/O

b--'+ _ _-I/O

0...-+.......-1/0
h-.-+........-I/O
6

TlBPAL20R4'

-'EN

"0E

1.:Cl

ClK

-g;-40X64

1:

+

8

';;:'1

1-0 '"
10

-f"iO'Xi>

12

-f-

-+-

>-f-

-

Q
~

~
'"V

4

'"V

---.

-l-

-+

Q
~

o

o

...--,.
EN

;'1

'"

-;-i-

1/0
1/0

-:;-i-

1/0

---"7

1/0

-~
4

rv

denotes fused inputs

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2·277

TIBPAL20R6·25C, TIBPAL20RB·25C
LOW·POWER HIGH·PERFORMANCE IMPAC7'TM PAL® CIRCUITS
functional block diagrams (positive logic)
TlBPAL20R6'

~----------------------~fEN---'

CLK ......................................................................~

r'?1'ri:ii'ib-- a

,-;--""""1b-+---a
a

t---t---b---+- a
t---r-"""b---+- a
t--;--""""1b-+-a
...+-1-1/0

J-_..2r-~

D-.....-++-~-- I/O

TIBPAL20RS'

~ ~---------..:..------e(E:N-l
CLK ...............- -..........- - - - - - - - - -.....----~
&
40X64

r;;;--rI-iH71b--a
r---1---b~--a
r---1----b~-a

r----1-----b~--a

r--;--""""1b-:t-a
r----1---1b~--a

r--;--""""1b-:t-a
t--~t---b--+-- a

I"\..J denotes fused inputs

2-278

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIBPAL2DLB·25C
LOW·POWER HIGH·PERFORMANCE IMPACpM PAl@ CIRCUITS
logic diagram (positive logic)
(1 )

INCREMENT
/0

1\
4

8

12

16

20

24

28

32

(2)_

36

,

-

~

FI RST
FU SE
0
NU M8ERS 40

(3)_

80
120
160
200
240
280

(4)_

320
360
400
440
480
520
560
600

(5)_

640
680
720
760
800
840
880
920

...

.4-

~

'-

..-

(21)

~

(20)
I/O

V

"

>j

1200
1240

.0-

I /0

(18)

..-

I/O

1520
1560

q----'

1600
1720

"'"

1760
1800

~

(19)

""

1280
1320
1360
1400
1440
1480

1640
1680

(8) _

I/O

~

"60

(7)_

J

V

",-

1080
1120

...,..

o

--

960
1000
1040

(6)

(22)

..-

1840
1880

(17)

..-

I/O

.;.r---'

1920
1960

2000
2040
2080
2120

(9)_

(16)

.-

2160
2200

~

"

2240
2280

2320
2360

..-

2400
2440
2480

I ( 1~

I/O

2520

A

..-

(15)

o

(14)

"
(13)

..

11 )_

....r------

Pin numbers shown are for JT and NT packages.

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-279

TlBPAL20R4·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL@> CIRCUITS
logic diagram (positive logic)
ClK

(1)

-v

INCREMENT

10
(~

1\
4

S

12

16

20

24

2S

32

FIR ST
FU SE
NU MSERS

..

(3)_

(~
~

..

(~

....

4g

1

80
120
160
200
240
280

(7)_
I

"

1

(21) I

V

>-

-

'"

960
1000
1040
1080
1120
1160
1200
1240

>---

-

1280
1320
1360

)--

;M

~

rJ (20)

C,

~

'"

1600

10

c,

1840
1880
1920
1960

2000
2040
2080
2120

<->

2160
2200

tA.r

9)

o

1.

(1S)

o

r:J....

(17)

V

B
10

~

)--

1aoo

o

....

c,

C,

1520
1560

/0

1

A

'J

640
680
720
760
800
840
880
920

1680
1720
1760

(9)_
....

I /0

~

320
360
400
440
480
520
560
600

1640

(S)_
..

(22)

.. r

1440
1480

I

(23)

'"

1400

I

\
A

....

(6)

36

~

J!

o

(16)

I/O

:r-----

2240
2280

2320
2400
2440
2480
2520

(10)

(15)

:r--J!

2360

;.r--'
(14)

(1..!1.r-

1"

"
Pin numbers shown are for JT and NT packages.

2-280

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

I

~

I/O

TlBPAL20R6·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
logic diagram (positive logic)
eLK

(1)~

....
/

0

(2)_

4

8

12

16

INCREMENT
,.
20
24

28

32

FI RST
FU SE
a
NU MBERS 40

I~

(4) ....

(~

(6)

4-

...

l!lt..

I(~

..

110)_

"123)

t>- ~

80
'20
'60
200
240
280

122)

~

1/0

320
360
400
440
480
520
560
600

>- ~rJ ''''

640
680
120
160
800
840
880
920

>-

960
1000
'040
1080
1120
1160
1200
1240

>-

V

10

Q

C1

..-1.

("'l.

....

'280
1320
'360
1400
1440

>-

1480
1520

I~

36

1560

bv

~b
10

120)

a

C1

~
10

(1

"1.?""

C1

R

~

tJv

(1

J...

(1

b...

(1

C1

~ I---'

,6M
1640
'680
1720
1760
'800
1840
1880

~
"

>~

1920
'960
2000
2040
2080
2120
2160
2200

>-

10

C1

I---'

~
10

C1

"

2240
2280
2320
2360
2400
2440
2480
2520

l

115)

-1

1/0

.~

(14)

(1.!1.r-

.~

>-1

~

Pin numbers shown are "for JT and NT packages.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

OE

2·281

TIBPAL20R8·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
logic diagram (positive logic)

c lK

I"v

(1)

INCREMENT

"0

.

4

8

16

12

"
20

24

28

32

12) ....

36

,
(23)

....

FIR ST
FU SE
0
NU MBERS 40
80
120
160
200
240
3)" 280

)-

320
360
400
440
480
520
560
600

)-

...

I (

4)

-t.

I (5)"

...

I (6) ....

...

(7)"

(B) ...

~

0)"

fl;4l2'

Q

c,

-J

~

~
10

c,

.;"I

"

640
680
720
760
800
840
880
920

)-

960
.1000
1040
1080
1120
1160
1200
1240

)-

(21

Il...

(20

~
fl] ~
c,

....
"

Il...

Q

Q

Q

c,

~~~g
1360
1400
1440
1480
1520
1560

)-

I.J.

~
I.J.
~
Il...
fl]
10

"1-

"

1600
1640
1680
1720
1760
1800
1840
1880

)-

"1~

)-

Q

(17
Q

v

c,

1920
1960
2000
2040
2080
2120
2160
2200

(18

v

c,

(1 6)

Q

c,

...r

2240
2280
2320
2360
2400
2440
2480
2520

~

I.J.

...
~~
....
.

(15
Q

c,

~

(14)

....

1 )....

-t,

I

~.3)_
OE

Pin numbers shown are for JT and NT packages.

2-282

-

TEXAS.

INSTRUMENTS
POST OFfiCE BOX 656303 • DALLAS. TEXAS 75265

TIBPAL20L8-25C, TIBPAL20R4-25C, TIBPAL20R6-25C, TlBPAL20R8-25C
LOW-POWER HIGH-PERFORMANCE IMPACTTM PAL® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER

VCC

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

IOH

High-level output current

MIN

NOM

MAX

UNIT

4.75

5

5.25

V

5.5

V

2

O.B
-3.2

IOL

Low-level output current

fclock

Clock frequency

tw

Pulse duration. clock

tsu
th

Setup time. input or feedback before ClKi
Hold time, input or feedback after ClKi

TA

Operating free-air temperature

0

I High
I low

V
mA

24

mA

33

MHz

15

ns

15

ns

25
0

ns

0

ns
75

·C

fClock, two tsu. and th do not apply for TlBPAl20lB'.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS. TeXAS 75265

2-283

TIBPAL20LB-25C, TIBPAL20R4·25C, TIBPAL20R6-25C, TIBPAL20RB-25C
LOW-POWER HIGH-PERFORMANCE IMPACT'M PAL® CIRCUITS

electrical characteristics over recommended free-air operating temperature range
PARAMETER

TEST CONDITIONS

VIK

Vee - 4.75 V,

VOH

Vee
Vee

VOL
0, Q outputs

= 4.75 V,
= 4.75 V,

MIN

11- -18 mA
10H
10l

=

5.25 V,

Vo

=

Vee

=

5.25 V,

Vo

= 0.4

II

Vee
Vee

5.25 V,

III ~

Vee

10S§

=
=
=
=

5.25 V,

IIH~

Vee
5.25 V,
Vee - 5.25 V,

VI - 0,

Outputs open,

OE at VIH

10Zl

I/O ports
0, Q outputs
I/O ports

lee

5.25 V,

-0.8

= -3.2 mA
= 24 mA

Vee

10ZH

TYpt

2.4

MAX
-1.5

V
V

3.3
0.3

0.5
20

2.7 V

UNIT

V
pA

100
-20
-0.25

mA

VI

0.1

mA

VI

20

~A

-0.2

mA

-70

-130

mA

75

105

mA

V

= 5.5 V
= 2.7 V
VI = 0.4 V
Vo = 0

-30

~A

t All typical values are at Vee = 5 V, TA = 25°e.
~ For I/O ports, the parameters IIH and III include the off-state output current.
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed 1 second.

switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

FROM

f max '

with feedback
without feedback

TO

TEST CONDITIONS

Typt

25

40

33

50

3

14
10

25
15

ns
ns

MAX

UNIT
MHz

I, I/O
elKt

0,1/0
Q

Rl

ten

OE

Q

el

2

8

15

ns

tdis
ten

OEt

Q

2

8

15

ns

I, I/O

0, I/O

15

25

ns

tdis

I, I/O

0, I/O

3
3

15

25

ns

ted
ted

tAli typical values are at Vee
'f max (with 'feedback)

=

=

5 V, TA

=

=
=

=

200 0,

R2

390O,

50 pF,

See Figure 1

25°e.

1
, f max (without feedbackl
tsu + tpd (elK to Q)

= _-,-,--:c-'_--:-_

tw high + tw low

f max does not apply for TIBPAl20l8'

2-284

MIN

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2

TlBPAl20L8·25C, TIBPAL20R4·25C, TIBPAL20R6·25C, TIBPAL20R8·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware. software. and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available. upon request. from the nearest TI field sales office. local
authorized TI distributor. or by calling Texas Instruments at (2141 997·5666.

PARAMETER MEASUREMENT INFORMATION
SV

Sl

b

Rl
FROM OUTPUT_. ._ ...._ ..._
UNOER TEST
CL
(S •• Note A)

TEST
POINT

R2
L - - _......

LOAO CIRCUIT FOR
THREE-5TATE OUTPUTS
TIMING
INPUT

./.
/,l.SV

3.S V

HIGH-LEVEL
PULSE

~
1.5 V
1.5V

----3.SV

: _ _ tw
_

- - - - " : - - - - - - - - 0.3 V
,..tsu ~ th ~

'

DATA
INPUT

' loS V
' 1.5 V
.
~
0.3 V

-'----3SV
LOW-LEVEL
PULSE

:e--

OUTPUT
CONTROL

OUT -OF-PHASE
OUTPUT

\1.5V

(See Note D)
VOL TAGE WAVEFORMS
PROPAGATION DELAY TIMES

3.5 V

~
1.SV

(low-Ie.el
enabling)

t

tpHL~

tw - :

VOLTAGE WAVEFORMS
PULSE DURATIONS

INPUT -.11.5 V

I

O.3V

~

~l.SV · · l . S V . v ~---0.3V

VOL TAGE WAVEFORMS
SETUP AND HOLD TIMES

tPLH~
IN-PHASE
t
/'1 S
OUTPUT
I
•
. V

:

tpZL

-..lI

I

WAVEFORM 2
51 OPEN
(See Not. B)

~

I

0.3 V

-:- - - - - - - -

II-

-.. II- tpLZ
I I

I It:

WAVEFORM 1
Sl CLOSED
(See Not. B)

3.SV

1.5V

1.5 V

=3.3 V

i :~S

~-=--=----"-;=-=

tPZH ~

...:

r--- tPHZ

~
I

1.5 V

V
VOL

-----t--v
- -- --.-O.S V

OH

"'0 V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A. Cl includes probe and jig capacitance and is SO pF for tpd and ten. 5 pF for tdis'
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR :s 1 MHz, tr = tf = 2 ns. duty cycle = SO%.
D. When measuring propagation delay times of 3-5tate outputs, switch Sl is closed.

FIGURE 1

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-285

TIBPAL20L8·25C,TIBPAL20R4·25C, TIBPAL20R6·25C, TIBPAL20R8·25C
LOW·POWER HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
preload procedure for registered outputs (see Note 2)
The output registers of the TIBPAL20R' can be preloaded to any desired state during device testing. This
permits any state to be tested without having to step through the entire state-machine sequence. Each
register is preloaded individually by following the steps given below.
Step
Step
Step
Step

1.
2.

3.
4.

With Vee at 5 V and pin 1 at VIL, raise pin 13 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse pin 1, clocking in preload data.
Remove output voltage, then lower pin 13 to VIL. Preload can be verified by observing the voltage
level at the output pin.

preload waveforms (see Notes 2 and 3)

PIN 13 _ _ _

~/ ~'"~
I4-td~

I

PIN 1

~~~

j.-tw--.j

I

-

I I
-1- T - - - - -

VIH

---+-l--i-:_. .11...---:I--~:I---~--VIL
1
I

REGISTERED 1/0

r\----:,~'

I

----iM"'___

IN_PU_T_ _ _

1

I

I

I

J8,.-0-U-T-PU-T--::~

NOTES: 2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed
accordingly.

3. td = tsu = tw = 100 ns to 1000 ns.
VIHH = 10.25 V to 10.75 V.

2-286

.

TEXAS'"

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TlBPAL20L8·15CNL, TIBPAL20R4·15CNL, TlBPAL20R6·15CNL, TIBPAL20RB·15CNL
TlBPAL20L8·25CNL, TlBPAL20R4·25CNL, TIBPAL20R6·25CNL, TlBPAL2DRB·25CNL
HIGH·PERFORMANCE IMPACP'PAl® CIRCUITS
03095, JANUARY '9BB-REVISED AUGUST '9B9

•

•

•

TIBPAL20LB' ... FN PACKAGE

High Performance: fmax(w/o feedback)
TIBPAL20R' ·15 Series, , ,45 MHz
TIBPAL20R' ·25 Series. , . 33 MHz

(TOP VIEW)
u

U
____ >_0

·15CNL Devices are Direct Replacements
for MMI PAL20L8BCNL. PAL20R4BCNL.
PAL20R6BCNL. and PAL20R8BCNL

4 3 2 1 282726
NC

25

I

2.

I

23

NC

·25CNL Devices are Direct Replacements
for MMI PAL20L8B·2CNL. PAL20R4B·2CNL.
PAL20R6B·2CNL. and PAL20R8B·2CNL

22

I
I

9
10

NC

l'

21
20

19
12131415161718

•

•

Power·up Clear on Registered Devices (All
Registered Outputs are Set Low. but
Voltage Levels at the Output Pins Go High)

- - - 0 -,.- 0

z
~:

Preload Capability on Output Registers
Simplifies Testing

DEVICE

I INPUTS

3-STATE

a

OUTPUTS

REGiSTERED

1/0

a OUTPUTS

PORTS

,4

2

'PAL20R4

,2

0

4 (3-state buffers!

4

'PAL20R6

,2

0

6 (3-state buffers!

2 '

'2

0

0

6

f;;(

I:J:-

8 (3-state buffers)

NC

5

I

6

a

NC 8

22

a

I

21
20
19

1/0
NC

9

I

10

NC

11

a

g13~,15'6'718

?

ordering information

25 I/O
24
23( a

I 7

'PAL20LB

'PAL20RB

'

TIBPAL20fl4", .. FN PACKAGE
,,",'(TOP VIEW)

Devices with the MMI chip-carr,ietpjn-out shown
here may be ordered by usin~fttle Indicated part
number with the NL suffix. '00 nat include the
package suffix (FN).
•

TlBPAL20RS' ... FN PACKAGE
(TOP VIEW)
~ u
u
0
___ "u>_::::

4 3 2 1 282726

description
These programmable array logic devices feature
high speed and functional equivalency when
compared with currently available devices.
These IMPACTN circuits combine the latest
Advanced Low-Power Schottkyt technology
with proven titanium-tungsten fuses ta provide
reliable. high-performance substitutes for
conventional
TTL
logic.
Their
easy
programmability allows for quick design of
custom functions and typically results in a more
compact circuit board. In addition. chip carriers
are also available for further reduction in board
space.

NC

5

25~ Q

I
I
NC

6
7
8

2~~ Q

:Q~o
NC

not

TEXAS

19[ NC

TIBPAL20RS' ... FN PACKAGE
(TOP VIEW)

"~ u

___ 0 > _ 0
4 3 2

NC

IMPACT is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.
tlntegrated Schottky·Barrier diode-clamped transistor is patented
by Texas Instruments, U.S. Patent Number 3.463,975.

:':~::i~ai~:I-:li ~:~:~i:r lI~o;:~:::,,~~~s

Q

12131415161718

I
I

5
6
7

NC

8

I

specifications per the terms of Texas Instruments

Q

~~~~

11

I
NC

PRODUCTION DATA documants cantai. infurmatio.
currant IS of publication data. Products conform to

2~~
2~~

24
23
22
21

9
10
11

19

12131415161718

---cw-o
zO

'"

NC-No internal connection

~

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

Copyright @ 1989, Texas Instruments Incorporated

2-287

TIBPAL20L8·15CNL, TIBPAL20R4·15CNL
TlBPAL20L8·25CNL, TIBPAL20R4·25CNL
HIGH·PERFORMANCE IMPACTTMPAL@ CIRCUITS
description (continued)
Extra circuitry has been provided to allow loading of each register asynchronously to either a high or low
state. This feature simplifies testing because the registers can be set to an initial state prior to executing
the test sequence.
The TIBPAL20' CNL series is characterized from 0 ac to 75 ac.

4
"-' denotes fused inputs

2-288

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75285

TIBPAL20R6·15CNL, TlBPAL20RB·15CNL
TIBPAL20R6·25CNL, TIBPAL20RB·25CNL
HIGH·PERFORMANCE IMPACTTMPAL® CIRCUITS
functional block diagrams (positive logic)
TIBPAL20R6'

ae------------------------~~--I

CLK----------------------------~

r;;;--r-i7o'"'tb---

Q

r---.----1b-+--o
r--t---b.-l-- a
r--t---b--l-- a
r---.----1~:t_o

r--t---b--l-- a
P-4d-....+-l-

1/0

6

TlBPAL20R8'

ae-------------------------dE:;;----,

CLK----------------------------~
&
40 X 64

r---r----1b-+--o
r---r----1b-+--o
r----t--'b--+- a

r---r----1b-+--o
t---r----1b-:t_o
r---r----1~+--Q
r---r-~t>-:+--o
.8
" " denotes fused inputs

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2·289

TIBPAL20LB·15CNL, TIBPAL20LB·25CNL
HIGH·PERFORMANCE IMPACT'M PAL® CIRCUITS
logic diagram (positive logic)
11 )
INCREMENT

10

4

8

12

16

II

20

24

28

32

(2) ....

v

(6)

I.-

~

'"

FU SE
0
NU MBERS 40

(4)"

\

-1---

FI RST

(3 )"

36

e>-J

80
120
160
200
240
280

(26)

o

.A

320
360
400
440
480
520
560
600

:r-J

(25)
1/0

~

'"

640
680
720
760
800
840
880
920

(24)

110

:J
'"

960
1000
1040

(23)

1080

.....

1120
1160

I 10

1200
(7)

1240

I.-

1280

4------>

1320
1360

(22)

1400
1440
1480
1520

(9) ....

v

:J

1560
1600
1640
1680
1720

::r

1760
1800
1840
1880

11 0)

I

....,"

12)"

I.-

'"

1920
1960
2000
2040
2080
2120
2160
2200

I

J

(20)

...I

(18)

110

v

2440
2480
2520

-

v

(17)

~
"'"

I 14)"

2-290

110

2240

2400

11 3)

(21)

V

2280
2320
2360

I

1/0

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

o

TIBPAL20R4·15CNL, TIBPAL20R4·25CNL
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
logic diagram (positive logic)
elK

(1)

I"....

INCREMENT

10

.

(~

1\
4

8

12

16

20

24

28

32

\

36

(27)

~

......

FIRST
FU SE
NU M8ERS 4g

(3) ..

-

]

80
120
160
200
240
280

110

r

V

~

(4) ....

320
360
400
440
480
520
560
600

(6)

640
680
720
760
800
840
880
920

1

(7) ....

(9) ...

1280
1320
1360
1400
1440
1480
1520
1560

\-)-

121

1920
1960
2000
2040
2080
2120
2160
2200

Q

1......

-Dj

'1

-~

1V""

)-

10

(23 )Q

V

c,

......

)-

10

(22 )Q

c,

......

1680
1720
1760

10)

~~l
c,

1600
1640

1800
1840
1880

1/0

<} - - '

1120

1160
1200
1240

(25)

.. 1

960
1000
1040
1080

v

(26)

~-

)--

f1j
10

c,

~)
V

Q

~

r-J

(20)

~

(18)

1/0

~

2240
2280
2320

2360
2400
2440

f

2480

13) .... 2520

~~

1/0

......

(17)

I ( 14)"

-t,.

I

1- I
......
6)-

~'

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

DE

2-291

TIBPAL20R6·15CNL, TlBPAL20R6·25CNL
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS

logic diagram (positive logic)
elK

,-y

(11

INCREMENT
/

"

0

4

8

12

16

20

24

28

32

(~

36

,
(27)

A

"

FI RST
FU SE
0
NU M8ERS 40

(31~

80
'20
160
200
240
280

4)_

320
360
400
440
480
520
560
600

>-

(6)_

640
680
720
760
800
840
880
920
960

"

...

...

>- ~rJ ""
ID

"1- ~

"

1-

>-

1080
1120
1160
1200
1240

"

1280
1320
1360
1400
1520

1560

"

1600
1640
1680

1720
1760
1800

10)

-t

L>-

1840
1880

.....

1920
1960
2040

2080
2120

~i

ID

(2

Y

Cl

~

IR IJ....

~

(2 2)0

(2 1) 0

,

~

IJ....

(20)

2200

~~

'>

2440

2480
2520

~j

(181
1/0

....r---'
(17)

(1~

....

"

2-292

o

Cl

2160

2240
2280
2320
2360
2400

(13)_

~b
~

(2410

'"

Cl

>-~

2000

121
-i

b

10

>- R IJv

1440

1480

...

o

V

Cl

1040

(91

110

.....

loaD

(71_

(26)

b- Wj

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

I

+

TIBPAL20R8·15CNL, TlBPAL20R8·25CNL
HIGH·PERFORMANCE IMPACT™ PAL® CIRCUITS
logic diagram (positive logic)

c LK

(1 )

v

INCREMENT

"0

4

8

12

16

"

20

24

28

32

~
FIR ST
FU SE
0
NU MBERS 40
80
120
160
200
240
(3) "- 280
~

4)

320
360
400
440
480
520
560
600

(6) .....

640
680
720
760
800
840
880
920

-;..

~

>A

"

I

I..-

a

1](24

10

c,

vo--

Q

I] (23
V

Q

....

"

)--

Q(22

10

c,

1.?'>"

Q

.A

(21

10

c,

1.?'>"

Q

1-

"

1920
1960

(20

1.?'>"

10

2120
2160
2200

a

c,

2240
2280
2320
2360
2400
2440
2480
2520

~
~
1.
>~
1.
>El]
JJ.18
>El]

20ao

12) .....

'"

A

1240

( 10)

10

"

mg

1600
1640
1680
1720
1760
1800
1840
1880

~

>-

1Z00

-;..

V

.r - - '

1080
1120
1160

(9)

(27)

....

10

960

1360
1400
1440
1480
1520
1560

"-

>- D]~
c,

1000
1040

(7)
-1

36

1-

-~

"

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

t-I

~I

2-293

TIBPAL20L8-15CNL, TIBPAL20R4-15CNL, TIBPAL20R6-15CNL, TIBPAL20R8-15CNL
TIBPAL20L8-25CNL, TlBPAL20R4-25CNL, TIBPAL20R6-25CNL, TIBPAL20R8-25CNL
HIGH-PERFORMANCE IMPACpM PAl®CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disable output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
-26CNL
VCC
VIH
VIL
IOH
IOl
fclock

MIN
4.75
2

Supply voltage
High-level input voltage

low-level input voltage
High-level output current
Low-level output current
Clock frequency

0
15
15
25

I High
I Low

tw

Pulse duration, clock

tsu
th
TA

Setup time. input or feedback before ClK t
Hold time. input or feedback after ClK t
Operating free-air temperature

NOM
5

0
0

tfclock, t w , tsu, and th do not apply for TIBPAl20lB'.

2-294

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012 ". DALLAS. TeXAS 75265

-16CNL
MAX
5.25
5.5
O.B
-3.2
24
33

MIN
4.75
2

0
10
12
15
0

76

NOM
5

0

MAX
5.25
5.5
O.B
-3.2
24
45

10
75

UNIT
V
V
V
mA
mA
MHz
ns
ns
ns
ns
·C

TIBPAL20L8·15CNL. TlBPAL20R4·15CNL
TIBPAL20R6·15CNL. TIBPAL20R8·15CNL
HIGH·PERFORMANCE IMPACTTM PAl® CIRCUITS
electrical characteristics over recommended free-air operating temperature range
PARAMETER

TEST CONDITIONS

MIN

VIK

Vee = 4.75 V,

11= -18 mA

VOH

Vee = 4.75 V,

10H = -3.2 mA

Vee = 4.75 V,

10l - 24 mA

VOL

D.
10ZH
10Zl

Q

outputs

Vee = 5.25 V,

I/O ports
0, Q outputs

Vee = 5.25 V,

1/0 ports

-15CNL
Typt
MAX
-0.8

-1.5

2.4

UNIT
V
V

0.3

0.5
20

Vo = 2.7 V

100

Vo = 0.4 V

V
~A

-20
-0.25

mA
mA

~A

II

Vee = 5.25 V,

VI = 5.5 V

0.1

IIH~

Vee = 5.25 V,

VI=2.7V

25

~A

III ~

Vee = 5.25 V.

VI = 0.4 V

-0.25

mA

Vee = 5.25 V,

Vo = 0
VI = 0,

-70

-130

mA

Vee = 5.25 V,
Outputs open,

OE at VIH

120

180

mA

lOS!
lee

-30

t All typical values are at Vee = 5 V, TA = 25°e.
:I: For 110 ports, the parameters I'H and I,L include the off-state output current.
§

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed 1 second.

switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

FROM

f max '

Without feedback

TO

TEST CONDITIONS

With feedback

MIN
37
45

-15CNL
Typt
MAX
40

UNIT
MHz

50
12

15

ns

R2 = 390O,

8

12

ns

See Figure 1

10

15

ns

12

ns

0,1/0

8
12

18

ns

0,1/0

12

15

ns

lru!

1,1/0

0,1/0

tpd

elKt

Q

Rl = 200O,

ten

llE

Q

el = 50 pF,

tdis
ten

llEt
1,1/0

Q

tdis

1,1/0

tAli typical values are at Vee = 5 V, TA = 25°e.
'f max (with feedback) =

1
, f max (without feedbackl =
1
tsu + tpd (elK to Q)
tw high + tw low

f max does not apply for TIBPAl20l8'

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265

2-295

TIBPAL20L8·25CNL, TlBPAL20R4·25CNL
TIBPAL20R6·25CNL, TIBPAL20RB·25CNL
HIGH·PERFORMANCE IMPACpM PAl® CIRCUITS
electrical characteristics over recommended free·air operating temperature range
PARAMETER

TEST CONDITIONS
Vee = 4.75 V,
Vee - 4.75 V,
Vee = 4.75 V,

VIK
VOH
VOL
10ZH

0, Q outputs

11= -lB rnA
10H - -3.2 rnA
.10l - 24 rnA

Vee = 5.26 V,

Vo = 2.7 V

Vee = 5.25 V,

Vo = 0.4 V

2.4

-25CNl
TypT MAX
-0.8 -1.5
3.3
0.3

0.5
20

UNIT
V
V
V
pA

II

Vee - 5.25 V,

VI - 5.5 V

100
-20
-0.25
0.1

IIH*

Vee = 5.25 V,

VI = 2.7 V

20

pA

III *

Vee = 5.25 V,

VI = 0.4 V

-0.2

rnA

10S§

Vee = 5.25 V,
Vee = 5.25 V,
Outputs open,

Vo = 0
VI = 0,
OE at VIH

-70

-130

rnA

75

105

rnA

10Zl

1/0 ports

MIN

0, Q outputs
I/O ports

lee

-30

pA
rnA

rnA

t All typical values are at Vee = 5 V, T A = 25 ·e.
* For I/O ports, the parameters IIH and III include the off-state output current ..
§ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed 1 second.

switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
-25CNl
TypT MAX
40
50
33
14
25
3
2
10
15

PARAMETER

FROM

f max '

With feedback
Without feedback
1,1/0

0, I/O

elKt

Q

Rl = 200 Il,

R2 = 390 Il,

ten

DE

Q

el = 50 pF,

See Figure 1

2

B

15

ns

tdis
ten
tdis

DEt
1,1/0
1,1/0

Q

2

0,1/0
0,1/0

3
3

B
15
15

15
25
25

ns
ns
ns

ted
ted

t All typical values are at Vee

'fmax (with feedback) =

lou

=

TO

TEST CONDITIONS

5 V, T A = 25 ·e.
1

+ tpd (elK to

Q)

, f max (without feedback) =

-:-"77"-:-'-:--:-tw high + tw low

f max does not apply for TIBPAl20lB'.

2-296

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

MIN
25

UNIT
MHz
ns
ns

TIBPAl20LB·15CNL. TlBPAL20R4·15CNL. TIBPAL20R6·15CNL. TIBPAL20R8·15CNL
TIBPAl20LB·25CNL. TlBPAL20R4·25CNL. TIBPAL20R6·25CNL. TIBPAL20R8·25CNL
HIGH·PERFORMANCE IMPACTTM PAL® CIRCUITS
preload procedure for registered outputs (see Note 2)
The output registers of the TIBPAL20R' can be preloaded to any desired state during device testing. This
permits any state to be tested without having to step through the entire state-machine sequence. Each
register is preloaded individually by following the steps given below.
Step
Step
Step
Step

1.
2.

3.

4.

With Vee at 5 V and pin 1 at VIL, raise pin 13 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse pin 1, clocking in preload data.
Remove output voltage, then-lower pin 13 to VIL. Preload can be verified by observing the voltage
level at the output pin.

preload waveforms (see Notes 2 and 3)

PIN 13

PIN 1

REGISTERED 1/0

NOTES:

2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed
accordingly.

3. td = tsu = tw = 100 ns to 1000 ns.
VIHH = 10.25 V to 10.75 V.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-297

TlBPAL20LB·15CNL, TIBPAL20R4·15CNL, TIBPAL20R6·15CNL, TIBPAL20R8·15CNL
TIBPAL20LB·25CNL, TIBPAL20R4·25CNL, TlBPAL20R6·25CNL, TIBPAL20R8·25CNL
HIGH·PERFORMANCE IMPACpM PAL® CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

PARAMETER MEASUREMENT INFORMATION
sv
Sl

b

Rl
FROM OUTPUT_..._ ...~,..._ TEST
UNDER TEST
POINT
R2

LOAD CIRCUIT FOR
THREE-STATE OUTPUTS
TIMING
INPUT

./.

3.S V

HIGH.LEVEL

/fl.5V
- - - - ' :- - - - - - --0.3 V

~ tsu ..,.- th --:

PULSE

lilt-- tw

.

1.5V
1.5V
~

-,----3.5V

DATA
INPUT

~---3.5V.

----""'T 1.5V

LOW·LEVEL
PULSE

0.3 V

.. tw-:

~

I

IN·PHASE
OUTPUT

1 :
+-----+t
I

I·

15V
.

l:t-I

tpHL

OUT -OF-PHASE
OUTPUT

~

VOL

!I:"':":" VOH

T

l .5V
- VOL

VOL TAGE WAVEFORMS
PROPAGATION DELAY TIMES

1.5 V
I
tPZL ......
I

Sl CLOSED
lSee Note B}

3.5V

1.5 V
- : - - - - - - - - O.3V

Ie--

.... It--tpLZ

I

I I

I I

I :

WAVEFORM1~1.5V

~3 3 V

i:~5V'

~-------:.!=:: VOL
tpZH ~
...: ~tPH~ T

i

WAVEFORM2~:
-_-_-_c:.{.::=

VOH

Sl OPEN
ISee Note B I

"'0 V

1.5 V

O.S V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE·STATE OUTPUTS

A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output'with internal conditions such that the output is low except when disabled by the output control.
Wavefo~m 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR !5 1 MHz, tr == tf == 2 ns, duty cycle == 50%.
D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.

FIGURE 1

2-298

3.SV

1.5 V
_ _ _ _ 0.3V

~

(low-level
enabling)

VOH

~tpLH

\1.5V

lSee Note D}

NOTES;

OUTPUT
CONTROL

0.3 V

~tPHL

tPLH~

V

VOLTAGE WAVEFORMS
PULSE DURATIONS

\~~--3.5V
) •

15
. V

I

VOL TAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT J 1 . 5 V

1.5V~0.3
------e.

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 •. DALLAS. TEXAS 75265

TIBPAL22V1 DAM, TlBPAL22V1 DC, TIBPAL22V10AC
HIGH-PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
02943. OCTOBER 1986-REVISED AUGUST 1989

•

Second Generation PAL Architecture

•

Choice of Operating Speeds
TIBPAL22V10AC ... 25 ns Max
TIBPAL22V10AM ... 30 ns Max
TIBPAL22V10C ... 35 ns Max

M SUFFIX ... JT PACKAGE
C SUFFIX ... NT PACKAGE
(TOP VIEW)

ClK/)

•

Increased Logic Power and 10 Outputs

•

Increased Product Terms - Average of 12
per Output

•

Variable Product Term Distribution Allows
More Complex Functions to be Implemented

•

Each Output is User Programmable for
Registered or Combinatorial Operation.
Polarity. and Output Enable Control

Up to 22 Inputs

1
GNO

TTL-Level Preload for Improved Testability

•

Extra Terms Provide Logical Synchronous
Set and Asynchronous Reset Capability

•

Fast Programming. High Programming Yield.
and Unsurpassed Reliability Ensured Using
Ti-W Fuses

•

Y.;.;=---...:.::J....

M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE

•

•

VCC
)/0/0
1/0/0
1/0/0
1/010
110/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0

(TOP VIEW)

uO 0
~ u u(5 (5
__ uz>:::,:::,
4

AC and DC Testing Done at the Factory
Utilizing Special Designed-In Test Features
Dependable Texas Instruments Quality and
Reliability

3

2 1 28 27 26
25

5
6

24

7

23

8
9

21

10

20

22

19

11

•

•

Package Options Include Plastic and
Ceramic Dual-In-Line Packages and Chip
Carriers

1/0/0
1/0/0
1/0/0
NC
1/0/0
1/0/0
1/010

12 13 14 15 16 17 18

--ou-OO
zz
-(!l

Functionally Equivalent to AMOs
AMPAL22V10 and AMPAL22V10A

~~

NC - No internal connection '.
Pin assignments in operating mode

description
The TIBPAL22V10 and TIPPAL22V10A are programmable array logic devices featuring high speed and
functional equivalency when compared to presently available devices. They are implemented with the
familiar sum-of· products (AND-OR) logic structure featuring the new concept "Programmable Output LogiC
Macrocell". These IMPACT'" circuits combine the latest Advanced Low-Power Schottky technology with
proven titanium-tungsten fuses to provide reliable high-performance substitutes for conventional TTL logic.
These devices contain up to 22 inputs and 10 outputs. They incorporate the unique capability of defining
and programming the architecture of each output on an individual basis. Outputs may be registered or
nonregistered and inverting or noninverting as shown in the output logic macrocell diagram. The ten potential
outputs are enabled through the use of individual product terms.

IMPACT is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA dooumonts oontain information
currant I. of publication data. Products conform to
specifications per the terms of Tlxas Instruments.
::~~:~~i;8i~:I~J~ ~!s~~~ti:: :'ID:=::~:~~ not

Copyright © 1989, Texas Instruments Incorporated

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-299

TIBPAL22Vl DAM. TIBPAL22Vl ~C. TIBPAL22Vl0AC
HIGIl·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
Further advantages can be seen in the introduction of variable product term distribution. This technique
allocates from 8 to 16 logical product terms to each outputfor an average of 12 product terms per output.
This variable allocation of terms allows far more complex functions to be implemented than in previously
available devices.
Circuit design is enhanced by the addition of a synchronous set and an asynchronous reset product term.
These functions are common to all registers. When the synchronous set product term is a logic 1, the
output registers are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous
reset product term is a logic 1, the output registers are loaded with a logic O. The output logic level after
set or reset depends on the polarity selected during programming. Output registers can be preloaded to
any desired state during testing. Preloading permits full logical verification during product testing.
With features such as programmable output logic macrocells and variable product term distribution, the
TIBPAL22V10 and TIBPAL22V10A offer quick design and development of custom LSI functions with
complexities of 500 to 800 equivalent gates. Since each of the ten output pins may be individually configured
as inputs on either a temporary or permanent basis, functions requiring up to 21 inputs and a single output
or down to 12 inputs and 10 outputs are possible.
A power-up clear function is supplied that forces all registered outputs to a predetermined state after power
is applied to the device. Registered outputs selected as active-low power-up with their outputs high.
Registered outputs selected as active-high power-up with their outputs low.
A single security fuse is provided on each device to discourage unauthorized copying of fuse patterns.
Once blown, the verification circuitry is disabled and all other fuses will appear to be open.
The M suffix devices are characterized for operation over the full military temperature range of - 55
to 125
The C suffix devices are characterized for operation from 0
to 75

ac.

2-300

ac

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

ac.

ac

TlBPAL22Vl DAM, TIBPAL22Vl DC, TIBPAL22Vl0AC
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
logic diagram (positive logic)
0
FUSE

4

,

12

16

20

24

2B

32

3.

40

ASYNCHRONOUS RESET
ITO ALL REGISTERS)

0

396

IP

[1r'
CELL

P = 5808

~
440

.

880
2
--_.

=8=l

MACRO
CELL

2

-:r
-tr
-IT
p .. 5810

~

924

3

MACRO
CELL

1452
3

-IT
R .. 5809

2

p .. 5912

-vb- __

~

1496

==k-

!J

2112
4

MACRO
CELL

2

p .. 5814

~

~

2156

MACRO

D-2860
5

---l>!;::
2904

=--'d
V-

14

i-- i>

h

16

"""" V-

16

"""" V-

I-- >

h

..u..-

~ rv

1~

...- I-- ~

h

14
L.-

....

h

12

t----.

>

"""" r -

12

V-

~

~

"'-1-- I>

V-

10

"'-f-- I>

h

V-

B

'-I-- I>

h

Ir"

C>

h

r-

EN

~I1010

h

~

EN

p.... 1-++-11010

--...

.... EN

h

~

h

.- EN

h

.- EN

h

"""" EN

h

.... EN

h

~

EN

p-.-. f--1/0/0

h

.... EN

~ f++- 1/0/0

p.... 1-++-11010

EN

rv denotes fused inputs

2·302

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

......

CHI;

......

~

......11010

1/0/0

1/0/0

~ f-- 1/0/0
~ I-++-1/0/0

10
10

CHI;

10

TlBPAL22V1 DAM, TIBPAL22V1 DC, TIBPAL22V1DAC
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
output logic macrocell diagram

r-------OUTPUT LOGIC MACROCELL

I ~--------~--~3

I

AR

R

MUX

2

1-0

'}---t......- - - 1 1 D

,.....!.----t> C1
55

b----4.....- - ; 0

1}
0
GO
3

15
L..-_
_....

FROM CLOCK BUFFER
MUX

51

I

AR _ asynchronous reset

~-

:::hr:::

S8_t_

TEXAS •
INSTRUMENTS
POST OFFice BOX 655303 • DALLAS. TEXAS 75265

I
I
I
I
J

2-303

TIBPAL22V1 DAM, TlBPAL22V1 DC, TIBPAL22V10AC
HIGH·PERFORMANCE IMPACT™ PROGRAMMABLE ARRAY LOGIC

S1 - 0
so - 0

S1 - 0
so - 1

REGISTER FEEDBACK. REGISTERED. ACTIVE-LOW OUTPUT

REGISTER FEEDBACK. REGISTERED. ACTIVE-HIGH OUTPUT

S1 - 1
SO - 0

S1 - 1
SO - 1

110 FEEDBACK. COMBINATIONAL. ACTIVE-LOW OUTPUT

110 FEEDBACK. COMBINATIONAL. ACTIVE-HIGH OUTPUT

MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE
FUSE SELECT

FEEDBACK AND OUTPUT CONFIGURATION

S1

SO

0
0

0

Register feedback Registered

1

Register feedback Registered

1

0

1/0 feedback

Combinational

Active low

1

1

110 feedback

Combinational

Active high

Active low
Active high

o = unblown fuse.

1 = blown fuse
51 and SO are selectwfunction fuses as shown in the output logic
macrocell diagram.

FIGURE 1. RESULTANT MACROCELL FEEDBACK AND OUTPUT LOGIC AFTER PROGRAMMING

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage. Vee (see Note 1) ____ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) ............................... _ .. 5.5 V
Operating free-air temperature range: M suffix .......................... , - 55 °e to 125°e
e suffix .............................. ooe to 75°e
Storage temperature range ............ _ . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 65 °e to 150 0 e
NOTE 1: These ratings apply except for programming pins during a programming cycle or during a pre-load cycle.

2-304

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL22V1 DAM
HIGH-PERFORMANCE IMPACT"" PROGRAMMABLE ARRAY LOGIC
recommended operating conditions
TIBPAL22V10AM
Vee

Supply voltage

VIH
V,l

High-level input voltage

10H

High-level output current

MIN

NOM

MAX

4.5

5

5.5

2

UNIT
V
V

5.5

Low-level input voltage

0.8
-2

V

10l

Low-level output current

12

mA
mA

fclock

elock frequency

22

MHz

tw

Pulse duration

Setup time before clockt

tsu

Clock high or low

20

Asynchronous Reset high or low

30

Input

25

Feedback
Synchronous Set
Asynchronous Reset low (inactive)

25
25

ns

30

Hold time, input, set, or feedback after clockt

th
TA

ns

ns

0
-65

Operating free-air temperature

125

°e

electrical characteristics over recommended operating free-air temperature range
PARAMETER
VCC = 4.5 V,

VOH

Vec = 4.5 V,

" =
10H = -2 mA

VOL

Vee = 4.5 V,

IOl=12mA

10ZH

Vee = 5.5 V,

Vo = 2.7V

Vee = 5.5 V,

Vo = 0.4 V

I Any output

I

Any I/O

MIN

TVP*

-18 mA

V,K

10Zl

TIBPAL22V10AM

TEST CONDITIONS

MAX

UNIT

-1.2
2.4

V

3.5
0.25

V
0.5

V

0.1
-100

mA
pA

-250

I,

Vec = 5.5 V,

V, = 5.5 V

1

mA

'IH
I,l
10S§

VCC = 5.5 V,

V, = 2.7 V

Vec = 5.5 V,

V, = 0.4 V

25
-0.25

mA

Vee = 5.5 V,
Vee = 5.5 V,

Vo = 0.5 V
V, = GND,
Outputs open

lee

-30
120

pA

-90

mA

180

mA

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER

FROM

TO

fmax t

With feedback
I, I/O

I/O

tpd

I, I/O Iresetl

Q

tpd

Clock

Q

ten

I, I/O

Q

tdis

I, I/O

Q

tsu

TIBPAl22V1 DAM
MIN

+

R1 = 390O,
R2 = 750O,
See Figure 2

UNIT

TVP*

MAX

15

30

ns

15

35

ns

10

20

ns

15

30

ns

15

30

ns

MHz

22

tpd

tfmax and fclock Iwith feedback} =

TEST CONDITIONS

, f max and fclock without feedback can be calculated as f max and
tpd lelK to Q}

fclock Iwithout feedback} = _ _--:.1_ __
tw high + tw low
tAli typical values are at Vce = 5 V, TA = 25°e.
§Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set
0.5 V to avoid test problems caused by test equipment ground degradation.

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DAl.LAS, TEXAS 15265

Va

at

2-305

TlBPAL22V1 DC, TIBPAL22V10AC
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
recommended operating conditions
TIBPAL22Vl0C
MIN

NOM

4.75

5

TIBPAL22Vl0AC

UNIT

MAX
5.25

MIN

NOM

MAX

4.5

5

5.25

V

5.5

2

5.5

V

Vee

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

10H
10L

High-level output current

0.8
-3.2

Low-level output current

16

16

mA
mA

fclock

Clock frequency t

18

28.5

MHz

tw

Pulse duration

tsu

Setup time before clock;

2

0.8
-3.2

Clock high or low

25

15

Asynchronous Reset high or low

35

25

Input

30

20

Feedback
Synchronous Set
Asynchronous Reset low (inactive)

30
30

20
20

35

25

th

Hold time, input, set, or feedback after clockt

0

TA

Operating free-air temperature

0

ns

ns

0
75

V

ns

0

75

°e

electrical characteristics over recommended operating free-air temperature range
PARAMETER

Vee
Vee
Vee
Vee

VIK
VOH
VOL
10ZH

TIBPAL22Vl0C

TEST CONDITIONS

I Any output
I Any I/O

= 4.75 V,

11= -18 mA

= 4.75 V,

10H = -3.2 mA

= 4.75 V,

10L = 16 mA
Vo = 2.7 V

= 5.25 V,

Vo = 0.4 V

IlL
10S§

Vee
Vee
Vee
Vee

ICC

Vee = 5.25 V,

VI = 5.5 V
VI = 2.7 V
VI = 0.4 V
Vo = 0.5 V
Outputs open
VI = GND,

II
IIH

= 5.25 V,
= 5.25 V,
= 5.25 V,
= 5.25 V,

TYP*

2.4

3.5
0.35

Vee = 5.25 V,

10ZL

MIN

TIBPAL22Vl0Ae

MAX
-1.2

MIN

TYP*

2.4

3.5

0.5

0.35

V
V

0.5

V

0.1
-100

-250

-250

1

1

mA

25

25
-0.25

mA

-90
120

UNIT

0.1
-100

-0.25
-30

MAX
-1.2

-30

180

120

mA

p.A

~A

-90

mA

180

mA

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER
fmax t

FROM

TO

TEST
eOND!TIONS

With feedback

TIBPAL22Vl0AC

TYP*

MAX

1,1/0

I/O

15

tpd

I, I/O (reset)

Q

tpd

Clock

Q

ten

1,1/0

Q

tdis

1,1/0

Q

Rl = 300 Il,
R2 = 390 Il,
See Figure 2

MIN
28.5

UNIT

TYP*

MAX

35

15

25

ns

15

40

15

30

ns

10

25

10

15

ns

15

35

15

25

ns

15

35

15

25

ns

18

tod

tfmax and fclock (with feedback) =

TIBPAL22Vl0C
MIN

MHz

1
, f max and fciock without feedback can be calculated as f max and
tsu + tpd (elK to Q)

fclock (without feedback) = _ _--'1'--_ _
tw high + tw low
*AII typical values are at Vee = 5 V, TA = 25°C.
§Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set Vo at
0.5 V to avoid test problems caused by test equipment ground degradation.

2-306

TEXAS . "
INSTRUMENTS
'POST OFFICE BOX 655303 • DALLAS, TEXAS 15265

TIBPAL22V1 DAM, TIBPAL22V1 DC, TlBPAL22V1DAC
HIGH·PERFORMANCE IMPACT™ PROGRAMMABLE ARRAY LOGIC
preload procedure for registered outputs (see Note 2)
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. Each register is preloaded
individually by following the steps given below.
Step
Step
Step
Step

1.
2.
3.
4.

With Vee at 5 volts and pin 1 at VIL, raise pin 13 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse pin 1, clocking in preload data.
Remove output voltage, then lower pin 13 to VIL. Preload can be verified by observing the voltage
level at the output pin.

preload waveforms (see Notes 2 and 3)

PIN 13

--.I

~tsu~

~td--+l

PIN 1

~td-+!

~

I

l l

1

I
I
I

REGISTERED 110

-

---VIH

.
I
I

I

=>--\

~I
INPUT

VIL

I
I
-VIH

/

Vr - - - VoH
\

-VIL

.
NOTES:

-

1

1- - -1- --1

I+--tw-+l

- -

::~H

-

OUTPUT
VOL

2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed
accordingly.
3. td = tsu = tw = 100 ns to 1000 ns. VIHH = 10.25 V to 10.75 V.

TEXAS •
INSTRUMENTS
reST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-307

TlBPAL22V1 DAM, TIBPAL22V1 DC, TIBPAL22V10AC
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC

power-up reset
Following power-up, all registers are reset to zero. The output level depends on the polarity selected during
programming. This feature provides extra flexibility to the system designer and is especially valuable in
simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the VCC's
rise be monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable
input and feedback setup times are met.

power-up reset waveforms

r-----------------------------------5V

4
VCC __________ ; ; :
J

1144----tpd t
(600 ns typo , 000 ns MAX)

REGISTE:~~I~~~~~~

/

"I

I

~~5 ~ -

STATE UNKNOWN

-

-

-

- - VOH

------------,------------------------~~~------------VOL
I

/
ACTIVE·LOW
REGISTERED OUTPUT ________J.;..-_ _ _
ST_A_T_E_U_N_KN_O_W_N_ _

VOH

j{.

...JT: ~5 ~

_ _ _ _ _ VOL

t4-- t su*--+t

\1.5 V

CLOCK

CVIH

7:'.5 V

----------------------~~~-----J1- -

-VIL

~tw~

t This is the power-up reset time and applies to registered outputs only. The values shown are from characterization data.
:t This is the setup time for input or feedback.

programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666 .

2-308

. TEXAS'"
INSTRUMENTS
POST OFFICE BOX 855303 • DALLAS. TEXAS 76265

TIBPAL22V1 DAM, TIBPAL22V1 DC, TIBPAL22V1DAC
HIGH·PERFORMANCE IMPACrr M PROGRAMMABLE ARRAY LOGIC
PARAMETER MEASUREMENT INFORMATION

CL
(See Note A)

R2

LOAD CIRCUIT FOR
3·STATE OUTPUTS

TIMING
INPUT

~ 1.5 V

4·

[0.3 V] (0)

~:-e-:;~

HIGH.LEVEL~
PULSE
I
I
~

tsu~th

---..T l .5V

DATA
INPUT

[3.5 VI (3 V)

[3.5 V] (3 V)

I

[0.3 VI (0)

L

INPUT

-.Ii

tpd
IN.PHASE
OUTPUT

1.5V

- - - - - [3.5 V] (3 V)
\..- 1.5V
[0.3 VI (0)

I~~,

tpd~

I

~I tpd

VOL

OUTPUT
CONTROL
(Iow·level
enabling)

~
I
1.5 V

Ion

[0.3 VI (0)

fI
'-L -

-.I!+-

(See Note B)
ten

I

t dl•

14-

-

-

.-+! l+U

t di

1

-

[0.3 V] (0)

I

I I
I

~

WAVEFORM 2
Sl OPEN
(See Note B)

[3'5VI(3v)

1.5 V

W~~~3,Rs~-6--f:""\.r 1.5-; -:

OUT·OF·PHASE
OUTPUT
(See Note D)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

[3.5 V] (3 V)

1.5 V

VOLTAGE WAVEFORMS
PULSE DURATIONS

l\
-I4---+i
14--+1- tpd
I
1/
I J - - VOH
I T 1.5V I ~V
I

I

1.5 V

----

VOLTAGE WAVEFORMS
SETUP AND HOLO TIMES

[0.3 VI (0)

t,.--foI

LOW-LEVEL~I
I
PULSE

[3.5 V] (3 V)

~3.3V

P

-+I I+-

•

-

L-

-r.=--~OOH:.5

I .J
~-

~~ _ ~ _

VOL
VOL +0.5 V
VOH

V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3·STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten,S pF for tdis '
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2
is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: For M suffix. use the voltage levels indicated in parentheses ( ), PRR ~ 10 MHz.
t, and tf S 2 ns, duty cycle = 50%. For C suffix. use the voltage levels indicated in brackets []. PRR ~ 1 MHz, t, = tf = 2 ns, duty
cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch 81 is closed.
E. Equivalent loads may be fused for testing.

FIGURE 2

TEXAS

-1!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-309

-

2-310

TIBPAL22V10·20M, TIBPAL22V10·15C
HIGH·PERFORMANCE IMPACT·X™ PROGRAMMABLE ARRAY LOGIC
,OCTOBER 1989

M SUFFIX . .. JT PACKAGE
C SUFFIX . .. NT PACKAGE

• Second-Generation PAL Architecture
• Choice of Operating Speeds

(TOP VIEW)

TIBPAL22V10-15C ... 15 ns Max
TIBPAL22V10·20M ... 20 ns Max
• Increased Logic Power and 10 Outputs
• Increased Product Terms per Output

CLK/I

VCC

2

up to 22 Inputs

3
4
5

Average of 12

6
7

• Variable Product Term Distribution Allows
More Complex Functions to be Implemented

8
9
10

• Each Output Is User Programmable for
Registered or Combinatorial Operation,
Polarity, and Output Enable Control

11

GND

• Power-Up Clear on Registered Outputs

12

M SUFFIX. , . FK PACKAGE
C SUFFIX . .. FN PACKAGE

• TTL· Level Preload for Improved Testability

3:
>
W
a:
Q.

-

(TOP VIEW)

• Extra Terms Provide Logical Synchronous
Set and Asynchronous Reset Capability

W

~ooQQ

000
_ _ ...J
oz:;:>::::;.::::;.

• Fast Programming, High Programming
Yield, and Unsurpassed Reliability Ensured
Using Ti·W Fuses
• AC and DC Testing Done at the Factory
Utilizing Special Designed-In Test Features

I/o/a
I/o/a
I/o/a
I/o/a
I/o/a
I/o/a
I/o/a
I/o/a
I/o/a
I/o/a

5

4

3 2 1 282726
25

6

24

7

23

I/o/a
I/o/a
I/o/a

22

NC

9

21

10

20

I/o/a
I/o/a
I/o/a

NC

• Dependable Texas Instruments Quality and
Reliability

11
19
121314 1516 1718

• Package Options Include Plastic and
Ceramic Dual-In-Line Packages and Chip
Carriers

i-

0

::l

C

0

a:
Q.

--00-00

zz

<9

-~~

NC-No internal connection
Pin assignments in operating mode

description

The TIBPAL22V1 0-15C and TIBPAL22V1 0-20M are programmable array logic devices featuring high speed and
functional equivalency when compared to presently available devices. They are implemented with the familiar
sum-ot-products (AND-OR) logic structure featuring the new concept "Programmable Output Logic Macrocell".
These IMPACT-X'" circuits combine the latest Advanced Low·Power Schottky technology with proven
titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic.
These devices contain up to 22 inputs and 10 outputs. They incorporate the unique capability of defining and
programming the architecture of each output on an individual basis. Outputs may be registered or nonregistered
and inverting or noninverting as shown in the output logic macrocell diagram. The ten potential outputs are
enabled through the use of individual product terms.
Further advantages can be seen in the introduction of variable productterm distribution. This technique allocates
from 8 to 16 logical product terms to each output for an average of 12 product terms per output. This variable
allocation of terms allows far more complex functions to be implemented than in previously available devices.
IMPACT-X is a trademark of Texas Instruments Incorporated.
Copyright © 1989, Texas Instruments Incorporated

PRODUCT PREVIEW documents contain information

on products in the formative or design phase of
development,
Characteristic data and other

~::;:!~:t~~~Srr:~ ~~S~~8~::I~~ ~~~~~~~~~~~;:~
products without notice.

TEXAS l!}
INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-311

TIBPAL22V10-20M, TIBPAL22V10-15C
HIGH-PERFORMANCE IMPACT-X™ PROGRAMMABLE ARRAY LOGIC
description (continued)
Circuit design is enhanced by the addition of a synchronous set and an asynchronous reset product term. These
functions are common to all registers. When the synchronous set product term is a logic 1, the output registers
are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous reset product term
is a logic 1, the output registers are loaded with a logic O. The output logic level after set or reset depends on
the polarity selected during programming. Output registers can be preloaded to any desired state during testing.
Preloading permits full logical verification during product testing.
With features such as programmable output logic macrocells and variable product term distribution, the
TIBPAL22V10' offers quick design and development of custom LSI functions with complexities of 500 to 800
equivalent gates. Since each oftheten output pins may be individually configured as inputs on either a temporary
or permanent basis, functions requiring up to 21 inputs and a single output or down to 12 inputs and 10 outputs
are possible.
A power-up clear function is supplied that forces all registered outputs to a predetermined state after power is
applied to the device. Registered outputs selected as active-low power-up with their outputs high. Registered
outputs selected as active-high power-up with their outputs low.

"'tJ

A single security fuse is provided on each device to discourage unauthorized copying of fuse patterns. Once
blown, the verification circuitry is disabled and all other fuses will appear to be open.

:::c
o

The M suffix devices are characterized for operation over the full military temperature range of -55°C to 125°C.
The C suffix devices are characterized for operation from O°C to 75°C.

C

C

o

-I
"'tJ

:::c

m

-
I

,

0

8

4

" "
I

0

I

I

I

20

"

"

28
~

40

36
I

ASYNCHRONOUS RESET
(TO ALL REGISTERS)

~ ~.

!

23

CELL

396

P

,~

:R:

if

880
2

P

~

5810

.f.....:..2!!1.

~
::p-

-~
MACRO

CELL

!=\

1452
3
-~

p

[

MACRO

CELL

V-

=1

p

.. .;»-

+

5812

~

-

2112

m

-

-l11

.:;J\,.-

5809

MACRO

II

I

~

CELL

-vb..

'"

5808

-0
R

440

4

~

m

5814

.. -

-b
~

2156 ::-:

MACRO

,

2860

1t.iP

r

.(:>!,::.

,j

II

'Wi :

2904

.,
3608

6__

,

«

P -

.:;Jt- j

?-----t>b-

,t

4312

a:='1
ItCtr
i

,

_~

t

4840

. MAC'O
CELL

.t-.

p _ 5822

---~+-~

1>\,.
4884

c

j

P - 5818

b~' ,C:'~820 J
!

8

o::)

~111

.:;J
w
a::

CELL

i>

3:
w

:...-::-:

CEll

5324

t

9
5368

P

~

5824

P

~

5825

wiGJJ
l

5720

~
5764

CELL

p

~

5826

P

m

5827

--0

11

~~-

Fuse Number = First Fuse Number + Increment
Inside each MACROCELL the "P" fuse is the polarity fuse and the "R" fuse is the register fuse.

TEXAS

"!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SYNCHRONOUS SET
ITO ALL REGISTERS I

"

2-313

TIBPAL22V10-20M, TIBPAL22V10-15C
HIGH-PERFORMANCE IMPACT-X'M PROGRAMMABLE ARRAY LOGIC
functional block diagram (positive logic)

~

r C1

SET
RESET

&

44x132
8

11S

~

>:1

OUTPUT
>--- P. lOGIC
MACROCEll 1"""'"'\

r

h
10

r-c;-

n
~

ClK/1 ~---

..-:;= I>

~

14
~

16

~

EN

..--p.
,-

n

~

EN

..-,- P.

n

~

EN

n

~

EN

n

..- EN

~

..- EN

~

~

~

~EN

~

~

~-

16

~

~

o

1~

'V

>

~::;= >

~

14

-

C

c:

~-

-----

12

-I

-----

10

"'C
l:J

-----

8

o

r

~f--

V-

~I--

m

V-

'-I--

-<
~

r

~

"'C
l:J

V-

-----

>
>

>

P.

CHt; f--I 1010
CHt; .......11010
CHt; .......11010
CHt; -++-11010
C>-4I\ -++-11010
CHt; -++-11010
CHt; -++-11010

EN

~ ........11010

~ ++-11010

EN

10
10

10

'"\... denotes fused inputs

2-314

k-++-I 1010

r- EN

n

12

'V

[>

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75285

TIBPAL22V1 0-20M, TIBPAL22V1 0-1 SC
HIGH-PERFORMANCE IMPACT-X'M PROGRAMMABLE ARRAY LOGIC
output logic macrocell diagram

r---------,
I
,.........,.M=UX~ I
OUTPUT LOGIC MACROCELL

I r-AR---R---I_-O----~----~:

>--+_----110
r-''-----II>C1
SS

I

b----.--,O

1}
0
Go

1S

'-----'

3

FROM CLOCK BUFFER
MUX

I
I
I
I
I =
~-.::hr:::.. se_1_ ____ J
G1

S1

AR

asynchronous rosol

3:
w
G1
a:

D.

t-

O

::::)

o

oa:

D.

TEXAS ..If

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-315

TIBPAL22V10-20M, TIBPAL22V10-15C
HIGH-PERFORMANCE IMPACT-)('M PROGRAMMABLE ARRAY LOGIC

51 - 0
50 - 0

51 - 0
50 - 1

REGISTER FEEDBACK, REGISTERED, ACTIVE· LOW OUTPUT

REGISTER FEEDBACK, REGISTERED, ACTIVE·HIGH OUTPUT

"'D

::c

o

c

c
o

51 = 1
50 - 1

51 - 1
50 - 0

-I
"'D

::c

I/O FEEDBACK, COMBINATIONAL, ACTIVE·LOW OUTPUT

~

FUSE SELECT

-m

I/O FEEDBACK, COMBINATIONAL, ACTIVE·HIGH OUTPUT

FEEDBACK AND OUTPUT CONFIGURATION

S1

SO

0

0

Register feedback

Registered

Active low

0

1

Register feedback

Registered

Active high

1

0

I/O feedback

Combinational

Active low

1

1

I/O feedback

Combinational

Active high

=e

=

=

o unblown fuse, 1 blown fuse
S1 and SO are select-function fuses as shown in the output logic macrocell
diagram.

FIGURE 1. RESULTANT MACROCELL FEEDBACK AND OUTPUT LOGIC AFTER PROGRAMMING

2-316

TEXAS ~

INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL22V10·20M
HIGH·PERFORMANCE IMPACT·X™ PROGRAMMABLE ARRAY LOGIC
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) ............................................................ 7 V
Input voltage (see Note 1) ................................................................. 5.5 V
Voltage applied to diabled output (see Note 1) ................................................ 5.5 V
Operating free-air temperature range ............................................... -55°C to 125°C
Storage temperature range ........................................................ -65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle or during a preload cycle.

recommended operating conditions
Vee
V,H

Supply vOltage

VIL

Low-level input voltage

10H

High·level output current

10L

Low·level output current

MIN

NOM

MAX

4.5

5

5.5

V

5.5
0.8
-2

V
mA

12

mA

2

High·level input voltage

UNIT

V

Clock high or low
tw

Pulse duration

ns

Asynchronous Reset high or low
Input
Feedback

too

Setup time before clock! t

th

Hold time, input. set, or feedback after clock!

TA

Operating free-air temperature

ns

Synchronous Preset
Asynchronous Reset low (inactive)

t

ns

-55

The values for this parameter can only be obtained with a pulse repetition rate of 1 MHz.

125

°C

w
==

5>
w
a:
c..

I-

o

::l
C

oa:

c..

TEXAS ~

INSfRUMENlS
POST OFFICE BOX 655303 .. DALLAS, TEXAS 75265

2-317

TIBPAL22V10-20M
HIGH-PERFORMANCE IMPACT-X™ PROGRAMMABLE ARRAY LOGIC
electrical characteristics over recommended operating free-air temperature range
PARAMETER

UNIT

-1.2

V

0.5

V

Vo=2.7V

0.1

mA

Vo = 0.4 V

-0.1

mA

V, = 5.5 V

1

mA

Vee = 5.5 V,

V, = 2.7V

25

Vee = 5.5 V,

V, = 0.4 V

los!

Vee = 5.5 V,

Vo = 0.5 V

Icc
C,

Vee = 5.5 V,

V,=GND,

f= 1 MHz,

V,=2V

pF

Co

f= 1 MHz,

Vo = 2V

pF

1,=-18mA

V OH

Vee = 4.5 V,

10H = -2 mA

VOL

Vee = 4.5 V,

10L= 12mA

10ZH

Vee = 5.5 V,

10ZL

Vee = 5.5 V,

I,

Vee = 5.5 V,

I'H

I ClK
I All others

MIN

TYpt

MAX

Vee = 4.5 V,

I,L

t

TEST CONDITIONS

v,K

2.4

3.5
0.25

V

~A

-0.15
-0.1
-30
Outputs open

mA

-90

mA

180

mA

All typical values are at Vee = 5 V, T A = 25°C.

:J: Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second. Vo is set at 0.5 V to
avoid test problems caused by test equipment ground degradation.

"tJ

JJ

o

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)

C

FROM

TO

(INPUT)

(OUTPUT)

C

PARAMETER

C')

fmax §

-I

tpd

1,1/0

Ipd

I, I/O (reset)

tpd

Clock

ten

1,1/0

tdis

1,1/0

"tJ

JJ

m

-

<
m

§

fm., (with feedback) =

TEST CONDITIONS

Isu

+

Ipd

I/O
0

0
I/O,Q
1/0,0
(eLK 10 0)

MAX

UNIT

Rl = 390 0,

ns

R2 = 750 0,

ns

See Figure 2

ns
ns
ns

.

==

2-318

MIN

MHz

External feedback

TEXAS ,If
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL22V10-15C
HIGH-PERFORMANCE IMPACT-X™ PROGRAMMABLE ARRAY LOGIC
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) ............................................................. 7 V
Input voltage (see Note 1) ................................................................. 5.5 V
Voltage applied to a disabled output (see Note 1) ............................................. 5.5 V
Operating free-air temperature range .................................................. Goe to 75°C
Storage temperature range ........................................................ -65°C to 15Goe
NOTE1: These ratings apply except for programming pins during a programming cycle or during a preload cycle.

recommended operating conditions

High-level input voltage

V,l

Low-level input voltage

10H

High-level output current

10l

Low·level output current

lw

t'"

t

Supply voltage

Vcc
V,H

MIN

NOM

MAX

UNIT

4.75

5

5.25

V

5.5

V

2

0.8

Pulse duration

Setup time before clock! t

th

Hold time, input, set, or feedback after clock!

TA

Operating free-air temperature

Clock high or low

10

Asynchronous Reset high or low

15

Input

13

Feedback

13

Synchronous Preset

13

Asynchronous Reset low (inactive)

15

0
0

The values for this parameter can only be obtained with a pulse repetition rate of 1 MHz.

V

-3.2

mA

16

mA
ns

ns

ns
75

'C

3=
w
:;
W

IX

a.
I-

U

::J
C

oIX

a.

TEXAS ",
INSJRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-319

TIBPAL22V10 .. 15C
HIGH-PERFORMANCE IMPACT-X™ PROGRAMMABLE ARRAY LOGIC
electrical characteristics over recommended operating free-air temperature range
PARAMETER

TEST CONDITIONS

V'K

Vee = 4.75 V,

I, =-18 mA

VOH

Vee = 4.75 V,

10H = -3.2 mA

VOL

Vee

10ZH

Vee = 5.25 V,

= 4.75 V,

2.4

TYpt

MAX

UNIT

-1.2

V

3.5
0.35

V
0.5

V

Va = 2.7 V

0.1

mA

Va = 0.4 V

IOL=16mA

-0.1

mA

I,

Vee

= 5.25 V,

V, =5.5V

1

mA

I'H

Vee = 5.25 V,

V, = 2.7 V

25

Vee = 5.25 V,

V, = 0.4 V

10Sl

Vee = 5.25 V,

Va = 0.5 V

Icc

Vce = 5.25 V,

V, =GND,

C,

1= 1 MHz,

V,=2V

pF

Co

f= 1 MHz,

Vo=2V

pF

Vee = 5.25 V,

I ClK

I All others

I'L

t

MIN

!!A

-0.15
-0.1
-30
Outputs open

mA

-90

mA

180

mA

All typical values are at Vee = 5 V, TA = 25°C.

*

Not more than one output should be shorted at a time and the duration 01 the short circuit should not exceed one second. Va is set at 0.5 V to
avoid test problems caused by test equipment ground degradation.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER
fmax §

§ 1m"

2-320

FROM
(INPUT)

TO
(OUTPUT)

TEST CONDITIONS

External feedback

MIN

MAX

40

UNIT
MHz

15

ns

R1 = 300 0,

20

ns

Q

R2 = 390 0,

12

ns

Clock

I/O

See Figure 2

22

ns

ten

1,1/0

1/0,0

15

ns

tdis

1,1/0

1/0,0

15

ns

tpd

1,1/0

I/O

tpd

I, I/O (reset)

Q

tpd

Clock

tpd'

(with feedback) =

.,----,...-':=-:::-:-:-=
Isu + lpa (eLK 10 Q)

TEXAS .Jf

INSTRUMENTS
POST OfFICE BOX 655303 • DAllAS. TEXAS 75265

TIBPAL22V10-20M. TIBPAL22V1 0-1SC
HIGH-PERFORMANCE IMPACT-X™ PROGRAMMABLE ARRAY LOGIC
power-up reset
Following power-up, all registers are reset to zero. The output level depends on the polarity selected during
programming. This feature provides extra flexibility to the system designer and is especially valuable in
simplifying state-machine initialization. To ensure a valid power-up reset, it is important that the rise of Vee be
monotonic. Following power-up reset, a low-to-high clock transition must not occur until all applicable input and
feedback setup times are met.

power-up reset waveforms
4
VCC ___________

J

I1rr-----------------------------------

5V

1'114f------tpd t
.1
1600 ns typo 1000 ns MAX)
I

REGISTE:~~I~~~!~~

.LI_____

______

'i.u~~-.5-~---. __-__-_-___- ::~

S_TA_T_E_U_N_K_N_O_W_N
____

I

3:
w

ACTIVE-LOW
REGISTERED OUTPUT

5>
w
a:

CLOCK

Q.

t

to:::>
U

This is the power-up reset time and applies to registered outputs only. The values shown are from characterization data.

*

This is the setup time for input or feedback.

C

programming information
Texas Instruments programmable logic devices can be programmed using widely available software and
inexpensive device programmers.

oa:
Q.

Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas Instruments
programmable logic is also available, upon request, from the nearest TI field sales office, local authorized TI
distributor, or by calling Texas Instruments at (214) 997-5666.

. TEXAS.Jf
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-321

TIBPAL22V10-20M. TIBPAL22V10-15C
HIGH-PERFORMANCE IMPACT-X™ PROGRAMMABLE ARRAY LOGIC
preload procedure for registered outputs (see Note 2)
The output registers can be preloaded to any desired state during device testing. This permits any state to be
tested without having to setup through the entire state-machine sequence. Each register is preloaded
individually by following the steps given below:
Step 1.
Step 2.
Step 3.
Step 4.

With Vee at 5 V and pin 1 at VIL, raise pin 13 to VIHH'
Apply either VIL or VIH to the Oli,PUt corresponding to the register to be preloaded.
Pulse pin 1, clocking in preload data.
Remove output voltage, then lower pin 13 to VIL' Preload can be verified by observing the voltage level
at the output pin.

preload waveforms (see Notes 2 and 3)

PIN13~ ~tsu~
*-td--+l

~td~

PIN 1

"
:

I"

*-tw--+l

"

I

1- __ , ___ 1_ I
I

I

1

_

1

=>---\
I'

REGISTERED I/O

~----::~H

I

I

,

I

---VIH

I ,V , . - - - - VOH
\I-VIH

INPUT

-

I

\

-VIL

OUTPUT

VOL

NOTES: 2. Pin numbers shown are for JT and NT packages only. If chip-carrier socket adapter is not used, pin numbers must be changed
accordingly.
3. td tsu = Iw 100 ns to 1000 ns. V1HH = 10.25 Vlo 10.75 V.

=

2-322

=

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 855303 • DALLAS. TEXAS 75265

TIBPAL22V10-20M, TIBPAL22V1 0-1 SC
HIGH-PERFORMANCE IMPACT-)CM PROGRAMMABLE ARRAY LOGIC
PARAMETER MEASUREMENT INFORMATION

CL
(See Note A)

R2

LOAD CIRCUIT FOR
3-STATE OUTPUTS

TIMING
INPUT

(3 V) [3.5 V]

~ 1.5 V

4·

-.T 1.5V

(3 V) [3.5 V]

~

I

L

,...---...,.

--.Ij

tpd

1.5 V

PULSE

(0) [0.3 VI
(See Note B)

--l+--+I

-

-

-

-

l\

(3 V) [3.5 VI
(0) [0.3 V]

~ tpo

IJ I J - - VOH
T 1.5V I ~V

,~

_,

tpd~

I
f4---+1-1 tpd

OUTPUT
CONTROL
(low-level

-

-

(0) [0.3 V]
(See Note B)

-

VOL

~
I
1.5 V

ten

I I

fI
:..L -

I

tdlS....,

W~~'g'L~~-ri---!i \rl-7.'5V ..

OUT-OF-PHASE
OUTPUT
(See Note D)

t. n
WAVEFORM 2
S10PEN
(See Note C)

I
-+I 14-

l

D.

(3v)[3'5VI

I-

1.5 V

...,.I /'+-

(See Note C)

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

1.5V

-

enabling)

I
I

IN-PHASE
OUTPUT--1"'1- J

1.5V

VOLTAGE WAVEFORMS
PULSE DURATIONS

"'- 1.5 V

~
~
a:

I

LOW-LEVEL~I
I
(3 V) [3.5 V]

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT

(3 V) [3.5 V]
(0) [0.3 V]

I+--t., ---+I

tsu~th

~~"-:;-

DATA
INPUT

~
- - . ,.~. ~

HIGH-LEVEL
PULSE ----.JI'.~

(0) [0.3 VI

tdlS

-

-

~

:¥;=;:--

-+! I+-

o

(0) [0.3 V]
(See Note B)

-

A -

3.3

:::l
C

oa:

V

VOL
VOL + 0.5 V

L

D.

I -Y

\:=-=--

1.5 V
.~
----

~

V OH

VOH - 0.5 V
-OV

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS
NOTES: A. C L includes probe and jig capacitance and is 50 pF for tpd and ten, 5 pF for tdl,.
B. All input pulses have the following characteristics: For M suffix, use the voltage levels indicated in parentheses (), PRR S 10 MHz,
t, and tfs 2 ns, duty cycle: 50%. For C suffix, use the voltage levels indicated in brackets [I PRR S 1 MHz, t,: tf: 2 ns, duty cycle = 50%.
C. Waveform 1 is for an output with internal conditions such thalthe output is low except when disabled by the output control. Waveform 2
is for an output with internal conditions such that the output is high except when disabled by the output control.
D. When measuring propagation delay times of 3-state outputs, switch Sl is closed.
E. Equivalent loads may be used for testing.

FIGURE 2

TEXAS ."

INSlRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-323

..

2-324

TIBPAL22VP10-25M, TIBPAL22VP10-20C
HIGH-PERFORMANCE IMPACpM PROGRAMMABLE ARRAY LOGIC
02943. FEBRUARY 1987-REVISEO OCTOBER 1989

•

M SUFFIX ... JT PACKAGE
C SUFFIX ... NT PACKAGE

Functionally Equivalent to the
T1BPAL22V1 0/1 OA, with Additional
Feedback Paths in the Output Logic
Macrocell

(TOP VIEW)

ClK/)

•

Choice of Operating Speeds:
TIBPAL22VP10-20C ... 20 ns Max
TIBPAL22VP10-25M ... 25 ns Max

•

Variable Product Term Distribution Allows
More Complex Functions to be Implemented

•

Polarity of Each Output is Programmable

•

TTL-Level Preload for Improved Testability

•

Extra Terms Provide Logical Synchronous
Set and Asynchronous Reset Capability

GND

•

Fast Programming, High Programming Yield,
and Unsurpassed Reliability Ensured Using
Ti-W Fuses

•

AC and DC Testing Done at the Factory
Utilizing Special Designed-In Test Features

•
•

M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)

Dependable Texas Instruments Quality and
Reliability
Package Options Include Plastic and
Ceramic Dual-In-Line Packages and Chip
Carriers

........--~

VCC
I/O/Q
I/O/Q
I/O/Q
I/O/Q
)/O/Q
I/O/Q
I/O/Q
)/O/Q
I/O/Q
I/O/Q
I

NC
)

description

>2
...J
__ u

U

4

1 28 27 26

3

2

Z

uQ Q

UO 0

>':::0:::0

5

25

6

24

7

23

8
9

22

10

20

21

11

The TIBPAL22VP10 is equivalent to the
TIBPAL22V10A but offers additional flexibility
in the output structure. The improved output
macrocell uses the registered outputs as inputs
when in a high-impedance condition. This
provides two additional output configurations for
a total of six possible macrocell configurations
all of which are shown in Figure 1.

19
12 13 14 15 16 17 18

NC-No internal connection
Pin assignments in operating mode

The device contains up to twenty-two inputs and ten outputs. It defines and programs the architecture
of each output on an individual basis. Outputs may be registered or nonregistered and inverting or
noninverting. In addition, the data may be fed back into the array from either the register or the I/O port.
The ten potential outputs are enabled through the use of individual product terms.
Further advantages can be seen in the introduction of variable product term distribution. This technique
allocates from 8 to 16 logical product terms to each output for an average of 12 product terms per output.
This variable allocation of terms allows far more complex functions to be implemented than in previously
available devices.

IMPACT is a trademark of Texas Instruments Incorporated.

PRODUCTION DATA do.umants oontoin information
.urrant as of publioation data. Preducts .onform to
spacifioatlonl per tho tarms of TaJIII Instruments

=ir:";'.r;.~t,J.; ~::':~:r :I:"::::A:~" not

Copyright @ 1989. Texas Instruments Incorporated

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-325

TlBPAL22VP10-25M, TIBPAL22VP10-20C
HIGH-PERFORMANCE IMPACT"" PROGRAMMABLE ARRAY LOGl'C
Circuit design is enhanced by the addition of a synchronous set and an asynchronous reset product term_
These functions are common to all registers. When the synchronous set product term is a logic 1, the
output registers are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous
reset product term is a logic 1, the output registers are loaded with a logic O. The output logic level after
set or reset depends on the polarity selected during programming. Output registers can be preloaded to
any desired state during testing. Preloading permits full logical verification during product testing.
With features such as programmable output logic macrocells and variable product terms, the TIBPAL22VP1 0
offers quick design and development of custom LSI functions with complexities of 500 to 800 equivalent
gates. Since each of the ten output pins may be individually configured as inputs on either a temporary
or permanent basis, functions requiring up to 21 inputs and a single output or down to 12 inputs and 10
outputs are possible.
A poWer-up clear function is supplied that forces all registered outputs to a predetermined state after power
is applied to the device. Registered outputs selected as active-low power-up with their outputs high.
Registered outputs selected as active-high power-up with their outputs low.
A single security fuse is provided on each device to discourage unauthorized copying of fuse patterns.
Once blown, the verification circuitry is disabled and all other fuses will appear to be open.
The TIBPAL22VP1 0-25M is characterized for operation over the full military temperature range of - 55°C
to 125°C. The TIBPAL22VP10-20C is characterized for operation from O°C to 75°C.

2-326

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIBPAL22VP10-25M. TIBPAL22VP10-20C
HIGH-PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
functional block diagram (positive logic)

~

r C1

SET
RESET

&

32x44
8

11S

~

~1

~

---..

---..

ClKII

~ rv

-'~

i"""""

h

~ rv

~

1~

-

h
h

---..
---..

MACROCELL

~

r=>

~

r-->

12

EN

~

f--- 1/0/0

~

.......

1/0/0

().,

......

1/0/0

h

~

EN

h

~

EN

~

........

1/0/0

~

EN

~

.......

1/0/0

h
h

.... EN

~

h

.... EN

~r= F>

--...,

I-

EN

'-r= F>

--...,

I-

EN

1-->

V-

.... 1-->

V-

I-I--F>

V-

14

""""

~I1010

EN

EN

14

16

--...,

-

I-

V-

16

--...,

--...,

~

h

> LOGIC

~

10
~

[>
OUTPUT

I-I--F>

r

12

,,"""-

V-

10

F>

r-- 1/0/0
~ r-- 1/0/0
~

f--- 1/0/0

~

f--- 1/0/0

8

---..
10
10

10

"\..... denotes fused inputs

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-327

TlBPAL22VP10-25M. TIBPAL22VP10-20C
HIGH-PERFORMANCE IMPACpM PROGRAMMABLE ARRAY LOGIC

logic diagram (positive logic)
111

FIRST
FUSE

NUMBE

INCREMENT

fo

0

4

8

12

16

I11I111111'

,

20

24

28

3.

32

40
ASYNCHRONOUS RESET

ITO ALL REGISTERS I

AI

o!l=

L;!.

M>

~'
CELL

231

P .. 5808

R_5809

440

3ft>- ~
CEll
P-S810
R_58ll

880

121

..

221

L

924

=Orr

ik

CELL

~

1452

131

~ 211

P-5812

R-sa13

~

1496

~~
CEll

2112
(41-{>t- .

---vL

201

R-581S

~

2156

r.=rr
CELL

P-

1191

P-5816

2860

~~-U='

::::db.-'

P-5818

{1BI

I

-"""\ ~ i--J

-+

3652 -

I

~h

MACRO
_ CELL

J=f . ~

4268
17~
4312

~

p_ 5814

_......d'-r

~

-

J

(171

p_ 5820

R-S82l

~

..

~=-D
m
CELL

(16)

P-5822

4840

I_~l-{>b.: ~+'

~

4884·

~

+

ru

5324

~~----t>t=-

~
CEll

(151

P-5824

Roo 5825

5368

~

=

(14)

CELL

5720

p- 5826

(~-

Roo 5827

5764

-0

Ill)

I

I

I

II

II

II

--

SYNCHRONOUS SET

(TO All REGISTERS)
1131

Fuse Number = First Fuse Number ~ Increment
Inside each MACRO CELL, the "P" fuse is the polarity fuse and the "R" fuse is the register fuse.

TEXAS . "

INSTRUMENTS
2-328

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL22VP10·2SM, TIBPAL22VP10·20C
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC

output logic macrocell diagram

OUTPUT LOGIC MACROCELL

--,

r--::":M::":U:::X-"

r-A-R--~R::;I-:O;:~~-'~~~~:
}--+-"'---I10
r-..!--------J> C1
SS

I
I

D----.-------IO

1}
03
GO

15

FROM CLOCK BUFFER
MUX

1}o G0

112/3

3

S2 t

I

S1

AR --aSynChrOnous reset

~- ::hr~se_t_

I
I
I

I
J

t This fuse is unique to the Texas Instruments TIBPAL22VP1 OA. It allows feedback from the 110 port using registered outputs as shown
in the macrocell fusing logic function table.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-329

TlBPAL22VP10·25M, TIBPAL22VP10·20C
HIGH·PERFORMANCE .IMPACT'" PROGRAMMABLE ARRAY LOGIC

S2 - 0
S1 ~ 0
so - 0
REGISTER FEEDBACK. REGISTERED. ACTIVE-LOW OUTPUT

S2 - 0
S1 - 0
SO - 1
REGISTER FEEDBACK. REGISTERED. ACTIVE-HIGH OUTPUT

S2 - 1
S1 - 0
SO - 1

S2 - 1
S1 - 0
SO - 0
I/O FEEDBACK. REGISTERED. ACTIVE-LOW OUTPUTt

I/O FEEDBACK; REGISTERED. ACTIVE-HIGH OUTPUTt

S2 - X
S1 - 1
SO - 0
1/0 FEEDBACK. COMBINATIONAL. ACTIVE-LOW OUTPUT

82 - X
S1 - 1
SO - 1

I/O FEEDBACK. COMBINATIONAL. ACTIVE-HIGH OUTPUT

tThese configurations are unique to the TIBPAL22VP10 and provide added flexibility when comparing it to the TlBPAL22V10 or
TIBPAL22V10A.

FIGURE 1. RESULTANT MACROCELL FEEDBACK AND OUTPUT LOGIC AFTER PROGRAMMING

2-330

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL22VP10·25M. TlBPAL22VP10·20C
HIGH·PERFORMANCE IMPACT'M PROGRAMMABLE ARRAY LOGIC
MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE
PROGRAM-FUSE SELECT

FEEDBACK AND OUTPUT CONFIGURATION

S2

S1

SO

0
0

0

0

Register feedback Registered

Active low

0

1

Register feedback Registered

Active high

1

0

0

1/0 feedback

Registered

Active low

1

1

1/0 feedback

Registered

Active high

X

0
1

0

1/0 feedback

Combinational Active low

X

1

1

I/O feedback

Combinational Active high

o = unblown fuse,

1 = blown fuse, X = unblown or blown fuse
52, S1, and SO are select-function fuses as shown in the output logic macrocell

diagram.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range: TIBPAL22VP10-25M ................. - 55 °e to 125 °e
TIBPAL22VP10-20e . . . . . . . . . . . . . . . . . . . .. ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 °e
NOTE 1; These ratings apply except for programming pins during a programming cycle or during a pre-load cycle.

recommended operating conditions
TIBPAL22VP10-25M
VCC

Supply voltage

VIH

High-level input voltage

TIBPAL22VP10-20C

UNIT

MIN

NOM

MAX

MIN

NOM

MAX

4.5

5

5.5

4.75

5

5.25

V

5.5

2

5.5

V

2

VIL

Low-level input voltage

0.8

0.8

10H

High-level output current

-2

-3.2

V
mA

10L

low-level output current

12

16

mA

fclock

Clock frequency t

25

37

MHz

tw

Pulse duration

tsu

Setup time before clock!

Clock high or low

20

10

Reset high

30

20

Input

25

15

Feedback

25

15

Preset

25

15

Reset low (inactive)

30

20

th

Hold time, input, preset, or feedback after clock!

TA

Operating free-air temperature

t fclock Iwith feedback)

=

fclock (without feedback)

tsu

+

0
-55

ns

ns

0
125

0

ns
75

·C

1
, fclock without feedback can be calculated as
tpd (CLK to Q)

tw high

+ tw low

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-331

TlBPAL22VP10-25M
HIGH-PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
electrical characteristics over recommended operating free-air temperature range
PARAMETER

TEST CONDITIONS

VIK

Vee

VOH

Vee

VOL

Vee

lOZH

Vee

= 4.5
= 4.5
= 4.5
= 5.5

Vee

=

Vee

= 5.5 V,
= 5.5 V,
= 5.5 V,
= 5.5 V,
= 5.5 V,

10Zl

I Any output
I

Any I/O

II
IIH

VCC

III

VCC

lOS~

Vec

ICC

VCC

=

V,

II

V,

10H

V,

lOl

V,

Vo

= -2 mA
= 12 mA
= 2.7 V

5.5 V,

Vo

= 0.4

MIN

Typt

-18 mA
2.4

UNIT
V

3.5
0.25

V
0.5

V

0.1

mA

-100

V

= 5.5 V
VI = 2.7 V
VI = 0.4 V
Vo = 0.5 V
VI = GND,

MAX
-1.2

-250
1

VI

-30

Outputs open

140

~A

mA

25

~A

-0.25

mA

-90

mA

220

mA

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER

FROM

TO

TEST CONDITIONS

fmax§

MIN

Typt

25

50

MAX

UNIT
MHz

12

25

ns

12

25

ns

Q

R2

= 50 pF,
= 390O,
= 750O,

8

15

ns

1,1/0

Q

See Figure 2

12

25

ns

1,1/0

0

12

25

ns

ted
tpd

I, I/O

1/0

Cl

I, 1/0 (reset)

Q

Rl

tpd

Clock

ten
tdis

t All typical values are at VCC = 5 V, TA = 25°C.
t Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set Va at
0.5 V to avoid test problems caused by test eQuipment ground degradation.
§ f max (with feedback)

=

tsu

+

1
, f max without feedback can be calculated as
tpd (ClK to 01

1
f max (without feedback) = - - - - - tw high + tw low

TEXAS . "

INSTRUMENTS
2-332

POST OFFICE BOX 865303 • DALLAS. TEXAS 75286

TIBPAL22VP10·20C
HIGH·PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
electrical characteristics over recommended operating free-air temperature range·
PARAMETER

TEST CONDITIONS

= 4.75
= 4.75

=

VIK

Vee

VOH

Vee

VOL

Vee - 4.75 V.

10ZH

Vee

=

5.25 V.

Vo

= 2.7

Vee

=

5.25 V.

Vo

= 0.4

II

Vee

IIH

Vee

III
lOS;

Vee

= 5.25
= 5.25
= 5.25
= 5.25

10Zl

I Any output
I Any I/O

V.

II

V.

10H

V.
V.
V.

Vee
V.
Vee - 5.25 V.

lee

MIN

Typt

2.4

3.5

-18 mA

=

-3.2 mA

0.35

MAX
-1.2

UNIT
V
V

0.5

V

V

0.1

mA

V

-100
-250

~A

1

mA

10l - 16 mA

= 5.5 V
VI = 2.7 V
VI = 0.4 V
Vo = 0.5 V
VI

VI - GND.

-30
Outputs open

140

25

~A

-0.25
-90

mA

210

mA

mA

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER

FROM

TO

TEST CONDITIONS

fmax§

MIN

Typt

37

50

MAX

UNIT
MHz

12

20

ns

12

20

ns

Q

R2

= 50 pF.
= 300 II.
= 390 O.

8

12

ns

1.1/0

Q

See Figure 2

12

20

ns

1.1/0

Q

12

20

ns

tpd

1.1/0

110

el

tpd

I. 110 (reset)

Q

R1

tpd

elock

ten
tdis

t All typical values are at Vee = 5 V. T A = 25°e.
:I: Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set
0.5 V to avoid test problems caused by test equipment ground degradation.

§ f max (with feedback)

=

tsu

+

Va

at

1
• f max without feedback can be calculated as
tpd (elK to Q)

{max (without feedback) = _..,..,....,..;-1-----,tw high + tw low

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 76265

2-333

TIBPAL22VP10·25M, TIBPAL22VP10·20C
HIGH·PERFORMANCE IMPACTlM PROGRAMMABLE ARRAY LOGIC

preload procedure for registered outputs (see Note 2)
The output registers of the TIBPAL22VP1 0 can be preloaded to any desired state during device testing.
This permits any state to be tested without having to step through the entire state-machine sequence.
Each register is pre loaded individually by following the steps given below.
Step
Step
Step
Step

1.
2.
3.
4.

With Vee at 5 volts and pin 1 at VIL, raise pin 13 to VIHH.
Apply either VIL or VIH to the output corresponding to the register to be preloaded.
Pulse pin 1, clocking in preload data.
Remove output voltage, then lower pin 13 to VIL. Preload can be verified by observing the voltage
level at the output pin.

preload waveforms (see Notes 2 and 3)
~----VIHH

PIN13~
I4- l d-+l

j+-Isu--+t

I+-Id---+i

PIN 1

i

1

I
I

I

I·

~

I

I

I
I

I
I

~-VIH

REGISTERED 1/0 ~

INPUT

!

-VIL
NOTES:

V,......---VOH

\

OUTPUT

VOL

2. Pin numbers shown are for JT and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed
accordingly.

3. td

2-334

VIL

iu-l-hih---:::

I+-Iw-.l

= tsu = tw =

100 ns to 1000 ns. VIHH

=

10.25 V to 10.75 V.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TlBPAL22VP10-25M, TlBPAL22VP10-20C
HIGH-PERFORMANCE IMPACTTM PROGRAMMABLE ARRAY LOGIC
power-up reset
Following power-up, all registers of the TIBPAl22VP10 are reset to zero. The output level depends on
the polarity selected during programming. This feature provides extra flexibility to the system designer
and is especially valuable in simplifying state-machine initialization. To ensure a valid power-up reset, it
is important that the VCC's rise be monotonic. Following power-up reset, a low-to-high clock transition
must not occur until all applicable input and feedback setup times are met.

power-up reset waveforms

~-----------------------------------5V

.JJii

4

vcc ___________

I4!OIf------ t pd t
1600 ns typo '000 ns MAX)

REGISTE:;~I~~~~~~

/

~
I

~~5 ~ -

STATE UNKNOWN

-

-

-

- - VOH

----------~---~--------------------~~~------------VOL

I

ACTIVE-LOW
REGISTERED OUTPUT ___________..A.....·______
ST_A_T_E_U_N_K_N_O_W
__
N____

I
Jl

...JT: ~5 ~

VOH
_ _ _ _ _ VOL

r+--tsu* --+I

\1.5 V

CLOCK

CVIH

,'.5V

------------------------------~~----------J1- -

- VIL

14--- tw-----+t
tThis is the power-up reset time and applies to registered outputs only. The values shown are from characterization data.
t This is the setup time for input or feedback.

programming information
Texas Instruments Programmable logic Devices can be programmed using widely available software and
inexpensive device programmers.
When the additional fuses are not being used, the TIBPAL22VP10 can. be programmed using the
TIBPAl22V10/10A programming alogrithm. The fuse configuration data can either be from a JEDEC file
(format per JEDEC Standard No.3-A) or a TIBPAl22V10/10A master.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 995-5666.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-335

TIBPAL22VP10-25M, TIBPAL22VP10-20C
HIGH-PERFORMANCE IMPACTTM ·PROGRAMMABLE ARRAY LOGIC
PARAMETER MEASUREMENT INFORMATION
5V
SI

I.
Rl

FROM OUTPUT _ ..._ ...~..._
UNOER TEST
CL
(See Note AI

TEST
POINT

R2

LOAO CIRCUIT FOR
THREE-STATE OUTPUTS

TIMING
INPUT

/..

---[3.5V](3V)

[3.5 V] (3 V)

F,1.5V

_ _ _..J.U - - - - - [0.3 V] (0)
I+-th-+l
)4-tsu-+\
I

DATA ~~-- [3.SV] (3 V)
1.5V
1.5V
INPUT
[0.3 V] (0)

HIGH-LEVEL
PULSE

15 V
15 V
~
. . .

,..----.....
.¥.I 1.5 V

OUT-OF-PHASE
OUTPUT
(See Note D)

- [3.5 V] (3 V)

14

.1

I

I

~

1

I

tpd

-

14.1

: f1.5V:

IN-PHASE
OUTPUT

-

I

14.1

14

\1.5V
.

VOLTAGE WAVEFORMS
PROPAGATION OELAY TIMES

tpd
,t--VOH

I
.1

VOL

tpd

~VOH
.

I

PULSE

1.5V
-

-

1.5V
- - [0.3 V] (0)

VOLTAGE WAVEFORMS
PULSE DURATIONS

\1.5 V
I ' - - - - [ 0 . 3 V] (0)

--...I.
tpd

-

I · [0.3 V] (0)

LOW-LEVEL~I [3.5 V] (3 V)

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT

I

I

!.-- t w ----"!

- - VOL

OUTPUT ~[3.5V] (3 V)
CONTROL
1.5V
1.5V
(low-level
_1 _ _ _ _ . [0.3 V] (0)
enabling)
I
I
ten
I+..... I+-- tdis

--+t

I!

IIII

=3.3 V
WAVEFORM l - - - r \ : . 1.5 V
~VOL +0.5 V
SI CLOSEO
1 ~-==~-= V
(See Note 8)

ton-+l

i

.....fIoI ~~s_T~_

VOL

WAVEFORM2~--.S10PEN
(See Note B)

1.5 V

OH
LVOH-0.5 V
=0 V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS

NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten. 5 pF for tdis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: For M suffix, use the voltage levels indicated in parentheses ( l.
PRR :s 10 MHz, tr and tf :s; 2 n5, duty cycle = 50%. For C suffix, use the voltage levels indicated in brackets [ ],
PRR s 1 MHz. tr = tf = 2 ns, duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.
E. Equivalent loads may be used for testing.

FIGURE 2

2-336

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPALR19LBC, TlBPALR19R4C, TIBPALR19R6C, TIBPALR19RBC
HIGH-PERFORMANCE REGISTERED-INPUT PAL® CIRCUITS
02709, DECEMBER 19B2-REVISED AUGUST 1989

•

High-Performance Operation ... 30 MHz

•

Preload Capability on Output Registp.rs

DEVICE

110 INPUTS

I INPUTS

'PALRI9L8
'PALRI9R4
'PALRI9R6
'PALRI9R8

11
11
11
11

2
0
0
0

o

•

DIP Options Include Both 300-mil Plastic
and SOO-mil Ceramic

•

Dependable Texas Instruments Quality and
Reliability

3-STATE
OUTPUTS

2
0
0
0

REGISTERED
Q OUTPUTS

1/0 PORTS

0
4 13-state buffers)
6 13-state buffers)
8 13-state buffers)

6
4
2
0

TIBPALR19LB'
JW OR NT PACKAGE

description
These programmable array logic devices feature
high speed and functionality similar to the
TIBPAL 16L8, 16R4, 16R6, 16RS series, but
with the added advantage of Ootype input
registers, If any input register is not desired, it
can be converted to an input buffer by simply
programming the architectural fuse,

ITOP VIEW)

110
110
110
110
GND

0
INCLK
I

TIBPALR19LB'
FN PACKAGE
ITOP VIEW)

43212B2726

lID
lID
110
NC
110
110
110

A C suffix designates commercial-temperature
circuits that are characterized for operation from
DOC to 70°C,
INPUT REGISTER FUNCTION TABLE

X

1/0
1/0
1/0
1/0
1/0

'iiD

Extra circuitrv',/1~~ bee~ provided to allow loading
of each r.~~~~~r ~synchronously to either a high
or low state, This feature simplifies testing
because the registers can be set to an initial state
prior to executing the test sequence,

L

"fli';

',!/Q;

Combining Advanced Low-Power Schottky t
technology, with proven titanium-tungsten
fuses, these devices will provide reliable high
performance substitutes over conventional TTLlogic, Their easy programmability allows ''i¥\'
quick design of custom functionsal1d',ty~i\3ai'iy
result in a more compact c,;irlNit<,b6ilrd, In
addition, chip carriers are, ai)'ellable for further
reduction in board "spa~e. ,"

INPUT
INCLK
0
I
H
L
I

VCC
IjP;':,

liD
110
110
110

OUTPUT OF
INPUT REGISTER
H

25

5
6

24
23
22
21
20
19

9
10
II

1/0
1/0
1/0
NC

12131415161718

L
Qo

NC - No internal connection

t Integrated Schottky-Barrier diode-clamped transistor is patented
by Texas Instruments, U,S, Patent Number 3,463,975,
PAL is a registered trademark of Monolilthic Memories Inc.

PRODUCTION DATA documents contain information
currant 88 of publication datI. Products conform to
spacifications per the terms of Texes Instruments

:~~~:~~i~ai~:;:'~~ ~::i~:i:f :1~o::~:::t:~~S not

Pin assignments in operating mode

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012· DALLAS. TEXAS 75265

Copyright © 1989, Texas Instruments Incorporated

2-337

TIBPALR19R4C, TlBPALR19R6C, TIBPALR19R8C
HIGH·PERFORMANCE REGISTERED·INPUT PAL® CIRCUITS
TlBPALR19R4'
JW OR NT PACKAGE

TIBPALR19R4'
FN PACKAGE

(TOP VIEW)

(TOP VIEW)

OUTCLK
110

VCC
110
110
110
4

Q

110
110
110
NC
110
110
110

Q

110
110
110
liD
110

Q

Q

110
110
INCLK

GND L.C;:.........:::~

DE

3 2

1 282726

5

25
24

6
7
8
9
10

22
21

11
12 131415161718

TIBPALR19RS'
JW OR NT PACKAGE

TlBPALR19RS'
FN PACKAGE

(TOP VIEW)

(TOP VIEW)

OUTCLK
110
110
110
110

VCC
110
110
Q

4

Q

110
110
110
NC
110
110
110

Q
Q

110
110
110
110
110
GND

Q
Q

110
INCLK
DE

3 2

1 282726

D5

25
24

Q6

g7

23

Q

NC

9

22
21

10

20

Q

19[

Q

8

11
12 131415161718

TIBPALR19RS'
JW OR NT PACKAGE

TIBPALR19RS'
FN PACKAGE

(TOP VIEW)

(TOP VIEW)

OUTCLK

liD
110
110
liD
110

VCC
110
Q
Q

4321282726

Q
Q
Q
Q

110
110
110

Q
Q

INCLK

GND _;;......:..:;... DE

12 131415161718

gg~~I~dd

Pin assignments in operating mode

(!)

;!;

NC-No internal connection

2·338

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655012 • DAlLAS, 'TEXAS 75265

Q
Q

Q

TlBPALR19L8C, TIBPALR19R4C
HIGH·PERFORMANCE REGISTERED·INPUT PAL® CIRCUITS
functional block diagrams (positive logic)
'PALR19L8
EN ;>1

'iJ

0
0
1/0
110
110
110
110
110

6

'PALR19R4

OE------------------------------~~
OUTCLK--------------------------------;>
1---0

INCLK -------{>

t--t--i--+--

11

0

t:>-,-----"'-I--I/O
I:>-....+---OH-I--I/O

t:>-.-+---H-I-- I/O
t:>-.-+---H-I--

1/0

4

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2·339

TIBPALR19R6C, TIBPALR19R8C
HIGH·PERFORMANCE REGISTERED·INPUT PAL® CIRCUITS
functional block diagrams (positive logic)
'PALR19R6

oE--------------------~~~-,

OUTCLK---------------------------i>

o

&

o

INCLK -----i>

o
o

o
o

1-_...2.~~....,~I-I/O

b-ti..........---j!--I/O

'PALR19R8

OE----------------------~fiNr__,
OUTCLK---------------------------i>

o

t---r--1=~0

INCLK---t>

o

o

t--r-""1---+-0

"

o

1--t--1--4--0
a
8

2-340

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

TlSPALR 19L8C
HIGH-PERFORMANCE REGISTERED-INPUT PAL® CIRCUITS
logic diagram (positive logic)
11)
INCREMENT

"o@~o
~

4

12

16

20

,
24

28

32

36

J

123),

IC2

2D
MIl

24r

~

ACT UAL FUSE
NUM BER

FIRST
FUSE NUMBERS

,.3.

L-.

00

114

110 @L

152
190

:~2
~

~~I

304

MO
Ml

342
380

fJ

:~:

2434

IID~

494

532
510

~2

~~

Me)

Ml

121),
10

l

120),
10

l

119),

l

118),

l

(17),

1

116)

l

115)

950
988

EP

19~

H~

1216

b

1264
1292

2437 1330

Me
M1

1558
1596

2438 ~:~~

~

0

v

v

10

10

10

tI~
1~2 lH:

1/0,!!l
,~

20

1824

_ 2439

~~~:

~

:~2

~3g~

v

MO
M1

1/0

~

I/D!!l1i}- ::::
2168
2204

2440 U3~

v

(10)fttJ~
1~2 m!

I/D~

122)

v

:::

~
I/D!2!..JJ~
l~2 ~~

I/U~

De2

l

~~

MO
M1

~

~

684

I/D.@..Ii!f~
~2
2436

~

l

::

Ml

2435

10

MI

a

11,
~~

MI

2441

110 I!.!;

g,2

MD
MI

w;:
__2_44_2_+--_ _ _A_c_T_U_A_L_F_U_S_E_N_U_M_B_E_R_S_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-+-<~~1"-14),NCLK

Fuse Numbers = First Fuse Number + Increment
Pin numbers shown are for JW and NT packages.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

~3),

2-341

TlBPALR19R4C
HIGH·PERFORMANCE REGISTERED·INPUT PAL® CIRCUITS
logic diagram (positive logic)
OUTCLK (1)
INCREMENT

,

A

i

110

!3l

~o

4

8

16

12

20

24

28

32

0C2
102
20

24t _

304
342
380

t

MO

Ml

2435

110

oc,

!&

le2

608
646

684

~~~

,~

20

912

MO

960

Ml

~r
OC2

~~
Ml

-=

110

ill.

1178

1406

tIff

1482

MO
Ml

1558
1596

1520

2438 1634

110 ~

~n~

OC2

I/O ~

20

MO
Ml

2440

1824
1862
1900

110

(l!!!

p--I~ ~

Q

~
l

(161

I/O

1

2090

2128

2168
2204

1

~~:~

jt
I[
OC2

Q

1786

2439 1938
_
1976
OC2
le2

Q

el

(I'"
~jr
102
20
MIl
Ml

Q

~

p-

1292

OC2
Ie,

-=

1/0

1216

1254

2437 n~g

20

(211

P-- ~ ~191

988

1064

MO

I/O

el

2436 1026

I/O ~

(221

r

v

I
>B~'

670

OC2
le2

20

J
J

-= 2434 :~=
494

I/O ~

ACTUAL FUSE
NUMBER

it
l1=
fll
OC2
102

MIl
Ml

I/O

1

""

20

(231

MO

_ :33

@L

J
102
20

FIRST
FUSE NUMBERS
'--+ 00
38
7.
162
190

110

36

2394

le2
20

(151

I/O

I

MO

Ml

2441

110

(!!l

le2
20
MO

Ml

-= 2442+-- ACTUAL FUSE NUMBERS

~

2-342

IINCLK

IDE

Fuse Numbers = First Fuse Number + Increment
Pin numbers shown are for JW and NT packages.

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TIBPALR19R6C
HIGH·PERFORMANCE REGISTERED·INPUT PAL® CIRCUITS

logic diagram (positive logic)

OUTCLK~(I~)~==============================================================~~
INCREMENT
,

.

ill

110

12

ttri:'

16

20

24

28

32

36

J
Ie,

(23)

'D

i 0

110

MIl
M

Ml

2432

2433

TL-,--~
ACTUAL FUSE
NUMBER
L-

FIRST
FUSE NUMBERS

~~

L.-.

76

"'
'52

@lrtfJ'~' :::

110

MO
M1

342
380

:J~

2434

I/D~r#J~
~~' :::
MO
M1

646
684

~~~

2435

.~~~,~' m

1/0-

~

~~

M1

988

2436 ~g~:

110

~rtD~
~~2 ::!:
MO

1254

M1

110 ill

1292

~~
:;:7 ~!
MO
M1

1558
1596

2438 ~~~~

1~2 1m
I/D'~rJ~
,-

20
MO
M1

1824
1862
1900

_ 2439 a~:

I/D~~~~2
MO

M1

2440

::::

2168

2204

~~:~

(10)ftiJ~
,g'i' ~U!

I/D~

~
Ml

2441

I/D!!.!.iJf

I

Ml

_ 2442 _ _ ACTUAL FUSE NUMBERS

w;:---------------------------------I-<~}-(~14)INCLK
Fuse Numbers

=

First Fuse Number

+

Increment

~)OE

Pin numbers shown are for JW and NT packages.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2·343

TlBPALR19RBC
HIGH·PERFORMANCE REGISTERED·INPUT PAL® CIRCUITS

logic diagram (positive logic)

OUTCLK~(1~1~==============================================================~~
INCREMENT

I

A

i

c,

110

@..

~

16

12

4

20

28

24

32

0

~

-oc,

~;f-_-+

_ _ _--"'12:::c311/D

MD
Ml

24;2 ~

2433

'-----+-- ~S~~~~ FUSE

FIRST
FUSE NUMBERS

'------+

36 \

00
38

7.
11,
152

110

1!l

frfD'!:
MO
M1

2434

110

342
380

:Ag

~fJJ~
::f' :::
MO
M1

110

!:

@.

646
684

2435

~~~

MO
M1

950
988

~~
l?/ :::
2436 ~g~:

liD

110

!!!..~~
l~ ::::
ill

MO
M1

1254
1292

MO

1558

2438

~~~

t1~
:;7 !~~
Ml

110

1596

!!!!rJ~
l~2 :::
t:V
~~g~

t>-~~IO

_ 2439 ~~~~

I/O

!!!!.~.
:~2 ::::
MO
M1

2168
2204

t> ~~IQ

2440 ~~;~

I/D(~~~~'mi
Ml

2441

110

(wiJ!2

I

I

II

Ml

2442 __
ACTUAL
FUSE
NUMBERS
'-"'--_
__
__
___
__
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _+d/1.!..'.1141INCLK
~

~310E

Fuse Numbers = First Fuse Number + Increment
Pin numbers shown are for JW and NT packages.

2-344

TEXAS

-II

INSTRUMENTS
POST OFFICE BOX 655012 • DAlLM1;. TEXAS 75265

TIBPALR19LBC, TIBPALR19R4C, TIBPALR19R6C, TlBPALR19RBC
HIGH·PERFORMANCE REGISTERED·INPUT PAl® CIRCUITS
absolute maximum ratings over operating free·air temperature range (unless otherwise

noted I

Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range ...................................... oDe to 70 De
Storage temperature range ......................................... - 65 De to 150 De
NOTE 1: These ratings apply e>ccept for programming pins during a programming cycle or during preload cycle.

recommended operating conditions
VCC

Supply voltage

VIH
VIL

High-level input voltage

IOH

High-level output current

MIN
4.75
2

Low-level input voltage

IOL

Low-level output current

fclock

Clock frequency

INCLK
OUTCLK
INCLK high

tw

INCLK low
OUTCLK high

Pulse duration, clock

OUTCLK low
Data before INCLKt
tsu

Setup time

th

Hold time

TA

Operating free-air temperature

Data before OUTCLKt
INCLKt before OUTCLKt (See Note 2f
Data after INCLKt
Data after OUTCLKt

0
0
15
15
15
15
10
25
25
5
0
0

NOM

MAX

UNIT

5

5.25
5.5
0.8
-3.2
24
30
30

V
V
V

mA
mA
MHz

ns

ns

ns

70

°c

NOTE 2: This setup time ensures the output registers will see stable data from the input registers.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-345

TIBPALR19L8C, TIBPALR19R4C, TIBPALR19R6C, TIBPALR19R8C
HIGH·PERFORMANCE REGISTERED·INPUT PAL® CIRCUITS
electrical characteristics over recommended free·air operating temperature range
PARAMETER

TEST CONDITIONS

= 4.75 V,
= 4.75 V,

VOH

Vcc
Vcc

VOL

Vcc - 4.75 V,

VIK

Outputs
10ZH
10Zl

1/0 ports
Outputs

1/0 ports

II

MIN

=

10H

Typt

-18 rnA

=

-3.2 rnA

2.4

Vcc

=

5.25 V,

VIH

= 2.7

Vcc

=

5.25 V,

VIH

= 0.4 V

-250

V
~
~

0.2

110 Inputs

VCC

=

5.25 V,

VI

=

0.1

5.5 V

rnA

0.1

OE Input

40

110 Inputs

VCC

=

5.25 V,

VI

= 2.7

20

V

All others

~A

20
-0.4

OE Input
110 Inputs

III

V
0.5
100
-20

All others
IIH

V

20

V

O! Input
II

UNIT

3.3
0.35

10l - 24 rnA

MAX
-1.5

VCC

=

5.25 V,

VI

= 0.4

-0.6

V

rnA

-0.2

All others

=

10*

VCC

ICC

VCC = 5.25 V,
Outputs open

5.25 V,

Vo
VI

= 2.25 V
= OV,

-30
150

-125

rnA

210

rnA

switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TYP*

MAX

15

25

ns

1/0,0

20

35

ns

20

35

ns

OUTClKi

1/0,0
Q

10

20

ns

ten

OE.

Q

10

20

ns

ten

1,1/0

1/0,0

14

25

ns

tan
ten

I/O§

1/0,0
1/0,0

27

40

ns

INClKt

27

40

ns

tdis

OE!

Q

11

20

ns

~is

1,1/0

1/0,0

12

25

ns

tdis

I/O§

1/0,0

13

30

ns

~is

INClK!

1/0,0

13

26

ns

f rnax

FROM

TO

tDd

INClKi
1,1/0

1/0,0
1/0,0

tDd

I/O§

tDd
tDd

INClKt

TEST CONDITIONS

MIN

Rl
R2
CL

=
=
=

50011,
50011,
50 pF,

See Figure 1

UNIT
MHz

30

t All typical values are VCC = 5 V, T A = 25 ·C.
:l:The output conditions have been chosen to produce a current that closely approximates one half the true short~circuit current, lOS.
§Input configured as an input buffer.

2-346

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DAUAS, TEXAS 75265

TIBPALR19LBC, TlBPALR19R4C, TlBPALR19R6C, TIBPALR19RBC
HIGH·PERFORMANCE REGISTERED·INPUT PAL® CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications. algorithms. and the latest information on hardware. software. and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available. upon request. from the nearest TI field sales office. local
authorized TI distributor. or by calling Texas Instruments at (214) 997-5666.

preload procedure for registered outputs (see Note 3)
Step
Step
Step
Step
Step
Step
Step

1

Pin 13 to VIH. Pin 1 to VIL. and VCC to 5 volts.
Pin 14 to VIHH
At Q outputs. apply VIL to preload a low and VIH to preload a high.
Pin 14 to VIL.
Remove the voltages applied to the outputs.
Pin 13 to VIL
Check the output states to verify preload.

2
3

4
5
6

7

preload waveforms (see Note 3)
5V

vcc
ov

J
OUTPUTS DISABLED

VIH

I

PIN 13 (DE)
VIL
tdis

VIHH

------.---

VOL

ENABLE PRELOAD

I
I
I

I
100 ns
MIN

I
I

\

:I ~I

VIL

Q

~ten

I

PIN 14 (lNCLK)

VOH

)

I
--i++!

I

I

jf---tWl----.1

VIH
II
_I

~I

'(

XXXXXXXXX)

I
I
I
I
I

VERIFY

)-{
I
I
VIL

xm

security fuse programming (see Note 3)
Vcc

~
I

PIN1 _ _ _ _

~tw3-.1

!...~_th_-.j.:J:I\--n----I

PIN 13

u

!.-tw3..1

Il:l:l& 0 v
:
:6

___ : ___ n

:

I-th-l~'
, ~th.j- I
__________________________
I
I
~I

V
V

- - - 16 V
OV

NOTE 3: Pin numbers shown are for JW and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed
accordingly.

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-347

TIBPALR19L8C, TIBPALR19R4C, TlBPALR19R6C, TlBPALR19R8C
HIGH·PERFORMANCE REGISTERED·INPUT PAl® CIRCUITS

PARAMETER MEASUREMENT INFORMATION
5V
Sl

L

_+_._..._
Rl

FROIiII OUTPUT
UNDER TEST

TEST
POINT

R2

CL
(See Note Al

LOAD CIRCUIT FOR
THREE·STATE OUTPUTS

TIIiIIING
INPUT

./.
F,1.5V

------,U - -

-

I4-th-+t
)4-tsu-+j
I

---3.5V

3.5 V
HIGH·LEVEL
PULSE

15V
15 V
~
.
.

- - - 0.3 V

DATA
~~;v-3.5V
INPUT..../' 1.5 V
~
0.3 V

LOW-LEVEL
PULSE

tpd

I..
I

:

IN·PHASE
OUTPUT
tpd

I

...

3.5

I·
~I

0.3 V

~I

f1.5V :+-I~
I..

tpd

I

I

~I

I"

OUT·OF·PHASE
OUTPUT
(See Note DI
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

I

~I

I

3.5V

- - --0.3V
VOLTAGE WAVEFORMS
PULSE DURATIONS

\1-:; -; - -- V

-.J!1.5V

0.3 V

I

15V
15 V
~
.
.

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT

Ltw---.l

1

OUTPUT
CONTROL
(low·level
enablingl

~3.5V
1.5 V
I

I

ten
VOH
VOL

tpd

~I VOH

T l . 5V

--VOL

---+I

14-

I I

WAVEFORM 1
Sl CLOSED
(See Note BI
WAVEFORM 2
S10PEN

1.5 V
I·

-1- - - - _. 0.3 V
-+I I+-- tdis
I I
-33 V

I 1.5 V
III-'
~VOL + 0.5 V
~

I

ten-+!

j4-

-= =

-.! .... tdis l.

-= VOL

~
I

(See Note BI

I _ _ _ :t.-VOH
-

1.5 V

-

LVOH-0.5 V
~O

V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS

NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten. 5 pF for tdis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR s 1 MHz. tr = tf = 2 ns. duty cycle = 50%.
D. When measuring propagation delay times of 3-st8te outputs, switch S1 is closed.

FIGURE 1

2-348

TEXAS .."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

TIBPALT19L8C, TIBPAL T19R4C, TlBPAL T19R6C, TIBPALT19R8C
HIGH·PERFORMANCE LATCHED·INPUT PAL® CIRCUITS
02709. DECEMBER 1982-REVISED AUGUST 1989

•

High-Performance Operation . . . 30 MHz

•

Preload Capability on Output Registers

•

DIP Options Include Both 300-mil Plastic
and 600-mil Ceramic

•

Dependable Texas Instruments Quality and
Reliability

3-STATE

DEVICE

110 INPUTS

I INPUTS

o OUTPUTS

'PALT19L8
'PALT19R4
'PALT19R6
'PALT19R8

11
11
11
11

2
0
0
0

2
0
0
0

REGISTERED
Q OUTPUTS

1/0 PORTS

0

6

4 13-state buffers)
6 13-state buffers)
8 13-state buffers)

4
2
0

description

TIBPALT19LB'
JW OR NT PACKAGE

These programmable array logic devices feature
high speed and functionality similar to the
TIBPAL l6l8. l6R4. l6R6. l6R8 series. but
with the added advantage of Ootype transparent
latches on the inputs. If any input register is not
desired. it can be converted to an input buffer
by simply programming the architectural fuse.

ITOP VIEW)
lID

I/O
I/O ~,'::'~F!:

Combining Advanced Low-Power Schottkyt
technology. with proven titanium-tungsten
fuses. these devices will· provide reliable high '*'''\
performance substitutes over conventional T ~V
logic. Their easy programmability all
quick design of custom functio
ally
oard. In
result in a more compact
addition. chip carriers
reduction in boar
een provided to allow loading
of each r
er asynchronously to either a high
or low state. This feature simplifies testing
because the registers can be set to an initial state
prior to executing the test sequence.

I/O
I/O
lID
lID

GND'-I:.~":'::'I-'
TIBPALT19LB'
FN PACKAGE
ITOP VIEW)
00

u

u

Uo

::::;;:;;_2>:::'::0

4 3 2 1 28 2726
110

5

25
24
23
22
21

6

A C suffix designates commercial-temperature
circuits that are characterized for operation from
OOC to 70°C.

10
11

I/O
I/O
I/O
NC

I/O
I/O
I/O

12 131415161718
INPUT LATCH FUNCTION TABLE
INLE

0

o C 0 u

::::::Z2
<.?

LATCH OUTPUT

L

L

L

L

H

H

H

X

NC

-IW
~

0

-

No internal connection

Pin assignments in operating mode

Qo

t Integrated Schottky-Barrier diode-clamped transistor is patented
by Texas Instruments, U.S_ Patent Number 3,463.975.
PAL is a trademark of Monolithic Memories Inc.

PRODUCTION DATA d.....nts ...toin 1......lIlon
of p.bUoIIloa dote. Praduots ........ to
spaciflcotloM per 110. _
of T.... Instr.m....

••1'l'0III11

:=~·f:~'::li

=::i:: =.:~:.s

oot

Copyright @ 1989. Texas Instruments Incorporated

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-349

TlBPALT1UR4C. TIBPALHUR6C. TIBPAL T1URBC
HIGH·PERFORMANCE LATCHED'INPUT PAL@ CIRCUITS

TIBPALT19R4'
JW OR NT PACKAGE

TIBPALT19R4'
FN PACKAGE

(TOP VIEW)

(TOP VIEW)

OUTCLK
110
110
110
lID
110
110
110
110
110
110
GND

"

--'
U
I-

VCC
110
110
110

U

ao::Juuoo
"'~OZ>~~

4

Q

3 2

1 28 2726
25
24

Q
Q
Q

23
22

NC

110
110
INLE
DE

21

lID
lID

10
11

20
19

110
Q
Q
NC
Q
Q
110

12131415161718
0 0 0 UI W IW 0
:::::::::;zzo~::::
<:l
_

TIBPALT19RS'
JW OR NT PACKAGE

TIBPALT19RS'
FN PACKAGE

(TOP VIEW)

(TOP VIEW)

OUTCLK
110
110

"'i

VCC
110
110
Q
Q
Q
Q
Q
Q
110
INLE

lID
lID
110
110
110
110
GND

U

I-

U
oo::lUUOO

~~OZ>~~

4

3 2

1 28 2726

5

25
24

6

23
22
21
10
11

DE

Q
Q
Q
NC
Q
Q
Q

12 13 14 151617 18
0 0 0 UIWIW 0
::::::::::ZZO~::::,
<:l
_

T1BPALT19RB'
JW OR NT PACKAGE

TIBPALT19RB'
FN PACKAGE

(TOP VIEW)

(TOP VIEW)

OUTCLK
110
110
110

110
110
I/O

GND

'"--'U

VCC
110
Q
Q
Q
Q
Q
Q
Q
Q
INLE
DE

IU
oo::JUUQ

::::::::::02>::::0
4

3 2

1 282726

21
10
11

Q

Q
12131415161718
0 0 0 UIWI W 0
:::::;:;;;zzo~
<:l
_

Pin assignments in operating mode

2-350

NC-No internal connection

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Q
Q
Q
NC
Q

TlBPAL T19L8C, TIBPALT19R4C
HIGH·PERFORMANCE LATCHED·INPUT PAL@ CIRCUITS

functional block diagrams (positive logic)
'PAlT19l8

EN"1'IJ~_ _ _

&

O

~---O

b-_......_I/O

b--.+-+_ 1/0

~-'+-+_I/O

b-~""'_I/O
b-~""'_I/O

'PAlT19R4

OE--------------------------------~
OUTCLK--------------------------------4>
,1----

Q

I--t--i-~--

Q

b-....----.....- I - -

I/O

b-......l---o_-I--- I/O

b-....+---...-+--

I/O

b-....+---....-+--

I/O

4
4

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2·351

TIBPALT19R6C, TlBPALT19R8C
HIGH·PERFORMANCE LATCHED·INPUT PAL@ CIRCUITS

functional block diagrams (positive logic)
'PALT19R6

a
a

a
a

a
a

1--.....sz.f>""'~-+-...-T-"O
P-~-+....- t - I / O
6

'PALT19RB

8

2·352

TEXAS . "

INSfRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TlBPALT19L8C
HIGH·PERFORMANCE LATCHED·INPUT PAL@ CIRCUITS

logic diagram (positive logic)
1(1)

INCREMENT

I

1/0@..~2f! tt=t~~~~:H~~~~~~=itit=iiit=f~~~==~~
12

16

20

24

28

32

36 '

'0

2D

MO

MO

M'

M'

2432

2433

~

L.

~

ACTUAL
FUSE NUMBER

FIRST
FUSE NUMBERS

g~

7.

(22)0

"'

152
190

~~

I/O !:!LfpD,g.2
MO

M'

2434

f1D

I/D~

1M02~2
M1

2435

I/O

(5)
=-

304
342
3.0

tt "

4'.
456

2D

~

684

~~

912

120)

)

950
988

~rN~
~r-2 ::::
1'0'10

1254

Ml

g:

2437

1

I/O

570
608
646

2436 ~g::

I/O

(21)

532

frIJ~
,~~2 m
MO
M1

J

494

119)

I/O

I/O

~

1292

>-)

118)

J

117)

I/O

(7)~~
,'{',2 m~

'
I/O,
-

_

110

2D

1520

MO

1558

M1

1596

2438

1634
1672

~ft2

tt "

@..[NJ- ::::

:

f~

~;~~

_ 2439 ~i~:

I/D~~~g.2

::::

MO

2168

1'0'11

2204

(16)

1

2440 ~~:~

(15)

I/O

I/O

0

'(101~~
'2D~ 2 m:

1/0-

MO

M'

2441

I/O

(.!!1l},g,2
MO
M'

LE~~2_4_42__+--_____
A_C_T_U_A_L_F_U_SE__N_U_M_B_E_R_S__________________________________________~-<~(~14)INLE

V

Fuse Number

= First Fuse Number

~3)1

+ Increment

Pin numbers shown are for JW and NT packages.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-353

TIBPALT19R4C
HIGH·PERFORMANCE LATCHED·INPUT PAL@ CIRCUITS

logic diagram (positive logic)

OUTCLKL(l~)~==============================================================~~

.

INCREMENT
i

liD

~ntr='g.,
M.

4

12

8

16

20

24

28

32

\

;J
'C'02

0

~

~

ACTUAL
FUSE NUMBER

~~
76
11.

)

i;2 :;
~
Ml

2434

~ )

380

:~:

rttJ =

I/D~ ~'
Ml

110

2435

~:~

")-

798

MO

988

./

r1iJ
rJ~
19.' ~~
OC2

~

MO
Ml

2437

110

110

110

ill

1216

1264
1292
1330

MO

, ...

Ml

1596

2438

~:~

>-

~

~

Ml

2204
2242

(19)

b.

J

2280

I/D(.!!!J~~
f iii:

(17)

rv""

!P~

~ ~~
:;9 !~ !

2168

c,

c,

1~15
MO

c,

~~

l!!tin Hi:
2440

~

iJ.
[V"

.5O

2436 ;:::

lID!!!.

ei~)

Q

c,

~IJIf/ :::
~
H:
M1

1/0

J

53'
.7'

684

1/0

(211

494

"='

_

(22)

~

l~
UI

ffi

110

2432

2433

110

(23)

MD
M,

FIRST
FUSE NUMBERS

L.

36

(16)

(15)

J

Q

Q

Q

110

110

M'

2441

110

(!lliJ'~'
MD

M'

~________________________________________________________________
2442+-ACTUAL FUSE NUMBERS
~~/1~(14)ffiIT£

~

~)OE

Fuse Number = First Fuse Number + Increment
Pin numbers shown are for JW and NT packages.

2-354

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPALT19R6C
HIGH·PERFORMANCE LATCHED·INPUT PAL@CIRCUITS

logic diagram (positive logic)
OUTCLK (1)

.

INCREMENT
I

1/0

~

~

4

12

8

16

20

,
24

28

32

lC'
'0
MO

(23),

lC'
'0
MO
Ml

~

ACTUAL
FUSE NUMBER

L-. 7.
11.

l

152
190

(22)

J

~

~r
0C2

~

lC'

2D

304

MO

342

Ml

380

2434

":'

---'----

--\.)----

:~:

494

fhl1~) a
Cl

~00'

lC'
2D
MO
Ml

608
...
684

2435

722
7.0

F~

ftfj":'

798

20

2436

912
950

988

~g::

1102

fIV'"
00'

I/O,~

1216
1254
1292

2437

1330

-=-

2D

1520
1558

2438

1634

Ml

r- ~

1596

~~~~

OC2

1788

lC'

_

20

1824

MO

1862

Ml

1900

2439

1938
1976

~

~r

110,~

OC,
lC'
2D

-::

,~

II o

2128
2188

Ml

2204
2242
2280
2318

2440

~

jf
00'

~I a

-

tbtj ~)

a

Cl

2090

MO

~) a

Cl

~.-

,@!.

110

~

1482

MO

-=-

J-

Cl

~r
lC'

~

~19) a

Cl

'H

1368

1406
OC2

>-

1178

lC'
20
MO
Ml

:[!,J20) a

Cl

87'

00'

lC'

MO
Ml

":'

I/O,ill.

I/O

..-1

570

110.~

10

2432

~ 2433

FIRST
FUSE NUMBERS
00
38

I/O,~

J
,

Ml

110

36

'394

lC2
'0

~

(IS)

I

1/0

~~

,11
2441

(111

110

lC2
20
MO
Ml

,

_ 2442 _ _ ACTUAL FUSE NUMBERS -

(1

l(jm

Fuse Number = First Fuse Number + Increment
Pin numbers shown are for JW and NT packages.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-355

TIBPALT19R8C
HIGH·PERFORMANCE LATCHED·INPUT PAL@CIRCUITS

logic diagram (positive logic)
OUTCLK (1)
INCREMENT

,

A

i

110

@.

~.

4

12

8

16

20

24

28

32

oc,

36

J

(23)

1C'
'0
MO

102
20

~ :33

2432

ACTtAL ~
FUSE NUMBER

FIRST
FUSE NUMBERS

L-~

".7.

~

152
19Q

QfJ~
oc,

liD @!.

1C,
ZD

304

MIt

342

Mt

380

2~34

!&

C1

608

MO

646

M1

684

Nil

2436

110 ~

110

.!Z!.

874
912
950

988
1026
1064

OC2
,C,
2D

1178

MO

1254

1216

Ml

1292

2437

1330

DC2

1482

t> ~ I.lrv-

(18

lI'=
1C'

_

20
MO

1520
1568

Ml

1596
1634
1672

2438

!!!l

t> ~ ~
P

~'"
DC2

110

C1

1C2

2D
...

102
~
Ml

C1

1786

~

1824
1862
1900

_ 2439 ~;~:

110

"">-

r#J~
DCZ

110 ~

~o

~
D- ~
~

~fr
~f
oel

110 ~

')-

~~~

2435

C,

~

f#.J~
DC'
'C2
20

~~

t>- ~

:~

570

110

110

M'

1C'
20

(!I!)

3=\

2090

2128

MID

2168

Ml

2204
2242

h

~t
DC2
1C2
20

~
~
C1

2394

~
b

115

I"V"'"

MO

M1

2441

liD

iJ

(!!!

1C'
'0
MO
M1

~ 2442 -

I~31Of

ACTUAL FUSE NUMBERS

(1
1141mu

Fuse Number = First Fuse Number + Increment
Pin numbers shown are for JW and NT packages.

2·356

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIBPAL T19L8C, TlBPAL T19R4C, TIBPALT19R6C, TIBPALT19R8C
HIGH-PERFORMANCE LATCHED-INPUT PAL@ CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 DC to 70°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle or during preload cycle.

recommended operating conditions
VCC

Supply voltage

VIH
VIL

High-level input voltage

IOH

High-level output current

MIN
4.75
2

Low-level input voltage

low-Jevel output current
IOL
fclock Clock frequency

OUTCLK
INLE low

tw

OUTCLK high

Pulse duration

OUTCLK low
Data before INLE !
tsu

Setup time

Data before OUTCLKt
INLE low before OUTCLKt (See Note 21
Data after INLE !

th

Hold time

TA

Operating free-air temperature

Data after OUTCLKt

0
15
15
15
10
25
30
5
0
0

NOM

MAX

5

5.25
5.5
0.8
-3.2
24
30

UNIT
V
V
V
mA
mA
MHz
ns

ns

ns

70

°c

NOTE 2: This setup time ensures the output registers will see stable data from the input latches.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-357

TIBPAlT19l8C. TlBPAlT19R4C. TlBPAlT19R6C. TIBPAlT19R8C
HIGH·PERFORMANCE lATCHED·INPUT PAl@ CIRCUITS
electrical characteristics over recommended free-air operating temperature range
PARAMETER

TEST CONDITIONS

VIK

Vee - 4.75 V,

VOH

Vee

VOL

Vee
Outputs

10ZH

I/O ports
Outputs
110 ports

10Zl

OE Input

II

All others
OE Input

=
=

4.75 V,

10H

4.75 V,

10l

= -3.2 rnA
= 24 rnA

Vee

=

5.25 V,

VIH

=

2.7 V

Vee

=

5.25 V,

VIH

=

0.4 V

Vee

=

5.25 V,

VI

=

40

2.7 V

Vee

=

5.25 V,

VI

=

0.4 V

10*

Vee

=

5.25 V,

Vo

ICC

Vee = 5.25 V,
Outputs open

= 2.25 V
= OV,

20
-0.4
-0.2
-30
150

UNIT
V
V

0.5

0.2
0.1

=

VI

0.35

5.5 V

VI

All others

3.3

-250

5.25 V,

III

2.4

MAX
-1.5

100
-20

=

All others

OE Input

Typt

20

Vee

IIH

MIN
-18 rnA

II -

V

p.A
p.A
rnA

p.A
rnA

-125

rnA

210

rnA

switching characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER
f max

Typt

MAX

1/0,0

15

25

ns

I/O§

1/0,0

25

40

ns

INlE!
OUTelKt

110,0
Q

28

40
20

ns

10
14

20

ns

25

ns

30

40

ns

30

40

ns
ns
ns

FROM

ted

OUTelKt
1,110

ted
ted
ted

TO

TEST CONDITIONS

Q

MIN
30

Rl

=
=
=

500 Il,

UNIT
MHz

10

ns

'en
ten

OEI

Q

1,110

110,

ten

I/O§

110,0

ten

INlEI

110,

tdis

OEt
1,1/0

Q

11

110,0

12

20
25

a
a

14

25

ns

14

25

ns

tdis
tdis

I/O§

110,

tdis

INlEI

1/0,

t All typical values are Vee

=

5 V, TA

=

R2

a

el

500 Il,
50 pF,

See Figure 1

a

25°C.

:t: The output conditions have been chosen to produce a current that closely approximates one half the true short-circuit current, lOS§ Input configured as an input buffer or INLE low.

2-358

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIBPALT19L8C. TIBPALT19R4C. TlBPALT19R6C. TIBPALT19R8C
HIGH·PERFORMANCE LATCHED·INPUT PAL@CIRCUITS
programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

preload procedure for registered outputs (see Note 3)
Step
Step
Step
Step
Step
Step
Step

1

Pin 13 to VIH, Pin 1 to VIL. and VCC to 5 volts.
Pin 14 to VIHH
At Q outputs, apply VIL to preload a low and VIH to preload a high.
Pin 14 to VIL.
Remove the voltages applied to the outputs.
Pin 13 to VIL
Check the output states to verify preload.

2
3
4

5
6

7

preload waveforms (see Note 3)
5V

vcc
ov

J
OUTPUTS DISABLED

VIH
VIL

tdis
vlHH

--1++!

------,--

VOL

ENABLE PRELOAD

I
I
I
I

100 ns
MIN

I
I
I

I

t--' w1 ---+1 VIH

~I

I

I: I

>--<

I(

XXXXXXXXX)

I
I

\

: ~

VIL

Q

~'en

I

PIN 14 (lNCLKI

VOH

~

(

PIN 13 (DEI

VERIFY

I
I
VIL

xm:

security fuse programming (see Note 3)

DJ.J5 ov

vcc~
~~~

I

:

j.-'h"[ r--\,-------------- -------,------ 16V

PIN 1 _ _ _ _I:......_..:;V

\

' 0V

I
I..t w3...1
:
k-I 'h-j J----\.j.th.j-- - - -- 16 V

-:JV

P'N 13 _~ _ _ _ _ _ _ _ _ _ _ _

\'

,

0 V

NOTE 3: Pin numbers shown are for JW and NT packages only. If chip carrier socket adapter is not used, pin numbers must be changed
accordingly.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-359

TlBPALT19L8C, TIBPALT19R4C, TlBPALT19R6C, TIBPALT19R8C
HIGH·PERFORMANCE LATCHED·INPUT PAL@ CIRCUITS
PARAMETER MEASUREMENT INFORMATION
SV
Sl

L
Rl

FROM OUTPUT
UNDER TEST -

...-

. .-

TEST
POINT

. .-

CL
(See Note AI

R2

LOAD CIRCUIT FOR
THREE-STATE OUTPUTS

TIMING
INPUT

/.

----~--- ---0.3V

1SV
1SV
~
.
.

---3.SV

3.S V

7,l.SV

HIGH-LEVEL
PULSE

Ltw--..l

I4-th~

1

~t.u+t

.

~~-;;-:;3.SV

DATA

INPUT~l.SV

~

1

LOW-LEVEL
PULSE

I

1 SV
1SV
~
.
.

0.3 V

.!II1.S V
----"
tpd I.
~I
1

I

\1~ ~ I.
I.

tpd
OUT-OF-PHASE
OUTPUT
(See Note 01

I.

VOLTAGE WAVEFORMS
PULSE DURATIONS

- - 3.S V
0.3 V

~I tpd

r------i:-""""'I+ - -

:1 f1.5V 1

IN-PHASE
OUTPUT

~I

1

~

14

~

'\l.S V
.

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

I

OUTPUT
CONTROL
(low-level
enablingl

~3.5V
1.5 V
I

ten~

VOL

tpd

--VOL

-1- - - - -- 0.3
I+-

11

WAVEFORM 1
Sl CLOSED
(See Note Bt
WAVEFORM 2
S10PEN
(See Note Bt

1.5 V
I

1

VOH

l;;/OH
.

3.SV

----0.3V

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT

0.3V

1

V

~ ~tdis

11

-33 V

1 1.S V
III-'
~VOL + 0.5 V
~
I
-=
=
-= VOL
ten-+! J+...., .... tdis l.

~

I_--i.-VOH

I

-

1.S V

-

LVOH-0.5 V
~O V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, THREE-STATE OUTPUTS

NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten,S pF for tdis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR oS 1 MHz, tr = If = 2 ns, duty cycle = 50%
D. When measuring propagation delay times of 3-state outputs, switch 51 is closed.

FIGURE 1

2-360

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

T1BPLS506C
13 x 97 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER
03090. DECEMBER 19B7 - REVISED NOVEMBER 1989

•

•
•
•
•
•

•
•

JT OR NT PACKAGE
ITOPVIEW)

50-MHz Max Clock Rate
2 Transition Complement Array Terms

ClK

16-Bit Internal State Registers

VCC

)0
11
12
13
14
15
00
01
02
03

8-Bit Output Registers
Outputs Programmable for Registered or
Combinational Operation
Ideal for Waveform Generation and HighPerformance State Machine Applications
Programmable Output Enable
Programmable Clock Polarity

16
17
18
19
110
111
112/0E
07
06
05
04

GND

description

FK OR FN PACKAGE

(TOP VIEW)

The TIBPLS506 is a TTL field-programmable
state machine of the Mealy type. This state
machine (logic sequencer) contains 97 product
terms (AND terms) and 48 sum terms (OR
terms). The product and sum terms are used to
control the 16-bit internal state registers and the
8-bit output registers.

4 3 2

The outputs of the internal state registers
(PO-P15) are fed back and combined with the 13
inputs (10-112) to form the AND array. In
addition, two sum terms are complemented and
fed back to the AND array, which allows any
product terms to be summed, complemented,
and used as inputs to the AND array.

12
13
14

5

NC

8

6

1 282726
25
24
23

9

22
21

10

20

11

19

12131415161718
"',""OUq-It)Ul

OOzzOOO
t!)

NC - No internal connection

The eight output cells can be individually
programmed for registered or combinational
operation. Nonregistered operation is selected by
blowing the output mUltiplexer fuse. Registered
output operation is selected by leaving the
output multiplexer fuse intact.

Pin 17 can be programmed to function as an input andlor an output enable. Blowing the output enable
fuse lets pin 1 7 function as an output enable but does not disconnect pin 1 7 from the input array. When
the output enable fuse is intact, pin 17 functions only as an input with the outputs being permanently
enabled.
The state and output registers are synchronously clocked by the fuse programmable clock input. The clock
polarity fuse selects either postive- or negative-edge triggering. Negative-edge triggering is selected by
blowing the clock polarity fuse. Leaving this fuse intact selects positive-edge triggering. After power-up,
the device must be initialized to the desired state. When the output multiplexer fuse is left intact, registered
operation is selected.
The TIBPLS506C is characterized for operation from OOC to 75°C.

UNLESS OTHERWISE IOTED this documont contains
PRODUCTIOII DATA information currant a• •,
publicatiDn dllte. Products cDnform to spacificltioRI

per the tanns of TaXI. Instruments stl.dard

:=':t.:-:~U-::D:lr~=.::.- not RlCessarily

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

Copyright @ 1989, Texas Instruments Incorporated

2-361

TIBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
logic diagram (positive logic)

r--Sllil9wnN II\IIIU .. ONIf .• - - - ,
0:.

III

~

~

2

:!::

0990L

....
....
Ol9&

0698

OZlt
OL8!

.......,
....
OBLe

."'.
GUS

-....
OZgE:
OL .. £

....

•m

.. ""

...."

NOTES: A. All inputs to AND gates, exclusive-OR gates. and multiplexters with a blown link assume the logic-1 state.

B. All OR gate inputs with a blown link assume the logic-O state.

2·362

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIBPLS506C
13 x 97 x 8 FIELD· PROGRAMMABLE LOGIC SEQUENCER

logic diagram (continued)

8

II

~

8

8

&

~;:. ~ ~~ ~ ~ ~ ~~ ~ ~;:. ~ ~:. ~ ~;:. ~ ~;:.~

=r-

ffi ;. ~,

8

:t'

m$ , "

,iiiliiiii

Qj) )l~ £~IJ ll~ QIJ lQ £ J lll~ l~l Illl l~l

ll~ 1~/J lO l~l

:

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

~

Ill~ l~l

QIl

~

~ ~

I

2-363

TlBPLS5D6C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
S-R FUNCTION TABLE (8e8 Note ·11
ClK POLARITY FUSE

ClK

INTACT

INTACT

f
f
f
f

BLOWN

S
l

R
l

L

H

L

H
H

l

H

H

INDETERMINATE

j

L

l

BLOWN
BLOWN

j

l

H

j

BLOWN

j

H
H

H

00
l
H
INDETERMINATE

INTACT
INTACT

NOTE 1:

"00 is the state

l

STATE REGISTER

00

of the S-R registers before the active clock

edge.

functional block diagram (positive logic)
ClK -------\~.........

~------------------~
16

2
;,,1

97.50
16

8.MUX

.------1;G1

EN

10-111
8
11210E

''\..J

2-364

8

denotes fused inputs.

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • O.Allo1\S., TEX·AS 75265

'il 8

00-07

TIBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEOUENCER
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to disabled output (see Note 2) ................................... 5.5 V
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75°C
Storage temperature range .......................................... - 65°C to 1 50°C
NOTE 2: These ratings apply except when programming pins during a programming cycle or during diagnostic testing.

recommended operating conditions
VCC

Supply voltage

VIH

High-level input voltage, VCC - 5.25 V

VIL

Low-level input voltage.

IOH

High-level output current

IOl

Low-level output current

Vee

th

Hold time after ClK

TA

Operating free-air temperature

MAX

UNIT

5

5.25

V

5.5

V

0.8

= 4.75 V

Clock high
Clock low

Setup time before elK t input or feedback to SMA inputs

tsu

NOM

2

Pulse duration

tw

MIN
4.75

With C-array

25

at S-A inputs

16

mA
ns

6
15

Input or feedback

mA

6

Without C-array

V

-3.2

ns

0

ns
75

0

°C

tThe active edge of elK is determined by the programmed state of elK polarity fuse.

electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

VIK

VCC = 4.75 V,

II = -18 mA

VOH

VCC = 4.75 V,

IOH = -3.2 mA

VOL

VCC - 4.75 V,

II

VCC = 5.25 V.

IOl - 16 mA
VI = 5.5 V

MIN

TYP*

2.4

3
0.37

MAX
- 1.2

UNIT
V
V

0.5

V

0.1

mA

IIH

VCC = 5.25 V.

VI=2.7V

20

~A

III
IO§

VCC = 5.25 V.

VI = 0.4 V

-0.25

mA

VCC = 5.25 V.

Vo = 0.5 V

-130

mA

IOZH

VCC = 5.25 V.

Vo = 2.7 V

20

~A

IOZl

VCC = 5.25 V.

Vo = 0.4 V

-20

~A

ICC
Ci

VCC = 5.25 V.

See Note 3.

210

mA

f = 1 MHz.

VI = 2 V

7

pF

Co

f = 1 MHz.

Vo = 2 V

11

pF

Cclk

f = 1 MHz.

VI = 2 V

14

pF

-30

Outputs open

156

*AII typical values are at VCC = 5 V. TA = 25°C.
§This parameter approximates lOS- The condition Va = 0.5 V takes tester noise into account. Not more than one output should be shorted
at a time and duration of the short circuit should not exceed one second.
NOTE 3: When the clock is programmed for negative-edge, then VI = 4.75 V. When the clock is programmed for positive-edge, then VI = O.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-365

·TIBPLS506C
13 x 97 x 8 FIELD-PROGRAMMABLE· LOGIC SEOUENCER
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted)
PARAMETER

tpd§

Typt

50

65

With C-array

33

50

TO

fmax*
tpd§

MIN

Without C-array

FROM

ClKi

TEST CONDITIONS

ClK!

Q (registered)

ClK.

tpd

I or Feedback

Q (nonregistered)

ten

OE.

Q

tdis

OEi

Q

tAll typical values are at VCC

=

5 V. TA

=

= 300 II.

27

R2 = 390 II.
See Figure 3

9

28

3

10

Cl

=

5 pF

UNIT
MHz

8

R1

Q (nonregistered)

ClK.

MAX

ns
ns

4

11

10

22

ns

2

6

10

ns

2

6

10

ns

25°C.
1

tfmax, with external feedback, can be calculated as
elK
Q' f max is independent of the internal programmed configuration
and the number of product terms used.
tsu + tpd
to
§The ac.tive edge of eLK is determined by the programmed state of the elK polarity fuse .

2-366

.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TlBPLS506C
13 x 97 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER
(J)

timing model

o

Dedicated inputs

Output pin

t m in(2j min clock period for this path

INTERNAL SRs

Feedback Lines
t 5u (a) I to internal S or

R.

Data

through C array
t m in(3) min clock period, this path

t 5u (2) I to internal S or R

CLK INTERNAL

OUTPUT
SRs

t m in(1) min clock period, this path
t pd(31 elK INTERNAL to output response

tsu(b) or tmin(c)

Ipdlbl or Ipdlcl
Ipdl21 CLK 10 Q pin
tsu( 1) I to Output S or R
tpd( 1) I to output pin

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-367

TIBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE .LOGIC SEQUENCER
glossary-timing model
tpd( 1) - Maximum time interval from the time a signal edge is received at any input pin to the time any
logically affected combinational output pin delivers a response.
tpd(2)' - Maximum time interval from a positive edge on the clock input pin to data delivery on the output
pin corresponding to any output SR register.
tpd(3)' - Maximum time interval from the positive edge on the clock input pin to the response on any
logically affected combinationally configured output (at the pin), where data origin is any internal
SR register.
tpd(b) - Maximum time interval from the time a signal edge is received at any input pin to the time any
logically affected combinational output pin delivers a response, where data passes through a
C ARRAY once before reaching the affected output.
tpd(c)* - Maximum time interval from the positive edge on the clock input pin to the response on any
logically affected combinationally configured output (at the pin), where data origin is any internal
SR register and data passes once through a C ARRAY before reaching an affected output.
tsu( 1) - Minimum time interval that must be allowed between the data edge on any dedicated input
and the active clock edge on the clock input pin when data affects the S or R line of any output
SR register.
tsu(2) - Minimum time interval that must be allowed between the data edge on any dedicated input
and the active clock edge on the clock input pin when data affects the S or R line of any internal
SR register.
tsu(a) - Minimum time interval that must be allowed between the data edge on any dedicated input
and the active clock edge on the clock input pin when data passes once through a C ARRAY
before reaching an affected S or R line on any internal SR register.
tsu(b) - Minimum time interval that must be allowed between the data edge on any dedicated input
and the active clock edge on the clock input pin when data passes once through a C ARRAY
before reaching an affected S or R line on any output SR register.
tmin( 1) - Minimum clock period (or 1/[maximum frequency]) that the device will accomodate when using
feedback from any internal SR register or counter bit to feed .the S or R line of any output SR
register.
t m in(2) - Minimum clock period (or 1/[maximum frequency]) that the device will accomodate when using
feedback from any internal SR register to feed the S or R line of any internal SR register.
t m in(3) - Minimum clock period (or 1/[maximum frequency]) that the device will accomodate when using
feedback from any internal SR register to feed the S or R line of any internal SR register and
data passes once through a C ARRAY before reaching an affected S or R line on any internal
SR register.
tmin(c) - Minimum clock period (or 1/[maximum frequency]) that the device will accomodate when using
feedback from any internal SR register to feed the S or R line of any output SR register and
data passes once through a C ARRAY before reaching an affected S or R line on any output
SR register.

2-368

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

TIBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
PARAMETER VALUES FOR TIMING MOOEL

Ipdll) ~ 22 ns
I p d(2)' ~ 10 ns
I p d(3)' ~ 27 ns

I m in(l)

~

20 ns

~

25 ns

I m in(2)
I m in(3)

~

20 ns
25 ns

Isulb) ~ 25 ns

Imin(c)

~

25 ns

Isull)
Is u (2)

~
~

15 ns
15 ns

Isul a )

~

INTERNAL NOOE NUMBERS

00-07

RESET 25-32

CO
Cl

65
66

SET 33-48

PO-PI5

RESET 49-64

diagnostics
A diagnostic mode is provided with these devices that allows the user to inspect the contents of the state
registers_ The step-by-step procedures required to use the diagnostics follow.
1. Disable all outputs by taking pin 17 (OE) high (see Note 4).
2. Take pin 8 (00) double high to enable the diagnostics test sequence.
3. Apply appropriate levels of voltage to pins 11 (03). 13 (04). and 14 (05) to select the desired
state register (see Table 1).
The voltage level monitored on pin 9 will indicate the state of the selected state register.
NOTE 4: If pin 17 is being used as an input to the array, then pin 7 (5) must be taken double high before pin 17 is taken high.

diagnostics waveforms
15 _ _ _ _ _. . J / , . - - - - - - - - - - - - - - - - - - - - - - VIHH
(PIN 7)

.

1

OE
r------------------------VIH
(PIN 17) _ _ _ _-J~
~100ns~ ,._ _ _........

-:J
~~ Z7727"l';,"'j ?;,r"ry,777h"I'2"""Wj///!//JlIf
"I

tPIN

- -- -- -- -- - - - - - -- - -

VIHH

\- - - - - - - - - - - - ~:~

j.-l00 ns-+f
03.04.05
(PINS 11.

_ j(~-------------VOHH

13.14)Wl/J//I/I11!//////////////////;1~--1

- - - -- - - - -- -- -- -VOH
VOL

1+--100 ns--+l

IPIN~~1I/I///////J//////I///I//J//////I///II/I/J/////&,"'1;,,.,.,I'h,.,.,I'h..,..,I'h,.,.,1;,..,..,I'h..,..,7h""'1;''''''''/h"T"1Z~~~

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

2-369

TlBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEOUENCER

TABLE 1. ADDRESSING STATE REGISTERS
DURING DIAGNOSTICS t
REGISTER BINARY ADDRESS

BURIED REGISTER

PIN 11

PIN 13

PIN 14

L

L

L

Cl

L

L

L

L

H
HH

CO

L

H
H
H
HH
HH
HH

L
L
L
L
L

H
H
H
H
H
H
H
H
H
tVIHH

=

SELECTED
P15

L

P14

H
HH

PO
Pl

L

P2

H
HH

P3
P4

L

L

P5

L

H
HH

P6

L

P8

L

H
H
H
HH
HH
HH

P7

H
HH

Pl0

L

Pll

H
HH

P13

P9

P12

10.25 V min, 10.5 V nom, 10.75 V max

programming information
Texas Instruments programmable logic devices can be programmed using widely available software and
reasonably priced device programmers.
Complete programming specifications, algorithms, and the latest information on firmware, software, and
hardware updates are available upon request. Information on programmers that are capable of programming
Texas· Instruments programmable logic is also available, upon request, from the nearest TI sales office,
local authorized Texas Instruments distirbutor, or by calling Texas Instruments at (214) 997·5666.

2·370

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER

TYPICAL APPLICATIONS
f max
When the TIBPLS506 is used with two or more devices linked to build a "multi-device" state machine
(see Figure 1). the maximum operating frequency for this state machine is limited to the sum of tpd CLK-Q
(10 ns) of the first '506 and tsu (15 ns), of the second '506, for a clock period of 25 ns. This results
in an f max of 40 MHz (1/25 ns).
CLK (40 MHz)

[1>'506

ll>'506
OUTPUT

DATA
OATA
Ipd ClK-Q

I4----- l su

~

Ipd ClK-Q
~

~

Isu

~

~25 ns----l+~--25 ns~
FIGURE 1

Figure 2 shows the '506 used in a system environment where it is operated at 50 MHz, the highest clock
rate possible without compromising data integrity. At the input of the '506, the system clock period is
limited to the sum of tpd CLK-Q of device A and tsu of the '506. At the output of the '506, the system
clock period is limited to the sum of tpd CLK-Q of the '506 and tsu of device B.
For this system to operate at 50 MHz, a system clock period of 20 ns must be met. Given that tsu for
the '506 is 15 ns minimum, tpd CLK-Q of device A cannot exceed 5 ns (15 ns + 5 ns = 20 ns). On the
output side of the '506, tpd CLK-Q of 10 ns must be allowed. In order to meet the system clock period
of 20 ns, tsu for device B must not exceed 10 ns (10 ns + 10 ns) = 20 ns). Under these circumstances,
a system frequency of 50 MHz (1/20 ns) can be realized.
ClK

(50 MHzl

Lt> 506

A

B

DATA

OUTPUT

Ipd ClK-Q'

14

"14

I+----

Ipd ClK-Q

Isu
15 ns
20 ns

~

10 ns

~

~

Isu'---.t

20 ns

------.t

* External device parameters (tpd CLK-Q of device A .s; 5 ns, and tsu of device B

:s

10 ns)

FIGURE 2

TEXAS

"!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-371

T1BPLS506C
13 x 97 x 8 FIELD-PROGRAMMABLE LOGIC SEOUENCER
PARAMETER MEASUREMENT INFORMATION
5V

Sl

I.
Rl

fROM OUTPUT _ ...._ ..._ ..._
UNDER TEST

TEST
POINT

R2

CL
ISee Note AI

LOAD CIRCUIT FOR
THREE-STATE OUTPUTS

./.
TIMING
;rl.5V
INPUT _ _ _--'U _ _ -

---0.3 V

1 5 V
15 V
~
.
.

---3.5V

3.5 V
HIGH· LEVEL
PULSE

I

I4-th-+t
I

DATA
~~-;::3.5V
INPUT - - . / ' 1.5V~
0.3 V

1

LOW· LEVEL
PULSE

\1~ ~ -

.!I1;5 V

----"
tpd

I

IN·PHASE
OUTPUT
tpd
OUT-Of-PHASE
OUTPUT
ISee Note DI

1

14

tpd

r---::----.+ - - VOH
1
~

:
f1.5V
1
14.1

1
14

,\1.5 V
.

VOLTAGE WAVEFORMS
PROPAGATION DelAY TIMES
NOTES:

- - 3.5 V
0.3 V

~I

I

~I

VOL

OUTPUT
CONTROL
Ilow-ievel
enabling I

~3.5V
1.5 V
I
1
ten ---+I

I+-

!

- - VOL

1.5 V
I
-1- - -

-

- - 0.3 V

-+I I+-- tdis

:

~3.3

1
1
V
WAVEFORM1--r\: 1.5V
II~vOL+0.5V
Sl CLOSED
I ~-==:!-= VOL
ISee Note BI
'en -.I
14- 'dis
WAVEFORM 2
S10PEN

.

---..!

l.

I-_-_-~-=

~

ISee Note BI

I

1.5 V

VOH

LVOH-0.5 V
~

0 V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE·STATE OUTPUTS

A. CL includes probe gnd jig capacitance and is 50 pF for tpd and ten. 5 pF for tdis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR :s 1 MHz, tT = tf = 2 ns, duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch 51 is closed.

FIGURE 3

2-372

3.5V

- - --0.3V

i+-

tpd

FVOH
.

I

VOLTAGE WAVEfORMS
PULSE DURATIONS

I.

14.1

1

1 5 V
15 V
~
.
.

VDLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT

0.3 V

1

!.--tw--+l

I4- t su-+j

TEXAS

~

INSTRUMENTS
POST OFFICE BOX '655303 • DALLAS, TEXAS 75265

TIBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER

TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
200

-- -

175

~

,.

150

I

/

~

c:

I!!

125

:;

c;.

Vee = 5.25 V /
100 - V e e = 5V I

Q.
Co
::I

en
I
u
9

t:--

l'

/

Vee = 4.75 V

75
50
25

o

o

25

50

75

T A - Free-Air Temperature - De

FIGURE 4
POWER DISSIPATION
vs
FREQUENCY
1000

950
~

E 900
I
c:

--

0

.~

Co
'wIn 850

.,

i--""

TA - oDe

C

........ i--""

~

~

800

0

TA - 25 De

~

--

1 I

750

TA - 50 De

I I

700
1

2

4

7

10

20

~

....

i--""~

40 70

100

F-Frequency-MHz

FIGURE 5

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-373

TIBPLS506C
13 x 97 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
TYPICAL CHARACTERISTICS
PROPAGATION DELAY
vs
LOAD CAPACITANCE

PROPAGATION DELAY TIME
vs
SUPPLY VOLTAGE
20

30 VCC = 5 V
R1 = 300!l

18
16

tPH~ (I or F~edbacJ to 01

E 14

tPLH (I Or Feedback to 0)

III

25
III

t:

..E

t:

I

a,

i=

.

0;
0

>-

10

o-m

.2
1ii

8

.,

Co

6

c:

.'"
~

D.

20~---r~~~~

i=

>- 12

15r-~-r--~~~-t~~.

c:

o

tPLH (CLK to 0) -

4
2

o

.

~ 10~-.~~--+----+----+----+---;
Co

tPHL (CLK to 0)

R1 = 300!l
R2 = 390!l
CL=50pF
TA = 25°C

£.

5~---r---4----+----r---,~~

O~

4.75

__

o

5.25

5

~

__

~

100

PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE

I

I

tpLH (I or Feedback to 0)

E
i= 12

-

III

16

..E

14 C-tPLt (I o! feelack

c:

I

i=

>-

>-

.

~

600

fa

0)

12

ID

.0 10

0;

10

.,.

8

0

..,

8

'"

6

D.

4

0
c:

tPLH (CLK to 01-

o

.'"
~

D.

R1 - 300 !l
R2 = 39011
CL - 50 pF

o

0

Co

tpHL (CLK 0)

VCC = 5 V

2

25

50

75

tPLH (CLK to 0)

6

VCC - 5 V 4 R1 - 300!l
R2 = 39011
2 CL-50pF
0 TA = 25°C

o

TA -Free-Air Temperature- °C

2

' - - - tPHL%(CLK+to 0) I - -

3

4

5

6

Number of Outputs Switching

FIGURE 9

FIGURE 8

2-374

__

tpHL (I or Feedback to 0)

-=

.!!!

~

~

500

18

I

tpHL (I or Feedback to 0)

16

I
co 14

Co

__

20

18

...

~

400

PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING

20

c:

____

300

FIGURE 7

FIGURE 6

c:

~

CL -Load Capacitance-pF

VCC-Supply Voltage-V

III

__

200

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

7

8

TIBPSG507M, TlBPSG507C
13 x 80 x 8 PROGRAMMABLE SE~UENCE GENERATOR
03029. MAY 19B7 - REVISED NOVEMBER 19B9

M SUFFIX ... , JT PACKAGE
C SUFFIX .... JT OR NT PACKAGE

•

58-MHz Max Clock Rate

•

Ideal for Waveform Generation and HighPerformance State Machine Applications

•

6-Bit Internal Binarv Counter

•

8-Bit Internal State Register

•

Programmable Clock Polarity

•

Outputs Programmable for Registered or
Combinatorial Operation

•

6-Bit Counter Simplifies Logic Equation
Development in State Machine Designs

•

Programmable Output Enable

(TOP VIEW I

ClK

VCC

10

16
17
18
19
110
111
112/0E
07
06
05
04

13
14
15
00
01
02
03

GND

M SUFFIX . . . . FK PACKAGE
C SUFFIX .
. FK OR FN PACKAGE

description
The TIBPSG507 is a 13 x 80 x 8 Programmable
Sequence Generator (PSG) that offers the
system designer unprecedented flexibility in a
high-performance field-programmable logic
device. Applications such as waveform
generators, state machines, dividers, timers, and
simple logic reduction are all possible with a PSG.
By utilizing the built-in binary counter, the PSG
is capable of generating complex timing
controllers. The binary counter also simplifies
logic equation development in state machine and
waveform generator applications.
The PSG507 contains 80 product (AND) terms,
a 6-bit binary counter with control logic, eight
SIR state holding registers, and eight outputs.
The eight outputs can be individually
programmed for either registered or
combinatorial operation. The clock input is fuse
programmable for either positive- or negativeedge operation.

(TOP VIEWI

4
6
7
8

01

3

2 1 28 27 26
25
24
23

18
19
110

22

NC

9

21

10
11

20
19

111
112/0E
07

121314151617 18
",<'lOU",""''''

OOzzOOO


10-1 11
1121OE

f+-- 'U

1CT-0

1R

~ 'U

~
'-----

12

1S

54x80

~

13xl>

1

-

C1/2,3+

~

G3

W- 'U

~ 'U

1CT-0

~C1

~ 'U

~
8x

p+- 'U

8

~ 'U

8

1S

8

IR
8

L-f';C1
8x
8

rv-LY

8

1S
IR

OUTPUT CELL
1 MUX

~
8

~

,Gl

" ~QO-

EN

f"\." denotes fused inputs

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-377

TlBPSG507M. TlBPSG507C
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR
logic diagram (positive logic)

c"i.'!. _

•

, f;,..

i

.

"

;;

.

;

~

~

~

BINARY COUNTER

~

FUNCTIONAL

-,-

;;

lOGIC SYMBOL

eTR 6

CNT/HlDl--{ G2
SCLR1_ 1CY_O

i

;;

CU<-

;;

Cl/2,3+

_'HLOO----<

G3
SCLRO- 1CT-O

C,.

~

~ilfR

:

~ ~
I:::

~

- ""',"'~

I:::'

I;::" ~

1I:::

~

FFc,

'"

:':"::

"
"

~
I;::" !:::Fe,
I~

I:::

F:tk

--R ~"
~

,~

u:::..

It

~"
:,==

~

lr-,.
I;:::: t±!'

I~

t.;:::;.
I~

~

~

~~

~

~

, 0'

=--'~ ,t;i-l

~.r '"

;::::"-le:"JW
=-.J~

~~-'I"
;::..
'"':I>:e'
I_~"---I"

r::: ~'c,W
""---'~

~~~o.
::R~-'-'--O'
I_~~o,
r:::
:-:P:c,

L"

2-378

=--->: ".,

TEXAS

"'!1

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

I

--co
f---C1
f--C2
f---C3
_04
f - - - C5

TIBPSG507M
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR
absolute maximum ratings
Supply voltage, Vee (see Note 3) ............................................. " 7 V
Input voltage, VI (see Note 3) ................................................ 5.5 V
Voltage applied to a disabled output (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
Storage temperature range ......................................... - 65°C to 1 50°C
NOTE 3: These ratings apply except for programming pins during a programming cycle or during the diagnostic mode.

recommended operating conditions
PARAMETER
VCC

Supply voltage

VIH

Hi9h~level

NOM

MAX

4.5

5

5.5

V

5.5

V
V

2

input voltage

0.8
-2
8

VIL

Low-level input voltage

IOH

High-level output current

IOL

low-level output current

tw

Pulse duration

tsu

Setup time before elK active transition t

UNIT

MIN

Clock high

rnA
rnA
ns

Clock low
Input or feedback to SIR inputs
Input or feedback to SCLRO

~
w

ns

Input or feedback to CNT/HOLDO

5>
w

Input or feedback at SIR inputs
th

Hold time after elK active transition t

Input or feedback at SCLO

ns

a::
Q.

Input or feedback at CNT/HLDO
TA

-55

Operating free-air temperature

125

·C

tlnternal setup and hold times, tsu feedback to SCLR1, feedback to "CiiIi/HLD1; th feedback at SCLRl and feedback at CNT/HLD1, are
guaranteed by f max specifications. The active transition of elK is determined by the programmed state of the eLK polarity fuse.

....

(J

::::>

o

oa::

Q.

PRODUCT PREVIEW documents contain information

on products in the formativa Dr design phase of
development. Characteristic data and other
specifications are design goals. Texas Instruments
reserves the right to change or discontinue these
products without notice.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-379

,T1BPSG507M
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR

electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

VOL
II

VCC

IIH
IlL
lot

Vce
Vcc
VCC

=
=

5.5 V,

10ZH

5.5 V,

UIO ports
10ZL All others

VCC

=

5.5 V,

Va

ICC
Ci

VCC = 5.5 V,
f = 1 MHz,

Co

f
f

VCC

VCC

fmax§

V,

V,
5.5 V,

= 0.4

VI

=

1 MHz,

Vo

=

1 MHz,

VI

2.4

MAX

UNIT

-1.2

V

3.2
0.25

-30

V
0.5

V

0.1
20

mA

-0.25

mA

-130

mA

20

pA

-250

V

See Note 4,

I

FROM
TO
6,Bit counter with SCLR1 or CNT/HLD1

-20
156

Outputs open

=2V
=2V
=2V

230

7

pA

pA

mA
pF

11

pF

14

pF

TEST CONDITIONS

6-Bit counter with SCLRO or CNT IHLDO

MIN

Typt

MAX

UNIT
MHz

SIR registers

(')

-I
tpd'

:z:J

m

~

=

V,

Typt

switching characteristics over recommended supply voltage and operating free-air temperature range
(unless otherwise noted)

C

---~ CAS1
....... W

W_
WAIT

=:

AO·AS

RAS

RASI

CAS

CASI

RfW

MSEL

MSEL

A22

MCI

MCI

ALE

HSA ~

OE

*"
IrM'_"'~ *"

'-""""

,-"L

cs

AO·AS

I--

1--_

r-

r--

CAS2
W

'--""""

AO·AS

.......

ADDRESS

RAS2

RAS3

MEMORY BANK SIGNALS

.......

SELO.l

BANK2
1 MEG x 32 BITS
TMS4Cl027

BANK3
1 MEG x 32 BITS
TMS4Cl027

CAS3
W

DATA

For detailed information, please see the "SYSTEMS SOLUTION FOR STATIC COLUME OECODE" Application Report,

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-385

TlBPSG507M, TIBPSG507C
13 x BOx B PROGRAMMABLE SEQUENCE GENERATOR

diagnostics
A diagnostics mode is provided with these devices that allows the user to inspect the contents of the state
registers. The following are the step-by-step procedures required for the diagnostics.
1. Disable all outputs by taking OE (pin 17) high. (Note: If pin 17 is being used as an input to the array, then
pin 15 or pin 7 must be taken. to double high first before pin 17 is taken high.)
2. Take 00 (pin 8) double high to enable the diagnostics test sequence.
3. Apply appropriate levels of voltage to pins 11, 13 and 14 to select the desired state register, (see Table 1)
4. The voltage level monitored on pin 9 will indicate the state of the selected state register.

diagnostics waveforms

JI'"----------------------- VIHHt

15 _ _ _ _ _
(PIN 71
.

OE _______~------------------------------------------------VIH

(PIN 171

'I

1
14--100 ns-+!

{PIN

_ _ _ _ _ _ _ _ _ _ VIHH t

~ ~s;::s:s:s~sus;::s:s:"Cs;::s:s:::s:s=sus:::s:s*(,.----------"'\

-- -

I
14--100 ns-+!

I

Q3. Q4. Q5

(PINS 11. 13. 14) S S S S S S S S S S S S S S S

(PIN09') S S S
tVIHH

=

Ss

S

.J
I
I
1+--100 ns-+(

Ss s s s s s s Ss s s s s s s s , ) , '

I
S •

10.25 V min. 10.5 V nom, and 10.75 V max
TABLE 1. ADDRESSING STATE REGISTERS DURING DIAGNOSTICS
REGISTER BINARY ADDRESS
PIN 11

2-386

PIN 13

PIN 14

BURRIED REGISTER SELECTED

L

L

L

L

L

H

SCLRO
SCLRl

L

L

HH

CliffIHLDO

L

H

L

CNTIHLDl

L

H

PO

L

H

H
HH

L

HH

L

P2

L

HH

H

L

HH

HH

P3
P4

H
H

L
L

L
H

P5
P6

H

L

HH

P7

H

H

CO

H

H

L
H

H

H

HH

H
H

HH
HH

L

C2
C3

H

HH

H
HH

C4
C5

Pl

Cl

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

-

-

-

-VIH
VIL

TlBPSG507M, TIBPSG507C
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR
TYPICAL APPLICATIONS

f max
When the TIBPSG507 is used with two or more devices linked to build a "multi-device" state machine
(see Figure 1), the maximum operating frequency for this state machine is limited to the sum of tpd CLK-Q
(10 ns) of the first '507 and tsu (12 ns). of the second '507, for a clock period of 22 ns. This results
in an f max of 45 MHz (1/22 ns).
CLK (45 MHzl

LI>'507

L>'507
OUTPUT

DATA
DATA

tpd CLK-O

I4- t su

~

1+-----22

tpd CLK-O
~

~

tsu

nS--~+'---22

~

ns-----.j

FIGURE 1

Figure 2 shows the TIBPSG507 used in a system environment where it is operated at 58 MHz, the highest
clock rate possible without compromising data integrity. At the input of the' 507, the system clock period
is limited to the sum of tpd CLK-Q of device A and tsu of the '507. At the output of the '507, the system
clock period is limited to the sum of tpd CLK-Q of the '507 and tsu of device B.
For this system to operate at 58 MHz, a system clock period of 17.2 ns must be met. Given that tsu for
the '507 is 12 ns minimum, tpd CLK-Q of device A cannot exceed 5.2 ns (12 ns + 5.2 ns = 17.2 ns).
On the output side of the '507, tpd CLK-Q of 10 ns must be allowed. In order to meet the system clock
period of 17.2 ns, tsu for device B must not exceed 7.2 ns (10 ns + 7.2 ns) = 17.2 ns). Under these
circumstances, a system frequency of 58 MHz (1/17.2 ns) can be realized.
CLK (58 MHz)

L>'507

A

OUTPUT

DATA

tpd CLK-O"

14

'su

~14 12 ns

1+----17.2 ns

B

tpd CLK·O

~ 10 ns
~..

1Jit4

tsu*-tJII

17.2 ns----.j

• External device parameters (tpd CLK-Q of device A :s -5.2 ns, and tsu of device B

:s 7.2 ns)

FIGURE 2

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

2-387

TlBPSG507M, TlBPSG507C
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR
PARAMETER MEASUREMENT INFORMATION

CL
(See Nole A)

R2

LOAD CIRCUIT fOR
3-STATE OUTPUTS
[3.5 V] (3 V)
TIMING
INPUT

'/1.5 V

4---

[0.3 V] (0)

~
"~"I\--..

[3.5 V] (3 V)

LOW-LEVEL~I
I
1.5 V 1.5 V
PULSE

[3.5 V] (3 V)

HIGH-LEVEL
PULSE----"I··~"

*t.,---.I
I
I

t$U~th

~-:"-:.~

[3.5 V] (3 V)

DATA~1.5V

[0.3 V] (0)

INPUT

----

VOLTAGE WAVEfORMS
SETUP AND HOLD TIMES

.L 1.SV

INPUT

-..!i

Ipo

I
I

)11.5

L..

_.

,.....--..,

[3.5 V] (3 V)

-

[0.3 V] (0)

~ Ipd

V

I
I
I

J __ VOH

~V

~I Ipd

VOL

OUTPUT
CONTROL
(low-level

~
I

[0.3 V] (0)

[3'5v](3v)

.
1.5V

1.5V

/I'

enabling)
len

I I

W~~~L~~~6

:

(See Nole B)
ten

c.L -

-.l I+-

I
-+I

WAVEFORM 2
S10PEN
(See Nole B)

-

:g::;-*
\:=-:..
E..:....-

I+-

-

,-+! ~
U

,~V -:

I

-

[0.3 V] (0)

I

I di

_........,I~~r+

OUT-Of·PHASE
OUTPUT
(See Nole D)
VOLTAGE WAVEfORMS
PROPAGATION DELAY TIMES

[0.3 V] (0)

VOLTAGE WAVEfORMS
PULSE DURATIONS

l\

....J4..--+i

IN-PHASE
OUTPUT---jl-..J
tpd

- - \... 1.5V

- ----

10i,-+I

1.5~_

I+I

_

_

~ -

L..

- 3.3 V
VOL
VOL +0.5 V
VOH
:OOH;.5V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. 3·STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten' 5 pF for tdis'
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: For M suffix, use voltage levels indicated in parentheses (),
PRR " 10 MHz, tr and tf " 2 ns, duty cycle = 50%. For C suffix, use the voltage levels indicated in brackets [I.
PRR " 1 MHz, tr = tf = 2 ns, duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.
E. Equivalent loads may be used for testing.

FIGURE 3

2·388

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIBPSG507M, TIBPSG507C
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR

TYPICAL CHARACTERISTICS
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
200

ct

E

C.J

>
is.

a.

:-- ..::::::

~

150

I

E
!
:;

--

Vee - 5.5 V

175

~ee

125

-"...

l
- 4.5, "'-

~ ~ t:::::: ~ ~

100

Vee - 5

C.J

~

Y\

-.......::

Vee = 4.75 V

75

'"I

In

l\--r---::::::::::::

= 5.25 V \

Vee

~ 1'-0..

50
25

o
-75 -50 -25

0

25

50

75

100 125

TA-Free-Air Temperature- °e

FIGURE 4
POWER DISSIPATION
vs
FREQUENCY
1000

950

i!:

T

900

I:

o

.~

.~ 850

.!!l

TA

o
;

..... ~

800

f.

- --

:,.....

= ooe

TA - 25°e

-

~

II

750

TA - 50 0 e

I I

700

1

10

.... ~

20 30405080100

F - Frequencv - MHz

FIGURE 5

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

2-389

TIBPSG507M, TIBPSG507C
13 x 80 x 8 PROGRAMMABLE SEQUENCE GENERATOR

TYPICAL CHARACTERISTICS
PROPAGATION DELAY TIME
vs
SUPPLY VOLTAGE
20

..
c

.,I

E

j::

.

>"i
Q

c

18
16
14

30 VCC _ 5 V,

--

I

12

E 20

~

I .I
tPlH (ClK to 01

'"...
III

6

~

R1 ~ 300 n,
4
R2 - 390 n,
2 Cl - 50 pF,
TA - 25°C

1----+-~~-::::1I"''''''-

15r-~-+-~~~-t~~

c

.2

~
10~~~~-~-~--~-~--;
III

...

tpHl (ClK to 01

o

4.5

I

GO

j::

>III

10

£

5~-4---+---;---+---4---~

o~

5

4.75

o

5.5

5.25

n,
n,

:!!

I

-r---i::
tPl~ (I or Feedback toW

8

11.

R1 - 300
25 R2 - 390

tP~l (I o~ FeeJback Ito 01

.2

:;;

PROPAGATION DELAY
vs
LOAD CAPACITANCE

__

~

__

100

PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE

14

>-

.,
c

0

"s

....'"
~

11.

tplH (I or Feedback to 01

16

.,

14 r-tPlt (I

E

j::

>IV
'ii

10

Q

tplH (ClK to 01

8
6

o

tpHl (ClK to 01

- 5 V,
300 n,
390 n,
50 pF

-75 -50 -25

__

~

600

c

.

L-

-

10
tplH (ClK to 01

·8

8

...'"
£

6 VCC - 5 V, 4 R1 - 300 n,
R2 - 390 n,
2 Cl~50pF

IV

o
0

25

50

75

o~ feelack fa 01

12

100 125

-

tPHl:(ClK;to 01 r--

TA - 25°C

o

2

3

4

5

6

Number of Outputs Switching

TA -Free-Air Temperature- °C

FIGURE 9

FIGURE 8

2-390

~

500

tpHl (I or Feedback to 01
In

c
I

12

4 VCC
R1 2 R2 Cl -

__

18
tPHl (I or Feedback to 01

.!l!
Q

~

400

20

18

GO

E

j::

__

PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING

20

c
I

~

300

FIGURE 7

FIGURE 6

16

__

Cl -load Capacitance-pF

VCC-SuppIV Voltage-V

..

~

200

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

7

8

TIB82S105BM, TIB82S105BC
16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
02897, SEPTEMBER 1985-REVISEO AUGUST 19B9

M SUFFIX, .. J PACKAGE
C SUFFIX ... N PACKAGE

•

50-MHz Clock Rate

•

Power-On Preset of All Flip-Flops

•

6-Bit Internal State Register with 8-Bit
Output Register

(TOP VIEW)

•

Power Dissipation ... 600 mW Typical

•

Programmable Asynchronous Preset or
Output Control

•

Functionally Equivalent to, but Faster than
82S105At

elK

Vee
18

17
16
15
14

19
110
111

13

112

12

113
114

11
10

description
The TIB82S 105B is a TTL field-programmable
state machine of the Mealy type. This state
machine (logic sequencer) contains 48 product
terms (AND terms) and 14 pairs of sum terms
(OR terms). The product and sum terms are used
to control the 6-bit internal state register and the
8-bit output register.
The outputs of the internal state register
(PO-P5) are fed back and combined with the 16
inputs (10-115) to form the AND array. In
addition a single sum term is complemented and
fed back to the AND array, which allows any of
the product terms to be summed,
complemented, and used as an input to the AND
array.
The state and output registers are positive-edgetriggered SIR flip-flops. These registers are
unconditionally preset high on power-up. Pin 19
can be used to preset both registers or, by
blowing the proper fuse, be converted to an
output control function.

115

07
06

PRE/DE

05

01

04

02

GND

03

00

M SUFFIX ... FK PACKAGE
C SUFFIX ... FN PACKAGE
(TOP VIEW)
><:

U

~~!:::d~~~
4

3

2

1 28 2726
25

110

24

111

23

112

8

22

113
114

9

21

10

20

115

11

19

PRE/DE

12131415161718

The TIB82S 105BM is characterized for operation
over the full military temperature range of
-55°C to 125°C. The TIB82S105BC is
characterized for operation from OOC to 75°C.

t Power-up preset and asynchronous preset functions are not
identical to 82S 105A. See Recommended Operating Conditions.

PRODUCTION DATA documents contain information
currant as of publication data. Products conform to

spacifications per the terms of Texas Instruments

:~~=~~i~ai~:1~18 ~!:~~:ti:fn l!IO::::::~rO:S not

Copyright

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

© 1989, Texas Instruments Incorporated

2-391

TIB82S105BM, TIB82S105BC
16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
functional block diagram (positive logic)
PRE/DE - - - -....r~

P---------------------~
EN

S

CLK---------------------+-~_t>
>1

8

8

48 X 29

&

8

16XC>
10-115 _...,...1!!:6_~

48

"v

6XC>
6
6
C>

1R

'V
6

'V denotes fused inputs.

timing diagram

Vee

.J
I

PRE

OPTIONAL
OE

10-115

elK

I
I

I
I
I
I

PO-P5

2·392

m
1

:

1
1

I
1

11------I

X,-i-:--i-:-;-:
---!4=t "il i

.l-_ _....J

su

i

I

I

I

I

I
I

,..-.,r-----.lr------:I--..\.;.....- ..,.J!~=======

--J/
I
I

I

00-07

I~~--~-------~tsu--.l

---1--('--_____
i

STATE
REG
INTERNAL

r---I

--~I----------~I;
I

I

I

---Y'\\..._---JY

y....-I

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

I

00-07

TIB82S105BM, TIB82S105BC
16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEOUENCER
WITH 3-STATE OUTPUTS OR PRESET
logic diagram (positive logic)
N

<0

m

)0

11

o

191

N

N

m

~

00
00

W

N

N

cg

~

m

~

o

N

.." 0

0

111
12
16)
13
15)
14
14)
15
13)

I.
17

18
19
110

III
112
(13

114
115

. - - FIRST FUSE NUMBER
~ INCREMENT

181

r

4
8

ACTUAL

P

12

12)

3552

I

(27)

FUSE

NUMBER

{191

16

PRE/DE

(261
(25)

20

124)

P

(23)

E

24

1221
(21)

28

(20}

32

PO
Pl
P2
P3

36

P4

40

P5
44

I

PO

--i,~1L
48

~Pl

rl;~1t

t;"S1P2

52

~~~r:
~P3

H;~lSt

==P4

"

~~1~t
56

~P5

~~1l
r-t,~~l

60

I"1"S"""1

--t,~lS~

"

64

a

68

~
t;S'"1-

1(16)

1(151

I

=

73r-t.~1l
~

01

02

I

~h~
~

ti~1~

00

I

I

'7S'

NOTES:

1(17)

~~1l.-

~~1~
72

(18)
)

03

1(13)

04

1(121

as

I
1(11)

06

I
1

(10)
(1)

01
CLK

1. All AND gate inputs with a blown link float to a logic 1.
2. All OR gate inputs with a blown link float to a logic O.
3. Fuse Numbers = First Fuse Number + Increment.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-393

TI882S105BM
16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER
WITH ]-STATE OUTPUTS OR PRESET
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55 °e to 125 °e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 4: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER
VCC

Supply voltage

VIH

High-level input voltage

Vil

Low-level input voltage

IOH

High-level output current

IOl

Low-level output current

fclock

Clock frequency t

tw

Pulse duration

tsu
tsu
th
TA

1 thru 48 product terms without C-arrayf
1 thru 48 product terms with C-array

Clock high or low

Preset

Setup time before ClK!,

Without C-array

1 thru 48 product terms

With C-array

Setup time. Preset low (inactive) before CLK!§
Hold time, input after ClK!
Operating free-air temperature

MIN
4.5
2

0
0
12
18
25
40
10
0
-55

NOM
5

MAX
5.5
5.5
0.8
-2
12
40
25

UNIT

V
V
V
mA
mA
MHz
ns
ns
ns

125

ns
·C

tThe maximum clock frequency is independent of the internal programmed configuration. If an output is fed back externally to an input,
the maximum clock frequency must be calculated.
.

tThe C-array is the single sum term that is complemented and fed back to the AND array.
§After Preset goes inactive, normal clocking resumes on the first low-to-high clock transition.

2-394

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 665303· DALLAS, TEXAS'76266

TIB82S105BM
16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER
WITH 3-STATE OUTPUTS OR PRESET
electrical characteristics over recommended operating free-air temperature range (unless otherwise
notedl
PARAMETER

TEST CONDITIONS

VIK

Vee - 4.5 V,

VOH
VOL
II

Vee

IIH

Vee
Vee
Vee

III

Vee

105*

Vee

10ZH

Vee
Vee

10Zl

= 4.5 V,
= 4.5 V,
= 5.5 V,
= 5.5 V,
= 5.5 V,
= 5.5 V,
= 5.5 V,
= 5.5 V,
= 5.5 V,

Vee
PRE/OE input at GND,

lee

MIN

-18 mA
10H = -2 mA
10l = 12 mA
VI = 5.5 V
VI = 2.7 V
VI = 0.4 V
Vo = 0.5 V
Vo = 2.7 V
Vo = 0.4 V
VI = 4.5 V,

TYpt

II -

2.4

3.2
0.25

-30

120

Outputs open

MAX

UNIT

-1.2

V
V

0.4
25
20
-0.25
-250
20
-20

mA

180

mA

V
~A
~A

mA
~A

~A

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise notedl
PARAMETER

FROM

TO

TEST CONDITIONS

I Without e

MIN

TYpt

MAX

40
25

20

ns

UNIT

tpd

elKt

Q

Rl = 39011,

70
45
8

tpd

PREt

Q

R2 = 75011,

12

25

ns

tpd

Q

See Figure 3

0

10

ns

ten

Veet
OE.
OEt

Q

25
15

ns

tdis

10
5

§

f max

I

array
With e array

tAli typical values are at Vee

=

5 V, TA

Q

=

MHz

ns

25 ·e.

:t:Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed 1 second. Set Va at 0.5 V
to avoid test equipment ground degradation.
§fmax is independent of the internal programmed configuration and the number of product terms used.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-395

1IB82S105BC
16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEQUENCER
WITH 3-STATE OUTPUTS OR PRESET
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 75 °e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 4: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER
VCC

Supply voltage

VIH

High-level input voltage

Vil

Low-level input voltage

IOH

High-level output current

IOl

low-level output current

fclock

Clock frequency t

tw

Pulse duration

tsu

MIN
4.75
2

1 thru 48 product terms without C-array +
1 thru 48 product terms with C-array

Clock high or low
Preset

Setup time before ClK!,

Without C-array

1 thru 48 product terms

With C-array

tsu

Setup time, Preset low linactive) before ClK!9

th

Hold time, input after ClK!

TA

Operating free-air temperature

0
0
10
15
15
30
8
0
0

NOM
5

MAX
5.25
5.5
0.8
-3.2
24
50
30

UNIT
V
V
V

rnA
rnA
MHz
ns
ns
ns
ns

75

°c

tThe maximum clock frequency is independent of the internal programmed configuration. If an output is fed back externally to an input,
the maximum clock frequency must be calculated.
tThe C~array is the single sum term that is complemented and fed back to the AND array.
§After Preset goes inactive, normal clocking resumes on the first low~to-high clock transition.

2-396

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TIB82S105BC
16 x 48 x 8 FIELD-PROGRAMMABLE LOGIC SEOUENCER
WITH 3-STATE OUTPUTS OR PRESET
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS
II

~

Vee - 4.75 V,

VOH

Vee

~

4.75 V,

IOH

~

Val
II

Vee

~

4.75 V,

IOl

~

Vee

~

5.25 V,

IIH

Vee - 5.25 V,
Vee ~ 5.25 V,

VI ~ 5.5 V
VI - 2.7 V

III
lot

~

~

VI

-3.2 mA

~

2.25 V

~

Va

~

2.7 V

~

5.25 V,

Va

~

0.4 V

IOZl

Vee

lee

Vee ~ 5.25 V,
PRE/OE input at GND,

VI

2.4

3

~

0.37

0.4 V

Va

IOZH

TVPt

24 mA

5.25 V,
5.25 V,

Vee
Vee

MIN

-18mA

VIK

-30

4.7 V,

120

Outputs open

MAX
-1.2

UNIT

V
V

0.5

V

25
20
-0.25

p.A
p.A
rnA

-112

mA

20
-20

p.A

180

rnA

p.A

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER
§

f max

FROM

TO

TEST CONDITIONS

I Without e array
I With C array

MIN

TVpt

50
30

70

MAX

UNIT

MHz

45

tpd

elK!

Q

R1

~

500 II,

8

15

ns

tpd

PRE!

Q

R2

~

500 II,

12

20

ns

tpd

Vee!

Q

See Figure 3

0

10

ns

ten

OEI

Q

10

20

ns

tdis

OE!

Q

5

10

ns

tAli typical values are at Vee ~ 5 V, TA ~ 25°e.
:t:The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit current, lOS.
§fmax is independent of the internal programmed configuration and the number of product terms used.

programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-397

TIB82S10SBM. 1IB82S10SBC
16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
diagnostics
A diagnostics mode is provided with these devices that allows the user to inspect the contents of the
state register. When 10 (pin 9) is held at 10 V, the state register bits PO-P5 will appear at the 00-05
outputs and 06-07 will be high. The contents of the output register will remain unchanged.

diagnostics waveforms
~~----------------------------------------------------VIH

I1-M5

--.If\.
I ......---------------------------------------vl

I

*

r-------,----------+10V

I
I

""""\V
I

'I

I
,

I+--th-+l

I

:

I
I4-- t su

1

-

-

I
I

I
I

_______

l\

-4 - ) (

-

,\

I

-------Vll

'......

t- - - - - - - - - -

VIH

I'

, I ......-----~--------Vll
tw~
,

I
.14

INTERNAL
______
STATE R E G I S T E R ,
PS
PO-P5 -- -

: ' \ - \ - - - - - - - VIH

!,

10~

elK

~8.0V

II

rl - - - - -- ...!I - - - - -- I

-I -

I

:

i

QO-Q5----Q-n---+:-~*
--------TI-~

-VOH

I

NS

+ - - - - - ..., - - - - - - -- VOL
I 4 - - - t pd

Qn+l

---+:

X

I

I+--tpd~
NS

EVOH
VOL

r.-tpd~

----------------------------0 V

OPTIONAL
OE

PS

2·398

= Present state.

NS

= Next state

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 665303 • DALLAS, TEXAS 15265

TlB82S105BM. TIB82S105BC
16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEOUENCER
WITH 3·STATE OUTPUTS OR PRESET
test array
A test array that consists of product lines 48 and 49 has been added to these devices to allow testing
prior to programming. The test array is factory programmed as shown below. Testing is accomplished
by connecting 00-07 to 18-115. PRE/OE to GND. and applying the proper input signals as shown in the
timing diagram. Product lines 48 and 49 MUST be deleted during user programming to avoid interference
with the programmed logic function.
TEST ARRAY PROGRAM
OPTION PRE/OE
ANO
PRODUCT
LINE

C

48
49

C

x-

,,,,,,

IH

OR

INPUT

PRESENT STATE

NEXT STATE

OUT

(In)

(PS)

(NS)

(an)

5 4 3 2 , 0 9181716151413121' 10 51 4 13 12 111 0 51 41312 1'1 0 716151413121'10

H H H H H H HIHIHIHIHIHIH IHIHIH HIHIHIHIHIH LILILILILIL LILjLjLILILILIL

- X L L L L L L LILIL ILILILIL ILILIL LILILILILIL HIHIHIHIHIH HIHIHIHIHIHIHIH

test array waveforms

~---------------------------------------------------5V

VCC~

___ _

I4-I W

-

-

-

-

-

-

-

-

h .'________________. . . IL

ClK

---....:..--------------~,
I

10-17 ___-+-1________---',

'*" +I

,

1

,

!

Ipd

~~:-------:::

\J

1

1

RE~~~:=

I

:::

~

ao-a7 ___-Jf,i-i- - - - -.........~
INTERNAL

....I~

+:____

L.I_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

J4.-.-.+t- Ipd

Ipd

VIH

,VIL

*-Isu ......... lh-.l

STATE

- ----oV

-+t

I

I;-_--_--_-_~~:

TEST ARRAY DELETED
OPTION PRE/OE

PRODUCT
LINE

48
49
x =

C

-

C , , , , , ,

IH

OR

AND
INPUT

PRESENT STATE

NEXT STATE

OUT

(In)

(PS)

(NS)

(an)

4 3 2 , o 9181716151413121' 10 51 4 13 12 111 0 51 4131 2 1'Lo 7L6151413121'lo
-1-1-1-1-1- -1-1-1-1-1-1-1· t - I l ·1 j I I

5
- H H H H H H HIHIHIHIHIHIHIHIHIH HIHIHIHIHIH
X L L L L L L LILILILILILILILILIL LILILILILIL - ! - i - I I I

Fuse intact, -

= Fuse blown

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-399

TlB82S 105BM, TIB82S 105BC
16 x 48 x 8 FIELD·PROGRAMMABLE LOGIC SEOUENCER
WITH 3·STATE OUTPUTS OR PRESET
TIB82S105B. 82S105A COMPARISON
The Texas Instruments TIB82S 105B is a 16 x 48 x 8 Field-Programmable Logic Sequencer that is functionally
equivalent to the Signetics 82S105A. However, the TIB82S105B is designed for a maximum speed of 50 MHz
with the preset function being made conventional. As a result the TIB82S105B differs from the 82S105A in
speed and in the preset recovery function.
The TIB82S 105B is a high-speed version of the original 82S 105A. The TIB82S 105B features increased switching
speeds with no increase in power. The maximum operating frequency is increased from 20 MHz to 50 MHz
and does not decrease as more product terms are connected to each sum (OR) line. For instance, if all 48 product
tems were connected to a sum line on the original 82S 105A, the f max would be about 15 MHz. The f max
for the TIB82S105B remains at 50 MHz regardless of the programmed configuration. In addition, the preset
recovery sequence was changed to a conventional recovery sequence, providing quicker clock recovery times.
This is explained in the following paragraph.
The TIB82S 1 05B and the 82S 105A are equipped with power-up preset and asynchronous preset functions.
The power-up preset causes the registers to go high during power-up. The asynchronous preset inhibits clocking
and causes the registers to go high whenever the preset pin is taken high. After a power-up preset occurs,
the minimum setup time from power-up to the first clock pulse must be met in order to assure that clocking
is not inhibited. In a similar manner after an asynchronous preset, the preset input must return low (inactive)
for a given time, tsu, before clocking.
The Signetics 82S 105A was designed in such a way that after both power-up preset and asynchronous preset
it requires that a high-to-Iow clock transition occur before a clocking transition (low-to-high) will be recognized.
This is shown in Figure 1. The Texas Instruments TIB82S1 05B does not require a high-to-Iow clock transition
before clocking can be resumed, it only requires that the preset be inactive 8 ns (preset inactive-state setup
time) before the clock rising edge. See Figure 2.
The TIB82S105B, with an f max of 50 MHz, is ideal for systems in which the state machine must run several
times faster than the system clock. It is recommended that the TlB82S 105B be used in new designs. However.
if the TIB8251058 is used to replace the 825105A. then the customer must understand that clocking will begin
with the first clock rising edge after preset.
TABLE 3. SPEED DIFFERENCES
PARAMETER
f max

tpd, elK to

2-400

Q

B2S105A

TIBB2S105B

SIGNETICS

TIONLY

20 MHz

50 MHz

20 ns

15 ns

TEXAS . . ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TIB82S105BM, TIB82S105BC
16 x 48 x 8 FIELD· PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
Vee

PRE

-I'i
I

~tsu-+f

If--tsu-+l
I
I

I

rJ~--~~----------

--~I-----+I----------~
I

eLK

:

REGISTERS

OJ

I

:

:
I

~

__xy
I

~_X::

FIGURE 1. 82S105A PRESET RECOVERY OPERATION

Vee

...J1

PRE

I
I
I

""""-tsu
I

I

r--:I~: ____________________
--~I--------------------~!~.

eLK
I

REGISTERS:J

I

\ ......._ _

..JX~_____'X..Y

\__~X'--___>C

FIGURE 2. TIB82S105B PRESET RECOVERY OPERATION

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2·401

TIB82S 105BM. TIB82S 105BC
16 x 48 x 8 FIELD·PRDGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
PARAMETER MEASUREMENT INFORMATION
5V

SI

b

Rl
FROM OUTPUT ~.-...................... TEST
UNOER TEST
POINT

R2

CL
ISee Note AI

LOAD CIRCUIT FOR
THREE-STATE OUTPUTS

TIMING
INPUT

./.

... t su " " "

HIGH LEVEL
PULSE

LOW-LEVEL
PULSE

[0.3 VI (0)

~tpd

/'
I
1.5 V :

,

I

tpd~

OUT-OF-PHASE
OUTPUT
(See Note DI

\1

~,-,:-;:

~

VOH

OUTPUT
CONTROL
(low-level

f

~
1.5V
1.5V
:

-

- -

-

[3.5 VI (3 V)
[0.3 VI (0)

~

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

15 V

:

J_ -

14-

ten-+!

VOH

I

WAVEFORM 1
SI CLOSED
(See Note BI

-+II

I

!t-tdis

I
II

1.5 V

I

I

:,

~~ ~
tdis .....

it l .5V

------~

~3.3V

( I _ _ £,:"VOL +0.5 V

- - - X - VOL

~

ten-+!
WAVEFORM 2
S10PEN
(See Note BI

- - - [ 0 . 3 VI (0)

I

I
~

VOL

[3'5VI(3V)

15 V

I I

1 . 5V

-

~

enabling)

VOL

~tpd

1 . 5V

'

VOLTAGE WAVEFORMS
PULSE DURATIONS

- - - - [ 3 . 5 v I (3 V)
\1.5V
I ......_ - - [0.3 VI (0)

tpd~

[0.3 VI (0)

,

,

-:~---[3.5VI(3V)

IN-PHASE
OUTPUT:

~

: . - - tw ---.:

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT J l . 5 V
:

~.-~~,-[3.5VI (3 V)

~1.5V

th .....

1.5 V
1.5 V
~

'

DATA
INPUT

[3_5 VI (3 V)

7,1.5V
---~-:- - - - - - --[0.3 VI (0)

T

i.
Jf==i= VOH
I

·~VOH-0.5V
~OV

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE-STATE OUTPUTS
NOTES: A. CL includes probe and jig capacitance and is 50 pF for tpd and ten, 5 pF for tdis.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the folloyving characteristics: For M suffix. use the voltage levels indicated in parentheses ( ),
PRR '" 10 MHz, tr and tf '" 2 ns, duty cycle = 50%. For C suffix, use the voltage levels indicated in [ I. PRR '" 1 MHz,
tr = tf = 2 ns, duty cycle = 50%.
D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.
E. Equivalent loads may be used for testing.

FIGURE 3

2-402

TEXAS ",

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TlB82S167BM. TIB82S167BC
14 x 48 x 6 FIELD· PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
02896, JANUARY 1985 - REVISED AUGUST 1989

•

Programmable Asynchronous Preset or
Output Control

•

Power-On Preset of All Flip-Flops

•

8-Bit Internal State Register with 4-Bit
Output Register

•

Power Dissipation ... 600 mW Typical

•

Functionally Equivalent to, t but Faster than
82S167A

M SUFFIX, .. JT PACKAGE

C SUFFIX .. , NT PACKAGE
(TOP VIEWI
CLK

description

16

VCC
17

16

18

14

19

13

110

12

111

11

112

10

113

00

The TIB82S 167B is a TTL field-programmable
state machine of the Mealy type. This state
machine (logic sequencer) contains 48 product
terms (AND terms) and 12 pairs of sum terms
(OR terms), The product and sum terms are used
to control the 8-bit internal state register and the
4-bit output register.

PRE/OE

01

P1

02

PO

GNO

03

M SUFFIX ... FK PACKAGE

C SUFFIX, .. FN PACKAGE
(TOP VIEWI

The outputs of the internal state register (PO-P7)
are fed back and combined with the 14 inputs
(10-113) to form the AND array, In addition the
first two bits of the internal state register (PO-P1 )
are brought off-chip to allow the output register
to be extended to 6 bits if desired. A single sum
term is complemented and fed back to the AND
array, which allows any of the product terms to
be summed, complemented, and used as inputs
to the AND array,

4

3

2

1 28 2726

5

11

19

6

25
24

110
111

7

23

8

22

NC

9

21

112

10

20

113

11

19
12131415161718

The state and output registers are positive-edgetriggered SIR flip-flops. These registers are
unconditionally preset high on power-up. PREIOE
can be used as PRE to preset both registers or,
by blowing the proper fuse, be converted to an
output control function, OE.

...-NOUMO..-

ddzzOc..c..
(!)

NC-No internal connection

The TIB82S 167BM is characterized for operation
over the full military temperature range of
-55°C to 125°C. The TIB82S167BC is
characterized for operation from
to 75°C,

ooe

t Power up preset and asynchronous preset functions
are not identical to 82S167A.

PRODUCTION DATA documents contain information

current as of publication date. Products conform to
specifications per the terms of Texas Instruments

~~~~::~~i~ar::,~~~ ~!:~~~ti:fn :IIO::~:::::t!~~S not

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

Copyright © 1989, Texas Instruments Incorporated

2-403

TIB82S167BM, 1IB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
functional block diagram (positive logic)
PRE/liE

rig
--'

LEN
~s

eLK

,e1
;;.1

&
45 X 48

14xI>
10-113

14

2XI>

~
~

48 X 25

4

'V
'V

2X
1S 1=1

2
2

P-- 'V
~ 'V

~

r

4X
1S I = 1 'Q
1R

4

4

2

'Q

1R

'V
y1

6XI>

-

4#-

r

I>

-

'V
'V

6X
1S 1=1

6
6

'V

1R

-

]
6

2
""" denotes fused inputs

timing diagram

Vee

~

PRE

I
I

I

II

--I~------~
OPTIONAL

10-113

~~-ts-u~~------

:

rh

--~I~----------~------~I

I

I

I

-+<

X: :

I

I
I

i

.......________---''--____..J

~tsu=+l

.

eLK

.~-----

I

I

i

I

TEXAS ."

INSTRUMENTS
2-404

POST OFACE BOX 656303 • DALLAS. TEXAS 76285

:

00-03

PO, P1

TIB82S167BM. TIB82S167BC
14 x 48 x 6 FIELD· PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
logic diagram
.....

10

o

8

......FIRST FUSE NUMBER
INCREMENT

<::0

0-

7

12

•
,

ACTU

4

FUSE NUMBER

5

,.

I

4

8

2

12

19

'"

"

22

'6

"

20

20

"

2.

"
'" "

~

,

23

P

PO

28

"

32

P2

PRE/OE

,t

P3

36

P4

P5
40

P6

P7
44

C
C

'is

'-"48~

~

~i~

~
~~
52
~

56

~

-'"'
60

,. ~C:
~~~
~
tt~

'is'

~~
t£~~~
rfi
~~
'is'

64

~

~.9
47

...

40 39

...

32 31

...

!4 23

...

1615

...

8

7

...

~

0

I
I
I
I

"
r-r~

I
I

~
'iT"

I
I

,.

~68

I
I

~

"
,.
"
"
'0
9

,

P

P

Q

Q

Q

Q

C

NOTES: 1. All AND gate inputs with a blown link float to the high level.
2. All OR gate inputs with a blown link float to the low level.
3. Fuse Number = First Fuse Number + Increment

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 76265

2-405

TlB82S167BM
14 x 48 x 6 FIELO;PROGRAMMABLE LOGIC SEQUENCER
WITH 3-STATE OUTPUTS OR PRESET
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 5.5 V
Voltage applied to a disabled output (see Note 3) ........................-. . . . . . . . .. 5.5 V
Operating free-air temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 55°C to 125°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 3: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER

VCC

Supply voltage

VIH

High-level input voltage

Vil
10H

Low-level input voltage
High-level output current

10l

Low-level output current

fclock
tw
tsu

Clock frequency t
Pulse duration

MIN

NOM

MAX

4.5

5

5.5

V

5.5

V

0.8
-2

mA

2

1 thru 48 product terms without C-arrayi
1 thru 48 product terms with C-array

0

12
40

0

25

Clock high or low

12

Preset

Setup time before ClK!,

Without C-array

18
25

1 thru 48 product terms

With C-array

40

Setup time. Preset low (inactivel before ClK! §

tsu
th

Hold time. input atter ClK!

TA

Operating free-air temperature

V
mA
MHz
ns
ns

10

ns

0
-55

UNIT

ns
125

·C

tThe maximum clock frequency is independent of the internal programmed configuration. If an output is 'fed back externally to an input,
the maximum clock frequency must be calculated.

iThe C-array is the single sum term that is complemented and fed back to the AND array.
§After Preset goes inactive, normal clocking resumes on the first low-to-high clock transition.

TEXAS ."

INSTRUMENTS
2-406

POST OFFICE BOX 655303 • DAlLAS. TEXAS 76286

TlB82S167BM
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEOUENCER
WITH 3·STATE OUTPUTS OR PRESET
electrical characteristics over recommended operating free·air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

VIK

Vee = 4.5 V,

II = -18 mA

VOH

Vee = 4.5 V,

IOH = -2 mA

Val
II

Vee = 4.5 V,

IOl = 12 mA
VI = 5.5 V

Vee = 5.5 V,
Vee = 5.5 V,

IIH

MIN

Typt

2.4

3.2
0.25

MAX
-1.2

UNIT

V
V

0.4

V
~A

VI=2.7V

25
20

= 0.4 V

-0.25

mA

-250

mA

~A

VI

IOS~

Vee = 5.5 V,
Vee - 5.5 V,

IOZH

Vee = 5.5 V,

Va = 2.7 V

20

~

IOZl

Vee = 5.5 V,

Va

-20

~

lee

Vee = 5.5 V,
PRE/OE input at GND,

= 0.4 V
VI = 4.5 V,

Outputs open

160

mA

III

Va - 0.5 V

-30

90

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER
§

f max

FROM

TO

TEST CONDITIONS

I Without e

I

array
With e array

MIN

Typt

40

70

25

45

MAX

UNIT

MHz

tpd

elK!

Q

Rl = 390O,

10

20

tpd

PRE!

Q

R2 = 750O,

8

25

ns
ns

tpd'

Vee!

Q

See Figure 3

0

15

ns

ten

OEI

Q

10

25

ns

tdis

OE!

Q

5

15

ns

t All typical values are at Vee = 5 V, T A = 25 De.
tNat more than one output should be shorted at a time and the duration of the short-circuit should not exceed one second. Set
0.5 V to avoid test equipment ground degradation.
§fmax is independent of the internal programmed configuration and the number of product terms used.
'This parameter is guaranteed but not tested.

Va

at

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-407

TIB82S167BC
14 x 48 x 6 FIELD-PROGRAMMABLE LOGIC SEQUENCER
WITH 3-STATE OUTPUTS OR ,PRESET
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, Vee (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Voltage applied to a disabled output (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range ...................................... ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 0 e
NOTE 3: These ratings apply except for programming pins during a programming cycle.

recommended operating conditions
PARAMETER
VCC

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

IOH

High-level output current

IOL

Low-level output current

fclock

Clock frequency t

tw
tsu

Pulse duration

1 thru 48 product terms without C-arrayt
1 thru 48 product terms with C-array
Clock high or low

Setup time before CLKt,

Preset
Without C-array

1 thru 48 product terms

With C-array

tsu

Setup time, Preset low (inactive) before CLK! §

th

Hold time, input after CLK!

TA

Operating free-air temperature

MIN

NOM

MAX

UNIT

4.75
2

5

5.25
5.5
0.8
-3.2
24
50
30

V

0
0
10
15
15
30
8
0
0

V
V
mA
mA
MHz
ns
ns
ns
ns

75

·C

tThe maximum clock frequency is independent of the internal programmed configuration. If an output is fed back externally to an input.
the maximum clock frequency must be calculated.
+The C-array is the single sum term that is complemented and fed back to the AND array.
§After Preset goes inactive, normal clocking resumes on the first low-to-high clock transition.

TEXAS . "

INSTRUMENTS
2-408

POST OFFICE BOX 656303 • DALLAS, TEXAS 75265

TIB82S167BC
14 x 48 x 6 FIELD-PROGRAMMABLE LOGIC SEQUENCER
WITH 3-STATE OUTPUTS OR PRESET
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

VIK

Vee = 4.75 V,

VOH

Vee - 4.75 V,

Val
II

Vee = 4.75 V,

IIH

Vee

III

Vee = 5.25 V,

Vee

= 5.25
= 5.25

V,
V,

lot

Vee = 5.25 V,

IOZH

Vee = 5.25 V,

IOZl

Vee = 5.25 V,

ICC

Vee = 5.25 V,
PRE/OE input at GND,

MIN

rnA
IOH - -3.2 rnA
IOl = 24 rnA

TYpt

11= -18

2.4

3
0.37

MAX

UNIT

-1.2

V
V

0.5

V

5.5 V

25

~A

VI = 2.7 V

20
-0.25
-112

pA
rnA
rnA

20

~

VI

=

= 0.4 V
Va = 2.25 V
Va = 2.7 V
Va = 0.4 V
VI = 4.5 V,

VI

-30

90

Outputs open

-20

~

160

rnA

switching characteristics over recommended supply voltage and operating free-air temperature ranges
(unless otherwise noted)
PARAMETER
f

§

max

FROM

TO

TEST CONDITIONS

I Without e
I

array
With e array

MHz

ns

20

ns

See Figure 3

0

10

ns

Q

10

20

Q

5

10

ns
ns

tpd

PREi

Q

R2

tpd

Veei
OEI

Q

OEi

=

UNIT

8

R1 = 500 II,

5 V, T A

MAX

500 II,

Q

=

70
45
15

elKi

t All typical values are at Vee

TYpt

50
30

10

tpd

ten
tdis

MIN

=

25°e.

*The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit current, lOS.
§fmax is independent of the internal programmed configuration and the number of product terms used.

programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997·5666.

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TeXAS 75265

2·409

TlB82S167BM, TlB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEOUENCER
WITH 3·STATE OUTPUTS OR PRESET
diagnostics
A diagnostics mode is provided with these devices that allows the user to inspect the contents of the
state register. When 10 (pin 9) is held at 10 V, the state register b.its P2-P7 will appear at the 00-03 and
PO-P1 outputs. The contents of the registers, 00-03, and PO-P1 remain unchanged.

diagnostics waveforms
~~---------------------------VIH

11-113

----A
1

---------------------------Vll

I

1
1
10

r------,----------+10V

---WI
1
I

INTERNAL

:---,-I1

____ _

P2-P7- -

00-03. PO-Pl

I+--th-+l

1

--iI
t4-- tsu

STATE REGISTER
-

I1•\

.j.' I

~-------~/I

elK

~8.0V

-;:.
...--------~I I

1
I

"I -

--

-l -

I

I

-:s- - - I

V- T ~+ - - - - 1

~

----on---+:-""""'\)K

IH

'

Vil

1
- - - - - - - t- - - - - - - - - -

I 1

tw-----4i

PS

I

:\

1

~.

1

V

I 4 - - tpd

--+:

an + 1

'"

-------TI-....J 1

I
1
I
1

-t -

VIH

Vil

------

-

-

-

I+--tpd~
NS

-

E

-VOH

-

VOL

VOH
VOL

I4-tpd-+l

OPTIONAL
OE

----------------------------0 V

PS = Present State
NS = Next State

2-410

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

TIB82S167BM. TIB82S167BC
14 x 48 x 6 FIELD-PROGRAMMABLE LOGIC SEQUENCER
WITH 3-STATE OUTPUTS OR PRESET
test array
A test array that consists of product lines 48 and 49 has been added to these devices to allow testing
prior to programming. The test array is factory programmed as shown below. Testing is accomplished
by connecting QO-Q3 to 110-113, PRE/OE to GND, and applying the proper input signals as shown in the
timing diagram. Product lines 48 and 49 must be deleted during user programming to avoid interference
with the programmed logic function.

test array program
OPTION PRE/OE
AND
INPUT

PRODUCT
LINE

C

C

48

X -

49

- X

IH

DR
PRESENT STATE

NEXT STATE

OUTPUT

(On)
(PS)
Un)
INS)
1 1 1 1 1 1
S 4 3 2 1 0 91817161s1413121110 sI413121110 sl413121110 716151413121110
H H H H H H HIHIHIHIHIHIHIHIHIH HIHIHIHIHIH LI LiLI L IL[L L IL IL I L I L I L I L I L
L L L L L L LILI LILILILILILILIL LILILILILIL HIHIHIHIHIH HIHIHIHIHIHIHIH

test array waveforms

.--J ___ _
:
n<--___--iIC
r--------------------------------------------------

Vce

CLK

-

I
I

I

I

I

I

-

:

I! I

-

-

- -

-

-

-

14- tpd ~

00·03

I
,

i

~ tpd

tpd

...f4--+j

/orII -----~\JI
_ _ _-oJ,
i

INTERNAL
STATE

- ----oV

J+-tw-+t

,~tsU-+r-th~

10·19

-

SV

I

/

~:::

A----VOH
:----VOL

I

,

\J

REG~~~!;----JI

VIH
V,L

/ ____ :~:

test array deleted
OPTION PRE/OE
AND
PRODUCT

x

LINE

C

C

48

-

-

49

-

1 1 1 1 1 1

IH

OR

INPUT

PRESENT STATE

NEXT STATE

OUTPUT

Un)

IPS)

(NS)

(an)

S 4 3 2 1 0 9181 7 161514131 2 1 1 10 s141312111° sl41 3 12J1jo 7161s14 1312 11 10
H H H H H H HIHIHIHIHIHIHIHIHIH HIHIHIHIHIH
X L L L L L L LjLjLILIL/LILILILIL LIL/LILIL/L

= Fuse intact, -

-1-1-1-1-1- -1-1-1-1-1-1-1-

-1-1-1-1-1- -1-1-1-1-1-1-1:. .

=

Fuse blown

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655303 • DA1.LAS, TEXAS 75265

2-411

TIB82S167BM, TIB82S1.67BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
TlB82S167B, 82S167A COMPARISON
The Texas Instruments TIB82S i 67B is a 14 x 48 x 6 Field·Programmable Logic Sequencer that is fUnctionally
equivalent to the Signetics 82S167A. However, the TIB82S167B is designed for a maximum speed of 50 MHz
with the preset function being made conventional. As a result the TIB82S 167B differs from the 82S 167A in
speed and in the preset recovery function.
The TIB82S 167B is a high-speed version of the original 82S167 A. The TIB82S167B features increased switching
speeds with no increase in power. The maximum operating frequency is increased from 20 MHz to 50 MHz
and does not decrease as more product terms are connected to each sum (OR) line. For instance, if all 48 product
tems were connected to a sum line on the original 82S167A, the f max would be about 15 MHz. The f max
for the TIB82S 167B remains at 50 MHz regardless of the programmed configuration. In addition, the preset
recovery sequence was changed to a conventional recovery sequence, providing quicker clock recovery times.
This is explained in the following paragraphs.
The TIB82S167B and the 82S167A are equipped with power-up preset and asynchronous preset functions.
The power-up preset causes the registers to go high during power-up. The asynchronous preset inhibits clocking
and causes the registers to go high whenever the preset pin is taken high. After a power-up preset occurs,
the minimum setup time from power-up to the first clock pulse must be met in order to assure that clocking
is not inhibited. In a similar manner after an asynchronous preset, the preset input must return low (inactive)
for a given time, tsu, before clocking.
The Signetics 82S 167 A was designed in such a way that after both power-up preset and asynchronous preset
it requires that a high-to-Iow clock transition occur before a clocking transition (low-to-high) will be recognized.
This is shown in Figure 1. The Texas Instruments TIB82S167B does not require a high-to-Iow clock transition
before clocking can be resumed, it only requires that the preset be inactive 8 ns (preset inactive-state setup
time) before the clock rising edge. See Figure 2.
The TlB82S167B, with an f max of 50 MHz, is ideal for systems in which the state machine must run several
times faster than the system clock. It is recommended that the TIB82S 167B be used in new designs. However,
if the TI8825 7678 is used to replace the 825167A. then the customer must understand that clocking will begin
with the first clock rising edge after preset.
SPEED DIFFERENCES
PARAMETER
f max

tpd, elK to Q

82S167A

TI882S1678

SIGNETICS

TIONlY

20 MHz

50 MHz

20 ns

15 ns

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 76265

TIB82S167BM, TIB82S167BC
14 x 48 x 6 FIELD· PROGRAMMABLE LOGIC SEQUENCER
WITH 3·STATE OUTPUTS OR PRESET
Vee

--I:
I4-- t su-.j

I

jf--tsu -+I

PRE

I

I

elK

REGISTERS

I

r-l

i

I
I
---+------rl------------~,

____v

:J

I
I

I

I

I

~_X=

FIGURE 1. 82S167A PRESET RECOVERY OPERATION

Vee

--"l

~tsu

I
I

I

i

PRE

I

elK

REGISTERS

---,'--~,

J

I

r-l :
\~

~~------------------

___.JX'"_____XY

''-_..JX,-__C

FIGURE 2. TIB82S167B PRESET RECOVERY OPERATION

TEXAS •
INSTRUMENTS
POST OFFice BOX 655303 • DAllAS. TEXAS 75265

2-413

TIB82S167BM. TlB82S167BC
14 x 48 x 6 FIELD·PROGRAMMABLE LOGIC SEOUENCER
WITH 3·STATE OUTPUTS OR PRESET
PARAMETER MEASUREMENT INFORMATION

CL
(See Nota A)

R2

LOAD CIRCUIT FOR
3·STATE OUTPUTS
[3.5 V] (3 V)
TIMING
INPUT

4·

[0.3 V] (0)

~Iw~

tsu~th

~-:.-:'-

--.I' 1.5 V

DATA
INPUT

HIGH-LEVEL~
PULSE
I
I

.,( 1.5 V

I

[3.5 V] (3 V)

~

----

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

L

INPUT

-.Ii

tpd

1.5 V

-l+---+f
I

1/

T

IN.PHASE
I
OUTPUT--'I-.J

I~

_,

tpd~

1\

~ tpd

1.5 V I
I

OUTPUT
CONTROL
(low-level
enabling)

~
1.5V

VOL

I I

__.-;.1. . . . .

W~~~L~Rs~6

OUT·OF·PHASE
OUTPUT
(See Note D)

: \
I
ten

-+I

WAVEFORM 2
S1 OPEN
(See Note B)

[3'5v](3v)

II

-+!!+-

:.l.. -

-

I
t dls -+! I+-

-

-

__ Ll_

:~
T -

1.5 V

(See Note B)

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

[0.3 V] (0)

1.5V

I

ten

VOH

~V

~I tpd

[3.5 V] (3 V)

VOLTAGE WAVEFORMS
PULSE DURATIONS

- - - - - [3.5VJ(3V)
"'- 1.5 V
[0.3 V] (0)

IJ- -

[0.3 V] (0)

I

LOW-LEVEL~I
I
1.5 V 1.5 V
PULSE

[0.3 V] (0)

[3.5 V] (3 V)

tdls

Y
I+-

15 V
.:.- _

-+I I+-

L..

[0.3 V] (0)

~3.3V
VOL

c..-

VOL +0.5 V

I ..Y
~- VOH

_

_

_

V
~ V
_ :H:;.5

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS
NOTES: A. C L includes probe. and jig capacitance and is 50 pF for tpd and teo' 5 pF for t d;,.
B. Waveform 1 is for an output with internal conditions such thatthe output is low except when disabled by the output control. Waveform 2
is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: For M suffix, use the voltage levels indicated in parentheses (), PRR s 10 MHz,
t, and" s 2 ns, duty cycle = 50%. For C suffix, use the voltage levels indicated in brackets [J, PRR s 1 MHz, t, = tf = 2 ns, duty
cycle = 50%.
D. When measuring propagation delay times of 3·state outputs, switch S1 is closed.
E. Equivalent loads may be fused for testing.

FIGURE 3

TEXAS ."

INSTRUMENTS
2·414

POST OFFICE BOX 6.56303 •

DAll~S.

TEXAS 75265

TlCPAl16l8-55C, TICPAl16R4-55C
TlCPAl16R6-55C, TICPAl16R8-55C
STANDARD CMOS PAl® CIRCUITS
D3062, NOVEMBER 19B7-REVISED OCTOBER 1989

•

Standard 20-Pin PAL Family

TICPAL 16L8'

J OR N PACKAGE

•

Virtually Zero Standby Power

•

Propagation Delay . . . 55 ns Max

•

TTL- and HC-Compatible Inputs and Outputs

(TOP VIEW)

•

Preload Capability to Aid Testing

•

Fully Tested for High Programming Yield
Before Packaging

•

Greater than 2000-V Input Protection for
Electrostatic Discharge

•

Devices in the 'J' Package Can Be Erased
and Reprogrammed More Than Once

VCC
0
110
110
110
110
110
I/O

0
GND
TICPAL16R4'

J OR N PACKAGE
ITOPVIEW)
ClK

DEVICE

INPUTS

PAL16L8

10

PAL16R4

8

PAL 16R6

8

PAL 16R8

8

3-STATE

REGISTERED

o OUTPUTS a
2
0
0
0

OUTPUTS

PORTS

0

6

413-5tatel

4

6 13-5tatel

2
0

8 13-5tatel

VCC
110
110

110

Q
Q
Q
Q

1/0
110
GND ......_ _,....DE

description
TICPAl16R6'

These PAL devices provide reliable, highperformance substitutes for conventional TTL
and HCT logic. They are also compatible with HC
logic over the VCC range of 4.75 V to 5.25 V.
Their easy programmability allows for quick
design of "custom" functions and typically
result in a more compact circuit board. Static
power dissipation for these devices is negligible.

J OR N PACKAGE
ITOP VIEW)

ClK

vce
I/O
Q
Q
Q
Q
Q

The output registers of these devices are Ootype
flip-flops that store data on the low-to-high
transition of the clock input. The registered
outputs may be disabled by taking OE high,
whereas the nonregistered outputs may be
disabled through the use of individual product
terms_ Unused inputs must always be connected
to an appropriate logic level, preferably either
VCC or ground.

Q

1/0
DE

I

GND

TlCPAl16R8'

J OR N PACKAGE
ITOP VIEW)

elK

vce
Q
Q
Q
Q
Q
Q
Q
Q

GND

DE

The dotted circles represent windows found only in the J package.

PAL@ is a registered trademark of Monolithic Memories Inc.

PRODUCTION DATA documants conlain inlormalio.
current as of publication data. Products conform to
specifications paf the tarms of Taxas Instruments

~:~~:~~8[n~I~1~ ~:~::i:; :'i:=:::::t:~S not

Copyright © 1989. Texas Instruments Incorporated

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-415

TlCPAl16lB·55C, TlCPAl16R4·55C
TlCPAl16R6·55C, TICPAl16RB·55C
STANDARD CMOS PAl® CIRCUITS
description (continued)
The programming cell consists of a floating-gate device like those used in EPROMs. All terms are initially
connected. The unwanted terms are programmed out to provide the desired function. The output of a
given AND gate is low if both the true and complement cells of a term are connected, and high if all related
cells are programmed. Programming can be done manually but is usually achieved through the use of
commercially available programming equipment.
This TICPAL 16' series has internal electrostatic discharge (ESD) protection circuits and has been classified
with a 2000-V ESD rating tested under MIL-STD-8838, Method 3015.1. However, care should be exercised
in handling these devices, as exposure to ESD may result in a degradation of the device parametric
performance.
The floating gate programmable cells allow these PALs to be fully programmed and tested before assembly
to assure high field programming yield and functionality. They are then erased by ultraviolet light before
packaging.
All devices in this series contain a security feature. Once the security cell is programmed, additional
programming and verification cannot be performed. This prevents easy duplication of a design.
The TICPAL 16'C series is characterized for operation from O°C to 75°C.

erasure
The TICPAL 16' (JL package) series can be erased after programming by exposure to ultraviolet light that
has a wavelength of 253.7 nm (2537 A). The recommended minimum exposure dose (UV intensity x
exposure time) is fifteen w·s·cm - 2. The lamp should be located about 2.5 cm (1 inch) above the chip
during erasure. It should be noted that normal ambient light contains the correct wavelength for erasure.
Therefore, when using the TICPAL 16' series (JL package), the window should be covered with an opaque
label.

2-416

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 656303 • DALLAS. TEXAS 75265

TICPAL 16L8·55C, TICPAL 16R4·55C
STANDARD CMOS PAL® CIRCUITS
functional block diagrams (positive logic)
TICPAl16lS'
EN ".1

&

32 X 64

\710-----0
10-----0

10--'+-++--1/0

kr-4t+-++--

1/0

kr-4t+.....+--1/0

IO--.+-++-- 1/0
kr-4t+.....+--1/0
6

TICPAl16R4'

EN2

DE

,

ClK
".1

&

32

C1

x 64 --!!,..

2\7
1D

Q

-.!!,..
~

S

~
Q

-.!!,..

[>

r-----..
Q

-.!!,..

4

r+-

~

-

r--

p

Q

r--

EN

~

".1
\7

""'\

f--

P
f--

~

"-

"-

f--

~

"-

110
1/0
1/0
1/0

4
4

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 656303 • DALLAS. TEXAS 75265

2-417

TICPAl16R6·55C, TlCPAl16R8·55C
STANDARD CMOS PAl® CIRCUITS
functional block diagrams (positive logic)
TICPAl16R6

OE

_~N2

~C1

ClK
&

32

x 64

--.!,..

>1

2\1

10

Q

-1!...-.
~

~

Q

-1!...-.

~

I>~

~
Q

-1!...-.

~

~

~

~
'--

~

Q

-

Q
~

Q

--.!,..

-.2.,.-

EN

~

",
'V

7--=--..-

1

1

2
6

110
110

TICPAl16RB

OE-------------------------d~--_,
ClK

---------------i>

r;;--r-~--Q

&
32 X 64

r----t----i-~-Q
r----t----i-~-Q
r----t----1-~-Q
r----t----1-~-Q
r----t----1-~-Q

r----t----i-~-Q
r----t----1-~-Q
B

2-418

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TlCPAl16lB·55C
STANDARD CMOS PAl® CIRCUITS
logic diagram (positive logic)
1(1 )

FIRST

INCRE.MENT

~~~BERS
o

'0

4

B

12

lS

20

24

2B

31

32
6'
96

J

(19) 0

J

(1B) 1/0

fJ--V

128'60
'92

22'

(21N--

~

288
320-352
38.

/"

-V

4'6
448- -

(3) 480

512544
576608
6.0

-'">'--_-Vr'J~--'-.:(1--'-'7)

1/0

672
704

(4)~6
768

BOO

J

832
864- 896
928960
(5) 992

-V

(lS) 1/0

1024

1056
1088
'120
'152
'184
1216

(15) 1/0

(S)'248
1280
1312
'344

,14) 1/0

1376
1408

'440
1472

I (7)'50'
1536
1568
1600
1632-1664
1696

,13) 1/0

17281760

I (B)
1792

1824
1856
1888
1920
1952
1984

I

I--

h

(12) 0

.,..;--_V

(~0'6

~~ _______
(1_1)
I

Fuse number - First Fuse number + Increment

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-419

TlCPAl16R4·55C
STANDARD CMOS PAl® CIRCUITS
logic diagram (positive logic)
CLK~--------____~_________________________

.

FIRST

INCREMENT

~~~BERS
a

'0

4

8

12

16

20

24

I

28

31

32
64

--

••

~

128-- '80
'92

j

(19)

I

>--

(2~

'1:>---266
288
320
362
384
416
448
(3) 480

I-

h.

1
v

>--

(18)

544

(4)~6

-

768
800
832
864
896
928
960
(5) 9.2

)---

>f6r~
Cl

~

(16

~

r.:J....

(15)

>tg

r.:J.v

(14

Cl

1024
1056
1088
1120
1152
1184
1216

>->--P-

1280
1312

\---

'344
1376
'408
1440

\--

1472

1504

Cl

-:,r

(7)

15361568
1600

>--

+-

16321664
1696
1128
1760

J!I)

!---"

,....,-

1792
1824
1856

k -h

1888
1920
1952
'9"

I-

J

(13)

~

Fuse number

=

1

(12)

.. 1
~

T

First Fuse number + Increment

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75266

1/0

1

2016

~

2-420

Q

Cl

(6)'248

9

'"

r.:J....

I-b-

1/0

1

6'2
576
608
640
672
704

1/0

1/0

TICPAL 16R6·55C
STANDARD CMOS PAL® CIRCUITS
logic diagram (positive logic)
CLK(~
- - - - - _ . - - - - - - - - - - - - - - - - - --FIRST

...

--------

INCREMENT

~~BERS

F
N

4

'0

8

-LI

0
32
64
96-

-

12

-

16

20

24

.

28

31

-

)-

f---'

e-}-b-

~
256_

288
320 __
352
384416
448

~I

~~""

1/0

Q

t-

-

..

512
544-·576
608
640
672
704
736

--t>'>--'>---

(41~

Y;
Y;

~
....

(171

~

(161

Q

Cl

'----'

768
800
832
86'
896
928
960

--b-

V

Q

Cl

~:

>--

1024

>--

1056

1088

>-P>-

1120

',52
1184

1216
1248

t=

1280
1312
1344

1316

-

1408

1440
1472

(71

(191

Cl

480

~.-

(6)

1

.

128

160
192
224

>

~

b

~

~

(151

~

Q

Cl

(141

~

Q

Cl

1504

-

.I-

1536
1568
1600

.--

t-

16321664-

'-b~ tJ....
-

1696

1131 Q

1728-

J.BI

1760

,

1792

j-.>-

1824
1856

1888
1952

i ,

1984

(9~_

f

I

I

(+t-------4--+-+-

+-+1+ i--+r++-Tr
II II. I

Fuse number ... First Fuse number

J

1121

:=:=-----d<1-----

~I

~ ~ ~J

1920

I

1/0

+ Increment

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-421

TlCPAl16RB·55C
STANDARD CMOS PAl@ CIRCUITS
logic diagram (positive logic)
-

CLK1!lp

FIRST
FUSE
NU MBERS

0

--- . - - - _ . _ - -

INCREMENT

,
4

8

12

16

20

24

I

0

28

32
64
96-'28

31

>---

fblr;] ""

\-p-

'60

'92

Q

Cl

(2~

Vb-

>--

256
288
320

~

>-

352
384
4'6
448

t-

5'2
54'

>--

576608

;.-=:

640
672

>

\-

704

(41

(181 Q

fbl

~(17

...

Cl

L-,\-

~6
768
800

832
864
896
928

>--->

960

tt
tt
tt

'"";::) (161

v

Cl

(51 992

>1024
1056
1088
1120
1152
1184
1216

-~

p-

>-;]

(15

~
....

(14

Cl

(61'248
1280
\------,

1312

'344

>--- >

1376

'408

'440
1472

Cl

(71'504
1536

'588
1600

>--

16321664

\-

1696
1728 .

">-

fbl

~(13

Cl

(81 1760
1792
1824

>~f2 '"

'856
1888
1920
1952

t-

'984

Cl

(912~
I

I

Fuse number - First Fuse number

2-422

...

Cl

480

Ek-

~

+

I

~

I

Increment

. TEXAS'"
INSTRUMENTS
'POST OFFICE BOX 665303. DAUAS. TEXAS 7628&

Q

TlCPAl16l8·55C, TlCPAl16R4·55C
TlCPAl16R6·55C, TlCPAl16R8·55C
STANDARD CMOS PAl® CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCC ........................................... -0.5 V to 7 V
Input voltage range, VI ....................................... - 0.5 V to VCC +0.5 V
Input clamp current, 11K (VI < 0 or VI > Vcc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 20 mA
Output clamp current, 10K (Vo < 0 or Vo > Vcc) ............................. ±20 mA
Continuous output current, 10 (VO = 0 to Vcc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ± 35 mA
Continuous current through VCC pin. _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 70 mA
Continuous current through GND pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 200 mA
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooC to 75°C
Storage temperature range ......................................... - 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds (J package) ............ 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds (N package) ............ 260°C

recommended operating conditions
MIN
VCC

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

4.75
2

NOM

MAX

UNIT

5.25

V
V

0.8

I Clock high
I Clock low

tw

Pulse duration

tsu

Setup time, input or feedback before elK I

th

Hold time, input or feedback after CLK I

TA

Operating free-air temperature range

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 6515303 • DALLAS. TEXAS 76265

20
20
40
0
0

V
ns
ns
ns

75

°c

2-423

TlePAl16l8·55C, TlCPAl16R4·55C
TICPAl16R6·55C, TlCPAl16R8·55C
STANDARD CMOS PAl® CIRCUITS
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS

VOH
VOL

Vee

~

4.75 V.

10H

~

Vee

~

4.75 V.

10l

~

24 rnA (lor TTL)

Vee

~

4.75 V.

10l

~

4 rnA (lor CMOS)

Vee - 5.25 V.
Vee ~ 5.25 V.

IIH

Vee

~

5.25 V.

III

Vee

~

5.25 V.

lee(standbvl

Vee - 5.25 V.

ICC (operating)
I

Vee ~ 5.25 V.
I ~ 1 MHz to 25 MHz

*alec

VI ~ 0.5 V or 2.4 V.
Vee 5.25 V.
Other inputs at 0 V or VCC
TA

~

25°C.

Typt

0.5
0.4

Vo - 0.4 V
VI ~ Vee
VI ~ 0
VI - 0 or Vee.
VI ~ 0 to Vee.

~

pA

10

pA

-10

pA

1.4

pA

pA

rnA
.. MHz

2

1 MHz

V

10
-10

100

10 - 0
10 ~ O.

UNIT
V

3.86

Vo - 2.4 V

I

MAX

4

-4 rnA (for CMOS)

10ZH
10Zl

Ci

MIN

10H - 3.2 rnA (lor TTL)

Vee - 4.75 V.

3

rnA
pf

6

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted) R1 = 200 n, R2 = 390 n, CL - 50 pf
PARAMETER

FROM
(INPUT)

TO
(OUTPUT)

frnax§

MIN

with leedback

16

w/o feedback

25

Typt

MAX

35
15

55

ns

22

ns

MHz

t~d

I. 1/0. or leedback

tpd

elKt

o or I/O
Q

ten

OEi

Q

15

25

ns

tdis

OEt

Q

15

25

ns

ten
tdis

lor 1/0

Qor 1/0

35

55

ns

I or 1/0

Qor 1/0

35

55

ns

tAli typical values are at Vee ~ 5 V. TA ~ 25°C.
*This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 or Vee.
§Irnax(with feedback)

2-424

UNIT

~

1
; Irnax(without feedback)
tsu + tpd (ClK to Q)

~~
tsu

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 865303 • DALLAS. TEXAS 76286

TlCPAl16l8-55C. TlCPAl16R4-55C
TlCPAl16R6-55C. TICPAl16R8-55C
STANDARD CMOS PAl® CIRCUITS
preload procedure for registered outputs
The output registers can be preloaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. All of the registers may
be preloaded simultaneously by following the steps below.
Step 1.

With Vee at 5 V and Pin 11 at VIH. raise Pin 1 to VIHH.

Step 2.

Apply either VIL or VIH to the output corresponding to the register to be preloaded.

Step 3.

Lower Pin 1 to VIL. then remove the output voltage. Preload can be verified by lowering Pin 11
to VIL and observing the voltage level at the output pins.

preload waveforms

\,-------'~

""'~
---.I
,

td

\,..-----VIL

:.-

'

I

I

I

I

~ 'V
V-'"
.J\.....~,:_______________..!:---~
vlL

-.:

I

I

~

PIN 11

I
I

td

I+-

--.:

I

I

:i44-----t preload _
I
I

1

td

I+-

I

,

I

,

~s----~~1

I,

,

i\ -:- -

I

VIH
VIL

I

~

td,.....

~,
'I

""-'

REGISTERED 1/0

,

---J8""---------------1L

VOH
VOL

preload parameters. T A
PARAMETERt
VIHH

Preload voltage on pin 1

IIHH
Av/At

Preload input current at pin 1

td

Setup and hold times

MIN

NOM

MAX

UNIT

12.5
3.2

13
4

13.5
4.8

mA

50

Voltage ramping (VIHHI

2

V
V/~s
~s

t Other test parameters and conditions are shown in recommended operating conditions and electrical characteristics tables.

TEXAS

~

INSTRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-425

TICPAl16lB·55C, TICPAl16R4·55C
TICPAl16R6·55C, TICPAl16RB·55C
STANDARD CMOS PAl® CIRCUITS
PARAMETER MEASUREMENT INFORMATION

Vcc
Sl

b
Rl

fROM OUTPUT _ ...._ _..._ _...._ TEST
UNDER TEST
POINT
R2

CL;: ::::
ISee Note AI

NOTES:

A. CL = includes probe and jig capacitance.
B. When measuring propagation times of 3-5tate outputs, 51 is closed.

FIGURE 1. LOAD CIRCUIT FOR THREE·STATE OUTPUTS

\~~ -

-

-----3.5V

INPUT 3 , 1 . 5 V

I.

I

J+-- tPLH--+f
I
I
IN·PHASE
OUTPUT

OUT·Of·PHASE
OUTPUT

:

~3V

I4--tPHL--.....,

I

Y,.5V

l

I
,::v--VOH

I

I

I+--tPHL~

I+--tPLH~

.

I'
.

' - _ _ _ _ _ _ _ _ _ _ _- J

VOL

VOH
1.5 V

-

-

- - VOL

VOLTAGE WAVEfORMS
NOTES:

A. When measuring propagation times of 3.-5tate outputs, S 1 is closed.
B. All input pulses are supplied by generators having the following characteristics: PRR :5 1 MHz, Zo

=

FIGURE 2. PROPAGATION DELAY TIMES, OUTPUT RISE AND FALL TIMES

2·426

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

50

n,

tr

=

6 ns.

TlCPAl16l8·55C, TlCPAl16R4·55C
TlCPAl16R6·55C, TICPAl16R8·55C
STANDARD CMOS PAl® CIRCUITS
PARAMETER MEASUREMENT INFORMATION

f.5V

ClK

, , - ---3.5V

'----0.3 V

1
.....I - - - - - - t h - - - - - - - t ·...1

~tsu--.l

DATA
INPUT

~I
I

2.7 V

2.7 V

I
I
I I
~~~

1\1
I

------3.5V

I 1.5 V
I
0.3 V
I
~~~

1.5 V
0.3 V

0.3 V

VOLTAGE WAVEFORMS
NOTE:

Phase relationship between waveforms was chosen arbitrarily. All input pulses are supplied by generators having the following
characteristics: PRR :s: 1 MHz, Zo = tr = 6 n5 , tf = 6 ns.

FIGURE 3. SETUP AND HOLD TIMES. AND INPUT RISE AND FALL TIMES

I

~
OE

1\1.5 V

.

3.5V
1.5 V

...J+ - - - - - - - - - - 0.3

I \.. _ _ _ _ _ _ _ _ _
OUTPUT
WAVEFORM 1
51 CLOSED
(See Note B)

:

V

14--- tplZ--+I

I+-- tpZl ~
I I

I

\1.5V

I

.....---~VCC

:

Y-£-0.5V

I.

1

-

1

I

Kt-O~;-VOH

I

I+--- tPZH---.I
OUTPUT
WAVEFORM 2
51 OPEN _ _ _ _ _ _ _ _....J
(See Note B)
.

I

1.5 V

t - - -- VOL

I

~O V

~tpHZ---.t

ten - tpZl or tpZH

tdis = tPlZ or tpHZ
VOLTAGE WAVEFORMS

NOTES:

A. All input pulses are supplied by generators having the following characteristics: PAR:s: 1 MHz, Zo = 50 fi, tr = 6 n5, tf = 6 ns.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

FIGURE 4. ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-427

TICPAl16lB·55C, TlCPAl16R4·55C
TlCPAl16R6·55C, TlCPAl16RB·55C
STANDARD CMOS PAL® CIRCUITS
PARAMETER MEASUREMENT INFORMATION

H'~~-~~~EL

_ _ _ _....,/,1.5

v

~5 ~

\"

'~4~----tw------~~

-

-

-

-

3.5 V

,-,- - - - - 0.3 V

...
i41------ t w - - - - - -...'

----""\ I
LOW-LEVEL
PULSE

,

\.5V

f5~

3.5 V

_ _ _ _ 0.3V

VOLTAGE WAVEFORMS
NOTES:

A. All input pulses are supplied by generators having the following characteristics: PRR
B. For clock inputs, f max is measured with input duty cycle == 50%.

FIGURE 5, PULSE DURATIONS

2-428

TEXAS . "

INSTRUMENlS
POST OFFlCE BOX 655303 • DALLAS. TEXAS 75265

:s

1 MHz, Zo == 50 fl, tr == 6 ns.

TICPAL22V10Z-25C, TlCPAL22V10Z-35C

EPIC ™ CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS
D3323. SEPTEMBER 1989-REVISED DECEMBER 1989

•

24-Pin Advanced CMOS PAL

•

Virtually Zero Standby Power

JT AND NT PACKAGE
(TOP VIEW)

CLKJI

•

Propagation Delay Time
25 ns . . . Turbo Mode
35 ns ... Zero-Power Mode

•

Variable Product Term Distribution Allows
More Complex Functions to Be Implemented

.•

Each Output Is User· Programmable for
Registered or Combinatorial Operation,
Polarity, and Output Enable Control

•

Extra Terms Provide Logical Synchronous
Set and Asynchronous Reset Capability

GND ......_....;.J-'

•

Preload Capability on All Registered Outputs
Allows for Improved Device Testing

•

UV Light Erasable Cell Technology Allows
for:
Reconfigurable Logic
Reprogrammable Cells
Full Factory Testing for
Guaranteed 100% Yields

•
•

VCC
1/0/0
1/010
110/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0
1/0/0

FN PACKAGE
(TOP VIEW)

;;z
uQ Q
--' u >
UO 0
__ u·z
::::,::::,
4

3

2

1 28 27 26
25

6

24

23

Programmable Design Security Bit Prevents
Copying of Logic Stored in Device
Package Options Include Plastic DIP and
Chip. Carrier [for One-Time-Programmable
(OTP) Devices] and Ceramic Dual-In-Line
Windowed Package

1/0/0
1/0/0
110/0

22

NC

9

21

10

20

1/0/0
1/0/0
1/0/0

11

19
121314151617 18

description
NC- No internal connection

This CMOS PAL device features variable product
Pin assignments in operating mode
terms, flexible outputs, and virtually zero
standby power. It combines Tl's EPIC m. (Enhanced Processed Implanted CMOS) process with ultravioletlight-erasable EPROM technology. Each output has an OLM (Output Logic Macrocell) configuration allowing
for user definition of the output type. This PAL provides reliable, low-power substitutes for numerous highperformance TTL PALs with gate complexities between 300 and 800 gates.
The 'PAL22V10Z has 12 dedicated inputs and ten user-definable outputs. Individual outputs can be
programmed as registered or combinational and inverting or noninverting as shown in the Output Logic
Macrocell (OLM) diagram. These ten outputs are enabled through the use of individual product terms.
The variable product-term distribution on this device removes rigid limitation to a maximum of eight product
terms per output. This technique allocates from 8 to 16 logical product terms to each output for an average
of 12 product terms per output. The variable allocation of product terms allows for far more complex
functions to be implemented in this device than in previously available devices.

EPIC is a trademark of Texas Instruments

Incor~orated.

PRODUCTIOI DATA documents contain infarmation
curr••t as af publication dat•. Products confarm to
spacificatiDRs par the terms of TIXIS Instrumants

::=~i;~~r:1~1i ~=::i:r :.r::::~:rO:S not

Copyright © 1989. Texas Instruments Incorporated

TEXAS .."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-429

TICPAL22V10Z-25C, TlCPAL22V10Z-35C

EPIC TM CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS
description (continued)
With features such as the programmable OlMs and the variable product-term distribution, the
TICPAl22V10Z offers quick design and development of custom lSI functions. Since each of the ten output
pins may be individually configured as inputs on either a temporary or permanent basis, functions requiring
up to 21 inputs and a single output or down to 12 inputs and 10 outputs can be implemented with this
device.
Design complex·ity is enhanced by the addition of synchronous set and asynchronous reset product terms.
These functions are common to all registers. When the synchronous set product term is a logic 1, the
output registers are loaded with a logic 1 on the next low-to-high clock transition. When the asynchronous
reset product term is a logic 1, the output registers are loaded with a logic 0 independently of the clock.
The output logic level after set or reset will depend on the polarity selected during programming.
Output registers of this device can be preloaded to any desired state during testing, thus allowing for full
logical verification during product testing.
The TICPAl22Vl0Z has internal electrostatic discharge (ESD) protection circuits and has been classified
with a 2000-V ESD rating tested under Mll-STD-883C, Method 3015.6. However, care should be exercised
in handling these devices, as exposure to ESD may result in a degradation of the device parametric
performance.
The floating gate programmable cells allow these PAL devices to be fully programmed and tested before
assembly to a.ssure high field programming yield and functionality. They are then erased by ultraviolet light
before packaging.
The TICPAl22V10Z-25C and TICPAl22V10Z-35C are characterized for operation from OOC to 75°C.

design security
The 'PAl22V1 OZ contains a programmable design security cell. Programming this cell will disable the read
verify and programming circuitry protecting the design from being copied. The security cell is usually
programmed after the design is finalized and released to production. A secured device will verify as if every
location in the device is programmed. Because programming is accomplished by storing an invisible charge
instead of opening a metal link, the '22V1 OZ cannot be copied by visual inspection. Once a secured device
is fully erased, it can be reprogrammed to any desired configuration.

2-430

~

TEXAS
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 76265

TICPAL22V10Z·25C, TlCPAL22V10Z·35C
EPle™ CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS

functional block diagram (positive logic)

--t>

r

C1
J1S

SET
RESET

&

44.132
8

~

;,,1

OUTPUT
>----- P lOGIC
~ MACRO CELL

---...

C>

h

r- EN

---...

~

EN

r-

---...

~

EN

>-c-->

---...

V-

EN

h

V- EN

h

~

>

---...

r- EN

>-- >
V-

---...

V-

>-c-- >

---...

V- EN

h

V-

~I 10/G,

10

---...

r'""""[)
ClK/1

rE-

--<~

~

~

'\.,

h
14

h

---...
~

~
1~

'\.,

'"----

---...
---..
h

h

->
~

12

->

V-

16

>-c--p

V-

16

~-P

r-

14

~-

r

12
10

V-

8

-c-- f>

V-

h

D-4t;

f++-I10/G

D-4t;

f---!10/G

D-4t;

f++-I 10/G

C>-4I: ......110/G
~ .......110/G

EN

~ .......110/G

p...; r++110/G

EN

p...; f++-I10/G
~ f++1 10/G

EN

10
10
'\....,

10

denotes programmable cell inputs

TEXAS . .
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-431

TICPAL22V10Z·25C, TlCPAL22V10Z·35C

EPICTM CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS
logic diagram (positive logic)
1
FIRSTCELl

0

NUMBER

4

8

,.

12

INCREMENT

20

24

28

32

3'
,

40
ASYNCHRONOUS RESET

0

I TO ALL REGISTERSI

:go

~

~.

23

CELL

P-580B
R-5809

=

44.

3:§,.

:!l3

~.
CELL

P·SS10

2

R·5811

92.

~J
MACRO

CELL

P-S812
R-58l3

3

-

1496

h

.

S

~~
MACRO

CELL

P·5814
R·581S

L-2156

~n
MACRO

CEll

,

P-SSt6

~

2904

~n
MACRO

--

p-

_.

,

CELL

P-sstS
R·58t9

'---

3652

~

W
~
-......

.L;:,t.c
4312

~~
MACRO
CELL

P-6820

~

~J
MACRO
CELL

,

P-S822

~

4884

'IE
:V

GlJ
CELL

P-5824

9

R-5825

5368

~~
CELL

I.
11

"

.

p-582e
R-5827

o

Programmable Cell Number = First Cell Number

2-432

+

Increment

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

•

SYNCHRONOUS SET
lTD ALL REGISTERS}

TlCPAL22V10Z·25C. TlCPAL22V10Z·35C
EPICTM CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS
output logic macrocell (OlM) description
A great amount of architectural flexibility is provided by the user-configurable macroce" output options.
The macroce" consists of a D-type flip-flop and two select multiplexers. The D-type flip-flop operates like
a standard TTL D-type flip-flop. The input data is latched on the low-to-high transition of the clock input.
The Q and Q outputs are made available to the output select multiplexer. The asynchronous reset and
synchronous set controls are available in a" flip-flops.
The select multiplexers are controlled by programmable cells. The combination of these programmable
cells will determine which macroce" functions are implemented. It is this user control of the architectural
structure that provides the generic flexibility of this device.

output logic macrocell diagram

OUTPUT LOGIC MACROCELL

-,

r--:M:-::-:UX~"'"

r-A-R--~R::::::~~r-;:--~:

I
I

~-+-""---I1D

,.--'----i>C1

ss

1:)----<._---10

1}
0
GO
3

1S

FROM CLOCK BUFFER
MUX

G1

I
I
I

I

-::hr:::se_t_

AR ""' asynchronous reset

~

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

I
J

2-433

TICPAL22V10Z·25C, TlCPAL22V10Z·35C
EPIC™ CMOS PROGRAMMABLE ARRAY LOGIC CIRCUIlS

output logic macrocell options
MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE
CELL
SELECT
S1

SO

0
0

0
1
0
1

1
1

FEEDBACK AND OUTPUT CONFIGURATION

o = erased cell

Register feedback

Registered

Active low

Register feedback

Registered

Active high

I/O feedback

Combinational

Active low

I/O feedback

Combinational

Active high

1

= programmed

cell

81 and SO are select-function cells as shown in the output logic macrocell
diagram.

S1 = 0
SO - 0

SI - 0
SO - 1

REGISTER FEEDBACK. REGISTERED. ACTIVE-LOW OUTPUT

REGISTER FEEDBACK. REGISTERED. ACTIVE-HIGH OUTPUT

SI - 1
SO - 0

I/O FEEDBACK. COMBINATIONAL. ACTIVE-LOW OUTPUT

2-434

SI - 1
SO - 1

I/O FEEDBACK. COMBINATIONAL. ACTIVE-HIGH OUTPUT

TEXAS . "
INSTRUMENTS
POST OfFICE BOX 655303 • DAllAS. TEXAS 75265

TlCPAL22V10Z-25C. TICPAL22V10Z-35C
EPICTM CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) t
Supply voltage range, vee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
-0.5 to 7 V
Input voltage range, V, (see Note 1) ............................... -0.5 to Vee + 0.5 V
Input diode current, 11K (V, < 0 or V, > Vee). . . . . .
± 20 mA
Output diode current, 10K (VO < 0 or Vo > Vee) . . . . . . . . . . . . . . . . . . . . . . . . .
±20 mA
eontinuous output current, 10 (VO = 0 to Vee) . . . . . . . . . . . . . . . . . . . . . . . . . . .
±40 mA
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds: FN or NT package ........ 260 0 e
Lead temperature 1,6 mm (1/16 in) from case for 10 seconds: JT package ............. 300 0 e
Operating free-air temperature range ..................................... ooe to 75°e
Storage temperature range ......................................... - 65 °e to 150 0 e
tStresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress
ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended
operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Note 1: This rating applies except during programming and preload cycles.

recommended operating conditions
-25C
VCC

Supply voltage

VIH

High-level input voltage

Vil

Low-level input voltage

IOH

High~level

IOl

output current

Low-level output current

tw

Pulse duration

ClK low

Asynchronous reset inactive
Input or feedback

Setup time, zero-power mode

Asynchronous reset inactive
Synchronous preset inactive

th

Hold time

TA

Operating free-air temperature

NOM

MAX

4.75
2

5

5.25

4.75
2

5

5.25

Input or feedback

10
10
20
17
20
20
25
30
30
0
0

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

75

15
15
25
25
30
30
35
40
40
0
0

UNIT
V
V

0.8
-3.2
-4
16
4

0.8
-3.2
-4
16
4

Driving CMOS

Synchronous preset inactive

tsu

MIN

Driving CMOS

Asynchronous reset
Setup time, turbo mode

MAX

Driving TTL

Input or feedback
tsu

NOM

Driving TTL

elK high

-35C

MIN

V
mA
mA
ns
ns
ns
ns

ns
ns

75

·C

2-435

TICPAL22V10Z-25C, TICPAL22V10Z-35C

EPIC 1M CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS
electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

-25C

TEST CONDITIONS

=
=

4.75
Vee
4.75
Vee - 4.75
Vee = 4.75
Vee = 5.25
Vee = 5.25
Vee = 5.25
Vce = 5.25
Vee = 5.25
Vee = 5.25
Vee

VOH
VOL
10ZH
10Zl
IIH
III
10*

VI

Ci

f

10H

V,
V,
V,
V,
V,
V,
V,
V,

I All

= 2 V,
= 1 MHz

=
=

Typt

4.8
4.7
0.25
0.07
0.01
-0.01
0.01
-0.01
-30
-45
10

-35C
MAX

4
3.86

-3.2 rnA for TTL
10H
-4 rnA for eMOS
10l - 16 rnA for TTL
10l = 4 rnA for eMOS
Vo = 2.7 V
Vo = 0.5 V
VI = 5.25 V
VI = 0.5 V
Vo = 0.5 V
VI = 0 or Vee,

V,

V,
Outputs open §

lec
(Zero-power mode)

MIN

MIN

MAX

4
3.86

UNIT

0.5
0.4
10
-10
10
-10
-90

4.8
4.7
0.25
0.07
0.D1
-0.D1
0.01
-0.D1
-30
-45

0.5
0.4
10
-10
10
-10
-90

~
mA

100

10

100

~

6
10

inputs

I All 1/0 pins

Typt

V
V

6
10

V
V
~A
~A

~

pF

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(unless otherwise noted) (see Figure 4)
PARAMETER

FROM

TO

(INPUT)

(OUTPUT)

-25C

Without feedback
f max '

With feedback
Turbo mode

tpd
tpd

Asynchronous

Zero-power mode

RESET
elKt

Turbo mode
ten

Zero-power mode
Turbo mode

tdis

Zero-power mode

50
28.5

66
55
16
21
18
23
10
15
20
15
17

Q

0

1.1/0

I. 0, 110

1,1/0

1,0,1/0

= 5 V, TA = 25 ac.
tThis parameter approximates lOS. The condition Vo

TYpt

0,1/0

1,1/0

Zero-power mode
Turbo mode

tpd

MIN

-35C

t All typical values are at Vce

= 0.5

V takes tester noise into account.

§Disabled outputs are tied to GND or Vec.
'f max (with feedback)

2-436

=

tsu

1

+ tpd (ClK to 0)

; f max (without feedback)

=

tw(hi)

1

+ tw(low)

TEXAS .."

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

MIN

TYpt

33
20
25
35
30
40
18

47
38
22
28
.24
31
14

35
45
40
50
25

25
35
25
35

21
27
21
25

35
45
35
45

MAX

MAX

UNIT
MHz
ns
ns
ns
ns
ns

TICPAL22V10Z·25C, TlCPAL22V10Z·35C

EPIC 1M CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS
preload procedure for registered outputs
The output registers can be pre loaded to any desired state during device testing. This permits any state
to be tested without having to step through the entire state-machine sequence. Each register is preloaded
individually by following the steps given below. The output level depends on the polarity selected during
programming.
Step
Step
Step
Step

1. With VCC at 5 volts and pin 1 at V'L, raise pin 8 to V,HH.
2. Apply either VIL or V,H to the output corresponding to the register to be preloaded.
3. Pulse pin 1, clocking in preload data.
4. Remove output voltage, then lower pin 8 to V,L. Preload can be verified by observing the voltage
level at the output pin.

preload waveforms (see Note 2)
PIN 8

~-

/

---f

~tsu-+t

~td---+l

eLK/1

:1

t4- t d-+l

-

-

I'

I

I
I

REGISTERED 1/0 ~

)

1
VIH

\J -VIH

INPUT

I

- vlL
~

tsu

~

tw

~

VIL

!- - -1:- ----

~

NOTE 2: td

VIHH

iii
i+-tw-+l

•

I
I

-

VIL

I
I

V , . . - - - VOH

\

OUTPUT

' - - - - - - VOL

100 ns to 1000 ns. VIHH = 10.25 V to 10.75 V.

programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specification, algorithms, and the lastest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-437

TICPAL22V10Z-25C, T1CPAL22V10Z-35C

EPICTM CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS
PARAMETER MEASUREMENT INFORMATION
SV

~
Sl
(See Note Al

3000
fROM OUTPUT _
UNDER TEST

...._ _~_ _..._ TEST
POINT

3900

CL
(See Note BI

NOTES: A. When measuring propagation times of 3-state outputs, S1 is closed.
B. CL includes probe and jig capacitance and is 50 pF for tpd and ten and 5 pF for tdis.

FIGURE 1. LOAD CIRCUIT FOR THREE-STATE OUTPUTS

INPUT
ISee Notes A and BI

----Ii.Ll

tpd

=

tPLH or tpHL

I

I

OUT·Of·PHASE
OUTPUT

-

-

-

-

-

I

I

-

3.5 V

0.3 V

I

1
:

-

I+--tPHL~

j4--tPLH--+!

IN·PHASE
OUTPUT

~S ~

\

5 V

I
'V:v--VOH

11.SV

I

I

I+--tPHL~

I+--tPLH~

\1.5

.

I

VOL

I

V

'-------------

VOH
1.S V
-

-

- - VOL

VOLTAGE WAVEFORMS
NOTES: A. When measuring propagation times of 3-state outputs, S1 is closed.
B. All input pulses are supplied by generators having the fol/owing characteristics: PRR =::;: 1 MHz, Zo = 500, tr = tf

FIGURE 2. PROPAGATION DELAY TIMES. OUTPUT RISE AND FALL TIMES

2-438

TEXAS .."
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

= 2 ns.

TICPAL22V1DZ-25C, TlCPAL22V1DZ-35C
EPICTM CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS

PARAMETER MEASUREMENT INFORMATION
ClK
(See Notes A and BI

'\----

f·sV
____________J

~14~-------th--------~.~1

3.S V

0.3 V

~tsu--+l

DATA
INPUT
(See Note Al

I

-----------_1
~I

~I
I

1.S V

0.3 V

,-----3.SV

2.7 V

2.7 V

I

-----------------l

I I
~~~

loS V

~0:,;;.3::...:V--- 0.3 V

~q~
VOLTAGE WAVEFORMS

FIGURE 3. SETUP AND HOLD TIMES. AND INPUT RISE AND FALL TIMES
DATA=>(

, . - - - - - - - - - - 3.S V

...JXI

INPUT
....
l._S_V_ _ _ _ _ _ _ _ _ _
(See Note A l l .
(

I I

I

I

\15 V

I

0.3 V

14--- tplZ--+I

I+-- tpZl ---..,
OUTPUT
WAVEFORM 1
Sl CLOSED
(See Note CI

1.S V
.

I

,,-._ _ _

:

1-£-0.5

I.

1

-

I

I

I+--- tPZH----..I

V

f" - - -- VOL
...y

wAv~1~~~~~ _ _ _ _ _ _ _ _~1"1-.s-v-----1-----"K-L0~:- (See Note CI

I

.

2.BV

I

VOH
0 V

14--- tpHZ---+I
ten = tpZl

0'

tpZH

tdis - tplZ or tpHZ

VOLTAGE WAVEFORMS

FIGURE 4. ENABLE AND DISABLE TIMES FOR 3-STATE OUTPUTS

HI~~'~:~EL _ _ _ _ _Jf,1.5 V

\115 -: -----

~14~----tw------~~

3.5 V

\..- - - - - - - - - 0.3 V

MI4~-----tw------~.1

I
LOW-LEVEL
PULSE
\.SV

1

fs~

3.S V

----0.3V

VOLTAGE WAVEFORMS

FIGURE 5. PULSE DURATIONS
NOTES: A. All input pulses are supplied by generators having the following characteristics: PRR:s 1 MHz, Zo = 500, tr = tf = 2 ~s.
B. For clock inputs, f max is measured with input duty cycle = 50%
C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-439

TICPAL22V10Z-25C, TICPAL22V10Z-35C

EPIC TM CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS
special design features
True CMOS Outputs: Each TICPAL22V10Z output is designed with a P-channel pull-up transistor and an
N-channel pull-down transistor, a true CMOS output with rail-to-rail output switching. This provides direct
interface to CMOS logie, memory, or ASIC devices without the need for a pull-up resistor. The CMOS
output has 16-mA drive capability, which makes the TICPAL22V1 OZ an ideal substitute for bipolar PALs.
The electrical characteristics of this device show the output under both CMOS and TTL conditions.
Simultaneous Switching: High-performance CMOS devices often have output glitches on nonswitched
outputs when a large number of outputs are switched simultaneously. This glitch is commonly referred
to as "ground bounce" and is most noticeable on outputs held at VOL (low-level output voltage). Ground
bounce is caused by the voltage drop across the inductance in the package lead when current is switched
(dv ex I x di/dt).
One solution is to restrict the number of outputs that can switch simultaneously. Another solution is to
change the device pinout such that the ground is located on a low-inductance package pin. TI opted for
a third option in order to maintain pinout compatibility and eliminate functional constraints. This option
controls the output transistor turn-on characteristics and puts a limit on the instantaneous current available
to the load, much like the lOS resistor in a TTL circuit.
Wake-Up Features: The TICPAL22V1 OZ employs input signal transition detection techniques to powerup the device from the standby-power mode. The transition detector monitors all inputs, II0s, and feedback
paths. Whenever a transition is sensed, the detector activates the power-up mode. The device will remain
in the power-up mode until the detector senses that the inputs and outputs have been static for about
40 ns; thereafter, the device returns to the standby mode.
Turbo Mode or Zero-Power Mode: When the turbo cell is programmed, the device will be set to the power-up
mode. Therefore, the delay associated with its transition detection and power up will be eliminated. This
is how the faster propagation delays and shorter setup times are obtained in the turbo mode. The turbo
mode and the associated speed increase can be effectively simulated with the turbo cell erased, if a series
of adjacent input, 1/0, or feedback edges occur with an interval of about 25 ns or less between these
adjacent edges. Under these conditions, the TICPAL22V1 OZ will never have the opportunity to power down
due to the frequency of the adjacent edges.
Power Dissipation: Power dissipation of the TICPAL22V10Z is defined by three contributing factors, and
the total power dissipation is the sum of all three.
Standby Power: The product of VCC and the standby ICC. The standby current is the reverse current
through the diodes that are reversed biased. This current is very small, and for circuits that remain
in static condition for a long time, this low amount of current can become a major performance
advantage.
Dynamic Power: The product of VCC and the dynamiC current. This dynamic current flows through
the device only when the transistors are switching from one logiC level to the other. The total dynamic
current for the TICPAL22V1 OZ is dependent upon the users' configuration of the PAL and the operating
frequency. Output loading can be a source of additional power dissipation.
Interface Power: The product of ICC (interface) and VCC. The total interface power is dependent
on the number of inputs at the TTL VOH level. The interface power can be eliminated by the addition
of a pull-up resistor.
Even though power dissipation is a function of the user's device configuration and the operating
frequency, the TICPAL22V10Z is a lower powered solution than either the quarter-powered or halfpowered bipolar devices. The virtually zero standby power feature makes the TICPAL22V10Z the
device of choice for low-duty-cycle and battery-powered applications.

2-440

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

TICPAL22V10Z·25C, TICPAL22V10Z·35C
EPICTM CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS

programming and erasability
Programming of the TICPAL22V1 OZ is achieved through floating-gate avalanche injection techniques. The
charge trapped on the floating gate remains after power has been removed, allowing for the nonvolatility
of the programmed data. The charge can be removed by exposure to light with wavelengths of less than
400 nm (4000 A). The recommended erasure wavelength is 253.7 nm (2537 AI. with erasure time of
60 to 90 minutes, using a light source with a power rating of 12000 ".W/cm 2 placed within 2.5 cm (1 inch)
of the device.
The TICPAL22V1 0 is designed for programming endurance of 1000 write/erase cycles with a data retention
of ten years. To guarantee maximum data retention, the window on the device should be covered by an
opaque label. The fluorescent light in a room can erase a unit in three years or, in the case of a direct
sunlight, erasure can be complete in one week.

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

2-441

TlCPAL22V10Z-25C, TICPAL22V10Z-35C

EPIC'" CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS

400

1.4

!-VCC = 5 V
200 I- TA = 25°C


~ 1.1

i'..

..,'"


"i

c

60

--.:::: ~

.,'"

~

..
2
..,..

40

Q.

~ ......
.......

Do.

u

.!:!

20

(ij

Turbo Bit off:

0

. - ClK to

~

I

1 k

10 k

100 k

1 M

10 M 100 M

a

A = I Turbo ~ode
4.75

I

5
VCC-Supply Voltage-V

Fclock - Clock Frequency- Hz

FIGURE 9

FIGURE 8

TEXAS

~

- • = Zero-Power Mode

Z

0.90
100

2-442

~

til



a.

1.1

I

.!.
!
:;
u

75

TA -Free-Air Temperature- °C

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5.25

TICPAL22V1DZ-25C. TlCPAL22V1DZ-35C
EPIC CMOS PROGRAMMABLE ARRAY LOGIC CIRCUITS
TM

DELTA PROPAGATION TIME
vs
LOAD CAPACITANCE

NORMALIZED PROPAGATION DELAY TIME
vs
FREE-AIR TEMPERATURE
30

1.2

.,c:

.
I

VCC - 5 V
CL-50pF
R1 = 300 Il
R2-3901l

1.15

E

i=

....

a;

~

1.1

Q

c:
0

"i

.'"

~

1.05

Co

e
a..

".!:!"

iii 0.95

E

4

/'

/

..

20

...I

.!!

~~

Q

c:

..,0

..
'"

V"

15

/V

Co

e
a.. 10
:!
Qj
Q

25

50

5

P~

0

o

75

Z
/t"

tPLHL

o=

0.9

o

25

.-CLKtoQ
Zero-Power Mode
{J = Turbo Mode

V

0

z

.,c:

VCC = 5 V
TA = 25°C
R1 = 300 Il
R2 - 390 Il

~

V
f--V

~V

100 200 300 400 500 600 700 800

TA -Free-Air Temperature- °C

CL -Load Capacitance-pF

FIGURE 10

FIGURE 11
DELTA PROPAGATION DELAY TIME
vs
NUMBER OF OUTPUTS SWITCHING
1.5
VCC = 5 V
TA - 25°
CL - 50 pF
R1 = 300 Il
R2 = 390 Il
Registered Macrocell

In

c:

....I

Qj
Q

..,.oc:

tpHL

.'"
Co

£ 0.5

tpLH

--I I--

o
o

2

3

4

5

6

7

8

9

10

Number of Outputs Switching

FIGURE 12

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-443

•

2-444

TIEPAl10H16ET6C
ECl-TO-TTL IMPACT-XTM PAL ® TRANSLATOR CIRCUIT
1989
JTPACKAGE

• ECl 10KH Programmable logic with
ECl-to-TTl Translation

(TOP VIEW)

• ECl Control Inputs

GND
LE

• 3-State TTL Outputs

0
0
0

• Reliable Titanium-Tungsten Fuses
• Package Options Include Both 300-mil
Ceramic DIP and Plastic Chip Carrier

GND
GND
0
0
0

description
The
TIEPAL10H16ET6C
combines
the
IMPACT-X'" (Advanced Implanted, Advanced
Composed)
technology
with
proven
titanium-tungsten fuses to provide a reliable
high-performance substitute for conventional ECl
1OKH logic. Easy programmability allows for quick
design of custom functions with increased logic
density.
The TIEPAl 1OH16ET6C accepts ECl input levels
and provides TTL output levels, making it ideal for
interfacing ECl circuits with TTL circuits. It has
latched outputs controlled by a latch Enable (lE)
input at the ECl inputs. The 3-state outputs are
enabled by an Output Enable (OE) input from a
single ECl input. The TTL outputs are designed
for 24-mA low-level output current.
The TIEPAL10H16ET6C is provided with an
output polarity fuse that, if blown, will allow an
output to assume a logic high when the
implemented equation is satisfied. However, when
the output polarity fuse is intact and the
implementation equation is satisfied, the output
will assume a logic low.

OE
VEE

VCC
FN PACKAGE
(TOP VIEW)

o
__ :$'~
5
6
7

NC

4

8
9
10

aI~

3=
w

0

0

~

3 2 1 282726
25
24
23
22
21
20

a:

a.

~

11
19
121314 15161718

:::l

C

o
a:
a.

NC-No internal connection

The TIEPAL10H16ET6C is equipped with a security fuse. When the security fuse is blown, additional
programming and verification cannot be performed. This safeguards against easy duplication of a design.
The three GND pins must all be tied externally to an adequate ground plane for proper operation of this device.
The TIEPAl1 OH16ET6C is characterized for operation from O°C to 75°C.

PAL is a registered trademark of Monolithic Memories, Inc.
IMPACT-X is a trademark of Texas Instruments Incorporated.
PRODUCT PREVIEW documents contain information on

::.

g~a~~~:':~t:~~:!!:~~~I~~h~~ ~e:~Hrcft~:~: ~~~~~"n";~~::

Texas Instrumenl$ reserves the right to change or
discontinue these products without notice.

-If
INSIRUMENTS
TEXAS

POST OFFICE BOX 655303 • DALlAS, TEXAS 75265

Copyright © 1989. Texas Instruments Incorporated

2-445

TIEPAL10H16ET6C
ECL-TO-TTL IMPACT-X™ PAL ® TRANSLATOR CIRCUIT
logic diagram t
INCREMENT

r~0~--~4--~---1-2--JA~i6~~2~0--~~~~2~8~31~'
24 G

I;

II

1280

-

1504

m

1

17

o

ECUTTL

16

o

~ENECUTTL

15

o

~

~

.

-~p1DJF
~
=;~F

ECUTTL

= First Fuse Number + Increment

An exclusive-NOR input grounded through an intact polarity fuse is at an Eel high logic level.

TEXAS ."

INSTRUMENTS
POST OFFICE

o

~~r>"

~~~F

2-446

20

"

ECUTTL

ECUTTL

10~

Fuse Number

o

~

11~

t

21

~

~

w
W

5

25

6

24

7

23

8

22

NC

9

21

o

10

20

1/0

11

19

Veeo

a::

ato
::::>

121314 15 16 17 18

c

wu

~2

oa::

NC - No internal connection

a-

The TIEPAL1 OH 16P8-3 is equipped with a
security fuse. Once the security fuse is blown,
additional programming and verification cannot
be performed. This prevents easy duplication of
a design.
This device is characterized for operation from OOC to 75°C; this temperature range is designated by a
"c" suffix in the part number (TIEPAl10H16P8-3CJT).

ExCl is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.

PRODUCT PREVIEW d••um••" ....tai. i.fo,mati••
DR products in the fonnativl or dBsign ,hasl of
development. Characteristic data anll othar

=~i:.at!=:1r~:t

d:i:h.:::'!,T3i!::~~:~:~::'~

preducts without nDtica.

Copyright

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

© 1989. Texas Instruments Incorporated

2-451

TlEPAl1 OH 16P8·3C
HIGH·PERFORMANCE ExCLTMPAL® CIRCUIT

functional block diagram (positive logic)
8

&
32 X 64

'"

8
8
12
4,

16X[>

16
16

rv

8

rv

8
8
8
8

4

""0

:tJ

o
C

c:

o

-I
""0

:tJ

m

-<

m

:a:

2·452

TEXAS ...,
INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265

-

-1

rv

o

........ rv

o

........ rv

o

........

o

I'\.

........ rv

1/0

........ rv

1/0

........ rv

1/0

........ rv
Vee

1/0

TlEPAll0H16P8-3C
HIGH-PERFORMANCE EXCCM PAL® CIRCUIT
logic diagram (positive logic)
[281124)

VCC

INCREMENT
I
0
32
[2111)

1\

4

12

8
28

24

16
20

20
24
16
12
8

28

[271123)

---t>t=

[3112)

FIRST FUSE
NUMBERS

[26][22)

0
32

~811

""
'"
'"0
192
224

[4)(3)

[/0

[5114)

4

\
32
0

no
''"

l~

I/O

FIRST FUSE
NUMBERS

256

I

[25][21)

%2

]~:

'"

,eo

T

~

"2

->
W

-l

'"
,ce
676

~

on
'"
no
'"

[24)(20)

o

W

c:

c..

20'

o

....

800
832

[6][5)

eo,

86'

u
::::>
o
o

%,
'"
"2

2051
1024

1056
1088
112.0
1152
1184
1216

1248

o

~

[21][18)

~1I

(20][17)

o

c:

c..

[9][7)

~
1536
1568

1600
1632
1664
1696
1728
1760

(10][8)

I/O

T~J~
I

1792
1824
1856

1888
1920

1952

1~~~
[191116)

~

[11][9)

(18][15)

(12][10)

(17)(14)

(13][11)

I/O

....
....

~

Fuse Number = First Fuse Number + Increment
NOTE: Pin numbers in [ 1 are for the FK package; pin numbers in

[16][13)

l ) are for JT package.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-453

TIEPAL 10H16PIl·3C
HIGH·PERFORMANCE ExClTM PAl® CIRCUIT

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
(see Note 1)
Supply voltage, VEE (see Note 2) ....................................... 0 V to -6.5 V
Input voltage, VI (see Note 3) ............................................ 0 V to VEE
Output current . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 50 rnA
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 DC to 75 DC
Storage temperature range ......................................... - 65 DC to 150 DC
NOTES:

1. These ratings apply except for programming pins during a programming cycle.
2. All voltage values are with respect to Vee and VCCO, i.e., these pins are all assumed to be at 0 volts.
3. VI should never be more negative than VEE.

recommended operating conditions (see Note 4)
VEE

MIN
-4.94

Supply voltage
TA

VIH

High-level input voltage

TA
TA
TA

"tJ

:xJ

o
C
C

o

-I

Vll

Low-level input voltage

TA
TA

TA

= ooe
= 25°C
= 75°C
= ooe
= 25°C
= 75°C

NOM
-5.2

-1.17

Operating free-air temperature

MAX
-5.46

UNIT
V

-0.84

-1.13

-0.81

-1.07
-1.95

-0.735
-1.48

-1.95

-1.48

-1.95

-1.45

0

75

V

V
°e

NOTE 4: The algebraic convention, in which the more negative li';'it is designated as minimum and the less negative limit is designated
as maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g. supply voltages and currents,
the normal magnitude convention is used.
1

electrical characteristics over recommended supply voltage range at specified free-air temperature
.

"tJ (see Notes 4 and 5)

:xJ

m

PARAMETER

:::m

TEST CONDITIONS
ooe

VOH

VI

:E

VOL

IIH

III
lEE

VI

=
=

VIHmin or Vllmax

VIHmin or Vllmax

VI

VI

= VIHmax
=

Vllmin

All inputs open

MIN
-1.02

TYP

MAX

25°C

-0.98 -0.895

75°e
ooe

-0.92

-0.735

-1.95

-1.63

25°C

-1.95

75°C
ooe

-1.95

-0.81

-1.63
-1.79

V

V

-1.60
220

25°C

220

75°C
ooe

220

25°C
75°C
ooe to 75°C

UNIT

-0.84

~

0.5
~A

0.5
0.3
-220

mA

NOTES: 4. The algebraic convention, in which the more negative limit is designated as minimum and the less negative limi.t is designated
as maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents,
the normal magnitude convention is used·.
5. Each 10KH PAL has been designed to meet these specifications after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute
is maintained. Outputs are terminated through a 50-ohm resistor to -2 V.

2-454

TEXAS

~

INSlRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TlEPAl1 OH 16P8-3C
HIGH-PERFORMANCE ExClTM PAl@ CIRCUIT

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(see Note 5)
PARAMETER

FROM

TO

(INPUT)

10UTPUT)

I, 1/0,

tpd
t,

0' feedback

TYP

MAX

UNIT

TEST CONDITIONS

MIN
1

3

ns

See Figures 1 and 2

0.7

1.5

ns

0.7

1.5

ns

0, I/O

tf

NOTE 5: Each 10KH PAL has been designed to meet these specifications after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute
is maintained. Outputs are terminated through a 50-ohm resistor to - 2 V.

PROGRAMMING INFORMATION
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

~

-w
>
W

PARAMETER MEASUREMENT INFORMATION

a:

INPUT

.$1" 5 - 0 - % - - - \ ; ' ; -

~

I

~

tpLH 1IN·PHASE
1
OUTPUT
I

f

-

l:t-I

50%

1

tPHL ~

1
OUT '()F.pHASE
\ 50%
OUTPUT.

I

t-

VIL

~IPHL

-j

c.

VIH

VOH

\:.. o;n",

~

I

vOL

I4---*-tPLH

OUTPUT
WAVEFORM

F
I VOH
50%
VOL

BOA

20%

1

I I

I 1

I,~

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

1\.0%1--

:
1 1

I+-

120%1

1 1

VOH
V
OL

O
:::J
C

o

a:

c.

--.I I+- If

VOLTAGE WAVEFORMS
RISE TIME AND FALL TIME

FIGURE 1. VOLTAGE WAVEFORMS

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DAllAS, TEXAS 75265

2-455

TlEPAl1 OH 16P8·3C
HIGH·PERFORMANCE ExCLTM PAL® CIRCUIT

PARAMETER MEASUREMENT INFORMATION
2.00 V ± 0.01 V

O.lI'F

q

INPUT

OUTPUT
UNDER
TEST

t-t-t----++........... UNDER
TEST

v._ .,v{

"'0

:x:J

o

or

VIL min

C
C

+2

V

} {
ALL
OTHER
INPUTS

(')

VEE

-I

r

"'0

m

:e

'::'

251'F

:x:J

:S
m

."

OTHER
OUTPUTS

O.lI'F

q

-3.20 V ± 0.01 V
NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude
t r = tf = 1 ns.

= 800 mV poP, PRR s

1 MHz, tw

B. RT is a 50-0 terminator internal to the oscilloscope.
C. CL :::so 3 pF, includes fixture and stray capacitance.

D. Coax has 50-IJ impedance and the coax to oscilloscope channel A and to channel 8 must be of equal lengths.
E. All unused outputs are loaded with 50-IJ ± 1 % resistors to ground.
F. All unused inputs should be connected to either high or low levels consistent with the logic function required.
G. All fixture wire lengths or unterminated stubs should not exceed 6 mm (1/4 inch).

FIGURE 2. LOAD CIRCUIT

2-456

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TeXAS 75265

= 500 ns,

TlEPAl10H16PB-6C
HIGH-PERFORMANCE IMPACpMECl PAl® CIRCUIT
02916, MAY 1987-REVISEO SEPTEMBER 1989

TIEPAL10H16P8-6". JT PACKAGE
(TOP VIEW)

•

ECl 10KH PAL

•

High-Performance Operation
Propagation Delay , . , 6 ns Max

•

Replacement for Conventional ECl logic

•

24-Pin, 300-Mil Package

•

Vee
I

1/0

1/0

a

a

Reliable Titanium-Tungsten Fuses

veeo
a

Veeo
a

description

1/0

1/0

This IMPACr" ECl PAL device uses proven
titanium-tungsten fuses to provide reliable, highperformance substitutes for conventional EGl
logic. Its easy programmability allows for quick
design of "custom" functions and typically
results in a more compact board. In addition, chip
carriers are available for further reduction in
board space.

TIEPAL 10H16P8-6 ... FK PACKAGE
nop VIEW)

u
u u

z>_

The TIEPAl1 OH 16P8-6 is provided with output
polarity fuses. Each output remains active-high
when the fuse is intact and is active·low when
the fuse is blown.
The TIEPAl 10H16P8-6 has 12 dedicated inputs,
four standard outputs, and four 1/0 ports. It
should be noted that with emitter-coupled
outputs, a high level overrides a low level.
Therefore, in order to use an 110 port as an input,
the related output must be forced to a low level
either through satisfying preprogrammed
equations or permanently by programming.
The TIEPAL1 OH16P8-6 is equipped with a
security fuse. Once the security fuse is blown,
additional programming and verification cannot
be performed. This prevents easy duplication of
a design.

4

3

2

1 28 27 26

1/0

a

25
24

6

Veeo

23

Vee a

Ne
a

8

22

9

21

Ne
a

1/0
I

10

20

1/0

11

19
121314151617 18

wu

~z

NC - No internal connection

This device is characterized for operation from OOG to 75°G; this temperature range is designated by a
"G" suffix in the part number (TIEPAL1 OH16P8-6GJT).

IMPACT is a trademark of Texas Instruments Incorporated
PAL is a registered trademark of Monolithic Memories Inc.

PRODUCTION DATA doc.menls contain information

currant IS of publication date. Products conform to

specifications par the terms of Taxas Instruments

:~~=~i~at::I~Ji ~~:~~~i:r :1~D::~:::t:~~ nat

~

TEXAS
INSfRUMENlS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

Copyright © 1989. Texas Instruments Incorporated

2-457

TlEPAl10H16PB·6C
HIGH·PERFORMANCE IMPACpMECl PAl® CIRCUIT

functional block diagram (positive logic)
8

&
32 X 64

;;"

8
8
12
4,

16X&>

16
16

-

=1

o

...- tV
...- tV

o

8

tV

~

'\.

~

tV

~

tV

~

tV

~

tV

8

tV

B
B

vee
4

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

o
~

8

2·458

o

tV

1/0
1/0
1/0
1/0

TlEPAl10H16P8-6C
HIGH-PERFORMANCE IMPACT'MECL PAL@ CIRCUIT

logic diagram (positive logic)
1281124)

VCC

INCREMENT
1\
!

0
32
[2111)

4

12

8
28

24

16
20

16

20
24
12
8

28
4

\
32
0

~

[3112)

FIRST FUSE
NUMBERS

0

%
128
160
192
224

1Q8!I

t
1/0

[261122)

-u

"'

[4113)

[5114)

[271123)

K
X

1/0

F)RST FUSE
NUMBERS

256

'"

:120

Tg<

[251121)

l!,2

384

""
''"
"eo

I

~12

544

en

~

[241120)

=3~2

[211118)

j~-!

[201117)

,<0
''"
672

'"
736

a

7G8

a

"'0
832

[6115)

'"
9n

896

%6

2051

a

'"

~

a

[9117)
2053
1536
1568
1600

1632
1664
1696
1728

1760

'](

[10118)
1/0

l~
I

I

[191116)

[11119)

[181115)

[121110)

;..

[131111)

:::

[171114)

~.

....

Fuse Number . . ,. . First Fuse Number

1/0

[161113)

+ Increment

NOTE: Pin numbers in [ 1 are for the FK package; pin numbers in ( } are for JT package.

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-459

TlEPAl1 OH 16PB-6C
HIGH-PERFORMANCE IMPACT™ECL PAL® CIRCUIT
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
(see Note, 1 )
Supply voltage, VEE (see Note 2) , ...................................... 0 V to - 6.5 V
Input voltage, VI (see Notes 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 V to VEE
Output current ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 50 mA
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 75°C
Storage temperature range ......................................... - 65°C to 1 50°C
NOTES:

1. These ratings apply except for programming pins during a programming cycle.

2. All voltage values are with respect to

Vee and VCCO. i.e., these pins are all assumed to be at 0 volts.

3. VI should never be more negative than VEE.

recommended operating conditions (see Note 4)
VEE

Supply voltage
TA - OOC

VIH

High-level input voltage

TA
TA
TA

VIL

Low-level input voltage

TA
TA

TA

= 25°C
= 75°C
= OOC
= 25°C
= 75°C

Operating free-air temperature

MIN

NOM

MAX

-4.94

-5.2

-5.46

-1.170

-0.840

-1.130

-0.810

-1.070

-0.735

-1.950

-1.480

-1.950

-1.480

-1.950

-1.450

0

75

UNIT
V
V

V
°C

NOTE 4: The algebraic convention, in which the more negative limit is designated as minimum and the less negative limit is designated
as maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents,
the normal magnitude convention is used.

electrical characteristics over recommended supply voltage range at specified free-air temperature,
Vee = Veeo = 0 (see Notes 4 and 5)
PARAMETER
VOH

VOL

IIH

IlL
lEE

TEST CONOITIONS
VI

VI

=
=

VIHmin or VILmax

VIHmin or VILmax

VI

VI

= VIHmax
=

VILmin

All inputs open

TA
O°C

MIN

MAX

-1.020

-0.840

25°C

-0.980

-0.810

75°C

-0.920

-0.735

O°C

-1.950

-1.630

25°C

-1.950

-1.630

75°C
OOC

-1.950

-1.600

V

V

220

25°C

220

75°C

220

O°C

0.5

25°C

0.5

75°C

0.3

OOC to 75°C

UNIT

~A

pA
-240

rnA

NOTES: 4. The algebraic convention, in which the more negative limit is designated as minimum and the less negative limit is designated
as maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents,
the normal magnitude convention is used.
5. Each 10KH PAL@ has been designed to meet these specificati'ons after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute
is maintained. Outputs are terminated through a 50-ohm resistor to - 2 V.

2-460

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655012 ,. DALLAS. TEXAS 75265

TlEPAl10H16P8·6C
HIGH·PERFORMANCE IMPACTTMECL PAL® CIRCUIT
switching characteristics over recommended ranges of supply voltage and operating free·air temperature
(see Notes 4 and 5)
FROM

TO

(INPUT)

(OUTPUT)

I, 110, or feedback

Q

PARAMETER
tpd

TEST CONDITIONS

See Figures 1 and 2

tr
tf

MIN

TYP

MAX

2

4

0.7
0.7

1

6
2.2
2.2

1

UNIT
ns
ns
ns

NOTES: 4. The algebraic convention, in which the more negative limit is designated as minimum and the less negative limit is designated
as maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents.
the normal magnitude convention is used.
5. Each 10KH PAL(!l has been designed to meet these specifications after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute
is maintained. Outputs are terminated through a 50-ohm resistor to - 2 V.

PROGRAMMING INFORMATION
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 995·5666.

PARAMETER MEASUREMENT INFORMATION

$,~5-0-%--"""'\;~- -

INPUT

--.Jt

J....-

tpLH 1IN-PHASE
OUTPUT

1
,

,

~tPHL

-;

"

OUT '()F-PHASE
OUTPUT

VOH

I

VOL

I

tpHL~

VIL

l:t-)L "nq,

50% I

•

VIH

I

~

~tpLH

1

50%

\

OUTPUT
WAVEFORM

~I VOH

T

•

1 1

50%
-

801:I

20%

I 1
t r -,< I+-

VOL

~---VOH
(80%)
I

)

I ,

(20%)

v
OL

I )

-+I

I4-tf

VOLTAGE WAVEFORMS
RISE TIME ANO FALL TIME

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

FIGURE 1. VOLTAGE WAVEFORMS

TEXAS

"I

INSTRUMENTS
POST OFFICE BOX 655012. DALLAS. leXAS 75265

2-461

TIEPAL 1OH 16PS·6C
HIGH·PERFORMANCE IMPACTTMECL PAL® CIRCUIT
PARAMETER MEASUREMENT INFORMATION
2.00 V ± 0.01 V

0.1 "F

q

INPUT

OUTPUT
UNDER ~-4------t-+4~~
TEST

1--t-t-----+-+-4H UNDER
TEST

VIH max + 2 V {
or
VIL min + 2 V

}

ALL
OTHER
INPUTS

ALL
{
OTHER
OUTPUTS

0.1 "F

q

-3.20 V ± 0.01 V
NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude = 800 mV P·P. PRR s 1 MHz, tw = 500 ns,
tr = tf = 1 ns.
B. RT is a 50-0 terminator internal to the oscilloscope.

C.
D.
E.
F.
G.

CL :S 3 pF, includes fixture and stray capacitance.
Coax has 50-0 impedance and the coax to oscilloscope channel A and to channel B must be of equal lengths.
All unused outputs are loaded with 50-0 ± 1 % resistors to ground.
All unused inputs should be connected to either high or low levels consistent with the logic function required.
All fixture wire lengths or unterminated stubs should not exceed 6 mm (1/4 inch).

FIGURE 2. LOAD CIRCUIT

2-462

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TEXAS 75265

TIEPAl10H16TE6C
TTL·TO·ECl IMPACT·X™ PAL ® TRANSLATOR CIRCUIT
JTPACKAGE

• ECl 10H Programmable logic with
TTl-to-ECl Translation

(TOP VIEW)

Vee

• ECl Control Inputs

I

• a-State ECl Outputs
• IMPACT-X'· Process with Reliable
Titanium-Tungsten Fuses
• Package Options Include Both a~O-mil
Ceramic DIP and Plastic Chip Carrier
description
The
TIEPAL10H16TE6C
combines
the
IMPACT-X'· (Advanced Implanted, Advanced
Composed Technology) process with proven
titanium-tungsten fuses to provide reliable,
high-performance substitutes for conventional
ECL 10H logic. Easy programmability allows for
quick design of custom functions with increased
logic density.
The TIEPAl 1OH 16TE6C accepts TTL input levels
and provides ECL output levels, making it ideal for
interfacing TTL with ECl circuits. It has latched
outputs, which are controlled from an ECl Latch
Enable input, LEo The outputs are enabled from a
single ECL input, CE.
The TIEPAL10H16TE6C is provided with an
output polarity fuse that, if blown, allows an output
to assume a logic high when the implemented
equation is satisfied. However, when the output
polarity fuse is intact and the implemented
equation is satisfied, the output will assume a logic
low.

24
23
22
21
20
19
18
17
16
15
14
13

GND
LE

0
0
0

GND
GND
0
0

0
OE

GND

FN PACKAGE

;:

(TOP VIEW)

80 ~Iw

->WW

__ :>Z
-=

C1
~
/~"o
1539

~

>~ :L.)o--" o

TIL/ECLI.

~

C1

1540

"o
x">~C1
1541:L,)o-~

TIL/ECl~

TIL/ECl

Fuse Number = First Fuse Number + Increment
Pin numbers shown are for the JT package.
An exclusive-NOR input grounded through an intact polarity fuse is at an Eel high logic level.

2-464

1536

10
?~>~

~

TIL/EClL

..-----.

10

l

~

TIL/EClt

1280

9

GNO

o
>~-~
=L..,.»-=

"

1024

"tJ1

m

TIL/EClL
0768

I

23

TIL/ECL{::

IRST FUSE
NUMBER

4

rr-

TIL/ECY::

TEXAS ..If

INSTRUMENTS

POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

~o

TIEPAL10H16TE6C
TTl-TO-ECl IMPACT-X™ PAL ® TRANSLATOR CIRCUIT
FUNCTION TABLE
INPUTS

OUTPUTS

OE

LE

ARRAY DATA

ot

0*

l

l

H

H

H

L

L

L

l

l
H

l
H
H

H

X

00

00

H

X

l

L

H

l
l

00
00

L

H

H

l

l

l

L

l

FEEDBACK

l

X = Don't care

t

= Polarity fuse blown

*=
ARRAY
DATA

Polarity fuse intact

---------110

o
C1

~

FEEDBACK - - - - - - - Q
FEEDBACK - - - - - - - 1

W

~

a:

FIGURE 1. SIMPLIFIED LOGIC DIAGRAM (EACH OUTPUT)

Q.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) (see
Note 1)
ECl supply voltage range, VEE (see Note 2) .......................................... -7 V to 0.5 V
TTL supply voltage range, Vee ...................................................... -0.5 V to 7 V
ECl input voltage range ............................................................. VEE to 0.5 V
TTL input voltage ......................................................................... 5.5 V
Operating free-air temperature range, T A .............................................. O°C to 75°C
Storage temperature range ........................................................ -65'C to 150°C

t-

O

:::)

c

oa:
Q.

NOTES: 1. These ratings apply except for programming pins during a programming cycle.
2. All voltage values are with respect to the GND pins connected together.

TEXAS ."

INSIRUMENlS
POST OFFICE BOX 655303 • DAL.LAS. TEXAS 75265

2-465

TIEPAl10H16TE6C
TTL·TO·ECl IMPACT·XTM PAL ® TRANSLATOR CIRCUIT
recommended operating conditions (see Note 3)
MIN

NOM

MAX

UNIT

TTL supply voltage, VCC

4.75

5

5.25

V

ECl supply voltage, VEE

-4.95

-5.2

-5.46

V

2

5.5

V

-1.17

-0.84

TTL high·level input voltage, VIH
ECl high-level input voltage, VIH

I

(LE and OE inputs)

TA=O·C

I
I

TA = 25·C

-1.13

-0.81

TA = 75·C

-1.07

-0.735

I
I
I

TA = O·C

-1.95

-1.48

TA = 25·C

-1.95

-1.48

TA = 75·C

-1.95

-1.45

TTL low-level input voltage, Vil

0.8

(LE and OE inputs)

ECl low-level input voltage, Vil

'"'D
1::J

oC

V
V
V

Pulse duration, lE high, tw

3

ns

Setup time, data before lE! , tsu

4

ns

Hold time, data after lE!, th

0

Operating free-air temperature, TA

0

ns
75

·C

electrical characteristics over recommended ranges of supply voltage and free-air temperature
(unless otherwise noted) (see Note 4)
PARAMETER

c:

TEST CONDITIONS
VCC=4.75V,

VIK

MIN

VI=-18mA
TA=O·C

VEE = -5.46 V,

VOH

£1

'"'D
1::J

VEE = -5.46 V,

VOL

~

IIHt

-

VI = VILmax or VIHmin

VI = Vilmax or VIHmin

I

VCC = 5.25 V,

VI = 2.7V

lE,OE

VEE = -5.46 V,

VI =VIHmax

I

VCC = 5.25 V,

VI = 0.4 V

lE,OE

VEE = -4.94 V,

VI =Vllmin

VCC =5.25V

VEE =-5.46V

lilt

ICC+ IEE~

-1.02

MAX

UNIT

-1.5

V

-0.84

TA = 25·C

-0.98

-0.81

TA=75·C

-0.92

-0.735

TA=O·C

-1.95

-1.63

TA = 25·C

-1.95

-1.63

TA = 75·C

-1.95

-1.6
20
220
-200

0.5
-220

V

V

!lA
!lA
rnA

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(see Note 4)
PARAMETER

FROM

TO

(INPUT)

(OUTPUT)

tpd

lEI

0

tpd

I or Feedback

0

ten

OE

0

tdis

OE

0

TEST CONDITIONS

MIN

TYP
5

See Figures 2 and 3

MAX

UNIT
ns

6

ns

4

ns

5

ns

t For ECl inputs, measure one input at a time with the other inputs open.

*

All inputs and outputs are open.
NOTES: 3. The algebraic convention, in which the more negative limit is deSignated as minimum and the less negative limit is designated as
maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents, the normal
magnitude convention is used.
4. Each device has been designed to meet these specifications after thermal equilibrium has been established. The circu~ is in a test
socket or mounted on a printed circuit board and transverse airflow greater than 150 meters (500 feet) per minute is maintained. Outputs
are terminated through a 50-a resistor to -2 V.

2-466

TEXAS ."

INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75266

TIEPAl10H16TE6C
TTL·TO·ECl IMPACT·X™ PAL ® TRANSLATOR CIRCUIT
PARAMETER MEASUREMENT INFORMATION

INP~

t

3.5V

I
IpLH
IN-PHASE
OUTPUT

III

~I

I

....j{

I
I

I

I'

1

50%

I·

1

I

~

.L-...i• i

tpHL 1OUT·OF-PHASE
OUTPUT

3.5V---- 5.5V

I
14
I

\k'

.

2.3V

~I

IpHL

I
~50%

~II1

OUTPUT~O%
- - - - - VOH

WAVEFORM
VOL

50%

- -

20%

I
I

**-

IpLH

F'

50%

'------I.

VOH

1 80%
20%

1
Ir

~L

--.:-:.- If

VOLTAGE WAVEFORM
RISE TIME AND FALL TIME

VOH
VOL

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

FIGURE 2. VOLTAGE WAVEFORMS

~
~
a:

a.

o
;:)

c
o

a:
a.

TEXAS

..If

INSlRUMENlS
POST OFFICE BOX 855303 • DALLAS. TEXAS 75265

2-467

TIEPAL10H16TE6C
TTL·TO·ECL IMPACT';'X™ PAL ® TRANSLATQR CIRCUIT
PARAMETER MEASUREMENT INFORMATION
2.00 V '" 0.01 V
25~F

.r+
7V

Vee

GND

INPUT
UNDER
TEST

~.,v{

'"'C

::a
o
c

or
VILmln+2V

}A~

OTHER
INPUTS

c:

-

~

A~{

OTHER
OUTPUTS

"::"

o-I
~
~

OUTPUT
UNDER
TEST

VEE
25 ~F

pr

0.1~

-3.20 V ,,0.01 V

==

NOTES: A. The offset voltage generator has the following characteristics: Pulse amplttude =800 mV poP, PRR" 1 MHz, tw =500 ns, tr tf 1 ns.
B. RT is a 50-0 terminator internal to the oscilloscope.
C. CL ~ 3 pF, includes fixture and stray capacitance.
D. The coaxial cables have 50-0 impedance and the cable lengths to oscilloscope channel A and to channel B must be equal.
E.AII unused outputs are loaded with 50-g" 1% resistors to ground.
F.AII unused inputs should be connected to either high or low levels consistent with the logic function required.
G.AII fixture wire lengths or unterminated stubs should not exceed 6 mm (1/4 inch).

FIGURE 3. TEST CIRCUIT

2-468

. TEXAS.

INSIRUMENlS
POST OFFICE BOX 655303 • OALlAS, TEXAS 75265

TIEPAL10016ET6C
ECL·TO·TTL IMPACT·XTM PAL ® TRANSLATOR CIRCUIT
OCTOBER 1989

• ECl 100K Programmable logic with
ECl-to-TTL Translation

JTPACKAGE
(TOP VIEW)

• ECl Control Inputs
• 3-State TTL Outputs

Vce
I
I
I

• IMPACT-X'· Process with Reliable
Titanium-Tungsten Fuses
• Package Options Include Both 300-mil
Ceramic DIP and Plastic Chip Carrier

I

description

1
2
3
4
5
6
7
B

The
TIEPAL10016ET6C
combines
the
IMPACT-X'· (Advanced Implanted, Advanced
Composed Technology) process with proven
titanium-tungsten fuses to provide reliable,
high-performance substitutes for conventional
ECl 100K logic. Easy programmability allows for
quick design of custom functions with increased
logic density.

VEE

GND
GND
0
0
0
OE

Vcc

FN PACKAGE
(TOP VIEW)

~
~
IX:

~Iw--'0
__ ::> Z C!J

80

The TIEPAl 10016ET6C accepts ECl input levels
and provides TTL output levels, making it ideal for
interfacing ECl with TTL circuits. It has latched
outputs, which· are controlled by an ECl latch
Enable input, lE. The 3-state outputs are enabled
input from a Single ECl input, DE. The TTL
outputs are designed for 24-mA low-level output
current.
The TIEPAl10016ET6C is provided with an output
polarity fuse that, if blown, allows an output to
assume a logic high when the implemented
equation is satisfied. However, when the output
polarity fuse is intact and the implementation
equation is satisfied, the output will assume a logic
low.

9
10
11
12

GND
LE
0
0
0

4 321 282726
5
25
6
24
7
23
8
22
9
21
10
20
11
19
121314 1516 1718

0
0

GND
NC
GND

D.

ti

0
0

;:)

c

oIX:

- - WO 0IWO

~Z.y 0

NC - No internal connection

D.

The TIEPAl1 0016ET6C is equipped with a security fuse that, when blown, prevents additional programming
and design verification. This safeguards against easy duplication of a design.
The three GND pins must all be tied externally to an adequate ground plane for proper operation of this device.
The TIEPAl1 0016ET6C is characterized for operation from O°C to 85°C.

IMPACT-X is a trademark of Texas Instruments Incorporated
PAL is a registered trademark of Monolithic Memories Inc.
PROOUCT PREVIEW documents contain Information on
products In the formative or design phase of development.
Char'cterlatlc data and other specHlcatlons are design
goals. rexa. Instruments reserves the right to change or
discontinue these products without notice.

Copyright © 1989, Texas Instruments Incorporated

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 655303 • CALLAS. TEXAS 75265

2-469

TIEPAl10016ET6C
ECl-TO-TTL IMPACT-X™ PAL ® TRANSLATOR CIRCUIT
logic diagram
~

, 0

:~

INCREMENT
___~___~______--JA~___~___~___~~
12
16
20
24
28 31 '

~!.

N
J<

)-~F
C1

)-

:c

6

..... 736

I

o
c
c:
o-I

768

1024

"tJ1

..... 1248
8;»1.

y

:c
m
1.

1280

-m=EI

" 1504

10

":x
y

11

":x
y

A

o

---

~ ENECLJTTL

21

o

20

o

"F

,,=

10

~

ECLJTTL

17

o

~

~

>~F~

ECLJTTL

16

o

N

~

~P9F~

ECLJTTL

15

o

)-~F ~

Fuse Number = First Fuse Number + Increment
An exclusive-NOR input grounded through an intact polarity fuse is at an Eel logic-high level.

2-470

22

~.- ~~

N

992
7

ECLJTTL

~)-~F ~

512

"tJ

~3
~

480
I 5

24 GND

TEXAS ..If

INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 75265

14

TIEPAl10016ET6C
ECl·TO·TTl IMPACT·X™ PAL ® TRANSLATOR CIRCUIT
FUNCTION TABLE
INPUTS

OUTPUTS

OE

LE

DATA IN

ot

0*

FEEDBACK

L

L

H

H

L

H

L

L

L

L

H

L

L

H

00

00

H

H

X
X

H

L

H

H

L

L

Z
Z
Z

Z
Z
Z

00
00
H
L

X = Don't care

t = Polarity fuse blown
:j: = Polarity fuse intact

~~~:Y----------------fC~ID1~--1

LE-{>~---t:~

o

~

CV'hr-----------'

w

FEEDBACK __________
FEEDBACK

-N"

5>
w

a::

FIGURE 1. SIMPLIFIED LOGIC DIAGRAM (EACH OUTPUT)

c.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) (see
Note 1)

::l

ECl supply voltage, VEE ........................................................... -7 V to 0.5 V
TTL supply voltage, Vee ............................................................ -0.5 V to 7 V
Input voltage range ................................................................. VEE to 0.5 V
Operating free-air temperature range .................................................. DoC to 85°C
Storage temperature range ........................................................ -65'C to 150°C

t:i
C

0

a::

C.

NOTE 1: These ratings apply except for programming pins during a programming cycle.

TEXAS ."

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-471

TIEPAL 10016ET6C
ECL-TO-TIL IMPACT-X™ PAL ® TRANSLATOR CIRCUIT
recommended operating conditions (see Note 2)
MIN

NOM

MAX

TIL supply voltage, VCC

4.5

5

5.5

V

ECL supply voltage, VEE

-4.2

-4.5

-4.8

V

High-level input voltage, VIH

Low-level input voltage, VIL

"'C

::D

VEE=-4.2V

-1.15

-0.88

VEE=-4.5V

-1.165

-0.88

VEE=-4.8V

-1.165

-0.88

VEE =-4.2V

-1.81

-1.475

VEE =-4.5V

-1.81

-1.475

VEE =-4.8V

-1.81

-1.49

UNIT

V

V

High-level output current, 10H

-3.2

mA

Low-level output current, 10L

24

mA

Pulse duration, LE high, tw

3

ns

Setup time, data before LEt, tsu

4

ns

Hold time, data after LE! , th

0

Operating free-air temperature, T A

0

ns
85

'c

electrical characteristics over recommended ranges of supply voltage and free-air temperature
(unless otherwise noted) (see Note 3)

o

PARAMETER

VOH

VCC= 4.5 V,

VI = VIHmin or VILmax

IOH=-2mA

VEE
-4.2 V to -4.8 V

c:

VOL
IIHt

VCC= 4.5 V,

VI = VIHmin or VILmax

IOL=24 mA

-4.2 V to -4.8 V

0.5

V

-4.8V

220

C

o-t

"'C

::D

m<
_

TEST CONDITIONS

MAX

MIN

2.4

UNIT

V

liLt

VI =VILmin

10ZH

VCC = 5.5 V,

VI = 2.7V

-4.2 V to -4.8 V

20

10ZL

VCC=5.5V,

VI = 0.4 V

-4.2 V to -4.8 V

-20

!lA
!lA
!lA
!lA

10S+

VCC=5.5V,

Vo =0

-4.2 V to -4.8 V

-100

mA

ICC + lEE

VCC=5.5V,

Pins 1 and 13 are tied together

-240

mA

VI =VIHmax

-4.2V

0.5

-40

-4.8V

switching characteristics over recommended ranges of supply voltage and operating free-air temperature

m (see Note 3)

:e

FROM

TO

(IN PUn

(OUTPUn

tpd

LE~

0

tpd

I or Feedback

0

ten

OE

0

tdis

OE

0

PARAMETER

TEST CONDITIONS

R1 =200'1,
R2 = 200 '1,
See Figure 1

MIN

TYP

MAX

UNIT

5

ns

6

ns

4

ns

5

ns

t Measure one input at a time. Ensure that ali other inputs are open.

*

Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.
NOTES: 2. The algebraic convention, in which the' more negative limit is designated as minimum and the less negative limit is designated as
maximum, is used in this data sheet for logic voltage levels only. For other quan@es, e.g., supply voltages and currents, the normal
magnitude convention is used.
3. Each device has been designed to meet these specifications after thermal equilibrium has been established. The circuit is in a test
socket or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute is maintained.

2-472

TEXAS ~

INSTRUMENTS
POST OFFICE BOX 655303 • DAlLAS. TEXAS 75265

TIEPAL10016ET6C
ECL-TO-TTL IMPACT-X™ PAL ® TRANSLATOR CIRCUIT
PARAMETER MEASUREMENT INFORMATION

sv
SI

~

Rl

CL
(See Note A)

R2

LOAD CIRCUIT FOR
3-STATE OUTPUTS

TIMING
INPUT

VIH

t:::~--~

HIGH·LEVEL ~
PULSE
I
I

VIL

I+-- tw ---+I

tsu~th

DATA
INPUT

50%

I
I

VIH

LOW.LEVEL~

SO%

VIL

PULSE

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
INPUT

.£1 SO%

--.Ii

---r_..JI
{

' \ I.SV
.

CONTROL
(Iow.level
enabling)

~tpHL

'\=.

~ tpLH

!r.':: VOH
T I.SV
.

-

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

~
~
tt

VIH
VIL

a.

OUTPUT~VIH

VIH

....---1-1--..1- - VOH
1
)L I.S V
1
VOL

tPHL--l4--+i
OUT·OF·PHASE
OUTPUT
(See Note D)

-

VIL

II I.S V

----

VIL

VOLTAGE WAVEFORMS
PULSE DURATIONS

I

tpL~
IN·PHASE
OUTPUT

\-;O~ -

I
I

VIH

SO%
ten

WAVEFORM 1
SI CLOSED
(See Note B)

-.I

I+I
I I tdis~ I+-

\rI- V -

I
WAVEFORM 2
S10PEN
(See Note B)

VIL

--!-: ~S iJz:;- ~

- VOL

ten

-+I

r-

I-

o

50%

~ ___ _

1

tdls-.l

::J
C

2.S V

ott
a.

- . - VOL

i_
4

3

o

25

6

24

Veeo
Ne

o
I/O

~

2 1 28 27 26

I/O

23
22

8
9

W

I/O
0

:;

Veeo

w

a:
Q.

Ne

21

0

10

20

I/O

11

19

I-

o
c
oa:
Q.

121314151617 18

:::>

wu - -

~z

NC-No internal connection

The TIEPAL1 0016P8-3 is equipped with a security fuse. Once the security fuse is blown, additional
programming and verification cannot be performed. This prevents easy duplication of a design.
This device is characterized for operation from ooC to 85°C; this temperature range is designated by a
.. c .. suffix in the part number (TIEPAl1 0016P8-3CJT).

ExCL is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.
Copyright © 1989, Texas Instruments Incorporated

PRODUCT PREVIEW documenll •••tli. informati••

on products i. the formative or dasign ,ha. of
development. Characteristic data anil othar

=:.at:::sr~r:t dt'::a=::~rT~::~~::~:::
pradlets without notice.

TEXAS •

INSTRUMENlS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-475

TlEPAl10016PB·3C
HIGH·PERFORMANCE ExCL™PAL® CIRCUIT
functional block diagram (positive logic)
8

&
32 X 64

"

8

- b.

--

'V

8

--

'V

12
4,

16XC>

16
16

8/

'V

I'V

8

'V

'V

8
8

~

'V

~

'V

~

'V

8

4

"'0

:D

o
C

c:

n-I

"'0

::D

S
m
~

TEXAS •

2-476

INSJRUMENTS
PO~T

OFFICE BOX 656012 • DALLAS. TEXAS 75265

Vee

-1

o
o

o
o
110
110
1/0
1/0

TIEPAL 10016P8·3C
HIGH·PERFORMANCE ExCC· PAL® CIRCUIT
logic diagram (positive logic)
[281124)

VCC

INCREMENT
(\

I

0
32
(2]11)

4

12

8
28

24

16
20

16

20
24
12
8

28
4

\
32
0

-t>t=

(3]12)

[27){23)

A

0

FIRST FUSE
NUMBERS

""

96

(25]121)

'"
'"0
192

m

1
m

FIRST FUSE
NUMBERS

m

(5]14)

110

I/O

m8l

...

[4113)

I

[26){22)

')(

320
l52

19i
1

~~:

'"

'00

~

'"
eoo
'"
on
'"

~

'"no

768

(241120)

o

a:

Q.

eoo

o

....

so,
'"
'",eo

(6115)

o

'"

2051

992

:::>

1024

1056
1088
1120
1152

~

1184

1216

1248

o

->w
W

m

(21){18)

o

c

o

a:
Q.

(9117)
2053
1536

1568
1600

1632
1664

~1I

1696

1728
1760

110

)

I 2055
(11119)
(12){10)
[131111)

I

110

(10]18)

I

I

(20]117)

...
X

....
....

A

[19]116)

...;

(17){14)

[18){15)

~

(161113)

Fuse Number = First Fuse Number + Increment

NOTE: Pin numbers in [ 1 are for the FK package; pin numbers in ( ) are for JT package.

TEXAS •

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-477

TlEPAl10016PB·3C
HIGH·PERFORMANCE ExCLTM PAL® CIRCUIT

absolute maximum ratings over operating free·air temperature range (unless otherwise noted)
(see Note 1)
Supply voltage, VEE (see Note 2) ....................................... 0 V to -6.5 V
Input voltage, VI (see Note 3) ............................................ 0 V to VEE
Output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. - 50 mA
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. OOC to 85°C
Storage temperature range ......................................... - 65°C to 150°C
NOTES:

1. These ratings apply except for programming pins during a programming cycle.
2. All voltage values are with respect to Vee and Veeo. i.e., these pins are all assumed to be at 0 volts.
3. VI should never be more negative than VEE.

recommended operating conditions (see Note 4)

I
I

VEE

Supply voltage

VIH

High-level input voltage

VIL

Low-level input voltage

TA

Operating free-air temperature

VEE - -4.2
VEE = -4.5
VEE = -4.8
VEE = -4.2
VEE - -4.5
VEE = -4.8

:

."

:u

o

c
c:

MIN
-4.2
-1.15
-1.165
-1.165
-1.81
-1.81
-1.81
0

V
V
V
V
V
V

NOM
-4.5.

MAX
-4.8
-0.88
-0.88
-0.88
-1.475
-1.475
-1.49
8.5

UNIT
V
V

V
De

electrical characteristics over recommended supply voltage range,' T A - 0 °C to 85 DC (unless otherwise
noted) (see Notes 4 and 5)

o

PARAMETER

"tI

VOH

-t

:u
m
S

~

TEST CONDITIONS
VI

= VIHmin

VEE =
VEE =
VEE =
VEE -

or VILmax

= VIHmin or VILmax

VOL

VI

IIH
IlL
lEE

VI = VIHmax
VI - VILmin
All inputs open

VEE
VEE

=
=

-4.2 V
-4.5 V
-4.8 V
-4.2 V
-4.5V
-4.8 V

Typt
MIN
-1.03
-1.035 -0.955
-1.045
-1.81
-1.81
-1.81

MAX
-0.87
-0.88

-0.88
-1.595
-1.700 -1.61
-1.61
220

UNIT
V

V
p.A
~A

0.5
-220

mA

tTypical values are at Vee = 4.5 V, TA = 25 De.
NOTES: 4. The algebraic convention, in which the more negative limit is designated as minimum and the less negative limit is designated
as maximum. is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents,
the normal magnitude convention is used.
5. Each l00KH PAL has been designed to meet these specifications after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute
is maintained. Outputs are terminated through a 50-ohm resistor to - 2 V.

2-478

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 656012 •

D~UAS.

TEXAS 75285

TlEPAl10016P8·3C
HIGH·PERFORMANCE ExClTM PAl@ CIRCUIT
switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(see Note 5)
FROM
(INPUT)

TO
(OUTPUT)

I. 1/0. 0' feedback

0.110

PARAMETER
tpd
t,

TEST CONDITIONS

See Figures 1 and 2

tf

MIN

MAX

1

3

UNIT

0.7

1.5

ns

0.7

1.5

ns

ns

NOTE 5: Each l00KH PAL has been deSigned to meet these specifications after thermal equilibrium has been established. The circuit
is in a test socket or mounted on a printed circuit board and transverse air flow greater than 150 meters (500 feet) per minute
is maintained. Outputs are terminated through a 50-ohm resistor to - 2 V.

PROGRAMMING INFORMATION
Comptete programming specifications. algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

3:
w

:>w

PARAMETER MEASUREMENT INFORMATION
INPUT

.LI"5-0-%---\;;- -

~

I

tPLH"';"~
IN·PHASE
OUTPUT

1

a:

a..

VIH

l-

VIL

~tPHL

f---+I-""'"'\~-;;;.;;

I

50%:

I

I

tPHL ~
OUT '()F.pHASE
OUTPUT

-

~

e.)
VOH
VOL

I4-----+1-tPLH

1
\ 50%
•

OUTPUT
WAVEFORM

F
I VOH
50%
_ VOL

801:

i

20%
I

I

I 1

t r -+'

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

I+-

~---VOH
180%1
I
I
1

(20%)
I

I 1
-+I I+-tf

V
OL

::>

c
oa:
a..

VOLTAGE WAVEFORMS
RISE TIME AND FALL TIME

FIGURE 1. VOLTAGE WAVEFORMS

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2-479

TlEPAl10016P8·3C
HIGH·PERFORMANCE ExCL™ PAL® CIRCUIT
PARAMETER MEASUREMENT INFORMATION
2.00 V ± 0.01 V

r

251'F

INPUT
TEST

VIH max + 2 V {
or
VIL min + 2 V

::u

o
C

c:

q
OUTPUT
UNDER ~-i--------t-+4~~
TEST

~t-t-------~-r-4~UNDER

"tJ

0.11'F

}

ALL
OTHER
INPUTS

ALL
{
OTHER
OUTPUTS

CO)

-I

0.11'F

q

"tJ

::u
m
S

~

-2.50 V ± 0.01 V
NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude = .800 mV P-P. PRR
t r = tf = 1 ns.

:s

1 MHz, tw = 500 ns,

B. RT is a 50-0 terminator internal to the oscilloscope.
C. CL :S 3 pF, includes fixture and stray capacitance.

D. Coax has 50-0 impedance and the coax to oscilloscope channel A and to channel B must be of equal lengths.
E. All unused outputs are loaded with 50-0 ± 1 % resistors to ground.

F. All unused inputs should be connected to either high or low levels consistent with the logic function required.'
G. All fixture wire lengths or unterminated stubs should not exceed 6 mm (1/4 inch).

FIGURE 2. LOAD CIRCUIT

2-480

TEXAS ."

INSTRUMENTS
POST OFFICE BOX 6550t2 • DALLAS, TEXAS 75265

TIEPAl10016TE6C
TTL·TO·EClIMPACT-X™ PAL ® TRANSLATOR CIRCUIT
OCTOBER 1989

JTPACKAGE
(TOP VIEW)

• ECl Programmable logic with TTl-to-ECl
Translation
• ECl Control Inputs

VCC

1 U

24

GND

2

23

lE

!!

~~

g

5
6
7
8

20
19
18
17
16
15
14

II

• 3-State ECl Outputs
• Impact-X'· Process with Reliable
Titanium-Tungsten Fuses
• Package Options Include Both 300-mil
Ceramic DIP and Plastic Chip Carrier

9

description

10
11

The
TIEPAL10016TE6C
combines
the
IMPACT-X'· (Advanced Implanted, Advanced
Composed Technology) process with proven
titanium-tungsten fuses to provide reliable
high-performance substitutes for conventional
ECl 100K logic. Easy programmability allows for
quick design of custom functions with increased
logic density.

VEE

12

13

0
0
OE
GND

FNPACKAGE
(TOP VIEW)

__

The TIEPAl1 0016TE6C accepts TTL input levels
and provides ECloutput levels, making it ideal for
interfacing TTL with ECl circuits. It has latched
outputs, which are controlled from an ECl Latch
Enable input, LEo The outputs are enabled from a
single ECl input, OE.
The TIEPAl10016TE6C is provided with an output
polarity fuse that, if blown, will allow an output to
assume a logic high when the implemented
equation is satisfied. However, when the output
polarity fuse is intact and the implemented
equation is satisfied, the output will assume a logic
low.

....._ - - '

0
GND
GND
0

5

U

~~

4 321

3:
[ij

-

Cl

W

t§ I~ 0
282726
25
24
23
22
21

6
7
8
9
10
20
11
19
121314 15161718

0
0

a:

a.

GND
NC
GND

I-

0

0
0

::J
C

--UUClIWO

0

~Zt§0

a:

a.

NC-No internal connection

The TIEPAl1 0016TE6C is equipped with a security fuse that, when blown, prevents additional programming
and design verification. This safeguards against easy duplication of a design.
The four GND pins must all be tied externally to an adequate ground plane for proper operation of this device.
The TIE PAL10016TE6C is characterized for operation from O·C to 85·C.

IMPACT-X is a trademark of Texas Instruments Incorporated.
PAL is a registered trademark of Monolithic Memories Inc.
PRODUCT PREVIEW documents contain Information on
products In the formative or de.lg" pha.. ofdevelopment.

Characteristic data and other .paeHlcatlon. are design

goals. Texas Instruments reserve. the right to change or
discontinUe these products wtthout notice.

Copyright © 1989, Texas Instruments Incorporated

TEXAS ."

INSlRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-481

TIEPAl10016TE6C
TTL·TO·ECl IMPACT·X™ PAL ® TRANSLATOR CIRCUIT
logic diagram
INCREMENT

'0
2
3

8

12

16

20

24

28

24

~GN o

TTLJEC"':;:

23

TTLJEClJ:;::

FIRSTFUSE
NUMBER

4

4

0000

.J(

TTLJECll
0256

5

oC

..,.
TTLJECl

1536

1537

0512

'"0 6
:x:J1

>~-=
=t..»-= o

>~
-<:

TTLJECl

.J(

l

~o

=t..»-=

F~_~
1538
~o

0768

C:I

7

~

1024

'"01 8

:x:J

m
:$1
m
==:1

TTLJECLl
1280

9

10

11

~
/~"o

~

TTLJECLl

TTLJECLl

J<

1539

-<>~
C1

"o

1540:::L.):>--

~>~C1
1 5 4 1 : . L ) o"
~

TTLJECl~

TTLJECl

Fuse Number = First Fuse Number + Increment
Pin numbers shown are for the JT package.
An exclusive-NOR input grounded through an intact polarity fuse is at an Eel high logic level.

2-482

C1

TEXAS -If

INSlRUMENlS

POST OFFICE BOX 656303 • DALlAS, TEXAS 75265

~o

o

TIEPAl10016TE6C
TTL·TO·ECl IMPACT·X™ PAL ® TRANSLATOR CIRCUIT
FUNCTION TABLE
INPUTS

ot

6*

FEEDBACK

L

H

L

H

L

L

L

H

L

H
H

X

00

00

X

L
L

H

L
L

L
L

00
00

L

L

L

LE

L
L
H
H
H

OUTPUTS

ARRAY DATA
H

OE
L

H
L

= Don't care
1" = Polarity fuse blown
= Polarity fuse intact
X

*

ARRAY-----------------fIIDD~--~------~~~
DATA

~--~--,

o

Cl
FEEDBACK

~
~
a:

-----------0

FEEDBACK ------------)

FIGURE 1. SIMPLIFIED LOGIC DIAGRAM (EACH OUTPUT)

a..

t-

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) (see
Note 1)
ECl supply voltage range, VEE (see Note 2) .......................................... -8 V to 0.5 V ~
TTL supply voltage range, Vee ...................................................... -0.5 V to 7 V
C
ECl input voltage range ............................................................. VEE to 0.5 V
TTL input voltage ......................................................................... 5.5 V

O

Operating free-air temperature range, T A ........................................... ,.. DoC to 85°C
Storage temperature range ........................................................ -65°C to 150°C

oa:
a..

NOTES: 1. These ratings apply except for programming pins during a programming cycle.
2. All voltage values are with respect to the GND pins connected together.

TEXAS -If

INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-483

TIEPAl10016TE6C
TTl-TO-ECl IMPACT-X™ PAL ® TRANSLATOR CIRCUIT
recommended operating conditions (see Note 3)
MIN

NOM

MAX

UNrr

TTL supply voltage, VCC

4.75

5

5.25

V

ECl supply voltage, VEE

-4.2

-4.5

-4.8

V

2

5.5

V

TTL high-level input voltage, VIH

I
I
I

ECl high-level input voltage, VIH (LE and OE inputs)

VEE--4.2V

-1.15

-0.88

VEE=-4.5V

-1.165

-0.88

VEE =-4.8V

-1.165

-0.88

VEE=-4.2V

-1.81

-1.475

VEE =-4.5V

-1.81

-1.475

VEE =-4.8V

-1.81

-1.49

TTL low-level input voltage, Vil

0.8

I
I

ECl low-level input voltage, Vil (LE and OE inputs)

I
Pulse duration, lE high, tw

V
V
V

3
4

ns

Setup time, data before lEt, tsu
Hold time, data after lE t , th

0

Operating free-air temperature, TA

0

ns
·C

ns
85

""C electrical characteristics over recommended ranges of supply voltage and free-air temperature
:c
(unless otherwise noted) (see Note 4)

o

PARAMETER

C

~
""C
:c
~

VOH

c:

-~

TEST CONDITIONS
VCC = 4.75 V,

VIK

VI = Vilmax or VIHmin

VI = Vilmax or VIHmin

VOL
I

IIHt

LE,OE
I

lilt

LE,OE

ICC + IEEl

VCC = 5.25 V,
VI=VIHmax
. VCC = 5.25 V,

MIN

VI=-18mA

UNIT

-1.5

V

VEE=-4.2V

-1.03

-0.87

VEE=-4.5V

-1.035

-0.88

VEE=-4.8V

-1.045

-0.88

VEE =-4.2V

-1.81

-1.595

VEE=-4.5V

-1.81

-1.81

VEE=-4.8V

-1.81

-1.61
20

VI=2.7V

220

VEE = -4.2 V to -4.8 V

-200

VI =0.4V
VEE = -4.2 V to -4.8 V

VI =Vllmin
VCC=5.25V

MAX

0.5
-220

VEe = -4.2 V to -4.8 V

V

V

;.IA
;.IA
mA

switching characteristics over recommended ranges of supply voltage and operating free-air temperature
(see Note 4)
FROM

TO
(OUTPUT)

tpd

(INPUT)
LEj

tpd

I or Feedback

ten

OE

0
0
0

tdis

OE

0

PARAMETER

TEST CONDITIONS

MIN

TYP
5

See Figures 2 and 3

MAX

UNrr
ns

6

ns

4

ns

5

ns

t For ECl inputs, measure one input at a time with the other inputs open.
:I: All inputs and outputs are open.
NOTES: 3. The algebraic convention, in which the more negative limit is designated as minimum and the less negative IimH is designated as
maximum, is used in this data sheet for logic voltage levels only. For other quantities, e.g., supply voltages and currents, the normal
magnitude convention is used.
4. Each device has been designed to meet these specHications after thermal equilibrium has been established. The circuit is in a test
socket or mounted on a printed circuit board and transverse airflow greater than 150 meters (500feet) perminute is maintained. Outputs
are terminated through a 50-0 resistor to -2 V;

2-484

TEXAS ."

INSIRUMENTS

POST OfFICE eox 8&6303 • DAUAS, TEXAS 75285

TIEPAl10016TE6C
TTl-TO-ECl IMPACT-X™ PAL@ TRANSLATOR CIRCUIT
PARAMETER MEASUREMENT INFORMATION

INP~
IpLH
IN-PHASE
OUTPUT

3.5V

1
I.!I

1
1

\

1
I..
~I
IpHL
1
1
1
....Jt,..--..;.I-""~---

uv

~I

I'

50%

--+I-J·
1

\.!

I"

VOH

50%

1

1
1

IpHL ,...-..:
OUT-OF-PHASE
OUTPUT

; ; v - - - - 5.5V

VOL
I

~i

OUTPUT~O%
80%--- vOH

WAVEFORM

IpLH

20%

! I r - VOH
50%
50%
.....- - - - - " - - - VOL

7""

1\

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

I
I
20%
I I

1

1

-.J.--l..-

Ir

~

VOL

If

VOLTAGE WAVEFORM
RISE TIME AND FALL TIME

FIGURE 2. VOLTAGE WAVEFORMS

3:
w

:>
w
a:

D..
I-

o

::J
C

oa:
D..

TEXAS ..,
INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

2-485

...
TIE PAL 10016TE6C
TTL-TO-ECl IMPACT-X™ PAL ® TRANSLATOR CIRCUIT
PARAMETER MEASUREMENT INFORMATION
2.00 V ± 0.01 V

r+
25",F

0.1 ",F

~

7V

Vee

GND

INPUT
UNDER
TEST

~m"'l

"'D

::XJ

2v
or
VUmln+2
v

oo

OUTPUT
UNDER
TEST

A~

} OTHER
INPUTS

c:

-=-

o-I

VEE
25 ",F

P

"'D

::XJ

m
<
m

-

:e

~'l

OTHER
OUTPUTS

0.1 ",F

~

-2.50 V ± 0.01 V

NOTES: A. The offset voltage generator has the following characteristics: Pulse amplitude = 800 mV p.p, PRR ~ 1 MHz, tw = 500 ns, tr = tf = 1 ns.
B. RT is a 5O.g terminator intemal to the oscilloscope.
.
C. CL ~ 3 pF, includes fixture and stray capacitance.
D. Coax has 50·g impedance and the coax to oscilloscope channel A and to channel B must be of equal lengths.
E. All unused outputs are loaded with 50·g ± 1% resistors to ground.
F. All unused inputs should be connected to either high or low levels consistent with the logic function required.
G.AII fixture wire lengths or unterminated stubs should nol exceed 6 mm (1/4 inch).

FIGURE 3. TEST CIRCUIT

2-486

TEXAS ~

INSIRUMENlS
POST OFFICE

epx 655303 •

DALLAS. TEXAS 75265

TIFPLA839C. TIFPLA840C
14 x 32 x 6 FIELD-PROGRAMMABLE LOGIC ARRAYS
02708. JUNE 1984-AEVISED AUGUST 1989
LOGIC FUNCTION

•

Input-to-Output Propagation
Delay . . . 10 ns Typical

f(l)

•

24-Pin, 300-mil Slim Line Packages

fill

•

Power Dissipation ... 650 mW Typical

•

Programmable Output Polarity

= PO + Pl , , , P31
= PO' Pi' ...

for polarity link intact

·m for polarity link open

where PO through P31 are product terms

JT OR NT PACKAGE
(TOP VIEW)

description
The'FPLA839 (3-state outputs) and the
'FPLA840 (open-collector outputs) are TTL fieldprogrammable logic arrays containing 32 product
terms (AND terms) and six sum terms (OR
terms). Each of the sum-of-products output
functions can be programmed either high true or
low true. The true condition of each output
function is activated by the programmed logical
minterms of 14 input variables. The outputs are
controlled by two chip-enable pins to allow
output inhibit and expansion of terms.

:'\'

',,""'GND

These devices provide high-speed data-path
logic replacement where several conventional
.. ,>.
SSI functions can be designed into a single \';~;\}
package.
,::;.";; \ (
,,'«"ll'j.

........_--'-'-"-'
FN PACKAGE
(TOP VIEW)

!."<;N

The 'FPLA839C and 'FPLA84q6:;>~r'e
characterized for operation from,Q,

&

o

28X J2

32

14

o

o
o
o

o

...... denotes fused inputs.
tFPLA839 has J-stata ('V) outputs; FPLA840 has open-collactor (Q) outputs.

absolute maximum ratings

Supply voltage, Vee (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 7 V
Input voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Off-state output voltage (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5.5 V
Operating free-air temperature range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. ooe to 70°C
Storage temperature range ......................................... - 65°C to 150°C
NOTE 1: These ratings apply except for programming pins during a programming cycle.

2-488

TEXAS •
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265

TlFPLA839C. TIFPLA840C
14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS
logic diagram

8

0

1

7

•

I NCREMENT

~~X~~~-r+-~-+~~-r+-~~~~~~~~~~-r+-~ 2
3
~

6

~~X~-r~-r+-r+-+-r~-r+-r+~-r~r+-r~~-r~-r+-r+~

5

6
7

X

4

~vX-~-r~r+-r~~-r~-+-r~~-r+-r+-r~~-r+-r+-r~-

3

4
5

8
9

~~X~-r~-r+-r+-+-r~-r+-r+~-r~-+-r~~-r~-r+-r+- 10

II

~

2

12
13

X

14
15
16
17
18
19
20

~~Hrrr~~~-rHrrr~-rHr~~"~~-r

20
21

~~~-rr+-rr-r+~-+~-r-r~-r~-rr-r+~-rr+1-

22
23
24
25

17

OEI
OE2

_1~3~

26
27

__________________________________________________________~

Fuse number = first fuse number

+

increment

TEXAS . "
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

2·489

TIFPLA839C, TIFPLA840C
14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS
recommended operating conditions
Supply voltage, Vee
High-level input voltage, VIH

MIN

NOM

MAX

UNIT

4.75

5

5.25

V

2

V

Low-level input voltage, VIL

I 'FPLA840
I 'FPLA839

High-level output voltage, VOH
High-level output current, 10H
Low-level output current, IOL

0

Operating free-air temperature, T A

0.8

V

5.5

V

-3.2

rnA

24

rnA

70

·e

electrical characteristics over recommended operating free-air temperature range (unless otherwise
noted)
PARAMETER

TEST CONDITIONS
Vee ~ 4.75 V,

VIK
10H

I 'FPLA840
VOH I 'FPLA839

Vee

~

4.75 V,

II

~

MIN

Typt

-18 rnA
~

VOH

MAX
-1.5

5.5 V

0.1

UNIT
V
rnA

Vee ~ 4.75 V,

10H ~ -3.2 rnA
10L ~ 24 rnA

II

Vee"" 4.75 V,
Vee ~ 5.25 V,

IIH

Vee ~ 5.25 V,

IlL

Vee

10'

Vee ~ 5.25 V,

Vo

10ZH

Vee ~ 5.25 V,

Vo ~ 2.7 V

10ZL

Vee ~ 5.25 V,

Vo ~ 0.4 V

-20

~A

lee

Vee ~ 5.25 V,

VI

130

180

rnA

Typt

MAX

UNIT

10

20

10

20

8

15

Typt

MAX

10

25

10

20

8

15

VOL

~

5.25 V,

2.4

3
0.37

V
0.5

V

0.1

rnA

VI

~

VI

~

2.7 V

20

~A

VI

~

0.4 V

-0.5

rnA

-112

rnA

20

~

5.5 V

~

~

2.25 V

0 V,

-30

OE inputs at VIH

'FPlA839 switching characteristics
PARAMETER

FROM

TO

tpd

Input

Output

ten

Pin 1 or Pin 13

Output

TEST CONDITIONS
Rl

~

50011,

R2

eL

~

50 pF,

See Figure 1

~

MIN

50011,

tdis

ns
ns

'FPlA840 switching characteristics
PARAMETER

FROM

TO

tpd

Input

Output

Pin 1 or Pin 13

Output

ten

TEST CONDITIONS
Rl

~

50011,

R2

eL

~

50 pF,

See Figure 1

~

50011,

tdis

MIN

UNIT
ns
ns

t All typical values are at Vee ~ 5 V, T A ~ 25 ·C.
+The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit current, lOS.

2-490

TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS, TEXAS 75265

TIFPLA839C, TIFPLA840C
14 x 32 x 6 FIELD·PROGRAMMABLE LOGIC ARRAYS

programming information
Texas Instruments Programmable Logic Devices can be programmed using widely available software and
inexpensive device programmers.
Complete programming specifications, algorithms, and the latest information on hardware, software, and
firmware are available upon request. Information on programmers capable of programming Texas
Instruments Programmable Logic is also available, upon request, from the nearest TI field sales office, local
authorized TI distributor, or by calling Texas Instruments at (214) 997·5666.

TEXAS ..,
INSTRUMENTS
POST OFFICE BOX 655012 • DALLAS. TeXAS 75265

2·491

TlFPLA839C. TIFPLA840C
14 x 32 x 6 FIELD-PROGRAMMABLE LOGIC ARRAYS
PARAMETER MEASUREMENT INFORMATION

5 V for tpd
7 V fa. ten and tdis
SI

b
Rl

FROM OUTPUT
UNDER TEST

_-+_.._ .._
CL

TEST
POINT

R2

ISee Note A)

LOAD CIRCUIT FOR
THREE-STATE OUTPUTS

TIMING
INPUT

J.

1 SV
15 V
~
.
.

---3.SV

3.S V
HIGH·LEVEL
PULSE

F,1.5 V

~tw--J

- - - - - ' U - - - - - - 0.3 V
I4-th-+l

1

1

I+-tsu-+l

DATA
~~;::3.5V
INPUT..../' 1.5V
~
0.3 V

LOW·LEVEL
PULSE

1 SVIS V
~
.
.

\1~~---3.SV

.L l . SV

1
----"
tpd

I,.

1

IN· PHASE
OUTPUT

:1

tpd I,.
OUT·OF·PHASE
OUTPUT

ISee Note D)

1•
~I

0.3 V

I,.

~I

1

I

tpd

1,..--+:---.+ - - VOH
f1.5V 1 ~
14

~I

'\1.SV
.

~I

VOL

tpd

F/OH
.

I

3.SV

- - --0.3V
VOLTAGE WAVEFORMS
PULSE DURATIONS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

INPUT

0.3V

1

- - VOL

OUTPUT
CONTROL

~3.SV
I.SV

(low·level
enabling I

-1- - - - -- 0.3 V

I+I :

ten ~
WAVEFORM
SI CLOSED
ISee Note BI

l---r\:

I.SV

-+I 14-- Idis

: 1

~3.3 V

II~vOL+o.sv

I ~-==~-=
ten~!+-'-+I I4-ldis 'f.

VOL

I _ _ _ l.-VOH

WAVEFORM 2
S10PEN

~
I

--

1.5 V

LVOH-O.S V
~0

ISee Nole B)

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES

1.5V

I

1

V

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES. THREE·STATE OUTPUTS

NOTES: A. CL includes probe and jig capacitance and is SO pF for tpd and len. 5 pF for tdis'
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses have the following characteristics: PRR :s 1 MHz. tr = tf ~ 2 ns. duty cycle = SO%.
D. When measuring propagation delay times of 3-state outputs, switch 51 is closed.

FIGURE 1

2-492

TEXAS ",
INSfRUMENTS
POST OFFICE BOX 655012 •

DALL~S,

TEXAS 75265

Application Reports

3-1

'"

Contents
Introduction to Designing with Programmable Logic . . . . . . . . . . . . . . . ..
Programmable Logic Device Design Software Support ...............
Programming Texas Instruments Programmable Logic Devices .........
Test Considerations for PLDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
A Designer's Guide to the TIBPSG507 . . . . . . . . . . . . . . . . . . . . . . . . . ..
System Solutions for Static Column Decode ......................
Programmable Frequency Divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
EP1810 as a Bar Code Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

.3-2

Page
3-3
3-37
3-53
3-61
3-75
3-125
3-153
3-163

Introduction to Designing with
Programmable Logic

l!1

TEXAS
INSTRUMENTS

3-3

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.
TI warrants performance of its semiconductor products, including
SNJ and SMJ devices, to current specifications in accordance with
TI's standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems such testing
necessary to support this warranty. Unless mandated by
government requirements, specific testing of all parameters of
each device is not necessarily performed.
In the absence of written agreement to the contrary, TI assumes
no liability for TI applications assistance, customer's product
design, or infringement of patents or copyrights or third parties
by or arising from use of semiconductor devices described herein.
Nor does TI warrant or represent that any license, either express
or implied, is granted under any patent right, copyright, or other
intellectual property right of TI covering or relating to any
combination, machine or process in which such semiconductor
devices might be or are used.

Copyright © 1989, Texas Instruments Incorporated

3-4

Contents
Title

Page

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-7

Programmable Logic Advantages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-7

Symbology for PLDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Family Architectures ................................................
PLD Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Output Macrocell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Design Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Example Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
PLD Implementation ................................................
PLD Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Clock Selector Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
4-Bit Binary Counter Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Binary/Decade Count Details .........................................
Fuse Map Details ..' . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
PLD Design Software ...............................................

3-7
3-8
3-13
3-16
3-19

3-20
3-20
3-21

3-21
3-26

3-29
3-30
3-32

3-5

List of Illustrations
Figure

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Page

Basic Symoblogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Basic Symbology Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PROM Architecture .........................................
PAL® Architecture. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .
FPLA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TIBPAL16L8 Logic Diagram .................................
TIBPAL16R8 Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polarity Selection ...........................................
Output Macrocell Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Resultant Macrocell Feedback and Output Logic
After Programming ...........................' . . . . . . . . . . . . .
PLD Process Flow Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Counter Implementation With Standard Logic. . . . . . . . . . . . . . . . . . ..
TffiPAL16R4 Logic Diagram. . .. . .. . .. . ... . . .. . .. . . . .... . ....
Karnaugh Map for CLKOUT .................................
Karnaugh Map for CLKOUT .................................
Karnaugh Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Programmed TIBPAL16R4 ...................................
Source File for ABEL .......................................
ABEL Output Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

3-8
3-8
3-9
3-11
3-12
3-14
3-15
3-16
3-17
3-18
3-19
3-21
3-23
3-24
3-25
3-27
3-31
3-33
3-34

List of Tables
Table

1
2
3
4

Page

Clock Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Function Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Truth Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PAL is a registered trademark of Monolithic Memories Incorporated.

3-6

3-20
3-23
3-26
3-29

Introduction
The purpose of this application report is to provide the first time user of programmable
logic with a basic understanding of this powerful technology. The term Programmable
Logic Device (PLD), refers to any device supplied with an uncommitted logic array, which
the user programs to his own specific function.

Programmable Logic Advantages
Programmable logic devices (PLDs) offer many advantages to the system designer
who presently is using several standard catalog SSI and MSI functions. Listed below are
just a few of the benefits which are achievable when using programmable logic.
• Package Count Reduction: Several MSIISSI functions can be replaced with
one PLD. This reduces system power requirements.
• PC Board Area Reduced: Fewer devices consume less PC board space.
• Circuit Flexibility: Programmability allows for minor circuit changes without
changing PC boards.
• Improved Reliability: With fewer PC interconnects, overall system reliability
increases.
• Shorter Design Cycle: When compared with standard-cell or gate-array
approaches, custom functions can be implemented much more quickly.
• Proprietary Design Protection (fuse protection): Circuit can be protected by
blowing the security fuse.
The PLD will fill the gap between standard logic and large scale integration. The
versatility of these devices provide a very powerful tool for the system designer.

Symbology for PLDs
In order to keep the PLDs easy to understand and use, a special convention has been
adopted. Figure 1 is the representation for a 3-input AND gate. Note that only one line
is shown as the input to the AND gate. This line is commonly referred to as the product
line. The inputs are shown as vertical lines, and at the intersection of these lines are the
programmable fuses. An X represents an intact fuse. This makes that input, part of the
product term. No X represents a blown fuse. This means that input will not be part of
the product term (in Figure 1, input B is not part of the product term). A dot at the
intersection of any line represents a hard-wire connection.

3-7

INPUT TERMS
ABC

PRODUCT
LINE

-ttt-D-

OUTPUT
F
A'C

=

Figure 1. Basic Symbology
In Figure 2, we will extend the symbology to develop a simple 2-input programmable
AND array feeding an OR gate. Notice that buffers have been added to the inputs, which
provide both true and complement outputs to the product lines. The intersection of the
input terms form a 4 X 3 programmable AND array. From the above symbology, we can
see that the output of the OR gate is programmed to the following equation, AB + AB.
Note that the bottom AND gate has an X marked inside the gate symbol. This means that
all fuses are left intact, which results in that product line not having any effect on the
sum term. In other words, the output of the AND gate will be a logic O.When all the

fuses are. blown on a product line, the output of the AND gate will always be a logic
1. This has the effect of locking up the output of the OR gate to a logic level 1.
INPUT TERMS

~
A

INPUTS
B

PRODUCT
LINES

Figure 2. Basic Symbology Example

Family Architectures
The PROM was the first widely used programmable logic family. Its basic architecture
is an input decoder configured from AND gates, combined with a programmable OR matrix
on the outputs. As shown in Figure 3, this allows every output to be programmed

3-8

16 WORDS X 4 BITS

c

D

B

A

"OR" ARRAY
(PROGRAMMABLE)

~

,.

R

F<

I-J

,

R

F<
L.I

i'

/

\

I

V
"AND" ARRAY
(FIXED)

?yyy
03

02

01 00

Figure 3. PROM Architecture

3-9

individually from every possible input combination. In this example, a PROM with 4 inputs
has 24 , or 16 possible input combinations. With the output word width being 4 bits, each
of the 16 X 4 bit words can be programmed individually. Applications such as data storage
tables, character generators, and code converters are just a few design examples which
are ideally suited for the PROM. In general, any application which requires every input
combination to be programmable is a good candidate for a PROM. However, PROMs
have difficulty accomodating large numbers of input variables. Eventually, the size of
the fuse matrix will become prohibitive because for each input variable added, the size
of the fuse matrix doubles.
To overcome the limitation of a restricted number of inputs, the PAL utilizes a slightly
different architecture as shown in Figure 4. The same AND-OR implementation is used
as with PROMs, but now the input AND array is programmable instead of the output
OR array. This has the effect of restricting the output OR array to a fixed number of input
AND terms. The trade-off is that now, every output is not programmable from every input
combination, but more inputs can be added without doubling the size of the fuse matrix.
For example, if we were to expand the inputs on the PAL shown in Figure 4 to 10 and
on the PROM in Figure 3 to 10, we would see that the fuse matrix required for the PAL
would be 20 X 16 (320 fuses) vs 4 X 1024 (4096 fuses for the PROM). It is important
to realize that not every application requires every output to be programmable from
every input combination. This is what makes the PAL a viable product family.
The FPLA goes one step further in offering both a programmable AND array and
a programmable OR array (Figure 5). This feature makes the FPLA the most versatile
device of the three, but often impractical in most low complexity applications. For
applications in which complex timing control is required, Texas Instruments offers several
programmable state machines based on the FPLA architecture. Several of these devices
incorporate internal state registers or on-chip binary counters to aid in generating complex
timing sequences.
Another type of programmable logic device (PLD) is the erasable PLD. Based on
the traditional PAL ® architecture, these devices typically offer a higher level of flexibility
in the input and output configuration, register selection, and clocking options. CMOS
EPLDs provide a higher level of density over standard PLDs and have lower power
dissipation characteristics than bipolar PLDs. All programmable logic approaches discussed
have their own unique advantages and limitations. The best choice depends on the
complexity of the function being implemented and the current cost of the devices themselves.
It is important to realize that a circuit solution may exist for more than one of these logic
families.

3-10

c

D

-

A

B

"OR" ARRAY
FIXED

~

,.

:r

F'\

F=<
l..-I

1\

V

F<
LJ

/

\

V
"AND" ARRAY
(PROGRAMMABLE)

Figure 4. PAL® Architecture

3-11

c

D

B

A

"OR" ARRAY
(PROGRAMMABLE)
1\

,..

I

\

J

V
"AND" ARRAY
(PROGRAMMABLE)

99

Figure 5. FPLA Architecture

3-12

,

PLD Options
Figure 6 shows the logic diagram of the popular TIBPAL16L8. Its basic architecture
is the same as discussed in the previous section, but with the addition of some special
circuit features. First, notice that the PAL has 10 simple inputs. In addition, 6 of the outputs
operate as I/O ports. This allows feedback into the AND array. One AND gate in each
product term controls each 3-state output. The architecture used in this PAL makes it very
useful in generating all sorts of combinational logic.
Another important feature about the logic diagram and all other block diagrams
supplied from individual datasheets are that there are no Xs marked at every fuse location.
From the previous convention, we stated that everywhere there was an intact fuse, there
was an X. However, in order to make the logic diagram useful when generating specific
functions, it is supplied with no Xs. This allows the user to insert the XS wherever an
intact fuse is desired.
The basic concept of the TIBPAL16L8 can be expanded further to include D-type
flip-flops on the outp'uts. An example of this is shown in Figure 7 with the TIBPAL16R8.
This added feature allows the device to be configured as a counter, simple storage register,
or similar clocked function.
Circuit variations which are available on other members of the TI PLD family are
explained in the following paragraphs.

3-13

INPUT LINES
RODUCT,
LINES
0
0

4

8

12

16

20

24

28

31

·•••
·•

u-J

(19)

o

~

(2),,-~

.....

'8

··•
·
·•
·•

1

......

(3) 15

(18)

v

liD

A

16

1

r-

(17)

v

f-----,

liD

•

~

(4)';;
24

••

r-

··•

-

h
f-"

1
..

(16)

1

(15)

110

~

(5) 31

X
32

,

·••
·•

~

f--"
lJ-I).-

v

1

(6) 39

40

1(7)

·•••
·
·••
·
·••
·•

1

I-- h
>---

v

47

48

I (8)

f--

~

(14)

1/0

1

1

(13)

v

liD

I

55

,

"56

~v-J

(12)

r-

(11)

>---

63
I (9) ;>L.

A

I

I

Figure 6. TIBPAL16L8 Logic Diagram

3-14

1/0

o

CLK (11

~

P

I

INPUT LINES

RL~~E~CT

'0

0
0
0
0

o
0
0

4

B

12

16

20

24

2B

31
~>---"

~
I-

1--

D-

fn~'"

Q

C1

(21 .... ~
'b-

B
0
0
0
0
0
0

>--

(31~15

\--

D-

0
0
0
0
0

D-

~

tJ;

(171

~

(161

b
...

(151

tv""

Q

'>--->

0
0
0
0
0
0

-

~

_D-

....

Q

C1

(51 31
32

f-----'
~

0
0
0
0
0
0

I

t-J

C1

(41 23
24

...

C1

16
o

D

tr:lJ1BI Q

Eb-

fn

Q

C1

(61 39
>---"

40
0
0

D-

o
0
0
0

I--

48
0

C
C1

47
I (71 ')[

.

b--v"'"(141 Q

c

I--

~I
Q
....

->-

0
0
0
0

C1

-

55
1 181
56

~

0
0
0
0
0
0

I--

63
I (91 ~

L

ptQ~'"
C1

A

~
Figure 7. TIBPAL16R8 Logic Diagram

3-15

Output Macrocell
PLDs equipped with the output macrocell offer total output flexibility. Figures 8
and 9 show examples of these types of features as implemented in the TffiPAL22V10
device. Fuses SO and S1 allow selection between registered or combinational outputs.as
well as output polarity. Figure 10 illustrates the user options.
The user options are as follows:
1. Clock Polarity Select. The clock signal can be inverted via a clock polarity
select fuse. This allows the transition of the register outputs to be on either
the positive or negative edge of the clock pulse.
2. Internal-State Registers. Several devices offer internal~state registers, which
are often called buried registers. With the internal-state register, the output
of the register is fed back into the AND array rather than to an output pin.
This feature can be used for timing control sequences.
3. Variable Product Terms. Some PAL® device architectures vary the number
of product terms associated with each output pin. This allows better utilization
of the programmable array.
ENABLE
10
INPUTS

PO
o

o

In

o

o

r:>-+-+--'t-.. :

o
Pn

Figure 8. Polarity Selection

3·16

OUTPUT LOGIC MACROCELL
MUX
r--------------e~----~3

2

......--=---'""1
h---4.----IO
1

O
FROM CLOCK BUFFER
MUX

l

0
G-

3

.,
1~----~~----4-----4-----~

G1

I
I
I

S1
AR = asynchronous reset

~= SynCh~US~

-

__

J

I

Figure 9. Output Macrocell Diagram

3-17

REGISTER FEEDBACK. REGISTERED.
ACTIVE-LOW OUTPUT

REGISTER FEEDBACK. REGISTERED.
ACTIVE-HIGH OUTPUT

S1 - 1
SO

S1 = 1

=0

t-----'

SO - 1

1/0 FEEDBACK. COMBINATIONAL.
ACTIVE-HIGH OUTPUT

1/0 FEEDBACK. COMBINATIONAL.
ACTIVE-LOW OUTPUT

MACROCELL FEEDBACK AND OUTPUT FUNCTION TABLE
FUSE SELECT
S1

SO

0
0
1
1

0
1
0
1

FEEDBACK AND OUTPUT CONFIGURATION

Register feedback

Registered

Register feedback

Registered

Active low
Active high

I/O feedback

Combinational

Active low

110 feedback

Combinational

Active high

o

= unblown fuse. 1 = blown fuse
51 and SO are select-function fuses as shown in the output logic macrocell
diagram.

Figure 10. Resultant Macrocell Feedback and Output Logic After Programming

3-18

Design Example
The easiest way to demonstrate the unique capabilities of the PLD is through a design
example. Through this example, the reader will gain the basic understanding needed to
apply a PLD in his own application. In some cases, this goal may only be to reduce existing
logic, but th~ overall approach will be the same.

GENERATE
LOGIC EQUATIONS

Figure 11. PLD Process Flow Diagram

3-19

Example Requirements
This example will generate a 4-bit binary counter which is fed by one of four clocks.
There are two lines available for selecting the clocks, SELl and SELO. Table 1 shows
the required input for the selection of the clocks. In addition, it is desired that the counter
be able to switch from binary to decade count. This feature is controlled by an input called
BD. When BD is high, the counter will count in binary. When low, the counter will count
in decade.
Table 1. Clock Selection
SEL1

SELO

OUTPUT

0
0
1
1

0
1
0
1

ClKA
ClKB
ClKC
ClKD

Figure 12 shows this example is implemented using standard logic. As shown, three
MSI functions are required. The 'LS162 is used to generate the 4-bit counter while the
clock selection is handled by the 'LS253. The 'LS688 is an 8-bit comparator which is
used for selecting either the binary or decade count. In this example, only five of the eight
comparator inputs are used. Four are used for comparing the counter outputs, while the
other is used for the BD input. The comparator is hard wired to go low whenever the
BD input is low and the counter output is "9". The P = Q output is then fed back to the
synchronous clear input on the 'LS162. This will reset the counter to zero whenever this
condition occurs.

PLD Implementation
As stated before, the problem in programming a PAL is not in programming the
fuses, but rather what fuses need to be programmed to generate a particular function.
Fortunately, this problem has been greatly simplified by computer software. But before
we examine these techniques, it is beneficial to explore the methods used in generating
the logic equations. This will help develop an understanding and appreciation for these
advanced software packages.
From digita1logic theory, we know that almost any type of logic can be implemented
in either AND-OR-INVERT or AND-NOR form. This is the basic concept used in the
PLD. This allows classical techniques, such as Karnaugh Maps1 to be used in generating
specific logic functions. As with the separate component example (see Figure 12), it is
easier to break it into separate functions. The first one that we will look at is the clock
selector, but remember that the overall goal will be to reduce this design example into
one PLD.

3-20

'lS253

ClK A . ClK S

'lS162

SElO
SEl1

ClKC
ClK D

--

0o
0

ClK

ClK

-

OUT

02

ClR

03

'lS688
VCC
~

~

SD

~

PO 00
P1 01
P2 02
P3 03
P4 04
P5
P6

05
06

P7

07

-p=o

~

-

Vc C

"::F

I

Figure 12. Counter Implementation with Standard Logic

PLD Selection
Before proceeding with the design for the clock selector, the first question which
needs to be addressed is which PLD to use. As discussed earlier, there are several different
types of output architectures. Looking at our example, we can see that four flip-flops with
feedback will be required in the 4-bit counter, plus input clock and clear lines. In addition,
seven inputs plus two simple outputs will be required in the clock selector and comparator.
With this information in hand, we can see that the TIBPAL16R4 (Figure 13) will handle
our application.

Clock Selector Details
The first step in determining the logic equation for the clock selector is to generate
a function table with all the possible input combinations. This is shown in Table 2. From
this table, the Karnaugh map can be generated and is shown in Figure 14. The minimized
equation for CLKOUT comes directly from this.

3-21

Table 2. Function Table
SELl SELO CLKA CLKS CLKC CLKD CLKOUT SEL1 SELO CLKA CLKS CLKC CLKD CLKOUT

3-22

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

1

0

0

0

0

1

1

0

1

0

0

0

1

1

1

0

0

0

1

0

1

0

0

1

0

0

0

0

0

1

0

0
1

0

0

0

1

0

0

1

0

1

0

0

0

0

1

1

0

0

1

0

0

1

1

0

1

0

0

0

1

1

1

0

1

0

0

1

1

1

1

0

0

1

0

0

0

1

1

0

1

0

0

0

0

0

0

1

0

0

1

1

1

0

1

0

0

1

0

0

0

1

0

1

0

1

1

0

1

0

0

1

0

0

1

0

1

1

1

1

0

1

0

1
1

1

1

0

0

1

1

0

0

1

1

0

1

1

0

0

0
0

0

0

1

1

0

1

1

1

0

1

1

0

1

0

0

1

1

f

0

1

1

0

1

1

1

0

1

0

0

1

1

1

1

1

1

0

1

1

1

1

1

0

1

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

0

1

0

1

1

0

0

0

1

1

0

1

0

0

1

0

0

1

0

0

1

0

0

0

1

0

0

1

1

0

1
1

1

0

0

1

1

1

0

1

0

1

0

0

1

1

1

0

1

0

0

0

0

1

0

1

0

1

1

1

1

0

1

0

1

1

0

1

0

1

1

0

1

1

1

0

1

1

0

0

0

1

0

1

1

1

1

1

1

0

1

1

1

1

0

1

1

0

0

0

0

1

1

1

0

0

0

0

0

1

1

0

0

1

0

1

1

1

0

0

1

1

0

1

1

0

1

0

0

1

1

1

0

1

0

0

0

1

1

0

1

1

0

1

1

1

0

1

1

1

0

1

1

1

0

0

1

1

1

1

1

0

0

0

0

1

1

1

0

1

1

1

1

1

1

0

1

1

0

1

1

1

1

0

1

1

1

1

1

1

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

\
__- -________________________________________________~

CLK~

INPUT LINES
PRODUCT.~--------------------h·------------------~

LINES
0

0

4

8

12

16

20

24

28

31'

•

·•••

(21~2-...

V

(191 1
/0

>-~

~

·•••
·
··••

1

I-L-/

1

(181

v

I/O

(3) 15
')f

16

:>- ~~"" Q

•

Cl

(4) 23

·•
·•
···•••
··
·
··••
·
·•••
·

24

-

>---p--

I

(6) 39

(7 47
I..'.!..!
48

I (8)

55

D-

(151

~

}--

:r>tbJ;
_

r.:tv (141

Q

Cl

'\---

h'\---

~ Q

Cl

j---

~

I--

)--

1
~

(13)

I/O

1

'>(

---cf'-J

56

I

b

Q

I--

')f

40

(16)

v

C1

(5) 31

32

~

~

(91 63

!--'

1
v

(121

I/O

1

L..

~

Figure 13. TIBPAL16R4 Logic Diagram

3-23

It is important to notice that the equation derived from the Karnaugh map is stated in ANDOR notation. The PLD that we have selected is implemented in AND-NOR logic. This
means we either have to do DeMorgan's theorem on the equation or solve the inverse
ofthe Karnaugh map. Figure 15 shows the inverse of the Karnaugh map and the resulting
equation. This equation can be easily implemented in the TmPAL16R4.
so
SO,A,B
A
r----1

S1.C.D

c[

CLKOUT

A

'1 r;-

1

1

1 1

1

1

1

1

1

1

1 1

1

1

=S1S0AMU + s1soiBn + s1soiMci + s1sol~«D

CLKOUT = S1S0A + SlSOB + S1SOC + S1S0D

Figure 14. Karnaugh Map for CLKOUT

3-24

so

SO,A,B
A

A
,.--,

,.--,

S1,C,D
1

c[

1

1

1

1 1

1

1

1

1

1

1

1

-

1

1

-1

1

1

1

1

1

1

1

1

---

-

-

111

1

1

1

J

111

1

1

1

I

-

CLKOUT = S1S0A + S1S0B + S1S0C + S1S0D

Figure 15. Karnaugh Map for CLKOUT

3-25

4-Bit Binary Counter Details
The same basic procedure used in determining the equations for the clock selector
is used in determining the equations for the 4-bit counter. The only difference is that now
we are dealing with a present state, next state situation. This means a D-type flip-flop
will be required in actual circuit implementation. As before, the truth table is generated
first and is shown in Table 3.

Table 3. Truth Table
PRESENT STATE

NEXT STATE

CLR

03

02

01

00

03
0
0

0
1
1
1
1
1
1
1
1
1
1
1
1
1

x

x

x

x

0:2
0
0

01
0
0

0
0
0
0
0
0
0
0
1
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0

1
1
1

1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0

0

1

0
0
0
0
0
1

0
1
1
1
1
0

0
1
0
1
0

1
1
1
1
1

1
0
1

1
0

0
0
0
1
1
1
1
0

0
1
1

1

1

b
0
1
1
0
0
1
1
0
0
1
1

0

00
0
1
0
1
0
1
0
1

0
1
0
1
0
1

0
1
0

From the truth table, the equations for each output can be derived from the Karnaugh
map. This is shown in Figure 16. Note that the inverse of the truth table is being solved
so that the equation will come out in AND-NOR logic form.

3·26

CLR

CLR,03,02
03

03

,---,

01,00 " "
1

1

1
1

1 ~

1

1

1

1

1
1 1

1

1

1

1

1

1

11

1

1

1

1

I

1

~HMCHOO

00 = CLRMfHCHCM +
00 = CLR + 00

(a) Karnaugb Map for QO
CLR

CLR,03,02

01'OO~

03
r--1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

L--.....J

1)1

1

1

11

11

1

1

1

~

02

02

01 = CLRMMCHCM + ~HM0100 + C:l:«MCH0100
01

=i l l + 0100 + 0100
(b) Karnaugb Map for Ql

Figure 16. Karnaugb Maps

3-27

CLR

CLR,03,02

01,00

~

03
r--I
/-

I

I
\

/'"

03

.---,

-.....

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1(1

It...!.. ~

--

0

'-----" .........

1\
J

1..1

..,/'-.. --../

L---J
02

02 = CLRHH@1&e +

1
1

L--.J

02

~1H0201&e

+ Ct:«fH020100

+~M02@100

02 = CLR + 0201 + 020100 + 0200

(c) Karnaugh Map for Q2
CLR

CLR,03,02
01,00

~
,I
\

03
r--I

03

r:::::::l

1

---

1

1

1

1

1

1

1J 1

1

I

1

1

~ r;1

1

--.....
/

I

1

1

1

1J

1

\

1

1..1
1J
L---.J

02
03

=

CLRMfHt!HM + Gt.cR0302@1M + ~03M01M
+ e:t:.II03&iC!H00 + Ct:«03020100

03 = CLR + 0302 + 0301 + 0300 + 03020100

(d) Karnaugh Map for Q3

Figure 16. Karnaugb Maps (Continued)

3-28

Binary IDecade Count Details
Recalling from the example requirements that the counter should count in decade
whenever the BD input is low, we can again generate a truth table for this function (Table 4).
Since the counter is already designed to count in binary, we can use this feature to simplify
our design. What we desire is a circuit whose output goes low, whenever the BD input
is equal to a logic level "0", and the counter output is equal to "9". This output can
then be fed back to the CLR input of the counter so that it will reset whenever the BD
input is low. Whenever the BD input is high, the output of the circuit should be a high
since the counter will automatically count in binary. Notice that Q shown in the truth
table is the function we desire.

Table 4. Truth Table
BO Q3 Q2 Q1 QO

QQ

0
0

0 1
0 1

1
1

1
1
1

0
0
0
0

0
0

0
0
0
0
0
0

1
1
1
1
1
1

1
1
1
1
1
1

0
0
0
0
1
1

1

1
1
1
1
1

1

1

1
1
1
1
1

0
0

0

0
0
0
0
0

1

0 1

1

1

BO Q3 Q2 Q1 QO

QQ

0
0
0
0

0
0
0
0

0
0
0
0

0
0
1
1

0
1
0
1

0
0
0
0

0
0
0
0
0
0

0
0
0
0
1
1

1

0
0
1
1
0
0

0
1
0
1
0
1

0
0
0
0
0

1
1
1
1
1

0
0

0
1
0

1
1

1
1
0
0
1

0

1

1

1

1
1

1
0
0

1

1

1

1

1

1
1
1

0
0
1

0
1
0
1

0 1
0 1

0
1
0
1
0
1

0
0
0
0
0
0

0
1
0

1
1

1
1
0
0
1

0

0
0
0
0
0

1

1

1

0 1

1

1

0
0

1
1
0
0

1
0
0

1

1

1

1
1
1

1
1
1
1

1
1
1
1

In this particular example, a Karnaugh map is not required because the equation
cannot be further simplified. The resulting equation is given below.
BD OUT=BDQ3Q2QIQO

3-29

Fuse Map Details
Now that the logic equations have been defined, the next step will be to specify which
fuses need to be programmed. Before we do this however, we first need to label the input
and output pins on the TlBPALl6R4. By using Figure 12 as a guide, we can make the
following pin assignments in Figure 17.
PIN:
1 CLK
2 SELO
3 SELl
4 CLKA
5 CLKB
6 CLKC
7 CLKD
8 CLR
9 BD
10 GND

20
19
18
17
16
15
14
13
12
11

VCC
CLKOUT
NC
QO
Ql
Q2
Q3
NC
BD OUT
OE

With this information defined, we now need to insert the logic equations into the
logic diagram as shown in Figure 17.
It is now probably obvious to the reader, that inserting the logic equations into the
logic diagram is a tedious operation. Fortunately, several software programs are available
to perform this task automatically. All that is required is telling the program which device
has been selected and defining the input and output pins with their appropriate logic
equations. The program will then generate a fuse map for the device selected. This
information can then be down loaded into the selected device programmer.

3-30

ClK

1!lt>

PRODUCT,
liNES
0
0
0
0
0
0
0
0

SElO

INPUT LINES
4

8

12

16

20

24

28

31
}--

)->(

-

f-/

1
v

(2),,;

eo

>--

0
0
0
0
0

h

r-- I--'"

-

(3) 15

:x

SEll

I

1
v

(19) elK OUT

(18) NC

I

16
0
0
0
0
0
0

ClK A

(4) 23

1.:>L
24
0
0
0
0
0
0

(5) 31

ClK B
32
0
0
0
0
0
0

(6) 39

:x

ClKC

40
0
0
0
0
0
0

ClK 0 (7)

47

:x

48

1

0
0
0
0
0
0

ClR

~

55
(8) ....

(13) NC

I

56
0
0
0
0
0
0

BO

63
(9) X

Figure 17. Programmed TIBPAL16R4

3-31

PLD Design Software
Software packages such as ABELTN, CUPLTN, and proLogic™ not only generate the
fuse map, but they also help in developing the logic equations. In most cases, they can
generate the logic equations from simply providing the program with either a truth table
or state diagram. In addition, they can test the logic equations against a set of test vectors.
This helps to ensure the that designer gets the desired function.
Several software packages are described in further detail in this data book. The
Programmable Logic Device Design Software Support section provides a detailed summary
of the capabilities of several of these popular design tools.
As an example, we will approach our previous design utilizing DATA IIO's ABELTN
package. The purpose here is not to teach the reader how to use ABEL1M, but rather to
give them a basic overview of this powerful software package. Figure 18 shows the source
file required by ABELTM. Note that the 4-bit counter has been described with a state diagram
table. When the ABEUM program is compiled, the logic equations will be generated from
this. The equations for CLK OUT and BD OUT are given in their final form to demonstrate
how ABELTM will handle these. Also notice that test vectors are included for checking
the logic equations. This is especially important when only the logic equations are given.
Figure 19 shows some of the output documentation generated by the program. Notice
that the equations generated for the counter match the ones generated by the Karnaugh
maps. A pinout for the device has also been generated and displayed. The fuse map for
the device has not been shown; however, the standard JEDEC fuse map thus generated
can be down loaded into the device programmer to program the selected PLD.

ABEL is a trademark of Data 110 Corporation
CUPL is a trademark of LOGICAL DEVICES, INC.
proLogic is a trademark of Inlab Inc ..
3-32

module SD_COUNT flan '-r2'
titl~ '4-bit bin~ry/d~cade
ICI

count~r

device 'P16R4',
const~nt

pin assiqnm.nts and

CLK_.IN,8ELO,SELl,CLKA
CU:B, r:ucC . cum

CLR.BD_IN.OE
StL_OUT.CLK_OUT
03,02,01.00
CK, L, H. X, Z
OUTPUT
t:'olJntQr

~~~lar~tions

pin

1,:'>.::1.4,

pin

5 • ~" 7

~

pin 8,9,11;
r,in 12.19,
pin 14,15,16,17~
• C. , 0 . 1 , • X. , • Z. ,
[Q3.0~, lH ,OOJ;

!'ot~tes

SO=~bOOOO;

~4=Ab0100~

;

S5=~bOl01,

S8=Ab1000,
S9:- Ab1001;

52=~b00101

S6=AbOt101
S7=Ab01 11,

SII:- Abl0111

SI=~bOOOl

S3=AbOOll

~

StO~Abl0l0;

S12=Abl100;
S13= .... b1101 ;
S14=Abll10;
S15= .... b1111;

PQllattl)n'i

r.locl< ! t. '01 I!c (0):
5

ta te_.0:1 i "''lNl.m [03,02,1)1 ,flO)
State SO:
IF CLR
St:
St~te
IF CLR
State S2:
IF CLR
St",te 83:
IF CLR
State S4:
IF CLR
S5:
St~te
IF CLR
IF CLR
St~te
S6:
S7:
IF CLR
St~te
St~te
S8:
IF CLR
S9:
St~te
IF CLR
IF CLR
St~te S10:
St~te S11:
IF CLR
IF CLR
St'lte S12:
IF CLR
State St3:
IF CLR
St~te S14:
IF CLR
state S15:

tE'!lt_vect<>rs
(eCLKA,
[ L
[
[
[

H
X

X
C X
[ X
(
X
[ X

'cloc'(
CLl~B.

X
X

L
H

Sl;
S2;
S3;
S4:
S5:
S6;

S7;
SA:
S9;
S10;
Sl1;
S12;
S13;
S14;
SIS;
SO;

~p.l""ctor'

CU~C.

X
X
X

X

X

L
H·

X
X

X

X

0 THEN 50 ELSE
0 THEN SO ELSE
0 THEN SO ELSE
0 THEN SO ELSE
0 THEN SO ELSE
0 THEN SO ELSE
0 THEN SO ELSE
0 THEN SO ELSE
0 THE"N SO ELSE
0 THEN SO ELSE
0 THEN SO ELSE
0 THEN SO ELSE
0 THEN ·~O ELSE
0 THEN SO ELSF.:
0 THEN SO ELSE
0 THEN SO ELSE

X

CLKD. SELl, SELO] - ) CLK_OUT)
X
L,
L 1 -)
L;
)(
L,
L ] ->
H;
)(
L,
H 1 -)
L;
X
L,
H ] -)
H;
X
H,
L 1 -)
L;
X
H,
L ] -)
H:
H ] -)
H,
L;
L
H,
H ] -)
H
H;

Figure 18. Source File for ABEL
3-33

test_vector-o;
([CLK_IN,
(
CK,
(
CK,
(
CK,
(
CK,
(
CK,
[
CK,
(
CK,
[
CK,
[
(

CK,
f'::K ..

(

CK,
CK,
CK,

(

CJ(,

(
(

CK,

£ond

r

GK,

(

CK,

[

X,

'counter'
OE, CLR, BD_IN] -> [OUTPUT, BD_OUTJ I
] -> (
X
SO,
H ];
L
L,
] -:> (
H,
si, H h
L
X
H 1;
L
X
J -)- r
52,
H,
] -:>
H,
S3,
H 1;
L
X
] ->
H,
54,
H ];
L
X
] ->
H ];
H,
X
S5,
L
] -:> r
X
S6,
H ];
L ,
H,
] -> (
H,
X
H ];
L
87.
] -> (
X
L
H,
S8.
H 1;
L
H,
L J -> r 89. L J;
H,
H ];
X
J -:>
S10,
L
H,
X
1 -> ( SI 1.
H J;
L
H,
X
H ];
L
J -:> ( S12,
X
H J;
L
H,
J -:> ( 513.
X
H,
L
J -> ( S14,
H 1;
H
H J.
H,
S15.
L
->
H,
I
X
H 1;
->
SO.
X
H
1 ->
Z
H h
X.

.

BD_COUNT

Figure 18. Source File for ABEL (Continued)
Pa.ge 1

-

ABEL(tml Ver-sion 1.00
Document Gener-a.tor
4-bit binary/decr.lde counter
Equations for Module BD_COUNT

D(>vice ICt
Reduced Equations:
eLK_OUT = '«SELl ~ SELO ~ !CLKD
# (SELl llc !SELO llc !CLKC
# (!SELl llc SELO ~ !CLKB
# !SELI llc !SELO llc !CLKAIIII;
BD_OllT = !(Q3

ll<

!Q2 II< '01 II< 00 llc !BD_INI;

03 := '«03 llc Q2 ~ Q1
tt ('03 llc '02
# (' 03 t. '01
# ('03 II< '00
# 'CLR)))));

~

00

02 := '«02 llc 01 II< 00 # ('Q2 llc '01 # (!02 llc !OO •
01 .- '«01 llc 00 •
00 := '«DO #

(!01 II< !OO #

!CLR)));

!CLR));

Figure 19. ABEL Output Documentation
3-34

!CLR))));

Page 2
ASELCtm) Version 1.00 - Document Generator
4-bit binary/decade counter
Chip diagram for Module SO_COUNT
Device.> ICt

P16R4

ClK_IN
SELO
SEll
ClKA
ClKB
ClKC
ClKO
ClR
BO_IN
GNO

00
01

02
03
BO_OUT
OE

end of module SO_COUNT

Figure 19. ABEL Output Documentation (Continued)

Reference
1. H. Troy Nagle, Jr., B.D. Carroll, and David Irwin, An Introduction to Computer
Logic. New Jersey: Prentice-Hall, Inc., 1975.

3-35

..

3-36

Programmable Logic Device
Design Software Support

~

TEXAS
INSTRUMENTS

3-37

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service Identified In this
publication without notice. TI advises its customers to obtain the latest
version of the relevant Information to verify, before placing orders, that
the information being relied upon is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Unless mandated by government
requirements, specific testing of all parameters of each device is not
necessarily performed.
TI assumes no liability forTI applications aSSistance, customer product
deSign, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represents that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1989, Texas Instruments Incorporated
Printed in the U.S.A.

TRADEMARKS
ABEL is a trademark of DATA 1/0 Corporation
CUPL is a trademark of LOGICAL DEVICES, INC.
PLDeslgner is a trademark of MINC INCORPORATED
proLoglc is a trademark of Inlab Incorporated
IBM and PC-DOS are trademarks of International Business Machines
Corporation
MS-DOS is a trademark of Microsoft Corporation

3-38

Programmable Logic Device
Design Software Support
~

~~mr~~~-~*Jl1!::;W~~~S:ii!;!:e~~

INTRODUCTION
There are a number of logic design software products available to the design engineer, intended to make logic design easier and less cumbersome. With these software products, complex designs can be described using Boolean equations, truth
tables, state machine diagrams and schematic capture methods available on most
CAD systems.
The ultimate function of these software products is to generate a JEDEC file of the
original design to be programmed into the targeted Programmable Logic Device
(PLD). However, most S/W vendors provide more than a JEDEC file as an output from
the software. This section seeks to describe the attributes of a few ofthe popular logic
design products. We recommend that the reader contact the specific manufactures
to obtain the latest and most comprehensive information available.

ABEL 1M - Advanced Boolean Expression Language
by DATA I/O Corporation:
ABEL consists of a special-purpose, high-level language that is used to describe
logic deSigns, and a language processor that converts logic descriptions to programmer load files - or JEDEC files. These files contain the information necessary to program and test programmable logic devices.
Features of ABEL design language:
Universal syntax for all PLDs
High-level, structered design language
Flexible forms for logic description
Boolean Equations
Truth Tables
State Diagrams
Test Vectors for Simulation and functional testing of programmed parts
Time-Saving Macros and Directives

3-39

Some powerful features of the ABEL language processor:
Syntax checking
•

Verification that a design can be implemented with a chosen part
Logic Reduction
Design Simulation

•

Automatic design documentation
Creation of programmer load files in JEDEC format

Between the ABEL design language and the language processor it becomes rather
easy to design and test logic functions to be implemented with a PLD. For example,
a three-Input AND function with the inputs Q, R, and S and an output P could be designed using a truth table like this:

truth_table "3-input AND gate"
([ Q, R, S ] -> P)
0, .X., .X.] -> 0

x, .0., .x.] -> 0
X, .X., .0.] -> 0
1, 1, 1 ] -> 1 ;

The" .X." in the table Indicate "don't care" conditions, and the output P is setto 1 only
when all three Inputs equal 1. The output could also be specified in simple Boolean
operators and achieve the same result. This Is done here, where "&" Is the logical
AND operator:
p ,;, Q & R &

3-40

s;

More Boolean Operators
Operator

Example
!A

Description
NOT: ones complement

&

A & B

AND

#

A # B

$

A $ B

OR
XOR: exclusive OR

!$

A !$ B

XNOR:exclusive NOR

ABEL allows designs to be described in the best possible manner to suit the logic
to be implemented or In a manner suitable to the logic designer. In most cases the
same description can be used for many different devices simply by changing the device specified.
TIle logic design process using ABEL is shown in Figure 1. Beginning with the design
concept, the designer creates the ABEL source file required by the language processor In order for it to generate the programmer load file. With the help of a text editor,
the designer can create the source file which contains complete description of the
logic design. TIle source file may also be created using DASH-ABEL to convert a
DASH-generated schematic of a design

3-41

Logic Design Steps:
The source file is presented to the language processor which performs the several
functions to produce a programmer load file (in JEDEC) format and all the required
design documentation (see Figure 1.).
PARSE

checks the syntax of the source file and flags any errors.

TRANSFORM

converts the logic description to an intermediate form.

REDUCE

performs logic reduction.

FUSEMAP

creates the (JEDEC) programmer load file, which can then be
downloaded
to the logic programmer to program parts, or used to generate
test vectors.

DOCUMENT

generates a listing of the source file, a drawing of the logic
device pin assignments, and a listing of the programmer
load file.

Figure 1. Logic Design Steps with ABEL

3·42

DESIGN EXAMPLES
The following two design examples highlight two design entry methods, Boolean
equations and State Diagrams.

Three-State Sequencer
The following design is a simple sequencer that demonstrates the use of ABEL state
diagrams. The design is implemented in a TIBPAL16R4-1 0 device (P16R4). There is
no limit to the number of states that can be processed by ABEL, but the number of
transitions and the path of the transitions is limited.
Figure 2. shows the sequencer design, with a bubble diagram showing the transitions
and the desired outputs. The state machine starts in state A and remains in that state
until the 'start' input becomes high. It then transitions from state A to state B, from
state B to state C, and back to state A. It remains in state A until the 'start' Input is
high again. If the 'reset' input is high, the state machine returns to state A at the next
clock cycle. If this reset to state A occurs during state B, an 'abort' synchronous output goes high, and remains high until the machine is again started.
During states Band C, asynchronous outputs 'in_B' and 'in_C' become high to indicate the current state. Activation of the 'hold' input will cause the machine to hold in
state B or C until 'hold' is no longer high or 'reset' becomes high.

default with abort = 0

reset with abort: = 1
hold & !reset
with abort: = 0
default with abort = 0

hold & ! reset
with abort: = 0

Figure 2. State Machine Bubble Diagram

3-43

Design Methodology
Tlle sequencer Is described by using a STATE_DIAGRAM section In the ABEL source
file. Tlle ABEL source file for the sequencer Is shown in Figure 3. In this example, the
design is given a title, the target device is specified, and pin declarations are made.
The FLAG statement is used to select the level of reduction required. Constants are
declared to simplify the state diagram notation. Tlle two state registers are grouped
into a set called 'sreg'. Tlle three states A, B, and C are declared with appropriate
values specified for each.
For larger state machines with more state bits, careful numbering of states can dramatically reduce the logic required to implement the design. Using constant declarations to specify state values saves time when iater changes to these values are made.
The state diagram begins with the STATE_DIAGRAM statement that names the set
of signals to be used for the state register. The set to be used is 'sreg'.
Within the STATE DIAGRAM, IF-THEN-ELSE statements are used to Indicate the
transitions between states, and the input conditions that cause each transition. In
addition, equations are written in each state that indicate the outputs required for
each state or transition.
For example, state A reads:

state A:
in_B = 0;
in_C = 0;
if (start & !reset) then B with abort := 0;
else A with abort :=0;
This means that if the machine is in state A and 'start' is high, but 'reset' is low, then
the machine will advance to state B, but in another input condition the machine will
remain in sate A.
The equations for 'in_B' and 'in_C' indicate that those outputs should remain low
while the machine Is in state A, while the equations for 'abort', specified with the
"with" keyword, indicate that 'abort' should go low if the machine transitions to state
B, but should remain at its previous value if the machine stays in state A.

Test Vectors
The specification of the test vectors for this design is Similar to those of any other
synchronous designs. The first vector puts the machine into a known state (state A),
and the following vectors exercise the functions ofthe machine. Tlle A, B, and C constants are used in the vectors to indicate the value of the current state, thus improving
the readability of the vectors.

3-44

title '8-bit barrel shifter
Gerri t Barrera
Data I/O corp

Redmond WA

module sequence
flag , -r3'
title 'state machine example

device

d1

D. B. Pellerin - Data I/O';
'p16r4' ;

pin
pin
pin
pin

q1,qO

clock,enab. start ,hold, reset
abort
in_B, in_c
sreg

"state Values ...
A = 0;

17 oct 1987'

14,15;
1,11,4,2,3;

17;
12,13 ;
[q1,qO] ;

B = 1;

state_diagram sreg;
state A:
in_B = 0;

C = 2;

" Hold in state A until start is active.

in_C = 0;
IF (start &. I reset) THEN B WITH abort : = 0;
ELSE A WITH abort : = abort;

state B:

" Advance to state C unless reset is active
" or hold is active. Turn on abort indicator
in_C :::: 0:
II
if reset.
IF (reset) THEN A WITH abort : = 1;
ELSE IF (hold) THEN B WITH abort : = 0;
ELSE C WITH abort : = 0;
in_B = 1;

state C:
in_B = O'
in_C = 1;

II

Go back to A unless hold is active
Reset overrides hold.

IF (hold &. ! reset) THEN C WITH abort : = 0;
ELSE A WITH abort : = 0;
[qo, q1] = IRESET

test_vectors ([clock, enab, start ,reset ,hold]->[sreg, abort, in_B, in_C])
[.c.
0
0
0
0 ]->[ A
0
0
0];
[ . c.
0
0
0
0 ]-> [ A
0
0
0] ;
[.c.
0
0
0 ]->[ B O O ] ;
[.c.
0
0
0
0 ]->[ C O O
];

.c.
.c.

o
o

1

o

o
o

.c.
.c.

o
o

o
o

o

o
o

.c.

o
o

1

o

o

.c.

o

o

.c.
.c.

o
o

o
o

o

o

o

o

]->[
]->[
]->[
]->[

A
B

o
o

1

A

1

o

]->[
]->[
]->[
]->[

B

o

B
B
C

o

o
o

A

o ];
o ];
o ];
o ];

o ];

o

1

o ];
o 1;

o

o

1 ];

end

Figure 3. The ABEL Source File for Sequencer

3-45

8-Bit Barrel Shifter
This design example highlights the use of Boolean equations as design entry format
using ABEL. It Is an 8-bit barrel shifter that includes a shift amount selector, an output
control, and a device enable. The target device forthis design is the TIBPAL.20R8-XX.
This design Is described by only one Boolean equation. Figure 4. shows a block diagram of the design.
07 06 05 04 03 02 01 00

12

E

11

ClK

10

OC

07 06 05 04 03 02 01

ao

Figure 4. Block Diagram: 8-Bit Barrel Shifter

Design Specification
As shown In the block diagram above, the barrel shifter has 8 inputs (00-07), eight
outputs (00-07), three select lines (10-12), a clock (ClK), an output control (OC), and
an enable (E). On each clock pulse when E is high, the outputs show the inputs shifted
by n bits to the right, where n Is specified by the select lines. The bit shifted out of
the barrel shifter on the right is shifted in on the left, actually performing a rotate. When
E is low, the shifter outputs are then preset to 1.
The output control, when high, sets all outputs to high impedance, without affecting
the shift. This means that if a shift is selected while the output control is high, the shift
still occurs, but it Is not seen at the outputs. If the OC Is then set low, the shifted data
will appear on the outputs.

Design Methodology
Figures 5. and 6. show a simplified block diagram and the source file listing of the
design respectively. Pins have been assigned so that the shifter outputs can be associated with the registered outputs of the targeted PlO. The inputs, outputs, and select
lines are then assigned to sets which simplify notation.
In!ut

SeI~~lK
~OC
Output

Figure 5. Simplified Block Diagram: 8-BIt Barrel Shifter

3-46

One Boolean equation is used to describe the entire function of the barrel shifter. The
equation is expressed in the sum of products form and assigns a value to the output
set. Each product in the equation corresponds to one of the possible shifts and defines the outputs for that shift.
Thus, the product term,
(Sel==O) & ! [D7,D6,D5,D4,D3,D2,Dl,DO]
defines that for a shift of 0, the inputs are transferred without a shift directly to the outputs. Similarly, the product term,
(Sel==5) & ! [D4,D3,D2,Dl,DO,D7,D6,D5]
defines that for a shift of 5, output 07 gets the value of input 04, 06 gets 03 and so
on, corresponding to the correct shift of five places. Notice that the low-order input
bits have been "wrapped around", shifted out of the right side and into the left side.
Sel can have only one value at a time, thus only one of the "Sel= =" relational statements can be true at a given time, and only one of the product terms contributes to
the sum of products. The OR of all the product terms is AN Oed with the enable E so
that when E is low, all the outputs are preset to 1.
Both the output sets on the left side of the equation and the inputs on the right side
of the equation are expressed as negative logic, which, in effect, gives active high
logic. This is done to compensate for the 'PAl20RS's inverted outputs. The inverse
of the inputs is available on the device.

3-47

module
barrel
title 'a-bit barrel shifter
Data I/O Corp

Gerrit Barrera

device

P7096

Redmond WA

D7, D6, D5, D4, D8, D2, Dl, 00
Q7 ,Q6,Q5,Q4,Q8,Q2, Ql,QO
15,18,17,18;19,20,21,22;
Clk,OC,E,l2,l1,IO
Input
output
sel
H,L,C,Z

17 Oct 1987'

'P20R8' ;
Pin 2,3,4,5,6,7,8,9j

Pin
Pin 1,13,28,10,11,14;
[07,06,05 ,04,OS,02,Ol,OO];
[Q7 ,Q6,Q5 ,Q4,Q8,Q2,Ql,QO];
[12,11,10] ;
1,0, .C., .Z.;

equations
,output != E & (

(Sel == 0) & '[07,06,05,04,OS,02,Ol,OO]
# ( S e l l ) & '[00,07,06,05,04,08,02,01]
# (Sel
2) & '[01,00,07,06,05,04,03,02]
# (Sel
8) & '[02,01,00,07,06,05,04,03]
# (Sel
4) & ! [08,02,01,00,07,06,05,04]
# (Sel
5) & '[04,OS,02,Ol,OO,07,06,05]
# (Sel
6) & '[05,04,03,02,01,00,07,06]
# (Sel
7) & '[06,05,04,03,02,01,00,07])

test_vectors
([Clk,OC, E. sel,
Input]
C, L, H, 0, -b10000000]
c, L, H, 1, -b10000000]
C, L, H,
2, -b10000000]
C, L, H,
S, -b10000000]
C, L, H,
4, -b10000000]
L, H, 5, -b10000000]
C,
C, L, H, 6, -blOOOOOOO]
C, L, H,
7, -b10000000]

->
->
->
->
->
->
->
->
->

output)
-bl0000000; .. Shift 0
-bOl000000; .. Shift 1
-b00100000;
Shift
-bOO010000;
Shift
-bOOO01000;
Shift 4
-bOOOOOlOO;
Shift 5
-bOOOOO010;
Shift
-bOOOOOOOl;
Shift
-bOllllll1 ;
-blOll1111 ;
-bll101111 ;
-bll111110;

..
..
..
..

C,
C,

L,
L,
L,
L,

H,
H,
H,
H,

0,
1,
8,
7,

-bOlllllll]
-bOlllllll]
-b01111111]
-b01111111]

->
->
->
->

C,
C,
C,
C,

L,
L,
L,
H,

H,
H,
L,
H,

1,
1,
0,
0,

-bOOOOOO01]
-blll11110]
-bOOOOOOOO]
-bOOOOOOOO]

-> -b10000000; .. Shift 1/Wrap
-> -b0l111111 ; " Shift l/Wrap
-> -b11111111 ;
Preset
II Test High Z
->
z;

C,

c,

..
..
..

shift 0
Shift
Shift
Shift

end

Figure 6. ABEL Source File for the 8-Blt Barrel Shifter

3-48

OTHER PLD DESIGN SOFTWARE PRODUCTS
Below is a short list of some of the popular PLD design software products available
to logic designers. They are all PC based and can be Installed on your IBM PC 1M or
compatible.
CUPL ™

-

by Logical Devices Inc.

PLDesigner 1M

-

by MINC Inc.

proLogic TM

-

by IN lAB Inc.

CUPL
CUPL, like ABEL, is a universal Computer Aided Design (CAD) tool that supports
PLDs. It has utility flies thatfacilitate conversion of designs done in other design software environment to the CUPL design environment. CUPL also produces a standard
programmer load file in JEDEC format, thus making it compatible with logic programmers that accept JEDEC flies.
Features of CUPL design language:
Flexible forms for design description
Boolean Equations
Truth Tables
State Diagrams
Expression substitutions or time saving Macros
This involves the assignment of names to
equations and having the software do the
substitution any time the assigned name
is encountered during the compile process
Shorthand Features offered by CUPL
List Notation; This nested directive [A4,A3,A2,A 1,AO]
can be represented as [A4..0]
Bit Fields; A group of bits may be assigned to a name
as in
FIELD ADDR

=

[A4 .. 0]

Also available in CUPL are the use of
Distributive property - where A & (B # C)
Is replaced with A & B # A & C
DeMorgans Theorem - where
is replaced with ! A # ! B

! (A & B)

3-49

Some features of the CUPL language processor:
CUPL provides design templates which allow designers to just "fill-inthe-blanks· when originating a design. Free form comments can also
be used throughout the design.

3-50

•

Error checking with detailed error messages directs designers to the
source of problems during debugging.

•

logic Reduction Capabilities available on CUPL offers a choice of
several minimization levels from just fitting a design into a target
device to the absolute minimum.

•

Design Simulation is accomplished using the CSIM feature. This feature
allows designers to check the workability of their designs before a part
Is programmed. Functional simulation can be done at the programmer
when test vectors are provided.

PLDesigner
The PLDeslgner is a universal logic design synthesis tool for designing with PLDs.
It features:
A high-level behavioral language
Algorithmic design entry for state machine designs
Waveform design entry for glue logic
Design Simulation with automatic test vector generation
Automatic device selection and design partitioning across multiple
device architectures
A device library of over 2,000 devices.
A fundamental difference between PLDesigner and other products is that the "deSign
phase" is separate from the "device selection phase". You can complete a design
before a device, or devices, are selected. This allows you to concentrate on design
and simulation. No longer is it necessary to limit your design to a single device, or
to select a device before starting the design.

System Requirements
PLDesigner runs on an IBM PC 1M or compatible with an MS-DOS 1M or PC-DOS 1M
operating system, version 2.0 or later. 640K RAM memory and a hard disk are recommended: A CGA, EGA, Hercules, or monochrome display may be used. A mouse and
printer are optional.

Logic Design Steps with PLDesigner

Edit {
Design

'----,r----'

Compile {
Design

Partition
System

Program {
Test
Devices

* Indicates modules that

generate documentation

3-51

pro Logic
proLoglc Is a logic design software tool used to design and program Texas Instruments PLDs. This design software development package quickly converts your logic
design to a programmer load file In the standard JEDEC format. proLogic has the flexibility to allow you to describe your logic design in any of the following formats:
•

Boolean Equations

•

Truth Table

•

State Diagrams

It should be noted here that, not only can a design be entered in any of the above
methods, you can design various sections of the design in any of the three formats
shown above, and proLogic has the ability to unify the various sections and process
them as one design.
The proLoglc compiler Is capable of performing functional simulation when test vectors are provided. The simulator uses the fuse list portion from the JEDECfileto create
a functional device model. It can then execute the simulation vectors against this
model. The results are automatically placed In a file for evaluation.

PLD design flow using proLogic design software:
I Texas Instruments I
I Device Library I

START

DESIGN ENTRY
BOOLEAN
EQUATIONS
STATE
MACHINES
TRUTH
TABLES
(.PLD)
OPTIONAL
TEST
VECTORS

,

~
-VI

,..

proLogic
Complier

FINISH

l

~

-"-y

JEDEC
File
(.JED)

~

Listing File (.LS1)
Reduced logiC
Equations
Fuse Plot

I

'
.I

r1

,..

proLoglc
Simulator

I

f,

I I
OPTIONAL

~>

Vector Simulation
File
(.TS1)

3-52

DEVICE
PROGRAMMER

I

Programming Texas Instruments
Programmable Logic Devices

•

TEXAS
INSTRUMENTS

3-53

IMPORTANT NOTICE
~xas

Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. TI advises Its customers to obtain the latest
version of the relevant Information to verify, before placing orders, that
the Information being relied upon is current.
T1 warrants performance of its semiconductor products to current
specifications in accordance with n's standard warranty. Testing and
other quality control techniques are utilized to the extent n deems
necessary to support this warranty. Unless mandated by government
requirements, specific testing of all parameters of each device is not
necessarily performed.
T1 assumes no lIabllityforn applications assistance, customer product
design, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represents that any license,
either express or Implied, Is granted under any patent right, copyright,
mask work right, or other Intellectual property right of TI covering or ralatlngto any combination, machine, or process In which such semiconductor products or services might be or are used.

Copyright © 1989, Texas Instruments Incorporated

3-54

Programming Texas Instruments
Programmable Logic Devices

This report is intended to introduce the reader to the fuse technologies used In Texas
Instruments PLDs, the measures taken by TI to provide devices with the highest possible programming yields, and the steps users can take to ensure good programmability.

HOW A FUSE IS PROGRAMMED
Programming Algorithm
Each programmable logic device family requires a unique algorithm for fuse programming and verification on commercial programming equipment. The algorithm is
a combination of voltage and timing required for addressing and programming fuses
in the user array.
The PLD's programming circuitry is enabled by pulsing one or more pins to a super
voltage level (10.5 volts). Once the programming circuitry is enabled, inputs become
addressing nodes for the input and product lines within the PLD. The actual fuse link
is at the intersection of the input and product lines. Once the fuse is addressed, the
tUse can be programmed by pulsing the output associated with the location of the
fuse link. A fuse can be verified to be programmed by enabeling the programming
circuitry, supplying the fuse address to the device's inputs, and reading the level of
the device's output.

Bipolar Fuse Technology
Figure 1 shows a top and side view of a fuse in a bipolar PLD before it is programmed.
Titanium-Tungsten (TiW) is used for the "fuse" or metal link programming element.
The ideal thickness for this programming element is about 500 Angstroms. TitaniumTungsten is also used as a barrier metal over contacts to prevent direct aluminum
contact to silicon. To prevent aluminum diffusion during high temperature processing,
the ideal thickness of the barrier metal is about 2000 Angstroms. TI's two-step link
process allows both the barrier thickness and the fuse thickness to be at the ideal.
The net result is a higher reliability and better programming yields.
When a device is programmed, the fuse location is selected. The fuse element at the
selected location is then opened by the programmer passing a current through the
Titanium-tungsten fuse element that violates the current density limit for the element.
This current flow heats the fuse element to approximately 2,100 degees Celcius at
which point the element is in a molten state. The metal migration which results from
the heat of this out-of-limit current stress causes a gap in the fuse element.
As shown in Figure 2, the high temperature at the fuse element's gap causes two actions to occur. The fuse element's TiW material oxidizes so as to leave the metal on
both sides of the gap non-conductive. Also, the heat associated with programming,
causes the Silicon Dioxide (Si02l above the fusing element to flow into the gap. This
proven fuse technology has eliminated the fears of fuse grow back as a failure mechanism in PLDs.

3-55

TlW (Fuse)

Figure 1. Before Programming

TlW (Fuse)

~VIEW

'--________/01!

TIW

Figure 2. After Programming

EPLD Programming Technology
Texas Instruments CMOS PLDs employ a process technology similar to EPROM devices. When compared to the bipolar fusible link technology, the FAMOS (Floatlnggate, Avalance-Injection MOS) transistor used by EPROMS replaces the fusible link.
This permits the programmability function in the sam!;! way as the fuse.
The FAMOS transistor resembles an ordinary MOS transistor except for the addition
of a floating gate buried in the insulator between the substrate and the ordinary select-gate electrode as shown in Figure 3. The programming of the FAMOS structure
is performed by capacitively coupling the select gate in series with the floating gate.
Hot electron injection onto the floating gate occurs by pulling the select gate to the
programming voltage and the drain of the FAMOS transistor to the programming voltage minus several threshold drops. As shown in Figure 4, this serves to alter the
threshold voltage of the select gate.
Once programmed, the FAMOS transistor retains the electron charge or data pattem,
until exposed to an integrated dose of ultravioletlighl with a wavelength of 2,537 ang-

3-56

stroms. lllis uv light will "erase" the charge by giving the electrons enough energy
to scatter from the floating gate. lllis retums the threshold voltage of the select gate
back to its original value or unprogrammed state. After erasure, the device is ready
tor reprogramming. llle reprogrammablity feature of Erasable PLDs allows the devices to be used for many programming iterations which are often required in the
user's design and prototyping stages.

INTERPOLY
OXIDE

ACCESS
/GATE

~~~
~~r
OXIDE

-~~TE)f
SI

D

= FLOATING

a. Cell Topology

""'---

OXIDE

~

= ACCESS

b. Cell Cross-Section

Figure 3. Views of an Floating Gate EPROM Cell

t
!Zw

'\ ERASED
STATE

a:
a:
:;)

o
z

~c
SELECT GATE VOLTAGE - - - .
The threshold voltage determines whether it is sensed as the nonconducting programmed state or erased. The change in threshold corresponds to the shift shown in the select-gate voltage to drain current
transfer characteristic.

Figure 4. Drain Current vs Gate Voltage

3-57

PROGRAMMER APPROVAL
Programming Algorithm Specifications
In order to achieve satisfactory programming yields for PLDs, it is critical that device
programmers adhere to the programming algorithm specifications as defined byTexas Instruments. Each specification contains detailed step-by-step programming
procedures, input and product line addressing procedures, waveform diagrams, and
minimum and maximum voltage and timing tables. Becuase of the complexity of the
programming algorithms and the need to control and update the specifications, Texas Instruments maintains programming algorithms in a specificaiton system seperate
from the PLD Data Book.
TI currently sends specifications and specification updates to most programmer and
software manufacturers, and challenges each to work with TI to provide our mutual
customer with approved programming support to guarantee them with the best possible programming yield.
Texas Instruments reserves the right to approve programming algorithms contained
in commercial programming eqUipment, and recommends that customers only use
approved programming support.
Approved programming support means that TI has evaluated the programming algorithm, has verified critical timing paths and voltage levels, and has performed yield
analysis testing. Approvals are granted by device and are thoroughly documented.
These measures are taken to ensure that Tl's customers receive the best possible
programming yields when using TI PLDs.

3-58

Evaluation and Approval Methods
Programmers are evaluated byTl's programmable logic applications. The evaluation
includes the following:
Measure voltage levels for accuracy and repeatability
Measure critical timing paths
Evaluate system power supply and grounding
Yield analysis
Templates and oscilliscope printouts are used to document all measurements and
are maintained permanently on file. Approvals are granted by device or algorithm and
documented by letter to the programmer manUfacturer.

Approved Programmer Support
Approved programmer support is documented in the 'TI Programming Reference
Guide', and on the TI PLO Bulletin Board (214)997-5665. To subscribe to the Programming Reference Guide, simply contact the TI PLD Hotline (214)997-5666 or your
local TI field sales representative.
Texas Instruments recommends that customers use only approved programming
support. Approved programming support ensures the user...
The best possible programming yield is being achieved because the
programming algorithms were evaluated and closely scrutinized.
TI guarantees 100% programming yield if approved programmers are
used, any fallout can be returned for full credit.
TI applications engineers are available to interface with programmer
manUfacturers for you on any programming issues or concerns.

3-59

HELPFUL HINTS FOR GOOD PROGRAMMABILITY
1)

Follow accepted standards for ESP protection - remember the additional
handling requirements In customizing PLOs make them more suscePtible to
ESO damage.
Equipment. personnel and work surfaces should be grounded
Air Ionization Is recommended when handling statiC sensitive devices
outside of protective containers.

2) Misaligned contactors and wom sockets can contribute to poor programming
yield. Be aware of the manufacturers specification for number of Insertions and
be sure sockets are replaced frequently to ensure proper contact.

3) Ensure you are using the latest update. Most programmer manufacturers offer
update and repair services to their users. The cost of the service is typically not
much more than the cost of a single update and the manufacturer may update
four or more times per year. TI recommends the user subscribe to this service.
Revisions could improve yield. TI continuously works with programmer
manufacturers on yield improvement.
New devices may be supported.
4) Programming equipment should be calibrated. Calibration Is typically Included
with the update and repair services previously discussed. TI recommends no
less than two calibrations per year.
Highest possible yields
Avoid device damage
5) Verify the correct family pinout codes or device entry codes are being used. It
Is Important to understand that different algorithms may be needed for different
speed versions of the same function.
6)

3-60

Use only TI evaluated and approved programming equipment to ensure the
highest possible programming yield and quality level.

Test Considerations for PLDs

."

TEXAS
INSTRUMENTS

3-61

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service Identified In this
publication without notice. 11 adVises its customers to obtain the latest
version of the relevant information to verify, before placing orders, that
the information being relied upon is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with Tl's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Unless mandated by govemment
reqUirements, specific testing of all parameters of each device is not
necessarily performed.
TI assumes no liability forTI applications aSSistance, customer product
deSign, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represents that any license,
either express or implied, Is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relatingto any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1989, Texas Instruments Incorporated

TRADEMARKS

Logic Fingerprint is a trademark of DATA I/O Corporation.

3-62

Test Considerations for PLDs

PLD architecture establishes some unique characteristics. Because PLDs do not
have the functional needs for address pins as found In a PROM, the array must be
addressed for programming through the use of super voltages (10.5 volts). Since the
programming and verification circuitry are not the same as the functional circuitry,
verification of the array fuses does not ensure total functionality. For this reason,
there are two customer yield points to be considered for a PLD, 1) programmability
yield, and 2) functionality after programming. TI thoroughly tests PLDs in its factory;
however, many users find the need to test after programming to achieve the highest
quality levels.
The objective of this report is to provide the PLD user with an insight as to what kind
of testing is performed at TI prior to shipment of programmable logic devices, and
to assist you in the evaluation of your testing alternatives after programmIng.

DESIGNED-IN FACTORY TESTABILITY
Texas Instruments has designed testability into its bipolar PLDs through the addition
ottest input and test product lines. Utilizing the same circuitry as the main array fuses,
a test pattern Is programmed Into the test array fuses which address and program at
least one fuse in each input and product line. In addition to verification of the main
fuse array, the test lines provide a further programmability checkpoint for each device. These same test lines enable TI to do functional, dc, and ac parametric testing
on every packaged device.
Figures 1 and 2 are simplified diagrams of the test circuitry for the TIBPAL16XX series
devices. Note that the test lines allow testing of actual input and output circuitry;
therefore, ali guaranteed specifications can be tested. AC testing through the test circuitry Is closely correlated to worst case paths and should eliminate the need for ac
testing at the customers incoming inspection.

3-63

I

TEST INPUT BUFFER

By using the test Input lines, all
outputs may be toggled and
speed can be checked from
one input·to all outputs.

STANDARD
OUTPUT
BUFFER

STANDARD
OUTPUT
BUFFER

··•

P19

P18

P17 - P13

STANDARD
OUTPUT
BUFFER

P12

Figure 1. AddHlonallnput Lines

I

INPUT
BUFFER

I

INPUT
BUFFER

I

INPUT
BUFFER

J

rEEDBACK~
BUFFER
TEST
OUTPUT
BUFFER

By using the test product lines
TI can cheCk every input and

Implement dynamic test from
every Input to one output.
Figure 2. Additional Product Lines

3-64

USER TESTABILITY FEATURES
In addition to the designed-in testability features used in factory testing, features
were also added to simplify user testability. Table 1 lists user testability features offered on TI programmable logic devices and associated software products available
to assist the user with testing PLD's.

Register Pre-Load
This feature allows the user to pre-load the output registers to known states prior to
applying data at inputs and/or I/O's and clocking.
Pre-load can be implemented by writing pre-load vectors in more popular logic compilers following logic equations or can be automatically generated by using automatic vector generation software. Most commercial programmers used for functional test
support the use of pre-load vectors.
The real advantage of register pre-load is that it allows the user to fully test the more
complex codes.

Power-Up Clear, Set or Reset
Power-up clear, set, or reset enables the user to know the state of the register at
power-up. Again, this is a key feature for testability as it allows the user writing test
vectors or the automatic vector generation software with a starting point for register
intensive designs. Table 1 shows the power-up state of the register and resulting
state at the output.
The user can also contribute to the testability of his design by utilizing other features
of the PLD.

Unused Inputs / Product Lines
Unused inputs and product lines can be used to implement set, reset, clear, etc...
functions to register intensive designs which are often hard to test. Often register designs have unused input pins, as well as product lines available for implementing
these functions.

Enable on Combinational Outputs
Combinational outputs have one product line available for implementing the enable/
disable function. The key advantage here can be seen during board testing where
devices need to be isolated from each other. By disabling the output of the PLD, the
user can force input conditions from the extemal source to the devices being driven
by the PLD.

3-65

..

Table 1: User Testability Features
DEVICE
FAMILY

SPEED
REGISTERED
DESIGNATOR PRELOAD

TIBPAD16NS
TIBPAD1SNS

-7

TIBPAL16LS
TIBPAL16R4
TIBPAL16R6
TIBPAL16RS

-7/-10
-7/-10
-7/-10
-7/-10

TIBPAL16LS
TIBPAL16R4
TIBPAL16R6
TIBPAL16RS

-6

-12/-15/-25
-12/-15/-25
-12/-15/-25
-12/-15/-25

REGISTERED POWER-UP
POWER-UP
OUTPUTS AT REGISTER AT OUTPUT

NA
NA

o
o

NA
NA

NA
NA

NA
YES
YES
YES

o

NA
L

NA

L
L

H
H

NA

o

NA
H
H
H
NA
L

4

4

TIBPAL20LS
TIBPAL20R4
TIBPAL20R6
TIBPAL20RS

-7/-10
-7/-10
-7/-10
-7/-10

NA
YES
YES
YES

o

TIBPAL20LS
TIBPAL20R4
TIBPAL20R6
TIBPAL20RS

-15/-25
-15/-25
-15/-25
-15/-25

NA
YES
YES
YES

-/A
-15
-20

YES
YES
YES

101010*

L
L

-85,-55
-85,-55
-85,-55
-85,-55

NA
YES
YES
YES

o

-25

YES

10*

-3,-6
-3,-6

NA
NA

o

TIBPAL22V10
TIBPAL22V10
TIBPAL22VP10
TICPAL16LS
TICPAL16R4
TICPAL16R6
TICPAL16RS
TICPAL22V10Z
TIEPAL10H16PS
TIEPAL10016PS
TIBS2S105
TIBS2S167

1.0

2.23
2.23
2.23
2.23

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

NA
L
L
L

2.23
2.28
2.23
2.23

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

NA

2.23
2.23
2.23
2.23

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

H

L

o

NA

NA

4

L

H

L
L

H

2.28
2.28
2.23
2.23
2.23
2.28
2.23

1.0
1.0

1.0
1.0

L

H/L
H/L
H/L

NA
NA
NA
NA

NA
NA
NA
NA

2.23
2.23
2.28
2.23

1.0
1.0
1.0
1.0

1.0
1.0
1.0
1.0

2.28

1.0

1.0

L

4

o

16244S*

H

NA
NA

NA
NA

2.23
2.23

H

H
H

2.23
2.23
2.23
2.23

H

SS*
-25, -80, -35
-80, -85, -40
-85, -45

1.3

H
H
H

B
B

TIBPSG507
TIBPLS506
EP610
EP910
EP1S10

4

L

H

L

H

NA
NA
NA

NA
NA
NA

- = USER CONFIGURABLE
NA = NOT APPLI CABLE
NOTE: ALL CIIOS PLDS ARE ERASABLE FOR REPEATED PROGRAMIIABILITY.

3-66

VECTOR GENERATION
SOFTWARE SUPPORT
ANVIL (-- DATA I/O --)
ArG
PLDTEST PLDTEST+

2.28
2.28

PLD TESTING OPTIONS
Fuse Verification / Checksum
Checksum testing verifies array fuses to be intact or blown. Each fuse location is assigned a value of 1, 2, 4, 8, 16, 32, 64, or 128. The checksum is the sum (in hexadecimal) ofthe values of positions with blown fuses. As previously discussed, checksum
testing or fuse verification only tests for the state of the fuse and exercises programming circuitry only. Functional circuitry is not tested.

Structured Vector Testing
Structured vector testing, utilizing the software packages shown in Table 1 or generated manually at design conception, allow the user to apply structured test vectors
(see Figure 3) to the device either on device programmers or testers. Figure 4 shows
how to implement pre-load into your vector test.
Fault coverage of structured vectors is graded and documented so the user knows
how much coverage he has for his design. A fault is simply a potential for device failures. Faults graded include logic faults as well as fuse faults.
logic Faults - Check affected gates for S-A-O, or stuck low, and S-A-l, or stuck
high. Figure 5 Illustrates logic faults. Fuse Faults - Check each fuse for intact or blown
Structured vectors are generic so they can be applied to all manufacturers PlDs of
Iike function (e. g. 16l8, 22Vl0, etc ...). Structured vector testing ensures the functionality of the design, and can be performed right on the device programmer. Structured
vector testing should be considered the minimum amount of testing required prior to
application.

Signature Analysis / Logic FingerprintTM / Random Vector Test
Signature analysis or fingerprint testing is sometimes seen as an alternative to structured vector testing. The test applies a pre-determined or psuedo-random vector set
to the inputs of a "known good" device and memorizes the output responses. Subsequent devices are tested against the master. Potential problems exist with this type
of testing.
Master device could be defective resulting in the acceptance of bad devices
and/or rejection of good devices.
Registered devices may never initialize
Outputs may never be put in the correct states to ensure correct feedback
(only structured vectors ensure correct feedback)
Oscillating conditions not controlled (structured vectors can void oscillations)
Different manufacturers use different power-up / pre-load conditions
Percent of coverage is unknown
The best case could yield an adequate functional test while the worst case may test
little or nothing. The problem is there is no way to detemnine which case you have
as grading Is not available.

3-67

VOOOl
V0002

PIN 1
PIN2

ClXOOlOlONOLLHZHLllN*
COXlOOOOlN~LLHHLLllN*

_-----Itt

J

-

PIN 20-----------------------------------SYMBOLOGY
C = CLOCK
H = EXPECT HIGH

o

L = EXPECT LOW
Z = HIGH-IMPEDANCE
X = DON'T CARE

= DRIVE LOW
1 = DRIVE HIGH

N

=

NO CONNECT

1
.

Figure 3. Test Vectors (Standard JEDEC Form)

DISABLE REGISTERS
P INDICATES PRE-LOAD ~

VOOOl
V0002

r

FORCE REGISTER TO
KNOWN STATE

~

r

PXXXXXXXXNlOOllOOllN*
COXIOOOOlNOLLHHLLHHN*

Y

APPLY INPUT
CONDITIONS AND CLOCK ---------'-

vL

1
EXPECT OUTPUT
CONDITIONS

ENABLE REGISTERS
Figure 4. Pre-Load Implementation - '16R8

• STRUCTURED TEST VECTORS CAN BE APPLIED TO DETECT
S - A - 1 FAULT: Circuit node Ignores input stimuli
remains at a high or "1" state

1t

1t

1 (ACTUAL)

o (EXPECTED)
S - A - 0 FAULT: Circuit node ignores input stimuli
remains at a low or "0" state

o
1
1

0

tot

o

(ACTUAL)
1 (EXPECTED)

t = NODES CHECKED
Figure 5. Faun Grading

3-68

DC Parametric Testing
DC parametric testing includes structured vector or functional testing as described
previously plus the testing of critical current/voltage parameters to ensure they meet
the specifications prescribed by the TI data book.
The testing of dc parametrics, such as input and I/O leakage currents, output high
and low voltages under dc loading, power supply current, etc ... will only improve the
quality of the PLD going Into the application by ensuring that devices which are functional were not damaged due to ESD (electrostatic discharge) or EOS (electrical
overstress) during the customization process.
DC parametric testing can not presently be performed on device programmers and
therefore requires the use of automatic test equipment (ATE). de parametric testing
coupled with structured vector testing should provide the user an "optimum" test with
a "medium" investment.

ACTesting
AC testing ensures that the PLD meets all the speed requirements of the design. A
good ac test measures propagation delay time through all possible paths and, when
coupled with functional and dc parametric testing, provides the ultimate PLD test.
There are two types of ac testing to be considered: functional ac and measurement
ac testing. Functional ac testing becomes a popular test method for PLDs. This method applies structured test vectors and sets strobes to ensure transistions occur with
proper timing. Functional ac does a good job of simulating the actual design if structured vectors with good coverage are used.
In contrast, measurement ac testing tests and measures all speed parameters utilizing all possible input and output combinations. This type of testing is typically only
available from the factory as it requires another level of vector grading and dedicated
engineering resources.
AC testing usually requires a large investment by the user in not only hardware, but
also in engineering time in the development of extenSive test programs, bench to
tester correlation, load boards, vector software, etc...
Texas Instruments performs extenSive worst case code characterization prior to device release. Each device shipped from TI undergoes ac testing using the device's
test rows and test columns. Many users find post programming ac test does not justify
the payback in terms of a higher level of quality.

3-69

WHY TEST AFTER PROGRAMMING?
As previously discussed, verification of the fuse array following programming does
not ensure total functionality; therefore, the user must determine what amount of testing is required after programming. The following concems should be considered.

Programming
Programming exposes the device to super voltages (up to 10.75 volts) and currents
high enough to overstress devices. TI PLDs are designed to withstand these conditions; however, all leakage current parameters should be tested to eliminate the risk
of electrical overstress.
An uncalibrated programmer can expose devices to voltages/currents outside specified ranges.

Handling
In addition to programming, most users designate their custom function which was
programmed into the PLD through labeling or marking. The added handling required
to program and customize the PLD increases the chances for ESD (electro-static discharge) damage unless strict adherence to ESD protection procedures is observed.

Custom Function
TI goes to extreme measures to ensure device functionality and performance; however, each user design is a custom function and should be treated as such during final
testing prior to application.

Test vs Rework
Figure 6 compares the impact of testing on board rework and, consequently, manufacturing cost. This illustration compares no testing vs. functional and dc parametric
testing. Using conservative figures for rework cost, the data shows rework cost due
to untested PLDs can exceed one dollar per PLD used. A Similar analysis ofthe reader's application may show a cost savings which would result from testing after programming.

3-70

Rework without test
Rework with functional
and dc parametric
testing

o
o

10
PLDs PER BOARD

20 ASSUME:
10 PAls per board
$50 Rework cost per board
200 Boards per month
Rework costs due to untested PLDs:

- 20% X 200 X 50 = $2000
- 10% X 200 X 50 = $1000

Rework without test

2K

Rework with functional
and dc parametric
testing

1K

o
o

100

200

BOARDS PER MONTH

Figure 6. Test vs Rework

3·71

TI PROGRAMMING AND TEST SERVICES
What services are offered by your PLD manufacturer? Texas Instruments provides its
customers with a three phase service program which provides for programmed and
tested PLDs ofthe highest quality (see Figure 7) direct from the factory or through Tl's
authorized distributors.

Factory Programmed and Tested PLDs
TI has the capability to support run rates greater than 1000 parts per code per month
with factory programmed and tested PLDs. TI generates structured test vectors and
performs 100% functional, dc parametric, and ac testing on PLDs programmed to
your custom logic function. Custom symbolization is also included in the factory programmed PLD flow, thereby delivering ship-to-stock and/or ship-to-WIP product.

Impact DeSign and Services Centers
Texas Instruments took the leadership role in the provision of program and test services to its customers by implementing the Impact Center approach in 1986. The Impact Centers offer the customer a local "quick turn" production resource with factory
quality programming, marking, and testing on TI owned and maintained eqUipment.
Strict adherence to Tl's ESD protection gUidelines is maintained. Production specifications remain under TI control and operations are continuously audited by TI.

Endorsed Program and Test Centers
An extenSion of the Impact Center philosophy, an endorsed center is a distributor
funded program and test facility which meets or exceeds TI specifictions. Each center has the capability to program, mark, and test PLDs. Production flows are approved to guarantee the user receives devices of ship-to-stock quality. The centers
are audited bi-annually to ensure compliance.
Tables 2 lists the Tllmpact Centers. An updated listing for Endorsed Centers may be
obtained through theTI PLD Bulletin Board (214) 997-5665, theTI PLD Hotline (214)
997-5666 or your local TI Sales Representative.

3-72

CUSTOMAC
TESTING

CUSTOM DC
TESTING
LESS
THAN
50
PPM

CUSTOM
FUNCTIONAL
TESTING

LESS
THAN
400
PPM

PROGRAMMING

LESS
THAN
FUNCTIONAL,
DC,ANDAC
USING TEST LINES

LESS
THAN
10 K
PPM

1K
PPM

TI FACTORY
PROGRAMMED
PLDs

IMPACTOR
ENDORSED
CENTER

DISTRIBUTOR
(PROGRAM
ONLy)

UNPROGRAMMED
PAls

Figure 7. TI Programmable Logic Services

Table 2. TI Impact Design and Services Centers
NORTHERN CALIFORNIA

BOSTON

MARSHALL IMPACT CENTER

HALL-MARK IMPACT CENTER

336 LOS COCHES STREET

6 COOK STREET

MILPITAS, CA 95035

PINEHURST PARK

(408) 942-4600

BILLERICA, MA 01821
(617)935-9777

3-73

3-74

A Designer's Guide to the

TIBPSG507
Robert K. Breuninger and Loren E. Schiele
with Contributions by
Joshua K. Peprah

TEXAS
INSTRUMENTS
3-75

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
such testing necessary to support this warranty. Unless mandated
by government requirements, specific testing of all parameters of each
device is not necessarily performed.
In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices describ·ed herein. Nor does TI warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of TI covering or relating to any combination, machine, or process in
which such semiconductor devices might be or are used.

Copyright © 1987, Texas Instruments Incorporated

3-76

Contents
Title

Page

INTRODUCTION

3-81

FUNCTIONAL DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-81

THEORY OF OPERATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example 1: Waveform Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example 2: Refresh Timer. . .. ... ... . .. . .. . . ... .. . .. .... . ..... . . .... .... .. . .. . .. .. . ... .. . .. ...
Example 3: Dynamic Memory Timing Controller. .. . ... .. . ....... .... . ... .. . . .. . .. ...... ... .. . ...

3-81
3-83
3-86
3-89

DESIGNER NOTES ...........................................................................
Obtairiing Maximum Counter Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Expanding the 6-Bit Counter ..................................................................
Software Support. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-95
3-95
3-95
3-95

Appendixes
A
B
C

ABELFiles ................................................................................
CUPL Files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
'PSG507 Fuse Numbers... ... ... . .... .. .. . .. ... .. .... . .. . .. . . ... . .. . ... .. ... ... ... . .. .. . ....

3-101
3-111
3-123

3-77

3-78

List of Illustrations
Figure
1
2
3
4
5

6
7
8
9
10
11
12

13
14
15

16
17

Title
PSG Architecture
Clock Generator Timing Requirements ....................................................
SCLR at COUNT 11 ..................................................................
Waveform Generator ..................................................................
Refresh Timer Requirements ............................................................
Expanding to 7-Bit Binary Counter .......................................................
Refresh Timer ........................................................................
Memory Timing Controller .............................................................
Flow Chart: Dynamic Memory Timing Controller ..........................................
Access Cycle .........................................................................
Refresh/Access Grant Cycle ............................................................
Counter Control Logic .................................................................
Memory Timing Controller .............................................................
Registered SCLR Example ..............................................................
Expanding the 9-Bit Counter ............................................................
Resetting after COUNT 383 ............................................................
Holding the 9-Bit Counter at COUNT 383 ................................................

Page
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

3-82
3-83
3-84
3-85
3-86
3-87
3-88
3-89

3-90
3-91
3-92
3-93

3-94
3-96
3-97
3-98
3-99

3-79

3-80

INTRODUCTION
The tenn PSG stands for Programmable Sequence Generator.
The PSG is the newest member of the programmable logic
family. It combines the powerful benefits of programmable
array logic (PALs) with the specialized world of Field
Programmable Logic Sequencers (FPLSs).
Applications such as wavefonn generators, state
machines, timers, and simple logic reduction are all possible
with a PSG. By utilizing the built-in binary counter, the PSG
is capable of generating complex timing controllers. In short,
the PSG offers the system designer an extremely powerful
building block.
The purpose of this application report is to describe
the functional operation of the PSG507 and demonstrate how
it can be applied in real-world applications. Three design
examples that highlight the features and flexibility of the PSG
will be discussed.

on the next active clock edge. When either CNT/HLDO or
CNT/HLDI is taken active high, the counter is held at the
present count and is not allowed to advance on each active
clock edge. The SCLR feature overrides the CNT/HLD
feature when both functions are simultaneously active high.
The functional benefit of both these features will be further
clarified in the examples shown later in this appliction report.
The eight internal state registers feed back into the
AND array. These registers can be used to store input data,
to keep track of binary count sequences, or they can be used
as output registers when connected to a nonregistered output
cell. The state registers differ from the output registers in
that they feed back into the input array. They can also be
used to override an operating sequence such as demonstrated
in the designer notes located at the end of this application
report. By using extra state registers, the 6-bit counter can
be expanded as shown in the second example. Other uses
of the internal state registers will become apparent upon
reading the examples shown.

FUNCTIONAL DESCRIPTION
THEORY OF OPERATION
Figure 1 shows the architecture of the PSG507. Major
features include 13 inputs, eight programmable registered
or nonregistered outputs, eight SIR state registers, and a 6-bit
binary counter with control logic. The clock input is fuseprogrammable for selection of positive or negative edge
triggering.
The binary counter, state registers, and output cells are
synchronously clocked by the fuse-programmable clock
input. The clock polarity fuse selects either positive or
negative edge triggering. Negative edge triggering is selected
by blowing the clock polarity fuse. Leaving this fuse intact
selects positive edge triggering.
Each output cell on the PSG can be configured for
registered or nonregistered operation through the output
multiplexer fuse. Nonregistered operation is selected by
blowing the output multiplexer fuse. Leaving this fuse intact
selects registered operation.
The PSG507 has 13 inputs, each providing a true and
complement input to the AND array. Pin 17 functions as
either an input and/or an output enable. Blowing the output
enable fuse lets pin 17 function as an output enable but does
not disconnect pin 17 from the input array. When the output
enable fuse is intact, pin 17 functions only as an input with
the outputs being permanently enabled.
The 6-bit binary counter is controlled by a synchronous
clear and a count/hold function. Each control function has
a nonregistered and registered option. When either SCLRO
or SCLRI is taken active high, the counter resets to zero

The PSG architecture is capable of operating in many
different modes. When comparing the operation of a PSG
to a PAL, the outputs in both devices can be configured as
an AND/OR function of the inputs. One major difference
between a PSG and a PAL is that a programmable OR array
is used in the PSG. This allows a selected number of AND
terms to be connected to each output as compared to a fixed
number of AND tenns assigned to each output on a PAL.
The programmable OR array is the more efficient in that it
lets the user assign the exact number of AND terms to each
output as required by the application.
Another major difference between the PAL architecture
and that of a PSG is that the output cells on a PSG are not
fed back into the input array. Typically, output feedback is
used for building a counter or for holding state infonnation.
Since the architecture of the PSG already includes state
registers and a binary counter, the requirement for output
feedback is eliminated in most applications. This is a benefit
to the user because valuable output cells and AND terms are
not wasted when generating these functions.
When a Field Programmable Logic Sequencer is
compared to a PSG, the most obvious difference is the
addition of a binary counter. Most state machine designs can
be simplified by referencing all or part of each sequence to
a binary count. This technique is highlighted in the third
example shown in this application note. A comparison will
also reveal that the output cells on a PSG can be configured
3-81

eLK J!L

I.
"
I.I.
I.'8
12
13

14

,,t'
,

17

"21~

Ip.

->I

'rr~

-

::.
'-'

seLRh

~

- ENT'HIOO

'--'

;::

~
"'--'
1--1>

;:: >---J>

"

;::J>

P2

.-t>

P3

~

P4

>--P

"

~

;:::

P.

'--'

;:: f--l>

P6

"~~"
-:~Q1
_~~a2
~~a3

;::f-'P

'--'

,-,~a4
~n"41

~~a6
I
Figure 1. PSG507 Architecture
3-82

,--,~~a7

for nonregistered· operation. This permits the outputs to be
directly fed from the counter, AND/OR array, or state
registers. Example I highlights this feature.
In short, the outputs of a PSG can be controlled by any
or all of the following conditions:

to the master clock (PSG CLK) of the PSG. As shown in
the timing diagram, at count 11 (10112) the sequence is
repeated. By using the SCLRO function, a logic equation can
be defined to reset the counter at count 11. This concept is
demonstrated in Figure 3.
With the binary counter programmed to clear at 11,
it is a simple matter to decode the outputs from the binary
count. With the REF CLK equal to the inverse of binary
count zero (CO), REF CLK can be directly generated from
the binary counter. A product term is required to connect
CO to the output cell. The output register is bypassed by
blowing the output multiplexer fuse. Figure 4 shows how
CO can be connected.
SYS CLK and PCLK are decoded from the present state
of the binary counter through the SIR outputs. Since the SIR
register holds its present state until changed, product terms
have to be used only during output transitions. For example,
when the binary counter reaches one, a product term is used
to reset the SYS CLK on the next clock transition. Below is a
summary of the product terms required to control SYS CLK
and PCLK. Note that the output transitions are set up in the
previous clock cycle. Also note that only one product term
is used regardless of how many output terms switch. This
is demonstrated at count 5 and count 11. Figure 4 also shows
how SYS CLK and PCLK are connected.

• Present state of the inputs
• Present state of the binary counter
• Present state of the state holding registers
The key to understanding state machine design when
using a PSG is to realize that different states can be assigned
for each sequence. In other words, the assigned state
determines which sequence is in operation. The length of
each sequence is controlled by the SCLR function. Once the
count sequence has been programmed to the desired length,
each output can be easily decoded from the present state of
the binary counter. The user will soon discover that complex
state machines are easily developed when using this
technique. This technique is demonstrated in Example 3.

Example 1: Waveform Generator
The first example demonstrates a design for a simple
clock generator used for driving a microprocessor operating
at 5 MHz (required duty cycle of33.5% high, 66.5% low).
In addition to the 5 MHz system clock (SYS CLK) , a
reference clock (REF CLK) operating at 15 MHz (50% duty
cycle) and a peripheral clock (PCLK) operating at 2.5 MHz
(50% duty cycle) are required for other timing controllers
and peripherals throughout the system. Both clocks must be
in close phase with the SYS CLK to guarantee synchronous
operation within the system.
The above example demonstrates one of the many uses
of the binary counter in the PSG. State registers are not used
in this particular application, only the binary counter and
three outputs. A 30 MHz clock, typically generated from
a crystal, is used for driving the binary counter of the PSG.
The three generated clock signals are decoded from the
binary count. The unused inputs and outputs are still available
for other sequential or combinational applications.
Figure 2 shows the timing diagram for the above
application. For reference, a decimal count has been assigned

o

2

3

4

5

CNT
CNT
CNT
CNT

1:
5:
7:
II:

Reset SYS CLK
Set SYS CLK, reset PCLK
Reset SYS CLK
Set SYS CLK, set PCLK

This simple application demonstrates the basic concept
of building a waveform generator using the PSG. This
concept will be expanded further in Example 3 when a
memory timing controller is developed. The basic rules for
building a waveform generator are summarized below.
• Program the counter to reset to zero after the
desired count length is reached.
• Generate the logic equations to control the
outputs from the present state of the binary
counter.
6

7

8

9

10

11

o

PSG CLK

(30 MHz)

REF CLK

(15 MHz)

SYS CLK

PCLK

r

L-_ _ _ _ _ _ _ _ _ _.....

(5 MHz)

. . .________________.....f"72.5

MHz)

Figure 2. Clock Generator Timing Requirements
(Example 1 - Waveform Generator)

3-83

11

f'"""--

.r,

Jir:E5'

I:::

~~-

~

K'=

AU

:::: H>
H>

- H>
R>

~

::: R>

"~~
~~
i_~~

I::::~~
-~~

~~
~~

:::~
Figure 3. SCLR at COUNT 11
(Example 1 - Waveform Generator)
3-84

I

seLRoh

-----gj:f.~DO

-=ml+nnI:ltitWlll~mtI:1M.~
~~~~~~~OOH~~~~~~r
~

..

II

~

..

~~
.m~
~~~
~~~mm~ua~~~

~mgmm~nw~~~~

lIIIaIm+~I:iIti:I~~I--REFeLK

itH1-ttH-HtH1HtttHtt-+tttt1+H+I+lI+l--lll+HlH+tttt1+-+lll+Hl--llll+H+-II+tttt1-["'>R~- eLK
SYS

I!IJt:t!!Itnll:lllPlt~~~~- peLK

:JlIt:!!mt~UU~!I::!a~~~r-

1!IJt:t!!Itn~~~~~~­
~~~~~~~~~~~~~
lIII~mlt:I!!l::Im=mI=lIl~~­
IIIIl1It:Ifl+~UttttIll~~~
-

Figure 4. Waveform Generator
(Example 1)

3-85

Example 2: Refresh Timer
The second example demonstrates a design for a refresh
timer used for signaling to a memory controller that it shoUld
execute a refresh cycle. As required by the dynamic memory,
every row (256 on TMS4256) must be addressed once every
4 ms. One method used to guarantee that this requirement
is met is to refresh one row at least once every 15.6 p.s. With
a 5 MHz system clock, the timer should be set for a division
rate of approximately 77 clock cycles. This condition will
generate a refresh request every 15.4 p.s.
The memory controller executes the refresh request
(REFREQ) immediately if it is not involved in an access
cycle. If the memory controller is executing an access cycle,
then the refresh request will not be honored until the access
cycle is completed. A refresh complete input (RFC) is
required on the refresh timer to acknowledge when the
refresh cycle has been completed by the memory controller.
It is important that the timer does not stop, even though a
refresh complete signal has not been received. This
guarantees the refresh requirement is not violated. This also
assumes the memory controller will complete the refresh
request sometime in the next 77 clock cycles.
Figure 5 shows the timing diagram for the above
application. A decimal count has been assigned to the PSG's
master clock (PSG CLK) for reference. The counter is held
at zero until the reset input is taken inactive low. Once the
counter reaches 76 (equal to 77 clock cycles) the REFREQ
output is driven active (low). The REFREQ output returns
inactive high on the first positive clock edge after RFC goes

active high. RFC is the signal from the memory controller
that tells the refresh timer when the refresh operation has
been completed. The REFREQ output remains low until the
RFC signal has been received.
In order to generate a refresh request every 77 clock
cycles, a 7-bit counter is required. Since the internal counter
of the PSG is 6 bits, one of the state holding registers is
required to expand the counter to 7 bits. As shown in
Figure 6, only two product terms are required to expand to
7 bits; one product term to set the register when the 6-bit
counter reaches its full count (63), and one product term to
reset the register after count 76. Since both the binary counter
and the added register need to be reset after count 76, a single
product line can be used for both. (For additional details on
expanding the 6-bit counter of the PSG, see the designer notes
at the end of this application report.)
Figure 7 shows the fuse map for the entire refresh
timer. The refresh timer is initialized by taking the RESET
input high. When RESET is taken high, a single product line
is activated and all other product lines are disabled. On the
next active clock edge, the binary counter and C6 are cleared
and the REFREQ output is set high. The refresh timer will
begin counting when RESET returns low. When the 7-bit
counter reaches 76, a product line goes active (high) and on
the next clock edge forces C6 and the 6-bit counter to zero.
Note that the output register holding REFREQ is also reset
to zero. The RFC input is connected to a product line which
in tum is connected to the set input of the REFREQ output
register. On the next active clock edge after RFC is taken
high the REFREQ output will return high.

PSG ClK

RESET
RFC _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~

Figure 5. Refresh Timer Requirements
(Example 2 - Refresh Timer)

3-86

.

Ir::~::
'r' 7663
-"-'

r)

'11~1

~

~

-ffiIHLDO

I

~

~
~
FU
:::

;::;
~

;::;

~

~~
~~

~~-

I

-c~~
'r~~

~~
~~

,

I

I

I
I

I
I

I

I

I
I

I

I

.
I

I

,

~~-rr=-

~~~,-

Figure 6. Expanding to 7-Bit Binary Counter
(Example 2 - Refresh Timer)
3-87

PSG elK

r~

RESET

fir'
.
,
iii"}
II

III II

RFe

~
I~
co
C1
C2
C3
C4
CS
SClROr--r

H>
~

CNTIHlDO

~

H>

::::

;::

:=0=::

~
H>
H::

.::: K;;
.. ~

~

~~
~""'"

ROW (AD-AS)
COL (A9-A 17)

A1S

SElO

A19

SEL1

AO-AS

.-,,1
f- RAS2
f- CAS2

MCO

lE

BANK2

256K DYNAMIC RAMS
TMS4256 (16)

W

1

BANK3
AD-AS

256K DYNAMIC RAMS
TMS4256 (16)

RAS3
CAS3

M

W
00-15

00-015

1
l'

SN74AS240
(2)

'--

'--G

Figure 8. Memory Timing Controller
(Example 3)

3-89

Figure 9 shows a detailed flow chart for the intended
application. Note that two sequences are executed and three
states are used. State 0 (STO) provides an initalization and
holding state, while state I (STl) is assigned to the access
sequence. The access sequence consists of 10 clock cycles
as shown in Figure 10. State 2 (ST2) is assigned to the

refreshlaccess grant sequence (Figure 11). This particular
sequence takes 20 clock cycles, with a logical decision being
made between count 9 and count 10. If at count 9 RDY is
low, the counter will continue on and execute the access grant
sequence. If ROY is high, the controller will clear the counter
and return to state O.

START

STATE 2
SET PO - L, P1 - H

STATE 0
CNT,PO.P1 - L
RAS.ROY,MC1,CAS - H
MSEL.RFC - L

EXECUTE REFRESH
SEQUENCE (Figure 11)
NOTE:
IF ALE· MilO - H
THEN SET ROY - L
IF RESET - H
GO TO STATE 0

YES

YES

NO

NO

YES

STATE 1
SET PO - H,P1 - L
ACCESS GRANT
EXECUTE ACCESS
SEQUENCE (Figure 10)
NOTE:
IF RESET - H
GO TO STATE 0

NOTE:
IF RESET - H
GO TO STATE 0

Figure 9. Flow Chart: Dynamic Memory Timing Controller
3-90

!+--- tl

--t~-- tz

--+11+--

t3 -'-'.~II4.-- ~ ~

I

I

I

CLK
ALE _ _ _ _ _ _--1

1

MliO _ _ _ _.....J

i[AOX:::::::::::::::XX~:A~O~-A~l7~:J)~-----~f::~O~A~TA!!F~RO§M~M~E~M@O~RY!::»---1C::
o

RO--------+------~L

___ I

~I------.....J
I

X

X

AO-A17

WRITE DATA

I
I
I

\
STO

STO

STO

STO

ST1

0

0

0

0

0

ST1

ST1

ST1

STl

ST1

Z

3

4

5

REF CLK

IST1 ST1
7
I
I

16

I
MSEL _ _ _ _ _ _ _ _ _ _ _ _ _ _ _--I

__________________________....;14-- ta(cl---.t

'L____________- J

CAS
REFREQ - H. RESET - L
MCl - H. RFC - L. ROY - H

Figure 10. Access Cycle
Developing the logic equations for this application
becomes a simple matter when referencing the sequences to
a decimal count (Figures 10 and II). It is important to realize
that each sequence has been referenced to a state. This allows
the same binary counter to be used for each sequence, even
though each sequence is of a different length.
The first step in implementing the above application
is to define the logic equations which will make the binary
counter perform as described in the flow chart of Figure 9.
As will become evident, these equations fall directly from
the flow chart. After the counter has been made to perform
as described, the outputs can be easily decoded from the
binary count and the present state of the state holding
registers.
Figure 12 shows a fuse map for step I as described
above. Initalization is performed by taking the reset input
high. When this condition occurs, all product lines except
the reset product line are forced inactive. When the reset
product line is active, the counter and state holding registers
(PO and PI) are reset to zero on the first active clock edge.

The CNTIHLD I register is set high, which places the counter
in the hold mode. The RDY, MCI, RAS, and CAS outputs
are driven high on the same active clock edge_ Since the RDY
output does not feed back to the AND array, a buried state
register, BRDY, is used to monitor the RDY output and is
also set high. MSEL and RFC are driven low.
Controlling the binary counter is a simple matter and
normally takes only a couple of logic equations. For each
sequence, a start and stop condition must be defined. In the
case of STl, when the condition RESET = L, ALE = H,
MIlO = H, REFREQ = H, PO = L, and PI = L occurs,
STO (PI = L, PO = L) changes to STi (PI = L, PO = H),
and the CNT/HLDI register is driven low to let the counter
advance on the next active clock edge. When the counter
reaches nine, STI returns to STO and the counter is cleared
and put back into the hold condition.
In the case of ST2, when the condition RESET = L,
REFREQ = L, PO = L, and PI = L occurs, STO changes
to ST2 (PI = H, PO = L) and the CNT/HLDI register is
driven low to let the counter advance on the next active clock

3-91

Refresh Sequence

Access Sequence

edge. As shown in the flow chart, if M/IO and ALE go high
while in state 2, ROY and BROY will be reset low on the
next active clock edge. When the counter reaches nine, if
ROY (BROY) is high the state registers are returned to STO
and the counter is cleared and placed back into the hold
condition. If ROY (BROY) is low, the counter advances on
until it reaches 19. ST2 then returns to STO with the counter
being cleared and placed back into the hold condition.
With the binary counter programmed to execute the
flow chart in Figure 9, it is now a simple matter of decoding
the outputs to perform as required in Figures 10 and 11. This
is the same technique used in Example 1, except now a state
has been assigned to each sequence. Below is a summary
of the switching requirements for both the access (ST I) and
the refresh sequence (ST2).

STl
STl
STl
STl

CNT
CNT
CNT
CNT

0:
1:
2:
9:

Reset RAS
Set MSEL
Reset CAS
Set RAS,
Reset
MSEL,
Set CAS

ST2 CNT 0:
ST2 CNT 1:
ST2 CNT 5:
ST2
ST2
ST2
ST2
ST2

CNT
CNT
CNT
CNT
CNT

Reset MCI
Set RFC,
Reset RAS
Reset RFC

6:
7:
10:
11:
12:

Set RAS
Set MCI
Reset RAS
Set MSEL
Reset CAS,
Set ROY,
Set BROY
ST2 CNT 19: Set RAS,
Reset MSEL,
Set CAS

Note that the transition changes are set up in the
previous clock cycle, just as in Example 1. Figure 13 shows
a complete fuse map for the memory controller.
i4-----REFRESH C Y C l E - - - - - I _ - - - - - A C C E S S CYCLE IF REQUIREO'----~

ClK
AlE __________

Mlm

~

_____l_i____

~L-L-

____

~

_______________________+-----------J

. . . . ------.....

-----~f'-------

:IAOX

oL ~-------i------lC::::::::J::::::::Jc:::::::JL_______________________1------------

~Lox:::::::::::::.::x::::aw:r::~~x:::::::::=:~===:x:====
~ ~-------i.----~::::::::[:::::::J:::::::::1_________________________.J
STO

I

ST2 ST2 ST2 ST2 ST2 ST2 ST2 ST2 ST2 ST2
I

*

ST2 ST2 ST2 ST2 ST2 ST2 ST2 ST2 ST2 STO STO

~

11

12

13

14

15

16

17

18

19

0

0

OSC

MC1----------,~

~

-

-

-

-

-

-

-

-

-

-

-

------------...,- - - - Tn
- - - -,
"t - ' - \

RFC ______________

;

ROY

I

________________-Jr--ri---------------------------------------------

-

- -

- -I, . . - - - - - - - - - - - - - - - - - - - - - - - - - - - -

_____________________________________________________

MSEl ___________________________________________.J
~--------------------------------------------'L

__________________

-IF ROY - H. RETURN STO

Figure 11. Refresh/Access Grant Cycle

3-92

~--------

REf elK

,('

~

I~:::ru::::

I

!Qj

RESET

ALE
M/iQ

I"
,r"]

'II~
>==
C1
C2
C3

SCLRO

'-

R::
- ool"LOO

R::
' - l={;

::::

PO

r::J;

"

:::: '-l>

"
.,

::::

F}:

'=""

;::' ~

P'

:;:= "

:::

~

P.

~~
::::>=1>

-ROY

~~MC1

,-~~RFC

::::~=
~~MSE
~~CAS
,

,
I

I

~!~
~I~

Figure 12. Counter Control Logic
(Example 3 - Dynamic Memory Timing Controller)

3-93

f
RESET

~

=

j~

,ill-

--l!QL

ALE

Mfio

'0

f/j

!I-Y'

~lRO

~

I

~

K

CNTIHlDO

r:-

;::-

~

:=
t±

'0

K

"

;:: Ho:

:::

~
A

~~I-_'
~r-MC'
II

:::~f--RFC

II

~f--=

r:-t-i"

II

~r-MSEl

r-r-::f.:

~~r-=

~r-

i
j
j

I

Figure 13. Memory Timing Controller
(Example 3)

3-94

;::~r-

DESIGNER NOTES
Obtaining Maximum Counter Performance
As with any programmable logic device, there are
usually several different methods for implementing anyone
application. In some cases, device performance is affected.
On the PSG, maximum counter frequency is affected by how
the designer controls the 6-bit counter.
For example, in the waveform generator example
shown at the beginning of this application note, the counter
was reset to zero after reaching count II by using the
nonregistered SCLRO function. By using the registered
SCLRI function, a higher operating frequency is obtainable.
This method requires an additional "AND" term as
shown in Figure 14, but does provide maximum
·performance. Note that during the 10th clock cycle the set
input on the SCLRI register is high. On the next active clock
edge, the counter advances to II and the SCLRI register
is set high. This causes the counter to be reset on the next
active clock edge. At the same time, the SCLRI register is
reset low to allow the counter to advance past zero.
In effect, the setup time requirement for SCLRI is
performed in the previous clock cycle. When using the
SCLRO method, the setup time must be added to the fmax
equation. This results in a lower f max . The same tradeoffs
apply with the CNT/HLD function. The PSG507 data sheet
specifies f max for both methods.

Expanding the 6-Bit Counter
In Example 2, the six bit counter had to be expanded
to 7 bits. This was accomplished by adding one of the state
registers to the most significant bit of the counter. It should
be noted that the synchronous clear and count hold functions
must be controlled through the set and reset inputs of the
added bits. The designer must be aware of certain limitations
when trying to perform this function. Figure 15 shows three
additional bits being added to the 6-bit counter. Note that
every bit added requires two additional "AND" terms.
A problem can arise on certain counts when trying to
generate a synchronous clear before reaching the full binary
count (all outputs high). The designer must ensure that both
Sand R are not high simultaneously. For example,let's say
we want the 9-bit counter to return to zero at count 383
(1011111112). At count 383, the SIR register used for C7
is being told to set. Therefore, any reset command would
result in both Sand R being high simultaneously.
This problem, only seen on a few data words, can be
solved by using another state register to control the counter
reset. This method is similar to that used above to obtain
maximum operating frequency. Figure 16 shows the 9-bit
counter returning to zero after count 383. Notice that at
count 382 the extra SIR register is being told to reset on the

next active clock edge. At count 383 the six product lines
controlling C6, C7, and C8 are disabled by the feedback from
the extra register, in particular the S input on C7. At
count 383, the 9-bit counter will return to zero and the extra
register is set high.
An extra register may also be needed to achieve the
count/hold function when using an expanded counter. During
certain counts the added bits will change state, even though
the 6-bit counter is programmed to hold. For example,let's
say we want the 9-bit counter to hold at count 383. Even
though the 6-bit counter can be held at 111111, C6 and C7
will advance on the next active clock edge. In order to hold
C6 and C7 where they are, an extra register is used to disable
the product lines responsible for the transition from count
383 to 384. Since the counter. is on hold, the extra hold
register can only be reset from an input pin or a state
register(s) transition (not on thll next count). In this example,
an input pin is used to reset the extra register and the
CNT/HOLD register. When the CONTINUE input is taken
low, the counter will continue to advance. The system must
guarantee that the continue input will not be low during count
382 to avoid the indeterminant set = H, reset = H state.
Figure 17 shows this 9-bit counter.
It is also important to note that when using extra
registers a reset input may be necessary to set the extra
registers high after powerup, since all SIR registers powerup clear. This requirement would not be necessary if the
phase of the extra register was reversed. This is easily
accomplished by using the inverted feedback from the extra
register. However, it is good state machine design practice
to include a reset input that forces all SIR registers to a known
state.

Software Support
The PSG507 is supported by two software packages;
CUPL, which was created by and is supported by Assisted
Technologies, a division of Personal CAD Syste~s
Incorporated, and ABEL, which was created by and IS
supported by FutureNet, a division of Data 1/0 Corporation.
Each of these software packages can be used to reduce
equations and to generate a fuse map necessary to program
the PSG507. Appendices A and B show the ABEL and CUPL
files for Examples I, 2, and 3. In addition, a PSG507
template is shown for each software packa~e. Thes.e
templates provide software information that wdl make It
easier for the designer to create the source files.
Test vectors are included with the ABEL and CUPL
source files so software simulation can be performed on the
computer. Ifthe proper instruction is provided, the software
will attach the test vectors to the end of the fuse map. This
allows programming equipment to run a functional test on
each device immediately after programming.

3-95

10

COUNT 11"""\

f

f"/
l~

~1
C3
C4
CS
SCLRO

-'"
r

;::;:::
;::;,

~

oolHLOO

~"-.

If
1!!.

-II

~

~

~

:;=
:=:::

==

~~
~~r-

~r;:::~r-

~r-

~r~r-

u=t=r-

.~~rFigure 14. Registered SCLR Example
(Designer Notes)

3-96

rC~~N!_255
~----~

--

-

- -- --

-

-~-.

---------

Cg~~:~,2,~5

-COUN~~127

__

___

,NT 53

C5

f!

II r:=:r;=

t--

SCLRO

H>.
- CNTIHLOO

t-t.
r-lf
;::-

c.
C7

{ } C8

;::J[

~

-n~
.-f::

;::~
:=::::r,.

~~~~-

~~-

~~;::~-

~~~~Figure 15. Expanding to 9-Bit Counter

3-97

COUNT;::il
COUNT
COUNT 38211COUNT 383-

,COUNT 255

rCOUN;C~::;NT_

_C62~NT 63

f

I C6

f'(

II

r----

r=s=
I

SCLRO
---~

H:
- OOIHLOO

~

-;:: f::-t:

':'=
~

~

C6

C,

_,,6-

H:
H:
K::

~IC~>
~r-

;::~r-

~r~r-

~tt

~

~~r-

~r~~rFigure 16. Resetting after Count 383
(Expanding the 6-Bit Counter)

3-98

COUNT 255-

,COUNT 255

,COUNT 127
,COUNT 127
,COUNT 63

COUNT 511COUNT 382-

~-

CONTINUE:-:

C6

0
,I ,c::::s:
co

Cl
C2
C3

c.
CS

SClRO
~

1i
:=:-

~

Ii

- OOll.',I'"

~
~
C8

~

:0
::f.

~
~

i

I

I

~
~r~r~r-

~r-

1

~~r. ~~rI

:~:F~~~r-

I

,

~I~

Figure 17. Holding the 9-Bit Counter at Count 383
(Expanding the 6-Bit Counter)

3-99

•

3-100

Appendix A. ABEV" Files
n "

n n

n

n n

n n

n n n n "

n n

"

n "

" ABEL (tm) TEMPLATE FOR THE TI PSGS07
" This file provides the PSGS07 designer quick access to the information
" needed to write an ABEL source file. To use this file as a template, make "
a copy and delete this box from your new file.
" NODES: The PSG counter bits, counter control bits and state register bits"
are accessed through the use of nodes. Any valid identifier can
be used for node names. The node numbers are specific and must be "
used as shown below. Nodes that will not be used do not have to be "
declared.
" OUTPUT STRUCTURE:

The default output stucture is registered. The output"
type is determined by usage, i.e. QO := (COUNT==7);
will cause QO to remain registered and QO = (COUNT==7);"
will cause QO to be combinatorial. When an output is
used as nonregistered, ABEL will automatically program "
the associated reset fuses as required in the PSGS07
data sheet. Unused product terms can be left
connected to either side of an output register .

• CLOCK POLARITY:

The default clock polarity is active on the rising edge.
The statement fuses [7360]=1; can be used to blow the
clock polarity fuse so that the clock will be active on
the falling edge (fuses [7360]=0; is the default). 7360
is the clock polarity fuse number.

" OUTPUT ENABLE:

The output enable fuse is blown by using the equation
enable output = len; where output is a defined output pin
or set of outputs and en is assigned to pin 17. The
default condition is permantly enabled with pin 17 an
input. If desired the default condition can be specified"
with enable output = en; This fuse can also be blown by
the statement: fuses [7361]=1;

" SET NOTATION:

Set notation is often used to represent control, buried
state, and output registers. This is done to simplify
equations. The sets shown below (QO = [QO, QO r];) are
in the form; New register name = [set input, reset input]. "
Note that the ouput register pin name specifies the set
input.

n

The sets 'high' and'low' (high=[l,O]; and low=[O,l];) can"
be used to set or reset the SiR registers.
Example:
Q1 := high & 10; will cause pin 9 to go high on the next
clock edge if input pin 7 is high.
During simulation of a PSG507 design the ABEL 2.10a
simulator will advance the counter on each clock depending "
on the state of the counter hold and clear functions.
If counter bits are included on the output side of a test
vector simulation errors will occur. Counter bits included"
on the input side of the test vectors are ignored. The
pow.erup condition (counter bits and all registers low) is
recognized by the simulator.

" SIMULATION:

ABEL is a trademark of Data I/O Corporation
n

"

n

n

n

n

n

n •

n •

n n n

n n n n •

•

•

n n •

n n

"

n •

•

n •

•

•

•

3-101

Module PSGFILE
title 'ABEL TEMPLATE FILE FOR THE TEXAS INSTRUMENTS PSG507'
PSG device 'F507';
• Input pin assignments
CLK
pin
1;
IO
pin
7;
Il
pin
6;
I2
pin
5;
I3
pin
4;
I4
pin
3;
IS
pin
2;
I6
pin 23;
I7
pin 22;
pin 21;
I8
I9
pin 20;
pin 19;
IlO
III
pin 18;
Il2_0E
pin 17;
• Output
QO
Q1
Q2
Q3
Q4
Q5
Q6
Q7

• comments

pin and node assignments
pin
node 47;
8; QOJ
pin
9; Q1 r
hode 48;
pin 10; Q2-r
node 49;
node 50;
pin 11; Q3-r
pin 13; Q4-r
node 51;
pin 14; Q5-r
node 52;
pin 15; Q6-r
node 53;
pin 16; Q7:::r
node 54;

• comments

• Internal counter bits & control - node declarations
CO,C1,C2,C3,C4,C5 node 55,56,57,58,59,60;
SCLRO
trol
SCLR1
CNTHOLDO
CNTHOLD1

node 25;

• Buried
PO
P1
P2
P3
P4
P5
P6
P7

state registers - node declarations
node 31; PO r
node 39;
• buried
node 32; P1-r
node 40;
• buried
node 33; P2-r
node 41;
• buried
node 34; P3-r
node 42;
• buried
node 35; P4-r
node 43;
• buried
node 36; P5-r
node 44;
• buried
node 37; P6-r
node 45;
• buried
node 38; P7:::r
node 46;
• buried

@page

3-102

node 26;
node 28;
node 29;

• nonregistered counter clear conSCLR1_r

node 27;

CNTHOLD1 r node 30;

• registered counter clear control
• nonregistered count/hold control
• registered count/hold control
state
state
state
state
state
state
state
state

register
register
register
register
register
register
register
register

00
[00, 00 r];
01[01, 01-r];
02[02, 02-r];
03[03, 03-r];
04[04, 04-r];
05[OS, OS-r];
06[06, 06-r];
07[07, 07=r];
SCLR1
= [SCLR1, SCLR1 r];
CNTHOLD1_ = [CNTHOLD1, CNTHOLDl_r];
• Intermediate declarations for simplification
[II20E,Il1,II0,I9,I8,I7,I6,IS,I4,I3,I2,Il,IO];
INPUTS
OUTPUTS
[07,Q6,05,04,03,02,01,00];
[P7,P6,P5,P4,P3,P2,Pl,PO];
STATE_
COUNT
[CS,C4,C3,C2,Cl,CO];
1, 0, .X., .Z.;
H,L,X,Z
[1,
0];
high
[0, 1];
low
ck
.C.;
• Use .K. for falling edge, .C. for rising edge clock.
• DEVICE FUNCTION can be specified using state diagrams, equations,
• and truth tables.
test vectors ' optional header
([CLK, INPUTS] -> [OUTPUTS, STATE ]l
[ ck,
] -> [
-] ;
[ ck,
] -> [
];
[ ck,
] -> [
];
end PSGFILE

'count xx
'count xx
·count xx

3-103

Module PSG EX1
title 'ABEL EXAMPLE 11 (Waveform Generator) for the
PSG507 DESIGNERS GUIDE, Texas Instruments, August 26, 1987'
PSG1 device 'F507';
• Input pin assignments
PSG_CLK pin
1;
• Output
REF CLK
SYS-CLK
PCLK

pin and node assignments
8;
pin
9;
node 48;
pin
node 49;
pin 10;

REF CLK IsType ' com' ;

• REF_CLK is combinational

• Internal counter bits & control - node declarations
CO
node 55;
C1
node 56;
C2
node 57;
C3
node 58;
SCLRO node 25;
• Intermediate declarations for simplification
COUNT
[C3,C2,C1,CO];
H,L,clk = 1, 0, .C.;
equations
REF CLK
!CO;
SYS-CLK
.= (COUNT==5) f (COUNT==ll);
SYS-CLK r := (COUNT==l) f (COUNT==7);
PCLK - := (COUNT==l1);
PCLK r
.= (COUNT==5);
SCLRO
= (COUNT=l1);

• High on cnt 5 and 11
Low on cnt 1 and 7
• High on cnt 11
• Low on cnt 5
n Counter cleared after cnt 11
n

The PSG507 has powerup clear of counter· and registers. Six clocks
• are required after powerup for this design to initialize. This
n design could be initialized after one clock by setting SYS CLK and
• PCLK high at COUNTO. i.e. SYS CLK := COUNTO f COUNT5 f COuNT11; and
n PCLK :- COUNTO f·COUNT11;
-

n

3-104

test vectors
([PSG CLK

[
[
[
[
[
[

elk
elk
elk
elk
elk
elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk
[ elk

COUNT]
0 ]
1 ]
2 ]

3
4

5
6
7
8
9
10

11
0
1
2

3
4

5
6
7
8
9
10

11
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->
->

[REF_CLK, SYS_CLK, PCLK])
[
L
L
L ];
[
H
L
L ];
[
L
L
L ];
[
H
L
L ];
];
[
L
L
L
[
];
H
H
L
[
];
L
H
L
[
];
H
L
L
L ];
[
L
L
];
[
H
L
L
[
];
L
L
L
[
[
[
[
[
[
[
[
[
[
[
[
[
[

L

H

H
H

H
L
H
L
H
L
H
L
H
L
H
L

L
L
L
L
H
H
·L
L
L
L
H
H

H
H
H
H
H
H

L
L
L
L
L
L
H
H

];
];

];
];
];
];

];
];
];

];
];
];
];
];

end PSG EX1

3-105

Module PSG EX2
title 'ABEL EXAMPLE 12 (Refresh-Timer) for the
PSGS07 DESIGNERS GUIDE, Texas Instruments, August 26, 1987'
PSG2 device 'F507';
• Input
PSG CLK
RESET
RFC

pin assignments
pin 1;
pin 2;
pin 3;

• Output pin and node assignments
REFREQ pin
8; REFREQ_r node 47;
• Internal counter bits & control - node declarations
CO node 55; C1 node 56; C2 node 57;
C3 node 58; C4 node 59; C5 node 60;
SCLRO node 25;
• Buried register
C6 node 31; C6_r node 39; • 7th counter bit
• Intermediate declarations for simpl£fication
COUNT
[C6,C5,C4,C3,C2,C1,CO];
H,L,clk,X - 1, 0, .C., .X.;

.. *

equations
REFREQ
RFC
RESET;
REFREQ_r := (COUNT-76) &
:- (COUNT=63) &
C6
:= (COUNT--76) &
C6 r
SCLRO
= (COUNT=76) &
clear
test_vectors
@REPEAT 76
@REPEAT 20

end PSG_EX2

3-106

!RESET;
!RESET;
!RESET f RESET;
!RESET t RESET;

•
•
•
•
•

([PSG_CLK,RESET,RFC]
[ clk
X]
H
[ clk
L ]
L
[
L ]
clk
L
[
clk
L
L ]
[ clk
H ]
L
[ clk
L ]
L
[ clk
X ]
H

set input
reset input
set input
reset input
synchronous nonregistered

->
->
->
->
->
->
->
->

REFREQ )
H
H

L
L
H
H
H

·CNTO
·CNTl-76
·CNTO
·CNTl-20
·CNT21
·CNT22
·CNTO

Module PSG EX3
title 'ABEL EXAMPLE 13 (Dynamic Memory Timing Controller)
for the PSG507 DESIGNERS GUIDE, Texas Instruments, August 26, 1987'
PSG3 device 'F507';
• Input pin assignments
OSC
pin
1;
RESET
pin
2;
ALE
pin
3;
MIO
pin
4;
REFREQ
pin
5;
• Output
ROY
MC1
RFC
RAS
MSEL
CAS

pin and node assignments
pin
8; ROY r
node 47;
pin
9; MC1-r
node 48;
pin 10; RFC r
node 49;
pin 11; RAS-r
node 50;
pin 13; MSEL r
node 51;
pin 14; CAS r
node 52;

• Internal counter
node 55;
CO
node 58;
C3
SCLRO
node 25;
CNTHOLD1 node 29;
node 31;
PO
PI
node 32;
BROY
node 33;

•
•
•
•
•

OSCILLATOR
RESET - INITIALIZES WHEN HIGH
ADDRESS LATCH ENABLE
MEMORY I/O
REFRESH REQUEST

•
•
•
•
•
•

READY
MODE CONTROL
REFRESH COMPLETE
ROW ADDRESS STROBE
MULTIPLEXER SELECT
COLUMN ADDRESS STROBE

bits & control, and state reg - node declarations
C1 node 56; C2 noae 57;
C4 node 59;
CNTHOLD1 r node 30; •
PO r
node 39; •
pCr
node 40; •
BRDY r
node 41; •

COUNT/HOLD CONTROL REGISTER
BURIED STATE REGISTER
BURIED STATE REGISTER
BURIED READY SIGNAL

• Set notation is used to represent control, buried state, and output
n registers. This is done to simplify the equations.
The following
• sets are in the form; register name = [set input, reset inputJ. Note
• that the ouput register pin name specifies the set input.
ROY
= [ROY, ROY r];
MC1[MC1, MCCr];
RFC[RFC, RFC-r];
RAS[RAS, RAS-r];
MSEL
[MSEL, MSEL rJ;
CAS [CAS, CAS rl;
BROY
[BROY, BRDY_rJ;
• Intermediate declarations for simplification.
The sets 'high' and 'low' are used to set or reset the SIR
• registers. Example: MC1 := high & RESET; will cause pin 9
• to go high on the next clock edge if input pin 2 is high.
high
[1, OJ;
low
[0, 1J;
COUNT
[C4,C3,C2,C1,COJ;
STATE
= [P1,PO];
n STATE REGISTER SET DEFINED
H,L,clk,X = 1, 0, .C., .X.;
@page
n

3-107

equations
enable MCl

=

1;

·outputs always enabled, pin 12 is only an input

• Initialization when RESET is high[ BRDY,RDY,MC1,RAS,CAS]
:= RESET;
[PO_r,P1_r,MSEL_r,RFC_r] := RESET;
• Counter controls defined
SCLRO ~
RESET
f (STATE ==1) & (COUNT==9)
f (STATE-==2) & (COUNT==9) & BRDY
f (STATE===2) & (COUNT==19);
CNTHOLD1

RESET
t (STATE ==1) & (COUNT==9)
f (STATE- 2) & (COUNT==9) & BRDY
# (STATE===2) , (COUNT==19);

CNTHOLD1 r =

(STATE ==0) & ALE & MIO & REFREQ
# (STATE=--O) , !REFREQ & !RESET;

&

!RESET

• Execution of access and refresh sequences
state diagram STATE
• NEXT
State 0:
- case
• STATE
RESET=H
0;
ALE & MIO & REFREQ & !RESET
1;
2;
! REFREQ & !RESET
REFREQ & (!ALE f !MIO)
0;
endcase;
• ACCESS CYCLE
State 1:
RAS
:= (COUNT==O)
low & !RESET;
MSEL_ := (COUNT=-1) & high & !RESET;
CAS
low
!RESET;
:= (COUNT==2)
RAS- := (COUNT==9) & high;
MSEL "= (COUNT==9) & low;
& high;
CAS
- i:=f (COUNT==9)
(COUNT==9) t RESET then 0 else 1;

,

,

• REFRESH CYCLE WITH ACCESS GRANT
State 2:
RDY:= low & ALE & MIO & !RESET;
BRDY := low & ALE & MIO & !RESET;
MC1 - := (COUNT==O) & low & !RESET;
RFC- := (COUNT=-l) & high & !RESET;
RAS- := (COUNT==1) & low & !RESET;
MC1- := (COUNT==3) & high;
RFC- := (COUNT=-5) & low;
RAS- := (COUNT==G) & high;
RAS- :- (COUNT==10)' low & !RESET;
RDY- := (COUNT==11)' high;
BRDY "= (COUNT==11) & high;
MSEL- "= (COUNT==11)' high' !RESET;
CAS - := (COUNT-12), low '!RESET;
RAS- := (COUNT-19)' high;
MSEL
(COUNT==19), low;
CAS_- :- (COUNT==19)' high;
if (COUNT-9) & BRDY then 0 else 2;
if (COUNT==19)# RESET then 0 else 2;
@paqe
"2

3-108

test vectors ' ACCESS SEQUENCE '
([OSC,RESET,ALE,MIO,REFREQ,COUNT]
x x
X
X
[elk, H
[elk, L , L , H , H
o
o
H
[elk, L , H , H
o
[elk, L , X I X , X
X
1
[elk, L , X , X
2
[elk, L , X , X, X
3; @REPEAT 6
@CONST ent
[elk, L , X 1 X , X
lent
ent + 1; }
@CONST ent
X
9
[elk, L I X I X
L
L
H
o
[elk, L

->
->
->
->
->
->
->

[RDY,MC1,RFC,RAS,MSEL,CAS,STATE ])
[H
H, L , H , L , H , 0 -];
[H
H, L ,H
L ,H, 0
];
[ H , H , L , H ,L , H , 1
];
[H
H, L ,L
L ,H, 1
];
[H
H, L , L , H , H , 1
];
[H
H, L , L , H , L , 1
];

->

H,H,L,L,H

, L ,

1

];

->

H, H, L , H, L
H, H, L , H, L

, H ,
, H ,

o
o

];
];

->

test vectors ' REFRESH WITH ACCESS FOLLOWING'
([OSC,RESET,ALE,MIO,REFREQ,COUNT] -> [RDY,MCl,RFC,RAS,MSEL,CAS,STATE ])
[elk, H
X
X
X
X
-> [ H , H , L , H ,L , H , 0 -];
[elk, L , X , X
L
0
-> [ H , H , L , H ,L , H , 2
];
[elk, L , L , L
X
0
->
H , L , L , H ,L , H , 2
];
[elk, L
L, L
X
1
-> [ H , L , H , L ,L , H , 2
];
[elk, L , L , L , X
2
->[H,L,H,L,L ,H, 2
];
[elk, L , L , L, X
3
-> [ H , H , H , L ,L , H , 2
];
[elk, L , H , H
X
4
-> [ L , H , H , L ,L ,H,
2
];
[elk,
L ,X, X
X
5
-> [ L , H , L , L ,L , H , 2
];
[elk, L , X , X, X
6
-> [ L , H , L ,H
L ,H, 2
];
[elk, L , X , X
X
7
-> [ L , H , L , H ,L , H , 2
];
[elk, L , X , X, X
8
-> [ L , H , L , H ,L , H , 2
];
[elk, L , X , X
X
9
-> [ L , H , L , H ,L , H , 2
];
[elk, L , X , X
X
10
-> [ L , H ,L
L, L , H , 2
];
[elk, L X , X, X
11
-> [ H , H , L , L , H , H ,
2
];
[ elk, L , X , X, X
12
- > [ H , H , L , L , H ,L, 2
];
@CONST ent ~13; @REPEAT 6
[elk, L , X , X, X
,ent
->
H, H , L , L ,H , L , 2
];
@CONST ent
ent + l;}
[elk, L , X , X, X
,19
->
H, H , L ,H
L ,H, 0
];

r

test vectors ' REFRESH WITHOUT ACCESS FOLLOWING'
([OSC,RESET,ALE,MIO,REFREQ,COUNT] -> [RDY,MC1,RFC,RAS,MSEL,CAS,STATE ])
[elk, H , X , X
X
X] -> [ H , H , L , H ,L , H , 0 -];
[elk, L X , X
L
0 ] -> [ H , H , L , H ,L , H , 2
];
[elk, L , L , L, X
0 ] -> [ H , L , L , H ,L , H , 2
];
[elk, L
L, L
X
1 ] -> [ H , L , H ,L
L ,H, 2
];
[elk, L , L , L, X
2 ] -> [ H , L , H , L ,L , H , 2
];
[elk, L ,L
L
X
3 ] -> [ H , H , H , L ,L , H , 2
];
[elk, L , L , H
X
4 ] -> [ H , H , H , L ,L , H , 2
];
[elk, L , H , L
X
5 ] -> [ H , H , L , L ,L , H , 2
];
[elk, L , H , L, X
6 ] -> [ H , H , L ,H
L ,H, 2
];
[elk, L , H , L
X
7 ] -> [ H , H , L , H ,L , H , 2
1;
[elk, L , H , L, X·
8 1 -> [ H , H , L , H ,L , H , 2
];
[elk, L , H , L, X
9 1 -> [ H , H , L , H ,L , H , 0
1;

@page

3-109

test vectors ' RESET DURING REFRESH '
([OSC,RESET,ALE,MIO,REFREQ,COUNTI -> [RDY,MC1,RFC,RAS,MSEL,CAS,STATE II
[elk,
[elk,
[elk,
[elk,
[elk,
[elk,

H , X ,
LX,
L , L ,
L , L ,
L , L ,
H , X ,

end PSG EX3

3-110

X,
X,
L,
L,
L,
X,

X
L
X
X
X
X

,.

X
0
0
1
2
3

->
->
->
->
I ->
I ->
I
I
I
I

[
[
[
[
[
[

H
H
H
H
H
H

,
,
,
,
,
,

H
H
L
L
L
H

,
,
,
,

L ,
L ,
L ,
H ,
H,
, L ,

H
H
H
L
L
H

,
,
,
,
,
,

L
L
L
L
L
L

,
,
,
,
,
,

H,
H,
H
H,
H
H,

0
2
2
2
2
0

-I;
I;
I;
I;

I;
I;

Appendix B. CUPL'" Source and Simulation Files
/***************************************************** ***********************1
f* CUPL (tm) TEMPLATE FOR THE TI PSG507
*/

f*

/*
/*
/*
/*
/*

This file provides the PSGS07 designer quick access to the information
needed to write a CUPL source file. By copying this file and deleting
this box from the new file a fill-in-the-blanks template will be left
for use in creating a source file.

*/

*/

*f
*/

*f
*/

f* 6-BIT COUNTER: The 6-bit counter is accessed through use of the PINNODE *f
statement. The pinnode statement is used to assign
*f
/*
variables to the internal node numbers. i.e. pinnode
*f
f*
[33 .. 38] = [CO .. C5].CNT. These variables can then
*f
f*
be used in the same manner as input pins.Using the
*f
/*
field statement, i.e. field COUNTER = [CO .. C5].CNT;
*f
f*
allows an equation like QO = COUNTER'd'3 I COUNTER'd'7; *f
f*
This equation causes the nonregistered output QO to be *f
f*
high only during counts 3 and 7.
*f
f*
*f
f* COUNTER CONTROLS: Clear and hold functions SCLRO, SCLR1, CNTHOLDO,
*f
f*
and CNTHOLDl are specified using the PINNODE
*f
f*
statement. Any valid variable can be used as a node
*f
f*
n~e, i.e. pinnode [39 .. 42] = [CLRO,CLR1,HLDO,HLD1];
*f
f*
These variables can then be used in the same manner
*f
/*
as an output pin.
*f
/*
*f
f* STATE REGISTERS: Buried .registers are assigned using the NODE state- *f
f*
ment, i.e. node [PO .. P7];. The actual registers
*f
/*
used are chosen by software in the order specified.
*f
f*
*f
f* OUTPUT STRUCTURE: Each output can be defined as either registered or
*f
f*
nonregistered. The structure assignment is automatic
*/
f*
and is determined by usage. QO.s = COUNTER'd'77;
*f
f*
causes the QO output to remain registered while
*f
f*
QO = COUNTER'd'77; causes the QO output to be non*f
f*
registered. When using nonregistered outputs CUPL
*/
f*
will automatically program the associated reset fuse
*f
/*

/*

/*
/*

for each product term used as required in the PSG507
data sheet.

*/

*"

*f

/****************************************************************************/

3-111

/**************************************************************************/

1*
1*
1* CLOCK POLARITY: The default clock polarity is active on the rising
1*
edge. The equation OUTPUT.ckmux = !CLK; will cause
1*
the clock to be active on the falling edge. The
1*
default can be specified by OUTPUT.ckmux = CLK;
1*
1* OUTPUT ENABLE: The default condition is outputs always enabled. The
1*
output enable fuse at pin 17 can be blown using the
1*
.oe extention. If pin 17 - EN; the fuse will be blown
1*
by the equation OUTPUTS.oe = EN; where OUTPUTS is a
1*
defined set of outputs. A single output can also be
1*
used to blow the fuse, QO.oe = EN;
1*
1* SIMULATION:
During simulation of a PSG design the CUPL 2.1Sa
1*
simulator will advance the counter on each clock
1*
depending on the state of the counter hold and clear
1*
functions. The powerup condition (counter bits and
1*
all registers low) is recognized by the simulator.
1*
1* CUPL is a trade mark of Personal CAD Systems, Inc.

*1
*1
*1
*1
*1
*1
*1
*1
*1
*/

*1
*1
*1
*1
*1
*/

*1

*/

*/
*/
*/

/**************************************************************************/

3·112

NAME

PARTNO
DATE
REV
DESIGNER
COMPANY
ASSEMBLY
LOCATION

XXXXX ;
XXXXX ;

XX/XX/XX
XX;
XXXXX
XXXXX
XXXXX
XXXXX

/**************************************************************************/

1*

*/

/*
*/
/*
*/
/**************************************************************************/
/* Allowable Target Device Types: TEXAS INTSRUMENTS PSGS07
*1
/**************************************************************************/
/**
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin
pin

Inputs
1
2
3
4
5
6
7
17
18
19
20
21
22
23

/**
pin
pin
pin
pin
pin
pin
pin
pin

Outputs
8
9
10

**/
CLK

/* PSG's clock input
/*

1*
1*

/*
/*
/*

1* input and/or output enable

*/
*/
*/
*/
*/
*/
*/
*/

/*
/*
/*
/*
/*
/*

*1

/*
/*

*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

**/

11
13

14

15
16

/** Node Declarations **1
pinnode [33 .. 38)
[CO .. 5)
pinnode 39
SCLRO
pinnode 40
SCLR1
pinnode 41
= CNTHOLDO
pinnode 42
CNTHOLD1
node
[PO •. P7)

1*
1*

/*
/*
/*
/*

/* BUILT-IN 6-BIT COUNTER
/* COUNTER CLEAR - non registered
1* COUNTER CLEAR - registered
1* COUNTER HOLD - non registered
/* COUNTER HOLD - registered
/* BURIED STATE REGISTERS

/** Declarations and Intermediate Variable Definitions **1
field COUNTER
= [CS .. O)
/* 6-BIT COUNTER

*/
*/

*1
*1

*/
*/

*1

/** Logic Equations **/
/** End of File **1

3-113

PSG EXl;
Partno
TIOe01;
Date
08/26/87;
Rev
02;
Designer Schiele/Woolhiser;
Company
Texas Instruments/Personnal CAD Systems;
Assembly None;
Location None;
Name

/********************************************************************/
/* Waveform Generator
*/
/*
*/
/* This is the first example from "A Designer's Guide to the
*/
/* PSGS07", by R. Breuninger. In this example a waveform generator */
/* which generates three clocks, running at lS, S, and 2.SMHz, is
*/
/* implemented for the PSGS07 using CUPL. In this implementation */
/* the built-in counter feature of the PSGS07 is utilized to divide */
/* a 30MHz master clock to generate the three output waveforms. The */
/* built-in counter is accessed by defining the variable list
*/
/* [CO .. S] as PINNODE's and then using the list where ever the
*/
/* counter values are needed. The synchronous clear function, SCLRO */
/* is also accessed through use of the pinnode statement.
*/
/********************************************************************/

/* Allowable Target Device Types:
TI PSGS07
*/
/********************************************************************/
/**

Inputs

**/
PSG_CLK;

pin 1
/**

Outputs

/* 30MHz MASTER CLOCK

*/

REF CLK;
SYS-CLK;
PCLK;

/* lSMHz REFERENCE CLOCK
/* SMHz SYSTEM CLOCK
/* 2.SMHz PERIPHERAL CLOCK

*/

[CO .. 3];
SCLRO;

/* BUILT-IN COUNTER
/* COUNTER SYNCHRONOUS CLEAR

*/

**/

pin 8
pin 9
pin 10

~

pinnode [33 .. 36]
pinnode 39

*/
*/
*/

/** Declarations and Intermediate Variable Definitions **/
field COUNTER

[C3 .. 0] .CNT;

/**[SYS_CLK, PCLK, CO .. 3].CKMDX

**/

/** Logic Equations **/
REF CLK
SYS-CLK.r
SYS-CLK.s
PCLK.r
PCLK.s
SCLRO

ICO.CNT;
COUNTER:'d'l t COUNTER:'d'7;
COUNTER:'d'S # COUNTER:'d'll;
COUNTER:' d' 5;
- COUNTER:'d'll;
COUNTER:' d' 11;

/* The PSGS07 has powerup clear of counter and registers. Six clocks
/* are required after powerup for this design to initialize. This
/*_design could be initialized after one clock by setting SYS CLK and
/* PCLK high at COUNT O. i.e. SYS CLK.s a COUNTER:'d'O t COuNTER:'d'5
/* t COUNTER:'d'11; and PCLK.s a-COUNTER:'d'O t COUNTER:'d'll;
/** End of file **/

3-114

*/
*/
*/
*/
*/

Name
Partno
Date
Rev
Designer
Company
Assembly
Location

PSG EX1;
TIOOO1;

08/26/87;
02;
Schiele/Woolhiser;
Texas Instruments/Personnal CAD Systems;
None;
None;

1***************************************************** ***************/

/*

*/

/* Waveform Generator
*/
/*
*1
1* CUPL simulation file for Example 1 from "A Designer's Guide to *1
/* the PSG507".
*1
/********************************************************************/
/* Allowable Target Device Types:
TI PSG507
*1
/********************************************************************/

ORDER: PSG_CLK, %7,. REF_CLK, %9, SYS_CLK, %6, PCLK;
BASE: DECIMAL;
VECTORS:
$msg" ";
$msg" PSG CLK REF CLK
SYS_ CLK PCLK ";
$msg" ---------------------------------------- " ,.
P
0

X

0

0

H

c

L

H
H

C

H

c
c
c
c
c
c

L

H
H
H
H
H
H

H

L
H

L

L
L
L
L
H
H

C
C

H

c

L

L
L
L
L

C

H

H

H

L

L
L
L
L
L
L
H

1*
1*
1*
1*

0 */
1 *1
2 *1
3

*1

/* 4 */
1* 5 */
1* 6 */

1*

7

*1

/* 8 *1
/* 9 *1

/* 10 */
/* 11 */
1* 0 */

3-115

PSG EX2;
Partno
TI0002;
-Date
08/26/87;
Rev
02;
Schiele/Woolhiser;
Designer
Company Texas Instruments/Personal CAD Systems;
Assembly None;
Location None;
Nania

/**************************************************************************/

1*
1*
1*
1*
1*
1*
1*
1*
1*

Refresh Timer
This is the second example from "A Designer's Guide to the PSG507", by
R. Breuninger. In this example a dynamic memory refresh timer, which
generates a refresh request every 15.4 uS, is implemented for the TI
PSG507 using CUPL. In this implementation the built-in 6-bit counter
is extended by using one of the buried state registers as the 7th bit.

*1
*1
*1
*1
*1
*1
*1
*1
*1

1***************************************************** *********************/

1* Allowable Target Device Types:

TI PSG507

*1

1***************************************************** *********************/

1** Inputs **1

pin 1
pin 2
pin 4

1** Outputs
pin 8

**1

PSG CLK;
RESET;
RFC;

1* 5MHz SYSTEM CLOCK
*1
1* SYNCHRONOUS RESET OR INITIALIZE *1
1* REFRESH COMPLETE
*1

REFREQ;

1* REFRESH REQUEST

*I

1* BUILT-IN 6-BIT COUNTER
1* COUNTER CLEAR CONTROLS

*1
*1
*1

1** Node Declarations **1
pinnode [33 .• 38]
[CO .. 5];
SCLRO;
pinnode 39
C6;
node

/* EXTENSION TO 6-BIT COUNTER

1** Declarations and Intermediate Variable Definitions **1
field 6BIT
[CO .. 5] •CNT;
1* 6 BIT COUNTER
field COUNTER
- [6BIT,C6];
1* FULL 7-BIT COUNTER
1** Logic Equations **1
REFREQ.s
REFREQ.r

RFC # RESET;
COUNTER:'d'76 & !RESET;

1* EXTEND BUILT-IN 6-BIT COUNTER BY ADDING A BURIED STATE REGISTER */
C6.s
C6.r

COUNTER:'d'63 & !RESET;
COUNTER:'d'76 # RESET;

1* BUILT-IN COUNTER CONTROL */
SCLRO

= COUNTER:'d'76

1** End of file **1

3-116

# RESET;

*I
*/

PSG EX2;
Partno
TI0002;
08/26/87 ;
Date
02;
Rev
Designer Schiele/Woolhiser;
Texas InstrumentslPersonal CAD Systems;
Company
Assembly None;
Location None;

Name

1***************************************************** *********************/
1* Refresh Timer
*1

1*
1* CUPL simulation file for example 2 from "A Designer's Guide to the
1* PSG507 n • This simulation file uses the $REPEAT directive to generate
1* many of the test vectors in the counter sequence.

*1
*1
*1
*1

1***************************************************** *********************/

1* Allowable Target Device Types:

TI PSG507
*1
1***************************************************** *********************/

ORDER:' PSG_CLK,%6,RESET,%4,RFC,%4,C6,%5,REFREQ;
BASE: DECIMAL;
VECTORS:
$msg" ";
$msg" NORMAL REFRESH CYCLE WITH REFRESH COMPLETE SIGNAL";
$msg" ";
-------INPUTS-------- -OUTPUT-wi
$msg"
PSG CLK RESET RFC C6
REFREQ" ;
$msg"
$msg"
---=---------------------------------"; I*COUNT*I
1
C
X
L
H
1* 0 */
X
L
H
0
C
1* 1 */
$repeat 74;
0
X
1*2-75 */
C
* *
$msg "end repeat";
H
H
C
0
0
1* 76 *1
L
L
0
0
C
1* 0 *1
C
0
0
L
L
1* 1 *1
L
C
0
0
L
1* 2 *1
1
H
C
0
L
1* 3 *1
L
H
C
0
0
1* 4 *1
$msg" ";
$msg" CHECK RESET FUNCTION AFTER REFREQ=L ";
$msg" "i
$msg"
-------INPUTS-------- -OUTPUT-a ;
REFREQ ";
PSG CLK RESET RFC C6
$msg"
$msg"
---=---------------------------------";
L
1
H
C
X
X
L
H
C
0
$repeat 74;
0
X
C
*
*
$msg "end repeat";
H
0
H
C
0
L
L
0
0
C
$repeat 29;
0
0
C
* *
$msg "end repeat";
0
L
L
C
0
L
H
1
0
C

I*COUNT*I
1* 0 *1
1* 1 *1
1*2-75 *1
1* 76 *1
1* 0 *1
1*1-30 *1
1* 31 *1
1* 0 *1

3-117

NaBie

Partno
·Date
Rev
Designer
Company
Assembly
Location

PSG Ex3;
TI0003;
08/26/87;
02;
Schiele/Woolhiser;
Texas Instruments/Personnal CAD Systems;
None;
None;

/**************************************************************************/

1*
1* Dynamic Memory Timing Controller
1*
1* This is the third example from "A Designer's Guide to the PSG507", by
1* R. Breuninger. In this example a dynamic memory timing controller,
/* which generates the control signals (ROY, MC1, RFC, RAS, CAS, MSEL)

*1
*1
*1
*1
*1
*1

1* necessary for accessing and refreshing dynamic memory, is implemented */
1* for the TI PSG507 using CUPL.
*/
/**************************************************************************/

/* Allowable Target Device Types: TI PSG507
*1
1***************************************************** *********************/

1** Inputs **1

PIN
PIN
PIN
PIN
PIN

REF CLK;
RESET;
ALE;
MIO;
REFREQ;

1
2

3
4
5

1** Outputs **/

PIN
PIN
PIN
PIN
PIN
PIN

8
9

10
11

13
14

=
=
=
=
=

ROY;
MC1;
RFC;
RAS;
MSEL;
CAS;

1** Node Declarations **1
[CO .. 4];
pinnode [33 •• 37]
SCLRO;
pinnode 39
SCLR1;
pinnode 40
CNTHOLDO;
pinnode 41
CNTHOL01;
pinnode 42
[PO .• 1];
node
node
BROY;
1** Declarations
field COUNTER
field STATE
$define STO
$define ST1
$define ST2

3-118

1* OSCILLATOR

*/

/* RESET - INITIALIZE
/* ADDRESS LATCH ENABLE
/* MEMORY I/O
1* REFRESH REQUEST

*1
*1

/* READY
/* MODE CONTROL
1* REFRESH COMPLETE
1* ROW ADDRESS STROBE
1* MULTIPLEXER SELECT
1* COLUMN ADDRESS STROBE

*1

*1
*1
*1
*1

1*
1*
1*
1*
1*
1*
1*

*1
*1
*1
*1
*1
*1
*1

BUILT-IN COUNTER
COUNTER HOLD non-registered
COUNTER HOLD registered
COUNTER HOLD non-refistered
COUNTER HOLD registered
BURIED STATE REGISTERS
BURIED READY SIGNAL

and Intermediate Variable Definitions **1
[CO •• 4].CNT;
[P1 .. 0];
'b'OO
'b'Ol
'b'10

*/
*/

*/

sequence STATE (
present STO:
/* INITIALIZE AND HOLD */
i f (RESET)
i f (ALE & MIO & REFREQ & !RESET)
if(!REFREQ & !RESET)
default

next
next
next
next

STO
STI
ST2
STO

present STl:
/* ACCESS CYCLE */
i f (RESET)
if (COUNTER:'d'O) &
if(COUNTER:'d'l) &
i f (COUNTER: 'd' 2) &
if (COUNTER:'d'9) &
default

next
next
next
next
next
next

STO;
STI out !RAS;
STI out MSEL;
STI out !CAS;
STO out [RAS,IMSEL,CAS];
STl;

!RESET
!RESET
I RESET
I RESET

present ST2:
/* REFRESH/ACCESS GRANT CYCLE */
i f (RESET)
next STO;
if (COUNTER:'d'O) & IRESET
next ST2 out IMCl;
if (COUNTER:'d'1) & IRESET
next ST2 out [RFC, !RAS];
if(COUNTER:'d'3) & IRESET
next ST2 out MCl;
if(COUNTER:'d'S) & !RESET
next ST2 out !RFC;
if(COUNTER:'d'6) & lRESET
next ST2 out RAS;
if (COUNTER:'d'9) & BROY
next STO;
if (COUNTER:'d' 10) & I RESET
next ST2 out lRAS;
if (COUNTER:'d'll) & I RESET
next ST2 out [BROY,MSEL] ;
if(COUNTER:'d'12) & !RESET
next ST2 out [ROY, !CAS];
if (COUNTER:'d'19)
next STO out [RAS,IMSEL,CAS];
default
next ST2; }
append BROY.r
append ROY.r

=
=

STATE:ST2
STATE:ST2

&
&

ALE
ALE

&
&

MIO
MIO

&
&

I RESET;
I RESET;

1* BUILT-IN COUNTER CONTROL EQUATIONS, WRITTEN *1
/* OUTSIDE THE STATE MACHINE
SCLRO
= RESET
t STATE:STI
t STATE:ST2
t STATE:ST2
CNTHOLDl. s
= RESET
t STATE:STI
f STATE:ST2
f STATE:ST2
CNTHOLDl.r
STATE:STO

*I

FOR CLARITY.

1* Clear counter on RESET *1
1* and transitions to STO.*I

& COUNTER:'d'9
& COUNTER:'d'9 & BROY
& COUNTER:'d'19;

1* Set count hold while
1* clearing the counter.
& COUNTER:'d'9
& COUNTER:'d'9 & BROY
& COUNTER:'d'19;
& ALE & MIO
& REFREQ & I RESET
1* Reset count hold
f STATE:STO & lREFREQ & lRESET;I* on transition to STl,2

APPEND BROY.s
APPEND ROY.s
APPEND Mel.s
I~*

=
=
=

RESET
RESET
RESET

APPEND RAS.s
APPEND CAS.s
APPEND PO. r

=
=
=

RESET
RESET
RESET

APPEND Pl.r
APPEND MSEL.r
APPEND RiC.r

=

*1
*1
*1
*1

RESET;

= RESET;
= RESET;

End of file **1

3-119

Name

Partno
Date
Rev
Designer
COIIIpany
Assembly
Location

PSG EX3;
TI0003;
08/26/87;
02;
Schiele/Woolhiser;
Texas Instruments/Personnal CAD Systems;
None;
None;

/**************************************************************************/

1*

*1

/* Dynamic Memory Timing Controller
*/
/*
*/
1* CUPL simulation file for Example 3 from "A Designer's Guide to the
*/
1* PSG507".
*/
1***************************************************** *********************/
/* Allowable Target Device Types: TI PSG507
*/
1***************************************************** *********************/

ORDER:

REF_CLK,%4,RESET,%4,ALE,%3,MIO,%4,REFREQ,%9,RDY,%3,
MC1,%3,RFC,%3,RAS,%3,MSEL,%4,CAS,%3,STATE;

BASE: DECIMAL;
VECTORS:
$msg"
";
$msg"
";
$msg"ACCESS TIMING CYCLE ";
$msg"
";
$msg"
------------ INPUT
------------ OUTPUT ----------- "
$msg"
CLK RESET ALE MIO REFREQ
RDY Mel RFC RAS MSEL CAS STATE
$msg"
-----------------------------------------------------------/*RESET*/ C
1
X X
X
H
H
L H L
H
"0"
H
1
L H L
H
C
0
0 1
H
"0"
L H L
C
0
1
1
1
H
H
H
"1"
X
H
L L L
0
X
X
H
H
"1"
C
L L H
H
"1"
X
X
H
H
C
0
X
X
X
X
H
H L L H
L "1"
C
0
X
X
L L H
H
H
0
X
L "1"
C
X
L "1"
0
X
X
H
H
L L H
C
H
X
X
X
H H L L
L
"1"
C
0
L "1"
0
X
X
X
H
H
L L H
C
X
H
H L L H
L "1"
C
0
X X
L "1"
X
0
X
X
H H L L H
C
X
H
H L H L
H
0
X
X
C
"0"
1
H
H
L H L
H
"0"
C
0
0
0
$msg"
";
$msg"
";
$msg"REFRESH WITH ACCESS FOLLOWING ";
$msg"
";
$msg"
------------ INPUT ---------------- OUTPUT ----------- "
RDY Mel RFC RAS MSEL CAS STATE
CLK RESET ALE MIO REFREQ
$msg"
$msg"
-----------------------------------------------------------H
H
L H L
H
1
it
X
X
/*RESET*/ C
"0"
H
H H L H L
0
X
X
0
C
"2"
L
H
X
H
L L H
0
0
0
C
"2"
H "2"
0
X
H L H L L
C
0
0
H "2"
X
H
L H L L
0
0
0
C
H
X
H H H L L
"2"
0
C
0
0

3-120

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1

1

x
x
x
x
x
x
x

x
x
x
x
x
x
x

0
0
0
0
0
0
0
0

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H

H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

L
L
H
H
H
H
L
L
L
L
L
L
L
L
L
H

L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L

H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
H

"2"
"2"
"2"
"2"
"2"
"2"
"2"
"2"
"2"
"2"
"2"
"2"
"2"
"2"
"2"
"0"

$msg"
";
$msg"
";
$msg" REFRESH WITHOUT ACCESS FOLLOWING ";
$msg"
";
$msg n
------------ OUTPUT ----------- "
------------ INPUT
$msg n
CLK RESET ALE MIO REFREQ
RDY MCl RFC RAS MSEL CAS STATE
$msgn
-----------------------------------------------------------non
1
X
X
X
H
H
L
H
L
H
/*RESET*/ C
"2n
0
X
X
0
H
H
L
H
L
H
C
"2n
X
H
L
L
H
L
H
C
0
0
0
X
H
L
H
L
L
H
"2"
0
0
C
0
n2 n
X
H
L
H
L
L
H
C
0
0
0
"2n
X
H
H
H
L
L
H
0
0
C
0
"2n
X
H
L
H
C
0
0
1
H
H
L
1
X
H
H
L
L
L
H
"2"
C
0
0
H
0
1
0
X
H
H
L
H
L
"2"
C
X
H
H
L
H
L
H
"2"
C
0
1
0
n2"
H
L
H
0
1
0
X
H
H
L
C
C

0

1

0

X

H

H

L

H

L

H

"0"

$msg"
";
$msg"
";
$msg" RESET DURING REFRESH";
$msg"
";
$msg"
------------ INPUT
------------ OUTPUT ----------- "
RDY Mel RFC RAS MSEL CAS STATE
CLK RESET ALE MIO REFREQ
$msg"
$msg"
-----------------------------------~-----------------------/*RESET*/

C
C
C
C
C
C

1
0
0
0
0
1

X
X

X
X

X

0
0
0

0
0

X

X

X
X
X
X

0

0

H
H
H
H
H
H

H
H
L
L
L
H

L
L
L
H
H
L

H
H
H
L
L
H

L
L
L
L
L
L

H
H
H
H
H
H

"0·

"2"
"2"
"2"
"2"
"0"

3-121

3-122

Appendix C. PSG507 Fuse Numbers
111

10

11

"14

121~

M

~

....

000

N,

~;;;

M,

~<-

~~

~~

I
I

13

I

" ",,17
""

I

16

"'
"'

11210E

0

I

I

"2G

II~

"

co
e,
e2
e3
e4
es

I

SCLRO

'-' f-+
CNrIHCOO

,
,~

i

:

~

'-'

>-+=

"

'-'

>-+

"

f-I>

"

!:: f-I>
I

!::

,

f--{'

P3

,.

;::: f--{'

"

;::: f--{'

P6

!:::

f--{'

=~~ao
e n62

';:::~~a,

I

I
I'

II

I

,

~"""

I,

;:::~

i

~~a3

I

I

,

!

II

I

I

I

I

II

I

I

~G~a4

~!=}:

I'

~""
Hi'

'

I

~~"'''

;:::f'{"

IT

,

0

0

.

N

~~

~s

I

I

.. .
.oo

as

. ~~ [lJ~~'"''

I

I Ii
.~H"

II
'"~

I

3-123

•

3-124

System Solutions for
Static Column Decode
Robert K. Breuninger, Loren Schiele,
and Joshua K. Peprah

~

TEXAS
INSTRUMENTS
3-125

...

IMPORTANT NOTICE
Texas Instruments (Til reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. TI advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with Tl's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
such testing necessary to support this warranty. Unless mandated
by government requirements, specific testing of all parameters of each
device is not necessarily performed.
In the absence of written agreement to the contrary, TI assumes no
liability for TI applications assistance, customer's product design, or
infringement of patents or copyrights of third parties by or arising from
use of semiconductor devices described herein. Nor does TI warrant
or represent that any license, either express or implied, is granted
under any patent right, copyright, or other intellectual property right
of TI covering or relating to any combination, machine, or process in
which such semiconductor devices might be or are used.

Copyright

3-126

©

1987, Texas Instruments Incorporated

Contents
Title
INTRODUCTION. . . .. . .. . . . . . . . . .. . .. . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .
STATIC COLUMN DECODE...................................................................
TYPICAL MEMORY CONTROLLER........... .................................................
TIMING CONTROLLER DETAILS. . . .. . . .. . . . . . . .. . . .. . . . . . . . . . . . . . . . .. . . . . . . .. . .. .. . . . . . . . . . . .
NORMAL ACCESS SEQUENCE............... ........................................ .........
HIGH-SPEED ACCESS SEQUENCE.......................................... ...................
EXTENDED ACCESS SEQUENCE............. ........ ................................ .........
NORMAL/EXTENDED REFRESH SEQUENCES..................................................
SOFTWARE SUPPORT.......................................................................
SUMMARy ................................................................................. .

Page
3-129
3-129
3-131
3-131
3-133
3-133
3-134
3-134
3-138
3-138

Appendixes
A
B

ABEL'· Files. . . . . .. . . . . . . . .. ... . . . . . . . .. .. . . . . . . . . . . . . . . . . . . .. . . . . . . .. . .. . ... . . . . . . . .. .. . .
CUPL'" Files........................................ ......................... .. ...........

3-139
3-145

ABEL is a trademark of DATA 110
CUPL is a trademark of Personal CAD Systems, Inc.

3-127

List of lllustrations
Figure

Title

Page

1
2
3
4
5
6
7
8
9

Static Column Decode Mode Read Cycle Timing.. . ... . .. . .. . ..... .... . .. .. . . . . . .. .. .... . . . .
68020/6301 Static Column Memory Controller. . ... . .. . .. . ... . . . . . ... . . .. .. .. . . . . . .. . ... . .. .
ALS6310 Static Column/Page Mode Access Detector ........................................
Timing Controller Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Normal Access Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High-Speed Access Cycle ...............................................................
Extended Access Cycle .................................................................
Normal Refresh/Access Grant Cycle ......................................................
Extended Refresh Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3-129
3-130
3-131
3-132
3-133
3-134
3-135
3-136
3"-137

3-128

INTRODUCTION
The ncw 32-bit microprocessors are capable of addressing
4G bytes of physical memory and typically feature clock
frequencies greater than 16 Mhz. However, clock speed
alone docs not guarantee increased system perfonnance; if
the processor must wait Il)r data, then memory bandwidth
will be the limiting factor.
This situation exists between today's microprocessors
and the access times of affordable DRAMs. One solution to
optimizing system pert()rmance is to mix and match memory,
using lower cost dynamic RAM in conjunction with fast,
more expensive static RAM caches. However, this approach
is only attractive to high end systems where cost and board
space is a less signitlcant factor.
Another approach to improving system performance
is to utilize the new accessing modes available on certain
I meg DRAMs, such as static column decode. This method
docs not improve system performance as much as caches,
but it docs involve less hardware, resulting in lower system
cost. This approach can also be used in systems already using
caches, further improving system performance.
This application note describes the theory of using static
column decode and also describes how it might be
implemented in a typical system. In addition, it highlights
three new products from Texas Instruments. The

SN74ALS6300 "Selectable Refresh Timer", the
SN74ALS6310 "Static Column Access Detector", and the
TIBPSG507 "Programmable Sequence Generator".

STATIC COLUMN DECODE
The TMS4C 1027 is a 1.048,576-bit X I dynamic
RAM featuring static column decode. Static column decode
allows high-speed read and write operations by reducing the
number of required signal setup, hold, and transition timings.
This is achieved by first strobing the row and column
addresses in the normal manner by taking RAS and CAS low.
If RAS and CAS are kept low, new data can be accessed
by simply changing the column addresses, assuming the new
address is in the same row. If the new address is not in the
same row, then a normal access cycle must be performed.
Figure I is a timing diagram taken from the
TMS4C I 027 datasheet showing static column decode mode
read cycle timing.
If the assumption is made that the majority of memory
references tend to be sequential, which is a similar
assumption made when using caches, then it is logical to
assume that a large percentage of memory accesses will be
within the same row. The trick is how to implement a timing
controller which will take full advantage of the static column
mode of operation.
~

\+-tw(RH)

ItoI_r-------------tw(RL)P-------------+t~1 I
RAS

~j
!{

_

VIH

I
II

VIL

Y:"'---I
I

I ~I- - - - - - - - - - - - - - - - - - - - - - - - - - -

~

I

J+-tt

I_

.1

Ii

~

I I

td(RLCL)rd

: I
j,J.:",,:---VIH

I I
I I4---th(RLCAI~

~
tsu(RA)~

I4l-

I

I I I

I

t+-th(RA)

I

i+--tc(rd)SC~

I

I
III

I I

VIL
j+-th(RHCA)

I I

I

~

I

I

I+--tsu(CAR)-+i

jrl_ _ _",,1

I I
II

COLUMN

AO·A9

I

I I

!+-+i-tdIRLCA)

I I

j+-tsu(RLrd)

I I

I

I I

1

I I
I I

I
I

I

I
i+--ta(R)--+i

I

I \+-taICA)-+j
th(CAQ)~
I
I

rc:-:-:-::::-:L

1

Q-------{

Figure l. Static Column Decode Mode Read Cycle Timing

3-129

Cf
~

Col

o

DRAM
CONTROLLER
74ALS6301

v~

lE

DYNAMIC RAM

00

\

0
0

TIMER

~O

REFRESH
RATE

o t---

TIMING
CONTROllER
TIBPSG507

REFRESH

SO-S3

09

t---

CASO

.....

ClK

RFC

'"-

SYSClK
ClK

OSC

101M

101M IA2Z
~

DSACK

R/W

Riw
AS

AS
STATIC COLUMN
DETECT
SN74AlS63l0
' - P.ClK

\

-----I
,-----t

I----t

f----.

SYS RST

Al0-Al9

W

r-

~ RST

~

I---t
I----t

f

MSEl

\

CASi
MCl

r----t
I- ~

CASl

cs

CASl

.....-

A20
AZl

00
0

W

I I I 1

wI--

7

I-f--CAS2 1-1--

0
0
0

A9

0
0
0

BANK 2
1MEG X 32 BITS
132) TMS4Cl027

l

,

W

I I I I
\

AO

~

0
0
0

AO
0
0
0

BANK 3
1MEG X 32 BITS
132) TMS4Cl027

A9

Al9

SElO

RAS3

RAS3

SEL'

CAS3

CAS3

W

00_. e031

Figure 2. 68020 Static Column Memory Controller

I

A9

CAS2

~

BO

AO

RAS2

RAS2

I

1

BANK 1
1MEG X 32 BITS
132) TMS4Cl027

A9
RASl

liASl l-

AO

r

0
0
0

t--

MCO

OE

AO

Bl

ROW
Al0-Al9
COLUMN
AO-A9

J

I I I 1

RASI

~
HSA

I

BANKO
1 MEG X 32 BITS
132) TMS4Cl 027

A9
RASO

SELECT

SYS ClK
IOSC/2)

0
0
0

RASO ~
CASO

REFREO

.,

AO

QO •• _031

J

TYPICAL MEMORY CONTROLLER
Figure 2 shows a block diagram of a memory system
utilizing static column decode. The ALS63 10 is a new circuit
offered by Texas Instruments which detects if the present
row being accessed is the same as last row accessed. This
is the fundamental requirement for implementing static
column decode. Note that the row addresses from the 68020
are used as the most significant bits (A IO-A 19) and the
column addresses are used as the least significant bits
(AO-A9). Figure 3 shows a block diagram of the ALS6310.
In circuit operation, when address strobe (AS) from
the 68020 is taken low, the present row (AIO-AI9) and bank
address (BO, B I) is clocked into the first register of the
ALS631O. The previous bank and row address, stored in the
first register, is clocked into the second register at the same
time. The two addresses are then compared to see if they
are equal. If they are equal, the high speed access output
(HSA) will be logically low. If not, HSA will be high.
The function of the PSGS07 is to generate the required
memory timing control signals (RAS, CAS, etc.) for the
ALS630 I dynamic memory controller. The ALS630 I is
responsible for multiplexing row and column addresses into
DRAM. The ALS6301 is also capable of driving 4 banks
of 1M-byte memory.

Supporting the PSG507 is the ALS6300 refresh timer.
This device is responsible for generating a refresh request
signal (REFREQ) every IS.S flS. The input select lines are
hardwired to match the microprocessor clock frequency. The
refresh complete input (RFC), resets the REFREQ signal
after the timing controller completes the refresh cycle.

TIMING CONTROLLER DETAILS
Figure 4 shows a typical flow chart for implementing
static column decode. As stated before, the PSGS07 is
responsible for implementing the flow chart shown in
Figure 4. A breakdown of this flow chart reveals 9 states
(STO-ST8), associated with S different sequences. States STO,
STI, ST3. and ST4 are holding and transition states, leading
into the various sequences. The five possible sequences are
listed below.
ST2 Normal Access Sequence
STS Extended Access Sequence
ST6 High-Speed Access Sequence
ST7 Normal Refresh Sequence
ST8 Extended Refresh Sequence
Notice that the HSA signal from the ALS6310 decides
if the timing controller will execute STS, the Extended Access
Sequence. or ST6, the High-Speed Access Sequence. A brief
description of each sequence follows.

ClKEN----_.---------------------------------,
ClK--.-~----------------------------,

PRESENT ADDRESS
REGISTER

PREVIOUS ADDRESS

10

AO-A9

BO-B3

Figure 3. ALS6310 Static Column Page Mode Access Detector

3-131

NO

Fi~ure

3-132

4.

Til11in~

Controller Flowchart

NORMAL ACCESS SEQUENCE

HIGH-SPEED ACCESS SEQUENCE

The normal access sequence is shown in Figure 5. This
sequence begins hy executing a normal RAS/CAS cycle.
Notice that a wait state of one clock cycle is needed to
guarantee that data is valid tl)r the 68020. This is the problem
mentioned in the introduction: if all access cycles had to be
performed in this manner, then the processor would face a
wait state every access cycle. As will be shown later, this
wait state can be eliminated if the next address is from the

For a high-speed access sequence to be executed, two
conditions must be met. The RAS and CAS inputs must
already be low. and secondly, the static column access
detector must be indicating the present row is the same as
the last row (HSA = L). The bank addresses must also be
unchanged as detected by the ALS631O.
Figure 6 shows the timing diagram for the high-speed
access sequence. Notice that no wait states are required. If
the assumption is made that the majority of memory
references are sequential, then this sequence will be the one
typically used. In other words, this sequence is similar to
accessing data from a static RAM, or just like taking data
from cache.

same row.

Notice also, at the end of this sequence, the RAS and
CAS output signals are left active low. Here we are making
the assumption that the next access cycle will be a high-speed
access. We will not know if this assumption is true until the
next address is presented hy the 68020. At that time. the
ALS63 10 will signal the timing controller if it can execute
a high-speed access.

ST2
CNT3

ST2
CNT4
53

SW

r-~--~L-

54

____________________

ADX \SSSSSSSSSSX

ST3
CNTO

so

55

~

__

51

~-------'L

xSSS\SSSSS

VALID PROCESSOR ADDRESS

R/W \\\\\\\\\\\lC

RASI

ST2
CNT5

"")(ssssssS\\

VALID R W siGNAL

----------------------------~----------------------------~-------------------------

MSEL ______________________~-----r------------------:_-------------------

CAS I ----------------------------T---------------L-____________~------------------------MAOR SSSSSSSSSSSSSSSSX

00-031

ROW ADDRESS

X

COLUMN ADDRESS

I

I

I

:

:

I

_________________________________________+I__~I.:=====~.I~T~A:I~C~I:1~::~[ffi~mur::::::::::::
:
VALID READ DATA
I4----TA

ICAI~

DSACK--------------------------------------------L-____________________

~r_---------------

W------------------------------------------~~~~~~------------

Figure 5. Normal Access Cycle

3-133

5T4
CNTO

5T3
CNTO

5T4
CNT1

5T6
CNT2

5T6
CNT3

5T6
CNT4

5T3

CNTO

05C
I

I
51
52 I
53
54
55
50
5Y5ClK----Jr----~~L_~____S_~~I~~__~__~~-=~--1___~__Jr--~--~

50

51

__~__~r

A5~r----------~L___~______________~_____l------------~L

ADX \\ \ \ \ \ \ \ \ \ \ \X'-_________...:V.,:A"'LI:::.D:.,;PR..:O",C:=;ES",S:.:;:O;;.R.,:A;::DDe;R:;;E::;SS:-,-_ _ _ _ _ _ _-'X\ \

\\\\\\\

RAID--------------------------L--------------M5El-------------------------~---------------

CA51-------------------------~-----------------

MADR \ \ \ \ \ \ \ \ \\ \ \ \ \ \\ \

xssss:

X'-__________....;C::.::O::::lU:::M:::N=AD::.::D::;R:=;ES:.::S~_ _ _ _ _ _ _ _ _ _
I
I+----TA

00031

ICI~

~~~~~~~~~~~~~~~~I_______~~~I~~~~_ _- - - - - - - - -

\\\\\\\\\\\\\\\\\\\\\\\\\\X

VALID MEMORY DATA

s_----------

D 5 A C K - - - - - - - - - - - - - - - - l L_ _ _ _ _ _ _ _ _ _ _ _ _ _

w---------------------------IC~~~-----------

Figure 6. High-Speed Access Cycle

EXTENDED ACCESS SEQUENCE

NORMAL/EXTENDED REFRESH SEQUENCES

The extended access sequence is executed if the
ALS63 10 detects a difference between the present, and last
row addresses .. This cycle is called extended because RAS
and CAS are presently low and both must be brought high to
strobe in the new row and column addresses. The precharge
time of the DRAM has to be met before taking RAS and CAS
low. From the timing diagram in Figure 7, it can be seen
that wait states of three clock cycles are generated when
executing this timing sequence.
In systems where sequential data is not the general rule,
it would be more efficient to execute only normal access
sequences, since this generates fewer wait states. The system
designer must understand what type of memory accesses will
be used. For example, the designer may want only to enter
the high-speed access portion of the flow chart when the
system is performing DMA access cycles.

Figures 8 and 9 show the timing diagrams for the
normal and extended refresh sequences. The refresh sequence
selected is a function of the present condition of RAS and
CAS. IfRAS and CAS are presently low, an extended refresh
cycle is performed. If RAS and CAS are presently high, a
normal refresh cycle is executed. At the end of each refresh
sequence. the controller checks to see if an access request
has been generated. If there has been an access request, the
controller will perform an access grant sequence at the end
of the refresh cycle before returning to normal process flow.
Referring back to Figure I, there is a maximum time
that RAS and CAS can be held low, tw(RL)P. For the
TMS4CI027, tw(RL)P must not exceed 100 JJ.s. Since our
refresh timer forces a refresh cycle every 15.5 JJ.S, tw(RL)P
cannot be violated. If the designer chooses to use a different
refresh scheme, then tw(RL)P must be considered.

3-134

ST4
CNTO

ST3
CNTO

ST4
CNT1

ST5
CNT2

ST5
CNT4

ST5
CNT3

ST5
CNT5

ST5
CNT6

ST5
CNT7

ST5
CNT8

ST5
CNT9

ST3
CNTO

ST5
CNT10

OSC

1
SYS ClK

--.J

SO

S1

S2 :

SW

SW

SW

SW

SW

SW

S3

S4

S5

r
r

AS-----I

ADX

SSSSSSSSSSSX

HSA___

XS

VALID PROCESSOR ADDRESS

_

~

I
I
I

R/W

SSSSSSSSSSSSlC - - - - - - - - - - - - - - - - - -

-VAUDiiTWDATA -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

_1- -

-

::xs

I

I

I
~

RASI ____________________________

MSEl

CASI ______________________________-"

MADR \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

\JC

COL

X

ROW ADDRESS

X

COL ADDRESS

I

00-031 \ \ \ \ \ \ \ \ \ \ \ \ \ \

I

I

1

14

I

\SS\\ \\ \\\S \\\ \\\ W

L

Figure 7. Extended Access Cycle
~

W

01

ICA1----':

r

,-------T

W

Cf

!

( V A L I D MEMORY DATA

* - TA
DSACK

lot TA ICI
I

I

Cf
w
~

O'l

STO
CNTO

ST7
CNTO

ST7
CNT1

ST7
CNT2

ST7
CNT3

ST7
CNT4

ST7
CNT5

ST7
CNT6

ST7
CNT7

ST7
CNT8

ST7
CNT9

ST7
CNT10

ST7
CNT11

ST7
CNT12

ST7
CNT13

ST7
CNT14

ST3
CNTO

asc
S1

S2

SW

SW

SW

SW

SW

SW

SW

SW

SW

S3

S5

SO

SYS ClK

AS

REFREO

r-

-.I
~:L~

______________________________________Jr--------t-------------------------------------------------t----------

RFC

-L-I-----------------------------------------------t

AGREo----------lL____________________________________________
ADX

S\ \\ \ \\X

XSS

VALID PROCESSOR ADDRESS

j
I

HSA \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

DDNT CARE

\\ \\\\ \\\\ \ \ \\\ \\ \ \\ \ \\\ \\ \\\\\\ \ \ \ \\\\

I

R/W \ \\\ \ \\ \

lC - - - - - - - - - - - - - - - - -

VAliD RiW DinA - -

-

- -

- -

-

- -

-

- - - - -

- - - L -

:-xs:s

I

-.I

M C 1 - - - - - - - - - - - - ' L____________________________

RASI----------------~

MADR \ \'\ \ \ \ \ \ \ \ \ \ \ \ \ \ \X

___________________F------------------L___________________~-----ROW REFRESH ADDRESS

X

X

ROW ADDRESS

COL ADDRESS

I

MSEl ____________________________________________________________________

I
I

~

CASI

00-031

------------------------------------------------------------------------------------------rl~~~~~
I+-TA

DSACK

W

(CI_

H~AUUATA

.,-----.--

Figure 8. Normal Refresh/Access Grant Cycle

ST3
CNTO

STS
CNTO

STS
CNT1

STS
CNT2

STS
CNT3

STl

STl

STl

STl

CNTO

CNTl

CNT2

CNT3

ST7
CNT4

ST7
CNTS

ST7
CNT6

STO
CNTO

STO
CNTO

OSC

r

SYSCLK-..J

AS-------T--------------------------------------------------------------~

REFREO

r_--t----------------

RFC------------------------------------------------------------~____________

AGREO-------------------------------------------------------------------------------------------i------------------ADX

STIR\:U\3U\3UTI'\S\ \\ \ \\ \ \ \ \\ \ \\\ \

DDNT CARE

\\ \\ \\ \\\ \ \\ \\ \ \ \ \\\ \\\ \ \\ \ \ \ \ \ \ \ \ \\ \\

HSA

lD. D DD. \\~\"_u\\\,,\\\\\ \,\\",\\\\\\\

DONT CARE

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\'\\'\\\.

R/W \ \ \Y\\'\\\\\\'\\TIu\\\\\\\\\'\\\ \ \ \ \ \ \

DONT CARE

\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

MCl
RASI ______________________

r-----------------------,~

MADR \ \ ' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \~ll\'\\\\\\\\

____________________

\\\\\\X

~

ROW REFRESH ADDRESS

X\\\\\\\\\\\

MSEL
CASI __________________________

~

00-031 ' \ \' . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \)

DSACK --------------------------------------------------------------_______________________________________________________

't'
W

-.J

W------------------------------------------------------------------------------------------Figure 9. Extended Refresh Cycle

SOFTWARE SUPPORT

SUMMARY

The PSG507 is supported by two software packages.
CUPL which was created by and is supported by Assisted
Technologies, a division of Personal CAD Systems Inc. and
ABEL which was created by and is supported by FutureNet
a division of Data liD Corp. Both of these software packages
have been used to reduce equations and to generate the
fusemap necessary to program the PSG507. Appendices A
and B show the ABEL'· and CUPL"' source files for the
described static column memory timing controller are
attached to assist the designer in programming the PSG507.
Since only 54% (43 out of 80) ofthe PG507's product
terms were used in this design, it will be easy to modify or
add to the sequences used to meet specific system
requirements. For detailed information on designing with the
PSG507 see "A Designer's Guide to the PSG507"
application report.

Static column decode offers the system designer a
method for improving system performance in applications
where the microprocessor can outperform conventional
DRAM access times. By utilizing the ALS6310 "Static
Column Access Detector", the ALS6300 "Refresh Timer",
and the TIBPSG507 "Programmable Sequence Generator"
a high performance memory timing controller can be easily
developed to take full advantage of static column decode.

3-138

APPENDIX A

module SCDECODE
title 'ABEL EXAMPLE FOR THE STATIC COLUMN DECODER
JOSH PEPRAH, TEXAS INSTRUMENTS, OCT 29, 1987'
DECODE device 'F507';
" Input pin assignments
pin 1;
OSC
RESET
pin 2;
pin 3;
A22
pin 4;
RW
REFREQ
pin 5;
pin 6;
AS
pin 7;
HSA
SYSCLK
pin 17;

" OSCILLATOR
" SYSTEM RESET - WHEN LOti
n IO/MmlRY - MEMORY ACCESS
" READ / WRITE ENABLE
n REFRESH REQUEST
n ADDR STROBE - ACCESS REO
n HIGH SPEED ACCESS
n SYSm! CLOCK - (OSC/2)

" Output pin and node assignments
RFC
pin 8; RFC r
WI
pin 9; WI r
MSEL
pin 10; MSEL-r
CASI
pin 11; CASI-r
Mel
pin 13; Mel
tI
pin 14; tI rDSACK
pin 15; DSACK r

r

node
node
node
node
node

47;
48;
49;
50;
51;

node 53;

" REFRESH COMPLETE
" ROti ADDRESS STROBE
" MULTIPLEXER SELECT
n COLUMN ADDRESS STROBE
" MODE CONTROL
node 52; "WRITE
" DATA STROBE ACKNOWLEDGE

" Internal counter bits & control, and state reg - node declarations
CO,C1,C2,C3,C4,C5 node 55,56,57,58,59,60;
SCLRO
node 25;
CNTHOLDO node 28;
CNTHOLD1 node 29; CNTHOLD1J node 30; " COUNT/HOLD CONTROL REGISTER
" Buried state registers - node declarations
PO
PI
P2
P3
AGREQ

node
node
node
node
node

31;
32;
33;
34;
35;

node
PO r
pCr
node
P2-r
node
P3-r
node
AGRE(r node 43;

39;
40;
41;
42;

" STATE REGISTER
" STATE REGISTER
n STATE REGISTER
" STATE REGISTER
" ACCESS GRANT REQUEST STATUS REGISTER

Set notation is used to represent control, buried state, and output
registers. This is done to sbDplify the equations. The following
n sets are in the form;
register name = [set input, reset input]. Note
" that the ouput register pin name specifies the set input.
n
n

RFC
WI
MSELCASIMel tI

DSACK
AGRE(

=
=
=
=
=
=
=
=

[RFC, RFC r];
[WI, WI r];
[MSEL, MSEL-r];

[CASI, CASI-r];
[Mel, Mel rl;
[tI, tI r];-

[DSACK, DSACK r];
[AGREQ, AGRE(r];

3-139

•
"
"
"

Intemediate declarations for simplification.
The sets ' high' and' low' are used to set or reset the SiR
registers. Example: RASI : = high & RESET; will cause pin 9
to go high on the next clock edge if input pin 6 is high.

high
low
COUNT
STATE
H,L,cU,X

= [1,
.. [0,

0);
1);

= [C3, C2, C1, CO);
= [P3, P2, P1, PO);

" STATE REGISTER SET DEFINED

= 1, 0, .C., .X.;

equations
enable RFC .. 1; "outputs always enabled, pin 17 is only an input
n

Initialization when RESET is low
[RASI,CASI,RFC,II,AGREQ,DSACK,MC1,SCLRO) := !RESET;
[MSELJ,PO_r,P1J,P2_r,P3J)
:= !RESET;

n

Counter controls defined

SCLRO

CNTHOLD1

.. !RESET
t [STATE ==2)
t (STATE-==4)
t (STATE-==5)
t (STATE-==6)
t (STATE-==7)
t (STATE-=7)
t (STAT(=8)

&
&
&
&
&
&
&

(COUNT==5)
(COUNT==O) & A22
(COUNT==10)
(COUNT==4)
(COUNT==6) & (A22 t AGREQ)
(COUNT==14)
(COUNT==3);

.= !RESET

t
t
t
t
t
t

(STATE ==2)
(STATE-=4)
(STATE-=5)
(STATE-=6)
(STATE- ==7)
(STATE-==7)
f (STAT(==8)

(COUNT=5)
(COUNT==O) & A22
(COUNT==10)
(COUNT==4)
, (COUNT=6) & (A22 t AGREQ)
& (COUNT==14)
& (COUNT==3);
&
&
&
&

CNTHOLD1 r := (STATE ==0) & !RErREQ & RESET
1 (STATE ==1) & !A22 & RESET
# (STATE-==3) & !REFREO , RESET
t (STAT(==3) & REFREQ & AS & SYSCLK & RESET;
n Execution of access and refresh sequences
state diagram STATE
State 0:
case
!RESET
REFREQ & (!AS t !SYSCLK)
REFREQ & AS & SYSCLK & RESET
!REFREQ & RESET
endcase;

3-140

n

n

NEXT
STATE

: 0;
: 0;

: 1;
: 7;

" NORMAL ACCESS CYCLE
State 1;

" NEXT
" STATE

case
(COUNT==O) & !A22
(COUNT==O) & A2 2
endcase;

; 2;
: 0;

State 2:
RAS I
MSELCASIDSACK-

:= (COUNT==O) & 1011 & RESET;
;= (COUNT==l) & high;
:= (COUNT=2) & low & RESET;
:= (COUNT==2) & 1011 & RESET;
II - := (COUNT==3) & low & RESET;
11- := (COUNT==5) & high;
DSACK := (COUNT==5) & high;
if (COUm==5) then 3 else 2;
"HOLDING STATE
State 3;
case
(!AS t !SYSCLK) & REFREQ & RESET
REFREQ & AS & SYSCLK & RESET
!REFREQ & RESET
endcase;

" NEXT
" STATE
: 3;

: 4;
: 8;

State 4:
CASI
RASI
MSEL
RASI
DSACK
MSEL
CASI-

:=
:=
;=
:=
:=
;=
;=

(COUNT==O)
(COUNT==O)
(COUNT==O)
(COUNT==l)
(COUNT==l)
(COUNT==l)
(COUNT==l)

high & A22;
high & A22;
1011 & A22;
& high & HSA;
low & !HSA;
low & HSA;
& high & HSA;
&

" NEXT
case
(COUNT==O)
(COUNT==O)
(COUNT==l)
(COUNT==l)
endcase;

&
&
&
&

A22
!A22
HSA
!HSA

& RESET
& RESET
& RESET
& RESET

;
:
:
;

" STATE
0;
4;
5;
6;

"EXTENDED ACCESS CYCLE
State 5;
RASI
MSELCAS(
DSACK

;=
;=
:=
;=

(COUNT==5) & low & RESET;
(COUNT==6) & high & RESET;
(COUNT==7) & 1011 & RESET;
(COUNT==7) & low & RESET;
II; = (COUNT==8) & 1011 & RESET;
11- ;= (COUNT==10) & high;
DSACK := {COUNT==10) & high;
inCOUNT==10) & RESET then 3 else 5;

3-141

"HIGH SPEED ACCESS
State 6:
II := (C00NT==2) & low & RESET;
11- := (COONT==4) & high;
DSACK := (C00NT==4) & high;
if- (C00NT==4) then 3 else 6;
"NORMAL REFRESH CYCLE
State 7:
AGREQ := AS
& low & RESET;
IICC := (COONT==O) & low & RESET;
RASC := (COuNT-I) & low & RESET;
RFC- := (COONT==3) & low & RESET;
RFC- := (COUNT=5) & high;
RASI- := (COUNT==5) & high;
IIC( := (COUNT=6) & high;
RASI := (COUNT==9) & low & RESET;
MSEL- := (COUNT=10) & high & RESET;
CASI- := (COUNT=l1) & low & RESET;
DSACK- := (COUNT==l1) & low & RESET;
11:= (COUNT==12) & low & RESET;
11- := (COUNT==14) & high;
DSACK := (COUNT=14) & high;
if (COUNT=6) & (A22 # AGREQ) then 0 else 7;
if (COUNT=14) then 3 else 7;
"EXTENDED REFRESH CYCLE
State 8:
RASI := (COONT==I) & high;
MSEL- := (COUNT==l) & low;
CASI- := (COUNT==l) & high;
if (COUNT==3) then 7 else 8;
test vectors ' NORMAL ACCESS CYCLE'
([OSC, RESET,A22, RII,REFREQ,AS, HSA, SYSCLK,COUNT]
[elk,
L , X , X, X
, X,
[elk,
H , X , X, H
, L,
[elk,
H , X , X, H
, H,
[elk,
H , L , X, X
, X,
[elk,
H , X , X, X
, X,
[elk,
H , X , X, X
, X,
[elk,
H , X , X, X
, X,
[elk,
8 , X , X, X
, X,
[clk,
8 , X , X, X
, X,
[elk,
H , X , X, X
, X,

-) [RFC, RASI,MSEL, CASI,MC1, !I, DSACK, STATE])
X, X, X ] -) [ H, H, L, H ,-H ,H,
X, X, 0 ] -> [ H, H, L, H, H ,H,
X, H, 0 ] -> [ H, H, L, H, H ,H,
X, X, 0 ] -> [ H, H, L, H, H ,H,
X, X, 0 ] -> [ H, L, L, H, H ,H,
X, X, 1 ] -) [ H, L, H, H, 8 ,8,
X, X, 2 ] -> [ H, L, H, L, H ,H,
X, X, 3 ] -> [ 8, L, H, L, H ,L,
X, X, 4 ] -> [ H, L, H, L, 8 ,L,
X, X, 5 ] -> [ H, L, 6, L, H ,8,

,

L
H

,
,
,
,
,
,
,
,
,

0
0
I
2
2
2
2
2
2
3

test vectors ' HOLDING STATE 4 !lU8 EXTENDED ACCESS REQUEST'
([OSC,RESET,A22,RII, REFREQ, AS, 8SA, SYSCLK, COUNT] -) [RFC, RASI,MSEL,CASI,MC1, II, DSACK, STATE ])
[elk,
H , H , X, H
, H, X, H, 0 ] -> [ 8, L, H, L,- 8 ,H, H
lelk,
8 , L , X, X
, X, X, X, 0 ] -) [ H, L, H, L, H ,H, H
[elk,
H , X , X, X
, X, H, X, 1 ] -> [ H, H, L, H, H ,H, H

,
,
,

4
4
5

3-142

H
H
H
H
H
H
L
L

];
];
];
];
];
];
];
];
];

1;

test vectors 'EXTENDED ACCESS'
([OSC, RESET,A22, RII, REFREQ, AS, HSA, SYSCLK, COUNT]
[elk,
, X,
H , X , X, X
[elk,
, X,
H , X , X, X
[clk,
, X,
H , X , X, X
[elk,
, X,
H , X , X, X
[elk,
H , X , X, X
, X,
[elk,
, X,
H , X , X, X
[elk,
, X,
H , X , X, X
[elk,
, X,
H , X , X, X
[elk,
H , X , X, X
, X,

-) [RFC, RASI,MSEL,CASI,MCl, II,DSACK, STATEJ)
X , X , 2 ] -) [ H , H , L , H , H ,H,
X, X , 3 ] -) [ H , H , L , H , H ,H,
X , X , 4 ] -) [ H , H , L , H , H ,H,
X , X , 5 ] -) [ H , L , L , H , H ,H,
X , X , 6 ] -) [ H , L , H , H , H ,H,
X , X , 7 ] -) [ H , L , H , L , H ,H,
X, X , 8 ] -) [ H , L , H , L , H ,L,
X , X , 9 ] -) [ H , L , H , L , H ,L,
X , X , 10 ] -) [ H , L , H , L , H ,H,

test vectors 'HOLDING STATE 4 IIITH HIGH SPEED
([OSe, RESET, A22, RII, REFREQ,AS, HSA, SYSCLK, COUNT]
[elk,
, H,
H , H , X, H
[elk,
, X,
H , L , X, X
[elk,
, L , X, X
, X,

ACCESS REQUEST'
-) [RFC, RASI,MSEL, CASI,MCl, II,DSACK, STATEJ)
X , H , 0 ] -) [ H , L , H , L , H ,H, H
X , X , 0 ] -) [ H , L , H , L , H ,H, H
L , X , 1 ] -) [ H , L , H , L , H ,H, L

test vectors 'HIGH SPEED ACCESS'
([OSe,RESET,A22,RII, REFREQ,AS,HSA,SYSCLK,COUNT]
[elk,
H , X , X, X
, X,
[elk,
H , X , X, X
, X,
[elk,
, X,
H , X , X, X

-) [RFC, RASI,MSEL,CASI,MC1, II,DSACK,STATE ])
] -) [ H , L , H , L ,-H ,L, L
X, X ,
] -) [ H , L , H , L , H ,L, L
X, X ,
] -) [ H , L , H , L , H ,H, H
X, X ,

H
H
H
H
H
L
L
L
H

test vectors 'NON-MEMORY ACCESS FOLLOIIED BY REFRESH REQUEST'
([OSC, RESET, A22, RII, REFREQ,AS, HSA, SYSCLK,COUNT] -) [RFC, RASI,MSEL,CASI,MC1, II,DSACK, STATEJ)
[elk,
, H, X, H , 0 ] -) [ H , L , H , L , H ,H,
H , H , X, H
[elk,
H , H , X, X
, X, X , X , 0 ] -) [ H , H , L , H , H ,H,
[elk,
, L, X , X , 0 ] -) [ H , H , L , H , H ,H,
H , X , X, H
[elk,
, X, X, L , 0 ] -) [ H , H , L , H , H ,H,
H , X, X, H
[elk,
, X, X , X , 0 ] -) [ H , H , L , H , H ,H,
H , X , X, L

H
H
H
H
H

test vectors 'NORMAL REFRESH CYCLE'
([OSe,RESET,A22, RII, REFREQ, AS, HSA, SYSCLK,COUNT]
[elk,
H , X , X, X
, L,
[elk,
, L,
H , X , X, X
[elk,
H , X , X, X
, L,
[elk,
, L,
H , X , X, X
[elk,
H , X , X, X
, L,
[elk,
, L,
H , X , X, H
[elk,
, L,
H , X , X, X

H
H
H
H
H
H
H

-) [RFC,RASI,MSEL,CASI,MC1, II,DSACK, STATE])
X , X , 0 ] -) [ H , H , L , H ,-L ,H,
X, X ,
] -> [ H , L , L , H , L ,H,
X, X ,
] -> [ H , L , L , H , L ,H,
X, X ,
] -) [ L , L , L , H , L ,H,
] -> [ L , L , L , H , L ,H,
X, X ,
X, X ,
] -> [ H , H , L , H , L ,H,
X, X ,
] -> [ H , H , L , H , H ,H,

,
,
,
,
,
,
,
,

,

5
5
5
5
5
5
5
5
3

];
];
];
];
];
];
];
];
];

,
,

];
];
];

,

];
];
];

,

,
,
,
,
,

,
,

,
,
,

,
,
,
,

4
0
0
0

7

];
];
];
];
];

];
];
];
];
];
];
];

3-143

test vectors ' NORMAL REFRESH CYCLE FOLLOltED BY ACCESS GRANT REQUEST'
((OSC,RESET,A22,RII,REFREQ,AS,HSA,SYSCLK,COUNTI -> [RFC,RASI,MSEL,CASI,MCl,II,DSACK,STATE ))
[elk, H , X , X, L
, X, X, X, 0 I -> [ H ,
H, L, H, H ,H~ H
, L, X, X, 0 I -> [ H ,
H, L, H, L ,H, H
[elk, H , X , X, X
[elk, H , X , X, X
, L, X, X, 1 I -> [ H ,
L, L, H, L ,H, H
[elk, H , X , X, X
, H, X, X, 2 I -> [ H ,
L, L, H, L ,H, H
, H, X, X, 3 I -> [ L ,
L, L, H, L ,H, 8
[elk, H , X , X, X
[elk, H , X , X, X
, L, X, X, 4 I -> [ L ,
L, L, 8, L ,H, H
[elk, H , L , X, H
, L, X, X, 5 ) -> [ H ,
H, L, H, L ,8, H
[elk, H , L , X, X
, L, X, X, 6 ) -> [ H ,
H, L, H, H ,8, H
[elk, H , L , X, X
, L, X, X, 7 ) -> [ 8 ,
H, L, H, H ,H, 8
[elk, H , L , X, X
, L, X, X, 8 I -> [ H ,
H, L, H, H ,H, 8
[elk, H , L , X, X
, L, X, X, 9 I -> [ 8 ,
L, L, H, H , H, H
[elk, H , L , X, X
, L, X, X, 10 ) ~> [ H ,
L, H, H, H ,H, H
[elk, H , L , X, X
, L, X, X, 11 ) -> [ 8 ,
L, H, L, H ,H, L
[elk, H , L , X, X
, L, X, X, 12 I -> [ H ,
L, H, L, H ,L, L
[elk, H , L , X, X
, L, X, X, 13 ) -> [ 8 ,
L, H, L, H ,L, L
, L, X, X, 14 I -> [ H ,
L, H, L, H ,8, H
[elk, 8 , L , X, X

,

,
,
,
,
,
,
,
,

,

,
,
,
,
,
,

test vectors ' 80LDING STATE 3 WITH EXTENDED REFRESH REQUEST'
((OSC,RESET,A22,Rlf, REFREQ, AS, HSA, SYSCLK,COUNTI -> [RFC,RASI,MSEL,CASI,MCI,II,DSACK,STATE II
[elk,
H , X , X, 8
, X, X, L, 0 I -> [ 8, L, H, L,- H ,H, H
[elk,
H , X , X, H
, L, X, X, 0 I -> [ 8, L, H, L, 8 ,H, H
[elk,
H , X , X, L
, X, X, X, 0 I -> [ 8, L, H, L, H , H, 8
test vectors ' EXTENDED REFRESH CYCLE'
((OSC,RESET,A22,RII, REFREQ,AS, HSA, SYSCLK, COUNT)
[elk,
H , X , X, X
, X,
[elk,
H , X , X, X
, X,
[elk,
H , X , X, X
, X,
[elk,
H , X , X, X
, X,

end SCDECODE

3-144

-> [RFC, RASI,MSEL, CASI,MCl, II, DSACK, STATE II
X, X, 0 ) -> [ H, L, H, L ,-H ,H,
X, X, 1 I -> [ H, H, L, H, H ,H,
X,
X,

X, 2 I -> [ 8, 8, L,
X, 3 I -> [ H, H, L,

H
H
H, H ,H, H
H, H ,H, H

7
7
7
7

Ii
Ii
Ii
Ii
Ii
Ii
Ii
Ii
Ii
Ii
Ii
Ii
Ii
Ii
Ii
Ii

7
7
7
7
7
7
7
7
7
7
7
3

,
,
,
,

,
,
,

3
3
8

Ii
Ii
Ii
Ii

APPENDIX B
NAME
PAR TNO
OA TE

SCDECOOE:
T10004:
05/07/87 :
REV
01 :
DESIGNER 8reuninger/Peprah:
COMPANY
Texas Instruments:
ASSE~8L Y None;
lOCATION Dallas:

/*

I I . ' I • • • I f 1.1. I I I

/'

f"'"

I"

I'

*' f • • I t • • • • • • • I I • • • 1.1 • • • • • I •• I . I I I f • • I I "

' I I , t • • • • • f I I I I I 1/

Static Column Decode

'/
'/

/'
/'
/'
/'
/'
/'

This is an example of how the PSGI01 can be used to generate the
required memory timing control signals (RAS. CAS. HSEL etc! for static
column decode implementation using the ALS6JOI. ALS6JI0 and the ALS6JO
ALS6300. in a system environment.

/'
/'

'/
'/
'/
'/
'/
'/
'/

/ ' . 1 • • • 1. I • • ' • • • • t •• I . I I . I I I . I • • • • • • 1 • • • 1 I • • • • • • • • • • " . I i i I t ' 1 I I I 111,1' • • • • • • • • • • • • • 1 ' . ' /

"

I

j*' f

Allowable Target Device Types:
• • • • • • • • • • • • • • • • • • • • • • , 1'1 • • • • • • •

TEXAS INTSRUMENTS

PSGI07

* , •••••• IlIt • • • • • • 1 " " 1 "

'/

11 • • • ' •• 1 •• ' I • • • • f . " . I . 1 . 1 ,

/" Inputs "/
pi n
pi n
pi n
pi n
pi n
pi n
pi n 1
pi n 18

OSC
RESET
A1Z
RW
REfREQ
AS
HSA
SYSCLK

/'
/'
/'
/'

Osci Ilator
System Reset - when low
IO!!M - Memory access
Read / Write Enab Ie
/' Refresh Request
/' Addr Strobe - access request
/' High Speed Access
/' System Clock - (OSC/1)

'/
'/
'/
'/
'/
'/
'/
'/

RFC
RASI
HSEL
CAS I
HCI

/'
/'
/'
/'
/'
/'
/'

Refresh Comp I ete
Row Address Strobe
Hu I tip I exer Se I ect
Co I umn Address Strobe
Hode Contro I
Wr ite
Data Strobe Acknow I edge

'/
'/
'/
'/

/'
/'
/'
/'
/'
/'

Built-in .-Bit counter
Counter Cc I ear- non regi stered
Counter Hold - non registered
Counter Hold - registered
Buried State Registers
Access Grant Request

'/
'/
'/
'/
'/
'/

/" Outputs "/
pi n
pi n
pi n
pi n
pi n
pi n
pi n

8

9
10
II

13
14

15

DSACK

/" Node Declarations "/
pi nnode [33 •• 38J
[CO •• 5J
pi nnode 39
SClRO
pinnode 41
CNTHOlOO
pi nnode 42
CNTHOlD I
node
[P3 •• 0J
node
AGREQ

'/
'/

'/

3-145

j" Declarations and Intermediate Variable Definition "/
field COUNT
" [C5 .. 0J
field STATE
[PJ.,OJ
$define STO
'b'OOOO
$define 5TI
'b'OOOI
$define STI
'b'OOlO
$define ST3
'b'OOII
$define 514
'b'OIOO
$define 5TS
'b'OIOI
$define 5T6
'b'OIIO
$define Sll
'b'OIlI
$define 5T8
'b'IOOO

/' SU ILT -I N COUNTER CONTROL EQUAT IONS '/
SCLRO

CNTHOlD I, s

CNTHOLDl,r

3-146

" ! RESET
# STI & COUNT:'d'S
, ST4 & COUNT:'d'O
# ST5 & COUNT:'d'IO
# 5T6 & COUNT:'d'4
# 5ll & COUNT:'d'6 & IA1Z ! AGREQI
f Sll & COUNT:'d'14
# ST8 & COUNT:'d'3;

/' Clear counter when RESET is low
/' and during transitions at the end
/' the indicated states and counts,

/'
/'
I'
/'
/'

" ! RESET
# STI & CDUNT:'d'S
# 514 & CDUNT:'d'O
# 5TS ! COUNT:'d'IO
# ST6 ! COUNT:'d'4
# STJ ! COUNT:'d'6 & IA22 & AGREO)
t STJ & COUNT:'d'14
# ST8 & CDUNT:'d'l;

/'
/'
/'
/'
/'
/'

"STO
# STI
# STJ
# STJ

/'
/'
/'
/'

&
&
!
&
!

!REFREQ & RESET
!AZZ & RESET
!REFREQ & RESET
REFREQ & AS
SYSCLK & RESET,

'I
'/
'/
'/
'/

'/
'/
'/

/' Set count hold while clearing
/' the counters accordingly,

Reset
Reset
Reset
Reset

/" State ~achine Equations "/
sequence STATE [
present STO:
iflREFREQ & I !AS # !SYSCLK))
if(REFREQ & AS & SYSCLK & RESET)
ifl!REFREQ & RESET)
default

next
next
next
next

present ST!:
ifICOUNT:'d'O & !A22)
ifICOUNT:'d'O & Am
default

next STZ,
next STO,
next5TI,

present ST1:
/' NORML ACCESS CYCLE '/
ifICOUNT:'d'O) & RESET
if(COUNT:'d' I)
ifICOUNT:'d'Z) & RESET
ifICOUNT:'d'J) & RESET
ifICOUNT:'d'S)
defau I t

next
next
next
next
next
next

count
count
count
count

hold
hold
hold
hold

on
on
on
on

STO,
STI,
Sll;
5TO;

STI out
ST2 out
STI out
5T2 out
513 out
ST2,

!RA5I,
MSEL;
[!CASI, !DSACKJ;

!w;
[W, 05ACK J;

transition
transition
transition
transition

'I

'/
'/
'/
'/
'/
'/
'/
to
to
to
to

Sll
ST2
ST8
ST4

'I
'/

'I
'/

present STJ:
I' HOLDING STATE
'I
ifl!~S # !SYSCLKI & REFREQ & RfSET
iflREFREQ & ~S & 5YSCLK & RESET I
ifl!REFREQ & RESET I
default

next
next
next
next

STl
5T 4
ST8
STJ;

present S14:
ifICOUNT:'d'OI
ifICOUNT:'d'OI
ifICOUNT:'d'll
ifICOUNT:'d' II
default

next
next
next
next
next

STO out [R~SI,!MSEL,C~SI);
ST4;
ST5 out [R~SI,!MSEL,CASI);
516 out ! DSACK;
514;

next
next
next
next
next
next

ST5 out !R~SI;
5T5 out MSEL;
ST5 out [!C~SI,!DSACK);
ST5 out !W;
STJ out [W,OSACK);
ST5;

& An & RESET
& !m & RESET

& HSA & RESET
& !HS~ & RESET

present 5T5:
I' EXTENDED ACCESS CYCLE 'I
ifICOUNT:'d'51 & RESET
ifICOUNT:'d'61 & RESET
ifICOUNT:'d'11 & RESET
ifiCOUNT:'d'81 & RESET
ifICOUNT: 'd' 101 & RESET
defaul t
present ST6:

I' HIGH SPEED ACCESS

'/

ifICOUNT: 'd'ZI & RESET
if I COUN T: ' d' 41
def au I t

next ST6 out !w;
next STJ out [W,DSACK);
next ST6;

present ST1:

I' NORMAL REFRESH CYCLE' I
i f ~S
ifICOUNT:'d'DI & RESET
ifICOUNT:'d'll & RESET
ifiCOUNT:'d'31 & RESET
ifiCOUNT:'d'51
ifICOUNT:'d'6) & I~ZZ # AGREQ)
ifICOUNT:'d'6) & !~ZZ & !~GREQ
ifICOUNT:'d'91 & RESET
ifICOUNT: 'd' 101 & RESET
ifICOUNT:'d'lll & RESET
ifICOUNT:'d'IZI & RESET
if (COUNT:' d' 14)
default

next
next
next
next
next
next
next
next
next
next
next
next
next

ST7 out
ST7 out
ST1 out
ST1 out
ST7 out
STO out
ST1 out
ST1 out
ST1 out
ST1 out
ST7 out
STJ out
ST7;

! ~GREQ;
! MCU
!RASI;
!RFC;
[RFC,R~Si

1;

MC U
MC 1_;
!RASI;
MSEL;
[!C~SI,!DS~CK1;

!W;
[W,DS~CK1;

present ST8:

I' EXTENDED REFRESH CYCLE

•I

if (COUNT:' d' I )
if(COUNT: 'd'l)
default
APPEND
APPEND
APPEND
APPEND
APPEND

RASl.s
W.s
MCI_.s
PO_.r
Pl_.r

= !RESET; APPEND
= !RESET; APPEND
= !RESET APPEND
= !RESET APPEND
= !RESET

next ST8 out
next ST7;
next ST8; )
CASl.s
~GREQ.s

SCLRO
PI.r

= !RESET; ~PPEND
= !RESET; APPEND
!RESET; APPEND
!RESET; APPEND

[R~Sl,!MSEL,C~SI1;

RFC.s = !RESET;
DSACK.s = !RESET;
MSEL.r = !RESET;
P2.r
= !RESET;

3-147

HAKE
PARTNO
DATE

SCDECODE;
TlO004;
05/01/81 ;

~HIGNER ~~e&ninger/Peprah;
COHPANY Texas Instrullents;
ASSEHBL Y None;
LOCATION Dal las;
111111,., ••• ' II. II "'1'11-'11'" ••••••••• 111"'1'1'11 ••••• I ••••

"'II"

II II ' . I " l l l l l I l f " , I , ' "

""/*

'/
*/

CUPL simulation file for the Static Column Decode Application

*,

, ' •••• 1 .11 •• l l l f l f l l . I I •••••••••••• III •• '11"

/'

I

*,

/' Static Colulln Decode

Allowable Target Device Types:

1111'"

•••• ".1"

I.' If

f.,., '1IIf 11".1 •• l i l t 1.111/

'/

TEXAS INTSRUHENTS PSG501

j" •• IIIII." •• , ••••••••••••• f • • • • • • • • • • "1"'" 'I ".'1 , •• '1"" 'If"" ••••••••• ".11 •••• '111'/

ORDER: OSC. \4.RESET. \4.AZZ. \3. RW. ~3 .REFREQ. ~5 .AS. \2 .HSA. \5. SYSCLK. \3 .COUNT.
~Z. RFC. ~4.RASI. ~4. HSEL. ~4 .CASI. ~3 .KC 1_.12.W .13. DSACK. ~4. STATE;
BASE: DECIHAL;
VECTORS:
$msg'
';
$msg" ';
$msg'NORHAL ACCESS CYCLE";
$msg' ";
$msg"
------------------ INPUT ------------------ -------------- OUTPUT --------------- ';
$msg"
OSC. RESET .A2Z.RW .REFREQ.AS .HSA. SYSCLK .COUNT RFC.RAS I. HSEL .CASI. HC I, W. OSACK. STATE' ';
_________________ - ____________ • ____ • ________ - ________ • ______ . _ . _._ • • _._ ._____ _____ II.
,
$msg'
X
X
X
'X'
'0'
X
0
X
'0'
H
"0"
X
I
'0'
H
'I"
I
X
'0'
H
X
X
"2"
X
X
'0'
H
"2'
X
X
X
H
'I'
'2'
X
X
'2'
L
X
'Z'
'3'
X
X
X
L
"Z"
' 4'
X
X
"Z"
'5'
X
X
"3'
$msg' ';
$msg' ';
$msg'HOLDING STATE 4 WITH EXTENDED ACCESS REQUEST";
$msg' .;
$msg'
---------- -------- INPUT - ---- ---------- --- -- - ---- --- ------ OUTPUT -- --- -------- ';
$msg'
OSC.RESET. A22 .RW.REfREQ. AS.HSA .SYSCLK .COUNT RFC.RASI.HSEL .CASI •HC I.W, OSACK.STATE ";
_____________ __ ____ _______ _________ __ ____ __ ___ __ ____ _______ ____ ______________ _____ n;
$msg'
'0 '
X
"4"
'0'
X
X
'I'
"5'

'.'

3-148

$msg" ";
$msg" ';
$msg'EXTENDED ACCESS';
$msg" ';
$msg"
------------------ INPUT ------------------ ------------- OUTPUT ---------------- "
$msg"
OSC,RESET ,A22,RUEFREQ,AS,HSA,SYSCLK,COUNT RFC,RASI ,HSEL,CASI ,HCI ,W,DSACK,STATE '
$msg"
-- --------------- -- --- ---- ----------- ------ --- --- --- ---------- -- --------------- -- - ,
"5"
x X X ' 2'
"5"
X
X
X X
'3 '
H
'4 '
X
"5'
X
X
H
X
' 5'
H
'5"
X
X
'6'
X
X
H
"5'
X
'7'
X
X
H
"5'
X
'S'
X
X
H
'5"
'9'
X
X
H
"5'
X
X ' 10'
H
"3"
$msg' ";
$msg" ';
$msg"HOLD I NG STATE 4 WITH HIGH SPEED ACCESS REQUEST";
$msg" ";
$msg"
------------------ INPUT ---------'--------- -------------- OUTPUT --------------- "
$msg"
OSC,RESET, m, RW, REFREQ, AS,HSA, SYSCLK,COUNT RFC ,RAS I, MSEL ,CAS I, HC I, W, OSACK, STATE "
$msg"
, 0'
H "4"
X
'0 '
X
H "4"
X
'I'
L
"6"
$msgH .;
$msg" ";
$msg"HIGH SPEED ACCESS";
$msg" ";
$msg"
------------------ INPUT ------------------ -------------- OUTPUT --------------- ,
$msg"
OSC, RESET, A22 ,RW ,REFREQ, AS ,HSA, SYSCLK,COUNT RFC ,RAS I, MSEL, CASI ,HC I, W, DSACK, STATE "
- - -- - - - - - - -- - - - - - - - -- - - - - - - -- - - - --- -- - -- - - - - - - - -- -- - -- - - -- - - -- -- --- - -- - - - -- - "
$msg"
'6"
'2 '
'3'
"6"
'4 '
"3"

-

-- -- -

$msg" ";
$msg" ";
$msg"NON-MEHORY ACCESS FOLLOWED BY REFRESH REQUEST";
$msgH ";
$msg"
------------------ INPUT ------------------ -------------- OUTPUT --------------- "
$msg"
OSC, RESET, A22 ,RW, REFREQ,AS ,HSA ,SYSCLK ,COUNT RFC ,RASI ,HSEL, CAS I, HC I, W,OSACK, STATE "
$ms g"
- --- -- ------- ------- - --- -- -- --- -- --- -- --- -- --- --- --- - -- ---- -- --- ---- ---- -- - -- ----'0'
"4"
'0'
"0"
, 0'
"0'
'0'
"0"
'0'
"7"

3-149

$msg" ";
$msg" ';
$msg"NORm REFRESH CYCLE';
$msg' ';
$msg'
------------------ INPUT ------------------ -------------- OUTPUT --------------- •
$msg'
OSC,RESET ,A22,RW ,REFREQ.AS .HSA. SYSCLK,COUNT RFC ,RAS I .HSEL .CASI ,KC I ,W. DSACK,STATE •
- ......... ... ...... ...... ... ...... --_ ............ .................................
...... ......
...
...
...... -_... "
$msg'
'0'
x X X
H
H
'1"
X
X X X
X
'I'
L
H
H
"1"
X X X
X
' 2'
L
H
H
'1"
'3 '
X X X
X
L
H
H
'1"
' 4'
X X X
L
H
H
X
'7'
H
H
'5'
X X I
X
H
"7'
'6'
X X X
X
H
H
H
'0'

--- -_ --_ -_ -_ -_

-_

-- -_ --_ ------ -_ -- -- ---_ --

$msg" ';
Smsg' ';
$msg'NORHAL REFRESH CYCLE FOLLOWED BY ACCESS GRANT REQUEST";
Smsg' ";
$msg"
------------------ INPUT ------------------ -------------- OUTPUT --------------- •
$msg'
OSC,RESET.m .RW .REFREQ. AS,HSA. SYSCLK. COUNT RFC .RASI. KSEL ,CASI .HC I. W.DSACK. STATE •
............ ...
............ ............... ............ .................................... ...... ............ ...... .................................... -_............... "
$msg"
' 0'
X
e
X X
X
H
H
H H
'7'
'0'
X X
X
X
H H
H
H H "7"
e
e
X X
X
X
H
H
H H
'I'
"7'
e
X X
X
X
'2'
H
H L H H
"7'
'3'
X
e
X X
X
L
H L H H
'7"
'4 '
e
X X
X
L
H L H H
"7"
X
'5'
e
0 X
X
X
H
H L
H
"7"
'6'
H H
H
e
0 X
X
X
H
"1"
'7'
X
e
0 X
X
H H H H
'7"
'8'
e
X
X
H
H H
"7'
'9'
X
e
L
H H
'7'
e
X
' 10'
L
H
'7'
e
X
'II'
L
L
"7'
e
'12 '
H
'7"
l
e
'13'
H
"1"
L
'14 '
e
L
H
'3'

-- -_

-_ -- -_

-_

--

--

-_ --_

-_ --

$msg" ';
$msg' ';
$msg'HOLD I NG STATE 3 WITH EXTENDED REFRESH REQUEST';
$msg' ';
$msg'
------------------ INPUT ------------------ -------------- OUTPUT --------------- ,
$msg'
OSc. RESET. A22 ,RW. REFREQ.AS. HSA. SYSCLK .COUNT RFC .RAS I. mL .CASI. HC I. W, DSACK •STATE •
$msg"
--- ------ ----- ---- --------- --- ------- - - -- -- -- --- ------- ----- -------- ---- -- --- ----, 0'
H
'3'
'0'
H
'3"
, 0'
H
"s·

3-150

$msg"
';
$msg" ";
$msg'EXTENDED REfRESH CYCLE";
$msg" ";
$msg"
------------------ INPUT ------------------ -------------- OUTPUT --------------- "
$msg"
OSC. RESET. A22 .RW.R£fREQ .AS .HSA. SYSCLK. COUNT RfC .RAS I.HSEL. CAS!. HC I. W. DSACK. STATE "
$msg"
-- -- --- - -- ---- --- - -- - - -- -- - - - - - -- - - -- - - - - - - - - - - - - -- -- -- -- - - - - - - - -- - --- -- - --- - -- - -, 0'
'S"
H
'S"
'I'
, 2'
H
"S"
'3'
"7"
H

3-151

..

3-152

Programmable Frequency Divider

~

TEXAS
INSTRUMENTS

3-153

'III

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service Identified in this
publication without notice. TI advises its customers to obtain the latest
version of the relevant information to verify, before placing orders, that
the information being relied upon is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Unless mandated by government
requirements, specific testing of all parameters of each device is not
necessarily performed.
TI assumes no liability forTI applications aSSistance, customer product
deSign, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represents that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1989, Texas Instruments Incorporated

3-154

Prog"rammable FreCJpencfw Divider

A Single Chip Solution and A Multiple Chip Solution

INTRODUCTION
The purpose of this application report is to provide a comparison between the EP61 0
and the TIBPAL22V1 0 architecture capabilities and also illustrate some of the latest
PLD (Programmable Logic Device) design tools offered by Texas Instruments. First,
a brief description ofthe EP61 0 and 22V1 0 device architectures will be given followed
by two unique implementation examples. The first with one EP610 and the second
using two TIBPAL22V1 0 devices. Finally, a comparison will be made between the two
designs.

DEVICE ARCHITECTURES
Although the EP61 0 and TIBPAL22V1 0 are both available in the same package types,
the device architectures are considerably different. Both devices utilize a programmabie" AND", fixed "OR" type of architecture common to all programmable logic devices. The EP610 has eight programmable "AND" terms, called Product Terms, per
output while the '22V1 0 can utilize up to 16 product terms on some outputs. The main
difference between the two devices which makes the EP610 better suited for this
application is the number of registers available in each device. The EP610 has 16
registers available while the '22V10 has only 10, one per macrocell. A complete description of the device architectures and macro cell capabilities can be found in the
device data sheets.

DESIGN METHODOLOGY
In the first example, design development will be accomplished using theTI EPLD Development System. The design will be entered in a schematic format using multiple,
4 bit frequency dividers and multiplexers for output control. The design will then be
automatically fitted into an EP610 using the A + PLUS software.
The second example will illustrate how to implement the same application with TI's
proLogic software. This example will consist of a 12 bit counter and the control logic
which allows anyone of the 12 counter bits to be routed to a single output thus creating a progammable frequency divider.

3-155

SOLUTION 1: Single Chip Frequency Divider Implemented Using EP610
Figure 1 shows the schematic which was entered using the TI EPLD Development
System to implement the EP610 design. Three 4 bit frequency dividers were used to
implement the 12 bit division. Notice that the divide by 16 bit output of each device
was fed to the clock Input of the next. By feeding these ouputs to each successive
stage, a 21 to 212 frequency divider can be Implemented.
The next level is a multiplexing level which routes the appropriate divided output to
the final output, FDIV. TIlis task is accomplished using an 8 to 1 and a 4 to 1 multiplexer. Some extra control logic is also necessary to provide the final level of multiplexing
to the output. The input signals A, B, C, and D are used to select the desired frequency
division. TIle table below illustrates how the device will function:

INPUT
ABC D

o
o
o

0 0 0
0 0 1
0 1 0

•
•
•
1 0 1 0
1 o 1 1

FREQUENCY DIVISION
DIVIDE BY:
21
22
28

•

•
•

211
212

Finally, the design is compiled using the A + PLUS software and a standard JEDEC
file is produced which can then be programmed into a single EP610.

3-156

"

I
f

________ J

3-157

SOLUTION 2: Multiple Chip Frequency Divider Implemented Using Two
TIBPAL22V10 Devices
In this next example two TIBPAL22V1 0 devices will be used to implementthe frequency divider. Program Listings 1 and 2 show the proLogic codes developed for this
application. The code shown in Listing 1 is for device A which provides the 10 lower
bits of the 12 bit counter. First, the pin aSSignments are made which include a clock,
clear, and 10 counter outputs. Next, the D input to each register is specified using
Boolean equations followed by output enable and polarity configurations. Finally,
test vectors are specified which allows the code to be Simulated before actually programming a device.
The next proLogic code shown in Listing 2 is for the B device which provides the two
most significant bits of the 12 bit counter as well as the mutliplexing control for the
outputs. The clock inputforthe B device is driven by the 09 output from the A device.
It can be seen from the Boolean equations in Listing B that 12 productterms are needed to implementthe FDIVoutput. Each of these "AND" terms is refered to as a Product
Term. This is why the '22V10 was chosen for this application since as many as 16
product terms are available in this architecture where most PALs have a maximum
of 8 per output.
Diagrams of both solution 1 and 2 along with device pin outs are shown in Figure 2.
A complete copy of the proLogic software and manual explaining syntax, design
entry methods, device support and simulation can be obtained from your local TI
sales office or by calling the TI Programmable Logic applications hotline at (214)
997-5666.

3-158

Listing 1: Device A
title

{

Device:

TIBPAL22V10

Application:

12 Bit Programmable Frequency Oi vider: Device A

Source:

Kyle Newman

Texas Instruments

9/89

}

include p22vlO;

1* specify that target device is TIBPAL22V10 */

define

/* define input pins

define

define
define
define
define
define
define
define

define
define
define

CLK = pin!
CLR = pin2
QO
Ql
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

*/

1* define output pins */

pin14
pin15
pin16
pin17
pin18
pin19
pin20

pin23
pin22
pin21

1* define equations to implement lower 10 bits of counter */

&

QO.d

! (QO.q)

Q1. d

( I QO. q & Q1. q

QO. q & ! Q1. q) & ! CLR ;

Q2.d

(IQO.q & Q2.q

IQ1.q & Q2.q

Q3.d

(!QO.q & Q3.q
IQ1.q & Q3.q
!Q2.q & Q3.q
QO.q & Q1.q & Q2.q & IQ3.q) & !CLR

Q4.d

!CLR ;

= (IQO.q & Q4.q
I IQ1.q & Q4.q
I !Q2.q & Q4.q
I !Q3.q & Q4.q
I QO.q & Q1.q &

Q2.q & Q3.q &

I

QO.q & Q1.q & !Q2.q) & !CLR

IQ4.q) & !CLR

Q5.d

(!QO.q & Q5.q
IQ1.q & Q5.q
IQ2.q & Q5.q
IQ3.q & Q5.q
IQ4.q & Q5.q
QO.q & Q1.q & Q2.q & Q3.q & Q4.q & !Q5.q) & !CLR;

Q6.d

(!QO.q & Q6.q
!Q1.q & Q6.q
!Q2.q & Q6.q
IQ4.q & Q6.q
!Q3.q & Q6.q
IQ5. q & Q6.q
QO.q & Ql.q & Q2.q & Q3.q & Q4.q & Q5.q & !Q6.q) & !CLR;

Q7.d

(IQO.q &
!Q1.q
I I Q2. q
!Q3. q

I
I

Q7.q
& Q7.q
& Q7. q
& Q7. q

3-159

•

IQ4.q & Q7.q
IQ5.q & Q7.q
IQ6.q & Q7.q
QO. q & Q1. q & Q2. q & Q8. q & Q4. q & Q5. q & Q6. q & I Q7 • q) & ! CLR;
QB.d

=

I
I
I
I
I
I
I

(IQO.q & QB.q
IQ1.q & QB.q
IQ2.q & Q8.q
IQ4.q & Q8.q
IQ8.q & Q8.q
IQ5.q & Q8.q
!Q6.q & QB.q
!Q7.q & QB.q
QO.q & Q1.q & Q2.q & Q8.q & Q4.q & Q5.q & Q6.q & Q7.q &

I

IQB.q) &

ICLR;
Q9.d

(IQO.q & Q9.q
IQ1.q & Q9.q
IQ2.q & Q9.q
IQ8.q & Q9.q
!Q4.q & Q9.q
!Q5.q & Q9.q
!Q6.q & Q9.q
IQ7.q & Q9.q
IQ8.q & Q9.q
QO . q & Q1. q & Q2. q & Q8. q & Q4. q & Q5. q & Q6. q & Q7. q & Q8. q &
!eLR;

I
I
I
I
I
I
I
I

1* permanently enable all counter outputs *1
QO.oe
1;
Q1.oe
1; Q2.oe
1 ; Q8.oe
1;
Q5.oe = 1;
Q6.oe = 1; Q7.oe
1; Qa.oe = l '

=

1*
QO
Q5

1*

define outputs as active high
q;

= q;

Q1
Q6

q;

= q;

Q2
Q7

q;

= q;

Q8
Q8

=

q;
q;

Q4.oe
Q9.oe

I Q9 . q) &

1;
l'

*1
Q4
Q9

q;
q;

define some test vectors to verify that counter is working properly
CLR
Q8
Q2
Q1
QO
1* eLK
*1

01

test _vectors {

pin1
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

3-160

pin2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

pin17
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L

pin16
L
L
L
L
L
H
H
H
H
L
L
L
L
H
H
H
H
L
L

pin15
L
L
L
H
H
L
L
H
H
L
L
H
H
L
L
H
H
L
L

pin14;
L
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
L

1* RESET *1
1* RESET *1
1*
'1
1*
*1
1°
'1
4
*1
1°
1*
*1
1*
*1
1*
*1
1*
*1
1*
*1
10 *1
1*
11 *1
1*
12 *1
1*
18 01
1*
14 *1
1*
15 *1
1*
0
I'
*1
1° RESET *1

Listing 2: Device B
ti tle {

Device:

TIBPAL22V10

Application:

12 Bit Programmable Frequency Divider:

Device B

2 MSB and Multiplexing Control

Kyle Newman

Source:
include p22v10;
define
define

CLK
CLR

define

A
B
C
D

define
define

define

define
define
define
define
define
define
define
define

define
define

define

,"
,"
,"
,"
,"
'","
,"

pinS
pin4
pin5
pin6

pin7
pinS
ping
pin10
pinl!
pin13
pin14
pin15
pin16
pin17

Q10
Qll

define

FDIV = pin18 ;

pin19
pin20

Q11.d

(!Q10.q &. Qll.q

QO
Q1
Q2
Q3
Q4
Q5
Q6
Q7
QB
Q9
QlO.q
Q11.q

. . etc
define counter inputs from device A

define 2 MSB of 12 bit counter

divided output

"'"'*'
*'

*'
*'

*1

*'

Q10.q &. !Q11.q) &. !CLR ;

= 1;

&. !A &. !B &. !C &.

D

&. !A &. !B &. C &. !D
&. !A & IB &. C &. D
&. !A &. B &. IC &. ID
&. !A &.
&. !A &.
&. !A &.
&.
&.
&.
&.

A
A
A
A

&.
&.
&.
&.

B
B
B
IB
IB
!B
IB

&. !C &.
&.
&.
&.
&.
&.
&.

C
C
!C
!C
C

D

&. !D
&.

D

&. !D
&. D

Q11.oe

= 1;

Qll

= q;

,*,*

&. !D

C &.

D;

FDIV.oe

define outputs as active high

= q;

*/

&. !A &. !B &. !C &. !D

permanently enable all outputs

Q10.oe

Q10

Q Output

divide by 2
4

define equations to control multiplexing of outputs

FDIV

/*

Select Input
ABCD = 0
1

*'
"'"'

define equations to implement 2 14SB of counter *1
I (Ql0.q) &. !CLR

/*

select inputs for multiplexing outputs

'*

Q10.d

1*

clock input is from Q9 on device A
clear goes to pin 2 on both devices

1*

define

1*

9'89

'" specify that target device is TIBPAL22V10

pinl
pin2

QO
Q1
Q2
Q8
Q4
Q5
Q6
Q7
Q8
Q9

Texas Instruments

" . q" was used on these terms
because they are internal feedbaoks

"'*'

*/

= 1;
*/

3-161

""

CLK

ClR
ClK
ClR
A
B

C
D

(1)

(1)

22V10

QO-Q9

(3)

(14 - 23)

A

EP610

(3)

(2)

(18)

(11)

FDIV

(14)

Q9

(23)

(21)

L>

SOLUTION 1

22V10

'---(2)

A

(7-11,13-17)
(18)

B

(11)

B

FDIV

(14)

C

(23)

D

SOLUTION 2

( ) denotes Pin Number

Figure 2. EP610 vs TIBPAL22V10 Solution

CONCLUSION
Following is a brief comparison of the two design implementations discussed in the
applications note.
SOLUTION 1
SOLUTION 2
DEVICETVPE

EP610

TlBPAL22V10

PACKAGE

24 PIN DIP

24 PIN DIP

MAX Icc

60mA

180mA

PROPAGATION DELAY

25ns

20ns-25ns

MAX CLOCK FREQUENCY

40 MHz

28.5 MHz

PRICE PER PACKAGE

1.7X

X

NUMBER OF DEVICES

1

2

From this comparison, it can be seen that the EP61 0 is a better solution for this application. Not all applications will yield these results between a EP610 and a 22V10.
However in register intensive applications such as the frequency divider, an EP610
can offer considerable savings in power consumption and package count while providing enhanced performance at a comparable price.

3-162

EP1810 as a Bar Code Decoder

~

TEXAS
INSTRUMENTS

3-163

..

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. TI advises its customers to obtain the latest
version of the relevant information to verify, before placing orders, that
the information being relied upon is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Unless mandated by govemment
requirements, specific testing of all parameters of each device is not
necessarily performed.
TI assumes no liability forti applications aSSistance, customer product
deSign, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represents that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

AB27 Rev 2.0
Copyright © 1987, 1988, ALTERA Corporation
Printed with permission from ALTERA Corporation, 1989

3-164

FEATURES

• Description of a generic Barcode
• Description of a Bar Code Decoder EPLD
• State machine implements controller functions
• Functional simulation verifies design before
commitment to silicon
• TTL MacroFunctions simplify and speed up the
design task

3-165

3-166

EP1810 as a Bar Code Decoder
i

::

!

is

INTRODUCTION
The following Applications Brief describes a bar code decoder implemented in an
EP1810. The EP181 0 decodes a generic bar code, stores the decoded data byte,
and alerts a microprocessor that data is ready. This Application Brief describes a
generic bar code decoder, the various design methodologies used to implement the
design and the functional simulation used to verify the design before programming
devices. The final design is specified by a mix of design entry formats: state machine
design entry is used to specify an intemal controller, while schematic capture and
TTL macrofunctions are used to define additional functions.

WHAT IS BAR CODE?
Bar code, a means of representing binary data or program information, has beco(l1e
popular due to its great flexibility and cost effectiveness. For many applications bar
code yields superior results when compared to optical character recognition, particularly for success on a first time read. Bar code is suitable in many applications
where magnetic stripe or other media would be impractical. Bar code has several
variations; this Application Brief covers a common version with some advanced features.

PHYSICAL SPECIFICATIONS OF BAR CODE
Although many versions of bar code exist to support the variety of applications
served, there is enough in common to treat a meaningful generic case (Figure 1).
All bar codes have "zero", "one", and space characters; the "zero" and space character are the same width, while the "one" is twice that width. All bar codes have a
header and a taii. The generic bar code has a header consisting of a zero-zero sequence, followed by a checksum byte. The tail is a one-zero sequence. Data follows the header and terminates with the tail. All bar codes have maximum limits on
the number of data bytes.
One requirement for accurate bar code detection is that the reader, usually a light
pen, scan the bar code at a relatively constant speed. For this reason bar codes
are of modest width; its easier to move a light pen at reasonably constant speed over
shorter distances than over longer ones. Before reading the bar code, the light pen
is inactive or in a white region. As the light pen reaches the dark region of the header,
the light pen output goes high. If the light pen's speed varies by too much, then the
mis-read should be detected by verification against the checksum.

3-167

A generic barcode has ·0", "1", and space characters. Bar code sequences consist of START and
STOP bars, data and checksum bytes.

~~'O' ~ ~·1·

IIIIIIII
~~·S"

11111111111111111111
V

~ "--y-/

START BYTE 1
BARS

'--v-' '--y--/ Y

BYTE 2 BYTE 3

BYTE 4 STOP
BARS

Figure 1. Sample Barcode

BAR CODE DECODER OVERVIEW
Figure 2 shows a bar code decoder implemented in an EP181 O. The bar code data
is fed into the EP181 0 through the IN Input. The data is used by the sync counter
to determine the input data read rate, and by the state machine to decode incoming
data, which Is stored in a shift register. Once 8 bits of data have been shifted into
the shift register, an open collector interrupt back to the microprocessor (INTO) goes
low. Various status outputs (OIR, ACT, and ERR) indicate the current state of the bar
code decoder.
The bar code decoder conSists of 5 different modules: a sync counter, a controller
state machine, a byte counter, a shift register, and a microprocessor Interface.

Sync Counter
The bar code decoder uses the bar code header's leading single width dark region
to measure the fundamental width of a "zero". When the light pen passes over the
first dark region, the sync counter begins counting. The sync counter stops counting
only when the light pen has completed reading the dark region (ie. when it reads the
beginning of light region). The count value thus reflects the amount of time required
to read the width of a space or "zero" bar. It takes tWice the count value to read a
"one" bar.
The count value is used to sample the bar code data. Since the light pen scanning
speed will vary somewhat over the bar code label, the count value is only approximately correct at measuring width. For this reason it is best not to sample data on
the edges of the light and dark regions, but rather in the center of these regions. The
first sampling occurs in the middle of the space width following the leading dark region when the sync counter reaches half of its sync value. The counter is reset and
subsequent samples occur when the sync counter reaches the full sync value.

3-168

A barcode decoder implemented in an EP1810 consists of Syn Counter,
State Controller, Byte Counter, Status Outputs, and Shift Register sections.
A@2

c~~~~~~~~~~-~~-

INP

B@1i

c:::>-----------~~~---------.,.

INP

C@i4

c>-----INP

elK

c:::::>-INP

CLR@3

D~23

Figure 2. Bar Code Decoder Schematic

3-169

The values of the data samples correspond to the bar encoded data. If "dark-light"
is read, then the light pen has passed over a single width dark region followed by
a single width light region, indicating a "zero". If a "dark-dark-light" Is read, then
the light pen has passed over two adjacent dark regions followed by a light region,
indicating a "one". If any other combinations starting with "dark" are read, or if two
adjacent "light"s are read, then the code is Invalid.
The sync counter Is implemented by four Macro-Functions (8COUNT, 2 of 74157s,
and the 74374) and terminal count circuitry comprised of logic and an NOCF primitive.

Byte counter specification
The byte counter counts the number of bits shifted in, and if they are a multiple of
8, alerts the microprocessor that a full byte is ready to be read. The byte counter
is implemented using a Gray code sequence, a sequence which only has one bit
change between any two count transitions, so that its outputs will be glitch-free; preventing spurious outputs from inadvertently Interrupting the micro-processor. Figure
3 shows the byte counter implemented using the state machine format.

3-170

An 8 stage gray counter is implemented using the high level state machine
format (SMF)

%GRAY3 3 BIT GRAY COUNTER%
PART: EP1810J
INPUTS:
OUTPUTS:
NETWORK:
EQUATIONS:
TCNT = TCNTEN*/G2*/G1*/GO;
MACHINE: GRAY3
CLOCK: GCLK
STATES: [ G2 G1 GO
[
SO
0 0 0
S1
0 0 1
S2
0 1 1
S3
0 1 0
1 1 0
S4
S5
1 1 1
1 0 1
S6
1 0 0
S7
SO:
S1:
S2:
S3:
S4:
S5:
S6:
S7:

S1
S2
S3
S4
S5
S6
S7
SO

%STATES MAKES UNCONDITIONAL%
%TRANSITION TO NEXT STATE %

END$

Figure 3. Byte Counter State Machine File

The byte counter has an open collector output back to the microprocessor (INTO),
fashioned by connecting the input of a 3-state driver to ground and selectivelyenabling the 3-state (TCN1).

Shift register specification
Input data is stored in a 74164 shift register. The shift register clock is fed from the
state controller state machine to assure that data is latched at the appropriate time.
The 74164 outputs should be buffered and connected to the microprocessor bus.
The shift register is implemented by a 74164 macrofunction and CONF output primitive.

3-171

Bar Code Decoder Status Information
Special outputs allow extemal devices to determine the status of the bar code decoder. If active, the DIR signal indicates that the tail was read before the header.
In this instance all data and checksum words would be reversed, and the microprocessor would have to make the compensating transformations. The ability to read
bar codes backwards as well as forwards is a practical requirement, permitting bar
codes to be read upside down as well as scanned from right to left.
The ACT signal indicated that a bar code is being scanned in. This is useful for a
variety of error handling or initialization tasks: for example a microprocessor may
poll on this signal and enter special routines dedicated to bar code reading.
The ERR signal indicates an illegal sequence of light and dark regions was encountered during the decoding process: perhaps the bar code is unreadable, or the scan
rate was not uniform enough. The microprocessor may use ERR to dump illegal
reads without computing and comparing a checksum against the checksum byte
passed to the microprocessor by the bar code.
The status information is comprised of the open collector CONF output, and the
SONF and RORF status flags.

State controller specification
The bar code decoding process requires intelligence to determine if a header is valid, and to convert the light and dark bar code regions to machine readable data.
Beyond data conversion, the bar code decoder must coordinate activities of sync
counter, shift register, byte counter, and status generation circuitry. The simplest
means of achieving these aims Is to create a centralized state controller state machine. Figure 4 shows the state diagram for the state controller, implemented using
the high level state machine syntax shown in figure 5. The algorithm for Figure 4 is
as follows:

IDLE - the machine idles until a dark region is read by the input device (eg. light pen)
at which time the sync counter is started.
SYNC - The sync counter counts up while in this state. The machine stays in this
state until reading the first light region. The sync count corresponds to the width of
the first dark bar.
LATCH - The machine latches the count value into a holding register. Hereafter the

sync countwill expire on every modulus of the latched count, and cause the reading
of the input stream.

HDR1, HDR2, FWD, REV, ERR - The machine begins reading the rest of the header
bits. Bear in mind that we get two different sequences depending if we read a 0-0
sequence or a 0-1 sequence. The 0-0 sequence is a forward read, while the 0-1
sequence is a backward read. If there are any improper reads we will go to ERR.
Direction status is latched dependent on either state FWD or REV. At the end of this
we begin the reading of data and checksum bytes into the shift register.
ACT1, ACT2, ACT3, ACT4 - These are the ac;tive reading states. The ACT1- ACT3
lOOp indicates a "0" was read. The ACTI-ACT2-ACT4100p corresponds to the reading of a "1". Reading is stopped when a long white space is read indicating the end

of the bar code.

3-172

POWER UP - - - - - - - ,

Barcode decoding activities
are coordinated by the State
Controller. This state diagram
describes the behavior of the
BARCTL portion of the State
Controller.

else

ZERO
*IIN

else

IN*ZERO

IIN*ZERO

IN*ZERO

else

IIN*ZERO

Figure 4. Controller State Diagram

3-173

% Bar Code Controller %
PART: EP1800J
INPUTS:
OUTPUTS:
EQUATIONS:
NETWORK:
DIRS = FWD;
ACTD = I IDLF ;
SYNCCLR = IDLK • /IN;
SYNCEN = IDLE;
DCLK
ACT2 + ACT3;
BSEL = ILATCH;

DIRR = IDLE;
ERRD = ERR' IIDLE;
SYNCUP = SYNC;
SYNCLATCH = LATCH;
TENB = ACT2 + ACT3 + ACT4;

MACHINE: BARCTL
CLOCK: CLK
STATES: [Q3 Q2 Q1 QO]
IDLE
[ 0 0 0 0]
SYNC
[
0 0
1]
LATCH [ 0
1 1 1]
HDR1
[
0
1]
HDR2
[
1]
FWD
[ 0
0 1]
REV
[ 0
0]
ACT1
[ 0
0 0]
ACT2
[
0 0]
ACT3
[ 0 0
0]
ACT4
[ 0 0
1]
[ 1
ERR
0]
IDLE:
IF IN THEN SYNC
SYNC:
IF lIN THEN LATCH
LATCH:
HDR1
HDR1:
IF IN' ZERO THEN HDR2
IF lIN • THEN ERR
HDR2:
IF IN • ZERO THEN REV
IF /IN • ZERO THEN FDW
FDW:
IF ZERO THEN ACT1
REV:
IF IN • ZERO THEN ERR
IF /IN • ZERO THEN ACTl
ACTl:
IF IN • ZERO THEN ACT2
IF /IN • ZERO THEN ACT3
ACT2:
IF IN • ZERO THEN ERR
IF /IN • ZERO THEN ACT4
ACT3 :
IF IN • ZERO THEN ACT1
IF /IN • ZERO THEN IDLE
ACT3 :
IF IN • ZERO THEN ACT1
IF /IN • ZERO THEN IDLE
ERR:
IF ZERO THEN ACTl
END$

Figure 5. Controller State Machine Described Using the State Machine Format

3-174

IMPLEMENTATION OF THE BAR CODE DECODER
Figure 2 shows a LogiCaps schematic of the Bar Code Decoder. The sync counter
is implemented by four MacroFunctions (8Count, 2 of 74157s, and the 743474) and
terminal count circuitry comprised of logic and an NOCF primitive. The byte counter
is implemented in state machine format In a file named GRAY3.SMF (Fig 4). The shift
register is Implemented with MacroFunctlon 74164 and CONF output primitives. The
microprocessor interface consists of a CONF configured as an open collector output
and status flags Implemented by SONF and RORF primitives. The State controller
was implemented in a state machine file named BARCTL.SMF (Fig 5). The state machines are outlined on the schematic for documentation purposes only. The borders
are not required for design processing.

DESIGN PROCESSING
Design input is contained in three separate files, of two different formats. LogiCaps
generates the bar.adffile, whereas barctl.smf and gray3.smf are state machine files.
Linking all the design information is done in the A + PLUS Design Processor (ADP)
section of the A + PLUS development software. This is done by answering all the
prompts as in Figure 6.
ADP automatically links the names between the various input files and create an output file bar.jed for device programming. Device utilization, given after processing,
indicated that 38 of the 48 macrocells were used, 2 of the 7 inputs, and 36 percent
ofthe available logic.

APLUS

ADP

FORMAT

Adf

FILE NAME:
MIN
INV CTL
LEF ANAL

bar barctl.smf gray3.smf
yes
no
yes

Figure 6. Multiple Design Processing Prompts

SIMULATION VERIFIES OPERATION BEFORE PROGRAMMING A DEVICE
Simulation was run on the device to assure proper operation. In this instance a serial
input stream corresponding to a valid bit stream is read by the design. It properly
sequences through the states, latches the data, and interrupts a processor. The anticipated simulation data is shown in Figure 7. The controller state machine isverified
by comparing the QO-Q3 outputs, and the state table values in Figure 5.

3-175

The Simulator will be driven with a data Input emulating the previous sequence. Design behavior Is verified by monitoring for the co"ect response from the Functional SlmulatOl
ENCODED

BIT

0

o

""""TIo,11
CYCLE

4

5

8 10 12

.....................
FIND
HEADER

...

ACTIVE
FLAG
SET

o

o

I

16 18 20 22

...

STORE
~.

I

26 28 30 32

...

...

~.

~.

STORE STORE

o

o

I

36 38 40 42

...

...

~.

~.

STORE STORE

...

...

~.

~.

I

56 58 60

...

...

~.

~.

STORE STORE

...

INTERRUP
TO
PROCESSOR

DIR
FLAG
SET

Figure 7. Anticipated Simulation Data

3-176

I

46 48 50 52

STORE STORE

...

o

...

STORE
~.

Development Systems

4-1

Contents
Page

EPLD Development System Summary ...........................
EPLD Design Software Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
Third-Party Software Tools .......................... . . . . . . . ..

4-2

4~3

4-15
4-23

EPLD Development System Summary
Part Number: EP-APLUS

~

TEXAS
INSTRUMENTS

4-3

IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. TI advises its customers to obtain the latest
version of the relevant information to verify,before placing orders, that
the information being relied upon is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Unless mandated by govemment
requirements, specific testing of all parameters of each device is not
necessarily performed.
TI assumes no liability forTI applications assistance, customer product
deSign, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represents that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1989, Texas Instruments Incorporated
All Rights reserved
Copyright © 1989, Altera Corporation
All Rights reserved

TRADEMARKS
A+PLUS, LoglcMap, LogiCaps, MacroMunchlng, SALSA, and
ASAP are trademarks of Altera Corporation.
IBM, XT, AT, and PC-DOS are trademarks of Intemational Business
Machines, Inc.
MS-DOS is a trademark of Microsoft Corporation.

4-4

FEATURES:

o

Complete Design Solution for TI EPLDs
• Development Software
• Programming Hardware
• Device Samples

o

Supports Multiple Design Entry methods
• Schematic Capture Entry
• Netlist Entry
• Boolean Equation Entry
• State Machine Entry

o
o
o

Device Fitter Optimizes Device Resources
Support for User-Defined MacroFunctions
Automatic Pin Assignments

GENERAL DESCRIPTION:
The Texas Instruments (TI) Erasable Programmable Logic Device (EPLD) Development System is a consolidated Computer Assisted Engineering (CAE) tool that transforms a logic design into a programmed device. The development system supports
a variety of input formats that can be used individually or combined together to meet
the needs of a particular design task. The system includes design entry, design processing, functional simulation and device programming.
The A + PLUS T. software, which is at the heart of this system, includes a design processor which transforms the input format to optimized code used to program the targeted EPLD. The design processor implements logic minimization, automatic EPLD
part selection, architecture optimizations and design fitting. The system also includes LogicMap TO software for device programming.

4-5

: -DEsiGN ENTRY-: ,- -----DEsiGN PROC"E-SSI-NG- ------: ,- -OUTPUi--ANO- --~
SCHEMATIC

, :
EXPANDER

LDQIC

DESIGN

AND

AND

MINIMIZER

FITTER

MACROMUNCHER

TRANSLATOR

FLATTENER

::
,,

SIMULATION

,,

FUNCTIONAL

,,
'I
,,

SIMULATOR

I

I

JEDEC
FORMAT

TI
EPLD
PROGRAMMER
I

ENTRY

l

_______________

, :

J

1_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

It
I.. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1

.!

Figure 1. The TI EPLD Development System

FUNCTIONAL DESCRIPTION:
As can be seen in the detailed block diagram of the TI EPLD Development System,
in Figure 2, the A + PLUS software accepts four different design entry formats: Schematic Capture, Nellist, Boolean Equations, or State Machine input. The designer Is
not restricted to just one design entry format but has the freedom to "mix and match"
different formats to best meet the needs of the overall logic design.
The design entry format is converted to an A + PLUS Design File (ADF) which is the
common entry format for the A+ PLUS software. The ADF is then submitted to the
A+ PLUS Design Processor (ADP). The ADP is composed of a set of modules integrated together that produce an industry standard JEDEC code used to program the
EPLD.
The ADP also produces documentation showing minimized logic and EPLD utilization. Once the JEDEC file is produced, the user may functionally simulate the design.
Finally the user can program the chosen EPLD with the LogicMap programming software and the hardware provided with this system. TI qualified third party programmers can also be used for production volume programming.

4-6

Schematic Capture
Logic Designs may be entered from schematic drawings by using the LogiCaps TN
or other schematic capture packages. Schematic capture design entry allows the
user to quickly construct a wide range of logic circuits. Designs entered with this
method use library primitives in the form of low level functions (input, basic gates,
flip-flops, I/O primitives) to high level TIL MacroFunctions. LogiCaps is mouse driven and supports hard copy printouts and plots. As required the schematic representation is converted to an ADF file and processed by the A + PLUS Design Processor.
LogiCaps Is a high performance schematic capture package that has been optimized
for entering designs destined for TI EPLDs. It is the primary design entry platform for
any member of the TI EPLD family. When used in conjunction with TIL and user defined MacroFunction libraries, LogiCaps becomes the essential tool for the design
of high density EPLDs.
The TI design library is a collection of high level MSI building blocks which allow the
LogiCaps user to enter designs in a "block manner". An initial primitive symbol Iibrary contains basic gates, flip-flops and I/O symbols as well as the most commonly
used TIL SSI and MSI functions. Other design libraries include an extenSive TIL 7400
series symbol library, and user-defined libraries. In addition each library also contains logic functions not available in standard TIL or CMOS devices. Examples include counters implemented with toggle flip-flops, combination up/down counter
with left/right shift register, and inhibit gates.

Netlist Entry
The A + PLUS software directly supports netlist entry from third party schematic capture packages via the the A + PLUS Design File (ADF). Using a standard text editor,
a netlist which describes the circuit Is created by using a Simple, high-Ievel,design
language.
The netlist may contain basiC gates, I/O architectures, boolean equations, and TIL
MacroFunction descriptions. In addition, user defined comments and white space
may be freely used throughout the ADF file. The completed file is then submitted to
the design processor. This entry method also permits circuit designers to utilize netlist outputs (e.g from workstations or other schematic capture packages) that have
been translated into ADF format.

Boolean Equations
The A + PLUS Design Processor compiles Boolean equation designs that are written
in a simple design language. The source for the design may be created with any convenient text editor. The language supports free-form entry of all syntactical elements.
Boolean equations need not be entered in sum-of-products form since the design
processor will expand equations automatically. The multi-pass design processor/
compiler has the ability to support intermediate equations. This feature allows for significant reduction in the size ofthe Boolean equation source code and allows the designer to define the logic in the most natural conceptual manner.

State Machine
Designs that are easily represented with state diagrams may be entered via the state
machine approach. This method uses a high level language featuring IF-THEN con-

4-7

•

structs, Case statements and truth tables. this design entry supports both Mealy and
Moore state machines. Outputs of the state machine may be defined conditionally
or unconditionally allowing flexible output structures that can be merged with other
portions of the design. In addition, multiple state. machines may be linked within the
same design. Boolean equations can also be employed, thus offering the definition
of high level Intermediate logic expression. The software will also select the optimum
flip-flops for the particular design.

DESIGN PROCESSING
The A + PLUS Design Processor (ADP) consists of a series of modules that translate
design Information from a variety of input sources into a JEDEC Standard File used
to program the EPLD. this process is automatic and requires little or no assistance
from the circuit designer.

Design Flattening
The design processor accepts design files from one or more ofthe design entry methods already described. Once the design has been submitted, the first function of the
ADP Is to "flatten" the design from high-level MacroFunctions to low level gate primitives. In order for designs to be flattened, information from the MacroFunction Behavioral Library is transferred to the design flattener, which In tum decomposes all MacroFunctions to their primitive gate equivalents.

MacroMunching

1M

And Default Modes

Once the design is flattened, the design processor analyzes the complete logic Circuit and removes unused gates and flip-flops from any MacroFunction utilized. This
"MacroMuncher" allows the logic designer to freely use the high-level building
blocks from the MacroFunction Symbol Libraries without the headaches of optimizing their use.
When MacroFunctions with unconnected inputs are detected, the design processor
assigns "intelligent" default values. In general, active-high inputs default to ground
(GND) and active-low inputs default to the supply voltage Nee> when left uncon~
nected. This default mode is activated simply by leaving unused inputs without connections, thus eliminating "busy work" and enhancing productivity.
Once the design has been flattened or "munched", and all default values have been
assigned, a secondary design file, (SDF file) is produced for further processing.

Translation/Minimization
The Translator takes the SDF file and checks for logic completeness and consistency.
For example, the Translator validates that no two logic function outputs are shorted
and that all logic nodes have an origin. In the event that the designer has chosen an
EPLD name of "AUTO", the Translator will automatically select the appropriate EPLD
based on the logic requirements of the design.
LogiC minimization of designs is provided by the Minimizer module. Minimization
phases Include Boolean minimization with a SALSA ™ (Speedy A + PLUS Logic Simplifying Algorithm) that yields superior results to other heuristic reduction techniques.
DeMorgan's theorem Inversion can be applied automatically to equations. The processor contains algorithms based on artificial intelligence techniques to select can-

4-8

didate equations that will best be represented by a complemented AND/OR function.
This feature significantly reduces product-term demands that can be generated by
complex logic functions. For TI EPLDs with selectable flip-flop, the Minimizer checks
which type of flip-flops yields a more efficient solution and converts architecture if
necessary. The minimized logic can then be passed to the Analyzer module which
converts the file into human-readable format allowing the designer to examine the
minimized logic.

Design Fitting
The fully minimized design is now transferred to the Fitter. This fitting routine relies
on algorithms based on artificial intelligence software techniques in order to fit the
logic requirements of the design into the specified EPLD providing full pin assignments automatically.
The Fitter module matches the requests ofthe design with the resources of the EPLD.
The Fitter process encompasses all EPLD architectural attributes such as variable
product term distribution, programmable flip-flops, local and global busses and I/O
requirements. If the designer specifies a pin assignment, the Fitter matches the request. If no pin assignments are made, the Fitterfinds an optimized fit for the design.
The Fitter produces a Utilization Report that shows which of the EPLD's resources
were used up by the design and how. Finally, the Assembler module converts the
fitted requests into an image for the part in a JEDEC Standard File.

4-9

•
,......................................................... .. -r .................................................................................................. DESIGN ENTRY

DESIGN PROCESSING

MACRO
FUNCTION
SYMBOL
LIBRARY

MACRO
FUNCOON
BEHAVIORAL
UBRARY

ADLIB
SCHEMATIC
CAPTURE
ENTRY

&
TTL

LogiCaps

MacroFunctions
DESIGN PROCESSOR

MACROFUNCTJON

A+PLUS

NETLIST
ENTRY

FLATIENER
SECONDARY
r-~~r----------t-~
D~GN
•
MACROMUNCHER

FILE
.SDF

BOOLEAN
EQUATION
ENTRY

STATE
MACHINE
ENTRY

... _--------------------------_

,

....

_------------------------------ .. ------------- ..... ---

Figure 2. The TI EPLD Development System

4-10

DESIGN SIMULATION

1

1- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

COMMAND
FILE
.CMD

...

VECTOR
FILE
VEC

LOGIC
PROGRAMMER

PROGRAMMING EPLD

4-11

•
Design Simulation
Once the design has been fitted to the specified EPLD and a JEDEC file has been
produced, the A + PLUS functional simulator allows the designer to test the logical
operation of the design. This software package requires the use of any general purpose text editor and is completely compatible with the A + PLUS Development System. As a result, users may now enter designs on the EPLD Development System,
have them automatically fitted and optimized, then perform logic simulation without
needing to commit a device to hardware.
A complete set of simulation commands allows the user to check critical logic within
a design in a succinct and straightforward manner. Users can specify commands to
occur at particular events such as during a given circuit condition or at an absolute
simulation timestep. Nodes may be forced to a chosen logic state to verify proper
circuit behavior from any initial condition. The input waveforms from the VECTOR file
containing logic values that are to be applied to the inputs, can be superseded by
another pattern at any point in time.
For debugging purposes simulation breakpOints can be set to halt execution when
a specified event occurs. This "break" command provides designers the ability to
detect illegal states. Once a break condition is met, a command sUb-list is activated
to provide status information or to enter into a separate procedure. For example, a
breakpoint might signal an illegal state, display the current output waveform on the
screen, enter a legal state and continue with the simulation.

Device Programming - With LogicMap II
LogicMap II is the interface software that programs EPLDs from JEDEC files created
by the A + PLUS Design Processor. The program uses the A + PLUS Super Adaptive
Programming algorithm (ASAP 1M ) which significantly reduces device programming
times. LogicMap II fully calibrates the programming environment and checks out the
programming hardware when initiated. In addition the program allows the designer
to review the JEDEC object code generated by the Processor in a structured manner.
The program is fully menu driven and provides views of the device object code
through a series of hierarchical windows. This feature permits low-level observation
and editing of the deSign, viewed from a perspective similar to that of the logic diagram of the device in the data sheet. Individual EPROM bits may be examined or
changed if desired, however this mode of editing is not recommended.

Hardware - Logic Programmer
LogicMap software is used to drive the programming hardware comprised of a software-configured programming card that occupies a single slot in the computer. Programming signals are transmitted to an external programming unit via a 30 inch ribbon
cable and connector. The programming unit contains zero-insertion-force sockets
for easy device insertion. All programing waveforms and voltages are derived by the
programming card so that no additional power sources are necessary. A programming indicator lamp on the programming unit is illuminated when the unit is active.
For ordering information about Texas Instruments EPLD Development System contact yourTl field sales representative, local authorized distributor, or call the customer
response center at 1-800-232-3200. For applications questions contact the Programmable Logic Applications Group at (214) 997-5666.

4-12

RECOMMENDED COMPUTER CONFIGURATION

CJ

IBM~ xrm or ATm Personal Computer, or Compatible, with:

- Either Monochrome, CGA, EGA with extended memory or Hercules
- 640 K bytes of main memory (RAM)
- 20 M Byte Hard Disk Drive and Floppy-Disk Drive
- MS-DOS TN or PC-DOS TN versions 3.2 or later releases
- Full-Card slot for programming Card
- Serial 3-Button Mouse

DEVELOPMENT SYSTEM CONTENTS

CJ
CJ

TI Part Number: EP-APLUS
Software:
- A + PLUS programs and support files
- LogiCaps Schematic Capture Program

- 7400 Series TIL MacroFunction Library
- State Machine Entry Program
- Functional Simulation Program

CJ

Documentation:
- A + PLUS Reference Manual and User Guide
- LogiCaps Manual
- MacroFunction Reference Manual
- Functional Simulation User Guide
- State Machine Entry User Guide

CJ

Software Warranty:
- 12 Month Extended Software Warranty and Update Service

CJ

Hardware:
- Software Controlled Programmer Interface Card
- EPLD Master Programming Unit
- EPLD Device Adapters

CJ

EP610 DIP adapter

(PLEDBOO/610)

EP610 J-Lead adapter

(PLEJBOO/610)

EP910 DIP adapter

(PLED900/910)

EP910 J-Lead adapter

(PLEJ900/910)

EP1810 J-Lead adapter

(PLEJ1800/1810)

EPLD Device Samples
EP610DC
EP910DC
EP1810JC
All contents are packaged in a box measuring 18.5" X 15.5" X 10.5 ".

4-13

•

4-14

EPLD Design Software Summary
Part Number: EP-APLUS-S/W

~

TEXAS
INSTRUMENTS

4-15

•

IMPORTANT NOTICE

Texas Instruments (fl) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. TI advises its customers to obtain the latest
version of the relevant infOrmation to verify, before placing orders, that
the information being relied upon is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Unless mandated by govemment
requirements, specific testing of all parameters of each device is not
necessarily performed.
TI assumes no liability forTI applications assistance, customer product
design, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represents that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1989, Texas Instruments Incorporated

TRADEMARKS
LoglCaps is a registered trademark of Altera Corporation.
A + PLUS is a trademark of Altera Corporation.
IBM and PC-DOS are trademarks of Intemational Business Machines

Inc.
MS-DOS is a trademark of Microsoft Corporation.

4-16

iii!

I

iiSI

,E~LP

Design Software Summary

As the software

only package of the TI EPLD Development System, the
EP-APLUS-S/W extends the TJ EPLD Development System to additional satellite
design stations without the expense of additional programming hardware. It also
fills the needs of design engineers with third party programming hardware already
installed.

Designs are entered and processed through the A + PLUS 1M Design Processor. The
resulting JEDEC file is then transferred to a development system that contains
programming hardware or to a third party programmer where the design is
physically mapped (programmed) into the device.

Features:

o

Complete CAD software
• Offers ease of designing
with TI EPLDs
• Consists of the following pieces:
• LogiCaps® Schematic Capture
Software

o

Software Designed to run on
IBM-XT1M orAT™ compatible PC
with following configuration
• Monochrome, CGA, EGA
with extended memory or
Hercules Display
• 640K bytes of system
memory (RAM)

• MacroFunction Library
• A + PLUS, Assembly Software

• 20M bytes hard drive and
floppy drive
• MS-DOS 1M or PC-DOS 1M
Versions 3.2 or later releases
• Seri.al 3-Button Mouse

4-17

•
LogiCaps Schematic Capture Software
Contents:
LogiCaps Schematic Capture Diskettes
Printer/Plotter Interface
Standard Symbol Library
LogiCaps Manual

Features:
0

Graphical Entry of Logic Schematics

0

Easy Mouse, Key and Menu Commands

0

0

Directly Interfaces with the
A+PLUS software system

Extensive on-line documentation

0

Dual window display capability

0

Orthogonal Rubberbanding of lines

0

Multiple ZOOM levels

0

Area Editing, Save and Load

0

Tag and Drag editing

0

User definable functions (MACROs)

0

Draw schematics up to 90"x90"

0

Schematic plotting with HP7475,7580
and 7585 plotters

0

Standard Symbol Lbrary contains
30 MacroFunctions and over 80
MacroPrimitives

Description:
LogiCaps is a fast and powerful schematic entry tool for capturing designs destined for TI EPLDs. Schematic diagrams are drawn on the screen of a PC using a
mouse; then, with a single command, a netlist file is generated ready for logic
syntheSiS and eventual generation of a JEDEC file to be programmed into silicon.
LogiCaps complements the A + PLUS software to form a complete interactive EPLD
development system.
An engineer could start with a blank "sheet" on a PC, then in minutes transform a
circuit idea into a working, user configured integrated circuit.
The most frequently used functions - drawing and connecting lines, moving and
copying objects, and just getting around in the drawing - are done by simple mouse
motion or pressing a mouse button. Functions used less often are executed by
pressing a single key, while those functions rarely used or requiring more data are
selected from a nested command menu system. No command requires more than
three key presses to execute, unless a file name or some other text is needed.

4-18

MacroFunction Library
Contents:
TTL MacroFunction Lbrary Diskettes
ADLIB (A + PLUS Design Librarian) Diskettes
TTL MacroFunction User Manual
ADLIB manual

Features:

o
o
o

100+ Different MacroFunctions
Allows High Level Design Entry

o
o

Used with LogiCaps Schematic
Entry
MacroMunching of unused Gates

User Definable Symbols and
MacroFunctions with ADLIB

Description:
The MacroFunctions facilitate easy designing and incresed productivity. They are
high level building blocks that allow the user to design at TTL level. This ability
aids a first time user since the TTL functions will already be familiar. The experienced EPLD user will also benefit by being able to increase design productivity with
the use of MSI function blocks.
Most MacroFunctions are commonly used 7400 series SSI and MSI TTL parts. A few
particular ones have been developed specifically to suit logic designs with the
TI EPLD architecture. These have been designed by EPLD design experts and contain inner logic behavior to maximize EPLD speed and utilization.
These MacroFunctions are very versatile and can be used together with user designed MacroFunctions and/or low level logic primitives depending on the logic
needed. The inputs and outputs of the EPLD to be programmed are specified
with A + PLUS I/O design primitives.

4-19

•
A+ PLUS Assembly Software
Contents:
A + PWS Diskettes
ADp, A + PWS Design Processor, Diskettes
FSIM, Functional Simulator, Diskettes
SMV, State Machine Converter, Diskettes
Install Diskettes
A + PLUS Reference Guide
A + PLUS User Guide, includes
FSIM and SMV Manuals

Features: A + PLUS, PLSME (SMV)
The A + PWS programs and support files make the following possible;

o
o
o

Boolean Equation Entry and
Netlist Entry of Logic Designs

o
o

MacroFunctlon Design Capability

Interactive Netlist Design Entry
Design Flattening & Logic
Minimization for complete
Optimization of EPLD designs

Automatic Pin Assignment and part
selection

The SMV program is the means whereby programmable logic state machine
designs are entered (PLSME - Programmable Logic State Machine Entry
incorporates SMV) in addition the following benefits are possible;

o
o
o
o

Multiple State Definition allowed
in one file
Standard Format Allows Design to
be Merged with Other State Machines,
Schematic Entry, Boolean Equations,
or Netllst Entry within a Single EPLD
Human readable format eases the
maintenance of complex designs
Truth Table Option allows the
Specification of Random Logic
From functional definition

o
0

o

Truth Table Option allows the
Specification of Random Logic
From functional definition
Sophisticated minimization
algorithms in A + PLUS Perform
automatic reduction to improve
device utilization
Outputs of State Machines can be
either conditionally or
unconditionally defined

Description - A + PLUS, PLSME (SMV)
The PLSME and the A + PLUS development software automatically transform high
level state machine descriptions into device programming files. PLSME provides
a state machine entry option in addition to the traditional entry methods (LogiCaps
Schematic Capture, Boolean Equations) currently available to A + PLUS. Design information is entered using any standard text editor. It is then processed by the
state machine converter to a standard A + PWS Design File (ADF). This common
intermediate format allows the linking of multiple state machines, schematic,
Boolean, or netlist entered design files.

4-20

Features: FSIM

o
o
o

o

Simulation of BUS Structures
Interactive Debugging ability with
Break, Force, Save and Restore
Commands
Functional Simulation for Tl's
Entire Family of EPLDs
Easy Definition of Inputs using
State Table, Vector Patterns or
Predefined Patterns

o
o
o

Output formats include state table
or graphic waveforms for
on-screen display or hard
copy printout
Ability to access buried nodes
within the design
Back-end integration with
A + PLUS Environment using
JEDEC File for Simulation

Description - FSIM
FSIM, the A + PLUS Functional Simulator, provides a convenient and easy-to- use
tool for testing the logical operation of any EPLD design. This software require
the use of any general purpose text editor and is completely compatible with
the A+ PLUS development system. Consequently users may now enter designs,
have them automatically fitted and optimized, then perform logic Simulation without needing to commit a device to hardware.
A complete set of simulation commands allows the user to check critical logic
within a design in a succinct and straightfoward manner. Users can specify commands to occur at particular events, such as during a given circuit condition or
at an absolute simulation timestep. Nodes may be forced to a chosen logic state
to verify proper circuit behavior from any initial condition. The input waveforms
from the VECTOR file can be superseded by another pattem at any point in time.
For debugging purposes simulation breakpoints can be set to halt execution when
a specified event occurs. This "break" command provides designers with the ability
to detect illegal states. Once a break condition is met a command sub-list is
activated to provide status information or to enter into a separate procedure. For
example, a breakpoint might signal an illegal state, display the current output
waveform on the screen, enter a legal state and continue with the Simulation.

4-21

•

4-22

Third-Party Software Tools
Available for Designs with EPLDs

TEXAS
INSTRUMENTS

4-23

II

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to or to
discontinue any semiconductor product or service identified in this
publication without notice. TI advises its customers to obtain the latest
version of the relevant Information to verify, before placing orders, that
the information being relied upon is current.
TI warrants performance of its semiconductor products to current
specifications in accordance with TI's standard warranty. Testing and
other quality control techniques are utilized to the extent TI deems
necessary to support this warranty. Unless mandated by government
requirements, specific testing of all parameters of each device is not
necessarily performed.
TI assumes no liability forTI applications aSSistance, customer product
deSign, software performance, or infringement of patents or services
described herein. Nor does TI warrant or represents that any license,
either express or implied, is granted under any patent right, copyright,
mask work right, or other Intellectual property right of n covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1989, Texas Instruments Incorporated

TRADEMARKS
DATA I/O and PLDtest are registered trademark of DATA 1/0

Corporation.
FutureNet is a registered trademark of FutureNet, a DATA 1/0
Corporation.
Vlew/ogle Is a registered trademark of View/ogic Systems, Inc.
Verllog is a registered trademark of Gateway Design Automation
Corp.
LoglCaps and A+PLUS are trademarks of Altera Corporation.
Dash4 is a trademark of FutureNet, a DATA 1/0 Corporation.
OrCADISDT and SOT III are trademarks of OrCAD Systems
Corporation.
ATG is a trademark of Anvil Software.
ABEL is a trademark of DATA 1/0 Corporation.
CUPL is a trademark of LOGICAL DEVICES, INC.
PLDeslgner Is a trademark of MINC INCORPORATED.
QulckSlm, PLD Synthesis, NETED, and Mentor Graphics are
trademarks of Mentor Graphics Corporation
DLS2 is a trademark of Daisy Systems Corp.
ValldSlm Is a trademark of Vaild Logic Systems Inc.

4-24

Third-Party Software Development Tool
Available for Designs with EPLDs
....

"'-'10

~

........................................................................................................................................................................................................................................................................

THIRD-PARTY SOFTWARE DEVELOPMENT TOOLS AVAILABLE FOR
DESIGNS WITH EPLDs FROM TEXAS INSTRUMENTS
The third-party support tools listed below appear to meet the specifications published by their manufacturers. Texas Instruments does not accept any responsibility
for the suitability or accuracy of these products for use with TI EPLDs. Similar
TI products are listed for completeness.

Schematic Capture Software
VENDOR

PRODUCT

TI- EP330, 610, 630, 910, and
EP1810

Texas
Instruments

DEVICES SUPPORTED

LogiCaps'"

ALTERA - EP310, 320, 330, 512,

600,610,630,900,910,1210,
1800, 1810, and EPB1400
DATA 1/0 ®-

DASH4'·

FutureNet®

EP31 0, 320,600,610,900, 910,
1210, 1800,andEP1810

OrCAD

SOT III'"

EP310,320,600,610,9oo, 910,

View/ogic@

Altera ASIC Design
Kit

EP310,320,600,610,900,910,
1210, 1800,andEP1810

Mentor Graphics TM

PLD SyntheSiS '"

EP310, 320, 600,610, 900,910,

1210, 1800, and EP1810

1210, 1800, and EP1810
MINC

PLDesigner TM

EP310,320,600,610, 900,910,
1210, 1800, and EP1810

DATA I/O - FutureNet
DATA I/O - FutureNet's DASH 4.1 SchematiC Capture package can be used to capture the circuit logic of a design. The output of this package is a standard PLD file.
Phone (800) 247-5700 - For more information

4-25

•
OrCAD Netlist Interface to A + PLUS:
OrCAD Systems, a manufacturer and vendor of schematic capture software, has
developed a netllst interface to A+ PLUS 1M as part of their schematic capture
software, the OrCAD/SDT 1M • The Interface translates designs generated with OrCAD's SOT editor Into a netllst format which Is then translated into an ADF file to
be processed by A + PLUS.
Support for Tl's logic symbol and MacroFunctlon libraries is also available with
this interface. Existing OrCAD customers with valid software warranty agreements,
will receive the Interface as part of a general product update. New OrCAD customers
will receive the interface when they purchase the OrCAD/SDT package. It is an integral part of the package.
With thiS interface capability, designs done In the OrCAD/SDT schematic capture
environment can now be processed by A + PLUS. For more information on availability of this Interface, OrCAD/SDT upgrade and related Issues, please contact;
Phone (503) 640-9488 - For more information

View/og/c Altera ASIC Design Kit
Viewloglc has developed a product called The Altera ASIC Design Kit which supports
the TI EPLD product family. The kit provides EPLD library primitives and macro's for
schematic capture and functional Simulation of TI EPLD Designs. An ADF netHst is
produced and can be downloaded to the A + PLUS system for design processing and
device programming.
Phone (BOO) 480-0881 - For more information

Mentor Graphics
Mentor Graphics' PLD Synthesis tool offers the capability of using their NETED 1M
Schematic Capture package to capture the TI EPLD Design. After capture you may
specify the TI EPLD as the target device for programming. The software is fully integrated into the mentor Graphic Design enviorment.
Phone (503) 626-7000 - For more information

MINC Inc.
A number of Schematic Editors may be used to capture a TI EPLD Design for development using MINC's PLDesigner. OrCAD, Mentor, Intergraph, Teradyne, and Cadnetix
editor's are all supported. Additional language and waveform entry options are included. MINC's software operates on Apollo, Sun, NEC9801, PC and PC-compatable platforms.
Phone (719) 590-1155 - For more information

4-26

ALTERNATIVE DESIGN SOFTWARE FOR TI EPLDs:
While it is highly recommended that EPLD designs be processed by the TI EPLD
Development System, there are logic design software packages on the market that
can process TI EPLD designs.
The following is a short list of altemative design software packages.
Software

Version

Devices Supported

Vendor

3.1

EP610,EP910,EP1810

DATAI{O

CUPL'"

3.0

EP610, EP910,EP1810

LOGICAL DEVICES

PLDesigner

1.6

EP610, EP910,EP1810

MINC

ABEL

T•

TEST VECTOR GENERATION AND FAULT GRADING
The following software packages allow design Simulation to be performed by generating test vectors to act as stimuli to the inputs ofthe design and compare subsequent output responses with expected respones according to the particular design.
The programmer load file, in the JEDEC format, is the required input or source file
for the generation of such vectors.

VENDOR

PRODUCT

REVISION

DEVICES SUPPORTED

Anvil

ATG'"

2.23 and UP

EP310, 320, 600, 610,
900,910, and EP1210

DATA I/O

PLDtest@

1.3 and UP

EP310, 320, 600, 610,
900, and EP910

BOARD LEVEL SIMULATION
EPLD models developed by Logic Automation Inc. (LAI) , enable the designer to
do board level Simulation of the entire design, including the individual EPLDs. Such
simulation tasks can only be accomplished using workstations as platforms. The
various workstation platforms capable of simulating with LAI EPLD models are
shown below.

VENDOR

PLATFORM

DEVICES SUPPORTED

MENTOR - QuickSim '"
Logic

DAISY _ DLS2 T.

Automation

VALID - ValidSim T.

EP310,320,600,610,
910, 1800, and 1810

GATEWAY - Verilog@

4-27

...

General-Purpose EPLD Behavioral Simulation Models from
Logic Automation Inc. (LAI):
Most designers have design verification requirements that involve simulation
of a complete system. However existing EPLD design verification tools like
PLFSIM (used with A + PLUS), can only simulate the logic integrated Into the EPLD,
and not the entire system design. "JYpically these overall system simulation requirements are met using tools available atthe workstation level, such as simulation tools
offered by Mentor, Daisy and Valid.
In order to accurately represent logic and timing information integrated into an
EPLD, a model must be constructed in the appropriate simulation format. Logic
Automation Inc., based in Portland, Oregon, has a contract with Texas Instruments
to construct models of nearly everyTI Programmable Logic Device, Including the
current line of EPLDs. LAI has been provided with specific architectural information
forthe EP61 0, EP910, and EP1810 general-purpose EPLDs which Includes macrocell configuration and all ac timing parameters.
LAI has constructed behavioral simulation models, based on the detailed information
supplied, for the Mentor, Valid, Daisy and Gateway simulators.
For more information on system simulation involving the

n EPLDs, please

contact:

LAI, Applications Dept
19545 N.w. Von Neumann Drive
P.O. Box 310
Beaverton,Oregon 97075
1el: (503) 690-6900
These are some of the Third-Parties who support TI EPLD Design Development in
some way. While the n A + PLUS System is recommended, this extensive additional
support offers you, the deSigner, choices. These choices can make integration of TI
EPLDs into your Design Environment easier. Call the TI Hotline or the local Third-Party vendor if you have questions regarding Third-Party support tools.
TI Holline: Phone (214) 997-5666
TI Bulletin Board: Phone (214) 997-5665

4-28

Mechanical Data

5-1

•

5-2

MECHANICAL DATA

FK020 and FK028 ceramic chip carrier packages
Each of these hermetically sealed chip carrier packages has a three-layer ceramic base with a metal lid
and braze seal. The packages are intended for surface mounting on solder lands on 1,27 (O.050-inch)
centers. Terminals require no additional cleaning or processing when used in soldered assembly.
FK package terminal assignments conform to JEDEC Standards 1 and 2.

FK020 and FK028
128-terminal package shown)

CERAMIC CHIP CARRIERS
JEDEC
OUTLINE
DESIGNA TlON'

NO.OF
TERMINALS

MS004CB

20

MS004CC

28

A
MIN

MAX

MIN

MAX

8,69
(0.3421
11,23
(0.4421

9,09
(0.3581
11.63
(0.4581

7,80
(0.3071
10,31
(0.4061

9,09
(0.3581
11.63
(0.4581

·AII dimensions and notes for the specified JEDEC outline apply,

0,5 1 10.020 1-+1
0,25 (0.0101

",

r,
J-.-1----r::

0,51 10,0201
0,25 (0,0101

1,1410.0451

---..L 0,89 10,0351

~I
1---+

I

0.71 (0.028)
0.56 (0.022)"1

2.0310.080)
1,6310.064)

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES

TEXAS " ,
INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5-3

..
MECHANICAL DATA

FN020, FN028, FN044, FN068, and FN084 plastic chip carrier packages
Each of these chip carrier packages consists of a circuit mounted on a lead frame artd encapsulated within
an electrically nonconductive plastic compound. The compound withstands soldering temperatures with
no deformation, and circuit performance characteristics remain stable when the devices are operated in
high-humidity conditions. The packages are intended for surface mounting on solder lands on 1,27 (0.050)
centers. Leads require no additional cleaning or processing when used in soldered assembly.

FN020. FN028, FN044, FN052. FN068, and FN084
120-terminal package used for illiustration)
o
)+10.18 (0007)«11

•

a (J)I

FH- ISee Note

0-E(I)1

A- 01 (See Note B I - +

~

1+10,18

1.22 (0.048) 2 PLACES

w

I!

W
a.
~

...

~ i~. L

~
z
W s '"

~~

~ ~

... --t

I I

-

1.42 (0 056)

II

1.07iii042i

I

~

~TYP

~ 'I':~'~ ~;" O
~

~t!.

~ SIDES~

-G-

1",
1

(See Note FJ

(See Note C)

I

(j

SEATING PLANE

V~'::"~E~20)R MAxn A

I+- +I j4ffi. (See Note C)

I-I.r-

t.

9

10

11

12

13

--J k

1

(See Note FJ

1+10,38

(O.~'5)@lo

ECSlI
1+!o,JlI (o.OI')~!.-G@1

~

__~~~~J

~~=====j=~

0)

(O.OO7)l1)!B(J)!O-E@!

1.lI(D,002 ../IN)I'1

1.07 (0.042)

A1

-

0,51 (0.020) MIN
ISee Note C)

SUM OF DAM BAR PROTRUSIONS-...,--~~"
TO BE 0,17 (0.007) MAXIMUM
PER LEAD

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. All dimensions conform to JEDEC Specification MO-047AA/AF. Dimensions and tolerancing are per ANSI Y14.5M-1982.
B. Dimensions 01 and E1 do not include mold flash protrusion. Protrusion shall not exceed 0,25 10.010) on any side.
C. Datums ID-EI and IF-GI for center leads are determined at datum I-H-I
D. Datum

E::l

is located at top of leads where they exit plastic body.

E. Location to datums

0

F. Determined at seating plane

5-4

j"d

~-B-I

to be determined at datum

EB:j

-C

TEXAS . "

INSIRUMENlS
POST OFFICE BOX 655303 • DALLAS. TEXAS 76266

MECHANICAL DATA

FN020. FN028. FN044. FN068. and FN084 plastic chip carrier packages (continued)

JEOEC

NO.

OUTLINE

OF
PINS

MO-047AA

20

MO-047AB

28

MO-047AC

44

MO-047AD

52

MO-047AE
MO-047AF

68
84

A

0, E

A,

MIN

MAX

MIN

4.19
10.165)

4.57
10.180)

2,29
10.090)

MAX
3,05'
10.120)

0,. E,

MIN

MAX

MIN

9,78
10.385)

10.03
10.395)

8,89
10.350)

MAX
9,04

MIN
7,37

5,08 10.200)

10.390)

10.92
10.430)

7,62 10.300)

14.99
10.590)

16.00
10.630)

12,7010.500)

17.53
10.690)

18.54
10.730)
23,62

10.290)

10.456)
16,66

4,19

4,57

2,29

3,05

12,32

12,57

10.180)

10.090)

10.120)

10.485)

10.495)

11,43
10.450)

4,19

4,57

3,05

17,40

10.165)

10.180)

2.29
10.090)

10.120)

10.685)

17.65
10.695)

16.51
10.650)

4.19

5,08
10.200)

2.29
10.090)

3,30

19.94

19,20

10.785)

20,19
10.795)

19,05

10.130)

10.750)

5,08

3,30
10.130)

25.02
10.985)

25,27
10.995)

24,13
10.950)

10.756)
24,33

10.656)

10.165)

10.200)

2.29
10.090)

4,19

5,08

2,29

3,30

30,10

30,35

29,21

29,41

10.165)

10.200)

10.090)

10.130)

11.185)

11.195)

11.150)

11.158)

10.958)

03. E3 BASIC

MAX
8,38
10.330)

10.356)
11,58

10.165)

10.165)
4,19

D2. E2
(s•• Not. F)

9,91

22,61
10.890)
27,69
11.090)

10.930)
28,70
11.130)

15,24 10.600)
20,32 10.800)
25,40 11.000)

NOTES: A. All dimensions conform to JEOEC Specification MO-047AA/AF. Dimensions and to)erancing are per ANS) Y14.5M-1982.
F. Determined at seating plane

I-c-I

TEXAS . "

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 76265

5-5

MECHANICAL DATA

J020 ceramic dual-in-line package
This hermetically sealed dual-in-line package consists of a ceramic base, ceramic cap, and a lead frame.
Hermetic sealing is accomplished with glass. The package is intended for insertion in mounting-hole rows
on 7,62 (0.300) centers. Once the leads are compressed and inserted, sufficient tension is provided to
secure the package in the board during sc;>ldering. Solder-coated leads require no additional cleaning or
processing when used in soldered assembly.

J020

..

24,7610.975)

"0 - - - - - 23,62 10.930) -----<·~I

@@@@@@@@@@

g

Ii.

I

Ii.

~:~~:~:~~~:

7,62 (O.30D)

0000®00®®@

6,22 (0.245)

1

1.78 (D.07DI MAX 20 PLACES

1,27 (0.050) NOM

~ _S!t~~~G "'3"',3"-0~ltL' '30," )

~~~..L::...L"-'::::""n..D...D....cWCo...Lo..,

'.:1'

(See Note AI
I

I

L

II

i

I

7.11 (0.280)

P

'

I.

!

,,I--r~"~~': ~~·ni!II1~·~·'ird:l-I~rll
i

1,0210_0401
0.25100101

ttl-----.i
fo-

.

2.34 (0 092)

11410.0451

1.14100451
0.13 100051
4 PLACES

J UU

~

I

12.95 105101------1
MAX

000000000@

ALL LINEAR DIMENSIONS ARE IN MILLIMETERS ANO PARENTHETICALLY IN INCHES

NOTES: A. Leads are within 0,13 (0.005) radius of true position (T.P.) at maximum material condition.
B. This dimension determines a zone within which all body and lead irregularities lie.
C. Index point is provided on cap for terminal identification only.

TEXAS

~

INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

5-11

MECHANICAL DATA

W024 ceramic flat package
This hermetically sealed flat package consists of an electrically non conductive ceramic base and cap and
a lead frame. Hermetic sealing is accomplished with glass. Leads require no additional cleaning or processing
when used in soldered assembly.

W024

~:~~: :~ ~~~:
24 LEADS

@@@@@@)@)@@@)@@

'.27100501

-,H---......
r

°42~L(~i:°E~OI_

r-

K

1 2~2(~~g~:·P.

•[

ISe. No" AI

10.16 (04001

---TIS"N~T
~
f"\

0,483 10.019\

ft-~
24 LEADS

1 )

10,161O.400)

(See Note BI

30,5 {1 200)
2'4.1iii9Soi

BAse ANO - ' "
SEATING PLANE

10,1 (0.395)

-1:=--- --- --8.5~~~~~cr~~~~~cr~~~~
--] ·.fHf ff.
ft ff.l=f.

~::lllllill

....

W'23104851MIN
1 0 - - - - - 1 6 , 2 (0.635) MAX

1111111

rn

-----01

Falls Within JEDEC MO·019AA Dimensions
ALL LINEAR DIMENSIONS ARE IN MILLIMETERS AND PARENTHETICALLY IN INCHES
NOTES: A. Leads are within 0,13 (0.0051 radius of true position (T.P.I at maximum material condition.
B. This dimension determines a zone within which all body and lead irregularities lie.
C. Index point is provided on cap for terminal identification only.

5-12

TEXAS ",

INSTRUMENTS
POST OFFICE BOX 666303 • DALLAS. TEXAS 75266

•

..

TI Worldwide
Sales Offices
ALABAMA: Huntsville: 500 Wynn Drive, Suite 514,

Huntsville, AL 35805, (2051 837-7530.
ARIZONA: Phoenix: 8825 N. 23rd Ave., Phoenix.
AZ 85021, (6021 995-1007;TUCSON: 818 W. Miracle
Mile, Suite 43, Tucson. AZ 86105, 16021 292-2640.

CALIFORNIA: Irvine: 17891 Cartwright Dr., Irvine, CA
92714, t7141660-1200; Rose\rille: 1 Sierra Gate
Plaza, Roseville, CA 95678, (916) 786-9208;
Sen Diego: 4333 View Ridge Ave., Suite 100,

San Diego. CA 92123, (619) 278·9601;
Santa Cla,a: 5353 Betsy Ross Dr., Santa Clara. CA
95054, (408) 980-9000; Torr.nlCO: 690 Knox St.,
Torrance, CA 90502. (213) 217-7010;
Woodland Hills: 21220 Erwin St., Woodland Hills,
CA 91367, (818) 704-7759.

COLORADO: Aurora: 1400 S. Potomac Ave"

Suite 101, Aurora, CO 80012, (303)368-8000.
CONNECTICUT: Wallingford: 9 Barnes Industrial Park
Rd., Barnes Industrial Park, Wallingford,
CT 06492, 1203) 269-0074.
FLORIDA: Altamonte Springs: 370 S. Nonh lake Blvd,
Altamonte Springs, Fl 32701, (305) 260-2116;
Ft. lauderdale: 2950 N.W. 62nd St.,

OREGON: Beaverton: 6700SW 105th St., Suite 110,
Beaverton, OR 97005, (503) 643-6758.
PENNSYLVANIA: Blue Ben: 670 Sentry Pkwy,
Blue Bell, PA 19422, (215) 825-9500.
PUERTO RICO: Hato Rey: Mercantl1 Plaza Bldg.,
Suite 505, Hato Rey, PR 00918, (809) 753-8700.
TENNESSEE: Johnson City: Erwin Hwy,
P.O. Drawer 1255, Johnson City, TN 37605
(615\461-2192.
TEXAS: Austin: 12501 Research Blvd., Austin, TX
78759, (512) 250-7655; Rlcherdson: 1001 E.
Campbell Rd., Richardson, TX 75081,
(214) 680-5082; Houston: 9100 Southwest Frwy.,
Suite 250, Houston, TX 77074, (713) 778-6592;
San Antonio: 1000 Central Parkway South,
San Antonio, TX 78232, 1512) 496- 1779.
UTAH: Murray: 5201 South Green St .. Suite 200,
Murray, UT 84123, (801) 266-8972.
WASHINGTON: Redmond: 5010 148th NE, Bldg B,
Suite 107, Redmond, WA 98052, (206) 881·3080.
WISCONSIN: Brookfiekt: 450 N. Sunny Slope, Suite
150, Brookfield, WI 53005, (414) 782-2899.
CANADA: N.pean: 301 Moodie Drive, Mallorn Center,
Nepean, Ontario, Canada, K2H9C4,
'(6131726-1970. Richmond Hill: 280 Centre St. E.,
Richmond Hill L4C1Bl, Ontano, Canada
(41S) 884-9181; St. laurant: Ville St. laurent
Quebec, 9460 Trans Canada Hwy., St. laurent,
Quebec, Canada H4S1R7, 15141 336-1860.

Ft. lauderdale, Fl 33309, 1305) 973-8502;
Tampa: 4803 George Rd., Suite 390,
Tampa, Fl 33634, (8131 885-7411.
GEORGIA: Norcross: 5515 Spalding Drive, Norcross,
GA 30092, (404) 662-7900
IlUNOIS: Artlngton H.ights: 515 W. Algonquin,
Arlington Heights, Il60005, (312) 640-2925.
INDIANA: Ft. Wayn.: 2020 Inwood Dr.,
Ft. Wayne, IN 46815, (2191424-5174;
Carmel: 550 Congressional Dr., Cmmel, IN 46032,
(317) 573-6400.
IOWA: Cedar Rapids: 373 Collins Rd. NE, Suite 201,
Cedar Rapids, IA 52402, 13191 395-9550.
KANSAS: Overland Park: 7300 College Blvd., Lighton
Plaza, Overland Park, KS 66210, (913) 451-4511.
MARYLAND: Columbi.: 8815 Centre Park Dr.,
Columbia MD 21045, (301,964-2003.
MASSACHUSETTS: Waltham: 950 Winter St.,
Waltham, MA 02154,16171895-9100.
MICHIGAN: Farmington Hils: 33737 W. 12 Mite Rd.,
Farmington Hills, MI48018, (313) 553-1569.
Grand Rapids: 3075 Orchard Vista Or. S.E.,
Grand Rapids, MI 49606, (616) 957-4200.
MINNESOTA: Ed.n Prairie: 11000 W. 78th St.,
Eden Prairie, MN 55344 (612) 828-9300.
MISSOURI: St. Louis: 11816 Borman Drive,
St. Louis, MO 63146, (314) 569-7600.
NEW JERSEY: Iselin: 485E U.S. Route 1 South,
Parkway Towers, Iselin, NJ 08830 (201) 750-1050.
NEW MEXICO: Albuquerque: 2820-0 Broadbent Pkwy
NE, Albuquerque, NM 87107, (5051 345-2555.
NEW YORK: East Syr.cuse: 6365 Collamer Dr.,
East Syracuse, NY 13057, (315) 463-9291;
M.IvlIIe: 1895 Walt Whitman Rd .. P.O. Box 2936,
Melville, NY 11747, (516\454-6600;
Pittsford: 2851 Clover St., Pittsford, NY 14534,
(716) 385-6770;
PoughkeepsNI: 385 South Rd., Poughkeepsie,
NY 12601. (914) 473-2900.

ARGENTINA: Texas Instruments Argentina Vlamonte
1119, 1053 Capital Federal, Buenos Aires, Argentma,
541 f748-3699
AUSTRALIA 1& NEW ZEALAND): Texas Instruments
Australia ltd.: 6-10 Talavera Rd., North Ryde
(Sydney), New South Wales, Australia 2113,
2 + 887-1122; 5th Floor, 418 St. KHda Road,
Melbourne. Victoria, Australia 3004, 3 + 267·4677;
171 Philip Highwav, Elizabeth, South Australia 5112,
8 + 255-2066.
AUSTRIA: Texas Instruments Ges.m.b.H.:
Industriestrabe 8/16, A-2345 Brunn/Geblfge,
2236-846210.
BELGIUM: Texas Instruments N.V. Belgium S.A.: 11,
Avenue Jules Bondetlaan 1 1,1140 Brussels, Belgium,
(02) 242-3080.
BRAZIL: Texas Instruments Electronicos do Brasil
ltda.: Rua Paes leme, 524-7 Andar Pinheiros, 05424
Sao Paulo, Brazil, 0815-6166.
DENMARK: Texas Instruments AIS, Mairelundvej 46E,
2730 Herlev, Denmark, 2 - 91 7400.
FINLAND: Texas Instruments Finland OY:
Ahertajantie 3, P.O. Box 81, ESPOO, Finland, (90)
0-461-422.
FRANCE: Texas Instruments France: Paris Office, BP
67 8-io Avenue Morane·Saulnier, 78141 VelizyVillacoublay cedex (1) 30 70 1003.
GERMANY (Fed. Republic of Germany): Texas
Instruments Deutschland GmbH: Haggenystrasse "
B050 Freising, 8161 + 80-4591: Kurfuerstendamm
195/196,1000 Beriin 15, 30+882-7365; III. Hagen
43/Kibbelstrasse, .19, 4300 Essen, 201-24250;
Kirchhorsterstrasse 2, 3000 Hannover 51,
511 + 648021; Maybachstrabe 1" 7302 Ostfildern
2-Netingen, 711 +34030.

IRELAND: Texas Instruments /Ireland 1 limited:
71B Harcourt Street, Stitlorgan, County Dublin, Eire,
1 781677.
ITALY: Texas Instruments Italla S.p.A. Divisione
Semiconduttori: Viale Europa, 40, 20093 Cologne
Monzese lMilano\, 102\ 253001; Via Castetlo della
Magtiana, 38, 00148 Aoma, (06) 5222651;
Via Amendola, 17,40100 Bologna, (051) 554004.
JAPAN: Tokyo Marketing/Sales (Headquarters):
Texas Instruments Japan ltd., MS Shibaura Bldg., 9F,
4-13-23 Shibaura, Minato-ku, Tokyo 108, Japan,
03-769-8700. Texas Instruments Japan Lid.: NisshoIwal Bldg. 5F, 30 Imabashi 3-chome, Higashi-ku,
Osaka 541. Japan, 06-294·1881; Daini Toyota West
Bldg. 7F, 10-27 Meieki 4-chome, Nakamura-ku,
Nagoya 450, 052-583-8691; Daiichi Seimai Bldg. SF,
3-10 Oyama-cha, KanazaWB 920, Ishikawa-ken,
0762-23·5471; Daiichl Olympic Tachikawa Bldg. 6F,
1-25-12 Akebono-cho, Tachikawa 190, Tokyo,
0425-27-6426; Matsumoto Showa Bldg. 6F, 2·11
Fukashl l-chome, Matsumoto 390, Nagano-ken,
0263-33·1060; Yokohama Nishiguchi KN 8ldg. 6F,
2-8-4 Kita-Saiwai-cho, NIShi-ku, Yokohama 220,
045-322-6741; Nihon Seimei Kyoto Yasaka Bldg. 5F,
843-2 Higashi Shiokohjidori, Nishinotoh-in Higashi-lru,
ShlOkouji, ShimoQyo-ku, Kyoto 600, 075-341·7713;
2597-1, Aza Harudal, Oaza Yasaka, Kltsuki 873, Oitaken, 09786-3-3211; Miho Plant, 2350 Kihara Mihomura, Inashiki-gun 300-04, Ibaragi-ken,
0298·85-2541.
KOREA: Texas Instruments Korea Ltd., 2Bth Ft., Trade
Tower, 1159, Samsung-Dong, Kangnam-ku, Seoul,
Korea 2+551-2810.
MEXICO: Texas Instruments de MeXICO S.A.: Alfonso
Reyes -115, Col. Hlpodromo Condesa, MeXICO, D.F.,
Mexico 06120,525/525·3860.
MIDDLE EAST: Texas Instruments: No. 13, 1 st Floor
Mannai Bldg .. Diplomatic Area, P.O. Box 26335,
Manama Bahrain, Arabian Gulf, 973 + 274681.
NETHERLANDS: Texas Instruments Holland B.V.,
19 Hogehilweg, 1100 AZ Amsterdam-Zuidoost,
Holland 20 + 5602911.
NORWAY: Texas Instruments Norway A/S: PB106,
Refstad 0585, Oslo 5, Norway, 12\ 155090
PEOPLES REPUBLIC OF CHINA: Texas Ins\!uments
China Inc., 8eijing Representative Office, 7-05 Citic
Bldg., 19 Jianguomenwai Dajja, Beijmg, China, (B61)
5002255, Ext. 3750.
PHILIPPINES: Texas Instruments ASia ltd.: 14th Floor,
B(I- lepanto Bldg., Paseo de Roxas, Makati, Metro
Manila, Philippines, 817-60-31.
PORTUGAL: Texas Instruments EqUipamento
Electrolllco (Ponugall. lda.: Rua Eng. Frederico Ulrich,
2650 Moreira Da Maia, 4470 Maia, Ponugal,
2-948-1003.
SINGAPORE I + INDIA, INDONESIA, MALAYSIA,
THAILAND): Texas Instruments Singapore (PTE) ltd.,
Asia Pacific DiviSion, 101 Thompson Rd. 123-01,
United Square, Singapore 1130, 350-B100.
SPAIN: Texas Instruments Espana, S.A.: CIJose
Lazaro Galdiano No.6, Madrid 28036,1/458.14.58.
SWEDEN: Texas Instruments International Trade
Corporation (Sverigefilialen): S- 1 64-93, Stockholm,
Sweden, 8 - 752-5800.
SWITZERLAND: Texas Instruments, Inc., Reidstrasse
6, CH-8953 Dietikon (Zuerich) Switzerland,
'·7402220.
TAIWAN: Texas Instruments Supply Co., 9th Floor
Bank Tower, 205 Tun Hwa N. Rd., Taipei, Taiwan,
RepubliC of China, 2 + 713-9311.

NORTH CAROLINA: Charlotte: 8 Woodlawn Green,
Woodlawn Rd., Charlotte, NC 28210, (704)
527-0933; Raleigh: 2809 Highwoods Blvd., Suite 100,
Raleigh, NC 27625, (919) 876-2725.
OHIO: Beachwood: 23775 Commerce Park Ad.,
Beachwood, OH 44122, (216\ 464-6100;
Be.....rcreek: 4200 Colonel Glenn Hwy.,
Beavercreek, OH 45431, (513) 427-6200.

HONG KONG: Texas Instruments Hong Kong ltd., 8th
Floor, World Shipping Ctr., 7 Canton Rd., Kowloon,
Hong Kong, (852\ 3-7351223.

UNITED KINGDOM: Texas Instruments limited:
Manton lane, Bedford, MK41 7PA, England, 0234
270111.

TEXAS
INSTRUMENTS

A-189

TI Sales Offices TI Distributors

MARYLAND: Arrow/Kierulff (301) 995-6002;
Hall-Mark (301) 968-9800; Marshall (301) 235-9464;
Schweber (301) 840-5900; Zeus (301) 997-1118.

ALABAMA: Huntsville (205) 837-7530.

MASSACHUSETTS Arrow/Klerultf (508) 658-0900;
Half-Mark (506) 667-0902; Marshall (508) 658-0810;
Schweber (617) 275-5100; Time (617) 532-6200;
Wyle (617) 273-7300; Zeus (617) 863-8800.

ARIZONA: Phoenix (602) 995·1007;
Tucson (602) 292·2640.
CALIFORNIA: Irvine (714) 660-1200;
Roseville (916) 786·9208;

San Diego (619) 278·9601;
Santa Clara (408) 980·9000;
Torrance (213) 217.7010;

Woodland Hills (818) 704·7759.
COLORADO: Aurora (303) 368·8000.

CONNECTICUT: Wallingford (203) 269-0074.
FLORIDA:

Altamonte Springs (305) 260-2116;

Ft. Lauderdale (305) 973·8502;
Tampa (813) 885-7411.
GEORGIA: Norcross (404) 662.7900.
ILLINOIS: Arlington Heights (312) 640·2925.
INDIANA: Carmel (317) 573·6400;
Ft. Wayne (219) 424·5174.
IOWA: Cedar Rapids (319) 395-9550.

TI AUTHORIZED DISTRIBUTORS
Arrow/Klerulff ElectroniCS Group
Arrow (Canada)
Future Electronics (Canada)
GRS Electronics Co., Inc.
Hall·Mark Electronics
Marshall Industries
Newark Electronics
Schweber Electronics
Time Electronics
Wyle laboratories
Zeus Components

-OBSOLETE PRODUCT ONLYRochester ElectroniCS, Inc.
Newburyport, Massachusetts
(508) 462·9332

MARYLAND: Columbia (301) 964·2003.

MICHIGAN: Farmington Hills (313) 553-1569;
Grand Rapids (616) 957-4200.
MINNESOTA: Eden Prairie (612) 828-9300.
MISSOURI: St. Louis (314) 569-7600.
NEW JERSEY: Iselin (201) 750-1050.
NEW MEXICO: Albuquerque (505) 345-2555.
NEW YORK: East Syracuse (315) 463-9291;
Melville (516) 454-6600;
Pittsford (716) 385-6770;
Poughkeepsie (914) 473-2900.
NORTH CAROLINA: Charlotte (704) 527-0933;
Raleigh (919) 876-2725.
OHIO: Beachwood (216) 464-6100;
Beaver Creek (513) 427-6200.
OREGON: Beaverton (503) 643-6758.
PENNSYLVANIA: Blue Bell (215) 825-9500.
PUERTO RICO: Hato Rey (609) 753-8700.
TENNESSEE: Johnson City (615) 461-2192.
TEXAS: Austin (512) 250-7655;
Houston (713) 778-6592;
Richardson (214) 680-5082;
San Antonio (512) 496-1779.
UTAH: Murray (801) 266-6972.
WASHINGTON: Redmond (206) 881-3080.
WISCONSIN: Brookfield (414) 782-2899.
CANADA: Nepean, Ontario (613) 726-1970;
Richmond Hili, Ontario (416) 884-9181;
5t. Laurent, Quebec (514) 336-1860.

ALABAMA: Arrow/KierutH (205) 837-6955;
Hall-Mark (205) 837-8700; MarShall (205) 881-9235;
Schweber (205) 895-0480.
ARIZONA: ArrowiKlerutff (602) 437-0750;
Halt·Mark (602) 437·1200; Marshall (602) 496-0290;
Schweber (602) 431-0030; Wyte (602) 866-2888.
CALIFORNIA: Los Angeles/Orange County:
Arrow/Kierulff (818) 701-7500, (714) 838-5422;
Half-Mark (818) 773-4500, (714) 669-4100;
Marshall (818) 407-0101, (818) 459·5500,
(714) 458-5395; Schweber (818) 880-9686;
(714) 863-0200, (213) 320-8090; Wyte (818) 880-9000.

ra':;a~;~~~~3~;!~_u,;at~1 U,~~~~~~~a(f;18) a89-3838;
Marshall (916) 635-9700; Schweber (916) 364-0222;
Wyle (916) 638·5282;
Ssn Diego: Arrow/Kierulff (619) 565-4800;
Half-Mark (619) 268-1201; Marshall (619) 578-9600;
Schweber (619) 450-0454; Wyle (619) 565-9171;
San Francisco Bay Area: Arrow/Kierulff (408) 745-6600,
Hall-Mark (408) 432-0900; Marshall (408) 942-4600;
Schweber (408) 432-7171; Wyle (408) 727-2500;
Zeus (408) 998·5121.
COLORADO: Arrow/KierulH (303) 790-4444;
Hail·Mark (303) 790-1662; Marshall (303) 451-8383;
Schweber (303) 799-0258; Wyle (303) 457-9953.
CONNETICUT: Arrow/Kierulff (203) 265-7741;
Hall-Mark (203) 271-2844; Marshall (203) 265-3822;
Schweber (203) 264-4700.
FLORIDA: Ft. Lauderdale:
Arrow/KierulH (305) 429-8200; Hall-Mark (305) 971-9280;
Marshall (305) 977-4880; Schweber (305) 977-7511;
Orlando; Arrow/Kierulff (407) 323-0252;
Hall·Mark (407) 830-5855; Marshall (407) 767-8585;
Schweber (407) 331-7555; Zeus (407) 365-3000;
Tampa: Hall·Mark (813) 530-4543;
Marshall (813) 576-1399; Schwebp.r (813) 541-5100.
GEORGIA: Arrow/Kierulff (404) 449-8252;
Half-Mark (404) 447-8000; Marshall (404) 923·5750;
Schweber (404) 449-9170.

TI Regional
Technology Centers
CALIFORNIA: Irvine (714) 660-8105;
Santa Clara (408) 748-2220;
GEORGIA: Norcross (404) 662-7945.
ILLINOIS Arlington Heights (312) 640-2909.
MASSACHUSETTS: Waltham (617) 895-9196.

~~~_~~~~~~:2t;~~~d~6ti~u~~~~~~rl ~~~2~ ~~~-2211;

Schweber (612) 941-5280.

MISSOURI: St. Louis: Arrow/Kierulff (314) 567-6888;
Hall-Mark (314) 291-5350; Marshall (314) 291-4650;
Schweber (314) 739-0526.
NEW HAMPSHIRE: Arrow/Kierulff (603) 668-6968;
Schweber (603) 625-2250.
NEW JERSEY: Arrow/Kierultf (201) 538-0900,
(609) 596-8000; GAS Electronics (609) 964~8560;
Hall·Mark (201) 575-4415, (201) 882·9773,
(609) 235-1900; Marshall (201) 882-0320,
(609) 234-911)0; Schweber (201) 227-7880.
NEW MEXICO: Arrow/Kierultf (505) 243-4566.

:~:WT~~~I:ff (~~~ kS~~~~~; Hall-Mark (516) 737-0600;

KANSAS: Overland Park (913) 451·4511.

MASSACHUSETTS: Waltham (617) 895-9100.

MICHIGAN: Detroit: Arrow/Kierulff (313) 462-2290;
Hall-Mark (313) 462-1205; Marshall (313) 525-5850;
Newark (313) 967-0600; Schweber (313) 525-8100;
Grand Rapids: Arrow/Klerulff (616) 243-0912.

ILLINOIS: Arrow/Kieruttf (312) 250·0500;
Haft-Mark (312) 860-3800; Marshall (312) 490-0155;
Newark (312) 784-5100; Schweber (312) 364·3750.
INDIANA: Indianapolis: Arrow/Kierutff (317) 243·9353;
Hall-Mark (317) 872-8875; Marshall (317) 297-0483;
Schweber (317) 843-1050.
IOWA: Arrow/Kierultf (319) 395-7230;
Schweber (319) 373-1417.
KANSAS: Kansas City: Arrow/KierurH(913) 541-9542;
Hall-Mark (913) 888-4747; Marshall (913) 492-3121;
Schweber (913) 492-2922.

Marshall (516) 273-2424; Schweber (516) 334-7474;
Zeus (914) 937-7400;
Rochester: Arrow/Kierulff (716) 427-0300;
Hall-Mark (716) 425-3300; Marshall (716) 235-7620;
Schweber (716) 424-2222;
Syracuse: Marshall (607) 798-1611.

NORTH CAROLINA: Arrow/Kierulff (919) 876-3132,
(919) 725-8711; Hall-Mark (919) 672-0712;
Marshall (919) 878-9882; Schweber (919) 876·0000.
OHIO: Cleveland: Arrow/Klerulff (216) 248-3990;
Hall-Mark (216) 349-4632; Marshall (216) 248-1788;
Schweber (216) 464.2970;
Columbus: Hall-Mark (614) 888-3313;
Dayton: Arrow/Kierulff (513) 435-5563;
Marshall (513) 898-4480; Schweber (513) 439·1800.
OKLAHOMA: Arrow/Kierultf (916) 252-7537;
Schweber (918) 622-8003.
OREGON: Arrow/Kierulff (503) 645-6456;
Marshall (503) 644-5050; Wyle (503) 640-6000.

r2~~~:2Y8~~:0~I;AGA~r~I:~~rl~~~~~ ~;~;~ :~~:~g~~;
Marshall (412) 963-0441; Schweber (215) 441-0600,
(412) 963-6804.
TEXAS: Austin: Arrow/Kierulff (512) 835-4180;
Hall-Mark (512) 258-8848; Marshall (512) 837-1991;
Schweber (512) 339-0088; Wyle (512) 834-9957;
Dallas: Arrow/KJerulff (214) 380-6464;
Hall-Mark (214) 553-4300; Marshall (214) 233-5200;
Schweber (214) 661-5010; Wyle (214) 235·9953;
Zeus (214) 783-7010;
EI Paso: Marshall (915) 593-0706;
Houston: Arrow/Kierulff (713) 530-4700;
Halt-Mark (713) 781-6100; Marshall (713) 895-9200;
Schweber (713) 784-3600; Wyle (713) 879-9953.
UTAH: Arrow/Kierulff (801) 973-6913;
Half-Mark (801) 972-1008; Marshall (801) 485-1551;
Wyle (801) 974-9953.
WASHINGTON: Arrow/Klerulff (206) 575-4420;
Marshall (206) 486-5747; Wyle (206) 881-1150.
WISCONSIN: Arrow/Kierultf (414) 792-0150;
Hall-Mark (414) 797-7844; Marshall (414) 797-8400;
Schweber (414) 784-9020. '
CANADA: Calgary: Future (403) 235-5325;
Edmonton: Future (403) 438-2858;
Montreal: Arrow Canada (514) 735-5511;
Future (514) 694·7710;
Ottawa: Arrow Canada (613) 226-6903;
Future (613) 820·8313;
Quebec City: Arrow Canada (418) 871·7500;
Toronlo: Arrow Canada (416) 672-7769;
Future (416) 638-4771; Marshall (416) 674-2161;
Vancouver: Arrow Canada (604) 291·2986;
Future (604) 294-1166.

TEXAS: Richardson (214) 680-5066.
CANADA: Nepean, Ontario (613) 726-1970.

Customer
Response Center
TEXAS
INSTRUMENTS

TOLL FREE: (800) 232-3200
OUTSIDE USA: (214) 995-6611
(8:00 a.m. - 5:00 p.m. CST)

A-189



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:26 18:24:58-08:00
Modify Date                     : 2017:07:26 19:54:20-07:00
Metadata Date                   : 2017:07:26 19:54:20-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:70e00d11-8964-9a48-95be-4f4292a74320
Instance ID                     : uuid:c7f08d82-fc91-b14a-a24f-d84d90e45ceb
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 737
EXIF Metadata provided by
EXIF.tools

Navigation menu