1991_DRAM_Data_Book 1991 DRAM Data Book

User Manual: 1991_DRAM_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 1274

Download1991_DRAM_Data_Book 1991 DRAM Data Book
Open PDF In BrowserView PDF
SUMER

13555 Bishop's Court
Brookfield, WI 53005
(414) 784-6641

DRAM
DATA BOOK

#M11T011

$HITACHI®

When using this document, keep the following in mind:
1. This document may, wholly or partially, be subject to change without
notice.
2. All rights are reserved: No one is permitted to reproduce or duplicate, in
any form, the whole or part of this document without Hitachi's permission.
3. Hitachi will not be held responsible for any damage to the user that may
result from accidents or any other reasons during operation of the user's
unit according to this document.
4. Circuitry and other examples described herein are meant merely to indicate
the characteristics and performance of Hitachi's semiconductor products.
Hitachi assumes no responsibility for any intellectual property claims or
other problems that may result from applications based on the examples
described herein.
5. No license is granted by implication or otherwise under any patents or
other rights of any third party or Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for
use in MEDICAL APPLICATIONS without the written consent of the
appropriate officer of Hitachi's sales company. Such use includes, but is not
limited to, use in life support systems. Buyers of Hitachi's products are
requested to notify the relevant Hitachi sales offices when planning to use
the products in MEDICAL APPLICATIONS.

March 1991

@Copyright 1991, Hitachi America, Ltd.

Printed in U.S.A.

- - - -

--

.HITACHI®
DRAM DATA BOOK INDEX
Section

Introduction

MOS Dynamic RAM

High Speed BiCMOS Dynamic RAM

MOS Dynamic RAM Modules

Video RAM

HITACHI SALES OFFICES

SECTION 5, PAGE 1257

•

HITACHI

Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

DRAM Data Book
TABLE OF CONTENTS
Section 1
Introduction

Page

PACKAGE INFORMATION............................................................... ... .................

3

RELIABILITY OF HITACHI I.C. MEMORIES...................................................................

9

QUALITY ASSURANCE OF I.C. MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

OUTLINE OF TESTING METHOD............................................................................

29

APPLICATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

30

Section 2
MOS Dynamic RAM
• HM514256A1AL Series
HM514256AP-6/7/8/10/12
HM514256AJP-6/7/8/10/12
HM514256AZP-6/7/8/10/12
HM514256ALP-6/718/10/12
HM514256ALJP-6/7/8/10/12
HM514256ALZP-6/7/8/10/12

256k x 4-bit CMOS DRAM. Fast Page Mode ........................ .

45

• HM514258A Series
HM514258AP-6/7/8/10/12
HM514258AJP-6/7/8/10/12
HM514258AZP-6/718/10/12

256k x 4-bit CMOS Static Column DRAM ........................... .

59

• HM514266 Series
HM514266AP-6/7/8/10/12
HM514266AJP-6/7/8/10/12
HM514266AZP-6/7/8/10/12

256k

• HM511 OOOAl AL Series
HM511 000AP-6/718/10/12
HM511 000AJP-6/718/10/12
HM511000AZP-6/718/10/12
HM511000ALP-6/7/8/10/12
HM511 000ALJP-6/7 18/10/12
HM511 000ALZP-6/718/10/12

1 Meg

x 4-bit DRAM. Write per Bit

.................................. .

72

x 1-bit CMOS DRAM ....................................... .

86

• HM511001A Series
HM511001AP-6/718/10/12
HM511001AJP-6/7/8/10/12
HM511001AZP-6/7/8/10/12

1 Meg x 1-bit CMOS DRAM with Nibble Mode .....•..................

98

• HM511 002A Series
HM511002AP-6/7/8110/12
HM511 002AJP-6/7/8/1 0112
HM511002AZP-6/7/8/10/12

1 Meg x 1-bit CMOS DRAM with Static Column Mode ................ .

110

• HM511664 Series
HM511664JP-8/10
HM511664ZP-8/10

64k x 16-bit DRAM. Write per Byte ..................•.....•.........

125

• HM511664/L Series
HM511664JP-8/10
HM511664LJ-8/10
HM511664ZP-8/10
HM511664LZ-8/10

64k x 16-bit Low Power ........................................... .

155

• HM511665 Series
HM511665JP-8/10
HM511665ZP-8/10

64k x 16-bit DRAM. Write per Bit ..................•................

186

• HM511665/L Series
HM511665JP-8/10
HM511665LJ-8/10
HM511665ZP-8/10
HM511665LZ-8/10

64k x 16-bit Low Power .......................•.•..................

204

.HITACHI
Hitachi America. Ltd.• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane. CA 94005-1619 • (415) 589-8300

TABLE OF CONTENTS --------------------------------------------------___
• HM511666 Series
HM511666JP-8/10
HM511666ZP-8/10

64k x 16-bit ........•........... . .. .. . . . . . . . ... . .. .. . . . . . . . . . . . . . .

223

• HM514100A Series
4 Meg x I-bit DRAM, Low Power & Super Low Power Version.........
HM514100AJ/ALJ/ASLJ-S/7/8/10
HM5141 OOASIALSI ASLS-6/7 18/10
HM5141 00AZ/ALZ/ASLZ-6/7/8/1 0
HM5141 OOATI ALTI ASLT-6/718/10
HM5141 OOARIALRI ASLR-6/718/10
HM5141 OOATT I ALTTl ASLTT-6/7 18/10
HM5141 OOARRIALRRI ASLRR-6/7 18/10

247

• HM514400A Series
1 Meg x 4-bit DRAM, Low Power & Super Low Power Version.........
HM514400AJI ALJI ASLJ-6/718/10
HM514400ASIALSI ASLS-6/718/10
HM514400AZI ALZI ASLZ-6/718/10
HM514400AT/ALT/ASLT-6/718/10
HM514400ARI ALRI ASLR-6/718/10
HM514400ATTI ALTTl ASLTT-6/7 18/10
HM514400ARRI ALRRI ASLRR-6/718/10

268

• HM514100 Series
HM5141 00JP-8/1 0/12
HM5141 00ZP-8/1 0/12

4 Meg x I-bit DRAM, Fast Page Mode..............................

289

• HM514100JP/ZP-7
HM514100JP-7
HM514100ZP-7

4 Meg x I-bit DRAM, Fast Page Mode..............................

302

• HM514100L Series
HM5141 00LJP-8/1 0/12
HM514100LZP-8/10/12

4 Meg x I-bit DRAM, Low Power VersionlFast Page Mode............

315

• HM514101 Series
HM514101JP-8/10/12
HM5141 01 ZP-8/1 0/12

4 Meg x I-bit DRAM with Nibble Mode..............................

329

• HM514101A Series
HM514101AJ-7/8/10
HM514101AS-718/10
HM514101AZ-718/10

4 Meg x I-bit DRAM with Nibble Mode..............................

343

• HM514400 Series
HM514400JP-8/10/12
HM514400ZP-8/10/12

1 Meg x 4-bit DRAM, Fast Page Mode..............................

361

• HM514400L Series
HM514400LJP-8/10/12
HM514400LZP-8/10/12

1 Meg x 4-bit DRAM, Low Power VersionlFast Page Mode............

374

• HM514410 Series
HM514410JP-8/10/12
HM51441 OZP-8/1 0/12

1 Meg x 4-bit DRAM, Write per Bit..................................

390

• HM514410A Series
HM514410AJ-8/718/10
HM51441 OAS-6/7 18/10
HM51441 OAZ-6/718/10
HM514410AT-6/7 18/10
HM514410AR-6/7/8/10
HM514410ATT-6/718/10
HM51441 OARR-6/7 18/10

1 Meg x 4-bit DRAM, Write per Bit..................................

406

• HM514800 Series
HM514800JP-7/8/10
HM514800ZP-7/8/10

512k x 8-bit DRAM................................................

427

• HM514800L Series
HM514800LJP-718/10
HM514800LZP-7/8/10

512k x 8-bit DRAM, Low Power Version.............................

444

~HITACHI
ii

Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819. (415) 589-8300

TABLE OF CONTENTS
• HM514900 Series
HM514900JP-7/8/10
HM514900ZP-7/8/10

512k x 9-bit DRAM ............................................... .

461

• HM514260 Series
HM514260JP-7/8/10
HM514260ZP-7/8/10

256k x 16-bit DRAM (2 CAS) ...................................... .

478

• HM514170 Series
HM514170JP-7/8/10
HM514170ZP-7/8/10

256k x 16-bit DRAM (2 WE) ....................................... .

495

• HM514280 Series
HM514280JP-7/8/10
HM514280ZP-7/8/10

256k x 18-bit DRAM (2 CAS) ...................................... .

512

• HM514190 Series
HM514190JP-7/8/10
HM514190ZP-7/8/10

256k x 18-bit DRAM (2 WE) ....................................... .

529

• HM5116100 Series
HM5116100J-61718/10
HM5116100Z-61718/10

16 Meg x 1-bit DRAM, Fast Page Mode ............................ .

546

• HM5116100L Series
HM5116100LJ-61718/10
HM5116100LZ-6/7/8/10

16 Meg x 1-bit DRAM, Low Power Version/Fast Page Mode .......... .

566

• HM5116400 Series
HM5116400J-61718/10
HM5116400Z-6/7/8/10

4 Meg x 4-bit DRAM, Fast Page Mode ............................. .

587

• HM5116400L Series
HM5116400LJ-6/7/8/10
HM5116400LZ-61718/10

4 Meg x 4-bit DRAM, Low Power Version/Fast Page Mode ........... .

609

• HM571000 Senes
HM571000JP-35R/40/45

1 Meg x 1-bit DRAM .............................................. .

633

• HM574256 Series
HM574256JP-35R/40/45

256k x 4-bit DRAM ............................................... .

651

• HM574100 Series
HM574100JP-35/40/45

4 Meg x 1-bit DRAM .............................................. .

667

• HM574400 Series
HM574400JP-35/40/45

1 Meg x 4-bit DRAM .............................................. .

683

• HB56A18 Series
HB56A18A-6HI7H/8A110A/12A
HB56A18AT-6HI7H/8A110Al12A
HB56A18B-6H/7H/8A110A/12A

1 Meg x 8-bit DRAM .............................................. .

701

• HB56C18 Series
HB56C18A-8A110A/12A
HB56C18AT-8A/10Al12A
HB56C18B-8A110Al12A

1 Meg x 8-bit DRAM .............................................. .

706

• HB56G18 Series
HB56G18B-7A18A110A
HB56G18GB-7A18A110A

1 Meg x 8-bit DRAM .............................................. .

711

• HB56A48 Series
HB56A48B/GB-8/10
HB56A48BR/GBR-6AI7 A18A11 OA
HB56A48A-8/10
HB56A48AR-6AI7A18A110A
HB56A48AT-8/10
HB56A48ATR-6A17 A18A/1 OA

4 Meg x 8-bit DRAM .............................................. .

722

Section 3
High Speed BiCMOS Dynamic RAM

Section 4
MOS Dynamic RAM Modules

~HITACHI
Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

iii

TABLE OF CONTENTS ------------------------------------------------------• HB56A19 Series
HB56A 19A-6H/7H/SAll OAl12A
HB56A19AT-6H/7H/8A110A/12A
HB56A19B-6H/7H/8A110Al12A

1 Meg x 9-bit DRAM...............................................

73S

• HB56A19L Series
HB56A 19A-6L/7L18L11 OLl12L
HB56A19AT-6L17L18L110Ll12L
HB56A 19B-6L17L/SLll OL/12L
HB56A 19GB-6L17L18L11 OL/12L

1 Meg x 9-bit DRAM...............................................

744

• HB56C19 Series
HB56C19A-8A110Al12A
HB56C19AT-8A110Al12A
HB56C19B-8A110Al12A

1 Meg x 9-bit DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

755

• HB56G19 Series
HB56G19A-6A17A1SA/10A
HB56G19B/GB-6A17A/8A110A

1 Meg x 9-bit DRAM...............................................

760

• HB56A49 Series
HB56A49B/GB-8/10
HB56A49BR/GBR-6A17Al8A11 OA
HB56A49A-S/l0
HB56A49AR-6A17A18A110A
HB56A49AT-8/10
HB56A49ATR-6A17Al8A11 OA

4 Meg x 9-bit DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

772

• HB56D25632 Series
HB56D25632B-6A17 Al8A11 OAl12A

256k x 32-bit DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

788

• HB56D51232 Series
HB56D51232SB-6A17A18A110Al12A

512k x 32-bit DRAM...............................................

799

• HB56D132 Series
HB56D132BR-6A17A18A110A
HB56D132BR-8/10
HB56D132SBR-6A17Al8A11 OA
HB56D132SBR-8/10

1 Meg x 32-bit DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

810

• HB56D232B Series
HB56D232B-S/l0/12

2 Meg x 32-bit DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

821

• HB56D232BS/SBS Series
HB56D232BS-6A17AlSAll OA
HB56D232SBS-6A17Al8A11 OA

2 Meg x 32-bit DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

830

• HB56D25636 Series
HB56D25636B-85/10/12

256k x 36-bit DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

842

• HB56D51236 Series
HB56D51236B-85/10/12

512k x 36-bit DRAM...............................................

854

• HB56D136B Series
HB56D136B-8/10/12

1 Meg x 36-bit DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

866

• HB56D136B/S Series
1 Meg x 36-bit DRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HB56D136B/BR/BS-6A17Al8A11 OA
HB56D136B/BR-8/10
HB56D136SB/SBR/SBS-6A17 Al8A11 OA
HB56D136SB/SBR-S/10

875

• HB56D236B Series
HB56D236B-8/10/12

2 Meg x 36-bit DRAM ............................................. .

888

• HB56D236B/SB Series
HB56D236B/BS-6A17 A/8A11 OA
HB56D236B-S/l0
HB56D236SB/SBS-6A17Al8A11 OA
HB56D236SB-8/10

2 Meg x 36-bit DRAM ............................................. .

S97

• HB56A 140 Series
HB56A 140B-6A17A/8A11 OA
HB56A 140SB-6A17Al8A11 OA

1 Meg x 40-bit DRAM ............................................. .

909

~HITACHI
iv

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

TABLE OF CONTENTS
2 Meg x 40·bit DRAM ............................................ .

927

• HM63021 Series
HM63021 P·28/35/45

2k x 8·bit Line Memory ........................................... .

947

• HM53051 Series
HM53051p·45/60

256k x 4·bit Frame Memory ....................................... .

961

• HM53461 Series
HM53461 P·10/12/15
HM53461 ZP·1 0/12/15

64k x 4·bit Multiport CMOS Video RAM ............................ .

971

• HM53462 Series
HM53462p·10/12/15
HM53462Zp·10/12/15

64k x 4·bit Multiport CMOS Video RAM with Logic Functions ......... .

984

• HM534251 Series
HM534251JP·10/11/12/15
HM534251Zp·1 0/11 112/15

256k x 4·bit Multiport CMOS Video RAM ........................... .

1004

• HM534251A Series
HM534251 AJ·81 10
HM534251AZ·8/10

256k x 4·bit Multiport CMOS Video RAM ........................... .

1026

• HM534252 Series
HM534252JP·10/11 112/15
HM534252ZP·1 01 11/12/15

256k x 4·bit Multiport CMOS Video RAM with Logic Functions ........ .

1046

• HM534253 Series
HM534253JP·10/12/15
HM534253ZP·1 01 121 15

256k x 4·bit Multiport CMOS Video RAM with Extended Functions .....

1070

• HM534253A Series
HM534253AJ·8/10
HM534253AZ·8/10

256k x 4·bit Multiport CMOS Video RAM with Extended Functions .....

1094

• HM538121 Series
HM538121 JP·1 0/11 112/15

128k x 8·bit Multiport CMOS Video RAM ............................ .

1130

• HM538121 A Series
HM538121AJ·8/10
HM538121AZ·8/10

128k x 8·bit Multi;>ort CMOS Video RAM ............................ .

1152

• HM538122 Series
HM538122JP·10/11/12/15

128k x 8·bit Multiport CMOS Video RAM with Logic Functions ......... .

1170

• HM538123 Series
HM538123JP·10/12/15

128k x 8·bit Multiport CMOS Video RAM with Extended Functions ..... .

1197

• HM538123A Series
HM538123AJ·8/10
HM538123AZ·8/10

128k x 8·bit Multiport CMOS Video RAM with Extended Functions ..... .

1221

HITACHI SALES OFFICE LISTING...........................................................................

1257

• HB56A240 Series
HB56A240B·6A17 Al8A11 OA
HB56A240SB·6A17 Al8A11 OA

Section 5
Video RAM

~HITACHI
Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819· (415) 589·8300

v

•
vi

HITACHI

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

Section 1
Introduction
• Package Information
• Reliability of
Hitachi I.C. Memories
• Quality Assurance of
I.C. Memory
• Outline of Testing Method
• Application

.HITACHI
2

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

• PACKAGE INFORMATION
• Dual·in·line Plastic

Unit: mm (inch) Scale 3/2

• Dp·188

• Dp·168
19.2 0.756
20.32 max(0.800max)
16

22.0 (0.866)
22.86mox(0.900max)
9

o

C
.
-N-~~ ~
c

~

/I
/I
2.54tO.25
(0.100t0.Q10)

c

• Dp·18C

c
'E

C

62(0'3001

Ft

~

~ ~

-;-~~

0.48tO.l0
0.019tO.004)

c -"

c:i

N~

C)

II'

o.os~ne

0°-15

"?

~

0°-15

)(

(0.010~g:gg~)

\
O.25~g:6~ I

I I. _

~

'E

2.S4tO.25
(0.100tO.Ol0)

(0.010~g:gg~)

•

2.54tO.25
(0.1 ootO.D1 0)

10

(0.051)

29.88 (1.176)
JO.48mox(1.200mox)

I'

1

c:::::::: ::~ll

I • ••
~
11

(0.045)

0.48tO.l0
0.019tO.004)

1

0.48tO.l 0
0.019tO.004)

,

~:::::::: :I~!

1

~~~
,P.r\
'E~ /1
~-~ ~ n 0.2s:,:g:6~,II:
~ W (0.010:':8:88~)

"

• Dp·20NC

24.8 (0.976)
25.40 max(1.000mox)

C

62<0.300

x

E ."
r------------------,-~-E
E

, .. ,

• Dp·20NA

(0.045)

10

•

c

~-~ ~J.11J
2.54tO.2S
(0.100tO.Ol0)

~~
(0.035)
(0.051)

1

\(=----'--+--t~

I . _.

#1

24.5 (0.965)
25.4 mox(1.000mox)

9

.11,1.3
(0.051)

11

1

• Dp·20N

22.26 (0.876)
22.86max(0.900max)

~

~

ci
~

(0.010~g:gg~)

0°-15

~

r
~-! I J.1#0.25~0.11

•
\
0 • 11 II E
O. 25 +
-O.05~

0.48tO.l0
0.019tO.004)

62 (0'3001

)( x

I I. _
~
(0.051)

2.54tO.25
(0.100tO.Ol0)

,

12

O.4S±O.10
0.019±0.004)

~HITACHI
Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

3

PACKAGE INFORMATION
• Dual·in·line Plastic

Unit: mm (inch) Scale 3/2

·Dp·22N

·Dp·22NB

27.08 (1.066)
27.90max(I.098mox)

27.08 (1.066)
27. 90max(I.098 max)

22

2.s4tO.2s
(0.100tO.Ol0)

0.48tO.l0
0.019tO.004)

2.54%0.25
(0.100to.ol0)

• DP·24

0.l8tO.l0
0.019tO.004)

·Dp·24A
29.62(1.166)
30.48max(1.200max)

~
(0.035)
15.24 0.600

2.S4±O.2S

Q.4S±Q., 0

D.D19±D.DDA)

(0.100±0.o10)

• Dp·24N

O.25:!:g:6~

(0.010!8:88i)

\
2.s4±O.2s
(0.100tO.Ol0)

0.48tO. ,0
0.0'9tO.004)

• Dp·28

2.S4tO.2S
(O.,ootO.O'O)

0.48±0.10

0.0'9±0.004)

@HITACHI
4

Hitachi America, Ltd.• Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300

PACKAGE INFORMATION
• Dual-ln-Iine Plastic

Unit: mm (inch) Scale 3/2

• DP-28C

~

• DP-28N

~3~4~.7~0~1~.3~6~6~=- ~

______.3S.S6max(1.ADOm.x)
.
____

U

2.54:!:0.25

(0.100'0010)

"

36.0 1.417
37.32max(1.470max)

~

O.AUO.1
O.019:tO OOA)

•

HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005·1819 • (415) 589-8300

5

PACKAGE INFORMATION

• Zigzag-in-line Plastic

Unit: mm (inch) Scale 3/2

• ZP-20

·ZP-24

25.61 1.008
26.11 me" 1.028ma,,)

• ZP-28

·ZP-40

•
6

HITACHI

Hitachi America, Ltd.• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819. (415) 589-8300

PACKAGE INFORMATION

Unit: mm (inch) Scale 3/2

• Flat Package (J-bend Leads)
• CP-20D

• CP-20DA
1](0.669)
17.27max(0.680max)

16.9(0.665)
17.27max(0.680max)
20

20

II

II

'jg
~ rl3 ...

,"":g,,,,:~
o · 0 CI

~
~g;;~
~ '"'! aO '"'!
o
S.
~

'~H~~

.~~.

I ,11,0.74(0.029)

+1 ~ +1 +1
g;~~::l

cOg"'d

1

10

JG
(\')11'/1(\')0

o
d dd

~n~ 0.74(0.029)

10

~

.5

·CP-28D
1817(0715)
18.54mox(0.730max)
28
15

l

~O

~~ ~
~.s

~

14

I
J10.74(0.029)

I

~

d~ d
+I,r. +1

D

::

S
~

r;:;::;;:;,;;:;;:;;;;;:;;;:;;:;d
1.270.050
QO.l0 0.004

QO.l0 0.004

• CP-40D

25.80(1.016)
26.16max(1.030max)

21

40

~\g ~11

dct d

+1° +1

)

~~ ~f
~S::

1

II

0.74{0.029)

20

~

O. :1:0.10
(0.017±0.004

~HITACHI
Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

7

PACKAGE INFORMATION
Unit: mm (inch) Scale 3/2

- TSOP (Thin Small Outline Package)
-TFp-20DA

-TFP-20DAR

80(0315)

82 max

I

20 (0323 maxi 11

o
1

I

0.20±0 10
(0 008±0 004)

~l:~

~~

"'-e.

10
1050 (0 020)

$

I
o

20±0 10
(0 008±0 004)

0.08 (0 003) M

eo

(0 004)

I

~

o+1
....

0

~l:~

 and access time (tRAcl in high temperature pulse
test.

• Table 12. Reliability Data on MOS Memories

Test Item

Test Conditions

HMSllOOOP
(DIP)

HMSllOOOJP
(SOl)

HM622S6FP
(SOP)

HM62128FP
(SOP)

EPROM
(Cerdip)

Sampies

Failures

Sam·
pies

Failures

Sampies

Failures

Sampies

Fail-

ures

Sampies

Failures

Temperature Cycling

- SS·C to ISO"C
10 Cycle

3755

0

2786

0

3328

0

710

0

2790

0

Temperature Cycling

- SS·C to ISO"C
500 Cycle

ISO

0

200

0

482

0

105

0

450

0

Thermal Shock

- 6S·C to ISO"C
:S Cycle

77

0

100

0

76

0

77

0

80

0

Soldering Heat

260·C,
10 Seconds

22

0

22

0

22

0

22

0

22

0

Mechanical Shock

I,SOOG, 0.5 ms

38

0

Variable Frequency

100 to 2,000 Hz 200

38

0

38

0

Constant-Acceleration 6000G

•
14

HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300

Remarks

·6,000G

Reliability of Hitachi IC Memories
2.4 Change of Electrical Characteristics on IC
Memory
The degradation of leBO and hFE are the main factors of
degradation in inner cell transistor of bipolar memory. In acExample

designed to operate in
happen. Therefore no
access time are obtime for HM10470 are

Example of Time Change in Access Time for Bipolar Memory

Device Name

HMl0480-15

Test Conditions

TA = 125°C, VEE = -5.2V

Failure Criteria

tAA = 15ns

Failure Mechanism

tual element designing, however, it is
the range at which no degradation
change of characteristics including
served. Time dependence in access
shown in Figure 1.

Test Condition
20

Surface Degradation

2

V.. =-5.2V
Ta=2S't

MaxImum
Average

MarchIng Patlern

Results:
Access time is stabilized.

Minimum

15
M

-.
c

."!

10

,..

~

5

I

0

I

I

500

1,000

l'

2.000

T,me 'hrl
0137-2

..

Figure 1. Time Change in Access Time for Bipolar Memory
Example

Example of Time Change in Access Time for Hi-BiCMOS Memory

Device Name

HMl00490

Test Conditions

TA = 125°C, VEE = -4.5V
All Bit Scanning

Failure Criteria

tAA = 15ns

Failure Mechanism

Surface Degradation

20

.

Results:
Access time is stabilized.

T.Cooiooiao
V.. =-4.5V
Ta=25't
MIrC~I'"

2. ,.,.
~
\\erll'
\lInlnlum

P.lltrn

15

.5
c
c

10

~

5

L

I

0

I

500

I

1,000

I

2,000

T,me 'hrl
0137-3

Figure 2. Ttme Change m Access Time for HI-BICMOS Memory

•

HITACHI

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

15

Reliability of Hitachi

Ie

Memories - - - - - - - - - - - - - - - - - - - - - - - - -

Example

Examples of Time Change in Vee Min and tAA for Hi-BiCMOS Memory

Device Name

HM6788P-2S

Test Conditions

TA = 12S·C, VEE
AU Bit Scanning

Failure Criteria
Failure Mechanism

= S.OV

5
~ 4

Vee = 4.SV, tAA = 2S os
Surface Degradation

>
-;; 3

E

~

II 2 Test Condition
>
V -5V
Maximum
Average
1 CCra=25'C
Minimum
0 Marching Pattern

2

Results:
Both of Vee (min) and tAA arestabi1ized.

0

'30

SOO
1.000
Tlma (hr)

2.000

Test Condition
Same as above

25

.5
=
- 20

~

15
~

0

500

1.000

2.000

T1me (hr)
0137-4

Figure 3. Time Change

VCC Min and tAA for Hi-BICMOS Memory

In

Example of Time Change in VDD Min and
tRAe for MOS Memory

Example
Device Name

HMSllOOOP

Test Conditions

TA = 12S·C, Vee
AU Bit Scanning

= 7V

5

= 4.SV, AVDD = 1.0V

Fru1ure Criteria

VDD

Failure Mechanism

Surface Degradation

Results:
Access time (tAA> is stabilized and is within the failure
criteria.

•
e•
I
oJ

2

~

Test Condition
Mar.bins pattern

~:.~c.

1

~

Q

i

~

Maximum
Average
Minimum

0
0

J,OOO

500

2.000

Time (br)
110

Test Condition
Same as above

100

1 90
jlO

Note: Test Accuracy is O.2V, 2 ns.

10

t I I I

10
0

SOD

1.000

1,000

Time (br)
0137-5

Figure 4. Time Change in VDD Min and tRAC for MOS Memory

•
16

HITACHI

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

Reliability of Hitachi IC Memories
2.5 Failure Mode Rate
Figures 5 and 6 show examples of failure more happened in
users' application. Since IC memories require the finest pattern process technology, the percentage of failures, such as
pinholes, defects on photoresist and foreign materials, tends
to increase. To eliminate the defects in the manufacturing

process, Hitachi has improved the process and performed
100% burn-in screening under high temperature. Hitachi has
been collecting and checking customers' process-data and
marketing data for higher reliability of our products. To analyze them is very helpful for the improvement of designing
and manufacturing.

0137-7

0197-6

Figure 5. Failure Mode Rate of Bipolar Memory

3. RELIABILITY OF SEMICONDUCTOR DEVICES
3.1 Reliability Characteristics for Semiconductor
Devices
Hitachi semiconductor devices are designed, manufactured
and inspected so as to achieve a high level of reliability. Accordingly, system reliability can be improved by combining
highly reliable components along proper environmental conditions. This section describes reliability characteristics, failure types and their mechanisms in terms of devices. First,
semiconductor device characteristics are examined in light
of their reliability.
(1) Semiconductor devices are essentially structure sensitive

as seen in surface phenomenon. Fabricating the device
requires precise control of a large number of process
steps.

Figure 6. Failure Mode Rate of MOS Memory

(5) Semiconductor devices are characterized by volume production. Therefore, variations should be an important
consideration.
(6) Initial and accidental failures are only considered to be
semiconductor device failures based on the fact that
semiconductor devices are essentially operable semipermanently. However, wear failures caused by worn materials and migration should also be reviewed when electrode and package materials are not suited for particular
environmental conditions.
(7) Component reliability may depend on device mounting,
conditions for use, and environment. Device reliability is
affected by such factors as voltage, electric field
strength, current density, temperature, humidity, gas,
dust, mechanical stress, vibration, mechanical shock,
and radiation magnetic field strength.

(2) Device reliability is partly governed by electrode materials
and package materials, as well as by the coordination of
these materials with the device materials.
(3) Devices employ thin-film and fine-processing techniques
for metallization and bonding. Fine materials and thin film
surfaces sometimes exhibit physically different character1stcs from the bulks.
(4) Semiconductor device technology advances drastically:
Many new devices have been developed using new processes over a short period of time. Thus, conventional
device reliability data cannot be used in some cases.

I
I

Rudom fadure NIlan

: Constant future rate. (m =1)

1m.

Welbull dlstnbuboD

1

form

parameter

I

I

i
Tunl! (t)
0137-8

Figure 7. Typical Failure Rate Curve

eHITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

17

Reliability of Hitachi Ie Memories
Device reliability is generally represented by the failure
rate. "Failure" means that a device loses its function, including intermittent degradation as well as complete destruction.
Generally, the failure rate of electric components and
equipment is represented by the bathtub curve shown in
Figure 7. For semiconductor devices, the configuration
parameter of the Wei bull distribution is smaller than 1,
which means an initial failure type. Such devices ensure
a long lifetime unless extreme environmental stress is
applied. Therefore, initial and accidental failures can become a problem for semiconductor devices. Semiconductor device reliability can be physically represented as
well as statistically. Both aspects of failures have been
thoroughly analyzed to establish a high level of reliability.

3.2 Failure Types and Their Mechanisms
3.2.1

voltage near the minimum breakdown voltage BVos by raising internal voltage and when a strong electric field is established near the MaS device's drain resulting from reduced
device geometry from 2 ",m to 0.8 ",m. Generated hot carriers may affect surface boundary characteristics on a part of
the gate oxide film, resulting in degradation of threshold voltage (VTH) and counter conductance (gm). Hitachi devices
have employed improved design and process techniques to
prevent these problems. However, as process becomes finer, surface deterioration may possibly become a serious
problem.
(2) Electrode-Related Failures
Electrode-related failures have become increasingly important as multi-layer wiring has become more complicated. Noticeable failures include electro-migration and AI wiring corrosion in plastiC sealed packages.

11'

II

II

2.5

~= ~

I
3.0

3.5

T........... I/T (IO'/"K)
0137-12

Figure II. Relationship between Temperature
and Time to 1% Failure (RH = 85%)

Latch up is a problem unique to CMOS devices. This problem is a thyristor phenomenon caused by a parasitic PNP or
NPN transistor formed in the CMOS configuration. Latch up
occurs when an accidental surge voltage exceeding a maximum rating, a power supply ripple, an unregulated power
supply and noise is applied, or when a device is operated
from two sources having different set-up voltages. These
cases can cause input or output current to flow in the opposite direction from usual flow, which triggers parasitic thyristors. This results in excessive current flowing between a
power supply and ground. This phenomenon continues until
the power is off or the flowing current is forced to be reduced to a certain level. Once latch up occurs in an operating device, the device will be destroyed.

~HITACHI
20

Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

Reliability of Hitachi IC Memories
Much effort should be made in designing circuits to prevent
latch up. Latch up triggering input or output currents start to
flow under the following conditions.
Vin

a

< Vee or Vin < GND for input level
< GND for input level

Voul > Vee or VOUI

Therefore, circuits should be designed so that no forward
current flows through the input protection diodes or output
parasitic diodes.

@) Soft Errors
When a particles are generated from uranium or thorium in
a package the silicon surface of an LSI chip, electron-hole
pairs are formed which act as noise to data lines and other
floating nodes, causing temporary soft errors. This phenomenon is shown in Figure 14. Only electrons from among the
electron-hole pairs are only collected to a memory cell. As a
result, the cell changes from a state of 1 to 0, which is a
soft error.
Hitachi devices have been subjected to simulation and irradiation tests to prevent soft errors. In some cases, organic
material, PIQ, is applied to the surface of the device.

0137-15

Figure 14. Soft Error Caused by
a Particles in Dynamic Memory

• Table 13. Failure Causes and Mechanism
Failure Related Causes

Failure Mechanisms

Failure Modes

Passivation

Surface Oxide Film,
Insulating Film between Wires

Pin Hole, Crack, Uneven
Thickness, Contamination,
Surface Inversion,
Hot Carrier Injected

Withstanding Voltage
Reduced, Short, Leak
Current Increased,
hFE Degraded, Threshold
Voltage Variation, Noise

Metallization

Interconnection,
Contact, Through Hole

Flaw, Void, Mechanical Damage,
Break Due to Uneven Surface,
Non-ohmic Contact, Insufficient
Adhesion Strength,
Improper Thickness,
Electromigration, Corrosion

Open, Short, Resistance Increased

Connection

Wire Bonding, Ball Bonding

Bonding Runout,
Compounds between Metals,
Bonding Position Mismatch,
Bonding Damaged

Open, Short
Resistance Increased

Wire Lead

Internal Connection

Disconnection, Sagging, Short

Open, Short

Diffusion, Junction

Junction Diffusion, Isolation

Crystal Defect,
Crystallized Impurity,
Photo Resist Mismatching

Withstanding Voltage
Reduced, Short

Die Bonding

Connection between Die
and Package

Peeling Chip, Crack

Open, Short, Unstable
Operation, Thermal
Resistance Increased

Package Sealing

Packaging, Hermetic Seal,
Lead Plating, Hermetic Package and
Plastic Package, Filler Gas

Integrity, Moisture Ingress,
Impurity Gas, High Temperature,
Surface Contamination, Lead
Rust, Lead Bend, Break

Short, Leak Current
Increased, Open, Corrosion
Disconnection, Soldering Failure

Foreign Matter

Foreign Matter in Package

Dirt, Conducting Foreign
Matter, Organic Carbide

Short, Leak Current Increased

Input/Output Pin

Electrostatistics,
Excessive Voltage, Surge

Electron Destroyed

Short, Open, Fusing

Disturbance

a Particle

Electron Hole Generated

Soft Error

High Electric Field

Surface Inversion

Leak Current Increased

@HITACHI
Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

21

Reliability of Hitachi

Ie Memories

(6) Fine Geometry Related Problems
In response to higher integration requirements for memories
and microcomputers, LSI geometry has been reduced in the
way of 3 ,..,m ~ 2 ,..,m ~ 1.3 ,..,m ~ 0.8 ,..,m.

However power supply has not been scaled down used for
5V, only line dimensions have been fined increasingly. Prob·
lems associated with finer geometry are shown in Table 14.

• Table 14. Finer Geometry Related Problems
Item

Problems

5V Single Supply Voltage

• Breakdown Voltage of Gate Oxide Films
• Si02 Defects

Horizontal Dimension Reduction

•
•
•
•
•

Vertical and Horizontal
Dimension Reduction

• Higher Breakdown Voltage Not Permitted
• Electrostatic Discharge Resistance Reduced

Soft Errors by a Particles
Al Reliability Reduced
CMOS Latch Up
Mask Alignment Margin Reduced
Hot Carriers

Countermeasure
Oxide Film Formation Process Improved
• Cleaning
• Gettering
• Screening
Surface Passivation Film Improved
• Metallization Improved
• Design/Layout Improved
• Process Improved
Use of Low Voltage Examined
• Configuration Improved
• Protection Circuits Enhanced

~HITACHI
22

Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300

• QUALITY ASSURANCE OF IC MEMORY
1. Purposes of Test Site are as follows:

1. VIEWS ON QUALITY AND RELIABILITY
Hitachi basic views on quality are to meet individual users'
purpose and their required quality level and also to maintain
the satisfied level for general application. Hitachi has made
efforts to assure the standardized reliability of our IC memories in actual usage. To meet users' requests and to cover
expanding application, Hitachi performs the following:
(1) Establish the reliability in design at the stage of new
product development.
(2) Establish the quality at all steps in manufacturing process.
(3) Intensify the inspection and the assurance of reliability of
products.
(4) Improve the product quality based on marketing data.
Furthermore, to get higher quality and reliability, we cooperate with our research laboratories.
With the views and methods mentioned above, Hitachi
makes the best efforts to meet the users' requirements.

2. RELIABILITY DESIGN OF SEMICONDUCTOR
DEVICES

2.1 Reliability Target
Establishment of reliability target is important in manufacturing and marketing as well as function and price. It is not
practical to determine the reliability target based on the failure rate under single common test condition. So, the reliability target is determined based on many factors such as each
characteristics of equipment, reliability target of system, derating applied in deSign, operating condition and maintenance.

2.2 Reliability Design
Timely study and execution are essential to achieve the reliability based on reliability targets. The main items are the
design standardization, device design including process and
structural design, design review and reliability test.
(1) DeSign Standardization
Design standardization needs establishing design rules
and standardizing parts, material, and process. When design rules are established on circuit, cell, and layout design, critical items about quality and reliability should be
examined. Therefore, in using standardized process or
material, even newly developed products would have
high reliability, with the exception of special requirement
on function.
(2) Device Design
It is important for device design to consider total balance
of process deSign, structure design, circuit and layout design. Especially in case of applying new process or new
material, we study the technology prior to development
of the device in detail.

• Making clear about fundamental failure mode.
• Analysis of relation between failure mode and manufacturing process condition.
• Analysis of failure mechanism.
• Establishment of QC point in manufacturing.
2. Effects of evaluation by Test Site are as follows:
• Common fundamental failure mode and failure mechanism in devices can be evaluated.
• Factors dominating failure mode can be picked up, and
compared with the process having been experienced in
field.
• Able to analyze relation between failure causes and
manufacturing factors.
• Easy to run tests.

2.3 Design Review
DeSign review is a method to confirm systematically whether
or not design satisfies the performance required including by
users, follows the specified ways, and whether or not the
technical items accumulated in test data and application
data are effectively applied.
In addition, from the standpoint of competition with other
products, the major purpose of design review is to insure
quality and reliability of the product. In Hitachi, design review
is performed in designing new products and also in changing
products.
The followings are the itmes to consider at design review.
(1) Describe the products based on specified design documents.
(2) Considering the documents from the standpOint of each
participant, plan and execute the sub-program such as
calculation, experiments and investigation if unclear matter is found.
(3) Determine the contents and methods of reliability test
based on deSign document and drawing.
(4) Check process ability of manufacturing line to achieve
design goal.
(5) Arrange the preparation for production.
(6) Plan and execute the sub-programs of design changes
proposed by individual speCialists, for tests, experiments
and calculation to confirm the design change.
(7) Refer to the past failure experiences with similar devices,
confirm the prevention against them, and plan and execute the test program for confirmation of them.
In Hitachi, these study and decision at deSign review are
made using the individual check lists according to its objects.

(3) Reliability Test by Test Site
Test site is sometimes called Test Pattern. It is useful
method for evaluating reliability of designing and processing ICs with complicated functions.

~HITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

23

Quality Assurance of IC Memory
3.2 Qualification

3. QUALITY ASSURANCE SYSTEM OF
SEMICONDUCTOR DEVICES
3.1 Activity of Quality Assurance

To assure the quality and reliability, the qualification tests
are done at each stage of trial production and mass produc·
tion based on the reliability design described in Section 2.

The following items are the general views of overall quality
assurance in Hitachi;

The following are the views on qualification in Hitachi:

(1) Problems are solved in each process so that even the
potential failure factors will be removed at final stage of
production.
(2) Feedback of information is made to insure satisfied level
of process ability.

(1) From the standpoint of customers, qualify the products
objectively by a third party.
(2) Consider the failure experiences and data from custom·
ers.
(3) Qualify every change in design and work.
(4) Qualify intensively on parts and materials and process.

As the result, we assure the reliability.

(5) Considering the process ability and factor of manufactur·
ing fluctuation, establish the control points in mass pro·
duction.
Considering the views mentioned above, qualification shown
in Figure 1 is done.

Step

Contents

lTUJlt't

DesIgn RevIew

~Pf'('lflc.tlUn

t

Ill'' Kn

II

Trl,,1

I'roductmn

MatHlal,. ParI!.
",pproval

Jr-

Characterlstl<..s of Material and

ParIs
Appearance
DimensIOn
Heat R~slstance

II

Purpose

Characteristics Approval

Ir-

ME-chanlcal
Elect rlcal
O'hers
E1E"ct ncal
Character!st ICS
Function
VIJ!tagt-'

Current
Temperature

ConfirmatIOn of
CharacterIstics and
Reltabiltty of Matertals
and Parts

Confirmation of Target
Spec. Mainly about
Electrtcal
Characteristics

Otht"r~

Appearance. DimenSion

Ii

Quality Approval (I)

Ii

Qualtty Approval (2)

I

Mass

IrIr-

Reltabiltty Test
Life Test
Thermal Stress
MOIsture Resistance
MechanIcal Stress
Othe rs

Reliabiltty Test

Conltrmation of QualIty
and Reliabiltty

In

Design

Confirmation of Quality

Process Check same as

and Reliability in Mass

Qua I ity Approva I (1)

Production

,I

Product Ion

0138-1

Figure 1. Flow Chart of Qualification

~HITACHI
24

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819' (415) 589·8300

Quality Assurance of
3.3 Quality and Reliability Control in Mass
Production

Ie Memory

3.3.1 Quality Control on Parts and Materials

To assure quality in mass production, quality is controlled
functionally by each department, mainly by manufacturing
department and quality assurance department The total
function flow is shown in Figure 2.

With the tendency toward higher performance and higher reliability of devices, quality control of parts and materials becomes more important The terms such as crystal, lead
frame, fine wire for wire bonding, package and materials required in manufacturing process like mask pattern and
chemicals, are all subject to inspection and control.

Quality Control

Process

Method

Inspection on Mater .. 1 and
-

Parts for Semiconductor

-

-

Lot Sampling.
Confirmation of
Quality Level

DevIces
Manufacturing Eq"ipment.

_ _

_

EnvIronment. Sub-mater .. l.

Confirmation of
Quality Level

Worker Control
Lot Samp hng.

Inne r Process
Quality Control

Conhrmation of
Quality Level

100% InspectIon on

Testing,

Appearance and Electncal

InspectIOn

CharacteristIcs
Sampling Inspection on
Lot Sampling

Appea ranc e and E lec tnca I
Cha racte ns t ic s

ConfirmatIOn of
ReliabilIty Test

Quality Level. Lot
Sampling

r-----------,

I
I
I
I

Quality Information,
ClaIm
FIeld Expenence
General Quality
InformatIOn

I
I

Feedback of
Information

I

I

I' - _ _ _ _ _ _ _ _ _ _ .JI
0138-2

Figure 2. Flow Chart of Quality Control in Manufacturing Process

@HITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

25

Quality Assurance of IC Memory
Besides qualification of parts and materials stated in 3.2,
quality control of parts and materials is defined in incoming
inspection. Incoming inspection is performed based on its
purchase specification, drawing and mainly sampling test
based on MIL-STD-105D.
The other activities for quality assurance are as follows:
(1) Technology Meeting with Vendors
(2) Approval and Guidance of Vendors
(3) Analysis and tests of physical chemistry
The typical check points of parts and materials are shown in
Table 1.

• Table 1. Quality Control Check Points of Parts and
Material (example)
Material
Parts

Important
Control Items
Appearance

Wafer

Mask

Fine
Wire for
Wire
Bonding

Frame

Ceramic
Package

Plastic

Dimension
Sheet Resistance
Defect Density
Crystal Axis

Point for Check
Damage and Contamination on Surface
Flatness
Resistance
Defect Numbers

Appearance
Dimension
Resistoration
Gradation

Defect Numbers, Scratch
Dimension Level

Appearance

Contamination, Scratch,
Bend, Twist

Dimension
Purity
Elongation Ratio

Uniformity of Gradation

Purity Level
Mechanical Strength

3.3.2 Inner Process Quality Control
To control inner process quality is very significant for quality
assurance of devices. The quality control of products in every stage of production is explained below. Figure 3 shows
inner process quality control.
(1) Quality Control of Products in Every Stage of Production
Potential failure factors of devices should be removed in
manufacturing process. Therefore, check points are set
up in each process so as not to move the products with
failure factors to the next process. Especially, for high reliability devices, manufacturing lines are rigidly selected
in order to control the quality in process. Additionally we
perform rigid check per process or per lot, 100% inspection in proper processes so as to remove failure factors
caused by manufacturing fluctuation, and screenings depending on high temperature aging or temperature cycling. Contents of controlling quality under processing
are as follows:
• Control of conditions of equipment and workers and
sampling test of uncompleted products.
• Proposal and execution of working improvement.
• Education of workers
• Maintenance and improvement of yield
• Picking up of quality problems and execution of countermeasures toward them.
• Communication of quality information.
(2) Quality Control of Manufacturing Facilities and Measuring
Equipment

Contamination, Scratch
Dimension Level

Manufacturing facilities have been developed with the
need of higher devices in performance and the automated production. It is also important to determine quality
and reliability.

Bondability, Solderability
Heat Resistance

In Hitachi, automated manufacturing is promoted to avoid
manufacturing fluctuation, and the operation of high performance equipment is controlled to function properly.

Appearance
Dimension
Leak Resistance
Plating
Mounting
Characteristics
Electrical
Characteristics
Mechanical
Strength

Contamination, Scratch
Dimension Level
Airtightness
Bondability, Solderability
Heat Resistance

As for maintenance inspection for quality control, daily
and periodically inspections are performed based on
specification on every check point.

Composition

Characteristics of
Plastic Material

Appearance
Dimension
Processing
Accuracy
Plating
Mounting
Characteristics

Electrical
Characteristics
Thermal
Characteristics
Molding
Performance
Mounting
Characteristics

As for adjustment and maintenance of measuring equipment, the past data and specifications are clearly
checked to keep and improve quality.
(3) Quality Control of Manufacturing Circumstances and Submaterial.

Mechanical Strength

Quality and reliability of devices are affected especially
by manufacturing process. Therefore, we thoroughly control the manufacturing circumstances such as temperature, humidity, dust, and the sub-materials like gas or
pure water used in manufacturing process.

Molding Performance
Mounting Characteristics

Dust control is essential to realize higher integration and
higher reliability of devices. To maintain and improve the
clearness of manufacturing site, we take care of bUildings, facilities, air-conditioning system, materials, clothes
and works. Moreover, we periodically check on floating
dust in the air, fallen dust or dirtiness on floor.

~HITACHI
26

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

Quality Assurance of
Pr_.

Control Point

Ie

Memory

Purpo.. of Control

Purchase of Material
Wafer

Characte r istics. Appea rance

Wafer
Surface Oxidahon

Oxidation
Appearance. ThIckness of
OXIde Film

Inspection on Surface

OxidatIon
Photo ResIst

Scratch. Removal of Crystal
Defect Wafer
Assurance of ResIstance
Pinhole. Scratch

Photo
Resist

Inspecllon on Photo ResIst
o PQC Level Check
D,ffusIOn

Dimension, Appearance

DiffusIOn

Diffusion Depth. Sheet

Dimension Level
Check of Photo Res ist
Diffusion Status

Resistance

InspectIOn on DiffusIon
o PQC Leve I Check
EvaporatIon

Gate WIdth
Characteristics of Oxide Film
Breakdown Voltage
ration

Thickness of Vapor Film.
Scratch. Contamination

Wafer

Thickness. VTH Character is-

Evapo-

Inspection on Evaporahon
o PQC Leve I Check
Wa fe r Inspec lion

tics

Inspechon on ChIp
Electrical CharacteristIcs
ChIp ScrIbe
Inspection on Chip
Appearance
o PQC Lot Judgement

Chip

Assembltng

Assembltng

Control of BasIc Parameters
(VTH. etc) Cleaness of surf ace.
Prior Check of VIH
Breakdown Voltage Check
Assurance of Standard
ThIckness

Prevention of Crack.
Quality Assurance of Scribe

Electrical Characteristics
Appearance of ChIp

Frame
Appearance after ChIp
Bo~dlng

Appearance after W,re
Bonding
Pull Strength. Compresion
Width. Shear Strength
Appearance after Assembling

o PQC Leve I Check
InspectIon after
Assembling
o PQC Lot Judgement
Package

Sealing

Sealing

oPQC Level Check
MarkIng
Final Electrical Inspection
OFailure Analysis

Quality Check of Chip
Bonding
Quality Check of W tre
Bonding
PreventIon of Open and
Short

Appearance after Sealing
Outline. Dimension
Marking Strength

Guarantee of Appearance
and Dimens ion

AnalysIs of Failures. Failure
Mode. Mechanism

Feedback of AnalysIs Information

Appearance Inspection
Sampling Inspection on
Products
Receiving

Shipment
0138-3

Figure 3. Example of Inner Process Quality Control

@HITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300

27

Quality Assurance of

Ie

Memory - - - - - - - - - - - - - - - - - - - - - - - - - - - The inspection is executed not only to confirm that the
products meet users' requirement, but to consider potential factors. Our lot inspection is based on MIL-STD105D.

3.3.3 Final Tests and Reliability Assurance
(1) Final Tests
Lot inspection is done by quality assurance department
for the product passed in 100% test in final manufacturing process. Though 100% of passed products is expected, sampling inspection is subjected to prevent mixture
of failed products by mistake.

r-----------I
I
I

(2) Reliability Assurance Tests
To assure reliability, the reliability tests are performed periodically, and performed on each manufacturing lot if
user requires.

- - - - - - - - - - - - - - - - - ----1

r-----~------~

Failure Analysis

I

I
I
I
I
I

Countermeasure
Execution of
Countermeasure

I
I

I
I
I

I
I
I
I
I
I
I

I
I
I
I

Report

I

I
Quality Assurance
I
I
I
IL ___________ _

II
Follow-up and Confirmation
of Countermeasure Execution
I
I
Report
I
--------------------~
Dept.

Sa les Eng inee r 109 Dept.

Reply

Customer

0138-4

Figure 4. Process Flow Chart of Coping with Failure to a Customer

~HITACHI
28

Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

• OUTLINE OF TESTING METHOD
1. INSPECTION METHOD

2. MARCHING PATTERN

Compared to conventional core memories, IC memories
contain all peripheral circuits, such as the decoder circuit,
write circuit and read circuit. As a result, assembly and electrical inspection of ICs are all performed by IC manufacturers. Consequently, as the electrical inspection of IC memories are becoming more systematic, conventional IC inspection facilities are becoming useless. This has led to the development and introduction of a memory tester with pattern
generator to generate the inspection pattern of the memory
IC at high speed. A function test for such as TTL gates can
be performed even by a simple DC parameter faCility. However, when the address input becomes multiplexed as in
16k, 64k and 256k memory, even the generation of the function test pattern becomes a serious problem.

The marching pattern, as its name indicates, is a pattern in
which "1 "s march into all bits of "O"s. For example, a simple addressing of 1S-bit memory is described below.

In the memory IC inspection, its quality cannot be judged by
DC test on external pins only, because the number of the
element such as transistor which can be judged in the DC
test is only 1/1000 of all elements. The following are the address patterns proposed to inspect whether the internal circuits are functioning correctly.
(1)
(2)
(3)
(4)
(5)
(6)
(7)

All "Low", All "High"
Checker Flag
Stripe Pattern
Marching Pattern
Galloping
Waling
Ping-Pong

(1) Clear all bits ........................... See Fig. 1 (a)
(2) Read "0" from Oth address and check that the read data
is "0". Hereafter, "Read" means "checking and judging
data"
(3) Write "1" on Oth address ................ See Fig. 1 (b)
(4) Read "0" from 1st address.
(5) Write "1" on 1st address.
(S) Read "0" from nth address.
(7) Write "1" on nth address ................ See Fig. 1 (c)

(8) Repeat (6) to (7) to the last address. Finally, all data will
be "1".
(9) After all data become "1", repeat from (2) to (8) replacing "0" and "1".
In this method, 5N address patterns are necessary for the
N-bit memory.

a

Those are not all, but only representative ones. There are
the pattern to check the mutual interference of bits and the
pattern for the maximum power dissipation. Among the
above mentioned patterns, those of (1) to (4) are called N
pattern, which can check one sequence of N bit IC memory
with the several times of N patterns at most. Those of (5) to
(7) are called N2 pattern, which need several times of N2
patterns to check one sequence of N bit IC memory. Serious
problem arises in using N2 pattern in a large-capacity memory. For example, inspection of 1Sk memory with galloping
pattern takes a lot of time = about 30 minutes. (1), (2) and
(3) are rather simple and good methods, however, they are
not perfect to find any failure in decoder circuits. Marching is
the most simple and necessary pattern to check the function
of IC memories.

$

b

c

0139-1

Figure I. Addressing method for 16-bit
memory in the Marching pattern

HITACHI

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

29

• APPLICATION
1. VIDEO RAM
1.1 Multiport Video RAM
Effective graphic display memory is realized by using the
random port of the RAM part for graphic processor drawing
and the serial port of the SAM part for CRT display.

Figure 1·1 shows general idea of video RAM. Multiport video
RAM provides an internal data register (SAM) with the memory (RAM). Both of them can be accessed asynchronously.

RAM

SAM

I

DRAM

~j'_:_·"_- M-",~..,-,... ~i["'J
-~CRT

Random port

Drawing

_rt_--.-JI

0140-18

Figure 1-1. General Idea of Multi-Port Video RAM
Figure 1-2 shows the block diagram of the 256-kbit multiport
video RAM HM53461, and Table 1-1 shows the operation
modes of the HM53461.

DT/OE

Dynamlr
RAM
110

memory

cells

WE~--~------~ L_1---~
SC

SOE
0140-19

Figure 1-2. Block Diagram of HM53461
The operation modes shown in Table 1-1 are described as follows.

• Table 1-1. Operation Modes of HM53461
At the Falling Edge of RAS
CAS

DT/OE

WE

SOE

H

H

H

X

H

H

L

H

L

H

L

RAM Modes

SAM Modes

SIlO Direction

Notes

ReadIWrite

SinlSout

1,2,3

X

Temporary Write Mask Data Program

SinlSout

1,2,3

H

X

Read Transfer

Sout

L

L

Write Transfer

Sin

H

L

L

H

Pseudo Transfer

Sin

L

X

X

X

CBRRefresh

SinlSout

2

1,2

H: High L: Low X: Don't Care
Notes: I. Transfer cycle executed previously defines SIlO direction.
2. SIlO is in high impedance state with SOE high, even if the direction is Souto
3. The HM53461 starts write operation if WE is low at the falling edge of CAS or become low between the falling edge of
CAS and the rising edge of RAS.

~HITACHI
30

Hitachi America, Ltd.• Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

Application
Read/Write Operation: Read/write is performed on the
random port in the same sequence as for a dynamic RAM
(Figure 1-3). The HM53461 starts the read operation with
WE high and the write operation at the falling edge of WE.
AO-A?

Read Transfer Operation: In this cycle, the HM53461
transfers the data of one row in RAM (1024 bits), which address is specified at the falling edge of RAS, to SAM (Figure
1-5). The start address in SAM can be programmed at the
falling edge of CAS in this cycle. After data transfer, the serial port turns to serial read mode at the rising edge of
DT/OE.
AO-A?

DRAM

memory

cen

DRAM

SilO 1 - SI/O<

memory

",II

0140-22

1101-1/04

Figure 1-5. Read Transfer Operation

0140-20

Figure 1-3. ReadIWrite Operation
Temporary Write Mask Set and Temporary Masked
Write Operation: The HM53461 provides temporary
masked write operation which inhibits to write data bit-by-bit
(write mask) during one RAS cycle. Temporary write mask
set function defines the bits to be inhibited (Figure 1-4). This
operation puts the data on 1/°1-1/°4 into the internal temporary write mask register. When 0 is programmed to the
register, writing to the corresponding bit is inhibited.

Write Transfer Operation: In this cycle, the HM53461
transfers the data in the SAM data register (1024-bits) to
one row in RAM, which address is specified at the falling
edge of RAS (Figure 1-6). The start address in SAM can be
programmed in this cycle. After data transfer, serial port
turns to serial write mode.
AO-A?

The temporary write mask register is reset at the rising edge
of RAS.
AO-A?

DRAM
memory

",II

51/01- 51/04

0140-23

DRAM
........

Figure 1-6. Write Transfer Operation

cell

1/01-1/04
0140-21

Figure 1-4. Temporary Masked Write Operation

@HITACHI
Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

31

Application
Pseudo Transfer Operation: This operation switches the
serial port to serial write mode (Figure 1-7). It does not perform data transfer between RAM and SAM. Sam start address can be programmed in this cycle.

Serial Read/Write Operation: The HM53461 reads/writes
the contents of the SAM data register in serial at the rising
edge of SC (serial clock input) (Figure 1-9). The address for
serial access is generated by the internal address pointer,
independently of random port operation. It should be considered that serial access is restricted in transfer cycles. The
SAM, employing static-type data registers, requires no refresh.

AO-A7

I

Column
latch

/

I~
~

Row

decode,

llit"

\

DRAM

.~ j

memory

",II

~

Q

0140-24

Figure 1-7. Pseudo Transfer Operation

51/01-51/04

JI

0140-26

CAS Before RAS Refresh Operation: The HM53461 performs refresh by using the internal address counter in this
operation (Figure 1-8).

I

CoI.mn

Figure 1-9. Serial ReadIWrite Operation
The HM53462 is a multiport video RAM, adding logic operation capability to ttie advantages of HM53461.

I ra.;;t

Figure 1-10 shows the block diagram. Table 1-2 describes
the operation modes.

latch~

DRAM
'"""0,>"

",II

0140-25

Figure 1-8. CAS Before RAS Refresh

,----------------RAM

I

-----I
SAM

I

I

DRAM
memory
cells

1/0

51/0

-

Random

Soria!
POrt

I

__

WE-+--------~---~---------------J
______
_ _ _ _ _ _ _L

+-______~ _......lI

____

sc

SOE
0140-27

Figure 1-10. Block Diagram of HM53462

~HITACHI
32

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

Application
• Table 1-2. Operation Modes of HM53462
At the Falling Edge of RAS

RAM Modes

SAM Modes

CAS

DTIOE

WE

SOE

H

H

H

X

ReadIWrite

SinlSout

1,2,3

H

H

L

X

Temporary Masked Write

~n/Sout

1,2,3

H

L

H

X

Read Transfer

Sout

H

L

L

L

Write Transfer

Sin

H

L

L

H

Pseudo Transfer

Sm

L

X

X

X

CAS Before RAS Refresh

SmlSout

1,2

X

Logic Operation Program
(CBR Refresh)

SinlSout

1,2

X

L

L

SIlO Direction

Notes

2

H: High L: Low X: Don't Care
Notes: I. Transfer cycle previously executed defines SIlO direction.
2. SIlO is in high impedance with SOE high, even if SIlO direction is Souto
3. HM53462 writes if WE is low at the falling edge of CAS or becomes low between the falling edge of CAS and the rising
edge ofRAS.

Logic Operation Programming: This function programs a
logic operation (Figure 1-11). The logic operation is available
uintil re-programmed or reset. In logic operation mode,
HM53462 performs read-modify-write internally when data is
written into random port. The result of the logic operation
between memory data and written data is put into the address from which the memory data is transferred.
In the logiC operation programming cycle, the mask register,
which differs from the temporary mask register, is also programmed. It is available until reprogrammed.

t I

',

::

I I

:i

illill

I L.J"

L_ V

.

i

0--

i:

::::::r:::

"0

~

.i

d

<3

• Initialization of logiC operation mode (HM53462). The logic
operation programming cycle should be executed before
access to the random port to initialize logiC operation
mode after power on. At this point, the operation codes
(0101) and all 1 write mask data are recommended.

~
~~
Row

,

-~±'----------'t'
:

DRAM

1

memory

I

cell

,
,

1.2 Line Memory
Hitachi has produced a line memory for line buffers with simple circuits, providing specific functions as described below.
The line buffer can improve picture quality by storing 1 horizontal line data. It has following features.

I

~I
I--------~
.... _ _ _ _ _ _

,I ,
I

~

• Capacity to store 1 horizontal line data

L.J

• High-speed operation matching the sampling speed of PAL
TV signal (4 fsc/8 fsc) or NTSC TV signal (4 fsc/8 fsc).

I I

I I
I

• Bypass Capacitor. One bypass capacitor should be inserted between Vee and Vss to each device. The Vee pin
should be connected to the capacitor by the shortest path.
A capacitor of several ftF is suitable.
• Negative Voltage Input. Negative polarity input level to input pin or I/O pin should be under -W. In this range, it
has no effect on deVice characteristics or RAM/SAM data
retention.

AO-A7

:'
::, '

Notes: Notes on using HM53461 /HM53462 are as follows:
• Dummy RAS Cycle. Devices should be initialized by 8
dummy RAS cycles (minimum) before access to random
port. Refresh cycle can be inserted for initialization. It is
recommended that the system be initialized by dummy
RAS cycle in the automatic reset time of the processor.

I

, I
, I

• Separate data inputs/outputs and capability of serial data
inputs and outputs.

1/01-1/04

(dotted lanes mdlcate wnte

In

JOllie operation mode)
0140-28

Figure 1-11. Logic Operation Programming

The conventional line buffer composed of high speed static
RAMs requires separate input! output for double buffer organization. It also requires interleaving for high speed operation, matching 4 fsc/8 fsc, where fsc is the subcarrier frequency. In addition, external circuits are needed for serial
address scan.

@HITACHI
Hitachi America, Ltd.• Hitachi Plaza· 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

33

Application
The line memory provides all of these functions. Figure 1-12
shows the standard ogranization of a conventional memory
buffer and Figure 1-13 shows the block diagram of line
memory.

The Hitachi HM63021 is a 2048-word x 8-bit line memory
storing 2 horizontal lines of data.
It has five different modes for various video graphic system
applications. It realizes high speed operations for PAL and
NTSC TV signals, and dissipates little power employing
1.3 ).Lm CMOS technology and static-type memory cells.
The features of the HM63021 are described as follows:
• Five modes for various video graphic system applications
-Delay line mode
-Alternate 1H/2H delay mode
- TBC (Time-Base Corrector) mode
-Double speed conversion mode
-Time-base compression/expansion mode

AdM.ss------t

• High speed cycle time
-HM63021-34: 34 ns min (corresponds to 8 fsc of NTSC
TV signal)
-HM63021-28: 28 ns min (corresponds to 8 fsc of PAL
TV signal).

Address
Concrol
0140-29

Figure 1-12. Standard Organization of
Conventional Line Buffer

I----+---~k

Line memory in the system using digital signal processing
technologies offers following applications:
1.
2.
3.
4.
5.
6.

comb filter
double-speed conversion (non-interface)
compression/expansion of graphics (picture-in-picture)
dropout canceller
time-base corrector
noise reducer

0140-30

Figurer 1-13. Block Diagram of Line Memory

~HITACHI
34

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

Application
normal read/write cycle or a refresh cycle. When using an
internal refresh counter, eight or more CAS before RAS refresh cycles are required as dummy cycles.

2. DYNAMIC RAM
2.1 Dynamic RAM Memory Call
The dynamic RAM memory cell conSists of 1 MOS transistor
and 1 capacitor, as shown in Figure 2-1. It detects the data
in the cell (lor 0) by the charge stored in capacitor. Dynamic RAM offers higher density than that of static RAM because of fewer components per Chip.
However, Dynamic RAM must rewrite data, called refresh, in
a defined cycle because the charge stored in the capacitor
leaks.

0140-31

Figure 2-1. Memory Cell of Dynamic RAM

2.2 Power On Procedure
After turning on power, to set the internal memory circuitry,
hold for more than 100 I-'s, then apply eight or more dummy
cycles before operation. The dummy cycle may be either a

Ao- A9
CAS

2.3 Address Multiplexing
Dynamic RAMs are used to increase capacity because of
their smaller cell area. In using dynamic RAMs in systems,
however, it is desirable to increase the memory density by
using smaller packages. To reduce the number of pins and
the package size, address multiplexing is used.
Using a l-Mbit dynamic RAM, 20-address signals are necessary to select one of 1,048,576 memory cells. Address multiplexing allows address signals to be applied to each address
pin. Thus only 10-address input pins are required to select
one of 1,048,576 addresses. Multiplexed address inputs are
latched as follows: RAS (Row Address Strobe) selects one
of word lines according to the row address signal, and one
of column decoders is selected by CAS (column address
strobe) following column address signal. Although two extra
signals, RAS and CAS, are required, the number of address
pins is reduced to half. Figure 2-2 shows the pin arrangement, address latch waveform, and the block diagram of address-multiplexed l-Mbit dynamic RAM. Systems need an
address multiplexer in order to latch the multiplexed address
signals into the device.

Address Inputs
Column Address Strobe
Data In

Din
Dout

Data Out

RAS

Row Address Strobe

WE

ReadIWrite Input

Vee

Power (+ 5V)

Vgg

Ground

Ao-As

Refresh Address Inputs

0140-32

(a) Pin Arrangement

0140-33

Figure 2-2. Address Multiplexing of Dynamic RAMs

$

HITACHI

Hitachi America, Ltd. • Hitacoli Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

35

Application
2.4 Dynamic RAM Function

tRC:

Random Read or Write Cycle Time

tRCO: RAS to CAS Delay Time
tRAC: Access Time from RAS
tCAC: Access Time from CAS
R:

Row Address

C:

Column Address

Dou.
0140-34

(a) Read Cycle

m
CAS

Addre..

WE
Don

:J:iilmnll~

HAS

CAS

~

Dou.

Address

WE
DOl

lIliIIi

:Lknaol:

=m~

0140-36

(Early Write)

0140-37

(Delayed Write)

(b) Write Cycle

''''

Add....

D..

Dout

:LJim2

tRWC: Read-Write Cycle Time

!ftJJJ/Ii~
Hioh Z

(

)-

(c) Read·Modify·Write Cycle

0140-36

Figure 2-3. Normal Function of Dynamic RAM
Read Cycle: In the read cycle, a row address is latched at
the falling edge of RAS, and a column address is latched at
the falling edge of CAS after the RAS falling edge. If WE is
high, the data is read out from Dout with the access time of
tCAC (Access time from CAS) or tRAC (Access time from

RAS).
The tRCD maximum (RAS to CAS delay time) is specified
only to guarantee the specified minimum values of other timings such as the cycle time, RAS/CAS pulse width. Therefore, when using these timings with more than the specified
minimum value, there is no need to limit the tRCD to the
specified maximum value.

$
36

Write Cycle: Dynamic RAM provides two write cycle modes:
early write cycle and delayed write cycle. In the early write
cycle, when WE is low, data is written into Din at the falling
edge of CAS. In delayed write cycle, when WE is high, data
is written into Din at the falling edge of WE after CAS falling.
Read-Modlfy-Wrlte Cycle: The read-modify-write cycle is
initiated by taking WE high. Data is read out from Dout at the
falling edge of CAS with WE high. Then, when WE goes low,
data is written into the same address from Din in the same
cycle.
The cycle time in the read-modify-write mode (tRWC> is longer than the cycle time in read/write mode (tRC>'

HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005·1819 • (415) 589·8300

Application
2.5 High Speed Access Mode
Dynamic RAM access time is typically longer than that of
static RAMs. To realize higher speed operation, they have
high speed access modes.
The read operation in dynamic RAM is performed as follows:
When a word line is selected by row address, all data in the
memory cells connected to the selected word line is transferred to sense amplifiers. One of these sense amplifiers is
selected by the column address, and its contents are output.

Nibble Mode: In a nibble mode dynamic RAM, data from 4
sequential addresses is stored in the 4-bit output latch circuits. Output is provided by the CAS signal, which controls
the latch circuits.
When 4 addresses are accessed sequentially, the row addresses on and after second bit need not be selected.
Therefore, it facilitates the timing design. In nibble mode, the
operation is limited to 4 addresses, however, it enables faster access (tNAcl than that in page mode.

The output of data from other sense amplifiers is controlled
only by the column address.

Static Column Mode: In static column mode, the column
address is switched without the synchronized signal by highspeed static RAM technology in the peripheral circuits.

Access controlled only by column address with the row address fixed is called high speed access mode. Table 2-1
compares each mode.

High Speed Page Mode: This mode is the advanced mode
of statiC column mode, with CAS providing the address latch
function.

Page Mode: This is the most typical access mode in dynamic RAM. The column address is switched synchronized with
CAS falling.
• Table 2-1. Comparison of Dynamic RAM High Speed Access Modes

Normal Mode

R: Row Address
C: Column Address
0140-38

RAS
CAS

Page Mode

Address
Dout
0140-39

Nibble Mode

0140-40

Static Column Mode

0140-41

DOO.=
RAS'

High-Speed Page Mode

I~

A:~:'~

0140-42

.HITACHI
Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

37

Application
2.6 Refresh
Refresh operation is performed by accessing every word line
within the specified time (refresh cycle). Table 2-2 compares
the following refresh modes in dynamic RAM.
RAS Only Refresh: In RAS only refresh mode, refresh can
be completed by selecting only row addresses synchronized
with RAS .

CAS Before RAS Refresh: This mode refreshes by
CAS falling edge before RAS in the period defined by

the
the
internal refresh address generator. This mode simplifies the
external address multiplexer.
Hidden Refresh: In hidden refresh, CAS before
is performed while output data is valid.

RAS refresh

• Table 2-2. Comparison of Dynamic RAM Refresh Modes

A~:'~Z
---c::::::>-

Read

DDU'

0140-43

RAS Only Refresh
0140-44

CAS Before RAS Refresh
Dout - - - - - - -

0140-45

Hidden Refresh
0140 46

~:

Don't care
0140-47

•
38

HITACHI

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

Application

3. INSTRUCTIONS FOR USING MEMORY DEVICES
3.1

Prevention of Electrostatic Discharge

As semiconductor memory designs are based on a very fine
pattern, they can be subject to malfunction or defects
caused by static electricity. Though the built-in protection circuits assure unaffected reliability in normal use, devices
should be handled according to the following instructions.
1. In transporting and storing memory devices, put them in
conductive magazine or put all pins of each device into a
conductive mat so that they are kept at the same potential. Manufacturers should give enough consideration to
packing when shipping their products.

and NMOS transistors. Figure 3-2 shows the relationship between the input voltage and current in this inverter. The top
and bottom transistors turn ON and make current flown
when the input voltage becomes intermediate level. Therefore, it is necessary to keep the input voltage below 0.2V or
above Vee - 0.2V in order to minimize power consumption.
The data sheet specifies the stand-by current for both the
cases of input level with minimum VIH and maximum VII_,
and that with 0.2V or Vee - 0.2V, and the difference in value is remarkably great. Some memory devices are designed
to cut off such current flow in standby mode by the control
of input signals, but it depends on device type. This should
be confirmed in data sheets for each device type.

2. When devices touch a human body in mounting or inspection, the handler must be grounded. Do not forget to insert a resistor (1 Mfi approx. is desirable) in series to protect the handles from electrical shock.

.!_ 511"~5.0V

3. Keep the relative ambient humidity at about 50% in process.

}1

~

4

3
.., 2

0123456

4. For working clothes, cotton is preferrable to synthetic fabrics.

Input Voltqe

0140-72

5. Use a soldering iron operating at low voltage (12V or 24V,
if possible) with its tip grounded.
6. In transporting the board with memory devices mounted
on it, cover it with conductive sheets.
7. Use conductive sheets of high resistance to protect devices from electrostatic discharge. For, if dropped onto conductive materials like a metal sheet, devices may deteriorate or even breakdown owing to sudden discharge of the
charge stored on the surface.
8. Never set the system to which memory devices are applied near anything that generates high voltage (e.g., CRT
Anode electrode, etc.).

3.2 Using CMOS Memories
As shown in Figure 3-1, the input of a CMOS memory is
connected to the gate of an inverter consisting of PMOS

Figure 3-2. Relationship between Input Voltage and
Current in CMOS Inverter
Another problem particular to CMOS devices is latCh-Up. Figure 3-3 shows the cross section of a CMOS inverter and the
structure of a parasitic bipolar transistor. The equivalent circuit of the parasitic thyristor is shown in Figure 3-4. When
positive DC current or pulse noise is applied (Figure 3-4 (a»,
TR3 is turned on owing to the bias voltage generated between base and emitter. And trigger current flows into GND
through Rp, the base resistance of TR2. As a result, TR2
becomes conductive and current flows from power supply
(Vee) through the base resistance of TR1 (RN), which puts
TR1 into conduction, too. Then, as the base of TR2 is rebiased by collector current from TR1, the closed loop consisting of TR1 and TR2 reacts. Thus current flows constantly
between power supply (Vee> and GND even without trigger
current caused by outside noise.
Latch-up can be caused by a negative pulse, too (Figure 3-4
(bb». Most of semiconductor memory manufacturers are trying to improve latch-up immunity of their products. Hitachi
provides enough guard band by applying diffusion layer
around inputs and outputs, taking care not to connect input
to p+ diffusion layer. Input voltage for 64K-bit static RAM
HM6264A, for example, is specified as follows:

0140-71

VIH max 6.0V (not depending on Vee)
VIL min 3.0V (pulse width = 50 ns)
- 0.3V (DC level)

Figure 3-1. CMOS Inverter

Thus almost no consideration for latch-up is required in system design .

•

HITACHI

Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

39

Application

P,.

<>-..,.-----7--,

Inlemallnput

(b)

(I)

0140-73

Figure 3-3. Cross Section Structure of CMOS Inverter
Pm

r--V

Clo.... Loop
cc---"]

P,.

I
I

Rn:
I
I
I

'---;4-1.1.,:
I
I
I

'I

:
I

Ta, ON L ______ ..J
(.) Th....... Elf... b,
POllbveVoitaIIe

(b) Thynstor Effect by

N....... V.,....
0140-74

Figure 3-4. Equivalent Circuit of Parasitic Thyristor

3.3 Noise Prevention
Noise in semiconductor memories is roughly classified into
input signal noise and power supply noise.

3.3.1 Input Signal Noise
Input signal noise is caused by overshoot and undershoot. If
either of them is out of recommended DC operating conditions, normal operation is hindered, and voltage over absolute maximum rating will break the device. In operating high
speed systems, special care is required to prevent input signal noise.
The noise can be prevented by inserting a serial resistance
of less than son into each input or a terminating resistance
into the input line. Actually, however, input signal noise can
be simply reduced by a stable power supply line, because it
is often caused by unstable reference voltage (GND level).

3.3.2 Power Supply Noise
The power source noise can be classed as low-frequency
noise and high-frequency noise as shown in Figure 3-5. To
assure stable memory operation, the peak-to-peak power
supply voltage in the presence of low-or high-frequency
noise should be held below 10 percent of its standard level.
Devices like dynamic RAMs, which operate from clock signals, or high speed CMOS static RAMs, through which current flows during transition of signals, consume high peak

•
40

0140-75

Figure 3-5. Power Source Noise
current. When a power supply does not have enough capacity for the peak current, voltage drops. And if the recovery
rate of the power supply synchronizes with its time constant,
it may start oscillating. To reduce the influence of the peak
current, a bypass capaCitor of 0.1 - 0.01 ",F should be inserted near the device. The following points must be considered in designing pattern of the board:
• For bypass capacitors, use titanium, ceramic, or tantalum
capacitors which have better high-frequency characteristics.
• Bypass capaCitors must be applied as near to the power
supply pin of memory devices as pOSSible, and inductance
in the path from Vee pin to Vss pin through the bypass
capaCitor must be as little as possible.

HITACHI

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1619. (415) 569-6300

Application
• The line connected to the power supply on the board
should be as wide as possible.

• It is preferable for the power supply line to be at right angles to devices selected at the same time, lest too much
peak current should flow through one power supply line at
a time.

Preferr.. d

Non-pre(err..d

F"=:::::~:::::~~~

-Faults1 Bypath Lines are too
Long.
2 Devices Selected at

f":=:s.=~~-+ Sa~:M~7h:rn l~~:e
Vee

V~S

Vcr Vss Vee

VS~

,---~.--~

Vee

Vss

"--------------.....----~

D... I/O

Data I/O
0140-76

Figure 3-6. Examples of Power Supply Board Pattern
3.4 Address Input Waveform of Hi-BiCMOS Memory
Data stored in memory might be destructed in case that Ad·
dress Input of the HM6716, HM6719, HM6787, HM6788 and
HM6789 series becomes floating and sticks at and around
threshold voltage. (e.g., CPU does Address Bus to off state
in Figure 1.) Consequently, the following three methods are
recommended so as to preserve malfunction of memory device.

.-------------------------------~

CPU
Memory

Address
Bu.

Input

cs·

Control
I

L__________________ ..J

A: Insert latch as shown in Figure 3-7 lest Address Input
should become floating.

0140-77

B: Put CS into High while Address Input becomes floating.
(Dotted line in Figure 3·8)

Figure 3·7

C: Insert Pull-up Resistor (R) to hold time constant of Rising
Edge waveform of Address Input pin (t, = R x C) below
150 ns.
Stable operation can be assured if you have already adopted the above three methods (A, B, C), while if you have any
problem, please contact our sales offices.

Address

input

_~4

\

'---------

r------,
/

I

'

Write

,

\

(

Floating

Read
0140-78

Figure 3-8

~HITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819· (415) 589·8300

41

o
42

HITACHI

Hitachi America, Ltd.• Hitachi Plaza .2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

Section 2
MOS Dynamic RAM

$HITACHI®

~HITACHI
44

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HM514256AI AL Series
262,144·Word x 4·Bit CMOS Dynamic RAM
•

DESCRIPTION

HM514256A/ALP Series

The Hitachi HM514256A1AL is a CMOS dynamic RAM organized 262,144-word x
4-bit. HM514256A/AL has realized higher density, higher performance and various
functions by employing 1.3 ,...m CMOS technology and some new CMOS circuit design technologies. The HM514256A1AL offers Fast Page Mode as a high speed access mode.
Multiplexed address input permits the HM514256A1 AL to be packaged in standard 20-pin plastic DIP, 20-pin plastic SOJ and 20-pin plastic ZIP.
SDDP20NA

• FEATURES

(DP-20NA)

• Single 5V (± 10%)
• High Speed
Access Time ..................... 60 ns/70 ns/80 ns/100 ns/120 ns (max)
• Low Power
Standby .......................... 11 mW (max), 1.7 mW (max) (L Version)
Active ............. .495 mW/440 mW/363 mW/302.5 mW/258.5 mW (max)
• Fast Page Mode Capability
.512 Refresh Cycles ................................ (8 ms), (64 ms) (L Version)
• 2 Variations of Refresh
RAS Only Refresh
CAS Before RAS Refresh

• PIN OUT
HM514256A1ALP
Series

HM514256A1AUP Series

3DCP20D

(CP-20D)
HM514256A1ALZP Series

HM514256A1ALZP
Series

HM514256A/AUP
Series

rJEDEC Pin NO.1
Hitachi Pin N0

1/01

v"

1/02

1/04

WE

1/03

RAS

CAS

NC

OE

AO

AS

Al

A7

A2

A6

A3

AS

Voe

A4

I

I/OI I 1
1/02 2 2
WE 3 3
HAS 4 4
NC 5 5

AO 6 9
Al 7 10
11
12
VcclO 13
A2 8
A3 9

1

I

"=F 26 20 V"
19 1/04
181/03
17 CAS
16 OE

25
24
23
22

P
P
P

18 15
14
16 13
15 12
14 b11

J7p

A8
A7
AS
AS

CAS 2
I/04 4
I/O! 6
WE8
HC 10
AIl2
A314
AIl6
MI8
A820

A4

(ZP-20)
• PIN DESCRIPTION
Function

Pin Name
Ao-Ag

Address Input

Ao-Ag

Refresh Address Input

I/OI-I/04

Data Input/Data Output

RAS

Row Address Strobe

CAS

Column Address Strobe

WE

Write Enable

OE

Output Enable

0136-3

0136-2

(Top View)
0136-1

(Top View)

3DZP20

lOE
31/03
5 V"
71/02
9W
HAO
13A2
15V"
17A5
19A7

(Top View)

Vee

Power Supply ( + 5V)

VSS

Ground

@HITACHI
Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

45

HM514256A1AL Series
• ORDERING INFORMATION

•

Part No.

Access Time

Package

Part No.

Access Time

Package

HM5l4256AP-6
HM5l4256AP-7
HM5l4256AP-8
HM5l4256AP-1O
HM5l4256AP-12

60ns
70ns
80ns
lOOns
l20ns

300-mil 20-pin
Plastic DIP
(DP-20NA)

HM5l4256ALP-6
HM5l4256ALP-7
HM5l4256ALP-8
HM5l4256ALP-1O
HM5l4256ALP-12

60ns
70ns
80ns
lOOns
l20ns

300-mil 20-pin
Plastic DIP
(DP-20NA)

HM5l4256AJP-6
HM5l4256AIP-7
HM5l4256AJP-8
HM5l4256AJP-1O
HM5l4256AJP-12

60ns
70ns
80ns
lOOns
l20ns

300-mil20-pin
Plastic SOJ
(CP-20D)

HM5l4256AUP-6
HM5l4256AUP-7
HM5l4256AUP-8
HM5l4256AUP-1O
HM5l4256AUP-12

60ns
70ns
80ns
lOOns
l20ns

300-mil20-pin
Plastic SOl
(CP-20D)

HM5l4256AZP-6
HM5l4256AZP-7
HM5l4256AZP-8
HM5l4256AZP-1O
HM5l4256AZP-12

60ns
70ns
80ns
lOOns
l20ns

400-mil 20-pm
Plastic ZIP
(ZP-20)

HM5l4256ALZP-6
HM5l4256ALZP-7
HM5l4256ALZP-8
HM5l4256ALZP-1O
HM5l4256ALZP-12

60ns
70ns
80ns
lOOns
120ns

400-miI20-pin
Plastic ZIP
(ZP-20)

BLOCK DIAGRAM

1/01

1

1/02

1/03 1/04

1

1

1

I I/O Buffer I

I/O BUfferJ

L.---l
,..---

~

~

CD

0

"-

U;
0
::!

.:s
Ii

256k
Memory

E

Cell

~

Array

0
::!

!:.

<[

~

'"

U;

.

~

>

.§

..
..

all
~

"0
0

u

Ii a
E c

c

<[

~

'"

~

~
~

--1

"-

'"

0
::!

Memory
Cell

Ii

Array

E

<[

~

"
u

256k

!:.

E

00
"''''
::! ::!

z z

~~

256k
Memory

ci ci
E <[E

Cell

~

Array

<[
~

~

~

c c
~

Ii

E

.

!/l

.
a
"0
0

u

c

E
<5
u

"

!/l

Word Driver
Row Decoder

Row Address Buffer

F

0
::!

5:c

~

.§

Word O"ver
Row Decoder

I
I

AD-A8

CD

0
~

'" ""~ Iii'"
<[

~

~
>

U;

!:.

"''''

~

I

~

~

0
~

U;

,

~

CD

0

(;

!/l

---'\ Word Driver
-,I Row Decoder

~
~

CD

U;
256k

0
::!

Memory

!:.

Cell

Ii

Array

0
::!

.:s
Ii

E

<[

E

=:c
~

<[

!/l

5:c

.

!/l

I

Word Driver
Row Oecoder

I

I

Column Address Buffer

I

"

I
0136-4

~HITACHI
46

Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

HM514256A/AL Series
• ABSOLUTE MAXIMUM RATINGS
Value

Unit

Voltage on Any Pin Relative to Vss

Item

Symbol
VT

-1.0to +7.0

V

Supply Voltage Relative to Vss

VCC

-1.0to +7.0

V

Short Circuit Output Current

lout

50

rnA

Power Dissipation

PT

1.0

W

Operating Temerature

Topr

Oto + 70

·C

Storage Temperature

Tstg

- 55· to + 125

·C

• ELECTRICAL CHARACTERISTICS
• Recommended DC Operating Conditions (T A = 0 to
Item

Min

Typ

Max

Unit

Vss

0

0

0

V

VCC

4.5

5.0

5.5

V

1

VIH

2.4

-

6.5

V

1

I10Pin

VIL

-1.0

-

O.S

V

1

Others

VIL

-2.0

-

O.S

V

1

Supply Voltage
Input High Voltage
Input Low Voltage
Note:

I
J

+ 70·C)

Symbol

Note

1. All voltage reference to Vss.

• DC Characteristics (TA

=

0 to +70·C, Vee

=

5V ±10%, Vss

=

OV)

HM514256
Item
Operating
Current

Standby
Current

Symbol

ICCI

AlAL-6

AlAL-7

AlAL-S

AlAL-1O

AlAL-12

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

-

90

-

SO

-

66

-

55

-

47

-

2

-

2

-

2

-

2

-

2

Unit

Test
Conditions

Note

rnA

RAS, CAS Cycling,
tRC = Min

1,2

rnA
ICC2

RAS, CAS = VIH
Dout = High-Z
TTL Interface
RAS, CAS ~ VCC - 0.2V
CMOS Interface

-

1

-

1

-

1

-

1

-

1

-

300

-

300

-

300

-

300

-

300

f'-A

Dout = High-Z
CMOS Interface L-Version
tRC = Min

RASOnly
Refresh
Current

ICC3

-

90

-

SO

-

66

-

55

-

47

rnA

Battery Backup
Current (Only
for L-Version)

ICC4

-

300

-

300

-

300

-

300

-

300

f'-A

CAS Before
RASCycling

Standby
Current

Iccs

-

5

-

5

-

5

-

5

-

5

rnA

RAS = VIH
CAS = VIL
Dout = Enable

CAS Before RAS
Refresh Current

ICC6

-

SO

-

70

-

66

-

55

-

47

rnA

tRC = Min

Fast Page
Mode Current

ICC?

-

SO

-

70

-

55

-

55

-

47

rnA

tpc = Min

Input Leakage
Current

ILl

10

f'-A

OV

f'-A

OV :$ Vout :$ 7V
Dout = Disable

Output Leakage
Current

2

!ru;;... = 125 f'-s

ILO

-10
-10

10
10

-10
-10

10
10

-10
-10

•

10
10

-10
-10

10
10

-10
-10

10

:$

Yin

:$

4

1

1,3
7V

HITACHI

Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819 • (415) 589-8300

47

HM514256A1AL Series
• DC Characteristics (TA

=

0 to

+ 70·C, Vee =

5V ± 10%, Vss

=

OV) (continued)

HM514256
Item

Symbol

AlAL·6

AlAL·7

AlAL·8

AlAL·12

AlAL·1O

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Test
Conditions

Unit

Note

Output High
Voltage

VOH

2.4

VCC

2.4

VCC

2.4

VCC

2.4

VCC

2.4

VCC

V

High lout

=-

Output Low
Voltage

VOL

0

0.4

0

0.4

0

0.4

0

0.4

0

0.4

V

Low lout

= 4.2 mA

Notes:

I.
2.
3.
4.

5 mA

Icc depends on output loading condition when the device is selected. Icc (max) is specified at the output open condition.
Address can be changed less than three times while RAS = VIL'
Address can be changed once or less while CAS = V/H.
tRAS = tRAS (min) to I p.s.
Input Voltage: I/O Pins:
VIR ~ Vcc - 0.2V, VIL S 0.2V or High·Z
The Other Pins: VIH ~ VCC - 0.2V, or VIL S 0.2V

• Capacitance (TA = 25·C, Vee ±10%)
Item

Symbol

Input Capacitance
Input/Output Capacitance
Notes:

Address

Cll

Clock

CI2

Data Input/Data Output

Typ

Max

Unit

Note

5

pF

I

7

pF

I

10

pF

1,2

-

CliO

I. Capacitance measured with Boonton Meter or effective capacitance measuring method.
2. CAS = V/H to disable D out .

• AC Characteristics (TA

=

0 to

+ 70·C, Vee =

± 10%,

5V

Vss = OV)14

Test Conditions
Input Rise and Fall Times
5 ns
Input Timing Reference Levels
O.BV, 2.4V
Output Load
2 TIL Gate + CL (100 pF)
(Including Scope and Jig)

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)
HM514256
Item

Symbol

AlAL·6

AlAL·7

Min

Max

Min

120

-

130

-

50

Max

AlAL·8
Min

Max

AlAL·1O
Min

Max

AlAL·12
Min

Unit

Random Read or
Write Cycle Time

tRC

RAS Precharge Time

tRP

50

RAS Pulse Width

tRAS

60

10000

70

10000

80

10000

100

10000

120

10000

ns

CAS Pulse Width

tCAS

20

10000

20

10000

25

10000

25

10000

30

10000

ns

Row Address Setup Time

tASR

0

Row Address Hold Time

tRAH

10

Column Address Setup Time

tASC

0

Column Address Hold Time

tCAH

15

-

RAS to CAS Delay Time

tRcD

20

RAS to Column Delay Time
RAS Hold Time

-

160

-

70

-

190
80

-

220
90

0

-

0

12

-

15

-

15

0

-

0

0

20

-

20

-

50

22

55

25

15

35

17

40

20

-

25

70

80

-

10

-

10

-

15

-

40

20

tRAD

15

30

tRSH

20

CAS Hold Time

tCSH

60

-

CAS to RAS
Precharge Time

tCRP

10

-

0
10
0

•
48

-

0

Note

Max
-

ns

-

ns

ns

25

-

75

25

90

ns

g

20

55

20

65

ns

9

25

-

30
120

-

ns

100
10

-

10

-

ns

HITACHI

Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005· 1819· (415) 589·8300

ns
ns
ns

ns

HM514256A/AL Series
Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters) (continued)
HM514256
Item

Symbol

A/AL-6
Min

A/AL-8

A/AL-7

Max

A/AL-to

Max

Min

Max

Min
20

-

25

-

30

0

-

0

-

0

0

-

0

-

Unit

0

50

3

50

ns

-

8

-

8

ms

-

64

-

64

ms

-

20

tDZO

0

-

0

CAS Delay Time from Dm

tDZC

0

-

0

-

Transition Time
(Rise and Fall)

tT

3

50

3

50

3

50

3

Refresh Period

tREF

-

8

-

8

-

8

Refresh Period
(Only for L-Version)

tREF

-

64

-

64

-

64

Note

Max
ns

20

OE Delay Time from Dm

Min

-

tODD

OE to Dill Delay Time

Max

A/AL-12

Min

ns
ns
1,7

Read Cycle
HM514256
Item

Symbol

A/AL-6
Min

A/AL-7

Max

Min

Max

A/AL-8
Min

A/AL-to

120

ns

2,3

30

ns

3,4

55

ns

3,5

30

ns

Max

Min

Max

-

tRAC

-

60

-

70

-

80

tCAC

-

20

20

-

25

Access Time from Address

tAA

30

35

-

45

tOAC

-

40

Access Time from OE

-

-

-

100

Access Time from CAS

25

-

25

Read Command Setnp Time

20

Note

Min

Access Time from RAS

20

Unit

A/AL-12

Max

25

tRCS

0

-

0

-

0

-

0

-

0

-

ns

Read Command Hold
Time to CAS

tRCR

0

-

0

-

0

-

0

-

0

-

ns

Read Command Hold
Time to RAS

tRRR

to

-

to

-

to

-

to

-

to

-

ns

Column Address to
RAS Lead Time

tRAL

30

-

35

-

40

-

45

-

55

-

ns

Output Buffer
Tum-off Time

tOFFl

-

20

-

20

-

20

-

25

-

30

ns

6

Output Buffer
Tum-off to OE

tOFF2

-

20

-

20

-

20

-

25

-

30

ns

6

CAS to Din
Delay Time

tCDD

20

-

20

-

20

-

25

-

30

-

ns

Write Cycle
HM514256
Item

Symbol

A/AL-6

A/AL-7

A/AL-8

Min

Max

Min

Max

Min

0
15

-

20

to

-

15

15

-

20

25

-

25

-

30

-

ns

25

-

25

-

30

-

ns

-

0

-

0

11

25

-

ns

20

ns

II

-

20

tCWL

20

-

20

-

-

0

-

0

15

-

15

0
15

to

-

20

tDS

ns

0

tRWL

tDR

Note

25

Write Command to
CAS Lead Time
Data-in Hold time

Unit

-

-

Data-in Setup Time

Max

-

to

Write Command Pulse Width

A/AL-12
Min

0

twp

0
15

Max

20

Write Command to
RAS Lead Time

twcs
tWCR

A/AL-to
Min

-

-

Write Command Setup Time
Write Command Hold Time

Max

0

ns
ns

~HITACHI
Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

49

HM514256A1AL Series
Read-Modify-Write Cycle
HM514256
Symbol

Item

AJAL-6

AJAL-S

AJAL-7

AJAL-IO
Max

AJAL-12
Min

Unit

Note

Max

Min

Max

Min

Max

Min

Max

Min

ISO

220

-

295

-

ns

135

-

160

-

ns

10

55

-

255

45

-

60

-

70

-

ns

10
10

Read-Write Cycle Time

tRWC

170

RAS to WE Delay Time

tRWD

S5

CAS to WE Delay Time

tCWD

45

-

Column Address to
WE Delay Time

tAWD

55

-

60

-

70

-

SO

-

95

-

ns

OE Hold Time from WE

tOEH

20

-

20

-

25

-

25

-

30

-

ns

AJAL-12

Unit

95

110

Refresh Cycle
HM514256
Item

Symbol

AJAL-6

AJAL-S

AJAL-7

Min

Max

Min

Max

AJAL-IO

Min

Max

Min

Max

Min

Note

Max

CAS Setup Time
(CAS Before RAS
Refresh Cycle)

tCSR

10

-

10

-

10

-

10

-

10

-

ns

CAS Hold Time
(CAS Before RAS
Refresh Cycle)

tCHR

15

-

15

-

20

-

20

-

25

-

ns

RAS Precharge to
CAS Hold Time

tRPC

10

-

10

-

10

-

10

-

10

-

ns

Fast Page Mode Cycle
HM514256
Item

Symbol

Fast Page Mode
Cycle Time

tpc

Fast Page Mode CAS
Precharge Time

tcp

AJAL-6

AJAL-7

AJAL-S
Max

AJAL-12

AJAL-IO
Min

Max

Min

Unit

Note

Max

Min

Max

Min

Max

Min

45

-

50

-

55

-

55

-

65

-

ns

10

-

10

-

10

-

10

-

15

-

ns

Fast Page Mode RAS
Pulse Width

tRASC

-

100000

-

100000

-

100000

-

1000000

-

100000

ns

12

Access Time from
CAS Precharge

tACP

-

40

-

45

-

50

-

50

-

60

ns

13

RAS Hold Time
from CAS Precharge

tRHCP

40

-

45

-

50

-

50

-

60

-

ns

Fast Page Mode
Read-Write Cycle Tim,e

tpCM

95

-

100

-

110

-

115

-

135

-

ns

Notes:

I. AC measurements assume tT = 5 ns.
2. Assumes that tRCD S tRCD (max) and tRAD S tRAD (max). If tRCD or tRAD is greater than the maximum recommended
value shown in this table, tRAC exceeds the value shown.
3. Measured with a load circuit equivalent to 2 TIL loads and 100 pF.
4. Assumes that tRCD ~ tRCD (max) and tRAD S tRAD (max).
5. Assumes that tRCD S tRCD (max) and tRAD ~ tRAD (max).
6. tOFF (max) is defined as the time at which the output achieves the open circuit condition and is not referenced to output
voltage levels.
7. Transition times are measured between VIH and VIL.
S. Operation with the tRCD (max) limit insures that tRAC (max) can be met, tRCD (max) is specified as a reference point only,
if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC'
9. Operation with the tRAD (max) limit insures that tRAC (max) can be met, tRAD (max) is specified as a reference point only,
if tRAD is greater than the specified tRAD (max) limit, then access time is controlled exclusively by tAA'

~HITACHI
50

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HM514256A/AL Series
10. twcs, tRWD, tCWD and tAWD are not restrictive operating parameters. They are inclnded in the data sheet as electrical
characteristics only: if twcs ~ twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit
(high impedance) throughout the entire cycle; iftRWD ~ tRWD (min), tCWD ~ tCWD (min) and tAwD ~ tAWD (min), the
cycle is a read-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
II. These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in delayed write or readmodify-write cycles.
12. tRASC is determined by RAS pulse width in fast page mode cycles.
13. Access time is determined by the longer of tAA, tCAC or tACp.
14. An initial pause of 100 p.s is required after power-up followed by eight or more initialization cycles (any combination of
cycles containing RAS clock such as RAS only refresh). If the internal refresh counter is used, eight or more CAS before
RAS refresh cycles are required .

• TIMING WAVEFORMS
• Read Cycle

Address

WE
tCAe
101'1'1

Dout

Hlgh-Z

Valid
Output

101'1'1
tOAC

Din

OE

~: Don't care
0136-5

~HITACHI
Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

51

HM514256A1AL Series
• Early Write Cycle
t.e
RAS

'ItAS

tM'

tT

tCAS

lRCD

tcs.
CAS

Address

WE

t ••

Om

Dout

";"h-Z

OE: Don't care
twa ~ twa (min)
~ : Don't care
0136-6

• Delayed Write Cycle

Address

Dm

Dout

DE

IZZZ1 : Doo't care
0136-7

~HITACHI
52

Hitachi America, Ltd. • Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HM514256A/AL Series
• Read-Modify-Write Cycle

CAS

Address

WE

DiD

D~

-+__H_~~-Z__~

________

t ...

~ : Don't care
0136-8

• RAS Only Refresh Cycle

Dout

H~-Z

OE, WE: Don" care
~ : Don't eire
0136-9

eHITACHI
Hitachi America, Ltd, • Hitachi Plaza • 2000 Sierra Point Pkwy, • Brisbane, CA 94005-1819. (415) 589-8300

53

HM514256A1AL Series
• CAS Before RAS Refresh Cycle

CAS

-------,OL

Address,Din, WE : Don't care
DODt : Hiah-Z
~ : Don't care
0136-10

• Fast Page Mode Read Cycle

Address

Din

Dout

~ : Don't care
0136-11

~HITACHI
54

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

HM514256A/AL Series
• Fast Page Mode Early Write Cycle

Address

Don

Hlgh-Z

Dout

OE : Don't care

tZz.iI : Don't care
0136-12

• Fast Page Delayed Write Cycle

~ '[)on'teare

DE

0136-13

•

HITACHI

Hitachi America, Ltd, • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819. (415) 589-8300

55

HM514256A/AL Series
• Fast Page Mode Read-Modlfy-Write Cycle

CAS---i-+--.....

Address

Don

~ : Doa't care
0136-14

•
56

HITACHI

Hitachi America, Ltd.• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589·8300

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM514256A1AL Series
Supply Current (Active)
vs. Supply Voltage
1.3

l'

1
~

]

1.2

./

1.1
1.0

~

V

/"

~

07

llr---+----r----r---~

]

1

I

O.S

Jl

4.50

4.75

5.00

or....."t---+=~::::::::::_i

0.9r-----l----t--+---l

O.S
0.7!:oO---=20:.---+.40,----=6'::-0-----fSO

5.50

525

"I------+---t----t-------i

~

J

./'

0.9

1:

/

I-'

t

Supply Current (Active)
vs. Ambient Temperature

1.3,..-----,---.---'--.....- - - - ,

Ambient Temperature Ta ("C)

Supply Voltage Vee (V)

Supply Current (Active)
vs. Frequency

I
!]

10.0

~
b

I

5.0

1.0
0.5

V

O. 10.1

t
~

]

Supply Current (Standby)
vs. Supply Voltage

1.6

V

v

i

0.6

......

1.1

J
]

l

CMO~ interfaJ

1.0

/

0.9
O.S

/

/

/

V

rn

0.5

0.74.50

5.0 10.0

1.0

4.75

5.00

5.25

Frequency f (MHz)

Supply Voltage Vee (V)

Supply Current (Standby)
vs. Supply Voltage

Supply Current (Standby)
vs. Ambient Temperature

5.50

1.3

1TLin~ace

l'
:=

/

•

V

1.0

~

1.2

i

1.2

~

'iii

~

1.4

O.S

]

1.3

,/

!]

/

~
i

,.-/

rn

1.2
1.1
1.0

~
..............

0.9

f'.....

O.S

~

rn

0.4 4. 50

4.75

5.00

5.25

5.50

20

40

60

so

Ambient Temperature Ta (0C)

Supply Voltage Vee (V)

0136-15

@HITACHI
Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005·1819 • (415) 589·8300

57

HM514256A1AL Series - - - - - - - - - - - - -_ _ _ _ _ _ _ _ _ _ _ _ _ _ __
RAS Access Time
vs. Supply Voltage

RAS Access Time
vs. Ambient Temperature

]'

1. 3

"iI

1. 2

IS

r--- r---

..

.§
r

<~
~

....

-r--

0.9

0.8

~

1. 1

~

1.

..

.5
!-o
.,
I(J
:c"

-

I---~

Or--

o.9
o. 8

II)

<

0.7
4.50

4.75

5.00

5.25

5.50

~

o. 7

20

40

60

80

Supply Voltage Vee (V)

Ambient Temperature Ta (0C)

CAS Access Time vs.
Supply Voltage

CAS Access Time vs.
Ambient Temperature

1.3

2

1.2

1.1

~

........

1.0

--

~

0.9

r---

0.8
0.7 4. 50

4.75

5.00

5.25

5.50

..

gV

~

o.

~

o. 7 0

1
C

1.3

2

~

1.2

1.

..

~.,
ft
<

~

~

..............

1. 0

~

O. 9

--

~

4.75

5.00

60

80

/

/

1. 1

/
I---

O. 8
O. 7-4.50

40

20

Address Access Time vs.
Ambient Temperature
]'

1. 1

./

Ambient Tempetature Ta (OC)

1. 3

j

./

<~ o.8

Address Access Time
vs. Supply Voltage

]

V

1. 0

Supply Voltage Vee (V)

......

V"

1

5.25

5.50

j.,
j

o. 9 , /

L

o. 8
o. 7

20

40

60

80

Ambient Temperature Ta (0C)

Supply Voltage Vee(V)

0136-16

@HITACHI
58

Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300

HM514258A Series
262,144·Word X 4·Bit CMOS Dynamic RAM
• DESCRIPTION

HM514258AP Series

The Hitachi HM514258A is a CMOS dynamic RAM organized 262144-word x
4-bit. HM514258A has realized higher density, higher performance and various functions by employing 1.3 Mm CMOS technology and some new CMOS circuit design
technologies. The HM514258A offers Static Column Mode as a high speed access
mode.
Multiplexed address input permits the HM514258A to be packaged in standard
20-pin plastic DIP, 20-pin plastic SOJ and 20~pin plastic ZIP.
3DDP20NA

• FEATURES

(DP-20NA)

• Single 5V (±10%)
• High Speed
Access Time ..................... 60 ns/70 ns/80 ns/100 ns/120 ns (max)
• Low Power
Standby .................................................. 11 mW (max)
Active ................. 495 mW/440 mW/413 mW/358 mW/303 mW (max)
• Static Column Mode Capability
• 512 Refresh Cycles .................................................. (8 ms)
• 2 Variations of Refresh
RAS Only Refresh
CS Before RAS Refresh

HM514258AJP Series

3DCP20D

(CP-20D)
HM514258AZP Series

• ORDERING INFORMATION
Part No.

Access Time

Package

HM514258AP-6
HM514258AP-7
HM514258AP-8
HM514258AP-1O
HM514258AP-12

60 ns
70 ns
80 ns
100 ns
120ns

300 mil20-pin
Plastic DIP
(DP-20NA)

HM514258A1P-6
HM514258A1P-7
HM514258A1P-8
HM514258A1P-1O
HM514258A1P-12

60 ns
70 ns
80 ns
100 ns
120 ns

HM514258AZP-6
HM514258AZP-7
HM514258AZP-8
HM514258AZP-1O
HM514258AZP-12

3DZP2Q

(ZP-20)
300 mil20-pin
Plastic SOJ
(CP-20D)

60ns
70ns
80ns
lOOns
120ns

• PIN DESCRIPTION
Pin Name

400 mil20-pin
Plastic ZIP
(ZP-20)

• PIN OUT
HM514258AP Series
v.

1/01

1102

1/04

WE

1/03

HM514258AJP Series
I HitachI Pm NO.
JEDEC Pin No.
1/01 1

fiAs

~

1/022

NC

ill:

WE3
RAS.

AO

A8

AI

A1

A.

A,

.

A3

AS

v~

NC S

..
I

3

S

I

'='

"25

"

1

es

I

OE

3

1/03

5

VM

2

1/04 ..

'" v.
191/04
181/03

23

17es

22

160E

1/01

6

WE

8

7

1/02

9

iiAs

Address Input

Ao-Ag

Refresh Address Input

I/Oo-1I04

Data Input/Data Output

RAS

Row Address Strobe

CS

Chip Select

WE

Write Enable

OE

Output Enable

Vce
Vss

Power Supply ( + 5V)
Ground

NC 10

11 AO
At 12

13 A2
A3 14

AO.

,

18

AI 1

10

11

14 A7

", "
v""

16

13 A6

IS

12 AS
11M

"8

12

10

0114-1

I

HM514258AZP Series

Function

Ao-Ag

13

.

(Top View)

15 Vt:c

15 AS

A4 16
17 AS
AS 18

19 A7
AS 20
0114-3

0114-2

(Top View)

(Bottom View)

@HITACHI
Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300

59

HM514258A Series
• BLOCK DIAGRAM

1/01

1/02

1/03 1/04

~

I/O Buffer

r-

U;

0

256k

~

Memory

U;

E

Cell
Array

!

.

"
<

0

~
,

8:
"

V

/'

....-V

~

8:
"
>,

O.S
07
4.50

5.00

5.25

Supply Voltage Vee (V)

Ambient Temperature Ta (DC)

Supply Current (Active) vs
Frequency

Supply Current (Standby) vs
Supply Voltage
1. 3

1/

g
0

6
;::

§

u

>,

8:
"
til

0

'V

O. 1

01

/

CM6s interC'::e

]'

5. 0

]

1 --r-'-1I'==*==-1

0.7 ~O---::20;;-----::40;----;6!;;-0---;;SO

5.50

10 0

]

1.°

O.S t - - - t - - - t - - - t - - - - - j

til

4.75

1----1---+--+---1

0.9 r - - - i - - - t - - - t - - - - ;

a

til

1.1

1. 2

~

!

1. 1

[)
~

1. 0

!

o. 9

>,

o. S

8:
"

0.5

10

O. 7.~.50

5.0 100

Sf-/

/

V

2

~

500

V

:0Il

12

1
O

1.

]

1.

6

:~

;::

§
>,

6

}
4.75

500

550

Supply Current (Standby) vs
Ambient Temperature

O. 9

...............

J'-....

i'--

U

4

5.25

1. 3

tiL interCa~e

4

4.75

Supply Voltage Vee (V)

Supply Current (Standby) vs
Supply Voltage

0

L

V

til

Frequency C(MHz)

1.6

./

L

.L

525

5.50

O. S
O. 7

Supply Voltage Vee (V)

20

40

60

80

Ambient Temperature Ta (DC)
0114-15

~HITACHI
70

Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

HM514258A Series
RAS Access Time vs
Supply Voltage

]'

:.;

E

3

]
2

5

~

1. 1

~

.$

:--0

.5"

.

!-

RAS Access Time vs
Ambient Temperature

9

~

1.2

_

1.1

j,

-

- r---

~

1.3

1.0

-

~

0.9

--

~

C)

~

.0 8

I~

o.1

08

450

415

5.00

5.50

5.25

20

Supply Voltage Vee (V)

CS Access Time vs
Supply Voltage

CS Access Time vs
Ambient Temperature

3

13

1. 2

1~
1. 0

""" "--

9

o. 8

-----

./

/
.5"

!-

<~

09

/

/'

V

0.8

I~

0 14.50

415

5.00

5.25

5.50

Address Access Time vs
Ambient Temperature

1.3

1. 3

12

1. 2

/

/

1. 1

1.0

I--..

---I---

09

/

1. 0

o.9

/

o. 8

0.8

0.1 4.50

80

Ambient Temperature T. (0C)

Address Access Time vs
Supply Voltage

...............

60

40

20

Supply Voltage Vee (V)

1

80

60

40

Ambient Temperature Ta (0C)

4.15

5.00

5.25

5.50

o.1 0

20

40

60

80

Ambient Temperature Ta ("C)

Supply Voltage Vcc(V)

0114-16

@HITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

71

HM514266 Series
262,144-Word x 4-Bit Dynamic Random Access Memory
• DESCRIPTION

HM514266AP Series

The Hitachi HM514266A is a CMOS dynamic RAM organized 262,144-word x
4-bit. HM514266A has realized higher denSity, higher performance and various functions by employing 1.3 p.m CMOS process technology and some new CMOS circuit
design technologies. The HM514266A offers Fast Page Mode as a high speed access mode.
Multiplexed address input permits the HM514266A to be packaged in standard
20-pin plastiC DIP, 20-pin plastic SOJ and 20-pin plastic ZIP.
3DDP20NA

• FEATURES

(DP-20NA)

• Single 5V (± 10%)
• High Speed
Access Time ..................... 60 ns/70 ns/80 ns/l00 ns/120 ns (max)
• Low Power Dissipation
Active Mode ........... 495 mW/440 mW/363 mW/303 mW/259 mW (max)
Standby Mode ............................................. 11 mW (max)
• Fast Page Mode Capability
• 512 Refresh Cycles .................................................. (8 ms)
• 2 Variations of Refresh
RAS Only Refresh
CAS Before RAS Refresh
• Write per Bit Capability

HM514266AJP Series

3DCP20D

(CP-20D)
HM514266AZP Series

• ORDERING INFORMATION
Part No.

Access Time

Package

HMS14266AP-6
HMS14266AP-7
HMS14266AP-8
HMS14266AP-1O
HMS14266AP-12

60ns
70ns
80ns
lOOns
120ns

300 mil20-pin
Plastic DIP
(DP-20NA)

HMS14266AJP-6
HMS14266AJP-7
HMS14266AJP-8
HMS14266AJP-1O
HMS14266A]P-12

60ns
70ns
80ns
lOOns
120ns

300 mil 20-pin
Plastic SO]
(CP-20D)

HMS14266AZP-6
HMSI4266AZP-7
HMS14266AZP-8
HMS14266AZP-1O
HMS14266AZP-12

60ns
70ns
80ns
lOOns
l20ns

400 mil20-pin
Plastic ZIP
(ZP-20)

3DZP20

(ZP-20)

• PIN DESCRIPTION
Function

Pin Name
Ao-As

Address Input

Ao-As
W]1I0]Wl/I04

Refresh Address Input
Write Select!
Data-in/Data-out

RAS

Row Address Strobe

CAS

Column Address Strobe

WB/WE

Write Per Bit/Write Enable

OE

Output Enable

Vee

Power Supply ( + S.OV)

Vss

Ground

~HITACHI
72

Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

HM514266 Series
•

PIN OUT

HM514266AP Series

Vss

Wl/101
W2I102
WBIWE

VOl
V02 2
3
RAS 4
NC 5

W41104
W31103
CAS
OE
A8
A7
A6

RAS
NC
AO
Al
A2
A3

WE

CAS

A4
0118-1

15
14
13
12
11

OE
3 1103

CAS
1/04
1101
WE

18 1/03
17
16 OE

AO 6
Al 7
A2 8
A3 9
Vcc 10

AS

Vee

HM514266AZP Series

HM514266AJP Series

5 Vss
7 1102
9 RAS
11 Ao
13 A2
15 Vcc
17 As
19A7

AS
A7

A6
AS
A4

0118-3
0118-2

(Top View)

(Top View)

(Bottom View)

• BLOCK DIAGRAM

~
WlIlOI W2II02 W3II03 W4II04

I

I/O Buffer

I

I

I/O Buffer

L....--I

~

I

1

-

II>

II>

.,

III

III

III

:;)

:;)

.~ ~

256k ~ c
0
::< Memory o!S o!S
Ui
~
0 iii
Cell
ci.
::< '"
Array
E
!!:.. 8

Ui

..

«

.
II>

c:

en

0

256k

Array

til

()

00

256k

.. ..

Array

««
II>

..., ...,
0

lUi Ui

III

.~
0 ~

.,c:

.

256k

c:
E

Array

~

Ui
0

«

til

c:

c:

til

c:

en

II>

c:

Word Driver

Word Driver

Word Driver

RaNDeooder

RaNDeoode

RaNDeooder

Row Address Buffer

E

..

«

..

.. ;3 ~..
. en.
en

c:

en en

II>

..

eo "8c eo
~
E

.,

en

-1

~

:;)

iii

o!S
o!S
::<
Memory ::<::< Memory .~
en
Cii Memory ~
0 iii 0
Cell I~~
Cen
Cell
::<
::<
19i~l~

ci.
ci.
E c: E
« 2E «

en

--r RaNDeoode

Ui

.. !!:..::<
c

c:

...---J.. Word Driver

o!S

II>

:;)

IColumn Address Bufferl

-

0118-4

~HITACHI
Hitachi America, Ltd. • Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005·1819' (415) 589·8300

73

HM514266 Series
• ABSOLUTE MAXIMUM RATINGS
Parameter

Symbol

Value

Voltage on Any Pin Relative to Vss

VT

-1.0to

Supply Voltage Relative to Vss

vcc

- 1.0 to

Short Circuit Output Current

lout

Power Dissipation

PT

Operating Temperature

Topr

Storage Temperature

Tstg

Unit

+ 7.0
+ 7.0

V
V

50

rnA

1.0

W

+ 70
55 to + 125

·C

Oto
-

·C

• ELECTRICAL CHARACTERISTICS
• Recommended DC Operating Conditions (TA = 0 to + 70°C)
Parameter

Min

Typ

Max

Unit

Vss

Symbol

0

0

0

V

Vcc

4.5

5.0

5.5

V

I

VIH

2.4

6.5

V

I

(I/O Pin)

VIL

-1.0

0.8

V

I

(Others)

VIL

-2.0

-

O.S

V

I

Supply Voltage
Input High Voltage
Input Low
Voltage
Note:

I
I

Note

I. All voltage referenced to Vss.

• DC Electrical Characteristics (TA = 0 to + 70°C, Vee = 5V ± 10%, Vss = OV)
Parameter

Symbol

Operating Current ICCI

Standby Current

514266A-6

514266A-7

514266A-S

514266A-1O

514266A-12

Min

Max

Min

Max

Min

Min

Min

-

90

-

SO

Max
66

-

Max
55

-

-

Max

Unit

Test Conditions

47

rnA tRC

= Min

1,2

-

2

-

2

-

2

-

2

-

2

TTL Interface
rnA RAS, CAS = VIH
Dout = High-Z

-

I

-

I

-

I

-

I

-

I

CMOS Interface
rnA RAS, CAS 2: VCC - 0.2V,
Dout = High-Z

ICC2

Note

RASOnly
Refresh Current

ICC3

-

90

-

SO

-

66

-

55

-

47

rnA tRC

2

Standby Current

ICC5

-

5

-

5

-

5

-

5

-

5

rnA

I

CAS Before RAS
Refresh Current ICC6

-

SO

-

70

-

66

-

55

-

47

rnA tRC

= Min

Fast Page
Mode Current

ICC7

-

SO

-

70

-

55

-

55

-

47

rnA tpc

= Min

Input Leakage
Current

ILl

-10

10

-10

10

-10

10

-10

10

-10

10

/LA OV

Output Leakage
Current

ILO

-10

10

-10

10

-10

10

-10

10

-10

10

/LA

Output High
Voltage

VOH

2.4

VCC

2.4

VCC

2.4

VCC

2.4

VCC

2.4

VCC

V High lout

=-

Output Low
Voltage

VOL

0

0.4

0

0.4

0

0.4

0

0.4

0

0.4

V Low lout

= 4.2 rnA

Notes:

= Min
RAS = VIH,
CAS = VIL
Dout = Enable

:s Yin :s 7V

OV :s Vout :s 7V
Dout = Disable
5 rnA

I. Icc depends on output load condition when the device is selected, Icc max is specified at the output open condition.
2. Address can be changed less than three times while RAS = VIV
3. Address can be changed once or less while CAS = VIH'

~HITACHI
74

1,3

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HM514266 Series
• Capacitance (TA = 25°C, Vee = 5V ± 10%)
Parameter

Symbol

Input Capacitance (Address)

Cn

Input Capacitance (Clocks)

CI2

Output Capacitance (Data-in, Data-out)

CliO

Notes:

Typ

Max

Unit

Note

-

5

pF

1

7

pF

1

10

pF

1,2

1. Capacitance measured with Boonton Meter or effective capacitance measuring method.
2. CAS = VIH to disable D out .

• AC Characteristics (TA = Oto + 70°C, Vee = 5V ±10%, Vss = OV)1, 14
Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)
Parameter

Symbol

514266A-6
Min

514266A-1O

514266A-12

Min

Max

Min

514266A-8
Max

Min

Max

Min

Max

130

-

160

-

190

-

220

-

ns

90

-

ns

514266A-7

Max

-

Unit Note

Random Read or Write Cycle Time

tRC

120

RAS Precharge Time

tRP

50

RAS Pulse Width

tRAS

60

10000

70

10000

80

10000

100

10000

120

10000

ns

CAS Pulse Width

tCAS

20

10000

20

10000

25

10000

25

10000

30

10000

ns

Row Address Setup Time

tASR

0

Row Address Hold Time

tRAH

10

Column Address Setup Time

tASC

0

Column Address Hold Time

tCAH

15

-

RAS to CAS Delay Time

tRCD

20

RAS to Column Address Delay Time tRAD
RAS Hold Time
tRSH
CAS Hold Time

tCSH

60

50

70

80

0

-

0

12

-

15

0

-

0

0

15

-

20

-

40

20

50

22

15

30

15

35

20

-

20
70

0
10

20

-

ns

25

-

55

25

75

25

90

17

40

ns

8

20

55

20

65

ns

9

25
80

-

100

25

30

0

-

ns

0

-

10

-

10

20

25

0

-

0
15
0

ns
ns
ns

tCRP

10

OE to Din Delay Time

toDD

20

-

20

OE Delay Time from Din

tDZO

0

0

CAS Delay Time from Din

tDZC

0

-

0

-

Transition Time (Rise and Fall)

tT

3

50

3

50

3

50

3

50

3

50

ns

Refresh Period

tREF

8

-

8

-

8

-

8

-

8

ms

CAS to RAS Precharge Time

-

10

0

0

120
10
30
0

ns
ns
ns
ns
ns
7

Read Cycle
Parameter

Symbol

514266A-6
Min

514266A-1O

514266A-12

Max

Min

Max

Min

Max

-

80

-

100

ns

25

-

25

30

ns

3,4

40

-

45

55

ns

3,5

25

-

25

-

120

-

0

-

514266A-7

Max

Min

Max

60

70
20
35

514266A-8
Min

Access Time from RAS

tRAC

Access Time from CAS

tCAC

Access Time from Address

tAA

-

Access Time from OE

tOAC

-

20

-

20

-

-

0

-

0

-

0

-

0
40

-

20

-

20

20

-

20

-

-

20

-

25

Read Command Setup Time

tRCS

0

Read Command Hold Time to CAS

tRCH

0

Read Command Hold Time to RAS

tRRH

10

Column Address to RAS Lead Time tRAL
Output Buffer Turn-off Time
toFFI

20

Output Buffer Turn-off to OE

toFF2

-

CAS to Din Delay Time

tCDD

20

20
30

10
35

20
20

-

-

20

10

0
10
45

Unit Note
2,3

30

ns

0

-

ns

0

ns

10

-

55

-

ns

25

-

30

ns

6

25

-

30

ns

6

-

30

-

ns

ns

~HITACHI
Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

75

HM514266 Series
Write Cycle
Parameter

Symbol

514266A-6
Min

514266A-7

Max

Min

Max

514266A-8
Min

Max

514266A-1O

514266A-12

Min

Max

Min

Max

0

0

-

20

-

-

Write Command Setup Time

twcs

0

-

0

-

0

-

0

Write Command Hold Time

tWCH

15

15

-

20

-

20

Write Command Pulse Width
twp
Write Command to RAS Lead Time tRWL
Write Command to CAS Lead Time tCWL

10

-

10

-

15

-

15

20

-

20

-

25

-

25

20

-

20

-

25

-

25

Data-in Setup Time

tDS

0

Data-in Hold Time

tDH

15

0
15

0
20

25
20
30
30
0
25

Unit Note
ns

10

ns
ns
ns
ns
ns

11

ns

11

Read-Modify-Write Cycle
Parameter
Read-Write Cycle Time

Symbol

514266A-6

514266A-7

514266A-1O

514266A-12

Max

Min

Max

Min

Max

Min

Max

180

-

220

-

295

-

ns

-

110

135

-

160

-

ns

10

45

55

60

-

70

-

ns

10

70

-

255

95

80

95

-

ns

10

25

-

25

-

30

-

ns

Min

Max

Min

tRWC

170

RAS to WE Delay Time

tRWD

85

CAS to WE Delay TIme

tCWD

45

-

Column Address to WE Delay Time tAWD
OE Hold Time from WE
tOEH

55

-

60

-

20

-

20

-

514266A-8

Unit Note

Refresh Cycle
Parameter

Symbol

514266A-6
Min

514266A-7

Max

514266A-1O

514266A-12

Min

Max

Min

514266A-8
Max

Min

Max

Min

Max

Unit Note

CAS Setup Time
(CAS Before RAS Refresh Cycle)

tCSR

10

-

10

-

10

-

10

-

10

-

ns

CAS Hold Time
(CAS Before RAS Refresh Cycle)

tCHR

15

-

15

-

20

-

20

-

25

-

ns

RAS Precharge to CAS Hold Time tRPC

10

-

10

-

10

-

10

-

10

-

ns

Fast Page Mode Cycle
Parameter
Fast Page Mode Cycle Time

Symbol

514266A-6

514266A-7

514266A-8
Max

514266A-1O

514266A-12

Min

Min

Max

Min

Max

Min

-

50

-

55

-

55

-

65

-

ns

10

-

10

-

15

-

ns

tpc

45

Fast Page Mode CAS Precharge Time tcp

10

Fast Page Mode RAS Pulse Width

tRASC

-

100000

-

100000

-

100000

Access Time from CAS Precharge

tACP

-

40

-

45

-

50

-

40

-

45

-

50

-

95

-

100

-

110

-

RAS Hold Time from CAS Precharge tRHCP
Fast Page Mode Read-Write
tpCM
Cycle Time

10

Max

Max

Unit Note

Min

100000

ns

12

50

-

60

ns

13

50

-

60

-

ns

115

-

135

-

ns

100000

Write Per Bit(15, 16)
Parameter

Symbol

514266A-6
Min

Max

514266A-7

514266A-8

Min

Max

Min

Write per Bit Setup Time

tWBS

0

-

0

Write per Bit Hold Time

tWBH

10

-

10

-

12

Write per Bit Selection Setup time

tWDS

0

-

0

-

Write per Bit Selection Hold Time tWDH

10

-

10

-

Max

514266A-1O

5l4266A-12

Min

Min

Max

Max

0

-

0

-

ns

15

-

15

-

ns

0

-

0

-

0

-

ns

12

-

15

-

15

-

ns

0

~HITACHI
76

Unit Note

Hitachi America, Ltd_. Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

HM514266 Series
Notes:

I. AC measurements assume tT = 5 ns.
2. Assumes that tRCD :S tRCD (max) and tRAD :S tRAD (max). If tRCD or tRAD is greater than the maximum recommended
value shown in this table, tRAC exceeds the value shown.
3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
4. Assumes that tRCD 2: tRCD (max) and tRAD :S tRAD (max).
5. Assumes that tRCD :S tRCD (max) and tRAD 2: tRAD (max).
6. toFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage
levels.
7. VIR (min) and VIL (max) are reference levels for measuring timing of input signals. Also, transition times are measured
between VIR and VIL.
8. Operation with the tRCD (max) limit insures that tRAC (max) can be met, tRCD (max) is specified as a reference point only,
if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tCAC'
9. Operation with the tRAD (max) limit insures that tRAC (max) can be met, tRAD (max) is specified as a reference point only,
if tRAD is greater than the specified tRAD (max) limit, then access time is controlled exclusively by tAA'
10. twcs, tRWD, tCWD and tAWD are not restrictive operating parameters. They are included in the data sheet as electrical
characteristics only: if twcs 2: twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit
(high impedance) throughout the entire cycle; iftRWD 2: tRWD (min), tCWD 2: tCWD (min), and tAWD 2: tAWD (min), the
cycle is a read-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
11. These parameters are referenced to CAS leading edge in early write cycles and to WB/WE leading edge in delayed write or
read-modify-write cycles.
12. tRASC defines RAS pulse width in fast page mode cycles.
13. Access time is determined by the longer of tAA or tCAC or tACP'
14. An initial pause of 100 ,...S is required after power up followed by a minimum of eight initialization cycles (any combination
of cycles containing RAS clock such as RAS only refresh). If the internal refresh counter is used, a minimum of eight CAS
before RAS refresh cycles are required.
15. When using the write-per-bit capability, WB/wE must be low as RAS falls.
16. The data bits to which the write operation is applied can be specified by keeping Wi/IOi high with setup and hold time
referenced to the RAS negative transition.

~HITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

77

HM514266 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • TIMING WAVEFORMS
• Read Cycle

Address

WB,WE

W1~'01 [Dout

Hi-Z
toze

W4/104

Din

~"""""""r""7"7~'1"""'7'~
Hi-Z
~~------~~----~------r_----~

r'-.4-I.'-"'-~"-'-"'"

. fI0/~ :Don't care
0118-5

~HITACHI
78

Hitachi America, Ltd.· Hitachi Plaza· 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

HM514266 Series
• Early Write Cycle

tCSH

tCRP

Address

WB/WE

W1/101

W4~04

[Din
Dout
OE : Don't care

•

1"'7~-r~"";;~;":;' : Don't care

0116-6

@HITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

79

HM514266 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Delayed Write Cycle

Address

WB.WE

W'\IO' [Din
W4/104

Dout

'1 Invalid output

. WM :Don't care
0118-7

@HITACHI
80

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy., Brisbane, CA 94005-1819' (415) 589-8300

HM514266 Series
• Read-Modify-Write Cycle

Address

WB,WE

W1/101

W4~04

[Din

Valid Input

Dout
tOEH

OE

WM :

Don't care
0118-8

_HITACHI
Hitachi America, Ltd,. Hitachi Plaza. 2000 Sierra Point Pkwy,. Brisbane, CA 94005-1819. (415) 589-8300

B1

HM514266 Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • RAS Only Refresh Cycle

RAS

Address
Dout
1 OE, WE

2

~

:Don't eare
: Don'teare
0118-9

• CAS Before RAS Refresh Cycle

tCSR

tCHR

Address, Din, WE : Don't care
Dout:

Hlgh·Z
0118-10

•
82

HITACHI

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819' (415) 589·8300

- - - - - - - - - - - - - - - - - - - - - - - - - - HM514266 Series
• Fast Page Mode Read Cycle

~

~

)

ICSH
IT....

IRHCP
Ipc

I+-

Icp

IRCO
ICAS

~

~

IRAti

f+t"
IASR

14-'"

Address

~

Row

lCAH
~

lRAO

..
-

W1/101 Din

lco~

/'/////

1000....

!

~
o/j

~

.

'C
0

u

Ii 0

-

'"

U;
0

::IE

~
Ii

en0

Memory

~

Cell
Array

::IE

"E

.

<
~

c

.l!

~

c

c

.l!

II)

Word Driver
Row Deeoder

Word Driver
Row Decoder

Word Driver
Row Decoder

256k

.". 8 .
E

c

I

I Column Address Buffer I

I
I

....

E
< ":;JE <

~.l!

Row Address Buffer

0

AO

A9

I

"

0115-4

.HITACHI
Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy., Brisbane, CA 94005-1819' (415) 589-8300

87

HM511000A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - • ABSOLUTE MAXIMUM RATINGS
Parameter

Symbol

VoItage on Any Pin Relative to V88
Supply Voltage Relative to V88

Value

Unit

VT

-1.0to +7.0

V
V
mA

Vcc

-1.0to +7.0

Short Circuit Output Current

lout

50

Power Dissipation

PT

Operating Temperature
Storage Temperature

1.0

W

Toor

Oto + 70

·C

Tstg

- 55 to + 125

·C

• ELECTRICAL CHARACTERISTICS
• Recommended DC Operating Conditions (TA = 0 to + 70"C)
Parameter

Min

Typ

Max

Unit

Supply Voltage

Vcc

4.5

5.0

5.5

V

Input High Voltage

VIH

2.4

-

6.5

V

Input Low Voltage

VIL

-2.0

-

O.S

V

Note:

Symbol

All voltages referenced to Vss.

• DC ElectrIcal Characteristics (Vee
Parameter

Symbol

= 5V

= OV, TA = 0 to + 70·C)

± 10%, VSS

HM511000A
IAL-6

HM511000A
IAL-7

Min

Max

Min

-

90

-

HM511000
IA-S

Max

Min

Max

-

SO

-

2

-

2

-

1

-

-

300

Refresh Current ICC3

-

Battery Back Up
Current (Only
ICC4
for L-Version)
Standby
Current

HM511000
IA-1O

HM511000
IA-12

Unit

Test Conditions

Min

Max

Min

Max

70

-

60

-

50

-

2

-

2

-

2

1

-

1

-

1

-

1

-

300

-

300

-

300

-

300

CMOS Interface
/LA L-Version

90

-

SO

-

60

-

50

-

45

rnA

-

300

-

300

-

300

-

300

-

300

tRC = 125~
p.A CAS Before RAS
Cycling

Iccs

-

5

-

5

-

5

-

5

-

5

rnA CAS

Refresh
Current

ICC6

-

SO

-

70

-

60

-

50

-

40

CAS Before RAS
mA Refresh
tRC = Min

Fast Page
Mode Current

ICC7

-

80

-

70

-

50

-

50

-

40

rnA CAS Cycling,

88

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

Operating
Current

Standby
Current

Icc!

ICC2

Note

RAS, CAS Cycling,
1,2
tRC = Min
TTL Interface
rnA RAS, CAS = VIH,
Dout = High-Z

rnA

mA

CMOS Interface
RAS,CAS
~ VCC - 0.2V
Dout = High-Z

RAS Only Refresh,
tRC = Min

= VIH,
= VIL,
Dout = Enable

2

4

RAS

RAS
tpc

•

1

= VIL,
= Min

HITACHI

1,3

HM511000A Series
• DC Electrical Characteristics (Vee = 5V ± 10%, Vss = OV, TA = 0 to + 700C) (continued)
Parameter Symbol

HM511000A
/AL-6

HM511000A
/AL-7

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

HM511000
IA-8

HM511000
IA-IO

HM511000
IA-12

Test Conditions

Unit

Input
Leakage

ILl

-10

10

-10

10

-10

10

-10

10

-10

10

p.A Vin

Output
Leakage

ILO

-10

10

-10

10

-10

10

-10

10

-10

10

p.A

VOH

2.4

Vee
0.4

2.4

Vee
0.4

2.4

Vee
0.4

2.4

0

Vee
0.4

2.4

VOL

Vee
0.4

Output
Levels
Notes:

I.
2.
3.
4.

0

0

0

0

Note

= Oto +7V

= Oro +7V,
= Disable
V lout = -5mA
V lout = 4.2mA
Vout
Dout

lee depends on output loading condition when the device is selected. lee max is specified at the output open condition.
Address can be changed less than three times while RAS = VIL.
Address can be changed once while CAS = VIH'
tRAS = tRAS (min) to I p.s
Input voltage: All pins: VIH ~ Vee - 0.2V or VIL S 0.2V.

• Capacitance (Vee = 5V ±10%, TA = 25'C)
Parameter
Input Capacitance
Output Capacitance
Notes:

Symbol

Max

Unit

5

pF

I

CI2

-

7

pF

I

Co

-

7

pF

1,2

Address, Data Input

Cn

Clocks
Data Output

Typ

Note

I. Capacitance measured with Boonton Meter or effective capacitance measuring method.
2. CAS = VIH to disable D out.

• AC Characteristics (TA = 0 to +70'C, Vss = OV, Vee = 5V ±10%)
Test Conditions

Input rise and fall times: 5 ns
Input timing reference levels: 0.8V, 2.4V (Including scope and jig)
Output load: 2 TTL Gate + CL (100 pF)
Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)
Parameter

Symbol

HM511000A
IAL-6

HM511000A
IAL-7

HM511000A
IAL-8

HM511000A
IAL-IO

HM511000A
IAL-12

Min

Max

Min

Max

Min

Min

Min

-

130

-

160

Random Read or Write
Cycle Time

tRe

120

-

-

Max
-

190

-

Max

-

220

Unit Note

Max

-

ns

-

ns

RAS Precharge Time

tRP

50

RAS Pulse Width

tRAS

60

10000

70

10000

80

10000

100

10000

120

10000

ns

CAS Pulse Width

teAS

20

10000

20

10000

25

10000

25

10000

30

10000

ns

0

-

ns

50

70

Row Address Setup Time

tASR

0

-

0

Row Address Hold Time

tRAH

10

-

10

-

12

Column Address Setup Time

tAse

0

0

-

0

Column Address Hold Time

teAH

15

-

15

-

RAS to CAS Delay Time

tRCD

20

40

20

RAS to Column Address
Delay Time

tRAD

15

30

15
20
70

10

20

-

50

22

35

80

90

15

-

15

0

-

0

20

-

55

25

17

40

-

25

-

80

-

100

-

10

-

0

0

ns

25

-

ns

75

25

90

ns

8

20

55

20

65

ns

9

25

30

10

-

ns

120

10

-

ns

RAS Hold Time

tRSH

20

CAS Hold Time

tCSH

60

CAS to RAS Precharge Time

teRP

10

-

Transition Time (Rise and Fall) tT
Refresh Period
lREF

3

50

3

50

3

50

3

50

3

50

ns

-

8

-

8

-

8

-

8

-

8

ms

Refresh Period
(Only for L-Version)

-

64

-

64

-

64

-

64

-

64

ms

tREF

•

ns
ns
7

HITACHI

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

89

HM511000A Series
Read Cycle
Parameter

HM511000A
/AL-6

HM511000A
/AL-7

HM511000A
/AL-8

HM511000A
/AL-IO

HM511000A
/AL-12

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

70

80

-

100

120

os

2,3

20

25

-

25

30

ns

3,4

40

3,5

Symbol

Access Time from CAS

tCAc

-

Access Time from Address

tAA

-

Read Command Setup Time

tRCS

Read Command Hold
Time to CAS

Unit Note

20

30

-

35

-

-

45

-

55

os

0

-

0

-

0

-

0

-

0

-

ns

tRCH

0

-

0

-

0

-

0

-

0

-

ns

Read Command Hold
Time to RAS

tRRH

10

-

10

-

10

-

10

-

10

-

ns

Column Address to
RASLeadTime

tRAL

30

-

35

-

40

-

45

-

55

-

os

-

20

-

20

-

20

-

25

-

30

os

Access Time from RAS

tRAC

Output Buffer Turn-off Time tOFF

60

10

6

Write Cycle
Parameter

Symbol

HM511000A
/AL-6

HM511000A
/AL-7

HM511000A
/AL-8

HM511000A
/AL-IO

HM511000A
/AL-12

Min

Min

Min

Min

Min

Max
os

Max

Max

Max

Max

Unit Note

Write Command Setup Time

twcs

0

-

0

-

0

-

0

-

0

Write Command Hold Time

twCH

15

-

15

20

-

20

-

25

Write Command Pulse Width twp

10

-

10

-

15

-

15

-

20

-

Write Command to
RAS Lead Time

tRWL

20

-

20

-

25

-

25

-

30

-

ns

Write Command to
CAS Lead Time

tCWL

20

-

20

-

25

-

25

-

30

-

ns

Data-in Setup Time

tos

0

-

0

-

ns

11

15

20

-

20

-

0

15

-

0

tOH

-

0

Data-in Hold Time

25

-

ns

11

ns

10

os

Read-Modify-Write Cycle
Parameter

Symbol

Read-Write Cycle Time

tRWC
RAS to WE Delay Time tRWO
CAS to WE Delay Time tcwo
Column Address to
WE Delay Time

tAWD

HM511000A
/AL-12

HM511000A
/AL-6

HM511000A
/AL-7

HM511000A
/AL-8

HM511000A
/AL-IO

Min

Min

Min

Max

Min

Max

Min

Max

190

-

220

-

os

120

10

-

25

30

-

os

25

-

255

80

ns

10

40

-

45

-

55

-

ns

10

Max

Max

155

20

-

20

-

30

-

35

-

145
60

70

100

Unit Note

Refresh Cycle
Parameter

Symbol

HM511000A
/AL-6
Min

Max

HM511000A
/AL-7
Min

Max

HM511000A
/AL-8

HM511000A
/AL-IO

HM511000A
/AL-12

Min

Min

Min

Max

Max

Unit Note

Max

CAS Setup Time
(CAS Before RAS Refresh) tCSR

10

-

10

-

10

-

10

-

10

-

os

CAS Hold Time
(CAS Before RAS Refresh) tCHR

15

-

15

-

20

-

20

-

25

-

os

RAS Precharge to CAS
Hold Time

10

-

10

-

10

-

0

-

0

-

os

tRPC

.HITACHI
90

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

HM511000A Series
Fast Page Mode Cycle

Parameter

Symbol

HM511000A
/AL-6

HM511000A
/AL-7

HM511000A
/AL-8

HM511000A
/AL-IO

HM511000A
/AL-12

Min

Max

Min

Min

Min

Min

-

50

Max

-

Max

-

-

45

tcp

10

Fast Page Mode RAS
Pulse Width

tRASC

-

100000

-

100000

-

100000

-

100000

-

100000

ns

13

Access Time from
CAS Precharge

tACP

-

40

-

45

-

50

-

50

-

60

us

14

RAS Hold Time
from CAS Precharge

tRHCP

40

-

45

-

50

-

50

-

60

-

ns

10

65

-

Fast Page Mode Cycle Time tpc

10

55

Unit Note

Max

CAS Precharge Time

10

55

Max

15

ns
ns

Fast Page Mode Read-Modify-Wrlte Cycle
Parameter

Symbol

Fast Page Mode ReadModify-Write Cycle Time tpCM
Notes:

HM511000A
/AL-6

HM511000A
/AL-7

HM511000A
/AL-8

HM511000A
/AL-IO

HM511000A
/AL-12

Min

Max

Min

Min

Min

Max

Min

70

-

75

85

-

100

Max

-

85

Max

-

Unit Note

Max

-

ns

I. AC measurements assume tT = 5 ns.
2. Assumes that tRCO :S tRCO (max) and tRAo :S tRAD (max). If tRCO or tRAO is greater than the maximum recommended
value shown in this table, tRAC exceeds the value shown.
3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
4. Assumes that tRCO ~ tRco (max), tRAO :S tRAO (max).
5. Assumes that tRco :S tRCD (max), and tRAO ~ tRAD (max).
6. tOFF (max) is defined as the time at which the output achieves the open circuit condition and is not referenced to output
voltage levels.
7. Transition times are measured between VIH and VIL.
8. Operation with the tRCO (max) limit insures that tRAC (max) can be met, tRCO (max) is specified as a reference point only,
if tRCO is greater than the specified tRCO (max) limit, then access time is controlled exclusively by tCAC.
9. Operation with the tRAO (max) limit insures that tRAC (max) can be met, tRAO (max) is specified as a reference point only,
if tRAo is greater than the specified tRAO (max) limit, then access time is controlled exclusively by tAA.
10. twC8, tRWO, tcwo and tAWD are not restrictive operating parameters. They are included in the data sheet as electrical
characteristics only: if twcs ~ twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit
(high impedance) throughout the entire cycle; if tRWD ~ tRWD (min), tcWD ~ tCWD (min) and tAWO ~ tAWO (min), the
cycle is a read/write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
II. These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in delayed write or readmodify-write cycles.
12. An initial pause of 100 I£s is required after power-up followed by eight or more initialization cycles (any combination of
cycles containing RAS clock such as RAS only refresh). If internal refresh counter is used, eight or more CAS before RAS
refresh cycles are required.
13. tRASC is determined by RAS pulse width in fast page mode cycle.
14. Access time is determined by the longer of tAA, tCAC or tACP .

•

HITACHI

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

91

HM511000A Series
• TIMING WAVEFORMS
• Read Cycle

-

I""
I-

r..,

/

I.

II-

I ....

"--

ICIII'

I""

\

'~

-

/

'~ :.!.5!!..

!!!.orr-

I ....

I ....

7lJ ---~ @
Row

rllllill VJ /////11111/

Column

~r-'

~r--

...!~

'////1 ;////

-r!!!!- V//////It
-

,",<
I ..

I'... ·
Valid

DOlI'

Output
I.."

~:DOII""",
0115-5

• Early Write Cycle

DHt ____________________

______________________

H~~~-Z

Notes> .1.!:'Z2:Don·t .....
•

2.1_~I_(.ia>
0115-6

•
92

HITACHI

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

HM511000A Series
• Delayed Write Cycle

I

s.
I ...

Ilten

CAS

I,.WL

---++----.~I

Ie"

ter"

~----~~--------I/
IASIt

tUH

IASC

Address

~ : Don't care.
0115-7

• Read-Modify-Write Cycle

~: D...·lcore
0115-8

•

HITACHI

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300

93

HM511000A Series
• RAS Only Refresh Cycle

I

O~,

______________

•

~mp~·~-z~

____________________________

~

: Dontt care
0115-9

• CAS Before RAS Refresh Cycle

tCHR

CAS

Address

ljj)!Ji1I/1111///////Ji!II(/!/J//fl/flffll

Dout ______________________

___________________________

~H~i~~-_Z

17lZI : Don't care
0115-10

• Fast Page Mode Read Cycle

Addreu

WE

Oout

122l: 0 ..·' ....
0115-11

$
94

HITACHI

Hitachi America, Ltd.• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM511000A Series
• Fast Page Mode Write Cycle

Addreo.

Din

lli&b-Z"

DOIII

N.... ) *l.@:D••'leare
*2. ' ..csii:twcs(mlnl
0115-12

• Fast Page Mode Read Modify Write Cycle

\~~~----------~----------------~~~~lu~~I'~
tllCD

'PCIt

ICIII'

~

\l'-------f

I"".

I ....

I ..e

I"".

Address

Din

I
Doul

I

I."

IZZI: 0 •• 1 .....
0115-13

•

HITACHI

Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

95

HM511000A Series
Supply Current (Active)
vs Supply Voltage

Supply Current (Active)
vs Ambient Temperature

1.3

1.3.----..---.,.---,----,

~

1.2

1.21----f----+---t----i

§

1.1

~

1.0

J

0.9

-;;

/'r'

z

I

L.

V

L

1.11----f----+---t----i

1.0r=--+--1-==*=~

V

0.91----+---+--+--..,

O.B 1----0.7 4.50

O.BI----f----+---t----i

4.75

5.00

5.25

0.7 =-0---;t20-:----:4~0---6:::0:----:BO

5.50

Ambient Temperature Ta (·C)

Supply Voltage Vee (V)

Supply Current (Active)
vs Frequency

1.3

10.0

CMOS inlerface

5.0

~

1
3

1.0

/

.:;

J

0.5

j

-

4.75

5.25

]

o. 6
0. 44.50

V

Supply Current (Standby)
vs Ambient Temperature

>-

l

./

1. 3

inte~face

1. 4

1
3

/

Supply Voltage Vee (V)

Frequency f (MHz)

1. 6

I

1.2

5.00

5.25

5.50

O. 7

o

20

40

60

BO

Ambient Temperature Ta fe)

Supply Voltage Vee (V)

0115-14

.HITACHI
96

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005·1819' (415) 589·8300

HM511000A Series
RAS Access Time
vs Supply Voltage

RAS Access Time
vs Ambient Temperature

1.3

1. 3

]

1.2

1. 2

1
z

1.1

-~

1.0

j

0.9

I~

0.8

----

~

1. 1

-

1.0

r--

0.9
0.8

0.7 4. 50

4.75

5.00

5.25

5.50

CAS Access Time
vs Supply Voltage

1
z

1.3

1.2

1.2

~
.........

~

l;

1.0

~
~

0.9

jj

0.8

]

0.7

4.50

"----

4.75

------

5.00

5.25

1.0

1.2

1
3

1.1

-§

...
~
'"

j

/"'"

V

0.9

/

V

0.8

5.50

60

40

20

Supply Voltage Vee (V)

AmbIent Temperature To (Oe)

Address Access Time
vs Supply Voltage

Address Access Time
vs Ambient Temperature

80

1.3

1.3

]

./

1. 1

;::

80

CS Access Time
vs Ambient Temperature

1.3

1.1

60

40

20

Ambient Temperature Ta (Oe)

Supply Voltage Vee (V)

]

---

--

~

...............

1.0

I--.

0.9
0.8

07 4. 50

4.75

5.00

----5.25

]

1.2

1

1. 1

z

5.50

/
/

1.0
0.9

/'

V

/

0.8
0.7

o

20

40

60

80

Ambient Temperature Ta (Oe)

Supply Voltage Vee (V)

0115-15

~HITACHI
Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819· (415) 589-8300

97

HM511001A Series - - - - - - - - - - 1,048,576·Word x 1·Bit CMOS Dynamic RAM
• DESCRIPTION

HM511001AP Series

The Hitachi HM511001A series is a CMOS dynamic RAM organized 1,048,576word x l-bi!. HM511001A has realized higher density, higher performance and various functions by employing 1.3 p,m CMOS process technology and some new
CMOS circuit design technologies.
The HM511 001 A offers Nibble Mode as a high speed access mode.
Multiplexed address input permits the HM511 001 A to be packaged in standard,
18-pin plastic DIP, 20-pin plastic ZIP and 20-pin plastic SOJ.
3DDP16C

(DP-18C)

• FEATURES

HM51100 lAJP Series

• High Speed
Access Time ..................... 60 ns/70 ns/80 ns/l00 ns/120 ns (max)
• Low Power
Active ....................... 495 mW/440 mW/385 mW/330 mW/275 mW
Standby ........................................................ 11 mW
• Single 5V Supply (±10%)
• Nibble Mode Capability
• 512 Refresh Cycles .................................................. (8 ms)
• 2 Variations of Refresh
RAS Only Refresh
CAS Before RAS Refresh

3DCP20D

(CP-20D)
HM511001AZP Series

• PIN OUT
HM511001AP Series

HM511001AJP Series

Dm

TF*'

Don

V"

WE

Dou(

3DZP20

RAS

CAS

TF· '

NC

~C

A9

• PIN DESCRIPTION

Al

A3
Vee

A9

Nibble Address Input

A2

A6

Din

Data Input

A3

AS
A4

DOUI
RAS

Data Output

Vee

HM511001AZP Series

NC

8

Refresh Address Input

A7

(Top View)

WE 6

Ao-As

A8

(Top View)

4

Address Input

Al

0116-2

V"

Ao-A9
AO

0116-1

CAS 2

Function

Pin Name

AO

A2

(ZP-20)

I A9

Row Address Strobe

CAS

Row Address Input

WE
TF*l

Read/Write Input
Test Function

Vee

Power ( + SV)

Vss

Ground

Note: *1. TF pin can be connected with
any line or unconnected provided the voltage level of TF
pin must be kept lower than

3 Dout

5 Om
7 RAS

Vee

9 TF-I

+

O.SV.

NC 10
Al 12
A3 14
A4 16
A6 18
A8 20

11 AO
13 A2

15 Vee
17 A5
19 A7

0116-3

(Bottom View)

~HITACHI
98

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819' (415) 589-8300

HM511001A Series
• ORDERING INFORMATION
Part No.

Access Time

Package

Part No.

Access Time

Package

HM511001AP-6
HM51IOOIAP-7
HM5I1ooIAP-8
HM51IOOIAP-1O
HM5I1ooIAP-12

60ns
70ns
80ns
lOOns
120 ns

300 mil
18-pin
Plastic DIP
(DP-18C)

HM51IOOIAZP-6
HM511001AZP-7
HM51IooIAZP-8
HM511ooIAZP-10
HM51IOOIAZP-12

60ns
70ns
80ns
lOOns
120ns

400 mil
20-pin
Plastic DIP
(ZP-20)

HM5I1ooIAJP-6
HM5I1ooIAJP-7
HM5I1ooIAJP-8
HM5I1ooIAJP-1O
HM511oo1AJP-12

60 ns
70 ns
80 ns
lOOns
120ns

300 mil
20-pin
Plastic SOJ
(CP-20D)

• BLOCK DIAGRAM
Vi£"

~
~

.,

U;
0

~

~
Ii

~

~

Z56k
Memory

Cell

.. .
1

~

Array

~

E

U;
0

~

0
c

~

tilcn
00

Z56k

~

Word Driver

Row Decoder

~

~

~~

Memory

..
~

Cell

~

E E

'" '"
H

Array

E

Z56k
Memory

Cell

Array

If

Word Driver

11

Z56k

0

Memory

~

~

Cell

0

~
~

E

l;;

~

U;
0
:>

. '"

0

E

~

1

~

~

U;
~

~

E

'"

Array

j

E

~

,ji

Word Driver
Row Decoder

I Column Address Buffer I

I
AD

I

.. .

Word Driver
Row Decoder

Row Decoder

Row Address Buffer

GO

<:.- ~ <:.
,:; U;

'"

,ji

,ji

r>'

~

,

GO

§
'~" 8 '~"

,ji

r-"

.,

~

GO

~
<:.
- ,:; <:.U;
0
:>

Dou!

-

r--

GO

D,n

I/O
Buffer

A9

I

1
0116-4

• ABSOLUTE MAXIMUM RATINGS
Parameter

Symbol

Rating

Voltage on Any Pin Relative to VSS

VT

-1.0to

Supply Voltage Relative to Vss

Vee

-1.0to

Short Circuit Output Current

lout

Power Dissipation

PT

Operating Temperature

Topr

Storage Temperature

T stg

+ 7.0
+ 7.0

50
1.0

-

a to + 70
55 to + 125

Unit
V
V
rnA
W

·C
·C

@HITACHI
Hitachi America, Ltd.' Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

99

HM511001A Series
• ELECTRICAL CHARACTERISTICS
• Recommended DC Operating Conditions (TA = 0 to + 70"C)
Parameter
Supply
Input High Voltage
Input Low Voltage

Symbol

Min
4.5
2.4
-2.0

Vcc
VIR
VIL

Typ
5.0

Max
5.5
6.5
0.8

-

-

Unit
V
V
V

I. All voltages referenced to Vss.

Note:

• DC Characteristics (Vee = 5V ±10%, VSS = OV, TA = 0 to +70"C)
HM51100IA
Parameter

Symbol

-6
Min

Operating
Current

-

ICCI

Standby
Current

-7

-10

-8

-12

Min

Max

Min

Max

Min

Max

Min

Max

90

-

80

-

70

-

60

-

50

2

-

-

2

2

-

2

-

Test Condition

Unit

Max

RAS, CAS Cycling,
tRC = Min

mA

RASCAS =
Dout = High-Z
RAS,CAS ~
VCC - 0.2V
Dout = High-Z

mA

ICC2
I

-

I

-

I

-

I

-

I

1,2

VIR TTL

2

-

Note

Interface
CMOS
Interface

Refresh
Current

ICC3

-

90

-

80

-

70

-

60

-

50

mA

RAS Only Refresh,
tRC = Min

2

Standby
Current

Iccs

-

5

-

5

-

5

-

5

-

5

mA

RAS = VIR, CAS = VIV
Dout = Enable

I

Refresh
Current

ICC6

-

80

-

70

-

60

-

50

-

40

mA

CAS Before RAS
Refresh, tRC = Min

Nibble
Mode
Current

Iccs

-

70

-

70

-

50

-

50

-

40

mA

RAS = VIL,
CAS Cycling,
tNc = Min

Input
Leakage

ILl

-10

10

-10

10

-10

10

-10

10

-10

10

,.A

Output
Leakage

ILO

-10

10

-10

10

-10

10

-10

10

-10

10

p.A

Vin = Oto +7V
Dout = Disabled

Output
Levels

VOR

2.4

Vcc

2.4

Vcc

V

lout = -5mA

0

VCC
0.4

2.4

0.4

VCC
0.4

2.4

0

VCC
0.4

2.4

VOL

0

0.4

V

lout = 4.2mA

Notes:

0

0

1. Icc depends on output loading condition when the device is selected. ICC max
2. Address can be changed less than three times while RAS = VIL'
3. Address can be changed once or less while CAS = VIR.

IS

1,3

VIN = Oto +7V

specified at the output open condition.

• Capacitance (Vee = 5V ±10%, TA = 25'C)
Parameter
Input Capacitance

Symbol
Address, Data Input
Clocks

Output Capacitance
Notes:

Data Output

CII
CI2

Co

Typ

-

Max

Unit

Note

5

pF

I

7

pF

I

7

pF

1,2

1. Capacitance measured with Boonton Meter or effective capacitance measuring method.
2. CAS = VIR to disable D out'

.HITACHI
100

Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

HM511001A Series

=

• AC Characteristics (TA

0 to +70"C, Vee

=

=

5V ±10%, Vss

Test Conditions
Input Rise and Fall Times ......................... 5 ns
Input Timing Reference Levels ............... o.av, 2.4V

OV)l, 10

Output Load .........•...... 2 TTL Gate + CL (100 pF)
(Including Scope and Jig)

Read, Write, Read-Modify-Wrlte and Refresh Cycles (Common Parameter)
HM51100IA
Parameter

Symbol

-6

-7

Min
Random Read or Write
Cycle Time

tRC

RAS Precharge Time

tRP

RAS Pulse Width

tRAS

CAS Pulse Width
Row Address Setup Time

Max

Min

-

130

50

-

60

10000

teAS

20

tASR

Row Address Hold Time

-8

-10

Min

Max

Min

Max

-

Unit

Min

Max

220

-

ns

-

ns

-

160

50

-

70

-

80

70

10000

80

10000

100

10000

120

10000

ns

10000

20

10000

25

10000

25

10000

30

10000

ns

0

-

0

-

0

ns

tRAM

10

-

10

-

Column Address
Setup Time

tASC

0

-

0

Column Address
Hold Time

teAH

15

-

RAS to CAS
Delay Time

tRCD

20

RAS to Column
Address Delay Time

tRAD

120

-

-12

Max

190

-

90

Note

0

-

0

12

-

15

15

-

0

-

0

-

0

-

15

-

20

-

20

-

25

-

ns

40

20

50

22

55

25

75

25

90

ns

7

15

30

15

35

17

40

20

55

20

65

ns

II

20

ns

ns

RAS Hold Time

tRSH

20

25

-

ns

70

80

-

100

-

30

60

-

-

tCSH

-

25

CAS Hold Time

120

-

ns

CAS to RAS
Precharge Time

tcRP

10

-

10

-

10

-

10

-

10

-

ns

Transition Time
(Rise and Fall)

tT

3

50

3

50

3

50

3

50

3

50

ns

Refresh Period

tREF

-

8

8

-

8

8

-

8

ms

-

-

6

Read Cycle
HM51100IA
-6

Symbol

Parameter

Min

-7
Max

Min

-8

-10

-12

Max

Min

Max

Min

Max

Min

Max

Unit

Note

Access Time
fromRAS

tRAC

-

60

-

70

-

80

-

100

-

120

ns

2,3

Access Time
from CAS

tCAC

-

20

-

20

-

25

-

25

-

30

ns

3,4

Access Time
from Address

tAA

-

30

-

35

-

40

-

45

-

55

ns

3,4

Read Command
Setup Time

tRcS

0

-

0

-

0

-

0

-

0

-

ns

Read Command
Hold Time
Referenced to CAS

tRCH

0

-

0

-

0

-

0

-

0

-

ns

Read Command
Hold Time
Referenced to RAS

tRRH

10

-

10

-

10

-

10

-

10

-

ns

Column Address
toRAS
Lead Time

tRAL

30

-

35

-

40

-

45

-

55

-

ns

Output Buffer
Turn-off Delay

laFF

-

20

-

20

-

20

-

25

-

30

ns

5

eHITACHI
Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

101

HM511001A Series
Write Cycle
HM51l00IA
Parameter

Symbol

-6

-7

-8

-12

-10

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

Unit

Note

8

Write Command
Setup Time

twcs

0

-

0

-

0

-

0

-

0

-

ns

Write Command
Hold Time

tWCH

15

-

15

-

20

-

20

-

25

-

ns

Write Command
Pulse Width

twp

10

-

10

-

15

-

15

-

20

-

ns

Write Command to
RAS Lead Time

tRwL

20

-

20

-

25

-

25

-

30

-

ns

Write Command to
CAS Lead Time

tCWL

20

-

20

-

25

-

25

-

30

-

ns

tos

0

-

0

-

ns

9

20

-

20

-

0

tOH

-

0

15

-

0

25

-

ns

9

Unit

Note

Max

Min

Max

Data-in Setup Time
Data-in Hold Time

15

Read-Modify-Write Cycle
HM51l00IA
Parameter

Symbol

-6

-7

-8

-10

-12

Min

Max

Min

Max

Min

Max

Min

155

-

190

-

210

-

ns

-

80

90

110

8

-

25

25

-

30

-

ns

20

-

-

245

70

ns

8

35

-

40

-

45

-

55

-

ns

8

Unit

Note

Read-Write Cycle Time

tRWC

145

RAS to WE Delay Time

tRwO

60

CAS to WE Delay Time

tcwo

20

-

Column Address to
WE Delay Time

tAWD

30

-

Refresh Cycle
HM51100IA
Parameter

Symbol

-6

-7

-8

-10

-12

Min

Max

Min

Max

Min

Max

Min

Max

Min

Max

CAS Setup Time
(CAS Before RAS Refresh)

tcsR

10

-

10

-

10

-

10

-

10

-

ns

CAS Hold Time
(CAS Before RAS Refresh)

tcHR

15

-

15

-

20

-

20

-

25

-

ns

RAS Precharge to
CAS Hold Time

tRPC

10

-

10

-

10

-

10

-

10

-

ns

Max

Min

Nibble Mode Cycle
HM51l00IA
Parameter

Symbol

-6
Min

-7
Max

Min

-8
Max

Min

-10
Max

Min

-12

Unit

Max

Nibble Mode Access Time

tNAC

-

20

-

20

-

25

-

25

-

30

ns

Nibble Mode Cycle Time

tNC

40

-

40

-

45

-

45

-

50

-

ns

Nibble Mode CAS
Precharge Time

tNCP

10

-

10

-

10

-

10

-

10

-

ns

Pulse Width

tNCA

20

-

20

-

25

-

25

-

30

-

ns

Nibble Mode RAS
Hold Time

tNRSH

20

-

20

-

25

-

25

-

30

-

ns

Nibble Mode CAS

•
102

HITACHI

Hitachi America, Ltd.• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819. (415) 589-8300

Note

HM511001A Series
Nibble Mode Read-Modify-Wrile Cycle
HM51loo1A
Parameter

Symbol

-6

-7

Min

Max

Min

-8
Max

-12

-10

Unit

Min

Max

Min

Max

Min

Max

Nibble Mode Read-ModifyWrite Cycle Time

tNRWC

65

-

65

-

65

-

65

-

75

-

ns

Nibble Mode Write Command
CAS Lead Time

tNcwL

20

-

20

-

20

-

20

-

25

-

ns

Nibble Mode CAS to
WE Delay Time

tNCWD

20

-

20

-

20

-

20

-

25

-

ns

Notes:

Note

1. AC measurements assume tT = 5 ns.
2. Assumes that tRCD :S tRCD (max) and tRAD :S tRAD (max). If tRCD or tRAD is greater than the maximum recommended
value shown in this table, tRAC exceeds the value shown.
3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
4. Assumes that tRCD  AO-A8(AXO-AX8)
0116-9

• CAS Before RAS Refresh Cycle

CAS

Address

--------..1

//I///////////IIIIIIIT////IJI/

Dout ____________________________________________________________
__
Hlgh-Z

~ . Don'l care
0116-10

• Nibble Mode Read Cycle

tzZZl : Don't care
0116-11

@HITACHI
106

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

HM511001A Series
• Nibble Mode Write Cycle

RAS

CAS

Address

WE

D,"
Dout

Notes: 1. ~ . Don't care
2

tlt'cs~twcs(mln)
0116-12

• Nibble Mode Read-Modify-Write Cycle

Y,"

Y," ___++-_""

Y,"
Address

Din

Dou!

tZ2l : Don't care
0116-13

~HITACHI
Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819· (415) 589-8300

107

HM511001A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Supply Current (Active)
vs. Supply Voltage

'i-;

1.3

1.3.----.,---...,..--...,..----,

1.2

1.21----+----+----+---04

~

1.1

~

1.0

~

~

d

...

1V>

Supply Current (Active)
vs. Ambient Temperature

0.9

V

V

L

./

1.11----+----+----+---04

1.0F""--t--+==i===--i

./

V

0.91----+----+----+---04

o.sr----t---t---r----j

O.s
0.7
4.50

4.75

5.00

Supply Voltage Vee

5.25

0.7!:-0----::20=-----:4~0---::6~0--"""t.SO

5.50

Ambient Temperature Ta

(V)

Supply Current
(Active) vs. Frequency

Supply Current (Standby)
vs. Supply Voltage

10.0

1.3
CMOS inlerface

5.0

1.0
0.5

/

/

1.0

0.8

1.4

1

1.2
1.0
O.s

1

0.6

5.50

(V)

1.3
TTL inteJace

]

5.25

5.00

Supply Current (Standby)
vs. Ambient Temperature

1.6

~
~

4.75

V

V

Supply Voltage Vee

Supply Current (Standby)
vs. Supply Voltage

0

C

V

/

0.74.50

5.0 10.0

1.0

Frequency f (MHz)

,

/

1.1

/
0.5

I

1.2

0.9

o. 10.1

(Oe)

~

0.4 4.50

V
/'

V

/

1.2

1",

1.

1.0

............

0.9

~

0.8

4.75

5.00

Supply Voltage Vee

5.25

5.50

20

40

~
60

so

Ambient Temperature Ta (·C)

(V)

0116-14

•
108

HITACHI

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819. (415) 589·8300

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM511001A Series
RAS Access Time
Supply Voltage

VS.

1.3

1.3

~

1
.::
.

1.2

.!:!
Oi

E
0

~

~

1.1
1.0

~

~

r--

0.9

u
u

-- ---

§

~

r--

1-'-

«

I~

~
.5"
'""

J

I~

0.8
0.74.50

4.75

5.00

5.25

1.2
1.1

1.0

5.50

20

VS.

1.2

~

1.0

~
i:l

0.9

I~

0.8

«

80

CAS Access Time
Ambient Temperature

1.3

~
~

~

60

40

Ambient Temperature Ta (·e)

1.3

1.1

~

0.8

CAS Access Time
Supply Voltage

Ii

~

0.9

VS.

~

-

~

Supply Voltage Vee (V)

1
g

RAS Access Time
Ambient Temperature

VS.

0.74•50

1
-;

1.2

~

1.1

§

.........

~

4.75

u

-..........

5.00

E

r---

5.25

~

1.0

j

0.9

I~

0.8

5.50

V

.."..

~

V
20

V

40

60

80

Ambient Temperature Ta ("C)

Supply Voltage Vee (V)

0116-15

•

HITACHI

Hitachi America, Ltd.• Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005·1819. (415) 589·8300

109

HM511002A Series
1,048,576-word x l-bit CMOS Dynamic RAM
• DESCRIPTION

HM511002AP Series

The Hitachi HM511002A Series is a CMOS dynamic RAM organized 1,048,576word x 1-bit. HM511 002A has realized higher density, higher performance and various functions by employing 1.3 J.tm CMOS process technology and some new
CMOS circuit design technologies. The HM511 002A offers Static Column Mode as
a high speed access mode.
Multiplexed address input permits the HM511002A to be packaged in standard
18-pin plastic DIP, 20-pin plastic SOJ and 20-pin plastic ZIP.
3DDP18C

(DP-18C)

• FEATURES

HM511002AJP Series

• High Speed
Access Time ..................... 60 ns170 ns/80 ns/100 ns/120 ns (max)
• Low Power
Standby ........................................................ 11 mW
Active ....................... 495 mW/440 mW/385 mW/330 mW/275 mW
• Single 5V Supply (±10%)
• Static Column Mode Capability
• 512 Refresh Cycles .................................................. (8 ms)
• 2 Variations of Refresh
RAS Only Refresh
CAS Before RAS Refresh

3DCP20D

(CP-20D)
HM511002AZP Series

• PIN OUT
HM511002AP Series

HM511002AJP Sereis

Dm

v"

WE

DoUI

RAS

Cs"

TF·\

NC

NC

A9

3DZP20

(ZP-20)

• PIN DESCRIPTION
Pin Name
Ao-A9
Ao-As

Refresh Address Input

AO

A8

AI

A7

Din

Data Input

A2

A6

Data Output

A3

AS

Dou!
RAS

v"

A.

CS

Chip Select

0117-1

HM51l002AZP Series
2

V... 4
WE 6
NC

8

I A9

WE

Write Enable
Power Supply ( + 5V)

VSS
TF'1

Test Function

Note:

3 Dout

S Dm
7 RAS

9 TF- 1

Row Address Strobe

Vee

0117-2

(Top View)

(Top View)

cs

Function
Address Input

Ground

'1. TF pin can be connected
with any line or unconnected
provided the voltage level of
TF pin must be kept lower
than Vee + 0.5V.

NC 10
Al 12
A3 14
A4 16
A6 18
AS 20

11 AO
13 A2
15 Vee
17 AS
19 A7

0117-3

(Bottom View)

~HITACHI
110

Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

HM511002A Series
• ORDERING INFORMATION
Part No.

Access Time

Package

Part No.

Access Time

Package

HM511002AP-6
HM511002AP-7
HM511oo2AP-8
HM51Ioo2AP-1O
HM511OO2AP-12

60ns
70ns
80ns
lOOns
120 ns

300 mill8-pin
Plastic DIP
(DP-18C)

HM511oo2AZP-6
HM511oo2AZP-7
HM511002AZP-8
HM511oo2AZP-1O
HM511oo2AZP-12

60ns
70ns
80ns
lOOns
120ns

400 mil 20-pin
Plastic ZIP
(ZP-20)

HM511oo2AJP-6
HM511oo2AJP-7
HM511002AJP-8
HM511002AJP-1O
HM511002AJP-12

60 ns
70ns
80ns
lOOns
l20ns

300 mil 20-pin
Plastic SOJ
(CP-20D)

• BLOCK DIAGRAM

rr

lr.
~

III

0

"-

-

U;
0

::;

256k

~

Memory

z

I~E

<

.."

Cell

011

U;
0
::;
~

Array

ci

E

<

I:

ell

.,...

.~

C5

.

~

~

III

0

0

"-

-

oil

011

~

U;
::;
~

Cell

c
E

ci

Array

c

::J

0

E

E E

<
I:

III

III

r-'\ Word Driver
-v Row Decoder

00

::; ::;
~~
ci ci

< <

.." ."
I:

".. 8 ".
I:

-

"-

(i)(i)

256k
Memory

.,8

",

"

------1

.
III

256k
Memory
Cell
Array

I:

Row Address Buffer

l'

C5
oil

-

"011

256k

!

.,
c

::;
~

Cell

E

c
E

ci

Array

ci

0
0

::J

0

E

Memory

E

I:

III

III

,

<

."
I:

<

I:

U;
0
::;
~
ci

ell

8 ".
"
"

I
AO ...... A9

~

0

U;

",

Word Driver
Row Decoder

I
I

.~

..
III

~

."

"

I

U;

<

ell ell

Word Driver
Row Decoder

011

.,...

Din
Dout

Word Driver
Row Decoder

Column Address Buffer

I

I
0117-4

~HITACHI
Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

111

HM511002A Series
• ABSOLUTE MAXIMUM RATINGS
Parameter

Symbol

Rating

Voltage on Any Pin Relative to Vss

VT

-1.0to +7.0

Unit
V

Supply Voltage Relative to Vss

Vee

-1.0to +7.0

V

Short Circuit Output Current

lout

50

rnA

Power Dissipation

PT

1.0

W

Operating Temperature

Topr

Oto + 70

°C

Storage Temperature

T stg

- 55 to + 125

°C

• ELECTRICAL CHARACTERISTICS
• Recommended DC Operating Conditions (TA = 0 to + 70·C)
Symbol

Min

Typ

Max

Unit

Supply Voltage

Parameter

Vee

4.5

5.0

5.5

V

Input High Voltage

VIH

2.4

-

6.5

V

Input Low Voltage

VIL

-2.0

-

0.8

V

Note

I. All voltages referenced to Vss.

Note:

• DC Electrical Characteristics (Vee = 5V ±10%, VSS = OV, TA = 0 to +70·C)
Parameter
Operating
Current

Standby
Current

Symbol

Ieel

HM5IIOO2A
-6

HM511002A
-7

HM5IIOO2A
-8

HM511002A

Min

Min

Min

Min

Max

Max

Max

HM511002A
-12

-10
Max

Min

Unit

Test Conditions

Note

Max

-

90

-

80

-

70

-

60

-

50

-

2

-

2

-

2

-

2

-

2

-

I

-

I

-

I

-

I

-

I

rnA

rnA

IeC2

RAS, CS Cycling
tRe = Min

1,2

TTL Interface
RAS,CS = VIH
D out = High-Z
CMOS Interface
RAS, CS ~ Vee - 0.2V
D out = High-Z

Refresh
Current

Iec3

-

90

-

80

-

60

-

50

-

45

rnA

RAS Only Refresh
tRC = Min

2

Standby
Current

ICCS

-

5

-

5

-

5

-

5

-

5

rnA

RAS = VIH, CS = VIL,
Dout = Enable

I

Refresh
Current

ICC6

-

80

-

70

-

60

-

50

-

40

rnA

CS Before RAS Refresh,
tRC = Min

Static Column
Mode Current ICC9

-

80

-

70

-

60

-

50

-

40

rnA

tsc = Min

Input
Leakage

ILl

-10

10

-10

10

-10

10

-10

10

-10

10

p.A

VIN=Oto+7V

Output
Leakage

ILO

-10

10

-10

10

-10

10

-10

10

-10

10

p.A

Vout = Oto +7V,
D out = Disable

Output
Levels

VOH

2.4

VCC

2.4

VCC

2.4

VCC

2.4

VCC

2.4

VCC

V

lout = -5mA

VOL

0

0.4

0

0.4

0

0.4

0

0.4

0

0.4

V

lout = 4.2 rnA

Notes:

3

I. Ice depends on output loading condition when the device is selected. Iec max is specified at the output open condition.
2. Address can be changed less than three times while RAS = V IL'
3. Address can be changed once or less while CS = VIH.

• Capacitance (Vee = 5V ±100/0 TA = 25·C)
Parameter
Input Capacitance
Output Capacitance
Notes:

Symbol

Typ

Max

Unit

Note

Address, Data Input

Cn

5

pF

I

Clocks

CI2

7

pF

I

Data Output

Co

-

7

pF

1,2

I. Capacitance measured with Boonton Meter or effective capacitance measuring method.
2. CS = VIH to disable D out.

~HITACHI
112

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

HM511002A Series
• AC Characteristics (TA = 0 to +70'C, Vee = 5V ±10%, Vss = 0V)1, 17
Test Conditions

Input Rise and Fall Times
5 ns
Input Timing Reference Levels
O.BV, 2.4V
Output Load
2 TTL Gates + CL (100 pF)
(Including scope and jig)
Read, Write, Read-Modify-Write and Refresh Cycle (Common Parameters)
Parameter

Symbol

HM51l002A-6

HM511002A-7

HM511002A-8

Min

Max

Min

Min

Max

Min

Max

HM511002A-1O
Max

HM511002A-12
Min

Max

Unit

Random Read or
Write Cycle Time

tRC

120

-

130

-

160

-

190

-

220

-

ns

RAS Precharge
Time

tRP

50

-

50

-

70

-

80

-

90

-

ns

Note

RAS Pulse Width

tRAS

60

10000

70

10000

80

10000

100

10000

120

10000

ns

CS Pulse Width

tsp

20

10000

20

10000

25

10000

30

10000

30

10000

ns

Row Address
Setup Time

tASR

0

-

0

-

0

-

0

-

0

-

ns

Row Address
Hold Time

tRAH

10

-

10

-

12

-

15

-

15

-

ns

Column Address
Setup Time

tASW

0

-

0

-

0

-

0

-

0

-

os

Column Address
Hold Tune

tAHW

15

-

15

-

20

-

25

-

25

-

os

RAS to CS
Delay Time

tRCD

20

40

20

50

22

55

25

70

25

90

ns

8

RAS to Column
Address Delay Time

tRAD

15

30

15

35

17

40

20

50

20

65

ns

9

20

RAS Hold Time

tRSL

20

30

80

100

-

120

-

ns

70

-

-

60

-

30

tCSH

-

25

CS Hold Time
CStoRAS
Pre-charge Time

tSRS

10

-

10

-

10

-

10

-

10

-

ns

Transition Time
(Rise to Fall)

tr

3

50

3

50

3

50

3

50

3

50

ns

Refresh Period

tREF

-

8

8

-

8

8

-

8

ms

-

-

ns

7

Read Cycle
Parameter

Symbol

HM511002A-6
Min

Max

HM51l002A-7
Min

Max

HM51l002A-8
Min

Max

HM511002A-1O
Min

Max

HM511002A-12
Min

Max

Unit

Note

Access Time from RAS

tRAC

-

70

120

ns

2,3

-

20

25

-

-

20

-

100

tACS

-

60

Access Time from CS

30

-

30

ns

3,4

Access Time
from Address

tAA

-

30

-

35

-

40

-

50

-

55

ns

3,5,14

Read Command
Setup Time

tRCS

0

-

0

-

0

-

0

-

0

-

os

Read Command Hold
Time to CS

tRcH

0

-

0

-

0

-

0

-

0

-

ns

Read Command Hold
Time to RAS

tRRH

10

-

10

-

10

-

10

-

10

-

ns

Column Address to
RAS Lead Time

tRAL

30

-

35

-

40

-

50

-

55

-

ns

80

~HITACHI
Hitachi America, Ltd.' Hitachi Plaza' 2000 Sierra Point Pkwy.' Brisbane, CA 94005-1819' (415) 589-8300

113

HM511002A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Read Cycle (continued)
Parameter

HM511oo2A-6

Symbol

HM511oo2A-8

HM511002A-7

Min

Max

Min

Max

HM511002A-1O

HM511oo2A-12

Min

Max

Min

Max

Min

Max

Unit

Note
16

RAS to Column Address
Hold Time

tAHR

15

-

15

-

15

-

15

-

15

-

ns

Output Hold Time
from Address

tAOH

5

-

5

-

5

-

5

-

5

-

ns

Output Buffer
Tum-olTTime

tOFF

-

20

-

20

-

20

-

25

-

30

ns

60

-

70

-

80

-

100

-

120

-

ns

Column Address Hold Time
tAR
to RAS on Read

6

Write Cycle
Parameter

Symbol

HM511002A-1O

HM511oo2A-6

HM511oo2A-7

HM511002A-8

Min

Max

Min

Max

Min

Max

Min

Max

HM511002A-12
Min

Max

Unit

Note
10

Write Command
Setup Time

twcs

0

-

0

-

0

-

0

-

0

-

ns

Write Command
Hold Time

tWCH

15

-

15

-

20

-

25

-

25

-

ns

Write Command
Hold Time to RS

tWCR

55

-

65

-

75

-

95

-

115

-

ns

Write Command
Pulse Width

twp

10

-

10

-

15

-

15

-

20

-

ns

Write Command to
RAS Lead Time

tRWL

20

-

20

-

25

-

25

-

30

-

ns

Write Command to
CSLeadTime

tCWL

20

-

20

-

25

-

25

-

30

-

ns

Data-in
Setup Time

tDS

0

-

0

-

0

-

0

-

0

-

ns

11

Data-in
Hold Time

tDH

15

-

15

-

20

-

25

-

25

-

ns

11

Data-in Hold
TimetoRAS

tDHR

55

-

65

-

75

-

95

-

115

-

ns

Column Address Hold
Time to RAS or Write

tAWR

55

-

65

-

75

-

95

-

115

-

ns

Read-Modify-Wrlte Cycle
Parameter

Symbol

HM511oo2A-6

HM511oo2A-7

Min

Max

Min

Max

HM511oo2A-1O

HM511002A-12

Min

Max

Min

Max

Min

Max

HM511oo2A-8

Unit

Note

Read-Write
Cycle Time

tRwC

145

-

155

-

190

-

220

-

255

-

ns

RAS to WE
Delay Time

tRWD

60

-

70

-

80

-

100

-

120

-

ns

10

CStoWE
Delay Time

tCWD

20

-

20

-

25

-

30

-

30

-

ns

10

Column Address to
WE Delay Time

tAWD

30

-

35

-

40

-

50

-

55

-

ns

10

Output Hold Time
from WE

tWOH

0

-

0

-

0

-

0

-

0

-

ns

@HITACHI
114

Hitachi America, Ltd .• Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1819. (415) 589-8300

HM511002A Series
Refresh Cycle
Parameter

HM511002A-7

HM511002A-6

Symbol

Min

Max

Min

HM511002A-8

Max

Max

Min

HM511002A-1O
Min

Max

HM511002A-12
Min

Max

Unit

CS Setup Time
(CS Before RAS Refresh)

tCSR

10

-

10

-

10

-

10

-

10

-

ns

CSHoldTime
(CS Before RAS Refresh)

tCHR

15

-

15

-

20

-

20

-

25

-

ns

RAS Precharge to CS
Hold Time

tZRH

10

-

10

-

10

-

10

-

10

-

ns

Note

SC Mode Cycle
Parameter

Symbol

HM511002A-6

HM511002A-7

HM511002A-8

Min

Max

Min

Max

Min

Max

HM511002A-1O
Min

-

40

-

45

-

55

Max

HM511002A-12
Min

Max

Unit

SCMode
Cycle Time

tsc

35

SC Mode RAS
Pulse Width

tRASC

-

RAS to Second WE
Delay Time

tRSWD

70

-

80

-

90

-

110

-

135

-

ns

SCModeCS
Precharge Time

tSI

10

-

10

-

10

-

10

-

15

-

ns

Write Invalid Time

tWI

10

-

10

-

10

-

10

-

15

-

ns

100000

-

100000

-

100000

-

-

60

100000

-

-

Note

ns

100000

ns

SC Mode Read-Modify-Write and Mixed Cycle
Parameter

Symbol

HM511002A-6

HM511002A-7

HM511 002A-8

Min

Max

Min

Max

Min

Max

HM511002A-1O
Min

Max

HM511002A-12
Min

Max

Unit

Note

SC Mode Cycle Time
on Read-Write

tSRW

70

-

80

-

90

-

105

-

120

-

ns

12

Access Time from
Previous WE

tALW

-

65

-

75

-

85

-

100

-

115

ns

3, 13

Previous WE to Column
Address Delay Time

tLWAD

20

35

20

40

25

45

25

50

30

60

ns

15

Column Address Hold
Time to Previous WE

tAHLW

65

-

75

-

85

-

100

-

115

-

ns

Output Enable Time
from WE

tow

-

25

-

25

-

30

-

30

-

35

ns

@HITACHI
Hitachi America, Ltd.· Hitachi Plaza. 2000 Sierra Point Pkwy.· Brisbane, CA 94005-1S19· (415) 5S9-S300

115

HM511002A Series
Notes:

1. AC measurements assume tT = 5 ns.
2. Assumes that tRCD :S tRCD (max) and tRAD :S tRAD (max). If tRCD or tRAD is greater than the maximum recommended
value shown in this table, tRAC exceeds the value shown.
3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
4. Assumes that tRCD O!: tRCD (max), tRAD :S tRAD (max).
5. Assumes that tRCD :S tRCD (max), tRAD O!: tRAD (max).
6. tOFF (max) is defined as the time at which the output achieves the open circuit condition and is not referenced to output
voltage levels.
7. Transition times are measured between VIH and VIL.
8. Operation with the tRCD (max) limit insures that tRAC (max) can be met, tRCD (max) is specified as a reference point only,
if tRCD is greater than the specified tRCD (max) limit, then access time is controlled exclusively by tACS.
9. Operation with the tRAD (max) limit insures that tRAC (max) can be met, tRAD (max) is specified as a reference point only,
if tRAD is greater than the specified tRAD (max) limit, then access time is controlled exclusively by tAA'
10. twcs, tRWD, tcwD and tAwD are not restrictive operating parameters. They are included in the data sheet as electrical
characteristics only: if twcs O!: twcs (min), the cycle is an early write cycle and the data out pin will remain open circuit
(high impedance) throughout the entire cycle; iftRWD O!: tRWD (min), tCWD O!: tcwD (min) and tAWD O!: tAWD (min), the
cycle is a read-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
11. These parameters are referenced to CS leading edge in early write cycles and to WE leading edge in delayed write or readmodify-write cycles.
12. tSRw (min) = tAWD (min) + tLwAD (max) + tT'
13. Assumes that tLWAD :S tLWAD (max). If tLWAD is greater than the maximum recommended value shown in this table,
tALW exceeds the value shown.
14. Assumes that tLWAD O!: tLWAD (max).
15. Operation with the tLwAD (max) limit insures that tALW (max) can be met, tLWAD (max) is specified as a reference point
only; iftLWAD is greater than the specified tLwAD (max) limit, then access time is controlled exclusively by tAA'
16. tAHR is defined as the time at which the column address hold.
17. An initial pause of 100 I1-s is required after power-up followed by eight or more initialization cycles (any combination of
cycles containing RAS clock such as RAS only refresh). If internal refresh counter is used, eight or more CAS before RAS
refresh cycles are required .

• TIMING WAVEFORMS
• Read Cycle

"

iRAS

/

1\

tNI'

1M'

"..

I.,.

tACO

lCSH

/

1\

~

-

,--IRAH

Address

7lJ

Row

tRAI

t!fAD

@

l\--

~

Kllillil

Column

J
/////111/

-~

i

_L1(!.1 I I I I

lACS

IAA

~
Valid Output

Oout

1>
I

fRA(

r!IlJlJ: Don't Care
0117-5

~HITACHI
116

Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

HM511002A Series
• Early Write Cycle
IRe

tus
I.

L

l~CD

Address

'weB

twes

tD'

D,n

Dout

Valid Input

High·Z*2
Notes)

* 1.1ZZZZ2I : Dolo"
.2. Iwcs ~ t.'cs

Care

(min)
0117-6

~HITACHI
Hitachi America, Ltd,. Hitachi Plaza· 2000 Sierra Point Pkwy,· Brisbane, CA 94005·1819· (415) 589-8300

117

HM511002A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Read-Modify-Write Cycle

Add....

D,o

0..,

1 [17Zlj

u"" c...

0117-7

• RAS Only Refresh Cycle

'Be

Address

HIch-z
Notes) el.l?lZl2l: Doo', Care
.2. Refresh address AO·AS (AXO·AXS)
0117-8

eHITACHI
118

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589·8300

HM511002A Series
• CAS Before RAS Refresh Cycle
IIC

',AI
ICH'

Address

I!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
IIiab-Z

Dout

IZZZ23 : Don't cue

• Static Column Mode Read Cycle

Addres.

I ••

Dout
I ..

fZZ!ZZI : Don't Care
0117-10

eHITACHI
Hitachi America, Ltd. • Hitachi Plaza. 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

119

HM511002A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • Static Column Mode Write Cycle (1)

'RAse

RAS
tRCD

CS

Address

Din

Dout
Notes) *1 ~ : Don', Care

*2 t ..csOl:torcs(min)
0117-11

~HITACHI
120

Hitachi America, Ltd .• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819· (415) 589-8300

HM511002A Series
• Static Column Mode Write Cycle (2)

Addre••

Din

Dout

Notes) "I. ~ : Don'\ c....
*2. twel ~ twcs(min)
0117-12

@HITACHI
Hitachi America, Ltd.• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

121

HM511002A Series
• Static Column Mode Read-Modify-Write Cycle

Address

Din

Dout

E2ZI : Don't care.
0117-13

• Static Column Mode Mixed Cycle
t ule

Address

Din

Dout

I·

.,.

Early Write

Read

.1

Read-Modify-Write

t'L2l : Don't care.
0117-14

•
122

HITACHI

Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - HM511002A Series
SUPPLY CURRENT (ACTIVE)
VS. SUPPLY VOLTAGE

SUPPLY CURRENT (ACTIVE)
VS. AMBIENT TEMPERATURE

1.3

1.3 r---r----,..------r----,

1.2

1.21---1---1r-----+---i

1.1

V~

1.0

./

l.l1---I---1r-----+---i
1.0F""--t-.....f-=~;;:::::::-1

'/

./

0.9

0.9/----t---1---t---l

V

0.8
0.7

0.81---1----1-----+--...;
4.50

4.75

5.00

Supply Voltage Vee.

0.7':-0---:2~0--...,4.,.0---:!-.60,....---:'80·

5.50

5.25

Amblent Temperature To rel

(V}

SUPPLY CURRENT (ACTIVE)
VS. FREQUENCY

SUPPLY CURRENT (STANDBY)
VS. SUPPLY VOLTAGE

10.0

1.3
CMOS

5.0

]
~
0

3
~

J

1.0
0.5

iJi

0.1

/

V

1.0

0.8

0.5

f

1.2

~

1.0

!...

0.8

Ji

0.6

u

8:

~

0.4 4.50

V

5.25

5.50

SUPPLY CURRENT (STANDBY)
VS. AMBIENT TEMPERATURE

/

1.2

]

1 ~
~
J
1
1.1

/

3

1.0

0.9
0.8

4.75

5.00

Supply Voltage Vee (V)

/V

3

/'

V

/

1.3

onte~.ce

1.4

1

4.75

(MHz)

SUPPLY CURRENT (STANDBY)
VS. SUPPLY VOLTAGE

]

/

0.7 4.50

5.0 10.0

10

Frequency

TTL

/'

0.9

0.1

I

1.1

/

1.6

I~terf.ce

1.2

5.00

5.25

5.50

20

.............

'"

40

~
60

Ambient Temperature To (-C)

Supply Voltage Vee (V)

8Q
0117-15

.HITACHI
Hitachi America, Ltd.• Hitachi Plaza. 2000 Sierra Point Pkwy.• Brisbane, CA 94005-1819. (415) 589-8300

123

HM511002A Series - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - RAS ACCESS TIME

RAS ACCESS TIME

vs. SUPPL Y VOLTAGE

vs. AMBIENT TEMPERATURE
1. 3

1. 3
1. 2

1. 1
1.0

~

---

r-- r--

0.9
0.8

0.7 4 .50

4.75

5.00

525
Vic

Supppiy Voltage

~

1
z

1. 1

-

1. 01---

~

g o. 9
0(

1~

5.50

o. 8
o. 7

,::;

CS ACCESS TIME

...........

'--.......

--..

,0(

0.8

4.75

5.25

5.00

Supppiy Voltage

---

V((

5.50

/
9

,/

V

8

o. 7 0

20

40

ADDRESS ACCESS TIME

vs. AMBIENT TEMPERATURE

1. 3

1.3

]

1. 2

1.2

1
z

1. 1

~

1. 0

~

o.9

/

./

1. 1

r--

0(

80

60

Ambient Temperature Ta ('e)

(V)

ADDRESS ACCESS TIME
vs. SUPPLY VOLTAGE

..............

/

/

1. 1

0.9

,::;

80

vs. AMBIENT TEMPERATURE

"
4.50

60

CS ACCESS TIME

~

0.7

40

vs. SUPPLY VOLTAGE

1.2

1.0

20

Ambient Temperature Ta ('C)

(VI

1.2

1.1

- L---L---

,::;

1.30

~

li:j

~
i

1.3

u

~

1. 2

---- r--

/

1.0
0.9

V

/

~

~

~

o. 8
o. 7

0.8

4.50

4.75

5.00

5.25

5.50

20

40

AmbIent Temperature Ta

Suppply Voltage Vee (V)

60
('C)

~HITACHI
124

Hitachi America, Ltd.• Hitachi Plaza· 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819· (415) 589-8300

80
0117-16

HM511664 Series

Preliminary

65,536·Word x 16·Bit Dynamic Random Access Memory
• DESCRIPTION

HM511664JP Series

The Hitachi HM511664 are CMOS dynamic RAM orga·
nized as 65,536·word x 16·bit. HM511664 have realized
higher density, higher performance and various functions by
employing 0.8 ",m CMOS process technology and some
new CMOS circuit design technologies. The HM511664 offer
Fast Page Mode as a high speed access mode.
Multiplexed address input permits the HM511664 to be
packaged in standard 400 mil 40·pin plastic SOJ, standard
475 mil 40·pin plastic ZI P.

3DCP4QO

(CP.40D)

• FEATURES

HM511664ZP Series

• Single 5V (±10%)
• High Speed
Access Time ................... 80 ns/100 ns (max)
• Low Power Dissipation
Active Mode ................................. TBD
Standby Mode ........................ 11 mW (max)
• Fast Page Mode Capability
• Byte Write Capability
• 256 Refresh Cycles ............................. (4 ms)
• 3 Variations of Refresh
RAS Only Refresh
CAS Before RAS Refresh
Hidden Refresh

3DZP40

(ZP·40)

• ORDERING INFORMATION
Part No.

Access Time

Package

HM511664JP ·8
HM511664JP·1O

80ns
lOOns

400 mil 4O·pin
Plastic SOJ
(CPAOD)

HM511664ZP·8
HM511664Zp·1O

80ns
lOOns

475 mil40·pin
Plastic ZIP
(ZP·40)

• PIN DESCRIPTION
Pin Name

Function

I/Ol-I10 16

Data·inlData·out

RAS

Row Address Strobe

CAS

Column Address Strobe

UW

Read/Upper Byte Write Enable

LW

Read/Lower Byte Write Enable

OE

Output Enable
Power (+ 5V)
Ground

NC

No Connection

V"CJl
I101CJZ
1/0ZQ3
1I03Q4
1/04Q5

40pV,.
39~II016
38 II01S
17, 1/014
36PIl013

~~~~ ~~

~~ltJ ~~~~~

3Z

NC~10

Address Input
Refresh Address Input

Vss

HM511664JP Series

1I08 d9

Ao- A7

Vee

• PIN OUT

Vss 11
UW lZ
Liid13
AAS"d14
AOej15
A1q16
AZQ17

II09

31 NC
30 V"
Z9 ill
Z8tJOE
Z7QNC
Z6PNC
Z5PNC
Z4pA7

A3Q18
Z3§A6
A4q19
ZZ AS
vccej",z-,-O_ _-"Z",l V"

HM511664ZP Series
~lNC
!-

1I09
_3
1/011 ~5
1I0ll 6
7
1/015 8,....:...-=::..~9
"o::s !.ul== ---,

1/010
1/0ll
1/014
1I016

!/?Z
!:~b=::r'
:-=1~~15 ~~~1
. ',,3 .'
1/04
1/05 16
1/07 18
!!f ZO

~ZZ

RAS Z4

17 II06
19 Iloa
'21 Vee
23 LW

A1 Z6
----;Z5 AO
A3 Z 8 h = Z 7 AZ
Z9 A4

'"'[U""
NC 3Z
34

AS

~ 36,
OE 38
V,. 40

I
33 V"
- 3 5 A6
37 NC
:.-.-139 CAS

0074-1
0074-2

(Top View)

(Bottom View)

~HITACHI
Hitachi America, Ltd. • Hitachi Plaza • 2000 Sierra Point Pkwy.• Brisbane, CA 94005·1819 • (415) 589·8300

125

HM511664 Series
• TRUTH TABLE
Inputs

I/O

RAS

CAS

LW

UW

OE

I/OI-I/Os

H
L
L
L
L
L
L

H
H
L
L
L
L
L

H
H
H
L
H
L
L

H
H
H

H
H
L
H
H
H
H

High-Z
High-Z
Dout
Din
Don't Care
Din
High-Z

H

L
L
L

Operatiou
I/0 9-IIOI6
High-Z
High-Z
Dout
Don't Care
Din
Din
High-Z

Standby
Refresh
Read
Lower Byte Write
Upper Byte Write
Word Write

• ABSOLUTE MAXIMUM RATINGS
Parameter

Symbol

Value

Voltage on Any Pin Relative to Vss

VT

-\.Oto

Supply Voltage Relative to Vss

Vee

-\.Oto

Short Circuit Output Current

lout

50

Power Dissipation

PT

Operating Temperature

Topr

Storage Temperature

Tstg

Unit

+ 7.0
+ 7.0

V
V
rnA

0.8

W

+ 70
55 to + 125

°C

Oto
-

°C

• ELECTRICAL CHARACTERISTICS
• Recommended DC Operating Conditions (TA = 0 to
Parameter

Symbol

Min

Typ

Max

Unit

Vss

0

0

0

V

Vee

4.5

5.0

5.5

V

Vm

2.4

6.5

V

I

(I/Oi Pin)

VIL

-0.5

0.8

V

1,2

(Others)

VIL

-\.O

-

0.8

V

1,2

Supply Voltage
Input High Voltage
Input Low
Voltage
Notes:

I
I

+ 70"C)
Note
I

\. All voltage referenced to Vss.

2. The device will withstand undershoots to the - 2V level with a maximum pulse width of 20 ns at the - 1.5V level. (See
figure \.)

-1.0 V
-1.5 V

i'l-')