1991_Datel_Data_Book_Vol_1_Components 1991 Datel Data Book Vol 1 Components

User Manual: 1991_Datel_Data_Book_Vol_1_Components

Open the PDF directly: View PDF PDF.
Page Count: 298

Download1991_Datel_Data_Book_Vol_1_Components 1991 Datel Data Book Vol 1 Components
Open PDF In BrowserView PDF
COMPANY HISTORY
Founded in 1970, DATEL is a multinational company located approximately 35 miles
south of Boston in Mansfield, Massachusetts. Our modern 180,000 square-foot
facility houses our admi.nistrative offices, components and sub-systems engineering
groups, modular and sUb-systems production facilities, and the most modern thinfilm and thick-film hybrid production facility in the industry. DATEL's hybrid manufacturing operation is a fully certified MIL-STD-1772 facility, supporting our high quality
standards.
Our worldwide sales network extends to every major data acquisition product
marketplace. The people who implement this sales network are skilled professionals
dedicated to providing our customers with the highest possible standards of data
acquisition products available today.

PRODUCT INFORMATION
DATEL offers one of the industry's broadest data acquisition product lines, meeting
the rapidly growing need for components and sUb-systems to interface with computers in industrial, commercial, scientific and military applications. These products
employ five basic technologies: monolithic CMOS, monolithic bipolar, thin-film
hybrid, thick-film hybrid and discrete component circuits. Many products employ a
combination of these technologies to achieve higher levels of performance and
complexity. The present product lines include: data converters, sample-hold
amplifiers, analog multiplexers, amplifiers, data acquisition sub-systems, computer
analog I/O boards, process monitor/controllers, digital panel meters, thermal
printers, digital calibrators and power supplies.

COPYRIGHT © DATEL, INC 1991
ALL RIGHTS RESERVED
PRINTED IN U.S.A.

PRODUCT INDEX

Section 1. Sampling Analog-to-Digital Converters

Section 4. Sample/Hold Amplifiers

ADS-lll ...................................................................... 1-1
ADS-112 ...................................................................... 1-5
ADS-117 ...................................................................... 1-9
ADS-118 .................................................................... 1-13
ADS-120 .................................................................... 1-17
ADS-130 .................................................................... 1-19
ADS-131 .................................................................... 1-25
ADS-132 .................................................................... 1-31
ADS-193 .................................................................... 1-35
ADS-21 PC ................................................................. 1-39
ADS-924 .................................................................... 1-43
ADS-928 .................................................................... 1-47
ADS-930 .................................................................... 1-51
ADS-941 .................................................................... 1-53
ADS-942 .................................................................... 1-57
ADS-944 .................................................................... 1-61
ADS-945 .................................................................... 1-63
ADS-976 .................................................................... 1-65

SHM-20 ....................................................................... 4-1
SHM-30 ....................................................................... 4-3
SHM-40 ....................................................................... 4-5
SHM-43 ....................................................................... 4-7
SHM-45 ..................................................................... 4-11
SHM-4860 ................................................................. 4-13
SHM-6 ....................................................................... 4-15
SHM-7 ....................................................................... 4-17
SHM-91 ..................................................................... 4-19
SHM-945 ................................................................... 4-21
SHM-HU .................................................................... 4-23
SHM-49 ..................................................................... 4-25
MSH-840 ................................................................... 4-27

Section 2. Analog-to-Digital Converters
ADC-207 ...................................................................... 2-1
ADC-208 ...................................................................... 2-5
ADC-228 ...................................................................... 2-9
ADC-304 .................................................................... 2-13
ADC-500/505 ............................................................. 2-17
ADC-508 .................................................................... 2-21
ADC-511 .................................................................... 2-25
ADC-520/521 ............................................................. 2-29
ADC-530 .................................................................... 2-33
ADC-908 .................................................................... 2-37
ADC-914 .................................................................... 2-41
ADC-HC12B .............................................................. 2-47
ADC-HS12B ............................................................... 2-51
ADC-HX/HZ Series .................................................... 2-55

Section 5. Hybrid Data Acquisition Systems
HDAS-16/8 .................................................................. 5-1
HDAS-524/528 ............................................................ 5-7
HDAS-534/538 .......................................................... 5-11
HDAS-75/76 .............................................................. 5-15
HDAS-950/951 .......................................................... 5-19

Section 6. Analog Multiplexers
MV Series ................................................................... 6-1
MX Series ................................................................... 6-5
MX-818/1616 .............................................................. 6-9
MX-826 ..................................................................... 6-13
MX-850 ..................................................................... 6-15

Section 7. Amplifiers
AM-1435 ..................................................................... 7-1
AM-500 ....................................................................... 7-3
AM-551 ....................................................................... 7-5
ROJ-20,lK .................................................................. 7-7

Section 3. Digital-to-Analog Converters
Section 8. Active Filters
DAC-HF SERIES ......................................................... 3-1
DAC-HK SERIES ......................................................... 3-5
DAC-HP SERIES ......................................................... 3-9
DAC-HZ SERIES........................................................ 3-13

For Immediate Assistance, Dial 1-800·233·2765

FLJ-ACOl .................................................................... 8-1
FLJ-ACRl ................................................................... 8-3
FLJ-Dl, D2, DC .......................................................... 8-5
FLJ-D5, D6 .................................................................. 8-9
FLJ-R Series ............................................................. 8-11
FLJ-UR Series .......................................................... 8-13
FLJ-VL, VH, VB ......................................................... 8-17
FLT-Cl ...................................................................... 8-21
FLT-DL Series ........................................................... 8-25
FLT -U2 ...................................................................... 8-29

HOW TO USE THIS DATABOOK

If you know the MODEL NUMBER, use the Product Index on the first page.
If you know the PRODUCT TYPE, refer to the Subject Index on page two to determine the proper
section, then refer to the SELECTION GUIDE TABLE at the beginning of that section.
If you wanrPRICE and AVAILABILITY information contact your local DATEL salesperson or representative.
For all OTHER INFORMATION, such as New Product Highlights, Available Literature, available
High Reliability Product Programs, a listing of available DESC drawings, Substitution Guide and
Ordering Guide, use the Subject Index.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-3000rrLX 174388/FAX (508) 339-6356

GENERAL INDEX
Other DATEL Literature ............................................................................. Page iv
New Products ............................................................................................. Page

v

Section 1. Sampling Analog-to-Digital Converters ................................ Page 1-1
Section 2. Analog-to-Digital Converters ................................................. Page 2-1
Section 3. Digital-to-Analog Converters ................................................. Page 3-1
Section 4. Sample/Hold Amplifiers .......................................................... Page 4-1
Section 5. Hybrid Data Acquisition Systems .......................................... Page 5-1
Section 6. Analog Multiplexers ................................................................ Page 6-1
Section 7. Amplifiers ................................................................................. Page 7-1
Section 8. Active Filters ............................................................................ Page 8-1
Other DATEL Product Lines
Power Supplies .................................................................................... Page PS-1
Digital Voltage Calibrators ................................................................... Page DVC-1
Digital Panel Meters ............................................................................. Page DPM-1
Process Monitors ................................................................................. Page PM-1
Thermal Printers ................................................................................... Page TP-1
Data Conversion I/O Boards ................................................................ Page I/OB-1

Appendixes
Appendix A High Reliability Programs ................................................ Page A-1
Appendix B DESC Standard Military Drawing Program ...................... Page B-1
Appendix C Older Products Still Available .......................................... Page C-1
Appendix D Substitution List ............................................................... Page D-1

Ordering Guide ........................................................................................... Back Cover

For Immediate Assistance, Dial 1-800-233-2765

iii

AVAILABLE LITERATURE
DATEL'S ALL NEW DATA ACQUISITION HANDBOOK SERIES
The following additional Handboods are presented in complete data sheet format and include Selection Guides, Application Notes, and Ordering Information.

Volume 2. Data Acquisition Boards
DVME, Multibus, PC Bus
Volume 3. Industrial Monitor and Control Products
Process Monitors, Digital Panel Meters, Thermal Panel Printers, Benchtop and Hand-held Calibrators
Volume 4. Power Products
DC/DC Converters, Power Supplies
Also available are the following Application Notes:

AN-1

High-Speed AID Converter Designs: Layout and Interfacing Pitfalls

AN-2

Picking the Right Sample-and-Hold Amp for Various Data Acquisition
Needs

AN-3

Data Converters: Getting to Know Dynamic Specifications

Data Acquisition and Conversion Handbook:
A technical guide to AID - D/A converters and their applications.

iv

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

NEW PRODUCTS
ADS-117

Features

12-Bit, 2.0 MHz, Low-Power
Sampling AID Converter

•
•

•

2.0 MHz minimum throughput
Functionally complete
Small 24·pin DIP
Low·power, t.4 Watts
Three-state output buffers
Samples to Nyquist

ADS-118

Features

12-Bit, 5.0 MHz, Low-Power
Sampling AID Converter

•
•
•
•

ADS-941
14-Bit, 1.0 MHz, High Resolution
Sampling AID Converter

Features
•
•

ADS-942
14-Bit, 2.0 MHz, High Resolution
Sampling AID Converter

5.0 MHz minimum throughput
Functionally complete
Small 24-pin DIP
Low-power, 2.3 Watts
Three-state output buffers
Samples to Nyquist

1.0 MHz minimum throughput
Functionally complete
Small 32-pin DIP
Low-power, 2.8 Watts
Three-state output buffers
Samples up to Nyquist

Features

•
•
•
•

2.0 MHz minimum throughput
Functionally complete
Small 32-pin DIP
Low-power 2.9 Watts
Three-state output buffers
Samples up to Nyquist
til

ADS-930

Features

16-Bit, 500 KHz, High Resolution
Sampling AID Converter

•
•

•
•

500 KHz sampling rate
Functionally complete
Small40-pin DIP
Low-power, t.8 Watts
Three-state output buffers
Samples up to Nyquist
16-Word FIFO memory

ADC-530

Features

12-Bit,Ultra-Fast, Low-Power
AID Converter

•
•
•

For Immediate Assistance, Dial 1-800-233-2765

350 nSec MAX. conversion time
Low-power, 2.1 Watts
Small initial errors
Three-state output buffers
Small 32-pin DIP
No missing codes

v

NEW PRODUCTS
HDAS-950/951

Features

16-Bit, 100 KHz
Data Acquisition Systems
•

16-bit resolution, 100 KHz
8 SE 4 D channels
Miniature 40-pin DDIP
Full-scale gain range from 100 mV to 10V
High-impedance output state

SHM-945

Features

High-Speed, Hybrid
Precision Sample/Hold

•
•
•
•

500 nSec MAX acquisition time to 0.00076%
Differential input
0.0004% linearity
16-bit performance over military temperature range
Small 24-pin DDIP package
Operates at different gain settings

Features

SHM-43
High-Speed, 0.01 %
Hybrid Sample/Hold

35 nS MAX acquisition time to 0.01%
• 1 Picosecond aperture uncertainty
75 MHz small-signal bandwidth
• 520 Milliwatt maximum power dissipation
• Small 14-pin DIP package
• CMOS control signal

MX-826

Features

Precision, High-Speed
Multiplexer

• 225 nSec Max. settling time to 0.01 %
• 400 nSec. Max. settling time to 0.003%
• 150 nSec. Max. settling time to 0.1 %
• 8 Channels single-ended inputs
395 Milliwatts power dissipation
• Small 24-pin DDIP package

MX-850

Features

Precision, High Speed
Multiplexer

•
•
•

50 Nanoseconds settling time to 0.01%
70 Nanoseconds settling time to 0.003%
100 Nanoseconds settling time to 0.001 %
4 Channels, single-ended inputs
207 Milliwatts power dissipation
Small 14-pin DIP package

MSH-840

Features

Quad Simultaneous
Sample Hold

•
•
•
•
•

SHM-49

Features

High-Speed, 0.01 %
Hybrid Sample/Hold

•
•
•

vi

4 Simultaneous sample/holds
Internal 4 channel multiplexer
750 nS\lc acquisition time, 10V step to 0.01%
2 channels with optional X10 gain
Control logic for interfacing to AID's
Low-power, 1.5 Watts

16 MHz small signal bandwidth
Small 8-pin DIP or LCC package
200 nS Max. acquisition time to 0.01%
72 dB feedthrough attenuation
±25 Picoseconds aperture uncertainty
413 Milliwatts power dissipation

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

NEW PRODUCTS
Features

ADS-120
12-Bit, 20 MHz
Sampling AID Converter

20 MHz minimum throughput
Samples to Nyquist
Functionally complete
Small 40-pin DIP
Low-power, 4.2 Watts
Three-state output buffers
High input bandwidth

•
•
•
7

ADS-944

Features

14-Bit, 5.0 MHz, High Resolution
Sampling AID Converter

•
•
•

ADS-945

Features

14-Bit, 10.0 MHz, High Resolution
Sampling AID Converter

10 MHz sampling rate
Functionally complete
• Small 40-pin DIP
• Low-power, 4.2 Watts
Three-state output buffers
• Samples up to Nyquist
• 16-Word FIFO memory

ADS"976

Features

16-Bit, 200 KHz, Low-Power
Sampling AID Converter

5.0 MHz minimum throughput
Functionally complete
Small 32-pin DIP
Low-power, 3.4 Watts
Three-state output buffers
Samples to Nyquist

•
•
•

FLT-DL
4- and 5- Pole High Frequency
Digitally Programmable
Active Filters

For Immediate Assistance, Dial 1-800-233-2765

200 KHz sampling rate
Compatible to industry standard ADC76, AD376, AD1376
Small 32-pin DIP
Low-power, 1.8 Watts
Samples to Nyquist
16-Word FIFO memory

Features
•
•
•
•
•
•

Digitally programmable
4- and 5-pole CAUER response
Cascadable 7-pole CAUER response
Cutoff frequencies to 1.2 MHz
Small 32-pin DIP
-55 to +125°C operation

vii

SAMPLING AID CONVERTERS
Resolution
(Bits)

Throughput
(MHz)

Unearity
Error (Max)

Power
Walls (Max)

Case

ADC-HS12B

12

0.066

±3/4 LSB

1.8

32-Pin DIP

ADS-111

12

0.500

±3/4 LSB

1.8

24-Pin DIP

1-1

ADS-112

12

1.0

±3/4 LSB

1.7

24-Pin DIP

1-5

ADS-193

12

1.0

±3/4 LSB

1.7

40-Pin DIP

1-35

ADS-21PC

12

1.3

±1 LSB

2.5

46-Pin DIP

1-39

ADS-132

12

2.0

±3/4 LSB

3.2

32-Pin DIP

1-31

Preliminary

ADS-117

12

2.0

±3/4 LSB

1.8

24-Pin DIP

1-9

Preliminary

ADS-118

12

5.0

±1 LSB

2.5

24-Pin DIP

1-13

ADS-131

12

5.0

±1 LSB

4.0

40-Pin DIP

1-25

ADS-130

12

10.0

±1 LSB

4.2

40-Pin DIP

1-19

ADS-120

12

20.0

±1 LSB

4.2

40-Pin DIP

1-17

ADS-924

14

0.300

±1 LSB

1.8

24-Pin DIP

1-43

Model

---_.

Advanced

Page
2-51

--------

ADS-928

14

0.500

±3/4 LSB

3.4

32-Pin DIP

1-47

Preliminary

ADS-941

14

1.0

±3/4 LSB

3.3

32-Pin DIP

1-53

Preliminary

ADS-942

14

2.0

±1 LSB

3.4

32-Pin DIP

1-57

Advanced

ADS-944

14

5.0

±1 LSB

3.4

40-Pin DIP

1-61

Advanced

ADS-945

14

10.0

±1 LSB

4.2

40-Pin DIP

1-63

Advanced

ADS-976

16

0.200

±2LSB

1.8

32-Pin DIP

1-65

Preliminary

ADS-930

16

0.500

±11/2 LSB

2.4

40-Pin DIP

1-51

or Immediate Assistance, Dial 1-800-233-2765

1-i

Contact DATEL for your
Data Acquisition component
needs.
Dial
1-800-233-2765

for
Applications Assistance

Hi

DATEL. Inc. 11 Cabot Boulevard. Mansfield. MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS-iii
12-Bit, 500 KHz, Low-Power
Sampling AID Converter
FEATURES
•
•
•
•
•
•
•
•

12-Bit resolution
Internal Sample/Hold
500 KHz minimum throughput
Functionally complete
Small 24-pin DIP
Low-power, 1.4 Watts
Three-state output buffers
No missing codes

GENERAL DESCRIPTION

INPUT/OUTPUT CONNECTIONS

DATEL's ADS-111 is a 12-bit, functionally complete, sampling AID converter that is packaged in a space-saving 24-pin
ceramic DIP. A minimum throughput rate of 500 KHz is
achieved while only dissipating 1.4 Watts.
Manufactured using thick-film and thin-film hybrid technology,
a proprietary chip and unique laser trimming schemes, the
ADS-111 's exclusive performance is based upon a digitallycorrected subranging architecture.

PIN FUNCTION
1
2
3
4
5
6
7

8
9
10
11
12

ill

BIT 12 OUT (LSB)
BIT 11 OUT
BIT 100UT
BIT 9 OUT
BIT 8 OUT
BIT 7 OUT
BIT60UT
BIT 5 OUT
BIT 4 OUT
BIT30UT
BIT2 OUT
BIT lOUT (MSB)

PIN

FUNCTION

13
14
15
16
17
18
19
20
21
22
23
24

+5V
DIGITAL GROUND
EOC
START CONVERT
El\JAB[E (1-12)
COMPBIN
ANALOG INPUT
BIPOLAR
+10V REF
+15V
ANALOG GROUND
-15V

[[mEW

+10V R E F @ l I - - - - - - - t - - + - - - - i

DIGITAL
CORRECTION
LOGIC
ANALOG 19
INPUT

START
CONV.

me
22

+5V

DIG. GND.

For Immediate Assistance, Dial 1-800-233-2765

+15V

ANAGND.

-15V

1-1

ADS·111
ABSOLUTE MAXIMUM RATINGS

OUTPUTS

PARAMETERS

LIMITS

UNITS

+15V Supply (Pin 22)
-15V Supply (Pin 24)
+5V Supply (Pin 13)

o to +18

Volts dc
Volts dc
Volts dc

Oto-18
-0.5 to +7.0

Digital Inputs
(Pins 16, 17, 18)
Analog Input (Pin 18)
Lead Temp.(10 Sec.)

Volts dc
Volts dc

-0.3 to +6.0
-15to +15
300 max

°C

MIN.

TYP.

MAX.

UNITS

-

±5
010 +10
15.0
3

-

Vollsdc
Volls dc
MOhms
pI

5.0

-

5

DIGITAL INPUTS
logic levels
Logic "1"
Logic "0"
Logic Loading "1"
Logic Loading "0"

2.0

-

-

-

-

0.8
5.0
-200

Vollsdc
Volls dc
~
~

±3/4
±3/4
±2

LSB
LSB
LSB

±3/4
±3/4
±1

LSB
LSB
LSB

AID PERFORMANCE
Integral Non-Linearity
+25°C
o °C10 +70 °C
-55 C to +125 °C
Differential Non-Linearity
+25°C
0°Clo+70°C
-55 C 10 +125 °C
Full Scale Absolute
Accuracy
+25°C
0°Cto+70°C
-55 C 10 +125 'C
Unipolar Zero Error,
+25 °C (See Tech Note 1)
LSB
Unipolar Zero Tempco
Bipolar Zero Error,
+25 °C (See Tech Note 1)
LSB
Bipolar Zero Tempco
Bipolar Offset Error,
+25 'C (See Tech Note 1)
LSB
Bipolar Offset Tempco
Gain Error, +25 °C
(See Tech Note 1)
Gain Tempco
No Missing Codes
(12 Bits)

1-2

-

±1/2
±1I2

-

±1/2
±1/2

-

-

±5
±6
±10

±10
±18
±32

LSB
LSB
LSB

-

±3

±5

±15

±30

ppm/oC

-

±3

±5

±5

±8

ppm/oC

-

±4

±8

-

±20
±4

±40
±8

ppm/oC
LSB

-

±20

±40

ppm/oC

-

-

TYP.

2.4

-

-

+9.98

-

+10.0
±5

-

MAX.

UNITS

0.4
·160
6.4

Volts dc
Volts de
~
mA

+10.02
±30
1.5

Voltsdc
ppm/oC
mA

12 Bits
Straight binary/offset binary
Complementary binary
Complementary offset binary

DYNAMIC PERFORMANCE

Apply over the operating temperature range and at ±15V dc
and +5V dc unless otherwise specified.

-

MIN.

Resolution
Output Coding
(Pin 18Hi)
(Pin 18 Low)

FUNCTIONAL SPECIFICATIONS

ANALOG INPUTS
Input Voltage Range
ADS-111
(See Table 4 also)
Input Impedance
Input Capacitance

Logic Levels
Logic "1"
Logic "0"
Logic Loading "1"
Logic Loading "0"
Internal Reference
Voltage, +25 'C
Drift.
External Current

Over the Operating Temp. Range.

Conversion Rate
+25°C
0°Clo+70°C
-55 C to +125 °C
Total Harmonic Distortion
DC to 60 KHz at Vin 5.5V p.p
DC to 40 KHz at Vin = 10V p.p
Slew Rate
Aperture Delay Time
Aperture Uncertainty
S/H Acquisition Time
to 0_01% (10V step)
+25°C
°C to +70 °C
-55°C to +125 °C
(Sinusoidal Input)

500
500
500

600
600

-65
-65

-

-70
-70
90
20
±100

-

-

-

-

dB
dB
V/I1Sec.
nSec.
pSec.

-

-

715
765
900
465

nSec.
nSec.
nSec.
nSec.

+15.0
-15.0
+5.0

+15.75
-15.75
+5.5

Volts dc
Voltsdc
Voltsdc

+38
-36
+66
1.4

-

+50
-47
+80
1.8
0.Q1

0
-55

-

+70
+125

°C
°C

-65

-

+150

°C

-

o

-

KHz
KHz
KHz

-

POWER REQUIREMENTS
Power Supply Range
+ 15V dc Supply
-15V dc Supply
+5V dc Supply
Power Supply Current
+ 15V dc Supply
-15V dc Supply
+5V dc Supply·
Power DisSipation
Power Supply Rejection

14.25
14.25
+4.5

-

-

mA
mA
mA
Watts
%FSR/%

PHYSICAUENVIRONMENTAL
Operating Temp_ Range
-MC
-MM/883B
Storage Temperature
Range
Package Type
Weight

24-pin hermetic sealed, ceramic DIP
0.42 ounces (12 grams)

• +5V power usage at 1 TIL logic loading per data output bit.

TECHNICAL NOTES
1. Applications which are unaffected by endpoint errors or remove them through software will use the typical connections
shown in Figure 3. Remove system errors or adjust the
small initial errors of the ADS-III to zero using the optional
external circuitry shown in Figure 4. The external adjustment circuit has no affect on the throughput rate.
2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 0204B-1194ITEL (50B) 339-3000ITLX 1743BB/FAX (50B) 339-6356

ADS-iii
grounds are not connected internally. Avoid ground-related
problems by connecting the digital and analog grounds to
one point, the ground plane beneath the converter. Due to
the inductance and resistance of the power supply return
paths, return the analog and digital ground separately to the
power supplies.
3. Bypass the analog and digital supplies ~nd the +10V reference (pin 21) to ground with a 4.7 IlF, 25V tantalum electrolytic capaCitor in parallel with a 0.1 IlF ceramic capacitor.
Bypass the +1 OV reference (pin 21) to analog ground (pin
23).
4. Obtain straight binary/offset binary output coding by tying
COMI'Q31N (pin 18) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain
complementary bin1!'Y.P! cQ.rnplementary offset binary ou!::
~ coding, tie the COMP BIN pin to ground. The COMP
BIN signal is compatible to CMOSITTL logic levels for those
users desiring logic control of this function.
5. To obtain three-state outputs, connect ENABLE (pin 17) to a
logic "0" (low). Otherwise, connect ENABLE (pin 17) to a
logic "I" (high).

TIMING
Figure 2 shows the relationship between the various input signals. The timing shown applies over the 0Pfilrating temperature
range and over the operating power supply range. These times
are guaranteed by design

CALIBRATION PROCEDURE
1. Connect the converter per Figure 3, Figure 4, and Table 1 for
the appropriate full-scale range (FSR). Apply a pulse of 200
nanoseconds minimum to the START CONVERT input (pin
16) at a rate of 250 KHz. This rate is chosen to reduce flicker
if LED's are used on the outputs for calibration purposes.
2. Zero Adjustments
Apply a preciSion voltage reference source between the amplifier's analog input and ground. Adjust the output of the
reference source per Table 2. For unipolar, adjust the zero
trimming potentiometer so that the output code flickers
equally between 0000 0000 0000 and 0000 0000 0001 with
the COMP BIN (pin 18) tied high (straight binary) or between 1111 1111 1111 and 1111 1111 1110 with pin 18 tied
low (complementary binary).
For bipolar operation, adjust the potentiometer such that the
code flickers equally between 1000 0000 0000 and 1000
00000001 with (pin 18) tied high (offset binary) or between
011111111111 andOllllllllll0with(pin18)tiedlow
(complementary offset binary).
3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 2. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111
1111 1110 and 1111 1111 1111 for (pin 18) tied high or between 0000 0000 0001 and 0000 0000 0000 for (pin 18) tied
low.
4. To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed
in Table 4.

Table 1. Input Range Selection
INPUT RANGE

INPUT PIN

TIE TOGETHER
NOTE: NOT DRAWN TO SCALE

±5Vdc
o to+l0Vdc

Pin 19
Pin 19

Pin 20 to Pin 21
Pin 20 to Ground

START

,-[--"'-200 nSec MINIMUM

---l\

CONVERT

Table 2. Zero and Gain Adjust
FsR

ZERO ADJUST
+1/2 LsB

o to +10V dc
±5Vdc

GAIN ADJUST
+Fs - 1 1/2 LsB

+1.22mV dc
+1.22mVdc

+9.9963V dc
+4.9963V dc

INPUT RANGE

R1

o to +10V, ±5V
o to +5V, ±2.5V
o to +2.5V, ±1.25V

2
2
2

R2
2
6
14

~s n~~~!~~~I~I~I~N TIME (S~NISOIDAL INPUT)
..... 20 nSec. MINIMUM

1

35 nSec. MAXIMUM

r'-----"~11 ~~ ~~:~. ~~~~~~

--ff-+-=--",o",..S=~:..:M,,-IN="'=UM

INTERNAL SlH

OUTPUT DATA

=~

I

________
Enabled Data N-l Valid

..... 1

Table 3. Input Ranges
(using external calibration)

I
I.L.!.

I

---,,-,,£-,,<-,,--D_ata_N_Va_'~_

10 nSec. MAXIMUM----"!

1-4- Enabled Data N Valid

~10 nSec MAXIMUM

Figure 2. ADS-111 Timing Diagram

UNIT
KOhms
KOhms
KOhms

For Immediate Assistance, Dial 1-800-233-2765

1-3

ADS-iii
Table 4. Output Coding
BIN CaMP BINARY

STRAIGHT
INPUT RANGE UNIPOLAR
Oto +10V
SCALE
+9.. 9976V
+FS -1 LSB
7/8 FS
+8.7500V
3/4 FS
+7.5000V
+5.0000V
1/2 FS
1/4 FS
+2.5000V
1/8 FS
+1.2500V
1 LSB
+0.0024V
O.OOOOV
0

OUTPUT CODING
MSB
LSB MSB
LSB
1111 1111 1111 0000 0000 0000
1110 0000 0000 0001 1111 1111
1100 0000 0000 0011 1111 1111
1000 0000 0000 0111 1111 1111
010000000000 101111111111
0010 0000 0000 110111111111
000000000001 111111111110
0000 0000 0000 111111111111
OFF. BINARY CaMP OFF BIN

BIPOLAR
SCALE
+FS -1 LSB

+3/4 FS
+1/2 FS
0

-1/2 FS
+3/4 FS
-FS + 1 LSB
-FS

INPUT
RANGES
+4.9976V
+3.7500V
+2.5000V
O.OOOOV
-2.5000V
-3.7500V
-4.9976V
-5.0000V

R2'
+15V
To Pin 19
of ADS-l11
BIT 1 (MSB)

BIT2
81T3
81T4
BIT5
81T6

OOMP

BiN
START

START

CONVERT-=--=--o--~ CONVERT

ADS-lll

81T7
BIT 8

SIGNAL
INPUT -.,-·v",V""l
GAIN
ADJUST

BITS

BIT 10

r-_----

+SV

TO PIN 19
OF
ADS-118

+

GAIN
ADJUST

0.1 ~F
13

22
ANALOG
INPUT

+5Vdc
START
CONVERT

18

Figure 4b. Optional Unipolar
Calibration Circuit

14
12
11
10

19

9

CciMP
BiN

16

AD5-118
4

3

r-~....£J21'-l +10V REF

15
17

0.I~F1

lK

BIT 1 (MSB)
BIT 2
BIT 3
BIT 4
BITS
BITS
BIT7
BIT 8
BIT 9
BIT 10
BITll
BIT12

dB

o
0
0
30
40

50
50

EOC

70

EiiiAiiIE (1·12)

60

I

,I

I

I!H,[

I,,,,
0.5

I

I

'IIJI

Jj"

1.0

Figure 3. Typical ADS-118 Connection Diagram

IUiI,,, ~J.u 11111;1, li,h
1.5

2.0

MHz

Figure 5. FFT Analysis of ADS-118

MECHANICAL DIMENSIONS
INCHES (MM)
ORDERING INFORMATION

0.600 MAX

~

0.190 MAX

r--I~)
,-----r
..Q.150MIN.
0.010 x 0.018

112 131-rI
11
1.310 MAX.
IBOTTOM I SPACES
(33,3)
I
11

I

1

AtO~I00
(2,5)

241~

~;~~

SEAL

AD8-118MC
ADS·118MM
ADS·EVAL2

a °C to +70 °C

Hermetic
-55°C to + 125 °C
Hermetic
Eva.lu,ation Board (without AOS-118)

Receptacle for PC board mounting can be ordered through
AMP Inc., Part # 3-331272-8 (Component Lead Socket),
24 required.

1

NOTE: Pins have 0.025 Inch ±O.01
standoff from case.

1-16

OPERATING
TEMP. RANGE

(3.8)

KOVAR Pins

VIEW

MODEL
NUMBER

For availability of MIL-STO-883 versions of the ADS-118,
contact DATEL.

OATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

2.5

ADS-120
12-Bit, 20 MHz

Sampling AID Converter

ADVANCED PRODUCT DATA
FEATURES
• 12-Bit resolution
• Internal Sample/Hold amplifier
• 20 MHz minimum throughput
• Samples up to Nyquist
• Functionally Complete
• Small 40-pin DIP
• Low-power, 4.2 Watts
• Three-State output buffers
• High input bandwidth
• Overflow pin

INPUT/OUTPUT CONNECTIONS

GENERAL DESCRIPTION
DATEL's ADS-120 is a 12-bit, functionally complete, sampling

ND converter packaged in a small40-pin DIP. A 20 MHz minimum throughput rate in digitizing sinusoidal signals is
achieved while only dissipating 4.2 Watts.
The ADS-120 is offered in the commercial 0 to +70 °C and military -55 to +125 °C operating temperature range.

APPLICATIONS
• Spectrum analysis
• Imaging
• Radar
• Medical Instrumentation
• High-speed Data Acquisition Systems

PIN

FUNCTION

PIN

FUNCTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

+15V
-15V
ANALOG GROUND
ANALOG -5V
ANALOG +5V
ANALOG INPUT
S/HOUT
DIGITAL+5V
DIGITAL GROUND
DIGITAL-5V
OFFSET ADJUST
ANALOG +5V
ANALOG GROUND
ANALOG-5V
GAIN ADJUST
+ 1OV REFERENCE
+15V SUPPLY
ANALOG -5V
ANALOG GROUND
ANALOG +5V

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

DIGITAL GROUND
COMPBIN
ENABLE
DATA READY
DIGITAL+5V
START CONVERT
OVERFLOW
BIT 1 (MSB)
BIT20UT
BIT30UT
BIT 4 OUT
BIT 5 OUT
BIT 6 OUT
DIGITAL GROUND
BIT 7 OUT
BIT80UT
BIT90UT
BIT100UT
BIT 11 OUT
BIT 12 OUT (LSB)

OFFSET
ADJUST

S1H
OUT

DIGITAL -5V

DGND

DIGITAL +5V

11

ANALOG IN

21·26, 28-34

GAIN
ADJUST

12-BitOutput
and Overflow

PROPRIETARY

15

+10V

REF

16
35

START
CONVERT

21,22

1.17

NO CONNECTION
+ 15V

-15V

For Immediate ASSistance, Dial 1-800-233-2765

ANALOG ·5V

AGND

ANALOG +5V

1-17

Contact DATEL for up-to-date information on
products covered by "Advanced" and
"PreliminarY" product data sheets.
Dial
1-800-233-2765

for
Applications Assistance

1-18

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS-130
12-Bit, 10 MHz

Sampling AID Converter
FEATURES

6CIATEL

• 12-Bit resolution
• Internal Sample/Hold amplifier
• 10 MHz minimum throughput
• Samples up to Nyquist
• Functionally Complete
• Small 4O-pin DIP
• Low-power, 3.85 Watts
• Three-State output buffers
• High input bandwidth
• Overflow pin
• No missing codes

~"Il.4Jitfl:'J..IItlt:: .....,.,..~

.,.tJS-/30MC

INPUT/OUTPUT CONNECTIONS
PIN

FUNCTION

PIN

FUNCTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

+15V
-15V
ANALOG GROUND
ANALOG-5V
ANALOG+5V
ANALOG INPUT
S/HOUT
DIGITAL+5V
DIGITAL GROUND
DIGITAL-5V
OFFSET ADJUST
ANALOG+5V
ANALOG GROUND
ANALOG-5V
GAIN ADJUST
+ 1OV REFERENCE
+15VSUPPLY
ANALOG-5V
ANALOG GROUND
ANALOG+5V

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

DIGITAL GROUND
COMPBIN
ENABLE
DATA READY
DIGITAL+5V
START CONVERT
OVERFLOW
BIT 1 (MSB)
BIT20UT
BIT30UT
BIT40UT
BIT 5 OUT
BIT60UT
DIGITAL GROUND
BIT 7 OUT
BIT 8 OUT
BIT90UT
BIT 10 OUT
BIT 11 OUT
BIT 12 OUT (LSB)

GENERAL DESCRIPTION
DATEL's ADS-130 is a 12-bit, functionally complete, sampling
AID converter packaged in a small 40-pin DIP_ A 10 MHz minimum throughput rate in digitizing sinusoidal signals is achieved
while only dissipating 3.85 Watts.

SlH

OFFSET

OUT

ADJUST

7

ANALOG IN

GAIN
ADJUST

-

6

~

SlH

M""P~' r... ··,,'1A

A

11

I

FIRST
STAGE
CONVERSION

I

15

10

+

rr

DGND

DIGITAL ·5V

I

9.27. 40

1

DIGITAL +5V

B.36

I

2nd

PASS

SECOND
STAGE
CONVERSION

~
,/"

38

E
ERROR
CORRECTION
CKT.

1st PASS DATA

:>

21-26,28-34

12-Bit output

...

and Overflow

39
C

REFERENCES
+10V
REF

37
16

0 ATA READY
TIMING

35

START

CONVERT

1, 17

1

+1SV

2

I

-15V

For Immediate Assistance, Dial 1-800-233-2765

4,14,18

1

ANALOG -5V

3,13,19

I

AGND

5,12,20

I

ANALOG +5V

1-19

AD5·130
ABSOLUTE MAXIMUM RATINGS
LIMITS

PARAMETERS
+1SV Supply (Pin 1,17)
-1SV Supply (Pin 2)
+SV Supply (Pin 5, 8,12,20,36)
-SV Supply (Pin 4,10,14,18)
Digital Inputs
(Pins 35,38,39)
Analog Input (Pin 6)
Lead Temp. (10 Sec.)

UNITS

DYNAMIC PERFORMANCE

Oto +18
o to -18
-0.5 to +7.0
+0.5 to -7.0

Volts de
Volts de
Volts de
Volts de

-0.3 to +5.5

Volts de
Volts de
°C

Conversion Rate
(Changing Inputs),+25 °C
o to+70OC
-55 to +125 OC
Total Harm. Distort.(-o.5 dB)
DC to 500 KHz
500 KHz to 2.5 MHz
2.5 MHz to 5 Mhz
Signal-to-Noise Ratio
(w/o distortion, -0.5 dB)
DC to 500 KHz
500 KHz to 2.5 MHz
2.5 MHz to 5 Mhz
Signal-to-Noise Ratio
and Distortion (-0.5 dB)
DC to 500 KHz
500 KHz to 2.5 MHz
2.5 MHz to 5 Mhz
Spurious Free Dynamic Range
DC to 500 KHz (-0.5 dB)®
500 KHz to 2.5 MHz
2.5 MHz to 5 Mhz
Effective Bits
DC to 500 KHz
SOO KHz to 2.5 MHz
2.5 MHz to 5 Mhz
Two-tone Intermodulation
Distortion ( fiN =2.2 MHz,
2.3 MHz, Fs = 8 MHz)
Input Bandwidth
Small Signal (-20 dB input)
Full Power (0 dB input)
Slew Rate
Aperture Delay Time
Aperture Uncertainty
S/H Acquisition Time
to 0.01% FS (2.5V step)
+25 OC
Oto +70 OC
-55 to +125 OC
Feedthrough Rejection
2.5V step
Overvoltage Recovery, ±2.5 V

±5

300

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V dc
and ±5V dc unless otherwise specified.
INPUTS
ANALOG
Input Voltage Range
Input Impedance
Input Capacitance
DIGITAL
Logic Level "1"
Logic Level "0"
Logic Loading "1"
Logic Loading "0"

MIN

TYP

MAX

-

±1.25
160
2.5

-

50

-

2.0

-

-

10

0.8
5.0
-200

UNITS
Vdc
KOhm
pF
Vdc
V dc
~
~

OUTPUTS
12 Bits

Resolution
Output Coding
(Pin 39 HI)
(Pin 39 Low)
Logic Level "1"
Logic Level "0"
Logic Loading "1"
Logic Loading "0"
Internal VREF, (pin 16)
+25 OC
oto+70 OC
-55 to +125 OC
External Current

Offset Binary
Complementary Offset Binary

-

-

+9.9
+9.9
+9.8

+10.0
+10.0
+10.0

2.4

-

-

0.4

Vdc
Vdc

-160
6.4

~

+10.1
+10.1
+10.2
2

Vdc
Vdc
Vdc
mA

LSB
LSB
LSB

mA

PERFORMANCE
Int. Non·Lin., flN= 5.0 MHz
+25 OC
a to +70 OC
-55 to +125 OC
Diff. Non-Lin., fiN = 5.0 MHz
+25 OC
oto+70 OC
-55 to +125°C
Full Scale Absolute Accuracy
+25 OC (Tech note 1)
Oto +70 OC
-55 to +125 OC
Bipolar Zero Error,
+25 OC (Tech note 1)
Oto +70 OC
-55 to +125 °C
Bipolar Offset Error,
+25 OC (Tech Note 1)
oto +70 OC
-55 to +125 OC
Gain Error, +25 OC
(Tech Note 1)
Oto+70OC
-55 to+ 125 OC
No Missing Codes
(12 Bits, at fiN = 2.5 MHz)

1-20

MIN

TYP

MAX

10
10
10

-

-

MHz
MHz
MHz

-68
-65
-65

-70
-67
-67

-

FS,-dB
FS,-dB
FS,-dB

-67
-65
-65

-70
-69
-69

-

FS,-dB
FS,-dB
FS,-dB

-65
-63
-63

-66
-65
-65

-

FS, -dB
FS,-dB
FS,-dB

-69
-66
-66

-70
-67
-67

-

FS, -dB
FS,-dB
FS,-dB

10.6
10.2
10.0

11.0
10.5
10.2

-

Bits
Bits
Bits

-72

-75

-

dB

50
30
175

-

65
40
200
5
5

7
7

MHz
MHz
V/!lSec
nSec
psec

-

30
30
50

50
50
70

nSec
nSec
nSec

-62

-

-66
50

100

dB
nSec

+14.25
-14.25
+4.75
-4.75

+15.0
-15.0
+5.0
-5.0

+15.75
-15.75
+5.25
-5.25

Vdc
Vdc
Vdc
Vdc

-

+26
-30
+347
-255
3.85
0.05

+28
-33
+372
-285
4.2
0.1

0
-55
-65

-

-

+70
+125
+150

UNITS

POWER REQUIREMENTS

-

-

±1
±1
±2

-

-

±1
±1
±2

LSB
LSB
LSB

-

±D.2
±D.4
±D.8

±D.4
±D.8
±1.6

%FSR
%FSR
%FSR

-

±D.15
±D.2
±D.4

±D.2
±D.4
±D.8

%FSR
%FSR
%FSR

-

±D.15
±D.2
±D.4

±D.2
±D.4
±D.8

%FSR
%FSR
%FSR

±D.15
±D.2
±D.4

±D.2
±D.4
±D.8

%FSR
%FSR
%FSR

-

-

-

Power Supply Range
+15V dc Supply (Vee)
-15V dc Supply (VEE)
+5V dc Supply (Voo)
-5V dc Supppy (Vss)
Power Supply Current
+15V dc Supply
-15V dc Supply
+5V dc Supply®
-5V dc Supply
Power Dissipation
Power Supply Rejection

mA
mA
mA
mA
Watts
%FSR/%V

PHYSICAUENVIRONMENTAL
Operating Temp. Range (Case)
-MC
-MM
Storage Temperature Range
Weight
Package Type

-

°C
°C
°C

0.56 oz. (16 grams) Max.
40-Pin hermetic sealed, ceramic TDIP

® +5V power usage at 1 TTL logiC loading per data output bit.
~ The same specifications apply to In band Harmonics.

DATEL, Inc. 11 Cabot BOUlevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

ADS·130
TECHNICAL NOTES

CALIBRATION PROCEDURE

1. Use external potentiometers to remove system errors or to
reduce the small initial errors to zero. Use a 20K trimming
potentiometer for gain adjustment with the wiper tied to pin
15 (tie pin 15 to ANALOG GROUND for operation without
adjustments). Use a 20K trimming potentiometer with the
wiper tied to pin 11 for zer%ffset adjustment (tie pin 11 to
ANALOG GROUND for operation without adjustment).

1. Connect the converter per Figure 2.
Apply a pulse of 10 nS typical to the START CONVERT input (pin 35) at a rate of 500 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration
purposes.

2. Rated performance requires using good high-frequency circuit board layout techniques. Avoid ground-related problems by connecting the digital and analog grounds to one
point, the ground plane beneath the converter.
In most cases, users will use a single +5V supply for both
analog +5V and digital +5V (applicable for the -5V supply
also). Should users have separate supplies the difference
between the analog and digital supply should be within
±100 mV to avoid performance degradation.
Due to the inductance and resistance of the power supply
return paths, return the analog and digital ground separately
to the power supplies. This prevents contamination of the
analog ground by noisy digital ground currents.
3. Bypass all the analog and digital power supply pins with a
2.2 !LF, 25V tantalum electrolytic capacitor in parallel with a
0.1 !LF ceramic capacitor to their respective analog and digital grounds. Use of chip capacitors is recommended.
4. Obtain offset binary output coding by tying COMP BIN (pin
39) to +5V dc. To obtain complementary offset binary output coding, tie pin 39 to ground. The pin 39 signal is compatible to CMOSITTL logic levels for those users desiring
logic control of this function.
5. To obtain three-state outputs, connect the ENABLE pin (pin
38) to a logic "1" (high). Otherwise, connect pin 38 to a logic
"0" (low).
6. The ADS-130 guarantees it's specified throughput rate over
the temperature range when the START CONVERT pulse
of 10 nS minimum, 90 nS maximum is provided at the specified rate. Start convert pulses greater than 90 nanoseconds
will result in slower throughput rates.
7. The ADS-130 is capable of digitizing sinusoidal input frequencies up to the Nyquist frequency. The acquisition time
for pulse or dc level signals is 50 nS maximum over the 0
to +70 °C temperature range. Acquisition time is 70 nSec.
maximum from -55°C to + 125 °C.
8. The speCifications listed in Figure 2 (timing diagram) apply
over the full operating temperature range unless otherwise
specified.

2. Zero Adjustments
Apply a precision voltage reference source between the analog input (pin 6) and analog ground. Adjust the output of
the reference source per Table 2 for the bipolar zero adjustment (zero +1/2 LSB). Adjust the potentiometer such that
the code flickers equally between 1000 0000 0000 and
1000 0000 0001 with COMP BIN (pin 39) tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with
pin 39 tied low (complementary offset binary).
3. Full·Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 2 for the bipolar gain adjustment
(+FS -1 1/2 LSB). Adjust the gain trimming potentiometer so
that the output code flickers equally between 1111 1111
1110 and 1111 1111 1111 with pin 39 tied high or between
000000000000 and 000000000001 with pin 39 tied low.
To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed
in Table 3.

35

37

S/H OUT

7

ANALOG IN

6

34
21-26

START CONVERT

3
3

15

+

-15

15

+

-15

20K

20K

DATA READY
OVERFLOW
912

!

OFFSET

ADJ.

GAIN

ADJ.

t

28-33
11

91 (MS9)

38

ENABLE

39

CQMPBIN

16

+10V REF

15

ADS-130

ANALOG-5V

4,14,18

ANALOGGND

3,13,19

ANALOG+5V

5,12,20

h-:C:-.-T-C=-b- -15V
~ANALOGGND
1,17

+

+15V

ea - is 2.2 f.tF tantalum
Cb " is 0.1 J.lf ceramic

Figure 2. Typical ADS·130 Connection Diagram

9. The OVERFLOW pin goes high for signals greater than +full
scale (no overflow flag given for signals greater than -FS).
The OVERFLOW pin is a three-state output and is enabled
by pin 38.

FSR

10.The ADS-130 has a one pipeline delay in obtaining output
data. Refer to the Timing Diagram in Figure 3.

±1.25Vdc

Table 2. Zero and Gain Adjust
ZERO ADJUST
o + 1/2 LSB

GAIN ADJUST
+FS ·11/2 LSB

+305 !LV dc

+ 1.249085V dc

11.The ADS-130 goes into the hold mode on the rising edge of
the start convert pulse.

For Immediate Assistance, Dial 1-800'233-2765

1-21

ADS·130
FIN

=180 KHz

FIN
H
I
S

COUNT

26.40
23.76
21.12
18.48

I

i

I

I

!

i

I

I

!

i

i

I

I
!

I
I

I
I

13.20
10.56

I

I

7.92

i

I

I

I

i

I

15.84

,

I

I

I

COUNT

34

T

I

o

I

I
I

I

= 949 KHz

!

5.28
2.64

2047

4095

CODe

G
R
A
M

17

T
E
S
T
S

o

..

.....
o

2047

4095

CODe

D
I
F
F
L
I
N
E

A
R
I

T
Y

dB

dB

-10

-10

I

F
F

-20
-30

T

I

-20

I

-30
-40

-50
-60

-70

I

T

-60

E

-70

S
T

-90

'S

-100
1.0

2.0

3.0

4.0

5.0

,--- -_.

-80

.•11'11,

-90

il

1-22

I

,1l1li!M'll_

1

o

1_0

3_0

2.0

I

II",

-100

MHz

NOTE:

._-_.- f'---'

I

4.0

MHz

FCLOCK

= 10 MHz for all presentations

DATEL, Inc_ 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS·130
FIN

=1.89 MHz

FIN
H
I

COUNT
39.5

=4.85 MHz

COUNT
29.6

S
T

o
G
R
A
M

19.75

~

T
E

L..oIII\I

....

S
4095

2047

14.8

T

CODE

S

CODE

D
I

.2047

4095

ISB
+1.0

F
F
L
I
N
E
A

R
I
T

Y

dB

dB
0

F
F
T
T

E
S

-10
-20

-30
-40

-SO

-eo
-70

T

S
MIfz

11Hz

NOTE:

FCLOCK

For Immediate Assistance, Dial 1-800-233-2765

= 1OMHz for all presentations
1-23

ADS .. 130
Table 3. Output Coding for Bipolar Operation
BIPOLAR
SCALE

INPUT RANGE
(Volts de)
±1.25V
+1.24939V
+0.9375V
+0.625V
O.OOOOV
-0.625V
-0.9375V
-1.24939V
-1.2500V

+FS -1 LSB
+3/4 FS
+1/2 FS

a

-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

OUTPUT CODING
OFFSET BINARY
COMP OFF. BINARY
LSB
MSB
LSB
MSB
111111111111
111000000000
1100 0000 0000
1000 0000 0000
0100 0000 0000
0010 0000 0000
0000 0000 0001
0000 0000 0000

0000 0000 0000
0001 1111 1111
001111111111
0111 1111 1111
1011 1111 1111
110111111111
111111111110
111111111111

100101-------- 100 nSec. Min. - - - - - _ " I

--I

10 Min.
90 Max. nSec.

~

START
CONVERT

.....--- 85 nSec. Max••
70 nSec. Min.

DATA READY

~;-------.....,

30 nSec. MIllC.1----N·2VALID

OUTPUT DATA

l~l

!INVALlD!

30 nSec. Min.

N·l VALID

!INVALlD! N VALID

COMPBIN
ENABLE

OUTPUT
DATA

1--1

1--1
15 nSee. Max.

25 nSec. Max.

1---1

i-I

40 nSec. Max.

45 nSec. Max.
NOTE: NOT DRAWN TO SCALE

Figure 3. ADS-130 Output Data Timing

MECHANICAL DIMENSIONS
INCHES (mm)
~

1.1 Max.
(28,0)

0.150 (3.8) Min.

+II"

t

"I1 - 0.190 (4.9) Max.

I,

U

MODEL
NUMBER

0.010 x 0.018 Kovar

-t
20 Spaces
a10.100
each (2.5)

20

21

Bottom

View
ADS-130

ORDERING INFORMATION

T

i

ADS-130MC
ADS-130MM

2.12
Max.

ADS-B 130/131

Triangle on
lop
references
Pin 1

*,/

1
1
~ 14"

0.900

0.100 (2.5)

Nole: Pins have a 0.025 inch ±C.01
standoff from case

1-24

OPERATING
TEMP. RANGE

a

to +70 °C
-55 to +125 °C

SEAL

Hermetic
Hermetic

Evaluation Board (without
ADS-130)

Receptacle for PC board mounting can be ordered through
AMP Inc., Part # 3-331272-8 (Component Lead Socket),
40 required.
For availability of MIL-STD-883B versions, contact DATEL.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

ADS-131
12-Bit, 5.0 MHz

Sampling AID Converter
FEATURES
• 12-Bit resolution
• Internal Sample/Hold amplifier
• 5.0 MHz minimum throughput
• Samples up to Nyquist
• Functionally Complete
• Small 40-pin DIP
• Low-power, 3.65 Watts
• Three-State output buffers
• High input bandwidth
• Overflow pin
• No missing codes

INPUT/OUTPUT CONNECTIONS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

GENERAL DESCRIPTION
DATEL's ADS-131 is a 12-bit, functionally complete, sampling
AID converter packaged in a small40-pin DIP. A 5_0 MHz minimum throughput rate in digitizing sinusoidal signals is
achieved while only dissipating 3_65 Watts.

SJH

OFFSET
ADJUST

OUT

11

7

ANALOG IN

GAIN
ADJUST

-

6

H

SlH

I

FIRST
STAGE
CONVERSION

I

DGND

10

I

9.27,40

I

FUNCTION

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

+15V
-15V
ANALOG GROUND
ANALOG-5V
ANALOG+5V
ANALOG INPUT
S/HOUT
DIGITAL+5V
DIGITAL GROUND
DIGITAL-5V
OFFSET ADJUST
ANALOG+5V
ANALOG GROUND
ANALOG-5V
GAIN ADJUST
+10V REFERENCE
+15VSUPPLY
ANALOG-5V
ANALOG GROUND
ANALOG +5V

DIGITAL -5V

+

?

PIN

FUNCTION

PIN

DIGITAL GROUND
COMPBIN
ENABLE
DATA READY
DIGITAL+5V
START CONVERT
OVERFLOW
BIT1 (MSB)
BIT 2 OUT
BIT30UT
BIT 4 OUT
BIT 5 OUT
BIT 6 OUT
DIGITAL GROUND
BIT 7 OUT
BIT80UT
BIT90UT
BIT 10 OUT
BIT11 OUT
BIT 12 OUT (LSB)

DIGITAL+5V
8.36

I

2nd
PASS

DAT~

SECOND
STAGE
CONVERSION

38

.>

E

....

21-26,28
ERROR
CORRECTION
CKT.

1s1 PASS DATA

15

:>

12·Btt OU1pu1

and Overflow

~

39
C

REFERENCES

+10V
37

REF
16

0 ATAREADY
TIMING

1, 17

1

+15V

2

I

-15V

For Immediate Assistance, Dial 1-800-233-2765

4,14,18

1

ANALOG -5V

3,13,19

I

AGND

5,12,20

35

S TART
CONVERT

I

ANALOG +5V

1-25

ADS·131
ABSOLUTE MAXIMUM RATINGS
LIMITS

UNITS

AID PERF. CONT.

+15V Supply (Pin 1,17)
-15V Supply (Pin 2)
+5V Supply (Pin 5, 8,12,20,36)
-5V Supply (Pin 4,10,14,18)

PARAMETERS

010+18
010-18
-O.Slo +7.0
+O.S to -7.0

Volts de
Valls de
Valls de
Volts de

Digital Inputs
(Pins 35,38,39)
Analog Input (Pin 6)
Lead Temp.(10 Sec.)

-0.310 +S.S
±S
300

Volts de
Valls de

Gain Error, +25 'C
(Tech Note 1)
oto +70 'C
-55 to +125 "C
No Missing Codes
(12 Bits. at fiN = 2.5 MHz)

·C

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V de
and ±5V de unless otherwise specified.

INPUTS
Analog
Inpul Voltage Range
Input Impedance
Inpul Capacitance
Digital
Logic Levels
Logic "1"
Logic "0"
Logic Loading "1"
Logic Loading "0"

MIN

TYP

MAX

-

±1.25
160
2.5

-

50

-

2.0

-

-

-

-

10

0.8
5.0
·200

UNITS
Vde
KOhm
pF
Vde
Vde

IIA
IIA

OUTPUTS
Resolution
Output Coding
(Pin 39 HI)
(Pin 39 Low)
Logic Levels
Logic "1"
Logic "0"
Logic loading "1"
logic Loading "0"
Internal Relerence
VoHage, (pin 16)
+25"C
Oto +70 "C
·55 to +125 "C
External Current

2.4

-

+9.9
+9.9
+9.8

-

-

+.10.0
+10.0
+10.0

-

0.4
·160
6.4
+10.1
+10.1
+10.2
2

Vde
Vde

IIA
rnA
Vde
Vde
Vde

rnA

PERFORMANCE
Inl. Non-l.ln., fIN:: 2.5MHz
+25"C
Oto+70"C
-55to+t25"C.
DHI. Non-I.ln.,fIN =2.5MHz
+25"C
Oto+70"C
·55to+125"C
Full Scale Absolute Accuracy
+25 "C (Tech note 1)
Oto+70"C
·55to+125"C
Bipolar Zero Error,
+25 "C (Tech note 1)
Oto+70"C
-55 to +125 "C
Bipolar Offset Error,
+25 "C (Tech Note 1)
Oto+70"C
-55 to +125 'C

1-26

-

Conversion Rate
(Changing Inputs).+25 'C
o 10 +70 'C
·55 10 +125 "C
Total Harm. Dlstort.(-o.5 dB)
DC 10500 KHz
500 KHz 10 2.5 MHz
Signal-to-Noise Ratio
(wlo distortion, -0.5 dB)
DC to 500 KHz
500 KHz to 2.5 MHz
Signal-Io-Noise Ratio
and Distortion (-0.5 dB)
DC to 500 KHz
500 KHz to 2.5 MHz
Spurious Free Dynamic Range®
DC 10500 KHz
500 KHz to 2.5 MHz
Effective Bits
DC to 500 KHz
500 KHz to 2.5 MHz
Two-tone Intermodulatlon
Distortion ( fiN =2.2 MHz,
2.3 MHz, Fs = 5 MHz)
Input Bandwidth
Small Signal (-20 dB inpul)
Full Power (0 dB input)
Slew Rate
Aperture Delay Time
Aperture Uncertainty
SlH Acquisition Time
to 0.01% FS (2.5V step)
+25"C
010+70'C
-55 10 +125 'C
Feedthrough Rejection
2.5V step
Overvoltage Recovery, :12.5 V

MAX

UNITS

-

:10.15
:10.2
:10.4

:10.2
:10.4
:10.8

%FSR
%FSR
%FSR

Over Operating Temperature Range

-

-

MHz
MHz
MHz

-

FS,·dB
FS,-dB

-70
-69

-

FS,·dB
FS,-dB

-66

-65

-

FS,-dB
FS,-dB

-68
-65

-70
-67

-

FS,-dB
FS,-dB

10.6
10.2

11.0
10.5

-

bits
bits

-72

-75

-

dB

50
30
75

-

-

65
40
100
5
5

MHz
MHz
VI!lSee
nSec
psec

-

50
50
70

5.0
5.0
5.0

-

-

-68
-65

·70
-67

-

-67
-65
-65
-63

-

-

7
7
70
70
100

nSec
nSee
nSec

-

100

200

-

dB
nSec

+14.25
·14.25
+4.75
·4.75

+15.0
·15.0
+5.0
-5.0

+15.75
-15.75
+5.25
-5.25

Vde
Vde
Vde
Vdc

-

+25
-30
+310
-250
3.65
0.05

+2S
-33
+342
-275
4.00
0.1

rnA
rnA
rnA
rnA

·62

·66

POWER REQUIREMENTS
Power Supply Range
+15V de Supply (Vee)
-15V de Supply (VEE)
+5V de Supply (Voo)
-5V de Supppy (Vss)
Power Supply Current
+15V de Supply
-15V de Supply
+5V de Supplycr>
-5V de Supply
Power Dlssipelion
Power Supply Rejection

±1
±1
:12

LSB
LSB
LSB

±1
±1
:12

LSB
LSB
LSB

:10.2
:10.4
:IO.S

:10.4
:10.8
±1.6

%FSR
%FSR
%FSR

PHYSICAl/ENVIRONMENTAL

-

:10.15
:10.2
:10.4

:10.2
:10.4
:IO.S

%FSR
%FSR
%FSR

-

:10.15
:10.2
:10.4

:10.2
:10.4
:IO.S

%FSR
%FSR
%FSR

Operating Temp. Range
-MC
-MM
Storage Temperature Range
Weight
Package Type

-

TYP

DYNAMIC PERFORMANCE

-

-

MIN

-

-

Watts
%FSR/%V

-

·C
+70
·C
+125
·C
+150
0.56 oz. (16 grams) Max.
4O-Pin hermetic sealed, ceramic TDIP

0
-55

-65

-

cr> +5V power usage at 1 TTL logic loading per data output bit.

® The same specifications apply to Inband Harmonics.

DATEL, Inc. 11 Cabot Boulevard, Mansfield. MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (S08) 339-6356

ADS·131
TECHNICAL NOTES

CALIBRATION PROCEDURE

1. Use external potentiometers to remove system errors or to
reduce the small initial errors to zero. Use a 20K trimming
potentiometer for gain adjustment with the wiper tied to pin
15 (tie pin 15 to ANALOG GROUND for operation without
adjustments). Use a 20K trimming potentiometer with the
wiper tied to pin 11 for zer%ffset adjustment (tie pin 11 to
ANALOG GROUND for operation without adjustment).

1. Connect the converter per Figure 2.
Apply a pulse of 10 nS typical to the START CONVERT input (pin 35) at a rate of 500 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration
purposes.

2. Rated performance requires using good high-frequency circuit board layout techniques. Avoid ground-related problems by connecting the digital and analog grounds to one
pOint, the ground plane beneath the converter.
In most cases, users will use a single +5V supply for both
analog +5V and digital +5V (applicable for the -5V supply
also). Should users have separate supplies the difference
between the analog and digital supply should be within
±100 mV to avoid performance degradation.
Due to the inductance and resistance of the power supply
return paths, return the analog and digital ground separately
to the power supplies. This prevents contamination of the
analog ground by noisy digital ground currents.
3. Bypass all the analog and digital power supply pins with a
2.2 ~F, 25V tantalum electrolytic capacitor in parallel with a
0.1 ~F ceramic capacitor to their respective analog and digital grounds. Use of chip capacitors is recommended.
4. Obtain offset binary output coding by tying COMP BIN (pin
39) to +5V dc. To obtain complementary offset binary output coding, tie pin 39 to ground. The pin 39 signal is compatible to CMOSmL logic levels for those users desiring
logic control of this function.

2. Zero Adjustments
Apply a precision voltage reference source between the analog input (pin 6) and analog ground. Adjust the output of
the reference source per Table 2 for the bipolar zero adjustment (zero +1/2 LSB). Adjust the potentiometer such that
the code flickers equally between 1000 0000 0000 and
100000000001 with COMP BIN (pin 39 tied high (offset binary) or between 011111111111 and 011111111110with
pin 39 tied low (complementary offset binary).
3. Full·Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 2 for the bipolar gain adjustment
(+FS -1 1/2 LSB). Adjust the gain trimming potentiometer so
that the output code flickers equally between 1111 1111
1110 and 1111 1111 1111 with COMP BIN (pin 39) tied
high or between 0000 0000 0000 and 0000 0000 0001 with
pin 39 tied low.
To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed
in Table 3.

7. The ADS-131 is capable of digitizing sinusoidal input frequencies up to the Nyquist frequency. The acquisition time
for pulse or dc level signals is 70 nS maximum over the 0
to +70 °C temperature range. Acquisition time is 100 nSec.
maximum from -55°C to +125 DC.
8. The specifications listed in Figure 3 (timing diagram) apply
over the full operating temperature range unless otherwise
specified.

37

SlHOUT

OVERFLOW

.,2

1

3
3

15
+
20K
-15

OFFSET

15
+
20K
-15

GAIN

ANALOO-5V

DATAAEADY

34
21-26

ANALOG IN

5. To obtain three-state outputs, connect ENABLE (pin 38) to a
logic "1" (high). Otherwise, connect pin 38 to a logic "0"
(low).
6. The ADS-131 guarantees it's specified throughput rate over
the temperature range when the START CONVERT pulse
of 10 nS minimum, 190 nS maximum is provided at the
specified rate. Start convert pulses greater than 190 nanoseconds will result in slower throughput rates.

35

START CONVERT

ADJ.

ADJ.

28-33
38

11

15

AD5-131

CO

1

., (MS.)

ENABLE

3.

COMPBIN

,.

+10V REF

H--:c,---.--1-:CC--.--15V

~ANALOGGND
1,17

ca - is 2.2 pF tantalum

+15V

Cb - is 0.1 jlf ceramic

Figure 2. Typical ADS·131 Connection Diagram

9. The OVERFLOW pin goes high for signals greater than +full
scale (no overflow flag given for signals greater than -FS).
The OVERFLOW pin is a three-state output and is enabled
by the ENABLE line (pin 38).

FSR

10.The ADS-131 has a one pipeline delay in obtaining output
data. Refer to the Timing Diagram in Figure 3.

±1.25Vdc

Table 2. Zero and Gain Adjust
ZERO ADJUST
o + 1/2 LSB

GAIN ADJUST
+FS ·11/2 LSB

+305 ~Vdc

+1.249085V dc

11.ADS-131 goes into the1rold mode on the rising edge of the
start convert pulse.
~

For Immediate Assistance, Dial 1-800-233-2765

1-27

ADS·131

.It""""

":cnE'
FIN

= 95 KHz

FIN

H
I
S
T

COUNT

26.40
23.76
21.12

18.48

o

15.84

G

13.20

R

10.56

A
M

7.92

5.28

17

E

4095

2047

COUNT
34

...

T

.J

2.64

=495 KHz

CODE

D
I

LSB

I...

S
T
S

o

o

2047
CODE

4095

LSB
+0.9

F
F

2047

4095

CODE

L
I
N
E
A
R
I

T
Y

dB

CODE

dB

F
F
T

-10

-20
-30

-10

-20
-30

-40

-40

-SO

-50

-60
-70
-80

-90
-100

T
III
1 !1.1

oJlMf'

E

....

,oJl, diu,
1

.•1 •. 1lL .....,' h ..M1I
1.5

2

2.5

S
T

S

-60
-70

-80

:~~'

-90

1,1Il'.lJ

-100

1

MHz

NOTE:
1-28

1.5

2

2.5

MHz

FCLOCK

= 5 MHz for all

presentations

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS·131
.:;;;SW.WZUU;;MYPJ;;;.·,Q¥AAIZO.Qi&¥U,th" a&USCtM4I4MtU4U¥l!

FIN

£

= 985 KHz

FIN

H
I
S
T

COUNT
39.5

= 2.45 MHz

COUNT

29.6

o
G

R
A
M

19.75

14.8

T
Mo..
o

E

l.oIIII

o

2047

4095

COOE

S
T
S

D
I

o

-

o

2047

4095

CODE

LSB

F
F
L
I
N

E
A
R
I
T

Y

dB

dB

·10

·10
·20
·30
·40

F
F
T

·20

T

·60

·50
·60
·70
·80
·90

E

Ild~11
IIIid IlIwi

l1

-100

1.5

.5

.u
2.5

S
T
S

-30
·40
·50
-70
·80
·90
-100

MHz

MHz

NOTE:

FCLOCK = 5 MHz for all presentations

For Immediate Assistance, Dial 1-800-233-2765

1-29

7

Table 3. Output Coding for Bipolar Operation
BIPOLAR
SCALE

INPUT RANGE
.(Volts dc)
±1.25V

+FS -1 LSB
+3/4 FS
+1/2 FS

+1.24939V
+0.9375V
+0.625V

-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

-0.625V
-0.9375V
-1.24939V
-1.2500V

a

OUTPUT CODING
OFFSErBINARY
. COMP OFF. BINARY
MSB
LSB
MSB
LSB
111111111111
1110 0000 0000
1100 0000 0000
1000 0000 0000
0100 0000 0000
0010 0000 0000
0000 0000 0001
0000 0000 0000

o.oooov

fool-e--------

. 0000 0000 0000
,000111111111
0011 1111 1111
0111 1111 1111
1011 1111 1111
110111111111
~111111111110

1111 11111111

200 nSec. Min. - - - - - - "I

10 Min.
190 Max. nSec.

- I I-START
CONVERT
_

DATA READY

100nSec. Max._~--------,
±5nSec.
30 nSec. Min.
30 nSec. Max. j . - -

I_ I

N·2VALID

'OUTPUT DATA

IINVAlID I

N-1 VAliD

I INVALID I N VALID

COMPBINENABLE

OUTPUT
DATA

1---1

1--1

25 nSec. Max.

15 nSec. Max.

1---1

I-I

40 nSec. Max.

45 nSec. Max.

NOTE: NOT DRAWN TO SCALE

Figure 3. ADS-131 Output Data Timing

MECHANICAL DIMENSIONS
INCHES (mm)

~ I -1';2~~' • I +I
I

I

TI,

0.150 (3,8) Min.

U

t

0.190 (4,9) Max.

ORDERING INFORMATION
MODEL
NUMBER
ADS-131MC
ADS-131MM

OPERATING
TEMP,RANGE

SEAL

a to +70 DC
-55 to +125 DC

Hermetic
Hermetic

0.010 x 0.018 Kovar

-t
20 Spaces

.'0.100
each (2,5)

!
Triangle on

top
references

'20

"j,

Bottom
VIew

ADS-131

I

,I
I
,I
I
I

.. I

,;' -~!~~t

II

i

1

Pin 1

Note: Pins have a 0.025 inch ±O.01

1-30

TP20K

2.12
Max.

_ _ 0.100(2,5)

standoff from case

. Part Number

ADS-B130/131

Description
Trimming Potentiometer
(2 required)
Evaluation Board (without
ADS-131)

Receptacle for PC board mounting can be ordered through
AMP Inc.• Part # 3-331272-8 (Component Lead Socket).
40 required.
For availability of MIL-STD-883B versions. contact DATEL.

DATEL. Inc. 11 Cabot Boulevard. Mansfield. MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADS-132
12-Bit, 2.0 MHz, Low-Power
Sampling AID Converter
FEATURES
•
•
•
•
•
•
•
•
•

12-Bit resolution
Internal Sample/Hold
2.0 MHz minimum throughput
Functionally complete
Small 32-pin DIP
Low-power, 2.9 Watts
Three-state output buffers
Samples up to Nyquist
No -5V supply required
INPUT/OUTPUT CONNECTIONS
PIN

GENERAL DESCRIPTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

DATEL's ADS-132 is a 12-bit, functionally complete, sampling
AID converter.rthat is packaged in a small 32-pin ceramic DIP.
The ADS-132 digitizes sinusoidal signals at a 2.0 MHz minimum throughput rate while dissipating only 2.9 Walts.

..v

-15V

.15V

+10V REF. OUT
RANGE
INPUT HIGH
INPUT LOW
OFFSET ADJUST
OVERFLOW
COMP.BIN
StROUT
BIPOLAR
ENABLE (1 - 12)
+5
DIGITAL GROUND
+15V
-15V
DO NOT CONNECT
ANALOG GROUND

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

FUNCTION

DO NOT CONNECT
EOC
BIT 12 OUT (LSB)
BIT 11 OUT
BIT100UT
BIT90UT
BIT80UT
BIT 7 OUT
BIT60UT
BIT50UT
BIT40UT
BIT 3 OUT
BIT20UT
BIT lOUT (MSB)
START CONVERT
GAIN ADJUST

OVERFLOW

141

11
GAIN ADJUST

PIN

FUNCTION

~32~_ _ _ _ _ _- - ,

+10VREF

BIPOLAR

INPUT HIGH

RANGE
S/HOUT
BIT 7
BIT8
BIT.

BlT1.
BIT 11·
BIT 12 (LSB)

OfFSET
ADJUST

COMPBiN

-1

START CONVERT ..;:31+_ _ _

1.

DO NOT CONNECT

...:"'-!---__-I

INPUT LOW
12
00 NOT CONNECT

For Immediate Assistance, Dial 1-800-233-2765

1.
ANALOG
GROUND

1-31

ADS·132
ABSOLUTE MAXIMUM RATINGS
PARAMETERS
+15V Supply (Pin 13)
-15V Supply (Pin 14)
+5V Supply (Pin 11)

LIMITS

UNITS

o to +18

Voltsdc
Voltsdc
Volts dc

Oto -18
-0.5 to +7.0

Digital Inputs
(Pins 7, 10, 31)
Analog Input (Pin 3)
Lead Temp. (10 Sec.)

-0.3 to +6.0
-15 to +15
300 max

Volts dc
Volts dc
°C

Logic Levels
Logic "1"
Logic "0"
Logic Loading "1"
Logic Loading "0"
Internal Reference
Voltage, +25 'C
Drift
External Current

FUNCTIONAL SPECIFICATlON.S·

DYNAMIC PERFORMANCE

Apply over the operating temperature'range and at 15±V dc
and +5V dc unless otherwise specified.

Conversion Rate, 12-Bits
Total Harm. Distorq-o.S dB)
DC to 100 KHz
100 KHz 10 500 KHz
500 KHz 10 1 MHz
Signal to Noise Ratio
(w/o distort., -0.5 dB)
DC to 100 KHz
100 KHz to 500 KHz
500 KHz to 1 MHz
Signal-to-Noise Ratio
(with distort., -0.5 dB)
DC to 100. KHz
100 KHz to 500 KHz
500 KHz to 1 MHz
Eflectille Bits, -0.5 dB
DC to 100 KHz
100 KHz to 500 KHz
500 KHz to 1 MHz
Two-Tone Intermodulation
Distort. (fin = 490. KHz,
480 KHz, Fs = 2 MHz, -0.5 dB
Input Bandwidth
Small Signal (-20 dB input)
Full Power (0 dB input)
Slew Rate
Aperture Delay Time
Aperture Uncertainty
Feedthrough Rejection
S/H AcquiSition Time
to 0.01 %FS (1 OV step)
S/H Acquisition Time
to 0.1% FS (10V step)

ANALOG INPUTS
Input Voltage Range
ADS-132
(See Table I also)

MIN.

TYP.

MAX.

UNITS

-

010 -5
o to -10
Oto -20
o to +10
±5
±IO

-

Valls de
Volts de
Volts de
Volts de
Voltsdc
Volts de

-

Input Impedance
Input Ranges:
(0 to -10, -20,
+10,±10)
(0 to -5, ±5V)
Input Capacitance

800
400

-

-

-

1,000
500
2

-

-

O.S
5.0
-200

-

Ohms
Ohms
pi

DIGITAL INPUTS
Logic Levels
Logic "I"
Logic "0"
Logic Loading "I"
Logic.Loading "0"

2.0

-

PERFORMANCE.
Integral Non·Linearity
@FlN=IMHz
+25 'C
o 'Cto +70'C
-55'C to +125'C
Differential Non-Linearity
@FIN=IMHz
+25 'C
O'Cto+70'C
-55 'c to+ I 25 'C
Full Scale Absolute
Accuracy (See Tech Note II
+25 'C.
o 'Cto +70'C
-55'C to +125'C
Unipolar Zero Error
+25'C (See Tech Note 1)
0°Cto+70'C
-55'C to +125°C
Bipolar Zero Error
+25'C (See Tech Note 1)
o 'Cto +70'C
-55'C to +125'C
Bipolar Offset Error,
+25 'C (See Tech Note t I
Bipolar Offset Tempeo
Gain Error, +25 'c
(See Tech Note 1)
Gain Tempeo
No MISSing Codes
(12 Bits)

1-32

-

-

-

-

-

±3/4
±3/4

-

-

±1.5

-

-

±3/4
±3/4

-

±D.I

-

±D.13
±D.2

±0.25
±0.32

-

-

±1.5

±D.5

-

±D.05

±O.I

±0.t3
±0.25

-

±D.t8

±D.37

-

±O.05

-

±D.l

-

±0.18

-

±D.l

-

±17

Volts de
Volts dc'
IlA

IlA

LSB
LSB
LSB
LSB
LSB
LSB
%FSR
%FSR
%FSR
%FSR
%FSR
%FSR

±0,13
±0.25
±0.37

%FSR
%FSR
%FSR

±17

±O.2
±35

±D.08

±D.17

%FSR
ppm/oC
%FSR

±35

ppm/'C

MIN.

2.4

-

+9.98

-

I

TYP.

+10.0
±5

-

-

Voltsdc
Volts dc
IlA
mA

0.4
-160
4.8
+10.02
±30
2

Voltsdc

ppm/'C
mA

2

-

-

MHz

-72
-70
-67

-80
-75
-71

-

FS.-dB
FS,-dB
FS, -dB

-70
-68
-66

-72
-70
-68

-

-

-

FS.-dB
FS,-dB
FS, -dB

-68
-66
-65

-70
·68
-67

-

FS,-dB
FS,-dB
FS,-dB

11.0
10.7
10.4

11.25
11.1
11.0

-

Bits
Bits
Bits

-67

-70

-

FS,-dB

16
8

-

-

MHz
MHz
V/IlSec,
nSec.
pSec.
dB

-

-

-

-

300
6
5
-74

-

160

180

nSec.

-

100

150

nSec.

14.25
-14.25
+4.75

+15.0
-15,0
+5.0

+15,75
-15.75
+5.25

Voltsdc
Volts dc
Volts dc

-

+75
-60
+t55
2.9

+82
-68
+200
3.2
0.01

rnA
rnA
rnA
Watts
%FSR/%V

+70
+125

'c

-

40

POWER REQUIREMENTS
Power Supply Range.
+ 15V dc Supply
-15V dc Supply
+5V de Supply
Power Supply Current
+15V dc Supply
-15V dc Supply
+5V dc Supply (j)
Power Dissipation
Power Supply Rejection

-

-

PHYSICAUENVIRONMENTAL
Operating Temp. Range, Case
-MC
-MM
Storage Temperature
Range
Package Type
Weight
(j)

Over the Operating Temp. Range.

I MAX. I UNITS
12 Bits
Straight binary/offset binary
Complementary binary/Complementary
offset binary

OUTPUTS
Resolution
Output Coding

0
-55

-

'C

-65
+150
'C
32-pin hermetic sealed, ceramic DIP
0.42 ou-nces (12 grams)

+5V power usage at 1 TTL logiC loading per data output bit.
Specifications subject to change without notice,

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194n-EL (508) 339-3000n-LX 174388/FAX (508) 339-6356

ADS·132
TECHNICAL NOTES
1. Use external potentiometers to remove system errors or the
small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 32 (ground
pin 32 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zerol
offset adjustment (leave pin 5 open for operation without adjustment). See Figure 3.
2. Rated performance requires using good high-frequency circuit board layout techniques.
The analog and digital
grounds are not connected internally. Avoid ground-related
problems by connecting the digital and analog grounds to
one pOint, the ground plane beneath the converter. Due to
the inductance and resistance of the power supply return
paths, return the analog and digital ground separately to the
power supplies.
3. Bypass the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7 ~F, 25V tantalum electrolytic capacitor in parallel with a 0.1 ~F ceramic capacitor.
Bypass the +1 OV reference (pin 1) to analog ground (pin
16).
4. To enable the three-state outputs, connect ENABLE (pin 10)
to a logic "0" (low). To disable, connect ENABLE (pin 10) to
a logic "1" (high).
5. The ADS-132 is in the sample mode when the internal S/H
CONTROL pin is high (S/H is in the high-state on powerup). The START CONVERT pulse should be given at a
time delay equal to the desired acquisition time minus the
10 nanosecond delay from START CONVERT high to S/H
CONTROL low. This assures the sample-hold has the minimum required acquisition time for the particular application
mode.
6. Upon going into the hold mode there will be a 85 nanosecond maximum delay before EOC goes high and the AID
conversion begins. This consists for the remaining 50 nanoseconds of the START CONVERT (10 nanoseconds is part
of the acquisition time) and a 20 nanosecond maximum delay from START CONVERT low to EOC high. The hold
mode settling time requirement is met during this time.
7. Figure 2 shows the relationship between the various input
signals. The timing shown applies over the operating temperature range and over the operating power supply range.
These times are guaranteed by design.

CALIBRATION PROCEDURE
1. Connect the converter per Figure 3, and Tables 1 and 4 for
the appropriate full-scale range (FSR). Apply a pulse of 60
nanoseconds minimum to the START CONVERT input (pin
31) at a rate of 500 KHz. This rate is chosen to reduce flicker if LED's are used on the outputs for calibration purposes.
2. Zero Adjustments
Apply a preciSion voltage reference source between the amplifier's analog input and ground. Adjust the output of the
reference source per Table 2. For unipolar, adjust the zero
trimming potentiometer so that the output code flickers
equally between 0000 0000 0000 and 0000 0000 0001
(straight binary) or between 1111 1111 1111 and 1111 1111
1110 (complementary binary).
For Immediate Assistance, Dial 1-800-233-2765

For bipolar operation, adjust the potentiometer such that the
code flickers equally between 1000 0000 0000 and 1000
0000 0001 (offset binary) or between 0111 1111 1111 and
0111 1111 1110 (complementary offset binary).
3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 2. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111
1111 1110 and 1111 1111 1111 (offset binary) or between
000000000001 and 0000 0000 0000 (complementary offset binary).
4. To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed
in Table 3.

Table 1. ADS-132 Input Range Selection
INPUT RANGE

INPUT PIN

o to-5V dc
o to -10V dc
o to +10V dc

Pin3
Pin3
Pin3

Oto-20V dc
±5Vdc
±10V dc

Pin 3
Pin 3
Pin 3

TIE TOGETHER
Pin 8 to Pin 9, Pin 2 to Pin 3
Pin 8 to Pin 9
Pin 8 to Pin 9, Pin 2 to
EXT.-l0V Reference·
Pin 1 to Pins 2 & 9
Pin 1 to Pin 9, Pin 2 to Pin 3
Pin 1 to Pin 9

• EXT -10V REF may be referenced to pin 1, EXT +1 OV REF

Table 2. Zero and Gain Adjust

-0.61 mV
-1.22mV
+1.22 mV
-2.44 mV
+1.22mVdc
+2.44 mVdc

Oto -5V dc
Oto-l0Vdc
Oto+l0Vdc
Oto -20V dc
±5Vdc
±10V dc

STAAT

-4.9982V dc
-9.9963V dc
+9.9963V dc
-19.9927V dc
+4.9963Vdc
+9.9927Vdc

~60nSecI±25nSec

! !

CONVERT

EoC

GAIN ADJUST
+FS - 1 1/2 LSB

ZERO ADJUST
+ 1/2 LSB

FSR

j

~

FF;::::-~10~"Sec~",~"--1..____
--I LL "Sec min

INTERNALS/A

;::L25 nSec m: nSec max
---=:..., I

OUTPUT DATA

Data N-1 Valid

I

. - - - 350 nSec min

I fI-

75

j L
IXIXIXJ

--I

35 oSec max

Data N Valid
E_od

30 nSec max::::t
ENABLE DATA - - - - - - - - '

NOTE: Retrig9!d..ng the START CONVERT
before EOC goes row w~r not begin
anewconversiDn.

NOTE: NOT DRAWN TO SCALE

I--

e:

N

I~~~~D [8l

Figure 2. ADS-132 Timing Diagram
1-33

ADS·132
Table 3. Output Coding
STRAIGHT

UNIPOLAR

INPUT RANGES, V de

~----~------~----~~--~~--~

Bill

COUP

BII1ARY

INPUT RANGE

OUTPUT CODING
1111 1111 1111
1110 0000 0000
1100 0000 0000
1000 0000 0000
0100 0000 0000
001000000000
0000 0000 0001
0000 0000 0000
OFF

BltlARY

-2.5000V
O.OOOOV
-2.5000V
-3.7500V
-4.9976V
-S.OOOOV
corlP

OFF

10V
+9.9951V
+7.5000V
+5.0000V
O.OOOOV
-5.0000V
-7.5000V
-9.9951V
-10.000V

BIPOLAR
ALE
+FS-l LSB
+3I4FS
+112 FS

o

-1/2 FS
-3/4 FS
-FS+l LSB
-FS

Bill

Table 4. COMP BIN (Pin 7) Connection
INPUT
RANGE

BINARY

I

COMPLEMENTARY
BINARY

Pin 7 logic state"
.15V

+15V

32

ANA.

-15V

o to +10V

.5V

GAIN
ADJUST IN

10
30
29
28
27
28
25
24
23
22
21
20

AD5-132

·1!5V

+1OV REF. OUT
BIPOlAR INPUT
0.1

4.7

"'J .FJ

Si'HOUT
ANA. INPUT HI

,.

'RANGE IN

ANA. INPUT LO

,.V
---1l..-

BIT 1 OUT (MBB)
BIT 2 OUT

BIT30UT
BIT40UT

BIT 5 OUT
BIT60UT
BIT 7 OUT

BIT80UT
BIT 9 OUT
BIT 10 OUT
81Tl1 OUT
BIT 12 OUT (LSB)

" For logic state low connect to +5V. For logic state high leave
open.

,. "EOC

·10

00MPiiN
31

ENABi:E (1-12)

6

START CONVERT IN

High
Low
Low
Low
High
High

Low
High
High
High
Low
Low

Oto-5V
Oto -10V
Oto -20V
±5V
±10V

GND

OVERFLOW

ZERO I OFFSET

...

1--1--1--1--1--1--1--1--1--1-+1

~I--I--I--I--I--I--I--I--I--I-~
~~-~-~-~-~-~-~-~-~-~~

ADJUST IN

~I--I--I--I--I--I--I--I--I--I-~
+15V

~~--~--~--~--~--~--~--~--~--~~

-15V

~I-+-hr-I--I--I---I---I---I---I---rr-~

200

~~+-r.r--r,--~h-~r-rr-r-rr-~r+r-rr.HrKr

Figure 3. Typical ADS-132 Connection Diagram,
±10V dc
100

200

300

400

500

800

700

800

900

1000

kHz

MECHANICAL DIMENSIONS
INCHES (MM)
1

MODEL

t

1.1

MAX.
28,0)

I

NUMBER

0.190 MAX.

,-----,~

r---r
x

=0.150 MIN.
(3,8)

0.010 0.018
KOVAR Pins

1'. 1711
I
I

I.

BOTTOM
VIEW

I SP~~ES 1.7l:a~:X'
I AIOU'00
(2,5)

321.-L
NOTE: Pins have 0.025 Inch fO.01
s1andofffromcsae.

1-34

ORDERING INFORMATION

ADS-132MC
ADS-132MM

OPERATING
TEMP. RANGE

o°c to +70 °C
-55 °C to +125 °C

SEAL
Hermetic
Hermetic

Receptacle for PC board mounting can be ordered through
AMP Inc., Part #3-331272-8 (Component Lead Socket), 24
required.
ADS-EVAL1

Evaluation Board (without ADS-132)

For availability of MIL-STD-883 versions, contact DATEL.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS-193
12-Bit, 1.0 MHz, Low-Power
Sampling AID Converter
FEATURES
•
•
•
•
•
•

12-Bit resolution
Internal Sample/Hold
1.0 MHz minimum throughput
Functionally complete
Low-power, 1.3 Watts
Samples to Nyquist
INPUT/OUTPUT CONNECTIONS

GENERAL DESCRIPTION
PIN

DATEL's ADS-193 is a 12-bit, functionally complete, sampling
AID converter that is packaged in a 40-pin ceramic DIP. A
minimum throughput rate of 1.0 MHz is achieved while only
dissipating 1.3 Watts. The ADS-193 digitizes signals up to Nyquist.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

Typical applications include spectrum, transient, vibration and
waveform analysis. This device is also ideally suited for radar,
sonar, video digitization, medical instrumentation and highspeed data acquisition systems. For information on high reliability screening, contact DATEl.

+10V REF

FUNCTION

PIN
40

+5V
+ 10 V REFERENCE
DIGITAL GROUND
DIGITAL GROUND
·15V
ANALOG INPUT
DO NOT CONNECT
GAIN OFFSET ADJ.
ANALOG GROUND
ANALOG GROUND
ANALOG GROUND
ANALOG GROUND
ANALOG GROUND
ANALOG GROUND
ANALOG GROUND
ANALOG GROUND
+5V
DIGITAL GROUND
-15V
START CPNVERT

39
38
37
36
35

34
33
32
31
30
29
28
27
26
25
24
23
22
21

FUNCTION
DIGITAL GROUND
BIT lOUT (MSB)
BIT 2 OUT
BIT30UT
BIT 4 OUT
BIT 5 OUT
BIT60UT
+5V
UNIPOLAR OFFSET
+10V REFERENCE
+15V
BIT70UT
NO CONNECTION
NO CONNECTION
BIT 8 OUT
BIT 9 OUT
BIT 10 OUT
BITll OUT
.!!JL12 OUT (LSB)
EOC

2.llf-------l-l-----I
39 BIT 1 (MSB)
38 BIT2
37 BIT 3
36 BIT4
35 BIT 5

GAIN &
OFFSET ADJ.

DIGITAL
CORRECTION
LOGIC

UNIPOLAR OFFSET 32

A~~~~~6J-__~---'

34 BIT 6
29 BIT 7

26 BIT8
25 BIT9
24 BIT 10
23 BIT 11

START
CONY. 20

roc

21

LOGIC
CONTROL
AND
TIMING

22 BIT 12 (LSB)

~~~~~~~~~~====:i::)~~~--J
~

+5V

3,4,18,40
DIG.GND.

For Immediate Assistance, Dial 1-800-233-2765

+15V

9 THROUGH 16
ANAGND.

5,19
·15V

1-35

ADS·193
ABSOLUTE MAXIMUM RATINGS
PARAMETERS

LIMITS

UNITS

+15V Supply (Pin 30)

o to +18

-15V Supply (Pin 5,19)
+5V Supply (Pin 1,33)

Oto -18
-0.5 to +7.0

Volts dc
Voltsdc
Voltsdc

Digital Inputs
(Pins 20)
Analog Input (Pin 6)
Lead Temp. (10 Sec.)

-0.3 to +6.0
-15to+15
300 max

Voltsdc
Volts de
°C

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V de
and +5V de unless otherwise specified ..
ANALOG INPUTS
Input Voltage Range

MIN.

TYP.

MAX.

UNITS

-

Oto·5
±2.5
1,000
6

-

Voltsdc
Voltsdc
Ohms
pi

-

Input Impedance
Input capacitance

950

-

-

1,050
15

DIGITAL INPUTS
Logic Levels
logic "1"
logic "0"
logic loading "1"
logic loading "0"

-

AID PERFORMANCE
No Missing Codes
(12 Bits; lln=500 KHz)
Integral Non-linearity
+25°C
oOCto +70 °C
·55C to +125 °C
Differential Non·Linearity
+25°C
o°C to +70 °C
-55 C to +125 °C
Full Scale Absolute
Accuracy
+25°C
oOCto +70 °C
-55 Cto+125 °C
Unipolar Zero Error,
+25 °C (See Tech Note 1)
Unipolar Zero Tempco
Bipolar Zero Error,
+25 °C (See Tech Note 1)
Bipolar Zero Tempcc
Bipolar Offset Error,
+25 °C (See Tech Note 1)
Bipolar OHset Tempcc
Gain Error, +25 °C
(See Tech Note 1)
Gain Tempco
logic Levels
logic "1"
logic "0"
logic loading "I"
logic loading "0"
Internal Reference
Voltage, +25 °C
Drift.
External Current

1·36

-

2.0

-

0.8
5.0
·200

Volts de
Voltsdc
j.IA
j.IA

Over the Operating Temp. Range.

-

-

-

±1/4
±1/4

-

±3/4
±3/4
±1.5

lSB
lSB
lSB

-

±3/4
±314
±1

lSB
lSB
lSB

±O.13
±O.15
±0.25

±O.25
±O.44
±0.78

%FSR
%FSR
%FSR

±O.074
±15

±O.13
±30

%FSR
ppm! ° C

±O.074
±5

±O.13
±8

%FSR
ppm/oC

±O.1
±20
±O.1

±O.2

±40
±O.2

%FSR
ppm! ° C
%FSR

-

±20

±40

ppm! ° C

2.4

-

0.4
-160
4.8

-

Vonsdc
Voltsdc
j.IA
rnA

+10.02
±30
1.5

Voltsdc
ppm! ° C
mA

-

+9.98

-

-

+10.0
±5

-

ANALOG INPUTS

MIN.

TYP.

Resolution
Output Coding

MAX.

UNITS

12 Bits
Complementary binary
Complementary offset binary

PERFORMANCE
Conversion Rate
In·Band Harmonics (-o.5dB)
DC to 100KHz
100 KHz to 500 KHz
Total Harm. Distort. (·0.5dB)
DC to 100KHz
100 KHz to 500 KHz
Signel·to-Nolse Ratio
(w/o distortion, -o.5dB)
DC to 100KHz
100KHz to SOO KHz
Signel·to-Nolse Ratlo
& distortion, -o.5dB
DC to 100 KHz
100KHz to 500 KHz
Effective Bits, -o.5dB
De to 100 KHz
100 KHz to SOO KHz
Two-Tone Intermodulatlon
Distortion (fIN=75, 105 KHz
Fs=1 MHz, ·7dB
Two-Tone Intermodulation
DiS!. (fIN=480 KHz, 490
KHz, Fs=1 MHz, (-O.5dB)
Input Bandwtdth
Small Signal (·2OdB)
Full Power (OdB)
Slew Rate
Aperture Delay Time
Effect. Aperture Delay Time
Aperture Uncertainty (Jitter)
(rms)
(peak)
SlH Acquisition lime to
0.01% (Transient Recovery)
Overvoltage Recovery Time

1.0

·78
·73

-

·76
·70

-81
·75

·75

FS-dB
FS-dB

-87

·72
·71

-

FS-dB
FS-dB

-86
-86

·70
·70

FS-dB
FS-dB

11.0
10.6

11.25
11.0

-

·80

-88

-

FS-dB

·65

·68

FS-dB

7.5
5

10
8
150

-

V1!1Sec.

20
16

nSec.
nSec.

±15
±SO

pSec.
pSec.

-68
-68

-

-

-

MHz
FS-dB
FS-dB

Bits
Bits

MHz
MHz

-

-

-

-

160
1000

nSec.
nSec.

+14.25
·14.25
+4.75

+15.0
·15.0
+5.0

+15.75
·15.75
+5.25

Volts de
Voltsdc
Volts de

-

+24

+35
-48
+115
1.7
0.05

mA
mA
mA
Watts
%FSRI%V

a

-

+70
+125

° C
° C

+ISO

° C

-

-

-

-

POWER REQUIREMENTS
Power Supply Range
+15V de Supply
·15V dc Supply
+5V dc Supply
Power Supply Current
+15V dc Supply
·15V dc Supply
+5V dc Supply (l)
Power Dissipation
Power Supply Rejection

-

·40
+95
1.3

-

PHYSICAUENVIRONMENTAL
Operating Temp. Range
·MC
·MM
Storage Temperature
Range
Package Type
Weight
(l)

·55
-85

-

4O·pin hermetic sealed, ceramic DIP
0.56 ounces (16 grams), maximum

+5V power usage at 1 TTL logic loading per data output bit.
Specifications subject to change without notice.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048·1194rrEL (508) 339·3000rrLX 174388/FAX (508) 339-6356

ADS·193
TECHNICAL NOTES
1. Use external potentiometers as shown in Figure 3 to adjust
the offset and gain errors to zero. For operation without adjustment, leave pin 8 open.

For bipolar operation, adjust the potentiometer such that the
code flickers equally between 1000 0000 0000 and 1000
00000001.

2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital
grounds are connected internally. Avoid ground-related
problems by connecting the digital analog grounds to one
point, the ground plane beneath the converter.

3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 2. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111
11111110and 111111111111.

Due to the inductance and resistance of the power supply
return paths, return the analog and digital ground separately
to the power supplies.

4. To confirm proper operation of the device, vary the preCision
reference voltage source to obtain the output coding listed
in Table 3.

3. Bypass the analog and digital supplies to ground with a 10
j.1F, 2SV tantalum electrolytic capacitor. Bypass the +10V
reference (pin 2 and 31) to analog ground (pin 16) with a
0.1 j.1F ceramic capacitor.

Table 2. Zero and Gain Adjust
FSR

4. For unipolar, 0 to -SV FSR, connect pins 31 and 32. For bipolar, ±2.SV FSR, connect pin 32 to analog ground and connect pin 31 to a 0.1 j.1F ceramic capacitor only.

ZERO ADJUST
+ 1/2 LSB

Oto -SV dc
±2.SVdc

-0.61mVdc
+0.61 mV

GAIN ADJUST
+FS - 1 1/2 LSB
-4.9982V
-2.4982V

S. Pins 27 and 28 are no connection pins. Connecting pins 27
and 28 together is acceptable.

tsc - 200 nS mlnJ750 nS max.

TIMING
START
CONVERT

Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature
range and over the operating power supply range. These
times are guaranteed by design.

tsp -1000 nS min

~12ns

HOLD
PULSE
(INTERNAL)

CALIBRATION PROCEDURE

40 nS

=-=L:=J

tCONV - 850 nS Max.

1. Connect the converter per Figure 3 for the appropriate fullscale range (FSR). Apply a pulse of 200 nanoseconds minimum to the START CONVERT input (pin 20) at a rate of
2S0 KHz. This rate is chosen to reduce flicker if LED's are
used on the outputs for calibration purposes.

EOC

--I ~tDC"5""Max
OUTPUT DATA

2. Zero Adjustments
Apply a precision voltage reference source between the amplifier's analog input and ground. Adjust the output of the
reference source per Table 2. Adjust the zero trimming potentiometer so that the output code flickers equally between
0000 0000 0000 and 0000 0000 0001 for unipolar.

KI>V
Cb

V

31'

«>V
C·

V

Cb

V

32

33

Cb V

ca V

Cb

DO NOT CONNECT
30

V

-15V

Cb

h~,,-+10VREF.

17

«>V

+15V

612

19

V

27

NO CONNECTION

28

NO CONNECTION

910 16

DIGITAL
GROUND

ANALOG
GROUND

*For unipolar operation. connect
pins 31 and 32. For bipolar
operation, ground pin-52 and
connect a 0.01 ~f capacitor
between pin 31 and ground.
ea - is 10 J.Lf tantalum
Cb - is 0.1 J,lF ceramic

Figure 3, Typical ADS-193 Connection Diagram

.B
·10
·20

-30

"0
·5•

...
·70

,.

·so
.

• .u.

:

·100

50

1 so

1 00

200

..,ld~J

.1"

250

300

350

400

450

500

KHz

FFT Analysis of ADS-193

MECHANICAL DIMENSIONS
INCHES (MM)
1.1 Max.

I_

O,':,?,.)

1,
T U

ORDERING INFORMATION

oil

(28.0)

I

U

T

0.200 (5.0)
Max

T

'0.010 xO.t60(4.1) KOVAR

T I
s:m
1 :! 1
20

211

ADS-193

20 Plns
0,'0" Aport
(2,5)

:I
:1

MODEL
NUMBER

OPERATING TEMP.
RANGE

SEAL
ADS-193MC
ADS-193MM
ADS-EVAL1

o

°C to +70 °C
Hermetic
-55°C to + 125 °C
Hermetic
Evolution Board (without ADS-193)

2.12MBx.

Receptacle for PC board mounting can be ordered through
AMP Inc., Part # 3-331272-8 (Component Lead Socket), 40
required.

40

j:;o;:O·=90=(..=~~);j-:j'l

0.100

For availability of MIL-STD-88g versions, contact DATEL.

(2,5)

1-38

DATEL, Inc. 11 Cabot· Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS-21PC
Low-Power, 12-Bit, 1.3 MHz
Sampling AID Converter
FEATURES
•
•

12-81t resolution
1.3 MHz throughput rate
S/H included
• Single 46-pin DIP

GENERAL DESCRIPTION
DATEL's ADS-21 PC Sampling Converter combines a 12-bit
AID and a S/H in one space-saving package. Designed and
manufactured at DATEL's modern, certified hybrid assembly
facility using state-of-the-art integrated circuits, the ADS-21 PC
provides the highest quality and performance for signal processing applications.

TECHNICAL NOTES
1. Use external potentiometers to remove system errors or
the small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 36 (ground
pin 36 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 37 for zer%ffset
adjustment (leave pin 37 open for operation without adjustment).

0.300
(7,62)
MAX.

-*-

MECHANICAL DIMENSIONS

0 - ,-

T

-

-

-

-

'-n.r-------rr"
U
u1.300
-(33,02)-1

-1

2. Rated performance requires using good high frequency circuit board layout techniques. The analog and digital grounds
are connected internally. Avoid ground-related problems by
connecting the digital and analog grounds to one point, the.
ground plane beneath the converter. Due to the inductance
and resistance of the power supply return paths, return the',
analog and digital ground separately to the power supplies.
This prevents contamination of the analog ground by noisy
digital ground currents.

INCHES
(mm)

1

"

t

0.150
(3,81)
MIN.

=-1
_t_
(2,5)

2.620
(66,6)
MAX.

BOTTOM

-t-

VIEW

22 SPACES AT
0.100@±O.005
NON-CUMULATIVE

J

1-

1.620 _ _
(41.2)

-+
I

PIN DIAM. = 0.020 (0.51)

MAX.
+10Vdc
NO CONNECTIONS
1,8,11,32,35,42,46

REF OUT

SIH OUT RANGE

43

44

40

INPUT/OUTPUT CONNECTIONS

ENABLE
10

34 COMP BIN

OFFSET
OVERFLOW

ADJUST3?

12 BIT 1 (MSB)
BIAS

38'

INPUT

39

13 BIT2
14 BIT 3

I-'VVI.....-.-i

15 BIT 4
16 BIT 5

GAIN

1? BIT 6

ADJUST 36

18 BIT?
19 BIT 8

START

20 BIT 9

CONVERT

21

BIT 10

22 BIT11
23 BIT 12 (LSB)
6
24,30,41

2,4,5, ?

ANALOG

DIGITAL

GROUNDS

GROUNDS

9

31

45

+5Vdc

+15V de

-15Vde

For Immediate Assistance, Dial 1-800-233-2765

EOC

PIN FUNCTION
1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16

17
18
19
20
21

22
23

NlC
DIG GND
START CONVERT
DIG GND
DIG GND
EOC
DIG GND
N/C
~
ENABLE
N/C
BIT 1 (MSB)
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
BIT 8
BIT 9
BIT10
BIT11
BIT 12 (lSB)

PIN
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

FUNCTION
ANAGND
ANAGND
ANAGND
ANAGND
ANAGND
ANAGND
ANAGND
+15V
N/C
OVERFLOW

CoMPsiN

NlC
GAIN ADJUST
OFFSET ADJUST
BIAS
ANALOG INPUT
RANGE
ANAGND
NIC
+10V REF OUT
SIH OUT
-15V
NlC

1-39

ADS·21.PC
ABSOLUTE MAXIMUM RATINGS

DYNAMIC PERFORM. CONT.

PARAMETERS

LIMITS

+15V Supply (Pin 31)
-15V Supply (Pin 45)
+5V Supply (Pin 9)
Digital Inputs (Pins 3,10,34)
Analog Input (Pins 38, 39)
Lead Temp. (10 Sec.)

-0.3 to +18V dc
+0.3 to -18V dc
-0.5 to +7V dc
-0.3 to +5.5V dc
-15 to +15V dc
300°C

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V dc
and +5V dc unless otherwise specified.
INPUTS
Input Voltage Ranges

Input Impedance
o to -10V, 0 to +10V,
±10V
Oto -5V, ±5V
Logic Levels
Logic 1
Logic 0
Logic Levels
Logic 1
Logic 0

MIN.

TYP.

MAX.

-

-

Oto +10
Oto -5V
Oto-l0
±io, ±5

-

-

Vdc
Vdc
Vdc
Vdc

-

1
500

-

KQ
Ohms

2.0

-

0.8

Vdc
Vdc

5
-200

IlA
IlA

-

-

-

UNITS

OUTPUTS
Output Coding Options

Logic Levels
Logic 1
Logic 0
Logic Loading
Logic 1
Logic 0
Internal Reference (Pin 43)
Voltage, +25 °C
Drift
External Current (Pin 43)

straight binary
offset binary
complementary binary
complementary offset binary

-

-

-

-

2.4

-

9.98

-

0.4

Vdc
Vdc

-160
6.4

I'A
mA
Vdc
ppm/oC
mA

-

10.0
±5

-

-

10,02
±30
1,5

-

-74

-

dB

-69,0
-67

-71
-70

-

dB
dB

-68,0
-66

-71
-70

-

dB
dB

11
10,7

11,5
11,3

-

Bits
Bits

-72
-70

·80
·75

-

16
300

-

-

±16
±50

-

60

100

1-40

TYP

MAX

UNITS

145
165

180
220

nS
nS

PERFORMANCE, ±10V RANGE
Integral Nonlinearity
Oto +70 °C
Differential Nonlinearity
Oto +70 °C
FS Absol. Accuracy
+25°C
Oto +70 °C
Unipolar Zero Error
+25°C
Unipolar Zero Tempco
Bipolar Zero Error
Bipolar Zero Tempco
Bipolar Offset Error
+25°C
Bipolar Offset Tempco
Gain Error, +25 °C
Gain Tempco
Throughput Rate
+25 °C
oto +70 °C
No Missing Codes (12 bits)

±0,0125 %FSR±1I2LSB
±Q,0125 %FSR±1/2LSB
±5
±6

±12
±15

LSB
LSB

±2
±13

±5
±25
±5
±25

LSB
ppm/oC
LSB
ppm/oC

±8
±40
±8
±40

LSB
ppm/oC
LSB
ppm/oC

±13
±2
±17
±3

±18

1.3
MHz
1.1
MHz
Over the operating temp. range,

POWER SUPPLY REQUIREMENTS
Power Supply Range
+15V dc Supply
-15V dc Supply
+5V dc Supply
Power Supply Current
+ 15V Supply
-15V Supply
+5V Supply'
Power Dissipation
Power Supply Rejection

+14,25
-14,25
+4.75

+15
-15
+5
+50
-65
+80
2.1
0,01

+15.75 V dc
-15,75 Vdc
+5,25 V dc
+65
-72
+95
2,5
0,05

mA
mA
mA
Watts
"IoFSR/"IoV

PHYSICAL-ENVIRONMENTAL
Operating Temp. Range
Storage Temp. Range
Package Type
Pins
Weight

o
-65

• +5V power usage at 1 TTL logic loading per data output bit.

DYNAMIC PERFORMANCE
Feedthrough Rejection
SNR w/o distortion, -0.5 dB
dc to 100 kHz
100 KHz to 500 KHz
SNR with distortion, ..(l.5 dB
dct:> 100 kHz
100 KHz to 500 KHz
Effective Bits
dcto 100 kHz
100 KHz to 500 KHz
Inband Harmonics (j)
dcto 100 KHz
100 to 500 KHz
Frequency Response
Small Signal (·3 dB)
Slew Rate
Aperture Delay Time
Aperture Uncertainty (Jitter)
Settling Time
10V to ±0,01% FS
(±lmV)

MIN

Acquisition Time
10V step to ±1.0 mV
(0,01% FS)
+25°C
Oto +70 °C

-

-

FS-dB
FS,-dB
MHz
VII'S
nS
pS
nS

Same specification values apply for Total Harmonic Distortion
(-0.5 dB below FS),

(j)

TECHNICAL NOTES CaNT.
3, Bypass all the analog and digital supplies and the + 1OV
reference (pin 43) to ground with a 4.7I1F, 25V tantalum electrolytic capacitor in parallel with a 0.1 I1F ceramic capacitor.
Bypass the +1 OV reference (pin 43) to analog ground (pin 41).
4. The COMP BIN input (pin 34) allows selection of binary/
offset binary or complementary binary/complementary offset
binary. Refer to Table 3 for the desired coding selection. Pin
34 has an internal pull-up resistor and is TTL-compatible for
those users desiring logic control of this function.
5, The internal Sample/Hold control signal goes low following
the rising edge of a start convert pulse and hiQ.,h 65 nanoseconds minimum before EOC goes low. This S/H low signal indicates that the converter can accept a new analog input.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADS·21PC
Table 1. Input Connections
Table 2. Zero and Gain Adjust
Input
Voltage
Range

Connect
Input Pin
38 to

Connect
Pin 40
(Range) to

Oto-5V
Oto-10V
to +10V
±5V
±10V

39

44
44
44
43
43

a

Ext. -10V Ref:
39

-

FSR

Zero Adjust
+1/2 LSB

Gain Adjust
+FS -1 1/2 LSB

Oto-5V
Oto-10V
a to +10V
±10Vdc
±5Vdc

-0.61 mV
-1.22mV
+1.22 mV
+2.44 mV
+1.22 mV

-4.9982V
-9.9963V
+9.9963V
+9.9927V dc
+4.9963V dc

"May be referenced to +1 OV Ref. (Pin 43)

CALIBRATION PROCEDURE
1. Connect the converter per Figure 3 and Tables 1 and 3 for
the appropriate full-scale range (FSR) and coding options.
Apply a pulse of 100 nanoseconds minimum to the START
CONVERT input (pin 3) at a rate of 500 KHz. This rate chosen to reduce flicker if LED's are used on the outputs for calibration purposes.

For bipolar operation, adjust the potentiometer until the displayed code flickers equally between 1000 0000 0000 and
100000000001 orbetween011111111111 and01111111
1110. Refer to Table 5.
3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 2. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111
1110 and 1111 1111 1111 or between 0000 0000 0001 and
0000 0000 0000 depending on the output coding selected.

2. Zero Adjustment
Apply a preCision voltage reference source between the analog input (pin 39) and ground (pin 24). Adjust the output of the
reference source per Table 2. For Unipolar operation adjust
the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 or
between 1111 1111 111t and 1111 1111 1110. Refer to
Table 4.

ANALOG
INPUT

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Tables 4 and 5.

~-------------------1

I

---,
START
CONVERT

- - - '00 nSec HOLD MODE SETTLING TIME

N~L
---::-1--' L
1
10 nSec MIN.
25 nSec MAX.

100nSecMIN.

T1 Values

~L-_-L....I--+-,11
1

INTERNAL Sl H

~~·I

-11---15nsecMIN.
20 nSec MAX.

_~

I

65nSec
MIN.

Temperature
+25 °C
0 to +70 °C

Conversion Time

L_
I

1

TIME
OUTPUT DATA

~I

1 1 _ _ T' MAXIMUM

350 nSec MIN.

-I

---I

r--

t>-1

1 BIT 14 OUT (LSB)

EOC 15
13

14

22

23

24

+5V

DIG.GND.

+15V

GND.

·15V

For Immediate Assistance, Dial 1-800-233-2765

1-43

ADS·924
ABSOLUTE MAXIMUM RATINGS
PARAMETERS

LIMITS

+15V Supply (Pin 22)
-15V Supply (Pin 24)
+5V Supply (Pin 13)

o
o

Digital Inputs
(Pins 14, 16)
Analog Input (Pin 19)
Lead Temp.(10 Sec.)

UNITS

OUTPUTS

to +18
to -18
-0.5 to +7.0

Volts de
Volts de
Volts de

'No Missing Codes
(14 Bits)
(13 Bits)
(12 Bits)

-0.3 to +6.0
-15to+15
300 max

Volts de
Volts de
°C

Logic Levels
Logic "1"
Logic "0"
Logic Loading "1"
Logic Loading "0"
Internal Reference
Voltage, +25 °C
Drift
External Current

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V de
and +5V de unless otherwise specified.

Resolution
Output Coding

ANALOG INPUTS

DYNAMIC PERFORMANCE

Input Voltage Range
ADS-924
(See Table 4 also)
Input Impedance
Input Capacitance

MIN.

TYP.

MAX.

UNITS

-

±5
010+10
15.0
3

-

Vollsdc
Vollsdc
MOhms
pi

2.0

-

-

Volts de
Vollsdc

5.0

5

DIGITAL INPUTS
Logic Levels
Logic "1"
Logic "0"
Logic Loading ·'1"
Logic Loading "0"

-

-

PERFORMANCE
Integral Non-Linearity
+25 °C (see Tech Noles)
o °Clo +70 'C
-55 'C 10 +125 °C
Differential Non·Unearity
+25°C
o °Clo+70 °C
-55°C 10 +125 °C
Full Scale Absolute
Accuracy
+25°C
o °Clo +70 °C
-55°C 10 +125 °C
Unipolar Zero Error,
+25 °C (See Tech Note 1)
o °C'lo +70 °C
-55°C 10 + 125 °C
Bipolar Zero Error,
+25 °C (See Tech Nole 1)
o °C 10 +70 °C
-55°C 10 + 125 °C
Bipolar Offset Error,
+25 °C (See Tech Note 1)
o °C 10 +70 °C
-55°C 10 +125 °C
Gain Error, +25 °C
(See Tech Nole 1)
o °C 10 +70 °C
-55°C 10 +125 °C

-

-

-

-

±1/2
±1

±1/2
±1

-

0.8
5
-200

IIA
IIA

±1
±2
±3

LSB
LSB
LSB

±1
±2
±2.5

LSB
LSB
LSB

MIN.

TYP.

MAX.

UNITS

al +25 °C
over 0 to 70°C temp. range
over -55 to +125 °C temp. range

-

2.4

-

-

+9,98

-

-

-

0.4
-160
6.4

+10.0
±5

+10.02
±30
1.5

-

Volts de
Voitsdc

j.iA
mA
Volts dc
ppm/oC
mA

14 Bits
Straight binary/offset binary

Conversion Time
+25°C
300
°C to +70 °C
300
-55°C to +125 °C
300
Total Harmonic Distortion
DC to 100 KHz at Vin<2.5V pop
-72
+25°C
-55°C to +125 °C
-70
DC to 40 KHz at Vin = 10V pop
-72
+25°C
-55°C to +125 °C
-70
Slew Rate
Aperture Delay Time
Aperture Uncertainty
S/H Acquisition Time
to 0.006% (10V step)
+25°C
O°Cto +70 °C
-55°C to +125 °C
(Sinusoidal Input)
-

o

-

-

KHz
KHz
KHz

-76
-72

-

dB
dB

-76
-72
90
20
±100

-

dB
dB
VlJ,LSec.
nSee.
pSec.

-

1.2
1.35
1.5
700

I1Sec.
J,LSee.
I1See.
nSee.

+15.0
-15.0
+5.0

+15.75
-15.75
+5.5

Volts de
Volts de
Voitsde

-

+41
-46
+66
1.4

-

-

+49
-53
+75
1.8
0.Q1

mA
mA
mA
Watts
%FSR/%

0
-55

-

+70
+125

°C
°C

+150

°C

POWER REQUIREMENTS

-

-

±0.037
±0.074
±0.12

±0.074
±0.13
±0.2

%FSR
%FSR
%FSR

±0.02

±0.031
±0.09
±0.12

%FSR
%FSR
%FSR

±0.031
±0.09
±0.12

%FSR
%FSR
%FSR

±0.061
±0.12
±0.15
±0.061

%FSR
%FSR
%FSR
%FSR

±0.12
±0.15

%FSR
%FSR

-

-

±0.02

-

±0.02

-

-

-

-

-

-

±0.02

-

-

Power Supply Range
+ 15V de Supply
-15V de Supply
+5V de Supply
Power Supply Current
+ 15V de Supply
-15V de Supply
+5V de Supply·
Power Dissipation
Power Supply Rejection

14.25
14.25
+4.5

PHYSICAL/ENVIRONMENTAL
Operating Temp. Range
-MC
-MM
Storage Temperature
Range
Package Type
Weight

-65

24-pin hermetic sealed, ceramic DIP
0.42 ounces (12 grams)

• +5V power usage at 1 TTL logic loading per data output bit.

1-44

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS·924
'.
TECHNICAL NOTES

Table 4. Input Ranges
(using external calibration)

1. Applications which are unaffected by endpoint errors or remove them through software will use the typical connections
shown in Figure 3. Remove system errors' or adjust tile
small initial errors of the ADS-924 to zero using the options]
external circuitry shown in Figure 4. The external adjustment circuit has no affect on the throughput rate.
2. Bypass the analog and digital supplies and the + 1OV ref.~r:
ence (pin 21) to ground with a 4.7 !IF, 25V tantalum electro,
lytic capacitor in parallel with a 0.1 !IF ceraJTlic capacitor.
Bypass the + 1OV reference (pin 21) to analog ground (pin
23).

INPUT RANGE

R1

o to +10V, ±5V
oto +5V, ±2.5V
o to +2.5V, ±1.25V

2
1.65
715

0.1~F

0.1~F

22

23

24

13

23

W!L-

1

Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature
range and over the operating power supply range. These times
are guaranteed by design.

START
CONVERT

4.7~F

~

i

Mn.

I

I

~---.----------------­

L

:... 9oon8_... 1

__I

START
CONVERT

-:ro-,r--

16

A05-924
20
BIPOLAR INPUT

I~I

NOTE: NOT DRAWN TO SCALE

:1------------

~I
II

-BIPOLAR
- -

OPERATION

I
I
700 ns ACQUISITION nME (SINUSOIDAL INPUT)

"

+5V

19

ANALOG
INPUT

TIMING

ANALOG
INPUT
SETIUNG
TIME

-15V

4.7~F

KOhms
KOhms
K'Ohms

+

4. To obtain three-state outputs, connect ENABLE (pin 14) to a
logic "0" (low). Otherwise, connect ENABLE (pin 14) to a
logic "1" (high).

INPUT

UNIT

2
4.99
4990

+15V

3. The ADS-924 exhibits up to 2.0 LSB's of peak-to-peak
noise. Digital signal processing (DSP) applications will average this n o i s e . '

ANALOG

R2

21

IV
"[l.1~F
L

___

+10 REF
' -_
_ _ _ _ _ _ _...r-

ENABLE
BIT 1 (MSB)
BIT2
BIT 3
BIT 4
BITS
BIT 6
BIT 7
BITS
BIT9
BIT 10
BIT 11
BIT 12
BIT 13
BIT 14

...1

UNIPOLAR
OPERATION

Figure 3. Typical Input Connections for the ADS-924
ONTERNAL)
SlH

OUTPUT

I

I.

,

181

1

I ~ 3.13~S"n. - I
.. I
2OnSMax.

I

OATA

INVAUO

OATA

ENABLE

ENABLED DATrA'--_ _ _-;n;;ou;;-:;~,

~I- N·1VAUD

I

ENABLED DATA

10nSMax._II+-N.,VAlID

Figure 2. ADS-924 Timing Diagram

Table 2. Input Range Selection
INPUT RANGE
±5Vdc
o to +10V dc

INPUT PIN
Pin 19
Pin 19

TIE TOGETHER
Pin 20 to Pin 21
Pin 20 to Ground

Table 3. Zero and Gain Adjust
FSR

oto +10V dc
±5Vdc

ZERO ADJUST
+1/2 LSB
+300!lV dc
+300!lV dc

GAIN ADJUST
+FS -11/2 LSB
+9.9991 V dc
+4.9991V dc

For Immediate Assistance, Dial 1-800-233-2765

CALIBRATION PROCEDURE
1. Connect the converter per Figure 3, Figure 4, and Table 2
for the appropriate. full-scale range (FSR). Apply a pulse of
200 nanoseconds minimum.to the START CONVERT input
(pin 16) at a rate of 250 KHz. This rate is chosen to reduce
flicker if LED's are used on the outputs for calibration purposes.
2. Zero Adjustments
Apply a precision voltage reference source between the amplifier's analog input and ground. Adjust the output of the
reference source per Table 3. For unipolar, adjust the zero
trimming potentiometer so that the output code flickers
equally between 00 0000 0000 0000 and 00 0000 0000
0001.
For bipolar operation, adjust the potentiometer such that the
code flickers equally between 10 0000 0000 0000 and 10
000000000001.

1-45

ADS-924
3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 3. Adjust the gain trimming potentiOmeter so that the output code flickers equally between 11
111111111110and 11111111111111.

4. To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed
in TableS.

Table 6. Output Coding
STRAIGHT

Oto +10V
+9.99939V
+8.7500V
+7.5000V
+5.0000V
+2.5000V
+1.2500V
+0.0003V
O.OOOOV

SCALE
+FS -1 LSB
7/8 FS
3/4 FS
1/2 FS
1/4 FS
1/8 FS
1 LSB
0

BIN

CaMP

BINARY

OUTPUT CODING

INPUT 'RANGE UNIPOLAR

MSB
LSB
111111111111'
1110 0000 0000
1100 0000 0000
1000 0000 0000
0100 0000 0000
0010 0000 0000
000000000001
0000 0000 0000
OFF

BINARY

BIPOLAR

MSB
LSB
0000 0000 0000
0001 1111 1111
0011 1111 1111
0111 1111 1111
101111111111
1101 1111 1111
111111111110
111111111111

CaMP

OFF

SCALE
+FS-HSB
+3/4 FS
+1/2 FS
0
-1/2 FS
-3/4 FS
-FS + 1 LSB
-FS

INPUT
RANGES
+4.99939V'
+3.7500V
+2.5000V
O.OOOOV
-2.5000V
-3.7500V
-4.99939V
-5.0000V

BIN

dB

Or--------.------------------------,

20

40

R2*

60

+15V

SIGNAL
INPUT

Figure 5. FFT Analysis of AD5-924
ZERO/OFFSET
ADJUST

MECHANICAL DIMENSIONS
INCHES (MM)

I·

0.800MAX

0.190 MAX

~ 0.010 X 0.018 ~
KOVAR Pins

13
1'2
1
1
1
1
1
1
1
1
BOTTOM
1
1
VIEW
1
1
1
1
1
1
1
1

!

1

1-46

* See Table 4 for R1 and R2 values.

.,

(20,3)

1

24
0.600

•

(15,2)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

!

~

==r

0.150 MIN.
(3,8)

TI
11
SPACES
AT 0.100

Figure 4. Optional Calibration Circuit

1.310MAK
(33,3)

(2,5)

~

NOTE: Pins have a 0.025 inch, ±0.01
sland-off from case.

ORDERING INFORMATION
MODEL
NUMBER
·ADS-924MC
ADS-924MM

OPERATING
TEMP. RANGE

o

OCto +70 °c
-55°C to +125 °c

SEAL
Hermetic
Hermetic

Receptacle for PC board mounting can be ordered through
AMP Inc., Part # 3-331272-8 (Component Lead Socket),
24 required.
For availability of MIL-STD-883B versions, contact DATEL.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADS-928
High Resolution
Sampling AID Converter
FEATURES
•
•
•
•
•
•
•

14-Bit resolution
500 KHz sampling rate
Functionally complete
Small 32-pin DIP
Low-power,3.1 Watts
Three-state output buffers
Samples up to Nyquist

INPUT/OUTPUT CONNECTIONS

GENERAL DESCRIPTION
PIN

DATEL's ADS·928 is a 14·bit, 500 KHz sampling rate, function·
ally complete AID converter. The ADS-928 samples up to Nyquist with no missing codes.

FUNCTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Packaged in a small 32-pin DIP, power requirements are ±15
volts and +5 volts with 3.1 Watts power dissipation.

+10V REF. OUT
BIPOLAR
ANALOG INPUT
SIGNAL GROUND
OFFSET ADJUST
GAIN ADJUST
OVERFLOW
COMPo BIN
ENABLE
+5V
DIGITAL GROUND
+15V
-15V
NO CONNECTION
ANALOG GROUND
EOC

PIN

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

FUNCTION

BIT 14 OUT (LSB)
BIT 130UT
BIT 120UT
BIT 11 OUT
BIT 10 OUT
BIT90UT
BIT80UT
BIT 7 OUT
BIT 6 OUT
BIT 5 OUT
BIT40UT
BIT 3 OUT
BIT20UT
BIT lOUT (MSB)
BIT lOUT (MSB)
START CONVERT

GAIN
ADJUST 6 1 - - - = = - - + - 1 - - - - - - - - ,
+10V REF 1 t--:::=--+-I-----~
31 BIT lOUT (MSB)
30 BIT lOUT (MSB)
OFFSET
ADJUST

29 BIT 20UT
28 BIT 30UT

5

27BIT 40UT

BIPOLAR 2 .........,Aero-

26BIT 50UT

ANALOG
INPUT 3

NIC 14

24 BIT 70UT
23 BIT 80UT

LOGIC
CONTROL

START
CONV.32

EOC

25 BIT 60UT

DIGITAL
CORRECTION
LOGIC

19 BIT 12 OUT
18 BIT 13 OUT

T~~~G

L-..""'""T""r-r-J 17 BIT 14 OUT (LSB)

16t~=L=~~~~~~~~~~~;;~~~~~===~===Jl~=j
4

10

11

12

15

13

SIGNAL GND

+5V

DIG. GND.

+15V

ANA. GND.

·15V

For Immediate Assistance, Dial 1-800-233-2765

7 OVERFLOW
9ENABLE

1-47

ADS-928
ABSOLUTE MAXIMUM RATINGS
PARAMETERS

LIMITS

+15V Supply (Pin 12)
-15V Supply (Pin 13)
+5V Supply (Pin 10)

UNITS

-0.3 to +18
+0.3 to -18
-0.3 to +7.0

Digital Inputs
(Pins 8, 9, 32)
Analog Input (Pin 3)
Lead Temp. (10 Sec.)

Volts de
Volts de
Volts de

-0.3 to +7.0
±25
300 max

Volts de
Volts
°C

OUTPUTS
Logic Levels
Logic "1"
Logic "0"
Logic Loading "1"
Logic Loading "0"
Internal Reference
Voltage, +25 °C
Drift
External Current

MIN.

TYP.

2.4

-

MAX.

UNITS

-

Volts dc
Volts de

-

-

0.4
-160
6.4

+9.98

+10.0
±13

-

+10.02
±30
2

-83
-78

-88
-82

- .,

-

FS-dB
FS-dB

-82
-78

-88
-84

-

-

FS-dB
FS-dB

-77
-72

-80
-75

-

FS-dB
FS-dB

12.5
12.0

13.2
12.3

-

-92

-

-

FS-dB

6
1.75

-

-

MHz
MHz

-

dB
V/I!Sec.
nSec.
pSec.

-

I1A

mA
Voltsdc

ppm/oC
mA

DYNAMIC PERFORMANCE

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V dc
and +5V de unless otherwise specified.
ANALOG INPUTS
Input Voltage Range

MIN.

TYP.

MAX.

UNITS

-

Oto-l0
±5
5
7

-

Volts
Volts
KOhms
pI

2.0

-

-

Volts de
Voltsdc

-

Input Impedance
Input CapaCitance

4.9

15

DIGITAL INPUTS
logic Levels
Logic'l"
Logic '0'
Logic Loading '1"
Logic Loading '0"

-

-

-

0.8
5.0
-200

I1A
I1A

PERFORMANCE
Inl. Non-Lin. @fiN = 250 KHz
+25°C
Oto+70°C
-55 to +125 °C
Dill. Non·Lin. @ fiN = 250 KHz
+25°C
Oto+70°C
-55 to +125 °C
Full Scale Absolute
Accuracy
+25°C.
Oto+70°C
-55to+125°C
Unipolar Zero Error,
+25°C
o to +70 °C
-55 to +125 °C
Bipolar Zero Error,
+25 °C (Tech Note 1)
Oto +70 °C
-55 to +125 °C
Bipolar Offset Error,
+25 °C (Tech Nole 1)
Oto +70 °C
-55 to+ 125°C
Gain Error, +25 °C
(See Tech Note I)
010 +70 °C
-55to+125°C
No MIssing Codes
14 Bits @ 250 KHz fiN
13 Bits@250 KHz fiN
Resolution
Outpul Coding
(Pin8Hi)
(Pin 8 Low)

1·48

-

-

-

±1/2
±3I4
±1

±3/4
±1
±2

LSB
LSB
LSB

-

-

-

±1/2
±3I4

±1

±2

LSB
LSB
LSB

-

±O.08
±0.18
±O.61

±O.122
±O.36
±O.85

%FSR
%FSR
%FSR

-

±O.04
±O.07
±O.1

±O.122
±O.13
±O.17

%FSR
%FSR
%FSR

-

±0.04
±O.07
±O.1

±O.122
±O.18
±O.3

%FSR
%FSR
%FSR

±O.018
±O.12
±O.53
±O.018

±O'12
±O.3
±O.73
±O.12

%FSR
%FSR
%FSR
%FSR

±O.12
±O.53

±O.3
±O.73

%FSR
%FSR

-

-

-

OVER 0 TO +70·C.
OVER -55 TO +125-C

14 Bits minimum

Total Harm. Distort. (·0.5 dB)
DC to 100 KHz
100 KHz to 250 KHz
Signal·lo-Noise Ratio
(w/o distortion, -0_5 dB)
DC to 100 KHz
100KHz to 250 KHz
Signal·lo-Noise Ratio
& distortion, -0.5 dB
DC to 100 KHz
100 KHz to 250 KHz
Effective Bits, ·0.5 dB
DC to 100 KHz
100 KHz to 250 KHz
Two·tone Inlermodulatlon
Distortion (fiN =100 KHz,
240 KHz, Fs=500 KHz,
-0.5 dB)
Input Bandwidth
Small Signal (-20 dB input)
Full Power (0 dB input)
Feedthrough Rejection
@fiN = 250 KHz
Slew Rate
Aperture Delay Time
Aperture Uncertainty
S/H Acquisition Time
(to O_OI%FS (10V step)
Overvollage Recovery, ±12V
AID Conversion Rate
+25·C
010+70'C
-55 to = I 25'C
POWER REQUIREMENTS
Power Supply Range
+15V de Supply
-15V de Supply
+5V dc Supply
Power Supply Current
+15V dc Supply
-15V dc Supply
+5V dc Supply (j)
Power Dissipation
Power Supply Rejection

-90
80

-

-

Bits
Bits

-

90
±20

-

±25
±100

-

680
600

750
1000

·nSec.
nSec.

500
500
550

600
600
550

-

-

KHz
KHz
KHz

+14.25
-14.25
+4.75

+15.0
-15.0
+5.0

+15.75
-15.75
+5.25

Volts de
Volts de
Volts de

-

+95
-88
+83
3.1

+115
-105
+100
3.4
0.02

mA
mA
mA
Watts
%FSR/%V

0
-55

-

-

+70
+125

°C
°C

-

-

PHYSICALJENVIRONMENTAL
Operating Temp. Range
·MC
·MM
Storage Temperature
Range
Package Type
Weight
(j)

-65
+150
°C
32-pin hermetic sealed, ceramic TDIP
0.42 ounces (12 grams)

+5V power usage at 1 TIL logic loading per data output bit.

Straight binJoffset bin.l2's Camp.
Comp. bin.lComp. offset bin., C2C

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048·1194fTEL (508) 339·3000fTLX 174388/FAX (508) 339·6356

ADS-928
TECHNICAL NOTES
1. Use external potentiometers to remove system errors or the
small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 6 (ground
pin 6 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/
offset adjustment (connect pin 5 to pin 15, analog ground
for operation without adjustment).

2. Zero Adjustments
Apply a precision voltage reference source between the analog input (pin 3) and signal ground (pin 4). Adjust the output of the reference source per Table 2.
For unipolar, adjust the zero trimming potentiometer so that
the output code flickers equally between 00 0000 0000
0000 and 00 0000 0000 0001 with the COMP BIN (pin 8)
tied high (straight binary) or between 11 1111 1111 1111
and 11 1111 1111 1110 with the COMP BIN (pin 8) tied low
(complementary binary).

2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital
grounds are not connected internally. Avoid ground-related
problems by connecting the digital and analog grounds to
one pOint, the ground plane beneath the converter. Due to
the inductance and resistance of the power supply return
paths, return the analog and digital ground separately to the
power supplies.

For bipolar operation, adjust the potentiometer such that the
code flickers equally be1W.e.erL1.O 0000 0000 0000 and 10
0000 0000 0001 with COMP BIN (pin 8) tied high (offset binary) or between 01 1111 1111 1111 and 01 1111 1111
1110 with COMP BIN (pin 8) tied low (complementary offset
binary).

3. Bypass the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7 ~F, 25V tantalum electrolytic capacitor in parallel with a 0.1 ~F ceramic capacitor.
Bypass the +1 OV reference (pin 1) to analog ground (pin
15).
4. Obtain straight binary/offset binary output coding by tying
COMP BIN (pin 8) to +5V dc or leaving it open. The device
has an internal pull-up resistor on this pin. To obtain complementary bin~complementary offset binary output
coding, tie the COMP BIN pin to ground. The COMP BIN
Signal is compatible to CMOSITTL logic levels for those users desiring logic control of this function.

Two's complement coding requires use of the MSB (pin 31)
with COMP BIN (pin 8) tied high, adjusting the potentiometer such that the code flickers between 00 0000 0000 0000
and 00 0000 0000 0001.
3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 2.
Adjust the gain trimming potentiometer so that the output
code flickers equally between 11 1111 1111 1110 and 11
1111 1111 1111 for COMP BIN (pin 8) tied high (straight binary) or between 00 0000 0000 0000 and 00 0000 0000
0001 for COMP BIN tied low (complementary binary).

5. To enable the three-state outputs, connect ENABLE (pin 9)
to a logic "0" (low). To disable, connect ENABLE (pin 9) to
a logic "1" (high).

Two's co!!!plement coding requires use of the MSB (pin 31)
with the COMP BIN (pin 8) tied high, adjusting the gain trimming potentiometer so that the output code flickers equally
between 01 1111 1111 1110 and 01 1111 1111 1111.

6. The 200 nSec. minimum START CONVERT pulse width assures the hold mode settling time requirements are met.
7. The specifications listed in Figure 2 (timing diagram) apply
over the full operating temperature range unless otherwise
specified.

4. To confirm proper operation of the device, vary the preCision
reference voltage source to obtain the output coding listed
in Table 3.

CALIBRATION PROCEDURE
1. Connect the converter per Figure 3, and Table 1 for the appropriate full-scale range (FSR). Apply a pulse of 200 nanoseconds minimum to the START CONVERT input (pin 32)
at a rate of 200 KHz. This rate is chosen to reduce flicker if
LED's are used on the outputs for calibration purposes.

----.1
-+1 I

START
CONVERT

1_ HOLD MODE SETT1.ING
I.L 200 nSec MIN

-.,.---l\

N

SIH ACa. TIME

SIH
OUT

Table 1. Input Connections
INPUT RANGE
Oto -10V
±5V

INPUT PIN
Pin 3
Pin3

roc

Pins 2 and 4
Pins 1 and 2

BUSY
~,

OUT

I

TIE TOGETHER
OUTPUT
DATA

+- 30 nSec MIN
I SAMPLE

10 nSec MIN., 25 nSec MAX.

(INTERNAL)

AID

_

HOlD

CONTROL

r"","-20nSecMIN.,35nSecMAX

I

I - - - 7OonSecMIN-_1 ,
DATA N-1 VALID
1><1

DATA N VALID

INVALID

-=1rrl<-:--,o-,S""'-',M""A""XD"'A-:CTA""N"'H""'BIT=E=-D-""'O'""'-:CS.-,M:7:AX:::-=_II4-·"::NABLEDDATANVAUD
NOTE: NOT DRAWN TO SCALE

Table 2. Zero and Gain Adjust
FSR

o to -10V
±5V

ZERO ADJUST
+1/2 LSB
-305 ~V
-305 ~V

GAIN ADJUST
FS -1/2 LSB
-9.999085V
-4.999085V

For Immediate Assistance, Dial 1-800-233-2765

Note: Retriggering START CONVERT before EOC
goes low will not start a new conversion.

Figure 2. ADS-928 Timing Diagram

1-49

ADS-928
Table 3. Output Coding
STRAIGHT

UNIPOLAR

INPUT RANGES, V de

oto -10V

SCALE
FS -1 LSB
7/8 FS
314 FS
112 FS
1/4 FS
118 FS
lLSB
0

-9.999390
-8.750000
-7.500000
-5.000000
-2.500000
-1.250000
-0.000610
0.000000

BIN

COMP

BINARY

OUTPUT CODING
MSB
LSB
IMSB
LSB
11111111111111 00 0000 0000 0000
11 1000 0000 0000 00 0111 1111 1111
11 0000 0000 0000 00111111111111
10 0000 0000 0000 01 1111 1111 1111
01 0000 0000 0000 10111111111111
00 1000 0000 0000 11 0111 1111 1111
00 0000 0000 0001 11111111111110
00 0000 0000 0000 11111111111111

MSB
LSB
01 1111 1111 1111
01 1000 0000 0000
01 0000 0000 0000
00 0000 0000 0000
10 0000 0000 0000
10 1000 0000 0000
10000000000001
10 00000000 0000

1_
12
15
13
10
11
~;...L.."";';...L......;.,-,-_,-,-_............, 9
GAIN ADJUST
31
30
29

010 -10V

----"-I
+SVDC

BIPOLAR
SCALE
+FS -1 LSB
+3/4 FS
+1/2 FS
0
-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

MECHANICAL DIMENSIONS
INCHES (MM)

+5V

""-_"'---'-1

INPUT RANGE
±5Vde
-4.99939
-3.75000
-2.50000
0.00000
+2.50000
+3.75000
+4.99939
+5.00000

+10V REF

ANALOG INPUT
COMP BIN
START CONVERT
NO CONNECTION

~0.010 X 0.018 ~
ENABLE

28
27
26
25
24
23
22

BIT 1 (MSB)
BIT 1 (MSB)
BIT 2
BIT3
BIT4
BITS
BIT6
BIT 7
BIT 8

21
20
19
18
17
7

BIT 9
BIT 10
BIT 11
BIT12
BIT13
BIT 14 (LSB)

L-SI_G_NAL_G_RO_U_N_D-r-:-_ _ _ _rl-6

20K
-lSV
+lSV
ZEROIOFFSET ADJUST

-I

1.101 MAX
(28.0)

~~RFLOW

KOVAR Pins

16

17

-,
15
SPACES
ATO 100
(2,5)

1.712 MAX.
(43,5)

ll

BOTTOM

VIEW

_I
'---'-_ _.::320.........

1_

0.900
(22,9)

-I

NOTE: Pins have a 0.025 inch, ±0.01
stand-off from case.

Figure 3. Typical ADS-928 Connection Diagram

dB

ORDERING INFORMATION

-10
-20

MODEL NUMBER

-30

-40

ADS-928MC
ADS-928MM
ADS-EVALl

-50
-60

-70
-80
-90

IIJ IJ

-100

25

50

75

I
100

J

J
115

I

,]

150

175

200

225

KHz

-

OPERATING TEMP. RANGE

SEAL

o°C to +70 °C
Hermetic
-55°C to + 125 °C
Hermetic
Evaluation Board (without ADS-928)

Receptacle for PC board mounting can be ordered
through AMP Inc., Part # 3-331272-8 (Component Lead
Socket), 32 required.

250

For availibility of MIL-STD-883B versions, contact DATEL.

Figure 4. FFT Analysis of ADS-928

1-50

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADS-930
16-Bit, 500 KHz, High Resolution
Sampling AID Converter

ADVANCED PRODUCT DATA
FEATURES
16-81t resolution
500 KHz sampling rate
Functionally complete
Internal StH
Small 4D-pin DIP
• Low-power,2.1 Watts
Three-state output buffers
• Samples up to Nyquist
• 16 word FIFO memory

I/O CONNECTIONS

GENERAL DESCRIPTION

Pin Function

Pin Function

DATEL's ADS-930 is a 16-bit, 500 KHz sampling rate, functionally complete AID converter with internal FIFO. The ADS930 samples up to Nyquist with no missing codes.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Packaged in a small 40-pin TDIP, power requirements are
±15 Volts and +5 Volts with 2.1 Watts power dissipation.

APPLICATIONS
•
•
•
•

Spectroscopy
Spectrum analysis
Imaging
Radar
Medical instrumentation
High-speed data acquisition systems

+1OV REFERENCE
BIPOLAR
ANALOG INPUT
ANALOG GROUND
OFFSET ADJUST
GAIN ADJUST
+15V
COMP BIN
ENABLE
FIFO READ
ANALOG GROUND
-15V
ANALOG GROUND
QY!;.RFLOW
EOC
+5V
START CONVERT
DIGITAL GROUND
FSTAT1
FSTAT2

BIT 16 OUT (LSB)
BIT 15..Q!JT
FIFOtDIR
DIGITAL GROUND
BIT 14 OUT
BIT 130UT
BIT 120UT
BIT 11 OUT
BIT 10 OUT
ANALOG GROUND
BIT90UT
BIT80UT
BIT70UT
BIT 6 OUT
BIT50UT
BIT40UT
BIT30UT
BIT20UT
BIT 1 OUT (MSB)
BIT 1 OUT (MSB)

1----;::::==;;;e======;--;:=~----_==========:I19

FSTAT1

, - - - - - - - - - - \ 2 0 FSTAT2
. - - - - - - - - 1 2 3 FIFO/DIR
. . . - - - - - - - ; 10 FIFO READ

+10V REF 1 I - - - : : : = - - H - - - - - - /

r-'---'----L-.L,

~~~~i

5

BIPOLAR 2

ANALOG
INPUT

39 BIT lOUT (Mmj)
40 BIT lOUT (MSB)
38 BIT 20UT
37 BIT 30UT
3BBIT 40UT
35 BIT 50UT
34 BIT BOUT
33 BIT 70UT
32 BIT 80UT
31 BIT 90UT
29 BIT 100UT
28 BIT11 OUT
27 BIT 12 OUT
26 BIT 13 OUT
25 BIT 14 OUT
22 BIT 15 OUT

k/'V'....-.

DIGITAL
CORRECTION
LOGIC

3

~~N~ 17
EOC 15

LOOIC
CONTROL
AND
TIMING

'--TT.,....,r---',....,2~ ~~A~L~SB)

~~~~~~~

16

24.18

+5V

DIG.GND.

+15V

For Immediate Assistance, Dial 1-800-233-2765

4.11.13.30
ANA.GND.

14 OVERFLOW

12
-15V

COMPBIN

1-51

ADS·930
ABSOLUTE MAXIMUM RATINGS
PARAMETERS

LIMITS

UNITS

-0.3 to +18
+0.3to-18
-0.3 to +7.0
-0.3 to +7.0
±25
300 max

+15V Supply
-15V Supply
+5VSupply
Digital Inputs
Analog Input
Lead Temp. (10 Sec.)

Voltsdc
Voltsdc
Voltsdc
Voltsdc
Volts
°C

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V dc
and +5V dc unless otherwide specified.
ANALOG INPUTS

MIN.

TYP.

MAX.

UNITS

Input Voltage Range

-

-

Input Impedance
Input Cspacltance

1.9

-

Dto +10
o to-lO
±5,±10
2
7

15

Volts
Volts
Volts
KOhrns
pf

2.0

-

-

-

DIGITAL INPUTS
logic Levels
LogiC '1'
Logic '0'
Logic Loading '1"
Logic Loading '0"

-

-

Voltsdc
Voltsdc

-

-

0.8
2.5
-100

-

±1
TBD
TBD

±1112
TBD
TBD

LSB
LSB
LSB

-

±1
TBD
TBD

±1112
TBD
TBD

LSB
LSB
LSB

-

±O.04
±O.18
±O.61

±O.07
±O.36
±O.BS

%FSR
%FSR
%FSR

±O.012
±O.07
±O.l

±O.04
±O.13
±O.17

%FSR
%FSR
%FSR

±O.012
±O.07
±O.l

±O.04
±O.18
±O.3

%FSR
%FSR
%FSR

±O.018
±O.12
±O.53
±O.018

±O.061
±O.3
±O.73
±O.061

%FSR
%FSR
%FSR
%FSR

±O.12
±O.53

±O.3
±O.73

%FSR
%FSR

!IA
!IA

PERFORMANCE
Inl Non-Un. @ fIN = 2SO KHz
+25OC
Oto +70 OC
-55 to +125 OC
DHI. Non-Lin, @ fiN =2SO KHz
+25OC
Oto+70OC
-55 to +125 OC
Full Scale Absolute

Accuracy
+25 OC.
Ot0+70OC
-55 to +125 OC
Unipolar Zero Error,
+25OC
Oto +70 OC
-55 to +125 OC
Bipolar Zero Error,
+25 OC (Tech Note 1)
Oto+70OC
-55 to +125 OC
Bipolar Offset Error,
+25 OC (Tech Note 1)
Oto+70OC
-55 to +125 OC
Galn Error, +25 OC
(See Tech Note 1)
Oto+70OC
-55 to +125 OC
No MIssIng Codes
15 Bits@ 250 KHz fiN
TBD Bits @2SO KHz fiN
Resolution

-

-

-

-

-

Over 0 to +70 °C
Over -55 to +125°C
16 Bits minimum

OUTPUTS
Output Coding
(Pin Hi)
(Pin Low)
Logic Levels
Logic '1"
Logic '0"
Logic Loading '1"
Logic Loading '0"
Internal Reference
Voltage (+5V), +25 OC
Drift
External Current
Internal Reference
Voltage HOY), +25 OC
Drift
External Current
DYNAMIC PERFORMANCE

MIN.

TYP.

MAX.

UNITS

Straight bin.loffset bin.l2·s Camp.
Camp. bin.lComp. offset bin.,C2C
2.4

-

Voltsdc
Volts de

0.4
-160
6.4

+5.0
:!l15

+5.02
:1;'30
5

Voltsdc
pprn/OC
rnA

-

-10.0
±13

-

-10.02
:1;'30
-5

Volts dc
ppmlOC
rnA

-89
-83

-95
-88

-

-

FS-dB
FS-dB

-90
-87

-95
-89

-

FS-dB
FS-dB

-82
-78

-87
-80

-

FS-dB
FS-dB

14
13

14.5
13.5

-

-

Bits
Bits

TBD
90

100

+4.98

-

-9.98

-

Total Harm. Distort. (.0.5 dB)
DC to 100 KHz
100 KHz to 250 KHz
Signal·to-Nolse Ratio
(w/o distortion, -0.5 dB)
OCto 100 KHz
100 KHz to 2SO KHz
Signal·to-Noise Ratio
& distortion, -0.5 dB
DC to 100 KHz
100 KHz to 250 KHz
Effective Bits, .0.5 dB
OCto 100KHz
100KHz to 250 KHz
Two-tone Intermodulation
Distort. (ftN =100 KHz, 240 KHz,
Fs=500 KHz, -0.5 dB)
Slew Rate
Aperture Delay Time
Aparture Uncertainty
s/H Acquishlon Time
(to O.Ol%FS (10V step)
Feedthrough Rajectlon
@fiN=2SOKHz
AID Conversion Rate
+25OC
Ot0+70OC
-55 to +125 OC
Input Bandwidth
small Signal (-20 dB input)
Full Power (0 dB input)
Overvollage Recovery, ±12V

-

-

-

-

-

-

-

!IA

rnA

FS-dB

-

-

V/IJSec·

-

±to
±100

nSec.
pSec.

-

480

600

nSec.

-96

-

-

dB

SOO
500
500

-

-

-

KHz
KHz
KHz

6
1.5

-

-

8
2
600

1000

MHz
MHz
nSec.

+14.25
-14.25
+4.75

+15.0
-15.0
+5.0

+15.75
-15.75
+5.25

Voltsdc
Volts de
Voltsdc

-

+47
-68
+84
2.1

+55
-75
+90
2.4
0.02

rnA
rnA
rnA
Watts
%FSR/%V

-

POWER REQUIREMENTS
Power Supply Range
+15V dc Supply
-15V dc Supply
+5V dc Supply
Power Supply Current
+15V de Supply
-15V dc Supply
+5V de Supply Ii)
Power Dissipation
Power Supply Rejection

-

-

PHYSICAUENVIRONMENTAL
Oper. Temp. Range, ·Me
·MM
Storage Temp. Range
Package Type
Pins
Weight

-

0
+70
°C
-55
+125
°C
-65
il5O..
"C
40-pin hermetic sealed, ceramic DIP
0.010 x 0.018 inch Kovar
0.56 ounces (16 grams) maximum

Specification footnotes
+5V power usage at 1 TIL logic loading per data output b".
Warm-up ffme to full specification: 5 minutes

Ii)

1-52

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS-941
14-Bit, 1.0 MHz, High Resolution
Sampling AID Converter

PRELIMINARY PRODUCT DATA
FEATURES
•
•
•
•
•
•
•
•

14-Bit resolution
1.0 MHz minimum throughput
Internal Sample/Hold
Functionally complete
Small 32-pin DIP
Low-power, 2.8 Watts
Three-state output buffers
Samples up to Nyquist
INPUT/OUTPUT CONNECTIONS

GENERAL DESCRIPTION

PIN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

DATEL's ADS-941 is a 14-bit, 1_0 MHz sampling rate, functionally complete AID converter. The ADS-941 samples up
to Nyquist with no missing codes.
Packaged in a small 32-pin DIP, power requirements are
±15 volts and +5 volts with 2.8 Watts power dissipation.

FUNCTION

+10V REF. OUT
BIPOLAR
ANALOG INPUT
SIGNAL GROUND
OFFSET ADJUST
ANALOG GROUND
OVERFLOW
COMPo BIN
ENABLE
+5V
DIGITAL GROUND
+15V
-15V
NO CONNECTION
ANALOG GROUND
EOC

PIN

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

FUNCTION
BIT 14 OUT (LSB)
BIT 13 OUT

BIT 12 OUT
BIT 11 OUT
BIT 100UT
BIT90UT
BIT80UT
BIT70UT
BIT60UT
BIT50UT
BIT40UT
BIT30UT
BIT20UT
BIT lOUT (MSB)
BIT lOUT (MSB)
START CONVERT

+10V REF 1 1 - - - : : = - - + - i f - - - - - - - - t
1 OUT (MSB)
10UT(MSB)
29BIT 20UT

OFFSET
ADJUST

5

BIPOLAR

2~~'--'

28BIT 30UT
27BIT 40UT
26BIT 50UT
DIGITAL
CORRECTION
LOGIC

ANALOG
INPUT 3

25BIT 60UT
24BIT 70UT
23BIT 80UT
22BIT 90UT
21 BIT 100UT

Cg~N~g~ 14
START
CONV.32

20 BIT 11 OUT
19 BIT 120UT

LOGIC
CONTROL
AND
TIMING

18 BIT 13 OUT

17 BIT 14 OUT (LSB)
9 ENABLE

EOC 16

SIGNAL GND

7 OVERFLOW
10

11

12

15

13

+5V

DIG.GND.

+15V

ANA.GND.

-15V

For Immediate Assistance, Dial 1-800-233-2765

1-53

ADS·941
ABSOLUTE MAXIMUM RATINGS
PARAMETERS

OUTPUTS

LIMITS

+15V Supply (Pin 12)
-15V Supply (Pin 13)
+5V Supply (Pin 10)

UNITS
Volts de
Volts de
Volts de

"0:3 to +18
+0:3 to -18
-0.3 to +7.0

Digital Inputs
(Pins 8, 9, 32)
Analog Input (Pin 3)
Lead Temp. (10 Sec.)

-0.3 to +7.0
±25
300 max

Volts de
Volts
°C

Output Coding
(Pin8Hi)
(Pin 8 Low)
Logic Levels
Logic '1'
Logic "0"
Logic Loading "1"
Logic Loading "0"
Internal Reference
Voltage, +25 °C
Drift
Extemal Currenl

MIN.

I

TYP.

I MAX. I

UNITS

Straighl bin.loltsel bin.l2's Comp.
Compo bin.lComp. offsel bin., C2C
2.4

-

-

-

-

-

+9.98

+10.0
±13

-

-

6.4

Voitsde
Voitsde
jJA
mA

+10.02
±30
5

Volts dc
ppm/oC
mA

0.4
·160

PERFORMANCE

FUNCTIONAL SPECIFICATIONS
Apply over the operating range and at ±15V de and +5V de
unless otherwise specified.®
ANALOG INPUTS
Input Voltage Range
Inpul Impedance
Input Capacitance

MIN.

TYP.

MAX.

UNITS

2.2
-

010+10
±5
2.5
7

-

Volts
Volts
KOhms
pf

2.0

-

0.8
5.0
·200

-

±1/2

±314

±314
±1

±1
±2

LSB
LSB
LSB

-

±1

±1/2
±314
±2

LSB
LSB
LSB

-

±O.08
±O.18
±O.61

±O.122
±O.36
±0.85

%FSR
%FSR
%FSR

-

±O.012
±O.07
±O.l

±0.04
±O.13
±O.17

%FSR
%FSR
%FSR

-

±O.04
±O.07
±O.l

±O.122
±O.la
±O.3

%FSR
%FSR
%FSR

-

15

DIGITAL INPUTS
Logic Levels
Logic "1'
Logic "0'
Logic Loading '1'
Logic Loading '0'

-

-

Volts dc
Volts dc
jJA
jJA

PERFORMANCE
Int. Non-Lin. @ fiN =500 KHz
+25°C
Oto+70°C
·55 to +125 °C
Dill. Non-Lin. @ fiN =500 KHz
+25°C
010+70°C
·55 10 +125 °C
Full Scale Absolute
Accuracy (See Tech Note 1)
+25°C.
010+70°C
·55 to +125 °C
Unipolar Zero Error
+25 °C (Tech Nole 1)
010 +70 °C
·55 10 +125°C
Bipolar Zero Error
+25°C (Tech Note 1)
oto +70 °C
·55 to +125 °C
Bipolar Offset Error,
+25 °C (Tech Note 1)
010 +70 °C
·5510+125°C
Gain Error (Tech Note 1)
+25°C
Oto +70 °C
·55 10+125 °C
No Missing Codes
14 Bits@ 500 KHz fiN
13 Bits @ 500 KHz fiN
Resolution

1-54

-

-

-

±O.018
±O.12
±O.53

±O.061
±O.3
±O.73

%FSR
%FSR
%FSR

±O.018
±O.12
±O.53

±O.12
±O.3
±O.73

%FSR
%FSR
%FSR

Over Ihe Operating Temp. Range.
14 Bits

Slew Rate
Aperture Delay TIme
Aperture Uncertainty
SlH Acquisition TIme
(10 O.006%FS (10V slep)
Total Harm. Distort. (-0.5 dB)
DC 10 100 KHz
100 KHz 10 SOO KHz
Slgnal-Io·Noise Ratio
(w/o dislortion, -0.5 dB)
DC 10 100 KHz
100 KHz 10 500 KHz
Signal-to-Noise Ratio
& distortion, -0.5 dB
DC to 100 KHz
100 KHz to 500 KHz
Effective Bits, ·0.5 dB
DC to 100 KHz
100 KHz to 500 KHz
Two·tone Intermodulalion
Distortion (fiN =100KHz,
240 KHz, Fs= 1.0 MHz,
-D.5dB)
Input Bandwidth
Small Signal (-20 dB input)
Full Power (0 dB input)
Feedthrough Rejection
@ fiN = 500 KHz
Overvoltage Recovery, ±12V
AID Conversion Rate
+25°C
Oto+70°C
-5510 +125 °C

-

-

-

±12
±100

V/J.lSec.
nSec.
pSec.

-

250

300

nSec.

·82

·90
·85

-

FS·dB
FS-dB

-77

-90
-85

-

FS-dB
FS-dB

-74
-69

-78
-73

-

FS-dB
FS-dB

12.4
11.8

13.1
12.3

-92

180

-

·77
-82

200

-

-

Bits
Bits

-

-

FS-dB

-

-

MHz
MHz

-

-

1000

2000

dB
nSec.

1.0
1.0
1.0

1.1
1.1
1.05

-

-

MHz
MHz
MHz

+14.25
-14.25
+4.75

+15.0
-15.0
+5.0

+15.75
-15.75
+5.25

Voltsdc
Voltsdc
Volts dc

--

+68
-87
+150
2.8

+85
-95
+160
3.3
0.02

mA
mA
mA
Watts
%FSR/%V

-

+70
+125

°C
°C

-

+lSO

°C

6
1.75
-87

-

POWER REQUIREMENTS
Power Supply Range
+15V dc Supply
-15V dc Supply
+5VdeSupply
Power Supply CUrrent
+15V dc Supply
-15V de Supply
+5V dc Supply (j)
Power Dissipation
Power Supply Rejection

-

-

PHYSICAUENVIRONMENTAL
Operating Temp. Range
-MC
·MM
Storage Temperature
Range
Package Type
Weight

0

-55
-65

32-pin hermetic sealed, ceramic TDIP
0.42 ounces (12 grams)

+5V power usage at 1 TIL logic loading per data output bit.
lID Warm-up time to full specification: 20 minutes.

(j)

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS·941
TECHNICAL NOTES
1. Use external potentiometers to remove system errors or the
small initial errors to zero. Use a 200 n trimming potentiometer in series with the analog input for gain adjustment.
Use a short in place of the gain adjustment trim pot for operation without adjustments. Use a 20K trimming potentiometer with the wiper tied to pin 5 for zer%ffset adjustment
(connect pin 5 to pin 15, analog ground for operation without adjustment).

2. Zero Adjustments
Apply a precision voltage reference source between the analog input (pin 3) and signal ground (pin 4). Adjust the output
of the reference source per Table 2.
For unipolar, adjust the zero trimming potentiometer so that
the output code flickers equally between 00 0000 0000
0000 and 00 0000 0000 0001 with the COMP BIN (pin 8)
tied low (straight binary) or between 11 1111 1111 1111
and 11 1111 1111 1110 with the pin 8 tied high (complementary binary).

2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital
grounds are not connected internally. Avoid ground-related
problems by connecting the digital and analog grounds to
one point, the ground plane beneath the converter. Due to
the inductance and resistance of the power supply return
. paths, return the analog and digital ground separately to the
power supplies.

For bipolar operation, adjust the potentiometer such that the
code flickers equally between 10 0000 0000 0000 and 10
0000 0000 0001 with pin 8 tied high (offset binary) or between 01 1111 1111 1111 and 01 1111 1111 1110 with pin
8 tied low (complementary offset binary).

3. Bypass the analog and digital supplies and the +1 OV reference (pin 1) to ground with a 4.7 ~F, 25V tantalum electrolytic capacitor in parallel with a 0.1 ~F ceramic capaCitor.
Bypass the + 1OV reference (pin 1) to analog ground (pin
15).
4. Obtain straight binary/offset binary output coding by tying
COMP BIN (pin 8) to +5V dc or leaving it open. The device
has an internal pull-up resistor on this pin. To obtain com.plementary binary or complementary offset binary output
coding, tie the COMP BIN pin to ground. The COMP BIN
signal is compatible to CMOSmL logic levels for those users desiring logic control of this function.

Two's complement coding requires use of the MSB (pin 31)
with COMP BIN (pin 8) tied high, adjusting the potentiometer such that the code flickers between 00 0000 0000 0000
and 00 0000 0000 0001.
3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 2.
Adjust the gain trimming potentiometer so that the output
code flickers equally between 11 1111 1111 1110 and 11
1111 1111 1111 for COMP BIN (pin 8) tied low for unipolar
operation or tied high for bipolar operation (straight binary/
offset binary) or between 00 0000 0000 0000 and 00 0000
0000 0001 for COMP BIN tied high for unipolar operastionor tied low for bipolar operation (complementary binary!
complementary offset binary).

5. To enable the three-state outputs, connect ENABLE (pin 9)
to a logic "a" (low). To disable, connect ENABLE (pin 9) to
a logic "1" (high).

Two's complement coding requires use of the MSB (pin 31)
with the COMP BIN (pin 8) tied high, adjusting the gain trimming potentiometer so that the output code flickers equally
between 01111111111110 and 01111111111111.

CALIBBATION"PROCEDURE
1. Connect the converter per Figure 3, and Table 1 for the appropriate full-scale range (FSR). Apply a pulse of 50 nanoseconds minimum to the START CONVERT input (pin 32)
at a rate of 200 KHz. This rate is chosen to reduce flicker if
LED's are used on the outputs for calibration purposes.

4. To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed
in Table 3.

I_HOLD MODE SeTIUNG
50 nSec MIN
NOTE: NOT DRAWN TO SCALE

_1

Table 1. Input Connections
INPUT RANGE

INPUT PIN

TIE TOGETHER

I~

START
CONVERT

-T"---1j

N

S1H ACO. TIME

5/H

Oto-10V
±5V

Pin 3
Pin 3

Pins 2 and 4
Pins 1 and 2

~

HOLD

CONTROL
OUT

r SAMPLE

10 nSec MIN., 25 nSec MAX.

(INTERNAL)

BUSY

AlOEOC

~I

OUT

--+1
OUTPUT

DATA

Table 2. Zero and Gain Adjust
FSR

oto +10V
±5V

ZERO ADJUST
+1/2 LSB
-305 ~V
-305 ~V

GAIN ADJUST
FS-1!2 LSB
-9.999085V
-4.999085V

For Immediate Assistance, Dial 1-800-233-2765

,...- 30 nSec MIN

1+-20 nSec MIN., 35 nSec MAX

I - 600 nSec MIN----I
DATAN-1 VALID

---==J1....wnSec MAX DATA INHIBITED

-25nSecMIN

I
I

1><1 DATANVALID
INVALID

10 nSec MAX

~II+-"NABLED DATA N VALID

NOTE: Aetriggeting the START CONVERT pulse before E5Cgoes low will not initiate a new conversion.
NOTE: The specifications listed apply over the full operating temperature range unless otherwise specified.

Figure 2. AD5-941 Timing Diagram
1-55

"

ADS·941
•

Table 3. Output Coding

01 1000 0000 0000
01 0000 0000 0000
00 0000 0000 0000
10 0000 0000 0000
10 1000 0000 0000
10000000000001
10 00000000 0000

+15V

-15V

4.7~F

4.7~F

13

9
31
30
29
2S
27
26
25
24

+10V REF

AD5-941

23
Oto+10V

1.101 MAX
(28,0)

-I

11

10

ANALOG GROUND

BIPOLAR

-1/2 FS
-3/4 FS
-FS+1 LSB
-FS

MECHANICAL DIMENSIONS
INCHES (MM)

4.7~F

1_

15

o

+5V

0.1W

12

+3/4 FS
+1/2 FS

22
21
20
19
18
17
7
16

ANALOG INPUT
COMPBIN
START CONVERT
DO NOT CONNECT
SIGNAL GROUND

~0.010 X 0.018 ~

ENABLE
BIT 1 (MSB)
BIT 1 (MSB)
BIT2
BIT 3
BIT4
BITS
BIT6
BIT7
BITS
BIT9
BIT10
BIT11
BIT12
BIT 13
BIT 14 (LSB)
OVERFLOW
EOC

KOVAR Pins

17

16

-,
15
SPACES

1.712 MAX.
(43,5)

bl

BOTTOM

VIEW

ATO 100.
(2,5)

_I
,---,-_ _",,32=--....I

-15V

1_

+15V

ZERO/OFFSET ADJUST

0.900
(22,9)

-I

NOTE: Pins have a 0.025 inch, ±0.01
stand-off from case.

Figure 3. Typical ADS·941 Connection Diagram
dB

10
20

ORDERING INFORMATION

30

MODEL NUMBER

40

so

ADS-941 MC
ADS-941 MM

60

OPERATING TEMP. RANGE

SEAL

0 °C to +70 °C
-55°C to +125 °C

Hermetic
Hermetic

70

ACCESSORY

80

90

j

I.

I
100

200

KHz

300

II

I
400

Figure 4. FFT Analysis of ADS·941
1-56

soo

ADS.EVAL1

Evaluation Board
(without ADS-941)
Receptacle for PC board mounting can be ordered through
AMP Inc., Part # 3-331272-8 (Component Lead Socket), 32
required.
For availibility of MIL-STD-883B versions, contact DATEL.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADS-942
14-Bit, 2.0 MHz, High Resolution
Sampling AID Converter

PRELIMINARY PRODUCT DATA
FEATURES
•
•
•
•
•
•
•
•

14-Bit resolution
Internal Sample/Hold
2.0 MHz minimum throughput
Functionally complete
Small 32-pin DIP
Low-power 2.9 Watts
Three-state output buffers
Samples up to Nyquist

INPUT/OUTPUT CONNECTIONS
PIN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

GENERAL DESCRIPTION
DATEL's ADS-942 is a 14-bit, 2.0 MHz sampling rate, functionally complete AID converter. The ADS-942 samples up to Ny.
quist with no missing codes.
Packaged in a small 32-pin DIP, power requirements are ±15
volts and +5 volts with 2.9 Watts power dissipation.

+10V REF 1

FUNCTION
+10V REF. OUT
BIPOLAR
ANALOG INPUT
SIGNAL GROUND
OFFSET ADJUST
ANALOG GROUND
OVERFLOW
COMPo BIN
ENABLE
+5V
DIGITAL GROUND
+15V
-15V
DO NOT CONNECT
ANALOG GROUND
EOC

PIN

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

FUNCTION
BIT 14 OUT (LSB)
BIT 130UT
BIT 12 OUT
BIT 11 OUT
BIT100UT
BIT90UT
BIT80UT
BIT70UT
BIT60UT
BIT50UT
BIT 4 OUT
BIT 3 OUT
BIT20UT
BIT 1 OUT (MSB)
BIT 1 OUT (MSB)
START CONVERT

r---;;;=----1-+------l
31 BIT 1 OUT (MSB)
30 BIT 1 OUT (MSB)

OFFSET
ADJUST

29BIT 20UT
28BIT 30UT

5

27BIT 40UT

BIPOLAR 2 .....r'~"DIGITAL
CORRECTION
LOGIC

ANALOG
INPUT 3

26BIT 50UT
25BIT 60UT

22BIT 90UT
21 BIT 10 OUT
20 BIT 11 OUT

cO~N~gi 14
START
CONV.32
EOC 16

LOGIC

19 BIT 12 OUT

CO~~OL

18 BIT 13 OUT

t~j=T~IM:I~NGJ~~~~~~~~~~~~~;::~===~===~~~j17BIT14OUT(LSB)
9 ENABLE
7 OVERFLOW

4

10

11

12

15

13

SIGNALGND

+5V

DIG. GND.

+15V

ANA. GND.

-15V

For Immediate Assistance, Dial 1-800-233-2765

1-57

ADS·942
ABSOLUTE MAXIMUM RATINGS
PARAMETERS

LIMITS

+15V Supply (Pin 12)
·15V Supply (Pin 13)
+5V Supply (Pin 10)

-0.3 to +18
+0.3 to -18
-0.3 to +7.0

Digital Inputs
(Pins 8, 9, 32)
Analog Input (Pin 3)
Lead Temp. (10 Sec.)

Volts de
Volts de
Volts de

Volts de
Volts
°C

-0.3 to +7.0
±25
300 max

Apply over the operating temperature range and at ±15V de
and +5V de unless otherwise specified.<2l
MIN.

Input Voltage Range

-

2.2

Input Impedance
Input capacitance

-

TYP.

Oto +10
±5
2.5
7

MAX.

UNITS

-

Volts
Volts
KOhms

15

pi

-

DIGITAL INPUTS
Logic Levels
Logic "1"
Logic "0"
Logic Loading "1"
Logic Loading '0"

2.0

-

-

-

-

0.8
5.0
-200

Vo~s de
Volts de

IlA
IlA

PERFORMANCE
Inl. Non-Lin. @ /IN = 1 MHz
+25°C
Oto +70 °C
-55 to +125 °C
0111. Non-Lin. @fiN = 1 MHz
+25°C
Oto +70 °C
-55 to +125 °C
Full Scale Absolute
Accuracy
+25°C.
Oto+70°C
-55 to +125 °C
Unipolar Zero Error,
+25°C
Oto+70°C
·55 to +125 °C
Bipolar Zero Error,
+25 °C (Tech Note 1)
Oto +70 °C
-55 to +125 °C
Bipolar Offset Error,
+25 °C (Tech Note 1)
oto +70 °C
·55 to+ 125°C
Gain Error, +25 °C
(See Tech Note 1)
oto +70 °C
·55 to+ 125°C
No Missing Codes
14 Bits@ 1 MHz fiN
13 Bits@ 1 MHz fiN
Resolution

-

-

±1/2
±3/4
±1

±1
±1.5
±2.5

LSB
LSB
LSB

-

±112
±3/4
±1

±1
±1.25
±2.5

LSB
LSB
LSB

-

±O.OS
±0.18
±D.61

±D.t22
±D.36
±D.85

%FSR
%FSR
%FSR

-

±D.012
±D.07
±D.l

±D.04
±0.13
±D.17

%FSR
%FSR
%FSR

±D.04
±D.07
±D.l

±D.122
±D.18
±D.3

%FSR
%FSR
%FSR

±D.018
±D.12
±D.53
±D.018

±D.061
±D.3
±D.73
±D.t22

%FSR
%FSR
%FSR
%FSR

±D.12
±D.53

±D.3
±D.73

%FSR
%FSR

-

-

-

-

Output Coding
(Pin 8 Hi)
(Pin 8 Low)
logic Levels
Logic '1'
Logic '0'
Logic Loading "1"
Logic Loading '0'
Internal Reference
Voltage, +25 °C
Drift
External Current

MIN.

TYP.

I

MAX.

I

UNITS

Straight binary/offset binary
Complementary binary
2.4

-

-

-

0.4
·160
6.4

Volts de
Volts de
~
mA

+10.0
±13

+10.02
±30
5

Volts de
ppm/DC
mA

-79
-73

·85
-79

-

FS-dB
FS-dB

·78
-73

·85
-79

-

-

FS-dB
FS-dB

·72
-68

·77
-71

-

FS-dB
FS·dB

12.3
11.7

13.0
12.3

-

Bits
Bits

-92

-

-

FS-dB

6
1.75
210

-

-

-

-

+9.98

-

-

DYNAMIC PERFORMANCE

FUNCTIONAL SPECIFICATIONS

ANALOG INPUTS

OUTPUTS

UNITS

Total Harm. Distort. (-0.5 dB)
OCto 100KHz
100 KHz to 1 MHz
Signal·to·Noise Ratio
(w/o distortion, .(l.5 dB)
OCto 100KHz
100 KHz to 1 MHz
Signal·to·Noisa Ratio
& distortion, -0.5 dB
DC to 100 KHz
100 KHz to 1 MHz
Effective Bits, -0.5 dB
OCto 100 KHz
100 KHz to 1 MHz
Two·tone Intermodulation
Distortion (fiN =100 KHz,
240 KHz, Fs=2.0 MHz,
-0.5 dB)
Input Bandwldlh
Small Signal (·20 dB input)
Full Power (0 dB input)
Slew Rate
Aperture Delay TIme
Aperture Uncertainty, Rms
S/H Acquisition TIme
(to 0.006%FS (10V step)
Feedlhrough Refection
@ftN=lMHz
Overvoltage Recovery, ±12V
AID Conversion Rete
+25°C
oto +70 °C
·55to+125°C

-

-

250
-

±10
±10

MHz
MHz
VI!lSec.
nSec.
pSec.

-

120

150

nSec.

-

-

-

1000

2000

-

dB
nSec.

2.0
2.0
2.0

2.1
2.1
2.05

-

-

-

MHz
MHz
MHz

+14.25
·14.25
+4.75

+15.0
-15.0
+5.0

+15.75
·15.75
+5.25

Volts dc
Voltsdc
Voltsdc

-

+70
·80
+155
2.9

+87
-98
+165
3.4
0.02

mA
mA
mA
Watts
%FSRI%V

-

+70
+125

°c
°C

·85

-

POWER REQUIREMENTS
Power Supply Range
+15V de Supply
-15V dc Supply
+5V de Supply
Power Supply Current
+15V dc Supply
-15V dc Supply
+5V de Supply (j)
Power Dissipslion
Power Supply Rejection

-

-

PHYSICAL/ENVIRONMENTAL
Operating Temp. Range
·MC
·MM
Storage Temperature
Range
Package Type
Weight

Over 0 to 70°C
Over -55 to +125°C
14 Bits

0
-55

-

-

-65
+150
°C
32-pin hennetic sealed, ceramic DIP
0.42 ounces (12 grams)

+5V power usage at 1 TIL logiC loadmg per data output bit.
lID Wann·up time to lull specification: 20 minutes.

(j)

1-58

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS-942
TECHNICAL NOTES
1. Use external potentiometers to remove system errors or the
small initial errors to zero. Use a 200 Q trimming potentiometer in series with the analog input for gain adjustment.
Use a short in place of the gain adjustment trim pot for operation without adjustments. Use a 20K trimming potentiometer with the wiper tied to pin 5 for zer%liset adjustment
(connect pin 5 to pin 15, analog ground for operation without adjustment).

2. Zero Adjustments
Apply a precision voltage reference source between the analog input (pin 3) and signal ground (pin 4). Adjust the output of the reference source per Table 2.
For unipolar, adjust the zero trimming potentiometer so that
the output code flickers equally between 00 0000 0000
0000 and 00 0000 0000 0001 with the COMP BIN (pin 8)
tied low (straight binary) or between 11 1111 1111 1111
and 11 1111 1111 1110 with the pin 8 tied high (complementary binary).

2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital
grounds are not connected internally. Avoid ground-related
problems by connecting the digital and analog grounds to
one point, the ground plane beneath the converter. Due to
the inductance and resistance of the power supply return
paths, return the analog and digital ground separately to the
power supplies.
3. Bypass the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7I1F, 25V tantalum electrolytic capacitor in parallel with a 0.1 I1F ceramic capacitor.
Bypass the +1 OV reference (pin 1) to analog ground (pin
15).
4. Obtain straight binary/oliset binary output coding by tying
COMP BIN (pin 8) to +5V dc or leaving it open. The device
has an internal pull-up resistor on this pin. To obtain complementary binary or complementary oliset binary output
coding, tie pin 18 to ground. The pin 18 signal is compatible
to CMOSITTL logic levels for those users desiring logic control of this function.

For bipolar operation, adjust the potentiometer such that the
code flickers equally between 10 0000 0000 0000 and 10
0000 0000 0001 with pin 8 tied high (oliset binary) or between 011111 1111 1111 and 01111111111110 with pin
8 tied low (complementary oliset binary).
Two's complement coding requires use of the IiiffiB (pin 31)
with CQMP BIN (pin 8) tied high, adjusting the potentiometer such that the code flickers between 00 0000 0000 0000
and 00 0000 0000 0001.
3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 2.
Adjust the gain trimming potentiometer so that the output
code flickers equally between 11 1111 1111 1110 and 11
1111 1111 1111 for CQMP BIN (pin 8) tied low for unipolar
operation or tied high for bipolar operation (straight binary/
oliset binary) or between 00 0000 0000 0000 and 00 0000
0000 0001 forCOMP BIN tied high for unipolar operastionor tied low fdr bipolar operation (complementary binary/
complementary oliset binary).

5. To enable the three-state outputs, connect ENABCE (pin 9)
to a logic "0" (low). To disable, connect pin 9 to a logic "1"
(high).

Two's complement coding requires use of the MSB (pin 31)
with the COMP BIN (pin 8) tied high, adjusting the gain trimming potentiometer so that the output code flickers equally
between 01 1111 1111 1110 and 01 1111 1111 1111.

CALIBRATION PROCEDURE
1. Connect the converter per Figure 3, and Table 1 for the appropriate full-scale range (FSR). Apply a pulse of 35 nanoseconds minimum to the START CONVERT input (pin 32) at
a rate of 200 KHz. This rate is chosen to reduce flicker if
LED's are used on the outputs for calibration purposes.

4. To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed
in Table 3.

,

rt- HOLD MODE SETTliNG

~I

....... ,
STAAT

CONVERT
N

Table 1. Input Connections
INPUT RANGE

o to +10V
±5V

INPUT PIN
Pin3
Pin 3

TIE TOGETHER
Pins 2 and 4
Pins 1 and 2

'+r

35 nSec MIN, 50 nSec TYP

-;----'1
ROCD

BUSY

Oto +10V
±5V

ZERO ADJUST
+1/2 LSB
-30511V
-30511V

GAIN ADJUST
FS-1/2 LSB
+9.999085V
-4.999085V

For Immediate Assistance, Dial 1-800-233-2765

-,

OUT
~l

I.of- 20 nSec MIN., 35 nSec MAX

I
4-

25 nSec MIN

I

I+-::--=-: 6OOnSecMIN---i I
DATA N·' VALID
IXI

DATA N VALID
LNVALID

~ 1+-10 nSec MAX DATA INHIBITED

Table 2. Zero and Gain Adjust

......... 30nSec MIN

I SAMPLE

'0 nSec MIN., 2S nSoc MAX.

AJOECC

OUTPUT
DATA

FSR

-

SIH ACQ. TIME

SIH

CONTROL
OUT
IINTERNAL)

NOTE: NOT DRAWN TO SCALE

1. Retriggerlng the start convert pulse before
will not initiate a new conversion.

10 nSec MAX ___ 1~NABl.EO DATA N VALID

EOC goes low

2. The specifications cited apply over the full operating tam-

.perature range.

Figure 2. ADS-942 Timing Diagram
1-59

ADS-942
Table 3. Output Coding
STRAIGHT

UNIPOLAR
SCALE
FS -1 LSB
7/8 FS
314 FS
112 FS
1/4 FS
118 FS
1LSB
0

BIN

INPUT RANGES, V de OUTPUT CODING
o to +10V
IMSB
LSB
+9.999390
11111111111111
+8.750000
11 1000 0000 0000
+7.500000
11 0000 0000 0000
+5.000000
10 0000 0000 0000
+2.500000
01 0000 0000 0000
+1.250000
00 1000 0000 0000
+0.000610
00 0000 0000 0001
0.000000
00 0000 0000 0000

COMP

BINARY

MSB
LSB
00 0000 0000 0000
00 0111 1111 1111
00 111111111111
01 1111 1111 1111
10 111111111111
11 0111 1111 1111
11111111111110
11111111111111

INPUT RANGE
HOVde
-4.99939
-3.75000
-2.50000
0.00000
+2.50000
+3.75000
+4.99939
+5.00000

MSB
LSB
01 1111 1111 1111
01 1000 0000 0000
01 0000 0000 0000
00 0000 0000 0000
10 0000 0000 0000
10 1000 0000 0000
10 0000 0000 0001
10 00000000 0000

BIPOLAR
SCALE
+FS -1 LSB
+3/4 FS
+1/2 FS

a

-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

MECHANICAL DIMENSIONS
INCHES (MM)

.5V

1.101 MAX
(28,0)

I

~0.010 X 0.G18

KOVAR Pins

17
,,,16
,,
,,
,,
,, BOTTOM
,,, VIEW
,,
,,
,

!

32

0.190 MAX

4'9}
I
~ ~ 0.150 MIN.
(3,8)

TT
15
SPACES
AT 0.100
(2,5)

1.712 MAX.
(43,S)

~

0.900
(22,9)

20K

-15V
+15V
ZEROiOFFSET ADJUST

NOTE: Pins have a 0.025 inch, to.01

stand·off from case.

Figure 3. Typical AD5-942 Connection Diagram

dB

ORDERING INFORMATION

·10
-20

MODEL NUMBER

-30

..w

ADS-942MC
ADS-942MM

-50

.eo

ACCESSORY

·70

.eo
.go

·100

II I.
~

II

I
~

~

U

M

MHz

I
M

~

M

Figure 4. FFT Analysis of AD5-942
1-60

M

W

OPERATING TEMP. RANGE

a

°C to +70 °C
-55 °C to +125 °C
ADS-EVALI

SEAL
Hermetic
Hermetic

Evaluation Board
(without ADS-942)

Receptacle for PC board mounting can be ordered through
AMP Inc., Part # 3-331272-8 (Component Lead Socket), 32
required.
For availibility of MIL-STD-883B versions, contact DATEL.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

ADS-944
14-Bit, 5.0 MHz, High Resolution
Sampling AID Converter

ADVANCED PRODUCT DATA

APPLICATIONS

FEATURES
•
•
•
•
•
•
•
•

Spectrum analysis
Imaging
Radar
Medical instrumentation
High-speed data acquisition systems

14-8it resolution
Internal Sample/Hold
5.0 MHz minimum throughput
Functionally complete
Small 32-pin DIP
Low-power 3.4 Watts
Three-state output buffers
Samples up to Nyquist

I/O CONNECTIONS

GENERAL DESCRIPTION
DATEL's ADS-944 is a 14-bit, 5.0 MHz sampling rate, functionally complete sampling AID converter. The ADS-944
samples up to Nyquist with no missing codes.
Packaged in a small 32-pin DIP, power requirements are
±15 volts and +5 volts with 3.4 Watts power dissipation.
The ADS-944 is offered in the comercial 0 to +70 °C and
military -55 to +125°C operating temperature range.

PIN

FUNCTION

PIN

FUNCTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

+10V REF. OUT
BIPOLAR
ANALOG INPUT
SIGNAL GROUND
OFFSET ADJUST
ANALOGGND
OVERFLOW
COMPo BIN.
ENABLE
+5V
DIGITAL GROUND
+15V
-15V
DO NOT CONNECT
ANALOG GROUND
EOC

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

BIT 14 OUT (LSB)
BIT 130UT
BIT 120UT
BIT 11 OUT
BIT 100UT
BIT 9 OUT
BIT 8 OUT
BIT 7 OUT
BIT60UT
BIT50UT
BIT 4 OUT
BIT 3 OUT
BIT20UT
BIT lOUT !~~~!
BIT lOUT
START CONVERT

+10V REF 1 f---:::=--+-t--------j
10UT(MSB)
10UT(MSB)
OFFSET
ADJUST

29 BIT 20UT
28 BIT 30UT

5

27 BIT 40UT

BIPOLAR 2 ..... "'.A.~

26BIT 50UT
DIGITAL
CORRECTION
LOGIC

ANALOG
INPUT 3

25 BIT 60UT
24BIT 70UT
23 BIT 80UT
22 BIT 90UT
21 BIT100UT
20 BIT 11 OUT

cg~N~g~ 14

19BIT 120UT

LOGIC
CONTROL
AND
TIMING

START
CONV.32

18BIT 130UT

17 BIT 14 OUT (LSB)
9 ENABLE

EOC 16

7 OVERFLOW
4

10

11

12

15

13

SIGNAL GND

+5V

DIG.GND.

+15V

ANA. GND.

·15V

For Immediate Assistance, Dial 1-800-233-2765

1-61

Contact DATEL for up-to-date information on
products covered by "Advanced" and
"Preliminary" product data sheets.
Dial
1-800-233-2765

for
Applications Assistance

1-62

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADS-945
14-Bit, 10.0 MHz, High Resolution
Sampling AID Converter

-

ADVANCED PRODUCT DATA

FEATURES
14-Bit resolution
10 MHz sampling rate
Functionally complete
Internal S/H
Small 40-pin DIP
Low-power, 4.2 Watts
Three-state output buffers
Samples up to Nyquist
16 word FIFO memory

1/0 Connections

GENERAL DESCRIPTION
DATEL's ADS-945 is a 14-bit, 10 MHz sampling rate, functionally complete ND converter with internal FIFO. The ADS-945
samples up to Nyquist with no missing codes.
Packaged in a small 40-pin TDIP, power requirements are
±15 Volts and ±5 Volts with 4.2 Watts power dissipation.

APPLICATIONS
Spectroscopy
Spectrum analysis
• Imaging
Radar
Medical instrumentation
High-speed data acquisition systems

Function

Function

+5V REFERENCE
OFFSET ADJUST
ANALOG INPUT HIGH
ANALOG INPUT LOW
BIPOLAR
-10V REFERENCE
ENABLE LOW B9-14
GAIN ADJUST
OVERFLOW
DO NOT CONNECT
-5V
BIT 14 OUT (LSB)
BIT 130UT
BIT 120UT
BIT 11 OUT
BIT 100UT
BIT90UT
FSTAT1
FSTAT2
BIT 1 OUT (MSB)

START CONVERT
FIFO/DIR
FIFO READ
BIT 80UT
BIT 7 OUT
BIT60UT
BIT50UT
BIT 40UT
BIT3 OUT
BIT20UT
BIT 1 OUT (MSB)
+5V
!JIGITAL GRQUND
ENABLE HIGH (B1-8)
S/H OUT
COMP BIN
-15V
ANALOG GROUND
ANALOG GROUND
+15V

mru
FSTAT1
FSTAT2
GAIN
AOJUST

FIFOJDIR
FIFO READ

-10V REF

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

+5V REF
OFFSET
ADJUST
BIPOLAR
StH OUT
ANALOG HIGH
INPUT
LOW

START
CONY.

LOGIC
CONTROL
AND
TIMING

SIGNAL GROUND

~~~~~~~~~~~~~~~=L===l___J
+5V

DIG. GND.

+15V

ANA. GND.

-15V

·5V

DO NOT

1 OUT (MSll)
1 OUT (MSB)
20UT
30UT
40UT
50UT
60UT
70UT
80UT
9 OUT
10 OUT
11 OUT
12 OUT
13 OUT
14 OUT (LSB)

~LOW
ENABLE HIGH

OVERFLOW

COMPBIN

CONNECT

For Immediate Assistance, Dial 1-800-233-2765

1-63

Contact DATEL for up-to-date information on
products covered by "Advanced" and
"Preliminary" product data sheets.
Dial
1-800-233-2765

for
Applications Assistance

1-64

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194rrEL (508) 339-3000rrLX 174388/FAX (508) 339·6356

ADS-976
16-bit, 200 KHz, Low-Power
Sampling AID Converter

PRELIMINARY PRODUCT DATA

FEATURES
16-bit resolution
• 200 KHz sampling rate
• Compatible to industry standard ADC76, AD376,
AD1376
• Internal sample-hold
• Small 32-pin DIP
Low-power, 1.8 Watts
Samples to Nyquist
• 16 word FIFO memory

INPUT/OUTPUT CONNECTIONS

GENERAL DESCRIPTION
PIN

DATEL's ADS-976 is a 16-bit, 200 KHz sampling rate, functionally complete AID converter with an internal samplehold. The ADS-976 samples up to Nyquist with no missing
codes.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

The internal FIFO can be either bypassed or utilized with full
(16 words) or half-full (8 words). The FIFO capability still allows the ADS-976 to be compatible to the industry pin-out
versions for 16-bit parallel output applications.
Packaged in a small 32-pin DIP, power requirements are
±15 volts and +5 volts with a 1.8 Watts power disSipation.

FUNCTION

PIN

FUNCTION

BIT lOUT (MSB)
BIT 2 OUT
BIT30UT
BIT40UT
BIT 5 OUT
BIT60UT
BIT 7 OUT
BIT 8 OUT
BIT 9 OUT
BIT 10 OUT
BIT 11 OUT
BIT 12 OUT
BIT 130UT
BIT 14 OUT
BIT 15 OUT
BIT 16 OUT (LSB)

32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17

FIFO READ
START CONVERT
+5V
GAIN ADJUST
+15V
OFFSET ADJUST
BIPOLAR OFFSET
10V
20V
FIFO/DIR
ANALOG GROUND
·15V
FSTAT2
DIGITAL GROUND
EOC
FSTATl

1----;==:=;;;;;:=====;:;~r==;_----;:========:]17

FSTAT1

, - - - - - - - - - 1 2 0 FSTAT2

ADJ~~~ 2911--==--Hf--------,
B!~~~

, - - - - - - - - j 23

FIFO/DiR

. - - - - - - - 1 3 2 FIFO READ

26ir-....y,{I,--Hf------"'""l

r--1.--1--'-1

1 BIT lOUT (MSB)
2 BIT 20UT

DIRECTor
FIFO

10V 25
20V 24f--"M.....-'VI/Irl

~~N~

31

3
4
5
6
7
8
9

BIT
BIT
BIT
BIT
BIT
BIT
BIT

30UT
40UT
50UT
60UT·
70UT
80UT
90UT

10 BIT 10 OUT
11 BIT 11 OUT

12 BIT 12 OUT
13BIT 13 OUT
14 BIT 140UT
15 BIT 150UT
16 BIT 16 (LSB)

LOGIC
CONTROL
AND
TIMING

roc 18
30

19

28

22

21

+5V

DIG. GND.

+15V

ANA.GND.

-15V

For Immediate Assistance, Dial 1-800-233-2765

1-65

Contact DATEL for up-to-date information on
products covered by "Advanced" and
"Preliminary" product data sheets.
Dial
1-800-233-2765

for
Applications Assistance

1-66

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194rrEL (508) 339-3000rrLX 174388/FAX (508) 339-6356

AID CONVERTERS
Linearity
Error

Power
(Watts)

0.050

±1/2 LSB

0.25

18-Pin DIP

2-1

8

0.040

±1/2 LSB

1.25

24-Pin DIP

2-9

ADG-208

8

0.050

±3/4 LSB

0.60

24-Pin DIP

2-5

ADC-304

8

0.050

±1/2 LSB

0.39

28-Pin DIP

2-13

ADG-530

12

0.350

±3i4 LSB

2.10

32-Pin DIP

2-33

ADC-500

12

0.500

±1 LSB

1.70

32-Pin DIP

2-17

ADC-505

12

0.550

±1 LSB

1.70

32-Pin DIP

2-17

ADC-508

12

0.700

±1 LSB

1.70

32-Pin DIP

2-21

ADC-520

12

0.800

±1/2 LSB

1.60

32-Pin DIP

2-29

ADC-521

12

0.800

±1/2 LSB

1.60

32-Pin DIP

2-29

ADC-511

12

1.0

±3/4 LSB

1.25

24-Pin DIP

2-25

ADC-HZ12B

12

8

±1/2 LSB

1.5

32-Pin DIP

2-55

ADC-HX12B

12

20

±1/2 LSB

1.5

32-Pin DIP

2-55

ADG-HC12B

12

300

±1/2 LSB

0.17

32-Pin DIP

2-47

ADC-908

14

1.0

±1/2 LSB

2.70

32-Pin DIP

2-37

ADC-914

14

2.4

±1 LSB

1.20

24-Pin DIP

2-41

Resolution
(Bits)

Conversion
Time (lisec)

ADG-207

7

ADC-228

Model

New

=or Immediate Assistance, Dial 1-800-233-2765

Case

Page

2-i

Contact DATEL for your
Data Acquisition component
needs.
Dial
1-800-233-2765

for
Applications Assistance

2·ii

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048·1194rrEL (508) 339-3000rrLX 174388/FAX (508) 339-6356

ADC-207
7-Bit, 20 MSPS
CMOS Flash AID
;4

FEATURES
7-Bit flash AID converter
• 20 MHz Sampling rate
Low-power (250 mW)
• +5V dc Operation
• 1.2 Micron CMOS
• 7-bit latched 3-state output with overflow bit
Surface mount versions
• MIL-STD-883 versions
• No missing codes

MECHANICAL DIMENSIONS

-I
0.250

±o.oos

GENERAL DESCRIPTION
The ADC-207 is the industry's first 7-bit flash converter
using a high-speed 1.2 micron CMOS process. This
process offers some very distinctive advantages over other
processes, making the ADC-207 a very unique device. The
smaller geometrics of the process achieves high-speed,
better linearity ·and better temperature performance. Since
the ADC-207 is a CMOS device, it also has very low power
consumption (250 mW). The device draws power from a
single +5V supply, and is conservatively rated for 20 MHz
operation. The ADC-207 allows using sampling apertures
as small as 12nS, making it more closely approach an ideal
sampler. The small sampling apertures also let the device
operate at greater than 20 MHz.

o.os~.

1

1_

D

TOP
(LCC Version)

-10.40050.

~g:g~~

D.

O()3~I(J9'

--L

T

-11-

0.020-±O.OOS

~

..-L.

122ImMW·'7014.3'
T

.1)85

.

...L

---I 1-. 10•
I 1 (2.51

____

I" I"" II III I0.130 Max.

t

~()111H

0I)4hl

16

2.

10

INPUT/OUTPUT CONNECTIONS

For Immediate Assistance, Dial 1-800-233-2765

DIP
PINS

FUNCTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

CLOCK IN
DIGITAL GROUND
-REFERENCE
ANAIOIG INPUT
MIDPOINT
+ REFERENCE
ANALOG GROUND
CSl
CS2
OVERFLOW
BITl (MSB)
BIT 2
BIT3
BIT 4
BITS
BIT6
BIT7
+VDD

LCC
PINS
1
4
5
6
7

8
9
11
12
13
14
16
17
19
20
21
23
24

2-1

ADC·207
FUNCTIONAL SPECIFICATIONS
(Typical at +5Vdc power, +25 deg. C, ..20 MHz clock,
+Reference = 5V, -Reference = Ground, unless noted)
MIN.

DESCRIPTION

TYPICAL

I MAX. I

UNITS

-

+7.0

Vdc
Vdc
Vdc

ABSOLUTE MAXIMUM RATINGS
Power supply voltage
(+Vdd, pin 18)
Digital inputs
Analog input

-0.5
-0.5
-0.5

-

Reference inputs
Digital outputs
(short circuit protected
to ground)
Lead temperature,
10 sec. ma
Ambient temperature

-0.5
-0.5

-

+5.5
+Vdd
+0.5
+Vdd
+5.5

-

-

+300

OC

-65

-

+150

OC

Vdc
Vdc

Power supply range (+Vdd)
Power supply current
Power dissipation
ENVIRONMENTAL -

MIN.

TYPICAL

I MAX. I

UNITS

+3.0

+5.0
+50
250

+5.5
+70

Vdc
mA
mW

-

385

MECHANICAL

Operating temp, range:
lC/MC Versions
MMilM/883 Versions
Storage temp. range

0
-55
-65

-

+70
+125
+150

-

·C
·C·

OC

Package type

DIP
LCC

18-pin hermetic sealed, ceramic DIP
24-pin hermetic sealed, ceramic LCC

Pin material

.010 x .018 inch Kovar

NOTES: 1. At full power input and chip selects enabled
2. At 4 MHz input and 20 MHz clock

INPUTS
ANALOG SIGNAL INPUT
single-ended, non-isolated
Input range
dc-20 MHz
Input impedance
Input capacitance,
full input range
DIGITAL INPUTS:
Logic "1" level
Logic "0" level
Logic "1" loading
Logic "0" loading
Sample pulse width,
during sampling portion
of clock
Reference ladder
resistance

3. For 10-step, 40 IRE NTSC ramp test
-

0

-

1000
10

2.0

-

-

V

-

Ohms
pF

-

-

-

V
V
microamps
microamps
nS

330

-

Ohms

+/-1
+/-1

12

+5.0

0.8
+/-5
+/-5

DIGITAL OUTPUTS
Data coding

Straight binary

Data output resolution
Logic "1" level
Logic "0" level
atl.6mA
Logic "I" loading
logic "0" loading
Output data valid delay
from rising edge

-

-

7
3.2

4.5

-

-

4
4

-

-

-

-

15

17

0.4

-

V
V
mA
mA
nS

PERFORMANCE
Conversion rate1

20

35

-

Harmonic distortion 2
(8 MHz 2nd order harmonic)
Differential gain'
Differential phase'
Aperture delay
Aperture jitter
No missing codes
MCgrade
MM grade
Integral linearity at 25·C
Adjustab!e over temp. range
Differential nonlinearity
at 25·C
Over temp. range
Power supply rejection

-

-40

-

mega
samples/sec
dB

-

3
1.5
8
50

-

%
degrees
nS
pS

-

+70
+125
+/-1

·C
·C
LSB
LSB

+/-0.5
+/-0.6

LSB
lSB
%FSR/%Vs

2-2

DESCRIPTION
POWER REQUIREMENTS

-

-

0

-55

-

+/-0.8
+/-1.0

-

+/-0.3
+/-0.4
0.02

-

TECHNICAL NOTES
1. Input Buffer Amplifier-Since the ADC-207 has a switched
capacitor type input, the input impedance of the 207 is
dependent on the clock frequency. At relatively slow conversion rates a general purpose type input buffer can be
used; at high coversion rates DATEL recommends either
the HA-5033, the LH-0033 or Elantec 2003.See Figure 2
for typical connections.
2.· Reference Ladder-Adjusting the voltage at + Ref adjusts
the gain of the ADC-207. Adjusting the voltage at -Ref
adjusts the offset or zero of the ADC-207. The midpoint pin
is usually bypassed to ground through a .1uf capacitor,
although it can be tied to a pFecision voltage halfway
between + Ref and -Ref. This would improve integral linearity beyond 7 bits.
3. Clock Pulse Width-To improve performance at Nyguist
bandwidths, the clock duty cycle can be adjusted so that the
low portion of the clock pulse is 12 nseconds wide. The
smaller aperature allows the ADC-207 to closely resemble
an ideal sampler.
CAUTION
Since the ADC-207 is a CMOS device, normal precautions against static electricity should be taken. use
ground straps, grounded mats, etc. The Absolute Maximum Ratings of the device MUST NOT BE EXCEEDED
as irrevocable damage to the ADC-207 will occur.
TIMING DIAGRAM
AUTO SAMPLE AUTO SA~~LE AUTO SAMPLE
ZERO
N
ZERO
+
ZERO
N+2
02

MN DATA MN+1 DATA
1-1

t-I

17NS
MAX

17NS
MAX

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADC·207
ill !

OUTPUT CODING

! lillil I UiWH1W i

I I

ill

for code changes at the midpoints between these center values
shown in Table 1. For example, at the half-scale major carry, set
the input to 2.54V and adjust the reference until the code flickers equally between 63 and 64. Note also that the weighting for
the comparator resistor network leaves the first and last
thresholds to within V. LSB of the end paints to adjustthe code
transition to the proper midpoint values.

(+Ref=+5.12V, -Ref=Gnd, MID POINT=no connection)
NOTE: The reference should be held to 0.1% accuracy or better. Do not use the +5V power supply as a reference
input without precision regulation and high frequency
decoupling.
Values shown here are for a 5.12Vdc reference. Scale other
references proportionally. Calibration equipment should test

Table 1. ADC-207 Output Coding
Analog In
(Center Value)

Code

Overflow

O.OOV
+0.04V
+1.28V
+2.52V
+2.56V
+2.60V
+3.84V
+5.08V
+5.12V

Zero
+1 LSB
+1/4 FS
+1/2FS-1 LSB
+1/2FS
+ 1/2FS + 1 LSB
+3/4FS
+FS
. Overflow

0
0
0
0
0
0
0
0
1

- -

1 2
MSB
0
0
0
0
1
1
1
1
1

0
0
1
1
0
0
1
1
1

3

4

5

6

7
LSB

Decimal

Hexadecimal
(incl.OV)

0
0
0
1
0
0
0
1
1

0
0
0
1
0
0
0
1
1

0
0
0
1
0
0
0
1
1

0
0
0
1
0
0
0
1
1

0
1
0
1
0
1
0
1
1

0
1
32
63
64
65
96
127
255-

00
01
20
3F
40
41
60
7F
FF

Note that the overflow code does not clear the data bits .
• SV

CHIP SELECT

ClK
2 DIGITAL

,

VDD

GROUND

REF·

4

.. """
B7

BS

S 11/110

. . 14

6 REF+

83 13

1 ANALOG
B GROUND

82 12

CS>

cs,

"

B'
OF 10

B7

(lS8)

BO

.

BS

The 3-state buffer has two enable lines, CS1 and CS2. Table
2 shows the truth table for chip select signals. CS1 has the
function of enabling/disabling bits 1 through 7. CS2 has the
function of enabling/disabling bits 1 through 7 and the overflow
bit. Also a full-scale input produces all ones, including the ovel'
flow bit at the output.
Table 2. Chip Select Truth Table

B'
B2
B,

(IIIISB)

(N

.'UF~

Figure 2. Typical Connections for Using the ADC-207

CS1

CS2

0
1
0
1

0
0
1
1

Bits 1-7
3 State Mode
3 State Mode
DATA Outputed
3 State Mode

Overflow Bit
3 State Mode
3 State Mode
DATA Outputed
DATA Outputed

ORDERING INFORMATION
MODEL

TEMP.
RANGE

PACKAGE

ADC-207MC
ADC-207MM
ADC-207/883B

Oto +70 DC
-55 to +125 DC
-55 to +125 DC

18-pin DIP
1S-pin DIP
18-pin DIP

ADC-207LC
ADC-207LM
ADC-207U883B

to +125 DC
-55 to +125 DC
-55 to +125 DC

o

24-pin LCC
24-pin LCC
24-pin LCC

ACCESSORIES
ADC-B2D7/2DS Evaluation Board (without ADC-207)
For Immediate Assistance, Dial 1-800-233-2765

2-3

Contact DATEL for your
Data Acquisition component
needs.
Dial
1..800.. 233..2765

for
Applications Assistance

2-4

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-.1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADC-208
a-bit, 20 Msps
Cmos Flash AID...
FEATURES

•
•
•

•

8-Bit flash A/D converter
20 MHz sampling rate
10 MHz full-power bandwidth
Sample-hold not required
Low power CMOS
+5V dc operation
1.2 Micron CMOS
8-Bit latched three-state outputs with overflow bit
Surface mount versions
MIL-STD-883B versions
No missing codes

ADC-208 DIP
I

-*0.190(4.9)

GENERAL DESCRIPTION
The ADC-20S utilizes an advanced VLSI 1.2 micron CMOS in
providing 20 MHz sampling rates at S-bits. The flexibility of the
design architecture and process delivers effective bit rates to
30 MHz in the burst mode, one shot mode conversion times of
35 nanoseconds, low power modes to 150 mW, latch-up free
operation without external components and operation over the
full military temperature range.
The ADC-20S has 256 auto-zeroing comparators which are
auto-balanced on every conversion to cancel out any offsets
due to temperature and/or dynamic effects. These comparators sample the difference between the analog input and the
reference voltages generated by the precision reference ladder network. Parallel output data and the overflow pin have
Three-State outputs. The overflow pin allows cascading two
devices for 9-bit operation.

ADC-208LCC

0.060
(1,5) I
~~-~-----~..L.

H~~~ ~ ~ ~ ~ ~ ~ ~ T

0190(4,9)I

0.250
±O.005
0.05
0~.

-11-

r--

0.020
±O.005

1.250---1
(31,7)

~i~:~.
~i~~~
llEJ]'
_I

~:grig

t:,.

(0,5)

I.

TOP
(LCCVersion)

D.400SQ,

(2,5)

(1,3)

I

D -I

-+-ooso1f- ~ f-o:1oo
0.020

I 1_

111111111111110,130 Max.

t

ADC-2081

[J

....L

.

16

24

10

INPUTIOUTPUT CONNECTIONS
PIN
1
2
3

4

5

-REFERENCE

31-"W'....oI--I6:~-,

8117

PINSID.'G~
"8

GRO~UND
•

ANALOG
GAOUt.lO

csoE"~~~-C--I)oo----~~Il-~~~~__-.J
c"'~"~-----1~~~)'-'--------~

For Immediate Assistance, Dial 1·S00-233-2765

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

FUNCTION
VDD
CLOCK
·REFERENCE
ANNDIG GND (VSS)
ANALOG INPUT
REFERENCE MID-POINT
ANALOG INPUT
ANNDIG GND (VSS)
+REFERENCE
VDO
CS1(OUTPUT ENABLE)
CS2 (OVERFLOW ENABLE)
OVERFLOW BIT
BIT 1 (MSB)
BIT 2
BIT 3
BIT 4
REF 314 FS
VDD
REF 1/4 FS
BIT 5
BIT 6
BIT 7
BIT 8 (LSB)

2-5

ADC·208
ABSOLUTE MAXIMUM RATINGS
DESCRIPTION

LIMITS

UNITS

Power Supply Voltage
(Voo Pin 1,10,19)
Digital Inputs
Analog Input
Reference Inputs
Digital Outputs
(short circuit protected
to ground)
Lead Temperature(10 sec)
Storage Temperature

-0.5 to +7.0

Vdc

-0.5
-0.5
-0.5
-0.5

Vdc
Vdc
Vdc
Vdc

to
to
to
to

+5.5
+Voo+0.5
+Voo +0.5
+5.5

+300 max.
-65 to +150

°C
°C

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range +5V, ±0.25V
power supplies, 15 MHz clock, +Reference = +5V,
-Reference = Ground, unless otherwise noted.
ANALOG INPUTS

MIN.

Single-Ended,NonIsolated Input Range
dc-20MHz
Analog Input
Capacitance
(static - Pin 5 to Pin 7)-11-

----=r

Ir--- r-

8-Bit
20 MHz
Flash

linearization
+15V 19

PIN

~

NLiNV 8
NMINV 9
CLOCK 18
VIN 5

PIN FUNCTION

I

Reference

Voltage
Network

For Immediate Assistance, Dial 1-800-233-2765

1

f=
f=
I-

Converter

Tri-State
Buffer

r--- rr--- -r - - -! - - -r - - -! - - --

13
20
14
15
16
17
21
22
23
24

N/C
+15V POWER IN
CLOCK INPUT
BIT4
BIT3
BIT2
BIT41 (MSB)

N/C

N.C.
N.C.
81
82
83
84
85
86
87
88 (LS8)

3 REF. OUT +5V de

2-9

ADC·228
ABSOLUTE MAXIMUM RATINGS
DESCRIPTION

PARAMETERS

PERFORMANCE CON'T.

Power Supply Voltage
(VDD Pin 1)
Vcc (Pin 19)
Vee (Pin 10)

-0.5 to+7.0 V dc

Integral Linearity +25 °C
End·point
Best-fit Line
Over temperature
End-point
Best-fit Line
Zero-Scale Offset
(Code "0" to "1" Transition)
(+25°C)
(·55 to +125 °C)
Gain error
Full Scale Absolute Accuracy
Differential Gain (2)
Differential Phase (2)
Aperture Delay
Aperture Jitter
No Missing Codes
Power Supply Rejection

-0.3 to + 18.0V dc
+0.3 to -18.0V dc

Digital Inputs
(Pins 8,9,11,12,18)
Analog Input
(Pin 5)
Digital Outputs
(short circuit protected to
ground)
Lead Temp. (10 sec)
Storage Temperature

-0.5 to +5.5 V dc
-0.5 to +Vdd+0.5 V dc
-0.5 to +5.5 V dc

+300°C
-65 to +150 °C

MIN

TVP

MAX

UNITS

-

-

±D.5
iO.5

LSB
LSB

-

-

i1.0
±D.75

LSB
LSB

-

iO.5
il.0
il.0
il.0

LSB
LSB
LSB
LSB
%
deg.

-

·5
-

±D.5
±D.5
±D.5
2
1

-

+10
~~c.
50
ec.
Over the operating temperature range
0.02 %FSR/%Ns Maximum

-

DVNAMIC PERFORMANCE

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and ±15V dc
and +5V dc power supply voltages unless otherwise specified (20 MHz clock).
DESCRIPTION

MIN

TYP

MAX

UNITS

ANALOG INPUTS
Single-Ended, Non·lsolated
Input Range dc-20 MHz
Analog Input Resistance
Analog Input Capacitance
DIGITAL INPUTS
Logic Levels
Logic 1
Logic 0
Logic Loading
Logic 1
Logic 0
Clock Low Pulse Widths
"high"
"low"

0
2.45

-

2.5
5

+5.0
2.55

-

-

Volts
Kohm
pF

2.0

-

-

0.8

-

-

160
·0.5

IlA

15
15

-

-

nSec.
nSec.

Vdc
Vdc
mA

DIGITAL OUTPUTS
Coding
Resolution
Logic Levels
Logic 1
Logic 0
Logic Loading
Logic 1
Logic 0
Output Data Valid Delay
From Rising Edge
Output Hold Time
PERFORMANCE
Sampling Rate (1)
Differential Linearity
(See Tech Note 4)
(code transitions)
(center of codes)

2-10

straight bin., compo bin. two's comp.,
compo two's compo
8 Bits

-

-

-

0.55

Vdc
Vdc

-

-

-0.5
4

mA
mA

2.4

-

30

5

-

40

-

nSec.
nSec.

20

-

-

MSPS

-

-

±D.5
±D.25

LSB
LSB

Total Harm. Dlstort.,-O.5dB
DC to 2.5 MHz
2.5 MHz to 5 MHz
5 MHz to 10 MHz
Signal-te-Nolse Ratio
and Distortion,O.5dB
DC to 2.5 MHz
2.5 MHz to 5 MHz
5 MHz to 10 MHz
Signal-to-Nolse Ratio
wlo Distortion,O.5 dB
DC to 2.5 MHz
2.5 MHz to 5 MHz
5 MHz to 10 MHz
Effective Bits,-o.5dB
DC to 2.5 MHz
2.5 MHz to 5 MHz
5 MHz to 10 MHz
Input Bandwidth
Full Power Bandwidth (ODb)
Small Signal (-20dB)
POWER SUPPL V
Power Supply Range
+15V dc Supply
·15V dc Supply
+5V de Supply
Power Supply Current
+15V Supply
-15V Supply
+5V Supply
Power Dissipation
i12V, +5V Nominal
Over full supply range

-

·53
·48
·36

·55
·50
·39

-

·45
·35

·48
·46
·39

-

·52
·52
-52

-55
·55
-55

--

FS, -dB
FS, -dB
FS,·dB

7.5
7.25
6.75

7.75
7.5
7

-

Bits
Bits
Bits

10
20

-

-

-

MHz
MHz

+11
·11
+4.75

+15
·15
+5

+15.75
·15.75
+5.25

Volts
Volts
Volts

-

·44

-

-

FS, -dB
FS, -dB
FS, -dB
FS,·dB
FS, -dB
FS, -dB

-

-

+30
+10
+230

mA
mA
mA

-

1.4
1.5

1.6
1.75

W
W

-

-

PHVSICAL·ENVIRONMENTAL
Operating Temp. Range
MC
MM/883B
Storage Temp. Range
Package Types (DIP)

oto+70 °C
·55 to +125 °C
-65 to +150 °C
24'pin hermetic sealed, ceramic DIP

NOTES
1. At full power input and chip selects enabled.
2. For to'step, 40 IRE NTSC ramp test

DATEL, Inc. 11 Cabot BOUlevard, Mansfield, MA 02048-t194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

nw

ADC·228
_W_Jflil_

m

m

1-

_~gd&

.iUJt

TECHNICAL NOTES
74HC86

1. Rated performance requires using good high frequency
techniques. The analog and digital grounds are connected
internally. Avoid ground related problems by connecting the
grounds to one point, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.

250 Q

~

__- - - )

OUT

~

'VV'v-1.

I::c

2. Bypass all the analog and digital supplies and the + reference (pin 3) to ground with a 4.7 j.1F, 25V tantalum electrolytic capacitor in parallel with a 0.1 j.1F cerdmic capacitor.

CLOCK

100 pF

50 nSee.

.. I

I..

3. DATEL uses the conservative definitions when specifying Integral Linearity (end-point) and Differential Linearity (code
transition). The specifications using the less conservative
definition have also been provided as a comparative specification for products specified this way.

~

t - - - - I-

4. Single conversions (one-shot mode) would require another
clock edge to read out data. Users desiring to provide just a
single clock pulse could use the circuit shown in Figure 2 to
obtain the data.

1-- 40nSEC.-1
Figure 2. Single Clock Pulse Circuit and Operation

• Use optional resistor only if
op-arnp is not used to drive input.
R=VEE/1.667 rnA

+5V de

-15V de
O.Ij.lF

O.Ij.lF

104~

NLiNV 8

14
15
16

NMINV
9
CSI

11

CS1

12

17

ADC-228

21
22
23
24

CLOCK 18

B1 (MSB)
B2
B3
B4
B5
B6
B7
B8 (LSB)

13,20
VIN 5

ANALOG
INPUT
51

NC

k - - , r -_____- ,________-J-3~-r-+5VREF.OUT

19

9K

2,4,6,7
0.111F

'Optional

+15Vde

Figure 3. ADC-228 Typical Connections

For Immediate Assistance, Dial 1-800-233-2765

2-11

ADC·228
[ I If

Table 1. ADC-228 Unipolar Output Coding
ANALOG
INPUT
+4.96V
+3.75V
+2.50V
+1.25V
+0.02V
O.OOV

CODE

Table 2. ADC-228 Bipolar Output Coding
(Assumes analog input is externally offset)

STRAIGHT BIN. COMPo BIN.
NMINV=O
NMINV=1
NLINV=1
NLlNV=O

+FS-1 LSB
+ 3/4 FS
+ 1/2 FS
+ 1/4 FS
+1LSB
ZERO

11111110
11000000
10000000
01000000
00000001
00000000

ANALOG
INPUT

00000001
0011 1111
01111111
1011 1111
11111110
11111111

+2.480V
+1.250V
+0.020V
+O.OOOV
-1.250V
-2.480V
-2.500V

CODE

+FS-1 LSB
+1/2 FS
+1 LSB
ZERO
-1/2 FS
-FS+1 LSB
-FS

TWO'S
COMPo
NMINV=1
NLINV=O

COMPo
TWO'SCOMP.
NMINV=O
NLINV=1

0111 1111
01000000
00000001
00000000
11000000
10000001
10000000

10000000
1011 1111
1111 1110
1111 1111
0011 1111
01111110
01111111

Table 3. Chip Select Truth Table

CLOCK

CS1
Pin 12

CS1
Pin 11

Bits 1-8

0
0
1
1

0
1
0
1

Three State Mode
Three State Mode
Data Outputted
Three State Mode

'-------':

,
:'

DIGITAL
OUTPUT

,

," OUTPUT,
_: DELAY :..-

"

i,j' -'mYM.T,
---til\"AO""'-;D~A;:;T:-:A--r-TM\I1\I1"'Tn'-;:D:-;-AN:;:-TA:----'M\I1\I1~"'lrCD::CA;:;T::-A----r.

~ N-l

---..,

~

~ N+l

1"-

OUTPUT
HOLD TIME

Figure 4. ADC-228 Timing Diagram

ORDERING INFORMATION
MODEL

TEMP. RANGE

PACKAGE

ADC-228MC
ADC-228MM
ADC-228/883B

Oto +70 °C
-55 to +125 °C
-55 to +125 °C

24-pin DIP
24-pin DIP
24-pin DIP

Receptacle for PC board mounting can be ordered
through AMP Inc., part # 3-331272-8 (component lead
socket), 24 required.

2-12

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADC-304
a-Bit, 20 MHz
Low-Power, Flash AID
FEATURES
8-Bit resolution

• ± '1. LSB non-linearity
•
•
•
•

20 MHz conversion rate
8 MHz input bandwidth (-3 dB)
Low-power consumption (390 mW)
TTL-compatible
Single or dual supply operation

GENERAL DESCRIPTION
DATEL's ADC-304 is an 8-bit, 20 MHz analog-to-digital
flash converter. The ADC-304 offers many performance
features not obtainable from other flash AID's.
Key features include a low-power dissipation of 390 mW
and TTL compatible outputs. A wide analog input bandwidth
of 8 MHz (-3 dB) allows operation without the need of a
sample-hold. Also, single +5V sUpply operation is
obtainable with an input range of +3 to +5V, eliminating the
need for an additional power supply. A 0 to -2 V input range
is available with ±5V supply operation.

MECHANICAL DIMENSIONS
INCHES
(mm)

1.44~~
0.51 :

(36.6 :~)

g;,.

0.009 : :
(0.25 : ~)

(13.2:~~~

\

Le.~o~[fflftij~lo.,J" )l~ ;.~,~

Another novel feature of the ADC-304 is its user-selectable
output coding. The MINV and LlNV pins allow selection of
binary, complementary binary, and if external offset circuitry
is used for bipolar inputs, offset binary, two's complement,
and complementary two's complement coding.

0.1

-no

(2.54)- -l L

0.6

(15.24)

The ADC-304 is supplied in a 28-pin dual in-line package
and operates over a -20°C to +75°C temperature range.
Storage temperature range is from -65°C to +150°C.

0.02
(0.05 min)

o.m::
-~

(4.5:~:>
0.13

(3.4 min)

II:
... w

.
8
.

,-Ull'

!!
~

.•
;;;

z

5

~

••'V

'::.

..."
,.,
,-

,
, ,

For Immediate Assistance, Dial 1-800-233-2765

Table 1. AOC-304lnputiOutput Connections
Pin

Function

Pin

Function

1
2
3
4
5
6
7
8
9
10
11
12
13
14

BIT lOUT (MSB)
BIT20UT
BIT30UT
BIT40UT
DIGGND
+ 5V POWER (Vcc)
- 5.2V POWER (VEE)
- 5.2V POWER (VEE)
- 5.2V POWER (VEE)
+ 5V POWER (VCC)
DIGGND
LlNV
BIT50UT
BIT60UT

15
16

BIT 7 OUT
BIT 8 OUT (LSB)
CLOCK INPUT
VRT
ANAGND
NO CONNECTION
ANA IN
NO CONNECTION
ANA IN
NO CONNECTION
ANAGND
VRB
VRM
MINV

17
18
19
20
21
22
23
24
25
26
27
28

2-13

ADC-304
TECHNICAL NOTES

=

ABSOWTE MAXIMUM RATINGS (1iI
2S"C)
Supply Voltage Vcc-GND
Oto +6
VEE-GND
Oto -6

V
V

Input Voltage
(analog)

Vin
(Dual Power Supply) VEE to ANA GND +0.3 V

Input Voltage
(reference)

VRT. VRs. VRM
(Dual Power Supply) VEE to ANA GND +0.3 V
2.5
V
I VRT-VRs I
IVRM
-3.0 to +3.0
rnA
-0.5 to vee
Digital Inputs
V

Input Current
Input Voltage

1. DIG GND pins (5 and 11) and Vce
pins (6 and 10) connect to separate
internal circuits within the ADC-304.
Connect these pins to their respective
PCB patterns.
2. Layout of the analog and digital sections should be separated to reduce
interference from noise. To further
guard against unwanted noise, it is
recommended to bypaSs, as close as
possible. the voltage supply pins
(6.10) to their respective ground pins
(5,11) with a 1 p.F and a 0.01 p.F ceramic disk capacitor in parallel.

FUNCTIONAL SPECIFICATIONS
Unless otherwise noted, the following specifications apply to
the ADC-304 when used either with a single or dual power
source. The test conditions are:

3. The input capacitance of the analog
input is much smaller than that of a
typical Flash AID Converter. It is
necessary to use an amplifier with
sufficient bandwidth and driving
power. The analog input pins (21.23)
are separated internally, so they
should be connected together externally. If the ADC-304 is driven with a
low- output impedance amplifier.
parasitic oscillations may occur.

For Single Power Supply Operation:
Vee (Pins 6 + 10) = +5V, DIG GND = OV
VEE (Pins 7. 8 + 9) = OV. VRT (Pin 18) = +5V
VR. (Pin 26) = +3V, Ta = 25°C
ANA GND (Pins 19 + 25) = + 5V
For Dual Power Supply Operation:
Vee (Pins 6 + 10) = +5V,DIGGND(Pins5 + 11) = OV
ANA GND = OV, VEE = -5V
VRT(Pin18) = OV, VR. (Pin 26) = -2V
Ta = 25°C
DESCRIPTION
Inputs
Analog
Input Range ...............
Input Capacitance . . . . . . . . . .
Input Bias Current .. , .......
Offset Voltage:

MIN_

TYP_

MAX_

UNITS

VRT

-

30
50

35
100

V
pF
p.A

(VRB) ...................

8
0

13
5

19
11

mV
mV

Digital
Logic Levels:
LogiC "1" ................
Logic "0" ................
Logic Input Currents :
Logic "1" ................
Logic "0" ................

-

-

0.8

V
V

0
-0.5

p.A
mA

(VRT)

...................

VRB

2.0

-100
-0.32

Outputs
Resolution
Output Coding

Logic levels:
Logic "1" ................
Logic "0" ................
Logic Level Loading:
Logic "1" ................
Logic "0" ................
Output Data Delay
(TDLH) ..................
(TDHL) ..................

2-14

8
Straight Binary
Complementary Binary
2's Complement
Complementary 2's
Complement
2.7

-

3.4

Bits

V
V

-

0.5

-500

3

p.A
mA

30
35

nSec.
nSec.

-

25
26

These parasitic oscillations can be
prevented by introducing a small
resistance of 2 to 10Q between the
amplifier output and the ADC-304's
AID input. This resistance must be of
very low value of inductance at high
frequencies.
Note that each of the analog input
pins are divided in this manner with
these resistances. Connect the driving amplifier as close as possible to
the AID input of the ADC-304.
4. The voltage between VAT (pin 18)
and VAB (pin 26) is equivalent to the
dynamic range of the analog input.
Bypass VAB to ANA GND (pins 19
and 25) by means of a lp.F and 0.01
p. F capacitor in parallel. To balance
the characteristics of the ADC-304 at
high frequencies. bypass VAM (pin
27) with a 0.01p. F capacitor to ANA
GND (pins 19 and 25).
Also. VAM (pin 27) can be used as a
trimming pin for more precise linearity compensation. A stable voltage
source with a potential equal to -FSA
and a 1 KQ potentiometer can be connected to VAM (pin 27) as shown in
Figure 3 for this purpose.
5. Separate the clock input. CLK (pin 17).
from other leads as much as possible.
observing proper EMI and AFI wiring
techniques. This will reduce the
inductive pick-up of this lead from
interfering with the "clean'" operation
of the ADC-304.
.

DATEL. Inc. 11 Cabot Boulevard, Mansfield. MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

ADC·304
Performance

MIN.
20

Conversion Rate 1 . • . • • • • • • . .
Non-Linearity .... .. .. .. ....
Differential Non-Linearity .....
Differential Gain Error' .......
Differential Phase Error 2 .....
Aperture Delay ..............
Aperture Jitter ..............
Clock pulse width: Tpw1 ...
TpwO .....
Reference Pin Current .......
Reference Resistance
(VRTto VRB)
Reference Input (Dual Supply)
(VRT) ...................
(VRB) ...................

5
-

35
10

"

-

-0.1
-1.8

TYP.

-

MAX.

UNITS

-

MHz
LSB
lSB

±1/2
±1/2

1.5
0.5
9

%

15
130

-18

-

Degrees
nSec.
pSec.
nSec.
nSec.
mA
ohms

0
-2.0

+0.1
-2.2

V
V

7

30

-

Power Supply Requirements
Single Power Supply
Supply voltage
(Vee) ...................
(VEE) .. .. .. .. .. .. .......
Supply Current:
(ICC + lEE) ..............
Power Dissipation ...........

4.75

-

Dual Power Supply
Supply Voltage:
(Vee) ...................
(VEE) .. .. .. .. .. .. .. .. .. .
Supply Current
(ICC) ...................
(lEE) ...... -,- ..........
Power Dissipation ..... , .....

-0

-

5.25

V
V

71
360

88
442

mA
mW

4.75
-4.75

5.0
-5.2

5.25
-5.5

V
V

-

10
62
390

14
75
440

mA
mA
mW

-20
-55

-

+75
+150

·C
·C

TECHNICAL NOTES (CONT.)

6. The analog input signal is sampled on
the positive-going edge of ClK. Corresponding digital data appears at the
output on the negative-going edge of
the ClK pulse after a small delay of 35
nSec. maximum (TDlH, TDHl).
Refer to the Timing diagram, Figure 4,
for more information.
7. Connect all free pins to ANA GND
(pins 19 and 25) to reduce unwanted
noise.
The analog input range is equal to a
2V spread. The voltage on VRT-VRB
will equal 2V. The connection of VRT
and ANA GND is 2V higher than VRB.
Whether using a single or dual power
supply, the analog input will range
from the value of VRT to VRB. If VRT
equals +5V, then VRB will equal +:N
and the analog input range will be
from +5 to +:N.
SINGLE SUPPLY
OPERATION

ADC·304

Physical/Environmental
Operating Temperature .......
Storage Temperature ........
1.
2.

fin = 1 KHz, ramp
NTSC 40 IRE·modulated ramp, Fe = 14.3 MSPS
0.01

Analog Input

~
m

J~~

Clock

Output

&8it latch Output

Data OutpUT
Bits 1-8

~

iI

:

~:'

~

I

Comparator

I

I

I

iI II

X
N·1 Data valid

: X : I--

--tTDLH

r--

I
I I
1,35nSj_1

"----

DUAL SUPPLY
OPERATION

ADC·304

I

I II
I

: N Data valid:

-jTDHL

T"'

X:

: N + 1 Data Valid

lK

I
I
I
I I
1· 35n j"1
I

Figure 2: ADC·304 Timing Diagram

I

Figure 3: Improving Linearity
Compensation

For Immediate Assistance, Dial 1-800-233-2765

2-15

ADC-304
Table 2. Output Coding for + 5V Power Supply Operation
(+5 to +3V Signal Input)

Unipolar
Scale
+FS-1LSB
+%FS
+¥.FS
+1I2FS
+V4 FS
+'A.FS
+1 LSB
Zero

MINV
LINV
+4.9922V
+4.7500V
+4.5000V
+4.0000V
+3.S000V
+3.2500V
+3.0078V
+3.0000V

Straight
Binary

Complement 2'.

0

0

0

1
10000000
10100000
11000000
00000000
01000000
00100000
01111110
01111111

11111111
11011111
10111111
01111111
00111111
00011111
00000001
00000000

2's
Complement
Complement
Binary
1
1

Complement

0

01111111
01011111
00111111
11111111
10111111
11011111
10000001
10000000

1
00000000
00100000
01000000
10000000
11000000
11100000
11111110
11111111

Table 3. Output Coding for ± 5V Power Supply Operation
(0 to - 2V Signal Input)
Straight
Binary
Unipolar
Scale
0
-1 LSB
-'A.FS
-V. FS
-lhFS
-%FS
-%FS
-FS+1LSB

MINV

0
0

LlNV

OV
-7.813mV
-250.00mV
-SOO.OOmV
-1.0V
-1.5V
-1.7SV
-1.9922V

11111111
11111110
11011111
10111111
01111111
00111111
00011111
00000000

2'8
Complement 2's
Complement
Binary
Complement Complement
1
1
0
1
1
0
10000000
01111111
00000000
00000001
10000001
01111110
10100000
01011111
00100000
00111111
01000000
11000000
11111111
10000000
00000000
10111111
11000000
01000000
00100000
11011111
11100000
01111111
11111111
10000000

APPLICATION CIRCUITS

(MSBI

(MSB)

Analog input

Analog input
Oto -2V

+5to +3V
ITTL level)

ITTL level!

ITTL level!

l

(TTL level!

B'150---+--+-(

....1

,i.SB1

Figure 5: Connections for +5V

Figure 6: Connections for ±5V

Power Supply Operation

Power Supply Operation

ORDERING INFORMATION

2-16

MODEL

DESCRIPTION

ADC-304

8-bit, 20 MHZ, Low-power, flash AID

DATEL, Inc. 11 Cabot BOUlevard, Mansfield, MA 02048-1194rrEL (508) 339-3000rrLX 174388/FAX (508) 339-6356

ADC-500, ADC-505
12-Bit, Ultra-Fast, Low-Power
AID Converters
FEATURES
•
•
•
•
•
•
•
•

12-8it resolution
500 Nanosecond maximum conversion time
Low-power, 1.6W
Small initial errors
Three-state output buffers
-55°C to +125°C operation
Small 32-pin DIP
No missing codes

MAX~

l.....--'.101
(28,01

I-

GENERAL DESCRIPTION
DATEL's ADC·500 and ADC-505 are 12·bit analog·to·digital
converters which have small initial errors and can also
provide adjustment capability for system errors. Both
models have identical specifications except for conversion
times. The ADC·505 has a maximum conversion time of
550 nanoseconds while the ultra-fast ADC-500
accomplishes .a 12-bit conversion in less than 500
nanoseconds. Figure 1 is a simplified block diagram
applicable to both devices.
Manufactured using thick-film and thin-film hybrid
technology, these converters' remarkable performances are
based upon a digitallY'corrected subranging architecture,
DATEL further enhances this technology by using a
proprietary custom chip and unique laser trimming
schemes. The ADC-500 and ADC-505 are packaged in a
32-pin ceramic DIP and consume 1.6 watts.

~~~--~--1-+----------'

OffSET

""'"
,ow
""'"

-..
For Immediate Assistance, Dial 1-800-233-2765

-

I

IL

0.150 (3.8) MIN

J.

I --I...-

I

0.190 (4,91 MAX

1t

0.010 l( 0.018 Kovar

116

17

~T
T I

.1':; :. :.I __ .

MECHANICAL DIMENSIONS
INCHES (mm)

1.712 MAX

~

BOTTOM
VIEW

I

I

11

32

'~'"'

stand off from case

m

0.100

....,.-----.....,,...--0
I~
r--

0900
(22,91

..

I..

0.100
(2.5)

INPUT/OUTPUT
CONNECTIONS
PIN

SIGNAL NAME

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

+lOV REF
RANGE
INPUT HIGH
INPUT LOW
OFFSET ADJUST
NO CONNECTION
COMP BIN
OVERFLOW
ENABLE (6-12)
ENABLE (1-5. O.F.)
+5V
DIGITAL GROUND

+15V
-15V
-5V
ANALOG GROUND
SfHCONTROl
EOC
BIT 12 (LSB)
BIT 11
BIT 10
BIT9
BIT8
BIT 7
BIT6
BITS
BIT4
BIT 3
BIT2
BIT 1 (MSBI
START CONVERT
GAIN ADJUST

2-17

ADC.SOO, ADC·SOS
Another novel feature of the ADC-500 is the provision of a SamplelHold control pin for applications where a sample-hold is used in
conjunction with the ADC-500. This feature allowsthesample-andhold device to go back into the sample mode a minimum of 30
nanoseconds before the conversion is complete, improving the
overall conversion rate of the system.

ABSOLUTE MAXIMUM RATINGS
Parameters
MINIMUM
+ lSV Supply (Pin 13) .. .
0
-lSV Supply (Pin 14).. .
0
+SVSupply(Pinll).... -0.5
- SV Supply (Pin 15) .. .. + 0.5
Digital Inputs
(Pins7,9,10&31) ... -0.3
Analog Input (Pin 3) ....
- 15
Lead temp. (10 sec) ... .

MAXIMUM
+18
-18
+7

UNITS
Volts dc
Volts dc
Volts dc
Volts dc

+6
+15
300

Volts dc
Volts dc

-7

·C

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V dc
and ±5V dc unless otherwise specified.
DESCRIPTION

MIN.

TYP.

MAX.

UNITS

INPUTS
Input Voltage Range ...
(See Tech. Note 9)
Logic Levels: Logic 1 ..
Logic 0 ..
Logic Loading: Logic 1
Logic 0

-

2.0
--

o to +10
o to +20
±10

-

-

0.8
2.5
-100

Volts dc
Volts dc
Volts dc
Volts dc
Volts dc
p.A
p.A

OUTPUTS
Output Coding:
(Pin 7 High) ........
(Pin7Low) ........
Logic Levels: Logic 1 .. 2.4
Logic 0 .. Logic Loading: Logic 1 Logic 0
Internal Reference:
VoHage, +25·C .... 9.98
Drift .............. External Current ....

-

straight binary/offset binary
comPlementa:k binary
complementary 0 set binary
Volts dc
0.4
Volts dc
-160
p.A
6.4
rnA
-

-

10.0
±5

-

-

10.02
±30
1.5

Volts dc
ppm/·C
rnA

PERFORMANCE
Integral Nonlinearity:
+2S·C ...........•
O·C to + 70·C ......
-SS·Cto +12S·C ..
Integral Nonlin. Tempco.
Differential Nonlinearity
+25·C ............
O·C to + 70·C ......
-SS·Cto + 12S·C ..
Differential Nonlin.
Tempco ...........
Full-Scale Absol.
Accuracy:
+2S·C ............
O·C to + 70·C ......
-SS·Cto + 12S·C ..

2-18

--

--

-

-

±3

-

-

±0.0125 OfoFSR ± V2 LSB
±0.0125 OfoFSR ± V2 LSB
±0.0125 OfoFSR ± 3 LSB
ppm/·C
±8
±0.0125 OfoFSR ±V2 LSB
±0.0125 OfoFSR ±'/2 LSB
±0.0125 OfoFSR ±1 LSB

-

-

±2.5

ppm/·C

-

±3
±4
±8

±8
±14
±29

LSB
LSB
LSB

-

PERFORMANCE (cont.)
DESCRIPTION
Unipolar Zero Error,
+2S·C .............
Unipolar Zero Tempco ..
Bipolar Zero Error,
+2S·C .............
Bipolar Zero Tempco ..•
Bipolar.Dffset Error,
+2S·C .............
Bipolar Offset Error
Tempco ............
Gain Error, + 2S·C .....
Gain Tempco ..........
Conversion Times:
ADC-SOO
+2S·C ...........
O·C to + 70·C .....
- 55·C to + 12S·C
ADC-SOS
+2S·C ...........
O·C to + 70·C .....
-SS·Cto +125·C ..

MIN.

TYP.

MAX.

UNITS

-

-

±1
±13

±3
±25

LSB
ppm/·C

-

±1
±13

±3
±25

LSB
ppm/oC

---

Harm. Distort. (-FS) ill
+25°C
Oto +70 °C
-55 to +125 °C
No Missing Codes
(12 Bits): ............

±2

±5

LSB

±17.5
±2
±17.5

±35
±5
±35

ppm/·C
LSB
ppm/·C

500
540
560
550
590
620

nsec.
nsec.
nsec.

-

-

nsec.
nsec.
nsec.

-72 dB min.
-72 dB min.
-65 dB min.
Over the Operating Temp. Range

POWER SUPPLY REQUIREMENTS
Power Supply Range:
+ 15V dc Supply ...•.
-lSV dc sUP~IY .....
+SVdcSuppy ......
- 5V dc Supply ......
Power Supply Current:
+lSVSupply ........
-lSVSupply ..•.....
+SVSupply· ........
-SVSupply .........
Power Dissipation ......
Power Supply Rejection.

+14.25
-14.25
+4.75
-4.75

+15
-15
+5
-5.

+15.75
-15.75
+5.25
-5.25

--

+23
-11
+55
-175
1.6

+30
-15
+90
-210
1.8
0.D1

-

-

Volts
Volts
Volts
Volts

dc
dc
dc
dc

rnA
mA
rnA
rnA
Watts
OfoFSR/oAlV

PHYSICAL/ENVIRONMENTAL
Operating Temp. Range:
-BMC .............
0
+70
-BMM ............. -55
+ 125
Storage Temperature
Range .............. -65
+150
Package Type ......... 32-pin hermetic sealed, ceramic
Pins ................. 0.010 x 0.018 inch Kovar
Weight ............... 0.42 ounces (12) grams

-

·C
·C
·C
DIP

• + 5V power usage at 1TIL logic loading per data output bit.
CD With DATEL sample and hold model number SHM-45.

TECHNICAL NOTES
1 . Use external potentiometers to remove system errors or the
small initial errors to zero. Use a 20K trimming potentiometer for
gain adjustment with the wiper tied to pin 32 (ground pin 32 for
operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zer%ffset adjustment (leave
pin 5 open for operation without adjustment).
2. Rated performance requires using good high frequency circuit
board layout techniques. The analog and digital grounds are not
connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one pOint, the ground plane
beneath the converter. Due to the inductance and resistance of
the power supply return paths, return the analog and digital
ground separately to the power supplies.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADC·SOO, ADC·505
3. Bypass all the analog and digital supplies and the + 1OV reference (pin 1) to ground with a 4.7 IlF, 25V tantalum electrolytic capacitor in parallel with a 0.1 IlF ceramic capacitor. Bypass the
+ 1OV reference (pin 1) to analog ground (pin 16). The -5V dc
supply is treated as an analog supply and analog ground (pin 16)
should be treated as its return path for decoupling purposes.
4. Obtain straight binary/offset binary output coding by tying COMP
BIN (pin 7) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary
or complementary offset binary output coding, tie the COMP BIN
pin to ground. The COMP BIN signal is compatible-to CMOS/
TTL logic levels for those users desiring logic control of this function.

8. Over temperature, input capacitance is 50 pF maximum and input impedance is 1.75K minimum (2.5K typical) for unipolar and
3.75K minimum (5K typical) for bipolar. These values are guaranteed by design.
9. Requirements for ±2.5V inputs can be satisfied using DATEL's
AM-1435 amplifier in front of the SHM-45/ADC-500 configuration,
shown in Figure 3, at the appropriate gain. The SHM-45's gain of
2 mode allows 0 to +5V or ±5V input ranges.

TIMING
Figure 2 shows the relationship between the various input signals.
The timing cited applies over the operating temperature range and
over the operating power supply range. These times are guaranteed by design.

5. An overflOW signal, pin 8, indicates when analog input signals are
below or above the desired full-scale range. To overflow pin also
has a three-state output and is enabled by pin 10 (Enable bits 1-5
&O.F.).

TABLE 2. INPUT CONNECTIONS

6. The Sample/Hold control signal, pin 17, goes low following the
rising edge of START QQt::IVERT pulse and high 30 nanoseconds minimum before EOC goes low. This indicates that the
converter can accept a new analog input.

INPUT PIN

010 +10Vdc

3

CONNECT PIN 2 (RANGE) TO PIN:

3

o to +20V de

3

16

±10V de

3

1

TABLE 3. ZERO AND GAIN ADJUST

7. The drive requirements of the ADC-500/505 may be satisfied with
a wide-bandwidth, low output impeance input source. Applications of these converters that require the use of a sample-hold
may be satisfied by using DATEL's model SHM-45. Using this
device with multiplexers or for test purposes will require an input
buffer.
ANALOG

INPUT VOLTAGE RANGE.

FSR

ZERO ADJUST
+1/2 LSB

GAIN ADJUST
+FS -1 1/2 LSB

oto +10V dc
oto +20V dc

+1.22 mV
+2.44 mV
+2.44 mV

+9.9963Vdc
+19.9927Vdc
+9.9927Vdc

±10Vdc

•

INPUT~

--------,,---------------------------------------,,

,

AI%~~~G

,,

,
-t- ~~~~~~ ------'L'__________________________________________

SETTliNG
TIME

I

START

I
:

I

I

I

,

I

105nSec MINIMUM (when used with SHM-45)
I

CONVERT

;

JJI
~-,

,
I
I

:

,,
,

"H- '
I

I

I
I
I

I

I

I

I
I

!t:

!,

, I I

'I'
'I I
:-t-i

-----+'I --..;
I
I

IDOnSer. HOLDMOOES[TTLINGTIME

, H-

I

~

NOTE NOT DRAWN TOSCAL[

200 "Sec ACQUISITION TIME

I
I

II
CONVERSION TIME
r-----~---------------------~
20nSec MINIMUM
35nSec MAXIMUM

I I I

i

I

--.Ji-:----------+i-,\ i
I

,

i! : !

,

,

f-!

I I:

-j,
EOC

---T,-----------------------------------------

!-,

---j

10nSE.'C MINIMUM

25nSsc MAXIMUM

I

i

S/H

1--1----------- ~~,';.!':
OUTPUT DATA

DATA N·1 VALID

ENABLED OATA N·l VALID
(BITS l·S.OF)

ENABLED DATA N·' VALID
(BrT$6·,2j

I

-------------1

30nSeL

MINIMUM

f--

i
,,,

-j

~
IOnSec
MAXIMUM

10nSec
MAXIMUM

r-

25nSec

MINIMUM

DATANVALIO

FLED

DATA N

VALID

~LEDDATAN
VALID

'NVAUO OATA

~

Figure 2. ADC-500/505 and SHM-45 Timing Diagram

For Immediate Assistance, Dial 1-800-233-2765

2-19

ADC-SOO, ADC-50S
CALIBRATION PROCEDURE

flickers equally between 0000 0000 0000 and 0000 0000 0001
with the COMP BIN (pin 7) tied high or between 1111 1111
1111 and111111111110withtheCOMPBINtiedlow.

Removal of system errors or the small initial errors is accomplished
as follows:
1. Connect the converter per Figure 3 and Table 2 for the appropriate full-scale range (FSR). Apply a pulse of 50 nanoseconds
minimum to the START CONVERT input (pin 31) at a rate of
500 KHz. This rate chosen to reduce flicker if LED's are used
on the outputs for calibration purposes.

3. Full-Scale Adjustment - Set the output of the voltage reference
used in step 2 to the value shown in Table 3. Adjust the gain
trimming potentiometer so that the output code flickers equally
between 1111 1111 1110 and 1111 1111 1111 for COMP BIN
(pin 7) tied high or between 0000 0000 0001 and 0000 0000
0000 for COMP BIN tied low.

2. Zero Adjustments - Apply a precision voltage reference source
between the analog input (pin 3) and ground (pin 16). Adjust
the output of the reference source per Table 3. For unipolar,
adjust the zero trimming potentiometer so that the output code

4. To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed in
Table 4.

TABLE 4. OUTPUT CODING
STRAIGHT

UNIPOLAR

INPUT RANGES, V de

SCALE
+FS -1 LSB
7/8 FS
314 FS
112 FS
1.14 FS
118 FS
1 LSB
0

oto +10V oto +20V
+9.9976V
+8.7500V
+7.5000V
+5.0000V
2.5000V
1.2500V
0.0024V
O.OOOOV

BIN

CaMP

BINARY

OUTPUT CODING

MSB
LSB
+19.9951V 1111 1111 1111
+17.500V 111000000000
+15.000V 1100 0000 0000
+10.000V 1000 0000 0000
+5.0000V 0100 0000 0000
+2.5000V 0010 0000 0000
+0.0049V 0000 0000 0001
O.OOOOV 0000 0000 0000
OFF.

BINARY

INPUT RANGE BIPOLAR

MSB
LSB
0000 0000 0000
0001 1111 1111
0011 1111 1111
011111111111
10111111 1111
110111111111
1111 1111 1110
1111 1111 1111

CaMP

+10Vde
+9.9951 V
+7.5000V
+5.0000V
O.OOOOV
-5.0000V
-7.5000V
-9.9951 V
-10.000V

SCALE
+FS -1 LSB
+3/4 FS
+1/2 FS
0
-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

OFF. BIN

+15V de

ADC-500/505

ORDERING INFORMATION
MODEL NO.

OPERATING
TEMP. RANGE

SEAL

ADC-500BMC
ADC-500BMM
ADC-500BMC
ADC-500 BMM

Oto+70°C
-55 to +125 °C
Oto+70°C
-55to+125°C

Hermetic
Hermetic
Hermetic
Hermetic

-15V

+15V

OfFSET ADJUST

Figure 3. ADC-SHM Connection Diagram

Receptable for PC board mounting can be ordered
through AMP Incorporated, #3-331272-8 (Component
Lead Socket), 32 required.

2-20

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADC-508
12-Bit, Ultra-Fast, Low-Power
AID Converter
FEATURES
• 12-8it resolution
700 Nanosecond maximum conversion time
• Low-power,1.6W
• Small initial errors
• Three-state output buffers
-55°C to +125°C operation
• Small 32-pin DIP
No missing codes

GENERAL DESCRIPTION
DATEL's ADC-508 is a 12-bit, analog-to-digital converter
which has small initial errors and can also provide
adjustment capability for system errors. The ADC-508 has a
maximum conversion time of 700 nanoseconds. Figure 1 is
a simplified block diagram.
Manufactured using thick-film and thin-film hybrid
technology, this converter's remarkable performance is
based upon a digitally-corrected subranging architecture.
DATEL further enhances this technology by using a
proprietary custom chip and unique laser trimming
schemes. The ADC-508 is packaged in a 32-pin ceramic
DIP and consumes 1.6 watts.

~11~8~~X-j ~
I

10.,90 (4,9) MAX

IL

1t

. .'" "".. ~,". ~'";-' T,J_ ~~'='~:::'''"'
Be;r;~M al.'g:f~;o:, ~o '
I

I
11

I

NOTE: Pins have 0.025 inch.

± 0.01

stand off from case

32

I..

'-:-------:-' --0

I~

0900

r--(22.9)

..

0.100
(2.5)

INPUT/OUTPUT
CONNECTIONS
PIN
1
2
3
4
5

6

,.g:~f €,"!I---I~-j-+------;

Of"FSET

"DJUSl

....
BiN

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29

30
31
32

For Immediate Assistance, Dial 1-800-233-2765

SIGNAL NAME

+1DV REF
RANGE
INPUT HIGH
INPUT LOW
OFFSET ADJUST
NO CONNECTION
COMPBIN
OVERFLOW
ENABLE (6-12)
ENABLE (1·5. OF)
+5V
DIGITAL GROUND
+15V
-15V
-5V
ANALOG GROUND
SIHCONTROL
EOC
BIT 12 (LSB)
BIT 11
BIT 10
BIT9
BIT 8
BIT7
BIT6
BIT 5
BIT4
BIT3
BIT2
BIT 1 (MSB)
START CONVERT
GAIN ADJUST

2-21

Another novel feature of the ADC-508 is the provision of a Sampie/Hold control pin for applications where a sample-hold is used in
conjunction with the ADC-508. This feature allows the sample-andhold device to go back into the sample mode a minimum of 30
nanoseconds before the conversion is complete, improving the
overall conversion rate of the system.
Power required is ± 15V de and ± 5V dc. Models are available in the.
commerc;ial O·C to + 70°C, and military - 55°C to + 125°C operating temperature range. Typical applications include spectrum, transient, vibration, and waveform analysis. These devices are also
ideally suited for radar, sonar and video digitization, medical instrumentation, and high-speed data acquisition systems. For information

ABSOLUTE MAXIMUM RATINGS
MINIMUM
Parameters
+ ISV Supply (Pin 13) ...
0
-ISV Supply (Pin 14) ...
0
+ SV Supply (Pin 11) .... -0.5
- SV Supply (Pin 1S) .... +0.5
DI~itallnputs

Pins7,9,10&31) ...
Analog Input (Pin 3) ...•
Lead temp. (10 sec) ...•

MAXIMUM
+18
-18
+7
-7

UNITS
Volts de
Volts de
Volts de
Volts de

+6
+15
300

Volts de
Volts de
·C

-0.3
-15

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V de
and ±5V de unless otherwise specified.
DESCRIPTION

MIN.

TYP.

--

Oto +10
o to +20
±10

-

-

MAX.

UNITS

INPUTS
Input VOlta~e Range ...
(See Tec . Note 9)

Logic Levels: Logic 1 ., 2.0
Logic 0 ..
Logic Loading: Logic 1 •
LogicO.

-

-

0.8
2.5
-100

Volts
Volts
Volts
Volts
Volts

de
de
de
de
de

,.A
,.A

OUTPUTS
Output Coding:
(Pin 7 High) ........
(Pln7Low) ........
Logic Levels: logic 1 .. 2.4
Logic 0 .. Logic Loading: Logic 1 .
LogicO. Internal Reference:
Voltage, +2S·C •••• 9.98
Drift .............. External Current ..•.

-

straight binary/offset binary
complementary binary
complementary offset binary
Volts de
0.4
Volts de
-160
,.A
6.4
mA
-

-

2-22

MIN.

Unipolar Zero Error,
+2S·C .............
Unipolar Zero Tempeo ..
Bipolar Zero Error,
+25·C .............
Bipolar Zero Tempeo ...
Bipolar Offset Error,
+2S·C .............
Bipolar Offset Error
Tempeo ............
GalnError, +2S·C .....
Gain Tempeo ..........
Conversion Times:
ADC-508
+25·C ...........
O·C to + 70·C .....
Harm. Distort. (-FS) ill
+25'C
Oto +70 'C
No Missing Codes
(12 Bits): ............

-

TYP.

MAX.

UNITS

±1
±13

±3
±25

LSB
ppm/·C

±1
±13

±3
±25

LSB
ppm/·C

-

±2

±5

LSB

-

±17.5
±2
±17.5

±35
±5
±35

ppm/·C
LSB
ppm/·C

700
740

nsee.
nsee.

--

-

-

·72 dB min.
·72 dB min.
Over the Operating Temp. Range

POWER SUPPLY REQUIREMENTS
Power Supply Range:
+ ISV dc Supply .....
-1SV dc SUP~IY .....
+SVdcSuppy ......
- SV dc Supply ......
Power Supply Current:
+ ISV Supply ........
-1SV SUP~IY ........
+SVSuppy· ........
-SVSupply .........
Power DIssipation •.....
Power Supply Rejection .

+14.25
":14.25
+4.75
-4.75

+15
-15
+5
-5

+15.75
-15.75
+5.25
-5.25

--

+23
-11
+55
-175
1.6

+30
-15
+90
-210
1.8
0.01

-

-

Volts
Volts
Volts
Volts

de
dc
de
de

mA
mA
mA
mA
Watts
%FSR/%V

PHYSICAUENVIRONMENTAL
Operating Temp. Range:
·C
-BMC .............
0
+70
Storage Temperature
·C
+150
Range .............. -65
Package Type ......... 32·pin hermetic sealed, ceramic DIP
Pins ................. 0.010 x 0.018 inch Kovar
Weight ............... 0.42 ounces (12) grams

-

• +5V power usage at lITL logic loading per data output bit.
(j) With DATEL sample and hold model number SHM-45.

-

10.0
±5

-

10.02
±30
1.5

Volts de
ppm/·C
mA

PERFORMANCE
Integral Nonlinearity:
+2SoC ............
O·Cto +70·C ....•.
IntegraiNonlin. Tempco.
Differential Nonlinearity
+2S·C ............
O·Cto + 7O·C ......
Differential Nonlin.
Tempeo ..•........
Full-Scale Absol.
Accuracy:
+2SoC ............
O·C to + 7O·C ......

PERFORMANCE (cont.)
DESCRIPTION

--

±3

-

±0.0125 %FSR ± 11z LSB
±0.0125 oAlFSR ± 11z LSB
ppm/·C
±8

-

-

±0.0125 %FSR ±V2 LSB
±0.0125 %FSR ±V2 LSB

-

-

±2.5

ppm/·C

-

±3
±4

±8
±14

LSB
LSB

-

TECHNICAL NOTES
1 . Use external potentiometers to remove system errors or the
small initial errors to zero. Use a 20K trimming potentiometer for
gain adjuslment with the wiper tied to pin 32 (ground pin 32 for
operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zer%ffset adjustment (leave
pin 5 open for operation without adjustment).
2. Rated performance requires using good high frequency circuit
board layout techniques. The analog and digital grounds are not
connected internally. Avoid ground-related problems by connect
ing the digital and analog grounds to one point, the ground plane
beneath the converter. Due to the inductance and resistance of
the power supply return paths, return the analog and digital
ground separately to the power supplies.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADC·508
3. Bypass all the analog and digital supplies and the + 1OV reference (pin 1) to ground with a 4.7 /!F, 25V tantalum electrolytic capacitor in parallel with a 0.1 /!F ceramic capacitor. Bypass the
+ 1OV reference (pin 1) to analog ground (pin 16). The -5V dc
supply is treated as an analog supply and analog ground (pin 16)
should be treated as its return path for decoupling purposes.
4. Obtain straight binary/offset binary output coding by tying COMP
BIN (pin 7) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementary binary
or complementary offset binary output coding, tie the COMP BIN
pin to ground. The COMP BIN signal is compatible to CMOS/
TTL logic levels for those users desiring logic control of this function.
5. An overflow signal, pin 8, indicates when analog input signals are
below or above the desired full-scale range. To overflow pin also
has a three-state output and is enabled by pin 10 (Enable bits 1-5
&O.F.).

8. Over temperature, input capacitance is 50 pF maximum and input impdeance is 1. 75K minimum (2.5K typical) for unipolar and
3.75K minimum (5K typical) for bipolar. These values are guaranteed by design.
9. Requirements for ±2.5V inputs can be satisfied using DATEL's
AM-1435 amplifier in front of the SHM-45/ADC-508 configuration,
shown in Figure 3, at the appropriate gain. The SHM-45's gain of
2 mode allows 0 to +5V or ±5V input ranges.

TIMING
Figure 2 shows the relationship between the various input signals.
The timing cited applies over the operating temperature range and
over the operating power supply range. These times are guaranteed by design.

TABLE 2. INPUT CONNECTIONS
INPUT VOLTAGE RANGE

INPUT PIN

Oto +10Vdc

3

3

010 +20Vdc

3

16

±10V de

3

1

6. The Sample/Hold control Signal, pin 17, goes low following the
rising edge of START COOVERT pulse and high 30 nanoseconds minimum before EOC goes low. This indicates that the
converter can accept a new analog input.

CONNECT PIN 2 (RANGE) TO PIN:

TABLE 3. ZERO AND GAIN ADJUST
7. The drive requirements of the ADC-508 may be satisfied with a
wide-bandwidth, low output impeance input source. Applications
of these converters that require the use of a sample-hold may be
satisfied by using DATEL's model SHM-45. Using this device
with multiplexers or for test purposes will require an input buffer.

ANALOG

INPUT

ANALOG
INPUT

SETTLING
TIME

1

1

l

:

I
I
1

:

!

to +10V dc
to +20V dc
±10V dc

+1.22 mV
+2.44 mV
+2.44 mV

+9.9963Vdc
+19.9927Vdc
+9.9927Vdc

o
o

I

I
I
105nSec MINIMUM

JJI
~-I :
I'

:

I:

-1

:

1-:

'rt--::I

I

I

I

I

I

I

I

I

lt

I:
I I

roc ___;.I_-l

Ii-I

1

1

I

I

~I__,

I

CONVERSION TIME

20 nS!l1: MINIMUM

I

H-

NOTE NOT ORAWN TO SCALE

200nSec ACOutSITIONTIME

'.I

::

II

l00n$ecHOLDMODESETTUNGTIME

I
I

:1 __________
i

(when used with SHM-45)

~,---+:------------------------------------------

i

1

I
~~

GAIN ADJUST
+FS -11/2 LSB

150nSec; - - - - , ! -________________________________________
I
--It - MINIMUM
__

START

;.-

ZERO ADJUST
+1/2 LSB

~
,
--------~,-------------------------------------------

I
CONVERT

FSR

3S nSec MAXIMUM

10 nSec MINIMUM

----l

2SnSec MAXIMUM

1

Ii~·rl--------------------------------~I

:,

1------------OUTPUT DATA

:.:;,.S: - - - - - - - - 1·1

DATAN-l VALID

10nSec.
MAXIMUM

ENABLED OATA N·1 VALID
(BITS6-12j

10nSae.
MAXIMUM

f-1
1
1
1

-j J---

M)@(l

ENABLED DATA N-1 VALID

(BITS 1-5.0F)

30nSe<:
MINIMUM

25n58(:.

MINIMUM

OATANVALJD

~LEOOATAN
VALID

~LEDDATAN
VALID

'NVALIO DATA

[8]

Figure 2. ADC-508 and SHM-45 Timing Diagram

For Immediate ASSistance, Dial 1-800-233-2765

2-23

ADC·S08
CALIBRATION PROCEDURE

flickers equally between 0000 00000000 and 0000 0000 0001
with the COMP BIN (pin 7) tied high or between 1111 1111
1111 and111111111110withtheCOMPBINtiedlow.

Removal of system errors or the small initial errors is accomplished
as follows:

3. Full-Scale Adjustment - Set the output of the voltage reference
used in step 2 to the value shown in Table 3. Adjust the gain
trimming potentiometer so that the output code flickers equally
between 1111 1111 1110 and 1111 1111 1111 for COMP BIN
(pin 7) tied high or between 0000 0000 0001 and 0000 0000
0000 for COMP BIN tied low.

1. Connect the converter per Figure 3 and Table 2 for the appropriate full-scale range (FSR). Apply a pulse of 50 nanoseconds
minimum to the START CONVERT input (pin 31) at a rate of
500 KHz. This rate chosen to reduce flicker if LED's are used
on the outputs for calibration purposes.

4. To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed in
Table 4.

2. Zero Adjustments - Apply a precision voltage reference source
between the analog input (pin 3) and ground (pin 16). Adjust
the output of the reference source per Table 3. For unipolar,
adjust the zero trimming potentiometer so that the output code

TABLE 4. OUTPUT CODING
STRAIGHT

UNIPOLAR

INPUT RANGES, V de

SCALE
+FS -1 LSB
7/8 FS
314 FS
112 FS
1/4 FS
118 FS
1 LSB
0

oto +10V oto +20V
+9.9976V
+8.7500V
+7.5000V
+5.0000V
2.5000V
1.2500V
0.0024V
O.OOOOV

BIN

COMP

BINARY

OUTPUT CODING

MSB
LSB
+19.9951V 1111 1111 1111
+17.500V 1110 0000 0000
+15.000V 1100 0000 0000
+10.000V 1000 0000 0000
+5.0000V 0100 0000 0000
+2.5000V 0010 0000 0000
+0.0049V 000000000001
O.OOOOV 0000 0000 0000
OFF

BINARY

INPUT RANGE BIPOLAR

LSB
MSB
0000 0000 0000
0001 1111 1111
00111111 1111
0111 1111 1111
1011 1111 1111
1101 1111 1111
111111111110
111111111111
CO~1P

OFF

±10Vde
+9.9951V
+7.5000V
+5.0000V
O.OOOOV
-5.0000V
-7.5000V
-9.9951V
-10.000V

SCALE
+FS-1 LSB
+3/4 FS
+1/2 FS
0
-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

BIN

+15V de

Oto +10V

ADC-508

SlHCONTROL

ORDERING INFORMATION
MODEL NO.

OPERATING
TEMP. RANGE

SEAL

AOC-508BMC
ADC-508BMM

0 to +70 °C
-55 to +125 °C

Hermetic
Hermetic

·15V

.15V
OFFSET ADJUST

Figure 3. ADC-SHM Connection Diagram

Receptable for PC board mounting can be ordered
through AMP Incorporated, #3-331272-8 (Component
Lead Socket), 32 required.

2-24

DATEL, Inc. 11 Cabot BOUlevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADC-511
12-Bit, High-Speed,
Low-Power AID Converter
PlMIlil pm

m mmp

FEATURES
• 12-Bit resolution
• 1.0 Microsecond maximum conversion time
• Low-power, 925 milliwatts
• Three-state, output buffers
• Functionally complete
• Small 24-pin DIP
• No missing codes

GENERAL DESCRIPTION

INPUT/OUTPUT CONNECTIONS
PIN FUNCTION

DATEL's ADC-511 uses an advanced design to provide a highspeed, functionally complete 12-bit AID converter in a small
24-pin DIP. The ADC-511 delivers a conversion speed of 1 microsecond while consuming only 925 milliwatts of power.

1
2
3
4
5
6
7
8
9
10
11
12

Manufactured using thin- and thick-film hybrid technology, the
ADC-511 's exclusive performance is based upon a digitallycorrected subranging architecture. DATEL further enhances
this technology by using a proprietary custom chip and unique
laser trimming schemes.
Functionally complete, the ADC-511 contains an internal clock,
three-state outputs and an internal reference.

BIT 12 OUT (LSB)
BIT 11 OUT
BIT 100UT
BIT 9 OUT
BIT 8 OUT
BIT 7 OUT
BIT 6 OUT
BIT 5 OUT
BIT40UT
BIT30UT
BIT20UT
BIT 1 OUT (MSB)

PIN

FUNCTION

13
14
15
16
17
18
19
20
21
22
23
24

+5V
DIGITAL GROUND
EOC
START CONVERT
ENABLE (1 -12)
COMPBIN
ANALOG INPUT
BIPOLAR
+10VREF
+15V
ANALOG GROUND
-15V

+10VRE 2 1 i 1 - - - o - - - - - - - 1 - j f - - - - - l

OIGITAL
CORRECTION
LOGIC

COMP.
BIIiI
START
CONY.

EOC
22
+5V

OIG.GNO.

For Immediate Assistance, Dial 1-800-233-2765

+15V

ANAGNO.

·15V

2-25

ADC-511
ABSOLUTE MAXIMUM RATINGS
PARAMETERS

LIMITS

UNITS

PERFORMANCE

+15V Supply (Pin 22)
-15V Supply (Pin 24)
+5V Supply(Pin 13)

o to +18
Oto -18
-0.5 to +7

Voltsdc
Volts dc
Volts dc

-0.3 to +7

Volts dc

-25 to +25
300

Voltsdc
° C max.

Bipolar Zero Error ill
Bipolar Zero Tempco
Bipolar onset Error ill
Bipolar Offsat Tempco
Gain Error ill
Gain Error Tempco
Conversion Time
+25°C
0- °C to +70 °C
-55°C to +125 °C
No missing codes
(For 12 binary bits)

Digital inputs
(Pins 16, 17, and 18)
Analog input
Lead temp. (10 sec.)

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V dc
and ±5V dc unless otherwise specified.

INPUTS
Analog Signal Range
(See Table 5 also)
Input Impedance
Resistance
Capacitance
Logic Levels:
Logic 1
Logic 0
Logic Loading:
Logic 1
Logic 0

MIN.

TYP.

-

Oto +10
±5

2

2.5

-

-

MAX.;

UNITS

-

Volts
Volts

-

KOhms
pF

50

-

0.8

-

Volts
Volts

-

-

-

2.5
-100

~
~

12

-

-

Bits

2.4

-

0.4

Volts
Volts

rnA

2.0

-

MIN.

TYP.

MAX.

UNITS

-

±1
±2
±2
±17.5
±2
±17.5

±3
±5
±4
±35
±4
±35

LSB
ppmfOC
LSB
ppml°C
LSB
ppm/oC

-

-

-

-

1.0 IlSec.
1.0 - ~ec.
1.15 IlSec.

Guaranteed over operating temp. range

POWER REQUIREMENTS
Power Supply Range
+15V dc Supply
-15V dc Supply
+5V dc Supply
Supply Current
+15V Supply
-15V Supply
+5V Supply ®
Power Dissipation
Supply Rejection

14.25
14.25
+4.75

+15
-15
+5

+15.75
-15.75
+5.25

Voltsdc
Volts dc
Volts dc

-

+20
-20
+65
925

+29
-28
+79
1250
-±0.01

rnA
rnA
rnA
mW
%FSR/%V

-

-

+70
+125

°C
°C

-

+150

°C

-

PHYSICAUENVIRONMENTAL
Operating Temperature
Range
-MCModels
0
-MMModels
-55
Storage Temperature
Range
-65
Package Type
Weight

24-pin hermetically sealed ceramic DIP
0.42(12)oz.(gram)

OUTPUTS
Resolution
Logic Levels:
Logic 1
Logic 0
Logic Loading:
Logic 1
Logic 0
Internal Reference:
+Voltage, +25° C
Tempco
External current

-

-

-

-

-

-160
6.4

9.98

10
±5

10.02
±30
1.5

-

-

Output Coding:

-

I]) Specifications cited are at +25

ae.

See Techical Note 1 for further information.

® + 5V power usage at 1 TIL logic loading per data output bit.

~

Voltsdc
ppm/oC

rnA

Straight binary/Offsat binary
Complementary binary
Complementary onset binary

PERFORMANCE
Integral Nonlinearity
+25°C
o °C to +70 °C
-55°C to +125 °C
Differential Nonlinearity
+25°C
o °C to +70 °C
-55°C to + 125 °C
Full·Scale Absolute
Accuracy
+25°C
o °C to +70 °C
-55°C to +125 °C
Unipolar Zero Error ill
Unipolar ZeIO Tempco

2-26

-

±1/2
±1/2

±3/4
±3/4

-

-

±1.5

-

±1/2
±1/2

±3/4
±3/4

-

-

-

±3
±4
±8
±1
±13

-

LSB
LSB
LSB

±1

LSB
LSB
LSB

±7
±13
±28
±3
±25

LSB
LSB
LSB
LSB
ppm/oC

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194rrEL (508) 339-3000rrLX 174388/FAX (508) 339-6356

ADC·511
TECHNICAL NOTES

CALIBRATION

1. Applications unaffected by endpoint errors or those that remove them through software will use the typical connections
shown in Figure 2. The optional external circuitry of Figure
4 removes system errors or helps adjust the small initial errors of the ADC-511 to zero. The external adjustment circuit has no affect on the throughput rate. Table 1 shows
how to select the input range.

1. The data outputs should be connected to LED's to observe
the resulting data values. Connect the converter per Figure
2, Figure 4, and Table 1 for the appropriate Full Scale
Range (FSR). Apply a pulse of 200 nanoseconds minimum
to the START CONVERT input (pin 16) at a rate of 250
KHz. This rate is chosen to reduce flicker if LED's are used
on the outputs for calibration purposes.

2. Rated performance requires using good high frequency circuit board layout techniques.
The analog and digital
grounds are connected internally. Avoid ground-related
problems by connecting the digital and analog grounds to
one point, the ground plane beneath the converter. This
prevents contamination of the analog ground by noisy digital
ground currents.

2. Zero Adjustments
Apply a precision voltage reference source between the amplifier's signal input and analog ground. Use a very lownoise signal source for accurate calibration.
Adjust the output of the reference source per Table 4. For
unipolar operation, adjust the zero trimming potentiometer
so that the output code flickers equally between 0000 0000
0000 and 0000 0000 0001 with the COMP BIN (pin 18) tied
high or between 1111 1111 1111 and 1111 1111 1110 with
pin 18 tied low.

3. Bypass the analog and digital supplies and the + 10V reference (pin 21) to ground with a 4.7."F, 25V tantalum electrolytic capacitor in parallel with a 0.1 ."F ceramic capacitor.
Bypass the + 1OV reference (pin 21) to analog ground (pin
23).

For bipolar operation, adjust the potentiometer such that the
code flickers equally between 1000 0000 0000 and 1000
0000 0001 with pin 18 tied high or between 0111 1111 1111
and 0111 1111 1110 with pin 18 tied low.

4. Obtain straight binary/offset binary output coding by tying
COMP BIN (pin 18) to +5V dc or leaving it open. The device has an internal pull-up resistor on this pin. To obtain
complementary binary or complementary offset binary output coding, tie pin 18 to ground. The complementary signal
is compatible to CMOSITTL logic levels for those users desiring logic control of this function.

3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 4. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111
1111.1110 and 1111 1111 1111 for pin 18 tied high or between 0000 0000 0001 and 0000 0000 0000 for pin 18 tied
low.

5. To obtain Three-State outputs, connect ENABLE (pin 17) to
a logic "0" (low). Otherwise, connect pin 17 to a logiC "1"
(high).

To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed
in Table 6.

TIMING
Figure 3 shows the relationship between the various input signals. The timing shown applies over the operating temperature
range and over the operating power supply range. These
times are guaranteed by design.

Table 1. Input Connections
INPUT RANGE

oto -10V dc
±5Vdc

OPTIONAL CALIBRATION
CIRCUIT (SEE AGUAE 4)

INPUT PIN
Pin 19
Pin 19

JUMPER THESE PINS:
Pin 20 to GROUND
Pin 20 to Pin 21

Table 4. Zero and Gain Adjust

~
s~~~ "----'...---1-"1-1_-,Ir-<>--(i:I

FSR
BITI (MSS)

Bin
BIT'
BIf4

"'H01TlCDrrlC"'OM"'Mm""""U ......"'I.._......J

ADC-511

I-~I

141
BIPOLAR
OPERATION

Figure 2. Typical Input Connections for the ADC-511
For Immediate Assistance, Dial 1-800-233-2765

BITS
Bin

o to +10V de
±5Vdc

ZERO ADJUST
+1/2 LSB

GAIN ADJUST
+FS· 1 1/2 LSB

+1.22mVdc
+1.22mVdc

+9.9963Vdc
+4.9963Vdc

BIT7
BITS
BITO
BI110

BIT'1
SrT12 (LSB)
EtlC'
EfiWR:E"(1-12)

Table 5. Input Ranges
(using external calibration)
INPUT RANGE

R1

R2

UNIT

o to +10V, +5V
o to +5V, ±2.5V
o to +2.5V, +1.25V

2
2
2

2
6
14

KOhms
KOhms
KOhms

2-27

Table 6. Output Coding
STRAIGHT BIN

UNIPOLAR

INPUT RANGES, V de

SCALE
+FS -1 LSB
7/8 FS
3/4 FS
112 FS
1/4 FS
118 FS
1 LSB
0

LSB
MSB
111111111111
111 0 0000 0000
1100 0000 0000
1000 0000 0000
010000000000
0010 0000 0000
000000000001
0000 0000 0000

Oto +10V
+9.9976V
+8.7500V
+7.5000V
+5.0000V
+2.5000V
+1.2500V
+0.0024V
O.OOOOV

COMP

BINARY

OUTPUT CODING

OFF

BINARY

INPUT RANGE BIPOLAR

MSB
LSB
0000 0000 0000
0001 1111 1111
0011 1111 1111
0111 1111 1111
1011 1111 1111
110111111111
111111111110
111111111111
COMP

OFF

±10V de
+4.9976V
+3.7500V
+2.5000V
O.OOOOV
-2.5000V
-3.7500V
-4.9976V
-5.0000V

SCALE
+FS -1 LSB
+3/4 FS
+1/2 FS
0
-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

BIN

Optional Calibration Circuit
R2*
ANALOG
INPUT

[ - - _ - - ;_ _ _ _ _ _ _ _ __

!

600

I L

NVERT
EOC

I

~..:;200"'-".c:.sec=min~

STARTeD

I

-l I--

~';:UT

IX!

ENABLE

~

+15V

nSec--l

min

To Pin 19
_ _ _ __

Conversion Time, max - J

--, F

20 nSecmin35

20 nSec max

nSec max

I--

1300 nSec min

I

----l

IXIXIXI

Data N-1 Valid

1-+-10n$ecmax

~

~

Data N Valid

--~DataNValid

10nSecmax

of ADC-511

DATA INVALID I
~

NOTE: NOT DRAWN TO SCALE

GAIN

ADJUST

Figure 3. ADC-511 Timing Diagram
5KU

ZERO/OFFSET
ADJUST

• See Table 5 for R1 and R2 values.

Figure 4. Optional Calibration Circuit
MECHANICAL DIMENSIONS
INCHES (MM)
1

I

0.800 MAXI
(20,3)

0.190 MAX

ORDERING INFORMATION

I ---,........:.:c..n{47<,9)

~

I

~

0.010 x 0.018

0.150 MIN.
(3,8)

KOVAR Pins

I

112

131-r
11
1.310 MAX.
1BOTTOM 1 SPACES
(33,3)
1 VIEW
1 AtO~100
(2,5)
11

I

241~

0.600
(15,2)

I

MODEL

TEMPERATURE
RANGE

ADC-511 MC
0 °C to +70 °C
ADC-511MM
-55°C to +125 °C
ADC-511/883B -55°C to +125 °C

SEAL
Hermetic
Hermetic
Hermetic

A receptacle for PC board mounting can be ordered
through AMP Incorporated, #3-331272-8 (Component
Lead Socket), 24 required.

NOTE; Pins have 0.025 Inch ±0.01
standoff from case.
t-IJTE; Pins have a 0.025 Inch, ±a.01
standoff from case.

2-28

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 0204S-1194ITEL (50S) 339-3000ITLX 17438S/FAX (50S) 339-6356

ADC-520, ADC-521
12-Bit, Ultra-Fast,
Low-Power AID Converters
FEATURES

•
•
•
•

12-Bit resolution
800 Nanosecond maximum conversion time
Pin-programmable input ranges
Internal high impedance buffer
Low 1.6 watts power consumption
Three-state output buffers
Small 32-pin DIP
No missing codes

GENERAL DESCRIPTION

MECHANICAL DIMENSIONS
INCHES (mm)

DATEL's ADC-520 and ADC-521 are 12-bit analog-to-digital
converters with conversion speeds of up to 800
nanoseconds. Both models are identical except for the
analog input voltage ranges.

I

1.101 MAX

I

--(2B.0)-~

0.190 MAX

~

=-=-.l

~0.010 X O.D1B

The performance of these converters is based upon a
digitally-correcting subranging architecture. DATEL further
enhances this technology by using unique laser trimming
schemes. The ADC-520 and ADC-521 are packaged in a
32-pin ceramic DIP and consume 1.6 watts.

KOVAR Pins

17

BOTTOM
VIEW

TECHNICAL NOTES

0.150 MIN.
(3,B)

T)
15
SPACES

1.712 MAX.
(43,S)

AT 0.100
(2,5)

1. Use external potentiometers to remove system errors or
the small initial errors to zero. Use a 20K ohm trimming
potentiometer for gain adjjustment with the wirper tied to
pin 27 (ground pin 27 for operation without adjustments).
Use a 20K ohm trimming potentiometer with the wiper
tied to pin 19 for zer%ffset adjustment (leave pin 19
open for operation without adjustment).

'-------' -hL
0900

NOTE: Pins have a 0.025 inch, ±0.01
stand-off from case.

(22,9)

1/0 CONNECTIONS
BUFl'EA
INPUT

PIN

BUFFER

FUNCTION

PIN

FUNCTION

BIT 12 OUT (LSB)
BIT 11 OUT
BIT 10 OUT
BIT90UT
BIT80UT
BIT 7 OUT
BIT 6 OUT
BIT 5 OUT
BIT 4 OUT
BIT30UT
BIT 2 OUT
BIT lOUT (MSB)
BIT lOUT (MSB)
ENABLE
DIGITAL GROUND
+5V

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

COMPBIN
REF. OUT (+ 10V de)
OFFSET ADJUST
EOC
START CONVERT
RANGE 1
RANGE 2
INPUT HIGH
BIPOLAR OFFSET
INPUT LOW
GAIN ADJUST
+15V
BUFFER OUTPUT
BUFFER INPUT
·15V
ANALOG GROUND

OUTPUT

~~~ST €J-~-++-+------,

,--1----illl BIT lOUT (MS'li)

1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16

For Immediate Assistance, Dial 1-800-233-2765

2-29

ADC·S20, ADC·521
2. Rated performance requires using good high frequency circuit
board layout techniques. The analog and digital grounds are not
connected internally. Avoid ground-related problems by connecting the digital and analog grounds to one pOint, the ground plane
beneath the converter. Due to the inductance and resistance of
the power supply return paths, return the analog and digital
ground separately to the power supplies.
3. Bypass all the analog and digital supplies and the + 1OV reference (pin 18) to ground with a 4.7 I-lF, 25V tantalum electrolytic
capacitor in parallel with a O.II-lF ceramic capacitor. Bypass the
+ 1OV reference (pin 18) to analog ground (pin 32) the same way.
4. QQ.tain straight binary/offset binary output coding by tying CaMP
BIN (pin 7) to +5V de or leaving it open. The device has an internal pull-up resistor on this pin. To obtain complementarv binary
or complementary offset binary output coding, tie the CaMP BIN
pin to ground. In the bipolar mode, two's complement QUlputcoding.is available by using the MSB output (pin 13). The CaMP
BIN signal is compatible to CMOSmL logic levels for those users desiring logic control of this function.
5. Enable the three-state outputs by connecting ENABL~n 14) to
a logic 0 (low). The ENABLE signal has no effect on MSB (pin
13) which is not a three-state output and therefore is not controlled by the enable pin.
6. Satisfy high-speed drive requirements of the ADC-520, -521 with
a wide-bandwidth, low output impedance input source such as
DATEL's SHM-45 sample-and-hold or AM-1435 amplifier.
7. The ADC-520,-521 provide an internal buffer amplifier. Using
this buffer provides an inut impedance of 1012 ohms, allowing
the AID to be driven from a high impedance source or directly
from an analog multiplexer. When using the input buffer, allow a
delay equal to its settling time between input level change and
the negative going edge of the START CONVERT pulse. If the
buffer is not required, its input should be connected to analog
ground to avoid introducing noise into the converter.

(ADC-521)

2-30

-

UNITS

1.75
3.75

2.5
5.0

-

-

KOhms
KOhms

2.0
1.6

2.5
2.0

-

-

KOhms
KOhms

-

-

50

pi

-

Voltsdc
Ohms
nSec.

+10

-

-

1012
700

-

1000

DIGITAL INPUTS
Logic
Logic
Logic
Logic

"I"
"0"
Loading "1"
Loading "0"

2.0

-

-

-

-

-

-

0.8
5
-200

12
2.4

-

Volts dc
Voltsdc
J.lA
J.lA

OUTPUTS
Resolution
Logic "1"
Logic "0"
Logic Loading "1 "
Logic Loading "0"
Internal Reference
Voltage, +25 "C
Drift
External Current

-

-

-

-

9.98
-

10.0
±5

-

-

Output Coding
(Pin 17HI)
(Pin 17 Low)

-

0.4
-160
6.4
10.02
±30
1.5

Bits
Voltsdc
Voltsdc
J.lA

rnA
Volts dc
ppm! "C

rnA

Straight binary/offset binary
Complementary binary
Complementary offset binary
Two's complement
Complementary two's complement

Volts dc
Voltsdc
Volts dc

Integral Non-linearity
+25"C
o "Cto +70 "C

-

-

±1/2
±1/2

LSB
LSB

-0.3 to +6.0
-15to +15
300

Volts dc
Volts dc

Integral Non-Lin.
Tempco

-

±3

±8

ppm!°C

Differential
Non-Linearity
+25"C
o OCto +70"C

-

-

±1/2
±1/2

LSB
LSB

Differential Non-Lin.
Tempco

-

-

±2.5

ppm!"C

UNITS

Full Scale Absolute
Accuracy
+25"C
O"C to +70"C

-

±3
±4

±8
±14

LSB
LSB

Unipolar Operation
Zero Error (j)
Zero Tempco
Zero Adjust Range

-

±1
±13

±5
±25

LSB
ppm/"C
LSB

MIN.

-

MAX.

Oto+18
Oto-18
-0.5 to +7.0

PERFORMANCE

"C

The following specifications apply over the operating temperature range and at ±15V dc and +5V dc unless otherwise specified.

-

Buffer Amplifier
Input Voltage
Input Impedance
Settling Time

TYP.

UNITS

FUNCTIONAL SPECIFICATIONS

Input Range
(ADC-520)

Input Capacitance

MIN.

LIMITS

PARAMETERS

ANALOG INPUTS

(ADC-520)
Unipolar:
Bipolar:
(ADC-521)
Unipolar:
Bipolar:

(Note 4)
(Note 4)

ABSOLUTE MAXIMUM RATINGS

+15V Supply (Pin 28)
-15V Supply (Pin 31)
+5V Supply (Pin 16)
Digital Inputs
(Pins 14, 17, 21)
Analog Input (Pin 24)
Lead Temp.(10 Sec.)

Input Impedance

TYP.

MAX.

±10

Oto-20

-

Volts
Volts
Volts
Volts

±2.5
Oto+5

-

Volts de
Volts dc

oto +10
oto +20

de
de
de
de

±5

-

-

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

ADC-S20, ADC-521
&

Bipolar Operation

Table 2b.
MIN.

TYP.

MAX.

UNITS

-

±1
±2

±5
±5

-

±2
±17.5

±5
±35

±5

-

-

LSB
ppm/°C
LSB
LSB
ppm/°C
LSB

-

±2
±17.5

±5
±35

LSB
ppm/°C

±5

-

-

LSB

-

-

800
850

nSec.
nSec.

Zero Error(j)
Zero Tempco
Zero Adjust Range
Offset Error (j)
Offset Tempco
Offset Adjust Range

-

±5

-

Gain Error (j)
Gain Tempco
Gain Error Adjust
Range
Conversion Times
+25°C
o OCto +70 °C

-

INPUT PIN

±2.5V de

Oto +5Vde

Power Supply Current
+15V dc Supply
-15V dc Supply
+5V de Supply'
Power Dissipation
Power Supply Rejection

BUFFER

WITH
BUFFER

Pin 24,22,23
Pin 24,22,23

Pin 30, tie 29 to 24
Pin 30, tie 29 to 24

:

Pin 25 to 18
Pin 25 to 26

I

l----250 n S

I

TIME

~
I

.------------------------

...fl.... I
N~ I
1r-_SO_",;.i'_'M_'N_'M_U_"_________________________
i I

STA~T!

:

I

Over the Operating Temperature
Range

e~

I

,

CONVERT

NOTE NOT DRAWN TO SCALE

--------';-------------------------------

l
S~~~I~~G "1

-72 dB min.
-72 dB min.
-65 dB min.

CONNECT

ANALOG

INPUT~

:

...j

I

: :

I

I_I

!

mG

POWER REQUIREMENTS
Power Supply Range
+15V dc Supply
-15V de Supply
+5V de Supply

W/O

INPUT
RANGE

ANALOG

Harm. Distort. (-FS) ®
+25°C
o to +70 °C
-55 to +125 °C
No Missing Codes
(12 Bits)

ADC-521 Input Connections

!

!-

CONVERSK>N TIME MAX

F

-------j

L

30 nSec MAXIMUM

--I --I l--25 nSec. MINIMUM

+14.25
-14.25
+4.75

+15.0
-15.0
+5.0

+15.75
-15.75
+5.25

Voltsdc
Volts de
Voltsdc

-

+52
-36
+66
1.6

-

-

+65
-45
+70
1.9
0.01

mA
mA
mA
Watts
%FSR/%V

0

-

+70

°C

-65

-

+150

°C

r---350nSec MINIMUM

OUTPUT DATA

DATAN·>VAl'D

ENABlED DATA N·' VALID

~
lOnSe<:
MAXIMUM

DATANVALID

F

ENABLED DATA N

VALID

Figure 2. ADC-520, ADC-521 Timing Diagram

PHYSICAL/ENVIRONMENTAL
Operating Temp. Range
Storage Temperature
Range
Package Type
Pins
Weight

TIMING

32-Pin hermetic sealed, ceramic DIP
0.010 x 0.018 inch Kovar
0.42 ounces (12 grams)

• +5V power usage at 1 TTL logic loading per data output bit.
(j) Specifications cited are at +25 °C. See Technical Note 1 for further
information.
® With DATEL SHM-45, see Figure 3.

INPUT CONNECTIONS
Table 2a.
INPUT
RANGE
±10V de

o to +10V de
Oto +20Vde
Oto -20Vde

ADC-520 Input Connections

INPUT PIN
WITH
BUFFER
BUFFER

W/O

Pin 24
Pin 24
Pin 24
Pin 25

Pin 30, tie 29 to 24
Pin 30, tie 29 to 24
DO NOT USE
DO NOT USE

For Immediate Assistance, Dial 1-800-233-2765

CONNECT
Pin 18 to 25
Pin 24 to 25
Pin 26 to 25
Pin 18 to 24,
22 to 23 to 24

Figure 2 shows the relationship between the various input signals.
The timing cited applies over the operating temperature range and
over the operating power supply range. These times are guaranteed by design.

CALIBRATION PROCEDURE
1. Connect the converter per Figure 3 and Tables 2a and 2b for
the appropriate full-scale range (FSR). Apply a pulse of 50 nanoseconds minimum to the START CONVERT input (pin 21) at a
rate of 500 KHz. This rate reduces flicker if LED's are used on
the outputs for calibration purposes.
2. Zero Adjustments - Apply a precision voltage reference source
between the analog input and ground. Refer to Tables 2a and
2b for the correct input pin. Adjust the output of the reference
source per Table 3. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between
0000 0000 0000 and 0000 0000 0001 with the COMP BIN (pin
17) tied high (straight binary) or between 1111 1111 1111 and
1111 1111 1110 with the COMP BIN tied low (complementary
binary).
For bipolar operation, adjust the potentiometer such that the
code flickers eQually between 1000 0000 0000 and 1000 0000
0001 with COMP BIN (pin 17) tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with COMP BIN
(pin 17) tied low (complementary offset binary).

2-31

ADC·S20,ADC·S21
Two's complement and complementary two's complement requiresthe use of MSB (pin 13) versus MSB (pin 12) as given for
offset binary or complementary offset binary respectively.
3. Full-Scale Adjustment - Set the output of the voltage reference
used in step 2 to the value shown in Table 3. Adjust the gain
trimming potentiometer 50 that the output code flickers eoually
between 111111111110and 111111111111 forCOMPBIN
(pin 17) tied high or between 0000 0000 0001 and 0000 0000
0000 for COMP BIN tied low. Two's complement and ~Ie­
mentary two's complement respectively requires using MSB, pin
13.
4. To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed in
Tables 4 and 5.
Table 3.

Zero and Gain Adjust

FSR

ZERO ADJUST
+1/2 LSB

GAIN ADJUST
+FS -11/2 LSB

Oto +5V

+0.610mVdc
+1.22 mVdc
+2.44 mVdc
-2.44 mVdc
+2.44 mV dc
+0.610 mVdc

+4.9971Vdc
+9.9963Vdc
+19.9927V dc
-19.9927V dc
+9.9927V dc
+2.4982Vdc

oto +10V dc
Oto +20V dc
Oto -20Vdc
+10Vdc
+2.5Vdc

OFFSET ADJUST

Figure 3. ADC/SHM Connection Diagram

Table 4. Output Coding for Unipolar Operation
UNIPOLAR
SCALE

INPUT RANGES VOLTS de

o 10

010 .5V
+FS·1LSB
7/8 Fs
3I4FS
112FS
1/4FS
1/8FS
1 LSB
0

+4.9988V
+4.3750V
+3.7500V
+2.5000V
+1.2500V
+0.0024V
+0.0012V
O.OOOOV

OUTPUT CODING
STRAIGHT BINARYCOMP. BINARY
.10V 0 10 .20V MSB
LSB
LsB MSB

+9.9976V
+8.7500V
+7.5000V
+5.0000V
+2.5000V
+1.2500V
+0.0024V
O.OOOOV

+19.9951V
+17.500V
+15.000V
+10.000V
+5.0000V
+2.5000V
+0.0048V
O.OOOOV

111111111111
1110 0000 0000
1100 0000 0000
1000 0000 0000
0100 0000 0000
0010 0000 0000
0000 0000 0001
0000 0000 0000

0000 0000 0000
000111111111
0011 1111 1111
0111 1111 1111
1011 1111 1111
110111111111
111111111110
1111 1111 1111

Table 5. Output Coding for Bipolar Operation
BIPOLAR
SCALE
+FS·l LSB
+3/4 Fs
+1I2FS
0
-1I2FS
-314 FS
-FS +1 LSB
-FS

INPUT RANGES,VOLTS de

.t 2 .5V

.t 1OV

+2.4988V
+1.8750V
+1.2500V
O.OOOOV
-1.2500V
-1.8750V
-2.4988V
-2.5000V

+9.9951V
+7.5000V
+5.0000V
. O.OOOOV
-5.0000V
-7.5000V
-9.9951 V
-10.000V

OFFSET BINARY
MSB
LsB
111111111111
11100000 0000
1100 0000 0000
1000 0000 0000
0100 0000 0000
0010 0000 0000
0000 0000 0001
0000 0000 0000

OUTPUT CODING
COMP TWO'S COMP TWO'S COMPo
LSB
MSB
LsB
MSB
1000 0000 0000
1001 1111 1111
101111111111
111111111111
0011 1111 1111
0101 1111 1111
0111 1111 1110
0111 1111 1111

0111 11111111
0110 0000 0000
0100 0000 0000
0000 0000 0000
1100 0000 0000
101000000000
1000 0000 0001
1000 0000 0000

ORDERING INFORMATION
MODEL NO.

OPERATING
TEMP. RANGE

ADC-520MC
ADC-521MC

Oto +70 °C
oto +70 °C

Order PC board mounting receptacle
through AMP Inc. part #3-331272-8
(Component Lead Socket), 32
required.

2-32

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388JFAX (508) 339-6356

ADC-530
12-Bit, Ultra-fast, Low-Power
AID Converter
FEATURES
•
•
•
•
•
•
•
•

12-Bit resolution
350 Nanoseconds maximum conversion time
Low-power,2.1W
Small initial errors
Three-state output buffers
-55 to +125 °C operation
Small 32-pin DIP
No missing codes

INPUT/OUTPUT CONNECTIONS

GENERAL DESCRIPTION
PIN

DATEL's ADC-530 reflects the ultimate in state-of-the-art analog signal conversion technology. The ADC-530 boasts a conversion speed of 350 nanoseconds, along with a low-power
consumption of 2.1 watts.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

DATEL's ADC-530 is a 12-bit analog-to-digital converter which
has small initial errors and can also provide adjustment capability for system errors. The ADC-530 has a maximum conversion time of 350 nanoseconds.
Manufactured using thick-film and thin-film hybrid technology,
this converter's remarkable performance is based upon a digitally-corrected subranging architecture. DATEL further enhances this technology by using a proprietary custom chip and
unique laser trimming schemes. The ADC-530 is packaged in
a 32-pin ceramic DIP.

SIGNAL NAME

+10VREF.OUT
RANGE
INPUT HIGH
INPUT LOW
OFFSET ADJUST
DO NOT CONNECT
COMPBIN
OVERFLOW
ENABLE (BITS 7-12)
ENABLE (BITS 1-6) & OVERFLOW
+5V
DIGITAL GROUND
+15V
-15V
NO CONNECTION
ANALOG GROUND

PIN

SIGNA NAME

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

SIR CONTROL
EOC
BIT 12 OUT (LSB)
BIT11 OUT
BIT100UT
BIT 9 OUT
BIT 8 OUT
BIT 7 OUT
BIT60UT
BIT50UT
BIT40UT
BIT30UT
BIT20UT
BIT lOUT (MSB)
START CONVERT
GAIN ADJUST

GAIN
ADJUST
+10VAEF

321--==---++-------,

10 ENABLE BITS 1-5
& OVERFLOW

11---::.=---++-----1

30 BIT 1 (MSB)

29 BIT 2

OFFSET
ADJUST

5

RANGE

2

INPUT HI
INPUT LOW

28 BIT 3
27 BIT 4
26 BIT 5
25 BIT 6
24 BIT 7

3 I"""",~+-"""'-f

4

23 BIT 8

22 BIT 9
21 BIT10

COMPBIN

7

~~~=i

31

EOC 18

SJH CONTROL

17

2081T11

19 BIT 12 (LSB)

LOGIC
CONTROLI----------=_i
AND
TIMING

~=============~...!J

15
NO
CONNECTION

For Immediate Assistance, Dial 1-800-233-2765

DO NOT
CONNECT

9 ENABLE BITS 6-12
8 OVERFLOW

11

12

13

16

14

+5V

OIG.GNO.

+15V

ANA. GND.

-15V

2-33

ADC-530
All digital inputs and three-state outputs are TTL- and CMOScompatible. Output coding can be in straight binary/offset binary or complementary binary/complementary offset binary by
using the COMP BIN pin. An overflow pin indicates when inputs are below or above the normal full-scale range.
A novel feature of the ADC-530 is the provision of a Sample/
ROld control pin for applications where a sample-hold is used
in conjunction with the ADC-530. This feature allows the sample-and-hold device to go back into the sample mode a minimum of 30 nanoseconds before the conversion is complete,
improving the overall conversion rate of the system.

ABSOLUTE MAXIMUM RATINGS

o to +18V dc
oto -18V dc

+15V Supply (Pin 13)
-15V Supply (Pin 14)
+5Y Supply (Pin 11)

-0.5 to +7V dc

Digital Inputs
(Pins 7,9,10, & 31)
Analog Input (Pin 3)
Lead temperature (10 Sec.)

-0.3 to +6V dc
-15 to +15V dc
300 DC max.

PERFORMANCE
Full-Scale Abs. Accuracy
+25 aC
Oto +70 ac
-55 to +125 ac
Unipolar Zero Error
+25 aC
Unipolar Zero Tempco
Bipolar Zero Error
+25 aC
Bipolar Zero Tempco
Bipolar Offset Error
+25 ac
Bipolar Offset Error
Tempco
Gain Error, +25 ac
Gain Tempco
Conversion Times
+25 ac
oto +70 ac
-55 10+ 125 ac
No Missing Codes (12 Bits)

MIN.

TYP.

MAX.

UNITS

-

±0.1
±D.13
±D.2

±D.25
±D.32
±0.5

%FSR
%FSR
%FSR

-

±D.05
±13

±D.13
±25

%FSR
ppm/ ac

-

-

±D.05
±13

±D.13
±25

%FSR
ppm/ac

-

±D.l

±D.2

%FSR

±35
±D.17
±35

ppm/ac
%FSR
ppm/ac

-

-

±17.5
±0.08
±17.5

+14.25
-14.25
+4.75

+15
-15
+5

+15.75
-15.75
+5.25

Vdc
Vdc
Vdc

-

+60
-30
+150
2.1

+70
-40
+180
2.5
0.01

rnA
rnA
rnA

-

nSec.
350
400
nSec.
400
nSec.
Over the operating temp. range

-

. POWER SUPPLY REQUIREMENTS

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V dc
and +5V power supply voltages unless otherwise specified.

Power Supply Range
+15V dc Supply
-15V dc Supply
+5V dc Supply
Power Supply Current
+15V Supply
-15VSupply
+5V Supply'
Power Dissipation
Power Supply Rejection

-

-

Watts
%FSRJ%V

PHYSICAUENVIRONMENTAL
INPUTS
Input Voltage Range
(See Tech Note 9)
Logic Levels
Logic 1
Logic 0
Logie Loading
Logic 1
Logic 0

MIN.

-

TYP.
Oto+l0
oto +20
±10

MAX.

-

-

-

0.8

Vdc
Vdc

-

-

-

2.5
-100

ItA
ItA

2.4

-

-

0.4

Vdc
Vdc

-

-

-160
6.4

I1A
rnA

9.98

10.0
±5

10.02
±30
1.5

Vdc
ppm/aC

2.0

-

UNIT
Vdc
Vdc
Vdc

OUTPUTS
Logie Levels
Logic 1
Logic 0
Logic Loading
Logic 1
Logic 0
Internal Reference
Voltage, +25 DC
Drift
External Current
Output Coding
(Pin 7 High)
(Pin 7 Low)

2-34

Oto+70 aC
-55 to+125 ac
-65 to +150 ac
32-pin hermetic, ceramic DIP
0.42 ounces (12 grams)

•+5V power usage at 1 TTL logic loading per data output bit

TECHNICAL NOTES

-

-

-

-

rnA

straight binary/offset binary
complementary binary
complementary offset binary

PERFORMANCE
Integral Nonlinearity
+25 aC
Oto+70 aC
-55 to+ 125 ac
Differential Nonlinearity
+25 ac
oto +70 ac
-55 to +125 ac

Operating Temperature
Range, Case
-MC
-MM
Storage Temp. Range
Package Type
Weight

-

-

±3/4
±314
±1.5

LSB
LSB
LSB

-

±3/4
±3/4
±1.5

LSB
LSB
LSB

-

±1/2

1. Use external potentiometers to remove system errors or the
small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 32 (ground
pin 32 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/
offset adjustment (leave pin 5 open for operation without adjustment).
2. Rated performance requires using good high frequency circuit board layout techniques.
The analog and digital
grounds are not connected internally. Avoid ground-related
problems by· connecting the digital and analog grounds to
one point, the ground plane beneath the converter. Due to
the inductance and resistance of the power supply return
paths, retun tAe analog and digital ground separately to the
power supplies.

3. Bypass all the analog and digital supplies and the +10V reference (pin 1) to ground with a 4.7 l1F, 25V tantalum electrolytic capacitor'in parallel with a 0.1 l1F ceramic capacitor.
Bypass the + 1OV reference· (pin 1) to analog ground (pin
16).

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

ADC-530
4. Obtain straight binary/offset binary output coding by tieing
CoMpSTIii (pin 7) to +5V dc or leaving it open. The device
has an internal pull-up resistor on this pin. To obtain complementary bin~.()i~omplementary offset bin~ry_().u!!>!Jt
coding tie the COMP BIN pin to ground. The COMP BIN
signal is compatible to CMOS/TTL logic levels for those users desiring logic control of this function.

CALIBRATION PROCEDURE

5. An overflow signal, pin 8, indicates when analog input signals are below or above the desired full-scale range. The
overflow pin also has a three-state output and is enabled by
pin 10 (ENABLE bits 1-5 & O.F.).

2. Zero Adjustments
Apply a precision voltage reference source between the analog input (pin 3) and ground (pin 16). Adjust the output of
the reference source per Table 3. For unipolar, adjust the
zero trimming potentiometer so that the output code flickers
equally between 0000 0000 0000 and 0000 0000 0001 with
the COMP BIN (pin 7) tied high or between 1111 1111 1111
and 111111111110 with pin 7 tied low.

6. The sample-and-hold (S/H) control signal, pin 17, goes low
following the rising edge of a start convert pulse and high 30
nanoseconds minimum before EOC goes low. This indicates that the converter can accept a new analog input.
7; The drive requirements of the ADC-530 may be satisfied
with a wide-bandwidth, low output impedance input source.
Applications of these converters that require the use of a
sample-and-hold may be satisfied by using DATEL's model
SHM-45 .. Using this device with multiplexers or for test purposes will require an input buffer.
8. Over temperature, input capacitance is 50 pF maximum and
input impedance is 1.75K minimum (2.5K typical) for a to
+10V and 3.75K minimum (5K typical) for a to +20V, ±10V.
These values are guaranteed by design.
9. Requirements for ±2.5V inputs can be satisfied using DATEL's AM-1435 amplifier in front of the SHM-45/ADC-530
configuration, shown in Figure 3, at the appropriate gain.
The SHM-45's gain of 2 mode allows a to +5V or ±5V input
ranges.

1. Connect the converter per Figure 3 and Table 2 for the appropriate full-scale range (FSR). Apply a pulse of 100 nanoseconds minimum to the START CONVERT input (pin 31)
at a rate of 500 KHz. This rate is chosen to reduce flicker if
LED's are used on the outputs for calibration purposes.

For bipolar operation, adjust the potentiometer such that the
code flickers equally between 1000 0000 0000 and 1000
0000 0001 with pin 7 tied high or between 0111 1111 1111
and011111111110withpin7tiedlow.
3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111
1111 1110 and 1111 1111 1111 for pin 7 tied high or between 0000 0000 0001 and 0000 0000 0000 for pin 7 tied
low.
4. To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed
in Table 4.

TIMING
Figure 2 shows the relationship between the various input signals. The timing cited applies over the operating temperature
range and over the operating power supply range. These
times are guaranteed by design.

Table 2. Input Connections

ANALOG
INPUT

,

ANAJ.pG INPUT SETTliNG TIME
100 nSec Min.

I

~~~HO~L~OM~O~OE~S=ETIL=='~~'=OO~"S~~~M~,"-------

,

START
CONVERT

,__

~

: -.! I I~
r;.rl

100nSacMln.

(RANGE) TO PIN:

a to +10V dc

3

3

Oto +20Vdc

3

16

±10V dc

3

1

I

-'
r

I

I

I

I

~ SJH ACQ. TIME 200 nSec.

I

I

I 1_

,

---I' '--,

1_ _

30 oSec Min.

Conversim1 Tinm Max.

, - - 20 nSec Min." 35 nSec Max.

DATA

INPUT PIN

--4---i ': li-'--'- - - - - - - - - - - - - - - - - - - - -

~~'T'~~~~~~---"
~: 10 nSec Min.•, 25 nSec MaK.

OUTPUT

CONNECT PIN 2

INPUT
VOLTAGE RANGE

-----1]- 35 nSec Max.

250nSecMin._1

......J1XIXI""""'-____....:O::;Ac::;TAc:,N•.:...'V::..:AL:::'O'--____...IXIXIXIXI"""'' ' '*'-' ---___

Table 3. Zero and Gain Adjust

DATA N VALID

FSR

---:=-lL_E"_""..::·~=i~T:::..~,c:..~-1_V._lid5--,O-"-S.-,.M:c-.-'.-=+j...,.,1~ABlEDDATANVALID
NOTE; NOT DRAWN TO SCALE

~ INVALID DATA

ZERO ADJUST

GAIN ADJUST

+1/2 LSB

+FS ·11/2 LSB

a to +10V dc

+1.22 mV

+909963V dc

Oto +20V dc

+2.44 mV

+ 19.9927V .dc

±10Vdc

+2.44 mV

+9.9927V dc

Figure 2. ADC-530 and SHM-45 Timing Diagram
For Immediate Assistance, Dial 1-800-233-2765

2-35

ADC·S30
Table 4. Output Coding
STRAIGHT

UNIPOLAR

INPUT RANGES, V de

SCALE
+FS -1 LSB
7/S FS
314 FS
112 FS
1/4 FS
1IS FS
1LSS
0

Oto +10V
+9.9976V
+S.7500V
+7.5000V
+5.0000V
+2.5000V
+1.2500V
+0.0024V
O.OOOOV

Oto +20V
+19.9951V
17.500V
15.000V
+10.000V
+5.0000V
+2.5000V
+0.0049V
O.OOOOV

BIN

CaMP

BINARY

INPUT RANGE BIPOLAR

OUTPUT CODING
MSB
LSB
111111111111
111000000000
1100 0000 0000
1000 0000 0000
0100 0000 0000
0010 0000 0000
0000 0000 0001
0000 0000 0000
OFF

BINARY

MSB
LSB
000000000000'
0001 1111 1111
0011 1111 1111
0111 1111 1111
1011 1111 1111
1101 1111 1111
1111 1111 1110
111111111111
CaMP

OFF

HOV de
+9.9951V
+7.5000V
+5.0000V
O.OOOOV
-5.0000V
-7.5000V
-9.9951V
-10.000V

SCALE' ,
+FS -1 LSB
+3/4 FS
+1/2 FS
0
-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

BIN

+15V

20K

ENABLE (BITS 6,'2)

GAIN ADJUST

-15V

ENABLE (BITS 1-5 &

Figure 3. ADC-530 Calibration Setup

Oto+10V
INPUT

+15V
RANGE

13

! - - -.....-'-jINPUTHIGH
SHM-45
12

HoLD

ADC-530

START CONVERT
COMPBIN

17
r -_ _ _-1

=."...--:-=-':-1

10

OVERFLOW)

ZERO/OFFSET
ADJUST

20K

SIii CONTROL
+'OVREF

30
29

BIT' (MSB)
BIT2
BIT 3
BIT 4
BIT 5

28
27
26

BITS

25

81T7
BIT 8
BIT9
SIT 10
81T11
BIT 12 (LSB)
OVERFLOW
EOC
DO NOT CONNECT
NO CONNECTION

24
23
22

11

2'
20

8

'8
'e

6
15 .

12

407""
MECHANICAL DIMENSIONS
INCHES (MM)
O.1JlF

1.101 MAX
(28,0)

+5V

0.190 ,MAX

4'9)

~0.010 X 0.01R· ~
KOVA:R Pins '

17

,16
I
I
I
I
I
I

I

BOTTOM

I
I
I
I

VIEW

I
I

I

I
I
I

I

!

1

32

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

!

~

0.150 MIN.
(3,8)

ORDERING INF.ORMATION
15
1.712 MAX.
SPACES
(43,5)
AT 0.100
(2,5)

~

0.900
(22,9)

MODEL

OPERATING
TEMP. RANGE

SEAL

ADC·530MC
ADC·530MM

Oto+70°C
-55 to +125 °C

Hermetic
Hermetic

Receptacle for PC board mounting can be ordered through
AMP Incorporated. #3-331272-S (Component Lead Socket).
32 required.
For availability of MIL-STD-SS3B versions. contact DATEL.

NOTE: Pins have a 0.025 inch, ±om
stand-off from case.

2-36

DATEL. Inc. 11 Cabot Boulevard. Mansfield. MA 0204S-1.194ITEL (50S) 339-3000ITLX 1743SS/FAX (50S) 339-6356

ADC-908
High-Resolution
Ultra-Fast AID Converter
FEATURES
•
•
•
•
•
•
•

14-Bit resolution
1.0 IlSec. conversion time
Functionally complete
Small 32-pin DIP
Low-power, 2.9 Watts maximum
Three-state output buffers
No missing codes
INPUT/OUTPUT CONNECTIONS
PIN

GENERAL DESCRIPTION
DATEL's ADC-908 is a 14-bit, 1.0 microsecond conversion
time, functionally complete AID converter.
Packaged in a small 32-pin DIP, power requirements are ±15
volts and +5 volts with a 2.9 Watts maximum power dissipation.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

FUNCTION
+10V REF. OUT
BIPOLAR
ANALOG INPUT
SIGNAL GROUND
OFFSET ADJUST
GAIN ADJUST
OVERFLOW
COMPo BIN
ENABLE
+5V
DIGITAL GROUND
+15V
-15V
S/HCONTROL
ANALOG GROUND

BiC

PIN

FUNCTION

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

BIT 14 OUT (LSB)
BIT 130UT
BIT 12 OUT
BIT 11 OUT
BIT 10 OUT
BIT90UT
BIT 8 OUT
BIT 7 OUT
BIT60UT
BIT 5 OUT
BIT40UT
BIT 3 OUT
BIT20UT
BIT 1 OUT (MSB)
BIT 1 OUT (MSB)
START CONVERT

GAIN
ADJUST 6 1 - - = = - - - + - + - - - - - - ,
+10V REF 1 1 - - - : : ; ; = - - - + - + - - - - - - 1
,----1-..131 BIT lOUT (MSB)
30 BIT lOUT (MSB)
OFFSET
ADJUST

5

BIPOLAR 2

~~;~~ 3h/~~~~-/
24 BIT 70UT
23 BIT BOUT

SIGNAL
GROUND 4

22BIT 90UT
21 BIT 10 OUT

StH

20 BIT 11 OUT

CONTROL 14
START
CONV.32
EOC 16

19 BIT 120UT

LOGIC
CONTROL
AND

18 BIT 130UT
17 BIT 14 OUT (LSB)

t:j=T~IM;'IN~GJ~~~~~~~~~~~~~=~==~===~t==J
10
+5V

11
DIG. GND.

12
+15V

For Immediate Assistance, Dial 1-800-233-2765

15
ANA. GND.

13
·15V

7 OVERFLOW
9ENABLE

B
COMP BIN

2-37

ADC·908
ABSOLUTE MAXIMUM RATINGS
LIMiTS

UNITS

AID PERFORMANCE

+15V Supply (Pin 12)
-15V Supply (Pin 13)
+5V Supply (Pin 10)

-0.3 to +18
+0.3 to -18
-0.3 to +7.0

Volts dc
Volts de
Volts de

AID Conversion Times
+25°C
o °C 10 +70 °C
-55°C 10 +125 °C

Digital Inputs
(Pins 8, 9, 32)
Analog Input (Pin 3)
Lead Temp. (10 Sec.)

-0.3 to +7.0
. ±25
300.max.

Volts de
Volts
°C

PARAMETERS

MIN.

-

FUNCTIONAL SPECIFICATIONS

ANALOG INPUTS

MIN.

Input Voltage Range

-

Input Impedance
Input Capacitance

1

-

TYP.

MAX.

010 +10
010 +20
±5

-

7

15

-

-

-

-

-

UNITS
Volls
Volls
Volls
KOhms
pI

DIGITAL INPUTS
Logic Levels
Logic "I"
Logic "0"
Logic Loading "I"
Logic Loading "0"

2.0

-

-

-

0.8
5
-200

Voltsdc
VollSdc
~

J.IA

AID PERFORMANCE
Integral Non-linearity
+25°C
0°Clo+70°C
-55°C 10 +125 °C
Differential Non·Linearity
+25°C
o °C to +70 °C
-55 °Clo +125 °C
Full Scale Absolute
Accuracy
+25°C.
o °C 10 +70 °C
-55°C 10 +125 °C
Unipolar Zero Error,
+25°C
010 +70 °C
-5510 +125 °C
Bipolar Zero Error,
+25 °C (Tech Nole I)
010+70°C
-5510 +125 °C
Bipolar Offset Error,
+25 °C (Tech Nole I)
010 +70 °C
-5510 +125 °C
Gain Error,
+25 °C (Tech Note 1)
010 +70 °C
-5510 +125 °C

2-38

MAX.

UNITS

-

1.0
1.08
1.15

~ec.
~ec.
~Sec.

-

-

-

No Missing Codes
(14 Bits)
(13 Bits)

010 +70 °C
-5510 +125 °C

OUTPUTS
14 Bils

Resolution
Output Coding
(Pin8Hi)
(Pin 8 Low)

Apply over theoperating temperature range and at ±15V de
and +5V dc power supply voltages unless otherwise specified.

TYP.

Logic Levels
Logic "1"
Logic "0"
Logic Loading "I"
Logic Loading "0"
Internal Reference
Voltage, +25 °C
Drift
Exlernal Current

Slraighl binary/offsel binary
Complemenlary binary
2.4

-

-

-

-

0.4
-160
6.4

-

Vollsdc
Volls dc
~
mA

-

+10.0
±13

-

+10.02
±30
2

Voltsdc
ppm! °C
mA

+14.25
-14.25
+4.75

+15.0
-15.0
+5.0

+15.75
-15.75
+5.25

Vollsdc
Voltsdc
VOllsdc

-

+85
-71
+80
2.7

+95
-80
+100
2.9
0.02

mA
mA
mA
Watts
%FSRI%V

+9.98

-

POWER REQUIREMENTS
Power Supply Range
+15V dc Supply
-15V dc Supply
+5V dc Supply
Power Supply Current
+15V dc Supply
-15V dc Supply
+5V dc Supply'
Power Dissipation
Power Supply Rejection

-

-

-

PHYSICAL/ENVIRONMENTAL

-

±1/2
±3/4
±I

±3/4
±I
±2

LSB
LSB
LSB

-

±1/4
±1/2
±I

±1/2
±3/4
±2

LSB
LSB
LSB

-

±0.08
±0.18
±0.61

±0.122
±0.36
±0.85

%FSR
%FSR
%FSR

±0.04
±0.07
±O.I

±0.122
±0.13
±0.17

%FSR
%FSR
%FSR

-

±0.012
±0.07
±0.1

±0.04
±0.18
±0.3

%FSR
%FSR
%FSR

±0.018
±0.12
±0.53

±0.061
±0.3
±0.73

%FSR
%FSR
%FSR

±0.018
±0.12
±0.53

±0.12
±O.3
±0.73

%FSR
%FSR
%FSR

-

-

-

-

-

-

Operating Temp. Range
·MC
·MM
Storage Temperature
Range
Package Type
Weight

0
-55

-

-

+70
+125

°C
°C

-65

-

+150

°C

32-pin hermetic sealed, ceramic TDIP
0.42 ounces (12 grams) max.

• +5V power usage at 1 TIL logic loading per data output bit.
Specifications subject to change without notice.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

ADC-908
TECHNICAL NOTES
1. Use external potentiometers to remove system errors or the
small initial errors to zero. Use a 20K trimming potentiometer for gain adjustment with the wiper tied to pin 6 (ground
pin 6 for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 5 for zero/
offset adjustment (ground pin 5 for operation without adjustment).
2. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital
grounds are not connected internally. Avoid ground-related
problems by connecting the digital and analog grounds to
one point, the ground plane beneath the converter. Due to
the inductance and resistance of the power supply return
paths, return the analog and digital ground separately to the
power supplies.
3. Bypass the analog and digital supplies and the +1 OV reference (pin 1) to ground with a 4.7 J.lF, 25V tantalum electrolytic capacitor in parallel with a 0.1 J.lF ceramic capacitor.
Bypass the +1 OV reference (pin 1) to analog ground (pin
15).

4. Obtain straight

binar~offset

binary or 2'8 complement output
coding by tying C(}P BIN (pin 8) to +5V dc or leaving it
open. The device has an internal pull-up resistor on this
pin. To obtain complementary binary, complementary off
set binary, or complementary 2's complement output coding,
tie pin 8 to ground. The COMP BIN signal is compatible to
CMOSITTL logic levels for those users desiring logic control
of this function.

5. To enable the three-state outputs, connect ENABLE (pin 9)
to a logic "0" (low). To disable, connect pin 9 to a logic "1"
(high).

~~

ANALOG
INPUT

6. The SAMPLE/HOLD CONTROL, pin 14, is low on power-up.
The START CONVERT pulse should be given at a time delay equal to the desired acquisition time minus th...!!. 10 nanosecond delay from START CONVERT high to S/H CONTROL high. This assures the sample-hold has the minimum
required acquisition time for the particular application mode.
The SAMPLE/HOLD CONTROL pin goes high following the
rising edge of a START CONVERT pulse and low 30 nanoseconds minimum before EOC goes low. This indicates the
converter can accept a new analog input.
7. Retriggering the START CONVERT pulse before EOC goes
low will not initiate a new conversion.

Table 1. Input Connections
INPUT PIN

INPUT RANGE

o to +10V
o to +20

TIE TOGETHER

Pin 3
Pin 2
Pin 3

±5V

Pins 2 and 4
Pins 3 and 4
Pins 2 and 1

Table 2. Zero and Gain Adjust
GAIN ADJUST
FS -1/2 LSB

ZERO ADJUST
+112 LSB

FSR

o to +10V
Oto +20V
±5V

+9.999085V
+19.99817V
+4.999085V

+3051·N
+610 J.lV
+305 J.lV

.5V

ANALOG INPUT SETILING TIME
400 nSec MINIMUM

~: --~:~~~H~O~LD~M~O~D~E~S~ETI~L~IN=G-----------------

:+7-

O.1JlF

200 nSec MIN

O.1IJ,F

START
CONVERT ---,,...-C:-~\

N

30 nSec MIN
' SAMPLE

HOLD

13

15

10

11

+10VAEF

BUSY

N

I.
OUTPUT
DATA

--+ I

...--

25 "Sec MIN

800 nSec MIN

DATA N VALID
000 +10V

INVALID

--=11+-

INHIBIT DELAY
10nSec MAX

NOTE: NOT DRAWN TO SCALE

10 nS MAX ___

ADe-90B

BIPOLAR

I :
1><1

DATA N·1 VALID

~4.7}1F2

:J;.1JlF

: +- 20 nSec MIN., 35 nSec MAX

II+--

ENABLED DATA
N VALID

ANALOG INPUT

+5VDC

CQMPBIN

~32

,.

•

31
30
2.
28
27
26
25
2.
23
22
21
20
19
18
17

GAIN ADJUST

10 nSec MIN., 25 nSec MAX.

NDEOC
OUT

ENAlii:E

12

StH ACO. TIME

\.o---+-'---------,=-=--------~___i' :.--

SlH
CONTROL
OUT

START CONVERT
SlHCONTROL

7

16

NOTE: Times shown are guaranteed by design
over operating temperature and power
supply ranges.

ENABLE
BIT 1 (MSB)
BIT 1 (MSB)
81T2

BIT3
81T4
BIT5
BIT6
BIT 7

BIT a
BIT9
BIT10
BJT11
alT12
BIT 13
BIT 14 (LSB)
OVERFLOW
EOC

20K

Figure 2. ADC-908 Timing Diagram

-15V

+15V

ZERO/OFFSET ADJUST

Figure 3. Typical ADC-908 Connection Diagram

For Immediate Assistance, Dial 1-800-233-2765

2-39

ADC·908
CALIBRATION PROCEDURE
1. Connect the converter per Figure 3, and Table 1 for the appropriate full-scale range (FSR). Apply a pulse of 200 nanoseconds minimum to the START CONVERT input (pin 31)
at a rate of 250 KHz. This rate is chosen to reduce flicker if
LED's are used on the outputs for calibration purposes.
2. Zero Adjustments
Apply a precision voltage reference source between the analog input (pin 3) and ground (pin 4). Adjust the output of
the reference source per Table 2.
For unipolar, adjust the zero trimming potentiometer so that
the output code flickers equally betwelllLOO 0000 0000
0000 and 00 0000 0000 0001 with the COMP BIN (pin 8)
tied high (straight binary) or between 11 1111 1111 1111
and 11 1111 1111 1110 with pin 8 tied low (complementary
binary).

Table 3, Output Coding for Unipolar Operation
UNIPOLAR
SCALE

INPUT RANGE
(Volls)
010 +10V 010 +20V

OUTPUT CODING
CaMP. BINARY
STRAIGHT BIN.
LSB
MSB
MSB
LSB

+FS-1LSB
7/8 FS
3/4 FS
1/2FS
1/4 FS
1/8 FS
lLSS

+9.99939
+8.7500
+7.5000
+5.0000
+2.5000
+1.2500
+0.00061
0.0000

11111111111111
11 1000 0000 0000
11 0000 0000 0000
10 0000 0000 0000
01 0000 0000 0000
00 1000 0000 0000
00 0000 0000 0001
00 0000 0000 0000

a

+19.99878
+17.500
+15.00
+10.00
+5.000
+2.500
+0.00122
0.000

00 0000 0000 0000
0001111111111'1
00111111111111
01111111111111
10111111111111
11011111111111
11111111111110
11111111111111

For bipolar operation, adjust the potentiometer such that the
code flickers equally between 10 0000 0000 0000 and 10
0000 0000 0001 with pin 8 tied high (offset binary) or between 01 1111 11111111 and 01 1111 1111 1110 with pin
8 tied low (complementary offset binary).
Two's complement coding requires use of the MSB (pin 31)
with pin 8 tied high, adjusting the potentiometer such that
the code flickers between 00 0000 0000 0000 and 00 0000
0000 0001.
3. Full-Scale Adjustment
Set the output of the voltage reference used in step 2 to the
value shown in Table 2.
Adjust the gain trimming potentiometer so that the output
code flickers equally between 11 1111 1111 1110 and 11
1111 1111 1111 with pin 8 tied high (straight binary) or between 00 0000 0000 0000 and 00 0000 0000 0001 pin 8
tied low (complementary binary).
Two's complement coding requires use of the MSB (pin 31)
with the pin 8 tied high, adjusting the gain trimming potentiometer so that the output code flickers equally between 01
1111 1111 1110 and 01 1111 1111 1111.
4. To confirm proper operation of the device, vary the precision
reference voltage source to obtain the output coding listed
in Tables 3 and 4.

Table 4, Output Coding for Bipolar Operation
MECHANICAL DIMENSIONS
INCHES (MM)

+FS -1 LSB
+3/4 FS
+1/2FS

1.101 MAX
. (28,0)
0.190 MAX

~0.010 X 0.018 ~
KOVAR Pins

17

,16
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BOTTOM
VIEW

!

32

~

~0.150MIN.

a

-1/2FS
-3/4 FS
-FS +1 LSB
-FS

INPUT RANGE
(Volls)
±5V

OFFSET BIN.
MSB
LSB

OUTPUT CODING
CaMP OFF. BIN.
MSB
LSB

+4.99939
+3_7500
+2_5000
0.0000
-2.5000
'3.7500
-4.99939
-5.0000

11111111111111
11 1000 0000 0000
11 0000 0000 0000
10 0000 0000 0000
01 0000 0000 0000
00 1000 0000 0000
00 0000 0000 0001
00 0000 0000 0000

00 0000 0000 0000
00011111111111
00 111111111111
01111111111111
10111111111111
11011111111111
11111111111110
11111111111111

TWO'S CaMP.
MSB
LSB
01111111111111
01 1000 0000 0000
01 0000 0000 0000
00 0000 0000 0000
11 0000 '0000 0000
10 1000 0000 0000
10 0000 0000 0001
10 0000 0000 0000

(3,8)

iT
15
SPACES
AT 0.100
(2,5)

1.712 MAX.
(43,5)

-hL

0.900
(22,9)
NOTE: Pins have a 0.025 inch, ±0.01
sland-off from case.

2-40

BIPOLAR
SCALE

ORDERING INFORMATION
MODEL NUMBER

ADC-90SMC
ADC-90SMM

OPERATING TEMP, RANGE
0 °C to +70 °C
-55°C to + 125 °C

SEAL
Hermetic
Hermetic

Receptacle for PC board mounting can be ordered
through AMP Inc., Part # 3-331272-8 (Component
Lead Socket), 32 required.
For availability of MIL-STD-883 versions, contact
DATEL.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADC-914

--

PRODUCT DATA
r7

FEATURES

14-Bit, High-Speed,
Low-Power AID Converter

-

• 14-Bit resolution
• 2.4 Microsecond maximum
conversion time
• Low-power, 925 milliwatts
• Three-state output buffers
• Functionally complete
• Small 24-pin DIP

INPUT/OUTPUT CONNECTIONS

GENERAL DESCRIPTION

PIN FUNCTION

DATEL's ADC-914 uses an advanced design to provide a highspeed, functionally complete 14-bit AID converter in a small
24-pin DIP. The ADC-914 delivers a conversion speed of 2.4
microsecond while consuming only 925 milliwatts of power.

1
2
3
4
5
6
7
8
9
10
11
12

BIT 14 OUT (LSB)
BIT 130UT
BIT 12 OUT
BIT11 OUT
BIT 100UT
BIT90UT
BIT80UT
BIT70UT
BIT60UT
BIT50UT
BIT40UT
BIT 3 OUT (MSB)

PIN

FUNCTION

13
14
15
16
17
18
19
20
21
22
23
24

~
ENABLE
EOC
START CONVERT
BIT20UT
BIT 1 (MSB)
ANALOG INPUT
BIPOLAR
+10V REF
+15V
GROUND
-15V

14 ENABLE (MSB)

+10V REF 2 1 1 - - - - . . - - - + + - - - - - - 1

18 BIT 1 OUT (MSB)
17 BIT 2 OUT
12BIT 30UT
BIPOLAR 2 0 1 - - - - 1
ANALOG
INPUT
19

11 BIT 40UT
10 BIT 5 OUT
9BIT SOUT

rv~~--~~-J

OIGITAL
CORRECTION
LOGIC

8BIT 70UT
7BIT 80UT
SBIT 90UT
5 BIT 100UT
4BIT11 OUT
3 BIT 12 OUT

START
CONV.1S

LOGIC
CONTROL
ANO
TIMING

2 BIT 13 OUT
' - - - r - - - r - ] 1 BIT 14 OUT (LSB)

EOC 15
13

22

23

24

+5V

+15V

GNO.

·15V

Figure 1. ADC-914 Simplified Block Diagram

For Immediate Assistance, Dial 1-800-233-2765

2-41

ADC-914
ABSOLUTE MAXIMUM RATINGS
PARAMETERS

LIMITS

UNITS

PERFORMANCE

+15V Supply (Pin 22)
-15V Supply (Pin 24)
+5V Supply(Pin 13)

Oto +18
Oto-18
-0.5 to +7

Voltsdc
Voltsdc
Voltsdc

Digital Inputs
(Pins 14 and 16)
Analog Input
Lead temp. (10 sec.)

-0.3 to +7

Voltsdc

-25 to +25
300

Voltsdc
'Cmax.

Bipolar Zero Error
+25 °C (Tech Note 1)
o °C to +70 'C
-55 'C to +125 'C
Bipolar Offset Error
+25 DC (Tech Note 1)
o 'C to +70 DC
-55 DC to +125 DC
Gain Error
+25 "C (See Tech Note 1)
o DC to +70 DC
-55 DC to +125 DC
Conversion Time
+25 DC
o DC to +70 DC
-55 DC to +125 DC
No missing codes
+25 DC
o DC to +70 DC
-55 DC to +125 DC

FUNCTIONAL SPEelFICATIONS
Apply over the operating temperature range and at ±15V dc
and +5V dc unless otherwise specified.

MIN.

TYP.

MAX.

UNITS

-

iO.02

-

·±0.03l
±0.09
±0.12

%FSR
%FSR
%FSR

±0.02

±0.D61
±0.12
±0.15

%FSR
%FSR
%FSR

-

±0.02

-

-

±0.061
±0.12
±0.15

%FSR
%FSR
%FSR

-

-

-

-

-

-

-

-

2.4
2.4
2.4

14
13
12

-

-

14.25
14.25
+4.75

+15
-15
+5

+15.75
-15.75
+5.25

Volts dc
Volts dc
Volts dc

-

-

+20
-20
+65
925

-

-

+25
-28
+75
1200
±O.01

rnA
rnA
rnA
mW
%FSR/%V

0
-55

-

+70
+125

DC
DC

-65

-

+150

DC

jlSec.
jlSec.
jlSec.
Bits
Bits
Bits

POWER REQUIREMENTS
INPUTS
Analog Signal Range
(See Table 5 also)
Input Impedance
Resistance
CapaCitance
Logic Levels:
Logic 1
Logic 0
Logic Loading:
Logic 1
Logic 0

MIN.

TYP.

MAX.

UNITS

-

Oto +10
±5

-

Volts
Volts

2

2.5

-

KOhms
pF

-

2.0

-

-

50

-

-

0.8

Volts
Volts

-

-

-

2.5
-100

IlA
IlA

14

-

-

Bits

2.4

-

-

-

0.4

Volts
Volts

-

-

-

-160
6.4

rnA

10
±5

10.02
±30
1.5

Volts de
ppm! 'C
rnA

OUTPUTS
Resolution
Logic levelS:
Logic 1
Logic 0
Logic Loading:
Logic 1
Logic 0
Internal Reference:
+Voltage, +25' C
Tempco
External current

9.98

-

Output Coding:

-

Power Supply Range
+15V dc Supply
-15V dc Supply
+5V dc Supply
Supply Current
+15V Supply
-15V Supply
+5V Supply-

TTl

LOGIC

LOGIC
HIGH

VOLTAGE
TTl

AD(;.HC

CD405D

CMOS and TIL logic are not compatible. due to different
threshold levels. They can, however, be interfaced by
simple techniques.
The START CONVERT (Pin 21) can be driven directly
from an open collector, high voltage TIL gate. Resistor
Rx is used to source current and bring the TIL output up
to the CMOS threshold level. Typical values of Rx are
3.3K to 10K ohms.
CMOS to TTL interface requires sufficient sink current
in the low state. The CD4049 (inverting) and CD4050
(noninverting) buffers, powered from +5V logic supply
can accept input voltage swings of +5 to + 15V from the
CMOS system. Each buffer gate can drive at least one input from any TTL family.
2-50

ORDERING INFORMATION
MODEL

TEMP. RANGE

SEAL

ADC-HC12BMC
ADC-HC12BMM
ADC-HC12BMM-QL

Oto+70°C
-55 to +125°C
-55 to +125 °C

Hermetic
Hermetic
Hermetic

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

ADC-HS12B
12-Bit AID Converter
With Sample-Hold
\II*H#&\#&\#&\#&\#&\#&\#&\\IIE#&\#&\#&\IIIi*[IIIi_#&\#&\#&\#&\·m·
••
· . i I i l @ @ I I I ! W _ m m_

_ _1IIiliIilfuD#&\IIOOIlli@lIIimm#&\ll#&\ll#&\ll.DH.

FEATURES

•
•
•
•

12-Bit resolution
Internal sample and hold
6 Microseconds acquisition time
9 Microseconds conversion time
Programmable input ranges
Para"el & serial outputs

GENERAL DESCRIPTION
The ADC-HS12B is a high performance 12-bit hybrid AID
converter with a self-contained sample-hold. It is specifically
designed for systems applications where the sample-hold is
an integral part of the conversion process. The internal
sample-hold has a 6 microseconds acquisition time for a full
10V dc input change; the AID converter has a fast 9
microseconds conversion time. Five· input voltage ranges
are programmable by external pin connection; 0 to +5V, 0
to+10V, ±2.5V, ±5V, and ±10V. Input impedance to the
sample-hold is 100 megohms. Output coding is
complementary binary for unipolar operation and
complimentary offset binary for bipolar operation, with both
parallel and serial outputs brought out.

MECHANICAL DIMENSIONS
INCHES (MM)

r-(~~~\ MAX--j --L

I

I

O.150~B)[

.

~__

0.010

!(

0.190 (4,9) MAX

I!-'
U

0.160 (4,1) KOVAR

16

BOTTOM

"'.Il
ATO.l00EA 1.712

=~_ ..- .: ~LJ

The ADC-HS12B uses a fast 12-bit monolithic DAC which
includes a precision zener reference source. The circuit also
contains a fast monolithic 12-bit successive approximation
register, a clock and a monolithic sample-hold.

PIN 1

L,-_ _ _ _ _,-'

---o...i....

~O.900_-.J_O.l00
1--(22,8)-[
(2,5)
NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±O.Ol

SAMPLE

CH

BIPOLAR REF
CONTROL OFFSET ,OUT

N

+15Vdc -15Vdc +5Vdc

INPUT/OUTPUT
CONNECTIONS
PIN

FUNCTION
BIT 12 OUT (LS8)

BIT 11 OUT

G

§§

~

12 11

~~ ,LSB

1;;8

10

9

B

7

6

5

4

3

err NO.

2

1

~~I-

MSB,

mC!i5

,.
17

CH
REF OUT

BIT 10 OUT

19

CLOCK OUT

BIT 9 OUT

20

E.O.C. (STATUS)

BIT 8 OUT

21

BIT 7 OUT

22

COMPAR INPUT

BIT 6 OUT

23

BIPOLAR OFFSET

BIT 5 OUT

24

10V RANGE

START CONVERT

BIT'" OUT

25

20V RANGE

10

BIT 3 OUT

26

ANALOG COM

"

BIT 2 OUT

27

GAIN ADJ

12

BIT 1 OUT (MSB)

2.

13

SERIAL DATA OUT

29

S.H. OUTPUT

14

SHORT CYCLE

3IJ

ANALOG IN

15

DIGITAL COM

31

-15V POWER

16

+5V POWER

32

SAMPLE CONTROL

E.O.C.
(STATUS)

FUNCTION

PI"

+15V POWER

I
PARALLEL DATA OUT

For Immediate ASSistance, Dial 1-800-233-2765

2-51

ADC·HS12B
ABSOLUTE MAXIMUM RATINGS
Positive Supply, pin 28 ........
Negative Supply, pin 31 ........
Logic Supply Voltage, pin 16 ....
Digital Input Voltage,
pins 14, 21, 32 ..............
Analog Input Voltage, pin 30 . . ..

PHYSICAUENVIRONMENTAL
+ 18V
-18V
+ 5.5V

Operating Temperature Range ..
Storage Temperature Range ....
Package Type ................
Pins ........................
Weight ......................

+5.5V
± 15V

DoC to 70°C
(BMC)
-55 °C to +125 °C (BMM, BMM.QL)
- 65°C to + 150°C
32 pin ceramic
0.010 x 0.018 inch Kovar
0.5 ounce (14 grams)

FUNCTIONAL SPECIFICATIONS

FOOTNOTES:

Typical at 25°C, ±l5Vand +5V supplies unless otherwise noted.

1. For sample·hold input
2. All digital outputs can drive 2 TTL loads
3. For 1000 pF external hold capaCitor

INPUTS
Analog Input Ranges, unipolar ..
Analog Input Ranges, bipolar ...
Inputlmpedance' .............
Input Bias Current' ............
Start Conversion .............

0 to + 5V, 0 to + 10V
±2.5V, ±5V, ±10V
100 megohms
50 nA typical, 200 nA max.
2V min. to + 5.5V max. positive
pulse with 100 nsec. duration min.
Rise and fall times <30 nsec.
Logic high to low transition resets
converter and initiates next
conversion.
Loading: 2 TTL loads
Sample Control Input . . . . . . . . .. Logic high = hold
Logic low = sample
Loading: 1 TTL load

TECHNICAL NOTES
1. It is recommended that the t15V power input pins both be
bypassed to ground with a 0.01 ~F ceramic capacitor in parallel with a 1 ~F electrolytic capaCitor and the +5V power input pin be bypassed to ground with a 1 ~F electrolytic capacitor as shown in the connection diagrams. In addition, pin 27
should be bypassed to ground with a 0.01 ~F ceramic capacitor. These precautions will assure noise free operation
of the converter.
2. Digital Common (pin 15) and Analog Common (pin 26) are
not connected together internally, and therefore must be
connected as directly as possible externally. It is recommended that a ground plane be run underneath the case between the two commons. Analog ground and t15V power
ground should be run to pin 26 whereas digital ground and
+5V dc ground should be run to pin 15.

OUTPUTS'
Parallel Output Data. . . . . . . . . .. 12 parallel lines of data held until
next conversion command.
VOUT ("0"):5 +OAV
VOUT ("1");" +2AV
Coding, unipolar .............. Complementary Binary
Coding, bipolar ............... Complementary Offset Binary
Serial Output Data ............ Successive decision pulses out,
NRZ format. MSB first
End of Conversion (status) ..... Conversion status signal. Output is
logic high during reset and
conversion and low when
conversion is complete.
Clock Output ................ Train of positive going +5V, 100
nsec. pulses at 1.5 MHz rate.

3. External adjustment of zero or offset and gain are provided
for by trimming potentiometers connected as shown in the
connection diagrams. The potentiometer values can be between 10K and lOOK ohms and should be 100 ppml ·C, cermet types. The adjustment range is to.5% of FSR for zero
or offset and ±0.3% for gain. The trimming pots should be
located as close as possible to the converter to avoid noise
pickup. Calibration of the ADC-HS12B is performed with the
sample-hold connected and operating dynamically. This results in adjusting out the sample-hold errors along with the
AID converter. For slow throughput applications it is recommended that a 0.01 ~F hold capacitor be used for best accuracy. With this value the acquisition time becomes 25 microseconds and the external timing must be adjusted
accordingly.

SAMPLE-HOLD PERFORMANCE"
Input Offset Drift ..............
Acquisition Time, 10V to 0.01 % .
Bandwidth ..................
Aperture Delay Time ..........
Aperture Uncertainty Time .....
·SampletoHoldError ..........
Hold Mode Droop .•...........
Hold Mode Feedthrough .......

25 ",VloC
6 ,.sec.
1 MHz
100 nsec.
10 nsec.
2.5 mV max.
200 nVI,.sec. max.
0.01 % max.

4. The recommended timing shown in the Timing Diagram allows 6 microseconds for the sample-hold acquisition and
then 1 microsecond after the sample-hold goes into the hold
mode to allow for output settling before the AID begins its
conversion cycle.

CONVERTER PERFORMANCE
Resolution ..................
Nonlinearity .................
Differential Nonlinearity ........
Temp. Coefficient of Gain ......
Temp. Coefficient of Zero,
unipolar ...................
Temp. Coefficient of Offset,
bipolar ....................
Differential Nonlinearity
Tempco . . . . . . . . . . . . . . . . . ..
Missing Codes ...............
Conversion Time .............
Power Supply Rejection ........

12 bits (1 part in 4096)
± Yo LSB max.
+3A LSB max.
20 ppmloC max.

±

5. Short cycled operation results in shorter conversion times
where the conversion can be truncated to less than 12 bits.
This is done by connecting pin 14 to the output bit following
the last bit desired. For example, for an 8-bit conversion, pin
14 is connected to bit 9 output. Maximum conversion times
are given for short-cycled conversions in the Table.

± 5 ppm/DC of FSR max.

t 10 ppm/DC of FSR max.
± 2 ppm/DC of FSR
None over oper. temp. range
9 ,.sec. max.
0.004%1% max.

POWER REQUIREMENTS
Power Suppy Voltage .......... + 15V dc ± 0.5V at 20 mA
-15V dc ±0.5V at 25 mA
+ 5V dc ± 0.25V at 85 rnA

2-52

,

6. Note that output coding is complementary coding. For unipolar operation it is complementary binary and for bipolar
operation it is complementary offset binary. In cases where
bipolar coding of offset binary is required, this can be
achieved by inverting the analog input to the converter (using
an operational amplifier connected for gain of -1.0000). The

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX(508) 339-6356

ADC·HS12B
mU'R)

i iliful

converter is then calibrated so that - FS analog input gives
an output code of 0000 0000 0000, and + FS - 1 LSB gives
1111 1111 1111.

IIRG

CONVERT (Pin 21). The rate of the external clock must be
lower than the rate of the internal clock. The pulse width of
the external clock should be between 100 nanoseconds and
300 nanoseconds. Each N bit conversion cycle requires a
pulse train of N + 1 clock pulses for completion, e.g., an
8-bit conversion requires 9 clock pulses for completion. A
continuous pulse train may be used for consecutive conversions, resulting in an N bit conversion every N + 1 pulses, or
the E.O.C. output may be used to gate a continuous pulse
train for single conversions.

7. These converters dissipate 1.81 watts maximum of power.
The case to ambient thermal resistance is approximately
25°C per watt. For ambient temperatures above 50°C, care
should be taken not to restrict air circulation in the vicinity of
the converter.
8. These converters can be operated with an extemal clock. To
accomplish this, a negative pulse train is applied to START

TIMING DIAGRAM FOR ADC-HS12B

--fl"ji-100nsec.MIN.

T_R_IG_G_ER
____

,,

1-- -===--I

SAMPLE
CONTROl

6,....

STAAT

CONVERT

r::============-;;-;;;::-;;;;:;-=-:==========:::j

E.O.C.
<_ST_A_TU_S_'

- - - - - - - - - - - - - - - - - - - f t - l l - - - - - - - - - - - - 9 "sec, MAX. -

PARALLEL DATA
NOW VALID

--.....::_ 50nsec

CLOCK
OUT

SERIAL
DATA OUT

I

BIT 1
QUT(MSBj

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

:

I

I

I

I

I

I

I

I

I

I

I

'

- - - T- --- T- - - -,--- -T - - -.- ---1- - -I - - -I" - - -"1- - - -,- - --1-- - -- ---

1

- - -:- ---~----~- ---~ ---~---- ~----i- - -- ~ -- --r ----:----- +-------·0
I

BIT 2
OUT

I
I

I
I

I
1

I
I

I
I

I
I

I
I

,
I

,
I

I

I
I

I

:r--T,--,~-~,--TI--~,--4,--~I--r--+----

I

81T3
OUT

I

I

BIT 12
QUT(LSB)

_~...:....

__________________-"II ___

I

(

I

I
I
I
I
I
.lI ___ .JI ____ LI
1

I
I
I
I
I ___
.!.I ___ -1I ___ -'I____ l.

-+ -- -~- ---:-----;----+ -- --;---- i--.- - - - I

---~-- - - : - - -

I

I

I

I

I

I

I

,

I

I

1

I
I
I
I
--"1-------I
I
___ ..lI ____ !..I ___ ..!I ____ lL-_''--_
__

NOTE: mIGGEA, SAMPLE CONTROL, AND STAAT CONVERT
PULSES MUST BE EXTERNALLY GENERATED

UNIPOLAR OPERATION, 0 TO +10V
-15V +15V

BIPOLAR OPERATION, ±5V
+5V

-15V+15V

+5V

''''

'O.~

+15V

31

31

28

1.5 MEG

26
29

2.

2'

ADC·HS12B

50K

!

ANA.LOG IN
(+5V) 0

I

AOJ
OFfSET
2.8 MEG
27~50K
GAIN
IIDJ
O•01 ,.F

ANALOG
GND

15

AOC-HS128

l~::

I ~;~;

-15V

16'4

26
29

50K

-15V

28

30

+15V

I

"POLYSTYRENE OR
TEFLON TYPE

+15V

"fl,
2.8 MEG
27!--o--,-J'o/',A.,-··----GAIN
IIDJ
O.Ol,.F

L2_~r7---'T'2'-_,2-'

I

50K

....

CH".t
10000 pF

~ ~~~l

~TART

-15V

CONVERT
·POlYSTYRENE OR
TEFLON TYPE

For Immediate Assistance, Dial 1-800-233-2765

2-53

ADC·HS12B
CODING TABLES
'. UNIPOLAR OPERATION
COMPo
BINARY CODING
MSB
LSB
0000 0000 0000
0001 1111 1111
0011 1111 1111
0111 1111 1111
1011 1111 1111
1101 1111 1111
1111 1111 1110
1111 1111 1111

INPUT RANGE

o TO

o TO

+10V
+9.9976V
+8.7500
+7.5000
+5.0000
+2.5000
+ 1.2500
+0.0024
0.0000

+5V
+4.9988V
+4.3750
+3.7500
+2.5000
+ 1.2500
+0.6250
+0.0012
0.0000

CALIBRATION PROCEDURE
1. Connect the ADC-HS12B as shown in one of the connection
diagrams. The sample-hold and AID converter should be
timed as shown in the timing diagram. The trigger pulse
should be applied at a rate of 70kHz or less and should be
100 nanoseconds minimum width.
2. Zero and Offset Adjustments
Apply a precision voltage reference source between the
selected analog input and ground. Adjust the output of the
reference source to the value shown in the Calibration Table
for the unipolar zero adjustment (zero + % LSB) or the
bipolar offset adjustment (- FS + % LSB). Adjust the trimming potentiometer so that the output code flickers equally
between 1111 1111 1111 and 1111 1111 1110.
3. Full Scale Adjustment
Change the output of the precision voltage reference source
to the value shown in the Calibration Table for the unipolar or
bipolar gain adjustment (+ FS - 1% LSB). Adjust the gain
trimming potentiometer so that the output code flickers
equally between 0000 0000 0001 and 0000 0000 0000.

BIPOLAR OPERATION
INPUT VOLTAGE RANGE
+10V
+9.9951V
+ 7.5000
+5.0000
0.0000
-5.0000
-7.5000
-9.9951
-10.0000

±2.5V
+2.4988V
+ 1.8750
+1.2500
0.0000
-1.2500
-1.8750
-2.4988
-2.5000

±5V
+4.9976V
+3.7500
+2.5000
0.0000
-2.5000
-3.7500
-4.9976
-5.0000

COMPo
OFFSET BINARY
MSB
LSB
0000 0000 0000
0001 1111 1111
0011 1111 1111
0111 1111 1111
1011 1111 1111
1101 1111 1111
1111 1111 1110
1111 1111 1111

CALIBRATION TABLE
UNIPOLAR RANGE
o to +5V

o to

+10V

BIPOLAR RANGE
±2.5V
±5V
±10V

ADJUST.
ZERO
GAIN
ZERO
GAIN

INPUT VOLTAGE
+0.6 mV
+4.9982V
+1.2 mV
+9.9963V

OFFSET
GAIN
OFFSET
GAIN
OFFSET
GAIN

-2.4994V
+2.4982V
-4.9988V
+4.9963V
-9.9976V
+9.9927V

SHORT CYCLE OPERATION

14

PIN 14 CONNECTION FOR
SHORT CYCLE OPERATION
RES. (BITS)

PIN 14TO
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN
PIN

1
2
3
4
5
6
7
8
9
10
11
12

CONY. TIME

11
10
9
8
7
6
5
4
3
2
1
16

0.7llsec
1.3
2.0
26
3.3
4.0
4.6
5.3
60
6.6
73
90

987654321BIT

FOR CONVERSION TO N erTS

CONNECT THE N + 1 BIT Ol/TPUT

TO THE SHORT CYCliNG

TERMINAL, PIN 14

INPUT CONNECTIONS
INPUT
VOLTAGE
RANGE
o to +5V
Oto +10V
±2.5V
±5V
±10V

2-54

29
29
29
29
29

CONNECT THESE PINS
TOGETHER
& 24
22 & 25
23 & 26
& 24
23 & 26
& 24
22 & 25
23 & 22
& 24
23 & 22
& 25
23 & 22

-

ORDERING INFORMATION
MODEL

TEMP. RANGE

ADC-HS12BMC
ADC-HS12BMM
ADC-HS12BMM-QL

Oto+70 °C
-55 to +125 °C
-55 to +125 °C

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

ADC·HX, ADC·HZ Series
12-Bit, Analog-toDigital Converters
i J

FEATURES
12-Bit resolution
S-or 20-Microseconds conversions

5 Input ranges
• Internal high Z buffer
• Short-cycle operation

GENERAL DESCRIPTION
The ADC-HX12B and ADC-HZ12B are self-contained, high
performance, 12-bit AID converters manufactured with
thick-and thin-film hybrid technology. They use the
successive approximation conversion technique to achieve
a 12-bit conversion in 20 and S microseconds respectively.
Five input voltage ranges are programmable by external pin
connection: 0 to +5V, 0 to +10V, ±2.5V, ±5V, and ±10V. An
internal buffer amplifier is also provided for applications
where 100 megohm input impedance is required.

MECHANICAL DIMENSIONS
INCHES (MM)
1---1.101 MAX---'

I·

I·

I~

(28.0'

I 0.'90 (4.9) MAX

. ~ -r

:;;;V;s'L

0.150

0.010)1 0.160 (4,1) KOVAR

These converters utilize a fast 12-bit monolithic DAC which
includes a precision zener reference source. The circuit also
contains a fast monolithic comparator, a monolithic 12-bit
successive approximation register, a clock and a monolithic
buffer amplifier. Nonlinearity is specified at ±'/2 LSB
maximum.

01.

I

~ ~ Jg:s-. .,.

Both models have identical operation except for conversion
speed. They can be short-cycled to give faster conversion in
lower resolution applications. Use of the internal buffer
amplifier increases conversion time by 3 microseconds, the
settling time of the amplifier. Output coding is
complementary binary, complementary offset binary, or
complementary two's complement. Serial data is also
brought out. The package is a 32-pin ceramic case.

+15V
POWER

REF

-15V
POWER

~~~M

1--- - (22,8)

(2,5)

INPUT/OUTPUT
CONNECTIONS

BIT 11

our

BIT mOUT

BO'OI.AR
15

BIT 9 OUT

~:AL

BIT

-1

~~~AR~'~_"""_"-_ _ _

BIT 6 OUT
14

INPUT

INPUT

BIT 5 OUT

~~J

o ~~A~SI

5

BIT 4 OUT
10

"

ANALOG

COM

17

e OUT

81T 7 OUT

~rT. .r r. . . . . . . .~

20V

1921

CLOCK CLOCK START 12 11 10 9 8
AA Te OUT
CONY LSB

7 6 5 4
SIT NO

' .712

NOTE: PINS HAVE 0,025 INCH STANDOFF FROM CASE, ±O.Ol"

FUNCTION

"v

'"I

_-j- 0.100

FUNCTION

BIT 12 our (lSB)

OFFSET

J

AT 0.,00 EA

_____32...,:....

~ 0.900

.5V
POWER

OUT

"',IT

3 2 1 T
SERIAL
MBa iTsB I g~~A

"
"

,.

BIT 3 OUT
BIT 2 OUT
BIT lOUT (MSBI

BIT lOUT (MSB)
SHQRTCYClE
DIGITAL COM
+5V POWER

CLOCK RATE

"

"
"
"
20

REF OUT

CLOCK OUT
E.O.C (STATUS)
START CONVERT
COMPAR INPUT
BIPOLAR OFFSET
10V RANGE

23
24
25

:lOV RANGE

"

27

GAIN ADJ.

28
29

+ 15V POWeR
BUFFER OUTPUT

,.

"

32

ANALOG COM

BUFFER INPUT
- 15V POWER
SERIAL OUTPUT

PARALLEL DATA OUT

For Immediate Assistance, Dial 1-800-233-2765

2-55

ADC.HX, ADC·HZ
FUNCTIONAL SPECIFICATIONS
Typical at 2SoC, ± lSV and +SV supplies unless otherwise noted.
INPUTS

ADC-HX12B

ADC-HZ12B

Analog Input Ranges, unipolar ... Oto +SV,Oto +10VFS
Analog Input Ranges, bipolar .... ± 2.5V, ± 5V, ± 10V FS
Input Impedance .............. 2.5K (0 to +5V, ±2.5V)
5K (0 to + 10V, ± 5V)
10K (±10V)
Input Impedance with Buffer ..... 100 Megohms
Input Bias Current of Buffer ...... 125 nA typical, 250nA max.
Input Overvoltage ............. '±15V
Start Conversion .............. 2V min. to 5.5V max. positive
pulse with duration of 100 nsec.
min. Rise and fall times <30
nsec.
Logic "1" to "0" transition
resets converter and initiates
next conversion.
Loading: 2 TTL loads

PHYSICAUENVIRONMENTAL
Operating Temperature Range ... 0 to + 70°C
or -55to +125°e
Storage Temperature Range ..... -65°C to + 150°C
Package Size ................. 1.700 x 1.100 x 0.160 inches
Package Type ................. 32 pin ceramic
Pins ......................... 0.010 x 0.Q18 inch Kovar
Weight ....................... 0.5 ounces (14 grams)
FOOTNOTES:
1. All digital outputs can drive 2 TTL loads.
2. Without buffer amplifier used. ADC-HZI2B may require external adjustment of
clock rate.

3. FSR is full scale range and is IOV for a to + IOV or ± 5V input and 20V for
±IOV inpul.
4. Short cycled operation.

OUTPUTS'

TECHNICAL NOTES

Parallel Output Data ............ 12 parallel lines of data held until
next conversion command.
VOUT ("0") :5 + OAV
Vou d"l") ;;-, +2AV
Coding, unipolar ............... Complementary Binary
Coding, bipolar ................ Complementary Offset Binary
Complementary Two's
Complement
Serial Output Data ............. NRZ successive decision pulses
out, MSB first. Compl. Binary or
Compl. Offset Binary Coding
End of Conversion (Status) ...... Conversion status signal. Output
is logic "1" during reset and
conversion and logic "0" when
conversion complete.
Clock Output ................. Train of positive going +5V 100
nsec. pulses. 600 kHz for ADCHX12B and 1.5 MHz for ADCHZ12B (pin 17 grounded).

1. It is recommended that the ±15V power input pins both
be bypassed to ground with a 0.01 IJ.F ceramic capacitor
in parallel with a 1 IJ.F electrolytic capacitor and the +5V
power input pin be bypassed to ground with a 10 IJ.F
electrolytic capacitor as shown in the connection diagrams. In addition, pin 27 should be bypassed to ground
with a 0.D1 IJ.F ceramic capacitor. These precautions will
assure noise free operation of the converter.

PERFORMANCE
Resolution ...................
Nonlinearity ..................
Differential Nonlinearity .........
Gain Error, before adjustment ....
Zero Error, unipolar, before adj. ..
Offset Error, bipolar, before adj...
Temp. Coeff. of Gain ...........
Temp. Coeff. of Zero, unipolar ...
Temp. Coeff. of Offset, bipolar ...
Diff. Nonlinearity Tempco .......
No Missing Codes ..............
Conversion Time', 12 bits .......
10bils4 . . . . . .
8bils4 . . . . . . .
Buffer Settling Time, 10V step ....
Power Supply Rejection .........

12 bits (1 part in 4096)
±'h LSB max.
±3;" LSB max.
± 0.10/0
± 0.05% of FSR3
±0.1% of FSR3
± 20 ppm/DC max.
± 5 ppm/DC of FSR max. 3
± 10 ppm/oe of FSR max. 3
± 2 ppm/oe of FSR3
Over oper. temp. range
20 pSec. max. 8.0 !5V

15

RFEEOBACK ~ 400

_R~~---

-

BIT 12

23

22

RfEEOBACJ(+400

13

OUT'
. UTI TYPICAL.
'SEmlNG
STEP
TIME TO
1 LSB
300nsec
[ 20V
10V

200nsec

5V

150nsee

I

12
23

I

OU.T'
·."T r n.",CAL
•. SE.TT"NG.
STEP
Tr~~..!Q.1J:.l!!I
20V

10V
5V

~_I:'~~' .. __

j

6~~~
400nse~.

VOLTAGE OUTPUT WAVEFORMS

,
I

n

I

...

I.

EQUIVALENT OUTPUT CIRCUIT
4KtO.l%

== - .,-_1•

2V/OIV

I•

_:-

,I

I

.

I

I

II.~ :-c•

---I --

10V

+

I\r-..J\'2'\Kl\r-017

,

I
50 nsec/OIV

~~~~~~:~CK
OUTPUT

' - - + - - - - . . + - - - - - 0 2 3 GROUND

1IjI

~~E(~~~~;2%l

,-----<>19 ~~~~~~:~CK

+---~-----<>18

• ----

r~

t------------o21

D
I'

'liiI

2V/OIV

,---"I.!'v!\r------o20 ~~~~R

-

-

OAC-HF with AM-500. ±5V output full scale (1 OV) step

HIGH SPEED INPUT REGISTER

ORDERING INFORMATION

DAC·HF

DATA -:5"sm'n:~
LOADED - :

3-4

_ \ 7"s

MODEL

OPERATING
TEMP. RANGE

SEAL

DAC-HF8BMC
DAC-HF8BMM
DAC-HF8/883B

Oto +70 °C
-55 to +125 °C
-55 to +125 °C

Hermetic
Hermetic
Hermetic

DAC-HF10BMC
DAC-HF10BMM
DAC-HF10/883B

Oto +70 °C
-55 to +125 °C
-55 to +125 °C

Hermetic
Hermetic
Hermetic

DAC-HF12BMC
DAC-HF12BMM
DAC-HF12/883B

Oto+70°C
-55 to +125 °C
-55 to +125 °C

Hermetic
Hermetic
Hermetic

I
lmn

l----

DATEL. Inc. 11 Cabot Boulevard. Mansfield. MA 02048-1194rrEL (508) 339-3000rrLX 174388/FAX (508) 339-6356

DAC-HK Series
12-Bit Hybrid DAC's
with Input Register
n
FEATURES
12-8it resolution
20 ppm/DC Tempeo
• Input register
• 2 Coding options
• Fast settling time

GENERAL DESCRIPTION
The DAC-HK Series hybrid D/A converters are high
performance 12-bit devices with a fast settling voltage
output. They incorporate a level controlled input storage
register and are specifically designed for systems
applications such as data bus interfacing with computers.
When the "load" input is high, data in the storage register is
held and when the load input is low, date is transferred
through to the DAC. There are two basic models available
by coding option: binary, and two's.complement. The output
voltage ranges are externally pin-programmable and
include: 0 to +2.5V, 0 to +5V, 0 to +10V, ±2.5V, ±5V, and
±10V.

MECHANICAL DIMENSIONS
INCHES (mm)
0.800MAX
(20,3)

0.190 MAX

~

~ 0.010 X 0.018

~

KOVAR Pins

12

The DAC-HK Series contains a precision zener reference
circuit. This eliminates code-dependent ground currents by
routing current from the positive supply to the internal
ground node a determined by the R-2R ladder network. The
internal feedback resistors for the on-board amplifier track
the ladder network resistors, enhancing temperature
performance. The excellent tracking of the resistors results
in a differential nonlinearity tempco of 2 ppm/DC maximum.
The temperature coefficient of gain is 20 ppm/DC maximum
and tempco of zero is ±3 ppm/DC maximum.

13

11
SPACES
ATO.l00
(2,5)

BOTTOM
VIEW

24

'--------'

L
I

0.150 MIN.
(3,8)

1.310 MAX.
(33,3)

--hL

0.600
(15,2)

NOTE: Pins have a 0.025 inch, ±0.01
stand-off from case.
REF. GAIN
BIP.
OUT ADJUST OFFSET

-Vs

+5V

INPUT/OUTPUT
CONNECTIONS
PIN
SUM.
JUNCTION

+5V

1
2
3
4
5
6
7
~

9
10
II
12
1

2

3

(MSB)

4

5

6

7

BIT

8

FUNCTION

PIN

FUNCTION

BIT 1 IN (MS61
BIT 2 IN
BIT31N
BIT41N
BIT 51N
BIT 61N
BIT 71N
tll HIN
BIT91N
BIT lOIN
BIT II IN
BIT 12 IN (L~tl

13
14
15
16
17
18
19
20
21
22
23
24

+5VDC
15VD
OUTPUT
LOAD
BIPOLAR JI-F
10V HANGE
20V RAN E
UNCIIUN
R UND
+15VDC
GAIN ADJ
REF OUI

9101112

(LSB)

For Immediate ASSistance, Dial 1-800-233-2765

3-5

DAC-HK Series
..
ABSOLUTE MAXIMUM RATINGS
Positive Supply, pin 22 ..••.•
Negative Supply, pin 14 .••.•
Logic Supply, pin 13 .•••••••
Digital Input Voltage, pins
1-12& 16 .............. .
Output Current, pin 1S ., •...•

DAC-HK12B

PHYSICAL/ENVIRONMENTAL

+18V
-18V
+S.2SV

Operating TemperatureRange •

+S.5V
±20 rnA

Storage Temperature Range •
Package Type .••.....•.•••
Pins .....................
Weight ...................

FUNCTIONAL SPECIFICATIONS
Typical at 2S"C, ±'SV and+5V supplies unless otherwise noted.

O°C to + 70°C (BGC, BMC)
-55 'Cto + 125 'C bBMM/883B)
-65°C to +125°
24-pin Ceramic DIP
0.010 x 0.018 inch Kovar
0.2 ounces (6 grams)

FOOTNOTES:
1. For two's complement coding order the model described under ordering
information.

2. Logic levels are the same as for data inputs.
3. By external pin connection.
4. For ± 12V dc. +5V dc operation. contact factory.

INPUTS
Resolution .••••••••••••.••
Coding, unipolar output •••• ;
Coding, bipolar output •..••.
Input Logic Level, bit ON
("1") ...................
Input Logic Level, bit OFF
("0") •..•.••.•...•..•..
Logic Loading .............
LoadlnpuP ...............
Load Input Loading •••••.•••

12 bits
Straight Binary
Offset Binary
Two's Complement'
+2.0V to +5.5V
OV to +0.8V
1 LSTTL load
High ("1 ") = hold data
Low ("0") = transfer data
3 LSTTL loads

OUTPUT
Output Voltage Ranges3,
unlpolar, ................
Output Voltage Ranges',
bipolar ••.••••••••••.•••

Oto +10V

±2.5V
±5V
±10V
Output Current ;.; ..•.•••.•
±5 rnA min .
Output Impedance •.•••.••• • 0.05 ohm
PERFORMANCE
linearity Error, max •........
Differential linearity Error,
max....................
Gain Error, before trimming .•
Zero Error, before trimming .•
Gain Tempeo, max ••........
Zero Tempeo, unipolar,
max....................
Offset Tempeo, bipolar,
max....................
. Diff. Linearity Error Tempeo,
max •••.••.••••.•.•.••••
Monotonicity .•••••.•..•...
Settling Time, 5V change .•..
Settling Time, 10V change ...
Settling Time, 20V change.•.•
Settling Time, 1 LSB change.
Slew Rate .••.•••.••..•.•.•
Power Supply Rejection ..•••

tv. LSB
±3I4LSB
±0.10J0
±O.OS%
±20 ppm/oC
± 5 ppm/oC of FSR
± 10 ppm/oC of FSR
± 2 ppm/oC of FSR
Guarallteed over oper. temp. range
3 ,.sec.
3,.sec.
4,.sec.
800 nsec.
2OV/p.sec.
± 0.002% FSR/oJb

TECHNICAL NOTES
1. It is recommended that these converters be operated with
local supply bypass capacitors of 1 fl-F (tantalum type) at the
+ 15, - 15, and + 5V supply pins. The capacitors should be
connected as close to the pins as possible. In high RFI noise
environments these capacitors should be shunted with 0.01
fl-F ceramic capacitors.
2. The analog, digital, and power grounds should be separated
from each other as close as possible to pin 21 where they all
must come together.
3. The "load" control pin is a leveltriggered input which causes
the register to hold data with a high input and transfer data to
the· DAC with a low input.
4. A setup time of 50 nanoseconds minimum must be allowed
for the input data. The DAC output voltage begins to change
when the register output changes.
5. The external gain adjustment shown in the Connection
Diagrams has a range of ± 0.2% of full scale. If a wider range
is desired the 18-Megohm resistor can be decreased slightly
in value. The fUll-scale output is typically accurate within
± 0.1 % with no adjustment. The zero, or .offset, adjustment
has a range of ± 0.35% of FS.
6. If the reference output terminal (pin 24) is used, an operational amplifier in non-inverting mode should be used as a
buffer. Current drawn from pin 24 should be limited to ± 10
~ in order not to affect the T.C. of the reference.

POWER REQUIREMENTS
Power Supply Vohage

3-6

......

+ lSVdc ±0.5V dc at 10 rnA
_15V dc ± 0.5V dc at 25 rnA
+5V dc ±0.25V dc at 35 rnA
± 12V dc, + 5V operation'

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 0204B-1194ITEL (SOB) 339-S000ITLX 17438B/FAX (508) 339-6356

DAC·HK Series
iii

TIMING DIAGRAM
Hold
LOAD

DATA

~~~~----~

X

IN

~O _ _..J.

I
I

'LJ
I
I
I

I
I

~Ii\ !I

!

l!
I
I
I tsetup

I
I
I

I
I

I

I- 50 nsec.min.-.j

J-+-

I

!I

tsetup
I
50 nsec.min. ~
I

I

11

l

REGISTER
OUTPUT TO DAC

I

--Jt

PHL

I

I

-lt60 nsec.I--

I-

PLH

60 nsec.
All rise and fall times';; 10 nsec.

CONNECTION DIAGRAMS
BIPOLAR OPERATION

UNIPOLAR OPERATION
(0 to +10V)

(±5 V)
LOAD

LOAD
BIT
BIT

LSB

12

"

10

"
"

10'

t5VDC

13
14

LSB

-15VDC
OUT
to TO +10VI

15
16

12

12

13

"

"

14

10

10

15VOC

( ·5 TO t5VI

17

I.
IB

I.

DATA 7
IN
6

lOOK
ZERO
'ADJ.

20

18

2OI--o-~_'\NV'v...<
""I--o--I--~---~

21
22
lOOK
GAIN

23
MSB

ADJ.

24

23I--o--I--4-~~N~-..~~~~
MSB

24

1

ADJ

+15VDC

20
5K

.. 15VDC

OUTPUT RANGE SELECTION

OUTPUT CIRCUIT

FULL SCALE lout
~ 2 rnA (BINARYI

t5VDC
OUT

16

17

DATA
IN

1--0--1---....- - - - .

15

SUM. JUNCTION

5K
19 20V RANGE
18 lOV RANGE
15 OUTPUT

5K
17 BIPOLAR OFF.

RANGE
±10V
±5V
±2.5V
+10V
+5V

CONNECT THESE PINS TOGETHER
15 &
15 &
15&
15&
15&

19
18
18
18
18

17
17
17
17
17

&20
& 20
&20
& 21
& 21

19 & 20
19&20

24 REF. OUT

21

For Immediate Assistance. Dial 1-800-233-2765

GROUND

3-7

DAC·HK,'Series
CODING TABLES
UNIPOLAR OPERATION
STRAIGHT BINARY
LSB
MSB

1111 1111
1100 0000
1000 0000
0100 0000
0000 0000
0000 0000

1111
0000
0000
0000
0001
0000

BIPOLAR OPERATION

o

+9.9976

+4.9988

+5.0000
+2.5000
+0.0024
0.0000

+3.7500
+2.5000
+1.2500
+0.0012
0.0000

+ 7.5000

TWO's COMPLEMENT

OFFSET BINARY

OUTPUT RANGES
010 +10V
to +5V

MSB

LSB

111111111111
1100 0000 0000
1000 0000 0000
0100 0000 0000
0000 0000 0001
0000 0000 0000

MSB

LSB

0111 1111
0100 0000
0000 0000
1100 0000
1000 0000
1000 0000

1111
0000
0000
0000
0001
0000

OUTPUT RANGES

±'0V
+9.9951
+5.0000
0.0000
-5.0000
-9.9951
-10.0000

±5V
+4.9976
+2.5000
0.0000
-2.5000
-4.9976
-5.0000

±2.5V
+2.4988

+ 1.2500
0.0000
-1.2500
-2.4988
-2.5000

APPLICATIONS
INTERFACING TO

~

INTERFACING TO 8 BIT DATA BUS

12 BIT DATA BUS

-.------_..-

I
I

I

I

i

_4

....., ••••••• A\

ADDRESS

STROBE

WRITE
STROBE

CALIBRATION PROCEDURE
Select the desired output voltage range and connect the
converter up as shown in the Output Range Selection Table and
the Connection Diagrams. Refer to the Coding Tables.
UNIPOLAR OPERATION
1. Zero Adjustment. Set the input digital code to 0000 0000
0000 and adjust the ZERO ADJ. potentiometer to give
O.OOOOV output.
2. Gain Adjustment. Set the input digital code to 1111 1111
1111 (straight binary) and adjust the GAIN ADJ.
potentiometer to give the full·scale output voltage shown in
the Coding Table.
BIPOLAR OPERATION
1. Offset Adjustment. Set the digital input code to 0000 0000
0000 (offset binary) or 1000 0000 0000 (two's complement)
and adjust the OFFSET ADJ. potentiometer to give the
negative full-scale output voltage shown in the Coding Table.
2. Gain Adjustment. Set the digital input code to 1111 1111
1111 (offset binary) or a 0111 1111 1111 (two's complement)
and adjust the GAIN ADJ. potentiometer to give the positive
full-scale output voltage shown in the Coding Table.

3-8

ORDERING INFORMATION
OPERATING
TEMP. RANGE

SEAL

Oto +70 °C
Oto +70 °C
-55 to +125 °C
-55 to +125 °C

Epoxy
Herm.
Herm.
Herm.

2's Complement Coding
DAC-HK12BGC-2
0 to +70 °C
DAC-HK12BMC-2
0 to +70 °C
DAC-HK12BMM-2
-55 to +125 °C
DAC-HKB-2/883B
-55 to +125 °C

Epoxy
Herm.
Herm,
Herm.

MODEL NO.
Binary Coding
DAC-HK12BGC
DAC-HK12BMC
DAC-HK12BMM
DAC-HKB/883B

The MIL-STD-883B units are available under DESC Drawing
Number 5962-89528.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

DAC-HP16B
16-Bit, Micro-electronic
Dig ital-to-Analog Converter

-

! IWI

FEATURES
16-Bit binary model
Voltage outputs
• 15 ppm/oC Maximum gain tempco
Linearity to ± 0.003%

GENERAL DESCRIPTION
The DAC-HP series are high resolution hybrid D/A
converters with voltage output. They are self-contained,
including a low tempco zener reference circuit and output
operational amplifier, all in a miniature 24-pin double
spaced ceramic DIP package. The DAC-HP16B has 16-bit
binary resolution with ±O.003% linearity. Input. coding is
complementary binary and complementary offset binary for
the DAC-HP16B. This device operates in both unipolar and
bipolar modes with output voltages of 0 to +1OV dc and ±5V
dc respectively. Binary versions with a bipolar output
voltage range of ±10V dc are available, denoted by the
suffix "-1" after the model designation.

MECHANICAL DIMENSIONS
INCHES (MM)

I

f-0~~,AX-l
~=r

0.190 MAX (4.8)

o 150MIN

(3.BI
~

1

OOTQl(0018
KOVAR

I

13.

.12

L

0600--1

[-

(15.2)

I

1__
I

0.100
(2,5)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±O.Ol"

INPUT/OUTPUT
CONNECTIONS
>---_---@OUTPUT

PIN
1
2
3
4
5
6
7
8
9
10
11
12
BIT

1 2 3
lASS

4

5

6

7

8

PIN

FUNCTION

13
14
15
16
17
18
19
20
21
22
23
24

BIT 131N
BIT 141N
BIT 151N
BIT 161N (LSB)
OUTPUT
BIPOLAR OFF
15VDC
GROUND
SUM JUNCTION
GAIN ADJ
+15VDC
REF OUT

9 10 11 12 13 14 15 16

DIGITAL INPUTS

For Immediate Assistance, Dial 1-800-233-2765

FUNCTION
BIT 1 IN (MSB)
BIT 21N
BIT 31N
BIT 41N
BIT 51N
BIT61N
BIT 71N
BIT81N
BIT91N
BIT 10 IN
BIT 11 IN
BIT 121N

LSS

3-9

DAC·HP16B
ABSOLUTE MAXIMUM RATINGS
Positive Supply, pin 23. . . . . .. + laV
Negative Supply, pin 19 ...... -laV
Digitallnput Voltage, pins 1-16 + 5.5V
Output Current, pin 17 . . . . . .. ± 20 rnA

FUNCTIONAL SPECIFICATIONS
Typical at 25·C, and

± 15V supplies unless otherwise noted.

TECHNICAL NOTES
1. It is recommended that these converters be operated with
local supply bypass capacitors of 1 !'F (tantalum type) at the
+ 15V and - 15V supply pins. The capacitors should be connected as close to the pins as possible. In high frequency
noise environments an additional 0.01 /IF ceramic capacitor
should be used in parallel with each tantalum bypass.
2. When laying out the circuit board for this device, isolate the
analog, digital, and power grounds as much as possible from
each other before joining them at pin 20.

INPUTS
Resolution ................
Coding, unipolar output ......
Coding, bipolar output .......
Input Loyie Level,
bitON "0")' .............
Input Logic Level,
bit OFF ("1 ")' ............
Logic Loading ..............

16 bits
Compo Binary
Camp. Off. Binary
OV to +0.8V at -1 mA
+2.4V to +5.5V at +40 pA
1 TTL load

OUTPUTS
Output Voltage Range,
Unipolar' ................
Output Voltage Range,
Bipolar ..................
Output Voltage Range,
"-1" Suffix .............
Output Current, min." ........
Output Impedance ..........

Oto +10V
±5V
±10V
±5 rnA
0.05 ohm

3. The external gain adjustment shown in the diagrams gives an
adjustment of ± 0.2% of full-scale range. The converters are
internally trimmed to ± 0.1 % at full scale. A wider range of
adjustment may be achieved by decreasing the value of the
the 510 Kohm resistor.
4. The zero adjustment, or offset adjustment, has an adjustment range of ± 0.35% of full-scale range. The unipolar zero
is internally set to zero within ± 0.1 % of full-scale range.
5. If the reference output (pin 24) is used, it must be buffered by
an operational amplifier in the noninverting mode. Current
drawn from pin 24 should be limited to ± 10 t-

FULL SCALE lOUT
= 2mA (Binary)

21 SUM. JUNC.

5K'

">----+-----0 17 OUTPUT
r---~V\/\r---()

18 BIPOLAR OFF.

+ - - - - - - - - - - ( ) 24 REF. OUT

+
6.4V
REF.

+ - - - - - - - - - - ( ) W GROUND
10K FOR -1 MODELS

ORDERING INFORMATION

MODEL NO.

OPERATING
TEMP. RANGE

SEAL

DAC-HP16BMC
DAC-HP16BMM
DAC-HPB/883B
DAC-HP16BMC-1
DAC-HP16BMM-1
DAC-HPB-l/883B

Oto +70 °C
-55 to +125 °C
-55 to + 125°C
Oto +70 °C
-55 to +125 °C
-55 to +125 °C

Herm.
Herm.
Herm.
Herm.
Herm.
Herm.

DAC-HP16BGC-1
DAC-HP16BGC

Oto+70°C
Oto +70 °C

Epoxy
Epoxy

The MIL-STD-883B units are available under DESC
Drawing Number 5962-89531.

For Immediate Assistance, Dial 1-800-233-2765

3-11

Contact DATEL for your
Data Acquisition component
needs.
Dial
1-800-233-2765

for
Applications Assistance

3-12

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000rrLX 174388/FAX (508) 339-6356

DAC-HZ Series
12-Bit Hybrid
Digital-to-Analog Converters
FEATURES
•
•
•
•
•

12-Bit binary
5 Output ranges
3 Microseconds settling time
Internal reference and output amplifier
High performance

GENERAL DESCRIPTION
The DAC-HZ Series are high performance, hybrid 12-bit
binary digital-to-analog converters. These converters are
manufactured using thin- and thick-film technology. They
are complete and self-contained with a precision internal
reference and fast output operational amplifier. Pinprogrammable output voltage ranges are provided for a high
degree of application flexibility; the output voltage ranges
are 0 to ±5V dc, 0 to +1OV dc, ±2.5V dc, -5V dc, and ±10V
dc. Current output is also provided.

MECHANICAL DIMENSIONS
INCHES (MM)

I

MSS

1

2

3

4

5

6

7

8

9

10 11 12

LSB

•

I

3E~~~~~~~~~~===I~
<

The DAC-HZ Series contains a precision zener reference
circuit. This eliminates code-dependent ground currents by
routing current from the positive supply to the internal
ground node as determined by the R-2R ladder network.
The internal feedback resistors for the on-board amplifier
track the ladder network resisters, enhancing temperature
performance. The excellent tracking of the resistors results
in a differential nonlinearity tempco of 2 ppm/DC maximum.
The temperature coefficient of gain is 20 ppm/DC maximum
and tempco of zero is ±3 ppm/DC maximum.

BIT

1.290 MAX
(32,77)

..

PIN 1 'DENT.

---L

O.190(4,8)MAX r_---=====----.,~050(1.27)

T

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ :=E'50!3.•,)
--1 f-;'00(2,~~.018(O.46)
ALL DIMENSIONS ARE IN INCHES (MM)

NIC

0®®00®0®0@@@

@

INPUT/OUTPUT CONNECTIONS
5KO

I

I

0"

CONVERTER

1

SKU

J

20V

@
'uv RANGE

@
cuRRENT

@JOUT

.

REFERENC E

INPUT

vo

@

@7 -'VVVV'BlPOlAR
OFFSET

631---j------"N'v-~~IOK ~g; lOOK
_15V

C [0001
TOOOI "F)

GAIN
ADJ

MSB

2.BMEG

1

10K TO lOOt<

GAIN
ADJ
10K TO lOOK

CODING TABLES
UNIPOLAR OUTPUT BINARY INPUT CODE
MSB

0000
0011
0111
1011
1111
1111

0000
1111
1111
1111
1111
1111

BIPOLAR OUTPUT COMPLEMENTARY OFFSET BINARY

COMPLEMENTARY BINARY

INPUT CODE

UNIPOLAR OUTPUT RANGES

LSB

OTO +10V

o TO +5V

OTO -2mA

MSB

0000
1111
1111
1111
1110
1111

+9.9976V
+ 7.5000
+5.0000
+2.5000
+0.0024
0.0000

+4.9988V
+3.7500
+2.5000
+ 1.2500
+0.0012
0.0000

-1.9995 mA
-1.5000
-1.0000
- 0.5000
-0.0005
0.0000

0000
0011
0111
1011
1111
1111

BIPOLAR OUTPUT RANGES

LSB

0000
1111
1111
1111
1111
1111

0000
1111
1111
1111
1110
1111

±10V
+9.9951V
+ 5.0000
0.0000
-5.0000
- 9.9951
-10.0000

±5V
+4.9976V
+ 2.5000
0.0000
- 2.5000
- 4.9976
-5.0000

±2.5V
+2.4988V
+ 1.2500
0.0000
-1.2500
- 2.4988
-2.5000

±1 mA
-0.9995 mA
- 0.5000
0.0000
+ 0.5000
+ 0.9995
+ 1.0000

EQUIVALENT CURRENT MODE OUTPUT CIRCUIT
6.3k
VO UT "t2.5V MAXIMUM
lOUTPUT VOL T AGE

COMPLIANCE I

.'OUT

OAC·HZI2B

i

VOUT

SKU
80n

REa = AO

= 5K

for unipolar operation

= RR

II Ro

= 2.B K

Rea

for bipolar opera'ion

'OUT = 2mA binary

For Immediate Assistance, Dial 1-800-233-2765

3-15

DAC-HZ Series
USE OF HIGH SPEED EXTERNAL OP AMP FOR FASTER SETTLING
Reier to the
Output Range
Selection Table.
11
BIPOLAR OFFSET
Where pin 15 appears
P,,, 20 0,21
use pin X of external
DAC·HZ12B

18

10 v. RANGE

19

20 V. RANGE

amplil ier and scale as
desired

~~~CU~R~R~.~NT~O~U~T~______'04U~T____--1

AI = EXTERNAL HIGH SPEED INVERTiNG
OPAMP.. USE DATEI
AM-SO~

FOR LESS THAN

1.0~SEC

OUTPUT SETTLING

PRECISION, LOW COST BASE LINE RAMP GENERATOR

'2

1281T
BINARY

DAe·
HZ12B

COUNTER
RATE
ADJUST

RESET

+1011

C.O'''''

THIS CIRCUIT DEVELOPS A HIGHLY LINEAR
OUTPUT VOLTAGE RAMP FROM a TO +10V. THE RAMP
CAN 8E MADE AS SLOW AS DESIRED WITHOUT
AFFECTING LINEARITY BY SeTIING THE PULSE
RATE OF THE TIMING CIRCUIT TO THE PROPER
EXTREMELY LINEAR
OUTPUT

VALUE. THE OUTPUT. RAMP IS GENERATED IN
DISCRETE STEPS OF .024" fS IC098 STEPS FOR
FSCHANGEI.

~~-----------------

1--

ORDERING INFORMATION

MODEL NO.
DAC-HZ12BGC
DAC-HZ12BMC
DAC-HZ12BMM
DAC-HZ12DGC
DAC-HZDMC
DAC-HZ12DMM
DAC-HZ12DMM-QL
DAC-HZB/883B
3-16

OPERATING
TEMP. RANGE

o to +70 °C
oto +70 °C

-55 to +125 °C
Oto +70 °C
Oto +70 °C
-55 to +125 °C
-55 to +125 °C
-55 to +125 °C

SEAL
Epoxy
Herm.
Herm.
Epoxy
Herm.
Herm.
Herm.
Herm.

SAMPLE HOLD AMPLIFIERS
Linearity
Model

(Ok)

Acquisition
Time

Aperture
Delay

Aperture
Jitter

Bandwidth Hold Mode
(MHz)
Droop

Case

Page

SHM-HU

0.1

25 ns

6 ns

10 ps

50

50 IJV/lJs

24-Pin DIP

4-23

SHM-7

0.1

40 ns

3 ns

10 ps

40

100 IJV/IJS

24-Pin DIP

4-17

SHM40

0.1

40 ns

3 ns

10 ps

40

100 IJV/IJS

24-Pin DIP

4-5

SHM-6

0.02

2IJs

20 ns

2 ns

5

10 IJV/IJS

32-Pin DIP

4-15

New

SHM-43

0.01

35 ns

5 ns

1 ps

150

5IJV/IJs

24-Pin DIP

4-7

Preliminary

SHM-49

0.01

140 ns

6 ns

15 ps

16

1 IJV/IJS

8-Pin DIP

4-25

SHM-45

0.01

200 ns

6 ns

±50 ps

16

0.51JV/lJs

24-Pin DIP

4-11

SHM-4860

0.01

200 ns

6 ns

±50 ps

16

0.51JV/lJs

24-Pin DIP

4-13

SHM-30

0.01

500 ns

-25 ns

0.1 ns

4.5

0.01 IJV/IJS

14-Pin DIP

4-3

SHM-20

0.01

1IJs

30 ns

1 ns

2

0.81JV/lJs

14-Pin DIP

4-1

SHM-91

0.003

2IJs

15 ns

300 ps

2

5IJV/IJs

24-Pin DIP

4-19

New

SHM-945

0.0004

500 ns

5ns

10 ps

12

0.51JV/lJs

24-Pin DIP

4-21

Advanced

MSH-840*

0.01

750 ns

6 ns

±1 ns

llJV/lJs

32-Pin DIP

4-27

• QUAD Simultaneous Sample-Hold with 4-Channel Multiplexer

For Immediate Assistance, Dial 1-800-233-2765

4-i

Contact DATEL for your
Data Acquisition component
needs.
Dial
1-800-233-2765

for
Applications Assistance

4·ii

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508)339-6356

SHM-20
High-Speed, 0.010/0
Monolithic Sample-hold
7tH 1m

71i1 Ii

iii!! i

FEATURES
Internal hold capacitor
1 Microsecond acquisition time
1 Nanosecond aperture uncertainty
• 0.01% Accuracy
• 0.08 MicroV/microsecond droop rate
Differential inputs

GENERAL DESCRIPTION
DATEL's SHM-20 is a low-cost, complete monolithic sample-hold amplifier which includes an internal 100 pF MOS
hold capacitor. Primarily designed for high-speed analog
signal processing applications, the SHM-20 features a typical acquisition time of 1.0 microsecond for a 10V input step
to 0.01%. Aperture uncertainty is typically 1 nanosecond
and droop rate is as low as 0.08 ~Vlmicr05econd.

MECHANICAL DIMENSIONS
INCHES (MM) MAX.

"j

_ o . 7 9(20.1)
0

1

TYPICAL SAMPLE AND HOLD PERFORMANCE
AS FUNCTION OF HOLDING CAPACITOR

DRIFT CURRENT
VS. TEMPERATURE

'0
1000

c" '

100

of. INTERNAL /
.-.-----------~

~

1.0

,00

0.5

"'
~

~

1-'>.-.-+.......--"'::=;::==:;

'0
0.'

'0

.05

--------I--- I
-25

I

I

r--->,J----'t--...,
r---t'<-'--+"'<--""

0.023
(a,S)

0.100
(2,54)

I

0 +25+50+75-tl00+12b

100

'000

'OK

100K

eli VALUE, PICOFARADS

TEMPERATURE, °C

INPUT/OUTPUT CONNECTIONS
OFFSET
ADJUST

.0.
-INPUT

2
3

+ INPUT
OFFSET ADJUST

•
5

•
•
7

GND

EXT
HOLD

REF
GND

For Immediate Assistance, Dial 1·800-233-2765

INT
COMP

FUNCTION

I

OFFSET ADJUST

-Vs
REFERENCE GROUND
OUTPUT
INTEGRATOR COMPENSATION

9
1O

+Vs
NO CONNECTION

"12

NO CONNECTION

'3

SUPPLY VOLTAGE GROUND

"

8tH CONTROL

EXTERNAL HOlD CAPACITOR

4-1

SHM·20

q

ABSOLUTE MAXIMUM RATINGS
Voltage between Supply Pins (9 & 5) ........................ 40V
Differential Input Voltage ......................................... ±24V
Digital Input Voltage, Pin 14 ............................. +8 to -15V
Output Current, Continuous1 ............................... ±20 rnA

Footnotes
1.
2.
3.
4.
5.

FUNCTIONAL SPECIFICATIONS

6.
7.
8.

Typical at +25 "C, ±15V dc, using internal hold capacitor, unless otherwise
noted

9.

Internal power dissipation may limit output current below +20 mAo
Over full operating temperature range.
Cannot tolerate even a momentary short circuit to ground or either supply.
Voltage gain =+1
Voltage gain =+1, load resistance =1 kQ, load capacitance =50 pF, output volt·
age = 100 mV P·P.
Input voltage = OV, digital input voltage = 3.5V.
Output voltage = 10V step.
A power supply voltage as low as ±12V may be used. However, this will cause
some degradation in performance.
For CH =100 pF. For CH =1000 pF Pedestal Error is 0.1 mY. For CH = 0.011J.F
Pedestal Error is 0.01 mY.

ANALOG INPUTS
Input Voltage Range2, min ........................................................................ ±10V
Input Impedance, min............................................................................... 1 MQ
Input Capacitance, max .............................................................................. 3 pF
Input Offset Vonage, max ......................................................................... 1 mV
Input Offset Voltage Drift, max ...........................................................20 1lV! "C
Input Bias Current, max..........................................................................300 nA
In~ut Offset Current, max .................................. ,....................................300 nA

TECHNICAL NOTES

DIGITAL INPUTS2

2. If an external hold capacitor (CH) is connected to pins 7 and
11 , then a noise bandwidth capacitor with a value of 10%
of the value of the external hold capacitor should be connected from pin 8 to signal ground, pin 6. Exact value and
type are not critical.

Logic Level High, VIN ("1 ") min.,
Hold Mode .................................................................................................2.DV
Logic Level Low, VIN ("0"), max,
Sample Mode...................... ,.....................................................................0.8V
High Levellnut Current, max...................................................................0, 1 IJ.A
Low Level Input Current, max..................................................................10 IJ.A
OUTPUT
Output Voltage Range2, min .................................................................... ±10V
Output Current2, min •............................................................................ ±1 0 mA
Output Impedance, Hold Mode2 .................................................................. 1Q
PERFORMANCE
Accuracy ...................................................................................................0.01%
DC Gain, min ..................................................................................... 3 x 105 VN
Gain Accuracy! ....................................................................... 0.5 x 10.4% FSR
Gain Error Tempco ....................................................................... ±D.6 ppm/ "C
Gain Bandwidth Product5 ...................................................................... 2 MHz
Hold Mode Feedthrough,
10V p.p, 100 KHz2 ................................................................................. 2 mV
Droop Rate ............. ;.......................................................................... 0.08IlV/fIS
Droop Rate2 ........................................................................................ 1.2IlV/fIS
Charge Transfe~ ...................................................................................... 0.1 pc
Pedestal Error9......•..........................•........•.......................•...•.................... 1 mV
Total Output Noise, DC to 10 MHz, max...................................... 200 IlV RMS
Power Supply Rejection Ratio min.
+VS .........................................................................................................80 dB
·VS ..........................................................................................................65 dB
DYNAMIC CHARACTERISTICS
Acquisition Time,
10V to 0.1% ............................................................................................0.8f1S
10V to 0.01% ..........................................................................................1.0flS
Aperture Delay Time ................................................................. 30 nS
Aperture Uncertainly Time ...........................,............................................. 1 nS
Aperture Time ............................................................................................25 nS
Hold Mode Settling Time, 0.01 W .......................................................... 185 nS
Rise Time ..................................................................................................100 nS
Overshoot ....................................................................................................15%
Slew Rate7 ..............••...•.......•........•.....•....................•...........•....•.......•..... 45 V/fIS

1. A printed circuit board with ground plane is recommended
for best performance. The supply pins (pins 5, 9) should
be bypassed to ground with a 0.01 to 0.1 I1F ceramic capaCitor as close to the pins as possible.

3. The Hold Capacitor (CH) should have high insulation resistance and low dielectric absorption to minimize droop error.
For operating temperatures up to +70 °C, polystyrene dielectric is a good choice. Any PC connections to the hold
capaCitor terminal (pin 11) should be kept short and "guarded" by the ground plane to avoid errors due to drift currents
from nearby signal lines or power supply voltages.
4. The offset adjust may be used to eliminate the pedestal error by connecting a 10K ohm pot between pins 3 and 4
and connecting the wiper to the -15V supply, pin 5.

OPEN LOOP GAIN ANO PHASE RESPONSE

120

""- ~
""- """80
1""- ........ ""- ""eo
""- ""Gain ......

100

45

100

90

-......

(CH = 100 pF)

....... Gain

......

\.
\

1-...

'l

lK

10K

lOOK

w

0

ui
Ul

135

-____..,1

1-1:.:2'--_ _....1

8

StH

StH
OUTPUT

SHM-43

-U-

• Connections shown for StH. if opposite polarity sample hold
command is desired. connect pin 6 to +5V (pin 4). Using
opposite polarity. StH command will not effect speed or
accuracy.

• The SHM-43 has been optimised for driving 100n loads.R1
should be chosen so that the total load on the StH is loon.

TEST METHOD
+5V
StHCOMMAND

I SAMPLEI

HOLD

OV(GND)
+IV
ANALOG INPUT
-IV

,

,

ACQUISITION
: TIME:
, 25 nS '
, 0.01% ,

....

_.

+IV

SAMPLE HOLD OUTPUT
-IV

,

FEEDTHRU
82 dB

20 nS '
.
0.01% ,
,

,.,.25 nS

~

,, 0.01%

'

ORDERING GUIDE
MODEL NUMBER

TEMP. RANGE

SHM-43MC
SHM-43MM

Oto +70 °C
-55 to +125 °C

Contact DATEL for availability of MIL-STD-883 versions.

For Immediate Assistance. Dial 1-800-233-2765

4-9

Contact DATEL for up-to-date information on
products covered by "Advanced" and
i'Preliminary" product data sheets.
Dial
1-800-233-2765

for
Applications Assistance

4·10

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

SHM-45
High-Speed Hybrid
Precision Sample-hold
FEATURES
Ideally suited for DATEL's Ultra-fast ADC-500/505 A/D
converters
200 nSec Maximum acquisition time
• 0.01% accuracy
• 100 nSec Maximum sample-hold settling time
74 dB Feedthrough attenuation
±50 pSec Aperture uncertainty
Operable at different gain settings

MECHANICAL DIMENSIONS
INCHES (MM)

GENERAL DESCRIPTION
DATEL's SHM-45 is a high-speed, high accuracy samplehold designed for precision, high-speed analog signal processing applications. Manufactured with modern, high quality hybrid technology, the SHM-45 features excellent
dynamic speCifications including a maximum acquisition
time of only 200 nSec for a 10V step to 0.01 %. Sample-tohold settling time to 0.01 % accuracy is 100 nSec maximum
with an aperture uncertainty of ±50 pSec.

Lo800 MAX-.J
!(20,31 I

~I
o 150
MIN
1381

I

T

----,:--

0 010

I

1\

I

I_
0.190 (',91 MAX

f

0018

KOVAR

13,

112

The SHM-45 is a complete sample-hold circuit, containing a
precision MOS hold capacitor and a MOSFET switching
configuration which results in faster switching and better
feedthrough attenuation. Additionally, an FET input amplifier
design allows faster acquisition and settling times while
maintaining a considerably lower droop rate.

r
I

---.J

1__ 0 100

115.21--1

1(2,51

0600

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±O.Ql~

INPUT/OUTPUT CONNECTIONS
>---~---;:;: OUTPUT

~
1
2
3

•
5
6
7

__

-.-+-+---I~;j

- 15V

8
9
10
11
12

FUNCTION
FUNCTION
PIN
13 INPUT A
OUTPUT
14
RANGE
NIC
15 GROUND
NIC
16 NIC
NIC
17 NIC
NIC
16 NIC
NIC
19 NIC
NIC
20 NIC
N/C
+5VSUPPlY
21 GROUND
15VSUPPlY
GROUND
22
23 GROUND
NIC
HOll) COMMAND 24 +15V SUPPLY

SYSTEM
GROUND

For Immediate Assistance, Dial 1-800-233,2765

4-11

SHM·45
Footnotes

ABSOLUTE MAXIMUM RATINGS

1.

± 15V Supply Voltage (Pins 24, 22). . ..
+5V Supply Voltage (Pin 9). . .. . . . . ..
Analog Input (Pin 13,14)1.. . . . . . . . . ..
Digital Input (Pins 11, 12). . . . . . . . . . ...
Output Current 2 . . . . . , . . . : . . . . . . . . .

± 18V
-0.5V to + 7V
±18V
-0.5V to +5.5V
±65 mA

FUNCTIONAL SPECIFICATIONS
Specified at +25 °C, gains of -1, ±15V, and +5V power
supplies unless otherwise specified.
ANALOG INPUTS (Pin 13, 14)

MIN.

TYP.

MAX.

UNITS

Input Volt. Range 1
Input Impedance

±10

1

-

V
Kohm

-

+0.8
40
-1.6

V
V

-

-

±10.25

+11.5

LOGIC INPUTS (TTL)
Logic 1 Voltage
Logic 0 Voltage
Logic 1 Current
Logic 0 Current

-

+2.0

-

Input signal times gain.should not exceed the output voltage range.
2. The SHM-45 output is current limited at approximately
±65 mAo The device can withstand a sustained short to
ground. However, shorts to either supply will cause permanent damage.
3. Sample-to-Hold offset error (Pedestal) is constant regardless of input/output level.
4. FS is defined as 10 Volts.

TECHNICAL NOTES
1. All ground pins (10, 15, 21, 23) should be tied together
and connected to system analog ground as close to the
package as possible. It is recommended to use a
ground plane under the device and solder all four ground
pins directly to it. Care must be taken to insure that no
ground potentials can exist between pin 10 and the other
ground pins.

IJA

2.

V
mA
ohm
pi

Although the power supply pins (9, 22, 24) are internally
bypassed to ground with 0.01 ~F ceramic capacitors, additional external 0.1 ~F to 1 ~F tantalum bypass capacitors may be required in critical applications.

3.

A logiC 1 on the HOLD COMMAND input, pin 12 will put
the device in the sample mode. In this mode, the device
acts as an inverting unity gain amplifier and its output will
track its input. A logic 0 on pin 12 will put the device in
the hold mode, and the output will be held constant at
the last input level present when the hold command was
given.

4.

The maximum capacitive load to avoid oscillation is typically 250 pF. Recommended resistive load is 500n, although values as low as 250n may be used. Acquisition
and sample-to-hold settling times are relatively unaffected by resistive loads down to 250n and capacitive loads
up to 50 pF. However, higher capacitances will affect
both acquisition and settling time.

5.

TAe RANGE pin of the SHM-45 is usable to select different output voltage ranges. The output voltage ranges
are selectable by hardware programming the SHM-45 to
operate at different gains. Table 1 shows the range selection details.

mA

ANALOG OUTPUTS (Pin 1)
Output Volt. Range
Output Current 2
Output Impedance
Max. Capacitive Load

-

-

±40

0.1
250

-

-

-1.0
:to.05
:to.5
:to.005
±1
±1

:to.l
is
:to.Ol
is
±5

VN
%
ppm/"C
%FS
mV
mV

-

16
300

-

MHz
V/I!S

-

200
170

-

160
100
6
±1

-

60
40

100

-

0.5
15
1.2
·74

5

TRANSFER CHARACTERISTICS
Gain
Gain Error
Gain Tempco
Linearity Error 5
Initial Offset Voltage
·Offset Step (pedestal) 3

-

-

DYNAMIC CHARACTERISTICS
Frequency Response
Small Signal (-3 dB)
Slew Rate
Acquisition Time 4
10V step to 0.01% FS
10V step to 0.1% FS
Aperture Delay Time
Aperture Uncertainty (Jitter)
Settling Time
10V to :to.Ol% FS
10V to :to.l% FS
Droop Rate
aIT = +25 "C
aIT = +70 "C
aIT=+125"C
Feedthrough Rejection

-

-

-

is

-

-

nS
nS
nS
pS
nS
nS
j.lV/I!S
j.lV/I!S
mV/1!S
dB

POWER SUPPLY REQUIREMENTS
Supply Voltage Range, :±15V
+5V
Power Supply Rej. Ratio
Current Drains, +15V
-15V
+5V
Power Consumption
PHYSICAUENVIRONMENTAL
Operating Temperature Range
SHM-45MC
SHM-45MM/MM-QL
Storage Temperature Range
Thermal Resistance
Junction-to-Case
Case-to-Ambient
Package Type
Pins

4-12

-

:ill

is
:to.5
+21
-22
+17
730

+25
-25
+25
875

%
%
mVN
mA
mA
mW
mW

Table 1. Jumper Selections for
VIN

-5 to +5
-10to+10
oto-5
o to -10
-10to +10
Oto-10

VOUT

Ranges

VOUT

Connect
. Pins

Operating
Gain

+10to -10
+10to -10
o to +10
Oto +10
+5 to -5
oto +5

13 to 14

-2
-1
-2
-1
-0.5
-0.5

13 to 14

1 to 14
1 to 14

ORDERING INFORMATION
o to +70 "C (ambient)
·55 to +125 "C (ambient)
-65 to +150 "C
0.015 "C/mW
0.035 "C/mW
24-pin ceramic
Kovar (0.010 x 0.018)

MODEL

TEMP. RANGE

SHM-45MC
SHM-45MM
SHM-45MM-QL

Oto +70 °C
-55 to + 125°C
-55 to +125 °C

For availability fo MIL-STD-883B versions,
contact DATEL.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

SHM-4860
High-Speed, 0.010/0
Hybrid Sample-Hold
FEATURES
200 Nanoseconds maximum acquisition time
• 0.01 % Accuracy
• 100 Nanoseconds maximum sample-hold settling
time
• 74 dB Feedthrough attenuation
• ±SO Picoseconds aperture uncertainty

GENERAL DESCRIPTION
DATEL's SHM-4860 is a high-speed, highly accurate sample-hold designed for precision, high-speed analog signal
processing applications. Manufactured using modern, highquality hybrid technology, the SHM-4860 features excellent
dynamic specifications including a maximum acquisition
time of only 200 nanoseconds for a 10V step to 0.01%.
Sample-to-hold settling time, to 0.01% accuracy, is 100 nanoseconds maximum with an aperture uncertainty of ±50
picoseconds.

MECHANICAL DIMENSIONS
INCHES (MM)

1-

L I

0.150 MIN
(3,8)
. -

0.800 MAX. _I
(20.3) ~

0.010

I

The SHM-4860 is a complete sample-hold circuit, containing a precision MOS hold capacitor and a MOSFET
switching configuration which results in faster switching and
better feedthrough attenuation. Additionally, an FET input
amplifier design allows faster acquisition and settling times
while maintaining a considerably lower droop rate.

l(

DOT ON TOP

PIN 1

f

0.018

KOVAR

··,
····
·
--.,·,

13,

,,
,

"2

REFERENCES

IO-.'-90-(.i.4,S-)-MAX-.

r

1ru....

BOTTOM

L
1- -

VIEW

,'200

1
.
.
·· ...1

··,,
·

11 SPACES
AT 0.100
EA (2.5)

(33,3)

241

--0

0.500
(15.2)

---.I 1_o.100
-l 1(2.5)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ± 0.01"

INPUT/OUTPUT CONNECTIONS
lKO

INPUT

l:j\----'I,W\~-i---,

>-------1J)1

OUTPUT

PIN
1
2
3
4
5
6

7

HOLD COMMAND (Jjllr----i---...,
HOLD COMMAND 1
"'~+-+----!22-15V

8
9
10
11
12

FUNCTION
OUTPUT
NfC
N/C
N/C
N/C
N/C
NfC
N/C
+5V SUPPLY
GROUND
HOLD COMMAND
HOLD COMMAND

PIN
13
14
15
16
17
18
19
20
21
22
23
24

FUNCTION
INPUT
N/C
GROUND
N/C
N/C
NfC
NfC
N/C
GROUND
-15V SUPPLY
GROUND
+ 15VSUPPLY

SYSTEM
GROUND

For Immediate Assistance, Dial 1-800-233-2765

4-13

SHM·4860
FUNCTIONAL SPECIFICATIONS
Typcal at 25°C, ±15V, and +5V supplies unless otherwise noted.
ANALOG INPUT/OUTPUT

MIN.

TYP.

MAX.

Input/Output Voltage Range
Input Impedance
Output Current'
Output Impedance
Maximum Capacitive Load

±10.25

±11.5
1

-

-

-

0.1
250

±40

-

UNITS
V
kQ
mA
kQ

pF

DIGITAL INPUT
Input Logic Level
Logic 1
Logic: 0
Loading
Logic 1
Logic 0

+2.0
0

-

5.0
0.8

V
V

-

-

40
-1.6

mA
mA

-

-

1.0
±a.05
±a.005
±a.5

±a.l
±a.Ol
±5

-

:12.5
±a.5

:120
±5

mV
ppm/ 'C

-

±3

±15

ppm

-

±4

-

ppm

-

160
100
90
75

200
170

nS
nS
nS
nS

-

60
40
180
6
±50
300
16
0.5
15
1.2
75

100

-

±3
±5
±a.5

-

%
%
mVIV

-

+21
·22
+17
730

+25
-25
+25
875

mA
mA
mA
mW

TRANSFER CHARACTERISTICS
Gain
Gain Accuracy
Gain Linearity Error3
Sample-Mode Offset Voltage
Sample-to-Hold Offset Error
(Pedestal)4
Gain Tempeo (Drift)
Sample-Mode Offset Drift",
FSR/oC
Sample-to-Hold Offset
(Pedestal) Driftl

-

VIV
%
% FS
mV

DYNAMIC CHARACTERISTICS
Acquisition Time
10V to ±a.Ol% FS
10Vto±a.l% FS
10Vto±l% FS
1Vto±l% FS
Sample-to-Hold, Settling Time
10V to ±a.Ol % FS
10Vto ±a.l% FS
Sample-to-Hold Transient
Aperture Delay Time
Aperture Uncertainty (Jitter)
Output Slew Rate
Small Signal Bandwidth (-3 dB)
Droop: +25 'C
+70 'C
+125'C
Feedthrough

-

-

5

-

nS
nS
mV pop
nS
pS
j.lV/1lB
MHz
j.lV/1lB
j.lV/1lB
mV/1lB
dB

POWER REQUIREMENTS
Voltage Range: ±15V
+5V
Power Supply Rejection Ratio
Quiescent Current Drain
+15V
-15V
+5V
Power Consumption

-

ABSOLUTE MAXIMUM RATINGS
± 15V Supply Voltage (Pins 24, 22) .•..•
+ 5V Supply Voltage (Pin 9) .......... .
Analog Input (Pin 13)1 .............. .
Digitallnput (Pins 11, 12) •••••.......•
Output Current' .•......••••.......•

±18V
-O.5V to + 7V
±18V
-O.5V to +5.5V
+65 rnA

TECHNICAL NOTES
1. All ground pins (10, IS, 21, 23) should
be tied together and connected to system analog ground as close to the
package as possible. It is recommended to use a ground plane under
the device and solder all four ground
pins directly to it. Care must be taken to
insure that no ground potentials can exist between Pin 10 and the other
ground pins.
2. Although the power supply pins (9, 22,
24) are internally bypassed to ground
with 0.01 p.F ceramic capacitors, additional external 0.1 p.F to 1 p.F tantalum
bypass capacitors may be required in
critical applications.
3. A logic "0" on the HOLD COMMAND
INPUT, (Pin 11) (or a logic "1" on the
HOLD COMMAND INPUT, Pin 12) will
put the device in the sample mode. In
this mode, the device acts as an inverting unity gain amplifier and its output
will track its input. A logic" 1" on Pin 11
(logic "0" on Pin 12) will put the device
in the HOLD mode, and the output will
be held constant at the last input level
present when the hold command was
given.
If the HOLD COMMAND INPUT (Pin
11) is used to control the device, Pin 12
must be tied to digital ground. If HOLD
COMMAND INPUT (Pin 12) is used to
control the device, Pin 11 must be tied
to +5V.
4. The maximum capacitive load to avoid
oscillation is typically 250 pF. Recommended resistive load is 5000,
although values as low as 2500 may be
used. Acquisition and sample-to-hold
settling times are relatively unaffected
by resistive loads down to 2500 and
capacitive loads up to 50 pF. However,
higher capacitances will affect both acquisition and settling time.

PHYSICAL/ENVIRONMENTAL
Operating Temperature Ranges
SHM-4860 MC
SHM-4860 MMlMM-QL
Storage Temperature Range
Package Type
Pins

Oto+70'C
-55 to +125 'C
-65to+150'C
24 Pin Ceramic
Kovar (0.010 x 0.018)

Footnotes
1. Input signal should not exceed the supply voltage.
2. The SHM-4860's output is current limited at approximately ±65 mAo The device
can withstand a sustained short to ground. However, shorts from the output to either supply will cause permanent damage. For normal operation the load current
should not exceed ±40 mAo
3. Fulll Scale (FS) =10V. Full Scale Range (FSR) =20V.
4. Sample-Io-Hold offsel error (Pedestal) is constant regardless of input/output level.

4-14

ORDERING INFORMATION
MODEL NO.

OPERATING
TEMP. RANGE

SHM-4860MC
SHM-4860MM
SHM-4860MM-QL

Oto+70°C
-55 to + 125°C
-55 to + 125 °C

For availability of MIL-STD-883B versions,
contact DATEL.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ffEL (508) 339-3000ffLX 174388/FAX (508) 339-6356

SHM-6
0.02%, 2.0 Microseconds
Microelectronic Sample-hold
i!in i

1!II!1J

Eli

7

FEATURES
• 0.02% Accuracy
2.0 Microseconds acquisition time
2 Nanoseconds aperture uncertainty
5 MHz Bandwidth, small signal
• 25 mA Output current
Gain-programmable from ±1 to ±10

GENERAL DESCRIPTION
DATEL's SHM-6 is a high-speed, high accuracy sample·
hold circuit manufactured with thin-film hybrid technology.
This design offers the speed and performance of modular
sample-holds with the compactness and integrity of
advanced hybrid techniques. The unit's excellent highspeed characteristics include a guaranteed acquisition time
of 700 nanoseconds to 0.1 % accuracy and 2.0 microseconds to 0.02% for a 10 volt change.

MECHANICAL DIMENSIONS
INCHES (MM)
L - l . 1 0 1 MAX
(28,0)

1-

I

~

0.190('.') MAX

"rJ

-'11
O.I50MI~(3,8)U__
0.010

The SHM-6 is a complete sample-hold containing a precision MOS holding capacitor. The input amplifier is an open
loop transductance amplifier which can be externally connected for closed loop gains from ±1 to ±10. In addition to
its speed, accuracy and selectable gain, the SHM-6 has an
output capability of 25 mAo These features allow this unit to
offer an unusual degree of adaptability.

'" .IT

x 0.160 (4,1) KOVAR

, 16

BOTTOM

ATO.l00EA 1.712

- ·"1.1
L ____

r-

0.900
(22,81

_-.J_ 0.100
I

(2,5)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, to.01 ~

.'5V

-15V

-j
I

.5V

INPUT/OUTPUT
CONNECTIONS
PIN
1
2
3

4
5

10

L--'1/VI,_2Kll--,

ANALOG COMMON

OFFSET ADJUST
Non~lnvertlng

A'

Sample/Hold Configuration, Gain = +1
R3

1

~ -IN
?

AI

1

~"N

D---'\IVv---- +IN
11

OUTPUT

~~/T

Non-Inverting Sample/Hold
Configuration, Gain = 1 + R21R1

~~fTPUT

•
•
7

•

I.

11

FUNCTION

• IN
_IN
NC

OFFSET ADJUST
NC
OFFSET ADJ. (Wrpet)
NC
OFFSET ADJUST
NC
ANALOG COMMON

OllTl'U

12

NC

13

NC

I.

C.H. (OPTIONAL)

,.

NC

IS

SJH ADJ. (Wiper)

PIN

FUNCTION

17

SfH STEP ADJUST .

IB

5/H STEP ADJUST.

"

NC

20
21
22
23
2.
25
26
27
28
2'
30
31
32

NC
NC
DIGITAL CONTROL
NC

.Vde
NC
POWER GROUND
NC

+15Vdc

NC
NC

-15Vdc
NC

Inverting Sample/Hold

Conllgurallon, Gain = -R2/Rl

For Immediate Assistance, Dial 1-800-233-2765

4-15

SHM·6
TECHNICAL NOTES

ABSOLUTE MAXIMUM RATINGS
Positive Supply. . . .. . .. .. .. . . . ....
Negative Supply. . . . . .. .. .. . . .. ...
Logic Supply .........••••....•.••
Digitallnput Voltage. . . • • • . . . • . • . ••
Analog Input Voltage .• • • • • . . . . . . ..
Differentiallnput Voltalile • . • . • • . • • ••

+ 18V
-18V
+ 7.0V
+ 5.5V
± Vs
± 30V

FUNCTIONAL SPECIFICATIONS
Typical at 25°C, ±15Vand +5V supplies unless otherwise noted.
INPUT AMPLIFIER SPECIFICATIONS
Offset Voltage. . • .. .. • .. . . . . . . . ...
Offset Voltage Tempeo •.•.....•.••
Offset Current. ..•....••••.....•.•
Offset Current vs. Temp •.•.•.....•.
BiasCurrent ...•...•.•.•........•
Input Resistance .••...•••.•......•
Common Mode Voltage Range .....•
Common Mode Rejection Ratio ......
Open Loop Gain ••••.•...••.....••
Gain Bandwidth Product ....••.••••
Power Supply Rejection Ratio ••.••••

± 2 mV
± 100 p.V/oC
1 nA maximum
Doubles every 10°C
10 nA maximum
lOS 11
± 10V minimum
74 dB minimum
1Q6V/V
5 MHz
0.004%/% Supply

DIGITAL INPUT CHARACTERISTICS
Digital Control Logic ............... DTL, TTL
Input Logic Level, Sample Mode ..... OV to + 0.8V at - 3.2 mA
Input Logic Level, Hold Mode •.•.... + 2.0V to + 5.0V at + 80p.A
ANALOG OUTPUT CHARACTERISTICS
Output Voltage Range . . • • • . . . . . . .. ± 10V minimum
Output Current • • • • • . • . • • • • . . . . . .. ± 25 mA maximum
Output Resistance ................ 0.1 11 maximum
SAMPLE/HOLD CHARACTERISTICS (Noninverting unity gain)
Acquisition Time,
10VSteptoO.l% .•.•.•.•....... 700 nsec. maximum
Acquisition Time,
10V Step to 0.02% ..••.•.••••••• 1.5 p.Sec. typical
2 "sec. maximum
Aperture Delay Time .••..•.•••••••• 20 nsec.
Aperture Uncertainty Time •....•.•.. 2 nsec.
Sample to Hold Error •••.....•.•..• Adjustable to Zero
Hold Mode Voltage Droop .........• 10 "V/p.sec. maximum
Hold Mode Feedthrough •.........•• 0.02% maximum
Offset .....••..••..............• Adjustable to Zero
Gain ...•..........•............• ± 1 to ± 10
Gain Error .......••..•..•..•....• 0.01 % maximum
Nonlinearity, Your
±10V •••••.••• 0.02% maximum
Full Power Bandwidth,
Your
± 10V ..•••••.........•• 500 KHz
Slew Rate .....•.•.•.•........... 40 Vli ..•.••
Sample Controllnputs3 ••.•••••••••

±2.5V dc
± 5V dc
50 ~A
10 kO
500
Differential Eel 10.000
Positive Pulse on Pin 3 and
Negative Pulse on Pin 1 gives
Hold Mode.

OUTPUTS
Output Voltage Range', minimum ...
maximum ..
Output CurrenI' • • • • • • . . . . • • • . • • ..
Outputlmpedance4 • • • • • • • • • • • • • ••

±2.5V dc
±5V dc
± 30 mA
130

PERFORMANCE
Linearity ± 2.SV input volt. range ...
± SV input volt. range .•...
Gain ...........................
Gain Tempco, maximum. . . . . . . • . ..
Sample-to-Hold Offset Error,
maximum ............•....•...
Sample-Mode Offset Voltage,
maximum •..••...•.•.•......•.
Sample-to-Hold Offset Voltage Drift ..
Sample-Mode Offset Voltage Drift .••
Hold Mode Feedthrough, maximum .•
Hold Mode Droop •••••..••••......

0.1 %
0.2%
+0.995
± 33 ppm/oe
40 mV
±20 mV
75 ~v/oe
± 250 ~v/oe
-66 dB
100 ~V/microseconds

ABSOLUTE MAXIMUM RATINGS
Positive Supply .... .. .. .. .. .. ....
Negative Supply.. .. . . .. . . .. .. . . ..
Digitallnput Voltage ....•.•.•.....
Analog Input Voltage. . . . . . • . . . • . .•

+ 18V dc
- 18V dc

± 5V dc
± 5V dc

TECHNICAL NOTES
·1. The. use of good high Jrequency circuit board layout techniques is required for rated performance. The power common, analog common, and input common pins are not
connected internally and therefore must be connected externally as directly as possible thorugh a low inductance,
low resistance path. The extensive use of a ground plane
for all common connections is highly recommended.
2. Although they are internally bypassed with 0.033 IlF capacitors the supply pins should be externally bypassed
with 0.1 IlF ceramic Chip capacitors mounted as close to
the supply pins as possible.
3. The SHM-7 inputs and outputs are sensitive to unusual
loading or long lines. The analog input must be nonreactive so that leads should be short and purely resistive.
Also, the complementary ECl driver should be as close as
possible to pins 1 and 3 to minimize lead lengths to these
pins.
4. The maximum, differential, digital input voltage is ±5V.
For example, if pin 3 is at a potential of -5V, pin 1 may not
exceedOV.

DYNAMIC CHARACTERISTICS
Acquisition Time,

2V to 0.1 % ......
2V to 1% .......
4V to 0.1% ......
4V to 10Al .......
10VtoO.l%" .....
10Vto 1%" • . • . . •
Aperture Delay Time .•....•.•.•...
Aperture Uncertainty Time,
maximum ...•...•.............
Hold Mode Settling Time .•.•......•
Sample-Mode Bandwidth; -3 dB ....•
Sampling Rate' ..................

+15V

40 nanoseconds
25 nanoseconds
50 nanoseconds
35 nanoseconds
60 nanoseconds
45 nanoseconds
3 nanoseconds

0.1 "F

TYPICAL CONNECTION

+~
19

10
20
40
17

picoseconds
nanoseconds
MHz
MHz

POWER REQUIREMENTS

~-+_.()

OUTPUT

Positive Supply, Pin 19 .....•.•.•.. + 15V dc ± 0.5V dc at 60 mA
Negative Supply, Pin 9 ...••..•.... -15V dc ±0.5V dc at 60 mA
PHYSICAUENVIRONMENTAL
Operating Temperature Ranges
SHM-7MC ••..........•........ ooe to + 70°C
Storage Temperature Range .•...... -65°C to + 150°C
Package Type .........•.•....... 24 Pin, hermetically sealed,
ceramic.
Pins ............................ 0.010 x 0.D18 Inch Kovar

Eel 10,000
DtFF LINE
DRIVER

O.1I'F

FOOTNOTES:

1. The SHM-7MC has a maximum inputloulpulvoltage range of ±5V.
2. Should be purely resistive. See technical note 3.

-tSV

3. Inputlogic voltage levels are V" "0" = -l.SV to -l.4V, and V;o "1" = -0.7V to
-1.0SV.
4. Specified for each output, both outputs may be tied together for decreased output impedance and increased output current.

ORDERING INFORMATION

S. For a ± 2V input.
6. 10V is a step from -SV to +SV dc.

4-18

MODEL NO.

OPERATING
TEMP. RANGE

SHM-7MC

o to +70 °C

DATEl, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

SHM-91
Precision Dual
Sample-and-Hold
FEATURES
• Contains two.precision sample-hold amplifiers
• Designed for use with 12- or 14-bit A/D converters
Fast acquisition time (2 !lSec to ± 0.002%)
• No external components required
• Wide temperature range (-55 to +125°C available)
• 24-pin dual in-line package
Multiplexed inputs and outputs for application
versatility

MECHANICAL DIMENSIONS
INCHES (MMJ
~0800 MAX-------.J

1-

(20,3)

..L I

r

1

GENERAL DESCRIPTION

01SOMIN
13.81
--.----

f

KOVAR

01'

I

The SHM-91 consists of two separate sample-hold amplifiers, _each independently controlled to allow flexibility when
implementing a system design. Each half consists of a twochannel input multiplexer and a sample-hold amplifier. The
output of each sample-hold is-available directly or through a
multipelxed output.

1,-0.-'9-0(.L4.9-)-MA-X

0010)1 0018

1

DATEL's SHM-91 is a high performance/high resolution
dual sample-hold amplifier. This hybrid device is designed
for multi-channel analog signal processing applications with
12· to 14-bit accuracy requirements. Typical applications for
this device would demand high speed and high resolution.
The SHM-91 offers both of these features at a low cost.

~

13.

BOTTOM
vIEW

I

1__

1

a 100
12.5)

NOTE: PINS HAVE 0.025 INCH STANDOFF FROM CASE, ±O.Ol~

INPUT/OUTPUT
CONNECTIONS

' - -......-+v

BEN
'lB
2B

BSAMPLE

For Immediate Assistance, Dial 1-800'233-2765

PIN

SIGNAL

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

AOUT
GROUND
lA
2A
+15V de
-15V de
AEN
AADDR
A SAMPLE
NO CONNECTION
MUXOUT
GROUND
BOUT
GROUND
lB
2B
+15Vde
-15V de
BEN
BADDR
B SAMPLE
NO CONNECTION
MUXOUT
GROUND

ORDERING INFORMATION
MODEL

TEMP. RANGE

SHM-91 Me
SHM-91 MM

0 to +70 °e
-55 to +125 °e

4-19

SHM·91
TIH SWITCHING

ABSOLUTE MAXIMUM RATINGS
Positive Supply (Pins 5,17) . . . . ..
Negative Supply (Pins 6, 18) . . . ..
Digital Input Voltages
Address, Sample (Pins 8, 9,
20, 21) .....................
Mux. Enable (Pins 7, 19) . . . . . ..
Analog lnput Voltage.. . . . . . . . . ..

-0.5V dc to +18V dc
+0.5V dc to -18V dc

-0.5V dc to + 7V dc
-18V dc to + 18V dc
±15V dc

FUNCTIONAL SPECIFICATIONS
The following specifications apply over the full operating
temperature range and power supply range unless otherwise
specified. For test aspects, contact the factory.
DESCRIPTION

MIN.

ANALOG INPUTS
Input Voltage Range .....
Input Impedance ......
Input Capacitance' ..... ..
Input Bias Current .....
LOGIC INPUTS (TTL/CMOS
Logic 1 voltage . ....... ..
Logic 0 voltage . ......
Logic 1 cu rrent ......
Logic 0 current ..........
ANALOG OUTPUTS
Direct Output (pins 1, 13)
Output Voltage Range .
Output Current ...... .. '
Output Impedance ......
Mux. Output (pins 11, 23)
Output Voltage Range ...
Output Current ... ......
Output Impedance. ...
OFF Output Leakage ..
OFF Output Capacitance.
Output Switch Delay.
PERFORMANCE
Gain (1) . ..... .....
Gain Error (1) .... .......
Gain Tempco ..........
Linearity Error (1) . . . . . . . .
Linearity Tempco... ......
Initial Offset Voltage (2) '"
Offset Tempco., Hold Mode
Crosstalk, channel-tochannel. .... ... ......
Offset Tempco. Tracking
(Avs. B) .... ..... ... .'
Gain Tracking (A vs. B) .. ..
Gain Tracking Tempco... ..

±10
1M

-

-

2.4

-

-

±10
10

-

TYPICAL

MAX.

-

-

-

30
1.5

-

-

0.8
1
1

-

1

-

2

-

UNITS
V
Ohm
pi
p.A
V
V
p.A
p.A

V
mA
Ohm

±10
10

-

-

-

50

150
1
20
500

V
mA
Ohms
p.A
pi
nS

-

-

-

-

-

-

-

+1

-

1

-

±0.02
%
ppm/oC
10
0.003 %FSR
ppm/oC
±1
mV
±1
50
/LV/OC

-

20

-90

-

-

dB

-

±10

±20
±50
±0.5

/LV/OC
ppm
ppm/OC

-

-

PHYSICAL/ENVIRONMENTAL
Thermal Resistance
Junction-to-Case
Case-to-Ambient
Operating Temp. Range
SHM-91MC
SHM-91MM
Storage Temperature Range
Package Type

4-20

-

0.Q15
0.035

-

°C/mW
°C/mW

o to +70 °C (ambient)
-55 to +125 °C (ambient)
-55 to +125 °C
24-pin hermetically sealed
ceramic DIP

Aperture Delay Time
Aperture Uncertainty (Jitter)
Offset Step (2)
Settling Time to ±2 mV
HOLD MODE DYNAMICS

MIN.

TYP.

-

15
300

-

-

Droop Rate: +25°C
+85°C
+125°C
-90
Feedthrough Rejection
HOLD·;ro-TRACK DYNAMICS,

-

-

-

Acquisition Time
1OV Step to ±O.2 mV
10V Step to ±1 mV

-

MAX.

1,000
±1
600

UNITS
nS
pS
mV
nS

5
10
100

I'V/I'S
I'ViI'S
I'V/I'S
dB

-

2
1.5

I'S
I'S

±15

±15.5

-

30
30
900

-

POWER SUPPLY REQUIREMENTS
Supply Voltage Range ±V
Power Supply Rej. Ratio
Current Drains: ± 15V dc
-15V
Power Dissipation

±14.5
-60

-

-

-

-

-

700

-

-

1

45

-

Vdc
dB
mA
mA
mW

TRACK MODE DYNAMICS
Frequency Response
Small Signal (-3dB) .....
Slew Rate ... ...........

Mhz
V//LS

1. Specified at +25 °C.
2. Tested at ±25 °C with input source impedance of 50 ohms.

TECHNICAL NOTES
1. All ground pirrs (2, 12, 14,24) should be tied together and
connected to system analog ground'as close to. the pack'"
age as possible. It is recommended to use a ground plane
under the device and solder all four ground pins directly to
it. Tne,power supply pins (5, 6, 17, 18) should be bypassed
to analog ground with .01 ,.u= ceramic capacitors locatea as
close to tha pins as possible. In certain critical applications,
additional bypass precautions using 0.1 or 1.0 I'F tantalum
capacitors are suggested.
2. A logic "I" on the sample pins (9, 21).will put this device in
the sample l']1ode.ln this mode, the device acts as an unity
gain amplifier and its output will track its input. A logic "0"
on the sample pins (9, 21) will put the device in the hold
mode, and the ;)utput will be held constant at the last input
level present before- the hold command was given.
3. Care should be taken when using tbe mu!!!2lexeroutput pins
(11,23) that the A EN (pin 7) and the B'EN.(pin 19) are not
active (logic 0) at the same time. This condition could possibly damage the device.
4. The output of the SHM-91 should drive a high impedance
receiver to minimize voltage divider losses. The receiver
input impedance should be lOOK ohms or greater when using the direct outputs from the amplifiers (pins 1 and 13). The
receiver input impedance should be 2.5 M ohms or greater
when using the multiplexer outputs (pins 11 and 23).
5. The SHM-91 should not be left in the hold mode for long peri·
ods of time. It should be left in the sample mode when long
or indeterminate peFiods of time are involved. If left in the
hold mode for several seconds, the output will continue to
"droop" toward the power supply voltage. Eventually the output amplifier will saturate. The unit will require longer than
the specified acquistion time to acquire a signal when the
output amplifiers are saturated.
6. A Logic "I" on the A or B ADDR (Address) pins (8 and 20)
will select channel 1A or 1 B on the respective input mux.
A Logic "0" will select 2A or 2B.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

SHM-945
High-Speed Hybrid
Precision Sample-hold
FEATURES
• 500 nSec Maximum acquisition time to 0.00076%
Differential input
0.0004% Linearity
• 16-Bit Performance over military temperature range
• Small 24-DDIP package
Operates at different gain settings
MECHANICAL DIMENSIONS
INCHES (mm)

GENERAL DESCRIPTION

0.800 MAX
(20,3)

DATEL's SHM-945 is a precision, high-speed sample-andhold featuring a maximum acquisition time of 500 nanoseconds to 0.00076% accuracy. Differential inputs are provided to reject common-mode signals found in applications
requiring 16-bit accuracy. A range pin allows gain selections of -0.5, -1, and -2.

I·

·1

~

L

I

I

0.010 x 0.018
KOVAR Pins

The SHM-945 contains an internal hold capacitor with internal compensation networks for pedestal error, feedthrough
and dielectric absorption.

12

13:
,

,
BOTTOM',
VIEW ,
,
,
,

TECHNICAL NOTES
1. Bypass the ±15V and +5V supplies with a 1

~F,

25V tantalum electrolytic

capacitor in parallel with a 0.01 ceramic capacitor, mounted as close to the pin
as possible.

1
2. Tie ali ground pins together at a single ground point beneath the device
and use a short, low impedance run to the ground of the analog power
supplies. The ground paint should be a solid ground plane under the
sample/hold and data converter.

24,

t

0.190 MAX
(4,9)

-l----f

11
SPACES
AtO.l00
(2,5)

+

t

0.150 MIN.
(3,8)

t
1.310 MAX.
(33,3)

I

.0.600.1
(15,2)
NOTE: Pins have 0.025 Inch ±0.01
stand-off from case.

3. Differential amplifier - high·resolution applications frequently require the
ability to sense ground at a distant signal source. To avoid errors due to
different ground potential, use the SHM-945's analog input low (pin 10) to

sense the ground at the signal source.

In noisy applications, using shielded

twisted pair wire, with one end of the shield tied to ground at the sample/hold,
is recommended. Analog Input Low and Range Return (when used) must be
S; tOO mV maximum with respect to Analog Ground.

2K

PIN
1
2
3
4
5
6

2K

RANGE 14

7
2K

ANALOG 13
INPUT HIGH

1 ANALOG
OUTPUT

~

RANGE
RETURN. 15

21 ANALOG
GROUND

ANALOG 10
INPUT LOW
s/H 12
s/H 11
2-6,16-20
NO CONNECTION

7,23
POWER
GND

24
+15V

For Immediate Assistance, Dial 1-800-233-2765

22
-15V

+5V

DIGITAL
GROUND

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

FUNCTION
ANALOG OUTPUT
NO CONNECTION
NO CONNECTION
NO CONNECTION
NO CONNECTION
NO CONNECTION
POWER GROUND
DIGITAL GROUND
+5V
ANALOG INPUT LOW
SAMPLE/HOLD
SAMPLE/HOLD
ANALOG INPUT HIGH
RANGE
RANGE RETURN
NO CONNECTION
NO CONNECTION
NO CONNECTION
NO CONNECTION
NO CONNECTION
ANALOG GROUND
-15V SUPPLY
POWER GROUND
+15V SUPPLY

4-21

[@~[L.

SHM·945
ABSOLUTE MAXIMUM RATINGS
PARAMETERS
+15V Supply (pin 24)
-15V Supply (pin 22)
+5V Supply (pin 9)
Digitallnpuls (pins 11,12)
Analog Inputs (pin 13)
Lead Temperalure (10 sec.)
Short circuit to ground

PERFORMANCE CONT.

LIMITS

UNITS

-0.5 to +18
+0.510 -18
-0.5 to +7
-0.510 +7
-VSto+VS
300 max.
50

Vdc
Vdc
Vdc
Vdc
Vdc

°C
mA

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and over the operating
power supply range unless otherwise specified. Gain = -1.
INPUTS

MIN

TYP

MAX

Voltage Renges
Common Mode Voltage Renge
Common Mode Reject. Ratio
Digilallnput
Logic 1 Levels
Logic 0 Levels
Logic 1 Loading
Logic 0 Loading

±10
±100
86

±10.5

-

2.0

-

-

-

-

0.8
±1
±1

±10
30

+10.5
35

-

UNITS
Vdc
mV
dB
V dc
Vdc
~
~

OUTPUTS
Voltage Renges
Oulput Current
Stable Capacitive Load
Output Impedance

-

-

0.05

-

50
0.25

V
rnA
pF
Ohms

PERFORMANCE
Nonlinearity: DC ±10V
+25'C
-5510 +125 'C
Sample Mode Offset Error
+25 'C
010 +70 'C
-55to+125'C
Sample Mode Offset Tempco
SIH Offset (Pedestal) Error
+25 'C
01O+70'C
-5510 +125 'C
Pedestal Tempco
Pedestal Nonlinearity
Gain
Gain Error
25'C
Oto +70 'C
-55 to +125 'C
Gain Tempeo
Harmonic Dlslortion (below FS) CD
Acq. Time, :to.OO3 %FS 10V Step
+25 'C
010 +70 'C
-55 to +125 'C
Acq. Time, :to.OO3 %FS 20V Slep
+25 'C
Oto +70 'C
-55 10 +125 'C
Acq. Time, :to.DOO76 %FS 10V Stel
+25'C
01O+70'C
-5510 +125 'C
Acq. Time, ±D.DOO76 %FS 20V SIB!
+25'C
010 +70 'C
-55to+125'C

4-22

-

-

-

0.5

-

-

-

-

-

-

±2

-

-

0.0004 %FS
0.00076 %FS
2
2.5
3
10

mV
mV
mV

-1

-

mV
mV
mV
ppm/ 'C
%FS
VN

3
-

±D.02
±D.035
±D.05
5

%FS
%FS
%FS
ppm! 'C
dB

--

275

-

-

350
350
425

nSec.
nSec.
nSec.

-

375

400
450
500

nSec.
nSec.
nSec.

400

500
550
600

nSec.
nSec.
nSec.

650
700
750

nSec.
nSec.
nSec.

-96

-

-

-

-

-

550

-

-

TYP

MAX

UNITS

10
13
15
30

nSec.
nSec.
pSec.
pSec.
V/llSec.
MHz
MHz

130

150
150
175

nSec.
nSec.
nSec.

200

250
250
300

nSec.
nSec.
nSec.
dB

1
50
500
80

~V/1lS
~V/1lS
~V/1lS

10
120
1.6
12

150
1.9
16

92

100
0.5
250
60

~V

RMS

POWER SUPPLY REQUIREMENTS
Range, +15V
·15V
+5V
Currenl, +15V
·15V
+5V
Power Dissipation
Power Supply Rejeclion

+14.25
·14.25
+4.75

88

+15.0
·15.0
+5.0
+10
·10
+0.5
305
110

+15.75
·15.75
+5.25
+12
·12
+1.5
385

Vdc
Vdc
Vdc
rnA
rnA
rnA
mW
dB

ENVIRONMENTAL
Operaling Temp. Range
-MC
-MM
Storage Temp. Renge
Package Type
Weighl

0
-55
-65

+70
+125
+150
14-pin Hermetic DIP
0.28 Oz. (8 grams) max.

'C
'C
'C

CD (DC 10 1 MHz, 10V pk-pk) .

~V/'C

±5
±7.5
±10
5
0.00076

±5
±7
2

MIN

Aperture Delay, +25 'C
·5510 +125 'C
Aperture Uncertainty, +25 'C
·55 to +125 'C
Slew Rate
Full Power BW (:l:fS)
Small Signal BW (·3 dB)
Hold Mode Settling, :to.OO3 %FS
+25 'C
Ot0+70'C
·55 to +125 'C
Hold Mode Settling, :to.OO076 %FS
+25 'C
Oto +70 'C
·55 to +125 'C
Feedthrough Rejection 10V Step
Droop Rate, +25 'C
Oto+70'C
·55 to +125 'C
Output Noise, Hold Mode

4. For a gain of -{l.S, connect pin 14 (RANGE) 10 pin 1 (ANALOG
OUTPUT) and lie pin 15 (RANGE RETURN) 10 ground.
5. For a gain of -2, connect pin 14to pin 13 (ANALOG INPUT) and
tie pin 15 10 ground.
6. When using Sample/Hold (pin 11) connect pin 12 to Digital
Ground. If using the Sample/AOJa polarity (pin 12) tie pin 11 to +5V.
7. The offset, pedestal, and gain errors of the SHM-945 are laser
trimmed at DATEL and no external compensation capabilities have
been provided. This prevents inlroducing noise through the offset
adjust terminals of the S/H amplifier and guarantees excellent gain
linearity, offset drift, and pedestal performance.

ORDERING INFORMATION
MODEL NUMBER

TEMP. RANGE

SEAL

SHM·945MC
SHM·945MM

Oto+70°C
-55 to +125 °C

Hermetic
Hermetic

For availibility of MIL-STD-883 devices, contact DATEL.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048·1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

SHM-HU
Ultra-Fast, 0.1 %
Micro-Electronic Sample-hold
FEATURES
25 Nanoseconds acquisition time
• 50 MHz Bandwidth
10 Picoseconds aperture uncertainty
• Up to 8-bit accuracy
• ±2.5V Input range

GENERAL DESCRIPTION
DATEl's SHM-HU is an ultra high-speed sample-hold capable of video speed signal processing. The SHM-HU
acquires a full-scale 5V input change in just 25 nanoseconds and features a 10 picoseconds aperture uncertainty time. Bandwidth is 50 MHz and the slew rate is 200
VImicroseconds.

MECHANICAL DIMENSIONS
INCHES (MM)
Lo.fIJO

MAX-.--J
(20,3J
---I

1~I

Through the use of thin-film hybrid construction, this ultra
high-speed circuit is contained in a miniature 24-pin ceramic
package. A 53 picofarad MaS hold capacitor is incorporated inside the package and provision is made for externally added capacitance when necessary. The sample-hold
requires four external resistors and an lH0033 fast buffer
amplifier for completion. The circuit is zeroed by adjustment
of the lH0033 amplifier.

o 150MIN
1381

1

--,:----

T
0010

I

K

1--~-,~l(4-.•-)-

0018

KOVAR

112

13.

tt SPACES
Ala 100
I

BOTTOM
VIEW

Other features of this unit include a ±2.5V input/output voltage range and a fixed gain of 0.0955. The sampling switch
is controlled by a complementary series 10,000 ECl input.
An ECl differential line driver can be conveniently used for
the sample control inputs.

I

.

lEA
/2,51

1.31£~AX

I
-O~

~OT ON TOP
"
241
OHIO
REFERENCES ' - - - - - - '
PIN 1
I~O.l00

,12.51

Power requirements are ±15V dc at 60 mA and ±5V dc at
70 mAo There are three basic models covering two operating temperature ranges, 0 to +70°C, and -55 to +100°C.

+BIAS 1

+ BIAS 2

NOTE: PINS HAVE 0.025 INCH STANDOfF FROM CASE, :t: 0.01 N

INPUT/OUTPUT
CONNECTIONS

... r.Vdl::

PIN
1

FUNCTION
SAMPLE CONTROL
SAMPLE CONTROL
6
-BIAS 1
-BIAS 2
7
-5V POWER
9
10
GROUND
12
+5VPOWER
14
GROUND
GROUND
15
16
GROUND
OUTPUT
18
19
+5V POWER
20
+81AS2
22
INPUT
23
+ BIAS 1
NOTE. AlL OTHER PINS ARE
NO CONNECTION

3

I
I

GROUND

_____ ..J

-BIAS 1

-BIAS'

_5Vdc

For Immediate Assistance, Dial 1-800-233-2765

4-23

SHM·HU
TECHNICAL NOTES

ABSOl-UTE MAXQIIIUM RATINGS
Power Supplies, Pins 9-19 . . • . ..
Analog Input Voltage, Pin 22 . . ..
Sample Inputs, Pins 1 & 3. . . • . ••
Current, Pins 6, 7, 20, 23, •.•....

± 6V
± 5V
± 5V Differential
50 rnA

FUNCTIONAL SPECIF:ICATIONS
Typical at 2S"C, ±1SV and ±SV supplies with external LH0033
Buffer Amplifier unleSli otherwise noted.

1. It is recommended that the ± 5V supplies of the SHM-HU be
bypassed with 0.1 p.F ceramic capacitors as close as possible
to pins 9 and 19. The ± 15V supplies to the lH0033 should
be bypassed with the same value capacitors.
2. It is essential that the output lead from pin 18 to pin 5 of the
lH0033 be kept as short and direct as possible. Also, the
complementary ECl driver should be as close as possible to
pins 1 and 3 to minimize lead lengths to these pins.
3. With model SHM-HUMC the LH0033C should be used, and with
model SHM-HUMM, model LH0033 should be used.

4. An external hold capacitor may be added from pin 18 to pin
INPUTS
Input Volla8e Range, Min. ••.••.
Input Bias urrent.............
Maximum Source Impedance ..•
Input Im~ance. . • • • • • . . . . • ••
Sample ontrollnputs' .....•••

± 2.5V
25 pA
51 Ohms
10· Ohms
Differential ECl 10,000 Positive
Pulse on Pin 1 and Negative
Pulse on Pin 3 gives Sample
Mode

15. This capacitor should be an MOS or polystyrene type.
Hold mode Droop and sample·to-hold offset error will
decrease proportionately with the size of this capacitor and
acquisition time will increase proportionately.

CONNECTION DIAGRAM
OUTPUT'
+15V

Output Voltage Range, Min •••..• ±2.5V
Output Current .. . .. • .. • . • . . .• ± lOrnA
Output Impedance ..••••...... 6 Ohms
PERFORMANCE

INPUT

Accuracy ....................
Gain ........................
Output Offset Voltagel ,
Sample Mode .•.....••..•...
Output Offset Voltage Drift .••..•
Sample 10 Hold Offset Error. . • ..
Hold Mode Droop ...•..••.••..
Hold Mode Feedthrough ••.••...

22

-v----O:.~I-

0.1 %
+0.995

L_

!:

l

_____ J

,. ·
15

1

L.Hf-0"l

-15V

."

<0

OUTPUT

'-1

1~~O;~10

ADJ.

-15V

-::-

lH003.

z~

±100 mV max.
± 100 ",V/oC max.
± 100 mV max.
50 ",VIp-sec.
0.02%

,F

,

12

t

-lSV

-5V

DYNAMIC RESPONSE
Acquisition Time,
SV St~to 0.2% ••••...••.••
Bandwl
, - 3 dB,
Sample Mode .•••••••.••••••
Slew Rate ••••.•••••.••••••••
Aperture Delay TIme ••.••••.•••
Aperture Uncertainty Time. • • . ••

25 nsec.
50 MHz
200V/",sec.
6 nsec.
10 psec.

POWER REQUIREMENTS'
Power Supply Voltage ••.••.••• ± 15V dc ±0.75V at 60 rnA
±5V dc ±0.25V at 70 mA
PHYSICAL/ENVIRONMENTAL
Operating Temperature Ranges
SHM-HUMC ..................
SHM-HUMM ..................
Storage Temperature Range ....
Package Type ..•••••••.••..•.
Pins ........................
Weight. ..•••.••••••••••••••.

0 to + 70°C
-55 to +100 o C
-65 to +150°C
24 Pin Ceramic
0.010 x 0.018 inch Kovar
0.2 ounces (6 grams)

FOOTNOTES:
1. Output is from LH0033 amplifier and is not short circuit proof.
2. Output offset voltage adjustable to zero by LH0033 offset adjustment.
3. ± 12V supplies can be used ij the 360 ohm resistors at the Bias 1 pins are
changed to 240 ohms and the 240 ohm resistors at the Bias 2 pins are changed
to 160 ohms.
4. The SHM·HU can be driven by TTL logic input by biasing SAt.iWI:E CONTROL
input to + 1.2V and driving the SAMPLE CONTROL with a positive pulse for
sampling mode.

4-24

ORDERING INFORMATION
MODEL NO.

OPERATING
TEMP. RANGE

SHM·HUMC
SHM-HUMM
SHM-HUMM-Ql

Oto +70 °C
-55 to +100 °C
-55 to +100 °C

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ffEL (508) 339-3000fflX 174388/FAX (508) 339-6356

SHM-49
High Speed, 0.01 %
Hybrid Sample/Hold

PRELIMINARY PRODUCT DA TA
FEATURES
•

•
•

MECHANICAL DIMENSIONS

16 MHz small signal bandwidth
Small 8 pin DIP or LCC package
200 nanoseconds maximum acquisition time to 0.01 %
100 nanoseconds maximum sample/hold settling time
to 0.01%
72 dB feedthrough attenuation
±25 picoseconds aperture uncertainty
413 mW maximum power dissipation

0.250

OOS~

1:=-1

D

GENERAL DESCRIPTION

-11-

DATEL's SHM-49 is a high-speed, highly accurate sample/
hold designed for precision, high-speed analog signal processing applications. Manufactured using modern, highquality hybrid technology, the SHM-49 features excellent dynamic specifications including a maximum acquisition time of
only 200 nanoseconds for a 1OV step to 0.01 %. Sample-tohold settling time, to 0.01% accuracy, is 100 nanoseconds
maximum with an aperture uncertainty of ±25 picoseconds.

PINOUT

LCC

+5V
S/H
ANALOG IN
ANALOG RETURN
-15V
+15V
POWER GROUND

4

(LCcT~:'SiOn)
19 18

-]Q.400SQ'

16

24

+0.010

SHM-49

·0.005

12

0.020
to.OOS

•
7

8

10

"'111"TT11'TTIITrIlTrIl""'1110.130 Max,

t

The SHM-49 is a complete sample/hold circuit, containing a
precision MOS hold capacitor and a MOSFET switching configuration which results in faster switching and better feedthrough attenuation. Additionally a FET input amplifier design
allows faster acquisition and settling times while maintaining a
considerably lower droop rate.

DIP

±O.OD5

0.390, to.OOS

I ..

..

I

1

0.13°1-

Max.

c:J 1:: CIJ:s
0.047, iO.002

1
2
3
4
5

7
8

~

7

~~.+

10
12
16
19
24

0.100

-15V

+15V

+5V

1.5K

ANALOG o-3-+----J\.JV'.Ir--+----1
INPUT

>-~___+6-o ANALOG

OUTPUT

S/H
2
CONTROL~-r----~
'---------'

8
POWER
GROUND

For Immediate Assistance, Dial 1-800-233-2765

4
ANALOG
RETURN

4-25

SHM·49
.1

PHYSICAUENVIRONMENTAL

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range
SHM-49MC/LC
SHM·49MMlLM
Storage Temperature Range
Package Type;DIP
LCC

±18V
-0.5Vto +7V
±18V
-0.5V to +5.5V
±65mA

±15V Supply Voltage
+5V Supply Voltage
Analog Input
Digital Input
Output Current

oto +70 "C
-55 to +125 "C
-65 to+150 "C
8 pin ceramic
24 pin ceramic

Footnotes

FUNCTIONAL SPECIFICATIONS
Apply ever temperature range and at ±15V dc and +5V dc
unless otherwise specified:'
ANALOG INPUT/OUTPUT

MIN.

TYP.

Input/Output Voltage Range
Input Impedance
Output Current
Output Impedance
Capacitive Load

±10

±11.5
2

-

-

MAX.

UNITS

-

KQ

±40

mA

0,1
250

-

-

+5,0
+0.8

V
Q

pF

DIGITAL INPUT
Input Logic Level
Logic 1
Logic 0
Loading 1

+2,0
0

-

1

-

V
V
TIL

TRANSFER CHARACTERISTICS
Gain
Gain Accuracy
Gain Linearity Error 2
sample-Mode Ollset Voltage
Sample-to·Hold Offset Error
(Pedestal) 3
Gain Tempco (Drift)

-

-1.0
±1
±D,005
±D.5

±D,01
±5

-

±2.5
±D.5

±25
±15

Sample-Mode Offset Drift 2

-

±'l

±15

sample-to-Hold Offset
(Pedestal) Drift

-

±5

-

ppmo!
FSR/"C

-

160
100
90
75

200
150

nS
nS
nS
nS

VN
%
%FS
mV

I. One TTL load is defined as sinking 40 IlA with a logic I input and·
sourcing 1.6mA with a logic 0 input
2. Full Scale (FS) = 10V. Full Scale Range (FSR) = 20V.
3. Sample-la-Hold offset error (Pedestal) is constant regardless of inpuVoulput level.

TECHNICAL NOTES
1. All ground pins should be tied together and connected to system analog
ground as close to the package as possible. It is recommended to use a
ground plane under the device and solder ground pins directly to it Care
must be taken to insure that no ground potentials can exist between ground
pins,
2. External 0.1

~F

to 1 ~F tantalum bypass capacitors are required in critical ap-

plications.

3. A logic 1 on SIH puts the unit in the track mode. A logic 0 puts the unit in
hold mode.
4. The maximum capacitive load to avoid oscillation is typically 250 pF, Recommended resistive load is 500n, although values as low as 250n

may be

used, Acquisition and sample-to-hold settling times are relatively unaffected
by resistive loads down to 2500 and capacitive loads up to 50 pF. However,
capacitances will affect both acquisition and settling time,

mV
ppmo!
FSR/"C
ppmo!
FSR/"C

(GAIN ADJUST)

Al

TO SHM·49, PIN 3

DYNAMIC CHARACTERISTICS
Acquisition Time;
10V to ±D.Ol% FS (±1 mY)
10V to±D.l% FS (±10 mY)
10V to ±1% FS (±100 mY)
lVto±l% FS (±100mV)
Sample-to·Hold, Settling Time
10V to ±D.Ol% FS (±1 mY)
10V to ±D,I% FS (±10 mY)
sample-ta-Hold Transient
Aperture Delay Time
Aperture Uncertainty (Jitter)
Output Slew Rate
Small Signal Bandwidth (-3 dB)
Droop; +25 "C
+70"C
+125 "C
Feedthrough

-

200

-

60
40
100
10
<±25
300
16
0.5
15
1.2
72

-

100

-

-

10
-

-

nS
nS
mVp-p
nS
pS
V/flS
MHz
IlV/flS
IlV/flS
mVlflS
dB

5.11K

HIGH·SPEED, FAST
SETTLING AMPLIFIER

3M

SCKn
-15V~+15V
A2
(OFFSET ADJUST)

Offset and Gain Adjustments
NOTE: with a precision source, adjust R1 and R2 so that the
output of the SHM-49 in the hold. mode matches the source
output.

POWER REQUIREMENTS
Voltage Range, ±15V
+5V
Power Supply Rejection Ratio
Quiescent Current Drain, +15V
-15V
+5V
Power Consumption

-

-

±'l
±5
±D.S
+12
-12
+1
365

-

+13,5
-13.5
+1.5
413

%
%
mVN
mA
mA
mA
mW

ORDERING INFORMATION
MODEL NO.

OPERATING TEMP. RANGE

SHM-49MC
SHM-49LC
SHM-49MM
SHM-49LM

Oto +70 °C
Oto+70°C
-55 to +125 °C
-55 to +125 °C

For availability of High Reliability versions of
the SHM-49, contact DATEL.

4-26

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339·6356

MSH-840

-

Quad Simultaneous
Sample Hold

ADVANCED PRODUCT DATA
mllilMIli.ill lit

!i.fi

FEATURES

•
•
•
•
•
•
•
•

4 Simultaneous sample holds
Internal 4-channel multiplexer
750 nSec. Acquisition time,
10V step to 0.01 %
2 Channels with optional X10 gain
Control logic for interfacing to AID's
Low power - 1.5 Watts
Small 32-pin TDIP
-55°C to +125 °C Versions

GENERAL DESCRIPTION'
The MSH-840 is a quad simultaneous sample-hold featuring
an acquisition time of 750 nSec. Control logic is provided for
strobing the channels simultaneously and for interfacing to
AID's. A 4-channel multiplexer allows individual S/H outputs
to be digitized.

PIN

FUNCTION

PIN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

DIGCOM
+5V
SSH11N
OFSADJ1
SSH10UT
SSH21N
OFSADJ2
SSH20UT
SSH31N
OFSADJ3
GX103
SSH30UT
SSH41N
OFSADJ4
G X104
SSH40UT

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

FUNCTION

+15V
PWRCOM
-15V
MUXOUT
MUX IN4
MUX IN3
MUX IN2
MUXIN1
ANACOM
CA1
CAO
START CONVERT
CONY IN
S/H IN
EOC
RST

The MSH-840 requires +/-15V and +5V power supplies and
dissipates just 1.5 Watts. Packaged in a small 32-pin TDIP,
both commercial 0 to +70 °C and military -55 to +125 °C
operating temperature range models are offered.

•

liiIli

--jJIiIlij

I.~t

II!

SSH1 OUT SSH2 OUT SSH3 OUT SSH4 OUT
12

16

_RIliliiil&_

MUXINl

MUX IN2

MUXIN3

MUX IN4

24

23

22

21

OFSADJ1
SSH11N

OFSADJ2

7

SSH21N

OFSADJ3

10
20 MUXOUT

SSH31N
GX103

11

OFSADJ4

14

SSH41N

13

17 +15V

GX104

15

19 ·15V

25 ANACOM

18

PWRCOM

2 +5V
1 DIGCOM

32

31

30

RST

EOC

S/HIN

For Immediate Assistance, Dial 1-800-233-2765

29

28

CONVIN STCONV

27

26

CAO

CAl

4-27

Contact DATEL for up-to-date information on
products covered by "Advanced" and
"Preliminary" product data sheets.
Dial
1-800-233-2765

for
Applications Assistance

4-28

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

HYBRID DATA ACQUISITION SYSTEMS
Model

Resolution

Throughput

Linearity

(Bits)

(KHz)

Error (Max)

Power
(Watts Max)

Case

Page

62-Pin
16SE
._--_._-------_._-_._

5-1

Channels

HDAS-16

12

50

HDAS-8

12

HDAS-7S

12

±314 LSB
50 . _ - - - - _.. _-- - - 75
±314 LSB

HDAS-76

12

75

HDAS-S34

12

250

HDA.S-S38

12

250

±314 LSB

3.0

SSE

HDAS-S24

12

400

±314 LSB

3.0

4 DE

5-11
40-PIN DIP
------5-7
40-Pin DIP

±314 LSB

1.75
------1.75

...... _------

8 DE

62-Pin

5-1

0.7

SSE

40-Pin DIP

5-15

±314 LSB

0.7

4DE

±3/4 LSB

3.0

4DE

40-Pin DIP
5-15
.-----5-11
40-Pin DIP

HDAS-S28

12

400

±314 LSB

3.0

SSE

40-Pin DIP

5-7

Preliminary

HDAS-9S0

16

100

±1/2 LSB@ 14 BITS

1.4

8SE

40-Pin DIP

5-19

Preliminary

HDAS-9S1

16

100

±1/2 LSB@ 14 BITS

1.4

4DE

40-Pin DIP

5-19

For Immediate Assistance, Dial 1-800-233-2765

5-i

Contact DATEL for your
Data Acquisition component
needs.
Dial
1-800-233-2765

for
Applications Assistance

5-ii

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

HDAS-16, HDAS-8
12-Bit Microelectronic
Data Acquisition Systems
FEATURES
• Miniature 63-pin hermetic package
12-8it resolution, 50 KHz
Full-scale gain range of 50 mV to 10V
• Three-state outputs
• 16 Channels single-ended or
8 channels differential
Auto-sequencing channel addressing
• MIL-STD-883 versions
• No missing codes

MECHANICAL DIMENSIONS - INCHES (MM)
1------~2.~.~"--------i

GENERAL DESCRIPTION

seatrng 0.035

plane

Using thin-and thick-film hybrid technology. DATEL offers
complete low-cost data acquisition systems with superior
performance and reliability.

;. . . . . . . . . . . . . . . . . . . .

The HDAS-8 (with 8 differential input channels). and the
HDAS-16 (with 16 single-ended input channels). are
complete high performance 12-bit data acquisition systems
in 62-pin packages. Each HDAS may expand to 32 singleended or 16 or more differential channels by adding
external multiplexers.

~1

r - ' - - "- - - - - ' - - I " -I-:~:=:

J

9 SPACES

BOTTOM VIEW

.

62.

Internal channel address sequencing is automatic after
each conversion. or the user may supply external channel
addresses.

I-(~:~~'

DOT ON TOP
REFERENCES
PIN 1

~i-"----------·------~
PIN SPACING IS a 100
INCHES '!(l005 NONCUMULATIVE ,(2.5 mm)

A.T~i~:EA
1.400 (35.6).'"

~

MAXIMUM PIN OIMENSIONS
ARE 0 012 xO 022 INCHES
/03 >O.5MM)

-~~
~

CHOHI/CHO

4

°z

i9

i ~a

~

a

t--.,...,
~~~~

~ ~I~~

5

50

48

41

J!iI

'-'><..>1...._ _ _ _ _ _-----,,--_ _ _ _ _---;-_ _ _ _ _--1---:-"

A9

...

;I

Z2Q<)
I

A2

~~~____.__~________ Ur----~;LI___________
Z2Q<)

AI

Z2Q<)
~~~------------:JfF-.40=-nSecC-~TY~~~7L-----~:IL----------

I

I
MODel

CHO ADDRESSED

I

Cffiii

:

,

I

CH1 ADDRESSED

SEQUENTIAL (EOOTteD TO

Figure 2.

I

CH2 ADDRESSED :

STAOii'"E)

I CH12 ADDRESSED

RANDOM

><><><

MAY

~~ANGE

DON't CARE

HDAS Timing Diagram

INPUT VOLTAGE PROTECTION
As shown in Figure 3, the multiplexer has reversed biased diodes
which protect the input channels from being damaged by overvoltage signals. The HDAS input channels are protected up to 2f1II
beyond the supplies and can be increased by adding series resistors (Ri) to each channel. The input resistor must limit the current
flowing through the protection diodes to 10 mAo

r-------:ffiv-----------l
I

I

,
I
I

R,

:

I
I
I

Rl

R2

l

CHn
INPUT

The value of Ri for a specific voltage protection range (Vp) can
be calculated by the following formula:
Vp = (R signal

+

Ri

+

Ron) (10 mA)
where RON
2K
NOTE: Increased input series resistance will increase multiplexer settling time significantly.

=

RON

Figure 3.

:=

Rl + R2 = 2K

Multiplexer Equivalent Circuit

-ORDERING INFORMATION
MODEL
HDAS-16MC
HDAS-16MM
HDAS-16/883B
HDAS-8MC
HDAS-8MM
HDAS-818838

OPERATING
TEMP. RANGE
OOCto + 700(;
-55OC to + 1250C
-55OC 10 + 1250C
OOClo + 700C
-55OC to +l25OC
-55OC to + 1250C

Receptacle for PC board mounting can be ordered through AMP
Incorporated, #3-331272-4 (component lead spring socket) 62
required.

1883B Models are fully compliant to MIL-STD-883.

5-6

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356

HDAS-524,-528
12-Bit, 400 KHz
Data Acquisition Systems
FEATURES
• 12-bit resolution, 400 KHz

• 8 channels single-ended or 4 channels differential
•
•
•
•

Miniature 40-pin DDiP
Full scale gain range from 100 mV to 10V
Three-state outputs
No missing codes

GENERAL DESCRIPTION
The HDAS-524,-528 are complete data acquisition systems
containing an internal multiplexer, instrumentation amplifier,
sample-hold, analog-to-digital converter and three-state outputs. Packaged in a miniature 40-pin double-dip package, the
HDAS-524/528 has a low power dissipation of 2.6 watts.
The HDAS-524 provides 4 differential inputs and the HDAS528 provides 8 single-ended inputs. An internal instrumentation amplifier is characterized for gains of 1,2,4,8,10 and 100.
The gain range is selectable through an external resistor.

TECHNICAL NOTES
1. Rated performance requires using good high-frequency
circuit board layout techniques. The analog and digital
grounds are not connected internally. Avoid groundrelated problems by connecting the analog, signal and digital grounds to one point, the ground plane beneath the
converter. Due to the inductance and resistance of the
power supply return paths, return the analog and digital
ground separately to the power supplies. This prevents
contamination of the analog ground by noisy digital ground
currents.
2. Double-level multiplexing allows expanding the multiplexer channel capacity of the HDAS-528 from 8 singleended channels to 128 single-ended channels or the
HDAS-524 from 4 differential channels to 32 single-ended
channels.

SlH
OUT

GAIN GAIN
HI
LO
10

GAIN
ADJ.
15

INPUT/OUTPUT CONNECTIONS

OffSET
BIPOLAR ADJ.
16

PIN

33 81T 1 (MSS)

CHOICHOHI
CH1ICHl HI

32 8112
31 BIT3

2x4;1
(524)

CH2ICH2 HI

CH3JCH3HI
CH4ICHOLO
CH5ICHI LO

MUX

CH6ICH2LO

(528)

12·81T
AID

8:1

CH7/CH3l0

SIGNAL 14
ONO

1
2
3
4
5
6
7
8
9
10
11
12
13
14

IS
16

17
34 ENABlE

18
19

20

FUNcnON
CHOlCH

a HI

CH lICH 1 HI
CH21CH 2 HI
CH3/CH 3 HI

CH 7/CH 3 LO
CH6JCH 2 LO
CH 5/CH 1 LO
CH4/CH 0 LO
CaMP BIN
RGAIN LO
RGAIN HI
SlHOUT
+10V REF OUT
SIGNALGNO
GAINADJ
OFFSET ADJUST
BIPOLAR
-15V
ANALOGGND
+15V

PIN
40
39
38
37
36
35

34
33
32
31
30
29
28
27

26
25
24
23
22
21

FUNCTION

STARTCNVRT
CA2
CAl
CAO

.5V
DIG1TALGND
ENABLE
BIT 1 (MSB)
BIT 2

BIT3
BIT4
BIT 5
BIT6
BIT7
BIT 8
BIT9
B!T10
BIT11

BtT12
EOC

" - - - - 1 9 caMP BIN

39

38

37

CA2

CAt

CAO

19

35

ANA DIG
GND GND

36

20

+5V +15V

18
·15V

13
REF
OUT

For Immediate Assistance, Dial 1-800-233-2765

40
START
CONVERT

21
EOC

5-7

HDAS-S24,-S28
ABSOLUTE MAXIMUM RATINGS

PERFORMANCE

PARAMETERS

LIMITS

+15V Supply (pin 20)
-15V Supply (pin 18)
+5V Supply (pin 36)
Digital Inputs
(pins 9, pins 34, 36-40)
Analog Inputs (pins 1-8)
Lead Temp. (10 Sec.)

oto +18

UNITS
Vdc
Vdc
Vdc

Oto·18

-0.5 to +7.0

Vdc
V

-0.3 to +6.0
±25
300

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V dc and +5V dc
unless otherwise specified.

ANALOG INPUTS

MIN.

TYP.

Number of Inputs
HDAS-524
HDAS-528
Input Voltage Ranges
Gain = 1
Gain = 100
I.A. Galn Ranges
Inputlmpedanc:e
CHON,CHOFF
Input Capacitance
(-528) CH ON, CH OFF
(-524) CH ON,CH OFF
Input Bias Current
Input Offset Current
Input Offset Voltage
Common Mode von. Range
CMMR, G=I,@10Hz,
Vcm=1V pop
VoHage Noise (RMS)
Gain=1
Gain=8
MUX Crosstalk @ 125 KHz
MUX ON Resistance
Bias Current Tempeo
Offset Current Tempco
Offset Voltage Tempco
Input Gain Equation

MAX.

UNITS

4 differential inputs
8 sing!e-ended inputs

-

Ohms

25
12
200
50
±10

-

pF
pF
pA
pA
mV
V

-80

-

dB

-

200
50

1012

-

-

-

-

±11

-

-75

-72
-

-

-

!LV
!LV
dB
450
Ohms
500
Doubles (max.) every to °C above 70°C
Doubles (max.) every 10°C abcve 70°C
(±30 ppm/ °C x gain) ±20 ppm/ °C (max.)
Rg = 1~(gain -1)12K]

-

-

DIGITAL INPUTS

Logic Levels
Logic 1
Logic 0
logie loading
Logic 1
Logic 0

2.0

-

-

-

0.8

-

Vdc
Vdc

-

5
-200

!LA
!LA

-

Output Coding

-

-

0.4

-

Vdc
Vdc

-

-

-

-160
6.4

!LA
rnA

+9.9

+10.0

+10.1
±35
1.5

Vdc
ppm/°C
rnA

2.4

-

-

±5

-

Enable to Data Val. Delay
MUX Address Set-up Time
Start Convert Pulse Width
Data Valid Aller
EOC Signal Goes Low
Conversion Time, +25 °C
Oto +70 °C
-55 to +125°C
Throughput Rates
Gain= 1, (j)
Gain =2, (j)
Gain =4, (j)
Gain =8, (j)
Gain = 10, (j)
Gain = 100, (j)

-

-

-

-

UNITS

-

-

-

-

±3/4
±3/4
±t.5

Bits
LSB
LSB
LSB

-

±3/4.
±3/4
±1
±0.30
±D.5
±0.78
±0.15
±30
±0.15
±10
±D.25
±40
±0.25
±40

LSB
LSB
LSB
%FSR
%FSR
%FSR
%FSR
ppm/°C
%FSR
ppm/ °C
%FSR
ppm/oC
%FSR
ppm/°C

-

±0.13
±0.15
±0.25
±0.074
±15
±0.074
±5
±D.l
±20
±0.1
±20

-65
-73
dB
Over operating temperature range

400
50

-

100

-

-

-

400
325
275
225
175
40

-

-

500

-

10

-

nS
nS
nS

20
800
850
880

nS
nS
nS
nS

-

KHz
KHz
KHz
KHz
KHz
KHz

-

SJH PERFORMANCE
Aequlstion Time
Full Scale Step to 0.01%
Full Scale Step to 0.1%
Aperture Delay
Aperture Uncertainty
Slew Rate
Hold Mode Settling Time,
10V to ±0.01 %FS
10V to ±D.l%FS
Feedthrough Rejection
Droop Rate, CD

Straight binarylOffset binary
Complementary binary
Complementary offset binary

Range.15V
·15V
+5V
Currenl+15V
·15V
+5V
Power Dissipation
Power Supply Rejection

-50

-

70

400
-20
±100
90

900
750
0
±150

nS
nS
nS
nS
V/IlS

200
150

nS
nS
dB
IlV/IlS

-

-

-

100
75

-80

-

-88
0.1

100

+15.0
-15.0
+5.0
+78
-72
+75
2.6

+15.75
-15.75
+5.25
+90
·82
+90
3.0
0.01%

-

+14.25
-14.25
+4.75

-

-

-

Vdc
Vdc
Vdc

rnA
rnA
rnA

Watts
%FSRI%V

ENVIRONMENTAL

Oper. Temp. Range, ·MC
-MM
Storage Temp. Range
Package Type
Weight
Pins

(j)

5-8

-

MAX.

POWER SUPPLY

OUTPUTS
Logie Levels
Logic 1
Logic 0
Logic Loading
Logic 1
Logic 0
Internal Reference
VoHage, +25 °C
Drill
External Current

12

TYP.

SIGNAL TIMING

Oto+l0V,±10V
Oto 100mV ,+100 mV
1,2,4,8, lu, 100
10"

Resolution
Integral Nonlinearity,25 °C
Oto +70 °C
-55 to +125 °C
Differential Nonlinearity
+25°C
Oto+70°C
-55 to +125°C
F_S. Abe. Aecuracy +25 °C
Oto+70°C
-55to+I25°C
Unipolar Zero Error,+25 °C
Unipolar Zero Tempco
Bipolar Zero Error, +25 °C
Bipolar Zero Tempco
Bipotar Offset Error,+25 °C
Bipolar Offset Tempeo
Gain Error, +25 °C
Gain Tempeo
Hannonie Distortion (. FS)
(DC to 50 KHz,1 OV pk·pk) CD
No Missing Codes

MIN.

0
-55

-

+70
°c
+125 °C
-65
+150 oc.
40-pin DIP
0.32 ox. (9 grams) max.
0.010 x 0.Q18 in. Kovar

Specifications valid at 25°C and over the temperature ranges of
oto +70 °C and -55 to +125 °C.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

HDAS-S24,-S28
Hi

TECHNICAL NOTES (CaNT.)

11

n

Table 1. MUX Channel Addressing

3. Obtain straight binary/offset binary output coding by tying
COMP BIN (pin 9) to +5V dc or leaving it open. The device
has an internal pull·up resistor on this pin. To obtain comple·
mentary binary or complementary offset binary output coding,
tie the CaMP BIN pin to ground. The CaMP BIN signal is
compatible to CMOSITTL logic levels for those users desiring
logic control of this function.

HDAS-S24
(2-6fT ADDRESS)

HDAS-528
(3·BIT ADDRESS)

4. To enable the three·state outputs, connect e:JAB['E (pin
10) to a logic "a" (low). To disable, connect ENABLE (pin 10)
to a logic "1" (high).

Table 2. Input Range Parameters

HDA5-524/528 OPERATION

GAIN

RGAINO

Oto+l0V

1

OPEN

400 KHz

Oto+5V

2

2K

4

665U

325 KHz
275 KHz
225 KHz
175 KHz
40 KHz

INPUT RANGE

The HDAS devices accept either 8 single'ended or 4 differential input signals. Tie unused channels to SIGNAL GROUND,
pin 14.

o to +2.5V

221

±2.5V
±1.25V
±1.0V
±100mV
Note 1.

n

20.0
OPEN

1

±10V
±5V

The acquisition time is the amount of time the multiplexer, instrumentation amplifier and sample-hold require to settle
within a specified range of ~racy; The acquisition time can
be measured by how long EOC is low before the rising edge
of the START CONVERT pulse for continuous operation.
Higher gains require the use of the RGAIN resistor to increase the acquisition time. The gain is equal to 1 without an
RGAIN resistor. Table 2 refers to the appropriate RGAIN resistors for various throughputs.

287U

10
100

Oto+1.0V
Oto+100mV

Channel selection is accomplished using the multiplexer address pins shown in Table 1. Obtain additional channels by
connecting external multiplexers.

The HDAS devices enter the hold mode and are ready for
conversion upon the start convert going high. The con~ion
is complete within a maximum of 800 nsec ( + 25°C). EOC
returns low, the data is valid and sent to the three-state output
buffers. The sample/hold is now ready to acquire new data.

a

o to +1.25V

THROUGHPUT

2

2K

4

665U
287U
221 n
20U

8
10
100

400 KHz
325 KHz
275 KHz
225 KHz
175 KHz
40 KHz

Rgain '"

10 ROAlNHI

tC_RGAIN11
S/H OUT
+10V REF

o

{

4.7~FI

~

1
r1

RGAINLO

12
13

~F19

HDAS-524/528

-15V
20K

--100 nS Typ . .......-15V
START
CONVERT

20K

+15V

:>-o>--____.!!162,j OFFSET ADJUST

1 .850n8. 1

______~~I~~________~~L_________

+15V

35n5 Max,'

I
OUTPUT
DATA

I

1.8~8

-

---------------.I-.~~r--E-na-b-I.-dd-a-la-~-.~

I
I
I

CAl

10 nS

N Valid

10 nS

CAO

Figure 2. Typical Connection Diagram
CHO

CHl

CH2

Figure 1. HDAS-524/528 Timing Diagram
NOTES:
1.
2.

A START CONVERT pulse grea1er thall.15Q nS will slow the throughput.
Retriggering START CONVERT before EOC goes low will not start a new

conversion.
3. Times shown apply over the full operating temperature range.

For Immediate Assistance, Dial 1-800-233-2765

NOTES:
1. For unipolar operation, connect pin 12 to pin 17.
2. For bipolar operation, connect pin 13 to pin 17.
3. Position RGAIN as close as possible to pins 10 and 11. Use
RN55C, 1% resistors.
4. If gain and offset adjusts are not used connect pin 15 to
ground and leave pin 16 open.

5-9

HDAS-S24,-S28
MECHANICAL DIMENSIONS

CALIBRATION PROCEDURE

INCHES (mm)

1. Connect the converter per Figure 2 and Tables 2 and 3 for
the appropriate full-scale range (FSR). Apply a pulse of 100
nanoseconds (typical) to the START CONVERT input (pin 40)
at a rate of 100 KHz. This rate is chosen to reduce flicker if
LED's are useo on the outputs for calibration purposes.

0.810 Max.

1_

~ I .
0.150(3,8)Min.=

t

-I

(20,6)

I-

U,

U

I
1

2. Zero Adjustments

21

HDAS-S24
HDA5-S28

Apply a precision voltage reference source between the analog input and signal ground (pin 14). Adjust the output of the
reference source per Table 3. For unipolar, adjust the zero
trimming potentiometer so that the output code llickers equally
between 0000 0000 0000 and 0000 0000 0001 with the
COMP BIN (pin 9) tied high (straight binary) or between 1111
11111111 and111111111110withtheCOMPBIN(pin9)
tied low (complementary binary).

1
2.2 Max.
(53,8)

BOTTOM
VIEW

1__

For bipolar operation, adjust the potentiometer such that the
code flickers equally between 1000 0000 0000 and 1000 0000
0001 with COMP BIN (pin 9) tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with COMP BIN
(pin 9) tied low (complementary offset binary).

40

0.600
(15,2)

--II
--

Table 3.

0.190 (4,9) Max.

T

0.010 X 0.018 KOVAR
20

20 Spaces
al 0.1 00 (2,5)
Intervals

~

0.100
--

3. Full-Scale Adjustment

(2,5)

Set the output of the voltage reference used in step 2 to the
value shown in Table 3. Adjust the gain trimming potentiometer so that the output code llickers equally between 1111 1111
1110 and 1111 11111111 or 0000 0000 0001 and 0000 0000
0000 for complementary coding.

Zero and Gain Adjust

FSR

a to +10Vdc
±10V

Zero Adjust
+1/2 LSB

Gain Adjust
+FS - 1 1/2 LSB

+1.22 mV
+2.44 mVdc

+9.9963V
+9.9927V dc

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

Table 4. Output Coding
STRAIGHT

UNIPOLAR

INPUT RANGE

SCALE
+FS -1 LSB
7/8 FS
3/4 FS
1/2 FS
1/4 FS
1/8 FS
1 LSB

Oto+10Vdc
+9.9976V
+8.7500V
+7.5000V
+5.0000V
2.5000V
1.2500V
o.o024V
O.OOOOV

a

BIN

CaMP

BINARY

OUTPUT CODING
MSB
LSB
111111111111
1110 0000 0000
1100 0000 0000
1000 0000 0000
0100 0000 0000
0010 0000 0000
0000 0000 0001
0000 0000 0000
OFF

BINARY

INPUT RANGE

BIPOLAR

+10Vdc
+9.9951V
+7.5000V
+5.0000V
O.OOOOV
-5.0000V
-7.5000V
-9.9951V
-10.000V

SCALE
+FS -1 LSB
+3/4 FS
+1/2 FS

MSB
LSB
0000 0000 0000
000111111111
001111111111
0111 1111 1111
1011 1111 1111
110111111111
111111111110
111111111111
CaMP

OFF

a

-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

BIN

ORDERING INFORMATION
MODEL NUMBER
HDA5-S24MC
HDA5-S24MM
HDA5-S28MC
HDA5-S28MM

INPUT
4 D CHANNELS
4 D CHANNELS
8 sE CHANNELS
8 SE CHANNELS

OPERATING
TEMP. RANGE
o to +70 °c
-55 to +125 °C

a to +70 °c
-55 to +125 °C

SEAL
Hermetic
Hermetic
Hermetic
Hermetic

Receptacle for PC board mounting can be ordered through AMP Inc.,Part #
3-331272-8 (Component Lead Socket), 40 required.
For availability of MIL-sTO-8838 _ns of the HDA5-524 & HDA5-528, contact
DATEL.

5-10

DATEL, Inc, 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

HDAS-534,-538
12-Bit, 250 KHz
Data Acquisition Systems
v
FEATURES
•
•
•
•
•
•

12-bit resolution, 250 KHz
8 channels single-ended or 4 channels differential
Miniature 40-pin DDIP
Full scale gain range from 100 mV to 10V
Three-state outputs
No missing codes

GENERAL DESCRIPTION
The HDAS-534/538 are complete data acquisition systems
containing an internal multiplexer, instrumentation amplifier,
sample-hold, analog-to-digital converter and three-state outputs. Packaged in a miniature 40-pin double-dip package, the
HDAS-534/538 provides 250 KHz throughput with a low power
dissipation of 2.6 Watts.

MECHANICAL DIMENSIONS
INCHES (mm)
0.B10 Max.

1_

~ I
0.150(3.8)Min.=

The HDAS-534 provides 4 differential inputs and the HDAS538 provides 8 single-ended inputs. An internal instrumentation amplifier is characterized for gains of 1,2.4,8,10 and 100.
The gain range is selectable through an external resistor.

t

-1

TECHNICAL NOTES
1. Rated performance requires using good high-frequency circuit board layout techniques. The analog and digital grounds
are not connected internally. Avoid ground-related problems
by connecting the analog, signal and digital grounds to one
pOint, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power
supplies.

20 Spaces

at 0.100 (2,5)
Intervals

-I

r-

U,

~

T

U

0.190 (4,9) Max.

0.010 X 0.018 KOVAR
21
I 20
I
I
I
I
HDAS-534
I HDAS-538
I
I BOnOM
I
VIEW

I

1
2.2 Max.

(53,8)

i

1

I
I
I
I
I 1

2. Double-level multiplexing allows expanding the multiplexer
channel capacity of the HDAS-538 from 8 single-ended channels to 128 single-ended channels or the HDAS-534 from 4
differential channels to 32 single-ended channels.
3 Obtain straight binary/offset binary output coding by tying
COMP BIN (pin 9) to +5V dc or leaving it open. The device
has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding,

(20.6)

j

40

1..- (15,2)
0.600

--II

-..

0.100
- - (2,5)

tie pin 9 to ground. Pin 9 signal is compatible to CMOSITTL
logic levels for logic control of this function.
4. To enable the three-state outputs, connect ENABLE (pin
10) to a logic "0· (low). To disable, connect pin 10 to a logic
"1" (high).
INPUT/OUTPUT CONNECTIONS

81H
OUT
12

GAIN GAIN

HI

LO
10

GAIN
AOJ
15

OFFSET
BIPOLAR ADJ.
17
16

PIN FUNCTION
33 BIT 1 (MSB)
32 BI12

CHOJCHOHI
CHlfCHl HI

2x4:1

31 SIT3

(534)

30 81T4

29 BITS
28 B1T8

CH2ICH2HI

CH3ICH3HI
CH4JCHOLO

MUX

CH51CHl LO

8.1
(538)

27 BIT7

12·81T

CH6ICH2LQ

26 BIT8
25 81T9

AJD

24 BIll0

CH71CH3LO

23 BIT11

22 BIT 12 (LSBJ
SIGNAl 14
OND

34~

'------1
39
CA2

38
CAl

37
CAO

19
35
ANA DIG
GND GND

36
20
+51/ +151/

18
-151/

13
REF
OUT

For Immediate Assistance, Dial 1-800-233-2765

40
START
CONVERT

21
EOC

9COMP BIN

t
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19
20

CH O/CHO HI
CH 1/CH 1 HI
CH 2/CH2 HI
CH 3/CH3HI
CH 7/CH3 LO
CH 6/CH2 LO
CH 5/CH 1 LO
CH 4/CH a LO
COMP BIN
AGAIN LO
AGAIN HI
S/HOUT
+10V AEF OUT
SIGNALGND
GAINADJ
OFFSET ADJUST
BIPOlAA
·t5V
ANALOGGND
+t5V

PIN FUNCTION
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

STAATCNVAT
CA2
CAl
CAO
+5V
DIGITALGND
ENABLE
BITl (MSB)
BIT2
BIT 3
BIT 4
BIT5
BIT6
BIT7
BIT8
BIT 9
BITtO
BIT 11
BIT t2 (LSB)
EOC

5-11

HDAS-S34,-S38
ABSOLUTE MAXIMUM RATINGS

PERFORMANCE

LIMITS

PARAMETERS
+15V Supply (pin 20)
-15V SIIPply (pin 18)
+5V Supply (pin 36)
Digital Inputs
(pins 34, 37-40)
Analog Inputs (pins 1"8)
Lead Temp. (10 Sec.)

UNITS

Oto +18
Oto ·18
-0.5 to +7.0

Vdc
Vdc
Vdc

-0.3 to +6.0
±25
300

Vdc

V
°C

FUNCTIONAL SPECIFICATIONS

Apply over the operating temperature range and at ±t 5V dc and +5V dc
unless otherwise specified.
ANALOG INPUTS

MIN.

Number of Inputs
HDAS-534
HDAS-538
Input Voltage Ranges
Gain = 1
Gain = 100
I.A. Gain Ranges
Input Impedance
CHON, CH OFF
Input Capacitance
(534) CH ON, CH OFF
(538) CH ON,CH OFF
Input Bias Current
Input Offset Current
Input Offset Voltage
Common Mode Volt. Range
CMMR, G=1 ,@ 10 Hz,
Vcm=1V p.p
Voltage Noise (RMS)
Gain=1
Gain = 8
MUX Crosstalk @ 125 KHz
MUX ON Resistance
Bias Current Tempco
Offset Current Tempco
Offset Voltage Tempeo
Input Gain Equation

TYP.

MAX.

UNITS

4 differential inputs
8 single-ended inputs

1,2,4,8,10,100
1011

1012

-

Ohms

-

-

25
12
200
50
±10

pF
pF
pA
pA
mV
V

-

±11

-

-75

-80

-

-

-

dB

200
~V
50
~V
-72
dB
450
500
Ohms
Doubles (max.) every 10 'C abcve 70 'C
Doubles (max.) every 10 'C abcve 70 'C
(±30 ppml 'C x gain) ±20 ppml 'C (max.)
Rg = 1I1(gain ·1)/2K]

DIGITAL INPUTS
Logic Levels
Logic 1
Logic 0
Logic Loading
Logic 1
Logic 0

-

2.0

-

-

-

-

-

-

0.8

Vdc
V dc

5
-200

j.IA
j.IA

OUTPUTS
Logic Levels
Logic 1
Logic a
Logic Loading
Logic 1
Logic 0
Internal Reference
Voltage, +25 "C
Drift
External Current
Output Coding

5-12

-

-

-

-

+9.9

+10.0
±5

2.4

-

-

-

TYP.

12

-

-

-

-

-

±D.13
±D.15
±D.25
±D.074
±15
±D.074
±5
±D.1
±20
±D.1
±20

MAX,

±3/4
±3/4
±1.5
±3/4
±3/4
±1
±D.30
±D.5
±D.7S
±D.15
±30
±D.15
±10
±D.25
±40
±D.25
±40

UNITS
Bits
LSB
LSB
LSB
LSB
LSB
LSB
%FSR
%FSR
%FSR
%FSR
ppm/"C
%FSR
ppm/"C
%FSR
ppm/"C
%FSR
ppm/"C

-65
·73
dB
uver operating temperature range

SIGNAL TIMING

oto +10V, ±10V
oto 100 mV, ±100 mV

-

Resolution
Integral Nonlinearity,25 "C
Oto +70 "C
-55 to +125 'C
Differential Nonlinearity, +25 "C
010 +70 "C
-55 to +125 'C
F.S. Abs. Aceuracy +25 "C
oto +70 "C
-55 to +125 "C
Unipolar Zero Error,+25 "C
Unipolar Zero Tempco
Bipolar Zero Error, +25 "C
Bipolar Zero Tempco
Bipolar Offset Error,+25 "C
Bipolar Offset Tempco
Gain Error, +25 "C
Gain Tempeo
Harmonic Distortion (- FS)
(DC to 50 KHz, 10V pk-pk)"(j)
No Missing Codes

MIN.

0.4

Vdc
V dc

-160
6.4

j.IA
mA

+10.1
±35
1.5

Vdc
ppm/"C
mA

Straight binarylOffset binary
Complementary binary
Complementary offset binary

Enable to Data Val. Delay
MUX Address Set-up Time
Start Convert Pulse Width
Data Valid Before
EOCSignal Goes Low
Conversion Time, +25 "C
oto +70 "C, ·5510 +125 "C
Throughput Rates
Gain=1,(j)
Gain = 2, (j)
Gain = 4, (j)
Gain = 8, (j)
Gain =10,(j)
Gain =100,(j)

-

10

400
125

-

150

175

nS
nS
nS

-

-

20
1000
1100

nS
nS
nS

250
150
125
100
90
30

-

-

-

-

KHz
KHz
KHz
KHz
KHz
KHz

500
400
-20
±100
90

900
750
0
±150

nS
nS
nS
pS
V/)lS

100
75
-88
0.1

200
150

nS
nS
dB

100

~V/)lS

+15.0
-15.0
+5.0
+78
-72
+75
2.6

+15.75
·15.75
+5.25
+90
·82
+90
3.0
0.01%

Vdc
Vdc
Vdc
mA
mA
mA
Watts
%FSR/%V

-

-

-

s/H PERFORMANCE
Acquistion Time
Full Scale Step to 0.01%
Full Scale Step to 0.1%
Aperture Delay
Aperture Uncertainty
Slew Rate
Hold Mode Settling Time,
10Vto ±D.01%FS
10Vto±D.1%FS
Feedthrough Rejection
Droop Rate, (j)

-

-

-50
70

-80

-

-

POWER SUPPLY
Range, +15V
-15V
+5V
Current, +15V
·15V
+5V
Power Dissipation
Power Supply Rejection

+14.25
·14.25
+4.75

-

-

ENVIRONMENTAL
Oper. Temp. Range,-Me
-MM
Storage Temp. Range
Package Type
Weight
Pins

0
·55
-65

+70
"C
+125 "C
+150 "C
40-pm uDIP
0.32 oz./(9 grams) max.
0.010 x 0.01 Bin. Kovar

-

CD Specifications valid at 25°C and over the operating temperature
ranges of 0 to +70 °C and -55 to +125°C.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 0204S-1194fTEL (50S) 339-3000fTLX 1743SS/FAX.(50S) 339-6356

HDAS-S34,-S38
Table 1. MUX Channel Addressing

HDAS-534/538 OPERATION
The HDAS devices accept either 8 single-ended or 4 differential input signals. Tie unused channels to SIGNAL GROUND,
pin 14.
Channel selection is accomplished using the multiplexer address pins shown in Table 1. Obtain additional channels by
connecting external multiplexers.
The acquisition time is the amount of time the multiplexer, instrumentation amplifier and sample· hold require to settle
within a specified range of accuracy.
The acquisition time can be measured by how long EOC is
low before the rising edge of the START CONVERT pulse for
continuous operation. Higher gains'require the use of the
RGAIN resistor to increase the acquisition time. The gain is
equal to 1 without an RGAIN resistor. Table 2 refers to the
appropriate RGAIN resistors for various throughputs.
The HDAS devices enter the hold mode and are ready for
conversion upon the start convert going high. The c~rsion
is complete within a maximum of 1 f1sec (+25°C). EOC returns low, the data is valid and sent to the three-state output
buffers. The sample/hold is now ready to acquire new data.

150 nSec. ±25 nSec.

MUX ADDRESS PINS
39
38
37
CA2 CAl CAD
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

CHANNEL

0
1
0
1
0
1
0
1

0
1
2
3
4
5
6
7

HDAS-534
(2-BIT ADDRESS)
HDAS-538
(3-BIT ADDRESS)

Table 2. Input Range Parameters
INPUT RANGE

GAIN

RGAIN()

THROUGHPUT

o to +10V
Oto +5V
o to +2.5V
o to +1.25V
o to +1.OV
o to +IOOmV

1
2
4
8
10
100

OPEN
2K
6650
2870
2210
200

250 KHz
150 KHz
125 KHz
100 KHz
90 KHz
30 KHz

±10V
±5V
±2.5V
±1.25V
±1.OV
±100mV

1
2
4
8
10
100

OPEN
2K
6650
2870
2210
200

250 KHz
150 KHz
125 KHz
100 KHz
90 KHz
30 KHz

START
CONVERT

EOC

t

~.1J.1S~1

-~I~L______~r___lL__________

_________

35 nS Max. I

I
OUTPUT
DATA

_ ____________,,~~,f.-~3~5~ns~m~ax~.~~~---------I
~

-

1.8~S

--r11--

I

N·l VALID

ENABLE ---------------~-h
10 nS max.

..

I

~
10 nS max.

I

Enabled Dala
NVAUD

-I .....

CAl ----------------~-----------"

r..-

CAO _____________--"-"1

CHO

Notes

60 nS Typical

CH1

1. A START CONVERT pulse greater than
'175 nanoseconds will slow the throughput.
CH2

Figure 1. HDAS-534/538 Timing Diagram

2. Bmriggering START CONVERT before
EOC goes low will not start a new
conversion.
3. Times shown apply over the full operating
temperature range.

Table 3. Zero and Gain Adjust

For Immediate Assistance, Dial 1·800·233·2765

FSR

Zero Adjust
+1/2 LSB

Gain Adjust
+FS -11/2 LSB

o to +IOV dc
±IOVdc

+1.22mV
+2.44 mV dc

+9.9963Vdc
+9.9927Vdc

5·13

HDAS..S34,-S38
CALIBRATION PROCEDURE
36

1. Connect the converter per Figure 2 and Table 2 for tbe appropriate full-scale range (FSR). Apply a pulse of 150 nSec
(typical) to the START CONVERT input (pin 40) at a rate of
75 KHz. This rate is chosen to reduce flicker if LED's are used
on the outputs for calibration purposes.

35

DGND

10 RGAINHI

~ RG-'!N 11

AGAIN

LO

2. Zero Adjustments
Apply a precision voltage reference source between the analog input and signal ground (pin 14). Adjust the output of the
reference source per Table 3. For unipolar, adjust the zero
trimming potentiometer so that the output code flickeg6tj ailY
between 0000 0000 0000 and 0000 0000 0001 with
BIN (pin 9) tied high (straight binary) or between 1111 1111
1111 and 1111 1111 1110 with pin 9 tied low (complementary
binary).

HDAS-534/538

p

20K ~_----.Jl"'16 OFFSET ADJUST
+15V

For bipolar operation, adjust the potentiometer such that the
code flickers equally between 1000 0000 0000 and 1000 0000
0001 with pin 9 tied high (offset binary) or between 0111 1111
1111 and 0111 1111 1110 with pin 9 tied low (complementary
offset binary).
3. Full-Scale Adjustment

Figure 2. Typical Connection Diagram

Set the output of the voltage reference used in step 2 to the
value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111
1110 and 1111 1111 1111 for pin 9 tied high and 0000
00000001 and 0000 0000 0000 for pin 9 tied low.

NOTES:

1. For unipolar operation, connect pin 12 to pin 17.
2. For bipolar operation, connect pin 13 to pin 17.
3. Position RGAIN as close as possible to pins 10 and 11.
Use RN55C, 1% resistors.
4. If gain and offset adjusts are not used connect pin 15
to ground and leave pin 16 open.

4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

Table 4. Output Coding
STRAIGHT

UNIPOLAR

INPUT RANGES, V dd

SCALE
+FS -1 LSB
7/8 FS
314 FS
1/2 FS
1/4 FS
118 FS
1 LSB
0

oto +10\1'
+9.9976V
+8.7500V
+7.5000V
+5.0000V
+2.5000V
+1.2500V
+0.0024V
O.OOOOV

BIN CaMP

BINARY

OUTPUT CODING
MSB
LSB
1111 1111 1111
11100000 0000
1100 0000 0000
1000 0000 0000
010000000000
001000000000
000000000001
0000 0000 0000
OFF.

BINARY

INPUT RANGE BIPOLAR

MSB
LSB
0000 0000 0000
000111111111
001111111111
0111 1111 1111
1011 1111 1111
110111111111
111111111110
1111 1111 1111
CaMP

OFF

+10Vdc
+9.9951 V
+7.5000V
+5.0000V
O.OOOOV
-5.0000V
-7.5000V
-9.9951 V
-10.000V

SCALE
+FS -1 LSB
+3/4 FS
+ 112 FS
0
-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

BIN

ORDERING INFORMATION
MODELNQ.
HDA8-S34MC
HDA8-S34MM
HDAS-S38MC
HDAS-S38MM

INPUT

OPER.
TEMP. RANGE

SEAL

4 D Channels
4 D Channels
8 SE Channels
8 SE Channels

O-to +70 cC
-55 to + 125cC
Oto+70 c C
·55 to +125 cC

Hermetic
Hermetili:
Hermetic
Hermetic

Receptacle for PC board mounting can be ordered through AMP
Inc.,Part # 3-331272-8 (Component Lead Socket), 40 required,..
For availability of MIL-STD-883B versions, contact DATEL.

5-14

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (50S) 339-3000ITLX17438S/FAX (50S) 339-6356

HDAS-75,-76
12-Bit, 75 KHz
Data Acquisition Systems
bi

FEATURES
•
•
•
•
•
•

12-8it resolution, 75 KHz
8 Channels single-ended or 4 channels differential
Miniature 40-pin DDIP
Full-scale gain range from 100 mV to 10V
High impedance output state
No missing codes

GENERAL DESCRIPTION
The HDAS-75,-76 are complete data acquisition systems containing an internal multiplexer, instrumentation amplifier, sample-hold, analog-to-digital converter and three-state outputs.
Packaged in a miniature 40-pin double-dip package, the
HDAS-75/76 has a low power dissipation of 500 milliwatts.

MECHANICAL DIMENSIONS
INCHES (MM)
0.810 Max.

i-

~ I
0.150(3,8)Min.=

The HDAS-76 provides 4 differential inputs and the HDAS-75
provides 8 single-ended inputs. An internal instrumentation
amplifier is characterized for gains of 1,2,4,8,10 and 100. The
gain range is selectable through an external resistor.

t

TECHNICAL NOTES
1. Rated performance requires using good high-frequency circuit board layout techniques, The analog and digital grounds
are not connected internally. Avoid ground-related problems
by connecting the analog, signal and digital grounds to one
pOint, the ground plane beneath the converter. Due to the inductance and resistance of the power supply return paths, return the analog and digital ground separately to the power
supplies.

20 Spaces
at
Intervals

0.100 (2,5)

-i

HI

LO
10

GAIN
ADJ.

OUT
12

17

21
I 20
I
I
I
I
I
I
I HDA8-75
I HDAS-76
I
I BODOM
I
VIEW
I
I
I
I
I
I
I
40
I 1

1___ (15,2)
0.600

16

33 BIT 1 (MS8)
CHOICHO HI

1

CHI/CHI HI
CH2ICH2HI
CH3ICH3 HI
CH4ICHOLO

CH5ICHll0
CH6ICH2LO
CH7fCH3LO

f--

2

f=
I-f=
f=

~

32
31
30
29
28
27
26
25
24
23
22

4:1

(76)

~}
~
~"+>~~

MUX

12-B11

SIH

8:1
(75)

NO

SIGNAl 14

BI12
BIT3
BIT4
BIT5
BIT6
BIT7
BIT8
81T9
81Tl0
81Tl1
BIT12(LSB)

ONO

-

9 NO CONNECTION

39
CA2

38
CAl

37
CAO

19
35
ANA DIG
GND GND

36
20
+5V +15V

18
·15V

13

40

21

REF

START

EOC

OUT

CONVERT

For Immediate Assistance, Dial 1-800-233-2765

0.190 (4,9) Max.

0.010 X0.018 KOVAR

OFFSET
BIPOLAR ADJ.

15

T

U

PIN
1
2
3
5
6
7
8
9
10
11
12
13
1.
t5
16
17
18
19
20

•

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

--II

--

GAIN GAIN INST. AMP

~

I-

U,

1

2, Double-level multiplexing allows expanding the multiplexer
channel capacity of the HDAS-75 from 8 single-ended channels to 128 single-ended channels or the HDAS-76 from 4
differential channels to 32 single-ended channels.

(20.6)

1
2.2 Max.

(53,8)

0.100
- - (2,5)

INPUT/OUTPUT CONNECTIONS
PIN FUNCTION
40 STARTCNVRT
39 CA2
38 CAl
37 CAD
36 +5V
35 DIGITALGND
34 DIGITALGND
33 BITl (MSB)
32 BIT2
31 BIT3
30 BIT'
29 BIT5
28 BIT6
27 BIT 7
26 BITS
25 BIT9
24 BIT 10
23 BIT11
22 BIT 12 (LSB)
21 EOC
+15V

FUNCTION
CHO/CHO HI
CH IICH 1HI
CH 21CH 2HI
CH 3JCH 3 HI
CH 7/CH 3LO
CH6/CH2LO
CH5!CH !LO
CH4ICHOLO
NO CONNECTION
RGAINLO
RGAIN HI
INST. AMP OUT
+10V REF OUT
SIGNALGND
GAINAOJ
OFFSET ADJUST
BIPOLAR
-15V
ANALOGGND

5-15

HDAS-75,-76
ABSOLUTE MAXIMUM RATINGS

PERFORMANCE

LIMITS

PARAMETERS
+15V Supply (pin 20)
-15V Supply (pin 18)
+5V Supply (pin 36)
Digital Inputs
(pins 37-40)
Analog Inputs (pins 1-8)
Lead Temp. (10 Sec.)

UNITS

Oto +18
Oto-18
-0.5 to +7.0

Vdc
Vdc
Vdc

-0.3 to +6.0

Vdc

±25

V

300

°C

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and at ±15V de and +5V de
unless otherwise specified.
MIN.

ANALOG INPUTS
Number of Inputs
HDAS·76
HDAS··75
Input Voltage Ranges
Gain = 1
Gain = 100
I.A. Gain Ranges
Input Impedance
CHON, CHOFF
Input Capacitance
(·75) CH ON, CH OFF
(·76) CH ON,CH OFF
Input Bias Current
Input Offset Current
Input Offset Voltage
Common Mode Volt Range
CMMR, G=l,@lOHz,
Vcm=IV p.p
Voltage Noise (RMS)
Gain = 1
Gain=8
MOX Crosstalk@l25KHz
MUX ON Resistance
Bies Current Tempco
Offset Current Tempco
Offset Voltage Tempco
Input Gain equation

TYP.

MAX.

UNITS

4 differential inputs
8 single-ended inputs
Oto+tOV,±tOV

oto 100 mV, ±100 mV
1011

t012

-

Ohms

-

-

25
12
200
50
±10

-

pF
pF
pA
pA
mV
V

·75

-80

-

dB

-

-

200
50

-

±11

-

"V
"V
dB
Ohms
450
500
Doubles (max.) every 10°C above 70 °C
Doubles (max.) every 10°C above 70 °C
(±30 ppm/ 'C x gain) ±20 ppm/ 'C (max.)
Ag = l~(gain ·1)12K]
·72

-

-

DIGITAL INPUTS
logic Lavels
Logic 1
Logic 0
Logic loading
Logic 1
Logic 0

2.4

-

-

0.8

-

Vdc
Vdc

-

+30
·30

J.LA
J.LA

-

Output Coding

5-16

2.4

-

+9.9

-

-

+10.0
±5

-

MAX.

UNITS

-

-

-

-

-

±3/4
±3/4
±1.5

Bits
LSB
LSB
LSB

-

-

-

±O.13
±O.15
±O.25
±0.074
±15
±0.074
±5
±O.l
±20
±O.1
±20

±3/4
±314
±1
±O.30
±O.5
±O.78
±0.15
±30
±0.15
±10
±O.25
±40
±0.25
±4O

LSB
LSB
LSB
%FSA
%FSA
%FSR
%FSA
ppm/DC
%FSR
ppm/DC
%FSA
ppm/DC
%FSA
ppm/DC

12

-

-

-

-

-

-

dB
·65
·73
Over operating lemperature range

MUX Address Set·up TIme
Start Convert Pulse Width
Data Valid Before
rncSignal Goes Low
Conversion Time, +25 °C
Oto +70 'C
·5510 +125 'C
Throughput Rates
Gain=l,(j)
Gain = 2, (j)
Galn=4, (j)
Gain=B, (j)
Gain = 10,(j)
Gain = loo,(j)

400
0.050

1

-

nS
"S
nS
"S
"S
"S

-

-

-

-

-

12
13
13

75
60
50
45
40
10

80
70
60
50
45
20

-

KHz
KHz
KHz
KHz
KHz
KHz

-

·50

1.4
O.B
·20

1.B
1.4
0
±200

"S
"S
nS

70

90

-

VI"S

-

200
150
-88

400
300

nS
nS
dB
"VI"S

300

-

s/H PERFORMANCE
Acqulstion Time
Full Scaie Step to 0.01%
Full Scale Step to 0.1%
Aperture Delay
Aparture Uncertainty
Slew Rate
Hold Mode Setiling Time,
10V 10 ±O.OI %FS
10V to ±O.I%FS
Feedthrough Rejection
Droop Rate, (j)

-

-

-80

-

-

-

-

100

+15.0
·15.0
+5.0
+15
·10
+25
0.500

+15.75
·15.75
+5.25
.20
·15
.35
0.700
0.01%

pS

POWER SUPPLY

OUTPUTS
Logic Lavels
Logic 1
Logic 0
logic Loading
Logic 1
Logic 0
Intamal Reference
Voltage, +25 'C
Drift
External Current

TYP.

SIGNAL TIMING

1,2,4,8,10,100

-

Resolution
Integral NonlinearitY,25 'C
Oto+70 'C
·55 to +125 'C
Dlflenential Nonlinearity
+25'C
oto +70 'C
·55 to +125 'C
F.S. Abs. Accuracy +25 'C
oto +70 'C
·5510 +125 'C
Unipolar Zero Error,+25 °C
Unipolar Zero Tempco
Bipolar Zero Error, +25 'C
Bipolar Zero Tempeo
Bipolar Offset Error,+25 °C
Bipolar Offset Tempco
Gain Error, +25 'C
Gain Tempco
Harmonic Distortion (. FS)
(DC to 5KHz,10V pk.pk) (j)
No Missing Codes

MIN.

-

Vdc
Vdc

0.4
·500
1.6

"A
rnA

+10.1
±35
1.5

Vdc
ppm/DC
rnA

Siraighl binary/Offset binary

Range+15V
·15V
+5V
Curnent +15V
·15V
.5V
Power Dissipation
Power Supply Rejection

+14.25
·14.25
+4.75

-

-

-

Vdc
Vdc
Vdc
rnA

rnA
rnA
Watts
%FSRI%V

ENVIRONMENTAL
Opar. Temp. Range, ·MC, ·PC
-MM
Storage Temp. Range
Package Type
Weight

0
-55
-65

-

+70
'C
+125 'C
+150 'C
40-pin DDIP
0.32 oz.l(9 grams) max.

-

(j) Specifications valid at 25 'C and over the temperallJre ranges of 0 to +70 'C and
-55 to +125 'C.

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356

HDAS·75,·76
Table 2. Input Range Parameters

HDAS-75176 OPERATION
The HDAS devices accept either 8 single-ended or 4 differential input signals. Tie unused channels to SIGNAL GROUND,
pin 14.
Channel selection is accomplished using the multiplexer address pins shown in Table 1. Obtain additional channels by
connecting external multiplexers.
The acquisition time is the amount of time the multiplexer, instrumentation amplifier and sample-hold require to settle within
a specified range of accuracy aiter the start convert goes high.
The acquisition time can be measured by how long EOC is
low before the rising edge of the START CONVERT pulse for
continuous operation. Higher gains require the use of the
RGAIN resistor to increase the acquisition time. The gain is
equal to 1 without an RGAIN resistor. Table 2 refers to the
appropriate RGAIN resistors for various throughputs.

INPUT RANGE

GAIN

RGAIN

1
2
4
8
10
100

OPEN
2KO
6650
2870
2210
200

75KHz
60KHz
50KHz
45KHz
40KHz
10KHz

1
2
4

OPEN
2KO
6650
2870
2210
200

75KHz
60KHz
50KHz
45KHz
40KHz
10KHz

01o+10V
01o+5V
0Io+2.5V
0Io+1.25V
0Io+1.0V
01o+100mV
±10V
±5V
±2.5V
±1.25V
±1.0V
±100mV

8
10
100

THROUGHPUT

Rgain=

[

1
--

(9:~-1)J

Table 1. MUX Channel Addressing
36

+5V

~

1

MUX ADDRESS PINS
39
38
37
CA2 CAl CAO

4.7 11FT .111if

DGND

.J..

34,35

. -1.Q RGAINHI

i__ -1.1
RGA'.

CHANNEL

o

RGA~LO

o
o
o

HDAS-76
(2-BIT ADDRESS)

1
1

HDAS-75
(3-BIT ADDRESS)

1

10V REF
o

1r ·1 1'F

{

4.7I'Fr

~

13

HDA5-75176

1
19

-15V~
20K

15 GAIN ADJUST

-15~J +15V
16 OFFSET ADJUST

20K
+153
-15V
4.71'F

t

4.7 11F
r
+15Vo +

2. Zero Adjustments
Apply a precision voltage reference source between the analog input and signal ground (pin 14). Adjust the output of the
reference source per Table 3. For unipolar, adjust the zero
trimming potentiometer so that the output code flickers equally
between 0000 0000 0000 and 0000 0000 0001.

18

tll1~9

For bipolar operation, adjust the potentiometer such that the
code flickers equally between 1000 0000 0000 and 1000 0000
0001.

rll'F
20

3. Full-Scale Adjustment

Figure 2. Typical Connection Diagram
NOTES:
1.

For unipolar operation, connect pin 12 to pin 17.

2.
3.
4.
5.

For bipolar operation, connect pin 13to pin 17.
Ground pin 15 il Gain Adjust is not used.
leave pin 16 open n offset adjust is not used.
Posnian RGAIN as ciose as possible to pins 10and 11. Use RN55C, 1%

Set the output of the voltage reference used in step 2 to the
value shown in Table 3. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111
1110and 111111111111.
4. To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

resistors.
CALIBRATION PROCEDURE
1. Connect the converter per Figure 2 and Tables 2 and 3 for
the appropriate full-scale range (FSR). Apply a pulse of 1,0
llSec (typical) to the START CONVERT input (pin 40) at a
rate of 75 KHz. This rate is chosen to reduce flicker if LED's
are used on the outputs for calibration purposes.

For Immediate Assistance, Dial 1-800-233-2765

Table 3. Zero and Gain Adjust
FSR

Zero Adjust
+112 LSB

a

+1.22mV
+2.44 mVdc

to +10V dc
±10V dc

Gain Adjust
+FS - 1112 LSB
+9.9963Vdc
+9.9927Vdc

5-17

HDAS-75,.;76
TIMING

EOC

The
output signal, when high, indicates that a conversion
is in process. During a conversion the digital output buffers
are in a high impedance state, preventing data from being
read. A START CONVERT input received during a conversion
has no effect on the existing conversion. As shown in Figurela, data can be read while START CONVERT is high and
EOC is low.
I

.....1
START

CONVERT
EOC

The AID conversion begins on the falling edge of a start convert command. If START CONVERT stays low after EOC becomes low, the output buffers stay in a high impedance state.
Valid data can be read 150 nanseconds maximum after
START CONVERT goes high. Figure 1b shows how to use
the START CONVERT pulse to. control when the output data
'
becomes valid.

1-- 200 nS Max

___ I
;.,.. 50 nS Miin.
I
.
~-'-I-c~2c-"-=-se-:-·ci-I--"

__ I

'------+--~-+------'

150 n$ Max.

NVALID

--I 1--I I

HIGH

OUTPUT

DATA

II

-~--~~

EOC

DATA

+l--N_ _ _

I

I

OUTPUT

--'r---

CONVERT'.,-_N._'_,-1_ _ _----'

---->11'--_--.-_--'11'--___

___

300 nS Min. - -

:__ 200 nS Max

I

START

--I
N-l

I

L---_ __

1-25nSMin.

HIGH

N

__---'--_-----'IM::::P-=E=DA.:::N::::CE=--_----'_.!.'VA~L~ID__..L_.:IM:_:P.::ED~A:::N~CE=____L.Y.!VAU0

CA1 -~-----_4------~

Figure lb. Data Valid with START CONVERT
Returned High Later

CAO ________~~~IJI--~6c6o~nS~T~~~lc~ru-------I
I

NOTES:

Figure la. . Data Valid with START CONVERT
Immediately Returned High

t. A START CONVERT pulse greater
than 5 ~S will slow the overall
throughput.
2, Retriggering START CONVERT bafore E'O'C'" goes low will not initiate a
new conversion.
3. Timing specifications apply over the
full operating temperature range.

Table 4. Output Coding
STRAIGHT BIN

UNIPOLAR

INPUT RANGES, V de

OUTPUT CODING

SCALE
+FS -1 LSB
7/8 FS
314 FS
112 FS
1/4 FS
118 FS
1 LSB
0

Oto+l0V
+9.9976V
+8.7500V
+7.5000V
+5.0000V
+2.5000V
+1.2500V
+0.0024V
O.OOOOV

MSB
LSB
1111 1111 1111
111000000000
1100 0000 0000
1000 0000 0000
010000000000
001 0 0000 0000
000000000001
0000 0000 0000
OFF BINARY

INPUT RANGE BIPOLAR
+10Vde
+9.9951V
+7.5000V
+5.0000V
O.OOOOV
-5.0000V
-7.5000V
-9.9951V
-10.000V

SCALE
+FS -1 LSB
+3/4 FS
+1/2 FS
0
-1/2 FS
-3/4 FS
-FS +1 LSB
-FS

ORDERING INFORMATION
MODEL NO.
HDAS-76PC
HDAS-76MC
HDAS-76MM
HDAS-76/883
HDAS-75PC
HDAS-75MC
HDAS-75MM
HDAS-75/883

INPUT
4D Channels
4 D Channels
4 D Channels
4D Channels
8 SE Channels
8 SE Channels
8 SE Channels
8 SE Channels

OPERATING
TEMP. RANGE
Oto +70 °C

oto +70 °C

-55to+125°C
-55 to +125 °C
Oto+70°C
Oto+70°C
-55 to + 125°C
-55 to +125 °C

SEAL
Plastic
Hermetic
Hermetic
Hermetic
Plastic
Hermetic
Hermetic
Hermetic

Receptacle for PC board mounting can be ordered through AMP
Inc.,Part # 3-331272-8 (Component Lead Socket), 40 required.

5-18

DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356

HDAS-950/-951
16-Bit, 100 KHz
Data Acquisition Systems

PRELIMINARY PRODUCT DA TA
FEATURES
• 16-8it resolution, 100 KHz

• 8 Channels single-ended or 4 channels differential
• Miniature 40-pin DDIP
• Full-scale gain range from 100 mV to 10V
• High-impedance output state

GENERAL DESCRIPTION
The HDAS-950/-951 are complete data acquisition systems
containing an internal multiplexer, instrumentation amplifier,
sample-hold, analog-to-digital converter and three-state outputs. Packaged in a miniature 40-pin double-dip package, the
HDAS-950/-951 have a low power dissipation of 2.4 watts.
The HDAS-951 provides 4 differential inputs and the HDAS950 provides 8 single-ended inputs. An internal instrumentation amplifier is characterized for gains of 1, 2, 4, 8, 10 and
100. the gain range is selectable using an external resistor.
TECHNICAL NOTES
1. Use external potentiometers to remove system errors or the
small initial errors to zero. Use a 20K trimming potentiometer
for gain adjustment with the wiper tied to pin 12 (ground pin 12
for operation without adjustments). Use a 20K trimming potentiometer with the wiper tied to pin 11 for zer%ffset adjustment
(leave pin 11 open for operation without adjustment).
2. Bypass the analog and digital supplies and the + 1OV reference (pin 9) to ground with a 4.7I!F, 25V tantalum electrolytic
capacitor in parallel with a 0.1 I!F ceramic capacitor. Bypass
the +1OV reference (pin 9) to analog ground (pin 33).
3. Rated performance requires using good high-frequency circuit board layout techniques. the analog and digital grounds

are not connected internally. Avoid ground'related problems
by connecting the analog and digital grounds to one pOint, the
ground plane beneath the converter. Due to the inductance
and resistance of the power supply return paths, return the analog and digital ground separately to the power supplies.
4. Double-level multiplexing allows expanding the multiplexer
channel capacity of the HDAS-950 from 8 single-ended channels to 128 single-ended channels or the HDAS-951 from 4
differential channels to 32 single-ended channels.

UNIPOLAR

10
MUX
ENABLE

AMP IN
LO (951)

AMP IN
HI

RGAIN
HI

RGAIN
LO

'---l-.-r~~,---J 30

81T 1 (MSB)I BIT 9

29 BIT 21 BIT 10
28 8113181111

CHOJCHOHI
CHI/CHI HI
CH2/CH2HI

27
26
25
24

81T4I81112
BIT 51 BIT13
81T6IBIT14
BlT71BIT15
23 BIT 81 BIT 16 (lSB)

CH3ICH3Hl

CH4ICH3 LO

CH5ICH2l0
CH6.iCHl LO

~950)

CH7/CHOLO

f------~ 17 FSTATI

f------~ 18 FSTAT2

L__J:=====~
37

36

35

33

CA2

CAl

CAO

ANA

13
DIG

aND

GND

(950)

+SV

32

31

+15V

-15V

INPUT/OUTPUT CONNECTIONS

, - - - - - 15 ENABLE (9·16)

,--_ _, - -_ _',7_ _',._--.,39_ _',B_ _ _ _r-+_~-----'f_+_-~ 16 ENABlE(1·8)

20
+10V
REF

22 FIFOIffiR

19 FIFOAEAO

--

PIN

FUNCTION

PIN

FUNCTION

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

CHO/CHOHI
CH 1/CH 1 HI
CH 21CH 2 HI
CH 3/CH3 HI
CH4ICH3LO
CH5ICH2LO
CH6ICH 1 LO
CH7ICHOLO
+10V REF. OUT
UNIPOLAR
OFFSET ADJUST
GAIN ADJUST
DIGITAL GROUND
+5VPOWER
ENABLE (9·16)
ENABLE (1·8)
FSTATl
FSTAT2
FIFO READ
START CONVERT

40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

AMP IN HI
RGAIN HI
RGAINLO
CA2IAMPIN LO
CAl
CAO
MUXENABLE
ANALOG GROUND
+15V POWER
-15VPOWER
BIT 1(MSBY BIT 9
BIT 21 Brr 10
BIT3/BIT11
BIT 41 BIT 12
BIT 51Brr 13
BIT 61 BIT 14
Brr7/BIT15
BIT 8LIDJ16 (LSB)
FIFO/DIR
EOC

17
18
19
20

START
CONVERT EOC

OUT

For Immediate ASSistance, Dial 1-800-233-2765

5-19

HDAS·950/·951
ABSOLUTE MAXIMUM RATINGS
PARAMETERS

PERFORMANCE

UNITS

LIMITS

+15V Supply (pin 32)
-15V Supply (pin 31)
+5V Supply (pin 14)
Digital Inputs
(pins 15-20, 22, 34-37)
Analog Inputs (pins 1-8)
Lead Temp. (10)Sec.)

010+18
010 -18
-0.510 +7.0

Vde
V de
V de

-0.3 to Voo +0.3
±14
300

V de
V
°C

FUNCTIONAL SPECIFICATIONS
Apply over the operating temperature range and al ±15V de
and +5V de unless olherwise specified.
ANALOG INPUTS

MIN.

Number of Inputs
HDAS-950
HDAS-951
Input Voltage Ranges
Gain = 1
Gain = 100
I.A. Gain Ranges
Gain Equation Error
Input Impedance
CHON,CHOFF
Input .Capacitance
(-950) CH ON, CH OFF
(-951) CH ON.CH OFF
Input Bias Current
Input Offset Current
Input Offset Voltage
Common Mode Volt. Range
CMMR, G=I,@10Hz,
Vern=IVp-p
Voltage Noise (RMS)
Gain = 1
Gain = 8
MUX Crosstalk @100 KHz
Bias Current Tempco
Offset Current Tempeo
Offset Voltage Tempeo
Input Gain Equation

TYP.

MAX.

UNITS

8 single-ended inpuls
4 differential inpuls

-

010 +10V de, ±SV de
Oto 100 mV de, ±SO mV
1,2,4,8,10,100
:!ll.1
Yo

1013

1014

-

Ohms

-

-

25
12
500
20

pF
pF
nA
nA
mV
V

±10

:tQ

-

-

-

-110

-

-

-

TBD
TBD

dB

IN
IN
-72
dB
Doubles (max.) every 10 "C above 70 "C
Doubles (max.) every 10 "C above 70 "C
(BO ppml "C x gain):tQO ppm/ "C (max.)
Rg = 2K1(gain -1)

DIGITAL INPUTS
Logic Levels
Logic I
Logic 0
Logic Loading
Logic 1
Logic 0

2.25

-

-

-

-

0.8

Vdc
Vdc

-

-

+5
-200

jJA
jJA

-

OUTPUTS
Logic Levels
Logic I
Logic 0
Logic Loading
Logic I
Logic 0
Internal Reference
Voltage, +25 "C
Drift
External Current
Output Coding

-

0.4

Vdc
Vdc

-

-

-160
6.4

jJA
rnA

+9.9

-

-

Vdc
+10.1
MO
ppml"C
5
mA
Straight binary/Olfset binary
+10.0
±15

-

NOTES:
Specifications valid at 25°C and 'over the. operating temperature
ranges of 0 to +70 °C and -55 to +125 °C.

(!)

@ Pulse widths greater than 5 I1Sec. will decrease the specified
throughput rate.

5-20

MIN.

TYP.

MAX.

16

-

-

-

-

-

-

-

-

-

-

-

:!ll.006
:!ll,012
TBD
:!ll,006
:!ll.012
TBD
:!ll.15
TBD
TBD
:!ll,05
TBD
:!ll.05
TBD
:!ll.1
TBD
:!ll.1
TBD

UNITS
Bils
%FSR
%FSR
%FSR
%FSR
%FSR
%FSR
%FSR
%FSR
%FSR
%FSR
ppml"C
%FSR
ppm/"C
%FSR
ppml"C
%FSR
ppm/"C

-78
dB
TBD
dB
Over operaling lemperalure range

-

SIGNAL TIMING
Enable to Data Val. Delay
MUX Address Sat-up Time
Start Convert Pulse Width, @
Data Valid After
EOC Signal Goes Low
Conversion Time, 

100 megohms in parallel with 2 pF. TECHNICAL NOT.ES 1. The transfer accuracy of these multiplexers depends on both the source resistance and the load resistance. With zero source resistance, and assuming 2K ohms maximum channel ON resistance, the load impedance should be at least 20 megohms to achieve 0.01% accuracy. In practice, it is recommended that a load impedance of at least 100 6-6 megohms be used to minimize errors. Source resistance should be kept as low as possible so that accuracy is not affected; less than '1 K ohms is recommended. Higher source resistance, in addition to affecting accuracy, will degrade the settling time of the multiplexer. 2. Channel expansion uses the inhibit input of the multiplexer. A logic 0 on this input disables the mulitplexer. DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 MX Series mill idA £ CONNECTION & APPLICATION CHANNEL ADDRESSING PIN CONNECTIONS CAl ,. INHJB 15 CA' CM -Vs liN 2IN 14 GND 13 12 +Vs SIN 151N 24 3IN 11 .,N 141N 23 "N SIN 41N 10 71N 131N 22 41N 121N 21 3IN 1tlN 20 I. "N liN MX-808 MX-l606 OUT ,. ---OUT NC 27 26 -Vs 81N 161N 2S 7IN 10 +Vs NC "N to IN 10 "N GND VA CAB MXD-409 CAl ,. I. INHIB IS I. 17 INHIBIT AI 16 CA' " 15 CA' CA2 GND -Vs I. lAIN· 13 2A IN- 12 28 IN 3A IN 11 38 IN MXD-807 +Vs laiN .Vs BOUT BOUT A OUT NOTES: 1. -Vs 26 8A IN 88 IN 25 7A IN 7BIN 2. BAIN 6B IN 23 SA IN 58 IN 22 4A IN 48 IN 21 3A IN • 28IN ~ 4 2 ON INHIB. CHANNEL 1 4 2 1 X X X X a NONE X X X a a 0 a a a a a 1 a a 1 a a a 1 1 a 1 a a a 1 a 1 1 1 0 0 0 1 1 1 2 a 0 1 1 2 1 3 0 1.0 1 3 1 4 0 1 1 1 4 1 5 1 0 0 1 5 1 6 1 a 1 1 6 NONE 0 1 1 0 1 7 1 1 0 1 7 0 1 1 1 1 8 1 1 1 1 8 1 0 0 0 1 9 1 0 0 1 1 10 1 0 1 0 1 11 1 a 1 1 1 12 X X 0 1 1 0 a 1 13 0 0 1 1 1 0 1 1 14 0 1 1 2 MXD·409 ON INHIB. CHANNEL 1 2 NONE ,.,. lAIN 1 INHIBIT 1 1 1 0 1 15 1 0 1 3 1 1 1 1 1 16 1 1 1 4 20 10 ON INHIB. CHANNEL 8 A OUT 27 38 IN NOTES: CA CHANNEL ADDRESS SUPPLY VOLTAGE REFERENCE VOLTAGE NO CONNECTIONS ,. NC 48 IN 10 4A IN 11 12 13 MX·808. MXD-807 MX·1606 2A IN 18 IN 11 GND 12 VA NC I. 17 16 CA2 I. IS CA4 CAl SETTLING TIME VS. SOURCE RESISTANCE (20V STEP) LEAKAGE CURRENT VS. TEMP. 1000 lOOnA IOnA .III 100 /' OFFOUTPUr LEAKAGE CURRENT '0 (OFF) ¥ TOO_\: V 10 -..... ON LEAKAGE I ~ ./ 1M CURRENT '0 (ONI /' ~ :......: ~ ..... --- TO 0.01% // y / 0.1 0.01 ~ 0.1 100 10 SOURCE RESISTANCE (RsJ in KILOHMS ./ ./ 100 pA / OFF INPUT LEAKAGE CURRENT V 'SCOFF) ORDERING INFORMATION Ll' CHANNELS OPERATING TEMP. RANGE MX-808 8 S.E. oDe to +70 o e MX·1606 16 S.E. oDe to +7o o e MXD·409 4 Dill. oDe to + 70 0 e MXD·807 8 Dill. oDe to + 70 0 e MODEL NO. SOO 750 1000 TEMPERATURE ("e) For Immediate ASSistance, Dial 1-800-233-2765 6-7 Contact DATEL for up-to-date information on products covered by "Advanced" and "Preliminary" product data sheets. Dial 1-800-233-2765 for Applications Assistance 6-8 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 MX-1616, MX-818 High-Speed CMOS Analog Multiplexers MECHANICAL DIMENSIONS INCHES (MM) FEATURES • • • • • ,. 800 Nanoseconds settling time Programmable input mode Break-before-make switching Dielectrically isolated CMOS TIUCMOS-compatible T '0 r DATEL 0.3'0 17.87) 0.29' 17.'9) MX-818 -L ly,,-"TT""TT""TT"T"T"""T-rrr~ l f-- GENERAL DESCRIPTION The MX-1616 and MX-818 are high-speed high performance analog multiplexers manufactured with a dielectrically isolated CMOS process. Both devices achieve transfer accuracies of 0.01% at channel sampling rates of up to 1.25 MHz over ±1 OV signal ranges. These multiplexers are ideal for high-speed, multichannel, data acquisition systems where the multiplexer operates into a high impedance load such as a sample-hold, buffer amplifier or instrumentation amplifier. 0.185 MAX. 0.900 ± 0.015 (22.9 :l: 0.381) -------1 ----I 0.040 t: 0.020 (1.02 0.100 TYP. (2.54) MX-1616 ~ OUT MX·1616 " 16 - 17 - ~,~---_,++; ,. ~ 32 GAO CA' CA2 GAO INHIS ADDRESS GAO CA' CA2 CA3 ~ DECODER 8A IN C~ ~r----rrHHH 33 ANAlOG OUT CHANNEL 112 A OUT ~ W OUT MX-1616 GAO 0.... 1'3,2) ~-~~~~~~~ ,. - G.'j}------n-i I DATEL ANAlOG IN INHIBIT :I: 0.508) " 28 A unique feature of these circuits is tha ability of the use to program their inputs for either single-ended or differential operation, The MX-1616 is user programmable either as a single-ended 16-channel or as a differential 8-channel multiplexer while the MX-818 is user programmable either as a single-ended 8-channel or as a differential 4-channel multiplexer. LS (~,70) - OUT -eGA< ,-- •.••••..••••• 7500 Channel ON Res. over Temp., maximum> ••••••• 1 KO Channel OFF Input Leakage •.•.•.••..•..•. 10 pA Channel OFF Output Leakage ..•.•.•••.•.••• 35 pA Channel ON Leakage •.•.••• 40 pA Channel OFF Input Capacitance •.•••••••••• 2.5 pF Channel OFF Output Capacitance .••••••••••• 18 pF MX-818 8 Single-Ended 4 Differential · · +0.8V +0.3V +2.4V 0.7 (Logic sup.) 1 pA 25pA 4 B~s Logic "0" 0.01% 250 nsec. 800 nsec. 150 nsec.4 150 nsec. 125 nsec. 20 nsec. pends upon both the source and the load resistance. With zero source resistance and assuming 1 KO maximum chane I on resistance the load impedance must be at least 10 MO to achieve 0.01% accuracy. Source resistance should be kept as low as possible so thaI accuracy or settling time are not degraded. Less than 5000 is recommended. 50 pA 1.9 pF 10 pF 2. Channel expansion is accomplished by the use of the inhibit input of the multiplexers. To expand the number of channels, use multiple multiplexers with the inhibit inputs connected to a decoder. ·· ·· · 20 pA 3 Bits · PERFORMANCE Transfer Error, maximum .•. Settling TIme, 10VsteptoO.l% ••••... 10VsteptoO.Ol% •••... Access Time, maximum ..•. Enable Delay "ON", maximum ••.••••• Enable Delay "OFF", maximum ......• Break Before Make Delay ... 1. The transfer accuracy of the MX-1616 and MX-818 de- l00pA 100 pA DIGITAL INPUTS Logic "0" Threshold, maximum: TTL •••••••••. CMOS .•.•.•.• Logic "1" Threshold, minimum: TTL ••.•..••.. CMOS ..•....• Input Leakage Current, maximum: High " . . • . . .. Low ....•.... Channel Address Coding .... Channel Inhibit, All Channels OFF •••.•... TECHNICAL NOTES · ·· PIN CONNECTIONS MX-818 MX-1816 +Vs 2. ADUT BOUT 27 -Vs 28 +Vs 1. A OUT BOUT 17 -Vs SAIN SA IN 48 IN 88 IN 2. 7AIN 3BIN ,. lS IN 2. BAIN 29 IN 14 2A IN 6BIN 23 BA IN 1a IN 13 1A IN 58 IN 22 4A IN GND 12 INHIBIT 48 IN 21 3AIN LS 11 CAD CA> 10 CA1 NC 38 IN 20 2A IN 125 nsec." 28 IN 10 · ·· 11 ,. fAIN 18 IN INHIBIT GND 12 17 CAD LS 13 CAl " ,. CA1 19 16 16 4AIN NOTES: CA CHANNEL ADDRESS Vs SUPPLY VOLTAGE LS LOGIC SELECT NC NO CONNECTION CA2 POWER REQUIREMENTS Rated Power Supply Voltage .•.•.•.•.. ±15V Quiescent Current maximum ±30 mA Power Dissipation', ••••••••• maximum •.•••••••••.•• 900 mW 6-10 · ±18 mA 540mW DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 MX-1616, MX-818 CONNECTION & APPLICATION MX·1616· USED AS 16 CHANNEL MULTIPLEXER USE CAl AS DIGITAL ADDRESS INPUT CONNECT A OUT TO BOUT ON CHANNEl TO OUTPUT B 3 1 1 o INHIB. OUPUT A X X X X 0 NONE NONF 0 0 0 0 1 lA -- 0 0 0 1 1 2A -- 0 () 1 0 1 :IA -- 0 () 1 1 1 4A 0 1 0 () 1 5A -- 0 1 0 1 1 bA 0 1 1 0 1 7A --- 0 1 1 1 1 8A -- -- I 0 0 0 1 -- 1 0 0 1 1 -- 28 1 0 1 0 1 -- 38 ---- 48 18 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 -- 78 1 1 1 1 1 -- 88 MX-818· USED AS 8 CHANNEL MULTIPLEXER USE CAl AS DIGITAL ADDRESS INPUT 2 2 1 ON CHANNEl TO o INHIB. INHIB. OUTPUT A OUTPUT B X X X 0 NONE NONF 0 0 1 lA 0 0 1 1 2A --- 0 1 0 1 .lA -- 0 1 1 1 4A -- ---- 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 8 2 B 3 8 4 B 58 68 MX·1616· USED AS DUAL 8 CHANNEL MULTIPLE"ER OUTPUT A o 0 MX-818· USED AS DUAL 4 CHANNEL MULTIPLEXER CONNECT CAl TO, -V SUPPLY 1 CONNECT CAl TO -V SUPPLY 1 CONNECT A OUT TO BOUT ON CHANNEl TO OUTPUT B X X X 0 NONE NONE 0 0 0 1 lA 1B 0 0 1 1 2A 2B 0 1 0 1 3A 3B 4B 0 1 1 1 4A 1 0 0 1 5A 58 1 0 1 1 6A 68 1 1 0 1 7A 7B 1 1 1 1 8A 88 ON CHANNEIi TO 0 INHIB. OUTPUT A OUTPUT B X X 0 NONE NONE 0 0 1 1 1B 0 1 1 2 2B 1 0 1 3 38 1 1 1 4 4B ORDERING INFORMATION For Immediate Assistance. Dial 1·800-233-2765 MODEL NO. CHANNELS OPERATING TEMP. RANGE MX·818C MX·1616C 8 S.E. or 4 Dill.. 16 S.E. or 8 Dill .. OI0+70°C 010 +70 °C 6-11 Contact DATEL for up-to-date information on products covered by ':Advanced" and "Preliminary" product data sheets. Dial 1-800-233-2765 for Applications Assistance 6-12 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 17438B/FAX (508) 339-6356 MX-826 Precision, High-Speed Multiplexer FEATURES 225 nSec. maximum settling time to 0.01% 400 nSec. maximum settling time to 0.003% 150 nSec. maximum settling time to 0.1% • 8 Channels single-ended inputs 395 mW Power dissipation • Small 24-pin DDIP package MECHANICAL DIMENSIONS INCHES (mm) GENERAL DESCRIPTION The MX-826 is''a precision high-speed multiplexer characterized for 10-. 12-. and 14;bit applications. The performanca benchmarks are its 225 nanoseconds maximum settling time to 0.01% accuracy and its unprecedented specification of accuracy to 0.003%. 0.600MAX (20,3) '1 0.190 MAX ~0.010 x0.016 ~ KOVAR Pins The MX-826 provides eight single-ended inputs. Channel addressing is done by a three-bit binary code. Break-balore-make switching assures that no two channels are ever momentarily shorted together. 13 ,12 ,,, ,, ,, ,, ,, ,,, , ,,, The MX-826 operates from ±15V and +5V power sup· plies. Models are available in two operating temperature ranges: 0 to +70 °C and -55 to +125 °C. BOTTOM VIEW , , ,I ,,, ,, ,, , ,, ,,, , ! 1 I 24 ! 1~ ---.l 0.150 MIN. (3,6) Tl 11 SPACES ATO.l00 (2,5) 1.310 MAX. (33,3) -hL 0.600 (15,2) NOTE: Pins have a 0.025 inch, ±O.01 stand-off from case. -15V +15V 16 INPUT/OUTPUT CONNECTIONS 4 PIN FUNCTION PIN FUNCTION AO A1 A2 IN1 IN2 IN3 IN4 IN5 IN6 IN7 IN8 GROUND 13 14 15 16 17 18 19 20 21 22 23 24 OUTPUT N/C N/C +15V (+Vcc) GROUND GROUND -15V (-VEE) N/C N/C N/C GROUND +5V (+VDD) 5 ANALOG INPUTS 6 7 13 >--+-- OUTPUT 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 12 CHANNEL ADDRESS Figure 1. MX-826 Simplified Block Diagram For Immediate Assistance, Dial 1-800-233-2765 6-13 !w~[L. MX·826 ABSOLUTE MAXIMUM RATINGS POWER SUPPLY REQ. PARAMETERS LIMITS +15V Supply (Pin 16) -15V Supply (Pin 19) +5V Supply (Pin 24) Digital Inputs (Pins 1,2,3) Analog Inputs (Pins 4-11) Lead Temperature (10 sec.) Short Circuit to Ground o to +18V dc o to -18V dc -0.5 to +7V dc -0.3 to +5.5V dc -15 to +15V dc 300'C Continuous FUNCTIONAL SPECIFICATIONS Apply over the operating temperature range and over the operating power supply range unless otherwise specified. INPUTS Input Voltage Ranges Digital Input, Logic' Level Logic 1 LogiaO Logic .Loading Logic 1 Logic 0 MIN TYP MAX ±10.0 ±10.5 - Vdc 2.0 - 0.8 Vdc Vdc - 1 -1 !iA !iA ±10.5 - Volts mA pF Ohms - - UNITS OUTPUTS Output Range Output Current Stable Capacitive Load Output Impedance DC ±10.0 15 - - - - 0.1 - -1 - 100 - PERFORMANCE Gain Gain Error, 25 'C Gain Tempco, -55 to +125'C Offset, 25 'C Offset Voltage Drift Slew Rate • CrossTalk 100 KHz 1 MHz Bandwidth 3 dB Small Signal Full Power Input Impedance Output Settling Time ." (10V step, +25 'C) 5000 Load 0.1%10 Bits 0.01% 12 Bits 0.003% 14 Bits f?!JI/S1Iip,+25'C)lKOI..oa:l 0.1% 10 Bits 0.01% 12Bits 0.003% 14 Bits Switching Characteristics Break before make delay Turn OnlTurn Off Harmonic Distortion DC to 100 KHz, 10V pp +25'C -55 to +125'C lMHz 10Vpp +25'C -55 to +125'C DC to 100 KHz 20V pp +25'C -55 to +125'C 1MHz t020V pp +25 'C -55 to +125 'C Signal-to-NolseRatill with Distortion withoul Distortion 6-14 - - - 200 ±0.5 ±D.l <5 300 -82 -64 -86 -69 8 3 2.45 8.5 3.5 2.5 - - ±D.03 ±5 ±0.5 ±10 - FS %FS ppm/'C mV IlV/'C V/IlS - dB dB 2.55 MHz MHz KO 100 150 300 150 225 400 nS nS nS - 150 200 600 180 240 720 nS nS nS - 8 15 20 25 50 nS nS -90 -88 -92 -92 - -75 -70 -85 -85 - dB dB -87 -85 -89 -89 -72 -67 -83 -83 -69 -75 -72 -80 - Range +15V -15V +5V Current (Quiescent) +15V -15V +5V Power Supply Reject Ratio Power Supply Dissipation MIN TYP MAX UNITS +14.5 -14.5 +4.75 +15 -15 +5 +15.5 -15.5 +5.25 Volts Volts +13 -13 <1 +19 -19 +1 395 575 86 Volts mA mA mA dB mW PHYSICAUENVIRONMENTAL Operating Temp. Range -MC Models -MM Madels Storage Temp. Range Package Type Pin Type Weight o +70 'C -55 +125 'C -65 +150 'C 24-pin herm. sealed ceramic I 0.010 x 0.018 inch Kovar 0.42 oz. (12 gram) maximum TECHNICAL NOTES 1. Bypass the ±15V and +5V power supplies with a 1 I1F, 25V tantalum electrolytic capacitor in parallel with a 0.1 I1F ceramic capacitor. 2. Analog signals up to ±15V may be present while the MUX power supplies are off. 3. The absence of an RON specification or output leakage specification is related to the architecture of the switching network. The inputs see a constant 2.5 K Ohm input impedance whether the channel is on or off. 4. Typical recovery times from an overvoltage condition of >±3V is approximately 200 nanoseconds from a negative overdrive and 700 nanoseconds from a positive overdrive. 5. Double level multiplexing may be used to provide up to 64 channels (nine MX-S26's required). Table 1. .',Channel Addressing On Channel MUX Address A2 A1 AO .. 1 2 0 0 0 0 0 1 3 4 0 0 1 1 0 1 5 1 0 0 6 1 0 1 7 1 1 0 S 1 1 1 ORDERING INFORMATroN' dB dB Model No/Channels .Oper, Temp. Range - dB dB MX-S26MC MX-S26MM - - dB dB - dB dB SSE SSE Oto +70 'C -55 to +125'C Order PC board mounting receptacle through AMP Inc., Part #3-331272-S (Component Lead Socket), 24 required. For availablilty of MIL-STD-SS3B version contact DATEL. DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194rrEL (50S) 339-3000rrLX 174388IFAX (508) 339-6356 MX-850 Precision, High Speed Multiplexer FEATURES 50 nSec settling time to 0.01% 70 nSec settling time to 0.003% 100 nSec settling time to 0.001% 4 Channels,~ single-ended inputs • 207 mW power dissipation Small 14-pin DIP package GENERAL DESCRIPTION The MX~850 is a precision high·speed multiplexer character~ ized for 10~. 12~. 14-. and 16-bit applications. The performance benchmarks are its 50 nanosecond maximum settling time to 0.01 % accuracy and its unprecedented specification of accuracy to 0.001%. MX-850 Mechanical Dimensions INCHES (mm) 0.500 MAX. I I (12.7) TECHNICAL NOTES 1. Proper operation of the MX-850 multiplexer is dependent upon good board layout and connection practices. Bypass supplies as shown in the connection diagrams. Mount bypass capacitors directly to the supply pins whenever possible. 0.010 x 0.D18 KOVAR Pins 2. All grounds pins (9. 11, 13) should be tied together and connected to ground as close to the multiplexer as possible. n n 3. When power is off. current limit input signals on pins 4. 5, 6. and 7 to 20 mA. Failure to current limit will cause permanent damage to the device. as when powering up or down. it is possible that two switches might be on at the same time. Excessive current (greater than 20 mA) will flow from the more positive input to the more negative input. permanently damaging the device. Applications where the power supply for the multiplexer also powers the signal sources may not require limiting resistors. See Figure 4. P 1 8 0 0 BOTTOM n o VIEW n n 0 0 6 SPACES 0.800 MAX. (20.3) AtO[jlOO (2,5) J 14nl- nl 0.300 (7,6) NOTE: Pins have 0.025 Inch from case. to.ol stand~Off +15V 10 CH1 CH2 4 5 8 6 12 OUTPUT PIN FUNCTION 1 2 3 ENABLE AO Al CH 1 INPUT CH21NPUT CH31NPUT CH41NPUT OUTPUT GROUND +15V GROUND +5V GROUND -15V 4 CH3 +5V 5 6 7 CH4 8 7 I EN 9,11,13 I 14 GROUND -15V 9 10 11 12 13 14 MX-850 Simplified Block Diagram For Immediate Assistance. Dial 1-800-233-2765 6-15 MX·850 ABSOLUTE MAXIMUM RATINGS PARAMETER +15V Supply (pin 10) -15V Supply (pin 14) +5V Supply (pin 12) Digital inputs (pins 1, 2, 3) Analog inputs (pins 4, 5, 6, 7) Analog Input Current Lead temperature (10 Sec) Switching frequency/duty cycle SWITCHING CHAR. (cont.) LIMITS UNITS -0.5 to +16.5 +0.5 to -16.5 -0.5 to +7.0 -0.5 to +6.0 -10.5 to +10.5 ±20 300 max. 10/50 Volts Volts Volts Volts Volts mA °C MHz/% CrosstalklD 10KHz (20 Vpp) 1 MHz (20 Vpp) 10 MHz (5 Vpp) 20 MHz (3 Vpp) Chan. Input capacitance MIN. TYP. MAX. UNITS - -105 -94 -76 -64 -100 -92 -71 -62 dB dB dB dB - 4 10 6 12 pF pF - 8 10 pF +14.5 -14.5 +4.75 +15 -15 +5 +15.5 -15.5 +5.25 - 4.0 12 3.5 -80 3.0 10 3 -90 - 207 0 -55 -65 - - (Off) (On) Chan. output capacitance (On) POWER SUPPLY REQUIREMENTS FUNCTIONAL SPECIFICATIONS Apply over the operating temperature range and at ±15V and +5V dc unless otherwise specified. ANALOG INPUTS MIN. Analog signal range On resistance, +25 °C 010 +70·C -5510 +125·C RON versus VIN Input leakage current (Off), +25°C 010+70·C -55 to +125 °C Output leakage current (Off), +25 ·C 010 +70·C -5510 +125 °C On channel leakage current, +25 ·C 010 +70·C -5510 +125 °C Nonlinearity Large signal bandwidth (-3dB) - - - TYP. MAX. ±10.0 18 90 120 140 See Figure 1 - 0.02 - 0.02 - UNITS Volts Ohm Ohm Ohm 0.2 10 25 nA nA nA 0.2 20 40 nA nA nA - - - 1.0 25 35 0.001 80 100 - MHz 2.0 - - Volts Volts 0.4 nA nA nA %FSR DIGITAL INPUTS Logic Logic Logic Logic Levels "1" Levels "0" Loading "1" Loading "0" - - 0.8 1 -1 IlA IlA - - 20 nS - 3 10 10 nS nS - 25 40 60 80 30 50 70 100 nS nS nS nS - 25 40 60 80 30 50 70 100 nS nS nS nS - 30 50 75 100 35 60 85 120 nS nS nS nS 30 50 75 100 35 60 85 120 nS nS nS nS - Power supply range +15V -15V +5V Power supply current, quiescent +15V -15V +5V Power sup. rejection ratio Power supply dissipation, quiescent +25°C 010 +70·C -55\0 +125·C Pd versus frequency - - - Volts Volts Volts mA mA mA dB 260 260 280 see Figure 3 mW mW mW - °C ·C °C - PHYSICAUENVIRONMENTAL Operating temp. range -MC -MM Storage temp. range Package type -MC/MM Pin type -MCIMM Weight +70 +125 +150 14-pin hermelic DIP 0.010 x 0.Q18 inch Kovar 0.1 Oz. (3.5 grams) maximum ID See Figures 2a and 2b. SWITCHING CHARACTERISTICS Access time Break-belora-make delay time Enable delay (On, Off) Settling time, 10M Load (0.1%) 10Vslep (0.01%) 10V slep (0.003%) 10V slep (0.001%) 10V slep Settling time, 5K Load (0.1%) 10Vslep (0.01%) 10V slep (0.003%) 10V slep (0.001%) 10V slep Settling time, 10M Load (0.1%) 20V slep (0.01%) 20V slep (0.003%},20V slep (0.001%) 20V slep Settling time, 5K Load (0.1%) 20V slep (0.01%) 20V slep (0.003%) 20V slep (0.001%) 20V slep 6-16 - - - Table 1. Channel Addressing ON CHANNEL En Disable 1 2 3 4 1 0 0 0 0 MUXADDRESS A1 X 0 0 1 1 AO X 0 1 0 1 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 0204S-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356 ~~[b MX·850 120 110 +125°C 100 90 t\ cr -120 80 -100 70 60 -BC 50 -6C 40 30 -4C 20 -2C 10 -10 -8 -6 -4 -2 0 2 4 6 8 100 KHz 10 Inpu1 Vo~age 1 MHz 10 MHz 100 MHz INPUT FREQUENCY Figure 2a. Small Signal Crosstalk Versus Input Frequency Figure 1. Channel On Resistance Versus Input Voltage 1.5 ±1V J\J CH.1 OUTPUT 1.2 ~ CH.2 z CH.3 CH.4 MX-850 (Load of a X1 0 probe) ~a. r;; '"c 1.0 0.75W 0.7 0: w ~ a. 0.5 0.2 DC Figure 2b. Crosstalk Test Circuit 1 MHz 2 MHz 3 MHz 4 MHz 5 MHz 6 MHz 7 MHz a MHz 9 MHz 10 MHz SWITCHING FREQUENCY 50% DUTY CYCLE Figure 3. Power Dissipation Versus Switching Frequency For Immediate Assistance, Dial 1-800-233-2765 6-17 MX·850 +5V Current Limiting Resistors f~ As noted in Technical Note 3, some current limiting technique must be employed to protect the device. The following lists the suggested resistor values for the current limiting resistors shown in Figure 4. O.OlIiF 12 +5V 2 AO 3 A1 ANALOG INPUTS (±10V@ ±20 mA max.) Input Ranges Limiting Resistors ±10V ±5V R=500Q R=250Q No current limit needed EN LOGIC { CONTROL f~ R 5 CH1 ~1V MX-850 +15V +15V + y O . 0 1 IiF CH2 R 6 CH3 R """""Iv-----,7,-/ CH4 8 Other current limiting circuits can be used, such as a current limited op amp drive, depending upon the application. OUTPUT Figure 4. Typical Connections V' V'" 2 3 4 'V '\ 'V V' 7 8 'V IN1 IN2 IN3 IN4 IN1 IN2 IN3 IN4 MX-850 EN A1 5 OUT I--- AO MX-850 EN V 6 A1 OUT INPUT CHANNELS 1 - 8 OUTPUT AO -'"' (1) (2) (3) 3 -to-8 LINE DECODER Figure 5. Cascading Multiple MX-850's Channel Expansion The MX-850's ENABLE input provides a means of channel expansion. As shown in Figure 5 and in Table 2, multiple multiplexers may be used by connecting the ENABLE inputs to a decoder. ORDERING INFORMATION Table 2. Eight-Channel Addressing ON CHANNEL 1 2 3 4 5 6 7 8 6-18 MUXADDRESS 1 2 3 L L L L H H H H L L H H L L H H L H L H L H L H MODEL NUMBER MX-850MC MX-850MM OPERATING TEMP. RANGE SEAL Oto +70 °C -55 to +125 °C Hermetic Hermetic Receptacle for PC board mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 14 required. For availability of MIL-STD-883B versions of the MX-850, contact DATEL. DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 OPERATIONAL AMPLIFIERS Model DC Open Loop Gain (VN) Settling Time (lisec) Slew Rate (V/liseC) Gain Bandwidth (MHz) Page Case AM-SOO 10· 200 nslO.01 % 1000 100 14-Pin DIP 7-3 AM-l43S 10' 70 nslO.01% 300 1000 14-Pin DIP 7-1 INSTRUMENTATION AMPLIFIERS Model AM-5S1 Gain Range Settling Time Case 1 to 1000 2 ~slO.01% 16-Pin DIP Page 7-5 RESISTOR TUNEABLE OSCILLATORS f'requency Range Accuracy Case Page ROJ·20 20 Hz to 20 KHz 0.5%@1 KHz 24-pin DIP 7-7 ROJ·1K 1KHz to 100 KHz 0.5%@10KHz 24-pin DIP 7-7 Model For Immediate Assistance, Dial 1·800·233·2765 7·i Contact DATEL for your Data Acquisition component needs. Dial 1-800-233-2765 for Applications Assistance 7-ii DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048~11!!14fTEL (508) 339-3000rrLX 174388/FAX (508) 339.-6356 AM-1435 Ultra-High Speed Wideband Operational Amplifier FEATURES 70 Nanoseconds settling to 0.01 % . • 1 GHz Gain bandwidth product 100 dB Open loop gain • 80 dB Minimum CMRR • -55°C to +125°C Operation GENERAL DESCRIPTION DATEL's AM-1435 is an ultrafast settling, wide-band operational amplifier. Utilizing precision thin-film hybrid construction and differential input operational amplifier design techniques, the AM-1435 achieves a settling. time of only 70 nanoseconds for a 10 volt step to 0.01% accuracy. High speed performance is optimized with high open-loop gain, flat frequency response beyond 10KHz and a roll-off of 6 dB/octave to beyond 100 MHz. Typically, gain bandwidth product is 1 GHz and slew rate is 300 V/ microsecond. MECHANICAL DIMENSIONS INCHES (MM) ..-LR . I- 0.500 MAX'--l - I~ (12,7) ---r-- '-. 0.010 x 0.018 KOVAR 17 AM-1435 dc characteristics include a dc open loop gain of 100 db, 1 Mil input impedance, and an initial input offset voltage of only ±2 mV. Input offset voltage drift is typically ±5 IlV/oC. Also featured is a minimum common mode rejection ratio of 80 dB and full power frequency of 8 MHz. 8' 0.700 I I I BOTTOM I 6 SPACES AT o(~~ EA. , I DOT ON TOP REFERENCES PIN 1 190(".)MAX. -r- 0.150 MIN. (3,8) I 1 VIEW I 0.800 MAX. (2"') I I 141 l 0.100 __ • _0.100 1 (2,5) NOTE: PINS HAVE 0.025 ±O.01 INCH STANDOFF FROM CASE +15V OFFSET AOJlJST INPUT/OUTPUT CONNECTIONS PIN 1 2 -IN 3 4 5 AM-1435 OUTPUT CURRENT SOURCE COMMON +IN 6 7 8 9 10 11 12 13 14 FUNCTION OPTIONAL CAP OUTPUT COMPENSATION CAP. +15VSUPPLY +vs OFFSET ADJUST OFFSET ADJUST - INPUT + INPUT N.C. N.C. N.C. Vs 15VSUPPLY OUTPUT CURRENT SOURCE COMMON .. 1 -15V OPT COMP CAP CAP For Immediate Assistance, Dial 1-800-233-2765 7-1 AM·1435 FUNCTIONAL SPECIFICATIONS at + 25·C, ± 15V de SUpplies, unless otherwise noted. TECHNICAL NOTES Typical INPUT CHARACTERISTICS MINIMUM - TYPICAL MAXIMUM - ±4V Differential between Inputs •••••••••••• Common Mode Voltage Range ••••••.•• Common Mode ReJection Ratio; ±7V ±8.5V de .............................. 80 dB 1 MHz ........................... Input Impedance; common mode ................... differential mode .................. Input Offset Voltage" ................ Input Bias Current ................... Input Offset Current ••••••••••••••••• 70 dB ±2mV lMO~2pF 2.5 kO ~ 2 pF - -- 2. When using the AM·1435MM over the +85 to + 125'C temperature range, use an 18'CIW heat sink. -- ±5 mV 20 !lA 10 !lA 0.3 !lA - OUTPUT CHARACTERISTICS Output Voltage" ••••••••••••••••••••• Out~ Current" ••••••••••••••••••••. Sta e Capacitive Load4 ...•••.....••• ±5V ±10mA ±7V ±14mA 1000 pF 90 dB 100 dB ±5'/,V/oC 50 nAl°C 2 nAloC - - - .................. .................. - ±25/,V/oC 100 nAl°C 15"V p.p 1.6 "V RMS 5.2 "V RMS 2.5 nA p.p 2.5 nA RMS 3.5 nA RMS 0.15 mVN AVs - 700 MHz - 8MHz -- .......................... 250 V/"sec.' - 1000 MHz 150 MHz 10 MHz 60 nsec. 70 nsec." 25 nsec. 40 nsec. 10 nsec. 20 nsec. 300 VI"sec. - 5 nsec. 40 nsec. 50 nsec. .- The 2 pF compensation capacitor at Cl is required for stable operation when the noise gain is less than 10. Compensation for bias current is provided by R2 and its value determined by the formula R2= (Rl) X (R4) Rl + R4 R3 and C4 are optional. Use C4 when driving capacitive loads to prevent oscillation of the output stage. .DYNAMIC CHARACTERISTICS Gain Bandwidth Ilmduct •••••••••••••• URity Gain BandWidth •••••••••• : ••••• Full Power Frequency" •••.•••••••••.• SetUingTime,10VtoO.025%7 ••••.•••• 10VtoO.01% ••••••.•••• 5Vto1.0% ............. 5VtoO.1% ............. 1Vto1.0% ............. 1VtoO.1% ••••••••••••• Slew Rate Overshoot ......................... Proparmtion Delay .................. RISlrT me, 10V Step ................. OverIaad Recovery Time .•••••••••••• 3. Apply negative supply voltage before the posi· tive supply. Power·up prior to applying power to either input. If frequency response is not critical, use an external input protection circuit. COMPENSATION· The typical connection diagram shows the AM'1435 in a unity gain inverting configuration. Use in any conventional amp circuit, the AM·1435. as a noninverting amplilier, requires a noise gain of at least two (NOISE GAIN = 1 + R4IR1). - PERFORMANCE de Open Loop Gain" ................. Input Offset Voltage Drift ............. Input Bias Current Drift ••••.•••••••••• Input Offset Current Drift ••••••••••••• Input Voltage Noise, 0~01 Hz to 10 Hz ................... 100 Hz to 10 kHz 10 Hz to 1 MHz .................... Input Current Noise", 0.01 Hz to 10 Hz ................... 100 Hz to 10 kHz 10Hzto1 MHz .................... Power Supply Rejection Ratio ••••••••• 1. The extensive use 01 a ground plane for all common connections is recommended. Keep lead length to a minimum with point·to·point connections wired directly to the amplifier pins. Use 1 ~F tantalum bypass capacitors the +Vs and ·Vs pins. -75 nsec. When using the AM·1435 at low impedances, include the feedback resistor as a part of the total output load. -- 60 nsec. - 1% - TYPICAL CONNECTION DIAGRAM +15V R4 ·POWER REQUIREMENTS Rated Supply Voltage ................ Quiescent Current- •••••••••••••••••• ±12V - ±15V - ±16V ±30mA 2 pF PHYSICALIENVIRONMENTAL Rl Opar. Temp. Range AM·1435MC AM·I435MM9IMM·QL Storage Temp. Range Package INPUT 1 kG oto +70 °C ·55 to +125 °C ·65to+125°C 14·pin hermetically sealed ceramic DIP ORDERING INFORMATION . FOOTNOTES: I. Specified for de linear operation. Common mode' voltage range prior to fautt condition is ± 10V de maximum. 2. Adjustable to zero. 6. C, = 0.5 pF. 3. f\ = SOOQ. 7. C, = 1 pF. 4.C, = 3 pF. 8. ±Vs = ±15V dc. 5. Referred to input. 9. Wfth 18"C1watt heat sink. 7·2 Model No. Operating Temp. Range AM·1435MC AM·1435MM AM~ 1435MM·QL Oto +70 °C ·55 to +125 °C ·55 to +125 °C ~C3 1"F -15V DATEL, Inc. 11 Cabot Boulevard. Mansfield. MA 02048·1194ITEL (508) 339·30001TLX 174388/FAX (508) 339·6356 AM-500 Series Ultra-Fast Operational Amplifier FEATURES • 200 Nanoseconds settling to 0.01% • 1000V/Microsecond slew rate • 100 MHz Minimum gain-bandwidth 106 Open loop gain 1 Microvolt/oC drift ± 50 mA Output current -LR I-- 0.500 MAX,-!'~ (12.7) GENERAL DESCRIPTION a.15OMIN. (3,8) The AM-500 Series amplifiers are ultra-fast settling operational amplifiers for use in inverting applications. A unique feedforward amplifier design combines the characteristics of a low drift dc amplifier with those of a very fast AC amplifier. For optimum fast settling performance, this amplifier has an open loop gain roll-off of 6 dB per octave to beyond 100 MHz. r- '0.010 II 0.018 KOVAR 81 1 17 1 MECHANICAL DIMENSIONS INCHES (MM) AM-500 series dc characteristics include a dc open loop gain of 106 , 30 megohm input impedance, and 1 nanoampere bias current. Input offset voltage is ±0.5 mV and input offset voltage drift is 1 microvolVoC. Although these amplifiers do not operate differentially, a dc offset voltage in the range of ±5V dc can be applied to the positive input terminal. Power supply requirement is ±15V dc at 22 mA quiescent current. The amplifiers will operate over a supply range of ±10V to ±18V dc. Output current capability is ±50 mA with output short circuit protection. 0.700 6 SPACES AT 0.100 EA. I BonOM I I VIEW (2,5) I 0.805 MAX. (20,3) REFERENCES PIN 1 ~ I DOT ON TOP Output settling time is 200 nanoseconds maximum to 0.01 % for a 10 dc volt step change. Slew rate is 1000v/ microsecond for positive output transitions and 1800V/ microsecond for negative transitions. This high slew rate permits undistorted reproduction of a full load, 20V peak-topeak sinewave out to 16 MHz. Gain bandwidth product is 100 MHz minimum. 0.190 (4.B) MAX. ~ 4--+-! 0.100 0 1~~2~~ NOTE: PINS HAVE ±O.Ol INCH STANDOFF FROM CASE IZ IOOnA w ,/ a: a: :::> CJ en < in t-- r-q::7 I- :::> a.. Z -lOOp,," ,cuiRENT -" (,~\LES TYPe '"' - EVERY lOGe I \J -CU~rNT TEMPERATURE INPUT/OUTPUT CONNECTIONS PIN NC NC NC -IN + IN NC 1 2 3 4 5 6 7 8 9 NC NC NC OUT 00 .coM. NCT CONNECT For Immediate Assistance, Dial 1-800-233-2765 10 11 12 13 14 FUNCTION NO CONNECTION NO CONNECTION NO CONNECTION -INPUT +INPUT -SUPPLY NO CONNECTION COMMON DO NOT CONNECT OUTPUT +SUPPLY NO CONNECTION NO CONNECTION NO CONNECTION 7-3 AM·SOO Series 1 FUNCTIONAL SPECIFICATIONS, AM-SOO SERIES Typical at 25·C, ± 15V de supply, unless otherwise noted. INPUT CHARACTERISTICS Input Common Mode Voltage Range· •••••••••.•.•.•.••••••• ±5V Maximum Input Voltage, no damage ••••••••••••••.••••••• ± 18V Diflerentiallnput Impedance .•••••• 30 Meg. typical, 3 Meg. min. Input Bias Current •••••••••••.•.•• 1 nA typical, 4 nA max. Input Offset Current •••••.•.•.•••• 0.5 nA typ., 8 nA max. InputOflsetVoltage •••..••••••••. 0.5 mV typ., 3 mV max. OUTPUT CHARACTERISTICS Output Voltage .................. ± 10V min. Output Current, S.C. protected •.••• ± 50 rnA typ., ± 25 rnA min. Stable Capacitive Load .•.••••..••• 100 pF Output Impedance •.•.•.•.•••..•• 250 PERFORMANCE DC Open Loop Gain ..••••••••...• Input Offset VOlta?:e Drift, O·C to + 70· •••••••••••.•• -55·Cto + 125·C •••••••••••.• Input Bias Current Drift, -55·Cto +70·C •.•.•.•.•...•. +70·Cto +12S·C ..••••••••.•• Input Voltage Noise," 0.01 Hz to 1 Hz •.......•..•.•••. 10· volts/volt 1 ,"v/oe typ., 5 ,"v/oe max. 5 ,"v/oe typ., 10 ,"v/oe max. -20 pAloe doubles every 10·e 5 '"v peak-to-peak typ., 25 ,"V peak-to-peak max. 100Hzt010kHz •..••.•.•••••.• 1 ,"V RMStyp., 5 ,"V max. 1 Hz to 10 MHz .•.•..••••.•..... 20 ,"V RMS typ., 100 ,"V max. .Power Supply Rejection Ratio •. , .•. 80 dB min. DYNAMIC CHARACTERISTICS Gain Bandwidth Product ••...••.... 130 MHz typ., 100 MHz min. Slaw Rate, positive going .•..•••••• 1000VI t"69c. Slew Rate, negative going •.••••••• 1800V/,"sec. Full Power Frequency (20V peak-ta-peak) •.•••••.•.••••• 16 MHz Settling TIme, •..••••••••. 70 nsec. 10V step to 1%3 10VsteptoO.1%3 •.•...•.•.•.•. 100 nsec. 10V step to 0.01%" .•.•.•...•••. 200 nsec. max. Overload Recovery Time •.....•.•. 10 t"69c. TECHNICAL NOTES 1. The circuit design shows the connection of the AM-500 series for fast settling operation with a closed loop gain of - 1. It can be used for fast settling at closed loop gains up to -10. The equivalent resistance seen by the summing junction should be 500 ohms or less. For gains larger than - 1 use an input resistor of 500 ohms and pick a feedback resistor for the required closed loop gain (1 k for - 2, 1.5k for - 3, etc.). 2. A small feedback capacitor should be used across the feedback resistor. Determine C in nanofarads from the following formula: C = 1 + IGI 0.816Rf where G is closed loop gain and Rf is in kilohms. 3. Summing pOint leads must be kept as short as possible. Input and feedback resistors should be soldered close to the body of the resistor directly to the summing pOint (pin 4). Summing point capacitance to ground must be kept very low. 4. Low output impedance power supplies should be used with 1 p.F tantalum bypassing capacitors at the amplifier supply terminals. There are internal 0.03 p.F ceramic capacitors in the amplifier. 5. Although these amplifiers are inverting mode only, a dc voltage in the range of ± 5V may be applied to the positive input terminal for offsetting the amplifier. 6. For interrupted power applications, apply power to the AM-500 three (3) seconds before operating the device. CONNECTION FOR FAST SETTLING WITH GAIN OF-1 +1!iVdc: 2.4pF KEEP THESE LEADS AS SHORT AS POSSIBLE 1 /IF TANTAlUM INPUT ()---"\i\I\I''''''''''-! ">''''''-0 OUTPUT POWER REQUIREMENTS Voltage, rated pertonnance .•.••••• ± 15V dc Voltage, operating •.•.•.•.••••.•• ± 10V dc to ± 18V dc Quiescent Current •...•••••••••... 22 mA typ., 33 mA max. -11i1/de -15V -;;:' PHYSICAUENVIRONMENTAL Operating Temperature Range AM-SOOGC .....•...•.•.•..•••• ooe to + 70°C AM-500MC •.•.••••..•.••••••.. ooe to + 70·e AM-SOOIMM/MM-QL .••..••••••..• -55·e to + 125°C Storage Temperature Range ••••••• -55·e to + 125°C Package Type ••...•••.•.•••.••.• 14 pin ceramic Pins •.•.•••.•.•...••.•.•.•.•.•. 0.010xO.Ole" Kovar Weight ..•.•.•.•...•..•••.•.•.•. 0.09 ounces (2.5 grams) FOOTNOTES: 1. de only 2. - 3 dB Single.pole bandwidth 3. lk Input and feedback resistors, 2.4 pF feedback capacitor 7-4 ORDERING INFORMATION MODEL NO. OPERATING TEMP. RANGE SEAL AM-500GC AM-500MC AM-500MM AM-500MM-QL Oto +70 °C Oto+70°C -55 to +125·C -55 to +125·C Epoxy Herm. Herm. Herm. DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 AM-551 Low Cost, Programmable Gain Instrumentation Amplifier FEATURES 1 to 1000 Gain range ±O.01% Maximum nonlinearity • 2 Microseconds settling time • 100dBCMRR GENERAL DESCRIPTION MECHANICAL DIMENSIONS INCHES (MM) DATEL's AM-551 is a low cost, high performance, programmable gain instrumentation amplifier manufactured with hybrid thin-film technology. Gain is adjustable over a range of 1 to 1000 by the addition of a single external resistor and a simple user-selectable pin-strapping option. Maximum gain nonlinearity is ±O.01%. b-Pio~t ---9-1'1 T ~:==:::======~IT 0.300 The AM-551 dynamic characteristics include a settling time of 2 microseconds for a 20V dc output step to 0.01 % accuracy. Slew rate is 23V dc/microsecond and small signal bandwidth is 400 KHz. Other specifications include a common mode rejection ration of 100 dB, a 10 '20 input impedance and a minimum output voltage swing of ±11 V dc. Maximum offset voltage drift is ±15 microvolts/oe. 0.310 17,61 17,91 ...L PIN 1 -.l IOENT. ~mwm~'" '" ~'7"." T 0095 The combination of high accuracy, speed, low cost, and rugged hybrid construction make the AM-551 and ideal choice for applications involving the remote amplification of low-level signals produced by thermocouples, strain gages and RTD's, high performance data acquisition systems and remote instrumentation systems. ---I I.- 0 100 . -1 L . 0.01. I I t2.51 I I fO.461 16·PIN CERAMIC DIP Power requirement is ± 15V dc and all devices are cased in miniature, hermetically sealed, 16-pin ceramic packages. Models are available for operation over the commerCial, ooe to + 70 oe, and military, -55°e to + 125°e operating temperature ranges. PIN 1 INPUT OFFSET ADJUST .Vs 14 ~ 9~ OUTPUT OFFSET ADJUST >--~'V\I'v-""'--,\Mr-------!D7 SIGNAL COMMON For Immediate Assistance, Dial 1-800-233-2765 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 FUNCTION INPUT OFFSET ADJUST RG (Gain Resistor) + INPUT RG-.iGain AesistoQ - INPUT -VS SIGNAL COMMON OUTPUT OFFSET ADJ. WIPER OUTPUT OFFSET ADJUST OUTPUT OFFSET ADJUST OUTPUT OUTPUT GAIN SELECT GUARD +VS INPUT OFFSET ADJUST INPUT OFFSET ADJ. WIPER 7-5 AM·551 TECHNICAL NOTES ABSOLUTE MAXIMUM RATINGS Positive Supply, Pin 14 .•••.••••••••••. Negative Supply, Pin 6 ............... . Input Voltage Range ••••••••••••••••.• DIfferential Input Voltage Range •••.•..• Output Short Circuit .••••••.•••••.••.• Power Dissipation •............•.••••• +18V -18V ±18V ±30V Continuous 810mW FUNCTIONAL SPECIFICATIONS Typical at +25 oC, ±15V dc supplies, unless otherwise noted. INPUT CHARACTERISTICS Input Offset Voltage, unadjusted1, max. Input Bias Current, max. Input Offset Current, max. Input Impedance, Dill. or Com. Mode Common Mode Voltage Range, min. ±1 mV xgain ±100 pA ±20pA 10120 ±11V 1. A 25 kG trimpet may be used for both input and output offset adjusts. The trimpet is connected across the input offset adjust pins (Pins 1,15) and the wiper is connected to Pin 16. For output offset adjust, the trimpet is connected across the output offset adjust pins (Pins 10, 9) with the wiper connected to Pin S. 2. For unity gain, RG is left open and the output gain select pin (Pin 12) is tied to the output pin (Pin 11). To avoid oscillation in the unity gain configuration, the connection between the output gain select pin and the output pin should be kept as short as possible. 3. Gain selection is accomplished in two stages. The input stage gain (G 1) is selected by an external gain resistor (RG) connected across the (RG) pins, (Pins 2, 4) and is expressed as follows: OUTPUT CHARACHTERISTICS G1 =1 + 20k ±IIV :t5mA 0.50 ±1 mV xgain RG The output stage gain (G:v is selected by external pinstrapping: For G 2 = 1, connect the gain select pin (Pin 12) to the output pin (Pin 11). For G 2 = 10, connect the gain select pin (Pin 12) to the signal common pin (Pin 7). Gain Range4 Gain Equation7 Gain Accuracy, max. Gain Nonlinearity, max. Gain Tempco, max.s Offset Voltage Drift, max. Input Bias Current Drift Input Voltage Noise, dc to 100 Hz Power Supply Rejection Ratio Common Mode Rejection RatioS 1 KHz 100 Hz dc Slew Rate Small Signal Response, (-3 dB) G= 1,10 G=50 G= 100 G = 1000 Settling Time, 20V to 0.01% G=1 G= 10 G=50 G = 100 G = 1000 POWER REQUIREMENTS 1 to l000VN G = (1 + 20klRG)G2 ±O.04% ±O.OI% 50 ppm/"C The total gain of the amplifier is as follows: Rated Power Supply Voltage Supply Current, max. Power Supply Range ±15V dc ±27 mA :t5Vto±18V Output Voltage Range, min. (RL =2kO Output Current, min. Output Impedance3 Output Offset Voltage, unadjusted!, max. PERFORMANCE 15!1V/"C Doubles for every 10 "C 20 nVl-YHz 82 dB Gt 3.0 IJ5 4.0 IJ5 lllJ5 20 IJ5 200 IJ5 (1 + ~:) G 2 4. Both power supplies should be bypassed to ground with 0.1 microfarad electrolytic capacitors. TYPICAL CONNECTION DIAGRAM 96 dB 98 dB 100 dB 23V11J5 600 KHz 200 KHz 100 KHz 40 KHz = G1 X'G 2 = +15V 14 (-) Input (+) Input 5 3 .::>r.,,---o Output Ro PHYSICAL/ENVIRONMENTAL Operating Tempenature Range MC MM Storage Temperature Range Package Type Oto+70"C -55 to +125 "C -65to+150"C 16 pin Ceramic DIP Footnotes: 1. Adjustable to zero. 3. At 1 KHz, for all gain ranges. 4. To 0.01 % accuracy. Higher gains degrade pertormance 5. Tempeo of % = ±O ppm! "C. For RG =~, Gain Tempeo = 5 ppm/ "C 6. 1 kO Source Imbalance 7. G2is the gain of the second stage of the AM-551. Connecting output gain select (pin 12) to the output (pin 11) sets the second stage gain at 1. Connecting output gain select (pin 12) to signal common (pin 7) sets the second stage gain at 10. RG is the gain resistor for the first stage and is connected to RG (pins 2, 4). 7-6 Guard Drive •• See Technical note #3 ORDERING INFORMATION MODEL NO. OPERATING TEMP. RANGE AM-551MC AM-551MM Oto+70 °C -55 to +125 °C DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 0204S-1194fTEL (50S) 339-3000ITLX 1743SS/FAX (50S) 339-6356 ROJ-20,1K Resistor Tuneable Oscillator MECHANICAL DIMENSIONS INCHES (mm) FEATURES • Oscillation frequency is set by two external resistors • Ultra low distortion: 0.0018% typical • Stable • Hybrid, small 1-----1.36(34.5)1-----1 PIN SECTION 0.02XO.OI (O.5xO.25) GENERAL DESCRIPTION r- ROJ-20 and ROJ-1 K are resistor tuneable oscillators whose oscillation frequency is set with two external resistors. Output frequency range of ROJ-20 is 20Hz to 20KHz while that of ROJ-1 K is 1KHz to 100KHz. Output distortion is as low as 0.0018% typical at 1KHz frequency range. Output voltage temperature coefficiency is also as low as SOppm/oC. Output voltage amplitude is internally trimmed at 2.SVrms ±O.S% and this amplitude is adjusted to the range from SOOmV to 20Vp-p with external resistors. Sine and cosine waves are generated from two output terminals. A synchronization input terminal is provided in order to fine tune the relationship of these two outputs. 0 . 72 (18.2)-j ~R 0.31 --l 0'2~8~~ ~ !-0.60(15.2H 0.74(18.7) !-0.IO(2.54) PHASE DIFFERENCE BElWEEN SYNC INPUT AND OUTPUT (Fig. 6) (Technical NoteS) 180·1tC:::--...,-;-;;:-:.......- -...- - . " Hybrid construction has made it possible to build highly stable oscillators in small size at low cost. i 150' t-+-'Ic---t'\-' ~ 120' r+-~~~~rr---r--~ 8£ ~ 0 ~~ RElIT f ..... 9O·1-t---t---""I~--t---H H 6O'1+--t--Th:-1~--H 1'5 , ..... a. III 30"1-t---t----1'--t---\-t--"""H RUT 0"~0~,~~~~0~.9=5~~~~~~--~1.~10~ 11 Outputl t. fin: Sync Input Frequency fo: Frequency when no Sync In is given. PIN CONNECTIONS PIN 1 3 5 7 ,........ -ISV)--..... ORDERING INFORMATION --_...J I~l~----- ---- - _,, I MODEL NO. DESCRIPTION FLJ-ACOl Oscillator adapter for FW-D Series filters fe Set Logic Input Nolet. OpenSW1 and SW2 for 2.5VnnS output. ClcasSW1 and 2. Two Cext are required fer RJ..OC. 8-2 ~for 2OVp-p output. DATEL, Inc. 11 Cabot Boulevard, Mansfield. MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356 FLJ-ACR1, 2 Logic Controlled Resistor Network MECHANICAL DIMENSIONS (Fig. 2) FEATURES INCHES(mm) • Cutoff frequency of resistor tuneable filters can be set with BCD logic. • Single Inline hybrid. • Small size, low cost PIN SEOTION O.02xO.OI (O.SXO.25) ATnTn2T'0"3(m51~'5n)Tn~ ~~ ~ GENERAL DESCRIPTION __ FLJ-ACR series are logic controlled resistor networks. They are designed to be used with resistor tuneable filters such as FLJ-UR series. 0.05(1.2) Four separate resistor networks are included in one package. One network consists of four resistors such as R, R/2, R/4 and Rl8. The value of R in FLJ-ACR1 is 1.59MQ while that of FLJ-ACR2 is 150kQ. FLJ-UR Series List A combination of an FLJ-ACR and an FLJ-UR makes it possible to make a filter whose cutoff frequency or center frequency is set with BCD logic. It is also possible to use this resistor network in the negative feedback loop of an amplifier circuit and control the gain with BCD logic. Model No. FLJ-UR4LA1 FLJ-UR4LB1 FLJ-UR4HA1 FLJ-UR4HB1 FLJ-UR2LH1 FLJ-UR1BA1 FLJ-UR2BA1 FLJ-UR2EA1 FLJ-UR4LA2 FLJ-UR4LB2 FLJ-UR4HA2 FLJ-UR4HB2 FLJ-UR2LH2 FLJ-UR1BA2 FLJ-UR2BA2 FLJ-UR2EA2 LP: Lowpass HP: Highpass B p: Bandpass Logic Input Ie Range 40Hz 1.6KHz 400Hz 20KHz No.olPole 4 4 4 4 2 1 pair 2 pair 2 pair 4 4 4 4 2 1 pair 2 pair 2 pair Type LP. Butt. LP, Cheb. HP Butt. HP. Cheb. LP/HR,Butt. BP, Butt. BP. Butt. BE, Butt. LP, Butt. LP, Cheb. HP. Butt. HP, Cheb. LP/HP.Butt. BP. Butt. BP, Butt. BE. Butt. BE: Band elimination Butt.: Butterworth Cheb.: Chebychev logic Input GND +l5V -15V R=1.59MQ(FU-ACR1) R= 159k.Q(FU-ACR2) For Immediate Assistance, Dial 1-800-233-2765 8-3 FLJ-ACR1, 2 SPECIFICATIONS Typical at 25°C, ±15VDC power supplies unless otherwise specified. ABSOLUTE RATINGS Power Supply Voltage (±Vs) •.•••••••••••.•....••.•.••...••.•.••.•• ±18V Input Signal Voltage •••...•.•••.•.••.•••••.••••.•••••••••..•••.••• ±Vs Control Logic Voltage .....••.•••.••.•••••..•.•..••• +5.5Vmax., -0.5V min. FREQUENCY SET MODE BCD 1 Digit. •• ••. • • . . .••• . • •. •. ••. .•.••. .. . . .•. .•••• . . ••. .••.. 0 to 15 BCD 1 Digit +1 •• ; ••.•••.•..•.•.••.•••••.....•..•••.•..•.••••.• 1 to 16 Table 1. Frequency Set Range (with FLJ-UR) Unit: Hz 1a. FW-ACR1 or ACR2 Single Use FLJ-UR Suffix Frequency Set Mode From FLJ-ACRl To Resolution From FLJ-ACR2 To Resolution -1 (Low Range) BCD BCD+l O· 10 150 160 10 10 O· 100 1.5k 1.6k 100 100 -2 (High Range) BCD BCD+l O· 100 1.5k 1.6k 100 100 O· lk 15k 16k lk lk TECHNICAL NOTES 1. FW-ACRl and FW-ARC2 contain four separate resistor networks which are controlled by common logic inputs. There are two types of FW-UR's (resistor tuneable filters) which are to be connected with FLJ-ACR's to build BCD Logic Programmable Filters. One type such as FWUR2LH or FW-URl BA requires two external resistors while all other FLJ-UR's require four external resistors to set a cutoff frequency. Therefore, one FW-ACR can control two FW-UR2LH's or FWURl BA's. See Figure 3. 2. BCD + 1 connections are made by connecting pins 6 to 8, 11 to 10, 13 to 15, and 18 to 17 on the units required per Table la. or lb. 1b. FLJ-ACR1 and ACR2 (Parallel Use) for Greater Frequency Resolution FLJ-UR Suffix Frequency I -ACR2 Set Mode I -ACRl ~- To Resolution -1 (Low Range) BCD+l BCD BCD+l BCD O· 10 100 1.59k 1.60k 1.69k 10 10 10 BCD BCD -2 (High Range) BCD BCD+l BCD+l BCD O· 100 lk 15.9k 16.0k 16.9k 100 100 100 BCD BCD • Output saturates at 11 V de with zero logic code input (0000); however, digital code correspons to value of fe directly. PERFORMANCE Frequency Set Error... . . .•••• •••. .•. .•. •. • ••. .•. .•••• . . ••.• ±1% or less CONTROL CHARACTERISTICS Logic Code ••••.••.••• BCD 1 digit (1, 2, 4, 8) Logic and Level •.••....•.•.••••.••.•..••••••.••.•.•••..•..••.. OV: ON +5V or Open: OFF POWER SUPPLIES AND ENVIRONMENT Power Supplyl(Operating Range) ••••••..•.••••••.•••.. ±15V (±5V to ±18V) Current ..•••..•.••.•..•••.••••.••••.•..•..•..•.•.•••. +6.2mA. -1.2mA Operating Temperature Range .•••.....•...••..•.•.••...••..•.• 0 to 70°C Storage Temperature Range .•.••••..•••.••.•••••.•••..•••• -30°C to BOoC Operating Humidity Range ..•.•••••.••.••.••.••••.••••.•• 10% to 95% RH Storage Temperature Range ••••.••••••.••.••.••••...••.•• 10% to 80% RH TYPICAL CONNECllON (Fig. 3) In,", -15V>-----t'~---+-+--1 ORDERING INFORMATION 8>---+-~-+~-------------1-+4-+-~~ 4>---+-~-+~---------------+-+-r+--4 '2 T MODEL RESISTANCE FW-ACRl FW-ACR2 1.59MO 159KO for FW-UR Filter Series 8-4 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ffEL (508) 339-3000ffLX 174388/FAX (508) 339-6356 FLJ-D1, D2, DC Digital-Programmable Filter FEATURES MECHANICAL DIMENSIONS INCHES(mm) • Cutoff frequency is set by logic inputs • Lowpass, Highpass and Bandpass output functions are available simultaneously • Gain and Q are set by external components • High accuracy, high stable Innmmm-II.; PIN SECTION 0.02 x O. 01 (0.5 x 0.25) GENERAL DESCRIPTION FLJ-D1, 02, and DC are digitally programmable filters which can set the cutoff frequency and center frequency with 3 digit BCD inputs. Two-pole lowpass, bandpass, and highpass output functions are available simultaneously from three different outputs and notch function is available by combining these outputs to the uncommitted op amp. To realize higher order filters, several filters can be cascaded. And to obtain higher performance of higher order filters, both Gain and Q are designed to be set with external components. --------------------1 r-2. 12 (53.9)----4 O.34~1 1.1.. ~.lI1J IIIIIIIIIII~IIIII 0.2(5.0) I' 0.1(2.54) 2.14(54.4) . ZENER OUTPUT (Fig. 3) +15V 1.431< 1I4W + 0.1J.1 4.7,1.1 - COM + 4.7,11_ - 0.1J.1 -lSV PIN CONNECTIONS (Table 1) j Feedback.ln BPlnput *C'.T AII1l.0ul LP, t-P BP '""'" . BOD 400 200 100 80 40 20 10 8 4 fcSet Logic Input FU-Ol SO,OOOpF FU-D2 SOOpF FU-IlC None. Need Cex!. 2 FUNCTION INPUT BP ANALOGGND INPUT HP. LP ANALOGGND OUTPUT HP ANALOGGND AMP. +) INPUT AMP. ) INPUT AMP. OUTPUT ANALOGGND Cex! 1. NC OUTPUT (BP) ZERO ADJ. HP. LP) NEG. FEEDBACK IN ANALOG GND Cex! 2. NC OUTPUT LP ZERO ADJ. BP PIN 1 40 2 39 3 3B 4 37 5 36 6 35 7 34 B 33 9 32 10 31 11 30 12 29 13 2B 14 27 15 26 16 25 17 24 18 23 19 22 20 21 FUNCTION +vs +15V 5V ZENER OUTPUT Vc(+5V) DIGITALGND ANALOGGND NC Ns -15V NC LOGIC BOO LOGIC 400 LOGIC 200 LOGIC 100 LOGIC BO LOGIC 40 LOGIC 20 LOGIC 10 LOGIC 8 LOGIC 4 LOGIC 2 LOGIC 1 DO NOT CONNECT NC PINS TO OTHERS. For Immediate Assistance, Dial 1-800-233-2765 8-5 FLd.D1, D2, DC SPECIFICATIONS (Table 2) Typical at 25 'C, ±15V and +5V supplies, gain of -1, Q = ,,[212 unless otherwise specified. ABSOLUTE RATINGS Power Supplies .•...•••• ±Vs : ±20V. Vc : +5.5V Control Logic Input ........ ,....... Vc+0.5V Analog Input ••.....•....•••...•.... ". ±Vs TECHNICAL NOTES 1. The cutoff frequency of low pass and highpass. and the center frequency of bandpass filters can be set with three digit BCD. TTL compatible logic inputs. The MSD is hexadecimal. See Table 2. 2. The cutoff frequency is shown as either one equation of the following: FILTER CHARACTERISTICS Frequency Program Range: FLJ-D1 ••• FLJ-02 ..• FLJ-DC •.. Frequency Program .....•.•••..• Frequency Program Accuracy Q Range .•.••. , •.••..•••..• , Rollof! ..................... Number of poles ............... Voltage Gain ................. Pass Band Gain Variance ......... Resonant Frequency T.C. ......... GainT.C. ................... Distortion ................... Noise ...................... Load Resistance ...•..••.•.... , •• 4 .... fc = 1Hz - 1.599KHz 100Hz -159.9KHz 0.1 Hz 10 159.9 KHz BCD 3 digits. 'MSD is hexa-decimal (0-15) ±O.1% 1/3~ Q~ 1 x 1(f Ifc 12dB/oct (LP, HP). 6dB/oct(BP) 2pole (1 pole pair) 1-10 Depends on external resistors 0.01%1'C 0.2dB Full Temperature Range 0.002% 35/1Vrms (LP). 100pVrms (HP), 30pVrms (BP) 2KO C = 50.000pF is contained in FLJ-D1 and C = 500pF is contained in FLJ-D2 respectively. while no capaCitor is contained in FLJ-DC. The fc's of each model are: N FLJ-D1 : fc = N or fc = 21T.5x10 ".Rf FLJ-D2: fc=100N orfc N FLJ-DC : fC=20'C or fc ±10Vmin. 3OOKO 0.5mV 200nA 5/lVrC ±10Vl5mA min. 50 max. 38mA 10MHz 8V1/lSec 3. 4. POWERSUPPLIES AND ENVIRONMENT Supply Voltages •..•..••...•.•• Supply Current ••......••..••.. Operating Temperature Range ...... Operating Humidity Range ........ Storage Temperature Range Storage Humidity Range ......•... ±Vs: ±15V ±10%. Vc: +5V ±10% +15mA. -18mA +2.2mA -2O'C - +70'C 10%-95%RH -30'C - +80'C 10%-8O%RH 5. S. 8-S C : pF. N : Digital fc = 21T'~'Rf Hz. C: F. Rf: n, N : Digital . Number AMPLIFIER CHARACTERISTICS Input Voltage Range ............ Input Impedance , ••....•••.•... Input Offset Voltage .......•.•... Input Bias Current .•••.• , •••••.• Input Offset Drift •.•.••.••••..•• Output Voltage/Current .......... Output Impedance ............. Output Short Circuit Current Small Signal Frequency Bandwidth SlewRate ................... 2~C Hz. Number N 21T'5x10 1O'Rf N 21T'Cext.Rf The value of Rf is 3.183 MO. The vaiueof Cext is calculated taking these factors into consideration. Each logic input is connected to CMOS4000 series internally. Then each input is pulled down with 100Kn resistors. The use of 10KO pull-up resistors to +5V is recommended when filters are programmed with TTL logic. An independent +5V zener diode is contained in the filter. The output voltage range of this diode is +4.87V +5.12V. The connection shown in Figure 3 is recommended if a filter is driven by ±15V supplies only. Analog GND (Pin3S) and logic GND (Pin37) are separated. Connect grounds of ±1SV and +SVexternally. No return current of the digital power supply should flow through the analog ground. The use of 4.7pF and 0.1pF bypass capacitors for both ±1SV and +5V lines close to the module is highly recommended. DATEL, Inc. 11 Cabot Boulevard, Mansfield. MA 02048-1194/TEL (S08) 339-3000/TLX 174388/FAX(508) 339-6356 FLJ·D1, D2, DC BUTrERWORTH HIGHPASS (Fig. 4) LOGIC INPUT CODING TABLE (Table 2) Logic Input·' (MSD) DODD DODD DODD DODD 0000 o 0 0 0 o 0 0 0 0000 000 I 00 I 0 o I 0 0 I 000 I 00 I I 0 I 0 I I 00 I I I 0 IIII IIII (LSD) o 0 0 0 o 0 0 0 DODD DODD 000 I o 0 I 0 o I 0 0 I 0 0 0 000 0 0000 0000 o 0 0 0 o 0 0 0 0000 0000 0000 DODD I DO I o 0 0 I o 0 I 0 o I 0 0 I 000 0000 o 000 o 0 0 0 0000 0000 0000 0000 0000 0000 0000 0000 0000 DODD I DO I 'n i'iI Ic (Cutoff Frequency) Devimal Number FLorDI FLorD2 I 2 4 8 10 20 40 80 100 200 400 800 900 1000 1200 UOO 1500 1599 1Hz 2 4 8 10 20 40 80 100 200 400 800 900 1000 1200 1400 1500 1599Hz 100Hz 200 400 800 1KHz 2 4 8 10 20 40 80 90 100 120 140 ISO 159.9KHz O.IHz 0.2 0.4 0.8 I 2 4 8 10 20 40 80 90 100 120 140 ISO 159.9Hz - 10H+t+Hrlt---'-I"Amp=.-l7fIttt----;Yl-t-H-I'rtt----i-t--H 40 I J -30 Q i - 6OIHft-t-ttrtt--t-+-t+ttHt--t-rHitlt1:---t-ffi240 1/ -70 0.03 0.3 30 10 280 (f/fe) BUTrERWORTH LOWPASS (Fig.S) T i -5 H- 'I 11 o , ii o JJ ! 1 0.03 11 40 NAmp· 80 1 i i II "'- I 20 PhaseI' I 60 I I -60 -7 I'11 I i I -30 J r-- 1 _ -20 -40 Q: .:-.: t 60 -5io/-++-1+I+tt-+-H-H+Ht-....,H-Hffitt--t--t-t-1200 0 1. Lowpass and highpass filters -1 10" (Rg: 0) Gain: G ='R9x :::-Q' 120 II V -40 -I 0 GAIN AND Q The gain and Q of·these filters are set with the following equations. L l ' j++tl--+/-¥-++tffiif'PhaseH-ffittt--H-H 80 i[ -20H-+-i-+ NoIe:*1.l.ogicl - HN logic 0 = GNDaOPEN "2.1FW-DC needs external capacitors. nae values we ones when two O.5pFare '*'CI as -- ttittb ___...-rt1tttttt:==!=-H1 !' FLorDC" 0.1 0.3 Rg'(Rq+10") Rq'(2Rg+10") '"1\ II II zoo !J t T r &: 240 280 10 (f/fe) 10" Rg =.10KO when G = -1. Then, Rq = 3Q-1 BANDPASS (Fig.S) Then, the following values are obtained: ~ _Q- Butterworth 0.70711 8.918KO Bessel .0.57735 13.66KO See Figures 4 and 5 for "Amplitude/Phase vs. Frequency" characteristics, and Figure 7 for typical connections. 0 -I 0 k" 1-"y Vv -20 2. Bandpass filter Gain: Q: G =...:.!.x Rg 10" (Rg'. 0) Q 01/ H(1/Rg+1IRq)'10" 2 V -60 ~ 10" Rg = 10KO when G = -1. Then, Rq = 2(Q-1) Then, the following values are obtained: _Q_ -so V' ...-BL -1 '/ J,Y ~\ 1"-1' 1\\1" Vv ~ V o~ V n03 ~rI~'" 1 0-2 10 - o-~I' lOtI' 1),_ ,.. t'--.- i' Q;.1~i' .. r0.1 0.3 10 30 (f/fe) 2 5.00KO 5 1.25KO 5560 10 See Figure 6 for amplitude vs. frequency characteristics and Figure 8 for typical connections. For Immediate ASSistance, Dial 1-800-233-2765 8·7 FLJ·D1, D2, DC LOWPASS & HIGHPASS CONNECTIONS (Fig. 7) HP Output LP Output 10K I}--T""'r---;" + 15V )-.-+--1--;,. COM H-.......-~~-15V I)-t--r----~ -15V H-"?"""1r--.... +5V .)-<'--+--<>---.... GNO ORDERING INFORMATION fo Set L;gic Input 8-8 MODEL OUTPUTfc FLJ-Ol FLJ-02 FLJ-OC 1 Hz 10 1.599 KHz 100 Hz 10159.9 KHz 0.1 Hz 10 159.9 KHz DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ffEL (508) 339-3000ffLX 174388/FAX (508) 339-6356 FLJ-05,06 Digital-Programmable, High-Order Lowpass Filter FEATURES MECHANICAL DIMENSIONS inches (mm) • 60dB, aOdB/octave rolloff lowpass filter • Cutoff frequency programmed by logic at a points • Compact, lightweight, hybrid IC construction ~,- J)<-,-----' Pin Cross Section 0.009 x 0.009" (0.25 • O.25mm) Input • R FW-D5, and D6 series are lowpass filters that, although compact, have higher order and high attenuation performance. They are Chebyshev type filters. The FW-D5LA is a 5-pole filter which has a rolloff of 60 dB/oct and the FW-D6LA is a 6-pole filter with a rolloff of 80 dB/oct. The cutoff frequency is programmed with 3-bit, TTLcompatible digital logic and the settings can be changed to 8 different levels. Cutoff frequency range of the lower range type (which has suffix 1) is 10Hz-2kHz, and the higher range type (with suffix 2) is .100Hz-20KHz. Ripple within the pass band is minimal at 0.13dBp-p and the distortion rate is held extremely low at 0.05%. These filters are optimal as anti-aliasing filters in AID conversion circuits of data acquisition systems. 1 0. 0 l'_0.2 Ct Output FW-OSLA1,2 +1SV GNO ·15V Cf in the diagram is l0000pF lor the Suffix 1 model and l000pF forthe Suffix 2 model. Rext 1 Cut Rext2 Cext Rext 3 ~"f..r-~:-·~J~·i~-·,: Aexl4 Cext ~.y'~~':-·-i~-, • • -30 -'10 50 --- 1\ -0.4 0.1 Ct 20 !\ \ 0.2 R 10 I ~ R Ct ~t FW-DSLA1, 2 (Fig.4) ! Aexta RelCf2 r .....·/.. ·r~ 4~-,--"'".:V·T-·~t-l GENERAL DESCRIPTION -60 --..... I 1 10 Normalized frequency Inc FW-D6LA1, 2 (FIg.S) 70 ' II 100 "0 0 -10 iD ~ 10_2 "E < \ \ OV -20 -30 -'10 -50 -0.2 -60 -0.4 ·70 0.1 10 1 Normalized lnoquency Inc 100 For Immediate Assistance, Dial 1-800-233-2765 i '2 '1 FLJ-06LA 1, 2 Cf in the diagram is 1OOOOpF for. the Suffix 1 model and l000pF for the Suffix 2 model. 8-9 FL.J-D5, D6 SPECIFICATIONS (Table 1) Typical at 25°C and ±15V supply voltage unless otherwise specified. ABSOLUTE RATINGS Supply voltage (±Vs) •••••••••••••.•••••••••••••••••••••••••• ±16V Input voltage ••••••••••••••••••••••••.••••••••••••••••••• '•••• ±Vs Logic input voltage ••••.•••.•.••••••••••••••••• ~ • • • • • • • • • •• +5.5V FILTER CHARACTERISTICS, CUTOFF FREQUENCY Low Range (10. 20, 50, 100,200,500., lK, 2KHz, 8 points programmable, at -3dB) FLJ-DSLA 1 .............. _ 5-pole Chebyshev FLJ-D6LA 1 ............... 6-pole Chebyshev High Range (100,200,500, 1K, 2K, SK, 10K, 20KHz, 8 points programmable, at OdB) FLJ-DSLA2 _•.•.. ___ • . • • •• 5-pole Chebyshev FLJ-D6LA2 •••••• _• • • • • • •• 6-pole Chebyshev Setting of Cutoff Frequency •.. 3-bit binary, TTL-compatible Control Modell 10Hz 20 50 100 Modet2 100Hz 200 500 1KHz 200 500 51< lK 2K 10K 20K 2K lIIR T T 'T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 "0": +SV or OPEN "1": OV 1 1 TECHNICAL NOTES 1. A switching-type power supply is not recommended. Install O.OII1F multilayer ceramic and 4.71!F tantalum bypass capacitors In parallel as close to the filter as possible. 2. Each logic input (Pins 21-24) which programs the cutoff frequency has an internal analog comparator as shown in Fig. 6. External logic Signals are TTL-compatible. 3. The fc setting input logic is negative true. Terminal open or +5V represents logic "0", while GND level is logic "1". The INH terminal is used normally open. OncelNH is given logic"I",ali4.2 and Tlogic inputs are inhibited and all internal resistor network switches are opened. The fc setting with external resistors becomes available with logic "1" at this INH terminal. The relationship between Ic and the external resistors in this case is as lollows: FLJ-05LAI (LOW Range Type) FLJ-DflJ.A1 (LOW Range Type) 31.423 x 10' (Kn) Ie 1Hz) Rextl : Rext2 29.622 x 10' (Kn) Ie (Hz) Rexl2: R.x13 21.399 x 10' (KO) Ie (Hz) Rex13: Rext4 18.633 x 10' Ie (Hz) Rex14: R.xt5 16.358 x 10' IKn) Ie (Hz) Rext5: Rexlti 15215 x 10' (Kn) Ie (Hz) Rexl1- 1 1 Accuracy of setting of cutoff frequency • _. ___ •••• _ ±3%max .. PASS BAND CHARACTERISTICS Gain OdB±0.3dBmax. (O.05fc) Ripple "_" .............. 0.13dBp-p (central designed value) Distortion rate 0.05% ROLLOFF CHARACTERISTICS FLJ-DSLA 1,2 FLJ-D6LA1,2 Rolloff . _••.. _. _•. , __ ... __ 6OdB/oct BOdB/oct Attenuation volume ••• _•••• _• 60dB (l,82fc) 74dB (t9fc) Minimum attenuation ........ 60dB 74dB Attenuation at lOfc-1MHz _.•. _• 55dBmin. 6OdBmin. INPUT CHARACTERISTICS Inputimpedance ..... _. _•.•• 5OKnmin. Maximum input voltage __ ••• _• ±10Vmin. OUTPUT CHARACTERISTICS Output impedance .•. _•. _•••. 100nmax. Maximum output voltage .. _•• __ ±10Vmin. Noise (input shorted) _••.••••. 140pVrms max. (BW10Hz-5OOKHz) Offset voltage .............. 10mV adjustable POWER SUPPLY AND ENVIRONMENTAL CONDITIONS Supply voltage •.•• _•••• _••• ±lSV ±1Vmax. Power consumption current • _•• ±28mA (FLJ-DS), ±33mA (FLJ-D6) Operating temperature/ Humidity range ••..... __ •••. -20oe to +70 oe, 10%-95%RH Storage temperature/ Humidity range ••••.••.•..•• -30 oe to +BOoe, 10%-80%RH .................... ............. FLJ-OSLA2 (High Range Type) Rexll 314.23 x 10' Ie 1Hz) (Kn) (Kn) FU-D6LA2 (High Range Type) Roxll: Rext2 296.22 X10' (Kn) Ie 1Hz! Rext2: R.x13- 213.99 x 10' IKn) Ic(Hz) Rext3 = Rext4 = 186,33 x 10' IKn) Ie (Hz) RexM : Raxt5 : 163.58 x 10' IKn) Ie (Hz) Rext5: Rexlti 152.15 x 10' IKn) Ie 1Hz) 4. An' l1-pole ultra-high attenuation filter is available once cascaded as shown in Fig. 7. As can be seen Irom the curves (Figs. 4,5), the amplitude 01 the ripple in the pass band is reversed between FLJ-05LA and FLJ-D6LA. As a result, when connected in a cascade, the pass band ripple amplitude is greatly reduced, and moreover, the rolloff becomes steeper. 5, For filters that have been constructed like those in this series, it is not recommended to change the Ic setting range with external capacitors. This is because trimming of the internal constants is performed with pairs 01 internal resistors and capacitors. Although shifting to a lower Ic setting range is possible through the addition 01 external capacitors, in this case a change will result in ripple amplitude. ORDERING INFORMATION LOGIC INPUT PINS (FIg- 6) CASCADE WIRING DIAGRAM (Fig. 7) Low Cutoff Frequency Type (10Hz-2KHz) FW-05LA1: 6OdS/oct.,5-pole FW-06LA1: 8OdS/oct.,6-pole ~I~--~---------/ (Pins 21-24) T "f -r High Cutoff Frequency Type (100Hz-20KHz) FW-05LA2 6OdS/oct., 5-pole FW-06LA2: 8OdS/oct., 6-pole 8-10 OATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 1743881FAX (508) 339-6356 FLJ-R Series Higher Order, Resistor-Tuneable Filter FEATURES MECHANICAl DIMENSIONS • 135dB, 100dB/octave high order,lowpass filter ·113 octave bandwidth (Q=4.32) bandpass filter • can set cutoff (fc) frequency with 6 or 8 external resistors • Ultra-c:ompact size, high-function hybrid construction Inch.. (mm) Pin 1 Identification Pin Cross section. 0.009 • 0.001/" (0.25 • 0.25mm) GENERAL DESCRIPTION The FW-R series filters are of the highest order and have the highest attenuation characteristics among the entire group of DATEL filter products. Through the use of hybrid techniques, even though compact in size, the FLJ-R series filters have complete 8-pole lowpass and 3-pole pair bandpass filter functions. The cutoff (central) frequency can be set with only 6 or 8 external resistors. Inpc,lt RI S. CuI --!t- At 7' Cext Rt ··U-, Calif -n Rt Cext ",;-, Bandpass ripple in the lowpass filter is 0.1 dB and boasts outstanding performance with the distortion ratios for all models being a mere 0.005%. Each model is composed of the Suffix 1 and Suffix 2 types and varies according to cutoff frequency setting range. The Suffix 1 model has a range from 10Hz-2KHz and the Suffix 2 model has a range from 100Hz-20KHz. The FW-R series filters are optimum as antialiasing filters in AID conversion circuits of data acquisition systems. output The FW-R3BA 1, 2 are 1/3 octave, bandpass filters that meet IEC-225 Standard requirements. FW-R8LA, B Block Diagram with External Connections (Fig. 1) Input ~ Rf ~.1Il RI I AI • ~ t-.. -'1:'- 5 Cellt .;;. FlI Celli ·n·, 1. FW-R8LA1,2 +20 o -20 iii" :; 0.1 "C a -40 0 -60 -80 '6. E-0.1 -< -0.2 0.G1 I'll .::.- ci.ixt AI -;tJ c.xt +1511101<-15 OtfsetAdjustment FLJ-R3BA Block Diagram with External Connections (Fig. 2) -100 0.1 1 10 Normalized frequency fife 100 For Immediate Assistance, Dial 1-800-233-2765 8·11 FLJ·R Series SPECIFICATIONS Typical at 25° Cand ±15V supply voltage unless otherwise specified. ABSOLUTE RATINGS Supply voltage (±Vs) ••.•••••••••••••••••••••••.••••••••••••••••• ±18V Input voltage ••••••••••••••••.•••••••••••••••••••••••••••••••.•• ±Vs FILTER CHARACTERISTICS fc setting range ............ fc setting ••.•••••••••••••• fc setting accuracy ••••.•••.. Suffix 1: 10Hz-2KHz Suffix 2: 100Hz-20KHz B equivalent lowpass or 6 equivalent bandpass external resistors ±2%max. .................... ...... FlJ-RBLA B FW-R3BA OdB±O.ldBmax. OdB±ldBmax. OdB± - ................ Attenuation rolloff .••••.••••• 135dB/oct Attenuation volume ••..•••••. Minimum attenuation Attenuation at lOfc-1MHz .••••. 86d8@l.56fc 86dB BOdBmin. Suffix t model Cexl ·Same as left FLJ-R3BA - - 92d8@2.0fc l06dB 86dBmin. 4.32(BWl/30ct) 18dB/octBW - 8OdBmin. 100Qmax. ±10Vmin. 14lJiJVrms max. (BW10-SOOKHz) ± 10mV zero adjustable POWER SUPPLY AND ENVIRONMENTAL CONDITIONS Supply voltage (operating range) ±15V (±5V-±18V) Power consumption current 40mA (FLJ-RB) . 25mA (FlJ-R3) Operating temperaturel Humidity range •••.•••.••••• -lO°C to +70"C. 10%·95%RH Storage temperaturel Humidity range •••.••••••.•• -30°C to +80°C. 10%-80%RH .... FW-R3BA1,2 FW-RSLB1,2 r-TTrTtmr-nnTt1rm-TTnT111r>'"TT1mm 10 + 20 o ~~fflr+H~r+HffiOO-rHlliffiO H-++HfIIt--+tttlllll\-++ttlII~l-++lliffi - 20 10 - 10 ~ ~ 0.1 -++»~HH+mm-~~-40 ~-2O ~-30 1f-40 -60 - '" C. 0 ~-0.1 -80 -0.2 0.01 159 (Cexl +0.0011 x te (Kill In this case, the external capacitors should have high dielectric characteristics. It is recommended to use multilayerceramiccapacitors. Further, tolerance of these capacitors should be within ±0.25%. For filters such as these of higher order and with high attenuation characteristics, the uniformity of the tolerance of external resistors and capacitors has an effect not only on the accuracy of the setting range, but also on the size of pass band ripple. 2. Use series type power supplies for the ±15V power supplies because switching-type power supplies are not recommended. Install 4.7pF tantalum and 0.01pF multilayer ceramic bypass capacitors. It is recommended that these be installed in parallel, and as close to the filter as possible, between the ±15V power supplies and ground. 3. Use metal film resistors with a tolerance better than 1% for the 6 or S fc setting resistors. - 100dB/oct Inputimpedance ••.•••••..•• SOKOmin. Maximum input voltage ..•••.. ±10Vmin. OUTPUT CHARACTERISTICS 10 Suffix 2 model 159 (Cexl +0.011 x Ie (Kill Cexl where Cext is measured in p F and fc in Hz. FlJ·RBLB INPUT CHARACTERISTICS Output impedance •••••.••••• Maximum output voltage .••••. Noise (input shorted) •...••••. Offset voltage .............. R' = 159,~ 10' (Kill The FC setting range can be shifted to a lower band by adding external capacitors Cext. The equation shown below should be used for reference. - FLJ-RBLA ........ SUm)! 2 model (100Hz-20KHz) Rt = 15.9,: 10' (Kill - O.15dB O.3dBmax. O.ldB O.OO5'/O@lKHz ROLLOFF CHARACTERISTICS a ....................... Suffix 1 model (10Hz-2KHz) where fc is measured in Hz. PASS BAND CHARACTERISTICS Gain Gain after Rf adjustment Ripple POp Ripple ~.9fc ••••••••.••••• Ripple after Rf adjust .••.••••• Distortion ratio •••.•••.••••• TECHNICAL NOTES 1. Setting the cutoff (central) frequency is accomplished with 8 external resistors which are equl;Il in value for lowpass filters and 6 external resistors which are equal in value for bandpass filters. The relationship between the resistance Rf of the external resistors and the cutoff frequency fc is as follows: -100 0.1 1 10 Normalized frequency flfc 100 <-so -60 0.1 1\ \ \ \ ORDERING INFORMATION 1\ 1 Normalized frequency fife 10 low Cutoff Frequency Type (10Hz-2KHz) FLJ-RSLA1: 135dB/oct., 8-pole FLJ-RSlB1: 100dB/oct., S-pole FLJ-R3BA1: 3·pole pair bandpass High Cutoff Frequency Type (100Hz-20KHz) FLJ-RSLA2: 135dB/oct., 8-pole FLJ-RSlB2: 1OOdB/oct., S-pole FLJ-R3BA2: 3-pole pair bandpass 8-12 DATEl, Inc. 11 Cabot Boulevard, Mansfield, MA 0204!l-1194ITEl (508) 339-3000ITLX 174388/FAX (508) 339-6356 FLJ-UR Series Single In-line Hybrid Resistor Tuneable Filter FEATURES MECHANICAL DIMENSIONS (Fig. 2) INCHES(mm) • Small and thin size • A variety of families • Cutoff frequency fc is set by only two or four resistors • Light weight, low cost 2.03(51.5) I- i----t-----;~! . -:!. " GENERAL DESCRIPTION The FLJ-UR series filters are single in-line package resistor tuneable filters. They are small in size and can reduce installation space on the printed circuit board. The cutoff frequency can be easily set by only two or four external resistors. The series has a variety of products, allowing system designers flexibility in selecting filters to suit their application. IAI (8) IT' 0.05(1.2) Pin cross section: O.02xO.01 (O.SXO.2S) Analog input Analog GND +15V -15V FU-UR4LB1/2 For Immediate ASSistance, Dial 1-800-233-2765 output 8-13 FL.J·UR Series SPECIACATIONS Typical at R=31.S k~, 25°C and ± 15V supply voHage unless otherwise specified. OUTPUT CHARACTERISTICS Output Impedance ............ 1000 max. Maximum Output VoHage .". ± 1OV min. Load Resistance ............... 10 kO min. Noise (10-500 kHz) .......... 140 p,V max. Offset Voltage .................. ±30 mV max. zero adjustable COMMON SPEClACATlONS TO ALL MODELS ABSOLUTE RATINGS Supply voltage (± Vs) .... ± 1SV Input voltage ................ ±VS POWER SUPPLY AND ENVIRONMENTS Supply Voltage ................. ± 15V Supply Voltage, Operating Range .............. ±5V-±1SV Operating Temerature/ Humidity Range ............... -20°C-700C, 10-95%RH Storage Temperature/ Humidity Range ............... -30°C-SO°C, 10-S0%RH FREQUENCY CHARACTERISTICS fcaccuracy .................. ±3% max. (with 0 dB gain at the frequency given in Note '2) INPUT CHARACTERISTICS Input Impedance ........... 50 ill min. Maximum Input Voltage ±10V SPECIFICATIONS "'(4 POLE MODELS) No. of poles/characteristics Type Model fc ( 3 dB) characteristics Suffix 1 model Range' Suffix 2 model Setting Pass band characteristics Gain·' Ripple Upper-limit frequency (small signal) Rollalf characteristics Rolloff Attenuation volume (112 fc or 2ic) Minimum attenuation Attenuation at 1 MHz Output characteristics OIIset drift Distortion rate" 51_rate Quiescent current/peckage Quiescent current (@l±15V) Package 4·pole lowpass Butterworth FLJ-UR4LA 4·pole lowpass Chebyshev. FLJ-UR4LB 40 Hz-1.6 kHz 400 Hz-20 kHz by 4 external resistors ·Same as left o dB±0.3 dB - I I 0.28 dBp-p - L I I I I I I 42 dB/oct or equivalent 55 dB 46 dB 24 dB/oct 24 dB 4·pole highpass Butterworth FLJ-UR4HA I I I 4-pole hlghpess Chebyshev FLJ-UR4HB ·Same as left 400 Hz-5 kHz I I I 'Same as left o dB±1 dB I I I 50 kHz± 1 dB max:" 24 dB/oct 24 dB 0.28 dBp·p 42 dB/oct or equivalent 55 dB 46 dB 70 dB min. 3OI'V/oC 0.01% I I - I +12 mA 20 pins SIP (A) 151'V/oC 0.1% 2V1l'sec +8 mA +16 mA +16 mA SPECIRCATIONS 2 (2 POLE AND 1 POLE PAIR MODELS) No. of poles/characteristics Type Model fc (- 3 dB) characteristics Suffix 1 model Range*1 Suffix 2 model Setting Pass band characteristics Gain·' Upper-limit frequency (small signal)"" Rollol! characteristics Rollalf Q Attenuation volume (1/2 fc or 2 fc) Attenuation at 1 MHz Maximum attenuation (f.) Output characteristics OIIset drift Distortion rate' Slew rate Quiescent currenl/package Quiescent current (@+15V) Package I 2-pole high lowpass Butterworth FLJ-UR2LH 1-pole pair bandpass Butterworth FLJ-UR1BA 40 HZ-l.6 kHz 400 Hz-20 kHz ·Same as left 400 Hz-l0 kHz I I o dB±0.3 dB 100 kHz±1 dB HPF 12 dB/oct 12 dB 70 dB min. LPF 2-pole pelr bandpass Butterworth FLJ-UR2BA by 4 external resistors o dB±1 dB - 2-pole pair band elimination Butterwo;th FLJ-UR2EA -Same as left by 2 external resistors l I - 5 35 dB 5 '. 17.5 dB 'Ssme as left 1 J I I o dB±0.3 dB 50 kHz± 1 dB max. 5 60 dB 15I'V/"c 0.1% 2V/I'8ec HPF I 30 I'VI"C 0.01% 2V1p.Sec +12 mA +8 mA 20 pins SIP (A) .,: AdditiOf'l of 2 or 4 external capacitors allow extension to lower band. '2: FW-UA4LA, 4LB; fell0, FLJ-UR4HA; 3.3 te, FLJ-UA4HB; 10 Ie (fc~3 kHz). 3.3 Ie (fc>3 kHz) FW-UR2LH; lell0 (LPF). 10 Ie (HPF) S-14 I +20 mA 20 pins SIP (B) '3: Gatn of 0 dB at above.stated frequencies. (See '2) '4: . Connection of a specified pin to GND allow 10,20, 30, 40 and SO. External resistors allow a range of 1.81~O~50. DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 0204S-1194ITEL (50S) 339-3000ITLX 1743SS/FAX (50S) 339-6356 FLJ·UR Series 2. Use metal film resistors of 1% tolerance for fc setting. When making a higher-order filter, use more accurate resistors. b. FLJ-UR2BA1/2 • An input frequency of 1.0734xfc is provided. • Tune VR, until the phase difference between the input Signal and the output signal at pin 9 reaches at 180° looking at a phase measuring instrument such as an oscilloscope. • An input Signal of frequency fc is given. • Tune VR2 until the phase difference between the input signal and the output signal at pin 20 is set at 0°. 3. Connect external resistors with short leads as close to the filter as possible. FI...J..UR4LA1/2 Block Diagram· (Fig. 3) TECHNICAL NOTES 1. Do not use a switching regulator. Use a well regulated ±15V power supply. Install 0.01 ~F bypass capacitors as close to the filter as possible. 4. Use external capacitors with good stability and high dielectric resistance. It is recommended to use multilayer ceramic capacitors or plastic film capacitors. 5. Regulate output offset voltage. by using an external trimmer (10 KG to 50 KG). 6. The FLJ-UR series filters are packaged single inline and are compact in size. Installation at high-density may cause temperature rises between elements. Installation with 0.8" or more of space between filters can eliminate the problem. 7. Relation between fc and external resistor/capacitor: With the FLJ-UR series. a cutoff or center frequency can be set by 2 or 4 external resistors. The values of R of 2 or 4 external resistors for normal use can be calculated as; R - 15.9x106 (0) fc (Hz) Suffix 1 model Analog input GND +15V -lSV FW-UR4HA1/2 Block Diagram (Fig. 4) 159x106 R (0) Suffix 2 model fc (Hz) Note: R, = R2 = R3 = R. lSK In certain applications the resistance of each of 2 or 4 resistors may be changed. R, to R. shown in the block diagrams are the external resistors explained here. In standard use, the fc can be set to a minimum of 40 Hz. This is because the values of R have to be increased to about 400K according to the relation between Rand fc. The fc setting range can be expanded to lower band by adding 2 or 4 external capacitors. R R - 159x103 (Cext+0.01) fc 159x103 (Cext+0.OO1) fc (0) Suffix 1 model (0) Suffix 2 model FW-UR4HB1/2 Block Diagram (Fig. 5) R,' where Cext is measured in p.F and Fc in Hz. In the applications in which the output offset, time drift, or output noise must be minimal, use the above external capacitors if the values of external resistors exceed 100 kO each. 8. How to tune fc As shown in the specifications, the fc setting accuracy is 3% depending on the accuracy of elements used. There is no practical problem in tuning when they are used as lowpass or highpass filters. However, bandpass filters and band elimination filters may require sharp tuning. Such filters can be tuned with external trimmers as shown in Fig. 10. R" R2 and VR, are not used with the FLJUR1BA1/2. a. FLJ-UR1BA1/2 • An input signal of oscillating frequency fc is given. • 1/0 signals are monitored with a phase measuring instrument such as an oscilloscope. • Tune VR2 until the phase difference between 110 signals can be reduced to 0°. For Immediate Assistance, Dial 1-800-233-2765 Analog GND +15V -15V 'oput Cf in each-figure is 10000 pF for suffix 1 model and 1000 pF for suffix 2 model. 8-15 FLd·UR Series FU-UR2LH1/2 Block Diagram (Fig. 6) t::"utlog· FLJ-UR2EA1/2 Block Diagram (Fig. 9) GNO +1SV-15V FW-UR1BAl/2 Block Diagram (Fig. 7) fc tuning method (Fig. 10) GND +ISV -ISV ORDERING INFORMATION "'FU.UR2BA1/2 Block Diagram (Fig. 8) LOW CUTOFF FREQUENCY TYPE (40 Hz-1.6 kHz) FW-UR4LA 1: FW-UR4LB1: FW-UR4HA1: FW-UR4HB1: FW-UR2LH1: FW-UR1 BA 1: FW-UR2BA 1: FW-UR2EA1: 4-pole lowpass, Butterworth 4-pole lowpass, Chebyshev 4-pole highpass, Butterworth 4-pole highpass, Chebyshev 2-pole lowpass/highpass, Butterworth 1-pole pair bandpass, Butterworth 2-pole pair bandpass, Butterworth 2-pole pair band elimination, Butterworth HIGH CUTOFF FREQUENCY TYPE (400 Hz-5 kilO kl20 kHz) Cf in each figure is 10000 pF for·suffix 1 model and 1000 pF'for suffix 2 model. 8-16 FW-UR4LA2: FW-UR4LB2: FW-UR4HA2: FW-UR4HB2: FW-UR2LH2: FW-UR1BA2: FW-UR2BA2: FW-UR2EA2: 4-pole 4-pole 4-pole 4-pole 2-pole 1-pole 2-pole 2-pole lowpass, Butterworth lowpass, Chebyshev highpass, Butterworth highpass, Chebyshev highpass/lowpass, Butterworth pair bandpass, Butterworth pair bandpass, Butterworth pair band elimination, Butterworth DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356 FLJ-VL, VH, VB Voltage Tuneable Filter FEATURES • Cutoff frequency is tuned by external voltage • Wide range of control frequency • Small in hybrid GENERAL DESCRIPTION MECHANICAL DIMENSIONS INCHES(mm) FW-V Series filters cutoff frequency or center frequency can be set with an external control voltage. Hybrid construction has made it possible to build highly reliable, high performance filters in small size at low cost. FW-VL is a lowpass filter and FLJ-VH is a highpass filter. Both filters have 24dB/oct of rolloff characteristics. FW-VB is a bandpass filter which has 12dB/octBW at Q=5. l-nmnmnnmII'~1 PIN SECTION O.OlXO.OI (0.5XO.l5) --------------------1 -.Lr-- l . ll (53.9)--1 LL o.z6(6.5)/ T~.,jlJ"lllllllll~rllli .ll(.5.0) T 0.I(l.54) 2.14(54.4) , PIN CONNECTIONS PIN 1 2 4 7 8 9 10 11 14 15 16 17 18 20 FUNCTION INPUT GND Rq1 Cext1-1 -Rq1, Cext1-1 Cext1-2 Cext1-2 Rq2 Cext2-1 Rq2 Cext2-1 Cext2-2 Cext2-2 ZERO ADJ. OUTPUT PIN 21 22 34 36 37 40 FUNCTION CONTROL V. INPUT GND. -vee -15V GND GND +Vee +15V DO NOT CONNECT UNUSED PINS TO OTHERS. For Immediate Assistance, Dial 1-800-233-2765 8-17 FLJ-VL, VH, VB SPECIFICATIONS Typical values at 25'C with ±15V supply, 10V control voltage, ±1V rated input unless otherwise specified. FLJ-VL (Lowoass Filterl FLJ-VB (Bandpass Filterl FLJ-VH (Hiahpass Filterl ABSOLUTE MAXIMUM Power Supply Voltage ............• Input Voltage .................... Control Input Voltage ............. ±18V ±Vcc ±Vcc • "Same as FW·VL" • "Same as FW·VL" • "Same as FW·VL;' • "Same as FW-VL" • "Same as FW·VL" • "Same as FW-VL" FILTER CHARACTERISTICS Frequency Set Range ............. Frequency Set Accuracy ..•..•..... Control Input Voltage Range ....... Control Input Impedance .......... Characteristic .......•.......•...• Rolloff .....•.......•••.•.•...••. Pass Gain vs. Control Input V. ...... Distortion ....................... Frequency Set T.C. ............... 100Hz -100KHz ± (3%+0.01% F.S.) max. +10mV-+l0V 50 Kohm min . 4 pole Butterworth 24dB/oct ±0.5dB 0.1% max . ±O.03%/'C · 200Hz - 20KHz 2OHz- 20KHz AMPLIFIER CHARACTERISTICS Input Voltage .................... Rated Input Voltage .......••...... Input Impedance ................. Offset Voltage ................... Offset V. Variance vs. Control V.....• Temperature Drift ................ Noise CD ••••••••••••••••••••••••• Output Voltage/Current ........•... Output Impedance ............•••. Load Resistance ................. Small Signal BW ................. ±10V min . ±1V 50 Kohm min . ±10mV Zero Adjustable ±20mVmax. 300pVrC 800pVrms max. @10Hz- 300KHz ±10V/5mA min. 500hm max. 10Kohm min. DC-fc POWER REQUIREMENTS & ENVIRONMENT Power Supply Voltage •.....•..•..• ±15V, +10%, -5% Current ...••..•.....•..•.....•.. ±36mA Operating Temperature Range ...... -20'C - +70'C Operating Humidity Range ......... 10%-95%RH Storage Temperature Range .....•.. -30 'C - +80 'C Storage Humidity Range ........••. 10%-80%RH · · +10mV~+10V +l00mV - +10V · 2 pole pair Butterworth 12dB/oct BW(Q=5) ±ldB 4 pole Butterworth 24dB/oct ±0.5dB ·· ··· ·· · ·· ··· ·· · ·· ·· ··· · ±2V min. ±10V min. ±2V/5mA min. ±10Vl5mA min. ·· - fc -300KHz ·· ·· ·· Typically <300 ~Vrms for the FW-VH. The FW-VUVB are typically <300 ~Vrms for control voltages up to 2V and <.500.~Vrms for control voltages from 2 to 10 Volts. (j) TECHNICAL NOTES 1. The rated input voltage is ±lV. The maximum performance is obtained if input voltage does not exceed this range. 2. Thesefiltersare 4pole Butterworth(2pole pair)filters. Cutoff frequency is controlled by external voltage. The relationship between control voltage and cutoff frequency is linear (=proportional). Cutoff frequency ranges can be shifted toward lower frequency region if four external capacitors are added. See Figure 3. FLJ-VL: Cextl, Cext 2 FLJ-VB, VH: fc(max) x ~7T x 6.36 X 10' 250 X 10"2 1 1250 x 10"2 Cex tl , C ext 2 = fc(max) x 27T x 6.36 X 103 Cextl, Cext 2: F (Farad) fc(max) : -3dB frequency at 10V control voltage. 3. Zero offset adjustment range is approximately ±50mV. 4. Control input voltage signal has approximately 10KHz of frequency response. However, it takes long time before the output DC offset (=approx. 1OmV) settles under the new fc 8·18 set. It is not recommended to use alternating signals for the control input, depending on applications. The cutoff frequency shall be affected by unstable control voltage if it is small signal, even if.it is DC. 5. FLJ-VL can be used as Bessel filter. Connect Rql = 95.3KO and Rq2 = 9.53KO as shown Figure 3. External capaCitors should be: _ ( 100 ) Cextl - 250 fc(max) (KHz) x 1.43241 -1 (K~c:i Cext2 = 250 (fe(max) x 1.60594 1) fc(max) :;;; 62.2KHz, -3dB frequency at 10V control input voltage. Cext1, Cext2: pF (pico Farad) DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048·1194ffEL (508) 339·3000ffLX 174388/FAX (508) 339-6356 FL.J-VL, VH, va TYPICAL CONNECTION (Fig. 3) c..~ ,..*-.. (, , Input 17 A.J-,,Fl_,"," ru-wt .. .. •. 7/10.111 +'.., -,.., GMJ 31 2D ... , 11.< +'.., Output IZer!"ad~ -15V AMPLITUDE VS. FREQueNCY (Fig. 4) FU-YL (Fig. 4-1) 0 -I 0 -20 ~blv ~~,V ~I~ I\-'OV 1\ 1\ 1\ 1\ 0 1\ 1\ 0 \, -60 1\ 100 IK 1\ 10K 1 -I 0 -30 -OIl \ -60 I~lOOK -60 1\ 1M O.OIV II J. J. o.lV II -20 1\ \ -.l 0 Control V. 1\ \ -60 -70 10 FU-YH (Fig. 4-2) II II I 10 100 11 II 1 1 F requency(Hz) V 11 II 1 1 11 :1 l~,:!v. IV IK 11 10K lOOK Frequency(Hz) FU-YB (Fig. 4-3) I 0 JI~·lV r~O.3V JlV-IV -I 0 Control v. I 1\ J \ I 1\ J \ /1\ / V 'II V 'II \ /\ r\ /\ r\ \ -20 CD -30 i -. I r\,3V JI~IOV 0 ORDERING INFORMATION V j J ~ ) [)(\ \ \ / I \k" Y 1\ \ /V v 1/ \ j \ 1\ \ '-... o MODEL NO. DESCRIPTION FLJ-VL Low-pass filter Butterworth 4 pole Band-pass filter Butterworth 4 pole High-pass filter Butterworth 4 pole -so FLJ-VB -60 -7 .II 5 / 100 /\.. IK \.. 10K Z Frequency(Hz) For Immediate Assistance, Dial 1-800-233-2765 "' 5 FW-VH lOOK 8-19 Contact DATEL for your Data Acquisition component needs. Dial 1-800-233-2765 for Applications Assistance 8-20 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 FLT-C1 Programmable 7th Order, Low-pass, Switched Capacitor Active Filter FEATURES FLT-C1 Mechanical Dimensions Digital tuning Stopband attenuation >76dB at 31e Built-in sample-hold Programmable gain of 1, 2, 4, 8 • Dynamic range of 85dB • 12-Bit precision I 0.605 (15,37) 0.585 (14,86) DESCRIPTION 0.085 (2,16)1 1.620 (4115) 1 0.060 (1,524) 1.580 (40: 13) - - 0.040 (1,016) + - DATEL's Model FLT-Cl is a monolithic, 7th order, lowpass active filter for applications requiring sharp, fast attenuation rolloff. Exceptionally low noise performance of this switched capaCitor filter permit it to be used in applications requiring 12-bit accuracy. - • I -t-~- • t t ,Vill- 0.050 (1 Typical A combination of an 8-bit control input and the clock frequency set the corner frequency over a range of 78 Hz to.·20 KHz. A 2-bit control input selects the gain. A built-in oscillator (less crystal) is provided for systems where a system clock is not available. 0.175(4,45) Typical -11--11-- 0.020 (0,0508) 0.016 (0,406) 0.105 (2,67) 0.095 (2,42) ORDERING INFORMATION CS WR os MODEL DESCRIPTION FLT-C1 7th Order, Low-pass, Switched Capacitor Active Filter 00-07 AS AO 21271291311321 I I I I 5-13 I I I MICROPROCESSOR INTERFACE t Gl-G2 3,4{ I 25 1 I ACTIVERC FILTER DATA LATCHES /' I I 24 RCOUT 26 SC,. For Immediate Assistance, Dial 1-800-233-2765 20 I I RCIN CLKIN 191 H 181 I +n +m I SWITCHED CAPACITOR FILTER 231 ~ Voo I CRYSTAL OSCILLATOR I po X2 Xl r!- Vss ~ GNO I 15 CLKoUT 14 SYNC 17 CNVRT ~ DECIMATOR l- gg SCOUT I 1 30 AAiSM 8-21 FLT·C1 FUNCTIONAL SPECIFICATIONS Typical at 25°C range unless otherwise noted. Specifications subject to change without notice. FILTER CHARACTERISTICS Frequency Range Voltage Gain Gain Accuracy (G=1) Offset Voltage (G=1) Filter Response (Relative to DC Gain) at 1.5 fc at2fc at3fc Input Signal Level Output Voltage Output Current Passband Ripple Band edge Tolerance Wideband Noise, 20 KHz, BW Harmonic Distortion , Dynamic Range 78 Hz to 20 KHz 1,2,4,or8 ±0.1% 5mV 7-pole Chebychev -30 dB max. -S2dB max. -76 dB max. ±3Vmin. ±3V ±0.6mA ±O.ldB ±O.S% 100 j!Vrms max. -72 dB 8SdB min. CLOCK Pin Functions Name Function Vss CS Gl·G2 Negative supply voltage. Chip select; active low. The digital inputs that control the DC gain of the SC filter. The digital inputs that control the RC filter band edge, SC filter band edge, and SC filter decimation rate. This digital input contrals the sampling instant for the SC filter decimated output; active low. Master clock output capable of driving 1 standard TTL load. It is a buffered version of either ClKIN or the internally generated crystal oscillator output. Positive supply voltage This digital output indicates that the SCOUT output has settled and can now be converted or sampled (drive capatibility is 1 standard TTL load); active low. An external crystal is connected between these pins to generate an accurate clock for chip operation. The master clock input. Forcing ClKIN to vss enables the on-chip oscillator (external crystal). Ground. SC filter output. This digital input is used to power down the analog circuitry; active low. RC filter output. RC filten input. . SC filter input (only valid when AAlSM is forced low). Write strobe; active low. Data strobe. This digital input controls whether the input to the SC filter comes from RCOUT or SCIN. Address strobe. Register address select. 00-07 -- SYNC ClKoUT Voo CNVRT Xl-X2 Input Clock Frequency (j) 1 MHz min. 4 MHztyp. ClKIN DIGITAL INPUTS Input High Input Low Leakage Current Input Capacitance 2.0V min. 0.8V max. 1 j!A max. 10 pF max. POWER SUPPLY REQUIREMENTS Supply Voltage Supply Current Power Dissipation ±SV (±S%) ±lSmA lS0mW (j) Also internal clock frequency. 'Internal clock requires external crystal. FUNCTIONAL DESCRIPTION The FlT-Cl is made up of two programmable filter sections used in different combinations to meet various applications. The switched capacitor stage (SCF), is a 7-pole, lowpass filter designed to provide an accurate, programmable passband for fixed or dynamic applications. The switching frequency may be derived either from a crystal oscillator or from a system clock. Since the filter band edge can be programmed by varying the frequency of the clock which controls the filter's switches, it can track the sample rate of an extemalAiD converter. Digital programming allows for band edges of up to 20 KHz and gains of 1, 2, 4, or 8. The RC filter stage is a low-order active filter with a bandedge accuracy of S%. This accuracy is adequate because the filter sampling rate is SO times greater than the band edge frequency_ 8-22 GND SCOUT PO RCOUT RCIN SCIN WR OS AAlSM AS AO The band edge of the RC filter is programmable to insure sufficient rejection of any SC filter harmonics. Ratio matching of on-chip resistors and capaCitors provides eight RC filter bandedges spanning a 12-to-l range. . A decimator, placed at the output of the SC filter, samples the differential output and converts it to a single-ended signal. In addition, the decimator can be programmed to allow an Integer decrease in the sampling rate by low filtering of the signal and keeping every Nth sample, similar to a programmable samplehold. By choosing the proper decimation rate, the hold time at SCOUT will be long enough to allow an AID conversion to take place without the need of external S/H components. An external S/H is recommended for hold times faster than 100 j!S to prevent more than 1/2 lSB of droop for a 12-bit AID converion. DATEl, Inc. 11 Cabot Boulevard, .Mansfield, MA 02048-1194ITEl (S08) 339-3000ITLX 174388/FAX (508) 339-6356 FLT·C1 Microprocessor Interface Timing Characteristics ADDRESS AD DATA Tl T2 00-07, Gl-G2 T3 T4 A S - -_ _ _J DS---------------------------~ W R - - - - - - - - - - - - - - -__ cs ______________________ ~ SCoUT Synchronization Timing ClKIN ~,_ _--,II,-_- --I 1-- T6 ClKoUT T9 T10 SYNC CNVRT - T7 L -_ _ J.!P Interface Timing Ref. Duration CS Hold Time Data Hold Time Data Set-up Time Address Hold Time Address Set-up Time T5 T4 T3 T2 Tl 10 nSec. min. 10 nSec. min. 100 nSec. min. 10 nSec. min. 20 nSec. min. SCOUT Ref. Duration Synchronization Timing SyncB Delay Time SyncB Set-up Time ClKIN To ClKOUT Delay ClKIN To CNVRT Delay Sync Pulse Width T8 T9 T6 T7 Tl0 100 nSec. min. 75 nSec. min. 50 nSec. max. 75 nSec. max. 75 nSec. min. RCF band edge RCF3dB BW D7 D6 D5 80 KHz 56KHz 40KHz 28KHz 14KHz 10KHz 7KHz 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 TOP VIEW DC Gain DC Gain G1 G2 1 2 4 8 1 1 0 0 1 0 1 0 FLT-C1 Clock to SCF bandedge Divide Down Ratio fClK/fc DO D1 D2 200 400 800 1,600 3,200 6,400 12,800 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 Decimator Sample Rate fSlH/fc D3 D4 25.000 12.500 6.250 4.167 0 0 1 1 0 1 0 1 X tc = O.ldB Bandwidth of the SC filter. fClK = Master clock frequency at ClKoUT fSIH = Sample rate at SCOUT output. For Immediate Assistance, Dial 1-800-233-2765 16 VDD 8-23 Contact DATEL for your Data Acquisition component needs. Dial 1-800;.233-2765 ,for Applications Assistance 8·24 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048·1194fTEL (508) 339·3000fTLX 174388/FAX (508) 339·6356 FLT-DL 4-and 5-Pole High Frequency Digitally Programable Active Filters MECHANICAL DIMENSIONS INCHES (mm) 1.101 MAX. 1 FEATURES • • • • • • 1 Digitally programmable 4- and 5-Pole Cauer response Cascadable 7 Pole Cauer response Cutoff Frequencies to 1.2 MHz Small 32-pin DIP -55°C to +125 °C operation I (28,0) 0.190 MAX. ! I lil_--->,(4:.!.:,8"-,) I 0.150 MIN. (3,8) 0.010 x 0.018 KOVAR Pins 116 GENERAL DESCRIPTION 171 1 1 DATEL's FLT-DL series of 4- and 5-pole digitally programmable active filters are functionally complete, simple to use, and offer a wide range of frequency response options. The models offered operate over the frequency ranges of 100 KHz to 470 KHz and 250 KHz to 1200 KHz. I I BOTTOM VIEW 1 1 1 321 1 11 0.900 (22,9) The FLT·DL Series are Cauer response filters which can be cascaded to provide equivalent 7 pole Cauer performance. PIN DATEL's FLT-DL Series filters are manufactured using thick-film and thin-film hybrid technology and unique laser trimming schemes. TheSe filters are packaged in a space-saving 32-pin ceramic DIP. Units are specified for operation over the commercial temperature range of 0 to +70 °C and the military temperature range of -55 to +125 °C. 1 2 3 4-9 10 11-14 15 16 17 18 19·21 TECHNICAL NOTES 22 23 1. Use an external 50 Kohm potentiometer to reduce the small initial offset error to zero. Tie the wiper to pin 18, OFFSET ADJUST. Connect the other terminals of the potentiometer to the +/-15 volt power supplies. For operation without adjustments, leave pin 18 unconnected. 24 25 26·30 31 32 ~ 15 1.712 MAX. SPACES (43,5) "'T~ I NOTE: Pins have 0.025 Inch ±C.01 standoff from case. FUNCTION +vcc GROUND -VEE NO CONNECTION ANALOG OUT NO CONNECTION GROUND GROUND NO CONNECTION OFFSET ADJUST NO CONNECTION BIT 1 (MSB) BIT 2 BIT3 BIT 4 (LSB) NO CONNECTION ANALOG RETURN ANALOG INPUT OFFSET ADJUST 18 r-----I ANALOG INPUT 32 ANALOG RETURN 31, BIT 1 (MSB) BIT 2 BIT 3 BIT4(LSB) 1 POLE LOWPASS FILTER SECTION 10 ANALOG OUTPUT 22 23 24 25 2,15,16 +VCC GROUND For Immediate Assistance, Dial 1-800-233-2765 SECTION ADDED FOR 5-POLE FILTERS 8-25 FLT·DL ABSOLUTE MAXIMUM RATINGS PARAMETERS + 15V Supply (pin 1) -15V Supply (pin 3) Digital Inputs (pins 22-25) Analog Input (pin 31,32) Lead temperature (10 sec.) Junction temperature (TJ) Storage Temperature Power dissipation FILTER CHARACTERISTICS CONT. LIMITS UNITS -0.3 to +1S +0.3 to -18 -Vccto+15 -25 to +25 300 +175 -65 to +150 3 Vdc Vdc Vdc Vdc °C °C °C Walts Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. FUNCTIONAL SPECIFICATIONS MIN TYP MAX UNITS ±10 - - Volts - - Kohms Kohms - - Volts Kohms - - - - ±25 - mA Kohms 100 250 4 - - 400 1000 KHz DIGITAL INPUTS Logic Threshold Logic Input Impedance .1Vee ±20% -fOO OUTPUT CHARACTERISTICS Output Voltage Range ±10 1 DC Output Resistance Output Current Umlt (Short Circuit Protected) Recommended Load Resistance 2 - - - - TBD - TBD TBD TBD - Volts Ohms MAX UNITS ±14.25 ±70 ±60 ±15 ±15.75 Volts POWER REQUIREMENTS Rated Voltage Quiescent Current FLT-DL5 FLT-DL4 Power Dissipation - - - rnA 3 mA W - PHYSICAL/ENVIRONMENTAL Operating Temperature Range MC 0 to +70'C MM-55to+125'C -65 to +150'C Ceramic 32-Pin DIP Weight Input Voltage Range Input Impedance (Nonlnvertlng) Pin 1 Pin 3 - - Offset Voltage Offset Voltage Drift 010 +70'C -5510 +125'C Noise case INPUTS - TYP storage Temperature Range Apply at 25°C and at ± 15Vdc power supply voltages unless otherwise specified. 4 6 MIN TBD 2. Bypass each power supply with a 0.1 microfarad tantalum electrolytic capacitor. 3. Digital inputs are-binary. The truth table (Table 1) details the cutoff frequency for each filter and for cascaded pairs of filters as a function of input coding . 4. The frequency responses of the 4-pole and 5-pole Gauer filters are shown in Figures 2 and 3 respectively. Figure 4 details the response of a cascaded pair of frequency matched 4- and 5-pole filters. The response for a cascaded pair is similar to a 7-pole Gauer, as shown in Figure 5. 5. When cascading a 4-and a 5-pole filter pair, the order of connection is not important. The filters must, however, be frequency matched. FILTER CHARACTERISTICS Freq. Range (cascaded pair) FLT-DL41/51 FLT -DL42152 Programming Bits Programming Frequency Increments FLT-DL41/51 FLT -DL42152 Programming Accuracy Voltage Gain Passband Ripple FLT·DL Settling Time (to 0.01 %) fc=IMHz FLT·DL42 FLT·DL52 fc=100KHz FLT-DL41 FLT-DL51 Transition Slope FLT-DL41 142 FLT-DL51/52 FLT-DL4/5 stopBand Attenuation (to10MHz) FLT -DL41/42 FLT-DL51/52 S-26 20 50 TBD Unily .7 30 50 80 30 50 - - KHz - I1Sec - - dB/oct dB/oct dB/oct - - dB dB - 6 7 60 60 - - ,r--.... 20 dB/div. \ ~ - \ fl O.2%/div. / -....-....., V ........... KHz KHz - % Figure 2. 4-Pole CAUER Response I1Sec !1Sec "- lJSec. 20dB/div.f\ , \ \" I Y f \/ -...........0.2O/oIdiV. '" '-" . Figure 3. 5-Pole CAUER Response DATEL, Inc. 11 Cabot BOUlevard, Mansfield, MA 0204S·1194ITEL (50S) 339·3000ITLX 17438S/FAX (50S) 339·6356 FLT·DL Table 1. Cutoff Frequencies for Digitally Tuned Filters, and for Cascaded Combinations of Two Filters DIGITAL INPUT (BIN) CUTOFF FREQUENCY (KHz) CASCADED 41X51 42X52 FLT-DL41 FLT-DL42 FLT-DL51 0000 0001 0010 0011 103.8 124.6 145.3 166.1 259.5 311.4 363.3 415.2 121.5 145.0 170.1 194.4 303.8 364.5 425.3 486.0 100 120 140 160 250 300 350 400 0100 0101 0110 0111 186.8 207.6 228.4 249.1 467.1 519.0 570.9 622.8 218.7 243.0 267.3 291.6 546.8 607.5 668.3 729.0 180 200 220 240 450 500 550 600 1000 1001 1010 1011 269.9 290.6 311.4 332.2 674.7 726.6 778.5 830.4 315.9 340.2 364.5 388.8 789.8 850.5 911.3 972.0 260 280 300 320 650 700 750 800 1100 1101 1110 1111 352.9 373.7 394.4 415.2 882.3 934.2 986.1 1038.0 413.1 437.4 461.7 468.0 1032.8 1093.5 1154.3 1215.0 340 360 380 400 850 900 950 1000 \ 0.05%/div. /\ ---..-' V ORDERING INFORMATION \ 20dB/div. IY\r---.. Figure 4. 4- and 5·Pole Pair Response \ 0.05%/div. - ...., FLT-DL52 \ -- 20dB/div.- ..--- IV V Figure 5. 7·Pole CAUER Response For Immediate Assistance, Dial 1-800-233-2765 MODEL NO. DESCRIPTION FLT-DL41MC FLT-DL41MM FLT-DL51MC FLT-DL51MM 100 KHz,4 100 KHz,4 100 KHz,5 100 KHz,5 FLT-OL42MC FLT-OL42MM FLT-OL52MC FLT-OL52MM 250 KHz, 4 Pole 250 KHz, 4 Pole 250 KHz, 5 Pole 250 KHz, 5 Pole Pole Pole Pole Pole TEMP. RANGE Ot070·C -55 to 125·C Ot070·C -55 to 125·C Ot070·C -55 to 125·C Ot070·C -55 to 125·C Receptacle for PC board mounting can be ordered through AMP Inc., Part #3-331272-8 (Component Lead Socket) 24 required. For availability of MIL-STO-883 versions, contact OATEL. 8-27 Contact DATEL for up-to-date information on products covered by "Advanced" and "Preliminary" product data sheets. Dial 1-800-233-2765 for Applications Assistance 8·28 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 FLT-U2 Micro-electronic Universal Active Filter FEATURES • State variable filter • LP, BP, or HP functions • 2-pole response • Low-noise operational amplifiers ·-55°C to +125°C operation • Low cost GENERAL DESCRIPTION The FLT -U2 is a universal active filter manufactured with a thick-film hybrid technology. It uses the state- variable active filter principle to implement a second order transfer function. Three committed operational amplifiers are used for the second order function while a fourth uncommitted operational amplifier can be used a a gain stage, summing amplifier, buffer amplifier or to add another independent real pole. MECHANICAL DIMENSIONS INCHES (MM) Two-pole low-pass, bandpass, and highpass output functions are available simultaneously from three different outputs, and notch and allpass functions are available by combining these outputs in the uncommitted operational amplifier. To realize higher order filters, several FLT-U2's can be cascaded. Q range is from 0.1 to 1,000 and resonant frequency range is 0.001 Hz to 200kHz. Frequency stability is 0.01%/OC and resonant frequency accuracy is within ±5% of calculated values. Frequency tuning is done by two external resistors and Q tuning. by a third external resistor. For resonant frequencies below 50Hz, two external tuning capacitors must be added. Exact tuning of the resonant frequency is done by varying one of the resistors around its calculated value. 16 15 14 13 12 11 10 510 .590(14,9) P'N~~~~l ONE IDENT. .195(4.9) " .900 (22,9) _ , ~ m?NRfL~J: ' -I 13 7 1 DATEL FLT-U2 The internal operational amplifiers in the FLT-U2 have 3 MHz gain bandwidth products and a wideband input noise specification of only 10nV/..JHz. 314 9 1-.lOOTYP (15,2) (2,5) +15VOC 4 CONNECTIONS DIAGRAM ,. ,. Ra R'N 11 HPOUT V' FLT-U2 BPOUT (TOP VIEW) LPOUT V- (1,2) aUF OUT GND 9 For Immediate Assistance, Dial 1-800-233-2765 6 12 . 15VDC 8-29 FLT·U2 FUNCTIONAL SPECIFICATIONS Typical at 25°C, THEORY OF OPERATION ±15V supplies, unless otherwIse stated. FILTER CHARACTERISTICS Frequency Range' ••••••••••••• ,QRange' •••••••••••.•.••••.•• f. Accuracy ••••••••••• . • • • • • •• f. Temperature Coefficient ••••••• 'Voltage Gain' •••••••••••••••••• 0.001 Hz to 200 kHz 0.1 to 1.000 ± 5% 0.01 %/OC 0.1 to 1.000 The FLT-U2 block diagram is shown in Figure 1. This is a second order state-variable filter using three operational amplifiers. Lowpass, bandpass, and high pass transfer functions are simultaneously produced at its three output terminals. These three transfer functions are characterized by the following second order equations: . H(s) = K, S2+~S+Wo2 LOWPASS H(s) = K2S S2+~S+Wo2 BANDPASS K3S2 S2+~S+Wo2 HIGHPASS AMPLIFIER CHARACTERISTICS Input Offset Voltage ••••..•••... Input Bias Current ••••••••.••••• Input Offset Current .••••••••••• Input Impedance •••••••.•••••.. Input Com. Mode Voltage Range •. Input Voltage Noise, wideband •••• Output Voltage Range. • .. • • • • • •. Output Current ................ Open Loop Voltage Gain •.••••••• Common Mode Rejection Ratio .•• Power Supply Rejection •••.••••• Unity Gain Bandwidth •.••..••••• Slew Rate ..................... a 0.5 mV typ., 6 mV max. 40 nA typ., 500 nA max. 5 nA typ., 200 nA max. 5 Megohms ± 12V min. 10 nV/.,fHz ± 10V min. ± 5 rnA min. 300,000 100 dB 10 INN 3 MHz 1 VipSl3c. Voltage, rated performance •.••.. ± 15V dc Voltage Range, operating. . • • • • •. ± 5V to ± 18V Qulescant Current. ............. 11.5 rnA max. , O°C to + 70°C -55°C to +125°C -55°C to + 125°C Ceramic 16'pin DIP (double·spaced) FOOTNOTE: 1. 100 " 5 x 1Q' optimally TECHNICAL NOTES 1. The FLT-U2 has simultaneous lowpass, bandpass, and highpass output functions. The chosen output for a particular function will be at unity gain based on Tables II and III. This means that the other two unused outputs will be at other gain levels. The gain of the lowpass output is always 10 dB higher than the gain of the bandpass output and 20 dB higher than the gain of the highpass output. 2. When tuning the filter and checking it over its frequency range, the outputs should be checked with a scope to make sure there is no waveform clipping present, as this will affect the operation of the filter. In particular the lowpass output should be checked since its gain is the highest. 3. Check f" the center frequency for bandpass and the cutoff frequency for lowpass or highpass, at the bandpass output. Here the peaking frequency can easily be determined for high a filters and the 0° or 180 0 phase frequency can easily be determined for Iowa filters (depending on'whether inverting or noninverting). 4. Tuning resistors should be 1% metal film reSistors with 100 ppm/oC temperature stability or better for best performance. Likewise external tuning capacitors should be NPO ceramic . or, other stable capacitor types. 8·30 A second order system is characterized by the location of its poles in the s-plane as shown in Figure 2. The natural radian frequency of this system is Wo. In Hertz this is fo = Wo . The resonant radian frequency of the circuit is different from the natural radian frequency and is: "" = Wo sin fIJ = .JWo2 - <7,2 The damping factor d determines the amount of peaking in the filter frequency response and is defined as: PHYSICAL/ENVIRONMENTAL Operating Temperature Range FLT-U2 ..................... FLT-U2M .................... Storage Temperature Range ••.•• Case ....................... a where K" K2, and Ka are arbitrary gain constants. 2... POWER SUPPLY REQUIREMENTS , a H(s) = d=cosfIJ The point at which the peaking becomes zero is called critical damping and is d = ~J2. a is found from d and is a measure of the sharpness of the resonance of the peaking: a =..!. 2d Also, a = fo = ~ - 3 dB Bandwidth 2<7, For high a filters the natural frequency and resonant frequency are approximately equal. "" '" Wo or f, '" fa This is true since "" = Wo sin fIJ and sin fIJ = 1 as the poles move close to the jw axis in the s-plane. For high as (a > 1) we therefore have for the second order filter: fa '" Bandpass center frequency '" Lowpass corner frequency '" Highpass comer frequency In the simplified tuning procedure which follows, the tuning is accomplished by independently setting the natural frequency and a of the filter. This is done most simply by assuming unity gain for the output of the desired filter function. Unity gain means a gain of one (±) at dc for lowpass, at center frequency for bandpass, and at high frequency (f> >fo) for highpass. Unity gain does not apply to all outputs simultaneously but only to the chosen output based on the component values given in the tables. Figure 3 shows the relative gains of the three simultaneous outputs assuming the bandpass gain is set to unity. Note that lowpass gain is always 10, dB higher than bandpass 'gain and highpass gain is·always 10 dB lower than bandpass gain. DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-30001TLX 174388/FAX (508) 339-6356 FLT·U2 SIMPLIFIED TUNING PROCEDURE 1. Select the desired transfer function (lowpass, bandpass, or highpass) and inverted or non inverted output. From this determine the filler configuration (inverting or noninverting) using Table I. TABLE I FILTER CONFIGURATION 7. This procedure is based on unity gain output for the desired function. For additional gain, the fourth uncommitted operational amplifier should be used as an inverting or noninverting gain stage following the selected output. See Figure 4. A third pole on the real axis of the s-plane may also be added to the transfer function by adding a capacitor to the gain stage as shown in Figure 5. INVERTING INPUT NONINVERTING INPUT OUTPUTS' 2. Starting with the desired natural frequency and 0 (determined from the filler transfer function or s-plane diagram), compute foO. For foO> 1O· the actual realized 0 will exceed the ·calculated value. At foO = 10· the increase is about 1% and at foO = lOs it is about 20%. HP J BP~ R... ~ ---il--'- • C 14 ' • LP ~, I lOOK INVERTING CONFIGURATION LOWPASS Rl R2 100K OPEN R3 100K 3.800-1 BANDPASS OX 31.6K OPEN lOOK 3.480 HIGHPASS 10K OPEN lOOK 6.640-1 -f Figure 1. FLT-U2 Block Diagram +jw 4. Noninverting Configuration. Using the value of 0 from Step 2 find R2 and R3 from Table III. Rl is open, or infinite. TABLE III .1 lOOK 3. Inverting Configuration. Using the value of 0 from Step 2 find Rl and R3 from Table II. R2 is open, or infinite. TABLE II I3 c) r--H-- Relationships W1 :=: Wo sin" = "';w02 -o,2 d Q = cos e = J... =~ 2d NONINVERTING CONFIGURATION Rl R2 316K 0 R3 lOOK 3.160-1 LOWPASS OPEN BANDPASS OPEN 100k lOOK 3.480-1 HIGHPASS OPEN 31.6K 0 100K 0.3160-1 to - 3 dB Bandwidth +" -iw, x------- 5. Using the value of fa from Step 2, set the natural frequency of the filler by finding R. and Rs from the equation: -jw R. = Rs = 5.03 X 107 Figure 2. S-Plane Diagram fa where R. and Rs are in ohms and fo is in Hertz. The natural frequency varies as y'R.Rs and therefore one value may be increased and the other decreased and the natural frequency will be constant if the geometric mean is constant. To maintain constant bandwidth at the bandpass output while varying center frequency, fix R. and vary Rs. 6. For fo<50 Hz the internal 1000 pF capacitors should be shunted with external capacitors across pins 5 & 7 and 13 & 14. If equal value capacitors are used, R. and Rs are then computed from: R. = Rs = 5.03 X 1010 (C in pF) foC For unequal value capacitors this becomes: X 10 10 R. = Rs = 5.03 (C 1C2 in pF) f oy'C 1C2 In both cases the capacitance is the sum of the external values and the internal 1000 pF values. For Immediate Assistance, Dial 1-800-233-2765 20, + 10 r-_...;L;.;.Ow.;;.:P;.;. ... ;;;-._ _...:... 40dB/Decade -10 IH(sll (dB I -20 -30 -40 0.1 0.5 1.0 5.0 10.0 10 RELATIVE FREOUENCY Figure 3. Relative Gains of Simultaneous Outputs, Q=l 8-31 FLT·U2 R, R, /"X'- >-______-{) OUT I x' UNCOMMITTEO OPAMP ~ FLTU2=1 / ~~--~~~;------------+-u , .",. x,, G = 1 + .!h G = - R, R, Figure 4. R, Uncommitted Op Amp Gain Configurations FLTU2=2 ' . . x...... C c, IN OUT Figure 6. Realization of a Complex Multipole Filter R R R:+R., POLE FREQ = 2"~7C. I c• "" PO.LE FREQ = 2~R.C. Figure 5. Using the Uncommitted Op Amp to Add a Real Axis Pole >--4--0 OUT ADVANCED FILTERS All of the common !liter types can be realized by using cas- .. caded FLT-U2 stages. This includes multi-pole Butterworth, Bessel, Chebyshev, and Elliptic types. The basic procedure is to implement each pole pair with a single FLT-U2 and cascade enough units to realize all poles. A real axis pole is implemented by an uncommitted operational amplifier stage. Each stage should be separately tuned with an oseillator and scope and then the stages connected together and checked. See Figure 6. Figure 7. Realization of Notch Filter A notch filter can be constructed in several ways. The first way is to use the FLT-U2 as an inverting bandpass !liter and sum the output of the filter with the input signal by means of the uncommitted operational amplifier. This produces a net subtraction at the center frequency of the bandpass which produces a null at the output of the amplifier. (see Figure 7). Likewise lowpass and highpass outputs (which are always in phase) can be subtracted from each other with an external operational amplifier. The highpass output must have some gain added to it, however, so that its gain is equal to that of the lowpass output. A third method is to use two separate FLT-U2's, one as a two-pole lowpass filter and the other as a two-pole high pass filter. Again the outputs are subtracted in an operational amplifier. This method permits independent tuning of the two sections to get the best null response. ORDERING INFORMATION MODEL FLT-U2 FLT-U2M 8-32 OPERATING TEMP. RANGE O°C to + 70°C -55°C to + 125°C DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-11941TEL (508) 339-3000ITLX 174388/FAX (508) 339-6356 WIDE-RANGING, DC-DC POWER CONVERTERS NEW 20 WATT, WIDE-RANGING, DC-DC POWER CONVERTERS (2" X 2" X 0.4S") Input (Vdc) Output Input Current No Load/Full Load Output Noise & RIPPLE Efficiency (Min@ F.l.) Line/Load Regulation Model (TYP) 4.6· 13.2V (5V, ~)_.~~~:2~~ _ _ ~~!!3.78 A -:5:::0~m'CV:"p~·P~_ _c:;75::::0;'C-0_ _ ±O.2% I ±O.5%,_ _ _U",W,=R-=:3".31",4=25:;0:=,-O:,5::--_ ~~j].~~:..~.~~~?_~ 20 mA/1.7,-7.:.:A_ _..o:50",m",V"----,,p·LP 76% 18 - 72V (48V, Nom) __ ~.3V,~_~_~!E:~~_~ _ _ _5_0 ~~ _79% 4.6-13.2V (5V, Nom) 5.0V,3.~g ~__ __~O mA{~f!~~~ ______ .§Q mV P-E ___ . 80% 9.0 - 18V (12V, Nom) 5.0V,4.0 A ~.!~....:..?--.?~ (48V, _._~i':!.'4.0 A Nom) 4.6·13.2V (5V, Nom) ±12V,O.625 A 15 mN2.032 A 10 mA/O.50S A 40 mM.829 A ~- 50 mV pop ____ 50 mV 18V (~2V, N~f-=---_ ±1~O.83.ii:~'::_ 40 mN2~_ .. _ 18 - 72':'~~V, Nom) ±12V,0.830 A 10 mAIO.508 A 4.6 - 13.2V (5V, Nom) ±15V,0.600 A 40 mAll.829 A p-=~___ .-=-±0",.2"-0;',,,0,-,1±",0",.5,,"I.,,-0___-"U-"W"'Rc:-3"'.31"'4B""'50'--"'01.o=2 ±O.2% I ±O.5% UWR-3.3{~~~_._._ ±O.2% I +O.5%_ _ _UWR-5I~OOO-Q~ ___.. __ 82% ±O.2% I +0.5% UWR-S/4000-D12 82% ±O.2% / ±O.5% UWR-S/4000-048 85 mV pop 8824~00:---_==+0",.2,,"I.,,-01,-,±"'-"%,-_ _...B,,,W,,Rc.-121625-0S .~.2%/~ BWR-12f830-~_ 75 mVPe.--"-p_ _---=:::7;7--' 85 mV pop 82% ±0.2%!+1% BWR-12fB30-048 .___ ~mV p-p _ _ ~_._~?_{ !.:!.yo______ .!~R-1SI~QQ.-.Q!L .___ _ ~~~(12V,Nom) _ _±15V,~~~m~:!..:5~~ ~_~5~'!~~ 84% ~%1±1% ~'?~YJ!~V_, __~~)_ _±15V,0.670A__ ~~O.508A _ _~5mV.E:L._~~ NEW, 10 WATT, WIDE RANGING, DC-DC POWER CONVERTERS (2" 4.7 - 7.0V (5V, Nom) 9.0 - 18V (12V, Nom) 18 - 72V (48V, Nom) 4.7 - 7.0V (5V, Nom) 9.0 - 18V (12V, Nom) X ±O.2O/~±1% _ _ _ BWR-1S/670-0~ __ . ___ BWR-~IQ:.048 . __ 1" x 0.375") 3.3V~_A_ 30 mA/l.715 A 50 mV pop 70% ±0.2% 1 +0.5% UWR-3.3/1800-05 3.3V,2.5 A 3.3V,1.80 A 30 mAlO.915 A 15 mAlO.170 A 50 mV pop 50 mV pop 75% 75% 5.0V,1.60 A 5.0V,2.0 A 30 mAl2.160 A 15 mAll.03 A 50 mVp-p 50 mVp-p 74% 81% ±0.2% (+0.5% ±0.2% I ±0.5% ±0.2% / ±0.5% ±O.2% I ±0.5% UWR-3.3/2500-012 UWR-3.3/1800-048 UWR-S/1600-0S UWR-5/200o-012 ±O.2% / ±0.5% +0.2%/+1% UWR-5/1800-04B BWR-5/70o-05 18 - 72V (24/48V) 5.0V,1.80 A 15 mNO.240 A 4.7 - 7.0V (5V, Nom) ±5.DV,0.70 A 30 mAll.842 A 50 mV p-p 50 mV pop 76% 9.0 - 18V (12V, Nom) 4.7 - 7.0V (5V, Nom) ±5.0V,0.80 A ±12V,0.335 A 15mAlO.830 A 40 mAl2.1 A 50 mV p-p 15 mV pop 80% 76% ±0.2%/±1% BWR-5/800-0~~ _ _ _ ±0.2%/±1% BWR-12/335-05 9.0 ·18 (12V, Nom) +12V,0.415 A 35 mA/l.00 A +0.2%1+1% ±0.2%1±1% BWR-12/415-012 BWR-12/415-048 +O.2%~+1% +0.2%1+1% BWR-15/275-D5 BWR-15/330-012 +0.2%/+1% BWR-15/330-04B 18 - 72V (24/4~~ No~) ____:t:!.2~,0.415 A 4.6 - 13.2V (5V, Nom) ±15V,0.275 A ±15V,0.330 A 9.0 - 18V (12V, Nom) +15V,0.330 A 18 - 72V (24/48V, Nom) 78% 25 mV pop 83% ____ ~~AlO.260.!-_ _ _ 50_~.y pop 40 mA/2.142 A 15 mVp-p 25 mV p.p 35 mAlO.992 A 80% 77% 84% 50 mV e-p 81% 15mNO.257 A NEW, 3 WATT, WIDE RANGING, DC-DC POWER CONVERTERS (1.2S"xO.S"xO.43S") 18 - 72V (48V, Nom) 5.0V,0.50 A 10 mNO.069 A ~~.OV(?.Y~~2V,0.1~~.~~?..~~ __. 9.0 - 18V (12V, Nom) +12V,0.125 A 18 - 72V (48V, Nom) 15 mAlO.333 A ±12V,O.125A 10 mAlO.076 A ±15V,0.085 A ±15V,O.100A 25 mAlO.729 A 9.0-18V(12V,Nom) 18-72V(48V,Nom) ±15V,0.100A 10 mAlO.076 A ~-~.~J5V, Nom) _ 15 mNO.333A For Immediate Assistance, Dial 1-800-233-2765 100 mV p.p 75% 75mVp-p 70% ±0.2% 1 =±"'0."-5°,,"_ _--'U coW-;cR-5/500-D48 ±0.2%1±1% --7:::5:-m'cV--;-p"--c..p-----:7;;5°;:;Yo-----'+=-:0~.2% / +1% 75 mV pop 75 mVp-p 75 mV pop 82% ±0.2% / ±1% B~R-12/105-0~ _ _ BWR-12/12S-012 BWR-12/12S-048 ---:7c05°:-;Yo_ _--'±"'0"'.2"%,,I...±,,1.:.:%'--_ _--:B':'W=R-1S/l00-01~ 82% ±0.2% / ±1% BWR-15/10D-048 PS-1 WIDE INPUT RANGE DC/DC CONVERTERS INPUT OUTPUT NO lOAO/FUlllOAO INPUT CURRENT 9-16V de 5V dc, 3000 mA 9-16V de 9-16V de 12V dc, 1250 rnA 15V dc, 1000 rnA 30mA/1600mA 30 mA 11600 mA 9-16Vde 9-16V de 5V dc, 5000 mA 12V dc, 2500 rnA 30 mA 12800 mA 30 mA / 3200 mA 9-16V de 15V dc, 2000 mA 30 mA I 3200 mA 16-36V de 16-36V de 18-36Vdc 5V dc, 3000 mA 12V dc, 1250 mA 15Vde, 1000mA 20 mAl 78DmA lINEllOAD REGULATION 0.02% 11.0% 0.02%/1.0% 0.02% 11.0% 0.02%/1.0% 0.02% /1.0% 20mA/B10mA _._ 20mAI1350mA 0.02%/1.0% 0.02%/1.0% 0.02%/1.0% 20 mA1780 mA 5V dc, 5000 mA 12V dc, 2500 mA 18-36V de 15V dc, 2000 mA 20 mA 11550 mA 20 mA I 1550 mA 0.02% 11.0% 9-18Vdc ±12Vdc, ±625mA 25mA/1520mA 0.02% 11.0% 9-18Vdc 9-16Vdc ±15Vdc, ±50DmA ±12Vdc, ±1250mA 9-18Vde 18-36Vdc 18-36Vdc 18-36Vdc 16-36Vdc 9-18Vdc 9-18Vdc 9-18Vdc 18-36Vdc 18-36Vdc 16-36Vde ±15Vde, ±1000mA ±12Vdc, ±15Vdc, ±12Vdc, ±15Vdc, ±625mA ±500mA ±1250mA ±lDOOmA +5i±12Vdc.1500/±310mA +5/±15Vdc,1500/±250mA +S/+12/-5Vdc, 1500/+310/500mA +5/±12Vdc, 1500/±310rnA +5/±15Vdc, 1500/±250mA +51+121-5Vde, 15001+3101500mA 25mA/l~?_Q._~~_ 0.02% (1.0% 25 mAl 3050mA 25 mAl 3050mA 25 mAl 750mA 0.02% 11.0% 0.02%/1.0% 0.02% J 1.0% 25 mAl 750mA 0.02% 11.0% 2~~J1500mA 25mA/1500mA 50 rnA I 1600 rnA 50mA/1600mA SQmA/1470mA 40 mAl 780 mA 40 mAl 780 rnA 40mAI715m-i\' __ UP5-121125G-D12 UP5-1511GOO-D12 UPS-5/5000~D12 UP5-1212500-D12 UPS-151200G-D12 ~: ~~--c~,,::s.=5-cc~":21"'1"'2~=~"~D=2::-:4:--~~60% 77% 60% UP5-15/1000-D24 UPS-5ISOOG-D24 UP5-121250G-D24 80% 82% 62% UPS-15/2000-D24 BP5-12/625-012 82% 84% 84% BPS-1S1SOO-D12 BPS-15J1000-012 BP5-12/625-024 BPS-15/50o-024 -"6,,-4%,,,0~~---:B,,:P:=5-c:l=21,-,1=2SO:=...:-D:.:2:.:4~~~~ 1.0% 15.00/0 1.0% I 5.0% 84% 78% 78% BPS-1511 000-024 TP5-5J150a-12/310-D12 TPS-5J150a-1S/250-D12 80% TP5-51150a-12/310-024 ---=78"'0;'::'0~----::T:::P5-::-C:1213=1"'0--:5:=ll:=500~-D=-1":2'---- 1.0% 15.0% 1.0% 1 5.0% ---·1.0D/~7~6%-- 76% 78% -'6"'2-"%'---_---'B..,P--'5-,,1~21'_'1C":25G-=D"_1~2'___~~_ 0.02% 11.0% 0.02% 11.0% 1.0% I 5.0% UP5-513000-012 78% 0.02%/ ~o% ---- MOOEl 75% 75% J8% ~_ ~~~~~_~,_Oo_yo~~_ -----~---- 16-36V de 16-36V de EFFICIENCY - -- --'6=0"'%'--_----cT"'P"'5-5I'-==1-:5c.00"'-1=-:5Ic:2=:5=0--=D=24-c-~_ 80% TP5-12131a-511500-024 MINIATURE DC/DC CONVERTERS NO lOADIFUlllOAD lINEllOAD REGULATION INPUT OUTPUT 5Vde 12V dc, 80 rnA 90 rnA/380 rnA 5Vde 15V dc, 65 rnA ±12V dc, ±40 rnA 90 rnA/380 rnA 90 mA/3BO rnA 0.3%/0.4% 0.3%/0.4% 0.3%/0.4% ±15V dc, ±33 rnA 90 mAI380 mA 0:30/;/0.4% 5Vde 5Vdc INPUT CURRENT OUTPUT NOISE REFLECTED ISOLATION & RIPPLE (MAX)' RIPPLE VOLTAGE MIN 20 mV pop 300V de UP5-12180-D5 20 mV pop 15mAp-p 15 mAp-p 2!l.mVp-p 20 mV p-p 15mAp-p --1-5mAp-p 30nV de 300V de UPS-15IS5-D5 BPS-12140-D5 BPS-15133-D5 300V de MODEL NOTE 1. 15iJF capacitor across each output. PLUG-IN ADAPTERS OUTPUT VOLTAGE 4.8 RATED OUTPUT CURRENT LINE/lOAD REGULATION OUTPUT RIPPLE (MAX) MODEL to 5.3V de 11.5 to 12.5V de PS-2 DATEL, Inc_ 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 1W - 10W DC/DC CONVERTERS INPUT 12V 28V 5V 5V 12V 5V 12V 5V 12V 26V 5V 28V 12V 5V OUTPUT NO LOAD/FULL LOAD REGULATION 5V,200 rnA 5V,200 rnA 12V,80 mA 24V,40 rnA 24V,40 rnA 2BV,25 rnA 28V,25 rnA 5V,600 mA 5V,600 rnA 5V,600 rnA 12V.250 rnA 12V.250 rnA 24V, 125 rnA 2BV, 100 rnA 100 rnA 1220 rnA 40 rnA / 100 rnA 220 mA 1500 mA 220 rnA 1500 rnA 95 rnA 1210 rnA 160 rnA 1400 rnA 80 rnA /180 rnA 125 mA 1935 mA 50 mA',t364 rnA 20 rnA 1135 rnA 140 rnA IB63 rnA 25 rnA 1125 rnA 125 rnA 1530 rnA 300 rnA 11350 rnA LlNE/LOAD REGULATION 0.05% I 0.1% 0.05% I 0.1% 0.05% 1 0.05%. 0.05%/0.05% 0.05%/0.05% 0.05%/0.05% 0.05% I 0.05% 0.02%/0.04% 0.02% I 0.04% 0.02% / 0.04% 0.02% I 0.04% 0.02% I 0.04% 0.05% I 0.05% 0.05% I 0.05% TEMP. COEF. 0.02% I °C 0.02% I "C 0.02%/"C 0.02% / °C 0.02% I °C 0.02% I °C 0.02% I ~C 0.02% I"C O,Q2% I °C 0.02% I °C 0.02%/ C 0.02% I "C 0.02%1 ~C 0.02%/OC O OUTPUT NOISE & RIPPLE (MAX) 20 20 20 20 20 20 20 50 50 50 50 50 20 20 mV pop mV pop mV p.p mV pop mV pop mV pop mV pop mV P'p mV pop mV p-p mV p-p mV p-p mV p-p mV p-p REFLECTED RIPPLE MAX 1 V rnA pop 5 rnA pop 25 mA p.p 25 rnA pop 10 rnA pop 20 rnA pop 9 rnA pop 32 mA p.p 24 rnA pop 21 rnA p-p 31 rnA p-p 21 rnA p-p 26 rnA p-p 67 rnA p-p MODEL UPM~5J200-D12 UPM-SI200-D28 UPM·12180·DS UPM-24140-0S UPM-24/40-D12 UPM-28J25-D5 UPM-28/25-D12 UP5-5I600-D5 UPS.51600-012 UPSo5l60D-028 UPS~121250-D5 UPS·121250-028 UPM·24/125·012 UPM-281100-DS ~12~V~~2~6~V,~1~00~m~A~--~1~25~m~A~/5~0~0~m~A~_--~0~.0~5"~~~/~0.~05~%~.__~0.~02~%7.~/o~C~--~20mV~p~.p~--~2~5~m~A~P~·P~__~U~PM~.~2~W~100~.D~1~2~ 12V 5V, 1000 rnA 24V 5V. 1000 rnA 26V 5V, 1000 mA 5V 12V,470rnA 24V 12V.470 rnA 5V 24V,210 rnA 12V 24V,210 rnA 24V 5V,2000mA 2BV 5V,2000 rnA 5V, 2000 mA 48V 5V ±12V, ±25 mA 12V ±12V.±25mA 2BV ±12V.±25rnA 5V.t15V,±25rnA 12V ±15V.±25mA 50 mA 1640 rnA 25 mA 1320 rnA 20 mA /275 mA 500rnA/2000mA 120 mA 1415 rnA 500 rnA /2000 rnA 200 mA 1830 rnA 45 rnA/640 mA 40 rnA 1550 rnA 20 mA 1320 mA 150 mA /350 mA 80 mA/165 rnA 30 mA/65 mA 160 rnA 1400 rnA 80mA/BOmA 0.02% 1 0.04% 0.02% 1 0.04% 0.02% 1 0.04% 0.02%/0.04% 0.02% I 0.04% 0.05% 1 0.01% 0.05%/0.01% 0.02%10.05% 0.02%/0.05% 0.02"" 1 0.05% 0.05% 1 0.05% 0.05%/0.05% 0.05%/0.05% 0.05%/0.05% 0.05%/0.05% 0.02% 1°C 0.02%1 "C 0.02%/"C 0.02%/ O C 0.02% rc 0.02% 1 °C 0.02% 1 °C 0.02%/OC 0.02% I °C 0.02% I"C 0.02% I"C 0.02%/ O C 0.02%/ C 0.02%/ OC 0.02%/ C O C 50 mV p-p 50 mV p-p 50 mV p.p SOrnVp-p 50 mV p-p 50 mV p-p 50 mV p-p 50 mVp-p 50 mV pop 50 mV p.p 20 mV p.p 20mVp-p 20rnVp-p 20 rnVp-p 20mVp-p 54 mA p-p 22 rnA p-p 22 mA p.p 61mAp-p 26 mA p-p 100 mA p-p 42 rnA p-p 32 rnA p-p 33 rnA p-p 32 mA p-p 17 mA p.p 8mAp-p 3mAp-p 20 rnA p-p 9mAp-p UPSo511000-D12 UPS~5Il000-D24 UPS·5/1000·D26 UPS~121470-0S UPS~121470-024 UPM-24121()..05 UPM-24121Q-D12 UP~OOO-024 Ups..5/2000-028 UPS·5120OQ..D48 BPM-12125·D5 BPM-12125-D12 BPM-12125-D28 BPM-1S/25-DS BPM-1S/25-D12 _2~8~V__~±~1~5~V,~±~2~5~m~A~__~30~m~A~/8~0~m~A~__~0~.0~5%~/~0.~05~%~.__~0~.0~2%~/~"C~___2~0~m~V.~p·EP____~4~m~A~p~·p~__B~P~M~.~15~/2~5~·D~2~8~ 5V 12V 28V ±12V.±125mA ±12V.±125mA ±12V,±125mA 5V ±15V.±100mA 12V 28V 5V 24V 130rnA/965mA 55mA/380mA 25 rnA 1145 rnA 135 rnA 1955 mA 0.02%/0.02% 0.02%/0.02% 0.02%/0.02% 0.02%/0.02% O.Ol%/ C C O.Ol%JoC O.Ol%/ O C O.Ol%/ C O 35mVp-p 35mVp-p 35mVp-p 34 rnA p-p 23 rnA p-p 21rnAp-p BPS-121125-D5 35mVp-p 33 rnA p-p BPS·1511DO-OS BPS~12/125-D12 BPs..12/125-D28 ±15V .",±,-,1",00,-,m",A:o...__~5",5~m",Ao./3=76,-,m",A"-__~0.,,,02'l,-,v.,,-.1,-,0~.0,",2%",.,---"0,,.0,,1%-""~/~"C~___3,,,5~m~V'-".p·EP____-=2::.4~m~A~pc.t·p~__B~P,-,S"·1,.,5",/1",OO,,·,,,D,,12,,-±15V. ± 100 mA 25 mA /143 rnA 0.02% I 0.02% 0.01%1 "C 35 mV p-p 21 mA p-p BPS-15Jl00-028 ±15V, ± 150 mA 450 rnA /1750 rnA 0.05% I 0.05% 0.005%/OC 25 mV p-p 87 rnA p-p BPM·1S/1S()"OS ±15V,+150mA BOrnA 1350 rnA 0.05%/0.05% O.005%I"C 25 rnVp-p 18 rnA p-p BPM-1S/150-024 -=26~V~~±1~5~V~,±~1~5~0~m~A,----~7~0~m~A~/3~0~0~m~A,----~0~.0~5~%,,/~0~.05~o/.~. ___0~.~00~5~%~/="C~. __~2~5~m~V~p~.p,--__-1=5,-,m~A~p~.~p ___B=P=M~.~15~/1=~~.D~2~8__ 5V +12V, +230 mA 130 rnA 11650 rnA 0.02% 1 0.02% 0.01% I °C 35 mV p-p 58 rnA p-p BPS-12J230-0S -"12:cV~-"-±1::2,,V,-,,+=-2"03",0_"m:cA~____5",5~m-::AC'./6",9",0_"m:cA__ "'0.... 02c:·;.:..1'-'0~.0--:2"'%___-"0".0'-'1"-"V"c./~"C::-___3"'5~m~V:Lp·EP____-=2c.4~m~A... p~.p,--__B=P=-S:'12/230.D12 0.02% 1 0.02% 0.01% 1 °C 35 mV p-p 24 rnA p-p BPS-121230-D24 ±12V, +230 rnA'--__-=2c"C5~m-::A"/3"'0"'0_"m"'A~___'0,,.O..,2"'%~/.,,0.~02"..o/."'.___0~._.01'-'";.:."Ic.".-;C____-'"3"5-"m,,V,.tp'!·p_____--'2"'3'-'m"'ACJP"-·"-p__--=B"'PS,,·-'1,,21~23",Ooc·D~2",8 ±15V,±190mA 135 mA/1700 rnA 0.02%10.02% O.Ol%/OC 35mVp-p 60 rnA p-p BPS-15/190-DS ±15V, ± 190 rnA 55 rnA 1710 rnA 0.02<'10 1 0.02% 0.01% 1 °C 35 mV p-p 25 rnA p-p BPS-1S/190-D12 24V ±12V, ±230 rnA 25 mA 1340 rnA 28V 5V 12V 24V ±15V'-',±~1=9~0~m~A~--~3~0~m~A~/3=5~0~m~A'----~0=.0=2%=.~/~0.~02=o/.7.---0~.0~1=O/'~./~"~C----~3~5~m~V~p~.p~---2=5~m~A~p~·~P--~B~P~S'~1~~~19=O~.D=2=4-- --,,26~V~~±1=5~V~,±~1~9~0~m~A'----~2':-5~m~A~/3~0::'0~m~A'----~0=.0::'2%~.":/~0.~02~o/.7.___0~.0=_1~%:c/,-;"~C----~3~5~m~V~p~·Pc.. 48V ±15V,+190mA 14mA/180mA 0.02%/0.02% O.Ol%/OC 35 mVp-p 5V ±12V. ±420 rnA 980 rnA 14000 rnA 0.05% I 0.05% 0.02% I °C 50 mV p-p 12V +12V, +420 rnA 340 rnA 11530 rnA 0.05% 1 0.05% 0.02% 1 °C 50 mV p-p 24V 28V 5V .t12V, +420 rnA ±12V, + 420 rnA ±15V, +412 rnA 175 rnA 1760 rnA 130 rnA 1650 rnA 260 mA 13700 rnA 0.05% 1 0.05% 0.05% 1 0.05% 0.02% I 0.02% 0.02% 1 cC 0.02% I °C 0.01% I °C 50 mV p-p 50 mV p-p 35 mV p-p 24 rnA p-p 25mAp-p 120 rnA p-p 46 mA p-p 23 rnA p-p 20 rnA p-p 130 rnA p-p BPS-1S/190-02B BPS·151190-D4B BPM-12/420·DS BPM-12/420-012 BPM-12/420-D24 BPM-12/42()"028 BPS~lS/412-DS ---:e12"V,---=.+1",5"V,-"+o:4"'1"'2"'m"'A'--__1c:1-,oo"m"'Acc/l::5"'9_.0"'m"'A__-"O".O"'2'l"'V."/O"'.O"'2%:"'-___O,c.:'-Ol"o/."'.1c.""'C____ 35 mV p-p'--__~5"'4"'m"'A'-'p"'·p'-__"B"PS,_:.,,1:5I412-D12 ~24=V~~±1=5~V~,±~4=1~2~m~A'----~5~5~m~A~/7=7~0~m~A'----~0=.0=2'l=~":/~0.~02=o/.~"---0~.~01=%~./~"~C----~3~5~m~V~p~·P~--~3=6~mA~p.~p--~B=P=S~.1=5~~~12~.~D2=4c-28V ±15V,±412mA 45mA/660rnA For Immediate Assistance, Dial 1·800-233-2765 0.02%/0.02% O.Ol%/OC 35mVp-p 39 rnA p-p BPS-1S/412-02B PS-3 1W -10W AC/DC SUPPLIES OUTPUT RATED OUTPUT VOLTAGE LINE LOAD OUTPUT OUTPUT VOLTAGE CURRENT ACCURACY REGULATION REGULATION RIPPLE (MAX) IMPEDANCE 5V de 250 rnA 1.0% 0.05% 0.1% 1 mV RMS _ _ _-"°:.:.°::5'::c,_____ U.:,P:::M-=-S,,12::50=-_ __ 5V de 5V de 500 rnA 1000 rnA 1.0% 1.0% 0.05% 0.05% 0.1% 0.1% 1 mV RMS 1 mV RMS o.osn ~~~~ :~ ~:~~: ~.~:~ ~:~!:o ~ ~~ ~~~ ~:~~c::~''-n----'~~:=:"-:5=S;='~~~~7~B=---- :~ :~ a.01U MODEL UPM-5/500 UPM-5/1000 ±250 rnA 1.0% 0:05°/: ----='0.C-p=y,------C O.OSH BPM·5/250 1 mV RMS ±SOO m-A:----c1"".0:;c%'------.::0.-.::05"''''O-,-------;0'"'.1c;'I<7-,- - - - : - 1cc mC;VCOR ;7M"'SC------O: O."'03""""'-- BPM-5/500 ±5V de ±5V de 0.02% 0.05% 2mVRMS D.l0n ___ ±c.:12:cV--'d::cc_ _---"±=2~00"'m"'A"----lc:.O:c%=-----::O.02% ±15V de ±60 rnA 1.0% 0.02% +12Vdc ±100mA 0.05% 0.05% 2 mV RMS 2 mV RMS o.osn O.20n BPM-12/200 BPM·15/60 +10Dm"'A,:-_ _.-:.1.0% ___~~g~?. ___. 0.05% 2mVRMS ±20Q rnA 1.0% 0.02% 0.05% 2 mV RMS -----------------1.0% 0.02% 0.05% 2 mV RMS ±300 mA a.l0n O.OSn. 0.03n BPM·15/100 BPM·15/200 BPM-15/300 ±15Vdc ±15V de +15V de ±12/5V de 2.0% BPM-12/10D ±100 /500 mA ~2/5V dc___±150 !...!QOO mA __ .._._~~~.~.~ 0.02% I 0.OM~~__ ~2.5% / 0.1% +15/5Vde ±100/S00mA ±15/5V de _~.~OOO rnA 0.02%/0.05% 1.0% 0.05%/0.1% ~ mV ~~~:!Q / O.OSU __ ._ .. _~~~~.2~~~-5/1000 2mV/l mVRMS 0.10 I O.OS!:l __~~I~==-~.==~~-oJ}2~lo7o.05~~·_.~-OJ>50/o / 0.1%~--2mv/l mV R·MS-O~/-O.05Q TPM-15/100-5/500 -TPM~~5I150~5!~O~ __ CHASSIS MOUNT AC/DC SUPPLIES RATED OUTPUT CURRENT VOLTAGE LlNEILOAD OUTPUT OUTPUT VOLTAGE ACCURACY REGULATION RIPPLE (MAX) IMPEDANCE 5Vde 250mA 1.0% 0.05% I 0.1% 1 mV poop 0.Q5n 5Vde SOOmA 1.0% 0"'.0"'5"'%:.:1.::0:.:_1"'%'---_---'-1"'m'-'v-"p--'_p'---_-_-_---::-.::0--::.-.::0-=:5;c;l~'--·UiCM-SISOO 0.05% / 0.1% 1 mV poop O.OH} UCM-5/1000 0.05%/0.1% 1 mVp-p -'-'-M~-tJCM:5!2000 OUTPUT ------5Vde - . _ - - - - - -1000 - -mA - - - - - -1.0% 5V de 2000 mA 1.0% ±15V de ±60mA 1.0% ----=~c_7'----=="--------""~---=0"'-0:::2,,%'-'I.::O-:::05::,'I<:::,--=-2 ",m""Vpoop ±15V de ±15V de +200 rnA ±15V de ±300 mA ±100 mA ----------- . 0.20Q MODEL UCM-5f250 ------ BCM-15/60 BCM-15/100 _. ____ ._ .._.._ 1.0% __ ___ ~q2%/0.05~. _ _2_mVp-p ___ ~!.9~! ..___ 1.0% .. _~?~LQ.05o/~ _ _ ~~__ 0.05n BCM-15/200' 2 mV poop 0_05<> _ _ _B_C_M_-_1S_13_00 _ _ _ _ _ _ __ 1.0% 0.02% I 0.05% HIGH EFFICIENCY AC/DC SUPPLIES OUTPUT OUTPUT VOLTAGE RATED OUTPUT CURRENT VOLTAGE ACCURACY LINE/lOAD REGULATION OUTPUT RIPPLE (MAX) IMPEDANCE 5Vde 5Vde 5000 rnA 5000 mA 80% 80% 0.05%/0.1% 50 mV pop 50 mV poop 0_002<> 0_002<> 0.05%1o_1% MODEL USM-5IS _ USC-SIS HIGH VOLTAGE MODULES OUTPUT RATED OUTPUT VOLTAGE LINE/LOAD OUTPUT OUTPUT VOLTAGE CURRENT ACCURACY REGULATION RIPPLE (MAX) IMPEDANCE 0.05%/0.2% 0.05%/0.2% 10 mVRMS 10mVRMS s.on BPM-12012S 5.0n BPM-1S0120 0.05%/0.2% 10 rnVRMS 5.0n BPM-180116 ±120Vde _ _ _ 25mA PS-4 ±150V de 20 mA 1.0% 1.0% +180V de l6mA 1.0% MODEL DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 VOLTAGE CALIBRATORS MODEL OUTPUT RANGE SETTABLE INCREMENTS ACCURACY SOURCEISINK CURRENT DISPLAY POWER CASEI MOUNTING DVC-350A ± 1.2000 or ±12.000 100 fJoV or 1 rnV 0.015% 20 rnA 41/2 DIGIT LCD 9V Battery or 115VAC Adaptor (optional) 5.75 X 3.60 X 1.29 in (146 X 91 X 33 rnrn) HAND HELD DVC-8500 ±19.999 1 rnV 0.005% 25 rnA 41/2 DIGIT MECHANICAL 100 VAC (J) 115 VAC (A) 230 VAC (E) 5.59 X 2.11 X 5.78 (142 X 54 X 147 rnrn) For Immediate Assistance. Dial 1-800-233-2765 DVC-1 DIGITAL PANEL METERS Model 3.5 Digit LED 4.5 Digit LED 3.5 Digit LCD 4.5 Digit LCD Other Digital Panel Products Power Std. Input Case Features OM-3l00l-l +5Vdc ±2Vdc B DM3l00N-l +5Vdc ±2Vdc A Short Depth Case Provisions for 4-20 mA input DM-3l0l·l +5Vdc j;2Vdc A High Intensity Display OM3l03-l +5Vdc ±2Vdc B High Intensity Display OM-3l-l +5Vdc ±2Vdc OM-3l00B-l 1151230VAC ±2Vdc B Short Depth Case OM3l04-l 1t51230VAC ±2Vdc B High Intensity Display OM-9llS-l 1t51230VAC ±2Vdc C NEMA 12 (Vibration Std) OM-4l01N-l +SVdc ±2Vdc A High Intensity Display OM-9200-l +SVdc ±2Vdc C NEMA 12 (Vibration Standard) OM-4l00D-l +SVdc ±2Vdc A High Speed Sampling SeriallParallelBCD Output low Cost· Uncased OM-4l01D-l +SVdc ±2Vdc A High Intensity Display SeriaVParaliel BCD Output OM-4l0ll-l +SVdc ±2Vdc B Serial BCD Output OM-4200-l +5Vdc ±2Vdc A Serial BCD Output OM-921S-l ll51230VAC ±2Vdc C NEMA 12 (Vibration) OM-3l00U-l +519Vdc ±2Vdc A Units Display (Batt. Pwr.) OM-3l00X-l +519Vdc ±2Vdc B Battery Powered OM-3l02A +SVdc ±2Vdc A OM-lX3-l +SVdc ±2Vdc OM-3l00U2 1l5VAC ±2Vdc A Units Display OM-4l05-l +5Vdc ±2Vdc A Serial BCD OUT (Batt. Pwr.) Adjustable A 20 Segment LED Bar Graph wi TTL Outputs B 10 MHz CounterlTimer OBM-20 +5Vdc PG-6 +5Vdc Units Display Autoranging (200 mV • 200V) Low Cost - Uncased NOTE: Input range kits are available for all OM·31 00, 4100, and 9000 Series DPMs DPM-1 DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1l94ITEL (508) 339-3000rrLX174388/FAX (508) 339-6356 3.5 DIGIT, MINIATURE VOLTAGE METERS Power Std. Input Case OMH-30PC-O +5Vdc ±200 mV E OMH-30PC-l +5Vdc ±2Vdc E Encapsulated (Plastic). 24-pin DDIP OMH-30PC-2 +5Vdc ±20Vdc +5Vdc ±200mV __.- E Encapsulated (Plastic). 24-pin DDIP OMH-30MM-O OMH-30MM-l +5Vdc ±2Vdc E OMH-30MM-2 +5Vdc ±20Vdc E OMS-30PC-O-RL +5Vdc ±200mV F OMS-30PC-I-RL +5Vdc ±2Vdc F Model NEW Self-Contained 3.5 Digit LED Ultra-Miniature NEW Self-Contained Single-Piece 3.5 Digit LED ---._------" -- ..- ._---- -._--- _._-- - - - - - - _ .. +5Vdc ±20Vdc F +5Vdc ±200mV F OMS-30PC-I-RS +5Vdc ±2Vdc F OMS-30PC-2-RS +5Vdc ±20Vdc F OMS-30PC-O-RH +5Vdc ±200mV F OMS-30PC-I-RH +5Vdc ±2Vdc F ±20Vdc ±200mV F F --- OMS-30':;P~C~-:;-I-~G:;-L---+-;5;;V;cd-c--- ±2Vdc OMS-30PC-2-GL ±20Vdc --:~--:--~C--C-:------C-'------:- F F +5Vdc ±200mV OMS-30PC-I-GS +5Vdc ±2Vdc F +5Vdc ±20Vdc F OMS-30Pe-O-BS F - -+5Vdc - - - -±200mV ----F ----------- OMS-30PC-I-BS +5Vdc ±2Vdc F OMS-30PC-2-BS +5Vdc ±20Vdc F OMs-30PC-O-YS +5Vdc ±200mV F OMS-30Pe-I-YS +5Vdc ±2Vdc F OMS-30PC-2-YS OMS-30PC-O-OH OMS-30PC-I-OH +5Vdc ±20Vdc F +5Vdc ±200mV F 7 -+-=5""V;-:dc----±-=-2V'"'dc - - - - = F --- OMs-30PC-2-0H +5Vdc ±20Vdc ----------- .-~--- ..- Hermetically Sealed, Quartz window, Ceramic 24·pin DDIP. MIL-D-87157 Temperature Range Sealed. Plastic Case. Low Intensity RED Display Sealed, Plastic Case, Standard Intensity RED DISPLAY Sealed, Plastic Case, High Intensity RED DISPLAY -----------Sealed, Plastic Case, Low Intensity GREEN DISPLAY --------------- OMS-30PC-O-GS OMS-30PC-2-GS .. --- -------.--------~- OMS-30PC-2-RL +5Vdc -_ E OMS-30PC-O-RS OMS-30PC-2-RH +5Vdc -OMS-30P:;OC-;-O'"'-G"'L---+5Vdc Features Encapsulated (Plastic). 24-pin DDIP F Sealed, Plastic Case, Standard Intensity GREEN DISPLAY Sealed, Plastic Case, Standard Intensity BLUE DISPLAY Sealed, Plastic Case, Standard Intensity YELLOW DISPLAY Sealed. Plastic Case, High Intensity ORANGE DISPLAY CASE SIZES A 2.53'W x 3.34"0 x 0.94"H (64 x 85 x 24 mm) B 3.00"W x 2.15"0 x 1.76"H (76 x 55 x 45 mm) C 3.60"W x 3.57"0 x 1.67"H (91 x 91 x 42 mm) o 1.89"W x 1.22:0 x 0.94"H (48 x 31 x 24 mm) E 1.29"W x 0.25"0 x 0.80"H (33 x 6 x 20 mm) f 2.19"W x 0.54"0 x 0.95"H (55 x 14 x 24 mm) For Immediate Assistance, Dial 1-800-233-2765 DPM-2 PROCESS MONITORS/CONTROLLERS DATEL designs and manufactures a complete line of Process Monitors/Controllers supporting Thermocouples, RTDs, Strain Gages, and Voltage/Current signal inputs. These low cost units contain such features as built-in RS232 serial port (RS-422/485 optional), user-selectable setpoint outputs (up to 4 discrete and 1 optional Analog), built-in configuration and setup command set, fully isolated inputs (to 1500 Volts, typ.) and a six-character, 14-segment vacuum fluorescent display (blue-green). Each model may be configured and operated from either the front panel or via the serial port. For reliability, accuracy, and low price, DATEL's PM-5000 series Process Monitors/Controllers are simply the best. PM-50 o 0-1 INPUTS Thermocouple types J, K, T, S, B, E, N,R RTDlThermistor Strain Gage Voltage/Current 5 6 7_ 8 COMMUNICATIONS MODE RS-232-C (Standard) RS-422/485 o ANALOG INPUT o None One output (0 - 10V/4-20 mAl A E J D PM-1 POWER 115 VAC 230 VAC 100VAC ±5 Vdc DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356 PANEL MOUNT THERMAL PRINTERS Model Columns Input Power Interface (Note 1) Character Set BCD 115/230 VAC Numeric (decimal or hex) plus sign DPP-Q7 Case Special Features A Simple DATEL DPM interface APP-20A1 20 Parallel 115/230 VAC 96 char ASCII A Inverted, tall character options APP-20D1 20 Parallel +12 Vdc 96 char ASCII A Inverted, tall character options 115/230 VAC 96 char ASCII A RS-232/20 mA loop +12 Vdc 96 char ASCII A Inverted, tall, condensed character options IEEE-488 115/230 VAC 96 char ASCII A Inverted, tall character options 115VAC 127 char ASCII A -----~------.--- _A_P_P_-A_2_0_A_2_1_ _ _ 2_0_ _ RS-232/20 mA loop APP-A20D21 APP-20A3 20 20 ---~--- ._--------------- .----------------------.... _--- ---- MPP-20A 20 RS-232/Parallel MPP-20D 20 RS-232/Parallel +12 Vdc 127 char ASCII A MPP-20E 20 RS-232/Parallel 230 VAC 127 char ASCII A APP-48Al 48 Parallel 115 VAC 192 char ASCII B APP-48A2 48 RS-232 115/230 VAC 192 char ASCII B Inverted character options APP-48D2 48 RS-232 +12 Vdc 192 char ASCII B Inverted character options 115/230 VAC 192 char ASCII B Inverted character options +12 Vdc 192 char ASCII B Inverted character options 115/230 VAC 96 char ASCII C ------.-~- ... Inverted, tall, enhanced character options - - - - - - - - - - - - - - - - - - - - - - - - - - - _.. Inverted character options ---_.__._-----------_._-------------------_._--------------------- APP-48A3 48 APP-48D3 48 IEEE-488 IEEE-488 APP-M20A1 20 Parallel ---------- RS-232 APP-M20A21 20 115/230 VAC 96 char ASCII _ _-::C__ Hardened for shock, vibration cc2:c:O-=D-=2-:-1---::-------:::::-c=--------,-c-:-c-c-------,9cc-=A-=P-=P-=_M 6 char ASCII RS-232 C and humidity (mobile) 20 +12 Vdc NEW GPP-42 48 Parallel +12 Vdc D 48 RS-232 +12 Vdc D 42 SerialiParaliel 115/230 VAC (50/60 Hz) 256 char ASCII E 8 International Character Sets High Res Graphics, 200 Line Buffer CUSTOM CHARACTERS AVAILABLE NOTE 1. 100 VAC versions available for most models ("J" version); European line cords also available ("E" version). Consult factory. CASES A =4.44"W x 2,76"H x 8.00"D B = 8.20"W x 2.84"H x 8.14"D C = 5.36"W x 3.74"H x 8.00"D (Including mobile-mount brackets) D = 9.25"W x 3.25"H x 10.44"D (Including mobile-mount brackets) E = 8.20"W x 2.84"H x 10.50"D For Immediate Assistance, Dial 1-800-233-2765 TP-1 MULTIBUS I BOARDS Model ST-702 AID Channels AID Resolution 80 Isolated I KV 13 Bits AID Speed PGA 33ms x50, xlOO In/Out Ranges D/A Resolution D/A Channels None 5V Down 10 50 mV Notes Direct thermocouple connections, on board linearize and CJC ST-711 ST-732 32S/16D ST-703 20 ~s 5V,IOV Down to 50 mV 2 (732) 12 Bits On board start timer, Interrupt None 2.5V to 10V 41020mA 41solaled 12 Bits 350V Isolation per channel ST-724 None 5V,IOV 41020mA 4 12 Bits ST-728 None 5V,IOV 41020mA 40r8 12 Bits 5V,IOV 40r8 16 Bits 4V Down 10 20 mV None ST-716 None ST-705 80 ST-519 TTL discrete I/O 12 Bits 13 Bits 33 ms xl to xl K Software xl to x200 RS-232 subsystem and CPU, Direct thermocouple connection, linearize, CJC TTL 72 TTL lines, In/Out, Interrupt PCI AT AID-DIA BOARDS Model PC·414A 4 SE w/simul sampling AID Resolution AID Speed Prog. Gain Amplifier In/Out Ranges D/A D/A Channels Resolution xlorxlO 5V,IOV, IV 12 Bits 12 Bits 1.5 MHz 500 KHz 5V,IOV 12 Bils Notes 4K-sample FIFO memory, analog trigger, parallel data port, counter/timer, DMA Veclored interrupl PC·414B 4SE 14 Bits PC-414C 4SE 12 Bits I MHz 5V,IOV 12 Bits PC-414D I SE 12 Bits 4 MHz tv 12 Bits PC·414E 16SE 12 Bits 400 KHz 10Vto 100 mV 12 Bits PC-430A 4SEw/simul sampling 12 Bits 1.5MHz PC-430B 4SE 14 Bits 500 KHz 5V,IOV None Local 32 MHZ 320C30 DSP, 512K memory,DMA Fast "no prgmg" PC-43OC 4SE 12 Bits I MHz 5V,IOV None command executive, PC-430D I SE 12 Bits 4 MHz tv None 16SE 12 Bits 400 KHz PC·430E PC-462 IIOB-1 A/D Channels 4 Monitor Channels 12 Bits 25 KHz xl to xlOO xl or xlO xl to xlOO 5V,IOV, tv None 10Vto 100 mV None o to ±15V or5V, lOW 2 Isolated, Vor I mode DSP library, Vectored interrupt 12 Bits Programmable power DAC DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 VMEBUS AID - DIA BOARDS Model AID Channels DVME-601A DVME-601B DVME-601C DVME-601D 16S/8 D Expandable t02S6 AID AID Resolution Speed 12 Bits 20 3S~s 16 Bits , 12 Bits 2~s 12 Bits 20 ~s DVME-611/612D 32S/16D Expandable t02S6 D/A Resolution x1 tox1K S,10V down to SO mV None _.- 12 Bits 4 16 Bits 3S Notes 68010CPU 2S6Kmemory RS-232, S TTL 1/0 CounterlTimers 400ms DVME-601E DVME-611/612B D/A Channels ~s DVME-611/612A DVME-611/612C InlOut Ranges 4 ~s 12 Bits 16 Bits Prog. Gain Amplifier "No prgmg" Command Exec. Vectored interrupt ~s ~s x1 to x128 Software Pgmble SV,10V down to SO mV x1 tox100 SV,10V down to SO mV 16 Bits 400 ms DVME-611/612E 12 Bits 2 ~s DVME-611/612F 14 Bits 4 ~s DVME-613 16S/8D Isolated 500V 12-14-16 Bits 40 ~s DVME-624 None --- --- --- DVME-626 None --- --- 2 (612) 12 Bits Short 110 SA:16, SD:16 Vectored interrupt 8 In/8 Out TTL, SA:24,SD:16 Start timer, interrupt None --- 2.S to 10V 4t020mA 4 Isolated 12 Bits SA:16,SD:16 3S0V Isolation --- SV,10V 6 16 Bits SA:16,SD:16 8 t2Bits SA:16, SD:16 DVME-628 None --- --- --- 2.S to 10V 4t020mA DVME-641 32 S/16 D SlaveMUX board 6 ~s Settling --- SV,10V 4t020mA --- --- Slave input expander t0601,611,612 DVME-643 8D Isolated SlaveMUX board 2.Sms Settling xSO, x100 SV Down to SO mV --- --- Slave input expander t0601,611,612 16 S/8D SlaveMUX board 6 ~s Settling --- SV,10V --- --- Simultaneous Sample/Hold Expander to 601, 611, 612 DVME-614A 4Simul.S/H 12 Bits 1.SMHz x1 or x10 W, SV, 10V DVME-614B 4S 14 Bits SOO KHz DVME-614C 4S 12 Bits 1 MHz DVME-614D 1S 12 Bits 4MHz DVME-614E 16S 12 Bits 400 KHz x1 to x100 1, S, 10V, 100mV DVME-630A 4Simul. S/H 12 Bits t.S MHz x10rx10 1V, SV, 10V DVME-630B 4S 14 Bits SOO KHz DVME-63OC 4S 12 Bits 1 MHz DVME-630D 1S 12 Bits 4MHz DVME-630E 16S 12 Bits 400 KHz x1 to x100 DVME-622 None --- --- --- DVME-621 None DVME-64S --- For Immediate Assistance, Dial 1-800-233-2765 --- SV,10V --- SV,10V 1 12 Bits Vectored interrupt SV,10V Local 32 MHz 320C30 DSP, S12 K Memory, Fast "no prgmg" command Executive, Interrupt DSPlibrary None --- SV,10V 16Simul. Update 12 Bits 3 SV,10V @100mA or 160mA 4 Isolated 12 Bits or current mode, active SV,10V SV,10V --- Sample counter/timer Simultaneous sampling SV,10V --- 4K-sample FIFO memory Analog trigger Paraliel data port 1, S, 10V, 100mV ~s settling per channel Power DAC's, voltage drivers, SOOV isolation 1/08-2 HIGH-RELIABILITY PROGRAMS DATEL is committed to meeting the demading requirements of military, aerospace, and severe environment applications. Toward that end, DATEL offers several options in its quality program. OPTION 1 - MIL-STD-883 Class H Compliant Devices DATEL Inc. is QUALIFIED by the Defense Electronics Supply Center for the manufacture of selected hybrid microcircuits in FULL COMPLIANCE with Military Specification MIL-H-38534 (Hybrid Microcircuits), FSC 5962, and MIL-STD-1772 SECTION B. The accompanying chart gives a concise overview of MIL-STD-883 screening requirements and their implications for DATEL customers. TEST A-I METHOD PURPOSE Internal Visual (Precap) Method 2017 Eliminates devices with potential for failure under mechanical, electrical, or thermal stress. Stabilization Bake MethQd 1008, Test Condition C, 24 hrs. at 150°C Eliminates device failure due to storage at elevated temperatures. Temperature Cycling Method 1010, Test Condition C, -65 to 150°C Determines resistance of device to sudden exposure to extreme temperature changes. Removes potential failures due to thermal stress on bonds, etc. Constant Acceleration Method 2001, Test Condition A, Y AXIS, 5 kg. Eliminates potential failures due to structural or mechanical weakness not detected in shock or vibration test. Burn-in Test Method 1015, Test Condition B, 160 hrs. at +125 °C Stresses devices at temperature in order to eliminate infant mortality failures. PDA10% Static Tests performed at +25 °C Percent defective allowable - Rejects lots with static test failures greater than 10%. Final Electrical Test Performed at +25 °C and at max. and min. operating temperatures Verifies that device still meets specified data sheet parameters. Seal Fine and Gross Method 1014, Test Condition A (fine), 1 x 10·7 ccl Sec. for volume of ~0.5 to <1.0 cm3 and 5 x 10-8 cclSec. for volume of ~1.0 to <10.0 cm3. Test Condition C (gross) Insures hermeticity of device package. Eliminates degradation due to absorption of water vapor or other contaminants. External Visual Method 2009 Insures that materials, design, construction, marking, and workmanship conform with applicable procurement documentation. DATEL, Inc. 11 Cabot BoUlevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356 MIL-STD-883 compliancy also requires that complete documentation be available to support the product. An analysis of the design along with element and package evaluations are performed to ensure a high quality product. The manufacturing process is also stringently controlled in order to obtain the high quality level. Initial qualification requires passing the MIL-STD-883 test for groups A, B, C, and D. After initial qualification, groups A & B are tested for all lots. Group C is tested initially and to qualify any product changes which may occur. Group 0 testing is also performed initially and at intervals not exceeding 6 months for future lots. MIL·STD·883 PRODUCTS ANALOG·TO-DIGITAL CONVERTERS· MODEL NO. RESOLUTION CONVERSION TIME LlNEARlTY 12 Bits 12 Bits 10 Bits 12 Bits 8 Bits 8 Bits 7 Bits 12 Bits 8f.lSec 20 f.lSec 800 nSec 1 f.lSec 4 nSec 50 nSec 50 nSec 500 KHz ±1/2 LSB ±1/2 LSB ±1/2 LSB ±3/4 LSB ±1/2 LSB ±1.5 LSB ±1 LSB ±3/4 LSB ADC-HZ12B/883B ADC-HX12B/883B ADC-816/883B ADC-511/883B ADC-228/883B ADC-208/883B ADC-207/883B ADS-111/883B DIGITAL-TO-ANALOG CONVERTERS MODEL NO. RESOLUTION SETTLING TIME LINEARITY 12 Bits 16 Bits 12 Bits 12 Bits 10 Bits 8 Bits 31lSec 151lSec 3f.lSec 50 nSec 25 nSec 25 nSec ±1/2 LSB ±2 LSB ±1/2 LSB ±1/2 LSB ±1/2 LSB ±1/2 LSB DAC-HZ12B/883B DAC-HP16B/883B DAC-HK12B/883B DAC-HF12/883B DAC-HF10/883B DAC-HF8/883B DATA ACQUISITION SUBSYSTEMS MODEL NO. RESOLUTION INPUT CHANNELS THROUGHPUT 12 Bits 12 Bits 12 Bits 12 Bits 4 Diff. 8SE 16SE 8 Diff. 75 KHz 75KHz 50KHz 50 KHz HDAS-76/883B HDAS-75/883B HDAS-16/883B HDAS-8/883B MULTIPLEXERS MODEL NO. CHANNELS SETTLING TIME ACCESS TIME MX-826/883B 8SE 200 nSec 70 nSec SAMPLE-AND-HOLD AMPLIFIERS MODEL NO. LINEARITY ACOUISITON TIME BANDWIDTH 0.01% 200 nSec 16.MHz SHM-4860/883B For Immediate Assistance, Dial 1-800-233-2765 A-2 OPTION 2 TEST DATEL QL SCREENING PROGRAM TEST CONDITION PURPOSE Internal Visual (100% Precap) Test Method 2017 Eliminate visual defects prior to seal Stabilization Bake 100% TM 1008,Condition C 24 hours at + 150 DC (Optional if TM 1030 is used) Eliminates failures due to high temp storage Temperature Cycling, 100% TM 1010, Condition C -65 to + 150 DC, 10 cycles Eliminates failures due to mechanical weakness 100% Constant Acceleration TM 2001, Condition A Yl Axis, 5000 G Eliminates failures due to mechanical weakness 100% Burn-in Static burn-in 160 hrs. at +125 DC (Similar to TM 1015 or TM 1030) Eliminates failures due to infant mortality 100% Final Electrical Test Performed at +25 DC, TMIN, and TMAX operating temperatures Verifies that devices meet speicifications over temperature range 100% Fine and Gross Leak Test Method 1014 Condition A (fine) 5 x 10.7 cc/Sec. Condition C (gross) Insures hermeticity for high humidity environments 100% External Visual Test Method 2009 Insures proper marking, construction, workmanship ·QL PRODUCTS SAMPLE-HOLD AMPLIFIERS MODEL NO. SHM-45MM-QL SHM-4860MM-QL SHM-6MM-QL SHM-HUMM-QL LINEARITY ACQUISITION TIME 0.01% 0.01% 0.02% 0.1% 200 nSec. 200 nSec. 2j.!Sec. 25 nSec. HOLD MODE DROOP 0.5 j.!V/j.!Sec. 0.5 j.!V/j.!Sec. 10 j.!V/j.!Sec. 50 j.!V/j.!Sec. OPERATrONAL AMPLIFIERS MODEL NO. AM-500MM-QL AM-1435MM-QL INPUT OFFSET VOLTAGE GAIN BANDWIDTH OUTPUT 3mV 5mV 130 MHz 1000 MHz +10V at 50 mA + 7Vat 14 mA DATA ACQUISITION SUBSYSTEMS MODEL NO. HDAS-16MM-QL A-3 RESOLUTION INPUT CHANNELS THROUGHPUT 12 Bits 16 Single-Ended 50 KHz DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 02048-1194ITEL (508) 339-3000ITLX 174388/FAX (508) 339-6356 ANALOG-TO-DIGITAL CONVERTERS MODEL NO. ADC-S17 AMM-QL ADC-HX12BMM-QL ADC-HC12BMM-QL ADC-S15MM-QL ADC-S25MM-QL RESOLUTION CONVERSION TIME LINEARITY 12 Bits 12 Bits 12 Bits S Bits S Bits 2 ~Sec. 20 ~Sec. ± 1 LSB ± 1/2 LSB ± 1/2 LSB ± 1/2 LSB ± 1/2 LSB 300~Sec. 700 nSec. 1 ~Sec. SAMPLING ANALOG-TO-DIGITAL CONVERTERS MODEL NO. ADC-HS12BMM-QL RESOLUTION SPEED LINEARITY 12 Bits 66 KHz ± 112 LSB DIGITAL-TO-ANALOG CONVERTERS MODEL NO. DAC-HP16BMM-QL DAC-HF12BMM-QL DAC-HK12BMM-QL . DAC-HZ12BMM-QL DAC-HF10BMM-QL DAC-HFSBMM-QL For Immediate Assistance. DiaI1-S00-233-2765 RESOLUTION SETILING TIME LINEARITY 16 Bits 12 Bits 12 Bits 12 Bits 10 Bits 10 Bits 15 ~Sec. 50 nSec. 3 ~Sec. 3 ~Sec. 25 nSec. 25 nSec. ±2 LSB ± 1/2 LSB ± 112 LSB ± 1/2 LSB ± 1/2 LSB ± 1/2 LSB A-4 OPTION 3 - 859000 PROGRAM DATEL also has a BS9000 program in compliance with British Standards for high reliability devices. BS9000 is the United Kingdom's national system for the independent inspection approval and surveillance of manufacturers, distributors and test laboratories in the electronic component industry. The accompanying product flow gives an overview of the BS9000 products through screening and quality conformance inspection. 8S9000 Screening Requirements I Production batch formed I I Fine and gross leak tests BS 9400 1.2.6.14 I Screening Level B I Electrical tests at 25°C as per subgroups A1 (a) (1), and A2 I I Pre-cap Inspection BS 9400 1.2.10 Level B ~ High temperature storage BS 9400 1.2.6.3 150°C for 24 hours I I I Rapid change of temperature BS 9400 1.2.6.13 10 cycles -65°C to +150 °C Burn-in Screen BS 9400 1.2.9.2 160 hr. minimum at 125 l Inspection Lot Formed I Sample Test to groups A,B,C as appropriate I I I I Acceleration steady state BS 94001.2.6.9 294000 m/Sec.'direction Y1 859000 PRODUCTS ANALOG·TO·DIGITAL CONVERTERS MODEL NO. ADC-208MM-BS9400-G0140 ADC-303MM-BS9400-G0106 ADC-303JM-BS9400-G0106 Al')C-304MM-B29400-G0177 RESOLUTION 8 8 8 8 BITS BITS BITS BITS CONVERSION TIME LINEARITY 66 riSec 10 nSec 10nSec 50 nSec ±21/2 LSB ±3/4 LSB ±3/4 LSB ±1/2 LSB Parts qualified to the BS9000 specification have a quality level equivalent to MIL-M-38510 giving a quality factor of 1. A-5 DATEL, Inc. 11 Cabot BoUlevard, Mansfield, MA 02048-1194fTEL (508) 339-3000fTLX 174388/FAX (508) 339-6356 DESC STANDARD MILITARY DRAWING PROGRAM The Standard Military Drawing (SMD) program is a program administered by the Defense Electronics Supply Center (DESC) in Dayton, Ohio. Under this program a certified MIL-STD-1772 manufacturer, such as DATEL Inc., may supply a hybrid device using one government controlled Source Control Drawing (SCD). This saves both the customer and supplier time and effort. DATEL Inc. is an active participant in the DESC SMD program. At publication time the following DESC Dreawing numbers have been assigned and are approved or are pending approval. Please contact DATEL Inc. for current status and future SMD compliant products. DESC DRAWING NUMBER DATEL MODEL NUMBER 5962-BB50B 5962-8850B 5962-89528 5962-B952B 5962-B9531 5962-89531 ADC-HX/BB38 ADC-HZlBB38 DAC-HK8/8B38 DAC-HK8-2/8B38 DAC-HP8/B838 DAC-HP8-1/BB38 5962-90857 5962-89996 5962-89996 5962-89996 5962-BB514 5962-8B514 ADC-20B/8838 (pending) DAC-HFB/BB38 (pending) DAC-HF10/8B38 (pending) DAC-HF12/8838 (pending) HDAS-B/BB38 (pending) HDAS-16/BB38 (pending) For Immediate Assistance, Dial 1-800-233-2765 B-1 STILL AVAILABLE The following older DATEL component products have not been included in this new databook. For new designs the component products offered in this databook will provide economically superior performance. For existing designs we at DATEL are committed to supplying our older products to our customers for as long as possible and practical. Please contact our Sales Department for information regarding price, delivery, and minimum order quantity on any of the following. ADC-B500 ADC-B500-1 ADC-B505 ADC-B304 ADC-ECONOVERTER-EXX-HS ADC-EHB1-EXX-HS-BU04 ADC-EH10Bl ADC-EH10B2 ADC-EH12B2 ADC-EH12B3 ADC-EHBBl ADC-EHBB2 ADC-EK10B ADC-EK12B ADC-EK12DC ADC-EK12DM ADC-EK12DR ADC-EKBB ADC-ET10BC ADC-ET10BM ADC-ET12BC ADC-ET12BM ADC-ET12BR ADC-ETBBC ADC-ETBBM ADC-E12B4 ADC-E12D2 ADC-E12D2-EX ADC-E12D3 ADC-HX12BMM-QL ADC-HZ12BMM-QL ADC-MCBBC ADC-MCBBM ADC-149-14B ADC-32AC ADC-32C, ADC-32M ADC-33C ADC-33M ADC-510MC ADC-510MM ADC-5101 ADC-574AT ADC-574ZA ADC-574ZB ADC-574ZC ADC-674ZA ADC-674ZB ADC-674ZC ADC-7109 ADC-BOO ADC-Bl0MC ADC-Bl0MM ADC-BllMC ADC-BllMM ADC-B15MC ADC-B15MM ADC-B15MM-QL ADC-B.16/BB3B ADC-B16MC ADC-B16MM ADC-B17AMC C-l ADC-B17AMM ADC-B17AMM-QL ADC-B25MC ADC-B25MM ADC-B25MM-QL ADC-B26MC ADC-B26MM ADC-B27AMC ADC-B30C ADC-B47A ADC-B47B ADC-B47M ADC-B56C ADC-B56M ADC-BBl ADC-974 ADS-l05MC ADS-l06MC ADS-125MC AM-227 AM-427-1A AM-427-1B AM-427-2B AM-427-2M AM-430A AM-430B AM-450-2 AM-450-2M AM-452-2 AM-452-2M AM-460-2 AM-462-2 AM-464-2 AM-464-2M AM-543MC DAC-DG12Bl DAC-DG12Bl-EXX-HS-BU04 DAC-DG12B2 DAC-DG12B2-EXX-HS DAC-HB12B DAC-HBBB-EXX DAC-HF10BMM-QL DAC-HF12BMM-QL DAC-HFBBMM-QL DAC-Hll0B DAC-Hll0B-EXX-HS-BU04 DAC-HI12B DAC-HI-12B-EXX-HS DAC-HIBB DAC-HIBB-EXX-HS-BU04 DAC-HK-12BMM-QL DAC-HK12BMM-2-QL DAC-HP16BMM-QL DAC-HP16BMM-l-QL DAC-HZ12BMM-QL DAC-IC10B DAC-IC10BC DAC-IC10BM DAC-ll0B DAC-ll0B-EXX-HS DAC-112B DAC-112B-EXX-HS-BU04 DAC-112D DAC-UP10BC DAC-UPBBC DAC-OBBC DAC-OBBM DAC-OB05MR DAC-169-16B DAC-169-16D DAC-29BB DAC-4910B DAC-4912D DAC-562C DAC-562M DAC-60BC DAC-610C DAC-612C DAC-7134BL DAC-7134UL DAC-7523 DAC-7533 DAC-7541 DAC-B30B HDAS-16MM-QL MDAS-16 MDAS-BD MDAS-940D MDAS-940S MS-13 MS-6 MS-7 MVD-409 MX-1606M SCM-l00A SCM-l00B SCM-l0l SDAS-BAl SDAS-BA2 SDAS-BA3 SDAS-BEl SHM-IC-l SHM-IC-1M SHM-LM-2 SHM-UH SHM-UH3 SHM-2 SHM-2-EXX-HS-BU04 SHM-2E SHM-2E-EXX-HS SHM-5 SHM-5-EXX-HS-BU04 VFQ-1C VFQ-1R VFQ-2C VFQ-3C VFV-l0K VFV-l00K VI-7660-1 VI-7660-2 VR-1B2A VR-1B2B VR-1B2C DATEL, Inc. 11 Cabot Boulevard, Mansfield, MA 0204B-1194ITEL (50B) 339-3000ITLX 1743BB/FAX (50B) 339-6356 SUBSTITUTION GUIDE FOR DISCONTINUED COMPONENT PRODUCTS The following products are no longer available from DATEL. Where applicable, the nearest equivalent DATEL replacement is listed. Some of these replacement products are functionally similar only and may not be pin-for-pin compatible with the discontinued product. Discontinued Model Nearest Equivelent ADC-300 ADC-301 ADC-302 ADC-303 ADC-310 ADC-508MM ADC-515BMC ADC-515BMM ADC-520MM ADC-521MM ADC-7109 ADC-810MM-QL ADC-816MM-QL ADC-826MM-QL ADC-827AMM ADC-B300E ADC-B301E ADC-B302E ADC-B303 ADC-B310E ADS-105MM ADS-106MM ADS-115MC ADS-115MM ADS-116MC ADS-116MM ADS-125MM ADS-126MC ADS-126MM ADS-21AC ADS-22AC AM-100 Series AM-200 Series AM-427-2A AM-453-2C/2M AM-460-2M AM-7650-1/-2 DAC-330 DAC-7134BJ/BKIUJ/UK DAC-VR Series DAS-952R DILS-1,2,3* HDAS-8MM-QL MS-11* MS-12* MS-2* MS-3* MS-4* MS-5* MS-9* SCM-1 03/1 02 SHM-LM-2M SHM-360 SHM-361 SHM-9 Series TP Series* ADC-208 None None None None ADC-505BMM ADC-500BMC ADC-500BMM ADC-505BMM ADC-505BMM ADC-ET Series ADC-511/883B ADC-511/883B ADC-511/883B ADC-817AMM None None None None None ADS-112MM ADS-112MM ADS-112MC ADS-112MM ADS-112MC ADS-112MM ADS-112MM ADS-112MC AOS-112MM AOS-21PC AOS-21PC AM-551 AM-543MC AM-427-2B AM-450-2 AM-450-2M None OAC-HF10 OAC-71348UUL OAC-HK12 None None HDAS-8/8838 None None None None None None None None SHM-IC-1M None None SHM-IC-1 None *Available through distributors For Immediate Assistance, OiaI1-800-233-2765 0-1 GENERAL DISCLAIMER DATEL Inc. reserves the right to make changes to its products and their specifications at any time, without prior notice to anyone. DATEL Inc. has made every effort to ensure accuracy of the information contained in this databook, but can assume no responsibility for inadvertent errors, omissions, or subsequent changes. DATEL Inc. does not assume any responsibility for the use of any circuitry or other information described within this databook, and further, makes no representations of any kind that the circuitry and information described herein is free of infringement of any intellectual property right or any other right of third parties. No express or implied license of any DATEL Inc. intellectual property right is granted by implication or otherwise. LIFE SUPPORT AND NUCLEAR FACILITY APPLICATIONS POLICY DA TEL Inc. products are not for and should not be used within life support systems or nuclear facility applications without the specific written consent of DA TEL Inc. A Life Support system is a product or system intended to support or sustain life and which if it fails can be reasonably expected to result in significant personal injury or death. Nuclear Facility applications are defined as any application involving a nuclear reactor or any facility involved in any way with the handling or processing of radioactive materials and in which the failure of equipment in any way could reasonably result in harm to life, property or the enviroment. ORDERING GUIDE This ordering guide is presented as a procedural guide. For a formal statement of policies, refer to the TERMS AND CONDITIONS OF SALE found on the Quotation form or on the Customer Acknowledgement copy of the Sales Order. PLACING AN ORDER When ordering a DATEL product, give the complete model number, product description, and option description. Place orders with a DATEL field sales representative or with the factory by leller, telephone, FAX, or TELEX. Minimum order and minimum per shipment is $100. OUTSIDE THE U.S.A. 'AND CANADA Place overseas orders with a DATEL Sales Subsidiary (in West Germany, France, the United Kingdom, and Japan) or with a DATEL overseas sales representative. Orders received directly will be treated the same as if placed through our overseas sales representative. In countries without a DATEL representative, orders should be placed by TELEX and confirmed by air mail. FIELD SALES REPRESENTATIVE DATEL employs field sales representatives throughout the United States, Canada, Europe, and the Far East. DATEL also has Sales Subsidiaries in Munich, West Germany; Paris, France; London, England; and Tokyo and Osaka, Japan. Only these sales representatives are authorized by DATEL to solicit sales, and any information or data received by sources other than these authorized representatives or the DATEL factory are not considered binding. PRICES All prices are F.O.B. , Mansfield, Massachusells, U.S.A. in U.S. dollars. Applicable federal, state, and local taxes are extra and paid by buyer. Prices are subject to change without notice. TERMS Net 30 days DISCOUNTS Quantity discounts are available when placed in a single order. OEM discounts are available on an order or contract basis; consult the factory for details QUOTATIONS Price and delivery quotations made by DATEL or its authorized field sales representatives are valid for 30 days unless otherwise stated. DELIVERY DATEL uses an IBM System 4381, for efficient processing of orders. All orders placed with DATEL are acknowledged .within a few days by an acknowledgement copy of our sales order form. This copy indicates pertinent information including a formal statement of terms and conditions of sale and estimated delivery date. This date has preference over all other agreed upon dates unless otherwise specified. DATEL ships all products in rugged commercial containers suitable for insuring safe delivery under normal shipping conditions. Unless shipping method is specified, the best available method will be used. Shipping charges are normally prepaid and billed to the customer except for Air Freight charges which are sent collect. The appropriate data sheet andior instruction is packed with each product shipped. ORDER CANCELLATION All orders entered with DATEL are binding and are subject to a cancellation charge if cancelled before or after the scheduled shipping date appearing on the acknowledgement copy of the sales order form. Refer to DATEL's Standard Terms and Conditions for specific charges. WARRANTY DATEL warrants that all of its products are free from defects in material and workmanship under normal use and service for a period of one year from date of shipment. DATEL's obligations under this warranty are limited to replacing or repairing, at its option, at its factory or facility, any of the products which shall within the applicable period after shipment be returned to DATEL's facility, transportation charges prepaid, and which are after examination disclosed to the satisfaction of DATEL to be thus defective. This warranty shall not apply to any such equipment which shall have been repaired or altered except by DATEL or which shall have been subjected to misuse, negligence, or accident. In no case shall DATEL's liablilty exceed the original purchase price. The aforementioned provisions do not extend the original warranty period of any product which has either been repaired or replaced by DATEL. RETURNS You will need a return authorization number and shipping instructions from the factory when returning products for any reason. Items should not be returned air freight collect as they connot be accepted. It is absolutely necessary to return products in the manner stated here, otherwise considerable delay will result in processing the return. RETURNS OUTSIDE THE U.S.A. AND CANADA Contact the local sales representative or factory for authorization and shipping instructions first. CERTIFICATE OF COMPLIANCE When requested by the customer DATEL will provide a standard Certificate of Compliance with all shipments. This request must be specified on the purchase order.


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:16 12:42:36-08:00
Modify Date                     : 2017:07:16 13:17:04-07:00
Metadata Date                   : 2017:07:16 13:17:04-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:58e905f4-b743-2144-a0be-15064889d0a8
Instance ID                     : uuid:a8eb665b-b660-fb48-9b53-eb92e9747708
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 298
EXIF Metadata provided by
EXIF.tools

Navigation menu